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PREFACE

This work is the outgrowth of a plan to make a uniform presentation of
the investigations on earthquake seismology, underwater sound, and model
seismology carried on by the group connected with Lamont Geological
Observatory of Columbia University. The scope was subsequently enlarged
to cover & particular selection of related problems. The methods and
results of the theory of wave propagation in layered media are important
in seismology, in geophysical prospecting, and in many problems of
acoustics and electromagnetism.

Although the ions of ic waves, water
waves, and shock waves are very close to the methods used in this book,
we had to reduce them to a few brief references. Many of the methods
which have been used in seismological problems were originally developed
in studies on electromagnetic waves. It is hoped that a systematic pre-
sentation of problems concerning elastic-wave propagation may now be
useful in other fields.

The experimental viewpoint has, to a large extent, governed the selection
of problems. For many years, research in seismology has been characterized
by separation of the experimental and theoretical methods. The interplay
of the two methods guided the research program which led to this book,
and it has been retained whenever possible. Observations of surface waves
from explosions and earthquakes, flexural waves in ice, and SOFAR
sound propagation are a few examples of topics in which the theoretical
and practical investigations benefited each other.

An effort was made to compile a comprehensive and systematic bibliog-
raphy of the world literature for the main topies discussed. Few workers
in this field could become familiar with all the past investigations, which
are scattered in many journals.

We are very grateful to the Air Force Cambridge Research Center, the
Bureau of Ships, and the Office of Naval Research for support of the
program of research on elastic-wave propagation at the Lamont Geological
Observatory. Peter Gottlieb, Dr. Samuel Katz, Dr. A. Laughton, Dr.
Franklyn Levin, and Stefan Mueller kindly read the manuseript and made
helpful suggestions.

Mavrice Ewing
WENCESLAS JARDETZKY
Frank Press
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CHAPTER 1

FUNDAMENTAL EQUATIONS AND SOLUTIONS

1-1. Equations of Motion. The problems we shall consider concern the
propagation of elastic disturbances in layered media, each layer being
continuous, isotropic, and of constant thickness. We begin with a brief
outline of the theory of motion in elastic media and a derivation of the
equations of motion. A more detailed treatment may be found in reference
books, e.g., Sommerfeld [57].7

When a deformable body undergoes a change in configuration due to
the application of a system of forces, the body is said to be strained.
Within the body, any point P with space-fixed rectangular coordinates
(z, y, 2) is then displaced to a new position, the components of displacement
being, respectively, u, v, w. If € is a neighboring point (x + Az, y + Ay,
z + Az), its displacement components can be given by a Taylor expansion
in the form

u u du
u+6:c Ax+6y Ay+c')z Az e

av o o a4
v et g Myt g s (1-1)

ow dw ow
w+6x Ax«{-ay Ay+az Az 4 --

For the small strains associated with elastic waves, higher-order terms
can be neglected. Then, introducing the expressions

_1a_v_9_q) _1<a_v _ay) -
9’—2<6:c o) T 2\er T oy (1-2)

and others obtained by the cyclic change of letters z, y, z and u, v, w,
respectively, we may write the displacement components (1-1) in the form

u+ (482 — Q.48Y) + (€..A7 + e, Ay + e..A2)
v+ (A — QA2 + (6.8 + e,,Ay + €,.42) (1-3)
w + (QAy — QA7) + (e..Az + e, Ay + e,.A2)

tNumerals in brackets in the text correspond to the numbered references at the end
of the chapter.

1



2 ELASTIC WAVES IN LAYERED MEDIA

The first terms of these expressions are the components of displacement
of the point P. It can be shown that the terms in the first parentheses
correspond to a pure rotation of a volume element and that the terms in
the second parentheses are associated with deformation or strain of the
element. The array

ezz ezv ezl
€ €, 6, 14
eu el!l ell

represents the symmetrical strain tensor at P, since e,, = e,, - -+ . The three
components

_ %

. o
Wy dz

€y =

represent simple extensions parallel to the z, y, 2 axes, and the other three
expressions e,,, e,,, €., are the shear components of strain, which may be
shown to be equal to half the angular changes in the zy, yz, 2z planes,
respectively, of an originally orthogonal volume element. It is also shown
in the theory of elasticity that there is a particular set of orthogonal axes
through P for which the shear components of strain vanish. These axes
are known as the principal axes of strain. The corresponding values of
€.z, €4, €. are the principal extensions which completely determine the
deformation at P. Thus the deformation at any point may be specified by
three mutually perpendicular extensions. It is also known that the sum
e.. + e, + e,. is independent of the choice of the orthogonal coordinate
system.

The cubical dilatation 8, defined as the limit approached by the ratio
of increase in volume to the initial volume when the dimensions Az, Ay, Az
approach zero, is

. (Ax + e,, Ax)(Ay + e,, Ay)(Az + e,, A2) — Az Ay Az
lim
Az Ay Az

ou o ow
or 0—e,,+e,,,+e,.—ax+ay+az (1-5)

neglecting higher-order terms. Although the principal extensions e,., e,,, €.,
are used in the derivation of (1-5), the result holds for any cartesian
system because of the invariance of the sum.

Forces acting on an element of area AS separating two small portions
of a body are, in general, equivalent to a resultant force or traction R
upon the element and a couple C (Fig. 1-1). As AS goes to zero, the limit
of the ratio of traction upon AS to the area AS is finite and defines the
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stress. The ratio of the couple to AS, involving an additional dimension
of length, may be neglected. For a complete specification of the stress
at P, it is necessary to give the traction at P acting upon all planes passing
through the point. However, all these tractions may be reduced to com-

Zﬂ\

N

x

Fig. 1-1. Traction R and couple C acting on element of area AS. Stress components
Py, Pys, a0d Dy, in plane normal to y axis.

ponent tractions across planes parallel to the coordinate planes. Across
each of these planes the tractions may be resolved into three components
parallel to the axes. This gives nine elements of stress (see Fig. 1-1)

pu: P2y pzx
pyz pllﬂ pﬂl (1—6)
p“’ pu pl z

where the first subscripts represent a coordinate axis normal to a given
plane and the second subscripts represent the axis to which the traction
is parallel. The array (1-6) is a symmetrical tensor. This may be proved
by considering the equilibrium of a small volume element within the medium
with sides of length Az, Ay, Az, parallel to the z, y, z axes. Moments about
axes through the center of mass arise from tractions corresponding to
stresses P.y, Dyey + -+ .- Moments of normal stresses vanish, since the cor-
responding forces intersect the axes through the center of mass of the
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infinitesimal element and moments of body forces are small quantities of
higher order than those of stresses. The equilibrium conditions require,
therefore, that the shear components of stress be equal in pairs, p,, = p,.,
ete. As was the case for the shear components of strain, three mutually
perpendicular axes of principal stress may be found with respect to which
the shear components of stress vanish. Then the stress at a point is com-
pletely specified by the principal stresses p.., Py, .. corresponding to
these axes.

To derive the equations of motion we consider the tractions across the
surfaces of a volume element corresponding to the stress components
(1-6) and the body forces X, ¥, Z which are proportional to the mass in

z p..
A P+ "éz_ Az

9p.,
Pzy + —6—2 Az

x
Fia. 1-2. Stress components in the faces AS; of a volume element.

the volume element (Fig. 1-2). When the tractions are considered, the
z component of the resultant force acting on an element, e.g., produced
by stresses in the faces normal to the z, ¥, z axes, is (again neglecting higher-
order terms)

Mo )

<,, + oz Az — p.. ) AS,
e )

( vz + ay Ay puz ASﬂ
M o )

( e+ A2 — .. AS,

where AS,, AS,, AS, are the areas of the faces normal to the z, y, z axes,
respectively. It follows that the x component of force resulting from all



FUNDAMENTAL EQUATIONS AND SOLUTIONS 5

the tractions is given by the three terms
(% 4 e ap,, N ap.,) Az Ay Az

The equations of motion are obtained by adding all the forces and the

inertia terms —p d*u/df® ArAyAz, --- , for each component:
d’u e | Py | 9P
pdtz—pX+8x+6y+6z
dzf) ap. d vy )
pGp = p¥ + o ey B (1-7)

dzw apxa apyl ap' z
A Rl A oo B e

In these expressions, p is the density of the medium.

The Equation of Continuity. This equation expresses the condition that
the mass of a given portion of matter is conserved. The total outflow of
mass from the elementary volume Ar during the time Af is div pv Ar A,
where v is the velocity, whose components parallel to the z, y, z axes are
@, 7, . The loss of mass during the same time is — (9p/8¢) Ar Af. Equating
these last two expressions gives

% + divov =0 (1-8)
Another form of this equation is
—;’+pdivv=0 (1-9)

where the operation

d

prialry + v-grad (1-10)

represents the ‘‘total or material” rate of change following the motion
and 9/t is the local rate of change.

1-2. Elastic Media. In the generalized form of Hooke’s law, it is as-
sumed that each of the six components of stress is a linear function of all
the components of strain, and in the general case 36 elastic constants
appear in the stress-strain relations.

Isolropic Elastic Solid. On account of the symmetry associated with an
isotropic body, the number of elastic constants degenerates to two, and
the stress-strain relations may be written in the following manner, using



6 ELASTIC WAVES IN LAYERED MEDIA

Lamé’s constants A and u:

du ou o
st—*)\9+2ll5; sz—ﬂ( +ax)

ay
dv v Jw
Py = N0+ 2u 5?; D = M(g; + Ty) (1-11)

_ w _ (2 @)
Pes = pY:) + 2# 9z Pz = Fv(ax + 3z

We also could have written these equations using any two of the constants:
Young’s modulus E, Poisson’s ratio o, or the coefficient of incompressi-
bility k. The relations between these elastic constants are given by the
equations

\ = oF __E
T+l -2) #7210+

w3 + 2u) A _
E="S1 =0+ (1-12)
k=\+ %

Using Egs. (1-7) and (1-11), we can write the equations of motion in
terms of displacements u, v, w of a point in an elastic solid:

d* 08

pja—“; =(X+u)5;+uvzu+pX
02

pét—g =\+ p)g+uv”v 4+ oY (1-13)
3 ae

p5a= O+ w5, +aVwtpZ

We have replaced d°/df® by 8*/9f, since it follows from (1-10) that the
difference between corresponding expressions involves second powers or
products of components which are assumed to be small. By neglecting
these products, we linearize our differential equations.

For many solids, A and u are nearly equal, and we will occasionally use
the Poisson relation X = g as a simplification. This corresponds to k = §u
and ¢ = 1.

For an incompressible medium, § = divv = 0 or, by Eq. (1-9), dp/dt = 0.

Ideal Fluid. 1If the rigidity u vanishes, the medium is an ideal fluid.
From (1-11) and (1-12) we find p,, = p,, = p.. = kf = —p, where —p,
the value of the remaining independent component of the stress tensor,
is the hydrostatic or mean pressure. In liquids the incompressibility k is
very large, whereas it has only moderate values for gases. If a liquid is
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incompressible, k = « and ¢ = 0.5. The equations of small motion in an
ideal fluid may be obtained from (1-13) with u = 0.

1-3. Imperfectly Elastic Media. We shall also be concerned with the
damping of elastic waves resulting from imperfections in elasticity, par-
ticularly from “internal friction.” (For a discussion, see Birch [9, pp.
88-91].) The effect of internal friction may be introduced into the equations
of motion by replacing an elastic constant such as u by u + &’ 8/0¢ in the
equations of motion. This is equivalent to stating that stress is a linear
function of both the strain and the time rate of change of strain. For
simple harmonic motion, the time factor e'“‘ is used, and the effect of
internal friction is introduced by replacing p by the complex rigidity
w(l + 2/Q), where 1/Q = wu'/u. In many cases @ may be treated as
independent of frequency to a sufficiently good approximation but the
more detailed discussion which this case requires is given in Sec. 5-6.

1-4. Boundary Conditions. If the medium to which the equations of
motion are applied is bounded, some special conditions must be added.
These conditions express the behavior of stresses and displacement at the
boundaries. At a free surface of a solid or liquid all stress components
vanish. In the problems which follow it will be assumed that solid elastic
media are welded together at the surface of contact, implying continuity
of all stress and displacement components across the boundary. At a
solid-liquid interface slippage can occur, and continuity of normal stresses
and displacements alone is required. Since the rigidity vanishes in the
liquid, tangential stresses in the solid must vanish at the interface,

1-5. Reduction to Wave Equations. The equations of motion of a fluid
[derived from (1-13) with u = 0 and therefore A = k] can be simplified
and reduced to one differential equation if a velocity potential ¢, defined
as follows, exists:

&

= 5=9% o _ % -
=% "5 P7% (1-149)
If the body forces are neglected, Eqs. (1-13) reduce to
ou a0 v a6 0w a0
°ot %% Pu~%sy Pa ~ ki (1-15)

Now, writing o® = k/p, we easily see from (1-14) and (1-15) that

9o

FY i a9 + F(P) (1-16)

and »=a f 0 dt (1-17)
. ]

where the additive function of ¢ is omitted, being without significance.
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From the definition of mean pressure p =—kd and (1-16) we have

0
P=—py (1-18)
Then, from (1-16) and (1-5) we obtain
. 1 62-
V=355 (1-19)

in which small quantities of higher order have been neglected. This wave
equation holds for small disturbances propagating in an ideal fluid with
velocity «, under the assumptions mentioned above.

For displacements in a solid body, it is convenient to define a scalar
potential ¢ and a vector potential §(¥,, V., ¥s) as follows:

2
= % a_'h _ %Y y
v = 3y + 3z e (1-20)
L 2 S A2
=% 1 % dy
or, in vector form,
s(u, v, w) = grad ¢ + curl §(¢1, ¥, ¥) (1-20)
By the definition of @ as given by (1-5), we obtain
0= V% (1-21)

In general, the equations of motion (1-13) represent the propagation
of a disturbance which involves both equivoluminal (§ = 0) and irrotational
(22 = 0) motion, where 8§ = div s(u, v, w) and Q = % curl s {see Egs. (1-2)].
However, by introduction of the potentials ¢ and ¢,, separate wave equa-~
tions are obtained for these two types of motion. Assuming that the body
forces may be neglected, we can write the first of Egs. (1-13) in the form

5 (,0%) L (8% _ 3 (, )
ax< )+ay<” af oz \P o7

(l+n) V¢+uaxV¢+M3yV’¢a—ua VY,

It is easy to see that this equation and the two others from (1-13) written
in a similar form will be satisfied if the functions ¢ and ¢, are solutions of
the equations

2
%'52 v =42%  i-1,2,3 (122

2
v QY = 32 atz
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where a = \f% g = \/% (1-23)

The wave equations (1-22) indicate that two types of disturbances with
velocities @ and 8 may be propagated through an elastic solid.

Wave equations involving the dilatation (8) and rotation (Q) directly
1 %9 2 1 Q.

VG——-*a? vﬂ;p:Fatz

(1-24)

can be readily derived from (1-13) or (1-22). Love [31] discussed expressions
which represent solutions satisfying the equations of motion, in the most
general case, but it was pointed out by Pendse [42] that the use of scalar
and vector potentials is not always free from ambiguity.

In most problems to be considered in subsequent chapters, spherical
waves from a point source will be considered. Spherical symmetry does
not persist during propagation in a layered medium. However, in many
cases axial symmetry will remain, and we shall make use of cylindrical
coordinates. If r, 2, x are the cylindrical coordinates (usually taken with
the z axis passing through the source and normal to the layering) and ¢
and w are the displacements in the r and the z directions, respectively,
the two equations of motion are

()\+2u)( 1o _ 1+azar)+("’2‘1 "’w),__,,a_zq

r a 3 dzor at°
g 4193, 2 W) _ & (@ - Qt_v) y
(A +2 )(8z ar + + r \9z or (1-25)
_(ZL - 2e) o
Mozar ~ 9°) = P37

The angle x does not appear, because of the axial symmetry. Instead of
the potential defined in (1-20), we now use the following:

_dp _ oW 0¢+6(7'W)

rar (1-26)

By substitution from (1-26) it may be shown that Eqgs. (1-25) are satisfied
if the functions ¢ and W are solutions of equations

v?, = L P v2W——W 19w .

= 2oL g af (1-27)
aZ

w ‘723__._*_ _l,__.

here 2T T 87

in cylindrical coordinates. The first equation in (1-27) is a wave equation,
and in the second equation the function W may be replaced by another
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function ¢ defined by

- 9
W= or (1-28)
Then, if ¢ is a solution of the wave equation
1 9%y
VY = 8 of (1-29)

we see immediately, upon differentiating with respect to r, that W satisfies
the second equation (1-27).

By introduction of the potentials ¢ and ¥ we have reduced our problem
to that of solving the wave equations. For a fluid we obtained a single
wave equation representing the propagation of a compressional disturb-
ance. Two wave equations were found for a solid, representing the propaga-~
tion of compressional and distortional waves with velocities « and 8,
respectively. The distortional waves (also known as shear, transverse,
equivoluminal, or rotational) are represented in general by three functions,
., which must be solutions of Egs. (1-22). When there is axial symmetry
we have only one function ¢ satisfying Eq. (1-29).

It is possible to include additional effects such as those of body forces
or finite strains. Stoneley and Scholte (see Chap. 4) applied the classical
theory of elasticity in papers concerning gravity waves in compressible
media. Stokes’ theory concerning waves of finite amplitude is discussed in
detail by Lamb [30]. The problem of finite deformations of an elastic
body and the effect of high initial stress on wave propagation were dis-
cussed in a series of investigations by Hencky [21], Murnaghan [40],
Birch [7, 8], Biot [6], and Keller [27]. Several additional examples are
given in Chap. 5.

1-6. Solutions of the Wave Equation. The wave equations (1-19) and
(1-22) are linear partial differential equations of the second order. The
usual method of obtaining a solution for a given problem has been to
superpose certain particular integrals, forming a sum which satisfies all
conditions of a given problem. A more direct procedure would start with
the general solution of the wave equations and adjust this solution to the
conditions of the given problem. It is obvious that a general solution must
be an expression which holds for all cases of wave propagation in a homo-
geneous and isotropic medium, i.e., for an arbitrary number of sources
with arbitrary positions and for any conditions which can be imposed at
the boundaries of the medium. As its form is somewhat complicated, the
general solution will be considered after the discussion of simpler cases.

Plane Waves. By making a trial substitution

¢ = A exp [z’ %75 iz + vy + vz F ct)] (1-30)
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we easily see that the wave equation (1-19) is satisfied, if ¢ = « and
Vit k=1 (1-31)

From condition (1-31) we see that »,, »;, »s may be considered as the
direction cosines of a line L. Equation (1-30) shows that, for a given time
t = Iy, ¢ is constant over any plane (normal to L) determined by the
equation »,x + v,y + vsz2 F ¢, = P and is sinusoidal along L with wave
length I. Furthermore, at any given point, ¢ is periodic in time with period
1/c. Thus Eq. (1-30) represents a system of plane waves of wave length [,
advancing along L with velocity ¢, the direction of advance depending
upon the sign chosen.

When we make a similar trial substitution in case of a solid, there are
two wave equations (1-22) to be satisfied, and we must obtain two different
values of velocity, namely, ¢ and B. It is instructive to substitute as trial
expressions for the displacements in the equations of motion (1-13)
(body forces being omitted) the values of u, v, w given by the equations

uw = A; exp [iz—z-r(v,x + oy + vaz ?ct)]
) (1-32)
v= A, exp --- w= A;exp ---

obtaining the three homogeneous linear equations in A;
—p’ A + N+ WAy + Ay + Awy) + p4, =0
—pc’Ar + N+ @Ay + Ay + Aws) + pd, =0 (1-33)
—pc*As + (N + (A As + Awvy) + 145 =0

The coefficients A, will determine components of the displacement vector s,
which may be considered as the resultant of the vectors B, C, D, where
B isin the direction of L, while C and D have mutually perpendicular direc-
tions. If we take the 2 axis in the direction of L, the x and y axis in the
direction of C and D, respectively, in order to simplify Eqs. (1-33), we
obtain the conditions », = », = 0, »; = 1. For the component B we put
in (1-33) A; = B, A, = A, = 0; similarly for C, 4, = C, 4, = 4; = 0;
and for D, 4, = D, A, = A; = 0. Then (1-33) take the form

—pC 4+ pC =0
—o’D 4+ uD =0 (1-33")
—p¢B + (A4 2w)B =0

Thus we see that the velocity ¢ = @ = V(A + 2u)/p is associated with

the component of displacement parallel to the direction of propagation
and the velocity ¢ = 8 = Vu/p is associated with the components in
any two mutually perpendicular directions normal to it.
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Had we solved Eqgs. (1-33) directly for ¢* by elimination of A;, a cubic
in ¢’ with a single root at o’ and a double root at 8* would have resulted.

Thus the system of plane waves traveling along I consists of three
independent, parts which correspond to the P (compressional), SV (ver-
tically polarized shear), and SH (horizontally polarized shear) waves of
seismology.

Spherical Waves. 1f we write the first equation of (1-22) in spherical
coordinates, putting B* = 2* + y° + 2° and assuming that @ = ¢(R, t),
it takes the form

Po , 200 _ 1 9% .
ok TROR o of (1-34)
By the substitution
SR,
o(R, ) = 250 (1-35)
we obtain the equation
" 19%
o & o (1-36)

and it is evident that its general solution has the form
9 = f{(R — at) + fo(R + af) (1-37)

where f, and f. are arbitrary functions. Thus, by (1-35) and (1-37) the
solution of the first equation of (1-22) is, in this case,

= 1% [fi(R — at) + foR + ab)] (1-38)

Each term in (1-38) has a constant value on a sphere R = const at ¢ = f.
If f, and f, are periodic functions, (1-38) will represent infinite trains of
spherical waves propagating toward and away from the common center
of the spheres B = const.

A similar treatment of the remaining equations in (1-22) yields

¥ = 2 [0® = 80 + g.u® + 0] (1-38)

The functions f; and g,, represent radiations from a point source at the
origin. The functions f, and g., correspond to disturbances traveling in
the opposite direction and are usually zero.

For spherical waves in a fluid we would start with Eq. (1~19) and obtain
for the velocity potential

> = 2 (IR — ab) + JR + at)] (1-39)

where f, and f, are again arbitrary functions.
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When sources of a disturbance act in a finite domain, a condition is
usually imposed that the disturbance vanish at infinity. According to
Sommerfeld [56], a further condition is necessary which specifies that no
energy may be radiated from infinity into the region of sources. Terms
such as fo(R + ot) in (1-38) are excluded by this “condition of radiation.”
Bakaliajev [1] extended to three dimensions a similar condition derived
by Kupradze for propagation of elastic waves in two dimensions.

Special solutions of the type (1-39) satisfying the radiation condition
are the functions

o = R‘ji exp [£i(k.R — wi)] (1-40)

where A = const
ke = w/a

A detajled discussion of the mathematical expressions representing
radiation from a source, together with proofs of uniqueness, is given, for
example, in the work of Stratton [59). The radiation condition guarantees
a unique solution, and it was shown by Haug [20] that this holds even if
k. is complex in expressions such as (1-40).

Very important transformations of expressions representing spherical
waves were used in the theory of wave propagation by Lamb, Sommerfeld,
and Weyl, and these will be applied in the next chapters. The factor in
(1-40) depending only on distance was given by Sommerfeld [55 or 57] in
the form

ika R L rls k dk
— = f Johrye™ (1-41)

where J, = zero-order Bessel function
z and r = cylindrical coordinates
v* = k¥ — kZ, k being a parameter
To prove formula (1-41) Sommerfeld made use of a more general ex-
pression for the right-hand member. Since each product J,(kr)e"'"*' is a
solution of the wave equation if »* = k> — k2, we can attempt to derive
a representation of exp (—ik.R)/R by superposing such expressions to

obtain
f " R T (ke dk

In order to determine the coefficient F(k) we can consider the values of
both functions at z = 0. Thus we put

—tkar

- " R Tr) db (1-42)
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The left-hand member can be written in the form of a Fourier-Bessel
integral

e—nka r

, =f k di Jo(kr) f o J (k) dr
0 [
Hence

F(k)

k f ¢ T (k) dr
0

k —kg+

(—ka+k
- f dG' f a7 cos o) d
2" - 0

where the latter integral is obtained by substituting the expression (1-69)
for the Bessel function and reversing the order of integration. To perform
the integration with respect to 7, we apply the Cauchy theorem to trans-
form the path of integration from the real axis to the infinite arc and
imaginary axis of the first or fourth quadrant, according as the coefficient
of 7r in the exponent is positive or negative. The contribution from the
infinite arc vanishes, and integration along the imaginary axis gives
k(" do
" 2mi ), —koe+ kcosa

F(k) =

Now, calculating the last integral, we find

k k
O =% =5

thus proving the relationship (1-41).
Instead of using cylindrical coordinates, Weyl [64] considered the
expression (1-40) as a result of superposition of plane waves and proved
that the first exponential factor in (1-40) can be written in the form of a

double integral

(1-43)

e—iqu 1
—ik R~ 2r
where dZ is a surface element. In this expression the integration must be
performed over the half sphere »; > 0 of the unit sphere »; + »; + »; = 1.
If we put », = sin & cos o, », = sin ¢ sin o, »; = cos &, dZ = sin Jdddo,
then 0 < ¢ < 27, while ¢ is to be taken complex and to vary from 0 to
x/2 and subsequently from 7/2 to #/2 4 {=.}
As an extension of Weyl’s integral, the expression

&'QR‘;@ - “2'1? f Fllat — (uz + vy + v2)]dZ (1-45)

t{Expression (1-41) can be derived from (1-44).

e—cka(112+l’ﬂl+'a‘) dz (1'_44)
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which represents an arbitrary spherical wave, was given by Poritzky [44].
In this formula, F is defined as a real function of its real argument but
F’ must also range over complex values of its argument.

Solutions in the form (1-40) are used for an infinite medium or for a
certain time interval in a finite domain until the effect of boundaries has
to be considered. The first representation of the sound field produced by
a spherical source of harmonic oscillations was given by Stokes and de-
veloped by Rayleigh [45]. The potential of this field was expressed in terms
of a set of special functions. Recently Rzhevkin [47] suggested the use of
new functions to make the study of the energy transport in a field more
convenient. The relationship between these functions and those of Stokes
and Rayleigh was also shown.

Some general formulas for the displacements in spherical polar coordi-
nates were recently derived by Homma [22] for cases important in seis-
mology. These formulas represent the displacements at a point produced
by a given distribution of initial values. Certain applications to elastic
waves produced by a source similar to an explosion were studied by
Kawasumi and Yosiyama [26], Sezawa [52], Sezawa and Kanai [53], Sharpe
[54], Blake [11], and Selberg [51].

If a pressure p(¢) is applied to the surface of a spherical cavity of radius
R, in an elastic medium, the resultant wave can be represented by the
equation
o(B, ) = %ﬁ, f_ ) f_ ] A(w)p(*r){exp [m(-r —t4 R—ai)}} do dr (1-46)

which is a generalization of (1-40). For p(f) = p, for¢ > 0 and p(f) = 0
for ¢ < 0, Sharpe obtained the approximate formula for radial displacements

2 8 t—R_R° —_ —
u—_:—Ri‘-’£°——eV5( a)sin6<t—u) fortzu
2v'2 uR 0‘ ¢ 147
U == 0 for t < E—;IBQ

where & = 24/2a/3R,, in good agreement with several observed charac-
teristics of waves near explosive sources. Another transformation of the
integral representing a spherical wave propagating from the wall of a
spherical cavity (B = R,) was given by Selberg [51].

Other applications of solutions representing spherical waves were made
by Barnes and Anderson [2] to explain the phenomenon of the so-called
“tail” in pulse propagation from a spherical source, by Duvall and Atchison
[17], who considered displacements in a field due to a pulse at the boundary
of a spherical cavity for ¢ = %, (\ = pu), and by Blake [11] for general
values of Poisson’s constant (A 5= u).
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Poisson and Kirchhoff Solutions. The classic problem of sound propaga-
tion was given the following mathematical form by Cauchy: Values of a
function ¢(z, ¥, 2, t) and its derivative with respect to the time are given
at an initial instant £ = 0. These are ¢(z, y, 2, 0) = ¢o(2, ¥, 2) and {3¢/ 080
= ¢,(z, y, 2). A function ¢(&, §, Z, I) is sought which satisfies the wave
equation (1-19) and the initial conditions given above. A solution was
given by Poisson. Let us take (see, for example, Hadamard [19]) a sphere
S having its center at the point P(Z, 4, Z) and a variable radius ¢ = al.
A point of this sphere has coordinates & + afsind cos r, § + alsin ¢ sin r,
Z 4 ol cos ¢, where ¢ and  are two spherical coordinates, The average
value M,(p) of a function on this sphere is given by the equation

M ———ff;p(x+alsmt?cosr,- -) sin ¢ d¢ dr (148)

Then Poisson’s solution of the wave equation may be written in the form
d

(.’E 9,2, l) = 77 tM (‘Po)] + ch((”l) (1—49)

It may be proved by substitution that this expression satisfies the wave
equation. It gives the value of the function ¢ at a point P at a moment
in terms of initial values of this function and its derivatives with respect
to time at the distance o = «f from P.

Another form of the solution of the Cauchy problem was obtained by
Kirchhoff and is considered as a mathematical form of the Huygens’
principle. The Kirchhoff formula can be written even for a more general
case than that considered above, Consider the inhomogeneous wave
equation

Ve + Fe,u,2, 0 = 528 (1-50)
where F is interpreted as the source-density distribution. (See, for example,
Bateman [5].) In order to obtain the value of ¢ at any given point P in’
terms of its values in a certain region D we have to assume that, in this
region, ¢ and its first derivatives are continuous and that the second
derivatives and F are finite and integrable. Let us now denote by R the
distance PQ, @ being any point in the region; by S, the closed boundary
of D; and by 9/dn, differentiation in the direction of the outer normal.
[F] indicates that the value of the function F is to be calculated at time
t — R/a. Then Kirchhoff’s formula, for P inside D, is

“” 2@ -aln]- &% 5]
fff v - ./] { le] n - an alkl dn ds§

(1-51)
For P outside D, the value of the integral is zero.
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For the homogeneous wave equation, the volume integral representing
the so-called retarded potential vanishes. For this case we note that ¢p
depends on the value of ¢ and its derivatives at points @ on the surface
at a time preceding the instant ¢ by R/, which is the time for a disturb-
ance to travel from @ to P with the speed «. This corresponds to Huygens’
principle in that @ may be regarded as a secondary source sending dis-
turbances to P.

If we assume that S is a sphere of radius R = of with its center at P,
Kirchhoff’s formula may be reduced to Poisson’s formula (1—49). We see
that ¢(t — R/a) = ¢(0), d/0n = /0K, and 9¢/dt = —a d¢/IR. For a
periodic function of time, a simpler formula of Helmholtz is easily obtained.
A general discussion of conditions which hold at the wave fronts as well
as an extension of the Kirchhoff formula and of solutions representing the
propagation of a disturbance in an infinite elastic medium has been given
by Love [32, 33].

General Solution of Wave Equation. A general solution of a partial
differential equation may be written in different forms, and it is sometimes
impossible to transform one into another. Whittaker’s form [66] of the
general solution is

¢ = f flzsinu cosv + ysinusiny + 2 cosu + at, u,v) dudy (1-52)

Another form of the solution of the wave equation was given by Bate-
man [3]. Since the integrand in (1-52) is itself an arbitrary function of
coordinates and time and a solution of (1-19), the number of parameters
can be easily increased if desired. Previously we made use of the plane-wave
solution (1-30). We can now take the most general linear expression in
z, y, 2, t for the argument of the funetion f. Let

x=wne—8+wny—N+ne—9+nt—-1%  (1-53)
where »,, £, 9, 2, { are eight parameters.f An arbitrary function
fOG vy vay vy ooy, i) (1-54)
is a solution of (1-19), provided that

2 -
i e i’% (1-55)

This condition may be written either in the form

Fl
Vs 2

Vg = =+ ;E b V? - Va (1“56)

or ve = ta Vi + 9+ = v (1-57)

tWe assume here that these parameters are real. The case of complex »; will be con~
sidered later.
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Let us first consider (1-57). Then we can make use of two arguments
x=n(z — £) +nly — 9 + vl — 8 — ot — i)
Xa=nlE -8 +nly—D+ne—9+ut—1

and write, instead of (1-52),

(1-58)

0 = f ffl(,a;,,l,,,z, va, £, 9, 2, 1) dv, dv, dv, dt dg ds df

+f ._Z. ff,(xz;y,, cor D dyy e-db (1-50)

where f, and f, are two arbitrary functions and both integrals are seven-
fold. The condition (1-56) is used in many investigations, and we obtain

o = f ffl(x,;v,,,,,,p,, 2,9,2, 1) dv, dv, dv, dé dg d8 di

+ f ffz(x,;,,l, vy var £, 9, 2, £) dv, dvy dv, dd df d2 df  (1-60)
where f, and f. are again two arbitrary functions but

xo=n =9 +tnly =)+ G -d-ne—8 +nt—D

- (1-61)
x2 = n(z — 8) + vy — 9 — \/ﬁ%_l'? _V;(z -8 +u(t— f)

We can also consider special functions f;. For example, writing one term
only

f =P, -, De* (1-62)

we obtain Fourier integrals
0= f f Pe'™ dv, dv, dv, di dj dB dt (1-63)

Both expressions (1-59) and (1-60), given by Jardetzky [23], are general
solutions of the wave equation. Taken together, they contain all particular
cases considered in the literature. By a specialization of functions involved
in this solution we can adjust them to all conditions of a particular problem.

Some special forms used. We shall show first how the well-known
expression for the potential ¢ for a single source may be derived from the
general solution. If a source is located at a point S(0, 0, k), we have to
put £ = § = 0, 2 = h. If the source begins to emit a disturbance at { = 0,
we also put { = 0 and write, by (1-63) and (1-61),
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= f f f P(Vl, Va, V4)e”“z+hy+“(’_h)+"” dVl dllg dl'4 (1_64)

Even though the disturbance has spherical symmetry, we consider now
only symmetry with respect to the z axis, having in view subsequent
applications. Thus, we put

]

IA
IA

Z=17Ccosu vi = K COS T 0L«

(1-65)

IA
IA

=r sinu v, =k Sin 7 -

Then (1-64) takes the form

T T

©

o = f eu’v.t dydf f e"u(s—h)-ﬂ-iu cos (f—-u)P(x, 7, l") dK d‘l’ (1_66)
-® 0 -%
By (1-56) and (1-65),
2
v = tqla —* (1-67)

is independent of r. It is apparent, because of the assumed isotropy of the
medium, that the function P is also independent of r. We can then write

o= f eiut dV4f eo‘v.(z—h)}')(x’ V4) dKf ec‘r: cos (r—u) dT (1—68)
—_— 0 -
The last integral represents the Bessel function (see Watson [61]).

JO(KT) — %j; ei:r cos ¢ dd‘ —_ 1 en’lr cos (o+e€) dd’ (1_69)

2r J_,

where ¢ is arbitrary. Including the factor 1/2x in the arbitrary function P,
we obtain

o = f "' dy, f Plk, v)J (k)™ = di (1-70)
Y 0

If we assume that P(x, »)) = P.(x)P,(».), it is possible to write

- f Pyoe’™" dv, f Pu(0J ()6 di (1-71)
p—.Y 0

" Now we are able to see that, in order to obtain the expression of the form
(1-41)

e—ikaR
R

where B* = r* 4 (2 — h)® corresponding to spherical waves emitted by a
point source, we have to put

- f 1R T () “—f" (1-72)

v = Fiyy, Py = : (1-73)
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taking the upper sign if 2 — h is positive. Finally,
o= = [ B ooy, (179

if we write w instead of »,. The function P,(w) is not yet fixed, and one can
easily see that the most natural assumption is to connect it with the
properties of the source.

If we consider, for example, sources distributed continuously along the
2z axis, we can easily derive from (1-63) the potential ¢ due to a line source
in the form given by Coulomb [15].

Assuming 2 = 0, we can also obtain from (1-63) expressions for the
potentials ¢ and ¢, used by Schermann [49] in the problem of propagation
of a disturbance in a half space, when the displacements or applied forces
are given at the plane 2z = 0 at some initial moment.

Other expressions for the functions ¢ and ¢, representing solutions of
particular problems will be discussed in the following chapters.
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CHAPTER 2

HOMOGENEOUS AND ISOTROPIC HALF SPACE

The solutions of wave equations considered in the preceding chapter
represent disturbances propagating in media of infinite extent in all three
dimensions. At the instant the disturbance reaches a boundary, new
conditions must be taken into account; these will affect the form of solution.

2-1. Reflection of Plane Waves at a Free Surface. Various types of
waves generated in a homogeneous and isotropic half space will be dis-
cussed in this chapter, and we shall begin with the simplest problem of
this kind. We assume that the free boundary of a homogeneous and iso-
tropic medium is a plane (z = 0) and that a train of plane waves propagates

1%

Yz

F1a. 2-1. Reflection of P wave at free surface of elastic solid.

in g direction AQ in the zz plane which makes an angle ¢ with the boundary
or i = 90° — ¢ with the normal to it (see Fig. 2-1).

We shall consider two types of plane incident waves. The case of incident
P waves is represented in Fig. 2-1 and that of SV waves in Fig. 2-2.

For the reference axes chosen, the plane P and SV waves do not depend
on y, Egs. (1-20) form two separated groups. The displacements cor-
responding to these waves

w=—~+§—¢- (2-1)

g
|
¥
@
A

u =
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will be considered together; the SH component

W _ s »

v = oz

representing a pure distortion can be treated separately. The functions
¢ and ¢ satisfy the wave equations (1-22)

1 6%
V2 = 3 _Z; VY = e Y (2-3)
K 0 N
\\ fA ] x
S ¢
~
~
~
B
P
Sv
SV
Yz

Fia. 2-2. Reflection of SV wave at free surface of elastic solid.

It will be shown later that, to satisfy the boundary conditions at z = 0,
both potentials ¢ and ¥ must be used and, when solutions of (2-3) having
the form

¢ = f(z)e:‘k(ct—z) ¢ - g(z)eik(ct—z) (2_4)

are used, the exponential terms must be identical.
Substituting ¢, for example, in (2-3), we obtain

(G- 1)er =0 @)

and the integral of this equation is

f@@ = A, exp (sz—z — 1z) + A, exp (—1]01/-3 -1 z) (2-6)

From these results we can write the solutions (2—4) in the convenient
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form
¢=A1exp[zkct+z % :c)]
4+ A, exp [zk ct —-z‘f——— 1 - a:)]
27
1p = Bl exp ['&k(ct + 2z % Z)]

+ B, exp [ik(ct - z"gg -1~ x)]

To interpret these expressions we note that ¢ is an apparent velocity
along the surface. In Fig. 2-1, AO = « represents the distance traveled
by the compressional wave front KA in unit time, OK = c¢ is the cor-
responding distance traced by the wave front along the free surface, and
it follows that

C
a

—1=tane

ol O

In a similar way, we obtain for distortional waves

02
wfﬁz—l—tanf

and ¢ = asec e = @ sec |, which is similar to Snell’s law. Let

2r cose _ 2m cos |
4

where [ and I’ are wave lengths for compressional and distortional waves,
respectively. Then (2-7) represent compressional waves with emergence
and reflection angle e and distortional waves with emergence and reflection
angle f.

Incident P Waves. Considering the case where only P waves are
incident, we set B, = 0in Eqgs. (2-7) and determine the relations between
the remaining coefficients by use of the boundary conditions

_ fow | ou) _ az\l'_ﬂ)_
(Peclemo = (c’)x + 8z> _”< oz 6z+ 3 =0

_ w _ 8*#)_
[P,.].-o—)\("i-mu(9 AV +2M< 223 =0

k =

(2-8)

Incidentally, it may be seen from Egs. (2-7) and (2-8) that if B, = 0,
¢ exists only if e = O or ¢ = 7/2, and A, = —A,. Thus, in general, an
incident compressional wave produces both reflected compressional and
shear waves.
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It follows from the definitions of tan e and tan f given above that
2
cos’ ¢ = :—;3 cos’ f (2-9)
Ifo = 1, \ = p, then o® = 38%, cos’ ¢ = 3 cos® f, and the boundary con-
ditions take the form
2(A, — Ay tane + B,tan’ f— 1) = 0
From Egs. (2-9) and (2-10) the ratios A,/A,, B,/A,, and f can be
expressed in terms of e:

A;  4tanetan f — (1 4 3 tan’ ¢’
A, 4tanetan f 4+ (1 + 3tan’e)®

B, _ —4tane (1 + 3tan’ e
A, 4tanetan {4+ (1 4 3tan® ¢)®

(2-10)

(2-11)

From the second of Eqgs. (2-11) we see that B, vanishes for two cases.
First, for normal incidence, ¢ = 7/2, f = 7/2, the denominator being of a
higher order with respect to tan e, and second, for grazing incidence,
¢ = 0. In both cases the reflection consists of a P wave only.

Since tan® f = 3 tan® ¢ + 2, the coefficient A, will vanish if

4tane (3tan® ¢ + 2)* = (1 + 3 tan® ¢)?

This equation has two roots e = 12°47’ or ¢ = 30°, and, therefore, for
these two special directions of an incident wave no reflected P wave
exists. These roots correspond to ¢/8 = 1.776 or 2.000.

In order to measure the angle of emergence ¢ from seismograms, one
makes use of the amplitudes 4, and A, of the vertical and horizontal
ground displacements.

The angle ¢ = tan™" A4,/A, is called the apparent angle of emergence.
By Egs. (2-1), (2-7), and (2-11) we obtain

1 +3tan’e tan’f—1 _ g
2tanf ~  2tanf cot, 2 (2-12)

Walker [54] derived the relation between ¢ and & for o® 5 38° in the form

tan € =

2
2 cos’ e = ga (1 —sin?d (2-13)
which he calls Wiechert’s relation and which for Poisson’s relation ¢ = }
takes the form
2 cos® e = 3(1L — sin @) (2-14)

This equation also follows from (2-12) and (2-9).
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If o® # 38°, the conditions for vanishing of 4, are changed. Making
use of the value a/8 = 1.788, corresponding to & = 7.17 km/sec, 8 = 4.01
km,/sec, Walker found that 4, will not vanish for any real value of e. It
attains a small minimum near e = 20°.

Incident S Waves. Let us now consider an incident SV wave (Fig. 2-2).
The boundary conditions are satisfied if the incident transverse wave
gives rise to a reflected transverse wave and a reflected longitudinal wave.
In (2-7) we put 4, = 0 and substitute the other terms in the boundary
conditions (2-8). Again assuming that Poisson’s relation holds, we obtain
the following equations for the reflection coefficients:

A, 4 tan § (1 4 3 tan’ ¢
B,  4tanetan f 4+ (1 + 3 tan® ¢)*

B, 4tanetan — (1 4 3tan” ¢’
B, 4tanetan f + (1 4+ 3 tan® ¢)*

The amplitude of the reflected distortional wave B, vanishes for f = 55°44’
and f = 60°, also corresponding to ¢/ = 1.776 and 2.000.

If «/8 = 1.788, B, does not vanish but has a small minimum near
f = 58°. One can easily derive the expression for the apparent angle of
emergence | for the case of incident SV when ¢ = }:

(2-15)

2 tan e

tsz=1-|-3tamTé

(2-16)

For an incident SH wave a similar derivation shows that all the energy
is reflected as SH, the horizontal displacement of the free surface being
twice that of the incident wave.

Partition of Reflected Energy. To derive an expression for the energy
partition in the system of incident and reflected waves, Eqs. (2-7), we
write the corresponding particle velocities in the form @ = 0%°/dz at,
W = 9%°/dz 9t for P waves. Then

% = Ak% cos kxa w = — A, k% tan e cos kx;
@ = Ak cos kx; W = Ak tan e cos ky,

for incident and reflected P waves. Similarly, for incident and reflected
SV waves we can write

@ = B,k tan f cos kx{ W = Bk’ cos kx}

@ = —Bk%ctan f coskxs = B,k cos kx}
In these equations, x; and x! are the expressions in parentheses in Eqs.
2-7).

Taking the kinetic energy per unit volume as }p(#’ + %), we may
compute the energy flux for the waves mentioned above by multiplying
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the total energy per unit volume (double the mean kinetic-energy density)
by the velocity of propagation and the area of the wave front involved.
Thus we may write the equality between incident P-wave energy and
reflected P- and SV-wave energy for unit area of the free surface as

3pAik'casec’ esin e = }pAjk'c’asec’ esin e

+ 3oBjk'c*Bsec’ fsin f  (2-17)
For the case of incident SV waves, the corresponding equation is
1oBik'c’B sec® fsin f = pAzk'Casec’ esine

+ ipBik'c*Bsec’ fsinf  (2-18)
If the energy flux of the incident waves is taken as unity in both cases,
Eqgs. (2-17) and (2-18) reduce to the form, useful for computations,

1=a>+? (2-19)

_ Bjtanf
~ Altane

2

where & = and b

Lok

= 8

for an incident P wave or

. Altane . B
a = m and b* = B?
for an incident SV wave.

Computations for reflections from a free surface have been given by
Jeffreys [15] and Gutenberg [10], among others. Jeffreys presents his
results in terms of the reflection coefficients A,/A,, B./A,, etc., whereas
Gutenberg prefers the square roots of the energy ratios, a, b. In Figs. 2-3
and 24 Gutenberg’s calculations for various assumed values of the ratio
a/B are reproduced.

Reflection at Critical Angles. Since a cos f = 8 cos ¢, no real value of e
exists until f reaches the critical angle cos™ B/a, indicating that for an
incident SV wave there is no reflected P wavein therange 0 < f < cos™' 8/a.
Within this range, tan ¢ = —¢V'1 — ¢’/o’, tan | = V¢*/8° — 1, and
a > ¢ > B. It follows from Eqs. (2-15) that the amplitude B, becomes
complex with B, = — B.,e**’, where

AV =/ VEF =1
N 2 - /8

This represents total reflection with no change in amplitude and a phase
change in the reflected SV wave. The coeflicient A4, also becomes complex,
and the expression V¢’/a® — 1 becomes negative imaginary. The motion
corresponding to the potential ¢ decreases exponentially with depth from
the surface.

tan &

(2-20)
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Fra. 2-3. Square root of ratio of reflected to incident energy for P wave incident at free
surface for various values of Poisson’s constant. (After Gutenberg.)

A critical case occurs for the grazing incidence of P waves, ¢ = 0 (¢ = a),
where A, = —A,, B, = B, = 0, and the expressions (2-7) fail to represent
trains of waves. To see the reason and to find another form of the potential,
we go back to Eqgs. (2-4) and (2-5). If we write the solutions of the wave
equations (2-3) in the form (2-4), the function f(z) must satisfy the
ordinary differential equation (2-5). Now the roots of the characteristic
equation of (2-5) are

2

E
Tia = :I:'L'k<§§ - 1) = 4k tane (2-21)
For grazing incidence, ¢ = a, ¢ = 0, and the roots r, = 7, = 0. Under
these conditions, the general integral of (2-5) is
f@) = Ce™* + Cze™ = C, + Cx (2-22)

(see Jardetzky [14]). This holds for an incident P wave as well as for an
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F16. 2-4. Square root of ratio of reflected to incident energy for SV wave incident at
free surface. (After Guienberg.)

incident SV wave. From the equation tan’ f = 3 tan® e 4 2 it follows for

= 0 that tan { = + \/5, and the expressions (2-7) can be written in
the form

¢ = (Ci + C)e* ™™

—1kz 2 sk{et—2)
¢y = —Be

(2-23)

derived by Goodier and Bishop [9]. A solution of this form represents a
wave with amplitudes increasing with distance from the interface.

2-2. Free Rayleigh Waves. Rayleigh [39] gave the theory for surface
waves on the free surface of a semi-infinite elastic solid, showing that the
motion became negligible at a distance of a few wavelengths from the
free surface. Assume a simple harmonic wave train traveling in the =z
direction such that (1) the disturbance is independent of the ¥ coordinate
and (2) it decreases rapidly with distance z from the free surface. Waves
satisfying the second condition are called surface waves. A solution cor-
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responding to this definition may be obtained from Eqs. (2~7):

¢ = A exp [ik(ct + \[i—: -1z - x>:| (2-24)

for0<z< o

B exp [ik(ct + \f;—: -1z - x)] (2-25)

provided that ¢ < 8 < a and the sign is chosen so that the potentials
approach zero as z approaches «. In a similar way, the SH component is

given by
2
v =Cexp [zk(ct + \/g—z -1z~ x)] (2-26)

The arbitrary constants A, B, C in Egs. (2-24), (2-25), and (2-26)
can be determined from the boundary conditions. Since we assume that
the plane boundary of a half space is a free surface, the stresses must
vanish at z = 0. In order to find the expressions for the stresses, we use
Eqgs. (2-24), (2-25), (2-26), (2-8), and (1-11).

From the conditions p,, = 0, p,, = 0, p.. = 0, it follows that C = 0 and

¢ fcz
(2—‘62>A:I:2 '32—13-—0
[& c
F2 a2~1A+(2—B§>B—0

In order to have values A and B different from zero, the parameter ¢
must satisfy an equation obtained by putting the determinant of (2-27)
equal to zero. Thus for either upper or lower signs

O O

The quantity ¢’°/8° can be factored out after rationalization, and the
Rayleigh equation takes the form

6—2[93—8944+c2<3‘%—1;‘2)— 16(1—57:)] =0 (229

¥

2-27)

g Le° s* 8
If ¢ = 0, Egs. (2-24) and (2-25) are independent of time, and from (2-27)
A = —iBand u = w = 0. Hence this solution is not of interest. Now the

second factor in (2-29) is negative for ¢ = 0, 8 < «, and is positive for ¢ = B.
There is always a root of Eq. (2-29) if 0 < ¢ < 8 < «, and under these
conditions surface waves can exist. -
For an incompressible solid @« — o, and (2-29) reduces to
cG cl 62
= —83+245—16=10 2-30
3 & + 7 (2-30)
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This cubic equation in ¢” has a real root at ¢ = 0.912758°, corresponding
to surface waves with velocity ¢ =2 0.958. The other two roots for this
case are complex and do not represent surface waves.

If Poisson’s relation A\ = p holds, @ = V/38, and (2-29) becomes

Gt T mE—w=0 (2-30")

This equation yields three real roots, ¢’/8° = 4,2 4+ 2/V/3,2 — 2//3.
The last root alone can satisfy condition 2 for surface waves, since the
radicals in (2-24) and (2-25) become positive imaginary. The last root
corresponds to the velocity

cz = 0.91948 (2-31)

The other roots of Eq. (2-30’) correspond to real values of the radicals
in (2-24) and (2-35) and therefore do not represent surface waves as
mentioned above. These roots arise from squaring Eq. (2-28) and satisfy
(2-28) except for a change in sign. The determinant corresponding to
this new equation is obtained from the boundary conditions if we consider
solutions given by (2-7) for the two cases A; = B, = Oand 4, = B, = 0.
The first case represents a compressional wave incident upon the free
surface at an angle such that only reflected shear waves occur. The second
case represents the reverse situation of an incident shear wave and a
reflected compressional wave. Values of ¢/8 computed for these special
cases in Sec. 2-1 from the general expressions for reflection coefficients
are identical to the values given by the extraneous roots of Eq. (2-30’).
For a more detailed discussion, see Fu [7].
For the condition (2-31) one finds for the displacements

w = D(e® ™ — 0.5773¢™ ") sin ket — 7)
w = D(—0.8475¢7° #*7%* 1 1.4679¢7° ******) cos k(ct — x)

(2-32)

where D is a function of k. It may be seen from (2-32) that the particle
motion for Rayleigh waves is elliptical retrograde in contrast to the elliptical
direct orbit for surface waves on water. The vertical displacement is about
one and one-half times the horizontal at the surface. Horizontal motion
vanishes at a depth of 0.192 of a wavelength and reverses sign below this.

Dobrin, Simon, and Lawrence [3] experimentally determined the particle-
trajectory variation with depth below the earth’s surface for Rayleigh
waves from small explosions. They found that the motion is retrograde
above 40 ft and direct below. The crossover depth was 0.136 of a wave-
length. The displacements decrease continuously below 40 ft. These
experiments were conducted in a region of layered unconsolidated and
semiconsolidated rocks. Despite the departure from homogeneity, the
experimental results offer good agreement with the theory.
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Knopoff [20] has computed the ratios cz/8, cz/a for Rayleigh waves
from Eq. (2-29) for all possible values of Poisson’s ratio. These are shown
in Fig. 2-5.
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Fia. 2-5. Ratios B/, cr/a, cg/B as functions of Poisson’s ratio. (After Knopoff.)

Calculations on wave propagation in a half space using plane-wave
concepts as illustrated above are inadequate for problems in which charac-
teristics of the wave source must be considered.

2-3. Integral Solutions for a Line Source. In a classic paper, Lamb
[22] first considered the disturbance generated in a semi-infinite medium
by an impulsive force applied along a line or at a point on the surface. He
also wrote the formal solutions for internal sources as integrals which were
later studied by Nakano [28], Lapwood [25], and others. Since the methods
and solutions in Lamb’s paper form the basis of much of the material in
later chapters, the more important points of it will now be discussed in
some detail.

Surface Source. In this section we consider a two-dimensional problem
and derive expressions for surface displacements arising from a force
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applied normal to the free surface along a line coincident with the y axis.
The displacements u and w are given by Egs. (2-1), where the functions
¢ and ¢ are solutions of the wave equations (2-3). The effect of a periodic
force applied perpendicular to the free surface is expressed by the conditions

[pzz]z=0 = 0 [pzz]z=0 = Zet(wl_kZ) (2_33)
where the amplitude Z depends only on k. Henceforth the time factor

1wl

¢’ is omitted to save space. The stresses p,. and p,, are given by (2-8),
and in order to find their values we now make use of potentialst

- 0= Ae—vz‘-lkz 'p — Be—ﬂ’z—tka: (2_34)
which satisfy the wave equations (2-3), provided that

(04

Vo= k* - k: p? = - k; k., = - ks = (2-35)

@
8
A and B are functions of the parameter k as specified by conditions (2-33).
On inserting (2-34) in (2-33), using (2-8), we obtain

24wk — 2K — k3B =0
(2-36)
@k — K)A + 2Biky’ = %@

If the conventions v = (& — k2! = ik(c’/o® — 1)* and Re » > 0 with
similar ones for »' are attended to, the signs in these equations correspond
to the lower signs in Eqs. (2-24), (2-25), and (2-27).

Solving these equations for A and B, we obtain

ok — K Z(K) kv Z(k)
= P B = - —~ 2-37
4="TFw . F® w (&-87)
where F(k) = (2K — k3)* — 4k’ (2-38)
is Rayleigh’s funection.

We now wish to superpose an infinite number of stress distributions of
the form (2-33) such that the resultant is a concentrated line source. To
do this, we put Z = —Q dk/2x in (2-33) and integrate with respect to k
from — o to + @, obtaining

Budio = 5@ = =2 [ & a (2-39)

27 J o

Then if we put in (2-39)

" @™t &t = Q) (2-40)

{Because exp fi(wt — kz)] instead of the factor exp [{(pt + £r)] of Lamb [22] is used,
gome of our expressions differ from his in sign.
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we obtain the Fourier integral
f@) = 2 [ e f et d (2-41)
27 J_o e be £

representing the distribution of the normal surficial stresses. In order to
obtain a concentrated normal force at * = 0, assume that the normal
force f(x) along the x axis vanishes everywhere except at ¢ = 0, where it
approaches infinity in such a way that [*2 f(¢) dt = —Q is finite. Then
Eq. (2-41) reduces to (2-39), with @ a constant.

With the stress specified by (2-39), the displacement of any point in
the surface 2 = 0 may be written, using Eqs. (2-1), (2-34), and (2-37), as

CiQ [TTREE — K= 20) e
0 27“1 . F(k) e dk

U
(2-42)

Q e k;” —skz
-—2—'“_# i F(k) € dk

The effect of a concentrated horizontal force P acting parallel to the
z axis at the origin can be represented in a similar way. Methods of evaluat-
ing integrals such as (2-42) will be discussed later, as well as a generalization
for an impulsive source.

Internal Source. Lamb [22] also considered an internal line source of
compressional waves. Lapwood [25] has given a more detailed discussion
of this problem.

A solution of the wave equation representing compressional waves
propagating cylindrically outward from a line source at ¢ = 0, z = h
may be written as

Wo =

po = ime''HP(koB) ¥ =0 243)

where H{® = Hankel function of second kind of zero order
R =2+ (z — k)

This particular form is chosen because, where |k, R| is large,

(@ }2’5 ~ikaR
o (kak) rkaRe

(see Watson [56, p. 198]), and Egs. (2-43) represent cylindrical waves
diverging outward with velocity «. Another transformation of the Hankel
function may be used to write (2-43) in the form

0o = ime' ' HP(kR) = —2¢*" f e”'**! cos kx% (2-44)
0

Hereafter the factor e*“’, although not written, will be understood. This
transformation may be proved by a method not unlike that used for the
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corresponding three-dimensional transformation (1-41). By a simple
transformation,

® _,,dﬁ —_ ® —n-c'kzg_k_ ’
—2f0 cos kz ¢ L = f_”e . (2-44")

Comparing (2—44) and (2—44’) with (2-34), we can obtain an mterpretatlon
of the former in terms of the superposition of plane waves.

We note that the convention Re » > 0 for » given by (2-35) must be
adhered to in Eq. (2—44) in order to ensure the vanishing of ¢, as z — o,
Now, in order to have vanishing normal stress p,, at the free surface, we
can make use of the functions

= —4f -n 8inh 2 2 cos kz dk Yo =0 (2-45)

formed by adding to (2-43) the potential of an equal and opposite image
source (0, —h) corresponding to a reflection at the free surface. If the
functions (2-45) are inserted into (2-8), it is found that p,, = O atz = 0.
In order to make the tangential stress p.. also vanish at 2 = 0 we add to
(2-45) the potentials ¢ and ¢ in the form

o =14 f (4 cos kx + Bsin kx)e” ™" dk
¢ (2—46)

v =4 f (C cos kz + D sin ka)e™ *dk

The necessity for superposing functions such as ¢ and ¢ in order to
obtain vanishing stress at the free surface is connected with the curvature
of the incident wave front corresponding to ¢,. All boundary conditions
can be satisfied by incident and reflected P and SV waves alone only
when the waves are plane.

The first integrand in (2-46) satisfies the condition of vanishing potential
as z — o from our choice of sign for Re ». In order to insure that  satisfies
this condition, we require Re » > 0. Now, substitution of the functions
¢o- + ¢ and ¥ in the boundary conditions (2-8) leads to two integrals
which must vanish for all values of z. Since the coefficients of cos kz and
sin kz in these integrals must vanish separately, we obtain four equations
for A, B, C, D. One finds first that B = €' = 0. Then, solving for 4 and D
and substituting in (2-46), we obtain for a compressional source

= —v(lH-l) k d
o =16 f F(Ic) cos kx dk a7
= k(2K — k) gt

Z0) sin kx dk
0

v=-8
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Equations (2-47) together with (2-45) complete the steady-state solution
for an internal line source of compressional waves. For an internal source
of shear waves the corresponding functions may be found in a similar
manner.

We see from Eqgs. (2-37) that for Z = 0 the coefficients 4 and B can
have finite values only if F(k) = 0, that is, for those values of & for which
free Rayleigh waves are possible. These values of k are also singularities
of the integrands in (2-47).

A method of evaluating integrals of the type (2-47) will be given in
Sec. 2-5.

2-4. Integral Solutions for a Point Source. Let us assume that the pri-
mary disturbance varies as a simple harmonic function of time.

Surface Source. The case of a point source located at the surface of a
semi-infinite medium has more applications than the two-dimensional
problems considered in previous sections. Symmetry about the z axis
(taken through the source) is usually assumed, and we can put

The displacements w and ¢, parallel and perpendicular to the z axis,
are represented in terms of potentials ¢ and ¢, as in Eqgs. (1-26) and (1-28):
¥’y d W 13y _ 3 Py 13y

3¢ G0 dy 1ldy o dv 1oy
+ aroz U T o a  ror I + B o (2-49)

q (2-48)

~ <

If we again assume a time variation e‘“*, the wave equations (1-27) and
(1-29) take the reduced form

(V'+kde=0 (V' +ky=0 (2-50)
2 2
ki=% k= % (2-51)
For the axial symmetry,
62
29 429, 9 _
v + , ar + (2-52)

and particular solutions of (2-50) may be taken in the form

¢ = ST ¢ = SiknNT\() (2-53)
provided that the functions S and T satisfy the equations
EriD w5 =0
(2-54)
d’T
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with »* = k* — k2. Similar equations hold for 8,, T, with »* = k* — k.
The second of Eqs. (2-54) has a particular solution T = ¢7”*; the first is
a form of Bessel’s equation which is satisfied by the Bessel function J,(kr).
Thus we have two particular solutions

o = Ae”""Jo(kr) ¥ = Be™" " J(kr) (2-55)

A and B being two constants. If & is real and k., < ks < &, v and »' must
be positive real. The solutions (2-55) vanish as z — o and also vanish as
r — « because of the property of the Bessel function J,(kr).

By (2-49) we have

—(kAe™™ — kv'Be" *)J(kr)

g (2-56)
w = (—vAe””" 4 k*Be " ") Jo(kr)
using the relation
. _dJo(kr)
Silkr) = =30
The stress equations in cylindrical coordinates are
_ (% ew) _ dw i
p-r - ”(az + 87‘ p:z - )\0 + 2”’ az (2 07)

K%

- _12( aﬁ>
Wheree—an—r +6z2

ar \" or

With Egs. (2-57) we get for the stresses in the plane z = 0, with A = g,
[Dsr)imo = ul2kvA —~ k(2K — k3)B1J . (kr)

[ps.).m0 = wl(2k* — kp)A — 2k%'B]J o(kr)

(2-58)

by Egs. (2-56). Equations (2-56) and hence (2-38) may be also derived
from Eqgs. (2-1) and (2-34) for a line source if we consider the effect of an
infinite number of line sources in a uniform arrangement about the z axis.
To form the resultant displacements we note that the variable x corresponds
to r cos 6 and integrate (2-34) with respect to 8 from 0 to =, dividing the
integral by the length of the interval =. The displacements in the z direction
are obviously directly additive, whereas the sum of displacement com-
ponents in the r direction must be taken, by multiplying by cos 6 before
the integration is performed. Thus we have
q = (—tkAe™”* + Bv'e™"’") f e % cog df

° § (2-56')
de

T

w = (—VAGH" —- Bike_"') f e—chr cos 0§
(1]
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If B is replaced by Bik, this result becomes identical with (2-56), as may
be seen from the expression for a Bessel function of the nth order

J.6) = %r‘ f e’*°** ® cosno do
0

Jo(£) being an even function of £ and J,(¢) an odd function of &.

To obtain the solution for a point source we now consider a force per
unit area ZJ,(kr) acting normal to the free surface. Appropriate boundary
conditions for this case are

[pxr]x-o = 0 [pn,]z-o = ZJO(kr) (2—59)
Then by (2-57) and (2-58) we have
—2A + 2K — k3B =0

2K — k)A — 2K%'B = " (2-60)
2K’ A v Z
v _—_ R4 = fund
whence A= O B ) & (2-61)

where F(k) = (2k° — k3)® — 4k’

The expression (2-61) may be compared to (2-37), since B given by
Eqgs. (2-37) was replaced by ¢kB. The function F (k) is identical to (2-38).
The displacements (2-56) at the surface z = 0 can now be written in the
form

k2K — k2 — 2w) Z
90 - F(k‘) J l(kr) B (2_62)
Wy = Flvc(k) J O(kr)

FREE ANNULAR RAYLEIGH WAVES. Free surface waves correspond to
Z = 0. In this case the constants 4 and B in (2-55) have values different
from zero, as was mentioned at the end of Sec. 2-3, if the parameter k
is equal to a root « of the equation F(k) = 0. Then, on writing k = «,
Z = 0 in (2-61), we can put

= (2¢ — kg)C B = 2;C =2V — kiC (2-63)

where C is a new arbitrary constant. Writing the time factor ¢** again,
we have by (2-56) the surface displacements (¢ = 0) corresponding to
free annular surface waves )

g0 = —Ok(2* — ki — 2upv )T (k0)e’ "

Wy = Ck:VRJo(Kr)eiw‘

(2-64)
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wherevs = «* — k.

3 2 2
ve =k — ks

Twi

FORCED WAVES. In order to pass to a concentrated force Le'“* acting
at the origin, we can make use of the Fourier-Bessel integral (see, for
example, Ref. 18, p. 559) to represent the stress distribution p,,

pudeno = 560 = [ Jolle i [ @) Tko)o do (265

Now suppose that f(s) vanishes for all but infinitesimal values of o,
where it becomes infinite in such a way that

f flo)2re do = —L (2-66)
0
is finite. Then (2-65) reduces to
L «
Pulens = =5 [ Talhk db (2-67)
To obtain the solutions for a surface point source, we canput Z = — Lk dk/2x=

in (2-59) and (2-62) and integrate with respect to k& from 0 to «:
_ L ["E@K — ks — 2w)

§o = 5 J, k) Ji(kr) di

L [* kgky

21m o F(k)

By finding the surface stresses corresponding to Egs. (2-68) it may be

verified that [p..]..o = 0 and [p..].-o reduces to Eq. (2-67) which, by

(2-65) and (2-66), satisfies the condition for a concentrated force at the
origin.

In order to compare these results with previous ones for two dimensions

we use the relations which hold for Bessel functions of the zero and first
order:

(2-68)

Mo = Jolkr) dk

Jo(k?‘) = _.:_’-/; (eﬂ'f cosh v __ e—ikr cosh u) du
(2-69)

J,(kr) — _%j; (eikr cosh u + e—s‘kr cosh u) coshu du

(See, for example, Ref. 56, p. 180.) We may now rewrite Eqs. (2-68) in
the form ’

— L b ® k2(2k2 - kﬁ - 2W’) —|kr cosh u
G = 2en f coshuduﬁ k) dk

My = 21r “[ f ’;QI;S ~ikr cosh u gy

(2-70)
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We see that the definite integrals with respect to k in Eqs. (2-70) are
obtained from the integrals (2—42) for the two-dimensional case by per-
forming the operation —d/7dz and substituting

z = r cosh u Q=1L

Internal Source. In order to obtain the potentials corresponding to
an internal source in a half space, we again follow the method of Lamb.

COMPRESSIONAL-WAVE SOURCE IN AN UNLIMITED SOLID. To represent a
point source of compressional waves, let B = +/7* 4 2% be the distance
from the source and write the potentials

ei(at—kaﬂ)

TR

=0
The transformation (1-41) enables us to use the integral form of the
potentials in which 7 and 2 occur in separate factors. In practical applica-
tions this solution represents the effect of an explosive source in a medium,
provided that the wave lengths considered are large compared with the
diameter of the source and small compared with the distance to the nearest
boundary.

CONCENTRATED FORCE. This problem involves a normal periodic force
ZJ(kr) per unit area acting at the plane z = 0. On considering an unlimited
solid in addition to expressions (2-55) for z > 0, we now need the following
potentials for z < 0: ’

= [ Jmerrin B @-71)

o = A'e"Jo(kr) ¥ = Ble’ *J(kr) 2-72)
The conditions for stresses on the plane z = 0 are
[pu]+0 - [pu]—ﬂ = ZJO(kr) (2__73)

[P.rleo — [Pir]-0 = 0
By Eqgs. (2-8), (2-55), and (2-72) we obtain for A = p
Z .
I (2-74)
%A+ A+ @ —k)(B—B) =0
Similarly, the condition of continuity of displacements on z = 0 leads to
A—-A"—vVB+B)=0

@k — k(A — A") — 26%'(B + B') =

(2-75)
WA+ A)—-FB-B)=0
From (2-74) and (2-75) it follows that
r_ _ 2 gz _
A=—-A"= ~ o B =B = T (2-76)
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and Egs. (2-55) now take the form (for z > 0)

—Z —rs — .;g‘ -’z |
o= %e Jo(kr) ¥ = 2 e *Jo(kr) 2-77)
To represent a concentrated force Le'®* acting at the origin we follow
the procedure of the previous section. Put Z = — Lk dk/2x in Eqs. (2-77)
and integrate with respect to k from 0 to «. Using ks = w/8 and u = 8°p,

we obtain

L T
?= fo e Jo(knk dle

forz>0 (2-78)
A L
¥ = Trto
Similarly, by using Eqs. (2-72) and (2-76) we obtain for z < 0
- g f T (k)b dk (2-79)
- L *

The expression (1-41) may be used to transform the potentials ¢ and ¢
in Egs. (2-78) into

L 9 e—t'kaR " L e-ikpR
T irw0’pdz R v = dre’’p R

¢ = forz >0 (2-81)
which represent the solution of the problem as given by Stokes [52].

INTERNAL coupLE. Of particular interest in the study of earthquakes
is a source which simulates the failure in shear that is known to be the
principal action at the foci of earthquakes. A suitable expression for the
potential may be obtained by extending the solution of the previous
section to the case of two equal and opposite forces constituting a couple.
As might be expected, this potential may be derived by taking suitable
derivatives of Eqs. (2-81).

COMPRESSIONAL-WAVE SOURCE IN A HALF SPACE. Next we consider the
problem of finding the disturbances produced in a half space by an internal
point source of compressional waves. Let us consider a potential ¢ repre-
senting two spherical compressional waves, one originating at a source
8(0, 0, h), the other apparently originating at the image point 8’(0, 0, —h).
Thus from (2-71)

0= f —rls—hlJ (k ) k dk + f —vl-+hIJ (k) (2_82)
y=0
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For 0 < z < h weput |2 — hl = h — 2z and obtain

¢ =2 f cosh vz e J o{kr) Ii—(y-c‘ v=20 (2-83)
0
From (2-49) and (2-83) the displacements at z = 0 are found to be
2
- 2 f Tk T, =0 (2-84)

The stresses at the free surface determined by the potentials (2-83) are
o 2 2
[p.r]ico = 0 [P.:}im0 = 2;4f Qk—y—ﬁe'”‘Jo(kr)k dk  (2-85)
0

Thus an additional system of surface stresses is required to satisfy the
condition p,, = 0 at z = 0. To obtain potentials which will annul the
residual stress of (2-85) we put

Z = —2u » 2k” — ks e "k dk
in Eqs. (2-59), (2-55), (2-61), and (2-62) and integrate with respect to &

from 0 to «. By adding the displacements (2-62) with the changes men-
tioned and (2-84) we obtain the resultant surface displacements

ot [CVER
= 4ot | TN (k) d
qD € o F(k) 4 ( T) (2_86)
__ _ o iut ® kzk(2k2 kﬁ) —vh
wy, = —2€ \ (k) Jolkr) dk

2-5. Evaluation of Integral Solutions. The integrals obtained as solu-
tions of the problems treated in this chapter cannot be evaluated by
direct integration, and evaluation by numerical integration is exceedingly
difficult.

Application of Contour Integration. A useful approach is to replace
the variable of integration k by the complex variable ¢ and to use contour
integration in the { plane. We shall evaluate integrals of the form

(@ — k= 2V — ke VE — k) i
@ — B — 48V — k2 Ve —kﬂ
AN — k2
d =
f‘m) f /(25“2 — B — 4PN — kI NV — k3

which occur in the solutions (2—42) representing the surface displacements
for a surface line source. Our results may be also adapted to the integrals
with respect to k, which are part of the solutions (2-70) for a surface
point source, by performing the operation ~3/mdx and substituting
x = r cosh u.

f ®(¢) df = dr (2-87)

e dy  (2-88)
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We note first that when { is a complex variable, { = k == ¢r, the inte-
grand &(¢) or ¥(¢) has real poles (%«, 0), determined by the zeros « of
F(), the denominator of the integrand defined by (2-88). Branch points
(k., 0), (&ks, 0) are introduced by the radicals » = + \/5'2 —~ k2 and
v = £V¢® — ki The existence of branch points requires that the inte-
grands be made uniform functions before Cauchy’s theorem is applied.
This is accomplished by introducing cuts in the complex plane. The signs
of the radicals » and »" will be determined by the conditions Re » > 0,
Re v/ > 0 in agreement with the signs used previously, since with these
choices infinite values of ¢ as z — « are avoided.

In (2-87) and (2-88) the branch points £k, and ks are located on
the real axis but when the methods of operational analysis are applied,
the complex values of » also have to be considered. Therefore we will
first take the cuts for complex k, = w/a and ks = w/B. The Riemann
surface for integrands in (2-87) and (2-88) has four sheets, as there are
four combinations of signs of » and »’. The permissible sheet must be
selected according to the requirements Re » > 0 and Re »* > 0. Thus,
the cuts will be given by Re » = 0, Re »’ = 0. For a complex w = s — 1o
we have k, = (8 — i0)/a, kg = (s — i0)/8. Rev = 0, where »* = ¢* — k2,
requires that k> — 7* + 2¢kr — (8* — o® — 2is0)/c” be real and negative, or

kr = —so/o’ and F—7<(i — ) (2-89)

The first of these conditions shows that for s > 0 the branch points and
cuts must lie as in Fig. 2-6, these cuts being parts of hyperbolas. The
second condition defines the part of the hyperbola to be used as a cut.
To simplify the further discussion we shall assume that there is only one
pair of branch points *k,. For a real w, that is, ¢ = 0, the conditions
(2-89) take the form

2

kr=0 K—1©< 5 (2-90)
They show that either
2
r=0 k< fi (2-91)
. 3
or k=0 —+< f,f (2-92)

Thus, since the condition Re » 2 0 restricts the choice of a cut, we can
use, according to (2-91), a part of the real axis between the branch points
—kq(B) and k.(4) [see Fig. (2-7)]. The imaginary axis determined by the
conditions (2-92) is not an independent cut since it does not pass through
a branch point. However, it can be used if it is combined with that part

of the real axis to form the cuts AOE and BOL, as shown in Fig. 2-7.
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AT
Rev'=0 L Re y=0
~ B
- —
- - = T=ha T Re v>0
- 9] Rev>0 Imy=0
S by dmdmmo= k
Imy>0>0”" -~
'v \\kﬁ/” ’
ImV<0 A\ ImV"O
Rev-OJ ! ~
Imv>0
Re v’ =@
Imy'<0

F1a. 2-6. Branch points and cuts in the complex ¢ = k¥ 4 ¢r plane for Re » > 0.

The cuts AOE and BOL appear then as limiting cases of those parts of a
hyperbola (Fig. 2-6) which are cuts for complex w.

For w real, Re » does not change sign on any permissible path in the
right half plane. Only for ¢ = &k > k,, thatis, on A% in Fig. 2-7, Im » = 0.
Thus, for any permissible path in the right half plane, Im » can change
sign only on crossing Ak.

Now, from the transformation

=k, + 8" (-r<0<n (2-93)

where 8 is measured from the % axis,

v = +V2%kde" = N2, (cosg + isin g) (2-94)

for a small region around A, in which §* may be neglected.
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LAz
Rerv>0
Imv>0
Rev=0 imy=0
B 0l / A/ __k
Rev>0
Imv <0
E

F1e. 2-7. Branch points A and B and cuts AOE and BOL in the complex ¢ plane for
real w.

From the foregoing we see that for all permissible paths in the right
half plane Re » > 0 while Im » > 0 in the first and Im » < 0 in the fourth
quadrant.

For complex w, Re » = 0 on the first part of a hyperbola determined
by Egs. (2-89). The Im v is zero in the second part given by (2-89). Im »
is discontinuous along the branch line, being positive on the left side and
negative on the right side of the cut in Fig. 2-6. To determine the signs
of Im », introduce the angle —7 < 8 < 7 measured from AT, the tangent
to the hyperbolic cut (see Fig. 2-6). Following the same procedure as for
real w, we may determine the signs as shown.

Residues. Lamb [22] demonstrated that Rayleigh waves are the
largest disturbance at a surface point far removed from a surface impulse.
In addition, he found other terms representing waves which diminish more
rapidly with increasing distance from the source. We shall now evaluate
the surface-wave terms.

If we consider the integrals (2-42) for a real w, the singular points of
the integrand are on the path of integration, and principal values of
integrals must be used, as was done by Lamb. The assumption that
is complex will displace the points k, and ks as well as the roots « of the
equation F() = 0 from the real k axis to a line whose slope is Im w/Re w.
Therefore, it seems to be more useful to consider first the contour shown
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in Fig. 2-8 and then to take the limiting case w real. Now taking, for
example, the integral (2-87), we see that

f@(s“)dsj=f:+f:+ h+f“ +f:{=21r'£ 3" Res

On the infinite ares NH and GM, because of our choice of the eontour in
the lower half plane, the presence of the factor exp (—itz) = exp (—tkzx) -

- 00

k
N -

]
1
\
)
A

Fia. 2-8, Integration path in the complex ¢ plane.

exp (—rx) makes the integrals zero. Therefore the integral along the real
axis is

f_ch(k)dk-:—zwi ZRes+/;a+Lﬁ (2-95)

There is only one pole (x) in this case, and the integrals along the loops
L, and Ly are branch line integrals. Using for the residue of an integrand
M(z)/N(z) at a pole z = a the expression M(a)/N’(a), we can easily
find that by Egs. (2-87) and (2-88)

” k(2k2 - kZ - ZW') —sikz _ crr —ixz
f_m Fl) e dk = 2miHe " - fL. &) di + fL‘ ®(¢) dt

(2-96)

@ _k?LV_ —tkz = . —ixz
e dk = 2miKe fL (@) de + fL W) dr

(2-97)
where

H - _x(2:c2 — kp) — 2\{::2 — kI Vi — kj
F' (k)

(2-98)
k3 Ve — ki

K=-"70
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Applying these results to the integrals for the displacements (2-42)
produced by a surface line source, we obtain

1 = ~ 2% exp lifot — k)] + -+

-i%ff exp [i(wt — kz)] 4 -+

(2-99)

Wo

where terms derived from the branch line integrals have been omitted for
the present. The first terms in Egs. (2-99) result from the contribution of
the pole in the integrands (2-42) and represent a train of Rayleigh waves
traveling away from the source with an amplitude of displacement inde-
pendent of z. The velocity is that of Rayleigh waves, since « is a root of
Rayleigh’s equation F(k) = 0 [see (2-38)]. It is seen that the orbital
motion of a surface particle is retrograde elliptical, the ratio of vertical to
horizontal amplitudes being K/H. This ratio is the same as that obtained
for free waves in Sec. 2-2.

Branch Line Integrals: Line Source. To obtain further information
about the waves represented by the branch line integrals, we first examine
for real » the last two terms in Eqgs. (2-96) and (2-97). In this case, the
two loops L, and L, degenerate into one (L), with branch points &, and
k, on the real axis. This loop is shown in Fig. 2-9. The cut A,AOH obtained

0 ka ke x k

Fi1a. 2-9. Loop £ formed by contraction of £, and £y for w real.
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by contracting two hyperbolas is characterized by the condition that
Re v = 0 along the entire cut and Re » = 0 along its part AOH. Now
under the conditions given earlier in this section the imaginary parts of »
and »" are discontinuous along the corresponding cut. Im » and Im »’
are positive in the first quadrant and on the left side of the cut OH and
are negative in the fourth quadrant. Writing now, for example, for (2-87)

c(2¢* — k; — 2w")
L (287 — k) — 48w

e dy

we see that the integrand is a function of the product »’'. On the part
of the loop HOA the product »' has the same value as on GCA (Fig. 2-9),
and the corresponding parts of the integral along L cancel each other.
Thus, the branch line integrals of the type (2-87) are reduced to the term

I = f"’{ 2% — ki — 2w,  2k* — k} — 2w,
te (2k° — k2)’ — 4k'w,  (2K* — k3)® — 4k’w),

}e"""k dk (2-100)

ka

where » = (k* — k2)} is real positive
v, = Im ' > 0in first quadrant (2-101)
v), = Im »’ < 0 in fourth quadrant

Since ¥, = — ¥, near 04, Eq. (2-100) can be written in the form

ke 2k — kpw'k _
ve (ZK° — k3)* — 16k%%)°

I, = 4k; e dk (2-102)
The product of exp (1wf) and (2-102) can be interpreted as an aggregate of
waves traveling with velocities ranging from « to 8. The more rapid
fluctuations of the factor exp (—¢kx) for increasing z imply diminishing
values of the integral (2-102). The integrals of the type (2-88) cannot be
reduced similarly because the factor » stands alone and the parts from HOA
and GCA no longer cancel. The resultant value of (2-88) is

0 . 2 2z k
— 2 sz + ka =TTy 2 “ v —1kz
I, = 2k,,L TF=iD e "d(—11) + 2k; ) F_L(k) e dk

kg k22,

s k= dk (2-108)

2 —_—
+ 8ks v 2K — B2 — 16k%57°

This expression was given by Lamb [22, p. 17]. In order to obtain expres-
sions which yield more information about the aggregate of waves (2-102),
we return to the two loops L, and L; (Fig. 2-8). For the case w real we
contract these contours but maintain the separation between the loops
and adhere to the convention of values for » and »' on the different banks
of these loops as given in Fig. 2-10. If we put » = », = Im » > 0, Eq.
(2-100), for example, must be replaced by
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f _ fo 2 — ki — 20y, 28— k2 + vy }6_.,? dc
La  doe (207 — KD — 4y, 28 — k) 4+ 48,
2

b f on — K- 2y, 2K — k3 + 2vy, }_.k, "
+ f., {(218 TR —dkyy T @R B Akt bk (27104)

o e -kt 2y, 2 — k2 — W }_,,,
[ = [. {m TR+ Ay, @ SRy = 4yt S

B f o — ki 2y, 2K — K — 2 }_u,
+ f {(Zk2 ~ k?;)2 + 4]0211,1'; (2K — kg)® — 4k™,v, ¢k dk

t f {(2]02 4]02,,,/, T I T k dk  (2-105)

The integral (2—105) can also be written in the form
f f { 20" — kg + vy, 28~ ki — 2w }e-‘“; d
Lpg -1 (2§‘ kﬂ) + 4§ V,V, (2(2 - k§)2 - 4§-2V11':
W [ ok — ki — 2 ok* — k2 — 2w, }_,k, ,
+ fo {(mf TR 4k, @F — R < ara,)e b dk (2-105)

if the convention on radicals » and »' is attended to. On the upper bank
of the loop Ls, which is on the side of the lower bank of L., we have

: Mm»>0 Imy>0

| Rey=0 Rey'=0 Imy=0 Imy'=0
\
o

J_/ Re v>0

4 Re v’ >0
2. E < Along: v (loop &£,) v*(loop £g)
aomogEe e v
OAorcA  yeimyZoLlL eimy G
A4y v=Rey >0 ¥ =im zg E:m!
A;00 y=Re v >0 y=Rey >0

Fia. 2-10. Specification of signs of Im » and Im »’ when loops £, and £ are contracted
for « real.
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b= —v,=v»,=Iny <O0fromO0tok. and # = » = Re v from k, to ks.
Figure 2-10 shows also that on the lower bank of L; from 0 to %k, the
second radical »” has the value »), = —p, = Im »" < 0.

Now, since { = —ir in the first integral in (2-104), it can be written
in the form

® (27 + k?;)v,vj e d
27 + kp)* — 167%)° 4

If in the second integral in (2-104) we substitute u = k, — k, it takes
the form

—4k; (2-106)

ka
ARl f WG W™ du (2-107)
0

where
2. — u)® — k3l (ke — W)
2k, — w)?® — k3]* — 16(k, — w)»)?

It can be easily seen that at a large distance z the integral (2-106) becomes
small because of the factor r exp (—7x) and that the integral (2-107) be-
comes small because of very rapid fluctuations of the exponential factor.
In order to obtain their approximate values, we can make use of the formula

[ #76me ar = 182 6o + IR ER 4 LD EO

(2-109)t
Now, in the case of the integral (2-106), G(0) = 0, and the contribution
of this integral diminishes as z~*?. The integral (2-107), however, yields
a term in z™*2 In order to show this, we note that for large x the pre-

dominant contribution to the integral (2-107) occurs in the vicinity of
the lower limit because of the rapid fluctuations of the last factor.

Gw) = ut (2-108)

tFormula (2-109) can be derived as follows: First we observe that the major con-
tribution to this integral is due. in general, to smaller values of the variable , since for
z # 0 the integrand decreases rapidlv for rz >> 1 because of the exponential factor.
Substituting, therefore,

T’
G(r) = G0) + G'(0) + o G"(0) + ---

we can write

o

f AG(z)er dr = G(0) f erer@t dr 4+ G(0) f e r 61 gy
1] o 0

GII(O)
+ — e~ 2y (113)~1 d o 4 .
1 2 0

Now, according to an integral definition of the gamma funection in Ref. 27, p. 75,
I'(e) o
= f eeret dr
1]

o
and the formula (2-109) is proved.
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We can therefore extend the upper limit to « with negligible error and
distort the path of integration to the imaginary axis. Then we can apply
formula (2-109), noting that

v, = [(ka - u)2 - kaz}% = (_Zkau + u2)} >~ (—2kau)’

for u K k., and
(k2 — k) (—2)%}

G(O) (2’6: — kg)a (2—110)
Thus we obtain
f = Clkaz) ™% + 0@ (2-111)
La
1.372012 _ 1.2\}
where C = —2v/2x 'kﬁcif(——é_z—kk)?)“ exp (—i f;:) (2-112)

In a similar manner, the approximate value of the second branch line
integral (2-105') is

f = D(ksz) %™ + O(z™*?) (2-113)
Lg

where D depends on k, and ks but not on the distance z.
Upon inclusion of the branch line integrals the first expression in Eqs.
(2-99) takes the form

wo =~ exp litwt — )] + 3% (C(ht)! xp lifot — )]

+ Diket) ™ exp lilot — kD)) + -+ (2-114)

Following a similar procedure, we find for the second expression in Egs.
(2-99)

Wy = —1 Q}f—( exp [i(wt — xx)} — 2—(3- {Ci(kx)™F exp [i(wt — k.1)]

+ Di(ks) F exp [iwt — km)l} + -+ (2-115)

where C, and D, are determined for the function ¥ in Eq. (2-88) and do
not depend on the distance x.
The expressions D, C,, and D, are written for reference:

/o | ki .
D= —2V2r I—P-exp(—z%r)
C, = -—1,\/27r k; ok exp( Z) (2-116)

2
—4ivVor (1 ~ k—‘;) exp (—z’ zr-)
ka 4

D,
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According to the formula (2-109), the next terms decrease as z~*?
The second terms in (2-114) and (2-115) represent compressional waves
propagating with velocity & = w/k., and the third terms represent shear
waves propagating with velocity 8 = w/ks. Amplitudes are proportional
to (k.z)"¥ and (ksx)™}, respectively, whereas in an unlimited solid the
amplitudes decrease as z~*. The surface vibrations corresponding to these
waves are rectilinear. Lamb [22] gives for the ratio of vertical to horizontal
amplitudes of the compressional waves (kj — 2k2)/2k,VE; — ka or
0.3535 for A = u. For shear waves the ratio is 2v/1 — kZ2/k2 ki/ks = 2v2/3
1.633 for A =

SURFACE POINT SOURCE. As we have seen in Sec. 24, the factors repre-
sented by the definite integrals with respect to & in the point-source
problem are obtained from the corresponding two-dimensional equations
by performing the operation —d/wdx and substituting z = r cosh wu.
We can therefore use Eqs. (2-96) and (2-97) to obtain the corresponding
expressions (2-70) for a surface point source. Now to obtain the more
important terms, where k.r and kg are large, we also make use of Egs.
(2-114) and (2-115) with the constant € replaced by L. We shall derive,
for example, the first term of w,. Performing the operations just indicated
upon the first term in Eq. (2-115) and integrating with respect to the
variable %, we find

LK i ® —iKr sh
— ke’ f e~ oot v dy
T 0

Using the definition of the Hankel function

Héz)(xr) — & f e—hr cosh u du
Y 1r 0
"we obtain

7'KKL Héz)( ) iwt

Applying the asymptotic expansion for Hy® (see Ref. 56, p. 198)

o o o=+ £+ )

we can write the first term in the form .

"I;L \/; exp [ ( — - Z)] (2-117)

A similar transformation of the first term in Eq. (2-114) leads to
—(#LH /7p) « exp [i(wf — xx)] in which, however, the function

H® () = _%f exp (—ixr cosh u) cosh u du = —[H  (kr)]
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is involved, and it yields the term

.kLH . 2 o o kLH (2 I:( o 1):' .
i, M (xkr) exp (twl) L on \rer exp | fwl — «r 1 (2-118)

Transforming terms due to branch line integrals from Eqgs. (2-114) and
(2-115), we finally obtain for the displacements

- _wLH L ex [i(wt - KT — I)]
% = 1’3 2mxr P 4

M [ exp [i{wt — k. cosh u)]
+ (k,,,r)i ./; (cosh w)!

N f“’ exp [iwt — kg cosh w)]
(eer)* Jo (cosh w)?

du

+ du+ - (2-119)

and

_«KL |1 l:i(t_ __1_r)]
wo == \/%ﬂexp wt — k1 — 7

M, * exp [i(wt — k.r cosh u)]
+ ot | (cosh )t

N, 7 exp [i{wt — kgr cosh u)]
+ (kgr)} j; (cosh w)}

where the factors M, M,, N, N, can be readily expressed in terms of
L, u, C, C,, D, and D, by Eqgs. (2-112) and (2-116). These expressions
hold only for large k,r and kgr.

The first terms of Egs. (2-119) and (2-120) again represent Rayleigh
waves having retrograde elliptical vibrations with the same ratio of hori-
zontal to vertical axes as in the solutions for a line source. In this case,
however, the amplitudes diminish with distance as ()} the familiar
law for divergence for annular waves. The remaining terms again repre-
sent shear and compressional waves with amplitudes diminishing at least as

du

du4 .-+ (2-120)

1 * exp (—1ikgr cosh u) 1 ” exp (—ik,r cosh )
(k,,r)‘ [0 w(cosh u)" du (k.r)} fo 7(cosh )" du

respectively, where n = % for ¢, and n = § for w,. The functions of kgr
and k,r represented by second factors in these expressions are integrals
of the type considered in Appendix A. This may be easily seen by putting
in Eq. (A-1) = kgr or k,7. Then Eq. (A-13) shows that such an integral
can be approximated by an expression with a factor |z|7}, that is, |ker|™?
or |k,r|™} which can be combined with the first factors, namely, (ksr)™?
and (k,r)"%. At large distances these reduce to (k)™ and (k.r)”? and
the Rayleigh waves predominate. The amplitude decrease of r~2 is also
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more rapid than is the case for elastic waves diverging from a point in
an unlimited medium.

INTERNAL LINE SOURCE. A detailed discussion was given by Lapwood
[25] for integrals of the type (2-47). Another method for evaluation of
these integrals was used by Sakai [41] and recently discussed by Honda and
Nakamura [12]. Following Lapwood, we note first that the integrals
(2-47) have the form

I,

I

l ® ikz !-_ ® —tkx -
> fo G(Re"™ dk + 3 fo Gkye* dk (2-121)

]. b Tkx _1_ ® ~tkz .
L= [ rewede~ o [ @ d @12

where G(k) is an even-valued function of k.
Following the procedure given in Sec. 2-5 for w complex, we distort
the path of the first integrals in Egs. (2-121) and (2-122) into the contour

Va

Fi. 2-11. Integration path in the complex ¢ plane for internal line source.

shown in the first quadrant of Fig. 2-11, which includes the positive
imaginary axis and the infinite arc. The path of the second integral is
distorted into the contour, shown in the fourth quadrant, containing
the negative imaginary axis, the loops L, and L around the cuts, and a



HOMOGENEQUS AND ISOTROPIC HALF SPACE 57

small circle around each pole. The use of similar contours for the evaluation
of integrals like (2-121) and (2-122), which also occur in the theory of
electromagnetic waves, was suggested by Sommerfeld (see Chap. 1,
Ref. 55). Since the contributions from the infinite arcs are zero, we have

—f®

._..1. ' ifz l —-ifz
L=5[ eweva+5[ et

+3 G(®e ~* df — 2ri 3" Res
Lerlo (2-123)

—im

—_]; = iz l —ilx
L=g[ 0@ d+g [ 0@ &
1

21 La L

+ ¢G(De* df — 2xi > Res
8

The integrals along the imaginary axis cancel, provided that the positive
and negative parts of this axis are located on a sheet where no change is
required in the definition of some factor in the expression G() (such as
v = +Vk® — k2 in cases considered before) which would affect the
integrands, Then

1

L =5 G(He ™ df — 27 Y Res
La.Lo (2-124)
1, = 21 (GO df — 270 3" Res
1 La.Lg

where L, and L, indicate that the path consists of loops lying indefinitely
close to the two cuts connecting —ze with k. and k;, respectively. Now,
on substituting { = k& — ir, 7 > 0, it is easy to see that the major con-
tribution to the integrals comes from the neighborhood of the branch
points, since the modulus of exp (—¢x) decreases rapidly as { moves away
from these points. This fact suggests that, to a first approximation valid
for large distances, factors such as exp [tw(t — z/a)] and exp [{w(t — z/8)]
will result from the integration along L, and Lg, respectively, and that we
may associate with these loops waves which have traveled most of the
distance from source to detector as compressional and shear waves. From
the type of potential we surmise the velocity of the wave near the detector.
For example, for a compressional source we would have the potentials
w2 and ¢ and for a shear source, ,» and . Integrals such as (2-124) will
lead to wave types which can be discussed as follows for the loop L,:

1. ,e. Is a wave beginning and ending as a P wave, having traveled
with velocity «. This would represent a contribution to the reflected P
wave (PP in seismological nomenclature).

2. . starts as a P wave, ends as a shear wave, and traverses most of
the path with velocity e. This is the reflected wave PS.
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3. . starts and ends as an S wave and travels most of the way with
velocity a. This is the surface-generated wave denoted by sPs.

4. .. starts as S, ends as P, travels as P along most of the path. This
is the reflected wave SP.

These four waves are depicted in Figs. 2-12 and 2-13. They travel
minimum time paths and are predictable from the rules of geometric optics.

y;
é?Sp//

| /7 Recorder

*
Source

Fig. 2-12. Waves from a P source near a free surface.

o
Recorder

F1G. 2-13. Waves from an 8V source near a free surface.

Contributions from the loop L, represent waves traveling over most of
the path with velocity 8:

5. ,pp is a wave which starts and ends as P and travels most of the
path as S. It represents the surface-generated wave pSp.

6. .¥s starts as P, finishes as S, and travels primarily as S. This wave
apparently is reflected near the source and will be called pJS.

7. ,p is analogous to 6 in that it starts as S, ends as P, and travels
most of the way as S. This wave appears to be reflected near the detector
and will be called sP.

8. .¥s obviously represents the reflected S wave denoted by SS.

These waves are also illustrated in Figs. 2-12 and 2-13. The first three
types of the L, group do not satisfy a minimum time condition; hence
they are not represented by the laws of geometric optics.

The contribution from the pole « contains the factor exp [{w(f — z/cz)]
which readily identifies it as the Rayleigh wave discussed earlier. It occurs
for both P and S sources,
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Application of the Method of Steepest Descent. This method (see Appen:
dix A) has been frequently applied to the evaluations of integrals of the
type Egs. (2-47). It provides more information about the disturbances at
short ranges. Replacing sin kz in Eqgs. (2—47), for example, by exponential
functions, extending the integration from — « to «, and restoring the
time factor, let us consider the integral

¢ = —41i exp (iwt) f L(2—F(§_)—a exp (—~vh — vz — itx) dt (2-125)

Referring to Eq. (A-1) we put

@) = 2Tt =g tie (2-126)

The line of steepest descent is given by o(k, 7) = const. Writing ¢ = ku,
we can examine the variation of o for real . In the range 0 < u < 1, with
w=28—1¢ (s> 0,¢c> 0), we have

—a—~[u+ \/‘—+5\/B ] (2-127)

The function —¢ has a maximum -—g¢, at the saddle point ¢, given by
af)/d¢ = 0, or
huo Uy

V1 —u§+ Ve /8 — up

From (2-128) we see that a saddle point exists for u, real. It depends
on h, 2z, and z and lies in the range 0 < u, < 1, that is, on the line between
the origin and k.. The contribution of the saddle point is obtainable
from Eq. (A~13). It contains the factor

exp [w< L \/_ :):l (2-129)

where u, is given by (2-128). Substituting 4, = cos & in (2-128) and
(2-129), we can easily verify that these equations define the phase PS
depicted in Fig. 2-14 and that § is the angle of incidence of the P wave
at the free surface.

T = (2-128)

< x - Free surface

th

F1c. 2-14. PS phase from a P source near a free surface.
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To illustrate another application of the method of steepest descent
we shall follow Newlands [32] and derive an expression for the minimum
distance at which the Rayleigh wave appears. The path of steepest descent
recuts the line of branch points at or before a point where —o > —o,, or

1 su—~c—h1\/u2—1--c-é uz——a—:
a x x
[u., +- V1 —u + = \/ 3] (2-130)

If this occurs for any value of w, it must occur when ¢ = 0, or

2
ou = Tup 4+ M V1 — w2 + 24/% — 0 (2-131)

=

If the intersection occurs to the left of the pole, then the contribution of
the pole must be considered when the path of integration is distorted from
the real axis to that of steepest descent. This occurs when a/cx > u. It
follows that the Rayleigh pulse appears when

At the free surface z = 0 Egs. (2-132) and (2—128) reduce to the condition

cgh
> — 2-133
T P ( )

a result first derived by Nakano (see Ref. 28 and Sec. 2-7).

If we introduce the angle 8 = sin™' (cz/a), Eq. (2-133) takes the form
x > h tan 8. Equation (2-133) has usually been interpreted to mean that
the Rayleigh wave does not exist in the interval EP (Fig. 2-15). From
Eq. (2-133) it may be concluded that the travel times are identical,
whether one considers the Rayleigh waves to be excited by arrival of

t
E -—cf-—> P
h
A
9
0

Fig. 2-15. Interpretation of the minimum distance at which the Rayleigh wave
appears.
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compressional waves at P or excited instantaneously at E. The advantage
of the latter point of view is apparent if one considers that the disturbance
at O has both shear and compressional components The travel-time curve
of Rayleigh waves is such that extrapolation to zero time gives zero distance
from E.

2-6. Generalization for an Arbitrary Time Variation. The steady-state
solutions considered in preceding sections are characterized by a time
factor of the form exp 2wt and represent a primary disturbance varying
as a simple harmonie function of the time. For the discussion of different
phenomena these solutions can be generalized for an arbitrary law of time
variation. The effect of a single impulse of short duration is particularly
important. For such generalizations the Fourier transform has been used
in most cases. Jeffreys [16] suggested the use of a “pulse” represented by
a simple Heaviside unit function H(t) changing from zero for ¢ < 0 to 1
for ¢t > 0.

In most problems which we shall consider, the solutions are constructed
from potentials G.e*’, @.e'°*, Ye"“!, where &,(r, 2, w) corresponds to the
direct compressional wave, @, and le correspond to waves in the first
medium resulting from the presence of boundaries, and &,, . represent
waves transmitted in the second medium, ete. In Eq. (1-40) or (1-41)
the angular frequency appears in the exponent only but we can assume
that the coefficient A in the former expression is a function of w. If we
put A = G(w), each of the terms in a solution is found to vary with this
parameter and with time as f,(r, z, w)G(w)e’”*. In many cases the functions
f. are products of the form f(w)F(r, 2). For example, the first terms in
Egs. (2-119) and (2-120) are of the form

F(r,2)o* exp [i‘*’(t . E&)]

since k = w/cp. If weput ¢, = ¢ — r/cp,ort, =t — r/a,ort — r/B, we
1 1wis

shall see that such terms as F(r, 2)o" e occur frequently.
Now define a function S,(f) giving the time variation. Then, by the
Fourier integral theorem, we can put

1 ” twi .
Si(t) = -\—/2*——‘"_ j‘-—u gw)e' ! do (2-134)
where the transform g(w) is given by
_ 1 - PRI g
06 = 7= [ st at (2-135)

If we put
G(w)¢0(0) hy w) = g("’) (2—136)
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terms such as

# " G F(, D6 da @137

arise by superposition. They represent the waves generated at the bound-
aries.

Among different functions representing the time variation at the source
considered by Lamb [22, pp. 26 and 37] we now choose a pulse defined by
(Fig. 2-16)

(2-138)

Time

Fi1a. 2-16. Assumed initial time variation at the source.

where p and L are arbitrary real and positive constants. The Fourier
transform of (2-138) can readily be obtained from (2-135) by contour
integration in the upper (for w < 0) or lower half plane (for w > 0) of
the complex variable { (Fig. 2-17). The integral along the infinite half
circle will vanish because of the factor exp (—iwi).

The residues at the poles Fip yield

glw) = g L™ w20
Then expression (2-137) for f(w) = «"", for example, takes the form
%E f @" exp (Fup + twt,) do forw 2 0 (2-139)

which converges, provided that n > 0. This integral can be evaluated
using Euler’s formula,

f e DNt do = TG + 7 one (2-140)
0

w
s
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where tan v = ¢, /p (see, for example, Ref. 57, p. 260). We obtain for (2-139)
LF(T 2) T()(p° + t5)*{exp (inv) — exp [—in(v + W]}  (2-141)

For n < 0 the integral (2-139) diverges but certain information concerning
the movements may be obtained by working with velocities § and . The
differentiation with respect to ¢ can be performed in convergent integrals

of the form (2-139).

Fia. 2-17. Integration paths in the complex { plane for

Instead of (2-134) and (2-135), Lamb considered a real form of the
Fourier transform and a related function, i.e., the equations

S = 1 f " do [ m Si(1) cosw(t — £) di (2-142)

8, =1 f deo Sz(t) sino(t — £) df (2-143)
where the summation is for pos1t1ve w only. If we therefore make use of

the exponential form of (2-140) to generalize the terms in Eqgs. (2-119)
and (2-120) which represent Rayleigh waves, we obtain

F=—z£ exp(—iz) or E‘} 1 exp(—'ilr)
[ 21rrcE 4 4 N2mreg 4

n=g P(g—’)=%\/; cos v =

(2144

y !
VD + i
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Qo = _ AL cos? v sin (T 3 4+
b= —5 iy T .2, cee
w, = KL cos? v co (I_§)+.

0 = 2uCreg)ip C® VO \g T oY "

Following a similar procedure, using the transformation indicated in
(2-139) and (2-141), we can generalize the other terms in (2-119) and
(2-120) (see Ref. 25).

In Figs. 2-16 and 2-18 are plotted the initial pulse S(f) and the hori-

% (\
%_‘—___:.-—":——-—__'_-: L

Wo

v L——R—:ﬂ---—-

Fie. 2-18. Ground motion, according to Lamb, from a distant impulse. Upper curve
is horizontal motion. lower curve is vertical motion.

zontal and vertical surface displacements g, and w, corresponding to the
passage of the Rayleigh waves at a distant point. The surface particle
velocities corresponding to passage of the preliminary compressional and
shear waves are plotted in Fig. 2-19.

2-7. Other Investigations. The propagation of a disturbance in a half
space, sometimes called Lamb’s problem, was also investigated under
different conditions by Nakano [28, 29], Sobolev [48], Naryskina [30, 31],
Hallen [11], Schermann [44], and as a limiting case in several papers dealing
with propagation in two semi-infinite media. This last problem is considered
in the next chapter.

In the first of the papers quoted above, Nakano assumed a line source

#In the derivation of Egs. (2-145), note that K is an odd function in « and that
K 20asRew 2 0.
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in the interior of a solid half space producing (1) a longitudinal cylindrical
wave and (2) a transverse cylindrical wave. A point source of distortional
waves was considered by Sakai [41]. Following Lamb’s method, Nakano
[28] used contour integration in a complex plane in order to evaluate the
displacements at the free surface. Debye’s method of the steepest descent

(@) (©
®) @
<— 10 pu sec —>»
(a) Displacement (c) Velocity
(b) Displacementx 10 (d) Velocityx 30
Source 49 cm, Receiver

il

Fra. 2-19. Tatel’s model seismograms showing vertical surface motion from a distant
surface point impulse. (a) Displacement; (b) displacement times 10; (¢) velocity; (d)
velocity times 30.

(see Appendix A) was applied in the physical interpretation of the special
paths required for this case. Nakano showed that the Rayleigh waves do
not appear at places near the sources, i.e., where the epicentral distance
is smaller than (1)

Crh
Vo - ci
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or (2) %
— Cr

I

where A depth of source
cr = velocity of Rayleigh waves

Moreover, it was proved that these waves do not have their full amplitude
near these limit distances. This fact is due to interferences with other
kinds of waves. At large distances from the epicenter the Rayleigh waves
appear at about the time required to traverse these distances with velocity
cx. This part of Nakano’s investigation was developed in order to explain
the difficulties in their identification on seismograms at a station whose
epicentral distance is not great compared with the depth of the source.
The results obtained for simple harmonic waves were also extended to a
more general case where the action at the source may be any function of
time.

It was also pointed out by Nakano [28, p. 268] that it is possible to
resolve a displacement into longitudinal, transverse, and Rayleigh waves
under the assumption of a simple harmonic train but these components
cannot be separated in the rigorous sense. To simplify the problem, it is
assumed, however, that such separation is possible. This separation is
“somewhat arbitrary’’ (see Ref. 28, p. 274), since on taking different
paths when computing the integrals we can obtain different interpreta-
tions. However, the interpretation given before seems to be 2 natural one.
In an unlimited homogeneous and isotropic solid there are only compres-
sional and distortional waves but in the case of a half space the Rayleigh
wave is produced from body waves of either type when a curved wave
front reaches the free surface.

Nakano [29] also considered normal and tangential forces distributed
at the surface in an arbitrary way, paying special attention to periodic
forces and displacements repeated in n sectors. Then, besides compressional,
transverse, and Rayleigh waves, there is a displacement component of a
different nature. This wave propagates with the velocity of transverse
waves and is the only wave present in case of a transverse force distributed
symmetrically about a vertical axis.

Sobolev [48, 49] applied a new method to the solution of Lamb’s problem.
His solution coincides with that of Lamb in that longitudinal, shear, and
Rayleigh waves are found. Wave-front diagrams are given for these waves.

Sobolev [49] also gave the solution of the two-dimensional problem for
arbitrary initial conditions and external forces acting on the boundary
of a half space. Following his method, Narygkina [30] found the solution
of the three-dimensional problem of propagation of oscillations in a half
space when there are arbitrary initial conditions given and no external
forces. Nonvanishing external forces were later considered by Sobolev as
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well as by Schermann [44] in a three-dimensional problem. Hallen [11]
also gave a solution of the two-dimensional problem for arbitrary external
forces. Schermann’s solution is based on the Cauchy-Fourier method, and
the expressions for potentials are assumed in the form mentioned at the
end of Sec. 1-6.

The two-dimensional problem was recently discussed by Sauter [42, 43]
for surface normal and shear stresses which depend on the coordinates
z and ¢.

The method of Smirnov and Sobolev [47] was generalized by Petrashen
[37a, 37b]. Fourier integrals and a special contour in the complex plane are
used, and the Rayleigh waves in the solution are separated from terms
representing longitudinal and transverse waves. Petrashen applied this
method also to the problem of wave propagation in a layer overlying a
semi-infinite solid. Some particular cases of the problem of vibrations due
to given displacements at the boundary of an elastic half space were
treated by Shatashvili [45, 46]. On applying Schermann’s method [44] he
reduced the problem to a system of integral equations of the Fredholm
type.

Assuming a pressure pulse varying like the Heaviside function, Pekeris
(36] recalculated the solution of Lamb’s problem for a surface source and
a buried source. The vertical component could be obtained in a closed
form, while the horizontal component was expressed in terms of elliptic
integrals. In this solution the arrival of the shear wave is marked by a
change in slope of the displacements. Both components become infinite,
however, at the time of arrival of the Rayleigh wave.

2-8. Traveling Disturbance. In the investigations discussed in the pre-
ceding paragraphs, the sources were assumed to have fixed positions with
respect to the half space, and the boundary conditions were usually taken
to be independent of time. Lamb [23] has also considered the case of an
impulsive disturbance traveling with a constant velocity ¢, in a fixed
direction, say, the direction of = negative. The effect of a traveling disturb-
ance can be obtained by the application of a succession of infinitesimal
impulses at equal time intervals. Each impulse produces a system of waves
which may be represented by an equation having a form similar to (2-42).
Assuming in this two-dimensional problem that a concentrated force acts
at the origin, we can write

wy = 5& f " AR exp [iwt — k)] dk

+ 2%.— f: A(k) exp [i(wt ¥ ka)y dk  (2-146)

Since these integrals may become indeterminate, Lamb introduces a
factor exp (—vt) which represents the effect of a slight dissipative action.
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The final results are the limits approached when the coefficient of absorp-
tion v goes to zero. We take the origin of = at the position of the traveling
disturbance at ¢ = 0. The result of an impulse delivered at an earlier time
t’ can be given by (2-1406), if z is replaced by ¢it’ — z, and Eq. (2-146) is
multiplied by di’. Integrating from ¢ = 0 to {’ = o to obtain the effect
of a traveling impulse, Eq. (2-146) takes the form

Wo = = { A(k) exp [iwt’ — tk(cet! — x) — vyt'] dk

+ fo " A exp fiwt + kot — 2) — 7] dk} d  (2-147)

of wo = 1 r° ARe™ dk 1 r° A(k?e""‘ dk
2 Jo v — i(w — keo) 2r Jo v — (o + keo)
In these expressions, w is not assumed to be equal to kc, but, ¥ being
very small, the most important part of the first integral will be due to
the root « of the equation

(2-148)

w = kco (2-149)

that is, for those waves whose phase velocity ¢ = w/k equals the velocity ¢,
of the traveling impulse.
Writing k = « + k, and taking the first term of the expansion,

)
W — ch = <dk CO)kl = (U e co)le
where o = w(k)
U = group velocity
we obtain the most important part of the first integral in (2-148) in the form
_ 1 we [ e dk, .
wo = 5 AW [ =G @150

The extension of the limits of k, to &= = will make little difference to the
value of w,, in Eq. (2-150).
Since this integral can be evaluated as

f e +d'm _ Zae™ o f e —d'm _0 forz >0 (2-151)
—e @I TG T g forz <0
we have, if U < ¢,
wo=cA() exp(zxx)exp( ‘TU) forz >0
o Co (2-152)
w, =0 forx <0

{The next term is 3k} dU /dk.
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If U > ¢,
wo =0 forz > 0 (2-153)
wy, = Uiiico exp (ixx) exp (ny Co> forz <0
For y = 0, the second factor is unity, and
AWe” or w=20 (2-154)

Yo = e — U

This is Lamb’s result representing a wave train which follows the
traveling disturbance, depending on whether the group velocity is less or
greater than the phase velocity. Gravity waves in water illustrate the
former, capillary waves the latter. Lamb has also shown how the procedure
must be modified if the root of (2-149) also makes U = ¢,. The result is
in this case

Al KT+ ¥ 2

Wy = im exp [z( 4>:| forz 2

An application of the formula (2-154) is made to the problem of air-coupled
surface waves in Chaps. 4 and 5. The case U = ¢ occurs if ¢ is equal to
Kelvin’s minimum wave velocity, when gravity and capillarity both are
taken into account.

Equations (2-154) can be successfully applied to the calculations of
wave resistance and to the phenomenon of “dead water.” In the latter
problem the waves in two superposed liquids are considered (a layer of
finite depth on a semi-infinite liquid). In a second paper on the subject
Lamb [24] considered the waves generated by a traveling point source.

2-9, Experimental Study of Lamb’s Problem. The theoretical studies of
Stokes [52] and Rayleigh [39] showed that compressional waves and shear
waves may be propagated through a homogeneous, isotropic solid body
and that surface waves may be propagated along a free surface of such a
body. The first systematic seismographic recordings from distant earth-
quakes were made in 1889 by von Rebeur-Paschwitz but it was not until
1900 that Oldham [34} recognized the threefold character of the disturb-
ance produced by a distant earthquake and the fact that these three parts
correspond to the compressional, shear, and Rayleigh waves predicted
theoretically.

Lamb’s [22] often neglected solution for the disturbances in a semi-
infinite elastic solid resulting from an impulsive disturbance in a limited
region is one of the most important papers in the literature of wave propa-
gation. Lamb’s calculation (Fig. 2-18) accounted for many of the principal
features of seismograms from distant earthquakes for a source not unlike

0 (2-155)
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that at the focus of an earthquake. Actual seismograms are considerably
more complicated than the idealized one computed by Lamb but it is
gradually being shown that most of the complications result from the fact
that the earth is a sphere and is layered. For example, the presence of large
transverse motions in the early part of surface-wave trains and also the
long duration and oscillatory character of these trains were so much at
variance with the results of the Rayleigh-Lamb theory that there were
persistent doubts about the applicability of the calculation. Love [26]
showed how both of these features resulted from the layering in the earth,
which affects surface waves far more strongly than it does body waves. In
fact, for experimental verification of the Rayleigh-Lamb theory of surface
waves in a homogeneous semi-infinite medium, it is necessary to go to
model experiments.

Northwood and Anderson [33], Kaufman and Roever [19], Knopoff [21],
Oliver, Press, and Ewing [35}, Tatel [53], and others performed experiments
on models, using ultrasonic-pulse techniques. These investigators conclude
that the theory of Lamb adequately explains their experimental results.

In the model study of Lamb’s problem a pressure pulse is applied at a
point on the surface or in the interior of an elastic “half space.” Actually, the
model consists of a block or slab of steel, limestone, or concrete of sufficiently
large dimensions to be considered a half space for the distances involved.
The pressure pulse is generated either by a spark or by brief voltage pulses
applied to a small piezoelectric transducer. Motion generated by the impulse
is detected by small piezoelectric transducers, amplified and displayed on a
cathode-ray oscilloscope whose sweep is triggered by the initial pulse.

In Fig. 2-18 is presented Lamb’s calculation of the horizontal and
vertical ground motion from a distant point impulse applied normal to
the surface. Figure 2-19 is Tatel’s model seismogram taken with trans-
mitter and vertical-component detector spaced 5 cm apart on the surface
of a large block of steel. Trace (a) is the vertical displacement, trace (b)
is the same with amplification increased by a factor of 10, trace (c¢) is the
vertical velocity of surface particles, and trace (d) is this function amplified
30 times. It is seen that the essential details of traces (a) and (b) agree
with Lamb’s theoretical description.
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CHAPTER 3

TWO SEMI-INFINITE MEDIA IN CONTACT

It is a well-established fact that a disturbance of any kind propagating
in one medium and impinging upon an interface gives rise, in general, to
reflected and refracted waves. We shall see in this chapter under what
conditions additional disturbances may arise.

3-1. Reflection and Refraction of Plane Waves at an Interface. In this
section we shall discuss several problems concerning the propagation of
disturbances in two semi-infinite elastic media in contact at a plane
interface. However, before considering this problem in all details, an
elementary discussion of reflection and refraction of plane elastic waves
will be given.

Knott [22] seems to have been the first to derive the general equations
for reflection and refraction at plane boundaries. His work was elaborated
by other investigators, and in this section we shall make use of Jeffreys’
{19, 20] treatment.

Both liquids and solids will be taken into account. In the case of the
earth we are concerned with the interfaces between the atmosphere and
the land or water, between the water and the ocean bottom, and between
the different rock layers. We have seen in Sec. 2-1 that the problem of
propagation is essentially simplified by the assumption that all functions
involved are independent of one coordinate, say y, whose axis lies in the
interface. We can then discuss two separate groups of displacements, one
represented by u and w, and the other only by », this displacement being -
parallel to the y axis.

Rigid Boundary. Under a simple assumption a first approximation
may be made, which can be applied only in a few cases. Assume that the
common boundary between two media is a plane and that the physical
properties and conditions are such that waves impinging on the boundary
from one medium produce no motion of the boundary. No disturbance is
transmitted to the second medium.

We represent the disturbances produced by a plane P wave incident
on the interface from below by the equations obtained from (2-7):

¢ = A, exp [tk(ct — z + a2)] + A, exp [ik(ct ~ z — a2)]
¥ = B, exp [ik(ct — z — ba)]
74
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where ¢ = tane

b=tanf
The directions of waves corresponding to these terms at any point of the
interface are depicted in Fig. 3-1. Then, from the condition ¥ = 0, w = 0
at z = 0 we obtain, using (2-1),

A, _ 4, B
b+1_ab—1_ 2 3-2)
¢ ¢ x
]
P-wave

Aj-ampl. P-wave
2 Azampl.

/ SV-wave

B,-ampl.

F1a. 3-1. Reflection of P waves at a rigid boundary.

A reflected distortional wave represented by the function ¢ exists always,
except for grazing and normal incidence, since ¢ — 0, ¢ — 0, and B, — 0
in the first case, B,/A, — 0 in the second. There is no reflected P wave if

ab=tanetanf =1 (3-3)

If we use the definitions of tan ¢ and tan f given in Sec. 2-1 and Eq. (2-9)
for the case A = p, this condition becomes

(Btan’e — D(tan’ ¢ + 1) = 0 (3-3)
If we take an incident SV wave (Fig. 3-2), Eqs. (2-7) take the form
o = A, exp [ik(ct — z — a2)]
¥ = B, exp [tk(ct — z + b2)] + B, exp [ik{ct — =z — b2)]

34

RY

f Fle
P-wave
Ayampl,
SV-wave SV-wave
By-ampl. Yz B,-ampl.

F1a. 3-2. Reflection of SV waves at a rigid boundary.
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and the condition of vanishing displacements at z = 0 (Egs. 2-1) leads to

B1 _ Bg __é
ab4+1 ab—-1  2b

(3-5)

General Equations. Any incident wave at the interface of two elastic-
solid bodies will, in general, produce compressional and distortional
waves in both media. Four boundary conditions must be satisfied, requiring
continuity of the two components of displacement u, w and the two stresses
D.., P.. across the interface. Indicating by the subscript 1 and 2 quantities
referring to incident and reflected waves, respectively, and by accents
quantities referring to transmitted waves, we have, in general,

¢ = A, exp [ik(ct — z + a2)] + A, exp [ik(ct — z — az)]  (3-6)
¥ = B, exp [ik(ct — x + bz)] + B, exp [tk(ct — x — b2)] 3-7)
¢ = A" exp [tk(ct — z + a'2)] ¢’ = B’ exp [th(ct — x + b'2)] (3-8)

wherea = tane

b =tanf
a’ = tan ¢’
b = tan §

and e, f, ¢, { are defined in Figs. 3-3 and 34.
Since we assume that the boundary conditions at the interface z = 0
are independent of z and ¢, the coefficients ¢ and k must be the same in

SV(B)
P(A")
r "’
e .
e ¢ *
f
P4, Py
2
1?2 swsy
\

Fia. 3-3. Reflection of P waves at an interface between two elastic solids.
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the solutions (3-6), (3-7), and (3-8). The elementary laws of reflection
and refraction immediately follow, as in Sec. 2-1, from the fact that these
expressions satisfy appropriate wave equations, and we have

_a _ B o _F .
€= Gose cosf cose cosf (3-9)

SV(B)

PA")

2 .

. 3

{ f

SV(B,) Plda)

' Ve SV(B,)

F1a. 3-4. Reflection of SV waves at an interface between two elastic solids.

These conditions imply that for real ¢, f, ¢/, { the velocity ¢ must be greater
than «, 8, o/, and g’
Using the methods of Sec. 2-1, we may write

2
a=\/(%—1 e>a b=
’ ¢ ’ ’ ¢ ’
a = ;‘2‘—1 c>a b = Bﬁ—l e>B (3—10)

a’=—i1/1—£— c<e b'=—i\/1—£— e<p
alz 612

It will be recalled that when any of the coefficients defined in (3—10) are
imaginary, complex reflection coefficients will occur, indicating phase
changes.

If the displacements and stresses are taken in the form (2-1) and (2-8),
the four boundary conditions require ¥ = v/, w = w’, p,, = Dl,, Pez = Dls
at z = 0, or

-1 e>p

A+ A, + 4B, — B)) = A’ + VB’ (3-11)
o(A: — 4)) — Bi + B) = d’A’ - B (3-12)
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B’ {— (" — D(A, + 4,) + 2b(B, — B,)}
= p'B"*{—(b"* — 1)A’ + 2b'B’} (3-13)
08’{2a(A, — A;) + (" — 1)(B, + B.)}
= p’8"”{2a’A’ + (b"* — 1)B’} (3-14)
By (1-23), u = p8°, and (3-13) is obtained after a transformation in which
use is made of conditions (3-10). An incident wave of a single type usually
occurs so that either A, = 0 or B, = 0, and the four amplitude coefficients
may be expressed in terms of the amplitude of the incident wave.
To examine the case where the medium z > 0 is liquid, let 8 — 0 and
note that b — « in such a manner that 8°b* — o® sec’ ¢ = ¢*, §°b — 0,
and B, = B, = 0. Slippage occurs at the interface, Eq. (3—-11) becomes

extraneous, and the corresponding tangential stress in (3-14) is zero.
Liquid-Liquid Interface. For this case Eqs. (3-12) and (3-13) lead to

A, — A, = % A’ (3-15)
A+ A, = % A’ (3-16)

These equations can be derived directly from the boundary conditions for
liquids, using (3-6), the first equations (3-8), (3—-13), and (1-18). From
(8-15) and (3-16) we find the reflection and transmission coefficients

As _o/o—dfa _ p/o = VT — 1V — 1

A pl/p + a//a - p,/p + _\/Cz/a/z — 1/'\/62/012 =1 (3“17)
Al _ 2 _ 2 )
LSt d gt Ve - Uvae =1 %

where ¢ = a sec e = «' sec ¢’. We have by (3-9)

n being the refraction index. For normal incidence, ¢ = 7/2, ¢ = o,
and we have

A, _pfp—afdd A 2 _
A, pptald A b /p+ afd (3-19)
For grazing incidence, ¢ = 0, ¢ = a, and
4 _ _, A _ _
4 - 1 i 0 (3-20)

The reflected wave vanishes when p’ tan ¢ = p4/sec’ e-a’/a’* — 1, and
the reflection coefficient becomes unity when ¢ = o’ or cos ¢ = a/a’ and
¢ = 0.
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For the case o' > ¢ > a, (3—-17) becomes
Ay pp+ iV = /NVE e — 1

= = e —
A, p'/p — 1’,\/1 — 02/0(,2/’\/62/(!2 ~1 (3 21)
_ o 1 _ 02/a,2 7: g
Wl_lere tan e = p——_———" \/?/Txrj 0<e< 2 (322

The effect of the phase shift is to increase the time factor from £ to £ + 2¢/w,
regardless of choice of axes and direction of propagation. It follows from
(3-9) and (3-22) that e is real and, therefore, total reflection occurs without
change in amplitude and with a phase change of 2¢. The refracted wave
for this case is given by the first expression in Eqs. (3-8), with a’ (hence ¢')
imaginary. The factor representing the phase of the refracted wave can
be written in the form

exp [ik{ct — x)] exp (=kV'1 — ¢*/a’® |2)) (3—23)
For ¢ £ o no disturbance is transmitted in the interior of the second
medium, since by (3-9) ¢’ is imaginary or zero. Nevertheless, for ¢ < o/,
the formulas represent a disturbance in the second medium which, accord-
ing to the first factor in (3-23), propagates along the interface, decreasing
exponentially with the distance from it. It can be seen from (3-22) and
(3-9) that 2¢ varies from 0 to = as e goes from the critical value, i.e., from
e,, = cos ' (a/a’) to 0. A plot of reflection coefficients for normal incidence
given by Eqs. (3-19) appears in Fig. 3-5. The phase change 2¢ is plotted
as a function of angle of incidence in Fig. 3-6.

Liquid-Solid Interface. Following a similar procedure, we may derive
for this case the reflection and transmission coefficients for an incident
compressional wave in the liquid medium. In addition to the waves dis-
cussed in the preceding section, a transmitted shear wave occurs. One finds

A, —pa’c’/B” + p'al(c’/B”* — 2)" 4 4a’b']

- Al = palc-a/ﬂ/z + “la[(CQ/ﬂIZ - 2)2 + 4a/b/] (3_24:)
A 2pac’(c’/B” ~ 2) _
Al - palct/Bl2 + ”Ia[(CZ/BIZ _ 2)2 + 4:albI] (3 25)
B’ 4paa’c (3-26)

AT T pd’c/B” + Wal(@*/87 ~ 2 + 4d’V]
For the case a« < 8 < ¢ < o, @' is negative imaginary, and ¢’ decreases
exponentially with distance from the interface. The reflected compressional
wave undergoes a phase change as does the transmitted shear wave. For
thecase a < ¢ < B < o [1/2 > ¢ > cos™* (a/8’)] total reflection occurs
in the liquid, the attendant phase change being given by 2¢, where

_ eV — 1[( __c_’.)” _ \/ _ i\[_i_l ~
cot € = pcA’\/,ITc%—lE 2 512 441 alz 1 BIZ (3 27)
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F1c. 3-5. Reflection coefficient for normal incidence on interface between two liquid layers.
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Fic. 3-6. Phase change 2¢ for various angles of incidence.

Both @’ and b’ are imaginary in Egs. (3-8), and ¢’ and ¢’ decrease exponen-
tially with distance from the interface.

FErgin [10] has computed the square roots of the energy ratios &, ¢,
and 7y’ for reflected P, transmitted P, and transmitted S, respectively,

where _
SR vy R ra Ty
2 Al ptane A.l Kl pta.ne Ai

and 1l=g+§" 41"

He studied the following three cases:

Case o' /8 o [a o'/o
1 1.6 3.0 3.0
2 1.7 3.0 3.0
3 1.8 3.0 3.0

His curves for a P wave in the water incident on the solid are shown in
Figs. 3-7 and 3-8. For a P or SV wave in the solid incident on the liquid
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F1a. 3-7. (a) Square root of the energy ratio for the reflected P wave. (b) Square root
of the energy ratio for the refracted P wave for a P wave incident in water against a

solid. (After Ergin.)
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F1a. 3-8. Square root of the energy ratio for the refracted SV wave for a P wave incident
in water against a solid. (After Ergin.)
82
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the corresponding quantities for reflected P, reflected SV, and transmitted
P are plotted in Figs. 3-9 to 3-14 with a/a’ = 0.2, p/p’ = 0.3, and a'/p’ =
1.6, 1.7, 1.75 in Figs. 3-12 to 3-14.
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Fra. 3-9. Square root of the energy ratio for the reflected P wave for a P wave incident
in a solid against water. (After Ergin.)

Two other sets of reflection and refraction coefficients for the case of a
liquid-solid interface can be derived for an incident compressional or
distortional wave in the solid.

Solid-Solid Interface. We note first that Eqs. (3-11), (3-12), (3-13),
and (3-14) form two separate groups, with unknowns 4, + 4, = §,
B, — B, = D’ in the first and 4, — A, = D, B, + B, = 8§ in the second
group respectively. Now, solving Eqgs. (3-11) and (3-13), we obtain

A= ub(d®+1)
Ag = [2ub + p'b(d"* — D]A’ + 2bb'(n — B’
Ap. = [u(d® — 1) — p'(b” — DA’ + b'[2u + p(b® — 1)]B’

As _ 2o+ w0 = DIA" + W = W)B y
A~ W 1) 6-28)

S =
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Fia. 3-10. Square root of the energy ratio for the reflected SV wave for a P wave inci-
dent in a solid against water. (After Ergin.)

probor_ @ = 1) — w0 = DA’ + b/[2u" + u(d® — D]B’
A ub(b® + 1)
Solving Egs. (3-12) and (3-14), we have
A’ = pa(b® + 1)
Ap = /(2 + u(b® — D]A" — [u(d® — 1) — p'(b”* — DIB’
Ag. = 2aa'(y' — WA’ + a[2p + w' (b — DIB’

(3-29)

I

and
_ Ay _ @12 4 p(® = DIA — (b — 1) — Wb — DB,
D - r = “a(bZ + 1) (3 30)
, _As _ 20 — WA + (2 + w0 — DIB’ g

It was assumed that the incident waves ocecur in the first medium. Now
we shall be able to find the reflection and refraction coefficients from
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F1e. 3-11. Square root of the energy ratio for the refracted P wave for a P wave incident
in a solid against water. (After Ergin.)
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F1a. 3-12. Square root, of the energy ratio for the reflected SV wave for an SV wave
incident in a solid against water. (After Ergin.)
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Fro. 3-13. Square root of the cnergy ratio for the reflected P wave for an SV wave
incident in a solid against water. (4fter Ergin.)
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Fio. 3-14. Square root of the energy ratio for the refracted P wave for an SV wave
incident in a solid against water. (After Ergin.)
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(3-28) to (3-31) if there is a single incident wave, e, & compressional
wave (B, = 0). Then these equations take the form

—7+l:7+m,A -1

Bl m®
3-32)

7’+I.T+M.T
Ry Ry )
(lx+lx)A +(m.+m.)7—2

Hence (3-33)
(L+la +(m.+m.)—=o

(3-34)

and 2(m, + my)
(h + B)(my + ma) ~ (l + L)(my + ma)

2+ 1) g
GF T~ G+ o ¥y O

A _ (b= by + m) = (b + W), — my) (3-36)
AT W F Wi+ m) = (b + L+ mg)

B, 2(lmy — ml;)
AT CF Dt m) — Gt @5
where the expressions for the coefficients I and m must be taken from
Eqs. (3-28) to (3-31). Muskat and Meres [29] developed systematic
tables of the reflection and transmission coefficients for the various types
of interfaces for application in seismic-reflection surveys.

The reflection and refraction of clastic waves at & plane separating
two media were also dist ed in several other (Schuster [48],
Kriiger [24], Ott (36, 37], Brekhovskikh [4], Gutenberg [Chap. 2, Ref. 10],
Slichter and Gabriel [50, 51]).

Gutenberg gave curves for the square root of the energy ratio of the
reflected and transmitted waves for several values of the elastic parameters.
The ratios may be obtained from the energy equations (particular cases of
which were considered in Sec. 2-1)

A; MBa p'tane’ A” | p’tan ' B”
=2 wed T Gtnear T oo



88

=
20°

6. 3-15. Square roots of ratio of reflected or transmitted to incident energy if no change in wave type ocours.
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for an incident P wave and

tane A} B | p'tane’ A
i 8t 5T G

for an incident SV wave. The terms on the right-hand side are, respectively,
the energy wtios for the reflected P, reflected SV, transmitted P, and
transmitted SV waves. The square roots of the ratios are plotted versus
the angle of incidence in Figs. 3-15 and 3-16 for various cases.

(@ sv| | @ sv,
04 LN P
\

ﬂecud or transmitted to incident energy if inci-
seript.

Fia, 8-16. Sauare roots of rato n[
dent and reflected
1 vefre to upper ayer, subecript 3 to lower layer.
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3-2. Reflection of a Pulse Incident beyond the Critical Angle. In Sec.
3-1 we derived expressions for the reficction of simple harmonic plane
waves from the interface between two liquid media. For reflection beyond
the critical angle only expressions for the incident and reflected com-
pressional waves are involved, and by (3-21) the second wave is subjected
to a phase change 2, equivalent to a time increase of 2¢/w|. For this case,
expression (3-6) may be written in the form

o = A, exp [iw(t — az + @2)] (3-38)
o =4, m[fa(:—m - az+fl-f|)] (3-39)
where sl ome
i
sine
a=17=" by(39
a=tane

The factor e is given by (3-22). This equation shows that the phase shift
2e is determined by the physical constants of the media. Had we started

with 8 negative o in Bqs. (3-6), (3-7), and (3-8), the sign of the imaginary |
radicals as defined in (3-10) would be reversed, changing the sign in the
exponent of (3-21), giving A, = A, exp (—i2¢); hence the factor 2e/|u]

s t0 be added to the time for any value of . Take the time variation in

the incident pulse in the form

(20 = ]: : 9" do (3-40)

where the Fourier transform g(w) is given by
L1 e
) = g [ ot ar @41

Similarly, the time variation in the reflected pulse can be given by a Fourier
integral

&) = 7% ﬁ '_ Gw)e'™ do (3-42)
According to (3-38) and (3-39), we can put
w

G) = g) exp i2e (3-43)

ol
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using the transformation of (3-42) given by Arons and Yennie [2]. From
(3-42) and (3-43)

cos 2 [ iwt
a,=ﬁﬁ_v(wk do

\/$ [‘[. e’ do + fn g d«] (3-42)

The factor of cos 2¢ is the incident pulse ,. The last two integrals may be
combined into a single one, despite their difference in sign, if we introduce
the function

a4t

-1 w<o
.
ol f 0 forw=0 (3-44)
1 @>0
where ® denotes the principal value of the integral. We obtain
8, = ¢.(t) cos 2 + F(§) sin 2¢ (3-45)

where
RO =5k [ e [ e ae [ ”é—f & (340
Take the incident pulse to have the form commonly used to reprosent an
explosion
0 <0
2= g 130,650 847)
and integrate with respect {0 7 o obtain

e

ro-fio[ A[Eie o

To perform the integration with respect to w we follow in the usual manner
a semicircular contour in the lower half of the complex w plane for § < —¢
and one in the upper half for § > —£ The integrand has a single pole at
@ = i; hence the integral for § < —# is zero. Thus (3-48) becomes

- gt

i [T€

o E
The principal part of this integral is equal to the negative value of the
function Ei(ef) (sce E. Jahnke and F. Emde, “Tables of Functions,” pp.
1-8, Dover Publications, New York, 1943). Thus the expression for the

F(t) = % dg (3-49)



92 ELASTIC WAVES IN LAYERED MEDIA

time variation in the reflected pulse becomes

8,(t) = 2.(t) cos 2 — %( ‘Fi(o)sin 2  ¢t>0
(3-50)
28 = —%("Ei(et) sin 2¢ t<0

This formula yields the obvious results that for 2¢ = 0, 3,() = ,(),
and for 2¢ = =, ¢,(f) = —¢,(t). Arons and Yennic computed the shape
of the reflected pulse for various values of 2e. Their results are presented
in Fig. 3-17 and show general agreement with their observations on

(@) 2e=

i

® 2¢-30°

'

(¢ 2¢=60°

'

@ 2¢=90°

[

(&) 2e=120°

%

) 2e=150°

i

(@) 2¢~180°

Fro. 3-17. Shape of reflected pulse for several values of phase change 2¢, computed from
Eas. 3-50. (Afier Arons and Yennie.)
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reflection of explosion sounds in shallow water underlain by unconsolidated
sediments.

In many problems on sound transmission in layers multiple reflections
are involved. If a pulse undergoes 7 reflections from the bottom, with
phase shift 2¢ for each reflection, and m reflections from a free surface
with phase S!hlft «, the expression for the reflected pulse becomes
b = (—x)"‘[@.(z) cos 2ne — 2 Fifot) sin m] (>0 @51

x

The theory given by Arons and Yennie seems to be adequate and useful
in all cases involving pulses reflected beyond the critical angle, provided
that plane-wave approximations are valid and the reflected waves of
various orders are added when they overlap. As the distance becomes
large compared with the layer thickness, interference between waves of
various orders becomes important, and other methods, ¢.g., normal mode
calculations, must be applied (see Chap. 4).

1t is interesting to note that the second Eq. (3-50) for the reflected
pulse does not exclude a disturbance even for ¢ < 0, that is, for times
prior to the application of the incident pulse. In this respect our problem
is similar to that of the transient response of an idealized electrical network,
one with phase distortion but without amplitude distortion (see Ref. 8,
chap. 4).

3-3. Propagation in Two Semi-infinite Media: Point Source. The prop-
agation of plane waves in two semi-infinite media separated by a plane
interface was discussed in Sec. 3-1. Sommerfeld [55 and Chap. 1, Ref. 55],
Jefireys [20], Muskat (28], and others have discussed wave propagation
for the case where the distance of the point source from the plane interface
is finite. Their results are directly related to an important practical problem,
that of the “refraction arrival” in seismology of near earthquakes and in
seismic-refraction investigations. When an impulsive source and a receiver
are located in a lower-velocity medium separated by a distance large
compared with the distance of either from the plane of contact with the
higher-velocity medium, it is observed that the first disturbance arrives

at a time corresponding to propagation along the path shown in Fig. 3-18.
Source | Receiver
| 1
O | 16,

@

| I

| |

= ————
a

‘Fia. 3-18. Path of “refraction arrival” when a; > ai.
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From observations of travel times it can be inferred that the part of the
path along the interface s traversed at the higher velocity as, the remainder
of the path at the lower velocity a;, and the angle of incidence is equal
to the critical angle ., = sin™" (a,/ay). This is the well-known refraction
arrival, first used by Mohorovicié [27] in 1909 for deducing continental
crustal layering. Tt is the basis of the seismic-refraction method of explora~
tion. The refraction arrival presented a serious difficulty in that no energy
would be expected for this path from the viewpoint of geometric optics.
This difficulty was first resolved by Jeflreys [20] who, using wave theory,
found terms corresponding to the refraction arrival.

Sommerfeld [Chap. 1, Ref. 55] developed a method similar to that used
by Lamb in the case of a half space. He was concerned with the propagation
of olectromagnetic waves from a source located at the interface. The
solution for a dipole located at a certain distance from the interface may
be found in his textbook on partial differential equations [55, p. 237].
It was shown by Joos and Teltow [21] that Sommerfeld’s formulas can
be transformed to represent the propagation of a disturbance in clastic
media. It is interesting to note that this problem was studied by several
investigators, few of whom took account of the carlier results. We shall
begin the discussion with the most simple case of liquid media, which
requires only two potentials.

Source
L Receiver

L3 z

ay o
a2 P2

Fia. 3-19. Coordinates for propagation from a point source.

Two Liquids. Tt was mentioned in Sec. 1-6 that an expression for
spherical waves emitted by a point source at S(0, 0, h) (see Fig. 3-19)
may be written in the form (1-72). If the time factor exp (iwf) is omitted,

er

_ f ant o2

where R =

V=
[

Now in the problem of wave propagation in two semi-infinite media we
have to use two different expressions for the displacement potential. For
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the medium (z > 0) which contains the source we may write

j.. -
o=
o
assuming that besides the primary disturbance ¢, represented by the first
term there i5 a second one due to the presence of the boundary.

For the second medium (z < 0) we may write an expression similar
to the second term in (3-53):

S rmnae+ [T g ae @59)

e gth
-= j; Q’”T Tulkn)k dk (3-54)

With the soparation of the factors /s, and /v, the arbitrary functions
@, and @, in Eqs. (3-53) and (3-54) can be related to plane-wave reflection
and refraction coefficients. It will be seen later how inclusion of these
factors in the arbitrary coeflicients leads to simple and symmetrical
expressions. These expressions satisfy the wave equations

= L M i
Vo= 358 i=12
where a, is the velocity of propagation of compressional waves in the
corresponding medium, provided that

=V =k, n=VF-F, (3-55)

The quantities » and v, are taken to have positive real parts. This choice
is required by the condition of vanishing potential as |z| — ®, the positive
direction of z being taken in the medium containing the source.

The potentials ¢, and ¢; must satisfy the boundary conditions at the
interface z = 0:

(3-56)

P = Pz (3-57)
These equations express the fact that the normal displacement w and
the pressure as defined in (1-26) and (1-18) are continuous across the
interface. Substituting (3-53) and (3-54) in (3-56) and (3-57) gives

6= Qe = Qe @G-8t
Bt Qe =2 (3-59)

{The exponential in the first integral of (3-53) is taken as —n(h — 2) forz < h to
obtain this result.
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Solving for @, and Q,, and writing & = p,/p,, we find

— W — va s

= o e (3-60)
. 2r, (ra=91)h

Qg = 6111 + Vs [ (3'—61)

The solutions (3—-53) and (3-54) now become

3 ® e"""“JO(kT)k dk *® [5,,1 — yz] e_"‘”"’JO(kr)k dk

$ = ./; 12} + j; ov, + v n (3_62)
o %, e (knk die

e = -/; [81'1 + V2:| Vs o

where the expressions in brackets have been arranged for interpretation
as the reflection and transmission coeflicients for plane waves, according
to (3-17) and (3-18). Weyl’s formula (1—44) for a spherical wave shows
that the primary disturbance represented by the first term in (3-62)
can be interpreted as a superposition of plane waves. Similarly, the remain-
ing integrals in (3-62) and (3-63) may be interpreted as a superposition
of reflected and transmitted plane waves.

To evaluate ¢,, first add the two integrals, using in the exponential
function in the first term of (3-62) {z — h| = h — zforz < hand |z — k| =
2 — h for z > h. Two expressions for ¢, are as follows:

o =2 f o1 Cojh(”sf j;” sinh 2 vy ek dk 2 <h  (3-64)
13 1 1 2

® ov, cosh v,h + v, sinh v,h _,,,
2 f e eI knkdk 2> h  (3-65)

¢ =

or o =2 f " AT (k) dk (3-66)

For z < h the function A(k) is given by

61’1 COSh V2 + Vo Sinh 274 e..."}‘

A(k) B 1’1(51’1 + 1’2)

(3-67)

A similar expression for z > h is obtained by interchanging z and h. It
is seen that the integrands do not contain poles since, from the definitions
of », and »,, the sum 8, + », cannot vanish. Addition of the two integrals
in (3-62) to obtain (3-64) or (3-65) removed the algebraic singularities
at k = k., or », = 0, because the reflection coefficient becomes —1 at
this point. Physically this implies cancellation of the direct wave by the
reflected wave at grazing incidence, i.e., the limiting case of the Lloyd
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mirror effect. In evaluating (3-64) and (3-65) we shall use a method
similar to that of Lapwood (1949). (See also Sec. 2-5.) These integrals
represent the disturbance corresponding to a source varying with time as
exp (wl), w being real. A time variation appropriate for an explosion has
been defined in Eq. (3—47). If we use notations of operational analysis, it
may also Loy written in the form

1 eiwt
2nt QW — 2.0'

S = do = ¢ " H(1) a>0 (3-68)
where H(¢) = Ofor¢ < 0, H(t) = 1for ¢ > 0is the Heaviside unit function,
and the contour 2 runs from —wo — gcto ® — éc. If ¢ > 0and ¢ < 0,
Q is equivalent to the infinite semicircle in the lower half of the complex
w plane along which the integrand vanishes. For ¢ > 0 the contour Q is
equivalent to the infinite semicircle in the upper half plane plus a small
circle surrounding the pole w = 4. Thus Eq. (3-68) may be readily verified.
When & = 0, Eq. (3-68) defines the unit function H(¢).

As in (2-137), we may write the solution corresponding to the initial
pulse S(¢) defined by (3-68) in the form

_1 f(wr r;'z) ot dw (3_69)

27ri Q W — 10

11"}

where f(w, r, 2)e'“" represents the steady-state solution. In applying
(3-69) one must be sure that f(w) is analytic, that the integral converges,
and that approximations used in obtaining f(w) are valid over the contour
[see Lapwood (Chap. 2, Ref. 25, pp. 66 and 84)].

Now returning to the evaluation of the solutions (3-64) and (3-65),
replace k by the complex variable { = k 4 ¢r and consider complex values
of w.

The signs of », and », have already been specified by the requirements
Re », > 0 and Re v, > 0, confining the integrand to a single leaf of the
four-leaved Riemann surface. The branch points at which »;, = 0, », = 0
are given by ¢ = xk.,, { = =%k,,, where k,, = w/oy, k., = o/, and
the cuts forming the boundaries of the chosen leaf are given by Re », = 0
and Re », = 0. The definition of the contour @ used in (3-68) involves
complex values of the variable w = s — i¢c with ¢ > 0. Then the last
relations (for example, Re Vi = Wa’ = 0, for 7 = 1, 2) imply that
K — * 4 2ikr — (s — ¢ — 2isc)/a’ be real and negative or k> — 7* <
(8 — ¢ /a’ and kr = —sc/a;. Under these conditions, the cuts in the
complex ¢ plane must be parts of hyperbolas defined by the last equation
(see Sec. 2-5) and lying as shown in Fig. 3-20. Since w = s — 4c is now
assumed complex, the time factor exp (wf) in ¢ becomes exp [(s — ic)it] =
exp (¢t + ist). For ¢ positive the integrand becomes infinite as { — o,
However, for the particular time dependence assumed in Eq. (3-68), the
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integration with respect to » performed in the complex plane along the
Q contour results in a solution without a singularity at ¢ = «. After these
preliminary remarks, we make the substitution

2Jo(kr) = H"(kr) + Ho” (k)

Fre. 3-20. Integration paths in the complex ¢ blane for Re > 0.

in Eq. (3-66) and write the sum of two integrals
=L +1, = f ARHS ()l ks + f ARHO Gk dk (3-70)
)] [i]

The function A(k) has no poles, as mentioned above, and for complex w
the branch points are not on the real axis. There are no other singular
points on this axis except those of the Hankel functions at the origin.
Using the fact that Hy"” and H¢” vanish along the infinite arcs in the
first and fourth quadrants, respectively, we can distort the path of inte-
gration for the two cases Re @ > 0 and Re w < 0 as follows (see Figs.
3-20 and 3-21):

Rew > 0. Distort the contour of the first integral (3-70) to the positive
imaginary axis. Distort the contour of the second integral to the negative
imaginary axis together with the loops £, and £, lying close to the cuts
given by Re », = 0 and Re », = 0, respectively.
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Thus
I, = — f AGHHD () dr 3-71)
[+

I = — f T AGH® (i) dr

.‘ .
+ [ s@BPGns &5 +L AQHSGDE dr  (3-72)

Fe e ===

F1a. 3-21. Integration paths in the complex ¢ plane for Re w < 0.
Since H" (irr) = —Hy”(—4rr) and A(k) is a function in which the same

value of » is now used on the positive and negative parts of the imaginary
axis, the first integrals in (3~71) and (3-72) cancel, so that

o = f AOH” ()¢ dt + f£ AQHP (¢ dt 3-73)

Re w < 0. For this case the branch lines £’ and £ lie in the first
quadrant, and by a similar procedure we find

o= [ MQEC@E + [ AOHS@rd @7

CONTRIBUTION FROM £,. The contribution from the loop £,, for
Re @ > 0, can now be approximated. Since this contour lies close to the
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cut Re »; = 0, we can put for points on this line
vo=dtu =k, —u and ¢df = —udu

To determine the sign of Im », on different sides of the branch line we
have the assumptions discussed in Sec. 2-5. With those assumptions, a
positive imaginary component corresponds to the left-hand side of the
branch line and a negative imaginary component to its right side. The

&

L K

i (a) b
Fie. 3-22. (a) Loops £ and £ for Re w > 0. (b) Loops £’ and £” for Re w < 0.

signs are indicated in Fig. 3-22a. From the asymptotic form for Hy”1 we
note that the principal contribution of the second integral (3-73) occurs
for ¢ close to k,,, where Im ¢ has its smallest value. We can therefore
consider u small and make the following approximations when {7 is large:

2 2
~ _ U = (2 — nE ~ (@ uy,
;l —_— ka, 2’6,,, 41 (g‘ ka;) = ('Y + 20) )'L

where v = (1/a} — 1/a3)"!. If we use the first term of the asymptotic
expansion of Hi” and keep second-order approximations in the exponential

only, the second integral (3-73) takes the approximate form

2 , ® . . i’
o =~ ‘/‘n'ka.f exp [—z(k“,r - ;_r)] j; [AGuw) — A(—w)] exp ;;?: udu

(3-75)

where on £, for both (3-64) and (3-65)

A(w) — A(—ww) = 22’:21‘ exp l:—ie + %)(z + h)]

tHo®(¢r) ~ _2_ exp [—i(fr - 7—r>:|
wir 4
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Using a table of definite integrals, we can evaluate (3-75) exactly, and
we find, again including the factor exp (iwf),

:. 2

2y"
(2) __ _ piwte _ !
[ Mzwrze (3-76)

provided tha (z + h)/r is small, k,,7 is large, and

t,=t— L2tk
03 Y .

For Re w < 0, the potential ¢{’ is given by the second integral of (3-74).
For this case the only change is the use of the £” contour and the sub-
stitution of Hy" for Hy®. Following the same procedure, we may readily
verify that the result is identical to (3-76).

We may now generalize these results for an initial impulse having the
form of (3-68). Applying (3-69) to the source function (3—52), we find

1 etwto
2R qw — 1o

where £, = ¢ = B/a;. Similarly, (3-76) leads to

®, = dw = i e”""H (to) (3-77)

@ 21-72 —_1_ giote
! Sagr 2mi Jo wlw — i0)

(3-78)

so that the displacements ¢, and w;” may be obtained by differentiating
with respect to r and z. Neglecting the term containing ™%, we get

@ _ _ 2 1 et 2 g

W T I o e T Tap? HED B7T9)
2'7 oot

w? = s HE) (3-80)

These displacements are seen to have a definite beginning at the time

g Lopzth_

as Y

cos 0"

+ (z 4+ h) —= (3-81)
where 8,, = sin"' (ay/a,). This is precisely the time required for travel
from the source to the receiver along the refraction path shown in Fig. 3-18.
The path is one of least time, and the angle of incidence is the critical
angle 6,... Comparing Eqs. (3-79) and (3-80) with the expression for the
initial disturbance (3-77), we see that the displacements have the same
time variation as the initial potential. Similarly, the particle velocities
¢i> and ;> obtained by differentiating (3-79) and (3-80) have the same
time variation as the initial displacements if we neglect terms of higher
order in r and z. The refraction arrival is seen to decrease with distance
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asr~”. The singularity at ¢, = 0 for ;> , ;> and at £, = 0 for §,, 1, follows

from the assumption of an instantaneous rise time of S(¢). This behavior
may be thought of as an abrupt jerk followed by an exponential recovery.

This theory accounts for the existence of a ‘‘refraction arrival” but
cannot be used for any quantitative description of field data. In the
great majority of actual cases the refracting medium is a layer, and the
effects of its other boundary must be taken into account, at least over a
large part of the frequency spectrum. An experimental study of this
problem was made by Press, Oliver, and Ewing [40].

CONTRIBUTION ¥FROM £,. For Re w > 0 we use the loop shown in
Fig. 3-22 with »; = =Feu on the right and left side of the cut, respectively.
In the vicinity of the branch point we can write

2

= VET W = he = g =

4

as required by the condition Re v, > 0, where v = (1/af — 1/a3)™t. As
was discussed in Sec. 2-5, the major contribution to the branch line inte-
grals occurs in the vicinity of the branch points.

Then the first term in (3-73) yields the contribution of the contour
£, to ot

o = [ T HO@[AG) — A(—i)lu du (3-82)

where, by (3-67),

cos u(h — 2) _ cosu(h + 2)

AlGiu) — A(—1w) = o o

— B b + ) — %7 iufcos u(h + 2) + cos u(h — 2)]

w

Using the asymptotic expansion of H:® ({7), we may write (3-82) as

—

2 . 1
W L
oV = \/wka,r exp z(wt ke + 4>

: f " exp 278 [AGw) — A(— ) Ju du

2k,,
— ‘pl(l) + go;ll) + (ol(III) + ¢;IV) (3__83)
where, upon integration,
Xy __ l 1wige _ _ L - (h —_ 2)2 .
! - r € t*o - t [+ 2% 27‘0(1 (3 84)
2
:II) — = eu‘wtu t*l =‘t - L _ (h + z) (3_85)

oy 27‘(11
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¢§In) . 22517 (h + z)e‘"’"‘ (3-86)
T o
3%y’ {[1 i(h + 2)2] [1 i(h — z)’] cut }
(IV) — A S B 7 1 o AT T »0 !
T e ar ¢ + @ ar ° (3-87)

For Re « -3 0 we follow the contour £’ as depicted in Fig. 3-22. Im »,
is positive to the left and negative to the right of the cuts. To determine
the contribution of the first term in (3~74) we follow a procedure similar
to that used for the contour £,. In this case we use the asymptotic expan-
sion for H;'(¢r)T and substitute for the vieinity of the branch point
—k., in the first quadrant

u
§ = —ka + 5

Vg = ——

Y

We obtain (3-83) except for a change in sign of terms with y. Solutions
(3-84), (3-85), and (3-87) are unaffected but (3-86) becomes

QI = isz (b + 2e'“**  forRew 2 0 (3-88)

Again generalizing these results for an initial time variation (3-86) we
find, by applying (3-69) to (3-84), (3-85), (3-88), and (3-87),

1

B = e (3-89)
an _ _%e—u.nH(t*l) (3-90)
3 = 200, 4 oy , (3-91)
T (23}
where
1 1] ei‘wt.x © eiwt.; e
M—%[f-ww—iadw_./; w_iadw]—e Ei(ot,s)

In deriving (3-91) the @ contour has been distorted to the real axis and
the integral evaluated by the method used in Sec. 3-2. Finally, we have

2 2 tar 2
(P:IV) - — 52’)’ [[ e—ctuH(t*l) dt*1 — '(_h%rﬁ)—e_”"H(t*l)
0 1

oy

fee ~0lyo (h — & ? —0tyo
+ fo e H(t,0) di,e ——-;l-r—)—e ‘ H(t*o)] (3-92)

kg
tHO (¢r) ~ ~?__exp i(;’r - -) ~zr <argir <2»
xir 4
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It is seen that & is a disturbance having the same shape as the initial
pulse and beginning abruptly at

P ek )

ay 2ro,

(3-93)
It decreases with distance as r~' and depends only on the properties
of the first medium. Since (3-93) represents the first two terms of the
expansion of R/a, for large r, " may be interpreted as the direct spherical
pulse from source to receiver. The expression ®{'” represents a similar
pulse beginning abruptly at

2
j=L Gt

o 2roe;

(3-94)
equal in magnitude but 180° out of phase with ®;”. This corresponds to
the grazing reflection from the interface. From a plot of ¢™"*'Ei(s,,) in
Fig. 3-17d it may be seen that ®'"'" does not have a definite beginning
but reaches a maximum value at the time given in Eq. (3-94) for a reflection
from the interface. The amplitude of this wave depends on the properties
of both media and decreases as r*. The expression for &'’ contains four
terms, the first two beginning at the time for a reflection from the interface,
the next two beginning at a time corresponding to direct travel from
source to receiver. All terms in ®;""° have amplitudes dependent on the
properties of both media. The first and third terms correspond to a pulse
decreasing as r~* and having a shape given by the integral of the initial
pulse. The second and fourth terms decrease as r° and have the same
shape as the initial pulse. Thus & and &{'Y’ include effects arising
from the curvature of the incident wave front, the former term showing
the “reflection tail” which is characteristic of three-dimensional wave
propagation. If we omit exp swf, the superposition of ¢i” and ¢{'" leads
to the Lloyd mirror effect at large distances:

l iwr/a,[e—iw(s—h)'/m‘a;

€

—iw(l+h)’/2ra,]
r

— e

o gl' sin (@)e—iwr/a. ~ 2lw2h e—iur/a: (3_95)

=3
r o,r r oy

Alternative discussions of the reflection of spherical waves have been
given by Sommerfeld [55], Weyl [Chap. 1, Ref. 64], Niessen [33], van der
Pol [58], Norton [34], Rudnick [42], Pekeris [39], and Brekhovskikh [4].
Brekhovskikh discussed the problem of reflection of spherical waves,
electromagnetic as well as acoustic, from a plane boundary separating
two media. He derived expressions for potentials for different values
of the refraction index = at various distances from the source. To find
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these potentials, Brekhovskikh made use of Weber’s functions and of a
series the terms of which are inversely proportional to the powers of the
product of the distance and frequency. He gave his results in a form suit-
able when the two media differ only slightly. Brekhovskikh’s formulas
should have wider application than the solutions of Ott [36] and Kriiger [24]
which hold nly for angles not too near the angle of total reflection.
Fluid and Solid Half Spaces. In the second problem concerning two
semi-infinite media we assume that the first medium (z > 0) displays the
properties of a fluid and the second (2 < 0) those of an elastic solid. If we
assume axial symmetry, the displacements in the fluid are represented by

i) 3
G = '5‘% w, = ?(.:’1_ (3-96)
and in the solid body by Eqgs. (1-26) and (1-28),
_de | e 0 (,. %)
=" t aroz 27 % + rar\"" or (3-97)
The functions ¢,, ¢,, and ¥, must be solutions of the wave equations
2 _ _]; az t — 2 — i azipZ

where o, and «, = velocities of compressional waves
B, = velocity of distortional waves in second medium

As to the source, there are more special cases than in the preceding para-
graph. A source in a fluid half space can produce only compressional waves.
A source located in the elastic solid medium can emit both compressional
or distortional waves. For the case of a point source in the fluid half
space we can make use of formulas in the preceding problems (3-53) and
(3-54), which represent compressional waves propagating in both media,
and add a solution of the third equation in (3-98) to represent distortional
waves. We can put

b= [ SIS (3-99)

where S,(k) is a function to be determined from the boundary conditions
and the coefficient »} must be chosen as usual to satisfy the wave equation.
Like (3-55), we obtain

2
v o= £k — %’a = +VE - i, (3-100)
2

where the real part of »; must again be positive. The function ¥, represents
distortional waves below the interface (z < 0), The formal solutions for
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a source of simple harmonic waves are
o= [ Esmen a4 [T QI  d @-00t
o= " Qe (3-102)
Vo= [ S a (3-103)
The three unknown functions Q,, @, S. will now be determined by three

boundary conditions. These conditions correspond to the continuity of
displacements in the z direction and of stresses at the interface (z = 0):

w=w @)= Pz @ = @) (3-104)
The first equation of (3-104) takes the form
"_z,_\‘s FEg =2 az=0 (3-105)

by (1-26), (1—27), (1-28), and (1-29) when the time factor in (3-101) to
(3-103) is taken as exp (iw). The second cquation of (3-104) leads, by
(2-57), to

NV, + 2», =NVl atz=0 (3-106)

Sinco no tangential stroses act in a perfect luid, the third equation of
(3-104) gives

W) ), wim0 @)

On inserting (3-101) to (3-103) in (3-105) to (3-107) we obtain linear
equations with respect to Q, exp (nh), Q. exp (—w.h), S, exp (—wsh):

@ 4 Qe 4 KRS = ket (3-108)
PR + @k’ — pu)Q + Bk S = — pa B e (3-100)
Qe + (2ak” — S = 0 (3-110)
Thus if we put
" " w
A= |pw’ 2uk’— pp’ sk
[ N

=@k’ — pa’)’ — duikvari] + pipa'va (3-111)
{See remark following Eq. (3-68).
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and if Ay, &, Af are the other determinants for solving Eqs. (3-108) to
(3-110), we obtain

_ A _ A een
Q= Q= e 8 = N (3-112)
9 — pad) — dulkywl] —
whoro o EnlQuk = 0 = tallosi] = pos'n gy
B _ k —2p’@uk’ — p) .
A n A @-119)
Ak b,
A" A @-115)

By simple transfor 1ations it may be seen again that (3-113), (3- m),
and (3-115) are for reflection and
plane waves. Equations (3-101) to (3-103) with (3-112) to (3-115) rep)e—
sent. the formal steady-state solutions. These integrals may be evaluated
by the approximate methods of the preceding sections with several modifi-
cations. In addition to the branch points k,, and k., we must consider
the branch points ks = /g, and the possible poles at A = 0. The
corresponding terms will represent, in addition to those discussed in the
preceding section, a transmitted shear wave and waves tied to the interface.
Later in this section it will be shown that A = 0 corresponds to waves
propagating with a velocity less than that of compressional or shear
waves in either medium and called Stoneley waves. Biot (3] has called
attention to the possible importance of Stoneley waves at a liquid-solid
interface in connection with transmission of elastic waves through oceans.

Two Solids. We now discuss the problem of propagation of a disturbance
from a compressional-wave source located in a solid half space which
is in contact with a second solid half space at z = 0.

With the use of definitions similar to those made in the preceding problem,
the displacements are represented by the equations

Pl
Sl T gl Ty =12 G

where the potentials ¢, and ¥, are solutions of the wave equations

‘h

i=1,2 @317

1f we put

(3-118)
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and make use of (3-100) and (3-55), the following expressions may be
taken as solutions of (3-117), the time factor being omitted:

"= [f—. Jollrye™ 7 dk + /" " Qe
atz>0  (3-119)

v = [ ST @120
o= f " QI db bz <0 @3-121)
= " S0 e 122

Now the four coefficients Q,, S, can be chosen to satisfy the boundary
conditions. In those problems which we shall discuss, a “welded contact”
is usually assumed, and, therefore, we have four conditions which hold
atz =

Q=06 w=w (3-123)
@i = @)y @) = (@u)s (3-124)

These equations express the continuity of displacements and stresses
at the surface of contact (z = 0) of the two solid media and have the form

3, 3 a RS

o Tae o Y (3-125)

L . @-120)

M0+ 2 5 = MV o+ 2 2 @120
B, o) (00 on .

w3 20 0y ) (-129)

On inserting (3-119) to (3-122) we obtain a system of four linear equa-
tions for the functions

Q=Qe™ Q=@ 8i=8emt 8= St
This system is
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Q= Q. —v8, — 8,
nQu 4 0y — B8y + K8, = ke
— @k — p)0r + @uak* = pu)0s + 2wk, (3-129)

+ 28, = £ @ui — puen

2@, + 2,02 — @ik’ = p)B + @ik’ — pi”)8; = ke
‘Thus, on putting

2mk’ — po’ =@ 2wk’ — g’ =0y (3-130)
the determinant of (3-129) is
[ G
e e
A= m TEF 313

—a @ 2wk 2k
2uy us —y a
Now the coefficients Q, and S, can be written in the form
PO

Q=5
(3-132)

B v
Q=3¢

where Ay, Al A, and A are the determinants formed according to the
well-known rule, the factor exp (—k) being separated from them. The
factors A,/4, --- , Ai/A have the form of reflection and transmission
coefficients for plane simple harmonic waves. By (3-119) to (3-122)
and (3-132) the solution of the problem of wave propagation in two solids
is represented by the functions

o= [T E e ak [T R e & @y

L - %" Tok)e 0 dk (3-1349)

- f., " % Jolkr)e N dk (3-135)

Vi = L - %" Jolkn)e T dk (3-136)
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The first term in (3-133) represents the direct compressional wave. All
other terms in (3-133) to (3-136) represent waves generated in both
media by it. To investigate these waves one has to insert the time factor
again and evaluate the integrals in (3-133) to (3-136) by the methods
used earlier in this section or by some other method. Different types of
waves are determined by a set of branch line integrals corresponding to
k = kax, kg, Koz, kp2 and residues corresponding to roots « of the equation

AR =0 (3-137)
where A(K) is given by (3-131), or

A(R) = 4y, — “,)"[k’(k’ - ’M)’

22 — )
o1 o’ Y _ o’ Y
-t = g2 ) ool g2 s)
— G + ) 4(‘;"—‘_"7“7; + nw.’v{k'] (3-138)

Without carrying out the analysis, we may surmise from what has preceded
that each of the wave types associated with the branch points of Egs.
(3-133) to (3-136) may be considered to travel along a path composed
of three parts: (1) source to interface, (2) slong the interface, and (3) inter-
face to receiver. The coefficient of h in the exponential indicates whether
the first part of the path is traversed by compressional or shear waves, the
coefficient of z gives the same information about the third part, while
the value of k at the branch point indicates the mode of travel along the
interface. In all cases when the exponents are imaginary, the propagation
paths are minimum-time paths which can be represented by rays. Some
of these coefficients may assume real values at certain branch points,
corresponding to a wave for which energy is propagated parallel to the
interface although the ray cannot be drawn. An apparent exception oceurs
when two or three consecutive parts of a path are traversed with the
same velocity, in which case the wave is a reflected type confined to one
medium. These results are summarized in Fig, 3 for a compressional
source when a; > f; > a; > B1. The heavy lines represent rays, and the
velocity along each segment is indicated. Angles of incidence, reflection,
and refraction are governed by Snell’s law. The wavy lines indicate waves
for which the paths cannot be drawn.

The characteristic equation (3-138) in the form given later in this
section was investigated for the first time by Stoneley [56]. Under certain
conditions a real root of (3-138) exists corresponding to a velocity of
propagation less than that of body waves in cither medium. All the »
factors are real, and the resultant wave cannot be represented by rays.
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Its amplitude decreases exponentially with distance from the interface

and can be shown to fall off as 7™ with distance, as would be expected for
an interface wave.

kmafa;

k=w/f,

8,
a d o @
kew/ay \/ >~/

o @ @
6y [
peut R N BN -

Fie. 3-23. Waves from a compressional source near interfa
spaces, as > B2 > a1 > fi

between two solid half
Source located in lower-velocity medium.

Stoneley Waves. The existence of surface waves in an elastic half
space was shown by Rayleigh in a derivation using plane waves, and
Lamb extended these results to cylindrical and spherical waves (see
Chap. 2). Love [26, pp. 165-177] investigated the effect of a surface layer
on the propagation of Rayleigh waves and discovered another wave of
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the same type. For wave lengths short compared with the layer thickness
Love found, in addition to the ordinary waves with velocity determined
only by the properties of the surface layer, that a modified Rayleigh
wave with velocity depending on the properties of both media could exist
under the stringent condition that shear-wave velocities in the two media
were nearly equal. Stoneley later thoroughly investigated the propagation
of this generalized Rayleigh wave (now commonly known as the Stoneley
wave). Assuming a solution in the form U,, V,, W, exp i
where U,, V,, and W, are functions of z approaching zero at infinite distance
from z = 0, Stoneley obtained the frequency equation in the form

{(pr = p2)" = (p1ds + p24)(pB: + paB)}

+ 2Kc*{pAuBy — padiBy — i+ £}

+ K(AB, — (4:B, — 1) = 0 (3-139)
which is equivalent to the characteristic equation (3-138). This is an

equation for the phase velocity c, and the following transformation of
variables must be taken into account:

nm(-8 am(-9)
n-(i-5) a-(=g)

K =2(p8] — 0183 = 20m —

(3-140)

with (3-141)

and
n=VE —ki, =kA W =kB. w=kAs =kB, (3-142)

If sy = 0, the left-hand side of Eq. (3-139) is replaced by Eq. (3-111).
If p, = 0, Eq. (3-139) is the ordinary equation for Rayleigh waves. Equa-
tion (3-139) was numerically solved by Koppe [23] who concluded that
/g% cannot have smaller values than the root of the Rayleigh equation,
ie., the velocity of surface waves at the interface of two solid media falls
between the velocity of Rayleigh waves and that of transverse waves in
the medium of greater acoustic density. There is a region in the plane of
variables 4 and 8 = B,/8, where surface waves are impossible. On the
other hand, generalized Rayleigh waves are always possible at the interface
of a solid and a fluid medium. Their velocity is smaller than that of regular
Rayleigh waves. Other analyses of Eq. (3-139) were given by Sezawa
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and Kanai [49], Cagniard [6], and Scholte [47). Figures 3-24 and 3-25
represent Scholte’s principal results for the conditions under which Stoncley
waves may exist.

Fs Asymptote of B
A

Fio. 3-24. Range of existence of Stoneley waves for M/ = Me/ps = 1. Stoneley waves
can exist for every value of /s and py/ps which lies between the curves 4 and B.

(After Scholte.)

nler
Frc. 3-25. Range of existence of Stoncley waves for M = M = . (After Scholte.)

3-4. Further Remarks on Waves Generated at an Interface. In the
preceding paragraphs our study of the propagation of a disturbance in
two semi-infinite media gave terms which represent “refraction arrivals”
in addition to the direct, reflected, and refracted waves. “Refraction
arrivals” are readily observed in the field in seismic exploration. They
have also been observed in laboratory experiments of Schmidt [45], where
a spark served as a point source of compressional waves in an acoustic
medium consisting of xylol (sound velocity 1,175 m/sec) on NaCl solution
(sound velocity 1,600 m/sec). Schlieren photographs revealed all the wave
types. Refraction arrivals observed by Press, Oliver, and Ewing [40] in a
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Iaboratory model consisting of a thin plate of Plexiglas (longitudinal
velocity 7,350 ft/sec) comented to a thin plate of aluminum (longitudinal
velocity 17,750 ft/scc) are illustrated in Fig. 3-26. Although longitudinal
or plate waves (Sec. 6-1) are used here, the results are completely analogous

AV
“‘4\/
~| *RRR

1
7

200 microsec.

—————

B
B
B
£
+
L f—.‘____.;
A
I~

434

3 - tmckness 1, /16"
= 7,500 ft./2

RER Brass
thickness 1/16"
vp=12,300 ft /sec.

Fic. 3-26. Dircct waves P, and refracted waves PiPsP; for a two-dimensional model
of two layers.

to th i i i and

studicd “refmcv.ion arrivals” have been variously referred to as “refraction
waves,” “waves corresponding to the fourth ray,” “traveling reflections,”
“head waves” (not the Kopfwelle generated by a projectile), “Flankenwelle,”
ete.

A simple picture of these waves may be given by the use of Huygens'
principle which was first applied to these problems by Merten in 1927,
according to Thornburgh [57]. (See also Dix (9] and Ansel [1].) Jardetzky
(see Chap. 1, Ref. 23) elaborated on this approach to show the physical
conditions for the generation of different types of waves in a layered
medium.

A theory including terms representing waves generated at an interface
was given by Ott [36] for electromagnetic as well as acoustical waves.
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These terms were obtained by the method of steepest descent applied to
the neighborhood of one of the existing saddle points. In the case of electro-
magnetic waves, Ott also found surface waves in the ground when an
antenna emits a disturbance in the air, as was asserted by Sommerfeld
(see Chap. 1, Ref. 55). After Weyl (Chap. 1, Ref. 64) could not confirm
Sommerfeld’s result, the question of the existence of this wave became
the object of numerous papers. According to Ott’s conclusion, such a
wave is similar to Schmidt’s head wave. On making use of a complex
refraction index, Kriiger [24] could derive the existence of the wave in
question by Weyl's method.

3-5. Other Investigations. As mentioned above, other methods of solv-
ing problems of wave propagation in elastic media have been applied.
Cagniard [6] worked with Carson’s integral equations [7] and the Laplace
transformation. He used the functions o, of (3-119) and (3-121) but,
instead of the functions ., he took U, = —ay,/dr, according to Eq. (1-28).
Considering axial symmetry, put

b= X0 U=V, (3-143)
where, according to Cagniard, p is real and positive. This form of the
time factor is a limiting case for the complex exponent w = s — ic used
in Sec. 3-3, where the real part s = 0, ¢ = p, and exp (iwf) = exp (pf).
The conditions for cuts in the complex { plane derived in Sec. 3-
that the corresponding cuts now have to be taken on the imaginary axis.

Since the factor p replaces i used in the case of simple harmonic motion,
the expressions (3-55), (3-100), and (3-118) take the form

:\/k’+lx N I 4
o B
(= K=o+

Again, omit the time factor and write the solutions of the second factors
in (3-143) in a form similar to that used in Sce. 3-3 [Eqs. (3-119) to (3-122)]

(3-144)

X = [Tt B2 4 [ e e G-149)
forz >0

- s.<k>§,u.,<krne*'-w @-140)

X = [ QI line (3-147)
forz <0

Vo= [ 500 & Umle de )
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The functions @,, Qu, Sy, and S, can be determined from the boundary
conditions in the same way as was done previously. For further trans-
formation we will now choose new variables v and v. The variable  having
dimensions of reciprocal velocity is defined and introduced into the expres-
sions (3-144) as follows:

k= m=pfe+k (3-149)
We also put
i1 PN
o=t v+ g

(3-150)
e B

The second variable v will be determined by the conditions that the
expressions (3-145) to (3-148) can be written in the form

Xulpr,d =7 [ e abr b @150

Y,.(p,r,2) =p f " e B,(v,7,2) dv (3-152)

where 4., B, are Laplace transforms of X,./p and Y,./p and Eqs. (3-151)
and (3-152) are the Carson integral equations for 4, and B.. The funda-
mental statement in the Cagniard theory is that the functions ¢ and U
giving the displacements in both media can be represented in terms of

o= f Fll-0A@d O = f Flt— 0B d  (3-159)
A s

where F(f) represents the action of the source. For a given problem,
the procedure is to determine X,, and Y,, by methods similar to those
used in Sec. 3-3, to obtain A, and B, from (3-151) and (3-152), and to
introduce the initial time variation by (3-153).

Tn order to see how the variable v can be introduced, let us write the
expression for ¥,,, making use of Egs. (3-134), (3-146), (3-149), (3-150),
and (3-143) and the definition U, = —dy./dr by (1-28). Then

Ya,ra = - [ 4 [d% J.,(pw)]z""-“'"’p (@159

The Bessel function Jo(pur) is the only factor depending on r. Making
use of definition (1-69) of the even function Jo(kr), we obtain

Jolkr) = }r j; T e g (3-155)
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and, therefore,

a 3
er.,(kr)— = € cos o do

.
B B [T

Thus (3-154) takes the form

“ cos o do (3-156)

Yup.rd _ _2p [ “PAL e .
Brd - 2 noevdvj: Y e iy @-15)

where, according to (3-150),

v = iur cos o + h. u+:+z1u'+§11 (3-158)

The variable o is real but « and v are considered as complex variables.
To make the radicals in (3-158) uniform functions, Cagniard [6, p. 55]
takes 2 cut along the imaginary axis in the complex plane of u between
the points —7/8, and i/8, (when 8, < & and 8, < B.). We take ¢, and
b, in Eqs. (3-150) to be given by their arithmetic values when u is real
and positive. They are uniform functions in the first and fourth quadrant
of the u planc. Since vis determined by (3-158), it is also a complex variable.
For u = 0, we have v, = h/a, + 2/8,, and in general the real values

h z
oxtitoy (3-150)

play an important part. It may be proved that, in & certain region of the
complex variable v, Eq. (3-158) has a unique root u and that this root is
a uniform and holomorphic function of v.

If we compare (3-157) and (1-66), we may easily see that Cagniard’s
expression (3-157) may be readily derived from that form of solution of
a wave equation.

Now, if  is expressed in terms of v and a,

u = u, o) (3-160)

u depends also on other variables in (3-158)], the last integral in (3-157)
can be transformed as follows:

Lo [ gt e g

= [, 10, K6, & tuto, e do @-161)
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The new integration path C., starting at v, (for v = 0), depends on the
value of cos . It may be easily scen that the variable v has dimensions
of tlme and that the value v = v, represents the minimum time required
b, b in the form of a wave to reach the interface
and, after that moment, in the form of a reflected distortional wave to
reach the height z. At u = @, v = = in the first quadrant, since for
real the real part of v satisfies the condition (3-159). Since there are no
singularities between C, and the real axis, the integration path C, may
be replaced by the part of the real axis (v, ). Cagniard proved that the
function in (3-161) is an integrable one. Then, we have

1= f Ku—a"'da (3-162)
and, therefore, substituting in (3-157), we obtain
o
Lin 2 cosad [ !m[Ku‘]e &
P xJy v

—% f-z“"dxf Im [Ku %‘v‘] coscds  (3-163)

Now from (3-163) and (3-152) the direct conclusion can be drawn that
the solution of Carson’s equation for i = 1 is given by the expression

forv < v,
B\ = (3-164)

”
-2 Im[Kua—u]cosndw forv > v,
wJo .

Cagniard changed the variable of integration from o to u, using (3-158).
A very long transformation and evaluation of this so-called transmission
coefficient B, (v, 7, 2) then yielded a set of wave fronts. This set was com-
pleted by a similar interpretation of the other three functions Bs, 4, As.

Different distributions of wave fronts are determined, depending on
the relative values of a, and 6,. For the case, for example,

Bi<ai<B<ay (3-165)

the wave fronts are represented in Fig. 3-27. This and similar figures were
computed by Cagniard (6, p. 122] for certain particular values of param-
eters.

In this figure W, is the direct compressional wave emitted by a source
St a distance h from the interface. T7{ and W/ are reflected compressional
and distortional refracted waves. W, and W, are compressional and dis-
tortional refracted waves. The waves denoted by * are the conical waves,
i.e., the waves generated at an interface.

In order to see the way in which these wave fronts are determined from
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the expressions just used, we shall give a short discussion of one example.
If the integrals (3-145) to (3-148) are evaluated by using contour inte-
gmtum m the c mplex plane, the mn)or contribution to those integrals

f the integrands, for example, at their

Fic. 3-27. A complete set, of waves in two solid media produced by a point source of
compressional waves when ay > B > ay > By. (After Cagniard.)

poles. In (3-164) the root u = wu, of the derivative av/du is such a pole.
If we first put u = il in (3-158), where the real parameter I varies from
—® to ®, the root I satisfies the condition
hiy zly
- =0 166)
Vel VB - & @160

According to Cagniard, Eq. (3-166) can be given the following interpreta-
tion: Putting .

—recosc —

—

—i b ik @-167)

and htand, =r cosc ztani, =r,coso (3-168)

we obtain r = r, + r, and the relationships represented in Fig. 3-28.
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Tt is easy to see now that for ¢ =

0 the condition (3-166) corresponds
to the wave front of a disturbance traveling first as a compressional wave

from the source S in the direction SP and as a reflected shear wave in

rooso

Fia. 3-28. Interpretation of Eq. (3-166).

the direction PM. The time when this disturbance reaches an observer
at M is found as follows: If ¢ = 0, Eq. (3-167) takes the form

~lo

(3-169)

Substituting u = iko 8nd r = r, + r, in Eq. (3-158), we obtain from Fig.
3-20

+ 5, (3-170)

P

F1o. 3-29. Reduction to the reflected wave PS when o = 0.

which is obviously the time of travel for the wave front just mentioned.

In a series of investigations the method of Sobolev [54], mentioned
in Sec. 2-7, was applied to problems discussed in this chapter. Kupradze
and Sobolev [25] had shown earlier that when an elastic-solid medium is
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overlain by a liquid half space the system of oscillations as given by
Lamb in his problem is essentially the same but is supplemented by the
existence of new compressional waves in the liquid medium. They also
studied the influnce of the ocean on seismic waves. A similar case of the
propagation of a disturbance emitted by a source in the solid or liquid
was discussed by Naryskina [31, 32], and the displacements were deter-
mined to the first approximation. Smirnov and Sobolev [52] gave & new
method of solution of two- and three-dimensional problems. As mentioned
earlier, Muskat (28], using the methods of Jeffreys and Sommerfeld,
discussed the problem in conncetion with refraction shooting. Recently
Zaicev and Zvolinskii [60, 61] have investigated the problem of a wave
generated at the interface of two clastic liquids by Sobolev’s method.
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CHAPTER 4

A LAYERED HALF SPACE

Tt is only the exceptional problem of wave propagation in which a
homogencous layer exists whose thickness is so great, compared with the
wavelength, that the theories for half space considered in Chaps. 2 and 3
are applicable. In the present chapter we shall consider cases in which
one or more layers are superposed on the half space, obtaining results
of wider applicability to practical problems.

Love (Chap. 2, Ref. 26) gave the first comprehensive treatment of the
case of an elastic-solid half space covered by & single solid layer. He calcu-
lated the dispersion of Rayleigh waves and showed that a new surface wave
having particle motion parallel to the surface and perpendicular to the

could exist . Stoneley [193]
investigated the effect of the ocean on the transmission of Rayleigh waves,
treating the bottom as a solid half space. Problems of this kind dealing
with two- and three-layered media will be discussed in the following
pages. A general discussion for a multilayered half space will also be given.

4-1. General Equations for an n-layered Elastic Half Space. Many
problems of interest in geophysics and acoustics involve propagation of
elastic disturbances in a layered half space. In the most usual problem
the half space is divided into homogeneous and isotropic layers by the
planes 2, = 3., H,, where z = 0 s the free surface, H, is the thickness
of the jth layer, and H, = . By p,, \,, and x, we denote the densities
and elastic constants of the media forming the layers (j = 1,2, -+ , n).

An important case is again that of a point source, and, because of the
axial symmetry in the distribution of all quantitics involved, we have to
consider only two components of displacement, g, and w,. The latter is
taken parallel to the z axis; the former is perpendicular to it. The differ-
ential equations of motion for the jth layer are

(N+2u)|: :%"*am]

Otz J 4 Loy 0]

g,

GV
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If, as before, we assume that the layers are in “welded contact” at each
interface, the conditions

9 = Qs Wi = Wi atz =z (4-2)
will hold. The continuity of the normal and tangential stresses
o (% ‘wa) »

at the interfaces is also assumed, and we obtain the other set of boundary
conditions

@)= AT+ w6

atz =0

@9

@i = @udins

If any layer is & perfect fluid, the tangential stresses at its boundaries
disappear, and the equations concerning the tangential displacements at
its boundaries are eliminated. As to the conditions at infinity, the velocity
or displacement must vanish for all values of time. Thus

bz =z

g — 0 gu— 0

‘ mro o j=1,2,n } sz (45)

w, 0/

These conditions are ususlly replaced by the following:

w, -0
¢ =0 o0,
¥ =0 =0

where ¢, and , are displacement potentials defined below.
In the preceding chapters we have seen that the equations of motion
(4-1) are satisfied if we put

3
S OO A 1

s

Y,
o Tora r “) @

or
and ¢, and ¥, are solutions of the wave equations

Vv - T =

N N TR ﬁ
" o b o “9

The results for two semi-infinite media indicate that for layered media
we can use solutions of the type (3-119) to (3-122). In order to adjust
the general solution (1-71) of the wave equation to a case involving some
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Iayers of finite thickness, we retain both the positive and the negative
values of the coefficient of z in exponent for each layer whose thickness is
ite. It will be seen that these terms correspond to upward and downward
ng waves in the layer. For the nth layer of the present problem we
retain only factors of the form exp (—»2), » > 0, as required by Eqs. (4-6).

Omitting the time factor and choosing positive real paru: for the coefficients

(4-10)

we can write, forj = 1,2, -+ ,n — 1,

o= [ Qe e+ [T Qunmer P @ @
A A

= [ 8t @kt [ S a1z
A o

and o= [ Qe ae 13)

Vo= [ 8T (1)
8

Written in the form (4-11) to (4-14) the solutions do not yet include
the contribution of a point source located in some layer. We will assume
now that such a source is at a distance z = h from the free surface. Since
this source S(0, 0, ) can be located in any one of these layers, we will
introduce the spherical wave emitted by the source by adding its potential
to the corresponding ¢, or ¥,. If, for example, a point source of compres-
sional waves is in the first layer, we put

h=wtea (4-15)
where

.
o= - j; Julr)e (4-16)

raten k dk

"
represents the spherical wave propagating from the source with the
velocity a.

Tor a shear-wave source, a has to be replaced by 8, and », by »{ in Eq.
(4-16).

4-2. Two-layered Liquid Half Space. The dispersive waves observed
by Ewing (35] and Worzel and Ewing [211] in experiments on explosion
sounds in shallow water (10 to 20 fathoms) were first interpreted by
Pekeris [116]. He considered a problem of propagation of a disturbance in
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a two-layered liquid half space. Let the first liquid layer be water (ocean)
and the second the “liquid bottom” extending from z = H to z = w. A
point source  is placed at the depth A in the first liquid layer. Let the
density and the* velocity of sound propagation in each medium be p,

r

=0

SOk aum

e

z
Fra. 4-1. Point source in liquid layer over liquid half space.

and a, respectively (Fig. 4-1). The displacements g, and w, are expressed
in terms of the potentials ¢;:

ﬂv, de, -
&= w=Gr i=12 @1t
These potentials are solutions of the wave equations
2 1%, :
V=g =12 (4-18)
The boundary conditions are as in (3-56) and (3-57):
don _ 0
‘T‘; = 7“;‘ por = pwn  atz=H (4-19)
and @=0 atz=0 (4-20)

Tn boundary conditions involving pressure we have replaced the pressure
p.(8%./3¢") by pp.. In the usual &pplicatian to simple harmonic waves
this involves only the omission of a factor o, which would cancel.

We make use of expressions for potentials obtained earlier. Omitting
the time factor, we wrif

o= L ;l,ln(ky)z"‘“'“ ak

" e ak o+ [T QI d e

= [T amugneen @ @2

{Since Pekeris used velocity potentials ¢, our results will differ from his in dimensions.



128 ELASTIC WAVES IN LAYERED MEDIA

The first term in (4-21) represents the direct wave emitted by the source
8. The other two terms correspond to summations of upward and down-
ward traveling waves which have been reflected one or more times from
the boundaries, as in the general solution (4-11). In (4-22) the term
with the positive sign in the exponent has been omitted because of the
condition ¢, — 0 as z — @. The potentials ¢, and g, will satisfy the bound-
ary conditions (4-19) and (4-20) under the following conditions:

R Qe 408 2 0,0 (423)

BI} G g Qrnan Q.\e..‘.,.)] ~ Qe (agg)
k

Qe+ QT =0 )

where . 5= f (4-26)

Thus we have a system of three linear equations (4-23) to (4-25) from
which the coefficients @i, Q%, Q: may be determined. Then Eqs. (4-21) and
(4-22) represent a solution of the problem.
The determinant of Eqs. (4-23) to (4-25) is
1 1 0

A=t | e e e

et s o
- W, cosh v H + 8, sinh v.H) =)
and we obtain
ah hancebnll = sl =B
e@=3= 42 oosh 1l + by sinh v, “w®
kg e s = »
Q1 = —sinh b O T v b il @29
o pmeh sinh yh ~
@ = 20k S R+ by smh T (430

As a result of the term |z — k| in Eq. (4-21), different expressions for
the function g, occur for z > h or z < h. For 0 < z < h all three terms
in (4-21) may be written in a single integral with the integrand

[yk‘*"w GoQent 4 Q‘.e"“"’] /i) w31
Because of (4-25), this expression takes the form
—2Q.e"* sinh vz Jo(kr) (4-31)
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Thus, by (4-21), (4-31"), and (4-28), we obtain for 0 < z < &
) - sinhyg » coshn(H — 1) + by sinh n(H — B
ol = 2]“ Rlolkn) === 3y cosh nH + 6,5, sinh il dke
32
Forh < = < H the factor depending on 2 in the integrand of (4-21) takes
the form

Bty 4 gt 4 quntes .

and the potential ¢{’ for h < z < H can be written as

umh sinh vih  coshvi(z — H) — b, sinhy(z —
=2 f kI o(kr) == » cosh wH + 8y, sinh v, H &
(4-34)
Inserting (4-30) in (4-22), we obtain the potential , for H < z < @ in
the form

02 = 25, f " kdo(kr)

h -
 cosh Il + by, sinh v H Pk 485

Equations (4-32), (4-34), and (4-35) represent the solution of the problem.
We shall see now that these equations are identical with the solution found
by Pekeris [116] using another method. To obtain a formal solution it is
not necessary to start with the expression (4-21) in which a point source
is represented by the first term. Since the exponential factor depending
on the variable z can be expressed in terms of trigonometric or hyperbolic
functions, we can consider solutions of the wave equation of the form

f- F(k)J olkr) sin vz dk or ‘/;l F(k)J o(kr) cosvz dk

¢

We follow Pekeris in dividing the first layer into two parts by the plane
2z = h. Then the potential ¢, is represented by two different expressions:

= [ Awigmsinred 0<z<h
o= fa " BRI o) sin 7z dk (4-36)
+ '(;' COIokr) convzdk  h<z<H

and o= fn " D@k ke H <z @37

where B= = = —in (4-38)
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By this choice of ¢{ the boundary condition (4-20) is satisfied. There
are two new conditions, namely,

of = ol atz=h (4-39)
and a condition expressing the discontinuity of the vertical component
of velocity at the point source. This component is everywhere continuous
in the plane z = h except at the point S(0, 0, k). The fact that at this point
the liquid above and below moves in opposite directions can be expressed
by the equation

%—%=th(h)kac @10t
The function represented by
=/ " J(k de (-4

vanishes everywhere except at r = 0, where it becomes infinite in such
& manner that its integral over the plane z = h is unity. This may be seen
from the Fourier-Bessel integral

10 = [k e [ 100.00n @

Noting that Jo(k\) — 1 as A — 0, we choose £(A) to vanish for all but

infinitesimal values of X in such a manner that the integral over the plane
= his unity, or J f()2rA d\ = L Then f(r) is given by (4-41).
Tnserting (4-36) and (4-37) in (4-19), (4-39), and (4-40), we can solve

these equations for the four unknown functions A(k), B(), C(k), D(k):

Zk 7 cosB(H — h) + i85 sin v (H — h)
5, cos 7. H + 16,5, sin 5, H

A=

2ksinpih ¥, sinv,H — ibp, cos 7 H (4-43)

B = TS v cosnHl i, s

26,k sin 7k v
5 cosHl + io, sm 7 H
Thus Eqs. (4-36) take the form, equivalent to (4-32) and (4-34),
e 2-[»-1"“”)k in s 5y cosn(H — 1) + isgsinn = B) g oy

& 7, cos 7, H + 187, sin 7, H

ol =2 j‘n'lu(b_)lcsmv,h %1 cos B(H — 2) 4 8,7, sin 7,(H — 2) dk (4-45)

D=

5 cos H + 16,9, sin 5 H

{The factor 2 is used in (4-40) instead of —2in order to conform with the sign of the
first integral in (4-21).
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Now Eq. (4-37) becomes equivalent to (4-35), or

- - - sin 7,k

=28, [ ke 5 cosvill + ibgsnp O (440)

'

All these integrals reduce to a form representing a spherical wave emitted
by the source and another one reflected at the free surface, if we assume
that &, — 1 and % — 5. For these conditions, expressions (4-45) and
(4-46) become

= [t e ae - [ B

Equations (444 ) to (4-46) can be transformed in different ways, and
two of the transformations will be discussed here. One corresponds to a
representation of wave propagation by rays and the other by normal
modes.

The expression (4-45) for ¢{’ can be written in another form. Using K,
the reflection coefficient (3-17) for plane waves,

_ %= 8
K=t
and taking exponential functions instead of the trigonometric functions,
we can expand the last ratio in Eq. (4-45) in a scries as follows:
v cosn(H —2) + idmsinp(H —2) _ oo 1+ Ke~ 0
v, cos v, H + 16, sin . H 1+ Ko™

L K - Ko R ] (g
Therefore
B L

B Gk = g (447)

(4~48)

gk _ e-u,(.»;qm Jermesan) gy

-} (@-50)
As we have scen earlier, the first two terms of the right-side member
represent the direct wave (or ray) and the ray reflected from the free
surface z = 0. Now, according to Pekeris, the successive terms in (4-50)
can be identified with rays reflected a certain number of times from the
bottom. This interpretation had been used by Sezawa [160] for the case
of a liquid layer over a rigid bottom. Thus the four terms in the cocfficient
of K represent four rays reflected once, and those multiplied by K" cor-
respond to n reflections from the bottom. In support of this identification,
Pekeris takes the fact that for an impulsive source the integrals repre-
senting the rays vanish until the appropriate arrival times. This expansion
of the integrand into a series of terms which can be interpreted as succes-



132 ELASTIC WAVES IN LAYERED MEDIA

sively reflected pulses is due to Bromwich [12]. Newlands [105] used this
method and gave detailed deseriptions of the pulses. In the present work,
our principal interest is in cases where the horizontal distance greatly
exceeds the thickness of the layer. In such cases pulses become prolonged,
and travel times for successive pulses become nearly equal, so that they
overlap. As would be expected, a more suitable and direct method for
these cases lies in evaluation of the original integrals by methods of contour
integration used in the preceding chapters.

Denoting by F(s, ) the multiplier of 2./o(kr)k dk in any of the integrals
(4-32), (4-34), and (4-35), we can write

p=2 f JoEn)F G, vk db (@51

e= fn " )P, vk e+ H(k)F G, vk dk

~[na+ [ La -52)

where H§" and H® are Hankel functions of the first and second kind,
respectively.

Tntegrals of the form (4-51) and (4-52) are improper. The integrands
become infinite at the zeros of the determinant (4-27) or at the roots of
the denominator in (4-32), (4-34), (4-35), or (4-44) to (4-46). To evaluate
these integrals, contour integration in the complex ¢ = k + ir plane is
used, as before. The meaning chosen for improper integrals such as (4-51)
is the limit of the integral along a path like that indicated by the continuous
lines OM in Figs. 4-2 and 4-3. This definition has the advantage over the
definition of (4-51) as identical with its principal part in that the value
of the integral is unchanged if the poles are displaced infinitesimal distances
into the fourth quadrant, as was done in Sec. 2-5. The contours and the
cuts, shown in Figs. 4-2 and 4-3, are chosen with particular attention
to functions involved.

The integrals along the real axis may be replaced, using Cauchy’s
theorem, by integrals along the imaginary axis, by branch line integrals,
and by the residues. Thus, from Eq. (4-52)

~ »
¢=f 1,d;+f l,d;+] Ldt —2ni Y Resl, (4-33)

o B oas
provided that the complex poles are not located on the permissible sheet

of the Riemann surface, as will be shown later.
More precision is required in the definition of the integral (4-51) since
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the part of the real axis from the origin to the branch points is a part of
the cut corresponding to the condition Re », = 0, chosen in Sec. 2-5.
Moreover, substituting Hankel functions instead of the Bessel function,
we note that the origin is a logarithmic singularity for both of those funo-
tions. It is a regular point, however, for Jo.

-

Fio. 4-2. Integration path for integral containing Hy®.

Fio. 4-3. Tntegration path for integral containing Ho®®.
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As to the type of the Riemann surface which can be used to transform
the integrals by Cauchy’s theorem, it seems at first that there are two
radicals introduced and, therefore, the surface should be four-leaved.
Ti the integrals for the first layer are written in the form (4-21), where
the direct wave from the source appears as a separate term, both integrands
are mixed-valued functions of » and ». The solution seems to contain
terms with contributions from both branch line integrals corresponding
to branch points k., and k,,. However, if the direct wave is combined
with the reflected wave, asin (4-32), (4-34), and (4-35), then all integrands
are even-valued functions of », and the corresponding branch line integrals
vanish. It appears that the disturbances corresponding to the branch
point ,, vanish through destructive interference hetween the direct
wave and waves arising from reflections at the surface and at the interface,

Tt will be proved in Sec. 4-8 that in the general problem of this kind
where there are parallel layers overlying an clastic half space only the
branch points corresponding to the latter medium determine the Riemann
surface. Thus, in the problem of a liquid layer overlying a liquid half
space now considered, the Riemann surface is two-leaved, as represented
in Figs. 4-2 and 4-3, The branch point A of these figures corresponds to
the factor », = %= V/¢* — k%, which makes F(»,, »;) a two-valued function
of na.

If we proceed as in Sec. 2-5, the cut given by the condition Re », = 0
begins at k.., runs to the origin along the real axis, and then goes to
—io along the negative imaginary axis. Im », is positive in the first
quadrant and negative in the fourth quadrant. Re », is positive in both
quadrants by the choice of the Riemann surface. We shall denote by the
symbol »; or »; that Re », = 0 and Im », > 0 or Im », < 0, respectively.

By use of the relation Hi"(¢r) = —H{®(—¢r), the first integral in
(4-53) can now be written as

7 G, v r = = [ HE R, i e
which combines readily with the second term of (4-53). Thus
o= fa T HEGm) e, v3) — Flowvliridr
+ [ EPEIF6, D = Fow sl db — 2 X Res @)
= _L = 2ri Y Res (I) (4-51)

The solution (4-54) is composed of a sum of residues corresponding to
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real roots and a branch line integral along £. The integrand of the second
integral in (4-52) has the form

M)

I = H"(kn)

(4-55)

The residue at a simple pole «, for an integrand of this form is given by

 H® (g M) "
Res (Io) = Hi"(x) N (4-56)

* For solutions of the form (4-44) to (4-46) «, is the root of the equation
N() = 7 cosn,H + idw, sinvH = 0 (4-57)

with this condition
iy sin 2 sinnh

M) = =G0 = (4-58)
Nilw) = 5 V’ s il — sinnH cosnH — 8 sin® n.H tan 7, H]  (4-59)

By (4-44), (4-45), and (4-54) to (4-59), the potential for the upper layer is

Tamwl
(4-60)

In treating an improper integral of the type (4-51) Lamb (Chap. 2, Ref. 22)
chose to define the integral as identical with its principal value. His final
result for the residues represented standing waves. His definition of the
improper integrals (4-52) differs from ours by the amounts —i 3 Res (I,)
and —xi ), Res (I,), that is, by the contribution to the integrals along the
lines OM in Figs. 4-2 and 4-3 from the small indentations above the poles.
These terms correspond to the free waves added by Lamb to his result to
produce outward propagation of the waves [Jardetzky (72]; sce also Whit-
taker and Watson (Chap. 1, Ref. 66, p. 117)]

Returning to a discussion of the roots of the period equation (4-57),
it will be recalled that we assumed the absence of complex roots on the
permissible sheet of the Riemann surface in writing Eq. (4-53). The
equation

_ (k) H si
o=l = L 2,: H — sinn,H cosnH — nfsin'

A, =» coshwH + dpysinh v H = 0 (4-61)

is identical with (4-57) because of the definitions of 7, = —dv, given in
(4-38). For @, < as, ka, < ka,, and for k > k., both » and », are real and
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‘The left-hand member of (4-61) cannot vanish for k,, < k < @
Thus the real roots x. of (4-61) must lie

positi
and similarly for 0 < k <
in the interval k., < x < k

To locate complex roots, we put

Hy = HV{ — ki, = po + ig
Hyy = HVT =Ko, = p, + iy

with p; > 0 and p, > 0. The coefficients ¢, and g, are positive in the first
quadrant (Fig. 2-7) and negative in the fourth. For o real, k., and k.,
are also real, and therefore the preceding equations yield the condition

(4-62)

P = ata (4-63)

Substituting (4-62) in (4-61) and separating the real and imaginary
parts, we obtain two equations

i+ 8p.tanh p, = tan q(”—;1 tanh p, + s,q,) p
' (4-64)

P;T"u- 81¢a tanh p, + tan ¢(p: tanh py + 8p)) = 0

Eliminating tan ¢,, we obtain

Pup + dipatanh p) __ i(ps + 3ips tanh p) (65
¢:(p: tanh p, + 4:p)) (s tanh p, + 5,p,)

Because of the convention of signs mentioned above, this condition cannot
be satisfied in the first or fourth quadrant. Therefore we must draw the
conclusion that the complex roots of the period equation (4-61) cannot
be located on the permissible sheet of the Riemann surface as defined in
the preceding sections

The same conclusion can be reached if we write Eq. (4-61) in the form

3 tanh (p, + gd) = HZ:{ (4-66)

and separate the real and imaginary parts. Two equations result:

S tanh py(1 + tan® ¢) _ _ pipa + 010s
T+ tanh” p, tan® ¢, nta o

8 tan gu(1 — tanb® p)) PiG2 = Pagy
1 + tanh® p, tan® g, P+ a e

and Eq. (4-67) cannot be satisfied with the convention of signs used earlier.
We can easily sce that there are no roots of the period equation (4-61)
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on the imaginary axis. If we put { = —im, this equation takes the form
Vm ke, cos H Vm' kL,

+ 8, Vm + k3, sin HV/m® + k3, = (4-69)

which has no real roots m.

Schermann [151] investigated roots of the period equation of a liquid
layer over a semi-infinite solid. In principle, his results for this more
complicated case should be the same as those for the present problem.
Schermann found a finite number of real roots and an infinite number
of complex roots. From the discussion just given, we must conclude that
these complex roots do not fall on the permissible Riemann sheet.

Discussion of Solutions. In many investigations involving contour
integration, branch line integrals are interpreted as terms which are
nonessential at large distances. The asymptotic behavior of such integrals
and their physical interpretation can be discussed by different methods
(sce, for example, Secs. 2-5 and 3-3). The branch line integral in Eq.
(4-60) corresponds to a wave traversing the refraction path shown in
Fig. 3-18. Schermann has shown that in the two-dimensional case a branch
line integral is of the order r%. The amplitudes of waves corresponding
to these integrals in three dimensions (see Sec. 3-3) diminish as r™*. We
shall, therefore, discuss in greater detail the more important part of the
solution (4-60) given by the residues, for which the decrease with distance
is less rapid.

It may be seen that the expression (4-45) for ¢!/, having the same
poles as ¢f in Eq. (4-44), also takes the form (4-60). Thus these terms
represent waves in the whole layer (0, H). Similar considerations prove
that the part of ¢, in Eq. (4-46) due to residues is given by

_ 2,;5, ): H{?(x)9,H sin p,h sin 5, H ¢~
m = —sinp,H cosn,H — 6 sin® 5,H tan ,H

forz>H (470

-

An approximation of the residues in Eqs. (4-60) and (4-70) convenient
for discussion can be obtained if we make use of the asymptotic expansion
of the Hankel function

D) ~ \% op [i(’i - u)] @m
LetnH =z

WH=-HVF, — k=2 W =-VE -2 @7

and Viz) = 73

EX
%, — 8in 7, cos z, — & sin” z, tan z,
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Then, if we use ~i = exp (—ir/2) and replace the time factor exp (iaf),
the residue terms in Fiqs. (4-60) and (4-70) yield the terms

e 2 E -]

-V(r.)sin%hsin% fr0<z<H (474)

vrew - w-3)]

“lsin g, exp [~ — H)]  forz>H  (4-79)

25,
ow =g

V(a2 sin &g

Each term in Eqs. (4-74) and (4-75) will be called a “normal mode,” the
mode being characterized by the subscript 2. This subscript indicates that
the corresponding quantity is to be evaluated at k = ., where . are
the roots of the period equation (4-57) or (4-61) for a given w. From the
exponential factor it can be seen that the phase velocity . for the nth root
can be expressed by

o= (4-76)

)
“

The period equation (4-57) defines an implicit relationship between
any two of the three variables k, w, and ¢, as may be seen by writing it in

the form
ot HE — K = —HGE =% @

For k., < k < k,,, all terms are real, and real roots «, exist. In Fig. 44
are plotted the curves representing the right and left sides of Eq. (4-77)
as functions of the parameter H(k3, — k)% The intersections shown by
circles define the values of x, which are real roots of the period equation.
Tt is scen that for any finite value of w the number of real roots is the
nearest, integer to the number H(k%, — k2,)!/x + 1, the trivial root at
the origin being included. Thus there is a finite number of poles of the
integrands of (4-44), (4-45), and (4-46) on the real axis.

1t is particularly instructive to write the period equation in terms of
¢ and & as follows:

mkl]1a%7l=—%1‘%fl/,l—% -8
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When Eq. (4=77) is written in this form, real roots correspond to the case
a3 2 ¢ 2 ay. This last equation is an implicit relation between the frequency

i-g )

and the phase velocity c. For a given value of phase velocity it is scen
that the frequency is & multiple-valued function of phase velocity, each

8 tan HRZ, -2

|
|
|
Pyl
BT PR/
|
|
|
|

= HVEE, -
HVE - 1, ~ N BB,
I
AN
|
|

|
I
|
|
|

Fra. 4~4. Method of determining real roots of Eq. (4-77).

value belonging to a different mode of propagation. This equation is
best treated numerically by choosing a value of ¢ and caleulating the
corresponding value kH. It is evident that as ¢/ay — au/ay

m_.(zn-n;/\/g;j @20

This corresponds to the cutoff frequency of cach mode, ie., the lower
limit of possible frequency for this mode. As ¢/ay — 1,

’:H’)’n‘l/»‘:*;—lﬂw (4-81)
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and it is seen that propagation at the phase velocity ¢ = a, occurs in each
mode at the highest frequencies. More precisely, from the definition of
the wave number k = 2r/1, large values of kH correspond to large values
of the dimensionless paramoter H/l. Thus for < H, ¢ — a for all modes.
For as/ay > c/ay > 1 the range of x,H is such that

(n - %). <G -1 <ne )

Asn — w, that is, for the higher modes,

AH«omr/1i,—l,
ot

and the modes form a harmonic series.

It can be shown that the period equation expresses the condition of
constructive interference between plane waves undergoing multiple
reflection in the liquid layer at angles of incidence beyond the critical
angle 6., = sin™* (a/a,). In Fig. 4-5 ADEF represents a portion of the

Fia. 4-5. Interpretation of frequency equation BC/GN = L/,

path of a plane wave which has been totally reflected at the bottom with
a phase change 2¢ and reflected at the free surface with a phase change
of —m. As the wave front, shown by the dashed line, moves a distance
BC in unit time, it traces the distance GN in the horizontal direction,
where GN' = ¢ = a/sin 6 is the phase velocity defined earlier. For this
representation the wave number k may be defined by the equation
k= 2x sin 6/l,, where [, is the wavelength measured in the layer along
the path BC and I = Io/sin 6 is the wavelength measured in the hori-
zontal direction. If the wave front GBE is to interfere constructively
with the coincident wave front which has traversed the additional path
BDE, it is required that

2

3, BDE = 2(0) +x =2 n=123, .. “-83)
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From Fig. 4-5, BDE = 2H cos 6, and from the results of Sec. 3-1

Vel — 1
V1= cd;

Taking the tangent of both sides of Eq. (4-83) and using these definitions,
we obtain the equivalent of Eq. (4-78). From this point of view it is seen
that the normal modes are i each
higher mode a higher order of i and the disturb-
ance at a distant point may be obtained by the superposition of waves
arriving at the point along the oblique rays for which constructive inter-
ference oceurs. 7

In Eqs. (4-74) and (4-75) the factors V(z,)/ Vs, give the relative
excitation of each mode. The factor sin (z,/H) shows the influence of
the depth of the source on the amplitudes of the different modes. The
vertical-pressure distribution for each mode s given by the factor sin (z,2/ H)
which is plotted in Fig. 4-6 for the first two modes. It is apparent that,

cot e =

Srface]

f=f.
Tt f<i<m i
Second mode
variation in liquid lay frequency £, intermediate

0. 4-6. Verti
roquncy . and i s n the st e o

for all modes and for all frequencies, the free surface s & node in pressure
and in horizontal particle velocity and an antinode in vertical particle
velocity.
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As would be expected, at the great distances for which our approxima-
tions hold, the steady-state amplitudes decrease as r™* for the normal
modes and r* for the refraction waves from the branch line integrals,
which may be compared with the 7 decrease for body waves in a homo-
geneous medium.

It was pointed out by Satd [145] and Officer [110] that under certain
conditions the branch line integral can yield terms as important as the
residue. In the branch line integral £ in Eq. (4-54) the denominator of
F(y,, v3) is given by Eq. (4-57), using the relations », = i, v, = i7,. To
obtain the common denominator of the factor in brackets of (4-54) we
write

1 1
5 oosvll — tomsmnH 7, coswH + ibmemnd D
Thus, when h < z < H, for example, the branch line integral in (4-54)
takes the form
g o, 7, sin p;h sin .2
= 2i5, ool T

e 2is LHﬂ @) 9 cos” B H + 817 sin” 7, H sy (485
Since 7, is very small in the vicinity of the branch point, the term containing
sin® 5, is usnally neglected in evaluating (4»35), and the amplitude is
found to decrease as r*. However, when cos 7, = 0, this result is invalid,
and evaluation of (4-85) yiclds an amplitude which decreases as r™". Tt
is interesting to note the physical interpretation of the condition
cos »,H = 0. With the substitution k = 2x sin 6/l and ¢ = w/k = ay/sin 6,
this condition can be written in the form

2 9H c0s 0+ 7 = 2nr (4-86)

Equation (4-86) expresses the condition for constructive interference
between waves traversing the paths shown in Fig. 4-7.

Generalization for a Pulse. As stated in Sec. 2-6, to study the propaga-
tion of an impulsive disturbance it is convenient to use the Fourier integral
to represent the initial disturbance as the summation of & complete spec-

Fra. 4-7. Paths of multiple-reflected and refracted waves which may interfere.
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trum of simple harmonic waves by a suitable choice of the initial phases
and amplitudes. If the propagation is through a dispersive medium, it is
well knovn that distortion of the pulse will result from variation of phase
velocity with frequency. At a sufficiently great distance from the source
the initial pulse will be transformed into a train of sinusoidal waves in
which the frequency and amplitude vary gradually along the train.

Our derivation of the steady-state solution started with a spherical wave,
which in an unlimited homogeneous medium could be expressed as
@ = exp [i(ot — kR)]/R. If, instead of a harmonic function of time, we
consider an arbitrary disturbance S(¢), we can make use of the Fourier

" transform

9@) = \\/15 f_ S(t)e™** dt (4-87)
to obtain the initial time variation in the form

s = ﬁf‘_ e

In the problem of two liquid layers, whose steady-state solution is
given by (4-74) and (4-75), application of the Fourier transform to Eq.
(4-74) would give, for an arbitrary initial disturbance S(),

' e (-89)

otmrmrmeroy V(2) 2

Bup = ;1%2; b3 f; de Vs en 224, (4-89)

for 0 < z < H and a similar expression &, for z > H.
To represent the initial disturbance due to an explosion we choose
S() as follows:

t>0
0 t<o0

S = (4-90)

where ¢ is a parameter which depends on the energy of the explosive
charge, among other factors (see Cole [19]). The corresponding Fourier
transform is

_ 1
“)7\/%(.14-1,.;) @-on
which gives for (4-89)

) .
‘[Ef e V(z.,)smvsm—da (4-92)

@,
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To obtain an approximate value for this expression we use Kelvin’s method
of stationary phase. The exponent in Eq. (4-92) will have a stationary
value at a frequency ws, where w, is the root of the equation
d(wt — ks — 7/4)/do = 0, that is, at £ = r dx,/dw. As shown by Kelvin
(see Appendix A), for given values of £ and r the integral for d,, will be
zero, because of the rapid alternations in sign of the exponential factor
and the more gradual changes of the remaining factors in the integrand,
except for a narrow range of w near w,. By use of Eqs. (A-14) and (A-15)
the value of (4-92) is obtained for large r:

A gcuimemstinest
=2y Uﬂ[ Sl :l T Vaysin S

= o+ o

for0<z<H

Here y = woH/2ra;, U = du/dk, the upper sign in the exponential is
taken if d(U,/a,)/dy is positive, otberwise the negative sign s used, and
x, and x, are to be taken for w,.

The quantity U = dw/dk = r/t, defining the velocity of a group of
waves having angular frequency w, is known as the group velocity. It
is related to the wave or phase velocity ¢ by the equation

- de
Us=ct+hkgy - (4-94)

At large distances amplitudes can be calculated from Eq. (4-93).

It should be noted that ®,; and, similarly, ®,; decrease with distance
as 7', an additional factor of ! having been introduced to Eqs. (4-74)
and (4-75) as a result of dispersion. The amplitude of ®,, varies inversely
as the square oot of the slope of the group-velocity curve, if the group
velocity is considered as a function of the dimensionless parameter

vt M (4-95)

For values of w near a maximum or minimum value of the group velocity
Eq. (4-93) is not valid, for it involves the assumption that higher deriva-
tives are negligible in comparison with dU/dy. In the neighborhood of a
stationary value of group velocity, the next approximation, given in a
convenient form by Pekeris, leads to

~ tan”' (/o) —

€08 fuol — K - r/4]
% = g Zi +u).(,/2»1 2 dZ

(4-96)
E(m) V() sin T oh 9
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for 0 < z < H, where
o d', a_dU.

* Haw =~ "0 dy o
Bm) = miTo(m) + ] i g (@-98)
E(m) = miI(m) — Im)] it < UL or (4-99)

ul

ndE) R G-w)  ew
Pekeris has given the name Airy phase to the waves associated with &
stationary value of group velocity. The factor E(m) represents the envelope
of the waves in the Airy phase and is plotted in Fig. 4-8 from the data
given by Pekeris. It is to be noted that the amplitude in the Airy phase
depends on r~** in contrast to r~* for other waves in the train. Thus the

Airy phase becomes relatively stronger with increasing distance.
The frequency equation (4-78) was used to calculate the ratio ¢/ay,
as a function of the dimensionless parameter v (4-95), from which U/a,

E(m)

Em)
°
S
L

04
02
~—
0
16 08 08 16
t<min me— —m t>min.
£>max. t<max.

Fra. 4—6 Function E(m) representing the envelope of the waves in the Airy phase.
(After Pekeris.)
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is obtained by the aid of Eq. (4-94). In Fig. 4-9, given by Pekeris,
a family of phase- and group-velocity curves for the first mode for various
values cf a,/a, when p,/p, = 2.0 is presented. Tt is seen that the phase-
and group-velocity curves cut off at a low-frequency limit where U = ¢ = a;
and that they approach a, asymptotically for large . A striking feature
s the occurrence of a minimum on each group-velocity curve, the minimum
value being lower and occurring at a lower frequency, the greater the
ratio a;/a.

To illustrate features of the higher modes, phase- and group-velocity
curves for the first three modes and for the ratio a,/a, = 1.5 are shown in

ll.S ‘
@ I
14 Vix,
-
13 X -
TN
12 r
|
11 \‘l
I\ - ~
10 ‘\ —— o
u T 3! de
- o358 ™
09 l\/m“‘“ A9 S i T
Al
08 v, \‘
[T 1]
o1 05 1 5 10
= Hf/ay

Fia. 4-10. Liquid layer over liquid substratum. Phase- (c/a) and group- (U/a) veloc-
ity curves and excitation amplitudes for p:/p = 2.0, ay/ey = 1.5 in the first three
modes. (Afer Pekeris.)

Fig. 4-10. Generally speaking, higher modes involve higher frequencies,
and for any given frequency only a finite number of modes is possible.
In preceding sections the steady-state solutions were expressed by a
sum of residues of the integrand and a branch line integral corresponding
to the branch point ¢ = as. The residues lead to the normal-mode solutions
which predominate at large distances because of the factor ™. The normal-
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Fro. 4-11. Liquid layer over hq\nd mhsu—mm Theoretical Bmphtuﬂu, frequency, and arrival time of
first. three modes for case pa/py = d as/ar = 13. (After Pekeris.)
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mode solutions vanish at ¢ = U = a;. At a time greater than r/a; (that is,
immediately after the arrival of compressional waves through the lower
layer), tue normal-mode contributions begin gradually, increasing in
amplitude with increasing time. The wave amplitude and frequency, for
example, can be obtained from Fig. 4-11 as a function of travel time.

Tt is seen that the first of the normal-mode waves arrive at £ = r/a, with
the cutoff frequency. These waves correspond to the left end of the group-
velocity curve (Fig. 4-9), and because of the steepness of the group-
velocity curve their frequency increases only very gradually with time.
At the time 7/ay, corresponding to travel in the upper layer, high-frequency
waves associated with the right-hand end of the group-velocity curve
arrive, on the earlier low-freq illations. Their frequency
rapidly decreases until a time corresponding to travel at the minimum
value of group velocity, at which time the frequencies of the two super-
imposed wave trains become equal, forming an Airy phase. The branch
line integrals contribute waves traversing the refraction paths shown in
Fig. 3-18. The waves decrease with distance as r™* except near the cutoff
frequency, where the multiple refractions interfere constructively and
decrease as ™",

All modes theoretically contribute to the motion at any point but in
many cases recorded wave trains consist almost entirely of contributions
from a single mode, usually the fundamental. This situation results gener-
ally from the actions of filters in the recording system.

The results of Pekeris for two liquid layers have often been found
applicable to studies on explosion sound transmission in shallow water,
implying absence of rigidity of ocan-bottom materials. This is not sur-
prising since core samples consist of unconsolidated sediments almost
everywhere. An obvious result of the Pekeris theory explains the early
experimental observation of Ewing (35] that any accurate determination
of the sound velocity for horizontal transmission through the surface
layer must be made at the highest frequencies. An example taken from
shots recorded at a distance of 17 miles in a water depth of 90 ft is shown in
Fig. 4-12. The general similarity of the observed wave train with that

T A AR AAAA |
0.1 ’

sec]
e
Ground water Wave water”  Airy phase

=

Fie. 4-12. Waves (through two different filters) from an explosive charge of 55 Ib ob-
sorved at a range of 1,030 times water dopth, water depth = 90 ft. Bottom sediment
thickness = 220 ft, bottom sound velocity = 1.13 times velocity in water. Source and
receiver in water. (Courtesy of C. L. Drake.)
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Fig. 4-13. Theoretical wave motion in first mode for range 460 times water depth, water depth 60 ft, bottom velocity
1.1 times velocity in water, density 2.0, charge weight 5 Ib, (Afler Pekeris.)
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computed for the first mode alone from Eqs. (4-93) and (4-96) is striking
(Fig. 4-13).

Dobrin [26] used the observed dispersion to deduce properties of the
lagoon bottom on Bikini atoll. He found that when the theory was appli-
cable it could give useful information on the bottom to a depth comparable
to water depth. Cases where the simple liquid-layer theory has been found
inadequate have been attributed to a layered bottom, a low-velocity
bottom, or a solid bottom.

4-3. Three-layered Liquid Half Space. This problem was investigated
by Pekeris [116] and Press and Ewing [118]. The method developed in
the preceding section can be applied to the new case with slight modifica-
tions. Figure 4-14 shows the notations which will be used. To the boundary

¥ h *
H S am
)
H, ey
.
Py a3

2
Fia. 4-14. Point source in three-layered liquid half space.

conditions (4-19) and (4-20) we add the two conditions

% = e pe=ee atz=IitH (4-101)

The former layer thickness H is now denoted by H,. In order to satisfy
the five boundary conditions, we shall have five arbitrary functions Q in
expressions (4-11) and (4-13), and we can introduce the potential (4-16)
representing the source. In the preceding section, for a layer of finite
thickness, the potential was alternati by i

containing trigonometric functions of z, such as (4-36) and (4-37). In
the first layer, where the source is located, we made use of two different
expressions ¢ and ¢’ for the potential above and below the source, respec-
tively. These expressions satisfied the conditions of continuity in ¢ and
of discontinuity in displacement; that is, we put [see (4-39) and (4-40)]

9t

d=a D= a—‘;f; = 2fu Jkdk  atz=h  (4-102)
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We choose ¢f such that the condition of vanishing pressure at the free
surface is satisfied. The solutions may now be written

o= f' AW sinrzdk  for0<z<h

ol = f" " B)Jo(ke) sin vz dk + .( " COTk) cosvie dk

forh <z<H, (4-103)
on= [ DI sin vz dk + [ B0 (lr) cose de
forH, <2< Hy+ Hy
o= [ PR a ol Hy <
3
where
9 = —iVE ~ R, fork> k. (4-104)
The conditions (4-102) are satisfied if by (4-103)
A sinph = Bsinwh + C coswh
2% (4-105)
A convh — B coswih + Csinh = 2°
Hence
4-p-2% % cosnih
(4-106)

C= % sin vk

and the number of unknown factors A, B, C, D, E, F, --- is reduced to
four. To determine these factors we substitute (4-103) into the remaining
boundary conditions (4-19) and (4-101). Putting

[ - (4-10

Pl ] (4-107)
we obtain four equations
bisin sl B = sinnH, D = cos v, B = ~2Eginnh cosn
¥ cos 7 Hy B — v; cos B,Hy D + 7, sin7.H, E = 2k sinvihsin . H, (4 108)
Sisindy(H, + H,) D + 8, cosvy(H, + H) B — ¢+ =
9, coss(H, + H) D — vysinv(H, + H) B + ine """’F =0
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Substituting the factors 4, --- , F into the expressions (4-103) and using
the notations

89, tan 5,1, ~
8= 55 + By wnnill, @-109

and
V = s sin5H, + 0,8 coswiH, (@-110)

we obtain the solutions

o =2 [ 9ol S22 (5 connll = B+ Sosinn(H, — Wk dk

(a-111)

sin v,

ot =2 [ 3 BB 19, conn(, — )+ b sinn(H, — A @
(-112)

sin F,h

[8 cosw,(z — Hy) ~ sinv,(z — H)lk dk

o =28 [ 2
° (4-113)

sin y.h

) S cos ,Hy ~ sin 5, H,Je" """ df

(4-114)

The integrands in (4-111) to (4-114) are even functions of 7, and %,
and therefore the corresponding branch line integrals will vanish.

We now discuss one of these solutions, e.g., (4-112), in more detail.
Since there is one branch line integral which corresponds to the branch
point kus = w/ay, We can write, as in (4-54),

o =208

o= L — 2ri ¥ Res (115

The residues are determined by the roots of the frequency equation,
which is, by (4-110),
V=0 o tand=-nSm @-116)
Again use has to be made of real roots only.
As before, we replace the Bessel function J,(kr) by the Hankel function
H{? (kr), and, by similar transformations used in Sec. 4-2, we obtain the
branch line integral in the form

[= [ weewsar+ [ mpeovcar @

_sinmh

o
S B sin W(H, = 2) + 5,8 cosv(H, — :)]

(4-118)
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As to the wave trains represented by residue terms, we find on applying
the same rules we used in Sec. 4-2 that they are given by the sum
sin 3,8 eosv,(H, — 2) + 7.5, sin 0(Hy — 2)

A /k).

E (@v/an), 119

The frequency equation (4-116) takes different forms for ¢ > a, or ¢ < a,.
Now, if ¢ = a or k = kay, we shall have 5, = 0 [sce Eq. (4-104)]. Then
by Egs. (4-116) and (4-109)

—2rie’™ Y HE (ki)ka

tan 5,1, tan 7,H, (-120)

from which the cutoff frequencies can be computed.

Since by (4-116) the phase velocity ¢ is a function of frequency or of k,
the group velocity of cach of the normal modes for a three-layered liquid
half space may be computed. Pekeris has shown that under certain con-
ditions the group-velocity curve now has two minima.

Some results of Pekeris’ calculations are presented in Fig. 4-15, where
group-velocity curves for a threc-layered half space are shown for the
three cases indicated. In case (a), where H,/H, = 0.1, ay/ay = 1.1,
/e = 3.0, the second layer is thin, and its properties are nearly the
same as those of the surface layer. Comparison with Fig. 4-9 shows that
the group-velocity curve could be approximated by treating these two
layers as a unit having the same composition as the upper layer. For case
(), where Ho/H, = 10, we may approximate the high-frequency end of
the group-velocity curve by considering H, = = and the low-frequency
end by considering H, = 0. In cases such as (b), where the layers are of
comparable thickness, the complete three-layer ealeulation must be used
except for very high modes where any problem may be approximated by
considering two layers at a time. The case for which the intermediate
layer has a lower sound velocity than the first layer was investigated by
Press and Ewing [118]. They were interested in the fact that in some areas
the “water wave” consisted of a brief burst of high-frequency sound which
did not show the dispersion and Airy phase normally found. Considering
the possibility that a low-velocity sea bottom could account for this

hey the phase- and locity curves for
a three-layered liquid half space with a; < a4 < ay and H,

In the first mode there is found a curve not unlike that which Would
be obtained if H, = 0, that is, it has a low-frequency cutoff at U = ¢ = ay
and a minimum group velocity, and it approaches a, asymptotically at high
froquencics. Only the low-frequency branch of this curve was observed

, absorption of high-freq sound or possibly subl
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in the a, layer being suggested as an explanation for the absence of the
high-frequency branch. To deduce the properties of the direct waves,
which traveled at velocity a,, the authors proposed that reflections at
the H,H, interface at grazing incidence could explain the retention of
high-frequency energy in the water layer.

Officer [109) has derived the frequency equation and solutions for the
three-liquid half space by the use of rays and plane-wave reflection and
transmission coefficients. He found that the frequency equation expressed
the condition for constructive interference between the primary wave
P, in Fig. 4-16 and the sum of the multiply reflected and transmitted
waves P,, Py, P, --- in a plane normal to a wave front.

’i‘ }\‘lﬂ,A’if\"’ ,/\”,/\”

Fic. 4-16. Ray interpretation of period equation for three-layered half space.

4-4. Liquid Layer on a Solid Bottom. As in all other problems treated
in this chapter, we assume that the boundaries are parallel planes and
consider the problem of propagation of a disturbance in a medium which
is composed of a liquid layer and of an underlying solid half space. This
problem applies directly to the propagation of carthquake surface waves
across the ocean and to the transmission of explosion sound in shallow-
water areas when the bottom is solid. Calculations will be given for a
source of compressional waves located in cither the liquid or the solid.

To investigate the effect of the ocean on transmission of Rayleigh
wayes, Stoneley (193], using the theory of plane waves, caleulated phase
and group velocities for a water layer assumed to be 3 km thick over a
solid substratum. He confined his attention to the longer-period Rayleigh
waves and concluded that the effect of the water layer was unimportant.
In a note added to that paper, Jeffreys proved from Stoneley’s equation
that there exists a minimum of group velocity at some period shorter
than those investigated by Stoneley. Sezawa [162] obtained an approximate
solution for the propagation of cylindrical waves, provided that the wave
length was great compared with the water depth, but he also neglected
the shorter waves which are prominent on many seismograms. Scholte
(152], while attempting to explain microseism generation by transfer of
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energy from gravity surface waves to elastic waves in the bottom, con-
sidered t'e combined effects of gravity and compressibility in a layer
of water in contact with an elastic-solid bottom. Not being concerned
with details of horizontal transmission, he gave no mention of dispersion
or group velocity. Press and Ewing [117), in a study of microseisms,
presented curves of phase and group velocity for the first and second
normal modes for plane waves in a liquid layer superposed on a solid
bottom. Later, in a search for Airy phases from submarine earthquakes,
they extended the theory in order to include the case of an impulsive
point source of compressional waves located within the solid bottom [120].
For application to transmission of explosion sound in shallow water they
gave caleulations for an impulsive source within the liquid layer. Ewing
and Press [39, 43] used this theory o explain some features of the propaga-
s ocean areas. Longuet-Higgins [90] applied
zontal transmission of microseismic energy

across the oceans.
Compressional-wave Source in the Solid Substratum. Following Press
and Ewing [120] we use the notations of Sec. 4-2 and Fig. 4-17. Introduce

o

2Bz p
S(0, H+d)

2

Fro. 4-17. Compressional-wave source in solid substratum.

the two velocities a, and 8, for the propagation of waves in the solid layer.
The displacements are expressed in terms of the potentials gy, ¢s, and ¥a.
Thus
«= "& w=2
(-121)
¥ 48

2
q.=7+a~;‘; "”E?{ ‘,,,-Hch
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with the boundary conditions

o=0 (4-122)
0 = w, 123
@2 =0 (4-124)
@) = (Puda (4-125)

In order to satisfy condition (4-122), we can put, as in Sec. 4-2,
o= f ARJo(n)sinszdk  for0 <z <H (4126
o
where
LR AT @127
A time factor exp (iaf) is understood.

With a slight change of notation we can use the expression (4-16) to
represent spherical waves emitted by a point source at r = 0,z = H +
a

o= [ Eemugn e+ [ QB i

(4-128)
Vo= [ ST
where Bk K W =ka-F (4-129)
If z < H + d, we have
"k oae-n-a . e
o= [ Lem Jolkr) de + [ Qulolkr)e™ dks
[ [omwea

= [ ST ai
o
The boundary conditions (4-123) to (4-125) at z = H now take the form
5A cosnH = ke + K8 — 5,Q ™ (4-131)

2,Que™" " + 5 — K) ST = 2he (4-132)
Mo _ N [a 3 N w.]
hon -l + 2y, (@133

Equations (4-125) and (3-106) and the wave equation have been used in
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deriving Eq. (4-133). After a rearrangement of terms, (4-133) takes the
form a
oA sinBH + Gk’ — p’)Qe "

2 (4-139)
2pk’ ke

— kS = —

The determinant of the three equations (4-131), (4-132), and (4-134) is
» cos s, H A -K
A= 0 2iv, W - (4-135)
pw’sin B H  2uk’ — pu’  —2uk%;
and the values of 4, Q,, S, in terms of & and other parameters can be
found if A > 0.
Using pe = pf8%, we can write for (4-135)

AR = "‘” " cin v, H + 584K+ (2K — K cosnH  (4-136)

and the coefficients 4, @s, S are given by the expressions

oK — Bk
4= 2 Bk o @
i,
o n.m—u{ﬁln'ﬂ s in 5l
WA 6 (-138)

+ nupaBilakE — (@K — KR’ mu.H}

_4kQuk* — T’ B COSBH v srinn 4-139)
Now write (4-138) in the form
0= Lornen _ B = B rt-o, 3 o (@140

and substitute in (4-128) to obtain

g ) - f- b oo g
o

o

_a f k nipsB3 cosniH msv,H (oLl Tk d

(4-141)

The second term may be \nterpmted as a spherical wave emitted by the
image of the source in m interface. Its simple form is exp (—ikasR')/R',
where B? = * + (z — 2.
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The first two terms in Eq. (4-141) may be combined as follows:
2 f; mi, stz — He ™Sy dk  forH<z<H-+d (4-142)
or
2 f -l.,%s""""’ cosvd Jk) dk for H+d<z< o (4-143)
The functions ¢, and ¥, are given by Eqgs. (4-126) and (4-128), where
the expressions (4-137) and (4-139) have to be inserted for 4 and S,.

By Egs. (4-121), (4-126), and (4-128) with (4-137) to (4-139) we can
find the d.splmemeucs g and w. Thus for the solid bottom z = H we make

use of ,, given by (4-142) and the third integral in (4-141), and ¥, by
(4-128) to obtain, on putting
A(K) = T(k)paBiF, cos 7 H (4-149)
two expressions for the displacement at the interface:
= f W [:: ;lev,H mv,] Jikr) dk (4-145)
P— ’T;)Lf"-m(kv)kak (4-146)

As before, the integrals can be represented by the sum of branch line
integrals and residues. The residues correspond to the poles k = «, given
by the roots of the equation
") =0 (4-147)
As we have seen, the amplitudes of waves determined by branch line
integrals diminish as 72 Since we are interested in an approximation
which holds for large values of r, the terms corresponding to branch points,
which by analogy with earlier results represent waves with phase velocities
aand B,, are left out of consideration. Then only the residues are computed
by the methods used earlier, and asymptotic values of displacements are
obtained as follows (the time factor is written again):

. % \/ET;E \1[( Qe gtcotmemr et (148

2 |2 1 it (wt=tur=1v/
0n = s Tﬂ Z‘: \//:.W(‘_)c Tandgitor 70 (-149)
where the phase velocity c. and the factor By, for each mode are given by

=ku—n (4-150)

w
a=c
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and
ik [ VIZ e F)
Q) = Ry 6 [p. B Ve 1™ (R

—2t —f";, 1- %J (-151)

LONY ~7IC (N wis
with
w0

“Jf}a__c‘/ ) goc? M. 1]

chfes

-{(-29) ‘*éﬁz*‘ﬁ

- 2(2 - 5)1 1- i,:l (4-153)

The period equation (4-147) can now be written in the dimensionless form

W8]

It defines s usual a relationship between the period T = 2x/cu, = 27/w
and the phase velocity, with the elastic constants of the system as param-
eters. Each of the roots x, of (4-154) can be expressed in terms of w or T
As mentioned earlier, Schermann [151] proved that there is a finite
number of real roots. If —K is the right-hand member of (4-154) and if

- x <HVE0 — F <nr
nx — tan” K < HVE

there are 2(n + 1) real roots on the k axis symmetrically distributed with
respect to the origin. In the case

= Dr <HVE, —F <nr
e —tan” K > HVE, — B
the number of roots reduces to 2n.

(4-155)

(4-156)
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A case commonly encountered in geophysical studies of water-covered
areas, oy > £ > ¢ > a, will now be discussed in detail.

The period equation (4-154) and Eq. (4-04) were used to obtain the
phase velocity ¢ and the group velocity U in terms of kH. Following
Pekeris, we express ¢, and «, in terms of a dimensionless parameter
7 = cwH/2ra,. In Figs. 4-18 and 4-19 are shown the results of computa-

24
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Fio. 4-18. Liquid layer over solid substratum. Phase- and group-velocity curves for
first two modes when p/py = 2.5, as/Bs = V/3, fofenr = 2.

tion for the numerical values

2/ = 25, 4 = V/38,, By = 2a, and
= V/38,, B, = 3a, which represent the approximate
conditions for a granitic and basaltic occan bottom, respectively.

The phase and group velocities of the first mode (n = 1) will approach
the velocity cx of Rayleigh waves in the solid layer as v — 0 or as the
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wavelength becomes very long in comparison with the thickness of the
first layer. As long as ¢ > a, the waves corresponding to this mode are
termed first-mode generalized Rayleigh waves. For ¢ < a, 7, in Eq.
(4-127) is imaginary, the amplitude in the first layer now decreases with
distance above the interface, and the waves may appropriately be called
Stoneley waves (see Sec. 3-3 and Fig. 4-18 where these waves are repre-

) s ol S
\ T
| Second mode |_| | |
w1\
o
(X 05 1 10
v

Fi. 4-19. Liquid layer over solid substratum. Phase- and group-velocity curves for
first two modes when pa/py = 3.0, as/Bs = V/3, fa/as = 3.

sented by dots to the right of ¢/ay = 1 on the first mode). Note that, in
contrast with the results for liquid layers, the ¢/a and U/a curves extend
over the range 0 < v < « and that for large v these ratios approach the
Stoneley-wave velocity 0.998a;. Coulomb [20] and Biot [6] discussed the
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theory of propagation of Stoneley waves along the sea floor in greater
detail.

In the second-mode generalized Rayleigh waves (Fig. 4-18) ¢ = U = 8,
for a value of y corresponding to a cutoff period. For longer periods, & is
complex, and attenuation oceurs with increasing distance, corresponding
to radiation of energy into the bottom. As ¢ and U approach a, the periods
become infinitely small. There can exist higher modes of propagation
(n = 3,4, ---), cach having the same cutoff velocity ¢ = U = 4, but
increasingly shorter cutoff periods. In general, the periods of the higher
modes corresponding to a given phase or group velocity become progres-
sively shorter. The group velocities are further characterized by stationary
values, as shown in Fig. 4-19 for the first and second modes.

The solution for an arbitrary initial disturbance can now be written,
as in previous cases, in the form

e ﬁ by f-_ \% Qg™ Gy 4tz
o= 2T [ L Wsar

where the Fourier transform y(w) of the initial time variation S(9) is
given again by

syt gy (4-158)

17 gpgier
oo = o f st a (4-159)

Assuming that the impulse developed in an earthquake can be represented
by the condition that S(?) vanishes for all but infinitesimal values of ¢ in
such & manner that f7, S() d¢ = A, we shall put (=) = A. Then Egs.
(4-157) and (4-158) take the form

0y = ﬁAl \IEZr Z f: "\}—I Tleem T e gy (4161

e Gy (4-160)

Approximations for these integrals can be obtained by using Kelvin's
method of stationary phase, as discussed in Appendix A.
Only the final results are now given. We find for d(U,/a)/dy > 0 ¢

gn = _7117 E LQlx)e " sin (wot — xi) (4-162)

B A R )
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)

o= ):L,O(x.)e""" €08 (oot — k1) (-169)

where

L.

(‘va. a |d(Un/a)|
o U2 dy |

and for d(U./a)/dy < 0

o = 2 B L ot = k) (6169

Theso expressions hold for a large 7 and for  suficently removed from a

to -y value of group velocity.
The train of waves corresponding to thls group velocity is called the Airy
phase. The final expressions for this phase as given by Press, Ewing, and
Tolstoy [119] are

= 37% ): LIQU)E(m)e"™ cos (wl — TZ') (4-166)

f!‘;}zf.,a X LW Eme™ ™ cos (u.,t -k = ”) (4-167)

g =
‘where
Bm) = milJy(m) + Jm) fort> - o >t
b e (4-168)
E(m) = miI_y(m) — I(m)] rou<UL or ﬁ«
with
o _4V= _ [ @ dll]
= 7/1,7 w—velt Z=-|5Tmg | @169
y="r-1 q.=,‘;—:l-1 (4-170)

The sccond expression in (4-169) vanishes at a stationary value of group
velocity. But only the derivatives of Z are involved in the results. The
subscript M denotes that a function s to be evaluated at Usss OF Unia and

u- L@ @i

These expressions have been used to compute the amplitudes of the
component displacements at the bottom for an impulse produced by &
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point source of compressional waves located at @ depth h = H or k = 0,
and at distances of 1,000 km and 10,000 km, respectively. Figures 4-20
and 4-21 were given for p./p, = 2.5, az = V/38,, B2 = 3ay, H = 5 km.
Discussion of the features of seismograms which correspond to various
parts of these curves will be deferred to the section where the case of

[
001 005 01 05
v
Fia. 4-20. Liquid layer over solid substratum. Vertical displacement w,g in units 4ay
AH~* 1077 for first mode as a function of v at a range of 1,000 km; py = 2.5 pi, @z =
V36, 8 = Bar.

o sound source in the liquid layer is treated. The only difference will be
in the amplitude functions.

Suboceanic Rayleigh Waves: First Mode. The theory developed in this
section can be applied to earthquake Rayleigh waves propagated along a
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path that is largely oceanic. It resolves the problem of the “coda,” which
has long been considered an unsolved problem [e.g., Jeffreys (Chap. 2,
Ref. 17, pp. 99-100)].

We reproduce first in Fig. 4-22 the Palisades records from the earthquake
of Aug. 12, 1933, in the Tonga Islands. The seismograph has three matched

35
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Fio. 4-21. Liquid layer over solid substratum. Vertical displacement for second mode as
& function of y at a range of 1,000 km (see Fig. 4-20).

components each having pendulum period Ty = 15 sec and galvanometer
period T, = 90 sec. The path covers about 8,500 km in the Pacific Occan
and about 4,000 km across North America. The azimuth at Palisades is
about 260°. The study of these seismograms shows that:

1. The orbital motion is proper for Rayleigh waves arriving from the
west.




891

ThoRTH

Fro. 4-22. Palisades seismograms for the Tonga carthquake of Aug. 12, 1953, epicentral distance 12,450 km. Note the phase
relations at points 4, 4, and B, B.
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2. The waves are markedly sinusoidal and clearly exhibit dispersion,
the period decreasing from about 25 to about 16 scc. The decrease is very
rapid at first and so gradual at the end that the period could be judged
constant. The part of this wave train in which the period is almost constant
has been called the coda.

Since dispersion can modify a pulse into a train of sinusoidal waves
whose period varies gradually along the train, it is natural to attempt to
explain the coda as a dispersion phenomenon. As will be shown later in
this section, layering, such as that present in the crust, can produce dis-
persion in Rayleigh waves but the difficulty is that the lowest possible
group velocity is only slightly less than the lowest shear-wave velocity
in any layer. However, no rock layer was available with sufficiently low
shear-wave velocity. Guided by experience on dispersion in explosion
sound transmitted in shallow water, Ewing and Press [39, 41] reopened
the question of the effect of the ocean water on propagation of Rayleigh
waves across ocean basins. They found that for paths like those shown in
Fig. 4-23, and having a substantial portion across ocean basins the Ray-
leigh-wave trains could be completely accounted for by the curves of
Fig. 4-24 for dispersion over the oceanic 2nd continental parts of the path,

An example of this method of analysis is provided by their study of the
surface waves of the Solomon Islands earthquake of July 29, 1950, epicenter
68 155.1°F, depth 75 kms, ongm time 23'49708", and magnitude
7 (Jesuit, Sei were studied from
Honolulu, Berkeley, Tucson, and Pahx-mdcs, which lie near a single great-
circle path through the epicenter (Fig. 4-23). The direct waves (those
along the minor arc of the great circle) were observed at all stations, and
the inverse waves (coming along the major arc) were registered at all
stations except Honolulu. For Honolulu and Berkeley the path for the
direct waves may be considered entirely oceanic. In all cases the seismo-
grams are generally similar to those reproduced in Fig. 4-22. The period
of the wave varies gradually within the train, and arrival time can be
determined as an empirical function of period. From these data, group
velocity has been plotted as a function of period in Fig. 4-24. For the
direct paths to Honolulu and Berkeley, group velocity across the ocean
was calculated as the ratio of distance to travel time, For all other stations,
the total travel time was corrected to represent the oceanic-path segment,
by subtraction of the time required for travel across the continental
segment of the path. This continental travel time was computed by use
of a dispersion curve derived by Wilson and Baykal [210] and refined by
Brilliant and Ewing [11]. It will be discussed in more detail in Sec. 4-5.

The theoretical dispersion curve in Fig. 4-24 is derived from Eqs.
(4-154) and (4-94), with the water depth H = 5.7 km, a; = 1.52 km/sec,
o = 7.95 km/sec, B, = 4.56 km/sec, and p,/p, = 3.0. The excellent
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Fio. 4-23. Great-circle path from epicenter in Solomon Islands passing near Honolulu, Berkeley, Tucson, and Palisades stations.



ur

48— !
r ;= 1.52 km./se", .
aa BT e jem.s < Theoretcal cuve
a0l — @;=7.95 km./sec.
H B2=4.56 km./sec, P e a
. 2= 3.0 gm./cm3 T
& 36— 2 t
£ | A Honolulu direct
£32 °
£ N Tucson direct
H r Continental dispersion + Tucson inverse
§ 28 (4T, Witson) —— ) Berkeley direct
] X Berkeley inverse
24 © Palisades direct
oL H Palisades inverse
16
12l /; LI . .
10 15 20 25 30 35

Fie. 4-24. Observed and theoretical dispersion curves for oceanic paths to Honolulu, Berkeley, Tucson, snd Palisades.
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agreement between ths theoretical curve and the observed oceanic dis-
persion for direct paths demonstrates the essential identity
in crustal structure of the Indian, Atlantic, and Pacific basins along this
great-circle path. The liquid layer, depth 5.7 km, which must be used to
obtain the best agreement between observation and theory, exceeds the
mean depth of water in each basin by roughly 1 km, which may be taken
as a measure of the mean thickness of the layer of unconsolidated sedi-
ments on the ocean floor along the selected great-circle path.

This representation of oceanic crustal structure involves two simplifica-
tions. The sediment of the ocean floor is included in the liquid layer, and
the underlying rocks are also represented by a single layer whose properties
are very near to those of the ultrabasic rock bounded by the Mohorovitié
discontinuity, which lies at 30- to 40-km depth beneath the continents.
In a later section, 4-6, it will be shown that the value a; = 7.95 km/sec
represents a sort of average of an actual structure consisting of 5 km of
a layer with velocity 6.9 km/sec (basalt) and a very thick underlying
layer in which a; = 8.1 km/sec. The method of deducing arrival time as
a function of period from the seismograms consists of numbering the
peaks, troughs, and zeros of the wave train and plotting these numbers
against travel time. The slope of this curve gives period as a function of
travel time, from which the group velocity can be computed.

An objection has sometimes been raised to the idea that long trains of
Rayleigh waves, such as those studied here, could oceur solely through
the effects of dispersion. The view has often been expressed that a long
succession of sinusoidal waves of almost constant period was due to some
resonant phenomenon. Likewise it has been maintained that the absence
of long-period surface waves at the smaller epicentral distances precludes
the possibility that dispersion can explain the appearance of the train at
great distances. The portion of the coda in which the period seems to
remain constant results from the steep portion of the dispersion curve
where a large change in group velocity occurs for a very small change in
period.

From any seismogram showing a good train of oceanic Rayleigh waves
it is possible to estimate the mean thickness of the suboceanic sedimentary
layer along the propagation path. Oliver, Ewing, and Press {111] applied
this method to the Honolulu seismograms for earthquakes in the circum-
pacifio belt. Their method consists in plotting the dispersion curve for
each on a grid, such as that shown in Fig. 4-25, an
the mean water depth from the liquid-layer thickness read from the grid.
They found mean sediment thicknesses ranging from 0.4 km due north
of Honolulu to nearly 1.2 km to the southwest and consider the probable
error in their results less than 50 per cent.

A puzzling feature of Rayleigh-wave propagation in the oceans is the
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Fig. 4-25. Group velocity of Rayleigh waves as a function of period for various depths
H of the liquid layer and for ay = 7.05 km/sec, 8 = 4.56 km/sec, a; = 1.52 km,

o = 20

absence of first-mode waves in the period range from about 1 to 12 sec.
This represents a gap in the spectrum corresponding to the part of the
dispersion curve lying to the right of the minimum of group velocity in
Fig. 4-19. The important question is whether these waves are not gencrated
by the source or are not transmitted across the ocean because of the effect.
of some factor not accounted for in the theory. Great depth of focus has
been suggested as a possible explanation of the absence of Rayleigh waves
with periods shorter than about 12 sec, and it may be seen from Fig. 4-20
that, in an ocean with a uniform depth of 5 km, a depth of focus several
times greater than the water depth would reduce very strongly the ampli-
tudes of these waves.

But it seems improbable that depth of focus is the correct explanation
because the T' phase, i.e., a train of waves with periods less than 1 sec
which travels with the speed of sound in water (sce Sec. 7-2), is strongly
excited by most submarine earthquakes. Thus, even if there are some
special conditions which help these short-period waves to enter the water,
the 1- to 12-sec gap in the spectrum still remains to be explained. When
continental Rayleigh waves, with large amplitudes in the period range
1 to 12 sec, reach the coast they do not continue out to sea as first-mode
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Rayleigh waves. Thus it seems clear that first-mode Rayleigh waves in
the period range 1 to 12 sec suffer very great attenuation in typical ocean
areas. This fact severely limits the usefulness of microseisms for tracking
or detecting distant storms, as will be seen later in this section. No gap
in the spectrum oceurs in propagation of Rayleigh waves in shallow water
(see Fig. 4-12). In this seismogram short-period waves between the points
marked “water wave” and “Airy phase” (minimum group velocity) are
‘prominent.

It may be inferred from Figs. 4-20 and 4-21 that the Airy phase should
contribute to seismograms of occanic Rayleigh waves a prominent wave
train with a period of about 12 sec and a group velocity of about 0.6 to
0.7 times the speed of sound in water. Despite a fairly thorough search,
no waves which even roughly fit this description were found except on
Bermuda seismograms of West Indian earthquakes (Press, Ewing, and
Tolstoy [119]). Since these waves have not been observed elsewhere, an
alternative explanation was sought. The observed travel time fits the
hypothesis that they are Love waves reflected from the Grand Banks off
Newfoundland .

Suboceanic surface waves with periods 6 to 12 sec are observed on
seismograms from earthquakes in certain areas. They have the combined
characteristics of Love waves and the second-mode Rayleigh waves and
will be discussed in Sec. 4-5.

Compressiomal-wave Source in the Liquid Layer. We shall now consider
the second case mentioned above where the point source is in the liquid
layer (Press and Ewing [120)). The displacements are represented by
Eqs. (4-121), and the boundary conditions are Eqs. (4-122) to (4-125).
As in the problem of two liquid layers (Sec. 4-2), we have to make use of
two different expressions for the potential ¢, for liquid layers above and
below the source. Thus we write, as before,

o= f " AWT(k) sin 5z dk for0<z<h  (4-172)
o= f. [B(K) sinp,z + C(k) cosvelJo(kr) dk forh <2 < H  (4-173)
o= [ Qe di (4-174)
forH <z
vo= [ 80060 @179
8

Condition (4-122) at the free surface z = 0 is satisfied by the assumed
form of (4-172).
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Determining the functions 4, B, C, @, S, as before and using the
determinant A(k) of (4-136), we have in this case

o =26 _L Tk :I“‘A(’% {"T’g' 5, sin (H — B)

+ FipaBilak 5, + (2K — K3)?) cos B(H — h)} dk  (4-176)

= 2 f Tk SR i, sin 0 — 2)
+ PipBil4kD, + (2K — k)] cosn(H — z)}dk @1

=2 f., Jukr)k “‘A“(;)h P2k — Kie ™ b (4-178)

g [ S -
Yo = —16 f Tk " i dk (4-179)
As a check we may use reciprocity considerations upon Eq. (4-178) which
represents the at z > H from a

sourcez = h < H. Replacing z by H + d, h by z, and p, by pyin Eq. (4-178),
we obtain the expression given by (4-126) and (4-137) for the disturbance
in the first layer from a source in the second.

The integrals (4-176) to (4-179) can be evaluated by the methods
applied before, and the solutions can again be expressed as the sum of the
residues of the integrands and two integrals along branch lines correspond-
ing to the two branch points k = k,; = w/ay and k = kg, = w/8;. The resi-
dues which diminish as 7~ yield the normal-mode solutions, whereas the
branch line integrals diminish as r™*. The approximate values of these
integrals were evaluated by Honda and Nakamura [68].

The period equation for vanishing A(k) in (4-144) yields the roots &,
of Eq. (4-147). A discussion of the period equation has been given earlier
in this section.

Now, the normal-mode solutions can be written in their final form

RPNEN. P
-oesin m*m( ’\f,ﬁ:;j) (#-180)

_ o' HVT = ¢/t
P8I/ = DM cos (WHV/a; — 1)

where

Ol = (4-181)
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and

el ]

0 sin (/S — 1) oxp [—.c.(z — i - :—] 182)
Frien[fe-w-3)]

asn (oG - 1) en[we-m- 5] @
where
(-184)
with
M=_£[ sin . H V/c'/od — ( l—c/u,)
2B LV =1 V1 = et t o
_eHVI ~c/a,mw o 1] [\/— c‘/ﬂ.Jr Vi—dla
Vi=cld VI-c/a

+ 2\[1T—1 P - 2(2 - )] aosx.H\/— (4-185)

Written in the form (4-180), (4-182), and (4-183), the expressions for
the potentials gy, ¢, and ¥, show immediately the influence of each variable
of the problem. The changes in these potentials produced by a varying
depth z are represented by the last factor, sin (x,2V/c"/a; — 1), in (4-180).
The factor sin (,hV/e"/a% — 1) depends on the depth of the source. The
amplitude factors (4-181) and (4-184) determine the relative strength
of the various modes as a function of the frequency f = c,x, /2.

The generalization for a pulse in this case was also given by Press and
Ewing. The phase- and group-velocity curves caleulated for a granitic
and basaltic occan bottom earlier in this section are applicable here,
Additional numerical valur-,s representing the conditions for a sedimentary
bottom (ps/p, = 2.0, 36,, 82 = 1.5a) are given in Fig. 4-26. Useful
curves computed by Tolsmy 204] are reproduced in Figs, 4-27, £-28,
and 4-29,

We can now describe the sequence of normal-mode waves as they will
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Fio. 4-26. Liquid layer over solid substratum. Phase- and group-velocity curves for the first two modes when
@/Br = V/B, Bafar = 1.5, pa/pr = 20.
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Fio. 4-27, Liquid layer over solid substratum. Dispersion curves for first five modes;
@s/Bs = /3, as/er = 6, pa/pr = 1.1. (After Tolstoy.)

arrive at a distant point. At a time £ = 7/8, after the initial impulse at
the source (i.e., immediately after the arrival of shear waves), the normal-
mode contributions begin, gradually increasing in amplitude to become
the predominant waves. The wave amplitudes in the first two modes due
to a distant impulsive point source of compressional waves having g(w) =
const (a flat spectrum), and located within the liquid layer_can be taken
from Fig. 4-30 as a function of frequency.

In the first mode the first arrivals consist of low-frequency Rayleigh
waves with very small amplitudes. With increasing time the frequency
increases from ero, rapidly at first and then gradually, and the amplitudes
also increase.

At the time £ = /0.998a, a high-frequency train of Stoncley waves
arrives, traveling with a speed slightly less than that of sound in water.
According to Fig. 4-30, the amplitudes of these waves are zero at
¢ = r/ay(y = 4.36) but increase to large amplitudes shortly thereafter.

For ¢ > r/0.998a; the high-frequency and low-frequency branches
of the group-velocity curve contribute waves which arrive simultancously
and approach cach other in frequency until they merge to form a con-
spicuous train of waves, the Airy phase, which terminates at a time cor-
responding to propagation at the minimum value of group velocity.

The second mode begins with waves arriving with & cutoff frequency
at the time £ = r/8,. The amplitudes are zero at the onset and thereafter
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Fro. 4-28. Liquid layer over solid substratum. First-mode dispersion curves for cases
as/Bs = /3, p2 = p1, c1/Bs = 0.1,02,03, -+, 0.6. (After Tolstoy.)
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iquid layer over solid substratum. Second-mode dispersion curves for cases
/s = V/3, p1 = p1, ar/Bs = 0.1,02,03, -+, 0.9. (After Tolstoy.)

increase as the frequency increases. At the time ¢ = r/a, high-frequency
waves (y — «) arrive, traveling with the speed of sound in water. The
amplitude of these waves is zero at the onset but increases rapidly there-
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Fra. 4-30. Liquid layer over solid substratum. Amplitude function G for an impulsive
source, when ps/p1 = 2.5, aa/Bz = /3, Br/ec = 3.0,
l—m
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o/ Ufa
after. For ¢ > r/a, the two arrivals corresponding to the low- and high-fre-
queney branches of the group-velocity curve of this mode approach each
other and merge at a minimum value of group velocity, ending the dis-
turbance with the large-amplitude waves of a second-mode Airy phase.

It is to be noted that a maximum value of group velocity is also present

in the second mode. Ordinarily one might expect the large-amplitude
waves of an Airy phase to begin here but the “excitation” function 0,(k)
in Eq. (4-181) almost vanishes for the value of kH corresponding to this
stationary value of group velocity, and the resultant amplitudes show
only & minor increase.

d(U /fa)]
dy

Gxn) = ©(xa) in? (xol Ve — l)[
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From Eq. (4-180) it may be seen that the vertical variations of pressure
and horizontal displacement in the liquid layer are determined by the
factor sin (x,2V/¢*/ai — 1) and the vertical variation of vertical displace-
ment by cos (x.zVe'/ai — 1). Figures can be easily drawn representing
these variations in terms of  for each mode (Fig. 4 31).

The discussion thus far has been limited to the first two modes. The
wave motion at a point is evidently obtained by the superposition of the
contributions of all modes.

From the theory just presented a number of important conclusions can

Suvh‘ce

Botom| | 1 | 1
=436  7=0301 =025 o 7=015  4=0
cmay

First mode

L — — 1
4=095  7=075 =058 =040  -285
c=cn c=f;
Second mode
Fra. 4-31. Liquid layer over solid substratum. Vertical-pressure distribution in liquid
for the first and second mode when as/8: = V/3, o/ = 3.0, pa/ps = 25.
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be drawn concerning the propagation of explosion sound over large ranges
in water-covered areas:

1. For a solid bottom, the amplitudes of waves traveling with the
speed of compressional waves in the bottom will be relatively small.
It is only after the arrival of the first shear waves that large-amplitude
waves appear. The shear waves begin with a limiting or cutoff frequency
which is characteristic of the depth of water and the elastic constants of
the bottom. For a bottom which can be treated as an ideal liquid it was
shown in Sec. 4-2 that waves having larger amplitudes appear shortly
after the arrival of the bottom compressional or ground waves. These
ground waves begin with a cutoff frequency in a manner analogous to the
shear waves of the solid-bottom theory.

2. For a solid bottom, a train of waves arrives at a time corresponding
to propagation as Rayleigh waves. These waves increase in frequency
and amplitude with increasing time,

3. For both the liquid- and solid-bottom theory a high-frequency
“water” wave traveling with the speed of sound in water arrives, riding
on a low-frequency “rider” wave (sce Pekeris [116]). The frequency of
the water wave shows a marked decrease with time. An additional feature
of first-mode waves over a solid bottom is the higher-frequency Stoneley
wave with ¢ = 0.998a,. For the liquid and solid bottom the amplitude
of the high-frequency waves increases with time.

4. For both the liquid- and solid-bottom theory the water waves and
rider waves merge to form a train of large-amplitude waves which is
called the Airy phase. The frequency of the Airy phase is determined
by the depth of water and the elastic constants of the bottom. The velocity
of the Airy phase is independent of water depth.

5. From the vertical standing wave pattern shown in Fig. 4-31 we see
that the response of a hydrophone sensitive to pressure changes or a
geophone sensitive to the vertical velocity of a water particle must vary
with depth. For any given mode and frequency the best location of a
hydrophone is at a pressure antinode, and the ideal location of a geophone
is at an antinode of vertical displacement. Antinodes and nodes for pres-
sure correspond to nodes and antinodes for vertical displacement (or
velocity), respectively. With the use of curves such as those of Fig. 4-31
the vertical location of a receiver for peak response at a given frequency
can readily be obtained.

Tn most water-covered areas where refraction shooting is undertaken,
layering in the bottom occurs, and the assumption of an unstratified
bottom made above is indeed an oversimplification. If the thickness of
the first bottom layer is several times greater than the water depth, the
above theory is applicable for all wavelengths considerably less than
this thickness (see Sec. 4-3).




184 ELASTIC WAVES IN LAYERED MEDIA

Leaking Modes. In seismic prospeoting in shallow water a surface
wave has been observed, having the following characteristics, as illustrated
in Figs. 4-32 and 4-33:

1. Large amplitudes and long duration

2. Almost constant-frequency train of waves in some cases, fairly
simple pattern of beats in others, apparent mixture of several discrete
frequencies in others, characterized in all cases by numerous repetitions
of a pattern of waves

Fic. 4-32. Sixteen- to 40-cycle sec seismograms showing almost pure sine waves corre-
sponding to leaking-mode propagation in water depth of 132 ft. Seismorneters at 8-ft
depth; 50 Ib of dynamite at 5-ft depth; distance from shot 2,155 to 2,405 ft. (dfter
Burg, Euwing, Press, and Stulken.)

1-33, Frequency-response curve on filter setting which on seismogram at right ad-
‘mitted third and fourth leaking modes. Water depth, 192 ft. (After Burg, Ewing, Press,
and Stulken.)

3. Occurrence usually when & hard stratum is found at or near the sea
floor

Burg, Ewing, Press, and Stulken [14] gave a theory for these waves.
They stated that waves propagate by multiple reflections at angles of
incidence between the normal and the critical angle for total reflection,
under the condition of constructive interference. Although a slight leakage
of energy occurs with each reflection from the bottom, there is an auto-
matic gain control on the recording apparatus. The attenuation is com-
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pensated so that the recorded amplitude remains approximately constant
for many seconds after the initial impulse.

The phase velocity and the group velocity can be approximated by
assuming infinite density for the bottom. Equation (4-154) then takes the
following form:

tan (kH\JS — 1)—» ® (4-186)

5
Kl

Toow m=1,2. (4187
1f we use the relations k = 2x sin 0/l and c/ay = csc 6, Eq. (4-187)
becomes

@ ~1) e« _ 3

iooso ~ =7 il
Tt is easy to prove that the group velocity U = a, sin 8 = #/¢ approaches
zero as the angle of incidence approaches the normal (8 = 0) and the
frequency approaches the value

a 1
Jo= "0 (4-189)

For these leaking modes extremely low values of group velocity are
significant despite the increased attenuation which accompanies them,
because of the automatic gain control mentioned above. It is also seen
that many modes may be propagated simultancously, limited principally
by the type of wave filter used in the recording apparatus. Thus for a
given water depth, one may observe a single wave train whose frequency
approaches that given by Eq. (4-189) if the filter allows only a single
mode to pass. If two modes pass the filter, a simple system of beats would
be recorded, and several modes together would produce the more com-
plicated patterns mentioned above, as illustrated in Fig. 4-33.

As may be expected, nodes and antinodes occur at various depths
in the water, and the contribution of each mode to the seismogram will
depend greatly on the depth of the shot and of the detectors.

For a more detailed description of propagation in a leaking mode, one
‘must modify the theory presented earlier in this section.

Some Aspects of Microseisms. ~Tho useful sensitivity of most seismo-
graphs is limited by called “Micro-
seism storms” occur in the penod range 2 to 10 sec. These storms last
from & few hours to a few days, during which time the amplitude of motion
gradually rises far above normal and then gradually decays. Although
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studies of storm microseisms have resulted in hundreds of papers during
the past 50 years, no theory is available for them which can explain all
the observations. The sole points on which all agree are that they are
generated by the action of storms at sea and that they affect areas of
continental dimensions. Ié is not necessary even to summarize the history
of this subject here, as two complete volumes have been devoted to it.
See Refs. 100 and 113.

The problem of microseisms may conveniently be divided into four
parts: (1) the nature of the source, i.., the role of the ocean in the transfer
of energy from the atmosphere to the earth; (2) the mechanism of trans-
mission over oceanic paths; (3) effects at the continental margin; and
(4) the type of propagation over continental paths.

1. NATURE OF SOURCE. After more than 50 years of observations, there
is still lack of general agreement about such basic observational data as
the role of ocean waves, of storm position, of wind and pressure fluctuations
within the storm, of water depth, and of the effect of such parameters on
the period and amplitude of the resulting microscisms. Perhaps the major
cause of the diversity of opinion is that most observations have been
made in latitudes where the general movement of weather is in one direction
and the sequence of events during a storm passage from land to sea differs
radically from the sequence for a storm passing from sea to land.

An early theory (Wiechert [208]) which still receives some support held
that swell breaking on steep coasts introduced microseismic energy into
the solid crust. Banerji (2] proposed that gravity waves on the ocean
transferred energy to the sea floor, an idea which Scholte [152] tried to
revive by including the effect of compressibility of the water. Further
studies of the transfer of energy from ocean surface es were stimulated
by the conclusion of Bernard [5] that the period of microseism oscillations
on the African coast is half that of the generating sea waves. Deacon [22]
noticed the same relationship between microseisms at Kew and sea waves
on the north coast of Cornwall. Longuet-Higgins and Ursell [89] and
Longuet-Higgins [90] presented a detailed theory for the effect at the ocean
bottom of interference between two similar wave trains traveling in opposite
directions. In agreement with the finding of Miche [94], they found a
pressure fluctuation at the ocean bottom having half the period of the
ocean waves and made the first attempt to calculate in detail the amount
of eneray transmitted to the ocean floor and thence to the point of observa-
tion ashore. They concluded that, although it was a second-order effect,
it was adequate to produce the observed microscismic disturbances.
Gherzi [49] believed barometric pulsations within the storm were able to
transmit the necessary energy.

2. MODE OF TRANSMISSION OVER OCEANIC PATHS. It is natural to suggest
that the energy of microseisms is transmitted from the source to the
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continental margins by the normal modes of wave propagation discussed
in this section. Press and Ewing [117] and Longuet-Higgins [90] implicitly
assumed that the ion could be by the
theory for a homogencous liquid layer over a homogeneous solid half
space. Unfortunately, the gap in Rayleigh-wave spectra for oceanic paths
discussed earlier in this section apparently eliminates the possibility of
applying this theory to microseisms, despite its utility for longer-period
earthquake surface waves. Despite careful search for carthquake surface
waves in this period range on seismograms from many coastal stations
and from Honolulu and Bermuda (Ewing and Press [43]), no such waves
were found where any part of the propagation path crossed an ocean area.
beyond the continental margin. This is in marked contrast with the abun-
dant energy in the same period range transmitted over continental paths.
For example, an earthquake in California of magnitude 5.3 produced
clear phases called Lg and Rg (sce Sec. 4-5 and Fig. 4-56) with periods
2 to 8 sec at Palisades. Although the cause of the spectral gap has not yet
been found, the gap is clearly of the greatest importance for microseism
studies. It strongly supports the conclusions of Ewing and Donn [42],
Dinger and Fisher [24], and Carder [18] that ocean areas beyond the
continental margins transmit microseisms very poorly and that large
microseisms oceur only when a portion of the storm (or its swell) reaches
shallow water. Several observers report opposite conclusions. Gilmore
and Hubert [51] and Whipple and Lee [207] all have stated that storms
well beyond the continental margins produce significant microseisms.
Perhaps this difference of opinion is due to uncertainty about which portion
of the storm produces the microseisms, the radius of the storm area being
often comparable with the distance of the center offshore.

3. EFFECTS AT THE CONTINENTAL MARGIN. It was first noted by Guten-
berg [58, p. 1308, and 55] that microscisms show marked attenuation in
geologically disturbed areas. He has pointed out that microseisms originat-
ing off the Atlantic coast of Canada propagate to great distances over the
United States and Canada and decrease noticeably only after passing the
Rocky Mountain area, and he has called attention to several similar
barriers in Europe and in the West Indies. He states that in all instances
where the microscisms are propagated over long distances without much
Toss of energy, stations and source are on the same geological unit. A pro-
found geological change occurs at the continental margin where the crustal
thickness increases from about 5 to about 35 km. It is therefore a logical
extension of Gutenberg’s views about barriers to expect that the transition
between ocean and continent will introduce extreme attenuation in micro~
seism waves. The results of Donn [30] and Dinger and Fisher [24] support
this idea. They showed that the hurricane microseisms at stations on a
continent increase greatly in amplitude as soon as the storm touches the
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continental margins. This means that either (1) there is poor generation
and Cmnsmlssmn of microscisms in decp water or (2) there is extreme

at borders, or both. The fact (see
Sec. 4-5) LhnL the characteristically continental phases Lg and Rg and
- to 12-sec surface wave trains from submarine earthquakes do not cross
continental borders strongly supports statement 2. The observations of
amplitudes smaller than expected which have led to the idea of barriers to
microseismic waves are due to the two mechanisms listed above but the
relative importance of the two is not clear. Murphy [95] and Gilmore [50]
have published additional evidence about the barriers. The details of
structure of a continental margin as revealed by seismic refraction and
gravity studies are shown schematically in Fig. 4-34. It is seen at once
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that transmission across the boundary in either direction is impossible for
any wave type in which the crustal layer acts as a wave guide for normal
modes. Disturbances from the atmosphere or from the ocean entering
this crustal layer in the transition zone will find that the sloping boundary
constitutes a Lummer-Gehrcke plate strongly favoring propagation
toward the continent rather than toward the ocean. Transformation of
surface waves incident upon the continental boundary from one type to
another is of greatest importance for microseism studies.

4. oF OVER patis.  The effi-
ciency of ission of ismic waves across i areas has
been considered remarkable since the early days of seismology (see Guten-
berg [60]). Carder [18] has made additional studies supporting this point
for North America, and Donn [31] has shown that microseisms which are
initiated by storms reaching the Pacific coast of Canada may be identified
at Palisades by the appropriate Rayleigh-wave particle motion. This is
the one aspect of the whole microseism problem which seems to offer no
difficulties at the present time. The counterpart of microseismic propaga-
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tion across continents is probably represented by the Lg and Rg earth-
quake phases described by Press and Ewing [125] (see Sec. 4-5). Both
phases meet the requirements of period and efficiency of propagation. The
orbital motion of Lg is not unlike that found in short-period microseisms,
whereas the Rayleigh-wave motion of Rg matches that observed for long-
period microseisms. The importance of Lg and Rg for microseism study
[125] is that they demonstrate the existence of a very efficient wave guide
in the continents. Thus, once microseism energy enters the continent, it
can spread over great distances with very little loss.

4-5. Solid Layer over Solid Half Space. Wave propagation in a semi-
infinite solid covered by a solid layer of uniform thickness was first studied
by Bromich (12] for steady-state waves of length large compared with
the layer thickness. Love (Chap. 3, Ref. 26) extended the work of Brom-
wich to include waves of length comparable with or small compared with
the layer thickness. He was led into this study in an attempt to explain

he duration and ity of ‘waves. Since that ti

appeals have been made to imperfections of elasticity, resonance of crustal
columns, scattering, even drastic modifications of the fundamentals of the
classical theory of wave propagation, in search of a theory of earthquake
surface waves. It is now clear that layering is responsible for practically
all the observed effects, as Love suspected.

In the preceding sections we considered the solution of problems of wave
propagation from an impulsive point source. A similar method is directly
applicable to the problems treated in the remainder of the book. The
applications have demonstrated, however, that the principal conclusions
for surface waves may be obtained directly from the characteristic relation
between period and phase velocity which appears in the same form for
each physical system, regardless of the source of the wave. From this it
follows that in many cases a solution for harmonic plane waves is adequate,
and we shall restrict our discussions to this simple type of problem in the
following pages.

Rayleigh Waves: General Discussion. The period equation similar to
those discussed in previous sections can be readily obtained from its general
form derived in Sec. 4-8 for n — 1 solid layers overlying a solid half space.
It can also be derived by assuming that there are plane waves

o = Ao perm e
gy = Gt ptermtmens
o= B
V= Bt

propagating in both media.

(4-190)
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Substituting these expressions in the boundary conditions (44) and
(4-2) written for plane waves,

2 Ve 3
P = 00+ 20V — 2u(28 - ) o
| o' oz as) (@-101)
= (2 Lo _ 2 w,) o
P = m<2 Fryn + 5 0 atz=0
and
do _ o der _ 9
w=22_%%_, a0
oo o (4-102)
LTI 7S " 1) _
M T Tty el

@ = @) @) = @u)s
we obtain six equatio
(2K — K3)A + (2K — k3B + 2WliC — 2k(iD = 0
2md — ZnB + (2K — B)iC + (2K — Kp)iD = 0
—kAe" — kB — yliCe™ " - y{iDe T = — ke — yiiFe™
—y e 4y Be " — kiCe" — kiD= —y,He
v, Ae™ T — 2k B + (2K — Kp)iCe™ + (2K — K3)iDe™™  (4-193)

= 252y B 4 B2 (9 — 1R)iFe T
" w

(@ — B A" + (2F* — k3)Be" + 2hofiCe™ (iDe

= 5 (K — KB+ 2oisFe™ )
The six variables Ae™*, iCe", Be™”, iDe”"%, Le~"*", and iFe'"
must have values different from zero, and therefore we obtain the period
equation
=0 (4-194)
where the determinant can be written in the form shown in (4-195).
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If we put
F) = @K ~ Kk3)* — 4k} “-196)
S = @K — k)" + k]
Eq. (4-195) can be represented as the sum
A = "D, 4 DT 4 (D, + DYe T
D 4 D (a-t01)
where
D, = FA, D, = fbu
Dy = k(2 — K3)An Dy = —4k{(2k' — kA (4-198)
Dy = —fAy D, = FAy

and 4, is the subdeterminant of the fourth order shown in (4-195).

The factors 4,, are other subdeterminants of the fourth order formed
by the elements of the last four lines of 4, the last two columns being
identical for all:

—k - - - ”
A= " LR PV -k
%k, W~k - - % — Ky 2 — K -
% - W - - %W —2f
—k —k
A=| ™ nots (4-199)
%, —2n, - -
2% — K3, 2K — Kl -
—k W —k -
=] R RV —*
2%y, 2% — K - - 2%v, 2% — K} -
W — Ky i - - %~ Ky 2l '

Using the expression (4-197) we have the period equation (4-104) in the
form obtained by Newlands [105]. Equation (4-194) will be discussed later
in this section. If the columns are combined in another way, the deter-
minant (4-195) yiclds the period equation in the form discussed by Sezawa
and Kanai [169], where exponentials are replaced by hyperbolic and
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trigonometric functions. A form often useful for computation is that given
by Lee [85]. It is given here for reference.
If X, Y, Z, W are expressions introduced by Love (Chap. 3, Ref. 26),

X—ﬁh’— (f—l) Y:%+z(ﬂ—1)
M (4’”’)
u,kn‘ki. &_) _of# _
Z= -k ] 1 w 2(,, l)
and
@) =R F A=Foka=d
[y S Ry R
the period equation in the form written by Lee is
fm—fm =0 (4-209)
where
&= [x cosriH +* ¥ sin r,H]
2% I:’—“ WensH - Ez can,H]
k Lk h .
( B )[ W eosrH + — lsmnH:l
+2 [Xaina,H - :4: Y wu.H]
1A
= ( )[ W cossiH + & Zums,H:l
+2% [Xs'mr,H ~by wer,H]
(4-204)

2 - k“)[x coss,H + Y sin s\H]

nle g _k
+2;[,{er.ﬂ ﬁZmr,H]

Positive real values of s,, 7, are obtained when ¥* < k4, < k3 and &* > K}y >
k%, Equation (4-202) provides an implicit relation between phase velocity
¢ and wave number k, through the dimensionless parameters c/g, and kH.
Alternatively, ¢ may be obtained as a function of the period T through
the relation T = (2xH/8.)/(kHc/By). Two branches of this function
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oceur corresponding to the M, and M, type of propagation first described
by Sezawa and Kanai [171] (see also Kanai [81]). Satd [141] and later
Tolstoy and Usdin [203] have suggested that these two wave types cor-
respond to the symmetrical and antisymmetrical modes for a free plate
(see Sec. 6-1). It may be shown, by substituting in the expressions for
displacement the values of », and »{ used in computing roots of the period
equation (4-202), that the particle motion at the surface for the M,
branch is the retrograde elliptical type normal for Rayleigh waves, whereas
the M, branch leads to the opposite type. For ¢ < 8, and kH — « the
asymptotic form of Eq. (4-202) becomes factorable, as pointed out by
Love. The zero of the first factor represents Rayleigh waves at the upper
surface of the layer, while the zero of the second factor represents Stoneley
waves at the interface. These results provide a check, giving the expected
wave types for wavelengths small compared with the layer thickness.
Further discussion of the roots of the period equation may be found in
Scholte [156), Sezawa and Kanai (171), Neumark [101-104], and Keilis-
Borok [82].

Although the period equation (4-202) is more complicated than that
for a liquid layer on a solid (Sec. 44), it may be treated by the same
method to determine the number and location of the roots. Keilis-Borok
found that for a given @ and a given layer thickness the number of real
roots of the period equation is limited.

Calculations of dispersion curves for the first two modes (M, - , My,)
of the M, and M, branches were made by Tolstoy and Usdin [203] for the
case p,/py = 1.39, 62/, = 3147, and a/By = /B> = V/3. These curves
are shown in Fig. 4-35. At the long-wave limit only in ,,, the first mode
of the M, branch, does the phase velocity approach the speed of Rayleigh
waves in the substratum. This is the branch which is relevant to the
‘propagation of earthquake Rayleigh waves. In all other modes the velocity
approached at the long-wave limit is that of shear waves in the substratum,
and for each mode there is a least value of kH, corresponding to a cutoft
frequency below which unattenuated propagation does not oceur. The
cutoff frequency increases with the mode number.

At the short-wave limit ((H — ) the phase velocity for the first
mode of the M, branch approaches that of Rayleigh waves in the layer.
Under the very stringent conditions necessary for the existence of Stoncley
waves at the interface between two solids, there would be an additional,
mode in the M, branch for which the phase velocity approaches the
speed of Stoneley waves as kH — . For all other modes, phase velocity
approaches that of shear waves in the layer as kH — «. The methods
used in previous sections for deducing the group-velocity curves and
some characteristics of seismograms from dispersion curves such as those
presented in Fig. 4-35 may readily be applied. As in the previous cases,
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Dispersion curves for elastic layer over semi-infinite elastic solid, for case a1/81 = as/Bs = V/3, 8/B: = 3.147,
p‘/». = 29. (After Tolstoy and Usdin.)



196 ELASTIC WAVES IN LAYERED MEDIA

the phase-velocity and group-velocity curves meet at both the low-fre-
quency and the high-frequency limits of kH. It is noted that several
maximum and minimum vlues of group velocity occur in the higher
modes.

Propagation of Rayleigh Waves across Continents. In accordance with
the theory of the propagation of Rayleigh waves in layered media, it is
observed that the velocity of Rayleigh waves across a continental area
is dependent upon period. Because of a variety of difficulties, attempts
to obtain a precise dispersion curve from empirical observations have
not been very successful. Ideally, one requires an earthquake of magnitude
about 7, which produces Rayleigh waves over a broad range of periods
and has a well-determined epicenter situated at one end of a chain of

stations well distri on a great-circle segment about
70° in length. This large path is required because the dispersion is much
weaker across continents than across oceans. It is further desirable that
the seismographs have three matched components so that the Rayleigh
waves may be positively identified by particle motion, that they have
adequate response in the period range 5 to 75 sec, and that the path be
free from major crustal irregularities. In no study have these conditions
been met adequately.

Observations of Rayleigh-wave dispersion for continental paths have
been made by Rohrbach [133], Wilson and Baykal [210], Carder [17),
Gutenberg and Richter [56], Sezawa [170], Brilliant and Ewing [11], and
Press, Ewing, and Oliver [128], among others. From these studies we
have selected the last two to present in Fig. 4-36. These results are con-
sistent with each other, and the conditions of the experiments were the
‘most favorable of any for yielding data about purely continental paths.

Brilliant and Ewing avoided the requirements for long continental
path and accurate epicenter location by utilizing waves from a shock in
the Southwest Pacific which crossed the west coast of the United States
at normal incidence and were recorded at six stations distributed across
the United States on a suitable great-circle path. For a number of selected
periods the arrival times at each station were read. Figure 4-37 shows
arrival time as a function of period for all stations. It is straightforward to
determine the group velocity for each selected period across this spread
of stations and to demonstrate its constancy across the continent. The
results are plotted in Fig. 4-36. .

The advantages of this technique are (1) independence from error due
to normal inaccuracies in epicenter and origin-time data; (2) improved
accuracy in determining periods, resulting from lengthening of the train
over the oceanic segment of the path which, in effect, is equivalent to
having a pure continental path of great length; and (3) independence from
error inherent in other techniques involving mixed paths and from uncer-
tain correction for oceanic and travsitional segments.
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Press, Ewing, and Oliver studied the Rayleigh waves from the Algerian
tremor of Sept. 9, 1954, and the aftershock of Sept. 10, 1954. These were
recorded on a long-period Columbia University vertical seismograph
installed at Pietermaritzburg, Union of South Africa. The dispersion from
these seismograms could be measured with great precision because the
path is longer (7,890 km) than any which has been available for a long-
period vertical instrument and is free from such obvious crustal anomalies
as mountain ranges. The Raylcigh-wave portion of both seismograms is
reproduced in Fig. 4-38, Time is marked in minutes after the origin time,
and the beginnings of the Rayleigh-wave train, the Lg train, and the Rg
train (to be discussed later in this scction) are indicated, along with a
group of waves which is interpreted as an Rg phase reflected from the
continental margin. The Rayleigh-wave train for the main shock clearly
shows the normal dispersion, reported in the past, in which the wave
period decreases with time. With the arrival of the Lg phase, it becomes
difficult to read the ordinary Rayleigh waves, but they can be analyzed
by shifting from the main shock to the aftershock. Rg begins abruptly
with great amplitude, as may be seen clearly on the seismogram of the
aftershock. The inverse dispersion present in this phase is clearly demon-
strated for the first time on this seismogram. The point at 44745 after
the origin time, just prior to the arrival of the reflection train, is taken
to represent an Airy phase corresponding to the minimum value of group
velocity of continental Rayleigh waves. The surface waves arriving during
the next 10 or 15 min after the Airy phase are interpreted as due to scatter-
ing and reflection from inhomogeneities in the earth’s crust.

The method of deducing dispersion from a seismogram (Ewing and
Press [41)) involves reading times of zero trace deflection and plotting
these against wave number. Periods for a series of arrival times are read
as slopes of the resulting curve. The dispersion data thus obtained are
plotted in Fig. 4-36 along with the data for the United States path (Bril-
liant and Ewing [11]). Also plotted is a point indicating the short-period
limit of mantle Rayleigh waves (Ewing and Press [46]).

A theoretical curve can be derived using Eqs. (4-202) and (4-94).
Jeffreys’ calculations [79] were modified so that the elastic constants
agree more closely with the most recent determination of crustal structure
from explosion and rock-burst data. The curve assumes a homogencous
crust 35 km thick, with shear velocity 3.51 km/sec, overlying a homo-
geneous mantle with shear velocity 4.68 km/sec and density 1.25 times
that of the crustal layer. Poisson’s constant  is taken as 1/4. The following
conclusions may be drawn from Fig. 4-3

1. The remarkable agrcement of dispersion data from Africa and
North America, in which the discrepancies are less than 0.1 km/sec,
indicates an identical crustal structure for the two continents.
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2. Although the over-all fit of experimental data with the theoretical
curve is reasonably good, there is a tendency for the observed points to
fall below the theoretical curve for periods greater than 38 sec. This
effect may be explained by the known increase of velocity with depth in
the mantle. Theoretical curves including the effect of heterogeneity in
the mantle are not readily available. However, it has been experimentally
verified in the study of mantle Rayleigh waves (Sec. 7-4) that, because of
the velocity gradient in the mantle, the group velocity decreases with
increasing period in the range 70 to 225 sec. We therefore conclude that
& maximum value of group velocity oceurs between 40 and 70 sec and
falls below the theoretical curve of Fig. 4-36, as do the experimental
points. Previously the adjustment of the theoretical curve was made by
decreasing the velocity in the outermost part of the mantle well below
the value 4.7 km/sec now fixed by explosion seismology studies.

3. In the period range 18 to 30 sec the experimental points lie above
the theoretical curve by amounts ranging up to 0.2 km/sec. The observed
minimum group velocity falls at a shorter period than that indicated by
the theoretical curve, Both these effects would occur if the average ve
in the crustal layer is higher than that assumed in computing the theoretic: ml
curve. Since the velocity near the top of the crust is fairly well established
in body-wave studies, we can interpret this discrepancy as an effect intro-
duced by an increase of velocity with depth in the crust.

A new theoretical dispersion curve is needed, one which includes the
effect of a velocity gradient in the crust as well as the mantle.

Ground Roll. A small-seale counterpart of the preceding problem is
that of the “ground roll” frequently encountered in scismic prospecting
for oil. In many regions the near-surface layering consists of a zone of
low-velocity, poorly consolidated sediments overlying more competent,
beds with higher velocity. It is important to note that the discontinuity
in compressional-wave velocity at the ground-water table does not enter
into this problem, since there is no associated discontinuity in shear
velocity, and the shear velocity is the principal factor determining the
velocity of Rayleigh waves. A number of papers appeared on this subject,
and we cite some of the results of Dobrin et al. 28, 29].

The method of Dobrin et al. consists of detonating explosive charges at
the surface and at varying depths beneath it and recording the resulting
seismic motion with a spread of detectors spaced at intervals of 50 ft
and extending to a distance of several thousand feet from the source.
At least at one dlstsnce a three—componem detewur is plnred 50 that the

1
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Fre. 4-39. Record array showing Rayleigh waves from exnlnuwn; recorded at 50-ft intervals over distance range 50 to 3,100 ft
from shot. First three traces of each record show, respectively, horizontal radial, horizontal transverse, and vertical motion at
statons spaced very 450 t The romaining trces hov vertieal mtion every 50 f, the st traco o each record duplicting the
third trace of the following record. (After Dobrin, and Lawrence.)
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detector spread, permitting direct determination of phase and group
velocities. It is further scen that the dispersion is strong, that the source
generates a broad spectrum, and that the data are far more complete than
is ever likely to be the case in an carthquake study.

Dobrin et al. applied the theory of Rayleigh-wave dispersion, as given
carlier in this section, using values for velocity and layer thickness found
in borchole surveys in the area. They obtained the empirical curves
represented in Fig. 4-40. A fairly good agreement with the theoretical
curve, for periods 0.17 to 0.19 sec, is shown in Fig. 4-41.

Although ground roll consists predominantly of Rayleigh waves, as
would be expected from an explosive source, the wave motion is not always
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Fio. 440, Group and phaso velcitionof Raylegh vaves obtainod from eismograms
shown in Fig. 4-39. (Afler Dobrin, Simon, and Lourence.)
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as coherent and regular as that shown in Fig. 4-39 and often contains
significant transverse components. It is suggested that heterogeneity and
aeolotropy of the upper layers can account for these phenomena.

A low-frequency, large-amplitude arrival, with group velocity as low
as a few hundred feet per second, has occasionally been observed on
seismograms from explosions in shallow water (Worzel and Ewing [211]).
Often dispersion is evident, the lowest frequencies present being 1 to 2
cycles/sce, probably determined by the cutoff frequency of the recording
equipment. Although a detailed investigation of these waves has yet to be
made, it is probable that they are primarily controlled by the very low
igidity of the bottom sediments. Their frequency is well below any used
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Fio. 4-41. Observed dispersion curve (at the station SWX-3) compared with nmmhul
curve based on calculations of Sezawa for a layered solid with the indicated charact
istics. (After Dobrin, Simon, and Lawrence.)
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Fia. 4-42. Group velocity of ]h.ylengh waves for 1 = 3.39 km,
Curve 1, Hy = 13.60 km; curve 2, 8 km; Curve 3, H,
Haskell.)

in seismic-reflection surveys, and their large amplitude can cause serious
distortion of other seismic signals if amplifier stages ahcad of the filters
are allowed to become overloaded.

Theoretical Rayleigh-wave Dispersion Curves. A number of dispersion
curves calculated by several investigators for various values of the clastic
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2w /kH
Fia. 4-43. Rayleigh-wave dispersion, case 5, Table 4-1. (After Kanai.)
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constants of the two media are given here. Table 4-1 identifies each dis-
persion curve, gives the elastic constants, and cites the references and the
figure number.

Love Waves: General Discussion. Since the first long-period seismo-
graphs measured horizontal motion only, the presence of large transverse

Tanis 4-1. COMPUTATION OF RAYLEIGH-WAVE DisPERSION IN So LAYERs OvER
Soum SusstaaTUM

Case Reference |Layer i| a./Bi | Bi/Br | o/;u | H./H:

1. | Haskell (62] 1| 1.810 | 1.000 | 1.000 | 1.000 | Fig. 4-42,
2 [1.620 {0938 (1.000 | 0.871 [ curvel
3 2440|1370 [ 110 =

2. | Haskell [62] 1| 1.810 | 1.000 | 1.000 | 1.000 | Fig. 4-42,

2 (240|130 110 ® | cuvez

1 | 1.810|1.000 | 1.000 [ 1.000 | Fig. 442,
2 [2.060 | 1.190 | 1.000 [ 1.560 | curve3
3 [2440 1370|1010 =

3. | Haskell [62]

4. | Jeffreys (70] 1wl 1 1 Fig. 4-36
2 (2300|1838 1250 =

5. | Kanai [81] 1 L2l 1 1 Fig. 443
2 [3.000 17321 -

6. | Kanai [81] 1 |21 1 1 Fig. 4-44
2 |3.873 (223 |1 B

7. | Kanai [81] 1|2 1 1 Fig. 445
2 [4.508 | 2828 |1 ®

Kanai (81] 1 Lm2|1 1 1 Tig. 446
2 [7.746 | 4472 |1 ®

9. | Kanai([81] 1 [um2|1 1 1 Fig. 447
2 208 (1.203|1.140| @

10. | Tolstoy and Usdin | 1 |1.732]1 1 1 Fig. 4-35
1203] 2 (5450 3.147 1300 | =

11, | Sesawa [158] 1 1w 1 Fig. 448
2 |2.449 | L4141 ®

12. | Wilson and Baykal | 1 | 1.732 |1 1 1
210) 2 {1916 1.106 [ 1.167 | «
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Fro. 4-44. Rayleigh-wave disporsion, casc 6, Table 4-1. (After Kanai.)
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Fic. 4-46. Rayleigh-wave dispersion, case 8, Table 4-1. (After Kanai.)

components in the “main tremor” was one of the first established facts of
seismology.

1t was not until 1911 that an explanation of these waves was provided
by Love who showed that they consisted of horizontally polarized shear
waves trapped in a superficial layer and propagated by multiple total
reflections. To derive the period equation we follow Love’s original dis-
cussion (Chap. 3, Ref. 26) and consider simple harmonic plane waves. Take
the origin of coordinates in the interface, with the z axis in the direction of
propagation and the z axis vertically downward. Assume that all dis-

paloy= 114, oy = 165

2
2n/kH

Fio. 4-47. Rayleigh-wave dispersion, case 9, Table 4-1. (After Kanai.)
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Fro. 4-48. Rayleigh-wave dispersion according to the theory of Sezawa, case 11,
Table 4-1. (After Dobrin et al. [201.)
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Fra. 4-49. Rayleigh-wave dispersion, case 12, Table 4-1. (Afler Walson and Baykal)
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dent of th dinate y and that the time variations
are given by the factor exp (iut). The plane z = —H represents the free
surface (Fig. 4-50). The equations of motion (1-13) reduce to (V* +
ki)v, = O for the layer and to (V* + ki)o, = O for the substratum.

z=-H

1By oy

2=0

b2 B2 vy

z

Fio. 4-50. Notations for a layer underlain by a solid half space.

Making use of solutions of the wave equation in the form (2-7), we write
for the displacements

— (4™ 4 Be i) eme (4-205)

0y = Cetren (4-206)

where =Gt a=y5-1 @-20)

In order that the energy of these plane waves be confined to the superficial
layer, we require that ¢ be less than 8,, that is, that 9, be a positive imagi-
nary number. The three constants 4, B, and C are determined by the
boundary conditions, which require that the stress p,, vanish at the free
surface and be together with the di at the interface
2 = 0. Thus by Eqgs. (1-11) the condition p,, = 0 at z = —H leads to

AT — BT = 0 (4-208)
and (p.) - (D)2 8t z = 0 leads to

whi(A = B) = —uitiC (4-209)
The continuity of displacement v, = v, at z = 0 gives

A+B=C (4-210)
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This system of linear equations has solutions different from zero if

A gt

A= ph  —wh whs| =0 (-211)
1 1 -1
_ s _m V1= 0B .
or tan bpll = i85 = B 0D @ 2@

This period equation may be treated according to methods used in Sec.
4-2, Bq. (4-78). We note that real roots occur when 8, < ¢ < B, and it
may be readily shown that when 8, < 8, no relevant solutions exist. It
is seen by (4-212) when ¢ — 8,, kfuH — 0, =, 2x, -+ , and from the last
condition the wavelength in the lowest mode becomes infinite compared
with H. It is interesting to compare this problem with that of two liquid
layers (Sec. 4-2). Tn both cases a single wave type is involved, and in both
cases the phase velocity ranges between the wave velocities in the layer
and in the substratum. In the case of liquids, the period approaches a
finite limit at the upper limit of phase velocity, and larger periods are
excluded (for unattenuated propagation). In the Love-wave case there is
no upper limit to the period of waves since, as ¢ approaches g, kH ap-
proaches zero. This difference in behavior results from the phase change
upon reflection at the free surface, which is zero for the Love waves and
/2 for the liquids. Similarly, when ¢ — 8,, %1 — 0, yet the product
KH, — /2, 3x/2, The existence of an infinite number of modes
follows from the periodicity of the tangent function.

It is easy to show from Eqs. (4-205), (4-206), and (4-212) that the
different modes correspond to 0, 1, 2, -+ nodal planes within the layer.
In contrast with the problem for two liquid layers, the free surface here
is always an antinode for horizontal displacements. This is one of the few
cases where it is more convenient to obtain values of group velocity from
an_ explicit expression than by numerical differentiation of the phase
velocity.

Values for phase and group velocity have been computed by Jefireys
[76], Wilson [209], Stoneley [197], and Kanai [81], among others. Kanai's
curves appear in Fig. 4-51. Wilson’s data are presented in Table 4-2 and
Fig. 4-52. Stoneley’s results, in addition to a calculation for the second,
maode, are presented in Fig. 4-53. Again, the group velocity has a minimum
value, the Airy phase oceurring at a period of about 20 sec when H = 35
km. Curves for easy determination of period and velocity for the Airy phase
have been given by Satd [140]. Very useful nomograms for determination
of phase and group velocity of Love waves for a wide variety of cases
have also been prepared by Satd [147, 148].

Generalization of Love-wave theory for an impulsive line or point
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"0 2 4 6 8 o 4 8 12

Fia. 4-51. Phase- (c/) and gmup—nloeny (U/8) curves of Love waves for various
ratios of us/u: and pa/ps. (After Kanai, ‘changed notation.)
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FiG. 4-53. Phase- and group-velocity curves for first- and second-mode Love waves for
case Bo/By = 1.297 and s/ = 2.169.

source was discussed by Sezawa [167] and further developed by Saté [145].
The methods used are not unlike those given in Sec. 4-2.

Nakano [99a and b] considered two kinds of solutions representing Love
waves. In the case of axial symmetry the motion obtained does not depend
on the azimuth and is entirely transverse. If it is assumed that the equal
displacements are repeated in 7 sectors of the free surface, the displace-
ments at each point have both radial and transverse components (and
no vertical component). Nakano proved that the amplitude of the radial
component must diminish more rapidly than that of the transverse as the
product kr increases. Therefore at large distances the latter will pre-
dominate.

Love Waves across Continents. Difficulties similar to those described for
Rayleigh waves have delayed a complete understanding of Love-wave dis-
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Tasie 4-2. TrxorsTicaL Dispension oF Love Waves

1/ B, km/sec | py, km/sec | ¢ km/sec | U, km/sec | 2x/kH
1.80 3.60 4.60 3.60 3.60 0.00
3.80 3.48 1.72
4.00 3.51 2.84
4.20 3.71 4.27
4.40 4.00 6.86
4.50 4.31 10.02
4.56 4.50 16.24
1.795 3.50 4.50 350 3.50 0.00
3.70 3.38 1.72
3.90 3.43 2.88
400 3.57 3.55
4.20 3.79 5.37
440 4.23 10.4
4.48 4.4 2.9
1.80 3.70 4.50 3.70 3.70 0.00
3 90 3.50 1.7
4.10 3.67 3.01
4.30 4.00 5.11
4.40 4.22 7.66
4.48 4.4 1.7
1.40 4.00 4.50 4.00 4.00 0.00
410 3.96 117
420 3.97 1.97
4.30 410 3.02
440 42 5.03
4.45 4.36 7.19
4.49 4.47 17.60
persion for continents. Numerical caloulation of the dispersion curve by Eq.
(4-212) for a single layer over a

is relatively simple, and the many attempts at fitting the observations
on the assumptions of this simple type of structure have failed when
extended to the entire range of observed periods. In an effort to obtain
better agreement with Love-wave observations and to take cognizance
of the layering deduced from near-carthquake studies, Stoneley made a
series of investigations involving computations for a double surface layer.
In his most recent paper [197] on the subject, he offers only tentative
support for his preferred scheme of layering and points out that the need
for further work is manifest. Jeffreys [76] gave the theory for the effect
of a uniform increase in the velocity of shear waves in the substratum.
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‘Wilson [209] used this theory in his study of Love-wave dispersion but
concluded that the velocity gradient in the mantle could not be deduced
from it. New sources of data from explosion seismology concerning the
structure of the upper layers justify reconsideration of this problem.

Wilson and Baykal [210] have discussed the two general methods which
have been used in reading data for surface-wave dispersion from seismo-
grams. The older method is to determine period and travel time for the
first readable wave or for a conspicuous wave in the train and to construct
the dispersion curve by obtaining one or two points from each of many
seismograms. The preferred method now involves analysis of the entire
train of waves on each seismogram, using only seismograms which provide
a clear train of waves in which the period varies gradually with time.
By using the method on seismograms from suitably selected carthquakes
and paths, the v of the data may be
greatly increased. Tt is usually unnecessary to derive true ground displace-
ments from the seismograms prior to dispersion analysis. However, the
limitations of all seismographs used must be respected in order to avoid
errors from instrumental phase shifts.

Love waves from the Nevada earthquake of July 6, 1954, were recorded
for a large range of periods on the Palisades, N. Y., NS seismogram (Fig.
4-54). A dispersion curve covering the period range 8 to 140 sec was

—— R

T

Fro. 4-54. Palisades NS seismograms showing Love waves from the Nevada earthquake
uly 6, 1954.

obtained and is plotted in Fig. 4-52. To show the effect of heterogencity
in the mantle, two theoretical curves taken from Wilson have been plotted
as dashed lines. These curves are for similar structures except that in
one case the mantle velocity gradient is allowed for by Jeffreys’ method
(Sec. 7-3). It may be seen that the effect of the gradient is to lower the
group velocity by about 0.1 km/sec for periods greater than 30 s
allowance is made for the effect of the mantle gradient, this theoreucal
curve would fit the observed data to about 0.1 km/sec for most of the period
range 20 to 140 sec. This confirms the scismic-refraction determination of
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B2 to about 0.1 to 0.2 km/sec and suggests that any vertical variation of
velocity in the crust must be small. An alternative method of reconciling
the theoretical curve with the experimental data would be to assume a
shear-wave velocity of about 4.5 km/sec in the substratum. However,
this would confliet with observations from explosion and rock-burst
seismology and must be rejected.

For periods less than 20 sec the observed points rapidly fall below the
theoretical curve. This corresponds to prolongation of the wave train
beyond the theoretical limit, an effect not fully understood. Two explana-
tions for the behavior of the short-period waves have been advanced. One
involves refraction, reflection, and scattering, The other suggests that it
represents an effect of low-velocity sediments.

Another possibility of explaining the low velocities in the period range
8 to 30 sec was eliminated by calculation of the second-mode curve shown
in Fig. 4-53. Although the velocities were considerably lowered, the
periods involved were too short, the cutoff being at about 13 sec.

A velocity gradient in the crust, as revealed by explosion and near-
earthquake investigations, would strongly affect short-period Love-wave
propagation, which involves reflections at the top and bottom of the layer
at near-grazing angles. A decoupling effect would occur for angles of
emergence oS §1/Bumax, Where 8, and By.. are the shear-wave velocities
at the top and bottom of the crust, respectively. Beyond this angle, the
energy for the corresponding period (and all shorter periods) may be
considered as confined to a “‘sound channel” bounded by the free surface,
and a parallel plane above the interface. Thus reflections from the inter-
face do not oceur. No calculation is available in this case.

Love Waves across Oceans. The most recent studies of Love-wave dis-
persion across ocean basins by Caloi and Marcelli [16] and Wilson [209]
reach conclusions which support, the result found in seismic-refraction
measurements that there is no significant thickness of granite under the
ocean basins. However, all the investigators have deduced values for the
depth of the Mohorovitié discontinuity which are several times greater
than the 5- to 6-km depth commonly found in the refraction work.

For the thin superficial layer indicated by scismic-refraction results,
the theoretical group-velocity curve has its minimum at a period between
2and 4 sec and has essentially reached its constant limiting value of velocity-
of 4.4 to 4.5 km/sec for periods greater than 20 sec, as may be seen from
the curve in Fig. 4-55. It is clearly necessary to investigate periods shorter,
than 20 sec to study such unexpectedly thin layers. Since the oceanic
dispersion is so small compared with the continental dispersion, particularly
for periods greater than 20 sec, the correction of the continental part of
a mixed path is most important and, in general, cannot, be obtained with
the accuracy required. It scems that the high values of layer thickness
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found by Wilson and Caloi can be attributed to the fact that they confined
their attention to waves of period greater than 20 sec and to propagation
paths which often included large continental segments.

There are two reasons for the neglect of the shorter-period Love waves.
First, they are usually absent, being so severely attenuated at continental
boundaries that only seismographs on oceanic islands or extremely near
continental boundaries can receive them. Not all occanic carthquakes
excite the short periods, as was shown in a study by Oliver, Ewing, and
Press [111] of the Honolulu seismograms. The second reason is that at &
period of about 8 sec the short-period Love waves merge with a prolonged
train of oscillations which record on all three components with roughly
equal but without phase Tgnoring
this latter part of the surface-wave train, we can extend the observational
data on oceanic Love waves to the shorter periods required to determine
the crustal structure.

Theoretical curves for the cases 8, = 3.71 km/sec, 8, = 4.30 km/sec,
42 = 176, H = 6 km, and H = 15 km are given in Fig. 4-55. Sedimentary
and oceanic layers need not be considered for Love waves because of their
small o vanishing rigidity.

The curve for H = 6 km fits the data reasonably well, a conclusion also
reached by Sezawa [170]. For periods greater than 18 sec the observations
fall about 0.1 km/sec below the theoretical curve. This discrepancy is of
the proper order for the effect of the velocity gradient in the mantle dis-
cussed in the previous section. As expected for a thin superficial layer,
the observed variations of velocity with period becomes small for periods
greater than 20 sec. This accounts for the brief duration of Love waves on
seismograms of earthquakes for which the path is principally oceanic.

Tt is clearly necessary to investigate periods shorter than 20 sec to dis-
tinguish between the curves for H = 6 km and H = 15 km in Fig. 4-55.
Since oceanic dispersion for Love waves is small compared with the cor-
responding continental dispersion, it is important yet difficult to correct
for the continental portion of the path. We attribute the excessive values
of oceanic crustal thickness deduced in earlier investigations to the fact
that few data were available for periods less than 20 sec and that propaga-
tion paths contained large continental segments.

Two papers present divergent interpretations of oceanic Love waves.
Evernden [33] presents dispersion data for a Pacific path which agrees
with our data for periods greater than 20 sec but gives significantly lowet .
group velocities for shorter periods. He infers a crustal structure consisting
of 25 km with shear velocity 231 km/sec, 10 km with 3.87 km/sec, and
a mantle with velocity 4.52 km/sec. We prefer to reserve judgment on
this rosult, which proposcs a novel crustal structure incompatible with

results, until better-developed short-period Love waves
over midmmml Pacific paths have been exammed
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Coulomb {20] studied the Love waves from the Queen Charlotte Islands
earthquake of Aug. 22, 1949, on seismograms from Honolulu, Apia,
Auckland, and Riverview and presented the first adequate data for the
critical period range 8 to 20 sec. Coulomb classified his observations into
two groups. The first represents the ordinary long-period Love waves
(G waves) in the period range 32 to 58 sec. The second group covers the
range of periods and velocities from 8 sec and 4.05 km/sec to 34 sec and
4.85 km/sec. No model of crustal layering has been proposed which can
transmit surface waves at velocities appreciably greater than 4.5 km/sec,
a difficulty that Coulomb pointed out in connection with his tentative
suggestion that these were higher-mode Love waves. As an alternative
explanation, which is in full accord with the seismic-refraction results, it
is here suggested that Coulomb’s data be grouped in another way. All
velocities less than 4.5 km/sec are taken to represent Love-wave propaga-
tion with the single dispersion curve indicated in Fig. 4-55. If the partition
of data is allowed, Coulomb’s data with that from Honolulu (Oliver,
Ewing, and Press [111]) and Bermuda (Ewing and Press, unpublished)
give excellent definition of the oceanic Love-wave dispersion curve in
the critical short-period range (see Fig. 4-55). The wave with higher
velocity may be considered to represent a different kind of phenomenon,
related to the sinusoidal-wave trains often observed over continental and
mixed paths having velocities between those of the phases SS and Sn
(Caloi [15]).

It is puzzling that no single seismogram has been found which shows
an unbroken train of Love waves covering the entire range of periods
from 8 to 50 sec.

Lg and Rg Waves. The Lg phase is a short-period (1 to 6 sec) large-
amplitude arrival in which the motion is predominantly transverse (Figs.
4-56 and 4-57) but by vertical
The phase oceurs only when the earthquake epicenter and the seismograph
station are so situated as to make the path entirely continental. As little
as 2° intervening ocean is sufficient to eliminate the phase entirely (Press
and Ewing [125]).

The velocity of Lg is 3.51 km/sec, a value essentially equal to the velocity
of shear waves in the upper part of the continental crust. Although the
precise of Lg is not it is certain that
transmission of shear waves through a very efficient wave guide is involved.
Short-period transverse (SH) waves propagating with this vclocxty are
included in the classical Love-wave theory in the limit U = ¢ = 8,, as
indicated in Fig. 4-53. Similarly, short-period shear waves polnrized
vertically (SV) occur in the second and higher modes of Rayleigh waves
propagating in the crustal layer (Fig. 4-35). Both of these mechanisms
can explain many of the characteristic features of Lg. If velocity gradients
oceur in the crust, there will be a tendency for the short-period Lg phase
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Fio. 4-57. Palisades NS seismogram of Lg and Ry waves from Yukon aftershock of
March 1, 1955,
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to concentrate in the zone of lowest velocity. Two such mechanisms are
indicated in Fig. 4-58. A principul problem of the Lg phase is its long
duration, which is probably caused by reflection and scattering rather
than low values of group velocity.

Observations of Rg (sce Figs. 4-38 and 4-57) establish these waves as
Rayleigh waves, from their orbital motion and velocity. The phase occurs

Lgwaves
v Surface
)

pth
-
~
-
~

Moorovi&é disc.

Channel along the surface formed by velocity gradient

Surface

Mohorovidié disc.

Channel along a velocity minimum

Fia. 4-58. Two possible mechanisms for Lg propagation. In the first, Ly propagation
is confined to the uppermost part of the layer. In the second, Ly waves propagste nea
the depth of minimum velocity.

with periods of 8 to 12 sec and is also restricted to continental paths.
Some recordings of Ry under particularly favorable conditions (see Fig.
4-57) show inverse dispersion. In all probability, Rg waves correspond
to propagation according to the portion of the Rayleigh-wave dispersion
curve of Fig. 4-36 falling to the left of the minimum value of group velocity.

Lg waves may be used to determine whether the crust beneath a given
area is continental or oceanic. The experimental procedure simply is to
search for the phase on seismograms, its presence or absence indicating
either continental or oceanic plus continental path, respectively. It has
been found without exception that the crust is typically continental in
any large area where the water depth is less than about 1,000 fathoms
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and typically oceanic for water depths greater than about 2,000 fathoms
(Press and Ewing [125], and Oliver, Ewing, and Press [112]).

Other Investigations. The important question concerning the existence
of a relation between the thickness of a layer and the amplitudes of waves
propagating in the system has been discussed by several investigators.
Using Sezawa’s theory, Sezawa and Kanai [178] expressed the amplitudes
of Love waves in terms of the thickness of a surface layer. They discussed
also (Sezawa and Kanai [179]) the analogous problem for Rayleigh waves.
A conclusion reached by Lee 85, 86] should also be mentioned in this
connection. He showed that for Rayleigh waves the effect of a thin layer
is more pronounced for horizontal than for vertical motion. Many examples
of group-velocity curves for Love waves as well as for Rayleigh waves
were computed by Kanai [81].

As mentioned above, the problem of two-dimensional propagation of
body waves as well as surface waves in a two-layered solid half space
was studied in detail by Newlands (105] by a method different from those
discussed in preceding sections. If a line source is at a depth z = hin a
layer having the thickness H, the solution for an initial P wave is obtained
by combining the direct wave (¢,) and the wave (¢,) reflected at the iree
surface, apparently originating at the image source at z = —h. The sum
of these is

o = ko, = e [T b mhf—" forh<z<H
o S
- —4:‘"]' & sinh vz mkz‘:—" for0 <z <h (4-213)
o \
with the supplementary potentials ¢, and ¥, for the layer (0 < z < H)

o= e [ 46" B cos e di

(4-214)
s [ 10 g D ik
o
The potentials for the lower medium can be written in the form
PR f Qe coskz dk
o (4-215)

Yo = 4 [ 87 sin ke i

Similar formal solutions can be obtained for an initial S pulse.

Substituting these expressions in the six boundary conditions (4-191)
and (4-192), we obtain six linear equations to determine the coefficients
4, B, C, D, Qs S, As usual, cach of these coefficients can be written as
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a quotient of two determinants. The determinant A of this system of six
equations may be written in the form

2, D, D, + D,
D,{l +p,¢

D,

e—s

A = e

S
‘where D, are represented by expressions (4-198) given earlier in this section.
Now, as in Secs. 2-6 and 3-3, the solutions (4-213) to (4-215) may
be generalized for the case of an initial P pulse having the form of a Heavi-

side unit function. For 0 <z < h
= 55 [, oo + 0

cor de

Ds s, Do
+5e "+,

fut du
(2
ﬁ-~fw

where gor, ¢1, and ¥y are given by (4-213) and (4-214). The coefficients
A, B, --- must be replaced by the quotients mentioned above, the deter-
minant, A being written in the form (4-216).

The integrals in (4-213) to (4-215) are of the form [ G(k) cos kz dk
or [ kG(k) sin kz dk. Newlands obtained their approximate values using
the Bromwich [13] expansion method (see also Sec. 2-5). This method
yields an important, interpretation of the expressions obtained, since each
term of the series corresponds to a different kind of pulse. If the complex
variable { in (4-213) to (4-216) is taken instead of k, it can be easily seen
that a general term of the series into which the ¢ and ¢ integrands are
expanded contains an exponential of the form

exp liwt — itz ~ hw, — ha{] (4-218)
where ki, and h, are linear forms in h, z, and H. These expansions hold
under the condition that the sum of the second and later terms in braces
in (4-216) is very small compared with 1.

Now if contour integration is applied to each term in the manner sug-
gested by Lapwood (Chap. 2, Ref. 25), all four branch points k.., k..,
kg, kg2 must be considered since the separate terms are not necessarily
even functions of », and » (j = 1, 2). There are also contributions from
the poles due to the existence of roots of the Rayleigh equation (2-28)
and of the Stoneley equation (3-139).

The contribution due to each term of the series representation of (4-213)
to (4-215) is then composed of several parts. Each of these is generated
by the branch line corresponding to Re », = 0, ete. (see See. 2-5), or by
a pole. The main contribution to the integrand along a loop £41, £1, *+*+
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comes from the neighborhood of the corresponding branch point, (k,y, - - -),
and appropriate values of 40 “zero-order” and “first-order” terms were
computed by Newlands. The zero-order terms represent the gencrating
pulse and those due to the free surface of the layer. The first- and higher-
order terms represent, the effect due to the finite depth of the layer and to
the presence of the substratum.

The terms obtained could be divided into two groups. In the final
form obtained by Newlands for a term of the first group we have a factor
cqual to the Heaviside unit function H(t,), where the variable , is a
linear function of {, z, z, and the layer thickness H. Since the corresponding
pulse arrives at the instant ¢, = 0, this condition will determine the time
required to travel from the source to the observer along a minimum-time
path. Such a path is determined by the form of Z,. For example, the branch
point k., leads to a term in which

z () VLS |

SR EE RV R D)
When £, = 0, a pulse arrives, with travel time corresponding to the path
SKMNR (Fig. 4-59). This represents a compressional wave propagating
in the first medium with the velocity @, which strikes the second medium

T T -
in S . 6 ®
|

K a2 M
2

Fio. 4-50. One type of path associated with branch point k,.

at the critical angle. It travels with the velocity @, in the substratum
and emerges as a shear wave traveling in the direction MN. The latter
generates a compressional wave at the free surface which reaches the
detector at R.

A second group of terms obtained by Newlands cannot be associated
with similar paths. They are called “blunt” pulses. In this case the co-
efficients », and »{ do mot appear in the exponent of (4-218) but in the
amplitude factor.

4-6. Three-layered Half Space. In many studies of surface-wave propa-
gation it is necessary to consider systems having more than one superficial
Iayer. An important problem is that of Rayleigh-wave propagation along
oceanic paths, where a liquid layer and a basaltic layer of approximately



A LAYERED HALF SPACE 225

equal thickness are underlain by the mantle. Other examples involving
multiple layers arise in Love- or Rayleigh-wave problems where velocity
gradients in the crust or the mantle are approximated by several homo-
gencous layers.

Oceanic Rayleigh Waves with Layered Substratum. Although the theory
presented in Sec. 4-5 accounts for the main features of oceanic Rayleigh-
wave dispersion, it has been necessary to make calculations on the effect
of an interposed solid layer, with thickness approximately equal to the
liquid depth, between the liquid and the mantle. Two cases arise—one in
which the layer is assumed to be granite, according to many geological
speculations about the Atlantic Ocean, and onc in which it is taken to be
basalt, according to refraction measurements.

To derive the period equation appropriate for this problem, we assume
that a train of plane waves in the given half space may be represented as
follows (Jardetzky and Press [70]):

o = [Be" 4 Ce e for 0<z<H (4-220)

o= DEUH BTNy <m0

Vo = {Me” (4-222)
oo = e for By + Hy <2 2
Vo = P (229

There are now eight boundary conditions. These stipulate vanishing of
stress at the free surface of the liquid layer, continuity of normal stress
and displacement and vanishing of tangential stress at the liquid-solid
interface, and continuity of normal and tangential stress and displacement
at the solid-solid interface.

As usual, we substitute expressions (4-220) to (4-224) into the boundary
conditions to obtain eight simultaneous linear equations involving the
eight coefficients. As before, the condition that the determinant must
vanish in order for a solution to exist gives the period equation. The result is

L + I sinh (n,kH) sinh (n,kH) + B sinh (n,kH) cosh (nikH)
+ 1 cosh (mkH) sinh (nkH) + U cosh (nikH) cosh (nikH)
=+ [U’sinh (n.kH) sinh (n,kH) + 4’ sinh (n,kH) cosh (nykH)
+ 1 cosh (n.kH) sinh (nokH) + K’ cosh (n.kH) cosh (nikH)]
X tanh (nokH) = 0 (4-225)

#As before, “liquid” here signifies water plus unconsolidated sediments.
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where

with

G = XZ — WY G =2 —nnY G

‘where
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L=4(z- vide,

~(-nY & -,
U= (2 -V “‘) "':f?i + A—n.n.v‘ B:
U= (2—V’ z)ﬂ'ﬂI/:"H-A n,n.V:;

X

= (2- i) a -

Y Y
x-evid-oo)

y:Vf;—§+2(‘“7:—1)=v,§+w

ﬂx fg%—z(:“—:—l)xx— vig
H(ﬁ»l)

V'

(229

(a-221)

(4-228)

= nn V' — X' (4-220)

(4-230)
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and

Numerical values, calculated from Eqs. (4-225) to (4-231), are available
for three cases, as follows:

} Layer | 8, km/sec | p, gm/cm? H,km
Case 1 [ 1.00 5.57
1 3.18 2.67 5.57
2 4.68 3.00

Case 2 [ 1.52 ] 1.00 5.57

7.90 4.56 3.00 -
Case 3 0 1.52 0 1.00 5.57
1 6.90 3.08 2.67 5.57

2 8.10 4.63 3.00 -

Group-velocity curves for these cases are presented in Fig. 4-60. These
show that cases 2 and 3 are experimentally indistinguishable from each
other for the periods between 15 and 40 sec, the range covered by observa-
tional data. Case 1 differs from these by an amount which might be detected
by the study of well-chosen seismograms (see Fig. 4-61).

Love Waves. A necessary condition for the existence of Love waves is
the presence of one superficial solid layer. These waves can also oceur in
‘more complicated structures. Stoneley [192] gave the theory of a generalized
type of Love wave for a three-layered solid medium extended from (1)
z=wtoz=0(2z=0toz=—Hand (3)z = —Htoz= —w.
Using notations similar to those in Sec. 4-5, we write the corresponding
period equation

v v
Tz — Vmiaia

1-;—; v,=\§s:—1 1,=‘1—§; (+-233)

Real roots of (4-232) occur when 8, < ¢ < 8, or Bs.

tan (kfH) = fapz 7.0 (4-232)

where
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The problem of propagation of Love waves in a double surface layer
(three-layered solid half space) was considered by Gutenberg [53], Stoneley
and Tillotson [194], and Stoneley [195].

Jeffreys [77] studied the formation of Love waves in two layers in contact,
each having finite thickness. In the limit the thickness of the second layer
was then taken very large.

To determine the structure of the continental parts of the earth’s
crust, Stoneley and Tillotson assumed the following layering: (1) granite,
from z = 0 to —H,; (2) an intermediate basaltic layer, from z = 0 to

= H,; and (3) the subjacent material taken as ultrabasic rock, from
z=H,toz = . For this case 8, > 8, > 8.

Love waves may also exist when 8, > 8, > 8,. This case was investi-
gated by Stoneley [198]. The effect of the low-velocity layer on Love
waves is greater than on Rayleigh waves, since the latter can exist in a
homogeneous medium. The low-velocity layer was found to have little
influence on the surface amplitudes of Love waves in the range of periods

ily studied. For a high- layer there is a
certain critical wavelength lyeyond which the Love waves will not exist.
Now, under the condition that the velocities §; increase with the depth,
and w3 > u; > wy, s > ps > py, three cases occur: (1) 5 > ¢ > B, > By,
(2)Bs> B, > ¢ > By, and (3) By > 8 > B > ¢

In case (1) we put

- S - [y s
BTl me=al-g @By

(A 4 B ingitenn
oy = (G 4 Do g ptrargeis
The boundary conditions such as (4-208) to (4-210) must be supple-
mented by the equations v, = v, and (p.,,)a = (p.,)s 8tz = H,. The resulting
five humogenecms linear equations with respect to the coefficients
4, B, -, E can have solutions different from zero if their determinant
is'zero. This ivos tho period equation as follows:
4iafs tan (KfaH) — pafapays + pifiuads tan (k9,H)
+ wifpays tan (k9.H)) tan (b9.Hs) = 0 (4-236)
To pass to case 2, we may observe that 7, becomes pure imaginary,
and for case 3 9, also does. Putting 9; = iy: and 9, = iv,, where v, and v,
are real, we obtain the corresponding period equations in which tanh will
replace the corresponding tan function. Some general conclusions may be
drawn from these period equations. The dispersion curve is continuous

4235
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through the value ¢ = 8. For cases 1 and 2 there exist one or more nodal
planes as in the two-layer case. No roots of Eq. (4-236) exist for case 3.
Since the phase velocity ¢ is determined in terms of k by this equation,
the group velocity can be readily found. Stoneley and Tillotson made
numerical caleulations for H, = II,, and Stoneley [195] has investigated
the case 1, = 2H,.

The extension of these theoretical results to a triple surface layer resting
on a uniform substratum was given by Stoneley [196]. The number of
boundary conditions is again increased, and we obtain a vanishing deter-
minant of the seventh order. Period equations can be written to conform
to the different cases which are determined by values of 8, and ¢, and the
range of existence of Love waves can be found. As an application, the
thickness of the sedimentary layer of the continents was determined as
about 3 km.

Satd [142) discussed the problem of propagation of Love waves in a
double superficial layer with special emphasis on the condition of existence
of these waves. As a necessary condition, he found that the velocity of
distortional waves in one of the layers must be less than that in the semi-
infinite substratum. Numerical examples are given for some cases.

Satb [143] also examined the question of using dispersion curves corres-
ponding to an equivalent single layer instead of those for double superficial
Iayors. He concluded that one can find a dispersion curve correspond-
ing to a single layer which fits that of a double-layer structure very well.
However, there can be a large discrepancy in the estimated thickness,
density, and rigidity of the layers.

4-7. Air-coupled Rayleigh Waves. Tn most investigations of elastic-
wave propagation in solids in contact with the atmosphere, the effect of the
atmosphere may be neglected, because of the great density contrast. In
some cases, however, resonant coupling may occur for a particular fre-
quency, so that even though the energy flux across the interface is slight,
the intensity of the signal transferred may be significant because of con-
structive interference.

In the first case we shall discuss an impulsive disturbance generated in
the air impinging on a plane interface bounding a system of solid or liquid
layers in which free waves may travel parallel to the interface with a
range of phase velocities including the speed of sound in air.

To a first approximation we may neglect the reaction of the surface
wave on the air and follow Lamb’s [84, p. 413] (sce Scc. 2-8) treatment of
the effect of a disturbance produced by a traveling line source. The traveling
impulse may be replaced by a succession of infinitesimal impulses placed
at equal intervals of time along the path of the disturbance. Each impulse
initiates a train of dispersive waves, and constructive interference is possible
only for those waves whose phase velocity ¢ equals the speed of the traveling
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disturbance ¢,. The energy thus transferred will form a train of constant-
frequency waves. The duration of the wave train at any distance will be
proportional to [1/e, — 1/Uy!, where Uy is the group velocity corresponding
t0 ¢, The waves will extend ahead of the air pulse if Us > ¢; otherwise
they will lag behind.

The preceding discussion also applies if the disturbance is in the layered
medium and the detector in the air. Here the primary disturbance in the
layered medium consists of a train of dlspersl\'e waves, and the atmos-
pheric di has the same istics as the constant-freq
train mentioned above.

A problem of some practical importance is that of atmospheric coupling
to Rayleigh waves generated in the earth by explosions, the “ground roll”
of seismic prospecting. Suitablo Raylcigh-wave dispersion is introduced
by the strati of layers. A ive treatment for
the case of a homogencous surface layer over a homogeneous substratum
can be given in the following form:

Assume a point source in the air at a distance A above the plane z = 0,
and denote by p;, «; and 8;, j = 0, 1, 2 the densities and velocities of
dilatational and shear waves in the air and in the solid media 1 and 2.
Let H be the layer thickness, and use the notations and conditions given
in the preceding problems. The potentials which satisfy all boundary
conditions can be written in the form

= AUk for—o <2< —h (4-237)
@' = [Be™* 4 Ce7")Jo(kr)  for —h <z <0  (4-238)
= (D™ + Ee Mok for 0<z<H (4-239)

o
Yo = (e + Ne™ "} k) (4-240)
o= FIR) p e (4-241)
Yo = Pe™""Jo(kr) @-242)

To determine the nine coefiicients 4, B, -+ - , P, we obtain the following
system of equations from the boundary conditions:

P’ (B + C) + 2uk* — po’)(D + B) + 20k’ (M = N) =0 (4-243)
2(D — E) + 6 + K)M + N) = 0 (4-244)
Qu* ~ p)(De" + B = (Quk' — pu )P
+ 2upiki(Me™ " — Ne'™) + 2uwik’Pe ™ = 0 (4-245)
2up(De = B + e

+ moi + KM 4 N WO + P =0 (4-246)
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w(B—=C) —w(D—E - FM+N=0 (4-247)
n(De™ = &) + viFe "
+ BT + Ne'™) — FPe" =0 (4-248)

De - B — Fe™ + vi(Me™™ — Ne™'™) +viPe™"" =0 (4-249)
Aet — Bt — Ce = (4-250)
wode'™ + v(Ce™ — Be'™) = 22 (4-251)

The last two conditions arise because of the existence of the point source
at z = —h [see Eqs. (4-39) and (4-40)), where Z represents the strength
of the source.

From the last two equations it follows that

B=4A- Z e O = %e"‘ (4-252)
These two coefficients can be muy eliminated from the system of Eqs.
(4-243) to (4-251). We restrict ourselves to the analysis of the frequency
equation.

After certain transformations of the determinant of the preceding
system of equations, the frequency equation takes the form (Jardetzky
and Press (69]) shown in (4-253), page 233.

In order to develop this determinant, we introduce the notations of Love
(Chap. 3, Ref. 26) and Lee [85, 86], which were used by the latter in the
investigation of propagation of Rayleigh waves in solid layers. This
problem has been discussed in Sec. 4-5. We now put

¢
veg (4-254)
P N [ SR
a ' a (4-255)
= V1I-V n= l—l'-fL
8
x:ﬂV'-z(“’-—l) y=V’+2(‘ﬂ—1)=V-+w
n " m @250

Pryn gt ) x - gl _
pvevedio)-x-v woalt-i)

G = XZ —nnWY G =2'—nnY" G =nnW — X (4257
and L =42 — VG,

b= @V sang, - By
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—p” —p® 0 0
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2k’ — pw’ 0 . —a' § —2uwik’
pow” cosh v H 2y, 81 cosh v[H  po” sinh i H
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m e
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Then the frequency equation takes the form
& + b sinh (n,kH) sinh (u,kH) + b sinh (okH) cosh (n,kH)

+ & cosh (n,kH) sinh (n,kH) + L, cosh (n,kH) cosh (nikH) = 0 (4-259)
The last terms of the coefficients I; having the factors p, and 1/n, represent
the influence of the air. As a check, we note that for p, = 0 Eq. (4-259)
reduces to that given by Lee [85] for the case of a single surface layer
(Eq. 4-202). The phase velocity may be caleulated from the frequency
equation (4-259), and the group velocity by graphical differentiation.
The following data were used to compute the phase- and group-velocity
curves of Fig. 4-62:

@ = 1070 ft/sec B, = 800 ft/sec %
o Pooon Lemm Robog
" " o

These values were chosen as most representativo of near-surface conditions
often in seismic ing. It is obvious that ipling
effects are negligible when 0.91948, > a, since ¢ > a for this case, and
the air-coupling term of the frequency equation which contains the factor
po/pima is very small. In the case of air-coupled Rayleigh waves, real values
of kH must correspond to the interval 0.9194 < V < ao/8,. The upper
limit is equal in this case to 1.3375 (= 1,070/800). For larger values of V,
the roots of the frequency equation become complex, corresponding to a
radiation of encrgy from the ground to the air. The roots of Eq. (1-250)
were computed by successive ions, using Lee's

to obtain the first approximation. Group velocity U was obtained by
graphical differentiation of the phase-velocity curve.

The phase-velocity curve in the case of air-coupled Rayleigh waves
differs very little from the curve given by Lee until the neighborhood of
the critical point V' = 13375 is reached (Fig. 4-62). At this point, it
deviates to the left and intersects the V axisat a point 1.3374 < V < 1.3375.

The real part, of complex roots above the eritical value is very close to
the corresponding roots of the frequency equation without air-connected
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Fre. 4-62 Phase- and group-velocity curves for air-coupled Rayleigh waves.

terms. But it deviates to the right in the neighborhood of the critical
value and “ends” at the point kH = 4.2515 of the line V = 1.3375.

In Fig. 4-62 the heavy lines indicate where atmospheric influence is
negligible, and the results are similar to those obtained by Lee. The dashed
lines represent new branches introduced by air coupling.

The group-velocity curve in Fig. 4-62 is divided into branches T, 11, 1T,
each of which represents a different train of waves. Branch I corresponds
to the dispersive train of Rayleigh waves observed on seismograms of
earthquakes. Branch I also accounts for the dispersive Rayleigh waves
usually associated with ground roll. These waves first appear as long-period
arrivals traveling with the speed of Rayleigh waves in the bottom layer,
U = 0.91948,. Succeeding waves gradually decrease in period, since kH
increases as the group velocity decreases. Waves continue to arrive wi
decreasing period until a time corresponding to propagation at the mis
mum value of group velocity. Waves with group-velocity values near the
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minimum in branch I have phase velocities approaching the speed of
sound in air from the side ¢ > a,. These waves are attenuated, since kH
is complex and has an increasingly large imaginary component as ¢ — aq.
Only real parts of kH have been plotted in Fig. 4-62.

Branch 11 represents a dispersive train of waves beginning as a high-
frequency arrival at a time corresponding to propagation with the velocity
of Rayleigh waves in the surface layer. The frequency of these waves
decreases as time progresses until the time corresponding to propagation
at the minimum group velocity, when the waves of branch I and branch
11 merge to form a single train of waves having a discrete frequency.

Branch IIT represents an additional train introduced by coupling of
Rayleigh waves to atmospheric compressional waves. This train begins
at a time corresponding to propagation at the speed of sound in air and
continues with almost constant frequency until the time ¢ = r/0.44,.
The phase velocity of these waves should be close to the speed of sound
in air. From the qualitative discussion at the beginning of this section
and from the discussion of air-coupled flexural waves in Sec. 6-3, we
might expect these waves to be prominent for a source in the air recorded
hy a pickup on the ground and for a source within the ground recorded by

in the air. These could be rigorously
'by a very tedious caleulation of amplitude furmuons There is an additional
branch with dispersion features similar to branch III, corresponding to
the complex phase velocities whose real parts are greater than but Lloﬁ
to ao.

Higher modes of ion exist at higher

Atr-coupled Ground Roll. The introduction of air shooting in seismic
prospecting has stimulated studies of ground roll generated by air shots
(see also Sec. 4-5). Press and Ewing [122] reported results of a series of
field experiments in which the elevation of the shot position was varied
from 30 ft above the ground to 40 ft in the ground. The seismograms
shown in Fig. 4-63 cover the horizontal distance range from 2,200 to 2,650
feet. In these seismograms the first three traces represent reception at
2,200 feet (1) from a radial horizontal geophone, (2) spurious and (3) from
a vertical geophone. The succeeding traces are vertical geophones spaced
50 ft apart out to a distance of 2,650 ft. Ground roll on the air-shot reu)n:l
consists essentially of a constant-frequency train of waves i
following the air wave. Retrograde elliptical particle motion shown by the
first two traces proves these to be Rayleigh waves. The phase velocity of
these waves remains close to the speed of sound in air for about 6 cycles.
It is interesting to note that the character of the ground roll from an air
shot is independent of shot point elevation in the range 0 to 30 ft at hori-
zontal distances which are large in comparison with the shot elevation.

In marked contrast, the ground roll from the buried shots (Fig. 4-63)
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Fi16. 4-63. Contrast between dispersive Rayleigh waves from a hole shot at 80-ft depth
(upper seismogram) and constant-frequency Rayleigh waves from an air shot 10 ft above
the ground (lower seismogram).

consists of a dispersed train of Rayleigh waves. With the use of a Fourier
analyzer, phase velocity was obtained as a function of frequency for these
waves (Fig. 4-64). It was found that the frequency of waves whose phase
velocity equaled the speed of sound in air was identical with the frequency
of the waves following the air pulse on the air-shot records. It was also
found that a microphone situated a few feet above the ground detected
& train of constant-frequency waves from a buried shot. The characteristios
of the ground roll for air shots and buried shots are thus seen to confirm
the theory developed in the preceding pages.
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Fro. 4-64. Phase-velocity curve for hole shot and air shot as determined by Fourier
analysis of two records at 800 ft and 1,200 ft. (Courtesy of M. B. Dobrin.)
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Benioff, Ewing, and Press [4] have suggested that the low-frequency
sounds often reported as accompanying earthquakes illustrate the same
phenomenon and are principally confined to regions in which the super-
ficial strata can propagate surface waves at velocities near the speed of
sound in air.

4-8. Remarks concerning the Problem of an n-layered Half Space. The
general equations which hold for a stratified medium were given in Sec. 4-1.
The equations of motion such as Eqs. (4-1), for example, have to be
written separately for each homogeneous part of a medium and the appro-
priate values given to the elastic constants and the density. The boundary
conditions can be formulated in different ways. Assuming a welded contact
between the layers, we have conditions (4-2) and the second set of Eqs.
(4-4). At the free surface the boundary conditions for the n-layered elastic
half space are represented by the first set of Eqs. (4-4). The complete
discussion of the problem of wave propagation in an n-layered medium
presents very great mathematical difficulties. Therefore this discussion is
usually reduced to some special points. Thus the principal aim of Rayleigh's
investigation [130] was to determine the reflection coefficient in the first
layer of a stratified medium which is composed of a set of equal parallel
homogeneous layers. In optics a similar problem has been discussed by
several writers (sce, for example, Forsterling [47] and van Cittert [206]).
‘The transmission of plane compressional waves through a system of alter-
nate layers of two different substances, in connection with the question of
acoustic filtering, was investigated by Lindsay [88]. Brekhovskikh [8]
suggested a new method of deriving the reflection coefficients by using a
certain differential equation of the first order instead of the wave equation.
Using the formulas developed by Thomson [202], Haskell [62] reformu-
lated the problem in terms of matrices and suggested a new systematic
computational procedure. A derivation of period equations based on the
condition of constructive interference is given by Tolstoy and Usdin [203].
Numerous papers have been written about other particular cases of the
problem.

The ission of ional and distortional waves through layered
media in a direction normal to the boundaries was investigated by Sezawa
and Nishimura (159] and Sezawa and Kanai [164, 165, 183]. They first
considered a single layer embedded in a medium, obtaining a solution in
series form, the terms being Fourier integrals. The integrands in these
expressions were determined as usual by means of boundary conditions.
By contour integration these integrals could be evaluated and some general
conclusions drawn.

We have seen the importance of the period equation in every particular
problem shown before. Some general properties of solutions for n parallel
layers in a half space will now be discussed (see Jardetzky [71]). For each
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layer the potentials ¢, and ¥, like those in Eqs. (4-11) to (4-14), are
o= [ Qe b+ [ Qe
y ’ (4-260)
Vo= [ sune ak [ s de

with Q) = 8!’ = 0. For the layer in which the point source of compres-
sional waves is situated we must add the potential

- kdk
mefe o
There are 4n — 2 unknown coefficients @ and S in Eqs. (4-260). They
can be found as usual by solving the system of linear equations determined
by the boundary conditions.
In order to write these conditions, we must use the expressions for
@ Wi, (P.)iy 8nd (P

a=2(0+2) w-tipy, (202

T kr) (4-261)

o= (% +22) < 2 [0 S g er 400w

2 a 29
@1 = NV + 20,22 = 0, + 2 (4-260)
where
a = 2k — p = 2up} — N (a-265)

Upon substituting (4-260) in (4-262) to (4-264) each boundary condition
may be reduced to the vanishing of an integral taken with respect to the
parameter k. A sufficient condition for this is that the integrands vanish.
Taking the source to be in the first layer at a depth A, we must use for this
layer the potential ¢, = ¢, + ¢o. Equating the integrands to zero and
canceling common factors such as the Bessel functions, we obtain for the
free surface the two equations for the vanishing of stress components at
z=0;

= 2um Qi+ 2um @ + wOf" + K)SE w0+ K)SY = 2uike™ (4-266)
(4-267)

@06+ 0 — WS, + S = —a
Likewise, for the first interface at z = H; we obtain the four equations:
Qe QU™ = ST S = QT — Qi

k

"

Sl — Sy = — MmN (4o968)
-
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—nQie™™ 4 Qe ™+ S €t Qe
— QU = KIS — Sy = ke
=2um Qe + 2 Qe+ wbl” + S
+ ot + KIS 4 2 Qi — 2unQle
= WO RIS i+ Sy
= 2uke "N (4-210)
@Qie QT — Bk IS+ Bk S — gl
Qe 2L — QL

e

R 'Igeﬂ.u,-n (4-271)

Similar equations may be written for the other interfaces, which will
differ from the above only in the absence of terms for the source potential
and in the subscripts. For the last interface we finally have

™ QUL = + e

= Qe ST =0 (4-212)F
17 gt o RS

+ KIS Qe — KIS =0 (4-213)

=2t acsQani€” T A Qi Qi

+ Gl + K S 4 u.--(v T BB

+ Qe — bl )8 = 0 (4-214)
o QK Sl
T u kWS =0 (4-275)
Thus the boundary conditions lead to a system of 4n — 2 linear equations.

The determinant of this system is (4-276), pages 242 and 243.
Then the solutions of Eqs. (4-266) to (4-275) are

Qi
= ikl SiL )

I @

where f denotes’ or " (can be omitted forg = n),g = 1,2, +++ , n, and the
subscript ¢ or & shows that the corresponding determinant is taken for
a coefficient @ or S, respectively, and A is given by (4-276).

1The index prime has been omitted for Qa and S,.
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Now the period equation
A=0 (4-278)

expresses the fact that the phase velocity (¢ = w/k) depends upon the
frequency or wave length in a manner which is determined by the roots
of this equation. The period equation (4-278) is too complicated to permit
a useful general discussion of its roots. As we have seen before, these roots
determine the poles of the integrands in (4-260). However, even in one
of the simplest cases, that of a liquid layer overlying a solid half space,
Schermann’s long proof [151] of the existence of roots shows the difficulties
of such a discussion.

We restrict ourselves, therefore, to other considerations concerning
the determinant A and the solutions (4-260) and (4-261).

This determinant of the 4n — 2 order is an odd function of each variable
v orvj, forj = 1,2, -+, n — 1, separately, as may be seen directly in
(4-276).

In contrast, A is neither an odd nor an even function of », and »,.

Now we can write this determinant in the form

a= Eeran = E 0ane= @

where D,, are i ‘We obtain the i Al and AJ,
in (4-277) by substituting the right-side members (R,) of Eqs. (4-266)
to (4-275) in & column determined by the subscripts f, g, ¢. Then

M= E DR @20

where o denotes a column number corresponding to a given combination
of f, g, and q and R, will replace a column with an odd number for f
denoting the index ’ and a column with an even number for the index ”,

An important characteristic of the expressions considered above is
that we have pairs of cocfficients @ or § multiplied by exponential func-
tions in which the exponents differ in sign, for example, exp (—2) and
exp (v,2). We shall consider, therefore, the sums of the corresponding
terms, e.g., the sum

Qo Qe
=L DRI Dl

The exponent X + o + 1 in the last term is obviously increased by 1
because the index ’ in the first term was changed to " in the last one.

In order to see whether this expression is an odd or an even function of »,,
=1,2, .-+, n — 1, let us form the sums in brackets.

+ (=DMDf e (4-281)
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By (4-276) it is casy to sce that
Do = Dioe™™

€

(4-282)

where

Dl = T/ (=D &0 Dltao = T (~1" "0/ Cun (4-289)
and the second set of subdeterminants C;” = C! does not depend on »,.
The elements of the determinant A (4-276) denoted by d; and d.’ and

belonging to two neighboring columns for Q or for § cocfficients display
certain propertics. Bither

d/=d;=d, or d'=— (4-289)

if there s factor », present in the cocfficient itself,.e.,not in the exponent.
We will now denote these elements by », d% or —
Thus by (4-281) we consider pairs of terms such as

R

Dty = Difae™ = Divsne — Difpoe’™
Now inserting (4-283) and taking account of the sagns we obtain the sum
of two functions

Zl d.Co

[ — greteern)

T Aol e, (4-285)

It is evident that both functions are odd in »,. This final conclusion is
reached for g = 2, --- , n — 1, but it holds also for g = 1. On comparing
the first four columns of A and the next set of four we see that for g = 1
there are two additional lines but the elements in these lines display the
same propertics as all others with respect to their composition and signs.
Therefore, noting that by (4-260) the potentials ¢ and ¢ depend on »,
because of the factors Q and S and that these factors are determined by
the ratios (4-277), we see that ¢ and ¢ are even functions of »,
g=1,2 -, n — 1 The numerators and the denominators in (4-277)
are odd functions of these variables.

From this property of the functions ¢ and ¢ an important conclusion
about the existence of the branch line integrals can be drawn. The coeffi-
cients @ and S in (4-260) are given in terms of the parameter k. When
evaluating the integrals (4-260) in the complex & plane it seems that each
radical » requires the consideration of a branch line integral

On considering wave in a three 1 liquid half space,
Pekeris [116] found that two branch line integrals vanish. We now are
able to make a general conclusion that, in all cases of wave propagation
from & point source in a half space formed by parallel layers displaying
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different elastic propertics, all expected branch line integrals vanish
except the last one corresponding to ,. Thus, as was pointed out by Jar-
detzky [71], in problems dealing with wave propagation in a layered half
space, each potential ¢ and y is necessarily obtained in the form of a sum,
of which the first part represents & discrete spectrum of modes determined
by the residues and the second & continuous spectrum given in the form
of a branch line integral.
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CHAPTER 5

THE EFFECTS OF GRAVITY,
CURVATURE, AND VISCOSITY

5-1. Gravity Terms in General Equations. The problems discussed in
the preceding chapters form the basic part of the theory of wave propa-
gation in stratified media. Despite the fact that the conditions of propaga-
tion of a disturbance were simplified, these problems presented great
mathematical difficulties. Nevertheless, it was possible to find solutions
in several cases, and the approximations obtained have proved adequate
for the explanation of many observed phenomena of wave propagation.
Three factors, which were not taken into account, may be of importance
in some applications. In Egs. (1-13) we omitted the body forces pX, - --
Moreover, we considered wave propagation only in those cases where all
boundaries and interfaces are parallel planes, but in some cases of impor-
tance the interfaces are curved, usually being cylinders or spheres. The
third effect which has been neglected thus far is that of viscosity or other
deviations from ideal elasticity.

We first consider the gravity terms in the equations of motion. Usually
we can assume that there is a constant field of forces (X, ¥, Z) acting.
Since equations for a fluid must hold for small motions starting (mm w
undisturbed state, we can consider the initial conditions u = » =
p = o, and p = po. It may be proved (Lamb [26, p. 556]) hat in Lhu
case the velocity putenmal must satisfy the equation

L wvet (x By v 24 2%) &
Gravity is the principal force which concerns us in problems of wave
propagation, and we can put X = ¥ = 0, Z = g in all cases where the
boundaries between homogeneous layers form a set of horizontal parallel
planes. Tt is, of course, assumed that the z axis is perpendicular to these
planes and is taken as positive in the direction of the gravity acceleration.
Thus, the velocity components of a fluid medium being expressed in terms
of ¢ [Eqs. (1-14)], this function must satisfy the equation

Fo _ oo 4,92
= aVetay (5-2)
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instead of the ordinary wave equation formed by the first two terms.
For the potential motion of a fluid the equations of motion admit the
integral
%, v _ f dp
Srg-U+[T=Fo -3
where V = grad
U = potential of body forces
An arbitrary function F(¢) is usually included in the potential 3. If the
fluid is incompressible, p = p, = const, and if we can neglect the square
of the velocity this equation takes the form

p=—m 2+ pU + const (54)

‘We can now write

p=—p 22+ pgle + const) )

and take that value of the arbitrary constant which corresponds to the
position of the origin of coordinates.

As to the equations of motion for solid media, they also will be changed
by the addition of a term representing the body forces. We write only the
first equation of (1—13):

=0+ ll) + uVu + pX (5-6)

To derive the wave equations (1 22), we assumed that the displacement
is represented by a sum of two vectors:

s(u, v, w) = grad ¢ + curl §(¢, ¥a, ¥a) 6-7)

¢ and ¢ being displacement potenuals [Eqs (1-20)). We can write, in
general, a similar condition for body fo

F(X, Y, Z) = grad U + curl L(Ly, Ly, Ly) (6-8)
Then instead of Equ (1-22) we obtain the equations

W =V =U W_ BV = Ly (5-9)

under the assumption that p is constant. Equations (5-0) have partioular
solutions (Love (30, p. 304):

o= drle- Do wa

vom g [l 5 s §) e av ot

(5-10)
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If we again consider gravitational forces only, condition (5-8) reduces to

Z = g2 + const. Differentiating Eq. (5-6) and two similar equations for

the displacements v and w with respect to z, , z and adding, we obtain

70

P, ar

If Poisson’s equation is used for the potential U, Eq. (5-11) can be ex-

pressed in terms of § alone.

To evaluate the correction due to fluctuations of the body forces the

last term in Eq. (5-6) will be written in the form
U _ 3U,

ﬁ(g - W) (5-12)

=0+ 20V + pV'U (5-11)

where U, corresponds to a certain undisturbed state. Then the last term
in Eq. (5-11) becomes

oYU — V) (5-13)
By Poisson’s equation we have, therefore,
VU ~ Uy = —anf(p — po) = 4xfod (5-14)

approximately, where  is the constant of gravitation and 6 is set equal
%o —(p ~ po)/p. Then the equation for 8 will have the form

P28 = O+ 20770 + dnf'0 615

Jeffreys [19] solved this equation and showed that the correction due
to the gravity term is insignificant for compressional waves in the earth.
Since the curl of the gravity force vanishes, this force does not affect
the propagation of S waves determined by the functions y.

5-2. Effect of Gravity on Surface Waves. Gravity termsin the equations
of motion (5-2) and (5-6) produce modifications in the solutions for surface-
wave propagation.

Rayleigh Waves: Incompressible Half Space. Tn an early paper Brom-
wich [3] considered the effect of gravity on Rayleigh waves in a solid
half space. This effect was introduced in the boundary conditions, omitting
the mass terms in the equations of motion (5-6). Moreover, to simplify
the problem, Bromwich considered an inompressible solid for which
A — @ as 0 — 0 in such a manner that A0 = Il remains finite. For the
two-dimensional case, Eq. (5-6) and the corresponding equation for w
take the form.

X dw _ ol N
p LTy v p2E -y uve (5-16)
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We also have
¢-17)

Assume u, w, and 11 to be proportional to exp [i(wf — kz)]; then Eqs.
(5-16) and (5-17) become

g - _lem . _ _lan —_—
(P k= — 20 (V4 Be=—00 VI=0 (19
In order to satisfy the last equation, put
o = ykfPe ™™™ for0<z< @ (5-19)

where P is an arbitrary constant. We can define u and w by

o L M s
. (5-20)
S T

which will satisfy Eqs. (5-18), provided that the second terms in (5-20)
satisfy the conditions

(V' +Bu=0 (V'+Bw=0 21
orif Pyt (5-22)

The requirement § = 0 applied to (5-20) leads to
kA +vB =0 (5-23)

Now, assuming that the normal stress at z = 0 is equal to the sum of
P..y by (1-11), and the weight per unit area of an clement of height w,
we write the boundary conditions in the form

(5-24)

a du , @
T+ 257 + gow = 0 u<5+£)

Substituting (5-19) and (5-20) in (5-24) and taking the determinant of the
two equations (5-24) and Eq. (5-23), we obtain the period equation

kg _ )’ _ bk

(kz 2) - +Ld=0 (5-25)

We obtain the reversed sign as compared with the Bromuwich period
equation since we make use of waves propagating in the positive z direction.
To study the cffect of gravity on surface waves in a compressible solid
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half space, Love [20] derived the period equation

[ 2me - 4]
-iletie -] -0 om

where, again,

= VE=E y=VF-B k=% k=% 62

In deriving this equation the square of gk/w* was neglected.

1f gk/* is taken to vanish, Eq. (5-26) is readily scen to reduce to
Rayleigh's equation for the velocity of surface waves in a solid half space.
For an incompressible body, ke = 0, and Eq. (5-26) takes the form (5-25)
derived by Bromwich, provided that (//k)* is approximated by
(kK — 2

To find the effect of gravity it is convenient to transform Eq. (5-26)
to the form, valid for first-order terms in the small quantity g/k8",

5
c= c.(l + iiﬂ) (5-28)
where 8 = Vu/p

¢z = velocity of Rayleigh waves in absence of gravity
= number which depends upon ratio u/A

Table 5-1 gives approximate values for 5 and ch/g* for several values of
#/A and Poisson’s ratio o (Love [29, p. 160]).

Taptx 5-1. Errecr or GRAVITY ON RAYLEIGE WAVES

L3 %S /8 L]
12 0 0.9126 0.108
173 12 0.8696 0.0462
1/4 1 0.8453 0

15 3/2 0.8209 ~0.0309

Tt is scen that for o = 1, 5 = 0, and that 8 2 0for ¢ 2 4. Since for most
erystalline rocks o > 4, we may conclude that the velocity of Rayleigh
waves is, on the whole, likely to be increased by gravity, the increment
being proportional to the wavelength. For the case s = }, 8 = 4 km/scc, we
find, for example, that the velocity of Rayleigh waves is increased by
about 0.2 per cent when the wavelength is about 500 km.
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Gravitating and Compressible Liquid Layer over Solid Half Space. In
an attempt to find a theory for the generation of microscisms (Sec. 4-4),
Scholte [49] considered this problem in two dimensions. For the velocity
potential g, in the water layer, Eq. (5-2) now takes the form

m, =iV + g% (5-29)

For & train of plane waves propagating in the water we can put

- -0
By (5-29) and (5-30) we obtain

@+ ) + ivg (5-31)
or 8= —igha (i L= mEn . 63
and & = exp [-% + it — k.z)](Ac""‘ + Be'™) (5-33)

The velocity components of a water particle are

_m u

o= o= (5-34)
or by Eq. (5-33)
@ % —ik exp I:i(wt - kz) — 2%](,4;-‘" + Be'™)
o= ey [i(wl — k) — z{ﬂ (5-35)

[l + e~ (-
Now we can write 3, = g,-iw, Where g, is a displacement potential [see
Eqgs. (5-34)). The gravity terms in the equations for the solid part of the
system are omitted by Scholte.t For the displacement in the solid we have

P RN T TR )
I T P T2
where W% T YT a Tt (537

11t waa seen in the preceding pages that this approximation is valid unless the waves
are considerably longer than ordinary earthquake Rayleigh waves.
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Potentials which vanish as z — « are taken as usual in the form

€ guwecteonn Djions (5 g

where 7, and 7 must be negative imaginary numbers determined by the
conditions

n=k,-F W=k - (5-39)
As usual, @, and , are the velocities of compressional and distortional
waves in the second layer. Now we obtain, by Eqs. (5-38) and (5-37),

Ny _
0= % = e

[

(5-40)

w0,
at

= —@nCe™™ + ikDe”

)gites—ter

The four coefficients A, B, C, D can be determined from the boundary
conditions. The first of these conditions is that the pressure is zero at, the
free surface of water. In all problems considered before we have assumed
that this free surface is a plane (2 = —H). If we also consider its deforma-
tion and denote by 1, the vertical displacement, we can easily see that
the constant in Eq. (5-5) is cqual to H, and on the deformed surface
2= —H + i, we have

—5 toti=0 (5-41)
By (5-33), (5-85), % = wy-iw stz = —H, and (5-41) we obtain
A(—w' +ing + g )™ + B(—w’ — ing + é)e"" =0 (542
The other boundary conditions are the continuity of the vertical displace-
ment (or velocity) and of the normal and tangential stresses at the inter-
face z = 0. The first of these conditions is, by (5-35) and (5-40),
o o
Now the tangential stress
)
Pur m( % + Fr
or, by (5-37) and (5-40),
—2,C + (k3 — 2k)D = 0 (5-44)

).B = —inC— %D (543

=0
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By (5-5) we have the stress on the side of water

R

= —p 4l (u-+””+ ')—;-,B(m —1+—¢)

2aiiw) 2aitw)

and on the side of the solid medium

Pur = Mats + 200 22 — gy, 6-46)

if, according to Scholte, the additional stress is put equal to the weight of
the small column due to the deformation.
Noting that A, = p, (a3 — 263), we uhmn by (5-37), (5-38), and (1-5)
Nty + 20 202 ,-M[(l _ _Z)Ce ey U3k D,,.,.r.}u....., 47
3 % *
By (5-37) and (5-38),
(We)ewo = —*C (5-48)

Thus the boundary condition for the normal stress may be written in
the form (z = 0)

- p,C[ﬂ'w(l -E) e ] o o[”ﬁ*“ + "] 649

Thus the boundary conditions yield a system of four homogencous equa-
tions (5-42), (5-43), (5-44), and (5-49) which will have nontrivial solutions
if their determinant A vanishes.

Expanding the determinant, we find for the period equation

gk m) k ktan nH | g tan gH)
{for - o — gy - gty g ot}

+ ﬁk,,m{l - (%‘)}‘““T"”' =0 (550

where

B

"k ko
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Since g/ka} < 1 for naturally occurring waves, Eq. (5-50) can be approxi-
mated by

{(z-’- 1)'_4.,.,..:_%5’6 }{ kktanw,H}

4 Htm WH=0 (551

where 5t = K2, — ¥

Scholte pointed out that two different types of wave propagation are
involved. When ¢ < ; < as, Eq. (5-51) reduces to that for gravity waves
in an incompressible fluid underlain by an immovable bottom:

— % bk = 0
5

For g/k < ¢, Bq. (5-51) takes the form of (4-154), giving the dispersion
of Rayleigh waves in the system formed by a liquid layer underlain by a
solid substratum (suboceanic Rayleigh waves). The separation into two
types of propagation arises from the great disparity in phase velocities
of gravity waves and Rayleigh waves. Although both types of propagation
are dispersive, there is no wavelength for which the phase velocities
come within an order of magnitude of each other for actual conditions in
the ocean.

Another example of superposition of two types of waves will be found
(Sec. 6-3) in the problem of flexural waves in floating ice (Ewing and
Crary [11]). For long waves the gravity term in the period equation pre-
dominates, and the solution is simply that for gravity waves on water.
For short waves the solution reduces to that for flexural waves in a thin
plate modified slightly by the presence of the water. In this system, for
a given period, only one type of propagation occurs, as we might expect.
The phase velocities for either system taken separately exist over period
ranges which overlap, and the curves cross.

5-3. Effect of Curvature on Surface Waves. In the following sections
the theory of wave propagation in a sphere will be used to show the effect
ai iphcnnal curvature. 1t is useful to consider first the simpler problem

fon along the ci direction of a

cylmdrlcn.l surface.
Cylindrical Curvature. This problem was solved by Sezawa [50]. If
the axial component of motion is omitted, Fqu. (1-24) take the form
a0
Par
a9, _ (a’
, o = M

~o+2(5
(5-52)
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where r, o, z are cylindrical coordinates. Radial and azimuthal displace-
ment components are ¢ and v, respectively.

The expressions for 6 and 2, can be obtained for cylindrical coordinates
from the general formulas of Sec. 5-4. They are
_ 1 1w lam) _ 1og
0= Tee 2T Trae 653
Now, particular solutions of Eqs. (5-52) are
0 = AJu(kar)e’ (559

2, = BJ(kg)e' "
where , &, ko, ks have the usual definitions, a is the radius of a circular
cylinder, and J,, is the Bessel function.
Displacements ¢ and v consistent, w.u. the solution for 0 given in (5-54)
and satisfying the condition 2,
=4 Jn(k.fle.‘(uum
ke (5-55)
P T Tuleaesterin

Displacements g, and v, consistent with the solution for @, given in
(5-54) and satisfying the condition 6 = 0 are
0 B, e
(5-56)

2B by crsron
g ¢
B dr

Since the cylindrical surface is free of traction, the boundary conditions
are

rrzmdoo 2ot 0 atr=a (557

19
e

$Ie

where ¢ = ¢, + g

v=ot
Inserting in (5-57) the values for 6, ¢, v from (5-54) to (5-56), we obtain the
period equation which differs in two terms from that given by Sezawat

[03 - 25007ty = 2 P05 [ 5 — a4 2 Wl

1 The subseripts ka are considered constant when the derivatives with respect to a
are computed.
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In contrast to the nondispersive Rayleigh waves associated with a
plane surface, Eq. (5-58) shows through the parameters ko, ks, and k
that the velocity of propagation around a cylindrical surface depends
upon the wavelength. To show the magnitude of this effect we have
plotted in Fig. 5-1 a corrected Sezawa’s curve computed from Eq. (5-58)

27y,

Fia. 5-1. Corrected phase-velocity curve of Rayleigh
ference of o homogeasous evlinder with Poiscors constant of 0.25, and axpenmenul
points for a cylinder with Poisson’s constant 0.28. (Calculated by Oliver.)

for the case A = . It is seen that the curvature produces an increase of
phase velocity with wavelength. For a wavelength cqual to half the radius
of curvature the increase is about 10 per cent.

The effect of cylindrical curvature on Rayleigh-wave propagation was
obtained using model seismology techniques by Oliver [41]. The compu-
fation of the corrected curve was carried out by Oliver, and his experimental
results are plotted in Fig. 5-1 for a solid with a Poisson’s constant, of 0.28.
Tt is seen that the theoretical and experimental results are in agreement.

In Sezawa’s paper the corresponding derivation for Love waves is
given without numerical calculations.

Spherical Curvature. As in the preceding chapters, the period equation
s derived from the condition that the determinant formed by the boundary
conditions vanishes. However, the difficulty of the problem is increased
greatly for a sphere in that the solutions take the form of spherical har-
‘monics. Love [29] investigated this problem in detail and found that when
applied to the earth the solution indicated “quick” waves, controlled
‘primarily by elasticity, and “slow” waves controlled primarily by gravity.

Since Rayleigh waves are affected only slightly by compressibility, &
good approximation may be obtained by considering an incompressible
‘medium. We give only the final result, first derived by Bromwich [3] and
Iater obtained by Love [20]:
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2 yilksa) | (2n + 1) + ngpa/(2n + Du

K3a’/2n = 1)

B ¥ulksd) + nle + 2) + ngoa/n + D — kgw/2w =0 = 0 59
‘where a is the radius of the sphere and
vtk = ~17(3) G0 ) )

7.,y being the Bessel function of the order n + 3.

From Eq. (5-59) one can obtain the dispersion of Rayleigh waves
introduced by spherical curvature and gravity. The index n is arbitrary
and determines the mode of vibration. Since only sectorial harmonics
are involved in this solution, the ratio 2za/n represents the wavelength
2a/k, and we can put n = ka.

For wavelengths small compared with the radius of curvature, n is
very large. For this case Bromwich derived an approximate formula

Yilka) _ v~k "

W = @0
which may be used to consider the effect of gravity only and obtain Eq.
(5-25).

With the use of model seismology techniques the effect of spherical
curvature for compressible media may readily be obtained as in the case
of eylindrical curvature.

The propagation of seismic waves in the earth when the effect of curva-
ture is also included was further studied by several investigators. Sezawa
[51, 56] formulated the problem of transmission of Rayleigh and Love
waves on a spherical surface, neglecting the effect of gravity. In the second
of these papers the propagation of Love waves in a surface layer overlying
a spherical core was considered for the case of an asymmetrical source.
Sezawa found, among other conclusions, that the velocity of propagation
of Love waves on a spherical surface is approximately equal to that on
& plane surface. Rayleigh waves from an asymmetrical source were also
investigated by Sezawa and Nishimura [55]. Recently Jobert [21] recon-
sidered the Love-wave problem for a layered sphere and found that the
velocity of the longer waves is significantly increased as a result of curva-
ture. Matumoto and Satd [32] recently discussed the transverse vibrations
of a layered earth for two extreme cases, solid mantle and rigid or liquid
core.

5-4. General Solutions for a Spherical Body. Satd [48] considered the
boundary conditions at the surface of the sphere in their most general
form. Denote by R the radius, 5 the colatitude, ¢ the azimuth, w, w,
the radial, itudi and azimuthal of
and by w,, @y, w; the components of rotation, and take the polar axis to
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pass through the epicenter. The equations of motion then take the form

uy % ol sin 8) % o

oG =0~ o O e
L _ 138 2u dwy , 2u I(Ruy)
al’—()‘+2“)RaA_R5m66(+R R 6-62)

_ O+ 2400 2ua(&n)+2uv3w.
L Rsins ¢ R R R 35

The equations (5-62) may be easily obtained from the vector form of
Eqs. (1-13). T s(u, v, w) is the displacement and 6 = div s, these cquations
ueequiva.lem to

m, = O\ + 2 grad div s + u(V's — graddive) + oF  (5-63)
Now curl curl s = grad div's — V's (5-64)

and curl s = 20 (5-65)
where @ is the rotation. Thus Eq. (5-63) may be written in the form

al,—(x+2u)gmil—2ucurlu+pl? (5-66)

The externsl force oF will now be omitted. In order to obtain Eqs. (5-62)
from (5-66), use is made of two formulas for generalized orthogonal
coordinates gi, gs, gs. If the line clement is given in the form

ds' = 8% dgi + S dg} + S: dg? (5-67)
and q, are unit vectors along the axes of curvilinear coordinates, the
curl of s can be written in the form

[a(S‘w:) _as,ua] . [a(

) M]

Er) 9gs 88 L ags g
4 [3Sa) _ a(s,u.)]
+5 [ o0 23 -9

For spherical coordinates, ds® = dR* + R’ db* + R sin® 5 dé', and we
obtain 8, = 1, 8, = R, S, = R sin 5. Furthermore,

o 3(SaSawr) | 3(SuSitta) a(s,s,u,)}
dive = o {‘—aq, R P (5-69)

For spherical coordinates, Bq. (5-69) becomes

1 (R sin 3) , dusR sin 8) a(u,ze)]
0 RsinEI: & T e T e 610
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]

] (6-71)

i3]

We could eliminate u,, u, us in Eqs. (5-62) by using Eqs. (5-70) and (5-71)
and obtain four partial differential equations of the second order for the
variables 6, w,, s, ws. Jeans [17] assumed that the earth is formed of
concentric layers of varying elastic constants A and u. He replaced the
three equations of motion, in which the gravity terms were retained, by
the three equations for the variables 6, u,, and w,. We can also find the
solutions of Eqs. (5-62) in a direct way, as was shown by Satd [48].

Omitting the time factor exp (iuf), we can write the solutions of (5-62)
in the form

= AP7 cos me + A’P7sin me

[c PL+B P :[mm

[@—p--sm ]einnu oo
—B%P.]wﬁmg

[egrs &) onm

where P = Pi(cos 3) (5-73)
is an associated Legendre function. The six expressions 4, , ¢’ are
functions of R as given by the equations

_ 4P ont 1) y o g 9F L pat D)
A=ap+etEe A=wp+ote
B =BG B =BG (5-74)

_aF CdRG) v = arF 4 CARG)
C=AR+E C= ARt

- — BB H\

and F = FB) = (o) HEkR) 75

G = F(ksR) = (ko) H\\(koR)

The Hankel function H,} is taken in order to have an outgoing wave.
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These solutions are expressed in terms of six arbitrary constants
, B, -+~ , C". Now we can assume that on the surface of the sphere
(R = a) the displacements have given values
= U5, w=Us8,9 u="Uss¢ (5-76)
U,, Us, and U, are arbitrary functions and can be expanded into Fourier
series, as follows:
U3, = X Uti(cos 8) cos me + 3 Ur'(cos 5) sin me

Us(3,9) = 3 Ul(cos &) cos me + 3 U'(cos &) sinme  (5-77)

Us(s, 9 = Z U3(cos 8) cos me + E Uz'(cos 9) sin me

Then on writing solutions mpresemd by (5-72) for all subscripts m and
n and taking the sums, for example,

= ): EA.P:mm.+ }: EA:'P:sinm (5-78)

we can compare (5-78) with the first expression in Eqs. (5-76). A set
of equations will result by means of which the expressions A7, -+ , €4
may be determined. The arbitrary constants are then found from (5-74).
It was pointed out by Satd that the initial-value-problem studies by
Homma (Chap. 1, Ref. 22) can be discussed in a similar way, as well as
the case where the stress, instead of the displacement components, is
known at the surface.

Wave Propagation in a Gravitating Compressible Planet. It is more
natural to consider the effects of gravity and curvature of the earth
together than to consider them separately. This was done by Love [29],
who investigated the laws of wave propagation in the interior of a gravi-
tating compressible planct.

We shall assume that an undisturbed planet is a homogeneous body
having a free spherical surface but for the sake of generality the density
po will at first be taken as a function of the distance R of a point from the
center. Since it is assumed that a planet is formed by concentric layers,
its gravitational potential V, will be a function of R. In a compressible
planct which is in a state of equilibrium the “initial” stress can be assumed
as an initial pressure determined by the condition of hydrostatic equilib-
rium. Then, according to Eqs. (1-7) written for the equilibrium of a
perfect fluid (see Sec. 1-2),

o grad V, = grad po (5-79)

Now if we assume that a disturbance occurs, the new potential ¥ will
be equal to the sum V, + Vs, where V, is due to the disturbing forces as
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well as to the change in the distribution of density. Let p be the density
at a point M(z, y, 2) in the strained state, and s the radial displacement.
en

s=up ool (5-80)

Let ' be the density in the deformed state but at the initial position.
Since the cubical dilatation 0 = —(o' — pi)/ps 8t the same place, the
density p of a particle when it s displaced will be

A

—Jﬁ—p‘,—ppl—san (5-81)

»

if po is taken at Mo(z — u,y — v,z — w). To simplify the theory, it will
be assumed that \, 4, and p, have everywhere the same value. By (5-81)
we have

p=nl -0 (5-82)

The equation of the surface of & planet in the disturbed state can be

written in the form

R=Ri+s (5-83)
where R, = radius of undisturbed surface

8 = superficial displacement

Finally, we assume that the stress components p.., Py, and p,. at M(z, y, 2)
at an instant / are equal to the sum of the equilibrium stresses and addi-
tional stresses in the disturbed state. Then, by (1-11),

(5-89)

P R A FSVES AP

There are no changes in the shear components p,., P.:, Po, and Egs. (1-7)
take the form

O\+ﬂ) +uV’u

v, vV,

—%(pu—s%)+ﬂn(‘—€)—+h )

S dw_
g = o=

given by Love [20], if we neglect the products of small quantities of the
first order u, 0, V,, and their derivatives.
By (5-82) and Poisson’s equation V*V = —4/p, where  is the constant
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of gravitation, we obtain
VIV, = dxfpeb (5-86)

If we consider wave propagation and neglect external forces, the term
¥, is due to changes in density only. The potential of a homogeneous
sphere is Vo = 2xfpo(R: — 3R*). By (5-79) and B* = 2* + 37 + 2, the
gravity and pressure terms in Eqs. (5-85) can be transformed as follows:

ol = k) e

— IR L ®) + a0+ 2l (D)

v _ dw _ .
T T
L -4
Now 9= [ R ]M. 37/poRo (5-88)

and the effect of gravity is represented by two terms in Eqs. (5-87). On
operating with curl on Eqs. (5-87) and taking into account that curl
grad ¢ = 0, we obtain three equations for the components of rotation:

1w _ o u _ ow e O %
=2 (By az) =3 (az az) %=3 (az ay) (5-89)
We wite the first of these equations in the form

20

. wfm.{‘“’”’ ‘%9} 690

Thus the propagation of rotation will be determined by a wave equation,
if the dilatation 0 vanishes. On the other hand, by differentiating Eqs.
(5-87) with mspm t0 the coordinates and adding, we obtain by using (5-86)

0=+ 20V ﬂ—Lv(Rs)—(»wR +J‘L (5-91)
In order to obtain an equation for the dilatation, we have to eliminate
the second term of the right side. Multiplying both sides of the three
equations (5-87) by z, y,  in tum, adding the results, and applying the
operation V?, we obtain an equation which, together with (5-91), leads to

(uV = pogs )[(X + 20V = po 5 at‘ + —'fﬁn]

+ Guafr(v - -2 -0 e
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From Egs. (5-90) and (5-92) we surmise that when the effect of gravity
is included the separate existence of distortional and compressional waves
does not occur. When constants corresponding to the earth are inserted
in these equations, Love showed that propagation is essentially the same
as would occur if gravity and initial stress were neglected.

Substituting 8 = A cos k(z — af), where 4, k, and a are constants, in
(5-92), Love found that, when 2r/k is small and quantities of the second
order in (gpoRo/u)(R3k)™ are neglected, the velocity of compressional

waves is
a=a+da a=VQAE+2)/p (5-93)
‘where the correction factor de is obtained from

_ _gpRs 9oRy R — 2
2pomoba = —ape ( Atu B ) 99

Tt s seen that the effect of gravity is to introduce a very slight dispersion
depending on locality.

5-5. The Effect of Internal Friction. In all problems considered previ-
ously, perfectly elastic media were assumed. Tt is well known, however,
that dissipation accompanies vibrations in solid media, because of the
conversion of to heat. Several have been proposed
for energy dissipation in vibrating solids, and these may be grouped col-
lectively under internal friction. For a discussion of internal friction’ the
reader is referred to the work of Kolsky [23].

In general, the cffect of internal friction is to produce attenuation
and dispersion of elastic waves. In practice, however, the attenuation
is slight, and the dispersion is negligible for carthquake waves. The effect
of internal friction is more pronounced for higher-frequency explosion-
generated elastic waves where it may influence the shape of the elastic
pulse.

There is no satisfactory theory of internal friction. Several mathematic-
ally convenient mechanisms have been suggested, however, which occa-
sionally fit experimental data over a limited range of frequencies.

Voigt Solid. According to Voig’s definition [64], the stress-strain
relations of Sec. 1-2 take the form

,,,=m+2p~—+x at+2,‘ aﬁl

aw w o
P ’“<3£+ )+“ at(a + az)
These expressions, similar to Eqs. (1-11) for an elastic solid, may be ob-
tained by using in (1-11) the operator X + X' /0 for A and u + u' 3/t
for .

(5-95)
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Using these operators in Eqs. (1-13), we obtain the equations of motion
in the form

ou { a\ a0 F)

A ()\+u)+()\'+u')'}—+ b F)V

ot atf oz ( at) -0
i _ Pw _

Par = T

Sezawa [52] gave these equations in a somewhat different form. Similarly,
the wave equations take the form

Lo 14 O 4 209 22
pZ8 = 0+ 2V + (V + 2V 2
6-97)
A A e

In general, the four constants \, ', 4, ' must be used to specify a Voigt
solid, but simplifying assumptions can also be made. For example, the
“dilatational viscosity” (\' + 3u') which corresponds to the bulk modulus
k =\ + 3u will vanish by taking X' = — §u, leaving only a single constant
u' for the effect of viscosity.

To consider the effect of viscoelasticity of the Voigt type on a plane
wave, we can use the solution

¥ = Ae'“rt? (5-98)

for a plane shear wave again propagating in the positive z direction.
Substitution in the second of Egs. (5-97) leads to the expression

2 _ K W
EE i (5-99)

This equation can be satisfied for complex . Inserting ¢ = k + ir in
Eq. (5-99) and equating resl and imaginary terms, we find

_ ﬁ,‘ {[1 " K&ﬂ] + ‘} (5-100)
e o i G100

From Eqs. (5-101) and (5-08) we find (admitting only the negative root
for 7) that the attenuation of the wave, as given by the factor exp (—rz),
increases with frequency. The phase velocity ¢ = w/k obtained from
(5-100) has the value (u/p)*, appropriate for an elastic body when w = 0.
For increasing frequency, phase velocity increases, becoming infinite
with w, the attenuation then being complete.
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The period equation for Love waves in a Voigt solid may be derived
following the procedure of Sec. 4-5.

If the subscripts 1 and 2 refer to & layer and an infinite substratum,
respectively, the wave equations are

(m +ul a%}v'».

(5-102)
(h +u O%)V’v. =n %
Using the boundary conditions in the form
(u,+,.:a—")‘?—‘”;_n sz=0
v =0, (5-103)

. L
(nt w2 (tu Dm0 we-n

Sezawa and Kanai [58] derived a generalized Love-wave period equation

G+ sy
tensll = e 109
' .
where g= 0 _
+ i , (5-105)
Y,
il S 7
s, and s, being coefficients of z in ons for v, and v,

with trigonometric funetions for the layer and exponential functions for
the substratum. When the real and imaginary parts in Eqs. (5-105) are
separated, two equations are obtained to determine a complex k.

The propagation of plane Rayleigh waves in a Voigt-solid half space
was also discussed by Caloi [6], who gave a generalization of Rayleigh’s
equation (2-28). For a time factor of the form exp (iwf), where o can be
complex in the general case, Eqs. (1-24) take the form

(V' + k)0 =0 (5-106)
(VP + k)2 =0, - (5-107)

where k2 (5-108)

TNF 2+ N + 2)

(5-109)
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‘Equations (5-108) and (5-109) are obviously a generalization of the factors
k. = w/a and k, = w/8 introduced in Lamb’s problem (Chap. 2). The
wave number & now also becomes complex but the formal derivation of
Rayleigh's equation follows the usual pattern. We can, therefore, obtain
this equation for a Voigt-solid half space from Eq. (2-29), using the
transformation

B _ ke —e
« ks °Tk
We obtain
1-sE 4 (211 oka) & -15(1~—’)— 0 (5110
B 6 %) R )

where k, and k, are now given by Egs. (5-108) and (5-109). For his
numerical calculations Caloi (6] solved this equation assuming that X = u

and X' = —3u’. The substitution kj/k* = B + 8/3, ki/kj = 1 — E/16
reduces (5-110) to the form
Br(r-p+(r-45) o @1

The real and imaginary parts of the roots of Rayleigh's equation were
caleulated for the values of 4/’ = 30, 50, 100 sec™*. Caloi’s curves show
the dispersion and absorption of Rayleigh waves due to viscoelasticity
of the Voigt type (Figs. 5-2 and 5-3).

20F

15

4
3

100,

2

2

2

S
[ Y S T—

0 05 1.0

T insec.
Fia. 5-2. Phase velocity of Rayleigh wavesin (1) elastic half space with u' = 0,0 = 1/4;
(2) viscoelastic half space with u/u’ = 100; (3) u/u’ = 50; (4) u/u’ = 30. (After Caloi.)
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Fra. 5-3. Absorption coeffcient Ko of Rayleigh waves in & viscoelastic half spaco with
B = 3,3 km/sec and u/u’ = 50. (After Caloi.)

Newlands [37] generalized Lamb’s problem of Sec. 2-3 for a Voigt-type
solid in which A’ and ' vary as |w|". As would be expected, both dispersion
and absorption occur for this case. Using the methods of Chaps. 2, 3,
and 4, she obtained the characteristics of P, S, and Rayleigh waves.

Mazwell Solid. According to Maxwell's definition [35], the stress-
strain relations take forms such as

dp., desy _ P
o = o G~ E; (5-112)
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where 8 is the relaxation time of the solid. For long-continued stresses,
such a substance will flow indefinitely, approximating a viscous liquid,
the deformation being irrecoverable. For short-period stress variations
the Maxwell solid behaves as if perfectly elastic. From the form of (5-112)
we note that, with the use of an operator such as u/[1 + 1/8(d/dt)] for
win (1-11), the behavior of a Maxwell solid can be found approximately
from expressions derived under the assumption of perfect elasticity. As
an example, consider the propagation of a plane shear wave given by
exp [i(wf — £2)), where «*/¢* = u/p. For propagation of a disturbance in a.
Maxwell solid, replace u by u/(1 + 1/iwd), which gives the equation

¢= 7(1 +- ) (5-113)

This equation is satisfied for complex ¢ = k + ir if

H:‘;—;[H-\ ”35.}

;iu [\/1 + Iga‘ - l]

From Eqs. (5-114) we conclude that the effect of viscoelasticity of the
Maxwell type on planc shear waves is to introduce an attenuation given by
exp (—7z), where 7 increases as o! for w5 < 1 and approaches zero as
wd becomes large. The velocity «/k — V/i/p 83 @b = . On the other
hand, w/k — V/2uwd/p as wd — 0.

Internal Friction in Earth Maerials. In the foregoing sections it was
shown that the effect of internal friction on steady-state plane waves was
to introduce frequency selective absorption and dispersion. Transient

(5-114)

1 a series of papers
for internal friction of the type described by Stokes’ differential equation.

Dispersion introduced by internal friction of consolidated rock seems
to be negligible for frequencies under 100 cycles/sec. Attenuation is difficult
to evaluate because allowance must be made for energy loss upon trans-
mission across interfaces. Ricker [43] used a homogencous section of shale
to study the alteration of a seismic pulse.

There is increasing evidence that for a wide range of frequencies internal
friction in erystalline rock is principally of the Voigt type, with quantities
such as w'w/u (= 1/Q) mentioned earlier in this section being surprisingl
independent of frequency, pressure, and temperature. The dissipation
function 1/Q is related to the logarithmic decrement A of free vibrations
by the relation A = #/Q. For wave propagation it is related to the absorp-
tion coefficient by 7 = =/Qc. Birch (2] reports values of 1/Q = 170 X 10~*
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at 1 atm and 280 X 10™° at 4,000 atm for diabase. These are audio-fre~
quency determinations on laboratory samples using longitudinal and
torsional-free vibrations, respectively.

Ewing and Press [12] used the attenuation of mantle Rayleigh waves
having periods of several hundred seconds to deduce the value of 1/@Q for
the upper mantle. Since the corresponding wavelengths are large compared
with any of the discontinuities encountered by these waves, the effects of
scattering and refraction are minimized. It is surprising that values of 1/Q
determined in this way for the upper mantle are of the same order of magni-
tude as those found in audio-frequency vibration measurements on crystal-
line rock despite the difference in physical conditions.
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CHAPTER 6

PLATES AND CYLINDERS

In many respects, wave propagation in elastic plates and cylinders is
analogous to propagation in layered spaces. Procedures for developing
solutions can be similar, and several of the wave types encountered in
the layered-space problems of preceding chapters will again appear.
As before, most of the discussion will center on the period equations from
which we can infer the main characteristics of wave propagation.

6-1. Plate in a Vacuum. The simplest case is obviously that of a homo-
geneous plate bounded by two parallel planes. The plate can have either
finite or infinite dimensions, and we now restrict ourselves to the latter
ease. Oscillations of an elastic plate, the surfaces of which are free of stresses,
were investigated by Rayleigh [71], Lamb [41], and others, and more
recently_by Prescott [63), Gogoladze T3], and Satd [73].

period equauun Tﬂﬁ‘ﬁ,m sTem nl is suﬁic:em o o

Zoe o g
= + a0 (6-1)
The potentials  and ¢ are solutions of the wave equations
19 19
Vel V=%l &)

which satisfy four boundary conditions at the upper and lower surfaces
of the plate. These conditions express the fact that the stresses vanish
at the faces z = ~H and z = I (the thickness of the plate is denoted by
2H and the median plane by z = 0). Then we have

w | ou
P =i 4+%)

assuming, s -usual, solutions of the form

=M+ 22 0 atz=FH (6-3)

¢ = (Asinhyz + B cosh yz)e '™

= (Csinh v’z 4 D cosh y/2)e =™
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where, from the wave equations,
=VEF-E /=VF-E k=% k=% 5

Noting that «* = (\ + 2u)/p, 8 = u/p and inserting expressions (6-4)
into Egs. (6-1) B.nd (6-3), we obtain the four boundary conditions in the
form

(o" — 2uk*)(A sinh vH — B cosh »H)
— 2iukv’(C cosh ’H — D sinh vH) = 0
2ikv(A cosh vH — B sinh vH)
="+ B)CsinhyH ~ DeohvH) =0 0 o
~(p" — 2uk*)(A sinh »H + B cosh vH)
— 2ikv(C coshv'H + Dsinh /H) = 0
2ik»(A cosh vH + B sinh »H)
+ 0/ + K)(Csinh »'H + D cosh H) = 0

The period equation is obtained in a simpler form if we write the columns
corresponding to the cocfficients 4, D, B, C, add the first line of the deter-
minant to the third, and subtract the sccond from the fourth. Then, on
putting

a =2k — p* = w@K ~ k) = w6’ + ) )
b= 9uk ooshy’H  d = 2k’ sih /I
we have
—asinh H i a cosh vl -
—2ikvcosh yH =0/ + &9 cosh YH kv sinh sH (3 + ) sinh H
4 0 [ 2 cosh vH —2ib
) [ —tikvsinh yH  ~20" + k%) sinh ]

©9)
Obviously this equation can be split into two. They are
(p? — 2uk")(” + K sinh vH cosh v H
+ 4uk’w’ coshyH sinhvH = 0 (6-9)
and
(o — 2uk")0"* + k') cosh vH sinh v H
+ 4k’ sinh vH coshv’H =0 (6-10)
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By Edqs. (6-5), these equations take the form

tanh yH _ 4k’ 4V1 = /a1 = /8 6-
b = G T %= 57 (6-11)

tanhH _ (6 + @ —¢/8) (6-12)
tanh VH = 4% vl ol V1 - G/B

Now the transformation of the determinant A which preceded its repre-
sentation in the form of a product i equivalent to the splitting of Eqs.
(6-6) into two separate systems. It is easy to see that the coefficients 4
and D can be separated from B and C. Thus we can consider a motion
symmetric with respect to the plane z = 0 which is given by

¢ =Bcoshrze ™™ ¢ = Csinhyze' ™™™  (6-13)
and the antisymmetric motion represented by functions
¢ = Asinhwze ™™ = D coshrze' ™ (6-14)

Tn both cases the nature of the vibrations is determined by the correspond-
ing period equation, i.e., by (6-12) for the symmetric and by (6-11) for
the antisymmetric case. The discussion of these transcendental equations
in the general form presents certain difficulties, and, therefore, the asymp-
totic limits for long and short waves are first considered.

Symmetric Vibrations (M,). For waves long compared with the thick-
ness 2H the products kH, vH, »'H may be taken as small when ¢ = w/k
is finite. Then, if the hyperbolic functions are replaced by their argumentg,
(6-12) takes the form

O+ ) -4 =0 (6-15)
By (6-5) we obtain

podi-2)-0-F o
‘where ¢, is the phase velocity o( long longnudmal or plate waves. When
¢ =136 = o, wehavec, = 2a/3=2

For very short waves and ¢ < B <« the quantities kH, »H, v'H are
large, and the left side of (6-12) becomes unity, giving

(2K — Ky — 4k’ =0 (6-17)

This equation is recognized as the characteristio equation (2-28) for
Rayleigh waves in an elastic half space disoussed in Sec. 2-2. For o = 3,
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it was found that ¢; = 0.91946. For ¢ > , it may be verified from Eq.
(6-12) that ¢ — § as kH — .

In general, the waves described by (6-12) are dispersive. To determine
the manner in which the long- and short-wavelength limits are connected
one must use the complete equations. The lowest mode M,, exists for
¢ < ¢ < ¢, An infinite number of higher modes M, - - - exists for which
¢ > B because of the periodic nature of the functions tanh »'H. Phase
and group velocities obtained from Eq. (6-12) and U = ¢ + k dc/dk are
presented for the first two modes M,, and M,, in Fig. 6-1 (see Chap. 4,

3

\‘\\ <
PN n My

—
1
g; .
v 5
B
0 2 4 6 8

rH

Fio. 6-1. First and second symmetric modes My, and My of a free elastic plate with
Poisson's constant of 1/4. (After Tolstoy and Usdin.)

Ref. 203). In the first mode the phase velocity decreases monotonically
with increasing values of kH from ¢ = ¢, at kH = 0 toc = cg at kH = .
The group velocity has the same asymptotic limits but exhibits a minimum
value when kH = 4. The second mode M, is typical of all higher modes
inthate > 8. For kH —0,c— ® and U —0, and for kH — =, ¢ — U — f.
For intermediate values of kH we can find & maximum and a minimum
value of group velocity.

general analysis for arbitrary \, 4, and p n by Gogoladze [24]
Tan write the frequency equation
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(6-12) for symmetric vibrations in the form
(20' - ‘—,)' tan (Hw\/l, - a’)
8 L
2 1 2 |1 2 1 a
= sy om0 a0t (Hoy 5 - ") 61
5 G B

Then, for the interval 0 < ¢ < 1/a < 1/8 all factors are real. One can
now consider in the plane (, #) the curves determined by the equations

=ik (2.9‘ - ‘%) (Hm - o’) (6-19)

o (6-20)

and o= -

& E‘"_ 9% tan (Hw

The expression (6-19) decreases in the interval (0, 1/a), while (6-20)
increases. Thus the number of roots of (6-18) is determined by the number
of points of intersection or by the number of asymptotes of (6-19) and
(6-20). The number of modes corresponding to the phase velocities for
8 < 1/8 increases with increasing frequency. When wH — w, a real root
of the period equation approaches 9, = 1/cx > 1/8. Gogoladze proved
that for each o in (1/8, 1/cs) there is a single value of GH which satisfies
the_period &g u'\ Ton. Them are no such roots in (1/cy, ), since dg =
Vew =
1/28V1 — §°/a ﬂ/a \vhlch

Antisgmmeiric Vibrations (). For waves long compared with the
thickness 2H and ¢ < 8 < a Eq. (6-11) reduces, after some algebraic
transformations, to

;." 3(w)‘(1 -g ) ©-21)
In deriving (6-21), the third terms in the cxpansion of the hyperbolic
functions must be retained. This is the period cquation for long flexural
waves. Dispersion ocurs for these waves, with phase velocity decreasing
t0 zero with increasing wave length.

For kH —  and ¢ < B < a, Hq. (6-11) reduces to Rayleigh’s equation
(6-17), and the propagation degenerates to Rayleigh waves associated
with both free surfaces. For ¢ > § and kH — w, ¢ — .

To discuss an entire dispersion curve, computations based on Eq.
(6-11) must be made. These appear for the first two modes in Fig. 6-2
given by Tolstoy and Usdin. Again o = } is assumed. It is seen that
for the lowest mode Mo, 0 < ¢ < ca. For kH — 0, U — 0 (flexural waves),
and for kH — @, ¢ — U —> c,. For intermediate ki a maximum value
of group velocity oceurs at kH 2 3.6, U 2 6.
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Fio. 6-2. First and second antisymmetric modes M and M of a froe elastic plate with
Poisson’s constant of 1/4. (Afer Tolstoy and Usdin.) '

The higher modes Ma, May, - - - are all characterized by ¢ > 8,c— U— 8
askH — o, and ¢ — ® as kH — 0. Both maximum and minimum values
of group velocity are associated with the higher modes at intermediaté
wave lengths.

Interpretation in Terms of P and SV Waves.  As in the preceding chapters,
the period equations (6-11) and (6-12) may be interpreted in terms of
multiple-reflected, reinforcing SV waves for @ > ¢ > 8 and SV and P
waves for ¢ > « > 8. Tolstoy and Usdin discussed this in some detail.
We mention a few special cases only. The conditions kH — @, ¢ — 8
correspond to SV waves which are multiple-reflected near grazing incidence,
and ¢ — @, kI — 0 s the limiting case of SV or P waves normally incident
upon the boundaries. For the latter case, the condition U — 0 corresponds
to the condition of zero energy transmission in the horizontal direction.

Impulsive Sources. Although a full discussion for this case requires
a treatment analogous to those given in Chap. 4, some information can
be obtained from the group-velocity curves of Figs. 6-1 and 6-2. In general,
a source will stimulate waves associated with the various modes, and
the sequence of arrivals at a distant point will be determined by the
group-velocity curves. The degree of excitation of waves in any given
mode depends on the spectrum of the source and the excitation functions
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for the plate. In Fig. 6-3 the model seismogram from an impulsive spark
source at the surface of a thin aluminum plate is presented (Press and
Oliver [66]). The excitation and the frequency response of the detectors
were such that only the lower frequencies of the M., mode, i.e., the flexural
waves, were excited. That the dispersion is proper may be seen from a.

P _-..vw\/\/\/\_/—\_ww
89—\ N/ N\t
e lATAVA e SR
sor —\ Y\ \ /St

104" ———MIW\/WW‘\NJW\'
109" -—.w\/\/\/\/\/\-/\/‘w

-~ d

Fio. 6-3. Flexural waves excited in a plate of 248-T aluminum, 1/32 in. thick. Spark
source & is at distance d from detector D. (After Press and Oliver.)

comparison of observed phase and group velocitics as determined from
the seismograms with the theoretical curves computed from Eqs. (6-12)
and (4-94), using the elastic constants and thickness appropriate for the
experimental plate. The agreement is quite satisfactory, as may be scen
in Fig. 6-4.

The discussion of SH-wave propagation in a plate will be included in
the more general case when the plate is located in a liquid (sce Sec. 6-3).
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Fia. 6-4. Observed and theoretical phase and group velocities in a plate of 248-T
aluminum 1/32 in. thick. (After Press and Oliver.)

Other Investigations. The vibrations of a thin elastic plate were re-
cently discussed by Sauter (74]. Stenzel [80] investigated the acoustical
field of a point source in a layer with an acoustically “soft” or “hard”
boundary. The analogous problem of transmission and reflection of electro-
magnetic waves in plates was investigated by Heins and Carlson [28] and
Heins [29].

The investigation of flexural motion of plates led Uiyand [87] to a*
system of equations analogous to those used by Timoshenko [85] in the
problem of vibrations of a rod. Mindlin [53] showed how to reduce these
equations to three wave equations under certain conditions. These results
were applied to the problem of reflection of flexural waves at the edge of
a plate by Kane [30].

6-2. Plate in a Liquid. The propagation of clastic waves in a system
composed of an infinite plate bounded by two parallel planes and immersed
in an infinite liquid was investigated by Reissner [72], Oshorne and Hart
[59], Fay and Fortier [18), and Fay [20], where other references are given.
Sezawa and Nishimura [77) considered a plate in an infinite solid medium.

Oshorne and Hart were principally concerned with the so-called wave-
guide problem (homogeneous case), whereas the other investigators
studied the problem of reflection and transmission of waves incident on
the plate (inhomogencous case). We restrict ourselves to the former case,
treating only steady-state solutions, but the results could be generalized
for an impulsive source, using the methods of Chaps. 2, 3, and 4. Osborne
and Hart generalized the solution of Lamb [41] for a plate in a vacuum.
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To provide for continuity of normal stresses and displacements and vanish-
ing tangential stresses at the boundaries of the plate, additional potentials
are introduced to describe the participation of the liquid. The liquid
below and above the plate will now be denoted by the subscripts 2 and 0,
respectively (sec Fig. 6-5). The 2 axis is directed downward. Then the

% oo N
2=H
A ou @y By, Ay
>
z
2=-H
¢ o @0 Mo
Fra. 6-5. Plate in a liquid.
displacements are
= e = e = %o = 9
= W= =g W=l (6-22)
and the appropriate solutions for the liquid are
oo = A o= A (6-23)
where n=VFk o (6-24)

The two equations corresponding to continuity of the normal displacement
components w are
—ve™"*" Ao + (A coshvH — Bsinh vH)
+ ik(Csinh v'H — D coshH) =0 (6-25)
WA cosh »H + Bsinh »H)
— iK(Csinb I + D coshVH) + 6" 4, =0 (6-26)
The normal stresses for the liquid (u = 0) are

Ao

AT = Mo e -
Pu = MV = 3o pw'ee  forz B (6o

— e forz=H
Denoting the left-side members of Eqs. (6-6) by Ly, Ls, Ly, Ls, we have
four other boundary conditions in the form

Li+ pw'e "4y =0 Ly =0 (6-28)
pwle " A+ L =0 Lo=0 (629




v » cosh vH ik cosh v'H 0 0 o
pow’  uG* + k) sinh vH 2iukv’ sinh »'H 0 0 0
0 —2iky coshyH (" + K°) cosh v’ H [ o 0| _ 0 (6-30)
0 0 0 vsinh vH ik sinh »'H ¥
[ o 0o w0 + k) coshwH iy’ coshv'H  ps®
[ 0 o —2ikv sinh vH ¢” + K¥)sinhvH 0

062
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On rearrangement of the determinant of the system of Eqgs. (6-25), (6-26),

(6-28), and (6-29), the period cquation takes the form (if we assume
X = u for the plate) shown in Eq. (6-30).

Hence
» » cosh v ik cosh vH
ot W0+ B)sichyH 2o’ sishvH | =0 (6-31)
0 —2ikvcoshyH (¢ +K) coshH
and
»sinh vH ik sinh ' H v

W™ + ) coshyH ks’ coshv'H  pw’ | =0 (6-32)
~2ikvsichvH  (/* + K)sishvH 0
Thus the terms in Eqs. (6-4) ean be divided into two groups;

o0 =A™ I B coch g 4R

02 = AT g o Csinh vz 4 €=
is a solution with 4, = 4,, and
A g
2 = A D osh g e
with 4o = — 4, Again theso represent symmetrio and antisymmetric

vibrations of the plate.
The period equation corresponding to the symmetric case [Fas. (6-32)
and (6-33)] takes the form

" + )" cosh vH sinh »'H — 4K’ sinh »H cosh »'H

+ ‘;;1:’ (6 — »)(k* — ") sinh vH sinh’H = 0 (6-35)
For the antisymmetric case [Eqs. (6-31) and (6-34)] we have
(' + K*)*sinh »H cosh»’H — 4k%’ cosh vH sinh »'H

pﬂ’ Y (K = #)(K — ) coshvH coshv’H = 0 (6-36)
The sum of the first two terms in each equation s the expression derived
for the case of a free plate [Eqs. (6-12) and (6-11)]. The last terms in
(6-35) and (6-36) represent a modification due to the presence of the liquid.

Because of k = w/c, Eqs. (6-35) and (6-36) define relations between
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any two of the three variables ¢, k, and v. These equations can yield pairs
of real roots for k and ¢ provided that w is real and ¢ < a. When
Re ¢ > a, v becomes complex, and the last terms in (6-35) and (6-36)
show that each equation can be split into two. This system of four equations
can be satisfied if we assume both ¢ and & are complex, containing four
unknowns. Complex ¢ and k indicate attenuation of the waves, the attenu-
ation increasing with the magnitude of the imaginary component. This
attenuation is due to the leakage of energy from the plate to the liquid.
We can again obtain expressions for phase velocity from (6-35) and (6-36)
valid for very large and very small wavelengths before proce(‘dmg to the
more difficult for i

Symmetric Vibrations. As in the case of the plate in a vacuum, in the
lowest mode ¢ < ¢ < c,. For wavelengths large compared with the plate
thickness, or kH small, the hyperbolic functions in (6-35) can be replaced
by unity or linear terms, and we obtain the appmximntiun

;ﬁj)[ ,L,_(_ L .,_A‘L’)]
za<1 1+ g 3, i ©-30)
The real part of this equation is identical with the velocity of long longi-
tudinal waves of a plate in a vacuum [Eq. (6-16)]. The imaginary com-
ponent represents the attenuating effect of the liquid which for low fre-
auencis icreases as the frequency and vanishes as @ — 0.

For short, wavelengths, or kH lrge, we use ¢ < 8 and obtain the approxi-
mation

(B + 7 — 4k’ + pna.,v B — DE — )

The first two terms may be recogmzed as the expression whose root gives
the velocity of Rayleigh waves in & half space with the elastic properties
of the plate. The last term represents the effect of the liquid on the propaga-
tion of Rayleigh waves.

The low- and high-frequency limits of the lowest symmetric mode can
be found from Eqs. (6-37) and (6-38). Considering steel plates in water,
Osborne and Hart computed values of phase velocity for this mode cor-
responding to intermediate wavelengths and showed that the effect of
the water is to add an attenuation, leaving the real part of the phase
velocity unchanged. This effect is small for a steel plate in water.

Other modes are introduced, however, by the presence of the water.
For example, a mode exists such that when kH is large and ¢ < ag both
(6-35) and (6-36) reduce to

/]

0 (639
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+

B R
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A root exists for ¢ close to but less than a, giving the velocity of Stoneley
waves (Sec. 3-3) at a liquid-solid interface.

According to Osborne and Hart, the attenuation is great for most of
the higher symmetric modes (¢ > ).

Antisymmetric Vibrations. For long wavelengths, or kH small, Eq.
(6-36) reduces to

£ [fem(i-8)2] /(1 + ) ©-40)

This equation may be verified by setting p = 0 and comparing it with Eq.
(6-21), which gives the phase velocity for long flexural waves in a plate
in vacuum.

For short wavelengths Eq. (6-36) reduces to an expression for Rayleigh
waves (6-38) or for Stoneley waves (6-39), as might be expected.

For intermediate wavelengths the first mode is again similar to that
found for a plate in a vacuum, with the addition of an imaginary com-
ponent (small for a steel plate in water).

Other Investigations. The mteresmng phenomem Whleh occur in the
i problem of sup through plates
immersed in liquids gave rise to the investigations of Cremer, Gotz,
and Schoch, Maxima of transmission which depend on frequency, thick-
ness of a plate, and the angle of incidence of waves were experimentally
observed. Cremer [9] has shown that for thin plates total transmission
oceurs at an angle of incidence such that the trace velocity (phase velocity)
is equal to that of flexural waves. Gtz [25] generalized this result for any
maximum transmission and simplified Reissner’s formulas. Schoch [75, 76]

confirmed these theoretical and experimental results.

6-3. Floating Ice Sheet. A discussion of the propagation of elastic waves
in a floating ice sheet was given independently by Press and Ewing [64]
and by Saté [73] in which an infinite plate underlain by infinitely deep
water was used to depict a floating ice sheet. Press and Ewing [65] extended
their results to include the effect of the air.

SH Waes. These waves represent a special case of Love-wave propa-
gation in which the solution is unchanged by the presence or absence of
liquid media above and below the plate.

The period equation for this case can be obtained from Eq. (4-212)
by allowing 4, to vanish. Thus we find

[
tan 2k g

=0 (6-41)

where 2H s the thickness of the plate. Equation (6-41) is satisfied if
2KH VB — 1 = nx, where n = 0, 1, -+ . With the substitution
B./c = sin 0 and k = 2r sin 8/l we can write for (6-41)

4H cos 0 = nl; (642
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which is the condition for constructive interference between multiple-
reflected SH waves with incident angle 0 and wavelength Lo in the direction
of propagation. The derivation of & similar condition for a liquid layer
was given in Eq. (4-83). From (6-41) or (6-42) we may derive for the
group velocity

U=@sinf= (6-43)

From Eqs. (6-41) or (6-42) and (6-43) we may compute dispersion curves
given in Fig. 6-6. It is scen that ¢ — @ (and U — 0) at discrete wave-
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F1o. 6-6. Phase- and group-velocity curves for SH waves in a plate.

lengths given by 2H/I = 4,1, %, - - . For cach of the modes, U — ¢ — B
as 2H/L — . The sequence of arrivals at a given point corresponding to
a given mode can be deduced from group-velocity curves such as those in
Fig. 6-6. The first arrivals are high-frequency waves which travel with the
velocity f,. As time progresses, the frequency of the arrivals decreases.
The wave train is infinitely long, the slowest waves having the lowest of
cutoff frequencies given by f = n8,/4H, n = 1,2, --- . This case is almost
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identical to that of electromagnetic waves in rectangular wave guides
(Terman [82]).

SV and P Waves. Let p, and p; be the densities of the ice and water,
respectively, a, the velocities of compressional waves, and 6, the velocity
of distortional waves in ice. We have for SV and P motion

3o _ W ¢
w=2_0 g, =
or oz oz (6-44)
= o _ %
Y=t T a
The potentials must be solutions of the wave equations (4-8), and the
boundary conditions are of the type (4-1). The median plane of the ice

sheet is the plane z = 0, the frec surface is then given by z = —H, and
the interface by z = H. Thus we have the boundary conditions in the form

@)1 =0 @)i=0 atz=-H
wm=w @h=0 @)r=@) astz=H
By (4-10) we put

n=VE R, A=VF-R n=VF-R (646

Taking the solutions of the wave equations (4-8), we have
= (A sinh »z + B cosh e
= (Csinh viz + D cosh viz)e' '™ ©~4n

o = e scoi

The arbitrary cocfficients 4, B, -+- , E are determined by the boundary
conditions (6-45). A homogencous system of five equations is obtained
upon substituting the expressions (6-47) in (6-43), and the resultant
determinant must vanish. To simplify the results, the assumption A, = uy
org = } can be made for ice but the observed values of Poisson’s constant,
for lake ice are actually higher. Under these conditions, the period equation
can be written in the form

P(2Q + & cosh »,H cosh s;H) + Qosinh v, H sinh il = 0 (6-48)

‘where

(6-45)

o
b

= (* + k")* cosh »H sinh v{H — 4v{k* sinh »H cosh v{H (6-49)
= (4" + k)" sinh »H cosh v{H — 4raik* cosh v H sinh vH

8 = paaiGi’ — K05 — K
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If these equations ave compared with those given by Lamb [Eqs. (6-11)
and (6-12)], it will be scen that P = 0 and Q = O represent the sym-
metric and antisymmetric solutions, respectively, for a plate in a vacuum.
Osborne and Hart obtained Egs. ( ) and (6-36) for the case of a plate in
aliquid, or P + & sinh »,H sinh »{H = 0 and Q + & cosh v, H cosh »(H =
which also represent the symmetric and antisymmetric solutions, respec-
tively. It is evident that, unlike these cases, the motion in a floating ice
sheet cannot be reduced to purely symmetric and antisymmetric modes.
Tt can also be scen that 8 is a modification term, introduced by the presence
of the liquid, which vanishes as the density of the liquid approaches zero.
The values ¢ = & and ¢ = 8, are solutions of Eq. (6-18).

The evaluation of phase velocity from (6-48) can be simplified in the
limiting cases of very small wavelengths compared with the thickness of
the ice sheet (kH = 2xH/I very large) and of very large wavelengths
compared with H (kH small). In the first case we have P = @, and (6-48)
reduces to

O+ B — ik’ = 0 (6-50)
and O+ K — ik’ + 5 =0 (6-51)

The products of hyperbolic functions having large and approximately
equal values were canceled.

Equation (6-50) corresponds to Rayleigh waves propagated along the
free surface of & semi-infinite solid medium [Eq. (2-28)]. The root of this
cquation is ¢; = 0.91948,. Equation (6-51) is identical with Eq. (6-38)
derived by Osborne and Hart for a plate in a liquid and corresponds to
Rayleigh waves propagated along the interface between a liquid and solid,
both of semi-infinite extent. Since their velocity exceeds that of sound in
water, some energy is radiated from the solid. By following Osborne and
Hart, an approximation for the phase velocity can be deduced from (6-51)
by substituting ¢ = cg (I + ¢, ¢ < L If 3 is small, we may write the
approximation

h TR
1-% . [1-%] .
- 3 % - =1 6-52)
Tl a o | B
1-5 1%
B

Using p, = 0.917p,, B; = 6,300 ft/sec, o, = 4,800 ft/sec, &, = /36, we
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obtain approximately ¢ = /4. For a steel half space and water, the approxi-
mation is much better with ¢ = i/100.
Using (6-46) and w = ck, we may wnw Eq. (6-51) in the form

(-6 - -2~ ;’)']

ai/

Then solving for ¢ with the constants for ice listed above, we obtain
= 0.87c,. This is the speed of Stoneley waves (sce Sec. 3-3) traveling
along the ice-water interface. Their amplitudes decrease with distance
from the interface.
In order to study the period equation (6-48) when kH is small, we
write it in the form
P(2Q + & cosh »,H cosh {H) = —Qésinh »,H sinh iH  (6-54)
Expanding the hyperbolic functions to terms of the third power in kH,
we use the fact that in Eq. (6-40) ¢*/8* for flexural waves was found to
be proportional to (kH)*. With this substitution we find that the lowest
order of the right-hand member is (kH)' and the lowest order of the left-
hand member is (kH)™. We therefore may take the left-hand member
to approach zero, provided that we use no terms of higher power than
(kH)™. Recalling from the previous section that the vanishing of the
second factor in the period equation gives flexural waves, we find that
the approximate form of Eq. (6-54) for flexural waves is

arld g < (8 _ ) 5'} I3
2“’{3 wanr g (- 1)+ 5 Y
by retaining terms to the order (kH)in this factor. Solving for ¢*/81, we find

(6-56)

Tor p; = 0 this reduces to the corresponding Eq. (6-21) for a plate in a
vacuum. It s interesting to note that (6-56) can be reduced to the cor-
responding expression for a plate in a liquid simply by replacing s by 2ps.
The steady-state planc-wave theory of long flexural waves in an ice sheet
on water of cither finite or infinite depth was given by Ewing and Crary
(Chap. 4, Ref. 36) and extended by Press and Ewing [64]. In gencral, the
observed dispersion of flexural waves generated by explosions in floating
ice is shown to be in reasonable agreement with the theory in these papers.
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Crary 8] computed phase- and group-velocity curves from Eq. (6-54)
for the mode which is analogous to the flexural mode for a plate in a
vacuum. These curves, shown in Fig. 67, are based on the elastic constants
for ice and sca water.

" T
Flexural wave

Max. velocity 2kH= 2.30, % = 0.550 11

07

ﬁ!c

06

05

04

03

2= Air coupled wave ——1—%1 1+ —— = - -

01 05 1 5 10
2kH
Fi16. 6-7. Theoretical phase- and group-velocity curves for a floating ice sheet; a =
12,400 ft/sec, B = 6,040 ft/sec, o = 0345 for ice, a = 4,800 ft/scc for water. (After
Crary)

For plate waves, where ¢*/} is not a small quantity, we write Eq. (6-48)
in the form
p 4 - Qsinh nH sinh wH
2Q + 6 cosh . H cosh /H
expand the functions in powers of kH, and divide by »{kH. The first term
is of the form 1 + (kH)’ + --- , and the second, which is complex for

0 (6-57)
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¢ > @y, is of the order
(kH)* + i(kH)

The terms containing (kH)* introduce a slight dispersive correction to
the velocity c,, and the term i(kH)® represents attenuation due to loss
of energy from the plate to the liquid. Neglecting the slight change in
velocity, we find the approximation

e _ 8 2 Bipy 8 ‘[ 4 ( 7)]}
-l 8P st -8~ - om
In deriving this equation, we have replaced ¢* by ¢ in the imaginary term.
The solution for & plate in & vacuum is given by Eq. (6-16). If we compare
these two expressions, we can casily see that the presence of the liquid
hardly affects the real part of the phase velocity but adds a small attenua-
tion, which for large wavelengths increases as the inverse cube of wave-
length. This is in agreement with the experimental work of Ewing, Crary,
and Thorne (Chap. 4, Ref. 34), in which it was established that the velocity
of long longitudinal waves in floating lake ice was given by the real part
of Eq. (6-38).

For intermediate wave lengths the evaluation of phase velocity from
Eq. (6-48) is very difficult. In general, for ¢ > a,, the phase velocity has
an imaginary component, indicating attenuation due to radiation from
the ice sheet into water. Both real and imaginary components of phase
velocity depend on frequency, the waves being dispersive as well as selec-
tively attenuated. For ¢ < as, no energy losses due to radiation into the
water occur, and the waves are propagated as a dispersive unattenuated
train,

Crary Waves. An unusual type of SV wave was discovered by Crary
8] in seismic experiments on the floating ice island T-3. This wave has
the following characteristics (Fig. 6-8):

1. Phase velocity is near the speed of compressional waves in the plate.

2. Travel time is intermediate between that for P waves and that for
SH waves.

3. Principal recording is on longitudinal horizontal = scismograph;
amplitudes are much smaller on vertical and practically absent on trans-
verse horizontal.

4. Frequency is almost constant, increasing very slightly with time.

These waves are propagated by multiple reflection of SV waves arriving
at the ice boundaries with an angle of incidence 0,, = sin™ §/a;. At
this angle, the SV wave is totally reflected in its original form, and the
vertical displacement at the surface is zero, as may be seen from Fig. 6-0.

The frequency is by the for




300 ELASTIC WAVES IN LAYERED MEDIA
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Fi6. 6-8. Seismogram obtained on floating ice island, showing P, SV, Crary, and SH
waves. The Crary waves are the large trains of nearly sinusoidal waves. (djter Crary.)
interference

4Hcos 0., —l=nl n=12 (6-59)
where I = 8,/ is the wavelength along the path,  being the frequency.

The second term in Eq. (6-59) arises from the reversal in phase on reflection
at the air-ice and the water-ice interfaces. For n = 1, Eq. (6-59) reduces to

B
M = o0 0
On theiceisland Crary found
@ = 12,400 ft/sec

By = 6,040 ft/sec

-

= 40 cycles/sec
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Fia. 6-9. Reflections and refractions at interfaces of a floating ice sheet: (a) P incident
at free surface; (b) SV incident at free surface; (c) P incident at ice-water interface;
(d) 8V incident at ice-water interface. (After Crary.)

Solving for the ice thickness 2H, Crary found the value 173 ft, which
compares well with the thickness obtained by other methods. Equation
(6-60) can also be derived from Eq. (6-51) by setting the phase velocity
¢ = ay. The travel time of this phase can be deduced from the corresponding
group velocity.

Flezural Waves from an Impulsive Source. A theory for the propagation
of flexural waves for the case of an impulsive point source located either
in air, or in water beneath a floating ice sheet, was given by Press and
Ewing [65]. A partial derivation and some results are given here.

Consider a plate of infinite extent floating on deep water, the thickness
of the plate H being small compared with the wavelengths considered.
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Overlying the plate is an infinite atmosphere having density p,, and sound
velocity . The plate has density p, and longitudinal-wave velocityt
¢,; the water has density p, and sound velocity a;. Cylindrical coordinates
7, z arc used, with z axis positive upward. Assuming simple harmonic
motion (exp (iaf)), we introduce the velocity potentials 7, and 3, from.
which the velocity components 7 and 1 and the pressure p can be obtained
as follows:

i
P 0= (6-61)
The functions 7, are solutions of the wave equations
@V =98 =02 (6-62)

where V* = %/or* + (1/r) 8/3r + 9'/3f. We assume now that the
solutions of these equations satisfy the boundary conditions for a thin
plate,
il atz=0 (6-63)
The vertical displacement w, of the ice sheet satisfies the equation for
flexural vibrations of a thin plate: .
Sy _H0G Gy, _ 2y, Y

Ho 75 = =755 Y Wy = pagn = b2 po Ty (6-64)

where g is the gravitational acceleration,

w12 212 ] )

and the relation \ =  is assumed.
Following the procedure in Sec. 4-1, we can write as formal solutions
of (6-62) and (6-64) for a source at z = h (in the air)

= [ dtimer e B [T g SR o0
o= [ Quaiok d ©-67)
v = [ QR ak )
,
‘where = VE — ku i=0,2 (6-69)

Not to be confused with the compressional-wave velocity ai.
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the factor exp it being omitted. The first term in (6-66) represents the
direct compressional wave emitted by the source; the remaining terms
in Eqs. (6-66) to (6-68) represent compressional waves in the air and in
the liquid and flexural waves in the plate, respectively, resulting from the
action of the direct wave.

Three simultancous linear equations result when the solutions (6-66)
to (6-68) are substituted in Eqs. (6-63) and (6-64). Solving for Q,, we
can write an expression for the displacement of the plate due to a periodic
point source in the air:

N
g o e [TvE
=2 2 j; S Tk (6-70)
where

g

aw = 2av + m,(m.' - H_&L - :—) R 6
The solutions for a point source in the water can be obtained from (6-66)
to (6-68) by interchanging the subscripts 0 and 2.

Integrals of the type (6-70) have boen evalusted in Sec. 4-2. The
procedure was to transform the path of integration to the complex k plane.
The solution was then expressed as the sum of the residues of the integrands
corresponding to the poles given by G(t) = 0 and two integrals along
branch lines corresponding to the branch points k = w/a, and k = w/ay.
The residues, which diminish as %, give the flexural waves, whereas the
branch line integrals represent compressional waves in the media above
and below the plate, diminishing as 77*. For large values of r, the contri-
bution of the residues to the value of the integral (6-70) is approximately

0= e e (o) oxp it =+ )|

Y T [‘("’ Tt 2)] o

where « is & root of the equation
Gk =0 (6-73)
with G(k) defined by (6-71).

The steady-state solution represented by Eq. (6-72) may be generalized
for the case of an arbitrary initial disturbance by the Fourier-integral
method of Sec. 4-2. As before, this procedure leads to the conclusion that
the predominant disturbance at a distant point satisfies the relation
r/t="U.

Phase velocity may be obtained as a function of the parametery = Hf/ao
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from Eq. (6-73), and the corresponding group-velocity curve may be
obtained using U = ¢ + k de/dk. Phase- and group-velocity curves are
plotted in Fig. 6-10 for the case ay = 1,070 ft/scc, ¢, = 11,500 ft/sec,
@ = 4,650 ft/scc, po/pi = 0.00141, ps/p, = 1.090. Let 7, and f, correspond
to ¢ = . The portion of the phase-velocity curve for ¢ < as, that is,

10 —
—1 -
0
002 004 006 008 % 010

Fia. 6-10. Phase- and group-velocity curves for air-coupled flexural waves in floating
ice.

for v < 7., and the corresponding part of the group-velocity curve to
the left of the maximum would have been obtained had we neglected the
effect of the air. However, the maximum value, the steep limb of the
group-velocity curve occurring near ¥ = ,, and the values U = ¢ = ap
for y > v, all represent effects of the air.

A graph of the steady-state amplitude W(x) is presented in Fig. 6-11
for a source in the air. Interchanging the subscripts 0 and 2 in (6-72)
enables one to compute the corresponding amplitudes for a source in the
water. Study of these curves reveals that a peak amplitude occurs for an
air source at a frequency f, = agy./H, corresponding to the phase velocity
¢ = a. For a point source in the water, largest amplitudes are associated
with low-frequency waves. As the frequency (and phase velocity) increases,
wave amplitudes decrease and abruptly drop to zero as the frequency f,
is approached.

The sequence and character of arrivals at a distant point can be deduced
from Figs. 6-10 and 6-11, since the arrival time of waves of a given fre-
quency corresponds to propagation at the associated group velocity and
the wave amplitudes are proportional to W(«). For an air shot the first
waves to arrive appear at the time £ = r/2.2a, corresponding to propagation
at the maximum value of group velocity. These waves appear with large
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amplitudes with a frequency close to .. Following this, two wave trains
arrive simultaneously, corresponding to the two branches of the group-
velocity curve on cither side of the maximum. Waves propagated according
to the left branch are dispersive and rapidly decrease in amplitude as the
frequency decreases from the peak value f,. Waves corresponding to the

60
g 40

: |

: /
20

™~ |
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o |
0.02 0.04 006 008 % 010
k2

Fio. 6-11. Steady-state amplitude function for an air source.

steep right branch appear a8 & constantsfrequency train continuing to
the time ¢ = 7/a,. The constant waves form the

disturbance from an air shot since their frequency /, lics close to the peak
frequency.

For a water shot the sequence of arrivals is the same, since the group-
velocity curve of Fig. 6-10 is still applicable. However, the amplitudes
now follow the curve in Fig. 6-12, where the dispersive waves are predomi-
nant. A water shot s therefore characterized by a train of dispersive waves
beginning at the time # = r/2.2, with a frequency close to f.. As time
increases, frequency decreases and amplitude increases.

In Fig. 6-13 seismograms from an air shot and water shot for lake ice
1.1 ft thick are presented. The constant-frequency train for the air shot
and the dispersive train for the water shot are immediately apparent.

64 Cylindrical Rod in a Vacuum.  In the problems of wave propagation
in layered media considered previously, plane or spherical surfaces and
interfaces were assumed. A special case having some practical interest is
that in which the boundaries are cylinders, the cylindrical rod in a vacuum




306 ELASTIC WAVES IN LAYERED MEDIA

being the simplest example. More complicated problems concern a cylin-
drical rod immersed in 2 liquid or embedded in another solid.

Three types of vibrations in cylindrical rods are considered here: longi-
tudinal, lateral (flexural), and torsional. These may be treated in various
ways, as is well known, but we continue as before to use the general equa-
tions of the theory of elasticity. For references on this problem see also
Kolsky (Chap. 5, Ref. 25).

12 N

[
0.02 0.04 006 008 v 010 0.12
¥

Fro. 6-12. Steady-state smplitude function for a water source.

Longitudinal Vibrations. We assume sxial symmetry and take the
equations of motion in cylindrical coordinates (1-25). The displacements
qand w of a particle perpendicular (r direction) or parallel (z direction)
to the axis of the cylinder are expressed in terms of the two functions ¢
and y. By (1-26) to (1-20) we bave

-
=it R
T LT G, Y 10y Y _ 1Y

=2 V‘I’Ear""ra +at‘73’a (6-75)

For a rod of infinite length and radius g, the houndary conditions are
that the normal and tangential stresses must vanish on the surface of
the cylinder:

atr=a (6-76)




Fi6. 6-13. (a) Dispersive flexural waves in a floating ice sheet excited by an underwater shot. (b) Constant-frequency flexural waves

from an air shot. Ice 1.1 ft thick, shot-detector distance 4,614 to 5,014 ft.
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where the stresses are given by
(143 LW) 21 - (aj LW)
= T4 U+ ) 12,8 5 (B4 2) g

Since wave propagation along the axis of the rod is considered, we
take a particular solution of Egs. (6-75) in the form

= AFQE g = e o)
Then by (6-75) we obtain
"1+1'LF+(1:’- OF =0 (6-79)
6,146, .
L+ g -me =0 (6-80)

If we assume that »' = , then the boundary conditions will be inde-
pendent of z, and

k2= k=7 =K (6-81)

Equations (6-79) and (6-80) are satisfied by the Bessel functions Jo(kr)
and Jo(kir), respectively. Therefore,

o= ATk Y= e T (k) (6-82)1
Now, by (6-74) and (6-82), we can take

—lad _id “Catern)
q= [A G ol — iy 3 J.,(k.r)]e

w= [—1Ay.l.,(kr) g4 (r T)]"M""

for waves propagating in the positive z direction. On inserting the expres-
sions (6-83) in Eqs. (6-76) and (6-77), we obtain the boundary conditions

(6-83)

When indri x, 2 are used, & i built up on the
linear elements dr, ni,, dz. The stress acting at a free face of such an element, forming a
part of the cylinder surfuce can have components p,y, ., - Since we consider the case
of axial symmetry for longitudinal waves propagating in the # direction, tensions in the
direction of the coordinate x are not produced, and only the first two stress components
have to be considered. Azimuthal vibrations were considered in Sec. 5-3.

$Sometimes a function W = —ay/ar is used in the expressions mentioned above.
In this case ono can write

= O (ki)
where Ji(§) = —dJo()/d¢ is the Bessel function of the first order.
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in the form

A[ﬂu L 1) — k.’x.l.,(bv)] — 2w G kD =0 srea
&« ©-80)
204 £ J07) + € — K) 5 Julki) = 0

The period equation follows upon elimination of 4 and C from Eqs.
(6-84) and can be given in the form

2w TIUD ) i L)
)
% dJ;ika) -8 dJ{,;:.a)

It is difficult to discuss this equation in its gencral form. If the radius
a of the cylinder is very small (a thin rod), we may use the expansion of
the Bessel function

k) = 1 = K + ke e (6-86)

By (6-86) the period equation (6-85) takes the form
® - Zu’)k.a(l - *)[k’( - ') +2% < - %k’a’):’
+om(1 -2 k:a‘).ue(x ~led)=0 @

If we omit the factor k,a and neglect all terms of the order o*, the longi-
tudinal waves are found to propagate along the cylinder with the phase
velocity
) E
w== RS 3

where E is Young's modulus. The second approximation, due to Poch-
hammer [62), gives

: (1 - 1.7’»‘,;’) (6-89)

where o = \/2(A + &) is Poisson’s ratio.
For va large, Bancroft [1] showed that Eq. (6-87) reduces to Rayleigh's
equation (2-28), the root of which gives the velocity of Rayleigh waves
at the surface of a solid half space.
Values of the ratio of phase velocities c/c, 88 a function of va were
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computed from Eq. (6-87) by Davies [12] for ¢ = 0.29. An infinite number
of modes occur, the first, three of which are shown in Figs. 6-14 and 6-15.
In the first mode the long-wave limit of phase velocity is determined by
Young's modulus, ¢, = V/E/p, and the short-wave limit is the Rayleigh-
wave velocity, as discussed before. In the higher modes ¢ — w at low

T

o 04 08 12 16 20

Fia 6-14. Phase velocity (i6., ¢/ca) of longitudinal waves in a eylindrical rod with
Poisson’s constant 0.20 as & function a/L. First three modes. (djter Davies.)

frequencies, and ¢ — § at high frequencies. It is interesting to note how
closely these results parallel those for the plate (Sec. 6-1).

Oliver [58] has used pulse techniques to study the propagation of waves
in long cylindrical rods. The oscillogram for the first longitudinal mode
is shown in Fig. 6-16. The first four traces show a dispersive train of waves
in which the period decreases with time. In the middle of the fourth
trace a train is initiated in which the period increases with time. Group
velocity obtained from this oscillogram is plotted as a function of period
in Fig. 6-17. The experimental points are seen to fit the theoretical curve
quite accurately on both sides of the minimum value of group velocity.
The Airy phase corresponding to the minimum group velocity appears
as the prominent train on the last trace of Fig. 6-16.
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Fra. 6-15. Group velocity corresponding to phase velocity in Fig. 6-14. (Afler Davies.)

Torsional and Flezural Vibrations. To discuss the latter type of wave
propagation in cylindrical rods, all three equations of motion in cylindrical
coordinates must be taken into account. Torsional vibrations are char-
acterized by the conditions that ¢ and w vanish and that the displacement,
o, corresponding to the Lh:rd eylindrical coordinate (x) is independent of x.
Then the by only one di equation.
For harmonic waves B.long the rod axis the displacement v, becomes
proportional to the Bessel function of the first order, and the frequency
equation is obtained from one boundary condition p,, = 0. In the first
mode the motion is a rotation of each circular section about its center,
and the phase velocity is equal to the shear velocity 8. Dispersion oceurs
in higher modes.

1t is obvious that, in general, bending of a rod or bar can occur in any
direction. For flexural waves propagating in a circular rod an axial section
can exist such that points vibrating in this plane remain in it during lateral
or flexural motion. All three components of the displacement (g, vy, w)
are involved in this type of vibration, and we refer to the work of Love
(Chap. 1, Ref. 34) where it is shown that for a harmonic oscillation, propa-
gating along the z axis, these components can be expressed in terms of
sin x, cos x and the Bessel function J, and its derivative. The three arbitrary
constants in these equations again are determined by the boundary con-
ditions (p,, = 0, P, = 0, p,. = 0), and the frequency equation is thereby
obtained (Bancroft [1]). This time the frequency equation is remarkable
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Fio. 6- ||0grnm of hmgm,d.ml yibrions of a cylindrical rod of hot-rolled steel;
thickne: , B1 = 10,400 ft/sec. Detector 10 ft from impulsive source.
Time marks e 10 useo apart, CAfler lewf7

in that only one root occurs, as was proved by Hudson [32]. The phase
velocity depends on the ratio of the wavelength to the radius of the
cylinder. Phase- and group-velocity curves for the flexural mode are repro-
duced in Tig. 6-18.

Oliver [38] also studied the flexural waves in rods. An oscillogram of
these waves is given in Fig. 6-19, and the observed and the theoretical
group velocity in Fig. 6-17.

The problem of vibrations of a cylindrical rod as well as rods or bars
having other cross sections has been treated in different ways {sce Love
(Chap. 1, Ref. 34), Timoshenko [85]}. An approsimate equation for
flexural waves was derived and solved by Timoshenko (84], and his results
agree well with those obtained from the general theory of wave propagation.

To extend the results mentioned here to vibrations of a finite rod, addi-
tional boundary conditions at the ends must be taken into account.
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Fio. 6-17. Elastic-wave dispersion in a long eylindrical rod of hot-rolled steel; 8, =
10,400 ft/sec, .30, dismeter 1 in. (Ezperimental points by Oliver, theoretical curves
by Bancroft and Hudson (11.)
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Fia. 6-18. Phase- and group-velocity curves for flexural waves in cylindrical rods for
@ = 029, (After Davies.)
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Fro. 6-19. Oscillogram of flexural vibrations in a cylindrical rod with same parameters
a8 for Fig. 6-16. (After Oliver.)

6-5. Cylindrical Rod in a Liquid. Torsional motion of the rod will be
unaffected by the liquid. Only and flexural waves
along the axis need to be considered. In this problem one uses Eqs. (6-74)
and (6-75) and the boundary conditions
@ =@ (@ = =g astr=a (690

Here the subscripts 1 and 0 refer to the rod and liquid, respectively.
For wave propagation in the direction of the z axis the rod potentials
¢ and ¢ of the preceding section are applicable. In addition, a potential
o representing the disturbance in the liquid is needed. The period equation
can be derived in the usual manner, and a discussion along the lines of
that for a plate in a liquid (Sec. 6-2) can be given. Several investigators
have studied this problem, for example, Tamarkin [81] and Faran [16].

The effect of the liquid should be similar to that found in the problem
of the plate. Modes with phase velocity exceeding the speed of sound in
the liquid will be damped because of radiation of energy from the rod.
Additional modes will be introduced owing to the presence of the liquid.

6-6. Cylindrical Hole in an Infinite Solid. The solution of this problem
was investigated by Biot [2]. Denote all the quantities referring to the
medium (- > 0) by the subscript 1. Then, by Eqs. (1-26), (1-27), (6-76),
(6-77), and W = y, we have

(";:’;——::ﬁ;)—o atr=a (6-91)

o (-”w\
P =m0+ 2 - SR
Tnstead of expressions (6-78) Biot made use of trigonometric functions in
order to represent unattenuated waves propagating in the z direction.
Changing his notations, we putt

o = AX(rir) cos (z ~ wl) (6-93)
¥u = BX,(fr) sin bz — wf) (6-94)

fSince the 2 axis is usually taken along the rod or hole, the notations in this section
differ from those used in earlier chapters, when the wave propagation was considered
along the z axis.

0 (6-92)
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with 4 and B constant, and_

m=rVI—8 p="2=% (6-95)

E=VI=8 a='- )
The phase velocity of waves propagating in the z direction is ¢. The modified
Bessel functions of the second kind of zero and first order %, and %, can
be approximated by the asymptotic expansion

5.0 ~ () conmalt + -] )

for large values of z [see Whittaker and Watson (Chap. 1, Ref. 66, p. 374)].
1t follows from (6-97) that (6-93) and (6-94) represent solutions vanishing
at infinite distance from the hole.

Inserting (6-93) and (6-94) into Eqs. (6-91) and (6-92) and using the
equations satisfied by the Bessel functions &, and %,

- o9

we can eliminate A and B and obtain the period equation in the form
—[1 Mﬁw] _02-8Hvi-g
avi=eg 5] - =

_ 2 = E)'Ro(rha)
T

I Eqs. (6-95) and (6-96) are taken into account, the phase velocity ¢ of the
axial symmetric surface waves becomes a function of the variable va =
2ra/l = = D/I, where Lis the wavelength and D the diameter of the hole.
If we assume that »a — =, that is, the waves are very short compared
with the diameter D, and if the asymptotic expansion (6-97) of the Bessel
functions X, is used, Eq. (6-99) reduces to

WITE- 2=, (6-100)

which is the well-known form of Rayleigh's equation (2-28) for surface
waves at & plane boundary. Equation (6-99) was solved numerically by
Biot, and his phase- and group-velocity curves are shown for various
values of Poisson’s constant in Figs. 6-20 and 6-21. With increasing
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Fro. 6-20. Phase-velocity curves for an empty cylindrical hole for various values of
Poisson’s constant o. (Afier Biot.)
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Fro. 6-21. Group-velocity curves for an empty cylindrical hole. (4fter Biot.)
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wavelength the phase velocity increases from the velocity of Rayleigh
waves to the velocity of shear waves in the solid. The curves terminate
at the latter point, which corresponds to a cutoff wavelength L., beyond
which propagation cannot oceur without attenuation.

6-7. Liquid Cylinder in an Elastic Medium. As an extension of the
problem considered in the preceding section, the case of a cylindrical hole
filled with a fluid was also investigated by Biot [2]. The radial displace-
ment g in the fluid is now given by

w=2 (6-101)
and the potential ¢, must satisfy the equation
Taplie, o _Lia 6109
The solution of this equation may be written in the form
o= T = A Gk >t (6-108)
where ka = w/a and
@0 = Lr(* — k)N for k2 < (6-104)
since Joiz) = Iof2) (6-105)

where I,(2) is the modified Bessel function of the first kind of zero order.
Putting

(6-106)

we obtain the fluid pressure in the form
(o0 = = 5 = pulTllE = DI o> 1 (6-100)
and

@) = P’ Lolro(1 — £’ forg <1 (6-108)

At the surface of the cylinder the radial components of the displacements
and the normal stresses are continuous, that is,

a=a6 @h=@0 atr=

or (f)f, = (7) atr=a (6-110)

is a composite boundary condition corresponding to the matching of
mechanical impedances. The first ratio is determined by Eqs. (6-101),

(6-109)
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(6-103), (6-104), (6-107), and (6-108), and if we take into account that
e = L0 L =L @111

‘we obtain

—HE = DV = DU forg > o
(1 — e’)‘l [w(l - E’)‘]e“""" forg <1

(L
= —;—r forg>1 (6119
y (e‘—l)J.{u(s’—l) ort @113
[ar(1 —

1—-——r forg <1 -114
OLwa -1t 1

In deriving these formulas it was assumed that ¢ » 0 at r = a. The
condition ¢ = 0 would mean that the liquid is contained in & rigid wall.
By Egs. (6-112), then, the phase velocity would satisfy the equation

€ — DV — D =0 (6-115)
Hence =1 o e - =u (6-116)
where u, are the Toots of the Bessel function J. The root § = c/ap = 1
corresponds to waves with their plane perpendicular to the axis, while
the roots w, give the dispersion of multiply-reflected conical waves.

One can see from Eq. (6-113) that if a liquid cylinder is free at the
boundary, that is, (p..)s = 0 at r = , the multiply-reflected conical waves
will be determined by the roots of the equation

Jola@® — DY =0 (6-117)

For the case of a liquid cylinder in an elastic medium we can compute
the second ratio in (6-110) from (6-91), (6-93), and (6-04), taking into
account that

=~ _ 3
a=p-% 118
The third boundary condition is
()i =0 atr=a (6-119)

Tt is casy to see that Eq. (6-119) vields the ratio 4/B, which can therefore
be climinated from the right-hand member of Eq. (6-110). This results
in the period equation, which after cortain transformations takes the
form given by Biot:

8 Joba® — D}
GEA=GE el
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where L denotes an expression equal to the left-hand member of (6-99).
Equation (6-120) holds for the reflected waves (¢ > 1). For ¢ < 1 the

luces ts ley waves at the liquid-solid interface gi by
& Lt = )
L= = L = 91 (6-121)

By (6-95), (6-96), and (6-106), it may be seen that the parameters
£ and £ can be expressed in terms of § = ¢/ay:

=gl (6-122)
' @ _ N2 _ A -0
Since. s e = (6-123)

where o is Poisson’s ratio, only three parameters are involved in Eqs.
(6-120) and (6-121), B,/ac, po/pi, and o. Then the variable £ becomes a
function of sa = = D/l where » = 2r/land 2a = D. Using these relations
and Eq. (6-120), Biot computed the phase- and group-velocity curves
for multiply-reflected conical waves for the case B/ = 15, ¢ = %, and
various values of po/p.. The curves for the first three modes are presented
in Figs. 6-22 and 6-23. The short-wavelength limit of phase and group
velocity is the speed of sound in the liquid. The upper value of phase and
group velocity is the speed of shear waves in the solid, the cutoff wave-
length decreasing with increasing mode number. The group-velocity curves
exhibit a minimum value. In the Stoneley-wave branch (Figs. 6-24 and
6-25) computed from Eq. (6-121), the short-wave limit of phase velocity
coincides with the Stoneley-wave velocity at the interface between two
half spaces, one fluid and the other solid. With increasing wavelength
the phase velocity decreases and becomes practically independent of
wavelength (/D > 5). In this region the waves correspond to those
studied in the classical theory of the “water hammer.”

‘Somers [78] studicd this problem for the case of an impulsive ring-shaped
line source. The propagation of sound waves along liquid cylinders was
also recently considered by Jacobi [33]. The phase-velocity curves for the
first two modes were plotted for a liquid cylinder with rigid walls, or with
pressure-release walls, and for a liquid cylinder embedded in an infinite
liquid. Two other problems concerning cylindrical tubes, which will be
discussed in the next section, were considered in the paper of Jacobi,
where references on previous work can also be found.

6-8. Cylindrical Tube. The various modes of free vibrations of an
infinitely long cylindrical shell were investigated by Lamb [39], and the
effect, of free cdges was considered by Love [47]. Period equations for
torsional and longitudinal oscillations of a cylindrical tube were given by
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Fia. 6-22. Phase-velocity curves of first three modes (¢ > a) of a liquid-filled cylindrical hole; /as = 1.5, & = 1/4, several values of u/pr.

(After Biot.)
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Fra. 6-24. Phase-velocity (i. e., ¢/as) curves for liquid-filled cylindrical hole, Stoneley
mode with f1/au = 15, o = 1/4. (Afler Biot)
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Fra. 6-25. Group velocity for phase-velocity curves of Fig. 6-24. (After Biot.)

Ghosh [22]. A case with practical interest, the propagation of waves in a
liquid-filled tube, was discussed in several papers {sce Rayleigh (Chap. 1,
Ref. 45, vol. 11, pp. 158 and 323) and Lamb [40] for early investigations
of this problem]. In this problem the yielding of the walls cannot be
neglected, and therefore two approximations are made. We can consider
cither a liquid cylinder with a liquid wall or a liquid cylinder with a thin
solid wall.

Following Jacobi [35], we assume for the first of these problems that
the density and sound velocity are py, a for the wall and p, ao for the
cylinder. Again considering solutions with axial symmetry, we can make
use of velocity potentials similar to Eq. (6-103). A solution for this problem
can be written in the form

= i A (mr)el xeTmen (6-124)

o= 3 (Andim) + BN.mAle ™" (6129)

where 4,, A.,, By, are arbitrary constants and
m= Vi mo= Vi, — (6-126)

The symbol N, denotes either a Bessel function of the second kind or a
Hankel function of the first kind, H,". For convenience in computation,
it is best to use H" where the argument is imaginary. A relatively simple
form can be obtained for modes independent of the angle x, that is, for
n = 0. Three boundary conditions must be satisfied, expressing continuity
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of pressure and of radial components of velocity at the inner boundary,
r = a, and vanishing of the pressure at the outer boundary of the tube,
+ = a,. Since only the terms n = 0 are used in (6-124) and (6-125), we
obtain

PoAodo(ma) — piAsodo(ma) — pBioNo(mia) = 0
mAoJi(ma) — miAsoJi(ma) — mBiNi(ma) =0  (6-127)
A o(ma,) + BioNo(ma) = 0
The period equation may now be written in the form

mJi(ma) _ pomy Ji(mia)No(mya)) — Jo(mia)Ni(mia)
Jo(ma) o Jo(ma)No(mya,) — Jo(mia)No(ma)
The derivatives of the Bessel functions of zero order can be replaced by
functions of the first order, using the formulas J§ = —J,, Nj = —N,.
The graphical solution of this equation is obtained by plotting the curves
of each member of Eq. (6-128) separately and locating intersection points.
An approximate expression for the right-hand member was used by
Jacobi, and two different cases oo 2 a, were discussed. In the first case
the phase velocity approaches the sound velocity of the inner medium;
in the second case it approaches the sound velocity of the outer medium
as the frequency increases. Wave propagation in a liquid cylinder enclosed
by a metal-walled tube was investigated by Lamb [40], Gronwall [26],
Fay, Brown, and Fortier (17], Jacobi [35], and Fay [19].

(6-128)
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CHAPTER 7

‘WAVE PROPAGATION IN MEDIA
‘WITH VARIABLE VELOCITY

7-1. Wave Propagation in Heterogeneous Isotropic Media. Problems
of this kind are mathematically more difficult than those considered
earlier, since each investigation must begin with the most general equations
of motion (1-7) and (1-11) in which X, u, and p are now functions of
2, 4, 2 Thus we have

&u
ot

_ Oer sy .
= oX + P e g -1

and two similar equations for the other components, where the stresses
are given by

ou o w) ow o
Do = A0+ 2 oo r:.=u(@+5) p..xu(£+5) (7-2)
Cdiys =g v
and g_d‘v'_az+ay+az

Inserting (7-2) in (7-1) we obtain

du ) a0
aw=px+$(w)+uv’u+u£

poBB (o, W) Wy W) gy

az oz ' oy \dy oz, az T oz
After a simple transformation, the equations of motion take the form
du 2 20 _ g
T = pX o [+ W0+ u VU — - 25"
udu (@ ﬂ) A (L‘" )
F 2o Tay\oy Tar) T o T
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Fw ) 2 38
Py =02+ - [N+ 206) + 4V — - — -
ot 52 o oz ((74)
Ou(w  du)  du(dv  ow udw (cont)
+ex(az + ﬂx)+ﬂy(az+ 6y)+2az o

It is easy to see that these equations can be written in vector form, if the
sum of the three last terms in each of Eqs. (7—4) is understood to represent
the double scalar product of the gradient of rigidity Va and the sym-
‘metrical strain tensor @, that is,

ou o y)
V"(az’ay’ a2,

gI®
P

oy 2) g0, o)
2oy T/ 29z T oz,

N
G 5
G s &

Then the vector equation for wave propagation in & heterogeneous medium

o) a5

i
P28 = oF + VIO + 200] + uVS = WV0 = 2074 + ATVu @) (1-6)

The equation of wave propagation in a form equivalent to (7-6) was
apparently given first by Uller [75] and independently by Yosiyama [81].
Obviously, the equations necded for various heterogeneous media would
follow from Eq. (7-6) through a specialization of conditions. Thus, for
example, for fluid media we put 4 = 0. Assuming also that there are no
external forces acting, F = 0, we have

= V(\) = 6VA + Vo @n

Now we introduce the potential ¢ defined by

=% =% %

"% "Tw YTa @9
From Eqs. (7-7) and (7-8) we see that u, », w must satisfy equations such as

L -9




330 BLASTIC WAVES IN LAYERED MEDIA

where 8 = V’, which differ from the usual wave equation by terms
representing variations of A. Equation (7-9) can be written in the form
[, 8\, ] - 207 g
a[a‘. xv] ae=0 (7-10)
It is scen, then, that if p(z, y, 2) is & constant the displacement potential
for & heterogeneous uotropl(- fluid satisfies the wave equation
F = (e, 1,9V’ @11
where @ = V/\/p.
The effect of variations in density was investigated by Bergmann [9].
Yosiyama [81] used sn equauon of the type
98 _ 2V —~ P
a tz v bo (7-12)
in which the last term represents the effect of heterogeneity of the medium.
The small motion of a gas about a state of equilibrium is determined
in general by the following equations (see Lamb [44, p. 555])

“(e0)}6,

%“-a—‘;(c'o+x.‘+yu+2w)+—-—u- (7-13)
if the forces X, ¥, Z are consmnt n.udc’ = YP»/?n, Po = f(po)- The motion
is in’the case of ¢ ik, if f0) =
Po/po = ¢ Then the potential satisfies the equation

.
26 w+<x""+¥""+z"“’) -1

It was shown by Sobolev [69-71] that it is possible to generalize Kirch-
hoff’s formula Eq. (1-51) for wave propagation in heterogeneous media.

Tf the relative variation of p, 4, and A is very small over a wavelength,
Eqs. (7-4) may be approximated by two wave equations for compressional
and distortional waves with a = a(z, y, z) and 8 = B(z, y, 2). Otherwise,
coupling between these two wave types occurs at every point of the medium,
and it is not possible to make a clear distinction between them (see also
Chap. 1).

7-2. Sound Propagation in a Fluid Half Space. Pekeris [58] considered
the problem in which the velocity in a fluid depends on the depth z,cither as

a=az (7-15)

a
or = TR (7-16)
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In the first case the velocity decreases with depth above the plane z = 0
shown in Fig. 7-L. It is assumed that the density variation is sufficiently
small to permit the use of Eq. (7-11):

Vo= 52 -1

S
w‘s

At the free surface z = z, the pressure, hence the potential g, vanishes
as before. ¢ represents a wave propagating from the source located at

Free surface

zm -2

Fio. 7-1. Notations for sound propagation from a source at (0, 7) to a receiver at (r, 2).

= 4, and, as was assumed in Sec. 4-2, both components of velocity
are continuous at the level z = £, except at the source.
If the time factor exp (iwf) is omitted, an expression

o = AWIGDFEO @18
will satisfy the equation
Vi + ki =0 @19
provided that the factor F(2) is an integral of
I (- ) =0 (-20)

where the velocity distribution given by Eq. (7-15) is already taken into
account. If we write 22k = z and F(z) = F(z/2k) = W(z), Eq. (7-20) is.
reduced to the form

W '

7+ (ﬂ

‘)W -0 -2
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Whittaker’s function W, .(z) satisfies this equation if we put [Whittaker
and Watson (Chap. 1, Ref. 66, p. 360)]
1 N
=] (1-22)
The second solution which, together with the first, forms the fundamental
system of Eq. (7-21) is Wo..(—2).
On the other hand, the substitution
F@) = 266 -2
yields the equation
&G, 146 (g 1) 1
?*;EJf[ax—z goFje=0 -2

If we change the notations as follows and put kz = ix, Eq. (7-24) takes the

usual form of a Bessel equation, where G(x) = G(2):

[-ai--e o-Gi-
X a a

Now the solution of Eq. (7-20) can be written as follows:

F = A21,(k) + Bek.u(ke) (7-26)

where 1 is the Bessel function of the first kind with imaginary argument
and X is the modified Bessel function

w0 = (3) coonei 2 a2

Both functions in Eq. (7-26) are of the order in. Since X., corresponds
to & wave propagating upward, we write for the medium below the source
Fy = CHL (k) (7-28)
The potential ¢ and therefore F in Eq. (7-26) vanish at z = z, and
we obtain
0 = ALi(keo) + Biu(keo) (7-29)
Thus we can put for the medium above the source
llze) .
in(kz0) -89
Now the constants B and C should be expressed in terms of the intensity
of the point source. This result will be obtained as in Sec. 4-1 by imposing
the conditions

Fo = B ) - 109 %

o, _ oF,

F,=F, % %

=Dk atz=% (7-31)



WAVE PROPAGATION IN MEDIA WITH VARIABLE VELOCITY 333

Then  is continuous across the plane z = £, and, if we integrate with
respect to k between the limits 0 and «, d¢,/dz — dg/d2 becomes pro-
portional to [ Ju(kr)k dk which vanishes everywhere except at the source,
where it becomes infinite in such a way that its integral over the plane is
finite. This satisfies the condition for a point source. Thus we have

Kinlhzy)
Tio(keo)
Ke(lzo)
Li(kzo)

B a0 — 100 502 < cr, 0 )

B!'[sc:.(w = Ik ] = -D+CILk)  (7-33)

From these two equations we obtain

B = o[ B 5 — s a0

and
¢= m,,[ \.(u) Rl — &1 (w] '[sa.(ks) _ x‘.(la.,)] (-35)

Lk~ Ti(kao)

When we make use of the relationship

L@)%(2) — LEX) = (7-36)

these expressions take the form
B = D 'L (k)k¢ = DkT..(k8) -37)
C= Dw[x.‘(w - (7-38)

Thus the potential ¢ is determined for both regions above and below the
source if we integrate with respect to k from 0 to «:

= J,aw)mh)z?[x,,(kz)—n.(m 7%‘3] & @39

and o= [ IO db (40)

where B(k) and C(k) are given by Eqs. (7-37) and (7-38).

Pekeris also derived an expression for the potential for a whole space
with the same velocity gradient. This expression is readily obtained by
assuming z — . Taking the asymptotic values of Bessel functions

Ko@) ~ (é)‘e" Ti(2) ~ (2m2) e (7-41)
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‘we obtain

i [342] o
and, therefore, we have for 0 < z < £ '
e = Dt fu " T % (KR dk (743)

The last integral can be replaced by a simple expression (see Pekeris [58],
p. 297). If we put (Fig. 7-1)

Ri=r+@¢-9" R=r+¢+2° (-14)
we obtain

I ot eyseam ae = pb- (Bt oy 45
Thus'the solution (7-43) for a point source in an infinite medium with
constant-velocity gradient can be written in the form

Dgl2! ()lg, + R )"‘ _ D
“RE, \R,—R/ T R,
where tanh » = R,/R,. For the vicinity of the source, if we put z = 2,
= 28, Eq. (7-46) becomes

Ce=gen [z(m - "%)] (-47)

for a point source of unit strength D = 2, For vanishing-velocity gradient,
n/2— k,, and Eq. (7-47) goes into the familiar form for a spherical wave
in a homogencous infinite medium where the time factor is again introduced.

Pekeris cvaluated the integral (7-40) by transforming the path of
integration into the complex k plane, the procedure used in Chaps. 3
and 4. He obtained the solution as a sum of residucs in the form of a
Fourier-Bessel series in which Bessel functions of imaginary order and
complex argument are involved.

From the physical viewpoint, this problem is of interest because of
the occurrence of & shadow zone into which no rays penetrate. Diffracted
radiation, however, can penetrate into this zone, and the intensity can be
derived from the residues of Eq. (7-40). Pekeris also outlined the theory
for the case of a medium with variable-velocity gradient.

Blokhintzev [10] established the equations of wave propagation in an
inhomogeneous and moving medium from a more general viewpoint.
They are derived from the equations of hydrodynamics, disregarding only
the viscosity and the heat conduction of the medium. Even in the case

(7-46)
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of constant entropy and no motion in the medium other than waves, the
equation satisfied by the sound potential is complicated. However, it was
shown by Blokhintzev that for liquids this more general equation can be
approximately replaced by the usual wave equation.

It was pointed out by Morse [54] that, since the case of the linear de-
crease of sound velocity with depth discussed by Pekeris does not agree
with actual of sound ion near the
sea surface, another law should be used. He expressed the sound velocity
in terms of depth as follows:

a=a(l - )Xol + 2Nt forH 2220 (748)
a = aol — b2) 2 ag(l + 2b2)7F forz > H' (7-49)
2 ol R S — 10~ i
where o} =% 2 =gy b= 10787 (@-60)

and H' is the depth at which the law of velocity variation is changed.

In Morse’s opinion, the assumption that the sound-velocity gradient
approaches zero in the uppermost layer of ocean can then explain many
features of the shadow zone. The problem similar o that treated in this
section but the of waves was
considered by Krasnushkin [41]. In earlier papers as well as in the paper
cited above he applied the method of normal modes and was able o present
the solution in the form of a discrete spectrum combined with a continuous
one. He assumed that a vertical electrical current produces electromagnetic
waves in a nonmagnetic medium having its dielectric constant a function
of 2 and obtained, instead of Eq. (7-20), & more gencral equation. This
equation is of the Schrodinger type, and the solution can be expressed in
terms of Hermite polynomials. :

SOFAR Propagation. Special cases of wave propagation in hetero-
gencous media_ can have important practical applications. In particular,
Tong-distance propagation of sound waves in the atmosphere and in the
oceans is possible beeause of the favorable variation of sound velocity
with depth in these layers. In most of the cases considered in this chapter
simple distributions of velocity are assumed, the velocity cither increasing
or decreasing with depth. In many parts of the deep ocean, however, the
sound velocity decreases to a minimum at 400 to 700 fathoms but in-
creases from that depth to the bottom achieving a slightly higher velocity
at the bottom than at the surface. The mean-velocity-depth curve in
the Atlantic Ocean is presented in Fig. 7-2 (Ewing and Worzel [25]).
For related studies in the Pacific Ocean, see Dyk and Swainson [21] and
Anderson [5]. This variation in sound velocity is due to two factors.
First, the temperature in the oceans decreases rapidly with depth to a
little above 0°C at about 700 fathoms in the Atlantic and 500 fathoms
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in the Pacific, and the velocity decreases in this range as a consequence,
Below these depths the temperature decreases slowly to the bottom, and
the increase in veloclty in this part of the ocean ls mused by the effect
of increasing pressure on the

Propagation of the sound initiated by  source of spherical waves located
at the depth of minimum velocity has characteristics which may be
explained by Fig. 7-2. The rays in this figure were calculated from the
mean-velocity-depth curve under the assumption that the water column
is composed of six layers in each of which the velocity is a linear function
of depth (see, for example, Ewing and Leet [23]). If we assume that the
velocity of propagation varies continuously in a medium, the sound waves
follow curved ray paths because of refraction. In a case such as this, a ray
starting with a small angle above the horizontal is bent downward, and a
ray which starts at an angle below the horizontal is bent upward. In this
way, rays repeatedly return to the depth of minimum velocity and cross it
and are bent in the opposite direction. Two-dimensional spreading, ab-
sorption, or interception by an obstacle alone limits the horizontal range of
propagation in such a case. For oceans the rays behave in this manner if
the initial angle lies between 0 and 12°. Part of the ial sound waves are
therefore confined to a channel. The name “sound channel” has been
used for this type of velocity structure.

Rays with an inclination between 12 and 15° to the axis of the velocity
minimum are also curved but return to the axis after reflection at the sea
surface. They have been called RSR (refracted and surface-reflected)
sounds. If the inclination exceeds 15° at the axis the rays must be reflected
at both the surface and the bottom and are called reflected sounds.

SOFAR, or long-distance, signaling in the occans displays the following
characteristics: (1) the extremely long-range transmission of sounds
(probably 10,000 miles from small bombs); (2) the unique character of the
SOFAR signal, especially the abrupt termination which allows the arrival
time to be read with an accuracy better than 0.05 sec; and (3) sound
duration depending upon distance in such a way that the distance may be
estimated from the signal duration at a single station with a precision of
about 3 per cent. With the high-frequency-sensitive detectors used in
underwater acoustics, the representation by rays is sufficient to account
for much of the character of SOFAR signals. However, a complete wave
theory of propagation in the SOFAR channel must consider the elasticity
of the bottom as well as the heterogeneity of the water. Such a theory is
necessary for waves with periods between 1 and 15 sec. When such a
theory becomes available it may explain the puzzling features in this
period range on seismograms of earthquakes with large oceanic paths
(see Sec. 4-4).

A limited development of the wave theory was attempted in different
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ways. Brekhovskikh [13] pointed out that the effect of the velocity gradi-
ent due to hydrostatic pressure is quite analogous to the effect of the

whispering galleries explained by Rayleigh (Chap. 1, Ref. 45, vol. 2,

p. 127). He applied Rayleigh's consideration of rectilinear waves incident

on a curved boundary to the case of a plane boundary and curved rays, _
and in an elementary way he derived some formulas for the effect of this
velocity gradient. In a second paper [12] on the subject Brekhovskikh
suggested an approximation of the velocity-depth curve ADE by a broken
line ABCDE (Fig. 7-3a). For the duration T of a recorded signal at a
distance r from an instantaneous source he gives the approximate formula

arH

CCH +9 =T @-51)
The factor a, is the sound velocity at the occan surface. H is the ocean
depth, and a is the coefficient in the expression for the velocity a, (1 + az),
2 being the variable depth. At large distances the maximum of sound inten-

ar

T

Sound velocity

'—— Sea depth, H. —-|

o a @
Sound velocity
(®)
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@

Fi6. 7-3. (a) Assumed velocity-depth relationship for ocean. (After Brekhouskikh.)
(b) Assumed velocity-altitude relationship for atmosphere. (After Haskell.)

sity at the end of a signal decreases as r™. This part of the signal is the
principal part, confined to the sound channel. Following the abrupt
end of this part, a weak disturbance is arriving, which is due to reflections
from the bottom. These waves are called by Ewing and Worzel the RSR
waves (see Ref. 25, Fig. 7). A more extended discussion of the problem
of a sound channel was given by the same investigator in other papers
[14-16]. (See also the discussion at the end of Ref, 16, p. 546.)
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Haskell (36] studied sound propagation in the atmosphere but his
results may be extended for the case of the ocean. Thus the considerations
which follow must be regarded only as an illustration of the method.
The general character of the assumed velocity-altitude relationship shown
in Fig. 7-3b differs now from those considered before. We assume that
(1) the vertical component of velocity vanishes at z = 0 (the rigid bottom
of the atmosphere); (2) the velocity of a particle

v=gads (7-52)

vanishes as z — «; and (3) in the neighborhood of the source (r = 0,
2 = h) the potential 3 must reduce to

i—»%exp{{m[i—%]} R =4k (753

a(#) being the local velocity. Making use of the equation

. 1 3%
V% = 2 ok (7-54)
which holds approximately in this case, we also put
] =
P @ 3 (7-55)

Omitting the time factor and changing notation slightly, we make use of
Eq. (7-18) again:

& = Jo(kn)F(2) (7-56)
This function must satisfy conditions (7-31):

—24k atz=nh (7-57)

and F,=F, ‘stz=h (7-58)
The factor F(z) is in this case a solution of & more general equation than
Eq. (7-20), namely,

&F ( o
dz,+F;,—(’—)—k’)=0 (7-59)
and, according to the first boundary condition,

dr,

=0 atz=0 (7-60)

Taking two linearly independent solutions of Eq. (7-59), M(z, k) and
N(z, k) that behave asymptotically for large values of z (with the factor



340 ELASTIC WAVES IN LAYERED MEDIA

") like down and upward traveling waves, respectively, we now put

b= MN’" — M'N, where M’ and N' are the derivatives with respect to 2.
Haskell showed that the boundary conditions are satisfied by

Py = [ B0 D i, maro, & ~ ate, B0, )

Fue, ) = [ B i, a0, — MO, BV,

Moreover, if , are roots of the equation
N, B =0 (7-62)
the solution of Eq. (7-54), which is obtained, as was shown in Chap. 4,
by integration with respect to the parameter k, will be represented by
& sum of residues corresponding to x, and some branch line integrals.
If the Bessel function Jo(kr) in (7-56) is replaced by the Hankel function,
the sum of residues (pz) takes the form
Nih, x) [aN'(o k)]
N, k) ok Jkwe, -63)
The factor b now equals —M'(0, x,) N(0, ) because of Eq. (7-62). Has-
kell’s expression holds for the region above and below the level of the
source. This is a formal solution, and the obvious question now is to choose
the appropriate function N(z, k). Let ¢(k) = w/k and

AU
n{[j%] - 1} for o) > ad)

- c(_k>:[}‘
[a(s) for e(k) < al2)
Referring to Fig. 7-3b, let a,, a,, a; be the values of z at which Q(z, k) = 0
in the ranges 0 < z < 2),2, < z < z;,and 2; < z < =, respectively. Using

a solution of Eq. (7-59), which is an asymptotic approximation for high
frequencies, Haskell let

ox = —2miAe™! Z &HP (DN, k) 3o

Qe k) = (7-64)

7-65)

where ue, ) = [ "Qa (7-66)

and C.. is & linear combination of Bessel functions of order 3. The solution
with m = 1 is valid in the range 0 < z < a,, except near z = a,. For
m = 2, the solution is valid for 0 < z < 4, except near z = a; with m = 3
it is valid for z > a,. Substituting the expression (7-63) in Eq. (7-62)
leads to an estimation of some of the roots of the frequency equation.
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Using asymptotic approximation for the residues in Eq. (7-63) and re-
placing the sums by equivalent integrals, Haskell evaluated these integrals
by the method of stationary phase.

The T Phase. A short period phase, T < 1 sec, traveling through the
ocean with the velocity of sound in sea water, is frequently found on
seismograms of island or coastal observatories for earthquakes in which
the path of propagation is mostly oceanic. A typical occurrence is shown
in Fig. 7. This phase was first noted by Linchan [46], and the mechanism

60 sec. —

FiG. 7-4. T phase from West Indian earthquake of Sept. 21, 1051, recorded by under-
water seismograph at Bermuds. (Courtesy of M. Landisman.)

of propagation was established in the work of Tolstoy and Ewing [74]
and Ewing, Press, and Worzel [26b]. In the latter investigation, hydro-
phones in the SOFAR channel were used to detect earthquake-generated
T phases.

There s little doubt that the energy crosses the deep ocean as sound
waves, probably in the SOFAR channel. However, compressional, shear,
and possibly surface waves may be involved in propagation across the
land segment of the paths. Recent work with Pacific T phases by Wadati
and Inouye [76] and Byerly and Herrick [17) and with Atlantic T phases
by Bath [8] supports these conclusions. Shurbet [68] reported observation
of T phases recorded at Bermuda from South American shocks in which
the encrgy was transmitted over as much as 51° as P, before entering
the ocean at the scarp north of Pucrto Rico.

From the known great frequency of occurrence of small earthquakes
and the efficiency of propagation in the SOFAR channel it may be expected
that T waves contribute significantly to the acoustic “noise level” in the
SOFAR channel. Recently Dietz and Shechy [20] used T' waves crossing
the Pacific Ocean to study submarine volcanic eruptions off Japan.

7-3. Love Waves in Heterogeneous Isotropic Media. Since velocity
gradients are known to exist in the earth’s crust and mantle, it is very
important to have a theory of Love-wave propagation in a medium where
the velocity, rigidity, and density are functions of depth. The simplest
case was investigated by Meissner [51], who considered a half space in
which the density follows the law p = p'(1 + 82), where  is the depth,




342 ELASTIC WAVES IN LAYERED MEDIA

4 a parameter, and the rigidity is » = w'(1 + 82)>. Wilson [79] studied
the case 4 = u' exp (12), 8 = §' exp (52). Meissner [52] added a discussion
for media in which one layer is homogencous, the other heterogeneous.
This case (heterogeneity in the lower layer) was investigated in more
detail by Jefireys [43]. He showed that for a mantle given by p = const,
r = #'(1 + 82)°, the heterogeneity increases the phase velocity and de-
creases the group velocity of the longer-period waves. A solution for a
heterogencous medium of such kind that the functions involved are of
an clementary nature was given by Bateman [6]. One simple case of this
problem was also considered by Aichi [4]. Sezawa and Kanai [66] found *
certain correspondence between the propagation of Love waves through
some heterogencous media and the problem of varying water depth, and
Matuzawa [49] gave a solution of the problem on assuming linear changes
in the z direction in both rigidity and in the velocity of propagation.
Renently the case of a homogeneous layer over a substratum in which
— bz, p = const, was discussed by Saté [63], and solutions for the
zwn cases in which variations in the substratum are given by u = u' exp (52),
= ¢’ exp (&), and p = w'(1 + 82, p = p/(1 + 82), were given by Das
Gupta [19].
For Love waves, u = w = 0, v = 0(z, 2), and in the absence of body
forces the equation of motion for the y component [compare (7-1)] is

o 0h = By e (-67)
By Eqgs. (1-11) we obtain
Fo_a( m), o(w
“5?_3:("6)+3z("a) -68)

If 4 s a function of z unly,‘Eq (7-68) becomes

M =uVh + o (7-69)
If we put V = v/ v, this equation takes the form
oy _ L@y zi»] »
"at’*“vv+[ (Bz 2] @-=10)

If we assume that u = u(2) and
V = Z@e -1
the first factor will be the solution of the equation
&z B L () - Ldu], g
Fr I:ld L et (k) 2,‘5‘]2 =0 @-12)

since B = (u/p)".
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Homogeneous Layer over Heterogeneous Half Space: Matuzawa’s Case.
(Fig. 7-5). For u; = w' — bz, B, = ' — bz, Matuzawa [49] wrote Eq.
(7-72) in a form valid for small values of z

L a+paz=0 13
where, after minor corrections,
e = = = v -
<Ktk B b+l @
and obtained the solution
z-= .[C H“’(l e') +c H"’( e')] (7-15)
W \3B 3B
where E=A+Be -76)
P
z=H

P T
§ |

Bo=p—bz

Bo-B'—52

Fra. 7-5. Notations for Love waves in a homogeneous layer over o heterogencous half
space. (Matuzawa’s case.)

If & half space displaying such properties is overlain by a homogeneous

layer of the thickness H, the solution for this layer can be taken in the
usual form (see Sec. 4-5):

0= (AT 4 B @77

with 4, = V/@/Bl — 1, and the boundary conditions for Love waves

can easily be written. The period equation given by Matuzawa for this

cnsoin
N T
wn b = 20 14 58) + 350

where argument of the Hankel functions is 24°/3B. If the asymptotic

7-78)
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expansions of these functions for large values of the argument are used,
the approximate form of the period equation is

ws wB

b
e A ) @79

where s} = —A.
Salé’s Case (Fig. 7-6). In Saté’s [63] problem the velocity of propa-

z

2=H,
e n=p By

20
H=154 ;= B

2e - H,

By=p'=bz  py=p
By= (W' b2/

Fia. 7-6. Notations for Love in a doubl Iayer over
half space. (Satd's case.)

gation in the substratum is 6, = [(#' — b2)/ol", and Eq. (7-72) takes the
form

P2 [ e b;], -

E;+[k,,~k+4“:z 0 (7-80)
By a change of variables

ot Zhuy 4%

v=gm £ b' W=wZ (7-81)
the equation

aew [l .y lly_

T+ [rt-ir-o o

is obtained. It is satisfied by Whittaker’s function
b
Wt = s = ey 4 e [[OE2EY) o

or Moo®) = 8 FiG ~ v, 1,0 (7-84)
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where ,F, is the confluent hypergeometric function. By Eqs. (7-71) and
(7-83) and V = V0, we have

o= A(L)soeen ap=giens sy

Considering two homogeneous layers overlying the half space having
elastic properties just defined, Satd makes use of the expression (7-77)
for each layer. If quantities referred to the layers and half space are denoted
by the subscripts 1, 2, and 3, respectively, the boundary conditions may
be written as

Bog stz=H ou=v ad w2=n® wr=0 @89

w=n wd w2=u® wi=-H 08D

Tf we put 72 = /6% — 1, the period equation s obtained in the form

_ 2w
{‘ 786

iy
e tan kH,9, tan )cHﬁz}

+ 48 tan kg, + :2;%.;. ka} -0 (788

where =W bt H) amd go= 2 (-89)
The phase and group velocities were determined by Satb for the conditions

H,=H "‘=1‘5“’=1“i p=m=p =40

His phase- and group-velocity curves are presented in Fig. 7-7.

Phase velocity /._|I'
Ex.
< _1-
Fe —= p velocity
S o8 =
M .
g EI==
2 06

2 5

Period, unitH/\/u'7p

Fio. 7-7. Phase- and group-velocity curves for Satd's case.
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Jeffreys’ Case (Fig. 7-8). Jeffreys [43] considered the system composed
of & homogencous layer of density pi, and thickness H, and the half-space
having a uniform density p, and the rigidity us = u'(1 + 2/g), o’ and
g being constants. If we put

t=142 f=S-1 4-1-5 G0
¢ "THE ” B
and v = (A cos bz + Bsin k9,0¢**™®  for —H <2 <0  (7-91)
0= Ve for0 <z (7-92)
Equation (7-68) for the second medium takes the form
& ily - ey~
Sornd s om
am—H
& on m
z=0

B M= (+E)P

2
Fia. 7-8. Notations for Love waves in a homogeneous layer over a heterogeneous half
epace. (Jeffreye’ case.)

Two cases have to be considered according as ¢ S 6, the boundary con-
ditions being of the type used before. The final form of the period equation
obtained by Jeffreys is as follows: (1) ¢ < g, [see also Eq. (B-22)];

sl a3

T rr ol e

tan kHY,

where y, = ' is evaluated at z = 0, that is, £ = 1. Since asymptotic
solutions of Eq. (7-93) are used, the approximation depends upon the
largeness of kgy. (2) ¢ > B, If we use the notations
c . ¢ \
cosh 0 = & smh9=‘?z=(7—1 (7-95)
Ba Bz
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the period equation is (for large values of kgvl)

tan kHf: 3 [A;, cot {kq(a cosh 6. — sinh 6) — —} - T‘] (7-96)

Since moderate values kgy} or kg3 are also important, Jeffreys derived a
third form of the period equation. Using the new variables ¢ and &
given by the equations

é a+¢) (7-97)

o= (EE) -98)

he found that Eq. (7-96) becomes

o (—gf) tan k9, = a-99)
where i) =2 [ eos (kz -1 @-100)

is the Airy integral.

Calculations based on Jeffreys’ theory have led to dispersion curves
which have been compared with experimental observations of Love
waves (sce Fig. 4-32).

In the problem investigated by Jeffreys the densities are assumed to be
constant. However, variations of densities must also be considered in
some applications.

Meissner’s Case (Fig. 7-9). Meissner [51] considered a half space in

p=p (1+82)
(e

2z

Fra. 7-0. Notations for Love waves in a heterogencous half space. (Meissner’s case.)
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which
p=p(+8) w=ul+e) (@-101)
and, therefore,
8= 86 = B\ @-102)
The limit value of the velocity at infinity has the finite value
8o = lim g = 1 (-103)

If we put

r=ntatae 7=,/1—;i. o=k (7-104)

Eq. (7-72) takes the form

Belheg-
- "=:r'°( O

ow, if we put & = 0, we obtain the case considered by Sat6, and Eq.
(7-105) is of the type (7-82). We can consider the solution of Eq. (7-105)
in terms of Whittakers functions,

Z = AW,po(n) + BWpa,o(—1) (7-107)

and find the exact form of the period equation (indicated by Jardetzky).
The boundary condition for this case is

Pe=®o0 =0 (7-108)
Since surface waves are involved, we have as z - ©
lim Zm =0 (7-109)
This last condition requires that we put B = 0. The solution which tends
t008sz— o is, then,
Z = AW, ialn) (-110)

where A is a constant.
Now v = V/+/4, and by Eq. (7-71), if we omit factors which do not
depend on z the condition (7-108) is

%(L‘/;) -0 (-111)
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o i g

@-112)

By Eqs. (7-104) and (7-110) we express the required condition (7-112) as
the period cquation in the form

20 4 Warsala) = Warnale) ate=0,q=2% (-3

To relate phase velocity to wavelength we first note that Egs. (7-113)
relate the variables p and n, = 2(1 — ¢*/82)! k/e. On the other hand,
we have from (7-106)

@-114)

(7-115)

We can now eliminate the two variables p and #, from Eqs. (7-113) by
using (7-114) and (7-115) to obtain an equation in which ¢ is expressed
in terms of L.

Since Whittaker’s function ,.. is given by the formula

Wy.n(n)

-
=m—v-D %)!L e )T e (7-116)

the exact form of the period equation in this case is

[ e Rl — 1 = (=

(7-117)

As an imation, one can use the ic expansion of the Whit-
taker function.

For the case of a half space in which

p=pl+o) w=w0+ %)° (7-118)

Meissner obtained a solution by means of the Laplace transformation.
Das Gupta [19] solved this problem for a homogencous layer underlain
by a half space of the type (7-118), using Whittaker functions.

Observations of Love-wave dispersion from earthquake seismograms
were discussed in Sec. 4-5, where it was shown that inclusion of the effect
of the velocity gradient in the mantle was necessary to reconcile crustal
structure determined by explosion seismology with that determined by
surface-wave studies.

7-4. Releigh Waves in Heterogencous Isotropic Media. Tho firt di-
cussion of Raylei ina medium seems
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to have been given by Honda [40]. Sezawa [65] investigated general ques-
tions of wave propagation in a semi-infinite solid body of varying elasticity.
He assumed incompressibility, taking 6 = 0, the component w equal
to zero, and u = ¢ (d + 2), where z is the depth. With externai forces
omitted, all members of Eqs. (74) were expressed in terms of cylindrical
components of rotation @, &, @. Three equations for these functions
could be satisfied by expressions of the form

= BaGH(kr) _j:}mx»e"'

LY “g;—(’"z _x}mxm‘" (7-119)
o o B o O
o= BTG e
where ®(z) is the integral of the differential equation
o gty (ﬂ - k’)@ -0 (7-120)
Wiz W

This equation, in cases of the simplest laws for rigidity distribution,
reduces to well-known types. Thus, for 4 = ¢z the solution could be ex-
pre: in terms of the confluent hypergeometric function.

Stoneley [72] took the equations for two-dimensional motion which
represent a particular case of Eas. (7-

dFu_d aul 9 [ (ou  ow
F‘e:a{“““a}m;{“(;’fa)}

o [ fou  aw\ , 8 )
E{“(E + az)} ] {“ + 2 6:}
and also assumed that the medium is incompressible. Suppose that u
and w are functions of z multiplied by the factor exp [ik(ct — 2)] and put
L _ oy o

a2 % o
“u e "“ata

(7-121)

u (7-122)
Now, following Love (Chap. 3, Ref. 26), assume that —II = lim X0 as
A — « and 8 — 0. Considering the case s = uo + s 2, we now have the
equations of motion in the form

n+#V’u+u:(%+ "a%)+ P = 0
(7-123)
oI L 23
—E;+uvim+2ma7':+ oK = 0
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and T = 2uw + ok’ (7-124)
I we put
F = uV% + o'y = 0 (7-125)
Eqs. (7-123) take the form
oF oF
w=-0 =0 (7-126)

and if we write
iern

¢ = ot ¥ = ™
we obtain (on omitting the subscript 0)

Lo o _ - =
T -Fe=0 dzz+k‘(h+” 1)\070 (-128)

Since the free surface is z = 0 and the z axis is directed into the interior
of the body, we have for the velocity at the surface f, = (uo/s)". The
substitutions ¢ = 2(kz + b) and a = bc’/28i, where b = kuo/m,, then
reduce the second of Eqs. (HZS) to the form

dEn Y+ ( - —)\l« =0 (7-129)

which is satisfied by Whittaker’s function W, 4(¢). For a surface wave,
only the negative exponent in the solution of Eqs. (7-128) will be used,
and the two functions ¢ and ¥ are taken in the form

= A cosklct —2) ¢ = BW, \(2ke + 2b) sin (et — 2)  (7-130)
Then the boundary conditions yield the period equation

2,5 ¢)ot_ s
(2 T8 >(b +2 ”> b7 W@ @131
Unfortunately, asymptotic expansions for these Whittaker functions can-
not be applicd to this case, and Stoneley investigated by other methods
the two limiting cases valid for short or long waves. He also considered the
problem of a uniform sutface layer overlying a heterogencous half space.
Rayleigh waves in a semi-infinite incompressible medium where a
laer in which rigidity varies linearly with depth is underlain by a uniform
elastic substratum were investigated by Newlands [35], who also extended
the investigation to compressible media.
For a heterogencous layer Newlands solved the second of Eqs. (7-128)
directly instead of using Whittaker's function. Thus, if we put 3 = 1 +
w2/ o, this equation takes the form

O (- 2 =0 a-132)

(7-127)
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Expanding the integral in a series of powers of (k /)", namely,
v = uo + (20 + o+ () @+ s
we obtain from Eq. (7-132)
- - L2 PO PR
w=o w=(1-Zh = (1= B @

By (7-134) one can take

Vol®) = A + Az (7-135)
Then, from the linear differential equation (7-132),
V=AY + Ay® (7-136)

where
., (A > _ L SR
v =1+(m)w:‘+-~~ v t+(‘“)vh + (7-137)

By the second equation in (7-134) we get

T
o = [ [ (12
and if we use the absolute value of this expression as well as the other ¥,
it may be proved that the series converges and that ¢ (3) and ¢ (3)
can be written in terms of certain polynomials in 3 with logarithmic
factors
Now, if two layers are considered, we can assume that for the upper
layer the solutions of Eqs. (7-128) hold:

= (P cosh kz + Q sinh k2) cos k(ct — z)

)\l«u(n) do (7-138)

(7-139)
W= [A9P0) + 4:4@)] sin ket — )
and for the homogeneous substratum
e = Re™ cos klet ~ 2) 10
Y2 = 8e™*7* sin k(ct — )
i b
where v=l-g &H=% (7 141)

and p, and g are the density and the rigidity of the substratum.

The continuity of displacements and stresses at the interface z = 0
(the axis is taken positive downward) and vanishing of stresses at the
free surface z = —I yield six conditions for the constants A,, 4y, P, @,
R, and S. Since this system is » homogeneous one, its determinant must
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vanish. We thus have the period cquation for the medium determined
above. If the medium is compressible, A also becomes a function of coor-
dinates, and, therefore, we have to.make use of Eqs. (7-121). These
equations take a simpler form for u = gy + wmz and for & time factor
exp (it), namely,

2o+ mve + e~ 2 2]

a k)
+2 [uv"« + oKV + 2u; ‘]

az ' oz, (-142)
k) . 2 _ g O
% [0 + 20V’ + okt — 2m az]

-2 [uv'w + kY + 2 %] -0
‘When the additional constants are neglected, Eqs. (7-142) are satisfied if
fim O+ 2V + R - 2 2 0
(7-143)
fa= WV oY+ 2,2 = 0
‘where the factor u, is 9u/dz and the last terms are due to heterogeneity

of the medium. Following Newlands' method, one expands the functions
¢ and ¥ into series

ko (A
o= olt) = Fot 2op, 4 (), 4o

V=) = Gt

where the variable 3 is 1 - u2/uy, and, as before, makes use of Eqs.
(7-143) for successive computation of functions F,, G,. The results of
this transformation were applied to the problem of Rayleigh waves in a
crust where both u and A vary linearly with depth. Comparison of the
computed group-velocity dispersion curve for Rayleigh-wave observations
of Rohrbach [59] did not show any agreement, and Newlands suggested
that an adjustment of the assumed constants was needed.

Manile Rayleigh Waves. Trains of long-period Rayleigh waves which
have circled the earth several times are often observed on seismograms
of the greatest earthquakes. With the aid of modern long-period seismo~
graphs, the dispersion of these waves has been studied in sufficient detail
to extend the Rayleigh-wave dispersion curve to the range 70 to 480 sec.

Remarkable seismograms (Fig. 7-10) showing the long waves were
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Fia. 7-10. Mantle Rayleigh waves from the Kamchatka earthquake of Nov. 4, 1052. Orders Rq to Rus are indicated.
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obtained from the Kamchatka earthquake of Nov. 4, 1952, on the Benioff
linear-strain_seismograph at Pasadena and on the long-period vertical-
pendulum scismograph at Palisades (Ewing and Press, Chap. 5, Ref. 12).
Rayleigh-wave trains of orders Ry to R,; are indicated on the seismogram,
corresponding to epicentral distance (in degrees) A, = (n — 1)180 + A
for n odd, and A, = n-180 — A for n even, where n is the order and A
the least distance between station and epicenter.

Comparison of the strain and pendulum seismograms from Pasadena.
demonstrated that the orbital motion was retrograde elliptical, proper
for Rayleigh waves. Period and arrival time were read from the record
in the usual manner (Ewing and Press [27]), and from these data the
group velocity was calculated, using the epicentral distance appropriate
for the number of circuits of the carth. Observed group velocity for the
long Rayleigh waves is plotted as a function of period in Fig. 7-11 for
the various orders. Striking features are the minimum value of group
velocity of 3.54 km/see at a period of 225 sec, a short-period limit of
3.8 km/sec at 70 scc, and the flattening of the curve for periods greater
than 400 sec.

Tn view of the great length of these waves, there can be no doubt that
the dispersion s the result of the known increase of shear velocity with
depth in the mantle, hence the use of the name “mantle Rayleigh wave
As 8 rough approximation, the mantle velocity gradient may be replaced
by two homogeneous layers and the theory of See. 4-5 used to compute
the theoretical curve shown in Fig. 7-11. A theoretical curve (Haskell,
Chap. 4, Ref. 62) was used with the constants 8, = 6.15 km/sec, 8, = 4.48
km/sec, and H =.516 km, the constants being chosen to fit the observed
minimum group velocity. Better agreement with observation could be
obtained by computing theoretical curves for a two-layer heterogeneous
medium, using the methods of the preceding section, but these caleulations
are very lengthy.

Several important results emerge from the study of mantle Rayleigh
waves:

1. For periods greater than 75 sec, oceanic and continental paths
cannot be distinguished. The short-period limit T' 2 75 sec corresponds to
the least wavelength for which the continent-ocean margin is a neglgible
barier.

2. The dispersion of crustal Rayleigh waves for T' < 50 scc is normal
(velocity increasing with period) and that of mantle Rayleigh waves for
75 scc < T < 225 sec is reverse. Since the two dispersion curves must
merge, a maximum value of group velocity must exist between periods
50 and 75 sec. A complete Rayleigh-wave dispersion curve including that
for oceanic and continental crustal Rayleigh waves and also that for the
mantle is shown in Fig. 7-12.
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3. The flattening of the dispersion curve for T > 400 sec is interpreted
as an effect of the vanishing rigidity of the earth’s core.

4. The great length of mantle Rayleigh waves frees them from the effects
of crustal irregularities, and amplitude measurements can be made with
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Fro. 7-11. Gmpveloclty curve for mantle Rayleigh waves obtained from Pasadens
and Palisades

sufficient, precision for studying decrement. For an amplitude decrement
given by exp (—84,), where 6 = x/QcT, it was found that 1/Q = 665 X

"~ at T = 215 sec, after allowance for geometric spreading by an ampli-
tude fud,or (sin A,)™ and dispersion by a factor A™%. The amplitude 4
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is given by
I’ﬁ"ﬂ
A= fpin AT & @-145)
for the Airy phase, and
A"
A= RsnaF A (7-146)

for other periods in the wave train, R, being the earth’s radius, 4, and
A, constants.

7-5. Aeolotropic and Other Media. In the investigations discussed
in the preceding sections, isotropic elastic media were assumed. Since
‘most igneous rocks are crystalline and the crystals commonly have random
orientation, the assumption that the media are isotropic is a reasonable
one. Some attempts have been made to explain some discrepancies between
observation and theory by assuming acolotropy in rocks (White and
Sengbush (78]). Tt is well known (sce, for example, Love, Chap. 1, Ref. 34)
that there are, in general, three principal velocities of wave propagation
in an acolotropic medium. For ic waves, for example, the
so-called Fresnel law determines the velocity in any given direction in
terms of these three velocities. For elastic waves in aeolotropic media,
one has to make further assumptions about the nature of the medium.
I, as usual, the stress components p,., - , P, are considered as linear
functions of strain components e, -+ , €,,, We can write

P = Loty Hi=1x0,002 (7-147)
The 36 coefficients ¢, reduce to & smaller number for different types of
crystals.

According to Satd [62], the first attempt to investigate wave propaga-
tion in such media seems to have been made by Homma, who published
his results in Japanese in 1942. Satd, making use of these results, discussed
a two-dimensional problem of wave propagation in a medium which is
horizontally isotropic and vertically acolotropic, its boundary being a
plane surface. He assumed that

P = Miles +€,) = 2Na,, + (M — 2N)e., - pue = Noe,
P = Milews + ) — 2Nses + (My — 2N))e,, i = Niew  (7-148)
Do = (M = 2N.)(eas + €0) + Matas N, =N,

and, on taking the usual form of solutions, u and w expressed in terms of
exponential functions, he obtained the period equation. Then he could
show the existence of waves of the Rayleigh type. Matuzawa [50] made
use of results of Sakadi [61] concerning wave propagation in crystalline
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media. The stresses were taken in the form corresponding to hexagonal
erystals, and solutions of equations of motion were given for two kinds of
waves. The first, determined by the conditions

w=flmy+nz—w) v=0 w=0 (7-149)
displays the character of a distortional wave. The second kind, for which
‘we assume that

u=0 v=fimy+n—o) w=flmy+nz—o) (7-150
where f, and f, are arbitrary functions, is similar to a dilatational wave
for the first oot of the velocity equation and is more like a distortional
wave for the second root.

There is no sharp distinction between the dilatational and distortional
waves if a disturbance is propagated in an acolotropic medium, as was
pointed out by Stoneley [73]. An explosion in such a medium will produce
both P and S waves. Rayleigh and Love waves can be propagated over
tho surface of a “transversely isotropic” body, as was shown by Stoneley.
This body or medium is determined by the condition (Love, Chap. 1, Ref.
34, p. 160) that the strain-energy function has the form

2W = Ak + &) + Ci, + 2F(e.. + enlen,
+ 24 — 2N)e.e,, + LA, +€) + N, (7-151)

If we assume that the coefficients 4, C, -+~ , N are constant and if body
forces are omitted, the equations of motion (1-7) take the form (p.. =
AW /e, -+ )

Pu du

poi= A L +F+ L) —
ar o 7 az 6: -152)
5

L N Y

013:

Investigations of media with other physical properties have been pub-
lished recently. We shall mention here only some of the definitions of such
media and the results concerning the propagation of disturbances in them.
A theory of wave propagation in the so-called orthotropic media was
given by Carrier [18].

Since there are layers of porous material through which seismic waves
are in many cases propagated, attempts were made to account for the
existence of empty holes or holes filled with liquid in a solid medium. The
first case was considered by Frohlich and Sack [32], and Mackenzie [47]
expressed the elastic constants in terms of the relative density 3 = p/ps,
on assuming that the holes are spherical, p, being the density of the material
without holes, and p that of an actual material, i.e., when the holes are
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empty. On making use of these results, Satd [64] computed the velocities
of P and § waves in terms of the porosity (1 — &) for empty holes as well
as for holes filled with liquid. These velocities have smaller values than
those for the corresponding medis.

Wave propagation in granular media is now the subject of numerous
experimental as well as theoretical studies.
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APPENDIX A

METHOD OF STEEPEST DESCENT

This method, due to Debye, may be used to advantage in the evaluation
of the formal integral solutions obtained in Chaps. 2, 3, and 4, particularly
for determining critical distances where certain types of waves first appear.
For discussions of the method see Eckart [2], Jeffreys and Joffreys (4],
and Sommerfeld (Chap. 1, Ref. 56, p. 99). Of interest is a paper by Honda
and Nakamura (Chap. 4, Ref. 68) in which solutions obtained by the
method of stecpest descent and by use of the Sommerfeld contour are
compared. According to the latter, the name “method of saddle points”
or “pass method” is more appropriate.

The method of steepest descent is applied to the evaluation of integrals
of the general form

1@ = [ Foero 4 @a-n

where  is large, positive, and real, and 7(¢) is an analytic function. F(¢)
varies slowly compared with the exponential factor, and the integration
follows a path in the complex { plane. We separate f(f) into real and
imaginary parts .

&) =p+ic A2
and note that, because of the nonperiodic factor exp (zp), the largest
values of the integrand occur where p is large. The basic idea of the method
of steepest descent is to deform the path of integration, if possible, in
such a way as to concentrate the large values of p in the shortest possible
interval, in order that the remainder of the path may be neglected in an
approximate evaluation. If we put ¢ = k + 4, both p and o are functions
of the variables & and 7. We can visualize the connection between these
variables by representing p as an elevation over the ¢ plane. Since f(¢) is
analytic,

B _3 d_ _d0

% or 0T ok ®®)
An extremum or a saddle point ocours at points where
% _ o _

#* "o~ T =m0 a4
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that is, where the derivatives in the tangential (s) and normal (n) direc-
tions to the curve p(k, r) = const vanish. However, only saddle points
are defined by Eqs. (A-4), since *p = 0. Saddle points are also stationary
points of o and zeros of f'(¢). There are at least two curves p(k, 7) = const,
and in this case the four sectors between the curves are alternately hills
= p(k, 7). In order to concentrate large values
of p in short intervals and keep p as small as possible elsewhere, the path
of integration must avoid the hills and keep to the valleys. If the contour
crosses from one valley to another, it must do so through a saddle point,
along a path of steepest descent where |dp/ds| is as great as possible.
At any point of the curve p(k, ) = const, the maximum variation of p
oceurs along the normal. Since by Eqs. (A-3) we have
% _dc dp_ _do -
% "m m” s *-5

o(k, 7) = const represents a family of curves, orthogonal to p(k, r) = const,
along which the largest changes in p occur. Thus a curve of the family
a(k, 7) = const represents a line of steepest descent, one such line oceurring
in each valley and terminating either at infinity or at 2 singular point.

Suppose now that it is possible to modify the path of integration in
(A-1), without altering the value of the integral, in such a way as to pass
from one valley to another through a saddle point ¢, and coincide with
a(k, 7) = const, at least in the vicinity of t,. It is obvious that the neighbor-
hood of ¢, yields the largest contribution to the integral. Near o, f(;)
can be expanded in the form

5@ = 1) + 3 = G + o @6
where the second term is negative and real along the path. Put
W= =30 = 1)) @7
and change the variable of i ion in (A-1) to x to obtain i
e | e 8 a “8

To find the factor d¢/dk we can write § — ¢, = r exp (ix), where r is
small and real and x is the angle which { — £, forms with the k axis. For
¢ on the path in the neighhcrhood of o we have, by Eq. (A-7), «
—7f"(¢) exp (2ix). Since «* is real and positive, the coeflicient of —r"
must be real and negative. Since arg [f”(t) exp (2ix)] must be < and
dr/dg = exp (—ix), we obtain

k= r |G = £ = e (G -9
and j? = e ) (a-10
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To select the proper value of x, in the range (—m, ) two values of x
differing by  are possible. The condition f'(£,) = 0 is used to determine
fo = ko + iro; then tan x is the slope of the path a(k, 7) = o(ke, o). If
that value of x is selected which makes r positive after passing through ¢,
then the plus sign in Eq. (A-10) is taken. The first term in the asymptotic
expansion of (A-8) can now be obtained (sec, for example, Jeffreys and
Jeffreys [4, p. 473)) by writing Eq. (A-8) in the form

e :
1= 7 [ e a (a-11)

The larger the value of , the more closely the higher values of the inte-
grand concentrate about the saddle point. For large values of , the limits
of x may bo extended to the range = =, and use can be made of Watson’s
lemma

i I
where g, is the first term of the series expansion of ¢(x). Thus

V2 (e
TR @13

() de ~ w/zTr( o+ ) (A-12)

I

If it is necessary to pass through two or more saddle points in the path
of integration of (A-8), then each saddle point gives & contribution to
the integral.

In Kelvin's method of stationary phase, integrals of the type (A-1)
are evaluated by using paths through saddle points such that p, rather
that o, is constant. For this path the modulus of exp [#f(:)] is constant
while the phase varies. Since f(¢) = 0 for both cases, we can write as before

[ P ap = pggeres [reenrar g

where the path is chosen such that the exponent in the integrand is purely
imaginary and the limits are extended to & . The integral on the right-
hand side then reduces to a form which can be evaluated, giving

V2r P’
Vi @)/i

Although a mathematical proof of the method of stationary phase is
available (Watson [7]), it is usually justified in terms of interferences of
wave motion. In the vicinity of stationary values of (), phases are nearly
the same, and the contributions are additive. At places where f'(¢) does
not vanish and is imaginary, the factor exp [zf'(f)(¢ — £,)] in the inte-

4 according as 7 2 0 (A-15)
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grand oscillates rapidly for large values of z, and the resultant contribution
to the integral is small.

The two methods are nearly equivalent since the paths pass through
the saddle points at an angle =/4 to each other and can be deformed each
into the other, provided that contributions from any singularities crossed
are taken into account. For a further discussion of the connection between
the methods see Eckart [2].

If a pole of F(¢) occurs indefinitely near a saddle point or lies on a path
of steepest descent, special methods discussed by Ott [6] are necessary.
Emde [3] discussed the case where 1”/(to) = 0, f/(t,)> 0, that is, where
three valleys meet at the saddle point.

Application of the method of steepest descent to the approximate
cvaluation of integrals met in problems on wave propagation was dis-
cussed by Nakano (Chap. 2, Ref. 28), by Newlands (Chap. 2, Ref. 32),
and Honda and Nakamura (Chap. 4, Ref. 68). Writing such an integral
in a form slightly different from (A-1), namely,

1w = [ 6w ar (a-16)
we have, for example,
1@) = iwt — itz — vim — vin (A-17)
where  wms—ic m=@ -k H=G -k} (19
and m and n are linear functions of z, h, and possibly of the depth H of a
Iayer. The saddle point is at ,, where

Q) = e = e @-19)

that is, (A-20)
It can be proved, if we put { = uk,,, that Eq. (A-20) has a single real
root for the typical case ai/8} = 3. The saddle point , is therefore on the
line of branch points. Now o(k, 7) = const represents a line of steepest
descent, and by Egs. (A-2) and (A-17), taking into account the change
in notations, we have

ok, 7) = const = Imfifz + im(ki — ) + in(ky, — )} (A-21)

The time factor being omitted again, this constant o is determined by
Eq. (A-20), and { = §o = (s — ic)/ay. For o}/ = 3 we obtain

=]

const = °* fuez + m(1 — W 4B — ) (A-22)
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Substituting ¢ = k + ir in Eq. (A-21) and neglecting k%./¢* and k3,/t*,
respectively, we obtain
kz + (m+n)r =0 (A-23)
Thus the portions of the curve (A~21) which correspond to large [¢| are
straight lines in the fourth and third quadrants, respectively.
By Eq. (A-6), if ¢ varics on the curve ¢ = const in the neighborhood
of {o, where p has its largest value, we obtain

0> 5= =216 = BTG + &~ TG+ A2

From this condition it may be derived [see Newlands (Chap. 2, Ref. 32),
for example] that close to the saddle point the curve o(k, 7) = const
coincides with a parabola. This approximation suggests that the curve of
steepest descent is of roughly parabolic shape.

If the original contour, usually the real axis, can be distorted to the
path of steepest descent by ares which contribute nothing, then the major
contribution oceurs in the vicinity of the saddle point and is given by
(A-13). Tt may be necessary to distort the line of steepest descent to avoid
erossing a branch line or a pole by inserting loops. As was the case with the
Sommerfeld contour in Sec. 2-5, these loops correspond to definite wave
types.

It is not necessary to know the detailed form of the line of steepest
descent to determine which loops occur; only the number and location of
intersections with the line of branch points are needed. For given values
of m, n, @, and 8, the numbers and location of intersections depend on z,
and the critical distances may be derived where loops (and the correspond-
ing pulses) first appear.
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APPENDIX B

RAYLEIGH’S PRINCIPLE

Rayleigh’s principle has been used for approximate computation of
frequencies of vibrating systems with much success. Its fundamental idea
is derived from the theory of small oscillations of & conservative system
[Rayleigh (Chap. 1, Ref. 45)].

If the Lagrangian coordinates ¢, of a system with a finite number of
degrees of freedom are chosen in such a way that the values ¢, = 0 deter-
mine a configuration of stable equilibrium, the kinetic and potential
energies of small oscillations about it can be expressed in the form

T = 3angl® + dawng’ + -+ + aunglgh + -+ ®-1
W = 3bugi + g + o+ + bugiga +

where a,;, by, are constants. Since a homogeneous quadratic function
can be reduced by a linear transformation to the sum of squares, new
variables ¢, may be introduced to yield the equations

T = 30 + dands + -+
W= 3bidi + 30 + -

where a, and b, are positive constants.t The variables g, are the normal
coordinates, and the equations of motion

(B-2)

d(oT\ _ar_ _aw -
a(Z) -2 - ®9
take the form
i+ bl = 0 ®
The solutions of Eq. (B-4)
§i = A cos (@it — &) (B-5)

show that the periods of these “natural vibrations” or “normal modes of
vibration” are given by

(B-6)

+A negative value of a, b; corresponds to instability with respect to the coordinate ¢;.
370
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where r, s the period. Thus the amplitudes of the normal modes, as
well as their frequencies, are independent of one another. Assume that
by a suitable constraint the system has only one degree of freedom. Then,
if we put

4 =B (B-7)
the expressions for T and W become
T = a8} + a:B: + - -1¢” B9

W = 3[b.B] + b.B; + ---1¢
Let ¢ vary as cos of or sin wl. If we now take into account that the mean
values of the kinetic and potential energies in a simple harmonic motion
are equal and that they are

lswoa wo=wol [(osora @9
where Tl and I, are the factors in brackets in Eqs. (B-8), the last factors
being equal to § each, we obtain

BB+ 0B A o
aB + @B+

On assuming that b/, = k, is the smallest or the greatest ratio and
using the i b S aik, , for i 5 1, one can
see that the limits wp, and wh,, exist. Hu\vever, there will be no upper
boundary for frequencies in continuous systems (c.g., plates or strings).

By Eq. (B-10) the frequency of a constrained vibration depends on
amplitudes of all normal modes, and it cannot be less than the fundamental
frequency (or larger than the greatest, in case of a finite number of degrees
of freedom). To find an approximate value, say of the least frequency,
one has to compute, therefore, the frequency for vibrations of the system
constrained to have certain amplitudes B,, and this is done by equating
the mean values of the kinetic and potential energies. The more accurately
are given B “by observation or intuition,” the closer will @ be to the true
minimum. Temple [5] has justified the application of this method to con-
tinuous systems. For these systems the theory requires the use of integral
equations.

The application of the Rayleigh principle to surface-wave propagation
was made by Jeffreys [2], and his example will now be discussed. It con-
cemns the approximate determination of the dispersion of Love waves in
a system composed of a homogeneous layer (—H < z < 0) overlying a
heterogencous medium (0 < z < @) (see Sec. 7-3). It is assumed that
the transverse wave is given by

v=Vecoskrsinwt w=ke (B-11)

(B-10)
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where the amplitude ¥ is a function of z to be found. If we write the mean
value of kinetic energy with regard to z and ¢,

R TIEY Y AL

it is easy to see that it becomes

[ @13
-

since, for example, 7, = x/k and
rl['cus’udx=}rf'cus’ede=é (B-14)

The strain energy per unit volume [Love (Chap. 1, Ref. 34, p. 102)] is
reduced to a simple form for Love waves, since only two components of
strain determined by Eq. (B-11) differ from zero. They are (see Sce. 1-1)

&

o
o

=G e
and, therefore,

2W = u(e, + €

= u[(%) cos” ke sin® ot + k*V? sin’ ke sin® wc] (B-15)

Hence the mean value with regard to z and £ is given by

8W, = f: u[(%)’ + kzvf:l & (B-16)

As o trial form for V, Jeffreys takes that corresponding to two uniform
media (see Sec. 4-5)

V = Asec (k) cos (b +29]  for —H Sz2<0  (B-1T)

V= detr for 0<z<w (B-18)

where q’-g:—l v-1-%

These trial forms satisfy the boundary conditions but (B-18) does not
satisfy the equation of motion for the bottom layer. Assume that the
rigidity in the lower layer varies as u'(1 + 2/5)%, ' and s being constants.
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Then the integrals (B-12) and (B-16) take the form

in (2kH- !
o7 = Surapsee g 1 + @)y ol ®-19)

W = 2 udh sec? (km){u + ) + L sin (zw«z)}
Loamea ,2{1, [N S
W AR+ N+t s B20)

Asin the case of Eq. (B-10), we obtain an equation for w or ¢ by equating
the mean values of the kinetic and potential energies. If we use the veloc-
ities of shear waves given by 8 = u/p and §” = /¢, this equation be-
comes

Wl + 97 sec um)[ﬁ 4 (2"”‘)] + k“T',(l —

= wsee? G0 + 798 + L5 sin vt}

1+7 i NI, T ¥
Ty (1+KW+“2W2) (B-21)

In this equation the variables 7 and v’ involve c. After a simplification
of Eq. (B-21) we obtain the approximate form of the period equation as
follows:

tan (k) = {1 +5E (0 ﬁ)} ®2

The exact period equation in this problem was also obtained by Jeffreys
[1]. An asymptotic expansion of the exact equation agrees with Ea. (B-22)
as far as the terms in 1/s.

Jefireys also applied this method to the problem of Rayleigh waves
in layered media. In this case an equation for ¢ is obtained as a function
of the wave number k, and it may be proved that the value of ¢ is unaltered
to the first order of small i in the ions for di
if the latter satisfy the equations of motion and the condition of continuity
of stress at the interfaces.

A further development of Rayleigh's method was given by Ritz [4]
The Ritz method yields a better approximation for the first mode as well
as for the frequencies of higher modes of vibrations. A simple presentation
of this method is given by Timoshenko (Chap. 6, Ref. 85).

As is well known, an upper bound for a normal mode of an oscillating
system can be determined by the Ritz-Rayleigh method. It is important,
however, to have a method to estimate the error and also a lower bound.
Such a method was developed by Temple [7] and Katb [3].
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