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PREFACLE

A Mok precise title for this book would he "Matbematical eolulions of
the diffusion equatton’, for it ks with this aspecl of the mathematios of
diffusion that the book s mainly eomeerncd. It deals with the descrip-
tion of diffusion processes in terms of solutions of the differential
equation for diffusion. Tittle mention is wade of the alternative, but
lean well developed. deseription in ters of what is commonly eallod
“the random walk’ nor are theories of the mechanism of diffusion in
particular systems melnded.

The mathematieal theory of diffusion is founded on that of heat
condnution and earrespondingly the carly part of this book has developed
from ‘Conduction of heat in solids’ by Carslaw and Jaeger, These
suthors present many solotions of the equation of heat vonduction and
some of them can be applied to diffusion problems for which the
diffusion coeffivient is constant. T have selecied some of the solutions
which seem most likely lo be of interest in diffusion and they have
been evaluated numerically and presented in graphical forne so as to
bo readily usable. Several problems in which diffusion is complicated
by llhe effects of an imnehilizing reactiom of some sort sre olao in-
chaded. Convenlent ways of deriving the mathematical solutions are
deacribed,

When wa come to systems in which the diffusion coefficient, is not
canstant but vierialie, and for the most part this menans coneentration
dependent, we find that strictly formal mathematical solutions no
longer exist. T have tried to indicate the variona meedlds by which
numerical and graphical solutions have been obtained, mostly within
t?m Lust ten years, and to present, apain in graphical form, some solu-
tims for various concentration-dependent diffusion eoeffoients. As
well a3 being uselul in themaclves thess solntiony illustrate the charac-
'!Zﬂt‘l'ElT.iE: teatures of a concentration-dependent syetem. Consideration
12 alzo given to the closely allied problem of determining the diffusion
eoclficient and ils dependenee on coneentration from experimental
messurements, The diffusion coeilicients measured by different types
ﬂ'f: cxperiment gre shown to be simply reluted. The final chaptor deals
With the teraperature changes which sometimes accompany diffngion.

In several instences I have thought it hetter to refer to an casily
ﬂtn‘:-:'sﬂihle bool: or paper rather than to (he first published aceount,
which the reader might find difficult to obtain. Fase of reference
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usually seemed of primary importance, particularly with regard to
mathematical solutions.
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THE DIFFUSION EQUATIONS

1.1. The diffusion process

D1rrusioN is the process by which matter is transported from one part
of a system to another as a result of random molecular motions. It is
usually illustrated by the classical experiment in which a tall cylindrieal
vessel has its lower part filled with iodine solution, for example, and a
eolumn of clear water is poured on top, earefully and slowly, so that no
convection currents are set up. At first the coloured part is separated
from the clear by a sharp, well-defined boundary. Later it is found that
the upper part becomes coloured, the colour getting fainter towards the
top, while the lower part becomes correspondingly less intensely coloured,
After sufficient time the whole solution appears uniformly coloured.
There is evidently therefore a transfer of iodine molecules from the lower
to the upper part of the vessel taking place in the absence of convection
currents. The iodine is said to have diffused into the water.

If it were possible to watch individual molecules of jodine, and this
can be done effectively by replacing them by particles small enough to
share the molecular motions but just large enough to be visible under
the microscope, it would be found that the motion of each molecule is
a random one. In & dilute solution each molecule of iodine behaves
independently of the others, which it seldom meets, and each is con-
stantly undergoing collision with solvent molecules, ag a result of which
collisions it moves sometimes towards a region of higher, sometimes of
lower, concentration, having no preferred direction of motion towards
one or the other. The motion of a single molecule can be deseribed in
terms of the familiar ‘random walk’ picture, and whilst it is possible
to calculate the mean-square distance travelled in a given interval of
time it is not possible to say in what direction a given molecule will
move 1nt that time.

This picture of random molecular motiong, in which no molecule has
& preferred direction of motion, has to be reconciled with the fact that a
transfer of iodine molecules from the region of higher to that of lower
concentration is nevertheless observed. Uonsider any horizontal section
n the solution and two thin, equal, elements of volume one just below
and one just ahove the section. Though it is not possible to say which
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way any particular iodine molecule will move in a given interval of time,
it can be said that on the average a definite fraction of the molecules in
the lower element of volume will eross the section from below, and thé
same fraction of molecules in the upper element will cross the section
from above, in a given time. Thus, simply because there are more
iodine molecules in the lower element than in the upper one, there is a
net transfer from the lower to the upper side of the section as a result
of random molecular motions.

1.2. Basic hypothesis of mathematical theory

Transfer of heat by conduction is also due to random molecular
motions, and there is an obvious analogy between the two processes.
This was recognized by Fick [1], who first put diffusion on a quantitative
basis by adopting the mathematical equation of heat conduction derived
some years earlier by Fourier [2]. The mathematical theory of diffusion
1n isotropic substances is therefore based on the hypothesis that the rate
of transfer of diffusing substance through unit area of a section is
proportional to ithe concentration gradient measured normal to the

gection, 1.e,
F = —DoC/ox, (1.1)

where ¥ is the rate of transfer per unit area of section, € the concen-
tration of diffuaing substance, x the space coordinate measured normal
to the section, and I} is called the diffusion coeflicient. In some cases,
e.g. diffusion in dilute solutions, D can reasonably be taken as constant,
while in others, e.g. diffusion in high polymers, it depends very markedly
on concentration. If ¥, the amount of material diffusing, and C, the
concentration, are both expressed in terms of the same unit of quantity,
e.g. grammes or gramme molecules, then it is clear from (1.1) that D is
independent of this unit and has dimensions length®time-1,e.g. cm.2sec. !
The negative sign in equation (1.1} arises because diffusion occurs in the
direction opposite to that of increasing concentration,

It must be emphasized that the statement expressed mathematically
by (1.1} is in general consistent only for an isotropic medium, whose
structure and diffusion properties in the neighbourhood of any point are
the same relative to all directions. Because of this symmetry, the flow
of diffusing substance at any point is along the normal to the surface of
constant concentration through the point. As will be seen later in § 1.4,
this need not be true in an anisotroptc medium for which the diffusion
properties depend on the direction in which they are measured.
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1.3. Differential equation of diffusion

The fundamental differential equation of diffusion in an isotropic
medium is derived from equation (1.1) as follows,

Consider an element of volume in the form of a rectangular parallele-
piped whose sides are parallel to the axes of coordinates and are of lengtha
2dz, 2dy, 2dz. Let the centre of the element be at P(x,y, z), where the
concentration of diffusing substance is (/. Let ABCD and A'B'C’'D’ be
the faces perpendicular to the axis of x ag in Fig. 1.1. Then the rate at
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Fig. 1.1. Element of volums.

which diffusing substance enters the element through the face A BCD
in the plane x—dx i3 given by

sdydz (F _ % dx),

where F_ is the rate of transfer through unit area of the corresponding
plane through P. Similarty the rate of loss of diffusing substance through
the face A" B'C" D’ is given by
oF
dz| F, - —2dx].

4dy z( -+ ” ::r:)
The contribution to the rate of increase of diffusing substance in the
element from these two faces is thus equal to

oF,
— 8dxdydz e
Similarly from the other faces we obtain
— 8dxdydz E}LFE and —8dadydz ?—F-;
oy 0z

But the rate at which the amount of diffusing substance in the element
mereases is also given by

e
Bdxdydz R
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and hence we have immediately

oC ok, oF, OF
% —2 =), 1.2
o oy T a (1.2)
It the diffusion coefficient is constant, F., F,, F, are given by (1.1), and
(1.2} becomes Y 20 80 20
e = 1) - . » “3}
ot dx? ' oy ' D2
o o2
reducing simply to %1 = D{;;:, (1.4)

if diffusion is one-dimensional, i.e. if there is a gradient of concentration
only along the z-axis. Expressions (1.1} and (1.4) are usually referred
to as Fick’s first and second laws of diffusion, since they were first
formulated by Fick [1] by direct analogy with the equations of heat
conduction.

In many systems, e.g. the interdiffusion of metals or the diffusion of
organic vapours in high polymer substances, D depends on the con-
centration of diffusing substance, (/. In this case, and also when the
medium is not homogeneous so that D varies from point to point,
equation (1.2) becomes

v f—(ﬂa—q)+§(ﬂ£)+f-(ﬂ ) (L.5)
ot cr\ ox})  oy\ eyl oz\ &z
where D may be a funetion of z, ¥, 2, and C.

If D depends on the time during which diffusion has been takin g place

but not on any of the other variables, i.e.

D = f(1),
then on introducing a new time-scale 7' such that
dT' = f(t)dt,

the diffusion equation becomes
& 5EC+BEU+BEG
a1~ exr T g2 g2’
which is the same as {1.3) for a constant diffusion coefficient equal to
unity,

(1.6)

1.31. Diffusion in a cylinder and sphere
Other forms of the above equations follow by transformation of
coordinates, or by considering elements of volume of different shape.

Thus by putting xr — rcosf

Y = rs8in g,
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or by considering an element of volume of a cylinder of sides dr, rd#, dz,
we obtain the equation for diffusion in a cylinder,

G = e Tl @) %) -

in terms of the eylindrical coordinates r, #, z. The corresponding equation
for a sphere in terms of spherical polar coordinates r, 8, ¢ is obtained

by writing xr = reinfcosd,

y = rsinfsin ¢,

z = rcosf,
or by considering an element of volume of a sphere of sides dr, +d#,
rain fdd. It is

e/ 1 4, 0C 1 e’ D o0
E} rﬂfﬁr(ﬂ _) T sin 8 E_E(D sin 6 ﬂﬁ) T 81N ﬁqbﬂ] ‘ (1.8)

The simplified forms of (1.7) and (1.8) for purely radial diffusion, e.g in
a long cylinder where end effects are negligible or in a spherically
symmetrical system, are given in Chapters V and VI where some solutions
of the differential equations are to be found. All these diffusion equationa
can be expressed In terms of the nomenclature of vector analysis as
a8’
at

= div(Dgrad ).

1.4, Anisotropic media

Anisotropic media have different diffusion properties in different direc-
tions. Some common examples are crystals, textile fibres, and polymer
filmg in which the molecules have a preferential direction of orientation.
For such media it is not always true, as was stated in § 1.2 for isotropic
media, that the direction of flow of diffusing substance at any point is
normal to the surface of constant concentration through the point. This
means that {1.1) must be repla,ced in general by the assumptions

&
_F:: — Du P '{'ﬂlﬂ"—_'l_ﬂlﬂ'ﬂ;
&
—F, = Dﬂg‘f‘ ﬂﬂay +D23 72 [ (1.9)
—F, = 1a$+D3ﬂ —|—Daa o2 |

80 that F, for example, depends not only on #C/d2 but also on aCley
and 8(C'/gz, The D’s have the significance that D, 808z, for example,
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i8 the contribution to the rate of transfer in the z-direction due to the
component of concentration gradient in the z-direction. Substituting
from (1.9) for the F’s in (1.2} we obtain

ol &2 el &y 2
E\t — 11 dxg_f‘Dﬂﬂ 3y2+ﬂ33 332+{D23+'D32}3y3

_|_

+(D31+D13}

“f‘{Du‘l‘Dn) y: (1.10)

if the I}'s are taken as constant. The extension to non-constant J)'s is
obvious from (1.5). A transformation to rectangular coordinates £, n, {
can be found which reduces (1.10) to

eC 3 &*C a2

-+ D

E agﬂ ? B+D“a{= (10

This is the same transformation as that by which the ellipsoid

Dy 224 Dypp 4>+ Dygg 22+ Dhs+ Do Yyz+
+{( Dy + Dya)ze+ (D4 Dy ey = constant  (1.12)
is reduced to Dy £24- Dy p*+- Dy 2 = constant. | (1.13)

The new axes may be called the principal axes of diffusion and D,, D,, D,
the principal diffusion coefficients. If we make the further transformation

fl — g*ﬂ'llr{D."JDl)! T = ?;‘J{-D/-Dg}; €1 = CJ{D}’DE}: (1.14)

where 1) may be chosen arbitrarily, (1.11) becomes

aC &C o0 8
- = (53.;_3 E_g_ o {1.15)

This has the same form as equation (1.3) for isotropic media, and hence
certain problems in anisotropic media can be reduced to corresponding
problems in isotropic media. Whether or not this can be done in a given
case depends on the boundary conditions. Thus it is possible when the
medium is infinite, or when it is bounded by planes perpendicular to
the principal axes of diffusion so that the boundary conditions are of
the familiar form € = constant, & = 0, § =1,1> 0, for example, and
similarly for # and {. The problem of diffusion into an anisotropic
cylinder which has its axis along £ and is bounded by planes perpen-
dicular to £ reduces to the corresponding problem in an IEUtI‘ﬂP]ﬂ eylinder
provided D, = D,.

Certain properties deduaced by Carslaw and Jaeger [3, p. 29] indicate
the physical significance of the ellipsoid and also of the principal axes
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of diffusion. Thus it ean be shown that the square of the radius vector
of the ellipsoid in any direction is inversely proportional to the diffusion
coefficient normal . to the surfaces of constant coneentration at points
where their normals are in that direction. Hence the diffusion cocfficient,
D, at right angles to surfaces whose normals have direction cosines’, m, »
relative to the principal axes of diffusion is given hy

D =D 4+mD,+n2D,. (1.16)

Carslaw and Jaeger further show that if there is symmetry about the
planes £ = 0 and n = 0, then the general relationships {1.9) for the F's

reduce to
—Fy = D, 6Ce¢, —_F D, oC{em, —Fy —= DyeCiel. (1.17)

1-I|| ju—
This simplification also oceurs for other types of erystallographic sym-
metry. It means that the flow through a surface perpendicular to a
principal axis of diffusion is proportional simply to the concentration

gradient normal to the surface as is the case for isotropic media.

1.41. Significance of measurements in anisotropic medic

Nince in the majority of experiments designed to measure a. diffusion
coefficient the flow is arranged to be one-dimensional, it is worth while
to see how such measurements are affected by anisotropy. If the dif-
fusion is one-dimensional in the sense that a concentration gradient
exists only along the direction of #, 1t is clear from (1.10), since both €
and é('{éx are everywhere independent of i and z, that the diffusion is
governed by the simple equation

a(" EL1s:
e D]l T

ct ca?’ (1.18)

and [, is the diffusion coeflicient measured, H the direction of diffusion
i chosen to be that of a prinecipal.axis, then Dy is equal to one or other
of the principal diffusion coefficients D, P, or D). Otherwise the
coefhicient D, = 1), related to Dy, D), D, by (1.18) is measured. This
would be measured, for example, hy an observation of the rate of flow
through a plane sheet of a crystal cut so that its normal has direction
cosines (I, m, n) relative to the principal axes of diffusion of the crystal.
Similar remarks apply to a high polymer sheet in which there is both
uniplanar and unidirectional grientation, i.e. the molecules arc arranged
with their long axes lying mainly parallel to the plane of the sheet
and all parallel to one direction in that plane. The principal axes of dif-
fusion of such a sheet will be normal to the plane sheet, and along and
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perpendicular to the preferred direction of orientation in that plane.
Even if a concentration gradient exists in one direction only, it is clear
from (1.9) and (1.15) that the diffusion flow is not along this direction
unless it coincides with a principal axis of diffusion.
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METHODS OF SOLUTION WHEN THE
DIFFUSION COEFFICIENT IS CONSTANT

2.1. Types of solution

GENERAL solutions of the diffusion equation can be obtained for a
variety of initial and boundary conditions provided the diffusion
coefficient is constant. Such a solution usually has one of two standard
forms. Either it is comprised of a series of error functions or related
integrals, in which case it i3 most guitable for numerical evaluation at
small times, i.e. in the early stages of diffusion, or it is in the form of a
trigonometrical series which converges most satisfactorily for large values
of time. When diffusion occurs in & cylinder the trigonometrical series
is replaced by a series of Bessel functions. Of the three methods of
solution described in this chapter, the first two illustrate the physical
significance of the two standard types of solution. The third, employing
the Laplace transform, is essentially an operator method by which both
types of solution may be obtained. 1t1s the most powerful of the three,
particularly for more complicated problems. The methods are presented
here as simply as possible. The fuller treatments necessary to make the
discussion mathematically rigorous are to be found in works on heat
conduction, e.g. Carslaw and Jaeger [1].

2.2. Method of reflection and superposition
2.21. Plane source
It is easy to see by differentiation that
A
P 1L ¥ 2
= 3¢ , (2.1)
where A is an arbitrary constant, is a solution of

gC o

— =D, 2,

&t gx* (2.2)
which is the equation for diffusion in one dimension when I} is constant.
The expression (2.1) is symmetrical with respect to x = 0, tends to zero
ag z spproaches infinity positively or negatively for ¢ > 0, and fort =0
it, vanishes everywhere except at 2 = 0, where it becomes infinite. The

B
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total amount of substance, M, diffusing in a cylinder of infinite length
and unit cross-section is given by

M= j? C dz, (2.3)

and if the concentration distribution is that of expression (2.1) we see,

on writing w4Dt = £, dr = 2D dE, (2.4)

that M = 24 pi f e€'df = 24(#D)1. (2.5)

[ |

:ﬂ_

4 3 -2 -1 ] I 2 ] d

Fia. 2.1. Concentration-distanee curves for an instantaneous plane source.
Numbers on curves are values of D,

Expression (2.5) shows that the amount of substance diffusing remains
constant and equal to the amount originally deposited in the plane x == 0,
Thus, on substituting for 4 from {2.5) in"equation (2.1}, we obtain

(y — M g—x4IH

T, , (2.6)

and this is therefore the solution which describes the spreading by
diffusion of an amount of substance M deposited at time ¢ = 0 in the
Plane x = 0. Fig. 2.1 shows typical distributions at three sitccessive
times.
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2.22. Eeflection at a boundary

Expression (2.6) can be used to build up solutions of other problems
in linear flow by introducing the concept of reflection at a boundary.
Thus, in the problem just considered, half the diffusing substance moves
in the direction of positive = and the other half along negative x. If,
however, we have a semi-infinite oylinder extending over the region
z > 0 and with an impermeable boundary at z = 0, all the diffusion
oceurs in the direction of positive x. We can consider the solution for
negative z to be reflected in the plane x = 0 and superposed on the
original distribution in the region x > 0. Since the original solution
was symmetrical about z = 0 the concentration distribution for the

semi-infinite eylinder is given by

M :

=D’ - (2.9)
This procedure of reflection and superposition is mathematically sound,
for reflection at # = 0 means the adding of two solutions of the diffusion
equation. Sinee this equation is linear the sum of the two sclutions is
itself a solution, and we see that (2.7) satisfies the condition that the
total amount of diffusing substance remains constant at M. Further-
more, the condition to be satisfied at the impermeable boundary is

&Cex = 0, x =0, {2.8)

since this is the mathematical condition for zero flow across a, boundary.
Ag 8C/3g is zero at x = 0 in the original solution (2.6), it is clearly still
zero after reflection and superposition.

—-—
-—

2.23. Extended initial distributions

30 far we have considered only cases iri which all the diffusing sub-
8tance is concentrated initially in a plane. More frequently in practice,
!lﬂwwer, the initial distribution oceupies a finite region and we have an
Initial state such as that defined by

C=0C, <0, =0 2>0, ¢=0 (2.9)

This is the initial distribution, for example, when a long column of clear
water rests on a long column of solution, or when two long metal bars
e placed in contact end to end, The solution to such a problem is
Teadily deduced by considering the extended distribution to be composed
‘?f&n Infinite number of line sources and by superposing the corresponding
lﬂﬁnf't,e humber of elementary solutions. With reference to Fig. 2.2,
Consider the diffusing substance in an element of width df to be a line
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source of strength C,d¢. Then, from {2.6) the concentration at point P,
distance ¢ from the element, at time ¢ ig

_Gﬂd\f E_Eilmm
(D)t ’

b C
B
Z
Z
5

—a T

3 z=0 i &

Fra, 2.2, Extended initial distribution.

and the complete solution due to the initial distribution (2.9) is given by
Summing over successive elements d¢, i.e. by

Clx,t) = Co fe‘f'“ﬂ*' dé = ! f e dxy, (2.10)

2w D)t t
x &) 2t DY

where n = ¢/2,/(Dy),
A standard mathematical function, of which extensive tables are
available, is the error funection, usually written as erf 2, where

.

erfz — Efe—*?’ dn. (2.11)
!
0

This function has the properties
erf{—2) = —erfz, erf(0) = 0, erf(co) = 1, {2.12)

and hence, since

fe—‘i’ dn = f e 7 dy —fe—‘l’ dn = l—erfz = erfez, (2.13)
3 b ¢
where erfc is referred to as the error-function complement, the solution
(2.10) of the diffusion problem is usually written in the form

, x
Clx,t) = 1, erfcw. (2.14)
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(onvenient tables of the error function are those of the Works Project
Association [2] and shorter tables are to be found, for example, in
Milne-Thomson and Comrie [3]. Table 2.1, taken from Carslaw and
Jaeger [1], 18 sufficient for many practical purposes. The form of the
eoncentration distribution is shown in Fig. 2.3, Tt is clear from {2.14) that
¢ = }atz = O0forallt = 0

[ () pr————
’\

C/C, \

0-8 N

AN

0-4 :

-2
0 \\"——:—_J

-2 ~1 0 I x/(4Ds)? 2

06

Fra, 2.3, Concentration .distanes curve for an extended source of infinite extent,

The error function therefore enters into the solution of a diffusion
Problem as a consequence of summing the effect, of a series of line sources
each yielding an exponential type of distribution, |
) IE theiaame vay, we can study the diffusion of a substance initially

onimed in the region —4 < « < +4%asin Fig, 2.4. Here the integration

18 from 20— 3, Yo x+k instead of fr ] ng i
: om x to ¢ as in (2.10), leading imme-
diately to the result ) :

1""-'--1.;.'5 _ k_'m h—’—m
{7 — - . 4
%Oﬂ {El‘fz\/{ﬂﬂ + Erfm}- {2. 1-.‘;'

;[I;h; E;:mt:entratinn distribution at successive times is shown in Fig. 2.4.
iy c:‘EH.I' that 'the‘ system can be cut in half by a plane at z = 0 without
g the distribution, which s symmetrical about x = 0, Therefore

eXDress; - . ] . . .
uléh zﬂmn (2,1':;) also gives the distribution in g semi-infinite system.
System is realized in Practice in the classical experiment ini which

---------
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a cylinder contains a layer of solution having on top of it an infinitely-
long column of water, initially clear. In practice, this means that con-
centration changes do not reach the top of the column during the time

of the experiment.

C:.f'C,_.'

B

0-8

R [=

6

(-4
0-2 -
_— \
4 3

Fia. 2.4, Concentration-distance curves for an extended mource of limited
extent. Numbers on curves are values of (Defh2)E,

T
h|\

—> -1 0 l 2 3 x4

2.24, Finite systems

If the column of water, referred to above, is of finite length, I, the
condition that the concentration tends to zero as x approaches infinity
is to be replaced by the condition that there is no flow of diffusing
substance through the top surface, i.e.

oCfex = 0, x =1 {2.16)

We have seen that this condition js satistied if the concentration curve
18 considered to be reflected at the boundary and the reflected curve
superposed on the original one. In the finite system we are considering
now, the curve reflected at z — 7 is reflected again at £ = 0, and then
at & = ! and s0 on, the result of each successive reflection being super-
posed on the original curve (2.15). Since the original solution is the sum
of two error functions, the complete expression for the concentration in
the finite system is an infinite series of error functions or error-function
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comnplements so that

xr—A x+h A—h—ax
0= w“{erfﬂ 2J0h 2y 5 m

_ U+h—2x 2l —h4-x 2l+hx
erfc 5 /(D) -+ erfec 200 — erfe 2D

4d—h—x 4 —a-+h
2\/(5‘” _erfﬂ__%ﬂxf{ﬂt} + }

= Z {erfh:jgﬂ I—i~ er‘fh 2\??;:;2:}. (2.17)
A solution of this kind can be obtained for most problems in diffusion
by use of the Laplace transform, to be discussed below in § 2.4, or other-
wise. Such solutions are most useful for calculating the concentration
distribution in the early stages of diffusion, for then the series converges
rapidly and two or three terms give sufficient accuracy for most practical
purposes.

In all cases the successive terms in the series can be regarded as arising
from successive reflections at the boundaries. The nature of the reflection
depends on the condition to be satisfied. For the impermeable boundary
already considered a simple reflection ensures that e('/éx = Oasrequired.
Another boundary condition which occurs frequently is of the type C' = 0,
in which cage it is necessary to change the sign of the concentration when
it'is reflected at the boundary. A further example of the use of this
method is given by Jost [4, p. 38]. For more complicated problems,
however, the reflection and superposition method soon becomes un-
wieldy and results are more readily obtained by cther methods.

'—]~erfr:.

=~

2.3. Method of separation of variables

A standard method of obtaining a solution of a partial differential
Cquation is to assume that the variables are separable. Thus we may
attempt to find a solution of (2.2) by putting

¢ = X(z)D(@), (2.18)
Where X and 7 are functions of z and respectively. Substitution in
(2.2) yields 2
x%L _ pp®X
dat dax?
which may be rewritten
2
1df' _ DdX (2.19)

T df X da®’
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80 that we have on the left-hand side an expression depending on ¢ only,
while the right-hand side depends on z only. Both sides must, therefore
be equal to the same constant which, for the sake of the subsequent
algebra, is conveniently taken as — \2J). We have, therefore, two ordinary

differential equations 1 47T

4 D (2.20)

T dt

I d2X
d v 5 = — AL 2,21

an X 4o ( )
of which solutions are T = e-AD1 (2.22)
and X = Adsindz+ Beos AZ, {2.23)

leading to & solution of (2.2) of the form
(' = (A sin Az+ B cos Ax)e—ADH (2.24)

where 4 and B are constants of integration. Since (2.2} is a linear
equation, the most general solution is obtained by summing solutions
of type (2.24), so that we have

¢ = E (d,8inA, z+B_ COB A, x)e—AhDi (2.25)
=1

where 4, B_, and A, are determined by the initial and boundary
conditions for any particular problem. Thus if we are interested in
diffusion out of & plane sheet of thickness [, through which the diffusing
substance is initially uniformly distributed and the surfaces of which
are kept at zero coneentration, the econditions are

U=0C 0<z<l, t=0o (2.26)
C=0, z=u, =1 t>0. (2.27)

The boundary conditions (2.27) demand th&t'
B, =0, An = mm/l, {2.28)

and hence the initial condition (2.26) becomes
Cy = 2 A, sin(mrxfl), 0 <z < (2.29)
1

By multiplying both sides of {2.29) by sin{pnz/l) and integrating from
0 to I using the relationships
!

3 wa hy ﬁﬂ—ﬂ:‘ . D: m ?‘EP:
fﬂlnTﬂlﬂ —dz = (‘%E, m—p (2.30)

0
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we find that terms for which m is even vanish, and
A, = 4C/mn, m=1,3,5,...

The final solution is therefore

r

2 SR D . o Ja
¢ =1 RZ:‘} i’ DRty gin ; , (2.31)
where 2r--1 has been substituted for m for convenience so that » takes
values 0, 1, 2,.... This trigonometrical-series type of solution converges
satisfactorily for moderate and large times, and it is then used for
numerical evaluation in preference to the error-function type of solution
discussed earlier in § 2.24,

In (2.29) the imtial distribution is expressed as a sum of sine functions.
This reveals the physical significance of the trigonometrical series in
(2.31), each term of which corresponds to o term in the Fourier series
(2.28) by which the initial distribution can be represented.

2.4. Method of the Laplace transform

The Laplace transformation is a mathematical device which is useful
for the solution of various problems in mathematical physics. Applica-
tion of the Laplace transform to the diffusion equation removes the
time variable, leaving an ordinary differential equation the solution of
which yields the transform of the concentration as a function of the
space variables x, y, z. This is then interpreted, according to certain
rules, to give an expression for the concentration in terms of ®, o, 2z and
time, satisfying the initial and boundary conditions. Historically the
method may be regarded as derived from the operational methods
introduced by Heavigide. Full accounts of the Laplace transform and
its application have been given by Doetsch [5], Carslaw and Jaeger [6],
Churchill [7], and others. Shorter accounts by Jaeger [8] and Tranter [9]
are also available. Here we shall deal only with its application to the
diffusion equation, the aim being to describe rather than to justify the
Procedure,

The solution of many problems in diffusion by this method ealls for
No mathematicg beyond ordinary ealculus. No attempt is made here to
€xplain jtg application to the more difficult problems for which the theory
of funetions of a complex variable must be used, though solutions to
Problems of this kind are quoted in later chapters. The fuller accounts
should be consulted for the derivation of such solutions.
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2.41. Definition of the Laplace transform
Suppose f{(t) to be a known function of ¢ for positive values of £. Then

the Laplace transform f(p) of f(¢) is defined as

a0

Jip) = [ e»ifit) dt, (2.32)
0
where p is a number sufficiently large to make the integral (2.32) con-
verge. It may be a complex number whose real part is sufficiently large,
but in the present discussion it suffices to think of it simply as a real
positive number. For example, if f(f) = e¥, p must exceed 2. Unless
it is necessary to emphasize that fis a function of p, just as f is a function
of ¢, we shall usually denotc the Laplace transform of f by f.
Laplace transforms of common functions are readily constructed by
carrying out the integration in {2.32) as in the following examples:

fo=1, Jp)=|erdt=1/p, (2.33)

)=t Jip)= f e~Pleti @t — [ g~ p-a Jf — P_L:.I . (2.34)
0 0

f(t) = sin wi, flp) = J.r?'sinmt dt — }%ME. (2.35)

0

Extencive tables or dictionaries of Laplace transforms are available,
some in the works referred to above and others by Doetsch [10] and by
McLachlan and Humbert [21]. A short table of transforms occurring
frequently in diffusion problems is reproduced from Carslaw and Jaeger's

book [1] in Table 2.2.

242, Semi-infinite medium

As an example of the application of the Laplace transform, consider
the problem of diffusion in a semi-infinite medium, « > 0, when the
boundary is kept at a constant concentration, (y, the initial concentration
being zero throughout the medium. We need a solution of

2
°C _ pZt (2.36)

&t ox®’
satisfying the boundary condition
C=0C, x=10  t>0, (2.87)
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and the initial condition
=0 «>0  t=0 (2.38)

On multiplying both sides of (2.36) by ¢ #! and integrating with respect

to t from 0 to oo we obtain

o0

fe..p,ﬁf_? dz_ul_f %l gt —o. (2.39)

If we assume that the orders of differentiation and integration can be
interchanged, and this can be justified for the functions in which we are

interested, then

=)

2
[ -?‘EEE af = — f Ce% dt = 020 (2.40)
. gt oxt
0
Also, integrating by parts we have
v 80 _ ]
f e (N —j—;@:}f Ce—2t dt = pC, (2.41)
0
since the term in the square bracket vanishes at { = 0 by virtue of the

initial condition (2.38) and at ¢ = co through the exponential factor.

Thus (2.36) reduces to 2203 _
= pC. 2,42
D=0 (2.42)
By treating the boundary condition (2.37) in the same way we obtain
é = J. Cﬂé_p‘ dt — %ﬂ} x = (. {2.43}

Thus the Laplace transform reduces the partial differential eguation
{2.36) to the ordinary differential equation (2.42)., The solution of
(2.42) satisfying (2.43), and for which C remains finite as x approaches
infinity ig . C
0 — Pe—z, (2.44)
P
where g? = p/D. Reference to Table 2.2, item 8, shows that the function
whose transform is given by (2.44) is

' = Cyerfc ———— ZJ[Dt} {2.45)

Where, ag before, erfcz = 1 —erfz. (2.46)

It is ¢asy to verify that (2.45) satisfies {2.36), (2.37), and (2.38) and that
it is therefore the required solution of the diffusion problem.
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2.43. Plane sheet

In the problem just considered the transform solution could be inter-
preted immediately by reference to the table of transforms. Consider
now, as an example of a slightly more difficult preblem in which this is
not so, g plane sheet of thickness 2!, whose surfaces are maintained at
constant concentration, ¢, and with zero concentration of diffusing
substance throughout the sheet initially. Let the sheet occupy the
region ! < x <{ I, so that there is symmetry about 2 = 0 and the
boundary conditions may be written

O =G, x =], t == 0, (2.47)
éllfox = 0, x = 0, I = 0. (2.48)

Equation (2.48) expresses the condition that there is no diffusion across
the central plane of the sheet, It s often more convenient to use this
condition and to eonsider only half the sheet, 0 << « < I, instead of using
the condition ¢ = ¢, 2 = —|.

The equations for the Laplace transform & are

d*(C -

gz U =0, 0<z<] (2.49)
with dCldr =0, x— ¢, (2.50)
and C=0Cfp, zx=I, (2.51)

(2.52)

There are two methods of dealing with this transform solution, leading
to the two standard types of solution we have already met. We shall
first obtain & solution useful for small values of the time.

(1} Exzpansion in negative exponentials
We express the hyperbolic functions in (2.52) in terms of negative

exponentials and expand in a series by the binomial theorem. Thus we
obtain from (2.52),

(7 — Cole94-¢-ax) _ ?_u
pedi(l-fe=2d) T g

=% Z (— 1)ng—afientii—a) | Co Z (- D)me-a@n+disz) (9 5a)
P n= 2 r=1

ah
g ~i—z) p— I +x) — 1 )neg—2ngl
et pe-atia) 3 (1)
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Thus, uging jtem 8 of the table of transforms (Table 2.2) we obtain

® (2n+Dl—2 — . (2n-1)+x
C=¢ z (—Tyerfo =3 o 3O, z (—1)"erfe 3D
n=0 " (2.54)

This ig & serjes of error functions such as we obtained by the method of
reflection and superposition. Successive terms are in fact the concen-
trations at depths [—=, {42, 3] —z, 31+, ... in the semi-infinite medium.
The series converges quite rapidly for all except large values of Dt/l2,
For example, we have for the concentration at the centre of the shect

(r = 0) when Dtfi2 =1

C,"C’u — )-9590—0-0678+0-0008 = 0-8020, (2.65)
and when Difl2 = 0-25
CiCy = 0-3146—0-0001 = 0O-3145. (2.56)

(ii) Expression in partial fractions
It can be shown that if a transform 7 has the form
1p) (2.57)
g(p)
where f(p) and g(p) are polynomials int p which have no common factor,
the degree of f(p) being Jower than that of g(p), and if

g(p) = (p—a, }(p—aa)...(Pp—8y), (2.58)
where @,, @g,..-,8, are constants which may be real or complex but must
a1l be different, then the function y(f) whose transform ig §(p) is given by

y(t) = i ff—mira“r‘. {2.59)

§ =

Here ¢'(a,) denotes the value of dg(p)/dp when p = &,. A proof of this
by Jaeger [8]is reproduced in the Appendix to this chapter. Itisderived
by expressing (2.57) in partial fractions, Since the hyperbolic functions
cosh z and sinhz can be represented by the following infinite products

(see, for example, [12], p. 275)

472 472 472 _.
coshz = (1+F)(1+Eﬁﬁ)(l+5ﬂ—ﬁ)"" (2.60)
. 22 22 %2
sinhz = z(l-i—;z)(l w)(l—[- 32“_3)..., (2.61)

a quotient of these functions such as in (2.52) may still be regarded as
being of the type (2.57) except that now f(p) and g(p) have an infinite
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number of factors. The a,, a,,... are the zeros of g(p), i.e. solutions of the
equation, g(p} = 0, and if these are all different it is plausible to assume
that (2.59) still holds with n = co. The justification of this assumption
involves the theory of functions of a complex variable in order to carry
out a contour integration and is to be found in the fuller accounts of the
subject. There is, in fact, a rigorous mathematical argument by which
the use of (2.59) with » = o0, can be justified in diffusion problems in
a finite region only. It must not be applied to (2.44), for example, for
the semi-infinite region. The above refers to a;, a,,... all different. The
extension of {2.59) to cases in which g(p) has repeated zeros, e.g. one of
its factors is square, is given in the Appendix. Its application to an
infinjite number of factors is still justifiable.

We may now consider the application of (2.59) to (2.52). First the
zeros of the denominator must be found. Clearly, p = 0 is a zero, and
the other zeros are given by the values of ¢ for which coshgl = 0, i.e.

g= 4 {zn_ggl}ﬂ, n=0,1,2,. (2.62)
)
and hence » = —D[Eﬂ‘jﬁl}aﬁ , n=0,1,2._.. (2.63)

To apply (2.59) to (2.52) we need
g'(p) = %{pcuah ql) = cosh gl + dqlsinh gl. (2.64}

For the zero p = 0, ¢’(p) = 1. For the other zeros, given by (2.62) and
(2.63), coshgl = 0, and

ginh ¢l = sinh

En-i—ljm (2 n—I—l}-rr . "
5 . ¢ Bin = 3({—1)", {2.65)

80 that for these zeros, by substituting in (2.64] we obtain
(201 1)m(—1)n+L

g'{(p) = 1 (2.66)
Hence finally by inserting the zeros into (2.59) we obtain
(F— O £ (— 1" g—DXEn 1 1Pme (2n+ 1) _ (2.67)
T 2n+ 1 21

This is the trignnnmetncal-senea type of solution obtained previously
by the method of separation of the variables. The series converges
rapidly for large values of £. Thus for the concentration at the centre
of the sheet (x = 0) when Di/l* = 1,

C/C, = 1—0-1080 = 0-8920, (2.68)
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and when Dt/l# = 0-25
CJC, = 1—0-6872£0-0017 = 0-3145. (2.69)

2.5. Solutions expressed as the product of the solutions of

simpler problems
(Consider the equation of diffusion

32-:: 8 &2 1 fe
- o Rl T 2,70
a‘:I‘Fl +a$3 D E"E { ]

in the rectangular parallelepiped

For certain types of initial and boundary conditions, the solution of
{2.70) is the product of the solutions of the three one-variable problems,
and thus can be written down immediately if these are known, The
following proof is given by Carslaw and Jaeger |1, p. 22].

Suppose ¢,(x,, ), r = 1, 2, 3, is the solution of

g%, 1 dc,
— T/ ———— ﬂ' III b » 2172
@t Da TSH=Y (2.72)
with boundary conditions

ae,
ar—_'"Br Cp == U! L, = &,, t > '[}: (ETB}

, €€,
Exr'a?—i—ﬁ;ﬂr — '}, ﬂ:r — br, t ::-'-" ﬂ, (2.?4]

where the a, and 8, are constants, either of which may be zero (so that
the cases of zero surface concentration and no flow of heat at the surfacs
are included) and with initial conditions

e(x,,t) = Cz,), f— 0, a, < &, < b. (2.75)
Then the solution (2,70) in the region defined hy {2.71) with
¢ = C{z))Cy(@3)C4 5}, t =0, (2.76)

and with boundary conditions

d
EI—?—-—IB,.E—_D £ — @& t}ﬂ; T:IIE! 3: (277)

r r
ox,

wr__u_ﬁ;_,:_(;. x, = b, t >0, r=1,2,3, {2.78)

¢ — I|:'11(‘1‘:1:' ”{:2{3:21 '5)53{3:3! t) (279}
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For subatituting (2.79) in (2.70) gives

d2c, &%, 1

ﬂlamg_i"ﬂlﬂzé}“g"_ﬁ( e Ca— pr .}.[:3 1

dc oc
Eaa ﬂ+ﬂ$ 2+ﬂ1623tﬂ)=ﬂ’
(2.80)

using (2.72). Clearly the initial and houndary conditions (2.76), (2.77),
and (2.78) are satisfied.

Similar results hold for combined radial and axial flow in a solid or
hollow cylinder, and for other regions such as a rectangular corner [1].

APPENDIX TO CHAPTER II

To deduce the function y{f) whose Laplace transform #{p) is given by

. Sf(p) -
= =" 1
WP = ) ()
we first put F{p) into partial fractions in the usual way by assuming
i3
f(p) A, A, | A, A, A,
_— = — *rm [ 2
g(p) r=1p_ﬂr F"‘ﬂl+ﬁ_ﬂﬂ+}"_“= + + P—ay, @)
"
Then J(p) = Zlﬂrip—aﬂm{p—ar-l}ip—ﬂf+1]---{p—ﬂ“). (3)
r=

and putting p = @, In this gives
fla,) = Ao, —ay).a—a_)g,—a, ) (o, —a,} (r=1,2,..,n), {4)
Substituting for A, from (4) in {2) gives

Hp) — z 1 Slay) _ (5)
v o P—4a, (ﬂr_al}'“(ﬂ'r_“r-l)(ﬂr_ﬂr+l}"-(ﬂr_an:'
Now since #Hp) = (p—a ¥ p—ay)...(p—ay), (6)
we have, on differentiating by the ordinary rule for differentiation of a product
g'ip) = Ell'ﬁ“ﬂll---[??—ﬂr_ll{}'!—ﬂnrl}---f}?——ﬂn}- {7)
r:-
Putting p = @, in this, gives
g'la,) = (ay—ay).- (@ —a_ ), —a,)..[a,—ay,) (8)
and using {8) in {5) gives a further form for #{p) namely
_ Sla,)
— . 0
7(p) T (9)

On applying item 3 of Table 2.2 to sucecessive termes of (8} we obtain immodiately

Y1) = j Lo e, (10)

r::




DIFFUSION COEFFICIENT IS CONSTANT 20

This result applies only to the casc in which g{p) has no repeated zeros, but it can
readily be generalized for the case of repeated factors, Thus (10} implies that to
each linear factor p-—a, of the denominator of #{p} there corresponds a term

I g (11)
g (ay)
in the solution. The generalization is that, to each squared factor (p—8)? of the
denominator of #{p) there corresponds a term

] sl o

in the solution. To each multiple factor (p— ¢} of tho denominator of i(p} there
carresponds a term

m—1 N
;} [‘: “{{p “g‘%;’r{m”ﬂ”“(;_S:”!ﬂ“ (13)

in the solution,
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I11
INFINITE AND SEMI.INFINITE MEDIA

3.1. Introduction

Ix this and the following three chapters solutions of the diffusion equation
are presented for different initial and boundary conditions. In all cases
the diffusion coefficient is taken as constant. In many cases the solutions
are readily evaluated numerically with the help of tables of standard
mathematical functions. Where this is not so, and where numerical
ovaluation is tedious, as many graphical and tabulated solutions as space

permits are givern.

3.2. Instantaneous sources

Under this heading are included all problems in which an amount of
diffusing substance is deposited within a certain restricted region at
time f — 0 and left to diffuse throughout the surrounding medium.
For example, it may be located initially at a point, or in a plane, or
within a sphere, when we have an instantaneous point, plane, or spherical
source ag the case may be.

The solution for an instantaneous plane source in an infinite medinm
has already been given in Chapter IT, equation {2.6). The corresponding
solution for an instantaneous point source on an infinite plane surface 13
obtained in the same way by recognizing that

¢ = ‘%g—w'w'ﬂm (3.1)

#C #C  1aC

_—

—r

il : 3.2
dx® T oyt D &t (3.2)

is a solution of
which is the eguation for diffusion in two dimensions when the diffusion
coefficient is constant. The arbitrary constant 4 is expressed n terms

of M, the total amount of substance diffusing, by performing the
integration T

M:j j'cmy=4wm, (3.3)

— o — a0

the concentration ¢ being expressed in this problem as the amount of
diffusing substance per unit area of surface. The concentration at a




3.2) INFINITE AND SEMI.INFINITE MEDIA 27

distance » from a point source on an infinite plane surface is thus given

by M
— —ri{4IM .
U= om’ (3:4)
The corresponding expression for a point source in an infinite volume is
M
(1 — _ ~r3f4Dt | 5
(=D (3.8)

By integrating the appropriate solution for a point souree with respect
to the relevant space variables, solutions may be obtained for line,
surface, and volume sources. Thus for surface diffusion in the x, % plane
due to a line source along the #-axis we have

ﬂf g —.L E,l"lﬂf

2w D)t ; (3.6)

(= f 4£th e~= HVIADE )y
—ay

where now J} 1s the amount of diffusing substance deposited initially

per unit length of the line source. This is the same as expression (2.6) of

Chapter II for a plane source of strength M per unit area in an infinite

volume, The corresponding result for a line source of strength M per unit

length in an infinite volume, obtained by integrating (3.5), is

M E-r“ﬁlﬂf

4 i j

which is the same expression as (3.4) for a point source on an infinite

plane surface, though M has a different significance in the two cases.

Results for a variety of sources are derived by Carslaw and Jaeger

[1, p. 216]. The spherical and cylindrical sources are likely to be of

Practical interest. If the diffusing substance is initially distributed

uniformly through a sphere of radius a, the concentration ¢ at radius 7,
and time ¢ is given by

{ = @+ a—r _.C. 0 ff4 ; —( D __ e +12ta DY
éﬂu{erfzd{ t}+erf2wf( t}} ra/(i {e g—(a+riiann
{3.8)

where Cy is the uniform concentration in the sphere initially. Expression
(3.8) May easily be written in terms of the total amount of diffusing
Substance, Jf , 8ince

(3.7)

——
—_—

M = 12430, (3.9)

The torresponding result for a cylinder of radius a may be written in
the form

L4
C = _.Uie—"’ﬂmf e*r":’*iﬂffﬂ( il )?" dr’, (3.10)

20 200
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where 7, is the modified Bessel function of the first kind of order zero.
Tables of i, are available [2). The integral in (3.10) has to be evaluate
numerically except on the axis » = 0, where (3.10) becomes '

O = Cy(1 —e-a%Dr), (3.11)

These expressions may be applied, for example, to the diffusion of a
sphere or cylinder of solute into a large volume of solvent. Curves
showing the concentration distribution at successive times are given
in Figs. (3.1) and (3.2).

The expression (3.10) and the curves of Fig. 3.2 also apply to a circular
disk-source, of radius a, on an infinite plane surface, if € denotes the
uniform concentration of the diffusing substance over the regton
0 <r < a initially. An alternative solution given by Rideal and
Tadayon [3] is o
(' = aC, f o (ua)Sy(urye =D dyy (3.10 8}

0

where J, and J; are Bessel functions of the first kind and of order zero
and one respectively. Tables of Jy and J; are available [2]. Rideal and
Tadayon [3] also give an expression for the total amount of diffusing
substance, ¢, remaining on the disk after time ¢, which is

3 2
@ = 2ma2C, f J—lgﬂl e~Diwt dy, (3.10b)
4

For small values of ¢, (3.10b) becomes

2 (DA}
= 2 ]_ -_—
and when £ is large we have
¢ = malC,/(4.Dt). (3.10d)

Cases of an extended source in an infinite medium, where the diffusing
substance initially occupies the semi-infinite region xr << 0 or is confined
to the region —& < x < %, have been considered {see equations (2.14)
and (2.15) in Chapter IT). The solution to the corresponding problem
in which the region —% < x < % is at zero concentration and o < % at
a uniform concentration C, initially is

- h—x h-+x
0 = gon{erfc S TDw ot ﬁm}' (3.12)
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3.21. Continuous sources

A solution for a continuous source, from which diffusing substance is
liberated continuously at a certain rate, is deduced from the solution
for the corresponding instantaneous source by integrating with respect
to time ¢. Thus if diffusing substance is liberated continuously from a
point in an infinite volume at the rate ¢ per second, the concentration
at & point distant » from the source at time ¢ is obtained by integrating
(3.5) and is
1 dt

‘
S(WD]Efqﬁ{t;)e_r:;;m—f}m_ (3.52)
0

-
——
—_—

If ¢ is constant and equal to ¢, then

0 =_19 (3.5 b)

erfo—
dzDr  2,/(Dt)

Solutions for other continuous sources are obtained similarly and
examples are given by Carslaw and Jaeger [1, p. 220).

3.3. Semi-infinite media

The solution for a plane source deposited initially at the surface,
z = 0, of a semi-infinite medium was given in Chapter 1I, equation
(2.7), and that for the initial distribution ¢ = C,, 0 <z < &, € = 0,
x > k, was seen to be given by equation (2.15) for x positive.

The problem of the semi-infinite medium whose surface is maintained
at a constant concentration C}, and throughout which the concentration
is initially zero, was handled by the method of the Laplace transform in
- Chapter I1, § 2.42 (see equation 2.45). Other results of practical tmpor-
tance which may be obtained in the same way are given below.

(1} The concentration iz C, throughout, initially, and the surface is
maintatned at a constant concentration .

0-G, — erf

X
o L (3.13)

The special case of zero surface concentration is immediately obvious.
The rate of loss of diffusing substance from the semi-infinite medium
when the surface concentration is zero, is given by

5 Do,
(Dé)m;u = o (3.14)
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so that the total amount A, of diffusing substance which has left the
medium at time ¢ 13 given by integrating (3.14) with respect to ¢ and is

M, — 2(;;](9?)5. (3.15)
v
The same expression with (§ replaced by | gives the total amount
faken up by the medium in time ¢ if the initial concentration ), is zero.
If the initial concentration is zero throughout the semi-infinite medium,
and the surface concentration varies with time, solutions are still
obtainable by the Laplace transform, (Cases of practical interest are
given below. Here M, is used throughout to denote the total amount of
~ diffusing substance which has entered the medium at time #.
{ii} (..., = &t, where £ i3 a constant.

£ & —:ﬂﬂﬂi}

frots

X = BT l —_——— - !
¢ 'u[( +zﬂ.¢)erfc 2 /(D) J=Di)

= 4kt ierfe (3.16)

x

2J(D)

M, — gkt(-%)%. (3.17)
w

The function i?erfe is defined and tabulated in Table 2.1, so that values

of ¢’ may be written down immediately. The effect of an increasing

surface concentration is shown in Fig. 3.3.
(ti) C,_, == k}, where k is a constant.

iy Fmt X
€ = }ct*{e / ”—Evf{ﬂﬂerfcm}
. x
= k(nt)? ferfo T (3.18)
My = dt(xINE, (3.19)

il‘he function ierfe is defined and tabulated in Table 2.1, In this case M
1§ directly proportional to ¢ and so the rate of uptake of diffusing sub-
Stance is constant.

(iv) Cy_g = kit where k is a constant and 7 is any positive integer,

e¥en or odd,
C = kD(fn+1)(at)inirerfo, ,j?ﬂ’t‘)' (3.20)
_ k oL (dn+41)
M, = o J(Dr)(an FOn Tl (3.21)
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The function i"erfe is defined and $abulated up to # = 6 in Table 2.1,
I'(n) is the gamma function defined and tabulated, for example, in ref. 4,
p. 210. If n is even, so that }n = ¥, an integer, then

I(3n+1) = DN +1) = N1, (3.22)

ﬁ e = g - F TR
M,_.D;‘k
or M; ’::,

0-4 08 ) 16 20
(D)t

F1a. 3.3. Sorption curves for variable and constant surface coneentrations in
& Bemi-infinite medium.

If » is odd, so that in = M—1, then
PAnt+1) = D(M+}) = 1.3.5....(2M —3)(2M ~ 1)ri/2¥. (3.23)
Other properties of gamma functions are
D(nt+1) = nl(n);  I\(}) = nt. (3.24)

A polynomial in # may sometimes be a useful way of representing a
given surface concentration empirically. In such a case the complete
expression for the concentration at any point is the sum of a number
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of terms of type {3.20) corresponding to successive terms in the poly-
nomial.

(v) Thesesolutions can be extended to cover otherinitial and boundary
conditions by using the fact that for a linear differential equation the sum
of two solutions is itself a solution. For example, if

C..p = C)+kt (3.25)

and the semi-infinite medium is initially at zero concentration through-
out, the solution is given by

(' = Cyerfe + 4kt i1%erfe- (3.26)

2\/{41)#) 2,/ (D )’

gince the first term on the right-hand side of (3.26) is the solution
satisfying the conditions

¢ =&, x=10 |
’ , 3.27
=0, x>0 } { )
and the second term satisfies
= ki r =0
’ . 3.28
C' = 0, x>0 ] ( )

In general the solution to the problem of the semi-infinite medium
in which the surface concentration is given by F(t) and in which the
initial distribution is f(x), is given by

C = c;+¢y, (3.29}
where ¢, i3 a solution of the diffusion equation which satisfies
¢, = 0, ! = D} 380
¢, =F@it), z=10/ (3307
and ¢, iz another solution satisfying
¢ =Jla),  t= ”}. (3.31)

Clearly, with ¢, and ¢, so defined, the diffusion equation and the initial
and boundary conditions are satisfied.” Consider, as an example, the
Problem of desorption from a semi-infinite medium having a uniform
Iitial concentration Cy, and a surface concentration decreasing accord-
Ing to (3.25), with k negative. The solution is

Z X
= O+ 4ktiZerfe ——_ — 3.32
{' = O+ 4kti%erfc NIk (3.32)
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which is obtained by adding to (3.26) the solution satisfying
' = G, x> 0, t==0]
¢ =0, x=0, ¢t>0/

i.e. by adding C, erf{z/2,/(Dt)}.

(3.33)

3.31. Surface evaporation condition

In some cases the boundary condition relates to the rate of transfer
of diffusing substance across the surface of the medium. Thus, if a
stream of dry air passes over the surface of a solid containing moisture,
loss of moisture occurs by surface evaporation. Similarly if the solid is
initially dry and the air contains water vapour, the solid takes up
motsture. In each case the rate of exchange of moisture at any instant
depends on the relative humidity of the air and the moisture concen-
tration in the surface of the solid. The simplest reasonable assumption
18 that the rate of exchange is directly proportional to the difference
between the actual concentration, Uy in the surface at any time and the
concentration, €, which would be in equilibrium with the vapour
pressure in the atmosphere remote from the surface. Mathematically
this means that the boundary condition at the surface is

~D§-§ =a((,—C), x=0, (3.34)

where « is a constant of proportionality.
If the coneentration in a semi-infinite medium is initially €, through-
out, and the surface exchange is determined by (3.34), the solution is
C%}g: = erfc E{{%ﬂ — ¢ht WDl apfo {Eﬁ -+ fawf(D.','-}}, (3.35)
where A = «/D. The special cases of zero concentration in the medium
initially (€, = 0), and evaporation into an atmosphere of zero relative
humidity (Cy = 0), are immediately obvious from (3.35). The rate at
which the total amount, 21, of diffusing substance in the semi-infinite
medium per unit cross-sectional ares changes is given by
/g _(ﬂfﬁ) —~ &(C)—C), (3.36)
d dx }._g
and, on substituting for € the value obtained from (3.33) by putting
t = 0, after integration with respect to £ we obtain for the total quantity
of diffusing substance having crossed unit area of the surface,

A, = (9? ;EE) { e Derfe b, (DE)—1 1 % h{(ﬂfjl (3.37)
m

i
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If C, is greater than €, this amount is taken up by the medium; if ¢, is
less than Cy this amount is lost by evaporation from the surface. The
expression (3.58) can be written in terms of any two of the dimensionless

Pammeters .

., RJ(DH, or hx. 3.38
10 T
C-C o
Cn'_cz
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F1g. 3.4. Concentration distribution for a surface evaporation condition in a semi-
infinite medium. Numbers on curves are values of (D).

In Fig. 3.4 the ratio (C—C) (G —Cy) is plotted as a function of z/2,/(Df)
for various values of RJ(Dt). In order to evaluate AM(C,—C,) from
(3.37), only one dimensionless parameter 2,/(Dt) is needed. The relation-
8hip i readily evaluated from standard functions and is shown graphically

in Fig. 3.5. The evaluation for large %,/(Dt) is made easier by using the

8ymptotic formula
1 (l 1 1.3
+ ) (3.39)

-ﬁ-ﬂ X — .
exp{zlerfez = Al st

3.32. Square-root relationship

Expression (2.45) shows that the solution of the problem of diffusion

in e . . Ny :
0 a semi-infinite medium having zero initial concentration and the
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M h O ) +
Ca_CI:'

- A

0 i I

1 2 3 4
_ W Dy
Frc. 3.5, Sorption curve for a surface evaporation condition in a semi-infinite
medium.

surface of which 1s maintained constant, involves only the single dimen-
sionless parameter

4

5D (3.40)

It follows from this that

(i} The distance of penetration of any given concentration ia pro-
portional to the square root of time,
(3) The time required for any point to reach a given concentration
13 proportional to the square of its distance from the surface and
varies inversely as the diffusion coefficient,
(iii} The amount of diffusing substance entering the medium through
urit area of its surface varies as the square root of time.
These fundamental properties hold in general in semi-infinite media,

provided the initial concentration is uniform and the surface concen-
tration remains constant. They also hold for point and line sources on
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infinite surfaces or in infinite media, and also for the case of diffusion in
an infinite medium where the diffusing substance 13 initially confined
to the region z << 0. Clearly they do not apply to cases where para-
meters other than x/2,/(Dt) areinvolved, such as the width of an extended
source or the rate of change of surface concentration, etc.

3.4. The infinite composite mediam

Here we consider diffusion in systems in which two media are present.
Suppose the region x > 0 is of one substance In which the diffusion
coefficient is 1), and in the region & < 0 the diffusion coefficient is Dy,
In the simplest case, the initial conditions are that the region x > 0 1s
at a uniform concentration G, and in & < ¢ the concentration 18 zero
initially. If we write ¢, for the concentration in > 0 and ¢; in 2 <C 0
the boundary conditions at the interface x = 0 may he written

eple, = k, x = U, (3.41)
Dy éc)jtx = D, éeyjex, ¥ == 0, (3.42)

where k is the ratio of the uniform concentration in the region x < 0 to
thatin z = 0 when final equilibrium is attained. The condition (3.42) ex-
presses the fact that there is no accumulation of diffusing substance at
the boundary. A solution to this problem is easily obtained by com-
bining solutions for the semi-infinite medium so as to satisfy the mnitial
and boundary conditions. We seek solutions of the type

6, = A1+Blerfﬁwﬁ, x > 0, (3.43)
' H
Cy = A2+Bzﬂrfﬂﬂ2;}, x << 0, (3.44)

which are known to satisfy the diffusion equations in the two regions.
By choosing the constants 4,, B), 4,, B, to satisfy the initial conditions
and (3.41), {3.42) we obtain

C,
L+ &( Dy D)

¢, = (3.45)

{1 +&(D,/ D))} erfo{:E ik
=yl

(3.46)

GEZ

0
1‘1"%{1}2;{1)]}* 2‘_\"“[1}2 £} *

Fig. 3.6 shows a typieal concentration distribution for the case where

Dz = 4D and k = 4. Graphs for other cases are shown by Jost [5, p. 26]
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and by Barrer [6, p. 10]. We may note that, as diffusjon proceeds, the
concentrations at the interface, z — 0, remain constant at the values

Ou Mﬂ' '
— , = . 3.47
T IFHDDR T TERD Dy (5.47)
| ¢ .
/G,
0-8
(16 /
(14
2 |— ,x’xf
_F__,.—*’"’####Hgffﬂ J
-& —6 —4 -2 { 2 4 x 6

Frg. 3.6. Concentration distribution in a eompesite medium.
Dit=1, D,=4D, k=4
3.41, Interface resistance
If we have the same probiem as in § 3.4 except that there is a contact
- resistance at x = 0, then {3.41} is to be replaced by |
Dy ée\fexth(e,—e) =0, x=0, (3.48)
while (3.42) still holds. The expressions for the concentrations in this

case are
£

_ Co DAY o |
= o ) o+

M Z+RIIN __'r___ /
ez erfc(gwf{ﬂlt]—{- kl‘\-{ﬂlﬂ)}:}? (3.49)

- % e , Ryz+hi Dyt kg f }
Co = l. +( I')E.-"f Dl)g,{erfﬂ 2?{1}—2.#5—"3 t 'E.'-]'.‘f'[: 9 ‘\/ﬂt—}“f‘ -'11'2*\-' (.Dﬂ ﬂ »

(3.50)

; {I‘F‘{Dz.-"fﬂlﬂ}- {3.51)

re h
e, - I|II #.:I. ) —_
whe hy Lil{ | +(D, /DY, B, B,
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The concentrations on cither side of the interface are no longer constant
put each approaches the equilibrium value, 1€, relatively slowly. This,
and the general distribution at successive times, is illustrated in Fig. 3.7
for the case in which D, == D, and k = §D,.

1-0
C."rCu
-8
0-6
0-4
1@//
2 /]
7 25
/ 9

-4 -3 20 -0 0 10 20 30, 40

Fia. 3.7, Concentration distribution in a composite medium with a resistance at
the interface. Numbers on curves are values of Dy ¢, D, = D,. &k = 41,.

3.5. The semi-infinite composite medium

This is the case of a semi-infinite medium which has a skin or surface
layer having diffusion properties different from those of the rest of the
medium. Thus, suppose in the semi-infinite region —I < & < oo, the
diffusion coefficient is [, in the region —I << x << 0, and that the con-
centration is denoted by ¢, there, while the corresponding quantities in
T > 0are I}, and c,. If we assume the conditions at the interface to be

¢, = ¢y, =0, (3.52)

D, ée)jex = D, ée,/ex, x =0, (3.53)

the solution to the problem of zero initial coneentration and the surface
¥ = —! maintained at constant concentration C, ig given hy Carslaw

and Jaeger [1, p. 263], and is

- (2n+ 1)Lz (2nt+1—=x
¢, = C a“{erfc e — — b (3.54)
' ’ ,..g} 2%-'(1}1 wafﬂl ) J
%G, >, (2n+ D+ kx .
Cp = Py Z aerfe -w""{ﬂ.l.f] . (3.55)
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1—k
where k= (D /D)W, =TI

The total gquantity entering the medium through unit area of the surface
x = —Iin time ¢ is M,, where M, is given by

(3.56)

D = .- nl
g} - 2($t)%‘ 142 Z mﬂe—ﬂ’f'fﬂﬂ}—et Z naterfor—or. (3.57)
0 i a=1 g V(D)
¢ AR o ey T .
P i it e e I iy Dy 1
e i A
- - ! | “; f‘f{..
4 aE | I,r I_.--‘_
- T 1
Syt A Ay, e i
-_._:. "J:-. ‘1: _-"'"r .i . —
3 L R - f
.i —= o + R e B E—
- — A T AT
: Yr— e i —
— L ]
2 I | 1z _ o — A Bl —
] Y e -
I;rf;:_’-;_.'_‘_r__ t — : .
Pt R wae Il ~
1 . D=0
— . T T
05 " l{lll 1-5 2.0 | I .2'5 - 30
(DAY}

Fre. 3.8. Borption curves for 8 composite semi-infinite medium. Numbers on
curves are values of I /12,.

Following Carslaw and Jaeger [1, p. 263], for very large times the
exponentials in (3.57) may all be replaced by unity. This is true also of
the error-function complements in {3.57) and so for large times we have

approximately
M, D i} 20 4o
- e —_— 1 —— —_— - ——
EOD (':I'TEE) ( —[_ 1—-[1') []_v--[ﬁ]zj (3-53}

provided o® < 1. Fig. 3.8 shows 3,/IC, as a function of (D, /It

Whipple [7] has given formulae for the concentration in a semi-infinite
region of low diffusion coefficient bisected by a thin well-diffusing slab,
at different times after the boundary of the semi-infinite region has been
raised suddenly from zero to unit concentration. This is of interest in
grain boundary diffusion.
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IV
DIFFUSION IN A PLANE SHEET

4.1. Introduction N

IN this chapter we consider various cases of one-dimensional diffusion
in a medium bounded by two parallel planes, e.g. the planes at x = 0,
x = I. Theee will apply in practice to diffusion into a plane sheet of
material so thin that effectively all the diffusing substance enters through
the plane faces and a negligible amount through the edges.

4.2. Steady state

Consider the case of diffusion through a plane sheet or membrane of
thickness I and diffusion coefficient P, whose surfaces, x = 0, x = I,
are maintained at constant concentrations ), €, respectively. After a
time, a steady state is reached in which the concentration remains
constant at all points of the sheet. The diffusion equation in one dimen-

sion then reduces to d2Cdx® = 0, (4.1)

provided the diffusion coefficient, D), is constant. On integrating with
respect to x we have dC/dx = constant, (4.2)

and by a further infegration we have, on introducing the conditions at
— [}, X == E' C—Ol B
¢,—C,

Both (4.2) and {4.3) show that the concentration changes linearly from
(| to C, through the sheet. Also, the rate of transfer of diffusing sub-
stance is the same across all sections of the membrane and is given by

F = —Dd0/dx = DC,—C)/. (4.4)

If the thickness, I, and the surface concentrations (|, €, are known, D
can be deduced from an observed value of ¥ by using (4.4). Experi-
mental arrangements for measuring [ in this and other ways have been
reviewed by Newns [1].

Hf the surface x = ( is maintained at a constant concentration C;,
and at & = [ there is evaporation into an atmosphere for which the
equtlibriurn concentration just within the surface is C,, so that

00/an+R(O—Cy) = 0, =1,

; (4.3)
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C—C, _ & .
then we find G—C, = TTi’ (4.38)
and F = ﬂkii;;{gz}. (4.48)

If the surface conditions are
8Cfex+ R (C;—C) =0, z=0; 8C/ax+h(C—C,) =0, z—1,
_ hl 01{1 “]‘}*2(3_33)}"‘:*52 Cﬂ“ ‘I‘ﬁq x)

. 4.3
then C o by By (4.3 b)
and F = i (4.4 b)

4.21. Permeability constant

In some practical systems, the surface concentrations €, €, may not
be known but only the gas or vapour pressures p,, p, on the two sides
of the membrane. The rate of transfer in the steady state is then some-

times written F = P(p,—p,)/, (4.5)

and the constant P is referred to as the permeability constant. Here P
is expressed, for example, as c.c. gas at some standard temperature and
pressure passing per second through 1 em.? of the surface of a membrane
1 em, thick when the presaure difference across the membrane is 1 em.
of mercury. The permeability constant is a much less fundamental
constant than the diffusion coefficicnt which is expressed in units such
a8 cm.?/sec., particularly as different investigators use different units
and even different definitions of 7,

If the diffusion coefficient is constant, and if the sorption isotherm is
linear, i.e. if there is a linear relationship between the external vapour
pressure and the corresponding equilibrium concentration within the
membrane, then equations {4.4) and (4.5) are equivalent, but not other-
wise. The lincar isotherm may be written

¢ = Sp, (4.6)
where ' is the concentration within the material of the membrane in
equilibrium with an external vapour pressure p, and 8 is the solubility.
Since » P1 and Oy, py In (4.4) and (4.5) are connected by (4.6) it follows

that, with due regard to units,
P = DS, (4.7)

4.22. Concentration-dependent diffusion coefficient
If the diffusion coefficient varies with concentration it i3 clear that
the stmple value of D deduced from a measurement of the steady rate
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of flow is some kind of mean value over the range of concentration
involved. Thus, if D is a function of € (4.1) is to be replaced by

d{ndC
Cip%*™) _ o, 4.8
dm( dx) 0 (£.5)
and hence the relationship

F = —DdC/dx = constant (4.9)

still holds, as of course it must in the steady state. Integrating between
¢, and C;, the two surface concentrations, we have

F— — ; J D dC — D0, — O, (4.10)
»
P
where Dy = -Cr—‘gz J D dC, {4.11)
Cy

and this is the mean value deduced from a measurement of ¥. It follows
from {4.9) that if D depends on (' the concentration no longer depends
linearly on distance throngh the membrane. (Concentration distributions
for D depending on € in a number of ways are given in Chapter X11.

4.23. Composite membrane

If we have a composite membrane composed of n sheets of thicknesses
L, 1y,..., 1, and diffusion coeflticients D, D,,..., D), the fall in concentration
through the whole membrane is the sum of the falls through the com-
ponent sheets. Since the rate of transfer, F, is the same across cach

section, the total drop in concentration 13
Fl, Fi, Fl
=t = (R F, 4,12
_D1+ D2+ + Dn { 1+R2+ _[-Rﬂ] ( }
where R, = 1,/ D,,etc., may be termed formally the resistance to diffusion
of each sheet. Thus the resistance to diffusion of the whole membrane

is simply the sum of the resistances of the separate layers, assuming that
there are no barriers to diffusion between them.

4.3. Non-steady state

All the solutions presented here can be obtained either by the method
of separation of the variables or by the Lapiace transform as described
in § 2.4. Many of the results are quoted by Barrer [2], Carslaw and
Jaeger [3], Jost [4], and others. The emphasis here is on numerical
evaluation.
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4.31. Surface concentralions constant. Initial distribution f(x)

It c =0, 0,  t=0 (4.13)
C =0, x =1, t=0, {4.14)
== f(x), 0 < x <<, it = 0, (4.15)

the solution in the form of a trigonometrical series 13

GE- GD% '?]rﬂ' — 01 Hin TFJE E - Dnlﬂ,zllllii_i +

i) {

= 1‘|‘(Cg_01]:;+% Z
Ir .1

ac ! ¥
+ ?— Z Sin?'%xe—”"'z"w f fx)sn HEEE- dx’. (4.16)

1 0
In the cases of most common occurrence f(x) is either zero or constant
so that the integral in (£.16}is readily evaluated. Very often the problem
is symmetrical about the central plane of the sheet, and the formulae
are then most convenient if this is taken as x = 0 and the surfaces at

= +L

4.32. Uniform initial distribution. Surface concentrations equal
This is the case of sorption and desorption by a membrane. If the
region —I < x <C I is initially at a uniform concentration €, and the
surfaces are kept at a constant concentration O, the solution (4.16)
becomes |
C-_O':." — 1— E S {i}n e~ Di2n+ 1T pag (2rt-1)mx .

— - 4.1
-0, o 2n-+1 21 (4.17)

If M, denotes the total amount of diffusing substance which has entered
the sheet at time ¢, and 3, the corresponding quantity after infinite

time, then
M,

—_—

s
5
— 1— E—HER—I—I]’?T’H-‘H" 4;18
M, zﬂ (2n1)%at (4.18)

The corresponding solutions useful for small times are

C_ e . =
Co Z {—l}nerfc{ﬂn_l_”f’ E-1_ 2 (—1)" erfc(2n+]}£+m,
n—=0 =0

C,—C,~ 2 /(DI 2J(Dt)
(4.19)

and M, (DR > e nl
= 2(?) {w 2 S (=) 1erfcﬁm]. (4.20)

The modifications to these expressions for C, = 0 or ¢, = 0 are obvious.

fi=1
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It is clear that expressions (4,17}, (4.18), (4.19), {¢.20) can be written
in terms of the dimenstonless parameters

T = DE, X = afl, (4.21)
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Fic, 4.1. Concentration distributions at various times in the gheot --§ <= & < [

with initial uniform concentration 'y and surface convcentration €,, Numbers
on curves are values of Difi2,

80 that the solutions for all values of £2, 1, ¢, and x can be obtained from
graphs or tabulated values covering these two parameters. Graphs of
(C'—C){(C,—C) are shown for various times in Fig. 4.1. These are
reproduced with change of nomenclature from Carslaw and Jaeger’s
book [3, p. 83]. Tabulated values of {C'—C,) (|, —C}) and of M/I, are
given by Henry [5]. Values of 14/, have also been tabulated by
McKay [6] and extensive numerical values for the concentration at the
centre of the sheet, x =="0, are given by Olson and Schulz [7]. The curve
labelled zero fractional uptake in Fig. 4.6 shows how M,/ varies with
the square root of time in a sheet of thickness 2a when the concentration
at each surface remains constant.
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4.33. Uniform inilial distribulion. Surface concentrations different

This is the case of flow through a membrane. If one face, x == 0, of
o membranc is kept at a constant concentration €, and the other, x = [,
at C,, and the membrane is initially at a uniform concentration €, there
iz a finite interval of time during which the steady-state condition pre-
viously discussed in § 4.2 is set up. During this time the concentration
changes according to

2 < C,eoann—C, . nmrx - Dririt

€ = CFC—C) 7+ Z -—— tsin
el

) K

. jm—‘_ l)?TI N2 pJ S
et n e= r-+1}:rr.|"||'.!'_ 4 99
+ Z zm—l—l l (4.22)

=0

Ast approaches infinity the terms involving the exponentials vanish and
we have simply the linear concentration distribution obtained in §4.2,
If A, denotes the total amount of diffusing substance which enters the
sheet during time ¢, and M, the corresponding amount during infinite

M, 1,3
— ] — e~ NZn+ 13738 4 923
M, Z (En—i—l)“ { )

In this case M, = E(O 1—0
at time ¢ is given by M;4-IC,. The expression {4.23) ig similar to (4.18) and
is readily evaluated from the tabulated values in references [5] and [6]
or from the curve labelled zero fractional uptake in Fig. 4.6, with the
proviso that in (4.23) I signifies the whole thickness of the membrane
but in (4.18) it denotes the half thickness.

The rate at which the gas or other diffusing substance emerges from
unit area of the face 2 — 0 of the membrane is given by D{¢C/éx), 4
Which is easily deduced from (4.22}. By integrating then with respect
to {, we obtain the total amount of diffusing substance, ¢, which has
Passed through the membrane in time ¢, where

time, then

--C,;.) and the total content of the membrane

0= DiC,—Cf4 25 Gem=Cr ey
1

.ng

41 e~ DiEm 17y (4 24)

In the commonest experlmental arrangement both €, and | are zero,
Le, the membrane is initially at zero concentration and the concentration
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at the face through which diffusing substance emerges is maintained
effectively at zero concentration. In this case (4.24) reduces to

a0

& — % — i — E { I ) - Lmtaip 4 95 o
I a o € 1 ( . } o
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Diit?
1. 4.2. Appreach to steady-state flow through a plane sheet,

which, as f —» o0, approaches the line

DC, i2
= ff{——1]. 2
&=t 55} (4.26)
This has an intercept, L, on the ¢ axis given by __,
L = 1/6D. (¢.27) ]

Following Daynes [8], Barrer [2, p. 19] has used (4.27) as the basis of
a method of obtaining the diffusion constant, the permeability constant,
and the solubility of a gas by analysing stationary and non-stationary
flow through a membrane. Thus from an observation of the intercept,
L, Disdeduced by (4.27); from the stead y-state flow rate the permeability
constant I is deduced by using (4.5), and 8 follows from (4.7).
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A graph of @,/IC, as a function D{/i? is shown for the case C; = €y, = 0
in Fig. 4.2. To within the accuracy of plotting the steady state is achieved
when Di/I2 = 0-45 approximately.

4.34. Variable surface concentration

The solution to the general problem of diffusion in theregion ¢ << & < {
with the surfaces at concentrations ¢,(f} and ,(¢) and the initial concen-
¢ration f(x) is given by Carslaw and Jaeger [3, p. 86]. For empirical
values of ¢,(f), ¢,(f}, and f(zx), three integrals arise which have to be
evaluated graphically or numerically. In certain cases, however, where
the surface concentration can be represented by a mathematical ex-
pression, the solution can be considerably simplified.

(i) One case of practical interest is that of a sheet in which the con-
centration is initially zero and each surface of which approaches an
equilibrium concentration, £, exponentially, i.e.

$1(t) = dalt) = Cp{l—eF). (4.28)
This can represent a surface concentration which is changed rapidly but
not instantaneously, a situation which usually arises when an instan-

taneous change is attempted in an experiment. For the sheet whose
surfaces are at ! the golution is

¢ 1 o008 x(BID}
o, cos (/D)
16812 (— 1 )ne—DEn+1inta (21 1)

T L @at D[HAE—D2nt 1)) Y

. (4.29)

provided 8 is not equal to any of the values D{2n41)*n?/4l%. The
sorption-time curve, i.e. the curve showing the total amount, 3, of
diffusing substance in the sheet as a function of time ¢, is obtained by
Integrating (4.29) with respect to z between the limits —! and - and is
M,
o0, = 1—e-B{(D/BI% tan(D/BI}) —

E-—{Eﬂ+1}=wiﬂi’,l'tﬂ’

Tl Z (2n4- 1)2[1—(2n+ 1)2{ D%/ (4818)}]

=1

(4.30)

Fig. 4.3 shows uptake curves for different values of the parameter 8i2/D
Piﬂtt-ed against (D%}, When 8 = oo, the surface concentration rises
Instantaneously to €, and the curve of Fig. 4.3 has the characteristic
initial linear portion followed by the approach to the equilibrium value,
A, = 2i(}). 'The uptake curves for finite values of SBB/D, for which the
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gurface concentration rises at a finite rate, all show points of inflexion.
At first the rate of uptake increases as sorption proceeds but later
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Fia. 4.3. Calculatad sorption curves for surface coneentration given hy O (1 —e B,
Numbers on curves are values of giZfis,

decreases az the final equilibrium is approached. Curves of this kind
are often referred to as sigmeoid sorption curves. They may arise in
practice because surface equilibrium conditions are not established
instantaneously, but they may also result from other causes (see § 12.62

below).
(i) If the surface concentrations vary linecarly with time, ie.

Pt} = Pu{t) = &, (4.51)
the solution i3
bc Dt 1{x? 16 <> (1) pon e (2R 1)
R R R e

(4.32)
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The corresponding expression for M, is

(4.33)

DM, 20Dt 2 64 5’: o —D{3n 1 1Pmjalt

3t (2nt-1)

=10
Some numerical results are given by Williamson and Adams [9] and
Gurney and Lurie [10). Fig. 4.4 shows DC/EI® plotted as a function of
z;l for various ‘vatlues of Dt/I®. Fig. 4.5 shows DM,/ as a function of
the single variable D¢/I2,

These solutions can be extended to cover modified surface conditions
such as ¢,(t) = ¢,(t) = C,+kt, and a non-zero initial concentration by
superposing solutions as in § 3.3 (v).

4.35. Diffusion from a siirred solution of limited volume

It a plane sheet is suspended in a volume of solution so large that
the amount of solute taken up by the sheet is a negligible fraction of
the whole, and the solution is well stirred, then the concentration in the
solution remains constant. If, however, there is only a limited volume
of solution, the concentration of solute in the solution falls as solute
enters the sheet. If the solution is well stirred the concentration in
the solution depends only on time, and is determined essentially by
the condition that the total amount of solute in the solution and in the
sheet remains constant as diffusion proceeds. It is useful from an
experimental point of view to have only a limited amount of solution
since the rate of uptake of solute by the sheet can be deduced from
observations of the uniform concentration in the solution. It is often
simpler to do this than to observe dircctly the amount in the sheet.
This has been stressed by Carman and Haul {11], who have written
mathematical solutions in forms most appropriate for the measurement
of diffusion coefficients by this method.,

The general problem can be stated mathematically in terms of a
solute diffusing from a well-stirred solution. The modifications necessary
for corresponding alternative problems, such as that of a sheet suspended
in a vapour, are cbvious.

Suppose that an infinite sheet of uniform material of thickness 2! is
placed in a solution and that the solute is allowed to diffuse into the
sheet. The sheet occupies the space —1 < x <{ I, while the solution is
of limited extent and occupies the spaces —I—a <C 2 << 1,1 <a < la.
The concentration of the solute in the solution is always uniform and is
initially C},, while initially the sheet is free from solute.
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We require a solution of the diffusion equation

el a2}
v _pt. 4.34
ot dx? { )
with the initial condition
.= 0, —! < x <, f = 0, (4.35)

and with a boundary condition expressing the fact that the rate at
which solute leaves the solution is always equal to that at which it
enters the sheet over the surfaces x = 4. This condition 1s

aéClet = FDaCjex, x-—= 4l, ¢>0. (4.36)

We assume here that the concentration of solute just within the surface
of the sheet is the same as that in the solution. This may not be so but
there may be a partition factor, X, which is not unity, such that the
concentration just within the sheet is K times that in the solution.
This can clearly he allowed for by using a modified length of solution,
a{K, in place of a in (4.36) and clscwhere.

A solution of this problem by March and Weaver [12], based on the
nse of an integral equation, was cumbersome for numerical evaluation.
More convenient forms of solution have been obtained by Carslaw and
Jaeger [3, p. 106], Wilson [13], Berthier [14], while Crank [15] has
developed solutions particularly suitable for small values of the time,
The solution is most readily obtained by the use of the Laplace trans-
form. In a form expressing the total amount of sclute, M, in the sheet
at time ! as a fraction of M, the corresponding quantity after infinite
time, the solution is

M, < 20(l4a)

M, 1 ot og?

¢~ D’ (4.37)

where the ¢, s are the non-zero positive roots of
tang, = —af,, (4.38}

and o = /I, the ratio of the volumes of solution and sheet, or if there
is a partition factor K then « = a/KIl. Some roots of {4.38) are given
in Table 4.1 for values of « corresponding to several values of final
fractional uptake. Roots for other values of x are given by Carslaw
and Jaeger [3, p. 378] and by Carman and Haul [11]. 1t 18 sometimes
Convenient to express « in terms of the fraction of total solute finally
taken up by the sheet. Thus in the final equilibrium state, since the
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total amount of solute in solution and sheet was originally contained
in the solution of concentration €, we have

‘%H(?m — G, (4.39)

where (;, is the uraform concentration in the sheet finally. The content,
A, of the sheet finally iz given by

2aC, 2a(,

M, = AC, = - . = 2 _
* 1 Fa/iK) ~ 14a (4.40)
The fractional uptake of the sheet finally is therefore given by
M, ]
Eaﬂﬂ - 1_{__{1:' (4.41)

If, for example, 50 per cent. of the solute initially in the solution is
finally in the sheet, «» = 1. In the particular case of an infinite amount
of solute (a = o) the roots of (4.38) are q, = {n-+3)w, and we have

M, 2 8
= 1__ —Dn -+ 3R
M, % Bt 1)’ ’ (4.42)

which is expression (4.18) for the case of a constant coneentration, Cos
at the surface of a sheet. The smaller Df/I2 is, the more terms in the
series in (4.37) are needed for a given accuracy. When more than three
or four terms are needed it is better to use an alternative form of solution,
For most values of « the simplest expression is

% = (1+a}{l—e?' erfe(T/a2)i), (4.43)

where T' = DtI2. If very small values of « are required, corresponding
to very high fractional uptakes of solute by the sheet, there may be a
range of Dt/ in which neither (4.37) nor (4.43) is convenient but where
the following is useful: |
M,
M,

— (l—l—m}jl———u{——-—

o o3 o
| AT e T g T ] (4.44)

This is obtained from (4.43) by substituting the asymptotic expangion

tor exp(7'/a*)erfe(T/a?)t when T'/af is large.

Fig. 4.6 gives curves showing M/M, against (Dt/12)} for five values of
final fractional uptake. Fig. 4.6 shows that the greater the final frac-
tional uptake of the sheet the faster is the solute removed from the
solution. Clearly by comparing the rate of fall of concentration in the
solution observed experimentally, with the corresponding calculated
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curve showing M/M_ as a function of Di{l? the diffusion coethcient £}
can be deduced. This has recently been suggested by Berthier [14] as
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FiG, 4.6. Uptake by a plane sheet from a stirred solution of limited velume. Numbers
on curves show the percentage of total solute finally taken up by the sheet.

'l:_=l-""

a method for measuring self-diffusion using radioactive isotopes. He
gives a table of M/M_ for values of 1/« between 0 and 1-0 at intervals
of 0-1. For precision measurements it is advisable to check Berthier’s
values as in some instances not enough terms of the series solutions have
been retained to obtain the accuracy quoted. The concentration within
the sheet is given by the expression

B 2. 9(1+-a)e- DA coslg, /i) r
G_Oml1_|_ z i coss } (1,45)

n=1

We have considered diffusion into a plane sheet initially free of solute.
There is the complementary problem in which all the solute is initially
uniformly distributed through the sheet and subsequently diffuses out
into a well-stirred solution. It is easily seen that the mathematical
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solutions presented above for sorption by the sheet also describe desorp-
tion, provided 3, is taken to mean the amount of solute leaving the sheet
up to time {, and M, the corresponding amount after infinite tfime, For
the problem of desorption from the sheet we require a solution of
(4.34) satisfying (4.36) but with the initial condition (4.35) replaced by
C=¢C, —l<z<l t=0. (4.46)
On writing O = C—0, (4.47)
(4.468) and the other equations for desorption are identical with {4.34),
(4.35), (4.36}, with €| written for . Hence the equations and solutions
for desorption are identical with those for sorption provided M, M, are
suitably interpreted and C, (), replace C, C,, in expression (4.45). The
parameter « is equal to ¢/Kl as before, but its relation to the final uptake

of the sheet expressed by (4.40) and (4.41) no longer holds. Instead we
have that the fractional uptake of the solution is given by

MI 1
AC T 1+1/a

Jaeger and Clarke [16] have presented solutions of a number of other
problems in diffusion from a well-stirred solution in terms of certain
fundamental functions. Accurately drawn graphs of these functions,
from which solutions of limited accuracy are readily-constructed, are
given in their paper,

(4.48)

4.36. Surface evaporation

In § 3.51 the rate of loss of diffusing substance bj,' evaporation from
the surface of a sheet was represented by

—DeClex = af{C,—0C), (4.49)
where C is the actual concentration just within the sheet and €} is the
concentration required to maintain equilibrium with the surrounding
atmosphere. If the sheet, —I < & <7 [, is initially at a uniform concen-

tration €, and the law of exchange of the type (4.49) holds on both
surfaces, the solution is

= 2L cos| YB3 DUE
Z Li—ii}ios 8, (4.50}
where the §,’s are the positive roots of
ftanf = L {4.51)
and L o= lafD, (4.52)

a dimensionless parameter. Roots of (4.5]) are given in Table 4.2 for
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several values of L. Roots for other values of L are given by Carslaw
and Jaeger {3, p. 377]. The total amount of diffusing substance, 21,
entering or leaving the sheet up to time #, depending on whether (), is
greater or less than C,, is expressed as a fraction of 3, the corresponding
quantity after infinite time, by

. x> 2. — i Dij?
M Z fL S (4.53)
M, o Balfat L4 L)
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Fic. 4.7, Sorption or desorption curves for the surface condition (4.49). Numbers
an gurves are values of L = IxfD,

A solution suitable for small values of time may be obtained in the
usual way by expanding the expression for the Laplace transform in
a series of negative exponentials (Carslaw and J aeger [3, p. 252]), The
terms in the series expression for concentration very soon become
cumbersome for numerical evaluation, however. In practice, it is usually
sufficient to use only the leading terms corresponding to the interval
during which the sheet is effectively semi-infinite, when the concentra-
tion is given by expression (3.35), and (3.37) gives the value of M, for
half the sheet.

Graphs showing M,/ M,, for several values of I are plotted in Fig. 4.7
from numerical values given by Newman [17], Carslaw and Jaeger
[3, p. 102] give corresponding curves as well as others showing how the
SOnecentrations at the surfaces and the centre of the sheet vary with
time. Newman [17] also gives a table of values from which M/M,_ can
®agily be deduced for a parabolic inttial distribution instead of a uniform
5L |

E
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initial concentration. All these equations and solutions have a practical
application in the drying of porous solids.

Carslaw and Jaeger [3, p. 98] give solutions of more general problems
in which there is an initial, non-uniform conecentration distribution, or
in which the vapour pressure is different on the two surfaces of the sheet,
or in which evaporation occurs from one surface only, the other being
maintained at a constant concentration. Jaeger and (larke [16] have
also given in graphical form the solutions of a number of problems with
an evaporation type of boundary condition.

The more complicated case in which the rate of transfer on the surface
is proportional to some power of the surface concentration has been

discussed by Jaeger [18].

4.37. Constani flux Fy at the surfaces
If the sheet, —1 < « < I, is initially at a constant concentration €,
and diffusing substance enters at a constant rate, F,, over unit area of

each surface, i.c. D#Cjex = F, x =1, (4.54)
then

o n? !

FIDE 32— 2 ~ (=) P - ¢
C-——Cu == —l—ﬂj- 5—2—1— ﬂﬂﬂ_-_-_ir_ﬂ Z { ) g~ il cog i}
n=1

(4.55)

Obviously the total amount of diffusing substance taken up by unit
area of the sheet in time ¢ is 2F,{. Concentration—distance curves for
various times are shown in Fig. 4.8. An alternative form of solution

suitable for small times is given by Macey [12].

4.38. Impermeable surfaces

An impermeable surface is one at which the concentration gradient
is zero. This condition holds at the central plane of a sheet provided
the initial and boundary conditions are symmetrical about that plane.
It follows therefore that the symmetrical solutions already given for
the plane sheet occupying the region —! <z <1 apply also to the
sheet 0 < x < | when the face z = 0 is impermeable. If, on the other
hand, both surfaces # = 0 and 2 == [ are impermeable and the initial
distribution is f(x), the solution is

! . ,
C=1 ff{::’] d:ﬁ’—}-g Z g-Dn*ai gog 77 ff{:t:’) cos oo dx.
a [ 2 ] z
0 n= '

’ (4.56)
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Barrer [2, p. 14] suggests that diffusion from one layer to another as
discussed in § 2.24 may be treated by regarding the system as a single
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F1¢. 4.8, Concentration distributions in a plune shect for constant flux ¥, at tho
surface. Numbers on curves are values of Dyt

;ﬂ:}'fr with impermeable boundaries and applying (4.56} where the initial
istribution i
on is i) =0C, 0 <<x<h (4.57)
floy=0, h<az<il '
The solution (4.56) becomes
A fR 2 . vk ... max
O = Cﬂ[——i— - Z sin—r"¢ Dindoril cns—k—l. (4.58)

i T Lt R . I
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This solution is complementary to expression {2.17) which is convenient
for small times. Numerical values based on (2.17) and (4.58) are available
*in the well-known tables by Stefan [20] and Kawalki [21], some of which
are reproduced by Jost [4, p. 83].

Another special case of (4.56) has been evaluated by Crank and Henry
[22] in an investigation of different methods of conditioning a sheet to
a required uniform concentration. They consider the problem in which
a sheet, initially at zero concentration throughout, has its surfaces
maintained at a constant concentration C, for a time ¢, after which
they are rendered impermeable. The subsequent change in concentration
is described by (4.56) with f(x) given by

4 < 1 . (2m+l)mx Ny
ol [ ]_ _— Digm+1 0w ¥al , ot
f(z) Cﬂ[ - 3 ;sin E e + ] (4.5%)

In this case the two integrals in (4.56) reduce to

{ o0
8 1 _ N
.[f(I} dx = Cﬂ"‘[l"ﬂ_z Z {gm+})ﬁﬁ-mﬂm+”ﬂ o ]- (4.60)
0 m=0

: !

nd
{ @
2 .
2pmx 8¢, 1 1 _ i 3
os = dr = p—Ixdm +1)%m !'uff’j
ff{I}C ] ) HZ“ 4}12—{2’%-}"1}2
’ - (4.61)
where 2p is substituted for » since only the terms involving even « are

Nnon-zZero,

4,39, Composile sheet

Various problems of diffusion into a composite sheet comprised of
two layers for which the diffusion coefficients are different have been |
solved (see, for example, Carslaw and Jaeger [3, pp. 265, 302)). The
solutions are similar in form to those presented in this chapter but
obviously more complicated. In view of the additional number of
parameters involved, no attempt is made to give numerical results here.
Jaeger [23] has studied the time-lag involved in establishing the steady-
state flow through a composite sheet of several layers.
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DIFFUSION IN A CYLINDER

3.1. Introduction

W consider a long cirenlar eylinder in which diffusion 1s everywhere
radial. Cloncentration is then a funetion of radius, r, and time, ¢, only,
and the diffusion equation (1.7) becomes

i) 5

A o
5.2. Steady state
If the medium is a hollow cylinder whose inner and outer radii are
and & respectively, and if the diffusion coefficient is constant, the
equation describing the steady-state condition is

d{ dC’ )
S — | == y . ,2
dr(r dr) 0, <7 <b (5.2)
The general selution of this is
(' = A::'—BIUgT, (5.3)

wlere 4 and B are constants to be determined from the boundary
conditions at r = a, r = 4. If the surface == a is kept at n constant
concentration ¢/, and r = b at C, then
_ Cilog{hir)+Cylogir/a)
- loglbia) '
The quantity of diffusing substance, ¢, which diffuses through unit
length of the cylinder in time ¢, is given by
Wi .
0, — _th(Oﬂl ¢h)
log{éia}

C (5.4)

(5.5)

If ¢; is measured in a concentration-dependent system, the mean value
('

of the diffusion cocflicient obtained from (5.5) is (j' D d’-C')/(Cﬂ—CI} as
£y

for the planc sheet (see 4.11). The concentration distribution defined by
(5.4) is not lincar, as it is for the plane sheet. Typical distributions are
shown in Fig, 5.1 tor the cases €, =~ 0, bja -= 2, 5, 10.

Another steady-state problem leading Lo an inleresting result is that
of the hollow eylinder whose surface r = « is kept at a constant concern-
tration €}, and at r = 4 there is evaporation into an atmosphere for
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which the equilibrium conecntration just within the surface is ;. The
boundary condition, with the constant of proportionality denoted by A, is

{g*‘rﬁ(ff‘—%} =0, r=1b, (5.0)
and we find ) = Cl+hb ]”g(wf}} -+ 'I":'E’Cz_lﬂg(f'.-‘fl}_ (5.7)
14+-4blog(ria)
11}
C"'C;
0-8 \\
0-6 \\
\\
. \\\ o
, 19
2 5
. \\ -
\H“‘-—‘
05 2 3 4 5 g 5 g ;::T[:-

Fic. &.1. Steady-state concentration distributions through eylinder wall.
Numbers on curves are values of bla.

The outward rate of diffusion per unit length of the cylinder is ¢,, where

fih

1+4+-kblog(bia) (5.8)

Q.E = E?TD{OI _CE}

By differentiating this expression with respect to b, it is easily seen that
if ak > 1 the rate of diffusion decreases steadily as & increases from a,
but ifah << 1 the rate first increases and later decreases, passing through
& maximum when & = 1/h. This is due to the two opposing changes
associated with an increasein 8. On the one hand, the rate of evaporation
I8 increased because of the increase in area of the surface, r = b, ag b
Increases, but on the other hand, the gradient of concentration through
the cylinder decreases as & is increased. In certain circumstances, there-
fore, the rate of diffusion through the wall of a pipe may be increased
by making the wall thicker [1]. This is illustrated in Fig. 5.2 for ah — 1.
If the surfuce conditions are

ECEr R (O —C) = 0; (U Er+hy(C—Cy) = 0,  (5.6a)
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_ ah Cs(1+-bhylog b/r) 4-bhy Cy(1 +ak, log r/a) (5.7a)

we find ¢ ak,-+bh,+abhk, hylogbla
and G = uhffb;ﬁﬁfﬁa 1;; :: 2% (5.82)
0-60 - -
Wg!:ﬁ /\ l
0-58 |

Q-56
| \

0-54.

0-52
y y

050 — _i
-0 IS 20 25 30 gy 3

Fic. 5.2. Effect of thickness of cylinder wall on steady-atate rate of flow.

Other problems on diffusion in regions bounded by surfaces of the
eylindrical coordinate system and in which the flow is not necessarily

radial are treated by Carslaw and Jaeger [2, p. 187].

5.3. Non-steady state. Solid cylinder
Following essentially the method of separating the variables described
in § 2.3, we see that (1 = ye-P* (5.9)

is a solution of (5.1) for D constant provided « is a function of r only,

satisfying

d*w 1 du

RF?+;E}F+&E?£= ; (5.1{}}
which is Bessel’s equation of order zero. Solutions of (5.10) may be
obtained in terms of Bessel functions, suitably chosen so that the initial

i
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and boundary conditions are satisfied. Thus if the initial concentration
distribution is f(r) and the surface r = g is maintained at zero concen-
tration, a solution of (5.1) is wanted satisfying

() =10, r = d, t = 0, (5.11)
' = f(r), 0 < r<a, t = 0. {5.12)

The boundary cﬂndiﬂon (5.11) i3 satisfied by
O =3 A, dfa,r)e b (5.13)
n=1

provided the o,’s are roots of
Jolax,) = 0, {5.14)

where J,(z) is the Bessel function of the first kind of order zero. Roots
of (5.14) are tabulated in tables of Besscl functions (see for example
reference [3], p. 171). For this function (' is finite at r = 0. The initial
condition {5.12) becomes

1) = 3 Audifra,) (5.15)

it being assumed that f(r) can be expanded in a series of Bessel functions
of order zero, The A ’s are determined by multiplying both sides of
(5.15) by rJy(a, #) and integrating from 0 to a using the results,
[ rdylar}y(fr) dr = 0, (5.16)
0

when « and 8 ave different roots of (6.14), and
J. r{dp(or)}? dr = datJY(aa,), (5.17}
0

where J,(z) is the Bessel function of the first order and o is a Toot of
(5.14). The derivation of the relationships (5.16) and (5.17}), and of
corresponding expressions which hold when « 1s a root not of {5.14) but
of alternative equations which commonly arise in diffusion problems,
is given by Carslaw and Jaeger {2, p. 172]. Finally the solution satisfying
(5.11) and (5.12) is

a il

= i» J{'?‘-:I. ) )
(= — ~Dogt Z00 Ta " r
{12 Z1 ’ %(ﬂ-ﬂ:n} J. rf{r)Ju{T*l“_:' d?’. {*"‘IB}

A= :

Alternatively, solutions for both large and small times can be obtained
by nse of the Laplace transform.
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8.31. Surface concentration constant. Initial distribution f(r)
If in the cylinder of radius e the conditions are
C=0, r—=a =0, (5.19)
C=f(r), O0<r<a t=0, (5.20)
the solution is

2 - L Jyfra,)
A S R — I 7] p—Dudd
‘ ﬂ[ t 2‘ Xy Jl(ﬂm?t]e }+

-1

-L-}T- i E—D“?'-’i'-{iﬁ-- r f(ridy(re,) dr, {5.21)
' at J3Haw,) R
=1
where the a,'s are the positive roots of (5.14).
If the concentration is initially uniform throughout the cylinder,

fir) = C} and (5.21) reduces to

C—C, 2 < e PR (ra )
_ 1.2 {7 %} 5.22
CU_C]- a ?;[ (0% Jl{ﬂ'ﬂ:n) ( }
If 3/, denotes the quantity of ditffusing substance which has entered or

left the cylinder in time ¢ and J/, the corresponding quantity after
infinite time, then

A - 4 :
TR L (5.23)

The corresponding solution usefu] for small times is

C—0 a N {a—r](Dta-]*iErfe a—r

—_———— —_—

Co- Oy b 72067 T dar? 2./(Dt)

{Ba®—T7r?—2ar)Dt , t—r
- 1 Erfﬂ -t EERE 5*24
32airt 2,/(8) T ( )

+

_I_

which holds provided rja is not small. The case of /¢ small is discussed

by Carsten and MecKerrow [4]). They give a series solution involving

moditied Bessel functions of order n+4-1. The necessary functiors are

tabulated 1n their paper and numerical calculation is straightforward,
Also for small times we have

M, 4{D0NY Dt 1 D3 .
i, ;(F) "‘aﬁ‘ﬁ(ﬁ) to (5.25)

(learly these solutions are not as valuable as the corresponding ones for
the plane sheet. In practice the range in f over which they are convenient
tor evaluation is less than in the plane case.
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The solutions for the cylinder can be written in terms of the two

P dimensionless parameters IH/a?and ria. Curvesshowing (' —C)/(C,—C
4 p . j 1o —4
L
4 -0 E— = e
__ BT | k din 1 g_ i r - 1
C—C,  Toe b T I T
5 e, R A L e T
g, IR SN 33 D
{)-8 ! ] e
1 +11 -+ 1 | Byms= J—"F_ - :__.!..1:‘- : ]
- et e LITITEL | ) Bl .
e I 1
i T3 | i wwfmnp Lol u
"' A - _| - Fn‘"‘. i - -
3 1L 1L0TT N EA 3
4 Of LT T {ﬂ:ﬁ .
i, JTTATY RN EENRER R DN B
T a1y y??_‘ I
) TRl T TR }/ T
TETTIELEL D b T D A
3 T I EEn R s ..:/}.fi_ A 14 ){,Z
REREEN s cuR AN, -::-’*___,_ 1 N
: vl .i S [ N [ R A - T "'.ll" - '|l"'=__.
3 CO S E T
] I __"7'/ ,qi’j: | u
J1 13T L Liii . )
02 ] ] P
.'.' . il __._.._,r..‘"" } L.-!’— . | L. Ly
e et Rt e

T = P ¥, = rﬂ i

= 1 i _._l-i'_ ’ .

I E 1
= .‘='-+j,._.-:-"" -+ :
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Fiz. 5.3, Concentration distributiona at various times with initial concentration ()
and gurface concentration €. Numbers on curves are values of a2,

as 8 function of r/a for different values of Dtfa? drawn by Carslaw and
Jaeger [2, p. 175] are reproduced in Fig, 5.3. The curve of Fig. 5.7 for
3 zero fractional uptake shows how A,/ depends on Dt/a® when the
concentration at the surface of the cylinder remains constant,

3.32, Variable surface concentration
If the initial concentration in the eylinder is zero and that at the
surface is ¢(£), the solution is

-2 > e~ Dxge Y o700} f ePRRAB(N) ), (5.26)

@ (i,
=1

Where the o, ’s are the roots of (5.14).
(1) As for the plane sheot, a case of practical interest is when

Pit) = :u(l""f_‘ﬁ"]: (

27)

oA



A B Ty

68 DIFFUSION IN A CYLINDER [§ 5.3
representing a surface concentration which approaches a steady value,
%, but not instantaneousty. The solution {5.26} then becomes -
! af 90 —Dodf '.
Co Jy(Bat(D) abl = x,, fy (@) (o — (1))
].D | - FHH s T
e’ C, P e e IzEEEzEeacans ]
0-8 Y ¥ At
SRR, 2 A i
5 .SI i g as
I f
i : U‘S 1 -:
D'ﬁ h - ] T -
J! i 7] 0
N n‘ﬁl : 4 | [}!] : ]
] i IIE : T Tt
{]4 u . i i
1 ¥ : i L i
‘—j‘ : — -" - 3
- | -4 L . - =
i e e e e e S T T T TR
0- 2B s P o
s J]ﬁ __; : b : t L UUI: = -.&-.-Ef—[ - iy
g : i : SRR AT T =
f 7 n ] ;——JE-‘E"E : | : ; i
H = = , ; £35S FENyIN Ty SaaaE
D - : 1 ) T i1t '

F1c¢. 5.4. Caleulated sorption curves for surface coneentration given by Ol —e#).
Nurnbers on eurves are values of Su?/ D).

and the sorption-time curve is given by

Mo 2{(Ba D) e H 4 i ¢~ Do 3
7alCy (Bt DB D)} a? 2 A0S (BID)-- 1)

(5.29)

Fig. 5.4 shows uptake curves for different values of the parameter Sa®/ 1.
(ii) If the surface concentration varies linearly with time, 1Le.

B(L) == ke, (5.30)
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the solution is
2—---— 2 L} B = n !‘I 'rl..
O T 2 S o )
41} al) e oy of) (e, )

In Fig. 5.5, curves showing DU/ (ka?) are drawn against r/a for different
values of Dt/a®, Numerical values are given by Williamson and Adams
[5]. The corresponding expression for M, is

. whkat  dnk ~— e~ Dot
n-1 i
0'3 ' ! T . L TTTETT
MD. £ T A
ﬂ*ﬂ‘ H T 41 41 i -
0-6 =T HH T " 15a
‘ i e et sty aseananld
0afi Lo e g :
A THE . T
q_.-‘dm-‘l - il -;: 1 | 4'_ 117 - " I T T I A b - b
0__r#fﬁT 1T I :
. . 0-3 0-4 0-3 0-6 0-7 8
01 02 | DU

Fra. 5.6. Sorptiou curve for eylinder with surface coneentralion it

and 3, Df(mka') is plotted against D¢/a®in Fig. 5.6. These solutions can
be extended by superposition as in § 3.3 (v), to cover modified surface
conditions such as ¢(t) = C,+kf and a non-zero initial concentration.,

9.33. Diffusion from a stirred solution of limited volume

The problem differs only in detail from the corresponding probiem
considered for the plane sheet in § 4.35 and the results can be written
down without explanation.

Suppose thatl the eylinder occupies the space r <~ @ while the cross-
section of the bath of solution in which it is immersed is A (excluding
the space occupied by the cylinder). The concentration of solute in the
solution is always wniform and is initially €,. The cylinder is initially
free from solute. The total amount of solute, A/, in the cylinder after
time ¢ is cxpressed as a fraction of the corresponding amount AL, after
infinite time by the relation |6]

Mo S 4-11(14"13 _ p-Duliat (5.33)
M. Ly d+dat 2%

n—=1
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where the ¢, 's are the positive, non-zero roots of

afq, Jylq,)+24{q,) = 0, (5.34)
and o« = A/ma® the ratio of the volumes of solution and eylinder. If
there is a partition factor, A, between solute in equilibrium in the
cylinder and in the solution, x = A;(ra*K). The parameter xis expressed
in terms of the final fractional uptake of solute by the cylinder by the
expression B, o
Hgﬂ- — 1—}—0‘: (3.33)
The roots of {5.34) are given in Table 5.1 for several values of x in order
to assist the evaluation of (5.33). The convergence of the series in
(5.53) becomes inconveniently slow for numerical evaluation when Dt/a?
is small. An alternative solution suitable for small Dt/a? when « is
moderate is [7]

M | R
! [1—c¥i- ~ 3l Dt ’er{:r 2004 L) DE a?)i s ]] {5.30)
A, 1+ iu:
(‘arman and Haul [8] have derived an alternative equation which is less
casy to use but which is accurate up to considerably higher values of

A, Their equation is
My __ Y3 pdyiDifata Jerf{_.l ‘?’S(Dt) ‘+ 4

M. vty o \d?) |
+. ey Liyiﬂﬁ{ﬂi.ﬂjﬂrfﬂi_:}fﬁ(D:) ] (5.37)
Yot va « \a?/ |

where ve = 3{(1+a)t4-1}, Y4 = v;— | (03.38)
For x very small it is convenient to use the asymptotic expansion for
erfc in (5.36) and hence to write

M, _ Itaf) olDHa) | oY(Dta?) S a

Z)—*
4”1: 1+ 1ad ﬂﬂ&{1+;}:r1] 1'[:-'75 {14 }a)® l“‘Bﬂ'*{l i ]

—_—

(5.30)

If « is very large, the following expression is more convenient,

BT AR 2 (DN} ADE 41 2 DHg )
sl A & D EDLY Nl el LN e - — .
MM r:n:{ +T}lﬂ'i(ﬂ2) (:i'_{_a)n'* 3#*(3 o )({12) T )’

(5.40)
which for the special case of o = o2, becomes
M, j2{Dn} 1Dt AV 3
— 9l= st o}
A, lni(rﬁ) 2 q Gt ( ) T | (541

F . . . r . +
The derivation of these solutions for small times is given by Crank [7].
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Fig. 5.7 shows curves of M/M, against (Df/a®)} for five values of the
final fractional uptake. Berthier [9] gives a table of M/M, for values

of 1/x between 0 and 1 at intervals of 0-1. As in the plane case his values
are not always reliable to three decimal places. 1
]D ; , A s —— = Fr—— i
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Fig, 5.7. Uptake by s cylinder from a stirred solution of limited volume.
Numbers on curves show percentages of total solute finally taken up by
eylinder.

The concentration of solute € within the cylinder is given by

- %_ftx—[*l}ﬂ"ﬂqs'ml Joldn T*JE}} (5.42)
n=1 {4—|—4.:x—[—f12g$;,] Joldn)

As for the plane sheet, § 4.35, the above cquations also describe the
course of desorption into a well-stirred solution, initially free from
solute, from a cylinder in which the concentration is initially uniform
and equal to C,, The only modifications are that (5.35) is to be replaced

¢ — a,:{lju

by 1
M L (5.43)
Wﬂqj‘“ ]. ‘+ j I.'Ilﬂ'.'
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and €, (C}). replace C, C, in (5.42) where
C,=C—C, (C)o = C—0C. (5.44)

5.34. Surface evaporation
If the cylinder is initially at a uniform concentration €5, and there
is a surface condition
—DaCior = olC,—Cy), (5.45)

where C. is the actual concentration just within the cylinder and € is
the concentration required to maintain equilibrium with the surrounding

atmosphere, the required solution is

c-C, = 2LJ(rB,/a) _B2 e = o
o= 2 mErmigy (2-20)

The B, 's are the roots of

B (B)— Ldy(B) = O, (5.47)
and L = ax/D, (5.48)
a dimensionless parameter. Roots of (5.47) are given in Table 5.2 for
several values of L. The total amount of diffusing substance, A,
entering or leaving the cylinder, depending on whether O, is greater or

less than (7, is expressed as a fraction of M, the corresponding quantity
after infinite time, by

=\ 4 L2~ BRDHx
— , (5.49)
ﬂ; BE(BA+ L*)

The solutions suitable for small values of time, provided r/a is not small,
are '

e
Co~-C; 7l f{D.ﬁ) rt \/D}
(5.50)
where & — /D, and
M, 2DtL SL*Dp} (Dt .
M, a3 (aﬂ) —~ (u-*) (3 b = (550

Tabulated values of MM, are given by Newman [10] from which the
graphs of Fig. 5.8 are drawn. Newman [10] also gives values of a second
function from which M,/ M, can easily be dedueed for a parabelic initial
distribution.

2824
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I1¢. 3.8, Sorption and desorption curves for the surface condition (3.4}, Numbers
on eurves are values of L -- ax/Lh

5.35. Constunt flux ¥, at the surface
If the eylinder is initially at a uniform concentration €y, and there
is a constant rate of transfer of diffusing substance F, per unit area of

the surface, 1.c. o
g —DeCior = K, 2)

- ;

":..-l:

r=d, {
then we have

N D—‘J«
{:r_ﬂ?ﬂ = —EI-—?E_'_ e — i __ Z E_—er}',!]'u" l‘! rﬁ- 1 :I'

. , 3
D et | 2t x2 ,_,{lx,, v, H )

l'.‘..l

n=1
where the «,'s are the positive roots of
Ji{a) = O {5.04)
Roots of (5.54) are tabulated in reference [3, p. 171], and the first five
roots are to be found in Table 5.2 when L = 0. Obviously the amount
of diffusing substance lost by unit length of the cylinder in time ¢ is
2raF,t. This is a problem which has been discussed in connexion with
the drying of clay by Macey [11], Jaeger [12], and others. A solution
useful for small values of time 1s
F[ (Duf);]erfﬁ Difa+3r) ., f }
3.Q

O—C, = "
0 DI\ r JN.-'{H.E] - 2aip8 i ?

Concentration-distance curves, plotted from (5.53) are shown in Fig. 5
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5.36. Impermeable surface
If the surface of the eylinder is impermeable and there is an initial
concentration distribution f(r) then

where the a,,’s are roots of
Jfax,) = 0, (2.57)

which are tabulated in reference [3, p. 171].

5.37. Composite cylinder

Various problems of diffusion inte a composite cylinder comprised of
two coaxial cylinders having different diffusion coefficients have been
solved. {See, for example, Carslaw and Jaeger [2, p. 284].}) The extra
parameters involved make any attempt at general numerical evaluation
too formidable to be attempted here. Some solutions relating to diffusion
accompanied by non-linear absorption are discussed in Chapter X1L

5.4, The hollow cylinder

(‘arslaw and Jaeger [2, p. 180] give the general solution to the problem
of the hollow cylinder with the surface r = a4 maintained at a constant
concentration C,, and r = b at €,, when the initial distribution 18 f{r), In
the region @ < r < b. In the special case of a constant initial concen-
tration, f{r) = C,, and when €| = Cj, the solution is

¢—C, “ Taa M (re,) .

e 1 L a0 i — il 5.58
CL_C{} i n=1 Jﬂ{a"'xn}+JD{b‘Iﬂ] ’ j {] )
where U(ra,) = Jylra, ) Yolbae, ) — Jy(ba, ) Y(ra,), {5.59)

and the x,'s are the positive roots of
Uax,) = 0. (5.60)

Roots of (5.60) are given in Table 5.3 for different values of b/a. This

table is reproduced from Carslaw and Jaeger’s book {2, p. 379]. In
(5.58) and (5.59) J, and ¥, are Bessel functions of the first and second
kind respectively, of order zero. They are both tabulated in reference [3].
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The expression for the amount of diffusing substance entering or leaving
the region q s 7 < bin time ¢ is given by

-

M, XY
n=1

M, 4 < Jylae—Jbx,) .
T AR O T 0 " "nl e-Dagl 561
2 cxi{t{]{am”H—J{}{ba“}}E (5.61)

In Fig. 5.10, curves of M,{ M, are plotted against { D¢/ (b —a)?H for different
values of bla.
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5.41. Flow through cylinder wall

If the surface r = @ is maintained at O, r = b at C,, and the region
a < r < b is initially at €, the concentration approaches the steady-
state distribution discussed in § 5.2 according to the expression

¢ =

Oy log(b/r)+Chloglr/a) z Jylaa, ) Uylrayle Dot
log(bja} Jolaa, )+ Jy(boy,)

2 (Cydolac, )=C 1 Jo(bo 1o, ) Uilren) ,page (5.62)
S

where the «,’s are roots of (5.60). The amount of diffusing substance
entering or leaving the eylinder wall in time £ is given by M, where

—C\ Ha*—b*

M = % log{b ia)

}‘|‘ mbHCa— u}_ﬂﬂigl_cﬂ]}+

- { *"“C J(b'l } {G — D}J;J{ﬂmn} —Dait 5.63
T4 Z 2L (o, ) T Jolby)] (5.63)

Normally a quantity of greater practical interest is the amount, ¢,
escaping from unit length of the outer surface, r = b. This is readily
deduced from (5.62) and is given by obtaining —2=D{(rdc/dr),., and
integrating with respect to time, {. In the most commonly occurring
case C, = €, = 0, and we then find

Q _ 2ADI—L) | S Jan)ylbay)e o -
#(C,  log(b/a) Zl w2 { T3 aw,) —J Hba,)} (5.64)
For a given bja the graph of Q,/(=b2C,) against f approaches, at large ¢,
a straight line which makes an intercept L on the f axis given by

—b:+{a® 4 bY)log(b/a)
4log{b/a) '

(5.65)

As Barrer [13, p. 37] suggests, this intercept provides a means of measur-
ing the diffusion coefficient, D, for a material in the form of a hollow
cylinder. Fig. £.11 shows graphs of @,/{=b*C), the amount evaporated
from unit area of the outer surface r = b, as a functmn of Dtj(bh—a)®
for different values of b/q.
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5.42. A general boundary condition

Jacger [14] has given the solution to the problem of diffusion into a
hollow cylinder in which the conecentration is initially zero and the
boundary conditions on the two surfaces are
- | e . &l

4 by —-tky— 4 kg (7 — ky, r = 4, (5.66)
¥ 't €T
k, a?_]_ E '?E_|_ o C' = k], ¥ = b. {5.67)
. ¢ ¥

These conditions include as special cases:
(1) Constant concentrations, €, on r =a and (, on » = b, when
ky =k, = ki= 1k =0, kyfky = (4, Eyjky = G,
E {ii) Evaporation conditions on the surfaces
—DaCjer = y(C,—C), 1=
_DaCier = py0—C), 1=

(5.68)
(5.69)

|
& 8
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¥

when k) =k =0, b=k =D, k= —y, k= -0, k=,
ky = y5C;. This includes the obvious modification for an impermeable
surface.

(iii) Diffusion proceeding from a well-stirred solution occurring in the
region 0 < r < g, the concentration at » = a being always the same as
that throughout the solution; the surface » =— b impermeable. Atr == q

the condition is
mat Uit = 2maD ¢Cor, r = d,

that is ﬂﬁ'—EB _BTE = 0, r = a, (5.70)
ot a or
and we have also ¢Cior = 0, r =, (5.71)

sothat by = ky = 1, &y == —2D/a, b} = ki = kj = ky = k, = 0. Other
cages, such as that of diffusion from a well-stirred solution in the region
0 < r < a with the surface r = & maintained at a constant concentra-
tion, or the surface »r = a maintained at a constant concentration while
there is loss by evaporation from the surface » = b, and other combina-
tions of these boundary conditions are all deducible from the general
solution. The derivation of the solution by the use of Laplace transforms
18 given by Jaeger [14]. The final result is
akyiky—bkylog(r/b)t—bkyik,—ak,log(r/a))

¢= aky ky—bky ks —abk, Ky log (a/b)

— 3 &P P, ) )k Ay Tofbocy)— Ky (b, )] —
. — KA, Jaa)—kya, Jax, )] (5.72)
where A, = Ek,—Dkjol; A = k,—DE,a? }
B = ky+2Dkja; B = k)+2Dkys)

Colrs o) = JSy{ray ) A, Yylaw,)—ky o, Yi(aa,)]—
—Yolrog L4, J{aeg,)—ky oy Ji{ae,)],  (5.74)

A;: Jo{bor, }— k; &, (D)
{An Jplba, ) —ky o, i (b, )2 A2+ ky BaZ)—
— A, Hylao,}—ky o, Jy(aa, )] (A2 4k B'oZ)

and where the «,’s are the positive roots of
[(kg— ey Do®) o @) —ky ey (@) [k — k] Do) ¥y (ba) — kb oY, (ber)] —
—[{ky— k) DaBJy(ba) — Ky o (ba))f (ks — ky Dat)Y (aa) —k, oY (ax)] = 0.
(5.76)

(5.73)

F[‘Iu) —

—
o
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5.5. The region bounded internally by the cylinder » = a
(i) If the initial concentration throughout the region r > a is (}, and
the surface r = ¢ is maintained at €}, then

¢ —C, ﬂung{H?‘} olua) —Y,(ur) S (ua) d’u o
E;;L*ﬂ 1+ f 1{{1)—[—1"%1&{1) o (5.77)
A solution useful for small times i3
LI 3. an e ! L
C—by _ (ﬁ)ée o T el e O
O —C, \r 2 (Db dgtrt 2 J(Dk)
Di(9a®—2ar—7r%) , r—a ~
cern 8
+ 3917 iZerfc wa{l}t]_F_ {5.78)

Fig. 5.12 shows how concentration depends on radius at successive
times. The expression for the amount of diffusing substance, F, crossing
unit area of the surface, r = a, in unit time 138

80\ _ 4O —C)D [ du
ar) f T T aw) + Y jau)]
(5.79)

- -of

Numerical values of the integral in {5.79) have been tabulated by Jaeger
and Clarke {15] and are shown graphically by Carslaw and Jaeger [2,
p- 283]. For small times we have

F=

01;0.;.} Ty —H T +3T—..), (5.80)
and for large times

I4
F‘""(C C’llﬂgm*_y flog(4T)—24}% ] (551

where T' = Dt/a? and y = 0-57722 is Euler’s constant,
(ii) If the region + > a is initially at a uniform concentration ¢, and
there ig transfer of diffusing substance across r = a according to

—-DaCler = (C—C,), r=a, (5.82)

then we have

0—0,
G—G

2k J‘ o apholur)[uXy(ua)-+AY (ua)] — Yy (ur)ud, (ua) +hJy(ua)] du
[, (wa)+-hdy(ua))? + | ul (va)+ kY (ua)]* 3
(5.83)
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where & = o/D. Graphs showing how (('--C}/(C,—C}) at the surface
¢ — @ varies with time have been drawn by (‘arslaw and Jaeger [2, p. 283],
for several values of ah. Clearly because of (5.42) these curves also show
the rate of transfer across unit area of the surface r = a. Carslaw and
Jaeger [2, p. 283] also give the solution of the corresponding problem
when there is a constant rate of flow of diffusing substance across the

gurface r = .
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VI
DIFFUSION IN A SPHERE

6.1. Introduction

IF we restrict ourselves to cases in which the diffusion is radial, the
diffusion equation for a constant diffusion coefficient takes the form

e’ & 2 a0
e D(_ar"’- ; E) (61
On putting w = Cr, (6.2)
el o u
ﬁ'-l b T S .
(6.1) becomes i Dﬁrz (6.3}

Since this is the equation for linear flow in one dimension, the solutions
of many problems in radial flow in a sphere can be deduced immediately
from those of the corresponding linear problems.

6.2. Steady state
In this case the equation is

d{.,dC

ﬁ(r E’:) = 0, (6.4)
of which the general solution is

C = B+Alr, (6.5)

where 4 and B are constants to be determined from the boundary
conditions. If in the hollow sphere, a << » <{ b, the surface r = « is
kept at a constant concentration (), and r = b at (7, then
aCy(b—r)+bC,(r—a)

rib—a) ]
The guantity of diffusing substance, ¢, which passes through the
spherical wall in time ¢, is given by

¢ = 4“7‘1}3% (Ca—€1). (6.7)

O = (6.6)

If ¢, is measured in a concentration-dependent system, the mean
value of the diffusion coefficient obtained from (6.7) is

(TID do)/(ol-rcﬂ}

A
as for the plane sheet (see 4.11).
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If the surface ¥ = a is maintained at a concentration (| and at r = &
there is evaporation according to the condition

%ng MO—C) =0, r—=b, (6.8)

QO Rb* (1 —hb)}-+ R Cy(r—a)
we find C = T T a(L—Ab)] .

The amount, @), passing through the spherical wall in time / is now

given by _ 4nDthab¥(C,—G,)

U= hb2d-a(l—hb)
If ah > 2, the rate of diffusion decreases steadily as b increases, but if
ah < 2 the rate first increases and later decreases, passing through a
maximum when & = 2/h. As in the case of the cylinder, this maximum
is due to the combination of a decreasing gradient and an increasing

gurface area as b is increased.
If the surface conditions are

oCler4+-h(C,—CYy =0, r=a; cCfor+-h(C—Cy) =0, r =25,

(6.9)

(6.10)

(6.11)
the solutions are
0 = Cia®hy{bhy—r(bhy— 4+ Gy bhofr(ahy + 1) —a®hy} o)
r{b2ho(ah, 1+ 1)—ath,(bh,—1)} ’
and 0 drab2h, by IH{C, — L) (6.13)

' bBehy(ahy+ 1)—athy(bh,—1)

6.3. Non-steady state
6.31. Surface concentration constant. Initial distribution f(r)

If we make the substitution & = C¥, suggested above, the equations

for % are s 52,

% = Dﬁrﬂ’ {6.14)

w = 0, r =0, t = 0, (6.15)

u — al, y == q, > 0, {6.16)

u = rfir), t =0, 0 < r < a, (6.17)

where () is the constant eoncentration at the surface of the sphere.
These are the equations of diffusion in a plane sheet of thickness a,
with its ends, » = 0 and r = a, kept at zero and aC,, respectively, and
with the initial distribution rf{r). This problem has been considered
In § 4.31, and the solution follows immediately by making the appro-
Priate substitutions in equation (4.16). If the sphere is initially at a
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uniform concentration, ¢/, and the surface coneentration is maintained
constant at 4, the solution becomes

é’ __F mT A (6.18)
10 T TTTTITT] —
+1- + doleel— 111k _.-'::".'_ ; l_
Co—C  |HH L 3 zgas 7
o8 {H] Eafiistcast il 7
SARANRSSEEg :
0-6 L iz i
S S
e e
04 Ao
: . ’/{; ;“;‘ '
pia 1{
o2 T RE
e"}] g war,
e pecet f :
S T S
0 02 04 0-b 08 0
r/a

Fig. 6.1. Concontration istributions at various times int a aphere with initial coneentra-
tion €] and aurfaco concentration £,. Numbers on curves are values of Difat,

The concentration at the centre is given by the limit as » — (, that is by

f g = 142 2 (—1)re-Driwiia®, (6.19)
— =1

The total amount of diffusing substance entering or leaving the sphere
is given by
' A 1 Z nﬂe_ﬂ?ﬂﬁna“ (6.20)

_.'.

The corresponding solutions for small times are

C-C _ax (2n4-1)a— {2ﬂ+l}m+r
o0, }gﬂ {erfﬂ E«.,-'f‘:ﬂf) erfc D6 }, (6.21)
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M, Di\} R %t i
i SnlnL I | bt -4 2 terfc — .} -—3 . 6,22
e M. (m) {” i Z (m;} o (6:22)
'These solutions can be written in terms of the two dimensionless para-
meters IMfa® and rja. Curves showing (C'—C))/(C,—C)) as a function of
r/a for different values of Dt/a?, drawn by Carslaw and Jaeger[1, p. 201],
are reproduced in Fig. 6.1. The eurve for zero fractional exhaustion on

Fig. 6.4 shows M/ M as a function of Ditja.

6.32. Variuble surface concenlration
If the initial concentration in the sphere is zero and that at the surface
is é(#) the solution is

f
20 ﬁ* ty— |
=z — S R PEY T & T on Dl
ra L )e A sin— J.e P(A) dA. (6.23)
- 0
(i) When bt) = Ch(L—e ), (6.24)
{6.23) becomes
¢ . 1_8,psn{(BeD)rja}_
Lo r sin{Bu?/ D}
Eﬁﬂﬂ = —ﬂﬂ'ir’!‘,l'u“ N ,.‘
 wDr Z (--1) n(n"’*’ 2 _Bu*{D}Bm__’ (6.25)

and the sorption-time curve is given by
3N, 3D Ba®\}  (Ra®\}
— T BT anll
e, = =g (5) ! p) |+
68a% <~ g—Dniaitial

2D 2 D)

(6.26)

Fig. 6.2 shows uptake curves for different values of the parameter fa? D,
(i) If the surface concentration varies linearly with time, i.e.

${t) = kt, (6.27)

the solutions are

_ GE—TE Ekﬂa > {"-].]” - T TII nmor
(= Ic(t- )—.-— Z —5 ¢ Daleha’gin —,  (6.28)

6 D “ @
M 2 6a? <= 1
A 3 _Drig® ﬂ:
nd smadh ( - 151}) D 2 s (6.29)

M, D}(4ma5k) is plotted against Dija? in F1g‘ 6.3.
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Fig. 6.2. Caleulated sorption curves for surface concentration given by ({1 — ¢—#t).
Numbers on curves are values of fa%/D,

6.33. Diffusion from a well-stirred solution of limited volume

The problem and method of solution are very similar to those of the
plane sheet and the results can be given without explanation. Suppose
that the sphere occupies the space r < @, while the volume of the bath
of solution (excluding the space occupied by the sphere} is V. The
concentration of solute in the solution is always uniform and is initially
Cy. The sphere is initially free from solute. The total amount of solute, .
M, in the sphere after time ¢ is expressed as a fraction of the corre- 4
sponding quantity after infinite time by the relation

M & Bofo 1)e—Padta’

1 (6.30)
M, L9+ Gatgla?
where the ¢,’s are the non-zero roots of
tang, = 3 _ (6.31)

3-}-:&:@’3’
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and a = 3V /[(4na?), the ratio of the volumes of solution and sphere, or
if there is a partition factor, A, between solute in equilibrium in the
sphere and the solution, « = 3V /{47a®K). The parameter « is expressed
in terms of the final fractional uptake of solute by the sphere by the

relation M, o 622
VO, ™ 14-a '

03

M, D
drrail

0-4

0-3

0-2

0-1

|
¢ 01 02 03 0-4 0-5
Dtfa?

Fre. 8.3. Sorption curve for aphere with surface concentration &i.

The roots of (6.31) are given in Table 6.1 for severa] values of «. An
alternative solution suitable for small times given by Carman and

Haul [2] is
M, 3y, {D#\} 3y, (Di\}
3 = (14« [1_- ¢! _-eerfe{ﬂ(__) __-}f*".-_--Et:rfc{-—ﬂ(—m) }]
M, ) Y14+¥s a \a? Y11 ¥e x \a®
~+higher terms, (6.33)

Where in their notation

71 = #{(1 )t +13, e =N —1, (6.34)
and eerfcz = expzlerfcz. (6.39)

In Fig. 6.4, MM, against (Dt/a?)t is plotted for five final fractional
5824
a
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Fic. 6.4. Uptake by a sphere from a stirred solution of limited velume. Numbers
on curves show percentage of solute finally taken up by sphere.

uptakes. Berthier [3] gives a table of M,/M, for values of 1/« between
O and 1 at intervals of 0-1. His values are not always reliable to three
decimal places.

The concentration of solute ¢ within the sphere is given by

C—o {1 + < B{1+a)e DR g sin(g, rfa)
ST £ 948atgio® 7 sing, |

The above equations also describe the course of desorption into a
well-stirred solution, initially free from solute, from a sphere in which

(6.36)
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the concentration is uniform and equal to ;. The only modifications
are that (6.32) is to be replaced by

3M, 1

= 6.37
dra?Cy  1+41/n [ )

and ¢, (C}), replace C, ., in (6.36), where
01 — Cﬁ_“' 0, (01}02 _— Uﬂ_'cm- (E.BSJ

6.34. Surface evaporation
If the sphere is initially at a uniform coneentration (}, and there is
a surface condition
—DéCer = «(C,—(), (6.39)
where (; is the actual concentration just within the sphere, and €, is
the concentration required to maintain equilibrium with the surrounding
atmosphere, the required solution is

C—C, 2La - e~Dhalis®  gin B rja
Gt~ v 2 BFTT-T) g (640
The £.’s are the roots of
B,cotf,+L—1 =0, (6.41)
and L = qu/D. (6.42)

Some roots of (6.41) are given in Table 6.2. The expression for the total
amount of diffusing substance entering or leaving the sphere is

M, o 6L2%-FaDia
—t =1 . 43
M ,,ZI PutBat L(L—1)} (643

Fig. 6.5 shows curves of MM, plotted as functions of (Di/a?)t for
several values of L for which Newman [4] gives tabulated solutions.

6.35. Constant flux F, at the surface
If the sphere is initially at a uniform concentration Cy, and there is
& constant rate of transfer F, per unit area of surface, i.e,
—DéCfer = F, r = a, (6.44)
then we have
Co—C = @{3—”+1 AL i Sina, 7) e-”'ﬂ‘}j (6.45)

Dia* "2a 10 r <« of a®sin(a, a)

Where the ax,’s are the positive roots of
| @, cobaa, = 1. (6.48)
The amgunt of diffusing substance lost by the sphere in time 1 is 47a?F 1,
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Some roots of (6.46) are given in Table 8.2 when L = 0. Fig. 6.6 shows
curves of D(C,— C}{(F,a) plotted against r/a for different values of Dtfa®.

14 ] - EmEEE
5S =
MI/MW =1 4 4 A ' 2
ﬂ i A
8 05 r_,.. _ :'
AL
0-H - +
-t
-4 —
- : G ;
P’“
0-2F i .
0 . _ 3
"1 2 (Difa®)} 3 b

Fic. 8.5. Sorption or desorption curves for the surfaco condition (6.39). Numbers
on curves are values of L = aafl.

6.36. Impermeable surface
If the surface of the sphere is impermeable and there is an initial

concentration f(r} then
i

J. v fir'sin o, ' dr,
0 (6.47)

gin o, ¥
gin®a., &

— _:‘j_ d 3 ?_ S ~Dadl
C= ﬂmJ‘nr'ft[:r}} dr+w;e
. =

where the «,’s are the positive roots of (6.46).

6.37. Composite sphere

Problems of diffusion into a composite sphere comprised of an inner
core and an outer shell for which the diffusion coefficients are different
have been considered by Carslaw and Jaeger [1, p. 288], Bromwich [5],
Carslaw [6], Carslaw and Jaeger [7], Bell [8], and others. The extra
parameters involved make any attempt at general numerical evaluation
too formidable to be attempted here.

6.4. Hollow sphere

Carslaw and Jaeger [1, p. 208] give the general solution to the problem
of the hollow sphere with the surface r = ¢ maintained at a constant
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concentration ), and r = & at C,, when the initial distribution is f(r)
in the region a < r < b. Some special cases have been considered by

l*ﬂ | | Itrl!l

MM, ' £
0-9 e vEa st

|
1

15

LY
+
1
|

0-8 ' s

Q-7

0-6
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0-4 4

0-3

0-2 H EEEEANN

0-1

i

i
0 0-1 0-2 03 04 0-5 0-6 0-7 0-8

[ Dtj(b-a)’}?

Fra, 6.7, Uptake curves for hollow aphere.

Barrer [9] who also suggests a number of practical systems to which his
solutions might be applied. In the special case of a constant initial
conecentration, f{r) = ¢, and when ¢!, = (,, the solution is

C—C, 2 < {beosnm—a\ . nm{r—a) oty
Cy—C, +m~' ; ( ) ) b—a { )

The total amount of diffusing substance entering or leaving the hollow
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sphere @ <. r < b in time { is given by

M, 6 = {bcognmr—n\2
- . = ]_ f— A _Dnlﬂ.in’{h_“}l. [-.,.
M, ri{a®+ab+b?) Z ( n ) ¢ (6.49)

n=1
Graphs of M/ M, against {Di/{hb—a)?'t are shown in Fig. 6.7 for different
values of b/a.

6.41. Flow through spherical wall
If the surface r = a is maintained at £, and r = b at (, and the

reglon @ <. r = b is initially at C,, the concentration approaches the
steady-state distribution discussed in § 6.2, according to the expression

O — 2 4

r rib—a)

b, —aC)(r—a) 2 ~ b(C,—C)cos na—alC;—C,)
—[_E?ZZ{ " .

X sin ”H_—";{'r_“) g-DriTH—aR  (6.50)
—a

The total amount which accumulates in the spherical wall in time # is
M, where

e R L

E ':ﬂ
=9
n=1

a?C) — (a?-+-b3)Cy+-H*Cy,— 2ab cos ﬂﬂ(ﬂl—;—(}’g — Oﬂ)] X

E—Dn*:r‘f."lil!-'—a]l‘
X ] (6.51)

ne

The quantity which is usually of greater practical importance is @,, the
amount escaping say from the outer surface » = 5. In the simplest case,
when €}, = (', = 0, we find

Ql'. I}t 1 2 - { —1 }n Dadn b —g)®
= 2N TP e-Denni-a?, (6,52
drab(b—a)(), (b—a)® 6 o2 ;1 nt ¢ ( )

Ast — o0, the graph of (6.52) when plotted against Di/(b—a)? approaches
& straight line which has an intercept on the time axis given by

be _1 (6.53)

(b—a)® 6

As in the case of the plane sheet and the cylinder, this intercept can be
used to determine the diffusion coefficient D experimentally [10, p. 31].

Fig. 6.8 shows the way in which the graph of (6.52} approaches the
straight line.
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Fic. 6.8. Approach to steady-state flow through the wall of a sphere.

6.42. Surface cvaporation

Carslaw and Jaeger [1, p. 209] give a solution to the problem in which
evaporation into an atmosphere of zero vapour pressure occurs at r = ¢
and r = b according to the expressions

kléj_—c—hl (=10, r = a, (6.54)
or
kE%E—[— ho O = 0, r=b. (6.55)
r
If the initial concentration distribution in the spherical wall is f(r),
the solution 1s ,
2 oo
— = _paithad | » B 60 Y dy
C = - Z e J.T‘Rﬂ(? y(r') dr’, (6.56)
n=1 a
where G = ah,+ k&, H = bh,—k,, (6.57)
Rﬂ[T) =

(H24-b2k2 o2 W@ sin(r —a)x,, +ak, x, cos(r—a)x, )
[b—a)(@®kZ o2+ GO (b%E o2+ H?) | (Hak, + Gbky)(GH +abk ky o)}’
(6.58)
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and 4-a,, n = 1, 2,..., are the roots of
(GH —abk, ky o®)sin(b —a)u+alak, H bk, GYeos{(b—a)x = 0. (6.59)

By putting either or both k, and &, zero we obtain the solutions for one
or both surfaces maintained at zero concentration, and similarly 4, or A,
zero corresponds o an impermeable surface. If both k; and £, are zero,
so that both surfaces are impermeable, a term

&
3
{63 —a®) .[ ryedr
is to be added to (6.56). :

If evaporation takes place into atmospheres of different vapour
pressures the solution can be deduced from the above by following the
method used by Carslaw and Jaeger |1, p. 97] for the plane sheet. Thus
we write C = u-+tw, where u is a function of r only, satisfying

d( dn—u)—ﬂ, a < v < b,

dr\ dr

—u'-i— hi(Ci—u) =0, r=a,

Edr+h2m_g} 0, r = b,
a0 that
O Atk [ by -—1(bhy— k) |+ O, b2hy[r(ak,+- k) —a hl]
r| 6%y (ah,+ky) —ath {bhy—ks)]
and w is a function of r and ¢ such that
ow Deé ( g OW

= = 75 'Ea}')’ a < r<b,

dw
k15“h1w =0, r=a,

o
k23?+h2w:ﬂ, r=b,
U :f{?'}—‘u-, f = U:
and hence w is given by (6.56) on using f(r)—u for f{r)

6.5. The region bounded internally by the sphere r = a

Solutiona of this problem follow readily from those of the corre-

8ponding problems of the semi-infinite sheet by using the transforma-
tion 2 — Cr,
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(i) If the region r > ¢ is initially at a uniform concentration Cj, and
the surface r — ¢ 13 maintained at (|, the solution is

U=l g 7%
which is readily evaluated using Table 2.1,
(ii} If the initial concentration is Cj,, and there is a boundary condition

(6.60)

—aCor = WC,—C), r=a, (6.61)
then we find

¢ —C, _ ha? F—&8 wo-o+h:Di r—a Dt ]

0=C,  r(l+ah) {Erfﬂ 2Dt ° ey V)

(6.62)
where A" = h+{1/a). The ratio (C—C,)/(C,—C}} on the surface, r = q,

is b - ; .
. 1—e¥ Dherfe b’ J(Di)}, (6.63)

which again is readily evaluated from Table 2.1,
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VII
DIFFUSION WITH A MOVING BOUNDARY

7.1. Introduction

I~ this chapter we consider a number of problems in which diffusion
ocours in two distinet regions separated by a moving boundary or inter-
face. Examples of such problems are {@¢) the absorption by a liguid of
a single component from a mixture of gases; (b) tarnishing reactions in
which a film of tarnish is formed at the surface of a metal by reaction
with a gas, the diffusion of gas through the film being the rate-controlling
process; (¢) the progressive freezing of a liquid; (d) diffusion controlled
by a diffusion coefficient which is a discontinuous function of concen-
tration. The moving boundary may be marked by a discontinuous
change in concentration as in examples (&) and (b) or by a discontinuity
in the gradient of concentration as in (¢) and {d). Furthermore, the
movement of the boundary relative to the two regions it separates may
be caused by the appearance or disappearance of matter at the boundary
in one or both regions, which results in a bodily movement of the matter
in one or both regions relative to the boundary, or it may be, as in
example (d}, that the boundary 1s associated with a certain concentration
and this, of course, moves through the medium as diffusion proceeds.
Nevertheless, these are all variants of a single mathematical problem
which has been treated in a general way by Danckwerts [1].

7.2, Discontinuous diffusion coefficients

We shall first consider diffusion coefficients which change discon-
tinuously from one constant value to another at certain concentrations.
They may be zero or infinite over parts of the concentration range. Such
coefficients provide examples of extreme types of concentration-depen-
dence and are useful in that they enable limits to be set to the extent
to which concentration-dependence of the diffusion eoefficient can modify
the course of diffusion as indieated, for example, by the shape of the
concentration-distance curve, Discontinuities {or near discontinuities)
have been observed in several practical systems, e.g. when two metals
interdiffuse [2], and, as Hermans [3] points out, the phenomenon is
general in all cases in which the diffusing substance reacts with the
medium to form a precipitate. The sharp advancing boundary, familiar
In many solvent-polymer systems [4], can be regarded as a discontinuity
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for some purposes. Some special cases which do not require detailed
calculation are considered first, and afterwards solutions are developed

for more general cases.

D-c c~x/(D, 1)* M—(D, 1)
D, Cir yr
(a)
C_vx ICy /
Cy {if
o i,
(&)
1)
SO &
e — — R — — —
fe) L
Cy C,
it — (X 4 ICJ' —
) D, *'{fr
D,
L‘r 'cf'l,’ Cf‘f

Fie, 7.1, Sorption behaviour,

7.21. Special cases not requiring detailed calculation

When the diffusion coefficient variez discontinucusly with concen-
tration in certain ways, the concentration-distance curves and the
sorption- and desorption-time curves can be deduced by general reason-
ing from the known solutions for a constant diffusion coefficient. Some
examples referring to unidirectional diffusion in a plane sheet are pre-
sented graphically in Fig. 7.1 and 7.2, These diagrams are largely self-
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explanatory and need only brief comments. The nomenclature is as
follows: ¢ is the concentration of diffusing substance at a distance z

measured from the surface of the sheet in the direction of diffusion at
D-c c~x/(D;1)? M~(D1)?
Ci—325 IC,r
Dy '
{a) !"(CI"CA')“
Cy C;
AR Cir IC;r—
{rb ) C { (C." -CA')
J */
Cy C;
. — — — Cf . ICJ
fc)
LD
l ]
Cx C;
P 090 e CI = !I'C‘I 7'
' { ( C,t“tr _;'
(d) D,
D I Cy?’
C}f C; CL
Fic. 7.2. Desorption behaviour,
time ¢, and D is the diffusion coefficient. Also }, is the total amount

of diffusing substance absorbed by or desorbed from unit area of a plane
sheet of thickness [ in time £. For sorption the sheet is initially free of
diffusing substance and the surface is maintained at ¢ = (|, throughout; -
for desorption the initial concentration is €] throughout the sheet and
the surface is maintained at zero concentration. In Fig. 7.1a, over the
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concentration range () > ¢ > (s for which D is zero, the concentration
gradient is infinite and there iz no penetration into the sheet. The
gorption behaviour is identical with that for a constant diffusion coeffi-
cient [, and surface eoncentration C'y, and the equilibrium total content
of the sheet is ICy. When D isinfinite over any finite interval of eoncen-
tration at the upper end of the concentration range as in Fig. 7.16, the
existence of a finite concentration gradient anywhere in the range
Cy > ¢ > Uy would mean an infinite rate of transfer of diffusing sub-
stance. Consequently, the concentration must reach its final uniform
value € throughout the sheet infinitely rapidly, and this is true whatever
the form of the D against ¢ curve at low concentrations even if D is Zero,
When D is infinite at low concentrations but drops to a constant finite
value I at ¢ = Uy (Fig. 7.1¢), the sheet attains a uniform concentration,
Uy, throughout, infinitely rapidiy and the remainder of the sorption
behaviour is as for a constant diffusion coefficient Dy. The sorption
behaviour is precisely the same for a diffusion coefficient which is
infinite for intermediate concentrations and has a constant finite value
at high concentrations, as in Fig. 7.14, whatever the form of D at low
concentrations, again even if I} is zero. The curves of Fig. 7.2 for
desorption follow by similar arguments and need no comment.

7.22. Diffusion coefficienis having a discontinuity af one concentra-

tion

The more general cases in which the diffusion coefficient changes
discontinuously from one constant finite value to another at one or
more concentrations require detailed calculation. At the concentration
at which a discontinuous change in D ocours there is also a discontinuity
in the concentration gradient and the way in which this moves has
to be determined. The problem can be stated mathematically as
follows.

Suppose that diffusion takes place into a semi-infinite medium and
that the surface x = 0 is maintained at a constant concentration .
We shall consider first a diffusion coefficient in which a discontinuity
occurs at a concentration C'y. For coucentrations less than ¢ <, D= D,
and for concentrations greater than C'y, D = D,. Suppose that at time ¢
the discontinuity in concentration gradient oceurring at Oy isatz — X{(2):
this is & function of ¢ which has to be determined. At time t, let the con-
centration in the region ¢ < # <¢ X be dencted by ¢,, and in the region
x >> X by ¢,. At the discontinuity, the concentrations e,, ¢, must be the
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same and also the mass of diffuging substance must be conserved, so we

have ¢, = ¢, = U, x= X, {7.1)
D, éc,fex = D,oeyfox, = X. (7.2)
In the region 0 < x < X we have to satisfy
de et = D) o%e, fox?, 0 < x << X, (7.3)
and ¢, = (4, x = 0. (7.4)
In the region x > X we must satisfy
deofot = D, d%c,fox2, x> X. (7.5)

Also we suppose the concentration to be (, (constant) at large distances,
1.8. ¢ =, ¥ =cC. (7.6)

The following method of solution of these equations is due to Neumann
and 1s used by Carslaw and Jaeger {5, p. 71] to deal with an analogous
problem in heat flow when heat is evolved or absorbed at the boundary.
Neumann’s method consists of writing down a particular solution of the
differential equations and boundary condittons (7.1) to (7.6} and then
sceing what Initial condition this solution satisfies. The solution of

{7.3) satisfying (7.4) is

O+ A {31‘1‘--—ﬁ (7.7)
where 4 is a constant. Also if B is a constant,
-+ Berfe——— 7.8
Then (7.1) requires
X ,
A F:t'f—m Cy—C, (7.9)
X
and Rerfe — ... = (', (7%, 7.10
2Dy t) AR (7.10)

Since (7.9) and (7.10) have to be satisfied for all values of {, X must be
Proportional to #, say, X e ) (7.11)

where £ is a constant to be determined. Using (7.7), (7.8), (7.9), (7.10),
(7.11) in (7.2) we obtain

Ox—Cy , Cx—C,

g(kf2D%) +ﬁfr,¢2}.}g) =0, (7.12)
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where g and f are functions given by

[k k k
S o E kuDionf X 7.13
g lLz}_)g) oDy o DY (7.13)
[k P k
| = _ " pkiaD _
szm) = i pr e Prerfo . (7.14)
10 — .
fiki2D ) i "
A+t
LT
3-8
!
-6
|
0-4 7
'
D-2
¥
s
_f
.‘
R
{-5 1-0 1-3 20 2-5 30

kf(2D4)
Fia. 7.3. fikj2D}) for positive values of k/2D}.

‘When (7.12) is solved numerically, it gives & in terms of C;, C,, Cy, and
the diffusion coefficients D, and D,. The numerical solution is greatly
facilitated by using Figs. 7.3, 7.4, and 7.5 which show graphs of f and ¢.
The same graphs were shown in Danckwerts’s paper [1}.

Substituting k = X/tt in (7.9) and (7.10) we obtain

1
k 1 h | rr
Berfcm = (' —0C,, {7.16)
2

from which 4 and B can be evaluated, knowing &, and hence the con-
centrations ¢, and ¢, follow from (7.7) and (7.8).

This solution applies strictly only when the medium is semi-infinite,
a condition which is effectively satisfied in the early stages of diffusion
into a sheet of finite thickness. When the concentration at the centre
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of the sheet becomes appreciable, this solution must be replaced by one
in which the finiteness of the sheet is recognized! In general, it is neces-
sary to continue the solution by numerical methods such as are discussed
later in Chapter X. In at least one interesting case, however, a formal
solution is possible after the sheet has ceased to be semi-infinite, This
is when the diffusion coefficient is zero at low concentrations, 1.e. D, = 0.
Since this case ean be solved completely without excessive labour, and
as it is a limiting case of a diffusion coefficient which is small at low
concentrations and increases with concentration increasing, it justifies

detailed consideration.

7.23, Diffusion coefficient zero for concentrations less than Cx and con-
stant and finite above Cx

When D, approaches zero, &/2D} becomes large, and by applying the
asymptotic expansion -

1{1 ] -
E EE f _ — e T o LN T-!]-T
xpi{z*jericz ﬂ_%(z 5.8 ) (7.17)

to (7.14) eqn. {7.12) reduces to

Cx—

g[fc,’ED{]%ﬂOI“CE = {, (7.18)

Equation (7.18) can be solved to give k and the solution follows from
(7.7). From (7.2), 8¢,/éx — o when D, — 0, unless d¢, /02 = 0, which is
the final steady state, and hence the concentration gradient is infinite
at low concentrations. Examples of concentration curves, plotted against
x/2( D, )}, are shown in Fig. 7.8 for Oy = 1€, }C,, §C, and () respec-
tively, and for (5, = 0 in each case. They also apply to the problem of
diffusion with precipitation discussed by Hermans|[3], who gives a graph
effectively of /2D as a function of (€, —C))/(Cx —C,), 8o that the root
of (7.18) can be read off for any desired combination of values of (],
(,, and 'y. This is the graph shown in Fig. 7.5.

It is clear from the way in which the concentration against distance
curves of Fig. 7.6 terminate abruptly that, from the time the vertical
advancing front reaches the centre of a finite sheet, the diffusion coethi-
cient is constant at D, over the whole of the remaining concentration
range. The solution required is thus the well-known one for diffusion
into a plane sheet, with a constant diffusion coefficient and a given initial
concentration distribution through the sheet. In the present nomencla-
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ture, the solution (4.16) given in § 4.31 is

2 _ _ « (2n41)mz
¢, = C) - ; Z g~ Pen+1tmit—toyatr 5 ¢

(2n4 ) [ . (7.19)

I
9 {2[—1)n+136’1+ ff(:r}mn (2?1.—;—]}1?:1: Je
0

CiC,

| Y\”\:\

0- 50— FiG. 7. 6. (a) 0 ~

1 | =

(25

0-2 -4 06 T
X(40,1)=

Fie. 7.8. Concentration-distance curves for D as in Fig. 7.6 (a¢}. Numbers on
curves are values of CpfC,.

where the surface of the sheet = 0 is maintained at €}, the centre of
the sheet is at 3 — !, and f{z) is the concentration distribution through
the sheet at time ¢ — fy. The total amount, M, of diffusing substance
Present in half the sheet at time £ is obtained by integrating the right-
hand side of (7.19) with respeet to x between the limits ¢ and ! and ig
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given by
M (e a
Tt~ 142 — P2 1T —fg) 41
!
2(—1)" 1 ) {gﬂ_{_])ﬂmd 4
1y I — o7 — - (7.20
“En T Eﬂ-’lﬂm)ﬂm 2 g {2n+1}ﬂﬂ"} )
0

In the present problem, f{z) ig given by (7.7) evaluated at time &,, so
that

flxy = (?1{1 +§16Tf2{£fﬂ)*}’ (7.21)

where A is given by (7.9). The time {, is defined as that at which X =1,
so that it is related to the solution of {7.7) by the expression

(‘]r’}1i_"l)i — JE{ | (7.22)

{2 k

By substituting in {7.20) from (7.21) and (7.22), MJIC, is expressed as a
function of the single variable D) ¢/i%2. The integral in (7.20) 15 con-
veniently evaluated numerically. A family of curves showing M,/IC, as
a function of (D, ¢/I*)t is shown in Fig. 7.7 for several values of Cy in-
cluding €'y, = 0, when thesolution issimply that for a diffusion coefficient;
having the eonstant value D;. The linear parts of these curves follow
readily from the solution (7.7) since we have

M (pl) 4D
a Yox) o (wt)t
M, 2 A{DH}
o El(‘ff) ’
where A is given by (7.9) and is negative for sorption.
We may note that these curves, which are universal for all values of
Dy, are each linear at first, becoming concave downwards later though
it might have been expected that they would show a different behaviour.
Thus when the vertical front of a concentration against distance curve
(Fig. 7.6) reaches the centre of the sheet, the region of zero diffusion
coefficient is immediately removed and the subsequent sorption is
governed by a constant and possibly high value of D, ie. by D. On
these grounds it is not at first unreasonable to expect the gorption to
proceed more rapidly at this stage, i.e. for the gradient of a curve of
Fig. 7.7 to be first constant and then to increase. Detailed caleulation
shows that this is not so, howsever, even for this limiting case of a dis-
continuous diffusion coefficient which is zero at low concentrations.

and hence {7.23)
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F1a. 7.7. Borption curves for I as in Fig, 7.6 {a). Numbers on curves are values
of CyfC,.

7.24. Diffusion coefficients having discontinuities at two concentrations

The above results can be extended to the case of a diffusion coefficient
defined by

D= D, O > c > Oy, (7.24)
D= D, ¢ << Oy, (7.25)
D =D, Oy > c¢ > Op. (7.26)

It is convenient to refer to this as a two-step diffudion coefficient. At
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the concentrations 'y, and (' there are discontinuities in concentration
gradient, and at each discontinuity conditions corresponding to (7.1) and
(7.2) are to be satisfied. The method is 8o closely similar to that just
described that the equations can be written down without explanation,
Concentrations ¢,, ¢,, ¢y are associated with the ranges in which the
diffusion coefficient has the values I}, D,, ), respectively. Then if A,
B, and K are constants we have the following solutions:

cl__C—I—Aerfz{D o 0 << X, (7.27)
T OE—|—Berch{1} ik x> ¥, (7.28)
oy = O+ Blerf 2 I R Y. (7.20
T o er E(ﬂat]'i'_er E{Dat)i}j Lol e . { . )
The conditions ¢, = ¢y = Cly, v =X, (7.30}
€g = €3 = Cy, x=1Y, (7.31)
require that
X
e—C, = Aderf— 2> 7.32
Dy [7:32)
Y
OF_OE = Berfﬂm, [?.33)
) X

Cpr—O'y = Elerf —erf — 1, 7.34
r=Cx = Bty =Ty (739

from which it follows that
X =kt Y==5Li (7.35)
where &k, and %, are constants to be determined. By using the two
conditions D,éc,jox = Dydeglex, =X, (7.36)
D, e,fox = D oegfox, r=7Y, (7.37)

and equations {7.27), (7.28), (7.29), (7.32), (7.33), (7.34), (7.35) we derive
the following two equations from which to evaluate %, and k,,
DYCy—CJe 84D DY(Cy—CigleHAPs
erf(k,/2D4) erf (k,/2D§)—erf(k,/2.D})
DQ(OF"“C‘E)E_E:JIH}' Dg{CP‘ _O.X}E_k#w' e () {7'39}
erfe{k,/2D1) erf(k,/208) —erf(k,/2.D})
Once k, and k, are determined the whole solution follows as before, and

it 18 easy to see that the same initial condition holds, namely, that the
region x > 0 is at a uniform concentration €,. Equations (7.38) and

= 0, (7.38)




§ 7.2] DIFFUSION WITH A MOVING BOUNDARY 111

(7.39) can be solved numerically without excessive labour, but for any
further extension to a three-or-more step diffusion coefficient the numeri-
cal work would probably be prohibitive. However, the two-step form
includes several interesting types of diffusion coefficient and by suitable
choice of Dy, I, D, and 'y, Cy a reasonable approximation to many
continuously varying diffusion coefficients can be obtained. Some
results for two-step diffusion coefficients are discussed in Chapter XI1I.

7.3. General problem of the moving boundary

We give now Danckwerts’s [ 1] treatment of the more general problem
in which a moving interface is involved. In all the cases considered the
two regions are separated by a plane surface and diffusion takes place
only in the direction perpendicular to this plane. The concentration is
initially uniform. in each region. The process of diffusion may cause
changes which bring about the disappearance or appearance of matter
at the interface in one or both regions and hence a resulting bodily
movement of the matter in one or both regions relative to the interface.
An example which is easy to visualize is afforded by the melting of ice
in contact with water; as heat (here regarded as the diffusing substance)
flows from water to ice, ice disappears and water appears at the interface,
so that both ice and water are in bodily movement with respect to the
interface. In all the cases considered the rates of hodily motion of the
matter in the two regions with respect to the interface are directly
proportional to each other, e.g. the volume of ice melted is proportional
to the volume of water formed. Variations in specific volume or partial
specific volume due to changes in concentration {or temperature) are
ignored. The solutions derived below do not apply to systems in which
convection currents are important or in which gradients of both con-
centration and temperature exist.

7.31. The problem

Consider two media which are free from convection currents but which
may be in relative bodily motion along the z-axis, which is perpendicular
to the interface. Position in medium 1 is specified by a coordinate in the
Z; system which is stationary with respect to mediam 1; pogition in
medium 2 by a coordinate in the x, system, stationary with respect to
medium 2, The media are separated at time ¢ by the plane x, = X,
¥y = X,, which is initially at #; = x, = 0. Medium 1 occupies all or
part of the space X, < 2, <€ 0, medium 2 all or part of the space
—0 < xy << X,
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In both media there is a substance which moves by diffusion relative
to the z, and x, coordinates and is transferred from one medium to
the other. The concentration of the diffusing substance at time ¢ is
denoted by ¢, at x, and by ¢, at 2,. The following equations are obeyed

in the two media, 2c,jot — D), %ok, (7.40)

dc,jot = D, 8%c,joxs, (7.41)
where the diffusion coefficients £, and I}, are assumed to be independent
of ¢, and ¢,.

At any time the concentrations e¢,(X,), c,(X,) at either side of the
interface are assumed to be related by an equilibrium expresgsion
ey Xg) = Gey(X )+ A, (7.42)
where ¢ and R are constants, e.g. for the absorption of a gas cheying
Henry's [aw, ¢} is the solubility of the gas and £ = . The diffusing
substance is conserved at the interface so that
Dy(0e,/62;)y, - x,— Dol6o/02y) - x, 01 (X)) B X [t — (X ,) d Xy [dt = O,
| (7.43)

We have already said that there is constant proportionality between the
rates of movement of the two media relative to the interface and hence

it follows that X, = PX,, (7.44)

where P is a constant determined by the conditions of the problem and
may in. some cases be zero.

We now proceed to build up solutions of these equations by what is
essentially the same method as was used earlier for discontinuous
diffusion coefficients, leaving till later an examination of the various
ways in which the initial and boundary conditions can be specified.

Consider an infinite medium in which equation {7.40) holds. Then a
solution takes the form -

¢,(00)—¢y |
oo —ei0) — sy
where ¢,(co) and ¢,{0) are given by the initial and boundary conditions,

(7.45)

1. ¢y = ¢{0), 2,0, =0, (7.46)
¢, = C;{0), x, = 0, t > 0. (7.47)

Similarly, the solution of (7.41) for corresponding conditions
Cq = Co{—00), Ty << {0, t =0, (7.48)
€, == £,{0), Ty = 0, i > 0, {7.49)
is Cl=0)—Co _ 3 opf %2 (7.50)

Col —o0y —,y(0) 2/(Dyt) -
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For the same conditions, the total amounts of diffusing substance, |}
and ¥, crossing the planes z; = 0, x, = 0 respectively in time { in the
direction of decreasing » are

V= 2{e,(00)— 0, (0D tfm), (7.51)
Vo = 2{ey(0) — o —c))(Dytfm). (7.52)

The solutions (7.45) and (7.50) apply to an infinite medium. Each
can be applied equally well to a region bounded by one or two z-planes
either stationary or moving, provided that {g) the initial concentration
at every point in this restricted region is the same as for the same value
of 2, ot z, in the infinite medivm; and (b) the concentration at the
houndary plane or planes is at all times the same as for the same value
of z; or 2, in the infinite medinm. The problems to be discussed here
concern media bounded by one or two planes, but they fulfil the above
eonditions and so the solutions for infinite media can be used. In other
words we shall show that the solutions (7.45) and (7.50) are compatible
with {a) equations (7.42), (7.43), (7.44) and (») the conditions determined
by the data of the problem which may be of one of two kinds described
below as Class A and Class B. It should be noted that the values of ¢,
outside medium 1 and of ¢, outside medium 2 have no physical signifi-
cance.

7.32, Problems of Class 4

Here the movement of one or both media relative to the boundary
is caused by the transfer of diffusing substance across the interface.
The conditions are that two of the quantities ¢,{c0), €,(0), ¢,(X,}, €5{ —0),
¢,(0) are specified and also that the magnitudes of X, and X, are at all
times proportional to the amount of diffusing substance which has
crossed the interface (x; = X, 2, = X,;). Hence we may write
aX 1]

dX &
t =38 {D 1(%) + (X ) T
I1'=X1

— = 7.03
dt (7.59)
fifhere S is a constant of proportionality characteristic of the system and
18 the ratio of the magnitude of X, to the amount of diffusing substance
which has crossed the interface in the direction of decreasing x, Com-

bining this with (7.43) and (7.44) we have

dX,
at

Pg{ 1}2(,&&) +eo(X,) d.d—fﬂ’ (7.54)
.I':;|=Jlrt

&ty
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Substituting (7.42), (7.44), (7.45), and (7.50) in {7.53) and (7.54) we find

o] = e ooy 2 extume, (a5
%1{ é.ﬁ_ PR—HPQQ{XJ} = {cgiﬂ}—cat—mi}(%)*e—f"-’ffs'fw-ﬂ.
(7.56)
Also from (7.45), putting x;, = X, ¢, = ¢,{X,}, we have
X
6(X,) = clm)+{c;.tm}—c1(m}erf[M 51”]. (1.57)

It 18 clear that (7.54), (7.58), and (7.57) can simultaneously be satisfied
for all values of ¢, if and only if X,/# is constant, Put

Xl — EEI(DI t)*, {T.ﬁS}
50 that (7.55), (7.56}, and (7.57) become respectively
1
er(20)~y(0) = whaf e (X, fexp(o) (7.59)
DA .:IEPEI)}
£4(0)— = o[-~ — PR— PQc,(X 19
10)—ete0) = wha P Ger(X ) exp(*
(7.60)
e (X} = ¢,(0)4-{¢,(c0) —¢,{0)}erf , {7.61)
while substituting x, = X, in (7.560) and using {7.58) and (7.44) gives
Qﬂlixl)'f‘ﬂ‘“ﬂﬂ[*m] — 1 EI‘f‘Pu(‘E—)i)#} 7.89
O —c—) D) T (75%)

Equations (7.569) to (7.62) are independent and contain, besides physical
constants and the parameters R and 8, the six quantities ¢,(0), ¢,(c0),
cg(0), co{—a0), ¢,{X,}, and «. Hence if two of the concentrations are
given, the four equations can be solved for the other three and «, and
the concentrations ¢, and ¢, follow as functions of z and ¢ from (7.45) and
(7.50). The expressions so obtained for ¢, and ¢, satisfy both the initial
and boundary conditions of the problem and the equation of diffusion,
and therefore constitute the required solution. Substitution for a in
(7.58) gives X,, and hence X, from (7.44), in terms of { and known
quantities. Finally we notice that the concentrations ¢,;(X,)and ¢,{X,)
at the interface are necessarily constant from (7.61) and (7.42).

7.33. Problems of Class B

Here the movementsa of the media on either side of the interface are
not related to the amount of diffusing substance which has crossed the
interface by equations {7.53) and (7.54). Instead, three of the five
concentrations c,(cc), ¢,(B), €,{X,), ¢,(0), ¢,(—a0) are specified.
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Substituting (7.42}, (7.44), (7.45), and {7.560) into (7.43) gives
fefoe)—eu o 2 exp(XiiaD )+

—f—{ﬂﬂ{ﬂ}_ﬁs[—m)}(D:‘)l& exp(—P2X3/¢D, 1)+

+%{{1—PQJ¢1(X1)—PR} = 0. (7.63)

Taken with (7.57) this can only be true for all values of ¢ if X, /it is
constant. On putting X, — 288, (7.64)
(7.63) becomes

fexloo—er(O}( 22} exp(— By +

(o) —eu(—0)} 2] exp(—PIHD+

| +B{(1— PQ)c,(X,)—PR} = 0. (7.65)

From (7.57) ¢{X)} = ¢,{0)+{c,(c0)—c,(0)}erf(B{D1), {7.66)
while from (7.42) and (7.50)

co(Xy) = Qey(X )+ B = cp(0)+{cy(0) —cy —oo)jerf (PRI DY). (7.67)

Equations {7.65), (7.66), and (7.67) are independent and =0, since three

of the five concentrations ¢,{00), ¢,(X,), ¢,(0}, €4(0), ¢g(—00) are known,

the values of the other two and of 8 can be determined. Hence X, can

be found as a function of ¢ from (7.64), and ¢, and ¢, as functions of z
and ¢ from (7.45) and (7.50),

7.34. Examples of Class A problems

(1) Absorption by a liguid of a single component from a mixture of gases

An ideal mixture of a soluble gas 4 and an insoluble gas is in contact
with aliquid. Let the gas be medium 1 and the liquid medium 2, Initially
the mole fraction of A in the gas is ¢,(c0) and the concentration of
dissolved A in the liquid, expressed as volume of gas per unit volume
of liquid, is uniform and equal to c,(—o0); ¢,{e0) and ¢,(—o0) are given.
There is always equilibrium between the gas and the liquid at the inter-
face, where Henry’s law is assumed to be obeyed. It is further assumed
that there is no appreciable change in the partial volume or temperature
of the liquid when A is absorbed and also that the diffusion of 4 in the
liquid obeys the simple diffusion equation (7.41). If the origin of the
T1 8ystem of coordinates moves so that there is no mass flow of the
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gaseous mixture across any plane of constant z,, then equation (7.40) is
obeyed in the gas. For this to be so, X, must be equal at all times to the
volume of component 4 absorbed by unit area of the liquid surface, i.e.
X, = V. Thus the conditions of the problem correspond to those specified
for Class A problems, with S = 1 in equations (7.63) and (7.54).

The x; coordinate of the liquid surface does not change, and hence
Xy =0, ¢)(X;) = ¢,(0) for all ; in equation (7.44), P = 0. Equation
{7.42} becomes

R =10, ca(Xg) = £4(0) = Qey( X)),
where @ 1s the solubility of 4 in the ligrid expressed as volume of
gaseous 4 1n unit volume of liquid per unit mole fraction of 4 in the gas,
Making the appropriate substitutions and eliminating the unknowns
except «, equations (7,59), (7.60), and (7.61) reduce to

a7 Dy [ Dy}t — Qe (00) 4o — )

a7 Dy Dy)t— @4 e,(—00)
and putting X, = V in (7.58) gives
V = 2a(D, ), (7.69)
The function f has already been shown in Figs. 7.3 and 7.4 and, using
these curves, o is readily evaluated from {7.68) by trial and error for
known values of D, D,, @, ¢,(c0}, and e,(—co). The rate V at which A

is absorbed by the liquid follows immediately from (7.69). It is also
easy to show that

¢, (X,) = c{oo)—f . cﬂ{—‘m}']‘ﬂ(”ﬂﬂﬂﬂi

= mlaexplaterfe« = f(x), (7.68)

e 5 , (7.70)
¢y(00)+{e, (X ;) —e {o0)} 2

¢ = {;rfca erfcm, (7.71)

2 = Qe X)) H{Qer(X) ool —oofjerf ;’,:ﬂ*- (7.72)

The same equations may be used for the escape of dissolved gas 4 from
solution. In this case a will be negative and the amount of 4 leaving
the solution in time ¢t is — V.

For further discussion of the physical conditions under which these
solutions are applicable, Danckwerts’s original paper [1] should be
consulted,

A special case arises when ¢,(X,), the concentration at the interface,
is determined by some factor other than diffusion in a liquid. Examples
quoted by Danckwerts are the isothermal evaporation of a liquid into
still air, when ¢,( X} is determined by vapour pressure, and the gorption
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of a gas by a liquid which is rapidly stirred without deforming the
gurface, so that Qc,(X,) = co(—). For such cases it is easy to show
that (7.59) and (7.61) become

e (X )—¢(0)
L) (7.13)

where f {c:)- and « have the same significance as before.

(i1) Tarnishing reactions

A film of tarnish is formed on the surface of a metal by reaction with
a gas. The reaction proceeds by diffusion of dissolved gas through the
film to the surface of the metal, where its concentration ¢,(X,) is assumed
to be zero, 1.e. the reaction is assumed to be so rapid that the rate of
tarnishing is controlled entirely by the diffusion process. The outer
surface of the film is constantly saturated with the gas.

Let the film be medium 1. Since ¢,(X,)} is not determined by diffusion
in another medium, equations (7.60) and (7.62) are not required. Lst
W be the mass fraction of the gaseous component in the compound which
it forms with the metal, p the density of this compound (which is assumed
independent of the concentration of the dissolved gas), and ¢; the con-
centration of the dissolved gas (expressed as masg of gas per unit volume
of the film) at a distance x; beneath the surface of the film. The outer
surface of the film is at o, = 0, the, metal surface at :1:1 = X,, the film
thickness being X,. From (7.53)

8§ = —1/{Wp). (7.74)

Furthermore, since ¢,(X,) = 0, ¢,{0), the saturated concentration of gas
at the outer surface of the film, ig given by

1(0) = mtaexpla?)erfa = g(x), (7.75)
Wp
from (7.59) and (7.61), and
X, = 2«(D; 1), (7.76)

where D), is the diffusion coefficient of the dissolved gas in the film.
Fig. ‘.5 gives g as a function of «, and so values of « corresponding to
given values of ¢,(0}/{ Wp) can be read directly from that graph and used
to calculate film thickness as a function of time from (7.76). If¢,(0)<€ Wp,
expansion of exp(a?) and erfa shows that g = 2« approximately and

therefore in this case ;
X, = (B0 o)

This means that, if the solubility of the gas in the film is sufficiently
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small, the film thickness is given without appreciable error by the formuls
obtained by assuming that the concentration gradient in the film is
uniform. The problem of tarnishing was also solved by Booth [6] who
points out that the form (7.77} is a good approximation for systems
usually encountered in practice,

7.35. Examples of Class B problems
(i) Solution of gas in a ligusd, followed by reaction with a solute
.The surface of the liquid is constantly saturated with the gas B, which
is assumed to be undiluted with inert gases. The liquid contains a solute
A which effectively reacts instantaneously and irreversibly with the
disselved gas. Diffusion of both A and B is assumed to obey the simple
diffusion equation of the types (7.40} and (7.41). Any part of the hquid
willcontain 4 or Bbut not both. There will be a plane, z, = Xy, = X,
at which the concentrations of both A and B will be zero. That part of
the liquid containing A is taken to be medium 1, that containing B is
medium 2. The surface of the liquid is permanently at z, = r, = 0, 8o
that X, = X, and P = 1 from equation (7.44). Also
61(&y) = (X)) = 0, (7.78)
and hence B = 0 in equation (7.42). We assume 7, moles of 4 to react
with n, moles of B and so, in order to fulfil the conservation condition
(7.43), we put ¢; = —m, n,/n,, where m, is the concentration of 4 at %y
in moles per unit volume and ¢, the concentration of B at z, in the same
units. Further, ¢,(0) is the saturated concentration of B at the surface
of the liquid, and m,(w0) the initial concentration of 4 in the liquid.
Equations (7.65) and (7.67) then become
1y ¢a(0) f(B/ DY) —mnqym,(e0)g(8/D}) = 0, {7.79)
where f and ¢ are the functions of 8/D} and 8/Dj} given respectively, as
functions of «, in equations (7.68) and (7.75) and plotted in Figs. 7.3, 7.4,
and 7.5. Hence from (7.52) and (7.67) we find the volume of gaseous B
absorbed in time ¢ to be given by

2c0(0) (DA}
= atmpla) 50
The value of 8 can be found from (7.79) by trial and error, using Figs, 7.3,
7.4, and 7.5, and substituted in (7.80) to obtain ¥. This problem is also
treated by Hermans [3].

If the gas is diluted by an insoluble component, the surface concen-
tration, ¢,(0), of B in the liquid is determined by diffusion in the gas.
In this case, in order to obtain an exact solution, {7.69) and (7.73) must
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be used together with (7.79) and (7.80). A value of the concentration
at the surface of the liquid must be found by trial and error such that
the rate of absorption is the same when caloulated from either set of
equations, The quantitics D, ¢,(c0), and ¢,(X,) in (7.69) and (7.73) refer
respectively to the diffusion coefficient of B in the gas and to the mole
fractions of B in the bulk of the gas and at the interface.

(ii) ngreaaive freezing of a liquad
The solution to this problem, given previously by Carslaw and Jaeger
[5, p. 71], assumes that no change of volume occurs on freezing. The
present equations take such a volume change into account. Suppose
liquid initially occupies the region = > 0 and that freezing proceeds
progressively, due to the removal of heat from the surface, x = 0, which
is maintained at a constant temperature 7}, Subsequently, let the liquid
be medium I, and the solid, medium 2. Since no material crosses the
surface maintained at 7}, this corresponds always to z, = 0. If there 18
a volume change on freezing there is relative movement of the planes
x, = 0 and &, = 0. The diffuser in this case is heat. Take L to be the
latent heat of fusion per unit mass, p,, p, the densities, a,, o, the specific
heats, and D, D, the thermal diffusivities of liquid and solid respectively.
The variation of these quantities with temperature is ignored. If K, K,
are the thermal conductivities of the liquid and solid respectively, then
D, = K {{py01); D, = Kyf(pyay). (7.81)
The temperature of the liquid is initially 7, throughout and the solid-
liquid interface (x; = X,, z, = X,) is always at the melting-point Ty.
The heat content of the solid at 7'y is taken to be zero, and hence that

of the liquid at Ty is L. In this problem, concentration signifies the
heat content, and hence, since c;(X;) = 0, we have from (7.42),

(X)) = —RB{Q@ = Lfp,. (7.82)
Since X,/X, == p,/p,, it follows from (7.44) that
We also have = pirs 75
¢y = prof{Ty—Tx+ Lfay), (7.84)
ey = pyoa(T,— Ty}, (7.85)

where 7] is the temperature at z, in the liquid and 7, the temperature
at x, in the solid,
Eliminating ¢,(0) and ¢,(—o0) from (7.65) to (7.67) and substituting
equations (7.81} to (7.85) we find
oTe—Ty) , _oallo—Tx)
HBIDY) glp. B/ (pa DY)

}+'L =0 (7.86)
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where f and ¢ are the functions plotted with « as variable in Figs. 7.3, 7.4,
and 7.5. The thickness of the solid formed up to time f is &,, where

Xy = Xipifps = 2B/ pa. (7.87)
The temperature at any point in the solid is T}, where
£{zy/2(D, 1))

T, = To—(T —T}[l__ il . et ] {7.88

» T I O N et B DY) 7’

while in the solid it is 7}, where
erfe{x,{2(.D, 1)}}
== —_— —— 1 — 1 L - *

Hence if (7.86) is solved by trial and error using Figs. 7.3, 7.4, and 7.5, .

the resulting value of 8 can be used to calculate the thickness of the
solid and the temperatures at any point as functions of time, The equa-
tions apply also, with suitable changes of nomenclature, to the melting
of a solid which is at a uniform temperature.

It should be noted that a practical system only behaves in the way
described by the above equations provided the density is uniform or
increases steadily in a downward direction; otherwise convection currents
arise.

7.4. Precipitation

The problem of rapid precipitation on a restricted number of sites,
treated by Hermans [3], is characterized by the presence of a moving
front which separates free from occupied sites. Hill [7] showed that an

approximate solution can be obtained by assuming a steady state to be -

set up behind the moving front. Guided by Stefan {8], who treated the
one-dimensional problem, Pekeris and Slichter {9] obtained the first-order
correction to the steady-state solution of the analogous problem of ice
formation round a cylinder.
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VII1I

SIMULTANEOUS DIFFUSION AND
CHEMICAL REACTION

8.1. Introduction

THE problem discussed in this chapter is that of the absorption of one
substance by another through which it can diffuse and with which it can
also react chemically, This can be regarded as a problem in diffusion in
which some of the diffusing substance becomes immobilized as diffusion
proceeds, or as a problem in chemical kinetics in which the rate of reaction
depends on the rate of supply of one of the reactants by diffusion. There
are numerous practical examples of processes involving simultaneous
diffusion and chemical reaction of one sort or another. Thus diffusion
3 may take place within the pores of a solid body which can absorb some
of the diffusing substance, or we may have diffusion occurring through
a gel and an immobile produet resulting from the attraction of the
diffusing molecules to fixed sites within the medinm. Examples in-
velving diffusion into living cells and miero-organisms can be cited from
biology and biochemistry. Incontrast with thesharp boundary problems
of Chap. VII, here we assume that some unoccupied reacting sites are
always available. Chemical reactions in high polymer substances are
often considerably dependent on the mobility of the reactants as well
as on the kinetics of the reaction itself.

8.2. Instantaneous reaction

If the reaction by which the immobilized reactant is formed proceeds
very rapidly compared with the diffusion process, local equilibrium can
be agsumed to exist between the free and immobhilized components of
the diffusing substance. In the simplest case, the concentration, S, of
immobilized substance is directly proportional to the concentration ¢
of substance free to diffuse, 1.e.

8 — RC. (8.1)

In the particular case of diffusion with adsorption on to internal surfaces
or sites (8.1) is referred to as a linear adsorption isotherm.
When diffusion is accompanied by absorption, the usual equation for

o824 L
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diffusion in one dimension has to be modified to allow for this, and

becomes
oC o2 &8
| — =0 _ 8.
ot ext A’ (8.2)
if the diffusion coefficient D is constant. On substituting for § from
{8.1) we have 2
e b 8 (8.3)

@ BRIl ok’

which is seen to be the usnal form of equation for diffusion governed by
& diffusion coefficient given by D/(R+1). Clearly the effect of the
instantaneous reaction is to slow down the diffusion process. Thus if
RB41 = 100, the overall process of diffusion with reaction is slower than
the simple diffusion process alone by a hundredfold. In fact, if the linear
relationship {8.1) holds, solutions of the diffusion-with-reaction problem
for given initial and boundary conditions are the same as for the corre-
sponding problem in simple diffusion, except that the modified diffusion
coeflicient Df{ B 1) is to be used. This is true irrespectively of whether
the diffusion-with-reaction oceurs in & plane sheet, cylinder, or sphere, or
any other geometric shape, and whether diffusion oceurs in one dimension
or more.

8.21. Non-linear isotherm
If the relationship between S and ¢ ig not linear but is of the form
S = RO~ (8.4)

for example, where R and n are constants, then (8.2) still holds but
(8.3) becomes non-linear and solutions of the diffusion-with-reaction
problem in this case can only be obtained by numerical methods of
integration such as those deseribed in Chapter X. Some numerical
solutions have been obtained [1, 2] describing the uptake of & restricted
amount of solute by a cylinder, when diffusion within the eylinder is
accompanied by adsorption and where the concentrations of free and
adsorbed solute are related by an equation such as (8.4). In this example,
00 per cent. of the total amount of solute is taken up by the eylinder in
the final equilibrium state. Figs. 8.1 and 8.2 show the effect of the
exponent % on the overall rate of uptake of solute and on the way in
which it is distributed through the cylinder at a given time.

If R is large so that 2Cfat may be neglected compared with 88/ét,
{8.2) may be written

28 _ 2 (p8C0\ _ 2 (D{1\n . 38
'aT—aE(DE::C“)“E;E E(Te) o é;)* (8.5)
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Fia. 8.1. Diffusion with adsorption into a eylinder of radius @, Numbers on,
curves are values of exponent « in (8.4).

50 | |

%

ot
=

Equilibrium concentration

A — T — e v ———— —

b2
=

Overall concentration fc+s)

=

10 675 0-50 035 .

Fra, 8.2. Concentration distributions in & eylinder of radius ¢ when Dija* = b,
Numbers on eurves are values of exponsnt n in {8.4),

80% of solute enters cylinder.

————— concentration at surface of eylinder is constant.

on substituting for ¢ from (8.4). Thus we see that diffusion accompanied
by a non-linear reaction described by (8.4) is formally the same as dif-
fusion governed by a diffusion coefficient which is not constant but which
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depends on the total concentration of diffusing substance, free and
immaobile. This statement holds whatever the relatioriship between the
concentration of free and immobile components, provided it is non-linear.
It need not necessarily be of the form of (8.4). If in (8.4) » is fractional,
e.g. a8 in the well-known Freundlich type of adsorption isotherm, then
the effective diffusion coefficient in (8.5), which is given by

(Din)(1{ Rt St-mn,

increases as the concentration S isincreased. If on the otherhand» > 1,
the effective diffusion coefficient decreases as the concentration is in-
creased. Standing and others [3] have considered an extension of this
argument to the case in which the product of the reaction is not immobile
but can itself diffuse at a rate different from that of the free component.

8.3. Irreversible reaction

If the diffusing substance is immobilized by an irreversibie first-order
reaction so that the rate of removal of diffusing substance is ¥C, where
% is a constant, then the equation for diffusion in one dimension becomes

o0 o2C
= = Do —kC, (8.6)

provided the diffusion coefficient D is assumed to be constant. This is
also the equation representing the conduction of heat along a wire which
loses heat from its surface at a rate proportional to its temperature.
Some solutions relating to this latter problem are given by Carslaw and
Jaeger [4, p. 111], where use is made of the transformation ¢’ = Ce*
which reduces (8.6) to the usual equation in one dimension with ¢” as
dependent variable. Danckwerts[5] hasshown how solutions of (8.6) and

of the general equation

%(—; = DVAC—LC (8.7)

can be deduced by simple transformation of the solutions of the corre-
sponding problems in diffusion without reaction. He applies his method
to two types of surface boundary condition. In the first case the surface
is in equilibrium at all times with the surrounding atmosphere or solution,
and the surface concentration has the constant value C,. In the second
case the rate of evaporation or absorption at any time is given by

DaCeN = o(Cy—C}), (8.8)
where (, is the actual concentration on the surface at that time, €, the

equilibrinm surface concentration attained after infinite time, and 8C/oN
the concentration gradient measured in the outward direction along the
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normal to the surface. Here « is & constant. For convenience in writing
we put A = af/D) in what follows.

In the problems to be considered, therefore, the initial and boundary
conditions are

=0, t=0, atallpointsin the medium, (8.9)

and either '
C=¢, t>90, atallpointson the surface, (8.10)

or aC{oN = h(Cy--C), t > 0, at all points on the surface. (8.11)

8.31. Danckweris’s method

Let ] be the solution of the equation for diffusion in one dimension
in the absence of reaction, i.e. of

aC} 62()
et 8.12
ot D ox2’ ( )

for the same boundary conditions as are imposed on 'in (8.9}, (8.10), and
(8.11). We shall give the argument for diffusion in one dimension and
it will be clear, as Danckwerts shows, that it can be applied equally well
to the general equation (8.7). If () is a solution of (8.12), the solution
of (8.6) for the same boundary conditions of the above type is

t
C =k [ Cie™ dr'+CeH (8.13)
)
This is easily shown as follows. By differentiating (8.13) with respect tot
we obtain
BO ki i 801 kit 301 —it
— == — —le-k — 8.14
5 k(e kC e "L 5 ¢ 5 ¢ (8.14)

and on differentiating twice with respect to z we have

22 .
ay _;.;J' T Lo dy + (8.15)

Substituting from (8.12) in (8. 15} gives

520 a0, -
Doy=k| et ar + (8.18)
[[]

and finally using (8.14) we find
2
pZC_ ko427 o0 - | (8.17)

oxe

80 that (8.13) is a solution of (8.6)

a
b

.
th e
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hermore, when { = 0, we see from (8.13) that C = ] and s0 C
8 the required initial conditions. For points at which ¢, = C,, for

f
C = kC, j ekt dt' +C ek = (), (8.18)
0
oints at which o\ leN = R{(C,— (), {8.19)
nd f
oC — 80 —k¥’ 1 p—ki
Eﬁ“kfaN m+

{
— k [ (Co—Che™ dt'+-h(Cy—C)eH

0
= h(C,—O). (8.20)

clution {8.13) therefore satisfies the required initial and boundary

itions if ¢ does.

he quantity, M;, of diffusing substance absorbed in time { is required,
in general

4
f f D~—dS =k f Fle® gy L Fe®  (821)
0

area integral i1s taken over the whole surface of the absorbing
um and F is the corresponding rate of absorption when no chemical

ion takes pl&,ce ie.
”3_1 dS — :”f C dedyde.  (8.22)

olume 1ntegral is taken over the whole volume of the absorbing
m,

ny of the solutions for diffusion without reaction are available in
rm of infinite series which can be written

Olf!{;ﬁ =1— Zf(m: Y, EJE‘H" (823)
rous examples have been given in Chapters III-VI. Here f and »

ifferent for each term in the series, but are not functions of ¢; » is
function of @, y, z. Applying (8.13) to (8.23) we find

¢ kv — v
[y S,

arly, since in such cases ¥ is of the form
KiC, =3 ge*, (8.25)

R R SO

P L LR T Y
i T T

-1¥y

§8.3)

where g is
T, 4, 2, t, ¥

and M

8.32. K

The met
type {8.10
Danckwer

(1) Sphe
We take

without re

where the

which are
K

and from |

and from {

M, =

(11) Rect
laon

We take

—C < 2 <
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where ¢ is different for each term in the series but is not a function of
x; i, z, {, we obtain from (8.21)

F k+vexp{—tik+v)}
Ay T
4

8.32. Examples

The method can be applied generally for boundary conditions of the
type (8.10) or {8.11). It will be illustrated by the examples quoted by
Danckwerts.

(i) Sphere with surface emp&mtian condition
We take the sphere to be of radius ¢. Then the solution for diffusion
without reaction is (Chapter VI, equation (6.40})

Cy 2ha? < e~ Dozt gin ro
12 n 8.28
oy r 2; {02al +ah{ah—1)} sinaw, (8.28)

where the «,’s are the roots of
ancot aatah—1 = 0, (8.29)

which are given in Table 6.2. Hence

e, N T
= 4 ED —_ = 8 2 D 2 » a
F, = 4na (@r)fza 7h?C, Da ;ﬂﬁ_]_hmh_” (8.30)
and from (8.26}
< k4 Dol exp{—t{k+-Dal)}
F = 8whiC 2 , 8.31
. G D ﬂ; (k4 Doy {aog +hlah— 1)} (831}

and from (8.27)

= kt{k--Dal)— Dol[exp{—t(k+ Dol )} —1]
iH, = 2 2
M, = 87kC, Da > (k-+ Da2)Hacd +hlah—1)] '

ne=l

(8.32)

(i) Rectangular block or parallelepiped with constant surface concentra-
tion

We take the block to occupy the space —a << o << &, —b <<y < b,

—C < z < ¢, 80 that the edges are of lengths 2a, 2b, 2¢. The solution
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for diffusion without reaction 1s

¢, (—1)+mtn (214 1)mar
o= Z mz Z T Cmr 2] o g N

(zm+ljmy | (21;;.{_]}1736_;&!.“.“’ (8.33)

% COS

Eb 2
 mD(2IH 1\ 2m4-1\%  {2n-4-1\2
where Nmn = g {( p ) +( 2 ) —i—( p )} (8.34)
Hence
P a b e
—a —h —¢
64\7 , o2& ot
- (;3 o 2:;, mztﬂ ,;. (2n+41)3(2m+1)3(2n4-1)2 (8.35)

and from (8.26)
64 - O of k4o exp{—#(k+a)}]
F = ( )C”bﬂ Z Z , (Pt o)+ 1722m+ 1) 2nt 1)’
(8.36)

where by « is understood o, , given by (8.34). Similarly 47, follows
readily from (8.27).

=m =

(iii) Infinite cylinder with surface evaporation condition

We take the cylinder to have radius ¢ and consider diffusion to be
entirely radial. The expression for diffusion without reaction is (Chapter
VY, equation (5.46}}

 Jylray)e-Dot
Z (R ot )dy(ax,)’ (8.37)

where the «,’s are the roots of
el (aa) = hJylaa), (8.38)

and J;, J; are Bessel functions, of the first kind, of order zero and one
- respectively. Values of a, are to be found in Table 5.2. Hence

®. s=Dail
_ 2 fﬂﬂrﬂ’ dr = 4xh?C, D Z e~ (8.39)

and from {8.26)

- k+ Do exp{-—t(k+ DaZ))
— T 2 LS ] .
F = 4mh?C,D > e (8.40)

3
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Also M, is easily found from (8.27). Here M, and ¥ refer to unit length

of cylinder.
Other results may be derived in this way or directly from (8.13) or
(8.21). Some examples of expressions for F, the rate of uptake, are given

helow:

(iv) Sphere (radius a) with constant surface concentration

ka4 Dnin®exp{—t(k+ Dninila
F = 8naDC, . k;ﬂﬁﬂ?f%j‘ TN (41
A=l

(v) Infinite cy.!indér (radius a) with constant surface concentration

Here F is the rate of uptake through unit length of the curved surface

of the eylinder:
_ > k4Dal exp{—it(k+Dad)}
F = 42DC, Z T D2 , (8.42)

=1

where the «,’s are the roots of J{ax) = 0.
(vi) Finite cylinder (radius a, length 21) with constani surface concen-
tration

Here F is the rate of total uptake through the ends and the curved
surface :

F =

2 2 2 el

64.DIC,
i

(8.43)
where .e «,’s are the roots of Jy{ea) = 0, and

Bmn = cint+(2n+1)2m%{(417). (8.44)

(vii} Semi-infinite solid with surface evaporation condition

The solution is obtained by application of (8.21} to the corresponding
solution without reaction (Chapter III, equation (3.356)). Here F is the
rate of uptake per unit area of plane surface and

= %’E_ﬂk [R(DE) exf (kt)t 4 k2D erfe (D) exp{t(R2D—k)} — k).
(8.45)

(Vi) Semi-infinite medium with constant surface concentration

The mathematical problem and its solution are identical with those
for the conduction of heat along a thin rod which loses heat from its
surface at a rate proportional to its temperature [6; 4, p. 111]. The




130 SIMTCLTANEQUS DIFFUSION [§ 8.3

expression for the concentration ie

L 3 exp{— m\/(kjﬂ}}erfﬂ‘m —J[fﬁf}} +

Co
+explay(klDljerfel = o). (8.40)
1-6 -
M oy
¢, (5)
-4
12 4
d’f’f‘r
10 A
e
f’,#
0.8 <
!;’ 4 ------ﬁAsympmre
V. My rk
o c. (§) =kt
{]6 J///
0"—4— .
02 /
0! i

(-2 0-4 0-6 -8 u 20

Fia, 8.3, Diffusion with an irreversible reaction into A semi-infinite
mediarm with constant surface concentration,

E-_'H
Also C,,J(Dk){erf\/(kt]-i- v m;} (8.47)
and M, = GoJ(DIE) (Rt d)erf J{kt) 1/ (kt]m)e ), (8.48)

The dimensionless quantity A, k/(C, DY) is plotted as a function of kt
in Fig. 8.3. From this graph, M, can be obtained at any time t for any
combination of the variables ¢, D, and %.
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When &t is large so that erf \/(kt) approaches unity, (8.48), (8.47), and

(8.48) become 0/C, = exp(—zki{D}), (8.49)
F = Cy(Dk)}, (8.50)
M= on_(ch)i(H EIE) | (8.51)

Equations (8.49) and (8.50) show that the concentration at any point
and the rate of sorption each tend to a steady value and the total amount
taken up increases linearly with time as in Fig. 8.3.

When /¢ is very small we find by expanding erf v/(&t) and exp(—Xt) and
neglecting powers of k¢ higher than the first, that (8.47) and (8.48) become

F = Cy(1+kt)D(mt)}, (8.52)
and M, = 20 (1 4Kt)(Difm)t, {8.53)
which reduce to the well-known solutions for diffusion without reaction
when k = 0. Further solutions describing the uptake of a restricted
amount of diffusing substance which 1s simultaneously destroyed by an

irreversible reaction are given in § 8.44 below ag special cases of more
general solutions for a reversible reaction,

8.33. Steady-siate solutions

As with the semi-infinite case just discussed =0 in all systems of the fype
under consideration, the rate of sorption and the concentration at any
point tend to steady values at large times. The steady-state solutions
may be obtained by putting 2C/2¢ equal to zero in the appropriate form
of {8.7), which may then be solved to give the steady-state solution
directly. When the expression for C or F takes the form of (8.24) or
(8.28), the steady-state solution may be obtained merely by omitting
the time-dependent term, which tends to zero as { tends to infinity. This
leads to a solution in the form of a series which often is not readily
evaluated.

In some cases the following method leads to a more convenient form
of solution, On putting ¢ = oo in (8.13) and (8.21) we find

O /% = j Cye™ dt, (8.54)
0

and Fofk = [ Fe®at. (8.55)
0

The expressions on the right-hand sides of these equations are the
Laplace transforms of €, and F, respectively, the parameter (usually
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written as p or g in transform notation) taking the value k. Thus, as an
example, for a semi-infinite solid with surface evaporation we have, in the

absence of reaction,
F = hDC, eMPerfe{h({Dt)i}. (8.56)

The Laplace transform of the right-hand side of (8.56) is

ADCf{k-+hy/(DR)},
hDG,

EEN )

wome other steady-state solutions are given below, preceded by references

to the corresponding expressions describing the approach to the steady
atate,

and hence from (8.55) F, = (8.57)

(i) Sphere with surface evaporation condition (equation {8.31))

F, (ka®{ DY coth{ka®/D)t—1
g, = ina'hD [ah+{ka2ﬂ))* cnth(fmﬂjﬂ}h—l}' (8.58)

(i) Infinite cylinder with surface evaporation condition (equation (8.40))
o _ manp D)Lt D) |
G (k[ DR, (ka®{ D)+ hly(kat{ D} |
Here 1, and I, are modified Bessel functions uf the first kind of zero and
first order respectively.

(8.59)

(i) Sphere wnth constant surface concentration (equation (8.41))

% — 4maD{(ka?/ D} coth(ka?/Dji—1). (8.60)

0 :

(iv) Infinile cylinder with constant surface concentration (equation (8.42))
F I (ka?/ D)
2= kD)L . 8.61
G~ T Dy *o

A further application of the use of (8.13), to the problem of the extrac-
tion of & dissolved substance from a drop of liquid which is rising or
falling through another liquid, is described in Danckwerts’s paper [6].

8.4. Reversible reaction

The most general case for which formal mathematical solutions have
80 far been obtained is that in which the reaction is first-order and
reversible. The behaviour to be expected when the reaction is reversible
depends on the relative rates of diffusion and reaction. Thus we have
seen in § 8.2 that when the reaction is very rapid we can assume that the

immobilized component is always in equilibrium with the component

N S SN T Y F e
e e A T e e R
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free to diffuse and diffusion is the rate-controlling process. At the other
extreme is the case of diffusion being so rapid compared with the reaction
that the concentrations of diffusing substance and immobilized product
are effectively uniform throughout the medium and the behaviour is
controlled solely by the reversible reaction. Sclutions of the more general
cage in which the rates of diffusion and reaction are comparable have
been obtained by Wilson {7] and Crank [8].

The general problem can conveniently be atated in terms of a solute
diffusing from a solution into a plane sheet of material. The modifications
necessary for corresponding, alternative problems, such as those of a
sphere or cylinder suspended in a vapour, will be obvious. Suppose an
infinite sheet of uniform material of thickness 2a is placed in a solution
and that the solute is allowed to diffuse into the sheet. As diffusion
proceeds, a first-order, reversible reaction occurs and a product, which
is non-diffusing, is formed. The sheet occupies the space —a < x < a,
and there is a restricted amount of solution which occupies the space
—la L < —a, a < x < I+a. The concentration of solute in the
solution is always uniform and is initially C,, while initially the sheet is
free from solute. Let €' be the concentration of solute free to diffuse
within the sheet and S that of the immobilized solute, each being
expressed as amount per unit volume of sheet.

The diffugion is governed by the equation

2
-3£=D5 O__aS, (8.62)
ot oxt ot
and we consider the simultaneous reaction to be of the type
eS8/t = AC—pu8. (8.63)

Here D is the diffusion coefficient and A and u are the rate constants of
the forward and backward reactions respectively. Thus the immobilized
solute is formed at a rate proportional to the concentration of solute
free to diffuse, and disappears at a rate proportional to its own con-

centration. We require solutions of (8.62) and (8.63) with the initial
condition g _ o9 _a<z<a t=0 (8.64)

and with a boundary condition expressing the fact that the rate at which
solute leaves the solution is equal to that at which it enters the sheet over
the surfaces £ = -+a. This condition is

leClot = FDol|ex, ¥ = —4a, t > 0. (8.65)

We here assume that the concentration of solute free to diffuse just
within the surface of the sheet is the same as that in the solution, This
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may not be 8o and there may be a distribution factor, X, which is not
unity, such that the concentration just within the sheet is X times that
in the solution. This can clearly be allowed for by using a modified
length of solution, [/ X, in place of { in (8.65) and elsewhere. Mathematical
solutions follow for these equations and for corresponding equations for
the cylinder and sphere.

8.41. Mathematical solutions

(1) Plane sheel

Solutions of the equations of § 8.4 can be obtained by the method of
Laplace transforms. Writing € and S for the Laplace transforms of ¢
and § respectively, so that

C = J Cexp{—pt) dt, S = J. Sexp(—pt) di, (8.66)
6 0

we have the following equations for €' and S

pC = —p8+Da20foa2, (8.67)
pS = A0 —uf, (8.68)
—l0,4piC = ~DoClex, = a. (8.69)

On eliminating § from (8.67) and (8.68) and replacing the partial deriva-
tive by an ordinary derivative since { does not appear, we find

d*0 27 — s P p+ity
of which the solution that gives € an even function of z is
(' = F{p)cos k. (8.71)

The function F(p) is determined by the boundary condition (8.69) and
it follows immediately that

(), cos kx
pleoska—kDsin ka

The derivation of C is straightforward as in Chapter II, § 2.43 (ii), and
after some reduction gives

C = (8.72)

O — IC, n i Coexp{p,.t) cosk, x
T I {R+1)a — 1+{1+ Au }{a_l_ P 'pﬂa} cosk,a’
" (P, +p)*

Y7 Y)Y
(8.73)
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where the p,’s are the non-zero roots of

In, P, PotA+p |
Po _ k tank a, k= —Lnln . 8.74
p ~ ke = =y TR (8.74)

and B = A/u is the partition factor between immobilized and free solute.
The-expression for S differs from (8.73) only by having ah extra factor

" Al(p,~+p) multiplying the nth term, including the term p, = 0. Writing

M, for the total amount of solute, both free to diffuse and immobilized,
in half the sheet at time {, and M_ for the corresponding quantity in the
final equilibrium state attained theoretically after infinite time, we have

.._.... — 1 2 {l+ﬂ]3:p(pn;‘3 pg Iﬂ , (8.?5)
il sbet apn)

where the p.’s are given by (8.74) and where
e =(B+1a, M, =IC/(1+a) (8.76)

(ii) Cylinder |

The cage of the cylinder was considered by Wilson [7], using a slightly
different method. The final result for a cylinder of radius @, in a solution
ocoupying & region of cross-sectional area A, is

i o

M Z (1-+ojexp{p, i) | (8.77)
Mo 1+‘1+ Ak }lﬂﬂﬂ Apy
e (Pptu)f 4Dy
where x = Af{{ma®(R+1)}, M, = 4C,/(14+«), {8.78)
and the p 'e and k'8 are given by
Ap, _ 4 Silkna) s PaPutAtu
YwDa n Tk, a)’ == . tu (8.79)
The expression for the concentration of free solute is
_ AC, S Co @XP(P,, t) (k )
0—A+(-R+1]ﬂﬂ2+ Z l—l—{1+ Apt ﬂﬂﬂ_{_ Apt Y }'-"“rm{'rﬁ @)
i (patp)’ 1n DR
(8.80)

The expression for S differs from (8.80) only by having an extra factor
Af(p,+p) multiplying the nth term, including the term p, = 0,
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(iti) Sphere
On introducing new variables rC and 8 the equations for the spherical

case take esgentially the same form as those for the plane case, and the
same method of solution leads to

ﬁ_l_z  (toexplnd)
Mo M\ [2na 7E )’
el l““ (P,;-J-P-F}l 7~ apiEt Smﬂﬂfci}

(8.81)

where the p,’s and k_’s are given by

14 Pu PutAtp
—1=—k th,a k2= L2 ' 8.82
4nDat" @ ORI D ptp (5:82)
) 4 L Ve,

and = B BT M, = I To (8.83)
The expression for O is
. 3VC, n

"~ 3V -+4nad(R+1)
n Z ,_ Cﬂexp{p“t} a s?nkﬂr (8.84)

{ Zma® _Vpi | rsink,a’
n { (Pn“f'#) } 291‘?2 T SraD2 8ma D%k}

- and that for S differs from (8.84) only by having an extra factor A/(p, + k)
multiplying the nth term, including the term p, = 0.

8.42. Physical significance of the mathematical solutions

‘When mathematical solutions are as complicated in form as those in
§ 8.41 their physical significance is not immediately obvious. Consider
equations {8.74) and put |

z=1ka?, y=padD, ¢=a'(+u)D, 7= au/D.

(8.85)
Then ly/a = vxtan vz, (8.886)
z= _YYtE) (8.87)

Y17

are the equations to be solved for the roots. Graphs of (8.86) and
(8.87) are sketched in Fig. 8.4 to show the general location of the roots.
The graph of (8.88) is the same for all £ and 5, and from the figure it is
easy to see gualitatively how the roots vary with £ and ». When corre-
sponding transformations to those of (8.85) are applied to equations
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{8.79) for the cylinder and (8.82) for the sphere, the resulting equations
are of the same form as (8.86) and (8,87}, so that Fig. 8.4 can be taken

Calculated from (3-36) | y i : :
——ram s Calculated from (8-87) ! : :
0 Successive real roots \ : 0
@ Root for which & a is imaginary] : I E
I | 1
\ I | [
\ ! : :
N\, : ! :
|
] R 1 ) |
~ ! i |
N, : i’ I
~ a2 192 125
14 14 14 x
~S] :
I~ :
t ‘I"'.""- ——— |
-------- ----|L" - -‘_-‘L*“ﬂ lﬂ-‘_—:.-?_-
I I
1. :
A i
i i
: }
| :
F I
i g
| I :
i .~h 4

F1a. 8.4. Loeation of roots of {8.86) and (3.87).

as showing qualitatively the location of the roots for all three cases.
There is a root for which %, a is imaginary given by

lyla = J(—az)tanh J(—z). (8.88)

The general expression for M,{M_ therefore comprises a unit term from
P, = 0, a term for which %, a is imaginary, and two infinite series of
terms eorresponding to the intersections of the two hranches of (8.87) with
successive branches of (8.86).

The relative importance of the various terms depends on the parameter
7. 1t is interesting to see quantitatively what happens to the general
solution for the extreme values of this parameter which correspond to
very fast and very slow reactions. The roots of {8.87) are given by

2y = —(z48)Ly{(z+E—dzn), (8.89)

the two infinite series arising from the alternative sign. For extreme
values of % the roots are readily obtained by using the appropriate

biz4 K
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binomial expansion of the term under the square root sign in (8.89), Pro-
ceeding in this way with the aid of Fig. 8.4, it is not difficult to show
that if 4 is very large, that is the reaction is very rapid compared with
diffusion, the terms in the general solution for M;/M, which arise by
taking the negative sign in (8.89) vanish, as does also the term from the
mmaginary root. The terms from the positive sign lead to

M, = 2a(l 4 x)exp(— k2 a?t
M, ; | Llcﬁ%ii* : (5:90)
where the L, a’s approach the roots of
tank, o = —ak, a, (8.91)
and 8 = D{R+1)a2 - (8.92)

This is the solution obtained by Wilson [7] for the case of an immobilizing
reaction which is rapid compared with diffusion.

If, however, n is small because the reaction is infinitely slow (u = 0}
we find that the terms arising from the positive sign in (8.89) vanish
provided a/l is not zero, which case is treated separately in § 8.43. The
terms from the negative sign combine with that from the imaginary root
to give

M, R {1  2(lja)(1 +1/a)exp(—Dk2 1)
E_( _R+13—|—a) = 2. Tt fapia }

n=1

(8.93)
where the k,’'s are given by

tank,a = —(l/a)k, a. (8.94)
The whole term in the second bracket in (8.93) is to be recognized as the
expression for simple diffusion from a finite bath, i.e. diffusion in the
absence of any immobilized component. Equation {(8.93) also describes
a simple diffusion process, therefore, and 3M/M,, changes from zero at
t = 0tol—RI{(R+1)}{-+a)}at ¢t = oo, which is eagily shown to be the
fractional uptake of solute to be expected in the absence of immobilized
solute. Thus (8.93) indicates the behaviour to be expected on general
argument, namely that for an infinitely slow reaction the sheet takes up,
by simple diffusion, only the fraction of solute which it can accommodate
in the freely diffusing state and none in the immeobilized state.
If on the other hand pa?/D is small because D is very large, all terms
in the general solution vanish except the one associated with the imagi-
nary root and we are left with

M, B 1 Re
T ]_R—1—1 I_i_ﬂexp{—(l-[-m)m]. (8.95)
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This expression is readily deduced from elementary considerations when
diffusion 1s so rapid that the concentration of solute is effectively uniform
through the sheet at all times.

The type of behaviour observed in a practical system for which uatlD
is very small, depends on the time scale of the experiment. Ifthisissuch
that the reaction oceurs very slowly compared with the duration of the
experiment the Eimp_la diffusion behaviour of (8.93) 1s observed. If on
the other hand diffusion is very rapid compared with the time scale of
the experiment the simple first-order reaction of {8.95) is observed.

8.43. Numerical evaluation

When equations (8.74) and (8.75) are written in terms of p.jrand k a
we see that M,/M_ can be calculated as a function of Difa? if three
parameters are known. The parameters are [ fa, that is the ratio of the
volumes occupied by solution and sheet respectively, the partition factor
R, and the modified rate constant for the reaction, ua?/D. Alternatively,
since K = Afu, a solution is defined by Ifa and the two rate constants
pe’{D and Aa?/D. In some cages it is more useful to relate B to the
fraction of the total amount of solute which is in the sheet finally, i.e.
to M..[/iCy, by the relations (8.76). For the cylinder the corresponding
parameters are ma*/d, R, and pa?/D, and for the sphere 47a®/3V, R,
and pa?/D,

Once the roots p,, k,a are obtained, the evaluation of each of the
expressions for M,/ M, for the plane sheet, cylinder, and sphere is straight-
forward provided !, 4, and V are finite. The cases of I, A, and V infinite,
however, need further consideration because the convergence of terms
for which p,, approaches — e can be very slow and numerical svaluation
becomes awkward and laborious, particularly for small ua?/D. For the
plane sheet when o = ¢o, (8.75) reduces to
M, S 2Dk (14 p, ) %exp(p, 1) (8.96)

= 1 —

M, & (B+1)pra®{(14-p,/u)*+ R)’

where now k,a = (n41)7. As we saw in § 8.42 there are two infinite
series in the general expression for MiM,.. We shall confine attention
for the moment to the series agsociated with the positive square root in
(8.89) since these are the terms for which P, approaches —u when

Dkyfu is large. Substituting for 1+p,/u from the second of (8.74) we
find

M N AR+ 14p./p)texp(p, o) (8.97)
M, & (RED[(T+p, /)t RE e |
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If p, = —p to the order of accuraey required, after the first » non-zero
roots, we have

M j 2B+ 1+, /1) oxp(p, 1 _
Mo, Lo (RED{(TH pafu)*+ R} a?

R — 2
1= — — 8.98
R~ D, P (08
. . o 2
approximately, since —s = L. (8.99)

The relationship (8.99) follows, for example, from (8.90) when o = o,
sinoe M/M, — 0 when ¢ = 0. The errer involved in use of the approxi-

mate form {8.98) is less than
2
kgt

(B+1-4pa/u)?exp{p.,f) R - 1. 3
[(R+1}{{1+pf+1m)ﬂ+ﬂ} 1P ‘“‘”][ 2.
| | (8.100)

n=1

and can be made as small as desired by choice of r. We may note in
passing that since in (8.97) p,/u and 14p, /u occur only with K, this is
a more convenient form of expression for computation than (8.96) when
p,/p is small or near —1, particularly for large E, since it is less sensitive
to the accuracy of the roots p,/u.

When lja = oo, it follows from (8.88) that there is no root for which
k, @ is imaginary. The complete expression for M/M, is therefore that
of (8.98) together with terms arising from the negative sign In the roots
of (8.89). On using (8.98) numerical evaluation of M/} for l/e infinite
is straightforward. The corresponding formulae for the plane sheet and

the sphere are easily derived.

8.44. Irreversible reaction

A special case of the above solutions of particular interest is that of
an irreversible reaction, when the rate of formation of immobilized solute
is directly proportional to the concentration of free solute. In this case
it = 0, but X is non-zero so that B = o, « = 0, M, = I(;,. The solution
for the plane sheet, for example, for these values follows immediately
from (8.74) and (8.75) provided ! is finite.

The solution for the case of I = o0 is less obvious. When p = 0, the
imaginary root (p,;, k,) is given by

Ip, = — Dk;tanh I;a, k2= (p,+A)D, (8.101)
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where k, = ik;, and so when [ = oo,
p; =0,  k*=AlD, (8.102)

When « = 0, p = 0, and p, is small, we can expand exp(p;?) in powers
of p,t and write (8.75) as

M =10 ICy(14-p,1) _ = IC, exp(p, t)
Y e _p_ pile 211-[-3-}- Py Pala’
ol oDIE 2D T V2l T 2DEET DR

(8.103)
from which, when ! = o0, go that Ip, is given by (8.101) and (8.102}, we
have finally |

M Dt TR | =
— gtanh g+ %sech q-f--é-étanhq— Z

al, o
n=1

2D%; exp(p, t)
a’py ’
(8.104)
where

koo = (bm, = —(p,AND,  ¢=(ha¥D). (8.105)

The first term on the right-hand side of (8.104) gives the rate of uptake
of solute due to the chemical reaction in the final steady state.

The forms of (8.77) and (8.79) for the cylinder, and of {8.81) and
(8.82) for the sphers when p = 0, « = 0, are obvious., When 4 = o
we have for the cylinder

M, . 2Dt L) IHg) -~ 4D%2exp(p,t)
ma?Cy, T @ Tie) Z pi » (8:100)

n=]

where
Slky,e) =0, k= —(p,+MN/D, ¢= (datD). (8107)

When V = o we have for the sphere

3M, 3Dt % 6DU%2 axoln. 1
477-&35“ — —-a‘z— {fj' coth d— I}— % ﬂDBEEhE.q_]_% coth i — z 1’:;2 ;(pn } .
|
" (8.108)
where

ke = nn, k= —(p,+AD, ¢g= . J(A?D). (8.109)

The solutions (8.104), (8.106), (8.108) can of course be obtained directly
by use of the Laplace transform or otherwise. When A = o0 the con-
ceniration at the surface of the cylinder is constant and (8.106) is the

integrated form of (8.42). Similarly (8.108) is the integrated form of
(8.41).
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8.45. Desorplion
We have eonsidered diffusion into a plane sheet initially free of solute.
There is the complementary problem in which all the solute s at first
uniformly distributed through the sheet and subsequently diffuses out
into the solution. If free and immobilized solute are considered to be
initially in equilibrium everywhere in the sheet, it is easily seen that
the mathematical solutions presented above for sorption also deseribe
desorption, provided M, is taken to mean the amount of solute leaving
the sheet up to time ¢, and M, the corresponding amount after infinite
- time. For desorption from a plane sheet, for example, we want solutions
of the equations {8.62) and (8.63) satisfying the condition {8.65) but with
(8.64) replaced by
U = (,, S = 8, —a < X <, t = 0. (8.110)
Writing - O, =0—-C, S, = §,—8, (8.111)
it is eagy to see that (8.110) and the other equations for desorption are
identical with (8.62), (8.63), (8.64), (8.65) with €, S, written for C,
respectively, remembering only that AC,—uS, = 0, if we have equili-
brinum throughout the sheet at £ = 0. Hence the solutions for ¢} for
desorption are readily deduced from those for € for sorption, as are also
the expressions for M,/M relating to desorption.

8.46. Calculated results

Evaluation of the expressions of § 8.44 for the irreversible reaction and
any particular set of parameters is comparatively stmple and straight-
forward. On the other hand a considerable amount of painstaking labour
is involved in the evaluation of the formulae for the reversible reaction
even when there is an infinite amount of solute, and it is therefore worth
while to present some numerical values. In Tables 8.1, 8.2, 8.3, 8.4 calcu-
lated values of M,/ M, are tabulated for the plane sheet, cylinder, and
aphere. The arrangement of the tables was decided by ease of presenta-
tion. Three values of the partition factor R are included and for each B
three rates of reaction. All tabulated solutions refer to an infinite amount
of diffusing substance, The values of M,/ M, are believed to be correct
to within 41 in the third decimal place.

Solutions for the plane sheet are illustrated in Figs. 8.5, 8.6, and 8.7.
Those for the cylinder and sphere show the same general features,
differing only in detail. Fig. 8.5 shows how the sorption curves change
in shape and pogition as ua®/D) is varied between the two extremes given
by u = oo (infinitely rapid reaction) and u = 0 (simple diffusion with
no reaction). By plotting against {uf)! as in Fig. 8.6 we can show the
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approach to the curve for D = o {purely reaction controlled) as uaf/D
tends to zero because of D) becoming large. We see also in Fig, 8.6 that
the discontinuity in the gradient of the curve for D infinite appears aa
a ‘shoulder’ when ua?/D = 0-01. As pa?/D is increased further the
shoulder disappears leaving a sorption curve with a point of inflexion,
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: [0
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kil =
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F1a, 8.7. Plane sheet, B = 1. Numbers on eurves are values of pa?/D,

At still higher pa?/D the inflexion becomes less noticeable az in Fig. 8.5
and the curves have the simple shape commonly associated with diffusion.
Fig. 8.7 shows the influence of the parameter R, the partition factor
between immobilized and free solute. As R is increased the height of the
shoulder decreases, and if curves for X = 100 were plotted on the present
scale no shoulder would be detected for any value of pa?/D,

One interesting feature of these results is that they indicate limits to
the relative rates of diffusion and reaction outside of which the reaction
is effectively infinitely rapid or infinitely slow as the case might be.
Thus for the plane sheet, the values of M/M for pa*/D = 10 differ by
only a few per cent. from those for an infinitely rapid reaction. The
differences are greatest for £ = 1 where they are about § per cent. At
the other extreme the solution for ua?/I) = 0:01, B = 1, is the same as
that for an infinitely slow reaction to the same degree of accuracy except
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at small times (see Fig, 8.7 for example). The differences increase in
this case as K increases, being about 20 per cent. for B = 100.

The significance of these limits is perhaps easier to appreciate when
they are expressed in terms of the half-times of the simple diffusion and
simple reaction processes respectively. For simple diffusion into the
plane sheet from an infinite amount of solution it is easy to show that
the half-time, £;, that is the time at which M/M_ = }, is given by

Dijja? = —{(4/x?}In=%/16 = 0-2, (8.112)

approximately. On the other hand if immobilized solute is formed from
a uniform, constant concentration, (), of free solute according to the

equation 88jat — A0, —u, (8.113)
this reaction has a half-time, {,, given by

pt, = In2 = 0-7, (8.114)
approximately, and combining {8.112) and (8.113) we have for the ratio
of the half-times, Lit, — 3-5D/(ua?). (8.115)

Thus we can say roughly that if the diffusion is more than a thousand
times faster than the reaction, the behaviour of the diffusion-reaction
process is roughly the same as 1t would be if diffusion were infinitely
rapid. On the other hand if the half-times for diffusion and reaction are
comparable, the behaviour approximates to that for an infinitely rapid
reaction. These statements indicate orders of magnitude only. They
apply also to the cylinder and sphere.

8.5. A bimolecular reaction

Katz and others [9] and also Reese and Eyring [10] have considered
the problem of diffusion accompanied by an immobilizing reaction which
15 bimolecular. They consider diffusion in a cylinder, representing a
textile fibre in which there are a number of active groups to which the
diffusing molecules can become attached. The process is described by

the equation 0C/et = DV20—knC), (8.1186)

where n{r,t) is the number of active groups unattacked at radius r and
time . Both treatments are approximate only, because (8,116) is non-
linear and not amenable to formal solution. Katz and others [9] first
neglect the term knC in (8.116) and then use the known solution of the
simplified diffusion equation which yields € as a function of » and ¢,
to obtain an approximation to n through the equation

anjet = —knC. (8.117)
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Reese and Eyring [10] make the assumption that the rate of reaction
depends on the average concentration of diffusing molecules throughout
the fibre and not on the concentration ), as in (8.117), which depends
on the radial coordinate r.
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IX

SOME METHODS OF SOLUTION FOR
VARIABLE DIFFUSION COEFFICIENTS

9.1. Time-dependent diffusion coefficients

Ix Chapters ITT-VIIT mathematical solutions were presented for various
problems in which the diffusion coefficient was taken to be constant.
These solutions can also be used if the diffusion coeflicient, D, depends
on the time, £, for which diffusion has been proceeding but is independent
of other variables, i.e. if Dis a function of { only. In this case the equation
for diffusion in one dimension becomes

aC WL
— = Dty —, .
= e (9.1)
and on writing dT = D{t)dt, (9.2)
2
that is 7 — f D(e) dt', (9.3)
0
: eC  8*C
equation {8.1) reduces o o7 = ol (9.4)

The solutions for constant D can therefore be used to give € as a function
of #x and 7', and 7" is then converted into { using the relationship (9.3). If
the integral in (9.3) cannot be evaluated formaily, the relationship
between 7" and ¢ has to be obtained by graphical or numerical integration.
If the boundary conditions involve time explicitly, e.g. if the surface
concentration is a given function of ¢, this function must be rewritten in
terms of 7' in order to obtain the appropriate solution of (9.4} in z and 7.
The transformation (9.2) can, of course, be used for all forms of the
diffusion equation, e.g. for diffusion in a plane sheet, cylinder, or sphere.

9.2, Non-homogeneous media

Little attention has been paid to diffusion in non-homogenecus media
in which the diffusion coefficients vary with distance measured in the
direction of diffusion, apart from the special cases relating to composite
sheets, cylinders, and spheres. Some examples in which the diffusion
coefficient has one constant value in the surface layer and another con-
stant value below the surface layer have been referred to in Chapters
ITI-VI. Other cases in which the diffusion coefficient is concentration-
dependent in the surface layer are discussed later in§ 12.6. The numerical
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methods discussed in Chapter X can be used to handle a particular
problem in which D depends on x in a known way and for which formal
solutions are not available.

9.3. Concentration-dependent diffusion. Infinite and semi-

infinite media

A case of great practical interest is that in which the diffusion coefficient
depends only on the concentration of diffusing substance. Such a coneen-
tration dependence exists in most systems, but often, eg. in dilute
solutions, the dependence is slight and the diffusion coefficient can be
assumed constant for practical purposes. In other cases, however, such
a8 the diffusion of vapours in high-polymer substances, the concentration
dependence is a very marked, characteristic feature. A number of
methods have been used to obtain numerical solutions, some applicable
to any type of concentration-dependent diffusion coefficient, and others
restricted to particular types, e.g. exponential or linear dependence, In
other cases, algebraic solutions have been expressed in terms of a single
integral and these will be referred to as formal solutions even though the
integral has to be evaluated numerically.

9.31. Boltzmann’s trangformation
The equation for one-dimensional diffusion when the diffusion
coefficient £ is a function of concentration ¢ is

oC 8 {,.8C
ot a:::(D a:x:)‘ (9.0)

In 1894 Boltzmann [1] showed that for certain boundary conditions,
provided D is a function of € enly, ¢ may be expressed in terms of a
single variable x/2t+ and that (9.5) may therefore be reduced to an
ordinary differential equation by the introduction of a new variable, 7,

where n = $afit. (9.6)
Thus we have %.g — Qiﬂ %, 9.7)
and % = h;ﬁ %, (9.8)
and hence %(‘ngg) - Bam (;ii j?) == E!Edtf? (Djf), (9.9)

g0 that finally (9.5) becomes

al’ d {,.dC
_2%.; = (}_) dn)’ (9.10)
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an ordinary differential equation in { and 5. The transformation (9.6}
can be used when diffusion takes place in infinite or semi-infinite media
provided the concentration is initially constant in the regions x 2 0 or
x > 0 as the case may be. For the problem defined by

¢ = (], x < 0, t =0, (9.11)
=0, x>0  t=0 (9.12)

equation (9.10) is to be solved for the boundary conditions
¢ =, 7 = —00, (9.13)
¢ = G, 7 = 00, {9.14})

Similarly, the conditions for a semi-infinite medigm

C=0C, z=0 t>0, (9.15)
O =(,, x > 0, = (), (9.16)
become | C=C, n = 0, (9.17)
C = (), 7 = GO, (9.18)

It is only when the initial and boundary conditions are expressible in
terms of n alone, and x and ¢ are not involved separately, that the trans-
formation (9.6) and the equation (9.10) can be used. They cannot be
used, for example, when diffusion occurs in a finite sheet of thickness i,
and the boundary conditions are

C = O, x = 0, x =, (9.19)
because the second condition becomes
C = C, n = [, (9.20)

which is not expressible in terms of % only but involves ¢ explicitly. In
general the transformation can be used for diffusion in infinite and semi-
infinite media when the initial concentrations are uniform and may be

Zero,

9.32. Ilerative solulton

In this method we estimate a first approximation to the solution and
then evaluate a succession of better approximations, each of which
satisfies all the boundary conditions, but only when two successive
approximations agree to the accuracy of working is the differential
equation satisfied as well. We shall illustrate the method by considering
diffusion in & semi-infinite medium for which

c=1 x=0 t>0 (9.21)
c=0, x>0, t=0 (9.22)
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and the diffusion coefficient is of the form D, e*e. Here ¢ denotes a non-
dimensional concentration convenient for purposes of caleulation. It
will be obvious that the method can be used for any relationship between
the diffusion eoefficient and concentration provided it is known, and
that furthermore a graphieal or numerical relationship is sufficient in
the absence of an algebraic formula. In practice we can always make
¢ = 1 on the surface by expressing the concentration as a fraction of
the actual concentration on the surface, expressed for examplein g. cm,—?

On writing y = Ya/(Dy 1), (9.23)
the diffusion equation becomes
de d [ de
w2y — D C
Yy dy(Dﬂfy) ’ 524
where now D = eke, {9.25)
On rewriting (9.24) as
2y dc  d ¢
—E D= ipZ, 2
D dy dy( dy) (82
and integrating, we find
¥
de 2y’
D— = — | = dy
2 Aexp( f 7 dy), (9.27)

0

where A4 is a constant of integration to be determined later by the
boundary conditions. A further integration gives
¥

c—-l-ﬂflﬂx yﬂyfd’ dy’ (9.28
= D P'—J.*f)*y iy . (9.28)
Q0

G

The condition, ¢ = 1 at y = 0, is satisfied by taking the integral to be
zero at the lower limit ¥ = 0, The condition ¢ = 0, y = 00, can be
satisfied by choosing 4 such that

%0 ¥
1 %’
4| zexp{ — | L ay|dy =
fﬂexp( f 7 dy) dy 1, (9.29)
0 0 -

so that finally we have

| {lfﬂjlexp{ — [ (24’1 D) dy’} dy’

¢e=1—-12% > , (9.30)
| (1{Dyexpi — | (2y'/D) dy’} dy’
0 0

This may seem an elaborate form of solution of (9.24) but it contains
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the boundary conditions as well and is in fact quite convenient for
numerical evaluation,

In the absence of anything hetter, a first approximation from which
to start the evaluation of (9.30) 13 afforded by the solution for which D
is constant and equal to its value when¢ = 0,i.e. [l = 1, in this example.
The first approximation is then (see Chapter L1 (2.14})

¢ = l1—erfy. (9.31)

The error function, erfy, is unity to four decimal places when y exceeds
3:0, so that, when working to this order of accuracy, ¥ = 3:0 replaces
y = oo as the practical upper imit of integration. A danger in using
this sort of method when the upper limit of the range in ¥ is not known
exactly till the solution is completed, is that ¢ may have been made zero
at some value of y smaller than the correct one. In such a case dc/dy
will not be zero to the desired order of accuracy and a further approxima-
tion is necessary, extending further in y. Tt is always desirable to over-
estimate rather than to under-estimate the range in y for the first
approximation. A check which is found very useful in practice is based
on the comparison of the two expressions for the total amount, M, of
diffusing substance which has crossed = 0 at time {. Thus

M= [ ode = 2Dyt [ e dy, (9.32)
0 0
and also ﬂ{f == —D,;,D(a—ﬂ) - _.M @) ,
dt xf o 2t \dy/,_q
so that on integrating we have
dc
a — 3 &C
M, = —D(D,1) ( dy)y:u. (9.33)

Thus if any one of the successive approximafions is the correct solution,
to the accuracy of working, we must have

N dc)
2 {: d — _D - » 9;34
6[ Y (dy y=0 { )

The iterative method of solution is therefore as follows:

1. Using (9.31), obtain values of ¢ at equal intervals in 5. The range
18 determined by the value of y at which ¢ = 0 to the aceuracy
of working. Intervals of 01 in y are usually small enough if three
decimal places in ¢ are being taken.

2. Evaluate D from {9.25) at each value of y.
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3. Evaluate (9.30) by numerical integration to give new values of ¢ at
each y. Any of the standard formulae for numerical integration
can be used and the interval in y clearly depends on the accuracy
required in the integration.

4. Repeat the steps (2) and (3) starting from the new values of ¢.

5. When two successive approximations yield the same values of ¢
everywhere to the order of accuracy required see if (9.34) is satisfied.

6. If not, the range in y is usually too small and needs to be increased
80 that a further approximation can be evaluated.

2.33. A useful alternative variable

In the steady-state flow through a membrane between two fixed con-
centrations, the shape of the concentration-distance curve is very
dependent on how the diffusion coefficient varies with concentration
(see § 12.1), but the product D dc/éx is constant throughout the mem-
brane. This suggests that although in the non-steady state D acjox at
a given time cannot be exactly the same at all points of the medium,
nevertheless the results may assume a simpler form in terms of a variable
which includes such a product. We therefore introduce a new variable &

defined by ¢ 1
8 = (J‘ D dc.’)/f Dde’, (9.35)
0 0
so that s=1, c¢=1 y=09 (9.36)
=0, ¢=0, y=o. (9.37)
Then (9.24) becomes —23,*5{'—g == D-dﬁ, (9.38)
- dy  dy®

and (9.30} takes the slightly simpler form
Jy BIP{ — f(ﬁy*’!ﬂ) dy'} dy’
0 b

Fexp{— f(ﬂy'fﬂ] d,y’} dy'l
3 0

The transformation (9.35) is essentially that used by Eyres, Hartree, and
others [2]. The iterative solution of {9.39) follows closely that of (9.30)
with slight modification due to the disappearance of the factor 1/D,
Apart from this simplification, the advantages of using s instead of ¢
are clear from Fig. 9.1 which shows s and ¢ as functions of y for a diffusion
coefficient, inereasing exponentially from 1 to 200 in the range 0 < ¢ < 1.
Because of the shnpler shape of the ¢ against ¥ curve, numerical integra-
tion is quicker when s is the variable because larger intervals in ¢ can

{9.39)
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be taken and the same size of interval is more likely to suffice throughout.
Also it is easicr to get a better first approximation to s than to ¢. Thus
a possible improvement on {9.31) is to use an integrated mean value for
D over the whole range in ¢, instead of using the value D = 1 at ¢ = 0,
i.e. to use 1J;, where

1
D, = f D de. (0.40)
J

For this mean value of D, 8 = ¢ and the solution of (9.24) and (9.38) 18
¢ =8 = 1-—erfy/D} (0.41)

which is shown as a broken line on Fig. 9.1. This is clearly a better
approximation to the final solution in ¢ than to that in ¢ shownn Fig. 9.1,

On the other hand, for some D—c relationships s may be a slowly
varying function of ¢ over part of the concentration range, so that a
small error in ¢ corresponds to a large error in ¢. For this reason, when
the values of s in two successive approximations agree to the order of
accuracy required it may be desirable to convert the values of s into ¢
values and to continue the iteration in terms of c.

The iterative method can be applied equally well to a problem of
desorption from a semi-infinite sheet, for which

¢ = 0, x =0, > 0, (9.42)
¢ =1, e | £ =0, (9.43)

though the advantages of using the variable s are less marked because
of the different shapes of the concentration-distance curves for sorption
and desorption. This is clear from Figs. 9.1 and 9.2, which also illustrate
the considerable difference in the ranges of y involved in the two solutions
for the same diffusion coefficient—concentration relationship.

The corresponding problem in an infinite medium for which

¢ =1, x <0, t =0, (9.44)
¢ = 0, x > 0, 4 — 0, {9.45)

can be treated similarly., Here the simplest first approximation ia
¢ = Lerfey, (9.46)

for which the practical range in 4 is —3 < y <¢ 3 if four decimal places
are taken in ¢. The variable s and the approximation

¢ = ¢ = terfoy/Di, (9.47)

corresponding to (9.41), are also useful.
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9.34. Forward integration

An alternative method of obtaining numerical solutions of ( 9,38} is to
assume a value for ds/dy at y = 0 and to integrate forwards, using either
a differential analyser or one of the established methods for the numerical
solution of ordinary differential equations [3]. In general, the solution
obtained for the first trial of ds/dy will not satisfy the end condition
8 = 0, y = 00. Buccessive trial values are tried till this end condition
is satisfied, and then we have a solution satisfying the differential
equation and both the boundary conditions. Philipt has described &
method, using ¢ as independent variable, which converges rapidly.

9.35. Some special cases

By using the methods described above a solution of (9.10) can be
obtatned for any diffusion coefficient—concentration relationship, pro-
vided numerical values of D are known over the relevant concentration
range. For the two cases of diffusion coefficients which depend linearly
or exponentially on concensration, equation (9,10) has been transformed
80 that the relationship between 1) and ¢ is removed from the differential
equation and appears instead in one of the boundary conditions. A
solution of the transformed equation, which satisfies the boundary
condition at i = 0, is obtained by forward numerical integration for a
postulated value of a second condition, e.g. & concentration gradient,
at ¥ = 0. The particular linear or exponential diffusion coefficient to
which this solution corresponds is determined afterwards from the value
to which the solution tends as ¢ approaches infinity. By repeating the
integration for different values of the unknown condition at ¥ = 0, a
family of solutions of (9.10) is built up for the given type of diffusion
coeflicient-concentration relationship. The solution for a given dif-
fusion coefficient of the particular type can be obtained afterwards by
Interpolation on the family of solutions. -

() Exponential diffusion coefficients. Infinite medium

"Wagner [4] has given the following method of dealing with a diffusion
coeflicient which varies exponentially with concentration, according to

the expression D=D exp[B{0—L(C, + Calll, {9.48)

where 7)) s the diffusion coefficient for the average concentration
Co = %(CI—I—C'E}, and B is a constant given by

B = dln D/, (9.49)
T Philip I. R., Trans. Faraday Soc, 51 {1955) 883,
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Wagner deals first with the problem in an infinite medium for which the
diffusion equation 1s
| 90 _ @ (poC (9.50)
ot dx\ oOx
and the initial conditions are
C = {, x < 0, i =0, (9.51)
C=0, =z>0  t=0 - (9.52)
For purposes of tabulating the final results it is convenient to take new
variables y = 3Dy, (9.53)
where D, is the diffusion coefficient for the eoncentration (; at x = 0,
and
"ﬁ — G“‘}{OFFOE}’ (9.54)
#HG—0))
50 that C = }(C,+ o)+ 3(C—C . (9.55)
To compute numerical values of the function ¢, we introduce another
dimensionless variable y = BO—Cy), | (9.56)

whereupon (9.48) becomes
D = D,e, . (Y.57)

with I}, as diffusion coefficient for € = (4. Substitution of (9.53), (9.56),
and (9.57) in (9.50) gives

E%(e? j—;) + ﬂy% = 0. (8.58)

. Introducing the auxiliary variable
u = ev¥ {9.59)
into (9.58), we have u%—t— 2 ";_'F-; = 0. (9.60)
Solutions of (9.60) from y = —oo toy = o0 for the mitial conditions
y=0, u=1 y=0, (9.61)
g = (dy{dy),-o = (dujdy)y-o = 0-2, 0°4,..., 2:4 (9.62)

were obtained with the aid of a differential analyser.

For each auxiliary parameter ¢ there are two limiting values of y,
y, 8t y = —oc0 and y, at y = +0oo, with opposite signs. In view of
(9.58) these values are related to the initial concentrations ¢y and C; by

v = B0 —Cy)s (9.63)

Yo = B(Cy o). (9.64) _
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On subtracting corresponding sides of (9.63) and (9.64) we have

ve— ¥ = BlG—C}, (9.65)

which according to (9.49) is the natural logarithm of the ratio of the
diffusion coefficients for the concentrations €, and (. Fig. 9.3 shows
the relation between y,—y, and the parameter ¢.

24 I ra)
tE

20

-6

i-2

-8

0-4

N B B A ¥ A 77 SRS ™/ SN ¥ S v e Sy >
* W}_"‘)ﬁ)‘iﬁ ['C';-C,)

F1a. 9.3. Auxiliary parameter g as a function of {y;—,) = B(C,— ).

Moreover, it follows from (9.63) and (9.64) that

Co = HOHG)—Hnt7a)/B. (9.66)
Substitution of (9.66) in (9.48) gives
Dy = D, exp{—}n+y:}} (9.67)

To facilitate the computation of D,, a graph of 3{y; +v,) as a funetion
of g is shown in Fig. 9.4.
According to (9.56) and (9.54) we obtain the values of ¢ from the

relationshi

Hy:—v1)

Numerical values of the function #{y, g) are compiled in Table 9.1.
For negative values of the parameter ¢ the relationship

can be nused and the sign of 4 must be reversed.




158 SOME METHODS OF SOLTUTION FOR [§ 9.3

In view of the regularity of the differences between the i values for
different g values but equal ¥ values, it is believed that the error in i
is in general not greater than one figure in the last decimal place, except

U
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Fig. 9.4. }(v;+y.} aa a function of g.
for ¢ = —1:6 to g == —2-4 for which the accuracy is less because of

rather sudden changes in the values of the first derivative of ¢ as a

funetion of y.
In order to obtain the concentration distribution for a diffusion

coeflicient with given initial concentrations ¢ and €, and known values
of D, and B, we proceed as follows.

1. Read the value of the auxiliary parameter ¢ for the known value
of (y,—v,) = B{C,—C}) from Fig. 9.3. f
Read the value of L{y,-}y,) for the auxiliary parameter g from

Fig. 9.4,
3. Caleulate the value of D) from (9.67).
4, Plot ¢ for the auxiliary parameter g as a function of ¥ with the

aid of Table 0.1.

In view of (9.53) and (9.565) the plot of ¢ versus y gives the concen-
tration C at any point z at time L.
Instead of using Figs. 9.3 and 9.4, the values of g and {(y,+y,) may
be calculated from the empirical interpolation formulae
g = 0:-564(y;—y)—5(y,—y1 102 4-64(y,—)*107%,  {9.70)
L{py byry) = — 0-144g2—0-0038g", (9.71)

o
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Thus far it has been assumed that the diffusion coefhicient is an
exponential function of the concentration in accordance with (9.48). If
this assumption does not hold strictly, we may use the foregoing analysis
as an approximation. Wagner [4] recommends that the analysis be
based on the diffusion coefficients for the concentrations

¢y = HOAHG)—HG~6) and G = HOA+C)+HG—0)

as the most representative values, corresponding to the average con-
centration 3{C,+(,)--25 per cent. of the total concentration difference

[ﬂg—gﬂ. Thus B _ > I D(C{,} (9 72]
C,—0C,  D{CLy) ‘
I’-{I — {D[C}}D((:’_}}}&. . (9.73}

(ii) Exponential diffusion coefficients. Semi-infinite medium
If a substance diffuses from the interior of & sample, with uniform

initial concentration O, to the surface (or vice versa) we need solutions
of (9.50) with the initial and boundary conditions

C=0C, x>0  t=0, (9.74)
C=¢, x=0 >0, (9.75)

where z is the distance from the surface and ), denotes the surface

concentration for ¢ > 0.
In thisz case we consider an exponential dependence of the diffusion

coefficient, D, on econcentration given by
D = D.exp{f{C—C} (9.76)

where D), is the diffusion coefficient for the surface concentration (.
Upon introduction of (9.76) and the auxiliary variables

Yy, = §a{(D1)}, (9.77)
¢ = (0 —C)/(Ch—Csh (9.78)
and y = B(U—(), (9.79)

into (9.50) we obtain (9.58) with g, instead of y. In view of (9.75), (9.77),
(9.79) the integration is to be performed with y = 0 at y, = 0. Thus
we can use the values of y calculated above in § 9.35 (i). In view of
{9.74), (9.78), and (9.79) we have

y = BlC,—C) =, Yo = K0, {9.80)
¢ = y/r. {8.81)

Here r is the natural logarithm of the ratio of the diffusion coefficients
for the concentrations €}, and €. Fig. 8.5 shows the values of r, i.e. the
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hmiting values of ¥ at ¥ = co, as a function of the auxiliary parameter g
used for the integration of (9.60). Numerical values of o are compiled
in Table 9.2,
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Fie. 9.5, Auxiliary parameter ¢ 88 & function of r = B(C,—0,).

In order to obtain the concentration distribution for diffusion from
the surface to the interior of a sample (or vice versa) one therefore
proceeds as follows:

1. Read the value of the parameter g for the value of »r = B(C,—C,)
from Fig. 9.5.

2. Plot ¢ for this value of ¢ as a function of ¥, using Table 9.2,

The concentration ¢ at any distance z and any time ¢ follows, since
from (8.78) O = G (Cy—C)e, (9.82)
and y, is given by (9.77).

Instead of using Fig. 9.5 one may caleulate the values of ¢ with the
aid of the empirical interpolation formula

1-128r

Y P (9-83)
Using {9,77) and (9.82), the flux across the surface, ¥ = 0, becomes
—-Q{ﬁ@f@m)xtu e "“&(Qﬂ)*(q}_‘c‘a)(dc/dya)y,wn: (9.84)
and from (9.62), (9.81}, and (9.83) it follows that
de 1-128
(Ey_,) = gjr = o177, Y=0 {9.85)
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If B is positive (i.e. the diffugion coofficient increases with concen-
tration) and if the substance diffuses from the surface into the interior
of a sample with zero initial concentration (te. G—C, << 0), the value
of g 1s negative.

(iit} Lenear diffusion coefficients

Using a method sigilar to Wagner’s, R. H. Stokes [5] has obtained
solutions for the infinite medium and conditions (9.51), (9.52) for a
diffusion coefficient depending linearly on concentration according to

the expression D = D{14-3a(C,-+Cp)—a 0. {9.86)

Here [), is the value of D when ¢ — $(C;+C,}, the mean concentration.
By using the substitutions

1+%a{01+021~—a0}2
v = . 0.87
{ l—f—&a(C’l—Gg} ( )
2
and W= , 9.88
21 4-3a{C, —C)(D, e (9.88)
the diffusion equation (9.50) reduces to
d%v 2w do
e Rt (9.89)
with the boundary conditions
v=1 = w= +owm, (9.80)
I —3a(C)— 2]}2
i — s W= —00, 9.91
o o o0
For convenience, we denote by b% the value of v at w = —co. From

(9.86) we see that b is the ratio of the diffusion coefficient at C, to that
at (. Stokes obtained numerical solutions of (9.89) by starting at
W= 3, v == 1 (the value 1 = 3 is suggested by the known solution for
a constant diffusion coefficient) and a chosen small value of dvf/dw, say
less than 0-01. The integration proceeds in the direction of decreasing w
till a value of v is reached which is constant to within the accuracy of
working. This value of » is 42, and is reached at some negative value
of w between —2 and —5. Different values of the initial gradient dv/dw
lead to different values of b* which are known only when the solutions
are completed. This family of solutions gives, for different b’s, values
of v and dv/dw at closely-spaced intervals in w (the usual interval used
by Stokes was 0-1 in »). From these solutions, values of concentration
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and concentration gradient are readily obtained. They are conveniently
expressed in terms of a new independent variable », defined by

x 2
= s = (m) (9.92)
80 that we have
dC (G314} 1 dv
4y, 21—0b)  otdw (9.93)
C = G+(C—Cy)(1—vh)j(1—b). (9.94)

Tables 9.3 and 9.4 show —(dC/dy,)/(C;—C,) and {(C—=C) (0, —C,) as
functions of ¥, for different values of 5. All the solutions shown corre-
spond to & < 1, i.e. to diffusion coefficients which decrease as the con-
centration increases. The corresponding solutions for & > 1 may be
obtained by reversing the sign of y,; thus, for example, the solution for
b6 = 0-1407 becomes the solution for & = 1/0-1407 = 7-106 when the
sign of ¥, is changed. Solutions for intermediate values of & can be
obtained by interpolation. Ifhigher accuracy isrequired the interpolated
values can be improved by the iterative method described earlier in
§ 9.32,

(iv) Diffusion coefficient directly proportional to concentration
The problem treated by Wagner | 6] of a diffusion coefficient given by
D = D,0jC, (9.95)

has some features of particular interest. Considering first the semi-
infinite medinm in which

C=C, z=0 >0, (9.96)
O = 0, x > 0, f =0, (9.97)
and introdueing the variables |
y = /(D)4 (9.98)
c = ([, {2.99)
the diffusion equation
A & el
cb_ 9({ptL oty 100
ot 6‘.-1:( °C, Bm) (9-100)
dc dct? de
becomes G:i_gﬁ+ (@) 4 Ey@ = 0. (9.101)

Further simplification is achieved by substituting

v = %, (9.102)
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2
when (9.101} becomes v W {(3.103)

BE - dy

with boundary conditions

, (9.104)
y — . (9.105)
| -
¥

| Fig. 9.8. Schematic golutions of (9.103).

Using numerical methods of integration and disregarding temporarily
the second condition (9.105), a family of solutions of (9.103) can be
obtained for arbitrarily chosen values of (dv/dy),_q = vo. Clearly if the
condition (9.105) at ¥y = o0 18 t0 be satisfied, vj; must be negative. Then
from (8.103) the second derivative of v with respect to y is positive, If
[vol <€ 1, the curve of » against y tends to a constant value at large y
as shown in Fig, 9.6, curve A. A solution of this kind doeg not satisfy
(9.105), however, On the other hand, if {vj| 3 1, curves which approach
the axis v = 0 with finite slopes as shown schematically by curve B in
Fig. 9.6 are obtained. Tentatively we assume that a special value of
lvo] yields a solution for which » vanishes at a certain abscissa, ¥y = Yo
and satisfies the additional condition

& _
dy
This is the condition that the rate of transport of diffusing substance
shall be zero when O = 0, since by equations (9.98), (9.99), and (9.102)

0, wv=0, y=y, (9.106)
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we have for the rate of transport

CoC_ Dy, dy
Cpdx  4fF dy
A function satisfying (9.103), (9.104), and (9.108) can then be combined
with the trivial solution v = 0, ¥ == y,, so that a solution for the whole

range y == 0 results.
With the tentative assumption that condition (9.106) is satisfied at
a finite value y = ¥,, the factor ¥ on the right side of (9.103) can be

replaced approximately by y, if v <€ 1. Thus
d 2y, dv

D, (9.107)

= TS dy {9.108)
if v <€ 1, with the boundary conditions
pv=0, y=y, (8.109)
dvidy = 0, ¥ = ;. (9.110)
Integration yields
b= Qye—y)t,  v< L. (9.111)

Consequently, in the vicinity of ¥ = y,, where v € 1 and hence ¢ £ 1
and € < (C, the function »{y) is represented approximately by a parabola
and the concentration ratio ¢ = »* by a straight line.

To obtain a solution of (9.103) for the whole range 0 < y <7 ¥,, numeri-
cal integration i1s required. Since the houndary conditions (9.104) and
(9.106) refer to different values of y it is useful to make the substitutions

L= vy} (9.112)
£ = 1—(y/y,), (9.113)
whereupon equations (9.103), (2.109), and (9.110) become
&y 2. Ldl
78 = Z‘i“ £}d-—§,, (9.114)
! =0 £=0, (9.115)
df _
7= £ = 0. (9.116)

In order to integrate (9.114) from ¢ == 0, the second derivative d2{/d¢?
at ¢ = 0 must be known. This eannot be obtained directly from (9.114)
because for £ = 0 the right side is indeterminate. By substituting
(9.112) and (9.113) in (9.111) and differentiating twice, we obtain
d¥jd¢t =8, £=0. (9.117)

On carrying out the numerical integration of (8.114) starting with
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conditions (9.115), (9.118), (9.117) at £ = 0, we obtain { = 2:34 when
¢ =1,1ie when y = 0. Then it follows from (9.112) and (9.104} that

Yo = {{g-1)t = O-8L. (9.118)
Transforming (9.113) and substituting (9.118) we have
g = yo({1—§) = 0-81{1—§). (9.119)
10 LSRN ] ‘ — 1
GO
0-8 NS R T
T e P
5 R - n
0-4 BT _ 5
ssen. 15 ! !
{] 2 5 I } :d ! {i _% ; ] [
T grEsistains TN PR :
SeARSRESCdsmsed T R
: e +HHH T T
0 0z 04 06 0-8 -0 -2 14 l-6

yxi(4D,t)?
Fia. 9.7. Concentration distributions, Curve I, D = D, CfC,; curve 11, error
fungtion solution {9.121),

Finally it follows from (9.99), (9.102), {8.112), and (9.118) that
CiCy = ¢ = vt = Ty = ({[{,_ ) (9.120)

A graph of C/C, against }z/(D,{} is shewn as curve I in Fig. 9.7.
In Fig. 9.7 curve II shows the corresponding graph for & constant
diffusion coefficient, calculated from

C|C, = erfe{}x/{D,1)}. (9.121)

Curve I approaches the abscissa asymptotically whereas curve I reaches
the abscissa at the finite value y = 081 with a finite slope. Thus, in
this special case, an advancing velocity of the diffusing component is
strictly definable, and from (9.98) and (9.118) it is given by

(dz/dt) g = yo DB} = 22 Dyjz = 1-31D /. (9.122)

Furthermore, (9.114) may be integrated up to § = -0, i.e. x = —o0,
when the solution approaches a limiting value {;, where [, = 6-82. We
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then have the solution of the probiem in an infinite medium for the initial
conditions

=0, z<0, (9.123)
C = (,, z > 0, (9.124)
IUpem T T ’-I:J%}; i . ARNERSEEE S S HH T AR
e, i . R R :
F1 T : ¢
0-8F S L -
| ! .
0-6 s s :
ﬂ e R :
0.4 Hi j .
- fr‘- - ]
0-2 : A
R T e e e JT,L N
b ] ] . NN . }
R R T E TR SRR R TR
=15 -1-0 -5 0 0.5

xK4D,1)}
Fia. 9.8. Concentration distribution for I = D oie,,

where () and (', are both constant, and the diffusion coefficient 7 is
given by D= D,

where D, is the diffusion coefficient when ¢ — (1. Then from equations
(9.99), (9.102), (9.112), and (9.113) we find

‘ CICy = (Ul = (LTI (9.125)
This concentration ratio can be related to the non-dimensional variable
$x/( D, 1)}, which through (9.98) 1s given by

£ Di__ §E=1Ja‘_.
s = ) =) = oosae 8129

where y is caloulated from £ using (9.119). A graph of €'/, as a function
of $x/(Dyt)t is shown in Fig. 9.8. The concentration at x = 0 is 0-59C,

instead of 0-50C, which is the value obtained when the diffusion coefficient
IS constant.

9.36. Formal solutions

Hiroshi Fujita [7, 8, 9] has obtained formal solutions for diffusion in
a semi-infinite medium when the diffusion cosfficient depends on con-
centration in certain ways. As far as is known, these are the only formal
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solutions to have been obtained for concentration-dependent diffusion
coefficients. His method is reproduced here in full for one example and
his results are quoted for the others.

{i} D= DD/(I—}’(C}
Consider the unidimensional diffusion of a subatance in a semi-infinite
medium,. the surface concentration of diffuser being (4. The diffusion

equation is then
o0 _ 2 (noty (9.127)
ot ox\ oz
where (' is the concentration of the diffuser at any peint and at any
time, TH{(C) iz the diffusion coefficient {assumed to be a function of
only), ¢ is the time, and z is the space coordinate, whose origin is taken

t0 be on the surface of the medium. We deal here with the case in which

D(C) = D,J(1—A0), (9.128)
where D, is the value of D when ' = 0. The initial and boundary
conditions are C—o, z > 0, . (9.129)

C == (), t=10, t>0, (9.130)

It is assumed that C; 18 kept constant throughout.
By making the changes of variables,

ClC,=¢, DO)Dy=K(e), Ia/iDii=y (9131

the partial differential equation (9.127) reduces to an ordinary differen-
tial equation in ¢ of the form

{%{K{c g;} — -——Ey%, (9.132)

and the conditions {9.129) and (9.130) become
¢ = 0, y = oo, (9.133)
c=1 y=0. (9.134)
Also, K(c) = 1/(1—ac), (9.135)
where a = AC,, (9.136)

Ag in § 9.33 we introduce the new variable, s, defined by

f Kc") de

#

: , (9.137)
j K(c) de
1]
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which gives, on substitution of (9.135),

111((11:[:;) —a (9.138)
With the new variable, s, thus defined, the system of equations for ¢
trangforms to
j% = e ﬂye-ﬂ*?;:_;, | (9.139)
8 = (, Yy = o0, (9.140)
8=1 y=0, (9.141)
where 8 is connected with « by the relationship
B = —In(l—a). (9.142)

In the present analysis, A and « are assumed to be positive, and
0 << a < 1. Hence, 8 > 0.
The substitutions defined by

dsfdy = —¢, {9.143)
E'_'Bﬂlfﬁ = i, | {9'144)
transform equation (9.139) to
d?d 2
= 9.145
Y3 T TR (9:149)

This equation can be integrated, giving as a general solution appropriate
to the present problem

dlgt
Ing+b = — J. (a_[_ iﬁ:‘*—.j'élnz)_it dz, (9.146)
0

where ¢ and b are integration constants, the determination of which
proceeds as follows.

First, it is seen from (9.140}, (9.143), and (9.144) that ¢ — Das g - 1/8.
This condition makes the determination of 5 possible, and we then have

Pigh

Ingf = — ﬁ[ (u+}z=—§mz)"é dz. (9.147)

Next, from (9.141), the following condition is derivable:
defdg = 0, g = ePIB. (9.148)

Substituting this and the above-mentioned first condition into equation
(9.147), it follows after some reduction that

a = (4/8)Ine, (8.149)
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where ¢ is a quantity defined by

¢ = ($/7")gmr-s15- (9.150)
Thus, equation {9.147) is put into the form

8
Inr = — f (62— 11 In 62)-+ 0, (9.151)
_ 0
with the introduction of the following new variables:
r= (g8, (9.152)
= ¢/{eg?), (9.153)
pr = Bf(Be). (9.154)

The equation used to determine u and hence the unknown parameter ¢
as a function of the given parameter 8 is as follows:

1
B = 2J’ (02— . 1n 62)- 48, (9.155)
0

which is derived from equation (9.151)} by inserting the conditions that
$/qt = € at ¢ = e~#/B. The integral in equation (9.155) appears not to
be evaluated in a closed form, so that for practical purposes it is con-
venient to treat u as a given parameter,

From equation (9.139) and the subsequent equations, the following
expression for ¥ in terms of & and r is obtained:

1 {8 1dé
By eliminating » from this with the aid of equation (9.151) there results
g
I
y = W{(ﬂﬂ-—pln Eﬂ}i—ﬁ}exp{f (62— In 62)-4 dﬂl}- (9.157)
: .

On the other hand, by combining equations (9.144), (8.151), and (9.152),
the corresponding expression for s is derived, namely

8
s = (2/B) J' (62— 1n 65)-} 0. | (9.158)

Correspondingly, from equation (9.138) a final expression for ¢ is
obtained in the form

1
[ —

— i—e*ﬁ[l — exp{—ﬂ f (0 —plngh—d dﬂl}}- {0.1569)

Equations (9.157) and (9.159) thus obtained constitute a parametric
Tepresentation of the required solution ¢ = e{y), or € = C{x, 1), of the

G224 Al
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problem under investigation. It should be noted that the parameter x
in these equations is related to the given parameter 8 according to .
equation (9.155). In his original paper Fujita [7] shows that his solution
reduces to the well-known error-function solution for a constant diffusion
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Fig, 9.9. Relationship between the paramoters x and p.

coefficient when A = « = 8 = 0. The method of solution for a given u
is therefore as follows:
1. Evaluate 8 by numerical integration of (9.1565) and hence find «

from (9.142).
9. Evaluate y and ¢ by numerical integration of (9.157) and (9.159)

respectively.

The relationship between « and log,,u expressed by (9.142) and
(9.155) is shown graphically in Fig. 9.9, so that if a solution is required
for a given a the corresponding value of u can be obtained immediately.
Some solutions evaluated by the method of this section are given in

Fig. 12.12.

(i1) D = D/(1—-ACYy
Here the equation to be solved is

ad 3{ Dy EC} (0.160)

— —_—— -
==

@t exl{l—AC) ax |

subject to the conditions:
' = 0, x = 0, t =0, (9.161)
C=¢, x=0  t>0 (0.162)
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where the notation used is identical with that in the previous example.
Introducing the non-dimensional variables

CiC, = e, ixf( D)} = 4, Cod = o, (9.163)

the partial differential equation (9.160) reduces to an ordinary differen-
tial equation in # of the form

1 ;
i\ )=~y @184
and the conditions (9.161) and {9.162) are transformed, respectively, to
e =0, § = oo, (9.165)
e=1, y=0. (9.166)

The problem is thus reduced to solving equation (9.164} with the con-
ditions (9.165) and (9.166) to obtain the relationship between e and Y.

The results of the mathematical analysis to be found in full in Fujita’s
paper [8] are summarized as follows:

v =t [(1—atf6, AV —explpri—E),  (0.165)

where f(8, 8) is given by
f8,B) = mp{1 — erf(B0)}exp(?), 19.169)
and Bis a constant to be determined as a function of the given parameter,
x, by the equation f(1,8) = a. (9.170)

It is assumed that 0 < « < 1. Equations (9.167) and {9.168) give the
required solution ¢ = e(y) with 8 as an intermediate parameter, where
& varies in the range I < & < oo,

Some solutions evaluated by the method of this section are given in
Fig. 12.13,

(iii) D = Dy f(14-2aC -+ 5C?)

In the two previous examples the diffusion coefficients have increased
continuously with concentration increasing. Fujita [9] has extended his
method of solution to include a diffusion coefficient of the form

D= Dy

| 14-2a 002’
Wwhers ¢ and 5 are arbitrary constants. This form (9.171) inecludes the
Previous forms (9.128) and that involved in (9.160) as special cases, It

(9.171)

1A
kr* e e e
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also includes other types of diffusion coefficient which (1) decrease con-
tinuously as concentration increages, (2) have a minimum value at some
intermediate concentration, (3) have a maximum value at some inter-
mediate concentration. Fujita restricts his analysis to the last of these
three, i.e. to diffusion coefficients which increase, pass through a
maximum, and finally decrease as concentration is increased.

Retaining the nomenclature of the two previous examples and intro-
ducing the dimensionless variables defined by

- OlCy = ¢, txf( D) =y, all, = o, bCE =B, (9.172)
the equation to be solved is

de
dtif 1+2;;+ﬁ55 dy] - Ey%’ 9-17)
subject to the conditions
c=10, y==00, (9.174)
ce=1, y=0. (9.175) -

Ag has been noted, we are concerned only with particular eases in which
D passes through a maximum value between C = 0 and € = &, The
condition for this must first be sought. This condition is equivalent to
that for which the function, f(c), defined by

fle) = 14-2ac+8c?, (9.176)
hag a2 minimum between ¢ = 0 and ¢ = 1. It can easily be shown that
such a condition is satisfied by

0 < —ajf <1, (9.177)
a < 0. {9.178)

Hence, 8 must necessarily be positive, i:e.
B > 0. (9.179)

Physically, any maximum of D appearing in the concentration range
concerned must remain finite, and this demands that the corresponding
minimum of f(c) must be positive. This is fulfilled by the condition

0 < o2/f < 1. (9.180)

Equations (9.177), (9.178), {8.179), {9.180) express the conditions required
for D to pass through a maximum value. For convenience, wrifing

« = —v, the conditions in question are summarized, in terms of the
positive quantities of 8 and y, as follows:
0 < y/B <1, (0.181)

0 < 938 << 1. (9.182)
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The final solution is given as follows:
fec = (B—?)} tan{ F(0, ) —tan-1k} +, 0 <<c¢c<Ce, (9.183)
fc = (B—y*)ttan{tan—tm— F(8, €)+ F(8,,, ¢} } v, ey << € << 1,

| (9.184)
where Bey == (B—yt tan{F(1, )—tan-1k} 4y, (9.185)
Also,
- B b0 (1—P—clnop), —bk
v = () e - r—caoy SE<E
(9.186)

_ B b (1t
""“‘L{B—ﬁuﬂa)) —(1——elnd)l}, 2 <z <m, (9.187)

where tan—'z, = F(1,e)—tan-1k, (9.188)
tan—lz = F(8, ) —tan1k, —k < 2 < 2, (9.189)
and tan-1z = tan-lm— F(f, )+ F(8,, ¢}, 7 < z<<m. (9.190)

The auxiliary variables in these equations are evaluated as follows.

First, y 8 ”
k=—-——, m =~—(1—-—~), 9_191)
B B B |
where y = —a and 8 are the constants in the diffusion coefficient—

concentration relationship. Furthermore, € and #_ are related to k and
m by the expressions

¢Inf,+(m?41)82, = 1, (9.192)

and tan-1t-tan-1m = 2F(1,¢)— F(0_, ¢), (9.193)
2

where F(8,¢) = j (1—82—eln b )~ do,. (3.194)
1]

In evaluating (9.183) and (9.184) as functions of 4, it should be noted
that in (9.183) 9 can vary between 0 and 1, but in (9.184) it is restricted
to the range &, << 8 << 1.

As an example of the use of this method, consider a diffusion coefficient
for whicha = —y = —1-646, § —= 2-877, Fig. 9.10 shows this coefficient
a8 & function of ¢. The value of D{Dyis 1710 when ¢ = 1, and D/D, has
& maximum value of 17-20 when ¢ = 0-572. The values of & and m
caleulated from (8.191) are k& = 4-025, m — 3-010. Fig. 9.11 shows
graphs of « against 6, calculated from (9.192) and (9.193) respectively,
the point of intersection giving the solution of these equations, i.e.

T
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e = 0-2036, 8,, = 0-3475. The final solution relating ¢ and , calculated
from {9.183), (9.184), (9.186), {9.187), is shown graphically in Fig. 9.12.
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Fia. 9.12. Concentration distribution for diffusion coefficient shown in Fig. 9.10.

9.4. Hopkins’s method of successive approximations

Hopkins [10] showed that a problem of heat flow in a medium of
variable thermal properties can be related to the corresponding problem
in a medium of constant properties in which heat is generated at a certain
rate. He used the known solution of the problem for constant thermal
properties to obtain a first estimate of the heat generation term, and so
obtained a second approximation. By repeating this process, successively
better approximations can be obtained in theory, but in practice the
algebra is usually cumbersome after two steps. The general method in
terms of diffusion nomenclature is as follows.

Consider a region ¥ of the medium, extending to infinity or confined
by given boundaries. The general diffusion equation assuming the
medium to be isotropie is

oC

o = div(Dgrade). (9.195)

Let C(z,y,2,£) be the solution of the problem obtained by assuming
that D has a eonstant value D),, when (9.195) reduces to
-l
v _ D,divgrad €. (9.196)

il
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The solution, €, is, of course, one of the well-known solutions worked
out in Chapters ITT-VI.

Let us write D = D{14-uF(c)). (9.197)
Then (9.195) can be written
2_:‘_ div{D,gradc) = pD,div{F(c)grad c). (9.198)

If we denote the right-hand side by pG(2,y,2,t) we see that (9.198) is
the equation for diffusion in a medium having & diffusion coefficient D),
and to which diffusing substance is being supplied at the rate u@ per
unit volume. The rate of supply to any element of volume is a function
of its position and of time, If we denote by g{x, %,z 2",y ,2',t—7) the
coneentration at coordinates x, ¥, z and time ¢ due to the introduetion
of unit amount of diffusing substance at «’, ', 2" and 7 into the medium
whose diffusion coefficient is 1), the boundaries being kept at zero, then

the solution of the original problem is
¢
¢ = C+p f j .G’y 2, 7) de'dy’ds dr. (9.199)
v 0 '

The funetion ¢ is known as the Green’s function and is to be found for
standard boundary conditions in textbooks on heat flow [11, p. 281].
Regarding the term in i as a correction term we evaluate it approximately
by writing the known funetion € instead of ¢ in G.

Clearly, if this processisrepeated we shall have a term involving u? and
the solution can be thought of as a power series in . In a few simple
cases the equations determining the coefficients of the powers of u can
be solved directly without the aid of a Green’s function. Examples are
given in Hopkine’s original paper. The method is of verylimited applica-
tion because the algebra is exceedingly tedious even if two steps in the
approximation process suffice.

9.5. Linear form of the diffusion equation

Storm [12] has transformed the non-linear diffusion equation (9.5) into
a linear equation by a number of succesgive changes of variable. The
conditions under which the transformation is effective are, (1) that the
rate of transfer of diffusing substance, F, across the surface x = 0 is
known as a function of time; (2) that the diffusion coefficient is given by

1/DF = A(C—Cy)+1/D§, (9.200)

where 4 is a constant, and D), is the value of I} when the concentration ¢/
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has the value €, On writing 4 = g/D} with a another constant,
(9.200) becomes

11DV = (1/DH{1+a{C—C)}, (9.201)
and for small variations in D this can be regarded as an approximation
to D = Dje20Co-0, (9.202)
The linear form of the diffusion equation obtained by Storm [12] is

&L oL &
— = — — 9.203
xe w4 5x ( )
where A and F have already been defined and where
X = f (1/DY) da’, (9.204)
0
and logl = —4Q*, (9.205)
where Q*X(x,1),1} = @z, 1), (9.206)
and ¢(x,t) is given by o
Q= f (DR dC, (9.207)
Co

with €, an arbitrary reference concentration. Storm uses this method
to handle the problem of diffusion into a semi-infinite medium when
there is a constant rate of transfer across the surface x = 0, i

9.6, Method of moments. Plane sheet

Fujita has made use of a method developed by Yamada {13] for
obtaining approximate solutions of non-linear differential equations. |
A brief account of this method, and of its application to a diffusion i
problem in which the diffusion coefficient depends linearly on concen-
tration, has been published [14}. Professor Fujita has very kindly
supplied an English translation of another paper of his, written in
Japanese, dealing with the general case of a concentration-dependent
diffusion coefficient. The account that follows is based on his translation.

The method is illustrated by the problem of diffusion into a plane sheet ;
of thickness 2!, when each surface is maintained at a constant concen- -
tration, C,, and the sheet is initially at zero concentration throughout.

If therefore we take non-dimensional variables

CiC,=¢, zfl=X, Dtit=17T, DO)D,= Fic}), (9.208)
where D == D), when (' = C, the problem is defined by the equations

ae ¢ ge
o ol 9.200
aT aX{F(G)aX}’ (9.209)
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e=0, O0<X<l1,  T=0, (9.210)
c=1 X=1  T>0, (9.211)
dcfeX =0, X=0T>0. (9.212)

Yamada’s [13] method consists in replacing the original differential
equation by a set of moment equations. Fujita uses the zero and first
moments only and the problem is reduced to that of finding c(X, T')
satisfying the two moment equations derived from (9.209), which are

1

e ¢ oe
— o — 2

f[ai" aX{F({J)aX}] iX = 0, (9.213)
1]
frac o :

C e - .

and I[W_Eﬁ‘m}ﬁ ]l iX = 0, (o.214)

0

together with the conditions (9.210) to (9.212). We proceed by con-
sidering that in the early stages of diffusion the concentration-distance
curve may be represented approximately by a curved portion near the
surface of the sheet, followed by a horizontal part coineiding with the
r-axis as in Fig. 9.13. Strictly, asccording to the diffusion equation, the
concentration becomes finite, though it may be small, everywhere in
the sheet at the instant diffusion commences. The region over which
the concentration may be assumed zero depends, of course, on the
accuracy of working. For a prescribed accuracy, we denote by z, the
point at which the concentration becomes zero as in Fig. 9.13, and
clearly x, is a function of time. Thus x;, =1 when { =0 and z; = 0
when ¢ = {,, say. The time, ¢,, is that at which the concentration first
becomes finite at the centre of the sheet to the prescribed accuracy of
working. Denoting by X, the value of X corresponding to z; ie.
X, = x4/l, we assume that in the region X, < X < 1 the concentration
is given by a cubic expression of the form

oX,T) = BIX —X(T)P+ E(DHX~X(T)P,  (9.215)

where B(T), E(T}, and X,(T) are functions of T to be determined. We
have furthermore

e =0, 0 <X < X, (9.216)
The condition (9.212) is satisfied by (9.215). Also (9.210) may be written
as X,=1, T=o. (9.217)

Introducing (9.211) inte (9.215) and putting
B{l-X)2=1TU, E(1-X,? =V, (9.218)

H»
e,
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we obtain the relation between U and V,
U4V = 1. (9.219)
C
c, e
)
I
!
t
:
0 X
xﬂ 7

Fig. 9,13, Concentration distribution in the early stage of diffusion inte a
plane sheet.

Inserting (9.215) and (9.216) into (9.213), integrating, and using
{9.211) we obtain

d U+
ﬁ{{l—xn](%U—Fzm}“ —x, F(1). {9.220)

which, on eliminating V' by equation {8.219), becomes

. : 12 , |
a'T{{lﬂXu}{l+%E- ]} == 1 __‘):}(l—%!ﬂ;}F{]]_ (9.221)
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Similarly from the first-moment equation (9.214) we find

d
Tl (1= X (143U} = 206(1), (9.222)

where Glc) = J' Fie') de’. (9.223)
0

Here F(1) and G(1) denote the values of F and ¢ when ¢ = 1. On
integrating, (9.222) becomes

(U3 = oT, (9.224)

where a = J0G{1), E=1—-X,, (9.225)

and the integration constant has been determined by (9.217). Inserting
{9.224) into (9.221) we find

i o 12/3 o7

il — | =~ —— ) F(1). 9.226

ar(¥+5) = 7 (555 ) (9.226)
The solution of (9.226) which satisfies the condition ¢ = 0, 7 = 0, in
accordance with {9.225) and (9.217), is

£ = JT/B), (9.227)
where 8 is a constant determined from the quadratic equation
2402 F(1)+{a—108F(1)}8+$ = 0. (9.228)

Clearly for (9.227) to have a physical meaning 8 must be positive. The

question as to which of the two pessible roots of (9.228) gshould be taken

if both are positive is decided in Fujita’s treatment by considering the
special case of a constant diffusion coefficient. When the solution
(9.233) below, derived by the method of moments, is evaluated for a
constant diffusion coefficient it is found that better agreement with the
formal solution is obtained by taking the larger of the two roots (actually
B = {5} of (9.228). When the diffusion coefficient is concentration-depen-
dent we take that root of (9.228) which tends to the value 4 as the range
in the diffusion coefficient is decreased and we approach a constant
coefficient. Denoting by 7} the time at which X, = 0, i.e. at time 7 the
advancing front of the diffusion reaches the centre of the sheet, we have
¢ = 1, T = T, and hence from (9.227)

g=1T. (9.229)
Inserting (9.227) into (9.224) yields
U= qaf—3, (9.230)

and then V = —afi43. (9.231)
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Thus both I7 and V are found to be constants. The expression for X is
X, = 1—/(T{B). (9.232)

Substituting these equations into (9.215) and remembering (9.218) we
find

(X, T) = (sf— X —1+(TIB)BIT)—
— (B—EE — 1+ TIBNBITI,
1—JTI8) < X <1,  (9.233)
and | dX, Ty =0, 0<X<1-J(T/B). (9.234)

From (9.233) we readily ohtain an expression for the concentration
distribution when the concentration just ceases to be zero at the centre

of the sheet, It is
X, T)= (af —PX?— (o — 3} X5, 0L X < (9.235)

The next step is to derive an approximate solution which holds for

later times when the concentration at the centre of the sheet has become
appreciable, according to the accuracy of working. Such a solution must
satisfy (9.212) and (9.210), and must also agree with (9.235) when 7' =T,
We therefore assume a cubic equation again of the form

oX,T) = A(T)+X*By(T)+XB(T), 0<X <1, (9.236)

where A,(T), B{(T), E,(T) are functions of T to be determined. They
are of course different from the corresponding functions in (9.215). We
see immediately that A,(7") in (9.236) is the concentration at the centre
of the sheet. Proceeding as before, by inserting (9.211) in (9.236) we
obtain A+ B+E =1 (9.237)

The zero and first-moment equations in this case lead to

d
ﬁ(ﬁ1+%31+iE1] = (2B,+3E)¥F(1), (9.238)
d
(A h Bt ) = G(1)—6(4,) (9.239)
Eliminating E, by using {9.237) and putting’
dd,jdT = ¢, {9.240)
we have 1B
%qﬁ—[—fﬁfad—dl = (3— B, —34,)F(1}, (9.241)
1

%ﬂf@j—i — G)—G(4,). (9.242)




182 SOME METHODS OF SO0LUTION FOR 5 9.6

We can eliminate B, from these two equations, remembering that
dG/dA, = F, and obtain

_{% = 28F(1)+BF(A )+ {GA,)—GRF(L).  (9.243)
1 ¢

This can be simplified to the form

!ﬁ% = BUr(F)—al ), (9.244)

by introducing the following variables

f=1—A4A, (9.245)
= THH20F (1)}, (0.246)
B 5 F(A,) 0 0
=1+ 1) {9,247)
' P4,
Hf)= F“; df’. (9.248)

In order that the solution {9,236) should reduce to {9.235) when 7' — 1,
over the whole range of X, we must have

A (T) =0, (9.249)
B(T)) = aff—4, {8.250)
B(T) = —of+%. (9.251)

Eliminating the term ¢dB,/dA, from (9.241) and (9.242) we obtain, in
terms of the new variables just introduced,

By = {(f)+3f—4q(f). (9.252)

From (9.245), (9.249), and (9.250) it follows that By = af—} when
J = 1, and so from (9.252) we have

$(1) = B{aB—3+3a(1)}. (9.253)

For any given concentration-dependent diffusion coefficient the quan-
tities 7(f) and g{f} can be evaluated from (9.247) and (9.248), the
relevant range of f being 0 <{ f <{ 1 since f = 1 corresponds to T' = T
and f =0 to T = co. Thus (9.253) gives the initial condition to be
satisfied by the solution of the differential equation (9.244}. In general,
numerical integration of (9.244) will be necessary.

4
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When the solution of (9.244) is known, ${4,) follows from (9.246).
Also by integrating (9.240) and using the condition 4, = 0, 7' = 7} we

Ubt&iﬂ Aj
d A3
=T f =1 9.254

which ean be evaluated once ¢{4,} has been obtained from (9,246). Since
from (9.2368) A, represents the concentration at the centre of the sheet,
from (9.254) we can calculate how this concentration varies with time.
Once the relationship between 4, and T, and hence between f and T is
known, B, is easily determined as a function of T from (0.252) using
(9.246). Finally, knowing 4,(7") and B,(T), E,(T) is obtained from
(9.237), and hence all functions of 7" on the right-hand side of {9.236) are
known.

The total amount of diffusing substance, M, taken up by the sheet
per unit area at time, ¢, is given by

!
M=2 j Clz,1) da, (9.255)
0
which in terms of the non-dimensional variables becomes
1
M, = 210, f oX,T)dX. (9.256)
L]

For early times, when the concentration at the centré~ef the sheet is
effectively zero, ie. T' << 7}, ¢ 1s given by (9.233) and {9.234), and so
we have

*143
210 (S}9i ) 0< T <T, (8.257)

For later times we find
M, = 2C,{1—§B(T)—3E(T)}. (9.258)

We note from (9.257) that, in the early stages, M, is proportional to the
square root of time, irrespectively of how the diffusion coefficient depends
on concentration. We shall see later,in § 12.6, that thisis a characteristic
feature of concentration-dependent diffusion.

9.61. Semi-infinite medium

Clearly the solution developed for the early stages of diffusion into a
plane sheet describes diffusion in a semi-infinite medium. It is con-
venient to write it in terms of the original space variable 2 measured




X
FINITE-DIFFERENCE METHODS

10.1. Introduction

A NnuMBER of methods have been devised whereby numerieal solutions
of the diffusion equation are obtained by replacing some or all of the
derivatives by finite-difference approximations. Some of these methods
will be deseribed in terms of the problem of one-dimenstonal diffusion
int g, plane sheet in which the concentration is initially zero and whose
surfaces are maintained at constant concentration. The diffusion co-
cfficient will be assumed constant for the preliminary deseription. After-
wards, corresponding formulae will be given for the eylinder and the
sphere and for alternative boundary conditions. An example will then
be discussed in some detail, in order to illustrate the treatment of a
concentration-dependent diffusion coefficient. Finally, ways of starting
a finite-difference solution from ¢ = 0 when a singularity exists in the
solution there, are discussed, and the accuracy and convergence of the
solutions are considered.

10.2. Non-dimensional variables
A worth-while preliminary step in all numerical methods of the kind
about to be considered is to introduce non-dimensional variables of
length, time, concentration, etc. For diffusion in a plane sheet when
the diffusion coeflicient, D, is constant, convenient variables are
| X = afl, T = Difi? e = CjCY, {10.1)
where { is the half-thickness of the sheet and where () is some standard
concentration. If the concentration at the surface of the sheet is constant
1t is usually taken as the standard. The advantages are that numbers
occurring in the computation cover roughly the same ranges for all
calculations, e.g. the variable X lies between 0 and 2 whatever the
thickness of the sheet in em. Also the basic independent parameters of
the problem are isolated and it is often possible to deduce many solutions
in ordinary dimensions from one non-dimensional solution, simply by
inserting values for the appropriate physical properties. The labour
of repeating the whole process of numerieal solution is thus avoided.
In terms of the variables of (10.1), the problem we are using as an
example becomes A

—_———— -

— (10.2)

I T L

e
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c=1, X=41, 7T=q, o (10.3)
¢=0, —1<X<1, T=09 (10.4)

the central plane of the sheet being taken as X = 0.

10.3 Finite-difference approximations

Let the range in X be divided into a number of equal intervals §X
and the time into intervals §7. We denote by €,_1, €,y €,uq the con-
centrations at the points (m—1}0X, m3X, (m+1)5X respectively at
time T' = n3T, and by ¢, ¢~ the corresponding values at X — m $X
at times (n4-1)87 and (n—1)87 respectively. Then using Taylor’s
expansion theorem we obtain

ce raf €%¢ ) _
T f‘wLSX(E) %{M}ﬂ(m}i;ﬁ-, (10.5)
€y = ¢, —8X[-F + 16X )2 e (10.6)
m-1 =" “m EX . o @Xﬂj m—*...: .

so that an approximation to ¢?c/0X*® at the point m&X and time T,
neglecting sccond-order terms in (6X)? is

d%c (Cmi1—26,,4¢,, )
e | = Um L |t L 10.7
[ex), BX)? o7
Corresponding approximations for sc jed" are
de Ch—e,
(ﬁ’)m = B, (10.8)
for which the leading term in the error is 1T} (0% [/oT?) , or

d¢ ch—c
().~ 55
which is more aceurate since it on ly neglects L(87")2(&%/o 13),, and higher
terms. In (10.9) the finite-difference ratio js an approximation to the
derivative at the mid-point of the interval (n—1)8T to (n+1)8T,
Whereas in {10.8) the approximation relates to the derivative at the
beginning of the interval over which the difference is taken. In the
methods to be described the approximations (10.7), ( 10.8), {10.9) are
used in different ways,

10.4. Schmidt method

A method wsually attributed to Schmids [1] has been widely used for
the solution of heat-flow problems. Recently Jakob |2] stated that the
method was used earlier by Binder [3]. 1t is deseribed in textbooks on
heat transfer [4, p. 39]. Schmidt replaces the right-hand side of (10.2) by

(10.9)

h—-m‘hxd e e el
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the approximation (10.7) and the left-hand side by the approximation
(10.8) and so obtains

T
c*:t = Cp+ {S_I{'j'g(c’m+1"2ﬂm+ﬂm-l)' (10'1[}}
Cs
c
C b
Ca -(///E: vl
0 X 28X i8x 48 X
Frc. 10.1. Schmidt’s graphical method.
If we put in the value
STIBX)? = Dét/{dx)* = 1, (10.11)
(10,10} reduces to et = e FHomi) (10.12)

This result means that the concentration at the point X at time T'+4-8T
is the arithmetic mean of the concentrations at the neighbouring points
X 18X at time 7. Thus if the concentration is plotted against the
distance through the sheet at time 7', the value of the concentration at
time 787 at the point X is given according to (10.12) by the point
at which the line joining ¢,,., and ¢,,_; neets the ordinate at X. This
leads to the graphical method of solution originally suggested by Schmidt
and which is illustrated in Fig. 10.1. Alternatively the arithmetic mean
can be found numerically and its value entered in a table which is pro-
gressively extended as suggested by McAdams [4, p. 41]. The table. 18
drawn up with a row for each step in 7' and a column for each step in X.
A section of such a table is shown for half the sheet in Table 10.1. Here
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half the sheet is divided into eight layers and the first row of values is
obtained from the formal solution

¢ = 1—erf{(1-X)/27%, (10.13)

which holds as long as the concentration at X = 0 is zero to the accuracy
of working. The seeond row is obtained by applying {10.12) successively
to each point of the first row, and so on for succeeding rows. On the
surface, X = 1,¢ = 1at all times. Furthermore, since thereis symmetry
about the central plane of the sheet, X = 0, (10.12) becomes

e = ¢y, (10.14)

and (10.14) 1s to be used instead of (10.12) to obtain ¢;, the concentration
at the centre of the sheet. The figures in brackets in the final row of
Table 10.1 are calculated for 7' = 29/256 from the formal solution given
in equation (4.17), and indicate the aceuracy of the Schmidt method in
this case,

Equation (19.10) can of course be used with values other than

oT/(8X)* = L.
Dusinberre [5, p. 114], for example, points out that §7'/(8.X)% = 4leads to

G:$ = %(ﬂm—i—l_F_ﬂm_r_ﬁm—l)! {lﬂl’ﬁ)
which is almost as convenient as (10.12) and gives values at slightly
smaller intervals in time.

Jaeger [6] has shown that the Schmidt method is a satisfactory one
In that it is not subject to any cumulative error, and it yields an accuracy
which is adequate for many practical purposes. It has the great advan-
tage of simplicity. Nevertheless, the approximations leading to (10.12)
can easily be improved upon.

10.5. Crank-Nicolson method

In this method [7] finite-difference approximations are made to both
derivatives at the time 7+ 187 for the interval 7' to T +87. Thus éefoT
is given by a formula of the type (10.9) applied to a single step, i.e,

éc Ch—c
| =R _Tm 1.1
(E‘*T)m 577 at T+ 48T, (10.16)

and #2¢/6 X2 by the mean of (10.7) and the corresponding result at 787",
Thig leads to the equation

ot — ot 8T

E{BXF{(G*T"Jr 1+ Cmer}—2(Cn Hop) - fﬂ$—1+ﬂm-1]}.
(10.17)
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If $T/(8X)® = 1, (10.17) takes the particularly simple form

Fﬂt — -i{ﬂ';;;+1—|_ﬂm+l+c1:x—1"{‘{:?11—1}' (10']8)

There is one equation of this type for each point in the sheet, i.e. each
value of m. For the centre of the sheet, m = 0, because of symmetry
(10.17) reduces to

- &T
ei = eotrgplled +o0—(ef ol (10.19)

In this method the values of ¢ at 7'4-87 are not determined by the
repeated application of a single equation as in the Schmidt method but
by the solution of a set of simultaneous equations of the type {10. 17). Thus
if the half-sheet is divided into eight layers so that 0 < m < 8, then
there are six equations obtained by putting m = 1, 2,..., 7 in (10.17),
These six, together with (10.18) for m = 0 and the given boundary
condition on the surface of the sheet, m = 8 (in this example ¢; = 1 for
all 1", suffice to determine values of ¢, for all m, i.e. concentrations ¢can
be evaluated at 187 if the corresponding values ¢, at T are already
known. The fact that the equations are simultaneous leads to an iterative
method of solution applied at successive times so that the solution
proceeds in steps 87'. Table 10.2 shows a section of the scheme of

computation adopted, A table is drawn up with a row for each stepin 7
and a column for each step in X and values of ¢ are recorded. In this
case eight steps are taken in X. Leaving till later the question of starting
the integration from 7' = 0 and assuming the solution has been taken
as far as the uth step in time, i.e. T'= a87, the following operations
are performed successively in order to cvaluate the (n+ 1)th step.

(i) Estimatevaluesofey cf ,...,¢7 byinspectionof previousdifferences
in each column. By the boundary condition we have ¢, = 1.

(ii) Evaluate ¢, by substituting known and estimated values in the
right-hand side of (10.18) since we are using 3T /{8X)? = 11n this
example. If the general equation (10.17) isused, i.e. 3T/(8.X)* 7 1,
then this is best written as

5T 5T 5T | |
Cone (1 '{" (BX} ) Em(l (3}:] )_[_ SX} { “ne-]- 10 Em+1Tc$—I+ﬂm—1]!
(10.20)

from which ¢} is directly calculable.
(iii) Evaluate ¢;, €5 ,..., ¢ by solving the appropriate equations {10. 18)
or (10.20), remembering that an alteration in ¢, may necessitate
resolving the equations for ¢, _; and ¢} ..
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(1v) Repeat for successive steps 57'.

The iteration of a whole line may appear prohibitive hut in
practice the method has proved very easy to carry out. If
07'/(8X)* = 1 is used, it is clear from (10.18) that a change of 4
in ¢}, produces a change of 1in ¢ _, which affects ¢, itself by only
one-quarter arxi these adjustments are quickly made without
solving the whole equation again. In terms of Southwell’s relaxa-
tion terminology 8] we have a relaxation pattern 1, —4, 1. It is
also clear that the process of adjusting successive values converges
more rapidly the smaller 87/(6X)? is. The values after five steps
in Table (10.2) are compared with values from the solution (4.1 7}
to indicate the accuracy obtained.

10.6, Relaxation methods

Southwell’s relaxation methods for the solution of certain types of
differential equations have been adequately described elsewhere {8,0].
The relaxation method is a process of steadily improved approximation
for the solution of simultaneous algebraic equations, and any problem
that can be formulated in terms of simultaneous equations can, theoreti-
cally, be solved by this method. It has been widely applied to obtain
solutions in two dimensions of various second-order partial differential
equations. A typical example is Laplace’s equation of which solutions
are required to satisfy a single boundary condition at all points of a
closed boundary. Steady-state diffusion for a constant diffusion co-
efficient is described by the Laplace equation

d% 8% &%

ittt = O (10.21)
and solutions are obtainable for given boundary conditions by a direct
application of relaxation methods [10]. The application of relaxation
techniques to non-steady diffusion problems is, however, more recent.
The basic difficulty lies in the difference between what Richardson [11]
calls ‘jury” and ‘marching’ problems. Diffusion in one dimension is an
¢xample of a marching problem. Here the initial concentration distribu-
tion ix given at zero time and the solution can proceed step-by-step as
we have seen, there being no prescribed condition to be satisfied at some
later time. In other words there is an ‘open’ boundary in time on which
conditions are not specified but are determined by the solution. Relaxa-
tion techniques on the other hand were devised to deal with jury problems,
in which the sotution must satisfy conditions at both ends of the range
of integration, just as the verdiet has to satisfy all the jurymen together.
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In order to apply relaxation techniques to a diffusion problem, therefore,
it must first be transformed into one of the jury type. Two ways of doing
this have been suggested.

10.61. The steady-state solution as ¢ boundary condilion

Continuing to think of the example of diffusion into a plane sheet with
constant surface concentrations, we know that after a sufficiently long
time the solution approaches a steady state which in this case is one of
uniform concentration. This stcady-state solution can be taken as a
condition to be satisfied by the non-steady state solution at large times,
and as such it provides the missing condition necessary to turn the
diffusion problem into one of the ‘jury’ type. This is the approach
suggested by Gilmour [12].

Taking intervals 8X and 37 as before, and using the approximations
(10.7) and (10.9) to the derivatives at the point mdX at time T, we
obtain for the finite difference form of (10.2), if 87 /(8 X)* = 1,

$en—Cm) = Cmi1 20t s (10.22)
1.e. —er4+-2¢, 1+ Cm 26, —4C, = 0. {10.23)
Putting R,, = —¢;; 426,165+ 2¢,—4¢,, then K, is called the
residual at the point m, and such a residual exists for each point of the
network comprised of rectangles of sides 8X, 87 as in Fig. 10.2. After
substituting initial trial values of the ¢’s at cach point of the network,
the corresponding residuals are evaluated and the relaxation process
consists in the systematic reduction of these residuals. When they are
zero, Or as near zero as possible to the accuracy of working, the process
is complete. Clearly if we alter tho value of ¢,, by +1, K, Is altered
by —4 and the residuals at the surrounding points by 1, +2, —1, +2
respectively. This is what is known as the relaxation pattern and it is
by repeated and judicious application of this pattern at all points of the
network that the residuals are reduced and the final solution obtained.
Accounts of relaxation methods [8, 9] describe specialized techniques by
which this reduction is accomplished most easily and quickly.

Although we are free to start from any set of estimated values of the
¢’s at the points of the network, the nearer these are to the correct
values the less the computation involved. Thus in the example under
consideration the steady-state values are ¢ = 1 everywhere. In other
problems the steady-state solution is obtained by equating the time
derivative to zero. The relaxation process may then be carried out as
follows. Insert the initial and boundary values, ie. ¢ =0, T =0,
0 < X < 1;¢c = 1, X = 41, at points of the network on the boundaries,

i
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and at every other point insert the steady-state values (in this example
¢ = 1). The residuals will be zero except for the first row. If these points
are relaxed the residuals will spread and the process is carried on until
residuals everywhere are so small that no more relaxation is possible.

:F&['

&T T

(1 | 1 !
ﬂ 2 l i
P

F1a. 1.2, Rectangular grid.

In practice, however, the labour can usually be considerably reduced by
estimating at what time the steady-stateis reached to within the accuracy
of working. Between this estimated time and 7' = 0 intermediate values
of ¢ are inserted from which to start the relaxation process.

In many problems there is little to choose between this relaxation
method and one of the forward integration methods described earlier
(§§ 10.4, 10.5), if the solution is to be carried as far as the steady state.
If, however, the solution is required only for a limited period of time,
forward integration is likely to be quicker. Furthermore, the ease and
speed with which a relaxation process can be carried out depend very
much on there being a simple relaxation pattern which ean be applied
over the whole region. If the diffusion coefficient is not constant,
however, the relaxation pattern changes from point to point in the
network. This is particularly troublesome in dealing with concentra-

tion-dependent diffusion because the relaxation pattern then depends
on the values of concentration which are to be determined.

10.62. Relaxation of a transformed equation

A more sophisticated methed of applying relaxation techniques to
a diffusion problem has been suggested by Allen and Severn [13]. In
general, the number of boundary conditions which can be imposed on

h‘_w.. S
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an ordinary differential equation is cqual to the order of the equation.
Thus the solution of the second-order equation, d2%/dx? == 0, can be made
to satisfy two boundary conditions, When these are imposed one at each
end of the range in z, the problem is of the ‘jury’ type, but when both
are imposed at one end we have a ‘marching’ problem, If in the latter
case the equation is transformed so that ity order is inereased, then
additional arbitrary conditions can be imposed so that the problem
becomes of jury type. Allen and Severn {13] show that, in general,
if m conditions are given at one end of the range of integration and p
at the other, and if p < m, the governing equation must be transformed
so that its order is increased by m—p to become 2m, In the exfreme
case of a marching problem, m conditions are given at one end but none
at the other, and the transformation must double the order of the
original equatton from = to 2m.

The diffusion equation (10.2} is of marching type in the time coordinate
only and must be transformed in such a way as to double the order of the
derivatives in 7 if it is to be of the jury type. The transformation may
be accomplished by substituting in place of ¢, a differential function of
a new dependent variable s. In any particular case there are several
possible ways of doing this and the aim is firstly to make the substitution
itself as simple as possible, thus keeping to a minimum the work which
has to be done to return to the original variable after the transformed
equation has been solved, and secondly to make the transformed equation
as convenient as possible for solution by relaxation. Allen and Severn

used the substitution os o%g
¢ — , 10,24
o7 T ax? (10.24}
by which (10.2) is transformed into
g% &g
—_— = 0, 10.25
eT? pX4 0 ( )

The finite difference approximation to this equation is
{‘E.r.; —I_Sﬂ; I ESfrt}[aX]4ff(3T)2+43m—1+4‘3m+1_3m—2—8m+2“'ﬁ'gm = 0.
(10.26)
By choosing 87'/(8X)? = +2/2, residuals are defined by
Rm- — 23; + 23; +43m—1_+"48m+1_Iﬂam_3n1—2“3m+2* (1027]
and the relaxation pattern is of corresponding form.
T'he illustrative cxample used by Allen and Severn [13] is that of

diffusion in the medium 0 <C & <C !, initially at zero concentration
throughout, and in which the surface £ —= 0 is maintained at zero con-
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centration and the surface & = [ at a concentration of 100 on an arbitrary
scale. In terms of s, the problem requires the solution of (10,25) over a
rectangular region in the (X, 7') plane bounded by the lines X = 0,
X =1,T = 0,and T = 7, where r measures the extent in time for which
the solution is required. The boundary conditions to be imposed, remem-
hering the transformation (10.24), are

ds = &%8 i
7T = A=
2
;;‘1'5?2 100, X =1} (10.28)
s o%
it =% T=0

When a solution for s has been found from (10.25) satisfying these
conditions, then ¢ caleulated from (10.24) automatically satisfies all
requirements. To find a solution for s, however, some extra boundary
conditions are nceded, one on each of theliness X =0, X =1, 7 = +.
These are arbitrarily chosen to be

8 = 0, X =0, X=11
. [10.29)
EISKET = {]', T — »

These extra eonditions can be chosen in any way provided they do not
tmply any condition on ¢ or its derivatives and provided they are every-
where consistent with one another and with the other conditions {10.28).
In actual fact, by this choice of {10.29) the conditions (10.28) simplify

to become 52%/0X2 — O, X — 0
Pg/oX? = 100, X =1
Bs[oT+0%[6X2 =0, T =0]
In finite-difference terms, the second of (10.30) becomes
{81 8mi1—28,,)/(6X)? = 100, (10.31)

30 that it is convenient to work numerically in terms of /(8§ X)? = v, say.
The finite-difference expressions for the boundary conditions {10.29) and

(10.30} are then
v, = 0, V1,0 = 0, X=0 1
O =0, B, y+v,,, =100, X=1
v — v, (V10— 20, W2 = 0, T=0

vt = v, T = )

-
X

(10.30)

L. (10.32)
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These conditions are just sufficient for the elimination of all the fictitious
values which occur in calculating the residuals at points near the
boundaries from the expression (10.27) with s replaced by ». In this way,
v can be found as a purely numerical quantity. Afterwardsc¢ can be found
without specifying particular values for { and D since on replacing
(10.24) by its finite-difference approximation, substituting for s in terms
of », and using 87/(8X)* = +2/2, we find

Cn = Vo1 F Vi1 — 20+ (v —v, ) 2. (10.33)

0 0 23 39 S6 78 w0 o 218

T

0 1 2§ 3 54 o

Q 9 /9 33 52 4 0
o 7 /5 3¢ 4§ 3 i
o 5 3 Z5 4 oL o0

o 3 2 20 39 o] I

e 2 ] 14 3i &7 o0

7] ! 2 7 22 22| 100

a o o 2 & A3 0

d 2 o o d 'y T—0
X=0 X=[
Fia. 10.3. Relaxation solution, Values of ¢ are tabulated,

The value of 83X serves only to determine 37, i.e. the time interval at
which values are determined on the rectangular network. Fig. 10.3
shows the final values of ¢ deduced by dividing the space-range into six
intervals (X = }) so that the time interval is given by 87 = +2/72,
The total range in time 7T covered in the nine steps shown in Fig. 10.3
is therefore +2/8.

10.7 Finite-difference formulae for the cylinder and the sphere

In terms of the variables

R =rfa, T = Dtja?, (10,34}
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the equation for radial diffusion in a cylinder of radius ¢ becomes
2
¢I' ReR\ oR eR: RoR
The finite-difference approximations corresponding to (10, T) for the
plane-case are

(10.35)

1 de 1
R R I I 4 1 _— _
RBR(R BR) Zm{SR}E{(zm—[— Yorma1—dme, -+ (2m—1)e,, 1,
(10.36)
| Y ac 4

for m = 0, whero the nomenclature is as before, namely ¢, is the con-
centration at the point m 3R, the range 0 <{ R ={ 1 having been divided
into equal intervals 6 B. By using one or ﬂth{ar of the approximations
(10.8) and (10.9} the various finite-difference equations follow as in the
plane case. They are slightly more laborious to use because of the
factors (2m-|-1), {2m—1), ete., which are different for each point in the
cylinder.

An alternative method of dealing with a hollow eylinder of internal
radius b, suggested by Eyres, Hartree ef @l {14] iz to use

X, = log(R/b) (10.38)
as independent variable. Then (10.35) becomes

de e g

2T bt aX¥
and we have a problem in one-dimensional flow but with a variable

diffusion coefficient depending on the new space variable X..
On using (10.34) the equation for radial dlﬁusmn in a sphere of

radius g becomes

ge 1 Be 2 2c
R? A Rl .
oT — R? aR( aﬂ) sRE T R aR’ (10.40)

and the finite-difference approximations corresponding to (10.36) and
(10.37) are

(10.39)

1 ¢ de 1
¥y (R ) — ;?;ESR}E{(”'”"‘I]Gm+1_2mﬂm+{m_"”5m—1}*
| (10.41)
for m 5 0, and %,-2 %(Rﬂ %) — ““(32'}3 (¢1—¢o)s (10.42)

form — (3.
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10.8. Other boundary conditions
10.81. Surface concentration given as a function of time

The way in which the concentration at the surface of the sheet varies
with time may be given either in the form of an algebraic relationship,
a graph, or a set of tabulated values. These data can be put directly
into the appropriate finite-difference equation of the set (10.12) or
(10.18) for example.

10.82. Surface evaporation

A boundary condition invelving the rate of transfer of diffusing
substance across the surface needs further consideration, In terms of
the variable X such a condition ts of the form

—8c/oX = alc,—c,), (10.43) i
where ¢, is the surface concentration at time ¢ and ¢, its value after ]
infinite time. The argument will be presented for this case, and its
extension to include other expressions on the right-hand side of (10.43)
will be obvious. Imagine the sheet extended one interval, X, beyond £
the real surface X to X, 48X, so that applying (10.7) to (10.2) for the
point on the surface {m = s) we have E

r Cop1—— 26,60 4 b
—. —. 10.44 o
T (86X )2 { ) o
To the same order of approximation .
cc Cot1 ™01 |
— | = . 10.45
(EX )H 28X [ )

Klimination of the fictitious concentration, ¢,,,, outside the sheet,
between (10.44) and (10.45) using (10.43) yields

ée, 2 fe_,—¢ 1
— = ool ee— —ale,—e,) . 10.46 e
oT 5}{{ sx ) (10.46) ¥
Here we are measuring X as increasing outwards from the surface and 3 g
80 ofc,—e,) is a measure of the rate of evaporation. Substituting now E
for ¢c /6T from (10.8) we find '3_.5__::3
257
G;_ — {:E-{_ESH_X}?{ESHI_':S_{I B‘X{GE—ES}}' (lﬂ.d:?) T g
On putting 8T/(8X)? = 1, we have
e = c,_;—asX{e,—e.), {10.48)

and this is the equation by which the surface concentration is to be
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caleulated when using the Schmidt method. Applying (10.9) over the
interval T to 37T we find for the Crank-Nicolson method
Gs-l_ — %{Gﬂ—1+ﬂ;—1_“{2{:ﬂ_ﬂs_ﬂ;)‘SX}! (10'49)
when 677/(8X)* = 1. Corresponding formulae are readily deduced for
use with relaxation techniques.
If the surface is impermeable (10.46} becomes
bk 2
oT — (BX)r 1
with corresponding simplification of the subsequent expressions for ¢ .
For the cylinder, the corresponding equation to {10.46) is

(10.50)

de, 2 e, —r, I -
=R SR '"““(HE)(% e (10.51)
for the outer surface B = s8R, and
EL{:H — _g_, rﬁ‘l‘l F‘ 1 . ] 10,52
&7 3R; 3R +ﬁ( 2;0 {c, f‘#]}, (10.52)
for the inner surface £ = p3R,
The equations for the sphere corresponding to (10.51) and (10.52) are
31‘3 2 Cs—1—C4
o SR{ ST ""“O*TJWE_%ﬂ’ (10.53)
for the outer surface, £ = s8R, and
ce,, 2 Cpr1—E; i ]
= ’ - |{e,— 10.54
a7 aR[ st Toll o)) (10.54)

for the inner surface B = pdR. The above formulae and other ways
of treating this type of boundary condition are suggested by Eyres,
Hartree et al. [14].

10.83. A resiricted amount of diffusing substance

A different type of boundary condition arises if we have a limited
amount of diffusing substance. Some solutions have already been given
in § 4.35 for the problem in which a sheet of thickness 21 is placed in a
well-stirred solution in which the solute concentration is C, initially and
which occupies the spaces —a—I <« <L —l and I << & << I+a. The
sheet occupies the space —{ < & <C 1. The houndary condition at the
surface of the sheet, 2 = I, can be written in terms of the variables
(10.1) either as

1
m:-{—.-fj edX = a, X =1, T = 0, {10.55)
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or —Uec/oX), = ade,foT, X=1, T=>0,  (10.56)
assuming the coencentration in the solution to be uniform and the same
as the concentration, c,, at the surface of the sheet. The condition
(10.55) expresses the fact that the total amount of solute in the sheet

and in the solution is constant and equal to the total amount originally
in the solution. In (10.56) the rate at which solute enters the sheet is

equated to that at which it leaves the solution. If in the Schmidt or

Crank-Nicolson method an estimated value of the surface concentration
1

c¢;” is used to evaluate the row T+37T, and hence I ¢ dX, then a revizsed
1]

estimate of ¢ is obtained from (10.55) and the process repeated if
necessary [15]. Alternatively, by eliminating ¢, , from (10.44) and
{10.45) as above and substituting for (6cféX), from (10.56) we obtain

e, 2ay 2
15 %) = o) (10.57)

By making appropriate substitutions for éc/éT, the finite-difference
formula for use with either of the forward integration methods of § 10.4
and 10.5 or the relaxation methods of § 10.6 follow immediately. The
corresponding boundary conditions for the eylinder and the sphere are
obtained in the same way.

10.9. Solutions for small times

It is possible to start any finite-difference method from T = 0 by
taking, ag the first row on the computation sheet, the preseribed initial
values of concentration. In some cases, e.g. when surfaco concentration
is a continuously varying funection of time which is known, starting in
this way will probably be satisfactory. In other cases, however, the
conditions arc often such that a singularity exists in the solution at
T' = 0. This is so, for example, when the surface concentration rises
discontinuously from zero to a finite value at zero time and we have

¢ = 0, 0 < X <1, T =0, (10.58)

e=1, X=1 T2>0 (10.59)

It is undesirable to replace a derivative by a finite-difference ratio in
the neighbourhood of such a discontinuity. Nevertheless, surprisingly

good accuracy is achieved after a few steps of the Crank-Nicolson
method, § 10,5, even if it is applied directly from 7' = 0 under these

stringent conditions.
Alternatively, it may be possible to use a formal solution or a solution

in geries to get away from 7' = 0, This is particularly so since diffusion

-
L BIEE.
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mnto a medium of any geometric shape oheys the zolution for a semi-
infintfe medium in the early stages. Thus the formal solution (10.13) can
often be used to obtain a row of values of ¢ on the ecomputation sheet
for some small, non-zero time, and the solution can then be continued
by finite-differcnce metheds. If the diffusion coefficient is a function of
concentration, the iterative method described in § 9.32 can be used to
obtain a solution for small times, provided the concentration at the
surface of the sheet is constant. This is elaborated in an example dis-
cussed below in § 10.13,

Sometimes it is preferable to transform the diffusion equation in such
a way that the singularity is removed and finite-difference methods can
then bo applied. An example is discussed in reference (16) where the
use of the variables 7% and X/T% in place of 7" and X is effective. Other
transformations may be necessary for different boundary conditions.
In some examples it is desirable to use the transformed equation only
for a few steps in the neighbourhood of the singularity and then to
return to the original variables. In others, the solution proceeds more
satistactorily in the new variables throughout. Much depends on the
rolative degree of complication of the original and transformed equations
when expressed in finite-difference form, and on the boundary conditions,

10.10. Accuracy and convergence of finite-difference solutions

The ease with which a finite-difference solution can be evaluated
depends very largely on the ratio 87'/(8X)%. Clearly, the smaller this is
the more rapidly does an itorative technique, based for example on
(10.17}, converge. Questions of convergence and cumulative errors
have been discussed by Fowler[17], and various other authors [5,6,7,18].
It suffices to say here that the methods proposed above behave satis-
tactorily provided the ratio 87/(8X)? is taken small enough. Usually a
value 1 or 4 can be used for this ratio. If in practice too large a value
18 tried this is immediately obvious from the way the results behave.
Usually a pronounced oscillation develops or else values calculated from
successive stages in the iterative process diverge.

The accuracy of a finite-difference solution can be estimated and
improved in one of the following ways.

(1) k2-exirapolation

Clearly, the accuracy depends on the sizes of the intervals §X and 87,
and can be improved by taking smaller intervals. In many cases the
only practicable way of estimating the accuracy of a finite-difference
solution is to repeat the process using, for example, half the interval in

SB24 0
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§
both X and 7. If the same result is obtained to within the desired ‘e
accuracy the solution is complete. If there is a difference, however, a £
good estimate of the true solution can often be obtained by using what
Richardson [11] called the ‘k®-extrapolation process’.
Examination of the leading terms in the errors of the approximations &
(10.7) and (10.9) reveals that these are proportional to (8X)* and {8T)* "_;;;
respectively. Thus if both 8X and 8T are altered in the same ratio and _{
a second solution obtained, a good estimate of the true solution (corre- ,
sponding to 8X = 87 = 0) is given by extrapolating linearly in (8.47)% ? T
or (8T)? on the two approximate values of ¢ obtained at each point (X, T). x ta
Tf the concentration distribution through the sheet is wanted onty at one
time, the extrapolation need only be performed on the two sets of values &
of concentration obtamed at this time by carrying out the solution with W
the two sizes of interval. Thus if at any point and time a value (| is 4 -:
obtained with intervals 8X, 87, and (), is the corresponding value F
obtained with intervals 18X, 387, a good estimate of the true solution E
is given by Ch+1(C,—C). This A% extrapolation process has been 1 1]
examined by Hartree and Womersley [19], who showed that the justi- = ol
fication for its use depends on the boundary conditions. They found that f' ok
for certain boundary conditions, including those of constant surface - th
concentration and of surface evaporation, the extrapolation removes o
not only the leading term in the error but the next term also. Thus to
only an error of the order of the fourth power of the interval rematns, :}12
(i) Higher-order differences 8.0
Success in using the simple finite-difference formulae such as (10.10) é mi
and (10.17) depends essentially on choosing intervals 83X and 61" so small - GO
that the higher-order terms present in (10.5), (10.6), etc., can be neg- ; the
lected. An alternative approach is to extend the formulae (10.7), (10.9) - ni
for example o take account of the higher-order differences. In this way Sel
the accuracy can be both estimated and improved. The method was | ]
developed by Fox [20] in connexion with relaxation techniques. Making .48 ¢o1
use of well-known formulae in the theory of finite differences we find E int
ho
ST ﬂﬁ — '%(C’ﬂa+1'"_ﬁm—-1]""%8;,T+§%31€1,T“"'.'n [lﬂ'ﬂﬂ} for
the
2
[SXF?;;{H; (Crp1— 20m+ Com ) — e, x a0 x e - (10.61) net
Here 8" is the nth central difference at the points m 8X and time ndT, i
the suffixes 7' and X denoting difference ‘in the 7 or X direction’ has
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respectively. The differences in the 7' direction, for example, take the
form

C_y 6, o,
) L
oy -
Co Og &y ete,
r w
0 %
2 51 8

The full finite-difference form of the diffusion equation (10.2) therefore

takes the form
. o

'E'{Gm+1_ﬂm—1} — mﬂ (ﬂm—i—l_ 2Em+ﬂm—1) = v: {1062}

where V is a difference correction given by

i v oT iv v ¥
V= %Sm,Tﬁﬂlﬁgm.T — (_S:YJIE {ﬁ X _ﬁlﬁa':rrf,x_i" } (Iﬂﬁ‘”

The methed of solution s then as follows. First, the difference correction
on the right-hand side of {10.62} is ignored and a first approximation is
obtained by relaxation methods as in § 10.6. The values so obtained are
then differenced and, if the differences are converging, the difference
corrections V are caleulated for each point and entered as new residuals
to be relaxed in turn. This is continued until the full finite-difference
equation is satisfied with all significant differences included. Differences
near the boundaries which are not known can be obtained with sufficient
accuracy by extrapolation, fairly large inaccuracies usually being per-
missible because of the way such differences enter into the diffcrence
correction. For further details and examples of the use of this method
the reader is referred to the original paper [20]. Clearly the same tech-
nigue can be applied to a method of forward integration such as that of
Schmidt, § 10.4. |

In many problems, it is a matter of personal choice on the part of the
computer as to whether small intervals and simple formulae or larger
intervals and more complicated formulae are used. Innon-linear gystems,
however, e.g. where the diffusion coefficient is a function of conce ntration,
formulae involving higher-order differences soon become unwieldy and
the only practical approach is to use the simpler formulae with a fine
network,

(1) 4 formal solution as a check
If a family of solutions is required it may be that one of the family
has a formal solution. The sizes of the intervals SX and §T needed to
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secure agreement to prescribed accuracy between the formal solution
and the corresponding finite-difference solution for this special case are
often good guides to the sizes of intervals to be used for the other solutions
in the same family. For example, if solutions are wanted for a set of
diffusion coefficients which depend exponentially on concentration, an
:dea of the interval sizes to be used can be obtained by evaluating a
finite-difference solution for a constant diffusion coefficient and com-
paring this with the formal solution for the same boundary conditions,

10.11. Composite media

Conditions at the surface of separation of two different media can be
dealt with by a slight extension of the treatment of the boundary con-
dition {10.43). The method was suggested by Eyres, Hartree et al. [14].

Considering the plane case first, let x = x; be the surface separating
two media, and let the suffixes a, b indicate reference to the left-hand
(x < z,) and right-hand {z > z,) sides of the boundary respectively.
The interval 5z may be taken as different in the two media if desired.
if F(c,,t) denotes the flux across the boundary then the conditions to be

satisfied there are
o ae
€, = Cp = Cp ﬂﬂEE’:‘ = Dha—; = —Flc,t), z=2a,
(10.64)

By imagining the medium to the left of the boundary to be extended
one step, 8z, to the right of z, and eliminating the fictitious concentration

there as in § 10.82 above but using (10.64), we obtain

e, 2Dfec,,—c, F
i g R 10.65
ot 3z, { ox, DJ { )

Similarly, by extending the medium to the ri ght of the boundary one step,
81y, to the left of x,, we find

de, 2D, {GS 1—Cq F}
“8 o . 10.66
ot dxy | Oy T D, ( )

On eliminating F from {10.65) and {10.66} we have

& D D
HBr,t o) 5t = g (Cn—e) =g 2 (o) (1067)

a

This equation can be written in terms of non-dimensional variables such
as those of (10.1) and by appropriate substitution for dc fot can be
expressed in a finite-difference form suitable for use with any of the

methods described above.

;
N
..
_:
5
=T
A
-
S
.
=§_
-
. ...'
i

el el ™ A bedw ek




£ 10.11] FINITE-DIFFERENCE METHODS 205

A compoesite cylinder of outer radius @ and having an inner core of
radius & can be treated similarly. Lot the range 0 << r < a be divided
into n equal intervals, ér,, and the range 0 < r < bintolequal intervals,
8r,, such that [ér, = mdr, = b, with I, m, and » integers. On the
houndary surface, r = b, we have ¢, = ¢,, = ¢,. The relationship at the
boundary corresponding to (10.67) is

i 1 1\, e
[l —— 14+ — it
2[(1 2m)3?'*’+( "'23)5“1] ot
1 D

_ {(1 i zlj) €y Ca) %_ (1 _ __)((:E—q,_l) _ﬁ}. (10.68)

Zm o1y,

With the same nomenclature the corresponding expression for a com-
posite sphere is

1 1 1 de,
o{ (=) (7))
- { 1+l (Cpp1—Cs) =2 — 11 (eg—¢ ]—‘*] (10.69)
E m+1 5 3.'?,'1 m 3 -1 arﬁ o .

Solutions for the uptake of solute from a limited volume of solution
by a composite cylinder have been obtained [ 21] using (10.68).

10.12, Two-dimensional diffusion

The finite-difference methods have been described as they are applied
to uni-directional diffusion. They can readily be extended to diffusion
in two dimensions, though in general the labour is correspondingly
greater, Consider, as an example, the problem of diffusion in a prism
having a rectangular section, the surface of which iz maintained at con-
stant unit concentration and in which the soncentration is initially zero.
We shall assume for simplicity of explanation that the section can be
divided into a network of squares each of side . Taking the sides to be
parallel to the axes z, y respectively, we denote the concentration at
the point & = jk, y = k& by ¢;;. Diffusion is governed by the equation

ac D ( &2 32-:})

o= Dot o (10.70)

if the diffusion coefficient is constant. Replacing each derivative on the
right-hand side of (10.70) by its finite-difference approximation (10.7) we

find éc D
?‘1’-@ = 72 {Ejﬂ,k*f‘ﬂj—l,k”ll“ﬂi,k-ﬂ +€5k-1— 451} (10.71)
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On using the approximation (10.8) for &, ,[dt, and putting D 8t[h* = },
(10.71) becomes
6% = t{Ci1p T 61T C k1T € 1) (10.72)
which is the equivalent of the Schmidt formula (10.12) in two dimensions.
Given values of concentration at time ¢, values at t-}-8¢ can be built up
by applying (10.72) to each point of the network successively. In Fig. 10.4
the values required to deal with the
point marked by a circle are shown
by crosses. A difficulty is that of
e recording on paper a calculation which
in reality should take place on a three-
dimensional lattice. Richardson [11]
suggested using a separate sheet of
paper, possibly transparent, for each
sk step in time. A much neater method
due to Allen and Dennis [22}, which
enables the work to be carried out on
a single sheet of paper, is to draw an
Fra. 10.4. Two-dimensional Schmidt <. matrie projection’ of the three-
pattom. dimengional lattice and to insert
numerical values on this as in Fig. 10.5. The diagram shows one-
quarter of a rectangular block of sides 2z and a. The origin,z — y = 0,
in taken at the centre of the block and the surfaces are all maintained
at unit concentration. The solution starts from zero concentration
throughout the sheet at the top of the lattice and, since A = }a, the
horizontal planes in the network correspond to successive times differing
by equal intervals & in Difa?. The values at Dt/a? = }; are obtained
from the formal produect solution, § 2.5,

- &}

16 (— 1) (214 1)mz
c=1- WEIZ Z(2£+1(zm+1) RO PR

=0 m=0

X O3 Q(Zm:;l]ﬂy exp(—oy .t (10.73)
2

For successive steps in time, values are obtained using (10.72), and they
are compared in Fig, 10.5 after four steps with corresponding values
calculated from (10.73) to indicate the accuracy obtained with a network
of this gize,

Dt

Dt

D,

Dy

D

Fo
(10
Dy
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R &4
a %a beq ha =0
1000 o 0 0 0
Difat=0 1000 a 0 0 0% s
1000 o/ | 0 o o
1000 1660 1000 1000 1000/
1000 157 5 0 1
L 61 9 5 5
Dtfa*=%4 |00 290 164 157 157
100 100 / 1008 1000
i 10001 332 44 4 3
, 364 43 a2
Difa*=3z |4, *551 364 33/ 330
1000 1800 1000 1000 1000
koo a3l 126 33 |23
100 499 204 s 105
Difa’= &5
100 682 439 434 425
100 1000 ; 1900 1600
; 53) 221
1000 582 310
Dija® =%
1000 750 58 510
1000 /600 ; 1000

515 24 100 27

5 64//

Formal solution 2%
(1073 for 1000 //

2
Difa’=7s 1000

1800

F1z. 10.5. Diffusion into a rectangular prism 2¢ X 3a. Values of 1000¢ are tabulated.

10.13. Example: a problem involving a concentration-depen-
dent diffusion coefficient
Suppose a sample of material in the form of an infinite plane sheet of
thickness 2 is immersed in a bath of vapour of infinite extent. We shall
assume that the rate-determining step controlling the uptake of vapour
13 diffusion within the sheet and that this is governeéd by a diffusion
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coefficient 7)), which increases with concentration increasing according

to the expression D, = D, e¥303GiCs, (10.75)

Here (7, is the concentration at each surface of the sheet, assumed con-
stant, and the sheet is taken to be free of vapour initially. We thus

require solutions of
! % _ %(leﬂ_.ﬂ, (10.76)
subject to the boundary conditions
C=C, o=, x=+1, t>0, (10.77)
(=0, —l <<z <, it = 0. (10.78)

It is eonvenient to introduce the non-dimensional variables
¢ = C[C,, X = #fl, T = Dt D= D[D, (10.79)
where D) is thus a function of ¢ given by |
D = %303 {10.80)

and D, is the value of D, when ¢ = 0. Equations (10.76), (10.77), and
(10.78) then reduce to

de & de
= ﬁ(ﬂ ﬁ) {10.81)
¢ —= 1, X o= 1, X =1, T >0, {10.82)
c = 0, —1 < X < 1, T = Q. (10.83)

In the early stages, when the concentration of vapour has not yet
become appreciable at the centre of tho sheet, the problem reduces to
one of diffusion into a semi-infinite medium, with constant surface con-
centration. By use of the variable y, where

y = (1—X)/27T, (10.84)
(10.81) is reduced to
de df, dc
'—-—2 —_ — .-D =5 I» 1{-}'35
Vi dy( dy) 159
which s equation {9.24) of § 9.32. A solution satisfying
c=1, y = 0; ¢ —> 0, Y —> CO, (10.86)

and with D given by (10.80) can be obtained as described in § 9.32.
This solution was evaluated at intervals of 0-1 in y. It is shown graphi-
cally in Fig. 10.6, and is considered to hold till the concentration at the
centre of the sheet reaches the value ¢ = 0-001. The time at which this
happens is determined as follows. Let g, be the value of y at which
¢ = 0-001, In this example y,;, = 2-90. The condition that the value
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¢ = 0001 occurs at the centre of the sheet, X = 0, is given from

(10.84) by oThy, 1, (10.87)

[-0

-8 p

06

0-4

(-2

10 2.0 y 3-0

Fig, 10.6. Concentration distribution calculated from (10.85) for D = V3%,
The X -acale refera to the time T = 0-0257.

and the limiting value of T above which {10.85) no longer applies follows
at once. Itis 7' = 0-0297. For later timés the equation (10,.81) must be
used. Approximate numerical solutions can be evaluated by the method
of §10.5 for example. Because the diffusion coefficient is concentration-
dependent, it is useful to introduce the variable

SZJF.D dc/fDdc:, | (10.88)
0 0
previously used in § 9.33. For D given by (10.80), s becomes
§ = (2303 _1}/(e¥903__1) = l(g2303c__1), (10.89)
In terms of g, equation (10.81) may be written

s &g
ETTET':D@’ (10.90)
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and a solution is wanted for
s =1, X = 11, 7 = 0
s=0 —1<X<1, T=0 }
Using the nomenclature of § 1.3, the appropriate finite-difference form
of (10.94) is

(10.91)

(D% 4+ D,)6T)

i T

S — 'S.-n.+ - 4{8}{)2 1

(S-.:': + 1_|_ ‘?m-.l—l} - E(S?_:: ‘+'3-m) _1'_ (S?_rt—- 1 _!_'Sm—l)}*

(10.92)

with the special form

L DL DAST
dy = Sﬂ+[ ﬂ:j[_af;i ){(31++31)‘_(3|;r +8,)} {10.93}

at the centre of the sheet by virtue of the symmetry about the eentral
plane. Inthisexample, half the sheet was divided into eight intervals X,
and $7'((8X)? was taken to be ;. When the values of X at the points
mdX, ie. £ =0,1, 1, 3., 1, are converted into y values at the time
T = 0-0297, by using (10.84), the solution of (10.85) shown in Fig, 10.6
provides values of ¢ at each point. The values of s calculated from these,
using (10.89), are inserted in the first row of the computation sheet shown
in Table 10.3. By combining (10.80) and (10.89) we find that [} = 9s+-1
and this is used to evaluate D and f), for use in (10.92) and {10.93).
Apart from this slight modification the evaluation of (10.92) and
(10.93) proceeds exactly as described in § 10.5. Five steps are shown in
Table 10.3 and for the fifth row the values of s are converted back into ¢’s.
If M, denotes the total amount of vapour absorbed by the sheet at time ¢,
and M, denotes the equilibrium uptake attained theoretically after

infinite time, then

!
v f Cdx 1 o
My ) -
_— T —e— == — ETi d i ] .
i ic: j cdX J‘ ¢ dy {10,94)
4 (L
Thus the overall rate of uptake is easily obtained from the computation

sheet at any time. It is shown graphically as a function of (Dyt/I?)} in
Fig. 12.17.

10.14. A step-wise diffusion coefficient

In the previous section, the diffusion coefficient was a continuous
function of concentration. The variable s introduced in {10.88) is also
useful in dealing with a diffusion coefficient which changes discon-
tinnously from one value to another at one or more concentrations, as in
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Fig. 10.7. 1f (10.88) is used only on the right-hand side of (10.81) we

obtain, instead of {10.90},
de d%s

e e, 10,95
el oX¢® { )
b
s | | ¢ |
Fia. 10.7. Step-wise diffusion cosfficient,
5
0 f i ¢ |

(; (-
Fia. T0.8. Craph of & against ¢ for the step-wise diffusion
coefficient 1n Fig, 10.7.

of which the finite-difference form corresponding to (10.92) is

| of 4
Entn — {:m'"f‘ ﬂm{[*ﬂfﬂ-{-]—f_sm+l}_g{3$ *{":11}—'_{3T:—1'+_5r11-=1}}‘

(10.96)
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The relationship (10.88) is used at each stage of the computation to con-
vert ¢} into 8. For a relationship between 1) and ¢ of the type shown
in Fig. 10.7, the graph of s against ¢ is as in Fig. 10.8, Since D does not
appear explieitly in (10.96), the computational difficulties arising from
the diseontinuities are considerably lessened.

10.15. Analogues and other machines 3

Most of the instrumental methods of solving the diffusion equation
depend on ‘lumping’ the medium in a way which is equivalent to the use
of finite-differences and so they are considered briefly in this chapter. '-

(i) Infferential analyser
This machine [23, 24] was designed originally for the solution of
ordinary differential equations, but two methods of using it to obtain k3
solutions of the diffusion equation have been devised by Hartree and
co-workers., In the first method [19, 23, 24] the time derivative is
replaced by a finite-difference ratio to give an equation of the type
; ;_ﬂ{.-;{TJraTHG(T)} = (T +8T)—o(T)), 109 @
for the simple diffusion equation (10.2). This is an ordinary differential
equation for ¢{T+8&T) as a function of X, where ¢(7") is a given function
of X, and (10.97) can be solved by the differential analyser, subject to
given boundary conditions. The solution ¢(T+8T) becomes the known
funetion ¢(1') for the next intcerval 1 and the solution proceeds in
steps o7, As there is one condition to be fulfilled at each end of the
range in X, a trial and error process is neeessary for each interval 87,
and so the method i3 clearly somewhat cumbersome and except for
special circumstances has been superseded by a seccond method [14, 23,
24| in which the X-derivative is replaced by the finite-difference ratio
(10.7}). Then for each point, m 3X, we have an equation
aﬁm ﬂ?ﬂ+1_EG?n+ﬂm—1
o s . (10.98)
If, for example, the sheet is divided into four layers of thickness 86X,
then there are four equations of the type (10.98). Apart from limitations
impoged by machine capacity, the solution of such a set of simultaneous
equationg by the differentia) analyser is straightforward, the concentra-
tions at the surfaces of the sheet being fed into the machine as it operates,
if they are known. The treatment of other boundary conditions follows
the lines discussed above in connexion with finite-difference methods,
and details are given by Eyres, Hartree ¢t al. [14]. If a differential
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analyser with twenty or thirty integrating units is available, this 1s an
attractive and practical method of handling many problems. The
boundary conditions are satisfied exactly and continuously and no
trial and error process is involved. It makes considerable demands on
machine capacity, however, for all but the simpler problems and

geometrical shapes.

(ii) Analogue machines
The use of analogue methods has received a good deal of attention
with reference to complicated problems in heat flow. The methods are

R, VR

b, R, V, R, Voo et K
FAAAAAAAATAAAAAAA - —— =~ AAMAAAAAAAAAAAA T - - - < - -
g 'y Con— | Com Conr 1}

[
—
T

Fig. 10,9, Ladder network.

based on the identity between the equations of heat flow or diffusion
and those governing the behavicur of the model analogue. In the case
of the electrical resistance and capacity analogues, the flow of diffusing
substance is simulated by the flow of electrical charge, and gradient of
electric potential corresponds to concentration gradient. Fig. 10.9 shows
a simple ‘ladder network’ consisting of resistance and capacities. Insuch
a circuit, the rate of accumulation of charge on any one condenser
depends on the voltage ¥, across it and on the voltages V¥, _, and V,,,
across the neighbouring condensers, Thus if all the resistances have the
same value, R, and all the capacities are €, charge enters the mth con-
denser at a rate (V,_, —V )/ R and leaves at a rate (,—V, )/ E. For this
condenser we have the equation

Vo Var— W+ Vg (10.99)

&t CR

This is of the same form as (10.98) and becomes identical with it if

e =al
T = t(8X)2(CR) | (10.160)
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where « is an arbitrary constant which can be chosen to give suitahle
voltages. Thus the concentration distribution produced by one-dimen-
sional diffusion in a plane sheet can he represented by the voltage
distribution m a ladder network of the type shown in Fig. 10.9. By

|—Appiied nressure change

Dritum pressure

1

—-Overflow

-

h!

77

4

e W M M I S |

Pump| t

Fia. 10,10, Air-flow analogue.

imposing conditions at the ends of the network corresponding to those
at the faces of the sheet, the concentration distribution at any time is
obtained by reading the voltages. Ciearly, the accuracy depends on the
number of resistances and condensers used, in the same way as that of
finite-difference solutions depends on the number of intervals 8X, 7.
Instruments based on this principle have been developed, for example,
by Paschkis and Baker [25], by Jackson et al. [26], and no doubt there
are others,

Redshaw [27] and Liebmann [28] have developed two-dimensional
resistance networks based essentially on the same analogy but for uso
in steady-state problems only. Here the connexion with relaxation
methods is very close, and Liebmann [28] claims that because of certain
averaging properties of the network very high accuracy is possible. The
Liebmann type of network has since been extended to include transient
problems [29].

The diffusion process can also be simulated by the flow of liquid or
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gaz through a series of reservoirs connected by small-bore flow tubes or
resisting ducts. The analogy 1s precisely that of the electrical network
(Fig. 10.9), with capacities rcplaced by reservoirs and clectrical resis-
tances by flow-tube resistances. The Hydrocal designed by A. D. Moore

g f
L :
| y stX, T+8T)
o
ltﬁ’ : "_H
L
| %
| ,
| 2
| Y
Mi 3
: E:?
i ]
L ge

> X
Fia. 10,11, Mechantsm for Schmidt method,

[30] is a well-known example of an analogue machine using waler,
and an air-flow analogy has been developed by M. B. Coyle {31]. The
principle of the latter instrument is clear from Fig, 10.10. DProblems in
which the diffusion coefficient is concentration-dependent can be handled
automatically by constructing each reservoir in such a way that its
cross-sectional area is a function of the liquid level. Details are given
in Coyle’s paper [31].

(iii) A Schmidt mechanism

Jaeger [32] has described a simple link mechanism by which Schmidt’s
graphical process discussed in § 10.4 can be carried out mechanically for
8 medium in which the diffusion coefficient is a function of concentra-
tion. Using the nomenclature of § 10.3 and the variable g defined by
(10.88) the Schmidt approximation to the diffusion eguation {10.90) is

DT
3?—; 8w = {_8){—]2 (Bmﬁ-l"ESm_'_Sm—l)* (10101}
If we put DoT6X)? = L, {10.102)

we have the same Schmidt formula as for a constant D, i.e.
8 = 381 8m1); (10.103}
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but now, if the time interval 87 is fixed, §X 18 no longer constant but
is a function of s determined by the relationship between D and e,
through (10.88) and (10.102). Jaeger's mechanism 18 a device for
automatically adjusting 8X as the solution proceeds. The principles
may be understood from Fig. 10,11, The concentration ¢urves are to be
plotted on a board which slides in the X direction below the mechanism.
ABCDEF is & pantograph with joints at D, B, ¥, ¥, and in which
AD = DF = BE = CE = EF = BD, so that B is always the mid-
point of AC. The point € of the pantograph carries a pointer with which
a curve can be followed and is attached to a nut which can be traversed
perpendicular to the X direction by rotation of the screw 28. The point
A of the pantograph carries a pointer. The point B carries a pen and is
also hinged to a rod BK, parallel to the X direction, which slides through
a nut H which can be traversed at right angles to the X direction by the
screw P€). The end K of the rod BK carries a small roller which shdes
on a curve LM cut to represent 8X as a funetion of s, where

5X — J{28TD(s)},

for the ehosen value of 7" and the known function D{s). In plotting the
curve, s is measured perpendicular to the direction of X’ and 8X along it.
Thus the projections of BC and A B on the X direction both have the
required value 83X appropriate to each value of s. The curve s(X, T') at
time 7" is drawn on the drawing-board and traversed under the machine.
Then if the pointers 4 and €' are made to follow the curve, the construe-
tion ensures that the pen at B will trace the concentration curve

s(X, T+aT)

at the time 7-+87. In practice a convenient choice of 87 and the order
of magnitude of 8X is made; if there is a sudden change in surface con-
centration at T' = 0, the concentration distributionat 7' = 87" is worked
out independently by one of the methods in Chapter IX or otherwise,
and the solution is then continued in steps 87 by using the mechanism.
For other surface conditions the mechanism can be used directly from

T — 0, though the accuracy may be poor.

(iv) High-speed automatic digital machines and the Monte Carlo
method
High-speed automatic digital machines [24] can carry out a large
number of oft-repeated operations very rapidly. The most obvious way
of applying them to the solution of the diffusion equation therefore is
to use a simple formula like Schmidt’s (10.12) and to take very small

e
A=
[

el e s e L S L1
Pl e L =r e d 3 2% u,
T L Y- Ll o = T TR e T LR TR T

L

IE

Vi

T v

E *h*‘f-'-;ﬂ"":""&ﬂf.—""{-!..jr
i e TR L

[
~



TR MIEAN AT

T AT

SR e T PR R e e Tl

§10.14] FINITE-DIFFERENCE METHODS 217

intervals 6X and §7. A quite different approach is that of the ‘Monte
Carlo method’, in which the basic feature of diffusion, namely random
molecular motions, is simulated on the digital caleulating machine by
actually counting the result of a succession of random eventa. The idea
is illustrated by King [33] with reference to a simple diffusion problem
in which dye is supplied to the centre of a capillary tube filled with water
and diffuses in both directions along the tube. This problem can be
supplied directly to a caleulating machine without the necessity of going
through the intermediate step of the usual diffusion equation, in the
following way. The dye molecules are subject to Brownian movement
and move a mean distance Az along the tube in time Af. The movement
is completely random so that Axr may he positive or negative. Suppose
now that a counter in the calculating machine is assigned to = and a
succession of quantities, each representing Az (usually unity in any
appropriate decimal position) is fed to the counter. Let the counter be
impulsed to add or subtract the quantities Az by some random process,
A convenient method is to supply random digits which the machine ean
examine for oddness or evenness, and the counter is activated to subtract
or add accordingly. For example, if the random numbers supplied are
5,7,7,0,5, 1, 3,0, 9, 4 then the particle moves backwards or forwards
according to the signg —, —, —, 4+, —, —, —, -1, —, 4. Iis successive
positions are —1, —2, —3, —2, -3, —4, —5, —4, —5, —4, and its fina)
position after ten steps (at time 10Af) is —4. After 1,000 jumps the
particle has moved a certain distance, say x,, in the time 1,000A¢ If
now another particle is examined on another counter for 1,600 random
Jumps it will follow a different course and finally arrive at a different
point x,. If this is done for each of 1,000 different particles, and the
numbers of particles are counted at # = Ax, 2Ax, 3Ax, —Ax, — 24z,
otc., we obtain the distribution of the particles at time
¢ = 1,000AL,

and this is the concentration of diffusing dye molecules at this time.
This simple example serves to illustrate the principle of the Monte Carlo
method. Ways of elaborating it to include a random distribution of
molecular jumps, Az, and to apply it to different boundary conditions
and to three-dimensional prohlems are described by King [33].
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X1

THE DEFINITION AND MEASUREMENT OF
DIFFUSION COEFFICIENTS

11.1. Definitions

UANTITATIVE measurements of the rate at which a diffusion process
occurs are usually expressed in terms of a diffusion coefficient. Before
deseribing some methods of measurement, we shall examine the definition
of the diffusion coefficient a little more carefully than in§1.2. Confining

attention to one dimension only, the diffusion coefficient. is defined as the |

rate of transfer of the diffusing substance across unit area of a section,
divided by the space gradient of concentration at the section. Thus, if
the rate of transfer is F, and €' the concentration of diffusing substance,
and if z denotes the space coordinate, then

F = —Dalex, - (11.1)

and (11.1) is a definition of the diffusion coefficient . In using this
definition in practice, it is necessary to specify carefully the section used
and the units in which F, €, and z arc measured. Only the simplest
system of practical importance is considered, which is a two-component
system, since 1t 1s not possible to set up and observe a concentration
gradient of a single substance in itself without introducing complicating
features such as pressure gradients, etc. The diffusion of isotopes is best
regarded as a special case of a two-component system.

11.2. A frame of reference when the total volume of the system
remains constant

Consider the inter-diffusion of two liquids 4 and B in a closed vessel

and assume that there is no overall change of volume of the two liquids

on niixing* Two diffusion coefficients, DY, D%, one for each liquid, may
be defined by the relationships

| F,= —IFaC, flex, (11.2)

F, = —Dhel, o, (11.3)

U4 and (g are the concentrations of 4 and B respectively, cach expressed

in the usual way in any convenient unit of amount (e.g. g. or, in the case

of simple molecular substances, g. mole) per unit overall volume. Fyand

Fg are the rates of transfer of 4 and B measured in the same units of
amount per untt tine, across a section which is defined by the condition
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that the total volume on either side of it remains constant as diffusion
proceeds. In the particular case under consideration it is therefore fixed
with respect to the containing vessel. The origin from which zis measured
is such that the z-coordinate of the section is constant; x is measured in
normal units of Iength, e.g. cm., and the same unit of length is used in
measuring the volume which appears in the definition of concentration.
If the unit of time adopted is the second it follows that the units of DY
and D% are each em.? sec.”? These somewhat obvious statements are
made here in full because it will be seen later i § 11.3 below that other
scales of length and alternative ways of measuring concentration are
more suitable in some eircumstances.

Let V, and ¥, denote the constant volumes of the unit amounts used
in defining the concentrations of 4 and B. Thus if C, is expressed in g.
per unit volume, ¥, is the volume of 1 g. of A. In dilute solutions, where
the volume changes in the range of concentration concerned can be
considered negligible, ¥, and Vg will be the partial specific or molar
volumes, That of the solute may be very different from the specific
volume in the pure state. The volume transfer of 4 per umt time
across unit area of the section defined is therefore

and that of B is — DV Vg éCpféx.

By definition of the section as one across which there is no net transfer
of volume we have immediately

aC,

) af]
DV v, —4 B
AA@:E

DRV 2 ™

— 0. (11.4)

The volume of A per unit overall volume of solution is ¥, ', and of B 1s
VyCg, so that, since only molecules of 4 and B are present, we have

Ve Oyt Vely =1, (11.5)
which, following differentiation with respect to x, becomes
30. = 0. (11.6)
iz
In order that {11.4) and (11.6) shall both be satisfied it follows that
DY = DY (11.7)
or else that Vi=10 or Vg=0. (11.8)
If V, = 0 and V; =% 0, it follows from (11.8) that
eCplox = 0, (11.8)

and further reference is made to this case in § 11.64 below., In either
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case the behaviour of a two-component system, satisf ying the condition
of zero volume change on mixing, may be described in terms of a single
diffusion coeflicient, which may vary with composition. It is convenient
torefer to it as the mutual diffusion coefficient denoted henceforth by DV,
This coefticient is familiar in the interdiffusion of gases [1], Tts physical
significance is considered later in §11.4.

11.3. Alternative frames of reference

The definition of the volume-fixed section used in § 11.2 above is
unambiguous only as long as the total volume of the diffusion system
remains constant. If there is an overall change of volume of the two
components on mixing, the side of the section on which the volume is
to remain constant must be chosen arbitrarily, and the diffusion coeffi-
cient becomes equally arbitrary. In such a case some alternative frame
of reference must be used in defining the section across which transfer
of diffusing substance is to be measured. There are clearly several
possible alternatives. Thus, for example, the total mass of the system
will always be conserved even though volume is not, and a section can
be defined consistently such that the mass of the system on either side
of the section remains constant during diffusion.

Where a convention other than that of constant volume on either side
i1s used in defining a section, the second-order differential equation
deseribing diffusion may not take the standard form of (9. 6). It is
clearly convenient if it can be made to do so sinee the standard form
has frequently been used as the starting-point in caleulations of diffusion
behaviour. This can always be arrunged by departing from the orthodox
linear scale, e.g. em., for measurement of the spatial coordinate so far
denoted by z, and by measuring concentration in 2 certain way. Let
some modified scale of length be denoted by £, and consider two sections,
fixed on the same convention, at £ and §+dE. The rate of entry of 4
into the volume enclosed botween these sections is Fy and that of
departure is F,+ (6F,/¢€) df. The rate of accumulation is therefore

—(0F,/8¢) dE,

and this is always true independently of how Fy and £ are measured.
It can only be equated to (6(,/¢t) df, however, when €, and ¢ are
measured in certain consistent units, Thus, if the sections are fixed
with respect to total mass, then ¢ must be measured so that equal
increments of £ always include equal increments of total mass, and e,
must be defined as the amount of 4 per unit total mags. Similarly, 1f
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the sections are fixed with respect to volume or mass of component B,
equal increments of ¢ must include equal increments of amount of B,
and ¢, must be expressed as the amount of A per unit amount of B.
In general, for all values of £ and ¢, the element of unit length n terms
of £, and of unit cross-sectional area, is that which eontains an amount
of A equal to the unit used in defining the concentration ;. When the
quantities ¢, and £ satisfy this condition the usual relationship

‘1% df = —%df (11.10)
follows at once, and by substituting for F, from the relationship
F, = —DaC,jot (11.11)
we derive the familiar form of the diffusion equation
oy _ @ (Da[;i)_ (11.12)
ot ef\ ef

It is convenient that £ should have the dimension of length and D the
usual dimensions of (length)2(time)-1. This can be arranged without
interfering with the generality or simplicity of (11.12), by muitiplying
the mass of component B {or the total mass of 4 and B together if this
is the reference system being used} by an arbitrary constant gpecific
volume. The volume represented by the product of a mass of B, for
example, and this arbitrary specific volume will be referred to for
convenience as the basic volume of that mass of B.

The concentration of 4 was defined above as the amount of A per
unit amount of B. We now redefine the concentration of 4 as the amount
per unit basic volume of B, and unit ¢ to contain unit basic volume of B
per unit arca. A convenient arbitrary specific volume is that of the pure
component B, so that the basic volume of u certain mass of B is the
volume that mass of B would oceupy in the pure state.

The same arbitrary specific volume is used for concentrations expressed
in the original definition per unit mass of 4 and B together, L.e. the basic
volume of a mass of 4 and B together is obtained by multiplying the
mass by the same arbitrary specific volume. Thisis true also for deriving
the basic volume of A alone, so that the basic volume has a simple
physical significance only in the case of the basic volume of B. Neverthe-
less, the use of this particular basiec volume has the convenicnce that all
the concentrations measured in the different frames of reference tend to
the same value in dilute solutions.

Concentration is, of course, frequently expressed in a number of
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different ways and so the symbol € is retained, but the appropriate
index V, B, or M as superscript is added, so that the concentration of 4
is written C%, 08, or (' according as the amount of A is contained
in unit volume of solution, or in unit basic volume of B or in unit basic
volume of total mass. According as unit £ contains, per unit area, unit
basic volume of B or of A and B together, the symbol £, or £, is used.
The diffusion coefficients D%, D¥F, DY also carry an index to indicate
the frame of reference to which they refer. The arbitrary specific volume
may be denoted by V%, and then {5 and £, are defined formally by the
respective relationships

dég = VO dz, (11.13})
dgyy = VY(Ch+CF) dx. (11.14)
11.31. Sections fixed with respect o iotal mass and mass of one com-

ponent
It was found in § 11.2 that the behaviour of a two-component system
satisfying the condition of zero volume change on mixing can be repre-
sented in terms of a single diffusion coefficient DY, A similar result
follows readily for a system in which volume changes occur, provided
the diffusion coefficients are defined with respect to a mass-fixed section.
Thus the equation defining such a section 18

a0M EC‘H
putzd | pu®~B _ {11.15)
B 35M+ .z
and the definitions of ¥ and C} lead immediately to the equation
CM_LOY = 1YY, (11.16)
On differentiating (11.16) with respect to £, and comparing with

If a section fixed with respect to one component, say B, is used, then
clearly DB = 0 and only the coefficient D is needed to describe the
diffusion behaviour. Thus the statement that the diffusion behaviour
of 8 two-component system can be described in terms of a single diffusion
coefficient, is valid whether there is a change of volume of the whole
system or not, provided the appropriate frame of reference is used in
defining the diffusion coefficient. Frames of reference could be so chosen
that the two coefficients are not identical and neither is zero, but they
would be related through some function of the partial volumes and
would not be independent measures of two separate ditfusion processes.
The possibility of measuring the diffusion of the two molecular species
independently is discussed in § 11.4,
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11.32, Relations between the diffusion coeffictents D', DY, DY

The rate of transfer of A through a B-fixed section is greater than
that through a total-mass-fixed section by an amount given by the
concentration of A per unit mass of B multiplied by the flux of B across
the mass-fixed section, Thus the flux of 4 across a B-fixed section in

the direction of ¢ increasing is

__ D EC;‘}’_I_ oM EE E]O:,ffi — ‘D]i oty {11.18)
| 3 A Oil?f agm‘ {?j’lff VE* E‘fﬂ , |

using (11.16),
But the rate of transfer across a B-fixed section is —DF ¢C'5/o€, s0
that we have i DM 3CY z¢, .
pB_ 7 oU4 by (11.19)
< VRO ofy 004

From the definitions of ¥ and C% it is easy to show that

dCi
H{;*—fj = (V} CH)* (11.20)
Also since
dé;, = Vi(Oh+ CF) dz, dén = V9, CF da, {11.21)
we have %r Ve CH, (11,22)
| ¢ a1
so that finally, by substituting (11.22) and (11.20) in {11.19), we find
DE — DUV CY R, (11.23)

since rearrangement of the partial derivatives in (11.19) is permissible.
For a system in which there is zero volume change on mixing, so that
V. and V; are constant, the relation between DJ and IV can be similarly
established. Thus the flux of A across a B-fixed section in the direction

of £ increasing is

oCY oY, 80% Dv acy
_pverd, pv-4 B _ 4 11.24
o T CY ox Ve C% oz’ ( )

using (11.5) and (11.6). But the rate of transfer of 4 across a B-fixed
section is — DY 804 /6f,, so that we have

DV e ot,
— . 11.25
V. C% oz oCE (11.25)
From the definition of &% and €% it follows that

dCh
d08

D

— (V, CE)E, (11.26)
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and from the second of {11.21) we have immediately

8
% =V, C%, (11.27)

so that on substituting (11.26) and (11.27) in (11.25) we find
DE = DV (V3 C%)E = D¥(volume fraction of B)2. (11.28)

Sinee (11.28) applies only when Vg is constant, and therefore V = V§,
comparison of (11.28) and (11.23) shows that when there is no overall

volume change accompanying diffusion
DM — DY(C%I0M)y2 = DY (basic total volumeftrue total volume)?.
(11.29)

11.4. Intrinsic diffusion coefficients

We saw in § 11.31 that any two-component system can be described
by a single or mutual diffusion coefficient, which may be a function of
comyosition but will be the same function for both components. In the
simplest case, where the molecules of the components 4 and B are
identical in mass and size, the rates of transfer of 4 and B due to random
motion across a volume-fixed section may reasonably be expected to
be equal and opposite. In general, however, differences of mass and size
of A4 and B molecules result in the transfer of A by random motions
being greater ot less than that of B. Consequently, a hydrostatic pressure
tends to be built up in the region of the solution which contributes least
to the volume rate of transfer. This pressure is relieved by a compen-
sating mass-flow of A and B together, that is of the whole solution [1, 2].
This existence of mass flow can be demonstrated in the case of gases,
when diffusion oceurs across a porous plate which offers considerable
viscous resistance. In this case, an increased pressure is found to arise
in that part of the vessel occupied initially by the slower diffusing
component. It has been demonstrated in metal systems [3} and in
polymer-solvent systems [4] by the insertion of marker particles.§ In
the latter case, the large polymer molecules will diffuse far more slowly,
as a result of random motions, than the small solvent molecules. Thus
the polymer movement measured by the mutual diffusion coefficient is
almost entirely a mass-flow,

Thus the averall rate of transfer, say of component 4, across a volume-
fixed section may be expressed as the combined effect of mass-flow and

1 The marker movement ia often referred to as the Kirkendall affact, sinco it waa first

abgerved in metals hy Kirkendall, E, O., Trans. Am. Inst. Mning Mel, Engra, 147 (1042}
104,
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true diffusion resulting from the random motion of non-uniformly distri-
buted A molecules. ¥rom the point of view of interpreting diffusion
coefficients in terms of molecular motions, the mutual diffusion coefficient
D¥ thus appears to be unnecessarily complicated by the presence of the
mags-flow. It is desirable to define new diffusion coefficients, &, and Z,,
in terms of the rate of transfer of 4 and B, respectively, across a section

fixed so that no mass-flow occurs through it. Such a section may be

impossible to determine in practice, except in special conditions men-
tioned below. Itisfixed in a different way from any of the other sections
previously dealt with, and it must follow the mass-flow although this
flow is not normally directly observable. These new diffusion coefficients
will be referred to as ‘intrinsic diffusion coefficients’. When the partial
volumes are constant they are related to the mutual diffusion coefficient
in the following way.,

On one side of a section fixed so that no mass-flow occurs through i,
there is a rate of accumulation of total volume of solution, which may
be denoted by ¢, where

aC", 9Ch

b= VaDy 24 Vs By 22, (11.30)

As thus defined, ¢ is actually the rate of increase of volume on the side
of smaller x, and this must be equal to the rate of transfer of total volume
by mass-flow across a volume-fixed section. Such a mass-flow involves
a rate of transfer of A of $C%, so that, equating two expressions for the
net rate of transfer of 4 across the volume-fixed section, we find

aCh, ac”,
Dv e 4 =g -4 P —¢CY. (11.31)
011 substituting for ¢ from (11.30) and using (11.6) we have finally
DV =V, O%(Zy— 2+ 2,. (11.32)

If the molal volumes vary with composition, the coefficient D" has
no physical significance, but 2,, &, can still be defined in terms of the
rates of transfer of 4 and B respectively across a section which moves
80 that there is no mass-flow, of 4 and B together, through it. It is
convenient in this case to relate the intrinsic diffusion coefficients to D5,
Since the net rate of transfer of B through a B-fixed section is, by
definition, zero, it follows that the contributions tc the transfer of B
resulting from the overall mass-flow and from the true diffusion of B
relative to the mass-flow, must be equal and opposite. The rate of
transfer of B by true diffusion relative to the mass-flow is

— P80 /éx,
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in the direction of & increasing, and hence the volume transfer of the
whole solution accompanying mass-flow with respect to the B-fixed

section is given by P, 80%
v ox

in the direction of x increasing. This produces a rate of transfer of 4

through the B-fixed section of

due to the mass-flow. This is to be combined with the rate of transfer
of A relative to the mass-flow which 1s given by

— 3, 8C% [ox
: to give the net rate of transfer of A across a B-fixed section, which is
simply — DB aCE ot
i Thus we have the equation
) — 11.33
& DBEJEB "@m_l_ﬂ Bé‘m { )
EL When the molal volumes are not constant, the relationship
V,C 4V, Cp = 1
i still holds, but the differentiated form (11.6) is to be replaced by
v\ oo, dV,\ a0
[d A A ¥ B Fi Y 24
(I’:*Jr"?‘d dCfi;) hr T (VBJrGBdcg) D (11.34)
: . 4oy,
. Since S04 = VRTRCER,
it follows immediately from {11.27), {11.33), and (11.34) that

Emogdwcg} 11.35
CL Vy+ Ch Vsl

DE = T, CY(VY, 0’*’12[ @+ %

. This reduces to (11.32) when ¥V, and V}, are constant.
| It is clear from (11.32) or (11.35) that the values of 2, and 2y eannot
be deduced separately, unless some information other than DY or DE
15 available. One possibility is to use an observation of the mass-flow,
as suggested by Darken [3] and by Hartley and Crank [5]. Sometimes,
e.g. in solvent-polymer systems, the intrinsic diffusion for one compo-
nent, e.g. the polymer, is so much smaller than for the other that it can
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be assumed to be zero. With the assumption that @, = 0 we have
from (11.32)

2, = DV |(1-V, CY) = DV{(Vgy C%) = DV/{volume fraction of B),
(11.36)

which allows the mnfrinsie diffusion coefficient of component A and its
dependence on concentration to be deduced from observations of DV,
The ideas discussed above in § 11.1-11.4 have been the subjects of papers
by Darken [3], Hartley and Crank [5], Kuusinen [6], and Lamm [7].

11.5, '‘Self’-diffusion coefficients

By using radioactively-labelled molecules it is possible to observe the
rate of diffusion of one component in a two-component system of
uniform chemical composition. Since what is involved is an interchange
of labelled and unlabelled molecules which are otherwise identical there
is no mass-flow and the true mobility of the labelled molecules with
respect to stationary solution is measured. Nevertheless, the diffusion
coefficient so deduced will in general differ from the ecorresponding
intrinsic diffusion coefficient for the same chemical compaosition, John-
son [8] has found this to be s0 in metal systems. Seitz [9], regarding the
diffusion process as a jumping of molecules from one equilibrium position
to another, accounts for the difference on the basis that when there is a
gradient of chemieal composition the frequency with which a molecule
jumps to the right is not the same as that with which it jumps to the
left. For the labelled molecules, however, the two frequencies are
identical, Darken[3]and Prager][10]haverelated the diffusion coefficient
measured by an experiment using radioactive molecules to the intrinsic
diffusion coefficient in terms of the thermodynamic properties of the
system. Their result can be anticipated as follows.

Consgider a twe-component system comprising molecules 4 and B and
let the gradient of concentration €', of 4 be maintained in an equilibrium
condition by the application of a force F, per g. mole of 4 in the direction
of increasing x. This is purely a hypothetical operation hut it ean be
realized in the case of large molecules, much different in density from
the solvent, by a centrifugal field. The generalized form of the condition
for this thermodynamic equilibrium is

B, — &y, jox, (11.37)
where p, is the chemical potential of component 4. The rate of transfer
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of A due to the force £} 18
(11.38)

G _ Cs Bpy

om0y
where @, 5 is a resistance coefficient. But in the equilibrium condition
(11.38) is also the rate of transfer by diffusion relative to a section
through which there is no mass-flow and so we have
G _ G 94 0G4

< == , 11.30
4 o g, oL, ox { )

Cr Oy
y, Jp— . 11.40
and hence 7 oo 3, { )

On applying the same treatment to the labelled molecules in a system
of uniform chemical composition we have
o o _ RT 80C%
47" e T C% Bz’
hecause of the ideality of the system, where asterisks denote properties
of 1abelled molecules. Instead of {11.40), therefore, we obtain

1
9% = — (11.42)

G4
it being legitimate to eguate the resistance coefficients at the same
chemical composition, Thus finally
By = D% G0y 2C,. (11.43)

(11.41)

11.6. Methods of measurement

Most of the earlier methods of measurement assumed the diffuston
coefficient to be constant. When such methods are applied to systems
in which this is not so, a mean value for the conditions of the experiment
is obtained. Methods are basically of two types according to whether
the flow is steady or transient. When the steady-state flow is obgerved
through a membrane or sintered disk, for example, the diffusion coefhi-
cient is given immediately as the quotient of the flow-rate through unit
area divided by the concentration gradient. In some non-steady state
experiments, the concentration distribution is observed at a known
time # after the commencement of diffusion. Solution of the diffusion
equation for the appropriate boundary conditions leads t0 a theoretical
concentration-distance eurve in terms of the variable £¥. Comparison
of experimental and theoretical curves yields the diffusion coeflicient, 1.
Various ways of earrying out the comparison are reviewed by Alexander
and Johnson [11], Chapter X. A variant is to observe the overall rate
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of uptake or loss of diffusing substance by a specimen of known size and
shape, and to compare this with the calculated rate of uptake expressed
as a function of Df. In some cases, special tables have heen constructed
to facilitate the caleulations. Stefan’s tables [12], to which reference was
made earlier in § 4.38, refer to the diffusion of solute from a column of
solution into a column of water. They give the amount of diffusing
substance contained in successive layers of equal height. These tables
and others of a similar nature are reproduced and discussed by Jost
[13, p. 63]. In all these methods, the difficulties lie in the experimental
techniques rather than in the subsequent mathematics. Adequate
accounts are already available [13, 14]. It suffices to say here, following
the discussion of the alternative definitions of diffusion coefficients, that
in the early measurements it is usually assumed that the total volume
of the system remains constant as diffusion proceeds and go the mutual
diffusion coefficient DV is measured. A notable exception is that of
Clack [15], who introduced a correction for mass-flow and obtained in
effect the coefficient D of solute with respect to stationary solvent.
A number of examples are discussed in more detail in reference [5].

We shall now confine attention to some of the mathematical methods
by which the concentration-dependence of the diffusion coefficient has
been deduced from experimental data.

11.61. Steady-state method

Experimental methods of realizing steady-state conditions have been
reviewed by Newns [16]. Suppose, as an example, that we have a
membrane of thickness { separating a region of high vapour pressure
from one of low vapour pressure. Provided the vapour pressures are
maintained constant, a steady-state transfer of vapour through the
membrane is set up. The concentrations C, and €, just within the two
surfaces of the membrane, are eonstant and are the equilibrium uptakes
for the high and low vapour pressures respectively. The rate of transfer,
F, of vapour through the membrane in the steady state is given by

F = —D,dC/dx, (11.44)

which on integration becomes
! Co
fFa:x - f D, dC. (11.45)
0 &

In (11.44) and (11.45) D, is the value of the diffusion coefficient for a
concentration (. BSince we are conecerned with a steady state, F is the

R
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same through each section of the membrane, i.e. ¥ i1s independent of x.
Hence

1 z
[Fde=F [dz=Fl (11.46)
[ ]

Ce
and therefore | F = El f Dy dO. (11.47)
LAY

By determining F experimentally for a fixed low vapour pressure (;
(it may be zero} and different values of the high vapour pressure
¢, and differentiating the curve relating F and C,, the diffusion
coefficient Dy is obtained for different concentrations €. Alternatively
we may proceed as follows, taking for simplicity the case in which €| = 0.
If we neglect the concentration-dependence of D, we obtain a mean
diffusion coefficient D, given from (11.45) by

FL':JEFdx:TDIdC: D, G, (11,48}
¢ 0
Thus equating (11.48) and (11.45) we have
Co D= ang dC, (11.49)
0
so that De_p, = Dy+0; dDjdC, (11.50)

and the function D, can be deduced by observing D, for different values
of €, and differentiating.

Barrer [17] points out that the concentration-dependence can be
deduced from one experiment provided the concentration distribution
through the membrane in the steady state is observed, as well as the
rate of flow through. Clearly it is possible to obtain D, from (11.44) if
both dC/dx and ¥ are observed experimentally. The method can equally
well be applied to 2 medium in the form of a spherical or eylindrical
ghell [17]. Also, of course, if the diffusion coefficient is known to be a
function of distance through the sheet or shell, 1.e. the medium is non-
homogeneous, the variation of D can be deduced from (11.44) or from
the corresponding equations for the shell [17].

If the membrane swells as the steady state is established, and this is
very likely to occur, then the thickness of the membrane in ordinary
units of length, e.g. em., will vary with time. In such & case, the modified
geale of length &5, introduced in equation (11.13), may usefully be used,
since the thickness on this scale, being the basic volume of the membrane
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per unit area, remains constant and equal to its unswollen value. We are
then measuring the rate of low relative to a section fixed with respect
to the membrane which, using the nomenclature of § 11.31, is the
component B of a two-component system. Provided the concentration
of the vapour is expressed as the amount of vapour per unit basie
volume of the substance of the membrane and ! is the unswollen thick-
ness, the diffusion coefficient obtained from (11.47) is 12, where 4 is
the vapour and B the membrane. If there is no overall change of volume
of the whole system when the vapour enters the membrane, D3 is related
to the mutual coefficient DY by equation (11,28).

11.62. Analysiz of concentration-distance curves

There are a number of optical methods for observing how either the
refractive index or its gradient depends on distance measured in the
direction of diffusion at a given time. Numerous references are given
by Hartley and Crank [5], Jost[13], and others. Concentration-distance
curves can also be obtained in the case of two metals interdiffusing {14,

p. 239]. Iftwo infinite media are brought together at { = 0, e.g. two long
c‘blumns of liquid or two metal’ b&rs the diffusion coefficient and its
concentration-dependence can rﬁadﬂy be deduced from the concentra-
tion distribution observed at some known subsequent time. The condi-
tions of the experiment are

C=0C, <0  {=0, (11.51)
C =0, x>0, t=0, (11.52)

where ('is the concentration of the component in which we are interested,
and x = 0 is the position of the initial interface between the two com-
ponents at time { = 0. Assume for the moment that there is no overall
change of volume on mixing and that ' is measured as mass per unit
volume of the system. Then we may use the Boltzmann variable
n = z{2tt and as in § 9.31 we obtain the ordinary differential equation

ac_ df dC)
— D 11.63
iy = o\l (11.83)
On integration with respect to » {11.53) becomes
(51 .
O=C,
.—Zf-r;dﬂ'z [D‘E] ( ?@) (11.54)
: 4% | cmo ) eug,

since DdC/dy = 0 when ' = 0. Here O, is any value of € between 0
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and (. Finally, by rearrangement of (11.54) and introducing « and ¢,

we have o

Ldz [ do. (11.55)

Pe-e.= 530
ad
Since (DdCfdn)q_o, = 0 also, it follows from (11,54) that

(11.56)

(5}

Fig. 11.1. Evsluation of D) from a concentration.distance curve using {11.55).

and in order that the boundary conditions shall be satisfied the origin
from which x is measured must be such that (11.56) is satisfied. In other
words, the plane, # = 0, must be chosen so that the two shaded areas
in Fig. 11.1 (2) are equal. In a constant volume system (11.56) is a
conservation of mass condition and it is clearly satisfied if z is measured
from the initial position of the boundary between the two components
at time { = 0. In this case, therefore, the procedure is to plot the
concentration-distance curve for a known time as in Fig. 11.1 (§), to
locate the plane # = 0 by use of (11.56), and then to evaluate D at
various concentrations ¢ from (11.55). ‘The integrals can be obtained
by using a planimeter or by counting squares and the gradients dz/d(C

¢
by drawing tangents. In Fig. 11.1 (5} the area representing f zd( is
0

snown shaded. Diffusion coefficients in metal systems were obtained by
Matano [18] using this method, and since then it has been widely used.
Alternative ways of using (11.55) have been suggested.

5824 €
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(1) One development has been found useful in dilate solutions [19].
On integrating by parts {11.55) becomes

a0y
1 dx ,

__1l =~ dz (1+I_lc.f0dx*), (11.57)
1+-1

4 (log C,)t d(log O}

where z; is the value of x at which € = (, and the derivatives are to
be measured at the point # = x,. The determination of the gradients
at various concentrations is made simpler by this modification if the
graph of 2 against (log C)} is nearly linear as it is in some systems [19].

A corresponding analysis can be applied to the penetration of diffusing
substance into an effectively semi-infinite sheet, provided the concen-
tration-distance curve can be obtained. An example is the diffusion of
dye molecules from a well-stirred solution into a cellulose sheet [20].
Equation (11.55) still holds if = is measured from the surface of the sheet.

(ii) raphical or numerical methods of evaluating the diffusion co-
efficient from (11.55) have certain disadvantages. They entail the
measurement of slopes and areas under curves and it is clear from the
hehaviour of the concentration-distance curves in ¥ig. 11.1 that con-
siderable uncertainty arises for concentrations near the limiting values.
Often the values of diffusion coefficients for very small concentrations
of one component are of great importance and so it iz desirable to be
able to calculate them as accurately as the.experimental data permit.
A method of improving the aceuracy of the caleulations near the extremes
of the concentration-range has been suggested by Hall[21]. He examines
some experimental data of da Silva and Mehl [22] for the copper-silver
system. Using the nomenclature of the previous section, he takes C to
be the concentration of copper and €, to be 100 per cent. copper.
Fig. 11.2, taken from Hall’s paper, is a probability plot of C/C, against
z/tt, i.e. the variable # which is used as ordinate is given by

d{1+4-erfu} = C/C,. {11.58)

Other relationships involving error functions ean of course be used.
Hall finds {11.58) convenient for purposes of caleulation. We avoid his
use of the function erfe for the left-hand side of (11.58) because it is not
standard notation. The point of interest is that when plotted in this
way the concentration-distance curve becomes linear at the two ends
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of the concentration range. Now a straight line on this plot corresponds
to an equation of the type

20

i /
-5 _ /4“—'—‘-"-
/

w = hy-t+k, (11.59)

I-0

0-5 //

-1,000 0 1,000 2,000 3,000

L -1
XI2, &« sec ?
(G is the side af the umic celf)

F1e. 11.2. Probability plot of a coneentration distribution,

80 that, from (11.58) and (11.59), we have

ClCs = H1-+erf (hy+F)). (11.60)
It readily follows that -
¥
% — fg—exp[uﬂ}, (11.61)
and N 9
d ! ﬁr‘oﬂj r r a r
n dC =— f’@ exp{—(hn'+ k) }fn
L) — o3
S o KC
=S -—Ehwiexp(—u )__T' L (11.62)
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If now we write (11.55) in terms of » and substitute from (11.61) and
{11.62) we obtain

D) = ﬁl-ﬁ+kg-;{1+erfu}exp(uﬂj. {11.63)

The differences between (11.63) and Hall’s final expression are because
the n used here differs from his A by a factor of 2, The quantities 2 and
k are obtained respectively as the slope and intercept of the linear
portion of the probability plot, and D is evaluated from (11.63) simply
by substituting these values and that of 4 which through (11.58) corre-
gponds to the C'/C_ for which D is required. The relationship (11.63) can
be applied at each end of the concentration range with appropriate
values for 2 and %. In the intermediate curved portion of Fig. 11.2,
slopes and areas must be measured on a plot of the type shown in Fig. 11.1
and the diffusion coefficient deduced from (11.55). Evidence of the
improved accuracy resulting from the use of (11.63) is advanced by
Hall [21].

11.63. Systems in which there is a volume change on mixing

The interdiffusicn of two components forming a system in which
volume changes occur on mixing has been considered by Prager [10] as
follows. The rates at which the concentrations of the two components
{, and Uy change at a point are given by

C, of. a0 o
e G 7. e § DR ', 11.64
ot aa:( 4 a;r) 5z (V) (11.64)
aCy of, 05 8

o= 7 1) a0 (11.69)

where &, and 2, are the intrinsic diffusion coefficients introduced in
§ 11.4, and v 1s the velocity of the mass-flow assumed to be in the z
direction and dependent only on the x coordinate and the time £. There
is a. relationship between ; and €', at constant temperature and pressure

which is VeCutV,C =1, (11.66)
where the V's are the partial molal volumes of the two components, and
also we have (@Ug/eC)pr = —Vi/Vi. (11.87)
Using (11.66) and (11.67) in (11.65) we find |

v, &C, o{ ¥, oC v
_ g a0\ o Y B
( ol 7 E';t:) Oﬂﬁx—f_ﬂg x

[ —

Ve @ o

Sk s gt Lo ot G o ol G
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and combining (11.68) with (11.64) yields

&v e, ¥, eC,
éx Eﬂx(ﬁ‘* E;‘:r:) Vs &1:(@3 4 a:c)

Integration by parts from —-a0 to & transforms (11.69) into

(11.69)

ir

OV fOCNE
= W70 52 4 | @( Lat ”VBCB)(atf)(a:) 4,

7 (11.70)

where v and 9, {ox have been assumed zero at «* = —o0. Substituting
(11.70) into (11.84) and (11.65) we find

9y _ 2 (00, - T
— 11,71
&t 3:1:( Ea':t:) 2 Q" IVBCL( )(B::t:) 4z ]’ ( :

g _ E(I)F.E_Q_ﬁ)_ a[cﬂ DY (Wﬂ)(‘a@)zdm'}, (11.72)

ol ox o Bx or

where DV is related to %, and 25 by
DV — 9, VyCa+ D%, (11.73)

which 18 equation (11.32). We should note that we are here defining D¥
by {11.73). It has the significance of a mutual diffusion coefficient as
defined in § 11.2 only if there is no volume change on mixing. The second
terms on the right-hand sides of (11.71) and (11.72) arise because of the
volume changes on mixing, and they vanish when such changes do not
gcour, 1.e. when (81, /éC,)p » = 0, in which case (11.71) and (11.72) reduce
to the usual diffusion eguations,
If the initial distribution is such that

C, = 0, x <0, t=0, (11.74)
¢,=0C, x>0 =0, (11.75)

then we can make the Boltzmann substitution [23] even if (81/0C,)p.¢
is not zero. Thus if we suppose C; to be a function of 5 = «/2¢t only,
equation {11.71) becomes

e S -4 [ 2o ) o

with boundary conditions

(L:ﬂ' T}Z'—UD;

S

= (o  m=o0. (11.77)
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If the concentration distribution Cj(n)} is known from experiment,
(11.76) can be solved for DV to give

p— Cl'l —
C,

d 418
Dleo, = dg fﬁrdﬂ +O.f 7 (ag:)d@ . {11,78)

b =

The first term on the right-hand side of (11.78), when written in terms
of x and ¢, 13 the expression (11.55) for calculating D) from the concen-
tration distribution when there iz no volume change on mixing. The
second term is a small correction term in which we have substituted for
DV from (11.58) written in terms of » as an approximation,

1t is of interest to examine what diffusion coefficient is obtained by
the Matano procedure| 18], as described in § 11.62, when there is a volume
change on mixing. Continuing to denote by » the distance coordinate
measured from the mitial position of the boundary between the two
components, Matano introduces a new coordinate n, measured from a

Ceo
new origin chosen so thatf ny @y = 0. If the new origin he at 5 = —3
0

then we have %, = 515 and hence

f{«;—S) g, = 0, (11.79)
0
1
so that B == a—f 7 (. (11.80)

Do, = —zi‘{?!fm ac.. (11.81)
e,
0
ﬂ; 'y EF
Now [ mag = [ (448)d¢, = [ ndQ + 3, (11.82)
0 Q 0
and hence the diffusion coefficient calculated in this way is
d ;
Dy, = dg [j n A +013], (”'83).

since dn,/d(); = dn/dC, and where § is given by (11.80). Comparing
(11.83) with (11.78) shows that this procedure does not yield exactly
the coefficient DV related to the intrinsic diffusion coefficients by
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(11.73) but only an approximation to it. It assumes

L
Cy ﬁ'- (i dC EV
o 11.84
f A (a{}’ ) d(C, = constant, ( )

the constant being 8, the displacement of the origin. Prager|10]suggests
that a better approximation is to treat ¥ and (1/C,)(8Vy/6C,) as con-
stants, in which case (11.78) becomes

fln dC, + BO, f(f”i dqd)dq{, (11.85)

DC.1=£'1 — d'% [“

where B is given by
Can O AL
pe{fal (i} o
0 0 0

This procedure, like Matane’s, requires no data on the partial molal
volumes. If such data are available it is of course possible, though more
laborious, to use the complete equation (11,78} to evaluate D¥.

We can now see what is the physical significance of the diffusion
coefficient deduced by the Matano procedure when there is a volume
change on mixing. Returning to equation (11.76} and writing ¢ for the
flow velocity due to volume change, we have

dC d ( dC’)
D (), 11.87
dn T dn\ dy) dy ¢ (H-57)
and on integrating from C; = 0 to ¢, = (, this becomes
Cw
ac,
_2f y 40, = [DF dn] —[C, 416> (11.88)

0
Since d(;/dn = 0 at both ends of the range of integration, we see that

Con
Crd = —2 | 7 dC,, (11.89)
0

where ¢, is the value of ¢ when €, = (. Thus by choosing the origin
of # such that the right-hand side of (11.89) is zero, we select & frame
of reference such that, provided € = 0 at one end of the system, there
is no flux of component A at either end due to volume change. It must
be emphasized that the removal of the effect of volume change is com-
Plete only at the ends of the system, and so the diffusion coefficient
deduced by using the Matano procedure is not the mutual diffusion
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coefficient. In fact, it is not a diffusion coefficient which is readily
related to those obtained by other methods.

An alternative treatment of a system in which a volume change occurs
makes use of the frame of reference fixed with respect to the total mass
of the system. Thus in terms of the variables C¥ and {,, introduced in
§ 11.3, equation (11.55} becomes

1 dé, [
Dgﬁlﬁ_.ﬁ&u% £ AOY (11.90)

0

and according to the Matano procedure the origin of £y is to be chosen
such that 11243
[ & d0Y =o. (11.91)
0
The upper limit of integration for €% comes from (11.16) since when
£y = 0, O = 0. Choosing the origin of £, so that (11.91) holds
ensures that the boundary conditions are satisfied as in § 11,62, Thus,
provided concentrations and distance scales are expressed in the new
units as described in § 11.3, the coefficient D¥ is obtained from (11.90)
and (11.91).
By combining {11.23) and (11.35) we have a relationship between D¥
and the intrinsic diffusion coefficients, &, and £ 5, which takes the
place of {11.73) in Prager’s method.

11.64. Analysis of sorption data by a method of successive approxima-

tions

A different approach is to deduce the diffusion coefficient from
observations of the overall rate of uptake of component A by a plane
sheet of component B. Such a method has been used, for example, to
determine the diffusion coefficient of direct dyes in cellulose sheet [24]
and of oxygen in muscle [25]. In each case the diffusion coefficient, was
assumed constant.

We shall describe the method in terms of the uptake of vapour by a
plane sheet, first on the assumptions that the diffusion coefficient is
constant and the sheet does not swell, and then for cases in whieh the
sheet swells and the diffusion coefficient is eoncentration-dependent.
Its application to other systems will be obvious. The experimental
procedure is to suspend a plane sheet of thickness { in an atmosphere of
vapour maintained at constant temperature and pressure, and to observe
the increase in weight of the sheet and hence the rate of uptake of vapour.
This can be done most conveniently by hanging the sheet on a spring of
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known stiffness. The appropriate solution of the diffusion equation may
be wntten

8 < . 924112
- Z 2m—|—1)231p{ D(2m -+ 1)27%{1%}, (11.92)

if the uptake is considered to be a diffusion process controlled by a
constant diffusion doefficient . Here M, is the total amount of vapour
absorboed by the sheet at time ¢, and M, the equilibrium sorption attained
theoretically after infinite time. The application of (11.92) is based on
the assumption that immediately the sheet is placed in the vapour the
concentration at each surface attains a value corresponding to the
equilibrium uptake for the vapour pressure existing, and remains con-
stant afterwards. The sheet is considered to be initially free of vapour.
The value of ¢/I? for which M/M, = }, conveniently written (¢/1%},, is

given by a 2\
H_ 7 Y7 (11.93)
1y 2D |16 9\16
approximately, the error being about 0-001 per cent, Thus we have
D = 0-049/(2/1%),, (11.94)

and so, if the half-time of a sorption process is observed experimentally
for a system in which the diffusion coefficient is constant, the value of
this constant can be determined from (11.94). The extension of this
method to less simple systems is as follows.

(1} Sorption by a swelling sheet

In deriving (11.92} the thickness I of the sheet is assumed to remain
constant as diffusion proceeds. In practice it often happens, however,
that the sheet swells and the thickness increases as the vapour enters.
Equation (11.92) can still be used in such cases, provided we take a
frame of reference fixed with respect to the substance of the sheet, and
concentration and thickness are measured in the units discussed in§ 11.3.
Thus we take the basic volume of the sheet to be its volume in the
absence of vapour and use the unit of length, £, such that unit £,
contains, per unit area, unit basic volume of the substance of the sheet, 8.
Then the thickness of the sheet, measured in these units, is constant and
equal to the original unswollen thickness, and the diffusion coefficient
deduced from (11.92) by substituting the original thickness for { is that
for the diffusion of vapour relative to stationary sheet (denoted by D2
in § 11.3). If there is no overall volume change on mixing, i.e. if the
increase in volume of the sheet is equal to the volume of vapour sorbed
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at the vapour pressure existing in the experiment, the coefficient obtained
by this sorption method is related to the mutual diffusion coefficient DV,
deduced by the Matano procedure, by equation {(11.28), L.e.

DE = DV(1—volume fraction of vapour)2. {11.95)

(i} Concentration-dependent diffusion coefficrents
Clearly from (11.92) and (11.94) the value of ¢/I* for which M,/M_ has
any given value, and in particular the value of (¢/[%),, is independent of
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F1a. 11.3. Rate of uptake of chloroform by polystyrene sheot at 25° C.

M, when the diffusion coefficient is constant. Fig, 11.3 shows a set of
curves obtained experimentally by Park [ 26 for the uptake of chloroform
by a polystyrene sheet, each curve corresponding to a difierent vapour
pressure and hence a different M,. It is evident that (£//*), decroases
considerably the greater the value of the final uptake M, and therefore
the diffusion coefhicient is not constant but increases as the concentration
of chloroform is increased. The problem is to deduce quantitatively how
the diffusion ceefficient is related to concentration, given the half-times
of sorption experiments carried out for & number of different vapour

pressures.
Application of (11,94} to each of the curves of Fig. 11.3 yields some
mean value D, say, of the variable diffusion coefficient averaged over
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the range of concentration appropriate to each curve. The method
devised by Crank and Park [26] depends on the fact that, for any

Lo
experiment, D provides a reasonable approximation to (1/C) f Daco,
0

where 0 to (, is the concentration range existing in the sheet during that

20¢

ok
Ln

o

DC, %< 10" cm 2 sec.”

n

5 10 15 20
Surface percentage regain C,
1. 11.4. Graph of D as a funetion of ),

experiment. This was shown to be so [27] by evaluating numerical
solutions of the diffusion equation for a number of variable diffusion
coefficients. By applying (11.94) to the sorption-time curves so calcu-
lated, values of D were obtained and compared with corresponding

Co _
values of {1/C,) J' D d¢. Thus by deducing a value of [ from each of
0

the experimental curves of Fig. 11.3 using (11.94}, and assuming the
approximate relationship

Uy
D = (10, j pde, (11.96)
]

a graph showing DC, as a function of C can be drawn as in Fig. 11.4
and numerical or graphical differentiation of the curve with respect to
C, gives a first approximation to the relationship between D and (.
Numerical data are given in Table 11.1.
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TaBre 11.1

Diffusion coefficients for chloroform in polystyrene at 25° (.
All diffusion coefficients are in em.*{sec. } 1010

1st Approximation 2nd Approximation
% 1 1
Regain 7. D dac o D dac
at equt- (2fi%), o 5 e
librinum | sec.fem.3 D em. 3 sec. D em.2faec b
= (, w 10 expt. 1010 D eale, 10-10 D cole.
5-0 0-024 0-024 0-024 | 0-024 024 0-G24 | (024
(extrap.) {extrap.)
(R 1-130 00437 0-043% 0-116 | G-0504 0-039 012 { 0-G44
89 0-620 0-0797 0-0797 0-288 | (-103 0-062 0-29 | 0-080
12-9 0-288 0-171 0171 G-780¢ | 0-238 0125 0-40 | 0-17
13-2 0-248 0-19% 0-199 3-970 | 0-276 0-144 0-54 | 0-2{)
15-1 0-151 0-326 0-326 3-36 | 0-5683 0-216 1-6 | 0-33
16-3 (0-0583 0-848 0-446 14-5 1-20 0-583 g-6 0-85
16-8 0-0481 0972 972 16-0 . - .
APPTOX,

In many cases this first approximation may be sufficiently accurate, but
successively better approximations can be obtained as follows. Sorption-
time curves are calculated numerically for the D-¢' relationship ob-
tained as the first approximation, there being one calculated curve for
each experimental curve of Fig. 11.3. The D values derived by applying
{11.94) to the calculated curves are shown in Table 11.1, column 6.
Comparison of these caleulated U values with the experimental ones

'y
and therefore with the first estimate of (1/C,) [ D dC shows the errors
' o
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mvolved in use of (11.96) for this particular type of diffusion coefficient.

,
2ol

Lo
The correct relationship between D and (1 /Cu}fD dC for the D-C
o

relationship given by the first approximation can be plotted, and from
Co :_“:

this improved values of (1/C) f 1 dC can be read off for the experi- |
0 S

mental values of D. By repeating the differentiation, a second Approxi- i

mation to the diffusion coefficient D is obtained. The process can be . |
repeated till the calculated and experimental values of D agree to the i
aceuracy desired. Resuits are shown in Table 11.1.

In this form the method can be used whatever the relationship
between D and € but the calculations involved in evaluating successive
approximations are tedious and laborious.
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(iii) Fzponential and linear diffusion coefficients

In many systems the diffusion coofficient is found to depend either
Jinearly or exponentially on concentration, and so for these cases cor-
rection curves have been produced showing the difference between
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FF1g. 11.5. Correction curves for sorption method. Percentage difference is
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""?f'ﬁﬂg{"ﬁmﬁlgi o 1;. I 3 Sl

La
(DiD)—(1/C,) j ({[/D,} dC expressed &8 a percentage of D{D, These cuarves
0
: can be applied to both half-times and initial gradients.
Co _
(FHCy) _[ (D{D)}dC and D{D,, where D, is the value of [} at zero con-

¢ 0 .
contration of vapour or whatever the diffusing substance is. The
correction curves are shown in Fig, 11.5. By using the appropriate
A eurve, the diffusion coefficient -concentration relationship can be deduced
e

| as readily from sorption experiments as from steady-state measurements
| using (11.47) or (11.50). In each case, differentiation of j DdC to

| obtain D is the only mathematical operation involved. Park [28],
incidentally, has used a method of differentiation which is considerably
: more accurate than direct graphical differentiation if 12 is an exponential

Co
function of €. Denoting f (D/D,) dC by I, he plots log,, I against (; to
L1

obtain a curve which approximates to a straight line. Then dlog {/d(;
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18 easily obtained by graphical differentiation and D follows from the

expression D/D, = dI/dC, = 2-3031d log,, 1/d0,. (11.97)

The method for exponential and linear diffusion coefficients is therefore
as follows:

1. Plot sorption-time curves for different vapour prossures as in
Fig. 11.3.
2. Calculate J) for each curve using (11.94).
.3. Extrapolate D to zero concentration to give D,
4. Read off from the appropriate correction curve of Fig. 11.5 the

Cy _
‘value of (1/C}) f (D)D) dC = 1[0, for each DID,,

1
Differentiate I using (11.97) or otherwise to obtain D/D, and

hence D.

A second approximation may be necessary due to the uncertainty in
the first estimate of D,. It is, of course, neeessary to have some idea
of the type of diffusion coefficient involved before the choice of cor-
rection curve can be made. For example, if the initial choice ig
exponential, but the final result is nothing like an exponential funetion,
and if use of the linear correction curve also fails, then the method of
successive approximations has to be carried out as described above in
§ 11.64 (ii).

oL

11.65. Sorption-desorption method

“An extension of the sorption method, which uses both sorption and
desorption data, is very quick and simple to use in cases to which it is
applicable. If D, is calculated using {11,94) from the half-time for sorption
and D, from the half-time for desorption over the same concentration

-_— —_ Cﬂ
range, then (1), 4-D,) is a better approximation to (1/C}) f D dC than
0

either D, or D, separately. Often it is a very good approximation and
has been used without correction in some instances |29, 30]. If the range
in {) 1s small enough for this to give the accuracy required, the method
ts particularly simple since there is no need even to extrapolate ta obtain
D, at zero concentration. Kokes, Long, and Hoard [30] have applied
the sorption-desorption method to successive small coneentration ranges
so that the approximation 4(D,+D,) can be used with more confidence
than it could if applied to the complete concentration range. Should 16
be necessary to obtain higher accuracy, the correction curves of Fig.11.6
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Ca
can be used to obtain better estimates of (1/G;) J D d¢. These are then
' 0
differentiated as in the sorption method to obtain L.
| ’ .
‘ n’ﬂa“ u-"""-—--_
Half times
-------- Imtial gradients
i
810
=
5
=
o -
i °
A E
i
1 ) N
x
. | n
11} 1 _ . 30
! Z {‘55 + D D.} -f D o
F1f:. 11.6. Correction curve for sorption—leserption methed. Percentage

5
difference i& (1/C) f (DD, 20—3{ D+ D;)/D, expressed as a percentags of
0
$#D,+ DD,
[N.B, The differences here aro opposite in sign to those of Fig. 11.5.]
11.66. UVse of nitial rafes of sorption and desorplion

In § 11.64 we deduced an average diffusion coefficient from the half-
time of a sorption curve by using (11.94). It is also possible to deduce
an average diffusion coefficient from the initial gradient of the sorption
curve when plotted against the square root of time. Thus, in the early
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stages, for a constant diffusion coefficient D and a sheet of thickness I,
© have (§ 4.32
wo ave (5 4.52) M, _ 4D} (11.98)
M, gt itf '

1f the initial gradient, B = d{M,/M,}/d(t{I?}}, is observed in a sorption
experiment in which D is concentration-dependent, then the average
diffusion coefficient, D, deduced from (11.98) is

D= ;”_GRE. (11.99)

Cle
'This, too, provides an approximation to {1/C,) j D) dC, and the sorption
0

method can proceed as above but starting with the new values of D
given by (11.99) as original data. Initial rates of desorption can be used
similarly. Correction curves for exponential and linear diffusion co-
efficients are shown for the sorption method in Fig. 11.5 and for sorption—
desorption in Fig. 11.8.

If the sorption curve when plotted against (¢/I%)t is approximately
Iinear as far as M,/M_ = 1, and this is often true in practice, then it is
easy to see that (11.94) and (11.99) yield roughly the same diffusion
coeflicient, Thus for a linear sorption curve we have

R = 3/Jt/13), (11.100)
and so from (11,99) we find

D— 514 (212}, = 0-049/(¢f12),, (11.101)

which is the same as (11.94).

11.67. A step-function approximation fo the diffusion coefficient

Prager [31] has described an alternative method of deducing the
diffustion coeflicient-concentration relationship from sorption data.
The principle of the method is to approximate to the actual concen-
tration-dependence by a step function. For such a function the differen-
tial equations can be solved analytically {Chapter VII) and the heights
of the individual steps computed. The step function is then smoothed
out by an averaging process.

The concentration range to be studied is divided into a number of
intervals and we assume that the diffusion coefficient D{(') has a con-
stant (although as yet unknown) value in each. For a diffusion experi-
ment covering only the first econcentration interval D is constant
throughout and may be calculated if M, is known as a function of {,

Faie
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using the solution {(11.98). For a diffusion experiment covering the first
two intervals, IHC) is given by a step function whose value in the first
interval is now known from the first caleulation. The value in the second
interval may be calculated as described below using the equations of
§ 7.22. This procedure may be continued so as to caleulate the value
of D(C) in the third interval, its value in the first two being known,
and so on, until the entire concentration range has been covered. The
method as desecribed here is based on the treatment of diffusion with
discontinuous boundaries given in §§ 7.22 and 7.24. An alternative
treatment is given in Prager’s original paper [31].

Before the concentration in the centre of the film attains an appreciable
value we may consider diffusion to take place into a semi-infinite medium,
If we have a two-step diffusion coefficient such that for concentrations
greater than Oy, DD = I}, and for concentrations less than Oy, D = D,
then the diffusion process can be described by the equations of § 7,22
if D, and 1), are known. In particular, o M,/éf is given using the nomen-

clature of that section by
oM, 24D

= (11.102)

Here we have the opposite problem, i.e. given 83 /ét from an experiment
and ), having been calculated from the previous experiment, to find D,.
If M, is measured as a function of #* this means essentially that AD} is
measured. Hence if we estimate D), k is determined from (7.15) of § 7.22
and a new D), follows from (7.12) of the same section. Successive estimates
of D; are made till agreement is obtained between estimated and final
values of £, The graphs shown in Figs, 7.3, 7.4, and 7.5 of Chapter VII
can be used to help the calculation.

The method is readily extended to a three-step diffusion coefficient.
and then to higher numbers of steps. Thus if

D=D, C>C0>C0y, (11.103)
D=D, C<0C, (11.104)
D=D, Cy>0C>0y, (11.105)

the processis deseribed by the equations of § 7.24. Again 4 D} is measured
and D),, D, are known from previous experiments. We estimate D, and
calculate %, from (7.82) and %, from (7.38). Finally we check k,, k,, I,
in (7.39), repeating if necessary as before. The number of equations of
the type (7.38) and (7.39) increases with the number of steps in the
diffusion coefficient but the method still holds.

o824 B
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The funetion D(C) obtained in this fashion, being a step function,
does not correspond to physical reality. Prager suggests a way of
smoothing it by calculating the average values D; given by

Cy
D, = (1,{@,)[1}@0 - (ljk)é:lf}i} (11.108)

where (', Cy,-.., Cser, Oy 870 the coneentrations at which the calculated
D changes from one constant value to another. Then D is fitted by a
polynomial in € and D{C) is recalculated from the equation

D(C) = D,+CdDjdcC. (11.107)

Prager [31] has applied this method to the isobutane-polyisobutylene
system, taking five intervals in concentration. His result agrees quite
well with that obtained from sorption and desorption experiments using

the approximation

'k
D, = (1{Gy) | D dC = 4D, +D,), (11.108)
0

discussed in §11.65 and applied here to successive concentration
intervals 0 to (.

11.68. Analysis of sorpiion data by the method of moments

Fujita and Kishimoto [32] have described an alternative method of
analysing sorption data based on the method of moments discussed
earlier in § 9.6, This method is restricted to diffusion coefficients which
increase monotonically throughout the relevant range of concentration.
In many systems this is not a serious restriction. The method ceases to
be reasonably accurate if the diffusion coefficient increases by more than
thirtyfold. Subject to these limitations, however, the method has the
double attraction of being fairly simple to use and of avoiding the need
for graphical differentiation at any stage. Fujita and Kishimoto express
the amount of diffusing substance taken up by a sheet at time ¢, when
the concentrations at the surfaces are constant and denoted by C, in the

form M, == 2K(C). (11.109)

This iz the same as (11.98) remembering that M, = IC;. The sheet is
assumed to be behaving semi-infinitely. In (11.108), K({,) is.a function
of €, only, and its form is given by sorption experiments carried out for
different values of C, i.e. different vapour pressures or different concen-
trations in the solution in which the sheet is placed. The problem is
to deduce the diffusion coefficient-concentration relationship from the
experimental data given in the form of the function K {C}).
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It was shown in § 9.6, when discussing solution of the diffusion
equation by the method of moments, that

K(C) = CoDHO) g+ o), (11.110)
where « is given by
30 [ D(C)
.[D(n dC, (11.111)
and B is the larger, positive root of the quadratic equation
%)2 .m&w g _

Here D(() is the value of the diffusion coefficient when the concentration
is C, D(C,) and D{0) being the values for concentrations C, and zero
respectively. Introducing the quantities f(C) and g(C}) defined by

f(CYy = D(C)D(0) (11.113)
C
and g(C) = (1/0) f (D(C")) D(0)} dC”, (11.114)
0
and then writing v = B4(C,) = «B/30, (11.115)
y = gl if(Co)s (11.116)
equation (11.112) reduces to
720224 (30y — 108)z—+ 3y = 0. (11.117)
By solving (11.117) for x and using the larger positive root we obtain
_ 5a—15y[ 1080y |}
— I — . N |
R e (-18)

If now we confine attention to diffusion coefficients which increase
monotonically with concentration increasing we have the condition

0 <y< 1, (11.119)
With this in mind, the right-hand side of (11.118) may be expanded in
powers of ¢ to give 9 10
— 1. 11.12
? 29( 2?) (11.120)
if we neglect torms in %® and higher terms. But from (11.110} and
{(11,115) we have
64 F}(gﬂ)} — (142022, (11.121)
0

where P(C,) = {K(C)/{D(0)CE. (11.122)
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Substituting for » from {11.118) and rearranging in a series of powers of

y we find 3 F(C,)
- - 0= 1—4, 11.123
S (H-129)
which becomes on using (11.116)
o
JG) = 79{Co) (11.124)

1 —3F(C)9(Cy
From (11.113) and (11.114) we have

A d%. (€ aC), (11.125)

and so (11.124) can be transformed into the following differential
equation for g,

I T y
— 1l 11.126
dly Co 13 F(Co)fg(Co) { )
On substituting g(C,) = exp{g(Cy)}, (11.127)
(11.126) becomes

dg 1 5/27

i = — 1%, .

16, = G i F Gy H129)

It followe from {11.114) that g(C;) tends to unity as ¢, approaches zero
and hence the starting condition for the integration of (11.128) is

g=10 (,=0. (11.129)

Since, in general, dg/dC, must remain finite for any G, it follows from

(11.128) that 5/27
li -1} =
e T B U110
from which, because of {11.129) we have
lim F(C,) = 110/81. (11.131)

l:-'n"-i'ﬂ

From (11.131) and (11.122) we deduce an equation determining 1(0), 1.e.

2
D(0) = £ lim {K (C“)} . (11.132)

Cy—0 Cﬂ
It is easy to see from {11.98) and (11.109) that the ratio 81/110 is an
approximation to }r. Combining (11.125) and (11.128), and using
(11.113) we obtain

D{0)explg)

DIy — 3T , 11.133)
(o) 1—§F(Chlexp(—q) { |
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from which D can be deduced for a given C; if ¢ nas been obtained by
solving (11.128). The successive steps in the method are as follows:

1. Plot {K(C,)/Ci}? against C, from the given sorption data and
extrapolate to (), = 0.

2. Determine D(0) from (11.132).

3. dubstitute this value of 2(0) in (11.122} and draw a graph of F(C,)
against (}.

4. Integrate equation (11.128) either graphically or numerically,
using thig funetion F((}), with the initial condition (11.129), and
so obtain g{C}).

5. Substitute q((;), together with D(0) and F(C)) in (11.133), fo
give D{(C,).

Clearly this method is more accurate the smaller v is, but the main
limitation is the range of application of the method of moments. Fujita
and Kishimoto have applied their method to the polyisobutylene-
isobutane system and obtained a diffusion coefficient in good agreement
with that found by Prager [31} using his step-function analysis.

11.69. A polyromial approximation to the diffusion coefficient

Jenn Linn Hwang [33] has proposed a method of calculating diffusion
coeflicients from sorption data in which he first develops a series solution
of the diffusion equation for I} = Di(l +ac+Be*+...). By inserting the
experimental data he obtains a set of linear equations from which, in
theory at least, the constants D, «, 8... can be determined. He draws
attention to the need to tabulate a number of subsidiary functions to
facilitate the use of his method but he does not develop this approach
numerically.

11.610. Sorption by sheets initially conditioned to different uniform
concentrations

Barrer and Brook [34] have used a method of measuring the concen-
tration dependence of the diffusion coefficient based on a series of sorption
experiments. The concentration, €, at the surface of the specimen is
kept constant throughout the series but the inifial uniform concentration,
C1, through the sheet, is different for each experiment. Denoting again
by M, the amount of diffusing substance taken up by the sheet in time ¢,
we may write as in (11.98) and (11.109) for the initial stages of sorption,

M, = K(C)), (11.134)

Here K is different for each experiment, being a function of €}, the initial
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concentration through the sheet. A curve showing K as a function of (;
must cut the axis of €, at the point ¢ = C|, because then the initial rate
of sorption, and henee K, is zero, there being no concentration gradient.

&
Fra. 11.7. Curve of K against ¢, approaching asymptote from above because _
I} decroases as (! increases. :} E
-
C.‘r
Fro. 11.8. Curve of K against C, approaching asymptote from below because
D) inereases as € increases,
Thus the experimental curve of K against €|, when extrapolated, must
always pass through C; = (, when K = 0. Furthermore, as the interval
C,—C, is decreased progressively in successive experiments the sorption !
process can more and more nearly be described by the diffusion equation i
and its solution for a constant diffusion coefficient, i.e. by
M, = 4{Cy—C)( Dy}, (11.135) - 7

where D, is the value of the diffusion coefficient at the concentration Cj.
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Hence, as (', approaches (), the curve of K against ¢, approaches
asymptotically a tangent of slope —4I/x!. This differs by a factor of
two from the expression given by Barrer and Brook, because they con-
sider the amount entering through one face of the sheet, whereas we

K

Fra. 11.9. Curve of K against €, using date from both sorption and desorption
experiments,

include both.. I the experimental curve is sufficiently well defined by
the data obtained from the sorption experiments, the tangent can be
drawn and D, deduced from its gradient using (11.135). By repeating
the series of experiments for different values of the surface concentration
Cy, the relationship between the diffusion coefficient and coneentration
18 obtained. If, as in some zeolites, D decreases as €' increases, then the
curve of A against (| approaches the tangent from above as in Fig. 11.7.
If, however, D increases as (' increases, which is often the case in solvent-
polymer systems, then the tangent is approached from below as in
Fig. 11.8, Thus the curves of K against O, show at a glancé the nature
of the concentration-dependence of I). If it is practicable to carry out
desorption experiments as well as sorption, that is to include values of
(| which are higher than the surface concentration €y, the curve of K
against ¢} will cross the €| axis at (), = €}, as in Fig. 11.9. This should
allow the tangent to be drawn more accurately since extrapolation is
avoided.
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11.7. Weighted-mean diffusion coefficients

In § 11.66 we looked upon the average diffusion coefficient deduced
from the initial rate of sorption by (11.99) as an approximation to

'y
(1/Cy) j D dC. Subsequent calculations have revealed that the initial
0
rate of sorption is much more closely controlled by a weighted-mean
o
diffusion coefficient, namely (3/ C@)I CiD d(, where 0 to C, is the
0

concentration range involved. This is found to hold to within an
accuracy of 1 per cent. for diffusion coefficients increasing with con-
centration increasing (over ranges varying from 1 to 200-fold) in one or
other of the ways shown by the curves 1, 3, 4in Fig. 12.4,

For the same diffusion coefficients the initial rate of desorption is
determined to the same accuracy by a different weighted-mean,

o
(1:85/C3%) [ (Co—C)*%D dC.
0

It is a matter of some interest that a single type of weighted mean
represents sorption rates and another single one desorption rates for
such a wide variety of diffusion coefficient-concentration relationships.
These weighted-means are useful both from the point of view of the
evaluation of D from sorption or desorption data in concentration-
dependent systems, and also in estimating what initial rate of sorption
or desorption is to be expected in a system for which the diffusion
coefficient-concentration relationship is known.
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XI1

SOME CALCULATED RESULTS FOR
VARIABLE DIFFUSION COEFFICIENTS

12.1. Steady state

Ix the steady state the concentration distribution through a plane sheet,,
in which diffusion is assumed to be one-dimensional, is given by the

solution of the equation
d{.d
D= = 12.1
dm(D ffxc) > b

where 1) is the diffusion coefficient, not necessarily constant. The
corresponding equations for the hollow cylinder and sphere are obvious.

12.11. D a function of concentration
If D is a given function of concentration, i.e.

D= Dﬂ{l+f(0)}!
the general solution of {12.1) can be written as
Dﬂf (14+£(C)} d4C = Az B, (12.2)

where 4 and B are constants to be determined by the boundary condi-
tions. The corresponding solution for the hollow eylindrical tube is

D, [ {14+£(C)} dC = Alogr+ B, (12.3)

and for the hollow apherical shell,
' 4
‘D“J +£(0)}d0 = — 2+ B. (12.4)

When the boundary conditions for the plane sheet are
U= (), x = 0, (12.5)
¢ =, xr =, (12.8}
equation {12.2) becomes, using Barrer’s [1] nomenclature,

CA-F(C)~C—F(O) _ =
OFF(C)—C—F(C) — 17

(12.7)

[
where F(C) = J'f{(:"}dc’. (12.8)
L)
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Similarly, for the cylindrieal tube or spherical shell with boundary

conditions C =, ¥ o= Py, (12.9)
O — 02! ¥ = TE’ {12.10]

" \x
JANAN
AN

-4

N\

-2

{2 -4 06 (0 H 1-0
xif

F1a. 12.1. Typical steady-state concentration distributions across a membrane
when I} = D J{14+-f({C);. €= 1,0, = 0.

Curve 1; fiC) = al; g = 100, Curve 4: f(C" = 0 (aimple Fick law obeyead).
Curve 2: fi!) = al'; a = 10, Curve 6: i) = —gl': o = -5,
Curve 3: fiC) = el a = 2, Curve 6: flth = —aCia = 10,

we find for the cylinder
O+ F(C)—C—F(C)  logr,—logr

— , 12.11
Ci+F{C)—CG—F((y)  logr,—logr, ( }
and for the sphere
Gl'—I"F[Ol}_OmF{O} . Ta ?'1—‘.?" [1212)

O+ F(G)—C—F(Cy)  ri—ry 7
For any given relationship between D and (), the integrals F{C) are
readily evaluated either analytically, graphically, or numerically, and
the concentration distribution follows immediately from the above

equations. Some typical examples calculated by Barrer [1] are repro-
duced in Figs. 12.1 and 12,2, They illustrate the general conelusion that
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when D) increases as € increases the concentration-distance curves in the
steady state are convex away from the distance axis; but when D
decreases as ( increases the curves are convex towards that axis, If D
first increases and then decreases or vice versa, with increasing C, a
point of inflexion appears in the concentration-distance curves.
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02 04 06 08 x 140

C
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//’

Fis. 12.2. Typical steady-atate concentration distributione across a
membrane when D = D{14+fC)}. O, =1,0, =0
Cutve 1; iICY=aebCn = 1,8 = 3. Curve 5: fiC) = 0 {simple Fick law obeyed),
adC —al
Curve 2: fIC) = T e it =100, b = 1. Curve &; fiC) = 1_4-—!:1'3’ =08 0=1,
Curve 3: fii = —gCb4 20 a =1, 06 = 2. Curve 7: fiC) = —aCl; 2 =1,

Curre &: fil) = —~—38=1,b= 1. _ Curve 8: fiC) = —aCt;a =1,

12.12. D a function of distance
If we have D = D{1+4f(x)}, (12.13)
or D = D{1+f(r)}, (12.14)

for the sheet or eylinder and sphere, the general solutions (12.2), (12.3),
and (12.4) are to be replaced by

dx
D,C=A f m-,tﬂ, (12.15)
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dr
D,C = Af 1B (12.16)
0 3
r{l4-f(r}}
or E“C:Af _ ar + B, (12.17)
rAL+f(r)]
0 \
0-2 04 06 0-8 -0
xf{{(l=0D
Fic. 12.3. Typical steady-state concentration distributions when
D=DJJ1+fzl). Oy =10, =10
Carve 1: fix) = —azx; a = 099, Curve 8 fiz) = bx+axt;a=1,5 =2,
Curve 2: f{z) = —azx, a = 080, Curve 7: fizy = brtaz*; & = 225 b =
Curve 3; f{z) = & (simple Fick law cheyed}. Curve 8; fix) = ax; a = 0,
Cuarve 4: f{z) = ax; a = 1-0. Curve 9: fiz} = ax; a0 = B0,

Cuarve §: flz) = ax; 2 = 20

respectively. Denoting by 7 the integral on the right-hand side of each
of these equations, taking z = 0 or r = 0 as the lower limit and 7, 7,
the values of 7 at the two boundary surfaces, we find
o—C 51
{;1_02 - II_IE‘
Concentration distributions follow immediately for given f(x) or f(r).

Barrer [1] shows typical curves for f{z) = ax and f{x) = bxr+ax® They
are reproduced in Fig. 12.3. When D is an increasing function of x the

(12.18)
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curves are convex towards the axis of x and when D is a decreasing
function of x they are convex away from that axis.

12.13. Rate of flow

We saw in § 11.61 that the rate of flow, F, through unit area of a plane
membrane of thickness [, when the concentrations at the two faces are

Cy, Gy, is given by 0,
F = (1/]) f Ddc, (12.18)
o

where D is & function of concentration €. The corresponding argument
for a eylindrical shell of inner radius #, and outer radius 7, is as follows,
Let I denote the rate of flow per unit length of eylinder. Then

F = —2urD dC/dr, (12.20)

which on integration becomes

f—-mdr__fl)da (12.21)
2oy
But in the steady state F is independent of » and hence we find
Ty
= {2n/log(ry/r,)} J' D do, (12.22)
Cs
The corresponding result for a spherical shell is
C
o
P o= 4y 170 fDdO, (12.23)
Fa—T
'y

where F now refers to the total flow through the shell. When D is a
function of & or r given by (12.13) or (12.14) it is easy to see from
(12.18) that

F=—-DdClde = — D, I ?“ for the plane sheet, (12.24)
C CE 1
F=_—-22D"1 I , for the cylindrical tube, (12.25)
O — Cﬂ .
and F = 47D for the spherical shell. (12.26)

“I —1I’

12.14. Asymmetrical diffusion through membranes

Hartley [2] has indicated that in any membrane for which the diffusion
coefficient depends both on concentration and on distance through the
membrane, different rates of penetration in the forward and backward
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direction are to be expected in general. Writing D == f(z, C) we have

for the rate of flow, F,
P = —f(z,C)dC/dx. (12.27)

If the function f(x, C) is expressible as the product of two separate
functions f(z) and f,(C?, (12 27) becomes

7
) dC, 12.88
f o J £:(C) (12.28)

where the boundaries of the sheet are at * — 0,x = [. In this case, since

fl{mi flt-! 5’ (12.29)

the permeability of the membr&ne will be symmetrical. The funetion
Sz, C) will not usually be separable in this way, however, except in the
simple cases in which £, (%) or f,(C) is constant, and so it is unlikely that
the membrane will be symmetrical unless D is constant or a function
of either x or C alone.

12.15. Diffusion of one substance through a second substance which is
confined befween membranes

A point of considerable interest concerning steady-state diffusion was
raised by Hartley and Crank [3]. Let a substance B be confined between
membranes which are impermeable to B. Also let the concentrations
of 4 in contact with the membranes be maintained by supply and
removal of 4 through the membranes from and to reservoirs of vapour
or of solutions of 4 in B or in any other substance which cannot penetrate
the membranes. It iz convenient here to use the ideas and nomenclature
of § 11.3. Then in the steady state, sections at fixed distances from the
membranes are fixed with respect to amount of ecomponent B, and the
rates of transfer of 4 across all such sections must be equal so that

—DE 20B[a¢ . = constant. (12.30)
We will assume that the partial volumes are constant. Equations
(11.21), (11.26), {11.28) are
dfp = Vi Opde;  dOLJACE = (VO D§ = DV(V; Ch»,

(12.31)
and on substituting these relationships in {12.30) we have
__ DV aQv
D . 04 _ constant, (12.32)

Ve
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: eCv 20%
On usin vV, 24,y -8B _ .
g 4 o -+ B o 0, [12 33)
DV agk
12.32) hecomes "B — constant. .
( ) V,C% ox (12.34)

If, instead, we maintain the steady state by substituting membranes
permeable only- to B and supplying and removing B in the reverse
direction we find, by interchanging 4 and B in (12.32) and reversal of
signs to allow for the reversal of direction,

Dv 2C%

7, AT = constant. {12.35)

It is evident that equations (12.34) and (12.35) require different concen-
tration-distance functions. The steady state is therefore different, even
 between the same concentration limits, according to whlch component
is copstrained and which is free to diffuse.

This difference is particularly evident in dilute solutions. We shall
assume here, in the interests of simplicity, that D¥ is constant. The
concentration of 4 being very low, ¥, C% can be assumed to be unity.
Equation {12.32) now becomes

v |
DV E.% = the constant rate of transfer of A. (12.36)

o
This is valid for A diffusing and B restrained.
Substituting from {12.33) we may modify (12.35) to

¥
DY ecy DY .,Ei [l{}g ") = constant rate of transfer of 8. (12.37)

Vi CY% oz Vg

This is valid for 4 restrmned and B diffusing between the same concen-
tration limits.

It will be seen that when the dilute component 1s diffusing its con-
centration gradient under these simple conditions is linear. When the
same limits are maintained by diffusing the ‘solvent’ through membranes
impermeable to the ‘solute’, the gradient of the logarithm of concentra-
tion of the latter iz linear and hence the concentration itself varies
exponentially with distance.

When the total fall of concentration, ACY, of the dilute constituent
is small compared with its mean concentration, (12.36) becomes

V
rate of transfer of 4 = DT ACY, {12.38)
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and {12.37) becomes

DV ACY,

12,
I Ccrvvy (12.39)

equivalent rate of transfer of B =

where [ is the distance between the membranes. The rate of diffusion
: of water in such a system down a given, small, mean vapour pressure
" gradient is therefore not expected to be constant but to be inversely
proportional to the mean concentration of the solute. It will further be
proportional to the diffusion rate of the solute given by (12.38). Thus
if water diffuses from 99-1 to 99-0 per cent. relative humidity through
a layer containing hydrogen chloride, it will do so about twice as rapidly
as when the layer contains sodium chloride. If the diffusion occurs from -
9(-1 to 90-0 per cent. relative humidity, each rate will fall to one-tenth
of its former value.

These conclusions refer to the case where the membranes are separated
by a fixed distance. If, as is more likely to he true in practice, the
membranes confine a given amount of component 4 so that the volume
botween them will vary inversely as the mean concentration of 4, the
distance {in (12.39) will be more nearly inversely proportional to € than
constant. In this case the rate of transfer of B will be, to a first approxi-

mation, dependent on AC', only and not on the mean value of €. This
f'; result would be obtained directly, of course, from equations in £ as in
o the treatment already given of the swelling membrane, § 11,61, Diffusion
_;L% of solvent through a constant amount of solute per unit area thus
% behaves more simply than diffusion through a constant thickness. This
%f; concluston is not at once obvious and may have some important applica-
i tions in phyainlngic'al processes. o

5 A second conclusion of interest may be drawn when we consider what

happens in such a steady-state system if the membranes are suddenly
rendered completely impermeable. Sections fixed with respect to the
membranes are now fixed with respect to volume of solution. The change
of concentration with time will therefore from now on be governed by

aOv & arm ‘
E; — a_m(ﬂv'a::)’ (12.40)

but, at the instant of change of membranes, {12.32) still holds if A has
been the diffusing component, whence

v 4
d (DVE = —mnst&ntx%% = constant X ¥ ﬂ. (12.41)

2x ox ox ax

B4 ' e
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Combining (12.40) and (12.41) we obtain

(‘-ﬂf) = —constant XV, {12.42)
it o

. a0, AN PP
SINCE (—Ei_t_) dt 4 (—a-;) dr = d04 =0, (12.43)

for C¥% constant. Now the constant in (12.30) and (12.42) is the rate of
transfer of A at the steady state in standard units of amount. Multiplied
by ¥, it represents the volume rate of transfer of 4, or, since we are
always considering transfer across unit area, the linear veloeity with
which A appeared to pass through the system.

We thus find that, at the instant when A ceases to flow through, the
whole concentration-distance distribution commences to move back-
wards at the veloeity with which substance 4 previously passed through
the membrane. With increasing time, the distribution will, of course,
fAatten out from the low concentration upwards as the substance 4,

diffusing down the gradient now, accumulates.
1t is evident, therefore, that in the steady state during the passage
of substance A there was superimposed on the true diffusion process
a rea] flow of the whole system.

12.2. Non-steady-state conditions

We present here, in graphical form, a collection of solutions of the
equation for diffusion in one dimension. They have been evaluated by
one or other of the methods described in Chapters IX and X, and refer
to various types of concentration-dependent diffusion coefficients and
three simple boundary conditions. BSolutions for the infinite medium
refer to the initial condition

C = Cl:- x <0, (12.44)
¢ = C,, x > 0. (12.45)
For sorption in a semi-infinite medium the conditions are
C=¢C, =x=0  t>0, (12.46)
¢ =0, x> 0, — 0, (12.47)
and for desorption
C=0 x=0 t>0, (12.48)
=0, x>0 t = 0. (12.49)

One example of each type of diffusion coefficient considered is shown
in Figs. 12.4 (a) and 12.4 (&),
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F1a. 12.4. Some typical diffusion coefficients.

1. BB, = 1410{1 —& %), 5 DD, = & ¥
2. DD, = 1+ 00log 1l + 0-5136). 8, WD, = 1/{1=3-202¢+2-877¢%),
3. DDy =145, 7. DiB, = 1/{1—0-8838c)".
4, DD, = ¥, 8, IWEB, = 1/{1—0-9¢)},
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¥1a, 12.5. Concentration-distanee eurves for D = D exp ${C— 3T+ Cal}s
where 8 is positive and given by g(C,—C,) = log (I},{D;}. Numbers on curves
are values of I4/D,. D, and D, are values of D at () and O, respectively.

12.3. Concentration-distance curves

The shapes of the concentration-distance curves are characteristic of
the diffusion coefficient and of the boundary conditions. Théey do not
conform to quite such a simple classification as do the corresponding
curves in the steady state. Thus, as we saw earlier in § 12.11, Barrer [1]
was able to write, with regard to the results of his steady-state calcula-
& tions, that whenever I increases as (! increases, concentration-distance
curves are convex away from the distance axis. Figs. 12.8 and 12.10

o
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show that this is true also for eurves relating to desorption from a semi-
infinite medium when 7 is a linearly or ex ponentially increasing funetion
of concentration. Figs. 12,7 and 12.9 show that for these diffusion
coefficients the statement holds also for sorption by a semi-infinite
medium over the greater part of the concentration range, but that there
is an important difference in behaviour in the region of low concentration.
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Fre. 12.8, !E}uncfantratiﬂn-diatanca curves for linear diffusion coefficients during
desorption for D) = Dy(1+aC{Cy). Numbers on curves are values of a.

b+ +
-

This difference is a direct consequence of the boundary condition. In
the steady state, the condition is that the concentration shall have some
fixed :va,lue, possibly zero, at the face of the membrane through which
the {?lﬂ’using substance emerges. When diffusion oceurs into a semi-
nfinite medium, however, the condition that the concentration shall
approach zero at infinity means that the gradient of concentration tends
to zero a,_t the limit of penetration into the medium. This produces g
E:lilt {;f mflexion .i;n any coneentration-distance curve which is convex
o Jil'zli{;m the dlﬂtﬂnﬁﬂﬂ a,*xis at high concentrations. The curves of
bj’} ‘du‘ relate to a i:hﬂ"usmn coefficient which increases as € increases

€5 80 at a steadily decreasing rate (zee Fig. 12.4 {a)). We see that

P en ma s _ow
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In this case the concentration-distance curves may be convex down-
wards. The curves of Figs. 12.12 and 12,13 conform with these state-
ments. In Fig. 9.12 we had an example of a concentration-distance curve
assoclated with a diffusion coefficient which passes through a maximum
value,
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-

The curves shown in Figs. 12.5 and 12.6 for mfinite media follow the
same general pattern as for the semi-infinite media, except that the
boundary conditions ensure that the concentration gradient becomes
zero at each end.

12.31. Correspondence between sorption and desorption
It (Co— ) is written for C, the diffusion equation in one dimension
is unchanged but the conditions {12.46) and (12.47) become respectively -
(12.48) and (12.49). This means that the solution for sorption when D
is & given function of ¢'is also the solution for desorption when [ is the
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samae function of (C,— (') and vice versa. For example, the sorption
curve for I} = D, e*C ig also the desorption curve for
D = D)eMCo—0) (D), e¥Caje—kC,
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Fra. 12.10. Concentration-distance curves for exponential diffusion coefficients
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This allows general statements corresponding to those of § 12,3 to be
made for diffusion coefficients which decrease as concentration increasea,

12.32. Common points of intersection

Stokes [4] has drawn attention to the fact that if a large-scale graph
is prepared from the data of Table 9.3 an interesting property emerges,
Two toncentration-gradient curves are shown in Fig. 12.14, one for a

tration being 0-1406 of that at the lower concentration. The other
Curves are omitted to avoid confusion of the diagram but on his large-
scale plot Stokes found that whatever the value of b, all his curves passed
through the point, P (Fig. 12.14) of coordinates

Yo = 1205, (dC{dy ) (C,—C,) = —0-133.
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The nomenclature here is that of § 9.35 (iii). If a similar large-scale
graph of (C—C,){(C;—C;) be prepared from the data of Table 9.4 it is
found that two common points appear, with coordinates

Yo = +0:66, (C—C)(C,—C;) = 0176,
Yo = —0-66, (C—C)/((1—C) = 1—0-176 = 0-824,
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Fi6. 12.14. Comparison of concentration.-gradient curves.

Curve I. For a constant diffugion coefficient.
Curve II. For a diffusion coefficient varying linearly with concentration, the
value at the higher concentration being 0-1406 of that at the lower concentration,

If the sorption curves of Fig. 12.7 for linear I'’s are replotted against
the variable ¥, they too pass through a common point of coordinates
Yo = 1-00, (j(4 = 0-157. Forthereplotted desorption curves of Fig. 12.8
the common point is y, = 1-09, C/C, = 0-872. When the curves of Figs.
12.9 and 12.19 for exponential diffusion coefficients and Figs. 12.12 and
12.18 for D = D,/(1—«ae) and Dyj{1 —ac)? are replotted in the same way
with [); replaced by the integrated mean-value no such common points
are found. |

Stokes [ 4] suggests that this common-point property may have a useful
practrcal application as follows. Suppose, for example, that values of
(xdCfdx)/(C}—C,) are obtained experimentally and plotted against x
for points in the vicinity of the common point P of Fig. 12.14, and the
value of x for which (zdC/dx)/(C,—C,) = —1-205%0-133 = —0-1603




276 SOME CALCULATED RESULTS FOR [§12.3

is determined. Calling this value z,, we have, since xp{(4D 1) = (1-205)2,

D, = a3/(5:81¢). (12.50)
Thus, by observing the rate of penetration of the common point in
experiments covering different concentration ranges, the concentration-
dependence of I, and hence of D can be deduced. This was not referred
to in the chapter on methods because it has not yet been exploited in
a practical case,

So far it has not been possible to deduce the existence of the common
points as a fundamental property of the diffusion equation. The exis-
tence of & common point in the concentration-distance curves had been
noted by Crank and Henry [5] previously to Stokes, though their method
of plotting their results against an independent variable, x/{2(D,#)})
(where D), is the diffusion coefficient at zero concentration), did not
bring the common point into prominence as clearly as does the use of
the variable y,. They pointed out, however, that there is some concen-

tration whose rate of penetration is governed by
C

{fﬂ dG}/{C‘I—Oz) =D,
L

for a linear diffusion coefficient, They also discussed in some detail the
effect of the relationship between the diffusion coefficient and concen-
tration on the rates of penetration of concentrations other than that
at which the common point occurs.

12.4. Sorption- and desorption-time curves

On the basis of the sorption and desorption curves shown in Figs.
12.15, 12,16, and 12.17 and of corresponding curves published else-
where [9] we may draw the following general conclusions for a system
in which the diffusion coefficient increases as concentration is Increased
but does not depend on any other variable.

(1) In the early stages, when diffusion takes place essentially in a
semi-infinite medium, the amount sorbed or desorbed is directly pro-
porticnal to the square root of time. This is true, icidentally, whatever
the relationship between the diffusion coefficient and concentration, and
follows directly from the fact that for the prescribed boundary condi-
tions concentration depends on the single variable /¢ (§ 9.31). When
D increases with concentration Increasing, the linear behaviour may
extend well beyond 50 per cent. of the final equilibrium uptake in the
case of sorption. The same is true for desorption when D decreases with
concentration increasing.

(1) When they cease to be linear, the sorption and desorption curves
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plotted against (time)! each become concave towards the (time)t axis,
and steadily approach the final equilibrium value. This is true for all
the calcuiated results obtained for the initial and boundary conditions
(12.46), (12.47), (12.48), (12.49) and it is reasonable to conclude that it
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Fre. 12.15. Berption curves for D = D (1 +aCfC,).
Numbers on curves are values of o,

18 a quite general result though no satisfactory general proof has vet
been produced. It is an important property because sorption curves
have been observed experimentally [7, 8] which show points of inflexion
when plotted against (time)#, i.e. there is a region in which the curve is
convex to the (time)t axis. This has been taken as evidence either that
the boundary condition {12.46) does not describe the experimental
conditions, or that the diffusion coefficient is a function of some variable
other than concentration. Prager [6] has given a general proof that
sorption and desorption curves when plotted against time can never
become convex to the time axis, but this is a less stringent restriction
than the one just put forward. His proof is as follows.
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Wo wish to show that the integral

M, = f Clzx, t) du, (12.51)
]

obtained as a solution of

l'ﬂlllj b | i | | : H 1TT i | 111 1Ll T 1

- A
T ] T T = P T

& E'( e

—— —
&t dxy dxl’ (12.52)
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01 02 03

with the conditions
¢ = , = constant, x =0, xr =1, £ = 0, (12.53)
=1, 0>l t =10, {12.54)

cannot yield an inflexion point when plotted against ¢. The diffusion coefficient,
£, 18 a function of concentration € only and is always positive. On writing

o
5(C) = [ D(C7)dC, (12.55)
1]

g% da
éxt o’
with conditions & = S, x = (0, r=1, : >0, {12.57)

& = O IR A t =0 (12.58)

(12.52) becomes IXa {12.56)
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Furthermgore, since the rate of transfer across unit area normal to the z-direction
is given by —DeéCfdx = —s/éx, we have
aM; 2( E'a) 12,50
& “\axl,_, (12.59)

allowing for the symmetry of the problem. Because dM,/dt is infinite when ¢ = 0,
it follows that if there is to be a paint of inflexion at some later time, dM,/d¢ must

10 di3is hnaeeEe TR AT
09 : S T
! : . " Al b -
: ; o | : L 1
0-8 i H + zap 1
o $ ok i - ¥
. T Q, L 1
3 - ﬂ @ q*" ] T
E -7 o : .;:..D T
2 "'1' Tim o H
= SEESAAS,
§ u-!ﬁ - 1: E.—.‘?q': s -"'.Q ; : 1| T
L, F s ot a' [ ¥ -y H
S : o
E : E:r o iF 'rJ T T T n
L 035 HEFHE A : :
o i HH A+
frear) T b ;' L +
£ ; i Eetiststadne
= 04 B : i HEE
g il T T
3= o Sstasigays i ; t : 1
D B ses NepLIgEEY i : ' :
& 03 HH : : : I
L-L! IJ— - [ ' :-n. s r\.;|| - -=- WETEEEEE Y S al- al Xz I'u.u
¥ : A NER SRS Rs R R RANY
(-2 ﬂ:ﬁq i
O- 15 T ]
D’ : & t 6 i I

6 07 08 09 10 1
(D, ek
Fiz. 12.17. Sorption and deaorption eurves for exponential diffusen coeflieient

D == D, ekC/Cs, Numbers on eurves are values of e, being ratio of Dat( = O to D
at 0 = Q.

&1 02 03 04 05

go through a minirnum, and so {8s/82), ., must go through a meximum as a function
of £, This in turn requires that there is some finite length of time, extending just
beyond that at which the inflexion is supposoed to occur, during which

d E}a)
E B - < . (12.60)

Algo, since 8 = &, is constant at * = 0 and = = I, &2/8¢ must also be ncgative
during that time near £ — 0 and x = {. We now show that this is impossible
for the given initial and boundary conditions.

For very small ¢, the condition #C/8 = 0 holds for all z, because we cannot
have negative concentrations. Since D is positive everywhere thiz means that
Osfet — DIeC/2t must also be positive or zoro everywhere for sufficiently small ¢.
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But 8C/é¢, and hence €8/5¢, is continuous everywhere and €3/8t must therefore first
be zero if it is to becoma negative. Let x = X be the first point at which 8s/dt = ¢
excepting * = 0 or x = { where this is always true. Then as/3 will be pozitive or
zero on both sides of X, i.e, it will show & minimum at X when plotted Bgainat

:qsﬂtha.t {52 (E.:)} .
ert \et/ |,y =
4, EEE)J
or {EE (5:? x = 0, (12.81}

But it follows from (12.56) that since 8s/6f — Oatx — X » 80 alsa &%8/8x® — 0 there,
Equation (12.61) then indicates that in the next instant (6%8/8x®), _ v is positive or
zero, and so using (12.56) again and remembering that [} > 0 we see that
(68/t) - x becomes positive or zera. Thus &5/6¢ can never become negative and so
there can never be a point of inflexion in the plot of M, against ¢, i.e. in the uptake
curve plotted against time.

(i) If Dincreases as concentrasion increases, the shape of the sorption
curve when plotted against fime is not very sensitive to the form of the
diffusion coefficient. It is often not significantly different from the
corresponding curve for a constant diffusion coefticient. Thisis, of course,
because the sorption curves are parabolic, i.e. linear against (time)*, over
most of their length. The desorption curves when plotted against time
are much more sensitive to the form of the diffusion coefficient if this
Increases as concentration increases. 1f the diffusion coefficient decreases
a8 concentration increases, then the desorption curve will approximate
to that for a constant diffusion coeflicient.

(iv) When D increases with concentration increasing throughout the
relevant range of concentration, desorption is always slower than S0rp-
tion, and conversely if D decreases with concentration increasing. This
18 illustrated by Fig. 12.17. In particular, the last stages of desorption
are much slower than those of sorption if D increases with concentration
increasing, and vice versa,

Crank and Henry [9] have wxamined the sorption and desorption
curves associated with a diffusion coefficient which passes through a
maximum value at some intermediate concentration. Three such dif-
tusion coefficients are shown in Fig. 12.18, where ¢ — C{Cy as usual.
They correspond to the algebraic relationships:

DDy = 1414-8¢(1—¢), (12.62)
DiD) = 14 100c2 exp(— 10c?), {12.63)
DDy = 14-100(1—c)exp{—10(1—c)2. (12.64)

All three satisfy the conditions D/Dy= 1 when ¢ = 0 and ¢ = 1; and
the maximum value of L/ D, is approximately 4-7 in each cage. Equation .
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(12.62) is a symmetrical form in which this maximum occurs at ¢ = §-5,
while the maximum values for (12.63) and (12.64) are at ¢ — 0-3 ang
0-7 respectively, since {12.64) follows immediately from ( 12.63) by
writing (1—ec} for e¢. The sorption and desorption curves for these
diffusion coefficients are presented in Fig. 12.19. Since (12.62) is
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Fra. 12.18. Diffusion coefficient-coneentration relationships,

symmetrical in ¢ and (1—¢) it follows from what was said above that
for the boundary conditions considerad the sorption- and desorption-
time curves are coincident, and this 18, of course, frue for any symmetrical
relationship between D and ¢. The results show that for D given by
(12.63) with a maximum at ¢ — 0-3 the desorption curve lies wholly
above that for sorption, while the opposite 1s true for the relation
(12.64) whero the maximum value of D oceurs at ¢ = 0-7.

The relative behaviour of the sorption- and desorption-time curves 1s
affected by the relative values of the diffusion coefficient at ¢ = 0 and
¢ =1, and also by the position of the maximumn in the D— curve if one
occurs. This suggests that, in some cases, the desorption curve may be
above the sorption curve in the early stages of diffusion but later may
Cross it so that the final stages of desorption are again slower than those
of sorption. This is likely to occur when there is a maximum in the
diffusion coefficient-concentration relationship and when the value of D
at ¢ = 1 is greater than at ¢ — 0.

In order to study this behaviour a diffusion coefficient-concentration
relationship of the form

DD, = 14-a ert(fe) +y¢ (12.65)

was used, where «, B, v are constants for any one curve. There is no
6R24 T
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significance in the precise form of (12.65) except that it leads to diffusion
coefficient-concentration curves of the desired form and is convenient
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Fia. 12.19, Sorption and desorption curves.
to handle numerically. From (12,65} we have
HDID) _ 2B, gy, (12.66)
de mt '

when D has a maximum value. All curves given by (12.65) pass through b
the point D/D, =1, ¢ = 0. The three further conditions that DDy G
shall have a prescribed value at ¢ = 1 and a given maximum value atb
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& prescribed value of ¢, can be satisfied by suitable choice of the para-
meters «, 8, y, the desired values being readily determined by use of
(12.66) and (12.86). A typical curve of this family, actually the one

given by DD, = 144-62 erf(6-10c)—3-12c, (12.67)
471 47 47k
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BSorption and desorption curves.

Fi1e. 12.20. D{D, = 14 4-06 erf{14:50¢)— 2-56¢,
Fia. 12.2]1. D{D, = 14 4-62 erf(6-10c}—3-12e.
Fia. 12.22. /D, = 1+ 29-86 ecf{(-98¢)— 23-40¢.

iL 1

which satisfies the conditions
DD, — 1, ¢ = {); DDy = 2.5, ¢ =1
a(D{Dy)jde = 0, DIDy = 4-7, c = 0-25,
is shown in Fig. 12.21 together with the sorption- and desorption-time
curves. The curves intersect at
(D, ¢/1%)F = 0-29.
For values of (D,#/I*)} less than this, desorption proceeds more rapidly
than sorption but after the intersection the desorption curve lies below
that for sorption. This to be contrasted with the sorption and desorption
curves shown in Fig. 12.22 which do not intersect and which are for a
diffugion coefficient of the form
| DD, = 1-29-86 erf(0-98¢)— 23-40c. (12.69)

"' ] (12.68)
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This diffusion coefficient is also shown in Fig. 12.22 where it is seen to
differ from that defined by (12.67) in that it has a maximum value at
¢ — 0-6 instead of ¢ = 0-25. Fig. 12.20 shows further curves for a
diffusion coefficient of the same general shape having a maximum value
at ¢ = 0-125. It is clear from inspection of these curves that, keeping
the end points of the diffusion coefficient-concentration curves fixed at
DiD, =1 and D/D; = 2-5 and the maximum value of D/D, = 47, as
the position of the maximum value moves back from ¢ =1 to ¢ = 0
there is first a range of positions of the maximum for which the whole
process of desorption is slower than sorption. Continuing to move the
position of the maximum towards ¢ = 0 there is evidently a further
range of positions for which the desorption and sorption curves intersect,
the point of intersection oceurring at successively larger values of Dy¢/l?
as the position of the maximum moves towards ¢ = 0. There is some
intermediate position of the maximum for which the desorption curve
crosses the sorption curve at the origin only and this i1s the limiting case
between sorption and desorption curves which intersect for ¢ > 0 and
those which do not. |

For this set of curves having D/D, = 2-5, ¢ = 1, it is found that the
limiting position of the maximum for which intersection of the sorption
and desorption curves occurs at Dytfl* = 0 is about ¢ = 0-26. When
the maximum occurs at higher values of ¢ than this, desorption is slower
than sorption right from Dy¢/1* = 0, but when the maximum lies in the
range 0 << ¢ < 0-26 the desorption curve is first above the sorption
curve but crosses it later so that the final stages of desorption are again
slower than those of sorption.

Still confining attention to the general form of variable diffusion
coefficient expressed by (12.65), it is to be expected that the critical
position of the maximum for which the sorption and desorption curves
have equal gradients in the neighbourhood of ¢ = 0 when plotted against
(D,¢/12)} will vary as the value of D at ¢ = 1 is caused to vary, taking
the maximum value of D to remain constant and the condition {1 = 1,
¢ = 0, to be satisfied in all cases. This expectation is confirmed by the
results presented graphically in Fig. 12.23 where the critical position of
the maximum is plotted as a function of the value of D/D, at ¢ = 1-0.
The critical position is seen to move towards ¢ = 0 as the value of D at
¢ = 1 is increased. :

The peints at each end of the curve of Fig. 12.23 were arrived at by
general reasoning and the intermediate peints by calculation. Thus
considering first a D—¢ curve for which the value of D{D, at ¢ = 1 18 very
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close to 4-7, which is the value of the maximum D/D, for this family of
curves, it is clear that, in general, for a D—c curve of this type the diffusion
coeflicient is effectively increasing over the whole range of concentration,
and sorption will be quicker than desorption thronghout. This is true
for all posttions of the maximum exeept when it is o near to ¢ = 0 that
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g Concentration ¢ at which £/, has o maximum value

Fi1g. 12.23. Criticai position of the maximum of 3{D, as & function of
DDy at ¢ = 10,

the diffusion coefficient is effectively constant over the whole range of
concentration, in which case the sorption- and desorption-time curves
coincide throughout and ¢ = 0 is therefore the limiting position of the
maximum when I}/D, = 47 at ¢ = 1.

By an extension of this argument the critical position of the maximum
can be determined when D/I} = 0 at ¢ = 1. It was seen above that
the sorption-time curve obtained when D is a certain function of ¢ is the
same as the desorption-time curve when I} is the same function of {1-—¢}
and viee versa. It follows immediately that if the initial rates of sorption
and desorption are equal when D is a certain function of ¢, they will also
be equal when D) is the same function of (1—e¢), i.e. if the critical position
of the maximum value of Disc = c,, in the first case, it willbe¢ = 1—c,,
in the second case. Now if D is a function of ¢ such that D is very small
when ¢ = 1, the corresponding function of (1 —¢) is such that the value
of D at 1—¢ == 1 is relatively very close to the maximum value of D.
This function approximates to the type just considered above and the
critical position of the maximum value of D is at (1 —c) = 0 and there-
fore at ¢ = 1 for the original D—¢ curve.

For any D-¢ curve of the general family under discussion, the relative
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behaviour of the sorption- and desorption-time curves can be deduced
from Fig. 12.23 if the value of DD, at ¢ = 1 and the position of the
maximum are known. Four regions are to be distingunished, in two of
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Fiq, 12,24, Scrption and desorption curves,

which the sorption- and desorption-time curves intersect at some time,
{ > 0, and in the other two they do not intersect when ¢ > 0. When
the value of D{D, at ¢ = 1 exceeds unity, the initial rate of desorption
is more rapid than that of sorption if the curves intersect, and vice versa
when D/ D, < 1-0ate = 1. The critical position of the maximum no doubt
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depends on the magnitude of the maximum value of D, and also for a
given maximum value it will depend to some extent on the detailed shape
of the diffusion coefficient-concentration curve. These aspects of the
problem have not yet been investigated.
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F1a. 12,25, Sorption and desorption curves.

The relative rates of sorption and desorption have also been examined
for diffusion coefficients which are discontinuous functions of concen-
tration [10]. If the sorption and desorption curves of Figs. 7.1d and 7.2d
were plotted on one diagram they would be found to intersect markedly.
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A particular example is shown in Fig. 12.24 for the diffusion coefficient
shown in the inset. These curves are for a diffusion coefficient which is
infinite over an intermediate range of concentration and it is easy to
see the condition necessary in this case for intersection. Referring again
to Figs. 7.1 and 7.2 and using that nomenclature, we see that the height
of the initial vertical part of the sorption curve of Fig. 7.1d is i(y, and
that of the corresponding part of the desorption curve (Fig. 7.2d) is
}{C,—Cy). Hence, provided D is greater at high than at low concentra-
tions, intersection occurs if ¢} —Cyp exceeds Uy, so that

Oy < ${C1—a), (12.70)
where @ is the concentration range over which D is infinite. Thus the
Jimiting case is when this range is symmetrically situated with respect
to the whole concentration range 0 to €. If the infinite region is mainly
in the upper half of the concentration range, desorption is slower than
sorption throughout, but if it is mostly in the lower half the sorption
and desorption curves intersect. Clearly, the point of intersection occurs
earlier the smaller D), is compared with D, in Fig. 7.14.

Fig. 12.25 shows sorption and desorption curves for the diffusion
coefficient shown in the inset. These curves were calculated by the
numerical methods described in Chapters IX and X. Although the
value of D in the middle concentration range of the inset of Fig. 12.25
is still relatively high, the intersection is much less marked in Fig. 12.25
than in Fig. 12.24 and becomes even less proncunced if the largest value
of D) is decreased further.

- 12,41, Effect of the initial concentration on the rale of sorption

It might be expected that the initial rate of sorption by a shest
having a finite, uniform concentration of diffusing substance in it initially
would be greater than the corresponding rate for zero initial concentra-
tion if the operative diffusion coefficient is small at low concentrations.
Such an effect has been observed experimentally, for example, by King
[11] for the uptake of methyl alcohol by wool. The effect should be most
marked when the diffusion coefficient is zero at low concentrations as in
Fig. 7.8a4. A convenient measure of initial rate of sorption is the initial
gradient of the sorption curve when plotted against (time)? as in Fig. 7.7,

1-&. E
I a E i I

The nomenclature is that of Chapter VII and Figs. 7.6 and 7.7 in it.
The initial rate so calculated is shown in Fig. 12.26 as a function of (,
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the initial uniform conecentration in the sheet [10]. The different curves
refer to different values of 'y, the concentration at which I changes
discontinuously. In all cases, the initial rate of sorption decreases as
the initial regain is increased, This, then, is a further characteristic
feature of a purely concentration-dependent system, and in systems
which show qualitatively different behaviour some factor other than

concentration-dependence must be sought as the caunse.
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F1a. 12.26. Effect of initial uptake on initial rate of sorption.

12.5. Diffusion-controlled evaporation

Some evaporative processes are diffusion controlled in the sense that
the rate of evaporation depends largely on the rate at which solvent
or mixture is supplied to the evaporating surface by internal diffusion.
An important consideration is the effect of the proportion of solvent
vapour, or the relative humidity, in the atmosphere into which the
evaporation takes place. Instances have been reported [12], when
evaporation takes place through an organie membrane or a polymer
film, in which the rate observed in practice is increased by Increasing
the relative humidity at the evaporating surface. This behaviour has
been attributed to the effect of a diffusion coefficient which is low at
low solvent concentrations, the argument being that by maintaining
some vapour in the outside atmosphere the concentration range over
which diffusion within the sheet is difficult is removed. It has been
shown theoretically [12], by evaluating solutions of the diffusion equation
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for appropriate diffusion coefficients and boundary conditions, that such
behaviour is not to be expected in a purely concentration-dependent
system. Both the steady-state evaporation through a membrane and
the loss of vapour from a sheet containing solvent have been examined,
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Fia. 12.27. Concentration distributions in steady state,

12.51. Steady-stale evaporation through a membrane
We saw in § 11.61 that if we have a membrane of thickness ! separating
a region of high from one of low vapour pressure, then the rate of
evaporation through the membrane in the steady state is F, where
Co
F=Q)|Dadc.

L

(12.72)

Here (}, and () are the concentrations just within the surfaces of the
membranes on the high- and low-pressure sides respectively, The argu-
ment leading to (12.72) is true whether [ is constant or not. In par-
ticular it is true when D is a function of concentration, and provided D
is never negative in the range from C, to (), the integral in (12.72) must
always incrense or remain constant as the range of concentration is
inereased. Thus, as Park in [12] has pointed out, if the high concentration
remains fixed, the rate of evaporation, F, can never increase as a result
of increasing the lower concentration (Y, i.e. the rate of evaporation is
greatest into an atmosphere completely free of solvent vapour. Where
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the experimental facts genuinely differ from this, some alternative
explanation must be found [12]

Further insight into the effect of changing the vapour pressure on
the low-pressure side is given by Fig. 12.27. Caleulated distributions of
concentration through the membrane are shown for a case in which [
is an exponential function of concentration such that I increases by
fiftyfold from ¢ = 0 to ¢ = (. The concentration, C, on the high-
pressure side is the same for each curve, but in one case C, = 0 and in
the other ¢, = 1C,. The curves show how the concentration distribution
adjusts itself so that the rate of flow is greater when €, = 0, even though
the region of low diffusion coefficient is then included. Clearly, a low
diffusion coefficient is compensated by a high concentration gradient.

12.52. Evaporation from films and filaments
Tt is not possible to express the rate of loss of vapour from a film
containing solvent in terms of a simple expression such as {12.7 2) and
so it is less easy to examine the effect of introducing vapour into the
outside atmosphere. However, some illustrative examples have been
worked numerically [12] for the first diffusion coeflicient shown in Fig.
12.98. This is an experimental curve relating to the diffusion of acetone
in cellulose acetate. The concentration distributions through a sheet
initially containing solvent at a umform concentration have been calcu-
lated for this diffusion coefficient and two different boundary conditions:
(i) The surface of the sheet is assumed to reach equilibrium with
the outside atmosphere instantaneously when evaporation com-
mences, i.e. if the atmosphere is free of vapour the concentration
at the surface falls immediately to zero; if the vapour pressure in
the atmosphere is p, the surface of the sheet immediately reaches
the concentration whieh is in equilibrium with p.
(ii) A condition expressing the rate of evaporation from the surface
is assumed. This is taken to be

D,2Cfex = «(C,—Cpl, (12.73)

where C, is the actual concentration in the surface of the sheet

at any time and C, the concentration which would be in equili-

brium with the vapour pressure remote from the surface. The

diffusion coefficient D). is the value corresponding to the concen-
tration C,.

Fig. 12.29 shows the caleulated variation of concentration with dis-

tance through the sheet at two different times for the condition (i), that

of vigorous surface evaporation. For each time, curves are shown for
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the cases in which {a) the surface concentration falls to zero instan-
taneously, (6} it falls to one-tenth of its imifial value instantaneously.
We see that there is little difference between the two eurves at either
time. In particular the total solvent content of the sheet at any time,
represented by the area under the appropriate curve of Fig. 12.29, is
muc¢h the same whether the surface concentration falls to zero or to
one-tenth of its initial value, i.e. whether the concentration over which
D is small is removed or not. In so far as there is a slight difference,
the rate of loss of solvent by the sheet is greater in the vapour-free
atmosphere. As in the steady state, the rate of evaporation is not
increased by introducing vapour into the atmosphere.

The reason for this is clear from these calculations as it was in the
steady state. When the diffusion coefficient has a small value at the
surface the concentration gradient is correspondingly large so that the
rate of loss of vapour, given by D 6C/ox at the surface, does not alter
appreciably. This compensating effect is most ocbvious when the diffusion
coefficient is zero over a range of low concentrations as in the second
diffusion coefficient shown in Fig. 12.28, Thisis a hypothetical coefficient
chosen to exaggerate the effect. The concentration-distance curve for
this coefficient is sketched in the inset of Fig. 12.29 from general reason-
ing, The surface gradient is infinite over the concentration range for
which D is zero (in this case for concentrations less than 0-10) so that the
product can have a non-zero value. A finite gradient cannot develop
for concentrations less than 0-10, since this would imply that solvent
had been removed from a region of zero diffusion coefficient under the
action of a finite gradient, which is not possible. For such a diffusion
coefficient the rate of evaporation is precisely the same for all surface
concentrations between zero and 0-1.

The same general conclusion holds for the surface condition (12.73}, i.e.
the rate of loss from the sheet iz always increased by decreasing the
external vapour pressure.

12.6. Effect of a surface skin

Many films and fibres show evidence of a surface skin having properties
different from those of the underlying layer or core. In this section we
oxamine the effect of such a skin on diffusion hehaviour. The resuits
pregented were obtained as part of an attempt to understand some of the
peculiar features which are sometimes observed when solvents diffuse
mto and out of polymer substances [7].

We shall restrict ourselves to cases in which the skin and the core are
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each homogeneous and the boundary between the two is sharply defined.
In the skin the diffusion coefficient is assumed to be either constant or a
discontinuous function of concentration, and beneath the skin to be
everywhere infinite at all concentrations.

(1) The simplest case is one in which D is constant in the skin, and the
medium is semi-infinite. The solution has been given in Chapter IIL,
equation (3.57), which becomes

M, Dyl 1 < nl

fé] _ (E_E)%[;i+221erfcm], (12.74)
when D, = co. Here M, is the total amount of diffusing substance which
enters the composite medium in time ¢ if the surface is maintained at s
constant concentration €,. When M,/2IC, is plotted as a function of
(Dt{I#)} the curve is linear for small times and its gradient later increases
steadily as { inoreases. When plotted as a function of Dt/i* the curve is
parabolic at first and then becomes linear, the gradient of the linsar part
being determined by the constant rate of flow across the outer surface
in the final steady state. Both the curves shown in Fig. 12.30 are
noticeably different from the corresponding ones for a semi-infinite
homogeneous sheet when 3, is proportional to ¢ for all times.

(1) We consider next a finite sheet having on each surface a skin in
which D is a discontinuous function of concentration, €, of the type
shown in Fig. 12.31a. The general shape of the sorption-time curve for
this case is easily deduced from the concentration-distance curve for
the same diffusion coefficient and a homogeneous sheet. Solutions have
been given in Chapter VII, Figs. 7.6 and 7.7; the sorption-time curve is
parabolic for small times and the concentration-distance curve is charae-
terized by a sharp front which advances according to the square root
of time (Fig. 12.31 4). Itis clear that until this sharp front has penetrated
to the inner houndary of the skin the sorption-time curve is the same as
for & homogeneous sheet having the properties of the skin throughout.
After this the concentration on the outer surface of the sheet remains
at () and that on the inner surface of the skin at (' till the uniform
concentration throughout the region of infinite diffusion coefficient has
reached the value Cy. During this time there is approximately a steady-
state flow through the skin so that the rate of sorption by the whole sheet
18 constant and the sorption-time curve is linear. When the whole sheet
beneath the skin has reached a concentration (5 there is a gradual
decrease in rate of sorption as the final equilibrium concentration C, is
approached throughout the sheet.
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The details of the caleulation for this case are as follows. For sorption
we require solutions of the usual equation

%7 — Dfﬂg, (12.75)

where in the region 0 < x << I, I} is defined by
D =0, 0 < € < Cy, (12.76)
D= D, Cy < C < G, (12.77)

and in the region ! << 2 << l+¢a, D is infinite. The solutions are subject

to the conditions
C=0q, x = 0, i > 0, (12.78)

=0 O<z<lta, t=0. (12,79)

For smali times the concentration-distance curve falls discontinnously
from ¢ = (' to € = 0, and until this vertieal part of the curve reaches
x =1 at, say, time { = {;, the medium is effectively semi-infinite and
the solution is

= (,+4 erfz f{D k (12.80)
where Aerfk{(2D}) = Cx—C,, (12.81)
and the constant & is given by
. _ }.okY4D,
Ux—Co | w0, (12.82)

erf(k,«zﬂi}‘*‘ 2D%

After? = {,the concentration at * = /remains at (! = Uy till an amount
a(’y has crossed x == 1. During this time the usual solution, § 4.31,
equation {4.18), for a sheet whose surface concentrations are fixed and
in which the initial concentration distribution is f(x), given by substi-
tuting ¢ = ¢, in {12.80), applies, l.e.

O = Cy (0 —C)) :if 2 ZC cos nr—C; 0gin ™ ; EKP{_DlﬂzﬂE(t_'tﬂ]ﬂa}_l“

ﬂ I|

?i In—exp{-—ﬂ nin¥(f—1, Hgﬂ}ff ai E’Z:Ed:c {12.83)
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From (12.83) it is easily dednced that the amount M, crossing unit area
at x = 0 from time ! = {;, onwards is given by

7 = 2
Dil{ﬂ = (Ux—Co)(f—4,) — 2 z D HE[EKP{_DI rE*mA{l—1) 1% —1] X

n=1
I
X[Cx GGEHW“CD+H—E—FJ.f($}EiHn%$ dx} {12.84)
L

The amount, M, crossing unit area at * = [ in the same time is given
by

_2 ; (—1)» ﬂiﬁ lexp{— Dy nim®(f—f I8 —1] X

X {mesnn—ﬁﬂ-[-?ff{m]sinﬁ? dr). (12.85)
0

The equation (12.84) expresses the total amount absorhed by the com-
posite sheot from time £, onwards and these solutions apply till M, = aCy
as caleulated from (12.85). For much of this time there will be APProxi-
mately a steady-state flow across the region 0 < z < L.

After the concentration throughout the region I < = < I-+a has
reached Cy, the boundary condition on 2 = { is

—D, 2C/ex = a 308t (12.86)

and the solution is conveniently continued by numerical methods
described in Chapter X using for (12.86) the finite-difference form
00 _ Coa= 20130, (12.87)
&x 26
where the range 0 << 2 < [ is divided into equal steps 8, and Corp I8
the value of € at z = I+ p 8.
For desorption we require solutions of equation (12.75) for the same
diffusion coefficient but subject to the conditions

C=0, z=0 ¢>0 (12.88)
C=0C, O<z<lta, ¢=0. (12.89)

In this case the concentration-distance curve rises discontinuously at
£ =0from C=0to € = (%, and in the early stages, when the con-
centration at x = [ is not appreciably different from (, to the required

5824 I 1
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aceuracy, the solution is simply that for a semi-infinite sheet having a
surface concentration Cy, i.e.

by
! 6
(a)
h=
¥
§=
= 9
0 1 i
i 0G|
I
ce (5)
ﬁl_
*-
X [
0 i . ] 3 I |
0-5 1-0 1-5 2-0 25
Dt/

Fre. 12.32. Sorption and desorption curves for sheel with skin.

At later times the condition (12.86) again applies and the solution can
be continued numerically as for sorption. A typical sorption-time curve
is shown in Fig. 12.31 for Cx = §C, and a skin which forms one-fifth of
‘the half-thickness of the sheet. The corresponding curve for desorption
is also shown in Fig. 12.31.

The investigations into the cause of intersecting sorption- and desorp-
tion-time curves discussed in § 12.4 (iv) suggest that a diffusion coefficient
in the skin of the form shown in Fig. 12.324 might be interesting. The
concentration-distance curve for this diffusion coefficient has a sharp
front as in Fig. 12.32b, and the required mathematical solutions up to
the time at which this front reaches the inner surface of the skin have
already been presented in § 7.24, together with a mumerical procedure
for extending them to later times (Chapter X). Desorption can be
treated by the same equations and methods. Fig. 12.32 showe calculated
sorption- and desorption-time curves for the diffusion coefficient of
Fig. 12.32¢ and a skin one-fifth of the half-thickness of the sheet a8
before. Here we see that the curves intersect but the linear part has
almost disappeared from the sorption curve. We can now see that this

Sl
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must always be so, for, as we have already noted, intersection of sorption
and desorption curves only occurs when the region of high diffusion
coefficient is in the lower half of the concentration range, which means
that the diffusion coefficient is small or zero only at very low concen-
trations. But it is clear from what we have said and from Fig. 12.324
that for relatively thin skins the amount absorbed by the sheet when
the sorption-time curve ceases to be linear is roughly proportional to the
height of the sharp front in the concentration-distance curve, 1.e. to
the concentration range over which D is small or zero. It follows that,
in general, when the sorption-time curve caleulated for the model we
have chosen has a long linear portion, desorption will be everywhere
slower than sorption; conversely if the sorption and desorption curves
intersect markedly no appreciable linear part will be observed in the
sorption curve.
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12,61. Composite cylinder

The effect of a skin on the uptake of dye by a cylindrical fibre has
been studied [13). The solutions obtained relate to a circular cylinder
of infinite length and radius ¢ immersed in a solution. Dye molecules
diffuse into the cylinder and are deposited in capillaries of the cylinder.
The concentration of the dye in the solution is always uniform, while
the cylinder is initially free of dye. The cylinder has a core of radius b,
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in which the diffusion coefficient is Dyand for b <r << & the diffusion
coefficient is D,. In any element of the eylinder the amount of dye, S,
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Fio. 12.34. Sorption curves for & composite cylinder, b = .
Numbers on curves are valuea of /D,

deposited in the capillaries and immobilized is related to C, the amount
free to diffuse, by the relationship

8 = RCH, (12.91)
where R is a constant which, in this example, is chosen so that in the
final equilibrium state 90 per cent. of the dye initially in the solution

has entered the fibre. Whon the ratio of the volume of solution to that
of the fibre is 25: 1, B — 70-8. If we denote by M, the amount of dye in
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the cylinder after time ¢, and M, the corresponding amount after infinite
time, Fig. 12.33 shows M/M, as a function of log(D,t/a?) for b = &a.
The several curves correspond to different values of D,/D.. The effect
of changing the ratio D,/D, is to displace the sorption curve parallel to
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homogeneous eylinder of diffusion coefficient Dy,

the time axis, and this is accompanied by a slight change in the shape
of the curves. Thus, when M/M, = 0-5, in Fip. 12.33, the abscissae of
points on the curves for D,/D), = 2, 10, and 30 differ from the corre-
sponding abscissa for I}, = D, by the amounts 0-30, 1-00, 1-45 respec-
tively, 1.e. by approximately log,,2, log,,10, log,,30. When . o M, = 0-8,
the abscissae differences are 0-18, 0-78, 1-18 respectively. Thus the
sorption curve for this composite cylinder almost coincides with the
corresponding curve for a homogeneous cylinder having a diffusion
coefficient 1), throughout. The final stages proceed more rapidly in the
composite cylinder, however, as is to be expected because of the greater
diffusion coefficient in the core. For a thicker skin there is less difference
in the shapes of the curves for composite and homogeneous eylinders [13].

In Fig. 12.34 some of the uptake curves are replotted against (D, tja?)t
to show that the presence of a skin does not necessarily produce a point
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of inflexion in the uptake curve plotted against the square root of time,
as it does in the problems discussed in § 12.6. Fig. 12.35 shows the -
overall concentration (S+4C) in a composite cylinder as a function of
the radial coordinate at three different times. There is a rapid fall in
concentration within the skin and a discontinuity in concentration
gradient at the boundary between the skin and the core where the
diffusion coefficient changes discontinuously.
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XII1

SIMULTANEOUS DIFFUSION OF
HEAT AND MOISTURE

13.1. Introduction

THE problem to be diseussed in this chapter is that of the diffusion of
one substance threugh the pores of a solid body which may absorb and
immobilize some of the diffusing substance with the evolution or absorp-
tion of heat. This heat will itself diffuse through the medium and will
affect the extent to which the solid can absorb the diffusing substance.
We thus have two processes, the transfer of moisture and the transfer
of heat, which are coupled together, and we cannot in general consider
one process without considering the other simultaneously. For con-
venience we shall refer to diffusion through pores, but the theory will
apply to alternative systems provided only that some of the diffusing
substance 13 immobilized and that heat is given out in the process, Thus
the case of a dissolved substance diffusing through a gel would be
included. Kquations of the same form would also be obtained, neglecting
thermal effects, for the diffusion of two substances through a porous
solid, each capable of replacing the other in absorption by the solid.

13.2. Uptake of water by a textile fibre

A simple illustration of the coupling between the transfer of heat and
that of moisture is afforded by the uptake of moisture by a single textile
fibre, Water penetrates the fibre by diffusion and for a wool fibre a
diffusion coefficient of about 10-7 em.?/sec. can be taken as representa-
tive. The time for a single fibre to reach say 80 per cent. of its final
uptake of moisture depends not only on the diffusion coefficient but
algo on the diameter of the fibre—the thinner the fibre the more quickly
1t absorbs. Now the average diameter of a fibre is so small (rather less
than 103 cm.) that for a diffusion coefficient of 10-7 cm.?/sec. we expect
80 per cent. absorption to be reached in about 2 seconds. King and
Cassie [ 1] attempted to demonstrate this conclusion experimentally by
measuring the rate of sorption of water vapour by a small mass of wool
(0-25 p.} suspended by a sensitive spring-balance in an evacuated chamber
into which water vapour was introduced at 23-5 mm. pressure. By
suspending the wool in an evacuated chamber King and Cassie eliminated
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diffusion through any surrounding atmosphere and they expected to
measure directly a rate of uptake governed solely by diffusion within
the fibres. In view of the small diameter of the fibre we expect this
uptake to be a matter of only a few seconds. This does not appear to
be at first sight supported by the uptake curve they observed, which
reached 80 per cent. only after an hour or so.

We must remember, however, that when water vapour is absorbed by
wool a large amount of heat is evolved which produces a considerable
increase in temperature. King and Cassie showed that when this tem-
perature rise is taken into account the relatively low rate of sorption
can be reconciled with the statement that an individual fibre reaches
equilibrium with its surroundings effectively instantaneously. Thus the
uptake of moisture depends on the vapour pressure and also on tempera-
ture; the uptake is greater the higher the vapour pressure but is decreased
by a rise in temperature. In the experiment we have described, the
uptake would have been more than 30 per cent. if the temperature had
remained constant. Because the temperature rose to over 65° C., how-
ever, the uptake immediately acquired was much less than 30 per cent.
A temporary equilibrium is reached, in which the uptake is in equilibrium
with the external vapour pressure at the modified temperature produced
by the heat evolved as the vapour is absorbed. King and Cassie [1]
calculated this temporary equilibrium uptake to be 2-3 per cent. and
the temperature 80° C. Subsequently heat is lost and as cooling proceeds
the uptake of moisture increases. The uptake curve observed by King
and Cassie was thus essentially a cooling curve. The uptake and tem-
perature curves calculated in this way agree well with the corresponding

experimental curves.
This experiment in a vacuum may seem artificial, but it illustrates

that the immediate reaction of a mass of fibres when presented with a
new atmosphere is to modify that atmosphere to be in equilibrium with
itself at the expense of only a slight change in its own moisture content.

13.3 Two possible equilibrium conditions

We consider now an example quoted by Cassie [2] having a more direct
bearing on the problem in which we are interested. Suppose a sheet of
wool fibres conditioned to 45 per cent. R.H. at 20° C,, so that its mosture
uptake is 10 per cent., is suddenly placed in a stream of air at 65 per cent.
R.H. and the same temperature. The wool and air can come to equili-
brium in two very different ways:
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1. By an increase in the uptake of the wool until it is in equilibrium
with 65 per cent. R.H. The regain needed is 14 per cent.; or

2. By an increase in the temperature of the wool and air till the new
vapour pressure represents only 45 per cent. R.H., the uptake of
the wool remaining essentially unchanged at 10 per cent. It iseasy
to calculate from vapour pressure tables that this will be so if the
temperature rises to 25° C.

Of these two possible equilibrium conditions the first, involving a
considerable change in moisture uptake, can only be achieved after a
large volume of air has passed through the wool. The second, involving
& temperature rise, 1s easily attained almost immediately because of the
large heat of sorption. Enough heat is produced by a relatively small
1norease in moisture uptake to raise the temperature of the wool to 26° C.
(1 per cent. will do it if the heat capacity of the air is neglected). For
this reason the first equilibrium set up is the one in which the temperature
rises but the regain is essentially unchanged. This is only a pseudo-
equilibrium, however, because if we continue to blow air at 20° C. over
the wool the final temperature must be 20° C. and the final regain
14 per cent, Here we have the essential feature of the propagation of
humidity and temperature changes in textiles or similar materials,
namely the existence of two equilibrium states—a temporary one set
up quickly and involving no change in uptake, and a permanent one
set up relatively slowly and involving a change in moisture content,

13.4. Propagation of two disturbances

Clearly, therefore, when the air stream first passes through, a front,
separating the original and pseudo-equilibrium conditions, moves
through the textile with the speed of the air flow if we neglect the heat
capacity of the textile. Thus a fast distutbance representing change
of temperature and moisture in the air without change of regain, is
followed by a much slower disturbance bringing a change of regain.

Furthermore, the same general behaviour is to be expected when the
transfer of heat and moisture occurs by diffusion rather than as a result
of aerodynamic flow of air.

Mathematical equations describing the diffusion phenomena in detail
have been set up and from them it is possible to caleulate how concen-
tration, temperature, and total moisture uptake vary with time and
distance through the medium till final equilibrium is attained. Henry
[3, 4] first gave the theory for diffusion of humid air into a textile package
and Cassie [5] later gave the corresponding theory for air forced through
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the textile, neglecting diffusion effects entirely. Since then Daniels [6]
has taken into account diffusion of heat and meisture in an air stream
forced through the textile. We now give Henry’s treatment of the

diffusion problen.

—L- Air spaces

7000,

e e -l gl ghr s Y= s o i i e =T

Fra. 13.1. Element of textile package.

13.5. Equations for diffusion of heat and muistﬁre

13.51. Equilibrium equation

Tig. 13.1 shows diagrammatically an clement of a textile package
occupied partly by fibres and partly by air spaces. This is much over-
simplified but serves to fix ideas. We have said that a fibre can always
Le considered as in equilibrium with its immediate surroundings. We
ghall further assume linear dependence on both temperature and mois-
ture content and write

M = constant+oC—wT, (13.1)

where € is the concentration of water vapour in the air spaces expressed
in g./em.®, M is the amount of moisture absorbed by unit mass of fibre,
+ and w are constants. We shall consider the equilibrium uptake of
moisture by a fibre to be related to water vapour concentration and
temperature 7' by the linear relation (13.1). This is a necessary assump-
tion if the theory is to proceed; clearly in practiceit1s only an approxima-
tion which is reasonable over small ranges of humidity and temperature.

13.52. Vapour diffusion equalion
Consider an element of a te xtile package. Wecan derive two equations,
one expressing the rate of change of eoncentration and the other the rate

~ of changé of temperature.
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The rate of change of concentration is governed by

(@) Diffusion of vapour through the air spaces and through the fibres,
both these being propertional to the concentration gradient in the
usual way. Diffusion through the pores will in many Cases be
greater than through the fibres, but even if this 18 not so we can
represent both processes by one term if we make the assumption
that the vapour in the fibre is always in equilibrium with that in
the air in the immediate neighbourhood and the absorption iso-

therm is linear as in (13.1}.
(5} The absorption or desorption of moisture by the fibres from the

alr 8paces.

Thus we can say,

Net amount of vapour entering element by diffusion
_ increase in moisture in air-increase in moisture in fibres. (13.2)

If a fraction v of the total volume of the package is occupied by air and
1—u by fibre of density p, then, expressing (13.2) mathematically, the
equation governing the movement of vapour can be written

820 a0 oM
ngAEE — vﬁﬂlru)pa_ﬂ_, (13.3)

where O and M have been defined and D18 the diffusion coefficient for
moisture in air. The factor, g, allows for the fact that the diffusion is not
along straight air channels but through a matrix of intertwined fibres
and any diffusion along the fibres themselves can also be allowed for
i1 this factor. It is a factor which can be measured by permeability
measurements under steady-state conditions.

13.53. Heat diffusion equation
The rate at which the temperature of the element changes is deter-
mined by

{(a) Conduction of heat through air and fibres.
(6} The heat evolved when moisture is absorbed by fihres.

Thus

Increase in heat content of fibres

— net amount of heat entering by conduction+-heat evolved
as fibres absorb moisture, {13.4)
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and this i1s expressed mathematically by the equation

éT 27T cM

Wy =Egmt g

(13.5)

where o is the specific heat of the fibres, K the overall heat conductivity
of the package, p the density of the package, expressed as mass of fibre
per unit overall volume, and ¢ is the heat evolved when 1 g, of water
vapour is absorbed by the fibres. In writing (13.5) the reasonable
assumption has been made that the heat content of the air is negligible
compared with that of the fibres.

One vital point to be noticed is that both {13.3) and {13.5), that is
the vapour equation and the temperature equation, involve M, the
amount of moisture in the fibres. 1t is at once obvious that the two
processes, the transfer of moisture and the transfer of heat, are coupled
together in this way and that we cannot in general consider one process
without considering the other simultaneously.

13.54. Assumptions underlying the mathematical theory

It is worth while to enumerate some of the assumptions on which the
theoretical treatment is based. The main ones are:

(¢) The linear dependence of M on € and T to which reference has
already been made.

(6) The quantities D,, K, «, p are assumed constant and independent
of moisture concentration and temperature.

{c) The heat of sorption g is assumed independent of regain though
in practice it is not so.

(d) Hysteresis of sorption is neglected, that is the equilibrium equation
(13.1) 18 assumed to hold whether the fibre is gaining or losing
moisture,

(e) The relative volumes occupied by fibre and air are assumed not
to change as diffusion proceeds, i.e. v is assumed constant. In
actual fact, as the fibres sorb moisture they swell and occupy
progressively more space, and the air correspondingly less. This
is thought to be unimportant except for very dense packages.

(f) No account has been taken of the influence of eapillarity in the
air spaces. This will be appreciable only at very high humidities
or in water.

{g) The fibres have been assumed to reach equilibrium with their
immediate surroundings instantaneously. There is some evidence
that relatively slow changes of fibre structure may occur as the
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moisture is taken up, and that while most of the uptake is effec-
tively instantaneous there may be a slow drift of moisture content
persisting for some time. The information on this at the moment
is too sparse for it to be taken into account even if the mathematics

permitied.

13.6. Solution of the equations
Using Henry’s nomenclature the equations to be solved can be written

g2¢ 80 oM

prdy oY , 13.6

aE ot ot (13.6)
27 A oM

grot ot o 13.7

4 “a (13.7)

OMJoC = o,  oM/3T = o, (13.8)

where
D" =g¢D,;; 2" =Klap);, y=(1-0)(vp); e=gla (13.9)
Eliminating M, we get

00 eT |
. D = {l—k-}f{r} +'}-' 5= 0, (13.10)
E! BO
amz-—(l+m,) -1—!5 — = 0, (13.11)
which ean be written more simply in the forms
2
Dw_ﬁ{c M) = 0, (13.12)
2
Qﬂ_E(TupO) =0, (13.13)
ox*

where the significance of D, 2, A, and » is immediately obvious. These
equations are now in a form analogous in some respects to thosc repre-
senting two coupled vibrations, and they may be treated in the usual
manner, provided A and v are assumed constant, by the introduction of
‘normal coordinates’, which are linear combinations of € and 7', of the
form rO+s7T. With proper choice of the ratio r/s, the equations (13.12)
and (13.13), expressed in terms of the new coordinates, give rise to two
simple diffusion equations, each containing only one of the normal
coordinates. The quantities represented by the latter consequently
diffuse according to the usual law, and independently of each other, just
as the normal modes of vibration of coupled mechanical systems, once
started, continue without mutual interference. In order to find the
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normal coordinates, we multiply (13.12) by #/D and (13.13) by s/, and
add, obtaining

& OtsT) _E[(j‘l_ﬁ)g_j_ (f,_ﬂ)f} =0.  (13.19)

da® g\ @ & D
If this i1s to be oxpressible as a simple diffusion equation for rC'-4- 57" we
must have rID—sv|D  8|D—r\D
r s

: I s 1 A
l.e, I = —-—f—:..uuﬂ say. (13.15)

D v 9 sD
This 18 a quadratic in /s and gives the two values of r/s required to form
the two normal coordinates. Also, 12 will have two values, corresponding
to the roots of #/s. Equation (13.14) can now be written

£ ¢
a—xz{rﬂ—I—sT] —Epﬂ(r(}"—f—si") = (), (13.18)
which is a simple diffusion equation for +C'+¢7 with diffusion coefficient

Tiu2,
- We can now determine the normal coordinates and their diffusion

coefficients. Klimination of r/s between the equations (13.15) gives

s 1) 1y _ A 13.17
oo\ T3l = o (13.17)
the roots of which are
. D74 J(Z— DY 44 DD

13.61. Diffusion rates

If we write 1/ui = Dy and 1/u = D, in order to preserve the repre-
sentation of a diffusion coefficient by the letter D, and if we put D/& == u,
then we have from (13.18)

Dy _ 2
D “—F_]'F}"-\-'F{(I_"H)E—i—-iuﬂp}’ (13.19)
Dy 2

(13.20)

D w1l =)+ 4w}

Fig. 13.2 shows a nomogram, reproduced from Henry’s paper [4] for
solving these equations. If a straight line be placed so as to cut the two
straight scales at the appropriate values for « and Av, then the points at
which it cuts the circular scale give D,/D and D,/D respectively. To
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find D/&7 and D,j2, 1{u must be used in place of . Usually it is eon-
venient to expreas D), in terms of I} and D, in terms of 2,

F1e. 13.2. Nomogram for D,{D and i%,{D in terms of u and Ar.

If Av is small compared with (& — D}?{(4D7}, i.e. if either the coupiing
between the two diffusion processes is weak or D and 2 are of widely
different magnitudes, the roots become

1 A
) {13.21)
1 Av

=5 5D
approximately, Thus as the coupling becomes weaker u? tends towards
1/D, and pf tends towards 1/%, so that we may speak of -}y, asthe
vapour roots, and 4 u, as the thermal roots, though when coupling exists
all roots are conecerned with both diffusion processes to a greater or
lesger extent,

13.62. Expressions for concentration and femperature changes
Proceeding from (13.17) or (13.18) we see that
pituz = 1/D+1/2,
that is P —ulD) = —D(1—ui D). (13.22)
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“Using (13.15) and (13.22) we find that

o _1=piD% 1y
ry v D v
. y | (13.23)
s _ l—pﬂ.@g _ __1_'1”‘1D
32 Pl. @ )L /

Hence if we choose r, and s, to be equal to unity, the normal coordinates
are determined, and the solution of the differential equations {13.8),
(13.7), (13.8) can be written

.2

&0—1%'?&&" — bl 4,2, 2), (13.24)
e

ar_! ;:’ID&O ) (13.25)

where AC and AT are the deviations of € and T from some given values
(e.g. the initial), and the §’s are solutions of ordinary diffusion equations
with diffusion coefficients equal to 1/} and 1/ul respectively, and subject
to appropriate boundary and initial conditions. Solving for € and T'

we get 1— 2P

AC = $1(, 9,20+ —EEZ (a3, 5. 8), (13.26)
1—u2 D
AT = ¢z, 9,2,8)+ :f:l $ (2,9, 2,1), (13.27)
where

1—piD
x, ,E_,f = X, ,z,t, 13.28

1—pb
x, ,E,i === xT, , 2.t 13.29

The ¢'s, being proportional to the ¢’s, are also solutions of the ordinary
diffusion equation with diffusion coetfficients equal to 1ju? and 1fug
respectively, and with boundary and initial conditions which give the
required conditions for € and 7. _

The physical interpretation of these equations derived by Henry is
that each diffusion ‘wave’ of vapour is accompanied by a temperature
‘wave' proceeding at the same rate, whose magnitude is proportional
to that of the vapour diffusion wave, the relation between the two
depending only upon the properties of the materials, Similarly, the
main temperature ‘wave’ is accompanied by a subsidiary vapour
diffusion wave. Even if only one of the external conditions, say the
vapour concentration, alters, there will nevertheless be the complete
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set of two vapour ‘waves’ and two temperaturo ‘waves’, though the
latter may be small if the coupling is weak.

Henry points out that similar reasoning to that just given still holds
if equations (13.12) and (13.13) have on their right-hand sides, instead
of zero, any functions of the independent variables z, g, 2, and {. Such
equations would correspond to the case where either the diffusing
substance or heat, or both, are being set free or absorbed in a manner
additional to and independent of the diffusion processes, and independent
of ¢ and T. There might, for example, be a chemical reaction causing
both the diffusing substance and heat to be evolved throughout the
medium. In such cases the solution to the problem of the simultaneous
transfer of heat and vapour reduces to the sum of solutions for the
ordinary diffusion of the ‘normal coordinates’ with appropriate rates
of evolution throughout the medium of the quantities they represent.,

13.63. Solutions for sudden changes of external conditions

The above equations enable the solution of the coupled diffusion
problem to be obtained in terms of the solution for the ordinary diffusion
problem with the same boundary conditions. Suppose a specimen of
any shape is in equilibrium with its surroundings and that at time ¢ = 0
the concentration ¢ and temperature 7' of the diffusing substancé are
suddenly altered to C+A, € and T4-A, T respectively at the boundary,
and maintained constant. Let the solution to the simple diffusion
problem, assuming diffusion constants 1)) = 1 jp? and Dy = 1fp;, be

‘&O — &l] Gfl{.i?, ¥: 2 t]: (133{'}
AT = A, T folz, ¥, 2, 1). (13.81)

The specimen eventually reaches equilibrium with the new conditions
so that f; and f, must increase from 0 to 1 as? increases from 0 to infinity.
The form of these functions depends on the shape of the specimen and
typical solutions have been given in earlier chapters for plane sheets,
cylinders, and spheres, for example. Clearly f, and fs, multiplied by
suitable constants depending upon the initial conditions at the boundary,
are the functions ¢, and ¢, in equations (13.26) and (13.27). Thus,
remembering that the system must eventually come to equilibrium with
AC = A, 0 and AT = A, T, and that f; and f, are then both unity, we
find '

I

D —5d) [{(1—p2 D)Ag C—ABg Ty —{(1— 3 DBy C—A8e Tifs],

(13.32)

AC =

LR34 x
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AT = gy — g (L= 2)86 T—v8, O}/ - {13 D)y T—vA, C}fy].
*’Ffa

(13.33)

An alternative form of these equations, put forward by Henry {3] is

2 :
M E S ), (1839
ni A, T—vA, O

P (pi—ud)
The first term on the right-hand side of each equation represents the
‘wave’ which would result if there were no coupling between the diffusion
processes and which may be referred to as the ‘permanent wave’. The
second term represents the result of the coupling and may be called the
‘temporary wave’ since it starts at zero, increases to a maximum, and
then diminishes to zero again.

In many cases it is required to know the rate at which J, the amount
of diffusing substance absorbed, varies. To determine this we substitute

AM = oAC— AT (13.36)

in {13.34) and (13.33), and after some rearrangement we obtain

AM = A ‘Mf1+{( —%—;L) Ay M +- (ﬁ:? ﬂ")wi T}(F{j ﬁ?i.)
(13.37)

AC = A, Cf,— Y

AT = A, sz_“ (fe—J1): (13.35)

where from {13.10) and (13.12)
| — D(1+ya), (13.38)
and from (13.11) and (13.13)

27 = {1 +ew). (13.39)

If it is desired to include both the amount absorbed and the amount
in the pores, and M’ is the total amount of diffusing substance contained
in unit mass of solid, then from (13.36) and the definition of y in {13.9) we
obtain 1 o

AM — (1+_)Mf+ © AT, (13.40)

7o, pay

which may be ovaluated using {13.35) and (13.37). If yo is large, Le. if
much more diffusing substance is absorbed by the solid than is eontained
in the pores, M’ is nearly equal to M and (13.40) is not necded. Henry
points out that this is so for baled cotton, for example, for which yo
may be as much as 7,000, In this case also, since the terms in the
expression (u2—1/D—ew/P") occurring in (13.37) nearly cancel if ew i8
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fairly large compared with unity, e.g. for cotton it is about 10 or 30,
(13.37) may be written approximately

AM = &ﬂMfl‘I“
u? 1/9"—1/D"
+[—{1+“2)(1+Ew]+uﬁuﬂj+ 1l — wly Ti(fa—f1), (13.41)

where « is written for D/%. Here wl, T is the total change in the equili-
brium value of M which would be produced by the change in tempera-
ture A, 7, if C remained constant. Henry [3] has given numerical values
of the various constants involved in the above eguations for the case of
baled cotton at densities 0-2, 0-4, 0-6 g.fc.c. and has written {13.40) in
numerical form for each density.

13.64. Change in external humidity only

Henry [4] has explored further the ease in which no change is made
in the external tomperature, only the external humidity being changed.
Then we can put A, T = 0 1n equation (13.32) and by substituting 1/,
and 1/D, for pf and pZ respectively and then rearranging we obtain for
the ratio of the change in { at any instant to the equilibrium value of

the Ehﬂﬂgﬂn &0 . Dl(DE_-D}fl_'DE(Dl_D)f2. {13 42)
5,0 D(D,—Dy) '
This can be written very simply as
ACIAY C = (1—p)f,4-pfs, {13.43)
Dy(D— D)
here = 2 17 13.44
¥ P = D(D,=D) (13.44)

Thus p is a dimensionless quantity that can be expressed in terms of the
ratios D,/ and D,/{D. We have already seen in equations (13.19) and
{(13.20) that thesa ratios can be calculated directly from v = D/& and
Av, and so p can also be obtained from « and Av. The necessary relation-
ship 13 (w—1)2

(2p—1)2 — Tyt (13.45)

Henry's nomogram [ 4] for caleulating pin terms of % and Av is reproduced
i Fig. 13.3. Since the right-hand side of (13.45) is unaltered if 1/u is
substituted for «, the scale for « from 1 to o0 enables all possible values
of % to be dealt with. It also follows from this symmetry that the same
numerical value for p can be used to handle the problem in which the
external temperature is changed instead of the humidity.
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Putting A, 7" = 0 in (13.41), we get

AM WA fo—-11} B .
AT T AT T e = (AT (13:46)
L .
WhETE‘ N — (1+u}2{l+fm}—]—u' {13.47}

Henry’s nomogram for caleulating » in terms of « and 1/(14-¢w) is
reproduced in Fig. 13.4. Under the conditions for which (13.41) and

(13.46) apply we have
14+ew = H(1—Av), (13.48)

approximately.

Henry has given a table of values of p and » and also of the diffusion
coefficients 1, 2, D,, D, for cotton packages of two densities and three
relative humidities and temperatures. For the experimental data on
which his calculations are based his original paper [4]should be consulted.
The two densities are 0-2 and 0-5 g./fcm.? at temperatures 20°, 50°, and
80° C., and the relative humidities are 20, 65, and 80 per cent. The
results are shown in Table 13.1 reproduced from Henry’s paper [4], the
significance of the figures being clear from the labelled cells. Figures
for 80° C. and 90 per cent. R.H, are omitted because under these condi-
tions the vapour pressure would be a considerable fraction of atmo-
gpheric pressure and fluid flow would make an appreciable contribution
to the process. From this table and equations (13.43), (13.46), it is a
simple matter to calculate how concentration and total moisture content
vary for a package of known size and shape. When dealing with total
moisture content, f, and f, are, of course, functions only of time. As an
example, suppose the package is in the form of a large flat sheet then

we have (§ 4.32) |
fi= 1—Eﬂ(E‘”‘+%€‘“’“+£Ee—ﬂﬁm+...), (13.49)

where m = 72D, ¢/I%, | being the thickness of the sheet. The function f,
1s the same with D), replaced by D,

The following points about the solutions are of particular interest.

(i) In Table 13.1 it is seen that, as the temperature rises, the moisture
diffusion ceefficient. I}, which is at first much smaller than the thermal
diffusion coefficient &, eventually becomes much larger. Furthermore,
the diffusion coefficient D, for the slower normal function is always less
than either I} or & but never by a factor of less than }. On the other
hand, 1), is always much greater than D or &. The figures for n show
that the secondary wave is of very small amplitude, as judged by the
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total moisture content, at low temperatures, but becomes appreciable
at high temperatures. The figures for p show that in the case of an
external thermal disturbance only, the secondary wave may be impor-
tant even at room temperatures.

{ii) Since both f; and f, always change from 0 to 1 we see from (13.35)
that the change in temperature associated with an external change of
humidity only (A, 7' = 0) is a transient one, which increases from zero
to a maximum and disappears again. This transient temperature has
been observed by Cassie and Baxter [7].

(iii) If the initial disturbance is one of temperature only there i3 a
corresponding transient change in moisture content,

(iv) The effect of size or shape is all included in the funetion f and so
conversion from one package to another is relatively simple. In par-
ticular ¢ and ! always appear as £/I% in (13.49), for example, and we have
the usual dependence of the time scale on the square of the Linear
dimensions, familiar in simple diffusion problems.

{v) For comparisons of calculated and experimental values the papers
of Cassie and Baxter [7] and of Daniels [8] should be consulted. The
former describes a pure diffusion experiment, the latter a flow-under-
pressure experiment with diffusion as a complicating feature. It is not
to be expected that the theoretical treatment of a subject as complicated
as this can reproduce all the features accurately and quantitatively. Its
value lies in clarifying the mechanism by which heat and moisture are
transferred, in making possible rough estimates of time scales under
given conditions, and in particular, showing how the times for a given
package can be estimated from measurements on a standard package.

13.7. Surface temperature changes accompanying the sorption
of vapours

A much simpler problem but one of practical interest is to calculate
the temperature change which accompanies the sorption of vapour by
a solid, in cases where the temperature rises due to the heat of con-
densation given up at the surface of the solid and the heat of mixing
can be neglected.

We consider a plane sheet suspended in a vapour maintained at con-
stant pressure. The sheet is taken to be so thin that effectively all the
vapour enters through the plane faces and a negligible amount through
the edges. Uptake of vapour therefore occurs by uni-directional diffusion
through the sheet and the amount taken up is assumed proportional to
the square root of time. The heat of mixing is taken to be a negligible




§ 13.7] HEAT AND MOISTURE 319

fraction of the heat of sorption which thus becomes simply the heat of
vaporization. This assumption carries the implication that during
sorption heat is evolved only at the two surfaces of the sheet. Values of
heat conductivity, specific heat, and density of the sheet are taken to
be constant, independent of temperature and vapour content. The
calculated results are based in the first place on the assumption that heat
is lost from the surfaces by radiation only, according to Stefan’s law.
For small temperature differences, however, both radiation and con-
veotion losses proceed at rates directly proportional to the temperature
difference between the surface and its surroundings, and so convection
losses can be allowed for by adjusting the radiation constant.

13.71. Mathematical equations

Taking # to be the temperature difference between an element of the
sheet and the vapour in which the sheet is suspended, 6, the temperature
of this vapour assumed constant, = the space coordinate perpendicular
to the surface of the sheot (the surfaces being at # = 0 and z == ]), and
¢ the time during which uptake of vapour has oceurred, the equation
governing the conduction of heat through the sheet is

ﬂ_ﬁzf?_fi? (13.50)

¢t pu dx?
Here K is heat conductivity, p density, and « specific heat of the sub-
stance of the sheet, all expressed in c.g.s, units. At each surface heat is
continuously evolved, as vapour is taken up, at arate given by 1pll. d RB/dt,
where I is the regain at time ¢, i.e. mass of vapour taken up per unit initial
mass of sheet, and L the heat of vaporization, Some of this heat is lost
by radiation from the surface at a rate which for small temperature
differences is given by %0, where k = 40,83 and ¢, is Stefan’s constant.
The remainder of the heat enters the sheot by conduction at a rate given
by —Kébjoxr. The equation expressing conservation of Leat at the

surface £ = 0 iz therefore

10l L %_mﬂg — 0, w=0 (13.51)

There is a corresponding condition for the surface = I, but for purposes
of calculation it is preferable to consider only half the sheet and to use

the condition a8fex = 0, x = 11, (13.52)

because the uptake of vapour and the heat flow are symmetrical about
the central plane of the sheet. We need therefore to evaluate solutions
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of {13.50) with the boundary conditions (13.51) and (13.52) and the

initial condition ’
g8 =0, 0 < @ < 3, t= 0. (13.53)

We consider the regain, R, at time ¢ to be given by
R = B>}, (13.54)

where B is a constant for a given experiment. It follows from equation
(4.20), for example, that
B = 40 (D[=)}, (13.55)

where C, is the equilibrium regain attained theoretically after infinite
time, and 1) an average diffusion coefficient for the concentration range
0 to €, of vapour. The constant B is thus dependent on the experiment
considered, i.e. on the system, the temperature and the vapour pressure,
but is independent of the thickness of the sheet.

On introducing the non-dimensional variables

Ko\l 1§ K x
_ _ #t _r 13.56
¢ (p) BL 7T o X =7 (13.56)
and substituting for R in (13.51) from (13.54), equations (13.50}), (13.51),
(13.52), {13.53) become

o _ 7% (13.57)

ér 8X*

| S 71 Fale _

E_K¢+8_f_0’ A =0, T = 0, (13.58)
adleX = 0, X =1, T > 0, (13.59)
¢ = 0, 0 <X <1, =0, (13.60}

When expressed in terms of the new variables ¢, X, and =, the problem
therefore contains only a single non-dimensional parameter kI/ K, which
we denote for convenience by k. A number of solutions of equation
(13.57) satisfying (13.58), (13.59), (13.60} have been evaluated for
different values of %, using the step-by-step method of integration
described in § 10.5. The calculated surface temperatures are shown
graphically in Fig. 13.5, and together with the two spocial cases for
K — oo and K = 0 they constitute the solution of this problem for all
values of the physical properties involved. For convenience of scale
in Fig. 18.5, (klo/p)}#/BL) is plotted against (kt/lpa)t. These variables
are respectively A} and (hr)} and hence are readily deduced from ¢ and
r for a given 2.

ﬁ o
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Fic. 13.5. Variation of surface ternperature with (time)t.
Numbers on curves are values of 2 = kI/ K.

13.72. Special cases of zero and infinite conductivaity

While the case of zero heat conductivity may be of little practical
gignificance it is nevertheless a useful limiting solution from the mathe-
matical point of view. When K = 0, no heat penetrates the sheet and
we are concerned only with equation (13.51) which becomes

iplldR|dt = k6. (13.61)

For the particular case of B given by (13.54), integration of (13.61) leads
immediately to Blp

8 = e (13.62)

When K is infinite the temperature iz always uniform throughout

the sheet and some of the heat evolved at the surface is lost by radiation
while the rest raises the temperature of the whole sheet. This is expressed

by the equation iR a8
i —_ 2 o0 —— | 13.63
= pl L kB +1pa 7 | { )
which becomes a6 Zy BL _ (13.64)

E.-I_.E,Et ol
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on substituting for B from (13.54). The solution of (13.64) is

£
BL 2kt 2kt,
— __ oKkt 13.65
=T EKP( fﬂﬂ)f iexp(fpﬂ)dtl (136
0

When expressed in terms of the variables it$ and 2+ used in Fig. 13.5,
equation (13.65) becomes

hip — g-2hr f e2h71 J(hid), (13.66)
0
Tabulated values of the right-hand side of {13.66) are available |8] for
values of (A7)t in the range 0 <C 2kr <¢ 100. The solution (13.68) is
shown as the curve marked K = oo in Fig. 13.5.

13.73. Calculated results. General solution in non-dimensional vari-

ables

In Fig. 13.5, htd is plotted against (hr)* for different values of b = Al/K.
Since both variables and the parameter A are non-dimensional, the
variation of surface temperature with time can be deduced from this
figure for any system (subject to the basic assumptions) by inserting
appropriate values of the physical constants involved.

The following general points are of interest.

(a) For any finite conductivity the surface temperature rises discon-
tinuously at = 0 to some finite value and immediately afterwards
begins to fall.

(6) For the smaller values of %, i.e. larger conductivities, the surface
temperature passes first through a minimum and later through a
maximum before falling eventually to the temperature of the sur-
roundings. The initial fall in temperature occurs while the sheet is
behaving semi-infinitely with respect to heat flow. The temperature
rises when an appreciable amount of the heat entering the sheet throngh
its second surface reaches the surface under consideration. The later
maximum in surface temperature occurs when heat is removed from
the surface by conduction and radiation (and possibly convection) as
quickly as it is given up by the vapour entering the sheet. It is to be
remembered that the rate of uptake of vapour and hence the rate of
supply of heat to the surface steadily decreases, being proportional
to 1/4%.

It is to be expected that the smaller the heat conductivity of the sheet
the longer the time that elapses before the heat from one surface reachea
the other and hence the later the minimum temperature occurs.
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(¢) For # > 1 no minimum or maximum temperatures oceur but the
surface temperature falls continuously for ¢ > 0, s0 that theoretically
the highest temperature is achieved instantaneously at zero time.

{d) When the conductivity is infinite, the surface temperature rises
continuousty from that of the surroundings up $o a maximum and then
falls., For zero conductivity the surface temperature is theorctically
infinite at ¢ = 0 and then falls steadily.

(e) To within the accuracy of plotting, the maximum temperature
can be deduced from the curve for £ = oo even if the conductivity is
finite, provided kl/K < 0-2 approximately.

(f) For a given sheet the temperature change in degrees is propor-
tional to the heat of vaporization, L, and also to the constant B. - We
have seen in equations (13.54) and (13.55) that B is the gradient of the
linear plot of regain against (£/I%)}, and is also proportional to the product
of the equilibrium regain and the square root of an average diffusion
coefficient,

The following are two examples of the use of the general solution,

(i) Effect of thickness

As an example of the use of the curves of Fig. 13.5 we have caleulated
the way in which the temperature at the surface of a polymer sheet
varies with time as it takes up vapour, and how this depends on thick-
ness. The following values are taken as representative of a variety of
polymers and vapours:

p = -0, x = 035, L = 100, E=1-6x10",
K — 4‘5}{ 1{}_4,

all in ¢.g.s. units. The value of I comes from Stefun’s constant and
relates to an ambient temperature of 35° C. The value B = 7-10 < 10-°
has been used. It corresponds to a system in which the equilibrium
regain is 5 per cent. and the average diffusion coefficient is

4 % 10-7 em.?fsec.

Temperature-time curves are plotted in Fig. 13.6 for a number of thick-
nesses. For a sheet 0-07 em. thick the maximum temperature change
is approximately 1-4° C. at about 65 seconds. The maximum tem-
perature is lower and occurs later, the thicker the sheet, but for a sheet
as thick as 5:66 cm. the highest temperature is 0-25° C. attained at ¢ = 0.
We note incidentally that in theory for all thicknesses the surface
temperature changes instantaneously by -25° C. at the beginning of
sorption. As we have already mentioned, corresponding curves for
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other equilibrium regains in the same system can be deduced from
those of Fig. 13.6 since # is directly proportional to B and hence to G,

(i) Limating rate of sorption for 1° C. rise in surface temperature

Dr. G. 8. Park suggested that, from an experimental point of view,
it is useful to know what is the fastest sorption or alternatively the
greatest regain for which the rise in surface temperature does not exceed
17 C. Accordingly, in Fig. 13.7 are plotted curves which show how the
limiting value of B fora 1° C. rise in temperature depends on the thickness
of the sheet. The thicker the sheet the faster the sorption permissible,

The three curves of Fig. 13.7 are for different values of the emtssivity
constant k. The middle of the three corresponds to a surface loss purely
by radiation when the temperature of the surroundings is 356° . Changes
in k may be due to differences in ambient temperature §; since k = 4o, 63.
Alternatively a higher value of k ean correspond to some loss of heat by
convection in the vapour, since both the convective term and the
radiation term in the heat loss are directly proportional to temperature
difference for small temperature excesges, Thus the curve on ¥Fig, 13.7
for k = 6-4x 10~% could correspond to an experiment in which a stream
of vapour is passed over the surfaces of the sheet.

REFERENCES
King, G., and Caasie, A. B. D., Trans. Faraday Soc. 36 (1940) 445.
Casgsie, A. B. D., J. Textile Institute, 31 {19040} T17, :
Henry, P. 5. H., Proc. Roy. Soc, 171 A {1939) 215,
Dhscusgions of the Faraday Seociety, No. 3 (1948) 243,
Cassie, A, B.D., Trans. Faraday Soc. 36 {1940} 453.
Danielg, H. E., ibid. 37 (1941) 508.
Caasie, A. B, D,, and Baxter, 8., thid. 36 (194¢) 458,
Sakamoto, 8., Leipziger Berichie, 80 {1028} 217,

TSPk Lo~



TABLES

»
‘€ ILIDT-w} TF — B IYMIg-al = IP I AIO 1-u] ._. ng
w &

& Il B
xr
i .
{TIHA #2—x 0)10)% = .M-.nln.nwm — & QT +dur. = 37§ ATa] -_. L 8 T
[ ¥4
xr
#.._..-.1
T I & = px_d T = 3p 3ol ._; T OJIR)

L ]
“ SEMHI O B LGBHG-0 10Q0-1) B0} OGLL-0 0-8
! TFO000-0 6C8866-0 £0040-0 CLO0-0 SFRL10 &7
‘ G L0001 pradasligl ¥O00-0 Cal-0 GOGT-0 o3
¥E 10000 LoRdes-0 SO} oF 00 GH6T-0 L3
1000 gEE0N)-0 FOLAG- 1) ELN-0 HR0-0) oa0G 0 93
TOH0 A0FG0)-1) EHYGGH-CG a0 A0TC-0 AT H 0.3
TOC)-1) 0000 EE2000-0 TTEG86- 98004 TLLG-0 CHTa-0 Fa
ca0d-0 FOH-0 E¥TTR00 LUBHG6-0 LC00-0 52800 LOZE-0 E-d
2000-0) LOO0-1} EORTON-0 LETRER0 H804-0 26EU-0 BCRE-D gl
THM)-0 SO0 o100 GLE300-0 L20466-0 LETO-0 glon0 TGYE-0 1-a
THHD-1) 0000 BO00-() 04800 BLIFOU-O anLeaf-0 LOE0) Lagln} LEERRL 0-8
10000 L0001} 2100-0 TE00-0 araL00-0 (M LAGG-0 SOEC-0 OB IT-0 TO95-) &1
B0 20000 TZ00-0 SF(H)-0) HOGOTL-0 1GUGRE-0 aFFQ-0 18510 GHLE-D g1
£000-0 OTCH)-(} EE200-0 #L00-0 0128100 i LERG-) LEB0-0 AL LT6a-0 i1
T000-0 FO00-0 BL00-0 500-0 GIIR-0 SLOEE0-0 BFEDLE-0 ALB0-0 16250 OBIE-D 4-T
S000-0 2000-0 Qa1 ag00-0 24100 SaRER0-0O COTSAG-0 ae1L-0 BYSE-0 91250 o1
TOaR-0 0030 TTO0-0 TH0- 0 GEL0-0 £4q0-0 STLLF -1 CRERLE-0 65C1-0 0GP0 LEEE-0 ¥-1
1030 FOH-0) S 1000 £000-¢ FRTO-0 9300 ZEGTO0-0 BOOFEG:0) SROZ-O A R QICEO g-1
-0 O 6c00-0 LtH)-1) GLEN-0 L2500 ge9aa0-0 FIEOTG 0 SLYE-( S1F4-0 CRLL 1} a-1
E000-1) & 100 SE-) L¥ 100 8ac00 LR SBLeTT-0 COZ0EE-0 CREE-O TOFL-0) ATOF-0 [-T
COC0-0 ST00-0) Go00-0 BI50-0 2990-0 cOOL-0 Gealal-0 TOLEFER O T4TF-(; GOEN-() oLed 0 -1
QN1 FE00-0 SR gaa-10 LLG0D ELTT-D GOTGELT-0 TGROES 1) (ERAY B capg-0 STFF-I GO
HOO0-0 0% 00-0 FOLG-0 T&E0-0 SOH0-0 Fas L0} GHIERT () HOGOGL-O 0&05-N LY COSE-0 R
O100-0 2200-0 B2Z10-0 GRe0-i 0et)-0 URE1-0 cELARZE-] HOUOLL-O WAEG-0) FlLEG-D ERLE-( o0
1040 %000 BoTO- FOTO-1) 0&17-0 EAHT-} AR LEE-0 TOLBF L4 0e69-0 OFRCE-) | Lt Y 80
ST00-0) FAI{ RN (5 100 SOG0-() GLRT-0 LEOE-1} FRPELRE-0 98TI1ITL-0 G3¥F9-0 OG0 69000 g1-0
1000 02000 THE0 0 2090-0 1¥G1-0 cOFE-0 AETSEN 0 108LLG-0 Lleu-0 gLo8-0) 6G3G-0 L0
¥E00-0 Qe GLE0-0) LBL0-O 86410 arig( TLGLSE-0 G6&0EFH-0 465 4-0 TTO60 cUTS-0 S0y
3000 COLO-0 R0 O an b0 ORE-0 8LIE-O FFIGALE.O gE3R09-) AL TR L¥¥G-0} w0500 a0
98000 AR FOTO-0 T1G11-0 EC¥E-0 48G5-0 LLQGEF-0 £TEEOS-0 BLEE-0 2LT6-0 GOGS-0 250
SEOO-O gsi0-0 FEFO O Lfg L0 o6L%-0 E66GE-0 OOGELE O 50250 BELE-0 EHi-( LCT19-0) g-0
SL0g-0 6R10-0 LAY et GGt CGYE-0) L R4E FATN aRFCLT-0 SIG6-0 roEs-0 SEFR-0 a¥-0
26000 BEE0-0 L9600 SHLL-0 Ge0E-0 E¥0S-0 BOOTLGO afe8GT-0 L1960 agel-0 B0L0-0 ¥-0
EH00-0 CLaf- QTR ) 82050 REST-0 aReG-0 BT9059-0 GREGLE-O FRGG-0 BHE9-0 ST0L-0 o0
10100 LEER-0 cRe0 O HTEE () gE2t-0 Fua-0 ELETLD-O LEGHZE-( £180-1 BHTH-0 BEEL-O g0
BEIU-0 GeEa-0 GEIl g SOEE-0 16¥S-0 wHEE- FLOEEL-O PRERLE-0 O0e0-1 OORG-0 SOLED ca-0
GF10-0 vLFO0 I¥ETO E¥aL-0 Laa-) GELLD LGELLL-[} EQLEEG 0 TF80-1 gnsf-0 06080 -0
0810-0 FRG0-0 BI0L-0 OFLE-O OFQLi-0 LECR() FHIZER-O 90GLAT-0) gELL-1 01g8-0 #0580 CT-0
LT1E0-0) [L290-0 [#51-0 [ORF-0 QG40 GHEe-0 LEQLEE-O EOTELT-0 alTI-T FREGS-0 SHBY-1 [
1GE0-0) coi00 BFIa-O LEGY-0 [E6E-0 alel-T HaHE T cLEQNG-0O 9gal-1 HAT1T-0 0a¥a-0 co-0

RLEQO (H30-0 ce 0 arEc.0 -1 -1 0L 0 ¥REI1-T 0 0L i
TAIBNCL | T 0FINI NI | Z oM/ | TOINTH | T0HF | To[INGF T DJIO T JI% 1T-PP-T | W% -EF | X Ol 49 %

SUORIURS Porp1008sy pub worpunf 10443 2y fo ojqu Y 1°Z 1AV,




oL

Wo write ¢ = «f(p/D). D, =, and k are always pogitive, o is unrestricted.
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TABLES
TABLE 4.1
Roots of tang, = —oGy

Fractional
wptake o q: ¥ Iz N 73 Fs _ Ty
o o0 1-5708 | 47124 | 7-8540 10-p956 | 14-1372 | 17-2788
01 9-0000 | 1-6385 | 4-7359 7.8681 | 11-0057 | 14:1451 17-2852
0-2 40000 | 1.7155 | 47048 7.8857 | 11-0183 | 14:1543 17-2933
0-3 9.9333 | 1-8040 | 48014 7.5081 | 11-0344 | 14-1674 17-3038
0-4 1-5000 | 1-9071 | 4:B490 7.9378 | 11-0658 | 14-1841 17-3173
0-5 1-0000 | 2-0288 | 49132 7.9787 | 11-0856 | 142075 17-3364
0-6 0-6667 | 2-1746 | 50037 2.0385 | 11-1206 | 14-2421 17-3649
0-7 0-4286 | 2:3521 | 5-1386 .1234 | 11-2010 | 14-2990 17-4118
0-8 0-9500 | 2-5704 | 5-3640 g.3020 | 11:3349 | 14.4080 17-5034
00 01111 | 2-8363 | &:7173 g3.6587 | 11-6532 | 14:6830 177481
10 0 3.1416 | 62832 | $-4248 12-5664 | 15-7080 | 18-8496

TasLE 4.2

Roots of ftanf = L

) L B B2 B3 Ea Bs Be
0 0 5.1416 | 6-2832 | 04248 12-5664 | 157080
0-01 | 0-0998 | 3-1443 g.2848 | ©9-4258 | 12-5672 15-7086
o1 | 0-3111 | 3-1731 g-2091 | 94354 | 12:5743 15-7143
03 | 0-4328 | 3-2030 | 6:3148 9.4459 | 125823 | 15-7207
05 | 0-6533 | 3-2023 83616 | 9-4775 | 12-6060 15-7397
1-¢ | 0-8603 | 34256 64373 | 9-5293 | 126453 157713
0.0 | 1-0769 | 3-6438 6.5783 | ©0-6206 | 12-7223 15-8336
5.0 | 1-3138 | 40336 6.9006 | 9.8028 | 12.0352 16-0107
10-0 | 1-4289 | 4-3068 7.9981 | 10-2003 | 13-2142 16-2394
100-0 | 1-6552 | 4-6658 77764 | 10-8871 | 13-9981 17-1093
o 1-5708 | 4-7124 | 7-8540 10-0056 | 141372 | 17T-2788

TasLE 5.1

Roots of o, Jo(d,)+24(g.) = 0

Fractional _

_H-Pmkﬂ e | ql_____ﬁ_ gs | T fa ds
0 ot 9.4048 | 55201 | 86437 117915 | 146309 | 18:0711
01 0.-0000 | 24922 | 55509 3-6793 | 11-8103 | 14-0458 18-0833
0-2 4.0000 | 2-5888 | 56083 27109 | 11:8337 | 14-9643 18-0486
03 5.3393 | 2-6962 | 5-6682 g.7508 | 11-8634 | 14:9874 18-1183
-4 1-5000 | 2-8159 | 57438 3.8028 | 11-90026 | 15-0192 18-1443
05 1-0000 | 29488 | 5-84l1 58727 | 110561 | 15-0623 18-1803
0-6 o-6667 | 30989 | 59692 4.9709 | 12:0834 | 15-12535 18.2334
0-7 0-4286 | 32845 | 6-1407 9-1156 | 12-1529 | 156-2255 18 3188
0-8 02500 | 3-4455 | 6-3710 9.3307 | 12-3543 | 15-4031 184754
0-9 0-1111 | 3-637¢ | 6-6604 0.6907 | 12-7210, | 157640 138215
1-0 0 9.8317 | 7-0158 |10-1735 133237 | 164706 | 196159
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TABLE 5.2
Roots of BI,(B)— LJy(8) = 0
L By Ba A Ba Bs B
O { 3-8137 701586 10:1735 13-3237 18-4706
0-01 { 0-1412 38343 T0170 10-1745 13-3244 16-4712
0-1 (04417 | 3-857% | 7-0208 | 10-1833 | 13-3312 | 16-4787
0-2 06170 | 3-8836 | 7-0440 | 101931 13-33R87 I6-482K
-5 D408 | 3-9564 | 70864 | 10-2225 13:3611 16-5011)
1-{ 1-2558 | 4-0795 | 71558 ) 10-2910 | 13-38%4 | 165312
0.0 | 1-5004 | 42010 | 7-2884 | 10-3658 | 13-4719 | 16-591D
5-0 1:9808 | 47130 | 7-6177 | 10-6223 | 13-6786 | 16-7630
100 | 2-1%95 | 50332 | 7-9569 | 10-9363 | 13-9580 | 170009
19G-0 2-3800 { 5-4852 | 85678 | 11-6747 | L4-9834 | 17-8031
oL 2-4808 | 55201 | 86537 | 11-7915 | 14-9309 | 18-0711
TABLE 5.3
Roots of Jy{ax,)Y,(ba, ) —Jy(ba, ) Yylaa,)
b/a oy fHixy g &y, (e
1-2 15-7T014 | 31-4128 | 47-1217 | 62-8302 T8-538O
1:5 62702 12-5598 | 18-845] 25-1294 | 31-4133
2.0 3-1230 62734 9-4182 1 12-6614 | 15-7040
;1 2.-0732 4-1773 0-2704 83717 10-4B72
31} 1-5485 3-1291 4-70G38 6-2767 T RABT
35 1-2339 256002 37608 5-0198 g-2776
4-0 -0244 20800 3-1322 4:1816 a-2301
TABLE 6.1
3
Roots of tang, = iﬂ
3+ g,
Fraclionol
uptake x 1 Fa g s Tx Ye
0 o0 3-1416 | 6-2832 ¢ 0-4248 | 125664 | 15-7080 | 183-8498
0-1 9.0000 | 3-2410 | 63353 | 94599 12-54928 15-7262 15-8671
(-2 4-0000 | 3-3485 | 6-3970 | 9-5029 | 126254 | 15-7554 | 188891
0-3 2.3323 | 3-4650 | 6-4736 | 9-5567 | 12-6688 | 15-7888 | 18-4172
-4 I-50:00 3-6509 6-5663 | 46255 12-7205 15-8326 14-9541
(5 1-0000 | 37264 | 66814 | 97156 ! 12-7928 | 15-8924 | 19-0048
(-6 0-6667 | 3-8711 | 68246 | 98369 | 128940 | 15-9779 | 190784
0-7 04286 | 4-0236 | 7-0010 |10-003% | 13-0424 | 161082 | 19-1932
0-8 0-2500 | 4-1811 | 7-2169 |10-2355 | 13-2685 | 16-3211 ! 19-3808
0-9 1111 | 4-3395 | 7-4645 |10-5437 | 13-6133 | 16-8831 | 197564
1-¢ 0 4-4934 | 7-7253 |10-9041 | 14-0662 | 17-2208 | 20-3713
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TABLE 6.2
Roots of B,c0t8,+L—1 =0

L -2 Ba Bs B4 Bs B
0 0 44934 | 7-7253 | 10-9041 | 14-0662 | 17-2208
001 [ 0-1730 | 4-4956 | 7-7265 | 10-D050 | 140669 | 17-2213
0-1 -542% | 4-515% | 77382 | 16-B133 | 14-0733 | 17-2266
02 | 0-7603 | 4-5379 | 77511 | 10-9225 | 14-0804 | 17-2324
0-5 1-1656 | 4-6042 | 7-7809 | 10-9499 [ 14-1007 | 17-2498
L0 1-5708 | 47124 | 7-8540 | 109958 | 14-1372 | 17-2788
2.0 | 2-0288 | 4.9132 | 7-9787 { 11-0856 | 14-2075 | 17-3364
5-{) a.5704 | 5:3540 { 8-3029 { I11-3349 | 14-4080 | 17-5034
10-0) 2.2363 | 57172 | 86587 | 11-8532 | 14-6870 | 17-7481
100-0 3-1102 | 6-2204 | 9-3309 | 12-4414 | 15-5522 | 18-6633
"y 31416 | 6-2832 | 9-4248 | 12-5664 | 15-7080 | 18-8406
Tasre 8.1
Values of M){M,, for pa*/D = 0-01
=
R“RH B Plane sheet Cylinder Sphere
DR+ 1) | 10 oo | 1w | 100 { 10 | loo
0-005 0024 | 0009 t 04043 | 0012 | Q057 | (+0U13
0-01 034 | 0013 | 0088 | 0017 | -073 | 0-018
0-02 0-048 | 0-021 | 0-074 | 0-026 | 0-086 | 0-027
0-04 0-087 | 0-036 | 0-088 | 0:043 | 0093 | 0046 -
0-06 0-079 | 0051 | 0093 | 0060 | O-096 | O-0B4
0-08 0-086 | 0-065 { 0-096 | 0-077 [ 0-098 | 0-081
0:10 0-091 | 0079 | 0089 | 0094 | O-100 | 0-009
0-15 0-099 | 0-I14 | 104 | 9133 | -F05 | O-140
0-2 0-104 [ 0147 | 0-108 | 0:172 | 0-109 | 0-180
0-3 0-114 | 0-210 | 0-118 | 0-243 | 0119 ) 0-254
0-4 0-123 | 0-268 | 0-128 { (-308 { 0-129 | 0-322
0-5 0-133 | 0-322 | 0-137 | 0-368 | 0-138 | 0-383
1-0 0-178 | 0-537 | 0-183 | 0-597 | 0-184 | 0-616
1-6 0220 | 0-683 | 0-226 | 0-743 | 0-227 | 0-781
20 0-261 | 0-782 | 0-267 | 0-836 | 0-269% | 0-851
2-5 0299 | 0850 | 0:306 | 0-895 | 0-307 ; 0-907
5-0 0-463 | 0-877 | 0-471 | 0-089 | 0-473 | 0-991
75 0-588 | 0-996 | 0597 | 0-099 | 0-599 | 0-999
10 685 | 0-999 | 0-693 | 1-006 | 0-695 [ 1-000
15 0-815 | 1-000 | 0-822 | .. | o823 | ..
20 0-891 0-896 0-898
44) 0-987 0-958 0-939
80 0-998 0-999 0-099
80 1-000 1-000 1-000

331
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TAPLE 8.2
Values of M|M,, for pa?/D = 0-1
R
\ R FPlane sheet Cylinder Sphere
DEHR+ 1D | 1 10 100 1 ) 100 1 10 100
0-005 0-057 | 0-025 | 0-017 [ 0-168 | 0-044 | 0-029 ] 0-155 | 0-059 | 0-037
0-01 (-080G 1 0-035 | 0-082 | 0-149 | 0-060 | 0-054 | 0-210 | 0-076 | 0-068
0-02 0-113 | 0-052 | 0-062 | 0-205 [ 0-081 | 0-101 | 0-279 | G-095 | 0-127
0-04 0-160 {1 0-076 | 0-116 | 0-277 | 0-106 | 0-188 | 0-361 | 0-117 | 0-232
0-06 0-197 [ 0-095 | 0-166 | 0-327 | 0-125 | (-265 | 0-409 | 0-136 | 0-324
08 0-227 | 0:112 | 3-211 | 0-365 ' 0-143 | 0-333 | 0-441 | 0-153 | 0-404
0-19 0-264 | 0-128 | 0-258 | 0-305 | 0-159 | -394 | 0-463 { 0-171 | 0-474
015 -310 | 0-164 | 0-343 | 0-445 | 0-200 | 0-519 | 0-494 | §-212 | 0613
0-2 0-354 | 0-198 | 0-418 } 0-476 | 0-238 | (615 | 0-508 | 0-252 | 0-712
0-3 G-418 | 0-281 | -536 | -507 | 0-309 | 0-748 { 0-322 | 0-325 | 0-838
0-4 459 | 0-320 [ 0-626 | 0-5324 | 0-373 ; 0-832 | 0-532 | 351 | 0-907
0-5 0-488 | 0-374 | 0-686 | 0-335 | 0432 | 0-887 | 0-542 | 0-451 | 0-948
1-0 0-559 | 0-585 | 0-880 | 0-57% | 0-652 | (-083 | 0-585 | 0-672 | 0-958
1-5 0-601 | 0-724 | 0-959 |0-618 | 0-786 | ¢-997 | 0-624 | 0-804 | 1-000
2.0y 0-638-| 0-816 | 0-985 | 0655 | -868 | 1-000 | 0-660 | 0883
2.5 0671 | 877 | 0-004 [ (687 | 0-819 ] .. | 0892} 0-930
5-0 0-797 | 0-9583 § 1-000 | 0-809 | 0993 | .. {0-813 [ 0-985
75 GR75 | 0998 [ .. | 0884190999 .. [0-88%6|1-000
I 0:923 {1000 | .. |ouw29ll000f .. |90931
15 0971 | .. U 1 1 - 7 N .. | 0974
20 0980 | .. .| 0990 | L. .. {0-980
40 1000 | .. .. | 1000 .. Co 1000
TABLE 8.3
Values of M/ M, for pa®/D = 1-0
|
» FPlane sheet Chrylinder Sphere
DtiR+1n* . 1 19 100 1 10 100 1 10 100
0-005 0-057 | 0-028 { 0-045 | 0-109 | 6-051 | 0-085 | 0-155 | 0-070 | 0-120
0-01 0-081 | 0-045 1 0-081 | -151 | 0-079 | 0-151 | 0-211 | 0-105 | 0-212
0-02 0-115 [ 0:075 [ 0-136 | 0-208 | 0-129 | 0-250 | 0-283 | 0-166 | 0-246
0-04 0-164 | ©-131 | 0-210 | 0-285 { 0-217 | 0-378 | 0-371 { 0-273 | 0-510
0-06 0-203 | 0-181 | (264 | 0-34} [ 0-205 | 0-465 | 0-429 { 0-366 | 0-613
0-08 02371 0-246 | 0-300 | 0-385 | 0-363 | 0-531 | 0-471 | 0-445 | 0-687
0-10 0-267 | 268 | 0-348 1 0423 | 0-423 | 0-587 | 0-504 | 0-514 | 0-743
015 0-334 | 0-358 | 0-430 | 0-405 | ¢-547 | 0-802 | 0-564 | 0-848 | -840
0-2 0-300 | 0-432 | 0-497 | 0-549 | ¢-638 | 0-767 | 0-608 | 0-742 | 0-899
-3 0-481 | 0-549 | 0-807 | 0-630 | -768 | 0-866 | 0-676 | 0-860 | 0-D59
0-4 0-553 | 0-637 1 0-691 | 0-69]1 | 0-848 | 0-023 | 0-732 | 0-022 | 0-083
0-5 0-613 1 0-707 | 0-758 | 0-741 | 0-898 | ¢-955 | 0-777 | 0-956 | 0-9#93
1-0 9-804 § 0-895 | 0-027 | (-801 | (986 | 0-007 | 0-982 | (-0587 | 1-000
1-5 0-000 | 0-962 | 0-978 | 0-054 | 0-998 | 1-000 | 0965 | 1-000 | ..
3. 0-943 | 0-086 | 0:994 | 0-980 | 1000 .. |o0-986 ] ..
2.5 0-973 | 0-993 | ¢-998 | 0-992 | .. .. 10995
5-0 (-989 | 1-000 | 1-000 | 1000 | .. .. | 12000
7-3 1000 | .. . . . . .
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TABLE 8.4
Values of MM, for ua®/D = 10

ﬁa o Ploane sheet | COylinder Sphere
Dif(R+4 1)at ™. 1 1 1

0-005 0:059 J-112 0-160
0-01 0-055 (-158 0-224
(02 0-126 0-230 -316
(04 0190 0336 0-448
0-08 0-242 0-420) 0-546
0-08 0-288 (-489 G-623
010 G-329 0-547 (636
14 0-414 - 66 {-796
0-2 {-484 0-740 0-885
0-3 0-505 (-845 (-93%
(-4 (-680 0-906 0-972
0-5 07446 (G-943 0-987
f-0 {-920 0905 1-000
1-5 0-975 1000
2-{} (G-992
25 948
5-0 1-0(H)
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TaBLE 9.1
Numerical values of the function 1,0004(y, g)

'H\K ¢ {00 ] 02| D4 0-§ 0-8 1-0 1-B 1-4 i 1-8 20 22 24
¥

0 |—BP95|—0bE — 16004
4 | —003—986] — D99 — 1000
8 1—080|--D0d] —998 —000

7 |- 084|000 —904| --088]—1000
8 |—078]—084| —CO2 —008] —0gnt— 1000
5 {—D88|—g76] —o85| —002| —007] —o00|— 1000
—~14 |—952(—964] —O76F —935] —~093| —007 — 000
—13 |—934/—048! —962| —o75| —888 —094| — 98| —1000
—12 |-910|—926| —942 —G58| —074] —986] — 005/ —0OO
—11 |-8B0|—B898] —814| —933] —053| —9721 —087| ~908)—1000|
—310 |—848-858 —870| —808; —920] —045! —668] —087| — 897| — 1000 — 1000
— 09 |—757—810| —826| —845| —8B72| —901| —038] —083 —DRE| -—-UDR| — 05D
~0-8 |=742|—751] —765 —781| —B04 —834] —8TO —912| —962] — 084 —097|—1000|
=7 |—078]— 682! —69 —TO —Y17| —741| —F74| —B17| —s580] —023] — 975 — 006} — 1O
—06  |-8D4{ 602 002 —605| —0612| —626] —647] —878] —721| —7¥85[ —B66] —048) —003
—05 |-520|—-511] —504| —407] —494] —404) — 488 —501| —o28| —662| —815] —697] —B31
—0-4 |—420(—412{ —397] —881] —366] —354 —348] —334 —320) —320| --336] —3531 —308
-3 |—-32%(—-808| —082| —250) —237| —214] —191| —16% —148| —137 —107| —89 —78
—-06-2 |—223|—196] —117f —138 —108f 7O —50] -—20 0 35| 70 ool 1290
—0'1 |-112] —81) —s0| —2g 14 46 78 111 143 176| 208 240 272
oo | © 32| o4 o7 120| 181| 193] 2= 258 288 320 840! 380
+0-1 112| 143 174 205] 295 265 2951 825 353 382  411| 438 488
+ 02 ool 2500 2vs| 305  a3z| 359 38a| 411} 436| 462 4871 511 535
+0-4 320| 862f 374l BOV| 420 442 465 487 508|630y b52( 672 608
+0-4 420 445| 4e2] 481 4890 B17]  635] 653 GO 5&9' 807 624 842

+0'5 B20y 631 B48 bbb 668| BBEE| L04l  611 824] 640 654 G68] 684
+ -8 804 808 614 632 631 o640 650 661 72| 68584 HQE! 7080 TR0
+ 07 g7e] 677 678 631 636 601 QB8 YO§| 713 723 V32 T4l Yb1
+0-8 T4E) T8V V33|  Y83] T34 Fa6) Ty T4b| ThHO|  THY|  Tod| 771 't
+0-b 77| TRy 781 IR 776 T¥R| VTl IVeL  TRZ|  UBY]  7eR VU8 804
+1-C B43| 831 823 Blg| BI1Z  B10 EUEI"| ®O0B| B10) B13 B17| BE)| 825
+1'1 830| 868! BLHS| B4D) B44| B39 8BI7| REG| 836 BT 839 841 B4s
+12 10| &9% 836| B87B| &T1] BAL) B6L|  BG9) BBV 849 &5 800 862
+1-3 g34f 932 81l 90| 894; EBR| B3 E?Bl HTB| &vef BF4|l 8Vl BTT
+1-4 2h2| 4l 631 021 B13| 008 ©01 897 894 892 B801| B30 88l
+1-5 9G4d) 956 47| 038 930] D24 $IT| 013) D0%| DO G057 D03 903
+1-6 B76{ 968] 958 951 943 83T 8531 0280 922 91 817} €15 P16
4 17 B84| 977 e 62| BOb] B4 wd3) 938  ©33] 630|023 924] 024
+I18 980 9384 By 97l 84|  958] B5H3 948 943 040| 937 034 D38
+19 083 9RO BB3  BTE  O72( G868, D6l ©b8| S56Z| 049 044 943 B4l
+2-0 0OG POl w83 GBB| bY8| 978 EI'EBI D64 DHG|  OhG|  95E] 8L 948
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TaBLE 9.2

Nuymerical values of the function 1,000¢(y,, g)
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BTV

204
L0

&1
185
325
520
77D
e
0g7

ITUHE

Bd
180
323
497
700
BOS
881

10040

27
193
322
474
$60
833
044
87
208

1000

194
321
140
B4
VT8
BOE
L
YaD
(L]
L0

93
200
323
407

737
&bl
pig
@70
aab
0o
g99
10

06
204
3L
449
580
704
811
801
44
B74
39
Dae
o998
295

1000

a9
207
323
443
684
678
177
857
415
953
o978
Pl
Bo5
o8B
899
1004

102
210
324
430
851
857
7ol
B27
BEG
B9
958
977
PRT
eod
#7
ENY
LM}

105
214
385
435
541
830
727
800
860
905
939
061
077
DRG
092
396
908
099
1000

107
217
325
433
a3
628
708
770
B30
BE3
LY R
245
BE4
977
GEG
02
895
B8
999
1000

114

J28
€30
BET
614
LHE
709
214
Baz
809
D28
945
Y65
o7y
BBE5H
D0
894
w07
908

112

220 | 223

429
129
520
i A
678
T2
Vo7
%43
B30
310
o4
a52
age
g78
Bad
DEY
893
Do5

¥
/s
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115
224
LXK
427
hlg
G
il
28
181
828
a63
848
D19%
B30
Q956
ney
oy ¢
B23
a8
002

117
288
331
428
512
588
858
715
rili}
811
348
879
905
026
b43
956
A7
076
932
987

120
231
333
425
503
bEE
847
704
704
797
B33
485
801
13
031
B4H
DOH8
686
avs
981

122
233
2584
424
HU5
576
430
G
742
784
R20
Bo1
&78
LY
D19
835
948
958
pilit.
B76

124
236
335
424
a2
671
632
885
732
773
R09
B30
Bo&
REY
410
023
P38
950
8a0
D68

128
238
338
423
499
67
626
BT
T23
763
798
828
850
B78
BO7
B14
024
941
b2
981

128
240
338
424
87
563
G20
687¢
T15
704
788
Big%
Bdd
847
387
204
B0
B3
244
$53

130
248
439
122
495
550
816
g4
U7
T45
Y
308
B35
BL7
¥y
BOG
10
924
D35
246

132
244
340
422
484
556
610
G548
700
T8
771
B00
B25
Ba8
8243
5548
B2
#15

038

134
246
341
42
492
553
806
653
694
731
763
792
B17
840
BG0
878
883
063
B0
820

136 | 138
248 | 250
G432 | 344
423 | 422
491 | 489
630 | 548
402 | 505
G048 | 644
688 | 883
784 | TIH
Th8 | 740
T84 | 777
209 | BO2
B32 | 824
BHE | Bd4
BY0 | saZ
B85 878 -
B0 | 502
912 | 205
923 | 914
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TABLES

TABLE 9.3
Concentration gradients —(dC]dy Y(C,—C,) against y, — x[{2/(D, 1)}

b = ratio of the diffusion coefficient at concentration O, to that at {;

Yo b= 1% b= (3808 | b = 0-7228 | b = 0-5506 | b == 0:3270 § b = (-1407
2-8 . ‘e . 0-001 0-002 0-003
2-6 0-001 {-001 0001 0-002 0-004 - Q0
2-% (0062 {-002 0-003 0-005 0-(H}7 0-011
2.2 {005 00035 0-007 0-009 0-013 0017
20 =010 {013 O-0L5 0-018 0-023 028
P8 -2 004 0-028 (-032 0-039 0-043
1-6 044 0-047 0-050 0-055 0-062 Q-066
1-4 0079 0-083 0-086 0-08%9 0-092 0-095
1-2 0-134 0- 136 0-135 134 0-134 0-132
1-0 0-208 0-207 (-20H) 0-195 {138 0-179
8 (-208 0-262 0-280 0-268 0-250 0-233
-6 (-394 0-384 0-367 0348 0321 0-296
0-4 0-481 0-468 {-45H2 0-430 0-398 {)-365
0-2 0-542 0-533 (-522 0-504 0-474 0-43%
-0 0-564 0-561 0-560 0-555 G-539 0-513

-2 0-542 0-547 0558 0-560 G-579 0-578
—0-4 0-481 {-491 0-511 0-636 0-577 0-621
— 06 (-394 0-4068 0-423 0-455 0-514 0-607
—0-8 {-298 {308 G-319 0-339 0-38% 0-479
—1-0 0-208 -213 0213 (:221 0:232 0-226
—1-2 0-134 135 0-130 0-125 0-108 0-049
—1-4 G-079 0-077 0-071 0-061 0-039 (-D05
—1-8 G-044 0-040 0-035 0-027 0-011 ‘e
—1-8 0-022 0019 (0-013 0-010 0-003 .
—2-0 0-010 G008 (-006 0-003 ‘s '

— 2.2 0-005 0-003 0-002 0-001 .
—2-4 0-002

—2-86 0-G(H1

— 28 .

* The data for & = 1 represent the (laussian curve correaponding to ideal diffusion,
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TaABLE 9.4
Relative concentrations (C—C){(C,—C,) against y, = z/{2/{1 )]

b = ratio of diffusion coefficient at concentration ), to that at

337

b= O-1407

Ya h=1 b= 08806 |6 = 0-7228 | b = 0-5506 | b - 0~3270
2- .. 0-001 0001
2.4 .. 0-001 0002 1 003
2.9 .. 0-001 0-001 0-Q02 0-004 0-008
2.{) 3002 0003 ()-004 0-305 0-007 0-010
1-8 005 00086 0-008 0-010 0-013 0-017
1-6 0-012 0-013 0-016 019 024 0-028
[ 2F 0-024 0-026 0-024 0-033 0-039 0-044
1-2 0-045 0-048 0-0561 0-055 0-061 0-068
10 0-0711 0-082 0-084 0-088 093 0-099
08 0-129 0-131 (3-132 0134 0-137 0-139
0-6 - 108 0~ FO% 0-197 0-195 0-194 0-192
0-4 0-286 -284 0-279 0-273 0266 0258
9-2 0-389 0-385 -376 367 0-353 0-339
0-0 0500 (3-493 0 4585 0-473 0-455 0-434
—0-2 611 (+ 606 0-597 0-586 0-5617 (-543
— 04 0-714 0-710 0-705 0-697 0-683 (- 664
—0-8 0602 0800 0-799 797 (-793 0785
— 08 0-871 0-872 -873 0-878 (B84 (-804
- 10 021 (923 927 0-933 0-946 0-970
—1-2 0-955 0-958 0-961 0-957 0-980 0-995
—1-4 0-976 0-979 0-981 (986 (904 0-999
—1-8 0-088 (-990 0-962 0-995 (HH98 1-000
—18 0995 0-996 0807 0-998 1-004} 1-000
— 30 0-998 0-099 0-999 1-000 1-000 1-000
— 2.2 1-000 1-000 1-0:00 1-000 1-000 1-000
Tasre 10.1
Section of computation sheet for Schmidt method
Values of ¢ are tabulated
- X! 10| o875 | 0-750 | 0625 | 0-500 | 0-375 | 0250 { 0-125 0
{256 1-0 | 0-637 | 0-346 | 0-157 | 0059 | 0-018 | 0-005 | 0-001 ]
117256 1:0 | 0-673 | 0-397 | 0-203 | 0-088 | 0-032 | 0010 | 0-003 | 0-00]
13/256 1-0 | 0-699 | 0438 | 0-243 | 0-118 | 0-649 | 0017 | 0006 { 0-003
154356 1-0 | 0-719 | 0-471 | 5-278 | 0-146 | 0-068 | 0-027 | G-010 | 0-006
17/256 1-0 | 0:736 | 0-499 | 0-308 | 0-173 | 0-087 | 0-038 | -016 | 0-010
19/266 1-0 | 0-950 | 0-522 | 0-336 | 0198 | 0-106 | 0-051 | 0-b25 | 0-016
2172566 1-:0 | 0-761 | 0-543 | 0360 | 0-221 ! 0-124 | 0-086 | (033 | 0-025
231258 10 [ 0-772 | 0-560 | 0-382 | 0-242 | 0-143 | 0-079 | 0-046 | 0-033
25256 1-0 | 0-780 | 0-577 | 0-401 | 0-263 | 0-161 | 0-094 | 0-056 | 0-048
27/256 1-0 | 0-788 | 0-590 | 0-420 | 6:281 | 0-1%0 | 0-108 | 0-07G | 0-058
20,256 1-¢ | 0795 | 0-604 | 0-436 | 0-300 | 0194 [ 0-124 | 0-082 | ©-070
(1-0) | {0-793) | {0-800) | {0-432) | (0-295) [ {0-193) | (0-124) | {0-084} | (0-071)

P



Section of compulatio

TABLES

TABLE

10.2

Vales of ¢ are tabulated

n sheet for Crank—Nicolson method

1o | 0-875 ! 0750 | 0-625 | 0500 | 0-375 | 0250 | 0125 ) D
T
91258 1-0 | 0-837 | 0-346 | 0-157 | 0053 0-018 | 0-005 | 0-001 0
13/256 1o | o-go5 | 0-432 | 0-238 | 0118 | 0-050 | 0-019 | 0-007 | 0-004
17/256 1o | 0731 | 0492 | 0-302 | 0-160 | 0086 | 0-040 3 0-019 § O-013
21258 Lo | 0757 | 0-536 | 0-35% | 0-216 | 0123 | 0086 | 0-037 | 0-028
25,256 1.0 | 0776 | 0-670 | 0-395 | 0258 | O-158 | 0-004 ) 0-05 | 0-043
20/256 10 | 0792 | 0-598 | 0-430 | 0-204 | 0103 | 0-124 | 0-085 | 0-072

(1-0) | (0-793) | (0-600) | (0-432) | (0-295) | (0:193) | (0-124) | (0-084) (0-071)

TasLE 10.3
Section of compulation sheet for D = pZ-803¢
Values of # are tabulated

o | 0875 | 0750 | 0625 | 0-500 | 0-375 | 0-260 | 0125 ) O
T
0-1724 1.0 | 0-767 | 0-546 j 0-340 } 0176 0-085 | 0-016 | 0-003 0
01740 | 1-0 | 0774 | 0556 | 0-355 | 0-180 | 0:075 | 0-020 ) 0-004 0-001
01756 | 10 | 0780 | 0-566 | 0-369 | 0-203 ) 0-085 | 0-025 | 0-005 0-002
0-1772 Lo | 0785 | 0-576 | 0-382 | 0-218 | 0-005 } 0:080 | 0-007 | 0-003
0-1788 1-0 | 0790 | 0585 | 0-394 | 0-229 0-106 | 0:036 | 0-009 | 0-004
01804 1.0 | 0-T04 | 0-593 | 0-405 | 0-242 0-116 | 0042 | 0011 | 0-00b
01804 | (1:0)| (0-911) | (0-802) | (0-667) | (0-502) | (*-310) (0-139) | (0-041) | (0-019)

Values of ¢ are shown I brackets for T = (1804
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INDEX

Absorption accompanying diffugion: on
mohbila nites, 118; on Teatricted number
of fixed gites, 120; linear isotherm, 121;
nion-linear isotherm, 122-3 ; irreversible,
124-32, 140-1; reversible first-order,
13240, 142-5; binolecular, 145,

Absorption from & mixture of gases, 116
17.

Aceuracy: of amall time solutions, 2I; of
large time sclutions, 22 923 . of method
of moments, 184-5; of finite-difference
methods, 201-4; of two-dimensional
solution, 208.

Acetone in eellulose acetate, diffusion of,
291.

Adams: gee Williamason and Adams.

Air-flow analogue, 215.

Alaxander and Johnson, 221

Allen and Denms, 206,

Allen and Severn, 183, 194,

Anslogue machines, 212; differential
analyser, 212-13; electrical, 213-14;
Hyvdrocal and air-flow, 215; Schmidt
mechaniam, 215-16.

Anisotropic media, 58 ; principal diffusion
coefficients in, 6; megsurements in, 7.
Automatic digital calculating machines,

216-17.

Average diffusion coefficient: gee Mean

diffusion coefficient.

Baker: see Paschltis and Baker,

Barrer, 38, 44, 48, 59, 78, 94, 231, 258, 259,
261, 267.

Barrer and Brook, 253, 255.

Basic volurne, 222,

Baxter: see Cassie and Baxter.

Bell, 2.

Berthier, 53, 55, 72, 80.

Bessel functions, 9, 28, 64, 66, 76, 132,

Bimolecular reaction, diffzsion accom-
panied by, 144,

Binder, 1587.

Boltzmenn’s transformation, 148, 237.

Booth, 118, )

Bromwich, 92,

Brook : see Barrer and Brook,

Brownian movement, 217.

Carman and Haul, 52, 53, 71, 8%,

Carslaw, 92,

Carslaw and Jaeger, 6, 7, 9, 13, 17, 18, 23,
27, 30, 39, 40, 44, 46, 49, 53, 57, 5§, 60,
64, b5, 67, 76, 82, 83, 87, 92, 96, 97, 103,
119, 124,

Carsten and MeKerrow, 66.

Cassie, 304, 305 ; see also King and Cassle,

Cnssie and Baxter, 318.

Cellulose, diffusion of direct dyes in, 234,
2410.

Cellulose acctate: see Acetone.

Chemical reaction nceomnpanying diffusion:
immobilization on limited nunber of
fixed siter, 106, 120; on mobile sites,
118; examples of, 121; instantanecus
reversible, 12]1—4; solutions for irrever-
aible, deduced fram those of correaponi-
ing problems without reaction, 124-31;
steady-state solution with irreversible
reaction, 131-2; reversible first-order,
13245 irreversible, as apecial case,
140—1; bimolscalar, 145; tabulated
solutiona, 331-3.

Chloroform in polystyrene, caleulation of
diffugion coefficient for, 242—4; numeri-
cal values, 244.

Churelull, 17.

Clack, 230,

Clarke: see Jaegor and Clarke.

Composite media: infinite, with and with-
out interface resistance, 37-39; semi-
infinife, 39-40; plane membrane, 44;
eylindrical, 76, 269302 ; apherical, 92;
Anite-difference formulae for, 204-5;
plane sheet with discontinuous diffusion
coefficient, 2949,

Comrie: see Milne-Thomson and Comrie.

(Coneentration dependence, measuremsent
of: see Diffusion coefficient, tneasure-
ment of,

Concentration-dependent diffusion: dif-
ferential equation for, 4; characteristic
foatures of, 276—88 ; see also Methods of
aolation for wvariable diffusion coeff-
cients, Concentration-distance curves,
Sorption curves, and Desorption curves.

Concentration-distance curves, stoady
state: cylinder, 63; plane sheoet, Z54—
61.

C'oncentration-diastance curves, hon-steady
state: for instantaneous plane sourece,
10; in infinite medium, 10, 13, 28; for
extended sourco of infinite extent, 13;
for extended source of limited extent,
14 ; for cylindrical and spherical gources,
29. in semi-infinite medium, 35; in
composite infimte medium, 38, 39; In
plane sheot, 46, 51, 53; in cylinder, 67,
69, 75, 81; in aphere, 56, 93; in com-
posite eylinder, 301,

Concentration.distance eurves, non-steady
gtate: for discontinaous diffusion eo-
efficients, 100, 101, 109; for exponenti-
ally increasing diffusion coefficients, 103,
208, 267, 270, 271; fordiffusion coefficient
proportional to concentration, 165, 166;
for D=D/{1 - 2ac i fe%), 175; forlinearly

B I N T S WTT W
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Coneentration-distance curves (cont,)
increasing diffusion coefficient, 184, 268,
269 : enleulation of diffusion coefficient,
from, 232-40; logarithmie plot of, 235;
for exponentially decreasing diffusion co-
efficiont, 268; common points of inter-
gection of, 271 ; for logarithmie diffusion
coefficient, _TE." for ) = D, fi{1— ac), 273;
for D' ﬂn,"{l—ncr:}’ 2?4 for acetone in
cellulose acetate, 292,

Contimions sources, 30,

Copper-silver syatem, calculation of dif-
fusion. coefficient from concentration-
distance curve, 2346

Corroetion curve: for sorption method of
menasuring diffuzion coefficient, 2445 ; for
gorption-desorption method of measur-
ing diffusion coeflicient, 247,

- Cotton bale, diffurion of heat and moisture
in, 314-15, 317,

Coyle, 215.

Crank, 53, 71, 133; see alzo Hartley and
Crank.

Crank and Henry, 80, 276, 280.

Crank and Park, 243,

Crank-Nicolson method, 189-91, 199, 200.

Cylinder, eteady state, with irreversible
reaction, 132,

Cylinder, non-stoady state: zern surface
conecentration, 6 ; constant surface con-
centration with arbitrury initial dis-
tribution and with uniform initial dia-
tribution, 66; variabie surface concen-
tration, 67-70; in stirred solution of
limited volurpe, 70-73: with surface
evaporation, T}; with constant flux at
surface, 74-75; with impermeable #ur-
face, 76; composite, 76, 299 ; with non-
linear abeorption, 122-4: with irrever-
gible reaction, 128-%; finite-difference
formulaa for, 1947, 199.

Cylinder, hollow, steady state: radial fow,
6264, 259-62; influence of wall thick-
nese on rate of flow, 63 : non-radial flow,
64,

{ylinder, hollow, non-steady state: with
constant surfnee concentration and
arbitrary initial distribution, 76; with
uniform initial distribution, 76-77; 8ow
through cylinder wall, 78-79; with
general boundary conditiona, 79-80;
logarithmic transformation, 197.

{'J}ré1lt1dar region bounded mternall}' by,

-82

Cylinder, finite length, with irreveraible
reaction, 129,

Cylindrical source, 27.

Danclewerta, 89, 104, 111, 116, 117, 124,
125, 127, 132.

Praniels, 306, 318,

Darken, 227, 228,

da Bilva and Mehl, 234,

Daynea, 48,

Dennis: see Allen and Dennis.

Diesorption curves in semi-infinite media,
plane sheet, cvlinder, and sphere: gee
Sorption and desorption curves.

Desorption curves: for discontinuous dif-
fusion coeflicients, 101; for linearly
increasing diffusion coefficient, 278 ; for
exponentially increasing and decreasing
diffusion coefficients, 279; compared
with sorption curves, 279, 282, 283; for
diffusicn  coefficient which  passes
through a maximum, 282,

Differential analyser, 156, 212.

Diffusion coefficients: definition of, with
reapect to various frames of reference, 2,
219-24: concentration-dependent, 43;
time-.dependent, [47; mutual, 221-30;
relationships between, 224-9 240 in-
trineie, 225-8; self, 228-9; weiphted-
mean, 256,

Diffusion  coefficient, measyrement of:
steady.-atate method, 230-2; by analysis
of concentration-distance curves, 232—
6 ; in systerns in which there 13 a volume
change on mixing, 23640 ; by analysia of
sorption data, 240-6, 248-53, 256; by
sorption-desorption method, 246-7; by
use of 1mitial rates of aorption and de-
gorption, 247-8; by conditioning sheets
to different initial concentrations, 253—
5 : see also Mean diffusion cocfficients,

Diffusion equations, 3-7; derivation of, 3 ;
in plane sheet, 4; in cylinder, 4, 62; in
aphere, 4, 84; in anisotropic media, 5;
in concentration-dependent  systom,
148 ; see also Bolutions of. :

Diffusion process, definition and descrip-
tion of, in terms of molecular motions,
1.

Diffusion wave, 312.

Diffusion with reaction: gee Instantaneous
reaction, Reversible reaction, Irrever-
sibla reaction, and Bimelecular reaction,

Thlute solutiong, diffusion 1n, 1314, 234.

Ihseontintous diffusion eoefficiente : special
cases not requiring detailed caleuniation,
11H)-2; with a pingle discontinuity, 102—
6 ;: which aro zero at low concentrations,
106-9: econcentration-digtance curves
for, 107 ; sorption and desorption curves
for, 10%, 286, 287 ; with two diacontinui-
tiea, 109-11 ; finite differences applied to,
210-12; in caleulation of diffusion
coefficient from sorption curves, 248-50;
in sheet with skin, 294-9.

Ihsk rource, 28.

Doetach, 17, 18,

Drasinberre, 189,

Dyes, diffusion of, in eellulose, 234, 240.

Electrical resistance and capacity ana-
lognea, 213-14,

Ellipsoid of diffusion in anizotropie
medium, 6.

Error function and associated functions,
12, 13; definition of, 12; Tahble of, 326.
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Euler's constant, 82.

Evaporation, diffusion controlled, 289%-
90 ; through a membrane, 280-91; from
films and filaments, 2901-3.

Expenential diffusion coefficients: Wag-
ner's treatment of, 155—61; treatmént
by finite.difference methods, 207-10:
correction curves for caleulation of from
gorption and desorption curves, 245,
34%: concentration-distance curves for
in steady satate, 260; concentration.
distance curvea for in infinite medium,
267, 368 ; concentration-distance curves
for during sorption, 270; concentration-
distance curves for during desorption,
271 ; sorption and desorption curves for,
AR

Fxtended initial distributions: of semi-
infinite extent, 11-14; of finite extent,
14-15, 28, b

Eyres, Hartree e af., 152, 137, 199, 204,
212,

Eyring: #¢e Reecse and Eyning.

Falling drop, extraction of solvent from,
132,

Fick's law, 2, 4.

Finite-difference approximations: for plane
sheet, 187 ; for eylinder and sphere, 107
for surfacc evaporation condition, 198
9; for restricted amount of diffusing
substance, 19920 ; higher-order differ-
ences, 202-3; for an interface, 204-5;
two-dimensional formulae, 205.

Finite-difference methods, 186-217;
Behmidt, 187-0; Crank-Nicolson, 184
91 ; relaxation, 191-6; treatment of a
gingularity, 200-1; accuracy and con-
vergence of, 201; in composite media,
204—5: in two-dimensional diffasion,
205-7 ; for step-wise diffusion coofficient,
21012 ; use of, by analogue and other
machines, 212146,

Formal aolutions for various concentra-
tion-dependent diffusion coeflicients,
16675

Forward integration, solution by for con-
centration-dependent diffusion coeffi-
cienta, 1535,

Fourier, 2.

Fowler, 201.

Fox, 202.

¥Freezing of a liquud, 119,

Treundlich, 124,

Fujita, 166, 170, 171, 173, 157, 178, 180,

Fujita and Kishimoto, 250, 253.

Gamima function, 32,
Gilmonr, 192,
Green’s function, 176,
Gurney and Lurie, 52,

ht-extrapolation, 201-2.

Half-times for sorption and deserption:
calculation of diffusion coefficient from,
241-7.

Hall, 234, 236,

Hartley, 262.

Hartley and Crank, 227, 228, 232, 243,

Hartree, 212; see alzo Eyres, Hlartrea at ol,

Hartree and Womersley, 202,

Haul: #ee Carman and Hanl.

Heat and moisture, simultaneous diffusion
of, 303 ; temporary equilibrium control-
led by temperature, 304 ; propagation of
two disturbances, 304-6; equations,
nomograms and solutiona for, 306-18;
temperature changes due to heat of
condensation at surface of shect, 318~
25.

Heavieide, 17.

Henry, M. E.: see Crank and Henry.

Henry, P. 8. H., 46, 305, 306, 308, 310,
312-15, 317,

Henry's law, 115.

Hermans, 99, 106, 119, 120.

Higher-order differences, 202-3.

Hill, 120,

Hoard: see Kokes, Long, and Hoard.

Hopkins method of successive approxima-
tions, 175-6.

Humbert: see MeLachlan and Humbert.

Hydroesl, 215.

Hyperbolic functions, expansion of in
infinite products, 21,

Immobilizing reaction: see Birnclerular
reaction, Instantaneous reaction, Ir-
reversible reaction, and FReoversible
reaction.

Impermeable surface: plane sheet, 53;
eylinder, 76; hollow c¢ylinder, B80;
sphere, 92 hollow sphere, 37,

Infinite composite medium, 37-39.

Infinite media: plane source, 8-10; ex.
tended source, 11-14; instantansous
gource, —29;: continuous source, 30;
with irreversible reasction, 111-20; ex-
ponentinl diffusion coofficient, 155-9;
linenr diffusion coefficient, 161-2; dif-
fusion .coefficient directly proportional
to eoncentration, 1656,

Inflexicn point, in sorption curve, iy, 143,
144, 277, 301-2,

Instantancous reaction: irreversible on
limited number of fixed sites, 106, 120,
on mobile sitea, P15; linear isotherm,
121; non-linear irotherm, 122-4,

lnstantaneous sonrce: plane, 9; extended,
11-15, 28: at surface of memi-infinite
modium, 11; point, 26-27; linear,
gpherical and eylindrical, 27; disk, 28,

Intrinsic diffusion cocfficient., 2258,

Irreversible reaction, diffusion with: rapid
deposition on unmobile siter, 106, 120;
rapid deposition o mobile sitea, 1138;
solations deduced from those of porre-
gponding problems  without reaction,
124-31 ; steady-state solutions, 151-2;
as speginl case of reversible reaction,
1401,

S [ ST S SRR SN T S



344 INDEX

Ischutane in polyisobutyleno, caleulation
of diffusion coefficient {or, 250, 1453.

Izotherm: linear, 43, 121 ; Freundlich, 122,
124, 300,

Isotropie media, equations of diffusion in,
2-5,

Tterative solution, for infinite and semmi-
infinite media, 149-54.

Jackson et al., 214,

Jaeger, 17, 21, 58, 60, 74, 79, 80, 189, 315,
216; see wlso Corslaw and Jaeger.

Jaeger and Clarke, 58, 58, 82,

Jukob, I87.

Johngon, B.: see Alexander and Johnson.

Johnron, W. A., 225,

Josat, 15, 37, 44, 60, 230, 232.

Jury problems, 191, 194

Katz, 145.

Kawalki, 60,

King, G., 288,

King, ., and Cassie, 343, 304,

King, (. W, 217,

Kirkendall effect, 224,

Kishimoto: see Fujita and lKishimoto.
Kokes, Long, and Hoard, 246,
Kuusincn, 228,

Lamm, 228,

Laplace equation, 191,

Laplace trunsform : definition of, 18; appli-
cation to semi-infinite mediam, 18-19;
application to plane sheet, 20 ; expansion
in negative exponentials, 20; expansion
in partial fractions, 21; Table of, 327-8.

Liebmann, 214,

Line source: on plane surfaee, 27; in in-
finite volume, 27,

Linear diffusion coefficients: Stokes’s treat-

- ment of, 161-2; directly propeortional
to eponcentration, 162-6; correction
enrves for calculation of, from sorpticn
and desorption curves, 245, 247; con-
ceatration-distance curves for in steady
state, 2049; concentration-distance
curves for during sorption, 268; con-
centration-distance curves for during
desorption, 269 ; conmon points of inter-
gsection for, 271, 275; sorption curves
for, 277 ; desorption curves for, 278.

Linear isotherm, 43, 121.

[.inearized diffusion equation, 176-7,

Linn Hwang, 253.

Long: see Kokes, Long, and Hoard.

Lurie, see Gurney and Lurie.

Macey, 58, T4,

Marech and Weaver, 53.

Marching probloms, 191, 194,

Marker particles, demonatrating mass-
faw, 225,

Maas-flow, 2258, 266.

Matano, 233, 238, 239, 240,

Muathernalical solutions of diffusion equa
tion: types of, 9; for infinite and semi-
infinite rnedia, 26—41, 294; for plane
sheet, 42-61, 203-8; for cylinder, 6283,
206 : for sphere, 84-98; with moving
houndary, 949-120; with reversible and
irreversible reaction, 12i—4; for vari-
able diffusion coefficients, 258-302; for
gimnltanecus transfer of heat and
moisture, 303-25: see wlzo Methods of
solution.

Mathematical theory underlying hypo-
thesis, 2.

MeAdains, [84,

McKay, 46.

MoeKerrow: see Carsten and MeKerrow,

MeLachlan and Humnlbwerl, 18.

Moan dilfusion ecoefficient: fromn steady-
atale flow, 44 ; integrated mean, 62, 84,
154, 2426, 262 ; from sorption half-tima
in relution to integrated mean, 242-5;
fromu sorption and desorption hall-tirnes,
247 ; from initizl rates of sorption and
desorption, 243, 2474,

Mehl: see da Silva and Mehl,

Membranes: flow through, 42-44, 47-44,
2302, 25862, 290 composite, 44;
agymmetrienl, 262-3; diffusion through
g substance confined hetween, 263-6.

Viothods of solution for constant diffusion
coefficient: refleetion and superposition,
0-15; separation of variables, 15-17;
Laplace  transform, 17-23; preduet
rolutions, 23—24.

Methods of solution for discontinuous
diffusion coefficients, 99-111,

Methods of sclution for variable diffusion
cocflicients: for time-dependent dif-
fugion cocflcient, 147; for cconcentra-
tion-dopendent  diffusion  coeflicient,
148-55; Wagner's treatment of ex-
ponential diffusion coefficients, 155-61;
Stokea's traatment of linear diffusion
coefficients, 161-2; for diffusion eco-
officient dircctly proporticnal to con-
centration, 162-6; IFujita's formal
methods, 166-75; Hopkinss method of
successive  approximations, 1756
method of moments, 177-85; finite-
difference methods, 186-212; analogue
and cther machines, 212-17,

Methvl aleohol, uptake of by wool, 288.

Milne-Thomseon and Comrie, 13,

Mobile sites, diffusion with absorption on,
118,

Moisture, uptake of by wool, 303—4; see
afsn Heat and moiature,

Moments, method of, 177-85; applied to
caleulation of diffusion coefficient from
sorption data, 200~3,

Monte-Carlo method, 218617,

Moore, 214

Moving boundary, diffusion with: nasoci-
ated with discontinuous diffusion c¢o-
efficients, 90—111; Neumann's method,
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Moving boundary (ronri.)
103-11; mssociated with precipitation,
106 ; Danckwerts's treatment of general
problem, 111-15; some examples in-
volving, 11520,

Musacle, diffusion of oxygen in, 240,

Mutusl diffusion coefficient, 221, 234,

Neumann, 103.

Newman, 57, 73, 21.

Newns, 42, 230,

Nicolson : see Crank-Nicolson method.

Nomograms for diffusion of heat and
moisture, 311, 316,

Non.dimensional variables, 33, 46, 186,

- 320, 322.

Non-homogensous media, 147.

Non-linoar isotherm, 122.

Normeal coordinates, 3049.

Olson and Schulz, 46.
Onoygen, diffusion of in mueclo, 244),

Parallelepiped, rectangular, 3; diffusion
in with irreversible reaction, 127-8.

Park, 242, 245, 290, 325; see also Crank
and Park.

Pagschkis and Baker, 214.

Pekeris and Slichter, 120.

Permeability constant, 43, 48.

Thilip, 185.

Plane sheet, steady state, 42-413; mean
value of diffusion coefficient when it i3
concentration dependent, 43-44; com-
posita membrane, 44 ; poneentration-
distance eurves, 2658-61,

Plane sheet, non-steady state: copnstant
enrface concentration, 45; uniform
initial distribution, 45-46; surface con-
centratione unequal, 47-49; wvariable
surfaco concentration, 49-52; diffusion
from a stirred solution of limited volume,
53-56; with surface evaporation and
parabolic and other initial distributions,
558 ; with other boundary conditions,
58: with constant flux at surface, HE;
with impermeable surfaces, 88~60: comn-
posite sheet, 60 : method of condition-
ing, 60; moving-boundary problems in,
99-113; method of momenis applied
to, 177-83; fnite-difference methods
for, 186-96; swelling sheet, 341: tem-
perature changes, accompanying diffu-
sion in, 303-25; see also Sorption and
Desorption curves, Linear and Exponen-
tial diffusion coefficients, and Dhffusion
coefficient, mearurement of,

Plane source: in infinite mediom, 9-11;
at surface of semi-infinite medium, 11.
Point pource: on plane surface, 26; in

infinite volume, 27.

Polyisobutylene: sce Iscbutane in poly-

isobntylens.

Polystyrene: sce Chloroferm in  poly-
styrene.

Prager, 228, 236, 239, 240, 248, 249, 250,
253, 277.

Precipilation, diffusion accompanied by,
09, 106, 118, 120,

Principal axes in anisotropic medium, 6.

Principal diffusion coefficients in aniso-
tropic medium, 6.

Product solutions: for rectangular paral-
lelepiped, 23; for rectangulinr corner,
94 ; for combined radial and axial flow
in cylinder, 24,

Radicactively labelled molecules, dif-
{usion coefficient measured by use of, 53,
228-0.

Random walk, 1, 217,

Redshaw, 214.

Reese and Eyring, 145, 144.

Reflection and superposition, $-13.

Relationships between differont diffusion
coafficients, 2247, 229,

Ralaxation methods, 191-2; steady-state
solution as boundary condition, 192-3;
a transformed equation, 193—6; higher-
order differences applied to, 202-3.

' Reversible reaction, diffusion accompanied

by: instantancous, 121—4; first-order,
132-45;: mathematical solutions for a
restricted smount of diffusing substance,
134—435 ; tabulated solutions, 331-3.
Richard=on, 191, 202, 206.
Rideal and Tadayon, 23,

Qehmidt method, 187-9, 200, 203, 206,
21¢, 216.

Schulz: see Olson and Schulz,

Seitz, 228.

aplf.diffusion, 55, 228-0.

Qemi-infinite media: with plane scurce. at
surface, 11; with initial distribution of
finite pxtent, 13; with prescribed and
constant surface concentration, 30-34;
with surface evaporation, 34-35 ; square-
root relationship, 33; characteristic
features of diffusion in, 36; composite,
30, 294 ; bisected by thin well-diffusing
slab, 40; iterative solution for, 149-54 ;
forward-integration method of solution,
155 ; exponential diffusion cocfficient in,
150-6); diffusion coefficient directly
proportional to concenbration in, 162-
6; Fujita's formal solutions for, 166-T5;
solution for constant rate of evaporation
from, 176-7; methad of moments ap-
plied to, 183-4; qnnnentmtiun-diﬂtﬂnce
curves in, 26874,

Separation of variables: plane sheet, 10—
17 ; eylinder, 64-85.

Severn: see Allen and Severn.

Sigmoid sorption curves, 50, 143, 144, 277,
301-2; procf of non-existence i con-
rentration-dependent  systoms when
plotted against time, 2778,
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Singularity, numerical treatment of, 200-1.

S8kin: on semi-infiniteée medium, 39-40,
294 ; on plane sheet, 60, 293-9; on eylin-
der, 76, 299-802 ; on sphere, 92,

Slichter: see Pekeria and Slichter.

Solubility, 43, 48,

Solutions of diffusion equation: typea of,
B; see also Composite media, Cylinder,
Briffugion with reaction, Discontinuous
diffusion coefficienta, Exponential dif-
fusion coefficionts, Infinitermedia, Linear
diffusion coefficients, Moving boundary,
Plane sheet, Serni-infinite media, aed
Sphere.

Horplion: of a single component from a
mixture of gases, 115-17; by a swelling
sheet, 241 ; éffcet of initial concantration
on initial rate of, 288.

Sorption curves: for linearly increasing
duffusion eoefficient, 277 ; for exponenti-
ally increasing diffusion eoefficient, 279 ;
for diffusion coeflicient which passes
through a maxirmm, 282,

Sorption curves for discontinuous diffusion
coefficient, 1(H), 105,

Borption and desorption eurves for eylin-
der: with wvaritable surfare ccheentra-
tion, 68, 70; with constant surface
coneentration, 72 in stirred solution of
limited wvolume, 72; with surface cva-
poration, 74; for hollow cylinder, 77;
for diffusion with nen-linear absorption,
123 ; for composite eylinder, 209, 300,

Sorption and descrption eurves for plane
sheet: with variable surface concentra-
tion, 50, 51 ; with constant surface con-
cemtration, H5; 1 stirred sclution of
limited volume, 55; with aurface eva-
poration, 57; for diffusion with rever-
sible reaction, 143-4: calculation of
diffusion coefficient from, 240-52, 256;
for chlorcform in polystyrens, 242; for
composite sheet, 205, 298; see also

- Sorption curves for diseontinucus and
various concentration-dependent dif-
fusion coefficients.

Sorption and desorption curves for remi-
infinite mediuom: with constant and
variahble surface concentration, 32 ; with
surface evaporation, 36; for composite
medium, 40, 295; with irreverzibie
Tegction, 130,

Sorption and desorption curves for aphere :
with variable surface conecentration, 85,
80 ; with constant surface concentration,
94 ; in atirred solution of limited volume,
50; with surfare evaporaticn, 92; for
hellow sphere, 94.

Sorption and desorption curves: corro-
spondence between, 270-1; general pro-
perties of, 276-89; relative rates and
intersection of, 280-8, 209,

Southwell, 191,

Bphere, steady state with Irreversible
reaction, 132,

Sphera, non-steady state: new variable
#C1, B4, 97; constant surface concentra-
tion with arbitrary and uniform initial
distribution, 86—-87; with wvariable gur-
face concentration, 87-88; in stirred
solution of limited volume, 8891 ; with
surface evaporation, 91; with constant
flux at surface, 91; with iinpermeable
surface, 92 ; composite, 92 ; with irrever-
sible reaction, 127, 129 finite-difference
formulae for, 146-7, 199,

Sphere, hollow, steady state: radial flow,
H4—-85, 259-82; influence of wall thick-
ness on rate of fow, 85,

Sphere, hollow, non-steady state: constant
surface concentration with arbitrary and
uniform initial distribution, 92-95;
flow through spherical wail, 95-9§;
with surface evaporation, H—47.

Sphere, region bounded internally by,
51-83,

Bpherieal source, 27.

Square-roct relationship, 33, 276.

Standing, 124.

Steady-state method, of measuring dif-
fusion eoefficient and ite concentration
dependence, 2302,

Bteady-state solution, ag a boundary con-
dition, 192--3.

Steady-state sohitions for: plane sheet,
42-44, 258-62; compogite plane sheet,
80; hollow cylinder, 62-64, 259-62;
hollow sphere, 8485, 25962 ; diffusmon
with irroeveraible reaction, 131-2; asym-
motrical membrane, 262-3.

atefan, 649, 120, 230,

Ntofan: law of radiation, 319: constant,
323.

Step-by-step methods: see Finite difference
methods, Forward integration, Iterative
selution.

Step-wise diffusion coefficient: see Dis-
continuors diffusion coefliciont,

Stokes, 161, 271, 275, 276.

Storm, [76, 177,

Superposition: see Reflection and super-
pogition.

Surface evaporation condition: in semi-
infinite media, 34, 129, 132; in plane
sheot, 42-43, 568-58; in evlinder, 6264,
73, 128, 132; in hollow cylinder, 7%; in
sphere, 835, 91, 127, 132; in hollow
sphere, 96,

Swelling sheet, treatment of sorption by,
241.

Tadayon: see Rideal and Tadayon,

Tarnishing reactions, 117,

Temperature changes, in coupled diffusion
of heat and moisture: see Heat and
molsture.

Temperature changes, due to heat of
condensation of sorhed vapour liberated
at surface of plane shect: equations,
318-22; gelution in non-dimensional

)
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Termmperature changes {cont.)
variables, 322; effect of thickness, 323 ;

limiting rate of sorption for 17 (. rise,
325,

Textile fibre, uptaks of water by, 303.

Three-dimensional diffusion, 23-24, 127.

Tine-dependent diffugion coefficients, 147,

Time-lag method: for plane sheot, 48 ; for
gvlinder, 7§ for aphere, 95.

Tranter, 17,

Trigonometrical-series, solutions for large
times, 17, 22; physical significance of,
17. '

Two-dimensional diffusion, 24, 205-7.

Variable diffusion ceefficientsa: tine-
dependent, 147; in non-homogeneocus
media, 147; methoda of aolution for,
14885 finite-difference mmethods for,
207-10; see alzo Coneentration-depen-
dent diffusion, Desorption curves, Diffu-
sion cocflicient, methods of rneasurement

of, Exponential diffusion coefficient,
Diseontinuons  diffusion  coefficient,
Linear diffusion coefficient, Schitiona of
diflusion equation, Sorption curves, and
morption and desorption eurves,

Wagner, 155, 156, 159, 181, 1§2,

Wull thickness, influence of, on Tate of
flow: in hollow eylinder, 63; in hollow
sphere, 85.

Water sorption, by a textile fibre, 3043,

Weaver: see March and Weaver,

Weighted-mean diffusion coefficients, 256,

Whipple, 44,

Williameon and Adams, 52, T0.

Wilson, 53, 133, 135, 138,

Womeralay: see Hartree and Womersley.

Woaol: uptake of methyl alechol by, 288;
uptake of moirture by, 301-4.

Works Project Association Tables, 13,

Yamada, 177, 178.
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