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Publisher’s Note

. Walter Welford died on 18 September 1990, very soon after he had fin-
1s%1ed Preparing the manuscript of Useful Optics for the press. His good
fflend and colleague Roland Winston, professor in the Department of %’h -
sics and the Enrico Fermi Institute of the University of Chicago immz-
diately offered his help to ensure that Useful Optics would be° ::blished
promptly. Professor Winston reviewed the edited manuscript }:ead and
corregte:d proofs, and supervised the preparation of the index ;nd we are
deeply indebted to him for his many efforts on behalf of this l;ook.
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Preface

The graduate student frequently needs to assemble some opti-
cal equipment as part of a research project. But the undergrad-
uate training in optics in most physics degree courses is often
inadequate for such a task. This is because of the sheer volume
of other material that is considered an essential part of a modern
physics degree.

While visiting the University of Chicago I was invited to give
lectures to graduate students aimed at filling this gap; the present
book is based on those lectures. Because my intention is to in-
troduce the practical aspects of optical system development from
the standpoint of graduate physicists, the coverage is somewhat
different from that in most optics books. For example, it a rea-
sonable assumption that electromagnetism courses will have fa-
miliarized the physics graduate with such things as polarization
and the Fresnel formulas for reflection and refraction at dielectric
interfaces. On the other hand, what forms the basis of a good
deal of this book, Snell’s law of refraction, particularly when it
is expressed in three-dimensional vectorial form, might be less
familiar. The inclusion of this book in a series of volumes of
lecture notes is deliberate, for the book is intended to be used
as the basis of or as a supplement to a lecture course and as a
handy reference to have by the laboratory bench. Thus I have
omitted proofs of formulas and I have included a small number
of selected references where proofs and more detailed treatments
can be found. However, the book is in no sense a textbook or
monograph and there is no intention of complete coverage.

I am indebted to Sol Krasner, who first suggested that I write
this book, to Robert M. Wald and Roland Winston for useful
discussions, and to an unknown reviewer for very constructive
criticism. ‘



1
Useful Models of Optics

The experimental physicist needs to collect light (or more generally electro-
magnetic radiation), to form images with it, and to manipulaté and measure

.it. This book is intended as a practical aid to these purposes. Formulas will

be given without proofs (but with adequate references), and the emphasis
will be on applications. ~

For optics regarded as a tool, we shall use four models or physical ap-
proximations:

(i) quantum optics,

(ii) electromagnetic waves,

(ili) scalar waves, and

(iv) geometrical optics.
Of these, the quantum optics model will be needed only for discussions
of the detection of radiation and of the noise present in detection. Elec-
tromagnetic wave theory is used in treating reflection and transmission
at surfaces and multilayers, laser modes, and certain scattering problems.
Scalar wave theory is helpful in explaining the bulk of diffraction and scat-
tering problems and interference. Finally, geometrical optics is useful in a
first approximation of light collection and image formation by almost any
kind of optical system.
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Geometrical Optics

Because of its usefulness, we start with the geometrical optics model. In
this model a “point source” emits rays which are straight lines in a vacuum
or in a homogeneous isotropic dielectric medium. Light travels at different
speeds in different dielectrics. Its speed is given by ¢/n, where c is the speed
in vacuum (299, 792, 458 m s"l) and n, the refractive indez, depends on
the medium and on the frequency of the light.

A ray is refracted at an interface between two media. If » and »' are
unit vectors along the incident and refracted directions, n and n' are the
respective refractive indices, and n is the unit normal to the interface, then
the ray directions are related by

nn xr=n'nxs, (2.1)

which is the law of refraction, Snell’s law, in vector form. More conven-
tionally, Snell’s law can be written

nsinl =n'sinI’, (2:2)

where I and I' are the two angles formed where the normal meets the
interface, the angles of incidence and refraction. The two rays and the
normal must be coplanar. Figure 2.1 illustrates these relationships and
shows a reflected ray vector r". Equation (2.1) can include this by means
of the convention that after a reflection we set n' equal to —n so that, for
reflection,

nxr=-nxer' (2.3)

With a bundle or pencil of rays originating in a point source and traversing
several different media, e.g., a system of lenses, we can measure along each
ray the distance light would have traveled in a given time ¢; these points
delineate a surface called a geometrical wavefront, or simply a wavefront.
Wavefronts are surfaces orthogonal to rays (the Malus-Dupin theorem).
(It must be stressed that wavefronts are a concept of geometrical optics
and that they are not surfaces of constant phase (phasefronts) of the light
waves in the scalar or electromagnetic wave approximations. However, in
many situations the geometrical wavefronts are a very good approximation

Geometrical Optics 3

of phasefronts; see chap. 9.) Thus, if successive segments of a ray are of
length dy, dy, ..., as in figure 2.2, a wavefront is a locus of constant £ nd.

This quantity is called an optical path length.

(n) n)

2.1 Snell’s law in vector form, also showing the reflected ray.

V{/avefront

2.2 Generating & geometrical wavefront as a surface of constant optical path length from

the source point.

Optical path lengths enter into an alternative to Snell’s law as a basis
for geometrical optics. Consider any path through a succession of media
from, say, P to P'. We can calculate the optical path length W from P
to P', and it will depend on the shape of this path, as shown in figure 2.3.
Then Fermat’s principle states that, if we have chosen a physically possible
ray path, the optical path length along it will be stationary (in the sense of
the calculus of variations) with respect to small changes of the path. (The
principle as originally formulated by Fermat proposed a minimum time of
travel of the light. Stationarity is strictly correct, and it means roughly
that, for any small transverse displacement 6z of a point on the path, the
change in optical path length is of order 6z .) For our purposes, Fermat’s
principle and Snell’s law are almost equivalent, but in the case of media of
continuously varying refractive index it is sometimes necessary to invoke
Fermat’s principle to establish the ray path. Apart from such cases, either
one can be derived from the other.
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2.3 Fermat’s principle. The solid line represents a physically possible ray between P and
p! , points which are not in general object and image, and the broken line a nearby path.

Either Fermat or Snell can be used to develop the whole edifice of geo-
metrical optics in designing optical systems to form images.

3
Symmetrical Optical Systems

The axially symmetric optical system, consisting of lenses and/or mirrors
with revolution symmetry arranged on a common axis of symmetry, is used
to form images. Its global properties are described in terms of parazial or
Gaussian optics. In this approximation only rays making small angles with
the axis of symmetry and at small distances from the axis are considered.
The approximation is defined more precisely in chapter 6. In Gaussian
optics, we know from symmetry that rays from any point on the axis on
one side of the system emerge on the other side and meet at another point
on the axis, the image point. This leads to the well-known formalism of
principal planes and focal planes shown in figure 3.1. A ray entering parallel
to the axis passes through F', the second, or image-side, principal focus on
emerging from the system, and a ray entering through F, the first principal
focus, emerges parallel to the axis. A ray incident on the first, or object-side,
principal plane P at any height h emerges from the image-side principal
plane P' at the same height h so that the principal planes are conjugate
planes of unit magnification. Excluding for the moment the special case
in which a ray entering parallel to the axis also emerges parallel to the
axis, these four points yield a useful graphical construction for objects and
images, as depicted in figure 3.2.

() / o) ()
T
object space image space

3.1 Definitions of principal foci, principal planes, etc. These do not necessarily occur in
the order shown.

The two focal lengths f and f' are defined as
f=PF, f'=PF. (3.1)

Their signs are taken according to the usual conventions of coordinate ge-
ometry, so that in figure 3.1 f is negative and f' is positive. The two focal

5
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3.2 Graphical construction for object and image, leading to the conjugate distance equa-
tions.

lengths are related by
n'/f! = —n/f, (3.2)
where n and n' are the refractive indices of the object and image spaces,
respectively.
Conjugate distances measured from the principal planes are denoted by
! and !, and the conjugate distance equation relating object and image
positions is
D'l =)l =0'/f! = —n/f. (3.3)
The quantity on the right—that is, the quantity on either side of equation
(3.2)—is called the power of the system, and is denoted by K.
Another form of the conjugate distance equation relates distances from
the respective principal foci, z and z':

22! = ffl. (3.4)
This equation yields expressions for the transverse magnification:
n'/n=~flz = —2'/f" (3.5)

It is useful to indicate paraxial rays from an axial object point O to the
corresponding image point O' as in figure 3.3 with convergence angles u
and u' positive and negative, respectively, as drawn in the figure. (Paraxial
angles are small [see chap 6] but diagrams like figure 3.3 can be drawn with
an enlarged transverse scale. That is, convergence angles and intersection
heights such as h can all be scaled up by the same factor without affecting
the validity of paraxial calculations.) Then, if  and 7' are corresponding
object and image sizes at these conjugates, the following relation exists
between them:

nung = n'u'n’. (3.6)
In fact, for a given paraxial ray starting from O, this quantity is the same
at any intermediate space in the optical system. That is, it is an invariant,
called the Lagrange invariant. It has the important property that its square
is a measure of the light flux collected by the system from an object of size
7 in a cone of convergence angle u.
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(N | (')
n ] h h o o
~— | — < r +n'
P P’
us-ml u' =~y

3.3 Transverse magnification and the Lagrange invariant. The convergence angles u and
u! are strictly paraxial quantities. The diagram is drawn according to the recognized

convention, with greatly enlarged vertical scale.

The above discussion covers all general Gaussian optic properties of sym-
metrical optical systems. We next look at particular systems in detail. To
do this, we abandon the skeleton representation of the system by its prin-
cipal planes and foci and consider it as made up of individual refracting or
reflecting surfaces.

n'u’ - nu=-hK

3.4 The conjugate distance equation for a single refracting surface.

Figures 3.4 and 3.5 show the basic properties of a single spherical re-
fracting surface of radius of curvature r and of a spherical mirror. In each
case r as drawn is positive. These diagrams suggest that the properties of
more complex systems consisting of more than one surface can be found by
tracing paraxial rays rather than by finding the principal planes and foci,
and this is what is done in practice. Figure 3.6 shows this with an iterative
scheme outlined in terms of the convergence angles. The results can then



8 Chapter Three

be used to calculate the positions of the principal planes and foci (see, e.g.,
Welford 1986) and as the basis of aberration calculations.

3.5 The conjugate distance equation for a single reflecting surface. By convention the
refractive index changes sign after a reflection.

(n) (n"=n,) u uy, (n,)

n'u' - nu=-hK

— ’
uol =u
h,=h+d'v
’ ’
nu,-nu,=-h K,

3.6 Paraxial raytracing. The equations shown are one possible set of many equivalent
iterative schemes available according to personal choice.

The actual convergence angles which can be admitted, as distinguished
from notional paraxial angles, are determined either by the rims of individ-
ual components or by stops deliberately inserted at places along the axis
chosen on the basis of aberration theory. Figure 3.7 shows an aperture stop
in an intermediate space of a system. The components of the system to
the left of the stop form an image (generally virtual) which is “seen” from
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the object position (this image is usually virtual, i.e., it is not physically
accessible to be caught on a ground-glass screen like the image in an or-
dinary looking glass); this image is called the entrance pupil, and it limits
the angle of beams that can be taken in from the object. Similarly on the
image side there is an exit pupil, the image of the stop by the components
to the right, again usually virtual. These pupils may also determine the
angles of beams from off-axis object points O and O'; the central ray of
the beam from O passes through the center of the entrance pupil (and
therefore through the center of the aperture stop and the center of the exit
pupil) and it is usually called the principal, chief or reference ray from this
object point. The rest of the beam or pencil from O may be bounded by
the rim of the entrance pupil, or it may happen that part of it is vignetted
by the rim of one of the components.

o principal ray

t

A entrance pupil

l Laperture stop
exit pupil

3.7 The aperture stop, the pupils, and the principal ray.

Although the aperture stop is usually thought of as being inside an op-
tical system, as in a photographic objective, it is sometimes placed outside,
and one example is the telecentric stop shown in figure 3.8. The stop is at
the object-side principal focus, with the result that in the image space all
the principal rays emerge parallel to the optical axis. A telecentric stop can
be at either the object-side or the image-side principal focus, and the image
conjugates can be anywhere along the axis. The effect is that the pupil on
the opposite side of the telecentric stop is at infinity, a useful arrangement
for many purposes. It may happen that the telecentric stop is between
some of the components of the system.

The above information is all that is needed to determine how a given
symmetrical optical system behaves in Gaussian approximation for any
chosen object plane. Suitable groups of rays can be used to set out the
system for mechanical mounting, clearances, etc. However, it is often easier
and adequate in terms of performance to work with the thin-lens model of
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image
apeﬂu re pl ane
stop

3.8 A telecentric aperture stop; the exit pupil is then at infinity. It is possible to have
either the entrance pupil or the exit pupil or even both pupils at infinity. In the last case
the principal ray would be parallel to the optical axis in both image and object spaces.

Gaussian optics. This model uses complete lenses of negligible thickness
instead of individual surfaces. Figure 3.9 shows the properties of a thin
lens. A system of thin lenses can be raytraced to find its properties, locate
foci and ray clearances, etc., and very often the results will be good enough
to use without further refinement. This is particularly true of systems
involving unexpanded laser beams, where the beam diameters are quite
small.

u'=u=-hK
3.9 The conjugate distance equation for a thin lens. The lens is drawn with a finite
thickness, but its thickness is ignored in calculating its Gaussian properties. Thus the
two principal planes coincide at the lens.

We omitted from our discussion of figure 3.1 the special case in which
a ray incident parallel to the optical axis emerges parallel to the axis, as
in figure 3.10. This is an afocal or telescopic system; it forms an image at
infinity of an object at infinity, and the angular magnification is given by
the ratio of the ray incidence heights. An afocal system also forms images
of objects at finite distances, as indicated by the rays drawn in the figure.
The transverse magnification is then constant for all pairs of conjugates. A
good example of an afocal system is a laser beam expander (see figure 9.2).
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3.10 An afocal or telescopic system, shown with finite conjugates.

In many optical system designs, an effort must be made to get as much
light through the system as possible, i.e., to increase signal strength, and
this means using as large a diameter of aperture stop as possible. To a great
extent the amount of light that gets through is governed by aberrations,
departures of the rays from the simple paraxial description given in this
chapter. We therefore defer discussion of this topic to chapter 6.
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Plane Mirrors and Prisms

A single-plane mirror used to deflect or rotate an optical axis needs no
explanation, but some useful points can be made about combinations of
mirrors. Two mirrors at an angle 6 turn the beam through 26 about the
line of intersection of the mirror planes whatever the angle of incidence on
the first mirror, as in figure 4.1. The diagram is drawn for a ray in the
plane perpendicular to the line of intersection of the mirror planes, but it
is equally valid if the ray is not in this plane, i.e., the diagram is a true
projection. In particular, if the mirrors are at right angles, as in figure 4.2,
the direction of the ray is reversed in the plane of the diagram. Three plane
mirrors at right angles to each other, forming a corner of a cube as in figure
4.3, reverse the direction of a ray incident in any direction if the ray meets
all three mirrors in any order.

4.1 A pair of mirrors rigidly fixed together. The ray shown is in the plane containing
normals to both mirrors, and whatever its angle of incidence, it is always turned through
twice the angle between the normals.

These properties are more often used in prisms in the corresponding
geometry. Total internal reflection, as in, for example, the right-angle prism
(figure 4.4), is a great advantage in using prisms for turning beams. The
condition for total internal reflection is

sinl > 1/n. (4.1)

12
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4.2 The roof reflector. The normaéls to the two mirror surfaces are at right angles so
that a ray incident in a plane containing the normals is returned parallel to its original
direction.

=

4.3 The cube-corner reflector. Each mirror is at right angles to the other two, and any ray
which meets all three mirrors in turn is reflected back parallel to the original direction.

T
»I

. a1
sinI>n

4.4 The right-angle prism. All ordinary optical glasses fulfill the condition for total
internal reflection at 45° at visible wavelengths.

The critical angle given by sin] = 1/n is less than 45° for all optical
glasses, and probably for all transparent solids in the visible spectrum.
Total internal reflection is 100% efficient provided the reflecting surface
is clean and free from defects, whereas it is difficult to get a metallized
mirror surface that is better than about 92% efficient. Thus with good
antireflection coating on the input and output surfaces a prism such as
that shown in figure 4.4 transmits more light than a mirror.

Roof prisms and cube-corner prisms, the analogues of figures 4.2 and
4.3, have many uses. The angle tolerances for the right angles can be very
tight. For example, roof edges form part of the reversing prism system in
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some modern binoculars, and an error € in the right angle causes an image
doubling in angle of 4ne. The two images are those formed by the portions
of the beam incident at either of the two surfaces, which should have been
at exactly 90°.

In addition to turning the axis of a system, mirror and prism assemblies
sometimes rotate the image in unexpected ways. The effect can be antici-
pated by tracing, say, three rays from a notional object such as the letter
F (i.e., an object with no symmetry). A more direct and graphic method
is to use a strip of card and mark arrows on each end as in figure 4.5a.
The card is then folded without distorting it as in figure 4.5b to represent,
say, reflection at the hypotenuse of the right-angle prism, and the arrows
show the image rotation. The process is repeated in the other section, as in
figure 4.5¢c. Provided the folding is done carefully, without distortion, this
procedure gives all image rotations accurately for any number of successive
reflections.

Lt 1]

(@

Lt |

(b)

== a
©

4.5 The draughtsman's paper strip method of checking image inversions. (a) The strip is
marked with arrows at each end pointing the same way. (b) Then for, say, the right-angle
prism of figure 4.4 the strip is folded without distorting or tearing it to represent a beam
of rays in a plane perpendicular to the plane of incidence on the hypotenuse surface; the
directions of the arrows show the relation between object and image orientations. (c)
Then the strip is folded to represent rays in the plane of incidence. This method can
be used for more complicated reflections provided the folding is done without distorting

the paper.

The Dove prism (figure 4.6) is an example of an image-rotating prism.
When the prism is turned through an angle ¢ about the direction of the
incident light, the image turns in the same direction through 2¢. A more
elaborate prism with the same function is shown in figure 4.7. The air gap
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indicated between the hypotenuses of the two component parts needs to be
only about 10 um or so thick to ensure total internal reflection. Any prism
or mirror assembly like this with an odd number of reflections will serve
as an image rotator. Figure 4.7 illustrates an elegant advantage of prisms
over mirrors: the system can be made compact by using the same optical
surface both for reflection and for transmission.

4.6 The Dove prism for image rotation. If the prism is turned through-0 about the
optical axis, the image rotates through 2. If the reflection is “unfolded,” it can be seen
that the Dove prism is the equivalent of a plane-parallel plate inclined at a finite angle
to the optical axis; it would therefore introduce astigmatism and coma on the axis unless
used where the beams from the object are collimated (“star space”).

a'r

4.7 The Pechan prism for image rotation. The air gap must be at least about 10 7%
wide to ensure total internal reflection of the obliquely incident beams. (Any system
with an odd number of reflections acts as an image rotator.)

Figure 4.8 shows a typical beam-splitting (or combining) prism, a com-
ponent of many diverse optical systems. The beam-splitting surface may
be approximately neutral, in which case it would be a thin metal layer, or
it may be dichroic (reflecting part of the spectrum and transmitting the
rest), or it may be polarizing (transmitting the p-polarization and reflect-
ing the s-polarization of a certain wavelength range). In the last two cases
the reflecting-transmitting surface is a dielectric multilayer and its perfor-
mance is fairly sensitive to the angle of incidence. Chapter 10 on multilayers
deals with these properties in more detail. More on prisms for turning and
reflecting beams is given by Smith (1966).

Prisms as devices for producing a spectrum have been largely replaced
by diffraction gratings. The latter have several advantages for direct spec-
troscopy, but there are a few specialized areas where prisms are better.
Losses in gratings through diffraction to unwanted orders are a nuisance
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4.8 A beam-splitting cube. The reflecting surface can have various properties: neutral,
i.e., equal reflecting and transmitting for all wavelengths; polarizing (the p-polarization is
transmitted and the s-polarization is reflected); or dichroic, i.c., splitting the spectrum.

in certain astronomical applications where every photon counts. Another
example of an area where prisms are preferable is wavelength selection in
multiwavelength lasers: a prism inside the laser resonator with adequate
angular dispersion ensures that only one wavelength will be produced, and
one scans through the available wavelengths by rotating the prism. Figure
4.9 summarizes the notation for properties of dispersing prisms at and away
from the position of minimum deviation. The significance of the minimum
deviation position is that the effects of vibrations and placement errors
are least. Also, if the shape of the prism is isosceles, the resolving power
will be a maximum at minimum deviation. The main formulas relating to
dispersing prisms are as follows.

Spectroscopic resolving power:

A/BX = (1) —tg)dn/dA, (4.2)
where t; —t9 is the difference between the path lengths in glass from one
side of the beam to the other.

Angular dispersion:
sin A

dI}/d\ = ————— . dn/d) 4.3
2/ cos Ii cos Ié n/ (4.3)
_ 2sin(4/2)
= Ty dn/d) (4.4)
at minimum deviation.
Spectrum line curvature:
2 _ .
/radius = 2% . B4 _ (4.5)
nf cos I cosl,
2 _
=21 9ty (4.6)

n2f
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at minimum deviation, where f is the focal length of the lens which brings
the spectrum to a focus.

4.9 Notation for the properties of dispersing prisms.

The spectrum line curvature refers to the observation that the image of
the entrance slit of the spectroscope produced by placing a lens after the
prism is actually parabolic. The parabola is convex toward the longer wave-
lengths. The reason the image is curved is that rays out of the principal
plane of the prism are deviated more than rays in the plane, a straightfor-
ward consequence of the application of Snell’s law. For rays with angle €
out of the plane the extra deviation can be parametrized by an additional
contribution to the index of refraction given by

dn =~ e2(n? — 1)/(2n). (4.7)

If the length of the slit image is L, then € = L/(2f), where f is the focal
length of the lens. Moreover, from equation (4.3) we have

" sin 4
= — 4.
dI/dn cos I:'l cos Ié (48)
= (2/n)tan I (4.9)

at minimum deviation. The curvature of the slit image readily follows from
these relations.

The typical dispersing prism of constant deviation shown in figure 4.10
has the property that, if it is placed in a collimated beam, the wavelength
which emerges at right angles to the incident beam is always at minimum
deviation so that the spectrum is scanned by rotating the prism about a
suitable axis such as the one indicated.
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90°

75°.

60°
135° : center of

rotation

4.10 The Pellin-Broca constant-deviation dispersing prism. The center of rotation is
chosen to keep the transmitted beam nearly undisplaced as the prism rotates to scan the
spectrum. The wavelength, which is turned through 90°, is transmitted at minimum
deviation.

N
>

—>—

4.11 A pair of prisms used as a one-dimensional beam expander for a collimated beam.

A prism used a long way from minimum deviation will expand or contract
a collimated beam in one dimension. Figure 4.11 shows a pair of prisms
used in this way to turn a laser beam of elliptical profile (from a diode laser)
into a beam of circular profile by expanding it in the plane of the diagram
only.

5
Optical Materials

It is convenient to classify optical materials into four groups: transparent
materials for the ultraviolet, for the visible and for the infrared, and mate-
rials for mirrors. The topic of optical materials is to some extent connected
with the subject of optical tolerances, to be discussed in chapter 7, but
here we can note that such questions as homogeneity of refractive index,
and the achievable accuracy of surface polish are often governed by the rule
that the effect on a phasefront of correct shape should not be more than a
quarter-wavelength (the Rayleigh A/4 rule) for a reasonably high quality
optical system; this gives tolerances based on the variation of optical path
length (refractive index) integrated along a ray path due to inhomogeneity.
An alternative set of specifications based on angular deviation tolerances
through a supposedly plane-parallel slab of material leads to a refractive
index gradient tolerance.

5.1 Optical Materials for the Visible Region

For high-quality optical systems optical glasses are used, glasses prepared
with careful attention to uniformity of composition and with a range of
optical properties. The main optical properties of such glasses are refractive
index and chromatic dispersion. The dispersion is generally specified by the
so-called V-value, defined by

V = (n—1)/An, (5.1)

where An is the difference in refractive index between two specified wave-
lengths, usually of chosen spectrum lines. Specialist optical glass manufac-
turers summarize this information on a chart such as that shown as figure
5.1, in which points indicate a glass of the refractive index and V-value
corresponding to the coordinates. The outlined area indicates roughly the
boundary of the region of obtainable glasses.

The manufacturers’ catalogs also give more detailed information in tab-
ular form for each glass: the refractive index at wavelengths from the near-
ultraviolet to the near-infrared, including commonly used laser wavelengths,
the transmission as a function of wavelength, and other properties which

19
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1.9 1

1.7

1.5
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80 70 60 y 50 40 30 20

5.1 The glass chart. This is a quick-reference display of types of optical glass, as used
by all manufacturers. A glass type is indicated by a point giving the refractive index
for the middle of the visible spectrum and the dispersion (V-value). The hatched area
indicates the region of available glass types.

may or may not be relevant to a particular application. We list below some
of these properties together with others, indicated by an asterisk, which are
not always given in current optical glass catalogs.

Thermal expansion

Dependence of refractive index on temperature

Nonlinear refractive index (dependence on square and higher pow-
ers of electric field strength) *

Verdet constant (for Faraday rotation)

Density

Elastic moduli

Stress birefringence (mechanical and electrical) *

Transformation temperature (for annealing)

Resistance to chemical attack

Refractive index inhomogeneity (absolute change is given but not
the gradient)

Frequency of bubbles and inclusions

Light scattering*

Thermal expansion and index change with temperature both change the
Gaussian properties of a system. Thus the power K of a thin lens depends
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on temperature T as follows:
dK/dT = {(dn/dT)/(n - 1) — a}K, (5.2)

where o is the thermal expansion coefficient.

Such effects matter when the system cannot be refocused to allow for
large temperature changes, for example, optical systems in satellites or
aircraft. It is then possible to ‘design temperature-compensated systems by
choosing suitable materials for lens mounts, spacers, etc. The expansion
coefficients of optical glasses are of the order of magnitude of 4 to 7 x 10~
per degree Celsius. The change of refractive index relative.to air with
temperature is of order 10~% per degree Celsius, with strong dependence
on wavelength and the kind of glass.

Nonlinear index changes occur in glasses when the electric field strength
is high, which causes self-focusing” and, eventually, breakdown of the glass.
It is to be watched for in pulsed laser systems and can even occur near caus-
tics formed near focal regions in multiply reflected beams from nominally
antireflection coated surfaces.

Faraday rotation is used in many contexts, for instance, in nonreturn
switches to stop reflected laser pulses from reentering a laser resonator.

The quality of annealing of optical glass is so good nowadays that it
is very unusual to find any serious stress birefringence from inadequate
annealing. But for systems to be used for polarization measurements the
manufacturers will supply specially annealed material. On the other hand,
stress birefringence is sometimes deliberately used in systems, for example,
in variable polarization retarders.

Many thin-film coating processes involve heating a glass substrate. In
such processes the transformation temperature is a warning point. It is
generally regarded as best not to heat a glass substrate within 100°C of
this point to avoid the risk of irreversible change of shape and surface
quality.

Much detail is available in the catalogs about chemical attack. If an
optical system is to be used in a hostile environment, say, the tropics or
a chemistry laboratory, it is advisable to seal it carefully and make all
external optical surfaces of resistant glass, such as one of the borosilicate
crowns.

Some glasses can be obtained in useful sizes with a refractive index
checked as uniform throughout the piece to +0.000001. However, the tol-
erancing should be done carefully to determine if this degree of uniformity
is really necessary; one pays heavily in cost and delivery time for such a
high specification.

The choice from among perhaps 200 optical glass types in the manufac-
turers’ catalogs is often made on the basis of refractive index and dispersion,
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as determined by details of the aberrational design. Sometimes, however,
these details are not very relevant—for example, in a laser system where
there is no question of chromatic aberration correction but where nonlinear
effects may matter, or in a pressure window through which precision mea-
surements are to be made. It is in such cases that attention must be paid
to many nonoptical properties of optical glasses.

Plastics as optical materials have been in use for many years. Recently,
improved molding techniques have made them even more popular. The
range of available refractive indices and dispersions is very limited com-
pared to that for optical glasses (refractive index 1.49 to 1.6 and V-value
for the same wavelength range as in figure 5.1, ie., 57 to 30); also, the
dependence of index on temperature and the thermal expansion coefficient
are both at least an order of magnitude greater than for optical glass. Thus
plastics should be considered only for certain special cases where these dis-
advantages do not matter and where the high cost of molds is justified by
large volume production. In spite of improvements in molding techniques
it is still true that the homogeneity and accuracy of the surface shape of
glass components cannot be approached by plastics.

5.2 Optical Materials for the Ultraviolet

For the present discussion the ultraviolet extends from about 170 nm to
400 nm; the lower limit is the limit of transmission by air in the laboratory.
No production optical glasses transmit below 350 nm* and the range of
available materials is very limited. In fact the only glassy (noncrystalline)
material available is fused silica (SiOg ). Depending on the grade this ma-
terial can transmit to about 180 nm. It is very hard and can be polished
well to produce components of the highest quality. Also, it has a very low
thermal expansion coefficient, 0.5 x 10~%, but a surprisingly high temper-
ature coefficient of refractive index, 8 x 10~%. Manufacturers offer various
grades of homogeneity and uv transmission.

Other uv transmitting materials are crystalline. Those which are cubic,
i.e., optically isotropic and therefore not birefringent, are mainly the alkali
halides, and of these the best for transmission, hardness, and workability
seems to be lithium fluoride. Nevertheless lithium flouride is greatly inferior
to fused silica in workability since it easily chips and scratches and since it
is difficult to get a good polish at the same time as a good surface shape.
However, lithium fluoride and other alkali halides offer the possibility of
making achromatic combinations with fused silica since the dispersions are

* This is true at the time of writing, but much development work is being devoted
to lowering this limit.
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very different.

Other noncubic crystals have restricted use as windows, notably crystal
quartz, which has rotary polarization in addition to being birefringent, and
sapphire (Al O 3), which transmits down to 140 nm but also is birefringent.
Calcium carbonate, variously and confusingly known as calcspar, Iceland
spar, and calcite, transmits to below 200 nm and because of its very high
birefringence is used for polarizing prisms in the uv as well as the visible.

5.3 Optical Materials for the Infrared

“Infrared” here means the two wavelength bands which are transmitted
by the atmosphere, from 3 to 5 um and from 8 to 14 um. The latter is
also known as the thermal band because the maximum of the blackbody
spectrum at 300 K is at 10 pm, in the middle of this band.

The most popular materials for the thermal band are germanium, zinc
selenide, and zinc sulphide. Germanium has the very high refractive index
of 4.0 and also very low dispersion, which makes it easier to get good aber-
ration correction with optical systems of wide aperture and field angle. Its
transmission range is from 1.8 to 23 um; that is, it is opaque in the visible
region. Zinc selenide and zinc sulphide are similar materials: both have
refractive indices of about 2.3, much higher dispersions than germanium,
and transmission ranges from 0.5 to 20 pm (ZnSe) and from 0.4 to 20 um
(ZnS); the partial transmission in the visible region is useful for inspection.
All three materials are available in both poly- and monocrystalline (cubic)
form.

A wider variety of materials is available for the 3 to 5 xm band, including
certain “chalcogenide” glasses and crystals such as sapphire, rutile, and
calcite.

For more on infrared materials see Wolfe and Zissis (1978), and for defini-
tive tables of refractive index and absorption of a range of optical materials,
excluding glasses, for wavelengths from the ultraviolet to the infrared see
Palik (1985). Also, the manufacturers of special crystals often give reliable
data.

5.4 Materials for Mirrors

For mirrors below, say, 100 mm diameter which are not to be used in
high-intensity beams almost any glass is adequate, for example, float glass
or Pyrex. If the shape or “figure” is very critical, it is better to use carefully
annealed material since optical working may release deforming stresses.
Very high quality surfaces such as Fabry-Perot mirrors, which have to be
flat to about A/200, are made of fused silica on account of its low expansion
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coefficient. Mirrors for very high power lasers, such as CO 5 lasers for metal
machining, are often water-cooled and made of copper or other metals; to
get a good optical finish and high reflectivity, a process of electrodeless
nickel coating is used, as outlined in figure 5.2.

o~

B —

5.2 The electrodeless nickel process for mirrors on metal substrates. 4, metal substrate,
e.g., aluminum. B, coating of 90-10 nickel-phosphorus, 25 to 50 um thick; this is hard
enough to be optically worked to a good figure, but it has low reflectivity. C, evaporated
aluminum for high reflectivity. D, protective coating of silica.

If a mirror is larger than about 100 mm diameter, it may be necessary
to be more seriously concerned about temperature effects, depending on
the accuracy of figure required. For astronomical telescope mirrors, which
may be a few meters in diameter, the choices of both material and shape
(thickness relative to diameter, whether ribbed, etc.) are critical. Two very
similar materials were developed about 20 years ago specifically for large
mirrors: Cer-Vit (Owens-Illinois Company) and Zerodur (Schott). They
are slightly devitrified glasses, scattery in transmission, and light brown
in color. By adjusting the heat treatment in the annealing process, they
can be made to have an expansion coefficient of less than 10~7 per degree
Centigrade, that is, less than one-fifth that of fused silica. Also, they take a
good polish and seem to be generally ideal for making large mirrors. Their
great dimensional stability (better than Invar, apparently) has led to their
use as spacers for laser resonators and similar applications where stability

is needed.

6

Aberrations

In chapter 3 Gaussian or paraxial optics was introduced in order to get the
first approximation of the optics of symmetrical optical systems. That this
is an approximation follows from a simple trial which can be done either
numerically or experimentally. Take a planoconvex lens as in figure 6.1
of focal- length, say, twice its diameter. It is clear that from the use of
Snell’s law of refraction as described in section 2 we could, with the aid of
some simple geometry, calculate the paths of rays through this lens without
approximations, a procedure called raytracing. Figure 6.1 shows the result
of doing this for a beam of rays coming from an object point at infinity on
the axis. The rays close to the axis meet at the Gaussian image point, in this
case the image-side principal focus, and rays further from the axis intersect
the image plane away from the Gaussian image point. Figure 6.2 shows rays
from infinity inclined at 10° to the axis (an off-axis object point); these
are only rays in the plane of the diagram, and skew rays would complicate
the pattern even further. Figures 6.1 and 6.2 illustrate only two examples
of the great variety of ray aberrations, but they immediately suggest that
aberrations depend on the diameter of the lens and on the distance of the
object point from the axis. For off-axis object points and skew rays there
must be a third parameter.

N\
disk of

least confusion Gaussian
image

plane

6.1 Raytrace showing spherical aberration.
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Gaussian
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6.2 Raytrace showing off-axis aberrations in the tangential (meridian) section. The ab-
erration shown is mainly coma.

These deviations from the Gaussian image point are known as transverse
ray aberrations. It can be useful for several purposes to consider aberrations
also in terms of the shapes of the geometrical wavefronts defined in chapter
2. Since wavefronts are orthogonal to rays, if all the rays meet at a single
point the wavefronts in the beam must be portions of spheres. Conversely,
if the wavefronts are not truly spherical, the rays will not meet at a point
so that aberration in a beam can be measured as the departure of one of its
wavefronts from spherical shape.* Thus the wavefront is compared with a
spherical surface centered at the ideal or Gaussian image point and touching
the wavefront at the center of the exit pupil. The optical path length from
sphere to wavefront along a ray is then a measure of the aberration as a
function of position of the ray in the pupil and position of the object point
in the field.

We can parameterize aberrations in more detail in terms of three coor-
dinates: p, ¢, and n; p is the distance from the axis to the point at which
a ray meets the entrance pupil, ¢ is its azimuth with respect to an origin
in the plane of the diagram (figure 6.3), and 7 is a field coordinate, that is,
it measures in one of a few different ways how far off-axis the object point
is. It is found that on account of the axial symmetry the wavefront aber-

* If one wavefront is not spherical none of the others will be, since they are all
parallel surfaces, and the departure from spherical will change from wavefront to
wavefront. In practice for a system forming even moderately good images this
effect is small; usually the particular wavefront to which aberration is referred is
that at the exit pupil.
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rations depend on p , pncos ¢, and 1; and can be expressed as a power
senes in those variables. The terms of lowest order in p2, pncos @, and

n? correspond to Gaussian optics, and those involving higher powers are
various forms of aberration.

6.3 Polar coordinates in the exit pupil for parameterizing aberrations.

Thus Gaussian optics can be formally defined as optics in the region
close to the axis such that terms higher than the square of p and n in
expansions of optical path lengths can be ignored. From the discussion of
optical tolerances (chap. 7) this definition can be sharpened to say that in
the Gaussian optics region terms higher than squares of p and 5 must be
much smaller than the wavelength of the light to be used.

Higher-order terms in the power series expansion represent aberrations.
The next terms beyond paraxial are called primary, third-order, or Seidel
aberrations; they are of fourth degree, and there are five of them as follows:

C1st, (6.1)
C3p3ncos ¢, (6.2)
C;o,pzr]2cos2 o, (6.3)
Cyp?n?, (6.4)
C5pn3cos @. (6.5)

(There is, of course, a sixth term in the variables, namely n*, but since this
is constant over the pupil, it leaves the wavefront spherical in shape and is
therefore not classed as an aberration in the present context.)
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The magnitudes of the Seidel aberrations can be found either from for-
mulas involving the constructional parameters of the system (curvatures,
refractive indices, and separations) or by raytracing followed by polynomial
fitting. For details of these processes see Welford (1986). Here we shall de-
scribe in detail the forms of these terms as both wavefront shapes and ray
deviations, and we shall indicate how some aberrations can be controlled
by appropriate optical design.

6.1 Spherical Aberration

The term in p4, for historical reasons, is known as spherical aberration.
Figure 6.4 shows how the effect on wavefront shape may be represented:
an axial object point is assumed to form a paraxial image at O', and if
there were no aberration, a wavefront of this beam would be spherical with
its center at O'. This ideal wavefront is called the reference sphere, and
an actual wavefront with spherical aberration is indicated, coinciding with
the reference sphere at the axial point. The rays would be the normals to
the wavefront, and it can be seen that they would intersect the axis further
to the left of the paraxial image point. In fact the ray pattern would be
as in figure 6.1, which is drawn for spherical aberration. It is sometimes
useful to plot the deviation of the rays from the paraxial image point in the
image plane as a result of the aberration, as in figure 6.5, where the vertical
coordinate is the ray height in the pupil and the horizontal coordinate is
the distance in the image plane from the paraxial image point; this is a
plot of transverse ray aberration. We could also plot the ray intersection
along the axis against pupil height, the longitudinal spherical aberration.
Finally, we could plot a pattern of dots in the image plane representing the
ray intersections, as in figure 6.6; this is called a spot diagram. All of these
representations of spherical aberration and corresponding representations
of the other aberration types to be described have their uses in assessing
the performance of a system.

Referring again to figure 6.1, it can be seen that, if the focal plane is
moved slightly nearer to the lens, as indicated by the broken line, the aber-
ration patch is smaller so that the Gaussian image plane is not necessarily
where the sharpest image will be with spherical aberration. In the wave-
front picture this is represented by taking a reference sphere centered on a
new image point, as in figure 6.4, where the new reference sphere is shown in
broken line. We see that in this case the maximum value of wavefront aber-
ration is less than for the Gaussian focus and that the aberration changes
sign at a certain radius in the pupil. In actually using an optical system
with spherical aberration, one would usually be able to set the image at
the best focus according to whatever criterion of the quality of the image
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6.4 A wavefront with spherical aberration showing the reference sphere centered on the
Gaussian Image point. '

_- wavefront
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6.5 Transverse ray aberration in the case of spherical aberration.

was appropriate; the present discussion is intended to show how this might
be allowed for in a numerical analysis of a proposed design.

Terms of higher order than the Seidel term are often significant for spher-
ical aberration, e.g., ps, ps, .... To illustrate this, it is convenient to show
the wavefront aberration for an image point at infinity, or in what is some-
times called star space. Figure 6.7 shows a combination of fourth and sixth
power spherical aberration of opposing signs relative to a plane reference
sphere. Here it may be seen again that a change in focus amounting to a
slight curvature of the reference sphere may be beneficial.
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6.6 Spot diagrams for spherical aberration calculated for the lens of figure 6.1 at different
planes of focus centered around the disk of least confusion. The distances in mm from
the paraxial focus are indicated above each pattern.

wavefront
/

6.7 Primary and secondary spherical aberration as wavefront aberration (4th- and 6th-

power terms).

6.2 Coma

We saw in section 6.1 that spherical aberration depends only on the
aperture variable p; i.e., it is independent of the field variable 7. There
is a group of aberrations called linear coma which depend linearly on the
field variable and, in the case of Seidel coma, on the cube of the aperture
variable (eqn. 6.2); thus in star space the wavefront with linear coma is
as in figure 6.8, or alternatively it can be represented as a contour map
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as in figure 6.9. To describe this we have to introduce more terminology:
the section of the wavefront which contains the plane through the optical
axis is called the meridian section (sometimes the tangential section), and
the plane pependicular to it and passing through the principal ray defines
the sagittal section. Equation (6.2) indicates a cubic dependence of the
wavefront aberration on the aperture coordinate in the meridian section,
as shown in figures 6.8 and 6.9, In the sagittal section the wavefront aber-
ration is zero but the wavefront has a finite gradient in the circumferential
direction. The cubic dependence in the tangential section and the gradient
across the sagittal section both depend linearly on the field coordinate so
that although the coma is zero on axis it increases rapidly in the field if
the coma coefficient is nonzero. The ray pattern for coma is quite complex.
Figure-6.10 shows a diagram drawn for rays distributed uniformly around
circles of increasing diameter in-the exit pupil. For each circle in the exit
pupil the ray intersections trace out the corresponding circle in the figure
twice. The marked asymmetry of the ray pattern illustrates that coma has
a bad effect in systems where the positions of points in the image are to be
determined accurately, e.g., in astrometry and surveying.

reference — wavefront

plane

6.8 The wavefront shape for coma.

6.3 Astigmatism and Field Curvature

In the Gaussian optics approximation, rays from one object point all
meet at one image point but if another image plane is chosen the rays meet
it in a uniform patch, as in figure 6.11. Alternatively, we may regard such
a shift of focus as a wavefront aberration depending on the square of the
aperture coordinate, again as in figure 6.11. This may seem pointless in
Gaussian optics, but it is a useful notion in discussing aberrations. Field
curvature is an aberration in which the focal position changes according
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6.9 A contour map of the wavefront for coma. Each contour represents, say, an increment
in height of the wavefront of A /2.

6.10 Coma as transverse ray aberration. The circles are loci of intersections of rays from
a point object through concentric circles in the pupil. Once around a circle in the pupil
corresponds to twice around the corresponding circle in the image.

to the square of the field angle; thus on the axis the rays are in focus at
the Gaussian image plane but the off-axis images are formed on a curved
surface, as in figure 6.12, so that the wavefront aberration is represented
by equation (6.4).

Astigmatism similarly depends on the square of the aperture coordinate,
but it involves a change of shape of the wavefront from the ideal spherical
shape. It appears as focal shifts in the meridian and sagittal sections,
which are of different magnitudes, so that the wavefront aberration is as
in equation (6.3). The effect is that the rays all pass through two lines in
the focal region rather than a single point. These lines are known as the
tangential and sagittal focal lines. Midway between the focal lines the rays
pass through a circle called the disk of least confusion.

Both astigmatism and field curvature as Seidel aberrations depend on
the square of the field angle so that a diagram such as that shown as figure
6.13 can be used to represent the effects of both. However, as with the other
aberrations there are higher order effects in real systems which change this
relatively simple picture.
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6.11 The effect of change of focus on an unaberrated beam.
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6.12 Field curvature.

6.4 Distortion

The last Seidel aberration, distortion, has, unlike most of the others,
a self-explanatory name. The wavefront term, equation (6.5), means that
the wavefront is not changed in shape but is simply tilted with respect to
the reference sphere centered on the off-axis Gaussian image point to an
extent depending on the cube of the field coordinate. This has the effect

-
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6.13 Astigmatism. Rays in the plane of the diagram (tangential rays) focus in a line on
the tangential image surface; sagittal rays focus in a line on the sagittal image surface.

of changing the magnification according to the position in the field; thus a
square centered in the object plane is imaged as shown in figure 6.14.

— L

object image

6.14 Distortion. An object in the form of a square is imaged as indicated in “pincushion”
distortion. The opposite sign of aberration gives “barrel” distortion.

6.5 The Effect of the Position of the Aperture Stop

The aperture stop and the associated entrance and exit pupils were de-
scribed in chapter 3 as having the function of limiting the extent of the
beams of rays taken in by the optical system. From the discussion in the
present chapter it can be seen that the size of the aperture stop also controls
the amount of any residual spherical aberration that of necessity remains in
the optical design (that there always are residual aberrations follows from
limits on the skills of optical designers and on the permissible cost and
complexity of optical systems).
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6.15 Changing the position of the aperture stop. When the stop is moved along the axis
from A4 to B in the same air space, its diameter is changed so as to keep the size of the

axial beam constant.
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6.16 The effect on off-axis aberrations of moving the aperture stop. The change from 4
to B selects a different portion of the aberrated wavefront.

|

There is a third function of the aperture stop, the control of off-axis
aberrations. Figure 6.15 shows the space in a system which contains an
aperture stop, shown in full line. Clearly, the stop could be displaced
along the axis, as indicated by the arrow, to the position shown in broken
line, and provided its diameter is changed appropriately, there will be no
change in the size of the beams collected and in the spherical aberration
correction. To see the effect on off-axis aberrations, consider the off-axis
wavefront shown in figure 6.16; the exit pupil in the position shown defines
the principal ray and permits the indicated part of the aberrated wavefront
to pass, but if the axial movement of the stop moves the exit pupil to the
broken line position, a new principal ray and a different portion of wavefront
are selected. In this way it can be seen that shifting the stop can change
the off-axis aberrations. The extent to which this effect can be used in
optical design is often limited by practical considerations, but it cannot
be disregarded except in systems such as collimators which have negligible
field of view.
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6.6 Chromatic Aberrations

We discussed optical materials in some detail in chapter 5. Here we re-
call that the refractive index of all materials depends on the wavelength
of the light used; generally for transparent materials the index decreases
with increasing wavelength. Thus both Gaussian and aberrational prop-
erties of refracting optical systems generally depend on wavelength; i.e.,
there is chromatic aberration. In fact what is usually meant by chromatic
aberrations are variations of Gaussian properties: (a) a shift of image-plane
distance with wavelength, called longitudinal chromatic aberration or lon-
gitudinal color, and (b) a change of magnification—transverse chromatic
aberration or transverse color. The higher-order effects are referred to by
self-explanatory terms such as chromatic variation of spherical aberration,
etc. Figure 6.17 shows the Gaussian chromatic effects; longitudinal color
appears as a shift of the whole image plane along the axis, and transverse
color is a radial shift of the image point proportional to the field coordinate.

(b)

6.17 Chromatic aberration. (8) Longitudinal chromatic aberration, in which different
wavelengths focus at different distances along the axis. (b) Transverse chromatic aber-
ration, in which the magnification varies with the wavelength.

6.7 Dependence of Aberrations on Optical System Design

The aberrational behavior of a system can be determined in as much
detail as desired by tracing enough rays through it according to Snell’s
law. This is in principle a simple procedure although it does not always
offer much insight as to why the system behaves as it does or how it might
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6.18 A “thin” lens.

Y

be improved. Calculating the Seidel aberrations gives a more analytical
insight, since the contributions of each refracting or reflecting surface can
be determined. The equations for these calculations are given in books
on aberration theory (see, e.g., Welford 1986); also, there are now plenty
of software packages available for desktop computers which will do such
calculations and present the results in a variety of convenient ways. We
do not, therefore, go into more detail about aberration calculations here,
but we shall give a few examples to show what may be expected in simple
cases.

6.7.1 Spherical Aberration of Thin Lenses

A thin lens of power K will bring light from an object at infinity to a
focus at its second principal focus F', as in figure 6.18, in the Gaussian op-
tics approximation. The distribution of curvature between the two surfaces
of the lens can be changed without altering the Gaussian properties, but
this does change the aberrations. The process of redistributing curvature is
called bending the lens, and figure 6.19 shows the effect of bending on the
spherical aberration of a thin lens of positive power. The curve is scaled
down vertically with increasing refractive index, and it is moved bodily
vertically and horizontally with change of conjugates, i.e., if the object is
not at infinity. A lens of negative power with corresponding bending would
have a similar set of curves reflected about the horizontal axis.

From such curves, combined with raytracing to take account of finite
glass thicknesses, arises the cemented doublet approximately corrected for
Seidel spherical aberration by cancellation of positive and negative contri-
butions; by choice of suitable dispersions of the two glasses, it may also be
corrected for longitudinal color, as in figure 6.20.

6.7.2 Aplanatic Doublets

The doublet of figure 6.20 has two aberrations corrected by use of two
degrees of freedom: bending and the ratio of dispersions of the components.
To correct for coma as well, a third degree of freedom is needed. This is
obtained either by careful choice of the ratio of refractive indices of the
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6.19 Changing the spherical aberration of a thin lens by “bending” it. The power is held
constant by adding the same increment of curvature to each surface.

6.20 An achromatic doublet. The powers of the two components are chosen to cancel
the dispersions, and the overall bending is chosen to cancel the spherical aberration (but
there is always higher-order aberration, which is balanced against low orders to leave
some residual spherical aberration).

components (but this depends on the glass types available) or by breaking
the contact between the components (figure 6.21). Such a system, corrected
for Seidel spherical aberration and coma, is said to be aplanatic.

6.7.3 Astigmatism and Field Curvature Correction

The doublets described in sections 6.1.7 and 6.7.2 are well corrected over
only a narrow angular field, one or two degrees at most, depending on the
focal length and relative aperture. Astigmatism and field curvature inter-
vene at larger field angles. Field curvature cannot be corrected in a “thin”
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6.21 An aplanatic (coma-corrected) doublet. The split contact gives an extra degree of
freedom, which permits coma correction.

system since it is simply proportional to the power of the system. Likewise,
astigmatism is proportional (with a different constant) to the power of a
thin system if the aperture stop is in contact with the system. It is possible
to correct Seidel astigmatism in a thin system by putting in heavy coma
and spherical aberration and moving the aperture stop away from the lens
so that the contributions due to stop shift from these aberrations cancel the
astigmatism. However, such a system is of restricted use since the relative
aperture has to be very small. In general, astigmatism and field curvature
are controlled by using “thick” systems, i.e., components separated by air
spaces. These considerations lead to a variety of systems such as photo-
graphic lenses and projection lenses of which one of the simplest and oldest
types is shown in figure 6.22.

|

|

6.22 The Cooke triplet, designed by H. Dennis Taylor. This was the first system designed
on the basis of aberration theory to obtain correction of astigmatism and field curvature.

6.7.4 Symmetrical Systems

If an optical system has a plane of symmetry as in figure 6.23, with the
aperture stop at the plane of symmetry and with equal conjugates so that
the magnification is —1, then all aberrations depending on odd powers of
the field coordinate are identically zero. That is, coma, distortion, and
transverse color of all orders, not only the Seidel terms, are zero. This "
result is utilized in the design of copying lenses.
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6.23 A system with symmetry about a central plane, the plane of the aperture stop. Such
systems have no odd aberrations if the object and image positions are also symmetrical
about this plane.

6.7.5 Aspheric Surfaces

So far it has been tacitly assumed that the reflecting or refracting sur-
faces in an optical system are spherical (or plane). The very good reason
for this assumnption is that such surfaces are much easier to make to the
accuracy needed in optics (of the order of the wavelength of light) than
surfaces of any other shape, because of the nature of the optical polishing
process. However, nonspherical or aspheric surfaces offer some advantages
in optical design. The main advantage can be illustrated by considering
the Schmidt camera, an astrographic instrument. It is easily shown that a
mirror in the shape of a concave paraboloid of revolution forms an image
free from spherical aberration of an object at infinity on its axis, as in figure
6.24a. Such a mirror is commonly the primary or main mirror of a large
astronomical telescope, but it has only a very small angular field of view
because of coma. If the mirror were spherical, it would have large spherical
aberration, as in figure 6.24b. Now suppose that instead of aspherizing the
mirror to make it a paraboloid we put the aspherizing on a thin plate at the
center of curvature of the mirror and use the aspheric plate as the aperture
stop, as in figure 6.24c. The spherical aberration is corrected, and because
the principal rays now meet the mirror normally, off-axis beams are treated
Jjust the same by the mirror as the axial beam and there is no coma. This
is the principle of the Schmidt camera, an idea that has been extended in
several ways to other systems with aspherics.

In spite of the success of the Schmidt camera and its derivatives, aspheric
surfaces do not solve all optical design problems; in fact very few optical
systems have more than one aspheric surface. This is partly because as-
pherics are very costly to make but also partly because correcting spherical
aberration seems to be the main problem which aspherics can solve easily.
But there are many other aberrations to be dealt with in systems of large
field coverage.
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6.24 Concave mirrors as imaging elements. (2) A paraboloidal mirror has an unaberrated
point image for an object at infinity on the axis. (b) A spherical mirror has large spherical
aberration under the same conditions. (c) In the Schmidt camera the aberration of the
spherical mirror is corrected by a thin aspheric plate at the center of curvature; this is
also the stop plane, and the system then has good aberration correction over a relatively
wide field.

6.7.6 Reflecting Systems

If an optical system consists only of mirrors, there is no chromatic aber-
ration (at least in the geometrical optics sense; as will be seen in chap. 7,
there are small physical optics effects which are a kind of chromatic aber-
ration). Coupled with this great advantage there is the disadvantage that
mirrors get in the way of each other along the optical axis so that there are
very few reflecting optical systems containing more than two mirrors (ie.,
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convex or concave mirrors; plane mirrors for redirecting the optical axis
are not relevant in this context). This considerably restricts the range of
possible designs. A typical system which illustrates these points well is the
Cassegrain telescope (figure 6.25). Both mirror surfaces in the telescope
are aspheric, the concave being paraboloidal and the convex hyperboloi-
dal. The imaging cones of rays are hollow (the technical term is “central
obstruction”), and the angular field is restricted not only by off-axis aber-
rations but by the two mirrors “shearing” against each other and producing
a distorted and asymmetric pupil.

\

\

. /

6.25 The Cassegrain telescope. The concave mirror is a paraboloid, and the convex is a
hyperboloid.

In some applications the problems of central obstruction and sheared
pupils can be avoided by using beam-splitting surfaces. Figure 6.26 shows
how the good imaging qualities of a concave spherical mirror used with
object and image at the plane of the center of curvature could be utilized.
Using the beam-splitting cube means that only 25% at best of the available
light is used: a situation that would be unthinkable in an astronomical
context but in instruments where laser illumination is used may not be a
serious disadvantage. (Aberrations introduced by the cube itself have to be
taken account of in such arrangements.)

6.8 Optical Design

By optical design as opposed to optical system design we mean the design
of a single component of a system, e.g., an objective, an eyepiece, or a relay
lens. When a complete optical system is designed, from light source to de-
tector, requirements arise for the individual components, that are roughly of
two kinds: (a) Gaussian optics requirements, such as focal length, magnifi-
cation, numerical aperture or F /number, and field angle, and (b) aberration
correction requirements. To some extent these requirements can be divided
between the components, but generally considerations such as compactness
dictate the layout. Such components may be available commercially, but
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6.26 A concave spherical mirror used with object and image at its center of curvature.

if not the task is to produce optical designs for each component that ful-
fil these requirements as nearly as possible. There are two parts to this
task. It is first necessary to decide on the general combination of optical
elements that might be suitable; e.g., would a simple cemented achromatic
doublet do, or perhaps something like a double-Gauss photographic objec-
tive or even something entirely new, as when Bernhard Schmidt invented
the Schmidt camera? Needless to say, experience and expert advice are
needed at this first stage. The second stage is more mechanical. Having
decided on a general type of lens or mirror combination, it must be refined
to comply with the Gaussian and aberrational requirements. Nowadays
this can be done (provided the selected type of design is suitable) by means
of any of several commercially available programs. These optical design
programs permit a variety of constraints and tolerances to be incorporated,
after which an optimization routine is carried out using a merit function
which is usually a weighted sum of squares of aberrations and constraints.
Given a good starting point and a realistic specification, it is thus possible
to arrive at an optical design consisting of a list of optical glass types, cur-
vatures, glass thicknesses, and air spaces which can be turned into hardware
by a specialist manufacturer.



7
Physical Optics and the Limits of

Image Formation

Geometrical optics alone does not always give enough information about
an optical design to predict its performance in imaging fine detail, ie.,
its resolving power or resolution limit. Thus, if we we look at the spot
diagram (see section 6.1) from a poor-quality design, we can get a good
notion of what the image quality will be. However, the spot diagram for
an aberration-free system in monochromatic light at the correct focal plane
consists of a single point, suggesting infinitely fine resolution, but obviously
this cannot be true, because of the wave nature of light. We therefore must
examine the effect of the finite wavelength, and in this chapter we shall look
at point spread functions in terms of physical optics. We use scalar wave
theory, in which the field is represented by a single complex wave amplitude
(usually thought of as corresponding roughly to the electric field strength
in the electromagnetic wave). The theoretical details are available in many
texts (e.g., Goodman 1968; Born and Wolf 1959).

7.1 The Aberration-free Point Spread Function

Figure 7.1 shows a system, supposed aberration-free, imaging a point P
at P'. The extent of the phasefronts in the imaging pencil is limited by
the aperture stop, usually inside the system, but for convenience we replace
this by its image, the exit pupil, in the image space. The wave disturbance
in the region of the focus P' is then regarded as due to diffraction of the
phasefronts at the exit pupil. Let the diameter of the pupil be 2a, let the
distance from the pupil to the image plane be R, and let the wavelength of
the light be A. Then the complex amplitude in the image plane, normalized
to unity at the center of the pattern, is

2J1{2man/2}

2man/A (7.

where 7 is the radial distance from the center of the image point, J; is the
Bessel function of the first kind and first order, and @ = a/R (small-angle
approximation). This function is plotted in figure 7.2 against the scaled
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dimensionless parameter
z = 2man/A. (7.2)

The light intensity is the squared modulus of the complex amplitude so
that, again normalized to unity at the center, it is

I(z) = {271(2)/z}>. (7.3)

7.1 Notation for calculating the point spread function.

complex
1.0 amplitude
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7.2 The aberration-free complex amplitude point spread function from a circular pupil
with uniform amplitude. The abscissa scale is in so-called z-units, defined by eqn. (7.2).

Figure 7.3 shows equation (7.3) on a linear scale, and in figure 7.4 the
ordinate is on a logarithmic scale. On account of the axial symmetry,




46 Chapter Seven

the light intensity distribution is a series of rings around a central bright
core. This is shown in figure 7.5 as a perspective plot with light intensity
along the vertical direction. This light intensity distribution, known as the
Airy pattern, is used as the basis of the two-point resolution criterion, a
frequently used way of expressing the performance of an imaging system.
Let the system form an image of a pair of points of equal intensity in
monochromatic light, and let the two points be separate sources so that
their images are incoherent with each other and cannot interfere. As the
points move closer together their images begin to merge and coalesce. The
distance at which they become indistinguishable is formally taken to be
that at which the maximum of one falls on the first dark ring of the other,
i.e., 3.83 in z-units. (This is a formal definition of the resolution limit.
In practice it could be too coarse or too fine, depending on the working
conditions and the means of measurement.) From equation (7.2) it follows
that a distance in z-units is the same in object and image space, i.e., the
magnification is scaled out, so that in real units the two-point resolution
limit is in either space

0.61)/« (7.4)

or, if the object (or image) is at infinity, the resolution limit can be expressed
as an angle:
1.22)/2a, (7.5)

where 2a is the diameter of the exit pupil of the system. Equations (7.4)
and (7.5) demonstrate that resolving power is proportional to the quantity
a (strictly sin a for large convergence angles) and inversely proportional to
the wavelength; nsina is known as the numerical aperture when applied to
systems such as microscope objectives where the space in which resolution
is being considered may have a refractive index different from unity. The
numerical aperture and the wavelength are therefore the main parameters
governing performance in the absence of aberrations.

The fact that the Airy pattern scales directly with wavelength means
that, when a system is used in polychromatic light, even if there are no aber-
rations in the sense of chapter 6 the point image will still show chromatic
effects that are visually perceptible in well-corrected reflecting systems.

7.2 Image Quality with Aberrations: The Strehl Criterion

The question of how to set tolerances on aberrations, both design and
constructional, depends on whether the aberrations are allowed to be large.
The apparently defeatist attitude of discussing large aberrations makes
sense when we consider the interaction of the detector with the optical
system. Detectors such as photographic emulsions, TV camera tubes, and
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7.3 The intensity point spread function (the Airy pattern).

charge-coupled photodiode arrays have finite resolving powers of their own,
and it might seem reasonable to design the optical system so that its nu-
merical aperture corresponded to a resolution which matched that of the
detector, or at any rate did not better it by too large an amount. However,
resolution is not the only important parameter, and it is also desirable to
have large light-gathering power. Thus it is quite reasonable for a cam-
era lens to have a relative aperture f/1.8 (i.e., numerical aperture about
0.28) even though the film to be used may only resolve detail above, say,
20 # m in scale. The high numerical aperture confers short exposure times,
but the lens can have large aberrations, corresponding to a spread function
approaching 20 g m, in size rather than 2 um, as would correspond to nu-
merical aperture (NA) 0.28 with no aberrations. We shall see in section 7.3
how tolerances are set for such cases.

Returning to small aberrations, this is the case in which, because of the
properties of the detector, the full resolution corresponding to the wave-
length and NA of the system can be used. Here we would ideally like zero
aberrations, but design and construction limitations require that tolerances
be set. The Strehl tolerance system is based on the following result: if a
system starts off aberration-free (and monochromatic) and small amounts
of aberration are introduced, the effects on the point spread function de-
scribed in section 7.1 are approximately the same whatever the aberration
type. These effects are (a) the maximum intensity at the center of the pat-
tern decreases, (b) the zeroes of intensity in the dark rings become minima
but not zero, and (c) the general shape of the central maximum remains
the same and its width at half-height does not change. Of course, this does



48 Chapter Seven

1+

intensity

10-'4

1024

107 4

104

10 v ; v , T "
2 4 6 Z2 8 10 12 14

7.4 The intensity point spread function with logarithmic ordinate scale.

not hold beyond a certain point, but it suggests that a tolerance level for
what is substantially a perfectly corrected system should be that for which
the maximum intensity at the center does not fall below a certain level;
this level is taken as 80% in the Strehl tolerance system. The amounts of
different aberrations corresponding to this level vary, but for our purposes
a sufficient approximation is that for any combination of aberrations it cor-
responds to a mean-square wavefront aberration of A2 /200. J. J. Stamnes
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7.5 The intensity point spread function in perspective. Four squares correspond to one
z-unit.

(1986) gives a detailed treatment of this topic with graphs showing many
of the point spread functions. Tolerance levels for the Seidel aberrations at
the Strehl tolerance limit are tabulated by many authors, e.g., Born and
Wolf (1959) and Welford (1986).

Systems toleranced to the Strehl limit are sometimes described as “dif-
fraction-limited,” but in fact it is quite possible for a skilled observer or a
good electronic detection system to tell the difference between such a system
and one with zero aberration in a point image. Examples of systems where
performance significantly better than the Strehl tolerance limit is desirable
are astrometry telescopes for use in earth satellites, reduction copying lenses
for microlithography, and the telescopes of theodolites. Such systems must
be assembled with extreme care to achieve the design performance.

7.3 Tolerances for Systems with Large Aberrations

The relatively simple effects of small aberrations on the point spread
function described in section 7.2 do not hold for large aberrations such as
those permitted in optical systems like camera lenses. For these systems
the tolerances for specifying performance are based almost universally on
the optical transfer function. This function is defined in terms of the image
produced by the system of an object with sinusoidal intensity distribution.
Let the light intensity in the object be

I(n) = Ig{1 + cos 2wsn}, (7.6)

where 7 is a distance coordinate in the object plane and s is a spatial
frequency; thus the object can be regarded as a grating with sinusoidal
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intensity distribution. Then, subject to conditions explained below, the
image of this object will be of the form

I'(n) = Iy{1 + M cos2s(n + o)}, (7.7)

where |M|< 1 and 7 is a phase-shift term. Thus the image is similar to
the object but reduced in contrast according to the factor M and phase-
shifted. The phase shift is usually ignored, and the image quality is then
specified by the modulation transfer function (MTF), the factor M. This,
of course, is a function of the spatial frequency s and of the position in the
field of view, the focal setting, the direction of the bars in the grating, and
the wavelength spread of the illumination, but manufacturers quote MTF
with these parameters specified.

The conditions under which equation (7.7) represents the image intensity
distribution are (a) that the illumination in the object be incoherent (see
section 7.4) and (b) that the image formation be isoplanatic. The latter
is a condition on constancy of the aberrations over the part of the field of
view where the MTF is to be measured or calculated. In practice it means
that the form of the point spread function should not change significantly
over this field. Even ignoring these conditions, the MTF gives a useful
impression of performance: the reason for this is that the MTF as a function
of spatial frequency is essentially a one-dimensional Fourier transform of the
intensity point spread function so that it contains coded information about
the point spread function. In a more advanced approach a two-dimensional
Fourier transform of the intensity point spread function is taken and the
variables in this transform, s and t, say, correspond to components of
spatial frequency in two orthogonal directions.

The MTF is measured either by scanning the point spread function with
a slit and then taking the Fourier transform or by scanning the image of a
suitable sinusoidal test chart. In either case the appropriate illumination
and so forth are used. For a given optical system design the MTF can be
calculated as a Fourier transform of the point spread function, and this
itself is obtained by a numerical diffraction calculation for which computer
programs are available. The calculation is quite lengthy, and it is sometimes
quicker to use an approximation based on the spot diagram, which can be
regarded as a geometrical optics point spread function; this approximation
is also incorporated in optical design optimizing programs. More details
about MTF calculation are given, e.g., by Gaskill (1978).

The form of the MTF for an aberration-free system with a circular pupil
and in approximately monochromatic light is shown in figure 7.6, where
it can be seen that the MTF falls to precisely zero at a spatial frequency
Smax given by

Smax = ZQ/A. (7.8)
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As before, a is the convergence angle in the image space. This limit cor-
responds roughly to the reciprocal of the size of the point spread function.
The effect of aberrations is to lower the plot shown in figure 7.6 for all
points beyond s = 0, but the final cutoff spatial frequency is still as given
by equation (7.8).

1.0

MTF

05 (Ma)s 1.0

7.6 The modulation transfer function for a circular pupil with no aberrations. The
abscissa scale is normalized so that it reads unity at the cutoff spatial frequency of
2a/X.

MTF is, of course, an optical analogue of the frequency response or trans-
fer function of an electrical network. In a network the frequency response
is the Fourier transform of the impulse response function, and correspond-
ingly the optical transfer function is the Fourier transform of the point
spread function. Viewed in this way it can be seen that the MTF can be
cascaded for systems in tandem, but there is a restriction: the connection
between these systems must be incoherent; that is, it must be truly the
intensity which is transferred. Thus consider, as a reductio ad absurdum,
two aberration-free optical systems in tandem, as in figure 7.7, so that the
image of system 1 is the object for system 2. The two systems together form
one aberration-free system, since the fact that there happens to be a real
image between them is irrelevant. Thus the MTF is again as in figure 7.6,
and it is not obtained by taking the square of the ordinates in figure 7.6.
However, if there were a diffusing screen at the intermediate real image,
the connection would no longer be coherent and the combined MTF would
be obtained as the product of the individual MTFs. As a more realistic
example, the MTF of a TV camera lens may be multiplied by that of the
camera tube and again by that of the rest of the electronics, since each of
these subsystems is connected incoherently with its neighbor.
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7.7 Optical systems in tandem. The MTF is not the product of the individual MTFs.

The case mentioned above of a TV camera tube is a good example of
the use of the MTF concept. A 525-line TV system needs to resolve just
that number of lines in the image and no more, so that the camera lens
should be designed to have as good an MTF as possible up to the corre-
sponding spatial frequency in the image but beyond that its performance is
irrelevant. But it is still true that, other things being equal, the focal ratio
(f-number) should be as small as possible for light-gathering power so that
the aberrations will be much larger than diffraction-limited.

7.4 Coherent and Partially Coherent Illumination

So far we have been assuming that the objects of which images are being
formed are either self-luminous (e.g., a lamp filament) or illuminated by
polychromatic light incident over a large range of angles. Under these
conditions each point of the object emits radiation which has a rapidly
changing phase relationship with that from all the other points, and the
effect of this is that the image is obtained by adding together the intensity
point spread functions from all points of the object. In Fourier terms,
the image is the convolution of the object intensity distribution with the
intensity point spread function; this assumption lies behind the standard
treatment of MTF.

There are many cases of practical importance where the assumption of
incoherent illumination does not apply. An example is in microscopy of
light-transmitting objects: here it is usual for the illuminating cones of
light from the condenser to fill the aperture of the objective only partially,
since this gives an image with better contrast than if the objective aperture
were completely filled, and under this condition there is some degree of
coherence between the light from neighboring points in the object. At
this juncture we can explain what is meant by coherence in relation to
this example. If the illumination is completely incoherent, then the image
will be built up by superimposing intensity point spread functions from
each object point by summation or integration of intensities. If it is not
completely incoherent, then we cannot simply add intensities, and if the
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region where two neighboring point spread functions overlap is examined,
then it can be seen that there are traces of interference effects between the
beams. In fact the phenomenological quantification of the degree of partial
coherence is in terms of the contrast of these interference effects. The
contrast depends on the distance between the two points, and it leads to
the concept of a “coherence patch,” a small region within which light from
any two points will show interference effects if suitably combined. In our
example of microscopy the coherence patches are generally not very much
larger than the resolution limit (eqn. 7.4) if ordinary thermal illumination
is used, and thus the effects of the partial coherence are only perceptible if
detail near the resolution limit is examined. ‘

On the other hand in illumination with a single transverse-mode laser
the .illumination is completely coherent over the object and the effects of
coherence are very marked indeed. The image is built up by summing
or integrating the emplitude point spread functions from each point of the
object to obtain the complex amplitude distribution in the image, and what
is seen or measured is the intensity, i.e., the squared modulus of the complex
amplitude. There is a spatial frequency response formalism for completely
coherent illumination (see, e.g., Born and Wolf 1959), but this is not as
useful in discussing image quality as the incoherent case since the former
deals only with response to spatial frequencies in complex amplitude.

There is another reason why the frequency response formalism for coher-
ent illumination must be used with care—the phenomenon usually called
laser speckle. Figure 7.8 shows a ground-glass diffusing screen illuminated
from the rear and imaged by an optical system. In incoherent illumination
the image would appear to be of uniform intensity, but with laser illu-
mination the image has the grainy speckly appearance familiar to anyone
who has seen the effect of 2 HeNe laser illuminating a rough surface. The
speckle is a random interference pattern between light scattered from the
different points of the screen with random phase differences, and it acts
very effectively in obscuring the detail of an image in the form of an inten-
sity distribution. The statistics of the amplitude and intensity distributions
in speckle formed under different conditions has been studied exhaustively
(see, e.g., Dainty 1984). Here it is sufficient to note that, if the surface is
rough enough to produce phase variations exceeding 27, the speckle will
have very high contrast with many areas of apparently zero or near zero
intensity. In fact the probability density distribution of light intensity is
as in figure 7.9, from which it can be seen that zero is the most probable
intensity. Clearly one should always try to avoid the need to form images of
extended objects in coherent illumination unless the phase structure which
contributes speckle is the object of the study.

In principle even a slight degree of coherence of illumination will show



54 Chapter Seven

expanded
laser
beam
< . .
m}age
. ane
scattering P
screen speckle
7.8 The formation of image-plane speckle.
1.04
Dp )
0.51

1 IKD) 2

1 I
P =P (-'(T>)

7.9 The probability density function for the light intensity in a speckle pattern formed
from a strongly scattering surface.

phase interference effects of the same fundamental nature as speckle, but
these effects are unnoticeable in most practical cases of illumination by
thermal sources. If, for whatever reason, it is essential to use a laser to
illuminate an object in an optical system, there are methods available for
reducing the coherence to the extent necessary to minimize speckle effects.
Some of these are discussed in chapter 8.

7.5 Optical Systems and the Fourier Transform

Fourier series and Fourier transforms appear naturally in mathematical
treatments of all wave phenomena, since the (mathematically) simplest
wave form is sinusoidal and Fourier methods permit more complex wave
forms to be synthesized by the addition of sine waves. Thus it is not
surprising that there has been much mention already in this chapter of
Fourier transforms. In this section we give a more general treatment of one
of the aspects of optics to which Fourier theory most aptly applies.

Figure 7.10 shows an aperture in an opaque plane screen with a mono-
chromatic plane wave incident on the screen. The screen diffracts the light,
and according to simple scalar diffraction theory the complex amplitude
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diffracted into the direction with components (u,v) is proportional to

// exp{(27i/A)(uz + vy)}dzdy, (7.9)

where z and y are coordinates in the screen and the integration extends
over the area of the aperture in the screen (see, e.g., Born and Wolf 1959).
Mathematically this expression is a two-dimensional Fourier transform (ig-
noring trivial scaling factors) ‘of a function which is unity over the area of
the aperture of the screen and zero elsewhere. Optically we can say that
the complex amplitude diffracted to infinity in the direction (u,v) is pro-
portional to the Fourier transform of the (constant) complex amplitude in
the plane of the aperture.

aperture

7.10 Diffraction at an aperture in a screen.

We can immediately generalize this by noting that, if the incoming
wave is not plane but has a complex amplitude distribution F(z,y), the
diffracted complex amplitude is proportional to

[[ Faexpiieni/aue + v dods, (7.10)

and from this it follows that the diffracted complex amplitude is the Fourier
transform of the complex amplitude in the aperture, whatever values the
latter takes.

In practice it is not convenient to observe diffracted complex amplitudes
and intensities at or near infinity and it is usual to circumvent this difficulty
by following the screen with a lens of convenient focal length, as in figure
7.11. The diffraction pattern then appears, suitably scaled, at the focal
plane of the lens.
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7.11 The diffraction pattern at infinity brought to a focus at a finite distance by a lens.
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7.12 A diffractometer. The complex amplitude at the transform plane is the Fourier

transform of that transmitted by the transparency. (The lenses are shown schematically;
in practice they would be multicomponent systems.)

What is shown in figure 7.11 is, however, the same thing as a lens with
an aperture forming an image of a point object at infinity so that the
previous paragraph can be rephrased to say that the complex amplitude
point spread function of a lens is the Fourier transform of the complex
amplitude in the pupil. For example, for a lens with a circular pupil and
no aberrations the expression in equation (7.1) is well known to be, with
suitable scaling, the Fourier transform of a function which is unity inside
a circle and zero elsewhere. There is a small complication here: strictly
speaking, the aperture in figure 7.11 should be at the first focal plane of the
lens if the complex amplitude in the diffraction pattern is to be precisely the
Fourier transform of that in the aperture; if this is not so, a quadratic phase
term appears in the complex amplitude in the diffraction pattern, but this
does not change the intensity. This leads to systems such as that in figure
7.12 where a transparency with perhaps phase and amplitude structure is
set up at the first focal plane of an aberration-free objective and the Fourier
transform of the structure (as a complex amplitude distribution) is obtained
at the second focal plane of the objective. The objective is often referred to
as a Fourier transform lens, although strictly speaking it is diffraction at the
aperture which does the transforming and the lens is there merely to bring
the transform to a convenient position for observation. Optical systems
of this kind, called diffractometers, have been used, for example, in the
interpretation of X-ray crystal diffraction patterns, since these patterns are
also formed by the diffraction of waves. Also, the spatial frequency content
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of the original transparency can be changed by appropriate manipulations
at the transform plane, an operation known as optical processing or spatial
filtering. However, it must be said that except for a few special purposes
computer processing of images is nowadays much more versatile than optical
processing.
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Illumination for Image-forming

Systems

8.1 Radiometric Concepts

Radiometry is concerned with the measurement of light as it affects the
response speed of detectors, the exposure time through camera lenses, and
so forth. The basic quantity is fluz, which has the dimensions of power
and is measured in either watts or photons per second; for many purposes
the wavelength or frequency range must also be specified. Flux density, or
irradiance, is power per unit area falling on a defined surface. Radiance
refers to the radiation emitted by a source and is flux per steradian solid
angle per unit area normal to the direction of view. These three quanti-
ties allow the handling of most questions of radiometry in instrumentation.
Flux and flux density can be measured by well-defined experimental tech-
niques. Radiance is not as easy to measure and is strictly defined only in
the geometrical optics model, but it is an essential concept in dealing with
radiometry for image-forming systems. By comparing the definition of ra-
diance with the expression for the Lagrange invariant (eqn. 3.6), it can be
seen that in the paraxial region of an optical system radiance is conserved
along a ray, apart from reflection and absorption losses. In fact this is true
along any ray, not only along paraxial rays, as will be seen in section 8.5,
so that radiance is the concept to use in following the transmission of flux
through a system.

8.1.1 The Lambertian Radiator

In modeling actual sources such as hot fillaments or secondary sources
such as opaque rough surfaces, it is convenient to assume that the radiance
at a given point of the source is constant over all angles of view. This fol-
lows an experimental law proposed by J. H. Lambert that is approzimately
followed by many real sources and is followed exactly (in principle) by a
blackbody cavity. Thus it is usual to assume that an object for an imaging
system is a Lambertian radiator.
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8.2 Images of Extended Objects in Incoherent Illumination

Consider a camera lens (figure 8.1) forming an image of an extended
object at magnification m given by

m =1n'/n =sina/sina’ (8.1)

(the sines rather than the angles are used outside the paraxial region; see
chap. 6). If the object is a Lambertian radiator with radiance B, the flux
collected from an element of area r]2 is easily found to be

7Bn?sinZa. - (8.2)

Neglecting reflection and absorption losses, the same total flux in image
space is also, from equation (8.1),

7Bn'%sin'%q. (8.3)

Thus the irradiance at the image is proportional to sin2a. Since the speed
of a photographic emulsion or the response of a photoelectric detector de-
pends on the irradiance, it is sina which determines the speed or light-
gathering power of the optical system as used for extended objects. This is
more usually expressed as the relative aperture, or f-ratio, but the essential
point is the same, that it is the convergence angle in image space which
matters. Clearly the irradiance in the image is proportional to the radiance
of the object.

8.1 Nlumination of an image of an extended object formed in incoherent illumination.

8.2.1 The cos? Law

If a camera lens with an appreciable field of view is used with pho-
tographic emulsion, a TV tube, or any other area imaging detector, the
effective exposure falls off away from the center of the field in the image.
Referring to figure 8.2, the exit pupil appears elliptical from the image
point, the illumination is oblique, and the solid angle is reduced.
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These factors amount to a reduction in irradiance proportional to cos?p
where 3 is the field angle. In practice vignetting of the aperture stop may
make the falloff worse and a careful control of the aberrations of the imagery
of the aperture stop may give an improvement, so the cos? law is rarely
followed very accurately. But it is useful as a warning, even if it is not a
good approximation.

B image
plane

exit
pupil

8.2 The <:os4 law.

8.3 Condensers

Transparent or semitransparent objects such as microscope slide prepa-
rations and slides for projectors have to be deliberately illuminated for the
imaging system by means of a condenser system. Condensers can range
from a crudely molded single lens to quite elaborate multilens systems, and
their design is linked to three factors: (a) the kind of light source to be
used, (b) the nature of the object, and (c) the imaging system. It is conve-
nient to consider the microscope as an example: the principles involved are
easily modified and extended to cover other condenser problems. We have
already noted in section 7.4 the drawbacks of using lasers as light sources
for fairly conventional imaging systems (but as we shall see in chap. 13 they
are very good for scanning or flying-spot systems), so it will be assumed
that a thermal source such as a filament lamp or a gas discharge tube is to
be used. Then from section 8.2 it follows that the radiance of the source is
what controls the attainable flux density in the final image, and sources of
high radiance such as quartz-halogen lamps are often used. The simplest
condenser arrangement is then as in figure 8.3, where the condenser forms
an image of the light source at the plane of the object. The condenser
iris is usually closed down to ensure that less than the full aperture of the
objective is filled with direct light, since as noted in section 7.4 this gives
an image with good contrast (the rest of the objective aperture collects
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diffracted light from the object structure, and it is this which determines
the resolving power). The obvious disadvantage of this system is that the
image of the source is seen superimposed on the object. This disadvantage
can be overcome by the discreet use of a ground-glass scattering screen at a
suitably chosen position, but this means a loss of light flux, which may not
be acceptable where physical detectors, as opposed to the eye, are used.
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condenser objective
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8.3 A microscope condenser for transmissive objects.

A version of the Kohler illumination system (figure 8.4) is used to over-
come the disadvantages of the system of figure 8.3. To understand this
system, we note that the standard microscope substage condenser has an
iris diaphragm which is set at its object-side focal plane; thus the setting
of this iris controls the range of illumination angles on the object and thus
the degree of coherence of the illumination. The field lens forms an image,
generally enlarged, of the source at the substage iris; thus the source image
is at infinity with respect to the object on the slide. At the same time the
substage condenser forms an image of the field lens iris on the slide so that
the diameter of the illuminated area is controlled by the field iris. In this
way the Kohler illumination system permits independent control of the de-
gree of coherence and the size of the illuminated field, and there is uniform
illumination over this field. This system can be adapted in many different
ways to suit the requirements of a wide range of illumination problems. It
is particularly useful where high throughput of radiation is needed, e.g., in
microphotography or in projection, since there is no diffuser.

A system intermediate in complexity between those of figures 8.3 and
8.4 is that generally used for slide projectors, as in figure 8.5. In this
illurination system the degree of coherence and the size of the illuminated
field are both fixed but the object (the slide) is uniformly illuminated since
the lamp is imaged into the entrance pupil of the projection lens.

For a source of given radiance and size the remaining variable which con-
trols the illumination is the collecting angle of the condenser system. Thus
in figure 8.5 the first component is an aspheric lens, molded in glass, since
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8.4 The Kohler illumination system. The illuminating NA and the area of illumination
are under separate control by the two iris diaphragms.
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8.5 Condenser system for a slide projector. The source image underfills the pupil of the
projection lens so as to make the illumination partially coherent; this produces a crisper
image than would be obtained if the pupil were completely filled.

a lens with spherical surfaces in this position could not have as high a col-
lection angle. This line of reasoning has led to the increasing use of plastic
molded Fresnel lenses as condensers, particularly where large apertures are
needed as in the popular overhead projector. A Fresnel lens easily beats a
glass aspheric in relative aperture: the typical overhead projector Fresnel
condenser works at about f/0.3, measured across the diagonal.

»
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8.4 Lasers as Sources for Image-forming Systems

We mentioned in section 7.4 that the main difficulty in using lasers as
sources for imaging systems is the formation of speckle from a surface which
is diffusing but of which the image would be, in incoherent illumination,
of uniform intensity. If, as can happen, it is essential to use a laser as a
light source, some method of reducing the contrast of the speckle should
be used if this is permissible. Such a method usually amounts to getting
a suitable number of exposures (if the detector is, say, photographic emul-
sion), between each of which the geometry of illumination is varied in such
a way as to make the successive speckle patterns independent. Then the
intensities in the successive exposures are summed and the total speckle
contrast is reduced. As a rough guide, if N independent exposures are
given: the speckle contrast is reduced by the factor N 1/2 For a detector
other than photographic emulsion a method of summing or averaging the
independent exposures must be found. For a closed circuit TV system this
would involve a frame store, a device which can store digitally the signal
strength at all 250,000 or so picture points in a TV frame.

Figure 8.6 shows the general principle of a system for reducing speckle
contrast. Assuming a condenser system similar to that in figure 8.5, the
illumination would produce a single bright point in the pupil of the objective
(representing the beam waist of the laser; see chap. 9) surrounded by light
diffracted by the detail in the object. Then a suitable system of moving
mirrors or prisms is arranged to shift this bright point around inside the
pupil between successive exposures. The effect is then substantially that
of an extended incoherent or thermal source of extent corresponding to the
region mapped out by the moving point of light.

A second, but less fundamental, problem with laser illumination is that
of multiple reflections between refracting surfaces which give rise to so-
called ghost images. Of course, this happens with all light sources, and
antireflection coatings (see chap. 10) are used to mimimize the effects, but
if the coherence length of the laser light is long enough to permit interference
between the direct beamn and a twice reflected beam, the resulting ghost
image is covered with an interference pattern of surprisingly high contrast.
Thus, if the residual intensity reflection factor after antireflection coating
is R per surface and if a twice-reflected beam interferes with the original
beam without any change in beam diameter, the resulting fringe contrast
is approximately 2R. That is, the fringe intensity would take the form

I=142Rcosqy, (8.4)

where 7 is a coordinate across the fringe system.
The effect is worse if the twice-reflected beam is reduced in diameter, as

can often happen.
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8.6 Laser illumination for an imaging system. The system for angular displacement
moves the laser focus around in the pupil during a period shorter than the time constant
of the detection system, thus reducing speckle effects.

8.5 Radiance in Geometrical Optics

The concept of radiance is useful in a more general context than that of
image-forming systems. As noted in section 8.1, radiance is conserved along
any ray in an optical system within the geometrical optics model, excluding
losses from reflection, absorption, or scattering. This is expressed by a very
general theorem which is in no way restricted to image-forming systems.
Figure 8.7 shows the input and output of any optical system, with no
symmetry or imaging restrictions and subject only to the condition that it
is possible to trace from one input ray one or a finite number of output rays;
i.e., there is no general scatter inside the system. Such a ray is indicated
starting from Pj in the input space and passing through P; in the output
space. Coordinate systems zyz and z'y'z' are set up at P and P', and
the ray directions are indicated by the respective direction cosines (L, M,
N and L', M', N') with respect to these coordinate axes. The two sets of
axes need not be parallel to each other, and the only restriction is that the
rays not lie along the z axes. Let the incoming ray be shifted in position
and direction by small amounts dz, dy, dL, dM ; then the following result
holds for the corresponding changes to the emergent ray (see, e.g., Welford
1986):

"2 dz' dy' dL' dM' = n? dedy dLdM. (8.5)
n'“dz’ dy y

This result is analogous to Liouville’s theorem in mechanics. It expresses
radiance conservation along any ray. Integrated over areas and angles, it
leads to upper bounds on the extent to which light flux can be concentrated.
Equation (8.5) is the most general expression of the well-known rule that
the brightness of an image can never be increased by passing it through an
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8.7 Coordinates for eqn. (8.5) expressing the generalized Lagrange invariant.
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optical system, apart from a trivial factor of the square of the refractive
index.
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Laser Beams

The simplest form of laser beam, as in the ubiquitous HeNe laser at 632.8
nm wavelength, has certain properties in addition to coherence and mono-
chromaticity which have to be taken account of in some applications. The
well-known Gaussian intensity profile persists if it is taken through a se-
quence of lenses along the axis, and at certain points that can be more or
less predicted by paraxial optics a “focus” is formed. But when, as often
happens, the convergence angle in the space in which this occurs is small,
say, 0.001 or less, some departures from the predictions of the paraxial
optics of chapter 3 occur. In this chapter we shall examine these effects,
since they are of importance in many systems, including the wide class of
scanning optical systems (see chap. 13).

9.1 Gaussian Beams

In paraxial approximation the simplest form of a single-mode beam is the
TEM g9 Gaussian beam shown in figure 9.1. Starting from the narrowest
part, known as the waist, the beam diverges with spherical phasefronts.
The complex amplitude at the waist has the form

A = Agexp(-r2/w}), (9:2)

where w is called the beam width and r is a radial coordinate.

o

* z -

9.1 A Gaussian beam. The beam waist is at. O. The circular arcs indicate phasefronts,
and the hyperbolic curves show the radial distance at which the intensity is 1/ 62 that
of the intensity on the beam axis.
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At a distance 2z along the beam in either direction, the complex ampli-
tude is, apart from a phase factor,

A = (wg/w)Ag exp(—r2/w?), (9.2)

where w is given by
w(z) ::;wo{1+(Az/7rw(2))2}1/2. (9.3)

At a distance z from the waist, the phasefronts have a radius of curvature
R given by
R(z) = z{1 + (7wd/2)?}. (9.4)

The beam contour of constant inténsity (1 /ez)Ag is a hyperboloidal surface
of (small) asymptotic angle 6 given by

6 = X/7wg. _ (9.5)

It can be seen that the centers of curvature of the phasefronts are not at
the beam waist, in fact the phasefront is plane at that point. It was noted
in chapter 2 that geometrical wavefronts are not exactly the same as true
phasefronts, and if in this case we postulate that geometrical wavefronts
should have their centers of curvature at the beam waist, we have an exam-
ple of this. However, the difference is small unless the convergence angle 6
is very small, or, more precisely, when the Fresnel number of the beam is
not much larger than unity:

Fresnel number =w/AR < 1. (9.6)

There is nothing special about Gaussian beams to cause this discrepancy
between phasefronts and geometrical wavefronts: a similar phenomenon
occurs with beams which are sharply truncated by the pupil (“hard-edged”
beams). But it happens that it is less usual to be concerned with the region
near the focus of a hard-edged beam of small Fresnel number, whereas
Gaussian beams are frequently used in this way. Thus Born and Wolf
(1959) show in their figures 8.45 and 8.46 that the phasefront at the focus
of a hard-edged beam is also plane, but with rapid changes of intensity and
phase jumps of 7 across the zeros of intensity.
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9.2 Tracing Gaussian Beams

If the beam is in a space of large convergence angle, say, greater than
0.01, it can be traced by ordinary paraxial optics as in chapter 3, ie,
using the assumption that for all practical purposes the phasefronts are the
same as geometrical wavefronts. In a space of small convergence angle it is
necessary to propagate the beam between refracting surfaces by means of
the proper Gaussian beam formulas and then use paraxial optics to refract
(or reflect) the phasefront through each surface in turn. To do this, we
need two more formulas to give the position, z, and size, wg, of the beam
waist starting from the beam size and phasefront curvature at an arbitrary
position on the axis, ie., given w and R. These are

z = R{l1+ (AR/xw?)}? (9.7)

and
wo = w{l + (nw?/AR)2}"1/2, (9.8)

Equations (9.3) to (9.8) enable a Gaussian beam to be traced through a
sequence of refracting surfaces as an iterative process. Thus, starting from
a beam waist of given size wq (and angle given by eqn. 9.5), we move a
distance z to the first refracting surface. At this surface the beam size w
is given by equation (9.3) and the radius of curvature R of the phasefront
is given by equation (9.4). The radius of curvature R’ of the refracted
phasefront is obtained by paraxial optics using the equations of figure 3.4
and taking R and R' as the conjugate distances I and I'. Then the position
and size of the new beam waist are found from equations (9.7) and (9.8).
These procedures can be carried through all the refracting surfaces of the
optical system.

It can be seen from equation (9.8) that z and R are substantially equal
when AR/mw?2 is very small, in agreement with the statement in section 9.1
about equation (9.6). When this is so, there is no need to use these special
equations for transferring between surfaces; the iterative equations in figure
3.6 can be used, with the understanding that the paraxial convergence angle
u is the equivalent of the asymptotic angle 6 in equation (9.5).

There are no simple equations for hard-edged beams corresponding to
equations (9.3) to (9.8) for use with very small convergence angles. Nu-
merical calculations of the beam patterns near focus have been published
for some special cases, and these show, as might be expected, very complex
structures near the “focal” region, however that is defined.
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9.3 Truncation of Gaussian Beams

The theoretical origin of the Gaussian beam is as a paraxial solution
of the Helmholtz equation, i.e., a solution concentrated near one straight
line, the axis (see, e.g., Kogelnik and Li 1966), but although most of the
power is within the region near the axis, the solution is nonzero, although
very small, at an infinite distance from the axis. Thus the Gaussian profile
is truncated when it passes through any aperture of finite diameter—e.g.,
a lens mount, an aperture stop, or even the finite-diameter end mirror of
a laser resonator—after which it is no longer Gaussian and the equations
of sections 9.1 and 9.2 are no longer valid! In practice this need not be a
problem, for if the radius of the aperture is 2w, the complex amplitude is
down to 1.8% of its value at the center and the intensity is 0.03% of its
value at the center. Thus it is often assumed that an aperture of radius
2w has no significant effect on the Gaussian beam, and this assumption is
adequate for many purposes, although not all.

Sometimes it is useful to truncate a Gaussian beam deliberately, i.e.,
turn it into a hard-edged beam, by using an aperture of radius less than,
say, w. In this way an approximation to the Airy pattern (section 7.1) is
produced at the focus instead of a Gaussian profile waist, and this pattern
may be better for certain purposes, e.g., for printers where the spot must
be as small as possible for an optical system of given numerical aperture.

9.4 Gaussian Beams and Aberrations

In principle a Gaussian beam is a paraxial beam, from the nature of the
approximations made in solving the Helmholtz equation, as explained in
section 9.3. However, Gaussian beams can be expanded to large diameters
simply by letting them propagate a large distance, and they can acquire
aberrations by passing through an aberrating lens or mirror system. The
beam is then no longer Gaussian, of course, in the strict sense, but we stress
that conventional optical design ideas involving balancing and reduction of
aberrations can be applied to systems in which Gaussian beams are to
propagate. For example, a beam ezpander, of which one form is shown in
figure 9.2, is an afocal system intended to do what its name implies: if
it has aberrations as an afocal system, the output beam from a Gaussian
input beam will not have truly plane or spherical phasefronts.
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A (@)

(b)

9.2 Laser beam expanders (a) suitable for low-power beams (a spatial filter to remove
clutter can be placed at the focus or beam waist at 4), (b) suitable for high-power beams,
where & waist or real focus would cause air breakdown. The small lens in (a) is often a

low- or medium-power microscope objective.

9.5 Non-Gaussian Beams from Lasers

Not all lasers produce Gaussian beams, even ignoring the inevitable trun-
cation effects of resonator mirrors. Some gas lasers (e.g., helium-neon at any
of its lasing wavelengths) produce Gaussian beams when they are in appro-
priate adjustment, but they can produce off-axis modes with more structure
than a Gaussian beam. Other gas lasers (e.g., copper vapor lasers) produce
beams with a great many transverse modes covering an angular range of a
few milliradians in an output beam perhaps 20 mm across. Some solid state
lasers, e.g., ruby, may produce a very non-Gaussian beam because of optical
inhomogeneities in the ruby. Laser diodes, which are useful as very compact
coherent sources either cw or pulsed, produce a single strongly divergent
transverse mode which is wider across one direction than the other. This
mode can be converted into a circular section of approximately Gaussian
profile by means of a prism system, as in figure 4.11.

10
Thin-Film Multilayers

Antireflection coatings, universally used on, for instance, camera lenses
since the 1940s, are examples of the wide range of optical applications of
thin films. Other examples are high reflecting coatings, narrow-band and
broad-band filters, polarizing filters, and beam-splitters. These coatings are
available in the visible, infrared, and, to a lesser extent, ultraviolet regions
of the spectrum. In this chapter we explain the principles of these coatings
and give examples of available coating types.

10.1 The Single-Layer Antireflection Coating

We first recall the expressions for the reflectance of interfaces between
transparent media, the Fresnel formulas (see, e.g., Born and Wolf 1959).
For incidence from medium 1 with index n; against medium 0 with index
ng and with angles of incidence respectively 6; and fg, as in figure 10.1,
the complex amplitude reflectance for p-polarized light (the electric field
vector in the plane of incidence) is

T1€0s $g — nQCos Py
= . 10.
1108 ¢g + nocos ¢ (10.1)

Tp
And for the intensity reflectance
Rp = Irpl. (10.2)

For s-polarized light (electric field vector perpendicular to the plane of
incidence) the expressions are

njcos $; — ngcos Pg
= , 10.
ms njcos $1 + ngcos gg (103)
R = |rs?. (10.4)

Putting ¢; equal to zero and n; equal to one, we obtain the well-known
result that for glass of index 1.5 the intensity reflection loss at the interface
is about 4%. Also, from equation (10.1) and from Snell’s law it follows that,
when tan ¢; = ng/n; (the Brewster angle), the reflectance for p-polarized
light is zero.
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10.1 The Fresnel formulas for reflection and refraction.

Now referring to figure 10.2, a transparent substrate of refra.ctive. index
ng has deposited on it a thin layer of index n (with ny < ng) of thickness
d. Let light of wavelength A be incident normally on the layer. The
beam reflected from the interface will be 2nyd/A wavelengths behind that
reflected from the top face, and if this retardation is half a wavelength, the
two beams will interfere destructively and the reflected intensity will be
less than it would have been from the uncoated substrate. If nj is chosen
appropriately (as y/ng ), the amplitudes of the two reflected beams will be
equal and there will be zero reflection from the coated surface.

10.2 Interference in & thin film, the principle of antireflection coatings.

The above is a simple picture of the effect of a single coating, but it
does not take into account multiple reflections in the layer and it does not
explain how the reduced reflectivity due to interference between two back-
reflected beams is accompanied by an increase in transmission; both these
points will be covered in the full treatment of multilayers in section 10.2.1.

T
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The general properties of multilayers are broadly similar to those of a single
layer, so here we give a qualitative description of a few general properties
of single layers.

10.1.1 Wavelength Dependence

If the refractive index of the layer is chosen to give zero reflectance at,
say, Ag, this will not be so at,other wavelengths. At Ag/2 the retardation
will be a whole wavelength (neglecting dispersion effects in the material of
the layer), and so the reflectance will be the same as for the bare substrate.
Thus if, as is customary, the reflectance is plotted against the scaled recip-
rocal of the wavelength, the plot will look as in figure 10.3. This illustrates
a general rule that films which are an integral number of half-wavelengths
thick have no effect at that wavelength, keeping the same angle of incidence
(see section 10.1.2 below).

A\ 20,/ 3A/A
10.3 Reflectance of a single-layer antireflection coating as a function of reciprocal wave-

length. The graph could equally be used to show the effect of varying the thickness of
the layer, taking the abscissa as a linear scale of thickness.

10.1.2 Angle of Incidence

If the light is not normally incident, the retardation of the beam reflected
at the interface is reduced; it is, in fact,
2nidcos ¢/ (10.5)
in wavelengths, where ¢ is the angle of incidence inside the film, calculated
in the usual way according to Snell’s law. This reduction has the effect of
shifting the reflectance curve generally toward shorter wavelengths. Also,
from equations (10.1) and (10.3), the amplitude reflectance at both in-
terfaces will change with the angle of incidence and the change will be
different for the two polarizations. Thus, in addition to the shift to shorter
wavelengths, at oblique incidence we must consider the two polarizations
separately and at large angles of incidence there will be marked differences
between them.
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10.2 General Theory

Given a multilayer with media of known thicknesses and refractive in-
dices, the reflectance and transmittance can be calculated as a function of
wavelength for both polarizations and all angles of incidence. The effect of
absorption can be taken account of by assigning complex refractive indices
to the materials. Figure 10.4 shows k layers numbered from the substrate
upward. The procedure is to assume an emergent plane electromagnetic
wave of a chosen wavelength and angle of incidence. Waves in each layer in
directions determined by Snell’s law are assumed, and the boundary condi-
tions for the electric and magnetic fields at each interface are written down,
giving a set of 2k linear simultaneous equations in the 2k + 1 unknowns.
The intermediate fields inside the layers can be eliminated, and the ratio of
the incident and reflected fields is obtained from a product of 2 x2 matrices,
one for each film. The details are given by, e.g., Macleod (1986), and, as
with raytracing, software packages are available for numerical computation.
The equations are summarized in section 10.2.1 below. However, as with
the design of image-forming systems, the inverse problem, to design a mul-
tilayer of given properties, is not straightforward and in most cases design
proceeds by numerical work starting from a few basic principles. Some of
these principles are mentioned below. Again, software optimizing packages
are available.

At a given wavelength and angle of incidence the addition of an integral
number of half-wavelengths of optical thickness to any nonabsorbing layer
does not change the reflectance or transmittance. (But it does change these
properties at other wavelengths and/or angles of incidence.)

If the multilayer contains an absorbing component, the transmittance
is the same from either direction but the reflectance will in general be
different. For example, a thin metal film on glass has a lower reflectance
from the glass side than from the air side.

On going from normal incidence to oblique, the first effect is a general
shift of reflectance and transmittance curves to shorter wavelengths.

The Fresnel formulas (eqns. 10.1 and 10.3) show that at normal incidence
there is a phase change of = on reflection when the light is incident from
a medium of low refractive index on a medium of higher index, but there
is no phase change when the incidence is from the higher-index medium
(assuming no absorption in either medium). This is also true at oblique
incidence, except that for the p-polarization there is a phase change of 7
on passing through the zero of reflectance at the Brewster angle.

The periodicity of behavior with respect to film thickness indicates that
there is in practice a limit to the range of wavelengths over which it is
possible to specify the reflectance for a proposed design, even using incom-
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10.4 Notation for computing the properties of a multilayer.

mensurable thicknesses of layers. This range is usually regarded as given
by a factor 2, an octave of frequencies.

10.2.1 Computing the Properties of a Given Multilayer

The layers, the substrate, and the upper medium are given subscript
numbers as in figure 10.4. In each medium the refractive index is n with an
appropriate subscript, the angle of incidence is #, the tangential component
of the total electric field (for both directions of travel) is E, and that of

the magnetic field is . We define two generalized refractive indices for
the two polarizations:

Up = n/cos @, Us = ncos g, (10.6)
and we define the phase thickness of each layer
g = (27/X)nd cos ¢, (10.7)

where d is the metrical thickness of the layer.
Then each layer is represented by its matrix

A e ( cos $ i(l/u)siw),

J 7 \iusin¢g cos ¢

(10.8)



76 Chapter Ten

and the complete multilayer is represented by the matrix product
A=ApAp_ - A;. (10.9)

The total fields in medium k + 1 are given by the column matrix

(IEfZﬁ) =A<1:'lz)’ (10.10)

assuming that the F and H fields in medium zero are, respectively, 1 and
ng.
Finally, the incident and reflected electric fields in medium & + 1 are
given by

2E, ) = Bny1 + (1/unt1)Has1s

2E, .1 = Ent1 — (Yunt1)Hpq1,
and the intensity reflectance of the multilayer is
R=|E ,/E} 1. (10.12)

The two polarizations are computed separately at oblique incidence using
the appropriate values of the generalized refractive indices given by equation
(10.6).

It can be seen that in the above process we obtain the steady-state solu-
tion for the propagation of electromagnetic waves in the multilayer. This is
the explanation of the paradox mentioned in section 10.1, that the trans-
mission is increased by an antireflection coating: a solution for transients
(very short pulses of light) propagated through a very thick layer would
show that initially there is not increased transmission.

All of the above formalism strictly applies only to infinitely extended
plane waves and optical components, but cases where this proviso matters
are rare in practice.

The software packages used for these calculations may also give other
useful information, such as the distribution of electric field strengths in the
standing waves inside the components of the multilayer.

(10.11)

10.3 Types of Multilayer

In this section we indicate briefly the properties obtainable with differ-
ent types of multilayers. These properties depend greatly on the available
refractive indices and dispersions of film materials (although dispersion is
not often taken into account and the indices of films as produced are rarely
known to better than the second decimal place). Macleod (1986) lists many
of the materials available, with indications of the method of deposition and
the wavelength range of transmission.
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10.3.1 Antireflection Coatings

The lowest index available (apart from certain coatings which are made
with submicrometer voids to give an effective lower index than the bulk
material) is about 1.35, which indicates that a single layer can only produce
zero reflectance on a substrate of index higher than about 1.8 (figure 10.5).
However, the reflectance curve is fairly broad, and for this reason (among
others) optical designs are sometimes carried out entirely in high-index glass
so that the coating can be simple and robust.

34
. substrate
R% _ index
2. \/ 1.5
14
1.8

A,/A

10.5 Single-layer antireflection coatings.

By using two layers, one of lower index than the substrate and the other
of higher, it is possible to design for precisely zero reflectance at a given
wavelength (although the coatings available are more likely to have a mini-
mum reflectance of at least 0.001). Away from the minimum the reflectance
increases more rapidly than for a single layer, as in figure 10.6, and such
coatings are sometimes called V-coats for this reason; they are particularly
good for components used in laser light.

The so-called broad-band antireflection coatings have three or more lay-
ers, and they can have two minima and low reflectance over, e.g., most of
the visible spectrum, as in figure 10.7. However, the greater the number of
layers, the more rapidly the properties change with angle of incidence; this
is true for most multilayer devices.

10.3.2 High-Reflectance Multilayers

The principle of the high-reflecting multilayers used in laser resonator
mirrors and for other purposes is illustrated in figure 10.8. A stack of layers
of alternately high and low refractive indices, (n) and n}), perhaps 11 or
more altogether, is made with each film A/4 in optical thickness at some
chosen design wavelength. Then, recalling the phase changes mentioned in
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10.6 V-coating suitable for laser systems. The coating would contain two layers.
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10.7 Broad-band antirefiection coeting containing three or more layers.

section 10.2, it can be seen that the beams reflected from each interface
are all in phase and so the reflected intensity builds up as more layers are
added. Figure 10.9 shows the reflectivity of such an 1ll-layer structure at
normal incidence, computed according to the analysis of section 10.2.1. The
maximum reflectance approaches indefinitely close to 1.0 as the number of
layers increases, but the width of the high-reflectance band (the so-called
stop band) depends only on the ratio of the high and low refractive indices
in the layers. This width is given in terms of the scaled inverse wavelength
by

2AX0/X = (4/m)sin " H{(n}, = n))/(np, + 7))} (10.13)

Figure 10.10 shows the same 1l-layer multilayer computed for an angle of
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incic!e{lce of 30°. The general shift to shorter wavelengths and the higher re-
flectivity for s-polarization than for p-polarization are characteristic prop-
erties of such multilayers.
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10.8 A periodic multilayer containing alternately high and low index quarter-wavelength
layers. Because of the phase change effect implied by eqn. (10.1), each interface returns
a reflected beam that is in phase with or 27 out of phase with the previous beam, thus
building up high reflectivity.
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10.9 Reflectivity of a periodic multilayer with six high-index and five low-index layers,
respectively, 2.4 and 1.38. The abscissa G is the reciprocal wavelength Ag/A.
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10.10 Reflectivity of the same multilayer as in figure 10.9 but at-30° angle of incidence.

The extreme indices available in the visible region are about 1.38 and
2.4, depending on conditions of deposition of the films. This restriction on
width of the high-reflectance range is overcome by designs which have been
computer-optimized to have different layer thicknesses (see, e.g., Macleod
1986). These designs have phase changes on reflection which vary rapidly
and in a complicated way with wavelength, and this must be allowed for in
any context where phase changes matter, e.g., Fabry-Perot mirror coatings.

10.3.8 Interference Filters

An interference filter is in effect a Fabry-Perot interferometer with spac-
ing of at most a few wavelengths and constructed as one assembly with a
thin-film layer as spacer and, usually, multilayer high-reflecting stacks as
described in the previous section for mirrors. The filter is said to be of N th
order if the spacer is N A/2 thick. The transmission bandwidth can be as
small as 0.1% of the peak wavelength, depending on the reflectance of the
high-reflecting stacks. This follows from the classical Fabry-Perot theory,
and the range over which there is low transmission depends on the values
of refractive index in the stacks, as explained in section 10.3.2. Since the
materials are all supposed to be nonabsorbing, the peak transmission of
such a filter should be unity but in practice losses through scattering and
absorption limit peak transmissions to about 0.8.

As with all multilayer devices, the transmission band of an interference
filter shifts to shorter wavelengths and splits into two opposite polarizations
as it is tilted away from normal incidence. Manufacturers can generally
supply details of this effect on request; the magnitude increases with the
order of the filter.
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10.8.4 Polarizing Beam-Splitters

We know from section 10.1 that there is a Brewster angle for an interface
between any two transparent media of differing refractive index. Thus, if a
high-reflecting stack is built inside a prism as in figure 10.11 and set at the
Brewster angle, there will be zero reflectivity for the p-polarization and the
reflected beam will be purely s-polarized. Also, if there are enough layers
in the stack, almost no s-polarized light will be transmitted and the device
will act as a polarizing beam-splitter. With the materials currently available
it is possible to get efficient splitting between the polarizations with a 90°
angle between the beams. This allows a very convenient geometry in many
applications.

1 p-polarized
+

s-polarized

10.11 A polarizing beam-splitter. The angle is chosen to be the Brewster angle for the
interface between successive layers. For & high enough refractive index of the prism
pieces this angle can be 45°.

We have mentioned only a few of the many optical applications of th{n-
film multilayers. For a detailed review of the types available with extensive
numerical and graphical data see Dobrowolski (1978).
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Interference and Interferometry

The general topic of interferometry includes a vast field of applications and
different arrangements of equipment (see, for example, Steel 1983), but in
fact only a few basic principles are involved. We shall cover these by taking
as an example one interferometer, that invented by A. A. Michelson, and
analyzing its performance in various modes.

11.1 The Michelson Interferometer

Figure 11.1 shows the Michelson interferometer as it would be set up
today to give the circular fringes Michelson described. The two mirrors are
adjusted so that the image of one in the beam-splitter is parallel to the other
and they are a distance z apart. The extended incoherent monochromatic
source (e.g., a filtered mercury lamp) is, in effect, at infinity with respect
to the interferometer, and the objectve lens forms fringes at its focal plane
which, again, are at infinity with respect to the interferometer and are
therefore in the plane of the image of the source. The fringes map the
function

2(z/A)cos 6, (11.1)

where 6 is the angle at which a collimated beam from a point on the
source meets either mirror; that is, points in the source image for which
this function is an integer are bright, and points at which it is an integer
plus 1/2 are dark. If z is increased by moving either mirror, all the fringes
expand and new fringes appear from the center; the opposite happens if z
is decreased. Because the fringe parameter for given z is 6, these fringes
are called fringes of equal inclination, or Haidinger fringes.

In the alternative mode of use (figure 11.2) a small source is used (e.g., by
closing down an iris in front of the extended source), the mirrors are brought
approximately together (z = 0), and a slight inclination is given to one of
them so that there is in effect an air wedge between the two mirrors. Then, if
the eye is placed at the focus of the objective, this objective becomes a field
lens and straight wedge fringes are seen at the mirrors. These fringes map
the same function (eqn. 11.1), but 8 is now zero and the fringe parameter
is z. These are now fringes of constant optical path, or Fizeau fringes.
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11.1 The Michelson interferometer arranged to give circular fringes at infinity with re-
spect to the interferometer space.
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11.2 The Michelson interferometer arranged to give wedge or tilt fringes in the region of
the mirrors. Each fringe corresponds to half a wavelength change in thickness of the air
wedge.
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There is a reciproal relationship between the source region (and regions
conjugate to it) and the region of the mirrors for fringes in either position
to be seen clearly. If the tilt between the mirrors exceeds about one fringe
over the mirror width, then the Haidinger fringes lose contrast, since at
any given point in the Haidinger fringe system the radiation arrives with a
range of path differences exceeding a wavelength. Simlarly, if the source iris
is opened up enough to show more than one Haidinger fringe, the Fizeau
fringes lose contrast, since the light intensity at a given point in the Fizeau
fringe system is the sum of that in fringes formed with path differences
exceeding a wavelength. All two-beam interferometers used with extended
incoherent sources display a duality of this kind between two regions, which
may be called the source region and the object region.

Another factor affecting fringe contrast is the coherence length of the
source. This is not a precisely defined quantity, but for the present purposes
it is the optical path difference between the two arms of the interferometer
at which the fringe visibility has dropped to, say, 10% when it is operating
in the Haidinger fringe mode and when the mirrors are parallel enough not
to affect the visibility of the Haidinger fringes. To an order of magnitude
the coherence length is A2/AX, where AX is the spectral width of the
supposedly monochromatic source.

These aspects of two-beam interferometers were described systematically
and in detail by Steel (1983) in a study of all aspects of interferometry.

11.1.1 The Michelson Interferometer as a Spectrum Analyzer

Suppose the interferometer is set up to produce Haidinger fringes and an
iris at the fringe system is closed down enough to permit only the central
fringe of the Haidinger system to appear. Then, as one mirror is translated a
distance z as indicated in figure 11.1, a detector behind the iris will record
only a sinusoidal variation of light and dark for a truly monochromatic
source. Now let the source be polychromatic with spectrum G(v), where
v is the frequency of the light. Then the total signal recorded as a function
of z will be

F(z) = /G(V){l + cos4mv/c}dv. (11.2)

This recorded signal, known as the fringe function, is the cosine Fourier
transform of the spectrum, apart from an additive constant, and thus the
spectrum G(v) can be obtained.

This technique has come to be known as Fourier transform spectroscopy.
It was described by Michelson (1902), who used it, among other purposes,
to select the cadmium red line as the narrowest spectrum line then avail-
able and therefore most suitable as a length standard. Michelson built a
machine, the “harmonic analyzer” for finding the transform; it is described
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11.3 Principle of a distance-measuring interferometer. The signals from the two detectors

cube corner
reflector

D7 and D3 can be combined to show which way the cube corner is moving, provided
the beam-splitter cube surface has the right phase-changing properties.

.in the above reference.

11.1.2 Distance and Phase Measurement

With the interferometer in the Fizeau fringe mode, the shape of the
fringes will indicate when one of the mirrors is not truly plane. These Fizeau
fringes are no longer straight wedge fringes, and they may be regarded as
forming a contour map of the surface topography with contours at A/2
intervals. The base plane of the contours is tilted by applying a tilt to
either mirror. Thus the shape of a nominally plane mirror can be checked
by placing it in either arm of the interferometer.

In the same way a nominally plane-parallel window can be tested by
placing it in either beam. The fringes are then contours of the function

2(n — 1)t, (11.3)

where ¢ is the thickness and 7 is the refractive index, both possibly slowly
varying functions of position in the window.

The light source for such applications as the above would be chosen to
have a coherence length greater than the distances to be measured. This
leads to the use of lasers for long-distance measurement in simple modi-
fications of the Michelson interferometer. Figure 11.3 shows the principle
of systems of this kind: the unexpanded beam from a frequency-stabilized
laser is split and returned by cube-corner prisms (see chap. 4), and one
prism is translated along the distance to be measured, which may be sev-
eral meters. The cube-corner reflectors make it possible to separate the
return path from the incoming path. Thus both fringe systems formed
when the beams recombine may be detected. Then the signals from the
fringe-counting detectors can be combined to show the direction in which
the cube-corner prism is moving. The other advantage of using a cube cor-
ner instead of a plane mirror is that the fringe count is insensitve to angular
movement of the prism.
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11.1.8 The Function of the Compensator

Using a compensator, intended to verify that the composition of the two
arms of the interferometer in terms of dispersive media is the same, ensures
that the total optical path lengths can be equalized for all wavelengths
simultaneously, and thus a perfectly black fringe can be obtained in white
light for zero optical path difference. (If the coating on the beam-splitter is
absorbing—i.e., metallic—there will still be some dispersion due to varying
phase-shifts on reflection with wavelength.) This compensation is necessary
when the interferometer is used as a spectrum analyzer, as in section 11.1.1,
but is not necessary for distance measurement, as in section 11.1.2.

11.1.4 Testing Lenses: The Twyman-Green Interferometer

A further version of the Michelson interferometer was devised, by F.
Twyman and A. Green, to measure the wavefront aberrations of lenses and
other image-forming systems (Steel 1983). In this version the equivalent
of Fizeau fringes are used (a small source, as in figure 11.4). One mirror
is replaced by the lens to be tested and a convex spherical mirror. If the
convex spherical mirror has its center of curvature at the focus of the lens
and if the lens is aberration-free, a plane wavefront will be returned to the
beam-splitter and only straight tilt fringes will be seen. If the lens has
aberrations or if the convex mirror is not set with its center of curvature
at the focus, the fringes will be curved and their shape will show, again
as a contour map, the wavefront aberration and defocus. Many variations
on this theme that have been invented for testing a variety of systems are
described by Malacara (1978).

11.2 Interferometry and Coherence

Up to this point we have used the term “coherence” rather loosely and
qualitatively. Two-beam interferometry provides a means of quantifying
the definition in terms of simple experimental ideas. Figure 11.5 shows an
experiment for forming two-beam fringes from an approximately monochro-
matic source such as a filtered mercury lamp; this is Thomas Young’s fa-
mous two-pinhole interference experiment. The beams from the two pin-
holes spread out by diffraction and overlap with a path difference less than
the coherence length of the source. Fringes with a spacing approximately
equal to A\/a are formed in the region where the beams overlap. However,
the contrast of the fringes depends on the size of the source, and it is found
that, if

d> ML/a, (11.4)

where a is the source size, the fringes disappear.
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11.4 Modification of the Michelson interferometer by Twyman and Green for measuring
the wavefront aberration of lenses. The fringes map the wavefront aberration with half.
wavelength contours together with any defocus or lateral shift if the center of curvature
of the convex mirror and the focus of the lens do not coincide.
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11.5 Thomas Young's two-beam interference experiment interpreted as a measurement
of lateral coherence.

' Likewise, if the path difference between the beams is made large (exceed-
ing the coherence length), the fringes disappear. This leads to the concept

of the degree of partial coherence as expressed by the visibility or contrast
of the fringes. The visibility is defined as

- Imax =~ Imin
= Ima.x-l-Imin’ (11.5)

where Imax and Inin are, respectively, the maximum and minimum in-
tensities in the fringe system. Now let I; and I5 be the intensity from
either beam alone. Then the degree of partial coherence is

Iy +1,

= W -V (11.6)
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so that, when the beams are of equal intensity, the degree of coherence is
equal to the visibility. (This is a very simplified explanation; for a more
detailed treatment see Born and Wolf 1959.) This definition takes in both
of what are often called transverse coherence and longitudinal coherence,
the former mainly a source size effect and the latter what we have so far
called a coherence length effect. Strictly speaking, these cannot always be
separated but for many practical purposes it is adequate to think in these
simplified terms. Then the definition can be applied to two-beam fringes
formed in any way, e.g., by sampling a beam at two different points along
the same ray, to determine longitudinal coherence, as is done in effect in
section 11.1.1.

We can also apply these ideas to the discussion in section 7.4 of partial
coherence in image formation. Our definition of partial coherence deals
with beams from two different points at which the light came originally
from the same source. Thus we can consider two points in the plane of an
object illuminated by a condenser system and ask about the visibility of the
fringes which would be formed by light taken from the two points. As the
distance between the points is increased, the coherence decreases and we
could take some value, say, ¥ = 0.1, as defining the extent of a coherence
patch (the distance around one point within which 7 is greater than 0.1).
Then it is found (Born and Wolf 1959) that the size of the coherence patch
decreases as the condenser numerical aperture is increased.

11.3 What Is Meant by Monochromatic Light?

The quantitative definition of degree of coherence introduced in section
11.2 leads to a closer examination of the notion of monochromatic light.
If we wish to determine the longitudinal coherence of a beam, it is clearly
ncessary that the beam should exist for a time of at least z/c, where z is
the expected coherence length (the wavetrains should be at least of length
z). From this it follows that no light source can be perfectly coherent
since this would imply at least that it had existed for an infinite time and
would continue to exist, and furthermore that the complex amplitude was
perfectly sinusoidal. In discussing the light from a spectrum lamp or even a
helium-neon laser, we therefore speak strictly of quasimonochromatic light,
implying that the complex amplitude is almost sinusoidal and changes very
slowly compared with the period of the light. Thus the light amplitude at
a point as a function of time could be represented by an expression of the
form

A(t) = a(t)cos{wt — ¢(t)}, (11.7)
where a(t) and ¢(t) are random functions of time which vary slowly com-
pared to the mean circular frequency w.
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To make this representation more useful, we need to extend it to cover
polarization. Let E; and Ey be the two components of the electric field
in a quasimonochromatic beam traveling in the z-direction. Then, for
unpolarized or “natural” light, we can write

E; = az(t)cos{wt — ¢z(t)},
By = aylt)eos{ut - 6y(0)}
where az and ay are uncorrelated, likewise ¢, and ¢y4.

From equation (11.8) we ¢can describe unpolarized quasimonochromatic
light as follows: represent the electric field by a vector in the Argand or pha-
sor diagram; then with time the tip of this vector describes figures ranging
from straight lines in different directions through ellipses to circles, and the
changes take place at rates comparable to the coherence time of the beam
(the coherence length divided by-c). That is, the unpolarized beam actu-
ally changes rapidly and randomly between plane, elliptical, and circular
polarization. (The light from a blackbody cavity passed through a suitable
narrow-band filter will be quasimonochromatic and completely unpolarized
in this sense, but light from most other supposedly unpolarized sources is
partially polarized. Thus light emitted from a smooth tungsten filament is
partly polarized except for that portion which is emitted precisely normal to
the surface. An “unpolarized” HeNe laser usually produces light alternately
polarized in two orthogonal directions determined by minute asymmetries
in the geometry, the alternation being at a rate dependent on the gain for
these two modes.) The. above description can clarify the somewhat con-
fusing statements sometimes found in texts to the effect that orthogonally
polarized beams do not interfere with one another. Taking “unpolarized”
to apply strictly to beams described by equations (11.8), we could first se-
lect two orthogonally polarized beams by means of a double-image prism or
a polarizing beam-splitter (figure 10.10). From equations (11.8) we know
they are uncorrelated and cannot interfere on any observable time scale.
Next we could polarize the beam at an azimuth of 45° before it entered
the beam-splitter by means of a polarizing filter. The two emerging beams
would be polarized orthogonally, but they would be completely correlated
and would thus interfere. But fringes would be detected not as variations
of intensity but as variations of the state of polarization of the combined
beams between linear and circular. Finally, if the beam overlap region is
observed through another polarizer (analyzer in the usual terminology) ori-
ented parallel to the first, intensity fringes can be seen. Many technical
interferometers—in particular, interference microscopes—are based on po-
larization beam-splitting since the requirements for mechanical stability are
much less critical than for interferometers of the Michelson type. A good
survey is given by Francon and Mallick (1971).

(11.8)
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Detectors and Light Sources

12.1 Collecting an Optical Image

In trying to pick up an optical image, to measure the intensity of a spec-
trum line, to detect an interference fringe, to measure the angle of polariza-
tion of a light beam, or to obtain any of the other measurements which must
be made from the output of an optical system, we are ultimately limited
by noise and we have to arrange matters so that the measurement is made
with an adequate signal-to-noise ratio. There are two main sources of noise:
(2) photon noise, due to the random photon annihilations which produce
charge carriers in a photoelectric detector, and (b) detector noise, which
arises in a variety of ways in electronic detection systems. To these may
be added several other sources, which may or may not be relevant depend-
ing on the application: mechanical noise from vibrations in the equipment,
noise due to refractive index fluctuations in air paths (of great importance
in ground-based astronomy), noise due to thermal drifts in mountings, etc.
There is also a sort of noise, not time-dependent, due to optical defects such
as bubbles, striae, or stones inside lenses and scratches on the lenses. This
sort of noise is more of a nuisance in coherent systems such as interferom-
eters, but a scratch on a surface which is near a real image can contribute
to this kind of noise.

It is assumed that in an image-forming system there is adequate resolv-
ing power or MTF for the detail which has to be detected behind the noise.
(Strictly speaking, if the point spread function is known accurately enough,
a deconvolution process can yield a lot of information about detail below
the resolution limit if the noise is negligible, but in practice this is very
difficult and time-consuming with an image more complicated than just a
few isolated bright points.) Then it is found that, just as in communication
systems, there is a trade-off, in that the signal-to-noise ratio can be im-
proved both by observing for a longer time and by narrowing the temporal
bandwidth used. Of course, while this can sometimes be done in labora-
tory experiments, it is often not practicable in observational work such as
astronomy.

In this chapter we shall be concerned with the operating characteristics
such as temporal frequency response, spectral range, and physical size which

an
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determine signal-to-noise ratio but we shall not go into the details of the
mode of action of detectors such as the structure of photocathodes, the
type of doping, and so on. The technology of detectors, particularly of
semiconductor devices, is advancing so rapidly that manufacturers’ catalog
material must be consulted for the latest information.

12.2 Classification of Detectors

We may classify detectors’ in several different ways, and the boundaries
will overlap. The main classes refer to spectral range, temporal frequency
response, noise limits, size, and whether total flux or an image is picked
up. Restricting the discussion to wavelengths from the near-ultraviolet to
the thermal infrared, say, 0.2 um to 15 pm, there are four main types of
detector: '

(a) External photoelectric effect detectors, a classification which in-
cludes vacuum photodiodes and photomultipliers.

(b) Internal photoelectric effect detectors, a classification covering a
very wide range of semiconductor devices in which photons are
absorbed to produce charge carriers.

(c) Thermal detectors, a classification in which it is the direct heat-
ing effect of absorbed radiation which is used, e.g., thermocouples,
bolometers (resistance thermometers) and the Golay cell, in which
the expansion of gas heated by radiation is detected.

(d) Detectors in which a chemical change is initiated by the radiation;
the obvious examples are the photographic process and the eye.

12.2.1 Detectors Based on the Ezternal Photoelectric Effect

The external photoelectric effect can be used from 0.2 pm to about 1
pm (in fact almost any material will produce photoelectrons in a vacuum
from radiation of wavelengths below 0.2 xm, but we are restricting our dis-
cussion to wavelengths longer than this). The design and manufacture of
photocathodes becomes more critical at the longer wavelengths, and differ-
ent photocathodes are needed for different ranges of wavelengths (also, of
course, different windows to the vacuum envelope). The quantum efficiency
is the best measure of sensitivity for vacuum photodiodes and photomul-
tipliers. It is the reciprocal of the average number of photon annihilations
required to produce one photoelectron, usually expressed as a percentage,
and it is given as a function of wavelength in manufacturers’ data books.
It is between 5% and 30% for most photocathodes at their most efficient
wavelengths. Data books also quote sensitivity as amperes of current out-
put per watt of light (or possibly even per lumen, but that is becoming rare
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except for TV cameras and the like); the conversion to quantum efficiency
is trivial.

The response time or rise time of a vacuum photocathode is of order 1
ns, i.e., the frequency response cutoff is beyond 1 GHz. This performance
is reduced somewhat with photomultipliers depending on the conditions of
use.

Photocathode sizes in photomultipliers vary from about 3 mm to 150
mm. The latter are used for such purposes as scintillation counting where
the source is of large size and solid angle, the former for applications where
dark current must be minimized.

A vacuum photodiode is in one sense almost an ideal detector: the only
internal source of noise is in its dark current, which may be made as low
as 10712 A by careful design and selection and may be reduced further
by cooling. The noise in the signal is ultimately limited to what is usually
called shot noise, the random emission of photoelectrons corresponding to
random photon annihilation. Shot noise obeys Poisson statistics: if ng is
the average number of photoelectrons per second, then the variance is ng
per second.

Photomultipliers also have shot noise from the electron multiplier stages,
but this noise is usually small compared with the effects from the photo-
cathode. Thus the signal strength and the quantum efficiency are the main
parameters which determine the signal-to-noise ratio for photomultipliers
and photodiodes.

There is a fundamental difference between vacuum photodiodes and pho-
tomultipliers in that, if the signal from a photodiode has to be amplified,
the amplifier produces further noise (see section 12.3) which may swamp
the shot noise from the signal, whereas the electron multiplier stages in a
photomultiplier can produce current amplification of order 10 with quite
low extra noise. Thus photomultipliers are used for small signals, and the
vacuum photodiode finds its main scientific application in measuring very
short but intense light pulses, e.g., from pulsed lasers.

12.2.2 Semiconductor Detectors

Depending on the material and the doping, semiconductor detectors can
cover the spectral range from about 0.5 um to 15 pm (or even further, but
this is beyond the range chosen for our discussion). A great variety of semi-
conductor detectors are available, and as mentioned above it is essential to
contact manufacturers for the latest performance figures. Here we shall
mention the main types only, giving typical performance under optimum
conditions, i.e., cooled when necessary and with appropriate circuits. The
quantum efficiency of semiconductor detectors is generally higher than that
of external photodevices, but the efficiency is not usually quoted because
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the noise is not usually dominated by signal noise as it is in photomultipli-
ers. A semiconductor detector is an electrical resistance, and the thermal
fluctuation in the current carriers generates a randomly varying voltage
which is the main source of noise. Known as Johnson noise or thermal
noise, it is present in all resistors as a randomly varying voltage across the
terminals. Thus, instead of quoting quantum efficiency for semiconductor
detectors, we use the noise equivalent power (NEP) or some equivalent.
The NEP is the input signal power for which the signal-to-noise ratio is
unity, taken per unit frequency bandwidth, and is of order 10—10 to 10—16
W, depending on the detector, the wavelength, and the mode of operation.
Table 12.1 gives a few of the semiconductor materials together with their
properties as detectors. However, this information should be supplemented
with manufacturers’ technical details, since the performance of the materi-
als varies widely with the type of doping and in some cases with the method
of use, i.e., whether as a photovoltaic or a photoconductive device. Also,
most detectors used at wavelengths longer than about 2 4m require cool-
ing, usually to liquid nitrogen temperature, 77 K, to give their lowest NEP.
Semiconductor detectors are generally small in area, sometimes less than
1 mm? , since this reduces the Johnson noise.

TABLE 12.1
Semiconductor Detectors

Material Wavelength Response NEP

Range ym Time (watts)
Si 0.2 -1.2 0.5 ns 1016
Ge 0.5-18 0.3 ns 1014
InSb 1. =55 100 ns 10~17
Pbs 1. -4 0.1 ms 10—12
HgCdTe* 2. -15] 1 ns 10—16

* Different compositions of HgCdTe cover different portions of the wave-
length range shown.

Semiconductor detectors for the visible and near-infrared can be obtained
in one- or two-dimensional arrays so that extended images can be picked
up without mechanical scanning. The elements range from about 10 um
to 50 pm in size and up to about 500 by 500 in two-dimensional arrays
so that they can be used in TV cameras instead of the older vacuum-
tube detectors. These devices are usually operated in a charge-coupled
mode (CCD, or charge-coupled device) in which the charges generated by
the radiation are read off sequentially at the end of a row of elements.
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The devices have the great advantage that the position of each detector
element is known and fixed, allowing accurate digitized metrology. The
one-dimensional arrays are available with up to 4,096 elements at the time
of writing. Also, the individual detector elements can be made with greater
extension perpendicular to the scan direction than the detector spacing, an
advantage for such applications as spectroscopy. CCDs are usually intended
to operate at or near TV rates (exposure time per element of order 0.2 ps);
they can be operated much slower than this, but if they are, problems with
charge leakage between adjacent elements can occur.

12.2.8 Thermal Detectors

Thermocouples, bolometers, and Golay cells are all very slow in response
compared to the semiconductors listed in table 12.1, but the former have
advantages for certain purposes. First, they respond like blackbodies to
the extent that their radiation-absorbing surfaces can be made black over
the required spectral range, i.e., there is no spectral sensitivity calibration.
Second, they can be used at room temperature (although in some cases
the signal-to-noise ratio is improved by judicious cooling). Thus, although
the response time may be as long as 0.02 s in the case of a Golay cell,
say, these devices can find their uses in some laboratory experimental work
(as opposed to observational work) where it is not necessary to work fast
because the phenomena are not changing in time.

12.2.4 Photochemical Detection

The photographic emulsion is the prime example of photochemical de-
tection. It is very nonlinear in response, has very low quantum efficiency
(although there is no clear agreement about how this should be defined),
and does not work in “real time” (although some “instant” photography
systems need as little as a few seconds for development). To balance these
disadvantages, it has the following great advantages: complete images can
be recorded with orders-of-magnitude more pixels (picture elements) than
any TV system, and it has the integration property that faint images can be
recorded and summed over several hours if necessary, as is routinely done
in astronomy. CCD techniques are now used in astronomy for integration
over long periods, by storing successive scans, but are still limited to a rel-
atively small number of pixels so that the photographic emulsion still has
some uses as a detector for scientific work.

On the other hand the human eye has fewer uses as a prime detector;
most photomeiry, radiometry weighted according to the response of the eye,
and most color measurements are now done by suitably calibrated photo-
electric systems. Nevertheless it is worth noting some of the remarkable
properties of the human eye. When adapted to the dark and used suitably,
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the eye can detect a flash of light containing only a few photons, yet with
appropriate light and dark adaptation the eye can be used over perhaps 14
orders of magnitude of intensity. The nominal resolution limit is said to
be about 1 arcminute of angle, yet in vernier mode (detecting a transverse
break in a line) a few arcseconds can be detected. The available angular
field of view in some azimuths is more than 90° from the center. The
adaptation to different light levels is partly done by the iris, seen from the
outside world as the pupil, and this image has considerable extent even
when viewed at 90° to the axial direction, an effect copied in the design of
so-called fish-eye camera lenses.

12.3 Noise

We have mentioned shot noise as inherent in the signal and thermal noise
generated by random movement of charge carriers in conductors. These are
by no means the only sources of noise in detection systems, but they will
serve to illustrate the principles behind the reduction of noise effects. A
signal is processed electronically with a certain temporal bandwidth which
depends on the properties of the detector and the circuits associated with
it. Let this bandwidth be §f Hz. Then the signal-to-noise ratio if shot
noise only were present would be

S/N = {i/(2e6f)} /2, (12.1)

where 7 is the photoelectron current and e is the electronic charge. This
formula illustrates the general principle that with shot noise the signal-
to-noise ratio is improved by (a) increasing the signal and (b) decreasing
the bandwidth. It is not always possible to increase the signal, but the
bandwidth may be decreased by various devices, some of them involving
taking a longer time doing the measurement (see section 12.3.1).

The corresponding formula for Johnson noise is

S/N = {R/(4kT5sf)}1/2, (12.2)

where R is the value of the resistance in which the noise is generated,
k is Boltzmann’s constant, and T is the absolute temperature. Again,
it is desirable to decrease the bandwidth to improve the signal-to-noise
ratio, and it can also be seen from this equation why it is necessary to
cool most of the detectors listed in table 12.1. It is not merely solid-state
detectors which are a source of Johnson noise; it arises in any resistor, but
usually only resistors immediately following the detector are important in
this connection since their noise contribution is added before the signal is
amplified.
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12.3.1 Improving the Signal-to-Noise Ratio

In this section we mention some special techniques for reducing the effects
of noise.

The main source of noise in photomultipliers is shot noise from the sig-
nal. The multiplier section constitutes an almost noise-free dc amplifier, but
there is a small contribution in the form of shot noise from secondary emis-
sion in the multiplier dynodes. In addition, there is shot noise from dark
current from the photocathode and there are contributions from traces of
natural radioactivity in the glass envelope of the photomultiplier and from
cosmic rays. The dark current may be reduced by judicious cooling, since it
is partly thermal in origin, and by buying more sophisticated photomultipli-
ers. Then the best way to measure very small signals with a photomultiplier
is by the technique of photon counting. Thus, if the signal is so weak that
there are, say, only 100 photon annihilations per second, each photoelectron
produces a pulse of perhaps 10° electrons at the output of the photomul-
tiplier and these pulses can be counted individually instead of trying to
measure a very weak current. The average over whatever time is needed to
get a small enough variance in the pulse rate is then the required measure of
the signal. If the signal is known to be steady, the signal-to-noise ratio can
in principle be improved indefinitely by counting for a long enough time.

The technique of chopping the signal to impose a carrier frequency on
it is useful in many circumstances. The signal is interrupted by, e.g., a
sector disk for low frequency or an electro-optic shutter for high frequencies,
and the detector circuit has a narrow-band filter tuned to the chopping
frequency. The bandwidth 6f of equations (12.1) and (12.2) is then the
bandwidth of this filter, and this is arranged to correspond to whatever
bandwidth is expected in the signal. The technique of chopping is used in,
e.g., spectrophotometers, where the measurement being made is effectively
dc, but it is more convenient to have ac circuits.

A development of ordinary chopping is known by various names, such
as synchronous rectification, and homodyne detection. The chopped signal,
(2) in figure 12.1, is amplified and low-pass ac filtered, as at (b), and it is
then rectified every half-wave in synchrony with the chopper, as at (c). This
signal is then measured with a dc detector with a time constant, say, which
is much longer than the chopper period (in effect, the alternating part is
filtered out). Then the bandwidth is, apart from a numerical constant close
to unity, 6f = 1/7, and since 7 can be made very large, the bandwidth
can be very small. For example, in measuring small steady infrared signals
with a Golay cell and homodyne detection, integration times 7 of several
minutes might be used.
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12.1 The principle of synchronous rectification or homodyne detection. (a) A chopped dc
or slowly varying signal with a dc component. (b) The signal low-pass amplified with ac
coupling. (c) The signal rectified every other half-wave. The magnitude of the original
chopped signal is then proportional to the dc level in (c) but with reduced bandwidth
as explained in the text.

12.4 Radiation Sources

12.4.1 Visible Light Sources

Visible light has its own system of radiometry, called photometry, and
the radiometric quantities described in section 8.1 have their equivalents
in photometry. The basic unit is again that of flux, the lumen. Elaborate
experimental techniques have been devised to determine the equivalent in
lumens of a watt of light power at different wavelengths, and the results are
expressed by the relative visibility curve of figure 12.2. To get an absolute
scaling, the value at the wavelength of peak visibility, 555 nm, is 683 lumens
per watt. (The lumen was originally defined in terms of the light output
of a “standard candle,” but nowadays the lumen is actually defined by the
ratio 683 lumens per watt at 555 nm together with the data in figure 12.2.)
The other quantities corresponding to those in section 8.1 are illuminance,
which is lumens per unit area falling on a defined surface, and luminance,
which is lumens per unit solid angle per unit projected area from a light
source.

Filament lamps are the most common form of thermal or incoherent
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12.2 The luminous efficiency of the human eye (photopic or bright conditions). The
ordinate represents the relative impression of brightness of radiation of constant intensity

per unit wavelength interval.

source for visible light, and a tungsten filament has to a good approximation
the radiation emission characteristics of a gray body; i.e., the spectrum is
like that of a blackbody radiator but with all intensities scaled down by the
same factor €, which for tungsten is of order 0.5. This factor is, of course,
the emissivity.

Quartz-halogen filament lamps can be run at color temperatures up to
3,300 K. Under these conditions the luminous efficiency is about 25 lumens
per watt of electrical power used in the lamp. (This is much less than the
figure 683 lumens per watt mentioned above, partly because not all the
electrical power goes into generating radiation and partly because, from
figure 12.2, all visible wavelengths other than 555 nm are less visually effi-
cient than 683 lumens per watt. The “quartz” in quartz-halogen is actually
fused silica, not crystal quartz.)

The luminance of a tungsten filament at 3,300 K is about 3.107 Imsr—
m™2. Sources with greater luminance are, for example, high-pressure mer-
cury arcs, 4 x 108; Xenon arcs, 10%; and metal-halide arcs, 10° lm sr—!
m~—2. These sources have color temperatures up to about 6,000 K (but
“color temperature” is approximate in this context since the spectral dis-
tributions do not precisely match those of blackbodies at any temperature).

The concepts of luminance and radiance as discussed here belong to
geometrical optics and extended incoherent sources. Thus they cannot be
directly applied to a single transverse-mode laser such as the ordinary HeNe
laser at 632.8 nm, since this is a coherent source and in the geometrical
optics model a Gaussian laser beam as described in chapter 9 comes from a

1
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single point source of zero area. (At any given point P along the Gaussian
beam the phasefront has a certain radius of curvature, R, in the notation
of chap. 9, and the point source for that region of the beam would be
the corresponding center of curvature at a distance R from P. This rather
unrealistic statement is made to emphasize the fact that we need to exercise
care when talking about lumens or watts per unit area per unit solid angle
from a single-mode laser beam.)
The radiance or luminance for single-mode lasers can be introduced in
a consistent way by assigning to the expression given in equation (8.2)
the value BAZ. That this is a reasonable assignment follows from taking
7rw(2) for the area of the Gaussian beam waist, and equation (9.5) for the
divergence angle a ~ 6. Therefore, we may ascribe to a single-mode laser
the radiance
B = power/A2. (12.3)

As an example consider a 1 mW single-mode HeNe laser operating at a
wavelength A = 632 nm. According to our formula, the radiance is 2,500
w/mm?2. This example serves to illustrate that even a low-powered laser is
a very bright source indeed.

A comparison of lasers and thermal sources is interesting in other ways.
Using very approximate figures, a quartz-halogen lamp emits perhaps 10%
of its input power as visible light, spread over the visible spectrum and
over solid angle 47, so we get a total of, say, 10 watts of light from a 100
W lamp compared to 1 mW from the above-mentioned laser. However, in
a bandwidth of 0.1 nm (still much larger than that of the laser) and over
10~ steradians (roughly the divergence angle of a 1 mm diameter laser
beam), the filament radiates only about 10712 W mm~—2. Thus it is the
directionality of the laser beam rather than total power which makes it
appear much brighter.

12.4.2 Infrared Sources

Apart from lasers, most laboratory sources of the infrared are blackbod-
ies of various forms. The blackbody cavity is used for precision laboratory
and standards work since its spectrum follows the Planck law and if prop-
erly designed it is a Lambertian radiator: the radiance depends only on one
parameter, the temperature. More convenient sources are variations on and
developments of the Nernst glower: a rod formed from a mixture of rare-
earth oxides and heated electrically to run at between, say, 1,500 K and
2,000 K, depending on the spectral region of interest. A Globar is a similar
structure but made of silicon carbide. A tungsten filament is also a source
of infrared, but it is useless at wavelengths longer than about 2.5 um on
account of the absorption of the glass or fused silica envelope. Globars and
similar sources are less susceptible to vibrations than tungsten filaments, as
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the former are usually in the form of a tube or rod a few millimeters thick;
they appear to behave as Lambertian sources to a good approximation.

13

Image Scanning and Beam Deflection

13.1 Introduction

Direct image formation by lenses and mirrors has reached a highly devel-
oped stage, both in the design of optical systems and in detection systems,
but there are many purposes for-which alternative methods of image cap-
ture are preferable. Consider, for example, the automated imaging of large
printed circuit boards, such as are used in desktop computers, for assem-
bly of components on the boards or for checking the correct positioning of
components on them. To get enough detail in the image, a view of perhaps
5,000 or 10,000 pixels across the width of the board may be needed, but
this is beyond the range of any TV tube or two-dimensional CCD array. In
a scanning system a single spot of light is focused in the region of the board
or other object and is made to scan, usually in a rectangular raster, by me-
chanical or other scanning means. Light scattered from the spot is picked
up by a photodetector, and the image can be reconstructed or otherwise
processed as desired.

Let an untruncated TEMgg laser beam be focused with its waist at the
level of the board or other object. Then from the equations of section 9.1 we
can obtain an expression for the depth of focus of such a scanning system,
for, defining the extremes of the range of focus as those points at which the
intensity in the center of the spot drops to 80% of its value at the waist,
the focal range is

Az = £0.45)/(x8%) = £0.457w3 /), (13.1)

where 6 is the asymptotic semiangle of the beam (eqn. 9.6). A typical
value for wg would be 25 pm in such an application, and with A in the
visible region this leads to Az of order £1.5 mm.

13.2 Mechanical Scanning

Most mechanical scanning systems use one of three methods of scanning
the laser beam: (a) oscillating mirrors (“galvanometer mirror”), (b) rotat-
ing mirrors, usually in the form of a polygonal block with mirror faces on
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each face, and (c) rotating holograms. A good survey with much engineer-
ing detail is given by Marshall (1985). In this section we discuss some of the
optical design points of mirror and polygon scanners. We defer holographic
scanners to Chapter 15.

A one-dimensional or line scan may be obtained with the lens that pro-
duces the beam waist either before or after the scanning mirror, as in figure
13.1 (a) and (b), respectively. With postlens scanning, as in (a), the lens
operates only on its axis and can therefore be of very simple design. But
it can be seen that the beam waist travels in a circular arc, and thus there
is a depth-of-focus problem for a wide scan. This has been overcome in
different ways, including dynamic focusing of the lens and auxiliary field-
flattening elements after the scanning mirror. With prelens scanning, as at
(b), the lens must cover a wide angular field of view and, what is in practice
more of a nuisance in design, its entrance pupil should be outside the lens
components, at the scanning mirror. Special lens designs are now available
for this kind of scanning geometry. They are sometimes designed with a
distortion characteristic that makes the image distance proportional to the
field angle so that the scan is linear with the angular displacement of the
scan mirror (normal distortion correction requires that the image distance
is proportional to the tangent of the field angle). Such lenses are called
f6 lenses since for an object at infinity subtending the angle 6 the image
size is f6. Prelens scanning becomes more difficult with a two-dimensional
scan, achieved by two scan mirrors in tandem, since the aperture of the
lens gets rapidly larger.

Similar remarks apply to rotating polygon scanners, but the details of the
geometry are different. There are intricate trade-offs to be worked out with
the duty cycle of each polygon facet versus vignetting of the pupil. Thus it
can be seen from figure 13.2 that, if the width of the laser beam corresponds
exactly to that of a facet, the next scan will start just as the last one finished
(assuming the lens aperture is large enough), so that there is a very good
duty cycle, but the full width of the beam is used only at the middle of
each scan; sufficiently wider facets eliminate the vignetting but give a worse
duty cycle. Marshall (1985) deals in detail with dynamical considerations
in running both polygons and mirrors at high speeds. Ready-built units of
both types are now commercially available.

Mirror scanners can be used in a random address or vector fashion (pro-
vided they are not simply driven in resonant mode), and this can be useful
for certain inspection and recognition purposes (random addressing is, of
course, not possible with polygon scanners). Polygon scanners are used,
for example, in infrared TV systems for the thermal band (8 to 14 um) for
viewing ambient temperature scenes. For this purpose no two-dimensional
detector arrays with enough sensitivity are available and one-dimensional
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13.1 Scanning with an oscillating mirror (galvanometer scanner). (a) Postoptics scan.
(b) Preoptics scan.

"/

»\ beam width

13.2 A polygon scanner in preoptics scan mode.

arrays have only a small number of elements, so that a polygon scanning
system is the natural choice.

13.3 Electro-optical Scanning

All dielectrics change in refractive index under an applied electric field
so that the deviation produced by a prism can be changed in this way.
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For a detailed description with applications see Gottlieb, Ireland, and Ley
(1983). The materials used are typically crystals of low symmetry such
as NH4HoPOy, the field strengths are limited to 10* V mm™1, and the
maximum index change achievable is of order 0.001. Thus with a single
prism the maximum deflection is of order 1 mrad. To get larger deflections,
systems with many prisms in tandem have been used.

The performance of such deflectors may be categorized by a parame-
ter N, which signifies the number of resolvable spots at different angles.
This number is obtained by dividing the maximum deflection angle by the
diffraction angular width of the light beam, which is equal to the wave-
length divided by the width of the beam. Values of N for multiple-prism
systems in the order of 1,000 are quoted by Gottlieb et al.

Obviously electro-optic deflectors cannot match polygons or mirrors in
angular range. Their particular advantages for suitable applications are (a)
that there are no mechanical moving parts and (b) that the response time
can be short, of order 1 us. However, in practical cases this can be limited
by the performance of the crystal as a circuit element, i.e., its capacitance
and resistance: the former leads to longer time constants and the latter to
ohmic heating.

13.4 Acousto-optic Deflectors

Mechanical stress—compressive, tensile, or shear—changes the refractive
index of dielectrics; this phenomenon is called the photoelastic effect, and
it leads to the formation of, in effect, a diffraction grating in a medium
through which a sound wave is traveling (Gottlieb et al. 1983). Figure 13.3
depicts a sound wave driven through a crystal by a transducer attached to
one end. The grating is formed as a distribution of high and low refractive
index of sinusoidal form, or a phase grating, and it travels at the speed of
sound in the medium. The fact that it is a moving grating has no effect
on its action as a transmission diffraction grating except to change slightly
the frequency of the diffracted light by the Doppler effect.

Diffraction can take place in two different modes, depending on the index
modulation and the optical thickness in the direction of travel of the light.
For small modulation and small optical thickness many diffracted orders are
produced, as in, say, a conventional diffraction grating consisting of equal
opaque and transparent portions; this is the Raman-Nath mode. For use
as a deflector the index modulation and optical thickness are greater and
then the device operates in the Bragg mode; that is, only one diffracted
beam is produced, the diffraction efficiency is high, and the equivalent of
the Bragg condition for X-ray diffraction in crystals must be satisfied:

2Acos 8 = A, (13.2)
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13.3 Diffraction by an optoacoustic modulator.

where A is the acoustic wavelength and 6 is the internal angle of incidence,

as in figure 1.3.4. (Eqn. 13.2 applies to isotropic media; the effect is different
In anisotropic media.)
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13.4 Diffraction in the Bragg regime by an acoustic wave.

Sound speeds in dielectrics are of order two to three km s—! and the
Pransducerfu are driven at frequencies approaching the GHz range, thus giv-
Ing acoustic wavelengths in a suitable range for diffracting visible light.

The numb?.r of different resolvable diffracted directions depends on the size
f’f the device and on the range of acoustic frequencies, but it is also lim-
lt.ed by. the need to stay near the Bragg configuration in order to preserve
d}ﬁ'ract'lon efficiency. Acousto-optic deflectors are therefore small-angle de-
vices, like electro-optic deflectors, and they have their advantages in special
niches, some of which are discussed by Gottlieb et al. (1983).
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13.5 Scanning Microscopes

So far in this chapter we have discussed modes of scanning at relatively
low numerical aperture and over large distances. In a very different type of
scan technology small distances and large numerical apertures are involved.
Figure 13.5 shows the elements of a scanning microscope; the principle is
that the object is illuminated by a single spot of light small enough to be
the point spread function of the objective and the image is built up from a
raster scan. The scan can be formed by actually moving the object stage in
two dimensions. Doing this requires very good mechanical work but has the
advantage that the optical system is always used on axis. Thus a flat-field
optical system of field coverage limited only by the stage design is obtained.

point source - detect
objective collector etector
(Ias‘zz1 igtta)am I aperture
object
plane

13.5 Optical scanning microscopy. The object is moved in a raster pattern to build up

an image.

ncos '—cos 6
ncos 6’ }

dsin® {

13.6 Displacing a beam laterally by tilting a plane-parallel block of glass. In the formula
for the displacement, 8 is the angle of tilt from the normal, d is the thickness of the
block, n is its refractive index, and ' is given by nsin® = sin@. For most purposes
the cosines in the formula can be made equal to unity.

Alternatively, the source could be scanned as in figure 13.6 by a tilting
plate mechanism or by galvanometer mirrors as in section 13.2. A third
method is to use a CRT raster as the source; here one is limited both in
signal strength and in number of pixels, but there are the advantages of high
scan speed and no moving parts. If the detector has the same dimensions
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as the source (allowing for any difference in magnification), then both are
in .eﬁ'ect point spread functions and the performance is diffraction-limited.
rI‘hls arrangement of source and detector as diffraction-limited points has
m}portant advantages in resolution and focal depth, particularly in the
microscopy of opaque objects (Sheppard 1984).
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Diffraction Gratings

14.1 Introduction

Diffraction gratings have their principal use as dispersing devices for
spectroscopy, but from the point of view of this book they are also useful
as a preview to the subject of holography. In this chapter we review without
proofs the main properties of gratings and we note some applications.

14.2 Properties of Plane Diffraction Gratings

Figure 14.1 shows schematically a plane diffraction grating with ruling
spacing (grating constant) o. A plane wave is incident at angle o and it
is diffracted at an angle a, both positive as shown. The grating equation
is then

sina + sine’ =ml/o, (14.1)
where m is the order of diffraction. In this equation it is tacitly assumed
that the rulings are perpendicular to the plane of incidence and that we
are dealing with a reflection grating; very few spectroscopic gratings are
used in transmission. Equation (14.1) gives the direction of the diffracted
beams of different orders but does not indicate their relative intensities.
The relative intensity distribution depends on the profile of the rulings as
well as their spatial frequency (and also on the material, although most
gratings are made of aluminum), and when, as is usually the case, o is
similar in magnitude to A, it is difficult to calculate the relative intensity
distribution with any reasonable accuracy. For many purposes it suffices
to blaze a grating, i.e., to concentrate most of the diffracted light into
one order by profiling the rulings as in figure 14.2: the grating profile is
approximately of sawtooth shape with the normal to the active face at an
angle 6 to the grating normal; 6 is called the blaze angle. Then, if the
diffracted spectrum is centered around an angle o' such that

o +a =29, (14.2)

most of the light will be in this spectrum. The reasoning here is that
the direction o' corresponds to the maximum of diffraction by a single
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slit of width o and this single-slit diffraction pattern is the diffraction
envelope governing the distribution among different orders. In practice
there is usually less light in this order than would be expected on this
simple reasoning, partly because the ruling profile cannot be made precisely
enough and partly because the simple scalar diffraction theory on which this
reasoning is based is not adequate.

\\G

normal

J grating

14.1 A plane diffraction grating used in reflection mode.

facet normal

grating normal

14.2 Blaze angle for a reflection grating.

Corresponding to the point spread function for image-forming systems
(section 7.1), a spectroscopic instrument has a line spread function which
if there are no aberrations in the system, takes the form of a sinc 2 function:
Le., suitably scaled {(sinz)/z}2. The spectroscopic resolving power in a
region of the spectrum of wavelength ) is then conventionally defined as
A/6), where 6) is the separation between two adjacent wavelengths such
that the maximum of the sinc? of one falls on the first minimum of the
other. Then for a grating containing N rulings the resolving power is

A/6A =mN, (14.3)

where, as in equation (14.1), m is the order of diffraction.
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A basic equation for plane gratings refers to overlapping orders. One
important difference between prisms and gratings as spectroscopic devices
is that prisms produce only one spectrum whereas, as can be seen from
equation 14.1, gratings produce spectra of different orders. Explicitly, for a
given angle of incidence, wavelength A, in order m + 1 will appear at the
same position as A; in order m if

(m+1)Ag = m;. (14.4)

From this it follows that in the region of wavelength A and in order m the
free spectral range is
A = A/m. (14.5)

As with prisms, a spectrum line formed by a plane grating is curved (recall
eqns. 4.5, 4.6) because of the skew incidence of rays not from the center of
the entrance slit of the spectroscope. The expression for the curvature is

m)/{fo cosa'}, (14.6)

where f is the focal length of the objective which brings the spectrum to a
focus and the other symbols have the same meanings as in the other equa-
tions in this section. The curve is concave toward the longer wavelengths,
the opposite sense from the curvature due to prisms.

Equation (14.6) is the last of the basi¢)formulas for plane gratings. Spec-
troscopic systems involve collimators and objectives for focusing a spec-
trum, and these are designed in detail by tracing rays through the system.
Perhaps paradoxically, rays are traced “through” diffraction gratings (al-
though they are usually used in reflection as in our figures) in spite of
the fact that they operate by diffraction, so that spot diagrams and other
aids to image assessment can be obtained. Routines for raytracing through
gratings form part of most of the software packages mentioned in section
6.7.

Another kind of application of plane gratings is for wavelength selection
in, e.g., gas ion lasers, which can give several different wavelengths. The
grating is used instead of one of the mirrors in the resonator and is set so
that the desired wavelength has equal angles of incidence and diffraction
(the so-called Littrow geometry as in figure 14.3). Alternatively, the grating
may be used outside the laser cavity, but then it is necessary to ensure that
the beam is wide enough across the grating to give enough resolving power
to separate the desired wavelength from the next nearest of those produced
by the laser.
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14.3 A plane grating in Littrow geometry.

14.3 Concave Gratings

The concave diffraction grating is a hybrid device which both disperses
and focuses, and as might be expected the result is a compromise in which
neither function is performed as well as it would be by a plane grating with
good focusing optics. Nevertheless there are at least two special niches
where the concave grating comes into its own, so we give its main properties
here. The classical concave grating has rulings following the intersections
of equispaced parallel planes with the surface of a concave spherical mirror
(holographic concave gratings will be dealt with in chap. 15).

grating normal

">~ Rowland circle

concave diameter R

grating,

radius of _

curvature R
14.4 A concave diffraction grating and its Rowland circle. A source at any point P on
the Rowland circle is imaged by diffracted rays in the plane of the diagram at another
point P’ on the circle. The respective directions of the rays are linked by the grating
equation, eqn. (14.1). There is heavy astigmatism; i.e., rays not in the plane of the
diagram do not form a sharp focus at P’.

Figure 14.4 shows a concave grating with radius of curvature R and
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spacing 0. A ray with angle of incidence « is diffracted at the angle a
according to the grating equation (eqn. 14.1), but we have to ask what
happens to a pencil of rays from, say, the point P on the incident ray. We
expect these rays to form a focus at some point P’ on the diffracted ray, and
while this is true in principle, in general the focus is very badly aberrated
and the spectrum is not well resolved. It was shown by H. A. Rowland that,
if P lies on the circle shown of diameter R, then P’ also lies on this circle
for rays in the plane of the diagram. There is still some aberration, but it
is mainly a very large astigmatism, and this is sometimes not important in
spectroscopy when an image of a slit is being formed. Thus the Rowland
circle is a good locus on which to base mountings for concave gratings. One
of the main applications nowadays is in vacuum ultraviolet spectroscopy,
where all metals have low reflectivity and the gain over plane grating sys-
tems is that only one reflecting surface is needed (the grating itself) instead
of three. Then it often happens that o is much larger than A, and this
leads to the grazing incidence type of mounting (figure 14.5), where the
large angles of incidence and diffraction help to keep up the reflectivity of
the grating surface.

.~~~ 7 = <Rowland
entrance - N circle
slit 7 N\

\
spectrur}\ ~ P

14.5 Grazing incidence geometry on the Rowland circle.

The other notable application of the concave grating does not use the
Rowland circle, or, at any rate, it starts at the Rowland circle and moves
away from it. There is a need, again often in vacuum uv work, for a compact
monochromator, a system in which wavelengths are selected simply by ro-
tating the grating and the different wavelengths emerge in a fixed direction
from a fixed exit slit. It was found by M. Seya that, if a concave grating is
used as in figure 14.6, with @ = —a' ~ 35°, then, as the grating is rotated
as indicated, the increase of aberrations on departing from the Rowland
circle is minimal. Of course, at the position shown in the figure it is the
zero order (undispersed light) which emerges from the exit slit, so some
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nice optimizing of the chosen angles at zero order is needed, depending on
the angular aperture of the grating used and on the spectral range to be
covered. The Seya mounting is now used widely for compact monochroma-
to§'s of moderate resolution when the materials problems mentioned above
arise.

entrance slit
-

S

™ Rowland
N\ circle
( \
l// l
/ /
grating \ /
N y
yod

S - - 7 exit slit
14.6 The Seya-Namioka mounting for a monochromator with & concave grating. The
grating is rotated as indicated to scan through the spectrum, and the geometry gradually
moves away from the Rowland circle.

A survey of these and other classical grating mountings with details of
aberrations is given by Welford (1964). A recent review of exact diffraction
theory for gratings was given by Petit (1980).
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Some Applications of Holography

15.1 The Principle of Holography

Let two coherent collimated beams fall on a screen at angles of incidence
o and o' as in figure 15.1. A set of straight interference fringes is formed
on the screen, and it is easily shown that the spatial period of the fringe

system is
o = Asina’ —sina}”l. (15.1)

If the screen is a photosensitive surface such as a photographic emulsion,
the fringe system can be recorded and will appear as a diffraction grat-
ing of grating constant o and with an approximately sinusoidal profile of
transmission. If this grating is now illuminated by one of the collimated
beams, say, that at angle a, it will, by equation (14.1), produce a diffracted
phasefront in the direction a' as well as other diffracted orders. Ignoring
for the moment the other orders, in the language of holography we have
recorded a hologram of the o' beam using the a beam as a reference beam,
and we have reconstructed the o' phasefront (the object beam) using the
a beam as a playback or reconstruction beam.

normal

15.1 Two interfering beams forming straight fringes on a photographic plate or other
detecting device.

It is then plausible to suggest that, if the a' beam is not collimated
(if it comes from a source point at a finite distance), it will still be re-
constructed and also that the process will still work if the reference beam
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is noncollimated. This is all confirmed by more detailed analysis and by
experiment. Furthermore, the object beam can comprise any number of
individual point sources or a continuum of them, provided object and ref-
erence beams are coherent, and a reconstruction is obtained, albeit possibly
confused by speckle and multiple order reconstructions of the original.

15.2 Holographic Recbrding Materials

Photographic emulsion was the first material to be used for recording
holograms, but it has the disadvantages that the developed emulsion grains
are of finite size and that the hologram appears as variations of absorption;
this makes the process very lossy: the theoretical maximum efficiency from
reconstruction beam to the image is only 6.25%, and in practice it is much
less than this. The grain size produces speckle, which obscures the detail
in the reconstructed image. The absorption loss is overcome by bleaching
the hologram to leave clear regions of varying refractive index so that the
developed hologram is a phase structure like the ultrasonic waves of section
13.4 but, of course, not moving. This leads to the distinction between thick
and thin holograms: a thin hologram can produce reconstructed images in
several orders, rather as in the Raman-Nath mode of ultrasound diffraction,
whereas a thick hologram, which has to be a phase structure, operates in
Bragg mode and can have an efficiency approaching 100%.

Many other media have been used for holographic recording, but we
mention only those appropriate to the applications to be discussed in sec-
tion 15.3. Photoresists can be deposited as thin layers on glass or other
substrates. On exposure to light a latent image is formed, and in the de-
velopment process the resist is removed in thickness proportional to the
exposure (this would be a positive resist; in negative resists the unexposed
regions are removed on development). Thus a photoresist can form a phase
hologram, but the phase structure appears as a variation of geometrical
thickness.

Dichromaied gelatin (DCG) is just what its name says, i.e., an aqueous
solution of natural gelatin treated with potassium or ammonium dichromate
and spread as a thin film. When it is exposed and developed, refractive
index changes occur which follow the exposure pattern, and so again a phase
hologram is obtained. DCG, like photoresists, is in effect grainless, but
unlike photoresists it can be coated thickly enough to form thick holograms
with very high efficiency.

For other holographic materials and for practical details of techniques in
holography see Hariharan (1984) and Smith (1977).



116 Chapter Fifteen

15.3 Applications of Holography

Leaving aside displays (such as holographic “art”) and security (credit
card holograms and the like), there are some technological applications of
holography and we shall describe four of them: (a) diffraction gratings,
(b) testing non-null phasefronts, (c¢) holographic optical elements, and (d)
holographic interferometry for nondestructive testing.

15.8.1 Holographic Diffraction Gratings

The principle of the formation of a diffraction grating was discussed
in section 15.1. To get a usable plane grating such as was discussed in
chapter 14, it is necessary to get the profile right for blaze and much of
the manufacturers’ effort is no doubt devoted to this. From section 15.2
it is clear that the appropriate material for making a grating is positive
photoresist coated afterward with aluminum; many copies of a good master
can then be made by replication in plastics. The elaborate techniques
developed for classic grating ruling engines to keep the rulings uniform are
all needless because the spacing is automatically held correct in terms of
the wavelength of the light and the geometry of the interference system
according to equation (15.1).

The holographic method can also be applied to making concave grat-
ings. Figure 15.2 shows how the two interfering beams might be arranged
to produce a Rowland circle design such that, in the exposure wavelength,
light from P; is diffracted in first order to Py. The rulings will not, of
course, be the intersections of parallel equidistant planes with the grat-
ing surface as described in section 14.3; in fact their shapes and spacing
will automatically be such that the image formation from P; to Py, will
be aberration-free, whereas for the classic concave grating there would be
heavy astigmatism. The property that the diffracted image is aberration-
free is very attractive, but it is unfortunate that it does not hold for other
wavelengths diffracted from P; or for diffraction of the original wavelength
from any other point than P;. However, it is possible to optimize the
geometry for a given wavelength range and resolution to get considerably
better performance than with a classically ruled concave grating. The most
up-to-date information is best obtained from manufacturers.
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15.2 Forming a Rowland circle concave grating holographically.

15.3.2 Testing Non-null Phasefronts

A null test is one in which the component or system under test should
show zero aberration. A lens component on its own may not give an
aberration-free image and may not be intended to do so, yet for adequate
reasons one may be required to test the component on its own. While it is
relatively easy to judge whether the performance of a system is aberration-
free to within some tolerance (null test), it may be difficult to tell whether
the desired large aberration is present in such a component, since it can-
not be null-tested on its own; an extreme example would be the corrector
plate in the Schmidt camera (figure 6.24c). For workshop testing purposes
one may attempt to design a simple optical system consisting of one or two
lenses with spherical surfaces which can be put together without risk of error
to produce a compensating aberration so that together with the component
under test a null test is possible. This is not always practicable, but holog-
raphy provides a solution, as in figure 15.3. The hologram has the property
that when played back by the incoming collimated beam the reconstruction
is the required aberrated beam, as indicated. This would seem to be no
solution, since a suitably aberrated beam is needed to form the hologram,
but the hologram is not formed optically at all; it is computer-generated.
Knowing the required aberration allows one to compute the shape of the

fringes needed, and these are then generated onto a suitable medium. For
more details see Birch and Green (1972) and Malacara (1978).

15.3.83 Holographic Optical Elements.

We saw in section 15.3.2 how phasefronts of prescribed shape can be gen-
erated holographically. It is a small step from this to the idea of holograms
as lenses or mirrors (holographic optical elements, or HOEs). Figure 15.4a
shows the geometry for forming a hologram of a convergent beam with a
collimated reference beam. On playing back with the original collimated
beam as in figure 15.4b the convergent beam is obtained, or in effect the
collimated beam has been brought to a focus F'. The hologram has concen-
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aberrated

hologram phasefront

15.3 Generating an aberrated phasefront holographically. The hologram would usually

be computer generated.

tric circular fringes with radius proportional to the square root of the fringe
order, in paraxial approximation; in other words it is like a zone plate.

hologram
focus

PESSNSSI -

(b)
15.4 A holographic optical element (“convex lens”). (a) Forming the hologram. (b) The

lens producing a focus.

The HOE reconstructs the phasefront exactly as it was; i.e., there is
no aberration for that particular phasefront and in the same wa'welength
as was used for forming the hologram. However, there is the equwal?nt‘of
very large chromatic aberration, in the sense that the focal length varies in-
versely as the wavelength of the radiation, and also at any other wavelength
than that used for forming there will be spherical aberratlon.‘ Furthermore,
the HOE as in figure 15.4 has strong off-axis aberrations, i.e., coma and
astigmatism. Finally, there is the problem of subsidiary foci fr?m other
orders of diffraction in the hologram, unless the diffraction efficiency can
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be made almost 100%, but with all these difficulties there are still special
applications for HOEs. The best-known example is the use of HOEs as
focusing reflectors over a narrow wavelength band for head-up displays in
aircraft.

15.8.4 Holographic Interferometry

Conventional interferometry as described in chapter 11 provides a means
of detecting and measuring displacements with a precision of the order
of the wavelength of the radiation used, but it is necessary to have an
optically smooth surface to measure from and the displacements measured
are only the components normal to this surface. Holographic interferometry
provides a means of measuring displacements of optically rough surfaces and
is not restricted to components of the displacement normal to the surface.

playback beam
\N
local 7 ‘
displacement /
NS 7

hologram

15.5 The principle of holographic interferometry. The fringes map the local displace-
ment between corresponding points in the two positions of the object before and afier
movement or distortion.

Figure 15.5 depicts the process of making a hologram of an object with a
rough surface. The recording medium, say, a photographic plate, is exposed
simultaneously to the reference beam and to coherent light scattered off the
object. If the object is removed and the hologram is developed and played
back, it reconstructs exactly the complex amplitude distribution which had
been scattered from the object, which is, of course, why an image of the
object is seen when one looks into the hologram. If instead of removing the
object it is slightly moved from its original position, as suggested by the
broken lines, it will scatter a complex amplitude distribution corresponding
to its new position and this will interfere with the reconstructed distribu-
tion from the original position. Then on looking into the hologram the
object will be seen crossed by interference fringes which map the displace-
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16

Assembling an Experimental Optical

System

16.1 Specifications

The aim of this chapter is to indicate how to go about assembling an
optical system for a given experimental purpose. It is desirable to be spe-
cific about that purpose because knowing the purpose will indicate which
of the matters discussed in the preceding sections should be taken into ac-
count. Knowing the purpose may also lead to an operational specification
involving, for example, wavelength range, spectral resolution, spatial res-
olution, time resolution (or speed of response), and contingent things like
ruggedness, adverse environmental conditions such as an extreme tempera-
ture range, compactness, cost limitation, availability within a certain time,
and portability. While it is, of course, impossible to give detailed proce-
dures for even a restricted number of cases, it is useful to consider the kind
of questions that can arise in a few instances, and this we shall proceed to
do.

16.2 An Example of an Imaging System

Forming an image of a transparent object with magnification and res-
olution and with artificial illumination is a task which occurs in several
different forms. The classical problem of microscope design exemplifies this
task. Figure 16.1 is a block diagram of the elements of a conventional
microscope arranged for transillumination, as it is called.

A way to initiate the design of this system is to start with the object of
which an image is to be formed and ask what are the expected characteris-
tics. The scale of detail determines the performance of the objective, that
is, its numerical aperture. A phase object is one in which the detail is in
the form of variations of optical thickness, due possibly to refractive index
variations and/or variations in metrical thickness. Pure phase objects do
not show up very well in ordinary illumination, and it may be necessary to
use interference contrast (coherent illumination with some arrrangement of

121
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16.1 Schematic of a microscope optical system.

a reference beam unperturbed by the structure in t.he object and allowed
to interfere with the object beam). Since most 'obJects have both phase
and amplitude structure, ordinary tra.nsillunﬁnatlf)n may be .a.dequate.. If
fine shades of color are important, as in stained blolc:»glczz.l .obJ.ects, an illu-
mination system well corrected for chromatic al.)erra.tlon' is indicated. Thus
we are already concerned with details of the illumination sy.rstex.n and by
implication the light source. If the object is expected to be birefringent, as
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with petrographic samples, auxiliary polarizing equipment is needed and
the objective must be specified to have low birefringence (“strain-free”).

We have already discussed condenser systems in some detail in chapter 8,
and for flexibility some kind of Kohler illumination system will be needed.
The light source must be large enough to allow adequate illumination NA
(numerical aperture) and object field size, and it must have enough lumi-
nance (radiance) for whatever detection system and bandwidth are planned.
The left-hand column in figure 16.1 refers to regrettable defects rather than
the intrinsic properties listed on the right; thus fluctuations in the light
source must be small enough in magnitude and bandwidth not to interfere
with the detection process.

Apart from the requirement of adequate resolution already mentioned,
the image-forming system must have a magnification matched to the de-
tector. However, we can stress that the magnification and the resolving
power are dependent on quite different attributes of the design: the resolv-
ing power depends essentially on the NA of the imaging system, i.e., the
size of the cone of rays collected from the object (this ignores effects de-
pending on the coherence of the illumination and the range of wavelengths
of radiation), whereas once an image has been collected with adequate NA
it is a relatively minor problem to magnify it to whatever extent is needed
to match the detector. It is here that the Gaussian properties of the image-
forming system as a whole come in. For example, in a microscope used
visually the eyepiece acts as a further magnifying stage after the objective
to ensure that the detail in the final virtual image seen in the eyepiece is
resolvable by the eye (the angular resolution limit of the human eye used
under optimal conditions is usually taken to be about one arcminute). But
if a CCD array with 13 pm pixels is used as detector, it could well be pos-
sible to dispense with the extra eyepiece magnification, since an objective
magnification of, say, x 40 would make the CCD pixels correspond to the
resolution limit of an objective of high NA.

The manufacturing requirements of systems like microscope objectives
are very demanding, as can be seen from the notes on the left of the imaging
system box in figure 16.1. Optical glasses and their defects were discussed
in chapter 5. Centering refers to the procedure for ensuring that all the
centers of the surfaces of a nominally axisymmetric system do lie on one
straight line to some tolerance; in simple systems this is done by grinding
the edge of each lens component concentric with the axis of the component,
this axis being the line joining the centers of its two surfaces. But it turns
out that this is the least accurate of all the processes in making a lens: each
spherical or plane surface can be made true to a fraction of a wavelength,
the center thickness can be got to within perhaps 0.1 mm with reasonable
effort, which is adequate for many but not all systems, but it is impossible
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iny components of microscope objectives accurately enough to
:r?oixigtetg::nt:gaight l:i’nto the metalwork. This has. led t? the deve'lop.ment of
2 method of mounting which is widely adopted, with suitable variations, f;)r
many different high-precision systems. The component, e‘dged as accura't;hy
as may be, is epoxied into a metal mount ca..lled a cel.l as in ﬁgure. 16.2. ;
cell is then mounted in a lathe with a special cen’fermg chuc.k thh.enoug
degrees of freedom, and the chuck is adjusted until the }ens.ls runmngﬁ tr;e
according to a suitable optical check. Then a fine skim is taken <}:o1 t ﬁ
metal, usually with a diamond-point tool, so that t'he outs1de. of t‘ e ce
is running true with the lens axis. Each component is treated in this way,
and the whole is assembled in an accurately bored tube. The point of this
procedure is that diamond turning on a good lathe can produce a better
concentric fit than edge- grinding the lens components.

[

16.2 Mounting an optical component for precision centering. The component is epoxied

into the metal cell, and the latter is afterward turned concentric with the optical axis of
the component.

Environmental aspects are relevant in, e.g., systems to go In aircraft or
space vehicles, where violent and rapid temperature cha.ng?s may occur.
The effects of both thermal expansion and change of refra?tlve index con-
tribute, and a means must be found to _correct the resul.tmg focus shifts.
This may be either passive, i.e., based simply on measuring the tiemperfx-
ture (or other known cause of focal shift), or active, wh.en an optoe ectr;)mcf
system is used to monitor the focus and apply f:orrectlon.s. An examp! 1: ol
the latter is found in compact disk players, Wh}ch contain a system like a
simple microscope objective of NA about 0.4 whlcl.x focuses a laser spot on';o
the disk and collects the light scattered back. Since the disks are merely
stamped plastic, they may be out of plane by several tenths .of a ml}lu'ne:;r
and the reading head incorporates a loudspeaker type of coil to adjust the
focus in response to an error signal from part of the retflr.ned laser beam..

Other environmental hazards may be excessive hum.ldlty a.nd cont@-
nants carried to the lens surfaces as aerosols. It is usual in an optical design
intended for use in such unfriendly environments t? 'make the outer com(:1
ponents of a resistant glass of hard crown or borosilicate crown type an
arrange for the inside of the system to be sealed. One extreme example of
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an unfriendly environment is that endured by ordinary spectacles, and here
a special spectacle crown of good resistance to all kinds of maltreatment is
used.

Returning to figure 16.1, metrical precision refers to another aspect of
accurate construction, the requirement that the distortion characteristics
of the construgted imaging system be as in the design for, e.g., an objective
used for aerial or satellite survey work or for mapmaking. In particular,
the distortion function must be symmetrical about some point in the im-
age plane designated as the intersection with the lens axis; otherwise, the
calibration involves two coordinates rather than one. This is achieved by,
among other things, giving great attention to centering, as described above.

Noise in detectors was discussed at some length in chapter 12. The char-
acteristics on the right of the detector box in figure 16.1 depend on the kind
of object and on the nature of the information to be extracted from the ob-
servation. Thus linearity is not so important if only a binary image is to be
formed, but on the other hand it is important if an image with gray levels is
required. We saw above how spatial resolution is matched to magnification.
An obvious example where response time matters is where a changing phe-
nomenon is being observed. We saw in chapter 12 how integration occurs
in the photographic emulsion and in the photon-counting method of obser-
vation. Integration can also be regarded as a process of averaging to reduce
the effect of noise, and this is done in frame stores; systems which will
collect and store a complete TV frame and, in the more elaborate versions,
accumulate repeat frames of the same picture and average them. This is a
useful facility in conditions of low illumination.

16.3 Relay Optics and Field Lenses

The requirement to transport light beams or images over long distances
can be met in many ways; for example, images can be transported as video
signals over wires, radio, or single-mode optical fibers, and fiber bundles
can also transport an image. In this section we discuss the uses of imaging
systems in relay mode for this purpose.

A single-mode laser beam in free space expands as it propagates, as
explained in chapter 9. One way to reduce this effect is to expand the
beam first with a beam expander (figure 9.2). Then, if the waist of the
expanded beam has the width wg, the semiangle at which it expands is
given by equation (9.5) and this can be made very small by making wq
large enough. (However, in many cases the beam will be degraded and
expanded by atmospheric turbulence effects if this approach is taken to
extremes.) Another approach is to use a series of relay lenses as in figure
16.3 to reimage the beam waist. If the lenses are “thin” and if they all
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have focal length f, then the spacing between lenses is approximately 4f;
the exact expression is given in the figure. Provided the lens diameters are
large enough to avoid appreciable truncation of the Gaussian profile, this
method provides in principle transport over an indefinitely large distance.

f f
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16.3 Relay lens system for a TEM gp laser beam.

An image can be transported in the same way as the Gaussian beam, but
a slight complication arises which can be understood by reference to figure
16.4, which is to be taken as within the geometrical optics model. In figure
16.4a, lens 1 images the extended object O at O' with magnification —1
and the principal ray from the extreme point of O goes through the center
of lens 1. Now, if this were to be followed by lens 2 at distance 2 f from the
intermediate image O' (as in figure 16.3), it can be seen that the principal
ray would not go through the center of lens 2 and in fact this lens must
be made larger than lens 1 to avoid vignetting the beams from the edge of
the original object. This difficulty is circumvented by means of a field lens,
as in figure 16.4b. This field lens forms an image of lens 1 at lens 2 and
thus returns the principal ray to the center of lens 2 and avoids vignetting.
Quite long systems of this kind with several relay stages are used in remote
viewing devices for radioactive areas and other inaccessible places and for
submarine periscopes, but there are limits to the length that can be used
in any particular case because of the buildup of aberrations. The long
sequence of positive power lenses adds up to give large field curvature and
astigmatism, and thus the usable field of view is restricted.

16.4 Pulsed Lasers in Optical Systems

We have already discussed in chapter 8 some points that arise in using
cw lasers as sources for imaging systems. Pulsed lasers introduce further
problems, not the least of which is the problem of damage to optical com-
ponents. Bulk material damage takes the form of dielectric breakdown due
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(b) field
lens

16.4 Relay lens system for a periscope.

to the high electric field in the light wave and the field may have been en-
hanced before breakdown by self-focusing due to nonlinear effects. Other
damage mechanisms include heating due to absorption by local impurities
(e.g., specks of unmelted batch from the glass furnace) and surface cracks or
scratches. Depending on the type of laser, pulses lasting a few nanoseconds
with energy of a few joules per pulse can be made, i.e., peak power of order
10° watts. Damage thresholds to optical components are notoriously unre-
peatable and vary with the type of optical glass, but it is generally thought
that for short pulses peak energy densities inside the material above 1 J
cm 2 are dangerous. The threshold for surface damage is lower, depending
very much on the quality of surface polish, and for most coatings it is lower
still (Wood 1986 gives a good recent survey with numerical data).

One of the mechanisms of damage to thin films is of interest for its own
sake. In chapter 10 we saw how to compute the reflection and transmission
of a given multilayer structure. The intermediate matrix products obtained
in the course of the computation can yield the electric and magnetic field
strengths in standing waves in each layer corresponding to a given incident
light intensity, and it can happen that some of these internal fields are much
greater than that of the incident light, thus leading to a lower breakdown
threshold than would otherwise be expected. It is therefore necessary when
specifying coatings to warn the coating company about the expected pulse
energy density.

In a multiple-lens system reflections off refracting surfaces can focus
to a caustic, or strongly aberrated, focal spot and the energy density in
this caustic can reach breakdown threshold even if the surfaces have been
antireflection coated. If the surfaces have been left uncoated, for whatever
reason, it may be desirable to trace rays through several reflections to check
that no caustics are formed inside the glass.
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A laser pulse may be multitransverse mode; i.e. it may in effect consist of
several mutually incoherent modes traveling in different directions within
a few milliradians. The available information is rather sparse, but it is
generally thought that in excimer lasers the beam spread or divergence
may be a few milliradians, and although the beam as it leaves the output
window is about 10 mm by 20 mm, the lateral coherence distance is only
2-3 mm inside this area; i.e., there is appreciable coherence only between
points less than this distance apart.

16.5 Putting Together Optical Systems

Since the late 1970s the task of putting together a trial system or a
system for a few special measurements has been made much easier by the
emergence of comprehensive suppliers with detailed catalogs of optical and
mechanical components. Singlet lenses both spherical and cylindrical and
achromatic doublets are available with focal lengths ranging from a few
millimeters to a meter or so, usually in optical glass but sometimes also in
fused silica (for the ultraviolet) and less frequently in infrared transmitting
materials. Different qualities of antireflection coating are offered, and full
dimensional and surface finish tolerances are given, although the tolerances
may not necessarily fit one’s particular requirements. Also, wide ranges of
prisms, beam-splitters, interference filters, etc., are listed. Some microscope
objectives and photographic objectives are sometimes listed, although for
these the specialized manufacturers are usually a better resource. Com-
ponent holders, fine adjustment mechanisms, and optical rails or benches
are available, but often those of one manufacturer will not fit the optical
components of another without modification. Thus much can be done with
off-the-shelf supplies, and for an initial experiment one should often try
such products before going to custom optics manufacturers.

Custom manufacturing is needed often enough: to give a few examples,
for exotic optical or mechanical materials, for special tolerances on surface
finish or flatness, for suitability to unfriendly environments (e.g., tempera-
ture ranges), and for special aberrational tolerances.

Systems are often put together on special optical antivibration tables,
which can have a metal surface with tapped holes at intervals or can be
made of granite or a similar material. Granite is said to be better for
damping out residual vibrations, but metal tables provide better surfaces for
clamping on components; in particular, if they are steel-topped, engineers’
magnetic blocks can be used to facilitate rapid changes in an experimental
layout. Best of all is a cast iron engineer’s marking out table or surface
table; these do not distort when components are bolted down, and they
can be mounted on inflated inner tubes for vibration insulation.
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For the initial lining up of a system a HeNe laser is almost indispensable.
The best procedure is to get the initial and the last components in position
at approximately the right separation and at the same height above the
datum. The HeNe laser is then used to carry this datum between them, and
as each component is inserted its height and lateral position can be adjusted
to hold the overall centration. At this stage residual surface reflections can
help get components square to the optical axis if the system does have
an axis of symmetry. However, as we have already noted in chapter 7,
residual reflections in a system with laser illumination can give unwelcome
interference effects in the direct beam, and if this matters for the purpose
of the system, it is essential to get the antireflection coatings as efficient
as possible. Then a good idea is to do the preliminary alignment with a
different wavelength for which the coatings are not so efficient, so as to be
able to use the back reflections.

The building up of dimensional tolerances in off-the-shelf components
can lead to a final system in which the Gaussian properties, magnification,
etc., are a long way from what was planned. It is not always practicable
to allow for this in advance by computing the effects over all the tolerance
ranges, as there are many possible combinations in a multicomponent sys-
tem, and one cannot cope with the problem as in electronics with a few
strategically placed potentiometers. The safest solution if the Gaussian
properties are critical and if off-the-shelf components must be used is to
split one or two lenses into two (e.g., a 100 mm focal length lens becomes
two 200 mm focal length lenses) so that some adjustment is available by
varying the spacing between them. This would not, of course, be necessary
in a custom designed system which was properly toleranced.
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Aberrations
chromatic, 36
and Gaussian beams, 63-70
large, 49-52
and optical systermn design, 36-42
parameterizing, 26, 27 ‘
paraxial, 27
primary, 27
of ray, 11, 25
Seidel, 27, 28, 29, 32, 33
small, 47-49
spherical, 28-30, 37
third-order, 27
wavefront, 29, 30
Afocal system, 10, 11
Airy pattern, 46, 69
Alkali halides, 22
Amplitude point spread functions, 53
Angle of diffraction, and wavelength
selection, 110
Angle of incidence, 2; of multilayers, 73
Angle of refraction, 2
Angular dispersion, equation for, 16
Angular resolution of the eye, 123
Annealing, 20, 21
for mirrors, 23, 24
Antireflection coatings, 77
broad-band, 77-78
principle of, 72
single-layer, 71-73
Aperture stop, 8, 9
position of, 34-35
Aplanatic doublets, 37-39
Argand diagram, 89
Aspheric surfaces, 40
Astigmatism, 15, 31-33, 34
correction, 38-39
defined, 31

“Barrel” distortion, 34
Beam expander, 18, 69, 125
Beam-splitters, polarizing, 18
Beam-splitting cube, 16
Beam-splitting prism, 15
Beam-splitting surfaces, 42
Beam waist, 66-68

Bending, defined, 37, 38
Bessel function, 44
Birefringence, stress, 20, 21
Blackbodies, 99

Blaze angle, 109

Blazing, of a grating, 108
Bolometers, 91, 94

Bragg mode, 104

Brewster angle, 71, 81
Brightness, 64

Calcium carbonate, 23
Cassegrain telescope, 42
Catalog of optical glass manufacturers, 19
Cell, 124
Centering, 123
Central obstruction, 42
Chalcogenide glasses, 23
Charge-coupled device (CCD), 93-94
Chemical attack in optical systems, 21
Chromatic aberration, 36
Chromatic dispersion, 19
Coatings, 21
Coherence, 52
and interferometry, 86-87
longitudinal, 88
patch, 53, 86
transverse, 88
Coherent illumination, 52-54
Collecting angle, 61
Coma, 15, 30-31
linear, 30
Seidel, 30
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as transverse ray aberration, 32
Combining prism, 15
Compensators and interferometers, 85
Complex amplitude, 44, 45, 53-55
of Gaussian beams, 66
Concave gratings, 111-13
Condensers, 60-63
Conjugate distance equation, 5, 7, 8, 10
Conjugate distances, 5
Conjugate planes, 5
Cooke triplet, 39
Copper, 23
Cos? law, 59-60
Critical angle, 13
Crystal quartz, 23
Curvature, 110

Deflectors, acousto-optic, 104-5
Degree of partial coherence, defined, 87
Detection, photochemical, 94-95
Detectors, 91-95
Dichroic reflecting surface, 15, 16
Dichromated gelatin (DCG), 115
Diffraction, 54, 55, 56, 104
gratings, 15, 108-13
holographic, 116
systems limited by, 49
Diffractometers, 56
Dispersing prisms, 16, 17
Dispersion, 21
Distortion, 33-34
Doppler effect, 104
Dove prism, 15

Electromagnetic radiation, 1

Electromagnetic waves, 1

Entrance pupil, 9, 10

Entrance slit, 110

Exit pupil, 9, 10

Exit slit, 112

Expansion coefficients of optical glasses,
21

Extended objects, 59

External photoelectric effect detectors, 91

Eye, human, angular resolution limit of,

123

Fabry-Perot mirrors, 23
Fabry-Perot theory, 80
Faraday rotation, 20, 21
Fermat’s principle, 3

Field coordinate, 26, 31-33

correction, 38-39
defined, 32
Field curvature, 31
Field lens, 61, 126
Filaments
quartz-halogen, 98
tungsten, 98
Finite wavelength, 44
Fizeau fringes, 82-86
Float glass, 23
Flux, 58
Flux density, 58
Focal length, 5
Focal lines
sagittal, 32
tangential, 32
Focal ratio (f-ratio), 59
Focus, 6
Fourier transform, 54-57
and image, 52
of the intensity point spread, 50
spectroscopy, 84
Frame stores, 125
Free spectral range, 110
Frequency response formalism, 53
Fresnel formulas, 71
lens, 62
and multilayers, 74
numbers, 67
Fringe
of constant optical path, 82-85
contrast, 84
of equal inclination, 82-85
function, 84
visibility or contrast of, 87
Fused silica, 22

Galvanometer mirror, 101

Gaussian beams, 66-68
and aberrations, 69-70
tracing of, 68-69
truncation of, 69

Gaussian intensity profile, 9

Gaussian optics, 5, 7, 25
formally defined, 27

Geometrical optics, 1, 2

Geometrical wavefront, 2

Germanium, 23

Ghost images, 63

Glass chart, 20

Globear, 99

Golay cells, 91, 94
Grating constant, 108
Grating monochromator, 113
Gratings

concave, 111-13

plane diffraction, 108-11
Gray body, 98

Haidinger fringes, 82-85
“Hard-edged” beams, 67
Harmonic analyzer, 84
Helmholtz equation, 69
Holograms

making of, 119-20

rotating, 102

thick, 115

thin, 115
Holographic optical elements (HOEs),

117-19

Holographic recording materials, 115
Holography, principle of, 114-15
Homodyne detection, 96, 97

Ideal wavefront, 28
Nluminance, 97-98
Nlumination

coherent, 52-54

incoherent, 50, 53

partially coherent, 52-54
Image

inversion, 14

parabolic, 17

rotation, 14, 15

sharpness of, 28

virtual, 9, 10
Image formation, 5, 52

isoplanatic, 50

and partial coherence, 88
Image point, 5

Gaussian, 26

ideal, 26
Incoherent illumination, 59
Infinity

and diffraction, 55, 56

and telecentric system, 9, 10
Infrared

defined, 23

light sources, 99-100
Inhomogeneity of refractive index, 20
Integration, 125
Intensity, 53
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point spread function, 52
Interference

contrast, 121

effects, 53

filters, 80

in a thin film, 72
Interferometers, 80

distance and phase measurement, 85

Michelson, 82-87

Twyman-Green, 86, 87
Interferometry .

and coherence, 86-87

holographic, 119-20
Irradiance, 58
Isoplanatic image formation, 50

Johnson noise, 92, 95
Kéhler illumination system, 61, 62

Lagrange. invariant, 6, 7, 58, 65
Lambertian radiator, 58
Laser beam waist, 66-68
Lasers
mirrors for, 23-24
multiwavelength, 16
and non-Gaussian beams, 70
sources for imaging systems, 63-64
Laser speckle, 53, 54
Lenses, testing of, 86
Light intensity, 45, 46
Light scattering, 20
Linear coma, 30
Line spread function, 109
Liouville’s theorem, 64
Lithium fluoride, 22
Littrow geometry, 110
Longitudinal chromatic aberration, 36
Longitudinal coherence, 88
Longitudinal color, 36
Longitudinal spherical aberration, 28
Lumen, 97
Luminance, 97, 98

Magnification, 123
Malus-Dupin theorem, 2
Mechanical stress, 20, 21
Meridian section, 31
Metrical precision, 125
Microscope, scanning, 106-7
Microscopy, 52

Mirrors, 24
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combinations of, 12
concave, 41, 43
Fabry-Perot, 23
galvanometer, 101
for high power lasers, 23-24
optical materials for, 19, 23
oscillating, 101
paraboloidal, 41
rotating, 101
spherical, 41
telescope, 24
Modulation transfer function (MTF), 50,
51, 90
Monochromatic light, 88
Monochromator, 113
Mounting of an optical component, 124
Multilayers
angle of incidence of, 73
design of, 74
dielectric, 15
and Fresnel formulas, 74
high-reflectance, 77
intensity reflectance of, 76
and interference filters, 80
periodic, 79
reflectance of, 74
thin-film, 71-81
transmittance of, 74
types of, 76-81
wavelength dependence of, 73
Multiwavelength lasers, 16

Neutral reflecting surface, 16

Noise, 1, 90, 95-97, 125

Noise equivalent power (NEP), 93
Non-Gaussian beams, 70

Nonlinear index changes in glasses, 21, 22
Nonlinear refractive index, 20

Nonspheric surfaces, 40

Null test, 117

Numerical aperture, 46-47, 123

Object, 5, 6, 52
Off-axis aberration and aperture stop, 35
Optical design, 42-43
Optical glasses, 19
Optical materials
for mirrors, 19, 23, 24
for the transparent, 19
for the ultraviolet, 22
for the visible and infrared, 19, 23

Optical path length, 3, 26
Optical processing, 57
lining up of, 128
symmetrical, 3
tables for, 128
in tandem, 51, 52
Optical transfer function, 49-50
Optics
Gaussian, 5, 7, 25
Gaussian, defined, 27
geometrical, 1, 2
models of, 1
paraxial, 5
quantum, 1
Paraxial angles, 6
Paraxial optics, 5
Partial coherence, 52, 53
and image formation, 88
Pechan prism, 15
Pellin-Broca prism, 18
Phasar diagram, 89
Phase grating, 104
Phase object, 121
Phasefronts, 2
Photocathodes, 91-92
Photochemical detection, 94-95
Photoelastic effect, 104
Photometry, 94, 97-98
Photomultipliers, 92, 96
Photon counting, 96
Photoresists, 115
“Pincushion” distortion, 34
Pixels, 94
Plane mirrors, 12
Planes, conjugate, 5
Plastics, 22
Playback beam, 114
Point source, 2
Point spread, 44, 45
Point spread function
amplitude, 53
geometrical optics, 50, 52
Polarization and quasimonochromatic
light, 89
Polarizing reflecting surface, 15, 16
Polychromatic light, 52
Power
of optical systems, 6
of a thin lens, equation for, 21
Pressure window, 22

Principal foci, defined, 5
Principal planes, defined, 5
Principal ray, 9, 10
Prisms, 12, 15
beam-splitting, 15
combining, 15
dispersing, 16, 17
Dove, 14, 15
Pechan, 15
Pellin-Broca, 18
reversing, 13
right-angle, 13
Pulsed lasers, 126-28
Pupil, 9
entrance, 9, 10
exit, 9, 10
Pyrex, 23

Quantum efficiency, defined, 91
Quantum optics, 1
Quasimonochromatic light, 88-89

Radiance conservation, 64

in geometrical optics, 64-65

in single-mode lasers, 99
Radiation, 1

sources, 97-100
Radiometry, 58-59
Raman-Nath mode, 104
Ray aberrations, 25

transverse, 26
Rays

principal, 9

reference, 9

skew, 25
Raytracing, 25, 26, 28

paraxial, 8

for plane gratings, 110
Reconstruction beam, 114
Reference beam, 114
Reference sphere, 28, 29
Reflectance of multilayers, 74
Reflecting surfaces

dichroic, 15, 16

neutral, 16

polarizing, 15, 16
Reflecting systems, 41-42
Reflection

Fresnel formula for, 71-72

law of, 3
Reflector
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cube-corner, 13

roof, 13
Refraction, Fresnel formula for, 71-72
Refractive index, 2, 19, 36

continuously varying, 3

homogeneity, 19

inhomogeneity, 20

nonlinear, 20

of optical glasses, 21

and temperature, 20, 21
Relative aperture, 59
Relative visibility curve, 97
Relay optics, 125
Resolution limit, 44, 53

defined, 46
Resolving power, 44, 45, 123
Right-angle prism, 15
Rotating holograms, 102
Rotating mirrors, 101
Rowland circle, 112

Sagittal focal lines, 32
Sagittal section, 31
Sapphire, 23
Scalar diffraction theory, 54-55
Scalar waves, 1
Scalar wave theory, 44
Scanners, 102
s .
electro-optical, 103-4
mechanical, 101-3
Scanning microscope, 106-7
Scanning system, defined, 101
Scatter, 64
Scattering, 1
Schmidt camersa, 40, 43
Seidel aberrations, 37
and Strehl tolerance limit, 49
Seidel coma, 30
Semiconductor detectors, 92-93
Seys mounting, 112-13
Shot noise, 92, 95, 96
Signal chopping, 96
Signal-to-noise ratio, 90
Skew rays, 25
Snell’s law, 2, 3, 4, 17, 25, 71, 73
and aberrational system behavior, 36
Spatial filtering, 57
Spatial frequency, 49
Speckle, 63, 115
Spectacle crown, 125
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Spectrophotometers, 96

Spectroscopic resolving power,
equation for, 16

Spectrum line curvature, 17
equation for, 16

Spherical aberrations
longitudinal, 28
of thin lenses, 37

Spherical surfaces, 40

Spot diagram, 28, 30, 44

Star space, 15, 29, 30

Steady-state solution, 76

Stop band, 78

Strehl tolerance system, 46, 47, 48

Substage condenser, 61

Symmetrical systems, 39-40

Symmetry, axis of, 5

Synchronous rectification, 96, 97

Tables for optical systems, 128
Tangential focal lines, 32
Tangential section, 31
Telecentric aperture stop, 9, 10
Telescopic system, 10, 11
Thermal band, 23
Thermal detectors, 94
Thermal expansion, 20, 21
Thermal noise, 92
Thick holograms, 115
“Thick” systems, 39
Thin-film multilayers, 71-81
Thin holograms, 115
“Thin” lens, 37

model of Gaussian optics, 9, 10
Total internal reflection, 12, 13, 15
Tracing of Gaussian beams, 68-69
Transfer function, optical, 50
Transformation temperature, 20, 21
Transients, 76
Transillumination, 121
Transmittance of multilayers, 74
Transverse chromatic aberration, 36
Transverse coherence, 88
Transverse color, 36
Transverse magnification, 6, 7
Transverse ray aberrations, 26, 29
Truncation of Gaussian beams, 69
Two-point resolution criterion, 46
Twyman-Green interferometer, 86

Ultraviolet, optical materials for the, 22

Unpolarized light, 89

Vacuum ultraviolet spectroscopy, 112
Variable polarization retarders, 21
Verdet constant, 20

Vignetted beam, 9

Visible light, 97-98

V -value, in dispersion, 19

Wavefront, 2
aberration, 29, 30
ideal, 28
Wavelength dependence of multilayers, 73
Wavelengths, limits to range of, 74-75
Wavelength selection, with plane gratings,
110

X-rays, 56

Young, T., 86-87
Young’s experiment, 86-87

Zinc selenide, 23
Zinc sulphide, 23






