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Preface

Mesoscopic physics is a rather young branch of science. It started about 15
years ago and has already had several exciting and instructive achievements. It
enjoys the unique combination of being able to deal with and provide answers
on fundamental questions of physics while being relevant for applications in
the not-too-distant future. In fact, some of the experimental possibilities in
this field have been developed with an eye to reducing the sizes of electronic
components. It can be hoped that cross-fertilization between physics and
technology will continue and go both ways. We now already understand
much more about the realm intermediate between the microscopic and macro-
scopic. Basic questions about how the quantum rules operate and go over
into the classical macroscopic regime have been and are being answered. It is
hoped that the whole regime between man-made structures and naturally
occurring molecules, with their modifications, will be approached and under-
stood soon. Impressive nanoscale techniques for that future stage are being
developed.

This book is written in an attempt to make these interesting issues clear to
physicists, chemists, and electronic and optical engineers and technologists.
The reader should have a solid background in physics, but not necessarily be
conversant with advanced formal theoretical methods. The understanding of
the underlying physical ideas and the ability to make quite accurate estimates
should be of help to both experimental researchers and technologists. At the
same time, the study of this material should be helpful to graduate physics and
chemistry students for integrating and solidifying their studies of quantum
mechanics, statistical mechanics, electromagnetism, and condensed-matter
physics.

The author is indebted to many colleagues for collaborations related to
these subjects over the years, from which much was learned and the results
obtained from which constitute much of the material covered. These colleagues
include: Y. Aharonov, A. Aharony, B, L. Altshuler, N. Argaman, the late
A. G. Aronov, M. Ya Azbel, D. J. Bergman, M. Biittiker, G. Deutscher,
O. Entin-Wohlman, B. Gavish, Y. Gefen, L. Gunther, C. Hartzstein,
1. Kander, R. Landauer, N. Lang, I. Lerner, Y. Levinson, S. Mohlecke,
G. Montambaux, M. Murat, Z. Ovadyahu, J. L. Pichard, S. Pinhas,
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E. Pytte, A. Shalgi, D. J. Scalapino, A. Schwimmer, N. S. Shiren, N. Shmueli,
U. Sivan, U. Smilansky, A. Stern, A. D. Stone, M. Strongin, D. J. Thouless,
A. Yacoby, and N. Zanon.

Many other colleagues contributed by instructive discussions for which the

author is extremely grateful. They include: E. Abrahams, E. Akkermans,
Alexander, E. L. Altshuler, A. Altland, V. Ambegaokar, T. Ando,
. Avishai, Y. Bar-Joseph, A. Baratoff, C. Beenakker, E. Ben-Jacob,
. Benoit, M. Berry, the late F. Bloch, H. Bouchiat, E. Brezin, M. Brodsky,
. Bruder, J. Chalker, P. Chaudhari, C.-s. Chi, M. Cyrot, D. Divincenzo,
Eckern, K. B. Efetov, A. L. Efros, W. A. B. Evans, A. Finkel’stein,
. Fowler, E. Fradkin, H. Fukuyama, N. Garcia, L. Glazman, G. Grinstein,
Gubser, B. I. Halperin, M. Heiblum, S. Hikami, A. Houghton,
. Kameneev, M. A. Kastner, D. E. Khmel'nitskii, S. Kirkpatrick, S. Kivelson,
Kobayashi, W. Kohn, B. Kramer, A. Krichevsky, the late R. Kubo,
Langer, A. 1. Larkin, D.-H. Lee, P. A. Lee, A. J. Leggett, S. Levit,
P. Levy, H. J. Lipkin, D. Loss, the late S.-k Ma, A. MacDonald,
MacKinnon, D. Mailly, R. S. Markiewicz, Y. Meir, P. A. Mello,
Meirav, M. Milgrom, J. E. Mooij, B. Miihlschlegel, D. Mukamel,
Newns, Y. Ono, D. Orgad, the late 1. Pelah, J. P. Pendry, M. Pepper,
Prober, N. Read, H. Rohrer, T. M. Rice, M. Sarachik, M. Schechter,
Schmid, G. Schoén, T. D. Schultz, Z. Schuss, M. Schwartz, S. Shapiro,
I. Shklovskii, N. Sivan, C. M. Soukoulis, B. Z. Spivak, F. Stern,
C.-c. Tsuei, D. C. Tsui, B. van Wees, D. Vollhardt, K. von Klitzing,
S. von Molnar, R. Voss, S. Washburn, R. Webb, F. Wegner, H. Weidenmiiller,
R. Wheeler, P. Wiegman, J. Wilkins, N. Wingreen, S. Wolf, and P. Wélfle.

Special thanks are due to the author’s most recent four Ph.D. students (in
chronological order): Yuval Gefen, Uri Sivan, Ady Stern, and Nathan
Argaman, and to Amir Yacoby. All of them quickly became colleagues and
friends and contributed immensely to the work and to the physical understand-
ing of the subject. The collaborations with the late A. G. Aronov, S.-k. Ma,
and 1. Pelah are especially remembered. The person whose ideas and insights
have contributed the most to the author’s understanding of the related physics
is Rolf Landauer, who deserves special thanks and whose contribution is dee-
ply appreciated. The responsibility for errors, omissions, and misunderstand-
ings rests solely on the author. R. Landauer, C. Bruder, M. Heiblum, D.
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comments on the manuscript.
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Introduction and a Brief
Review of Experimental Systems

1. GENERALITIES

Much of solid state theory and statistical physics is concerned with the
properties of macroscopic systems. These are often considered while using
the “thermodynamic limit” (system’s volume, €, and particle number, N,
tending to infinity with n = N/} kept constant), which is a convenient mathe-
matical device for obtaining bulk properties. Usually, the system approaches
the macroscopic limit once its size is much larger than some correlation length
£ (or, more generally, than all such relevant lengths). In most cases, £ is on the
order of a microscopic length (e.g., ~n~'/3), but in some special cases, such as
in the vicinity of a second-order transition, £ can become very large and one
may observe behavior which is different from the macroscopic limit for a large
range of sample sizes (Imry and Bergman 1971). Another case where the effec-
tive length scale dividing microscopic from macroscopic behavior is very large
is that of small conducting (or semiconducting) systems at low temperatures.
Here, two important new elements occur: First, the spectrum of electronic
states is discrete (although the interaction with the outside world may broaden
the levels enough to make that less relevant, see below). Second, the motion is
coherent in the sense that once an electron can propagate across the whole
system without inelastic scattering, its wavefunction will maintain a definite
phase. The electron will thus be able to exhibit a variety of novel and interest-
ing interference phenomena. In what follows, we shall concentrate on the study
of the latter type of systems.
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The interest in studying systems in the intermediate size range between
microscopic and macroscopic (sometimes referred to as “mesoscopic”—a
word coined by Van Kampen 1981) is not only in order to understand the
macroscopic limit and how it is achieved by, say, building up larger and larger
clusters to go from the “molecule” to the “bulk.” Many novel phenomena
exist that are intrinsic to mesoscopic systems. A mesoscopic system is really like
a large molecule, but it is always, at least weakly, coupled to a much larger,
essentially infinite, system—via phonons, many-body excitations, and so on.
Sometimes such a coupling can be controlled. Ideally, one would like to inter-
polate between open and closed systems, as far as energy, particle number,
and so on are concerned, by varying some coupling strengths. The special
phenomena that exist in this range are of great interest by themselves. We
shall see how fundamental principles of quantum mechanics (related to the
concept of the phase of the wavefunction) and statistical physics (brought
about by the small specimen size and by the slowness of inelastic scattering
and thermalization) appear and are amenable to theoretical clarification and
experimental examination in these systems.

An important concept is that of the “impurity ensemble”—the collection
of systems having the same macroscopic parameters (e.g., average concen-
trations of various defects) but differing in the detailed arrangement of the
resulting disorder. In the macroscopic limit an average over this ensemble is
usually performed, which restores various symmetries on average. However, a
principal interesting aspect of mesoscopics is the distinction (Landauer 1970,
Azbel 1973, Imry 1977, Anderson et al. 1980, Azbel and Soven 1983, Gefen
1984 personal communication) between ensemble-averaged properties, and
those specific to a particular given small system taken from the ensemble.
The specific “fingerprint”” of such a small system is of interest and may some-
times be used to obtain some statistical information on the particular arrange-
ment of the constituents in the system (Azbel 1973). Alternatively, changes
with time (usually on long scales) of the disorder configuration may lead to
low-frequency noise (Feng et al. 1986).

Many of the usual rules that one is used to in macroscopic physics may not
hold in *“‘mesoscopic” systems. For example, the rules for addition of resist-
ances, both in series (Landauer 1970, Anderson et al. 1980) and in parallel
(Gefen et al. 1984a,b) are different and more complicated. The electronic
motion is wavelike and it is not dissimilar to that of electromagnetic radiation
in waveguide structures, except for very interesting complications due to dis-
order. These effects may set fundamental limits on how small various electronic
devices can eventually be made. On the other hand, ideas for new devices such
as those operating in analogy with various optical and waveguide ones, as well
as with SQUIDS (superconducting quantum interference devices) and other
Josephson-effect systems (see, e.g., Hahlbohm and Liibbig 1985) may emerge
for small normal conductors.

The technology (see, e.g., Howard and Prober 1982, Prober 1983,
Laibowitz 1983, Broers 1989) for the fabrication of supersmall structures is
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progressing very quickly and has reached the stage where many theoretical
predictions can now be confronted by experiments. One uses controlled
growth, such as in the MBE method (see, e.g., Herman and Sitter 1989), and
advanced optical, x-ray, or electron-beam lithographic techniques. In semi-
conducting systems based on quantum-well concepts, an excellent restriction
in one direction exists (Ando et al. 1982), so that creating small structures
parallel to the 2D (two-dimensional) layer may achieve systems with a rather
small number of active electrons or quantum states. (See the next section for a
brief summary and references on available systems and fabrication methods.)
On the other hand, we have the recent STM breakthrough (Binning et al.
1982), which provides a novel tool for atomic-scale fabrication, analysis, and
measurement (for a recent example see Crommie et al. 1993). One may soon
reach the stage of having large conducting artificial molecules on which macro-
scopic-type experiments can be performed, in the same size range as ordinary
macromolecules, or smaller. The latter may be addressed and are of course also
of great interest.

It should be noted that photons may also be well “g~ided” in such systems
and similar phenomena may thus occur for these elect.omagnetic waves, not
to mention ideas for electron—photon coupling in various combinations. Both
subjects of mesoscopics and light propagation in disordered media (John et al.
1983, Feng and Lee 1991, Sheng 1995) have undergone real advances due to
analogies and mutual fertilization; see van Haeringen and Lenstra (1991) for
pertinent papers.

This book will deal mostly with theory. However, an attempt will be made
to present the most economical explanation/semiquantitative calculation for
physical effects, rather than to “demonstrate the power” of some formal
method. It is hoped that the qualitative understanding of the physical prin-
ciples involved that is gained might be useful in conceiving new experiments.

One of the powerful and useful concepts which appear is that of
“universality,” namely, that various measurable quantities do not depend on
most microscopic details of the system. This was originally introduced by
Kadanoff in the context of critical phenomena, where large-scale physical
properties do not depend on most microscopic details. Older examples are:
(a) the Hall coefficient, which does not depend in the simplest 3picture on the
effective mass and on the scattering time; and (b) the Debye T~ specific heat.
The latter is a good example of universality due to general properties of the
spectrum (here density of states (DOS)) of certain operators (the phonon
Hamiltonian, for the Debye law). Such universalities are very relevant to our
subject. In a sense, it is even more remarkable that dirty systems display such
universalities, compared to the ultra-clean and perfect systems needed for
studies of critical phenomena.

Experimental techniques will be referred to very briefly, mainly in order to
understand what can be done and what the limitations are. The theoretical task
is becoming more difficult (and interesting) as the understanding of single-
electron properties has advanced and one now has to delve into many-body
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physics, where interactions are important and the theory is much more
sophisticated (for a recent account, see Imry and Sivan 1994). Our emphasis
will be on equilibrium as well as on various electronic transport phenomena.
For a good review on optical effects, we refer to Schmitt-Rink et al. (1989).
Bastard et al. (1991) contains a good review of related aspects of electronic
properties of semiconducting heterostructures and some of their optical prop-
erties. Analogies between optics and electronic phenomena are discussed in
van Haeringen and Lenstra (1991). We shall treat only some aspects of the
interesting case of ballistic transport (Heiblum et al. 1985, Beenakker and van
Houten 1991d) and just mention briefly the topic of “Coulomb blockade” (see
problem 5 of chapter 5 and references in Grabert and Devoret 1992, Hekking
et al. 1994). A recent hydrodynamic analogy (de Jong and Molenkamp 1995) of
electronic transport is also worth noting.

In the next section, systems and fabrication techniques will be briefly
described. In Chapter 2 the limitations of the ordinary quasiclassical transport
will be discussed and the opposite limit, of Anderson localization, introduced.
Since phase coherence is so important in mesoscopics, we shall devote Chapter
3 to elucidating what it takes to destroy phase coherence, with some examples.
Chapter 4 will consider equilibrium properties and Chapter 5 will discuss
transport phenomena in mesoscopic systems. Chapter 6 will be devoted to
high magnetic fields and the quantum Hall effect, Chapter 7 to mesoscopics
with superconducting components and Chapter 8 to various noise phenomena.

Concluding remarks will be given in Chapter 9. Various details are discussed in
the appendices.

2. A BRIEF DESCRIPTION OF
SYSTEMS AND FABRICATION METHODS

For experiments in conducting mesoscopic systems, one may in principle use
members of the three principal classes of conductors:

1. Metals, having high charge-carrier densities in the range of 10%/cm®
and a wide range of purities and mean free paths. Many metals become
superconductors at low temperatures—which provides another inter-
esting degree of freedom.

2. Semiconductors, where the carrier densities can range practically
between 10'° and 10'/cm® and may be controlled, including the type
of carrier, by doping, optical excitation, or electrostatic “‘gates.” Special
methods may be used to produce high mobilities and heterojunctions—
interfaces between different semiconductors with interesting properties
(see below).

3. In special cases, semimetals having intermediate carrier densities of 10"
to 10%°/cm? are useful. They contain electrons and holes concurrently.
In some cases, notably bismuth on which many of the quantum oscilla-
tion effects have very early been demonstrated, these materials can have
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very long, essentially macroscopically large, mean free paths at low
temperatures.

To limit the sizes (for general references see the special issue of IBM J.
Research and Development, 32, 4 (1988)) of the conducting systems and make
them low-dimensional, one should distinguish between the “thickness” vs. the
lateral (parallel to the thin direction) dimensions. Films, including very thin
ones, may be prepared by standard deposition techniques such as evaporation
or sputtering. This applies to both conducting and insulating layers. Extra-
high-quality semiconductor systems including the two-dimensional (2D) case
are presently achieved by growing individual lattice layers with a very
impressive control of parameters by the “molecular beam epitaxy” (MBE)
method briefly discussed below (see, e.g., Esaki 1984, 1986, Gossard 1986,
Herman and Sitter 1989). This can be used to grow two different semi-
conductors on top of each other, especially' if their lattice parameters are
matched. The by now classic example is GaAs and AlAs and their mixtures,
but other combinations are possible. Recently, epitaxial growth of SiGe on Ge
was achieved (Meyerson et al. 1990, Ismail et al. 1991).

The different band structures (mainly the energy gap, E,) and work func-
tions (the energy difference between the Fermi levels in the bulk nd the
vacuum level outside) usually cause some charge to be transferred between
the two adjacent materials in order to equalize the electrochemical potentials.
Electrons are attracted to the remaining holes and the well-known dipole layer
is formed at the interface (see, e.g., Ashcroft and Mermin 1976), which leads to
a space-dependent potential energy or “band-bending” near the interface.
Thus, potential wells, barriers, and so on can be formed. One can get accumu-
lation layers or inversion layers, effectively including strictly 2D situations By
using sandwiches of one type of semiconductor between two layers of another
type, further types of wells and barriers can be made. Such structures can be
repeated to form, for example, a periodic superlattice in the growth direction
(Esaki 1984, 1986). Together with charge control by electrostatic gates, this
leads to an impressive control over the design of man-made materials and their
combinations. For reviews see Ando et al. (1982), Sze (1986), Esaki (1986) and
Gossard (1986).

With metallic systems, purities and control of thin films grown in high-
vacuum systems approaching the range of those of MBE have already been
achieved (Haviland et al. 1989). There, of course, one does not have the
variability due to parameters such as doping, several related material systems,
and electrostatic gates (although the latter is possible in principle). Another
useful property of many semiconductors is the small effective mass for small
band gaps, which does not occur in usual metals. We remark that other, less
expensive, growth techniques which currently produce lower quality than MBE
do exist and may often be sufficient (e.g., Razeghi 1989).

! But not exclusively, see van der Merwe 1963. This leads to the interesting possibility of “strained
layers.”
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The idea of MBE growth starts with an extremely high-vacuum system
(107" torr is common) and with a good-quality single-crystal substrate to
grow the sample on. The substrate is held at rather high temperatures to
cause a high mobility (parallel to the substrate) of atoms impinging on it
from sources that are well-controlied with shutters (often it is enough to con-
trol one kind of atom (e.g., Ga) and the other type (c.g., As} will stick only
upon finding a counterpart—thus giving “automatic” stoichiometry). The
structure is monitored at real times with high-energy electron diffraction,
enabling a controlled layer by layer growth of atomically smooth interfaces
and excellent purities. This can lead to transport mean free paths of up to tens
of micrometers. Thus effectively “ballistic” electron motion both paralle} and
perpendicular to the layer is achievable over significant size ranges.

The structuring of the system in the lateral direction, parallel to the 2D
layer, is achieved by a variety of lithographic techniques (see, €.g., Prober 1983,
Howard and Prober 1982, Broers 1989). We shall explain later, rather
schematically, the method and its possibilities and limitations.

The underlying principle is to coat the planar surface, using a spinning and
“baking’’ process, with a layer of polymer called a “photo-resist” in the case
of optical lithography (a typical substance being PMMA-—poly(methy! meth-
acrylate)—for electron beam techniques) which is very sensitive to being
irradiated with appropriate radiation such as light, x-rays, electrons, or ions.
Thus the method uses the radiation damage, or “photochemistry” in the resist.
The irradiated resist undergoes some physicochemical changes. For example,
bonds are broken and a shortening of the chains and some cross-linking takes
place. The affected material may dissolve in a solvent called the “developer”
which dissolves the virgin resist at a significantly slower rate. Thus, if a
pattern (e.g., a thin wire, a Hall bar, a ring) is projected onto the resist, say
optically, it is then possible to wash away the irradiated part while the virgin
part remains.

Now, there are many ways to proceed. Let us consider a specific one. If the
resist has been deposited on a metal film, as an example, it is then possible to
dissolve or etch the exposed metal with, for example, an appropriate acid, while
the part under the unprocessed resist remains intact. Alternatively, one may
coat the whole processed resist with a metal film and an appropriate solvent,
which may be called a “second developer,” will wash away (“lift-off ”) the
metal that is above the existing resist, while the other part of the metal film,
which was deposited where there was no resist, will stay.

Other processing possibilities using similar lithography techniques are also
feasible. Examples include: (a) reactive ion etching (RIE) for producing very
high-aspect-ratio etching, damaging specified regions, and removal and depo-
sition of oxides; and (b) ion implantation, which can be used to dope, alloy, or
damage the sample with some control over the depth. It is clear that by using
well-known optical techniques, lateral structures with a size resolution deter-
mined by the wavelength of light (diffraction limit) can be made. If a better
resolution is desired, shorter-wavelength radiation is necessary. UV light can
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be used to yield a modest increase of resolution. For the best resolution, x-rays,
electrons, and ions can be invoked with the appropriate resists.

It turns out that such techniques can go down to a lateral resolution
approaching 100 A, the limit being determimed not by the wavelength of
radiation used, which may be on the atomic scale, but by the resist itself.
The resolution limit may be determined by the range of “secondary” electrons
produced by the high-energy radiation. These electrons damage the resist not
dissimilarly to the original radiation and they produce the same effect as a

ivm
1k X36.,008

Figure 1.1 An example of an electron beam-made state-of-the-art nanostructure
formed to demonstrate a double-slit type interference in a ring geometry, by Yacoby
et al. (1995). Electrons pass from a “source” (S) to a “drain” (D) in the 2D gas (black
area) through the two arms of the ring defined electrostatically by the gates (brighter
shade). On the left-hand arm of the ring a “quantum dot” is formed by the two
unmarked thin gates that isolate the dot from the arm. In addition, another “plunger”
gate, marked P, modulates the electrostatic potential of the dot. An additional gate (B)
modulates the central section (“hole of the conducting ring”) and thus controls the
width of the arms. This gate is connected to the outside by an “air bridge” (B) avoiding
contact with the gate below it by going through a higher level. To make this structure, a
very nontrivial good realignment of the higher to the lower level was achieved. The
interference oscillations (see page 110 for a related theoretical discussion) are observed
as function of the plunger voltage and/or a magnetic field that contributes an Aharo-
nov-Bohm flux through the opening of the ring. This experiment demonstrated the
coherence of electron waves passing by resonant tunneling through the dot, over
dwell times of about 3 ns.
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wider beam of radiation. Keeping in mind that 100 A is about 30 Fermi wave-
lengths in a metal and less than a Fermi wavelength in GaAs, this is quite
impressive. Especially with semiconducting systems, it is often desirable to
perform such processes, but with differing patterns on different layers of the
heterostructure. Techniques exist to bring back the electron beam, for example,
in a reproducible way to the same spot, within a resolution similar to the
above, after the sample has been removed, treated, and returned to the
microscope chamber. Thus, a great variety of mesoscopic structures with
the above resolution can be produced with present state-of-the-art technology.
Modifications of regular scanning electron microscopes have been quite suc-
cessful, with resolutions better than 500 A, for single-layer structures. For a
critical review, see Broers (1989). A recent example of an electron beam-formed
structure is shown in Fig. 1.1.

While this technology is extremely impressive, it should be recognized that
the structures produced are far from being perfect. For example, a wire a
few hundred angstroms wide produced by etching will typically have a very
irregular edge, which will produce strong diffuse scattering, substantially

Figure 1.2 A “quantum corral” demonstrating the power of STM-type techiques
(from Crommie et al. 1993). A ring of 48 Fe atoms, with a radius of about 140 A,
was constructed on the 111 surface of copper. The radial height variations were mea-
sured with the same technique and demonstrate the almost ideal nature of the surface on
the inside of the ring. They result from the eigenstate of the corral.
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reducing the mobility, especially in semiconducting systems. One way to
counteract this is by forming the semiconducting structures under electrostatic
gates. These can, for example, deplete the 2D electron gas beneath them and
also including a fringing-field adjacent area, with a strong enough negative bias
potential. Thus, a narrow channel whose width can be somewhat varied can be
formed between these “split gates.” It turns out that electrostatic effects tend
to smear the microscopic irregularities of the edge of the gate, thus producing
narrow channels of good mobility (Thornton et al. 1986). This can be used to
produce good-quality channels down to widths of a few wavelengths. Getting
to even narrower “pure 1D” channels necessitates other techniques. A recent
novel 1D structure has been produced by growing it mainly by the MOCVD
(Razeghi 1989) technique inside a suitable groove in the substrate (Kapon et al.
1989). Another useful technique is that of cleaved edge overgrowth (Pfeiffer
et al. 1993, Yacoby et al. 1996).

The utmost atomic resolution of structures can be achieved by scanning
tunneling microscope-related (STM; Binning et al. 1982) techniques. These
have reached the stage where individual atoms can be manipulated on the
substrate to form the desired structure (see Fig. 1.2). The same technique
will be used to contact the small structures and make a variety of measure-
ments on them, which may well lead to the microscopic limit of mesoscopics
(see, e.g., Crommie et al. 1993, Avouris and Lyo 1994). Since the method is
slow and treats structures on an individual basis, attempts to automate it and
increase its speed are already being made.



Quantum Transport,
Anderson Localization

1. BASIC CONCEPTS

The Bloch—Boltzmann quasiclassical theory of electronic transport in lightly
disordered conductors has been quite successful in describing the impurity and
temperature dependences of the conductivity in ordinary relatively pure con-
ductors. Further transport properties such as magnetoconductivity, Hall effect,
thermal conductivity, and thermopower can also be handled, often with suc-
cess. However, when the amount of disorder (or impurity concentration)
becomes very large, novel phenomena occur which are unexplainable within
the weak-scattering theory. In particular, the temperature dependence of the
resistivity, p, becomes much weaker and eventually changes direction for high
enough disorder (Weismann et al. 1979). The Mathiessen rule, according to
which the contributions to p due to disorder and temperature are additive, thus
breaks down. An extremely interesting correlation was found by Mooij (1973),
namely, that dp/dT becomes negative when p becomes larger than a value
ranging around 80-180 uQ2 cm in something like a hundred disordered dirty
systems. This almost “universal” trend must have an explanation which is only
weakly dependent on material properties, and we remember that dp/dT > 0
always in weak-scattering theory. To understand the limitation of the quasi-
classical transport picture we remind ourselves that the ordinary Drude expres-
sion for the weak-scattering conductivity, oo,

12
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nez-r

U():";“, (21)

where n is the electron density, 7 the transport time, and m the (effective) mass,
is valid only when the electron wavelength Ap = 2w/kr is much smaller than
the mean free path / = vgr, that is,

kel>1 3  Epr> 1. (2.2)

We rewrite (2.1), using 7 = k3/37%:

00 = 35z Kb, 1)

Thus, eq. 2.2 becomes, remembering’ that fi/e? = 4.1 k) (so that (e?/h)kr is a
conductivity unit appropriate to the microscopic length Az)

5 —5
OoAr 225 x 107 (kpl) /2 > —X?;L, (2.3)
or, for the resistivity py = 1/0q:
Po < 200 uQ cm - Ap (in A). (2.3")

For Ar~5A, and A does not vary much in most metals, this yields
po < 1073 Q cm. We see that the quasiclassical theory becomes problematic
for p approaching 100 pQ2 cm. Much larger values apply to semiconductors
and semimetals; and granular metals require a small modification (Imry
1981a, see discussion around eq. 2.41 below) of the above. But it is clear
that kgl S1or py 2 1073 Q) cm for metals, brings us into a totally different
regime. The above condition is called the Yoffe-Regel criterion (Yoffe and
Regel 1960; see Mott and Davis 1979). We shall see that a better starting
point for this new regime is that of Anderson-localized states. More recently
(and, in fact, following ideas from localization theory: for general references on
localization see, e.g., Lee (1980, 1984) and articles in the books edited by
Friedman and Tunstall (1978), Balian et al. (1979), Stern (1982), Castellani
et al. (1981), Nagaoka and Fukuyama (1982), as well as the book by Mott
and Davis (1979) and the reviews by Lee and Ramakrishnan (1985) and by
Aronov and Sharvin (1987)) it has been found that “restricted geometry”
systems, that is, thin films and wires, appear to always have dp/dT <0 at
low enough temperatures. This behavior of effectively one-dimensional (1D)

! To understand this, note that (e?/5) is a conductance, which happens to be equal to ~ (4 kQ)‘l in
MKS (this should not be surprising, since the fine structure constant is a = ¢’ /fic = 1/137, and
¢! ~ 30 0, related to the “free space impedance™).
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and 2D systems is also quite universal. A growing amount of evidence has
indicated (Dolan and Osheroff 1979; Giordano et al. 1979, Bishop et al.
1980, Pepper and Uren 1982) that these latter systems are always (Thouless
1977, Abrahams et al. 1979) insulators, that is, p — co as T — 0. However,
there is still no really sound theory in 2D, and several caveats exist (e.g., the
case of a strong spin-orbit interaction, where an “ideal” conductivity seems to
follow theoretically as T — 0).

As mentioned earlier, ordinary bulk “3D” systems will also become
insulators in the above sense when the disorder is strong enough (Anderson
1958). Thus, the disorder is another important ingredient for the transition
Jfrom the metallic to the insulating state. Other mechanisms for this transition
being (Mott 1974) electronic (band) structure effects, electron—electron inter-
actions (Mott 1974, Hubbard 1964) or excitonic mechanisms (Knox 1963, des
Cloizeaux 1965, Keldysh and Kopaev 1965, Kohn 1965) and, possibly, self-
trapping of the electron by the phonons (Holstein 1959, Toyozawa 1961).
These mechanisms may strongly couple and influence each other, as we shall
see, but we would like to start with the problem of noninteracting electrons in a
given, static, aperiodic potential.

The plan of this chapter is as follows: In the next subsection the general
localization phenomenology will be discussed. Transport in the localized phase
will be treated in section 2. The Thouless picture, starting with the thin wire
case, will be presented in section 3. This is the basis of the scaling theory of the
dependence of the conductance on the length, which will be described in section
4, along with its many consequences. The case of weak localization will be
briefly reviewed in section 5. In this chapter we shall not use the Landauer
scattering approach, although it is extremely useful for the study of some
aspects of localization. It will be developed in detail in chapter 5 and applied
to both localization and (mainly) mesoscopic phenomena.

Localization ldeas

The solution for the electronic transport for the problem with strong disorder is
called “Anderson localization theory.” It appears to be a good candidate for
the new discipline needed for discussing the above-mentioned problems
(Jonson and Girvin 1979, Imry 1980a, 1981a,b). It explains much of the tem-
perature and magnetic field (B) dependence of p for not too dirty systems
(Hikami et al. 1981, Kawaguchi and Kawaji 1982; for reviews see Fukuyama
1981b, Altshuler et al. 1982a, Bergmann 1984, Altshuler and Aronov 1985, Lee
and Ramakrishnan 1985). It predicts that “1D and 2D systems are not true
metals™ and gives useful indications on the metal-insulator transition in 3D.
Interesting insights are obtained on disordered magnetic metals, super-
conductivity in disordered metals, and so on. The electron-electron (and
electron-phonon) interaction is also important and should be considered
(Schmid 1974, Abrahams et al. 1981, Altshuler and Aronov 1979) once the
pure “‘localization” part is understood.
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The model usually considered for the disorder has a random potential
V(r) such that

(VR) =0, (¥(n)¥(r")) = C(r—r'l), (24

where the range of the function C, called a, is the microscopic length in the
problem and the size of C (C(0) > 0) is related to the strength of the potential
fluctuations. The case C(x) « 6(x) is referred to as the white-noise potential
(since the Fourier transform, C; is constant). Another useful model potential
is a periodic one with a random modulation, which is called the Anderson
model (Anderson 1958), when taken as a nearest-neighbor tightbinding
model, that is,

H = Z ecle; + (2): tyclei+he. (2.5)
i i

Here (ij) means that ; and j are nearest neighbors and c}\ creates an electron
on the “atomic” state of the ith site of a simple lattice. The site energies ¢;
(diagonal disorder) or the #; (nondiagonal disorder), or both, can be taken to
be random In the former case, if #; = ¥ and the width of the e distribution is
2W, the ratio W/V is a convenient measure for the disorder. Solving for the
eigenvalues of eq. 2.5 amounts to diagonalizing a random matrix. Obviously,
this will solve a number of other physical problems, such as phonons in a
disordered crystal.

In his pioneering paper of 1958 (preceded in some respects only by
Landauer and Helland (1954) and Landauer (1957)) Anderson considered
the Hamiltonian of eq. 2.5. A strong enough disorder can localize a state, as
obviously happens when ¢; is very large or very small, with respect to typical
values of ¢;, analogously to the formation of a bound state (or a local vibration
in the phonon case, see Economou (1990)). This means that the envelope of the
corresponding wavefunction 1 decays strongly (exponentially in typical cases)
at large distances from the localization center (e.g., site #). More general types
of localization for the random potential, where v extends over a characteristic
length ¢ and sometimes having bulges and oscillations after being small for a
while, also exist. The formation of localized states, taking orthogonalization
with different states into account, has presumably some, as yet not fully under-
stood, similarities to bound state formation (Economou 1990; for example,
both happen very easily in 1D and 2D). In Anderson’s paper, a perturbation
theory (locator expansion) for the “self-energy” was constructed, taking the
uncoupled sites as the zero-order problem and the #; as the perturbation.
Anderson proved that for large enough W/V, that is, W/V > W/V|,, this
perturbation theory converges “in probability.”” An upper limit for W/V|, is
given by

2eVK
X In W= 1, (2.6)
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K being the connectivity of the lattice (for a recent review, see Shalgi and Imry
1995). On a heuristic level, this means that starting from a site, 0, the contri-
butions of very distant sites fall off sufficiently strongly. More formally, it
follows from the above convergence (see also Thouless 1970) that the
singularities of Ggo(E), the local Green’s function at site 0, are just a dense
set of poles, where most of them (due to states localized far away) have exceed-
ingly small residues at 0. These poles are the zeros of the self-energy, at which it
is analytic and therefore has a vanishing imaginary part. This is to be con-
trasted with what happens with delocalized states, where the self-energy and
Goo must (and do) have a branch cut on the real energy axis, in order for the
former to have a finite imaginary part. Such an imaginary part is, of course,
necessary in order for a wave packet started at ¢ = 0 around site 0 to truly
decay into the whole crystal.

Following further analytical arguments and much numerical work
(Liciardelo and Thouless 1978, Stein and Krey 1979, 1980, Domany and Sarker
1979, Kramer et al. 1990, Kramer and MacKinnon 1993) it is generally agreed
that for a large enough disorder all (or almost all) states are localized. For an
intermediate disorder the situation (at dimensionality d > 2) is thought to be as
follows (Mott 1966). Due to the disorder, states are created in the gap. The
states in the middle of the band are not localized (i.e., they are “extended”),
while the states near the band extremities may be localized. The extended and
localized states are separated by the mobility edge E,,, E,» (Mott 1966)
(see Fig. 2.1). The existence of these follows from the physically reasonable
strengthening of the tendency for localization as E gets further from the band
center and from an intuitive argument by Mott, according to which extended
and localized states cannot coexist at the same energy since they will be mixed

n(E)

with

~ disorder
-
{ | |

Em1 EF E E

Figure 2.1 The density of states with and without disorder and the mobility edges
in the former case (schematic). Note the smooth behavior near E,;. See, however,
Appendix F for the effect of interactions near Er.

m2
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by any interaction, however small.> When W/V is increased, the mobility edges
approach each other and coalesce at some limiting value (W/V),, where all
states become localized, and the Anderson transition has occurred. We
emphasize that the density of states (DOS) at the Fermi energy is not expected
to develop any singular structure due to the localization process alone
(S. Kirkpatrick private communication, Wegner 1976, 1979).

Some aspects of the physical relevance of the localization follow from the
observation that if all the physically relevant states—such as the states near the
Fermi energy Eq—are localized, the system will be insulating at 7 = 0. This
physically obvious assertion can be proved by showing that the diffusion
constant D vanishes. From the Einstein relation (Kubo 1957) at k3T <« Ef

o = (dn/dE)D, ' 2.7)

it will then follow that ¢ vanishes. To demonstrate the vanishing of D, form
a narrow minimal wavepacket at 1 =0, r=0; ¥(t = 0) = }_a;1;, from the
available eigenstates 1, = | /). @; will be exponentially small for states |i)
localized many localization lengths £ from r = 0. At finite times

W1y =D ae Gy, (2.8)

where a; = (0]j), will also decay exponentially with r at any time. Therefore
(r*) which should be gwen at ¢ > 0 by 2Dt for diffusion, is never (even when
t — oo) larger than O(£?), so that D = 0. It is easy to see from (2.8) that the

“staying probablhty at the initial site (the long-time average of |{0) w)] )18
given by >, (0] 7). This is often referred to as the “inverse participation
ratio” (IPR) Remembermg that 37, 1(0] j)}” = 1, we can see that the IPR is
proportional to the inverse localization volume and it thus vanishes for delo-
calized states. It is therefore a useful diagnostic for localization.

The above observation, that ¢ =0 in the localized regime, gives us a
very simple mechanism (see Mott 1974) for the metal-insulator (henceforth
abbreviated as M-{) transition. The energies Er and E,,; can be shifted by
modifying the electron density or disorder, respectively.” Whenever Ey passses
from the extended to the localized range, the system will go from the metallic
to the insulating phase. Since in the insulating phase o(7T = 0) = oo and p
decreases with increasing temperature, it is not surprising that dp/dT can
be negative near the transition, certainly in the “poor” insulator—and, by

2This argument is not rigorous, since for a system with linear size L, the characteristic difference in
energies of the states that are close in energy is O(L™), while if the extended and localized states
reside in different parts of the system, the interaction may be O(e'o(”). This can probably happen
in very inhomogeneous, €.g., percolating, systems, but it is assumed not to happen if the system is
homogeneous enough.

*In more realistic cases the screening in the metallic phase becomes st >nger for a larger carrier
density, which may decrease the effective disorder as well, in a self-cousistent picture.
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continuity, in the “poor” metal. One thus already sees that localization theory
may be useful in explaining the anomalous properties of disordered conductors
as well as the disorder-induced metal-insulator transition.

When the disorder, for example, W /V, becomes very small, the usual
weak-scattering theory should apply for dimensions above 2 (and, as we
shall see, also at 1D and 2D for small sizes or high temperatures). A convenient
dimensionless parameter to express this is kz/ or Ep7, which are of the same
order of magnitude. 7 is the mean (elastic) free time and / the mean free path,
! = vp7 (we do not consider here the case of small-angle scattering, where the
transport time is much longer than the scattering time). The small parameter as
discussed above in the weak-scattering theory is 1/(kg/). Note that the order
of magnitude of the diffusion constant is D ~ v = vzl and the usual weak-
scattering conductivity is given by eq. 2.1. The situation in 2D is more
interesting, since ¢ (or the conductance of a thin square film divided by its
thickness) o (€?/h)(kpl)—which is just a wuniversal constant times kgl. Of
course, as discussed in section 1, the weak-scattering theory will break down
when the parameter kg/ is no longer >>1. This defines the concept of the
minimum metallic conductivity at d > 2 (Yoffe and Regel 1960, Mott 1966),
obtained when kp/ ~ [. In 3D (see eq. 2.2)

e2

]

Omin = C—kF, (29)

where C is a constant estimated by Mott to be on the order of 0.01-0.05. For
metallic systems where k- is a few inverse angstroms, this yields, as discussed
before, resistivities of 107> Q cm, somewhat larger but of the same order of
magnitude as the above Mooij value of 1-2 x 107™* Q cm. (Thus dp/dT may
become negative when, roughly, kgl ~ 5-10.) oy, is clearly the range where
localization is very relevant. Mott has argued that no metals can exist with
o < Omin- This, and necessary modifications, will be discussed later in some
detail. In 2D, one has a “maximum universal metallic resistance” of
hje* ~ 30 k Q, and a similar but somewhat smaller value in 1D.

2. THERMALLY ACTIVATED CONDUCTION
IN THE LOCALIZED REGIME

If the states at the Fermi energy, Er, are localized, Er < E,, (we assume, for
definiteness, that Er is in the lower half of the band, E, = E,, ), then the
quantum conduction at T =0 is zero. At low but finite temperatures the
electron can gain thermal energy (typically from other excitations, e.g.,
phonons) to perform a number of possible processes (Mott and Davis 1979).

1. Activation to (and above) the mobility edge, which will yield

~{E,,~Er)/kgT
0’]0(6("' F)/B7
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where the coefficient is proportional to the square of the electron—
phonon coupling strength.

2. Activation to a neighboring localized state. If the localization length is £
and the density of states (DOS) at the Fermi level is n(0) then the
number of states in a volume of linear dimension £ in d dimensions is
n(0)€%; hence the typical energy separation between such states is

A¢ ~ [(0)€] 7, (2.10)

which would yield a “nearest neighbor” activated conductivity of the
form (see, however, the discussion following eq. 2.27):

oy ox e SelksT (2.11)

However, as suggested by Mott (1966, 1970), it pays sometimes for
the electron to hop a larger distance, thereby reducing the necessary
inelastic energy transfer. This introduces the next type of activated
conductivity:

3. Variable range hopping (VRH). We assume that the contribution to
the hopping conductivity to a state localized a length L >> ¢ away is
proportional to the overlap matrix element squared, which goes like
IPert/€ where 1 is a characteristic energy of order A;. On the other
hand, the energy needed now, A;, is obtained by generalizing the
argument leading to eq. 2.11 and noting that A; decreases with L:

d
Ap ~ (n(0)LY) ™" ~ A, (%) (L>¢€). (2.12)

The hopping over a length L is controlled by e 2L/¢-21/ks! - At Jow tem-

peratures (sec below) it pays to make hops with L >> ¢. The optimal L, L), for
such jumps is given by minimizing the exponent:

£ 1/(d+1)

and this mechanism is relevant as long as Ly, 2 £, that is, when the tempera-
ture is low enough so that T <« Ty, where

At such low temperatures, the VRH conductivity, o3, is given by
oy o e~ T/ (2.15)

where C is a dimensionless constant. For T > T,, the nearest-neighbor
hopping, o, of eq. 2.10 (or its modification, see eq. 2.27), is obtained. One
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has then to consider the competition between o, and ;. It apears that
o, usually wins, especially near the tramsition, when A, vanishes faster
(see, e.g., the discussion in section 3.3 of Shalgi and Imry 1995) than
(E,, — Er). For (E, — Er) < A, 0, will be dominant in the simple activated
region and the crossover to exp[—(—C’/Tl/(d“))] will occur at a temperature
below Tj.

We also remark that in the variable range hopping regime, L, is an
important length scale which determines, for example, the effective dimension-
ality of a thin film or wire (Fowler et al. 1982).

We do not discuss here in any detail the effect of Coulomb interactions on
the hopping conductivity. Even in a Hartree-type approximation, this was
argued (Pollak 1970, Shklovskii and Efros 1971, 1984) to produce a “Coulomb
gap” near Ej for the available energies to hopping and to change the exponent
in a relation such as eq. 2.15, from 1/(d + 1) to §. Such a behavior is indeed
observed in many different cases. The theory is still being debated.

A different and extremely instructive and useful way to consider the VRH
process was suggested by Ambegaokar et al. (1971), Shklovskii and Efros
(1971) and Pollak (1972). Each bond along which hopping occurs can be
viewed, following ideas of Miller and Abrahams (1960), as a resistor. The
whole lattice is therefore equivalent to a “random resistor network,” and the
resistances vary greatly within the network due to their exponential dependence
on parameters. Conduction will occur mostly due to the smaller resistances. If
the largest resistances are eliminated, the resistance of the whole network is
almost unaffected. This process can be continued, going to smaller and smaller
resistances, until the percolation limit of the network having only resistances
smaller than some critical Ry, is reached. Beyond that, cutting off more resist-
ances will produce a disconnected (nonpercolating) structure. After stopping at
Ry, one may also say that all the resistances that are much smaller than Ry
behave essentially like shorts. Thus, the whole network resistance is to a good
approximation determined by the “just percolating resistance” Ry. From this
idea the VRH theory follows with specific values of the numerical coefficients.

The above percolation idea is also useful to obtain the small field magneto-
resistance (MR) in the VRH regime. The reason that the resistance of each
bond depends on B is that the overlap matrix element between the localized
states is not only due to the direct path, but to the whole sum over all indirect
hopping paths, so it involves a quantum interference phenomenon. An inter-
esting model for the latter has been suggested by Nguyen et al. (1985a,b);
its treatment (Entin-Wohlman et al. 1989) using the percolation model gave
acceptable results for the MR.

At larger fields, the important element is the change of the localization
length with B. Understanding the latter (see, for example, Lerner and Imry
1995), and the Hall effect (Holstein 1959, 1961) in the localized phase are two
outstanding problems in that regime.

Mott (1970) also gave an argument showing that the T =0 frequency-
dependent conductivity, o(w) in the localized phase would behave like
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o(w) x w? (1 /w). (2.16)

The physical idea for understanding the logarithmic factor in eq. 2.16 is the
following (for a detailed explanation see Sivan and Imry 1987). Given
h§) <« A, we look for two initial states localized a distance R > § apart so
that for them, using eq. 2.11, and I ~ A,

A
I b, e Rl (2.17)
3 w

For this distance R one now looks for the pairs of states for which their energy
separation (prior to switching on the tunneling of eq. 2.17) is smaller than or on
the order of Ie ®/¢; such “resonating’ states will be mixed very well by the
tunneling and become “double hump” states. The dipole matrix elements
between them will be ~R ~ £ In(A,/w). The number of such pairs is propor-
tional to R '¢—the volume of a shell of radius R and thickness & The
combination of these two factors is the reason for the |in w]’™! in eq. 2.16.
The «? comes from the usual counting of states and the Kubo expression
(see eq. A.7 of appendix A). An issue which is possibly relevant for such
considerations is that of “level repulsion,” that is, that levels usually do not
come too close to each other. It turns out that Je ®/¢ js in fact the level repul-
sion in this case, so it is taken into account here (Sivan and Imry 1987). Since
larger distances are involved with low frequencies, interesting frequency—size
crossovers can be obtained for o{w) in the mesoscopic range.

3. THE THOULESS PICTURE, LOCALIZATION IN
THIN WIRES AND FINITE TEMPERATURE EFFECTS

We start this section by briefly reviewing the tunnel-junction picture of con-
duction which also paves the way to the material of Chapter 5. Consider two
pieces (later referred to as “blocks”) of a conducting material, connected
through a layer of insulator (usually an oxide) which is thin enough to allow
for electron tunneling. The interfaces are assumed rough, so there is no con-
servation of the transverse momentum: each state on the left interacts with
each state on the right with a roughly uniform matrix element ¢. The lifetime 7,
for an electron on one block for a transition to the other block is given by
the Fermi golden rule (when tunneling is a weak perturbation, i.e., a weak
interblock transmission):

L2

7' = 2 EN,(Ep), (2.18)

where 7 is the average of the tunnelling matrix element squared and N, (Ey) is
the density of states on the final (right-hand) side. Taking the DOS in the initial
side to be N;(Ef), we find that when a voltage ¥ is applied, eV’ N,(Ejy) states are
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available, each decaying to the right with a time constant 7,, so that the
currrent is [ = eN,(£p)77'V and the conductance is

2me’ —
G = &N(Eg)/ = _h_tle(EF)y (2.19)

which is an extremely useful result. The second equality is well known in the
tunnel junction theory (Bardeen 1961, see also Harrison 1970). Note that eqs.
2.18, 2.19 are valid in any number of dimensions. An important remark is that
eq. 2.18 strictly needs a continuum of final states, while the final (r.h.s.) bock is
finite and has a discrete spectrum. One may make the assumption that the
interaction of that system with the outside world leads to a level broadening
larger than, or on the same order as, the level spacing,. This is the case in most
mesoscopic systems. Otherwise, when levels really become discrete, one gets
into the truly microscopic (molecular) level.

The first equality in eq. 2.19 is very general. Divide a large sample into
(hyper) cubes or “blocks™ of side L. We consider the case L > /, a, where / is
the elastic mean free path and a the microscopic length. The typical level
separation for a block at the relevant energy (say, the Fermi level), A,, is
given by the inverse of the density of states (per unit energy) for size L,
N (Ep). Defining an energy associated with the transfer of electrons between
two such adjacent systems by ¥V, = «#/7; (7 is the lifetime of an electron on
one side against transition to the other side), the dimensionless interblock
conductance g; = GL/(e2/7rh) is

gL =Vi/AL (2.20)

i.e., gz is the (dimensionless) ratio of the only two relevant energies in the
problem. The way Thouless argued for this relation is by noting that the
electron’s diffusion on the scale L is a random walk with a step L and char-
acteristic time 77, thus

Dy ~ L/ (2.21)

Note that as long as the classical diffusion picture holds, D; is independent of
L and 7, = L*/D, which is the diffusion time across the block. It will turn out
that the localization or quantum effects when applicable, cause D, to decrease
with L. For metals the conductivity, o, on the scale of the block size L, is given
by the Einstein relation (eq. 2.7), and the conductance in d dimensions is given
by G, ~ aLLz'd. Putting these relations together and remembering that
Ny (Eg) ~ L dn/dy, yields eq. 2.20. To get some physical feeling for the
energy h/7, we note again that, at least for the weak coupling case, the
Fermi golden rule yields eq. 2.18 or

Vv, =2n /A, (2.22)
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Thus, ¥, is defined in terms of the interblock matrix elements. Clearly, eq. 2.22
is also related to the order of magnitude of the perturbation theory shift of the
levels in one block by the interaction with the other. For a given block this is
similar to a surface effect—the shift in the block levels due to changes in the
boundary conditions on the surface of the block. Indeed, Thouless has given
appealing physical arguments for the equivalence of V, with the sensitivity of
the block levels to boundary conditions. This should be valid for L much larger
than / and all other microscopic lengths, except perhaps for g; « 1, where the
sensitivity to boundary conditions might at least be an upper bound for g, A;.

Since in this scaling picture the separations among the blocks are fictitious
for a homogeneous system, it is clear that the interblock conductance is just the
conductance of a piece whose size is of the order of L; that is, this is the same
order of magnitude as the conductance of the block itself.

The latter can also be calculated using the Kubo linear response expression
briefly reviewed in appendix A. It has to be emphasized that the Kubo formu-
lation applies strictly only for an infinite system whose spectrum is continuous.
For a finite system, it will be argued later that a very small coupling of the
electronic system to some large bath (e.g.,the phonons, or to a large piece of
conducting material) is needed to broaden the discrete levels into an effective
continuum. Edwards and Thouless (1972), using the Kubo—Greenwood
formulation, made the relationship of ¥; with the sensitivity to boundary
conditions very precise. This is discussed in appendix B.

The above picture can be used also for numerical calculations of g(L),
which is a most relevant physical parameter of the problem, for noninteracting
electrons, as we shall see. Alternatively, eq. 2.22 as well as generalizations
thereof can and have been used for numerical computations, and other
powerful numerical methods exist too (Fisher and Lee 1981). It is important
to emphasize that g; > 1 means that states in neighboring blocks are tightly
coupled, while g; <« 1 means that the states are essentially single-block ones.
g is therefore a good general dimensionless measure of the strength of the
coupling between two quantum systems. Thus, if g, — 0 for L — oo, then
the range of scales L where g; ~ 1 gives the order of magnitude of the
localization length, £.

Although the above analysis was done specifically for noninteracting
electrons, it is obviously of much greater generality. The ratio V /Ay is a
general dimensionless measure for the coupling of two quantum systems. g,
will play the role of a conductance also when a more general entity (e.g., an
electron pair) (Imry 1995) is transferred between the two blocks.

The analysis by Thouless (1977) of the consequences of eq. 2.20 for a long
thin wire has led to extremely important results. First, it showed that 1D
localization should manifest itself not only in “mathematically 1D” systems
but also in the conduction in realistic, finite cross-section, thin wires, demon-
strating also the usefulness of the block-scaling point of view. Second, the
understanding of the effects of finite temperatures (as vell as other experi-
mental parameters) on the relevant scale of the conduction, clarifies the
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relationships between g(L) and experiment in any dimension. Thouless gave a
simple analysis of what happens in a wire of a given cross-section 4 as a
function of L. This has far-reaching consequences. For a real wire, v/4 is
many atomic distances a, but still much less than ‘“‘macroscopic™ sizes (the
precise requirements will become clear later). The usual Ohm’s law G L}
can, at best, hold only for a limited range of Ls. Indeed, suppose G L7 ! for
some range of Ls. Once / 2 L., where L, is defined by G, = ¢®/2h, one would
obtain g < 1 for L L. This means that localization occurs at the scale L,
which is therefore the localization length £ in this case. Stated simply, Ohm’s
law (which does appear to hold for ordinary thin wires) can hold only as long
(for T — 0) as the T — 0 resistance of the wire is less than about 10 k(2.
For lengths larger than this length, ¢, the 7 — 0 resistance should increase
exponentially with L (see the discussion following eq. 2.8). £ is easily estimated
assuming G, o< L™! for a, | < L < ¢ (a being the relevant microscopic length
and / the elastic mean free path, as before). For a given wire resistivity p, the
condition for £ is 2k/e* = p£/ A4 or

2% 2
£xS Ao (k) (2.23)

where eq. 2.1’ was used to obtain the second approximate equality. Thus, the
order of magnitude of the length £ is given by the elastic mean free path / times
the number of electrons in the wire’s cross-section. For a cross-section of
atomic dimension this yields just /, in agreement with the “purely 1D” case.
The assumption of G ~ L™! for L « £ at least agrees with our intuition on
wires. Theoretically it means that 2 ~ 1/L?, since A ~ 1/L (which is not
unreasonable for a surface effect), as long as L « §.

Obviously, we know that the resistance of thin wires does not ordinarily
increase exponentially with their length. However, one never measures the
zero-temperature resistance. For the strong localization result to hold, T
must be low enough so that the electron should not feel the effects of temper-
ature during its motion on scales that would be even larger than £. Thouless’
work indicated the following very plausible physical consideration that was
later made very precise: When T approaches zero the characteristic time, 7,
between inelastic (or, more generally, any phase-breaking, see Chapter 3)
events, becomes very large. For example, in many cases one can write

Ty x TP, where p is a positive exponent, (2.24)
where much will have to be said later on both the exponent p and the prefactor.
Consider a diffusing electron. After a time ¢, it covers a length v/ Dt. To feel

strongly the localization effects, one needs that the nominal phase coherence
length, defined using the diffusion coefficient, D, in the nonlocalized, or the

L <&, regime,
L¢ = -\/DIT N (225)



QUANTUM TRANSPORT, ANDERSON LOCALIZATION 25

be much larger than £. In the opposite case, of course, the electron will perform
many inelastic collisions before it will feel the localization, and one expects that
the effects of the latter will not be very strong. Thus, we are led to viewing L,
as an important length scale for the electron’s motion. For the wire to be
effectively 1D, one is likewise led to the analogous necessary condition,

Ly > V4, (2.26)

~+/4 being the geometrical mean of the thickness and width of the wire. For a
very flat wire, Ly has to be larger than both of the above.

Thouless has also made a rather complete analysis of the low-temperature
transport in the thin wire. Once T is so small that 7, > £€%/D (we shall denote
the crossover temperature, where 7, = &/D, by T, ¢), the motion of the electron
starts to be a diffusion process controlled by localization, i.e., a random walk
with a step £ and characteristic time 74, thus

D~§2/T¢, ox 1yt o T?, (2.27)

that is, a vanishing of the conductivity for small T like a power of T'! This very
important result has still not been noticed or appreciated by all localization
practitioners (see, however, Shapiro 1983a,b). It appears to have been con-
firmed by Imry and Ovadyahu (1982b) and Ovadyahu and Imry (1985).
Equation 2.27 assumes that an inelastic event gives the electron enough energy
to move from one block of size £ to the next. The condition for this is that
A¢ < T. This defines a further crossover temperature, T, to exponential tem-
perature dependence (see section 3) for T « Ty. Ty is given by (as in eq. 2.14)

kB TO [n Ag] -

Thus, the condition for observing the 77 behavior is T 3> T;. This analysis is
valid for localized states in any dimension. It appears to imply that in nearest-
neighbor hopping the behavior with temperature should be a power-law one.

Let us concentrate now on the range T > T, where the effects of localiza-
tion are weak. Here, the length L, is physically meaningful—it is the scale up to
which the electron diffuses quantum mechanically. From then on the motion is
classical and controlled by the inelastic scattering. Thus, even if we know the
quantum-mechanical g(L) (at 7 = 0), it is only relevant for L < L. Since one
believes in the classical intuition (which simply asserts that for a given current
the voltages along consecutive segments add in 1D) in the appropriate L 2 Ly,
range, it is suggested that the macroscopic conductivity of the sample will
be determined by Ohm’s law using the T = 0 conductance on scale L (see
eq. 2.28 below). This important observation also follows from the Landauer
picture, that will be described in Chapter 5—where the electron becomes
incoherent in the connected reservoirs. The length Ly over which this happens
in the long system defines the maximum length over which the T = 0 theory is
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valid. At larger scales, classical conduction sets in. This also forms the basis for
obtaining the so-called weak localization effects which occur when L, < &.

4. THE SCALING THEORY OF
LOCALIZATION AND ITS CONSEQUENCES

General

The conductance of a (hyper) cube of size L, at T = 0, can be calculated, in
principle, numerically using the Thouless relation (2.20) in any number of
dimensions, employing a variety of methods (e.g., MacKinnon and Kramer
1981) to determine V. Using generalizations of the Landauer formula (chapter
5) provides another method which appears to be more effective (Fisher and Lee
1981). Knowing how g scales with L, for the appropriate range of L values, and
understanding that L, (or £ and 7, in the localized regime, for L, > &) deter-
mines the relevant scale for the temperature dependence of g enables us to
obtain the temperature dependence of the macroscopic conductivity, o:

2
o(T) = gD |1y, (2.28)

That is, o is evaluated from G using the geometry and the scale L = L. The
generalization of this to thin films and wires is straightforward. This is valid for
L, <€ and also in the whole metallic range. In the localized regime, for L, > &,
eq. 2.27 and its appropriate counterparts at low temperatures have to be used,
as discussed in section 2.

We shall now present and discuss the scaling theory of localization by
Abrahams, Anderson, Licciardello and Ramakrishnan (1979) (see aiso Wegner
1976, 1979). This theory is really a clever guess based on an interpolation
between the limits of a good conductor, gz > 1, and a localized insulator,
g1 < 1. It is consistent with the first correction to the good (weak scattering)
conductor, with most of the presently available numerical work (e.g., Kramer
et al. 1990; many of those numerical results that contradicted it seem to have
been superseded by more reliable ones), with the 1D and thin wire cases, and
with some analytical approximations (Vollhardt and Wolfle 1980, 1982). How-
ever, there is as yet no truly compelling theoretical argument for it and there
have been many unfounded criticisms and some serious theoretical queries as
well, some of which having been given good answers. Being an interpolation
picture, it should be gualitatively correct (except possibly for the details insider
the interpolation range, some of which can be quite important). While the
behavior of real systems may be sensitive to other effects too (notably,
electron—clectron interactions), the scaling theory does explain better than
qualitatively a large amount of data on any systems, and has made surprising
(at the time) predictions that have been confirmed by experiment. Moreover,
concerning reports about disagreements with the scaling theory predictions,
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one should make sure that real predictions of the scaling theory (e.g., eq. 2.28 is
not valid in the insulator) are tested and that electron—electron interactions do
not play a role.

In the limit of a good conductor one expects the usual Ohm’s law to hold,
ie., o(L) =const. = g(L) x L. In the opposite limit, one expects (see
section 2) both o and g to decrease exponentially with L. Thus, in these two
limits, the logarithmic derivative of g is given by

B

I

dlng {d—Z, g>1 (2.29)

dinL const + In g, g« 1,

where small corrections due to a possible power-law prefactor for g < 1 have
been neglected. The important large-g corrections (Gorkov et al. 1979, Abra-
hams et al. 1979, Hikami et al. 1981, Fukuyama 1980, 1981a,b, Altshuler
et al. 1982a,b,c) will be discussed later. These behaviors are independent of
L and of the details of the system. Since 3 can be obtained from computations
on finite systems, it must be analytic and it can be expected not to decrease
with g. One assumes that (3 stays a function only of g, that is, using
RG (renormalization group) language, that g is the only *‘relevant” variable
and that L is large enough so that the “irrelevant’” ones vanish already in the
whole range L > [, a (I being the elastic mean free path and a the microscopic
length). The above is obviously a stronger assumption than g being the only
relevant parameter only for g>> 1. One then arrives at the picture of 3(g)
changing monotonically and smoothly between the two limits of eq. 2.29, as
shown in Fig. 2.2, where 3 is schematically given as function of In g in various
dimensions.

The Case d £ 2

For d £ 2, 3 is always negative (a notable exception is the case of spin—orbit
interaction at 2D; see, e.g., Altshuler et al. 1982b). This means that if we know
g(Ly) = gy for some small L, then, obtaining g(L) for every L by solving
dlng/dIn L= g(g) with g(Ly) = go, we find that always g(L) ~ exp(—calL)
as L — oo. This can be visualized by noting that gq is represented by some
point on the 3(g) graph and that g(L) will simply flow down that curve with
increasing L, until it reaches the linear range at small g (large negative In g).
The above procedure for this very simple case is called “solving the RG
equations” and the motion of the point along the 3(g) curve, an “RG-flow,”
in the theoretical jargon. The localization length, £, is the L above which the
flow has reached the linear range in In g, which is the macroscopic limit. Since
B(g) becomes very flat when g >> 1, £ increases when g is increased. For g > 1
we expect, from analyticity in g7,

C
Ble)~d—2-— (2.30)
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Figure 2.2 §3(g) at d =1, 2, 3 (schematic).

This has been confirmed (Gorkov et al. 1979, Abrahams et al. 1979) and the
numerical constant C computed as a function of the number of dimensions, d,
by perturbation theory. This is called the weak localization regime and will be
discussed in section 6. £ is roughly defined as the scale at which 8 decreases
substantially from d — 2 and approaches the linear range. This can be esti-
mated using the rough approximation eq. 2.31 or even 3 ~ d — 2, extrapolated
to g ~ 1, and is consistent with taking

g(&) = a numerical constant of order unity. (2.31)

We note that this agrees with eq. 2.23 for the effectively 1D case. In 2D, £ will
be exponentially large for large g, (i.., larger than the distance to the sun for
R(Ly) = 1073

Note that eq. 2.29 yields a correction to the ohmic behavior, (L) = const,
for L « ¢, that is,

o(L) =goLo — C\L Z (2.32)

I
g(L) = g — C; In(L/Ly) 2.

il

Thus, as a function of L, when L is increased, one should first obtain the weak
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Figure 2..3 Resistance versus temperature for several effectively 2D samples
(d = 210 A). The broken horizontal curve marks the “critical” Ry above which the
resistance of the samples increases faster than logarithmically.

localization correction eq. 2.32, until L ~ £, and then one gets into the
(strongly) localized range with the behavior discussed before. Most interesting
is the 2D behavior: The system is, in principle, never a metal. Nonclassical
logarithmic corrections will be seen at relatively high temperatures, where
Ly < & (however, when the temperature is too high, so that L, is smaller
than the smallest microscopic L, allowed (L, ~ /) this theory will break
down). Upon decreasing T, g will decrease and R will increase. Once
R~ h/e2 (the numerical constants yield R ~ 30 k), one crosses over
into strong localization with an exponential increase of R with L. Thus “2D
metals are not really metals.” A necessary condition for 2D behavior is that the
thickness of film «L,, as before.

These surprising predictions are now confirmed in the weakly localized
range by many experiments. It is also apparent that ¢(T — Q) — 0 for 2D
samples with R > 30k on an attainable scale. There is an experiment by
Ovadyahu and Imry (1983) on thin InO films, shown in Fig. 2.3, where the
same sample crosses over from weak In T behavior to a stronger increase with
decrease temperature around R 2 30 k{2, which is a remarkable confirmation
of the above surprising prediction.



30 INTRODUCTION TO MESOSCOPIC PHYSICS

The Case d > 2, the Metal-Insulator (M-1) Transition

The new feature which appears for d > 2 is the occurrence of a metal-nonmetal
transition, associated with the fact that 3(g) vanishes at some g = g.. This zero
of B(g) follows because 3 is positive for g — oo and negative for g — 0. The
value of g, as well as the slope, s, of 3 at g.—which will have an important role
to play—are numerical constants that can be obtained from approximations
(Vollhardt and Wolfle 1980, 1982) or from simulations (Stein and Krey 1979,
1980, MacKinnon and Kramer 1981, Kramer et al. 1990). It is agreed that s is
of order unity (but not exactly equal to unity) and g, is perhaps 2-3 for
d = 3, which is the case of most interest. We note that if g on any scale is
> g., the conductance will “flow” to the Ohmic, conducting, limit as L — oo.
Likewise, if g is sometimes < g, it will “flow” to the insulating range, g ~ e oL,
when L — oo. g = g, is a “fixed point” of the RG transformation, that is, if
g = g, on some scale then g = g, on all scales, including L — oc and thus
o~g.L 40 in the macroscopic limit. According to this simple theory,
all materials (where an important necessary condition for the applicability of
the theory is their being homogeneous on the scales of interest) “‘sit” on the
same universal §(g) curve and can be distinguished from each other, for
example, by their conductance, g;, on some microscopic scale, Ly. Clearly,
all materials with gy > g, are conductors and all those with gp > g, are
insulators. It is interesting to find out what happens when the transition is
approached by changing the ‘“control parameter” e¢=|lngy—Ing|=
lgo — gc1/g. < 1 (¢ =0 at the transition). For a range of scales, L, from L,
on, the behavior can be approximated by 8(g) ~ sn(g/g.), until g changes
enough to get into the macroscopic range (where the limiting forms of eq. 2.29
are valid). The scale beyond which the macroscopic laws apply is denoted by &,
in analogy with the usual correlation length in other phase transitions. By
integrating the linear approximation to 3(g) from L, to £, we find

In(go/g.) Ly (233)
so that
£~ LOE:ES_SSE~ (2.34)
€

Thus, the critical exponent of the diverging £ is v = 1/s (v is a constant of
order 1 at 4 = 3), employing the usual notation. In the “‘macroscopic,” L > ¢,
regime, g x e M in the insulating and g o L*? in the conducting phase,
where the first correction to the latter can be obtained from eq. 2.30. In both
cases, in the whole range /) < L < £, g should not change by much more than
an order of magnitude within the crossover range from the “critical” (or
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“microscopic’) regime to the macroscopic one. Thus, the macroscopic con-
ductivity for the metal is given by

const

e 42, (2.35)

Uoo(L - OO) ~

Note that the M-I transition in this theory is a continuous second-order
transition (o — O continuously as the transition is approached and £ — oo)
and there is no “minimum metallic conductivity.” The “minimum metallic
conductivity” value, o,,, still gives one an estimate of when nontrivial things
start to happen. The continuity of the localization transition for noninteracting
electrons is now believed rather generally. The value of the exponent v is still
under active study; its numerical value appears to have converged to a value of
1.5+ 0.1 (Ulloa et al. 1992, Kramer and MacKinnon 1993, Hofstetter and
Schreiber 1993). The physical meaning of £ in the insulating phase is
obvious—it is the localization length. The above considerations suggest that
€ in the conducting phase is the length below which the behavior is roughly the
same as in the insulating phase in the same regime (L <« &), where the wave-
functions and various correlation functions and Green’s functions behave
similarly in the two phases. It is only for L > £ that the difference between
exponential decay and a nonzero average value is apparent.

For L < £, the two phases (insulating and metallic) are qualitatively
similar. In both of them g does not change by more than an order of magnitude
in the range from L, to &, as mentioned above. Thus (apart from the variation
in g, which is relatively unimportant for large £):

o(L) ~ 0w (%)H L58), (2.36)

that is, the conductivity (and therefore the diffusion constant) is scale dependent
for L « ¢ (Imry 1981b, Shapiro and Abrahams 1981, Shapiro 1982, Imry and
Ovadyahu 1982b).

' The “anomalous” diffusion in the microscopic regime L < &, as given by
eq. 2.36, has interesting consequences for the relationship between time and
length scales in this regime. Instead of L? ~ Dt for usual diffusion, here D is
renormalized as the scale is changing, and dL?/dt = D, where D, is the
diffusion constant on scale L. This implies

LY~ 72D 1, (2.37)

where D, is the macroscopic diffusion constant in the metallic phase for the
given £. Thus, in terms of an inelastic scattering time, 7, 77, as before,
the appropriate length which is given by L, ~ /D7y ~ T/ (eq. 2.25) in
the macroscopic regime, is given here by
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Ly~ (72D 7)1 o TP, (2.38)

in the microscopic critical regime (d = 3 was taken in the last relationship).

In both the macroscopic metal and the “microscopic” regime of both metal
and insulator the large-sample conductivity as a function of temperature is
given by g(L,)- Ly “ as discussed earlier. In this critical regime g stays a
constant within about an order of magnitude and

o(T) ~ Ly~ TP L P (atd =3). (2.39)

In the macroscopic conducting regime 3(g) is given by eq. 2.30, whose inte-
gration yields g(L,) and hence

o(T) = const + CLE ™ = const + O(TP¢ /%), (2.40)

where the correction (“weak localization”) increases with T like an appropriate
power (which becomes a log in 2D). There exists now experimental evidence for
both eq. 2.39 and eq. 2.40 in the appropriate domains, where the former is the
relevant correction to the normal behavior in the “microscopic regime.” In the
range where these considerations are valid (Ly > [ is an important condition
necessitating not too clean samples and low temperatures) we are getting a
negative temperature coefficient of resistivity (TCR), which is a universal
attribute (Imry 1980a) of dirty conductors! Moreover, to get a negative TCR
at temperatures around room temperature, where I, is very small, one needs an
I comparable to the interelectron distance and o just somewhat larger than
Omin- We believe that this constitutes a valid qualitative explanation for the
Mooij correlations discussed in section 1.

The smallest permissible value of the short-distance cut-off length Lg is
usually taken as ~/. However, there exist many cases where inhomogeneity of
some sort exists in the system and it may be viewed as homogeneous only on
scales larger than some homogenization length /,,. For granular metals, J,,
should be on the order of the grain size, d. Near the percolation threshold,
1,, will be on the order of the percolation correlation length. I, values of 10° A
are not uncommon. It is well known experimentally that in these systems
the “nominal” elastic mean free path near the M-I transition is very small
(1072-107* A is possible) and hence the associated conductivity is much
smaller than any appropriate ,,;. In granular metals (for a review, see Abeles
et al. 1975), these conductivity values characterizing the M-I transition are
found to go like 1/d (d being here the grain size). These facts are easily under-
stood noting that /,, (or d in granular metals) is the appropriate scale L.
Thus, from the scaling theory the conductivity around which localization is
important should be (Imry 1980)
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2
€

~ = 4
0y hlho, (2 1)

in good agreement with both the order of magnitude and grain size dependence
(Adkins 1976) mentioned above. These facts are hard to understand using
naive o,,, Yoffe-Regel considerations.

In the presence of a magnetic field B, the relevant length scale, called
(see eq. 2.46 below), depends on B, and it is especially relevant once /y < L.
This may yield a relatively large negative magnetoresistance (MR), in analogy
to the weak localization case (section 5). This may be the explanation for many
cases of “anomalously large” negative MR in dirty systems. It is easy to see
from the scaling theory that a magnetic field yields delocalization (Efetov 1983,
Lerner and Imry 1995). Further complications, such as spin—orbit scattering,
may change the sign of the MR, and there is now a large body of work on these
aspects, including also the changes of £ with B and the possible effects of
electron—¢lectron interactions (Altshuler and Aronov 1979, 1985, Altshuler
et al. 1980a,b).

A concise presentation of the results of the scaling theory for (L) in the
3D metallic range not too far from the transition is provided by Fig. 2.4, The
Iower curve depicts o(L) at the transition, it simply goes as o.Ly/L where

gcez/hLo The upper curve is for o(L), somewhat above the transition.
Here a(L) goes like 1/L in the mlcroscoplc range £ > L > L, and like
Om+€C /RL in the macroscopic regime L > £. The macroscopic o, is
Aé /hE where A is the order of magnitude of g where 3(g) becomes closc to
unity, that is, 4 ~ 10. The correction to o at L = £ is on the order of ¢*/h¢.
Thus o, is still important for L < ¢; this is relevant for the interpretation of
experiments in the microscopic regime that have supported eq. 2.39 (Ovadyahu
and Imry 1983).

As mentioned before, many experiments on quas1 1D and 2D, and on 3D
systems are in very good qualitative and semiquantitative agreement with this
picture, provided that some new ideas on the mechanisms for inelastic scatter-
ing are accepted (chapter 3). One can now approach a quantitative under-

Ae?
Omacro =_hf_

Figure 2.4 4(L) in 3D (schematic).
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standing of the experiments, especially if the effects of electron—electron corre-

lations are understood. The two general new features that the experiments have
revealed are

1. 7, is typically shorter by a few orders of magnitude in dirty systems
(Schmid 1074) than naively expected for otherwise similar pure ones.
2. The temperature dependence of 7, is weaker than in the pure case.

We are now in the process of gaining a quantitative understanding of these
effects. This will be discussed in chapter 3.

We conclude this discussion of the scaling theory by briefly mentioning
dielectric and optical properties. The ability to screen the long-range part of the
Coulomb interaction is as important an attribute of the conducting state of
matter as the finite conductivity itself. In addition to the static screening, the
frequency dependences of o and the dielectric constant e determine the non-
trivial optical properties (including the microwave and infrared ranges) of the
conductor. Important anomalies in all these properties exist around the M-I
transition and in the insulating phase near the transition. These were fully
analyzed by Imry et al. (1982) and by Abrahams and Lee (1986). We just
mention here that within the Thomas-Fermi screening picture, the static
screening in the dirty metal is the same as in the puie one.

5. THE WEAKLY LOCALIZED REGIME

We shall very briefly discuss here the weak localization regime (for reviews
see Fukuyama 1981b, Altshuler et al. 1982b, Bergmann 1984, Lee and
Ramakrishnan 1985) where the quantum corrections to the classical con-
ductivity are small, but quantitatively known. The constant C in the 2D case
in eq. 2.32 is 1/7%. This means that the weak localization correction found by
integrating eq. 2.29 is as in eq. 2.32:

2 2

€
mn — .42
AG = 5 In L, » AG(T)=+ Zh In 7 (2.42)

In terms of the resistance per square, R,

ARD/RD = RD InT (243)

7r2h

e., Ry decreases when T increases, the relative effect is increasing like
R /(h/€). In one dimension, a similar procedure leads to the “quantum
correction” (see eq. 2.32)
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and in 3D

Ao 1
-~ const + O <Z)’ (2.45)

where, as before, the appropriate scale is L, at finite temperatures. The
effective dimension of the sample is determined by comparing the appropriate
length with L, (see also Kaveh et al. 1981, Davies et al. 1983).

There is another correction to the conductivity due to electron—electron
interactions (Altshuler and Aronov 1979), which has a temperature dependence
that is not easy to separate from the above. It turns out that measurements of
the magnetoresistance (MR) are extremely useful in this respect.

The easiest way to understand the weak localization MR is as follows.
Assume a magnetic field B perpendicular, for example, to the 2D layer. Over
a range /g in space with

2wBl% = ®,, ®, = hc/e = the single-electron flux quantum  (2.46)

a flux of the order of one flux quantum pierces the system. The usual gauge
transformation (appendix C) on the p + ed/c term in the Hamiltonian yields
that the electron acquires a phase ~1 by motion on a scale /;; = \/fic/eB in this
field. The length /g is thus in this case a candidate for the physical length
determining the scale on which the motion is as at 7 = 0, H = 0. (The physical
understanding of the relevance of I is clearest using the semiclassical picture
described later in this chapter.) Now we have two cases: (a) Iy </, (“strong
fields™), where the characteristic physical length is /5, and, for example,

2

Ac(B) ~ e;—h In B (2.47)

in the weak localization regime in 2D; (b) Iy > [, (“weak fields”), here / is
roughly the relevant length, with small corrections proportional to B2, Here
the field causes a O(B*) magnetoconductance which can yield direct informa-
tion on 74. This “weak localization” MR is relatively large and often negative,
but becomes positive for strong enough spin—orbit scattering.

There are now many cases in which the measured magnetoresistance agrees
quantitatively with the detailed predictions in the weak localization regime
(Bergmann 1984). Complications due to various spin and magnetic effects
are rather well understood. In particular, a strong spin—orbit scattering
multiplies the weak localization corrections by a universal negative constant.
This is physically understood in terms of the semiclassical picture explained
below. There exist several excellent reviews on this subject (Altshuler et al.
1982b, Bergman 1984, Lee and Ramakrishnan 1985, Aronov and Sharvin
1987).
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A further measurement that can distinguish between the localization and
interaction contributions is that of the Hall constant Ry. In the pure localiz-
ation theory it should not have any In T temperature term in 2D (this may be
very roughly interpreted as confirming that the density of states (DOS) does not
change for noninteracting electrons). On the other hand, the interaction terms
yield a ARy (T)/Ry which is twice AR(T)/R. The overall behavior of the
Hall effect is still a problem under active study, both experimentally and
theoretically.

While the weak-localization results were first obtained using diagrammatic
perturbation theory (a systematic expansion in 1/kgp/), a very instructive
interpretation based on semiclassical ideas was later developed (Larkin and
Khmelnitskii 1982, Bergmann 1984, Chakravarty and Schmid 1986). The
amplitude to go from one point to another is a sum over Feynman paths,
which can be approximated by a sum on classical trajectories, J:

N
Ag=Y 45" (2.48)
=

where S; is the action of the jth path from ! to 2 and A4; an appropriate
coefficient. The probability to go from 1 to 2 is a sum of the # classical
terms (A" is the “number of paths™) Z 1[A > and the interference terms
Doz Aid; ¢Si=S)/* The latter sum has 0(./V ) terms but it has strong can-
cellatlons and is usually argued to vanish upon “impurity ensemble averaging.”
By that we mean as usual an average over all microscopic realizations (e.g.,
different defect arrangements) of systems with the same macroscopic properties
(e.g., average deffect concentrations). Such averaging is supposed to be auto-
matically applicable in a large system. It is necessary in order to restore trans-
lational invariance to various correlation functions and Green’s functions in
theories of disordered systems. (We remark, however, that these interference
terms are the source of the very important “mesoscopic fluctuations” to which
we shall return later.) There exists a large class of trajectories whose contribu-
tions do not vanish upon ensemble averaging when time-reversal symmetry is
obeyed (B = 0). These are the pairs of time-reversed paths that start at a point
and return to it. Since the two members of such a pair have the same phase,
they lead (without spin—orbit scattering) to an enhanced probability for return
to the initial point, hence to a smaller probability for diffusion away. The
corresponding negative correction to the conductivity can be shown to be
given by, with 7, the long-time cut-off for these quantum effects,

Ao =— %D L) dt w(?) (2.49)

where w(?) = (47rDt)_d/ 2 is the classical return probability and 7, a short-time
cutoff. It is easy to see that this yields the weak localization corrections egs.
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2.32, 2.45. The magnetic field, once Iy < L, destroys the phase coherence
of these conjugate paths and thus strongly reduces or eliminates the weak
localization corrections, eventually restoring the classical conductivity. How-
ever, for (usually much) larger values of B, the large-field limit is obtained.
There the physics is very different, and requires a separate study, which will be
done in chapter 6.

Problems

1. Integrate the linear approximation to 3(g) around g, to get eqs. 2.32, 2.45.
2. Prove that eq. 2.38 is indeed valid for anomalous diffusion, D(L) ~ 1/L.



Dephasing by Coupling with
the Environment, Application to
Coulomb Electron-Electron
Interactions in Metals

1. INTRODUCTION AND REVIEW
OF THE PRINCIPLES OF DEPHASING

Many of the interesting effects in mesoscopic systems are due to quantum
interference. Among these are, for example, the weak localization corrections
to the conductivity (section 5, chapter 2), the universal conductance fluctua-
tions (chapter 5), persistent currents (chapter 4), and many others. These effects
are known to be affected by the coupling of the interfering particle to its
environment, for example, to a heat bath. The way such a coupling modifies
quantum phenomena has been studied for a long time, both theoretically
(Feynman and Vernon 1963, Caldeira and Leggett 1983), and experimentally.
The effect of the coupling to the environment may be characterized by the
“phase breaking” time, 7,, which is the characteristic time for the interfering
particle to stay phase coherent as explained below.

Stern et al. (1980a,b) have studied the way the coupling of an interfering
particle affects a two-wave interference experiment. This discussion will be
based on their work. Two methods have been used to describe how the inter-
action of a quantum system with its environment might suppress quantum
interference. The first regards the environment as measuring the path of the
interfering particle. When the environment has the information on that path,
no interference is seen. The second description answers the question naturally
raised by the first: How does the interfering particle “know,” when the inter-
ference is examined, that the environment has identified its path? This question

38



DEPHASING BY COUPLING WITH THE ENVIRONMENT 39

is answered by the observation that the interaction of a partial wave with its
environment can induce an uncertainty in this wave’s phase (what counts
physically is the uncertainty of the relative phases of the paths). This may be
described as turning the interference pattern into a sum of many patterns,
shifted relative to one another. The two descriptions were proved to be
equivalent, and this has been applied to the dephasing by electromagnetic
fluctuations in metals, and by photon modes in thermal and coherent states.
Here we will review the two descriptions, and examine in sections 24 the
dephasing by the electron—electron interaction in metals. We shall find it con-
venient to consider that problem from the first point of view mentioned above,
rather than the second, that is, to find out where the information on the
interfering electron path is hidden in the bath of electrons it interacts with.
An early simple model for dephasing (Biittiker 1985b) considered the inter-
fering electron going into a particle reservoir and an electron from the reservoir
replacing it. For a reservoir with a continuous spectrum, this may yield a
change in the state of the reservoir, which will cause dephasing.

As a guiding example, we consider an Aharonov—Bohm (A-B) interference
experiment on a ring. The A-B effect has been proved to be a convenient way
to observe interference patterns in mesoscopic samples, because it provides an
experimentally straightforward way of shifting the interference pattern. This
experiment starts with the construction of two electron wave packets, /(x) and
r(x) (I, r stand for left, right), crossing the ring (see Fig.3.1) along its two
opposite sides. We assume that the two wave packets follow well-defined
classical paths, x;(), x,(f) along the arms of the ring. The interference is
examined after each of the two wave packets has traversed half of the ring’s
circumference. Therefore, the initial wavefunction of the electron (whose
coordinate is x) and the environment (whose wavefunction and set of
coordinates are respectively denoted by x and 7) is

Y(1 = 0) = [I[(x) + r(x)] ® xo(n)- (3.1)
At time 75, when the interference is examined, the wavefunction is, in general,
¢(To) = l(x7 TO) ® Xl(n7 TO) + r(xv TO) ® Xr(nv TO) (32)

and the inference term is

2Re [I*(x, To)r{x, Tp) jdn x1(n 10)x-(n, 7o) (3.3)

Had there been no environment present in the experiment, the interference
term would have been just 2 Re[/*(x, m)r(x, 79)]. So, the effect of the inter-
action is to multiply the interference term by [ dn x7(n)x.(n) at 7. This is
so since the environment is not observed in the interference experiment; its
coordinate is therefore integrated upon; that is, the scalar product of the two
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Figure 3.1 Schematics of interference experiments in A-B rings. Each partial wave
traverses half the ring, and the interference is examined at the point B. This kind of
interference gives rise to h/e oscillations of the conductance.

environmental states at 7, is taken. The first way to understand the dephasing is
seen directly from this expression, which is the scalar product of the two
environment states at 7p, coupled to the two partial waves. At ¢ =0 these
two states are identical. During the time of the experiment, each partial
wave has its own interaction with the environment, and therefore the two states
evolving in time become different. When the two states of the environment
become orthogonal, the final state of the environment identifies the path the
electron took. Quantum interference, which is the result of an uncertainty in
this path, is then lost. Thus, the phase breaking time, 7,, is the time in which
the two interfering partial waves shift the environment into states orthogonal
to each other, that is, when the environment has the information on the path
the electron takes.'

The second explanation for the loss of quantum interference regards it
from the point of view of how the environment affects the partial waves,
rather than how the waves affect the environment. It is well known that
when a static potential ¥(x) is exerted on one of the partial waves, this wave
accumulates a phase

! We note that the question of whether somebody does or does not come in to observe the change of
state of the environment, simply does not arise. The rather nebulous disussions of the importance
and effect of that observation are best avoided.
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¢ = —J V(x(t)) dt/h (3.4)

and the interference term is multiplied by €. “A static potential” here is a
potential which is a function of the particle’s coordinate and momentum only,
and does not involve any other degrees of freedom. For a given particle’s path,
the value of a static potential is well defined. When V is not static, but created
by environmental degree(s) of freedom, V' becomes an operator. Thus its
value is no longer well defined. The uncertainty in this value results from the
quantum uncertainty in the state of the environment. Therefore, ¢ is also not
definite. In fact, ¢ becomes a statistical variable, described by a distribution
function P(¢). (For the details of this description see Stern et al. 1990a,b.) The
effect of the environment on the interference is then to multiply the interference
term by the average value of €, that is,

() = jP(as)e"‘*’ do (3.5)

The averaging is done on the interference “‘screen.” Since € is periodic in ¢,
(¢®) tends to zero when P(@) is slowly varying over a region much larger than
one period, of 27. When this happens, one may say that the interference screen
shows a superposition of many interference patterns, mutually canceling each
other. Hence, the phase breaking time is also the time in which the uncertainty
in the phase becomes of the order of the interference periodicity. In the
Feynman-Vernon terminology, (¢*) is the influence functional of the two
paths taken by the two partial waves. This is, then, the second explanation
for the loss of quantum interference.

The statement of equivalence between the two explanations is given
by the equation

() = J dn xi (Mxr(x) (3.6)

When the environment measures the path taken by the particle (by x;
becoming orthogonal to x,), it induces a phase shift whose uncertainty
is of the order of 27. The equivalence embodied in (3.6) is proved as
follows.

We start considering dephasing of the right-hand path x, only. The
generalization to two paths will be seen later. The Hamiltonian of the environ-
ment will be denoted by H,,,(7, p,), while the interaction term is ¥ (x,(t),7)
(the left partial wave does not interact with the environment). Starting with the
initial wavefunction (eq. 3.1) the wavefunction at time 7, is
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W) = l(ro)e” Her™ o (m)

. i[m
ot T ep| 1 [ dt (o 4 V)| xal, @)
0
where T is the time-ordering operator. It is useful at this point to write ¥(7;) in
terms of ¥;(1) = &'V (x,(1), n)e”He', that is, the potential ¥ in the inter-
action picture. Using V;, ¥(#) can be written as

w(T()) = [(TO) ® evthnyTo/hxo(n) + r(To) ® e—iH,,,,-ro/hT"v
[d
% e"P[—’J ;tVz(xr(t), t)} Xo(m)- (3.8)
0

Hence the interference term is multiplied by

Cole= T exp| 4 | B+ 1) s
= Gl oxp | £ [ Vi 0, 0] oo 69)

The interpretation of this expression in terms of a scalar product of two
environment states at time 7, is obvious. The interpretation in terms of
phase uncertainty emerges from the observation that eq. 3.9 is the expectation
value of a unitary operator which can be defined as the operator corresponding
to €. As all unitary operators, this operator can be expressed, if desired, as the
exponential of a Hermitian operator ¢, that is,

al exp| 5 [t Vi(x0), 0] ) = Glebea)- - (310

Hence the effect of the interaction with the environment is to multiply the
interference term by (™), where the averaging is done with respect to the
phase probability distribution, as determined by the environmental state xg.

The phase operator ¢ was introduced here by means of the mathematical
properties of unitary transformations, so that it still deserves a physical inter-
pretation. To obtain such an explanation, we first discuss the case where the
potentials exerted by the environment at different points along the particle’s
path commute, that is,

[Vl(xr(t):t)v Vl(xr(tl)vt/] =0. (3'11)

Then,
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(xolT exP[‘ﬁL dt Vl(xr(t)at):} X0}
i [
= bolexp[~7 [ de Va0, b, @12

and ¢ = —1 [ dt V;(x,(1), 1). In this case ¢, the rate of accumulation of the
phase, is just the local potential acting on the interfering particle, independent
of earlier interactions of the particle with the environment. One should
distinguish here between two limits: for (6¢%) < 1, eq. 3.12 yields

() = &9 (1 -1 (66%)), (3.13)

and the environment’s potential can be approximated by a single-particle
(possibly time-dependent) potential

(Vi(x, (), ) = (xol Vi (%, (), )Xo0)- (3.14)

For (6¢2) > 1, on the other hand, the interference term tends to zero. The
crossover between the two regimes is then at

R I N (ZOMVACI NG

= (Vi (0, ) (V106 (), 1))) ~1, (3.15)

where xo(n, 1) = e Hen'ny (n) is the environment state as it evolves in time under
Hem"

When is the condition in eq. 3.11 valid, and what happens when it is not?
A typical case where the potentials at different points along the path are
commutative is the case of an interfering electron interacting with a free

electromagnetic field. In that case the interaction is
e,
VI(xr(t)7t) = _Zxr(t) 'A(X,(t),t), (316)

where A(X, t), the electromagnetic free field, is in obvious notation
o 12
A(x, 1) = Zem [—:E—} (g e® =t 4 a,t g xtity (3.17)
[S)

and [V;(x, 1), V;(x't')] = 0 unless |x — x'| = c|t — t’|. Since %,(7) < ¢, the con-
dition of eq. 3.11 is valid. Generally, this condition is valid when there is no
amplitude for an environment excitation created at (x,(z), f) to be anihilated at
(x,(t"),t"), that is, when a change induced in the environment’s state at
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(x,(1), 1) does not influence the potential the environment exerts on the inter-
fering particle at (x,(¢'),¢’). In the above example, a photon emitted by the
electron at (x,(¢),¢) will not be at (x,(¢),¢') when the electron gets there.

If instead of discussing the interaction with a photon field, we turn our
attention to the interaction with phonons, the speed of light in egs. 3.16 and
3.17 is replaced by the sound velocity in the analogous theory. Then, a phonon
emitted by the electron at (x,(¢), ) might be encountered again by the electron
at (x,{¢"),7'). Hence lattice excitations created by the electron along its path
may affect the potential it feels at a later stage of the path. The potential the
electron feels at a given point of its path is now not a local function of that
point, but depends on the path since it includes a “back reaction” of the
environment to the potential exerted by the electron. Therefore this potential
will be different from V;(x,(f),t) and, consequently, the rate of phase
accumulation will also differ from V;(x,(z), ). However, in large many-body
environments the potential exerted by the environment on the interfering
particle is usually practically independent of the particle’s history since the
environment’s memory time is very short. Therefore eq. 3.11 can be assumed
to hold.

We thus see that the loss of interference due to an interaction with a
dynamical environment can be understood in the two ways discussed. The
interference is destroyed either when the state of the environment coupled to
the right wave is orthogonal to that coupled to left wave, or, alternatively,
when the width of the phase distribution function exceeds a magnitude of
order unity. The interaction with the dynamical environment turns the phase
into a statistical variable, and this, together with the fact that the phase is
defined only over a range of 2w, determines the conditions for the phase to
become completely uncertain. If the potential exerted by the environment on
the interfering particle at a given point along its path is assumed to be inde-
pendent of the path, the phase uncertainty is given by

6t = | 5 | 00V, 00)

TOQITO dt/
o h

0
- <V1(X,(I), t)) X (Vl(xr(tl)v t,»]' (318)

The exact behavior of the interference term for (§¢%) > 1, that is, the value
of (¢'®) for broad distribution functions, depends on the phase distribution,
P(¢). However, the description of the phase as a statistical variable enables us,
under appropriate conditions, to apply the central limit theorem, and conclude
that P(¢) is a normal distribution. The central limit theorem is applicable, for
example, when the phase is accumulated in a series of uncorrelated events (e.g.,
by a series of scattering events off different, noninteracting, scatterers), or,
more generally, whenever the potential-potential correlation function decays
to zero with a characteristic decay time much shorter than the duration of the
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experiment. In particular, the central limit theorem is usually applicable for
coupling to a heat-bath. For a normal distribution,

(%) = -0/ (3.19)

This expression is exact for the model of an environment composed of
harmonic oscillators with a linear coupling to the interfering waves. The
evaluation of (¢”®) by eq. 3.19 reproduces the result obtained by Feynman
and Vernon for a rather similar model. Feynman and Vernon’s result was
obtained by integration of the environment’s paths. This model was proved
to be very useful in the investigation of the effect of the environment on
quantum phenomena (e.g., Caldeira and Leggett 1983). Equation 3.19 is there-
fore a convenient way to calculate the influence functional for many-body
environments, where the central limit theorem is usually applicable.

As seen from eq. 3.15, the phase uncertainty remains constant when the
interfering wave does not interact with the environment. Thus, if a trace is left
by a partial wave on its environment, this trace cannot be wiped out after the
interaction is over. Neither internal interactions of the environment, nor a
deliberate application of a classical force on it, can reduce back the phase
uncertainty after the interaction with the environment is over. This statement
can be proved also from the point of view of the change the interfering wave
induces in its environment. This proof follows simply from unitarity. The
scalar product of two states that evolve in time under the same Hamiltonian
does not change in time. Therefore, if the state of the system (electron plus
environment) after the electron—environment interaction has taken place is

(1) ® Ixt) + 11(1) ® X2, (3.20)

then the scalar product (xg,)v(t)lng,)v(t)) does not change with time. The only
way to change it is by another interaction of the electron with the same
environment (see the discussion at the end of this chapter). Such an inter-
action keeps the product (x'(1)|x2, (1)) ® (r(1)]1(#)) constant, but changes
(xg,)v(t)lxg,v(t)). The interference will be retrieved only if the orthogonality is
transferred from the environment wavefunction to the electronic wave-
functions which are not traced over in the experiment.

The above discussion was concerned with the phase ¢ = ¢,, accumulated
by the right-hand path only. The left-hand path similarly accumulates a phase
¢; from the interaction with the environment. The interference pattern is
governed by the relative phase ¢, — ¢, and it is the uncertainty in that phase
which determines the loss of quantum interference. This uncertainty is always
smaller than, or equal to, the sum of uncertainties in the two partial waves’
phases. The case of noncommuting phases will not be discussed here.

Often the same environment interacts with the two interfering waves. A
typical example is the interaction of an interfering electron with the electro-
magnetic fluctuations in vacuum. In this case, if the two waves follow parallel
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paths with equal velocities, their dipole radiation, despite the energy it transfers
to the field, does not dephase the interference. This radiation makes each of the
partial waves’ phases uncertain, but does not alter the relative phase. We shall
encounter more examples later demonstrating that the environment excitations
created must be able to distinguish / from r in order to dephase their inter-
ference. Another well-known example is that of “coherent inelastic neutron
scattering” in crystals (see, e.g., Kittel 1963). This process follows from the
coherent addition of the amplitndes for the processes in which the neutron
exchanges the same phonon with all scatterers in the crystal.

The previous example demonstrates that an exchange of energy is not a
sufficient condition for dephasing. It is also not a necessary condition for
dephasing. What is important is that the two partial waves flip the environment
to orthogonal states. It does not matter in principle that these states are
degenerate. Simple examples were given by Stern et al. (1990a,b). Thus, it
must be emphasized that, for example, long-wave excitations (phonons,
photons) cannot dephase the interference. But that is not beause of their low
energy but rather because they do not influence the relative phase of the paths.

We emphasize the dephasing may occur by coupling to a discrete or a
continuous environment. In the former case the interfering particle is more
likely to “reabsorb” the excitation and “reset” the phase. In the latter case,
the excitation may move away to infinity and the loss of phase can usually be
regarded as, practically speaking, irreversible. The latter case is that of an
effective “bath” and there are no subtleties with the definition of ¢ since eq.
3.12 may be assumed. We point out that in special cases it is possible, even in
the continuum case, to have a finite probability of reabsorption of the created
excitation and thus retain coherence. This happens, for example, in a quantum
interference model due to Holstein (1961) for the Hall effect in insulators (see
also Entin-Wohlman et al. 1995a,b).

2. DEPHASING BY THE
ELECTRON-ELECTRON INTERACTION

An interesting application of the above general principle is the dephasing of
mesoscopic interference effects by electron—electron interaction in conducting
samples. Stern et al. (1990a,b) have applied the phase uncertainty approach to
dephasing by electron—electron interaction in metals in the diffusive regime.
They have shown that this approach reproduces the results obtained in the
pioneering work of Altshuler et al. (1981b, 1982a). Following Stern et al., we
now consider the dephasing due to electron-electron interactions from the
point of view of the changes induced in the state of the environment, using
the response functions of the latter. In the original work of Altshuler, Aronov
and Khmelnitskii, the phase uncertainty induced on the particle by the electro-
magnetic fluctuations of the environment has been considered. We will see that
the fluctuation—dissipation theorem guarantees the equivalence of these two
pictures.



DEPHASING BY COUPLING WITH THE ENVIRONMENT 47

The general picture is that of a test particle interacting with an environ-
ment. For definiteness, we consider an interfering “electron,” whose paths are
denoted by x, (), interacting with a bath of environment electrons, whose
coordinates are y;. The identity of the interfering electron with those of the
bath will be handled approximately later. The Coulomb interaction of the
interfering electron with the rest of the electrons is, in the interaction picture,

. pr(r' 1) &'
Vi(x,0) = JFI_(I;-_)HT—’ (321)

where g;(r,t) =€) _;6(r—p {(£)) — p. For brevity of the following expressions,
we first consider only the interaction of the electron bath with the right partial
wave of the interfering electron, we omit the corresponding subscript, and we
begin by assuming (this will be relaxed later) that the electron bath is initially in
its ground state, |0). Assuming that the left partial wave does not interact with
the electron bath, the intensity of the interference pattern is reduced by the
probability that the bath’s state coupled to the right wave becomes different
from |0). Up to second order in the interaction, this probability is

2> [[af a0 oo omemiee.o0. 62

ln)#lo)

For the ground state (0}5(0) = 0, so that the summation in eq. 3.22 can be
extended to include all states. We neglect the changes in the paths x, (f) due to
the interaction; thus only the phase due to the latter is taken into account. The
interpretation of eq. 3.22 as the variance of the phase given to the particle
by the interaction with the environment is clear. We now express P in terms
of the response of the environment. using the convolution theorem,
Jd fr—v")g(r') = (2n)7 [d>q fg,e ™" where f, and g, are the Fourier
transforms of f and g, we write

1 JT" JT° ,J 3 J 3 ,41re41re (1)—ig"-x(t'
=———| ar| a'|d’q|d’g Pa(D)pyr (7)) 015
%l “, q p qlz(q()pq())

T R2m)°
(3.23)
We assume translational invariance:
(pgpy) = (@n )35(q+q)(pp ) (3.24)
q0q’ Vol 9P g .

(For a finite system the ¢’s are discrete and one just has 04q'- Going to the
continuum, the Kronecker delta is replaced by (27)°/Vol times the Dirac
delta.) By performing one g integration and inserting a complete set of inter-
mediate states, we obtain:
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= Vel BZZ] @[ ar [ “;’e) (016 ()1 (el * (1) 03 0=+,
(3.25)

By transforming into Schrédinger picture operators (see, e.g., appendix A) and
inserting a dummy integration variable w, P can be rewritten in the form

~ o, 4l @ |+ o[ o

X §(w — wyo)ed () —iule=1), (3.26)

At first glance, eq. 3.26 looks useless, due to the practical impossibility of
calculating the bath’s eigenstates |n). However the usefulness of that expression
stems from its relation to the linear response expression for dynamic structure
factor (see appendix A, eq. A.11) and the imaginary part of the complex
dielectric function where both are related by the fluctuation—dissipation
theorem (see eq. A.13)

1 4rPe? 4t
m(e(q, w)) = Vol 2% q2hz| (OlLIm | 8(w — wyo) = Vol 77 S(q,w). (3.27)

Thus, eq. 3.27, becomes

T ( 2
- J ° df_[ “ar Jd3qjdw4ilm ! g EO=xN-R0=1) (3 78)
a2r) e Jo 7 €(g,v)

Equation 3.28 is the powerful central result of this section. Before proceed-
ing to a discussion of this result, we comment that the calculation can be
generalized to treat an electron bath initially in a thermal state. The integrand
in eq. 3.28 is then multiplied by coth(w/2kpT). The probability that the state
of the environment be changed during the time 7, is expressed through an
integral over the dissipative part of the response, that is, the excitability of the
system. The equivalent expression via the dynamic structure factor through the
fluctuation—dissipation (F-D) theorem simply expresses this by integrals over
the inelastic scattering probability. It is well known (see, e.g., Nozieres 1963)
that the energy loss to the system by inelastic scattering is given in a similar
fashion by an integral over S, or Im(1/€). The new feature of our result is the
appearance of the classical path x(#), along which the excitation of the envir-
onment occurs. The phase in the exponentials in eq. 3.28 is the relative phase
between two traversals of the path with the (¢, w) scattering occurring at ¢ and
t'. This is averaged using the (weak) scattering probability.
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Equation 3.28 was obtained for the excitation of the environment caused
by the electron along the path r only, which will lead to its phase uncertainty
§¢%. The interaction of the path ! will similarly lead to a 8¢ and one can
similarly obtain the cross terms (8¢, 6¢;) = (6¢; 6¢,). The total reduction of
the interference will be governed by the fluctuation of the relative phase.

(80, — ¢)%)) = (807) = (667) — 2(561 60,), (3.29)

where in (6¢>, 8¢;) (i, j=1,r) the term SO i eq. 3.28 is replaced by
-5 The cancelation occurring among the terms in eq. 3.29 will be
shown to be of decisive importance at and below two dimensions. We will now
draw a few conclusions out of the above calculation.

1. For good conductors, Im(1/e(q,w)) = w/dno, and the probability that
the state of the electron’s bath was changed in the path x(¢) is

2
! J di J d’ J J dw £ it (x(0=2 N-iw(=0) cory
T R2n)? T¢*0

2kB
(3.30)

For x(t) = x,(t), this probability (as long as P < 1) is just one half
of the uncertainty in the phase (642) accumulated by the right partial
wave. This result is equivalent to the AAK one, and we shall obtain
below (section 3) the phase breaking time, 7,, out of it. The present
derivation demonstrates that the origin of this dephasing is in the
electrostatic electron—electron interaction, and establishes the con-
nection with the linear response of the bath.

2. For poor conductors Im €(q,w) < Re €(g,w). Then, the ¢,w integrals
in eq. 3.26 will have significant contributions only from those values of
g,w in which Re e=0. A typical example is w = w,, the plasma
frequency.

3. In both cases mentioned above, the rate of dephasmg depends crucially
on the imaginary part of the dielectric response function. This, in turn,
determines the rate at which the electron bath is excited by the inter-
fering electron. It should be emphasized here that the polarization of
the electron bath by the interfering electron, reflected in the real part of
the dielectric response, does not dephase the interference. This polar-
ization disappears when the electron leaves the polarized region and
therefore it does not identify the path taken by the electron. For a
general discussion of the relation between dissipation, excitations and
dephasing, the reader is referred to Stern et al. (1990a,b).

4. The above discussion of dephasing due to the Coulomb interaction can
easily be generahzed to any two-particle interaction V(r —r"). This is
done by replacing ¢*/|r — r'| in eq. 3.21 with ¥(r — '), and following
the derivations in egs. 3.22-3.30. In particular, it is interesting to
consider the case of a short-range potential, which can be
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approximated by V(r—r') o 6(r—r'). For such a potential, the
probability that the bath’s state is changed is proportional to the den-
sity—density correlation function of the bath’s electrons,

Ty 0
x J dtJ ar' (p(x(1), Dp(x(t'), ). (3.31)
0 0
Thus, the intensity of the interference effects provides information on
the density—density correlation function of the bath, which is again
related to the dynamical structure factor and the dissipative part of
the response.

5. As emphasized above, the interaction of the environment with the
interfering partial waves changes the state of the environment, so that
it acquires information on the path taken by the interfering particle.
One might then consider the case of a very slow electron traversing a
piece of metal and examine the change it induces in the state of the
metal. At a first glance, it looks as if the state of the metal adiabatically
follows the motion of the electron, so that when the electron leaves the
metal, the metal is back in its initial state. However, since the excitation
spectrum of the electron bath is continuous, the adiabatic argument is
never applicable. It is true that the electron induces a polarization in the
bath, polarization that follows its motion adiabatically and disappears
when the electron leaves the metal. But, due to the bath’s continuous
spectrum, this polarization has to involve an excitation of the bath, and
this excitation does not disappear when the interaction of the bath with
the interfering electron is over.

The situation is different, of course, for insulators. There, due to the
gap in the excitations spectrum, a very slow electron can polarize the
bath without exciting it, that is, without identifying its path.

6. We have chosen to express the dephasing in terms of dynamic correla-
tions of densities. Using the continuity equation p,,, = —(g/w) - j,, one
may express the latter in terms of dynamic current correlations. The
longitudinal (parallel to ¢) components appear in the latter (due to
having V -j in the charge conservation condition, which can in turn
be expressed in terms of correlations of the longitudinal components
of the vector potential A) as in the original work of Altshuler, Aronov
and Khmelnitskii. We believe that the presentation here makes the
connection with the Conlomb e—¢ interaction very clear.

7. For w < k,T, the last factor in eq. (3.30) may change the behavior
when the small w processes are dominant.

3. REVIEW OF RESULTS
IN VARIOUS DIMENSIONS

The final expression (3.30) of the previous section defines the phase uncertainty
accumulated by the right partial wave. The physically meaningful object is the
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uncertainty in the phase difference between any two paths, for example, the
right and left ones. It may be felt that this difference should be of the same
order as each of the uncertainties (§¢?) and (6¢?). This is in fact true for d > 2;
however, for d < 2, each of the above single-path fluctuations diverges in the
thermodynamic limit. This not-very-physical divergence is cancelled by its
counterpart in the mixed (8¢, 8¢,) terms. So, here the subtraction is crucial.
The divergence is a typical “infrared,” or low g effect and it is seen immediately
from the 1/4” in the denominator of eq. 3.30, which at 4 < 2 is not cured by the
phase space factor ¢! from the ¢ integration. This divergence and its remedy
are in exact analogy with, for example, the by now well-known anomaly in the
fluctuations of the 1D and 2D lattices (e.g., Imry and Gunther 1971). It is also
relevant, for example, for lower-dimension superconductors, see Chapter 7.

To evaluate eq. 3.30 and the three other terms discussed following eq. 3.29
we start with the w-integration. The integrand will be seen in section 4 to vanish
for energy transfers much larger than kg7 and to typically peak at much
smaller energy transfers. Thus the integration produces a peak around
' — =0 whose width is (kzT)™'. We assume that the times of interest,
such as 7, and the duration of the interference experiment, are much longer
than (kBT)"l. The w integral can then be approximated as proportional to
2m6(r —t’). This is, in fact, the assumption that k5774 >> 1. This means that
the width of the quasi-particle excitations is much smaller than their energies,
which is a basic assumption of the Fermi liquid theory underlying much of our
thinking about metals. The final results will indeed be consistent with this
assumption. Summing together all the four terms of the phase uncertainty,
we obtain

eszT .

(6¢%) :%f dtjdk = sin® {4 [k - (x1(2) — x,(2))]}, (3.32)

and 7,, the phase breaking time, is the value of 7, for which the phase uncer-
tainty is of order unity.

There are two important points that should be emphasized regarding this
expression. The first is that (6¢2) is not necessarily a linear function of time.
Since the intensity of the interference term is reduced by the factor e~/ 2)<‘5¢2),
this means that the reduction of the interference term does not have to be a
simple exponential function of time. This result is important in the analysis of
the conductance of a mesoscopic ring as a function of the magnetic flux inside
the ring, discussed in Chapter 5.

The second point is the strong dimensionality dependence of the phase
uncertainty. Equation 3.32 for d = 1, 2 where d is the dimensionality of the
sample) can be approximated as follows. For ¢ - (x; — x;) < 1 the dangerous
¢* denominator is compensated by the sin? and this contribution is easily seen
to be small. For ¢ (x; — x,) > 1 we have an oscillatory contribution which
tends to cancel out, and we remain with the average, %, of the sine squared. This
would diverge at small k, except that the integrand is cut off with g(x, — x,)
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becoming comparable with unity. Thus g ~ 1/|xy — x| is the relevant
“infrared” cut-off for a divergent [dg ¢°73. This yields, with ¢ multiplied by
the film thickness in thin films and by the wire cross-section in thin 1D wires,

) ~ ST " ) -t (333

In other words, the mam contribution to the ¢ integral of eq. 3.32 comes from
g ~ |x(1) — x5(1)|”", and large values of ¢ contribute much less. Since for

typical paths in a diffusive medinm |x,(¢) — x;(¢)| ~ VDt, we obtain for
these paths

2
(667 ~ e kBTD(Z—d)/Zt(4—d)/2‘ (3.34)
[

and for the phase breaking time (at which (6¢°) ~ 1)

1 2/(4~d)
e sz,,r_p(f—dW} 439

The case d = 2 is special in that logarithmic factors appear. A careful analysis
(see appendix E) shows that there is a logarithmic correction to 7, but it is of
the nature of log(cdh/e?), d being the thickness of the film, and no log T
contribution appears. [The argument of the log is the dimensionless con-
ductance per square, g, of the system.]

For d = 3, the ¢ integral of eq. 3.32 diverges at the upper limit. It is cut off
by the condition D? < w < kyT, that is, by |q| = (kzT/D) 2 (see, e.g., Imry
et al. 1982). Then

2 1/2
e“kgT [kpT
681~ 5] o

where we assume that (kgT/D)"?|x,() —xz( ) > 1 for most values of 1.
Therefore, for d = 3,

1/2
~ ——iD————. (3.36)
et(ksT)**
These results lead often, especially at low T, to stronger dephasing than that
due to the electron—phonon coupling. Thus, in disordered metals, interference
is dephased mainly by the Coulomb interaction or, equivalently, by longi-
tudinal fluctuations of the electromagnetic potential. Unlike the transverse
fluctuations that originate in the photon modes and exist also for insulators,
the longitudinal modes originate from electron—electron interactions, and
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are diminished when the metal becomes an insulator. The most effective
fluctuations in one- and two-dimensional conductors are those of wavelengths
comparable to the distance between the two interfering paths, that is, those
where g ~ I I Longer wavelengths contribute to the uncertainty in each wave’s
phase but keep the relative phase well-defined since they cannot resolve the two
paths. Shorter wavelengths make the relative phase uncertain, but their mag-
nitude is relatively small.

Above two dimensions the phase uncertainty increases linearly with time,
but in a one-dimensional system, for example:

(66%) ~ [T—;] " (3.37)

with 7, given by eq. 3.35. The 2/3 power of eq. 3.35 has received convincing
experimental confirmation by Wind et al. (1986), Pooke et al. (1989) and
Echternach et al. (1993). The former results for T;] as function of T are
shown in Fig. 3.2. 7, was obtained from the weak-localization magneto-
resistance.

We will now discuss how the effective dimensionality of the system is
determined. Consider a slab of thickiess d. Intuitively, one might argue that

T T T T
O Wlres Al2a0,b,¢c
3 Wire Ag2 o2
io''}- @ FilmAI2F '
—0.5
100 E
2 2
T —1.0 :
10°% -—2.0
/ —5.0
108 L 1 1 1

2 5 10 20
TEMPERATURE (K)

Figure 3.2 Phase breaking rate vs. temperature (from Wind et al. 1986). The solid
lines for the wires are fits by eq. 3.35, d = 1. The data for wire Ag2 (W = 100 nm) from
2 to 4.5 K are normalized to the Ry and D of the Al samples to allow comparison
with results for the Al wires. The solid line for the 2D Al film is a fit by the
formd., T + AepT with 4}, =39 x 10 K~ s7!. The dashed line gives the electron—
phonon rate, *. The scale for L, applies for the Al samples only.
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during the time 7, the electron propagates a characteristic distance L;. For
L, < d, it is clear that the propagating electron will typically dephase before
feeling the finite thickness, and the dephasing process will be approximately
3D-like. On the other hand, for L, > d, the diffusing electron cloud fills the
whole film thickness and propagates in a 2D manner before dephasing has

occurred. Thus, the condition for effectively low-dimensional behavior would
appear to be

L, > appropriate length of the system. (3.38)

However, an analysis (e.g., Sivan et al. 1994b, mentioned below) of the k
integration in eq. 3.32 shows that the length Ly = (iD/kgT), and not L, is
the relevant one in eq. 3.39. The relevance of the energy (i.e., k3T )—dependent
length to interactions has been noted before (e.g., Altshuler and Aronov 1979,
1985, Imry and Ovadyahu 1982a). Since Ly 2 Ly, the correct condition is
more restrictive.

In a thin wire, the 1D behavior will apply once Ly is larger than both
transverse dimensions. When the wire is also of a finite length L, a further
crossover will happen once Ly > L. The system will then become zero-
dimensional (0D), where 1/7, is proportional to T2, Similar crossovers to
0D will happen for d = 2, 3 (Sivan et al. 1994b) as well. This result is of special
interest due to the following circumstance. Equation 3.38 with Ly replacing Ly
implies that at the crossover to 0D, kzT ~ E.. We shall now demonstrate
that the crossover to 0D prevents the Landau-Fermi-liquid theory from
being violated in a narrow wire. Recall that a basic assumption of the
Fermi-liquid theory is that the width of the quasiparticle excitation is much
smaller than its energy. Since it is suggested physically that the above width is
h/7,, this condition at temperature T is kgT'7,/% > 1. Since eq. 3.35 implies
that 7, ~ T3 at d = 1, the above condition appears to be violated at low
enough temperatures. using the Einstein relation and the fact that o in the 1D
result (eq. 3.35 with d = 1) is multiplied by the cross-section, we first write the
1D result in the particularly transparent fashion

B (keTA\Y?
%;N(f)zﬂ - G3)

At the crossover kzT ~ E.. kgT is the characteristic energy of an excitation
and its width satisfies /7, ~ E, /g2/3 < kT, since in the metallic regime
g> 1. Thus at the crossover the assumption of a good Fermi liquid
(kpTTs/B) > 1 is well satisfied. Below the crossover, the rate 1/7, decreases
faster than kzT. Thus, the condition for a valid Fermi-liquid picture is always
satisfied. This is very gratifying both on general grounds and because we have
assumed it in our derivation of 7, which is therefore self-consistent. Thus,
although the 1D result appears to be very problematic in this respect, since
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h/7, decreases more slowly with temperature than the energy kgT, the
situation is saved by the 0D crossover. Another way to put the dbove argument
is by saying that the condition for breakdown of the Fermi-liquid picture is
(Altshuler and Aronov 1985) Ly > £, where £ is the localization length. The
transition to 0D occurs when Ly > L. Thus, for a wire which is not in the
localized regime (i.e., its length satisfying L < &), the former will not happen.
The 0D crossover occurs before kgT7,/h becomes smaller than unity, and
rescues the Fermi-liquid theory. Since the the metallic limit the conductance
per square of a thin film is large, the Fermi-liquid assumption is also valid in a
2D thin film (eq. E.3).

We now discuss briefly the evaluation by Sivan et al. (1994b) of the
dephasing rate in a “quantum dot” (a small finite particle), including the
zero-dimensional (0D limit). One has to calculate the relative phase fluctuation,
eq. 3.29. It has four terms, each similar to eq. 3.28, ind to evaluate them one
needs averages of the type (e?"q'(""(’)"‘f'(',))> over the diffusive motion where
i,j=r,l are two diffusive paths. The calculation is done by expanding an
initial wavepacket which is localized at the origin, in terms of eigenfunctions
of the diffusion equation with the appropriate boundary conditions (zero
current through the surface) for the dot. The time-dependence is then obtained
by letting the wavepacket evolve with time according to the appropriate
eigenvalues of the diffusion equation. It is important that the g = 0 mode is
irrelevant for an isolated dot, due to charge neutrality. The calculation is done
for an electron of energy e above the Fermi energy at T = 0, and as shown in
the next section the effect of the Pauli principle is to limit the w integration to
the interval [0, €].

Each of the dot’s dimensions L; defines a Thouless energy in the diffusive
regime,

; _hD
E =-—. 3.40

=D (3.40)
For € > all three ECi, the integration is three-dimensional and one obtains the
3D result eq. 3.36. Once ¢ < a given E,, the effective dimension is reduced in
that direction or those directions. In the quantitative calculation, important
numerical factors appear (Sivan et al. 1994b). In the zero-dimensional limit
€ < E, = min;(E;), one finds

4 A e\?
T4 R \E) (3.41)

This implies that, for energies € 2 E,, the inelastic broadening is enough to
effectively smear the discrete spectrum (A7y/h < 1). This agrees with
experiments (Sivan et al. 1994a).
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4. DEPHASING TIME vs.
ELECTRON-ELECTRON SCATTERING TIME

Sections 2 and 3 of this chapter were devoted to the calculation of the phase
breaking time, 7,, due to the electron—lectron interaction, using the general
principles developed in section 1. In the present section we discuss the relation
between this dephasing time and the electron—electron scattering time, 7,,. The
latter time-scale is defined in the following manner. An electron is put in a
single-electron eigenstate in a disordered system with a given impurity con-
figuration. This eigenstate is characterized by an excitation energy E. Due to
the interaction of this electron with the Fermi sea, the eigenstate acquires a
width. This width, averaged over all impurity configurations, is 7.,'. This time-
scale obviously depends on the state of the Fermi sea. The case in which the
Fermi sea is at zero temperature was studied by Altshuler et al. (1981b), who
obtained that 7' ~ Ef. The case of a Fermi sea at a finite temperature was
discussed by Abrahams et al. (1981) for a two-dimensional system. Other cases
were studied by Schmid (1974) and by Eiler (1985).

In this section we review the results of previous calculations of 7,,, with
two goals in mind. The first is to relate them to the 7, calculation, and to show
whether, when, and why these two times are similar. The second is to discuss
an important subtlety overlooked by our calculation of 7, namely, the Pauli
constraint of the energy loss of the interfering electron. Since, in the approach
we have taken in sections 2 and 3, the interfering electron is taken to be
distinguishable from the rest of the electrons, the state to which it is scattered
1s not restricted to be vacant. On top of that, the amplitude for an exchange of
the interfering electron with an electron from the Fermi sea is neglected. We
shall try to use the 7, calculation in order to study how significant the errors
made in our present approach are, and how a relatively simple recipe can
semiquantitatively correct them.

We start our review of the 7,, calculations with the zero-temperature case,
and then extend the results to finite temperatures. The golden rule expression
for the scattering rate is, in this case (we take /i = 1 in the rest of this section),

E 0
—1~ = —Zﬂ—j' de de
Tee  n(0)L4 Jo

—w

X Vapss'6(E — €)8(E —w — €g)(e — E)8(c +w—€5),  (3.42)
afyé

where n(0) is the density of states at the Fermi energy; a, 3,,6 label exact
single-particle states with energies €,,¢€g,¢€,, €5, and V is the Coulomb inter-
action. By diagrammatic methods Altshuler et al. obtained the following
expression for the impurity-averaged 7;;:



DEPHASING BY COUPLING WITH THE ENVIRONMENT 57

2% (£ d , 1
rg;:ij dw[—;l i 2Re[. ZJ. (3.43)
T Jo q° * + (Dg* + 4m0) iw+ Dq

Before proceeding to study how this expression is related to the derivations of
the previous sections, we consider its simple interpretation. The integration
variable w is the energy transfer in the scattering. It is limited by £ because
of the Pauli exclusion principle. We emphasize again that the electron sea is at
zero temperature, so that the scattered electron cannot absorb energy from it.
The integrand is composed of the imaginary part of the screened Coulomb
potential,

&2 ow & 1
2 2 2 __21m !
> W + (Dg* + 4n0)’ ¢ €(q,w)

multiplied by the “diffusion pole” Re[l(iw 4 Dg*)]. As shown in appendix D:

! 1 igr 2
N [w T qu} = lmle* ),

where the subscript av denotes ensemble-averaging over diffusive states. We
note that eq. 3.43 resembles eq. F.6 of appendix F, except that the imaginary
part of the screened Coulomb potential (47rez/q2)(1/e(q,w)) replaces its real
part (taken in the static approximation) 1/7n(0). Thus, eq. 3.43 is the first-
order exchange contribution to the imaginary part of the electron’s self energy,
where the perturbation is the complex potential 4me’/qe(q,w). The Pauli
constraints on the electron—hole excitation (e.g., the limitation of its energy
to be at the most w below the Fermi energy) are all hidden in the dielectric
function. Similar remarks apply to a related calculation by Giuliani and Quinn
(1982) for 2D ballistic systems.

The relation of eq. 3.43 to the expressions discussed in the context of 7,
becomes evident when we write the diffusion pole as

1 o ;
- dt —D1—iwt
iw + Dg? Jo ¢

= NJ:O dzJD[x(t)] exp Uffiigi’/ + ig - (x(t) — (x(0)) — iwt|,

(3.44)

that is, as the Laplace-Fourier transform of the average over the diffusive
probability distribution of €4 *("=*) which is =27, Here N is a normal-
ization factor. The electron—lectron scattering time then becomes, defining
x(0) =0,
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0 . ’ 4 2
T = ]\7[ dtjD[x(t)]e‘Jf(’ yar 14p 267
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In the previous section we derived an expression for the time after which an
electron traversing a path x(f) changes the quantum state of the electron sea
with which it interacts (cf. eq. 3.28). Looking carefully at that expression and at
eq. 3.45, we see that 7,' is “almost” the average over diffusive paths x(7) of eq.
3.28 with P(7y) = O(1). The main difference between the two is the limits of
integration on the energy transfer variable w. In the expression for 7, w is
bounded by the excess energy above the Fermi level, E. In the expression for
the dephasing time of the path x(r), it is unbounded. This difference should
come as no surprise to us, in view of the “distinguishability” of the interfering
electron from the Fermi sea in our calculation of the dephasing time. It
obviously suggests a cure to this flaw of eq. 3.28 by limiting the w integration
from 0 to E. This demonstrates that at higher dimensions, d > 2, when 7, is
determined by the typical time at which a single path excites the environmennt,
it is of the same order of magnitude as 7,,. At d <2, we have the subtlety,
discussed in the beginning of section 3.3, that the divergence in the (6¢2) of a
single path necessitates the subtraction of the two paths, which yields the
physically meaningful .

‘What happens at finite temperatures? The finite-temperature expression
for 7,, was derived by Abrahams et al. (1981) (note that we use a different
notation). As one might expect, the sharp Pauli constraint on the energy
transfer is replaced by a smooth function of w, E, and the temperature 7.

w

th="_ _
Ok, T

tanh (3.46)

w—FE
2kgT "
The second term originates from the Pauli principle constraints of the elec-
tron of energy E, as hinted by its E dependence. Our dephasing time
calculation has yielded the coth(w/2kpT) factor, but has failed to yield the
tanh[(w — E)/2kyT] term. Again, the reason for this failure is the neglect of the
Pauli constraint on the energy loss of the interfering electron.

Our comparison of the 7, and 7, calculations brings us then to the
following recipe for the calculation of the diffusive electron—electron scattering
time 7,, when it is meaningful, that is, for d > 2. First, calculate the time it
takes an electron whose path is x(f) to change the state of the Fermi sea it
couples to. Second, average overall diffusive paths x(¢). Third, correct for the
Pauli constraints by using the thermal factor eq. 3.46. At d < 2, only the time
for relative dephasing, 7, is physically meaningful.

Being aware now of the approximations that were made in our calculation
of 74, we may examine the conditions under which this calculation is valid, that
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is, that our neglect of the Pauli principle does not significantly affect the final
result. The answer to this question is easily found by an examination of eq.
3.46. The second term of the thermal factor is negligible when w < k3 7. Thus,
if the dephasing is denominated by energy transfer w which is much smaller
than the temperature, then the neglect of the Pauli principle is not significant.
As seen in section 3, this is the case for low dimensions, d = 1,2. At low
dimensions the time it takes each of the paths x;(¢),x,(f) to change the
quantum state of the Fermi sea diverges due to small momentum and energy
transfers. It is only the strong overlap of the excitations induced by each of the
two paths that makes the dephasing time finite. Thus, the Fermi constraints of
the interfering electron are unimportant. For d = 3 the situation is different.
The dephasing time is dominated by energy transfers of the order of the
temperature. Now, if the energy E > kpT, again the tanh[(w — E)/2kpT)
term does not significantly affect the final result. It is only for £ <« kT that
our calculation of the dephasing time becomes wrong. Since the interfering
electrons we discuss typically have an energy kzT above the Fermi energy,
our calculation of the dephasing time remains qualitatively valid, however.



Mesoscopic Effects in
Equilibrium and Static Properties

1. INTRODUCTORY REMARKS,
THERMODYNAMIC FLUCTUATION EFFECTS

This chapter will be devoted to mesoscopic effects which are not neccesarily
related to nonequilibrium or transport phenomena. Most of our discussion in
the rest of this chapter will be concerned with electronic effects, often with
fluctuations from sample to sample. We shall start here, however, by briefly
reviewing more general finite-size effects due to ordinary thermodynamic
fluctuations.

Such fluctuations are usually negligible in the “thermodynamic limit,” as
far as their contributions to, for example, intensive properties, or to the O(N)
part of extensive ones are concerned. However, thermodynamic fluctuations
may play an important role in special situations where large length scales exist
in the system. We mention here two of these: the elimination of certain types of
long-range order (and, therefore, phase transitions) in low-dimensional systems
and the effects of finite sample sizes on regular phase transitions. There are
several varieties of the former effects.

In systems with “discrete order parameters,” for example a liquid—gas
equilibrium, the energy of a “wall” between two phases, Uy, is finite in the
quasi-1D (finite cross-section) case for short-range interactions. Since the
entropy (Landau and Lifshitz 1959) of such a wall is of the order of
kgIn(L/Ly), where L is the length of the system and L, is some atomic length,
walls will always be spontaneously generated in equilibrium, for a large enough

60
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L. Thus, long-range order in the conventional sense, as well as phase-
equilibrium with arbitrary long segments of the two phases, are impossible.
However, one can make the obvious observations that real systems have a
finite /L, (for typical mesoscopic systems L/Ly ~ 10°-10%. Thus, once
Uw > kgT In(L/Ly), these walls will not be generated and effective long-
range order will be restored (Imry 1969a; it is also shown there that modestly
long-range interactions have a strong effect on the above).

More interesting situations occur in systems having a “continuous
symmetry” (i.e., when the order parameter can be “‘turned” continuously,
e.g., by changing the phase in a superconductor, the magnetization direction
in a Heisenberg ferromagnet, or by continuously shifting the atoms in the
lattice case) Here, one has the phenomenon of a “Bloch wall” (Bloch 1930),
where to create a wall between two orientations of the order parameter in a
system of length L, it pays to turn the order parameter continuously over the
whole length, since this involves a wall energy of Uy ~ 1/L only. This makes
the “lower critical dimension,” at and below which long-range order is
impossible, to be d,=2. Again, at d =2, order is restored below
T « 1/In{L/Lp). An analogy to this that was encountered in chapter 2 is the
occurrence of metallic behavior for weakly disordered metallic films at sizes
L/l S exp(r’gp), (i.e., for 7’gy 2 In(L/I)). Superconductivity at low dimen-
sions will be considered in chapter 7.

In such continuous symmetry systems the situation is even more subtle
since the long-range order is destroyed by long-wavelength fluctuations
(Hohenberg 1967) which are only weakly felt at short scales (Alexander
1968, private communication). Thus, not only is short-range order not affected,
but in special cases one may have a power-law decay of correlations (Imry and
Gunther 1971), which persists until a more interesting vortex unbinding
(Berezinskii 1971, Kosterlitz and Thouless 1973) transition occurs. It is still
not known for sure whether the localization problem in 2D is of a related type.

In addition to the above points, further special effects are possible in a
system where long-range order is broken by thermal fluctuations. One example
is a thin ring made of a superconducting material, to be discussed in chapter 7.
There is a range of temperatures where thermal fluctuations destroy the super-
conducting order. This happens by populating a number of quantized-phase
states of the order parameter along the ring. This quantization is determined
by the periodic boundary conditions. If an A-B flux is introduced, super-
conducting currents flow in each quantized state to shield the noninteger
part of the flux. Thus, the flux is quantized in each state as in a strict super-
conductor, but would appear not to be quantized upon thermal averaging over
long times. The characteristic times for jumps among the quantized states are
typically much longer than any microscopic time, and can (Langer and
Ambegaokar 1967) easily be made astronomically long. Thus (Gunther and
Imry 1969, Imry 1969b,c) this system, which is not a superconductor in the
conventional sense, has equilibrium persistent currents and approximate flux
quantization. The last example provides a motivation for going further and
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considering such currents in normal systems, which will be done later in this
chapter.

In the context of the characterization of whether a given wire is an
insulator, a conductor or a superconductor, it is extremely instructive to review
a fundamental, very general, observation of Kohn (1964). Kohn examined the
sensitivity to boundary conditions of the total many-body ground-state energy,
writing for it an equation analogous to eq. B.4, except that v, is the total
velocity 3, vy, i is the ground state and j is an excited state of the (possibly
interacting) many-body system. Similarly, Kohn derived an exact formal
Kubo-type expression (see appendices A and B) for o(w) in terms of the matrix
elements of #,. The “diamagnetic’” contribution, proportional to the total
particle number and due to the term containing 4° in the Hamiltonian (see
problem 1 of this chapter), was also included. By comparing both of these
expressions and without any further assumptions, Kohn found that

272
. eI #E,
B_r%wIm a(w)—_Vol-hZW (4.1)

where ¢ is the phase shift (due to the flux) which applies when an electron
encircles the ring, as in appendix C. The dielectric response of the metal is thus
related to this general sensitivity to boundary conditions.! If the system is
superconducting and the ground state supports a well-defined phase, this
sensitivity is strongly enhanced, as we shall see in chapter 7.

Let us now briefly consider finite-size scaling near a second-order tran-
sition. We note that the various thermodynamic quantities of a small system
weakly coupled to the environment are well defined only on the average.
However, their instantaneous values fluctuate. When properly defined (Landau
and Lifschitz 1959), intensive quantities such as the temperature can also be
considered as fluctuating® The temperature of a finite system exhibits in
equilibrium the following thermodynamic fluctuation:

2
(AT?) =, (4.2)
where N is the number of atoms and ¢, the specific heat per atom. Equation 4.2
gives only the magnitude of these fluctuations for weak enough coupling to the
environment; their time-dependence is determined by several factors including
the strength of the coupling to, for example, an isothermal environment. For
very strong coupling the system may essentially fluctuate with the much larger

! See also the discussion following eq. 2.22 and in section 2 below.

2For a system thermally connected to a heat bath, the temperature of the bath is fixed and the
energy of the system fluctuates. These fluctuations may be regarded either (Landau and Lifschitz
1959) as just fluctuations in the energy (the degree of excitation) of the system, or of its effective
temperature.
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environment. For weak coupling the system’s own fluctuations are slow and
their rates may be determined by the appropriate coupling strength (see
problem 1 of chapter 8 for a related example).

We emphasize that while (4.2) is not particularly popular among many
theoreticians, it can and does easily yield profound results. For example, the
first theory of finite-size scaling near second-order transitions (see Fisher 1971)
was done by D. J. Bergman and the author (Imry and Bergman 1971) using
eq. 4.2 and its analogues. The idea was that the fluctuations limit how close one
can effectively approach the transition in a finite system~—the transition as a
function of temperature will be rounded by (T — T,),,,, ~ ((AT 2))1/ 2. Thus,
near this broadened transition the correlation length £ should reach its
maximal possible value, the linear size of the system, and other quantities
(e.g., the appropriate susceptibility) will have finite peak values going typically
like some powers of N. This can provide a rather full description of “finite size
scaling,” along with a qualitative understanding of how, when N — oo, the
transition sharpens and the finite peaks become mathematical singularities.

This picture can also be used to derive (Imry and Bergman 1971) bulk
scaling laws among different critical exponents. For example, when ¢, diverges,
“hyperscaling” is immediately obtained from eq. 4.2. When only a higher-order
derivative of ¢, diverges, one has to go to the appropriate higher-order fluctu-
ation formula (Landau and Lifschitz 1959) in order to est~blish the scaling.
This picture can also be used to derive the finite-size rounding of first-order
transitions (Imry 1980b) and to understand how, for example, a thin film
crosses over between 2D and 3D behaviors.? It was also used to obtain expres-
sions (Imry et al. 1973) that connecct critical exponents in different dimensions.
While these expressions are not exact, their accuracy is surprisingly good in
many cases.

Finally, we emphasize again that in a finite system the physical correlation
range £ is obviously limited by the finite size. Thus, even when long-range order
does not exist in the “thermodynamic limit,” the finite system may be as
ordered as if the order existed in the bulk (Imry 1969a). This is exactly the
same mechanism as the more recent one explaining why thin films made from a
metal appear metallic, while “strictly speaking” they are not (Abrahams et al.
1979). The relevant scale to be compared with the localization length, £, is the
smallest of the system’s size, L, the length L, and so on.

An interesting and very speculative consequence of 4.2 emerges at low
temperatures (Imry 1986b, Gunther and Ford 1985 unpublished, Gunther
1989, 1990). We write

(AT 1
T2 - N(cu/kB) .

(4.3)

¥ Similar considerations apply also in the electronic transport problem, see Chapter 2.
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Now consider a small system, very weakly coupled to an isothermal environ-
ment. Since ¢, vanishes as T approaches zero, the r.h.s. of eq. 4.3 will exceed
unity below a certain temperature 7,,,. T, is on the order of the level spacing A,
i.e. ~10 mK for a (300 4)* metallic particle, and is much larger than that for
an insulating system. Let us now attempt to cool the particle below T, by
reducing the temperature of the environment. The particle’s effective tem-
perature, measured by the degree of excitation of its levels, will fluctuate so
much that such cooling appears problematic. Thus, if ordinary thermodynamic
formulas are valid, it would appear that T, is the minimum temperature that
the particle can in some sense be cooled to. Below T, the fluctuations in
thermodynamic quantities (e.g., the energy) become larger than their averages.

The subject which will be of most interest to us will be that of quantum
effects on the static and equilibrium electronic properties of mesoscopic
systems. When treating the bulk, one is accustomed to use the simplification
of a quasicontinuum of states. For a metallic “particle” with, say 10° atoms,
the typical separation, A, between single-particle states at the Fermi energy is
on the order of a few tenths of a kelvin. Thus, clearly at temperatures of 1 K or
less, this “graininess” of the levels becomes important and may influence, for
example, the thermodynamic properties of the system, such as the specific heat
or the magnetic susceptibility (Kubo 1962, Gor’kov and Eliashberg 1965,
Miihlschlegel 1983). The precise spectrum of such a system will usually depend
on many details such as the specific defect arrangement as well as on the shape
or morphology of the surface of the grain, but for many applications, especially
those concerned with an ensemble of grains, it is enough to have some
statistical information on the level distribution. Powerful theories of these
distributions in effectively random systems (due, e.g., to the high sensitivity
to many uncorrelated details) exist and have been extremely successful in
atomic and nuclear physics. These methods and their applications are known
and thoroughly reviewed (Wigner 1951, 1955, Dyson 1962, Mehta and Dyson
1963, Mehta 1967, Brody et al. 1981). Thus we shall not discuss these issues
here in much detail, except for certain aspects that will be directly useful. It is
clear that they are very relevant for disordered (Efetov 1982) and granular
(Miihlschlegel 1983) as well as for some aspects of strongly localized (Sivan
and Imry 1978) condensed-matter systems. We must state already at this stage
that A is not the only relevant energy scale in the problem and it turns out that
the Thouless energy, E. (see egs. 2.20-22 and eq. B6), plays an important role
as well (Altshuler and Shklovskii 1986).

The effects we shall mainly concentrate on in this chapter have to do with
the interference of the electron waves and, in particular, its sensitivity to
magnetic fields or fluxes (Aharonov and Bohm 1959). Such interference
phenomena exist in principle when the temperature is low enough not to
disturb the coherence of the wavefunctions over the relevant spatial scales.
The scattering of electrons by impurities, defects, imperfect surfaces, and so
on, will play an important role in determining the magnitude of the interference
effects but will not eliminate them.
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Several of the interference phenomena that we shall discuss have some
analogy to effects (e.g., related to flux quantization as discussed above) that
are well known and documented in superconductors, where they are brought
about by the appropriate “off-diagonal” long-range order which exists there
(Byers and Yang 1961, Yang 1962, Bloch 1970). However, we emphasize that
we shall consider, to start with, only normal conductors, where the possibility of
coherence is not related to electron correlation but simply to the (finite) size of
the sample being smaller than the appropriate phase randomization length.
Later, in chapter 7 we shall consider systems with superconducting components
as well.

A further consideration which may limit the magnitude of the phenomena
under discussion is the possibility that while these phenomena exist they may
experience some averaging due, for example, to the electrons not being mono-
energetic because of the finite temperature. It will turn out that smaller sizes
and/or lower temperatures will increase the magnitude of the interference
effects, to the point where they become observable.

2. QUANTUM INTERFERENCE IN EQUILIBRIUM
PROPERTIES, PERSISTENT CURRENTS

Generalities, Simple Situations

It was noticed rather early by Pauling (1936), London (1937), Hund (1938),
and Dingle (1952) that equilibrium properties, such as the average energy or
magnetization of a small free electron system with a simple, ideal, geometry, for
example, a perfect disk or ring (which is realized in an aromatic benzene-type
molecule), are sensitive to a magnetic field.* Oscillatory behavior is obtained as
a function of the field, where the scale is set by the magnetic flux through the
system being on the order of a flux quantum, &, = Ac/e. In the particular case
of a ring (see Fig. 4.1a) with an Aharonov—Bohm flux & through its opening,
the thermodynamic functions are periodic in ® with a period &, (appendix C).
Very large fields, ~10° tesla or more, are needed in order to observe the
periodicities in molecules. We shall, however, mainly have in mind man-
made conducting rings. Going continuously to the microscopic molecular
limit is one of the exciting future directions.

We shall from now on concentrate in this section on the ring geometry.
Results of Dingle’s type were obtained later by several researchers in different
contexts (Gunther and Imry 1969, Kulik 1970, Brandt et al. 1976, 1982).
However, an important difficulty was that electron scattering was almost
universally expected (Kulik 1970, Altshuler et al. 1981a, 1982b) to eliminate
these effects in any realistic system.

“*We are going to concentrate here on the case of a ring geometr . The orbital response of a singly
connected “quantum dot” (see, for example, van Ruitenbeck and van Leeuwen 1991) is also of
much interest.
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(a) (b)

Figure 4.1 Schematic ring geometries: (a) ideal ring; (b) ring with very rough shape
and surface.

The point is that it is very difficult to expect a real system to be not only
impurity- and defect-free but also to have perfect surfaces. Some surface
roughening (perhaps not as bad as in Fig. 4.1b) will practically always exist.
Thus, the elastic mean free path, /, will be limited at best by the ring arms’
width and thickness. Hence / will be typically much smaller than, say, the ring’s
circumference L, which is the distance over which the electron’s wavefunctions
experience A-B type interference. One’s first intuition would be that the many
scatterings the electron has to experience when traveling along the ring would
completely eliminate any interference effect. This is, in fact, in agreement
with common notions on electron beam diffraction experiments (including
Aharonov—Bohm type: Chambers 1960, Merzbacher 1961, Tonomura et al.
1982) where care has sometimes to be taken to perform the experiment in a
high enough vacuum to reduce the electron random scattering.

As should be clear from the discussion of chapter 3, this expectation is very
seriously wrong and the analogy with beam experiments is misleading. The
point is that there exists an important distinction between elastic scattering,
due to some static potential in which wavefunctions with well-defined phases
exist, and inelastic scattering. In the latter case, the electron may excite a
phonon or alter the state of a “dust” particle, and so on. The electron will,
as a result, not have a definite phase, as discussed in Chapter 3. The important
distinction between the effects of elastic and inelastic scattering has become
clear through the recent understanding (Thouless 1977, Bergmann 1984, Lee
and Ramakrishnan 1985, Imry 1983c) of conduction in disordered systems via
localization theory (Anderson 1981, Abrahams et al. 1979). Prior to that, in
1966 in an unpublished proposal, R. Landauer informally expressed similar
insights (based on Landauer 1957) and Gunther and Imry (1969) found per-
sistent “diamagnetic”’ currents in a system with a finite resistance as mentioned
in section 1 (see also chapter 7). Before discussing this in more detail, we briefly
review some simple, general results for “rings.” There, the underlying insight is
that for a general doubly-connected system with an Aharonov—Bohm flux ®
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through its opening (Byers and Yang 1961, Bloch 1970) all physical properties
of this “ring” are periodic in ® with a period ®;. The proofis given in appendix
C and it consists of a gauge transformation which establishes an exact equiva-
lence between ® and a phase change of the transformed full wavefunction by

¢ = 21d/d,, (4.4)

when one electronic coordinate is rotated once around the ring. Thus the fluxes
® and ® + n®, are indistinguishable. In addition to establishing the exact
claimed periodicity of any physical property (energy levels, matrix elements
etc.), eq. 4.4 also shows that a noninteger flux is mathematically equivalent to a
change in boundary conditions. This concept will prove extremely useful
throughout this book and we shall discuss an even more elementary way to
establish it later.

In any system obeying the classical laws, which will happen if phase
coherence is lost or averaged over, the Aharonov-Bohm flux & is clearly
relevant. All physical properties do not depend on it. This is, of course, trivially
consistent with the above theorem (a constant is also a periodic, but not a very
interesting function). The real issue is whether there is a sizable sensitivity of,
say, the energy levels or the transition probabilities to ®. Periodicity is always
guaranteed! Here, one sees the connection with the sensitivity of the energies of
the system to changes in the boundary condition (Kohn 1964, Edwards and
Thouless 1972, Thouless 1977). This is fundamentally related to whether the
system is an insulator, a metal, or a superconductor.

A flux sensitivity of the ground-state energy E, at T = 0, or the free energy
F at T # 0, yields a circulating current around the ring. This current is given by

I———ca—F 9E,
T %% T T "5

(4.5)
This can be demonstrated microscopically since ® is proportional to the
azimuthal vector potential 4, and the derivative dF/84 is proportional to
the average of the current operator. For a thermodynamic derivation (Bloch
1970) one may note that if & is changed very slowly with time, an EMF is
induced given by ¥ = —(1/c)®. The product I - ¥ is then the rate at which free
energy has to be supplied to the system at constant 7. From this, eq. 4.5 is
easily obtained. These currents are an equilibrium phenomenon, they thus
“never decay” as long as & is kept on, hence the name “persistent currents.”
It is, of course, well known that such currents exist in superconductors. There,
they exist both in equilibrium and in metastable states (e.g., flux-quantized
states of a ring or cylinder, see chapter 7). Here we consider only equilibrium
persistent currents, at finite @, in a realistic ring. The existence of such currents
has been greeted with some skepticism until recently. This has been based on
the wrong notion that impurity scattering destroys phase coherence, or on the
insistence on taking the thermodynamic limit.
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Figure 4.2 Energy levels as functions of & (schematic) for: (a) 1D ring, (b) non-1D
ring.

Biittiker et al. (1983a) were the first to understand the effect of elastic
scattering, using the simple model of a one-dimensional (1D) ring with
disorder. They noted that the boundary condition (eq. 4.4) is similar to that
satisfied by the Bloch function ¢y in a periodic potential, across the unit cell of
size L. Thus, identifying ¢ with kL establishes a one-to-one correspondence
between the two problems. In fact, the condition (4.4) can then be understood
since the electron experiences the same potential by moving again and again
around the ring, that is, an effectively periodic situation, where the whole
circumference of the ring plays the role of the unit cell. The electronic energy
levels of the ring as functions of @ are like those of 1D Bloch electrons. This is
schematically depicted in Fig. 4.2. Note that the schematic form of Fig. 4.2a is
applicable for an arbitrary random potential along the ring, since it can be
shown (Peierls 1955) that in 1D the only extrema of E(k) are at k =0, +7/a.
For nearly free electrons, one gets the usual wide bands and narrow gaps (i.e.,
V ~ A) where V" and A are the typical bandwidth and band gap, respectively,
while for a strong potential (small transmission along the ring) the opposite
tight-binding situation (narrow bands, large gaps, ie., ¥ < A) is obtained.
The latter case corresponds to strong localization.

It is possible to estimate the flux dependence of the total energy, Ey, at low
temperatures (kpT < A) since it is the sum of all occupied levels. Due to the
alternating signs of 0FE;/3% for consecutive levels, one has a strong cancelation
and the sum is on the order of the last term around Eg. Thus, for N electrons,
assuming V ~ A
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For a strictly 1D ring made from metal with Ep ~ 2 eV with a circumference of
1 um, 7 ~ 107 amp. Since A ~ 10 K, having kzT < A is quite feasible. A
further condition, necessary to observe the oscillation, is a long enough inelas-
tic time, that is,

h/Td? < A7 V, (47)

namely, that the level width is much smaller than the level separation or the
bandwidth, whichever is smaller. The condition #/7, <« V ~ E, can be shown
via the Thouless criterion to be equivalent to /D7, < L. This is physically
clear—the electron has to stay coherent along the whole ring. An unfavorable
case is the limit ¥V < A, where the effects are very small—localized states are
not sensitive to boundary conditions.

Note that in the presence of a finite nonintegral ® the small diamagnetic
type (however, see below for a discussion of the sign) currents flowing around
the ring are persistent once the temperature is low enough so that eq 4.7 is
satisfied. The currents do not decay if the inelastic scattering is weak enough—
this condition just establishes, within a few 7, an equilibrium population
among the states. The current is given by the appropriate average, but there
is no way for the persistent currents to decay. This result had seemed quite
surprising to many but it is obviously correct, similarly to the persistence of
ordinary diamagnetic currents in metals. The decrease of this equilibrium
current amplitude with decreasing 7, and increasing dissipation has been
discussed by Landauer and Bittiker (1985). These currents yield an orbital
magnetic moment, M (sometimes referred to as “diamagnetic,” although M
may be parallel or antiparallel to /) and a magnetic susceptibility y, oscillating
as functions of ®, with a period ®,.

So far we have discussed the case where all the magnetic fields were pure
Aharonov—Bohm type. In the case where there are also some nonzero magnetic
fields inside the metal itself, leading to a flux ®,,, their (spin, as well as orbital)
effects have to be added. There will be no exact periodicity in the total magnetic
flux, only in the dependence on the Aharonov—Bohm part ®. This dependence
is added to the effects due to the magnetic fields inside the material. If the ratio
of the area of the hole to that of the material is large enough (“good aspect
ratio””) one may expect the fast periodic dependence on ® to be still visible on
top of the slower variation due to ®,,. Thus, aperiodic orbital effects analogous
to conductance fluctnations (chapter 5) should occur too. An interesting case
where the effective ring is provided by edge states was considered by Sivan and
Imry (1988) and Sivan et al. (1989).

Many interesting things occur when the flux ® changes with time to yield
an em.f. ¥V = (—~1/c)d®/dt. For the case where V is pure d.c., the resulting
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current will oscillate (Bloch 1968, 1970) with a Josephson-type frequency (e
being the charge of the effective carrier)

w=eV/h. (4.8)

When the change of ® is not slow enough (for a.c. voltage or for a finite d.c.
one), Zener-type transitions (Zener 1930) may occur among the bands. This
necessitates a dynamical treatment which we shall not do here.

Up to now we have discussed only the pure 1D case. However, in most
conceivable experiments, the wires making the ring have a finite cross-section,

A. Thus, the number of transverse states (across the wire) below Ef is on the
order of

N, ~ k%4 (4.9)
and the total number of electrons is
N ~kgLN,. (4.10)

Here, the levels as functions of ® display a much more complicated structure
than in the 1D case. The functions E(®) have many maxima and minima.
Schematically, the structure is as in Fig. 4.2b. It is nontrivial to estimate
even the order of magnitude of these currents, and we shall return to this later.

Before briefly reviewing the free-electron case, we repeat that persistent
currents do exist not only in atoms and molecules but also in ordinary metals,
leading to Landau diamagnetism. They cancel in the bulk, for homogeneous
samples, but a nonzero surface contribution remains. An interesting case is that
of a nonuniform system, for example, a mixture of a metal and an insulator,
where nonzero diamagnetic currents may exist in the bulk—along the metal—-
insulator interfaces, for example. There are important differences, however,
between the mesoscopic problem and the bulk case, where large-scale
coherence is not necessary, for example.

Orbital moments can exist in equilibrium whenever the appropriate
thermodynamic potential, J (e.g., £ at zero temperatures and F at finite
temperatures for canonical systems, {2 = F — uN for grand canonical ones),
depends on the magnetic field, H. The system has then an equilibrium
magnetization, M, given by M = —8J/0H which is the counterpart of eq.
4.5 in the ring geometry. This magnetization can be regarded as due to some
nonzero circulating currents. In the thick ring geometry, these currents flow
along the inner and outer surfaces, and the novel property is the periodicity of
the total circulating current as a function of the A-B flux ®.

Since elastic scattering by itself is not detrimental to the persistent currents,
the very simple case of free electrons on a multichannel ring (N, > 1) is
instructive.’ The interesting result is, essentially, that both the total persistent

* For simplicity we consider only a narrow, short height ring; the long cylinder can also be straight-
forwardly treated (Gunther and Imry 1969, Cheung et al. 1988).
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current and its temperature dependence are determined, in this case, by the
energy level separation for motion around the ring,

h
E; E%M\QA. (4.11)

This is valid in the *“just ballistic” regime / 2 L. There is a possible enhance-
ment (Cheung et al. 1988, 1989) by a factor /N in the exra-pure case, where
the disorder is a small perturbation (Sivan and Imry 1987) and / > N, L. The
subtle crossover between this perturbative regime and the usual ballistic one
(where eq. 4.11 holds) is discussed by Altland and Gefen (1995).

Independent Electrons in Disordered Systems

Since for most physical properties the “geometric” channel number N, in the
ballistic regime is replaced in the diffusive one by the effective channel number,
which is of the order of g (Imry 1986a; see chapter 5), one is motivated to
expect that the appropriate energy scale replacing N, A in eq. 4.11 for the
diffusive regime should be gA ~ E.. It turns out that this is exactly what
happens, as we shall see.

The order of magnitude of the typical, sample-specific persistent current
flowing in a disordered ring is therefore E,/®,, Over the impurity-ensemble,
this current tends to cancel out, since it has, for example, a random slope at the
origin (® = 0). Thus, ensemble averaging may be expected to cancel out, or at
least strongly reduce, the magnitude of the persistent currents. In fact, calcu-
lations for weak disorder have shown (Entin-Wohlman and Gefen 1989,
Cheung et al. 1989) that for noninteracting electrons in the grand-canonical
ensemble, the persistent currents indeed practically vanish upon ensemble
averaging. “Grand canonical” means in this connection that the rings are
taken to be connected to a particle bath having a chemical potential y, and
the electron number N may change with @ in each ring.

We are now in a position to review the experimental situation regarding
the persistent currents. There are now published results from three independent
groups. The first experiment by Levy et al. (1990) was performed on an
ensemble (about 107) of small (about 0.5 um in diameter) copper rings. The
second experiment was performed on a single gold ring or a small number of
such rings, with somewhat larger size (Chandrasekhar et al. 1991). The third
was performed on still larger (but with appropriately longer L,’s) single GaAs
rings entering the ballistic regime (/ ~ L) (Mailly et al. 1993), with the advan-
tage that the ring could be connected and disconnected by suitable “gates” to
outside leads. This enabled transport h/e Aharonov-Bohm measurements
(chapter 5) to be performed to confirm the soundness of the sample. All
three experiments used sensitive SQUID magnetometry to measure the mag-
netic signals, which are periodic functions of ®, due to the currents in the rings.
The latter two experiments, which did not have the increased signal due to the
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Table 4.1 Summary of Results

Theory, Noninteracting Theory with
Electrons Interaction Experiment
One ring Ll ~2E Same as ~ e
without o
. interactions
UF Ec
Lzl ~—— 210-50=—=
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Ensemble- 0, grand canonical 1 II,E‘E(% TR E;/ 1¢0 % ~10? A
average A +In(E, /E.) -10 (] $o
~ —, constant N
2}

many samples, necessitated an even more remarkable sensitivity and noise
reduction.

These experiments are extremely difficult. The combined reesults (those of
the first two experiments are given in Figs. 4.3 and 4.4) seem to show the
existence of persistent currents that do not decay on time-scales of almost
a second (which is effectively “infinite” on any microscopic scale). The
magnitudes of the measured signals are relatively large, in the many-ring
experiment larger by two orders of magnitude than theories for noninteracting
electrons and by about one order of magnitude than perturbative interaction
theories (to be discussed later). The gold-ring experiments yielded results larger
by more than an order of magnitude than any existing theory, while the results
on the ballistic samples of Mailly et al. (1993) agree with theory (4.11) in this
simpler regime. If confirmed, the two former results pose a serious challenge to
theory. For convenience, the results are summarized in order of magnitude in
Table 4.1. Recently, Mohanty et al. (1995) found that the h/e component in
gold rings may be smaller than previously obtained. This needs further
experimentation.

To understand the theory of the persistent current magnitudes, we start
with the “typical,” sample-specific case. The Thouless energy immediately gives
the typical current response of any level to the A-B flux ¢ at small ¢. As long as
E,(¢) can be approximated by its small ¢ quadratic, ~E.¢*, dependence we
find for the typical first derivative at small &

oF,
o

e @

o iypl = —¢ ~zE— (¢ 1) (4.12)
TER

What is the typical total current in the whole interval |¢| < #? Cheung et al.
(1989) calculated it perturbatively. Their result is

Lot iyp ~ CE [ @y, (4.13)
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Figure 4.3 From Levy et al. (1990) who measured the nonlinear response of the
ensemble of 107 copper rings a small part of which is shown is shown in (), as function
of flux (a value of B of 130 G corresponds to h/e). An a.c. signal at a low (~ 1 Hz)
frequency and an amplitude of 15 G was employed and the second (u,) and third (u;)
harmonics (double and triple the a.c. frequency) measured and shown in the figure. The
nonlinearity arises from the periodic flux dependence and these results imply a persistent
current with a period h/2e.
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Such a result was also obtained by Altshuler and Spivak (1987) on the related
model of an SNS (superconducting-normal-superconducting) junction, see
chapter 7. (A related model of a ring with an A-B flux inducing a phase
shift has been treated by Bittiker and Klapwijk (1986) in a study of the h/e
vs. the h/2e periodicity of the conductance). The similarity of the SNS model to
our wholly normal A-B ring stems from the following observation to which we
shall return at a later stage in chapter 7: an electron hitting the N-S boundary
from the normal side is Andreev-reflected (Andreev 1964) as a hole into its
time-reversed path, acquiring an additional phase of —x; (x; is the phase of the
superconducting order parameter in the reflecting S part). The hole in turn gets
to the other N-S boundary and is Andreev-reflected there as an electron with
an additional phase of x; (x; is the phase of the superconducting order
parameter in the second S region). Thus, the net result of the two Andreev
reflections is that the electron comes back to the same path it started on, with
an additional phase of x; — xz. This is equivalent to our A-B ring with
¢ = x1 — x2. Thus, the supercurrent as a function of x; — x, in the SNS
probiem is similar to our persistent current as a function of ¢. The above
discussion ignores normal reflections in the boundaries, which vanish (Blonder
et al. 1982) in ideal situations.

Still another way to understind the result (4.13), which includes some
many-body aspects, is provided by Kohn’s (1964) consideration of the flux-
sensitivity of the total ground-state energy F,. Adding the “diamagnetic” term
to the equation replacing eq. B.4 for Ey, Kohn found (see eq. 4.1)

BE| BN 2 > |o;
0|, , mL* mL?¢

(4.14)

where p is the total momentum in the x direction. (Using the Kubo formula, it
is straightforward to obtain eq. 4.1 from 4.14.) As Edwards and Thouless
(1972) did, one assumes that the two terms in the r.h.s. of eq. 4.14 almost
cancel out. The result is given by the (small) difference between the two
terms on the r.h.s. of eq. 4.14, which is of the order of the term with the
smallest E; — Ey (of order A) in the sum in that equation. Using eq. D.I
with ¢ — 0 for the semiclassical matrix elements of X between the ground
state and the first excned state and going from xy; to py, in the usual way or
by determining lpo,l from the conductivity (eq. B.2), we obtain eq. 4.13 in
order of magnitude quite generally.

The Semiclassical Picture

It turns out that much insight into the persistent-current problem can be
obtained by employing a semiclassical approximation to the path-integral
formulation of the problem (Imry 1991, Argaman et al. 1993). This is also
helpful in order to understand under what conditions an ensemble-averaged
persistent current may arise.
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Let us start from the Green’s function G(r,r', E). The density of states
(DOS) is given by

n(E) = Y85 - B) = (1/m) [ % Im G(r,r, ), (4.15)

J

In the following, we shall leave the space integration understood and use in this
section a volume of unity. We also use the approximation for G(r,r,E) as a
sum over all classical paths of given energy which start at and come back to r.
Let us denote by 4, the contribution to G(E) from paths winding n times in the
clockwise direction around the hole of the ring. The magnitude of 4, will be
discussed later. We denote at zero magnetic flux 4, = |4,]e"® and for systems
with time-reversal symmetry 4, = A_,. The presence of the A-B flux, @, will
multiply 4, by €"?(¢ = 27®/®,). Thus, in the presence of the flux the modified
DOS at zero temperature is given by

ne(E) = ny(E) + 2|4, sin ¢; cos ¢ = 2|4,|singd, cos2¢ + - - -
= ng(E) + 6nycos ¢ + ny cos2¢p + - - -
=ny(E) +ng(E), (4.16)

no(E) being the (usually dominant) flux-independent part and 6ng (F) the flux-
dependent correction. A4, and ¢, are functions of E. The typical phase of a
diffusive path covering a length L is kpL? Ji~ EpL? /hD; thus we expect ¢, to
generally increase with E at a rate of ~7/E,, and this rate for ¢, will increase
strongly with n.% Equation 4.16 is a very convenient presentation of the flux-
dependence of n,(E) as a series of harmonics. Several important and nontrivial
insights can be gained by simple inspection using this presentation:

1. Given a dephasing time 7, all paths requiring a time much longer than
T4 to go around the ring, will be exponentially cut off. Thus, all details
of the DOS on scales finer than #/7, will be smeared out. The 4,
contribution typically requires a time 7; ~ h/E,. Thus, the condition
for survival of the first harmonic of the flux-dependence is

and higher harmonics will be cut off by dephasing progressively faster.
The energy scale A is irrelevant for this issue (Stern et al. 1990a,b).

2. In addition to dephasing, the flux-dependent harmonics will be pro-
gressively damped with increasing temperatures by energy-averaging.
Here too, the relevant energy scale to be compared with kpT (dis-
regarding the relativity unimportant energy dependence of |4;)) is E,’

5The resulting almost periodic fluctuation of ng(E) is in agreement with numerical results
(Bouchiat and Montambaux 1989 and Divincenzo 1990, unpublished).

7 Notice that E,/kgT ~ (Ly/L)%.
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for n =1 and smaller and smaller scales for increasing n. It can be
shown that this averaging also cuts off the flux dependence in an
exponential manner.

3. When a quantity such as sin ¢, is averaged over the usual impurity-
ensemble the phase ¢, will fluctuate so much that the ensemble average
(sin¢,),, vanishes. It is this impurity-ensemble averaging which
destroys the h/e-periodic A-B oscillation and the universal conduc-
tance fluctuations (UCF) in rings and wires (chapter S5). This is expected
to happen once the system is large enough in comparison with the
impurity scattering scales. It was indeed found (Entin-Wohlman and
Gefen 1989, Cheng et al. 1989) that under appropriate conditions,
ensemble-averaged persistent currents vanish exponentially with L//.

4. The representation of én by sums over closed paths (see in this con-
nection Berry (1985)) is related to the weak-localization corrections to
the conductivity, o (Larkin and Khmelnitskii 1982, Khmelnitskii
1984b, Bergmann 1984, Chakravarty and Schmid 1986, Argaman
1993 unpublished). However, these quantities are determined respec-
tively by Im G and |G|2. The correction to g is of the order of unity.
Thus, we expect

ény ~ 1/A, etc. (4.18)

It is interesting that the flux-dependent contributions to the DOS are
related to those of the conductivity! This analogy can be used to con-
firm the result in eq. 4.13.

A strong result that follows from the observations (2) and (3) above is that
the ensemble-averaged DOS is flux-independent for L >> I. The same statement
is valid for a given sample with kzT > E_. This is the basis for the belief
commonly expressed in the literature (see, e.g., Altshuler et al. 1981a, 1982b)
that equilibrium properties should nor show flux-dependence after ensemble-
averaging. This result follows immediately from the observation that, for
example, the partition function is an integral (Laplace transform) over the
DOS, so that its flux-sensitivity is destroyed by ensemble averaging!

The above is indeed valid for the single-particle partition function. The
situation is different, however, for a many-particle system, even without the
effect of interactions. For a grand-canonical system, that is, one where
the chemical potential rather than the particle number is given, all equilibrium
properties are again given by integrals of n(E) times the Fermi function
and/or its derivatives. Thus, in this case too, ensemble averages of equilibrium
properties should have no flux dependence for a large system. This is in agree-
ment with the results of Entin-Wohlman and Gefen (1989) and Cheung et al.
(1989). In order to get flux-dependence in ensemble-averaged equilibrium
properties for noninteracting quasi-particles, one clearly needs a nonlinear
dependence on ény(E). It turns out that this is exactly what happens in
an ensemble which is actually more appropriate for many experimental
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configurations (probably including that of Levy et al.). Consider an ensemble
of systems whose macroscopic parameters are identical but in which the spe-
cific arrangement of the impurities in each of them is different. Suppose that
each of these rings has a fixed number of electrons which cannot change when ®
is varied. This should happen, for example, when the metallic rings are depos-
ited on a neutral insulating substrate. We shall refer to this as a canonical
ensemble, still allowing the number of electrons, N, to vary among members
of the ensemble (for discussions of the various ensembles, see Kamenev and
Gefen 1993, 1994, Kamenev et al. 1994). The crucial point is that N is constant
in each member ? but we believe it is not crucial for the diffusive regime. This
variation of N from system to system is, of couise possible, but it does not
change the results. Moreover, the systematic dependence of the results on the
parity of N is lost in the diffusive regime. Differences between the usual grand-
canonical case and that of constant N have been discussed by Landauer and
Biittiker (1985). They also appear in Cheung et al. (1988).

For clarity, we present this part of the treatment at zero temperature,
where the N lowest levels are filled up to some Er, and since N is constant,
Er may vary with the flux ¢. Writing, following the discussion by Imry (1991),

Ep(¢) = E; + Alg), (4.19)

we find from the constancy of N that to second order in the flux-dependent
terms 6n,
SN4(E 1n;
4(EF) _ oA

A(¢) +T= 2"0

(¢)- (4.20)
Here n, stands for ng(EY), né for the derivative at (E), and SN, (E) is defined
by

E

SN(E) = L bny(e) de. (4.21)

Next we evaluate the canonical average of the energy for a specific system,
subtracting the value, Ey, of the energy at ¢ = 0:

Ep+A(8)
E — EO = J
E°

Ef
ny(e)e de + J dny(e)e de. (4.22)
0
F
We expand the first term in powers of A(¢) (or 6n) and evaluate the second one
by parts. The first-order term in the former cancels and the total first-order
contribution to E — E; becomes

8 The variability of N among ensemble members was emphasized by Bouchiat and Montambaux
(1989).
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5
AED () = —J 5N (e de. 4.23)
0

This is a sample-specific contribution which varies randomly from sample to
sample (but retains the symmetries—periodicity in ¢ and evenness in ¢ for the
systems obeying time-reversal symmetry considered here). It is immediately
seen that a sample-specific //e-periodic term similar to eq. 4.23 exists in the
grand-canonical case too.

One can use eqs. 4.18 and 4.23 to make estimates for the magnitude of
AEY(¢) (and hence of the persistent currents). To do that, one needs more
information on the delicate cancelation in integrals such as eqs. 4.21 and 4.23.
All we can do, at this stage, is make reasonable but ad hoc and tentative
assumptions on this issue. A better understanding necessitates a more complete
treatment of the appropriate spectral correlations, to be discussed later. Let us
thus tentatively assume that the oscillating integrands in egs. 4.21 and 4.22
cancel except for the last shell of width E, (as discussed before, this is the
average “period” of én(E)). The number of level: in this interval is of order
g. Assuming that the contribution of that interval add randomly, we obtain

[6N(EF)lp, ~ noAvE ~ 0(v/2)- (4.24)

Assuming again that the integral (4.23) is similarly determined by the “last
shell,” one obtains |8E|,, ~ E,, in agreement with Cheung et al. (1989),
Altshuler and Spivak (1987) and Montambaux et al. (1990).

Upon ensemble-averaging, the contribution AE(I)(QS) will, of course,
vanish, as all other direct higher-order terms do. However, in the second
order (in 6N and 6(¢)), the terms of eq. 4.22 are

BED(@) =[5 m00)]_4%(6)+ A@SN(ED)
~3ERG 8N - BoNL(ED) =T AN, (42)

where we have used eq. 4.20. Upon ensemble averaging we find, using eq. 4.18
and the first-order part of eq. 4.20,

(AED (@) = 5 (ANHED) = 324 (ANE)

= const x cos’ ¢. (4.26)
At small ¢, we obtain

AE®(¢) = const — const’ x ¢*. (4.27)
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The small-¢ persistent current is linear and odd in ¢ and “paramagnetic” in
sign! We are going to see later that this sign follows from a very fundamental
property, the decrease with ¢ of the fluctuation appearing in eq. 4.26. This
decrease is due to the tendency of the magnetic flux to break time reversal
symmetry, which leads to an effective weakening of the level repulsion.

The ensemble-averaged persistent current (related to results by Bouchiat
and Montambaux 1989) is in general odd in ¢, h/2e-periodic, and ‘“‘para-
magnetic” for small ¢ in the simplest case. The survival of the #/2e harmonic
is essentially (and very simply) related to the constancy of ¥ as a function of ¢.
The *‘period halving” (see also Landauer 1990) is related to but not identical
with the analogous effect in the conductivity o (chapter 5). The latter is

obtained from |G|? using terms such as |4, |> in which ¢, has totally canceled
out.

General Results on Ensemble-averaged Persistent
Currents for Constant N

The final relation of eq. 4.26 for the contribution to the ensemble-averaged
“canonical” persistent current is actually quite general and follows (Altshuler
et al. 1991, Schmid 1991, Montambaux et al. 1990) from a rather simple
general thermodynamic consideration. This is based on taking into account
the variation of the chemical potential p with @, needed in order to keep the
electron number in the ring, N, constant. One starts with the general thermo-
dynamic relationship (interesting corrections to which, for kzT 2 A, were
found by Kamenev and Gefen 1996)

oF

a9
5%

=2 (4.28)
T

m
where F is the free energy (calculated in the canonical ensemble), and

{1 = F — uN is the thermodynamic potential (in the grand-canomical one)
and the derivatives are taken with the quantities remaining constant at their

ey . OF . . .
equilibrium, “‘equation of state” values, e.g., u = ﬁ\ . When @ is varying, p 1s
changing as explained above. We write e

u(®) = () + 6u(®), (4.29)

where (u) is an average over a fluxed period.
Expanding the r.h.s. of eq. 4.28 in the small quantity Ap we find

o  oq 9 00
0 _ 0 o g 0 00 (4.30)
02|, 92|, Op 0%,
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Changing the order of the derivatives in the last term (‘““Maxwell-relation™),

79 . .
noting that —| = —N, and applying ensemble averaging, we find

Opl,
OF GQ’ 0 ) du ON
O =Tal N =2 424 aNOY (a3
0%y 02|, 0P 0®|,, ONl|y 02|,

where an implicit function derivative was used:

O

_ou| _oN) ou
o

v 0%|,6N

®
Finally, we use the result that the ensemble-averaged persistent current is
exponentially small at a constant p = {u), and the fact that for noninteracting

quasiparticles N /dpu, the DOS is to lowest order just the inverse of the typical
level-spacing, A, to write

3F| A B
53,2 5% (AN). (4.32)

Here we have expressed the average canonical persistent current as the level
spacing times the flux derivative of a grand-canonical fluctuation, as in eq.
4.26. The latter is much easier to calculate, as grand-canonical quantities
usually are.

To evaluate the r.h.s. of eq. 4.32 one needs the spectral correlation function

K(E,e) = <6n(E—§)6n<E+§)> (4.33)

of the fluctuations of the level density (DOS) between two energies separated
by e around an energy E (later we take E & Ey). The relevant fluctuation in the
r.hs. of eq. 4.32 is given at 7 =0 by

Er (Ep
(AN,) = L L (6n(E\)on(Ey)) dE, dE,

- f dE J: de K(E, ¢). (4.34)

This was evaluated by Schmid (1991) and by Altshuler et al. (1991) using the
results of Altshuler and Shkovskii (1986) on the spectral correlation function,
K. The ®-dependence of those was due to the “double Cooperon” diagram.
The results could be written as
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I¢) =D Ine™™ (4.35)
m
with
4iA
I, = l—e"z”'/v EeTs sgn(m), (4.36)
7T©0

where at finite temperatures i/k T replaces 7, in the exponential reduction. As
expected, this has a paramagnetic sign (due to the strengthening of *‘spectral
rigidity” with increasing ®, reflected in the correlation K(e)). The current
amplitude is only on the order of A/¢, for each “harmonic,” although the
energy scale for the reduction due to 7, or kT is the Thouless energy E,.

Semiclassical Theory of Spectral Correlations,
Applications to Rings

Equation 4.33 is an example for the physical relevance of the spectral
correlation function K(E,€) which contains the information on the spectral
properties of the system and how universal they are. It is by now firmly
established that the energy-level spectra of a finite disordered ‘“‘mesoscopic”
quantum dot, including the case of a ring, obeys (Efetov 1982, 1983) random
matrix theory (RMT; see, e.g., Mehta 1967) statistics in certain parameter
ranges. In particular, the level density autocorrelation function has been
shown by Altshuler and Shklovskii (1986) to lead to RMT-type spectral
rigidity for energy differences in the range between the average level spacing
and the Thouless energy (see below). At energies above the latter (but below
the inverse elastic scattering time), a new universality class was found in that
work. Earlier, Efetov (1982) proved that RMT statistics apply to such spectra
at low energies using a different method. To obtain physical understanding of
how the statistical properties which are relevant to many physical phenomena
are generated, it is advantageous to use a quasiclassical picture. In the related
field of “‘quantum chaology” the observation (Bohigas et al. 1984) that the
quasiclassical spectrum of a system whose classical motion is chaotic obeys
RMT rules has been substantiated by Berry (1985). Recently, Argaman et al.
(1993) used the Berry method to demonstrate that RMT correlations apply to
the quasiclassical spectrum of a particle whose classical motion is diffusive, for
low energies. All the results of Altshuler and Shklovsii (1986) were reproduced
in detail. This, with some generalizations, will be reviewed in appendix G. Here
we shall summarize the results and indicate the application to persistent
currents.

Argaman et al. (see also Doron et al. 1992) expressed Berry’s results in the
following way. The “spectral form factor” (Fourier transform of K(K, ¢) from
€ to 1), is given in the semiclassical approximation by
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K(1) = h—IZ%Pd(t), (4.37)

where Q(E) is the (purely classical) phase-space volume for given energy E and
P,(1) is the classical probability density to return to the origin after a time ¢ for
a diffusing particle in a given finite volume. This can be applied in the metallic
limit

A < E, < hfty < Ep. (4.38)

Both the RMT results for E < E, (¢ > L*/D, so that the diffusing particle has
filled the volume L) and the novel Altshuler-Shklovskii ones for E > E,
(diffusing partile behaving as in an infinite volume) were recovered.

It is straightforward to present the quasiclassical argument for the ring
with an A-B flux. One has to group, as in the section on the semiclassical
picture, all orbits with winding number m and A-B phase ¢ with all their
time-reversed counterparts having A-B phase factors e”™. One can in fact
rederive in this way (Argaman et al. 1993) the flux-dependent K (e, ¢) used for
both sample-specific and ensemble-averaged persistent currents.

To obtain the former, one writes

- a8 7]
22 _F_—_
I —czaq)an),E

where at T = 0, E is expressed as f; en(e) de. We write the flux-dependent
fluctuations as in eq. 4.16 and employ a diagonal approximation as in eq. G.3
to the sum over paths. Again using eq. G.3 and eq. G.4 we see that the classical
probability that appears in the term with n revolutions around the ring (again
retained with the time-reversed counterpart, but here these have phases of
€*"%) is the one to come back to the origin after n revolutions. That probability
is proportional to e~ ~/*PH_ Finally one obtains (Argaman et al. 1993)

0
L t
(12):4czj deeJo de'e'r dte_'(E_e)'/"lu L
e —o0 -0

h* \/4xDl/|
= 2mn\? n’L*\ . ,2mnd
X Z(E) exp (— D] sin . (4.39)

n=1

Evaluating this, one finds that at 7 = 0 the nth harmonic of the typical current
has the expected order of magitude of eE,/k for small n and it is given by

24 2mn®\ 2
(eD in = ) . (4.40)

2
In(q>) :W —L—zsm—g(;—
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At finite temperature and 7, the time integral in eq. 4.39 is cut off exponen-
tially at (#)/kgT or 74, leading to a gradual decay of the harmonics, strongest
for the high ones as explained in the text around eq. 4.17.

Using a similar line of reasoning and eqs. 4.32 and 4.34, one can find
(Argaman et al. 1993) the ensemble-averaged persistent current. Results
equivalent to eqs. 4.35 and 4.36 are obtained in agreement with the calculation
based on the Altshuler-Shklovskii results for K(E ¢).

Since, as explained before, the results for the ensemble-averaged currents
are smaller than experiment by at least two orders of magnitude, it is clear that
the model of noninteracting electrons does not capture the necessary physics.
One thus has to treat electron—electron interactions seriously.

The effect of the magnetic field is also of interest for a singly-connected
system (Quantum dot). The magnetic field breaks time-reversal symmetry and,
within RMT, changes the spectral correlations to “‘unitary” ones. Within the
semiclassical picture, for the case of the quantum dot, the magnetic field simply
removes the constructive interference between time-reversed orbits and that is
how the reduction factor of § is obtained in K(¢). It is in full analogy with the
removal of the “Cooperon’ weak-localization-type contribution by Altshuler
and Shklovskii (1986). The details of this “orthogonal-unitary” crossover are
discussed by Argaman et al. (1993) and form the basis for a new, nonlinear,
paramagnetic orbital susceptibility in a system of quantum dots, which can
be quite substantial (Altshuler et al. 1991, 1993, Oh et al. 1991, Raveh and
Shapiro 1992).

Interaction Effects on the Persistent Currents

The first microscopic calculations on the orbital response of interacting elec-
trons were done by Aslamazov and Larkin (1974) in the context of super-
conducting fluctuations (see also Aslamazov et al. 1969). Earlier, Schmid
(1969) considered that problem in the G-L approach. The result is actually
more general and applies also when the interactions do not lead to super-
conductivity. The response of the current to a vector potential is proportional
to the interaction when the latter is weak enough. The signs are such that the
current, or the orbital magnetic response, is diamagnetic for an attractive
effective interaction (e.g., a superconductor above the critical temperature
T,.) and paramagnetic in the more usual case of a normal metal with an
effective repulsive interaction. The former sign is consistent, in the case of a
mesoscopic ring made of a superconducting material but rendered nonsuper-
conducting by thermal fluctuations, with the notion that for ® « ®; the
circulating current will flow in order to shield the noninteger flux (Gunther
and Imry 1969). Thus, the fact that a positive interaction yields a paramagnetic
response is natural within perturbation theory which is first-order in the inter-
action (Halperin 1991, private communication). Technically, this contribution
is obtained by adding an “interaction line” to the “two-Cooperon” diagrams
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used, for example, by Altshuler and Shklovskii (1986) for K(e) and by
Altshuler et al. (1991) and Schmid (1991) for the ensemble-averaged persistent
current for noninteracting electrons. The calculation for the ensemble-averaged
persistent current I, was performed for the first time in this connection by
Ambegaokar and Eckern (1990, 1991) and Eckern (1991). To first-order in
the interaction, the level spacing A in the noninteracting case (eq. 4.36) is
replaced by E, - V:

A — EV  tolstorderin V. (4.41)

Being the dimensionless coupling constant at low energies, ¥ should include
screening in order to incorporate a partial summation of higher-order terms. A
result similar to eq. 4.41 will be obtained below usiug the charge neutrality
concept (Schmid 1991, Argaman and Imry 1993). It is strictly valid for ¥ « 1.
If used with relatively large values of ¥ (=20.3-10), appropriate for a real metal
like copper, the result agrees within perhaps a factor of 2 with the experiment
of Levy et al.

However, for such values of V, high-order corrections become important.
These can be calculated and in fact were obtained at a rather early stage by
Spivak and Khmelnitskii (1982) and Altshuler et al. (1983), fellowing early
work by Aslamazov and Larkin (1974). The result is that the relevant inter-
action, which is termed the one in the “Cooper channel,” is renormalized in the
following schematic manner

] ) 1
1% for V < i—r—p
) 17 or < 1n(E>/E<)
Ve ==
14+ VIn(E,/E.) - for V> S -
In(E= /E.)  In(E5/E)

(4.42)

where E, and E_ are some large and small energy scales in the problem,
depending upon conditions. For realistic values of V', however, the interaction
is reduced by roughly an order of magnitude. This renormalization is of the
same nature as the similar decrease obtained by Bogoliubov and Tolmachev
(see, €.g., DeGennes 1966) for the Coulomb interaction in the theory of super-
conductivity. This decrease of the repulsion, essential for the existence of super-
conductivity, is obtained by considering how the interaction, V,;, at low
energies (near Ey), is related to that at high energies. It is easily evaluated
by integrating out the higher-energy transfers. Unfortunately, it reduces the
theoretical results for I to ones that are smaller by about an order of magnitude
than experiment. It appears that the perturbative theory in V is not able to
account for the present discrepancy between theory and experiment.

It is advantageous at this stage to have a physical picture for the effects of
the interactions on /. Such a picture was first given by Schmid (1991). Let us
remember that an important consequence of the Coulomb interactions in a
metal is to enforce local charge neutrality in any volume element larger than
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screening length A. Schmid argued that this strong constraint of local charge
neutrality gives a more substantial contribution to the persistent current than
just constraining the tozal electron number N. This reproduces the first order
result of the interaction, but may be reduced as well by the “Cooper channel”
renormalization mentioned above.

To present a simplified version of Schmid’s argument, we employ a
spatially varying (Argaman and Imry 1993) effective potential, which preserves
local charge neutrality (to the extent specified by an appropriate Thomas—
Fermi-type screening erquation) when the flux is varied. The result for the
disorder-ensemble-averaged persistent current includes a term proportional
to the (integral over space of the) product of the flux sensitivities of the effective
potential and the noninteracting local electron density (see eqs. 4.43-4.45
below). It is a direct generalization of the canonical-ensemble result (egs.
4.31 and 4.32), in which only the global chemical potential and (grand-
canonical) number of electrons are taken as flux-sensitive. the expression
based on eq. 4.45 below (Argaman and Imry 1993) still resembles the first-
order result of Ambegaokar and Eckern. The strong renormalization of
the interaction does not emerge on this level in an obvious manner, and the
question of its relevance requires further work. For small ¥, this corroborates
and gives additiona!l insights to the argument of Schmid.

Following Schmid (1991), and as a generalization of the picture of
Altshuler et al. (1991), we divide the sample into cells, i, larger than the
screening length but smaller than all other characteristic lengths. All the effects
of the Coulomb interaction are taken to yield a potential energy v; for the
electrons in the cell 7, apart from the fluctuating impurity potential, which may
vary on a finer scale. The free energy of our effective noninteracting electrons is
thus given by Q.4 ({v}, ®), where {v} denotes the set of v; for all i, and ® is the
Aharonov-Bohm flux (Q,; also depends implicitly on the temperature, the
chemical potential, and the impurity potential). The persistent current is
given by I({v}, @) = —cdQ,;/0®, and the number of electrons in the cell i
is given by N;({v}, ®) = 8Q,y/0v;. When & is varied, the v; are adjusted to
maintain local charge neutrality, so that N; is kept equal to the ionic charge in
the cell i (to get eq. 4.30, only global charge neutrality was maintained by
allowing variation of the chemical potential, which may be regarded as an i-
independent contribution to v;).

Defining v{ as the average of v;, for a given sample, over a period of ®, and
writing v; as v} + Ay (®), we have

I({v}, @) =I1({+"}, @) +2Av, 61/,

("}

=I1({t"}, ®) cZAv, <9<I>|(,,o}' (4.43)
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In the last line we have used the thermodynamic (Maxwell-type) relationship

ol _ CBN,

(91/,‘ - oo ’
Higher-order corrections in Av; are ignored, as the flux dependence of all
physical properties of the rings is assumed to be weak. Av; is determined

using a similar equation for N;({v}, ®), which has been assumed to remain
constant:

Ni({v}, @) = Ni{{+"), @)+ 3 A, %]l,

{%}
=~ N,({°}, @) — N(0)Av,, (4.44)
where we have introduced the local approximation dN,/dv; ~ —N(0)é;;, and

taken the density of states of each cell ¥(0) = IN;/Ju to be independent of i.
Defining AgN; = Ni({vo}, ®) — N;, we have

5N, ON;
(I = {1({~", <I>)>—c< ,- ;(0)55>
- _21\16(0)8% <Z(5“’N f)2>’ (443)

where we have employed the impurity ensemble averaging, and neglected
(1({v°}, ®)), which is similar to the (grand canonical) averaged noninteracting
current.

The last term is the (flux derivative of the) sum of the local number
fluctuations when the local potential is kept constant, that is, the fluctuations
of noninteracting electrons in the flux-averaged disordered potential +°. Taking
this potential to vary randomly (e.g., white noise) over the disorder ensemble,
one can evaluate the fluctuations using established noninteracting-electron
theories. This contribution appears similar to the first-order results of eq.
4.41 (for the case of a repulsive electron—lectron interaction): it is large,
paramagnetic at small ®, periodic in ® with a period ®4/2 = hc/2e, and is in
rough agreement with experiment on the most naive level which disregards the
possible reduction due to renormalization effects. Argaman and Imry (1993)
have also obtained the above results from a systematic application of density
functional theory (Kohn and Sham (1965), a good review can be found in
Kohn and Vashishta (1985)). To what extent will the ‘‘Cooper-channel
renormalization” decrease this result as well, as one might expect, is presently
an open issue.

To summarize the situation with regard to persistent currents at the time of
writing: It appears that their existence is confirmed. But, according to the
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present experiments, theory gives results that are much too small for the
magnitude of the currents for the ensemble-averaged and, possibly, sample-
specific situations. Unless fresh ideas, such as invoking surface or interface
phenomena, are generated, a nonperturbative theory for the Coulomb
interactions is needed. The two existing speculations are the charge neutrality
argument above and the very interesting observation by Altland et al. 1992,
Miiller-Groeling et al. 1993 and Miiller-Groeling and Weidenmuler 1994) that
interactions may strongly reduce the effect of disorder. This is supported by
recent numerical results of Berkovits and Avishai (1995a,b). It has to be
demonstrated, however, that this reduction is stronger for the equilibrium
properties than for the transport. Both of the above ideas need further work.

Problem

1. (This is an exercise on the “subtleties” mentioned at the beginning of
appendix B). Prove, using [p, £] = A/i, that two terms on the r.h.s. of eq.
B.4 cancel exactly. You had to employ v; = iwyx;. Why and when is that
problematic? When is it justified? Convince yourself that the above cancela-
tion would mean that there is no sensitivity to boundary conditions and no
orbital magnetic response for our system!



Quantum Interference Effects
in Transport Properties, the
Landauer Formulation and
Applications

1. GENERALITIES, REMARKS ON THE
KUBO CONDUCTIVITY FOR FINITE SYSTEMS

The transport properties of mesoscopic systems display a wealth of interesting
phenomena that are quite novel in respect to the usual macroscopic systems.
Among these one can mention the nonadditivity of series resistances and
parallel conductances, the periodic sample-specific oscillations (Gefen et al.
1984a,b, Webb et al. 1985a,b) in the magnetoresistance of a ring (i.e., two
parallel resistors) as a function of the Aharonov-Bohm flux through its
opening, and the analogous aperiodic conductance fluctuations (Blonder
1984, Umbach et al. 1984, Altshuler 1985, Lee and Stone 1985, Licini et al.
1985a, Stone 1985, Skocpol et al. 1986), in a fine singly-connected wire. These
fluctuations have interesting universal aspects. As in the previous chapters,
there is an important distinction here between the effects of elastic and inelastic
scattering. Also, since the system is so small, its measured resistance may
depend on the existence, type, and structure of contacts made onto it. Various
other effects, familiar to varying extents from waveguiding systems, may also
occur. For example, an open-ended branch can greatly change the resistance of
the system (Gefen et al. 1984a,b); the resistance may be nonlocal in the sense
that what is measured between a given pair of points may depend on things
connected further away (Anderson et al. 1980, Engquist and Anderson 1981).
Contact and spreading resistances, which are not always negligible, may play a
role (Imry 1986b, see section 2).

89
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From the theoretical point of view, this problem is also interesting due to
the electrons being possibly further removed from equilibrium (due to the
scarcity of inelastic scattering) than in ordinary transport situations. In some
cases, one has to develop special methods to handle such aspects. We shall first
briefly review some subtleties of the Kubo linear response formalism (Kubo
1957, 1962) for our case, reflecting on the Thouless picture of conductance in
disordered systems. Then we shall develop in section 2 the Landauer-type
scattering formulation for the conductance of a segment of a disordered system
between two ideal leads, as well as the generalization to more terminals. The
similarities and differences among these approaches will be discussed. Various
applications will be reviewed in section 3.

For an infinite system, the Kubo-type conductivity at frequency w may be
obtained as in appendices A and B (see eq. B.1), or by calculating, using the
golden rule, the power absorbed by the system from a classical e.m. field (we
shall consider here the o,, component). An additional contribution, the Debye
relaxation absorption, will be discussed later. The field used in this formulation
is the actual one, containing the self-consistent field provided by the polariz-
ation of charges inside the system (see, e.g., Landauer 1978):

1 x

7)== G5 ¢ 2 (k[ |D*6(E; — Eghw)(fi — £i)- (5.1)
For simplicity, we consider noninteracting (or Hartree-Fock) electrons.
Corrections for the self-consistent field, as mentioned above, are included.
Vol is the volume of the system, |k),|/) are the free- (or self-consistent
single-) electron states and fy, f; their populations. 7, is the velocity of the
electron in the x direction. The assumption of an infinite system is crucial
here, in order to have a continuum of states. Otherwise, the field does not
induce real transitions. An isolated finite system with a truly discrete spectrum
does not in fact really absorb energy from the monochromatic field. In order to
obtain a finite conductivity, the small system has to be (and to some extent is in
real situations) coupled to a very large heat bath—for example, to an assembly
of thermal phonons. This enables energy to be transferred from the e.m. field
into the bath via the small electronic system. For a weak enough interaction
with the bath, one may say that the discrete levels of the system have just
acquired finite widths. It then makes sense to write down eq. 5.1 with E; having
a finite width or with an imaginary part in to the frequency w. Thus, for d.c.
(Re w — 0), Thouless and Kirkpatrick (1981), following Czycholl and Kramer
(1979), suggest the following expression for o, for finite systems based on
eq. 5.1:

alin) = 1 Jio ng_*_)zz dw’

™
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(5.2)
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While this procedure certainly makes sense in smoothing out the é-functions of
eq. 5.1, it does need a more rigorous justification in terms of the combined
electron—bath system. Van Vieck and Weisskopf (1945) obtained similar results
using a semiclassical picture with collision broadening, which is discussed
further by Imry and Shiren (1986). The following discussion will be based on
eq. 5.2

It is possible to show that once fn is much larger than the energy level
separation, A, of the electrons at Er (though much smaller than all other
relevant energy scales in the problem), eq. 5.2 goes over, as it should, to the
appropriate “bulk” expression. This condition is always very well satisfied for
macroscopic systems where A/kz ~ 107" K and h/(r,kp) is rarely smaller
than ~107*-107° K (and it usually attains such values only at millikelvin
temperatures). To get the usual expression for o from eq. 5.1, one straight-
forwardly obtains the low-temperature d.c. conductivity by replacing the sums
by integrals and assuming that |{/|#]k)|* has some typical value denoted by
|(v)|* near Ep (see appendix B),

oxg = 7€ Vol A|(v)|*[n(0)]%. (5.3)

Here n(0) is the density of states per unit volumc, at Ep. This is the Kubo—
Greenwood conductivity (Kubo 1957, Greenwood 1958).

However, for the typical small metallic systems that are of interest to us
here, A can become of the order of a few millikelvins. Thus, at temperatures
below ~0.1 K, one may encounter an interesting and novel range where

< A. (5.4)

In the limit An <« A the average Kubo-type conductivity is easily estimated
(using |E; — E| ~ A ~ [n(0)Q2] ') to be on the order of

h
UNUKGZTI' (55)

This has the interesting feature that the w — 0 conductivity which is defined by
energy absorption from the e.m. field vanishes (Landauer and Biittiker 1985,
Biittiker 1985b, Imry and Shiren 1986) when #n/A — 0. In this limit, we have
discrete states with no real energy absorption. Thus, the Kubo d.c. conductivity
as a function of n looks schematically like Fig. 5.1. We emphasize that this
discussion is concerned with a particular definition of the conductivity, as
measured, for example, by putting the sample, with no contacts, in an electro-
magnetic cavity and measuring the extra absorption due to the sample at low
frequencies. It will turn out that this definition is not necessarily identical to
others. For example, we shall find in section 2 that the same sample may
display a well-defined, finite resistance which will be independent of 5 for
small enough 7, if measured by connecting to it two appropriate contacts. In
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Figure 5.1 The d.c. Kubo conductivity as function of the ratio fin/A. It approaches
the Kubo-Greenwood conductivity oxg for hin 3> A, and is proportional to oxghin/A
for in < A.

that case the Joule energy dissipation will take place inside the thermal baths
that have to be assumed to be associated with the contacts.

The coupling of a discrete-levels system to a heat bath at finite temper-
atures also leads to well-known “‘Debye-relaxation” absorption (e.g., Gorter
1936, Gorter and Kronig 1936, Kittel 1986) which has to be added to the
Kubo-type terms. This absorption vanishes both when w/n— 0 and
w > n,wy. As emphasized by Landauer and Biittiker (1985), this absorption
is due to the oscillation of the level separation with the applied field. The level
populations attempt to relax to equilibrium with a time constant !, but lag
behind the field. This effect vanishes both when w <« 7 and the system follows
the field, and when w>>7n and the relaxation becomes negligible. Such
absorption was obtained for rings with a.c. A-B fluxes by Landauer and
Biittiker (1985) and by Trivedi and Browne (1988). T # 0 is necessary, since
at T = 0 the populations do not depend on the level separation.

The Kubo-Greenwood formulation, which can be conveniently cast in
terms of time-dependent correlation functions, has proved to be an extremely
useful formulation of transport theory. It is also the basis for a systematic
diagrammatic expansion in the strength of the disorder, characterized by the
small parameter (kFl)~1 , | being the elastic mean free path. The first correction
(Langer and Neal 1996, Gorkov et al. 1979, Abrahams et al. 1979, Hikami
et al. 1981) to classical Boltzmann transport yields the weak localization
contributions discussed in chapter 2.

The Thouless expression for conductance was originally derived (appendix
B) by employing the Kubo formulation. It thus appears, for example, that the
condition #A7n > A should be necessary to validate the Thouless expression.
This is also consistent with the golden-rule picture of eq. 2.4. However, we
shall see that the Landauer formulation described in the next section, which
indeed provides a finite conductance for a finite segment with n— 0, is
intimately related to the Thouless conductance. The latter will be equivalent
to the Kubo expression only when in >> A applies. It remains to be discussed
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whether the inherent coupling of the system to reservoirs in the Landauer
formulation might play a similar role to the parameter  above.

2. THE LANDAUER-TYPE FORMULATION FOR
CONDUCTANCE IN A MESOSCOPIC SYSTEM
AND SOME OF ITS GENERALIZATIONS

Introduction: the *Single-Channel’* Case

The Landauer formulation (Landauer 1957, 1970, 1975, 1985), which expresses
the conductance in terms of the scattering properties of the system, is especially
suited to treating the conductance of a segment of a (possibly disordered)
system to which two appropriate contacts are made. It has been extremely
useful not only as a computational tool but also, perhaps more importantly,
as a picture from which physical insights on new phenomena can be obtained.
It is concerned with a given system, and no ensemble-averaging is necessary.
Thus, mesoscopic fluctuation effects emerge very naturally. In 1957 Landauer
first introduced the 1D version, which consisted of a given barrier connected
through ideal 1D wires (flat potentials) to some external source (i.e., a pair of
electron reservoirs with different chemical potentials) which drives a current
through the 1D system. The barrier is characterized by its transmission
coefficient T and its reflection coefficient R =1 — T (for linear transport and
at zero temperature, we need 7 and R at the Fermi energy only). As empha-
sized by Landauer (1970, 1975), it is very important to take the waves coming
from the two reservoirs to be “incoherent” with each other (i.e., having no
definite phase relationship), otherwise nonphysical results follow for the time-
reversed situation.

Landauer first considered neutral particles and obtained the density
difference across the barrier, and thence the appropriate diffusion coefficient.
Then the Einstein relation was invoked to obtain the conductance. For charged
particles, self-consistent screening (Landauer 1957) yields the same result. The
conductance due to the barrier, including spin degeneracy, is given (Landauer
1957, 1970) by

=% <. (5.6)

We emphasize that this is the conductance of the barrier itself, defined as the
ratio of the current, I, which runs through it, and the electrochemical potential
difference which develops between its two sides. Some confusion has been
generated (and later clarified, see below) in the literature, due to the following
circumstance: A common way to drive a current through the system is to
connect the ideal wires on its two sides to particle reservoirs of chemical
potentials p; and py (uy > p,) as in Fig. 5.2, If now now computes a conduc-
tance G, using the ratio of I and u; — y; one obtains (for the derivation of egs.
5.6 and 5.7 see the discussion of egs. 5.16 and 5.19 below)
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Figure 5.2 The Landauer geometry: u;, u, are the chemical potentiais of the baths;
w4 and pp are those of the ideal conductors on the two sides of the barrier.
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while the previously defined G (eq. 5.6) is given by G = I /(u4 — up), where p
and pp are the chemical potentials on the ideal wires on the L.h.s. and r.h.s. of
the barrier (see Fig. 5.2). Thus, G, (which turns out to be smaller than G) is the
conductance measured between the two outside reservoirs. Even for T =1,
G, = (¢*/nh) is the finite conductance (Imry 1986b) due to the narrow channel
between the two large reservoirs (Sharvin 1965, Jansen et al. 1983). This
resistance can be thought of as due to two contact resistances, (rfi/2e)’
each, between the wires and the corresponding reservoirs. In fact,
G,' =G + (nh/é%), that is, the total resistance between the reservoirs is
the sum of the barrier resistance and the two contact resistances. Derivations
(for example, Economou and Soukoulis 1981a,b) of the conductance from the
Kubo formulation yielded the two-terminal conductance G, only. This started
a long controversy on “which of the Landau formulas is correct?” The answer
(Imry 1986b) was that they pertain to different physical quantities.

The contact resistances are due to the geometry of a narrow channel
feeding into a large reservoir, and to the electrons thermalizing in the baths
by inelastic scattering. The corresponding contact resistance per channel will
turn out to be of the same order of magnitude in the multichannel case as well,
as will be discussed later. It thus becomes an interesting issue whether this
order of magnitude is a universal quantity (as one would tend to suspect) or
whether it depends strongly on the details of the connection of the thin wire to
the reservoir. When the transmission between the “wire” and the reservoirs is
perfect, 7 =1 and the channel leads to an inter-reservoir conductance of
¢*/(mh). This result is “universal”; it is generalizable to many channels and
will be discussed later.

The conceptually correct way (which is still, however, subject to some
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questions) to measure the chemical potential difference py — pp, was
suggested by Engquist and Anderson (1981) and further discussed by Biittiker
et al. (1985) and Sivan and Imry (1986a,b). It will be discussed in some detail
later.

The “barrier’” may be any object fed by the two 1D wires, for example, a
segment of a linear chain. Thus, the above can be used to consider the con-
ductance of any problem which is 1D in the above sense. In fact, at a very early
stage, Landauer (1970) obtained the addition law (see egs. 5.36, 5.39, 5.40) of
two such barriers or “quantum resistors” in series, and thence, by induction,
the resistance of a linear chain with n randomly placed barriers. The
exponential increase of this resistance with », for n larger than some character-
istic size (the localization length, in modern terminology) was obtained. This
was the first demonstration of 1D localization as manifested in the resistance,
and the basis for the scaling theory for localization in 1D, which was presentec
by Anderson et al. (1980), after identifying the appropriate variables to be
averaged. One should also note that the resistance of two such resistors in
series is typically larger than that given by the usua! R; + R, law.

The case of two parallel 1D resistors using the Landauer formulation was
first solved by Gefen et al. (1984a), who also found that the addition law is
different from the classical one. By introducing an Aharonov—Bohn type flux &
in the space inside the loop formed by the two resistors, they obtained oscilla-
tions in the transmission coefficient. Hence the resistance between the two 1D
leads oscillates as a function of ¢ with a fundamental, usually dominant (Gefen
et al. 1984b) period of &, in agreement with the general expectations discussed
in the previous chapters. Further discussion of both the series and parallel cases
will be given later with other applications of the Landauer formulation. The
formulation is general enough to include some aspects of electron—electron
interactions in the system, superconducting components, resonant states, and
other complications. The above has been the first clear case of a sample-specific
transport phenomenon, which is really a “conductance fluctuation.” Such
fluctuations had been discovered experimentally in the quest for the $¢-
periodic oscillation. Their ‘‘universality” (Altshuler 1985, Lee and Stone
1985; the second and third subsections of section 3 and appendix I) is one of
the fundamentally interesting mesoscopic phenomena.

The generalization of the Landauer approach to the multichannel case is of
interest in order, for example, to consider the scaling theory for localization in
more than one dimension (Anderson 1981). Here we shall be mainly interested
in the application of this formulation to mesoscopic situations, for example, to
the resistance of a small piece of wire or a small ring-type structure. In
particular, the sensitivity of those structures to magnetic fields will be of
major interest to us. We shall thus start by reviewing the general multichannel
conductance formulation, emphasizing the two-terminal vs. four-terminal
aspects (Anderson et al. 1980, Azbel 1981, Anderson 1981, Fisher and Lee
1981, Langreth and Abrahams 1981, Biittiker et al. 1985). In the following
subsection we shall review the generalization due to Biittiker of the two- to
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several-terminal case, with emphasis on the Onsager-type reciprocity relation-
ships. The rest of the chapter will be devoted to applications.

We also point out that this formulation is applicable to many other
problems such as the scanning-tunneling microscope (Binning et al. 1982) as
well as various interface resistances (Castaing and Noziéres 1980, Uwaha and
Noziéres 1985).

Many generalizations are possible beyond straightforward ones such as
that to phonon transport: for example, thermal and thermoelectric transport
(Sivan and Imry 1986), the inclusion of inelastic processes in the system itself
(Biittiker 1985a, 1986a), the Hall effect (Entin-Wohlman et al. 1986, Biittiker
1988), and various types of noises. The generalization to finite frequencies

(Biittiker 1993) and that including Coulomb interactions are important
problems as well.

The Muitichannel Landauer Formulation

We now consider the multichannel and finite-temperature generalizations of
the Landauer formulation, depicted in Fig. 5.3. The leads feeding into the
general elastic scattering system S are now ideal wires with a finite cross-section
A. Due to the quantization in the transverse direction leading to discrete
transverse energies E;, we now have N, conducting channels at the fermi
energy Ep, each characterized at zero temperature by a longitudinal wave
vector k; (and velocity fik;/m = v;), so that

1k

E 1+t
'+2m

:EF) i=1,._.,NL. (58)

N, = Akzp/27r for a 2D cross-section, and N, = 2Wkg/= for a 1D cross-sec-
tion of width W, both including spin. At finite temperatures the values of k;
acquire a finite thermal width. The incoming channels (right-going on the Lh.s.
and left-going on the r.h.s.) are fed from electron baths with chemical poten-
tials g1, 1y, and the overall temperature is T (the case with Ty # T is discussed

i | | Tji j

Figure 5.3 A multichannel scatterer S. An incoming wave in channel j from the left
with amplitude 1 has probabilities R; and T} to be reflected or transmitted into the ith
Lh.s. or r.h.s. channel, respectively.
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by Sivan and Imry (1986) and will be briefly mentioned later). We assume that
the outgoing channels from each reservoir are fed up to a thermal equilibrium
population. As long as scattering has not occurred, this assumption can be
justified (Sivan and Imry 1986) along the same lines as the proof (Landau
and Lifschitz 1959) that the outgoing radiation in a given solid angle from a
black body has a thermal equilibrium distribution. This proof utilizes the
Liouville theorem. It is convenient to assume that particles reaching the
“sink” reservoir via the ideal lead are totally absorbed there. This is not
obviously correct, since electrons reaching the reservoir much below its
Fermi energy do not have vacant states to go into. However, if they are
reflected, they will just contribute to the outgoing streams from the “sink™
reservoir and reduce the rate of particles emanating from it. Therefore this
assumption is effectively justified and it is irrelevant whether these electrons
“really”” enter the sink reservoir or not. In equilibrium, the above assumptions
yield a vanishing net current, and this is really a dynamic equilibrium situation,
in which fluctuating “‘noise” currents flow. Those will be seen in chapter 8 to be
consistent with the known thermal equilibrium noise. We also assume that
there are no phase relationships among electrons in different channels (i.e.,
that the channels behave like “‘incoherent sources”) and consider the case
where p; — py is small enough to insure a linear transport regime. The system
S scatters in the following fashion: An i mcommg wave (lee Fig. 5.3) from the
left jth channel has probabilities 7j; = lt,J, and R; = |ry]” for transmission into
the r.h.s. ith channel and reflection into the L.h.s. ith channel, respectively. The
analogous matrices for incoming waves from the r.h.s. are denoted by primes.
The 2N, x 2N, matrix S given by

s:(; ;) (5.9)

is unitary due to current conservation, because the 73, R; matrices transform
the lead currents. Furthermore, when time-reversal symmetry holds,

ss* =1, S=3§, (5.10)
where the star denotes complex conjugation, the tilde the matrix transpose, and
I is the unit matrix. When a magnetic field is present, the second relationship in

eq. 5.10 becomes S(H) = §(—H).
We define the total transmission and reflection probability into the ith

channel by
T, = Z 5 Ri=)_ Ry (5.11)
J

%f&njgvs for the
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dYT=) (-R) (5.12)

with a similar condition for the primed quantities.
We also note, for completeness, that the more detailed equalities

R+Ti=1, R+T/ =1 (5.13)

are valid only between transmission fo the right (left) and reflection from the
right (left). They also state that if all incident channels on both sides of the
barrier are fully occupied, all outgoing channels will also be fully occupied.
Further unitarity conditions follow from the columns of S. There are addi-
tional conditions (see eq. 5.10) that exist when time-reversal symmetry holds.

As long as they satisfy the above constraints, the elements of S can other-
wise be completely arbitrary and depend, in principle, on energy (although this
is a small effect at low temperatures). We note that our assumptions on the
incoming channels plus the known matrix S completely determine all the
distributions of the outgoing channels. These are rather out of equilibrium,
since there are no processes that give the usual “shifted Fermi distribution,” or
even transfer electrons among the channels to equalize their chemical
potentials. Nevertheless, these distributions zre precisely known. One can
straightforwardly calculate all currents, electron densities, energy densities,
entropy densities, and so on. Since there are good methods for computing S
for given models (such as a tight-binding Anderson one), this formulation is
very suitable for numerical computation.

Before briefly presenting the derivation of the conductance, we point out
that these assumptions are not the only possible ones. For example, Langreth
and Abrahams (1981) had assumed that the various channels on the leads reach
a common chemical potential on each side, presumably via electron—lectron
interaction, and then dropped the assurnption of Fermi distributions in the
input channels. While we think that our assumption stated above is quite
reasonable and is, in fact, analogous, as mentioned above, to the known
distribution of photons coming out of a photon bath (Landau and Lifschitz
1959), we certainly cannot rule out different physical situations, where the
assumptions of Langreth and Abrahams might apply.

Since the densities of states in the channels are 1D-like, and given,
including spin, by

ny(E) = (nhv,) ™", (5.14)

we write the current on the r.h.s. as

(= 53 [ELAEITE) +AERE) (P

:%JdE(—gl—f)Zﬂ(E), (5.15)
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where the velocities canceled with the density of states factors, and in order to
get the last equality we used eq. 5.12, staying in the linear transport regime. It is
straightforwardly checked that the current on the Lh.s. is also equal to I
(conservation of current). The conductance measured between the the outside
reservoirs, similarly to eq. 5.7, is thus given by

_ 1
T

_ﬁjdE ARSI _izp

= h BE) &= "N T T ap s th

—itrtt]‘ (5.16)
T nwh ’ ’

where at the zero-temperature limit everything is evaluated at Ef.

Equation 5.16 is the correct expression for the two-terminal conductance
(Imry 1986b). Much of the earlier discussion in the literature on “What is the
correct Landauer formula” was based on misunderstanding this. Equation 5.16
implies that one is looking at the flowing current divided by the electrochemical
potential difference between the “source” and “‘sink”’ reservoirs. G, thus includes
the contact resistances between the reservoirs and the system. It will therefore
be finite, and at most equal to N lez/ﬂh, obtained when the system and its
contacts with the reservoir are ideal (Imry 1985, 1986b). After the beautiful
experimental observations (Van Wees et al. 1988, Wharam et al. 1988) of the
“quantized” conductance of narrow links (‘‘quantum point contacts”) between
two 2D gases, a lot of work went into elucidating what the conditions are for
this ideal behavior. It seems that an essential practical condition for observing
good apparent “steps” in the conductance, due to opening of channels (having
a larger number of transverse states below Ej, with increasing electron density
in the narrow wire), is a gradual opening of the lead to the reservoir. This
gradual opening should guarantee an “adiabatic” condition for the early stages
of the motion in the widening channel. This would cause the reflections, due to
breaking of this adiabaticity, to be small (Yacoby and Imry 1990). For
observing the conductance steps (Imry 1985, 1986b) the temperature should
be lower than the separation of the quantized thresholds of the channels. For
the original GaAs samples, this necessitated temperatures in the subkelvin
range, but very quickly such effects could be seen at tens of kelvins. For
atomic-sized constructions (provided they have good transmission) the
temperature range could exceed room temperatures. In fact, very recently
Costa-Krimer et al. (1995), in a remarkable experiment, observed such effects
at room temperature with naturally formed atomic-sized contacts (see also
Lang 1987).

There are various ways to consider the more complex issue of four-
terminal resistances, which should characterize the sample itself. The simplest
way to arrive at an idealized expression for the co..ductance of the sample
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itself, defined by I/(p4 — pp), is to define y, and py as follows. The electron
density on the Lh.s. is

n;zﬁjdﬂ;%[(lmim +Tof3). (5.17)

If the electron gas on the Lh.s. were in equilibrium, with a chemical potential
w4 and Fermi function f4, its density would be

ne = %JdEZfA(E)/w (5.18)

We define p4 so that n; = ny, which is a very reasonable definition. It also
has the advantage that the Einstein relation will be automatically satisfied
(actually, this definition of (u4 — up) is equivalent to the Einstein relation).
Using the value of (14 — pp) thus obtained, one arrives at the results

f
I 2¢* JdEgiZTI(E)

T hi—ps  Th FE;%[I + Ri(E) — T(E))/v;

20 ST 1y 519
T Th S+ R - T (5.19)

The above definition of 14 and pp applies for noninteracting electrons. For
real electrons in a real conductor with Coulomb interactions, we know that
charge neutrality must prevail over length scales larger than the screening length
A (see also section 4.2). Assuming that the ideal conductors on the two sides of
the sample are large enough, this will happen via self-consistent potentials 6§V,
and 6V that must be generated to keep the electron density equal to its
equilibrium (charge neutrality with the positive ions) value 7. Thus,

8 . . .
—edVy ::9%("’4 — 7). Obviously, this amounts to a change in the electro-

chemical potential, bringing it up to u4. Similar remarks apply to Vp and
ug. The difference in electrostatic potential V, — Vy can be measured by
capacitative methods. The measurement of u, — up is more subtle and will be
discussed later. We emphasize, however, that the above discussion provides a
satisfactory justification for the fundamental physical validity of eq. 5.19 as the
basic four-terminal conductance. The measurability of ¥V, — V5 by capacitative
methods has repeatedly been emphasized by Landauer 1989c, private com-
munication, 1990b); see also Payne (1989).

In the important case where all the T;’s are small, T; <« 1,1+ R; ~ 2, and
the difference between G and G, is small. This should be applicable for large
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N, whenever G < €°N, /A, or sample length L >> /. This clearly happens
with a wide margin near the localization transition where G ~ e*/mh. The
zero-temperature limit of eq. 5.19 was first obtained by Azbel (1981) from
apparently similar assumptions. The derivation was later clarified and sub-
stantiated by Biittiker et al. (1985). The generalization to finite temperatures
was considered by Biittiker (1985a,b and personal communication) and by
Sivan and Imry (1986 and unpublished results), who also discussed thermo-
electric transport. Even the zero-temperature limit in eq. 5.19 does not agree
(except in the important case where the transmissions are small enough for G,
to be a good approximation to G) with all the other multichannel results which
existed previously in the literature (Abrahams et al. 1979, Anderson et al. 1980,
Anderson 1981, Fisher and Lee 1981, Langreth and Abrahams 1981). This can
easily be appreciated by noting that even in the simple independent channel
case, eq. 5.1 does not reduce to the parallel addition form (which will look like
S Ti{(1+ R — T;)™"). The reason is, of course, that the latter also assumes a
common electrochemical potential difference for all < annels. The disagree-
ment with Langreth and Abrahams (1981) has already been discussed above.
Discussions overlapping the one presented here and by Azbel (1981) existed
previously in the context of the problem of Kapitza resistance (Castaing and
Noziéres 1980, Uwaha and Noziéres 1985). It is also important to note that
eq. 5.19 is similar to the finite-temperature single-channel result of Engquist
and Anderson (1981). The latter can be obtained with a small modification,
even from the zero-temperature version of eq. 5.19, by regarding the different
energies as (a continuum of) independent channels. It is indeed not of the
parallel addition form (for a caveat, see Sivan and Imry 1986).

Engquist and Anderson (1981) also introduced the conceptual method
by which the chemical potentials u, and pp could be measured. This is
accomplished in principle by bringing in two ‘“measurement reservoirs” with
temperature T and with adjustable chemical potentials p) and pj. These are
now allowed to exchange electrons with the Lh.s. and r.h.s. wires, respectively.
This exchange must be weak, in order not to disturb the system! Now, one
adjusts, say, py until no net current flows between the appropriate measure-
ment reservoir and the Lh.s. wire. Then, one applies the same procedure to jp.
By very general principles, it is at this point where the chemical potentials of
the measurement reservoirs are equal to those of the measured systems

Ba = 4, BB = pp.

This clearly accomplishes a four-terminal measurement. The voltmeter
(measuring g4 — pp) does not draw any current. Such a measurement would
second the capacitative one mentioned above. Although it is not easy to
achieve, it yields the correctly defined voltage across the sample.

Three subtleties have to be handled here. First, as already mentioned, the
coupling of the measurement reservoir to the system has to be weak enough.
Otherwise, although it draws no fotal current, it might affect some interchannel
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electron transfer by drawing current from some channels and sending it into
others (Castaing and Noziéres 1985, private communication). This may include
transferring electrons from right-moving to left-moving channels. Note that
this effect (which has to be avoided in the conceptually correct experiment, but
might well exist in a given experimental system) contributes toward inter-
channel equilibration. (This will be, in principle, an undesirable “invasive mea-
surement” limit where the coupling is strong enough for the measurement
process to affect the measured property, i.e., the chemical potential of the
system.) Such effects exist in general in the four-terminal generalization by
Biittiker (1986b), to be discussed later, which does not require a weak coupling
to the bath. It is an interesting and an unavoidable characteristic of our meso-
scopic system that normally irrelevant details of the measurement process may
thus affect the results.

Second, we have to understand the requirement of the energy dependence
of the coupling between the measurement reservoir and the system. Obviously,
we do not want the measurement to distinguish between right- and left-moving
electrons, different channels, and energies. In order to obtain the detailed
condition on the coupling, we take the reservoir to have a density of states
n,(E) and to be coupled to the jth channel of the system with matrix elements
V;(E). The condition of zero net current from the reservoir u, to the system,
using the Fermi golden rule, reads

|dE S mEv @ ER -0 + RE) AT B
=jdEZ LA(L+ R) + AT m(EY(1 — fuENIVAE)P.  (5.20)

The Lh.s. gives the current from the reservoir to the system as the integral of
the density of available electrons times the absolute values squared of the
matrix elements, times the final density of states, times the density of available
holes in the system. The r.h.s. similarly yields the current from the system to the
reservoir. Using the relationship in eq. 5.13 and comparing the relationship in
eq. 5.20 with the one obtained by equating egs. 5.17 and 5.18, we find after
some algebra that the two definitions of 4 are equivalent, provided
n,(E)VAE)|* is independent of E and of the channel number i (Sivan and
Imry 1986 and unpublished results). It might be argued that this is a nontrivial
condition to satisfy in a strict fashion. For a large number of channels,
however, the important requirement is that there be no systematic variation
of n,(E)|V,(E)|> with either E or i. The effects of such variations when they are
random will tend to average out. Thus, it stands to reason that a real measure-
ment may qualify in this respect and give an unbiased determination of
w4 — pg. However, at this stage there is no proof of this and it may well
need some further averaging. In particular, the measurement should be done
on a spatial scale much larger than both the wavelength and the screening
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length, in order to avoid obvious oscillations on the scale of the wavelength
and to agree with the charge neutrality consideration (and with the electrostatic
measurement) discussed above. For further discussion of G, vs. G and the issue
of probes, see Landauer (1989c).

Third, the quantity G evaluated here is an effective conductance in the sense
of being the ratio of the measured current to the measured voltage. At finite
temperatures, however, it was shown (Sivan and Imry 1986) that the above
G may also have a (usually small) thermoelectric component. The reason
for this is that even when the temperatures of the outside reservoirs, T and
T, are equal, the temperatures that are measured on the two sides of the
sample, T, and Ty (analogous to p,4 and up) will, in general, be different, at
a finite overall temperature. The current I may thus have a component due to
the nonvanishing of T, — Tp. This observation is relevant only when the
denominator of the conductance formula (eq. 5.19) is important (i.e., when
the approximation G ~ G, is not valid. The condition for G, to be a good
approximation to G is (as mentioned before) that G < N €% /h, which is
equivalent to the sample length L being much longer than the elastic mean
free path /.

The Onsager-type Relationship in a Magnetic Field:
Generalized Multiterminal Conductance Formulas

One of the interesting aspects of the multichannel four-terminal formula
(eq. 5.19) is that the various constraints and symmetries in the general case
do not guarantee the validity of the Onsager-type relationships among trans-
port coefficients (Onsager 1931). For example, the relation G(H) = G(—H) is
not guaranteed to hold (although for the two-terminal conductance,
G.(H) = G.(—H) is valid, see below). Biittiker and Imry (1985) constructed
specific examples with small numbers of channels where

G(H) # G(—H). (5.21)

Numerical calculations by Stone (1985) on larger-size disordered models also
produced this asymmetry. Such “‘asymmetry” has also appeared in experi-
ments on mesoscopic systems and there were indications that it might be
related, if no magnetic impurities (see Shtrikman and Thomas 1965) are
present, to sample inhomogeneity and the four-terminal nature of the experi-
ment (Von Klitzing 1985, personal communication').

The naive Onsager relationship (eq. 5.21) holds, in fact, for G, the “two-
terminal” conductance between the outside reservoirs. To obtain this, one

'Von Klitzing has pointed out to the author that the Onsager relation implies o(H) = o(~H),
which impies G(H) = G(—H) only for homogeneous systems. otherwise, the (antisymmetric in H)
Hall part of the conductance tensor might come in and contribute to the effective G. The author is
indebted to von Klitzing for pointing this out to him.
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notes that by generalizing the time-reversal symmetry relation eq. 5.10 to a
finite magnetic field, one finds

T;(H) = T;(—H). (5.22)
It follows (Biittiker and Imry 1985) that indeed
G.(H) =G/ (-H). (5.23)

Thus the apparent “deviation” from the Onsager relation for G simply means
that G, being a four-terminal object, should not have the naive symmetry
G(H) = G(—H). This reflects the need to consider the correct predictions of
the Onsager symmetry for a four-probe measurement. A similar need arises for
the four-terminal thermoelectric case (Sivan and Imry 1986).

This was considered very early by Casimir (1945) and the results were also
proved, assuming the conductivity to be local (which is not necessarily the case
in our situation), by Sample et al. (1987). For a review of the four-probe
technique see van der Pauw (1958). Biittiker (1986) considered a generalized
n-terminal Landauer-type conductance and confirmed the existence of the cor-
rect Onsager symmetries. Let us consider n=4. Recall that the current
between two reservoirs, 1 and 2, coupled to the system via the ideal leads is
given in obvious notation by

L= Z T;’z(#l — ) = Gy — pa), (5.24)
i

where eq. 5.23 for G2 is a statement of time-reversal symmetry. Suppose now
that four probes with chemical potentials y,..., s, are connected to the
system. Since we have linear transport and carriers from different reservoirs
are incoherent, the total current from the ith reservoir is found by adding all
three contributions:

L= z Gij(ﬂi - Nj)- (5.25)
J#i
This is a set of four linear equations relating the four currents Iy,..., 1, to the

four chemical potentials. It may conveniently be expressed in matrix form, in
obvious notation:

I=0Gp (5.26)

where G is a 4 x 4 matrix. This matrix is singular—its determinant vanishes.
This is clear, since the vector having four equal 4 components is an eigenvector
of G with zero eigenvalue—no current flows in equilibrium. This implies that
the sum of the elements in each row of G vanishes. Thus, eq. 5.26 does not have
a solution for an arbitrary vector I. Physically, charge conservation demands
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that the sum of all four components of I should vanish. Mathematically this
follows because the sum of all elements in a column of G is equal to zero, by
unitarity. Thus, only vectors I, having a vanishing sum of all of their com-
ponents, are allowed. Since time-reversal symmetry implies eq. 5.23, the set of
circuit equations is identical to that of a four-probe classical conductor. The
fact that the G/ themselves may include coherence effects is irrelevant as far as
symmetries are concerned. The Onsager symmetries for such a situation were
generally obiained and analyzed by Casimir (1945). Biittiker (1986) followed
Casimir’s formulation and confirmed that the Onsager symmetries are valid,
as they must be, according to the above. The four- (or in general n-) probe
formulation has proved to be extremely useful for many situations.

It is advantageous (Casimir 1945) to take the following current con-
figuration: Take {k / m n} to be a permutation of {1234} and [, = —-1, = J|,
I, = —I, = J,. Solving eq. 5.26, J; and J, can be expressed in terms of the
voltages eV = p, — yy and eVy = p,, — p, as follows:

N 2371 —012><V1)
= ) 5.27
<J2> <—0421 ) V) (527)

where, as found by Biittiker (see appendix H for thecase k =1,/ =3, m= 2,
n = 4) the matrix elements o; are given by

h
Zon == Tip = (Tin + Tiom)(Tux + T/,
ik

h
~—= a1 = (TewTin — TinTim)/Ss

2
h
o= (Toie Tt — Ti Tit) /S,
h
Zon= = " Top = Tk + Tt (Tim + Tiem) /S, (5.28)
p#
SETkm‘f'Tkn"'Tlm'f_ﬂn: mk+Tnk+Tm1+Tnlv (529)

where T,y = G7 = tr t,stl. It follows immediately that
i (H) = a(—H), (5.30)

which is the appropriate Onsager symmetry for this four-terminal conductance
matrix. Equation 5.27 can be inverted to yield
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(s e
V2 det any Ay Jz

where det = o 0, — a5 One is now in a position to discuss four-probe
resistance measurements. Such a measurement, with k,/ being the current
terminals and m,n the voltage ones, is done by taking J, = J;,J, =0 (no
current in the voltmeter circuit, to avoid irrelevant contact resistances) and

then V2 =V,

mn:

Vi = Rkl,mnlkl' (5.32)
Thus
az; Ty Tom ~ Tim Tk
R =2 = - 5.33
K det (oo — apan)S (5:33)

is the proper four-terminal resistance, with &, ! being the current terminals and
m, n the voltage ones. It is seen at once that (see van der Pauw 1958)

Rigyn(H) = Ry j(—H), (5.34)

which is the proper Onsager symmetry for the four-terminal resistances.
Obviously Ry pn(H) # Ry mn(—H) in general. Thus it is not surprising that
the simple Landauer four-terminal expression eg. 5.19 does not have this
symmetry!

The above is obviously a generalization of the Engquist—-Anderson type
approach to eq. 5.19, to allow an arbitrary coupling strength of the voltage
probes to the system. While it has the disadvantage that it cannot be regarded
as a “noninvasive” measurement of the “resistance of the system itself,” since
the contacts play a role, it has two advantages. (a) It is extremely useful, since
most of the transport experiments are currently done with voltage probes
coupled to the system via lithographically made contacts, which are definitely
not “noninvasive.” (One must appreciate, however, that this is not a law of
nature and that hopefully less invasive measurements are already possible, in
principle, using, for example, STM-type contacts. It remains to be seen whether
the required uniformity of the coupling to the different channels can be
achieved. Alternativelly, as discussed before, capacitative measurements of
the electrostatic potential are possible). (b) This formulation treats current
and voltage probes on the same footing and it is thus possible to treat the
proper Onsager symmetry (eq. 5.34), unlike the treatment of eq. 5.19 in which
the voltage probes must be special.

It is possible to play more games with the above formulation by, for
example, writing each four-terminal resistance as a sum of two parts, even
and odd in H, and combining those between dual probe configurations. This
is reviewed by Biittiker (1988) and Benoit et al. (1987a,b). The multiprobe
formulation is also extremely convenient for describing nonlocal effects. For
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example, a current between k and / produces a voltage between another pair of
contacts, m and n, a distance L away. As one might expect, such effects persist
for L < L¢

3. APPLICATIONS OF THE LANDAUER FORMULATION
Series Addition of Quantum Resistors, 1D Localization

We now consider, following Landauer (1970), the effect of two obstacles in
series (see also problem 4). We denote the phase change of the wave passing
through the constant potential (ideal conductor) between the obstacles, by ¢.
The waves in the region between the obstacles are the sums of all the multiply
scattered waves yielding a total left-going wave and a right-going one. An
amplitude A4 is reflected and D transmitted through the whole device.
A,B,C,D are complex numbers. The wave just emerging from obstacle 1 is
Be'™ " and it acquires a phase ¢ upon impinging on obstacle 2. The wave C
suffers a similar phase change from 2 to 1. The barrier equations are

A:r,—}—Ctl, B=t1+Cr1',
Ce ™™ = Ber,, D = B®%1, (5.35)

Solving these equations, we find

_ ei¢t1t2
1 — e ryr!’

which yields the transmittance T, of the device:

T,

Ty = 5.36
27 1¥RR, — 2R Ry cos 6’ (5:36)
where 6 = 2¢ + arg(r,ry), and, denoting Ty, = T, Rj3 = R,
5 _ R+ R, —2y/R(R;cosd (5.37)
T T\T, ' '

Assume now that we have an ensemble of systems prepared, with all of
them having similar values of both R, and R,. However, the “optical” phase
difference, ¢, in different members of this ensemble ranges over many intervals
of 27, with a uniform probability, so that the average of cosd is zero.” The
average of the inverse of the dimensionless conductance, g,

2This will be the case if the average distance between the obstacles is much larger than the
wavelength of the electrons. Their ratio is ~10% for 3004 of a ballistic metallic wire.
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G
= 5.38
£ e?/mh’ (5.38)
1s thus given by
- R +R
€ o =T R0 R (5.39)

T (1-R)(1-Ry)’

This result is already quite surprising. Ohm’s law of series addition of
resistances, g' =gi' +g7' = R;/(1 =R+ Ry/(1 - R,) is not valid in
general! It is only valid in the limit of good transmission, or small resistance,
R; < 1. This has very serious and important consequences that have not been
easy to accept initially. In fact, if one combines good transmittances
(R« 1,T ~ 1) in series, the resulting resistance, G7!, first increases linearly

with » as it should, but once » is so large that the total transmittance is smaller
than unity, then

R,+R
T,

R
T,

(g"l)av,nﬂ»l = = (ng)av,n + (540)

Thus, we add a good transmittance (R < 1) as the (n+ 1)th element to the
chain of n such elements and the resistance increases by R/T, > R. One may

form a “renormalization group” (RG)-type equation for the length-scale (n)
dependence of (g7")

d B _ -
%(g l)av,n = R[(g l)av,n + l]> (541)

so that the (dimensionless) resistance, after having increased linearly with n to
O(1). will then increase exponentially with the length n. This is the phenomenon
of 1D localization, as was discussed in chapter 2.

The above is not entirely satisfactory, however, as already remarked by
Landauer. The distribution of the resistances in the ensemble is not narrow and
thus, as emphasized by Anderson et al. (1980), the results depend on what
quantity is being averaged. Anderson et al. also pointed out the proper way
to average for large n. One needs an object that will behave like an ordinary
extensive quantity with both average and mean-square average increasing
linearly with n. Such a quantity is In(1+ g™ !). This is so, because
1+g ' =14+ R/T=1/T so that In(1+g™') ==InT. —In T plays the role
of the extinction exponent and one would expect it to be additive for two
scatterers if the relative phase is averaged on. Indeed, from eq. 5.37 one
finds, using (Anderson et al. 1980)

2n
J d6 In(a+ beos) =« Ind[a+ (@ — 69)2), (5.42)
0
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that (In T},) = In Ty + In T,. Thus, the exact scaling of the 1D resistance with
n is given by

(In(1+g;")) = pin, (5.43)

with p; being the resistance, in units of n#i/e’ of a single obstacle. This
indeed increases first linearly and then exponentially with n, differing only
quantitatively from the results of eq. 5.41. This establishes the 1D localization,
manifested in a measurable quantity—the resistance. The localization of all
eigenstates in 1D (Mott and Twose 1961, Borland 1963) is well known and
has been rigorously proved. (All this is, of course, at ““zero” or approprately
low temperatures, as before. At finite temperatures, one returns to the
considerations of section 2.4 and combines resistances for L > L, classically.)

Interesting effects may exist in the transport through a given sample on top
of the average behavior, as discussed by Azbel (1981, 1983; Azbel and Soven
1983). For a given, finite, system if the energy (and hence the optical path
difference between scatterers) is varied, the phase changes, 6, will be modified
and as a result T will vary too. In fact, T will show sharp “transmission”
resonances (see problem 4). These may show up at low temperatures as
sharp oscillations of the resistance as a function of the electron density
(which is variable in a MOSFET device; Ando et al. 1982) or the magnetic
field (if the system is not strictly 1D).

Now, we are also in a position to give another interpretation of the
Landauer T/R result for large transmission coefficients (Imry 1981a). Given
a T ~ 1, R < 1 we combine » such obstacles so that T}, is a number C smaller
but on the order of unity. Thus, {In C| = n|in T| =~ nR, but as long as C is small
eq. 5.7 still roughly holds for g, ~ T, = C. Since Ohm’s law roughly holds as
long as g = 1 we can now obtain g;—the conductance of a single obstacle—
as ng, (since n ~ 1/R,C ~ 1, T ~ 1); that is,

T
gr=nC= 0(1)—12, (5.44)
which agrees within an order of magnitude with the Landauer result, eq. 5.6.

Parallel Addition of Quantum Resistors,
A-B Oscillations of the Conductance

The next resistance addition problem we shall treat is that of resistors in
parallel. Here, too, we find that the quantum effects cause the usual classical
addition law to be invalid, once the system is coherent (L4 > length of the
system). An extreme case occurs when one of the parallel conductances
vanishes (“open stub”). Such a dead-end may still influence the total trans-
missjon of the device. When an A-B flux is introduced in the region between
the two conductors, oscillations with period h/e follow. It is simplest to
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Figure 5.4 Schematic picture of the parallel resistors (ring) system. The arrows denote
the various transmitted and reflected amplitudes, defined close to the junctions. The

phases accumulated through the channels are absorbed in the scattering coefficients
(rori i b))

consider this problem using the Landauer formulation with single-channel
conductors (Gefen et al. 1984a).

The geometry of the system is described in Fig. 5.4. Each branch of the
ring is described schematically as a single scatterer connected to an ideal,
mathematically one-dimensional channel. All phases and scattering effects
along the channels are absorbed in the parameters describing each scatterer.
These parameters are ¢ and ¢/, the transmission amplitudes from the left and
from the right, respectively, and r;(r{), the rcflection amplitudes on the left
(right) of the scatterer (i=1,2). Notice that time-reversal and current
conservation requirement, which imply ¢, = ¢/ and

’—ti/til*z ri/ri/* (5.45)

(the asterisk denotes complex conjugation), are also satisfied when the phases
of each path are absorbed in ¢;, etc. Moreover, when an A-B magnetic flux @ is
applied through the center of the ring, the usual (appendix C) gauge trans-
formation for the transmission and reflection amplitudes yields #; — ne ™,
0o h—net™ one® ror, rl =1l (6=18/8;), and the
transformed s and r’s still satisfy eq. 5.45. Following Shapiro (1983a) each
three-terminal junction is described, for example, by a 3 x 3 unitary scattering
matrix S,

0 -1/V2 -1V2
S=|-1yv2 12 12 |, (5.46)
~-1/vV2 =172 1)2

where the diagonal elements, S; {i = 1,2, 3) denote the reflection amplitude of
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the ith channel, and the off-diagonal elements S;(i # j) are the transmission
amplitudes from channel i to j. In Fig. 5.4, channel 1 of the left-hand junction
is chosen to be that of the incoming amplitude (unity) whereas channel 1 of the
right-hand junction is that of the outgoing amplitude (F). In this example no
reflection occurs in channel 1 and there is symmetry between channels 2 and 3.
We do not expect our results to depend qualitatively on the choice of the
junction’s scattering matrix, except for the trivial effect that these junctions
are themselves scatterers and add to the total resistance of the device. For a
particular model showing resonances, see Biittiker et al. 1976.

Writing down the linear relationships among the various amplitudes at the
junctions and scatterers and using sum and difference variables (e.g., x; £ x;,
etc.), we find after some algebra that the total transmission amplitude of the
ring is given by

Lot + )+ (= 1)1 =)+ 6 - 1)1 —r)
(h+o)g+5)~Q=r—r)2-r+r)

F=2 (5.47)

This can be rewritten as

Ae® + Be™?

" _ 5.48
De+210+Ee—210 + C’ ( )

where 4 = 2ty + t,(r; — 1) (1 = 1]),B=1,66 + 1,(r, — )(1 = 13),D = E = 115,
C=2+1t—(2—-r —r)2-r —r}). The transmitted intensity which deter-
mines the conductance via the Landauer formula is (using ¢ = 26)

a+ fcosg + B’ sing

T=|F?=4 : : ,
£ v+ 6cosd + 6'sin @ + ecos2¢ + €' sin 2¢’

(5.49)

where o = |A) + |B)>, 8=2Re(4B"), 8’ = —2Im(4B") =0, v = |D|* + |E|?
+|C]?, 6 =2Re(DC* + EC*), §' = -21Im(DC* — EC*) =0, € = 2 Re(DE*),
¢’ = —2Im(DE") = 0. It is straightforwardly checked that 8’, §, and ¢’ vanish
identically, as they should by Onsager symmetry.

Let us first consider the case where no magnetic flux is present (¢ = 0).
Even in this case 7" may exhibit oscillations as a function of the phases of the £’s
and r’s (which influence the coefficients «, 3, 6, € in eq. 5.49). When #; = 0, an
appropriate choice of the phases of r, and r{ may result in T =1 or T =0.
That is, by tuning the nonconducting branch we can dramatically affect the
transmission through the other channel. This effect is present also when {#| and
|t,] are finite. In particular, we can obtain T = 0 even when |¢;| < |t,|. On the
other hand, one can improve the conductance of a scatterer by connecting to it
in parallel a very poor, tunable, conductor. Notice that these resonances will
disappear once the inelastic diffusion length L, = /D7, (74 is the inelastic
dephasing time) becomes of the order of the size of the ring, L. Thus we
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may obtain dramatic changes (either increase or decrease) of G with the
temperature. Another interesting effect may occur if we expose one of the
channels (say channel 1 with |1,| < |f]) to, for example, electromagnetic fields
whose effect is similar to inelastic scattering. This may cause a dramatic change
in the transmission of the weakly scattering channel. When ¢, = ¢, = t eq. 5.47
reduces to F =1t. We expect this result to hold also for an n-branch system.
Thus, when the temperature increases, the conductance should increase from

2
G, =)/ (1 - )

to Ohm’s law G = nG,.

We now turn on a magnetic flux ®. In general T is periodic in ® with a
period &, in agreement with the Byers-Yang theorem (appendix C). A finite
first harmonic (periodicity of ®,/2) exists in general, as do higher harmonics.
These oscillations may be very strong even in the limit of strong scattering
(lr € L € Ly). Assume, for example, that |r] ~ || ~ t < 1. In that case,
unless very special phase relations hold, a ~ B ~6&~ 7, e~ and v~ 1.
These are then oscillations with a perlod &, and an amplltude ~|t! appearing
on a constant background of order |t| (thus the oscillations are as large as the
average, and T may vanish for certain values of ¢). In addition, there are also
(first harmonic) oscillations of a period ®3/2 and a smaller amplitude ~|tl
If |#,] < |t,] the relative size of the oscillations becomes smaller (and again,
the harmonics with a period ®,/2 are even smaller). These oscillations
have received ample experimental confirmation (Webb et al. 1985a,b,
Chandrasekhar et al. 1985, Datta et al. 1985), as shown in Fig. 5.5, taken
from Webb et al. (1985b). The key for observing the A/e oscillation in the
experiments was the separation of the field scales for them and for the
“slow’” fluctuation, to be discussed later.

Prior to the above calculation and its experimental confirmation, a
seemingly contradictory effect existed. One of the most interesting predictions
of the weak localization theory has been that by Altshuler, Aronov, and Spivak
(AAS) (1981a) on periodic oscillations of the (Kubo-type) conductance of
rings or cylinders of small diameter (but having many conducting channels)
as a function of the Aharonov-Bohm flux, &, through their opening. One
surprising aspect of this calculation has been that the fundamental period of
the oscillations was not ¥, = h/e, as the general Byers-Yang theorem
demands, but ®,/2. The ®,/2 period is the “first harmonic” of the &,
oscillation. Thus this periodicity does not contradict the above theorem. The
question is only why the fundamental, ®,, periodic does not appear in those
calculations.

Before answering this question we mention that the prediction of the ®4/2
oscillation has received, starting with the beautiful pioneering work by Sharvin
and Sharvin (1981), very convincing experimental support (Altshuler et al.
1982b, Ladan and Maurer 1983, Gordon 1984, Gijs et al. 1984). In the more
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Figure 5.5 (a) The magnetor.esistance of the gold n'ng, shown in the inset and having
an inside diameter of ~8000 A and a width of ~400 A. The arrow corresponds to 10
flux quanta in the hole of the ring. (b) Fourier power spectrum, in arbitrary units,
showing peaks at h/e (and h/2¢) corresponding to the visible fast oscillations. The low-
frequency peak corresponds to the slow modulation due to the flux in the “arms” of the
ring which is a conductance fluctuation, to be discussed later. (From Webb et al. 1985b.)

recent experiments on long cylinders an almost quantitative agreement with the
full theory (taking into account the non-Aharonov-Bohm magnetic field inside
the material) was achieved. The ®,/2 oscillation has also been clearly seen in
experiments on large arrays of many small “rings”” (Pannetier et al. 1984, 1985,
Bishop et al. 1985, Licini et al. 1985a, 1985b, Dolan et al. 1986). In all these
experiments the fundamental period, &g, has not been seen. Preliminary experi- -
ments (Umbach et al. 1984, Webb et al. 1984) on single rings were inconclusive,
but did show traces of perhaps both ®, and &,/2 oscillations, with an
additional very important aperiodic structure {the slow modulation of Fig.
5.5) that will be discussed later. Convincing ®,-periodic oscillations in single
small rings were only reported subsequently (Webb et al. 1985a,b; Washburn
et al. 1985; Chandrasekhar et al. 1985; Datta et al. 1986 and much later work).

The answer to the dilemma of where the ®y-periodic oscillations are in the
many experiments mentioned and in the weak localization theories is the
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following (Gefen 1984, private communication, see also Browne et al. 1984;
Biittiker et al. 1985, Murat et al. 1986, Imry and Shiren 1986, Stone and Imry
1986): Both the theory of Altshuler et al. (1981a) and the experiments on
cylinders and arrays involve effectively an ensemble averaging over many
microscopically distinct systems prepared with the same overall macroscopic
conditions. Thus, all rings in the array have similar average impurity concen-
trations, but the precise configuration of the impurities is obviously different.
In the cylinder experiments, the resistance is measured along an approximately
1-cm-long cylinder which consists of around 10* pieces of length L, added
classically in series. In the perturbative theoretical calculations, one performs
ensemble averaging from the very beginning in order to use propagators that
depend only on relative distances (apart from boundary effects). The work
reviewed above on single rings with contacts suggests that the Fourier
coefficient corresponding to the ®y-periodic part of the oscillation does not
have a definite phase. On the other hand, the AAS &;,/2 Fourier coefficient
does have a definite phase (e.g., G(®) is minimal® at the origin & = 0; Altshuler
et al. 1982b, Bergmann 1984, Lee and Ramakrishnan 1985). This definite phase
is due to the nature of the weak-localization correction as discussed in section
2.6 (see also the analysis of the classical paths in section 4.2). In order for it to
be flux-sensitive, a path must encircle the ring at least once. The time-reversed
path will encircle the ring in the opposite sense. Their sum will add in phase
at ® = 0 without spin—orbit scattering and will thus be maximal (minimum
conductance) at & =0. For & # 0 these two paths will acquire phases of
+¢ = 2n® /P, and the sum will oscillate with a period &/2, but with a definite
decrease from ¢ = 0 (with no spin—orbit scattering). A beautiful demonstration
of the qualitative validity of this picture was given by Altshuler et al. (1982b),
where replacing magnesium by lithium (which has a smaller spin—orbit
scattering) changed the phase of the ®,/2 oscillations in the expected fashion.
Thus, the ensemble averaging (if done on a broad enough ensemble) eliminates
the @, fundamental component, but the AAS ®,/2 one survives. Therefore,
experiments on single rings (Webb et al. 1984, 1985a,b, Washburn et al. 1985,
Chandrasekhar et al. 1985; Datta et al. 1986) were needed to see the h/e period.

These experiments had in fact been preceded, following an initial insight by
Gefen (1984, personal communication), by model calculations (published later)
demonstrating the need for single rings to observe the /e oscillation, by Imry
and Shiren (1986) on the Kubo conductivity of closed 1D rings and by Murat,
Gefen and Imry (1986) on 1D rings with contacts and, later, by Stone and Imry
(1986) for multichannel rings with contacts. Results from Murat et al. are
displayed in Fig. 5.6, in which, instead of ensemble averaging, the conductivity
was calculated at a series of increasing temperatures 7. It turns out that in 1D,
once kgT >> A, different electrons in the “thermal band” of width k3T around
Er have different phases associated with propagation around the ring. Thus,
high enough temperatures, at which the relevant energy scale in 1D is the level

3Note that for systems with strong spin—orbit scattering the minimum becomes a maximum.
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Figure 5.6 Similar to Figs. 4 and 5 of Murat et al. (1986). Resistance as a function of
flux for a 1D ring with long arms with scatterers, for three temperatures, exhibiting the
self-averaging-out of the ®,-periodic component at higher temperatures.

separation A, provides self-averaging which is similar to ensemble averaging.
This will be discussed further below. However, a glance at Fig. 5.6 is enough to
appreciate the better averaging out of the ®y-periodic component obtained
with increasing T. The idea that ensemble averaging may lead to a By/2
fundamental periodicity was also discussed by Carini et al. (1984) and Browne
and Nagel (1985). However, since they considered a certain static quantity
(participation ratio) averaged over a whole band, they also found that the
®-periodic component decreased like 1/L (L being the length of the system)
even for a single ring. Averaging over the whole band is like thermal averaging
with k3T comparable with the electron band width, which is usually very large.
This is not applicable to the low-temperature conductivity.

The results shown in Fig. 5.6 demonstrate the gradual tendency for
“effective ensemble averaging” with increasing temperature. At low tem-
peratures we see the basic periodicity of ®,, but at higher temperatures the
basic period reverts to ®,/2. The crossover is obtained, in 1D, when kgT
becomes comparable to the level separation. This should be expected, since



116 INTRODUCTION TO MESOSCOPIC PHYSICS

consecutive levels in 1D are defined by having O(27) more phase variation
along the whole system. It was also confirmed that the effectively ensemble-
averaged result (c) is insensitive to changes of phases of the scatterers which
strongly influence the ®, oscillation.

Such “energy-averaging” is effective also at higher dimensions. Generally,
there will exist some characteristic energy scale AE, so that energies differing
by AE will have significant differences in the interference along the system. In
1D, AE ~ A since there is no diffusive metallic regime. Once g S 1and L 2/,
we have localization (chapter 2). An important question is what is the “energy
correlation range,” AE, in more general cases. AF is in fact generally of the
same nature as the Thouless parameter E, which, as discussed in chapter 2,
measures the scnsitivity of the energy levels to boundary conditions (i.e., a
phase difference across the system, or an Aharonov-Bohm type flux through
the ring). One would thus heuristically identity the “energy correlation range”
AFE with E,. This follows from the discussion following eq. 4.16, according to
which the phase of a diffusive path around the system increases by O(w) for an
energy change of E,. This argument was first given by Stone and Imry (1986),
who also demonstrated the validity of AE ~ E_ numerically for the multi-
channel case. This is also consistent with the results of Lee and Stone (1985)
in the weakly localized regime for the related fluctuation problem, to be dis-
cussed in the next section. Thus, the condition that the thermal “Fermi”
smearing will not wash out interference effects, such as the &,-periodic
component in a ring, is

kyT <E,. (5.50)

Using the Thouless relation E, = AD/L?, eq. 5.50 is found to be equivalent to

LS \/Dh/kBTELT, (551)

that s, the sample is shorter than the thermal length L1 defined by eq. 5.51. We
note that 7, is typically larger by one to two orders of magnitude than %/kzT in
many real systems (especially in metals, related to the validity of the Fermi-
liquid theory; these two times appear to approach similar orders of magnitude
in some very dirty systems). Comparing the condition 5.51 with the one
requiring that L be smaller than the inelastic diffusion length, we find that
our condition in eq. 5.51 is more restrictive, but not hopelessly severe. This
is especially so because, for kzT > Ef’ averaging may be expected to reduce
the relative oscillation by ~(E./kgT) /2. For example, for a 500 A x 1500 A
gold wire with a length of 5000 A and a resistance of 20 2, A ~ 1 mK and
E, ~ 0.05 K. Hence the condition in eq. 5.51 is experimentally feasible and the
effect should be reduced by only a factor of 3 at ~ 0.5 K by energy averaging.
This is the range of parameters relevant for several experiments.

Until now we have discussed only the effect of the Aharonov—Bohm type
flux through the opening of the ring. One might also enquire about the effect of
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the magnetic field in the material. In fact, the initial experiments on rings,
where a substantial fraction of the magnetic flux penetrated their arms, as
well as similar experiments on singly-connected fine lines, showed aperiodic
fluctuations (Umbach et al. 1984) in the resistance of these systems. The
random-appearing structure was reproducible for a given system as long as
the latter was not effectively annealed. This is the same as the “slow” structure
of Fig. 5.5, which is also an aperiodic conductance fluctuation. The magnetic
field scale of this structure corresponds to a flux of the order of a flux quantum
through the wire. This is reminiscent of the oscillations found by Dingle (1952)
in the equilibrium properties of free electrons in the geometry of, say, a disk, as
function of the flux through it. One might imagine (Blonder 1984) that the
aperiodic nature of the resistance change in the real system might be due to the
random specific stacking of impurities and defects in a given system. It will then
follow that each given stacking should produce as its own ““fingerprint” a
specific R(H) curve.

The multichannel conduction formula provides an ideal tool to quanti-
tatively check the above idea. A disordered tight-binding Anderson model
can be used to represent the (noninteracting) system. It is possible to calculate
the S matrix for a given model numerically either by multiplying the transfer
matrices (Pichard and Sarma 1981a,b; Azbel 1983) and variations thereof, or
by the Green’s function method of Thouless and Kirkpatrick (1981),
generalized to 2D by Fisher and Lee (1981). With the latter method it is reason-
able to reach 2D models of ~40 x 400 sites, for example. The convergence
properties of this method appear to be appropriate for the cases of interest
here. These calculations have been performed by Stone (1985). The effect of the
magnetic field was taken into account by modifying the phases of the matrix
elements of the Hamiltonian so that the sum of all phases around each loop
is given by the flux inside it (“Aharonov—Bohm effect in each loop™). The
elements of the transfer matrix are changed accordingly. Typical results
(Stone 1985) where the computer experiments and real experiment have the
field scales determined by the condition of a flux quantum through the system
are depicted in Fig. 5.7. The large difference in the vertical scale, with the
fluctnations in the computer experiments larger by more than two orders of
magnitude than in the real experiments, is due mainly to the different channel
numbers (about 40 in the former, 2 x 10* in the latter), leading to different
resistances. This and many other similar results obtained by Stone (1985)
provide convincing evidence that the physics of the aperiodic reproducible
oscillations is indeed the modification of the electron interference by the mag-
netic flux through the system.

The qualitative picture is as follows: Each ¢;;, for example, can be obtained
as a sum over all paths through the sample of the transmission amplitude from
i to j via the given path, which is clearly an interference phenomenon. A
magnetic field having a flux through the system on the order of &, changes
the relative phases of the most distant paths by the order of 27. This determines
the field scale on which the resistance may fluctuate. These ideas are discussed
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Figure 5.7 Resistance as a function of flux for a small wire. Theory and experiment
normalized to have similar horizontal scales. Vertical scales are discussed in the text.
(From Stone 1985.)

more fully by Stone (1985) and Stone and Imry (1986). The concept of the
energy correlation range, E,, alluded to above, emerges very clearly from these
numerical results. More general ideas (Altshuler 1985; Lee and Stone 1985;
Altshuler and Khmelnitskii 1985; Imry 1986; Lee et al. 1986) on the magnitude
of these conductance fluctuations will be discussed in the next subsection.
We conclude this section by summarizing the differences between the h/e
and AAS h/2e oscillations in rings. The former, being sample-specific, is
sensitive to all sorts of ensemble averaging, including energy averaging. Since
the latter is not energy sensitive, and is already the result of averaging, it is
observed without the “‘contamination” of the aperiodic conductance fluctu-
ations. On the other hand, a result of the experiment of Webb et al. (1985b)
has been that the ®,-periodic oscillations did not appear to fade with
increasing magnetic field. In fact, they persisted to ~10° oscillations with no
noticeable weakening. This was quite surprising, given expectations that the
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non-Aharonov—Bohm flux inside the arms would make & ill-defined and
eventually smear the structure, as in fact happens with the AAS-type ®,/2-
periodic oscillations (Altshuler et al. 1981a, 1982¢, Sharvin and Sharvin
1981). It is possible, however, at least in the case where the scales of the
periodic (Aharonov-Bohm) and aperiodic (due to the field inside the material)
structures are well separated, to give a heuristic argument (Stone and Imry
1986) for the persistence of the periodic structure in the &gy-periodic
component.

The magnetic field applied to the real ring will create both an Aharonov—
Bohm flux @& through the ring’s opening and a (classically relevant) flux &,
through the ring’s arms. The ratio of these two fluxes is just a geometrical
factor

o
5 =4 (5.52)

For H perpendicular to the plane of the ring, 4 will be the aspect ratio—the
ratio of the area of the hole to that of one of the arms. Now recall that, for
example, by the results of Stone (1985), the scale of changes of &, which
markedly alters the conductance of an arm of the ring is A®, ~ &;. Thus,
for A >> 1 it follows that when H is changed so as to span a range ®, of ®,
®_ will change only by ®,/4. This will cause just a very small change of the
background contribution to the conductance due to ®,, which will result in a
slow variation of G(H) on top of which the faster oscillation due to ® will
occur. Further analysis (Stone and Imry 1986) along the lines of the Landauer
formula with the introduction of the effects of ®, indeed reveals that the &,-
periodic oscillation survives the existence of &, even when &, > ®,, although
&, causes slow (determined by A®, ~ &) amplitude and phase modulations of
the oscillation. This is also consistent with numerical simulations, and with the
diagrammatic calculations (Altshuler 1985, Lee and Stone 1985) as well as with
the experiment (Webb et al. 1985b).

The ®g-periodic oscillation is (Biittiker et al. 1985, Stone and Imry 1986;
see next section) the result of an almost canceling addition of many random-
phased terms. This is the essential reason why this oscillation survives the large
magnetic fields in the ring’s arms. The AAS contribution is, as discussed above,
of a fundamentally different nature. It is obtained from the addition of
coherent terms. Once these are made incoherent by a large magnetic field (or
by, say, a random magnetic field due to static magnetic impurities), this con-
tribution is greatly reduced. Interestingly, there should also exist a typically
smaller (Stone and Imry 1986, Gefen et al. 1984b), ®,/2-periodic contribution
which is the first harmonic of the ®y-periodic one and is also due to incoherent
terms and not to the special coherent-backscattering AAS-type ones. This
contribution, due to two unrelated paths encircling the ring in opposite
directions, should also survive large magnetic fields. The immunity of the
®,-periodic type oscillation to (uniform or random) fields is well summarized
by the statement that ““you cannot kill a dead horse.”
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It is interesting to note how these processes have different sensitivities to
the various parameters and thus each is observable under different experimen-
tal conditions. A final remark is in order about the strengths of these phenom-
ena. At higher temperature, when Ly <« L, the h/e and AAS oscillations
should die out, respectively, like e “%s and e72/%s due to the double path
length of the latter contribution. It turns out that the aperiodic fluctuations die
out more slowly with increasing temperature.

On the Universality of the Conductance Fluctuations

The conductance of different samples belonging to the same ‘‘impurity
ensemble” (i.e., having the same average disorder but differing in the detailed
defect arrangements) varies from sample to sample. Let us stay in the diffusive
metallic regime (! €« L K £, or, equivalently, 1 < g« N,), discuss the
quasi-1D situation (otherwise only some numerical factors change), and use
the two-terminal Landauer formula for the dimensionless conductance, g,

g=twul =31, (5.53)
)

For multiterminal situations this discussion applies to the conductance between
a given pair of contacts. The conductance fluctuation of each sample is

Ag=g—(g), (5.54)

where ( ) denotes an ensemble-average. What about the mean square fluctu-
ations (Ag?)? Since it is by itself an ensemble-averaged quantity, it can be
calculated diagrammatically. This was done by Altshuler (1985) and by Lee
and Stone (1985). The unexpected, extremely intriguing resuit was that

(Agh) =C, (5.55)

where C is a universal constant depending only on the effective dimensionality
and the general symmetries (see below), not on the conductance g itself and
certainly not on other microscopic details of the system or the defects!

It was found that ¢ ~ 0.862 for quasi-1D systems with time-reversal sym-
metry and with no spin—orbit coupling. C has somewhat different but universal
values for 2D and 3D and depends on the magnetic field and the spin-orbit
scattering (which break the symmetry of the system from orthogonal to unitary
(Dupuis and Montambaux 1991) or symplectic, respectively). The result is
valid when the sample is in the coherent quantum limit

L< Ly Ly (5.56)
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But otherwise the result can be simply estimated by, for example, dividing the
sample into smaller “‘coherent” parts and adding them classically. This remark-
able result has been corroborated by numerical computations and by experi-
ment. The fact that a pronerty of all dirty systems with the same general shape
is the same at low temperatures is even more remarkable than the universality
in the critical behavior of extremely pure and carefully handled systems. It is
possible (Altshuler and Khmelnitskii 1985) to consider, more generally, the
correlation function of the conductance taken as a function of Ep and the
magnetic field, H,

F(AEg, AH) = (g(Er, H)g(Er + AEp, H + AH)) — (g)’, (5.57)

which also has universal behavior. The correlation range in E is E, and that for
H corresponds to a flux quantum in the area of the system, as may be expected.
For a strong enough H the time-reversal symmetry is broken and C is multi-
plied by 1/2. Universal changes occur also with spin—o1’ it scattering.

In the Landauer-type formulation, this universality 1s intimately connected
with the universal correlations in the spectrum of the transmission matrix. This
will be discussed briefly in appendix I. Here we give » very simplified and
nonrigorous version of the argument.

Consider first (Biittiker et al. 1985) one typical Tj; = |¢;|". ¢; is given by a
sum of an exponentially large number A, of terms due to the various paths
donated by m, connecting input channel j with output channel i. Thus, apart
from normalization,

IZ

N
Tyocy 14> eln), (5.58)

1 m#n

where the first term is the ‘“diagonal” classical one and the second is the
quantum interference one, whose ensemble average is zero. However, the
typical value of the second term, which is a sum of A/ 2 random contributions
(N 3> 1) is O(NV), the same as the classical term! This argument and the
rather surprising result that the relative fluctuation in T} is of order unity
were known and appreciated by Rayleigh in the theory of scattering of light
from random media.

The question is now how many independent T}/’s are there? One might
argue that there should be N, independent “conduction channels” and thus
N? independent T;’s. Therefore, \/(Ag*/g ~ 1/N . This is, however, not the
case. For very long systems, L > /, most of the eigenvalues are exponentially
small and drop out of the game. For a conductance g ~ N I/L the number of
“effective conducting channels,” having transmission coefficients close to unity
(Imry 1986), is
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¢ I
Ne[/NZNgNN_Lz. (559)

This is obtained by writing the eigenvalues as exp(—Ly,) and taking the inverse
localization lengths, u,, to be, roughly, equaily spaced, as explained in
appendix I. The physical localization length, &, is such that its inverse is the
smallest of the ,’s. One expects that (Ag?) is only due to those eigenvalues
which are relevant, that is, to the fluctuation in the number of eigenvalues in

an interval which has N, eigenvalues on average. Replacing N, by N, one
obtains

(ag”) = 0(1), (5.60)

which is the required result.

A more convincing presentation of this argument, having to do with eigen-
value repulsion (“spectral rigidity”; Dyson 1962), is briefly discussed in
appendix I. One writes g as a “linear statistic” of the eigenvalues of a certain
random matrix. The assumption that the spectrum of this matrix obeys
random matrix theory (RMT) rules yields, in fact, a constant universal value
for (Agz). This is close, though not exactly equal, to the right one. There has
been much work on the precise spectral properties of the relevant matrix (see,
for example, Muttalib et al. 1978, Mello 1988, Mello and Pichard 1989, Mello
1990, Pichard 1991, Macédo and Chalker 1992, 1994, Stone et al. 1991, Slevin
ct al. 1993, Jalabert et al. 1993). Recently Beenakker and Rejaei (1993) found
the needed distribution, which is not exactly RMT and yields the precise value
of C for the quasi-1D geometry. At any rate, this point of view, even though
approximate, does give one some insight as to the origins of the universality,
why it is sensitive to some symmetry breakings, and how it can be qualitatively
carried over into, for example, the strongly localized regime. For a discussion
of the conduction paths through the disordered system, see Oakshott and
MacKinnon (1994).

Problems

1. (a) Use the result of eq. D.1 at small g to obtain the matrix elements of x

and p between exact eigenstates.

(b) Show that these matrix elements lead with the Kubo formula to the
usual Drude o.

(c) Show that these same matrix elements can be used to obtain the
“sensitivity to boundary conditions’ and the Thouless relation.

(d) Show that the above matrix elements are also obtained (Thouless) from
the postulate that the eigenstates are random phase mixtures of k states
in a shell of “thickness” #/7 around the Fermi surface.
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2. For a small metallic particle, use the Kubo formula and the results of
problem 1 above to get the o(w) at low frequencies, assuming level width
= level spacing.

3. Sketch o(w) for a small particle in the localized regime, with the size of the
particle, L > £ (loc. length).

4. (a) Discuss the effect of resonant tunnelling on the conductance of a tunnel

barrier using the Landauer approach and a simple 1D model (see Baym
1969, p. 104, for a general reference).

B Bei# D
c ‘ Ce-iG

The well inside the barrier has a single quasi bound state at E,,
having lifetimes due to tunneling to the left and right leads of 7; and
T,, respectively. Calculate first the transmission coefficient T'(E) through
this barrier as a function of E and explain physically the results. Then,
obtain the conductance, G, for given p; and u; = p; — eV. When Ey can
be changed with a gate, sketch G as a function of that gate voltage.
Discuss how, when Eg > g, > u, initially, the resonance will contribute
to the nonlinear conductance G{V').

(b) Using the above, discuss qualitatively the effect of localized states on the
conductance in a 1D disordered chain at low temperatures (Lifschitz
and Kirpichenkov 1979, Azbel 1981).

5. The “Coulomb blockade’: Suppose that u, < £y < y,, but that the energy
to put a second, opposite-spin electron in the state of the well is Ey + U.
U is called “the Hubbard repulsion” and is often parametrized as
U=¢*/2C where C is an effective capacitance. Show that when
Ey+ U > py > py > Ey, the conductance is exponentially small, What is
the activation energy? What value(s) of V' will cause resonant conductance?
Generalizations of this simple phenomenon have caused a lot of recent
interest. For references see Likharev and Zorin (1985), Ben Jacob and
Gefen (1985), Averin and Likharev (1991) and Grabert and Devoret (1992).



The Quantum Hall Effect

1. INTRODUCTION

While the quantum Hall effect (QHE) is almost a macroscopic phenomenon
(except that it occurs for 2D electrons), its physics has much in common with
many aspects of mesoscopic physics. The quantized Hall current is very similar
to a persistent current over large length-scales, and many other considerations
are related as well. Thus, we devote this chapter to the QHE. Small-size effects
on the QHE will be an interesting research direction.

Let us consider magnetotransport in a 2D electronic system. The ele-
mentary Drude result for the resistivity tensor p, giving the fields

E,
E,
in terms of the current densities as
(pxx pxy) (.’x)
Pyx Py ) \Jy
is

-1
A oo B/nec 6.1
p <-—B/nec o;! )’ 1)
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Figure 6.1 A schematic magnetoresistance and Hall effect measurement in a typical
Hall bar. A current I is supplied from “source” to “drain.” ¥y is measured across the
current, ¥V, = V along it.
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o, being the Drude conductivity o = ne’r/m. In the usual experiment we have
a “Hall bar” with a supplied current I,, and I, = 0. These conditions imply
(where Vy and V; are defined in Fig. 6.1)

B B
E =——7j = —— 6.2
'y nec Jxs VI-I nec Ix: ( )
L1
E, =j Vp=—=->% 6.3
x ]x/o'Oy L W %o ’ ( )

for a sample with width W and length L (see Fig. 6.1). B is perpendicular to the
plane of the figure along the positive z direction. Assuming homogeneity,
I, = j, W, the Hall voltage is ¥y = WE, and, the longitudinal voltage is
V; = LE,. The Hall resistance and the resistance per square are equal in 2D
to the resistivities: R), o = p,» = —B/nec, and R,, o = po. (The independence
of R, on B reflects the well known absence of of magnetoresistance in the
simple Drude theory.) The measured quantities, whether the sample is homo-
geneous or not, are the resistances (not the resistivities). The former (and the
conductances rather than conductivities) are the fundamental quantities for the
QHE, unlike the usual case. The conductivities are given by inverting eq. 6.1
(it is useful to note that w,7/0y = B/nec (w, is defined in eq. 6.7 below):

Oxx = Oy, = %
xx yy 1 + (wcfr)z ]
—OoW,T
Oy = — 0y = ——s 6.4
¥ s (wcv')2 64)

The symmetries of the nondiagonal components of é and j presume that the
samples are rotationally invariant. For mesoscopic samples this necessitates
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ensemble averaging. The more general Onsager relationships follow from time-
reversal symmetry and imply:

oy(H) = o3(—H), (6.5)

and a similar relationship for p.

The result B/nec for p,, can be understood from the elementary condition
that the Lorentz force, F, = ev,B/c on the moving electrons, remembering that

jo = —nev, (6.6)

is balanced by the Hall field E,. The latter is generated by the surface charge
layers accumulated on the top and bottom edges of the sample since j, = 0. An
equivalent derivation of the above for samples with translational invariance
is accomplished by noting that in a frame moving with the drift velocity
v, = cE,/B;, the electric field vanishes (we take linear response, E, < B.,
the situation 1s “‘electric field-like””). Thus, the current in the laboratory
frame is the one required by the Drude theory. We see, therefore, that to obtain
deviations from the above, one must have breaking of translational symmetry.
This is provided by defects, impurities, and sc on. We disregard the periodic
potential—it should be well approximated by the effective-mass approximation
for the small electron densities in semiconducting systems which are of interest
in the QHE connection. We will go on with that assumption but it should
be kept in mind that there are subtleties associated with the competing
periodicities due to the lattice and the magnetic field. We also remember that
the above Drude theory is certainly a major oversimplification, although often
(but not always) the high- (rather than low-) field Hall effect is described rather
well by eq. 6.2, yielding a reasonable carrier density and sign (Ashcroft and
Mermin 1976).

At high magnetic fields and low temperatures the effects of the quanti-
zation start to be important. For electrons with no scattering we know that
the allowed energy levels become the discrete Landau levels (in 2D, with B
perpendicular to the 2D plane the motion is fully quantized):

_eB

En = (n + %)hwcv wc - mc7

(6.7)

where the mass m is understood to be the effective mass of the relevant carriers
and w, is the cyclotron frequency. Each Landau level E, has a huge (extensive)
degeneracy

BA A
PG = (Bo=hele) (63)

given by the number of flux quanta of B in the total area (4 = LW) of the
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sample. The number of states is, of course, conserved in the sense that the
number of 2D, B = 0, states in an interval fiw, equals p.

Even at T — 0, one must consider here the effects of elastic scattering by
impurities and defects, characterized by an effective elastic scattering time 7.
Translational symmetry is broken, hence the above Galilean transformation
argument does not work. It is now impossible to solve the problem exactly as
in egs. 6.7 and 6.8. A very reasonable expectation is that the Landau-level
degeneracies split and at least for

w,T > 1, (6.9)

which will be assumed from now on, the Landau levels broaden into narrow
bands of approximate width /7 and with very small overlaps. Thus, the
Landau levels become relevant and one expects the usual de Haas—van Alphen
and Schubnikov—de Haas effects to prevail. These are due to the consecutive
filling of higher Landau levels with increasing (2D) density » or decreasing B,
obtained when

nd=jp, or —=-—, (6.10)

with j an integer, yielding the well-known periodicity as a function of 1/B for a
given n (see, e.g., Ashcroft and Mermin 1976). In two dimensions the situation
is the simplest and the Schubnikov—de Haas oscillations are expected to be very
strong due to the lack of smearing by the motion parallel to 8. In fact, the
observation of this oscillation was the convincing proof for having a truly 2D
system (Fowler et al. 1966, see Ando et al. 1982, Kawaguchi and Kawji 1982).
It should of course be kept in mind that the spin of the electrons will lead to the
additional spin splitting of the levels. The mass appearing in the gyromagnetic
ratio is in general not the same as the one in the cyclotron frequency. The
former could naively be expected to be the bare ¢lectronic mass, but different,
sometimes “anomalous” values for the g-factor are possible and often occur.
The exchange interaction will increase the spin splitting.

The results, shown in Fig. 6.2a, that were obtained in the experiments of
von Klitzing et al. (1980) were striking and unexpected from the above general
discussion. Si MOSFET devices were used, where the density n could be con-
trolled electrostatically by a gate and a rather high magnetic field was applied
so that small values of the integer filling j could be achieved. The later (Fig.
6.2b) results on better-quality GaAs heterostructures show the effect even more
strikingly. At low temperatures the Schubnikov oscillations became so deep
that o, was very small, practically vanishing at its minima. At the same values
of n (or B) where an integer number, j, of Landau levels were full, the deviation
from the R,, = B/nec “straight line”” was as follows: R,, and G,, developed
plateaus, sticking for finite ranges of B or n to the values they have at the
completely full integer number of Landau levels, j. The values on the plateaus
were constant to a relative accuracy of about 1077 a.d even in the original
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Figure 6.2 (a) The original QHE results of von Klitzing, Dorda and Pepper (1981) for
a Si MOSFET as function of the gate voltage controlling the electron density. (b) Later
results (from von Klitzing 1982) in gaAs as a function of B, exhibiting broad steps of p,,
with almost vanishing p, at 1.6 K. )

publication the absolute value was found to be equal to (n4 =jp, as in
eq. 6.10):
—nec  —€*

to within 107°. Currently, relative flatness of “steps” to within 10°% and
absolute values of accuracy of 1077 are achieved. This quantum of conductance
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is the best determination of the fine-structure constant o = ¢*/kc. This result
has a real metrological significance.
We remark that for G,, = 0 the inverse of the matrix

0 Gy
~G,, 0

(1/g,y -1{)6”>

so it should not come as a surprise that both G,, =0 and R,, = 0, while G,,
and R, are the inverse of each other.

It has been clear that this phenomenon is associated with the dissipation-
less nature of the transport and that the occurrence of the step must be
associated with the “pinning” of the Fermi level between two Landau levels
in the range where states are localized—somehow not changing the transport
when n or B is varied. Our first task is to understand these qualitative ideas
more systematically.

is

2. GENERAL ARGUMENTS

It is easiest to do the theory for the idealized geometry of Fig. 6.3a, where the
2D electron gas is wrapped on a cylinder of circumference L, with a radial Hall
magnetic field B. The Hall voltage, ¥y = V,, is supplied by a time-varying A-B
flux, ® = d + cV,t, and the Hall current is in the x direction. This is a con-
venient modification of the geometry originally considered by Laughlin (1981).
A potential Vy(x) is assumed, at first, to vary only in the x direction (see Fig.
6.3b). Vy(x) can be thought to include the averaged effects of impurities,

possible potential barriers, and so on. It has to vary slowly on the scale of

$(1) $(1)
D
————— Lx —
(b) Tv(x)

Figure 6.3 (a) A theorist’s sample: the Hall voltage is inductively applied with a time-
dependent A-B flux ®. (b) A potential ¥(x) shown is the case of a local barrier. The
equally spaced thin lines depict the positions of the Landau-level centers, x; for a given
®. What happens at the edges of the cylinder is not considered yet.
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the magnetic length /5. It is simpler to think about the case where ¥V, the
amplitude of V, satisfies ¥y < hw,, but the treatment is valid in particular
regimes also for larger V. Slow variations of L, as a function of x are also
straightforward to include. Some modest variation of ¥ with y can also be
handled in the quasiclassical approximation (next section).

In the Landau gauge 4=(0,Hx,0), the usual separation of variables
Y(x,y) = €7u(x) works, u(x) satisfies a 1D Schrodinger equation with a
potential

V(x) = Vo(x) + mul(x — x;)° (6.12)

with w, = eH [mc, x; = —If,kj, and /4 = kc/eH. Consider first the Hall current
I,.. Due to the modification of the boundary conditions in the y direction
induced by the gauge transformation used to remove the A-B flux from
the problem (appendix C), the allowed values of k; are given by
k; = (j+ ®/®g)2n/L,. Thus, when ® is varied linearly with time, all x’s (see
Fig. 6.3b) move uniformly to the left at a velocity o, = cV,,/ HL, leading to an
average Hall current e V,/h for each full Landau level with spin degeneracy
removed. This establishes that for free electrons with any potential ¥(x) the
Hall conductance per Landau level with degeneracy will be
2
—e

The general gauge argument due to Laughlin (1981) is based on general-
izing the above. We present here a simplified version due to Imry (1983). For
V, — 0 the flux is changed adiabatically and linearly in time. After every cycle,
when & is changed by @, the system must, by the Byers—Yang theorem, come
back to itself. (In the above example, the set of orbit centers x; moved by one
unit and comes back to the same situation.) It is possible, however, that
electrons have moved along the cylinder during this process (in fact, in the
above example, one electron per single full Landau level was carried along the
system from its right- to its left-hand side). Coming back to the same state
implies that only an integer number, j, of electrons can be thus transferred per
cycle. This establishes the quantum Hall effect (QHE) in full generality:

e2

ny = -.] I7 (614)

where in the above example j was the number of full Landau levels including
degeneracies (spin and degenerate valleys of the band structure in k-space).
This demonstrates the generality of the quantum Hall result, for systems for
which ® can be varied adiabatically keeping them in the ground state (at 7 =0
or in the equilibrium state at low temperatures. A conducting system has a
continuum of extended states at Er which are sensitive to flux; this is why there
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will always be some dissipation for finite ¥ = —(1/¢)$ and the above argu-
ment does not work. This is our second way to see the importance of having
localized states at Ep for establishing the QHE.

Note that there is a built-in time periodicity in this problem, when &
increases linearly in time the period is given by A/eV and the frequency by

w=eV/h (6.15)

in analogy with the a.c. Josephson effect (chapter 7). The d.c. Hall current
along the cylinder should have a small a.c. component with the above
frequency (Imry 1983a). It remains to be seen whether this can be obtained
in a more realistic weak-link type geometry (Imry 1988).

Another possible modification to the above can occur if the system (for a
reason which has to do with complications which we have not discussed yet)
has several degenerate ground states and if upon adding ®, to ® it goes from
one ground state to another. It can then take an integer number of flux quanta,
m > 1, to come back to the same state. This is a way in which the Byers—Yang
theorem can be extended to allow, with the appropriate filling, for a quantum
Hall conductance of e?/mh per single Landau level, as in the fractional
quantum Hall effect (FQHE, section 4; see Thouless 1990, Thouless and
Gefen 1991, Gefen and Thouless 1993).

An important modification of the gauge argument was given by Halperin
(1982). It leads to the realization of the possible relevance of edges (“sample
surfaces” in 2D) for the QHE problem and to a further understanding of the
irrelevance of the details of the disorder. Halperin considered the Corbino-disk
geometry (Fig. 6.4) which is topologically equivalent! to the above cylindrical

Figure 6.4 A Corbino-disk geometry. Vy is radial. I flows azimuthally. The shaded
region depicts a potential barrier, or a severely disordered part of the sample.

"But note that in Halperin’s treatment the current flows azimuthally and Vj is radial. This is
rotated with respect to our earlier argument, see below.
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Figure 6.5 A schematic dependence of the energy of a given Landau level with
edges but no disorder on the center coordinate x;. The leads are filled so that

Ep(d) — Er(0) = eV. The markings on the x axis signify the x;’s. Their distances are
all equal to Axy = 27r(1H/Ly)

one. He introduced the potential walls at the inside and outside edges of the
ring. We neglected those in the model of Fig. 6.3a, since we assumed that the
edges there were somehow connected to current leads. The voltage V is now
introduced radially (what was before the x and current direction) as in
the original Laughlin argument. The energies of the states as functions of
the positions of the orbit centers x; are now as depicted in Fig. 6.5. Now the
A-B flux in the hole of the ring is only needed in order to demonstrate that the
current in each state is given for a large ring by the difference in energy of
consecutive states along x, divided by ®,. The same follows, of course, from
the expression v, = (1/#) 9E/0k, for the group velocity. The total current in
the occupied levels is thus, for the Landau level under consideration:

2
Imz——q)z = E)=—G-=-3 7, (6.16)

in agreement with eq. 6.14. A equivalent way of presenting the above is the
following: When @ is slowly changed by ®,, the quantized extended states on
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the edges move continuously each into its consecutive one. The net result must
be that one electron per full Landau level is transferred between the two edges
of the sample. How it happens through the disordered regime in the bulk is
rather nontrivial and will be discussed in the next section. However, even
without understanding that in detail, we see that the total energy of the system
will change by eV per active Landau level, when ¢ changes by ®,. Using eq.
6.16 for the current establishes that a current of (e*/A)V per occupied Landau
level flows in the azimuthal direction. This quantum Hall current is thus
analogous to the persistent current discussed in chapter 6. It will be an equili-
brium current in the presence of the voltage ¥V as T — 0 since, because o, = 0,
there is no dissipation even in the presence of V. Besides emphasizing the role
of the edges (for linear transport), this shows that having localized states in the
bulk is immaterial for the current. If the shaded area in the figure is a barrier or
a well (along x), energy variations due to it will cancel. Clearly, this should
happen for arbitrary potentials in the bulk, including those that can localize
states. We see very vividly how details of the “inside” potential do not matter
at least as long as the walls are steep and can be approximated by sharply
increasing (decreasing) functions of the radial coordinate, x on the outer
(inner) edge. Clearly, this does not mean that “‘the whole” current flows on
the edges. A lot of current can flow, in various directions, in the bulk, but the
final net current is given by eq. 6.16. An important byproduct of tte above
argument is that for most values of » or B for which the Fermi level is within
most of the bulk states or the edge states, the system is on a given plateau. The
transitions between plateaus occur when the Fermi level goes through the very
narrow band of delocalized bulk states. Thus, this explains the broadness of
the Hall plateaus for large systems and T — 0. It is instructive to note that at
equilibrium the Maxwell relation (equality of the mixed derivatives of the free
energy with respect to u and @) implies

or_ N
O 8%’

The current on each edge is e/h per unit added chemical potential on that edge,
because of the property that a flux quantum corresponds to a state per Landau
level (MacDonald and Girvin 1988, MacDonald 1995).

3. LOCALIZATION IN STRONG
MAGNETIC FIELDS AND THE QHE

Let us remember that at B = 0 a 2D system with disorder should have its states
localized at all energies according to the discussion of chapter 2. On the other
hand, the gauge argument of the previous section requires extended states to
have flux sensitivity and provide the Hall current. At the same time (Aoki and
Ando 1981), ranges of energy with only localized states are needed to pin Ep
there and have finite plateaus. Thus, the introduction of the magnetic field
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must, at least when it is strong enough to be in the QHE regime, delocalize
some states. Actually, such extended states may be provided quite generally for
a finite sample having potential walls and edge states. These states play a
principal role in the Halperin discussion (see the previous section). Their role
in carrying the current is particularly clarified when the experimental arrange-
ment, such as that of Fig. 6.1, is analyzed according to the Landauer formu-
lation, where the channels moving to the right/left are fed by the Lh.s./r.hus.
reservoirs and the quantized Hall current corresponds to unit transmission in
edge states of full Landau levels. The voltage probes were considered by
Biittiker (1990). However, it is of fundamental interest to see how the magnetic
field delocalizes enough states for having the QHE in the bulk of the system
as well. This discussion should also strengthen our understanding of the
irrelevance of the localized states in carrying the current and determining the
values of the conductivities. These states are, of course, crucial, as already
mentioned, for pinning the Fermi energy for finite ranges of B or n (see also
Kiss et al. 1990).

The effects of disorder are reviewed by Prange (1990). We are going to
discuss here mainly the high magnetic field quasiclassical “guiding center”
picture (Iordanskii 1982, Kazarinov and Luryi 1982, Trugman 1983, Joynt
and Prange 1984). Its results are in agreement with numerical studies by
Ando (1983, 1984).

Before presenting the discussion, it is essential to clarify orders of magni-
tude. w7 > 1 is the condition for the classical cyclotron motion to be relevant.
Remembering that the classical cyclotron radius, /., for an electron at the
Fermi energy is given by vy /w,, the condition w.7 > 1 implies /. <« /, again
a purely classical condition. In terms of the quantum mechanical length
Iy = /hc/eB, I, ~ kgly ~ ly/Ep[Fw, ~ ly\/j 2 Iy, where j is the number
of full Landau levels. Thus what would be the quantum strong field condition
Iy <« I, usually implies a weaker field than the classical one. The range / < Iy
is the weak localization regime. The intermediate range /p < I </, is an
interesting one, to be briefly discussed later. We shall first concentrate on the
regime w,T > 1, [, < L.

Classically, in 2D with strong B perpendicular to the plane and a given
not-so-strong electric field E in the plane, the fast cyclotron revolution of the
electron develops a drift perpendicular to E, that is, the center of the cyclotron
motion drifts along a constant potential line at a velocity v, so that the Lorentz
force balances the force due to E:

ol
i
|ty

(6.17)

(In a more comprehensive description, the electron performs, for small E, the
fast cyclotron revolution, where the center of the circle drifts slowly along a
constant potential contour. For larger E, the electron “skips,” performing
motion along “arcs” and reflecting from the sloping potential; the motion
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along the sample edges is a good example.) Let us now generalize this to a
smooth but otherwise arbitrary potential ¥ (x) that does not change very much
(i.e., less than Aw, in the quantum case) on the scale of the cyclotron motion.
Again, there will be a separation of scales: fast cyclotron motion with a char-
acteristic time 1/w, and slow drift of the center along an equipotential line with
a velocity given at each point by eq. 6.17 with the local E. Consider first a
closed equipotential line (e.g., around a potential hill or valley, or along the
edge in a finite sample, or along the inner or outer edge of a disordered
Corbino disk). The time of drift around this contour will be given by
$(dlfv,), dl being an element of length around the contour. The frequency
of the slow motion will thus be given, by using eq. 6.17, by

_2r (2mc/B) 2c AV
WJ_E_—JdldLX—EB, (618)
Vg av

dx, being an element of length in the direction of the gradient and A(V') the
area subtended by the equipotential contour ¥ (x) = ¥. The fast motion is
quantized with energy separation Aw,. The slow periodic motion will be quan-
tized for each Landau level into locally equidistant levels separated by Aw,. In
this approximation the energy of each state equals the sum of the cyclotron
energy hw.(j + %) and the potential energy, eV. Equation 6.18 implies that the
area between two such quantized orbits will be given by

h
B AA =;C=<1>0; AA = 2rl%. (6.19)

Again, we find that the flux of B in the area per state in a given Landau level
corresponds to a flux quantum, as for free electrons. (We remark that the
above picture is reminiscent of the semiclassical theory due to Onsager for
quantizing the motion of a Bloch electron in k-space. Since the orbit in r-
space is obtained from the one in k-space upon rotation by 90° and scaling
by /%, the quantized area between equal-energy contours due to consecutive
states in k-space is 27/ 1. This is why, for example, the Schubnikov oscillation
has to do with the equal energy areas in k-space.)

Now consider the states due to a given Landau level in a smooth random
potential with amplitude smaller than fw, (so that we can surely neglect inter-
Landau-level mixing). The potential energy of the appropriate quantized
equipotential contour has to be aded to (j + })fw,. Starting with the higher
energies in the “jth Landau band,” they correspond to equi-V contours
running around the hills in the potential. Similarly, the low energy levels in
this Landau band are due to orbits running around valleys or *‘lakes.” Both of
these states are localized (the electron “runs” around finite closed contours). It
turns out that in 2D there is one and only one energy at which the equipotential
curves span the whole (very large) system. This can be understood intuitively



136 INTRODUCTION TO MESOSCOPIC PHYSICS

by looking at the “terrain” of V(x, y) and imagining filling it with water up to a
given height V. For small V; we have isolated lakes whose areas increase with
Vy. For large ¥, we have isolated islands in a continuous sea. In both cases the
“coast lines” (i.e., the V(x,y) = V, contours), do not extend across the whole
system. There is only one particular energy, E., at which both continents and
sea extend across the whole very large system. To prove this intuitively obvious
property, we may note that by symmetry, if the coastlines for given E extend
across the system in the x direction they must also do so in the y direction and
hence they must intersect (this is where the 2D nature comes in). However,
equipotential curves of different energies must not intersect, by definition.
Thus, this infinite extension of the equipotential lines happens at an isolated
energy. A crossing point of the contours at this energy is obviously a saddle
point of the potential. Using percolation theory language, this situation is
described by saying that the lakes percolate along the whole system at low
E, the islands at high E, and that there is only a single E, at which both
percolate. For an infinite system we are guaranteed to have a delocalized
state at that energy, E, (actually, there will be a finite DOS at E, but the
delocalization occurs mathematically at E, only).

It is clear that the characteristic size £,, wt ich may be defined by the r.m.s.

of the area enclosed by the equipotential contours for localized states, must
blow up as E — E_, that is,

& ~|E—E|™. (6.20)

v, is thought to be of the order of but larger than unity. Of course the contour
is rather jagged and its length is therefore much greater than O(¢,). There has
been a lot of work using percolation concepts in applying this picture to the
QHE, which we shall not review here.

We are now in a position to understand how the existence of the special
percolating bulk extended state in a given Landau level is essential for having a
quantum Hall current in that level. We return to the Halperin picture defining
the current via the change of the total energy due to an A-B flux quantum. We
can now easily understand how, when & is changing by ®,, a single electron is
transferred between the two edges of the sample to increase the energy by eV
We remember that extended states on the edges did move, each one into the
next, in the same spatial direction, upon that change of flux. What we have
to understand is exactly how the net transfer of one electron in the bulk is
accomplished. Consider for simplicity one saddle point of the potential in the
bulk in a finite system (it may be argued that the exact percolation will always
happen through the last, bottleneck saddle point). This saddle point (see Fig.
6.6) is situated at some definite energy E.. For a general ®, E, will not be one of
the quantized levels defined by eq. 6.19. It will have two nearest levels of that
kind, | and 2 in Fig. 6.6, whose orbits run around the ring and do not intersect,
except at E.. When & is changed by ®,, one of these two states must go into the
other. This will happen because at some particular value of ® in the given
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Q

Figure 6.6 Schematic contours for a ring with edges and one saddle point. The
quantized extended states along the ring for a general value of & are shown by full
lines. The state at E,, having the saddle point energy is shown by contours 1 and 2. It is
the intermediay through which states of the type 1 go into those of type 2 at some point
in every flux interval of ®,.

interval E, will, by continuity, be precisely the allowed quantum state (as in
Fig. 6.6). Thus the two states go into each other via the special state at E,.

The above argument establishes, for w.r > 1, that each Landau level
which has one extended energy below E will contribute (e2/h)V to the Hall
current. Alternatively, we can consider the dual way of presenting the gauge
argument, applying the Hall voltage inductively as in the argument leading to
eq. 6.13 and measuring the current in the radial direction. Here the above
picture establishes how the radial current is carried through the bulk via the
saddle-point extended state.

Repeating the same discussion for the long cylinder model of Fig. 6.3 can
provide a clear case where the existence of edges is not a necessary condition
for having a QHE. If the circumference of the cylinder (voltage direction)
is much shorter than the length, the above x—y symmetry is broken and
percolation will occur in the radial direction more easily than along the
cylinder. Still the mechanism of moving electrons from the radially extended
flux-sensitive states on the left of the saddle point to those states on the right of
the saddle point will be the same as above. Interesting questions remain regard-
ing the influence of the deviations from the semiclassical approximation, when
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1./l is not small enough. Such deviations should be most significant for the
above saddle point process and they should have physical significance for
questions such as the breakdown and the frequency dependence of the QHE.
Tunnelling between such states (Jain and Kivelson 1988) was discussed by
Chalker and Coddington (1988) and Milnikov and Sokolov (1988); see also
Macédo and Chalker (1994).

We conclude this section by briefly reviewing an intriguing generalization
by Khmelnitskii (1984a) of the QHE theory to the next, weaker, magnetic field
regime /y < [ < [, in which w,r <« 1 and the Landau levels lose their mean-
ing. He assumes a generalization (Khmelnitskii 1983, Levin et al. 1983,
Pruisken 1984, 1985) of the single-parameter RG equation given by eq. 2.29
and Fig. 2.2 for the range where the magnetic field is large enough for g, to be
important, that is, g, 2 1. Such an RG flow was also obtained by Pruisken
(1984, 1985) and is summarized in Fig 6.7, which received direct support from
the experiments of Wei et al. (1986). These RG equations were solved (see
problem 1 at the end of this chapter) using initial (small scale) values of, for
example, the Drude conductivities (eq. 6.4). For w.r >> 1 this leads to the usual
QHE behavior. However, for w,r « 1, it is immediately seen that for
oo ~ kpl > 1 there is a whole regime where, although w,r <« 1, the initial
values for o, are in the “domains of attraction” of QHE fixed points with j
values smaller than Ep7 (the same values of j as for conventional QHE steps at
higher fields). Thus, it follows that in this regime there are further quantum
Hall plateaus, unrelated to Landau levels. Associated with them are novel
extended-state energies that are “levitated” with respect to where the Landau

10°

UXX

-1 ; . : 1 . . :
10 0 0.2 04 0.6 08 1.0

Oxy

Figure 6.7 Theoretical RG flow diagram for the two-parameter scaling of g,, and g,,
for the integer QHE. (From Pruisken 1985.)
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levels would have been for weaker scattering. The validity of this surprising
picture by Khmelnitskii rests only on the above-mentioned RG flows. There
are recent experiments (Jiang et al. 1993, Wang ct al. 1994, Hughes et al. 1994)
which seem to be consistent with such QHE steps and extended states. The
picture was generalized to the fractional QHE (FQHE) regime by Kivelson
et al. (1992).

4. BRIEF REMARKS ON THE FRACTIONAL
QUANTUM HALL EFFECT (FQHE)

Once the general arguments establishing that o, in the QHE must equal an
integer multiplying ®/h were crystallized and becaine very convincing, experi-
ment played another trick on the theory. Tsui, Stérmer and Gossard (1982)
discovered, making magnetotransport measurements on high-quality hetero-
structure GaAs samples, that there was an apparent QHE step at a filling of
one-third of the lowest Landau level, with g,, = %ez/h. This step was also
accompanied, as in the THQE, by a dip in g,,. Theti results are shown in
Fig. 6.8. Later experiments found many more fractional Hall plateaus.
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Figure 6.8 The original FQHE at 1/3 filling of the lowest Landau level from Tsui et al.
(1982). Note the formation of a dip in p., and a plateau in p,,, with decreasing
temperature.
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This clearly necessitates a revision in our thinking about the QHE and it
cannot be explained with a mode! of noninteracting electrons. The electron~
electron Coulomb interaction should be reckoned with. It is expected to make
the (3D or 2D) electron gas form a “Wigner crystal” at low densities and
temperatures. In this crystalline phase, the electrons systematically avoid
each other in order to minimize Coulomb repulsions. It is expected that this
electronic crystal should be pinned by defects in the underlying material and
therefore become immobile (for small fields). Thus both o, and o, vanish in
the linear regime.” It is suggested that a less drastic condensation of the gas into
a correlated liquid, where electrons “stay away” from each other, could be the
cause of the fractional effect. In analogy with other quantum liquids, Laughlin
(1983) constructed a variational wavefunction for such a system which seems to
capture most of its very interesting physics. The validity of this picture has been
checked against various numerical computations and it constitutes an excellent
approximation. This correlated ground state at a filling of 1/3 of the lowest
Landau level has some binding energy and its lowest excited states have an
energy gap. This gap immediately explains the dip in o,,, and the tendency of
oy, to have a plateau can be understood as well. The elementary excitations
above the correlated ground state have a fractional charge and a nontrivial
statistics, which have caused major interest.

Below, we summarize the main features of the Laughlin ground state and
then briefly discuss the elementary excitations above it. Following that, we
mention some interesting recent developments having to do with the special
role of the 1/2 filling.

The Hamiltonian is that of a 2D electron gas in the x—y plane with
(ordinary, 3D, 1/|r; — r;le) Coulomb interactions and a large magnetic field
B in the z direction, described in the symmetric gauge by the vector potential

y =§(y, _x). (6.21)

For a filling of the lowest Landau level close to 1/3, it appears very reasonable
to stay in the basis of the (highly degenerate) single-particle wavefunctions of
the lowest Landau level, which are up to normalization

w0m(x,y)=2”'exp( T |) (6.22)
H

with m > 0 and using the convenient notation z = x + iy. It is easy to show
that (m!L,|m) = him and that (m|r’|m) = 2(m + 1)/4. Thus the difference in the
flux encircled by consecutive states is again ¢. The degeneracy of the level is

2However, this issue is far from being settled. There is an opposite point of view according to which
the highly correlated crystal can slide unhindered over the defects. One would expect that that
might happen in a metastable state, but all this is still not fully understood.
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. R 4
Mmax =P E0p T 5
as in (6.8), R being the radius of the sample.

For noninteracting electrons, we would just distribute the given N
electrons in the p ~ 3N available basis states, and antisymmetrize the result.
The straightforward way to introduce the correlation (Laughlin 1983) is to
multiply the noninteracting wavefunction by a product of functions of the
type f(z; — z;), where f is expected to vanish when z; and z; approach each
other. These f’s are called “Jastrow factors” and were introduced very success-
fully by Jastrow in calculations of liquid helium to take care of the strong
short-distance repulsion between each pair of atoms. In principle, the whole
function f can be regarded as a set of variational parameters: f(z) is varied to
minimize the expectation value of the Hamiltonian in the assumed ground
state. It will turn out, as found by Laughlin, that f is almost fully determined
by symmetries and not much variational freedom is left. In the large magnetic
field limit, the kinetic energy, as we saw when discussing the motion with
electric fields, is mostly in the fast cyclotron revolution. Thus, the potential
energy plays the major role in the nontrivial aspects of the problem. We
also remark that due to the f-factors, the overlaps between the electrons are
quite small. Just making the function f antisymmetric will take care of the
Fermi nature of the electrons, and there is no need to have the usual Slater
determinant.’

Thus, the Laughlin wavefunction is taken to be

N
Yz, 2n) = [[ f(z - 2 exp (-Z}—};Z |z112>, (6.23)
=1

Jj<k

Where the last factor (up to center-of-mass motion) can be absorbed in the
Jastrow part. f must be taken to be odd, f(z) = —f(—z), to assure anti-
symmetry of . Since the system is invariant to rotations, the total angular
momentum, L,, is a good quantum number. This implies that [];, f(z; — z)
must be a homogeneous polynomial in z;,...,zy. To get a total angular
momentum M, the polynomial should be of degree M (to verify this statement,
operate with L, = (h/i )3, (0/0¢;) on such a wavefunction, here ¢; is the
phase of z;). This and the oddness of f imply that

f(z)=2", m odd. (6.24)
Since the number of pairs z;, z; is N(N —1)/2,

* Another reason for dropping the noninteracting function is that in our case it has, due to eq. 6.22,
the form of a Vandermonde determinant. This introduces a factor ], (z — z), which can be
absorbed in the definition of f(z; — z;).
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Thus, the only variational freedom left, given a filling N/p, for which we take
N/p =1/3, is in choosing m. M being a good quantum number means that
each v has only a single m. Laughlin devised an elegant picture to make the
determination of m in a way which is intuitively clear. He represented [, now
having a single variational parameter, m, as a classical probability density

[Um(z1,. .., zn)|* = e POl (6.25)

3 is the inverse of a fictitious temperature whose value should be immaterial.
Laughlin took 8 = 1/m, just to make the picture simple.

oz, zy) = ~2m2 Y Inlz; — z| + %mz. (6.26)
Jj<k
We remark that a similar, physically transparent, representation had been used
by Dyson (1962) in the theory of spectral correlation of random matrices,
alluded to in chapter 4. Equation 6.26 is the potential energy of a set of
changes, m, in 2D, repelling each other with the usual 2D logarithmic Coulomb
interaction and attracted to the origin by a single-particle potential (1/2/ Dzl
The latter can be regarded as due to a homogeneous positive charge density
pr=1/ 2nl%. The lowest energy of this classxcal plasma will, of course, occur
when the negative charge density m/3.27l} exactly balances the positive charge
density and produces charge neutrality. This implies

m=3 for N/p=1 (6.27)

When the total energy of the fluid is plotted against N/p, it is found to have a
negative cusp at N/p = 1/m = 1/3. Thus the special state m = 3 has an extra
stability (due to the “charge neutrality” of the plasma analogue) at the right
filling. The existence of this extra stability means that there is an effective gap at
the 1/3 filling in the spectrum and thus 8u/ON — oo, and the system is incom-
pressible. This is a generalization of the discontinuous behavior of u(N) at
complete fillings for the pure noninteracting 2D gas. The important connection
between this incompressibility and the integer or fractional QHE is discussed
by MacDonald (1995). It is this extra stabilization which makes pxx vanlsh
when T — 0. It also helps to lock the Hall conductance, given by 3e / h at
N/p=1/3, on a step when the elementary excitations are pinned by a small
disorder. There is by now a large body of computations verifying that eq. 6.23
is very close to the correct ground state. Had we taken N/p = 1/5,1/7,.. ., the
best values of m for the variational wavefunction eq. 6.23 would have been
5,7,.... It must be taken into account, however, that for small enough filling,
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the Wigner crystal will replace the correlated fluid as being the true ground
state of the system.

Fillings complementing the odd denominators, say 2/3—which was in fact
the next fraction to be discovered—can be treated in the same way using holes
in the full lowest Landau level. The whole hierarchy (Haldane 1983) of odd-
denominator rational filling factors, such as 2/5, 3/7, and so on, presents a
complex question that we shall briefly mention after discussing the elementary
excitations of the 1/3 state.*

Before doing that, it is advantageous to return to, for example, the disk
geometry of Fig. 6.4. Without interactions, the single particle states move into
one another when the SA-B flux is changed adiabatically by ®;. On the
average, for a 1/3 filling, one electron is transferred across the system after
three quanta are added. Thus, the Hall current will be given by %(e2 /W)V, as
in the Drude picture for the same filling. The problem is ts understand how the
interaction stabilizes this situation for a finite range of N /p.

Laughlin devised an ingenious way of obtaining the quasiparticles of his
theory. He imagined piercing the system with an infinitely thin flux line and
adiabatically increasing its strength by ®,. At all the intermediate situations the
sole effect of this flux, as the A—B one (appendix C) is to dictate a phase change
of 2r®/®, of the many-body wavefunction around it. By the time ¢ reaches
®,, we return to the original Hamiltonian and boundary conditions, and it can
be argued that we have now created an excited state. However, as in the A-B
case, a single-electron wavefunction z* evolves with this change of flux through
the origin into For 21, depending on the sign of the flux (except them =0
state which goes under flux removal to z* exp(—|z|* /41%) which is a state in the
next Landau level). Thus, if we consider the charge inside some circle around
the origin, and since our many-body wavefunction is made of the single-
electron states, changing the flux by ®; amounts to transferring in or out of
the circle the average charge per state, which is 1/m. The angular momentum
of this single-particle wavefunction has changed by unity. The “motion” of the
single particle states is of the same nature as that discussed in the A—B context,
and it means not only that the Hall conductance will be %ez /h, but also that the
effective charge of the quasiparticle thus created is 1/3 of an electron charge,
since the total change of charge by creating the quasiparticle in a large cylinder
surrounding the fluxon is e/3 for m = 3. Laughlin has given approximate forms
for the wavefunctions of the quasiparticle (Haldane 1983, Halperin 1984) based
on the discussion above.

A similar charge counting has been used by Su and Schrieffer (1981) in
interacting 1D electronic systems, also resulting in possible fractional charges
of 1/3. Much thought has been given in the 1D problem to the question of how
these fractionally charged quasiparticles can be observed. It turns out that that
is very nontrivial, since most experiments use ordinary electrons which “dress

“The FQHE states of the quasiparticles of the 1/m state, on top of the “parent” state for electrons,
lead to the next stage of the hierarchy.
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up” only while entering the system and—when they are finally observed
outside of the system-—the correct bookkeeping yields a charge e. To
observe the charge e/3, an experiment must be performed inside the FQHE
system. It has been suggested that an A-B oscillation due to quasiparticles
moving on an effective ring inside the 2D gas might yield periodicity with a
flux quantum of 3hc/e. There are experimental indications that this may be the
case (Simons et al. 1989, 1991). The nontrivial theoretical picture has been
discussed by Thouless (1990), Thouless and Gefen (1991) and Gefen and
Thouless (1993).

Another strange property of the Laughlin quasiparticles is their statistics
(Halperin 1984). It turns out to be neither Fermionic nor Bosonic but a
“fractional statistics” in between (hence the name “anyons”). This appears
to be due to the fact that the quasiparticles may be considered as “riding”
on flux quanta and thus, when two quasiparticles are exchanged, there is an
extra, A-B type, phase due to these fluxes (Halperin 1984, Arovas et al. 1985,
Haldane and Rezayi 1988). The association of fluxons and particles is a very
helpful theoretical device. However, whether it can be regarded as a physical
reality is a separate question.

We next review an interesting idea due to Jain (1989) for the hierarchy of
FQHE states. The picture developed from this idea has recently received
impressive experimental support, both on the special role of N/jp=v = %,
and on the steps around it (see Fig. 6.9, from Du et al. 1993a), and it appears
to be at least close to the truth (Willet et al. 1993, Goldman et al. 1994). The
theory pertaining to the picture has been developed by Halperin, Lee and Read
(1993). The picture is based on two observations on the experimental data: that
there is something peculiar happening at a filling of 1/2 and that the most
prominent FQHE plateaus are at fillings of m/(2m + 1), m being an integer.
At a filling of 1/2 there is just a not-too-prominent o,, minimum (but no step in
o,) and the transport properties are rather similar to those of electrons at zero
magnetic field. The special role of m/(2m + 1) is not easy to understand from
the ‘‘hierarchical” scheme (Haldane 1983), although in the end this and the
composite Fermion picture described below seem to be related.

For a naive version of this picture one assumes that around a 1/2 filling,
two flux quanta in opposite direction to that of B are attached to each electron
(which therefore behaves as a Fermion, henceforth termed a ‘“‘composite
Fermion”). Consider what happens at some rational filling ». We have v
electrons per (external) flux quantum. The flux “riding” on the composites is
2v, so the remaining flux &, per composite is

1-2v
o

By = (6.28)

For a 1/2 filling ®,; = 0. For a 1/m filling ®,; = m — 2, corresponding for
m = 3 to an integral QHE for the composite Fermions and for m = 5,7,... to
simple odd-denominator fillings of 1/3,1/5,.... (However, see below for a
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Figure 6.9 Overview of the diagonal resistivity p,, in the vicinity of v =1/2 and
v=1/4at T =40 mK in sample A (from Du et al. 1993). Landau level filling fractions
are indicated. For fields higher than 14 T the data are divided by a factor of 2.5. Note
the special role of v = 1/2. The behavior around it is of Schubnikov-type oscillations
which develop as they usually do around H =0. Note also the special role of
v=m/(2m % 1). To quote from this paper: “In fact, these features due to the FQHE
at v = m/(2m £ 1) replicate the features due to the IHQE at » =p and B=0.”

better way® to obtain these higher fractions.) The complementary filling of %
corresponds to &,y = — % again an IQHE for the composites. What about the
prominent fillings of m/(2m = 1)? They correspond to @, of +1/m, that is, to
higher IQHE plateaus. When m increases, these two dual series of plateaus at
m/(2m + 1), “converge” to the 1/2 filling case, which is like the # — 0 limit of
the ordinary high-j QHE or Schubnikov series (whose attainment is, of course,
limited by the impurities and by the temperature). This explains the main
features of Fig. 6.9, including the Schubnikov—de Haas type of behavior
around 1/2 filling.

The generalization of this picture to the hierarchy of fractions views them
as due to an IQHE of different types of composite fermions made out of an
electron and p flux pairs. For them we have, generalizing (6.28),

*1It turns out that it is advantageous to view, for example, the 1/5 FQHE as the IQHE of composite
fermions based on electrons and four flux quanta. This is easily seen to be consistent with the
appropriate version of (6.28).
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where j is the index of the IQHE plateau of the composites. The — sign is for
integer plateaus for an effective field which is in an opposite direction to the
original B.

This picture not only provides a nice way to look at most existing data on
the IQHE and FQHE using one paradigm but it is also very appealing, being
simple and physically suggestive. Fundamental developments of this picture
were given by Halperin et al. (1993) in terms of the appropriate gauge picture
and the Chern-Simmons theory of the Hall effect. The above trick to eliminate
some of the flux should be valid only as a mean field description. Thus the
effect of fluctuations around this picture must be considered. It should be a
good approximation if the resulting state is “incompressible.” It can be argued
(Read 1994) that the phases similar to those resulting above from associating
flux with the particles are physically due to vortices in the system. Arguments
for the apparent physical validity of the composite Fermions were given by
Kang et al. (1993), Willett et al. 1993a,b and Stérmer et al. (1994). The Fermi-
liquid picture around a 1/2 filling appears to be valid from numerical
comparisons for finite systems (Rezayi and Read 1994).

Problem

I. Assume that Fig. 6.7 is valid. (a) Explain why in the L — oo, or zero-
temperature, limit almost all samples will exhibit a QHE. (b) Show that
only under very special conditions will a sample have oy, =3 and oy,
quantized at half-integral values. (c) Sketch the behavior of a sample
differing minutely from the behavior of (b). (d) Repeat the argument of
Khmelnitskii (1984a): Find the domains of attraction of the QHE fixed
points in terms of o&oy) as given in eq. 6.4. Find the appropriate QHE
plateaus for w,7 2 1. Show that for w7 « 1 the new plateaus are obtained
when Ep crosses the “levitated extended states” at E; 22 (j +%)(h/wcrz).
Here these states are unrelated to the Landau levels.



Mesoscopics with
Superconductivity

1. INTRODUCTION

Much of what we have considered in mesoscopics has had to do with phase-
coherent effects of normal electrons. Each electron retains phase coherence
over the length L, and different electrons in the energy band of width k3T
around the Fermi energy display a similar interference pattern over the length
L. The superconducting state is characterized by having a macroscopic wave-
function, retaining its coherence ideally over arbitrarily large lengths. It is of
great interest to enquire how these two (normal and super) coherence effects
couple with each other. This is not an obvious issue, since in the normal
conductor the active charge carrier is a single electron or a hole, while in the
superconductor the coherence is of the wavefunction of the condensed Cooper
pairs. It is known, however, that superconductivity can penetrate into a normal
metal over a length-scale of L, (which has been referred to in this context as
“the normal metal coherence length, £y’"). This is the well-known proximity
effect (e.g., Deutscher and de Gennes 1969). Two superconductors can quite
generally be correlated with each other and exchange a supercurrent through a
normal metal barrier which can be Ly (or L, see section 5) long. This is called

'When the “normal” metal is itself a superconductor with a lower critical temperature, T.,, T is
replaced by T — T, in the definition of &y.

There are strong indications that longer penetration is possible in mesoscopics (Petrashov et al.
1993a).

147
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“a superconducting weak link” (e.g., Likharev 1979). It is akin to (but not
exactly the same as) the usual Josephson effect, which occurs via tunneling
through a thin insulating barrier.

The supercurrent through a weak link is a periodic function of the phase
difference between the two superconductors. Its maximum magnitude is called
*‘the critical current of the weak link.” The above phase difference is sensitive
to electric fields between the two superconductors and to magnetic fluxes there
and in adjacent loops. Various types of weak links have numerous real-life
applications, due to their phase-related sensitivity to weak electromagnetic
fields. For example, such weak links are important in extrasensitive detectors
for weak static magnetic fields and/or high-frequency radiation. The built-in
nonlinearity of such weak links due to the periodic dependence on the phase
differences introduces a whole set of interesting phenomena and applications
which are outside the scope of this book.

The combination of superconducting and normal components brings in a
host of novel and interesting phenomena. As hinted in chapter 4, the super-
current through the normal weak link is quite similar to the persistent current
along a ring made from this weak link (Altshuler et al. 1983, Altshuler and
Spivak 1987), we emphasize that this correspondence, related to the Andreev
process discussed later (section 5), is valid only for a “long” system, whose
Thouless energy is smaller than the energy gap of the superconductor). Since
the critical current of the weak link is proportional to its conductance, the
critical current in a ballistic point contact can show quantized steps related
to those of the conductance (Beenakker and van Houten 1991a,b,c). It was
experimentally discovered that adding superconductors as “Andreev mirrors”
(Petrashov et al. 1993b, 1995) to a normal loop showing A-B resistance
oscillations may increase the amplitude of the latter by more than two orders
of magnitude. Interesting new effects exist also for super—-normal combinations
with a single interface (Beenakker 1992a; van Wees et al. 1992).

The case where the normal “metal” is a semiconductor is of special interest
due, for example, to the realizability of ballistic effects, and to the possibilities
of going through the metal-insulator transition and of inducing super-
conductivity in the semiconductors. Using electrostatic gates or optical
excitation to control the properties of the semiconductor will open up a
host of interesting new situations. The technology of producing good
superconductor-semiconductor contacts is developing® and hopefully such
contacts will soon be made under enough control for systematic measurements
to be possible (van Wees 1993, van Wees et al. 1994, den Hartog et al. 1995).
This promises to be one of the most exciting new directions of research.

We shall, for the most part, describe the superconductor using the
Ginzburg-Landau (G-L) theory which was originally developed phenomeno-
logically and later derived from the microscopic theory. We shall briefly review
and use the G-L theory, without going into the microscopic picture. The

3 One useful combination of materials is InAs with Nb.
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former is powerful enough to describe many experimentally relevant situations.
Good presentations may be found in textbooks such as de Gennes (1966) and
Tinkham (1975). The rest of this section is devoted to an elementary review of
the G-L theory. Thin rings and wires, with an emphasis on fluctuation effects,
will be considered in section 2, Section 3 will discuss weak links and a brief
introduction to vortices will be given in section 4. The Andreev process along
with some of its applications will be described in section 5, where some
interesting experimental results and open questions in this area will also be
mentioned. Much of our discussion will be elementary and hopefully peda-
gogic, emphasizing issues that are relevant to mesoscopics.

The superconducting state is described by a complex “order parameter”
¥(r) which physically signifies the “macroscopic wavefunction” envisioned
earlier by London. The free energy is described as a functional, F, of the
“field”” 1(r), where r ranges through the whole sample. The equilibrium state
is given by the minimum of F, and the probability for a configuration having a
¥(r) is proportional to e #1¥],

F[y) for the superconductor is given in the G-L theory by

. 2
| d3x{—w‘ [(h;;?; - 2"”’) J2m a] v+ %bwr‘} —Fly, (1)

c

where a and b are constants, 4 is the vector potential and 2e is the pair
charge, as known following the BCS theory. In the homogeneous case,
1 =constand 4 =0, F/Volis given by f = alw|2 + %b|w|4, having a minimum
at 9 = 1. In the normal state, ¥y = 0 so @ > 0. In the superconducting state,
l4| is finite and a < 0. Hence, the coefficient a must change sign at the critical
temperature T, below which superconductivity sets in.

A valid description near T, and a qualitatively reasonable one at most
temperatures of interest would be

_T-T,
a—-°

7 a = const > 0, b = const > 0. (7.2)
[4

a=

Below T, the order parameter and the gain of free-energy density of the super-
conducting state compared with the normal one, are given by

2 a . _ 1 a2
ol ==%i  fi-fi=5% (13)
It is known from the microscopic theory that
fo—1s = 3n(0)43, (74)

where A, is the superconducting energy gap, satisfving 2A; ~ 3.5k37T,. In a
convenient normalization,
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L 2(T) 7.5
2m|a|_é ' (7.5)

€(T) is the superconducting coherence length, given at low temperatures by
& ~ hvp/A; ~10°-10° A for clean superconductors. For a dirty super-
conductor, | « &, (T — 0) ~ 1/&l. In both cases, near T,

1

&(T) ~ £(0) (”%TI) (7.6)

As with any wavefunction of charged particles, spatial variations in the

phase of 1), and/or having a nonzero vector potential A4, result in a current
density

. eh, o 4
J =g (V= V) — A, (7.7)

which is a gauge-invariant. On the open sample surface, the boundary con-
dition on ® is

Jn=0. (7.8)

The equation for the extrema of F[¢], called the G-L equation, reads

1 . 2e 2 2
3m (th + —C-A) P = ap + bl Y. (7.9)

Together with eq. 7.7 and eq. 7.8 it gives a full description of most of the
situations of interest when time dependence is not considered and the spatial
variations of the parameters are slow on the scale of £(T') (this is the condition
for keeping only the lowest-order term in the expansion in the gradients of 1 as
in eq. 7.1). In cases where the solution of eq. 7.9 is not unique, one has first to
find the minima of F[1], and among them the deepest one is the equilibrium
state. Higher minima are metastable states and the transitions among them
are understood in simple cases (Little 1967, Langer and Ambegaokar 1967,
Halperin and McCumber 1970) as due to fluctuations involving deformations
of 1(x) going through saddle points of F[].

Generally speaking, due to the small parameter [kp£(0)]”) <« 1, the
fluctuations around the G-L minimum are rather small, in fact typically
negligible in bulk superconductors. In 0D grains and 1D wires the super-
conducting transition is broadened by thermal fluctuations in a way which
is rather well understood (Shmidt 1966, Miihlschlegel et al. 1972, Gunther
and Gruenberg 1972, Scalapino et al. 1972). In 2D the fluctuations cause
qualitatively new effects: the nature of the long-range order is changed and
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the transition occurs via the fundamentally interesting mechanism of vortex
unbinding (Berezinskii 1971, Kosterlitz and Thouless 1973, Halperin and
Nelson 1979). 2D arrays of Josephson-coupled superconducting “dots” are
particularly interesting systems in which particlelike vortex motion was beau-
tifully demonstrated (Mooij et al. 1990, Lenssen et al. 1992, Mooij and Schon
1992, Elion et al. 1992, van der Zant et al. 1991a,b, 1992a,b, Tighe et al. 1991).
We shall briefly return to discussing some of the fascinating issues related to
vortices in section 4.

The Meisser effect—the ability of a large enough piece of a superconductor
to expel a not-too-large magnetic field—is immediately obtained from the G-L
description. In the simplest case, a uniform magnetic field generates super-
currents on the surface of the specimen, shielding the magnetic field from its
interior. The current and field decay away from the surface with a character-
istic length called the London penetration depth,

16me?

mc?

AT = ¥, (7.10)
as long as the field is smaller than some critical magnitude. This is valid when
the G-L parameter «, defined by

()
)

is small compared with unity. When it is large, one has type Il super-
conductivity, where due to the negative normal-super interface energy in this
case, quanta of flux (with the associated current circulations around them) can
penetrate the superconductor relatively easily. Note that at low temperatures,
when 9§ ~n, A, is on the order of the Thomas-Fermi screening length
multiplied by ¢/vyp (or divided by the fine structure constant o).

(7.11)

2. SUPERCONDUCTING RINGS AND THIN WIRES

Let us now consider our usual thin wire of cross-section A4 (to be distinguished
from the vector potential 4) and length L along x, bent into a ring, so that ¢
will satisfy periodic boundary conditions along x. We start with no magnetic
fields, in the superconducting state, T < T,. Solutions of the G-L equation 7.9
with |¢] = 1, as given by eq. 7.3, are immediately found by inspection. These
solutions, which are the local minima of F, are given by

Yn(x) = ol exp(ik,x), Ky = 2nn/L. (71.12)
They have phase changes of 2zn along the ring and free energies

4 n? Ao |2
L [%0]

=k 2Lm

(7.13)
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so that the n = 0 state is the stable one and the n # 0 states are metastable.
For a given A-B flux ®, the associated phase change around the ring is
27®/(he/2e) = 4n®/D,. Because of the occurrence of 2e in the G-L equation,
the effect of the gauge transformation as in appendix C involves the super-

conducting flux quantum, which we shall now denote as ®;, leading to the
phase change ¢:

(0] he QO
— b= =—. .14
3.’ s=5.= (7.14)

¢ =2
The stationary solutions are still being given by eq. 7.12, but calculating the
G-L free energy for the nth solution yields that n is replaced by n — ¢, where

$_2
0 _2__‘1)5, (7.15)

I

Now, many solutions exist for a given 6. One expects that the most stable one
(deepest minimum of F) would be the one with n = m where m is the integer
closest to §. This is due to the occurrence of (n — 0) in the energy. In chapter 4,
the persistent currents in the normal case were so small that their effect on ¢
(or ®) was negligible, so that § = 6,,, (applied flux). Here the situation can be
very different and the self-generated fluxes may be of crucial importance. Let us
take as an example the case where the thickness of the wire in the direction
perpendicular to the flux is much larger than A;. We know that inside the wire,
farther than Ay from the boundaries, both the current, j, and the magnetic field
vanish. Let us integrate the current in eq. 7.19, that is, evaluate | j - dl, around
a line encircling the ring and going through its interior (in the sense of being
much farther from the surface than ;). Since j =0 along the integration
contour, we find that

he
#A dl = §1V0 dl = nz—e (7.16)

276 being the phase of ¢, which must change by n due to ¢ being single valued
(this is the “physical” ), before the gauge transformation of appendix C
has been made; i.e., 4 has not been eliminated yet). We find that the flux is
quantized in units of ®,, as is well known to be the case in superconductors.

More generally, when the thickness of the wall of the ring, d, is not much
larger than ), the quantized object is the flux plus a quantity proportional to
§ j - dl. This is called “the fluxoid,” and its quantization reduces to that of the
flux, for d > A;.

Since one could put any amount of external flux ,,, in the ring, the flux
quantization implies that the seclf-generated fluxes are very important and
cannot be neglected as in the normal case. This means, of course, that the
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persistent currents here are larger by orders of magnitude than those in the
normal case. The magnitude of A; gives us a measure of that strength.

The deep reason for the above is that here i is not a single-particle eigen-
state. It is a “macroscopic wavefunction,” reflecting the fact that in the super-
conductor the whole electron gas forms a new ground state and a finite fraction
of this electron fluid participates in the current. To understand the order of
magnitude of the persistent current in the superconducting ring we note that
from egs. 7.1--5 (cf. eq. 7.13), for the “clean” case (£, < {),

&E,
96?

~ (fu = 1) (%) & ~ n(0)A - Vol (%)2~ NA. (7.17)

This corresponds to the London idea that only the 42 term in the Hamiltonian
gives the flux sensitivity (“rigid wavefunction). We emphasize that A is the
superconducting gap and A the level spacing in the normal case. For the dirty
case, the result is multiplied by O(//&,) and the last expression is replaced by
N, Agl/L. Equation 7.17 has to be compared with the result for normal elec-
trons where (see egs. 4.13 and 4.14) the same quantity is given in the diffusive
case by E,~ N, Al/L. The magnitude of the currents for clean super-
conductors, for example, is larger by N, L/l, which is five or six orders of
magnitude for the typical metallic rings used in the persistent current experi-
ments. For the dirty case, this ratio is A;/A ~ 10%. The above ratio would be
much less overwhelming for a good-quality and small-N, semiconducting ring.
It is helpful to remember that the induced flux generated by a current [ in

the ring,
®, = LI, (7.18)

is determined by the self-induction coefficient, £. For the ring of interest to us
here, £ ~ L/c, except for logarithmic factors. For the largest persistent current
possible in single-channel normal rings, I ~ Iy ~ evp/L (chapter 4) the induced
dimensionless flux would be on the order of (Altshuler 1991, private com-
munication)

&,/Dy ~ a”{ ~a? ~ 1074 (7.19)

Here, o denotes the fine-structure constant. Therefore ®; is totally negligible
(see also Loss and Martin 1993; a different opinion is expressed by Azbel 1993).
It is easy to see that ®; « ®; also for many-channel situations, where
®; o /N in the super-pure case (see discussion following eq. 4.11), and it is
independent of N, in the ordinary ballistic and diffusive ones. On the other
hand, for thick enough superconducting rings, ®,/®, 2 1, so that the real flux &
is affected substantially by ®,;. The relevant thickness scale is A7, which we
found to be of the order of the microscopic length divided by «. It turns out
that the small amplitude of the normal persistent currents does not allow
metastable current-carrying states in typical normal systems. It would be of
great interest if an unusual case could be found where such “bootstrap”-type
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magnetic moments could exist in a nonsuperconducting system. Systems of
interacting rings might show related effects at low temperatures (Szopa and
Zipper 1995).

We recall the idea due to Kohn (1964) (and the related ideas by Edwards
and Thouless (1972), for the single-particle levels) that the flux sensitivity (r.h.s.
of eq. 7.17, cf. egs. 4.1 and 4.14) of the ground-state energy or free energy of a
system determines whether it is an insulator or a conductor. We see now that
the characterization of the superconductor vs. a normal metal is via the scaling
of 8*E/d6* with the dimensions of the system. This appears to be a funda-
mentally interesting point of view for characterizing these three states of matter
(Scalapino et al. 1991, Scalapino 1993).

A useful general picture helping to visualize the effect of the self-induced
flux was given by Bloch (1970), starting from the total free energy of the system
F(®), ® being the total flux. Given the external flux ¢,,,, one has to minimize
the appropriate free energy F, including that of the system, F, and the electro-
magnetic part, (1/2£)(® — ®,,,)?, with respect to ®,

1
Fi=Ft55(2 - 20)" (7.20)

Minimizing this with respect to @ yields
=9, +LI (7.21)

with I = —~8F /8 as before. This simply means, as it should, that the total flux
is equal to the external flux plus the flux generated by the circulating currents.*
It is convenient to present this pictorially as suggested by Bloch (1968, 1971) by
displaying on the same figure the function 7(§) and the linear relationship
eq. 7.21, which will be presented as I = ¢(6 — 8,,,). From the general Byers—
Yang theorem, the equilibrium 7{§) must be an odd periodic function of § with
a period 2, but due to the superconducting pairing it has a period 1. The branch
1,(8) for each n (cf. eq. 7.12) is just a straight line. The function /(§) consists,
for each value of 6, of the branch I,(§) with the smallest I. The straight line
I = q(6 — 6,,,) may have many intersections with the various branches (dashed
lines in Fig. 7.1) and tnat with the lowest current (# which is *‘almost™
quantized with a value closest to 6,,,) is the most stable. When the wall of
the ring (or cylinder) becomes thicker, the intersections approach the integral
values of # and the quantization of flux becomes more accurate.

Gunther and Imry (1969) have considered the long, thin-walled cylinder
and have given some expressions for various regimes of d/\; which show
how flux quantization becomes more precise with increasing d/A;. At finite
temperatures a few n-states will become populated and 7(6) will round off at
the “transitions” among different values of 7.

*In the last few equations we have taken ¢ = 1.
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I(e)

a( e—eext )

O unstable

@ , metastable

/ most stable
Figure 7.1 Schematics of /() for a superconducting ring. The dashed lines show the
currents 7,(6) for the solutions (7.12). The full line is the equilibrium 7(6) neglecting the
induced flux at low temperatures. The full straight line is 7 = ¢(8 — 6,,) (same as eq.
7.21). Its intersections (full dots) with Z,(6) are locally stable solutions, the one with the
smallest current is the most stable (identified by an arrow). The other set of intersections

presents unstable states. Flux quantization follows when the dashed lines are much
steeper than the full straight line.

The underlying assumption behind the G-L description and the whole
theory of the superconducting state is that the “macroscopic wavefunction”
is associated with long-range order in the correlation function of the field 1(r).
In usual, bulk systems the effect of the fluctuations of 1 can be considered as a
small deviation (except when the temperature is incredibly close to 7,) from the
average situation (the minimum of F[y]). These deviations are very small and
can for the most part be treated within a gaussian approximation. In low-
dimensional systems the situation is very different and the fluctuations can in
fact wash out the long-range order of 1(r). We are now going to discuss this
issue for the thin-wire case and demonstrate that the physical consequences
are serious but not necessarily overwhelming (Gunther and Imry 1969, Imry
1969a,b,c).

The quantity of interest to us is the fluctuation of the order parameter 3(x)
and its correlation function (which should be long-ranged),

(W(x)¥*(x"))  for large |x — x| (7.22)
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It was found by Rice (1965) that this equilibrium correlation function loses its
long-range order at one and two dimensions, mainly because of phase fluctu-
ations. Amplitude fluctuations are not crucial due to their additional finite free
eneigy “‘price.” The fundamental importance of the phase fluctuations, related
to their ability to generate dissipation, will become clearer in the next section.
Writing 9(x) = ||¢“™), one considers, taking the simplest case, where
{¢) = const and can be taken to be zero,

(elo=o0 Ny — Gals (7.23)

where A¢ = ¢(x) — #(x’) and the equality is valid for the case of gaussian
fluctuations, which is relevant for the treatment below. We are concerned
with the behavior of (A¢?) at large separations, |x — x'|.

Thermodynamic fluctuation theory (see Landau and Lifschitz 1959) tells us
that the probability of a fluctuation of some extensive variable X, of a given
small subsystem, is proportional to

P(X') = const x exp(—~BF(X)), (7.24)

where 4= (kBT)"1 and F(X) is the free energy of the given subsystem in
which the above variable is uniform (i.e., its density, X per unit volume, is
constant throughout the subsystem, which is taken to be homogeneous) and
has the value X. Local fluctuations may be thought of as having already been
averaged over, in obtaining F(X ). Our whole system is the ring plus a heat bath
and we shall first regard the whole ring as the subsystem. For |x — x'| = O(L),
A¢ = ¢(x) — ¢{x') is an extensive variable; in order to calculate its square
fluctuation, we have to weight each value of A¢ by its probability, eq. 7.24.
The states to be sampled are those in which d¢/dx is a constant. These are
exactly the states given in eq. 7.12. By eq. 7.24, the probability to be in the state
n is proportional to

P(n) o exp(—B2n’n i Alyp|* /mL), (7.25)
so that
(n)y =0
and
o) = e, )= y (7.26)
also

kT |x— x|
Aty = e XX
(Ag%) YT

(7.27)



MESOSCOPICS WITH SUPERCONDUCTIVITY 157

Suppose that we now choose as our subsystem the region of the wire
between x and x' (Jx — x'| « L). Again, to consider a thermodynamic fluctu-
ation one takes d¢/dx = const in the present subsystem. Thus, one can sample
all these states without any reference to transitions between the various n
subensembles. The value of (Ag¢?) turns out to be

kT )
(Ag?) = % x — x|, (7.28)

which is larger by a factor of L/|x — x'| than eq. 7.27 (this is Rice’s (1965)
result).

To understand the seeming discrepancy between the two last equations,
one has to note that in obtaining eq. 7.27 one samples states which have
constant phase gradients only in the region between x and x’, while in eq.
7.28 a more restricted ensemble, of states having constant phase gradients
over the whole ring, was used. Clearly, these two results represent two different
types of averages. We shall show below that each of them is valid within
a different time scale, and we shall discuss their physical meanings. Let us
first examine some common features of both, valid when |[x — x| = O(L) but
|x — x’| < L (these two conditions mean that a set of systems with increasing L
is considered, with |x —x’|/L being a small but finite fraction when L
increases).

In the limit where L is large, (A¢2) “diverges” and, from eq. 7.23, there is
no long-range order.® It should also be noted that in two dimensions the
situation is more interesting: the correlation function decays like a negative
power of |x — x'|. It may thus be of infinite range in the sense, say, that its
integral over all space diverges at low enough temperatures.

When the magnetic flux through the ring is nonzero, eq. 7.13 is modified as
above, to E, = 4n*t A|y|*(n — 8)*/2mL, where 6 is the flux in units of Ac/2e.
The lowest free energy state is the one in which n is closest to 6. For 8,,,
nonintegral, the induced current may fluctuate, but it will not decay. The
fluctuation analysis is valid for the deviation of A¢ from its average.

Note that the fluctuations of intensive variables, such as k = d¢/dx or
the current I, and the relative fluctuation of extensive variables, like
((A(A$))?/(Ag), tend to zero at the large L limit. Thus, egs. 7.27 and
7.28 do not, in fact, represent any ‘“divergence,” and are the usual normal
thermodynamic fluctuations.

We will now discuss the issue of the time scales of the fluctuations. We shall
start by considering the time domains characteristic of the ensembles leading to
egs. 7.27 and 7.28. We shall denote by 7y a typical hopping time between two

$ However, th!wlz/kaET can be quite large (Imry 1969); a typical value, with 4 = 107 cm?,
T = T,./2,1is =1 cm. Thus, ordering over the finite size of a real sample may well be possible with
no effects due to the fluctuations. We shall still consider below the more subtle case where
2mkgTL/H Aly* > 1, and there is no long-range order over the sample.



168 INTRODUCTION TO MESOSCOPIC PHYSICS

neighboring n states and by 7, the relaxation time of the whole ring within a
given subensemble n. 7, is the time that it takes to establish equilibrium in the
ring for a given n. We have in mind the case where 7, > 7,. The states which
lead to the fluctuation in eq. 7.28 are such that d¢/dx is constant between x
and x’ and arbitrary elsewhere. Such states can exist only for times much
shorter than 7, (note that |x — x| < L). Thus if we coarse-grain over a time
interval of order 7,, the above fluctuation will be ironed out to zero. Then if we
wait a much longer time, larger than 7y, the various # states will be sampled
and only the (smaller) fluctuation corresponding to eq. 7.27 will develop.

The main question is: What is the physical relevance of the above two types
of fluctuations? As long as 7y >> 7,, metastable “persistent” currents may not
decay for the times in which eq. 7.28 is significant. This strongly suggests that
for this case the fluctuations given by eq. 7.28 represent a very short-time effect
with which one could deal, say, by coarse-graining, before one looks at overall
features of the ring. This corresponds to internal fluctuations of the sub-
ensemble of the ring with a given persistent current. The global fluctuations
in which n is changed modify the quantum state of the system and this can be
shown to lead to a finite steady-state resistance.

The mechanism leading to the hopping between s states has been of
fundamental interest. The relevant case occurs when 75 > 7,. Following Little
(1967), one realizes that in determining the above mechanism, |¢| fluctuations
have to come in as well.® The time, 7y, of transitions across saddle points of F
was calculated by Langer and Ambegaokar (1967, see also Langer 1971). The
free energy barrier AF is given by (8v/2/3)(f, — f,)4¢, that is, the free energy
gain of the superconducting state in a length £ of the wire. (Note that eq. 7.17 is
smaller than this by the usual “Bloch wall” factor £/L, see section 4.1).
Halperin and McCumber (1970) gave the correct description of the prefactor
(the rate multiplying exp(—GAF)). This appears to agree with experiments
(Webb and Warburton 1968, Newbower et al. 1972).

Using the above description, we make the following points:

1. The equilibrium supercurrent exists and never decays once 7y 2 7, for
nonintegral 8,,,. This was the first example of a persistent current in a
system with no long-range order and possibly with impurities (Gunther
and Imry 1969).

2. Superfluid effects such as metastable supercurrents on time scales com-
parable to or shorter than 75, which is a characteristic lifetime for the
decay of these currents, are entirely possible.

3. As long as 7 is much larger than a “time of attempt,” 7¢—the inverse
of the frequency at which the system attempts to cross the free-energy

®Little has shown that phase fluctuations (between different subensembles) can occur only via
intermediate states with an amplitude fluctuation. This was further treated by Langer and Ambe-
gaokar (1967), who actually found a plausible evaluation of the free-energy barrier for the above
transitions. For our purposes here it is enough to assume that there exiszs a mechanism which carries
the system between the various # subensembles, without treating this mechanism specifically.
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barrier between neighboring n states—the system will spend most of the
time near the free energy minima, and a negligible time “in transit.”
Since #; can reasonably be expected to fall within a few orders of
magnitude of 7,, this agrees with the condition 7y > 7,. This picture
will, of course, break down when 74 < 7.

4. For 1y > 7,, characteristic properties of the system, which are common
to all the n states, will not be destroyed by the averaging over n. Flux
quantization and the Meissner effect, which are examples of this, will be
considered below.

5. From the calculation of the “phase slip” (see eq. 7.31, and Langer and
Ambegaokar 1967) resistivity due to the above fluctuations, p,, one
may obtain, denoting by 7 the relaxation time of normal electrons
and by p, their resistivity, that

Ps/ Pn = ST/Th, (7.29)

where S is a numerical factor S = #>An/2LmkgT (S ~ 10* in typical
cases: L=1cm, A = 1078 em?, T a2 K). Thus, assuming that it is
possible to detect experimentally resistivities of the order ep, (e is,
say, 107%), the time scale of fluctuations leading to a detectable
resistance is

Ty~ e ST 107" s, (7.30)

Thus, the behavior of the system can be characterized by three regimes, in
terms of 74.

(@) T S 7 (=107 s): the system is presumably normal.

(b) 70 < Ty < €187~ 107! s: resistance is detectable but other super-
conductive properties such as persistent currents are possible (see
below).

(©) 7y 2 € 'S7: resistance exists in principle but is undetectable; meta-
stable currents have lifetimes of order 7.

Note that there are many orders of magnitude separating the time scale for
the beginning of regime (c) and that in which the metastable persistent currents
have undetectably long lifetimes.

We will now consider the equilibrium phenomena: persistent currents and
flux expulsion As long as the system stays in the subensemble belonging to a
given n, and no attempts are made to measure times with a resolution better
than 7,, the fluxoid is constant and is equal to n. Once we are out of regime (a)
above, the system spends most of the time at the various » states, and the
fluxoid is quantized most of the time. For a nonintegral external flux, there
will be a finite equilibrium persistent current, given by the thermal average of
the currents in the various n-states. This equilibrium persistent current is of the
superconducting type, that is, its period is s/2e and its magnitude scales as in
eq. 7.17. This is in contrast to regime (a) in which the persistent current should
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be of the normal-metal type, as in chapter 4. We also note that the Josephson
effect is possible, in spite of the phase fluctuations, using the Bloch (1968)
interpretation discussed at the beginning of this section and in the next section.
Its magnitude will depend on whether 7; 3> 14 > 7, 0r 75 > 7, > 7. Here 75
is the inverse of the Josephson frequency w;, defined in eq. 7.32.

For wall thickness >>);, the total flux, rather than just the fluxoid, is
quantized, as discussed above. Moreover, the Meissner effect exists, in the
sense that magnetic fields are expelled from the inside of the cylinder’s wall
(this 1s independent of n).

The specific heat around the superconducting transition is of interest. We
note that when £ is much larger than the range of interaction, the G-L theory
can say nothing about the behavior of the correlation function at distances
comparable to the interaction range (Fisher and Langer 1967, Fisher 1967).
Therefore, the same applies to the energy of the system, which is rigorously
given by the values of the correlation function in the range of interactions, and
to its temperature derivative. This observation is crucial here, because it shows
that the specific heat is not so dramatically affected by the long-range fluctua-
tions. The phase transition is smeared, but the peak around the critical tem-

perature without fluctuations generally remains (Gunther and Gruenberg 1972,
Scalapino et al. 1972).

3. WEAKLY COUPLED SUPERCONDUCTORS,
THE JOSEPHSON EFFECT AND SNS JUNCTIONS

The Blech Picture

Consider a gedanken experiment in which the superconducting ring of the last
section (which can also be taken to be rather massive, not necessarily in the
mesoscopic regime), has a small part (the shaded section in Fig. 7.2) which is
gradually being eroded into worse and worse conducting material. This erosion
can be achieved in principle by, for example, damaging this section of the ring
with some ionizing radiation which will gradually reduce its conductivity and
eventually evaporate it altogether. Obviously, the amplitude of the osciilations
of the persistent current 1{8) curve of the ring (as well as the related free energy,
F(0)) will decrease monotonically with the increasing damage, but will become
vanishingly small only when the “gap” created in the superconductor is thick
enough. Let us stop the erosion process at some intermediate stage where /(6)
still has a finite amplitude, which is small enough to guarantee a single inter-
section with the straight line given by eq. 7.21 (see Fig 7.2b)). Thus, there are
no metastable states to worry about and it can be expected that if 8,,, is varied
slowly enough the system will follow the equilibrium state (the intersection of
I(8) with the straight line). At this stage we are not surprised to find that a
finite persistent current can flow in equilibrium if 6 is not an integer. The
magnitude of this current and its dependence on geometry, if the “gap” in
the ring is not too wide, can still be taken to be smaller than, but in the
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Figure 7.2 (a) A ring with an artificial weak link (shaded area). (b) 1(6) curve and
I=g(0—86,,) line for a superconducting ring having an appropriate weak link
(schematic).

same range as in a superconductor (see the discussion following eq. 7.17).
Moreover, it can then be demonstrated (see the next subsection) that the
ring may be opened and a finite supercurrent, with no detectable dissipation
(except for special extreme cases) can flow between the two superconductors
through the weak section. This supercurrent is called “the d.c. Josephson
effect.” An even more intriguing situation occurs when an e.m.f. is applied in
the ring by letting 4,,, increase slowly and linearly with time. The total 6
(intersection of 1(6) with the straight line in Fig. 7.2) will follow and increase
in time with the same average rate. The e.m.f. is given by

1d® h dé h do
cd T Ted T 2edt (7:31)
since § = ®/®, = ¢/2n. There is no d.c. current, but the (time-dependent)
current will oscillate with a period given by the time for 6 to increase by
unity. The frequency of this oscillation is the “a.c. Josephson frequency”

Thus we have a “d.c. to a.c. converter” with a voltage—frequency ratio given
exactly by a combination of universal natural constants! Note, that any system
which has a (A-B) flux-sensitive persistent current, must have an a.c.
Josephson-type effect as above (Biittiker et al. 1983a, Imry 1983b).

Actually, the above is not how Josephson (1962, 1965) originally arrived at
his a.c. effect. Bloch devised this gauge argument later (1968) to account for the
extreme precision of the effect and its total insensitivity, for example, to solid
state effects. The Laughlin gauge argument (1981) for the QHE (chapter 6) is
obviously of a similar nature. Yang (1989) has emphasized the historical
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development of the flux — vector potential — quantum phase idea, from
Faraday through Maxwell, the Dirac monopole and the A-B effect, to the
a.c. Josephson effect and the QHE.

The way to visualize the physics of what happens using only the above very
general arguments (a more specific picture will be given in the next section) is
the following. The phase ¢ of eq. 7.31 represents the total phase change around
the ring. Let us assume that the phase of the order parameter is more or less
constant in the superconducting part and that it changes mainly across the
“weak link” (damaged part of the ring). This is a very reasonable assumption
since, for example in the G-L picture (eq. 7.1), the energy price for changing
the order parameter is smallest where superconductivity is “weakest” (and the
coefficient a is less negative or even positive). Thus, eq. 7.31 is the relationship
between the rate of phase change and the voltage across the weak part of the
superconductor. This relationship is exceedingly general and follows from
general principles (even the appearance of the charge 2e, which follows from
the BCS theory, can be argued to arise on a more general level (Byers and Yang
1961, Bloch 1968)). Thus, one may apply it in more general situations.

For example, let us cut the ring and connect a current source to the wire
comprising it. A small current is now driven by the source through this wire. In
fact, it is now clear that the interesting physics is occurring just in the weak
link, which can be between any two superconducting ‘“banks.” This more
usual singly-connected system should display the Josephson effects, as will be
discussed directly in the next subsection.

Should the relative phase across the weak link change with time—for
example, via the saddle-point activation processes discussed in the last
subsection—a voltage would be generated across this “phase-slip center.”
This is due to the phase not being rigid but changing, due to these fluctuations,
in a direction that would reduce the current on the average. A phase change of

27 occurring at the average rate of 1/7y will contribute, using eq. 7.31, a
voltage of

h

= 7.33
267'1.1 ’ ( )

Vinp =

that is, the rate of increase of ¢ due to ¥, will exactly balance the decrease due
to the fluctuations. This is how the estimate of eq. 7.29 was arrived at.

The condition for the applicability of the Bloch argument with equilibrium
currents is that the voltage ¥ be so small, that 7, > 7 > 7. If 7y > 77 > 7,
it appears still possible to have some a.c. Josephson effect, but with metastable
currents. Here 7; is the inverse of w;. We reiterate that

e (7.34)

where AF is the Langer-Ambegaokar-type barrier for the weak-link wire and
is determined by the Josephson coupling energy (see next section) for a
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tunneling junction. If the wire has a narrow section, AF will be smallest there
and the resulting “weak” section will become the phase-slip center. Once
AF > kgT, Vg, approaches zero exponentially and may easily become
immeasurably small.

The Josephson Junction and Other Weak Links

A most economical derivation of the Josephson effect may be found in the
Feynman lectures on physics (Feynman et al. 1965). Assume that the two
macroscopic wavefunctions ¢; and 1, on the two sides of the junction
(; = \/n_ieid” , I = 1,2; n; being the pair densities) are coupled with a coupling
constant K and a voltage V is applied between them. With an appropriate
choice of the zero of the energy, the coupled time-dependent Schrédinger
equations (for particles with charge 2e) read

i)y = —eVy + Kiy,

_ (1.35)
iy =eVip + Kify,
The equations for 1, = ¢}3; + ¥ie and i, are
(9n1 _ (9712 _ -
5 = "5 = 2K./nn; sin ¢ (7.36)

where ¢ = ¢, — ¢;. Taking for simplicity n, = n, = n, we find for the phase
difference:

d¢ 2e

7.37
dt h (7.37)
Since the current I, from 1 to 2 is given by 2en; = —2en,, we rewrite
eq. 7.36 as

I, = J sin¢g = J, sinwyt. (7.38)

Here J, is the Josephson current amplitude, J, = (4e/#)Kn, and wy is given by
eq. 7.32. Equations 7.32, 7.37, and 7.38 are the fundamental equations of the
Josephson junction. Equation 7.38 constitutes the a.c. Josephson effect and its
static case, ¢ = const, is the d.c. Josephson effect. The accuracy of the voltage—
frequency universal relationship 7.32 follows from the Bloch argument pre-
sented in section 2 and at the beginning of this section (where the voltage is
applied inductively by varying the flux in a ring). In the most general situation
the current is just an odd periodic function of ¢, not necessarily a pure sine. It
can be expected that J, and K increase with the coupling between the super-
conductors 1 and 2. In fact, from the microscopic theory, one obtains for a
tunnel barrier, as T — 0,
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J, = (10,/2¢)G,, (7.39)

where G, is the normal state conductance of the barrier, given by eq. 2.19.
When T — T, J. vanishes proportionally to A2 (Ambegaokar and Baratoff
1963). Equations 7.36 and 7.37 can be interpreted as the equations of motion
for the number of transferred pairs and the relative phase across the junction,
which are conjugate variables.

An important remark about the Josephson current amplitude, J, is that it
is of the same order, |t|2, as the single-electron transmission probability (to
which G, is proportional, see eq. 2.19). This may seem surprising, in view of the
fact that rwo electrons are being transferred. In the microscopic derivation the
process is second order in ¢ since it goes through an intermediate state where
one electron is transferred, having an energy denominator A,. At the final
state, which is degenerate with the initial one, the second electron is transferred
as well and is paired with the first into the “condensate.” The extra factor Al
needed for eq. 7.39 is obtained from the so-called “coherence factors”
(admixture of the spin-up electron at £ T and the spin-down hole at —k |) in
the BCS—Bogoiiubov ground state (see, e.g., de Gennes 1966).

The above picture applies specifically to the Josephson effect across a
tunneling barrier. In fact, the effect occurs in a large variety of “bridges”
and “weak links” of various types between the two superconductors, since
the relevant issue is, obviously, just having some pair coupling, K, as in eq.
7.35. This ranges through several situations where the “weak link” is due to a
normal metal (or semiconductor) separating the two superconductors. Its
conductance can be made small enough to cause the coupling (eq. 7.39) to
be sufficiently weak in several ways. These include geometrical constrictions
(various types of point contacts) or simply a low enough conductivity of the
weak link, which in the semiconducting case might even be controlled with a
gate. Questions such as how K depends on the parameters of a specific type of
weak link, and what is the effective capacitance of the weak link, are interesting
detailed issues for each different type of junction (for a review, see Likharev
1979). The general properties, embodied in eqs. 7.37 and 7.38, remain
qualitatively the same. This also includes the sensitivity to relatively small
magnetic fluxes (see below). Our discussion in chapters 2 and 4 would lead
us to believe that the weak link, as long as it is coherent, is simply a *‘black box”
with certain scattering characteristics (see, e.g., Beenakker 1992a) for imping-
ing electrons, which determine its normal conductance. it might be expected,
then, that the Josephson current amplitude, for a junction made of a normal
conductor or insulator, will be given more generally by an expression such as
eq. 7.39 at low temperatures. This expectation appears to be qualitatively
correct by and large, although specific mechanisms for the coupling should
still be considered. This includes the “proximity effect”—inducing weak super-
conductivity in the normal bridge (e.g., Deutscher and de Gennes 1969) and the
Andreev (1964) process, to be discussed in the next section. The condition for
coherence of the normal electrons, within the thermal band, in the weak link is
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that its length L should satisfy L < &y, where £y, the “normal metal coherence
length,” is similar to the length Ly defined previously. Since in all known cases,
€y < L, this guarantees coherence of the partial waves of each electron.

We conclude this subsection with a short discussion of the effect of mag-
netic fluxes. The underlying relationship is the one explained in appendix C
between the flux in a loop and the phase change around it, except that the
charge of the particle under discussion is 2e, hence eq. 7.15 applies. The other
ingredient in this picture is the rigidity of the phase in the superconducting
part, so that the phase change occurs in the junctions only. As an instructive
example, imagine the ring of Fig. 7.2, but with two equivalent junctions with
phase changes across them of ¢; and ¢; in the up—down direction. Supppose
that one now tries to pass a superconducting current from the top to the
bottom of the ring. The Josephson current will be given by

I = I,(sin ¢; + sin¢,). (7.40)

The flux & in the ring will cause, by eq. 7.15,

d

Thus, the supercurrent / has a maximum amplitude given by

Lo =21 cosg (7.42)

The two critical currents of the junctions add constructively for ¢ = 0, for
example, but completely annihilate each other for ¢ = #. This is in complete
analogy with a two-slit interference situation or to the A-B conductance
oscillation discussed in chapter 5. This double junction can be made into a
device (DC SQUID) that is sensitive to very small fractions of ®, in the loop
(and is in principle the method used to detect the persistent currents mentioned
in chapter 4). This phenomenon is obviously very general. In a planar junction
parallel to the x—y plane (Josephson current in the z direction), the phase
difference increases along, say, the x direction, due to a magnetic field having
a component in the y direction.

4. BRIEF REMARKS ON VORTICES

It turns out that a quantum of magnetic flux with the associated phase change
of 2 and a current loop (obtained using (eq. 7.38) the phase dependence of the
current) around it, behaves physically like a single entity. This has been
referred to as a “fluxon,” “soliton,” or ““quantized vortex.” Vortices enclosing
a flux quantum are well known to exist in long Jo :phson junctions (see, e.g.,
Scalapino 1969) and as Abrikosov vortices in type II superconductors (e.g.,
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Tinkham 1975). Their dynamics in the latter case dominates the important
issues of how much supercurrent can be carried by the superconductor and
what 1s the resistance (see below) that may be associated with the vortex
motion (cf. eq. 7.33). More generally, vortices (with a continuous vorticity)
exist and are of tremendous importance in classical flow problems and
quantized vortices are important in superfluid helium (Donnely 1991). 2D
arrays (for a simple picture and experimental consequences, see Imry and
Strongin 1981 and Hebard and Paalanen 1985) of Josephson junctions can
now be made with good homogeneity, displaying nontrivial aspects of vortex
motion (Mooij et al. 1990, Fazio et al. 1991a,b, Fazio and Schon 1991, Tighe
et al. 1991, Elion et al. 1992, Lenssen et al. 1994, Mooij and Schén 1992, van
der Zant et al. 1991a,b, 1992a,b, van Otterlo et al. 1993).

When a vortex parallel to z moves along the x direction, the phase
difference across it in the y-direction changes by 2x. The Josephson relation-
ship implies an induced voltage in the perpendicular, y, direction. A current in
the y direction causes a force on the vortex in the x direction. The vortex may
also experience frictional forces hindering its motion. All this suggests treating
the vortex as a composite particle, where the current and voltage roles are
exchanged with respect to the usual ones, and with a 90-degree rotation.
This vortex—particle analogy can be fully demonstrated for the simple case of
a long Josephson junction (Bergman et al. 1983). This duality should also hold
for superconducting films and arrays, and there have been experimental
demonstrations of the motion of vortices as particles (Mooij et al. 1990,
Mooij and Schén 1992) in the latter.

Another interesting aspect is the quantization of the vortex’s motion.
When the Coulomb capacitative energy is introduced for the long junction,
the vortex acquires a mass (for a short junction, the classical equation of
motion for ¢ acquires a kinetic energy term; for consequences see Fulton
and Dolan 1987). The ensuing quantization can be treated rather extensively
(Jackiw 1977). Quantization exists also in more general situations such as the
array (Eckern and Schmid 1989) and the type 11 superconductor (Blatter et al.
1994). In the latter case there still exist questions about the mass of the vortex.
Once quantization is understood, one is led to expect a host of quantum
mesoscopic phenomena (coherent band motion in a periodic system, local-
ization due to disorder, A-B-related oscillations (van Wees 1990a,b), and so
on) which are dual to the phenomena we have treated for electrons. A vortex
which encircles a charge experiences an A-B phase shift that can be controlled
capacitatively through the above charge. This is detectable (van Wees 1990a,b)
via transport measurements in a Josephson array. Although not much is known
about dephasing and energy-averaging for vortices, this very difficult experi-
ment was successfully performed by Elion et al. (1993). It demonstrated that
vortex interference is possible and thus opened the way to many further inter-
esting possibilities. Stern (1994), building on the analogy between vortices and
electrons in a strong magnetic field, showed that QHE phases for the vortices
are achievable. This is due to the discrete nature of the array. The same analogy
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earlier motivated Ao and Thouless (1993) to demonstrate the universality of
the Magnus force exerted by the moving superfluid on the vortex in a 2D
superconductor. This is a topological property and it is independent of the
underlying charge of the electrons. For a theoretical review of many interesting
phenomena related to the capacitative coupling of the phase dynamics to the
charges, see Schon and Zaikin (1990). Much can be learned by transferring
information on various physical phenomena from electrons to fluxons and vice
versa (Mooij et al. 1990, Fazio and Schén 1991). As an example we mention the
Kosterlitz—-Thouless—Berezinskii transition which is equivalent to collective
opposite-charge pair separation. The latter has recently been observed in
thin films (Tighe et al. 1993, Delsing et al. 1994, Liu and Price 1994, Kanda
et al. 1994, Kanda and Kobayashi 1995, Katsumoto 1995, Yamada and
Kobayashi 1995).

Interestingly, momentum is transferred between the moving and circu-
lating superfluid in the vortex and its normal core (in the type II case) via
the Andreev process. This appears to be the relevant physical mechanism for
understanding the Magnus-type force on the normal core, which may explain,
for example, why the normal core tends to follow the overall superfluid velocity
(see also Hoffmann and Kiimmel 1993, Wingreen et al. 1994). The combination
of vortex and Andreev physics might thus be useful for a better understanding
of magnetotransport in type 11 superconductors.

5. THE ANDREEV REFLECTION,
MORE ON SN AND SNS JUNCTIONS

Let us consider the normal-super (N—S) boundary. An electron with energy e,
just above the Fermi energy in n, is hitting the interface with the super-
conductor. There are two related questions: (1) How is the normal current in
N converted to a superconducting current, carried by pairs, in S? (2) How is
the information about the phase x of the superconducting order parameter
transferred to the normal electrons in N? The quasiparticle energies E; in S,
measured from the common Fermi level, are known to be given by

E, = A/ A? -+ fz, fk = € — €F. (743)

&, is the excitation energy for the normal metal. For negative &, we interpret
|éx] as the positive energy of the hole excitation. Let us consider for simplicity
low temperatures and currents, so that § < A,. The interface is static and thus
we can have only elastic scattering processes. There is no way for an electron in
N with a momentum k to become a quasiparticle in S. Only two possible
reflection processes may exist in the low-& limit: (a) An ordinary specular
reflection to an electron with —k, and the same kj (—k, and kj are the
components of &k perpendicular and parallel to the interface). The above is
valid assuming a planar interface. For a rough interface, there will be a
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“diffuse” reflection, but |k| will be conserved. (b) It was found by Andreev
(1964, 1966) that the other energy-conserving process is creating a hole at —k
(including the reversal of both ky and k_, for & — 0. For finite §, it can be
seen that to conserve energy, k, will be slightly changed).” This is called an
Andreev reflection. It is described, using pure electron language, as the two
electrons k and —k (with opposite spins) going into § and eventually joining
the condensate.

Thus, this process, which necessitates a Fermi sea to have the —k electron,
accomplishes the transfer of current between N and §. Charge is obviously
conserved. For an ideal interface, and when N and S have the same normal
electronic structure, the normal reflection vanishes. More generally, it can be
argued that typically® the probability for the Andreev reflection is almost unity
and that for normal reflection is close to zero. This is so because the length
scale of the effective “‘potential” created by the space-dependent A, via eq.
743 is & > k;l. Thus it is improbable for the normal reflection to have
enough momentum-transfer to reverse k . A regular atomic-scale potential
barrier or roughening at the interface will obviously switch on the normal
reflection. The effect of an interface barrier was systematically treated, along
with the additional quasiparticle transmission processes for £, > A;, by
Blonder et al. (1982). Here we shall not reproduce the detailed calculations
which use an appropriate modification, due to Bogoliubov and later to de
Gennes, of the microscopic theory. Below, we present a physical discussion
of some of the interesting phenomena at low temperatures, k37T < A,. In the
following, we shall need only the above-mentioned facts and the very
important phase shift (Andreev 1964, 1966, Kulik 1969) associated with the
Andreev process. It is found that the reflected hole at the Fermi energy
experiences a phase shift equal to —x + /2, where x is the phase of the
order parameter of the superconductor. Similarly, when a hole is Andreev-
reflected into an electron, a phase-shift x + 7/2 is obtained by the latter.

It has been realized already by Andreev that this reflection leads to
interesting states of a new kind bound in the normal region in a S-N-S
sandwich, for energies below A;. The classical trajectories representing these
states are depicted in Fig. 7.3 for e « A, (e is measured from €z). An electron
hits the N-S boundary, and is reflected as a time-reversed hole with a phase
—X5; the latter is reflected again at the other boundary as an electron with a
phase xi; and so on. The difference between the ballistic and diffusive regimes
is simply in how the electron trajectory behaves between the reflections. The
semiclassical motion is periodic in both of these cases. It is possible to use, for
example, the semiclassical quantization conditions in order to obtain the
quantized states. This is simplest in the ballistic regime, where quantization

"The spin of the electron at —k is opposite to that of the one at k. We suppress the spin indices.
More generally, the reflected hole is in a time-reversed state with respect to that of the initial
electron.

8 Except perhaps at glancing incidence small enough k.
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Figure 7.3 An Andreev-reflected bound state (at an energy < A;) in the N-region in
the ballistic regime (a) and the diffusive one (b). The arrows present the directions of
motion of the electron and the hole. (c) The same trajectories but with a large enough
magnetic field that will localize the motion to reflections from a single N-S boundary.

(Andreev 1966, Kulik 1969, Zaikin 1982, see also Abrikosov 1988) depends in
most situations on the angle 8 (see Fig. 7.3a). These normal local states lead to
an observable specific heat in the intermediate state of the superconductor
(where regions of N and S coexist in a bulk sample) in agreement with experi-
ment. This, as well as other effects, confirms the validity and relevance of the
Andreev process. It is interesting that a magnetic field, when large enough,
can bend the trajectories so that they do not hit the second superconductor
(Fig. 7.3c).

The most interesting property of the Andreev reflection from our point of
view is that (for § < A,) the electron obtains in each period an extra phase of
X1 — X2 + 7. Thus, the levels are of the same nature as when the N-region is
bent into a ring (from now on, we shall consider for simplicity the case where
the thickness, L, of the N-region between the two superconductors, is larger
than its transverse dimensions) and an A-B flux of

@ = Qy(x) ~ x2)/27 + 1/2 (7.44)

is applied to it. Obviously, the electronic levels in the ring will depend on
X1 — X2 and will be periodic in that phase difference with a period 27, as in
the A-B ring. The persistent current, given by eq. 4.5, where F depends on &
due to the above-mentioned sensitivity of the energy levels to x; — X3, will be
dissipationless, like a Josephson supercurrent, flowing from S to .S, via the
N-region (Kulik 1969, 1970a,b). Since we would like the relevant energy range
for the normal electrons to be much smaller than A, we have to take E. < A,
for this correspondence to be qualitatively valid. For N and § having similar
Fermi velocities, the above condition is equivalent to L 3> /§,], which will be
referred to as the long normal link case. § = Aivg/A; is the coherence length of
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the pure S; or S, and / is the elastic mean free path of the weak link. The length
V&l is also the £y of the normal link (taken as dirty, / « L) at a temperature
comparable to T, of the superconductors.” We see here a definite physical
mechanism by which this supercurrent is carried. In the Andreev reflection
at S,, two electrons go into S,. In the Andreev reflection at S, two electrons
go from S; to N. The net effect is that in each cycle of the periodic motion a
pair is transferred from S to S,. We believe that this picture gives a vivid, clear
demonstration of the relationship between normal persistent currents and the
Josephson-type effect. The phase of the hole in the latter case leads however to
quantitative differences between the two problems. In the presence of a voltage,
the multiple Andreev reflection can lead to a subharmonic gap structure (Bra-
tus et al. 1995; see also Frydman and Ovadyahu 1995).

Before discussing further results on the SNS junction, we start with the NS
situation, including phase coherence effects (Furusaki et al. 1991, Furusaki and
Tsukada 1991, Lambert 1991, 1993, 1994, Nakano and Takayanagi 1991,
Takane and Ebisawa 1991, 1992, Beenakker 1992a,b, Furusaki 1992, Takagi
1992, Hui and Lambert 1993; Lambert et al. 1993, Lambert and Robinson
1993, Marmorkos et al. 1993, Zaikin 1994). For the microscopic theory, see
Fukuyama and Yoshioka 1992, Yoshioka and Fukuyama 1990, 1992). We
consider a series addition (the multichannel generalization of eq. 5.36) of a
disordered normal section having a scatterring matrix Sy(¢), an ideal normal
lead and a planar NS interface between the latter and the superconductor S.
Thus, there is a spatial separation between the normal and Andreev scattering;
S is taken to be in the clean limit. For N channels, the scattering problem for
electrons and holes separately is 2N x 2N. In the representation where the first/
second set of N entries stand for electrons/hole channels, the 2N x 2N reflec-
tion part of the scattering matrix of the ideal planar NS interface is well
approximated by

0 eix —i arc cosh{e/A,)
Syle) = ) e /5 (7.45)
eX 0

Here € is measured from the Fermi energy and yx is the phase of the order
parameter in S. The simplest model for the space dependence of the gap A (r)
was used (Likharev 1979), where A (r) changes discontinuously from 0 to A at
the NS interface. The total 4N x 4N S-matrix of the normal part (including
electrons and holes which do not couple to each other) is given by

_ So(E) 0
SN(e)—( A SO(_e)*) (7.46)

Earlier, this problem bad been considered by Takane and Ebisawa (1991,
1992a,b). Blonder et al. (1982) obtained the result below for independent

%It should be emphasized, however, that we have in mind the case of low temperatures, k3T < A,
where £y = Lt > /& and &y is taken at the actual (low) temperature.
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channels; see also Shelankov (1984), Zaitsev (1980, 1984). By combining Sy
and S, and using the appropriate generalization of the Landauer formula, and
for B =0, Beenakker (1992a) obtained for the total conductance of the NS
junction:

282 N T2
Grne = — S 747
NS h ; Q- T, 747

Here the T,’s are the transmission eigenvalues of the disordered normal pari.
The physical meaning of eq. 7.47 can be most easily appreciated in the single-
channel case: An electron goes through the disordered normal part with an
amplitude 7, and then it is reflected as a hole with an amplitude —ie™* (cf.
eq. 7.45). The latter has an amplitude 7, to go back through the disordered
part, in which case a pair is transmitted with a probability T2, If the hole were
normally reflected (the amplitude for that is r, = r;) from the disordered
normal part, it could Andreev-reflect again, with an amplitude —ie”™™, to
upset the above transfer of two electrons, provided also that the electron
thus obtained goes back through the disordered part. However, this
“secondary” electron can also be reflected by the disordered normal part,
with an amplitude r,, and then be retransmitted by the Andreev process into
the superconductor (with an amplitude —ie™), and so on. Summing all the
amplitudes for the series of these processes, yields

~itty,  —iTeX  —iTeX
l4+rr, +R 2-T°

eX(—it ty + it dyrory + -+ ) = €%

for the total transmission amplitude of a pair due to an incident electron. The
corresponding probability is 72 /(2 — T)z, for the given channel. Equation 7.47
is to be compared with the conductance of the disordered normal part itself
(eq. 5.16),

=+l"

It can be seen that Gys < 2Gy. In cases where the transmission eigen-
values, T}, are mostly zero or unity, it follows from eq. 7.47 that

Gys = 2Gy. (7.48)

This becomes a precise equality for a ballistic point contact, on the con-
ductance plateaus, where the T,,’s are exactly zero or unity.

When the normal part is disordered, the ensemble averages for a length L
satisfy

(Gns(L)) = 2Gn(2L)) = (Gy(L). (7.49)

The first equality follows from the properties of the 7,’s, as in appendix I (see
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Lee et al. 1987). The difference between (Gys(L)) and (Gy(L)) is mostly in the
weak-localization contribution. This contribution is actually enhanced in the
NS case by a factor of almost 2 compared with the normal case (Beenakker
1992a, 1994, Marmorkos et al. 1993, Macédo and Chalker 1994, Takane and
Otani 1994). This leads to a zero-bias dip in the differential conductance
(Lenssen et al. 1994), which should occur in this form only when normal
reflections at the NS interface are weak enough.

An extremely interesting case occurs when the normal part has a trans-
mission resonance as in a quantum dot (Beenakker 1992a) or in the strong
localization regime (see problem 4 at the end of chapter 5; Lifschitz and
Kirpichenkov 1979, Azbel 1983). Gyg then has a peak, as function of energy,
at the resonance energy, in the same way as Gy. However, the resonance of
Gys 1s twice as high and it has a non-Lorentzian shape. This is an example of
how the quantum (wave) properties may help the electron pass over large
barriers.

Beenakker (1992a) had also considered the effect of an additional barrier at
the NS interface (Blonder et al. 1982, Volkov 1994) when N is in the diffusive
regime. He generalized the very interesting prediction of reflectionless tunnel-
ing (see van Wees et al. (1992), for the case where the potentials in the normal
part are smooth to more realistic potentials, with a deeper theoretical treat-
ment). The combination of the disordered normal region and the NS barrier
makes the barrier ineffective in decreasing (Gys). It is as if the electron
normally-reflected from the barrier is reflected back in the disordered normal
part, and attempts to Andreev-reflect at the NS interface with the barrier again
and again, until it succeeds. This may be the explanation for the experimental
results of Kleinsasser et al. (1989), Kastalsky et al. (1990, 1991) and a lot of
later work (Beenakker et al. 1994; for a review and further results see Beenak-
ker 1995). Physically, such an effect should also exist with a resonant transmis-
sion through a localized state in an Anderson insulator, where the interface
barrier increases just one of the two barriers existing anyway in the model of
problem 4 at the end of chapter 5. The latter effect might have been observed
by Frydman and Ovadyahu (1996). Marmokos et al. (1993) confirmed numeri-
cally the theoretical predictions in the diffusive regime, including the reflection-
less tunneling. The latter was found to hold when the small transmission
coefficient of the barrier is still larger than the ratio //L of the normal part.
Marmorkos et al. also studied the conductance fluctuations and confirmed
their increase in the NS case (Takane and Ebisawa 1991, 1992, Beenakker
1993), as well as the conjecture (Beenakker 1992a) of their insensitivity to a
magnetic field.

We shall now discuss some pertinent results (analogous to those in
chapter 4) for supercurrents in SNS junctions. We start by taking the normal
section to be in the diffusive regime. For noninteracting electrons, Altshuler
and Spivak (1987) found a component of the conductance of the normal part
which is sensitive to the phase difference x; — x; and is 27r-periodic in it. They
had also pointed out that in addition to the average supercurrent whose
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amplitude'® is (@) ~ (eA,/k)g, for low temperatures, /&l <&y (ie.,
kT < A;), there will be mesoscopic (sample-to-sample) fluctuations n the
supercurrent, which they found to be given by

(ALY ~ (eE.[R). (7.50)

This result, which is in agreement with the sample-specific persistent current in
chapter 4, is valid for L < &y (ie., k3T <« E,), but in addition L should be
larger than the transverse dimensions of the normal weak link. Interestingly,
the magnitude of the gap A, does not appear. It was found by Beenakker
(1991; motivated by results of Beenakker and van Houten (1991a) in the
ballistic case) that the result in eq. 7.50 holds only in the limit of a “long
sample” (in the sense that L > /§yl, which means E, < A;; as above, L is
the length of the normal region and &, the superconducting coherence length in
the pure case, still at low temperatures, L <« £y). For a short sample,
L < V&I, or E.> A, (Beenakker 1991), the mesoscopic fluctuations in the
critical current are of the order of

o) ~ a3y ~ ()’ (7.5

in agreement with the universality of conductance fluctuations, and being the
appropriate analogue to those in our case. As discussed, the condition
L < /&l is equivalent to E, > A,. The physical difference between the
cases in which egs. 7.50 and 7.51 are valid is in the order of magnitude of
the window of energies in which most of the current flows, which is E, and A;,
respectively. In this connection, see also Takane and Otani (1994) and Takane
(1994).

Since (I,) ~ (A;/e)G,, we see that the fluctuations in the long sample are
relatively small:

:

(AIZY A <10-4

~= 51074, 7.52)
AR (

because the level spacing A is typically a fraction of a millikelvin, while the

superconducting gap A, is on the order of 10 K.!'" Altshuler and Spivak

'%1t has to be noted, however, that the detailed shape of 1.(¢) is different in this case from the one
for the Josephson junction (Kulik and Omelyanchuk 1975, Beenakker 1992b). As an example, for
a short sample, L <« /&l, and when T — 0,

I( sm¢ —
Z 1 4/1~ TZsin’( ¢/2)

I($) = TAhgg" smﬁ

and for the ballistic case:

" For the short junction, the relative fluctuation is of order 1/g,.
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suggested various ways to depress the average critical current in order to make
the fluctuations more observable. For example, a relatively strong magnetic
field will depress (I.) exponentially, while (AI%) will decrease by a factor of 2
only. The latter is of a similar nature to the relative insensitivity of the con-
ductance fluctuations and the h/e A-B conductance oscillation to a large
magnetic field (chapter 5). Another interesting aspect of the sample-specific
(AI?) is its decay over the length scale L, (rather than {y for (I.)). Since
Ly > &y is possible (and usually holds), these fluctuations are relatively robust.

There is an interesting difference between the mesoscopic behavior of
tunnel junctions and metallic weak links. This stems from the difference in
the behavior of the transmissiorn. eigenvalues 7,. For the same average
conductance, many small 7,’s are relevant in the former case, while in the
latter, most T,’s are close to zero or to unity (Dorokhov 1982, 1984, Imry
1986, Pendry et al. 1992) in the diffusive situation. (In the ballistic case, when
the conductance g is quantized, this is even more extreme: Most of the T}’s
vanish and g of them are equal to unity). This aspect, discussed by Beenakker
et al. 1994, leads to a number of interesting physical consequences.

The period of 27 as function of y; — x> corresponds via eq. 7.44 to the
period #/e as a function of the flux in the corresponding ring. A period of 7 in
average quantities would correspond to h/2e. Earlier, Spivak and Khmelnitskii
(1982) obtained such a dependence (period =) of the average normal con-
ductivity of the SNS junction on x; — x». This m-period was also found in
the dependence on x; — x» of a contribution to the average supercurrent
amplitude {J.) due to the electron—electron interactions by Altshuler et al.
(1983). This is the direct analogue of the h/2e-periodic average persistent
currents due to the interactions (Ambegaokar and Eckern 1991). Since this
effect has a sign related to that of the effective interaction, the possibility of
a “negative Josephson current amplitude” arises.!? This may cause an instabil-
ity (as can be seen easily from the Bloch argument described earlier) of the
8 = 0 self-consistent current solution, leading to two stable ground states with
opposite nonzero trapped fluxes § and -9, for ,,, = 0. When a voltage V' is
applied between the two superconductors, x; — X, will change with time
according to eq. 7.37. Thus the m-periodic persistent current will oscillate
with time with a basic period of 4eV/h, as was found by Spivak and
Khmelnitskii (1982). The factor of 4 is obtained from two factors of 2: one
from the Josephson relation and one from the ensemble averaging. De Vegvar
et al. (1994) addressed some of these issues experimentally.

The question of h/e vs. h/2e periodicity of the persistent currents in a ring
having both N and S segments was considered by Biittiker and Klapwijk
(1986). They found that in general the period is h/2e, except when the S region
is short enough for normal electrons to tunnel through it. In this case, the
sample-specific period of the excitation spectrum and the persistent current

'2Quch a negative amplitude may also occur due to a fluctuation, if (/) is depressed, as mentioned
before.
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becomes h/e. Nazarov (1994) constructed a very useful circuit-type theory to
deal with more general N—S combinations.

We conclude this section by mentioning some interesting effects in narrow,
short (L < /&), ballistic point contacts (which should be achievable with
semiconducting components) and some novel mesoscopic phenomena in super-
conductors. Since the normal conductance in the former case is quantized in
units of ez/7rh, the supercurrent (eq. 7.39) becomes quantized in units of
(Beenakker and van Houten 1991a,b, Beenakker 1991)

eA;
/]

AL =22 (1.53)

When due to a transmission resonance the conductance of a barrier
becomes &’ /7h (e.g., problem 4 at the end of chapter 5), the Josephson current
amplitude also develops a resonance (Glazman and Matveev 1989) with
magnitude eA,/# (Beenakker and van Houten 1991c). Thus, the ratio of I,
to A, at low temperatures is an integer multiple of a universal quantity for such
situations.

Four further notable experimental findings for mesoscopic super-
conductors are:

1. The difference between an even and an odd number of electrons on a
small superconducting island (Tuominen et al. 1992, Eiles et al.
1993a,b, Lafarge et al. 1993), occurring since only an even number of
electrons participate in the superconducting state.

2. The demonstration (Elion et al. 1994, Joyez et al. 1994, Matters et al.
1995) of the phase-number uncertainty relation, achieved by appro-
priately coupling to a superconducting island.

3. Anomalies in the “Little-Parks” effect (which is the A-B oscillation of
T. in a cylindrical sample), observed by Vlohbergs et al. (1992).

4. Anomalies in the magnetic response of macroscopic cylinders having N
and S walls in good contact (Visani et al. 1990).

The two latter effects still need a theoretical interpretation.

The field of mesoscopics with superconductivity is very promising for
further interesting new physical effects. For recent reviews, see Bruder (1995)
and articles in Hekking et al. (1994).



Noise in Mesoscopic Systems

1. INTRODUCTION
We shall be concerned here with three main types of noise phenomena:

1. Equilibrium or Nyquist-Johnson noise across a resistor (see eqs. A.9
and A.13-17).

2. Various nonequilibrium or shot noise phenomena around a steady state
with a current flow.

3. Low-frequency, typically ““1/f,” noise due to slow changes of the resis-
tance with time.

In the first two cases, the noise power is typically “white” (frequency-indepen-
dent) over a sizable frequency range from zero to 1/7*, the cutoff frequency,
which is the smaller of kzT /h = 1/h (in this chapter we shall mostly reserve
the notation T for the transmission coefficient) and 1/7. 7 is a characteristic
time for the transport, for example, the transport mean free time for a classical
resistor in equilibrium. In this case, and for 8 > 7, the noise power is linear in
w for a constant conductance for 0 < (8#%)”! <« w < 1/7. Concentrating on the
current noise (which is measured in equilibrium by connecting a zero impe-
dance “a.c.” amperometer across the resistor), one considers (sec Wax 1954
and Reif 1965 for general references) the Fourier transform of the current—
current correlation function (which depends only on ¢, not on ¢'), the nature of
the averaging denoted by the angular brackets will de discussed later

176
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S,(w) :%r r (AI(YAI(E + 1))e™ di (8.1)

Y

Here AI(t) = I(t) — I, where the d.c. average current, /, vanishes for the
equilibrium casc. S(w) is proportional to |/ ()%, I(w) being the Fourier trans-
form of AI(t); S(w) is the noise power spectrum per unit angular frequency
(see problem 1 at the end of this chapter for a precise treatment of these
relationships). Commonly, (AI*(1)) = (AI(0)AI(1)) = (AI*(0))e ™™, in
simple cases. These include equilibrium noise for B# <« T and classical shot
noise, and the power spectrum for low frequencies (w < 1/77), S;(w), is
given by

S)(w) = % (AP0, (8.2)

The fluctuation-dissipation theorem (egs. A.9 and A.13- "7 of appendix A)
ensures that, in equilibrium, when 7 =0, R being the rcsistance, w < 1/7°
and woh <« 1,

1

The “engineering”” definition of the noise spectrum employs the symmetrized
version (cosine transform in eq. 8.1, not important for fhw < 1) and a factor
of 2 due to using only w > 0. The noise power at a temperature 7', per unit
frequency, f, is thus 4kzT/R. For a theoretical confirmation of the equilibrium
noise in a mesoscopic sample see, for example, Entin-Wohlman and Gefen
(1991).

The phenomenon of shot noise is due to the current in a steady-state
nonequilibrium situation being carried by discrete charges e. An average [
means that on the average I/e electrons are passing through the charge counter
per unit time. Assuming that these single-charge events are uncorrelated, one
obtains for the fluctuations of charge flowing per unit time, AI* = el, and at
low frequencies' it can be shown from (8.1), along the lines of problem 1, that

AR e
—?-—ﬂl. (84)

Sp(w)
This is the result for classical shot noise (see, e.g., van der Ziel 1986) with
uncorrelated events, examples being the fluctuations of the rainfall in a small
area due to the water coming in raindrops and electron current in vacuum
tubes, neglecting space charges.” The quantum nature of the particles, simply

! Note that the shot-noise vanishes, in fact, for a continuous charge, e — 0, for a given I.

2Coulomb effects and inelastic scattering greatly reduce the shot noise in classical conductors. See
Landauer 1993, 1994.
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their being fermions or bosons, induces correlations which may modify eq. 8.4.
A well-known phenomenon of this type is photon “bunching” as seen in the
Hanbury-Brown and Twiss experiment (1956, 1957). Currents in real electrical
wires may not have the full shot noise given by eq. 8.4, due to smoothing
of the charge fluctuations by scattering and by Coulomb interactions. We
shall consider here only the modifications due to the quantum nature of
the particles.

Of course, the equilibrium noise is an exact result of equilibrium statistical
mechanical fluctuation theory and it is valid for mesoscopics as well. It turns
out, on the other hand, that quantum effects (for coherent conductors), both
on the single particle level and due to Fermi statistics, make important correc-
tions to the shot noise result. However, when I tends to zero, one can obtain
the equilibrium noise as the limit of the quantum shot noise (Landauer 1989a,
1993).

The simplest case of shot noise, for a reservoir radiating, via an ““obstacle”
in a waveguide, into free space, will be discussed in section 2. The nontrivial
modifications due to connecting another reservoir and the equilibrium limit
will be considered in section 3.

In section 4 we shall discuss the low-fequency (typically 1/f, f being the
frequency) noise. This was found (Bernamot 1937, Dutta and Horn 1981)
to be caused in many cases by infrequent changes of the resistance in time
due to slow motion of atoms, or changes in their ionization state. Feng
et al. (1986) suggested that a mesoscopic effect—change of the resistance of
a phase-coherent piece of a sample due to a change of the impurity con-
figuration—might be enough to account for the 1/f noise in macroscopic
samples.

2. SHOT NOISE FOR ""RADIATION” FROM A RESERVOIR

Consider a particle reservoir in equilibrium (chemical potential 4, inverse tem-
perature §) radiating particles into free space via a waveguide—that is, a pipe
or an ideal conductor connected to it through an opening. The waveguide has a
total transmission coefficient T from the reservoir to the vacuum. 7 can be
determined by obstacles placed in the guide and/or by imperfect impedance
matching with free space. The opening connecting the reservoir to the pipe is
small enough so that the emitted radiation does not disturb the equilibrium in
the large reservoir for all times of interest. We also assume that the opening
is engineered to have perfect transmission into the guide. This is depicted
in Fig. 8.1. For simplicity, we consider a single-channel waveguide. The
generalization to many channels is not difficult, and it is similar to that done
in chapter 5. This generalization, as well as the one to many reservoirs, is given
in the cited literature. We denote the density of states per unit length and per
unit energy of the guide (going away from the reservoir) by n;(€). By the same
assumptions as in the Landauer formulation, the outgoing states in the pipe are
fed to an equilibrium population f(€) (f is the Fermi or Bose function, as the
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Figure 8.1 An equilibrium reservoir radiating into free space via a perfectly matched
waveguide having a transmission 7 to the vacuum.

case may be). These assumptions are substantiated (Landau and Lifschitz 1959,
p. 178) for a *black body” using the Liouville theorem as mentioned in
chapter 5. For a small energy interval Ae, the average number of particles
emanating per unit time from the reservoir into the pipe (in the general expres-
sions below, through eq. 8.9, we shall consider particle current—the number of
particles transmitted per unit time) is I, = vf, whose average is

Iy =uf,
v being the velocity along the pipe, f the instantaneous population and f its
average. For massive particles the rate or “frequency of emission” v (having
nothing to do with the measured one, w/2r) is given® by v = Ae/nh. v happens
to be the same also for unpolarized photons in a 1D pipe. We are now
(Schwimmer and Imry 1994, unpublished) going to present a simple calculation
of the fluctuations due to those of I, and of the transmission for given 7. Qut
of I, such particles, the probability of exactly I passing the obstacle in unit time

(note again that here I is a time-fluctuating quantity due to fluctuations in the
populations f; the average is given by eq. 8.5)

P () = <110) T'(1 - 1)

This is the probability for I successes out of I independent trials with a success
probability 7. The average and the standard deviation squared are given by I
times those per trial. The latter are given, respectively, by T and T(1 — 7).

The average current going into the vacuum, denoting the probability to
have an Iy by P(ly), is

v = vny(e)Ae, (8.5)

(8.6)

(8.7)

I=1 To

(=) Iy
I=3"P(l)Y 1P,(I) = PUo)Tl=Th=ufT.
Ip=0

3See eq. 5.14; we include a factor of 2 for a “spin” degeneracy.
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Let us now calculate the fluctuations AL2 = I? — I2:
ZP Io) ZI Pl ZP I)[(T)* + L,T(1 — T)), (8.8)

where we have used the fact (mentioned following eq. 8. 6Lhat the variance of
thc binomial dlstrlbutlon (8.6) is IyT(1 — T). We need If = Y_, P(Ip) - I, I =
I+ o1, P(lo) Alg =TI3+vf(1 T1); to get the last equality we use the well-
known result that for fermions (upper sign) or bosons (lower sign) the variance
of f is given by f(1 Tf) (Landau and Lifschitz 1959) and that the v occupa-
tions are independent. Putting this into eq. 8.8 we obtain for the fluctuations of
the current in unit time:

AR =T (L 5f) +yfT(1 - T) = f TU 7 /T). (8.9)

This has the simple physical meaning that the fluctuations in the final outgoing
current per state are given by the usual Fermi/Bose result. The latter is
fT(1 £fT), per outgoing state.

In the simplest version of the Hanbury-Brown and Twiss (1956) (see,
e.g., Baym 1969, p. 431 for a pedagogical presentation) photon correlation
experiments, fluctuations in the intensity seen by a photon counter looking
at a source with 7 =1 are larger than the classical result for independent
events vf and in fact are given by vf(1 +f). The latter result appears in
section 112.7 of Landau and Lifschitz (1959), and is attributed there as due
to Einstein in 1909. We see that, operationally, having a transmission coeffi-
cient 7" between the source and the counter would alter the result in a very
well-defined way (e.q. 8.9), governed by the average observed population per
state fT.

An interesting suggestion due to Martin and Landauer (1992) and Murphy
(1992 unpublished) is to split an electron beam with ' = 1 and no fluctuations
into two beams, each having its effective f =1 /2 and, thus, maximal
Tf(1 — Tf) fluctuations. These fluctuations must be fully anticorrelated to
agree with the vanishing fluctuations in the initial beam. This is a Fermion
analogue to a two-counter Hanbury-Brown and Twiss experiment.

For electrons at zero temperature, the shot noise fluctuations of the
emitted charge current per unit time due to a voltage V are given by adding
the eV’ /Ae independent contributions as above

AP = eV /AWT(1 - T) =eVG(1 — T) =el(1 - T). (8.10)

This is equivalent to the classical result (eq. 8.4) multiplied by (1 — T'). Thus,
this simplest type of shot noise vanishes for both T = 0 and T = 1. In these two
limits and at zero temperature the transmission process has no probabilistic
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character. The result (8.10) for arbitrary T, which is rather easily generalizable
to many channels, was first derived by Khlus (1987) and Lesovik (1989) (see
also Yurke and Kochanski 1989, Biittiker 1990). When the conductance has
quantized steps, as in a ballistic quantum point contact the shot noise will be
maximal at the transitions between steps. Only then does a channel with
0 < T < 1 open up. The result as presented in eqs. 8.8-8.9 clarifies that the
total fluctuations are due to two independent reasons: the fluctuations in the
populations of the states in the source, and simple statistical fluctuations
around the average transmission 7. Clearly, each incoming particle is either
transmitted or not! This understanding suggests immediately a simple restate-
ment of eq. 8.9: In each of the v independent events, the *“‘success” probability is
ST and the variance is fT(1 — fT). Multiplying by v yields eq. 8.9. Our above
short derivation of the latter (eqs. 8.7-8.9) just reiterates known results in
probability theory.

This treatment also clarifies where the Fermi vs. Bose nature of the
particles appears. Thus, we see traightforwardly the relationship with the
Hanbury-Brown and Twiss fluctuations. For further references, see Beenakker
and van Houten (1991b), Biittiker (1992a, b), Chen and Ting (1992), Hershfield
(1992), Davies et al. (1992), Shimizu et al. (1992), Landauer and Martin (1992),
Martin and Landauer (1992), de Jong and Beenakker (1992, 1994), Levitov
and Lesovik (1993), Landauer (1993, 1995), Ueda and Shimizu (1993),
Gurevich and Rudin (1996). Landauer, in the last-mentioned reference,
discussed how the shot noise is reduced in a sample much larger than L,,
and goes to zero in the macroscopic limit. This can be seen by mentally dividing
the sample, as in chapter 5, into many coherent volumes. Notably, Beenakker
and Biittiker (1992) and Nagaev (1992) found a universal modification of
the shot noise for a quasi-1D diffusive coherent conductor by a factor of
1/3. This follows from a calculation relying on the fact that most of the
transmission eigenvalues are 0 or 1 (Dorokhov 1984, Imry 1986, Pendry
et al. 1992). For related experiments, see Li et al. (1990a, b), Kil et al. (1990),
Washburn et al. (1992), and Liefrink et al. (1994a, b). The reduced shot noise in
the quantum point contact was definitively observed by Reznikov et al. (1995).
A new type of reduction at small transmissions, which may possibly be due to
Coulomb correlations, was discovered by these authors and by Birk et al.
(1995). The lower frequency behavior was obtained by Kumar et al. (1995).

3. THE EFFECT OF FLUCTUATIONS IN THE SINK,
THE EQUILIBRIUM LIMIT

Obviously, when the particles from the source are radiated into a second
reservoir (which we shall call “the particle sink”), instead of a vacuum, two
additional effects must be considered. First, due to the quantum (Bose or
Fermi) nature of particles, the fluctuating currents deper i on the populations
of the final states. Fluctuations in the latter present an additional reason for
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noise.* Second, particles will also be radiated backward from the sink into the
source. The effect of this can easily be obtained by reversing the roles of the
source and the sink. The source and the sink are incoherent (chapter 5) and
these two contributions have to be added appropriately.

The effect of the population of the final state is given by multiplying the
transmission coefficient T by (1 /') where f’ is the population of the sink
state at the given energy. A physical discussion of the effect of Pauli correla-
tions for fermions along the section of the waveguide between the scatterer and
the sink, employing a wave-packet picture, was given by Martin and Landauer
(1992). The treatment below is equivalent to theirs; see also Muzykantskii and
Khmelnitskii (1994).

For simplicity, we present the calculation of the current and its fluctuations
for fermions. The current I; carried by each state is obtained as follows:
Provided there is an electron on the left and a hole on the right
(fi=1,f' = =0), the probability to go from left to right is 7 and the
current is given by eveT /L, L being the length of each section of the “wave-
guide,” since vr/L is the rate at which electrons from the left hit the barrier.
Forf;=0,f,=1,1) = —evyT/L. For fi=f,=0o0r fy=f, =1, I = 0. Thus,
more generally, I; is given by

TLUHA 1) =40 1) = TG =1,

For an energy interval de, the total rate at which electrons, in all states in the
interval de would hit the barrier is vpn;(€) de = v (see eq. 8.5). For each such
trial the probability to go to the right is x, = f;(/ — f,)T and to the left it is
x_ = f,(1 — f;)T. The probability to do nothing is 1 —x_ — x,.

The probabilities x, and x_ to go to the right and to the left are per
“event,” and there are v such independent events per unit time. For each of
the events the average net current going to the right is x, — x_ and the corre-
sponding average square of the current is x, + x_. Thus, the average current in
the interval de in unit time is

I=vT(fi-f). (8.11)
Its variance is v(x, + x_) — v(x, — x_)% Thus
AP = vT{ (1 =) + £, =) = vT*(fi =), (8.12)

which is the principal result for fermions.® To clarify this further, we shall now
rederive it and, rather easily, find the approximate distribution function for the

1t is interesting that these populations cancel and do not play a role in ordinary (averaged current)
transport, see chapter 5. However (as comparison of egs. 8.11 and 8.12 below shows), they do
influence the fluctuations of the current! This point has been emphasized and discussed by
Landauer (1993, 1994).

SAn equivalent expression is AP = vTI(-f)+ A0 -+ (1 -T){ NS —£)]; this was
obtained by Biittiker (1992b).



NOISE IN MESOSCOPIC SYSTEMS 183

right- and left-moving currents. The probability per unit time to go n, times to
the right and r_ times to the left is given by the trinomial distribution

V!

= (1 —xy —x )T (813
n+!n_!(u—n+——n~)!x+ (1=, =) ®13)

Pu(n+v n~)

which is a simple generalization of the binomial one (see eq. 8.6). We display
here its gaussian approximation, valid for large v. Expanding In P, around
its maximum at A,,7A_ (i.e., writing ny = fiy + 6.), for large v, one finds,
after some algebra, that P, is well approximated by a two-variable gaussian
distribution,

2
Pu(n+,n_)=Nexp{—i[§2i+§é+ﬁti‘s—‘)—”, (8.14)

wix, x_. 1—x,—x_

where N is a normalizing factor and 7, = vx., as expected. The various fiuc-
tuations, 62, §,6_, can be most simply obtained (e.g., Landau and Lifschitz
1959) from the matrix inverse to that in the exponent of eq. 8.14. These results,
and the correct higher-order moments obtained when one goes beyond the
gaussian approximation, can also easily be obtained directly from eq. 8.13
using the generating function method (Levitov and Lesovik 1993). It follows
from such elementary evaluations that the distribution of I is gaussian for
v — 00, and in agreement with eq. 8.12,

AP = vx, +x_ — (x_ —x3)7

— UTILAQEL) +LAFOF TS -1))

where in the last expression, which is the general central result, we have inserted
(as the lower signs) the results for bosons, which can be obtained from some-
what more complicated calculations on a specific model (Schwimmer and Imry
1994 unpublished). The = sign in the last term of eq. 8.15 may seem surprising:
it is a generalization of the, very natural, F sign in the last term of eq. 8.9 (see
also Biittiker 1992b).

As a check we take the equilibrium case, f; = f, = f, finding:

2Aee?
wh

AL =2f(1Ff)T = FAFS)T =2GAf(1 F1). (8.16)

Noting that for fermions df /de = —4f(1 — f ) and integrating over energies we
get

—_— 2

Afng—g, 8.17)
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which is the Nyquist-Johnson result. The idea to get the equilibrium noise
from the shot noise was suggested and discussed in this connection by Land-
auer (1989a, 1993). Note that we have treated here only the static (w < 1/77)
limit.

For the case where the “sink™ on the right is effectively a vacuum (.e.,
w, — —o0, f, — 0 or B(e — p,) > 1 for fermions) we find from eq. 8.13

AR =vTH(1 £ Tf), (8.18)

in agreement with eq. 8.9, the simplest shot noise result. Equation 8.15 is the
most general result for the low-frequency fluctuations, including both the
equilibrium and the shot noise. We emphasize that it is entirely obtainable
from an elementary treatment of the combined occupation probabilities in
the source and in the sink, and the fluctuations due to the transmission of
discrete particles through the “barrier.” The former is determined by the
Fermi or Bose nature of the particles (tending to the classical limit for f < 1
or T « 1) and the latter is due to the probabilistic nature of going through the
barrier or passing through a disordered conductor.

While we have considered both the thermal equilibrium noise and the
nonequilibrium shot noise using the Landauer picture, it is very likely that
the results apply to any situation where the discrete nature of the charge
carriers is relevant. For example, one may consider the tunnel-junction
model, leading to the conductance expression of eq. 2.19. Two massive con-
ducting pieces are weakly coupled (a sufficient condition for weak coupling is
that the conductance between them is much smaller than ¢* /h) via the “transfer
Hamiltonian”

Hr = ztcic, + l'c;c,. (3.19)

Ir

c;ry, and ¢;, are the creation and annihilation operators for electrons in the left-
and right-hand conductor and ¢ is the matrix element as in chapter 5. Consider
the states (/, r) at a given energy, e. By forming the commutator between the
number operator A; = cfc, on the left-hand side and the Hamiltonian, and
noting that n; = I;, the operator for particle current into /, one finds

Iy = (i/R)(tcle; — 1 cle,). (8.20)

We see immediately that

— 2
G =%Lﬁ(l ) +A0 =5, (8.21)
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In the nonequilibrium case, the average current, given by eq. 2.19, and being of
order, ltlz, as well, must be taken into account too, in order to obtain the
variance of ;.

4. LOW-FREQUENCY (1/f) NOISE

In almost all situations where the voltage noise is measured across a current-
carrying sample, it is found that at low frequencies the dominant noise
increases as an inverse power of the frequency. The exponent is often very
close to unity and therefore this noise, which is very different from the white
{(frequency-independent) noise, is called “1/f,” or simply low-frequency noise.
Its ubiquity makes the observation of the “white” (at low frequencies) shot
noise much more difficult. It was soon recognized that the intensity of this 1/f
noise is proportional to the square of the impressed d.c. current. A rather gen-
eral presentation (Hooge 1969) is

2

=T

AV2(w) (8.22)

where N, is the total number of charge carriers and + is typically ~i07>. The
1/f noise may be interpreted as due to slow variations of the resistance, which
lead at a constant current to slow voltage fluctuations. Thus, 1/f noise can
show up as fluctuations in the Johnson—-Nyquist noise (Voss and Clarke 1976;
these authors developed a temperature-fluctuations model for 1// noise, which
has had some success but does not seem to have a general applicability). The
evidence for the interpretation of 1/f noise as due in many cases to slow
resistance fluctuations is presented in Dutta and Horn (1981). For a more
recent review emphasizing the great variability and possible nonuniversality
of 1/f noise, see Weissman (1988). We note that the shot noise is proportional
to the current to the first power, and is thus distinguishable, in principle, from
the 1/f noise.

In many systems (Ralls et al. 1984; Farmer et al. 1987; Ralls and Buhrman
1988) the conductance jumps between two or more locally stable values (“‘tele-
graph noise”), which may be interpreted as due to either the motion of a
scatterer between two locally stable positions or to the ionization and deioni-
zation of an impurity (e.g., a donor or acceptor in a semiconducting system). It
is shown below that 1/f noise follows when many such activated centers exist,
with a smooth distribution of the barriers governing the transitions between
the two states. The possible relevance of surface states in this connection was
pointed out by McWhorter (1957). We remark parenthetically that it is imme-
diately suggested that such processes should occur with a greatly enhanced
intensity near a metal-insulator transition due to doping (Finkelstein and
Imry 1992 unpublished). In fact, a huge, apparently universal, increase of the
intensity of 1/f noise near metal-insulator transitions was found experimen-
tally by Cohen et al. (1992).
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It is easy to appreciate the main idea that resistance changes due to acti-
vated processes with an activation energy which is distributed more or less
uniformly in a rather modest range should lead to 1/f noise (Bernamot
1937). Consider such an activated process characterized by an activation
energy W, whose rate is given by

(8.23)

and occurring around “impurity” sites whose concentration is n; (say
n; ~ 10" /cm3). Assume that this process leads to a resistance change of the
order of AR. Suppose that the activation energy for such motions is approxi-
mately uniformly distributed between W,,;,, and W, (typically, these energies
may be expected to be in the range of ~ (10_1—5) eV). For changes at frequency
w, the relevant barriers yielding 1/7 ~ w are obviously of the order of (for a
more quantitative consideration, see below)

W ~ %Hn wro. (8.24)

To take a typical example, for 75 ~ 107%sandw ~1-10*Hz (eight decades!),
at room temperature the relevant, and rather limited, range of W,y is roughly
;—1 eV, and it depends exceedingly weakly on the frequency and on 7. We
approximate the distribution of W in the above range as a uniform one,
P(W) ~1/W, (more generally, W, may vary slightly within the relevant
frequency range). We find from eqs. 8.23 and 8.24 that the distribution of
the characteristic rate or frequency is indeed of the inverse frequency type:

dw, 1
P(w) ~ P(W,y) waf— ~ e (8.25)

The coefficient 1/W,3 can have values of the order of 1073-107%.

To obtain eq. 8.25 in a more systematic fashion (Bernamot 1937, see Dutta
and Horn 1981), we consider first a process with a simple characteristic rate of
1/7. It will cause the autocorrelation function of the resistance to decay like
exp (—1/7). Thus, the resistance, or measured voltage, will have a noise spec-
trum of

1/(rm)

W) = G e

(8.26)

The index W signifies that 7 is governed by an activation barrier . We next
take a broad spectrum of 7 values. We assume that the 7’s have a distribution
due mostly to that of W, P(W). The total noise power will be
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Sule) = [aW Sw()P(Y) (8.27)

(where we understand that Sy is taken with 1/7 having W as its activation
energy). Again, for a large but finite range of w, the integral over W will be
mainly in the regime defined by eq. 8.24 and P(W) is approximated there by
1/W, (W, is a constant having dimensions of energy). Since

eﬁW
T0 us
Swl) =11

the integral is elementary and one obtains eq. 8.25. It is interesting to note
(Pytte and Imry 1987) that the fluctuation-dissipation theorem (eq. A.16, or
eq. 8.1) and eq. 8.25 imply that the imaginary part of the susceptibility, or o(w)
is proportional to P(W) at a value of W which depends logarithmically on
frequency. Thus, the correction to P(W) beyond the constant, which causes v
in eq. 8.22 to depend weakly on frequency, makes o(w) have a logarithmic
frequency dependence. Further general properties of the response functions
follow from the Kramers—Kronig relationships.

We remark that the 1/f dependence is not exact, since P(W) at the appro-
priate range (eq. 8.24) will vary (albeit very weakly) with w. Obviously, the 1/f
dependence cannot apply for f — 0 or f — oo, since the total integrated noise
power must be finite. This means, of course, that arbitrarily large and small
values of W are effectively cut off. This is, however, hardly a real issue, because
of the logarithmic dependence (eq. 8.24).

It is far from straightforward even to estimate how a given relaxation
process in the sample affects its resistance (an exception is that of “two-level
systems’’ in metallic glasses (Ludviksson et al. 1984); we shall briefly come back
to these later). The occurrence of the inverse volume or particle number (eq.
8.22) goes in the right direction, but one still needs a specific mechanism.
Perhaps surprisingly, it appears that mesoscopic physics may come to the
rescue in this respect, even for macroscopic systems (Feng et al. 1986).

Let us start with a mesoscopic system which is fully coherent (all its
dimensions, L;, satisfy L; < Ly, Ly). We know that two distinct members of
the impurity ensemble have their conductances differing by ~(e? /h) and
the resistances differing by ~R*(e?/k). The conductance fluctuation is thus

a “fingerprint” of the impurity configuration (this concept has been more
frequently used concerning the magnetic field dependence, which we do not
consider here). The question is immediately suggested: How much of a change
in the impurity configuration is needed to bring about a full change of the
fingerprint or the “ensemble member” and a concurrent change of the con-
ductance by ~e?/A?

The full diagrammatic calculation of this conductance change was done by
Altshuler and Spivak (1985) and Feng et al. (1986). In the metallic limit
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! « L < &, it was found that moving a single scattering center by the order of a
Ferm1 wavelength is enough to accomphsh the full change of the conductance
by €*/# in one dlmenszon and by e/ (hkgl) in a strictly two-dimensional system.
In 3D, this change of ¢’/ is reduced by a factor (k% IL) 12 where L is replaced
by the thickness for thin wires and films. These results can be understood
physically using the proportionality of the conductance to the transmission
probability across the sample. The latter is given in terms of the absolute
value squared of the sum of classical Feynman paths crossing the system (an
unpublished quantitative evaluation of this representation was done by Arga-
man in 1993). It is very easy to see that the number of such diffusive paths is of
the order (L/I)>. In 2D, this implies that each path passes through a finite
fraction of the sites and a change of 2« in the phase of paths passing through a
single scatterer is enough to change the interference significantly. This is even
stronger in 1D, where the paths pass many times through any site. In 3D, the
probability of paths passing through each site is smaller by another //L ratio,
which reduces the effect, compared to 2D, by a further /I/L factor.

It was suggested by Feng et al. (1986) (see also Pendry et al. 1986) that the
above may have an implication for 1/f noise. In coherent systems, the above
change of R provides the scales for the resistance changes to supply the pre-
factor in the 1/f noise. The reason the above mechanism produces reasonable
changes of the resistance even for macroscopic samples (L > L;) is the rela-
tively weak, power-law, dependence of the conductance fluctuations on L/L,
(Altshuler and Khmelnitskii 1985, Lee et al. 1987). A clear way to understand
this physically is, as in chapters 2 and 4 (Imry 1986), to divide the large sample
mentally into (L/L¢)d boxes of size L,. Each box is almost coherent and has
roughly the “coherent” value (i.e., the value obtained for L, > L) of the
sensitivity of the conductance to impurity motions. The contributions of the
boxes have to be added classically since the motion between two boxes is
incoherent. Thus, the fluctuation squared is multiplied by (L,,,) /Vol (notice
the agreement with the volume dependence, eq. 8.22). For a further semiquan-
titative evaluation, one has to remember that the conduction occurs in a ther-
mal strip of width k3T and kzT 2 %/7, in all cases where a comparison was
made.® The energy averaging in this thermal energy strip leads to a further
power-law reduction of AG” by a (k) /kgTT, (Lee et al. 1987, Atshuler and
Khmelnitskii 1985). Thus the final relative change of the conductance due to
impurity motion is

(8G)" _ 8Gzy L
G* G Vol

f (Bh[74)- (8.28)

Here the subscript coh signifies a box with size <L, and the function f
is of O(1)/proportional to its argument, when the latter is larger/smaller than
unity.

S1n fact this inequality should be valid as long as the Fermi-liquid picture holds.
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Such estimates can give the right order of magnitude to explain ordinary 1/f
noise, under appropriate assumptions. To convert the above picture with that
of eqs. 8.26-28 to the power spectrum of the conductance fluctuations, we write
for a given 7, (AG(0)AG(1)) = AG2¢™/". Integrating over the distribution of
the 7’s (or W~ s) is done as before. For a 3D sample of size L, and taking
A62 = (4é%/ #)2, we find, up to numerical coefficients, that the Hooge para-
meter (eq. 8.22) is given (taking f = 1) by

2
o A Lo KT (8.29)

kel 1 W,

For 4 ~ 1, which necessitates kgl ~ 1 in 3D, this is of a similar order of
magnitude to experiment. Larger values of kr/ will not change the result too
much, because L, increases with kgl 1t is perhaps fair to say that the quanti-
tative general validity of this idea has not been confirmed yet, but that it
appears to be relevant at least in many situations.

Further applications of these ideas may occur in metallic glasses, where
two-level tunneling systems seem to be relevant to the low-temperature proper-
ties (including the propagation of acoustic waves). A classical theory of their
contribution of 1/f noise was given by Ludviksson et al. (1984), but the above
quantum effect (even at relatively high temperatures) may well be re.evant
(Feng et al. 1986). Somewhat related ideas on spin glasses, which we shall
not discuss further here, were given very early by Altshuler and Spivak (1985).

Problems

1. This problem is aimed to make the notion of “power spectrum” very clear
in relation to the average noise power in a frequency window of unity, which
is the quantity measured experimentally.

(a) Definitions: Suppose the signal v(¢) is measured over a long interval T’
(periodic boundary conditions are taken for simplicity, but that is
immaterial). The Fourier representation of v(t) is

t) — ZU e27rml/T (830)

v, is also denoted as v,,w=2mn/T,v,=v", where v, =(1/27)

f (0)e®™/T dt. The correlation function of v, K, (¢}, may be defined
for t < T as the average of v(t)v(¢' + ¢} (either over an ensemble of
signals, or over the initial time, for large enough 7

T

K,(t)=v(to)v(ty+1) = 71, J v(t (' +t)dr (8.31)
0

7 . . . . cer
However, as discussed above, the 1/f noise should increase near the metal-insulator transition,
due to electronic rearrangement effects.
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and the power spectrum is defined as:

2 _ _I_J it
Vo= 5= K, (e ™ dt. (8.32)

Prove that | fwl2 = 27rva, (this is called “Wiener—Khintchin theorem”).

An experimentalist filters the signal over a frequency window Aw
around w(Aw > 27/T, but Aw is so small that the varation of v
over the interval Aw is negligible). The filtered signal is denoted in
obvious notation (n € Aw means: (w — Aw/2) < 2mn/T < (w+ Aw/2)):

2 i
va (t) = 7” S vt (8.33)

neldw
Its averaged noise power is clearly

T
Py, = lT L a0 dt. (8.34)

Prove that it satisfies

Pa, = (17‘]2)2 D Jval (8.35)

nEAw
Since the number of «’s in the interval Aw is TAw/27, and using (b)
Pa, = M) Aw. (8.36)

Thus, (27r)2uf, Aw is the averaged noise power in the appropriate fre-
quency window Aw. Note that this is independent of T once K,(r)
reaches its limit at large 7.

2. Calculate the power spectrum of the voltage noise across a capacitor C,
connected in parallel with a resistor R, in two ways; first, by applying the
Nyquist theorem; second by looking at thermodynamic fluctuations of the
capacitor’s voltage and regarding R as providing a frequency scale. Discuss
physically the two limits: wRC > | and wRC « 1.

3. Do the steps in deriving eq. (8.29).



Concluding Remarks

Many of the interesting and novel phenomena that occur in mesoscopic sys-
tems have been reviewed and discussed in this book. After a brief discussion in
chapter 1 of the available experimental systems and “‘micro-” and ‘“‘nano-”
fabrication possibilities, the modification of the electronic properties, especially
the transport, due to Anderson localization were considered in chapter 2. This
is the first example where quantum interference has important consequences
even macroscopically. Chapter 3 dealt with the general question of how inelas-
tic scattering produces an uncertainty in the relative phase of partial waves,
thereby eliminating their interference. An expression was produced which helps
to evaluate the inelastic rate in terms of the dissipative response function of the
system, which is usually known. As an application, the very nontrivial dephas-
ing due to electron—electron interaction in the diffusive case was considered.
In chapter 4, equilibrium properties, mainly the response of a mesoscopic
system to a magnetic field, were discussed, an instructive situation being the
persistent current in a ring due to the Aharonov-Bohm (A-B) flux. The physics
of these currents was explained, emphasizing their absolute stability, and esti-
mates were made of their magnitudes for noninteracting electrons. This is a
clear example of the omnipresent, important difference between a mesoscopic
effect—the current in a given, specific ring-—and the often much smaller result
obtained when averaging over the impurity-ensemble is performed. In the latter
case, the period is halved and the result depends on fine points, such as whether
the electron number or the chemical potential is kept fixed when the flux is
varied. Since the experimentally observed persistent currents are much larger
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than the above estimates, electron—electron interactions must be introduced.
Some ideas on those interactions were presented, emphasizing the local charge
neutrality concept, which is of general validity and relevance (including an
application in chapter 5). As for explaining the persistent-current experiments,
these ideas are still tentative and a more complete treatment is necessary.

Chapter 5 treated the most active part of mesoscopic physics at present—
transport phenomena. The Landauer formulation was introduced as the basic
paradigm, with both the two-terminal and the four-terminal versions. Many
applications follow: the quantized conductance of ballistic “point contacts™;
series addition of resistors leading to 1D and quasi-1D localization; parallel
addition, including the 4/e-periodic A-B oscillation in a ring; and many others.
The example of the A-B ring is an excellent one for demonstrating a sample-
specific effect. The ensemble averaging leads, as is well known by now, to the
h/2e oscillation. From the experimental observations and the understanding of
the relevance of sample-to-sample specificity, the idea of reproducible conduc-
tance fluctuations emerged, with its universal magnitude for the two-terminal
case. The latter was qualitatively and semiquantitatively discussed in relation
to random-matrix universalities. Finally, we treated the multiterminal general-
ization of the Landauer formulation, using the ubiquitous four-terminal case as
an example. Treating all the terminals cn the same footing enables the proper
Onsager symmetries, due to time-reversal invariance, to be obtained in agree-
ment with the general picture of Casimir and with experiments.

The last three chapters treated what the author regards as the most inter-
esting physical applications at present, emphasizing for the first two their con-
venient presentation within the general theoretical framework of the A-B
Byers—Yang theorem. Chapter 6 contained a cursory description of the
QHE, with a discussion of the 2D large-field electron dynamics in the presence
of disorder, which is necessary to understand the integral QHE. The Laughlin
picture for the 1/3 state yielding the 1/3 fractional Hall effect was briefly
described. Exciting new ideas related to “‘composite Fermions™ and the special
role of a 1/2 filling were then mentioned.

In Chapter 7 some remarks were made on mesoscopic effects in super-
conductors and normal-super (N-S) combinations. The interesting situation
where, in spite of the lack of long-range order, due to fluctuations, super-
conducting properties are present, to an extent, was considered. Then, some
results on the extremely interesting mode of communication of phase informa-
tion between two superconductors via a normal section were reviewed. The
main mechanism is the Andreev reflection of electrons and holes on the N-S
boundaries. Supercurrent can thus flow in the normal section, provided the
latter is not much longer than L. A correspondence with the normal persistent
currents was indicated and some interesting properties of S~N and S-N-S
junctions were pointed out. The physics of vortices was very briefly reviewed.

In the last chapter (8), noise phenomena were reviewed, starting with a
summary of equilibrium, Johnson—-Nyquist, noise. The shot noise in a current-
carrying state is understood as due to a combination of fluctuations in the
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occupation numbers of the “emitting” and “collecting” reservoirs, and those
due to the random nature of transmittance through the “resistor.” Each dis-
crete electron is either transmitted or not, with a probability given by the
transmission coefficient, which is related to the conductance. The low-
frequency ““1/f” noise was reviewed, emphasizing its interpretation via discrete
changes in the conductance due to the motion or change of the charge state of
defects. A mesoscopic mechanism, relying on the change of the “fingerprint” of
the sample due to the change of the impurity configuration, may supply the
necessary mechanism for such resistance changes. These may, surprisingly, be
relevant even for macroscopic systems. In the last three chapters, attempts were
made to explain briefly some of the underlying physics for readers who are not
conversant with these topics.

We have not treated here all the work on mesoscopics. There are many
interesting and important subjects which were not reviewed either because their
physics is more straightforward or because excellent reviews of them exist.
Among these are optical effects (see Schmitt-Rink et al. '989); the ballistic
regime, described very well by Beenakker and van Houte. (1991d); various
resonant tunneling situations (e.g., problem 4 of chapter 5); and the Coulomb
blockade (e.g., problem 5 of chapter 5; Grabert and Devoret 1992, Glattli and
Sanquer 1994). The problem of Coulomb effects in resonant tunneling beyond
simple approximations has some real subtleties which were not discussed in this
book (see, e.g., Imry and Sivan 1994; another Fermi-level effect is discussed in
appendix F). The whole fascinating subject of quantum effects in Josephson
systems (Likharev 1986) due to the capacitive ‘“‘charging” term (Anderson
1963) and the related detailed dynamics of charges and vortices (see some of
the articles in Hekking et al. 1994), including interesting analogies with the
QHE (see, e.g., Ao and Thouless 1994, Stern 1994 for recent references) is
outside our scope. We have also refrained from treating the large body of
work concerning analogies between electrons and classical waves (see, e.g.,
Anderson 1985, Genack et al. 1990, van Haeringen and Lenstra 1991, Pendry
and MacKinnon 1992, Sheng 1995).

It is hoped that the interesting physics that can be encountered in the
regime between the microscopic and macroscopic has been amply demon-
strated here. At the expense of being superficial, one may say that the excursion
into the interface between quantum and statistical physics has highlighted the
following principal points:

1. Elastic and inelastic scattering are very different. The former gives the
clectron a well-defined, possibly complicated, phase. The latter induces
a phase uncertainty which washes away quantum interference effects.

2. These interference effects thus exist up to the scale of L, and induce
several quantum phenomena such as Anderson localization, various
A-B oscillations and conductance fluctuations.

3. The sample-specific nature of mesoscopic systems leads to significant
sample-to-sample-fluctuations in, for example, conductance and
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orbital magnetic response. Some of these have magnitudes which are
“universal” and this is related to universalities in the spectral charac-
tetistics of operators such as the Hamiltonian and the transmission
matrix. It is expected that the spectrum of relaxation times should
also show some universalities.

4. The phase coherence of the normal electrons on the scale of L, enables
them to carry superconducting information. It is hoped that this wili

contribute to a new understanding of induced superconductivity, even
in semiconductors.

Generally speaking, the mesoscopic and quantum interference effects on
the single-electron level are by now rather well understood. The many novel
effects due to interactions and to combinations of charges and magnetic fluxes
should be the arena for principal new developments in this field. It must be
recognized that, in spite of many insights, the fundamental problem of the
interplay between the three basic electronic states of matter—insulators, con-
ductors, and superconductors—is still far from being understood. This is true
even without the further complication of various types of magnetic ordering. It
is clear that mesoscopic physics has much to contribute in this respect.

Clearly, the impressive technological developments which have led and will
undoubtedly continue to lead to smaller and smaller scales of nanostructures
are fueled by the tendency to further miniaturize real electronic devices. This
will go on independently of fundamental advances in mesoscopic physics. It
would appear obvious that these advances must eventually give a positive
crucial feedback to device technology. Without implying that many of the
current mesoscopic device ideas will really work, it is clear that a further
reduction of available sizes by, say, one-half to a full order of magnitude
will bring the relevant temperature range to that of liquid nitrogen.' The
changed rules of the game of electrical conduction will habe to be reckoned
with and relevant device ideas based on quantum and/or Coulomb energy
phenomena are very likely to be generated. Thus, while cautionary remarks
on current ideas and extrapolations given by Landauer (1989b, 1990a) and
Moore (1993) are very pertinent, we believe that it should not take long before
mesoscopic physics, perhaps with superconductivity, will be studied by electro-
nics engineers. After all, quantum mechanics and semiconductors had not been
a standard part of the electronic engineering curriculum up to 3040 years ago!
At the same time, STM-related techniques are progressing quickly and may
pave the way to addressing small structures, down to molecular scales. It is
likely that many interesting and applicable phenomena are hidden in this low
end of the mesoscopic scale.

! Smaller sizes, approaching the molecular limit, will bring the relevant range to room temperature.
This should be doable in a controlled way by AFM-STM techniques, and does sometimes happen
spontaneously under certain conditions (for a beautiful example, see Costa-Kramer et al. 1995).



Appendices

A. THE KUBO, LINEAR RESPONSE, FORMULATION

We develop here for completeness the linear response formulation for a system
started at early times in its ground state |g) and described by a hamiltonian H
which can be taken as time-independent. A good general reference is the
book by Noziéres (1963). The perturbation is monochromatic, without loss
of generality, with frequency w. Taking »n as a positive infinitesimal, we take
the perturbation to be

H™ = lim Ae ™ 4™ (A1)

7]—)

We work in the Heisenberg representation with respect to M (i.c., in the inter-
action representation). Simple time-dependent perturbation theory tells us
(e.g., Fetter and Walecka 1971, p. 173) that the change in (B), the expectation
value of some operator B, due to the perturbation is

8(0) =3 | at Gl (), Bu(olg)

i

=3 S oisale - el (A2

where the n’s are all the states of H (a complete set) and the subscript
H signifies the Heisenberg representation with H. Going to the Schrédinger
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representation (no subscript on operators), denoting hw; = E; — E; and using

(glAylny = e’“x'"( |Aln), and so on, we find a monochromatic behav1or of
8B(t) = 6B, e, with

sn. =1 2 (- Gneng  GoneiAn),

W+ Wy + N W= wy, + In

Since the response function is defined by 6B, = xp4(w)), we find the response
of Bto A4:

Agang + BgnAng )

Wt W +1iN W— Wy +in

1
= lim - - 4
xBa(w) U{Ilo 7 zn: (A.4)
We shall apply thls first to the polarizability of the system xg,, given by the
dipole moment ex”? induced per unit electric field in the o direction, having a

perturbation Hamiltonian eEx®; a and 3 are here cartesian components, and
we have in mind charged particles with a charge e.

Xsa(e) = lim ~Z{ ke Xehs } (A.5)

Wtn+in wW—wy +in

The complex dielectric constant is given by 1 + 4wy (w) and its imaginary part
is (470, (w)/w) where o,(w) is the real conductivity. The complex conductivity is
thus given by (alternatively, an equivalent formula can be obtained by repre-
senting E via a vector potential and calculating the resulting current)

2 axﬁ 8 . a
—0pa(w) = hmoe%Z{— Tertng _ y_ Terlng } (A.6)

Wt Wpe +1IN  W— Wy + 1IN

In particular,

Re 0,(w) = 2{5 W+ W XXy — 6(w — wpg) XonxD ). (A7)

By (van Hove 1954) representing the 6 functions as Fourier transforms of
exponentials and doing inverse manipulations to those used in going from
eq. A.2 to eq. A.3, one can express the conductivity as the Fourier transform
of a commutator-type difference of correlation functions:

2 oo i
Reasuw) =55 | ailelbs©@), " 0lle)e™
L a0 e (A3)

finite 7" 2h
ini
—00
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where the last expression in eq. A.8 generalizes the middle one by replacing the
ground-state average by a thermal average, { );, at finite temperatures. In
equilibrium it is easy to obtain the detailed balance relationship, a ratio of
e P(3 =1/kyT) between the two terms due to x’x* and x*x” in eq. A8,
hence the fluctuation-dissipation theorem:

wr

/]
where (P, being the thermal weight of the state g)

Re Uﬂu(w) = Sﬁa(w)[l - e—ﬁth (A9)

Spa(w) = f dt(x*(0)x° (1)) =~ xguxPg8(w — wyg) Py (A.10)

gn

This is a general, powerful relationship between equilibrium fluctuation corre-
lations and the dissipative response, including the dynamic case.

A case which will be of particular relevance to us is when the operators 4
and B are the Fourier transforms of the particle density, n_, and n,, where
n, = 3_,€”". The corresponding S is then called the dynamic structure factor,
S(q,w):

1

S0, ) = - Mgl P8 — wn) Py =5 | ditn_y(@m0)e™. (A1)

S(q,w) is proportional (Van Hove 1954) to the Born aproximation cross-
section of inelastic scattering with momentum transfer g and energy transfer
hw of a test particle from the system. The detailed balance condition at finite
T is

S(g, —w) = e ™ S(g,w). (A.12)

The fluctuation-dissipation theorem (see also Landau and Lifschitz 1959,
Lifschitz and Pitaevskii 1980) relates S(q, w) to the imaginary part of the
exact inverse dielectric function of the system, at the same g and w:

i 47!‘262 — B
I = 1-—- A3
Mo = e S@wll - ™ (A13)

(remembering that the Fourier transform of the Coulomb interaction is
(4me?/q?).

To recast the fluctuation-dissipation theorem, eq. A.9 into the ordinary
form we use the usual relationship between the matrix elements of v = x and
those of x. Since the §-function in eq. A.10 makes w,, =w, we find for
kpT > w:



198 INTRODUCTION TO MESOSCOPIC PHYSICS

2
4

Re o, (w) = T f dr(v*(0)v*(1))e™ (A.14)

By writing {v*(0)v*(¢)) as the Fourier transform of S, (w)—the power spectrum
(or spectral density) of v (see, e.g., Reif 1965, section 15.15-16) we find:

= —Za(w), (A.15)

where we have inserted an inverse volume factor (the volume was taken as
unity up to eq. A.15.

This is equivalent to the well-known Nyquist-Johnson relationship
between the current noise spectrum and the conductance, keeping in mind
that an electron with a velocity v contributes a current ev/L in a system of
length L. For a general ratio between Aw and kzT one gets

&5, (w) = VO;’“"( +ea;,,1_ 1)U(w) (A.16)

and
S;(w) = —G( ) oth(ﬁzw) (A.17)

Only systems with time-reversal invariance and o(w) = o(—w) were considered
here.

B. THE KUBO-GREENWOOD CONDUCTIVITY AND THE
EDWARDS-THOULESS RELATIONSHIPS

Writing (but being aware of the subtleties) the matrix elements of x in terms of
those of v, noting, for example, that for positive w, w = wy,, one expresses the
low-frequency real conductivity o, from eq. A.7 as

Re o(w Z Vgnl>8(w — wyg), (B.1)

where the cartesian index x has been dropped. For noninteracting quasi-
particles the excited states are particle-hole excitations where the hole can be
created anywhere between Er and Ep — Aw. Replacing the |ug,,|2 in this small

range by an average value ¢?, one obtains

Re o(w — 0) = ’;f—(jﬂ NO)P, (B.2)
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where N(0) is the density of states per unit energy and Vol is the system’s
volume. N(0) = n(0) - Vol. This is called the Kubo—Greenwood formula.
Note that this is valid for a large enough system having effectively a continuous
spectrum. How to handle the discrete spectrum in mesoscopies is discussed in
chapter 5.

The conductivity (eq. B.1) is quantitatively related to a properly defined
“sensitivity to boundary conditions™ via an ingenious argument of Edwards
and Thouless (1972). As shown in appendix C, a boundary condition of a
phase change of ¥ by ¢ on moving an electron across the system of length L
is exactly equivalent to closing the system upon itself into a ring along L and
applying through the hole of the ring a flux, &, given by eq. C.2. This amounts
to a vector potential defined by § 4, dx = ®, where the relevant component is
along the azimuthal direction, denoted here as x. The perturbation due to this,
choosing a constant azimuthal vector potential 4,, is

¢
7

H, = goxAx = (B.3)

The second-order shift of an cigenstate due to 4 or to the equivalent phase
shift ¢ leads to the quantity

&PE, WN _h lvelid)?

One may again replace the matrix element by its characteristic value 2.
The Zj tends to cancel the first (““diamagnetic”) term and the order of
magnitude of (B.4) is determined by the term with the smallest denominator,
which is the level spacing

A = 1/N(0). (B.5)

We define the Thouless energy E, as E, = hD/L?,

~ (%)2%2—_ (B.6)

where 7 was inserted for consistency with the above definition. 2 is paramet-
rized in terms of o, via eq. B.2. For a wire of cross-section A4 in the yz plane,

PE,

Ec_z..ﬂ'z —6—4)—2-

E, hod
ATZL (B.7)

Remembering that cA/L is the conductance G, one finds
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& E,
G——;‘——A— (B.8)

We identify E. with V; /x, V; is the parameter ¥ of section 3 of chapter 2 (cf.
eq. 2.20).

This is the celebrated result that the dimensionless conductance is given by

the ratio of the two energy parameters giving the sensitivity to boundary con-
ditions and the level spacing.

C. THE AHARONOV-BOHM EFFECT AND THE
BYERS-YANG AND BLOCH THEOREM

Consider a general doubly-connected system with an Aharonov-Bohm flux &
through its opening (see the figure below). An important and very general
theorem due to Byers and Yang (1961) and Bloch (1970) states that all physical
properties of this “ring” are periodic in ® with a period ®,. The proof proceeds
by eliminating ® with the gauge transformation

¥ = I T A0 €

where rj are the coordinates of the electrons and yx is defined by A7¢ = Vx,
where A(9 is the vector potential whose curl is the Aharonov—Bohm (A-B)
magnetic field (i.e., curl 4 =0 in the material and §A¢ dl on a path cir-
culating the ring’s opening is equal to ®). The gauge-transformed many-
electron Schrodinger equation has A7¢ = 0. The price for this is, of course,
that the transformed wavefunction, ¢, does not in general satisfy periodic
boundary conditions around the ring. In fact, the phase of ¢’ changes by

6 =21d/d, (C.2)

A o
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when one electronic coordinate is rotated once around the ring. This phase
shift, due to a vector potential with a vanishing magnetic field on the electrons,
obviously appears between every two paths encircling a flux. The fluxes ® and
® + nd, are indistinguishable since ¢ is meaningful onty modulo 2.

D. DERIVATION OF MATRIX ELEMENTS IN THE
DIFFUSION REGIME

For a diffusing electron, one finds for the following matrix elements of "
between the exact eigenstates:

1 2 E,—E
2_ Dq w=2n"2m (D.1)

l(m|eiq.r|n)l _7rhN(0) (Dq2)2+w2; I

where N(0) is the density of states (DOS) of the system.

The simplest way to derive eq. D.1, for which we will have many uses later,
is to note (Azbel, private communication, 1981) that it follows from the
quasiclassical approximation for a diffusing particle. In this approximation
the transition probabilities—the lLh.s. of eq. D.1 times the DOS—in the
quantum case are equal to the Fourier transforms of the correlation function
of the appropriate classical quantity with frequencies (E, — E,,)/A. For ¢4"®
(taking r(0) = 0) the classical average is given by

(970 = e~ (DF =7, (D2)

the Fourier transform of which yields the well-known Lorentzian on the r.h.s.
of eq. D.1. Another derivation of eq. D.1 (Abrahams et al. 1981, Kaveh and
Mott 1981, McMillan 1981, Imry et al. 1982) uses the appropriate dynamic
structure factor, S(q, w), for diffusion, which is proportional to the r.h.s. of
eq. D.1 and is given in terms of the desired matrix elements squared. This
“diffusion pole” appears naturally in the perturbative theories.

E. CAREFUL TREATMENT OF DEPHASING IN 2D
CONDUCTORS AT LOW TEMPERATURES

We do the 2D jdzk in eq. 3.32, neglecting numerical factors of order unity.
After angular integration we obtain

Ko
[, = i) = (e, (E1)

where Jy is a zero order Bessel function, xj5(f) = |x (£) — x5(¢)] and
k,, ~ (KgT /}ED)I/2 is the upper cutoff of k, discussed preceding eq. 3.36.
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Thus, 7, is given (after remembering that for a very thin film of thickness d,
[ dk, is replaced by 27 /d times the k, = 0 contribution) by

1 eZkBT kT eszT kBTT
— o~ In| 4/ ~ B ¢ .
¢ hod n( th”) Wad ln( h ) (E2)

where we put /Dr,for the characteristic x;; and neglect the constant within
the log. Solving this equation by iterations, we obtain

1 2
szT (Ud) -4 kBT —IC—B—lengD, (E3)

—~ =) ~ =2~ In(k%:/d
T¢ ¢ hzadn eh Kod a(ke )g[]

where g is the dimensionless “conductance per square” of the film,

o = (odh)/ ¢?, appearing both in the coefficient and inside the log. This agrees
with thin-film result of Altshuler, Aronov and Khmelnitskii (see, for example,
Altshuler and Aronov 1985, eq. 4.47a).

F. ANOMALIES IN THE DENSITY OF STATES (DOS)

It is well known (see, e.g., Kittel 1963) that for the usual electron gas with
Coulomb interactions in the Hartree—Fock approximation, the exchange terms
yield anomalies in the self-energy and in the resulting DOS (a logarithmic
vanishing of the latter at Ez). These logarithmic singularities are spurious;
for example, they are eliminated if the screened Coulomb interaction is used.
It is found, however, that in the electron gas with even a weak disorder, a true
weak singularity of the single-particle n(E) at Er should exist (Altshuler and
Aronov 1979, see also McMillan 1981) and it is, in fact, found, experimentally
(Abeles et al. 1975, McMillan and Mochel 1981, Dynes and Garno 1981, Imry
and Ovadyahu 1982a, Hertel et al. 1983, White et al. 1985). This effect becomes
more conspicuous at low dimensions, d < 2.

We remind ourselves of the Hartree-Fock theory (see, e.g., Kittel 1963);
the self-consistent approximate Schrddinger equation reads

2
Bt + [ V=0 T SO0

- [ Vix = )T S 0I8R0m0) = Entn) (1)
{

where E,, and ¢,, are the one-electron energy levels and orbitals, respectively;
J; are the occupations; y_, signifies summation over spins parallel to that of m;
V is the electron—electron interaction, the second term is the (direct) Hartree
contribution and the third is the (exchange) Fock one. The energies are
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E,=¢€,+Z,, (F.2)

€ being the unperturbed noninteracting electron energies and ¥, is the self-
energy given in the Hartree—Fock approximation by

= Silml|Viml) = 3 fi(ml|V\im), (F.3)
1 !

where (mi|¥mi) = [ [ d*x dy 5, (x)ém(x)V (x — ¥)$1 0)&i(») and (il V'|im)
is the same with x and p interchanged in the argumecnts of ¢; and ¢,, (but
not in ¢; and ¢y,).

In the usual electron gas without disorder, the Hartree term just cancels
exactly the contribution of the uniform positive background. This cancelation
will not occur in our disordered system. We shall nevertheless concentrate on
the exchange terms 3 o . More complete calculations includ g the direct term
and using dynamic screening muitiply the result we shall get by important
numerical factors, but do not change the nature of the singularity.

We use the Fourier representation of V:

V({ry = a )jque"" (F.4)

thus

(| Vi) = jdql(m!e’”'ll)l (F.5)

(2m)’°

In the simplest and least sophisticated approximation, we use the statically
screened Coulomb interaction for ¥, and eq. D.1 for the matrix elements
squared. The interesting behavior follows from the small ¢ limit where

= (4ne*/q%) - A’¢ = 1/n(0) and A is the screening length (note that the

electron charge e cancels out). Thus as a function of the unperturbed energy, ¢,

*(e) = __1__. vy 1 Dbg
F= (27r)3L<eFd j a T TANQ) (DEY + (e — €V R (F.6)

‘We note that the change in the DOS is given by

dn _dn de dn dy
dE " dedE  de (1 ’72)’ (E7)
where dn/de = n(e) is the unperturbed DOS. Taking the derivative of eq. F.6,
¥ is seen to have a mild singularity at € = Ep in 3D. It is convenient to
accentuate the singularity by taking another derivative. We first note that
changing the ¢ integration in eq. F.6 to the variable (¢ — Ef), the upper
limit on € — € is (¢ — E). Thus, the first derivative is just the integrand:
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N Dg’
== | o ()

where here hw = ¢ — Er. We thus find

" 1 d Dg*w const
T e) = = - , F.9
© 47r4n(0)hJ TP WP RDY22n(0) (F-9)
where the last equality holds in 3D. Thus, &' in 3D will have a singular con-
tribution which is a numerical constant, C times w2 /An(0) D>

n(E) = no(E)[1 + Cyw'’? /hn(0)D*?) (F.10)

Thus, the DOS has a square-root singularity at Ep, whose total relative
amplitude (for Aiw ~ Ep, say) is of the order of 1/ (kFI)3/ 2. The calculation
we have presented here (McMillan 1981) is a simplification of the low-order
systematic one by Altshuler and Aronov (1979). That calculation is only valid
when the DOS correction is small (or kgl >> 1). In this case, there is a good
agreement with the experiments.

An interesting aspect of the DOS anomalies is their dimensionality depen-
dence. For a system which is thin enough to be effectively 2D, the /w singu-
larity is replaced by a stronger, logarithmic, one. To be effectively 2D, it turns
out that the thickness d, of the film should be smaller than the characteristic
length (see discussion following eq. 3.38) L,, ~ /D/w (we take hiw > kT, 75 ).
Both this crossover and the logarithmic behavior have been observed experi-
mentally (Imry and Ovadyahu 1982a). The singularity is stronger in 1D, but we
emphasize that these results are valid only as long as the relative correction to
the DOS is small.

G. QUASICLASSICAL THEORY OF SPECTRAL
CORRELATIONS

We consider, following Argaman et al. (1993), based on Berry (1985), a
metallic particle of volume ¥V = L? and are interested in its level statistics
near the Fermi energy Er. The metallic limit means that eq. 4.38 is satisfied,
but the consideration below has a more general range of validity. By
approximating the Feynman sum for the propagator (Fourier transform of
Green’s function G) as sum over periodic classical paths, j, Gutzwiller (1971)
obtained the following “trace formula” for a “chaotic” system, whose classical
paths are all unstable,

n(E) =3 4,5, (G.1)
J

(we employed this method in getting eq. 4.16).
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Here S; is the classical action along the periodic path j (apart from
Maslow-index corrections) and the coefficient 4; is due to the gaussian integral
around the (unstable) orbit:

4; =

T;| det{M; I)| (G.2)
T; is the period of the orbit j and M; the “monodromy matrix” (giving, in
linear approximation, the transformation of the (24 — 2)-dimensional vector
measuring the deviation from the orbit in phase space after one period). The
factor T reflects the fact that the path can start and end at all points on the
orbit and all such contributions are coherent for a given orbit.

One is interested in the level-density correlation function (eq. 4.33) and in
its Fourier transform K (E, t), which can be called “the spectral structure fac-
tor” (the averaging in the definition of K can be over a suitable range of E or
on the “impurity ensemble” in the case of a disordered system).

There are serious mathematical questions having to do with the Gutzwiller
sum not being absolutely convergent. Moreover, it is clear that the quasi-
classical approximation fails at long enough times, due to the exponential
proliferation of the orbits as ¢ increases. There are strong indications that
the limiting time is longer (Tomsovic and Heller 1993) than what naive
estimates give; possibly it is of order fi/A. We shall thus employ a long time
cut off 7, (and a small energy cutoff, v ~ 74 ' due physically to, for example,
dephasing processes). Taking A « v <« E, appears to be necessary (this is also
based on a comparison with Altshuler and Shklovskii 1986). The quasiclassical
method is for sure not valid for energy scales below A. Since the interesting
scales here are |¢ ~ €| ~ A, E,, which are of order » B, respectively, and much
smaller than Ep, a quasiclassical approximation relying on 4 being small is
suggested. Berry (1985) used the classical expression 7; = aS ;/OE in the semi-
classical approximation, keeping only the “diagonal” terms in the double sum
over paths. He obtained for the spectral structure factor K(z),

1) =3"|4,6(t - T). (G.3)

Berry used a classical sum-rule due to Hannay and d’Almeida (1984) that the
classical probability to return to the origin in time ¢ is the sum over all such
orbits

Po(E,t) = PiE,1) Z(s T)T;|det (M; — )|, (G.4)

! For systems with time-reversal symmetry (H = 0, no magnetic impurities) there is an additional
factor of 2 here. This is due to the existence, as in the weak localization case, of pairs of time-
reversal orbits whose 4;’s in eq. (G.1) have to be added coherently.
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(here the reason for the appearance of the same matrix (M; — I) as before, is
the transformation of the volume element in phase space). He then proved that
the quasiclassical spectrum of a classically ergodic system satisfies random
matrix correlations (K(e) o ¢72) over scales smaller than an energy of order
A (see below). Tt has to be noted that in order to apply the above theory to a
classically ergodic system and for 1 < A/A, the (unstable) orbits and gaussian
regimes around them should be regarded as effectively separated.

Argaman et al. (1993) (see also Doron et al. 1992) rewrote the Berry
calculation in the following way. From egs. G.2-G.4 one obtains

R(t) = 5 TR Pal), (G3)

where Q(E) is the (purely classical) phase space volume for given energy E and
the factor d2/dE is for correct normalization (see Argaman et al. 1993). This
is an extremely useful expression and, remarkably, uses the same classical
probability as, for example, the “weak localization” quantum correction to
transport (chapter 2). For the simple example of a single particle which per-
forms diffusive motion in the classical limit in a volume ¥ = L?, and which is
not localized in the quantum case (so the dimensionless conductance
g = E_/A > 1) one obtains (noting that the particle diffuses isotropically on
an equal energy surface and thus the return probability density in phase space
is 1/4x of that in x-space),

L2
1 tRA/E. ~—
’ / D

Py (1) o v (G.6)

W, tsh/Ec

Fourier transforming eqs. G.5 and G.6, using only times <%/A we obtain very
simply the Altshuler—Shklovskii results for the spectral correlations:

—€ y<eSE.

K(e) ox %
(hD)¥/?

e (G.7)

The semiclassical interpretation of these results is obvious. The low-energy
(0D) range is in agreement with Berry and with RMT. (For example, to obtain
the spectral rigidity, one calculates the fluctuations in the number of levels in an
interval W. The double integral of K(e) for ¢ < E, indeed yields the well-
known log W/ result, with the correct coefficient). The cut-off has to be
properly introduced, for example, by multiplying K(z) by ¢~ This introduces
a positive portion of K(e) for ¢ < v which cancels the infrared behavior of
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~1/€*. The limiting energy for the RMT behavior, E,, is of order %, as expected
and the new, Altshuler-Shklovskii, behavior is obtained for € > E,. Different
power-laws will be obtained for scale-dependent classical diffusion processes
(chapter 2; Derrida and Pomeau 1982).

H. DETAILS OF THE FOUR-TERMINAL FORMULATION
We write eq. 5.26 in full:

-7y Tz Tz Tu 1 '
T: -T, T T- I
21 2 23 24 H2 _ 2 , (H l)
T3y Ty —T3 Ty M3 L
Ty Ty Ty -T Ha Iy

where T; =37, ;T =3, ,; Ty, for i=1,..., 4. Since a vector with equal p’s
yields zero current, this is really a set of three independent equations. We also
have 3.1, = 0.

The four-terminal situaiion consists of taking I} = —L=J,, L=
—Iy = J,. These currents determine all the three independent voltages
4; — u;. But, since we have only two independent variables, J; and J,, we
can express J; and J, in terms of, for example, eV = p; —u; and
eV, = py — pg4 as in egs. 5.27 and 5.31. In particular, in an ordinary resistance
measurement with 1 and 3 being the current terminals and 2 and 4 the voltage
terminals, one takes J, =0 and, asineq. 5.32, withk=1,/=3,m=2,n=4,
Ry34 = V2/J1. The easiest way to determine the s in eq. 5.27 is by applying
some nonzero V) and V, = 0, which can be done by choosing the set of y’s in
eq. 526 to be (1,0,—4,0) where ¥} =1+ 4. We then enforce ) = —1I3,
I, = —I, by choosing A correctly, and then obtain J; and J,. This determines
o) and ap). o), and o; may be determined by a similar procedure involving
4, and py. We find immediately

Iy -1 Ty+Ty

A= = H.2
T3—T3 Tn+Tgy (H.2)
and, for example,
151 Ty3 — T3Ty,
Jy=h =Ty — Tpyd=-2-8_""nla H3
=L =Ty —Txn Ty & Tas (H.3)
S
Vi=l+d= (H.4)

Ty + Tys'
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where S =T, + Ty + T3 + Ty, as in eq. 5.29. By definition —ay = J,/ ;.
The ratio of eq. H.3 (and a similar equation for J)) to eq. H.4 indeed yields a,
and «aq; in agreement with eq. 5.28:

(T + Thy)(To1 + Ty)

oy =T+ S

(H.5)

gy =28 T I la (H.6)

It must be understood that although we chose to express the two J’s in
terms of the two Vs as in eq. 5.27, they also depend, for example, on py ~ 4.

This is why we were not free to apply ¥, by an arbitrary choice of u; and p;
with the correct difference.

. UNIVERSALITY OF THE CONDUCTANCE
FLUCTUATIONS IN TERMS OF THE UNIVERSAL
CORRELATION OF TRANSMISSION EIGENVALUES

This discussion is based on the two-terminal Landauer conductance expression
(5.16). It isconvenient (Imry 1986) to cast the r.h.s. in terms of the eigenvalues

of the transfer matrix 7, following Pichard and Sarma (1981a, b) and Pichard
(1984).

2

trert = ur — )
TT+ (TTH ™ + 21

(L.1)

I is the unit matrix, ¢ is the N, x N, transmission matrix, giving the trans-
mitted waves on the right of the scattering system whose conductance is being
considered, in terms of the incident waves on the left. The 2N, x 2N trans-
mission matrix T can be expressed in terms of 7 and the reflection matrix r,
defined in (5.9). T gives both left- and right-moving wave amplitudes on the
r.h.s. of the obstacle in terms of those on the left. Thus, 7 has a multiplicative
property: T for series addition is given by the product of the T’s for the
components. (For a more complete treatment of these issues, see Pichard
1984, Pendry 1989.) It thus makes sense, and it is substantiated by a theorem
due to Oseledec (1968), that for large system length L (measured here in atomic
untts) the eigenvalues (Dorokhov 1982, 1984) appearing in the denominator of
eq. 1.1 will be exponential in L, thus eq. 1.1 can be written as

1 1
= = 1.2
£ ; 1 +cosh A, ; 1+ cosh (Ly,)’ (1.2)

where ), are the eigenvalues of the whole system and p, can be thought of as
those “‘per unit length,” or as the inverse localization lengths. The smallest of
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them gives the inverse of the physical localization length, £. Arranging A, by
increasing magnitude, one may say that N, of them are smaller than or
equal to unity and all the others are quickly making exponentially small
contributions. Thus

Ny =g, (1.3)

which was used in the argument leading to eq. 5.60. A fundamental property of
the eigenvalues is their “repulsion” (preventing degeneracies) which tends to
reduce the fluctuations of N, . In fact, since eq. 1.2 expresses g as what is called
a “linear statistic”” of the eigenvalues (i.e., a sum over » of a smooth function of
the ),), one may appeal to results of Dyson (1962) and Mehta and Dyson
(1963) (see also Mehta 1967) according to which the fluctuations of g are of
order of unity provided one postulates that the eigenvalues obey RMT correla-
tions. The latter assumption can be justified using the global ““maximum
entropy principle” for the distribution of the eigenvalues (Mello et al. 1988)
and it does yield a constant universal value for (Agz). It was appreciated by
Beenakker (1993), however, that the result, although being very close (ratio of
16/15) was not equal to the correct one, as obtained diagrammatically for
quasi-1D systems (this is the appropriate case since one is taking a finite N
and very long L). Very recently, Beenakker and Rejaci (1993) and, indepen-
dently, Chalker and Madedo (1993) solved the problem by noting that the
global maximum entropy rule (Mello and Pichard 1989) is only a mean-field
type approximation to the correct distribution given by the solution of an
appropriate Fokker—Planck-type equation. This approximation is an excellent
one but it is not exact. Going beyond it provides the necessary correction
to give the precise values of (Ag?) in quasi-1D systems for all known sym-
metries. At higher dimensions too, the RMT assumption gives the correct
order of magnitude, but not the precise value, for (Agz). However, even
without quantitative validity, the repulsion of the transmission eigenvalues is
the qualitative physical reason for the universality of (Ag?).

J. THECONDUCTANCE OF BALLISTIC ""POINT
CONTACTS™

Consider two massive reservoirs connected by an ideal conducting wire
having N, channels, that is, T; =T =46, R;=R;=0. In this case,
G, = N, (¢*/nh) and the resistance per contact per channel is (n#i/2¢%), as in
the single channel case. The situation here is identical to that of a small narrow
orifice (i.e., a “‘point contact”; Jansen et al. 1983) between two. large conduc-
tors. The resistance of such a “ballistic” contact, with a cross-section 4 such
that 4 <« I, where [ is the mean free path in the conductors (the reservoirs in
our case), has been calculated by Sharvin (1965). His result is

Rorxﬁce = 4pl/3A7 (Jl)
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where p is the resistivity of the conductor. We note that this result which is
easily obtained in a ballistic quasiclassical kinetic theory is independent of /.
Since the number of channels (not including spin degeneracy, which we
included in the channel conductance, eq. 5.16) in an orifice of area 4 is

Akzp/47r, the resistance of the orifice with a conductor becomes (using
p=3nh/e*kEl)

R, = nh/(€’N,), (1.2)

which is the same as the resistance 1/G, alluded to above. We emphasize that
this resistance has nothing to do with the resistance of the *““wire” itself and
it exists also when the conductor connecting the two reservoirs is ideal (no
scattering). It is just due to the geometry, the ideal orifice being a “bottleneck’
between the two conductors, in each of which the electrons are in equilibrium.

For 2D systems the number of channels is given by Wky/x, where W is the
width of the orifice. Both the ballistic 2D and 3D results can be summarized by

82

=— J.
Gc ﬂ_hN.La ( 3)

where N is the number of channels not including spin (Imry 1986). Alterna-
tively one may include the spin in N and then the ideal channel conductance is
e2/27rh. Wharam et al. (1988) and van Wees et al. (1988) have independently
discovered this experimentally for point contacts in GaAs 2D quantum-well
systems. It is rather nontrivial to identify the conditions to have the full con-
ductance (eq. J.3). This is briefly discussed following eq. 5.16. More work is
needed for one- (and few-) atom contacts.
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