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The problem of irreversibility is ubiquitous in physics and chemistry. The present 
book attempts to present a unified theoretical and conceptual framework for the 
description of various irreversible phenomena in quantum mechanics. In a sense, this 
book supplements conventional textbooks on quantum mechanics by including the 
theory of irreversibilities. However, the content and style of this book are more 
appropriate for a monograph than a textbook. 

We have tried to arrange the material so that, as far as possible, the reader 
need not continually refer elsewhere. The references to the literature make no pretense 
of completeness. The book is by no means a survey of present theoretical work. We 
have tried to highlight the basic principles and their results, while the attention has been 
mainly paid to the problems in which the author himself has been involved. The book 
as a whole is designed for the reader with knowledge of theoretical physics (especially 
quantum mechanics) at university level. 

This book is based on the courses of lectures given at the Chemistry 
Department of Tel-Aviv University. 

I would like to thank Professors Vitaly Ginzburg and Joshua Jortner for 
encouraging me to write this book. I am grateful to Shoshana, my wife, for giving me 
moral support. I would, finally, like to thank Ms. Jacqueline Gorsky for her patience in 
typing and correcting the manuscript and Ms. Rachel Magen for her highly technical 
graphical skills in the preparation of the figures. 
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The following is the structure of the book. Chapter I gives a quantum-mechanical basis 
and description of the state by the density matrix. Chapter II provides the general 
theoretical framework for the description of irreversible processes. Chapter III 
describes irreversible processes due to the interaction with photons, while Chapter IV 
describes the interaction with phonons. Chapter V provides exact solutions and 
dissipationless regimes emerging in the system with infinite (in limit) degrees of 
freedom. Chapter VI, the last one in this book, is devoted to the irreversibilities in 
quantum measurements. 

Chapter I of this book deals with the general scheme of quantum theory. The 
reader’s attention is particularly drawn to the density matrix description ofthe quantum 
state. Since our main purpose is the quantum theory of irreversible processes, the use 
of the density matrix is indispensable. A conventional presentation of quantum 
mechanics uses the wave function for the description of a quantum system. In this case 
the density matrix is, in a sense, a derivative of the wave function. As opposed to this 
we consider the density matrix as a basic, primary characteristic of the quantum 
system, while the description by the wave function is a specific case of the description 
with aid of the density matrix. Such an approach is a generalization of the 
conventional procedure. 

The second chapter deals with general theory of irreversible processes. 
Examples of irreversible processes are a spontaneous emission of an atom, a decay of 
an electromagnetic field in a lossy resonator, relaxation of a spin system due to the 
interaction with the crystal lattice, etc. In all these examples the relaxation takes place 
as a result of the interaction between the dynamic and dissipative system. Atoms, 
spins, a particular mode of the resonator, etc. present the dynamic system, which has a 
finite number of degrees of freedom and discrete energy levels. The dissipative system 
- electromagnetic field in the free space, crystal lattice, etc., has an infinite (in the 
limit) number of degrees of freedom and a continuous energy spectrum. Interacting 
dynamic and dissipative systems together form a closed system. The evolution of this 
closed system is governed by the von Neumann equation. This equation determines the 
behavior of the whole system. One of the important problems dealt with in Chapter II 
is the derivation of the equation for the density matrix of the dynamic subsystem, using 

Chapter III is devoted to the theoretical application of the general formalism 
developed in Chapter II. The main subject of this application is the interaction of a 
two-state system (the dynamic system) with the phonon bath (the dissipative system). 
The quantized vibrations in condensed media or huge molecules may play the role of 
the pnonon bath. These vibrations have an infinite (in the limit) number of degrees of 
freedom and a continuum spectrum of energies - the continuum of phonon frequencies. 
The basic theory of electron and energy transfer, and tunneling in the condensed 
medium is the main subject of this chapter. 

Chapter IV is devoted to the interaction with photons. When eigenfrequencies 
of photons form the continuum, the interaction with the electromagnetic field 
vibrations leads to the irreversible processes. These irreversible processes are, to a 
certain extent, similar to those considered in Chapter III (interaction with phonons). 

various  approximations. 
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However, the irreversible processes due to the interaction with photons have their own, 
peculiar to these processes, features. The relaxation of the system of identical
two-level objects (spins, atoms, etc.) may have collective, superradiant character. 
Therefore, the time development of the superradiance is the main subject of this 
chapter.

In Chapter V memory effects in the irreversible processes are considered. 
Most of the results presented in this chapter are exact. The approximate solutions are 
compared with exact solutions (in a certain range of parameters). Special attention is 
paid to the dissipationless regimes. The latter emerge in a certain range of parameters 
of a generally dissipative system, having an infinite number of degrees of freedom and 
a continuum of energy states. 

Various approximations - rotating wave, Markovian and weak coupling are 
compared with the exact solution for the harmonic oscillator interacting with a 
harmonic phonon bath. 

Chapter VI, the last one, is devoted to the irreversibilities in quantum 
measurements. The consideration of the irreversibilities in previous chapters shows 
that only a special type of quantum systems exhibits the irreversibility. Typical finite 
quantum systems, such as a two-state system, a harmonic oscillator, atoms, and 
molecules, are reversible. Other kinds of reversible macroscopic systems are 
superconductors, superfluids and systems considered in chapter V. Nevertheless, 
chapter VI shows that the irreversibility lies in the very heart of quantum mechanics. 
Quantum measurement, the process which plays a central role both in the interpretation 
and essence of quantum mechanics, is irreversible. As opposed to the point of view 
accepted by many authors, the quantum measurement is considered as a specific type 
of interaction between the object, measuring device and environment. The role of the 
observer, the human being, is just to verify the outcomes of the measurement. The 
irreversible wave function collapse, which is a part of the measurement process, is also 
described as a special kind of quantum-mechanical interaction. Although the 
measurement is a physical process, which does not contradict our intuition, there are 
counterintuitive phenomena connected with the nonlocality of quantum mechanics. 
These phenomena are also the subject of the considerations in Chapter VI. 

In conclusion, this monograph, as mentioned in the foreword, may serve, in a 
certain sense, as a supplement to conventional textbooks of quantum mechanics, by 
choosing the following parts of the book: Chapter I, Chapter II, sections 1-4, 6,7,
Chapter III, sections 1-5,Chapter IV, sections 1-7, Chapter VI.



Since our main purpose is quantum theory of irreversible processes, the use of the 
density matrix concept is indispensable. A conventional presentation of quantum theory 
principles uses the wave function as the basic characteristic of a quantum system. In 
this case the density matrix is, in a sense, a derivative of the wave function. In this 
chapter we consider the density matrix as a basic, primary characteristic of the quantum 
system [1], while the description by the wave function is a specific case of the 
description with aid of the density matrix. We realize that such an approach is a 

quite natural, and only due to historical reasons quantum theory text books use the wave 
function presentation. In this chapter we follow conventional (Copenhagen) 
interpretation of quantum mechanics. A different approach will be considered in the 
last chapter (Chapter VI). 

1.1 Basic concepts 

The nature of the phenomena occurring at the atomic level is very different from the 
nature of the phenomena of the macrocosm. For this reason the basic concepts of the 
classical theory proved to be invalid in describing the microcosm. The concept of the 
state of a physical system underwent a most radical re-examination. In classical physics 
it is assumed that the physical quantities (or properties of a system) found from various 
measurements made on a system are characteristics of the particular state of the system, 
that they are always present in a given system in a definite form and that this does not 
depend on the observational methods and equipment. In quantum physics they are at 
the same time characteristics of the methods and equipment used for the observations. 
In the microcosm we cannot ignore the effect of the measuring apparatus on the 
measured object. Therefore the concept of the quantum state takes into account both the
object which is in this state and possible experimental devices used to make the 
measurement. Accordingly, the quantum theoretical description of quantum objects
differs essentially from the classical description. Quantum theory, unlike the classical 
theory, is a statistical theory in principle. The laws of quantum theory do not govern the 
actual behavior of a particular object, but give the probabilities of the various ways in 
which the object may behave as a result of an interaction with its surroundings. 

The following postulates form the basis of the quantum description of physical 
phenomena.

matrix.
For example the radius vector of a particle r is associated with the 
multiplication operator r, the momentum of the operator of the particle with the 

1

The present chapter gives a short account of the basic concepts of quantum theory.

1.1.1 Eachphysical quantity has corresponding to it a linear Hermitian operator or

CHAPTER 1
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generalization of  the conventional procedure. However, this generalization seems to be



Theoperator p =
operators corresponding to the physical quantities are, generally speaking, not 
commutative. There are commutation relations between the coordinate and the 

(1.1.1)

and there are also commutation relations between the operators of the components of 

where is Planck’s constant divided by 

(1.1.2)

(Here and further on we do not use special 

designations for operators, such as Â . The usage of the operators will be clear from the 
context.) Commutation relations such as (1.1.1) and (1.1.2) are basic characteristics of 
operators.

1.1.2. Only the eigenvalues of the operator A can be the result of a precise 
measurement of a physical quantity represented by this operator. 
The essential difference from classical theory is the fact that physical quantities may 
take up a discrete, as well as a continuous, series of values. It is well known, for 
example, that the energy spectrum of atoms is discrete in nature. 

1.1.3. The state of the physical system can be always described by the quantity which is 

by the formula

(1.1.3)

elements are taken over a full set of eigenfunctions of some Hermitian linear operator, 
and Tr means the trace of the matrix.

1.1.4 The time evolution of quantum systems is described by the von Neumann 
equation

(1.1.4)

where H is a Hamiltonian of the system. 
These postulates have sense provided the correspondence is established between 

2

the angular momentum:

momentum operators:

called the density matrix
The mean value ofany physical quantity represented by the operator (matrix) A is given

where are matrix elements of operators A and respectively. These matrix 

the momentum with the operator

Quantum theoretical basis. Density matrix 



that such a correspondence is realized. 
Now let us consider some implications from the above postulates and 

particularly a statistical description of quantum systems by the density matrix. 

1.2

It follows from the above postulates that both the states of the physical system and 

second-rank tensors in a complex space of infinite number of dimensions - in so-called
Hilbert space. However, in order to realize an analogy with tensors it is necessary to 

Various representations of physical quantities. 

Let be eigenfunctions of some linear Hermitian operator F 

(1.2.1)

Such a system of eigenfunctions is 
complete and can be chosen orthonormal. Matrix elements of operator A in this basis 
can be presented as 

(1.2.2)

where q - is a set of arguments of function Matrix elements (1.2.2) give the 
F-presentation of operator A. The same physical quantity in another G- representation
is presented by matrix 

(1.2.3)

where are eigenfunctions of another operator G. They present another basis of 
eigenfunctions. The law of transformation of matrices A from one basis to another is 

determined by the transformation of functions i.e. by transformation of 
This is a well-known unitary transformation U. Matrix vectors

elements of operator U are determined by the expansion of function over a complete 

(1.2.4)

Now we can find connection between matrix elements in G-representation -

and those in F-representation -

3

physical quantities themselves are described by matrices. These matrices and A are

establish the law of matrix transformation.

set of  functions

in Hilbert space.

nwhere f is the eigenvalue of the operator F.

physical quantity and its operator. The first postulate has to be understood in the sense 

1.2 Various representations of physical quantities
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where the Hermitian conjugated operator is defined by the relation 

and the rule of the multiplication of matrices is 

From the fact that eigenfunctions of the Hermitian operators can be chosen 

Thus, the unitary operator has the property 

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)

where l is a unit operator with matrix elements The transformation property of the 
Hermitian operator A, representing some physical quantity, can be found from Eq. 
(1.2.5)

(1.2.10)

Transformation properties of the density matrix can be determined from the 
requirement that mean values of the physical quantities are scalars - invariants of the 
unitary transformation. This requirement is quite natural, mean values of physical 
quantities should not depend on the choice of the basis of the eigenfunctions 
Therefore,

(1.2.11)

Using the property of a trace of the product of two matrices 

TrAB =TrBA , (1.2.12)

one can get from Eq. (1.2.1 1) 

orthogonal and normalized to unity, the unitary property of  the operator U follows 
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(1.2.13)

(1.2.14)

transformation (1.2.14). Notice that the fact that the mean value (1.2.1 1) is real, implies 

(1.2.15)

1.3

of physical quantities. In the conventional interpretation of quantum mechanics the 
quantum state relates to one object. To verify that certain density matrix describes the 
state of the object one has to perform a large number of measurements. As it has been 
mentioned above we cannot ignore the effect of the measuring device on the measured 
object, A measurement or experiment, generally speaking, changes the state of the 
object. It is therefore necessary (in order to remain in the same quantum state) to return 
the object after each measurement to the original quantum state or to deal with a set of 
objects in one and the same quantum state (quantum state is described by the density 

Having the set of objects which are in the same quantum state, determined by the 
Thus we can 

measure an electron coordinate, its momentum, spin, etc. Each kind of measurement 
produces its statistical ensemble. In the ensemble produced in this way we can 
introduce the probability distribution for obtaining a particular result of a measurement. 
Therefore to define a statistical ensemble in quantum theory we must first have the state 

made on the object. Thus, a statistical ensemble in quantum theory is a set of identical 
measurements made on an object in a given quantum state. 

The question arises how to find probability distribution in various ensembles 

Quantum state and statistical ensembles 

(1.3.1)

and

Therefore, the density matrix has the transformation property of  a second rank tensor 

Thus the same physical state is represented by all density matrices connected by

the Hermiticity of the density matrix 

density matrix. First of all we establish statistical ensembles determining mean values 

matrix . To answer this question we write the mean value of physical quantity A with

density matrix    , we can perform different kinds of measurements.

matrix ). In the latter case the measurement is made once on each object.

of the object (its density matrix ), and secondly choose the type of  measurement to be

the aid of  formula (1.1.3) using A-representation. In this representation 

produced by the measurements of  various quantities in the state described by the density 

Let us enter in more detailed description of quantum state and its characteristic - the
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(1.3.2)

form

(1.3.3)

(1.3.4)

(If the density matrix is not normalized to unity it can always be normalized multiplying 
it by the factor 

From Eqs. (1.3.3) and (1.3.4) and second postulate it follows that gives the 
while measuring quantity A. To get the probability distribution of 

Thus probability distributions of various kinds of measurements, performed over 

(1.3.5)

It is worthwhile to emphasize that all representations of density matrix (i.e. 
various reference systems in the Hilbert space) are equivalent. Statistical ensemble is 

1.4 The wave function 

Up till now we did not use the notion of the wave function. As is known, originally 
quantum mechanics was based on this notion and the density matrix was introduced 

Description of quantum state in text-books is based on the wave function. It 
means that all statistical characteristics of the system can be derived from the wave 
function It is assumed that the average value of any physical quantity can be 
obtained by the formula 

(1.4.1)

This formula is different from Eq. (1.1.3). We will see that while formula (1.1.3) 
and the density matrix describe all possible quantum states, formula (1.4.1) and the 
wave function describe very specific kinds of quantum state which are called pure 
states. Later on we will show that pure states are the most ordered and most coherent 

another quantity, say F, we have to pass to F-representation and diagonal elements of

an object in quantum state , are connected by the unitary transformation U, (1.2.14),

determined by the kind of measurement performed over a system in quantum state .

 are the eigenvalues ofthe operator A. The mean value ofquantity A takes the where an

probability to get an,

in this representation will give distribution ofprobabilities to get eigenvalues fn.

In formula (1.3.3), it is assumed that density matrix  is normalized to the unity 

later.
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quantum states. 
First of all we want to show that there are quantum states which cannot be 

described by the wave function. It means that various statistics of such states cannot be 
derived from formula (1.4.1). The fact that a state cannot always be described by the 
wave function can be understood if we examine the subsystem A of a certain system 
A+B. Let the system A+B be described by the wave function where 

generally speaking, does not break down into the product of the functions 
even if the systems A and B do not interact. In the case when function 

and
is

(1.4.2)

each of the subsystems A and B can be described by the wave function. In this case the 

(1.4.3)

(ItThus we have shown that subsystem A can be described by the wave function 
has been assumed here that wave functions are normalized to unity). In the same way 
we can show that subsystem B is described by the wave function 

In the general case we cannot describe system A (or B) by the wave function, 
even if there is no interaction between systems A and B. To exemplify this situation 
(see Fig. 1), let us consider two subsystems A and B to be non-interacting at t = and 

according to Eq. 
(1.4.2). At time t = 0 the interaction (collision) takes place between subsystem A and B 
which lasts time Let and be eigenfunctions of energies of sybsystems A 

wave function of combined system A+B can be written in the form 

(1.4.4)

where
are time-dependent coefficients. The wave function of the combined system A+B 
satisfies the Schrödinger equation 

and are eigenenergies of subsystems A and B respectively, while 

(1.4.5)

factorized into a product of  two functions 

mean value ofsome quantity A of  the subsystem A has the form 

the wave function of  the combined system A+B is factorized at t = 

and B,  respectively, ignoring interactions between them. Then, in the general case, the 

xA and xB are the coordinates of the subsystems A and B respectively. This function,
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(1.4.6)

Two subsystems are 

A+B is described by the wave function 

(1.4.7)

Now neither of non-interacting,
conservative systems A and B can be described by the wave function. It means that 
statistical characteristics of these systems cannot be described according to formula 
(1.4.1). The question what is the wave function of system A (or B) does not make 
sense.

Thus we come to the conclusion that in the general case the quantum system 
(both isolated and interacting with other systems) cannot be described by the wave 
function. Nevertheless both mixed states (not described by the wave function) and pure 
states can be described, in the unified way, by the density matrix. Let us first find the 
density matrix of the pure state described by the wave functions

(1.4.8)

where are eigenfunctions of some linear Hermitian operator. The mean value of 
some physical quantity may be written in the form 

do not interact, but they are statistically dependent. 
is the collision time. At 

(x is the 
A and B 

At time t much larger than the collision time t  c

we may ignore the interaction VAB  between subsystems A and B. 
conservative, described by Hamiltonians HA and HB respectively. The whole system 

nl are time-independent coefficients.where c

distance between the systems). At time t = 0 they collide, tc

Figure 1. Two subsystems A and B are statistically independent and noninteracting at t =



Denoting

1.4 The wave function 9 

(1.4.9)

(1.4.10)

(1.4.1 1) 

According to Eqs. (1.1.3) and (1.4.1 1), the quantity Eq. (1.4.10), is the density 

matrix of the pure state described by the wave function (1.4.8). 
Now let us consider the subsystem A of the combined system described by the 

wave function (1.4.4). A certain operator A (describing physical quantity A) of the 
subsystem A has matrix elements 

(1.4.12)

where describe subsystem B. 
Since the whole system is in a pure state described by the wave function (1.4.4), its 
density matrix according to Eq. (1.4.10) is 

are indices of subsystem A, while indices 

The mean value of quantity A is [according to Eqs. (1.4.1 1) and (1.4.12)] 

where

or

(1.4.13)

(1.4.14)

(1.4.15)

(1.4.16)

The matrix is by definition the density of the subsystem A. As it was
mentioned above, the subsystem A does not have the wave function, while its statistical 
properties can be described by density matrix As it is clear from the derivation of 

we can rewrite the expression for the mean value of  A (in a more symmetrical form) 
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Eqs. (1.4.15) and (1.4.16), they are valid also for the case when the combined system 
A+B is not described by the wave function and is described by some density matrix of a 

this case the time dependence of the subsystem A has the form 

(1.4.17)

and satisfies the von Neumann equation (1.1.4). 

1.5 Entropyofquantum ensembles 

As it has been mentioned above the wave function describes a very specific kind of 
quantum states, namely, the most ordered (non-chaotic) states - so called pure states. To 
talk about statistical properties of the state, we should have some measure of these 
properties. Such a measure is provided to us by the information theory and is called the 
entropy of ensemble [2]. (Of course, this entropy is a generalization of the entropy used 
in statistical mechanics.) The entropy of the ensemble is a measure of the statistical 
scatter or chaotical nature of the probability distribution in the ensemble. 

By the definition, the entropy satisfies the following conditions. It is a functional 
of the probability distribution which has its maximal values in the most chaotic 

(1.5.1)

are eigenenergies), spin, angular 

(1.5.2)

And, lastly, the entropy must be additive: the entropy of a system consisting of two 
statistically independent subsystems is equal to the sum of the entropies of each 
subsystem. All these conditions (except for the inclusion of a constant factor) are 

(1.5.3)

The entropy of the most chaotic ensemble, (1.5.1), takes the value 

When systems A and B do not interact, coefficients cnk are  time-independent. In 

ensemble in which all possible values of  measured quantity has equal probabilities 

satisfiedby the quantity 

momentum,  etc. The entropy has its minimal value (zero) when the measured quantity 
Here n may be the quantum number of energy  (En

is equal to unity

is the probability of  the i-th value (quantum number) of  the measured quantity. where Pi

general  kind. 

has a definite value, i.e. the probabilityofcertain quantum number n0
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(1.5.4)

while the entropy of the most ordered ensemble equals 

(1.5.5)

Now let us return to the statistical ensembles corresponding to some quantum 

to this state, but we always can find the less chaotic ensemble - i.e., with minimal 
entropy This may be done with the aid of the mathematical theorem that states: in the 

is larger than in any other representation with 

Thus the quantity 

(1.5.6)

1.6

This is the 

class of states having the entropy equal to zero. These are the most ordered states. 
in the

representation in which it is diagonal, is equal 

Pure and mixed states. Proper mixtures. 

(1.6.1)

In the arbitrary representation 

(1.6.2)

state with the density matrix . As we know, there are many ensembles corresponding

representation in which   is diagonal, the sum 

may serve as a measure ofthe statistical properties of  the state   : it is the entropy of the
most ordered ensemble (with minimal entropy) among the ensembles ofstate   . 

According to Eq. (1.5.5), it is easy to see that for these states, density matrix

Thus we have introduced a statistic characteristic of the quantum state .
Now we can compare

statistical properties of various quantum states. It is expedient to distinguish the special
entropy of the less chaotic ensemble corresponding to state    .
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which, together with the equation 

(1.6.3)

characterize the class of the pure states. 

states. In the arbitrary representation this density matrix may be factorized 
From Eq. (1.6.1) follows an important property of the density matrix of pure

(1.6.4)

To prove this property we employ the transformation rule (1.2.14) and Eq. (1.6.1 ) 

Designating

(1.6.5)

(1.6.6)

we obtain Eq. (1.6.4). 
This set of 

numbers is usually called the wave vector. It transforms as a vector in the Hilbert space, 
with the aid of the unitary transformation (1.2.4). This vector characterizes the pure 
state, together with the density matrix (1.6.4). The mean value of the arbitrary operator 
A may be determined as 

(1.6.7)

In particular when indices n take on a continuous set of values (e.g., coordinates of a 
a wave function, designate it as and instead of the summation 

in Eq. (1.6.7) we perform the integration 

The density matrix in this case is equal to 

(1.6.10)

(1.6.8)

(1.6.9)

The pure state, being the most ordered state, is also, in a sense, the most coherent 
state. To show this we transform density matrix into a q-representation. Unitary 

Thus, the pure state may be characterized by the set of numbers cn.

particle) we call cn

and according to the general rule the probability distribution takes the form 
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transformation from the n-representation to the q-representation can be written in the 
form similar to Eq. (1.2.4) 

(1.6.1 1) 

are orthogonal and normalized eigenfunctions of some linear Hermitian operator; 
they are, at the same time, matrix elements of unitary transformation from n- to
q-representation. Therefore, the density matrix in the q-representation obtains the form 

(1.6.12)

Thus, the probability distribution of coordinates q takes the form 

(1.6.1 3) 

As is known the coherence is usually connected with the possibility of obtaining the 
The interference picture is connected with superposition of two 

fields (particularly, optical fields). In the specific case when are electron de 
Broglie waves, Eq. (1.6.13) describes the electron diffraction. 

The coherence is characterized by off-diagonal elements A quantity 

(1.6.14)

is a natural measure of the interference contrast and, therefore, of the coherence. It can 
be shown that quantities satisfy inequality 

The maximal degree of the coherence is characterized by 

(1.6.15)

(1.6.16)

and is achieved in the case of pure state when Eq. (1.6.4). All other, so 
called mixed states are characterized by equals zero 
- the interference picture is entirely absent. Thus pure states have maximal coherence -
they could be called coherent states. 

Another example is a molecule (or atom) interacting with an electromagnetic 
are relevant to the interaction 

with the electromagnetic field. In the dipole approximation, a dipole moment of the 
molecule determines the interaction with the field. The mean value of the dipole 
moment has the form 

, and, particularly when gnm

field. We assume that only two low lying levels Ea and Eb

interference picture.
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and

(1.6.17)

(1.6.18)

is the frequency ofthe electromagnetic field. 
Only time-dependent terms in Eq. (1.6.17) determine interaction with the 

electromagnetic field. Matrix elements determine coherent time- dependence
of the mean dipole moment, Eq. (1.6.2). Thus the measure of the coherence in this case 
is

(1.6.19)

Again in the pure case while in the most chaotic example 

We continue discussing pure and mixed states. According to Eq. (1.6.1) the density 
matrix of the pure state (in the diagonal representation) has the form 

(1.6.20)

It is obvious that the density matrix of the most general mixed state is equal to the linear 
superposition ofthe possible matrices of of pure states 

where

(1.6.21)

(1.6.22)

where dmn  are matrix elements of the dipole moment (m,n = a,b), 
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Condition (1.6.22) ensures the normalization of p to 1. Carrying out the unitary 
transformation of all the matrices in (1.6.21) we come to the most general mixed 
state density matrix. 

If the object is in a pure state with a given wave function, this wave function 
describes the behavior of this individual object. It characterizes potential properties of 
the object which are realized when the measurement is made on the object when it is in 
definite external conditions. If, however, the object is in a mixed state and has no wave 
function, it is described by the density matrix, which is also a characteristic of this 
individual object. Again the density matrix describes potential properties of the 
individual object. 

Let us take a simple example which illustrates the use of the density matrix. Let 
a system consisting of two spins ½ be in a pure state with a total spin of zero (i.e. all the 
spin components and its absolute value are equal to zero). As is well known (see e.g. 

where

(1.6.23)

are the eigenfunctions of the operator of the projection of an individual spin 

onto the z-axis.
We shall now examine the state of the first spin only, without taking any 

notice of the state of the second. The first spin is supposed to be a separate system 
which has no wave function and is in a mixed state. The density matrix of the state can 
be obtained from the density matrix of the whole system by using (1.4.15) and (1.4.16). 

(1.6.24)

(1.6.25)

where the first index denotes the state of the first spin and the second one the state ofthe
Retaining only diagonals for the second spin we can use Eq (1.4.15) to 

find the density matrix of the first spin in the form 

(1.6.26)

It follows from this. that measurement of the projection of the spin onto the z-axis with 

Before measurement. however, there was no definite value for the projection of the first 
spin onto the z-axis. the spin was in a This can be seen from Eq. (1.6.23): 

second  spin. 

Landau and Lifshitz [3]) the wave function of a state ofthis kind is of  the form 

The matrix elements of the density matrix of the whole system are of the form 

superposition of the states ½ and -½. 

a probability of ½ leads to a value of ½, and with a probability of  ½ to a value of -½.



16 Quantum theoretical basis. Density matrix 

It should be stressed that since Eq. (1.6.26) describes the state of the individual 
spin, it cannot be interpreted by saying that the projection of the spin onto the z-axis has 
a definite value, but we do not know it. Let us assume that in the state (1.6.26) the 
z-component of the spin has in fact a definite, but unknown, value. We now change to 
another representation in which the x-component of the spin is diagonal. In this 
representation the density matrix will have the same form (1.6.26). (The matrix (1.6.26) 
is proportional to the unit matrix and the latter, as is well known, is of exactly the same 
form in all representations.) Then the density matrix elements are the probabilities for 
the x-component of the spin. Just as for the case of the z-component, we should have 
assumed that the x-component of the spin has a definite value but we do not know it. A 
similar argument can be adduced for the y-component. Therefore the assumption that 
(1.6.26) in the general case describes a definite, but unknown, value of the component 
of the individual spin leads to the result that is absurd from the point of view of 
quantum mechanics that all three components of the spin have definite values. This 
contradicts the uncertainty relation for the components of the spin. 

It has been stressed that matrix (1.6.26) contains the information about a separate 
spin. However, the question arises whether the first spin can be considered separately 
from the second spin. More in detail we will consider this problem in Chapter VI. Here 
we only mention that matrix (1.6.26) gives only partial information about the first spin. 
This information is derived from the matrix elements (1.6.24). However, matrix 
elements (1.6.25) also contain information about the first spin as a part of a two-spin
system. These matrix elements describe statistical correlations between the first and 

Very often the notion of a mixed state is used in a different sense. It is 
considered as a mixture of pure states. In this case the density matrix describes an 
ensemble of objects (and not an individual object), each of which is in a definite state. 
Such density matrix describes the statistical features connected with our lack of 
knowledge of certain properties of the objects, although these properties are peculiar to 
the object in a definite form. In fact let us examine a set of objects each of which has a 

from (1.6.20). 
Then all the mean values in this ensemble are defined by the density matrix (1.6.21) in 
accordance with (1.1.3) 

is the mean value of quantity A in pure state 

(1.6.27)

Thus the mean value in 
the ensemble of pure states (mixture of states) is equal to the sum of the mean values in 
the state multiplied by the probability of this state in the ensemble. Sometimes such 
a mixture of states is called the proper mixture (d’Espagnat [4]).

The proper mixture has to be distinguished from the mixed state describing the 

Then the density matrix of such an ensemble takes the form 

second  system. 

nprobability p of  being in one of the pure states with a density matrix 

where <An>

z zthe probability of the pure state s = ½ be ½ and the probability of state s  = -½ be ½. 
individual quantum object. Let us consider the proper mixture of states of spin ½. Let 
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In another representation with the basis 

form

(with

(1.6.28)

the density matrix takes the 

(1.6.29)

the

It has to be noticed density matrix (1.6.29) provides probabilities ½ for states 

of states these states are peculiar to the objects in a definite form. On the other 

hand density matrix as a 

values. Thus in the proper mixture, not all the representations are equivalent. Only 

before the measurement). 
probabilities ½ correspond to values of spin components resulting from the 
measurements of these components. 

(1.6.29), provides probabilities ½ to find object 

1.7

The notion of the probability per unit time plays a very important role in the theory of 
irreversible processes. Therefore it is expedient to dwell upon this notion more in 

First we develop a non-stationary perturbation theory using the density matrix 
formalism. Let us consider a quantum mechanical system described by the 
Hamiltonian

Transition probability per unit time 

(1.7.1)

where V is a part of the whole Hamiltonian which may be considered as a small 
perturbation. The meaning of the word “small” would be clear from further derivation. 
According to the von Neumann equations (1.1.4) we have 

While the density matrix (1.6.28) gives the probabilities ½ for states 

that in this proper mixture, sz-representation of the density matrix gives the probabilities 

result of the measurement, while before the measurement spins did not have definite sx

sz-representations give the probabilities to find spins in a definite form (which they have 
xIn all other representations, s , sy, (and other axes) 

detail. A conventional description of  this concept is sometimes misleading. 
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(1.7.2)

If V is a small perturbation it is expedient to use the interaction representation. This 
representation can be achieved by unitary transformation 

The density matrix in this representation takes the form 

(1.7.3)

(1.7.4)

It is easy to check that the density matrix in the interaction representation takes the 
form

(1.7.5)

Here and further on we omit index “int”. 

expand the density matrix into a series 
We start from equation (1.7.5) and consider V to be a small quantity. We 

(1.7.6)

where
(1.7.6) into (1.7.5) we obtain the system of recurrence relations 

is a quantity of the k-th order of smallness with respect to V. Substituting 

(1.7.7)

As the zero approximation we shall take the value of the density matrix at t = 0. This 

up to terms of the second order of smallness

(1.7.8)

When V does not depend on time (in the Schrödinger picture), time-dependence V(t) in 
Eqs. (1.7.5), (1.7.7), and (1.7.8) is determined by second relation (1.7.3). In general, 

small in comparison with    (0). We write the density matrix explicitly with an accuracy 
should  be means that the corrections of the first and subsequent approximations of
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the perturbation V may also have an explicit time-dependence. This explicit 
time-dependence corresponds to time-dependent forces acting on the unperturbed 
system.

Now let us examine the special case when initially the system is in the 

(1.7.9)

Substituting Eq. (1.7.9) into the right-hand side of (1.7.8) (and considering the case 
when V is explicitly time-independent) we find 

(1.7.10)

where are the energy levels of the unperturbed system. The expression 

(1.7.10) for is the probability of finding (when measuring) the system in the state 
is the time-dependent

The energy levels of the initial and final states often form a continuous 
spectrum. Let us examine in greater detail the case (which is of physical interest) when 
the energy of the final state is part of the continuous spectrum. We shall assume that 
the variables n of the final state consist of E (the energy) and of a certain set of 
variables (some of them may be continuous as well) which we shall denote by the 
index u. Since by assumption E varies continuously we can introduce a number of
states with fixed values u in the energy range dE 

(1.7.11)

Here
In the case of continuous (or quasi-continuous) energy spectrum, the finite 

transition probability can be obtained by the summation (integration) over a finite 
interval ofenergies. However, we can perform integration over all energies, since, as 

the transition probability. Thus the required probability becomes 

is the energy density of states defined by the relation (1.7.11). 

(1.7.12)

time, and then we are able to speak about the transition probability per unit time. 
Now, under certain limitations, this expression is approximately proportional to 

stationarystate n0 of the unperturbed Hamiltonian H0

probability of a transition from state n  to state n. 
0

0

we will see, only energies E close to the initial energy E0 give essential contribution to 

n if it was in the state n initially. In other words

are minimal and maximal energies of the energy spectrum.where Emin and Emax
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Again, because of the importance of this notion, “transition probability per unit time”, 
and frequent misunderstanding of its limitations, we will try to analyze them in detail. 

then expression (1.7.12) may be rewritten as 

(1.7.13)

where

(1.7.14)

Now, let 
E changes by amount 
words,

denote the range in which function f(E) changes only slightly when 
In other which is small compared with 

(1.7.15)

Now we designate 
(1.7.15). Then condition (1.7.15) can be written in the form 

a maximal value among three terms in the right hand side of 

We notice further that function 
(1.7.13) in the region 
inequalities (1.7.15) and (1.7.16) we get 

gives its main contribution to the integral 
(i.e., for values 1). By using this fact and the 

Thus, under condition (1.7.16), i.e. for large enough t, the transition probability is
proportional to time t and it is possible to introduce the transition probability per unit 
time Of course the quantities (which itself does not depend on time). 

determining conditions (1.7.15) and (1.7.16) depend on the actual properties of the
system under investigation. 

Let us introduce a new variable of  integration 

is the characteristic scale of the variation of E near E0. Let us suppose that 
time t is so large that the following limitations are satisfied 

(1.7.16)

(1.7.17)
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The applicability of the expression (1.7.17) depends not only on the condition 
(1.7.16); a condition of the perturbation theory must also be satisfied 

(1.7.18)

In order to satisfy both conditions (1.7.16) and (1.7.18) it is necessary 

(1.7.19)

In this case there is such an interval of time that both conditions (1.7.16) and (1.7.18) 
are satisfied 

(1.7.20)

If condition (1.7.19) is not satisfied then there is no time-independent transition 

(1.7.21)

there is no time-independent transition probability per unit time. In this case, according 
to (1.7.12) the transition probability is proportional to t². 

Very frequently the transition probability per unit time is expressed in the form 

(1.7.22)

lt should, however, be remembered that this expression has meaning only after 
integration over the energy E, using Eq. (1.7.11). Then it obtains the form (1.7.17) 

Probability (per unit time) of transition from the initial state 
can be presented in the alternative and widely used form states

(1.7.23)

to all other 

(1.7.24)

It is easy to show the validity of this expression by using rule (1.2.7) for a matrix 
element of  a product of matrices 

probability per unit time. It should be mentioned also that for small values of time 
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(1.7.25)

The probability of transition (per unit time) between two states characterized by 
discrete (m and n) and continuous indices (including energy) and averaged over the 
initial state u is 

Here

(1.7.26)

(1.7.27)

some mean energy interval 
summation to integration in Eq. (1.7.12) is possible if 

(with fixed n) 
In the case when we are dealing with the quasi-continuum, characterized by 

This means that should satisfy the condition 

(1.7.28)

(1.7.29)

since is the characteristic time of the problem. 

1.8

It will be shown in the next chapter that transition probabilities per unit time 

been shown that the derivation of formula (1.7.23) for the probability per unit time 
depends on the existence of the continuum of energies. Much more general statement 
can be proven. The irreversible behavior of the system is possible only for systems 
having continuous spectrum of energies (Golden and Longuet-Higgins, [5]: Fain [6]). 

For the reversible process the mean value of a certain quantity A: <A(t)> has 
limit
return to the initial state many times and, therefore, a variable quantity <A(t)> does not 
have limit at On the other hand, for the irreversible process <A(t)> has the limit 

in a general case. 

where Pu is the distribution probability of states 

only if<A(t)> does not depend on time. In the reversible process a system 

Continuous spectrum of energies and irreversibility

between adjacent energy levels, the transition from the 

characterize acertain class of irreversible processes (Markovian approximation). It has 
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, (1.8.1)

The general solution of the von Neumann equation (1.1.4) can be written in the form 

(1.8.2)

Therefore, the mean value of <A(t)> has the form 

(1.8.3)

where n,m are indices denoting the energy levels, 

quantum numbers; and the quantity 

are other 

as can easily be checked, has the form 

(1.8.4)

If the system has a discrete energy spectrum, is a discontinuous function, <A(t)> 
is equal to the discrete sum of the harmonic functions and has no limit when 
The quantum recurrence theorem (the quantum analog of the Poincaré theorem) states 
that the quantum system gets arbitrarily close to the initial state at arbitrarily large 
times [7-9]. 

For the system with a continuous spectrum of energies (the Poincaré 
recurrence time tends to infinity) <A(t)> will have a limit when if has the 
form

where

(1.8.5)

has no singularities and is absolutely integrable in the range 
Then on the basis of the Lebesque-Riemann theorem 

(1.8.6)

Thus it has been proven that irreversible behavior of quantum systems is connected 
with the continuous energy spectrum of the system. 

The mean value of the quantity A at the time t is

<A(t)>=Tr( (t)A)



If a quantum system is closed, the time evolution of its state can be described by the 
von Neumann equation (1.1.4). However, we more often meet the case in which the 
system of interest to us is in contact with its surroundings. In particular, the system 
may be in contact with a thermal bath. The problem is how to describe time behavior 
of this kind of non-closed (“open”) system. It is obvious that the solution is of major 
significance to various branches of physics. When we are interested in the steady state 
of the system (without external forces) the solution is well known. According to the 
basic principles of statistical physics, a system in contact with a constant temperature 
bath (with which it interacts weakly), and which is in a steady state (state of thermal 
equilibrium) can be described by the density matrix 

where T is a temperature of the bath and H is the Hamiltonian of the “open” system we 
are interested in. (Only in the case of weak coupling of the system with the thermal 
bath we can (approximately) define the Hamiltonian H.) 

Now let the system be in a non-equilibrium state. In the course of time this 
system will approach an equilibrium state. The processes which occur during this time 
are called relaxation processes. Generalizing, we shall give the name of relaxation 
processes to any transient process, in particular those in which a system approaches its 
stationary state (in the presence of an external force). Relaxation processes play an 
important part in physics. The following examples may be given of relaxation 
processes that are met in practice: the spontaneous emission in free space, the decay of 
an electromagnetic in a lossy resonator, relaxation of a spin system due to the 
interaction with the crystal lattice (spin-lattice relaxation), etc. In all these examples 
the relaxation takes place as a result of interaction with systems which have, in the 
limit, a continuous energy spectrum (see section 1.8). It will be convenient to use the 
following terminology. We shall call the system we are interested in a dynamic system 
and its surroundings a dissipative system (it is a source of the energy dissipation). It is 
understood here that the dynamic system (or subsystem) has usually a finite number of 
degrees of freedom and discrete energy levels, whilst the dissipative system has an 

The dynamic and dissipative subsystems, interacting with each other, together 
form a closed system. The behavior of this closed system can be described by the von 
Neumann equation, using the density matrix of the whole system where the 
Latin letters are the discrete indices of the dynamic subsystem and the Greek letters are 
indices of the dissipative system (at least part of them, and energy among them, run 
through a continuous series of values). When we are interested in the behavior of the 
dynamic subsystem we need to know only that part of the density matrix which 
is diagonal in the indices or its trace in the indices 

CHAPTER II

QUANTUM THEORY OF RELAXATION PROCESSES 

infinite (in the limit) number of degrees of freedom and a continuous energy spectrum.

24
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This chapter is supposed to present a general theoretical framework for the description 
of various irreversible relaxation processes. (We will not consider the systems exposed 
to the external time-varied forces, or fields.) 

2.1 Exact equations describing temporal behavior of interacting dissipative 
and dynamic systems 

In very general terms the theory of rate processes may be formulated as follows. We 
are dealing with a dynamic subsystem (a spin system, an impurity in a solid, local 
vibrations, etc.) interacting with the dissipative system. We will be interested in the 
behavior of the dynamic subsystem (or generally, in the behavior of the relevant part of 
the system). Generally speaking the behavior of the subsystem is determined by the 
von Neumann equation for the whole system. The question arises whether it is possible 

general answer to this question is negative. The density matrix ofthe subsystem at the 
moment t, but also by the 

However, in some 
special cases, under special physical conditions it is possible to perform an approximate 
reduction of the equations for the subsystem only. This will be done in forthcoming 
sections. The aim of this section is to provide a general framework for the description 
of interacting dynamic and dissipative systems. Such a framework can be established 
without using any approximation. The approximate equations will be derived in the 
next sections. 

The behavior of a closed system containing dynamic and dissipative subsystems 
can be described by the von Neumann equation 

is determined not only by the initial condition 

(2.1.1)

and

in the form 

(2.1.2)

eigenfunctions
and eigenfunctions 
systems with matrix elements 
system (leading to transitions between various states 
elements

Nakajima [12]. It is also called the Zwanzig formalism. Our final goal is to describe 

F is the Hamiltonian of the dissipative system with eigenvalues 
V is the interaction energy between dynamic and dissipative 

G is the perturbation energy in the dissipative 
it has matrix 

To proceed further, we will use a procedure invented by Zwanzig [10,11] and 

and

initial condition (0) of the density matrix of the whole system.

where H is the Hamiltonian of the closed system. This Hamiltonian may be presented 

H = E + F + V + G = H0 + V + G , 

where E is the Hamiltonian of the dynamic system with the eigenvalues En

to find out the equations determining the temporal behavior of  the subsystem only. The
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the time behavior of the dynamic system (or dissipative system). The density matrix of 
the whole system in the representation of the unperturbed Hamiltonian 

(2.1.3)

has matrix elements 

The behavior of the dynamic system may be described by the density matrix 

(2.1.4)

where Trb

Now we try to derive the equations determining the behavior of the dynamic 
system, starting from Eq. (2.1.1), which is valid for the whole system. This Eq. (2.1.1)
may be presented in the form 

(2.1.5)

where L is the Liouville operator of the system. The Liouville operator is a 
superoperator or supermatrix While the usual operator A acts on the wave function 
transforming it to another function 

(2.1.6)

The Liouville operator L is defined as 

(2.1.7)

In general we will call the operators acting on the density matrix the Liouville type 

(2.1.8)

where M,N are a set of indices of the system (particularly 
According to Eq. (2.1.5) and (2.1.1)

H0 = E + F , 

is the trace operation over the bath variables

the superoperator acts on the density matrix   transforming it into another matrix. 

operators. According to the definition 
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For the arbitrary supermatrices the multiplication rule is held 

As the first step we will derive the equation for the density matrix 
diagonal in the indices of the dissipative system. The reduced density matrix is then 
obtained by the summation over Eq. (2.1.4). Thus we need to project general 
density matrix on the partial density matrix The projection operator D is
defined as 

while the total density matrix may be presented as 

(2.1.9)

(2.1.10)

(2.1.1 1) 

(2.1.12)

2

Equation (2.1.5) can be rewritten in the form 

The latter equation may also be presented in the form 

The solution of this equation may be presented as a sum of the general solution of the 
equation

(2.1.13)

(2.1.14)

(2.1.1 5) 

(2.1.16)

and the specific solution of equation (2.1.15) 

Operator D is defined as
Here = (1-D)   has only off-diagonal matrix elements over Greek indices
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(2.1.17)

Substituting this solution into the right hand side of the first equation (2.1.14) we 

(2.1.1 8) 

where

(2.1.1 9) 

Two comments have to be made. First, these equations are exact. They are the 
result of identical transformations of the exact equations (2.1.1) or (2.1.5). Without 

only. at some initial 
but any other 

possible division of density matrix by some projection operator D, which does not 
coincide with (2.1.13). For example, we may consider another projection operator 

(2.1.20)

which projects onto density matrices diagonal over all indices (including m and n), 

The main result or this section is equation (2.1.18). This exact equation may 
serve as a starting point for various approximations. They will be discussed in next 
sections.

2.2

Our final goal is to describe the time behavior of the dynamic system [density matrix 
(2.1.4)]. However, we will first consider the relaxation process in the dissipative 
system, provided there is no interaction with the dynamic system (V = 0). In this case 
the Hamiltonian of the dissipative system equals 

Relaxation of the dissipative system. Markovian approximation 

(2.2.1)

For example the role of F may play the Hamiltonian of phonons, and the role of
interaction G may play the anharmonic terms of the total Hamiltonian. Density matrix 
p of the dissipative system has matrix elements where quantum numbers 
describe eigenstates of the Hamiltonian F. This Hamiltonian is diagonal in the 

representation

obtain the following equation for the density matrix 1

any additional assumptions we cannot derive the equation for the matrix 1

moment of time t = t0. Second, Eq. (2.1.18) describes not only 
Eq. (2.1.18) contains the off-diagonal part    2

H = F + G  . 
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(2.2.2)

We would try to derive from the basic quantum-mechanical equations (2.1.18) -

(2.2.3)

We remind that diagonal matrix elements give the probability to find the system in 
the state Quantities to
state This type of equation was first established by Landau [13], Pauli [14] and 
Bloch [15]. Pauli, in his derivation, used the so-called repeated Random Phase 
Assumption (RPA). It means that such an equation has been derived for the small 

(2.2.4)

which means that phases distributed at random [the lack of coherence 

random phase assumption (RPA) it is possible to establish equation (2.2.3) for an 
arbitrary moment of time. Of course, such repeated RPA has no direct justification. 
Van Hove [16] first derived the master equation without repeated RPA, using instead 
of it the RPA only at the initial moment t = 0. 

We will not repeat here the rather complicated derivation of van Hove and will 
use, instead, exact equation (2.1.18) as a starting point for derivation of the 
approximate equation (2.2.3). The projection operator D in our case transforms density 
matrix into its diagonal part. We designate this operator by P [to distinguish it 
from D, (2.1.13)]

(2.2.5)

(2.2.6)

where

(2.2.7)

(2.1.19) the master equation for the diagonal elements of the density matrix :

are transition probabilities per unit time (from state  

elements of  the density matrix are zero 

(1.6.14)]. Then, as it is clear from the derivation of  transition probability per unit time, 

The equation for diagonal elements of the density matrix 1 obtains the form 

interval of time , assuming that at the beginning of the interval the off-diagonal

derive the master equation. If at the end of this period      one makes again the same 
formula (1.7.23), that for the small enough time interval  satisfying (1.7.18), one can 
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since the behavior Thus, in the general case, no closed equation is obtained for 
of

= 0, i.e. we make RPA at the initial 
moment of time, then the equation (2.2.6) may be reduced to the master equation 
(2.2.3) provided certain approximations are performed. Taking into account the 
assumption (2.24), 

at the time t is determined not only by 
Now we will show that if we assume 

= 0, we rewrite equation (2.26) in the form 

According to Eqs. (2.2.5) operator P has the form 

while operator L, according to Eq. (2.1.9) has the form 

(2.2.10)

Taking into account Eqs. (2.2.1) and (2.2.2), superoperator L can be divided into two 
parts

where

(2.2.8)

(2.2.9)

(2.2.11)

(2.2.12)

(2.2.13)

From (2.2.10), (2.1.10) and (2.2.9) one gets 

(2.2.14)

rewritten as 

(2.2.15)

and the equation for obtains the form 

at time t = t0, but also by 

0 0It is easy to show that L P = PL  and therefore the kernel K in Eq. (2.2.6) can be 
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(2.2.16)

This equation with kernel (2.2.15) is still exact, provided = 0. To get 
master equation (2.2.3) we have to perform two approximations: the Born 
approximation and the Markovian approximation. In the Born approximation we 
assume the smallness of the perturbation G and calculate the matrix K up to the terms 

(2.2.17)

In this approximation the explicit expression for the matrix element of K takes the form 

(2.2.18)

Thus the equation for the diagonal elements of the density matrix takes the form 

where

(2.2.19)

(2.2.20)

These equations are not master equations (2.2.3). In the master equations 
at time t 

at the same moment and do not depend on 
(2.2.3) the derivative of the probability
is determined by the probabilities 

of finding a system in the state 

the prehistory of the system. In other words the system does not have the memory. As 
opposed to this, equation (2.2.19) does have memory. The derivative of depends
on the history of the system. The equation (2.2.19) contains memory about the state of 
the system in all previous moments of time. The master equations (2.2.3) can be 
obtained from Eqs. (2.2.19) in so-called Markovian approximation. In this 
approximation one can expand quantities over the delay time 

(2.2.21)

and retain only the first term 
approximation is justified provided second and higher order terms may be neglected. 

G². Therefore we put in the exponent (2.2.15) instead of  L its approximate value L0

in the right hand side of equation (2.2.19). Such  an 
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Let us assume that sums over functions in (2.2.19) are decaying fast 
enough, being the characteristic decay time. It is easy to see that one can neglect the 
second term in the right hand side of equation (2.2.21) (as well as higher order terms), 
provided

(2.2.22)

where
estimated as 

is the characteristic relaxation time of the dissipative system which can be 

(2.2.23)

Thus equation (2.2.19) can be approximated as 

(2.2.24)

where are time-dependent transition probabilities per unit time 

(2.2.25)

while at 

(2.2.26)

the transition probabilities per unit time do not depend on time. They equal 

(2.2.27)

In this case we get the master equation (2.2.3) with 

(2.2.28)

It is worthwhile to mention that conditions (2.2.22) and (2.2.26) coincide with 
conditions (1.7.19) and (1.7.16) respectively. It is easy to identify with since 
the sums over in (2.2.19) are, as a matter of fact, the Fourier integrals with the 
characteristic frequency range equal to 

These coefficients areproportional totimet-t0, when 
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The irreversible behavior described by equation (2.2.24) or (2.2.28) has been 
derived from the first principle, i.e. from exact equation (2.2.6) using the Born and the 
Markovian approximation. However a specific initial condition has been assumed 

(2.2.29)

(2.2.30)

are, as a matter of fact, the Fourier integrals (due to the assumption of continuous 
energy spectrum of the dissipative system). These Fourier integrals are characterized 
by certain frequency regions which in many cases have orders of magnitudes 
satisfying

(2.2.31)

This condition is similar to (2.2.22). In this case term (2.2.30) decays during the time 

It is expedient to mention that van Hove [16] has derived the master equation 
(2.2.3) both for initial conditions and for initial conditions satisfying (2.2.3 1). 
We have to recognize that in all the above approximations and derivations a certain 
unsatisfactory element is present. It does not matter which initial conditions we 
assume. There is a certain time interval 

which is much smaller than the relaxation time. 

(2.2.32)

where the conventional equations with time-independent coefficients are not valid. [In 
the region (2.2.32) equations (2.2.24) with time-dependent rate coefficients are valid.] 
It may mean that one cannot use arbitrary initial conditions using conventional master 
equations. In the region close to the initial conditions these master equations are not 
valid. We will discuss this point more in detail in section 2.6. 

2.3

As has been mentioned above, in very general terms the theory of relaxation processes
may be formulated as follows. We are dealing with the dynamic subsystem (an atom, a 
local vibration, a spin system, a certain mode of electromagnetic field in the resonator 
cavity) interacting with the dissipative system having an infinite (in the limit) number 
ofdegrees of freedom and a continuous energy spectrum. The question arises whether 
it is possible to find equations determining the temporal behavior of the dynamic 
system only. The density matrix of the dynamic subsystem at the moment t, is

Equations for density matrix of dynamic systems

corresponding to RPA at the initial time t = t0. Of course, such an assumption is not a 

0

t0,
the first term in the right hand side of  Eq. (2.2.6) 

very satisfactory one. The moment of time t = t is quite arbitrary, and at any time t  
is already not zero [see e.g. (2.1.17)]. However, the sums which are inherent in
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determined by the equations for the density matrix (2.1.18). However, under 
special physical conditions it is possible to perform an approximate reduction to the
equations for the subsystem density matrix only. The aim of this section is to show 

We will start from exact equations (2.1.18) with D defined by (2.1.13) and with 
the Hamiltonian (2.1.2). The Liouville operator has the form 

where

where

are diagonal in m and 
respectively). The Liouville operators 

indices

(2.3.1)

(2.3.2)

and it is assumed that both E and F, (2.1.3), 

are eigenfunctions of E and F and

(2.3.3)

(2.3.4)

(2.3.5)

Therefore the kernel (2.1.19) can be rewritten as 

(2.3.6)

As in the previous section we assume the Born approximation, which means that we 
In this approximation 

superoperator can be presented in the form 

where

(2.3.7)

(2.3.8)

and

00

It is easy to show that the superoperator L0 (2.3.2) commutes with D, (2.1.13)

may approximately replace L in the exponent (2.3.6) by L0.

DL =L D  . 

how this approximate reduction may be performed. 
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In more explicit form we can rewrite equation (2.1.18), with 

(2.3.9)

(2.3.1 0) 

given by (2.3.6), 

(2.3.1 1) 

Here the Markovian approximation for the dissipative system is assumed [the fourth 
term in the right hand side of Eq. (2.3.11)]. Equation (2.3.11) determines the time 
evolution of the density matrix (under certain initial conditions for the 
off-diagonal in Greek indices matrix In the general case, this equation 

cannot be reduced to the equation for the density matrix (2.1.4) 

(2.3.12)

However, under certain conditions such a reduction can be approximately 
performed [17,18]. These conditions correspond to the fast relaxation of the dissipative 
system in comparison with the relaxation of the dynamic subsystem. Namely, we 
assume that 

(2.3.13)

where is the characteristic relaxation time of the dynamic system. We also assume 
that the relaxation of the dissipative system is governed by the master equation (2.2.3) 

(2.3.1 4) 

Here V and G are characteristic matrix elements of operators V and G. Conditions 
(2.3.13) and (2.3.14) allow us to seek the solution of the equation (2.3.11) in the 
form

Condition (2.3.13) is equivalent to the condition 
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(2.3.15)

here is the equilibrium distribution in the dissipative system. The last equation 
follows from the normalization condition 

The term 

(2.3.16)

represents a statistical correlation between dynamic and 

only. Detailed conditions of 
smallness of in the case (2.3.14), r << 1, are discussed in Appendix A to this 

system would destroy the correlation created by the interaction between the 
dynamic and dissipative subsystems. In this case, (2.3.14), one can use the 

(2.3.17)

which is valid at 

(2.3.18)

The problem of the factorization approximation does not exist in the works of 

the relaxation dissipative system (the diagonal part of its density matrix while 
Fain derived equations for the diagonal in Greek indices part of the density matrix 

An important comment has to be made. As is clear from Appendix A, the 

performed in the case of the zero temperature of the thermal bath (dissipative system). 

Substituting the factorized density matrix, (2.3.17), into the r.h.s. of equation 
(2.3.11), performing the summation over indices 
first term in the r.h.s. of Eq. (2.3.11) can be neglected provided condition (2.3.18) is 
satisfied, see Appendix A), we obtain the equation for the density matrix of the
dynamic subsystem 

(2.3.19)

where

in both sides of Eq. (2.3.11) (the 

dissipative subsystems. It is clear that if  this correlation is small compared to 
then we can get the equation for the density matrix

chapter. It is clear from physical considerations that fast relaxation of the dissipative

factorization approximation

Expression (2.3.17) is substituted in the r.h.s. of  Eq. (2.3.1 1). 

The spontaneous emission and other processes taking place at the boson vacuum are

van Hove [16], Zwanzig [10,11], and Fain [20,21]. Van Hove and Zwanzig considered

derivation of the factorization approximation, under condition r<<1, cannot be

considered in Chapter V. They do not need introduction of the interaction G. 
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(2.3.20)

(2.3.21)

Here are operators describing the dynamic subsystem, they are obtained by 
the averaging operators V and K of the whole system over the equilibrium distribution 
of the dissipative system. Equation (2.3.19) is a closed reduced dynamics equation 
valid for all 

and

provided special initial conditions are satisfied 

(2.3.22)

The initial state (2.3.22) may be obtained, e.g., by imposing an ultrashort 
(femtosecond) laser pulse on the system. We assume that before the pulse is imposed, 
the whole system is in the equilibrium state. Assuming that the laser pulse does not 
affect the dissipative system but causes the density matrix “jump” [22] we get the 
initial condition (2.3.22). 

In the conclusion of this section an important comment has to be made. 
Sometimes the factorization approximation is justified by the assertion that the 
deviation from the factorized density matrix is a small quantity of the order of 
magnitude the measure of the strength of the interaction V in the Hamiltonian 
(2.1.2), while the interaction G is not taken into account: In this case r 

and it can be shown that the correlation (2.3.15) (if (0) = 0) has the 
form

(2.3.23)

Thus the deviation from the factorized density matrix is of the order which is 
not a small quantity. On the other hand, in the case when the parameter r, (2.3.14), is 
small the deviation from the factorized density matrix is of the order, (2.A9) 

(2.3.24)

Thus is small provided conditions (2.3.13) and (2.3.14) are satisfied. 

37

(otherwise Eq. (2.3.19) is valid for t satisfying conditions (2.3.18)). 
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2.4 Generalized master equations 

In the explicit form the equation (2.3.19) may be written as 

(2.4.1)

The explicit form of the matrix elements is

(2.4.2)

and

(2.4.3)

Here <...> means averaging over the equilibrium state of the dissipative system, 
dependence of the matrix elements on time is determined by the unperturbed 
Hamiltonian F of the dissipative system, and tilde ˜ means that only off-diagonal
elements of the matrix V and G are taken into account 

(2.4.4)

Equation (2.4.1) contains the memory. The derivative of depends on the 

may be essentially simplified in the Markovian approximation. However, the 
derivation now differs from that of section 2.2, Eq. (2.2.21). The matter is that 
may have a fast change in time due to the first term in the equation (2.4.1), and 
therefore we cannot use an expansion of the (2.2.21) type. Presenting in the 
form

(2.4.5)

and inserting it into equation (2.4.1) we get 

density matrix at all the previous moments oftime, starting from t0 till t. This equation 
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Now we can neglect memory in this equation, i.e., substitute 

provided the characteristic correlation time 

satisfies condition 

of

(2.4.6)

instead of 

(the decay time of 

(2.4.7)

Here
representation we get the equation 

is the relaxation time of the dynamic subsystem. Returning to the initial 

where E is the Hamiltonian of the dynamic system 

is defined by the expression 

Starting from time 

the supermatrix and operator do not depend on time and have the form 

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

and time-dependent supermatrix

(2.4. 13) 

2.4 Generalized master equations 
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In the case (2.4.11), Equation (2.4.8) is approximated by the equation with constant 
and constant supermatrix 

This equation, without term 

supermatrix matrix 

sometimes is called the Redfield equation. 

where

Assuming that the Hamiltonian F of thermal bath is diagonal, Eq. (2.2.2), the 

expressions for Eqs. (2.4.16), (2.4.17), can be presented as 

(2.4.18)

(2.4.19)

Thus, we have shown that supermatrix has a limit This limit 
is presented by Eqs. (2.4.15) and (2.4.18), (2.4.19). It should be stressed that this 
conclusion has been reached using the assumption that the thermal bath energy 
operator F is diagonalized, its matrix has the form (2.2.2). 

Of course, the interaction energy G in Eq. (2.1.2) could be absorbed into the 
energy of the dissipative system, with 

(2.4.20)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

bHere <  >  means averaging over the dissipative system (thermal bath) variables. 

0 when

Using Eqs. (2.4.2) and (2.4.12) we can present an explicit expression for the

Quantum theory of relaxation processes 
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(2.4.21)

Using the Nakajima-Zwanzig formalism, the factorization and weak coupling 
approximations, one can obtain equations for [23-25]. There are certain difficulties 
in the application of such equations to the concrete cases. (1) Operator F' is off-
diagonal while operator F is diagonal, (2.2.2). (2) Parameter r, (2.3.13), does not 
appear explicitly in the Hamiltonian (2.4.21), therefore the applicability of the 

Equations (2.4.14 - 2.4.17), (2.4.12, 2.4.13) are also called generalized master 
equations. Equations of these types have been established in the pioneering works of 
Wangsness and Bloch [26]. Bloch [27,28], Redfield [29], Fano [30], and other authors 
[31,32,6] have subsequently given similar theories. In all these papers it is assumed 
that the Hamiltonian of the combined dynamic + dissipative system has the form 

(2.4.22)

where F is a diagonal operator. 
The factorization approximation, which is needed to derive the reduced 

dynamics equations of type (2.4.6), has been justified by the assertion that the deviation 
from the factorized density matrix is a small quantity of order where is the 
parameter characterizing the interaction V. However, when G = 0, the deviation from 
the factorized density matrix has the form according to (2.3.24), and it is not 
small when and 
is small the reduced dynamic equations can be derived. 

2.5 Time convolutionless equations. Argyres and Kelley projection operators 
and reduced dynamics. 

In the previous sections the reduced dynamics equations for were obtained via a 
First, we have used the operator D, (2.1.13), projecting the 

density matrix of the combined dynamic and dissipative system on the diagonal in the 
indices part

(2.5.1)

This operator is inserted into the Zwanzig formalism equations, (2.1.18) and (2.1.19), 
yielding equations for the density matrix At the second stage the factorization 
approximation is applied, and the reduced dynamic equations (2.3.19), (2.4.8), and 
(2.4.14) are obtained, provided conditions (2.3.13) and (2.3.14) are satisfied. 

In a number of works [34-37,23-25] another one-stage projection procedure is 

the equilibrium density matrix of the dissipative system and time-dependent density 
matrix of dynamic system 

being the energy of the dissipative system, and the total Hamiltonian having the form

On the other hand when the parameter r,  (2.3.14), 

employed. The projection operator projecting the density matrix    into the product of 

factorization approximation is not explicit. 

H = E + F + V ,

two-stage procedure. 
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(2.5.2)

has been suggested by Argyres and Kelley [34]. Inserting this projection operator into 
Zwanzig [10,11] - Nakajima [12] equations (2.1.18) we get immediately equations for 

To develop the approximation procedure we have to employ a smallness of a 
certain parameter to get the approximate equations for and verify that corrections 
of the next order approximation are small. 

To exemplify the situation we will introduce a modification of the Nakajima -
Zwanzig [10-12] formalism suggested by Chaturvedi and Shibata [35]. Of course this 
formalism has importance in its own. Chaturvedi and Shibata have developed a 
projection operator approach that leads to the time convolutionless relaxation equation. 
The exact meaning of the words “time convolutionless” will be clear from the 
explanation given below. 

Let the Hamiltonian of the combined dynamic and dissipative system be 
presented by Eq. (2.1.2) 

(2.5.3)

Where

Transforming Eq. (2.1.5), with Hamiltonian (2.5.3), to the interaction representation 

(2.5.4)

one obtains the Liouville equation in the interaction representation 

(2.5.5)

where is defined as 

(2.5.6)

(2.5.7)

Here and further on we omit the index “int”, but the interaction representation is 
expressed by the explicit time dependence of corresponding operators and super-
operators.

Using arbitrary projection operators D and Q = 1-D (which may coincide with 
P, (2.5.2) and Q = (1-P)) and operating on Eq. (2.5.5) with D and then Q, gives the pair 
of coupled equations 

Quantum theory of relaxationprocesses
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where

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

and denotes the time-ordering operator such that time arguments increasing from 
right to left. 

To obtain a time 

to a later time t by 

where

(2.5.12)

(2.5.13)

and
left to right. 

denotes the anti-time-ordering operator such that time arguments increase from 

Substituting Eq. (2.5.12) into Eq. (2.5.10) one obtains 

(2.5.14)

(2.5.15)

Formally integrating the equation of motion for Q (t), one gets

Substitution of Q (t), (2.5.10), into Eq. (2.5.8), yields usual Nakajama-Zwanzig
[10-12], which contains time convolution of D (t) at earlier times.
convolutionless form, one formally solves the equation ofmotion (t), (2.5.5), to relate
  (t) at earlier time 

Solving this equation for Q (t) one obtains
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where

(2.5.16)

where

(2.5.17)

(2.5.18)

(2.5.19)

Equation (2.5.17), as opposed to Eq. (2.1.18), does not contain time convolution of 

time-dependent.
An inhomogeneous term in the right hand side of Eq. (2.5.17) is zero for initial 

subsystems
(2.5.20)

Equations (2.5.17) - (2.5.19) and (2.5.16) are exact. In the weak coupling 
approximation (or the Born approximation) the perturbation expansion of can be 
performed [37] 

where

(2.5.21)

(2.5.22)

(2.5.23)

Finally, substituting Q (t) into Eq. (2.5.8) the convolutionless equation of motion for
D (t) is obtained, it has the form [35]

D (t). Instead, the coefficients of  the inhomogeneous linear equation for D  (t) are 

density matrix Q (0) = 0, i.e. for initially uncorrelated dissipative and dynamic
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Explicit expressions for the first terms of K(t) are [37] 

(2.5.24)

(2.5.2 5) 

(2.5.26)

(2.5.27)

The expressions for the first three terms except the 

As has been mentioned, Eq. (2.5.17) is exact and valid for the arbitrary 

projection operator D will lead to the non-diverging expansions for (2.5.21) and K 
(2.5.25) - (2.5.27). The conventionally accepted Hamiltonian of interacting the 
dynamic and dissipative subsystems does not contain the interaction energy G in 
(2.5.2) and (2.5.3) 

are identical to those for 

(2.5.28)

where V is the interaction energy between the dynamic and dissipative systems and F is 
a diagonalized energy operator. As has been shown in Section 2.4, in the case G = 0, 
the deviation from the factorized density matrix 

(2.5.29)

and can be not small, though 

is proportional to 

how higher order approximation corrections 

formally they are proportional to powers of 
Thus, substitution of the Argyres and Kelley [34] projection operator (2.5.2) 

into equations (2.5.27) - (2.5.18) leads to the Redfield type equations in the lowest 
approximation, while higher order corrections can diverge. To prove this assumption 
we substitute the Argyres and Kelley [34] projection operator P, (2.5.2), into equations 

that has an 
inhomogeneous term 

(2.5.30)

where the approximate equation for up to the second order of has the form 

final D in each term is replaced by Q = (1-D).

(here and further on we put t0 = 0) and is not small. It explains 

projection operator D = D², and Q = 1-D. However, it is not obvious that an arbitrary

H = E + F + V , 

(2.5.17) - (2.5.19) and (2.5.16) (D = P) and obtain a rate equation for
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(2.5.31)

where

(2.5.32)

(2.5.33)

(2.5.34)

Transforming Eq. (2.5.31) out of interaction representation to the Schrödinger 
representation and assuming that asymptotic condition (2.4.11) is satisfied we get the 
Redfield-type equation 

(2.5.35)

and
from Eq. (2.4.8) only by change Matrix elements of operator 
(transformed operator R) are determined by Eqs. (2.4.12) and (2.4.2). It follows from 
the above that the Markovian approximation is achieved provided the weak coupling 
and asymptotic conditions (2.4.11) and (2.4.7) are satisfied. 

To check the validity of Eq. (2.5.35) we have to consider the next order 
approximation. This is done in Appendix B to this chapter. A general conclusion 
following from Appendix B is that the third order correction to the decay supermatrix 
R has the contributions with asymptotic behavior 

(2.5.36)

where is the parameter characterizing the interaction energy V. 

The rationale of their validity is that the next order corrections to the supermatrices R 
and J should have a higher than the second power of This consideration may be true 
if in the higher approximation 

Eqs. (2.5.31) and (2.5.35) are valid up to the second order of the parameter 

the combination 

(2.5.37)

does not appear; it is not small when and

The inhomogeneous terms decayat times (2.4.11). Equation (2.5.33) differs
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The conclusion is that the validity of Eqs. (2.5.31) and (2.5.35) is not proven, 
The ratio since the next order correction to R, (2.5.36), contains the combination 

of to is not small 

(2.5.3 8) 

As a matter of fact, the explanation of the above conclusion is contained in the 
analysis of the preceding section. It has been shown that equations of the type (2.5.31) 
and (2.5.35) can be obtained if the parameter r, (2.3.13), is small. For the Hamiltonian 
(2.5.28), which is the basis of the derivations of the present section, the parameter r is 
not small. It tends to infinity, since the interaction energy G 0. In this case the 
diagonal part of matrix (2.5.29), which is the correction to the factorized density 
matrix (2.3.23), is not small when 

Thus, one should be cautious to jump to the conclusion that the next order 
corrections are small because they are proportional to n > 2. One should check that 
the combinations of the On the other hand the above 
conclusions about divergencies (when G = 0) in the higher order corrections are based 
on the diagonality of the dissipative system energy, (2.2.2). In the general case, when 
F is not diagonal, it implicitly includes the G-type terms. In this case the higher order 
corrections may be small depending on the magnitude of the off-diagonal terms of F. 

type do not appear. 

2.6

Quantum theory of irreversible processes, which has been presented in the previous 
section, is based on the von Neumann equation (2.1.1) of the closed system with 
Hamiltonian (2.1.2). This Hamiltonian describes the system of interest, or dynamic 
system, whose Hamiltonian is E, interacting with the dissipative system - thermal bath 
- with Hamiltonian F + G. Using this approach we succeeded to derive the Markovian 
equation (2.4.14). is usually called the 

Semigroup theory of irreversible processes 

Equation (2.4.14) without the term 
Redfield equation. This equation has certain limitations. 
(1) It has been derived in the weak coupling approximation, using only terms up 

to the second order of the interacting energy V. 
(2) Equation (2.4.14) is valid in the factorization approximation (2.3.17). 
(3) Equation (2.4.14) has been derived in the Markovian approximation. 

There is another approach to the irreversible processes which have been 
developed during the last decades [39-42]. This approach is based on a number of 
properties of time development of the density matrix of the dynamic system, such as 
the Markovian property, and positive definiteness of the density matrix 
Employment of these properties leads to the certain form of the equation for the density 
matrix Interestingly enough this equation is quite general and does not depend 
explicitly on the concrete form of the Hamiltonian of the total system (interacting 
dynamic and dissipative system). 



48 Quantum theory of relaxation processes 

We start from the description of the time behavior of the density matrix 
assuming that the whole system (dynamic and dissipative) has Hamiltonian H. We do 
not assume any restrictions on this Hamiltonian. We assume that we are able to 

(2.6.1)

where Pb is the fixed reference state of the dissipative system (bath). By U we denote 

the unitary operator representing the evolution governed by the 

Then the 

(2.6.2)

of the dissipative 

with matrix elements Then we obtain the following matrix representation of 
(2.6.2)

(2.6.3)

where m, n, k, l are indices of the dynamic system. 
Hence the dynamic map may be written in the form 

(2.6.4)

where acts in the Hilbert space of the dynamic system and 

(2.6.5)

The correspondence between (2.6.3) and (2.6.4) - (2.6.5) is given by 

(2.6.6)

we have 
. First we 

acts

To proceed further and to derive a general form of the superoperator 
to introduce quite an abstract notion of the complete positiveness of 
introduce a superoperator 
on the density matrices). It is clear that 

acting on the operators A of the dynamic system 

(2.6.7)

prepare at time t0 = 0 the initial state of the total system as an uncorrelated product state 

transformation describing a state change of  the dynamic subsystem may be written as 

where trb is a partial trace operation over the quantum numbers 
system. Without loss of the generality we assume that density matrix Pb is diagonal 

0Hamiltonian H of the total system from t  = 0 to a certain t > 0. 
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where tr operation is performed over indices of the dynamic system. It is easy to show 
that operator is given by the formula 

(2.6.8)

Now we discuss necessary mathematical conditions which should be imposed 
on Because maps density matrices into density matrices at different times, 
then must be the linear positive - it transforms positive operators into positive 
ones. Consider now the N-level system with a trivial Hamiltonian H = 0 placed far 
away from our dynamic system. Hence, because both systems do not interact (and they 
are assumed to be statistically independent [43]) then the joint dynamical map in the 
Heisenberg picture must be given by a tensor product acting on the joint 

Hilbert space of the dynamic system and the N-level system. Obviously 

positive for all n = 1,2,.... This is a new condition on which is called complete 
positivity. This condition, which does not have an obvious physical explanation, is 
much stronger than the usual positivity. 

and the quantum 
semigroup property of 

is a dynamic map; it preserves Hermiticity, trace = 1 and is completely 

We assume the complete positivy of the supermatrix 
which is expressed by the following relations 

positive definite. 
a)

should be 

b)
c)

system.
Then it can be proven [39-42] that there exists a linear map L, called a 

generator of a semigroup, such that 

where

and

Similarly for the Heisenberg dynamics we have 

(2.6.9)

(2.6.10)

(2.6.11)

is a continuous function of t for A belonging to the dynamic 
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with A(t) = 

Schrödinger and the Heisenberg picture respectively. 

general form of supermatrices L and 

Equations (2.6.9) and (2.6.11) are called quantum Markovian equations in the

Now, from the complete positivity of and properties a, b and c, follows a 
[41] and corresponding equations of motion 

(2.6.1 2) 

(2.6.13)

where are certain operators in the Hilbert space of the dynamic system. They are 
not necessarily Hermitian. On the other hand H is a Hermitian operator = H, which 
does not necessarily coincide with the Hamiltonian of the dynamic system. 

The semigroup approach to quantum dissipation, pioneered by Lindblad [41] 
provides the most generally allowed form of the equations of motion (2.6.12) and 
(2.6.13) which satisfy complete positivity. On the other hand we have obtained, in the 
weak coupling approximation, Markovian equations (2.4.14) which coincide with 
Redfield equations [29], provided the term 

Pollard and Friesner [44] have shown that if the system-bath interaction is 
written as a sum of products of the dynamic and dissipative system operators and 

is omitted 

respectively

(2.6.14)

then the Redfield equations can be written in the form 

(2.6.15)

where

(2.6.16)

(2.6.17)

and

(2.6.18)
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(2.6.19)

Note the striking similarity [45] between the Lindblad form for the equation of 
motion (2.6.12) and the Redfield equations in the form (2.6.15). However, a closer 
examination shows [45] that the two formulations are, in general, mutually exclusive, 
with the Redfield equations not conforming a completely positive semigroup. It does 
not mean that the Redfield equations of motion cannot preserve positivity for a certain 
subset of initial states. However, positivity cannot be satisfied for all initial states. A 
paper [36] of Suarez et al. provides concrete examples of solutions of the Redfield 
equations which break the positivity; that is, they lead to negative values for population 
probabilities.

The source of this discrepancy is in the fact that the Markovian approximation is 

Markovian Redfield type equations (2.4.14) are not valid. On the other hand, equation 
(2.4.8) with time dependent coefficients is valid in the whole region Therefore, 
solutions of the Markovian Redfield type equation (2.4.14) may violate positive 
definiteness. Initial conditions for these solutions are located at moments where
the Markovian equation (2.4.14) is not valid (see also [36]). In the derivation of the 
Lindblad equations (2.6.12) it is assumed that the Markovian property takes place at all 
times starting from the initial moment. Such an assumption could not be justified on 
the physical basis. In the region close to the initial moment characterized by the 
factorized density matrix (2.6.1) the time dependence is not Markovian. 

The semigroup approach does not employ the weakness of interaction between 
the dynamic and dissipative system. On the other hand it employs property b) of the 
time development 

(2.6.20)

This condition is connected with the validity of the factorization approximation. Using 
Eq. (2.6.2), the action of superoperator can be written in the form 

(2.6.21)

Now let us assume that a condition similar to (2.3.13) is satisfied. Then the 
factorization approximation is valid and the square bracket may be presented as in the 
right hand side of Eq. (2.6.21) 

(2.6.22)

Substituting this expression into Eq. (2.6.21) we get 

valid only asymptotically, (2.4.11),  while the initial conditions are in the region where 



52 Quantum theory of relaxation processes 

(2.6.23)

This equation is equivalent to Eq. (2.6.20). In conclusion, we have to emphasize that 
Eq. (2.6.12) is not self-evident, though it has been derived using quite general 
assumptions.

The weak point of the derivation is the assumption that the semigroup 
property is valid at the whole time interval while is determined by Eqs. 

2.7

Now we will derive conditions under which the equations for the density matrix of the
dynamic system (2.4.14) can be reduced to the conventional master equations. 
Equation (2.4.14) can be rewritten in the explicit form 

Master equations for dynamic systems 

We will transform Eq. (2.7.1) to the interaction representation 

and obtain the equation for 

(2.7.3)

Now we will make the following assumption about the energy spectrum of the 

All the levels of the dynamic system are non-degenerate:
system.
(a)

(b)

(2.7.1)

(2.7.2)

(2.7.4)

where
the order of magnitude 

is the characteristic time of the relaxation of the dynamic subsystem. It has 

(2.6.9,  2.6.10) with time-independent L. 
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(2.7.5)

Equation (2.7.3) contains terms which do not depend on time explicitly (e.g. a 
in the right hand side of (2.7.3)), the so-called secular terms, 

It is easy to show that the contribution 

In this approximation, which is sometimes called a secular approximation, the 

term with 

and rapidly varying terms proportional to 
of these rapidly varying terms is much less than those which are independent of time. 

equations for the diagonal elements 
obtain the form 

(probabilities to find the system in state 

(2.7.6)

Using Eqs. (2.4.15) - (2.4.17) we get 

(2.7.7)

(2.7.8)

Here

(2.7.9)

From the above equations we obtain the master equation for the dynamic system 

(2.7.10)

with the diagonal element of the dynamic system density matrix 

(2.7.11)

If the dissipative system is in the state of thermal equilibrium then 

(2.7.12)

nwhere P is the probability to find the system in the state n. This probability coincides 
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From this expression and Eq. (2.7.9) we obtain the relation between the transition 
probabilities and 

This relation ensures the Boltzmann distribution 

(2.7.13)

(2.7.14)

to be the asymptotic solution 
of the dynamic system 

density matrix may be derived, if one makes an additional assumption about the non-
degeneracy of frequencies 

of the master equation (2.7.10). 
Simple equations for the off-diagonal elements 

and that 

(2.7.15)

Then using the same argument as in the derivation of the master equation 
(2.7.10), we take into account only those terms in Eq. (2.7.3) which do not have 
explicit dependence on time. As a result we obtain 

Here

(2.7.16)

(2.7.17)

(2.7.18)

Since
quantities describe the relaxation time of these oscillations. The first term in the 

pure dephasing occurs even when there is no population relaxation from levels m and 
n.

right hand side ofEq. (2.7.17) is connected with the relaxation ofpopulations of  levels

describes harmonic oscillations between two levels m and n, the

mk and wnkm and n (w ), while the second term describes so-called pure dephasing. The
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We shall now consider two examples: dissipation of the harmonic oscillator and 
of the two level system. The harmonic oscillator has equidistant energy levels and 
therefore it satisfies conditions (2.7.4) if the difference between the levels of the 
oscillator is large enough. On the other hand its eigenfrequencies are degenerate 

and therefore condition (2.7.15) is not satisfied. The two level 
system satisfies both conditions (2.7.4) and (2.7.5) provided the energy difference 
between the two levels is large enough. 

Let us first consider the harmonic oscillator. Dissipation of the harmonic 
oscillator has been considered in Refs. 46-48 and in the most extensive study of Dekker 
[49]. We will present here the derivation of the “master” equation for the harmonic 
oscillator, using the Redfield equation in the form (2.6.15). We assume that the 
interaction energy of the harmonic oscillator with the dissipative system can be written 
in the form 

(2.7.19)

where
the harmonic oscillator 

are operators of the dissipative system while the operator q is the operator of 

and a and are annihilation and creation operators respectively 

and

(2.7.20)

(2.7.21)

are eigenfunctions of the harmonic oscillator. 
Substituting (2.7.19) and (2.7.20) into Eqs. (2.6.15-2.6.19) (and taking into 

account the 

Here, according to (2.6.18 - 2.6.19)

and

(2.7.22)

(2.7.23)

(2.7.24)

(2.7.25)
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Taking into account Eqs. (2.7.20 - 2.7.21) and that the spectrum of the 

(2.7.26)

we obtain 

(2.7.27)

where

(2.7.28)

Thus the equation for the density matrix of the harmonic oscillator interacting 
with the dissipative system has the form 

(2.7.29)

In the above-mentioned secular approximation the terms proportional to 
and aa are neglected and Eq. (2.7.29) obtains the form 

(2.7.30)

The above approximation in which the so-called counter-rotating terms 
and aa are neglected is also known as the rotating wave approximation (RWA). A
more detailed discussion of RWA is performed in Section 5.7. 

It is easy to see that RWA equation (2.7.30) connects diagonal terms with

diagonal terms only. It means that Eq. (2.7.30) is a master equation 
(2.7.10) as far as the diagonal part of the left-hand side of Eq. (2.7.30) is considered. 
On the other hand the off-diagonal matrix elements in Eq. (2.7.30) or (2.7.29) do not 
obey those of type of equation (2.7.16). The harmonic oscillator eigenfrequencies are 
degenerate and do not satisfy condition (2.7.15). 

We now consider equations of motion of the density matrix of the two-level
system. In this case, as in the case of the harmonic oscillator (2.7.29), we can obtain 
equations without assuming the rotating wave approximation [17,18]. Using Eqs. 
(2.4.14 - 2.4.17) we obtain the following equations of motion 

eigenfrequencies of  the harmonic oscillator has the form 
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Here
probabilities per unit time (2.7.9) and quantities R, 

is determined by Eq. (2.4.9), 

(2.7.31)

(2.7.32)

are transition 
by Eqs. (2.4.14 - 2.4.17)

(2.7.33)

It is easy to see that terms with are not secular and can be neglected, provided 

condition (2.7.4) is satisfied. The term is explicitly counterrotating and may also 

coincide with Eqs. (2.7.10) and (2.7.16) with 

(2.7.34)

On the other hand if 
coincide for the two-level system) are not satisfied, then terms with 
essential.

is small enough, and conditions (2.7.4) and (2.7.15) (they 
and are

be neglected if condition (2.7.4) is satisfied. Thus in the RWA Eqs. (2.7.31 - 2.7.32)
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Appendix A. The factorization approximation. 

The term in Eq. (2.3.15) represents a statistical correlation between the 
dynamic and dissipative subsystems. We will show that if this correlation is small [in 
comparison with the first term in the right hand side of Eq. (2.3.15)], then we can get 
the equation for the density matrix only. It is clear from physical considerations 
that very fast relaxation of the dissipative system would destroy the correlation 
created by the interaction V between the dynamic and the dissipative subsystems. 
Substituting the solution 

(2.A1)

we obtain the approximate equations for the correlation amplitudes 

(2.A2)

In this equation we have neglected all the terms proportional to [apart from the 
second sum in the l.h.s. of Eq. (2.A2)]. They are small in comparison with the second 
term in the left-hand side of Eq. (2.A2). These terms are proportional to powers of 
small parameter r, (2.3.14), while the term does not depend on 

this parameter. 

be presented as 
Employing the analysis of Reference 38, the left hand side of Eq. (2.A2) may 

(2.A3)

where

quantum numbers and with fixed indices m,n). The operator 
eigenvalues. The first (smallest) non-zero eigenvalue of operator 
rate Other eigenvalues lead to the fast transient parts of 
relaxation approximation, taking into account only the eigenvalue 
present the solution of equation (2.A2) in the form (assuming 

is the vector and Ã is the operator in Hilbert space (characterized by 

Ã has non-negative

Ã is the relaxation 
In the 

one can 

performing the transformation

in the form (2.3.15) into equation (2.3.11) and
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(2.A4)

where R(t) is the right hand side part of equation (2.A2). 
First, let us estimate the contribution of the first term R(t) in the right hand 

side of equation (2.A2). We assume that decays exponentially, being the 
characteristic decay rate 

(2.A5)

We again assume, as it has been done in the previous section [cf (2.2.31)] that 

(2.A6)

The contribution of other terms may be represented by the second term in the right 
hand side of Eq. (2.A2) - This term has the same order as the sum of the next 
terms. (From the below consideration we will see that the sum over of all the terms 
in the right hand side of Eq.(2.A2), apart from the first term, is approximately equal to 
zero.)

Having in mind the conditions (2.3.13) and (2.3.14) we can present the 
estimate of (2.A4), as 

Starting from small interval 

(2.A7)

(2.A8)

becomes small in comparison with 

(2.A9)

after the initial time t0, the correlation factor 

provided condition (2.3.13) is satisfied. Taking initial time t0 such that 
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one obtains that the factorization approximation 

(2.A10)

(2.A11)

is valid at any time In the general case, the factorization approximation is 
valid at the time intervals (2.A8), provided the condition (2.3.13) is satisfied. Of 
course it does not mean that the Markovian equations (2.4.14) with constant 

In the region equations (2.4.8) with 
time-dependent coefficients take place. 
coefficients are valid starting from t0.
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Appendix B. The third order correction in time convolutionless equations 

A third order correction to the time dependent R-function in Eq. (2.5.30) has the form 

(2.B1)

Here the is defined as 

(2.B2)

This function is similar to function (2.5.29), but it has also off-diagonal

Function coincides with 

the form (with = 0) 
According to Eqs. (2.5.15) and (2.5.23), the second order correction 

(2.B3)

has

(2.B4)

Performing some identical transformations, we can rewrite in the form 

(2.B5)

Here

(2.B6)

elements in Greek indices 
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(2.B7)

It is easy to check that condition (2.3.15) is satisfied and 

(2.B8)

Eqs. (2.B7). 

Eq. (2.B5) and the rest terms in the right hand side of the equation have different time 

(2.B9)

while the rest of the terms in the right hand side of Eq. (2.B5) has the time 
dependencies connected with the mean values 

(2.B10)

We will show now that contains divergent terms of the type 

(2.B11)

In this case the second order approximation, which is the basis of the Redfield type 
equation (2.5.35), is not valid. The next order approximation is not small in the 
case (2.B11) 

The operator R(t), in the interaction representation, may be presented as 

(2.B12)

where operator 

and is determined by Eq. (2.4.2). When 
supermatrix (2.4.1 2). 

(2.B13)

tends to constant 

(2.B14)

bThe trace, (Tr ) of  the first integral in the right hand side of Eq. (2.B5) is zero due to
The trace of the sum of the second and third integrals in the right hand 

side of Eq. (2.B5) is zero due to Eqs. (2.B6).  The first integral in the right hand side of

dependencies. The first integral contains the correlation of  type 

The  integral 
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which appears in the first term of the right hand side of Eq. (2.B5) is divergent when 

(2.B15)

The value of the integral (2.B14) may then be estimated as 

(2.B16)

where n >> 1, and is the correlation time characterizing the correlation 
function while the constant supermatrix is determined by Eq. (2.4.12). 

Matrix elements of operator in the first integral of Eq. (2.B5) cannot cancel the 

divergency (2.B16). 
Eq. (2.B5). 

The second integral of Eq. (2.B5) is the sum of the terms having the form 

This term is diverging 

(2.B17)

if one of the conditions (or both of them) is satisfied 

(2.B18)

Divergencies connected with the second integral of Eq. (2.B5) cannot be compensated 
by the third integral. Only the trace operation 
third integrals of Eq. (2.B5). 

Only the trace (trb) annul the first term in the right hand side of 

btr cancels the sum of the second and 



In this chapter we present a theoretical application of the general formalism developed 
in the preceding chapter. The main subject of this chapter is the interaction of the 
two-state system with a harmonic phonon bath. The two-state system is a dynamic 
system (according to the terminology of the preceding chapter), while the phonon bath 
is a dissipative system. The role of the phonon bath may play the vibrations in 
condensed media or huge molecules. These vibrations have an infinite (in the limit) 
number of degrees of freedom and a continuum spectrum of energies - the continuum 
of frequencies of phonons. The model of the two-state system interacting with a 
continuum of the vibrations, may represent various physical situations, such as 
radiationless transitions in huge molecules, electron and energy transfer, tunneling, and 
other processes in condensed media, such as small polaron motion, group transfer in 
biological systems, etc. Equations of motion of two-level systems in condensed media, 
as well as the calculation of the rate coefficients, are the subject of the chapter. The 
mutual influence of a large number of two-state systems and the vibrations of the 
phonon bath are also analyzed in this chapter. This mutual influence may cause the 
instabilities in the phonon bath. The latter phenomenon, although it has few 

3.1 Description of time-dependent electron-nuclear system in the 
Born-Oppenheimer approximation 

Chemical compounds, molecules - small and large (like proteins) as well as solids - all
of them may be presented as a set of interacting electrons and nuclei. In the non-
relativistic approximation the Hamiltonian of the system of electrons and nuclei can be 
written as 

where T is the kinetic energy of the nuclei 

k

(3.1.1)

(3.1.2)

(3.1.3)
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experimental implementations, is of  theoretical importance. 

k kHere p and q are momenta and coordinates of the nuclei, M are their masses, and 
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is the electronic Hamiltonian which depends on nuclear coordinates q 
is the momentum of the j-th electron, m is mass of the 

electron, are the coordinates of the electrons and represents 
the Coulomb interaction between the electrons and nuclei. 

Due to the fact that the mass m of the electrons is much smaller than masses of
the nuclei Mk it is possible to employ the so-called adiabatic approximation or the 
Born-Oppenheimer approximation [50]. In this method we may approximately 
calculate the electronic eigenfunctions, not taking into account the kinetic energy of 
nuclei, the latter being considered as a small perturbation Describing the electronic 
motion, we assume that it is possible to neglect the motion of nuclei and that the 
electronic eigenfunctions depend on nuclear coordinates as on parameters. Thus in the 
zero approximation 

(3.1.4)

In the adiabatic approximation it is 
assumed also that the nuclear wave functions satisfy the equation 

(3.1.5)

where
electronic motions: 

is the Hamiltonian (3.1.1) of the system averaged over the 

Thus in the adiabatic approximation the nuclear motion is described by the 
Hamiltonian depending on nuclear coordinates and the role of the potential energy is 
played by the total Hamiltonian of the system averaged over the electronic motion. 
The effective potential energy of the nuclei is 

(3.1.8)

and it depends on the electronic state. 
different potential energies. 

as

In different electronic states there are 

The wavefunction of the total system, nuclei and electrons may be presented 

(3.1.9)

in the Born-Oppenheimer approximation
3.1 Descriptionof  time-dependent electron-nuclear system 

0

be assumed that the difference H-H0 is small.) 
(The index “0” shows that H does not necessarily coincide with H. However, it will

(3.1.6)

(3.1.7)



66 Interaction with phonons and molecular vibrations 

In the zero approximation, coefficients do not depend on time. To show the 
validity of the adiabatic approximation we have to show the slowness of the time 
dependence of We substitute (3.1.9), with time-dependent into the 
Schrödinger equation of motion 

(3.1.10)

(The use of the matrix density formalism does not change the results of the derivation.) 
After substitution of (3.1.9) into (3.1.10) we multiply both parts of the 

resulting equation by and integrate over the variables and q. Using 

the orthonormality of these functions and Eq. (3.1.5) we get the equation for 

(3.1.11)

Here

(3.1.12)

and

(3.1.13)

In the case when the electronic eigenfunctions may be chosen real (e.g., in the absence 
of the external magnetic field), the diagonal matrix elements 

(3.1.14)

Operator A with matrix elements (3.1.12) plays the role of the effective interaction 

term of Eq. (3.1.12) is small too. In the case of infinite masses Mk and
the coefficients in Eq. (3.1.9) do not depend on time. 

3.2

One of the important applications of the Born-Oppenheimer approximation is 
connected with the description of the crystal lattice. According to the adiabatic 

Phonons. Phonon-phonon interaction and relaxation 

1The second and third terms of A, (3.1.12), are small due to the assumption that  M  >> 
0m. The smallness of  the first term of (3.1.12) depends on the choice of  Hamiltonian H  

energy. The adiabatic approximation is justified when matrix elements of A are small. 

0in Eq. (3.1.4). In the case when matrix elements of  H-H are small enough the first 
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approximation we can describe the motion of atoms in crystal separately from the 
electronic motion. Thus we can introduce the potential energy of the crystal lattice 
depending only on nuclear coordinates (and electronic states). Having in mind that 
each atom in crystal has its equilibrium position, we can describe the potential energy 
of the crystal by the deviations from their equilibrium positions 

(3.2.1)

Then we can expand the potential of the lattice energy into series of the powers of 
[50] and the Hamiltonian of the system of nuclei takes the form 

(3.2.2)

Quantities are Cartesian components of the displacement (3.2.1) of the k-th
atom in the l-th unit cell, and Mk are masses of the k-th atom. Quantities are the 
generalized force constants. Using the fact that the equilibrium configuration of atoms 
is the periodic structure, one can introduce normal (complex) coordinates 

(3.2.3)

diagonalizing harmonic (quadratic in displacements u) part of the Hamiltonian (3.2.2) 

(3.2.4)

Here is a vector of the polarization of the running wave 
(3.2.3). N is a number of cells in the crystal, and j numerates various branches of 
normal vibrations (acoustic, optical). In these coordinates the Hamiltonian (3.2.3) 
takes the form 

(3.2.5)

where

(3.2.6)
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eigenfrequencies of the lattice are 

(3.2.7)

anharmonic constants are determined by the force constants and function 

or it is one of the vectors of the inversed 

can be expressed through the operators of

is different from zero only if 

andlattice. Operators 

(3.2.8)

(3.2.9)

(3.2.10)

Using the above expressions one gets the harmonic part of the Hamiltonian 
(3.2.2)

(3.2.11)

where

(3.2.12)

is the energy of the phonon, and 

(3.2.13)

is the operator of the phonon numbers. The anharmonic part of the Hamiltonian (3.2.2) 
contains products of the operators a and having more than two factors 

sum of traveling waves (3.2.3). Another possibility is to use the expansion over the 
standing waves. In this case, diagonalizing the harmonic part of the Hamiltonian 
(3.2.2) one gets 

(3.2.14)

In the above consideration the displacement ua(lk), (3.2.4), is presented as a 

creation and annihilation of phonons 
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where k is the set of indices characterizing the vibration of the displacement. 
Hamiltonian of the nuclei presented in the form (3.2.14) may describe not only 

phonons in the crystallic lattice, but the anharmonic vibrations in various electron-
nuclear systems as well. It may, for example, describe the vibrational modes of huge 
molecules. In terms of the creation and annihilation operators and a, we get 

(3.2.15)

and the harmonic part of (3.2.14) has the form 

(3.2.16)

The frequencies of the nuclear vibrations usually have a continuous spectrum and 
therefore the Hamiltonian (3.2.14) can be used to describe the irreversible relaxation 
process towards the equilibrium values of the phonon numbers. The transition between 
various phonon states is caused by the anharmonic terms in the Hamiltonian (3.2.14) 

(3.2.17)

The master equation (2.2.28) describing the relaxation of phonons (or other 
kinds of harmonic vibrations) may be written in the form 

(3.2.18)

The example of the transition probability (per unit time) is

(3.2.19)

The summation (3.2.18) over {n'} is transformed into the integration over continuous 

frequencies

where {n} is the manifold of various phonon numbers 
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3.3 Two-state electronic systems 

In a number of applications, which we will consider below, it is a good approximation 
to consider only two states of the electronic system. In this case, which may be called 
the two-state approximation, we do not need the Born-Oppenheimer approximation; the 
Hamiltonian (3.1.1) can be treated exactly. 

Let us consider an arbitrary two-state system. We introduce the effective spin 
operator 2 3

represents a vector not an ordinary geometrical space, but in some abstract space. The 
components of the vector 

The operator 

are determined by the commutation relations 

(3.3.1)

and the equations 

(3.3.2)

Then in the representation in which r3

(3.3.3)

It is easy to verify that these operators (3.3.3) satisfy the relations (3.3.1) and (3.3.2). 
Conventional 1/2 spin is a particular case of the effective spin, when 

2

two-state system. For this purpose it is enough to see that the group of the linear 
2 3 and the unit operator 

(3.3.4)

has the property that every linear Hermitian operator A relating to a two-state system 
2 3

(3.3.5)

where a, b, c, and d are arbitrary real numbers. The right hand side of (3.3.5) is just the 
representation of an arbitrary linear Hermitian operator of a quantity characterized by 

1[51,21] defined by its three components, r , r , r .

is diagonal, the components ri take the form 

1(r ,r2, r3) = (sx,sy,sz) or 

3We will show that effective spin operators r1, r and r can describe an arbitrary 

may be expressed in terms of these operators r1, r , r , I

Hermitian operators r1, r , r
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two states. Thus the Hamiltonian of the system of nuclei and electrons (3.1.1), can be 
presented in the two-state approximation as follows 

(3.3.6)

Here 1 and 2 designate two states of the electronic system, q is a set of nuclear 

(3.3.7)

2When r3 =

It is worthy to mention again that we do not use the adiabatic or Born-
Oppenheimer approximation in deriving the Hamiltonian (3.3.6). Instead the two- state
approximation is utilized. Only two states of the electronic system are taken into 
account and it is assumed that the influence of other states may be neglected. 

Thus the Hamiltonian (3.3.6) describes the system with two electronic energy 
hypersurfaces

3

(3.3.8)

In order to carry out the analytical description it is widely accepted to use the model in 
2 are sets of potential energies of harmonic oscillators with identical 

frequencies and different equilibrium positions. We extend this model by taking into 

in both electronic states) 

(3.3.10)

These two potential energies may be presented as 

(3.3.11)

1variables, q , q2,..., qN,  and 

1 2n = 1 and n  =  0, while at r = 1 = 0. 

which U1 and U

1 2 Nwhile V(q ,q ,...,q ) is the interaction energy causing transition between these states. 

account anharmonic terms in Eq. (3.2.14) (with identical anharmonic constants Vkk1k2

n = 1 and n
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where U({q}) is the potential energy of the set of interacting anharmonic oscillators 
[Hamiltonian (3.2.5) or (3.2.14)].

The Hamiltonian (3.3.6) obtains the form (using the units Mk = 1)

(3.3.12)

For further application we will transform Hamiltonian (3.3.12) using the well known 
[52] unitary operator 

where

(3.3.13)

is a symbol of the products of k-factors. The transformed Hamiltonian, for 

which we shall preserve its former designation, takes the form 

(3.3.14)

where

(3.3.15)

(3.3.16)

and
Further we will consider a simple case when 

(3.3.17)

and does not depend on q (the Condon approximation). In this case the interaction 
energy takes the form 

(3.3.18)

where

ak are creation and annihilation operators (3.2.15).

V12 = V21 = V , 
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(3.3.19)

For further considerations we will employ Hamiltonian (3.3.14) with the interaction 
energy (3.3.18) 

(3.3.20)

of the dynamic system E is that of a two level (two-state) system 

(3.3.21)

The diagonalized Hamiltonian F of the dissipative system has the form 

(3.3.22)

The interaction Hamiltonian in the dissipative system is 

(3.3.23)

This interaction is the cause in the relaxation of the dissipative system; this relaxation 
is described by the master equation (3.2.18). And finally, the interaction energy 
which is the cause of the transitions between the levels of the dynamic system, has the 
form

(3.3.24)

In the general case (let us say, there is a different set of eigenfrequencies in two 

Hamiltonian (3.3.6) may be taken in the form 

(3.3.25)

This Hamiltonian has the form of  the Hamiltonian (2.1.2) where the Hamiltonian 

1potential energies U and U2) the Hamiltonian (3.3.6) cannot be reduced to the form 
(3.3.20). 1 2Each electronic state has its own potential energy U and U , (3.3.6).   The 
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2 are minima of the potential energies, a nonessential constant term 

is omitted, and are potential energies normalized to zero minima: 

dynamic system, the second and third terms together present the Hamiltonian of the 
dissipative system 

(3.3.26)

where F is the diagonalized part of this Hamiltonian and G the perturbation energy 
giving rise to the relaxation between eigenstates of F. The remaining terms on the right 
hand side of (3.3.25) represent the energy of interaction between the dynamic and 
dissipative system. 

It should be mentioned that the total potential energy 

(3.3.27)

is infinitely large in comparison with the contribution of the two-level system 
which is finite because it is connected with only one degree of freedom of 

the two level system, while the dissipative system has an infinite (in limit) number of 
degrees offreedom. As an example, let us consider the harmonic part of Eqs. (3.3.9) 
and (3.3.10), taking coordinates q such that 

(3.2.28)

Then

(3.3.29)

The third term on the right hand side of Eq. (3.3.29) is finite, while the potential energy 
(a second term in Eq. (3.3.29)) tends to infinity when the number N of oscillators
tends to infinity. If there is no singled out oscillator (like a local vibration), the third 
term in Eq. (3.3.29) can be finite, provided 

(3.3.30)

where J1 and J

Here the first term (in the right hand side) is the Hamiltonian E of the
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3.4

In the huge and medium-size molecules with a large number of molecular vibrations 
(vibrations of the molecule’s atoms) radiationless transitions can take place (without the 
electromagnetic radiation) between electronic states of the molecule. These transitions 
can be described by the Hamiltonian (3.3.20). Such a description (without anharmonic 
terms) was presented in the pioneering work of Lin [53]. It had a remarkable 
development in the works of Jortner, Bixon, Englman and others [54-57]. An extensive 
updated bibliography is given in the review of Bixon and Jortner [58], devoted to 
electron transfer. As a matter of fact electron and energy transfer processes may be 
considered as a specific case of radiationless processes, and they are described by the 
same formalism. 

Electron transfer is one of the important processes going on in the condensed 
media, in general, and in huge molecules and biomolecular systems. Pioneering works 
describing the electron transfer are those of Marcus [59] and Levich [60]. An important 
development of the theory of electron transfer and application is presented in the review 
by Bixon and Jortner [58]. 

Electron transfer. The quantum-theoretical description of the electron transfer was 
given by Levich [60]. Let be the electronic terms, each of which correspond 
to different localizations and of the electron (Fig. 2). Then the transition from 
state and state will be accompanied by the electron transfer from the point (or to 
be exact, from the vicinity of this point) to point 

In the adiabatic approximation the electronic energies essentially depend on the 
nuclear configuration and electran transfer is accompanied by the change of the 
configuration. In the two-state model of section 3.3 two electronic states correspond to 

2

Radiationless transitions. Basic models of electron and energy transfer 

We present here basic models of the electron and energy transfer. 

and

andwhile r3 =

may be a set of positions of nuclei). In this configuration there is a large gap between 
energies and
At a large gap 

(3.4.1)

the tunneling between these states has a very low probability. But when the 

the tunneling will have its maximum value. Thus nuclear motion stimulates the 
electron transfer. In the condensed medium (or the biomolecule) the initial and final 
states (the electron before and after the transfer) are characterized by the electron 

(3.4.2)

1

2

two localizations described by the potential energies U (q) and U (q) in Eq. (3.3.6)

and U ). Why is it necessary that the change of the nuclear configuration should occur? 

1describe two positions of nuclei (in the vicinity of minima of U

(whichLet us look at Fig. 2a, which corresponds to the configuration of nuclei q = q1

1 1(in the two-state model U (q ) is essentially different from U2(q1)).

configuration of nuclei changes from q1 to q0 , Fig. 2c, then the energy gap is zero and

energy  hypersurfaces 
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and energy levels andFig. 2. Potential energies of electron as a function of 
nuclear coordinates. Curves a, b, c, and d correspond to various values of the nuclear 

and on 
nuclear coordinates q. 

Transitions between these hypersurfaces imply the electron transfer. Using the 
potential energies (3.3.9) and (3.3.10) we come to the Hamiltonian (3.3.20) for a 
description of the electron transfer 

(3.4.3)

where is defined by Eq. (3.3.19). 

Energy transfer. The energy transfer between atoms (molecules) embedded in 
condensed media or energy transfer between different subunits of a macro-molecular
framework is of vital importance to diverse fields of research such as sensitized 
luminescence and photosynthesis. Starting from pioneering works of Förster [61] and 
Dexter [62] a lot of theoretical and experimental works devoted to this problem have 
been carried out. However, the aim of this section is to provide basic physical models 
of corresponding processes. 

We want to present the theoretical framework for the description of energy 
transfer in condensed media. The Hamiltonian describing energy transfer between two 
atoms (molecules) embedded in a condensed medium was discussed by Soules and 
Duke [63], Rackovsky and Silbey [64], and Abram and Silbey [65]. We will consider 
the simplified model, taking into account only two levels of each molecule. We neglect 
transitions between energy levels of each molecule and take into account only the 

coordinate q. The lower curve describes dependence of the electronic  energies
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energy transfer process between these molecules caused by the intermolecular 
interaction V (see Fig. 3). In this case the two-molecule system may be in two possible 
states. In state 1, the first molecule is in the excited state, while the second molecule is 
in the ground state. In state 2, the second molecule is in the excited and the first 
molecule in the ground state. Respectively, the eigenenergies of the two-molecule

Fig. 3. Energy levels of two molecules coupled by the interaction energy. 

Using the formalism of Section 3, with travelling wave expansion (3.2.3) of the 
displacement in the system of two molecules we obtain the Hamiltonian 

(3.4.4)

Here G is the anharmonic part of the potential energy, containing the sum of the terms 

of the type,

where and

(3.4.5)

(3.4.6)

are coordinates of two molecules in the dimer (two molecules) 

(3.4.7)

Quantities and are the constants of the electron-phonon coupling in the excited 

and ground state of the i-th molecule respectively. These constants are connected with 

the equilibrium oscillator coordinates appearing in Eqs. (3.3.9 - 3.3.12)and

(3.4.8)

system are E1 and E2.  
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(3.4.9)

Thus we see that Hamiltonian (3.4.4) is isomorphous to that of (3.4.3) describing the 
electron transfer. Of course the Hamiltonian (3.4.4), as well as (3.4.3), are isomorphous 
to the general form of the Hamiltonian (3.3.20), describing radiationless transitions in 
general.

Temperature dependence of the energy transfer rates in various temperature 
regions, starting from T = 0 till very large temperature is given in paper [66]. 

3.5

The Born-Oppenheimer approximation (see section 3.1) gives the possibility to 
understand the essence of chemical transformations and other processes, including 
those occurring in condensed media. According to this approximation, the motion of 
nuclei, atoms and molecules may be described by the effective potential energy 

Tunneling in the condensed media 

averaged over electronic eigenstate see (3.1.8)). 
We consider here a quite general model [67] which may be appropriate for the 

description of proton transfer, nuclear group transfer, electron transfer accompanied by 
the transfer of nuclear groups, and other rate processes in condensed media. These 
transitions may occur between two intersecting potential energies belonging to different 
electronic states (Fig. 4). These processes are called non-adiabatic transitions. 

On the other hand, all above processes may have taken place on the same 
electronic state: transitions between two minima of the same potential energy 
(belonging to the same electronic state (Fig. 5).

These processes are called adiabatic processes. In the Born-Oppenheimer the 
Hamiltonian describing adiabatic transition processes may be presented in the form 

Fig. 4. Two intersecting potential energy curves (hypersurfaces). Non-adiabatic case. 
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states in these wells. are energy level differences in the first and second well 

2

and

(3.5.1)

Here Q is the set of coordinates of the singled out modes subsystem interacting with its 
surrounding - dissipative system, thermal bath. T and U are kinetic and potential 
energies of the nuclear subsystem; the third system in the Hamiltonian (3.5.1)
describes the condensed medium in the harmonic approximation, while G(q) describes 
its anharmonic part. The last term is the interaction energy between the nuclear 
subsystem and the condensed medium, the only assumption about this interaction is that 

medium are small enough. 
The potential energy U is supposed to have two minima (Fig. 5) corresponding 

to two (quasi) stable configurations of the nuclear subsystem. The condition of the 
(quasi) stability of the configurations is that they are divided by a barrier which is 
sufficiently large (high and wide), such that the duration of transition between two 
minima is much smaller than the period of the oscillation in each of the wells. The 
transition from one configuration (Fig. 5) (potential well 1) to another (potential well 2) 
may occur in two ways: ( 1 ) tunneling through the potential barrier, and (2) overcoming 
the potential barrier by thermal fluctuations induced by the vibrations of the thermal 
bath. Here we will explore the first possibility, i.e. the tunneling. 

We would assume that only two low-lying levels of the subsystem are essential, 
2

possible to neglect excitations to other levels. It may mean that the temperature of the 
thermal bath is small enough 

(3.5.2)

Fig. 5. Theadiabatic energycurve (hypersurface) withtwo potential well. E1 and E2 ground

2respectively. a1, b1 , a and b are the turning points.

kit is linear in the coordinates q , i.e., the excitations of the surrounding condensed 

in each well (with a sufficiently large potential barrier) and it isi.e. two levels E1 and E
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where is the characteristic energy difference between the next higher level of the 

section (3.3)). (The finite temperature case has been considered by Dekker [68,69].) 
The Hamiltonian of the two-state nuclear system without thermal bath, may be 

presented in the form (3.3.5) 

(3.5.3)

2

are the matrix elements of the effective perturbation energy, causing the tunneling 
between states 1 and 2 . It has been shown [67,18] that the effective perturbation energy 
matrix elements for the one-dimensional case in the mixed semiclassical, ground state 
approximation has the form (see Fig. 3.4) 

and

(3.5.4)

where and 
E2 the parabolic approximation is a good one. Therefore the potential energies may be 
described by frequencies In Eq. (3.5.4) 

(3.5.5)

where
practically unachievable. 

form

2

In the general case it is reasonable to assume that the matrix elements V have the 

where the effective parameter 
(3.5.4),

(3.5.6)

has the order of magnitude of that appearing in Eq. 
and the parameter is assumed to be much larger than unity 

(3.5.7)

Now let us consider the time-dependence of the density matrix of the system 
described by the two-state Hamiltonian (3.5.3). In the site representation (in which the 
system is either in the left or right potential well) the time dependence of the density 
matrix has the form 

(3.5.8)

1 ± 12 21

are frequencies characterizing wells 1 and 2. For ground states E1 and 

 In the case when E1  substantially differs from E , the tunneling is

1first (second) well and E (E2). In this case we are dealing with a two-state system (see 

Vwhere operators n , n , r are defined by Eqs. (3.3.7), (3.3.1) and (3.3.2), and V   ,



where

difference

where

3.5 Tunneling in the condensed media 81

Performing simple manipulations we get for the population 

Equation (3.5.11) has a general solution 

then

while

In the case of the symmetrical two-well potential energy 

(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)

(3.5.14)

(3.5.15)

(3.5.16)

(3.5.17)

Eqs. (3.5.15 and 3.5.16) describe so-called quantum beats between two potential wells. 
Now, taking into account the interaction with the dissipative system (the phonon 

2 of the nuclear subsystem, the 
Hamiltonian (3.5.1) of the whole system may be presented in the form 

(3.5.18)

the equation 

Ifat the initial time t = t0 the elements of the density matrix are 

bath) and taking into account only two levels E1 and E

(3.5.9)

= 0 
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where the matrix elements are taken with the aid of the eigenfunctions 

system (including the anharmonic phonon bath) takes the form 

and

(3.5.19)

where

(3.5.20)

(3.5.21)

(3.5.22)

and Q = {Q1,...,Qn}. 

approximation) it is easy to see that the Hamiltonian (3.5.19) is identical with 
2

also, that Hamiltonian (3.5.19) is isomorphous with those describing radiationless 
transitions in general and the electron, (3.4.3), and energy, (3.4.4), transfer, in 
particular.

3.6 Equations ofmotion of the two-state electronic (nuclear) system interacting 
with vibrations of the medium 

The result of the preceding sections shows that such versatile processes as radiationless 
transitions in huge molecules, the electron transfer in condensed media, the energy 
transfer and others can be presented by the Hamiltonian (3.3.20). This Hamiltonian 

(3.6.1)

interacting with the system of anharmonic oscillators (3.3.22) and (3.3.23) 

(3.6.2)

Thus, the effective Hamiltonian of  the whole with eigenvalues E1 and E2 .

Apart from the terms V12k , V (which are neglected in the Condon 

1Hamiltonian (3.3.6) with U and U determined by Eqs. (3.3.9) and (3.3.10). It means,

2k

describes the two-level system 



3.6 Equations of motion of the two-state (nuclear) system 83

with the specific kind of the interaction energy, (3.3.18), 

(3.6.3)

where

(3.6.4)

are the equilibrium positions of two electronic hypersurfaces (3.3.9 -and
3.3.1 1). 

The time development of the above mentioned processes, such as electron 

(3.6.5)

(3.6.6)

Here, (2.4.13) 

(3.6.7)

where G is the anharmonic part of the Hamiltonian, (3.6.2), the averaging <...> is 

(2.7.9), while the quantity R is determined by Eq. (2.7.33). In the specific case of the 

interaction (3.6.3) and using the definition of (2.4.4), we get expressions for the rate 
coefficients

(3.6.8)

(3.6.9)

transfer, etc., is described by the equations (2.7.31,  2) of the two state system 

12performed over the states of the dissipative system and w , w21 are determined by Eq. 
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(3.6.10)

It has been mentioned at the end of Section 2, Eq. (3.3.30), that 

same refers to 
In this case (in the limit 

transformed as follows (see Eq. (3.3.19) 
the product in the integrand (3.6.8) may be 

Here we have assumed that in the equilibrium state of the dissipative system 

and the 

(3.6.11)

(3.6.12)

We have also used the explicit time dependence of operators 

(3.6.13)

Using Eq. (3.6.11) and Eqs. (3.6.8), (3.6.9) and (3.6.10), we get 

(3.6.1 4) 

(3.6.15)

(3.6.16)
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and

(3.6.17)

Here

(3.6.18)

are equilibrium phonon occupation numbers and is defined by Eq. (3.6.4). In the 

derivation of these equations the smallness of 
however, the same relations can be achieved when the averaging is performed over 
the thermodynamic equilibrium. 

the integrands (3.6.14 - 3.6.16).
expressions (3.6.14 - 3.6.16) when 

has been employed, 

This factor eliminates the singularities in the 

It is worthwhile to mention that equations (3.6.5) and (3.6.6), apart from the

term with R*, coincide with the Bloch equations [26] for spin in the external field, 

representing the interaction energy with this field. The term with R* is essential in 
1 2 when conditions of the (2.7.4) type are not 

while in the usual Bloch equations such transformation does not exist. In 
the case 

(3.6.19)

which corresponds to conditions (2.7.4) and (2.7.15), the equation (3.6.5) obtains the 
form

(3.6.20)

which coincides with the master equation for the two-level system. In this case, Eq.
(3.6.6) can be approximated by equation (2.7.16) for the two level system. In the latter 
equation the transformation 

3.7 Calculation of rate coefficients

The transition probabilities (3.6.14), (3.6.15) and parameter R, (3.6.16), are rate 
Coefficients of the equations (3.6.5) and (3.6.6). Now we will try to perform a general 

is neglected. 

12, w21 and R contain the compensating factor -1 in 

fulfilled. The meaning of the terms with R*in equation (3.6.6) is the transformation 

The transition probabilities w

and Jthe case of almost degenerate levels J
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analysis of these quantities in various regions of their parameters. As we know from 
the general theory (Chapter I, section 7) the transition probabilities per unit time can be 
determined only for the systems with continuous spectra. More than that, it has been 
shown (section 1.8) that the continuous spectrum of energies is a necessary condition of 
the irreversible motion in general. It means that the sum (3.6.18) can be transformed 
into the Fourier integral 

Here we have introduced the following designations 

where is the frequency distribution function 

a is the maximum frequency of the vibrational spectrum, 

and
equilibrium

is the average number of phonons with frequency 

For negative frequencies we define 

(3.7.1)

(3.7.2)

(3.7.3)

in the case of thermal 

(3.7.4)

(3.7.5)

In the case of thermal equilibrium, (3.7.4), we have for negative frequencies 

(3.7.6)

Thus in the general case, taking into account definition (3.7.5), or the equilibrium case 
(3.7.6), we can use the distribution (3.7.2). 

12

reduced to the calculation of the integral 
The calculation of transition probabilities w and w21, (3.6.14), (3.6.15), may be
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(3.7.7)

(3.7.8)

Integral (3.7.7) has a typical form suitable for the calculation by the saddle point 
method (see, e.g. [71]). According to this method, the exponent in (3.7.7) should 
contain a large factor. Later on we will clarify what this means. If this factor tends to 
infinity, the integral (3.7.7) has the asymptotic representation 

(3.7.9)

complex region. The saddle points satisfy the equations 

(3.7.10)

The saddle point method is based on an expansion of the exponent 
vicinity of the saddle point 

in the 

(3.7.11)

term in (3.7.11) gives an essential contribution to the integral 

(3.7.12)

the next terms of the expansion of the function should be small: 

0where z are all saddle points along the integration contour, (3.7.7), shifted to the 

0up to terms of second order in (z-z ). This means that in the region where the second

(3.7.13)
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(3.7.14)

Just these conditions determine a large dimensionless factor which is necessary for the 
application of the saddle point method 

Now we will analyze integral 
complex region 

Eq. (3.7.10) takes the form 

or

(3.7.15)

We will consider the case corresponding to small 

in various limiting case [72,18]. In the 

(3.7.16)

(3.7.17)

(3.7.18)

(3.7.19)

(3.7.20)

(3.7.21)

In this approximation we find from (3.7.18) and (3.7.19) the equations determiningx0

and y0
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(3.7.22)

Formulae (3.7.8), (3.7.9), (3.7.21) and (3.7.22) determine the integral (3.7.7) in 
Generally speaking 

(3.7.9). Apart from exceptional cases, the summation over an infinite number of saddle 

condition under which the main contribution to the integral (3.7.9), comes just 

This condition can be written in the form 

This condition is consistent with the 
The

(3.7.23)

(3.7.24)

(3.7.25)

Provided all these conditions are fulfilled, the expression for the transition 
probability obtains the form [see (3.6.14), (3.7.7), (3.7.8), (3.7.9) and (3.7.22)]

(3.7.26)

This formula can be expressed as the Arrhenius law 

0 0

the saddle point approximation and the approximation (3.7.20).

points z0 cannot be performed in an analytical way.   This is why it is important to find a 

there are an infinite number of saddle points x ,y t hat give contributions to the integral

0saddle point x  = 0 takes the form 
0from one saddle point (particularly x  = 0). It is easy to show that the condition of one

where x0 is a non-zero root of  Eq. (3.7.21).
inequality (3.7.15) determining the applicability of the saddle point method.
condition of our approximation (3.7.20) can be deduced from Eq. (3.7.22)
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(3.7.27)

where the activation energy equals 

(3.7.28)

difference between minima of two potential wells (3.3.9) and (3.3.10) 

(3.7.2)

Relation (3.7.27) is valid in the high temperature region 

(3.7.29)

(3.7.30)

(3.7.31)

It can be shown that at high temperatures (3.7.31), relation (3.7.25), obtains the form 

(3.7.32)

which may be satisfied provided the difference of the energies is not very large. 
Eq. (3.7.27) has been obtained by Levich [60] from his quantum theoretical treatment 
of the electron transfer. 

Expression (3.7.27) for the transition probability depends only on the integral 
(3.7.30) or the sum, (2.7.29), over vibrational degrees of freedom of the Hamiltonian 
(3.3.14). This situation seems at first sight to be strange. Even if there is one or several 
vibrational degrees of freedom, one obtains a finite expression (3.7.27). As we know 

probabilitiy has a dependence on the energy of the system. The paradox is 
resolved if we take into account that for a very narrow energy spectrum condition 
(3.7.24) is not fulfilled. This means that many saddle points contribute to the sum. 
Thus in the case of one degree of freedom the number of saddle points that gives the 
same contribution tends to infinity, and expression (3.7.27) is not valid any more. 

and Er is the so-called reorganization energy, which provides a measure of the 

(The transition probability w21 is obtained by interchanging 

reorganization energy is expressed through function

The

(1.7.22), (1.7.23), in the case of, let us say, one degree of freedom, the transition 
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This circumstance that there are saddle points with which may give a 
substantial contribution to the integral is not always taken into account. Therefore 
we will dwell upon this point in some detail [18]. Let us consider two models of the 
vibrational frequencies distribution. One of them is the Debye frequency distribution 

(3.7.33)

In this case it can be shown that the equation for the saddle points 

(3.7.34)

In the Debye model, [18], 

and in the high temperature approximation, (3.7.31) 

(3.7.35)

(3.7.36)

It follows from (3.7.34) that at 

(3.7.37)

(3.7.38)

gives the main contribution to the integral (3.7.9).
Now let us consider the Einstein model in which the vibrational frequencies are 

located in a narrow region near some eigenfrequency 

(3.7.39)

It should be mentioned that at We assume that 

The condition of one saddlepoint (x0 = 0) applicability, (3.7.24), takes the form 

Therefore, at high temperatures, and the Debye model (3.7.33), the saddle point x0 = 0
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(3.7.40)

This model may be suitable for the description of optical phonons. Let us investigate 
saddle points using equation (3.7.21). For it follows from equation 
(3.7.21) that 

(3.7.41)

This equation has roots 

(3.7.42)

Thus, as we mentioned above, there are infinite numbers of saddle points giving the 
same contribution to the integral (3.7.9), and equation (3.7.27) is not valid in this case. 
It is clear that the Markovian equations (3.6.5) and (3.6.6) cannot be used either. The 
Markovian approximation cannot be satisfied since the condition (2.4.7) is not fulfilled 

(3.7.40). In this case we assume (instead 
of (3.7.42)) that 

Now we consider finite, but small 

(3.7.43)

(3.7.44)

According to (3.7.39) and is much larger than unity, 

account) even when is small. On the other hand, if (3.7.44) is not satisfied, Eq. 
(3.7.27) cannot be used in the Einstein model; many saddle points contribute to the 
integral (3.7.9). 

is finite when 

3.8 The energy gap law 

Now we examine another limiting case in which the saddle point method may be 
applied. This case corresponds to large energy gaps 

(3.8.1)

and a large parameter appearing in the saddle point method is 

[18] we obtain a relation in the lowest power of
0We substitute x (with  k = 1) into relation (3.7.24). Taking into account that 

0(3.7.15). Thus (3.7.44) may be satisfied (i.e. only one saddle point x  = 0 is taken into
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(3.8.2)

Performing the integration by parts, one obtains from (3.7.18) and (3.7.19) equations 
accurate up to terms of order 

Solving approximately these equations and using condition (3.8.2) we get 

We see that in this case many saddle points contribute to the integral (3.7.7) and 
(3.7.9). Calculating the exponent and we get (neglecting terms of the 
order

(3.8.3)

(3.8.4)

(3.8.5)

(3.8.6)

(3.8.7)

(3.8.8)

First, we will examine the contribution of the zero saddle point 

(3.8.9)

(3.8.10)

where

(3.8.11)

x0 = 0; k = 0 , 
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From Eq. (3.7.9) and Eqs. (3.8.7 - 3.8.11) we get an expression for the integral 
(3.7.7)

(3.8.12)

Using this expression, the definition of 
following expression for the transition probability 

and expression (3.6.14), we get the 

transition When 
possible even at zero temperature 
multiphonon spontaneous process 

and respectively (for 
the transition from state 1 to state 2 is 

The transition is performed as the 

(3.8.14)

On the other hand, when 
as the multiphonon, induced by phonons, 

then transition from J1 (< J2) to J2 can be performed 
process. In this case 

In the expression (3.8.13) we have neglected the term 
than

For the Debye model (3.7.33)

(3.8.15)

since it is much smaller 

(3.8.16)

while for the Einstein model, (3.7.39)

(3.8.17)

Expression (3.8.13) of the energy gap law has been obtained by Englman and Jortner 
[41]. However, in some different form such an expression is contained in the work of 
Lin [53].

Now, we will clarify the validity conditions of expression (3.8.12). As we know 
the saddle point method may be applied provided conditions of (3.7.13) and (3.7.14)

(3.8.13)

Here the “-” and “+” signs correspond to 
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type are fulfilled. 
conditions (3.7.13) and (3.7.14) are satisfied if 

Calculating higher derivatives of one can verify that 

(3.8.18)

This condition coincides with relation (3.8.1) which is assumed to be satisfied. 

be written, according to (3.8.5), in the form 
Another condition (3.8.2), which has been used in calculating the integrals, may 

(3.8.19)

Before proceeding further, an important comment should be made. We have 
approximately calculated (3.8.5), assuming that condition (3.8.19) is satisfied. 
Solving approximately Eq. (3.8.3) we get that each consecutive correction has the form 

But one should All these quantities are much smaller than 
where they are multiplied remember that these quantities stand in the exponent 

by
factor of the order of magnitude 

Therefore the next order correction leads to the multiplication by the 

(3.8.20)

Because of the assumptions (3.8.18) and (3.8.19), correction (3.8.20) essentially 
changes

In our approximation the integral (3.8.12), has been calculated with the so 
called logarithmic accuracy. It means that the exponent index has been expanded 
into a series in which each consecutive term is much smaller than the preceding one, 
and only the first leading terms were preserved. But since the corrections in the 
exponent (their absolute values) are larger than unity, the corrections to a preexponent 
factor are not small. The same refers to other saddle points with All of them 

It
means that the saddle point method is not appropriate for the calculation of the integral 

in the limit, (3.8.18), (3.8.19). In this case an alternative method of the integral 
equation [73] has been proposed. 

An integral equation may be derived for the integral (3.7.7) and (3.7.8) 

(3.8.21)

have the same order of  magnitude as I(x0 = 0). But since they are calculated only with 
the logarithmic accuracy the summation over all saddle points z0 makes no sense.
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determining transition rates (3.6.14) and (3.6.15). Performing integration by parts in
the expression (3.8.21) and taking into account that in any physical situation with 
continuous spectrum of vibrational excitations 

(3.8.22)

we get 

(3.8.23)

This relation constitutes the integral equation for the non-radiative transition rates as 
functions of the differences of energies 

(3.8.24)

According to Eqs. (3.6.14) and (3.7.1) the transition rate may be expressed through the 
quantity as follows 

(3.8.25)

Generally contains a singularity (the first term of the expansion of the first 
exponent (3.8.21) or in (3.6.14)) at = 0. This singularity is canceled by the 
second term in (3.6.14) and (3.6.15) (which equals In the approximations 
we are considering in sections 6-8, this singularity does not appear. Therefore we 
present the transition rate in the form (3.8.25). 

A simple derivation of the functional dependence (3.7.26) on may be 
performed directly from the integral equation (3.8.23). For this purpose one should 

in the integrand up to the first order terms expand

(3.8.26)

and to substitute for the r.h.s. of Eq. (3.8.23). As a result we obtain the differential 
equation

The solution of this equation has 
derivation of (3.8.27) is 

(3.7.26)

(3.8.27)

A condition of 
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(3.8.28)

which coincides with (3.7.25), or (3.7.32). 
In the case of large energy gaps (3.8.1) or (3.8.18) and large parameters 

(3.8.19), the situation is more complicated. As a matter of fact we have failed to derive 
the expression for “the energy gap law” (3.8.13). The integral (3.8.12), has the 

However, it has been shown that the 
contribution of the other saddle points is not negligible. Thus expression 
(3.8.13) has not been proven, even with the logarithmic accuracy. 

The integral equation (3.8.23) gives us the possibility to check the validity of the 
expressions (3.8.12) and (3.8.13) (with logarithmic accuracy). Thus we assume that 

(3.8.29)

We keep only the leading term in the exponent, (3.8.12), substitute (3.8.29), into 
the integral equation (3.8.23) and assume that conditions (3.8.18) and (3.8.19) are 
satisfied. Then neglecting the second order terms we obtain 

Taking a logarithm of two parts of the Eq. (3.8.29) we get 

where
(3.8.31) may be neglected. Thus the 
energy gap law has been proven in the form (3.8.29) 

(3.8.30)

(3.8.31)

is defined by Eq. (3.8.11), and the second and third terms on the r.h.s. of Eq. 
and correspondingly the of

contribution of only one saddle point, x0 = 0. 
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(3.8.32)

For the Debye model, (3.7.33), we get 

(3.8.33)

and for the Einstein model, (3.7.39), we obtain 

(3.8.34)

2 2

mainly coincide with the energy gap law [57]. 

98.8 Mutual influence of the dynamic and the dissipative systems. Instabilities 
in thermal baths. 

In the theory of relaxation processes we have two interacting systems: the dynamic 
system, or the system of interest and the dissipative system or thermal bath. It is 
conventionally assumed that during the process of the relaxation, the thermal bath 
preserves its state of thermal equilibrium. All the relaxation characteristics, such as 
relaxation times, reaction rate constants, particle free path lengths, etc., are calculated 
as functions of the bath temperature. 

To be specific, let us consider a spin in an external magnetic field interacting 
with crystal lattice vibrations - a phonon bath. The question arises when and under 
what conditions the dynamic system (a spin in our example) may be described by the 
equations containing the variables (the spin components) of the subsystem only. The 
answer to this question depends on the relation between the relaxation times of the spin 
system and that of the dissipative system (the phonon bath) - If the 
relaxation of the dissipative system, e.g., due to anharmonic interactions among 
phonons, is much faster than that of the dynamic system (2.3.13), 

(3.9.1)

where the - and + signs correspond to J1 < J and J1 > J , respectively. The coefficient 
k  remains an undetermined constant in this derivation. It is clear that these expressions 
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then the dissipative system very quickly reaches its equilibrium even if it was not 
initially in the equilibrium. In this case the equations of motion containing the spin 
variables only have been derived (2.3.19). The derivation is based on the smallness of 
the correlation function (2.3.15), which in its turn depends on the fulfillment of 
condition (3.9.1). 

The above derivation, section 2.3, is based on the tacit assumption that the spin 
system does not affect the rate of relaxation (or change in general) of the phonon 
system. Let us suppose that there is only one spin interacting with the phonon bath, 
which has a very large (infinite in the limit) number N of degrees of freedom. It is 
obvious that this spin has a negligibly small (1/N) influence on the rate of change of the 
phonon system. However, the model of one spin in the infinite phonon bath is by no 
means a realistic one. Usually there is a concentration of spins, i.e., which is 
finite even when N,
can neglect the influence of spins on the rate of change of the phonon numbers. It is 
not obvious either that the phonon bath will be stable during the process of the 
relaxation, and, as we will see later on, instabilities may arise in the phonon system. 

We will now consider a system of spins (or other dynamic systems). Such a 
system may have a continuous spectrum of energies. In our example spins may have 
an inhomogeneous broadening of spin frequencies. The spin of a paramagnetic atom 
has a definite frequency determined by a crystalline field and an applied constant field. 
However, the spin-spin interaction will introduce a fluctuating effective magnetic field 
acting upon each atom, which is superposed upon the applied field, and which has a 
continuous distribution of magnitudes. Let us designate the width of this frequencies 
distribution by while the characteristic frequency width of the dissipative system is 

Now we can use the formalism presented in section 2.1. The Hamiltonian of the 
whole system may be presented in the form (2.1.2) 

(3.9.2)

where E is the Hamiltonian of the spin system, F is the Hamiltonian of the phonon bath 

(3.9.3)

are the k-th phonon frequencies, nk - the phonon numbers, V is the spin-phonon
interaction, and G is the perturbation energy causing transitions between various 
phonon states (e.g., the anharmonic part of the phonon Hamiltonian (3.2.14)). We 
designate the total perturbation energy as 

(3.9.4)

Assuming fulfillment of the (2.2.22) type conditions 

(3.9.5)

In this case it is not obvious, at least a-priori, that one

H = E + F + V + G = H0 + V + G , 

U = V + G . 



100 Interaction with phonons and molecular vibrations 

we obtain equation (instead of (2.2.28)) 

(3.9.6)

Here
system state, and 

is the probability of the state - is the phonon state, n - is the spin 

Assuming that the diagonal in spin indices m,n matrix elements are 

we obtain instead of (3.9.6) the following equation 

where is determined by Eq. (2.2.27). 
We will look for solutions of Eq. (3.9.9) in the form 

Substituting these relations in the r.h.s. of Eq. (3.9.9), performing the summation over 
and then over n we get 

where

(3.9.7)

(3.9.8)

(3.9.9)

(3.9.10)

(3.9.11)

(3.9.12)

(3.9.13)

and
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(3.9.14)

Equations (3.9.11) and (3.9.12) are equations of motion of interacting spin-
phonon systems. As opposed to the system with one spin, the time development of the 
phonon subsystem probabilities distributions 
(anharmonic interactions between phonons), but also by the interaction with the spin 
subsystem.

A certain remark has to be made about the validity of Eqs. (3.9.11) and (3.9.12). 
A representation of as a product of density matrices of the spin and phonon 
subsystems is a kind of the “mean-field” assumption. Usually such an assumption is 
justified if one can neglect corresponding fluctuations (see e.g. [74]). In our case it 
means that the correlations (2.3.15), are neglected. As it has been in the 
near-equilibrium case, the correlations can be neglected provided 
condition (2.3.13) of the fast relaxation of the dissipative system is satisfied. One may 
expect that “the mean-field approximation”, (3.9.11, 3.9.12), is valid for 
time-dependent if condition (2.3.13) is satisfied. It has to be mentioned that 
(3.9.11) and (3.9.12) type equations (without the last sum in the r.h.s. of (3.9.12)), were 
suggested by Lax [75] in 1966. 

From the master equations (3.9.11) and (3.9.12) one can derive [76] relatively 
simple equations for the mean values of phonon numbers 

is determined not only by 

(3.9.15)

excited states of the j-th spin 

(3.9.16)

(3.9.17)

in Eqs. are explicit expressions for and
(3.9.11) and (3.9.12). 

This model is 
supposed to describe an ensemble of two-level systems embedded in the phonon bath. 
The differences of the energies between upper and lower levels are assumed to be 

We consider a specific and relatively simple model [76]. 

quasicontinuously distributed over a certain energy band with a characteristic 
bandwidth The phonon frequencies are distributed over the phonon zone with a 

characteristic bandwidth, The model Hamiltonian of such a system may be chosen 
as

and for the mean values of the differences of the populations nj between ground and 

where P(...,nq,...) and 
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(3.9.18)

are the creation and annihilation operators of phonons with energies Here

2

real spins they coincide with the projections of spin 

Equations for the mean values and take the form 

(3.9.19)

(3.9.20)

phenomenological constant, reflecting the relaxation described by the last term in the 
r.h.s. of Eq. (3.9.12)), and 

(3.9.21)

the forthcoming analysis.) As has been mentioned above (in the beginning of the
section), in the case of a finite concentration of spins (as opposed to one spin), these 
spins can give a finite contribution to the relaxation rates of phonons. This contribution 
is presented by the first term in the r.h.s. of Eq. (3.9.20). For one spin the contribution 
of this term is infinitesimally small. 

The conventional assumption that spins do not influence the phonon relaxation 
is valid provided 

(3.9.22)

On the other hand, if factor 

(3.9.23)

one cannot neglect the influence of the spin system on the rate of change of phonon 
numbers. In this case the joint system of equations (3.9.19) and (3.9.20) determine 

and

operators on the axis x, y, z. 

are the effective spin operators (3.3.1), (3.3.2) and (3.3.7). In the case of3r , r±  = r1 ± ir

qwhere W  is the relaxation rate towards the thermal equilibrium (this quantity Wq  is the

relaxation of  both 

q(The simplified form of  the relaxation term W , in the r.h.s. of (3.9.20), does not affect 
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assume that there exists a small perturbation in some mode of the phonon bath. 

Under certain conditions this small perturbation of the phonon bath begins to rise 

exponentially. It is easy to see from Eq. (3.9.20) that the condition for the instability 
has the form 

(3.9.24)

We see that the instabilities in the phonon bath arise provided there is inversion of the 
spin population 

(3.9.25)

(In the thermal equilibrium 

through

On the other hand, if 

Of course, condition (3.9.24) depends on time 

The instability exists only at time intervals satisfying (3.9.24). 

is sustained by some external source (like a maser), then 

increases exponentially until the steady state is reached. This steady state may be 

similar to that achieved in quantum oscillators - it may be determined by the 

Let us analyze condition (3.9.24) (or, more generally, condition (3.9.23)). For 
this purpose we introduce parameters 

which is the spin relaxation rate, and 

which is the rate of the phonon relaxation due to the interaction with spins. 
We assume that the mean values 

(3.9.28)

and
respectively

(3.9.26)

(3.9.27)

are the frequency distributions of phonon and spin frequencies, 

(3.9.29)

anharmonicity of the bath vibrations. 

The spin system may also cause the instability in the phonon system. Let us
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(3.9.30)

Here N and Ñ are numbers of phonon and spin degrees of freedom, respectively. 
Using these designations we can rewrite the condition (3.9.24) in the form 

(3.9.31)

where is a certain mean value in the sum (3.9.24). This condition has a quite 

obvious interpretation. The expression is the effective number of 

is the rate of energy input in the 

is the rate of output of the energy from the mode q 
(with to all other modes via the mechanism described phenomenologically by 

output.
We assume the Debye model for the phonon frequency distribution 

(3.9.32)

and the Einstein model for the spin frequency distribution 

(3.9.33)

With these models condition (3.9.31) obtains the form 

(3.9.34)

First the phenomenon of a nonequilibrium thermal bath was explored by Van 
Vleck [77], 60 years ago: “It is the purpose of the present article to point out that it is 
impossible for the lattice oscillators to preserve a constant temperature in the face of 
frequent energy transfers with the spin”. If the spin-phonon coupling is strong, and 

then the thermalization does not happen. The increase in the number of the phonons 
was named “avalanche”. This phenomenon happens at helium temperatures, when 
so-called direct processes take place. At liquid-air temperatures the interaction 

mode nq. Correspondingly, 

excited spins per unit frequency,

the rate constant Wq . Thus, condition (3.9.24) means that input of energy is larger than 

between spin and lattice is secured by means of second-order Raman-like processes; 

phonons are generated in the narrow “bottleneck” proportional to
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Phonon avalanche and bottleneck effects have been the subject of various

frequencies. The case of homogeneous broadening characterized by has been 
considered in Ref. 76. 
(3.9.34), can be obtainedby replacing

105

Apart from nonessential numerical factors, parameter 
by

when a spin scatters a lattice quantum of comparatively high energy, the bottleneck is

studies [70,78-84]. We have considered here the inhomogeneous broadening of spin

“destroyed”.



Interaction of matter with the electromagnetic field is one of the important subjects of 
the scientific research. When eigenfrequencies of the electromagnetic field form the 
continuum, interaction with the electromagnetic field leads to the irreversible 
processes.
considered in the preceding chapter (interaction with phonons). Nevertheless, the 
irreversible processes due to the interaction with photons have their own specific 
features. Thus the relaxation of a system of two-level molecules may have a collective 
character. Therefore, a substantial part of this chapter is devoted to the phenomenon of 
the superradiance. The notions of spontaneous and stimulated emission traditionally 
belong to the region of the matter-field interaction. However, as will be shown, these 
notions (spontaneous and stimulated emissions) characterize the interaction with 
phonons as well. 

4.1

In quantum theory the Hamiltonian of a system of particles interacting with an 
electromagnetic field can be presented as 

Interaction of matter with the electromagnetic field 

where mk,

vector-potential at the location of the k-th particle 

are the mass and canonical momentum of the k-th particle respectively; 

The variables pv and qv are canonical variables describing the electromagnetic field 

(4.1.3)

To present the Hamiltonian (4.1.1) in the standard form (2.1.2) appropriate for 
the employment of the theory of irreversible processes, it is convenient to extract from 
the Hamiltonian (4.1.1) the energy of the interaction with the radiation field 

(4.1.4)
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These irreversible processes are, to a certain extent, similar to those 

CHAPTER IV 

INTERACTION WITH PHOTONS 

rik k is theis thedistancebetween the i-thand k-th particles withcharges ei and e , 

H = H0 + V = E + F + V , 
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interacting with each other in accordance with Coulomb’s law 

plus the free radiation field 

whilst the energy of the interaction with the field is 

In deriving Eq. (4.1.7) the Coulomb gauge, divA = 0, has been assumed. In the 
solution of a number of problems (in particular those connected with spontaneous and 
stimulated emission ofradiation) we can neglect the second term in the right-hand side 
of Eq. (4.1.7). We can rewrite the first term in the form

(4.1.5)

(4.1.6)

(4.1.7)

Let us now examine the case when the dimensions of the system of particles are 
small compared with the wavelength of the radiation (or compared with characteristic 

dimensions of the inhomogeneity of the vector-potential This is generally the 
case for atoms and molecules over a very wide range of frequencies, including the 
optical range. This means that the size of the atom or molecule is much smaller than 
the wavelength. In this case the interaction energy with the electromagnetic field can 

where

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

be written in the form

where Bv is an operator acting only on the particle variables 

0where H is the unperturbed Hamiltonian of the system consisting of particles
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and is the magnetic moment of the molecule (taking into account both orbital motion 
and the spin of the system). In the equation (4.1.10) the difference between the kinetic 
and canonical momenta has been neglected (as well as other terms of the order of 

4.2

We consider the case when only two levels of the molecule (or atom) are relevant, and 
the influence of the other levels may be neglected. In this case the dipole moments of 
the molecule - electric can be expressed through the effective spin 

2 and r3 (see section 3.3) 

A system of two-level molecules interacting with the electromagnetic field 

(4.2.1)

(4.2.2)

where constants and are determined by the molecule’s electric and 

magnetic dipoles matrix elements. Operators of the vector-potential and magnetic 

field can be expressed through the normal modes functions 

(4.2.3)

The Hamiltonian (4.1.1) of the system of two-level molecules may be written in 
the form 

(4.2.4)

where

(4.2.5)

The alternative form of the Hamiltonian (4.2.4) is 

(4.2.6)

and  magnetic 
operators r1, r
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where differs from It(4.2.5) by absence of in the 3-component of 
should be noticed that we have assumed the dipole approximation for each molecule, 
(4.1.10), while the whole system is not limited by the dipole approximation . 

and the field equation of motion 

follow from the Hamiltonian (4.2.4) 

The equation of motion for the effective spin 

These are equations for operators 
by the relation 

(4.2.7)

(4.2.8)

and qv. We define the effective spin distribution 

(4.2.9)

The total spin of the system is then 

(4.2.10)

The equations of motion for the quantities and qv become

(4.2.11)

(4.2.12)

Quantum equations of motion (4.2.7), (4.2.8), (4.2.11) and (4.2.12) take into account 
interactions between the spins and the electromagnetic field only, (4.2.6). They do not 
take into account the relaxation of the electromagnetic field and spins due to other 
interactions (spin-lattice interactions, photon-phonon interactions, etc.). These 
interactions are described by the term G in the Hamiltonian (2.1.2). The latter was not 
taken into account in the Hamiltonian (4.1.4 - 4.1.7).

Equations (4.2.7) and (4.2.11) are analogues of the Bloch equations for real 
spins. The relevance of the Bloch equations for the description of the maser was first 
recognized by Feynmann, Vernon and Helwarth [85]. Taking into account 
(phenomenologically) the above mentioned interactions, we can write equations for the 
mean values of the effective spins and field (assuming that all spins are equivalent 

(4.2.13)
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(4.2.14)

(4.2.15)

(4.2.16)

where and are defined by Eq. (4.2.3). 2 and are 
phenomenologically introduced relaxation constants. They take into account the term 
G. Equations of the (4.2.13) - (4.2.16) type are called Bloch-Maxwell equations. They 
were derived by Fain [51] in 1959 (see also Ref. 87). 

4.3 Quantum theory of spontaneous and stimulated emission in a system of 
two-level molecules 

In this section we shall discuss spontaneous and stimulated emission from a collection 
of two-level molecules that do not interact with each other in the absence of the field. 

2 and r3, We 
shall further suppose that all molecules have the same energy level difference In 

the case when the dimensions of the system of molecules is much less than a 
wavelength, i.e. the dipole approximation for the whole system, the Hamiltonian of the 
system can be written in the form (see (4.2.6)) 

(4.3.1)

where the operator of the whole spin 

(4.3.2)

It is worthwhile mentioning that 2R3 has meaning of population difference of upper and 

(4.3.3)

Here T1 and T

The two-level molecules are described by the effective spin operators r1, r

lower states
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while R1 and R2 describe the dipole moment of the system. Several assumptions have 
been made here. We put which means neglecting the magnetic 

dipole system. These terms are small in comparison with the electric dipole terms 
We also put just for the sake of simplicity. This assumption does not 

affect any further conclusions. 
It is worthwhile to consider in some detail the validity of the dipole 

approximation for the whole system. The third term in Eq. (4.2.6) can be written in the 
form (see also (4.2.3)) 

(4.3.4)

In the general case the transition to the dipole approximation (4.3.1) is possible if the 
dimensions of the system are smaller than all wavelengths (or other space 

characteristics of However, such a transition is impossible, since the sum 

(4.3.4) always contains modes 
dimensions of the system. 

with wavelengths which are smaller than the 
The usual assumption is that the dominant contribution to 

the sum (4.3.4) is connected with modes v having frequencies The induced 
and spontaneous radiation takes place at these frequencies. However, below we will 
see that there are situations in which one cannot neglect the contribution of other 
modes,

Now we will analyze the Hamiltonian (4.3.1). (We will neglect for a while the 
contribution of higher frequency modes.) The quantum equations of motion following 
from the Hamiltonian (4.3.1) are of the form 

(4.3.5)

Let us find the change with the time of the v-th mode energy operator 

(4.3.6)

The derivative of this quantity can be found in the usual way 

Including terms up to the second order of smallness over small parameter 
find

(4.3.7)

we
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(4.3.8)

Here and are the zero and first order quantities respectively. The 

mean value (4.3.8) gives the intensity of radiation of the v-th mode. 
Let us first consider the mean value of the first term in the r.h.s. of (4.3.8) 

(4.3.9)

The mean values and have the form 

(4.3.10)

(4.3.11)

The induced emission and absorption are determined by the sign of when it 
is positive we have the induced emission, the negative sign corresponds to the 
absorption.
time-averaged value (t >> 

If, for the sake of simplicity we consider that 
of (4.3.9) is 

then the 

(4.3.12)

Thus the sign of the radiation intensity depends on the phase relation between the field 
and the system. This phase dependent stimulated emission (absorption) may occur 
both in the classical and in the quantum theory. Moreover, this is not what is meant by 
stimulated emission (absorption) in the textbooks; the latter is connected with the 
phase-independent part of (4.3.8): the second and third terms in the r.h.s. of (4.3.8). 
They are much smaller than since they are proportional to the second order 

of a small parameter, proportional to However, if 

(4.3.13)

(or both of them are zero), then the first order term (4.3.9) vanishes. 
We now assume that conditions (4.3.13) (or one ofthem) are fulfilled. Then, as 

a result of averaging,only the second and third terms in the r.h.s. of Eq. (4.3.8) survive. 
These terms can be presented in the form [88,21] 

(4.3.14)

Interaction with photons
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For the system of N two-levels molecules located in the volume L³ << is 
the wavelength of the emitted radiation) expression (4.3.14) can describe the 
superradiance. We will consider this phenomenon later on, in sections (4.5 - 4.8).

4.4

The question about the relation between spontaneous emission and vacuum fluctuations 
has a long history. Enough to mention that as early as in 1935 Weisskopf [89] claimed 
that spontaneous emission is ascribed entirely to the zero-point fluctuations, or vacuum 
fluctuations, of the electromagnetic field. In 1939 Ginzburg [90] showed that 
spontaneous emission is not purely a quantum phenomenon (as it has to be if it is due 
to the vacuum fluctuations) and exists in classical theory as well. The radiation 
damping of the classical oscillator is the example of classical spontaneous emission. 

It has 
also been treated by Dalibard et al [92]. We start from Eq. (4.3.14) and consider the 

case of a one two-level molecule. In this case, 

(4.3.3),

Spontaneous emission vs. vacuum fluctuations 

The role of vacuum fluctuations has been clarified by Fain [88,21,91]. 

(4.4.1)

is the intensity of spontaneous emission of the 

Consider only the term connected with spontaneous emission in expression 
(4.4.1), which can be evaluated if the radiation field was initially in a vacuum state. 
This does not imply that the energy of the radiation field 

(4.4.2)

In fact, the mean energy of the radiation field in the v-th mode is of the form 

(4.4.3)

is the mean number of photons in the v-th mode. The term where is the 

so-called zero-point energy of the field. For a given choice of the Hamiltonian, (4.3.6), 
the zero-point energy serves as a measure of the zero-point fluctuations of the field, i.e. 

r1² =  r2 ² = (3.3.2); r3 = 

+ - vmolecule, n + n = 1; I is the intensity of the emission of the two-level molecule, for
+ -where n and n are the populations of the upper and lower levels of the two-level

arbitrary n+ and n- , while 

+ -molecule, from the initial state n = 1, n = 0.
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of the quantity Generally speaking, however, the zero-point energy 

does not describe vacuum fluctuations. In fact, we can carry out a transformation of 
the Hamiltonian of the field 

(4.4.4)

As a result of this transformation the equations remain unchanged (therefore 

also remains unchanged) and the zero-point energy disappears: 

Now we can evaluate the role of vacuum fluctuations 

(4.4.5)

in the spontaneous radiation. 
two-level molecule is: 

The intensity of the spontaneous emission of the 

(4.4.6)

vacuum state (4.4.5), the vacuum fluctuations (the second term in the r.h.s. of Eq. 
(4.4.1)) contribute the half of the total intensity of radiation, and the other half is 
connected with the fluctuations of the dipole moment. When the two-level system is in 

term in the r.h.s. of (4.4.1) and the total intensity vanishes. Thus the crucial role of the 
vacuum fluctuations emerges in the ground state of the matter. The stability of the 
ground state (i.e. the fact that it does not radiate) is a purely quantum effect which is 
due to the vacuum fluctuations. 

In the general case when both spontaneous and stimulated processes are taken 
into account, (4.4.1), the change of the v-th mode photons are obtained from (4.4.1) 
and (4.4.3) 

(4.4.7)

It is worthwhile mentioning that we already met expressions similar to Eqs. (4.4.7). 
The similarity of Eqs. (4.4.7) and (3.9.19) and (3.9.20) shows that irreversible 
relaxation processes described by Eqs. (3.9.19) and (3.9.20) are due to spontaneous and 
stimulated emission (absorption) of the phonons. 

- + = 0), the vacuum fluctuations exactly compensate the first 

+ -If the two-level system is at its upper level n = 1; n = 0, and the field is in the

its ground state (n = 1, n
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4.5 Superradiance (small volumes L³ << 

We now consider spontaneous emission of the system of identical two-level molecules 
located in the volume L³ << is the wavelength of emitted photons. In the 
case of the spontaneous emission we use Eq. (4.4.5), and substitute it into Eq. 

(4.3.14). As a result we get the intensity of the spontaneous emission of the system of 
two-level molecules 

where

(4.5.1)

The square length of the effective spin is 

(4.5.2)

As is known the quantum number corresponding to is R: the mean value of in 
the state with definite R is R(R+1). Operator commutes with the Hamiltonian 
(4.3.1) and therefore it is the integral of motion of Eq. (4.3.5). The quantum number 

emission is, (4.5.1)

(4.5.3)

It follows from the properties of the effective spin R3 that quantum numbers M have 
the upper limit 

Quantum number R in its turn satisfies the relation which follows from (4.3.3),

(4.5.4)

(4.5.5)

Thus, there are states of the system of two-level molecules located in the volume L³ 
<< which give spontaneous emission with an intensity proportional to the square of 

the number of molecules. Such, for example, is the state with R = M = 0. The 

intensity of the spontaneous emission from a system in this state is (N >> 1) 

(4.5.6)

This is a superradiant state. On the other hand, there are the states in which the system 
does not radiate the energy at all. An example of this is the state with R = M = 0. We 

Here I0 is the intensity of spontaneous emission of one two-level molecule. 

3In the state with definite values of R² and R the intensity of  the spontaneous 
corresponding to the operator R³ is M (M = R, R-1,...,-R).
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recall that conventional intensity (without taking into account the coherence in the 
emission) is 

(4.5.7)

The superradiance was first introduced by Dicke [93] in 1954. Further development of 
the research in this area has been covered in a number of reviews [94-103]. 

The phenomenon of the superradiance is not purely quantum effect and can be 
understood classically. The coherence in the spontaneous radiation can be understood 
if we recall that each molecule is affected by the field radiated by other molecules. Let 
us take a system of oscillating charges occupying a region with a linear dimension 
much less than the length of the emitted wave. In the dipole approximation the 
radiation damping force acting on each of the oscillators is (see e.g. Landau and 
Lifshitz [86]) 

(4.5.8)

where

due to the radiation), the coordinates are subject to the equations 
When there is no interaction between the oscillators (apart from the interaction 

(4.5.9)

oscillator is dependent on the motion of all other oscillators (we do not consider here 

this problem). and
charges ek = e, equation (4.5.9) can be rewritten in the form 

by

(4.5.10)

Here we have replaced 

given by 

proportional to the second derivative of the dipole moment of the system 

assuming that the width of the emission line, 

The strength of the radiation emission of the system of oscillators is 
is much less than the frequency 

(4.5.11)

Summing Eq. (4.5.10) we get 

is the displacement of the s-th oscillator; es is the charge.                

the change ofthe frequencies due to the radiation interaction; later on we will consider

It follows from this that the interaction due to the radiation of the motion of each

In the case when all the oscillators have the same frequency
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The solution of Eq. (4.5.12) is approximately 

Therefore the strength of the radiation field has the form 

This means that a system of N oscillators has a natural linewidth 

(4.5.15)

where is the natural linewidth of a single isolated oscillator. 
The intensity of radiation from a system of classical oscillators (in small volume 

L³ << 

(4.5.12)

(4.5.13)

(4.5.14)

(4.5.16)

is generally not equal to the sum of the intensities from the individual oscillators. In 
the state when all the oscillators have the same phase 

(4.5.17)

the intensity is proportional to N². In this example the superradiance (intensity of the 
radiation is proportional to N²) is the consequence of the preparation of the system. 

4.6 Large sample superradiance 

General Maxwell-Bloch equations (4.2.7) and (4.2.8) represent a formulation of the 
collective spontaneous emission problem valid for any shape or size of the atomic 
sample. However, in general, these equations are extremely complicate since they 
involve a summation over all atoms and explicitly or implicitly over all 
electromagnetic field modes. 

An important step in the simplification of the large extent superradiance is to 
choose the sample having the shape of a long cylinder of length L and radius w, 
obeying the relations 

(4.6.1)

and amplitude d0
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This is the so-called pencil-shaped sample case, which has been realized in most 
experiments (see, e.g., the review by Vrehen and Gibbs [102]). It may be seen that for 
a long enough sample (along the z direction) one can neglect variation along the 
transverse x and y directions which amounts to considering the superradiance as being 
essentially a one-dimensional problem. When one looks more carefully, the situation is 
somewhat more complicated and the description of superradiance appears to depend 
upon the Fresnel number 

(4.6.2)

It turned out [97] that the best choice for which one can expect to have a radiation not 
too different from a “one-dimensional’’ problem is the one corresponding to 

(4.6.3)

Having in mind the above reservations we will present now a single-mode
We will again start from the Hamiltonian model for the superradiance [93,21]. 

(4.2.4)-(4.2.6), rewriting it in a more convenient form 

(4.6.4)

where

the mode 

constant

where

is the creation (annihilation) operator for a field quantum (photon) in 

The coupling with wave 

is

frequency and polarization 

(4.6.5)

is the operator representing current (in the dipole approximation): 

and

and are the wave functions of the excited and ground and

states of the atom, respectively. Here and further on we adopt the notation 

The collective operators can be expressed in terms of the above (section 

and

(4.6.6)

These operators satisfy the commutation relations 

1j, r2j, r3j,3.3), introduced effective spin operators r
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(4.6.7)

In the single-mode approximation (in which there is only one a theory 

can be constructed in complete analogy with the case of a system with dimensions 
smaller than the wavelength. A role of conserving operator (commuting with the 
Hamiltonian) R², (4.5.2), now plays the operator 

which reduces to when

(4.6.8)

In the single mode approximation commutes

radiation of the whole system of N atoms per unit solid angle in the direction close 
to axis can be presented as 

(4.6.9)

Let us consider two cases - coherent and noncoherent spontaneous emission of
the system of the two level molecules. Substituting (4.6.6), into Eq. (4.6.9), we 

get

(4.6.10)

First, we consider the noncoherent spontaneous emission of the system of two-level
molecules. In this case the correlations between various molecules vanish 

and

(4.6.11)

(4.6.12)

(noncoherent) molecules is equal to the sum of the intensities of spontaneous emissions 

(4.6.13)

Thus the intensity of the spontaneous emission of N two-level, noncorrelated

ofeach molecule (4.4.6). In the case when each molecule is in the same state, r3, then 

with H, (4.6.4), and is conserved. It was shown by Dicke [93] that the intensity of the
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Now let us consider the system of correlated coherent two-level molecules. We 
consider a collection of two-level molecules with non-overlapping wave functions 
excited by an intense plane-wave pulse characterized by frequency and wave vector 

We assume that this exciting pulse may be described classically, and that it acts 
on each molecule in the same way except for the time delays due to the finite 
separations of the molecules from each other. It is well known [93,22] that such a 
pulse leaves each molecule in a coherent superposition of its upper and lower states. 
For the molecules, after the passage of the pulse, we can write 

(4.6.1 4) 

The probability that the molecule has been left in its upper state, equals 

intensity of the coherently correlated molecules resulted from the pulse is [103] 

The

The quantity characterizes the solid angle 

(4.6.15)

in which the radiation is confined [97] 

(4.6.16)

In general is a complicated function of the size and shape of the volume in 
which the two-level molecules are contained. In the case in which the confining 
volume is a circular cylinder, is equal [103] 

(4.6.17)

variables

(4.6.18)

where w is a radius of the cylinder and L is its height. depends on the Fresnel 
number (4.6.2). The integral (4.6.17) can be estimated asymptotically for the two 
limits of a large disk and a long needle. The results for these two limits are [103] 

1Here J is the Bessel function of  the first kind, order 1, and G and H are dimensionless 
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(4.6.19)

where the Fresnel number (4.6.1) can be presented as 

(4.6.20)

Formulae (4.6.15) - (4.6.19) describe the intensity of the large volume superradiance. 
It is expedient to analyze N-dependence of the superradiance intensity [101] 

N >> 1. In the case of small volume the intensity of the superradiance is proportional 
to N² (4.5.4). The intensity of the large volume superradiance (4.6.15) is proportional 
to In the case of large Fresnel numbers F >> 1 and w >> we get from (4.6.19) 

To get the N dependence we notice that the volume of the sample is 

Therefore the intensity of the superradiance can be presented as 

where n is the concentration of the two-level molecules 

In the case of small Fresnel numbers F << 1, one gets 

As has been mentioned above, the optimal case is achieved at 
the pencil-like shape with 

(4.6.21)

(4.6.22)

(4.6.23)

(4.6.24)

(4.6.25)

(4.6.2). This is 
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In this case, the intensity is 

(4.6.26)

(4.6.27)

i.e. the intensity I is much larger than what can be achieved when sizes L and w are of 
the same order of magnitude. In the latter case 

(4.6.28)

and I, (4.6.23), is simply proportional to 
- dependence, while 

the small volume superradiance has N² - dependence. A special geometry has to be 
chosen (the pencil-like case, to achieve an essential enhancement over the 
simple -dependence.

Thus the superradiance in large systems (4.6.15), has 

4.7

Now we consider the time evolution of the small volume superradiant systems, 
described by the Hamiltonian (4.3.1). The time evolution can be found from the 
conservation law. The total intensity of the spontaneous emission is, (4.5.1), 

Time-development of the superradiance (small volumes) 

(4.7.1)

Notice that there is a simple solution of this equation in the case of a single molecule, R 

= . In this case 

The solution of this equation is of the form 

where is the natural line width of an isolated molecule. 

(4.7.2)

(4.7.3)
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Let us now examine the situation when there is a large number of molecules. 
from their mean We can therefore neglect the mean square deviations R3 and

values and assume that R² >> R3. Equation (4.7.1) becomes 

(4.7.4)

The last relation follows from the fact that commutes the Hamiltonian (4.3.1). To 
solve equation (4.7.4) we introduce the angle between the vector and direction 3 (in 
the special case of a magnetic moment in a magnetic field, this is the direction of the 
field)

After substitution of Eq. (4.7.5) into Eq. (4.7.4) one gets 

This equation has been derived by Dicke [93] and solved with the initial 

condition The solution that satisfies the initial condition 

(4.7.5)

(4.7.6)

(4.7.7)

is of the form [94,21] 

(4.7.8)

From this we can find for the spontaneous emission intensity 

When changes from to (if

(4.7.9)

the amplitude of the radiation rises, reaches 

a maximum when 

the square of the modulus of the Fourier component 

and then decreases. The spectral intensity is proportional to 
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(4.7.10)

The values of the line width that follow from Eq. (4.7.10) are 

(4.7.11)

takes up a value from 1 to 2. (With 
when the equation (4.7.6) is inapplicable, Fain [94] 

where in the range of angles 
angles
has given an additional treatment which shows that 

from 0 to 
that are very close to 

= 2.) 
If initially at t = 0 all spins (two-level molecules) are inverted then 

(4.7.12)

and = 0. In this case Eq. (4.7.6) has the solution at all times 

(4.7.13)

Of course this solution does not make sense and the approximation (4.7.4), (4.7.5) is 
not valid at very small angles. One can easily estimate the order of magnitude of the 
angle (or its fluctuations) in the state of full inversion, (4.7.12). Using Eq. (4.7.1) we 
get

and

(4.7.14)

(4.7.15)

Thus to find the time of the development of superradiance, from the inversion 
of the population at t = 0 to the superradiant state 

(4.7.16)

we have to perform a quantum-mechanical analysis at small angles, (4.7.15). As a 

(4.7.17)

result ofsuch an analysis [94] we get for the intensity of  the radiation (N >> 1) 
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The pulse length [see (4.7.11) and (4.7.12)] 

(4.7.18)

is smaller by a factor N than the spontaneous emission time of the isolated molecule 

(4.7.19)

The maximum superradiance intensity 

is reached after the delay time 

(4.7.20)

(4.7.21)

This equation for the delay time was first derived by Fain [94]. 
Up to now we have discussed electromagnetic interactions only in terms of 

effects such as attenuation. Electromagnetic interaction leads also to a shift in the 
energy levels of the system, or to a displacement of the center of the emission line. For 
a single atom this is the well-known Lamb shift, whose theory was given by Bethe 
[104]. The frequency shift for the superradiant system was derived by Fain [105]. It 
has been shown that this shift is much larger than 

The important point is that the contribution to this shift is given not only by the 
resonant modes of the electromagnetic field (like in the calculation of but by all 
modes which give essentially non-zero matrix elements of the spin-field interaction, 
(4.2.6) and (4.3.4). This means that in the general case, one cannot justify the dipole 
approximation, (4.3.1), for the whole system. The dipole-dipole van der Waals 
interaction between the molecules would destroy the development of the coherent 

spontaneous emission (from to by not conserving the length of the vector 

R². This was first pointed out by Friedberg, Hartman and Manassah [106]. 
To avoid misunderstandings, it is worthwhile to stress that the above analysis of

this section is correct for the model system described by the Hamiltonian (4.3.1). 
However, this Hamiltonian cannot be deduced in the consistent way from the 
Hamiltonian (4.2.6). Nevertheless, as we will see below, the model system, (4.3.1), 
contains main dependencies and qualitative features of more realistic models. 

There are two ways to overcome the destructive dephasing caused by the van 
der Waals dipole-dipole approximation. One of them is the superradiance in the 
extended system with volume V >> gives 
the contribution to the dephasing, while the coherence is connected with much larger 

In this case only a small volume of 
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volumes. We will consider this case in the next section. The second way is to put the 
system in a resonator making use of the cavity enhanced spontaneous emission. 

We will consider the case when the system of molecules is located in the 
volume V < and interacts with only one resonant mode of the resonator. The 
Hamiltonian (4.3.1) can be approximated as 

This Hamiltonian, for spin one half, 

approximation

(4.7.22)

and in the rotating wave 

(4.7.23)

has been suggested by Fain [33,51], and later on by Jaynes and Cummings [191], and 
became known as the Jaynes-Cummings Hamiltonian. Here 
and annihilation photon operators, and, 

(4.7.24)

is the coupling parameter. 
The equations for the mean values of the field and spin operators take the form 

(4.7.25)

Here we have introduced the decay constant of the cavity mode 

(4.7.26)

(4.7.27)

(4.7.28)

(4.7.29)

and av are the creation 
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and Q is the quality factor. 

2 3

In the “semiclassical” (“mean field”) approximation (in which one can neglect 

(4.7.30)

(4.7.31)

The general solution of this equation, as it can be checked by direct substitution, is of 
the form 

(4.7.32)

The equation giving the energy balance of the molecular + field system has the form 

(4.7.3 3) 

the photon number n). Then from (4.7.32) and (4.7.33) we obtain the equation for the 
angular variable 

(4.7.34)

where is the collective Rabi frequency 

(4.7.35)

(the latter equation is valid for R = Equation (4.7.34) was first derived by Fain 

[51] in 1959 (see also [21]). The problem of the collective emission in the cavity of the 
resonator is isomorphous to the problem of the falling of a nonlinear pendulum with 
viscous damping. 

For the equation (4.7.34) exhibits decaying oscillatory behavior. In 
the overdamped regime 

(4.7.36)

equation (4.7.34) reduces to a first-order derivative equation 

the dispersions of R1, R , R ), Eqs. (4.7.25 - 4.7.28) can be reduced to 

0where a is the slowly varying amplitude of  av

0For the sake of simplicity let us look at the case when n >> n  (the equilibrium value of
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(4.7.37)

This equation is isomorphous to Eq. (4.7.6) and thus may be used to describe the 
process of collective spontaneous emission in the resonator. The only difference is that 
instead of the constant (4.7.19), we have 

(4.7.38)

It is easy to check that this enhanced spontaneous emission rate [107] is approximately 
Q times larger than the spontaneous emission rate free space. This circumstance 
justifies the neglect of the dipole-dipole dephasing as soon as 

where
whereas the van der Waals dephasing is not modified. 

is the volume of the sample. The cooperative decay is thus enhanced, 

4.8 Time-development of the superradiance (large volumes) 

In the single-mode approximation (in which there is only one definite mode is 
taken into account) a theory of time evolution of the superradiance can be constructed 
in complete analogy with the case of a system with dimensions smaller than the 

radiated wavelength. A role of conserving operators similar to 
(4.6.8).

plays operator 

Now we can use an analog of the conservation law, (4.7.1), 

Using Eq. (4.6.14) and assuming N >> 1 we define 
not too small) 

(4.8.1)

by the relation (assuming that is

(4.8.2)

(4.6.8)Then we get from Eqs. (4.6.9) and (4.8.1), and the conservation of 

(4.8.3)

where we have defined the characteristic superradiance time 
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Eq. (4.8.3) is isomorphous with Eq. (4.7.6) (R = Here,

(4.8.4)

is the 

spontaneous emission time of the isolated molecule in free space. Parameter 
defined by Eqs. (4.6.16) and (4.6.17) (a circular cylinder). 

volumes (performing quantum analysis for close to 0; see Ref. 94) 

is

The delay time of the superradiance can be found similarly to the case of small 

(4.8.5)

When N is large and the system has dimensions which are small compared with then 
= 1, (4.6.19), and Eq. (4.8.3) agrees with the result found by Dicke [93], while Eq. 

(4.8.5) reduces to the result found by Fain [94]. 
The model which has been used for the large volume superradiance time 

development is sometimes called the “mean-field” theory. It is important to emphasize 
that the mean-field model of large sample superradiance overlooks the propagation and 
the field non-uniformly, which it induces in the sample. This model is not justified by 
any physical approximation and its only merit is the simplicity and symmetry of the 
equations. However, in spite of the fact that this model neglects important propagation 
effects, qualitatively it retains some of the essential features of large sample 
superradiance, as well as some important quantitative dependences. 

The propagation effects may play quite an essential role, which is clear from the 
analysis performed by Arecchi and Courtens [108]. As follows from (4.8.4) TR can be 
very small provided is large enough. On the other hand, the enhanced decay rate of 

the sample are exposed to the radiation from all others before the decay process is 
completed. Therefore we have to know the appropriate decay rate for a sample of 

radiation of other atoms during the decay time is given by 

(4.8.6)

Here A is the cross-section of the “pencil”. On the other hand these atoms superradiate 
with the rate given by the first-order perturbation theory (4.8.4) 

These two relations (4.8.6) and (4.8.7) can be solved self-consistently for 

(4.8.7)

and

(4.8.8)

(4.8.4) will be realistic only if  the entire sample is shorter than cTR so that all atoms in 

size larger than cTR. The number of atoms (density ) which can be covered by the
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and

(4.8.9)

Here is defined as the cooperative time [108]. 
cooperation number [108], i.e. the maximum number of atoms that can cooperate to 
superradiant emission in a particular experimental situation. 

by (4.8.4) but by (4.8.9). The maximum coherence length is independent of the 
sample geometry and depends only on the transition parameters and on the density. 

MHz), 10 cm in ESR (at 10 GHz), and 0.1 cm for the 6993 Å transition is ruby with 
0.05% concentration. The limited cooperation becomes, therefore, of prime 

To take into account the propagation [109-114] effects we have to use the 
Bloch-Maxwell equations (4.2.7)-(4.2.8). We will write them in a different form [97] 
(see also Ref. 87) 

(4.8.10)

Here the electric field and polarization are divided into positive and negative frequency 
parts, N= is the unit vector of the 
atom’s dipole moment polarization. The Maxwell equation describing the propagation 

of electromagnetic waves in the medium with the polarization 
In order to describe the pencil-shaped sample collective spontaneous emission 

one assumes that the electric field and atomic polarization field can be expressed as 

slow varying enveloped E(z,t) and P(z,t) 

is the inversion population difference and 

has to be added. 

and when compared to or and

(4.8.11)

when compared to Neglecting

the following Maxwell-Bloch equations for the atom and field envelope operators 

atoms emit, ofcourse, but only Nc cooperate. In this case the emission rate is not given 
c

Assuming for instance,
that a sample could be prepared in the given initial condition and with N > N , all 

4The estimates of  Ref. [108] show that  are typically 10  cm in NMR (at 1 

products of  a fast varying exponential (with time and space frequencies 0 and k ) and 

0k E one gets (after dropping fast oscillating terms, the rotating wave approximation) 

cN  is the maximum 

importance in optical experiments. 
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(4.8.12)

These equations take a simpler form, if one replaces the variables z and t by z and the 
retarded time 

(4.8.13)

(4.8.14)

The classical equations describing the one-dimensional propagation model of 
superradiance can be easily deduced from these quantum equations. We have just to 
replace the operators by the corresponding classical quantities. The resulting equations 
are conveniently solved [111, 112] by introducing a time and space varying tipping 
angle

(4.8.15)

(4.8.16)

with TR being defined by Eq. (4.8.4). We can also write Eq. (4.8.16) in a 

(4.8.17)

This equation, known as the Sine-Gordon one, has been introduced in the 
context of the superradiance in Refs. [111, 112]. Equation (4.8.17) describes the 
flipping of the local tipping angle from a value close to zero at t = 0 to the value 

at The initial conditions to choose for solving these equations are 

(4.8.18)

(4.8.19)

dimensionless form as: 
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An inspection of Eq. (4.8.17) shows that 
dimensionless quantity 

is in fact a function of the single 

(4.8.20)

The Sine-Gordon equation can be transformed into 

(4.8.21)

with the initial conditions 

(4.8.22)

Once is numerically obtained, one finds 

the emitted intensity at the end of the medium is given by 

with the help of Eq. (4.8.15) and 

The main differences of these solutions with the mean-field model are: 
(a) The occurrence of several emission maxima (the so-called superradiance 

ringings [111]). 
(b) Not only delay but also the shape of single shot trajectories depend upon the 

tipping angle. In particular the ringing contrast depends on with more important 
ringings obtained for small 

Following [111] we notice that the maximum of the first 
emission ringing corresponds to the time when = 1. To determine the delay time 
one solves the Sine-Gordon equation for 

(c) Delay time. 

by assuming that sin 

(4.8.23)

(4.8.24)

The corresponding emission delay is thus given by 

(4.8.25)

The solution of  this equation satisfying initial conditions (4.8.18) and (4.8.19) is 

values  [111]. 
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Eq. (4.8.25) can be rewritten as 

where A = can be taken as a constant (of order 10). The average delay 

obtained using Eq. (4.7.15) is 

(4.8.26)

(4.8.27)

(4.8.28)

(4.8.29)

Comparing the “one-dimensional” propagation and the mean-field mode, one 
notices that delays given respectively by formulae (4.7.21), (4.8.5) and (4.8.29) are not 
too different from each other, the ratio between them being a logarithmic factor slowly 

propagation model is somewhat larger than the one in the mean-field mode. For 

The concept of collective spontaneous emission was formulated 45 years ago 
[93]. Since then the superradiance has been developed into a quite distinct field of 
research. Quantum theory of irreversible processes must include the phenomenon of 
the superradiance, as far as the relaxation due to the interaction with photons is taken 
into account. In this chapter we presented only basics of the superradiance theory. 

The field itself expanded in various directions - semiconductors [115- 118], free 
electron systems [119, 120], nuclear spin systems [121, 122], two-components systems 
[123, 124], excitons [125, 126] and laser-driven time delayed collective emission [101, 
127]. It is not our intention to analyze the intensive development of the theory of 
collective spontaneous emission. 

Replacing the function J0 by its approximate value 

6varying with N. For large atom numbers (N > 10 ) the delay in the one dimensional 

example, the ratio between the two delays is equal to 1.5 for N = 109
R21 T in the

mean field model and 31 TR in the one-dimensional propagation model). 



The approximate ones are 
treated in a consistent way, and compared with exact solutions. Two simple models are 
considered: the spin-boson system - a spin interacting with a phonon bath, and the 
oscillator-boson system. The exact solution, for the latter system, provides 
opportunities to assess the rotating wave, the Markovian and the weak coupling 
approximations. The spin-boson system has been extensively treated by Legget et al 
[137]. In this chapter we mainly concentrate on the existence of dissipationless 
regimes in a system having a continuum of states, and generally exhibiting the 
irreversible behavior. An example of such a system is the spin-boson system. It has 
been shown that in a certain range of parameters, the system may reveal dissipationless 
phenomena, such as nondecaying quantum beats, and the non-zero asymptotic 
probability to remain in the excited state. (Usually, in the relaxation due to the 
spontaneous emission of bosons, the probability to remain in the excited state vanishes 
when Most of the results in this chapter are obtained assuming zero absolute 
temperature (T = 0). This means that condition (2.3.14) does not lead to the 
factorization approximation. However, most of the solutions in this paper are exact and 
do not require the factorization approximation. They take into account the memory 
effects which were neglected in the Markovian approximation. 

5.1

In Chapter II various approximate approaches to irreversible processes have been 
presented. In this chapter we consider a number of exact relations and solutions. 

Time development of quantum systems: general relations 

Consider a system described by the Hamiltonian 

(5.1.1)

and continuous energy levels and V is the perturbation energy. Let S be a unitary 
matrix which connects eigenstates of the 

(5.1.2)

or equivalently 

(5.1.3)

134

EXACT SOLUTIONS. 
MEMORY EFFECTS IN RELAXATION PROCESSES, 

Most of the results presented in this chapter are exact.

H = H0 + V , 

where the energy spectrum of the unperturbed Hamiltonian H0 contains both discrete 

of  the Hamiltonian H with eigenstates 
Hamiltonian H0

CHAPTER  V 
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The unitary matrix S performs the diagonalization of the Hamiltonian H. In the 
representation of 
diagonal, while the Hamiltonian H is off-diagonal. In the representation of function 

(5.1.4)

the Hamiltonian H, including the perturbation energy, is diagonal. Thus the arbitrary 
operator F and density matrix, in a new representation, have the form (see (1.2.10), and 
(1.2.14))

(5.1.5)

(5.1.6)

In the new representation, the von Neumann equation for the density matrix has the 
form

i.e.,

where

(5.1.7)

(5.1.8)

(5.1.9)

and are eigenvalues of the Hamiltonian H, (5.1.1). where

representation of the unperturbed states 
inverse to (5.1.6)

For this purpose we can use the relation 

We find, from (5.1.10) and (5.1.8) that

(5.1.10)

(5.1.11)

To express through the initial conditions for the unperturbed density matrix 

0eigenfunctions of the Hamiltonian H , the Hamiltonian H0 is  

We will be interested in the time development of the density matrix    in the 

 (0), we use relation (5.1.6)
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(5.1.12)

Substituting this relation into Eq. (5.1.13) we get 

(5.1.13)

It is easy to check that the r.h.s. of Eq. (5.1.13) satisfies the initial condition 
Putting t = 0 we get 

Due to the unitarity of matrix S, (1.2.9), we get 

(5.1.14)

(5.1.15)

Substituting these relations into (5.1.14) we obtain that the r.h.s. of Eq. (5.1.14) 
becomes Thus the r.h.s. of Eq. (5.1.13) is the superposition of exponents 

and therefore satisfies the von Neumann equation (5.1.7) and it also
Therefore, Eq. (5.1.13) represents the exact time satisfies the initial condition 

dependence of the density matrix 
Indices u, v characterise discrete (including the ground state) and continuous 

On the other hand, among eigenvalues 
and continuous 

energies
be presented as 

there may also be discrete (including the ground state 

Then density matrix 

(5.1.16)

A summation over indices could be transformed into an integration. This means 
that the last three terms in (5.1.16) become the Fourier integrals which will decay to 
zero or to some constant term (see section 1.8), as On the other hand, the first 
term in the r.h.s. of Eq. (5.1.16) does not have a limit (for n m). It is not irreversible. 
Thus, existence of discrete states of the total Hamiltonian (5.1.1) (apart from the 

energies of the unperturbed Hamiltonian H0.

(in the presentation of the Hamiltonian H0) may 
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ground state) is a condition of the asymptotic dissipationless behavior of the system 
described by Hamiltonian (5.1.1). 

5.2

Macroscopic systems usually have dissipative properties and irreversible behavior. An 
energy concentrated initially at a certain point, or small volume, is dissipated over the 
whole system. The electric current circuit is characterized by the resistance. An 
electromagnetic excitation in the resonator cavity decays to the equilibrium value. On 
the other hand, it is well known that a generally dissipative system, in a certain range of 
parameters of the system, may reveal dissipationless phenomena, such as 
superconductivity, superfluidity, local vibrations, etc. 

Now we will consider general conditions of emerging of the dissipationless 
states in the dissipative system having a continuum of states [128]. In the general case 
the system described by the diagonalized Hamiltonian (5.1.1), may have either a 
continuous energy spectrum only, or both discrete and continuum energy states, while 
the energy spectrum of the unperturbed Hamiltonian contains discrete and continuum 
energy levels 

General criteria for emerging of dissipationless regimes 

(5.2.1)

As has been noticed, the existence of discrete states of the total Hamiltonian is a 
condition for the asymptotic dissipationless behavior of the system described by the 
Hamiltonian (5.1.1). Therefore, let us concentrate on the conditions of the existence of 

Following the usual procedure [129], we define the Green function 

(5.2.2)

Here the level shift operator R is determined by the equation 

(5.2.3)

where is the projection operator, and it is assumed that R is to operate on 

the state Energy levels of the Hamiltonian H and function can be 
found from the equations 

(5.2.4)

such  states. 
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(5.2.5)

Coefficients

According to Eq. (5.2.2) we can write 

Here
be nondegenerate 

terms are finite when 
and using (5.2.2) we get 

are discrete states of the exact Hamiltonian (5.1.1), these states are assumed to 
are exact continuous states. The second and third 

The second term is transformed into a singular integral, 
and

and

For simplicity it has been assumed that expansion (5.2.5) contains only even 
powers of V. In the examples which will be given below this assumption is valid. 
Generally, Eq. (5.2.5) contains both odd and even terms. The generalization to this 
case can be performed as well. 

Now let us make certain assumptions about the energy spectrum of the 
The onset of the continuous part of 

while the discrete excited 
the combined system 

the unperturbed energy spectrum is assumed to start at 
energies (It can be shown, see (5.2.8), that for 

unperturbed system and matrix elements 

(5.2.6)

always has discrete energy levels.) We also assume that the numerators on the r.h.s. of 
Eq. (5.2.5) are positive. These assumptions are satisfied by the examples presented 
below.

While the unperturbed energy spectrum contains both discrete and continuum 
states, the spectrum of the exact energy levels may have either continuum states 
only (apart from the ground state), or both continuum and discrete states. In the former 
case, the system is dissipative, while in the latter case the system reveals asymptotically 
nondissipative behavior (the first term in the r.h.s. of Eq. (5.1.16)). 

It can be shown [130-132] that the exact continuum states have positive energy 
levels On the other hand the existence of negative excited discrete energy levels 

of  the unitary matrix S can be found from Eq. (5.2.2). 
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is a necessary condition for the nondissipative behavior of the system. 

unperturbed state m, can be found from Eqs. (5.2.4) and (5.2.5)

(5.2.7)

In a sense, the emergence of the discrete (negative) energy level located below the 
continuum, may be presented as the Lamb shift “pushing” the energy level below the 
continuum.

Utilizing the above-mentioned properties of matrix elements of V, one can 

d

(5.2.8)

The existence of nonvanishing (5.2.6), provides a condition of nondissipative 
quantum oscillations. 

It should be emphasized that in the general case the above relations do not 
coincide with the conventional perturbation theory, where in the zeroth approximation 
one derives from Eqs. (5.2.4) and (5.2.5), and in the second approximation 

one puts On 

smallness of the term may be 

on the r.h.s. of Eq. (5.2.4). This term has to be close to 

essentially different from zero. The present analysis may be developed by comparing 
terms on the r.h.s. of Eq. (5.2.8), i.e. 

(5.2.9)

One has to distinguish two cases: (a) exists, i.e., is finite; then 

diverges at - then there is a solution for all In case (a), employing the fact 

d satisfying the equation 

(5.2.10)

d 0 0The exact negative state E =-E , E  > 0 corresponding to the excited 

n 0 0easily verify that -R (-E ) is a monotonically declining function of E . The left hand
side of Eq. (5.2.7) is a linearly increasing function of E0. This means that the positive 
root of E0 (negative E ) exists, provided the following condition is satisfied 

the other hand, by putting E0 = 0 into the r.h.s. of Eq. (5.2.4) we do not require the 
in comparison with E0 = 0, and 

m(-E0)

m 0 0that R (-E ) is a monotonically declining function of  E  > 0, it is easy to find that the 

Eq. (5.2.7) has a solution if, and only if, condition (5.2.8) is satisfied; (b) R

root E0 = -E increases monotonically from 0 to 
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when decreases from to zero. At the same time (5.2.6), increases 

monotonically to its maximum value at = 0, when decreases from to zero. 

Thus, it has been shown that in quite a general case the system described by the 
Hamiltonian (5.1.1) may contain a range of its excited unperturbed states in 
which the system reveals the non-dissipative behavior. It should be mentioned, 
however, that the nondissipative behavior may be observed, provided has an 
essentially nonzero value. In the case when << 1, the nondissipative features are 
practically unobservable. 

5.3 The configuration interaction between one discrete state and the 
continuum of the states 

Generally one can find matrix elements of the unitary matrix (5.1.3) and (5.2.6) and 
exact energy levels (5.1.4), only in a certain approximation. But there exists a 
specific example when a unitary transformation can be performed exactly. This 
example was considered in detail by Rice [130], and Fano [132] (see also [131]) in the 
context of the configurational interaction in atoms and molecules. 

Electronic states of atoms and molecules are usually classified as belonging to 
various configurations. This classification is an approximate one, based on the 
independent particle approximation. The exact stationary states can be generated by 
the “configurational interaction”, i.e., by the terms of the Hamiltonian that are omitted 
in the independent particle approximation. The mixing of a configuration belonging to 
a discrete spectrum with a continuous one may give rise to the phenomenon of the 
autoionization.

state
degenerate with the continuous states 

We consider the case when the whole system has one discrete 
The Hamiltonian of the system has the form 

(5.3.1)

We assume that the Hamiltonian H has been diagonalized in the continuum states. This 
means that matrix elements 

(5.3.2)

while the only nonvanishing matrix elements of the perturbation energy are In 
this case the exact energy levels E of the whole system are determined by equations 
(5.2.4) and (5.2.5) 

(5.3.3)

(5.3.4)

H = H0 + V . 
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and the continuum of the states 

while the unitary matrix elements have the form (5.2.6)

(5.3.5)

As previously we have chosen the zero of the unperturbed energy levels at the onset of 
the continuum 

(5.3.6)

First we will find the discrete state satisfying Eqs. (5.3.3) and (5.3.4). The
existence of such a discrete state, in the context of the configuration interaction, has 
been discussed in several papers [133-136]. The exact discrete state of the system 
described by the Hamiltonian (5.3.1), has the negative energy 

(5.3.7)

(5.3.8)

This equation has a positive root (and negative Ed
satisfied

The “weight” of this state equals 

The analysis of the behavior of 
section (its final part). 

system belong to the continuum 
In the case when condition (5.3.9) is not satisfied, the exact energy levels of the 

In this case the unitary matrix elements 

(5.3.9)

(5.3.10)

(5.3.11)

have the form [130, 131, 132], (5.3.5), 

while the unperturbed discrete energy Em is non-negative

According to Eqs. (5.2.7), (5.3.3) and (5.3.4), E0 satisfies the equation 

= -E0), provided condition (5.2.8) is

as a function of  Em is performed in the previous 
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and

(5.3.12)

(5.3.13)

(5.3.14)

(5.3.15)

and

(5.3.15).

is some average perturbation energy matrix element, determined by Eq. 

This result shows that the configuration interaction “dilutes” the discrete state 
throughout a band of exact stationary states whose profile is represented by a 

If the system under consideration were 
state, at a certain instant, it would autoionize with the mean 

resonance curve with half-width
prepared in the 
lifetime (to a certain ground state 

5.4 Spontaneous emission of bosons (phonons) and tunneling in the rotating 
wave approximation 

The problem of a two-state system is ubiquitous in physics and chemistry. In the 
simplest examples, the system possesses a degree of freedom that can take only two 
values, for example, the spin projection in the case of a nucleus of spin ½ the 
strangeness in the case of neutral K meson, or the polarization in the case of a photon. 
These are intrinsically two-state systems. A more common situation is when only two 
states of a multi-state system are relevant for certain problems. As has been shown 

2

In practice, almost every real-life two-state system interacts with its 
environment. In a quite general case, the electron-nuclear system is represented by two 
potential hypersurfaces - electronic terms, plus the perturbation causing transitions 
between these terms (3.3.6). These hypersurfaces are described in harmonic 
approximation by hyperparabolas, (3.3.9) and (3.3.10) (without anharmonic terms), 
with identical frequencies and different positions of minima. Such a model has been 
useful for the description of various processes, such as electronic transfer, energy 
transfer, tunneling in dissipative media, etc. (see section 3.5). 

Here  (E) is the density of the states 

(section 3.3) any two-state system can be described by the effective spin operators r1, r
and r3, satisfying usual commutation relations for spin ½. 
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tunneling in the rotating wave approximation 

The Hamiltonian of the model, describing both nuclear and electronic motions, 

can be presented as [see (3.3.6), with and 

and

(5.4.1)

are energy constants. The 

perturbation energy matrix elements are, generally speaking, functions of qk and pk and 
we consider the approximation of constant 

The Hamiltonian (5.4.1) has become known in the literature as the “spin-boson” 
Hamiltonian. In this chapter we consider the symmetrical case (in case of the 
tunneling -symmetrical potential well) and present the spin-boson Hamiltonian in the 
form

(Condon approximation). 

(5.4.2)

Here

(5.4.3)

(5.4.4)

Parameters Bk describe the interaction between the tunneling system (section 3.5), or 
any other two-state system, and the dissipative system. In the case of the tunneling 
system, a localization in one of the potential wells is described by the operator r3; the 

localization in the left well corresponds to r3 = corresponds to the while r3 =

localization in the right well. 
The dynamics of a two-state system coupled to a dissipative environment, 

described by the Hamiltonian (5.4.2), is rather complex, as far as we try to overcome 
the approximations used in Chapter 3. This dynamics can be described using various 

k kHere q  and p  are the operators of the coordinate and momentum of the k-th 

vibrational mode of the system, n1 = n2 = 1 2 3n = 1, n  = 0 when r  =

2 1n = 1, n = 0 when r3 = iand E = Ji + 

k± 3r =r ±ir2; and a  are creation and annihilation operators of bosons (phonons) and 
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approximations (see a comprehensive review of Leggett et al. [137] and a more 
traditional approach by Silbey and Harris [138]). On the other hand, another truncated 
rotating wave Hamiltonian is widely used 

(5.4.5)

This Hamiltonian differs from the spin-boson Hamiltonian (5.4.2) by omitting the 
k k

It was originally suggested by Lee [139], intensively studied by Davidson and Kozak 
[140], and used by Pfeifer [141]. It should be emphasized that the Hamiltonian (5.4.5) 
by itself does not describe any specific physical system. It may provide only an 
approximate description of the time development of physical systems if the omitted 
counter-rotating terms can be considered as a small perturbation. This question will be 
considered later on. 

The dynamics of the spin-boson system described by the truncated Hamiltonian 
(5.4.5) allows a consistent and exact analysis. In the context of the tunneling process, it 
has been shown [142, 143] that there exists a certain value for the matrix element of the 

perturbation energy between the states r3 = (left and right), such that for 

quantum beats between two wells decay to zero at while for matrix 

elements the tunneling friction vanishes. This latter phenomenon has been 
called supertunneling In the context of the relaxation of spin systems via spontaneous 
emission of phonons, it has been shown [131] that at the energy difference between two 

of the spin system there is a nonzero 

We now present exact solutions corresponding to the rotating wave Hamiltonian 
(5.4.5). We will use general relations of sections (5.1) and (5.2). The important 

First, let us consider the ground state of the unperturbed state Here sign 0 

means that the system is in the vacuum state, with all phonon (boson) numbers being 
zero. It is easy to check that the matrix elements of the perturbation energy, (5.4.5) 

(5.4.6)

are zero for all quantum numbers m in the vacuum state, nk = 0 

(5.4.7)

+so-called “counter-rotating” terms r a and r-a (rotating-wave approximation, RWA). 

Ievels (r1 = 1and r =

probability to remain in the excited state r1 = 

aquantity of the system is the energy shift function R (E) of the unperturbed level a. 

This means that for r1 = nk = 0 
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tunneling in the rotating wave approximation 

(5.4.8)

is the exact energy level. 

Thus the interaction (5.4.6) does not affect the ground state 

the same and its weight equals 1; the system being initially in the state 

remains in the same state. 

Now let us consider the excited state 

(5.2.4), and (5.2.5), that

also

For this state, it follows from Eqs. 

(5.4.9)

(5.4.10)

(5.4.11)

These relations are isomorphous to those of the one-level system, interacting 
with the continuum states (5.3.3 - 5.3.5). The difference is in the existence of the 
ground state (5.4.8). The ground state is located in the outset of the continuum states of 
the phonon (boson) system. This ground state is also the exact ground state of the 
system. If the system is initially in the ground state, it remains unchanged. 

with energy 

(5.4.12)

while phonons (bosons) are in the vacuum state 

(5.4.13)

This means that at time t = 0, the spin is in the state r1 = 

its energy remains

We consider a spontaneous emission of bosons from the initially excited state.



146 Memory effects in relaxation processes 

where is an eigenstate of the k-th boson mode, and the index 0 means that the 
number of bosons in this state is zero. Thus we identify the state of Sec. 3; it is 

with no bosons (a 

vacuum state) in the dissipative state 

(5.4.14)

its energy being (5.4.12). 

one-boson states 
This state is coupled by the interaction energy, (5.4.6), to a continuum of 

(5.4.15)

with the energy eigenvalue 

(5.4.16)

It should be stressed that the interaction V, (5.4.6), connects the state 

discrete state 

with the 

only. There are no matrix elements of the interaction V connecting 

with other continuous state as The full interaction energy (not a 

case the system is not isomorphous to the system with one discrete level (of the 

Now, as in the previous section, we will consider two cases. The first case is 
when is larger than the critical energy defined by the equation 

(5.4.17)

which follows from Eqs. (5.4.10) and (5.4.6). In this case the exact energies E form a 
continuous spectrum (without a discrete energy). Similarly to Eq. (5.3.12) we get 

Here is a density ofstates k 

(5.4.18)

(5.4.19)

that of the spin (two-level molecule) in its excited state r1 = 

- krotating wave one) containing and r a  terms, has such matrix elements. In this

previous section). 
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The time dependence of 

the probability to remain in the unperturbed state 

(u = v = u' = v' = and Eq. (5.4.18) 

(5.4.20)

(5.4.21)

(5.4.22)

is determined by Eq. (5.1.13) 

(5.4.23)

It is easy to show that in the approximation in which one can neglect the frequency 
dependence of and in the vicinity of 

(5.4.24)

(5.4.25)

(5.4.26)

This approximation coincides with the Markovian (section 2.4) (or Weisskopf-Wigner
[144]) approximation. Exact time-dependence (5.4.23) has been analyzed by Davidson 
and Kozak [140]. 

In the case opposite to (5.4.17) 

(5.4.27)

the time-dependence of P+(t) has the exponential form 
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there is the exact discrete level 

which is the root of equation 

(5.4.28)

(5.4.29)

according to Eq. 

(5.4.30)

This means that according to Eq. (5.1.13), there is the nonvanishing probability that the 

system would remain in its initial state when

(5.4.31)

It should be stressed that there is no positive discrete level. Such a discrete level would 
be degenerated with the energy continuum, and this means that there is nonvanishing 

is transformed into the integral, is diverging. This means that 

(5.4.32)

The latter equation means that the exact discrete level, if this exists, should be 
nonpositive.

Equation (5.4.31) is characteristic for dissipationless behavior of the state with 

is the supertunneling [142,143,128] - nondecaying quantum beats between two 
potential (symmetrical) wells. The description of a tunneling in the terms of the 
effective spin is given in Section 3.5. 

We are interested in the time development of the tunneling system interacting 
with the phonon bath. To describe the spontaneous emission, we needed the 

In the context of tunneling, these functions describe 
delocalized states, while the localization in one of the wells is described by the 

dThe exact level E =-E0 becomes the ground state, since 

(5.4.8). The weight of  this exact discrete level, (5.4.11), is 

 with Ed > 0. In this case the sum in the denominator of Eq. (5.4.11), when it 

exact negative energy. Another phenomenon characterizing the dissipationless regime

eigenfunctions of operator r1.

eigenfunctions of operator r3
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(5.4.33)

where

and

(5.4.34)

(5.4.35)

(5.4.36)

In particular, it follows from these relations that the probability to remain in the left 

(5.4.37)

We assume that initially (t = 0) the system was in the left well 

(5.4.38)

It should be noticed that we consider the zero temperature of the phonon bath. 

description of the tunneling 
The derivation similar to that of spontaneous emission leads to the following 

(5.4.39)

where is determined by Eqs. (5.4.21) and (5.4.24). The Markovian approximation has 

1eigenfunctions of operator r . The density matrix of the two-level system in the new 

where L, R designate localization in the left and right wells, while are  

well equals 

been used for the description of the dissipation regime of  tunneling (the first of  the 

(site) representation can be expressed through thedensity matrix in the r1 representation 
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expressions in the r.h.s. of Eq. (5.4.39)). The dissipationless regime at is
characterized by the nondecaying quantum beats in the tunneling system coupled to the 
phonon bath, at zero temperature, T = 0. 

Apart from the emerging “new” bound states in the configurational interaction, 
“frozen” upper states in the spontaneous emission, and nondecaying tunneling quantum 
beats, there are other processes having the same physics and mathematics. 

The ionization can be caused by the electromagnetic field whose frequency is 
larger than This energy equals the energy 

sense, the electromagnetic field of frequency causes the appearance of a new 

discrete state degenerate with the continuum 

(5.4.40)

This situation is similar to that described by the configuration interaction with 
one discrete level. The interaction with the electromagnetic field may “push” the 
discrete level below the continuum of states. In this case the ionization is 

practically stopped (provided the weight of the new discrete level is high enough). It 
may be said that the interaction with the electromagnetic field creates an “artificial” 
autoionizing state, which leads to trapping of electronic population in the ground state 
when condition (5.3.9) of the emerging of the exact discrete states is satisfied. This 
situation has been explored in a number of works [145-148]. The situation close to that 
considered in this section has been considered by Kofman et al. [149], analyzing 
spontaneous emission in photonic band structures [150,151]. 

5.5

We will now consider the full Hamiltonian (5.4.2) containing counterrotating terms 

k as well. The spin system itself is described by the first term in Eq. 

Weak coupling case (beyond RWA) 

(5.4.2).

Considering both positive and negative values of 
symmetric way 

we can use the first term in a 

(5.5.1)

This spin Hamiltonian has zero ground state energy, and the upper state energy is 

For

where I0 is the ionization energy. 

difference between the onset of the continuum states and ground state energy, Eg. In a 

and r-a

It has two levels, corresponding to two eigenvalues of operator r1 = 
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(5.5.2)

while for 

(5.5.3)

We continue to designate spin values only for the eigenvalues of spin component 

3

We will be interested in the dissipationless regimes of the and R (right) for r3 =

spin-boson system described by the Hamiltonian (5.4.2). 
Two functions characterize the dissipationless regimes. First, this is 

(5.5.4)

This probability depends on as

functions of while in the dissipation regime 

Another dissipationless phenomenon is supertunneling [142,143,128] -
nondecaying quantum beats between the symmetric potential wells. This phenomenon 
is characterized by the probability to remain in the left well (5.4.37) 

and our task is to analyze 

In the dissipationless regime 

(5.5.5)

If then the initial probabilities are 

functions

(5.5.6)

which tend to zero when 
quantum beats do not decay, and amplitudes of quantum beats 

On the other hand, in the dissipationless regime the 

(5.5.7)

may serve as a characteristic of the dissipationless regime. 

3r1, while for  the eigenvalues of spin components r  we use connotations L (left) for r  = 

+where  is the probability to remain in the upper level E , at time t, if initially 

the probability to remain on the upper level E+ tends to zero, when 

for all (m,n) eigenvalues of r1 = 

RLP (0) = 1; P (0) = 0. In the dissipation regime, quantum beats are characterized by
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We will analyze and as functions of First, we will show 

that there exists a certain range of the spin-boson Hamiltonian parameters which 
corresponds to the dissipationless regime. We will employ results of Section 5.2 and 
consider case (a) of this section: exists. Then, according to the general 

such that in the region 

(5.5.8)

(5.5.9)

the spin-boson system reveals the nondissipative behavior. It is worthwhile to 
emphasize that this conclusion about the existence of the nondissipative regime is quite 
general. It is not connected with any specific approximation. Of course, to calculate 
we need the approximation. In the general case, according to Eqs. (5.2.8) and (5.4.2), 
the critical frequency satisfies the inequality 

(5.5.10)

For the rotating wave Hamiltonian the critical frequency obtains its minimal value, 
(5.4.17)

Our task is to describe quantities and

(5.5.11)

as functions of in

the dissipationless region (5.5.9); outside this region these two functions are simply 
zero. In this section we consider the weak coupling case 

(5.5.12)

Here

will be clear from the following discussion. In the weak coupling case the higher order 

case the critical frequency is equal to (5.5.11). It should be mentioned that for the 
full spin-boson Hamiltonian (5.4.2), 

is a dimensionless coupling parameter, while the use of the connotation 

presented by Eq. (5.5.11), is an approximate 

theory there is a critical frequency 

a Lterms, in the energy shift function R (E ) (5.2.5) can be neglected [128, 142]. In this
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value of this quantity, while for the truncated, rotating wave Hamiltonian (5.4.5),
formula (5.5.11) is exact. 

To proceed further, we have to assume a certain frequency dependence of the 
coupling parameter Having in mind that the summation in the 

three-dimensional manifold can be reduced to integration we define 

(5.5.13)

The frequency dependence of may be taken in the form 

(5.5.14)

where

Leggett et al. [137] for the spectral density function 

is a constant having the dimensionality of frequency. 
This form of the frequency dependence corresponds to the notation of 

(5.5.15)

Here is the cutoff frequency, which is assumed to be much larger than The 
integration in relation (5.5.13) is then extended to infinity. Another possibility which 
we will use, is to extend the integration to - the Debye frequency. In this case we do 
not use the exponent exp

The case s = 3 corresponds to the coupling constant and density of states for 
three-dimensional phonons interacting with a localized system. The case s = 1 is the 
ohmic case, and it also corresponds to the interaction with the acoustic phonons used in 
physisorption kinetics [153, 131].

In the weak coupling approximation (5.5.12), the equation determining the exact 
d

and put 

where index 

of the unitary transformation from the state 

(5.5.16)

> 0). The coefficient (an excited state for 

(zero sign means the vacuum 

(5.5.17)

0 0discrete excited state E = -E , E > 0, can be found from Eq. (5.2.7)

designates spin r1 = 

state, all nk = 0) of the unperturbed Hamiltonian 
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to the discrete state of the exact Hamiltonian (5.4.2), has the form (5.2.6) 

(5.5.18)

frequency (the Debye model) 

where s 1 (s is an integer number - see Ref. [154]). 
In a quite good approximation we can assume 

and

In the ohmic case (s = 1) the coupling parameter 

(5.5.19)

(5.5.20)

(5.5.21)

(5.5.22)

(5.5.23)

diverges

(5.5.24)

Therefore, one cannot treat the ohmic case in the weak coupling approximation 
(5.5.12). On the other hand, the cases s > 1 can be treated in the weak coupling 
approximation (5.5.12), provided that 

Function -R1/2(-E0) can be calculated using relations (5.5.13) and (5.5.14) with a cutoff 

Then forall values of E0
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(5.5.25)

In this case, we get from Eqs. (5.5.18), (5.5.12) and (5.5.22) 

(5.5.26)

and

(5.5.27)

Similarly for the ground state we get 

(5.5.28)

so that the energy difference between the exact excited and ground states equals 

while the unitary matrix element 

(5.5.29)

equals

(5.5.30)

Now let us assume that initially the system is in the state characterized by 

(5.5.31)

Using Eq. (5.1.13), expressions for the 
unitary matrix elements (5.5.26), (5.5.30), and others such as 

etc. (the derivation of these matrix elements is skipped here), the following 

asymptotic equations may be derived 

(5.5.32)

(5.5.33)

density matrix elements (the boson field is in its vacuum state: nk = 0) 

where m,n are eigenvalues of the operator r1.
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(5.5.34)

where and are the amplitudes of the exponentials and

respectively.

(5.5.9) (see (5.5.21), while outside this region 

Matrix elements do not depend on in the whole dissipationless region 

(for In 

deriving the above equations we did not use the rotating wave approximation. In the 

latter approximation (section 5.4) the ground state is not affected by the 

interaction (5.4.6): (5.4.8), while in the weak 

coupling approximation these quantities are given by Eqs. (5.5.28) nd (5.5.30). 

5.6 Semiquantitive analysis of the dissipationless regime 

As has been mentioned above, our task is to describe asymptotic 
as functions of 

quantities
We have fulfilled this task in the weak and

coupling case of small 

describe functions and

In the general case of arbitrary we are able to 

in a semiquantitive way. According to the 

analysis performed in the last part of Section 5.2, the exact discrete energy 
declines monotonically when changes from 0 to while decreases 
from its maximum value at = 0 to zero at 

However, quantity - the probability to remain on the upper level, 

when does not coincide with in the general case. But it can be 

Let us assume that shown that 

probability
and Eqs. (5.1.13) and (5.1.16) 

is proportional to quantities 

> 0. Then the asymptotic 

to remain on this level can be derived from the Hamiltonian (5.4.2) 

initially the two-level system is at the upper level E+ = 
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(5.6.1)

In the general case 

(5.6.2)

In order to describe semiquantitatively (and as a function of we

need an exact solution for matrix elements and at = 0. The exact solution 

for matrix elements and has been found in the case = 0 and 

= 1 [155]. (This solution cannot be applied to an interaction with photons, due 

to the existence of the last term in the r.h.s. of Eq. (4.1.7).) These results can be 
generalized for the initial (vacuum) condition [128] 

(5.6.3)

(5.6.4)

(5.6.5)

(5.6.6)

where

(5.6.7)

Using relations (5.5.13) and (5.5.14) we can present expression (5.6.7) as the 
integral

(5.6.8)



158 Memory effects in relaxation processes 

For s (integer) and higher than 1 the integral 
[154]

has finite asymptotic 

In the ohmic case (s = 1) the integral may be calculated as [154] 

(5.6.9)

(5.6.10)

This integral diverges 

(5.6.11)

This conclusion coincides with relation (5.5.24) obtained in the Debye model with a 
finite upper limit The
nonessential difference between 

the usage of different cutoff models 
Now, we can summarize the description of the nondissipative regime in the 

spin-boson system. The existence of the nondissipative regime, for s > 1, has been 
proven quite generally. This result is not connected with the use of weak or strong 
coupling. Relation (5.5.10) for determines the range of the dissipationless regime 
(everything is considered at zero absolute temperature T = 0). 

In the range of parameters 

and

(5.6.12)

spin-boson systems reveal the dissipationless behavior. As has been mentioned above, 
two phenomena characterize the dissipationless regime. Considering two levels of the 

of the probability to remain in the excited state While in the dissipative 

region is zero, in the dissipationless regime there exists nonzero 

probability to remain in the excited state, 

find using exact (for 

and 5.6.5) 

and

At = 0, and in its vicinity, we can 

= 0) Eqs. (5.6.4). Since initial (t = 0) probabilities 

we can obtain from Eqs. (5.6.4 

value  

of integral (5.5.19) (without the cutoff factor exp 
of  Eq. (5.6.9) and Eq. (5.5.22) is connected with

+ -spin system, the upper one E  and the lower E , we can define the asymptotic value (t 

+ += P (0) for negativeP (0) for positive
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and as functions of Plots of 

Fig. 6a corresponds to the weak coupling case 

this plot 

(5.6.13)

for various initial values are shown in Fig. 6. 

<< 1 (5.5.32, 5.5.33); as is shown in 

the strong coupling case 

the asymptotic values 

(5.6.14)

take the form 

(5.6.1 5) 

In the case of weak coupling we can obtain the analytical solution for in the 
whole region (5.5.32-5.5.34), and determine Eq. (5.5.21). In the general and strong 
coupling cases we can obtain values of = 0, and lower limit of 

the critical frequency Thus, in the general case we can perform the 
semiquantitive analysis of the dissipationless regime (for arbitrary strength of coupling). 

in the vicinity of 

(5.5.10).

<< 1. Functions are depicted at various initial 

Points 

= 0. 

±

In the case of large

Fig 6 (a) Weak coupling:

conditions P±(0). (b) Strong coupling >> 1. are not shown since they

Exact solution is known at pointmay exceed the maximum frequency of

depends on the initial values P (0))(nonergodic behavior). Fig. 6b describes 
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(5.6.16)

where In the dissipative regime the 

second term in the right-hand side of Eq. (5.6.16) describes decaying quantum beats so 
that the asymptotic values of the matrix elements vanish 

and the system can be found with equal probabilities in both wells 

(5.6.17)

In the dissipationless regime, in the weak coupling approximation the asymptotic values 
of the density matrix elements in Eq. (5.6.16) are given by Eq. (5.5.34) 

(5.6.18)

i.e. quantum beats do not decay. 
In the general case, we know the exact density matrix elements 

= 0, Eqs. (5.6.6) and (5.6.7). In a 

= 0 

(both strong and weak coupling) for 

good approximation, solution (5.6.6) and (5.6.7) can be used in the vicinity of 
(for In this case = 0 the spin-boson system is degenerate and this 
degeneracy can be removed by using the correct zeroth-approximation eigenfunction 

[142], so that in the first order approximation of the perturbation energy in 

the Hamiltonian (5.4.2), one gets the “dressed” quantum beats frequency 

(5.6.19)

For the case of the zero-temperature boson system (nk = 0) the “dressed” frequency 
takes the form 

(5.6.20)

and the asymptotic probability to remain in the left (right) well has the form 

(5.6.2 1) 

are the eigenvalues of spin component r1.
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Here the asymptotic density matrix elements (for s > 1) could be derived from Eq. 
(5.6.6)

In the strong coupling case >> 1 

(5.6.23)

In the ohmic case (s = 1) there are no quantum beats since, 

= 0. 

(5.6.1), and 

quantity. When 

solution at 

both the strong and weak coupling case give the same 

>> 1; then = 0. assume strong coupling 

In Fig. 7 we plot for

Both Figs. 6 and 7 present the results of the semiquantitive analysis. 

Exact solutions for are known at = 0, while for one can and

use these solutions as approximate ones. In the whole region of the dissipationless 
regime the qualitative behavior of quantities can be deduced from the 

(5.6.22)

Fig. 7. Quantity as a function of It is assumed that is a real

Other graphs

1/2 and for various (real) c   = 
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general conclusions of Section 5.2 (see the paragraph below Eq. (5.2.9) and Eqs. (5.6.1) 
and (5.6.2)). Similar conclusions can be obtained for quantity 

5.7

There are two popular approximations in the theory of relaxation processes. One is the 
Markovian approximation (sections 2.2 and 2.4) and another is the rotating wave 
approximation (RWA) (section 5.4). While there are regions when these two 
approximations overlap, in the general case these approximations are independent ones. 
In the Markovian approximation we get conventional master equations (2.7.10), which 
for the case of the spontaneous emission of the two-level systems transform into a 
simple equation (a zero absolute temperature, T = 0) 

(5.7.1)

and w is the transition probability between states 
probability to remain in the upper state We obtain the same result, (5.4.26), in the 
RWA. However, in the RWA there is the dissipationless region, (5.4.27), (5.5.9), in 
which the time-dependence is reversible (5.4.39) and the asymptotic value of 
This is apparently a non-Markovian behavior. Thus, the RWA not necessarily implies 
the Markovian approximation. 

The weak coupling approximation has main features of RWA. However, for the 
two-level system, the interaction energy in the RWA, (5.4.6), does not affect this lower 

Therefore the difference between exact upper and lower level energies 
equals In the weak coupling approximation, when counterrotating terms are taken 

(5.5.28), and the difference between exact upper and lower 

and

d

It is expedient to compare various approximations (RWA, Markovian, weak 
coupling) using some exact solution. Such an exact solution exists for the harmonic 
oscillator interacting with the harmonic thermal bath - harmonic phonon (boson) 
dissipative system. A comparison between the rotating wave approximation (RWA) 
and the exact solution for the harmonic oscillator has been performed by Ondrechen, 

The undamped solutions have 
been taken into account by Cukier and Mazur [158]. 

(5.5.29).

We write the Hamiltonian of the system in the form = 1) 

(5.7.2)

where the first two terms represent the uncoupled harmonic oscillator and harmonic 
thermal bath, and the last term represents their interaction. Solving differential 

obtains

Rotating wave, Markovian, and weak coupling approximations 

+ while P (t) is the 

level Eg = 0. 

into account, Eg = 

geigenenergies has the opposite sign E - E =

equations for each of the operators a and bv by performing the Laplace transform, one 

Nitzan, and Ratner [156], Lindenberg and West [157]. 
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(5.7.3)

(5.7.4)

(5.7.5)

(5.7.6)

(5.7.7)

(5.7.8)

Let us consider an average value of <a(t)>, assuming that initially the thermal bath was 
in equilibrium: 

For the average oscillator amplitude one gets an expression 

(5.7.9)

(5.7.10)

where
represent nonoscillating modes, and I(t) denotes the contour integral 

represent nondecaying local modes or (as we will see below) zk = ±x0
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Here

(5.7.11)

(5.7.12)

(5.7.13)

(5.7.14)

where is the frequency density of the phonon bath. The sign in (5.7.12)
denotes the principal value, are minimum and maximum frequencies of the 
phonon bath, and is the function equals to 1 when and equals zero 
otherwise. The zeros of the denominators in Eq. (5.7.11) can easily be found 

and

In the weak coupling approximation 

(5.7.15)

(5.7.16)

Assuming also that one can neglect dependence of F(y) and on y in the vicinity of 
(Markovian approximation), the integration can be expanded on the whole y-axes.

In this case one can use the residue theorem and obtain the time dependence of mean 
values <a(t)> and in the form 

(5.7.17)

We now consider the second term of Eq. (5.7.10). 
exist, they are either purely real or pure imaginary. Let us consider these two cases 
separately.

If the poles have no real parts, one gets the modes without damping, i.e. local 
modes or local vibrations. These local modes may lie only outside the spectrum of the 
phonons, or (note that may be zero and infinity; in that case 
isolated undamped modes cannot exist). 

Isolated modes exist if the following conditions are satisfied 

kIt turns out [159] that if poles  z
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for the pole in the region 

(5.7.18)

(5.7.19)

(5.7.20)

for the pole in the region 
In these cases the oscillating local modes have no damping. Hence, <a(t)> has 

no limit as this reversible behavior could not be obtained in the Markovian 
approximation.

The contribution to the sum of residues (5.7.10) can also be made by the poles 
with zero frequency y = 0. In that case local vibrations do not exist and there are two 

The condition of existence of these poles can be written as 

Comparing this condition with (5.7.18) we see that the nonoscillating terms due to the 
poles (5.7.21) appear immediately after the disappearance of local oscillating modes. 

Now the whole dynamics of the poles can be described. When coupling is small 
enough, none of the conditions (5.7.19), (5.7.20) and (5.7.22) is satisfied. As the 
coupling increases, two poles appear at the points and they approach the origin. 
(We do not consider poles connected with the upper level The poles reach the 
origin when the inequality (5.7.18) turns into equality. After condition (5.7.22) is 
satisfied, the poles begin to move from the origin along the real axes. For such strength 
of coupling we obtain two nonoscillating solutions; one of them is decreasing and the 
other is increasing. 

The existence of the nonoscillating modes and especially of the increasing 
mode, looks rather unusual. However, the instability of this kind can be obtained in 
much simpler cases, even in the problem of two interacting harmonic oscillators. This 
problem is, of course, classical and discussed in every book on mechanics (see, for 
example, Ref. 160). Nevertheless, the possibility of the existence of such solutions is 
not described there. If we consider two identical coupled oscillators with the 
Hamiltonian

(5.7.21)

(5.7.22)

solutions equal in absolute value and different in sign, z = ±x0
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we will immediately obtain the eigenfrequencies of this system 

(5.7.23)

(5.7.24)

Obviously, if the coupling constant is sufficiently large will be negative, 
that is we obtain increasing nonoscillating solutions. It should be noted that this 
solution does not contradict the law of energy conservation. The situation when one of 
the frequencies becomes imaginary, corresponds to the case when the potential energy 
is no longer described by a positive definite form. The exponential increase of the 
kinetic energy is compensated by the increase of the absolute value potential energy 
which has a negative sign. 

When we consider a large number of oscillators, the situation is similar, but with 
one difference: in this configuration each oscillator of the thermal bath interacts with 
only one singled out oscillator with frequency This means that the frequency shift 
of each of the oscillators in the continuum is too small to cause the instability (its 
magnitude is proportional to where N is the number of oscillators in the bath). The 
singled out oscillator (with frequency on the contrary. is coupled to the whole 
continuum and due to this its frequency may become imaginary. Physically, it means 
that only anharmonic terms, if they exist, make the motion of the oscillator finite. 

The above analysis may be applied to the harmonic oscillator chain with an 
impurity [158]. In this case the frequency of the singled out oscillator in our case) 
depends on the coupling constant and condition (5.7.22) cannot be satisfied. 

Now we can summarize the conditions under which the exact solution (5.7.10 - 
5.7.14) can be approximated by the Markovian solution. 
(a) The relaxation term I(t) should have exponential behavior It takes place in 

the pole approximation; when the denominator in Eq. (5.7.11) may be 
approximately presented as 

(5.7.25)

(5.7.26)

where and are quantities appearing in sections 1.7 , Eq. (1.7.16), and 

weak coupling expression is given by Eq. (5.7.16). It is worthwhile to mention 
that the weak coupling is not a prerequisite of the Markovian approximation; a 
necessary condition of the latter is given by Eq. (5.7.26). 

with y0 given by Eq. (5.7.1 5). This approximate equality takes place, provided 

0sections 2.2 - 2.4. Exact expressions for y  is given by Eq. (5.7.15), while the 
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(b) In the Markovian approximation local vibrations and nonoscillating terms 
(5.7.21) should be absent. Therefore the necessary condition of the Markovian 
approximation is the nonfulfillment of the inequalities (5.7.19) and (5.7.20). It
can be shown that local vibrations with a frequency higher than usually 
appear when local vibrations with a frequency lower than already exist. 
Hence, the condition of the absence of isolated modes (and nonoscillating ones) 
take place 

(5.7.27)

(5.7.28)

If these inequalities are satisfied but the two sides of it are of the same order, the 
relaxation is still nonexponential. Hence this condition of Markovian 
approximation has to take the form 

(5.7.29)

(5.7.30)

These inequalities are independent of (5.7.26).
It has to be stressed that all the above results are temperature-independent. This 

means that these results are valid both for the high temperatures and for the vacuum 
state. The temperature dependence appears when we consider the relaxation of higher 
powers of the operator a: 

Within the RWA the 
Hamiltonian (5.7.2) is reduced to 

a², and so on. 
Now we consider the rotating wave approximation. 

(5.7.31)

The RWA Hamiltonian (5.7.31) generates two independent sets of equations for 
a, while the full Hamiltonian generates the interdependent equations for 
equations of motion for and have the form 

and
and a. Thus 

(5.7.32)

(5.7.33)
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Similar equations are obtained for a and b, by performing the Hermitian conjugation of 
Eqs. (5.7.32 -5.7.33). Equations for the averaged operators and are linear 

and have the same form as Eqs. (5.7.32) and (5.7.33). Like in the general case, the 
equations for the averaged do not depend on the bath temperature, 
and they are valid for the vacuum state. This means that if initially the oscillator was in 
the ground state n = 0, it will remain in this state forever. This is the zero solution 
= 0 of the equations for averaged is a 
superposition of states n = 0,1 only, then the Hamiltonian (5.7.31) generates transitions 
n = 1 n = 0, while the transitions to the higher states n > 1 are forbidden. In this 

quantum numbers n together. 

r3 with the following combinations of a and 

and

If the wave function of oscillator 

(5.7.34)

Now the Hamiltonian (5.7.31) coincides with the two-level RWA Hamiltonian (5.4.5), 
where and = 1, ak k

Representing operator in the form 

(5.7.35)

we obtain the equation for 

(5.7.36)

which is identical with Eq. (5.4.10). For the sake of simplicity we will consider the 
case = 0; = Like in section 5.4 we consider two cases. The first case is when 

is larger than the critical frequency 

In this case there are no local modes and time dependence of 

(5.7.37)

takes the form 

(5.7.38)

where

the RWA Hamiltonian differs from the full Hamiltonian (5.7.2), which connects all 

1 2Considering the two-level system n = 0;1, one can identify components r , r  and

v= b , B = Gv and 
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(5.7.39)

means the principal value of the integer. 

and in the vicinity of 
In the Markovian approximation, when one can neglect the of

we obtain the weak coupling case time 
dependence (5.7.17) 

(5.7.40)

In the opposite to (5.7.37) case 

(5.7.41)

there is a local (non-decaying) mode with a negative frequency 

which satisfies Eq. (5.7.36) (or similarly Eq. (5.4.29)) 

(5.7.42)

(5.7.43)

This mode is an artifact of the RWA. The exact Hamiltonian (5.7.2) generates 
nonoscillating exponentially increasing and decreasing modes, provided condition 
(5.7.22) is satisfied = 0, 

(5.7.44)

It means that in the region (see (5.7.37)) 

(5.7.45)

the RWA Hamiltonian (5.7.31) leads to the decaying oscillating when t 
(5.7.40), while in the region (5.7.41) the RWA gives the nondecaying local mode 

with negative frequency, satisfying Eq. (5.7.43). The exact solution in the region 
(5.7.45) does not contain nondecaying local modes. The exact solution in this region is 
(5.7.21); it contains nonoscillating decreasing and increasing modes. Therefore the 
RWA cannot be used in the region (5.7.44) and, as a matter of fact, in a broader region 

(5.7.46)

Only at the frequencies 
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(5.7.47)

and in the weak coupling approximation, the exact Hamiltonian, (5.7.2), and the RWA 
Hamiltonian (5.7.31) give the same results. 

Indeed the Markovian approximation and the RWA are independent ones. Both 
exact solutions (5.7.10) and (5.7.11) and the rotating wave solution (5.7.38) may be 
treated in the Markovian approximation (see conditions (a) and (b) on p. 166). 

5.8 Impossibility of exponential relaxation 

Both exact and RWA Hamiltonians lead to the exponential decay in the Markovian 
approximation (5.7.17), and (5.7.40). It should be stressed that these are approximate 
results. Khalfin [161] has shown that the exact exponential relaxation cannot be 
realized in physical systems. This result has been derived for pure states of the 
physical system. However, as is clear from the general considerations of Chapter II, 
the relaxation processes usually take place in mixed states, and are described by the 
density matrices. 

The time dependence of the density matrix may be presented in a general case 
as (5.1.13) 

(5.8.1)

(see Hamiltonian (5.1.1)), with the density matrix in the H representation, 
are the eigenvalues of the Hamiltonian H, and is the 

Let us transform the initial density matrix 

can be done by a unitary matrix T: 

or

to the diagonal form [159]. It 

where Then 

Substituting this to the diagonal part 

(5.8.1), we obtain 

(5.8.2)

Separating the summation with respect to k, (u'L), and (v'M) we get 

(5.8.3)

where

where S is a unitary matrix that connects the density matrix in the H0-representation

initial density matrix in the H0 representation. 
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and
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We will show now that the probability for the system to be found in the 
is slower than the exponential function. Since excited state u, tends to zero, as 

all the values of are positive, we can always find an integer N, such that 0 < 

for any k. Hence 

(5.8.5)

Denoting by we obtain 

Passing from the sum to the Fourier integral we can finally write 

(5.8.6)

and
It follows from the theory of the Fourier series that the Fourier transform of the 

function with a bounded carrier cannot be an exponential function. Indeed, by the 
theorem of Paley and Wiener [163] and since the function can be defined as 
zero for negative 

(5.8.7)

The implication of this condition is that cannot obey the exponential law of 
relaxation for all times. Indeed, if is an exponential function for then 
integral (5.8.7) does not converge. This means that must vanish slower than the 
exponential function, at least as exp > 0. Coming back to (5.8.5), we see 
that possesses the same property. This means that pure exponential decay for a 
real physical system can never be realized. 

It has to be emphasized that this statement relates to exact solutions, or exact 
soluble models. Obviously, an exponential relaxation can be obtained as an 
approximate solution of  a problem. 

where  wuk = is a density of frequencies 

its Fourier transform Fuk(t) must satisfy the inequality 



In previous chapters, various irreversibilities in quantum mechanics have been 
considered. Still, one can get an impression that the irreversible process is, in a sense, 
a foreign body in quantum mechanics. Typical, finite quantum systems, such as a 
two-state system, a harmonic oscillator, atoms, molecules are reversible. More than 
that, there are large quantum systems, like superconductors, superfluids and others, 
which are also reversible. In the previous chapter it has also shown that in even 
generally dissipative system with large number of degrees of freedoms, there 
is a certain range of parameters in which the system is reversible. Thus one may 
conclude that irreversible processes in quantum mechanics play an important, albeit not 
dominant, role. Though there are many reversible quantum-mechanical systems, such 
an impression does not reflect a real state of affairs. 

Quantum measurement - the process and mechanism, lies in the very heart of 
quantum mechanics. The process of quantum measurement, even of simple systems 
such as the two-level molecule, has an irreversible character. Reduction of the wave 
packet, a collapse of the wave function is an irreversible process. Therefore, the 
irreversibility penetrates to the heart of quantum mechanics through the central role of 
quantum measurement in quantum mechanics. 

In this chapter the process of quantum measurement is analyzed as a special 
case of the interaction of quantum system. The collapse of the wave function is 
considered as a result of the irreversible interaction between the coherent dynamic 
system described by the off-diagonal density matrix and the non-coherent dissipative 
system described by the almost diagonal density matrix. 

6.1

In the first chapter we have presented a conventional (Copenhagen) description of 
quantum mechanics. A certain deviation from the conventional picture is that basic 
quantity describing the state is the density matrix, while the wave function is a specific 
case. In the conventional representation a strangeness and even mystery of quantum 
mechanics is, somehow, overlooked. In this section we wish to present another, 
nonpragmatic, view on quantum mechanics. The widely spread opinion, especially 
among philosophers, is that quantum measurements, the act observation, is something 
almost mystical - the object does not exist without being observed. This opinion stems 
from the influence of the very authoritative, and dominant, personality of Niels Bohr. 
The conventional Copenhagen interpretation is, as a matter of fact, Bohr’s 
interpretation. Many physicists, taking their lead from the central figure of Niels Bohr, 
deny the reality of the quantum object before the measurement (or between the 
measurements). These physicists would say that there is no objective picture at all. 
Nothing is actually “out there”, at the quantum level. Quantum theory, according to 
this view, is merely a calculation procedure that does not attempt to describe the world 
as it actually is. Thus Bohr states: “I warned especially against phases often found in 
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physicists, such as ‘creating physical attributes to atomic objects by measurements’.” 
Such phrases are “apt to cause confusion...” [163]. Bohr is evidently saying here 
essentially what we have said above, i.e., that it has no meaning to talk of a quantum 
object with its attributes apart from the unanalyzable whole phenomenon in which it is 
actually observed. 

Bohr’s view had a very widespread influence, but his ideas do not appear to 
have been well understood by the majority of physicists. Rather, the latter generally 
followed a quite different approach initiated by Dirac and von Neumann, in which a 
quantum state played a central role. In the first chapter we used this concept without 
making a special emphasis on it. The wave function (or more generally the density 
matrix) gives the most complete possible description of quantum reality, which is thus 
contained in the concept of a quantum state. The evolution of a quantum object is 
described by the wave time-dependent function (or density matrix), while the process 
of the measurement (as will be shown below) can be described as a special case of 
quantum mechanical interaction. 

Before considering the nature of the measurement process we will try to bring to 
the reader the unusualness of quantum theory. A deeper insight into the structure of 
quantum mechanics reveals a magnificent and counterintuitive picture, which 
contradicts any experience obtained by the physicist in other theories. In this context I 
cannot refrain from quoting Albert Einstein. “His [scientist’s] religious feeling takes 
the form of a rapturous amazement at the harmony of natural law, which reveals an 
intelligence of such superiority that compared with it, all the systematic thinking and 
actions of human beings is an utterly insignificant reflection” [164]. Three thousand 
years ago the author of psalms expressed a similar feeling. “O Lord, how great are thy 
works! And thy thoughts are very deep. A brutish man does not know. Nor does a 
fool understand this” (Psalms, 92:67). 

The EPR paradox 
In 1935 Einstein, Podolsky and Rosen [165] wrote their famous paper, known as EPR. 
They do not question correctness of quantum mechanics. EPR ask the question 
whether quantum-mechanical description of physical reality is complete. To answer 
this question the notion of completeness has to be defined. According to EPR two 
conditions are necessary: 
(1) Every element of the physical reality must have a counterpart in the physical 

theory.
(2) If, without in any way disturbing a system, one can predict with certainty (i.e., 

element of physical reality corresponding to this physical quantity. 

Let us consider correlated quantum systems of type (1.4.7), which interact 
during a finite time interval. After the interaction between two systems 1 and 2 is 
vanished, we have 

(6.1.1)

with the probability p =1) the value of a physical quantity, then there exists an 
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Using properties of these correlated quantum systems, EPR concluded that quantum 
theory does not provide a complete description of physical reality. Let us follow their 
argumentation in order to verify whether the two above conditions and expansion 
(6.1.1) are enough to prove incompleteness of the quantum theory. 

2

Variables x2 are used to describe the second system. Functions may be regarded 

the reduction of the wave packet takes place. (In the next section a more detailed 
description of this reduction is given.) The infinite series (6.1.1) is reduced to a single 
term It is then concluded that after the measurement the first system is in 

2

(6.1.2)

Measuring quantity B we find the whole system in the state Thus the first 

system is in the state while the second system is in the state “We 

therefore see that, as a consequence of two different measurements performed upon the 
first system, the second system may be left in states with two different wave functions 

On the other hand, since at the time of measurement the two systems 

no longer interact, no real change can take place in the second system in consequence 
of anything that may be done to the first system. This is, of course, merely a statement 
of what is meant by the absence of interaction between the two system.” [165] 
(Emphasis is mine, B.F.). Thus it is possible to assign two different wave functions 

and to the same reality. These two wave functions and may be 

eigenfunctions of two noncommuting operators corresponding to some physical 
quantities P and Q, respectively. Such a situation cannot be described by quantum 
theory. This means that quantum theory is incomplete. 

The arbitrary point in the above derivation is the assumption that the 
measurement performed on the first system does not disturb the second system. In 
another place [166] Einstein puts this assumption in very clear-cut form: “But on one 
supposition we should, in my opinion, absolutely hold fast: the real factual situation of 

2

separated from the former”. This statement looks as a diktat to Nature to use a-priori
philosophical considerations. On the other hand, it does not matter how obvious may 
be certain statements, they have to be supported by the experiment and measurement. 

and

1 3 1 1 2 1Let a , a , a ,..., be the eigenvalues, and u (x ), u (x ),... be eigenvalues and 

as the coefficients of the expansion of kinto a series of orthogonal functions u (x1).

k 1the state given by the wave function u (x ), while the second system is in the state

eigenfunctions, respectively, of some physical quantity A pertaining to system A.

nThe set of functions u (x1) is determined by the choice of the physical quantity 
1A. Choosing another quantity, say B, with eigenvalues b , b ,..., and eigenfunctions 

1 1 2v (x ), v (x1),..., we get another expansion (representation) of the same wave function 

the system S is independent of what is done with the system S1, which is spatially 

kSuppose that the quantity A is measured and it is found that it has the value a . Then
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EPR formulate this in the following words: “The elements of the physical reality 
cannot be determined by a-priori philosophical considerations but must be found by an 
appeal to results of experiments and measurements.” [165] As a matter of fact, EPR 
make the a-priori assumption that an action on distance cannot take place. Although 
our whole intuition says that physical theory should be local, it is, still, an arbitrary 
assumption. More than that, and it remained unnoticed for many years, that quantum 
mechanics is not a local theory. A long time ago, before the development of quantum 
theory connected with Bell’s theorems, Einstein realized that quantum theory is 
intrinsically nonlocal [167]. It requires some reflection to see the nonlocality of 
quantum mechanics. In the example (6.1.1) the distance between 1 and 2 is long 
enough, so that one can neglect the interaction energy between them. However, the 
measurement performed on the first system changes the state of system 2: 

(6.1.3)

This is a routine situation in quantum theory. Now, when EPR state that there is no 

the interaction between these systems tends to zero. However, in quantum theory there 
is a long distance, nonlocal quantum interaction of the (6.1.3) type, i.e. the reduction of 
wave packet (6.1.1) as a result of the measurement performed on system 1, is an 
intrinsic feature of quantum theory. 

These are general considerations. EPR provide a specific example. But Bohm’s 
Gedanken experiment [168] has become much more popular. Consider a pair of spin 
one-half particles formed somehow in the singlet spin state and moving freely in 
opposite directions (see Fig. 8). The singlet wave function of these two particles has 
the form (1.6.23) 

where is a single particle state of the particle 

(6.1.4)

having spin up (+) or down 

which can point in any direction. Following 
in any direction can be predicted with certainty 

from a measurement of the spin of particle has spin up (down) 
in direction then has spin down (up). According to EPR the spin of particle is 
an element of physical reality, because we can predict with certainty its value without 
making a measurement on it (“without disturbing it”). Measuring spin first in the x 
direction, and then in the y direction (it may be another pair of spins, but in the same 

in that direction. If

Fig. 8. A pair of spin ½ particles moving in opposite directions. 

(-)  along the direction of unit vector 
the EPR logic, the spin of  the particle 

1interaction between the two systems 1 and 2, they mean thatpotential energy V(r ,r2) of 
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state (6.1.4)), one concludes that the spin component of particle in both x and y 
directions must be elements of physical reality. According to the EPR suppositions, 
particles must, therefore, be moving along with definite values of its x and y spin 
components before any measurement is made. Now comes the EPR paradox: 
Quantum mechanics cannot assign simultaneous values to x and y spin components 
because the corresponding operators do not commute 

(6.1.5)

Therefore, according to EPR, quantum theory does not account for these elements of 
physical reality and therefore it cannot be considered a complete description of 
physical reality. 

It is worthwhile to emphasize that there is no paradox within the framework of 
quantum theory itself, since EPR argument does not involve simultaneous 
measurements, or predictions of both x and y component particles b in the 
Bohm-Gedanken experiment. Rather, it involves the possibility of measuring either but 
not both, and since it is then possible to predict either with certainty, it is concluded 
that both are elements of physical reality. 

Bell’s Inequalities 
Thus the locality is the main issue in the EPR paradox. The assumption of locality 
leads to the paradox and proof of the incompleteness of quantum mechanics. Bell 
[169] gave a very convincing answer to this problem. Figure 9 provides a schematic 
representation of the modification of Bohm’s Gedanken experiment [168]. 

We choose units such that the observed spin in any given direction is either 1 or 

-1 = 1). At stations A and B there are instruments which measure the spin along 

an axis transverse to the line of flight of the particles. In each detector this transverse 
direction can be set in either of orientations at station A and at station B. It is an 
empirical fact that, whenever the spin of the particle is measured along a given axis, 

but never to have some fractional value for its projection along an axis. That is, each 
individual measurement yields either +1 or -1, never any other value. The difference 
of the arrangement on Fig. 6.2 from the original Bohm’s version of EPR is that two 
spins are not necessarily parallel, they may be measured with difference between 
their orientations. 

Bell [169] formulated the criterion of the validity of local theory (not 
necessarily quantum) describing the experiment on Figure 9. He did this by 
considering the generalized version of the EPR experiment, representing the states of 
reality by a set of additional (hidden) variables In the general case each individual 
result of the measurement of the projection of the spin on the axis at station A, and 

on the axis at station B, depend on the apparatus hidden variables or variables 
belonging respectively to particles A and B themselves, and a set which 

may be associated with the observed system as a whole. The results of the 
measurements are designated A = +1 for positive spin, and A = -1 for negative spin, 
and corresponding designations for spin B. Then in the general case 

and

-one always finds that the spin points either “up” (+1) or “down” ( 1) along that axis,
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Fig. 9. At the center there is a source which decays and emits two electrons (or photons) in 

and B there are instruments (“detectors” in the diagram) which can be set to measure the 
spin of the electron along an axis transverse to the line of flight of the electrons, at angles 
and at stations A and B respectively. 

The interaction between A and B will be local if the result A depends only on 
(and vice versa for B). Therefore andand not on 

Designating all hidden parameters by we may write 

(6.1.6)

and

(6.1.7)

of

(6.1.8)

The vital assumption is that the result B for particle B does not depend on setting 
the magnet determining orientation of particle A and the same for particle B. 

product of two components of spins A and B is 
If is the probability distribution of then the expectation value of the 

(6.1.9)

Using (6.1.8) and (6.1.9) the following condition can be obtained 

(6.1.10)

This condition is Bell’s inequality which must be satisfied for a local hidden theory to 
apply to our system of two particles with spin. (This symmetric form of the Bell 
inequality was first proposed by Clausner et al. [170].) These inequalities make 
possible a test for locality on the basis of measurements of four sets of correlations. 

The prediction of quantum mechanics is 

opposite directions with moments ±p. The spin of the atom (“source”) is zero. At stations A
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(6.1.11)

There is a range of angles for which (6.1.11) does not satisfy the inequality 
(6.1.10). Bell’s inequality has been tested in a large number of experiments and 
generally speaking the inequality has been found to be violated. The most thorough set 
of experiments has been performed by Aspect et al. [171]. 

Two points have to be stressed. First, Bell did not write a local, deterministic 
theory. Rather, he proved that no such a theory can in principle exist. Second, Bell’s 
theorem does not depend on quantum mechanics. It refutes a whole category of 
theories without ever mentioning quantum mechanics. It turns out that the 
experimental results not only refute the class of local deterministic theories, but also 

Delayed-Choice Experiment 
The nonlocal nature of quantum mechanics is manifested in the delayed-choice-
experiment [172], Figure 10. 
Photons are sent from a certain source. If the two possible routes are exactly equal in 
length, then it turns out that there is a 100 per cent probability that the photon reaches 
the detector A lying in the direction of the photon’s initial motion and a zero per cent 
probability that it reaches the other detector B - the photon is certain to strike the 
detector A. It seems certain that the photon must, in some sense, have actually 
traveled both routes at once. For if an absorbing screen is placed in either one of the 
two routes, then it becomes equally probable that A or B is reached; but when both 
routes are open, only A can be reached. In a sense this experiment is very similar to 
the two-slit experiment. Closing one slit leads to the destruction of the interference 
pattern.

There are two differences. One is that in the delayed-choice experiment the 
interference is displayed when only one photon (or electron) is sent. In the two-slit
experiment the interference pattern is displayed only when many electrons are sent. 
Thus the delay choice experiment manifests unequivocally that the interference is a 
property of one particle (electron, photon). Another difference is clearly manifested: 
nonlocality of the delayed choice experiment. Placing an absorbing screen on one of 
the routes, close to point L, at a time when photon is very close to its final destination 
N, leads to the destruction of the interference. 

supportnonlocal predictions of  quantum mechanics. 

Fig. 10. The two routes taken by photon can be made to interfere with one another. 
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And, lastly, talking about the peculiar, nonlocal character of quantum 
mechanics, one can hardly avoid mentioning the de Broglie-Bohm causal interpretation 
of quantum mechanics. John Bell [169] writes: 

Bohm’s 1952 papers [see Ref. 192] on quantum mechannics were for me 
a revelation... I have always felt... that people who have not grasped the 

handicapped in any discussion of the meaning of quantum mechanics. 

The basic assumption is that the particles are real local entities, that have 
position and momentum, even though we cannot determine the values of them 
simultaneously. These particles are beables, in Bell’s terminology, as opposed to the 
observables in conventional formulation of quantum mechanics. These particles, 
having well defined positions, can move along well defined trajectories. 

To find the trajectories of quantum particles it is required that these trajectories 
depend on the wave function 

(6.1.12)

while the wave function is presented in the form 

(6.1.13)

Considering the standard procedure leading to the semiclassical (WKB) approximation, 
we obtain the quantum Hamilton-Jacobi equation 

(6.1.14)

where P = R² is the probability density. Here U is a usual potential, while Q is the 
quantum potential 

(6.1.15)

The second equation (6.1.14) expresses the conservation of probability. The 
momentum of the particle has the form 

(6.1.16)

The next step is almost evident, though it has been overlooked for many years. Q is 
added to the usual potential in the equation of motion 

ideas of those papers... and unfortunately they remain the majority.. .are
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(6.1.17)

The two-slit experiment may serve as an example of an application of equations 
(6.1.14) - (6.1.17). It has been shown [192] that ensemble of electrons moving 
according to the equation of motion (6.1.17) results in the conventional interference 
pattern in the two-slit configuration. 

Now we will demonstrate the appearance of quantum nonlocality in the Bohm’s 
formalism. Let us consider the two-body system. The wave function 
satisfies quantum Hamilton-Jacobi equations (with equal masses) 

(6.1.18)

(6.1.19)

where

(6.1.20)

and subscripts 1 and 2 refer to the first and second particles respectively. Now the 
momenta of the particles are 

(6.1.21)

and R is a function of the coordinates of the particles. Thus we see, in 
general, that the trajectory of particle 1 depends on the trajectory of particle 2 and vice 
versa. Indeed, this interdependence is not uncommon for the system of two interacting 
particles. However, the important feature of the quantum potential is that the particles 
can be separated by a considerable distance and yet interact very strongly, even though 
there may be no classical potential U between them. Here we also have the possibility 
of a non-local force. Indeed, this is just the kind of force that can offer an explanation 
of the EPR correlations. For the (6.1.1) type wave functions (and (6.1.4)) the quantum 
potential Q does not vanish when the distance between particles is very large (and 
tends to infinity). Thus, although the particles are not interacting through any classical 
force and are separated in space, they are interacting through the quantum potential. 
The measurement of the spin of one particle influences the state of the other particle, in 
agreement with quantum mechanics. 

In equation (6.1.18), U and Q appear in essentially the same way. The 
difference is that Q describes the interaction that depends on the details of the whole 
wave function. While in classical mechanics the whole picture is determined by the 
local interactions between the particles, the quantum interaction is non-local and 
depends itself on the state of the whole system. Of course, it can be easily shown, that 

and
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for the factorized wave function of the (1.4.2) type, the whole interaction becomes 
local. It was exactly the appearance of this non-locality that led John Bell to think 
about the problem of non-locality in more general terms and subsequently produced his 
inequalities.

Going on to the N-body system, we have 

and

(6.1.22)

(6.1.23)

so that the behavior of each particle may depend nonlocally on the configuration of all 
others, no matter how far away they may be. As in the one-body case, we may take 

P = R² , (6.1.24) 

as the probability density, but this is now in the configuration space of all particles. 
Similar to Eq. (6.1.13) a classical particle moving in the electromagnetic field depends 
on this field. The difference is that the electromagnetic field is the function in the usual 
three-dimensional space, while (6.1.22), and Q, (6.1.23), are functions in the 
many-dimensional configuration space of all particles. In a sense, one may say that 
quantum mechanics is a local theory in many-dimensional configuration space and is a 
nonlocal one in the usual three-dimensional space. 

All the above examples and considerations demonstrate a nonconventional and 
counterintuitive character of quantum mechanics. What is common to the considered 
processes is the decisive role of the measurement and reduction of the wave-packet.

6.2 Reduction of wave-packet 

In a sense, the measurement process plays a central role in quantum mechanics (or, at 
least, in its interpretation). This problem continues to attract the attention and interest 
of researchers up till now. Classical works on the subject are given in the book [173]. 
Among them are papers of Wigner, EverettIII; Daneri, Loinger and Prosperi (to this 
should be added a paper of Rosenfeld [174]), Zeh and others. Other works including 
those of Zurek, Leggett and others are reviewed in Refs. [175, 176]). 

An important development of the theory of quantum measurement is connected 
with the formalism of decoherent histories (DH), (Aharonov, Bergman and Lebowitz, 
Griffiths, Unruh, Gell-Man and Hartle, and Omnés). This development is reviewed in 
Refs. 173, 175 and 176. While DH analyze a sequence of measurements, the subject of 
the following sections is the description and understanding of a single act of 
measurement.

Suppose that a quantum system is described by the wave function 

(6.2.1)
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and the corresponding density matrix 

(6.2.2)

In a more general case the system is described by the density matrix which does not 
coincide with (6.2.2), but also has nonzero off-diagonal matrix elements 
By measuring a dynamical quantity, say the energy, of which u, are eigenfunctions, we 

2

the measurement process the initial wave function 

or
The corresponding density matrix describing this proper mixture (see section 

1.6) is 

(6.2.3)

or, in a general case, 
The crucial difference between the density matrix (6.2.3), and wave-function

(6.2.1) (or, more generally, the density matrix possessing off-diagonal matrix elements) 
is that coefficients of (6.2.3) may be interpreted as classical probabilities. The density 
matrix (6.2.3) can be used to describe the alternative states of the system. When 
off-diagonal terms are absent one can safely maintain that the system is in a definite, 
but unknown, state. Each particular state 
measurement, as a result of a transformation 

appears as a result of a certain (one) 

(6.2.4)

The multitude of a very large number of measurements is described by the density 
matrix (6.2.3), while are probabilities (relative frequencies) that transformation 
(6.2.4) takes place. When a measuring device performs the multitude of the 
measurements, the observer just verifies the relative frequencies of the outcome of the 
experiment. The density matrix of the (6.2.3) type can describe the result of throwing 
up the coin 

(6.2.5)

This correctly represents the certainty of two alternatives - that is whether the heads 

(H) or tails (T) are results of throwing the coins, while are relative frequencies of the 

experiment.
The above description assumes the passive role of the observer. He has only to 

verify the outcomes of the measurements. There is another point of view attributing to 

1obtain various eigenvalues E , E ,...,E n,..., with probabilities Pn = or Pn = 
n

in a 

n

more general case. But once having obtained a given eigenvalue, say E  (as a result of 
the measurement) we know that the system is necessarily in the state u . At the end of 

(the density matrix  ) is

is a diagonal element of a general density matrix .

transformed into a mixture of  various pure states un with the probabilities 
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the observer an active role in the transformation (6.2.4). Below we will discuss this 
possibility in more detail. 

The transformation (6.2.4) or transformation from (6.2.1) to (6.2.3) is often 
called the reduction of the wave-packet (or collapse of the wave function). Thus, at 
least at first sight, there are two entirely different processes. One of the processes is the 
evolution of the wave function (or density matrix) of the system between the 
measurements. This evolution is described by the unitary operator 

(6.2.6)

where H is the Hamiltonian of the system. On the other hand, there is another process 
- the quantum measurement. This process leads to the collapse of the wave function, 
or density matrix. Generally speaking the off-diagonal density matrix, whose time 
evolution is described by the unitary operator (6.2.6) is transformed by the 
measurement (collapse) to the diagonal density matrix. Such a transformation cannot 
be described by the unitary operator (6.2.6). 

Von Neumann [177] was the first who distinguished two different processes: 1
- the measurement, and 2 - the unitary evolution of the state. Penrose [178] designated 
these two processes as U - the unitary evolution, and R - the measurement process. 
Regarding the density matrix, or wave function, as describing the “reality” of the 
system, we realize that the U process is entirely deterministic, while it is the procedure 
R, and only R, that introduces uncertainties and probabilities into quantum theory. The 
question arises whether the process R can be described by the usual quantum 
mechanics. Penrose [178] answers this question quite unequivocally: 

According to the standard procedures of quantum mechanism there is no 
implication that there be any way to ‘deduce’ R as a complicated 
instance of U. It is simply a different procedure from U, providing the 
other ‘half’ of the interpretation of the quantum formalism. All the 
non-determinism of the theory comes from R and not from U.

This conclusion seems inevitable once one assumes that a combined system 
containing an interacting measurable object and measuring device is described by the 
wave function. Suppose that we want to measure a quantity A of the object which is 
in the state 

(6.2.7)

where uk is the eigenfunction corresponding to the value ak of operator A, while x is 
the set of the variables of the object. Let M(y) be the coordinate specifying the 

2

measuring device variables. Before the coupling we attribute to the combined system 
a collective wave function of the form 

0 1

0 1eigenvalues, with eigenfunctions v (y), v (y),...,vp(y), where y is the set of the
position of the “pointer” of the measuring device, and m , m , m ,...,m  p its
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(6.2.8)

After the interaction the wave function obtains the form (cf. section 1.4) 

(6.2.9)

However, this form of the wave function implies that the pointer is in the 
superposition of its states. This is the situation of Schrödinger’s “cat paradox” [179]. 
The introduction of another system (environment, observer), interacting with the 
combined object + measuring device, does not save the situation. The new wave 
function will take the form 

(6.2.10)

where are the eigenfunctions of the operator E of the third system (of the 
environment). At a certain stage there should be the collapse, (6.2.4), of the wave 
function

(6.2.11)

However, such a transformation contradicts the linear Schrödinger equation. On the 
other hand, it seems almost inevitable that such a transformation (the collapse of the 
wave function) must happen at a certain stage of the measurement. As von Neumann 
[177] pointed out, the point at which (6.2.11) occurs is not obvious, and he proposed 
that it would ultimately take place when a human consciousness (the “observer”) is 
involved. A similar emphasis on consciousness has been relied by Wigner [180], 
Peierls [181], and London and Bauer [182]. 

The way of explaining a collapse of the wave function (6.2.4) or (6.2.11) is in 
postulating “that the equations of motion of quantum mechanics cease to be linear, in 
fact they are grossly non-linear if conscious beings enter the picture” [180]. Of 
course, all this approach removes the measurement problem into the region of the 
unknown. It implies that the destruction of the superposition is performed by the 
consciousness. I believe that the observer’s mind has nothing to do with the 
measurement process. The measurement is a physical process of interaction of the 
system with the measuring device and environment. The role of the human being is to 
verify that the measurement took place. Various observers will see the same position 
of the pointer. They do not affect the measurement process itself. This point of view 
will be pursued in the next sections of this chapter. 
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6.3 Reduction of the wave packet as a result of interaction with the 
dissipative system 

As we have mentioned in the previous section, the interaction with the object 
represents a measurement, provided that the reduction of the wave packet occurs, i.e., 
off-diagonal density matrix elements vanish. Von Neumann [177] postulated that, in 
addition to the unitary evolution (6.2.6), there is an ad hoc process 1 (or R) - a
nonunitary reduction of the state vector - that transforms a pure, correlated state into an 
appropriate mixture. This may also take place when we consider an extended system, 
the object + measuring device, this extended system being initially in the pure system 
[175] (in a two-level system) 

(6.3.1)

Here + and - are two states of the object and measuring device. Again the unitary 
evolution cannot reduce this density matrix to 

(6.3.2)

It should be mentioned that the wave function reduction (if it can be explained) 
does not provide the derivation of the probability interpretation. The statement that 
diagonal elements of the density matrix are the probabilities of certain states is one of 
the postulates of quantum mechanics. However, the consistency of the probability 
interpretation requires the reduction of the wave packet since only in this 
reduced state the measuring device may have distinct states and not 
the superposition of them. 

One may suppose that the interaction with the environment E, which is 
described by the wave function, may cause the reduction of the wave packet. Let us 
assume that initially the object + measuring device is in the state uncorrelated with the 
environment. Then the interaction process, described by the unitary transformation 
(6.2.6), leads to the correlated wave function 

and

(6.3.3)

When the states of environment 
device are orthogonal the density matrix that describes the object + 
measuring device system obtained by tracing over degrees of freedom of the 
environment becomes diagonal 

corresponding to states M± of the measuring 
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(6.3.4)

or

(6.3.5)

We may compare this expression with Eq. (1.6.26). And, as has been mentioned there, 
this density matrix does not present the results of the measurement, it only predicts 
possible results of the measurement. Though the density matrix is diagonal, it 
represents the improper mixture, i.e., it is not a mixture of states having definite values 
of the object and measuring device. It is the superposition (6.3.3) of these states. Eq. 
(6.3.5) is not equivalent to Eq. (6.3.3). Tracing over the environmental states, we 
neglect the correlations of type (1.6.25). The entropy of the state (6.3.3) 

(6.3.6)

while the entropy of state (6.3.5) equals 

(6.3.7)

Equation (6.3.6) follows from the fact that when the pure state density matrix is 
diagonalized, it has only one element (on the diagonal) which is equal to 1. 

From the invariance of the trace under unitary transformations (and evolution of 
the density matrix in time can be regarded as a unitary transformation) it follows that 
entropy of the state of a closed dynamic system does not depend on the time 

(6.3.8)

In the general case, the density matrix (of combined object + measuring device + 
environment system) will describe the results of a series of measurements (ensemble of 
measurements), provided it is diagonal (at least approximately), in all its indices 

(6.3.9)

It is obvious that this diagonal density matrix cannot be obtained from the initially pure 
state of the (6.3.3) type, by the time-dependent unitary transformation (6.2.6). It 
follows from the fact that the entropy of the pure state (6.3.3) equals zero, while the 
entropy of the state (6.3.9) has the order of the magnitude 
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(6.3.10)

provided 1/N is the order of the magnitude of the diagonal matrix elements of (6.3.9).
It means that the transition from the pure state wave function of the combined system, 
object + measuring device + environment, to the density matrix of (6.3.9) type, cannot 
be performed by the unitary transformation, i.e., cannot be described by quantum 

It should be mentioned that equation (6.3.9) is a sufficient condition of the 
measurement process. Logically, it does not preclude other options. Thus, due to the 
complexity of the environment, the initial (pure state) density matrix may evolve into 
an efficient (for all practical purposes) density matrix, describing the measurement 
process [183,174]. Zeh [184] criticizes such an approach. 

of the ensemble of object (0) 
+ measuring device (D) + environment (E) can be factorized (even approximately). 

Another possibility is that the density matrix 

(6.3.11)

while
(6.3.8) (the entropy is the integral of motion) 

is the diagonal density matrix. This factorization (6.3.11) contradicts Eq. 

It is clear that 

(6.3.12)

(6.3.13)

The first inequality follows from the diagonality of (with the diagonal 
matrix elements other than 1 and zeros). Relation (6.3.13) contradicts the assumption 
that the whole system is described by the wave function, and its entropy is zero. 

All the above considerations are based on the assumption that the environment 
is described by the wave function, i.e. it is in a pure state. Of course, such an 
assumption is quite arbitrary. More than that, the interaction of the macroscopic 
system with the environment causes the decoherence of the macroscopic system [175, 
185, 49, 186, 187]. Decoherence destroys superpositions, the system looses its 
quantum character, and entropy of the system increases. 

The environment can cause the decoherence, if the density matrix of the 
environment is itself diagonal, and corresponds to high entropy of the order of the 
magnitude of (6.3.10). As a matter of fact, in the above cited works on the 
decoherence it has been tacitly assumed that the environment has high entropy and is 
described by the diagonal density matrix. The same assumption about the density 
matrix of the dissipative system has been made by Fain [17, 18] (see section 2.3). (The 
case when the dissipative system is in the vacuum state requires a special 
consideration.)

mechanics (or it is an R-type process).
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Let us now consider a quantum system described by the wave function. The 
quantum system may be either the measured object or the object and measuring device 
together. This quantum system interacts with the dissipative system (environment). 
The latter system has a very large number of degrees of freedom and large entropy. In 
the presentation in which the density matrix of the dissipative system is diagonal, it has 
the form 

Having in mind the normalization condition 

and that all have the same order of magnitude, we get 

while the entropy has the order of magnitude (6.3.10), lnN, and 

N >> 1. (6.3.17) 

As a result of irreversible interaction with the dissipative system, diagonal elements of 

(6.3.14)

(6.3.15)

(6.3.16)

(6.3.1 8) 

and the off-diagonal elements (see Eq. (2.1.15)) obtain the order of the magnitude 

(6.3.19)

and may be neglected 

system (object) are initially (t = 0) 
Diagonal and off-diagonal matrix elements of the density matrix of the quantum 

(6.3.20)

We consider the case when the relaxation of the off-diagonal matrix elements, resulted 

than the relaxation of the diagonal matrix elements (T1)

(6.3.21)

the dissipative system suffer negligible change of  order (see Eq. (2.3.11)) 

from the interaction with the dissipative system (relaxation time T2), is much faster 

2T << T1.  
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In this case, at time interval 

(6.3.22)

the wave function is collapsed. The resultant density matrix of the total system can be 
approximately presented as (6.3.9). The density matrix of the collapsed wave function 
at time (6.3.22) is 

while the density matrix of the dissipative system suffer negligibly small change 1/N 
On the other hand, the change of the entropy of the quantum system is quite 

substantial (see, e.g. (6.3.7)); however, it is negligibly small in comparison with the 
entropy of the dissipative system 

where N is a number of degrees of freedom of the dissipative system (environment). 
(The entropy of the whole system does not change.) 

The above scenario describes the collapse of the wave function, taking into 
account that the whole system cannot be described by the wave function, i.e. it is in a 
mixed state. Of course, this picture is much more realistic than that presented by the 
pure state of the whole system (including the environment). In the latter case the 
Schrödinger cat type paradoxes are inevitable. In the next sections the concrete 
examples will be presented. 

In the case of small entropy of the dissipative system (e.g., vacuum state, 
spontaneous emission) the factorization approximation is not valid and the entropy is 
not additive. However, also in this case, the object (atom, molecule) suffers a 
substantial change, while each degree of freedom of the dissipative system, e.g. each 
mode of the electromagnetic field, suffers an infinitesimally small change. 

6.4

As an example of the measurement process, we consider the measurement of the spin 
of atoms (or nuclei) by means of a Stern-Gerlach experiment, illustrated in Fig. 11. 
The motion in the z-direction occurring in the region of the inhomogeneous magnetic 
field can be neglected. It means that the velocity of atoms (in the x-direction) is high 
enough. The magnetic force gives the particle a momentum that is directed up or 

Measurement of spins in the Stern-Gerlach experiment 

The resulting z-

motion of the particle after it leaves the field carries it to a height that depends on the 
spin. In this way the observation of the position of the atom enables us to tell whether 
the spin is up or down. 

or

1T >> t >> T2 , 

down, according to whether the spin is up or down (sz = 
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The Hamiltonian of the interaction of spins of atoms with the inhomogeneous 
magnetic field may be presented in the form 

(6.4.1)

Here

(6.4.2)

s
point z = 0, and 

(6.4.3)

The equation for the density matrix (in the region of the inhomogeneous magnetic 
field) has the form 

(6.4.4)

In this region of the inhomogeneous magnetic field, the kinetic energy is 
neglected. We assume that the z-dependence of the wave-packet may be described 
classically, with its width satisfying 

(6.4.5)

where p = p is the momentum in the z-direction, while k is the corresponding wave 
vector.

motion of the atom after it leaves the field carries it to a height that depends on the spin. 

z is a projection of the spin on the z-axis, H0 is a z-component of a magnetic field at 

z

Fig. 11. Beam of atoms passes region of the inhomogeneous magnetic field. The resulting z
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The initial density matrix of the system (moving atom with the spin) may be 
written in the form 

(6.4.6)

Here P(z,z') - the density matrix of moving atoms (without taking into account their 

spins), while 

The density matrix at the moment 
magnetic field, has the form 

is the spin density matrix, I,I' being the eigenvalues of s

of an exit from the region of inhomogeneous 

(6.4.7)

To find the density matrix of the spin subsystem we have to trace density matrix (6.4.7) 
over z-variables

(6.4.8)

Let us consider the integral in the r.h.s. of this expression 

(6.4.9)

This is a Fourier component of P(z,z). If K satisfies the condition 

(6.4.10)

the density matrix of the spin system becomes diagonal 

(6.4.11)

Similar to Eq. (6.3.4), the diagonal matrix (6.4.11) describes the improper 
mixture. Density matrix (6.4.11) does not describe an ensemble of already performed 
measurements. It only predicts results of the measurements. The spins do not have 

definite (but unknown values There are correlations between the spin and 

moving atoms systems. These correlations are presented by Eq. (6.4.7). The density 
matrix, representing the proper mixture, has to be diagonal in all quantum numbers of 
the whole (the spin + moving atoms) system, as density matrix (6.3.9). 

z
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As a matter of fact, the density matrices (6.4.7) and (6.4.11) describe not yet 

of atoms. To consider the separation of the beams we will separated beams (I = 

use the von Neumann equation 

(6.4.12)

After atoms have passed through the magnetic field, the initial density matrix for Eq. 
(6.4.12) is 

(6.4.13)

The r.h.s. of this equation is determined by (6.4.7). 

representation
To solve Eq. (6.4.12) we will perform a transformation to the wave vector 

(6.4.14)

Substituting this integral into the von Neumann equation (6.4.12) we obtain 

(6.4.15)

The solution of this equation has the form 

where is obtained from Eqs. (6.4.14) and (6.4.7) 

where P(k,k') is the Fourier transform of P(z,z') and 

(6.4.16)

(6.4.17)

(6.4.18)
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Finally the solution of the von Neumann equation (6.4.12) satisfying initial condition 
(6.4.13) takes the form 

(6.4.19)

This density matrix describes two beams of atoms (with spins after they 

pass through the magnetic field. Now, let us assume that spins (before the interaction 

Here

while

(6.4.20)

has the form 

(6.4.21)

The off-diagonal elements of this matrix describe the interference between wave 
functions

(6.4.22)

The density matrix (6.4.19) [with (6.4.21)] describe two correlated beams of 
atoms. These beams are similar to two beams of light in the two-slit experiment. 
Quantum correlations between two beams are described by off-diagonal elements of 
matrix P(k,k'). 

Now there are three possibilities: (1) beams may be reunited, to interfere with 
one another; (2) a measurement will be performed on one of the beams, and (3) the 
beams will continue to depart. 

xwith a magnetic field) were in the state with definite s - component, sx = 

xis the eigenfunction of the spin-component s (with the eigenvalue sx = 

are eigenfunctions of sz. In this case the density matrix 
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The first possibility has been analyzed by Wigner [188]. Let us assume that two 
beams are reunited into a unique beam (see Fig. 12). 

Fig. 12. The interference between the two beams of atoms in the Stern-Gerlach experiment 
is achieved by the arrangement of magnetic fields that reunite two beams together. Both 
beams have exactly symmetrical routes. 

It is also assumed that some precisely devised combination of magnetic fields make 
two beams entirely symmetric. Then the interference of the beam in the region of the 
recombination revert the beams to the initial position. This means that the second 
Stern-Gerlach device oriented over the x-axis will measure, with the probability equal 

i.e. the initial state (6.4.20). One can claim that measurement did not 

The second possibility may be realized by sending, let us say, one of the 
beams to the ion discharge camera. In this case the irreversible change has occurred, 
the beams cannot be reunited any more. The initial state cannot be reversed. In this 
case the Stern-Gerlach device, together with the ion discharge camera, perform the 
measurement. As a result of this measurement we find the spin in one of the states, s =

occur.

The third case (departing beams) is described by the density matrix (6.4.19) (see 
Fig. 13). Equation (6.4.19) describes both departure and spread of the beams. To find 
asymptotic and irreversible behavior of (6.4.19), we employ the formalism 

of section 1.8. We assume that the density matrix P(k,k') has a sort of diagonal 
singularity [as in (1.8.5)] 

(6.4.23)

where h(k,k') has no 

asymptotic

singularities and is absolutely integrable. Then the 

value of the density matrix (6.4.19) is [according to (1.8.6)] 

to one, sx = 

z

the measurement. One can easily realize that the irreversible change leads to the
diagonal density matrix of t he total system. The interference disappears irreversibly, as 

The observer does not interfere in this process. He may only verify the result of 
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Fig. 13. Two departing wave packets with increasing spread and height as t 

(6.4.24)

due to the assumption that two Here we have neglected G(k - KI,k - KI')
peaks of P(k,k) are far enough. 

One should not worry that the density matrix (6.4.23) is not normalized, and its 
diagonal elements have singularities. The normalization can be performed by replacing 
the when a corresponding 
parameter tends to infinity. Then P(k,k') is divided by and the parameter 

by a finite function that tends to the 

tends to infinity. The asymptotic density matrix in the k-representation has the form 

(6.4.25)

This density matrix describes the proper mixture of the (6.3.9)-type. It has to be 
emphasized that the density matrix (6.4.23) describes a mixed state which cannot be 
presented as the product of the functions of k 

(6.4.26)

In the density matrix (6.4.23) diagonal elements dominate. This circumstance 
conforms with general conclusions of the preceding section. The initially pure states 
may be decohered by the corresponding dissipative system (environment). Thus we 
come to the conclusion that asymptotically departing beams perform the measurement 

This measurement is described by the density matrix (6.4.25). The 

role of the observer is just to verify the accomplished measurement. 

6.5 Realization of quantum measurement by the irreversible relaxation 
process

As has been shown in section 6.3, the interaction of the quantum system (having low or 
zero entropy), with a high entropy dissipative system, leads to the collapse of the wave 
function of the quantum system (which is initially in a pure state and has the wave 

of  spins sz = 
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function). As a matter of fact the relaxation of the dynamic system (section 2.7) may 

In the factorization approximation (2.3.13), (2.3.14) and (2.3.17) the density 

(6.5.1)

where
equation for the density matrix 
and (2.7.16) 

is the equilibrium density matrix of the dissipative system, while the 
of the dynamic system satisfies equations (2.7.10) 

(6.5.2)

of the dynamic subsystem are not It is assumed here that the eigenfrequencies 

has the form 

(6.5.3)

(the transition probability per unit time) and 

(6.5.4)

and is determined by Eq. (2.7.18). 
A specific example of equations derived from Eqs. (6.5.2) are Bloch equations 

(6.5.5)

The so-called T2 terms describe the phase relaxation, dephasing or decoherence, while 

describe the population relaxation - terms, while describe the dephasing 

rates, terms. The pure dephasing is described by the second term of the r.h.s. of 
Eq. (6.5.4). The first term describes dephasing connected with the population 
relaxation.

We will consider the case of the fast dephasing 

(6.5.6)

serve as a realization of  quantum measurement [189]. 

matrix of  the combined dynamic-dissipative system can be approximated by 

nkdegenerate. The rate coefficients  w and

 zfor the mean values and s in the magnetic field 

knIn Eq. (6.5.2), relaxation rates w1T terms describe the population relaxation.

2T << T1,  

of spin components sx, sy
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which is possible if the pure dephasing is much faster than the population dephasing. 
In the general case the phenomenon of fast dephasing should not necessarily be 
described by Bloch equations (6.5.5) or Eqs. (6.5.2). More general non-Markovian
equations (2.4.1) may also describe relaxation accompanied by fast dephasing, 
symbolically represented by condition (6.5.6). 

Asymptotically, the density matrix of the dynamic system becomes diagonal. 
As a matter of fact, the transformation of the initially off-diagonal density matrix of the 
dynamic system (as a result of interaction with a high entropy dissipative system) into a 
diagonal one is the characteristic feature of both the relaxation and measurement 
processes.

Now let us consider a dynamic subsystem E as a measured object which is 
characterized by the density matrix in the pure case) at initial time t = 0, and 
let the dynamic system E be exposed to the relaxation process (interaction with the 
dissipative system) during the time interval satisfying the inequalities 

(6.5.7)

which are compatible with condition (6.5.6). Then, using Eqs. (6.5.1) and (6.5.2), one 
obtains at t = 

(6.5.8)

Thus during time interval the initial pure state (or general - state) is 
transformed into the proper mixture (6.5.8). Since
matrix elements are unchanged, while for >> T2 the off-diagonal matrix elements 
vanish. The measurement process is distinct from the general irreversible process (t 

A general irreversible relaxation 
process also leads to the diagonal density matrix and proper mixture, but with 

being the equilibrium values of the dynamic E 
and dissipative systems density matrices. Therefore. relation (6.5.7) is a condition of 

and diagonal dissipative system 

by the values of diagonal matrix elements. 

i.e. with both and 

the measurement: unchanged 
density matrix 

vanishing

6.6 Gedanken experiment: measurement of the z-component of spin ½ 

We will present here an example of a measurement performed by the relaxation process 
[189]. One can distinguish three stages in the measurement process: a preparation of 
the system (of course, it may be already prepared before the start of the measurement), 
the irreversible process of the measurement leading to the proper mixture and, finally, 
verification of the measurement, “looking at the pointer”. The latter stage does not 
affect the system, the measurement has already been performed. The observer - the
human being, does not intervene in the measured system. In the Gedanken experiment 
proposed here [189], the preparation is performed by the strong electromagnetic pulse 
which transfer the equilibrium state of the spin subsystem characterized by the 

1 << T , the diagonal density 
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diagonal density matrix 

(6.6.1)

(the pure state is characterized by = 1 or 0) into the coherent state characterized by 
the off-diagonal density matrix. The irreversible measurement creates the proper 

states with weights and A second electromagnetic 

pulse (a weak one, it does not change the state of the system) verifies that the system is 

directed towards a positive direction of the z-axis. The strong electromagnetic pulse 
“preparing” the state and the weak verifying pulse are directed along the x-axis. Then 

the Hamiltonian of spin in the magnetic field (constant and varying) has the form 

where

(6.6.2)

(6.6.3)

The time development of a spin system in the external magnetic field 

(6.6.4)

has the form 

(6.6.5)

(6.6.6)

z 2 are
introduced above relaxation times. 

Now let us consider a simple case (the pure state) when the initial value of the 
spin in the ensemble of N spins is 

and correspondingmean value of sz

mixture of sz = 

in the proper mixture ofstates sz = and sz = 

Let us consider an equilibrium system of spins in a constant magnetic field H0

and we use the representation in which sz is diagonal. 

where s and s± x y= s ± is are mean values of spin operators, and T1 and T
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(6.6.7)

This means that initially at t = 0 all N spins of the system were in their ground states, 
We assume that the electromagnetic pulse duration is much shorter than T2 and

2

(6.6.8)

Now let us assume that a -pulse is the duration of the pulse) is 

imposed on the spin system. Such a pulse prepares a new state of the system [distinct 
from the initial state (6.6.7)]. In this new state the mean value 

(6.6.9)

and s = are equal. However, this 

y

(6.6.10)

This is the superradiant state (section 4.5). The absorption (or induced emission 
radiation) depends on the phase difference between some probe (weak) electromagnetic 
field and Eq. (6.6.10) (see also Eq. (4.3.12)). This 

absorption is determined by equation 

(6.6.11)

The intensity of radiation in this state is proportional to N² (superradiance). I would 
like to stress that this state has certain well-defined physical features: the absorption 
depending on phase relations and superradiance. This state is not only characterized by 
certain propensities [190] or probabilities, it has a definite ontological status. To check 
the properties of this status we have to take the system of N spins, while N is not 
necessarily a very big number. 

We now turn to the stage of the irreversible process: relaxation-measurement.
We wait time (after the - pulse is already over) satisfying condition (6.5.7). As a 
result of interaction with the dissipative system during the interval the diagonal 

action of  the pulse. Then the solution of Eqs. (6.6.5 and 6.6.6) has the form 
1T . This means that one can neglect the relaxation terms with T1 and  T during the

This means that the probabilities of states sz = z

is not a proper mixture of states sz = This is a superposition of these states. The

xmean values of s and s (for N spins) are 
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are

unchanged, << T1, while the coherence expressed by Eq. (6.6.10) (or by the 
off-diagonal density matrix elements is destroyed, >> T2. The spin system is 

transformed into a proper mixture of states and

Now the spin system has an entirely different ontological status. The intensity 
of spontaneous radiation is proportional to N/2 - the number of spins in the upper 
states. The absorption rate is equal to zero. The spins in the ground states and the 
spins in the upper states give exactly the same contribution to the absorption, but with 
the opposite signs. 

To summarize, at the first stage the system is prepared in the state (6.6.10). This 

states. The measurement is realized by the 

contact with the dissipative system during the time interval (6.5.7). The verification of 
the measurement can be performed by the interaction with a very weak electromagnetic 
field that does not affect the state of the system. Both spontaneous emission of 
radiation and absorption of radiation do not change the state of the system, provided 
that the time of interaction with the weak electromagnetic field is small enough. 

and

matrix elements of the density matrix (probabilities of states sz = 

is a superposition of 



At first sight there is an irreconcilable contradiction between the irreversible master 
equation (2.7.10) 

(1)

and reversible von Neumann equation (1.1.4) 

(2)

However, in the case when the energy spectrum of the quantum system is continuous, 
as been shown in section 1.8, the behavior of the quantum system becomes irreversible. 
This irreversibility can be understood if we consider the transition from a finite, 
bounded system to an infinite, unbounded system. For the finite system the quantum 
recurrence theorem (the quantum analog of the Poincaré theorem) states that the 
quantum system gets arbitrarily close to the initial state at arbitrarily large times. In the 
limit of the unbounded system the Poincaré recurrence time tends to infinity, and 
quantum movement becomes irreversible. 

For large enough volumes of a condensed medium (or large resonator), the 
frequencies of its modes form a quasicontinuous spectrum. For example, in periodic 
structures the wave vector has quantized values 

(3)

numbers. The energies of the modes are functions of these wave vectors 

(4)

and thus they form a quasicontinous spectrum, if the dimensions A, B, and C are large 
enough. When the spectrum becomes continuous. In this 
case the theorem, proven in section 1.8, states that quantum movement becomes 
irreversible.

In the case of the continuous energy spectrum one can deduce the transition 
probabilities (per unit time), which do not depend on time (section 1.7). These 

The consistent derivation of master equation (1), or other forms of generalized 
master equations, for the system with the continuous spectrum, is performed in Chapter 
11. Particularly the generalized equations may be Markovian, i.e. their coefficients do 
not depend on time. The example of such an equation is Eq. (2.4.14) 

(5)
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x y zwhere A, B, and C are the dimensions of the volume and n , n , and n  are integer 

transition probabilities may serve as the coefficients wnk of the master equation. 
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Here is a time-independent supermatrix, and is the time-independent averaged 
effective interaction energy. This equation, without the term is, sometimes, called 
the Redfield equation. The density matrix is averaged (traced) over the thermal bath 

(6)

The important approximation utilized in the derivation of Eq. (5) is the 
factorization approximation (2.3.17) 

(7)

It means that approximately the overall density matrix is the product of time dependent 
density matrix with time time-independent equilibrium density matrix This 
approximation holds if the relaxation of the dissipative system is much fater than that 
of the dynamic system (2.3.13) 

(8)

The fast relaxation of the dissipative system destroys the correlations between the 
dynamic and dissipative systems, once they are created due to interaction between 
dynamic and dissipative systems. 

One of the astonishing discoveries of the last decades is that there are solutions 
of Eq. (5) which are not positive definite. In other words, Eq. (5) may lead to the 
non-physical negative probabilities. There is a simple explanation of this 
inconsistency. At times close to the initial t = 0, equation (5) is not valid depends
on time (2.4.8)). When the initial conditions are taken at a time interval in which Eq. 
(5) is not correct, the usage of this equation in the whole time axes, t > 0, is 
inconsistent. The situation is similar to the usage to the semiclassical approximation 
for description of the movement in the potential well. In the vicinity of turning points 
the semiclassical approximation is not valid, and a consistent solution is achieved by 
the procedure of matching with exact solutions near the turning points. Without the 
matching procedure one may get nonquantized solutions. The latter are non-physical,
contradicting and not approximating the exact solutions. 

Chapters III and IV are devoted to the irreversible processes (relaxation) 
connected with interaction with phonons and photons respectively. These processes 
may be considered as spontaneous and induced emission of bosons - phonons and 
photons. The specificity of the interaction with photons is in the existence relaxation 
via collective, superradiant spontaneous emission of photons, sections 4.5-8.

Chapter V is devoted to the memory effects, general relations, exact solutions, 
and comparison of various approximations: Markovian, rotating wave (RWA) and 
weak coupling. Such a comparison has been achieved considering the exact solution in 
the system comprising harmonic oscillator interacting with harmonic (boson) bath. 

The book is devoted to the irreversibilities in quantum mechanics. However, it 
is shown, in Chapter V, that dissipationless regimes may emerge in a certain range of 

variables density matrix   of  the whole system 

parameters of  a generally dissipative system. 
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All the above irreversible processes take place in certain particular cases, which 
are characterized by the continuous energy spectrum. On the other hand, there are 
systems having the discrete energy spectrum - two-level system, harmonic and 
anharmonic oscillators, atoms and molecules. All these systems do not exhibit 
irreversible behavior - they are reversible. Nevertheless, the irreversibility of quantum 
measurement is ubiquitous in quantum mechanics, and refers to all quantum systems. 
In a sense the irreversibility lies in the heart of quantum mechanics. 

Another point which has to be mentioned is the question of the possibility of 
quantum measurement. There are many proofs that quantum measurement is 
impossible. As a matter of fact it is claimed that quantum measurement is a process 
which cannot be described in the framework of quantum mechanics. Usually the 
proofs of impossibility of quantum measurement are based on the assumption that 
quantum object, measuring device, and environment are described by the wave 
function. Then, the entropy of the combined quantum system - the object, the 
measuring device and the environment, is zero and is conserved (does not depend on 
time). Therefore the reduction of the wave packet, which is accompanied by the 
increase of the entropy, contradicts the overall conservation of the entropy. On the 
other hand, the interaction of quantum object, described by the wave function, with 
another system - the environment, which is in a mixed state and described by the 
density matrix with high entropy, may lead to the reduction of the wave packet without 
essential relative change of the density matrix and entropy of the environment. 
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