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PREFACE

I.

We have started writing this book two years ago with the aim of collecting

all the integrable cases, known in rigid body dynamics. We felt that such a

project could be realized rather fast, and the book was supposed to be published

in 2000 — the year of 150-anniversary of S. V. Kowalevskaya. We also wanted

to present comprehensive information concerning the case and the method she

had discovered.

However, our plans were gradually extended, mainly because of the active

application of numerical experiments and computer visualization methods to-

gether with analytical computations. In the end, we have developed a perfectly

new viewpoint to one of the classical fields of mechanics, the one which allows

generalization encompassing the whole dynamics.

In the preface we give honor to computer dynamics whose development

and application to dynamic problems of top theory the reader will be meeting

through the whole book. Computer investigations in dynamics, or just computer

dynamics, is, in our opinion, a separate scientific field, establishing general reg-

ularities of the motion of real physical systems by means of a series of numerical

methods and techniques. Each of these methods has its own peculiar features

(stability and others) and possesses some internal parameters (like a pitch and

precision). That’s why results of such an investigation are related to the reality

only indirectly. However, similar conclusions may be also made for the ordinary

analytical (or purely mathematical) methods that demand rigorous proofs at each

step of the process. At that a lot of physically evident facts may lead to unsolv-

able problems (these are especially numerous in nonlinear dynamics and mathe-

matical theory of chaos). Here we are going to indicate only problems with the

ergodicity proof, entropy computation, small parameter estimates, KAM-theory

applicability and so on. Nevertheless, the solution of these problems, will not

at the least advance our understanding of the remarkable regularities which we

observe, following the evolution of chaos in particular systems.

In this book a classical branch of rigid body dynamics, dealing with the

search of possible integrable cases, finds its natural conclusion. It’s probable

that other cases and integrals that may be found in the future, will never arise
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the kind of attention that was aroused by the already found and cited here ones.

Classics tried to use them to understand motion, and they achieved temporary

successes. In rigid body dynamics the enthusiasm about geometric interpreta-

tions of motion, tracing back to Poinsot, every now and then was replaced by the

analytical investigations, the majority of which, unfortunately, was unnecessary

neither for physicists, nor for engineers, and soon became comprehensible for

the narrow specialists only.

In this book we, probably, somewhat ignored proofs and precise formula-

tions. We simultaneously used achievements of topology, analysis and computer

experiments to receive sufficiently complete understanding of motion. It’s not

that easy to assert if we attained our aim, but one thing can’t be doubted: even

the classical cases (like Lagrange, Kowalevskaya, Goryachev –Chaplygin cases)

have experienced in this approach the second birth, they have best the frame-

work of dull computations and become rather tangible. Probably, it should be the

ambition of mechanics — to present a certain algorithm, by means of which we

can look into the whole variety of motions and clearly imagine each particular

motion and its peculiarities.

In this book we try to revive traditions of mathematical literature of Eu-

ler times. According to Jacobi expression [183], “Euler himself in spite of

considering only particular cases, selects them so well that the general method

determined later adds to his results only little or nothing at all”.

Thus, if we consider the laws of nature, leading to a certain system of differ-

ential equations, be established, then for its analysis the computer and analytical

methods turn out to be complementary. Here we’d like to emphasize the dif-

ference between our viewpoint and the prevailing one that the “real science” is

analytical, and the computer is capable of giving only illustrations to analytical

methods and impulsion for statements of new theorems. That’s certainly true, as

well, but it’s only a byproduct of computer investigations. The latter have their

own inner logic and a system of descriptions of physical phenomena. Systematic

development of computer investigations , revealing new areas of computer (or

“virtual”) dynamics, is the matter of the nearest future.

As a historical prospect, or rather as a funny thing, illustrating the excessive

belief in the power of logical method, note that Leibnitz and Descartes in their

papers, before developing proper mathematical methods, “proved” the existence

of motion and even God.
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II.

In addition to the idea of computer dynamics, in the book we tried to

show the most modern methods of Poisson dynamics and geometry, theories

of Lie groups and algebras, which were only designated in our previous book

Poisson Structures and Lie Algebras in Hamiltonian Mechanics, which, as we

feel, was quite a success. Rigid body dynamics plays a special role in the

development of these methods. In a certain sense it represents a ground for

testing new mathematical means, and at the time being it’s difficult to appreciate

its significance, especially for the development of many sections of topology and

nonlinear Poisson structures, nonholonomic geometry, theory of symmetries and

tensor invariants.

We can even assert that, similar to the way the understanding of profound

ideas of H. Poincaré, concerning the nonintegrability of dynamical systems, be-

came possible due to the analysis of three body problem, results and techniques

of Sophus Lie entered general mathematical culture because of their application

to theory of tops, exemplifying the mechanical realization of the most natural

Lie groups and algebras. Besides, unlike celestial mechanics and theory of os-

cillations, rigid body dynamics contains, on the one hand, a series of nontrivial

integrable cases, and, on the other hand, on account of configurational space

compactness it is mostly preferable for the analysis of chaotic motions.

III.

While checking nearly all modern and classical integrable cases , we used

the analytical computational system MAPLE. It happened so that some previ-

ously known results turned out to be not absolutely correct, and some others

were considerably simplified.

Computer visualization of motion and numerical integration were carried

out on the software complex “Computer dynamics” invented in the scien-

tific-publishing center “Regular and Chaotic Dynamics”.

The problems of stability of particular motions and the majority of applied

and technical problems, whose thorough presentation requires a separate trea-

tise, were left beyond the book. Nevertheless, even a physicist or an engineer

may understand from the book general formalism of notation of main dynamical

equations , and key aspects of regular and chaotic behavior in rigid body dy-

namics. In this aspect, the book can be considered as a reference book, where,

nevertheless, we try to explain derivation of the main results, and sometimes

produce complete proofs.
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We decided to neglect sections, concerning nonholonomic systems, and

also multidimensional generalizations of rigid body dynamics. They are rather

extensive, and we’ll try to explain them separately.

In the beginning of the book we gathered short historical accounts about

the creators of rigid body dynamics. These assays allow to trace the evolution

of ideas in this field, and, probably, to correct some historical discrepancies.



INTRODUCTION

1. As an introduction we are going to present some short comments, con-

cerning main stages of rigid body dynamics development. Integrable cases were

the first to be studied. The most popular ones were found by Euler (1758) and

Lagrange (1788) at the stage of formation and development of the main dynam-

ical principles. At this point the basic system, used for approbations of various

mathematical methods during next centuries, was the system of Euler –Poisson

equations, describing motion of a heavy rigid body around a fixed point.

Substantially more difficult case of integrability of Euler –Poisson equa-

tions was discovered be S. V. Kowalevskaya in 1888. It has given an impulsion

to new investigations in the field of integrable systems, This result was highly

appreciated by the French Academy of Sciences. In 1888, S. V. Kowalevskaya

was awarded with the Baurden Prize for the memoir on rotation of a rigid body

around a fixed point. It should be mentioned that earlier the Academy of Sci-

ences had announced about the competition on investigation of this problem

twice, but nobody received the Prize. In spring of 1889 Kowalevskaya was hon-

ored with the Prize of the Swedish Royal Academy of Sciences for the second

memoir on the problem of rigid body rotation.

The integrability of the Euler and Lagrange cases is stipulated by natu-

ral dynamical symmetries and preservation of the corresponding first integrals.

S. V. Kowalevskaya has found her case of integrability, starting from nonevident

analytical considerations and using theory of algebraic functions (whose partic-

ular case is elliptic functions), well developed at the time. She required unique-

ness of the general solution on the complex plane of time, which in the future

led to the beginnings of one of the most advanced methods of dynamic system

analysis for integrability — the Painleve –Kowalevskaya test. As it is said, the

Kowalevskaya integral doesn’t have natural symmetry origin; its symmetries are

hidden, and the problem of motion description and explicit integration itself is

essentially more difficult in this case.

2. Starting from the middle of nineteenth and in the beginning of twentieth

century in rigid body dynamics there were found integrable cases for various

statements of problems on rigid body motion: motion of a body in fluid; motion

of a body with cavities, filled with fluid; gyrostats; nonholonomic problems.
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The study of these problems became possible due to the development of general

dynamical formalism whose summit became the Poincaré equations, allowing to

represent rigid body motion equations in terms of group variables.

Here we should also mention the progress of perfect fluid hydrodynamics

and vortex theory whose foundations were laid by H. Helmholtz. That was the

way to obtain equations for a vorticity vector, quite analogical to dynamical

equations of kinetic moment, and Poincaré was the first to study precession of

the equator axis, using, as the Earth model, a rigid body (a mantle), having

cavities, filled with incompressible vortex fluid (core).

3. As it was already mentioned, in the classical period for various forms of

equations it was considered of prime importance to find such cases (that could be

fixed by restrictions of parameters and initial conditions) of explicit solvability

of a problem in quadratures. In modern terminology these are called integrable

cases.

The integrable cases are usually connected with the names of their

discoverers. Among them are famous Western mathematics and me-

chanics: G. Kirchhoff, A. Clebsch, P. Appell, F. Brun, V. Volterra. Great

achievements were made by Russian scientists A. M. Lyapunov, V. A. Steklov,

N. E. Joukovskiy, S. A. Chaplygin. In this respect rigid body dynamics may be

considered as a field, filled with interesting integrable problems, constituting the

most valuable possession of modern dynamics.

In the classical period, except for the finding of first integrals, it was con-

sidered especially valuable to obtain explicit solutions in various classes of

functions, mainly, elliptical ones. Particular successes were achieved here by

S. V. Kowalevskaya, V. Volterra, G. Halphen, and up to this very day their tech-

nique remains unsurpassed.

4. In the first half of twentieth century the interest to integrable cases has,

so to say, decreased. In many respects that was connected with understanding by

the majority of mathematicians the results (obtained by H. Poincaré), concerning

nonintegrability of a typical Hamiltonian dynamical system [144]. In the con-

sciousness of mathematicians this fact depreciated many results of classics and

led to the development of new methods of perturbation theory: the averaging

principle, the KAM theory and others.

In the general case the main equations of rigid body dynamics are also non-

integrable. This means they have complicated and unpredictable behavior [144],

whose study is a subject of a new field of investigations called determinate chaos.

The effects of nonintegrability in rigid body dynamics find their systematic study

in the treatise by V. V. Kozlov [92].

The book [92] is also important, because, unlike unnatural craving of clas-
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sics for obtaining explicit solution, which allows to say but little about real

motion of a system, it involves the question, concerning the qualitative analysis

of integrable dynamical systems, and by using examples of the Kowalevskaya

and Goryachev –Chaplygin tops the author makes general conclusions concern-

ing the behavior of the line of nodes and proper rotation angles. The latter

results were obtained by applying Liouville –Arnold theorem and Weyl theorem

on uniform distribution.

5. The application of topological analysis methods to the integration

of rigid body dynamics problems, namely the study of Liouville tori recon-

structions under passing critical values, was for the first time offered by

M. P. Harlamov [170] and developed in topological invariant theory, created to

classify integrable Hamiltonian systems with two degrees of freedom. Nearly

all known results, obtained by using this technique, are shown in the recently

published book [25]. The complex methods, generally leading to the similar

results, are advocated in the book by M. Audin [134].

6. The increase of interest to rigid body dynamics integrable problems in

1970–1990, having entailed the discovery of the whole series of new integrable

cases, is connected with the isospectral deformation method development (Lax

representations, L − A-pairs). As a rule, the majority of papers of that period

concerns multidimensional generalizations of natural physical analogues already

known. The development of this trend of researches is also associated with

the penetration of ideas of Lie groups and algebras, and the analysis of general

(nonlinear and degenerate) Poisson structures into dynamics. The present state

of these problems may be found in our book [31].

It should also be noted that it turned out to be possible to extend many

structures of the Lie algebraic approach and qualitative analysis methods to non-

holonomic problems of rigid body dynamics, where within last decades several

new integrable systems were added, as well [52, 36].

7. During last decades there appeared some more trends, concerning top

dynamics. One appeared in quantum mechanics from the analysis of systems of

interacting spins with anisotropy (a chain or XY Z-model of Heisenberg). Here

the classical model is a foundation for understanding dynamics at a quantum

level, and, in a certain sense, it can also be integrable and chaotic. The quantum

chaos is only starting to be investigated, but in short time these researches will

form a separate scientific branch, where the essential place will be given to

quantum descriptions of tops. First of all, that is because the top model is

a basic model in quantum theory of angular momentum, applied in quantum

chemistry and molecular spectroscopy.

It is also interesting to know that the conditions of integrability and the
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integrals for a spin model, cited in the present day literature on quantum me-

chanics (see, for example, [259]), are but simplified results, obtained by classics

(W. Frahm, F. Schottky) more than a hundred years ago. That is conditioned

by the fact that many modern physicists who has gone far in the field of their

abstract and intricate theories (like quantum field theory, gravitation theory), ex-

hibit poor orientation in naturally originated questions, concerning dynamics of

an ordinary toy top.

8. In a certain sense, even in the analysis of the integrable situation, for

which the complete classification of all solutions is, in principle, possible, a com-

puter has started a totally new era. If, earlier, in the investigation of integrable

systems there prevailed analytical methods, making it possible to obtain explicit

quadratures and geometric interpretations, which in many cases looked quite arti-

ficial (for instance, Joukovskiy interpretation of Kowalevskaya top motion [76]),

the combination of ideas of topological analysis (bifurcational pattern), stabil-

ity theory, phase section method and direct computer visualization of the “most

remarkable” solutions is capable of representing an integrable situation and em-

phasizing the most characteristic features of motion. Such an investigation can

provide a series of new results, even for a seemingly worn field (for example, for

the Kowalevskaya top, Goryachev –Chaplygin top, Bobylev –Steklov solution).

The point is that these results are very difficult to be detected in the cumber-

some analytical expressions. It seems to be possible to obtain the proof of these

facts analytically, as well, but only after their computer displaying. Here we

should pay special attention to the analysis of motion in absolute space. Such

an analysis was practically never carried out.

Some curious motions, exhibited by integrable tops, perhaps, are capable

of evoking certain ideas concerning their practical application. Recall that, for

example, the Kowalevskaya top (discovered more than a hundred years ago)

is still out of the application, just because nothing at all was known about its

motion, in spite of complete solution in elliptic functions.

We also cite some unstable periodic solutions, generating a family of

doubly-asymptotic motions, whose behavior is most complicated and even in

the presence of an additional integral looks chaotic. Under perturbation such

solutions are the first to become destroyed, and near them, in phase space, there

arise whole domains, full of “real” chaotic paths.

Computer researches make us “revise” many things and perceive the true

meaning of analytical investigations. If some analytical results — like separation

of variables — turn out to be quite useful for studying bifurcations and classical

solutions, their further “development” up to obtaining explicit quadratures (in

terms of θ-functions) is practically of no use. These results are collected, for ex-
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ample, in the books [61, 72], but they are applicable as exercises on differential

equations, rather than dynamical analysis methods.

9. As for the value of classical results in rigid body dynamics, it was some-

what doubted already in the seventies of the last century (K. Magnus [119]).

The age of total belief in unlimited possibilities of computers generated the

opinion that these results are of no use and the sufficiently powerful com-

puter is capable of predicting motion at any interval of time with sufficient

precision. However, the fact of the exponentially fast separation of paths

(connected with the instability in the whole domains of phase space) in typi-

cal dynamical systems, which are nonintegrable, made such a computation at

rather large time intervals physically meaningless, as far as the initial con-

ditions for particular (applied) systems are never known with absolute preci-

sion.

It seems that one can hope for numerical methods only in the integrable case

where this separation never happens. Nevertheless, it turns out that conservative

systems preserve many elements of integrable dynamics even in the stochastic

case. Under small perturbation of an integrable problem there continue to ex-

ist non-degenerate periodic orbits, and the majority of conditionally-periodical

motions doesn’t become destroyed (the KAM theory).

Under further increase of perturbation both periodic orbits, and invariant

tori undergo various bifurcations, having some common regularities. They define

the change of the whole structure of a phase flow, combining areas with regular

and chaotic behavior, and provide scenarios of transition to chaos. In rigid body

dynamics these investigations, which are incidentally impossible without highly

precise computer simulation, were not carried out. In the present book we show

only several examples of chaotic motion and hope that the nearest future will

bring a lot of new and interesting results in this field.

RIGID BODY DYNAMICS CREATORS

Here is a bit of information concerning the scientists, who obtained the

main results, cited in the book. We meant to show their achievements in rigid

body dynamics only, while many of them have also received well-known results

in other fields of mathematics and mechanics. These brief sketches may be

useful for understanding the evolution of principal ideas and methods, and also

for elimination of some historical discrepancies.

All the sketches are in chronological order.

Euler, Leonard (15.4.1707– 18.9.1783) — a great mathematician and me-

chanic. He was born in Switzerland, but the substantial part of his life he has

spent in Russia (1727–41, 1766–83). Euler has contributed to nearly all branches

of mathematics, his work is difficult to be surveyed and includes more than 865

essays.

L.Euler

In rigid body dynamics Euler has developed theory of

moments of inertia and obtained the formula of veloc-

ity distribution in a rigid body. In 1750 he obtained

the equations of motion in a fixed frame of reference,

the ones which turned out to be of a little use in prac-

tice. In the works of 1758–1765 Euler, for the first

time, introduced a moving frame of reference, attached

to the body, and obtained the Euler –Poisson equations

in the final form (the Poisson contribution, reflected in

the name, seems to consist in their systematic account

in his famous course on mechanics). These papers also

contain Euler angles, kinematic relations, named after

Euler, and an integrable case in the absence of a gravity

field. As for the last case, Euler brings it up to quadratures and considers var-

ious particular solutions. In would be proper to mention the contribution Euler

made into applied sciences — shipbuilding, artillery, turbine theory, strength of

materials.

Lagrange, Joseph Louis (25.1.1736– 10.4.1813) — a great French math-

ematician, mechanic, and astronomer. In his famous treatise Analytical Me-

chanics (in 2 volumes), along with the general formalism of dynamics,



20 Rigid Body Dynamics Creators

J. L. Lagrange

he has shown equations of rigid body motion in an

arbitrary potential force field, using the frame of refer-

ence, attached to the body, angular momentum projec-

tions and direction cosines (volume II). There he also

mentions an integrable case, characterized by the axial

symmetry, which he reduced to quadratures. Following

his principle of avoiding drawings, Lagrange doesn’t

give geometrical study of motion, so an apex behav-

ior drawings, that were earlier included into nearly all

textbooks on mechanics, appeared for the first time in

the paper by Poisson (1815) who has investigated this

problem as a totally new. Nevertheless, Poisson sys-

tematized notations that complicate understanding of

treatises by D’Alembert, Euler and Lagrange, and considered various particular

cases of motion (some textbooks refer to the Lagrange case as the Lagrange –

Poisson case). In his turn, Lagrange has simplified the solution of the Euler

case and has provided the direct proof of existence of third-degree equation real

roots, defining the position of principal axes. We should note that Lagrange has

also contributed into perturbation theory which enabled Jacobi to consider the

problem about the Euler top perturbation and obtain the system of corresponding

“osculating” variables.

L. Poinsot

Poinsot, Louis (3.1.1777– 5.12.1859) — a French

engineer, mechanic, and mathematician. He has given

a geometric interpretation of the Euler case, introduced

concepts of inertia ellipsoid, momentary axis of rota-

tion, and the notions connected to it — polhode and her-

polhode (1851). He has shown geometrical analysis of

stability of rigid body rotation around the principal axis

of inertia ellipsoid. Poinsot, in contrast to Lagrange, in-

sisted that in mechanics geometric methods should be

preferred to analytical ones — “in all these solutions we

can see only computations without any clear picture of

the body motion” [252]. Afterwards, the Poinsot ideas

were supported and developed by N. E. Joukovskiy and S. A. Chaplygin. Poinsot

also used a geometrical method for studying statics (Statics Elements, 1803).

Kirchhoff, Gustav Robert (12.3.1824–17.10.1887) — a German physicist and

mechanic. In his Lectures on Mathematical Physics (1874–94, v. 1–4) he has laid

the foundations of modern theory of elasticity, hydrodynamics, optics and elec-
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trodynamics. He has shown the analogy between the Euler –Poisson equations

and equations of an elastic curve bending. Following the idea of Thomson and

Tait, he reduced the problem of rigid body motion in perfect fluid, to the system

of ordinary differential equations. He has found an integrable case, characterized

by the axial symmetry, shown its solution in elliptic functions and considered

various particular motions.

G. R. Kirchhoff A. Clebsch

Clebsch, Rudolph Fridrich Alfred (19.1.1833– 7.11.1872) — a German

mathematician and mechanic. He has founded the journal Mathematishe An-

nalen which for sixty years was a leading mathematical journal. He was an

expert in projective geometry and theory of invariants of algebraic forms. He

offered a new form of notation for Kirchhoff’s equations which is equivalent to

the transition from Lagrangian to Hamiltonian description. For these equations

he has shown a case of existence of an additional quadratic integral,which, as it

turned out later, is identical to integrals of Brun and Tisserand.

Joukovskiy, Nikolay Egorovitch (17.1.1847– 17.3.1921) — a Russian me-

chanic, mathematician, and engineer, as V. I. Lenin has put it, “the father of

Russian aviation”. In his master’s thesis (1885) he laid the foundations of the-

ory of motion of a rigid body with cavities, completely filled with a perfect

incompressible fluid. For multiconnected cavities he noticed the equivalence

of the obtained form of equation with the equation of motion of a rigid body

with a fly-wheel — a gyrostat. He introduced corresponding dynamical charac-

teristics and carried out their computations for cavities of various shapes. He

has indicated the case of integrability of a free gyrostat. The explicit solution

for this case was obtained by V. Volterra by means of elliptic functions (1899).
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N. E. Joukovskiy

He has investigated “planar” motions of a rigid body in

Lobachevskiy space. He has offered a geometric inter-

pretation and his own method of reducing to quadra-

tures the Kowalevskaya case, investigating a certain

auxiliary system of curvilinear coordinates. He has

noted the pendulum nature of the mass center motion

for the Hess case, having offered an interesting geo-

metrical analysis for it. In view of his investigations in

fluid dynamics he considered a series of model state-

ments of problems concerning plane motion of plates

under the action of lifting force conditioned by the cir-

culation. In mechanics N. E. Joukovskiy considered a

perfect solution to be geometrically clear and vivid pic-

ture of motion, similar to the Poinsot interpretation. However, it should be men-

tioned that the interpretations of gyrostat motion and the Kowalevskaya case,

obtained by Joukovskiy personally, are rather difficult and not quite natural.

S. V. Kowalevskaya

Kowalevskaya, Sophia Vasilievna (15.1.1850–

10.2.1891) — a famous Russian female-mathematician.

In 1874 she presented her thesis in Göttingen and was

awarded with a Philosophy Doctor degree; in 1884 she

got a chair of mathematics in Stockholm University; in

1889 she was elected Corresponding Member of the St.

Petersburg Academy of Sciences. She was in the edi-

torial board of the journal Acta Mathematica. She was

the first female professor of mathematics in the world.

For the discovery (after Euler and Lagrange) of the

third case of integrability of the Euler –Poisson equa-

tions she was awarded with the Baurden Prize (1888),

and for the second paper concerning rigid body rotation

with the Prize of Swedish Royal Academy of Sciences. In these papers she has

also offered so called Kowalevskaya method which is a widely used test for the

integrability and concerns behavior of the general solution on a complex plane

of time. She also obtained explicit quadratures, employing theta-functions of

two variables. The transformations, carried out by Kowalevskaya, are still far

from triviality and cannot be substantially simplified.

Kowalevskaya also dealt with general questions of integration of partial dif-

ferential equations (the Cauchy–Kowalevskaya theorem), the stability of Saturn

belts, the propagation of light within crystals.
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Being literary talented, Kowalevskaya has written several novels and mem-

oirs which are read even nowadays.

Poincaré, Henri Jules (29.4.1854– 17.7.1912) — a famous French math-

ematician, physicist, astronomer, and philosopher. In three volumes of his

H. Poincaré

treatise New Methods of Celestial Mechanics he, using

the three body problem as an example, laid the foun-

dation of a new qualitative investigation of dynamical

systems, indicated obstructions to existence of analyti-

cal integrals for a wide class of dynamical systems. He

has expressed, but hasn’t proved corresponding con-

siderations about the Euler –Poisson equations. He has

established a new form of dynamical equations in terms

of group variables. This form classified the Euler and

Lagrange particular results and turned out to be most

useful for various problems of rigid body dynamics.

The Hamiltonian variant of these equations was offered

by N. G. Chetayev.

The group formalism being developed was applied by Poincaré to derive

equations of a rigid body with cavities filled with perfect incompressible vor-

tex fluid. For these equations he indicated an integrable case characterized by

dynamical symmetry. He also obtained an elliptic quadrature which he used

to explain various effects in the precession of the Earth he imagined as a hard

shell (mantle) with a liquid core. He has also shown explicit formulae for small

oscillation frequencies and obtained necessary conditions of stability.

A. M. Lyapunov V. A. Steklov S. A. Chaplygin
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Lyapunov, Alexander Mikhailovitch (6.6.1857– 3.11.1918) — a famous

Russian mathematician and mechanic, the founder of the motion stability theory.

He has discovered the case of integrability of Kirchhoff’s equations for rigid

body motion in fluid. In an extensive memoir of 1888 he indicated and inves-

tigated for stability helical motions of a rigid body in fluid. He made clear the

question of correctness of the Kowalevskaya reasoning about uniqueness of the

solution in integrable cases, by offering his own method, based on the introduc-

tion of a small parameter and investigation of the equation in variations — the

Kowalevskaya –Lyapunov method.

Steklov, Vladimir Andreevitch (9.1.1864– 30.5.1926) — a Russian math-

ematician and mechanic, the student of A. M. Lyapunov. In 1894 he presented

his master thesis On Rigid Body Motion in a Fluid where he obtained the new

case of integrability of Kirchhoff’s equations and proved the theorem about im-

possibility of other cases, having an additional quadratic integral.

He has noticed the similarity between the Clebsch case and the Brun prob-

lem. In 1909 he indicated a new integrable family for the problem of motion of

a rigid body with cavities, filled with the fluid (Poincaré – Joukovskiy equations).

He has given two particular solutions of Euler –Poisson equations (one of them

was given simultaneously with D. K. Bobylev).

Chaplygin, Sergei Alexeyevitch (5.4.1869– 8.10.1942) — a Russian math-

ematician and mechanic, one of the creators of modern fluid dynamics. He has

indicated a particular case of integrability of the Euler –Poisson equations at

a zero area constant, having generalized a more particular solution given by

D. N. Goryachev, and also more particular solutions, characterized by a system

of linear invariant relations. For Kirchhoff’s equations he has also obtained a

similar case of particular integrability and its generalizations, investigated helical

motions, and gave geometrical interpretation of various motions (in particular,

for the Clebsch case). He has derived equations of heavy rigid body motion

in a fluid and carried out a more detailed study of a case of planar and axially

symmetric motion.

Chaplygin is especially famous by his works on nonholonomic mechanics

where he has indicated a series of integrable problems of rigid body dynamics:

rolling on axially symmetric solid plane, the “Chaplygin sphere”, the Chaplygin

sledge and so on. Similarly to N. E. Joukovskiy he was trying to introduce

geometrical vividness in his masterly analytical computations.

Kozlov, Valeriy Vasilievitch (born 1.01.1950) — a Russian mathematician

and mechanic, Member of the Russian Academy of Sciences (from 2000). In

a series of works, combined in the treatise Methods of Qualitative Analysis in
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Rigid Body Dynamics (MSU1, 1980), he has proved nonexistence of analytical

integrals of the Euler –Poisson equations, and has also indicated dynamical ef-

fects,

V. V. Kozlov

preventing the integrability of these equations — split-

ting separatrices and appearance of a large number of

non-degenerate periodical solutions. These investiga-

tions “have closed” the Poincaré problem, he has in-

dicated in New Methods of Celestial Mechanics (v. 1),

and started a new era in rigid body dynamics. In the

foreground there are qualitative investigation methods,

rather than search of particular solutions of a given al-

gebraic structure.

V. V. Kozlov has also offered new techniques of

analysis of integrable systems, based on the application

of Liouville –Arnold geometrical theorem and Weyl

theorem on uniform distribution. As a certain substan-

tiation of the Kowalevskaya method V. V. Kozlov has proved a series of state-

ments, connecting the general solution ramification on a complex plane of time

with nonexistence of single-valued first integrals (Penleve –Golubev hypothe-

sis). V. V. Kozlov was the first to apply variational techniques to obtain periodic

solutions in rigid body dynamics.

1Moscow State University. — Trans. Rem.



Chapter 1

RIGID BODY MOTION EQUATIONS AND

THEIR INTEGRATION

§ 1. Poisson Brackets and Hamiltonian Formalism

1. Poisson Manifolds

The majority of problems considered in the present book allows canonical

Hamiltonian notation and has the first integral — the energy one. However, it’s

not rare a case when it’s more convenient not to use the canonical form of these

equations of motion, but a certain system of algebraic variables. Such a system

is the most acceptable one for investigation: search for integrals, particular

solutions, stability analysis and so on. The system expressed in terms of these

variables will not only preserve a lot of ordinary Hamiltonian system properties,

but acquire some specific distinctions being studied in the general theory of

Poisson structures. The above-mentioned theory can be found in [31].

Here we are going to give a short account of principal definitions and

results, necessary for solving of problems of rigid body dynamics. It should also

be noted that evolution of theory of Poisson structures was stimulated in many

respects by top dynamics, for the latter allows to turn abstract enunciations of

many theories into more descriptive and natural ones.

Those who don’t know differential and symplectic geometry very well (at

this point we can recommend the books [75, 6, 7]), while reading this section,

may envision all the results in the coordinate form and ignore mathematical

terminology which is sometimes too formal. This terminology is founded on

simple dynamic facts, but at first glance it can seem a bit alienated from them.

Poisson brackets and their properties. Ordinary Hamiltonian form of

dynamics equations is represented by

q̇ = ∂H
∂p

, ṗ = −∂H
∂q

, H = H(q ,p), (1.1)

where canonical coordinates (q ,p) are determined on some even-dimensional

manifold (q ,p)∈M2n — a phase space (dimM=2n). The functionH is called
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a Hamiltonian. The quantity n = dimM
2

is known as a number of degrees of

freedom of Hamiltonian system (1.1).

The divergence of vector field (1.1) equals zero. This means that a phase

flow is incompressible (the Liouville theorem).

If a Poisson bracket of two functions F and G be introduced according to

the formula

{F,G} =
∑

i

(
∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi

)
, (1.2)

then equations (1.1) could be rewritten in the form

q̇i = {qi, H}, ṗi = {pi, H}. (1.3)

Any differentiable function F = F (q ,p) also evolves in accordance with the

Hamiltonian law:

Ḟ = {F,H}. (1.4)

Equations (1.1) are not invariant with respect to arbitrary coordinate trans-

formations. Moreover, if main equations of rigid body dynamics be written in

the form (1.1), they would lose their algebraicity and acquire some peculiarities,

far from the problem essence (see. § 4 s.2). Before introducing motion equations

in a more acceptable form, preserving main properties of a canonical notation,

let’s dwell on the invariant statement of Hamiltonian mechanics.

Under invariant construction of Hamiltonian formalism (following P. Dirac)

one proceeds from equations (1.3) and postulate properties of Poisson brack-

ets1, defined for functions given on a certain manifold M with coordinates

x = (x1, . . . , xn). These brackets should satisfy the following conditions:

1◦. {λF1 + µF2, G} = λ{F1, G} + µ{F2, G}, λ, µ ∈ R — bilinearity,

2◦. {F,G} = −{G,F} — skew-symmetry,

3◦. {F1F2, G} = F1{F2, G} + F2{F1, G} — the Leibnitz rule,

4◦. {{H,F}, G}+ {{G,H}, F}+ {{F,G}, H} = 0 — the Jacobi identity.

We’ll be calling the Poisson bracket {·, ·} the Poisson structure as well, and the

manifold M , on which it is given, the Poisson manifold.

In the above definition we abandoned the non-degeneracy requirement, (i.

e., for any function F (x ) 6≡ const there exist G 6≡ const, {F,G} 6≡ 0), which

1Hereinafter we say both Poisson brackets and bracket, allowing a certain liberty of language.
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are a fortiori satisfied for canonical structure (1.2). This permits, for example,

to introduce a Poisson bracket for odd-dimensional systems. In our reasoning

a Poisson structure may turn out to be degenerate and possess Casimir func-

tions Fk(x ), commutating with all variables xi and, hence, with any functions

G(x ) on M : {Fk, G} = 0. Casimir functions are also called central functions,

Casimirs or annihilators.

Properties 1◦– 4◦ allow to write the Poisson bracket of functions F and G
in the explicit coordinate form

{F,G} =
∑

i,j

{xi, xj} ∂F
∂xi

∂G

∂xj
. (1.5)

Basic brackets J ij = {xi, xj} are called structural functions of Poisson

manifold M with respect to the given, as a matter of fact, local frame of ref-

erence x = (x1, . . . , xn) [7, 135]. They form structural matrix (tensor) J =
= ‖J ij‖ of the size n× n.

If

J =

(
0 E

−E 0

)
, E = ‖δji ‖, (1.6)

then we receive a canonical Poisson bracket, determined by formula (1.2).

A structural matrix J(x ) meets the following conditions, resulting from

1◦– 4◦:

I. skew-symmetry:

J ij(x ) = −J ji(x ), (1.7)

II. the Jacobi identity:

n∑

l=1

(
J il ∂J

jk

∂xl
+ Jkl ∂J

ij

∂xl
+ Jjl ∂J

ki

∂xl

)
= 0. (1.8)

Therefore, for instance, any constant skew-symmetrical matrix ‖J ij‖ spec-

ifies a Poisson structure.

An invariant object, determined by tensor J, is a bivector (bivector field):

J(dF, dG) =
∑

J ij(x ) ∂F

∂xi
∧ ∂G

∂xj
,

where dF is a covector with components ∂F

∂xi
.
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On a manifold (of arbitrary dimensionality) the vector field XH = {x , H}
determines the Hamiltonian system, which in the component notation may be

written as

ẋi = X i
H = {xi, H} =

∑

j

J ij(x)∂H

∂xj
. (1.9)

The function H = H(x) is also called Hamiltonian (Hamilton function).

The commutator of vector fields and Poisson brackets are related as

[XH , XF ] = −X{H,F}.

It’s also easy to check that any Hamiltonian field gives rise to the transformation

(phase flow), preserving Poisson brackets.

The function F (x) is referred to as the first integral of a system if its

derivative along the system equals zero: Ḟ = XH(F ) = 0. This condition is

equivalent to {F,H} = 0.

The system of equations

F1(x) = 0, . . . , Fk(x) = 0 (1.10)

sets a system of invariant relations (these relations define an invariant manifold)

if {Fi, H} = 0 on the manifold defined by (1.10).

Nondegenerate bracket. Symplectic structure. If a Poisson bracket is

nondegenerate, then it can be uniquely matched with a closed nondegenerate

2-form. Indeed, for any smooth function F the operation XF = {F, ·} is a

differentiation which gives a certain tangent vector on M . Using 1◦– 4◦, in this

case we can show that every tangent vector can be represented in such a form.

Let’s define the 2nd form of ω2, using the formula

ω2(XG, XF ) = {F,G}.

From axioms 1◦- 4◦ it follows that it is bilinear, skew-symmetric, nondegenerate

and closed. This 2nd-form is referred to as a symplectic structure, and the

manifold M as a symplectic manifold.

In the coordinate representation the form of ω2 is written as
∑
i,j

ωijdxi∧dxj ,

where ‖ωij‖ = ‖J ij‖−1, and in canonical case (1.6) ω2 =
∑
i

dpi ∧ dqi. Any

symplectic structure can be locally reduced to such a form in accordance with

the Darboux theorem [135]. In the section to follow we’ll give a more general

statement of this theorem.
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Symplectic foliation. Darboux theorem generalization. If a Poisson

bracket is degenerate, then the Poisson manifold (phase space) foliates into sym-

plectic fibres (leaves). For these leaves Poisson structure contraction is no longer

degenerate. As a rule, these leaves constitute the general level of all Casimir

functions. Both the Darboux theorem and the canonical form of equations of

motion are valid on a leave. However, reducing to such a system is not al-

ways necessary for applications, for it usually leads to the loss of algebraicity of

differential equations and limitations in using geometry and topology research

procedures.

Remark. To find integrals, particular solutions and to analyze stability, rigid-body

dynamics generally uses the algebraic form of equations of motion. This form is also good

for their numerical integration as a result of the canonical form having some peculiarities,

related to local variables degenerating at some individual points, for example, Euler

angles Poisson sphere poles, see §§ 2, 3.

For the matters of quality analysis and perturbation theory generation, the canonical

form of notation is normally used, because it has these methods well developed and

algorithmized.

Poisson structure rank at the point x ∈M is a structure tensor rank at this

point (it’s obviously even). Poisson structure rank on the whole manifold M is

the maximum rank it has at a certain point x ∈ M. For symplectic manifolds

Poisson structure rank at any point is constant and maximum.

Let’s state the general Darboux theorem for arbitrary Poisson manifolds

[31, 135].

Theorem 1. Let (M, {· , ·}) be a Poisson manifold of n-dimensionality and

rank of the bracket {· , ·} at the point x ∈ M be locally constant and equal to

2r (Poisson structure rank). Then there exists a local system of (canonical)

coordinates x1, . . . , xr, y1, . . . , yr, z1, . . . , zn−2r, where Poisson brackets are

written as

{xi, xj} = {yi, yj} = {xi, zk} = {yi, zk} = {zk, zl} = 0,

{xi, yj} = δij ,

where 1 6 i, j 6 r, 1 6 k, l 6 n− 2r.

In the mentioned coordinates a symplectic leave is given by the equation

zi = ci, (ci = const), and a symplectic structure on it by the form ω =
=
∑
i

dxi ∧ dyi.
Singular symplectic leaves pass through the points where the Poisson

bracket rank is not maximum (less than 2r) (for more details see [31]). Sys-

tems on singular symplectic leaves are also often found in mechanics [31, 141].
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2. The Lie –Poisson Bracket

One of the most important examples of the Poisson structures concerns Lie

algebras. Let ckij be structural constants of algebra g in the basis v1, . . . , vn.

The Lie –Poisson bracket of the couple of functions F,H , given on some (or

other) linear space V with coordinates x = (x1, . . . , xn) and basis ω1, . . . , ωn,

is defined by the formula

{F,H} =
n∑

i,j=1

Jij(x ) ∂F
∂xi

∂H
∂xj

, (1.11)

where Jij(x ) =
∑
k

ckijxk is a structural tensor, linear with respect to xk . All the

necessary identities 1◦–4◦ (see s. 1) for a structural tensor can be obtained from

the properties of structural constants of Lie algebra:

1. ckij = −ckji,

2.
∑

m

(climc
m
jk + clkmc

m
ij + cljmc

m
ki) = 0.

As it’s commonly known from the theory of Lie algebras, Lie –Poisson

structure symplectic leaves represent orbits of the coadjoint presentation of the

corresponding Lie group (see [6, 7, 135]). Formal statement and corresponding

proof are given, for example, in [6]. the Hamilton equations for the Lie –Poisson

structure in componentwise notation are written as

ẋi = {xi, H} =
∑

k,j

ckijxk
∂H

∂xj
. (1.12)

Remark. Equations (1.12) may be also written in a more invariant coordinate-free

form

ẋ = ad∗

dH(x ), x ∈ �∗, (1.13)

where ad∗

ξ , (

� ∈ �) is an operator of the coadjoint presentation of a Lie algebra

� : ad∗

ξ : �∗ → �∗.

In rigid body dynamics the Lie –Poisson bracket is found very frequently,

because the system configurational space is normally represented by a certain

combination of natural Lie groups (SO(3), E(3), . . .). However, under reduc-

tion with respect to cyclic variables, nonlinear Poisson brackets may appear (see

§§ 1, 2 ch. 4).

Let’s now address to the derivation of rigid body motion equations from

the main dynamic principles.



32 Chapter 1

§ 2. Poincaré and Poincaré–Chetayev Equations

1. Poincaré Equations

The most natural forms of rigid body motion equations, convenient for

investigations, may be obtained from general equations of dynamics in quasi-

coordinates. The Lagrangian form of these equations was determined by

H. Poincaré [255], and the Hamiltonian form by N. G. Chetayev [181]. Their

possible generalizations for a nonholonomic case were examined in [91, 154]. In

rigid body dynamics Poincaré –Chetayev equations result in Hamiltonian equa-

tions with a linear structural tensor, i. e., in the Lie –Poisson structure just exam-

ined (see § 1). We’ll adduce here our own derivation of Poincaré and Poincaré –

Chetayev equations, because the available literature lacks their discussion.

Let’s consider equations of motion of a Lagrangian dynamic system deter-

mined by generalized redundant coordinates q = (q1, . . . , qn) (which are depen-

dent, i. e., m < n holonomic constraints of the type fj(q) = 0, j = 1, . . . , m
are imposed in these coordinates) and by quasi-velocity ω = (ω1, . . . , ωk) ex-

pressed in terms of generalized velocities q̇i according to the formulae

q̇i =

k∑

s=1

vsi (q)ωs, i = 1, . . . , n. (2.1)

Here it is supposed that every holonomic constraint is taken into account,

i. e.,

(∇fj , q̇) =
∑

i, s

vsi (q)ωs
∂fj

∂qi
≡ 0, j = 1, . . .m.

In case k > n − m, this condition leads to the fact that quasi-velocities are

connected via relations, linear with respect to ωi.
The quantities ωs are referred to as Poincaré parameters and represent the

system velocity components in a nonholonomic basis of vector fields

vs =
∑

i

vsi (q)
∂
∂qi

. (2.2)

Suppose that vector fields form a closed system

[vi,vj ] = csij(q)vs, i, j, s = 1, . . . , k. (2.3)

In case k 6 n, this condition is a consequence of the integrability of constraints

[135]. If every csij is constant, then fields vs determine a certain finite Lie
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algebra. The equations of motion in variables (q1, . . . , qn, ω1, . . . , ωk) in the

Lagrangian form are written as:

d
dt

(
∂L
∂ωi

)
=
∑

r,s

csriωr
∂L
∂ωs

+ vi(L), i = 1, . . . , k, (2.4)

and are called Poincaré equations. Together with (2.1), they constitute the

whole system of equations of motion. In formula (2.4) the differentiation along

the vector field vi is found by means of formula (2.2).

If a Lagrange function is a homogeneous quadratic form of its angular

velocities (e. g. kinetic energy), then vi(L) = 0, and system (2.4), determining

ω, is separated and integrated by itself. In this case equations (2.4) are referred

to as Euler –Poincaré equations.

Poincaré obtained his equations, using the Hamilton variation principle [255]. We’ll

show the derivation of equations (2.4) directly from Euler – Lagrange equations for the

case, when the number of components of the quasi-velocity � = (ω1, . . . , ωk) coincides

with the dimensionality of configurational Mk-space, being defined by relations fj(

�) =
= 0, j = 1, . . . ,m, e. g. k = n −m.

Introduce local coordinates xi on Mk , for which Euler – Lagrange equations may

be written as

d
dt

�

∂L
∂ẋi

�

−

�

∂L
∂xi

�

= 0, i = 1, . . . , k. (2.5)

According to (2.1), (2.2), the following relations are valid

ωs =
k �

i=1

aisẋi, ẋi =
k �

s=1

bsiωs,

�s =
k �

i=1

bsi
∂
∂xi

, i, s = 1, . . . , k,

(2.6)

where A = ‖ais‖, B = ‖bsi ‖ are reciprocal matrices (AB = E).

Now, represent the Lagrange function in terms of quasi-velocities as

L̃( �, �) = L( �, ˙ �). (2.7)

By means of (2.6) we obtain

∂L
∂xi

= ∂L̃
∂xi

+

�

k, s

ẋk
∂L̃
∂ωs

∂bks
∂xi

,

∂L
∂ẋi

=

�

s

∂L̃
∂ωs

bis, i = 1, . . . , k.

(2.8)
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Substitute (2.8) into equations (2.5) and multiply them by the matrix A, then in the

obtained system make substitution (2.6) and use the following representation for structural

coefficients (2.3):

crsp(x) =

�

k, i

akr

�

bsi
∂bpk
∂xi

− bpi
∂bsk
∂xi

�

.

Collecting similar terms will produce equations (2.4).

In case when the number of quasi-velocities exceeds configurational space dimen-

sionality, the arguments become somewhat more complicated because the matrices A, B

are not quadratic and do not have reciprocal ones.

2. Poincaré –Chetayev Equations

N. G. Chetayev modified Poincaré equations (2.4), (2.1), having made use

of Legendre transformation:

Mi = ∂L
∂ωi

,

∑

i

ωiMi − L |ω→M = H(M , q).
(2.9)

The variables Mi mean “quasi-momenta”. In this case ωi = ∂H/∂Mi, and

equations (2.4) may be written as:

Ṁi =
∑

rs

csri
∂H
∂Mr

Ms − vi(H), i = 1, . . . , k. (2.10)

To obtain a closed system, equations (2.10) should be supplied with (2.1)

in the form

q̇i =
∑

s

vsi (q) ∂H
∂Ms

, i = 1, . . . , n. (2.11)

System of equations (2.10), (2.11) is a Hamiltonian system with a Poisson

degenerate bracket, being determined for arbitrary functions f(M , q), g(M , q)
by the formula [181]

{f, g} =
∑

i

(
∂g

∂Mi
vi(f) − ∂f

∂Mi
vi(g)

)
+
∑

sij

csij
∂f

∂Mj

∂g

∂Mi
Ms. (2.12)

It is not a problem to check that this bracket satisfies all the necessary conditions

1◦– 4◦ (§ 1, s. 1). From relation (2.12) we can easily obtain the structural matrix
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J ij :
{Mi,Mj} =

∑

s

csij(q)Ms,

{qi, qj} = 0, {qi,Mj} = vji (q).

(2.13)

Historical comment. For equations of dynamics in the form (2.10), (2.11),

N. G. Chetayev [181] was also developing the integration theory, similar to the

Hamilton – Jacobi method. However, if in the canonical case successful variables

separation is connected with remarkable frames of reference on configurational space

(like elliptic or sphero-conical coordinates), for the algebraic notation form (2.10),

(2.11) only trivial symmetries (existing, for example, in the Lagrange case (see ch.

2)) may be examined this way.

This very fact caused ceasing the following development of his considerations

about Routh theorem generalizations, concerning cyclic integral presence and order

reduction. For Poincaré –Chetayev equations, in the presence of the first integrals

(like cyclic ones), ch. 4, §§ 1, 2 offers a new reduction procedure which enables

receiving the equations of the reduced system in the simplest algebraic form and in

some cases leads to nonlinear Poisson brackets.

3. Equations on Lie Groups

In rigid body dynamics a configurational space is, as a rule, a certain natural

Lie group. For example, when a rigid body rotates around a fixed point, it is a

group SO(3); under unrestricted motion of a rigid body it is E(3) = SO(3) ⊗s

R
3, which is a semidirect product of a rotation algebra SO(3) and a commutative

translation algebra R
3.

As a basis of vector fields vs (2.2) it’s convenient to take left-invariant

(right-invariant) vector fields from its Lie algebra. Then, tensor ckij doesn’t

depend on coordinates and is defined by Lie algebra structural constants. Bracket

(2.12) determines so called canonical structure on a cotangent foliation with a

base: a Lie group [31].

If the Hamiltonian H doesn’t depend on qi, i. e. (vi(H) = 0), then the

equations for quasi-momenta M1, . . . , Mk become closed. That’s the way to

obtain Euler equations of rigid body inertial motion, when constants csij are

defined by the algebra so(3). For an arbitrary algebra with structural constants

csij the equations of such kind with a quadratic Hamiltonian are also (as in sec.

1) called Euler –Poincaré equations.

If the HamiltonianH depends on coordinates, but one can choose redundant

coordinates in such a way that all the components of left-invariant fields vsr(q)
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are linear with respect to q , then bracket (2.13) becomes an ordinary Lie –Pois-

son bracket, and all the geometric relations for redundant variables will be its

Casimir functions or invariant relations. It can be achieved if Lie group matrix

realization be used, and its matrix components be chosen as redundant coordi-

nates. The Lie –Poisson structure, thus received, corresponds to the semidirect

sum g ⊕s R
n2

, where R
n2

is a space of n × n-matrices, g is a Lie algebra of

the given group. The above mentioned structure is called a natural canonical

structure of a cotangent foliation to a Lie group. This technique can be used,

for example, to obtain equations of motion of rigid body in terms of direction

cosines and momenta (see § 4). Lie group matrix realization ia also applied in

dynamics of multidimensional rigid body [24, 31].

Hamilton equations on a Lie group in a natural canonic structure for prob-

lems of rigid body dynamics (which has all the groups unimodular) always have

a standard invariant measure. It’s the analogue of the Liouville theorem about

solenoidality of canonical Hamiltonian flow.

The detailed derivation of equations of motion of a rigid body in an arbi-

trary potential force field is studied in § 4. More complicated equations whose

derivation requires using the main principles of hydrodynamics describing a

rigid body motion in fluid and also a body with cavities filled with fluid, are

considered in ch. 5, § 2.

4. Comments

So, Poincaré and Poincaré –Chetayev equations represent only a convenient

means for recording Lagrangian and Hamiltonian forms of equations of motion of a

system in terms of an arbitrary system of variables, including redundant ones. At

the same time, the possibility of such a representation is connected with the system

having a tensor invariant: a Poisson structure whose coordinate notation depends on

the choice of variables, the Poisson structure for redundant variables being admittedly

degenerate. It should be mentioned that the Lagrangian system with the Lagrangian

function, non-degenerate with respect to velocities, is admitted to have this tensor

invariant.

It would be interesting to note that the majority of mechanics can comprehend

the connection of the Lagrangian and Hamiltonian forms in the canonical notation

only. Thus, in the book [21] the Hamiltonian form of rigid body dynamics equations

is considered to be deliberately established from certain, not quite natural considera-

tions, in particular, with the reference to the paper [133], where the author, without

being fully aware of the general formalism of dynamic equations, in fact even redis-

covers Euler angles and conjugate momenta. Further, in [21] the author is proving
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several strange theorems that the Lagrangian form can be obtained from the Hamil-

tonian one; and here we certainly have a kind of confusion, as far as the Poisson

commutation of moment components with the momentum and direction cosines is

identical, so that the same Kirchhoff’s equations may be envisioned, on the one

hand, as a part of momentum equations on the group E(3) — Euler –Poincaré

equations for M , p, which, in case of a zero potential, is separated from positional

equations (for direction cosines), and, on the other hand — as Hamiltonian equations

on SO(3), in which connection the components of momentum force p are bound to

be interpreted as direction cosines. Here, by the way, lies Steklov analogy [160]

(see also § 4 and ch. 3, § 9).
The complicated coordinate form of the notation of Newton’s equations of

satellite dynamics is used in [11], where even an energy integral presence is not

evident at all.

Even in the outstanding book [97] the author is proving the statement concern-

ing “non-Hamiltonianity” of Euler –Poincaré equations (considered separately from

positional variables), which is supposed to be connected with the absence of the

invariant measure, having a certain analytical structure which, for example, solvable

(non-unimodular) Lie groups lack.

Here we should also mention the book [249] and the works of the same

style in general (J.Marsden, A.Weinstein and others), where, as a result of the

excessive formalization of both forms of dynamic equations and reduction procedure,

even rather simple problems require great intellectual efforts. As for a bit more

complicated mechanical problems, they just remain beyond the framework of such an

approach.

§ 3. Various Systems of Variables in Rigid Body Dynamics

Various systems of variables are used for describing rigid body motion.

Each and every system has both advantages and disadvantages for each partic-

ular problem. So, the first integral obtaining and investigating some matters of

stability and topological analysis require variables, in which the equations are

polynomial (or even homogeneous). For numerical integration, apart from a sim-

ple system of differential equations, it’s desirable to have the minimum order of

the system. For high-quality examination and application of perturbation theory

and nonlinear normalization methods there is a need for systems of canonical

variables, which are the best for reflecting the specific character of the unper-

turbed problem. Here we adduce the main sets of variables used in rigid body

dynamics. In practice, especially in applications to gyroscopic devices, vari-
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ous combinations and modifications of these systems, possessing more special

properties, are used.

1. The Euler Angles

Consider a rigid body rotating in a potential force field around a fixed

point O. Various systems of variables are used for its motion description. The

configurational space constituting the set of all rigid body positions is a Lie

group SO(3). Then the Euler angles θ, ϕ, ψ [9] may be taken as coordinates

defining a rigid body position.

For their introduction let’s take the point O as a place for the apices of two

orthogonal trihedrons: fixed OXY Z and moving Oxyz, rigidly bound with the

rotating rigid body (fig. 1).

Figure 1. The Euler angles

The first rotation through the angle ψ
(precession angle) about the axis OZ trans-

fers the moving trihedronOxyz into the posi-

tion Ox′y′z′. The second rotation through the

angle θ (nutation angle) is made around the

axis Ox′, referred to as a node line. The last

rotation through the angle ϕ (a proper rota-

tion angle) around the axis Oz aligns both tri-

hedrons. Thus, three rotations defined by the

Euler angles θ, ϕ, ψ allow to make the com-

plete specification of the position of moving

trihedron with respect to the fixed one. The

projections of angular velocity ω ω1, ω2, ω3

on the moving trihedron Oxyz axes are expressed in terms of the Euler angles

as follows:

ω1 = ψ̇ sin θ sinϕ+ θ̇ cosϕ,

ω2 = ψ̇ sin θ cosϕ− θ̇ sinϕ,

ω3 = ψ̇ cos θ + ϕ̇.

(3.1)

These relations are called Euler’s kinematic formulae. Using (3.1), it’s easy to

write the Lagrange function of the system L = L(ϕ, ψ, θ, ϕ̇, ψ̇, θ̇) (see § 6). It

helps to define canonical momenta (by means of the Legendre transformation):

pϕ = ∂L
∂ϕ̇

, pψ = ∂L

∂ψ̇
, pθ = ∂L

∂θ̇
. (3.2)
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2. The Euler Variables. Momentum Components and Direction Cosines

Consider another system of variables (M ,α,β,γ), where M =
= (M1,M2,M3) are angular momentum components along the coordinate axes

of the system Oxyz attached to the body, and α,β,γ are projections of the

fixed space unit vectors onto the same axes. The matrix of direction cosines (a

rotation matrix) defining the rigid body position in the fixed space

Q =



α1 β1 γ1

α2 β2 γ2

α3 β3 γ3


 , (3.3)

is an orthogonal one and belongs to the group SO(3).
It’s evident that

(α, α) = (β, β) = (γ, γ) = 1,
(α, β) = (α, γ) = (β, γ) = 0,

where, and hereinafter, the round brackets mean an ordinary scalar product.

Taking these relations into account, we’ll receive that the angular veloc-

ity projections onto the moving trihedron ω = (ω1, ω2, ω3) may be repre-

sented as a skew-symmetrical matrix ω̃ = QQ̇T , ω̃ = ‖ωjk‖ with components

ωij = −εijkωk.
Similarly, projections of the angular velocity Ω = (Ω1,Ω2,Ω3) onto the

axes OXY Z may be obtained from the matrix QT Q̇.

The directions of vectors of angular velocities ω and Ω in the moving

and fixed spaces specify conical surfaces, referred to by Poinsot as loose and

fixed axoids. In this case the rigid body motion itself is represented as sliding-

free rolling of a loose axoid over the fixed one, both making contact along the

instantaneous axis of rotation at each moment of time. If free motion of a body

(without a fixed point) be considered, then in the corresponding interpretation

the motion will look like rolling of one axoid over the other together with the

sliding along a certain axis defining instantaneous helical (spatially-rotational)

motion. If instantaneous values of angular velocities be marked along axoid

generatrices, then we correspondingly receive loose and fixed hodographs. In

the general case they represent complicated spatial curves.

By means of the Lagrange function L = L(ω, α, β, γ) the angular mo-

mentum M is expressed in terms of angular velocity by the formula

M = ∂L
∂ω

. (3.4)
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It is connected with the Euler variables ϕ, ψ, θ, pϕ, pψ, pθ by the following

relations, which can be obtained from Euler kinematic equations (3.1), (3.2)

M1 =
sinϕ

sin θ
(pψ − pϕ cos θ) + pθ cosϕ,

M2 =
cosϕ

sin θ
(pψ − pϕ cos θ) − pθ sinϕ,

M3 = pϕ.

(3.5)

Remark 1. Our terminology is somewhat different from the rigid body dynamics

definition of the moment M =

�

ri ×mivi, though both terms agree if L = T is a

kinetic energy. The difference arises in the presence of gyroscopic forces, which in the

Lagrangian lead to the terms, linear with respect to generalized velocities. Then definition

(3.4), originating from Chetayev transformation, is more convenient.

Remark 2. The connection of direction cosines (3.3) with the Euler angles is ex-

pressed in the matrix form

Q =

��
�

cosϕ cosψ− cos θ sinψ sinϕ cosϕ sinψ+ cos θ cosψ sinϕ sinϕ sin θ
− sinϕ cosψ− cos θ sinψ cosϕ − sinϕ sinψ+cos θ cosψ cosϕ cosϕ sin θ

sin θ sinψ − sin θ cosψ cos θ

��
� .

3. Rodrigue –Hamilton Quaternion Parameters

It was already noticed by C. Gauss that the rigid body position may be

uniquely determined by the set of quaternions λ = λ0 + iλ1 + jλ2 + kλ3 with

the unit norm λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1. They form the group Sp(1), which is

the universal covering group of SO(3) (SO(3) ≈ Sp(1)/ ± 1) [75]. The way

to introduce such kind of redundant coordinates, referred to in mechanics as

Rodrigue –Hamilton parameters, may be looked up, for example, in the treatise

by Whittaker [167]. Let’s clarify the geometrical meaning of parameters λs
[108, 167].

Kinematics says that if a rigid body has a fixed point O, then from any

position of this body it’s possible to move into the given position, making a

rotation through the angle χ with respect to the axis OL, attached to the body

(fig. 2). Let the orientation of the axis OL be given by the unit vector e. The

position of any point of the body is defined by the position vector
−−→
OM = r. Let

the vector r take position
−−→
OM

′
= r′ after the rotation. The vector

p =
−−→
OM

′
−−−→
OM = r′ − r
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Figure 2. Rodrigue – Hamilton quaternion parameters.

may be expressed in terms of r, e and χ. The relation mentioned is determined

by the Rodrigue formula

p = 1

1 + 1
4
θ2
θ × (r + 1

2
θ × r), (3.6)

where the vector

θ = 2 tg
χ

2
e (3.7)

is called a finite rotation vector. This vector is directed along the axis of the unit

vector e and its magnitude equals 2 tg(χ/2).
Let

e = i cosα′ + j cosβ′ + k cos γ′, (3.8)

where α′, β′, γ′ are the angles formed by the vector e with the axes x, y, z.

These very quantities

λ0 = cos
χ

2
, λ1 = cosα′ sin

χ

2
,

λ2 = cosβ′ sin
χ

2
, λ3 = cos γ′ sin

χ

2

(3.9)

are Rodrigue –Hamilton parameters. A parameter λ0 equals the cosine of the

half-angle χ, defining the body finite rotation. Remaining parameters λ1, λ2,
λ3 are proportional to the sine of the half-angle χ multiplied by cosines of the

angles between the axis OL and coordinate axes.
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There exists a certain relation between Rodrigue –Hamilton parameters and

the Euler angles θ, ϕ, ψ:

λ0 = cos θ
2

cos
ψ + ϕ

2
, λ1 = sin θ

2
cos

ψ − ϕ

2
,

λ2 = sin θ
2

sin
ψ − ϕ

2
, λ3 = cos θ

2
sin

ψ + ϕ

2
.

(3.10)

Direction cosines α,β,γ are quadratically related to quaternions. These

relations specify the Cayley parametrization of the group SO(3). Thus, we

obtain the double-covering of SO(3) by the three-dimensional sphere S3. Thus,

quaternions λi and −λi have one and the same corresponding element from

SO(3). A matrix of direction cosines (3.3) in quaternionic representation is

written as:

Q =

��
�
�

λ2
0 + λ2

1 − λ2
2 − λ2

3 2(λ0λ3 + λ1λ2) 2(λ1λ3 − λ0λ2)

2(λ1λ2 − λ0λ3) λ2
0 − λ2

1 + λ2
2 − λ2

3 2(λ0λ1 + λ2λ3)

2(λ0λ2 + λ1λ3) 2(λ2λ3 − λ0λ1) λ2
0 − λ2

1 − λ2
2 + λ2

3

��
�
� . (3.11)

In the index form for components of the matrix Q = ‖Qij‖ the expression

Qij = −2
(
λiλj +

(
λ2

0 − 1
2

)
δij − λ0λkεijk

)
.

is valid.

Remark 3. The relation between projections of angular velocity � and Rodrigue –

Hamilton parameters has the form

ω1 = 2(λ0λ̇1 + λ3λ̇2 − λ2λ̇3 − λ1λ̇0),

ω2 = 2(−λ3λ̇1 + λ0λ̇2 + λ1λ̇3 − λ2λ̇0),

ω3 = 2(λ2λ̇1 − λ1λ̇2 + λ0λ̇3 − λ3λ̇0).

Remark 4. Complex quantities α, β, γ, δ, satisfying the condition

αδ − βγ = 1,

and referred to as Cayley – Klein parameters, may be considered analogically to Ro-

drigue – Hamilton parameters. They may be regarded as components of the complex

rotation matrix

U =

�

α β
γ δ

�
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with the unit determinant.

The relation between Cayley – Klein and Rodrigue – Hamilton parameters is ex-

pressed by formulae

α = λ0 + iλ3, β = −λ2 + iλ1, γ = λ2 + iλ1, δ = λ0 − iλ3,

and their definition in terms of the Euler angles can be written as

α = cos θ
2
e
i
ψ+ϕ

2 , β = i sin θ
2
e
i
ψ−ϕ

2 ,

γ = i sin θ
2
e
−i
ψ−ϕ

2 , δ = cos θ
2
e
−i
ψ+ϕ

2 .

4. Andoyaer –Deprit Variables

Andoyaer –Deprit variables find the widest application in the perturbation

theory and have a dynamic origin illustrated by fig. 3 (see also [71, 92, 31]).

Figure 3. Andoyaer – Deprit Variables.

Here OXY Z designates a fixed trihedron with the origin in the fixation

point, Oxyz is a moving frame of reference, rigidly bound to the body, Σ is

a plane, passing through the fixation point and perpendicular to the angular

momentum vector of top M (3.5). In the agreed notations:

L is an angular momentum projection on the moving axis Oz;

G is an angular momentum magnitude;

H is an angular momentum projection on the fixed axis OZ;
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l is an angle formed by the axis Ox and the intersection line of Σ with the

planes Oxy and OXY ;

g is an angle formed by the intersection line of Σ with planes Oxy and

OXY ;

h is an angle between the axis OX and the intersection line of Σ with plane

OXY .

The expressions for angular momentum components in terms of variables

L, G, H , l, g, h have the form

M1 =
√
G2−L2 sin l, M2 =

√
G2−L2 cos l, M3 = L, G2 = M2, (3.12)

i. e., L, l are cylindric coordinates on a two-dimensional sphere in the space of

moments M1, M2, M3.

For components of all direction cosines there exist the following expres-

sions, which seem to be lacking in corpore in the literature available:

α1 = − sin l sinh cos g sin τ sin ζ + sin l sinh cos τ cos ζ−
− sin l sin g cosh sin τ − cos l sinh sin g sin ζ + cos l cos g cosh,

α2 = cos l cos g sinh sin τ sin ζ − cos l sinh cos τ cos ζ+

+ cos l cosh sin g sin τ − sin l sin g sin ζ sinh+ sin l cosh cos g,

α3 = sinh cos τ cos g sin ζ + sinh sin τ cos ζ + cos τ sin g cosh,

β1 = −(sin l cosh cos g sin τ sin ζ − sin l cosh cos ζ cos τ−
− sin l sin g sinh sin τ+ cos l cosh sin g sin ζ+cos l cos g sinh),

β2 = cos l cosh sin τ cos g sin ζ − cos l cosh cos ζ cos τ−
− cos l sin g sinh sin τ − sin l cosh sin g sin ζ − sin l cos g sinh,

β3 = − sinh cos τ sin g + cos τ cos g sin ζ cosh+ sin τ cos ζ cosh,

γ1 = (sin ζ cos τ + sin τ cos ζ cos g) sin l + cos ζ sin g cos l,

γ2 = (sin ζ cos τ + sin τ cos ζ cos g) cos l − cos ζ sin g sin l,

γ3 = sin ζ sin τ − cos τ cos ζ cos g,

(3.13)

where sin τ = L
G
, sin ζ = H

G
.

Remark 5. The expression of direction cosines γi in terms of Andoyaer – Deprit

variables may be found in several sources [9, 92, 28]. In this case we can make an
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inversion and use formulae L = M3, G =

�

(

�

,

�

), l = arctg

�

M1

M2
�

, g =

= arcsin

�

M2γ1 −M1γ2�

M2
1 +M2

2

�

. The expressions for α3, β3 may be obtained just from

geometrical considerations. To receive the rest of direction cosines one needs to use

commutative relations (4.16) given in the next section. The expressions for λi parameters,

indicated in the book [31], in terms of Andoyaer – Deprit variables are not correct. These

expressions can be received from the following relations

λ2
0 =

1 + α1 + β2 + γ3

4
, λ2

1 =
1 + α1 − β2 − γ3

4
,

λ2
2 =

1 − α1 + β2 − γ3

4
, λ2

3 =
1 − α1 − β2 + γ3

4
,

and λi themselves will be defined up to a sign.

5. Comments

The system of Andoyaer –Deprit variables cannot be divided into positional

and purely momentum components, like the Euler angles and conjugate canonical

momenta do. However, they are convenient for applying the perturbation theory

technique, on account of their connection with angular momentum components. In

two most popular integrable (unperturbed) problems of rigid body dynamics — the

Euler and Lagrange cases — the variables G and L are corresponding integrals of

motion. Similar systems of “osculating elements”, not necessarily canonical, were

already used by Poisson, Charlie, Andoyaer and by Tisserand for constructing

theories of physical libration of the Moon and rotary motion of planets in celestial

mechanics. When in this century A. Deprit introduced these systems in his paper

[71], his object was to clarify the phase geometry of the Euler case (see § 2 ch. 2),

which helped to realize their universal meaning in rigid body dynamics: they were

used for numerical investigations [28], and for the application of qualitative analysis

methods in [92], where they are referred to as special canonical variables.

The systematic investigation of motion equations of a heavy gyroscope in Ro-

drigue –Hamilton (and also Cayley –Klein) parameters is developed in the remark-

able book by F.Klein and A. Sommerfeld “On the Top Theory” [238] (it goes

without saying that the main results here are received by F.Klein, see as well

[237]). At that time the Hamiltonian structure of these equations (like equations on

Lie algebra) was not known yet, but, nevertheless, these parameters turned out to

be convenient both for explicit integration in elliptic functions, and for the analysis

of various particular solutions. The system of redundant variables (a kind of Plücker

coordinates), close to quaternions, was investigated by E. Studi in his book “Dy-
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name Geometry”. He has also calculated rigid body kinetic energy in terms of these

coordinates.

§ 4. Equations of Motion in Various Forms

1. Equations of Motion of a Rigid Body with a Fixed Point

We are going to show the most important forms of rigid body dynamics

equations in various systems of variables. The previous section remarks also

hold true in their respect. Their application is determined by the purpose of

investigation and depends on specific problem statement.

Euler –Poincaré equations on groupSO(3). Consider motion of a rigid

body, one of whose points remains fixed in space (in some inertial frame of

reference). In this case a configurational space is a group SO(3). We’ll use its

representation in terms of orthogonal matrices of direction cosines (3.3) (see § 3,

s. 2)

Q =



α1 β1 γ1

α2 β2 γ2

α3 β3 γ3


 ∈ SO(3), (4.1)

where, as above, α, β, γ are fixed space unit vector projections on the axes,

attached to the body.

Projections of the rigid body angular velocity ω = (ω1, ω2, ω3) on the

same axes may be determined from Poisson equations

α̇ = α× ω, β̇ = β × ω, γ̇ = γ × ω. (4.2)

These equations show that vectors α, β, γ are constant in the absolute space.

Rewriting (4.2) in the matrix form, we’ll obtain

Q̇ = ω̃Q, ω̃ = QQ̇T = −Q̇QT, (4.3)

where

ω̃ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

From the group perspective, angular velocity projections ωi in the coordi-

nate system attached to the body correspond to velocity components of the point

on the group SO(3) in the basis of left-invariant vector fields. Analogically, the
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angular velocity projection in the space Ωi have corresponding velocity compo-

nents in the basis of right-invariant vector fields

ω =
∑

k

ωkξk, ξk = −
∑

ij

εkij

(
αi

∂
∂αj

+ βi
∂
∂βj

+ γi
∂
∂γj

)
. (4.4)

To determine the fields ξk we’ll write the derivative with respect to time taking

into account (4.3)

df

dt
= Tr

(
Q̇T

∂f

∂Q

)
= Tr

(
(ω̃Q)T ∂f

∂Q

)
,

∂f

∂Q
=
∥∥∥ ∂f

∂Qij

∥∥∥, (4.5)

and grouping terms in ωi, we receive vector fields ξi (4.4).

Commutational relations for vector fields ξk are written as

[ξi, ξj ] = εijkξk, (4.6)

where εi,j,k are Levi-Civita symbols.

Substituting (4.4) and (4.6) into Euler –Poincaré equations (2.4), we’ll re-

ceive equations of motion in the form

d
dt

(
∂L
∂ω

)
= ∂L
∂ω

× ω + ∂L
∂α

×α+ ∂L
∂β

× β + ∂L
∂γ

× γ, (4.7)

which, combined with (4.2), constitute the complete system of equations of

motion of a rigid body with a fixed point. System (4.2), (4.7) was obtained

by J. Lagrange in the second volume of his celebrated “Analytical Mechanics”

[110].

Remark 1. We’ll show the matrix form of motion equations (4.2), (4.7), as well,

which allows a simple generalization for the multidimensional case

d
dt

�

∂L
∂ ˜ �

�

=

�

˜ �, ∂L
∂ ˜ �

�

+ ∂L
∂Q

Q
T −

�

∂L
∂Q

� T
Q, Q̇ =

� �

Q,

where
∂L
∂

� � =

��
��
��
��
�

∂L
∂

�

ωij

��
��
��
��
�

,
∂L
∂Q

=

��
��
��
�

∂L
∂Qij

��
��
��
�

, and [· , ·] is an ordinary matrix commutator.

Motion equations in terms of angular velocities and quaternions.

In addition to matrix realization (4.1) in § 3 we’ve also shown quaternion

parametrization of the group SO(3), for which vector fields (4.4) are linear

functions of coordinates, as well. Indeed, we can show that on the unit sphere
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λ2
0 + λ2 = 1, λ = (λ1, λ2, λ3) angular velocity components (4.3) and vector

fields (4.4) have the form [97, 108]

ω1 = 2(λ0λ̇1 − λ1λ̇0 + λ3λ̇2 − λ2λ̇3),

ω2 = 2(λ0λ̇2 − λ2λ̇0 + λ1λ̇3 − λ3λ̇1),

ω3 = 2(λ0λ̇3 − λ3λ̇0 + λ2λ̇1 − λ1λ̇2),

ξ1 = 1
2

(
λ0

∂
∂λ1

− λ1
∂
∂λ0

+ λ3
∂
∂λ2

− λ2
∂
∂λ3

)
,

ξ2 = 1
2

(
λ0

∂
∂λ2

− λ2
∂
∂λ0

+ λ1
∂
∂λ3

− λ3
∂
∂λ1

)
,

ξ3 = 1
2

(
λ0

∂
∂λ3

− λ3
∂
∂λ0

+ λ2
∂
∂λ1

− λ1
∂
∂λ2

)
.

(4.8)

Commutational relations for fields ξk also have the form (4.6).

If (4.8) is taken into account, Poincaré equations (2.4) are written as

d
dt

(
∂L
∂ω

)
= ∂L
∂ω

× ω + 1
2
λ0
∂L
∂λ

− 1
2
λ ∂L
∂λ0

+ 1
2
∂L
∂λ

× λ,

λ̇0 = −1
2
(ω, λ), λ̇ = 1

2
λ0ω + 1

2
λ× ω.

(4.9)

Kinetic energy of a rigid body with a fixed point in a vector and matrix

form may be represented as

T = 1
2
(ω, Iω) = −1

2
Tr(ω̃Jω̃). (4.10)

Here I = ‖Iij‖ is a tensor of inertia of a rigid body relatively to a fixed point

of the body. The tensor components are determined by means of the expression

Iij =

∫

τ

(y2δij − yiyj)ρ(y) d3y, (4.11)

where integration is carried out over all the points y of the body τ , and ρ(y) is

its density in the point y.

The tensor J = ‖Jij‖ is also called a tensor of inertia, but now it’s deter-

mined by the formula

Jij =

∫

τ

yiyjρ(y) d3y; (4.12)
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this tensor is usually used for multidimensional generalizations.

The connection between I and J is represented by relations

J = 1
2
(Tr I)E − I, I = (TrJ)E − J. (4.13)

In the system of axes, attached to the body, tensors I and J represent constant

symmetrical matrices (in fixed space I, J depend on coordinates). As a result

of commutativity (IJ = JI), these matrices may be simultaneously reduced to

the diagonal form. The corresponding frame of reference in the body is referred

to as principal, and its axes — as principal axes of (inertia).

2. Hamiltonian Form of Equations of Motion for Various Systems of

Variables

Motion equations in the algebraic form. The Hamiltonian form of equa-

tions (4.2), (4.7) may be represented by means of the Legendre transformation

M = ∂L
∂ω

, H = (M ,ω) − L|ω→M . (4.14)

For a natural system with kinetic energy (4.10) and potential energy

U(α,β,γ) we obtain

M = Iω, H = 1
2
(M ,AM) + U(α,β,γ), (4.15)

where A = I−1, M are the projections of angular momentum components on

the moving axes; α, β, γ are direction cosine components.

Proceeding from general formulae (2.13), and also from (4.6), we’ll obtain

that the Poisson bracket is defined by algebra so(3) ⊕s (R3 ⊕ R
3 ⊕ R

3), which

is a semi-direct sum of the rotation algebra and three translation algebras

{Mi,Mj} = −εijkMk, {Mi, αj} = −εijkαk,
{Miβj} = −εijkβk, {Mi, γj} = −εijkγk,

(4.16)

{αi, αj} = {βi, βj} = {γi, γj} = {αi, βj} = {αi, γj} = {βi, γj} = 0.

Hamiltonian equations of motion in the explicit form are written as

Ṁ = M × ∂H
∂M

+α× ∂H
∂α

+ β × ∂H
∂β

+ γ × ∂H
∂γ

,

α̇ = α× ∂H
∂M

, β̇ = β × ∂H
∂M

, γ̇ = γ × ∂H
∂M

,

H = 1
2
(M ,AM) + U(α,β,γ).

(4.17)
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The form (4.17) may be also used for representing equations of the rigid body

motion in a generalized potential field, for example, in a magnetic one; in this

case Hamiltonian H involves terms, linear with respect to M (see further).

Poisson bracket (4.16) is degenerate and possesses six Casimir’s functions

f1 = (α,α), f2 = (β,β), f3 = (γ,γ),

f4 = (α,β), f5 = (α,γ), f6 = (β,γ).
(4.18)

A nonspecial symplectic leave, homeomorphic to a cotangent foliation of a three-

dimensional sphere T ∗S3, has six dimensions. In consequence of fulfillment of

orthonormal relations, the symplectic leave is defined by the conditions: f1 =
= f2 = f3 = 1, f4 = f5 = f6 = 0. It happens because the symplectic leave has

six dimensions, and system (4.17) three degrees of freedom.

In a fixed frame of reference the rigid body position and velocity can be character-

ized by projections of unit vectors, bound to the body, on the fixed axes, expressed in

terms of rows of matrix Q, and angular momentum vector projections on the same axes

�

1 = (α1, β1, γ1),

�

2 = (α2, β2, γ2),

�

3 = (α3, β3, γ3),

N1 = (

�

, �), N2 = (

�

,

�

), N2 = (

�

, �).
(4.19)

It’s easy to show that variables

�

, �

1,

�

2,

�

3 also form the Lie – Poisson structure,

which differs from (4.16) only by sign

{Ni, Nj} = εijkNk,

{Ni, e1j} = εijke1k, {Ni, e2j} = εijke2k, {Ni, e3k} = εijke3k,

{eki, elj} = 0.

(4.20)

Thus, for example, a spherical pendulum in a potential field may be represented

just by means of variables

�

, �

3, where �

3 is a unit vector, directed from the center

of attaching to the bob,

�

= ml2 �, � = �

3 × ˙ �

3 is an angular velocity, and l is a

pendulum length. Besides, the relation (

�

, �

3) = 0 is valid; it is a zero orbit of e(3).

The Hamiltonian may be written as follows

H = 1

2ml2

�2 + U( �

3). (4.21)

So, a spherical pendulum may be represented as a spherical top on a zero orbit of algebra

e(3).

It’s also convenient to use these basic elements for description of reduction in the

presence of the Lagrange integral F = M3 = const (see §§ 1, 2 ch. 4).
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Quaternion representation of equations of motion. For practical com-

putations redundancy of equations (4.17) is very inconvenient, because, for ex-

ample, under numerical integration of these equations the orthonormal relations

are rapidly violated. This drawback is absent in the quaternion form of represen-

tation of equations of motion. This form is indicated by the authors in [30, 31].

The direction cosine matrix in quaternion representation has the form (3.11), and

corresponding commutational relations are

{Mi,Mj} = −εijkMk, {Mi, λ0} = 1
2
λi,

{Mi, λj} = −1
2
(εijkλk + δijλ0), {λµ, λν} = 0.

(4.22)

A Lie algebra, specifying them, is a semi-direct sum of rotation algebra so(3)
and translation algebra R

4 : l(7) ≈ so(3) ⊕s R
4.

Bracket (4.22) is a degenerate one and possesses the only Casimir’s function

F (λ) = λ2
0 + λ2

1 + λ2
2 + λ2

3. (4.23)

A nonspecial symplectic leave is also homeomorphic to cotangent foliation of a

three-dimensional sphere T ∗S3; the leave has six dimensions. The equations of

motion can be written as

Ṁ = M × ∂H
∂M

+ 1
2
λ× ∂H

∂λ
+ 1

2
∂H
∂λ0

λ− 1
2
λ0
∂H
∂λ

,

λ̇0 = −1
2

(
λ, ∂H
∂M

)
, λ̇ = 1

2
λ× ∂H

∂M
+ 1

2
λ0

∂H
∂M

.

(4.24)

To be able to integrate them, we also need two integrals in involution.

Remark 2. For real systems, descending from rigid body dynamics, a Hamiltonian

H is a single-valued function on the group SO(3), and as a result of its double covering

by quaternions (3.11) the Hamiltonian function depends only on quadratic combinations

λiλj . Nevertheless, systems containing the Hamiltonian, arbitrarily depending on quater-

nions, can be found in other sections of mechanics: celestial mechanics in a curved

space, the Leggette system, quantum mechanics of spins (see ch. 3, 4). It’s possible

that the form (4.24) is more significant just for quantum mechanics, where some effects

essentially concern additional spin variables.

Canonical equations in Euler angles and Andoyaer –Deprit variables.

In the Euler angles (θ, ϕ, ψ) and corresponding canonical momenta pθ, pϕ, pψ
the equations of motion have the ordinary Hamiltonian form

ṗ = −∂H
∂q

, q̇ = ∂H
∂p

, q = (θ, ϕ, ψ), p = (pθ, pϕ, pψ). (4.25)
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This form can be obtained from Lagrangian formalism in terms of variables

(θ, ϕ, ψ, θ̇, ϕ̇, ψ̇) by means of the ordinary Legendre transformation

p = ∂L
∂q̇

, H(p, q) = (p, q)
∣∣∣
q̇,q→p,q

.

Here L is a Lagrange function, which in case of a natural system has the form

L = T − U(θ, ϕ, ψ), where the Lagrangian is determined by formulae (3.1).

Kinetic energy of a rigid body does not depend on ψ and is written as

T = 1
2
(AM ,M ) = 1

2

[
a1

( sinϕ

sin θ
(pψ − pϕ cos θ) + pθ cosϕ

)2

+

+ a2

( cosϕ

sin θ
(pψ − pϕ cos θ) − pθ sinϕ

)2

+ a3p
2
ϕ

]
.

(4.26)

The rigid body motion in a potential field is described by means of a natural

system, and the Hamiltonian has the form:

H = T + U(θ, ϕ, ψ). (4.27)

If the potential energy does not depend on ψ
(
∂U
∂ψ

= 0
)
, which corresponds

to the force field invariance with respect to rotation around a vertical axis, fixed

in space, then variable ψ is cyclic, and generalized momentum pψ = (M ,γ)
is conserved. Applying the Routh reduction with respect to precession angle

ψ, we obtain the system, describing motion of a point over a sphere γ2 = 1
(where γ1 = sin θ sinϕ, γ2 = sin θ cosϕ, γ3 = cos θ), called a Poisson sphere.

In case pψ 6= 0, the Hamiltonian contains terms, linear with respect to veloc-

ities (gyroscopic members). They can’t be removed by means of coordinate

transformations and correspond to motion in a generalized potential field. The

impossibility of removing results from the global effect of the “monopole” ap-

pearance. Its value can be calculated as integral of the form of gyroscopic force

over the Poisson sphere (see [133]). P. Dirac was the first to pay attention to the

“monopole” problem in view of the problem of quantization of a particle motion

on a sphere. When pψ = 0, the reduced system is again natural.

In the presence of dynamical symmetry a1 = a2, kinetic energy (4.26) is

somewhat simplified and doesn’t depend on angle ϕ

T = 1
2

(
a1

(
p2
θ +

(pψ − pϕ cos θ)2

sin2 θ

)
+ a3p

2
ϕ

)
. (4.28)
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If potential U doesn’t depend on ϕ (i. e. ∂U
∂ψ

= ∂U
∂ϕ

= 0), in other words

U = U(θ) = U(γ3), then there exists one more cyclic integral pϕ = M3 =
= c2 = const — the Lagrange integral, corresponding to the system invariancy

relatively to rotations around the dynamic symmetry axis. After the reduction

we obtain an integrable unidegree system (for more details see § 3 ch. 2). In

case pψ = c1 6= 0, but pϕ = c2 = 0, equations describe a spherical pendulum

motion.

In Andoyaer –Deprit variables the equations of motion also appear as

(4.25), where q = (l, g, h), p = (L, G, H). As far as variables

L, G, H, l, g, h don’t contain purely positional coordinates, which uniquely

describe the body position, i. e., in cotangent foliation TS3 they “mix” varia-

tional bases and fibres, then in the general case potential U depends on a whole

set of variables U = U(L, G, H, l, g, h).

Kinetic energy T is written as

T = 1
2

[
(G2 − L2)(a1 sin2 l + a2 cos2 l) + a3L

2
]
. (4.29)

And again it’s easy to obtain that

1) if ∂U
∂h

= 0, then there exists an area integral H = pψ = (M , γ) = c =

= const,

2) if a1 = a2 and ∂U
∂l

= 0, then there exists the Lagrange integral L =
= c2 = const.

The peculiarity of kinetic energy representation in the form (4.29) is its

independence of the variable g. It allows immediate integration of the Euler

problem — a free top motion, for which U ≡ 0 (see § 1 ch. 2). The corresponding

cyclic integral is G = const. It represents the angular momentum magnitude

G2 =M 2. This fact makes Andoyaer –Deprit variables useful for geometric

interpretation and perturbed case analysis. The phase portrait of the Euler case

on a sphere cylindrical development is shown at fig. 5. At superposition of

perturbation, for example, a gravity field, the phase-plane portrait shows chaotic

motions near separatrices, connecting unstable uniform rotations (fig. 6). Let us

dwell on phase flow visualization methods.

3. The Poincaré Cross-Section and Chaotic Motions

To visualize chaotic motions of bidegree systems it’s helpful to use the

Poincaré map ( the Poincaré cross-section, the phase cross-section), reducing

phase flow to a discrete two-dimensional map of the plane onto itself.
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We’ll describe this map construction technique for rigid body dynamics

specifically. In this case it’s convenient to use Andoyaer –Deprit variables, a

secant plane, for the first time introduced in [215], and some other secant planes,

making clear various aspects of motion.

At first, we make the level of energy

�

(L,G,H, l, g) = E = const
fixed. If we have an axially symmetric field, then variable h is cyclic

and isn’t involved in the Hamiltonian, and the conjugate variable H , rep-

resenting an area constant, may be considered as a parameter. Thus,

Figure 4

at the energy level we have three-

dimensional phase flow. Choose a se-

cant plane g = g0 mod 2π, g0 = const
(hereinafter we’ll also use l = l0 mod
2π, l0 = const) and consider sequen-

tial intersections of the individual path

of this plane . . . , xn−1, xn, xn+1, . . .
in one and the same direction, i. e.

sgn ġ(xn) = sgn ġ(xn+1) (fig. 4).

Remark 3. The last condition results

from the need for periodic orbits, crossing

the plane g = g0, generally, in two points, to be fixed points of a point mapping xn =
= x0, n = 1, . . . (see fig. 4).

The Poincaré map aligns each point xn with its sequential iteration xn+1,

belonging to the same phase path. Generally speaking, this mapping is defined

locally, near a certain periodic solution, since under the phase flow action the

point may leave the secant plane and never come back again. Nevertheless,

this mapping is of great use because it illustrates various effects, concerning

returning paths. It’s usually referred to as the first return map.

It’s also useful to consider the Poincaré maps in the global sense, selecting

such phase plane domains, for which the Poincaré map is defined. They are

called possible motion domains (PMD). They are usually determined from the

existence of solution for the energy equation

�

(p , q) = E, (p , q) ∈ R
4, q =

= q0 = const (in our case (p , q) = (L,G, l, g), q0 = g0). If the energy level

is compact, then the Poincaré theorem about return is valid, and the point will

cross the chosen plane again, and infinitely many times. It’s evident that the

path touches the secant plane at the PMD boundary, i. e., we have intersection

transversality loss. The Poincaré global maps are poorly studied yet.

In rigid body dynamics, from considerations of compactness, we further

choose coordinates l mod 2π, L/G on the secant plane since |L/G| 6 1 (see

[215, 28]). We determine mapping iterations by numerically integrating equa-
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tions of motion in terms of variables (M ,γ), and at bringing them onto the

secant plane we transform them into variables (L,G, l, g) according to formulae

(3.12), (3.13)

M1 =
√
G2 − L2 sin l, M2 =

√
G2 − L2 cos l, M3 = L,

γ1 =

(
H
G

√
1−
(
L
G

)2

+ L
G

√
1−
(
H
G

)2

cos g

)
sin l+

√
1−
(
H
G

)2

sin g cos l,

γ2 =

(
H
G

√
1−
(
L
G

)2

+ L
G

√
1−
(
H
G

)2

cos g

)
cos l −

√
1−
(
H
G

)2

sin g sin l,

γ3 =
(
H
G

)(
L
G

)
−
√

1 −
(
L
G

)2
√

1 −
(
H
G

)2

cos g. (4.30)

This involves achieving the necessary accuracy of numerical integration and

reducing computation time. We should also mention that the last versions of our

software also use quaternion equations in terms of variables (M , λ), allowing to

achieve even higher degree of accuracy, and at the same time to define absolute

motion of a rigid body, necessary for visualizing paths of various points of the

body.

If for integrable systems sequential iterations of mapping lay on invariant

curves, consisting of periodic or quasi-periodic motions (see § 7) and defined by

an additional integral (fig. 5), then in the general (nonintegrable) situation the

path may chaotically fill whole domains in a phase space (at the level H = h,

fig. 6).

The Poincaré map has appeared and is constantly used in theory of non-

integrability and determinative chaos. It’s also useful for investigating integrable

problems since it vividly represents the mutual position of various particular

solutions in the phase space. Among these solutions exist particularly notable

and important ones (see ch. 2).

splitting to the periodic solutions.

For the Euler case the Poincaré map shows a familiar picture (see fig. 5).

Incidentally, while introducing variables L, G, H , l, g, h in [71] A. Deprit

regarded the vivid interpretation of the Euler problem solutions, which can ad-

equately replace Poincot geometric interpretation (§ 2 ch. 2), to be their main

advantage. Further on, we are using the above-mentioned construction for study-

ing both cases: integrable and non-integrable.
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Figure 5. The Euler problem phase portrait. Stable fixed points and straight lines |L| =
= G correspond to stable permanent rotations relatively to a longer and a shorter axes;

unstable points correspond to rotations around the mean axis of inertia, separatrices are

formed by double-asymptotic paths, connecting unstable permanent rotations.

Figure 6. A phase portrait (the section by plane g = π
2

) for the Euler – Poisson equation

under h = 1.5, c = 1 and the following body parameters: I = diag(1.5; 1.2), � =
= (0.5, 0, 0). One can see doubling of the period of the orbit, born from the permanent

rotations near points (π, 0) and (2π, 0) at fig. 5, and separatrices, born from permanent

rotations at points (π
2
, 0) and ( 3

2
π, 0) at fig. 5,

§ 5. Equations of Rigid Body Motion in Euclidian Space

1. Lagrange Formalism and Poincaré Equations on a Group E(3)

Let a rigid body be moving in Euclidian space R
3, let its configurational

space coincide with a group E(3). In a matrix form group elements may be
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represented as

S =




QT

x1

x2

x3

0 1


 ∈ E(3),

Figure 7. A free rigid body.

where Q ∈ SO(3) is a matrix of direction cosines

(3.3), and x is a position vector of a certain point

C, fixed inside the body, in projections on fixed

axes (see fig. 7).

We’ll write equations of motion for projec-

tions of angular velocity ω = (ω1, ω2, ω3) and

absolute velocity v = (v1, v2, v3) of the center-

of-mass on axes, attached to the body. Similarly

to (4.3), we’ll write down the following evident

geometric relations

Q̇ = ω̃Q, v = Qẋ. (5.1)

Now we’ll determine corresponding basic left-invariant fields on the groupE(3).
To do that, we’ll find time derivative in view of equations (5.1)

df

dt
= Tr

(
Q̇T ∂f

∂Q

)
+
(
∂f

∂ � , ẋ
)

= Tr
(
(ω̃Q)T

∂f

∂Q

)
+
(
Q
∂f

∂ � , v
)
,

∂f

∂Q
=

∥∥∥∥
∂f

∂Qij

∥∥∥∥ ;
∂f

∂ � =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

Combining terms in ωi, vi, we obtain

ω = ωkξk, ξk = −
∑

ij

εkij

(
αi

∂
∂αj

+ βi
∂
∂βj

+ γi
∂
∂γj

)
,

v = viζi, ζi = αi
∂
∂x1

+ βi
∂
∂x2

+ γi
∂
∂x3

.

(5.2)

Basic field commutators ξi, ζj have the form

[ξi, ξj ] = εijkξk, [ξi, ζj ] = εijkζk, [ζi, ζj ] = 0. (5.3)

Taking into account (5.2) and (5.3), we can write Poincaré equations of
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motion (2.4) for free rigid body dynamics

d
dt

(
∂L
∂ω

)
= ∂L
∂ω

× ω + ∂L
∂v

× v + ∂L
∂α

×α+ ∂L
∂β

× β + ∂L
∂γ

× γ,

d
dt

(
∂L
∂v

)
= ∂L
∂v

× ω + ∂L
∂x1

α+ ∂L
∂x2

β + ∂L
∂x3

γ,

α̇ = α× ω, β̇ = β × ω, γ̇ = γ × ω,

ẋ1 =
(
α, ∂L

∂v

)
, ẋ2 =

(
β, ∂L

∂v

)
, ẋ3 =

(
γ, ∂L

∂v

)
.

(5.4)

2. Kinetic Energy of a Rigid Body in R
3

Let’s represent a position vector of every point of a rigid body in a fixed

frame of reference as q = QTy + x, where y is a position vector of the given

point, constant in the frame of reference, attached to the body. Differentiating

with respect to time q̇ = Q̇Ty+ ẋ and integrating with respect to y, we’ll obtain

kinetic energy both in the vector, and in the matrix form

T = 1
2
(ω, Iω) +m(v, r × ω) + 1

2
mv2 =

= −1
2

Tr(ω̃Jω̃) +m(v, ω̃r) + 1
2
mv2,

(5.5)

where m =
∫
τ

ρ(y) d3y is a total mass of the body and r = 1
m

∫
yρ(y) d3y is

a position vector of the center-of-mass in the system of axes bound to the body,

ρ(y) is a mass density of the body, and I, J are defined by relations (4.11),

(4.12).

If we are to choose the origin of the frame of reference, bound to the body,

in the gravity center, then r = 0, and kinetic energy is divided into translational

energy and the energy of rotation around the gravity center. This statement

constitutes the celebrated Bernoulli theorem.

Remark 1. For a rigid body motion in a perfect incompressible fluid (Kirchhoff’s

equations), in the general case, the kinetic energy cannot be resolved into rotational and

translational components.
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3. The Hamiltonian Form of Equations of Motion of a Rigid Body in R
3

To make transition to the Hamiltonian formalism (the Poincaré –Chetayev

equations) we’ll carry out Legendre transformation according to the formulae

M = ∂L
∂ω

, p = ∂L
∂v

, H = (M ,ω) + (p,v) − L|ω,v→M ,p. (5.6)

Here M is an angular momentum, p is a body momentum in projections on the

axes, bound to the body.

The Poisson bracket of variables M , p, α, β, γ, x can be obtained by

formula (2.12). It is completely defined by the form of fields (5.2) and their

commutators (5.3) and does not depend on the particular form of the Lagrange

function. The only limitation is the condition of the Lagrange function nonde-

generacy with respect to velocities.

Finally, we receive following (non-zero) Poisson brackets

{Mi, Mj} = −εijkMk, {Mi, pj} = −εijkpk,
{Mi, αj} = −εijkαk, {Mi, βj} = −εijkβk, {Mi, γj} = −εijkγk, (5.7)

{pi, x1} = −αi, {pi, x2} = −βi, {pi, x3} = −γi.

As it was remarked in § 2, s. 3 under such a matrix realization we obtain the

Lie –Poisson bracket, corresponding to a semi-direct sum e(3) ⊕s R
12.

Remark 2. As it follows from relations (5.7), under quaternion parameterization of

group of rotations the Poisson structure in variables

�

, λ0,

�

, �, � will contain quadratic

brackets, because direction cosines quadratically depend on quaternions.

In the vector form the Hamiltonian equations of motion can be written as

follows

Ṁ = M × ∂H
∂M

+ p× ∂H
∂p

+α× ∂H
∂α

+ β × ∂H
∂β

+ γ × ∂H
∂γ

,

ṗ = p× ∂H
∂M

− ∂H
∂x1

α− ∂H
∂x2

β − ∂H
∂x3

γ,

α̇ = α× ∂H
∂M

, β̇ = β × ∂H
∂M

, γ̇ = γ × ∂H
∂M

,

ẋ1 =
(
α, ∂H

∂p

)
, ẋ2 =

(
β, ∂H

∂p

)
, ẋ3 =

(
γ, ∂H

∂p

)
.

(5.8)

A free rigid body motion in a potential field in a center-of-mass system (r = 0 in

equation (5.5)) is described by a natural mechanical system with a Hamiltonian
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function of the form

H = 1
2
(M , AM) + 1

2m
p2 + U(α, β, γ, x), (5.9)

where A = I−1, and variables M , p are expressed in terms of body velocities

by the formulae

M = Iω, p = mv.

Remark 3. If the potential energy in (5.9) may be represented as

U = U1(

�,

�

, �) + U2(

�),

then some equations from (5.8) become separated to constitute the system for variables�

, �,

�

, �, describing the body rotation around the center-of-mass. If, instead of the

momentum projections on moving axes � = m �, the momentum in a fixed space

�

=
= m ˙ � be used, we also obtain a separate system, describing the center-of-mass motion

in the canonical form

˙ �

= −∂Hc.m.

∂ � , ˙ � = ∂Hc.m.

∂

� , Hc.m. = 1
2m

�2 + U2(

�). (5.10)

That is, the Poisson structure in terms of variables

�

, �,

�

, �,

�

, � is not given

by the Lie – Poisson bracket because the bracket between variables

�

, � is canonical.

§ 6. Examples and Related Problem Statements

1. The Motion of a Rigid Body with a Fixed Point in the Superposition of

Permanent Uniform Force Fields

As it is shown in [31], in this case any number of fields can be reduced to

three mutually perpendicular fields. The Hamiltonian function has the form

H = 1
2
(M , AM) − (r1, α) − (r2, β) − (r3, γ), (6.1)

where r1, r2, r3 are vectors, constant in the frame of reference attached to the

body. They specify three different centers of reduction: gravity center analogues.

When r1 = r2 = 0, the equations of motion forM , γ are separated and referred

to as the Euler –Poisson equations.
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2. A Free Rigid Body in a Quadratic Potential

Let a rigid body be moving in a single field with a quadratic potential

ϕ(q) = −1
2
(q, Bq) − (g, q), (6.2)

here B is a constant symmetrical matrix, g is a constant vector. Potential (6.2)

arises, for example, under the second order expansion of the gravity potential

near the Earth surface and also Coulomb potential of a charged body.

Substituting the position vector of a point in a fixed space as q = QTy+x
(y is a position vector of the point within the body) and taking volume integral,

we obtain the potential energy in the form to follow (see also [21])

U =1
2

Tr(QTI1QB) − 1
2
µ0(x, Bx) − µ0(g, x)−

− 1
2
µ0(Qg, r1) − µ0(QBx, r1).

(6.3)

Here µ0 =
∫
τ

µ(y) d3y is a total “charge” of the body in a given field, µ(y) is its

density, r1 = 1
µ0

∫
τ

yµ(y) d3y is a position vector of the field reduction center,

I1ij =
∫
(δijy

2 − yiyj)µ(y) d3y.

For the gravity field µ(y) is a mass density, µ0 = m is a body mass,

r1 = r is a center-of-mass position vector, I1 = I is a tensor of moments of

inertia. In this case, while choosing in fixed space principal axes, corresponding

to eigenvectors of matrix B, in the center-of-mass system the Hamiltonian may

be written as

H = 1
2
(M , AM) + 1

2m
p2+

+1
2
(b1(α, Iα) + b2(β, Iβ) + b3(γ, Iγ)) − 1

2
m(x, Bx) −m(g, x),

B = diag(b1, b2, b3).

(6.4)

Thus, translational and rotational motions are separated, so that both sys-

tems can be integrated in quadratures [21] (ch. 3, § 12) (which is admittedly

realized, when inertial mass equals gravitational one, i. e. for a gravity field).

It should also be mentioned that rotation and translation are separated for an

arbitrary field, if the field reduction center coincides with the center-of-mass.
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3. The Motion of a Body with a Fixed Point in a Rotating Frame of

Reference

Let a rigid body be moving so that one of its points is rotating uniformly

with an angular velocity Ω along circumference of radius R. Choose three

frames of reference:

1) fixed in space (inertial) frame of reference OXY Z having its origin in the

circumference center O;

2) a frame of reference, uniformly rotating along the circumference and hav-

ing its center at the point C and reference vectors: eτ , which is a vector

tangent to the circumference, en, which is a vector normal to the circum-

ference plane, and eR, which is a vector directed from the point C to the

center of circumference;

3) a system of axes, rigidly attached to the body Cx1x2x3, with the origin at

the point C (see fig. 8).

Figure 8. The motion of a body with a fixed point in a rotating frame of reference.

Configurational space of the system is a group SO(3), which may be rep-

resented by matrices of transition Q ∈ SO(3) from the system of axes of a

rigid body to the rotating frame of reference. They have the form (4.1), where

α, β, γ are projections of vectors eτ , en, eR on the axes, bound to the body.

Now we introduce one more matrix B of transition from the rotating frame

of reference to the fixed one (columns of the matrix B are projections of unit

vectors of fixed space on vectors eτ , en, eR).

The position of the rigid body point with the position vector y inside the

body in a fixed space is given by vector

q = BT(t)(QT(t)y + x), (6.5)
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where x is a position vector of the point C in the rotating frame of reference.

Differentiating with respect to time q̇ = ḂT(t)(QT(t)y + xc) + BT(t)Q̇T(t)y

and integrating 1
2
m(q̇ , q̇) over the body volume, we obtain kinetic energy in the

form

T = 1
2
(ω, Iω) + Ω(ω, Iβ) − µ(ω, r ×α) + 1

2
Ω2(β, Iβ) − µΩ(r, γ), (6.6)

where µ = 2mRΩ, I is a tensor of inertia of the body with respect to point C, r
is a position vector of the body center-of-mass in projections on the body axes.

The motion of a body in a potential field is described by the Lagrange

function

L = T (ω, α, β, γ) − U(α, β, γ), (6.7)

where T is a kinetic energy (6.6), and U is a potential energy. The equations of

motion of system (6.7) are determined by Poincaré equations (4.2), (4.7).

Carrying out the Legendre transformation for system (6.7), we find

M = ∂L
∂ω

= I(ω + Ωβ) − µr ×α,

H = 1
2
(M , AM) − Ω(M , β) + µ(M , A(r ×α))+

+1
2
µ2 (r ×α, A(r ×α)) + U(α, β, γ),

(6.8)

here A = I−1. The equations of motion have the form (4.17).

System (6.8) is the one, to which the following classical problems of rigid

body dynamics are reduced.

A gyroscope and a Foucault’s pendulum. In this case U = r3β3, the

body is axially symmetric

a1 = a2 = 1, r1 = r2 = 0,

and the Hamiltonian may be represented as

H= 1
2
(M2

1 +M2
2 +a3M

2
3 )−Ω(M ,β)−µr3(M1α2−M2α1)− 1

2
µ2r23α

2
3. (6.9)

In this case it’s convenient to use variables of fixed space (4.19). If we

choose the corresponding units to measure length and mass and denote the vector

e3 = l, the Hamiltonian can be written as

H = 1
2
N 2 − ΩN2 + µ(N2l3 −N3l2) − 1

2
µ2l21 − µl3. (6.10)

The system on a zero constant of integral (N , l) = M3 = 0 corresponds to

the gyroscope without proper rotation and is referred to as Foucault’s pendulum.
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A satellite at the Earth circular orbit. The center-of-masses coincides

with the origin of the rotating system coordinates, i. e. r = 0. Newton potential

in quadratic approximation (under expansion by the ratio of satellite dimensions

to the orbit radius) has the form

U = 3
2
Ω2(γ, Iγ), Ω2 = GM

R3
,

where G is a gravitational constant, M is a mass of the Earth, R is a radius of

the orbit. Thus,

H = 1
2
(M ,AM) − Ω(M ,β) + 3

2
Ω2(γ, Iγ). (6.11)

One can use the book [11] to get acquainted with various dynamic effects

of the satellite motion along the circular orbit.

4. Relative Motion of a Rigid Body with a Fixed Point

Let a rigid body with an attached point O be moving in a frame of refer-

ence with the origin at its center O, which, in its turn, is moving and rotating

according to the given law.

Denoting angular and linear velocities of the moving frame of reference in

projections on axes, bound to the body, by Ω and V , correspondingly, we’ll

write the Lagrange function of a potential system in the form

L = 1
2
(ω, Iω) + (ω, IΩ) −m(W , r) − U(α, β,γ). (6.12)

Here ω is an angular velocity of the body, W = d
dt
V is an acceleration of a

reference point of the moving system, I is a tensor of the body inertia relatively

to the point O, m is a total mass, r is a position vector of the center-of-mass,

α, β,γ are unit vectors of the moving frame of reference. All the vectors

mentioned are projected on the body axes, and Ω,V can be considered as given

functions of time.

Angular momentum and Hamiltonian of system (6.12) are determined as

follows
M = ∂L

∂ � = I(ω + Ω),

H = 1
2
(M , AM) − (M , Ω) +m(W , r) + U(α, β,γ),

(6.13)

then the equations of motion have the form (5.8). Such systems may be exem-

plified by gyroscopes and pendants, placed in the aircraft and artificial satellites,

being in the specified motion.
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5. Rigid Body Motion on a Smooth Plane

Except for the Euler –Poisson equations, an interesting mechanical exam-

ple, where the equations, describing the evolution of vectors ω,γ (or M ,γ),

get separated, is represented by the problem, concerning the rigid body motion

on a smooth plane with the potential, depending on the distance to this plane.

Generally speaking, the system in absolute motion possesses five degrees

of freedom, but in view of the fact that the reaction of the plane at perfect

sliding is perpendicular to it, two projections of the system momentum on this

plane are preserved. Choosing the frame of reference, rigidly bound to the body

and having its origin in the center-of-mass (thereby eliminating its horizontal

uniform rectilinear displacement) we’ll obtain the Lagrange function, for motion

in a potential field U(γ)

L = 1
2
(ω, Iω) + 1

2
m(ω, r × γ)2 − U(γ), (6.14)

where I is a tensor of the body inertia relatively to the center-of-mass, m is a

mass of the body, ω are projections of the angular velocity on the axes, bound

to the body, γ is a vector normal to the plane in the same system of axes, and

r is a vector directed from the point of contact to the body center-of-mass (see

fig. 9).

Figure 9. A rigid body on a smooth plane.

If a body is convex in every point and always touches the plane only at one

point, then vector r is uniquely expressed in terms of vector γ by means of the

Gauss projection of the body surface on the unit sphere

γ = − gradF (r)

| gradF (r)| , (6.15)
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where F (r) = 0 is an equation, specifying the body surface. For nonconvex

bodies equation (6.15) allows several solutions of r = r(γ) and, as a rule,

requires consideration of additional equations of impact.

For the ellipsoid with the principal semi-axes b1, b2, b3 it’s easy to obtain

that

r = k(b21γ1, b
2
2γ2, b

2
3γ3), k = (b21γ

2
1 + b22γ

2
2 + b23γ

2
3)−1/2. (6.16)

Applying the Legendre transformation, from (6.14) we obtain

M = ∂L
∂ � = Jω, J = I +ma⊗ a,

H = 1
2
(IAM , AM) + 1

2
m(a, AM)2 + U(γ),

(6.17)

Figure 10. A gyroscope in a gimbal.

The external frame of the gimbal Se

rotates around axis Le, fixed in space.

The rotation axis Li of an internal frame

Si is fastened to the axis Le. The axis

of rotation of the rigid body (gyroscope)

L is fixed on the internal frame.

where a = r × γ, A = J−1. According

to (4.16), the Poisson bracket of variables

M , γ is determined by algebra e(3).
For the gravity field the potential en-

ergy of the body can be represented as
U(γ) = mg(r, γ),

g being a free fall acceleration. It doesn’t

make a problem, as well, to generalize the

system by adding to the body a rotor with

gyrostatic moment K , then Hamiltonian

(6.17) acquires terms, linear with respect

to M .

If a body is a sphere with an arbitrary

ellipsoid of inertia, but the center-of-mass

coincides with the geometric center, then

we obtain either Euler system (in case

K = 0) (see § 2 ch. 2), or Joukovskiy –

Volterra system (in case K 6= 0) (see § 7

ch. 2).

6. A Gyroscope in a Gimbal

A gyroscope in a gimbal is a system of several bodies, connected by means

of cylindrical joints (see fig. 10) [119].

Consider the case, which is very frequent in engineering, when axes Le and

Li, L and Li are mutually perpendicular and cross at the single point O [119].

Choose a fixed frame of reference with the origin at the point O and the axis
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OZ, directed along the axis of rotation Le; attach to the body a moving frame

of reference with the origin at the point O and the axis Oz, directed along the

axis L. Let α, β, γ be projections of the unit vectors of a fixed space on the

axes bound to the body, γ being a vector corresponding to the axis OZ.

The Lagrange function of a gyroscope in a potential field can be written as

L = 1
2
(ω, Iω) + 1

2
Ie

(
ω1γ1 + ω2γ2

γ2
1 + γ2

2

)2

+ (6.18)

+ 1

2(γ2
1+γ2

2)

[
I i1(ω1γ2−ω2γ1)

2+(ω1γ1+ω2γ2)
2
(
I i2+I

i
3

γ2
3

γ2
1+γ2

2

)]
−U(α,β,γ),

where ω = (ω1, ω2, ω3) are projections of the angular velocity on the axes,

bound to the body, I is a tensor of the moments of inertia of the frame Se

relatively to the point O, Ie is a moment of inertia of the frame Se with respect

to the axis Le, I i1, I i2, I i3 are principal moments of inertia of the internal frame.

The Hamiltonian form of system (6.18) can be obtained by means of Leg-

endre transformation (4.14). However, the Hamiltonian function of the system

is too cumbersome in the general case; we can show its form, provided that the

body is dynamically symmetrical with respect to the axis L (I1 = I2):

H = 1
2
a3M

2
3 + 1

2
a1k(M

2
1 +M2

2 )+

+1
2
a2
1k

[
I i1(M1γ1+M2γ2)

2+

(
Ie+(I i3−I i2)

γ2
3

γ2
1+γ2

2

)
(M1γ2−M2γ1)

2

]
+

+U(α, β, γ),

k =

(
(1 + a1I

i
1)

(
1 + a1I

e + a1(I
i
3 − I i2)

γ2
3

γ2
1 + γ2

2

))−1

, (6.19)

where A = I−1 = diag(a1, a2, a3).
We can show the equations of two more remarkable problems, connected

with the motion of a rigid body in fluid. Their systematical study we postpone

till ch. 3. The detailed derivation can be found in § 2 ch. 5.

Historical comment. The Foucault pendulum and gyroscope were offered by

the famous French physicist Léon Foucault (1819–1868) as the instruments for

observing the Earth rotation with respect to the absolute space.

An idea of the pendulum turned out to be more fruitful and is used as a demon-

stration in the secondary school physics course. Nevertheless, the complete analysis
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of a nonlinear model — only little swings are usually considered — is still absent. It

cannot be integrated. Kamerlingh-Onnes, who has discovered superconductivity, was

one of the first, who tried to take into account the swing amplitude finiteness.

Experiments with a gyroscope, conducted by Foucault (1852), did not bring

any satisfactory results: due to friction, the gyroscope was losing its velocity too

rapidly, and there arose chaotic precession of the rotation axis. The idea was that

the symmetrical gyroscope axis should remain constant in fixed space. It would allow

to measure the Earth rotation. Nevertheless, Foucault, while creating his gyroscope,

offered a series of technical innovations. For example, it was using a gimbal, which,

by the way, was known before D.Cardano (1501–1576) to the French architect U.

de Goncourt in thirteenth century. Foucault also noticed that if the gyroscope is

deprived of one degree of freedom, then its rotation axis tends to coincide with the

angular velocity of the transportation rotation of the gimbal bottom, connected with

the angular velocity of the Earth rotation. This makes it possible to determine the

direction to the North pole and the latitude of the instrument position.

Having analyzed two characteristic positions of the gyroscope, possessing two

degrees of freedom, relatively to the surface of the rotating Earth, Foucault has

invented two new devices — a gyrocompass and a gyrolatitude, which found their

technical realization only at the end of the nineteenth and the beginning of the

twentieth century (Obris, Sperry, Anscshütz and others) in the mechanisms of

torpedo and aircraft control. L. Foucault has also invented the name — a gyroscope,

which literally means “observation of rotation”. Various applications of the gyroscope

are discussed in more details in the books by R. Grammel [66] and K.Magnus

[119].

7. Rigid Body Motion in a Perfect Incompressible Fluid (Kirchhoff’s

Equations)

In this case the Hamiltonian of the system is (see § 2 ch. 5)

H = 1
2
(M , AM) + (M , Bp) + 1

2
(p, Cp) + U(α, β, γ,x). (6.20)

Here A, C are symmetric matrices (associated moments of inertia and masses,

defined by the geometry and inertial properties of the body), B is an arbitrary

matrix, which can be chosen to be equal to zero for the body, possessing three

mutually perpendicular planes of symmetry, intersecting at the body center-of-

mass. The equations of motion have the form (5.8). It should be mentioned

that usually Kirchhoff’s equations are referred to particular case (6.20), when

U(α, β, γ,x) ≡ 0, i. e., the case of inertial motion. In this case the system of

§ 6. Examples and Related Problem Statements 69

equations for (M ,p) becomes closed (these are the Euler –Poincaré equations

on e(3)) and the analysis is in many respects similar to the Euler –Poincaré

equations (for more details see § 9 ch. 3).

8. A Heavy Body Fall in Fluid, the Chaplygin Equations

Consider the motion of a body, whose three mutually perpendicular planes

of the symmetry intersect at the center-of-mass [176], in fluid in the uniform

gravity field. It’s easy to show that in this case the center-of-mass of the body

coincides with the center-of-mass of the fluid volume, being displaced. The

Hamiltonian of the system is

H = 1
2
(M , AM) + 1

2
(p, Cp) − µ(x, γ). (6.21)

As we can show from equations (5.8), the total momentum of the system is

defined by

p = P1α+ P2β + (P3 − µt)γ,

where P = (P1, P2, P3) = const is an incentive momentum, which is a vector

integral of motion.

Let an incentive impulse be equal to zero: P = 0. In this case the system

of equations, describing the evolution of variables M , γ, becomes separated,

and the Hamiltonian of such a reduced system will explicitly depend on time

H∗ = 1
2
(M , AM ) + 1

2
µ2t2(γ, Cγ), (6.22)

where, as it’s clear from the explanation above, A is a tensor of associated

moments of inertia, and C is a tensor of associated masses (see also [95]).

The equations of motion of system (6.22) are called the Chaplygin equa-

tions [176].

There exist two particular cases of system (6.22), for which equations of

motion may be reduced to the pendulum-type equation (ẍ = at2 sinx). The first

case corresponds to plane-parallel motion of a body in fluid of a plate, and the

second to motion of an axially symmetric rigid body. The latter case is discussed

in detail in § 1 ch. 3.

Nonintegrability of system (6.22), both in a general, and in axially symmet-

ric and plane cases is shown in the paper [96].
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Comments. 1. For the first time, the equations of system (6.22) were

obtained by S.A. Chaplygin in his student paper (1890), which was published much

more later in his collected works (1933, v. 1). It’s highly probable that Chaplygin

refrained from publishing his results at once, because he could not integrate these

equations explicitly. Besides, V.A. Steklov obtained these equations independently

and published them in his well-known book [160] (1893), where he also mentioned

some qualitative results about the body behavior.

2. In the paper [175] S. A. Chaplygin has also indicated the case, when the

gravity force is balanced by the Archimedian force (the average density of the body

equals the density of fluid), but the center-of-mass of the body does not coincide

with the center-of-mass of the fluid volume, having been displaced. The body is

acted on by a couple, and its total momentum in absolute space is preserved:

P = P1α+ P2β + P3γ,

where P = (P1, P2, P3) = const. If “the initial impulse” is taken along the vertical

axis: P = Pγ, then the evolution of vectors M , γ (γ is directed along the gravity

field) is described by means of a system on e(3) with the Hamilton function

H = 1
2
(M , AM ) + 1

2
P 2(Cγ, γ) − µ(r, γ), (6.23)

where r is a vector, connecting the center-of-mass of the body with the center-of-

mass of the fluid volume, having been displaced. It also holds true in the general

case, when a symmetrical body is moving in fluid under the action of balanced forces

(there are only moments of forces): the equations of motion of a rigid body with a

fixed point (the center-of-mass) become separated.

§ 7. Theorems about Integrability and Techniques of

Integration

Differential equations, including the Hamiltonian ones, are usually divided

into integrable and nonintegrable. At the same time, as it was noticed by

G. Birkhoff [13], “however, if we try to define integrability exactly, we may

encounter with the possibility of many various definitions, each one having a

certain theoretical interest”. This statement by Birkhoff, who considered a dy-

namical problem to be solved, if we are presented with a certain algorithm for

description of behavior of all its paths, contains the indication of the connec-

tion of integrability with a special regular character of motion in a phase space.
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Such a regularity may be achieved, if the system possesses the sufficient num-

ber of conservation laws — first integrals, fields of symmetries or other tensor

invariants.

Here we are going to state several principal approaches to the integrability

of Hamiltonian and general differential equations. They concern determination

of the system solutions in quadratures. Solving a system in quadratures is equiv-

alent to representing its solution by means of the finite number of ”algebraic”

operations (including inversion of functions) and ”quadratures” — computing

integrals of the known functions. Various aspects of integrability are illustrated

in the reviews [74, 136, 8] (see also [97]).

1. Hamiltonian Systems. The Liouville –Arnold Theorem

The following theorem connects integrability of the Hamiltonian system in

quadratures with the presence of a sufficiently large set of its first integrals.

Theorem 2. Suppose that on a symplectic manifold M 2n = (p, q) =
= (p1, . . . , pn, q1, . . . , qn) there are given n functions in involution

F1, . . . , Fn : {Fi, Fj} ≡ 0, i, j = 1, . . . , n.

Then, suppose that on Mf , which is a manifold of the level of integrals

{x ∈ M2n : Fi = ci, i = 1, . . . , n}, n functions Fi are independent. Then:

1. Mf is a smooth manifold, invariant with respect to the phase flow with

the Hamiltonian function H = F1.

2. If the manifold Mf is both connected and compact, then it’s diffeomor-

phic to an n-dimensional torus (fig. 11)

Tn = {(ϕ1, . . . , ϕn) mod 2π}

Figure 11. Quasiperiodic motion on torus and on its development.
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3. The phase flow with the Hamilton function H defines conditionally

periodic motion on Mf , i. e., in terms of certain angular coordinates ϕ =
= (ϕ1, . . . , ϕn) we have equations

dϕ

dt
= ω, ω = ω(c1, . . . , cn) = (ω1, . . . , ωn).

4. Canonical equations with the Hamilton function H are integrated in

quadratures.

Remark. The simplified version of this theorem (where only integrability in quadra-

tures is asserted) was formulated by Bur and generalized by G. Liouville. Its classical

proof is given, for example, in treatise by E. Whittaker [167]. The reduced statement of

the theorem belongs to V. I. Arnold [6].

In this case the Hamiltonian system is called integrable according to

Liouville (or completely integrable). One can show that for such a sys-

tem in the vicinity of each torus there exist variables, called “action-angle”

(I ,ϕ mod 2π) = (I1, . . . , In, ϕ1 mod 2π, . . . , ϕn mod 2π), where Hamil-

tonian H(I) doesn’t depend on angular variables ϕ mod 2π, and the equations

of motion have the form

İ = −∂H
∂ϕ

= 0, ϕ̇ = ∂H
∂I

= ω(I),

Hence, I(t) = I0, ω(I) = ω(I0) = (ω1, . . . , ωn).
Variables action I “number” invariant tori T

n = Mf in M2n, and variables

angle ϕ are uniformly changing on them with n various frequencies ω1, . . . , ωn.

Such a motion is called quasi-periodic. Variables action-angle are very important

in the perturbation theory.

In some cases the number of independent variables may exceed n =

= 1
2
dimM2n. And not all of them are in involution and lead to noncommu-

tative integrability of the system. In this case the invariant manifold Mf , if it’s

compact, is a less than n-dimensional torus [132].

Rigid body dynamics contains both commutative and noncommutative sets

of integrals. The latter are used for degenerate systems, possessing redundant

symmetries (dynamically symmetrical and spherical tops). In these cases it is

also said that the system is superintegrable.

Remark 1. The Jacobi theorem, according to which the Poisson bracket of two

integrals is also an integral, tells us that their complete family forms a certain, as a matter

of fact, infinite Lie algebra. One of such examples is considered in the appendix.
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Investigating algebra of integrals is also necessary for various methods of the system

reduction, which consists in reduction to the less number of degrees of freedom (§ 1 ch.

4). The connection of noncommutative integrability with the Dirac reduction is discussed

in the book [31] (see also [32]).

Remark 2. The supposition of compactness and connectedness of Mf usually holds

true in rigid body dynamics because of compactness of a configurational space, for ex-

ample, the one being the group SO(3), and limitations, imposed by the energy integral

on the momenta.

Remark 3. If the integrals on Mf become dependent, their general level, is not

a smooth manifold. In the space of constant first integrals (c1, . . . , cn) these values

form bifurcation surfaces, whose explicit form has been studied for the most of known

integrable systems [25] (see ch. 2).

From the theoretic perspective the integrability of the Hamiltonian system

in quadratures may not necessarily be connected with the presence of necessary

quantity of the first integrals. It may be stipulated by the fields of symmetries,

various invariant forms and other tensor laws of conservation [31, 83]. How-

ever, substantial examples refer only to particular combinations of such tensor

invariants. Now we are going to consider one more typical example.

2. The Last Multiplier Theory. The Euler – Jacobi Theorem

Many problems of rigid body dynamics may be integrated also by means

of another method, tracing back to Euler and Jacobi. We are speaking about the

last multiplier theory, where, in order to obtain the integrability in quadratures,

except for the sufficient quantity of the first integrals, it’s necessary to determine

the existence of a certain invariant measure. The advantage of this method is the

possibility of its application not only to Hamiltonian systems, but, as a matter

of fact, to arbitrary systems, for example, to nonholonomic ones. A series of

nonholonomic systems, possessing nontrivial measure and integrated according

to the last multiplier theory, was indicated by S. A. Chaplygin [179]. Though

we don’t consider them in the present book, we’d like to emphasize the fact

that in nineteenth century the integrability of the most problems of rigid body

dynamics was understood exactly as the Euler – Jacobi integrability, because the

Hamiltonian structure, for example, of Euler –Poisson equations (see § 1 ch. 2),

was not understood thoroughly well. We are going to stop here and discuss this

method in more details.

Consider an arbitrary autonomous system of differential equations in R
n

ẋ = v(x), x ∈ R
n. (7.1)
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Let gt be its phase flow. In the general case for the integrability of this system

one needs to know not less than n − 1 first integrals. However, if equation

(7.1) has an integral invariant with the smooth density µ(x), that is for any

measurable region D ⊂ R
n and for all t the equality

∫

gt(D)

µ(x) dx =

∫

D

µ(x) dx,

is satisfied, then for the integrability of system (7.1) it’s sufficient to know n−
− 2 first integrals. Let’s remember that according to the Liouville theorem the

smooth function µ : R
n → R is the density of the integral invariant

∫
µ(x) dx

if and only if
div(µv) = 0. (7.2)

If µ(x) > 0 under all x, then formula (7.2) defines a certain measure in

R
n, invariant with respect to the operation gt. The presence of measure makes

it easier to integrate differential equations. Euler has called µ an integrating

multiplier (it’s called the last multiplier as well).

The following statement is valid: the Euler – Jacobi theorem concerning the

last multiplier [8, 91].

Theorem 3. Suppose that system (7.1) of equations with the integrat-

ing multiplier µ possesses n − 2 first integrals F1, . . . , Fn−2. Let func-

tions F1, . . . , Fn−2 be independent on an invariant manifold Mc = {x ∈
R
n : Fs(x) = cs, 1 6 s 6 n− 2}. Then

1. the solutions of equation (7.1), situated on Mc, are in quadratures .

If Lc is a connected compact component and v(x) 6= 0 on Lc, then

2. Lc is a smooth manifold, diffeomorphic to 2-dimensional torus,

3. on Lc one may choose angular coordinates ϕ1, ϕ2 mod 2π such that

equation (7.1), expressed in terms of these variables, on Lc would have the form

ϕ̇1 =
λ1

Φ(ϕ1, ϕ2)
, ϕ̇2 =

λ2

Φ(ϕ1, ϕ2)
,

where λ1, λ2 = const, and Φ is a smooth positive function with a period 2π
with respect to ϕ1 and ϕ2.

The function Φ(ϕ1, ϕ2), giving an invariant measure, is not reduced to a

constant, and motion on torus, though occurring along rectilinear windings (fig.

11), is not uniform. We can point that in case of a Hamiltonian system such a

reduction is always possible. This is the consequence of the Liouville –Arnold

theorem.
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For general systems (7.1), for example dissipative ones, the measure is,

as a rule, absent, and the question of their integrability constitutes a separate

problem (§ 1 ch. 5). Since here is no general technique, the system may behave

differently, depending on certain sets of conservation laws (tensor invariants),

which are not autonomous.

3. Separation of Variables. The Hamilton –Jacobi Method

The explicit solution of Hamiltonian equations in canonical form in most

cases can be obtained by means of method of separation of variables [183]. In

this case the problem of integration of n-power Hamiltonian system is reduced

to obtaining solution of the Hamilton – Jacobi equation in partial derivatives

H
(
∂S
∂q

, q
)

= α1, (7.3)

which depends on n constants S(q, α1, . . . , αn) and satisfies the condition of

nondegeneracy

det
∥∥∥ ∂2S
∂qi∂αj

∥∥∥ 6= 0.

Consider the function S(q, α1, . . . , αn), which in this case is called a complete

integral of equation (7.3), as a generating function of a canonical transformation

(q ,p) → (β,α):

p = ∂S
∂q

, β = ∂S
∂α

. (7.4)

For new canonical variables α, β, according to (7.3), we’ll obtain equations of

motion in the form [183, 128]

α̇i = −∂H
∂βi

= 0, β̇i = ∂H
∂αi

= δ1i, i = 1, . . . , n,

where δij is a Kroneker symbol. These equations can be easily integrated:

αi = α0
i , βi = δ1it+ β0

i , (7.5)

where α0
i , β

0
i = const. Thus, (7.5), together with (7.4), gives the solution of

canonical equations q(t),p(t) in the form of system of algebraic equations.

Variables separate if one succeeds in selecting such coordinates on a con-

figurational space, which have the complete integral represented in the form

S(q, α) =
n∑

k=1

Sk(qk, α1, . . . , αn). (7.6)
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According to Jacobi, the method of separation of variables consists in find-

ing for a problem such a system of coordinates (generally speaking, curvilinear

ones), in terms of which (7.6) is valid. Jacobi also found one remarkable substi-

tution, which led him to elliptic coordinates and allowed to integrate the problem

about geodesics on ellipsoid — even in case of many dimensions. He also sug-

gested that we should reverse the situation and ”having found some remarkable

substitution, look for the problems, where it can be successfully applied” [183].

Remark. Degenerate systems (with the redundant set of integrals), for example, a

harmonic oscillator, the Kepler problem and others, may have several coordinate systems,

where variables separate.

As examples, consider classical problems: the Jacobi proplem about

geodesics on a three-axial ellipsoid, and the Neumann problem about motion

of the point on a sphere in a quadratic potential. They are associated with two

various, but mutual, integrable Clebsch cases in Kirchhoff’s equations (see § 9

ch. 3). Their integration, and also elliptic and sphero-conical coordinates, ap-

pearing in the process, are universal in the theory of integrable systems. All

the known problems, allowing the separation of variables (on a configurational

space), are solved by using these coordinates or their degenerations.

Geodesic flow on an ellipsoid (Jacobi problem) [183]. Let an ellipsoid

in a three-dimensional space R
3 with Cartesian coordinates x1, x2, x3 be given

by the equation

x2
1
a1

+
x2

2
a2

+
x2

3
a3

= 1, (7.7)

where a1 > a2 > a3 > 0 are squares of the principal semi-axes.

Elliptic coordinates λ1, λ2, λ3 in R
3 are defined as roots of the cubic

equation

f(λ) =
x2

1

a1 − λ
+

x2
2

a2 − λ
+

x2
3

a3 − λ
= 1, (7.8)

where λ3 < a3 < λ2 < a2 < λ1 < a1.

Cartesian coordinates are expressed in terms of elliptic ones by means of

residues of function f(λ) (7.8) at the points a1, a2, a3, according to the formulae

x2
1 =

(a1 − λ1)(a1 − λ2)(a1 − λ3)

(a2 − a1)(a3 − a1)
, x2

2 =
(a2 − λ1)(a2 − λ2)(a2 − λ3)

(a1 − a2)(a3 − a2)
,

x2
3 =

(a3 − λ1)(a3 − λ2)(a3 − λ3)

(a1 − a3)(a2 − a3)
.
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In terms of new variables ellipsoid (7.7) is given by the equation λ3 = 0,

and λ1, λ2 define the system of orthogonal coordinates on it. Rewriting the

Hamiltonian of free motion of a unit mass point on ellipsoid (7.7) in these

coordinates, we obtain

H = 2
λ1 − λ2

(
g(λ1)p

2
1 + g(λ2)p

2
2

)
,

g(λ) = (a1 − λ)(a2 − λ)(a3 − λ),

(7.9)

which means that variables separate.

Using the expression for canonical momenta

p1 = (λ1 − λ2)
λ1λ̇1

4(a1 − λ1)(a2 − λ1)(a3 − λ1)
,

p2 = (λ2 − λ1)
λ2λ̇2

4(a1 − λ2)(a2 − λ2)(a3 − λ3)
,

we obtain the equations of motion in the form

dλ1√
R(λ1)

= dt
λ1 − λ2

,
dλ2√
R(λ2)

= dt
λ2 − λ1

,

R(λ) = − (λ− α1)(λ− a1)(λ − a2)(λ− a3)

λ
,

(7.10)

where α1 is a separation constant, satisfying inequalities a3<α1<a1. Equations

(7.10) are associated with Abel, Jacobi and Kowalevskaya, who used them for

integration in elliptic functions.

Remark. Abel – Jacobi equations (7.10) are also written in a bit different form

dλ1�

R(λ1)
+

dλ2�

R(λ2)
= 0,

λ1 dλ1�

R(λ1)
+

λ2 dλ2�

R(λ2)
= dt. (7.11)

In this case solutions for the Hamilton – Jacobi equations are represented in

the form

S(λ1, λ2, α1, α2) =

√
α2

2

(∫ λ1 − α1√
R(λ1)

dλ1 +

∫
λ2 − α1√
R(λ2)

dλ2

)
, (7.12)

where α2 = h is energy. The path and the law of motion can be determined

from algebraic equations:

∂S
∂α1

= β1,
∂S
∂α2

= t+ β2, β1, β2 = const. (7.13)
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The system with a quadratic potential on a sphere (the Neumann prob-

lem) [251]. Let the equation

x2
1 + x2

2 + x2
3 = 1, (7.14)

define a sphere in three-dimensional space, and the potential energy of a unit

mass particle in Cartesian coordinates have the form

U(x ) = 1
2
(a1x

2
1 + a2x

2
2 + a3x

2
3), 0 < a3 < a2 < a1. (7.15)

Sphero-conical coordinates λ1, λ2 on sphere (7.14) are defined as roots of

the quadratic equation

f(λ) =
x2

1

a1 − λ
+

x2
2

a2 − λ
+

x2
3

a3 − λ
= 0, (7.16)

satisfying inequalities a3 < λ2 < a2 < λ1 < a1. The Cartesian coordinates are

expressed in terms of sphero-conical coordinates as follows

x2
1 =

(a1−λ1)(a1−λ2)

(a2−a1)(a3−a1)
, x2

2 =
(a2−λ1)(a2−λ2)

(a1−a2)(a3−a2)
, x2

3 =
(a3−λ1)(a3−λ2)

(a1−a3)(a2−a3)
.

(7.17)

The Hamiltonian of a particle, possessing potential (7.15) in terms of

sphero-conical coordinates, has the form

H =
(2(λ1 − a1)(λ1 − a2)(λ1 − a3)

λ1 − λ2
p2
1 + λ1

)
+

+
(2(λ2 − a1)(λ2 − a2)(λ2 − a3)

λ2 − λ1
p2
2 + λ2

)
,

(7.18)

where momenta p1, p2, canonically conjugate with variables λ1, λ2, are ex-

pressed in terms of velocities, according to the formulae

p1 =
(λ1 − λ2)λ̇1

4(λ1 − a1)(λ1 − a2)(λ1 − a3)
,

p2 =
(λ2 − λ1)λ̇2

4(λ2 − a1)(λ2 − a2)(λ2 − a3)
.

(7.19)

Separating the variables, we obtain the Abel – Jacobi equations, specifying the

evolution of λ1, λ2:

dλ1√
R(λ1)

= dt
λ1 − λ2

,
dλ2√
R(λ2)

= dt
λ2 − λ1

,

R(λ) = −(λ2 + 2α2λ+ 2α1)(λ− a1)(λ − a2)(λ − a3),
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where α1, α2 = h are constants of separation. The Hamilton – Jacobi equation

solution is as follows

S(λ1, λ2, α1, α2) =

∫ √
− λ2

1 + 2α2λ1 + α1

4(λ1 − a1)(λ1 − a2)(λ1 − a3)
dλ1+

+

∫ √
− λ2

2 + 2α2λ2 + α1

4(λ2 − a1)(λ2 − a2)(λ2 − a3)
dλ2.

Comments. 1. As a rule, though not universally, the equations of motion for

separating variables may be represented in the Abel – Jacobi form (7.11). It’s known

that any solution of such equations can be represented in terms of a theta-function

(to speak more formally: linearized by means of the Abelian transformation on the

Jacobian of the hyperelliptic curve). S.V.Kowalevskaya was the first to carry out

such kind of linearization for the case she had discovered. To do that, she applied

the theory of theta-functions of two variables, just developed by Rosenhine and

Königsberger. Such a linearization resulted in a remarkable fact that the general

solution of a system extends to single-valued holomorphic functions into the complex

domain of time, i. e. the solution has only poles as singularities.

The expression of the general solution for the majority of integrable problems

of rigid body dynamics in single-valued elliptic (in a complex sense) functions of

time is conditioned by the fact that the general level of the first integrals, repre-

senting the intersection of rather simple algebraic surfaces, like quadric ones, allows

extension into the complex domain to the Abelian manifolds (Abelian tori), allowing

parameterization by means of theta-functions. It is studied in projective and algebraic

geometry, and the systems, as they are, are called algebraically integrable. However,

the general solution may be single-valued not on the complex plane of time, but on

its finitely sheeted covering (see the Goryachev–Chaplygin case, § 5 ch. 2).

2. The problem about the separation of variables distinctly stated by K. Jacobi

in his “Lectures on Dynamics” (1842–43) [183], is still under serious investigations.

J. Liouville and P. Shtekkel found more general forms of Hamiltonians, allowing

separation of variables. It turned out that if only configurational space transformations

(point transformations) be used, the separation of variables is closely connected with

the presence of the complete set of first integrals, quadratic with respect to momenta.

For the first time, the results of such kind for natural systems with two degrees

of freedom were shown by Darboux, Whittaker and Birkhoff [167, 13]. From the

modern viewpoint they are discussed in [137].

It should be mentioned that the similar result for the system containing integrals,

linear with respect to momenta, is connection of these integrals with existence of the
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group of symmetries in a configurational space and with a cyclic variable. In this

case, although locally, the corresponding reduction of order is always possible.

If not only coordinate, but also momentum transformations (i. e. general trans-

formations of the phase space) be used, then, in a certain sense, the problem becomes

always solvable: according to the Liouville –Arnold theorem, in the neighborhood of

the non-singular level of the first integrals there always exist variables of the type

action–angle, which are the separating ones. Quite another matter is that these

variables are usually different for various domains of the phase space, separated by

the singular (critical) invariant tori, so that their creation (shown while proving the

theorem) is not constructive. In practice, as a rule, the contrary thing happens:

variables action–angle are constructed, in case some separating variables are found

(see § 8 ch. 5).

Separated variables, obtained by means of the extended phase transformation,

are known for the Kowalevskaya and Goryachev–Chaplygin cases (see §§ 4, 5 ch.

2, § 8 ch. 5). By the way, in these cases an additional integral has, correspondingly,

third and fourth degree in momenta.

If for natural Hamiltonian systems, having two degrees of freedom and pos-

sessing an additional quadratic integral, there exist general considerations (see, for

example, Whittaker [167], Birkhoff [13]), allowing constructive creation of separating

variables, for unnatural systems with two degrees of freedom, and also for systems,

possessing an additional integral with higher (> 2) degree in momenta, the separation

of variables is a kind of an art. For multidimensional systems the matter of separation

is even more difficult. In this case several multidimensional generalizations of systems

with two degrees of freedom (a kind of the Jacobi and Neumann problems), for

which there exist analogues of elliptic and sphero-conical coordinates, are practically

known). The questions of separation of variables on Sn is considered in more details

in [18, 283].

3. The special analytical techniques, having allowed to find separation of vari-

ables for a series of problems of rigid body dynamics, including nonholonomic sys-

tems, were mastered by S.A. Chaplygin. The famous works by S.V.Kowalevskaya

[86, 87] also present an example of the unsurpassed analytical skill. In twentieth

century the technique of precise integration of determination of separating transfor-

mations was partially lost and replaced by the general procedure of integration by

means of methods of inverse dissipation problem and determination of the Lax rep-

resentations. In this procedure it is considered that the problem is solved, in case

the Lax commutation representation (see [31]) with a spectrum parameter, allowing

“in principle” to obtain the general solution in theta-functions, is shown. From the

viewpoint of algebraic geometry we are talking here about possible linearization of

the flow on the Prime (Jacobi) manifolds and, proceeding from the analysis of pole
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expansions (divisors), we can conclude the possibility of representation of the solution

in functions of Riemann, Baker –Ahieser and others.

It should be mentioned that such general assertions, cited in the majority of

papers, dedicated to the determination of the Lax pairs [21, 136, 146], although

true, in a certain sense, are empty, because there exists no algorithm of construction

of such a solution; anyway, the problem is no less difficult. It’s also useful to notice

that such kind of papers [146, 262] are exceedingly formalized and overloaded with

complex algebraic geometry jargon (see also the recent book [134]), their curious

result being that they don’t clarify, but only complicate classical ideas. Here were

shown no new separating transformations.

4. At the same time the determination of separating variables in an integrable

system is of a great use for studying its dynamics. It allows to study solutions, most

simply arranged (degeneracy cases or the Appelrot classes of “specially remark-

able” motions of the Kowalevskaya top), carry out bifurcational (topological) and

qualitative analysis [92, 170], explicitly construct the corresponding set of variables

of the action–angle type. The last thing is especially important for the perturbed

situation analysis and for the quantization purposes (for example, in quasi-classical

approximation).

In conclusion, the explicit integration and corresponding separation of variables

for the majority of problems of rigid body dynamics were found by classics at the

end of nineteenth – beginning of the twentieth century. Nearly all of them, in

a somewhat modified form, we cite in § 8 ch. 5. The question of separation of

variables for many newer systems (gyrostatic generalizations, multidimensional tops)

is still open. It’s probable that for the solution of this problem it’s necessary to

modify the Jacobi method ideology itself and make his scheme not that “hard”. As

an additional information, which can be of use, one should apparently apply the

topological analysis and complex methods.

Really, for the known integrated problems, critical levels of the integral set can

be found as from the condition of the order of roots in a characteristic polynomial of

the Abel – Jacobi equations, so directly from the condition of the integral manifold

rank fall, which apparently allows to restore separating transformation a bit arbitrarily.

Complex methods, based on the study of the Laurant full-parametric expansions,

also seem to be effective [243]. Like the Lax spectrum representation, they are

capable of representing a spectrum curve in a hyperelliptic case; here it’s possible

to restore separating transformations uniquely and obtain the Abel – Jacobi equations

(M.Adler, P. van Moerbeke [186, 188], P.Vanaecke [279]). However, such an

approach didn’t help to integrate any new system.
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EULER–POISSON EQUATIONS

AND THEIR GENERALIZATIONS

§ 1. The Euler–Poisson Equations and Integrable Cases

1. A Rigid Body with a Fixed Point

The Euler –Poisson equations, describing rigid body motion around a fixed

point in a uniform gravity field, are written as

{
Iω̇ + ω × Iω = µr × γ,
γ̇ = γ × ω,

(1.1)

Figure 12. A rigid body with a fixed point

in a gravity field.

where ω = (ω1, ω2, ω3), r =
= (r1, r2, r3) γ = (γ1, γ2, γ3) are

components of the angular velocity,

of the position vector of the center-

of-mass, and of the vertical unit vec-

tor in the system of principal axes,

rigidly bound to the rigid body and

passing through the fixation point, I =
= diag(I1, I2, I3) is a tensor of inertia

with respect to the point of fixation in

these very axes, µ = mg is the body

weight (fig. 12).

By means of projections of the

vector of angular momentumM = Iω
onto the same axes, equations (1.1) can

be represented in the Hamiltonian form

Ṁi = {Mi, H}, γ̇i = {γi, H}, i = 1, 2, 3, (1.2)

with the Poisson bracket, corresponding to algebra e(3)

{Mi,Mj} = −εijkMk, {Mi, γj} = −εijkγk, {γi, γj} = 0, (1.3)
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and with the Hamiltonian — the total energy of the body

H = 1
2
(AM ,M) − µ(r,γ), (1.4)

where A = I−1.

Remark 1. The equations of motion in the form (1.1) were known even to Euler

(1758), who also found the simplest case of integrability when a rigid body coasts ( � =
= 0). The integrability of an axially symmetric top with the center of gravity disposed at

the symmetry axis was determined by Lagrange and a bit later by Poisson, whose name

appeared in the name of general equations (1.1).

Lie –Poisson bracket (1.3) is a degenerate one, it possesses two Casimir’s

functions, commutating in structure (1.3) with any function of M , γ,

F1 = (M ,γ), F2 = γ2. (1.5)

In the vector form equations (1.2) can be written as





Ṁ =M × ∂H
∂M

+ γ × ∂H
∂γ

,

γ̇ = γ × ∂H
∂M

.

(1.6)

The form of equations (1.2), (1.6) is obtained from the Poincaré –Chetayev

equations, written on a group SO(3) (see § 2, ch. 1).

Functions F1 and F2 are integrals of equations (1.6) with any Hamiltonian

H . For the Euler –Poisson equations they have natural physical and geometrical

origin. The integral F1 is an angular momentum projection on the fixed vertical

axis and in rigid body dynamics is referred to as an area integral. It is con-

nected with symmetry with respect to rotations around a fixed vertical axis. The

integral F2 = const is of the purely geometrical origin: it is a squared module

of the vertical unit vector. For real motions this integral constant equals unity

F2 = γ2 = 1.

When bracket (1.3) is bounded to the the combined level set of integrals F1

and F2, it becomes nondegenerate and, according to the Darboux theorem, (§ 1

ch. 1) can be represented in an ordinary canonical form in some symplectic

coordinates. For various purposes one can use both the Euler canonical vari-

ables (θ, ϕ, ψ, pθ, pϕ, pψ) and the Andoyaer –Deprit variables (L,G,H, l, g, h).
In both cases, on a symplectic leave, being determined by pψ = const (corre-

spondingly, H = const), there arises a canonical system with two degrees of

freedom.
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2. Kirchhoff’s Analogy for an Elastic Thread

There exists an analogy between the Euler –Poisson equations and the equa-

tions, describing equilibrium of an infinitely thin elastic cylinder — a thread, for

the first time discovered by G. Kirchhoff [85]. In a certain sense, this analogy

allows spatial interpretation of rigid body dynamics, replacing the time evolution

of a system by the analysis of an elastic thread shape, or, to put it more precisely,

of a position connected with the reference curve in the absolute space.

Figure 13. Kirchhoff’s analogy for an elastic thread.

Let’s consider an elastic bar, whose end points have a constant force and a

torque applied. Let s be an arc length and ds — a given element of the bar. To

each cross-section of the bar we attach its own frame of reference and designate

the force and moment vectors, projected on these axes, as P ,M (see fig. 13).

Then the equation of equilibrium , expressing the connection between the end

force and the torque in each cross-section, is written as

dM
ds

= M × ω + P × τ . (1.7)

Here ω is a vector of “an angular velocity of rotation” of a frame of reference,

bound to the cross-section, i. e. the velocity of rotation of a frame of reference,

bound to the cross-section, which depends on the length of an arc s, and τ is a

unit vector, tangent to the bar axis. Designating the unit vector, directed along

the axis of action of an end force P , as γ, we can write “a kinematic equation of

equilibrium”, expressing invariance of a force in an “absolute” system of axes

dγ

ds
= γ × ω. (1.8)

When deformations are small, [85] the Hooke’s law, expressing the connection

between the rotation of the bar element and elastic moments, acting in this cross-
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section, holds true in the form

ω = AM ,

where A is a constant matrix.

If in each cross-section we choose axes such, that one of them is directed

along the tangent to the bar axis (the axis Oz), and two others — along principal

moments of inertia of the cross-section (see fig. 13), we shall obtain

A = diag(a1, a2, a3), τ = (0, 0, 1).

Equations (1.7), (1.8) can be represented in the Hamiltonian form (1.2) with the

Hamiltonian

H = 1
2
(M , AM) + µ(τ , γ), (1.9)

where µ = |P | is an end force module. System (1.6) with Hamiltonian (1.9)

is referred to as the Euler –Kirchhoff equations. But if the variables are given

another meaning, then these are exact Euler –Poisson equations. Here lies the

essence of Kirchhoff’s analogy, which allows to investigate the results of rigid

body dynamics for elastic system analysis.

The investigation of possible shapes of an elastic thread in the Kowalevskaya

case (see Table 2.1) can be found in the paper [219].

3. Integrable Cases

To be integrable according to Liouville (see § 7, ch. 1), systems (1.1) and

(1.6) should possess not only Hamiltonian (1.4), which is also the first integral of

the system, but one more additional integral. The outstanding mathematicians,

especially in the nineteenth century, spared no effort to find such an integral, but

its general form wasn’t obtained.

It turns out that there exist fundamental dynamic effects, obstructing the

integrability of these equations in the general case. We are going to show the

integrable cases, presently known. In table 2.1 the cases of Euler, Lagrange and

Kowalevskaya are the general integrable cases, i. e. the additional first integral

exists under the given limitations of parameters (matrix A and vector r ) for

any initial conditions. The Goryachev –Chaplygin case is a special integrable

case: here, for the existence of an additional integral, it’s necessary to require

that the area constant be equal to zero: F1 = 0. The Hess case also concerns

the existence of an invariant relation: F = 0, linear with respect to M , for

which Ḟ = λF = 0. In this chapter we are going to give the detailed con-

sideration to the first four cases, carrying out their qualitative and computer
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Table 2.1. The integrable cases of the Euler – Poisson equations.

The author
Additional conditions, the Hamiltonian

The first integral

1 Euler

(1758)

� = 0, H = 1
2
(A

�

,

�

)

F =

�2 = const

2 Lagrange

(1788)

a1 = a2 = 1, r1 = r2 = 0,

H = 1
2
(M2

1 +M2
2 + a3M

2
3 ) − r3γ3

F = M3 = const
a1 = a2 = 1, a3 = 2, r2 = r3 = 0, r1 = x,

H = 1
2
(M2

1 +M2
2 + 2M2

3 ) − xγ1

3
Kowalevskaya

(1888)
F =

�

M2
1 −M2

2

2
+ xγ1

� 2

+ (M1M2 + xγ2)
2

4 Goryachev,

Chaplygin (1903)

a1 = a2 = 1,
a3

a1
= 4, r2 = r3 = 0, r1 = x,

H = 1
2
(M2

1 +M2
2 + 4M2

3 ) − xγ1,

(

�

, �) = 0

F = M3(M
2
1 +M2

2 ) + xM1γ3

5 Hess

(1890)

r2 = 0, r1
√
a3 − a2 ± r3

√
a2 − a1 = 0,

H = 1
2
(

�

, A

�

) + r1γ2 + r3γ3

F = r1M1 ∓ r3M3 = 0

investigation. The Hess case analysis will be postponed till chapter 4, where

we’ll show its symmetrical origin and its connection with the order reduction,

and also consider various generalizations.

There exist some more special solutions, usually representing certain peri-

odic and asymptotic motions. Later we shall consider the most interesting ones,

possessing a subtle mechanical meaning. Except for these solutions, more than

200 years old history of the search of an additional integral in the Euler –Pois-

son equations has given us a mass of doubtful, wrong, formal and complicated

investigations, whose consideration was given in the book by the Donetsk1 au-

thors [61]. But having shown a series of mistakes in earlier papers, the Donetsk

1Donetsk is an Ukranian city, the scientific center of the Ukranian Academy of Sciences. —

Trans. rem.
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school has added some of its own solutions, whose notation can occupy sev-

eral pages and whose meaning is absolutely vague. The results of such kind

and the techniques (like invariant relations, hodographs etc.), having appeared

on their way, are not related with the modern understanding of the problem of

investigation of the Euler –Poisson equations. This ptoblem is largely concerned

with the qualitative and computer-aided analysis combined with the study of the

nonintegrable case.

Here it’s appropriate to cite K. Magnus [119]: “Around 1900 the search for

the new integrable cases of inviting nonlinear equations of a heavy gyroscope

motion almost turned into a kind of sports for mathematicians. However, the

investigators often left the essence of the physical problem and dedicated their

expansive investigations to the cases, that could not be realized either physi-

cally — due to violation of inequalities, connecting I1, I2, I3, — or geometrically

— due to omission of the condition (γ2 = 1). We cannot consider these works

here.”

The main results of nonintegrability of the Euler –Poisson equations be-

long to V. V. Kozlov, S. L. Ziglin, S. V. Bolotin. They are discussed in the

books [92, 97], and concern the splitting of asymptotic surfaces, the ramifi-

cation of solutions on the complex plane of time, the birth of a large number of

nondegenerate periodic solutions. This trend summit would be the theorem that

the general cases of existence of the additional real analytical integral are just

the cases of Euler, Lagrange, Kowalevskaya, and, for the particular integrals,

the Goryachev –Chaplygin case should be added. Unfortunately, this hypothesis

has not been totally proved up to the present day, in spite of separate and rather

substantial achievements [97].

Algebraic integrability of the Euler –Poisson equations was investigated

even by Husson (1906) [230] (see also [9]) who has shown that the problem

cannot have any other algebraic integrals, except for the cases of Euler, Lagrange

and Kowalevskaya.

The most complete computer-aided investigations of stochasticity in the

Euler –Poisson equations are given in [28]. Here, the transversal intersection

of perturbed separatrices may serve as “the computer proof” of nonexistence an

additional real analytical integral. The paper [35] discovers an infinite period-

doubling cascade of perturbed permanent rotations of the Euler –Poinsot prob-

lem, indicating the possibility of transition to chaos according to the Feigenbaum

scenario.

Remark 2. For integrability of system, (1.1) according to the last multiplier theory

(the Euler – Jacobi theory, see § 7 ch. 1), we also lack one more additional first integral.

In fact, system under investigation (1.1) possesses three first integrals and a standard
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invariant measure ρ = const. However, it should be noted that natural generalizations of

equations (1.1) (see § 12 ch. 3) cannot be integrated by means of this technique. For such

systems the integrability is determined by means of the Hamiltonian formalism and the

Liouville theorem (§ 7 ch. 1).

4. Absolute Motion

Equations (1.6) describe dynamics of a reduced system such that the rigid

body precession around a vertical line is ignored. To determine absolute motion,

it’s necessary to implement an additional quadrature

ψ̇ =
ω1γ1 + ω2γ2

γ2
1 + γ2

2

(1.10)

or to integrate corresponding Poisson equations for direction cosines

α̇ = α× ω, β̇ = β × ω. (1.11)

Both these techniques are not optimal for numerical investigations. In the

first case the problems arise because of the singularity near the poles γ3 = ±1,

in the second case — due to the loss of orthonormality of vectors α, β, γ,

caused by numerical method dissipation. To obtain the majority of computer-

based illustrations, shown in the book, we used the quaternion form of notation

equation of motion, shown in § 4 ch. 1. This system describes absolute dynamics

of rigid body, it doesn’t have any singularities, and is not a redundant one.

Consequentey, it is irreplaceable for numerical investigations. In § 12 ch. 3 we

have considered its applications to dynamics investigation in the superposition

of potential field.

For Euler –Poisson equations (1.6), which, if the area constant is given,

determine dynamics of a point on the Poisson sphere in a generalized potential

field1 (see § 1 ch. 4), only some families of periodic and asymptotic solutions

are known. Nearly all of these solutions, the majority of which can be traced

back to classics, are given below. Let us discuss typical situations, from the

viewpoint of absolute motion, in greater detail.

Fixed points on the Poisson sphere, which determine the Staude solu-

tion and relative equilibria, correspond to uniform rotations of a body around a

vertical line.

1When this system is written in canonical coordinates on a cotangent foliation to the Pois-

son sphere, in the Hamiltonian there arise terms, linear with respect to momenta — a magnetic

monopole [133].
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Periodic solutions on the Poisson sphere in an absolute space are, gen-

erally speaking, not periodic. To obtain such a periodicity, it’s necessary (and

sufficient) to have the commensurability of a period T of reduced motion with

the quantity

τ =

t+T∫

t

ω1γ2 + ω2γ2

γ2
1 + γ2

2

dt,

computed from (1.10) along periodic motion ω(t), γ(t). In the general case, τ
and T are not commensurable, and the absolute motion is a quasiperiodic and

double-frequency one, i. e. the motion in the absolute space may look rather

complicated.

Quasiperiodic (double-frequency) paths of a reduced system, in the

general case, define triple-frequency quasiperiodic motions in the absolute space,

which can look rather intricately. Nevertheless, these motions are regular, unlike

chaotic ones, generated by chaotic paths of a reduced system. In the latter case

the irregular behavior of a body requires probabilistic description.

Regular precessions. One more class of periodic solutions, that can be

traced back to classical investigations of the Lagrange top dynamics, doesn’t

directly concern reduced system dynamics. These are regular precessions, which,

in the general case, as it was noticed by Grioli (§ 6 ch. 2), are possible around

a nonvertical axis. For such kind of motions the periodicity is required for a

certain axis within the body, which should rotate around the axis, fixed in space.

Absolute motion may turn out to be nonperiodic since the proper rotation around

the axis within the body is not necessarily commensurable with motion of this

axis in space. This is observed, for example, for regular precessions in the

Lagrange case.

In some cases (for example, in the Hess case § 6 ch. 2) one of the axes of

a body may be in a rather simple motion in the absolute space (according to the

spherical pendulum law). Nevertheless, dynamics of a reduced system and of

general absolute motion may be very complicated (the rest of phase variables in

the Hess case varies asymptotically).

Further on, we give some of the most interesting reduced and absolute

motions, obtained by means of computer simulation.

Absolute motion: integrable and nonintegrable cases. Here we shall

dwell on the general principles of the experimental (both full-scale and

computer-based) study of rigid body motion around a fixed point. To get any

understanding of rigid body motion, a usual procedure is to observe motion of
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some characteristic points of the body, or, generally speaking, some variables

that have the simplest natural regularities of the time evolution. If a certain vari-

able x varies under the motion, following the law x(t, x0), then it’s possible to

construct its frequency spectrum ω, which can be determined from the Fourier

transformation

x̂(ω) = lim
T→∞

T∫

−T

x(t, x0) e
iωtdt.

For the integrable systems, and also for motions of nonintegrable systems, lying

on the invariant tori (and not in the stochastic layer), the variable x is (according

to the Liouville –Arnold theorem) a certain quasiperiodic function. In the gen-

eral case of n rationally independent frequencies (n is a number of degrees of

freedom) for chaotic motions the spectrum is continuous when the motion itself

may show both regular portions and distinct chaotic pulsations.

Remark 3. The frequencies ω1, . . . , ωk are referred to as independent ones if the

equality n1ω1 + . . .+nkωk = 0, where ni ∈

�

, holds true only when n2
1 + . . .+n2

k = 0.

For the rigid body motion in integrable cases n = 3, the absolute motion is,

generally speaking, triple-frequency. The reduced system motion, in the presence

of a linear integral (like an area integral), is double-frequency. In the latter case

the third frequency is obtained from the quadrature for the precession angle

in the process of transition to the absolute motion. Below we are discussing

integrable cases of the Euler –Poisson equations.

For different variables in the absolute space the number of frequencies may

decrease on account of the following reasons:

a) The integral algebra is redundant, as, for example, in the Euler –Poinsot

problem.

Really, in the Euler case there exist three integrals of an area kind N1 =
= (M ,α), N2 = (M ,β), N3 = (M ,γ), constituting the algebra so(3):
{Ni, Nj} = εijkNk. In this case the absolute phase space is foliated into

two-dimensional tori, and not three-dimensional ones. It should also be

noted that dynamics of a reduced system (on the Poisson sphere) is also

double-frequency, i. e., a frequency is lost at the expense of realization of

a quadrature for ψ.

The Euler case also has variables in a phase space — components Mi,

which make single-frequency, i. e., periodic, motions. However, these

variables are practically impossible to be measured.
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b) Some coordinates of characteristic points may vary particularly easily.

For example, in case of the Lagrange top a nutation angle varies pe-

riodically. At the same time the absolute motion is triple-frequency,

and the dynamics of a reduced system is (with respect to ϕ or to ψ)

double-frequency. An interesting fact is that on the zero area constant

(M ,γ) = 0, corresponding to a spherical pendulum, the absolute motion

is double-frequency.

c) The motions correspond to particular (critical) tori, defining bifurcational

curves.

Stable and unstable one-dimensional, and also asymptotic, invariant sur-

faces of a reduced system usually set double-frequency motions in the

absolute space. This fact is vividly illustrated by the Kowalevskaya case

and by the Goryachev –Chaplygin case. In the latter case, for the special

solution of Goryachev, for small energies there occurs even greater degen-

eration, and the motion in the absolute space becomes periodic (see 5): the

body makes curious pendular motions in space. It should also be noted

that the Kowalevskaya top in a reduced phase space has a set of three vari-

ables z1, z2, z3, in whose space there occurs a periodic motion on a certain

ellipse (see § 4). These variables are highly unobvious and are produced

as from components of the moment M , so from the components of the

unit vector γ .

Finally, we shall dwell on the solutions of Grioli and Hess. In the absolute

space the Grioli motion is strongly degenerate, and the paths of all points are

periodic. The Hess top motion is characterized by simple behavior of the center-

of-mass. It is governed by the spherical pendulum law and is a double-frequency

one. At small energies and (M ,γ) = 0 the body makes periodic (single-

frequency) motion, the center-of-mass oscillating in one plane, following the

physical pendulum law, and the mean axis apex moving (periodically) along the

loxodromic segment. However, as soon as (M ,γ) 6= 0, the situation becomes an

ordinary one, i. e., the body is making triple-frequency motion. At large energies

the motion is double-frequency, and for the system, reduced with respect to ψ,

the path is situated on a special torus, filled with double asymptotic motion ( for

more details see § 3 ch. 4).

In conclusion, it should be mentioned that in the general nonintegrable case

the body is making both complex chaotic motions, whose investigation seems to

require not only frequency analysis, but also more subtle statistic characteristics

(like correlational functions), and various periodic and quasiperiodic motions,
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whose definition in phase space constitutes one of the major problems of modern

dynamics.

§ 2. The Euler Case

1. The Geometric Interpretation by Poinsot

In this section we shall discuss the most famous analytical and geomet-

rical results concerning the Euler case, for which the body is moving without

influence of a field (r = 0), and the Hamiltonian (the kinetic energy) and an

additional integral, which is square of the angular momentum module, are rep-

resented by

H = 1
2
(M ,AM ), F3 = M2 = f = const. (2.1)

The intersection of a set of constant energy H = h with sphere (2.1) in

space of moments M represents closed spatial curves — polhodes. How they

look on the set of energy H = h is shown at fig. 14.

Figure 14. Polhodes (a3 < a2 < a1). In the general case polhodes represent spatial

algebraic curves of the fourth order. In two special cases they represent intersecting

ellipses — separatrices, which are filled with double asymptotic motions to unstable per-

manent rotations around the mean axis of the inertia ellipsoid, corresponding to the points

of intersection of ellipses. Polhodes degenerate into points for permanent rotations around

the stable minor and major axes of the inertia ellipsoid.
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Figure 15. The Poinsot interpreta-

tion.

The geometric interpretation of the Euler

case was given by L. Poinsot in 1851 [257].

According to this interpretation, the inertia el-

lipsoid (the energy ellipsoid) with a fixed cen-

ter 1
2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) = h rolls with-

out slipping on the plane, fixed in the absolute

space and perpendicular to the angular mo-

mentum vector (fig. 15). In this interpretation

the position vector of the contact point serves

as an instantaneous axis of rotation, and the

angular velocity is proportional to the posi-

tion vector length. The contact point on the ellipsoid draws polhodes (fig. 14),

and on the plane — herpolhodes (see fig. 16, 19).

Figure 16. Herpolhode. As it was indicated by Hess1, a herpolhode cannot have inflec-

tion points. In the general case a herpolhode is an open curve. This (wrong) figure, given

in many books, belongs to Poinsot himself.

2. Explicit Integration and Bifurcational Analysis

Explicit integration of the Euler case is easy to obtain by means of the

Andoyaer –Deprit variables, in which integral (2.1) is a cyclic one (for more

details see § 3, ch. 1, where the phase portrait of the Euler case is also shown).

We shall give expressions for momentsM in one of the four domains, separated

by separatrices, on the energy ellipsoid (see fig. 14). These expressions trace



94 Chapter 2

back to Jacobi, Kirchhoff, Greenhill (see, for example, [124, 145])

M1 =

√
(f − 2hI3)I1
I1 − I3

cn(τ, k), M2 =

√
(f − 2hI3)I2
I2 − I3

sn(τ, k),

M3 =

√
(2hI1 − f)I3
I1 − I3

dn(τ, k),

(2.2)

where

k2 =
(I1 − I2)(f − 2hI3)

(I2 − I3)(2hI1 − f)
, τ =

√
(I2 − I3)(2hI1 − f)

I1I2I3
(t− t0).

Under the transition to other domains it’s necessary to change correspond-

ing signs and replace dn by cn and vice versa, and also transform the expressions

for the module of elliptic functions and uniformizing parameter τ [124].

The motion in an absolute space. The explicit time dependence of di-

rection cosines can be obtained in the following way. Let’s choose a fixed frame

of reference, in which one of the unit vectors is directed along the angular mo-

mentum vector, fixed in absolute space, and two others are perpendicular to

it

M =
√
fα, (M ,β) = (M ,γ) = 0, (2.3)

where f is a constant of integration (2.1). Let’s find the time dependence of

two vectors α,γ, and the vector β can be added according to the orthogonality

(β = γ ×α).
Due to the constancy of the quantity f the vector α is determined from

relations (2.2). Quadratures for γ may be easily obtained by means of sphero-

conical coordinates on the Poisson sphere γ2 = 1. Really, in the chosen frame

of referance the area constant equals zero, and the Hamiltonian in the Euler

case coincides with the additional integral of the Neumann problem with a zero

potential. Hence, in sphero-conical coordinates variables separate, and one can

use formulae (7.17) ch. 1 ( in greater detail see § 7 ch. 1).

Remark. Using the Poisson equation ˙ � = � × A

�

, it’s easy to express
�

in

terms of � and ˙ � under the condition that (M , �) = 0:

�

= A
−1 ˙ � × A−1 �

( �, A−1 �)
.

1In various textbooks this result is also attributed to de Sparr and Lecornu.
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Figure 17. Bifurcational pattern of the Euler – Poinsot case on a plane (h, f). The

domains, where motion is impossible, are marked with grey colour. (The domain of

intervals f < c2, c = (
�

, �) is also inaccessible).

Bifurcational pattern of the Euler –Poinsot case on a plane of val-

ues of integrals h, f is shown at fig. 17. It consists of three branches,

specified by the equation h = 1
2
aif , i = 1, 2, 3, and corresponding to the

rotations around three principal axes of inertia. The unstable rotations around

a mean axis are shown by dotted lines; in this case a mean axis of inertia of

the body in a fixed space describes a loxodromic spiral (a loxodrome) on the

sphere, rotating through 180◦ (see fig. 18). We should remind that the loxodrome

constitutes the same angle with all the meridians. Double asymptotic motions of

a body in the Euler case are considered in greater details in § 9 ch. 5.

A herpolhode. We shall give the differential equation of a herpolhode. Darboux

was the first to attempt to study this curve. The above mentioned equation is easy to

obtain if one uses parametric representation of a polhode (where the parameter is replaced

by squared distance r2 from the polhode point to the ellipsoid center) and equations of

motion. Here we omit the corresponding computations, and show the final result only (in

greater detail see in [113]). In polar coordinates ρ, ϕ with the center at the intersection

of the momentum vector with a fixed plane at the point Q (see fig. 15), the herpolhode

equation iswritten as

dζ

dϕ
= 2h

f

ζ + k

ζ

�

P (ζ)
, ζ = ρ2, (2.4)
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where k = 1
D

�

i

(1−aiD), D =
f

2h
. The function P (ζ) represents a cubic polynomial:

P = 8hl2

�

i,jk

� a2
i

(aj − ai)(ak − ai)
(ζ − (aj + ak −Dajak))

�

, (2.5)

where l =

�

i,jk

(ai − aj)a
2
k

a1a2a3
. The solution of equation (2.4) can be obtained in elliptic

quadratures; qualitative investigations of a polynomial P (ζ) result in the conclusion that

the whole polhode is enclosed between two boundary concentric circles, which it touches

alternately so that the moments of contact correspond to the transition of the vector �

through the principal planes of inertia ellipsoid. A herpolhode does not have inflection

points or cuspidal points (Hess). For separatrix motions it represents a spiral, infinitely

twisting around the center, but, at the same time, having a finite length, equal to the length

of the corresponding polhode arc. Typical paths of herpolhode are shown at fig. 19. Their

detailed investigation can be found in the treatise by Grammel [66], where, depending on

the position on a bifurcational pattern, the epicycloidal and pericycloidal Poinsot motions

can be distinguished.

Figure 19. Herpolhodes for the Euler case. a) A herpolhode of a general kind — a

quasiperiodic open curve. b) A herpolhode, corresponding to a separatrix — a curve,

infinitely winding to the center.

3. Comments
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Figure 18. The loxodromic path of

apex of a mean axis of inertia, of

the body when the body is moving

along a separatrix. Parameters: A =
= diag(1, 1.02, 2.0).

Various techniques for the explicit inte-

gration of equations of motion of a free top

can be found in works by Euler, Lagrange,

Kirchhoff, Caley, Greenhill, and Jacobi. The

works of the latter [231, 232] have a special

interest. In these papers Jacobi has obtained

explicit expressions in terms of elliptic functions

not only for the angular velocity components,

but for all (nine) direction cosines. Apply-

ing his results to perturbed motion, he con-

structed (in series) a system of osculating vari-

ables, similar to variables of the action-angle

type. Their modern introduction, belonging

to Yu.A. Sadov [9, 92], includes phase in-

terpretation and the Andoyaer –Deprit vari-

ables. The first application of elliptic functions

for the Euler case integration was ascribed by

G. Lamb in his famous textbook [112] to a

Rueb (1834 [264]).

Lagrange has also given his solution of the Euler problem in the Analytical

Mechanics: “I introduced in this solution the clarity, and, if I can put it this way, the

elegancy that could ever be imparted to this solution.” But at the same time Lagrange

considered this case to be simple: “ . . . thus, I flatter myself with the hope that I

shall not be reproached for reconsideration of the present problem.” His solution is

remarkable because he was the first to show explicitly the existence of three principal

axes of inertia, which an arbitrary rigid body has (the reducibility of a symmetrical

matrix to the diagonal form) — though the latter does not bear any relation to the

Euler case itself. The Lagrange solution also has elliptic integrals, but it lacks the

idea of their inversion — which appears in the works by Jacobi and achieves its

perfection and a certain completeness in the papers by Weierstrass, Hermite and

Halphen.

Poinsot himself was trying to improve the described geometric interpretation

of motion that has become the pattern in mechanics, though it was not that clear

for other integrable cases. He offered the second geometrical interpretation, taking

account of time. According to the latter interpretation the cone, attached to the body,

rolls over the plane, perpendicular to the angular momentum vector and rotating with

the constant angular velocity. Darboux and Koenigs, on the basis of the second

interpretation, have constructed a device, which they called a herpolograph, designed

for the inertial motion demonstration. The improvements of the Poinsot interpretation
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were also offered by Jacobi, Sylvester, MacCullagh. These interpretations, in spite

of their generality, are too far from the natural ones. They can be found in the

books [113, 61, 163, 120] and others. Presently these results are of purely historical

value.

To confirm the regularities of free motion, Maxwell has invented the model of

a top, named after him. The experiments with this top are described in the book by

Webster on mathematical physics [46], where the author gives a special place to the

top theory: “That is a question of the extraordinary practical importance, especially

for engineers, but those who study physics often try to escape it. Even Maxwell

was drawing the attention of physicists to this matter and has invented a remarkable

device to demonstrate corresponding phenomena.” The earlier device, demonstrating

free top motion, belongs to Bonnenberger (1817).

By means of Maxwell top one can become assured in stability or instability

of rotations with respect to the principal axes. One can also become certain that

motions, close to rotations with respect to the mean axis, i.e., to separatrices, are

very complicated and seem to be irregular and chaotic. In fact, the “real” chaos in

such motions arises at the introduction of perturbation, for example, a gravity field.

§ 3. The Lagrange Case

Let us consider the following integrable case, which is of the substantial in-

terest from the viewpoint of both classical mechanics and technical applications.

The main regularities of the Lagrange top motion constitute the content of the

approximate (applied) theory of a gyroscope.

For the case being considered the body is dynamically symmetrical a1 =
= a2, and the center-of-mass lies on the axis of dynamical symmetry r1 = r2 =
= 0. An additional integral has the form F3 = M3 = const.

The reduction to one degree of freedom. The Lagrange case is most

easily integrated by means of the Euler angles θ, ϕ, ψ and conjugate canonical

momenta pθ, pϕ, pψ. Actually, writing down the Lagrange function (see (4.28)

ch. 1), we obtain that variables ϕ, ψ are cyclic ones, and the corresponding

momenta are integrals of motion:

pϕ = M3 = const, pψ = (M ,γ) = const.

Eliminating cyclic variables from the energy integral, we determine

h =
I1
2
θ̇2 +

p2
ϕ

2I3
+

(pψ − pϕ cos θ)2

2I1 sin2 θ
+mgl cos θ, (3.1)
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where values of cyclic integrals pψ = (M , γ), pϕ = M3 may be considered as

parameters.

Without any limitation of generality let us assume that I1 = 1, mgl =
= 1 (it can be achieved by choice of the length and time units), then from

expression (3.1) we can find the quadrature for the nutation angle

θ̇2 = 2h− ap2
ϕ − (pψ − pϕ cos θ)2

sin2 θ
− 2 cos θ, a = I−1

3 . (3.2)

From relation (3.2) for the variable u = γ3 = cos θ we obtain an elliptic

quadrature (see also [119]).

u̇ = ±
√
R(u),

R(u) = 2(h′ − u)(1 − u2) − (pψ − pϕu)
2,

h′ = h−
ap2
ϕ

2
= const.

(3.3)

The dependency u(t) is expressed in terms of elliptic functions. The func-

tion f(u) is referred to as a gyroscopic function and represents a cubic polyno-

mial. In the general case it is of the type shown at fig. 20. The similar quadrature

with the polynomial R(u), probably, of higher degrees, also exists for various

generalizations of the Lagrange case, allowing the integral M3 = const.

Figure 20. The Lagrange top gyroscopic function. It is easy to show that u3

�

1.

Complete system dynamics. To determine complete system motion, ac-

cording to the known law of motion u(t), it is necessary to fulfill quadratures
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for the precession angle ψ and the proper rotation angle ϕ:

ψ̇ =
pψ − pϕu

1 − u2
, ϕ̇ = (a− 1)pϕ +

pϕ − pψu

1 − u2
. (3.4)

The motion of an apex — a point, lying at the dynamical symmetry axis, —

is described in terms of spherical angles θ, ψ. The apex path is always enclosed

between two parallels, whose latitude is determined by gyroscopic function (3.3)

(see fig. 20), and belongs to one of three types shown at fig. 21, 22, 23.

Fig. 21. ψ̇ does not change

its sign while moving and

never vanishes.

Fig. 22. ψ̇ preserves its

sign, vanishing periodi-

cally.

Fig. 23. ψ̇ changes its

sign.

At certain integral values a gyroscopic function is tangent to the horizontal

axis at the point u = 1. That is the case of asymptotic (aperiodic) motion of

the Lagrange top, when the axis of symmetry tends to take vertical position at

t→ ±∞ (see fig. 24). The explicit formulae for this case are given in § 9 ch. 5.

1. Bifurcational Pattern and Geometrical Analysis of Motion

The Lagrange top motion type (the path form) is completely determined by

values of integrals of motion h, pϕ, pψ. Further on, for the integral constants

we shall also use following designations: pϕ = p, pψ = c.
We shall consider three-dimensional space, whose points are values of the

first integrals (h, pϕ, pψ). As far as the Lagrange top path form is completely

determined by values of integrals h, pϕ, pψ, space may be divided into various

domains, each one having its own type of motion. Thus, the domains of “allowed

values” of integrals is constituted by those points of space, for which correspond-

ing gyroscopic function (3.3) has positive values at the interval u ∈ [−1, 1] (see

fig. 20). This domain boundary is “a set of regular precessions”; at these in-

tegral values gyroscopic function (3.3) is tangent to the axis Ou from below at

the interval [−1, 1]. In this case the top performs a regular precession: the apex

uniformly rotates around the vertical line, preserving a constant angle of slope,

and the body uniformly rotates around its own axis. The general appearance of
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Figure 24. The motion of the apex of the Lagrange top center-of-mass in a fixed space

for the asymptotic motion. For the first time this motion was indicated by Klein and

Sommerfeld [238].

the set of regular precessions and of its section by various planes pϕ = const
and pψ = const are shown at fig. 25, 27, 28, 26. At figures it is easy to notice

two edges in the planes pϕ ± pψ = 0 (one of the edges pϕ − pψ = 0 does not

reach the origin of coordinates and originates from the point pϕ = pψ = 2).

At small deviations from the condition of the root, having order higher than the

first, there appears pseudoregular precession, which also has the nutation of the

dynamical symmetry axis.

2. Various Reduced Systems (with respect to ψ and to ϕ)

The Lagrange top apex motion in absolute space (fig. 21) can be obtained

from canonical equations of the top motion in terms of Euler angles after the

Routh reduction with respect to the proper rotation angle ϕ, which is a cyclic

one. The reduction of the same equations with respect to the precession angle ψ
gives the Euler –Poisson equations. They describe the vertical unit vector evolu-

tion in the frame of reference, rigidly bound to the top, and have an independent

interest from the physical viewpoint. In other words, this system describes mo-

tion of the “apex” of absolute space in the noninertial system, attached to the

moving top. The apex paths on the corresponding sphere (it is the ordinary Pois-

son sphere) are quite similar to the paths of dynamical symmetry axis apex in

fixed space (fig. 21, 22, 23). However, in case of particular motion, the behavior

of various apices is usually different; this difference showing itself in the pres-

ence or absence of apex path loops (see fig. 21, 23). To put it more precisely,
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Figure 25. The surface of regular precessions in the space of energy integrals — h, area

integrals — c, and Lagrange integrals — p (I1 = 1, I3 = 5).

the situations, shown at fig. 26, are possible. The indicated picture of motion

in the frame of reference, attached to the body, is useful for understanding the

proper rotation angle, excluded from the majority of mechanical courses.

To justify the standard analysis incompleteness, one can cite the famous

conception of Hertz [58] who offered to consider a proper rotation angle to be

unobservable, and to connect the presence of corresponding cyclic motion with

the “latent masses and parameters”, leading to the changes in potential energy.

If the same viewpoint be held for a noninertial observer, then the corresponding

latent masses and parameters should be ascribed to absolute space.

3. Conjugate Poisson Structures

The Lagrange case is characterized by the additional symmetry: for this

case there exists the second compatible Poisson structure [31] (that is, the system

is a bi-Hamiltonian one). Really, the equations of motion can be obtained if the

Hamilton function is defined in the form
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Figure 26. This is a section of the set of regular precessions (fig. 25) by the plane h = 0,

where the lines of the cuspidal points of the apex of dynamical symmetry axis (θ̇ = ψ̇ =
= 0) and the apex on the Poisson sphere (θ̇ = ϕ̇ = 0) are also shown. In a narrow

shaded domain the path has loops as on the Poisson sphere, so in the absolute space. In

the rest of domains the loops are possible only in the absolute space or not possible at

all.

H = (a− 1)M3

(
1
2
(M2

1 +M2
2 ) + γ3

)
+ (M1γ1 +M2γ2 +M3γ3),

a = const

(3.5)

and the Poisson bracket in the form

{γi, γj} = −εijkγk, {M1, M2} = 1, {Mi, γj} = 0, (3.6)

the latter one having annihilators F1 = M3, F2 = (γ, γ).
Equations in the Hamiltonian form with bracket (3.5) and Hamiltonian (3.6)

may be of use, while studying the Lagrange top perturbations by means of

generalized potential and dissipative effects.

4. Historical Comments

Lagrange has indicated his case of integrability in the second volume of the

Analytical Mechanics, where he has also stated the general outline of its integration.

A bit later (1815) this very problem was also solved by Poisson who has added to

the analytical computations of Lagrange of figures the apex motion path (similar to

fig. 21–23), which further on were cited in nearly all textbooks on mechanics.
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Figure 27. A bifurcational pattern on the plane (h, p) at various constant values c (I1 =
= 1, I3 = 5).

After the theory of Abelian functions had been created and the Euler case

had been integrated, Jacobi made an attempt to receive similar quadratures for the

Lagrange top. However, his work remained uncompleted. Various forms of gen-

eral solution (i. e., expressions for angular velocities and for all direction cosines,

or the Euler angles) in terms of theta-functions can be found in the books by

F.Klein and A. Sommerfeld [238], E.Whittaker [167], A. S. Domogarov [73],

W.D.MacMillan [120]. It seems that A. G.Greenhill [220] was one of the first to

obtain the general solution. However, all the quadratures found are very complicated

and practically are not used.

Jacobi was also trying to give a complete geometrical picture of motion similar

to the Poinsot interpretation of the Euler case. He has formulated the proof-

free statement that the Lagrange top motion can be resolved into two motions of

the Poinsot type — direct and backward. In 1882 this statement was proved

by E. Lottner, who published posthumous works of Jacobi. We do not discuss

this result and its improvements, offered by Darboux, Halphen and Hess, because

they are extremely complicated and artificial [120, 163]. Similarly to the analytical

expressions, they are incapable of giving clear impression about the picture of motion.
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Figure 28. A bifurcational pattern on the plane (h, c) at various constant values p (I1 =
= 1, I3 = 5).

The most complete and physically clear description of the Lagrange top motion

is given in the books by K.Magnus [119] and R.Grammel [66]. Here we have

made this discussion more invariant and added vivid three-dimensional illustrations.

In a certain sense, they show real complexity in classification of various motions of

an axially symmetric top.

It should also be noted that the papers [134, 165] show bifurcational curves,

not every of which coincides with ours. But if in the paper [165] this happened

because of the brevity of exposition, when there was no task of making the complete

analysis of motion, the book by M.Audin [134] shows some curves, which seem to

be not absolutely right. The final conclusions are difficult to be made here, because

the book [134], in spite of its name, is dedicated not to the real motion of tops,

but rather to the “explanation” of the well known facts with extra overloading — the

complex algebraic geometry formalism.
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Figure 29. The figure shows sections of the set of regular precessions (see fig. 25) by various planes c = const. It is also

indicated here how, depending on the constant of the Lagrange integral p, the angular velocity ψ̇(p) and the latitude θ(p)
of regular precessions are changing. In the presence of small friction there occurs the decrease (dissipation) of the constant

of integral p — the moment of the proper rotation of top, and the figure shows that, at first, the top tends to take vertical

position cos θ → 1, and if c � 2, it attains this position at p = c; then sometimes it is said that the top “falls asleep”. Under

further decrease of p the precession direction (the sign of ψ̇) changes its sign, and this can also be observed in experiments with

a top.
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Figure 30. For the Lagrange top there exist two simple particular periodic solutions, for which the top axis is vertical, and the

center-of-mass is either higher or lower than the fixation point: these are upper and lower solutions correspondingly. Convention-

ally, a top, rotating in the upper position, is referred to as “an asleep top”. In the space of integrals these solutions are specified

by the equations: p = c, h = 1
2
ap2 + 1 — an upper solution, p = −c, h = 1

2
ap2 − 1 — a lower solution. The figure shows

various sections of the possible motion domains (PMD) and indicates corresponding particular solutions. One can see that the

lower solution lies on the PMD boundary and, hence, is always stable. The upper solution, at p = c < 2, lies within PMD, and

is, as one can show [124], unstable; when p = c � 2, this solution exceeds the PMD boundary, whereby it becomes stable. Here

lies the famous Maeyevskiy condition of an asleep top stability.
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§ 4. The Kowalevskaya Case

Additional integrals in the Euler and Lagrange cases are of a natural physi-

cal origin. In the first case the integral is a squared angular momentum module,

in the second case its projection on the dynamical symmetry axis. In the non-

integrable case, found by S. V. Kowalevskaya (1888), an additional integral does

not originate from geometric symmetry. It was discovered almost a hundred

years later and is much more complicated from the viewpoint of both explicit

integration and qualitative analysis of motion.

In this case the body possesses dynamical symmetry: a1 = a2, and the

center-of-mass lies in the equatorial plane of the inertia ellipsoid r3 = 0. The

relation
a3

a1
=

I1
I3

= 2 also holds true. The Hamiltonian and the additional

integral, found by Kowalevskaya, have the form:

H = 1
2

(
M2

1 +M2
2 + 2M2

3

)
− xγ1,

F3 =

(
M2

1 −M2
2

2
+ xγ1

)2

+ (M1M2 + xγ2)
2

= k2,

(4.1)

where the position vector of the center-of-mass has components r = (x, 0, 0),
and the weight is µ = 1 (without any limitation of generality).

1. Explicit Integration. The Kowalevskaya Variables

Apart from the additional integral, S. V. Kowalevskaya has found remark-

able variables, transforming equations of motion (1.1) into the Abel – Jacobi

form (see § 7, ch. 1). In the presence of such a form further integration in terms

of theta-functions (of two variables) can be carried out according to a certain

general pattern (see [86]). Here we shall show the corresponding replacement

only.

The Kowalevskaya variables s1, s2 are determined by means of the formu-

lae

s1 =
R−

√
R1R2

2(z1 − z2)
2
, s2 =

R+
√
R1R2

2(z1 − z2)
2
,

z1 = M1 + iM2, z2 = M1 − iM2,

R = R(z1, z2) = 1
4
z2
1z

2
2 − h

2
(z2

1 + z2
2) + c(z1 + z2) + k2

4
− 1,

R1 = R(z1, z1), R2 = R(z2, z2),

(4.2)
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where F1 = (M, γ) = c, H = h. To simplify computations we assume x = 1
in all cases.

The equations of motion take the form

ds1√
P (s1)

= dt
s1 − s2

,
ds2√
P (s2)

= dt
s2 − s1

, (4.3)

where

P (s) =
((

2s+ h
2

)2

− k2

16

)(
4s3 + 2hs2 +

(
h2

4
− k2

16
+ 1

4

)
s+ c2

16

)
.

On the account of polynomial P (s) having the fifth degree, the quadrature

for (4.3) is referred to as ultra-elliptic (hyperelliptic).

2. A Bifurcational Pattern and the Appelrot Classes

The values of integrals h, c, k, at which polynomial P (s) has high order

roots, determine in the space of these integrals a bifurcational pattern — a set of

two-dimensional surfaces, where transformation of the motion type takes place

(see fig. 31). The ultra-elliptic quadratures in (4.3) are reduced to elliptic ones,

and the corresponding (most remarkable) motions are referred to as the Appelrot

classes [4]. Various branches of the bifurcational pattern correspond to various

Appelrot classes.

It is a common fact, which is easy to show, that the Appelrot classes,

determined from the high order of roots of polynomial P (s) = 0, coincide with

the set of special Liouville tori, where integrals H, F1, F2, F3 are dependent,

i. e., the Jacobi matrix rank

∥∥∥∂(H, F2, F3, F4)

∂(

�

, �)

∥∥∥ decreases [170]. It is evident

that these special tori define stable and unstable periodic motions and asymptotic

paths to the latter in the phase space of a reduced system (i. e., for the Euler –

Poisson equations).

The bifurcational pattern with the indication of branch stability is shown

at fig. 31. Combined with Poincaré phase sections in canonical variables (for

instance, the Andoyaer –Depritones, fig. 32, 33), it is of great use for dynamics

since it allows vivid representation of all other paths of an integrable system in

a phase space.

Explicit solutions for the Appelrot classes may be obtained directly without

any use of equations (4.3). Their construction, concerning non-obvious manip-

ulations, was started by G. Appelrot [4] himself, but the most complete form of
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this construction was given by the Donetsk mechanic A. I. Dokshevich [72]. We

shall show some of his results, mainly connected with periodic and asymptotic

motions (which are of the highest importance for dynamics) and shall try to

clarify their mechanical meaning.

There exist four Appelrot classes.

I. The Delauney solution [70] : for this solution k2 = 0, h > c2, and

there appears two invariant relations

M2
1 −M2

2

2
+ xγ1 = 0, M1M2 + xγ2 = 0, (4.4)

determining the Euler –Poisson periodic solution.

It turns out that in this case, when the area constant equals zero c = 0, the

motion is periodic not for the reduced system (on the Poisson sphere) only, but

in the absolute space, [60] as well (see fig. 36–39).

To obtain the explicit quadrature, on the level of integrals and invariant

relations (4.4) we shall express all variables in terms of M1

M2
2 = 2z −M2

1 , M2
3 = h−M2

1 ,

xγ1 = −M2
1 + z, xγ1 = −M1(2z −M1)

1/2, xγ3 = (x2 − z2)1/2,

z =
M2

1 +M2
2

2
= (γ2

1 + γ2
2)1/2 = x

− cM1 ±
√

(h− c2)(h−M2
1 )

h
.

(4.5)

Then, for M1 we obtain the quadrature

Ṁ1 = M2M3 =
(
(h−M2

1 )(2z −M2
1 )
)1/2

, (4.6)

which is elliptic at h = c2. At c = 0 it is also possible to obtain a simpler

explicit solution if instead of M1 a variable M3 be used.

From figure 31 it follows that when c is increased up to c =
(

3
4

)3/4

, the

branch of the fourth Appelrot class “cuts” into the Delauney solution, and, under

further increase of c up to c2 < 2, breaks it into three parts. When c2 = 2 at a

point h = 2, k2 = 0, the branches of all four Appelrot classes intersect. Their

intersection point is assigned to an unstable fixed point on the Poisson sphere

(the Staude rotation) (see § 6 ch. 2) and one-dimensional motion (asymptotic to

this point), which is easily computed from (4.6) in terms of elementary functions

M1 =
√

2x
3 + ch2 u± 4 chu

9 − ch2 u
, u = 2

√
xt. (4.7)
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Figure 32. A phase portrait (the section by the plane g = π/2) for the Kowalevskaya

case when the area constant equals zero c = 0. Three qualitatively different phase

portraits are presented. The pictures vividly show what kind of portrait transformations

and periodical solution bifurcations takes place, when critical energy levels h = 0 and

h = 1 are intersecting. (The grey color shows nonphysical domain of values l, L/G at

the values of integrals h, c given.)

At c2 > 2 one branch of the fourth class also “cuts” in the Delauney solution,

and its other branch intersects the part of parabola, corresponding to the second

class.
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Figure 33. A phase portrait (the section by the plane g = π) for the Kowalevskaya case at

c = 1.15 and fixed energy values h, which have phase portraits of qualitatively different

type corresponding. The variables l and L/G correspond to the cylindrical development

of a sphere, and the phase portrait is symmetrical with respect to meridian l = π/2, 3
4
π.

(The bifurcational pattern at the right picture is shown as a scheme, without adhering to

a scale.)

II. The second class solutions lie on the lower branch of parabola

(h− c2)2 = k2, and 1
2
c2 − 1 6 h 6 c2. At c = 0 this class possesses stable

periodic paths, and the body oscillates in a meridional plane, passing through

the center-of-mass, and the conditions M1 = M3 = 0, γ2 = 0 hold true.

At c 6= 0 there exist additional invariant relations

M3 = cγ3, M2
1 +M2

2 +
M1
c = k, (4.8)
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and the explicit integration is carried our in [72]. Starting from c >
√

2, the

branches of the second and fourth classes start intersecting.

III. This class is assigned to the branch of parabola above the point of

contact with the axis k2 = 0, which satisfies conditions

(h− c2)2 = k2, c2 6 h 6 c2 + 1

2c2
. (4.9)

At c = 0 these conditions specify the whole upper branch of parabola, and at

c 6= 0 this branch is limited from above by one of the IV class branches.

From the physical point of view, the third class corresponds to unstable

periodic motions and motions, which are asymptotic to them. At c = 0 periodic

motion for the part of the branch III a) represents oscillations of a physical

pendulum in a meridional plane, passing through the center-of-mass, and for the

part III b) — rotations in the same plane. These solutions meet at the point h =
= 1, which is an upper unstable position of equilibrium. Its instability can be

rigorously proved in various ways [152]. Further on, this proof will be obtained

by explicit construction of an asymptotic solution.

We shall be using the following parametrization of the general level of

integrals of motion, corresponding to the third Appelrot class at a zero area

constant c = 0 [72]

M1 =
√
M2

1 +M2
3 sinϕ, M3 =

√
M2

1 +M2
3 cosϕ,

k1 = k cos 2θ, k2 = k sin 2θ,
(4.10)

where k1 = γ1 +
M2

1 −M2
2

2
, k2 = γ2 +M1M2 (at x = 1), the Kowalevskaya

integral having the form k2
1 + k2

2 = k2.

Differentiating ϕ with respect to time, we shall obtain

ϕ̇ = M2 −
M1k2

M2
1 +M2

3

. (4.11)

After one more differentiation (4.11) and elimination of M2 by means of (4.11),

taking into account h = k > 0, we have

2ϕ̈ cosϕ+ ϕ̇ sinϕ = 2h cos2 ϕ sinϕ. (4.12)

Having multiplied (4.12) by
ϕ̇

cos2 ϕ
and having integrated it with respect to time,

we obtain
ϕ̇2

cosϕ + 2h cosϕ = c1 = const.
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The constant of integration is found from the condition ϕ = 0, at which M1 = 0,

ϕ̇ = M2, and thus c21 = 4x2. So,

ϕ̇2 = 2(x− k cosϕ) cosϕ, k > 0. (4.13)

Remark. At c 6= 0 for a similar (but a bit different) angular variable equation [72]

ϕ̇2 = 2(x− (k + c2) cosϕ) cosϕ

is obtained.

For the angle θ we obtain equation

θ̇ = −M3 = −
√
M2

1 +M2
3 cosϕ,

which after taking into account the energy integral M 2
1 +M2

3 − k1 = h and the

condition h = k, leading to the equality
√
M2

1 +M2
3 = ±

√
2k cos θ, is reduced

to the following one

θ̇ =
√

2k cosϕ cos θ.

After replacement cos θ = (chu)−1 it can be written in the form

u̇ =
√

2k cosϕ.

So, the complete system of equations, specifying asymptotic paths of the third

Appelrot class under conditions c = 0, h = k > 0, is reduced to

2ζ̇ = (1 − ζ2)(x− k + (x + k)ζ2), ζ = tg
ϕ

2
,

u̇ =
√

2k cosϕ, chu = (cos θ)−1.

(4.14)

Its solutions have the form

1. k < x, ζ = cn(
√
xt, k0), k2

0 =
x+ k
2x

,

2. k > x, ζ = dn
(√

x+ k
2

t, k0

)
, k2

0 = 2x
x+ k

,

3. k = x, ζ = (ch
√
xt)−1,

where k0 is a module of the corresponding elliptic functions of Jacobi.

Using 1–3, one can show that u̇ is a function of constant signs, i. e. these

solutions in case 1–2 specify asymptotic motions to the periodic solution, and

in case 3 — to a fixed point. (Analytical quadratures in case c 6= 0 are more

cumbersome [72].)
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IV. This class consists of two branches (see fig. 31), one corresponding

to stable periodic motions, and the other — to unstable motions and separatrices.

At c = 0 these branches meet at the point k2 = x2 = 1, h = 0.

At c 6= 0 parametric equations of branches have the form

k2 = 1 + tc+ t4

4
, h = t2

2
− c
t
, (4.15)

t ∈ (−∞, 0) ∪ (c, +∞), with c > 0,
t ∈ (−∞, +∞) \ {0}, with c < 0,

at c = 0

1. k2 = x2, h < 0, h2 = k2 + x2 (the branch IVa);
2. k2 = x2, h > 0 (the branch IVb).

Stable and unstable periodic motions for the fourth Appelrot class in the

Kowalevskaya case (and also in the more general case, when the tensor of in-

ertia has the form I = diag(1, a, 2), a = const, and the solution itself does

not depend on a) were found by D. K. Bobylev [15] and V. A. Steklov [161] (see

also § 6).

Bobylev –Steklov solution. For this solution the following relations al-

ways hold true

M2 = 0, M1 = m = const;

these relations allow to express γ in terms of M3

γ1 = c
m −M2

3 , γ2 =
(
k2 −

(
1
2
m2 − c

m +M2
3

)2)1/2

, γ3 = mM3

and obtain elliptic quadrature for M3

Ṁ3 = −
(
k2 −

(
1
2
m2 − c

m +M2
3

)2)1/2

. (4.16)

Here, h and k2 are specified by the parametric equation

h = 1
2
m2 − c

m, k2 = 1 + 1
2
m4 + cm,

i. e., they coincide with (4.15). At c = 0 in the fourth class there appear mo-

tions, corresponding to oscillations and rotations according to the law of physical

pendulum in the equatorial plane of the ellipsoid of inertia. For these solutions

M1 = m = 0, γ3 = 0, Ṁ3 = −(1 − (h−M2
3 )2)1/2.
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Asymptotic solutions for arbitrary values of c 6= 0 are determined in [72],

but are very cumbersome. We shall indicate these solutions under additional

conditions

k2 = x2, h > 0, c = 0. (4.17)

To do that, we shall use a curious involution transformation, found by

A. I. Dokshevich: (M , γ) 7→ (L, s) (the square of which is identical):

L1 = − M1

M2
1 +M2

2

, s1 = −γ1 + 2xγ2
3

M2
1 −M2

2

(M2
1 +M2

2 )2
,

L2 = − M2

M2
1 +M2

2

, s2 = −γ2 + 4xγ2
3

M1M2

(M2
1 +M2

2 )2
,

L3 = M3 + 2xγ3
M1

M2
1 +M2

2

, s3 =
γ3

M2
1 +M2

2

.

(4.18)

In terms of new variables (L, s) the equations of motion are written as

L̇1 = L2L3, ṡ1 = 2L3s2 − 4(k2 − x2)s3L2,

L̇2 = −L1L3 − xs3, ṡ2 = −2L3s1 + 4(k2 − x2)s1L3,

L̇3 = −2xcL2 + xs2, ṡ3 = s1L2 − s2L1.

(4.19)

Under condition (4.17) in system (4.19) the equations for L3, s1, s2 separate

and are reduced to quadratures

s2 = (1 − s21)
1/2, L3 = (h+ xs1)

1/2,

ṡ1 = 2
√

(h+ xs1)(1 − s21).
(4.20)

To obtain the solution of complete system (4.19), it is sufficient to find solution

of the second order linear equation with coefficients, explicitly depending on

time

L1 = s−1
1 (−L3s3 ∓ s2

√
hs23 − 1

4x
s1), L2 =

√
hs23 − 1

4x
s1,

s̈3 = −x(1 + 2s1)s3.

(4.21)

Equations (4.20), (4.21) specify asymptotic solutions to periodic motions under

conditions (4.17) (see fig. 45).
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At h = x, which corresponds to the energy of the upper unstable equilib-

rium position, we shall obtain one more (in addition to the third class) solution,

asymptotic to it, in terms of elementary functions

s1 = 1 − 2 thu, s2 = 2 thu
chu

, L3 = −
√

2x

chu
, u =

√
2xt.

Appelrot classes specify the simplest motions both in the reduced, and

in the absolute phase space. The rest of the Kowalevskaya top motions have

quasiperiodic character and depend on the corresponding domain of a bifur-

cational pattern. Under the Kowalevskaya case perturbation in the vicinity of

unstable solutions and their separatrices there arises a stochastic layer (fig. 63).

Unfortunately, the (asymptotic) solutions, presented in this section, did not make

it possible yet to make any progress in the analytical investigation of noninte-

grability of the perturbed Kowalevskaya top (via variational methods, at c = 0,

nonintegrability has been proved in [22]).

3. Phase Portrait and Visualization of the Most Remarkable Solutions

For each fixed value of the area constant

(M , γ) = c, specifying various types of the bifurcational patterns on the

plane (k2, h), there exists its own set of phase portraits. By fixing the energy

level h, we shall obtain several various types of phase portraits, specified by the

intersections of a straight line h = const with a bifurcational pattern. Here we

present two series of phase portraits, corresponding to the simplest (at c = 0,

fig. 32) bifurcational pattern and to the most complex (at 1 < c <
(

4
3

)3/4

,

fig. 33) one. Further, we shall also show a series of the “most remarkable”

solutions on the Poisson sphere and in the absolute space.

Remark. The invariant tori topology is also investigated by means of the Poincaré

sections in [205], in terms of other variables and without clarification of the mechanical

meaning of different motions (in particular, the stability analysis).

Phase portrait at c = 0. In this case the bifurcational pattern consists of

two parabola parts and two straight lines (see fig. 31 a). The physical meaning

of branches, corresponding to the parabola h2 = k2 and to the straight line

k2 = 1, is especially simple and is described above. On the parabola there

lie solutions, specifying planar oscillations and rotations of a rigid body in the

meridional plane (around the axis Oy, perpendicular to the axis Ox, where the

center-of-mass is situated), and on the straight line there lie planar oscillations

and rotations in the equatorial plane (around the axis Oz). On two other branches
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k2 = 0 and h2 = k2 − 1 there are solutions of Delauney and Bobylev –Steklov,

correspondingly.

Above we have given phase portraits with the indication of the place of the

bifurcational pattern, where they are situated. As it follows from the figure 31 a),

there exist three intervals for the constant energy h: (−1, 0), (0,1), (1,∞), each

one being assigned to qualitatively different types of phase portraits (see fig. 32).

Phase portrait at c = 1.15

(
1 < c <

(
4
3

)3/4
)

. By means of the

bifurcational diagram (fig. 31 c) one can determine that there exist five inter-

vals of energy, each one being assigned to its own type of phase portrait (see

fig. 33). In this case periodical solutions, corresponding to the bifurcational pat-

tern branches, do not look so simple, as at c = 0, though they are approaching

these solutions at h� c.

Figure 34. Delauney solution. The motion of the unit vector � at a zero area constant

(c = 0) and various values of energy.

Remark. To construct phase portraits, we use the Poincaré sections in terms of

Andoyaer – Deprit variables, described in § 3 ch. 1. For c = 0 we choose the secant plane

in the form g = π
2

, and for c = 1.15 we choose g = π. That is because in this case not

every periodic solution intersects the plane g = π
2

. We should also note the various type

of phase portrait symmetry on a sphere (l, L/G): at g = π
2

the portrait is symmetrical
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Figure 35. Delauney solution. The motion of the unit vector � at a non-zero area constant

(c = 1.15) and various values of energy h.

with respect to the equator (of the axis L/G = 0), and at g = π it is symmetrical with

respect to the meridional plane (l = π
2
, 3

2
π).

Let us now turn to visualization of the most interesting motions of a rigid

body in the reduced and absolute space.

The Delauney solution (k2 = 0). In this case the path of the vertical unit

vector γ on the Poisson sphere is represented by the figure-of-eight curves (see

fig. 34, 35), at c = 0 (fig. 34), the self-intersection points of these “figure-of-

eights” coinciding and having coordinates γ = (1, 0, 0). This point specifies the

lower position of the body center-of-mass. Under increase of c on the Poisson

sphere there also appear irregular “figure-of-eights”, all intersecting in two points

on the Poisson sphere equator(see fig. 35).

It is known that, under c = 0, the Delauney solution specifies periodic

motions not only in the reduced system, but in the absolute space as well [61].

At c 6= 0, it is not valid already, and the body motion in the absolute space is

quasiperiodic. Figures 36–39 show paths of three rigid body apices at c = 0
and various values of energy. All the figures have fixed axes OXY Z directed

arbitrarily to have better exposition of the paths obtained.

The Bobylev –Steklov solution. Bobylev –Steklov solution is situated on

the lower right branch of the bifurcational pattern (see fig. 31), and is assigned

to the stable periodic solution on the Poisson sphere (see fig. 40, 41).
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Figure 36. The Delauney solution.

Motion of apices in a fixed frame of

reference a zero area constant (c = 0).

Figure 37. The Delauney solution. Mo-

tion of an apex of the center-of-mass at

c = 0 and various h.

Figure 38. The Delauney solution. Mo-

tion of an apex, situated in the equato-

rial plane perpendicular to the position

vector of the center-of-mass at c = 0
and various h.

Figure 39. The Delauney solution. Mo-

tion of a dynamical symmetry axis apex

at c = 0 and various h.

Fig. 40 vividly shows that at c = 0 all the paths on the Poisson sphere

pass through the equator points (0, 1, 0) and (0, −1, 0) without intersecting

meridional plane γ1 = 0. This is assigned to the a remarkable motion of the

center-of-mass in an absolute space — it describes curves having cuspidal points,

lying on the equator at any values of energy (see fig. 42).
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Figure 40. The Bobylev – Steklov solution. The vertical unit vector motion on the Poisson

sphere at c = 0 and various values of energy.

Figure 41. Bobylev – Steklov solution. The vertical unit vector motion on the Poisson

sphere at c 6= 0 (c = 1.15) and various values of energy.
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Figure 42. The Bobylev – Steklov so-

lution. Motion of an apex, passing

through the center-of-mass in a fixed

space at c = 0 and various h.

Figure 43. The Bobylev – Steklov so-

lution. The motion of an apex, pass-

ing through the center-of-mass in a fixed

space at c 6= 0 (c = 1.15) and various h.

At c 6= 0 the paths on the Poisson sphere are shown at fig. 41. In this case

the apex of the center-of-mass describes curves with cuspidal points, lying at

the same latitude, which depends on the constant of energy h, in a fixed space

(see fig. 43). Physically, the Bobylev –Steklov solution may be implemented in

the following way — the body is being twisted around the axis, passing through

the center-of-mass and arbitrary in the absolute space, and let gone without any

initial impulse.

Remark. The motion of the rest of apices in the fixed space is rather intricate, and

we omit it.

Unstable periodic solutions and separatrices for the Kowalevskaya case

look rather intricately both on the Poisson sphere and in the fixed space. Fig. 45

shows motion paths, corresponding to separatrices at c 6= 0 (c = 1.15) and the

same value of energy h = 2. It is clearly seen that the path spends most of its

time in the vicinity of the periodic solution; this fact is shown at the figure by

darker shade in this domain.

In a certain sense, these paths represent all the complexity of the integrable

Kowalevskaya case, some motions in which have visually chaotic character (in

the absolute space the motion looks even more irregular).

Remark 1. We shall indicate one more representation of the Kowalevskaya integral
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as a sum of squares. To do that, we shall use the moment projections on the semistationary

axes

S1 = M1γ1 +M2γ2, S3 = M1γ2 −M2γ1.

One can show that the Kowalevskaya integral allows the notation in the form

F =

�

M2
1 +M2

2

2

� 2
+ x(M1S1 +M2S2) + x2(γ2

1 + γ2
2).

Figure 44

Assuming

�

= (S1, S2) and

� �

= (M1, M2) to be two-dimensional

vectors, we shall designate the angle between these vectors as λ (see

fig. 44). Taking into account that γ2
1 + γ2

2 = sin2 θ, where θ is an

angle between the vertical line and the axis of symmetry of the inertia

ellipsoid, we shall write the Kowalevskaya integral in the form

F = 1
4
G4 sin2 λ+

�

G2 cos λ
2

+ x sin θ

� 2
= k2, G2 =

�2.

Remark 2. We shall also indicate a curious nonlinear transformation, preserving the

structure of algebra so(3):

K1 =
M2

1 −M2
2

2

�

M2
1 +M2

2

, K2 =
M1M2�

M2
1 +M2

2

, K3 = 1
2
M3.

It can be shown that from the viewpoint of Andoyaer – Deprit canonical variables it

corresponds to the canonical transformation of the kind (L, l) 7→

�

L
2
, 2l

�

.

Remark 3. The papers [224, 268] indicate a family of systems on the sphere S2,

allowing the fourth-degree integral in terms of the moments, which cannot be reduced to

the Kowalevskaya case (or to its generalization, shown by Goryachev). The paper [267]

offers the analogical structure for systems with the third-degree integral. It should only

be noted that these papers do not have a single explicit form of the additional integral,

and the corresponding family results from the solution of a certain differential equation,

for which the theorems of existence are being established.

4. Historical Comments

The Kowalevskaya method. S.V.Kowalevskaya has found the general case

of integrability, following not some physical considerations, but developing the ideas

of K.Weierstrass, P. Painleve, and H. Poincaré about the investigation of analytical

expansion of solutions of a system of ordinary differential equations to the complex

plane of time. S.V.Kowalevskaya has supposed that in integrable cases the general

solution on the complex plane does not have any singularities, other than the poles.
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Figure 45. Paths on the Poisson sphere for solutions, asymptotic to unstable periodic

motions.

This gave the possibility of finding the conditions, at which an additional integral

exists. Except for the determination of the first integral itself, S. V.Kowalevskaya

has found not quite obvious system of variables, which gives the Abel – Jacobi form

of equations, and has also obtained explicit solution in terms of theta-functions. The

reduction of the Kowalevskaya case to quadratures is still considered to be very

complicated and cannot be substantially simplified.

A.M. Lyapunov in his paper [116] has refined the Kowalevskaya analysis

(G. G.Appelrot [3] was engaged in this analysis, as well, in response to the cri-

tique of Kowalevskaya papers by the Academician A. A.Markov), having required
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for the integrability to have uniqueness (meromorphy) of a general solution as a

complex function of time, while studying the equation solutions in variations. The

Lyapounov method is somewhat different from the Kowalevskaya approach, which was

further developed in the papers by M.Adler, P. van Moerbeke, who has connected

the presence of full parametric family of single-valued Laurent (pole) expansions

with the algebraic integrability of a system (in a certain narrow sense [186, 187]).

The most complete analysis of the full parametric expansions in the Euler –Poisson

equations may be found in the book [243]. The classical exposition of the results of

Kowalevskaya and Lyapounov can be looked up in several textbooks [9, 59].

The considerations of Kowalevskaya have established the foundation for a new

technique of the analysis of a system for integrability, and at the same time they

became the first pattern of search of obstacles to integrability, which have recently

developed into the separate investigation trend [97]. It should also be noted that,

in spite of some rigorous results, connecting the general solution branching with

the first integral nonexistence [97], the Kowalevskaya technique still remains the

test for integrability; it is ambiguous in many respects, and its application to var-

ious problems requires a certain art and additional considerations. In the litera-

ture on physics this technique is usually referred to as the Painleve –Kowalevskaya

test.

The Kowalevskaya case, its analysis and generalizations. The geometrical

interpretation of the Kowalevskaya case, which is, however, not sufficiently nat-

ural, and his own way of reducing the Kowalevskaya case to quadratures was

offered by N.E. Joukovskiy [76]. He has also used Kowalevskaya variables to

construct some curvilinear coordinates, corresponding to separating variables of the

Kowalevskaya top, on the plane (the plane M1, M2). His reasoning was simplified

by W.Tannenberg and G.K. Suslov [163, 274].

F. Kötter has also somewhat simplified the Kowalevskaya case explicit integration

technique [233, 235] and has offered to investigate motion in ta frame of reference,

uniformly rotating around vertical axis. From the modern perspective introduction

of the Kowalevskaya variables and reduction to the Abel equations are discussed

in [92]. The qualitative analysis of the dynamical symmetry axis motion is shown

in [92]; the topological and bifurcational analyses are present in [170]. The variables

action-angle for the Kowalevskaya top are constructed in [54] (see also [106, 204]).

We give them in § 8, ch. 5. N. I.Mertsalov has carried out full-scale experiments,

but has not found any singularities in the top motion [69].

G.V.Kolosov has integrated the Kowalevskaya case, having reduced it by

means of nonlinear transformation of variables and time to the problem of motion of

a point on a plane in potential, allowing the separation of variables. It is a well known

analogy of Kolosov; its classical variant and new generalizations are discussed in § 8
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ch. 5. It should also be noted that in the paper [103] G.V.Kolosov was studying

path of the angular momentum vector end, having shown its regular singularities.

The configuration of complex tori by means of the algebraic geometry methods

is investigated in [212, 134]. Bifurcational patterns for the Kowalevskaya case in

connection with the Kolosov analogy are discussed in [217].

The Kowalevskaya top quantization is also a question, being considered from the

time of the quantum mechanics origination (Laporte, 1933), but it is not absolutely

clear even nowadays [106, 258]. The paper [204] contains the Picard –Fuchs

equation, arising in the process of integration of the Kowalevskaya case. The first Lax

representation for the n-dimensional Kowalevskaya case without a spectral parameter
was constructed by A.M. Perelomov [142]. The representation, having the spectral

parameter in a general statement (at motion in two uniform fields), was offered

by A.G. Reyman, M.A. Semenov-Tian-Shansky [147]. This generalization of the

Kowalevskaya case is still little studied (in particular, it is not integrated in terms of

quadratures; the topological and qualitative analyses are also absent).

§ 5. The Goryachev–Chaplygin Case

Let us consider the particular integrable case of Goryachev –Chaplygin, for

which the angular momentum vector lies in the horizontal plane, i. e., (M ,γ) =
= 0. It is implemented under nearly the same limitations of dynamical parame-

ters, as the Kowalevskaya case, but the ratio of moments of inertia now equals

not two, but four —
a3

a1
= 4. The Hamiltonian and the additional integral a

written as:

H = 1
2
(M2

1 +M2
2 + 4M2

3 ) − xγ,

F = M3(M
2
1 +M2

2 ) + xM1γ3.

1. Explicit Integration

Variables of the Kowalevskaya type, reducing a system to the Abel – Jacobi

equations were given by S. A. Chaplygin [174]. They are specified by formulae

M2
1 +M2

2 = 4uv, M3 = u− v (5.1)
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and satisfy equations

du√
P1(u)

− dv√
P2(v)

= 0,

2u du√
P1(u)

+ 2v dv√
P2(v)

= dt,

(5.2)

P1(u) = −
(
u3 − 1

2
(h− x)u− 1

4
f
)(
u3 − 1

2
(h+ x)u− 1

4
f
)
,

P2(v) = −
(
v3 − 1

2
(h− x)v + 1

4
f
)(
v3 − 1

2
(h+ x)v + 1

4
f
)
,

where h, f are constants of the energy integral and the Chaplygin integral (H =
= h, F = f ).

Remark. Introducing variables u, v, Chaplygin has actually constructed the system

of Andoyaer – Deprit variables; to put it more precisely, the system of variables, connected

with the above mentioned ones by relations L = u − v, G = u+ v [92]. In § 8 ch. 5

the Goryachev – Chaplygin case generalization constructed, and corresponding separating

variables are found by means of the Andoyaer – Deprit variables analysis for the bundle

of Poisson brackets , including algebras so(4), e(3), so(3, 1).

2. A Bifurcational Pattern and a Phase Portrait

Using functions P1(u), P2(v), from the condition of multiplicity of these

polynomials one can easily construct a bifurcational pattern [170]. On a

plane (f, h) it consists of three branches (fig. 46):

I. f = 0, h > −1,

II. h = 3
2
t2 + 1, f = t3, t ∈ (−∞, +∞),

III. h = 3
2
t2 − 1, f = t3, t ∈ (−∞, +∞).

The first class (I) has to do with three periodic solutions:

1) rotations and oscillations in the equatorial plane of the inertia ellipsoid

(M1 = M3 = 0, γ2 = 0);

2) rotations and oscillations in the meridional plane of the inertia ellipsoid

(M1 = M2 = 0, γ3 = 0);

3) Goryachev particular solutions, corresponding to f = 0.

Unfortunately, solutions, lying on branches II, III, are practically not studied

at all. Phase portraits, corresponding to various values of energy, are shown at

fig. 47, 48.
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Figure 46. A bifurcational pattern of the Goryachev – Chaplygin case. Nonphysical do-

main of integrals is shaded with the grey color. The figure also shows two energy levels,

for which phase portraits are constructed (see fig. 47, 48). The letters Ai, Bi, Ci, . . .
stand for periodic solutions and separatrices, which are indicated at phase portraits in the

similar way.

Remark 1. The absence of explicit analytical expressions for asymptotic solutions

also prevents perturbed system investigation. It should be noted that N. I. Mertsalov, in the

paper [126], made an assertion concerning integrability of the Goryachev – Chaplygin top

equations at c = (M , �) 6= 0. However, as the computer-aided experiments, represented

at fig. 49, show, this assertion is wrong, and near unstable manifolds at c 6= 0 there arises

the stochastic layer leading to nonintegrability.

3. Visualizing the Most Remarkable Solutions

Among periodic solutions of the Goryachev –Chaplygin problem the special

place is given to the Goryachev solution. At the bifurcational pattern it lies on

a straight line f = 0; this line also contains periodic solutions of the Euler –

Poisson equations, corresponding to oscillations (at h < 1) and rotations (at

h > 1) of a rigid body in planes Oxy and Oxz, which obey the physical

pendulum law. Let us dwell on the Goryachev solution and solutions, situated

on branches II and III (see fig. 46).
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Figure 47. A phase portrait of the Goryachev – Chaplygin case at h = 0.3 (the section

by a plane g = π/2). The letters A1, B1, C1 stand for periodic solutions, placed on

branches of a bifurcational pattern (fig. 46). The point B1 on the bifurcational pattern,

for which f = 0, is assigned to, first, two pendular periodic solutions (on the phase

portrait they are placed at the poles of the sphere L/G = ±1 and at the point l = 0,

L/G = 0) and, second, to the whole straight line L/G = 0, l 6= 0, also filled with the

periodic solutions (the Goryachev solution) of the pendular type (see also s. 3).

Figure 48. A phase portrait of the Goryachev – Chaplygin case at h = 1.3 (the section by

a plane g = π/2). The letters A2, B2, C2, D2, F2 stand for periodic solutions, placed

on branches of a bifurcational pattern (fig. 46). In comparison with the previous portrait,

unstable solutions (and separatrices to these solutions) — D2 and F2 — have appeared.

Like the previous case, the point B2 on the bifurcational pattern is assigned to four

rotational periodic solutions (rotations in equatorial and meridional plane with taking into

account the direction): these are the points L/G = ±1 and l = 0, π, L/G = 0, and

a straight line L/G = 0, completely filled with the periodic solutions (the Goryachev

solutions) of a reduced system (see s. 3).
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Figure 49. The perturbation of the Goryachev – Chaplygin case at a fixed energy

(h = 1.5) and the increase of area constant (the section by a plane g = π/2 is shown;

the domains of impossibility of motion are inked by grey). The figures show that in the

vicinity of separatrices there arises a stochastic layer, which, at first, increases, and then

decreases together with the possible motion domain. It is an interesting fact that under

the following increase of c, the PMD decreases together with the stochastic layer until it

has completely disappeared.
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Figure 50. “The Goryachev solution” represents the complete torus, filled with periodic

solutions of a reduced system

�

, � (so called resonance 1 : 1); at h < 1 (fig. a) these

are pendular type solutions, and at h > 1 (fig. b) these are rotational type solutions.

This figure and the following one contain paths on the Poisson sphere, corresponding to

various solutions on this torus.

The Goryachev solution [65]. For this solution there are two additional

invariant relations [72]

M2
1 +M2

2 = bM
2/3
1 , f = M3(M

2
1 +M2

2 ) +M1γ3 = 0, (b > 0). (5.3)

These relations contain an arbitrary constant b, which parametrizes the whole

family of periodic solutions: in the phase space it is a degenerate torus, filled

with periodic solutions. Relations (5.3) were shown by D. N. Goryachev, where-

upon S. A. Chaplygin understood at once that the condition f = 0 is too rigorous,

and obtained solution of (5.2) in the generally accepted form. Under h < 1 and

under the change of b from 0 to bmax, the solution turns from oscillation in

the equatorial plane to the oscillation in the meridional plane (fig. 50). At the

phase portrait (see fig. 47) these are the straight line L/G = 0 and the meridian,

connecting it with the poles. Under h > 1 and under the change of b from 0

to bmax, the solution turns from one rotation in the equatorial plane into another

one (in the opposite direction, fig. 48).
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Figure 51. This figure illustrates behavior of rigid body principal axes in a fixed frame of

reference for Goryachev solutions at fixed energy h < 1 (h = −0.7). It is clearly seen

that these are periodic solutions in an absolute space. Under the change of parameter b,
these solutions turn from oscillations in the plane Oxy to oscillations in the plane Oxz.
(The letters x, y, z stand for axes, attached to the body.)

The apex motion on the Poisson sphere is shown at fig. 50. The remarkable

phenomenon, that was not mentioned before, is the fact that for the Goryachev

solution in the absolute space at h < 1 the motion is periodic and of the os-

cillatory type (see fig. 51). However, at h > 1 the corresponding motion is

quasiperiodic and double-frequency one (fig. 52).

All the above mentioned facts are practically impossible to be seen directly

from the analytic solution, which, for the first time, was obtained by Goryachev
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Figure 52. The figure, illustrating quasiperiodic motion in an absolute space (the motion

of the principal axis Oy is shown) for the Goryachev solution at h > 1 (h = 1.7).

Figure 53. Motion of the vertical unit vector � on the Poisson sphere for stable periodic

motion in the Goryachev – Chaplygin case at various values of energy.

in a very cumbersome form [65]. In spite of some simplifications, appearing, for

example, in [72], explicit formulae allow to give only rough ideas about motions

found by means of the computer.
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Figure 54. Motion of the vertical unit vector � on the Poisson sphere for unstable periodic

motion in the Goryachev – Chaplygin case at various values of energy.

Figure 55. Motion of apices of the body principal axes in a fixed space in the Goryachev –

Chaplygin case for the stable periodic solution, situated on branch III fig. 46, at two

various values of energy h1, h2 from different viewpoints. The letters xi, yi, zi, i =
= 1, 2 stand for paths of the corresponding axes, related to one and the same energy.

Stable and unstable periodic solutions of the Euler –

Poisson equations for the Goryachev –Chaplygin case are sit-
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uated, at the bifurcational pattern, on branches III and II, correspondingly (see

fig. 46, 53–56). Numerical investigations show that the complete system mo-

tions in an absolute space, which correspond to these solutions, are also periodic

at any values of energy (see fig. 55, 56). Earlier, this fact seems to be omitted

in the literature, but it mirrors the specific character of rigid body dynamics

on zero area constant (M , γ) = 0 (compare to the Delauney solution for the

Kowalevskaya case, § 4 s. 3). Instead of the formal proof we give a series of

figures, vividly verifying this statement. They show both system paths on the

Poisson sphere, and paths of apices in the absolute space; the majority of these

paths is rather complicated.

Figure 56. Motion of apices of the body

principal axes in a fixed space in the Gory-

achev – Chaplygin case for the unstable pe-

riodic solution, situated on branch II fig. 46,

at one value of energy. The letters x, y, z
stand for paths of the corresponding axes.

(Motions at other values of energy do not

have a qualitative difference, on which ac-

count we do not give them.)

The general conclusion for the

Goryachev –Chaplygin case is the ob-

servation that in the process of its

analysis we deal with curious oscil-

latory (rotational) motions in the ab-

solute space, i. e., we can speak of a

certain complicated pendulum. How-

ever, the application area of this kind

of oscillations in not completely clear

yet. We’d like to note the relative sim-

plicity of motions of the Goryachev –

Chaplygin top , as compared to the

Kowalevskaya top. The sparse ana-

lytical results, obtained in the process

of the Goryachev –Chaplygin case in-

vestigation, are incapable of giving a

vivid representation of motion. The

computer-aided investigation of mo-

tions, on the contrary, reveals its re-

markable qualities, which are also

typical for the related integrable sys-

tems.

§ 6. Particular Solutions

1. Hess Solution [228]

The Hess case is, in a certain

sense, even more particular. Unlike
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Figure 57. Gyration ellipsoid and

position of the center-of-mass for

the Hess case.

the previous cases (see §§ 2–5), it determines

only a single parametric family of particular so-

lutions, specified by the invariant relation (see

table 2.1)

r1M1 + r3M3 = 0, (6.1)

i. e., an isolated invariant manifold in a phase

space (see fig. 58).

The physical meaning of boundaries on the

parameters in the Hess case

r1
√
a3 − a2 ± r3

√
a2 − a1 = 0,

r2 = 0
(6.2)

lies in the following. Let us consider a gyration

ellipsoid — a set of a kinetic energy level in the

space of moment M (see fig. 57)

1
2
(M , AM) = const. (6.3)

Figure 58. A phase portrait (the section by the plane g = π/2) for the Hess case under

conditions I = diag(1, 0.625, 0.375), � = (3, 0, 4), µ = 1.995 for the constants of

integrals h = 50.0, c = 5.0. Two stochastic layers are clearly seen, they are separated

by the coinciding Hess separatrices — the points from one layer do not penetrate into the

other. At fig. b) one can also see a meander torus, arising under these conditions (see

fig. 59).
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Figure 59. Meander tori, originating at the phase portrait in the Hess case (for parameters,

see fig. 58).

As far as all the eigenvalues of matrix A are different, the gyration ellipsoid

has two circular sections, passing through the mean axis. Conditions (6.2) mean

that the center-of-mass lies on the axis, perpendicular to one of the circular

sections of ellipsoid (6.3). Hess linear integral (to put it more precisely, invariant

relation) (6.1) means that the moment projection on this axis equals zero.

The detailed analysis of this case is given in chapter 4; § 3, here we shall

only mention that the Hess relation may specify the pair of coinciding separatri-

ces at the phase portrait (see fig. 58). It is interesting to note that in the phase

space for the Hess case there appears a meander torus (see fig. 59), though it

does not look as a specific feature of this very case.

2. The Staude Permanent Rotations

Let us consider positions of relative equilibrium (i. e., positions of equilib-

rium of a reduced system on the Poisson sphere) for the Hamilton equations on

algebra e(3) with an arbitrary potential, depending on γ:

H = 1
2
(AM ,M) + V (γ). (6.4)

From the condition of relative equilibrium Ṁ = γ̇ = 0 and the area integral

(M , γ) = c we find AM = λγ, λ = c

(A−1 �, �)
, and equations of motion

give the relation

c2(A−1γ × γ) +
(
γ × ∂V

∂γ

)
(A−1γ, γ)2 = 0,

γ2 = 1.

(6.5)
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This result was obtained by O. Staude in 1894 [271]. In the moving system the

first equation (6.5) defines a certain cone, referred to as the Staude cone. With

respect to each cone generatrix the body is uniformly rotating around the force

field symmetry axis (in case of gravity field it is a vertical axis) with the angular

velocity |ω| =
|c|

(A−1 �, �)
.

One can also obtain equations (6.5), if one considers critical points of a

reduced potential

Vc(γ) = V (γ) + c2

(A−1γ, γ)
. (6.6)

In the modern terminology, created by S. Smale, the Staude rotations, defined

by the reduced potential extremes, specify, on the plane of values of the first

integrals H = h, c2, a bifurcational pattern (the Smale pattern), separating do-

mains with various topological type of foliation into three-dimensional invariant

manifolds and corresponding types of possible motion domains (PMD).

Using the planar problem of three bodies as an example, Smale has

offered a general technique for the investigation of integral manifold trans-

formations under the transition across bifurcational curves. With refer-

ence to the Euler –Poisson equations (the linear potential) bifurcational curve

transformations are qualitatively studied by S. B. Katok, Ya. V. Tatarinov and

R. P. Kuzmina [84, 164, 109]. Let us show more precise numerical constructions

of the Smale pattern bifurcational curves in the case of dynamic dissymmetry

and under various positions of the unit vector of the center-of-mass (fig. 60).

As compared to the Euler case, whose bifurcational curves (permanent ro-

tations) are marked by the dotted line, in the presence of a gravity field branches

of permanent rotations split, the splitting being observed for the branches, corre-

sponding to rotations around the axes, along which there is a nonzero component

of the shift of the position vector of the center-of-mass.
It should be noted that the analysis of stability of Staude rotations is avail-

able in the extensive literature, which, unfortunately, is difficult for review.

Nevertheless, these investigations do not give the final solution of the prob-

lem. The elementary investigation is given in the books by R. Grammel [66] and

K. Magnus [119].

We should also note that the study of Staude rotations is important for

investigation of stochasticity in a general nonintegrable situation; in a certain

sense, they specify some basic periodic solutions, (both stable, and unstable

solutions), whose expension with respect to the parameter defines the general

scenario of transition to chaos.
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Figure 60. Smale patterns for various position of the center-of-mass r

(I = diag(2, 1.5, 1)).

Remark 1. In case of the uniform gravity field the Staude cone represents an ordi-

nary second order cone. Under particular assumptions with respect to parameters ai, ri
this cone may degenerate into the pair of planes (different or coincident) or become in-

definite. It is an obvious thing that five following straight lines completely define the

whole cone:

1) three principal axes of inertia with respect to the fixation point,

2) a straight line, connecting the fixation point with the center-of-mass,

3) a straight line, specified by the vector A

�, along which � is directed, if the vector�

= I

� is directed along the straight line, specified by the vector �.

Remark 2. As it was noticed by W. van der Woude [284], the Staude cone (just

for the uniform gravity field) represents a cone of straight lines in the body, originating

from the fixation point and being principal axes of the inertia ellipsoid at least for one of

its points. This very cone was considered by A. M. Ampére [189], when he analyzed the

geometry of mass in a rigid body without taking into account the gravity force. For other

potentials in (6.4) this result is, obviously, not valid any longer.
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3. The Grioli Regular Precessions

The Staude solutions represent regular precessions around a vertical axis.

These solutions are realized under any distribution of mass within the body.

The more general determination of the regular precessions proposes that,

under such motions, there exist two special axes: one is fixed in space, and

the other within the body, the angle between these axes being constant. For

example, for the Lagrange top precessions of the dynamical symmetry axis apex

around the vertical line (see § 3) are possible. It turns out that, as it was shown

by Italian mechanic D. Grioli in 1947 [221], for the Euler –Poisson equations

“non-vertical” precessions, which, however, exist under additional restrictions

of the moments of inertia and the position of the center-of-mass, are possible.

For these precessions the center-of-mass lies on the perpendicular, drawn

from the fixed point to the circular section of the inertia ellipsoid, and, in this

sense, the Grioli case is mutual to the Hess case, in which the center-of-mass lies

on the perpendicular, drawn from the fixed point to the circular section of the

gyration ellipsoid. Such a connection with the energy ellipsoid also conditions

the fact that all reasoning for the Grioloi solution is easier to perform for angular

velocities ω, rather than for the angular momentum M .

The easiest way to obtain explicit analytical expressions for the Grioli case,

which failed to find their correct presentation anywhere [221, 61, 72] (Grioli

himself uses somewhat intricate reasoning with the Euler angles), is to use non-

principal moving frame of reference with the axis Oz, passing through the body

center-of-mass.

In the chosen frame of reference the Hamiltonian H has the form

H = 1
2
(M , AM) − xγ3 = 1

2
(Iω, ω) − xγ3,

M = Iω, A = I−1,
(6.7)

where the tensor of inertia is

I =



I1 0 I13
0 I1 0
I13 0 I3


 , x = const.

We shall look for the conditions, under which the angular velocity pro-

jection on the position vector of the center-of-mass is constant: ω3 = const.
Differentiating this correlation system (6.7) along, we shall obtain four indepen-

dent additional invariant relations, which determine desired periodic solutions in
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a reduced phase space

ω2
1 + ω2

2 = ω2
3 ,

xγ1 + I13(ω
2
1 − ω2

3) + I3ω1ω3 = 0,

xγ2 + ω2(I13ω1 + I3ω3) = 0,

xγ3 − I13ω1ω3 = 0.

(6.8)

From relations (6.8) it follows that ω2 = 2ω2
3 = const, and, besides, ω2 =

= ω3 sin τ , ω2 = ω3 cos τ , τ = ω3(t − t0). Expressions for constants of first

integrals can also be obtained in terms of ω3, using (6.8)

H = 1
2
(I1 + I3)ω

2
3 = h, (M , γ) =

I2
13 − I1I3

x ω2
3 = c, (6.9)

the ω3 itself being determined from the equation

γ2 =
I2
3 + I2

13

x2
ω4

3 = 1.

Thus, for given parameters of the body (I1, I3, I13, x) there exists only

one (accurate to a sign) value of ω3 and other integral constants, specifying the

Grioli solution.

After the quantities ω1, ω2, ω3 have been found as explicitly depending on

time, it does not make a problem to obtain all direction cosines α, β, γ: by

doing this we shall define the rigid body motion in an absolute space. From

the Poisson kinematic equations for the center-of-mass, having the coordinates

(α3, β3, γ3), it is easy to obtain α′′
3 = −α3, β

′′
3 = −β3 (where double prime

means double differentiating with respect to τ ). After these expressions have

been integrated, we shall find α3 = cos τ , β3 =
I3�

I2
3 + I2

13

sin τ . From rela-

tions (6.8) we shall also obtain γ2 =
I13�

I2
3 + I2

13

sin τ .

So, the general Grioloi solution is a periodic one (in an absolute space and

with respect to all apices — in this sense such a regular precession is strongly

degenerate), and the center-of-mass performs a uniform motion around the cir-

cumference of a big circle, perpendicular to the axis, inclined to the vertical line

at the angle θ0, determined from the equality tg θ0 =
γ3

β3
=

I13
I3

(fig. 61). In

this sense, the Grioli solution is closer to rotational motions of a pendular type,

rather than regular precessions.
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Figure 61. Motion of the principal axes of a body and of the center-of-mass for the Grioli

solution at I1 = 1, I3 = 1
2

, I13 = 0,4, r = (0, 0,−1) (the center-of-mass is moving

around a big circle).

Figure 62. The phase portrait (the section by the plane g = π) under the conditions of

existence of the Grioli solution (see the subscription under fig. 61). In this section the

Grioli solution is represented by a fixed point (of the period 2).

At the phase portrait (fig. 62), which under conditions (6.9) is chaotic, the

Grioli solution is determined by a fixed point of a stable type (we are not aware

if the stability of these solutions was investigated analytically). Visualization of

several (closed) characteristic paths of apices is shown at fig. 61.
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Remark 3. Some authors (see, for example, [66]) consider the precession to be

such a motion of the body, under which for a certain fixed axis within the body its line

of nodes is rotating uniformly.

4. The Bobylev –Steklov Solution (1896) [15, 161]

We shall show one more particular solution, which is obtained in terms

of elliptic quadratures and, under an additional condition, coincides with the

Kowalevskaya top special solution, specified by the fourth Appelrot class. For

this solution the Hamiltonian H is written as

H = 1
2
(M2

1 + aM2
2 + 2M2

3 ) + rγ1, a = const, r = const,

i. e., unlike the Kowalevskaya case, conditions of rotational symmetry of the

inertia ellipsoid (a 6= 1) are not required. Assuming M2 = 0, M1 = m =

= const, it is easy to obtain M3 = − r
mγ3, and, using the area integral and the

geometric integral, — an elliptic quadrature for γ3:

γ̇3 = −m

√

1 − γ2
3 −

(cm+ rγ2
3

m2

)2

,

where c = (M, γ) = const.
As it is shown at fig. 63, under the increase of a this solution loses its

stability and bifurcates: one stable periodic solution gives birth to two stable

solutions and one unstable. Near the unstable solution, having general features of

dynamics, shown at fig. 43, the stochastic layer is formed, which, expanding with

the increase of a, determines general chaotization of a phase flow . The more

detailed computer investigations are left beyond the present book. It is a curious

fact that a very small deviation from the dynamic symmetry (i. e., from the

Kowalevskaya case) — about one percent — leads to the appreciable chaotization

of the portrait. This illustrates a certain “instability” of this case integrability,

because it is technologically difficult to conditions of meet the exact dynamic

symmetry. By the way, N. I. Mertsalov in his full-scale experiments had a very

low accuracy both in production of the top itself, and in initial data specification.

Thus, it was a natural result that his pictures could not clarify anything [69].

The stability of particular solutions. As for the investigation of stability

of various particular solutions in rigid body dynamics (both in the integrable,

and general cases) we can recommend the books [82, 152]. The stability of

planar oscillations and rotations in the Kowalevskaya cases was investigated not
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Figure 63. The Kowalevskaya integrable case instability. The phase portrait (section by

the plane g = π/2) of the Kowalevskaya case perturbation under small deviation from

the dynamic symmetry A = diag(1, a, 2). The Bobylev – Steklov periodic solution is

preserved at any value of a; at the phase portrait it is assigned to a fixed point l = π/2,

L/G = 0. The energy and area integral values are h = 4, c = 1. (The period doubling

bifurcation is observable.)

long ago by A. P. Markeyev [122, 123] by means of the Birkhoff’s normal forms.

§ 7. Equations of Motion of a Heavy Gyrostat

1. A Gyrostat

Euler –Poisson equations (1.6) may be generalized if constant gyrostatic

moment be introduced. We can simulate this moment, for example, by means

of a balanced rotor, which rotates with constant angular velocity around an axis,

fixed within a rigid body. Such a system is referred to as a balanced gyrostat.

The similar moment arises, when we consider motion of a rigid body with

multi-connected cavities, containing perfect incompressible fluid, and allowing

the possibility of appearance of nonvanishing circulation [78] (see § 2 ch. 5).

Under such a generalization equations (1.6) remain unchanged, but Hamil-

tonian (1.4) acquires the term, linear with respect to moments:

H = 1
2
(M , AM ) − (r, γ) − (k,M), (7.1)

where k is a certain constant vector caused by the presence of rotor.
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Table 2.2

Generalization

of the case
The author A Hamiltonian and an integral

of Euler –

Poinsot

Joukovskiy

(1885),

Volterra

(1899)

H = 1
2

(

� − �

, A(
� − �

))

F =

�2

of Lagrange
H = 1

2
(M2

1 +M2
2 + aM2

3 ) + r3γ3 + k3M3

F = M3

of

Kowalevskaya

Yehia

(1987),

Komarov

(1987)

H = 1
2

�

M2
1 +M2

2 + 2

�

M3 − λ
2

� 2 �

+ r1γ1

F = (M2
1 −M2

2 − 2r1γ1)
2 + (2M1M2 − 2r1γ2)

2+

+ 4λ(M3 − λ)(M2
1 +M2

2 ) − 8r1λM1γ3

of

Goryachev –

Chaplygin

Sretenskiy

(1963)

H = 1
2

�

M2
1 +M2

2 + 4

�

M3 − k
2

� 2 �

+ r1γ1

F = (M3 − k)(M2
1 +M2

2 ) − r1M1γ3

of Hess Sretenskiy

(1963)

H = 1
2

�

a1(M1+k1)
2 + a2M

2
2 + a3(M3+k3)

2

�

+

+ r1γ1 + r3γ3,

r1
√
a3 − a2 = r3

√
a2 − a1

F =

�

(a2 − a1)(a3 − a2)(r1M1 + r3M3)+

+ r1a3k3 − r3a1k1 = 0,

Ḟ

��
��
�

F=0
= 0

Remark 1. The equations of motion of a gyrostat, representing the Hamilton equa-

tions on algebra e(3) with Hamiltonian (7.1), can be physically obtained from the angular

momentum theorem, which is applied for the total moment of the whole system

�

=

�

+

�

, d̃

�

dt
= d

�

dt
+ � × �

=

�

, (7.2)
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where

�

is an angular momentum of a rigid body without a rotor,

�

is a rotor angular

momentum, which, in the general case, depends on time

�

=

�

(t),

�

is an external force

moment, and

�

d
dt
, d
dt

are vector derivatives in a fixed and moving frames of reference.

The dependence

�

(t) is maintained forcedly (for example, by means of electrical motors),

which does not violate conditions of applicability of theorem (7.2) . The same cannot

be said about the energy conservation theorem, on the account of the inflow of external

energy, providing the forced rotation. In the present case

�

= � × �, and the rotor rotates

with constant velocity:

�

= I

�

0 = const. The more detailed discussion of gyrostats —

systems with the internal cyclic motions, is available in the books [113, 57].

It turns out that all the cases from Table 2.1 ch. 3, § 2 may be generalized

by the integrable way under additional reatrictions of the vector k, i. e., the

position of a gyrostat within the rigid body (see Table 2.2).

2. The Joukovskiy –Volterra Case

Let us consider in greater details dynamics of a rigid body with a gyrostat in

the absence of a field. In this case equations for M separated and are integrate

independently. We shall represent them in the form

Ṁ = M ×A(M − k).

The Hamiltonian and the additional integral also do not depend on configura-

tional variables and can be represented in the form

H = 1
2

(M − k, A(M − k)) = h, F = M2 = f (7.3)

(Hamiltonian (7.3) differs from Hamiltonian (7.1) by the substitution k → Ak

and the constant term). Thus, the path in space (M1, M2, M3) represents in-

tersection of a sphere with an ellipsoid, whose centers do not coincide. These

curves are direct generalization of polhodes of the Euler problem (§ 2 ch. 2), but

look much more complicated (fig. 64).

For the sake of convenience, branches of a bifurcational pattern on plane of

integrals (7.3) (h, f) may have a parametric representation. It is easily obtained

from the condition of dependence of integrals (7.3) [170]

h = t2

2

(
a1k

2
1

(a1 − t)2
+

a2k
2
2

(a2 − t)2
+

a3k
2
3

(a3 − t)2

)
,

f =
a2
1k

2
1

(a1 − t)2
+

a2
2k

2
2

(a2 − t)2
+

a2
3k

2
3

(a3 − t)2
.

(7.4)

§ 7. Equations of Motion of a Heavy Gyrostat 149

Figure 64. The Joukovskiy – Volterra problem polhodes.

Let a1 > a2 > a3 > 0, then, when t changes from −∞ to +∞, the

bifurcational curve splits into four branches, corresponding to the change of t in

the following intervals (see fig. 65):

I. t ∈ (−∞, a3) — the lower branch,

II. t ∈ (a1, a2) — the branch, second from the bottom, with a cuspidal point,

III. t ∈ (a2, a1) — the branch, third from the bottom, also with a cuspidal point,

IV. t ∈ (a1, ∞) — the upper branch.

The upper and the lower branches continuously converge at the point t = ∞.

Fig. 65 a) vividly shows, how, under the tendency k → 0, the pattern

transforms into the pattern of the Euler –Poinsot case (see fig. 17).

If we consider the equations of motion only for variables M1, M2, M3

(which separate) independently of positional variables γ, then a bifurcational

pattern will contain the above mentioned branches only. For the complete system

of variables (M , γ) the pattern has a vertical line f = c2 added, where c =
= (M , γ), the motion being possible only under condition f > c2.

The straight line f = c2 contains rigid body motions, for which the body

moment in a fixed space is vertical:

M = cγ. (7.5)

From this relation it follows that for the vector γ the path on the Poisson

sphere also represents polhodes, congruent to the ones, shown at fig. 64, and
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Figure 65. A bifurcational pattern of the Joukovskiy – Volterra case on plane of integrals

h = H and f =

�2 in various scales. The domain of nonphysical values of integrals

is shaded. Apart from the indicated curves, on the left the possible motion domain is

limited by the vertical line f = c2, c = (

�

, �), so that f > c2. Stable branches are

shown by continuous lines, the unstable — by the dotted ones.

resulting from the intersection of a sphere with an ellipsoid:

1
2

(
γ −

�

c , A(γ −

�

c )
)

= h

c2
,

γ2 = 1.
(7.6)

If vector k lies in one of the principal planes, then the corresponding pair of

branches at the bifurcational pattern intersects (see fig. 66), but if k is directed

along the principal axis of the inertia ellipsoid, then two pairs of branches inter-

sect.

The stability of pattern branches is shown at fig. 65; in the linear approxi-

mation it was investigated already by V. Volterra, but the most complete results

have been obtained in [150, 57]. A somewhat general conclusion on stability

is the fact that the rotor introduction leads to the double increase in both stable
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h

f
0

h

h

f

f

0

0

a) b)

c)

k=(0,0.03,0.06) k=(0.03,0,0.06)

k=(0.03,0.06,0)
A=diag(2,1.5,1)

Figure 66. A bifurcational pattern for cases, when the gyrostatic moment vector lies in

the principal plane.

a) k1 = 0, in this case the upper part of branch III intersects with branch IV,

(i. e., branch III starts from the “middle” of branch IV),

b) k2 = 0: two middle parts of branches II and III intersect,

c) k3 = 0: lower branches intersect (similarly to the case a).

stationary motions, and unstable ones. The unstable solutions vanish at small

h, c, corresponding to fast rotation of rotor.

The separation of variables for Joukovskiy –Volterra case. The

Joukovskiy –Volterra case was integrated in terms of elliptic functions by

V. Volterra in [280] (see also [57]). N. E. Joukovskiy has indicated an additional

integral only and investigated various mechanical statements of a problem [78]

(see also [129]). The most simple separation can be done in terms of the An-

doyaer –Deprit variables [80], as far as Hamiltonian (7.1) at r = 0 has the

form

H = 1
2
(L2 + δ(G2 − L2) cos2 l)−

−λ1

√
G2 − L2 sin l − λ2

√
G2 − L2 cos l − λ3L,

(7.7)
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where δ =
a2 − a1

a3 − a1
, λi =

aiki
a3 − a1

, i = 1, 2, 3.

As it follows from (7.7), variable g is a cyclic one. The explicit solution is

reduced to a quadrature, containing a polynomial, which should be expressed in

terms of standard elliptic integrals. In § 8 ch. 5 the more geometric procedure of

the explicit solution is discussed.

Remark 2. The free gyrostat equations were discussed at the dawn of the quantum

mechanics in connection with the molecular spectrum problem. Thus, in the book by

M. Born [39] it is assumed that “an adequate model of a molecule is not just a top, but a

rigid body, in which the flywheel with strong bearings seems to be embedded.” Here the

rigid body plays a role of the system of nuclei, and the flywheel — a role of the electron

momentum. Kramers and Pauli, using this model, were trying (though they were not

completely successful in doing this) to construct the theory of spectrum of molecules,

having arbitrarily placed electron momentum.

The explicit solution by V. Volterra. To obtain the explicit solution in

terms of elliptic functions, V. Volterra used projective coordinates

Mi =
zi
z4
, i = 1, 2, 3 (7.8)

and linear nondegenerate transformation

zr =
4∑

s=1

Crsξs, r = 1, 2, 3, 4, (7.9)

which brings the equations of motion to the form

ξ4ξ̇i − ξiξ̇4 = (λk − λj)ξjξk/C,

ξ̇iξj − ξ̇jξi = (λk − λ4)ξkξ4/C,
(7.10)

where C = det ||Crs||, and coefficients Crs are determined as solutions of the

fourth-order equation, containing integral constants.

System (7.10) has the same structure as that of the differential relations for

four Weierstrass sigma-functions σ1(u), σ2(u), σ3(u), σ4(u) of a complex argu-

ment u, λi, being expressed in terms of parameters of the differential equation

for ℘-function of Weierstrass.

This consideration is the key one in the work of V. Volterra [280]. We are

not going to give here any detailed computations, but content ourselves with the

drawbacks of such an “explicit” solution. The fourth-order equation for coeffi-

cients of a matrix Crs, specifying transformation (7.9), is not solved explicitly.
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As a result, all further reasoning has only formal complex character, similar to

the existence theorems. In practice, the solution itself does not give any use-

ful dynamical derivations. All the results, obtained after Volterra (in stability,

topological analysis and others) [57, 150], do not use his explicit quadratures.

It seems that here one is not completely right, when one states the problem of

reducing (in spite of any difficulties) to elliptic functions, which are little fit to

problems of such kind. The similar difficulties arise with the Kötter [234, 236]

“solutions” for the cases of Clebsch and Steklov. Although one has to refer to

these solutions while writing papers, they are completely useless for dynamics

and are practically not used. Generally, the unreasonable craving for complex

methods can produce superdifficult and unsolvable problems of algebraic geom-

etry [134] out of very natural mechanical problems.

3. The Explicit Integration of Other Cases

In generalizations of the Kowalevskaya and Goryachev –Chaplygin cases

the gyrostatic moment is directed along the dynamical symmetry axis. The

separation of variables for the Sretenskiy case (Goryachev –Chaplygin general-

ization) is indicated in [158, 159]. In § 7 ch. 5 we obtained it in other way and

on the whole bunch of Poisson brackets. So, the Yehia –Komarov gyrostatic

generalization of the Kowalevskaya case has not been integrated in terms of

quadratures up to this day. In § 7 ch. 5 we extend this case to the bunch of

Poisson brackets and show corresponding additional integrals.

The second Sretenskiy case, generalizing the Hess integral, can be inte-

grated by means of a common scheme, which we are discussing further (§ 3

ch. 3). We should also note the result of L. Gavrilov [216], stating that the

general integrable cases, given in Table (2.2), exhaust all the possibilities of

existence of an additional algebraic integral of motion for system (7.1).

§ 8. Connected Systems of Rigid Bodies, a Rotator

We shall also give statements of various problems about motion of a con-

nected system of two (in the general case— several) rigid bodies, whose partic-

ular case is a gyrostat, described above.

The connected system of two tops. Let us consider a system, consisting

of a lifting body τ0 with a fixed point O and a lifted body τ1, fixed in the lifting

one in one its point O1 (see fig. 67). Mass distribution in the system is changing

at rotations of the lifted body.
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Figure 67.

Let us designate the vector, connecting projections of points O and O1 on

the axes, bound to the lifting body, as a = (a1, a2, a3), and the vector from the

point O1 to the center-of-mass of a lifted body, in projections on the same axes,

as R = (R1, R2, R3) (see fig. 67).

The system kinetic energy can be represented in the form

T = 1
2
(ω, Uω) + (ω, Vω1) + 1

2
(ω1, Wω1),

U = I0 + Ia + I1 + 1
2
(I2 + IT2 ), V = I1 + I2, W = I1,

(8.1)

where ω is an angular velocity of the body τ0, ω1 is an angular velocity of a

lifted body with respect to the lifting one, I0 is a tensor of inertia of a lifting

body with respect to the point O, I1 is a tensor of inertia of a lifted body with

respect to point O1, Ia = ||δija2 − aiaj ||, I2 = ||δij(a, R) − aiRj ||.
After the Legendre transformation

M = ∂T
∂ � = Uω + Vω1, M1 = ∂T

∂ �

1
= Vω + Wω1,

H = (M , ω) + (M 1, ω1) − T
∣∣∣
ω,ω1→M ,M1

(8.2)

we shall obtain Hamiltonian in the form of a homogeneous quadratic function

of moments M , M 1

H = 1
2
(M , AM ) + (M , BM) + 1

2
(M 1, CM1). (8.3)

Unlike the Poincaré – Joukovskiy equations (considered further), describing

motion of a body with a cavity, filled with vortex fluid (see ch. 3, § 10), matrices

A, B, C depend on positional variables, which determine the position of the

lifted body with respect to the lifting one, specified by the element of a group
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SO(3). For such variables one can choose the Euler angles, direction cosines or

any other frame of reference on the group SO(3).

In the absence of an external field positional variables of a lifting body τ0
are not included in Hamiltonian (8.3). Choosing direction cosines α,β,γ as

variables, specifying position of the lifted body, we can write equations of mo-

tion of system (8.3) in the Hamiltonian form with the bracket, specified by

algebra so(3)⊕ (so(3)⊕s R
9); the first term corresponds to the momentM , the

second — to M1, and the third — to positional variables of the body τ1.

In the coordinate notation the Poisson bracket has the form

{Mi, Mj} = −εijkMk, {M1i, M1j} = −εijkM1k,

{Mi, αj} = −εijkαk, {M1i, βi} = −εijkβk, {M1i, γj} = −εijkγk.

Other brackets are zero. This system possesses four degrees of freedom (in an

external field there are six degrees of freedom).

Figure 68. A body with a ro-

tator.

The body with a rotator represents a sys-

tem, consisting of a lifting body τ0 with a fixed

point O, and a lifted body — a rotator, which

makes free rotation around an axis, fixed in a lift-

ing body. The angle of rotation of a lifted body

around its axis will be designated as β.

Let us consider a particular case of such a

system, when the rotator axis passes through the

fixation point (see fig. 68); the more general state-

ment is available in [81]. The kinetic energy can

be represented in the form

T = 1
2
(ω, I0ω) + 1

2
(ω + β̇n, I1(ω + β̇n)),

(8.4)

where ω is an angular velocity of a lifting body, n is a unit vector, directed

along the rotator axis, I0 is a tensor of a lifting body inertia, and I1 is a tensor

of the rotator inertia. If the rotator is unbalanced, then I1 depends on the angle

of rotation β.

Let us choose a frame of reference, bound to the lifting body in such a

way that the axis Ox3 is directed along the axis of rotator n. Let a unit vector

α = (α1, α2, 0) define the direction of projection of the rotator center-of-mass

onto the plane x1x2 (fig. 68). We shall determine moments and a Hamiltonian
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by means of the Legendre transformation

M = ∂T
∂ω

= (I0 + I1)ω + I1β̇n, L = ∂T

∂β̇
= (n, I1(ω + β̇n)),

H = 1
2
(M − Lm, J−1(M − Lm)) + L2

2(n, I1n)
,

m =
I1n

(I1n, n)
, J = I0 + I1 − (n, I1n)m⊗m.

(8.5)

Conditions of commutation between components M , L,α look rather natural

{Mi, Mj} = −εijkMk, {L, α1} = α2, {L, α2} = −α1,

{Mi, L} = {Mi, α1} = {Mi, α2} = {α1, α2} = 0.
(8.6)

Bracket (8.6) corresponds to the direct sum of algebras so(2) ⊕ e(2) and pos-

sesses two Casimir functions

F1 = M2
1 +M2

2 +M2
3 , F2 = α2

1 + α2
2 = 1.

So, we have the system with two degrees of freedom. In the general case it

is nonintegrable.

Remark 1. In the Hamiltonian form this system is often expressed in terms of other

variables. Instead of positional variables of vector � the rotator position in a lifting body

is characterized by the angle β. Designating pβ = L, we shall write the Poisson bracket

for these basic elements:

{Mi, Mj} = −εijkMk, {β, pβ} = 1, {Mi, β} = {Mi, pβ} = 0. (8.7)

This corresponds to the direct sum so(3) ⊕ C2, where C2 is a a constant bracket of

canonical variables β, pβ . Poisson structure (8.7) possesses one Casimir’s function F =
=

�2.

Let us consider two famous integrable cases of system (8.5) with a cyclic

integral, which were found by E. A. Ivin in [81] and represent various mechanical

implementations of the Joukovskiy –Volterra system already known.

1. If I1 does not depend on α (a balanced rotator), then β is a cyclic

variable, and L is a cyclic integral.

In this case Hamiltonian (8.5) determines on the algebra so(3) =
= {(M1, M2, M3)} the Joukovskiy –Volterra system with the vector of gy-

rostatic moment k = Lm.
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2. Let a lifting body be dynamically symmetrical and have a symmetry axis,

coinciding with the rotator axis — I0 = diag(I1, I1, I3). In this case the cyclic

integral is written as

F = M3 − L, (8.8)

it corresponds to the cyclic variable β − ϕ, where ϕ is a proper rotation angle

(the precession angle ψ is also cyclic).

Let us consider a system of variables, commutating with integral (8.8),

K1 = M1α1 +M2α2, K2 = −M1α2 +M2α1, K3 = M3. (8.9)

They form an algebra so(3):

{Ki, Kj} = −εijkKk. (8.10)

Variables (8.9) have a subtle mechanical meaning: they are projections of a

shell angular momentum onto the axes, rigidly bound to the rotator. Expressing

Hamiltonian (8.5) in terms of new variables (8.9), we shall obtain

H = 1
2

(
K − Fe3, (̃I0

1)
−1(K − Fe3)

)
+ 1

2I3
F 2, e3 = (0, 0, 1), (8.11)

Ĩ0
1 =



x1 + I1 0 z1

0 x2 + I1 z2
z1 z2 x3


 ,

where xi, zi are components of tensor of the rotator inertia with respect to the

point O in the chosen frame of reference of rotator. Thus, we again come to the

Joukovskiy –Volterra problem, which is specified by Hamiltonian (8.11).

Comments. In the paper by E. A. Ivin [81] and in his thesis the integrable

cases, discussed in this section, are given in the cumbersome and unclear form.

That happened because of the absence of acceptable algebraization of the equations

of motion of rotator. We obtained them by means of the Poisson structure gen-

eral formalism [31]. Such an algebraization allows to see the connection with the

Joukovskiy –Volterra problem, which, actually was not shown explicitly. It should

also be noted that dynamics of a connected system of rigid bodies is still studied

little.

The Liouville equations describe motion of a free rigid body, whose dy-

namical parameters are the given functions of time. They were obtained by

J. Liouville in his paper [244] and received more detailed consideration in the

treatise by F. Tisserand [275], where their possible physical applications to the
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problem of motion of celestial bodies, whose parameters change periodically (on

the account of the glacier melting, flowing factors and others), are also indicated.

The equations of motion of such a system have the form (7.2), where k(t) are

the known functions of time, i. e., they represent the particular case of equations

of a gyrostat, whose rotor is unbalanced, but performs a specified motion (i. e.,

the degrees of freedom connected with the rotator, are not added) within the

body.

In the Hamiltonian form they represent equations on the algebra so(3)

{Mi, Mj} = −εijkMk (8.12)

with the Hamiltonian

H = 1
2
(M , A(t)M ) − (k(t),M ), (8.13)

where a matrix A(t) and a vector k(t) are the known functions of time. For

periodic functions the conditions of integrability were studied in [26], where it is

shown that, under small perturbations of the Euler case, the only possible inte-

grable case (with the accuracy up to the substitution of time) is the Joukovskiy –

Volterra problem. In [29] analytic conditions of the adiabatic chaos origination

are established, and the adiabatic invariant diffusion at the transition through the

separatrix, under the slow and periodic change of functions A(t) and k(t), is

studied.

Chapter 3

Related Problems of Rigid Body Dynamics

§ 9. Kirchhoff’s Equations

1. Equations of Motion and Physical Interpretations

Rigid body dynamics in fluids If a rigid body is moving in perfect in-

compressible fluid, possessing a single-valued potential of velocities and resting

on infinity, the equations of motion of the rigid body (i. e., the system of six ordi-

nary differential equations) become separated from partial differential equations

for fluid motion [85] (for detailed derivation see § 2 ch. 5).

It was G. Kirchhoff who obtained and examined the Hamiltonian form of

equations of motion of a rigid body under these conditions. The equations can

be written on an algebra e(3) = so(3)⊕sR
3 (see relations (1.3) ch. 2); under the

proper denotation of variables their form is analogical to the one of the Euler –

Poisson equations (§ 1 ch. 2)





Ṁ = M × ∂H
∂

� + γ × ∂H
∂ � ,

γ̇ = γ × ∂H
∂

� ,
(9.1)

Here M , γ represent three-dimensional vectors of “impulsive moment” and

“impulsive force”; to be precise, the projections of these vectors on axes rigidly

bound to the rigid body [85] (see also [31]).

A Hamiltonian H , which representing a kinetic energy of the system

“body+fluid”, is a positively determined quadratic form of variables M , γ

H = 1
2
(AM ,M) + (BM , γ) + 1

2
(Cγ, γ), (9.2)

where matrices A, C are symmetrical, and a matrix B is arbitrary. The

form (9.1–9.2) of Kirchhoff’s equations was obtained by A. Clebsch [201].
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Remark 1. G. Kirchhoff obtained equations (9.1) in the Lagrangian form (see § 2

ch. 5):

d
dt

�

∂L
∂ �

�

= ∂L
∂ � × � + ∂L

∂ � × �,

d
dt

�

∂L
∂ �

�

= ∂L
∂ � × �.

A Lagrangian L, representing kinetic energy, is also a quadratic form of linear � and

angular � velocity components. Kirchhoff has slightly modified Thomson’s arguments

which were very close to the final derivation [276].

Equations (9.1) always possess following integrals

F1 = (M , γ) = c1, F2 = γ2 = c2, F3 = H = h. (9.3)

Functions F1 and F2, called integrals of impulsive moment and impulsive force,

correspondingly, are Casimir’s functions. They fix a symplectic leaf (in further

text we use the Euler –Poisson equations analogy and refer to an integral F1

as an area integral). A Hamiltonian system (with Hamiltonian (9.2)) arising on

the leaf lacks one more additional integral to be integrable (this follows from

the last multiplier theory, as well, owing to the presence of a standard invariant

measure). In the general case Kirchhoff’s equations are not integrable. Their

nonintegrability and stochasticity is discussed, for example, in [31].

Unlike the Euler –Poisson equations, the constant c2 (in the integral F2),

expressing invariability of impulsive force value, does not necessarily equals 1.

The physical sense of matrices A,B,C is explained in § 2 ch. 5; they con-

cern associated masses and moments of inertia of a body in fluid. By choosing a

frame of reference attached to a rigid body (see § 2 ch. 5), the matrix A can be

reduced to the diagonal form, and the matrix B to a symmetrical form. Further

on, this reduction is considered to be done, thus allowing to reduce the total

number of parameters of system (9.2) to 15.

Since a zero vector field corresponds to an arbitrary linear combination of

Casimir’s functions αF1 + βF2, this combination can be added to the Hamilto-

nian without changing equations of motion. This allows to reduce the number

of parameters in the Hamiltonian by 2. In particular, conditions B = λE and

B = 0 (C = λE and C = 0, as well), where λ = const, are equivalent. One

parameter can be eliminited by the substitution of time t → t/α. This entails

multiplication of the Hamiltonian by an arbitrary constantH → αH , α = const.
Thus, the number of parameters, defining family (9.2), equals 12.

Brun’s problem. The problem about rigid body motion around a fixed

point in a linear force field can be represented in the form (9.1) with quadratic
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Hamiltonian (9.2). In a linear force field the force, acting on each particle of a

body, is proportional to the distance from a certain plane. It is easy to show that

the Hamiltonian H in this case is written as

H = 1
2
(AM ,M) + µ(Iγ, γ), A = I−1, (9.4)

where I is a tensor of inertia.

This problem was considered by Brun [198]. F. Tisserand examined the

same problem in connection with motion of a rigid body under the action of

Newton’s gravity center [275]. In this case a quadratic potential in (9.4) appears

as a quadropole approximation in Newton’s potential expansion with respect to

the ratio of the body dimensions to increasing distance from Newton’s center. It

turns out that Brun’s problem is equivalent to Clebsch’s integrable case in terms

of Kirchhoff’s equations (see § 12 ch. 3). This similarity (9.4) was noticed by

V. A. Steklov [272].

Grioli’s problem. It is the problem about motion of a charged rigid body

with stationary distribution of charges (of a dielectric) around a fixed point in a

permanent magnetic field [10, 191, 222, 223]. The Hamiltonian of the system

contains terms which are cross (generalized potential) in M and γ. It is written

as

H = 1
2
(AM ,M) − 1

2
(Jγ, AM), A = I−1,

where I is a tensor of inertia, J is a symmetrical tensor of distribution of charges.

We can consider a more general force field, being a superposition of gyro-

scopic and potential forces quadratic in M , γ; equations of motion of such a

system are also reduced to Kirchhoff’s equations. The analogy between these

problems is shown in several sources [21, 281]. However, the analogy is very

complicated, since it is established on the level of equations of motion, not on

the level of Hamiltonians and corresponding Poisson brackets. That was the

natural way of establishing this analogy in [10].

Neumann’s system [251]. The classical integrable problem of C. Neumann

about motion of a material point on a sphere in a field of forces with a quadratic

potential U = 1
2
(Bq, q), B = diag(b1, b2, b3) is described by equations

q̈i = biqi + λqi, i = 1, 2, 3,

λ = −(Bq, q) − q̇2,
(9.5)

where qi are redundant Cartesian coordinates of the point on a sphere q2 = 1, λ
is an indefinite constraint multiplier. Passing to variables M = q × q̇, γ = q,
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equations (9.5) can be rewritten as

Ṁ = γ ×Bγ, γ̇ = γ ×M , (9.6)

i. e., represented as a system on an algebra e(3) with a Hamiltonian

H = 1
2
(M ,M) + 1

2
(Bγ, γ)

on a level (M , γ) = 0; this follows from the definition of M , γ for this

problem.

This Hamiltonian corresponds to Clebsch’s case (see further) under an ad-

ditional condition (M , γ) = 0, i. e., a zero level of a Casimir function F2 (9.3)

is fixed. The shown analogy between motion of a point on a sphere and a

rigid body motion is preserved in n-dimensional situation, as well (see [195]).

The connection of Neumann’s problem and Clebsch’s case with invariant under

translation solutions of Landau –Lifshitz equations is considered in § 6 ch. 5.

Jacobi’s problem about geodesics on an ellipsoid [183]. Let an ellipsoid

in three dimensional space be given by the equation

(q, Bq) = 1, B = diag(b1, b2, b3).

Dynamics of a free particle on this ellipsoid is described by equations

q̈ = λBq, λ = − (q̇, Bq)

(Bq, Bq)
Bq. (9.7)

Passing to new variables

γ = B1/2q, M = (Aγ̇) × γ, A = B−1,

equations of motion (9.7) can be represented in the Hamiltonian form (9.1) on

an algebra e(3) with the Hamiltonian

H = 1
2

detB
(M , AM )

(γ, Bγ)
(9.8)

on a zero area constant (M , γ) = 0.
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After the substitution of time detB
( �, B �)

dt = dτ system (9.8) on the en-

ergy level H = c detB
2

is reduced to Clebsch’s system (see further) with the

Hamiltonian
H ′ = 1

2
(M , AM) − 1

2
c(γ, Bγ),

on the zero energy level H ′ = 0 (V. V. Kozlov [88]). Here c is an arbitrary

constant.

This analogy is preserved in the multidimensional case [195], as well. In

the book [31] this isomorphism is discussed in details for the case of quaternion

equation of rigid body dynamics.

Remark. C. Jacobi has shown that it is also possible to integrate the problem on

motion of a material point on an ellipsoid in a field with a quadratic potential

U( �) = 1
2
k �2, (9.9)

i. e., the point is attached to the ellipsoid center by Hook’s spring [183].

For the Hamiltonian form (9.1) in this case the Hamiltonian may be represented as

H = 1
2

detB
(

�

, A

�

)

( �, B �)
+ 1

2
k( �, A �). (9.10)

After the change of time on the level (

�

, �) = 0 we obtain a new integrable system

with the fourth degree potential

H ′ = 1
2
(

�

, A

�

) + 1
2
( �, B �)(k′( �, A �) − c), k′ = k

detB
, (9.11)

On the level H ′ = 0 the new system is isomorphic to system (9.10) on the level H =
= 1

2
c detB.

Integrable system (9.11) appears also in the investigation of separation of variables

for polynomial potential on a sphere [18, 283].

Remark 2. In the paper [49] the author shows connection between n-dimensional

Jacobi problem about geodesics and a stable zero position of equilibrium of Hill’s type

linear equation with periodic coefficients. It turns out that the number of resonance zones

is finite and does not exceed the ellipsoid dimensionality whenever a periodic function

R(t) in the equation ẍ = −R(t)x is Lagrange’s multiplier for a certain geodesic on an

ellipsoid (to be precise, R(t) = −λ(t)).

2. Integrable Cases

Table 3.1 shows all the known cases of Kirchhoff’s equations integrability.

Cases 1, 2, 3, 4 are general cases of integrability, and 5, 6 are particular cases.

In the latter case, except for limitations for the system parameters, it is also
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Table 3.1. Integrable cases of Kirchhoff’s equation

Author Conditions on parameters and the first integral F

1

K
ir

ch
h
o
ff

(1
8
7
0
)

[8
5
] A = diag(a1, a2, a3), B = diag(b1, b2, b3),

C = diag(c1, c2, c3), a1 = a2, b1 = b2, c1 = c2

F = M3 (Lagrange case analogue)

2

C
le

b
sc

h

(1
8
7
1
)

[2
0
1
]

I

��
���
��

A = diag(a1, a2, a3), B = 0, C = diag(c1, c2, c3),
c2 − c3
a1

+
c3 − c1
a2

+
c1 − c2
a3

= 0, a1 6= a2 6= a3 6= a1

F =

�2 − (A �, �)

II

�

B = 0, a1 = a2 = a3, C — arbitrary

F = (

�

,C

�

) − µ( �,C−1 �), µ = const

3

S
te

k
lo

v

(1
8
9
3
)

[1
6
0
] B = diag(b1, b2, b3), C = diag(c1, c2, c3),

bj = µ
a1a2a3

aj
+ ν, ck = µ2ak(ai − aj)

2 + ν′, µ, ν, ν′ = const

F =

�

j

(M2
j − 2µ(aj + ν)Mjγj) + µ2((a2 − a3)

2 + ν′)γ2
1 + . . .

4

L
y
ap

u
n
o
v

(1
8
9
3
)

[1
1
5
] A = E = ‖δij‖, B = diag(b1, b2, b3), C = diag(c1, c2, c3),

bj = −2µ(dj + ν), ck = (di − dj)
2 + ν′, . . ., di = const,

F =

� �

diM
2
i +

�

2µ
d1d2d3

di
+ ν

�

Miγi

�

+

+µ2d1(d2 − d3)
2γ2

1 + . . .

5

C
h
ap

ly
g
in

(1
9
0
2
)

[1
7
8
]

B = 0, C = diag(c,−c, 0), A = diag(a, a, 2a),

F = (M2
1 −M2

2 + c
a

�2
3)

2 + 4M2
1M

2
2 , (

�

, �) = 0

6

C
h
ap

ly
g
in

(1
8
9
7
)

[1
7
8
]

K
o
zl

o
v,

O
n
is

ch
en

k
o

(1
9
8
2
)

[9
8
]

A = diag(a1, a2, a3), bi = bii, ci = cii,

b13
√
a2 − a1 ∓ (b2 − b1)

√
a3 − a2 = 0, b12 = 0,

b13
√
a3 − a2 ± (b3 − b2)

√
a2 − a1 = 0, b23 = 0,

c13
√
a2 − a1 ∓ (c2 − c1)

√
a3 − a2 = 0, c12 = 0,

c13
√
a3 − a2 ± (c3 − c2)

√
a2 − a1 = 0, c23 = 0

F = M1

√
a2 − a1 ∓M3

√
a3 − a2 = 0

7

S
o
k
o
lo

v

(2
0
0
1
)

[1
5
7
] A = diag(1, 1, 2), b13 = α, b11 = b22 = b33 = b12 = b23 = 0,

c22 = 2α2, c33 = −2α2, c11 = c12 = c13 = c23 = 0,

F = (M3 − αγ1)

�

(M3 − αγ1)(M
2 + 4α(M3γ1 −M1γ3) +

+ 4α2(γ2
1 + γ2

3)) + 6α(M1 − 2αγ3)(M , �)

�
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necessary to introduce additional limitations for values of integrals, i. e., initial

conditions.

Necessary and sufficient conditions of integrability of Kirchhoff’s equation

are discussed in the paper [10].

As it was shown by V. A. Steklov [10, 27], if Hamiltonian (9.2) is a posi-

tively definite form (it is deliberately fulfilled when a body moves in fluid), then

cases 1, 2, 3, 4 from Table 3.1 exhaust the possibility of Kirchhoff’s equations

with an additional independent integral in linear and quadratic form of M , γ.

For the proof of this claim see, for example, [151].

Just before the book went into printing, we learnt about the results by

V. V. Sokolov [157], who found a new integrable case of Kirchhoff’s equation

with the fourth degree integral (see Table 3.1). This result allowed to construct

an analogical new case in terms of Poincaré – Joukovskiy equations (see § 10).

We describe these cases in more details in § 12 ch. 5. They turned out unusual

and remarkable, but need further investigations.

Comments. 1. When in Hamiltonian (9.2) matrices B and C are not diag-

onal, the question of algebraic integrability was examined by Roger Liouville [245]

(whom should not be interfered with the famous mathematician of nineteenth cen-

tury — Joseph Liouville). In this paper R.Liouville indicates conditions of an

additional integral existence when bij 6= 0 at i 6= j. However, the explicit form of

this integral is absent. The numerical experiment done by the authors showed chaotic

behavior of the system under Liouville’s general conditions; this indicates a certain

looseness of derivations in the paper [245].

2. Besides the cases of integrability shown in Table 3.1, there exists one

more general case of integrability with an additional quadratic integral. It is im-

plemented at A ≡ 0; this cannot be assigned to a real situation. An additional

integral F = (Bγ, γ) allows to reduce the system to quadratures. This reduc-

tion is easily fulfilled by means of a motor calculus (motorrechnung) (A.A. Burov,

V.N.Rubanovskiy [44]).

3. Particular solutions of equations of rigid body motion in fluid were studied

by A.M. Lyapunov [117], V. A. Steklov [162] and S.A. Chaplygin [173].

A.M. Lyapunov paid special attention to the questions of stability, V.A. Steklov

to explicit integration, S. A. Chaplygin to geometric interpretation. A lot of their re-

sults is presently of the pure historical interest. The simplest particular solutions (in

particular — planar motions) and their physical interpretation are discussed in the

treatise by H. Lamb [111].
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3. The Case of Axial Symmetry

This case was indicated by G. Kirchhoff for a dynamically symmetrical

body of revolution, moving in perfect fluid. Kirchhoff has also integrated equa-

tions of motions in elliptic functions.

This case of integrability is similar to Lagrange’s case in the Euler –Poisson

equations (§ 3 ch. 2), and an additional integral F = M3 is connected with the

presence of a cyclic coordinate (a proper rotation angle). In § 1 ch. 4 we show

reduction to one degree of freedom and explicit integration.

Plane motions and partial solutions (like helical ones) for a rigid body under

Kirchhoff’s conditions of integrability were studied in the book by Lamb [111].

4. Clebsch’s case

A. Clebsch has found two related cases of integrability from conditions of

an additional quadratic integral existence. One of them is mutual to the other,

i. e., the Hamiltonian of one case can be taken for the integral in the other case.

In fact, they form a single integrable family of quadratic Hamiltonians without

cross terms (B = 0).

The table presents classical forms of notation of Clebsch’s integrals. Nev-

ertheless, this integrable family may be represented in the more symmetrical

form

G̃1 = µγ2
1 +

M2
3

λ2
1 − λ2

2

+
M2

2

λ2
1 − λ2

3

,

G̃2 = µγ2
2 +

M2
3

λ2
2 − λ2

1

+
M2

1

λ2
2 − λ2

3

,

G̃3 = µγ2
3 +

M2
2

λ2
3 − λ2

1

+
M2

1

λ2
3 − λ2

2

.

(9.12)

We may consider following relations valid

3∑

i=1

G̃i = µγ2,

3∑

i=1

λiG̃i = HI ,

3∑

i=1

λ2
i G̃i = HII ,

where HI and HII are Hamiltonians of two mutual Clebsch’s cases correspond-

ingly.

Such a form of motion integrals (9.12), allows generalization to the mul-

tidimensional case [128]. It was shown by K. Uhlenbeck [278] in 1975 (one

can also see these integrals in the paper by Devaney [203]) in the process of
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examining Neumann’s problem. In 1859 C. Neumann integrated it by separation

of variables (see § 7 ch. 1). For a three dimensional case integrals (9.12) were

already known to H. Weber [282] (1878).

In § 10 ch. 3 Clebsch’s integrable cases are extended to the bundle of Pois-

son brackets (in particular, it is a Shottky –Manakov system). The retraction and

linear isomorphism of these cases are also shown. Clebsch’s integrable family

allows two different Lax representations with a spectral parameter. These are

cited in the book [31].

Remark 3. F. Kötter showed Clebsch’s integrable family in the symmetrical form,

containing an arbitrary (spectral) parameter [236]

Q(s) =
3 �

i=1

�√
s−DiMi +

�

(s−Dj)(s−Dk)γi

� 2
,

where Di are arbitrary constants, s is the parameter. The connection of this representation

with the existence of L − A-pair on Lie bundles is studied in [31].

Remark 4. In the paper [250] H. Minkowski showed the analogy of Clebsch’s case

to Jacobi’s problem about geodesics, thereby giving his own way of its integration. This

analogy is developed above in subsection 1 of this section (see also [195]).

Remark 5. S.A. Chaplygin [173], was trying to give geometrical interpretation of

motion in Clebsch’s case at (

�

, �) = 0. He represented the motion as sliding-free

rolling of a certain hyperboloid on a helical surface. In the paper [172] E. I. Harlamova

showed that at (

�

, �) = 0 the corresponding motion can be obtained as the more natural

generalization of Poinsot’s interpretation: an ellipsoid of inertia rolls without sliding on

the surface of an elliptic cylinder (fixed in space) whose axis is directed along vector �

and passes through a fixed point of the body.

5. The Steklov –Lyapunov Family

A. Clebsch has not analyzed conditions of existence of quadratic integrals to

the full extent. V. A. Steklov has corrected his reasoning in his own master thesis

(which in 1893 appeared as a separate book [160]) He indicated the case with a

quadratic integral whose Hamiltonian contains terms cross in M , γ. The mutual

case was shown by A. M. Lyapunov [115] who now corrected computations of

Steklov whose research supervisor he was. Table 3.1 presents the classical form

of Hamiltonians and integrals; this was the form shown by V. A. Steklov and

A. M. Lyapunov.

The Steklov –Lyapunov family can also be written in a symmetrical form
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by means of three integrals in involutive

G̃i =

3∑

j 6=i

(
Mij + 1

2
(λi − λj)Pij

)2

λi − λj
, i = 1, 2, 3, (9.13)

where components of matrices M = ‖Mij‖, P = ‖Pij‖ are connected with

vectors M ,γ by formulae

Mij = −εijkMk, Pij = −εijkγk.

For example, G̃1 is written as (other G̃i are obtained by cyclic permutation)

G̃1 =

(
M3 + 1

2
(λ1 − λ2)γ3

)2

λ1 − λ2
+

(
M2 + 1

2
(λ1 − λ3)γ2

)2

λ1 − λ3
.

For functions (9.13) the expression

3∑

i=1

G̃i = 2(M ,γ)

is valid.

Remark 6. For Lyapunov’s case the Hamiltonian (see Table 3.1) can be obtained as

HL = 1
2

3 �

i=1

λi

�

Gi = 1
2

�2 + (

�

,B �) + 1
2
( �,C �),

where B = diag(b1, b2, b3), C = diag

�

(b2 − b3)
2, (b3 − b1)

2, (b1 − b2)
2

�

and bk =

= 1
2
(λi + λj), i, j, k = 1, 2, 3.

For Steklov’s case the Hamiltonian is obtained from the following relation

H = 1
2

3 �

i=1

λ2
i

�

Gi = 1
2

�

cycle

((λ2
i + λ2

j )M
2
k + + (λ2

i + λ2
j )Mkγk) + 1

4
((λ2

i − λ2
j )

2γ2
k)

with further substitution ak = 1
2
(λi + λj).

Representation (9.13) is the most symmetrical parametrization of Steklov’s

and Lyapunov’s cases (see also § 10, ch. 3) and seems not to be indicated earlier.

It may be obtained (in the multidimensional case, as well) by using L −A-pair

with a hyperelliptic spectral parameter; this pair was shown in [23, 31].

In § 10 ch. 3 this family is extended to the Poincaré – Joukovskiy equations.

Besides, this family, unlike Clebsch’s case, allows addition of terms linear with

respect to M , γ (gyroscopic additions) (see further).
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Remark 7. In the paper [100] G. V. Kolosov showed the fourth integral of equations

of motion of the system with Hamiltonian

H = 1
2

�

c1M
2
1 + c2M

2
2 + c3M

2
3 + 2b1M1γ1 + 2b2M2γ2+

+2b3M3γ3 + a1γ
2
1 + a2γ

2
2 + a3γ

2
3

�
at the following conditions for constants ai, bi, ci (i=1, 2, 3)

c1(c2 − c3)

b3 − b2
=
c2(c3 − c1)

b1 − b3
=
c3(c1 − c2)

b2 − b1
,

a1 −
(b2 − b3)

2

c1
= a2 −

(b3 − b1)
2

c2
= a3 − (b1 − b2)

2

c3

(9.14)

in the form

F =
b3 − b1
c2

�

M1 − b3 − b2
c1

γ1
� 2

+
b3 − b2
c1

�

M2 − b3 − b1
c2

γ2

� 2

He also showed that particular cases of conditions (9.14) are Steklov’s and Lyapunov’s

cases. In this way he included them into a single integrable family whose particular

representatives are also integrals (9.13). Sometimes this family is called “Lyaponov –

Steklov – Kolosov case”.

Comments. To investigate Clebsch’s and Steklov –Lyapunov’s cases, starting

from the moment of their discovery and following the general ideology of the time,

many mathematicians were trying to integrate them in terms of elliptic functions. This

subject was of interest for H.Weber, G.Halphen, F. Kötter. H.Weber has inte-

grated the second Clebsch’s case [282] at (M ,γ) = 0, i. e., essentially Neumann’s

problem. G.Halphen [227] gave detailed consideration to the dynamical symmetry

case whose integration in terms of elliptic functions is carried out similarly to the

Lagrange top. F. Kötter offered his own integration method for two Clebsch’s cases

at (M ,γ) 6= 0 [236]. In the second paper [234] he announced about explicit inte-

gration of Steklov’s and Lyapunov’s cases. Kötter’s papers caused incomprehension

even of his contemporaries (S. A. Chaplygin, V.A. Steklov, M.A. Tichomandritskiy)

owing to their ambiguity and impossibility of verifying their results. Besides, the pa-

per [234], published in the Proceedings of Prussian Royal Academy of Sciences, is

too short and cannot be verified explicitly, even by using modern systems of analyt-

ical computations. The book [209] contains some geometrical arguments allegedly

explaining the idea of Kötter’s substitutions. However, they are far from sufficient.

Besides, independently of righteousness of papers [234, 236], we should note that

they lack explicit expression for characteristic polynomials in terms of constants of

integrals in Abel – Jacobi equations. Such an “implicit” solution practically makes

it useless because it prevents construction of bifurcational patterns, highlighting of

especially remarkable solutions (see ch. 2) and the like.
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Nevertheless, it should be noted that in his method of integration of Steklov –

Lyapunov case Kötter actually obtained L − A-pair with a spectral parameter

(see [31]) and a symmetrical one-parameter representation of integrals

Q(s) =
3∑

i=1

(s− bi)(zi + sγi)
2,

where 2zi = Mi − (dj + dk)γi, di = const.
The methods of reducing Clebsch’s case to quadratures, given in the books [9,

61] and obtained by Kobb and E. I. Harlamova, do not offer a real possibility of

obtaining a general solution. Kobb wrote the Hamiltonian of a system in terms of

Euler angles, and E. I. Harlamova [172] in terms of spheroconical coordinates. But

in terms of both types of coordinates Clebsch’s case cannot be separated for the non-

zero area constant. It should also be noted that in unpublished manuscripts [180]

S. A.Ċhaplygin also used Hamilton – Jacobi method for integration of two Clebsch’s

cases in terms of spheroconical coordinates. He also offered a similar procedure for

integration of complete (i. e., for M ,γ) system of equations for the Euler –Poinsot

case.

6. Chaplygin’s case (I)

S. A. Chaplygin indicated a particular case of integrability on the zero area

constant (M ,γ) = 0 with the fourth degree integral. A Hamiltonian and an

integral may be represented as

H = 1
2

(
M2

1 +M2
2 + 2M2

3

)
+ 1

2
c(γ2

1 − γ2
2),

F =
(
M2

1 −M2
2 + cγ2

3

)2
+ 4M2

1M
2
2 .

(9.15)

This system is related to the Kowalevskaya case in Euler –Poisson equations. Its

explicit integration was also carried out by S. A. Chaplygin [175].

O. I. Bogoyavlenskiy extended Chaplygin’s case to Poincaré – Joukovskiy

equations (see § 10 ch. 3); at that, Hamiltonian (9.15) suffers from dynamical

symmetry breaking. § 8 ch. 5 contains generalization of these cases on the

bundle of brackets and their explicit integration.

The connection of this system with rigid body dynamics in a uniform field

superposition is shown in § 1 ch. 4. This section also informs how this case

may be extended to the general integrable case in quaternion equations. The

latter case is a direct generalization of the Kowalevskaya case. Chaplygin’s

case allows the addition of a gyrostat along the axis of dynamical symmetry (§ 1
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ch. 4). Besides, a certain system is integrated on a zero area constant. A potential

energy of this system is the superposition of the Chaplygin and Kowalevskaya

cases (§ 7 ch. 5).

7. Chaplygin’s Case (II)

This case is similar to the Hess case in Euler –Poisson equations and is

connected with the presence of an invariant relation of the form

M1

√
a2 − a1 ∓M3

√
a3 − a2 = 0, a1 < a2 < a3. (9.16)

The cumbersome conditions, cited in Table 3.1, are very simple from the

geometrical viewpoint. Using the analogy with Euler –Poisson equations, we

suppose that a dynamically asymmetrical rigid body is moving in a generalized

potential field, i. e., γ are some positional variables. Then the existence of rela-

tion (9.16) is conditioned by the symmetry of potential and generalized potential

of system (9.2) with respect to rotations around the perpendicular to the circular

section of a gyration ellipsoid (compare to § 6 ch. 2).

S. A. Chaplygin indicated both conditions and technique of explicit inte-

gration of this case in his master thesis (1897) [178]. However, he failed to

show its connection with the Hess case explicitly. In 1982 V. V. Kozlov and

D. A. Onischenko [98], independently found it from the condition of splitting of

separatrices. It turned out that in this case, like in the Hess case, one pair of

separatrices of the reduced system (described by relation (9.16)) is doubled and

define one-parameter family of double-asymptotic motions.

The connection of this case with the presence of a cyclic variable (the

angle of rotation around the perpendicular to the circular section of a gyration

ellipsoid) on level (9.16), and the possible reduction with respect to this variable

is discussed in details in §§ 3, 4 ch. 4.

8. Integrable Generalizations with Linear Terms in a Hamiltonian

In the integrable cases considered above Hamiltonian (9.2) is a homogenous

quadratic form of variables M ,γ. However, there are some cases (which are

interesting from physical and mechanical viewpoints) when the terms, linear

with respects to M ,γ are added in the Hamiltonian. For various statements,

given in 1, these additions have different interpretations. So, for dynamics of

a rigid body in fluid these terms may be conditioned by multiple connections

of the rigid body (see § 2 ch. 5); for Brun’s system by presence of rotor and a

uniform permanent force field; for the dynamics of a point on a sphere by the

presence of a permanent electrical (magnetic) field.
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The equations of motion of a multiconnected body. If a body moving

under Kirchhoff’s conditions has holes, i. e., is multiconnected, then its equations

also have the form (9.1). However, the Hamiltonian obtains terms, linear with

respect to M , γ [111, 171]

H = 1
2
(AM ,M) + (BM , γ) + 1

2
(Cγ, γ) + (a,M ) + (b, γ). (9.17)

where a, b are constant vectors. They are linearly expressed in terms of circu-

lations of fluid velocities along the outlines of holes in the body (see § 2 ch. 5).

The conditions of integrability of such systems were studied in [149, 148].

Here a trivial generalization allows the integrable cases of Kirchhoff and

Chaplygin (II) (see Table 3.1); see also § 7 ch. 2, §§ 1, 2 ch. 4). In this situ-

ation a constant gyrostatic moment along the corresponding axis is added (for

Kirchhoff it is the axis of dynamical symmetry, and for Chaplygin (II) it is the

perpendicular to the circular section of a gyration ellipsoid).

The integrable generalization of Clebsch’s case is unknown; Steklov –Lya-

punov’s family was generalized by V. N. Rubanovskiy [149] and the correspond-

ing Lax representation is shown in the paper [208]. A gyrostatic generalization

of Chaplygin’s case (I) was obtained by H. Yehia [285] (given in § 7 ch. 5). Here

we show Rubanovskiy’s family in the most symmetrical form and generalization

of the first Chaplygin case.

Rubanovskiy’s generalization of Steklov –Lyapunov integrable family.

In the paper [149] it was shown that Steklov –Lyapunov integrable family allows

integrable generalization. In case of such a generalization the Hamiltonian has

linear terms added. Let us write this integrable case in the form of family of

three integrals in involution. These integrals have the form

J̃s = G̃s + 1
(λ2 − λ1)(λ2 − λ3)

( ∑

cycl. var. ijk

rk(Mk + 1
2
(λi − λj)γk)+

+ 1
2
rs(2λs − λm − λn)γs

)
.

s,m, n = 1, 2, 3,
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For example, J̃1 is written as (others are obtained by the cyclic permutation of

indices)

J̃1 = G̃1 + 1
(λ1 − λ2)(λ1 − λ3)

(
r1

(
M1 −

λ2 + λ3 − 2λ1

2
γ1

)
+

+ r2

(
M2 −

λ3 − λ1

2
γ2

)
+ r3

(
M3 −

λ2 − λ3

2
γ3

))
,

(9.18)

where G̃i, i = 1, 2, 3 are Steklov –Lyapunov integrals (9.13). For integrals J̃i
the relation

3∑

i=1

J̃i = 2(M ,p).

is valid.

The Hamiltonian and the integral, found by V. N. Rubanovskiy [149], may

be obtained from J̃i as follows

H = 1
2

3∑

i=1

λ2
i J̃i = 1

2

∑

cycle

(
(λ2
i + λ2

j )M
2
k + (λ2

i + λ2
j )Mkγk+

+1
4

(
(λ2
i − λ2

j )
2γ2
k

)
+ 1

2
(λi + λj + 2λk)rkγk

)
+ (r,M ),

F = 1
2

3∑

i=3

λiJ̃i = 1
2
M 2 + (M ,Bγ) + 1

2
(γ,Cγ) + (r,γ)

(9.19)

with further substitution ak = 1
2
(λi + λj), where B = diag(b1, b2, b3),

C = diag(b2 − b3, b3 − b1, b1 − b2) and bk = 1
2
(λi + λj), i, j, k = 1, 2, 3.

The Lax representation for this integrable case is shown in [208].

Remark 8. Integrals (9.18) can also be obtained by means of retraction from similar

generalization (10.26) on so(4) (§ 10 ch. 3).

The Generalization of Chaplygin’s Case (I). This particular case of in-

tegrability can be generalized by means of addition of a constant gyroscopic

moment along the axis of dynamical symmetry (H. Yehia [285]). The Hamilto-



174 Chapter 3

nian and the integral may be represented in the form

H = 1
2

(
M2

1 +M2
2 + 2

(
M3 − λ

2

)2)
+ c

2
(γ2

1 − γ2
2),

F =
(
M2

1 −M2
2 + cγ2

3

)
+ 4M2

1M
2
2 +

+ 4λ
(
M3(M

2
1 +M2

2 ) − cγ3(M1γ1 −M2γ2)
)
−

− 4λ2(M2
1 +M2

2 ).

(9.20)

§ 7 ch. 5 discusses the extension of this case to the bundle of Poisson brackets

and to the case of addition of terms, linear in γi, to Hamiltonian H (9.20).

§ 10. Poincaré–Joukovskiy Equations

1. Equations of Motion and Their Physical Interpretation

Poisson’s structure and equations of motion. First of all, let us consider

a formally Hamiltonian system on an algebra so(4) and premise some Lie

algebra corollaries to a dynamical description. Depending on dynamical origin

of the equations considered, it is convenient to use various systems of variables

(denoted as (M ,p) or (K,S)), being in simple relations

M =
K + S

2
, p =

K − S
2

.

Variables (M ,p) correspond to “standard” (matrix) representation of so(4)
and commutative relations have the form

{Mi,Mj} = −εijkMk, {Mi, pj} = −εijkpk, {pi, pj} = −εijkMk.
(10.1)

Structure (10.1) has following Casimir’s functions

F1 =M2 + p2, F2 = (M ,p). (10.2)

Level sets of these integrals are diffeomorphic to S2 × S2. It becomes evident

if the integrals are expressed in terms of variables (K,S) (see (10.6)).

The equations of motion can be represented in the vector form

Ṁ = M × ∂H
∂M

+ p× ∂H
∂p

, ṗ = p× ∂H
∂M

+M × ∂H
∂p

. (10.3)

This system of variables is also suitable for description of a linear bundle

of Poisson structures

�

x (see §§ 3, 4 ch. 4, §§ 7, 8 ch. 5). This bundle includes
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algebras so(4), e(3), so(3, 1), as well. Commutative relations for this bundle

are as follows

{Mi,Mj} = −εijkMk, {Mi, pj} = −εijkpk, {pi, pj} = −xεijkMk,
(10.4)

where x = const is an arbitrary constant. For x > 0 commutative rela-

tions (10.4) define algebra so(4), for x = 0 — algebra e(3), and for x < 0 — al-

gebra so(3, 1). Really, at |x| 6= 1, x 6= 0, transformationM →M , p→ |x|1/2p
leads to the form (10.1) or the similar form for so(3, 1).

Under limited transition x→ 0 in commutational relations (10.4) we obtain

algebra e(3). This procedure is referred to asretraction (contraction) of Lie

algebras. In some cases it allows to connect integrable cases, existing for the

equations on various representatives of the bundle

�

x (see also [133]).

Variables (K,S) correspond to “canonical” expansion of an algebra so(4)
into a direct sum so(3) ⊕ so(3). In algebra it is a well known fact that

{Ki,Kj} = −εijkKk, {Ki, Sj} = 0, {Si, Sj} = −εijkSk. (10.5)

In terms of new variables Casimir’s functions have the form

F1 = (K,K), F2 = (S,S). (10.6)

The equations of motion are

K̇ =K × ∂H
∂K

, Ṡ = S × ∂H
∂S

. (10.7)

In case of quadratic Hamiltonian H they may be interpreted as equations of two

connected three-dimensional Euler tops (on so(3)).

Poincaré – Joukovskiy equations. These equations represent a Hamilto-

nian system on so(4) with a quadratic Hamiltonian (Euler –Poincaré equations

on so(4), see § 2 ch. 1). In terms of vectors the Hamilton function may be

represented as either

H = 1
2

(M ,AM) + (M ,Bp) + 1
2

(p,Cp) (10.8)

or
H = 1

2
(K,A′K) + (K,B′S) + 1

2
(S,C′S) , (10.9)

where A,A′,C,C′ are certain symmetrical, and B,B′ — arbitrary matrices.

They are related by an evident dependency

A = A′ + B′ + B′T + C′, B = A′ −B′ + B′T −C′,

C = A′ −B′ −B′T + C′.
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To be certain, we shall use these notations henceforward.

Hamiltonian (10.8), (10.9) depends on 21 parameters. There exist three

types of elementary transformations modifying (in particular, eliminating) pa-

rameters in Hamiltonian without changing equations of motion. The first type

include group transformations SO(3)×SO(3). By means of these, matrices A′

and C′ in representation (10.9) may be simultaneously reduced to the diagonal

form. Two more parameters can be eliminated if we add an arbitrary linear com-

bination of Casimir’s functions (which are homogeneous quadratic functions)

F1, F2 to the Hamiltonian. Multiplication of the Hamiltonian by an arbitrary

constant H → αH with the substitution of time t→ 1
α t allows further reduction

of the number of parameters. Thus, a quadratic family of Hamiltonians (10.8)

(or (10.9)) is defined by twelve parameters.

Further on, while evaluating the number of parameters in integrable fami-

lies, we usually eliminate time substitution and get one more parameter.

Historical comments. 1. System (10.8) is connected with H. Poincaré and

N. E. Joukovskiy because they obtained it considering the problem of motion of

a body with cavities filed with vortex fluid. This problem is presented in the

next subsection and the detailed derivation of equations of motion on the basis of

fundamental principles of hydrodynamics is given in § 2 ch. 5 (in his well-known

treatise [111] H. Lamb also gives the derivation and some results on stability by

H. Poincaré). Then it turned out that the very same equations describe other

mechanical and physical systems. We decided not to change the name of equations

depending on such physical analogues.

2. In his paper [256] H. Poincaré has given rather modern derivation of

equations (10.3), (10.8), using the formalism of general equations of motion on

Lie groups. He has also explicitly indicated reduction to elliptic quadratures for

the axially symmetric case and considered stability of regular precessions. Of a

special interest here is his discussion with W.Kelvin about behavior of frequency

and stability of precession of a body with a cavity filled with fluid. Poincaré applies

system (10.7) to describe motion of the Earth representing a rigid shell (a mantle)

and a liquid core. Further on this model was also studied by V. A. Steklov who

presented in the paper [273] the integrable cases he had discovered.

3. N.E. Joukovskiy obtained equations (10.7) in his master’s thesis [78] from

simpler mechanical and hydrodynamical considerations. Then he concentrated his

efforts on computation of dynamical characteristics for cavities of various geometry.

Considering multiconnected cavities which allow circulational flows, N. E. Joukovskiy

has found the case of integrability which a bit later was integrated in elliptic func-
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tions [280] by V.Volterra (see § 7 ch. 2, § 8 ch. 5). Circulational flows within

cavities lead to the appearance of linear terms in Hamiltonian (10.8).

Dynamics of a rigid body with a cavity containing fluid. Poincaré –

Joukovskiy equations (10.7), (10.9) describe motion around a fixed point of a

rigid body having an ellipsoidal cavity filled with homogeneous perfect incom-

pressible fluid being in vortex motion [111, 125, 129]. The detailed derivation

of these equations is given in § 2 ch. 5.

Choose a frame of reference rigidly bound to the shell whose axes are

parallel to the principal axes of the cavity. In terms of (K,S) vector S is

proportional to the vorticity of fluid Ω = 1
2

rotv. In the frame of reference of

the shell its components are

S1 = 2
5
m0d2d3Ω1, S2 = 2

5
m0d1d3Ω2, S1 = 2

5
m0d1d2Ω3,

where d1, d2, d3 are cavity semiaxes, and m0 is a fluid mass. The vector evolu-

tion is defined by Helmholtz hydrodynamical equations [111].

Vector K can be regarded as a angular momentum of the system

“body+fluid” and equals

K = Iω + JΩ,

where I is a tensor of inertia of the system “body+fluid”, and components of a

matrix J = diag(J1, J2, J3) have the form

Ji = 4
5
m0εijk

d2
jd

2
k

d2
j + d2

k

,

where ω is an angular velocity of a rigid shell.

Hamiltonian represents kinetic energy expressed in terms of vari-

ables (K,S) [129]

H = 1
2

(K,A′K) + (K,B′S) + 1
2

(S,C′S) , (10.10)

where A′ = I−1, B′ = −DI−1, C′ = D(I−1 + J−1)D and

D = diag

(
2d2d3

d2
2 + d2

3

,
2d1d3

d2
1 + d2

3

,
2d1d2

d2
1 + d2

2

)
.

Function (10.10) depends on nine parameters: six moments of inertia of

the shell, relations of principal semiaxes of the cavity, and mass of fluid.
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Remark 1. The generalization of Poincaré – Joukovskiy equations for the case of

the force field presence was considered in [56]. We obtain the Hamiltonian system on

the direct sum e(3)⊕ so(3). [56] contains some necessary conditions (without proof) of

existence of additional analytical and polynomial integrals and shows trivial analogue of

the Lagrange case which similar systems presumably possess.

Rigid body dynamics in R
4: a four-dimensional Euler top. Equations

of motion about a fixed point of a free four-dimensional rigid body in the frame

of reference bound to the body have similar, but less general form. From this

viewpoint the problem was considered in nineteenth century by W. Frahm (1875)

and F. Schottky (1891) [21, 211, 265] (see § 2 ch. 5). Statement of the problem

about motion of a four-dimensional rigid body goes back to A. Caley.

Let us choose a system of principal axes of the body. In such a system

tensor of moments of inertia J = ‖Jµν‖ = ‖
∫
xµxνdm‖ has the diagonal form

J = diag(λ0, λ1, λ2, λ3). Hamiltonian may be represented as

H = 1
2

(M ,AM) + 1
2

(p,Cp) , (10.11)

where
A = diag

(
1

λ2 + λ3
, 1
λ1 + λ3

, 1
λ1 + λ2

)
,

C = diag

(
1

λ0 + λ1
, 1
λ0 + λ2

, 1
λ0 + λ3

)
.

(10.12)

Matrix X ∈ so∗(4) of the angular momentum of a rigid body is connected with

its angular velocity Ω ∈ so(4) by the formula

X = 1
2

(JΩ + ΩJ) ,

where

X =




0 p1 p2 p3

−p1 0 −M3 M2

−p2 M3 0 −M1

−p3 −M2 M1 0


 ,

Ω =




0
p1

λ0 + λ1

p2

λ0 + λ2

p3

λ0 + λ3

− p1

λ0 + λ1
0 − M3

λ1 + λ2

M2

λ1 + λ3

− p2

λ0 + λ2

M3

λ1 + λ2
0 − M1

λ2 + λ3

− p3

λ0 + λ3
− M2

λ1 + λ3

M1

λ2 + λ3
0




.

(10.13)
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As it will be shown below, this system is integrable (the Schottky –Manakov

case). System (10.11) also describes integrable geodesic flow of a certain metric

on a group SO(4) [5].

A rigid body in curved space. Forms (10.3) and (10.8) can also be used

to express equations of free motion of three-dimensional rigid body in space of

the constant of positive curvature: S3 [31]. This is the consequence of analogy

of this problem with motion of a four-dimensional rigid body. This analogy can

be easily understood for the case of motion of a “planar” rigid body (a plate)

in S2. Really, one can consider a plate on a sphere to be equivalent to a rigid

body in R
3 with a fixed point in the center of a sphere. The center is connected

with the plate by “massless” basic elements.

Remark 2. The development of kinematics, statics and dynamics of rigid body

(and a system of material points, as well) in curved spaces goes back to W. K. Clifford,

R. S. Ball, R. S. Heath (see [107]) who were developing the theory of screws, motors and

biquaternions. In general, these investigations did not result in real things, and presently

they are of purely historical interest.

A rigid body in S3 in fluid. If we consider a free motion of a rigid

body in curved space S3 (a three-dimensional sphere) in a homogeneous incom-

pressible perfect fluid (an analogue of Kirchhoff’s equations (9.1) on e(3)), then

Hamiltonian has a more general form in comparison with (10.11)

H = 1
2

(M ,AM) + (M ,Bp) + 1
2

(p,Cp) (10.14)

with arbitrary matrices A,B,C whose coefficients depend on associated masses

and moments of inertia of the body. Quadratic form (10.14) represents ki-

netic energy and is positively determined. Similarly, one can write out

equations of motion of a rigid body in fluid (or vacuum) in Lobachevskiy’s

space L3. This problem was investigated by G. Birkhoff in his book [12], and by

N. E. Joukovskiy — for the two-dimensional case [77]. Here one obtains a Hamil-

tonian system on algebra so(3, 1) with Hamiltonian (10.14). Our book [31]

contains the derivation of equations of motion of a rigid body with a gyrostat

in curved space. At that, Hamiltonian (10.14) gets terms linear with respect

to (M , p). There one can also find the derivation of corresponding equations

for motion in Lobachevskiy’s space.

A system of interacting spins. Classical dynamics of two interacting

spins (spherical rotators), corresponding to vector representation of group of

rotations, is also described by a Hamiltonian system on so(4) [247, 210, 269,
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270]. Passing from spin operators Ŝ1, Ŝ2 to classical vectorsK = S1, S = S2,

we obtain dynamical system (10.7). Hamiltonians of type (10.9) correspond

to various classical spin systems. In this case cross terms describe so called

exchange spin interaction. For spins in the external magnetic field, linear terms

should be added to the Hamiltonian

The most general of two-spin systems being considered is described by the

Hamiltonian [247]

H = −(B′K, S) + 1
2
(A′K, K) + 1

2
(A′S, S), (10.15)

where A′, B′ are certain diagonal matrices.

The case A′ = 0 corresponds to so called two-spin XY Z model, the case

a′33 = b′33 = 0 corresponds to a generalized two-spin XY model (Heisenberg’s

model, see. § 6 ch. 5).

System (10.15) also describes dynamics of two connected classical tops

(connection of two bodies, see § 8 ch. 2), whose interaction energy depends

only on components of angular momentums and does not depend on positional

variables.

2. Integrable Cases

As far as Poisson’s structure (10.1), (10.5) has two main functions, for

integration of corresponding equations of motion one more first integral is nec-

essary. In the general case it does not exist, and phase space contains regions

with chaotic behavior.

Integrable cases of system (10.8), (10.9) known up to date are presented in

Table 3.2.

The general integrable case (7) discovered by the authors with V. V. Sokolov

is considered in more details in § 12 ch. 5.

As far as algebra so(4) allows both standard and canonical representations,

in table 3.2 contains conditions for parameters only for the representation which

makes them simpler.

Remark 3. Not every integrable case shown in Table 3.2, possesses physical con-

tent. It happens because coefficients of matrices A,B,C for Poincaré – Joukovskiy equa-

tions are not arbitrary and have rather limited region of variation.

Remark 4. The case of integrability of equations on algebra e(3), like Lagrange’s

and Hess’ cases for Euler – Poisson equations or Kirhchhoff’s and Chaplygin’s (II) cases

for Kirchhoff’s equations (when the additional integral depends on variables

�

only),

are naturally transferred to systems on bundle (10.4), containing algebra so(4) at x = 1.
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This concerns the fact that equations for ˙ �

for all brackets of the bundle coincide (see

below).

Remark 5. Relative equilibria of system (10.3), which have K̇ = Ṡ = Ṁ =
= ˙ � = 0, may be interpreted differently, depending on physical statements of problems.

If we consider motion of a body with cavities filled with vortex fluid, these equilibria

determine particular solutions. For these solutions the body motion is a uniform rotation

around a certain axis, and vorticity vector is “frozen” within the body. Of special interest

is the study of stationary configurations for the model of connected tops. This model

defines dynamics of a chain of spins. Such configurations, specifying a certain coherent

state, are of great importance in quantum physics. We consider them in ch. 5 for both

finite-dimensional and infinite-dimensional cases.

3. The Case of Axial Symmetry (of H. Poincaré)

It is the simplest integrable case, for which the pair of eigenvalues of di-

agonal matrices A,B,C (or A′,B′,C′) coincide, i. e., a11 = a22, b11 = b22,

c11 = c22. The Hamiltonian (after elimination of (10.2)) may be represented as

H = 1
2

(
M2

1 +M2
2 + aM2

3

)
+ b
(
M1p1 +M2p2

)
+ 1

2
c(p2

1 + p2
2).

An additional integral can be written as M3 = const or K3 +S3 = const. This

is integral of Lagrange’s type. Reducing to quadratures, which results in elliptic

functions, was done by H. Poincaré [256] (see also § 2 ch. 4).

4. The Schottky –Manakov Case

In 1891 in his paper [265] F. Schottky showed the first integrable case of

system (10.8) and noticed its connection with the Clebsch case in Kirchhoff’s

equations. Here B = 0, and a Hamiltonian is given by formula (10.11), co-

efficients of matrices A,C satisfy relations (10.12) with arbitrary parameters

λµ, µ = 0, . . . , 3. This case is also connected with the name of S. V. Manakov

who has shown integrability of its n-dimensional analogue (1976, [121]).

In representation (10.9) for the Schottky –Manakov case the equality A′ =
= C′ is valid. Under these limitations this case of integrability is unique in the

class of systems with a quadratic integral. Really, the following statement (see,

for example, [50])is valid.

If A′ = C′, if eigenvalues of the matrix A′ differ, and if the matrix B′

is nondegenerate, system (10.9) allows a quadratic integral then and only then
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when the following conditions are met

A′ = diag(a′1, a
′
2, a

′
3), B′ = diag(b′1, b

′
2, b

′
3),

b′21 (a′2 − a′3) + b′22 (a′3 − a′1) + b′23 (a′1 − a′2)+

+(a′1 − a′2)(a
′
2 − a′3)(a

′
3 − a′1)k

2 = 0, k2 = 1.

(10.16)

The very same conditions of integrability are indicated in the physical pa-

pers [247, 269], dedicated to dynamics of two-spin model (10.15). Besides, the

authors [247] independently discovered the Schottky case known for more than

a century before them.

Remark 6. The algebraic integrability of system (10.3), (10.8) was investigated in

the paper [226]; by means of the Kowalevskaya method this system was investigated

by M. Adler and P. van Moerbeke [187, 186, 185], where the authors also discuss inte-

grability. The paper [185] contains a new integrable case. The conditions of solution

meromorphicity on a complex plane of time are obtained in the papers [37, 38]. They

claim that in equality (10.16) k should be an odd integer. The necessary conditions of

algebraic integrability are also obtained in the paper [206], k being rational.

We know the following symmetrical representation of integrals in involu-

tion (see, for example, [254]). By means of skew-symmetrical matrix X =
= ||Xµν || (10.13) they can be written as

Gµ =

3∑

ν=0

X2
µν

λ2
µ − λ2

ν

, µ = 0, . . . , 3. (10.17)

The following equations are valid

3∑

µ=0

Gµ = 0,

3∑

µ=0

λµGµ = 2H,

3∑

µ=0

λ2
µGµ = F1, (10.18)

where F1 = M2 + p2 is Casimir’s function, H is the Schottky Hamilto-

nian (10.11).

Thus, a linear combination of four integrals (10.17) on every level set

of Casimir’s functions specifies a five-parameter family of integrable quadratic

Hamiltonians (three parameters are differences λ2
µ − λ2

ν , two parameters are

coefficients of the linear combination after elimination of Casimir’s functions).

The Hamiltonian for the Schottky –Manakov case belongs to family (10.17).
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F. Schottky [265] has written quadratic family (10.17) in a somewhat dif-

ferent form with an arbitrary parameter. It is

Q(s) =
∑

cyclei,j,k

(√
(s− ai)(s− a4)Mi +

√
(s− aj)(s− ak)pi

)2

.

This family was rediscovered by L. Haine in the paper [226].

For the first time Lax representation with a rational spectral parameter (for

the general n-dimensional case) was found in the paper by S. V. Manakov [121].

Equations of motion (10.3) with Hamiltonian (10.11) allow Lax representation

on matrices, linearly depending on an arbitrary parameter λ:

d
dt

(X + λJ2) = [X + λJ2, Ω + λJ],

where X, Ω are defined by formula (10.13), and J is a tensor of inertia (a

symmetrical, positively determined matrix).
Motion integrals in involution are obtained by the expansion of func-

tions Pk(λ) = tr(X + λJ2)k in terms of λ. This family is complete, i. e.,

there is enough integrals for it to be integrable. Other Lax representations with

a spectral parameter, and also their connection with bi-Hamiltonianity are con-

sidered in [24, 31, 168].

By means of retraction an algebra so(4) transfers to an algebra e(3); the

Schottky –Manakov case transforms into Clebsch’s case (S. P. Novikov, [133]).

Really, let us make following substitutions of variables and parameters

p→ γ√
x
, λ0 → − 1√

cx
, (10.19)

where c is a certain constant. Consider a limiting transition x→ 0 in commuta-

tive relations being obtained and in corresponding integrals (10.4). Under given

parametrization integrals (10.17) take the form (9.12).

Eliminating infinite (at x → 0) term, proportional to the Casimir function

according to the rule H → H+

√
c

2
√
x
(γ2 +xM2), from the Hamiltonian (shown

in Table 3.2), we obtain the Hamiltonian function for the Clebsch case (see. § 9

ch. 3) on e(3) in the form

H = 1
2

(
M2

1

λ2 + λ3
+

M2
2

λ3 + λ1
+

M2
3

λ1 + λ2

)
+ c

2
(λ1γ1 + λ2γ2 + λ3γ3) .



Table 3.2. Cases of Integrability of Poincaré – Joukovskiy Equations.

Author Conditions for parameters and the first integral

1 Poincaré

(1910) [256]

A
′ = diag(a′1, a

′

2, a
′

3), B
′ = diag(b′1, b

′

2, b
′

3), C
′ = diag(c′1, c

′

2, c
′

3),

a′1 = a′2, b′1 = b′2, c′1 = c′2

F = M3

2

Schottky

(1891) [265]

Manakov

(1976) [121]

A = diag � 1
λ2 + λ3

, 1
λ3 + λ1

, 1
λ1 + λ2 � ,

B = 0, C = diag � 1
λ0 + λ1

, 1
λ0 + λ2

, 1
λ0 + λ3 �

F = M2
1 +M2

2 +M2
3 + � λ2

1

λ2
1 − λ2

0

p2
1 +

λ2
2

λ2
2 − λ2

0

p2
2 +

λ2
3

λ2
3 − λ2

0

p2
3 �

3 Steklov

(1909) [273]

A
′ = diag(λ2

2λ
2
3, λ

2
1λ

2
3, λ

2
1λ

2
2)

B
′ = diag(λ2λ3(λ

2
2 + λ2

3), λ1λ3(λ
2
1 + λ2

3), λ1λ2(λ
2
1 + λ2

2))

C
′ = diag((λ2

2 + λ2
3)

2, (λ2
1 + λ2

3)
2, (λ2

1 + λ2
2)

2))

F = (λ2
2 + λ2

3)S1 �S1 +
2λ2λ3

λ2
2 − λ2

3

K1 � +
+ (λ2

1 + λ2
3)S2 �S2 +

2λ1λ3

λ2
1 − λ2

3

K2 � + (λ2
1 + λ2

2)S3 �S3 +
2λ1λ2

λ2
1 − λ2

2

K3 �

4 Adler, van Moerbeke,

1982, [187]

A
′ = diag(a′1, a

′

2, a
′

3), B
′ = diag(b′1, b

′

2, b
′

3), C
′ = diag(c′1, c

′

2, c
′

3), � = (λ1, λ2, λ3)

a′i = −2
3
εijkλ

2
jλ

2
k, b

′

i = εijk(λ
4
i + λ2

jλ
2
k − (λj + λk)

2(λ2
j + λ2

k))

c′i = 2
3
εijk(λ

4
i − λjλk(λ

2
j + λ2

k + 5
4
λjλk)), λ1 + λ2 + λ3 = 0

F = 1
2
K

2 �

k

�(λiλj − 1
3
λ2
k)S

2
k + (λiλj − λ2

k)KkSk � +
+ 1

18
S

2 �

k

� 53 (λiλj − λ2
k)S

2
k + (7λiλj − 4λ2

k)KkSk � +
+ 1

2
( �, �) �K 2 + 1

3
S

2 � (K ,S) − 1
9 �

i<j

(λi − λj)
2(KiSiS

2
j +KjSjS

2
i )

5 Bogoyavlenskiy

[21]

I

���
� �

A = diag(α2, α1, α1 + α2), α1 = 1 − a1, α2 = 1 − a2,

B = 0, C = diag(a2 − a1, a1 − a2, 0),

F = �α1M
2
1 − α2M

2
2 − (a1 − a2)p

2
3 	 2 + 4α1α2M

2
1M

2
2 , (M ,p) = 0,

II

��
�

B = 0, A = diag(2a1, 2a2, 2a3), C = diag(a2 + a3, a1 + a3, a1 + a2)

F = �(a2 − a3)p
2
1+(a3 − a1)p

2
2−(a1 − a2)p

2
3 	 2+ 4(a3 − a2)(a3 − a1)p

2
1p

2
2, (M ,p) = 0

6 Borisov, Mamaev,

2000

A = diag(a1, a2, a3), B = ‖bij‖, C = ‖cij‖
b13

√
a2 − a1 ∓ (b22 − b11)

√
a3 − a2 = 0, b12 = 0,

b13
√
a3 − a2 ± (b33 − b22)

√
a2 − a1 = 0, b23 = 0,

c13
√
a2 − a1 ∓ (c22 − c11)

√
a3 − a2 = 0, c12 = 0,

c13
√
a3 − a2 ± (c33 − c22)

√
a2 − a1 = 0, c23 = 0,

F = M1

√
a2 − a1 ∓M3

√
a3 − a2 = 0

7
Borisov, Mamaev,

Sokolov, 2001

H = 1
2 �M2

1 +M2
2 + 2M2

3 	 + αM3γ1 − α2γ2
3 , α = const

F = M3 
M3 �M 2 + α2M2
2 + 2α(M3γ1 −M1γ3) + α2(γ2

1 + γ2
3) 	 + 2α(M1 − αγ3)(M , �) �
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In this case the Clebsch integral is represented as

K = M2
1 +M2

2 +M2
3 + c

(
λ2

1γ
2
1 + λ2

2γ
2
2 + λ2

3γ
2
3

)
.

Remark 7. Using substitution (10.19) one obtains the family of integrals, depending

on the parameter Gµ(x), µ = 0, . . . , 3 and remaining in involution at an arbitrary x, i.,e.,

on the whole bundle

�

x.

It turns out that the Schottky –Manakov case and the Clebsch case are con-

nected not only via retraction, but are linearly isomorphic (A. I. Bobenko, [14]).

The corresponding transformation is written as

M1 =
√

(λ2
2 − λ2

0)(λ
2
3 − λ2

0)L1, M2 =
√

(λ2
1 − λ2

0)(λ
2
3 − λ2

0)L2,

M3 =
√

(λ2
1 − λ2

0)(λ
2
2 − λ2

0)L3,

p1 =
√
λ2

1 − λ2
0γ1, p2 =

√
λ2

2 − λ2
0γ2, p3 =

√
λ2

3 − λ2
0γ3.

(10.20)

The equations of motion for variables (L, γ) correspond to the Clebsch

case on an algebra e(3) with the following Hamiltonian

H = 1
2
(L, AL) + 1

2
(γ, Cγ),

A = diag

(
− (λ2−λ0)(λ3−λ0)

λ2 + λ3
,− (λ1−λ0)(λ3−λ0)

λ1 + λ3
,− (λ1−λ0)(λ2−λ0)

λ1 + λ2

)
,

C =

(
1

λ1 + λ0
, 1
λ2 + λ0

, 1
λ3 + λ0

)
.

As it was shown by A. V. Bolsinov [23], a linear isomorphism also exists

for multidimensional analogues of the problems being considered. Although

explicit transformation (10.20) was shown in [14], at the level of similarity of

motion integrals of both systems it was implicitly used already by F. Schottky

(1891) [265]. Topological analysis and bifurcational patterns are present in the

paper by A. A. Oshemkov [140] (see also the book [25]). Due to linear iso-

morphism with the Clebsch case, this analysis results are equivalent to the ones

obtained in the paper [143].

5. Steklov’s Case

Another integrable case, for which Hamiltonian (10.8) contains cross terms

(i. e., a matrix B 6≡ 0), is discovered in the paper by V. A. Steklov [273]. Nec-

essary and sufficient conditions of quadratic integrability were announced by

A. P. Veselov [50].
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Let a HamiltonianH be given in representation (10.10); where eigenvalues

of both matrices A′ and C′ are different, and the matrix B′ is nondegenerate

(det B′ 6= 0). Then for the existence of an additional motion integral, indepen-

dent of H, F1, F2, it is necessary and sufficient to satisfy following conditions:

A′ = diag(a′1, a
′
2, a

′
3), B′ = diag(b′1, b

′
2, b

′
3), C′ = diag(c′1, c

′
2, c

′
3),

b′21 (a′2 − a′3) + b′22 (a′3 − a′1) + b′23 (a′1 − a′2)+

+(a′1 − a′2)(a
′
2 − a′3)(a

′
3 − a′1) = 0,

b′21 (c′2 − c′3) + b′22 (c′3 − c′1) + b′23 (c′1 − c′2)+

+(c′1 − c′2)(c
′
2 − c′3)(c

′
3 − c′1) = 0,

(10.21)

To describe the family of integrals in involution, similar to (10.17), let

us introduce skew-symmetrical matrices K,S,M,P, corresponding to vec-

tors K,S,M ,P whose components can be determined by the formulae

Kij = −εijkKk, Sij = −εijkSk,

Mij = −εijkMk, Pij = −εijkpk.
(10.22)

Integrals may be represented in terms of components of these matrices in

the form [24, 31]

Gi =

3∑

j 6=i

(λjKij + λiSij)
2

λ2
i − λ2

j

, i = 1, 2, 3, (10.23)

For instance, G1 is written as (others are obtained by cyclic permutation of

indices)

G1 =
(λ2K3 + λ1S3)

2

λ2
1 − λ2

2

+
(λ3K2 + λ1S2)

2

λ2
1 − λ2

3

.

For functions Gi the relation

3∑

i=1

Gi = −K2 + S2. (10.24)

is valid. Consequently, set (10.23) determines the two-dimensional family of

integrable cases. This family is specified by two parameters (in case λ3 6= 0,

one can use, for example, relations
λ1

λ3
,
λ2

λ3
).
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The Steklov case is usually connected with the Hamiltonian of the form

(similarly to Kirchhoff’s equations, see § 9 ch. 3)

H = 1
2

3∑

i=1

λ4
iGi = 1

2

∑

cycl.var. i,j,k

(
λiλjKk + (λ2

i + λ2
j )Sk

)2
.

It is obtained from family (10.23) by summation and by the following substitu-

tion of parameters.

For Steklov’s family, similarly to the Schottky –Manakov case, one can

make retraction to the Steklov –Lyapunov integrable family for Kirchhoff’s equa-

tions (9.1). To show this we’ll make the following substitution of variables,

parameters and integrals (10.23)

p→

�

√
x
,

λi → 1 +
√
xλi, Gi →

√
xGi, i = 1, 2, 3.

(10.25)

The family of obtained integrals, depending on a parameter Gi(x), remains

in involution over the whole bundle (10.4); at x → 0 they take form (9.13)
indicated in the previous section.

Remark 8. The paper [14] shows a somewhat different retraction of integrable

cases. The author uses a symmetrical form of parametrization of Steklov’s cases on

so(4) by means of elliptic functions.

A linear substitution of variables

M = JKJ + 1
2

(
J2S + SJ2

)
, P = S,

J = diag(λ1, λ2, λ3)

transfers family (10.23) into Steklov –Lyapunov family (9.13) of Kirchhoff’s

equations [24, 31], i. e., similarly to Clebsch’s and Schottky –Manakov’s cases,

they are linearly isomorphic.

The other, less symmetrical representation of the family of integrals in

involution in Steklov’s case was found by O. I. Bogoyavlenskiy [21] (see
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also [19, 20])

I1 =

(√
α1 − α3

α1 − α2
K1 +

√
β1 − β3

β1 − β2
S1

)2

+

(√
α2 − α3

α1 − α2
K2 +

√
β2 − β3

β1 − β2
S2

)2

,

I2 =

(√
α1 − α2

α1 − α3
K1 +

√
β1 − β2

β1 − β3
S1

)2

−
(√

α2 − α3

α1 − α3
K3 +

√
β2 − β3

β1 − β3
S3

)2

,

I3 =

(√
α1 − α2

α2 − α3
K2 +

√
β1 − β2

β2 − β3
S2

)2

+

(√
α1 − α3

α2 − α3
K3 +

√
β1 − β3

β2 − β3
S3

)2

,

(10.26)

where αi, βi are arbitrary parameters.

6. The Integrable Case with Fourth Degree Integral (M. Adler, P. van

Moerbeke)

The general integrable case, found by M. Adler and P. van Moerbeke [185],

is still the most complicated and least investigated one in rigid body dynamics.

It does not have any analogues for Kirchhoff’s equations. Moreover, under

retraction Hamiltonian degenerates into Casimir’s function of an algebra e(3).

The original paper [185] contains an additional fourth degree integral

in a very cumbersome and asymmetrical form. A bit later A. Reyman and

M. Semenov-Tian-Shansky showed that this case had Lax spectral representa-

tion constructed on a special algebra g2 [260]. In the paper [24] the analogical

L−A-pair was obtained in a more natural way, but the corresponding construc-

tion is also connected with the algebra g2 and the presence of the compatible

Poisson structure. However, the integral being obtained from L − A-pair re-

quires additional and nontrivial simplifications which we have done. After these

actions we obtained the form shown in Table 3.2.

It should be noted that in the paper [127] A. S. Mischenko and A. T. Fomenko

had all the possibilities to find this case by means of argument shift method they

were developing, but they seem to be prevented from doing this by their ex-

tra formalized and general reasoning. Curiously enough, in his latter books

A. T. Fomenko (see, for example, [166]), when citing this case, refers to the

paper [260] still failing to see the connection with his construction.

The separating variables for the Adler-van Moerbeke case are still un-

known. Its topological analysis has not been carried out yet. In many respects

its existence is connected with a special symmetry so(4), allowing real represen-

tation in the form of a direct sum so(3)⊕ so(3). This case is absent on so(3, 1)
and does not allow multidimensional generalizations.
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7. Particular Cases at (M,p) = 0

O. I. Bogoyavlenskiy has indicated two particular cases of integrability of

the Poincaré – Joukovskiy equations with the fourth degree integral [16].

The first case of Bogoyavlenskiy transfers into the Chaplygin (I) case of

Kirchhoff’s equations under retraction. To make this connection more evident

we write a Hamiltonian and an integral on the bundle

�

x (10.4)

H = 1
2

(
α2M

2
1 + α1M

2
2 + (α1 + α2)M

2
3

)
− 1

2
(a1 − a2)

(
p2
1 − p2

2

)
,

F =
(
α1M

2
1 − α2M

2
2 − (a1 − a2)p

2
3

)2
+ 4α1α2M1M2,

α1 = 1 − xa1, α2 = 1 − xa2, a1, a2 = const.

(10.27)

At x = 1, we obtain the integrable case shown in Table 3.2. It should be noted

that at x 6= 0 Hamiltonian (10.27) describes motion of a dynamically asymmet-

rical body whose moments of inertia are governed by the relation (I−1
1 + I−1

2 =
= I−1

3 ).
§ 7 ch. 5 contains a more general family of particular integrable cases on

the bundle

�

x. Among these particular cases are the Kowalevskaya case of

the Euler –Poisson equations, the Chaplygin (I) case of Kirchhoff’s equations,

the Bogoyavlenskiy (I) case of the Poincaré – Joukovskiy equations, and various

gyrostatic generalizations, as well.

The second case of Bogoyavlenskiy is given by the Hamiltonian of the

form

H = 1
2
(M ,AM ) + 1

4

(
(a2 + a3)p

2
1 + (a1 + a3)p

2
2 + (a1 + a2)p

2
3

)
. (10.28)

In this case the system allows three different integrals of the kind

Fi =
(
(ai − aj)p

2
k − (ai − ak)p

2
j − (aj − ak)p

2
i

)
+ 4(ai − aj)(ai − ak)p

2
i p

2
k,

i, j, k = 1, 2, 3, i 6= j 6= k 6= i.

Among these only one integral is independent. Actually, it is easily shown that

they are linearly related by the expression

αF1 + βF2 + γF3 = 0, under the condition that α+ β + γ = 0.

To make retraction on e(3) we suppose pi → pi√
x

, H → xH , and at x → 0

we obtain an integrable case of Kirchhoff’s equations with linear integrals, the

kinetic energy being equal to zero.
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8. The Hess Case Generalization

As shown above (see § 2), for the Poincaré – Joukovskiy equations the set

of three equations for vector Ṁ coincides with the analogical set in Kirchhoff’s

equations. Consequently, there also exists an invariant relation of the Hess type

√
a3 − a2M3 ±

√
a2 − a1M1 = 0, a1 < a2 < a3. (10.29)

Moreover, here, like in Kirchhoff’s equations, p-containing terms in Hamilto-

nian (10.8) should be invariant to rotations around the perpendicular to a circular

section of a gyration ellipsoid. Invariant relation (10.29) defines a marked torus

in phase space where the solution may be obtained in quadratures. The inte-

gration procedure can be carried out by means of results of §§ 1, 3 ch. 4. This

generalization of the Hess case seems not to be indicated earlier, in spite of its

natural origin.

9. Integrable Generalizations with Linear Terms in Hamiltonian

Similarly to Kirchhoff’s equations, equations (10.3), (10.7) may have me-

chanical meaning if the Hamiltonian H contains not only quadratic terms, but

linear ones, as well. Depending on physical statements described in the first

section, they may be interpreted in various ways. So, for dynamics of a rigid

body with fluid these terms are conditioned by the presence of multiconnected

cavities in the body, for the Euler four-dimensional top by addition of a balanced

four-dimensional gyrostat (for the corresponding derivation see § 2 ch. 5), for a

rigid body on S3 in fluid by multiple connections of the rigid body moving in

fluid, for a spin chain by a permanent external magnetic field where this spin

chain is placed.

Analogically to Kirchhoff’s equations, here we can also indicate integrable

cases, generalizing those shown in Table 3.2. Cases 1 and 6 connected with

rotational symmetry are generalized very easily: we just add a gyrostat along

the axis of symmetry (for more details see § 1 and § 3 ch. 4). For the cases of

Schottky, Adler-van Moerbeke and Bogoyavlenskiy (II) similar generalizations

have not been found.

The generalization of Steklov’s case leads to the integrable case, similar

to the Rubanovskiy case for Kirchhoff’s equations. For the first time it was

shown by O. I. Bogoyavlenskiy [21] in a vague form. Here we present the most

symmetrical expression.

The analogue of the Rubanovskiy case on so(4). The symmetrical

form of the corresponding family of integrals in involution may be represented
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as

Js = Gs + 1
(λ2
s − λ2

m)(λ2
s − λ2

n)

∑

cycle var. ijk

rk(λiλjKk + λ2
sSk),

s,m, n = 1, 2, 3,

(10.30)

where ri, i = 1, 2, 3 are three additional arbitrary parameters. For example, an

integral J1 is explicitly expressed as follows (other integrals are obtained by

cyclic permutation)

J1 = G1+
r1(λ2λ3K1 + λ2

1S1) + r2(λ3λ1K2 + λ2
1S2) + r3(λ1λ2K3 + λ2

1S3)

(λ2
1 − λ2

2)(λ
2
1 − λ2

3)
.

For these integrals relation (10.24) is also valid if we take into account the

substitution Gi → Ji, i = 1, 2, 3. The Hamiltonian and the additional integral

can be represented as

H =
∑

i

λiJi =
∑

cycle

(
(λi + λj)S

2
k −

λiλj

λi + λj
(Sk +Kk)

2−

−λiλjrk(Sk +Kk) + (λi + λj)
2rkSk

)
,

F =
∑

i

λ2
i Ji =

∑

cycle

(
(λ2
i + λ2

j )S
2
k + 2λiλjSkKk

)
+ (r,S).

The Lax representation for this case is given in [208].

The generalization of the first case of Bogoyavlenskiy. Integrable sys-

tem (10.27) also allows generalization when a constant gyrostatic moment λ is

added along the axis OM3, though in this case it is not the axis of symme-

try. The Hamiltonian and the integral are written as (to make things clear we

represent them on the bundle

�

x)

H = 1
2

(
α2M

2
1 + α1M

2
2 + (α1 + α2)M

2
3

)
− λM3 − 1

2
(a1 − a2)(p

2
1 − p2

2),

F =
(
α1M

2
1 − α2M

2
2 − (a1 − a2)γ

2
3

)2
+ 4α1α2M

2
1M

2
2 +

+ 4λ
(
M3(α1M

2
1 +α2M

2
2 )+(a1−a2)p3(M1p1−M2p2)

)
−4λ2(M2

1 +M2
2 ),
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where α1 = 1 − xa1, α2 = 1 − xa2, a1, a2 = const. The reduced form of this

generalization seems to be pointed out by the authors of [34, 197]. In § 7 ch. 5

this case is included into the family which is even more abundant with arbitrary

parameters. This family is defined on the bundle

�

x of Poisson brackets, as

well.

§ 11. The Remarkable Boundary Case of the Poincaré–

Joukovskiy Equations. The Countable Family of First

Integrals

1. In this section we consider equations of motion of a rigid body when

in Poincaré – Joukovskiy equations (10.3) a boundary transition was made. It

differs from the similar transition applied at retraction, and leads to the loss of

Hamiltonianity. Really, if in equations (10.3) with Hamiltonian (10.8) the sub-

stitution γ → µγ is made and µ is tended to zero, commutating relations (10.1)

have a singularity. Nevertheless, on the level of equations of motion we obtain

Ṁ =M ×AM , γ̇ = γ ×BM ,

A = diag(a1, a2, a3), B = diag(b1, b2, b3).
(11.1)

System (11.1) describes the body rotation when the intensity of fluid vortex in a

cavity is small in comparison with angular momentum (or vice versa). One can

also make other interpretations of this boundary transition if one uses various

physical statements of the problem (see § 10), specified by equations (10.3).

The first vector equation in (11.1) is integrated independently and represents

the ordinary Euler case with integrals

I1 = 1
2
(M , AM ), I2 = (M ,M).

The second equation in (11.1) is related to the Poisson kinematic equation. After

the substitution of the already known functionM(t) in this equation, it becomes

a linear Hamilton system on so(3)

γ̇ = γ ×BM(t), {γi, γj} = εijkγk (11.2)

with periodic coefficients and linear Hamiltonian H = (BM(t), γ). Equa-

tions (11.2), like system (11.1), possess a geometrical integral I3 = (γ, γ). To

be integrable, system (11.2) lacks one more integral with coefficients I∗4 (γ, t)
periodic with respect to t. Thus, for integrability of system (11.1) one more first

integral I4(M , p) is needed. It also follows from the last multiplier theory.
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2. The additional integral of systems (11.1), (11.2) always exists in real

and analytical class of functions. This happens because equation (11.2) defines

the linear mapping of a two-dimensional sphere for a period. This mapping also

preserves a measure. Such mappings are integrable.

Is is easily seen that the additional integral is linear with respect to γ:

I4 = I4(M , γ) = (Ω(M), γ),

I∗4 = I∗4 (γ, t) = (Ω∗(t), γ), Ω∗(t) = Ω(M (t)).

It turns out that for the function Ω∗(t) we obtain equations, similar to (11.2) (!).

So, to find the first integral I4 or I∗4 , it is sufficient to find particulal solutions of

equations (11.2).

However, in the general case neither particulal solutions (11.2), nor corre-

sponding integrals (11.1), (11.2) can be obtained in the closed algebraic form.

Such a solution is possible only in the form of an infinite series, it is ambiguous

in the complex sense (and it is not algebraic) [97].

Remark. In the paper [37] authors computed the Kowalevskaya indices for sys-

tem (11.1). They equal

ρ1 = −1, ρ2 = ρ3 = 2, ρ4 = 1, ρ5,6 = 1 ± n,

n =

�

b21a32 + b22a13 + b23a21

a23a21a13

�

,

aij = ai − aj .

(11.3)

General solution (11.1) has finite-leave ramification on the complex plane of time under

the condition n = p/q, p, q ∈ �

. This condition is also necessary for the existence of an

additional algebraic integral [206].

Physically, the absence of a “sufficiently” good (algebraic, polynomial)

additional integral for system (11.1) is connected with the loss of symme-

tries conditioned by the Hamiltonianity (a Poisson structure is a tensor in-

variant). Nevertheless, the behavior of paths (11.1), (11.2) is always regu-

lar, Lyapunov indices equal zero, and a real-analytical integral formally ex-

ists.

3. Let us indicate conditions for the explicit finding of an additional

integral. In other cases analogical constructions are hardly possible. For

this it is necessary that in (11.3) n = 2k + 1, k ∈ Z. Additional inte-

grals at different k involved in a certain iteration process, for the first

time were indicated without proofs by A. V. Borisov and A. V. Tsygvintsev
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in [37, 38]. Here we shall show the natural procedure of construc-

tion of these integrals whose existence presently seems a bit mysteri-

ous.

4. After the substitution of time dτ = M1M2M3 dt in terms of new vari-

ables ui = M2
i , si =

γi
Mi

system (11.1) is written as

u̇ = c, ṡ = U−1Abṡ,

u = (u1, u2, u3), s = (s1, s2, s3), c = (−2a23, −2a31, −2a12),

aij = ai − aj , U = diag(u1, u2, u3),

Ab =



a23 b3 −b2
−b3 a31 b1
b2 −b1 a12


 ,

(11.4)

where point denotes differentiation with respect to τ .

Integral of system (11.4) we shall be looking for in the form

F =
∑

i

siuifi(u). (11.5)

It leads for the vector f = (f1, f2, f3) having the system of differential equa-

tions in terms of the first order partial derivatives

UD̂f = −Abf , (11.6)

where a scalar differential operator D̂ is written as

D̂ = −2a23
∂
∂u1

− 2a31
∂
∂u2

− 2a12
∂
∂u3

. (11.7)

To find the integral it is necessary to determine particulal solution (11.6).

Theorem. If conditions

1. n2a23a31a12 + b21a23 + b22a31 + b23a12 = 0,

2. n = 2k + 1, k ∈ Z = {0, ±1, ±2, . . .} (11.8)

are met, equation (11.6) allows a polynomial particulal solution (which can be

written in the explicit form).

Proof is given by induction.
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Really, at n = 1, (k = 0) the particulal solution is easily determined. It

corresponds to the constant eigenvector f 1 of matrix Ab. This vector is defined

by a zero eigenvalue, since detAb = a23a31a12 + b21a23 + b22a31 + b23a12 = 0.

This exactly corresponds to conditions (11.8) at n = 1.

At n 6= 1, we shall look for solution (11.6) in the form

f = B1Uf̃ , where B1 = A−1
b (11.9)

(since n 6= 1, det Ab 6= 0). Bearing in mind that D̂U = C, C = diag(−2a23,

−2a31, −2a12), from (11.6) we obtain an algebraic vector equation

UB1Cf̃ + UB1UD̂f̃ = −Uf̃ ,

which, after the multiplication of the left side by matrix AbU
−1 and collection

of the similar terms, may be written in the form, similar to (11.6)

UD̂f̃ = −(Ab −C)f̃ = −Ab,3f̃ ,

where

Ab,n =



na23 b3 −b2
−b3 na31 b1
b2 −b1 na12


 .

Owing to the fact that detAb,n = n(n2a23a31a12 + b21a23 + b22a31 + b23a12), the

inductive process can be continued up to the necessary n if we represent f̃ in

the same form (11.9), and the solution can be obtained in the form

f = A−1
b,1UA−1

b,3U . . .A−1
b,n−2Ufn, (11.10)

where fn is an eigenvector of matrix Ab,n. This vector corresponds to the zero

eigenvalue Ab,nfn = 0.

5. Consider the particular case B=nA, n=2k+1, k ∈ Z in more details.

At n > 0 we have

Ab,n = nAa = n



a23 a3 −a2

−a3 a31 a1

a2 −a1 a12


 ,

and the eigenvector fn for all values of n is the same and equals to

fn = v+ = (1, 1, 1).

§ 3. The Remarkable Boundary Case of the Poincaré – Joukovskiy Equations 197

At n < 0 we have

Ab,n = |n|A−a = |n|



a23 −a3 a2

a3 a31 −a1

−a2 a1 a12


 ,

and the eigenvector fn is also the same for all n and may be written as

fn = v− = (a−1
1 − a−1

2 − a−1
3 , −a−1

1 + a−1
2 − a−1

3 , −a−1
1 − a−1

2 + a−1
3 ).

Let us indicate explicit expressions of the integral for even more particular cases

1) n = 1.

I4 = (M , γ) is an ordinary area integral for the Euler case (see § 2 ch. 2).

2) n = −1.

I4 = (ΩM , γ), Ω = E− 2A−1

TrA−1
(11.11)

is a certain analogue of the area integral. As we shall show further (see

s. 6), at n = −1 equations (11.1) are reduced to the case when n = 1 by

means of a linear transformation.

3) n = ±3.

The solution (11.10) may be represented as

f = (Bs ±Ba)Uv±,

where Bs and Ba represent symmetrical and skew-symmetrical matrices

with components

bsij =

{
9aiaj , i 6= j,

9a2
i − εilmailaim, i = j,

baij = −3aijak, i 6= j 6= k.

The vectors v± are defined in s. 5. With respect to variables M ,γ the

additional integral I4 will have the fourth degree; in the general case this

degree equals 2|k| + 2.
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6. It turns out [36] that in case n = −1, B = −A the integral I4 (11.11)

exists without any changes for a more general system
{
Ṁ = M ×AM + εγ ×A−1γ,

γ̇ = nγ ×AM ,
(11.12)

corresponding to the addition of the Brun problem field (see § 1 ch. 2) with

the potential V = 1
2
ε(γ, A−1γ) to (11.1). The measure for equations (11.12)

remains standard, but the integrals I1, I2 need some modification

I1 = 1
2
(M , AM) − 1

2
ε(γ, A−1γ),

I2 = (M ,M ) + ε detA−1(γ, Aγ).
(11.13)

It is easy shown that the integrals of system (11.12), similar to I1, I2, exist

at B = nA for any value n, but the integral of the type I4 will exist at n = ±1
only. Its generalization at ε 6= 0 for other n = 2k + 1 = ±3, ±5, . . . does not

seem to be possible.

Remark. In terms of variables �, � system (11.12) can be represented in the form

u̇i = ci + ελkbkjsksj , ˙ � = U
−1

Ab

�,

λk = a−1
k , bkj = bk − bj . However, the reasoning of s. 3 shows that at n 6= ±1 the

corresponding induction is impossible.

The case of n = −1 in (11.12), as it is noticed in [36], is reduced to n = 1
which corresponds to the Brun problem (or the Clebsch case) by means of linear

transformation

W = ΩM , Ω = E − 2A−1

TrA−1
. (11.14)

After this transformation system (11.12) obtains the form
{
Ẇ = J−1W ×W − εγ × Jγ,

γ̇ = J−1W × γ, J = ΩA−1,
(11.15)

similar to (11.12) at n = 1 with the accuracy to the substitution t→ −t.
It should be noted that the addition of a constant gyrostatic moment to

system (11.1), i. e., the construction of the Joukovskiy –Volterra problem gener-

alization, does not lead to a new integrable system even at n = −1. Actually, the

question of other possible generalizations of the countable family of integrals I4
(for example, on so(4), a gyrostat and others) remains open. It is possible that

they just do not exist at all.
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Remark 1. In the general case for arbitrary matrices A and B in (11.1) the general

integral is not single-valued and has branches on the complex plane of time. Under the

conditions b1 = b2 = 0, b3 6= 0 it can be written explicitly

I4 = γ1 sinϕ + γ2 cosϕ,

ϕ =
b3√
a13a32

ln(
√
a13M1 +

√
a32M2).

(11.16)

The existence of such complicated integrals for system (11.1) is also connected with the

loss of Hamiltonianity, though the last fact is not well substantiated.

Remark 2. Except for the cases n = ±1 for system (11.1) in the presence of

integrals (11.5), the general solution is still not obtained in quadratures; it is also unclear

if it is expressed in terms of elliptic functions. The topology of the corresponding levels

of set of integrals is not investigated, as well.

Figure 69

7. System (11.1) may be also obtained under

investigation of a nonholonomic problem about slid-

ing-free rolling of a dynamically asymmetrical bal-

anced ball (the Chaplygin ball) on the surface of a

sphere (fig. 69).

In the absence of a force field equations of mo-

tion are written as [36]





Ṁ =M × ω,

γ̇ = R
R− a

γ × ω,
(11.17)

M = Iω +Dγ × (ω × γ), D = ma2,

wherem is the mass of a ball, I is a tensor of inertia with respect to the geometric

center.

Here we shall not dwell upon the study of integrability of system (11.17),

we just note that when the parameter of nonholonomity D tends to zero, we

obtain system (11.1) with the matrix B = λA, λ = R
R − a

. Once again this

indicates the necessity of study of equations (11.1), and also allows to generalize

integrals I1, I2, I3, I4 to equations (11.17). Presently such a generalization,

found in [36], is known only at λ = ±1. Moreover, in both cases we can

consider more general situation (11.12), corresponding to the Brun field addition.

The case λ = 1, R = ∞ is reduced to the classical Chaplygin problem

about rolling of a ball on a horizontal plane [179].
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The caseλ = −1, a = 2R corresponds to the so called spherical suspend,

when a dynamically asymmetrical sphere of a doubled radius rolls around a

stationary ball. This integrable problem and its generalizations for the Brun field

were found by A. V. Borisov [36].

8. At B = λA, and at the coincidence of two eigenvalues of the matrix A,

for example, at a1 = a2, system (11.1), and the more general system




Ṁ = M ×AM + γ × ∂V

∂γ
,

γ̇ = λγ ×AM , V = V (γ3)

(11.18)

are algebraically integrable. The complete set of integrals is written as

I1 = 1
2
(M2

1 +M2
2 ) + (λa1)

−1V (γ3),

I2 = M3, I3 = γ2,

I4 = M1γ1 +M2γ2 +
a1 − a3 + λa3

λa1
M3γ3.

(11.19)

It provides the Euler – Jacobi integrability (system (11.18) also possesses a stan-

dard invariant measure). Integrals (11.19) are similar to integrals of the Lagrange

case, and they allow corresponding nonholonomic generalizations [196].

§ 12. A Rigid Body in an Arbitrary Potential Field

As it is shown in § 4 ch. 1, dynamics of a rigid body with a fixed point in

an arbitrary potential field with potential V is defined by a Hamiltonian system

with three degrees of freedom (4.17) (or (4.24)) (§ 4 ch. 1). The Hamiltonian

function has the form

H = 1
2
(M ,AM ) + V, A = I−1,

V ≡ V (α,β,γ) ≡ V (λ0, λ1, λ2, λ3) ≡ V (θ, ϕ, ψ).
(12.1)

However, for the complete integrability (the Liouville integrability) two more

independent integrals in involution are necessary.

Integrable cases for system (12.1) are known for three kinds of potentials

V (α, β, γ) ≡ V (λ0, λ1, λ2, λ3) (here α,β,γ are direction cosines, λ are

Rodrigue –Hamilton parameters).
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1) The potential V is linear with respect to components α, β, γ (and

quadratic with respect to λ). For the particular kind of V in the pres-

ence of force field axial symmetry one gets the Euler –Poisson equations;

thus, in the general case the system is referred to as generalized Euler –

Poisson equations.

2) The potential V is quadratic with respect to α, β, γ (and has the fourth

degree with respect to quaternions). This problem was considered by Brun

and Goryachev.

3) The potential V is linear with respect to λ. Although in a certain sense

this case is easier than the previous ones, we put it at the last place due to

the fact that it was not considered earlier. This might be connected with

the absence of its reasonable mechanical interpretation. We called this

case quaternion Euler –Poisson equations.

Let us consider these three cases in sequence and show all the known

conditions of integrability characterized by necessary additional restrictions on

arbitrary parameters. The motion is regular; the paths, in the nonspecial case,

are quasiperiodic windings of three dimensional tori — joint level sets of first

integrals.

1. Generalized Euler –Poisson Equations

First of all, it should be noted that any quantity of linear force fields is

reduced to three mutually perpendicular force fields of unitary intensity. The

force centers of these fields (the analogues of the center-of-mass for a gravity

field) are placed within the body in an arbitrary way [31].

The Hamilton function is written as

H = 1
2
(AM ,M) + (r1, α) + (r2, β) + (r3, γ), (12.2)

where r1, r2, r3 are position vectors of force centers of different nature. In

case of a single field they are reduced to an ordinary gravity center.

Let us show the main results on reduction of potential energy of sys-

tem (12.2) to the simplest form for various disposition of force centers r1, r2, r3,

taking into account the body geometry, as well; for details see [31].

1) The centers of application of all fields are on a single axis.

By means of the proper choice of fixed axes in space, the potential energy

can be reduced to the form

V =
√
a2 + b2 + c2α1,
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where a, b, c are distances between force centers and the point of fixation.

Thus, this case is reduced to a single force field, its force center r1 lying

on the above mentioned axis.

2) The centers of application of all fields are in one plane.

By choosing the fixed axes we reduce the potential to the form

V = uα1 + vα2 + wβ2.

It means that the system of forces is reduced to two mutually orthog-

onal fields. In the general case the position vectors r1 = (u, v, 0),
r2 = (0, w, 0) of their force centers are nonorthogonal.

3) The centers of application of fields are arbitrary, but the tensor of inertia

of a body is spherical (a1 = a2 = a3).

In this case, if we choose moving principal axes in an even more arbitrary

way, we can reduce the potential energy to the form

U = aα1 + bβ2 + cγ3.

Depending on the disposition of force centers within a rigid body and re-

strictions on the moments of inertia, there exists the possibility of the follow-

ing integrable cases, generalizing the corresponding ones in the Euler –Poisson

equations.

The Euler case. In Hamiltonian (12.2) we should specify r1 = r2 =
= r3 = 0. Additional integrals are projections of the angular momentum on

fixed axes. These projections form a vector integral N = (N1, N2, N3)

N1 = (M , α), N2 = (M , β), N3 = (M , γ). (12.3)

They also form an algebra so(3): {Ni, Nj} = εijkNk. Consequently, the

integrability is noncommutative (for more details see § 2 ch. 2).

The generalized Lagrange case. The body is dynamically symmetrical,

and all three force centers lie on the dynamical symmetry axis. According to

reduction results, this case is reduced to an ordinary Lagrange top in a single

field with corresponding integrals F1 = (M ,γ), F2 = M3 (§ 3 ch. 2).

The generalized Kowalevskaya case. The ellipsoid of inertia is an el-

lipsoid of rotation. The moments of inertia are related as a1 = a2 = 1
2
a3,

(ai = I−1
i ). Three force centers are arbitrarily situated in the equatorial plane

of the ellipsoid of inertia. As it is shown above, here we may consider only two

force centers.
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The corresponding complete set of independent integrals in involution is

shown by A. G. Reyman and M. A. Semenov-Tian-Shansky [147, 261, 194]. One

integral is quadratic, the other (the analogue of the Kowalevskaya integral) has

the fourth degree with respect to moments.

In this case, like in the ordinary Kowalevskaya case, the system allows

generalization when a constant gyrostatic moment is added along the axis of

dynamical symmetry. The Hamiltonian and integrals are written as [31, 261]

H = 1
2
(M2

1 +M2
2 + 2(M3 + λ)2) − (r1, α) − (r2, β),

F1 = (N1r1 +N2r2)
2 + 2N3(r1 × r2,M )+

+ 2(r1 × r2, r2 ×α− r1 × β),

F2 =
(M2

1 −M2
2

2
+ gαα1 − hαα2 + gββ1 − hββ2

)2

+

+ (M1M2 + gαα2 + hαα1 + gββ2 + hββ1)
2−

− 2λ(M3 + 2λ)(M2
1 +M2

2 ) − 4λ (α3(M , r1) + β3(M , r2)) .

(12.4)

where r1 = (gα, hα, 0), r2 = (gβ, hβ , 0), λ = const is a gyrostatic moment, Ni
is specified by expressions (12.3).

Neither explicit integration, nor qualitative or topological analysis of this

case were carried out up to this day.

Remark 1. A. G. Reyman and M. A. Semenov-Tian-Shansky have shown this inte-

grable case in the n-dimensional situation, but under additional restrictions: the centers

of reduction r1, r2 of mutually perpendicular fields are situated at equal distances from

a fixed point, but not necessarily at right angle (or we may think that r1 ⊥ r2, and the

fields �,

�

are nonperpendicular). As the reduction results show, these restrictions are

nonessential.

At r2 = 0 (or r1 = 0), integral F1 (12.4) transforms into the area integral

(M ,α) = 0 (correspondingly (M ,β)). In this case the precession angle ψ is

a cyclic variable. The reduction with respect to this angle gives the ordinary

Kowalevskaya case in the Euler –Poisson equations (§ 4 ch. 2). The analogical

reduction is possible in case r1 ‖ r2.

At r1 ⊥ r2, for example, one can choose gα = hβ, hα = gβ = 0 or

hα = gβ , gα = hβ = 0, then instead of F1 there appears a linear integral

M3±N3 = M3±(M ,γ), a cyclic variable ϕ∓ψ. The corresponding reduction

and associated isomorphism with the integrable Chaplygin case in Kirchhoff’s

equations are considered in details in § 1 ch. 4. This integrable case was shown

by H. Yehia [184] before the papers [147, 261] appeared.
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The generalization of the Delauney case. Besides the reduction of order

with respect to cyclic variables for generalized Kowalevskaya top (12.4), one

more case of reduction is possible. This is the reduction to two degrees of

freedom by using the Dirac reduction [31]. For that purpose let us consider

Kowalevskaya integral F2 (12.4) under the conditions λ = 0, F2 = z2
1 + z2

2 =
= 0, which define the generalized Delauney case (O. I. Bogoyavlensky [19]). It

is easy to see that the system is well bounded according to Dirac on invariant

relations

z1 =
M2

1 −M2
2

2
+ gαα1 − hαα2 + gββ1 − hββ2 = 0,

z2 = M1M2 + gαα2 + hαα1 + gββ2 + hββ1 = 0,

(12.5)

which are central functions of the Dirac structure [31]. On a four-dimensional

symplectic leave of the Dirac bracket there exist two integrals (12.4), allowing

complete integration of the system to be done.

On the level of invariant relations (12.5) there also exists an additional

integral of the fourth degree

F3 = {z1, z2} = −M3(M
2
1 +M2

2 )+

+ 2α3(M1gα +M2hα) + 2β3(M1gβ +M2hβ). (12.6)

Really,

{F3, H} = 2z1(−gαα2 − hαα1 − gββ2 − hββ1)−
− 2z2(−gαα1 + hαα2 − gββ1 + hββ2),

(12.7)

though in the general case the Jacobi theorem (stating that the commutator of

two integrals is also an integral) is not generalized to invariant relations.

By means of (12.5) and (12.7) the integrability of the generalized

Kowalevskaya top for the Delauney case can be established even without us-

ing integral F1 (12.4). It turns out that the complete set of integrals, involv-

ing F1, z1, z2, F3, is already dependent. It is also curious that in the case of a

single force field (gα = gβ = hβ = 0) integral (12.6), cubic with respect to

moments, possesses a structure, almost analogical to the particular Goryachev –

Chaplygin integral for the Euler –Poisson equations (see § 5 ch. 2).

The generalized spherical top. Here a1 = a2 = a3, and under any

disposition of the centers of reduction r1, r2, r3 within the body the system

remains integrable. Besides, due to the invariance of kinetic energy with respect

to the choice of axes within the body, the potential energy may have the form

V = xα1 + yβ2 + zγ3.
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In quaternion representation it can be regarded as an arbitrary quadratic

form V =
3∑
i=0

bijλiλj . Consequently, according to the analogy discussed in [31]

(see also § 3 ch. 5), this case is isomorphic to the Neumann problem about

motion of a point on a three-dimensional sphere S3. The involution set of its

(quadratic) integrals can be looked up in the paper by J. Moser [128]. This

paper contains the separation of variables for the Neumann system on Sn. This

separation was done by Rosochatius [263], in the nineteenth century. This author

has also added curious singular terms whose mechanical meaning is discussed

in § 11 ch. 5. Let us represent integrals in terms of necessary variables and in

the most symmetrical form

H = 4M 2 + 1
4
(a2

0 + a2
1 − a2

2 − a2
3)α1+

+1
4
(a2

0 − a2
1 + a2

2 − a2
3)β2 + 1

4
(a2

0 − a2
1 − a2

2 + a2
3)γ3,

F1 = (M + N ,A(M + N )) + (M −N ,B(M −N ))+

+ 1
4
(a0+a1−a2−a3)α1 + 1

4
(a0−a1+a2−a3)β3 + 1

4
(a0−a1−a2+a3)γ3,

A = diag
(

1
a0+a1

, 1
a0+a2

, 1
a0+a3

)
, B = diag

(
1

a2+a3
, 1
a1+a3

, 1
a1+a2

)
,

F2 = a2(M + N )2 − 4(CM ,N ) + 1
4
(a4

0 + a4
1 − a4

2 − a4
3)α1+

+1
4
(a4

0 − a4
1 + a4

2 − a4
3)β2 + 1

4
(a4

0 − a4
1 − a4

2 + a4
3)γ3,

C = diag
(
a2
2 + a2

3, a
2
1 + a2

3, a
2
1 + a2

2

)
,

where N is defined by formulae (12.3), and a2 = a2
0 + a2

1 + a2
2 + a2

3.

Remark 2. Regarding F1 as a Hamiltonian and using quaternion representation

(see § 3 ch. 5), we obtain the integrable problem about motion of a four-dimensional

rigid body in quadratic potential of the special form. This system can also be considered

as the generalization of Clebsch’s case (§ 9 ch. 3).

The Hess case analogue. If the ellipsoid of inertia of a rigid body is

asymmetrical with respect to the fixation point, and the centers of reduction of all

fields r1, r2, r3 are situated on the perpendicular to its circular section (passing

through the mean axis), then, as it is said above, the potential is reduced to the

case of a single field with the reduction center placed at the same axis. Thus,

we obtain the ordinary Hess case of motion of a rigid body in the gravity field
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(§ 6 ch. 2). The invariant relation for this case is written as

√
a2 − a1M1 ±

√
a3 − a2M3 = 0, a1 < a2 < a3.

As it was shown by N. E. Joukovskiy [79], in this case the gravity center moves

according to the spherical pendulum law.

The detailed investigation of the Hess case for a linear field and for more

general type of fields can be looked up in §§ 3, 4 ch. 4, where we also show its

connection with existence of a cyclic variable and with the Lagrange case.

2. The Brun System

Consider the case when the potential V (α, β, γ) is quadratically re-

lated to direction cosines. This problem was studied by F. Brun in the nine-

teenth century [198], but the most complete results were obtained not long

ago [18, 19, 20, 21, 146]. Brun has found two independent integrals of

motion, but failed to establish integrability. To do that, one should use a

Hamiltonian structure of equations of motion, the Liouville theorem (instead

of the last multiplier theory which was generally used for integration in rigid

body dynamics in nineteenth century), and the involution property of two

missing first integrals. Although the integrability of a top in the n-dimen-

sional case in quadratic potential was formally studied in [146] (A. G. Reyman,

M. A. Semenov-Tian-Shansky), the most complete results are presented in the

papers by O. I. Bogoyavlenskiy [18, 21]. These papers also contain various phys-

ical interpretations of this problem.

Remark 3. In the small book [62] D. N. Goryachev studied systems with quadratic

potential. He obtained general conditions of existence of an additional linear integral

and a quadratic integral for such a system. Independently of Brun, Goryachev showed

the integrable case in the presence of a single field and found possibilities of a single

quadratic integral for two force fields (for one particular case he pointed out the second

necessary integral, as well). All these integrals can be obtained from the more general

system considered below.

The Lax representation and first integrals ([21, 31]). Consider a Hamil-

tonian system in terms of variables M ,α,β,γ. This system is determined by

equations (4.17), by commutation conditions (4.16) ch. 1 and by Hamiltonian

H = 1
2
(I−1M ,M ) − x(Iα,α) − y(Iβ,β) − z(Iγ,γ), (12.8)

where x, y, z ∈ R, I = diag(I1, I2, I3) is a tensor of inertia of the body. Hamil-

tonian (12.8) is obtained from (6.4) ch. 1, at x = 0. Consequently, for such
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a system the corresponding physical conclusions are valid: such a potential is

obtained from the Newtonian one at the decomposition near the gravitating body.

Let us identify three-dimensional vectors M ,α,β,γ with skew-symmetri-

cal matrices M, α̃, β̃, γ̃ according to formulae

Mij = εijkMk, α̃ij = εijkαk, β̃ij = εijkβk, γ̃ij = εijkγk (12.9)

and also define a symmetrical matrix

u = xα̃2 + yβ̃
2

+ zγ̃2, (12.10)

where x, y, z are determined in (12.8). Formulae (12.9) and (12.10) define em-

bedding of the phase space of a system into space L9 of 3 × 3-matrices, since

any matrix l can be represented in the form l = M + u. In this space commuta-

tive relations (5.7) of ch. 1 specify the Lie algebra structure, corresponding to a

semi-direct sum L9 = so(3) ⊕s R
6, where so(3) is an algebra of M, and R

6 is

a space of symmetrical u-matrices whose commutator should be equal to zero.

In the matrix form commutative relations for l1 = M1 + u1, and l2 = M2 + u2

can be written as

[M,u] = Mu− uM ∈ R
6, [M1,M2] = M1M2 −M2M1 ∈ so(3),

[u1,u2] = 0.
(12.11)

Remark 4. A standard matrix commutator for gl(3) defines commutative relations

which differ from (12.11) in the inequality [u1,u2] 6= 0. These two sets of commutative

relations are compatible and specify the bundle of Poisson brackets (for more details

see [31]).

Poisson structure (12.11), corresponding to the algebra L9, possesses

Casimir’s functions

F1 = Tr(u), F2 = Tr(u2), F3 = Tr(u3),

and under the restriction on a six-dimensional manifold M 6 defined by these

Casimir’s functions becomes nondegenerate. For the Liouville integrability of

the system it lacks two more additional integrals in involution. These integrals

specify three-dimensional tori, bearing quasiperiodic motions.

Hamiltonian (12.8) in terms of variables M,u has the form

H = −Tr

(
1
4
Mω + uI

)
,
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the equations themselves can be written as

Ṁ = [M,ω] +

[
u, ∂H

∂u

]
, u̇ = [u,ω] , (12.12)

where ω = ‖ωij‖ is a skew-symmetrical matrix, corresponding to the angular

velocity with components ωij = ∂H
∂Mij

= I−1
k Mij , and ∂H

∂u
=
∥∥∥ ∂H
∂uij

∥∥∥ = −I.

Equations (12.12) can also be represented in the form of the Lax pair with

a spectral parameter λ involved in this representation in a rational way

L̇ = [L,A],

L = λM + u + λ2B, A = ω − λI,
(12.13)

where B = (det I)I−1.

Two necessary independent motion integrals in involution are obtained as

coefficients of λk in the traces of degrees of matrix L

G1 = Tr
(

1
2
M2 + Bu

)
, G2 = Tr(M2u + Bu2).

With the accuracy up to Casimir’s functions they can be explicitly represented

as

G1 = 1
2
M2 + det I

(
x(α, I−1α) + y(β, I−1β) + z(γ, I−1γ)

)
,

G2 = (x + y + z)M2 + x(M , α)2 + y(M , β)2 + z(M , γ)2 + V,

V = det I
[
I−1
1 (p, Cp) + I−1

2 (q, Cq) + I−1
3 (r, Cr)

]
,

where C = diag(2yz − x2, 2xz − y2, 2xy − z2), p = (α1, β1, γ1), q =
= (α2, β2, γ2), r = (α3, β3, γ3).

An integrable system with a Hamiltonian H = G1 can be represented as

a problem about motion of a spherical top or a material point on S3 in a force

field with fourth degree potential (according to Rodrigue –Hamilton parameters

or redundant variables correspondingly) [18, 89] (see § 3, § 2 ch. 5).

An integrable system with a Hamiltonian H = G2. After the introduction

of vector N = (N1, N2, N3) (12.3), representing angular momentum projections

on fixed axes, this system may be considered as a certain system on algebra e(4)
(see § 3 ch. 5). This system is integrable on a singular orbit defined by variables
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N = (N1, N2, N3), p = (α1, β1, γ1), q = (α2, β2, γ2), r = (α3, β3, γ3).
Really, one can easily see that the algebra of variables N , p, q, r is isomorphic

to the algebra of variables M , α, β, γ. But due to the fact that M 2 =N 2 the

integral G2 on the algebra of N , p, q, r is similar to Hamiltonian H (12.8) on

the algebra of M , α, β, γ. In this sense, integrals H and G2 are mutual. The

Hamiltonians they define specify one and the same integrable system in various

systems of variables connected with a moving and a fixed frames of reference.

Remark 5. In the paper [17] the integrable problem which was considered becomes

the basis for obtaining integrable cases for special systems of connected rigid bodies.

However, these systems cannot be regarded as principally new dynamical problems since

their dynamics is reduced to equations (12.12).

Remark 6. The paper [45] presents hydrodynamical interpretation of sys-

tem (12.12). Here we may think that a free rigid body being linearly magnetized is

moving in a uniform magnetic field (or a nonconducting rigid body being polarized is

moving freely in a uniform electric field). The conditions of existence of two additional

integrals indicated in [45], altogether with the integrals are also present in the general

Brun system. Other physical interpretations of the general Brun system are collected in

the book [21].

The dynamical symmetry case. Consider system (12.8) under the con-

dition of dynamical symmetry (I1 = I2 = 1). It is reduced to two degrees of

freedom and to the Neumann system. In this case Hamiltonian (12.8) of the

system can be represented in the form

H = 1
2
(M2

1 +M2
2 + aM2

3 ) − a− 1
a (xα2

3 + yβ2
3 + zγ2

3), (12.14)

where x, y, z, a = I−1
3 ∈ R. From equations of motion (12.12) it follows that

the component M3 is an integral of motion.

Moreover, as it follows from direct computations, the projections of mo-

ments on axes bound to absolute space N (12.3), and also projections on the

same axes of unit vector directed along the dynamical symmetry axis (with com-

ponents (p1, p2, p3) = (α3, β3, γ3)) form a Lie algebra e(3)

{Ni, Nj} = εijkNk, {Ni, pj} = εijkpk, {pi, pj} = 0, (12.15)

We have already mentioned this commutation in § 4 ch. 1 . Eliminating the

integral M3 = const being the Casimir function of construction (12.15), we can

write Hamiltonian (12.14) in terms of variables Ni, pj (making use of the fact

that M2 = N2)

H = 1
2
N 2 − a− 1

a (xp2
1 + yp2

2 + zp2
3). (12.16)
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Equations of motion with Hamiltonian (12.16) coincide with equations of

motion of a point on a two-dimensional sphere in a force field with quadratic

potential (the Neumann problem). This analogy was noticed in [18] without

using equations on algebra of brackets (12.15) (see [31]).

The Brun problem in a single field is most famous. In this case equa-

tions of motion have the form of a Hamiltonian system on e(3) with a Hamilto-

nian

H = 1
2
(AM ,M ) + 1

2
µ(A−1γ,γ)

and an additional integral

F = 1
2
(M ,M ) − µ

2 detA
(Aγ,γ).

This problem turns out to be equivalent to many other integrable dynamic sys-

tems, arising in various branches of mechanics and physics. For instance, we

may mention the Clebsch case in Kirchhoff’s equations, § 9 ch. 3.

3. Quaternion Euler –Poisson Equations

Consider the last and the least natural case of equations of motion of a

rigid body with a potential, linear not with respect to direction cosines, but with

respect to Rodrigue –Hamilton parameters

H = 1
2
(AM ,M ) +

3∑

i=0

riλi, ri = const. (12.17)

We suppose that equations of motion have the form (4.24) ch. 1. As we have

already mentioned, one will fail to find such kind of potentials in mechanics.

It happens because the dependence of such a potential on the body position

is ambiguous (it has two values). To substantiate consideration of such equa-

tions one can refer to problems of quantum mechanics, of point mass dynamics

in a curved space S3 [31], and to some formal techniques of construction of

L −A-pairs [31] (see § 4 ch. 5). It also turns out that reducing the order of

system (12.17), we obtain the ordinary Euler –Poisson equations with additional

terms. These terms have various physical interpretations (§ 1 ch. 4).

System (12.17) has a curious peculiarity: by means of transformations,

linear with respect to λi, the general form of potential

V =

3∑

i=0

riλi (12.18)
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can be reduced to the form

V = r0λ0. (12.19)

Really, linear transformations of quaternion space λi (which do not change com-

mutative relations and norm of quaternion) of the form

λ̃0 = R−1(r0λ0 + r1λ1 + r2λ2 + r3λ3),

λ̃1 = R−1(r0λ1 − r1λ0 − r2λ3 + r3λ2),

λ̃2 = R−1(r0λ2 + r1λ3 − r2λ0 − r3λ1),

λ̃3 = R−1(r0λ3 − r1λ2 + r2λ1 − r3λ0),

R2 = r20 + r21 + r22 + r23

(12.20)

reduce potential (12.18) to the form (12.19). This linear transformation existence

is a remarkable peculiarity of quaternion variables and bracket (4.22) of ch. 1.

This transformation does not have any analogues for brackets of algebra e(3)
and so(4).

In the general, the dynamically asymmetrical case when a1 6= a2 6= a3 6=
= a1, system (12.17) does not seem to be integrable, and there does not exist

one of two necessary additional integrals. However, this fact was not proved

anywhere, and the proof itself is not natural on the basis of various reasons.

It should be noted that even application of the Kowalevskaya method for sys-

tem (12.17) is not quite analogical to the classical Euler –Poisson problem.

At a1 = a2 there always exists a linear integral

F1 = M3(r
2
0 + r21 + r22 + r23) +N3(r

2
1 + r22 − r20 − r23)+

+ 2N2(r1r0 − r3r2) − 2N1(r1r2 − r0r3),
(12.21)

where Ni are angular momentum projections on fixed axes. Under condi-

tions r1 = r2 = r3 = 0 this integral takes the natural form

F1 = M3 −N3. (12.22)

This (linear) integral corresponds to the cyclic variable ϕ + ψ. This fact is

considered in every detail in § 1 ch. 4 dedicated to the order reduction. The

Routh reduction, carried out with respect to this cyclic variable (for more details

see § 1 ch. 4), leads to the Hamiltonian system on an algebra e(3) with a zero

area constant (M ,γ) = 0 and a Hamiltonian

H = 1
2
(M2

1 +M2
2 + a3M

2
3 ) + c(a3 − 1)M3 + r0γ2 + 1

2
c2

γ2
3

, (12.23)
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where c is a constant of integral (12.22). Hamiltonian (12.23) corresponds to

addition of two terms to the ordinary Euler –Poisson equations. These terms are

gyrostatic member, linear with respect to M , and a singular terms c2

2γ2
3

, whose

physical meaning is discussed in ch. 4.

Let us show integrable cases of system (12.17). They turn out to be equiv-

alent to integrable cases of system (12.23).

A spherical top (a1 = a2 = a3). A Hamiltonian has the form

H = 1
2
M 2 + r0λ0,

and, as it is shown in [31], the system is equivalent to the problem of motion

of a material point on a three-dimensional sphere S3. Due to the dependency

of potential on λ0 only, we can suppose that the material point is moving in the

field of a fixed center placed in the north (south) pole, and the interaction force

depends only on the distance from this center (the analogue of the problem about

motion in a central field for R
3). Like in the planar case, the vector of angular

momentum of a particle is preserved:

L = 1
2
(N −M ) = const, (12.24)

where N is a angular momentum vector in the system of fixed axes.

The components of vector L form an algebra so(3): {Li, Lj} = εijkLk.
The integrability is noncommutative. It is said that such a system is superinte-

grable, and its three-dimensional tori are foliated into two-dimensional ones.

“The Kowalevskaya case”. A Hamiltonian and an additional integral (of

fourth degree) in involution to F1 have the form

H = 1
2
(M2

1 +M2
2 + 2M2

3 ) + r0λ0,

F2 = (M1N1 +M2N2 + 2r0λ0)
2 + (N1M2 −N2M1 − 2r0λ3)

2+ (12.25)

+(N3 −M3)
(
M3(M

2 −M3N3) + 2r0(M2λ1 −M1λ2 +
λ0

2
(M3 −N3))

)
.

Under reduction to system (12.23) we obtain an integrable case which can be

included into the generalized Kowalevskaya family found by Goryachev and

Yehia (see § 7 ch. 5, and also § 1 ch. 4).
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“The Goryachev –Chaplygin case”. A Hamiltonian and an additional

integral are written as

H = 1
2
(M2

1 +M2
2 + 4M2

3 ) + r0λ0,

F2 = M3(M
2
1 +M2

2 ) + r0(M2λ1 −M1λ2).
(12.26)

Under reduction to system (12.23) this case is included into the generalized

family shown in § 1 ch. 4.

Remark 7. There is a somewhat unexpected fact that the Lagrange and Hess cases

are not generalized to system (12.17).

Remark 8. If in (12.25) and (12.26) we add a constant gyrostatic moment along the

dynamical symmetry axis, we obtain integrable cases, corresponding to the generalized

cases of Yehia and Sretenskiy in Euler – Poisson equations. The integrals for these cases

are easily obtained from (12.23) by means of the lifting technique described in ch. 4.

In conclusion, it should be noted that for the quaternion Euler –Poisson

equations both “the Kowalevskaya case” and “the Goryachev –Chaplygin case”

are general cases of integrability. Thus, we are allowed to use them for some al-

gebraic constructions (L−A-pair construction, etc.) and for establishing certain

nontrivial interrelations and analogues for the corresponding integrable cases in

classical Euler –Poisson equations (§ 7 ch. 5).



Chapter 4

Cyclic Integrals and Order Reduction

§ 1. Linear Integrals in Rigid Body Dynamics

This chapter is dedicated to the questions of existence of first integrals for

various forms of equations of motion of a rigid body, considered in § 4 ch. 1.

The first integrals are linear with respect to moments M (or, which is equivalent,

with respect to angular velocities ω, generalized momenta pθ, pϕ, pψ, etc.). As it

is known from Hamiltonian mechanics [6, 8], linear integrals are connected with

the presence of cyclic variable and the possibility of order reduction. For the

canonical and Lagrangian forms of notation the order reduction technique was

developed by E. Routh (and is often referred to as the Routh reduction). In the

book [31] we offered a more specialized algorithm of reduction in the presence

of linear integrals. It allows to escape the canonical form in the reduction process

and preserves the algebraical form of equations of motion. Moreover, in the

reduced system of variables not only Hamiltonian changes its form, but the

Poisson bracket does the same thing. The latter can become nonlinear. In some

cases, shown below, the reduced system turns out to be equivalent to absolutely

different system, as it may seem. It means that here we have a certain method

of finding isomorphic problems in dynamics. This method is also transferred to

the corresponding integrable problems.

In this section we state several theorems about order reduction for three

various typical linear integrals and corresponding cyclic variables. Further, we

concentrate our efforts on the inverse technique. It is connected with the trans-

portation of results for the reduced system to general equations. By means of

this scheme from integrable families for the reduced system (with two degrees

of freedom) we can obtain integrable cases of more general equations of mo-

tion of a rigid body in a potential field (see § 12 ch. 3), i. e., for the system

with three degrees of freedom. Besides, using this technique we can understand

the meaning of different additions of singular character, like a

γ2
3

, a = const, in

generalizations of integrable cases. They were introduced by D. N. Goryachev

while investigating and generalizing the cases of Goryachev –Chaplygin and

Kowalevskaya. Actually, for the long time their mechanical meaning remained
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unclear in spite of some “quantum mechanical” explanations. In the paper [31]

they were interpreted as the reduction results. Except for this chapter, the related

questions can be looked up in ch. 3 (§ 12), ch. 5 (§ 7).

It should be noted that linear integrals in general equations of rigid body

dynamics around a fixed point were studied by D. N. Goryachev in the pa-

per [62]. The paper contains three typical possibilities considered below. In

a certain sense, they are the only possibilities (the proof of the latter statement

does not seem to be easy). In § 3, § 4 corresponding reductions are applied

to linear invariant relations introduced into dynamics by T. Levi-Civita. He

also tried to use them in rigid body dynamics (together with celestial mechan-

ics) [113]. However, Levi-Cevita’s ideas are developed most explicitly when

we consider invariant relations of the Hess type. It turns out that such rela-

tions exist for many related problems of rigid body dynamics. In this case

there also exists a certain cyclic variable; the order reduction is possible, and

we are presented with the analogy of the Lagrange case and its generaliza-

tions. In particular, this analogy gives some qualitative peculiarities of mo-

tion of the generalized Hess cases, typical for motion of a heavy symmetrical

gyroscope. (For instance, it is the observation of N. E. Joukovskiy concerning

the center-of-mass motion according to the spherical pendulum law in the Hess

case.)

It is a well known fact that first integrals exist in the presence of a certain

field of symmetries and under the possibility of order reduction, at least, a local

one. It is a famous Noether theorem, whose using for Hamiltonian systems with

integrals, linear with respect to momenta, requires some simplifications. For

simplicity we consider the canonical case, though the reasoning can easily be

applied to the general Poincaré –Chetayev equations, and, in particular, to the

equations of rigid body dynamics in matrix realizations of Lie groups (specifying

configurational spaces).

Really, for systems on cotangent foliation TM with canonical struc-

ture {qi, pj} = δij the presence of integral

F =
∑

i

vi(q)pi, {F,H} = 0, (1.1)

linear with respect to momenta, leads to the phase flow given by Hamiltonian F

dq

ds
= ∂F
∂p

= v(q),
dp

ds
= −∂F

∂q
(1.2)

and defining the action of a single-parametric group of symmetries of Hamil-

tonian H . At that, the system of equations on the configurational space M
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becomes separated

dq

ds
= v(q). (1.3)

In the vicinity of a nonspecial point, field (1.3) can be rectified and represented

in terms of some coordinates Q1, . . . , Qn−1, Qn in the form

dQ1

ds
= . . . =

dQn−1

ds
= 0,

dQn
ds

= 1.

It is evident that canonical momentum Pn, corresponding to the coordinate Qn,

coincides with integral (1.1) F = Pn, and due to the relation {H,Pn} = ∂H
∂Qn

=

= 0, the coordinate Qn is a cyclic one. It means that the order reduction is

achieved.

Order reductions described below are carried out in the global and alge-

braical way, and we act accordingly to the almost analogical scheme. Having

linear integral, we can write systems (1.2) and (1.3). Since system (1.3) be-

comes separated, it is easy to show its first integrals and integrals of associated

system (1.3), as well.

Further on, we are guided by the idea of using this set of integrals (which

is usually redundant) as new variables for the initial system. If the algebra

of new variables with respect to Poisson brackets is closed (but nonlinear) and

the Hamiltonian is expressed in terms of these variables only, we obtain a new

Hamiltonian system. For this system cyclic integral (1.1) is a Casimir function,

the rank of Poisson brackets is decreased by 2, i. e., the system is reduced. The

advantages of this procedure of reduction, preserving the system algebraicity

and its various dynamical applications, are described in our book [31]. Here we

shall only dwell on its using in rigid body dynamics in three different variants

described by theorems given below.

Consider motion of a rigid body around a fixed point in a generalized

potential field. In such a field, except for potential forces, there also exist the

gyroscopic ones. The latter are described by vector potential and result in terms,

linear with respect to M , in Hamiltonian

H = 1
2
(AM , M ) + (M , W ) + U, (1.4)

where functions U , W = (W1, W2, W3), defining generalized potential, are

supposed to be dependent on all variables q , specifying the rigid body position.

These can be the Euler angles θ, ϕ, ψ, direction cosines α, β, γ and Rodrigue –
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Hamilton parameters λ0, λ1, λ2, λ3. Depending on a system of variables, we

use a corresponding system of equations, defining motion (see § 3 ch. 1). For

the higher degree of generality we also suppose that A = A(q). This condition

is necessary to the study sliding of a body on a plane and a gyroscope in a

gimbal. Here and henceforward, N = (N1, N2, N3) are projections of the

angular momentum vector on fixed axes.

1. Classical Area Integral N3 = (M, γ) = c = const

Symmetries, giving such an integral, are natural; they are connected with

invariance of the generalized potential with respect to rotations around some

fixed axis. Such axially symmetric fields include uniform ones, in particular, a

gravity field.

The precession angle ψ is a cyclic variable, and equations of motion can be

represented on algebra e(3).

In this case Hamiltonian (1.4) can be written if we choose vari-

ables M1, M2, M3 and γ1, γ2, γ3, defining a field symmetry unit vector in

a fixed space, as basic elements

H = 1
2
(AM ,M) + (M ,W (θ, ϕ)) + U(θ, ϕ) =

= 1
2
(AM ,M) + (M ,W (γ)) + U(γ),

(1.5)

where

γ1 = 2(λ1λ3 − λ0λ2), γ2 = 2(λ0λ1 + λ2λ3), γ3 = λ2
0 − λ2

1 − λ2
2 + λ2

3.

The Poisson bracket in terms of variables (M , γ) is given by an algebra e(3)
(see § 1 ch. 2). A symplectic leave of the algebra e(3): {γ2 = 1, (M , γ) = c} is

diffeomorphic to a cotangent foliation to a two-dimensional sphere S2 = {γ2 =
= 1}. This sphere is a configurational space of the reduced (with respect to ψ)

system and is referred to as the Poisson sphere.

At c 6= 0, under order reduction there appear additional gyroscopic terms

with a certain singularity. This singularity can be interpreted as a monopole. In

the paper [133] the author regards the monopole introduction as a noncanonical

distortion of the Poisson bracket.

Here we shall carry out the reduction to a zero area constant in the algebraic

form without changing the bracket. In this case the singularity, corresponding to

a monopole, will appear only in the Hamiltonian.

Theorem 4. Equations of motion of a body with Hamiltonian (1.5) on the

level of integral N3 = c are equivalent to the Hamilton equations on e(3) on a
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zero area constant (M , γ) = 0 with a Hamiltonian

H = 1
2
(AM ,M ) + (M , W ) + c

a1γ1M1 + a2γ2M2

γ2
1 + γ2

2

+

+c2

2

a1γ
2
1 + a2γ

2
2

(γ2
1 + γ2

2)2
+
c(W1γ1 +W2γ2)

γ2
1 + γ2

2

+ U(γ).

(1.6)

Proof.

It is sufficient to carry out a transportation (M , γ) → (M , γ). It preserves

a structure of algebra e(3) and transfers integral (M , γ) = c into (M , γ) = 0.

This transformation is written as

M1 →M1 − c
γ1

γ2
1 + γ2

2

, M2 →M2 − c
γ2

γ2
1 + γ2

2

, M3 →M3,

γ → γ.

(1.7)

Remark 1. At c = 0 and W ≡ 0, the reduced system is natural, there is no

monopole.

Remark 2. For the first time, we have shown transformation (1.7) in the book [31].

We have been trying to improve the transformation M → M +c �, c = (M , �), applied

in [133] for reduction to a zero area constant. This transformation did not preserve the

structure of e(3).

The proved statement has a dynamical meaning: unlike classical and well

known local reduction of order by means of the Routh technique with respect to

the precession angle, we obtain all the necessary terms, arising under reduction,

in the algebraic form. Due to (M , γ) = 0, the reduced system with two

degrees of freedom defines motion of a certain representing point (specified

by a vertical unit vector) on the Poisson sphere in a generalized potential field

(even at W ≡ 0, and c 6= 0), in a metric determined by the form of kinetic

energy. To carry out transition to canonical variables in Hamiltonian (1.6) one

should make the following substitution

M1 = −pϕ ctg θ sinϕ+pθ cosϕ, M2 = −pϕ ctg θ cosϕ−pθ sinϕ, M3 = pϕ,

γ1 = sin θ sinϕ, γ2 = sin θ cosϕ, γ3 = cos θ,

for which (M ,γ) = 0, and pθ, pϕ, θ, ϕ are related via canonical rules of

commutation. θ and ϕ represent spherical coordinates on the Poisson sphere.

Unlike canonical form of notation, the algebraic form (1.6) and its analogues for

other cyclic variables allow to notice various analogies among problems, show

connection between integrable cases, get a deeper understanding of algebraic

nature of the corresponding first integrals.
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Remark 3. At a1 = a2, Hamiltonian (1.6) is simplified (with taking into account

(

�

, �) = 0)

H = 1
2
(A

�

,

�

)+(

�

,

�

)+U( �)− cM3γ3

γ2
1 + γ2

2

+ c2

2(γ2
1 + γ2

2 )
+
c(W1γ1 +W2γ2)

γ2
1 + γ2

2

.

(1.8)

2. Integral N3 −M3 = (M, γ) −M3 = c = const

This integral corresponds to the cyclic variable ψ − ϕ (analogically, we

can consider N3 + M3 ψ + ϕ); for the first time it was investigated by

D. N. Goryachev [62]. Corresponding symmetries are not quite physically natu-

ral any longer and are connected with both the force field in space and dynamical

characteristics of a rigid body. This body is not dynamically symmetrical. In

this case (1.4) Hamiltonian can be written as

H = 1
2
(M2

1 +M2
2 + aM2

3 ) + 2
M1λ1 +M2λ2√

λ2
1 + λ2

2

W1(λ0, λ3) +

+ 2
M2λ1 −M1λ2√

λ2
1 + λ2

2

W2(λ0, λ3) − 2M3W3(λ0, λ3) + U(θ, ϕ+ ψ),

(1.9)

where a is a certain arbitrary constant. Introduce a new system of variables

K1 = 2
M1λ1 +M2λ2√

λ2
1 + λ2

2

, K2 = 2
M2λ1 −M1λ2√

λ2
1 + λ2

2

, K3 = −2M3,

s1 = λ3, s2 = λ0, s3 =
√
λ2

1 + λ2
2,

(1.10)

commutating in the following way

{K3, K1} = K2, {K2, K3} = K1, {K1, K2} = K3 +
s3(s, K)

s23
,

{Ki, sj} = εijksk, {si, sj} = 0 (1.11)

and forming a closed algebra with respect to the nonlinear Poisson bracket. This

bracket is born by relations (1.11). It is degenerate and possesses the Casimir

functions

F1 = s3(s, K) = (M , γ) −M3 = c, F2 = (s, s) = 1.

One-parametric transformation

L = K − α ss3
, α = const (1.12)
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preserves bracket (1.11). Moreover,

s3(L, s) = s3(K, s) − α. (1.13)

Remark 4. Transformation (1.13), like system (1.10), was also shown in our

book [31] and in our paper [30].

If we fix integral (K, s)s3 = c and choose α = c, due to s3(L, s) =
= 0, this will result in dissipation of nonlinear terms in bracket (1.11), presently

defined by algebra e(3). Then Hamiltonian (1.11) will have the form

H = 1
8
(L2

1 + L2
2 + aL2

3) + (L, W (s)) + U(s)+

+c
(s,W (s))

s23
+ 1

2
c2

s23
+ c(a− 1)L3.

(1.14)

This is the way to prove

Theorem 5. System with three degrees of freedom (1.9) on the level of

cyclic integral N3 −M3 = c under the order reduction transforms into system

on e(3) with a zero area constant (L, s) = 0 and Hamiltonian function (1.14).

It should be noted that under this reduction Hamiltonian (1.14) at c 6= 0
obtains additional terms. One of these can be interpreted as a gyrostatic mo-

ment directed along the dynamical symmetry axis, another as a singular term

introduced in dynamics by D. N. Goryachev [63, 64].

If in rigid body dynamics the origin of integral F = N3 ±M3 from sym-

metries is not evident, its meaning is easily understood from the analogy of

celestial mechanics of curved space, to be more precise, of motion of a material

point on spheres S2, S3 (see § 11 ch. 5). This integral exactly corresponds to the

projection of angular momentum of the particle on a fixed axis, in whose respect

the potential preserves axial symmetry.

3. Integral M3 = c = const (the Lagrangian integral)

In this case we deal with a dynamically symmetrical body, and a force

field, invariant with respect to the dynamical symmetry axis. A corresponding

cyclic variable is the angle. The Hamiltonian is written in terms of direction

cosines α, β, γ

H = 1
2
(M2

1 +M2
2 + aM2

3 ) + (M1α1 +M2α2)W
(α)
1 (θ, ψ) +

+ (M1α2 −M2α1)W
(α)
2 (θ, ψ) + . . .+M3W3(θ, ψ) + U(θ, ψ),

(1.15)
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where we omit terms in β, γ, linear with respect to M1, M2. Introduce new

variables, commutating with M3 and specifying a reduced system

N1 = (M , α), N2 = (M , β), N3 = (M , γ),

p = (α3, β3, γ3).
(1.16)

The geometrical meaning of these variables is evident: vector N is com-

posed of angular momentum components in a fixed frame of reference, and p

are symmetry axis vector components in the same frame of reference.

Commutating relations for basic elements (1.16) correspond to algebra e(3)
(see § 3 ch. 1). Its Casimir’s function has the form

F1 = p2 = 1, F2 = (N , p) = p2M3 = c.

The terms, linear with respect to M , in Hamiltonian (1.15) can be determined

from the following relations

M1α1 +M2α2 = N1 − p1M3, M1α2 −M2α1 = p2N3 − p3N2,

M1β1 +M2β2 = N2 − p2M3, M1β2 −M2β1 = p3N1 − p1N3,

M1γ1 +M2γ2 = N3 − p3M3, M1γ2 −M2γ1 = p1N2 − p2N1.

Eliminating constant terms, we can write the Hamiltonian of the reduced system

as follows

H = 1
2
N2 +

(
N ,W (1)

)
+
(
p×N ,W (2)

)
+

+c
(
W3(p) −

(
p, W (1)

))
+ U(p), (1.17)

W (1)(p) = (W
(α)
1 , W

(β)
1 , W

(γ)
1 ), W (2)(p) = (W

(α)
2 , W

(β)
2 , W

(γ)
2 ).

The reduction with respect to integral M3 = const and variables (1.16)

were already used in § 12 ch. 3 to establish the relation between the Brun problem

under the dynamical symmetry condition and the integrable Clebsch case of

Kirchhoff’s equations.

4. Lifting of Integrable Systems

Of the greatest interest is an inverse problem: the obtaining of new inte-

grable cases of system (1.4) with three degrees of freedom from the available

integrable cases of Hamiltonian equations on e(3), defining the reduced system

with two degrees of freedom. Here we’ll also show how the integrable systems

on a zero area constant (L, s) = 0 of an algebra e(3) can be lifted to general

integrable system (1.4), possessing linear integral M3 ± N3. At first, let us

formulate one general result. It can be proved by means of direct examination.
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Theorem 6. 1. Let an integrable (at (L, s) = 0) system with the Hamilto-

nian function

H = 1
2
(L2

1 + L2
2 + aL2

3) + (L,W ) + U(s)

be given on an algebra e(3) (i. e., there exists a particular additional first inte-

gral).

Then, by means of transformation

L = K − α ss3
(1.18)

and substitution (1.10), we obtain the system on quaternion algebra of brack-

ets of variables M , λ0, λ1, λ2, λ3 (§ 3 ch. 1 formula (3.11)). This system is

integrable on the fixed level of integral N3 − M3 = α with the Hamiltonian

function

H ′ = H−α
λ3W1 + λ0W2 +

√
λ2

1 + λ2
2W3

λ2
1 + λ2

2

−1
2

α2

λ2
1 + λ2

2

+α(a−1)M3. (1.19)

2. If constants of the Hamiltonian H can be chosen in such a way that H ′

does not depend on α, then system (1.19) is integrable at an arbitrary value

of the linear integral N3 − M3. In the additional integral after transforma-

tions (1.18) and substitution (1.10) we need to assume that α = (M1λ1 +
+M2λ2 +M1λ2 −M2λ1 −

√
λ2

1 + λ2
2M3).

Remark. The integrable cases can be analogically lifted by means of linear inte-

grals M3 = const and N3 = const. However, the obtained generalizations of integrable

cases contain terms, linear with respect to velocities. These terms do not have direct

physical interpretation.

Let us consider two examples, illustrating Theorem 6.

Generalization of the Yehia –Kowalevskaya family. The paper [285] by

H. Yehia contains the particular case of integrability (L, s) = 0, generalizing the

Kowalevskaya case with a Hamiltonian

H = 1
2

(
L2

1 + L2
2 + 2(L3 + ξ)2

)
+

+as
2

s23
+ c1s1 + c2s2 + 2b1s1s2 + b2(s

2
2 − s21).

(1.20)
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and an additional integral, reduced in § 7 ch. 5, see formula (7.4). After the

transformation
L = K − α ss3

we obtain the Hamiltonian in the form

H = 1
2
(K2

1 +K2
2 + 2K2

3) + c1s1 + c2s2 + 2b1s1s1 + b2(s
2
2 − s21) +

+ (2ξ − α)K3 + 1
2

2as2 − 2αs3(K, s) + α2s2

s23
.

(1.21)

This Hamiltonian defines an integrable system with linear bracket (1.11) on a

symplectic leave specified by the relation

s3(K, s) = α, s2 = 1.

Besides, since the structure of Hamiltonian (1.21) did not change (the least

term nominator contains the Casimir function, equivalent to a constant), we

can conclude that Hamiltonian (1.20) define the general case of integrability on

nonlinear bracket (1.11). To obtain the integral on an arbitrary leave, let us

redetermine constants in the Hamiltonian and in the integral according to the

rule

ξ → ξ + α
2
, a→ a+ α2

2
, (1.22)

and assume that
α =

s3(K, s)

s2
.

This results in an additional integral of the form

F2 =
(
K2

1−K2
2− 2

K1s1−K2s2
s3

F0− 2a
s21 − s22

s23
− 2c1s1 + 2c2s2 − 2b2s

2
3

)2

+

+ 4
(
K1K2 − F0

M1s2 +M2s1
s3

− 2a
s1s2

s23
− c1s2 − c2s1 + b1s

2
3

)2

+

+ 4(2ξ + F0)
[
−(K3 + 2ξ)

(
K2

1 +K2
2 + 2F0K3 + 2a

s21 + s22 + 2s23

s23

)
−

− 2F0(c1s1 + c2s2 + 2b1s1s2 − b2(s
2
1 − s22))+

+ 2s3(c1K1 + c2K2 + b1(K1s2 +K2s1) − b2(K1s1 −K2s2))
]
,

F0 =
s3(K, s)

s2
.

(1.23)
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This integral is already general.

Substituting the expressions (K, s) in terms of moments M and quaternion

parameters λ (1.10) in (1.20) and (1.23), we obtain a general integrable system

on a quaternion bracket in terms of variables M , λ with a linear integral F1 =
= (M , γ)−M3 and fourth degree linear integral (1.23). The particular case of

system (1.20) and corresponding integral (1.23) in a simplified form are given

in § 4 ch. 4.

Remark 5. Integral (1.23) can be represented in terms of direction cosines by means

of relations

K1s1 −K2s2
s3

= 2
M1α3 +M2β3

1 − γ3
,

K1s2 +K2s1
s3

= 2
M1β3 −M2α3

1 − γ3
,

K2
1 −K2

2 =
(α1 − β2)(M

2
1 −M2

2 ) + 2(α2 + β1)M1M2

1 − γ3
,

2K1K2 =
(α2 + β1)(M

2
1 −M2

2 ) − 2(α1 − β2)M1M2

1 − γ3
.

(1.24)

The generalized Goryachev –Chaplygin family. Consider the analogi-

cal generalization of the integrable Goryachev –Chaplygin case on a zero leave

with singular terms [63] (see § 7 ch. 5). A Hamiltonian has the form

H = 1
2
(L2

1 + L2
2 + 4L2

3) + ξL3 + as2

s23
+ b1s1 + b2s2. (1.25)

After transformations L = K − α

�

s3 , α = const and elimination of unessential

constants we shall obtain a transformed Hamiltonian of the form

H = 1
2
(K2

1 +K2
2 + 4K2

3) + b1s1 + b2s2+

+(ξ − 3α)K3 + 1
2

2as2 − 2αs3(K, s) + α2s2

s23
.

(1.26)

Analogically to the previous case, we obtain that system (1.25) defines the

general case of integrability on a nonlinear (and, correspondingly, quaternion in

terms of variables M , λ) bracket with the third degree integral of the form

F = (K3 + 1
2
ξ)

(
K2

1 +K2
2 + 2as

2

s23

)
− s3(b1K1 + b2K2).
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It is interesting to note that the integral does not change its form comparing to

the form for the algebra e(3) (see § 5 ch. 2).

In conclusion, we should say that the reducing and lifting techniques, de-

scribed in this section, are used in § 12 ch. 3 and § 4 ch. 5 for the analysis of the

quaternion Euler –Poisson equations and their integrable cases.

§ 2. Dynamical Symmetry and Lagrange’s Integral

In this section we shall give a unique consideration to dynamical problems,

possessing the analogue of Lagrange’s integral, existing in the Euler –Poisson

equations. It should be recalled that it was connected with the presence of two

cyclic coordinates: ψ-angle of precession and ϕ-angle of proper rotation. The

latter coordinate conditioned the presence of Lagrange’s integral M3 = const,
ω3 = const and preservation of the projection of angular velocity and angular

momentum on the axis of dynamical symmetry. This integral is connected with

the system invariant with respect to rotations about the dynamical symmetry

axis.

It turns out that the integral of Lagrange’s type exists for almost all theo-

retically interesting problems of rigid body dynamics. Moreover, the presence

of this integral results in the integrability of cases which, as a rule, have great

applied meaning. For example, the Lagrange case analogue for Kirchhoff’s

equations was shown by Kirchhoff who also integrated it and indicated the sim-

plest motions. For the Poincaré – Joukovskiy equations (on so(4)) the Lagrange

case analogue was shown by Poincaré. He wanted to substantiate his theoretical

conclusions concerning the precession of the Earth rotation axis. As in these

cases, so in the classical Lagrange problem, we can obtain an explicit (elliptic)

quadrature for the nutation angle θ. This quadrature is determined by a gyro-

scopic function. We can also use all the results of qualitative analysis of motion,

given in § 3 ch. 2.

1. An Explicit Quadrature of the Generalized Lagrange Case. The

Conditions of Integral Existence

Here we are going to present an explicit quadrature for the Lagrange case

in the most general form. We suppose that the rigid body motion is described

by the Hamiltonian

H = 1
2
(AM , M ) + (M , W (γ)) + U(γ), (2.1)
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where A is a constant, but not necessarily diagonal matrix. We also assume that

we are given the Poisson structure defined by the bundle

�

x

{Mi,Mj} = −εijkMk, {Mi, γj} = −εijkγk, {γi, γj} = −εijkxMk, (2.2)

where x is a bundle parameter. Further, we shall consider corresponding con-

ditions for the more general situation A = A(γ), when the body slides on the

plane or moves in a gimbal.

By means of explicit computations we can prove the validity of the follow-

ing statement.

Theorem 7. System (2.1) with bracket (2.2) allows linear integral of the

form

F = M3 = c, c = const, (2.3)

if the following conditions

A = diag(a1, a1, a3),

U(γ) = U

(
γ3,
√
γ2
1 + γ2

2

)
, W3(γ) = W3

(
γ3,
√
γ2
1 + γ2

2

)
,

γ1
∂W1

∂γ2
− γ2

∂W1

∂γ1
+W2 = 0, γ1

∂W2

∂γ2
− γ2

∂W2

∂γ1
−W1 = 0

(2.4)

are satisfied.

Hamiltonian (2.1) under conditions (2.4) can be written as

H = 1
2
(M2

1 +M2
2 + aM2

3 )+M3W3

(
γ3,
√
γ2
1+γ2

2

)
+ U

(
γ3,
√
γ2
1+γ2

2

)
+

+
M1γ1 +M2γ2√

γ2
1 + γ2

2

W̃1

(
γ3,
√
γ2
1+γ2

2

)
+
M1γ2−M2γ1√

γ2
1 + γ2

2

W̃2

(
γ3,
√
γ2
1+γ2

2

)
.

(2.5)

System (2.5) on the level M3 = c in the general algebraic form can be

reduced to a system with a single degree of freedom. Let us show this reduction

in the explicit form.

The corresponding reduced variables are represented as

K1 =
M1γ1 +M2γ2√

γ2
1 + γ2

2

, K2 =
M1γ2 −M2γ1√

γ2
1 + γ2

2

,

σ1 =
√
γ2
1 + γ2

2 , σ2 = γ3.

(2.6)
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It is evident that M2
1 + M2

2 = K2
1 + K2

2 . We should note that the analogical

system of variables was used by Poincaré when he investigated the integrable

case (shown by him) in the Poincaré – Joukovskiy equations.

The Poisson structure for variables (2.6) has the form

{K1, K2} = −c+K1
σ2
σ1
, {σ1, σ2} = xK2,

{K1, σ1} = xc
K2
σ1
, {K1, σ2} = −xK1K2

σ1
,

{K2, σ1} = −σ2 − xc
K1
σ1
, {K2, σ2} = −σ1 + x

K2
1

σ1
,

(2.7)

all other brackets equal zero. The rank of bracket (2.7) equals two. Its Casimir’s

functions are

F1 = σ2 + xK 2 + xc = c1, F2 = K1σ1 + cσ2 = c2,

where K = (K1, K2), σ = (σ1, σ2), W̃ = (W̃1, W̃2), and the Hamiltonian is

written as
H = 1

2
K 2 + (K , W̃ (σ)) + U(σ) + cW3(σ). (2.8)

This system with one degree of freedom is easily reduced to quadratures. In

fact, on the level of Casimir’s functions and the integral of energy H = h we

obtain

σ̇2 = K2

(
σ1 − x

∂U∗

∂σ1

)
, U∗(σ) = U(σ) + cW3(σ),

K2
2 = 2(h− U∗) −

(
c2 − cσ2
σ1

)2

.

(2.9)

Eliminating σ1 from combined equation for energy (2.8) and Casimir’s func-

tions F1
σ2 − 2xU∗ = c1 − x(c+ 2h),

we obtain quadrature for σ2. For the Euler –Poisson equations the geometrical

meaning of variable σ2 is evident: it is cosine of the nutation angle. For the

equations on so(4) the angle cannot be interpreted that easily.

For a homogeneous quadratic potential energy U∗ = r1σ
2
1 +r2σ

2
2 from (2.9)

we obtain an elliptic quadrature of the form

σ̇2
2 =2

(
(h− r2σ

2
2)(1− 2xr1)− a1(c

′ − (1− 2xr2)σ
2
2)
)
(c′ − (1− 2xr2)σ

2
2) −

− (1 − 2xr1)
2(c2 − cσ2)

2 = f(σ2), c′ = c1 − x(2h+ c). (2.10)
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Expressions (2.9), (2.10) generalize the known quadrature for the Lagrange case

in rigid body dynamics [119]. The function f(σ2) is also called a gyroscopic

function.

At x = 0, (2.10) gives a gyroscopic function of the Kirchhoff’s case;

at x = 1, it gives a gyroscopic function of the Poincaré case. For the classical

Lagrange case, corresponding to x = 0, W3 = 0, U = −rσ2, the equation for σ2

has the form

σ̇2
2 = −2rσ3

2 − (2h+ c)σ2
2 + (2cc2 − 2rc1)σ2 − c22 + 2hc1. (2.11)

To obtain absolute motion of the dynamical symmetry axis one should carry

out the quadrature for a precession angle ψ. For x = 0 it has the form ψ̇ =

= a1
M1γ1 +M2γ2

γ2
1 + γ2

2

= a1
K1

σ1
, i. e., it is defined by the evolution of the reduced

system variables. The similar conclusion holds for the quadrature of a proper

rotation angle ϕ. We shall not dwell on achieving the general solution in absolute

space; for such a solution most results, given in § 3 ch. 2, are valid.

We shall only emphasize that the solution for system (2.9) in elliptic func-

tions can be obtained only under the condition of linear and quadratic de-

pendence of potential (or generalized potential) on components γ (correspon-

dingly, M , γ). In other cases a gyroscopic function is a polynomial of degree

higher than the fourth, and the solution on the complex plane of time is already

ramified. However, the qualitative analysis methods, discussed in ch. 2, can

provide quite complete description of motion. This once again emphasizes the

uselessness of explicit integration of such systems in theta-functions (including

the classical Lagrange top, as well). This integration is not capable of giving

anything for investigation of real motions.

2. A Top on a Smooth Plane in a Gravity Field

This top differs from reduced systems by the fact that matrix A depends

on positional variables (see ch. 1, § 4). If the body is dynamically symmetri-

cal I1 = I2 and is bounded by axial symmetrical surface, axes of dynamical and

geometrical symmetry coinciding, the Hamiltonian can be represented as (see

ch. 1, § 6)

H = 1
2
a1f

(
M2

1 +M2
2 +ma1(γ3g1 − g2)

2(M1γ1 +M2γ2)
2
)
+

+1
2
a3M

2
3 + µ

(
(γ2

1 + γ2
2)g1 + γ3g2

)
,

f−1 = 1 +ma1(γ
2
1 + γ2

2)(γ3g1 − g2)
2, I−1 = diag(a1, a1, a3),

(2.12)
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where I is a tensor of inertia of the body with respect to the center-of-mass; µ
is the body weight; g1 = g1(γ3), g2 = g2(γ3) are some functions, depending on

the body geometry and specified by the equations

γ = − gradF (r)

| gradF (r)| , r = (g1(γ3)γ1, g1(γ3)γ2, g2(γ3)). (2.13)

In formula (2.13) the equation F (r) = 0 specifies the body surface; due to the

axial symmetry, F = F (r21 + r22 , r3). System (2.12) is also reduced to one

degree of freedom by means of variables (2.6); the quadrature for cosine of the

nutation angle γ3 = cos θ can be obtained in the form

γ̇2
3 = a1f(1 − γ2

3)
(
2
(
h−µ

(
(1 − γ2

3)g1 + γ3g2
))

− a1(c−M3γ3)

1 − γ2
3

− a3M
2
3

)
,

M3 = const, (M ,γ) = c = const. (2.14)

Comments. The cases when an axially symmetric body rests on the plane at

one point (a foot) or at a circumference (like a hoop or a coin disk) were studied the

most thoroughly. In the first case, referred to as the Lagrange top on a smooth plane,

or a toy top, the motion analysis can be carried out similarly to § 3 ch. 2. Under

explicit integration of (2.14) we obtain a hyperelliptic quadrature (whose study was

already done by Klein [237, 238]). However, after an unambiguous substitution of

time, eliminating the denominator in (2.14), it is easily shown that all bifurcational

patterns, given in § 3 ch. 2, remain practically unchanged. Moreover, the top foot on

the plane will draw curves, similar to those, drawn by the Lagrange top apex on a

fixed sphere. They are presented, for instance, in the book by Grammel [66].

Due to friction of the foot top at the plane, its general evolution is reduced to the

situation when the dynamical symmetry axis (at the proper winding of top) quickly

becomes vertical, and for some time the top “falls asleep”. Various generalizations

of this effect are given in [46, 66, 82, 122, 145].

In case of the disk motion the most extensive study was devoted to regular

precessions and their stability [122]. The book [122] also investigates stability of

vertical planar motions of a heavy elliptic disk whose equations, in the general case,

are not integrable. It should also be mentioned that in the absolute absence of

sliding (in the classical nonholonomic statement) the equations of disk rolling are

also integrable (the problem of Chaplygin, Appell, Corteweg [2, 122]). However,

dynamics they describe is substantially more complicated.

Nonintegrability of the problem about motion of a rigid body on a smooth plane

was studied in [43] by means of the separatrix splitting method. However, the results
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obtained in [43] are not sufficient, and up to this time they did not allow to establish

any nontrivial cases of integrability.

3. A Gyroscope in a Gimbal in an Axially Symmetric Field

Using variables (2.6), we shall obtain the following quadrature for the nu-

tation angle cosine

σ̇2
2 = a1f(1 + a1gσ

2
1)
(
2(ĥ− U(σ2))σ

2
1 − a1f(c2 − cσ2)

2(1 + a1I
i
1σ

2
1)
)
,

f−1 = (1 + a1I
i
1)

(
1 + a1

(
Ie + (I i3 − I i2)

σ2
2

σ2
1

))
, (2.15)

g = Ie + (I i3 − I2)
σ2

2

σ2
1

, σ2
1 = 1 − σ2

2 ,

where ĥ = h − 1
2
a3c

2; the meaning of parameters Ie, I ik , Ik is explained in

§ 4 ch. 1. The analysis of motion of system (2.15) can be looked up in [119].

Since the external ring is present, the angular momentum vector has secular

drift in space even in the absence of external forces. This drift, referred to

as the Magnus effect, is explained by the appearance of moments of external

ring reactions, perpendicular to the axis of its rotation. In the general case the

equations of an asymmetrical gyroscope in a gimbal are not integrable [40].

4. The Axial Symmetry Case in Chapligin’s Equations

As it was shown in § 7, ch. 1, dynamics of a rigid body in fluid in a gravity

field without any initial type, can be described by a Hamiltonian system on e(3)
with a Hamiltonian

H = 1
2
(M , AM ) + 1

2
µ2t2(γ, Cγ). (2.16)

Under the axial symmetry conditions Hamiltonian (2.16) can be represented in

the form

H = 1
2
(M2

1 +M2
2 + aM2

3 ) + 1
2
µ2t2γ2

3 . (2.17)

An additional integral also has the form F = M3.

For reduction one can use system of variables (2.6). However, it is more

convenient to write the second order equation for the nutation angle. Really, for
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γ3 = cos θ, taking into account the relations (M 2
1 +M2

2 )(γ2
1 + γ2

2) = (M1γ2 +
+M2γ2)

2 + (M1γ2 −M2γ1)
2, γ̇3 = M2γ1 −M1γ2, we obtain

− sin θθ̈ =
M3 − c cos θ

sin2 θ
− µt2 sin2 θ cos θ, c = (M , γ). (2.18)

If a body falls from the state of rest, then M3 = 0, c = 0, and for the nutation

angle we obtain a nonautonomous equation of the pendulum type [174]

θ̈ = µt2 sin θ cos θ. (2.19)

Other angles are given by equations

ϕ̇ = (a− 1)M3 +
M3 − c cos θ

sin2 θ
, ψ̇ =

M3 − c cos θ

sin2 θ
. (2.20)

Comments. For the first time, equations (2.18), (2.19) were obtained by

S.A. Chaplygin in his student paper and published in the complete set of his works

(1933, v. 1, [177]). It is possible that Chaplygin decided not to publish his result at

once because he failed to integrate these equations explicitly. Besides, V.A. Steklov

obtained equations (2.18), (2.19) independently and published them in his celebrated

book [160], where he had also given some qualitative results concerning the body

behavior. The more detailed qualitative analysis of equations (2.19) was carried

out by V.V.Kozlov [93]. He showed that (without initial impulse) under almost

all initial conditions a plate tended to fall with uniform acceleration with its wider

side below, and vibrated about a horizontal axis with an increasing frequency and

decreasing amplitude. The asymptotical solution of equations (2.19) for larger periods

of time can be looked up in the paper [202]. If the initial impulse does not equal

zero, then the behavior of the solutions of equation (2.18) is practically unknown.

5. The Analogy between the Lagrange Top and the Leggette System

Up to now we discussed the reduction techniques (and the corresponding

systems of variables) for those problems of rigid body dynamics which allow

one linear integral. At the same time, there exists a series of systems when the

problem possesses a redundant set of linear integrals which are not commutative.

In this case the sequential application of the described reduction is not always

possible, since the involution set formed by linear integrals, usually contains

nonlinear integrals. In this case, following the scheme described in § 1, we can

at once reduce the order by two degrees of freedom. This is achieved by the

choice of the proper set of reduced (algebraic) variables.



232 Chapter 4

In the paper [248] the authors considered explicit integration of one variant

of the Leggette system, describing the behavior of a spin of atom of liquid

helium He3 in β-phase in the presence of a magnetic field. If we consider

quaternion dynamical equations (see § 4 ch. 1), the Hamiltonian of such a system

can be written as

H = 1
2
(M2

1 +M2
2 +M2

3 ) + bM3 + U(λ0), (2.21)

where U = C
(
4λ2

0 − 3
2

)2

, b, c = const. Such a form of the Hamiltonian also

occurs in problems about motion of a material point in curved space S3 (see. § 2

ch. 5).

A system of the form (2.21) always possesses a cyclic integral F =
= (M , γ) − M3 = const. One more additional integral appears under the

condition b = 0 (the absence of a magnetic field). In terms of variables (1.8) it

has the form

F = K2
2 (s21 + s23) + (K1s1 +K2s3)

2.

The integration of this system in [248] is too complicated. At the same time,

as it was shown in [31], this system is, in fact, one of generalizations of the

Lagrange case (after the proper reduction). Really, in this case equations (2.21)

possess a vector integral of motion

L = ((M ,α) −M1, (M ,β) −M2, (M ,γ) −M3)) ,

whose components form an algebra so(3). Let us choose new variables which

commutate simultaneously with all components of vector L:

K1 =

√
(M × λ)2
√
λ2

, K2 =
(M , λ)
√
λ2

,

σ1 =
√
λ2, σ2 = λ0,

λ2 = λ2
1 + λ2

2 + λ2
3.

(2.22)

They form a nonlinear algebra

{K2, K1} =
p1σ2

2σ1
, {K2, σ1} = −σ2

2
,

{K2, σ2} =
σ1

2
, {K1, σ1} = {K1, σ2} = 0

(2.23)

with Casimir’s functions

F1 = σ2, F2 = K1σ1 = const,
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where σ = (σ1σ2), K = (K1,K2). (Less convenient basic elements are used

in [133, 218])

Since the rank of bracket (2.22) equals zero, any Hamiltonian system on

this bracket is integrable, including system (2.21) at b = 0. The Hamiltonian of

this system in terms of new variables can be represented as

H = 1
2
K2 + U(σ2).

The analogical representation was obtained for the Lagrange case generalization

(see (2.7), (2.8)) at c = 0, W = 0, x = 0. This analogy can be established

directly (for example, in terms of the Euler angles). However, the algebraical

approach to the questions of order reduction, developed in [31], is especially

vivid and simple.

§ 3. The Hess Case: Geometry, Cyclic Variable, and Explicit

Integration

In two sections to follow we shall sequentially discuss some questions of

existence, qualitative analysis and explicit integration of systems of rigid body

dynamics, allowing invariant relation of the Hess type. This relation is linear

with respect to moments M , and the analysis of conditions of its existence is

close to the Lagrange case generalizations considered in § 2. It also turns out that

these dynamical problems are similar in motion of certain, characteristic points

of a body, and in questions of reduction. Further on, we shall also give an explicit

quadrature for different variables, characterizing motion. In this section we shall

consider a classical situation of Hamiltonian equations on an algebra e(3) (of the

Euler –Poisson type). In § 4 we shall give some generalizations connected with

the superposition of several fields, and we shall also consider more complicated

problems on algebra e(3): sliding of a body on a plane, motion in a gimbal, and

the Chaplygin equations.

1. A Potential System on Algebra e(3). A Cyclic Coordinate

Let a Hamiltonian of the form

H = 1
2
(M , AM ) + U(γ), (3.1)

where A = I−1 = diag(a1, a2, a3), be given on algebra e(3). Consider the

level set of kinetic energy in the space of moments — a gyration ellipsoid

(M , AM ) = const. (3.2)
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Assume that a1 < a2 < a3, then ellipsoid (3.2) has two circular sections,

passing through the mean axis. Designate a direction vector, perpendicular to

the circular section, by n. Then the following unambiguous remark is valid.

If a potential energy U(γ) is invariant with respect to rotations of a body

around the axis n, then the equation (M , n) = 0 specifies the Hess invariant

relation of system (3.1).

In the explicit form this condition can be represented as

(√
a2 − a1

(
γ2

∂
∂γ3

−γ3
∂
∂γ2

)
±
√
a3 − a2

(
γ1

∂
∂γ2

−γ2
∂
∂γ1

))
U(γ) = 0. (3.3)

Correspondingly, the Hess integral has the form

√
a2 − a1M1 ±

√
a3 − a2M3 = 0. (3.4)

The opposite signs correspond to different circular sections of ellipsoid (3.2).

In many respects the Hess case is similar to the Lagrange case. It con-

cerns the fact that system (3.1) has a cyclic variable (an explicit symmetry of a

Hamiltonian with respect to rotations) on one of the levels of a certain “cyclic”

integral. To show this explicitly, let us represent Hamiltonian (3.1) in the frame

of reference when one of the axes Ox3 coincides with the axis, perpendicular to

the circular section of ellipsoid (3.2) (see fig. 57, ch. 2)

H = 1
2
(a′1(M

2
1 +M2

2 ) + a′3M
2
3 + 2bM3M1) + U(γ3). (3.5)

Such a frame of reference is not principal any longer. The matrix of transition to

new coordinates (from the system of principal axes) can be expressed in terms

of components of a matrix A according to formula

U =




√
a3 − a2

a3 − a1
0 ∓

√
a2 − a1

a3 − a1

0 1 0

±
√
a2 − a1

a3 − a1
0

√
a3 − a2

a3 − a1



. (3.6)

Hess integral (3.4) has the form

M3 = 0. (3.7)

It is easily seen that Hamiltonian (3.5) on the level M3 = 0 coincides with the

Lagrange Hamiltonian § 1, 2 ch. 3. So, to describe the reduced system, defining
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dynamics of the nutation angle of an apex of axis n, perpendicular to the circular

section of gyration ellipsoid, we can use variables (2.6) K = (K1, K2), σ =
= (σ1, σ2),

K1 =
M1γ1 +M2γ2√

γ2
1 + γ2

2

, K2 =
M1γ2 −M2γ1√

γ2
1 + γ2

2

,

σ1 =
√
γ2
1 + γ2

2 , σ2 = γ3.

On the level M3 = 0 these variables form a closed system of equations

K̇1 = 1
σ1
a′1K1K2σ2, K̇2 = − 1

σ1
a′1K

2
1σ2 − σ1

∂U
∂σ2

,

σ̇1 = a′1K2σ2, σ̇2 = a′1K2σ1.

(3.8)

Hamiltonian (3.5) can now be written in the form

H = 1
2
K 2 − µσ2 + 1

2
M3(a

′
3M3 + 2bM1).

Quadrature for σ2 is given by equation (2.11) (at c = 0). It is interesting

to note that in this case (like in the Lagrange case, see ch. 3, § 1), the precession

angle ψ is completely defined by the solution of the reduced system

ψ̇ = a′1
K1
σ1
,

and does not depend on quadrature for the proper rotation angle ϕ(t). This fact

was used by N. E. Joukovskiy to describe motion of the center-of-mass in the

ordinary Hess case (see further).

Remark 1. The reduction of order in the presence of invariant relations, linear

with respect to momenta, was extensively studied by T. Levi-Civita. His main results are

contained in the famous book [113]. However, while applying his results to rigid body

dynamics, he did not pay any attention to the Hess case. He concentrated his efforts on

the more particular class of invariant relations defined by the Staude rotation. Levi-Civita

and Libman have also investigated the question of existence of linear integrals in the case

when a body moves in a potential field.

2. The Classical Hess Case

Let us give a more detailed consideration to the Hess case in the Euler –

Poisson equations. In (3.5) let us assume U = µ̃γ3, µ̃ = const, a′1 = 1, a′3 =
= a3, b = a13. Dynamics of the complete system on the joint level of the
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Hess relation M3 = 0, area constant M1γ1 +M2γ2 = c, and energy H = h is

described by sequential quadratures

γ̇2
3 = 2(1− γ2

3)
(
h− µ̃γ3 − c2

1 − γ2
3

)
, ψ̇ = c

1 − γ2
3

,

ϕ̇ = a13M1 + c
1 − γ2

3

, l̇ = −a13K sin l + µ̃ c
K2

, K = 2(h− µ̃γ3),
(3.9)

where K2 = M2
1 + M2

2 , and l is one of the Andoyaer –Deprit variables; it is

defined by relations M1 = K sin l, M2 = K cos l.
Using first two quadratures, N. E. Joukovskiy [79] showed that the cen-

ter-of-mass of a rigid body moves according to the spherical pendulum law. The

last two equations in (3.9) show that to find the proper rotation angle ϕ, we

have to solve the equation for l with coefficients, explicitly depending on time.

Such a method of solution does not seem to be given earlier. Usually, following

P. A. Nekrasov [131], the proper rotation definition is reduced to the solution of

equation of the Rikatti type.

Really, for the complex variable z = M1 + iM2 it is easy to obtain

e−iϕ = − γ̇3 + ic√
1 − γ2

3

z
K2

.

This leads to the first order nonlinear equation for z:

ż +
ia13

2
z2 + µ

γ̇3 + ic

K2
z + 1

2
ia13K = 0. (3.10)

To justify our solution, we should notice its simpler form (3.9) in comparison

with (3.10). Moreover, at c = 0, it becomes even simpler.

In [79] Joukovskiy also showed some more geometrical facts, concerning

complete system dynamics in the Hess case.

It turns out that at each moment of time the motion path of gyration ellipsoid

mean axis form a constant angle θ with the circular section plane

sin θ =
a2√

a2(a1 + a3) − a1a3

. (3.11)

This result helps to show that at the zero area constant c = 0 the mean axis

of inertia moves along a loxodrome. Because of such a characteristic motion,

Joukovskiy introduced the name of loxodromic pendulum (of Hess), showed
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practical conditions of implementation of such a motion, and made a mechanical

model for its observation [79].

Consider the case of a loxodromic pendulum (c = 0) in more detail (see

fig. 70). From relations (3.9) we obtain

γ̇2
3 = 2(h− µ̃γ3)(1 − γ2

3), ψ̇ = 0, ln
(
tg l

2

)
= ±a13K, (3.12)

and also two corresponding cases:

h > µ̃. The center-of-mass rotates along the principal circle (since ψ = const).
The mean axis moves all over loxodrome, see fig. 18. In this case on

a phase portrait (fig. 70 e,f), containing chaotical paths, the Hess solution

separates two “nonmixing” stochastic layers (see also fig. 58). Actually, in

this case the Hess solution cannot be realized; due to instability, the path

drops into either one or the other layer.

At h → ∞ (or µ̃ → 0) everything is reduced to the ordinary Euler

case, the Hess solution tending to a separatrix of permanent rotation around

the mean axis [92].

h < µ̃. The center-of-mass makes planar oscillations according to the physical

pendulum law, and the mean axis moves along the loxodrome segment

according to (3.11). The solution is periodic in the absolute space (with a

single frequency, like the Goryachev solution, § 5 ch. 2). On a phase portrait

(see fig. 70 a,b,c) the Hess relation specifies an invariant curve filled with

fixed points. This curve is situated within regular foliation.

At c 6= 0, the motion investigation is substantially difficult and cannot

be done analytically. Fig. 71 shows a series of phase portraits, illustrating

the effect of separating stochastic layers (at decreasing energy h) near the

Hess solution.

Dynamics of absolute motion for small energies possesses three fre-

quencies; under increasing energy motion with respect to one variable will

have asymptotic character with only two frequencies remained.

Remark 2. If we consider perturbations of the Euler – Poinsot problem under the

Hess conditions, we find that a pair of separatrices, arising from unstable permanent

rotations, does not split at perturbation [92] (see fig. 70 f, 71 h). Integral (3.4) defines

a special torus filled with double asymptotic paths, approaching some unstable periodic

solutions, which at

�

µ → 0 transfer into permanent rotations around the mean axis. Such

a description of reduced system dynamics does not contradict the Joukovskiy result about

quasiperiodic motion of the center-of-mass of body (3.9), since the system, describing the

center-of-mass motion, is obtained by reduction with respect not to the precession angle,

but to the angle of proper rotation around the axis, perpendicular to the circular section.
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Figure 70. A phase portrait under the Hess conditions and a zero area constant (H =

= 1
2
(M2

1 + 2
3
M2

2 + 1
2
M2

3 ) + 1√
3
γ1 + 1√

6
γ3,

�

µ = hc). Figures vividly show that

the torus, corresponding to the Hess integral at small energies, is situated in a regular

foliation. Grey color designates a physically impossible domain of values of variables.

Historical comment. Hess has obtained his integral when he was looking

for various forms of equations of motion of a heavy rigid body. These equations

were supposed to have various advantages comparing to the Euler –Poisson equa-

tions [228]. Hess also seems to give an idea of using not principal axes. The
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Figure 71. A phase portrait under the Hess conditions and nonzero area constant c = 1

(H = 1
2
(M2

1 + 2
3
M2

3 + 1
2
M2

3 ) + 1√
3
γ1 + 1√

6
γ3). Like above, at large h the Hess

solution separates two stochastic layers, and at small h it lies in a regular foliation.



240 Chapter 4

equations in the Hess form can be looked up in the books [9, 59]. Conditions

of the Hess integral existence were also obtained by G.G.Appelrot, who was try-

ing to fill the gaps in the Kowalevskaya analysis [3]. Kowalevskaya herself missed

this case in her investigation, though it did not spoil her results: under the Hess

conditions the solution ramifies on a complex plane of time [3]. Nevertheless, the

Hess case is sometimes referred to as the Hess –Appelrot case. As it was already

noticed, the geometrical analysis and simulation of the Hess top were offered by

Joukovskiy [79]. The extensive analytical memoir on its explicit solution (reduction

to the Rikatti equations) belongs to Nekrasov [131]. The connection of the Hess

invariant relations with the pair of unsplitted separatrices of the perturbed Euler –

Poinsot problem was indicated by V.V. Kozlov [92].

In the Kirchhoff’s equations the Hess case analogue (see the section to follow)

was noticed by Chaplygin [178] (who used nonprincipal axes at once), and from

the condition of splitting of separatrices it was obtained in [98]. The majority of

geometrical and analytical dynamical derivations, shown for the ordinary Hess case,

are valid for this analogue.

§ 4. The Hess Case Generalizations

We shall follow the general scheme of investigation. First, we shall indicate

general dynamical conditions leading to the existence of invariant relation of the

Hess type. Then we shall illustrate them using various mechanical systems [33].

First of all, we shall formulate even more general statement about the exis-

tence of an invariant relation of the form

M3 − c = 0, c = const (4.1)

(which at an arbitrary c will provide conditions of existence of integral of the

Lagrange type; we have shown them in § 1 formula (1.13)) for the most complete

form of a generalized potential system with the Hamiltonian

H = 1
2
(M ,A′M ) + (M , W (q)) + U(q),

q ≈ (α, β, γ) ≈ (θ, ϕ, ψ) ≈ (λ0, λ1, λ2, λ3),
(4.2)

where A′ is a constant, not necessarily diagonal matrix (the system of nonprin-

cipal axes is supposed to be used). Hamiltonian (4.2) also describes motion of a

rigid body with a fixed point in the superposition of force fields (see § 12 ch. 3,

where we discuss a series of generalizations of the Lagrange and Hess cases to
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the special forms of potential U(q), W (q) ≡ 0). By means of direct computa-

tions we can show that conditions of existence of relation (4.1) are represented

by

a′11 = a′22, a′12 = 0,

(L̂α + L̂β + L̂γ)(U + cW3) = 0,

(L̂α + L̂β + L̂γ)W1 +W2 + ca′23 = 0,

(L̂α + L̂β + L̂γ)W2 −W1 − ca′13 = 0,

(4.3)

where L̂α, L̂β , L̂γ are differential operators of the form:

L̂α = α1
∂
∂α2

− α2
∂
∂α1

, L̂β = β1
∂
∂β2

− β2
∂
∂β1

, L̂γ = γ1
∂
∂γ2

− γ2
∂
∂γ1

.

Remark 1. In the system of principal axes operators

�

Lα,

�

Lβ ,

�

Lγ have the

form (3.3) § 3; they are transformed by means of matrix (3.6) § 3.

Linear and quadratic potentials. Let us explicitly show conditions of

existence of Hess integral (4.1) for particular form of vector and scalar poten-

tials W , U in (4.2), assuming that

W =K +
3∑

i=1

B(i)αi,

U =
3∑

i=1

(r(i), αi) + 1
2

3∑

i=1

(αi, C
(i)αi),

(4.4)

where α1 = α, α2 = β, α3 = γ, K, ri are constant vectors, C(i) are sym-

metrical, and B(i) are arbitrary 3 × 3-matrices; (i = 1, 2, 3).
Conditions of the Hess integral existence for some (more particular) cases

of system (4.4) are given in the papers [98, 45] (see below).

Using relations (4.1) and (4.3), we obtain

K = (−ca′13, −ca′23, k3a
′
33),

k3 is an arbitrary constant,

b
(i)
11 = b

(i)
22 , b

(i)
12 = −b(i)12 , b

(i)
13 = b

(i)
23 = 0,

r
(i)
1 = cb

(i)
31 , r

(i)
2 = cb

(i)
32 ,

C(i) = diag(c
(i)
11 , c

(i)
11 , c

(i)
33 ).
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The Hamiltonian can be represented in the form

H = 1
2
(a′11(M

2
1 +M2

2 ) + a′33(M3 + k3)
2)+

+(M3 − c)(a′13M1 + a′23M2) + b
(1)
11 (M1α1 +M2α2)+

+b
(1)
12 (M1α2 −M2α1) + b

(1)
33 M3α3 + (M3 − c)(b

(1)
31 α1 + b

(1)
32 α2)+

+1
2
(c

(1)
11 (α2

1 + α2
2) + c

(1)
33 α

2
3) + r

(1)
3 α3 + . . . ,

(4.5)

where the analogical terms, containing β, γ, are omitted.

Consider a mutual system of variables: projections of the angular momen-

tum vector on fixed axes N = (N1, N2, N3) = ((M ,α), (M ,β), (M ,γ)),
and vector p = (α3, β3, γ3). Their commutation forms an algebra e(3) (§ 4

ch. 1). In terms of this variables under conditions (4.3), (4.4) Hamiltonian (4.2)

has the form

H = 1
2
a′11N

2 + (b1, N ) + (b2 × p, N ) + (r + cb3 − cb1, p) + 1
2
(p, Cp)+

+(M3 − c)f(M , α, β, γ),
(4.6)

where b1 = (b
(1)
11 , b

(2)
11 , b

(3)
11 ), b2 = (b

(1)
12 , b

(2)
12 , b

(3)
13 ), b3 = (b

(1)
33 , b

(2)
33 , b

(3)
33 ),

r = (r
(1)
3 , r

(2)
3 , r

(3)
3 ), C = diag(c

(1)
33 − c

(1)
11 , c

(2)
33 − c

(2)
11 , c

(3)
33 − c

(3)
11 ). However,

function f(M , α, β, γ) cannot be expressed in terms of variablesN , p. (Oth-

erwise, we would obtain a top of the Lagrange type.)

Since N , p commutate with M3, the equations of motion for them on the

level M3 = c separate and are described by a Hamiltonian system on e(3) with

Hamiltonian (4.6) taken under the condition M3 − c = 0, i. e., by a system with

two degrees of freedom.

Thus, we obtain a flow as a reduced system. This flow is isomorphic to

equations of motion of a spherical ball in a generalized potential field on the

fixed level of the area constant (N , p) = M3 = c.
In the general case system (4.6) is not integrable, i. e., existence of the Hess

invariant relation for system (4.2) is not equivalent to complete integrability. As

we have already seen in § 1, the analogical remark holds true about the general

Lagrange integral presence. This integral only provides the possibility of order

reduction by one degree of freedom.

Show additional conditions for integrability of system (4.6). Really, at b1 =
= b2 = b3 = r = 0, we have the integrable Clebsch case (at c = 0 the Neumann

system), and, at b1 = b2 = b3 = 0, c = 0, the Lagrange case for a single field.
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Remark 2. Up to this moment we used a special frame of reference whose axes

do not coincide with principal axes of the body, and A is not diagonal. In the frame of

reference, for which a tensor of inertia is diagonal A = diag(a1, a2, a3), integral of the

Hess type (4.1) has the form

F =
√
a2 − a1

√
a3 − a2(M1

√
a2 − a1 ±M3

√
a3 − a2)−

−(K1

√
a3 − a2 ±K3

√
a2 − a1) = 0,

(4.7)

where K is a constant vector in (4.4). The transformation to the system of principal axes

of the body is done by means of matrix U (3.6).

Remark 3. The Hess integral, like the Lagrange integral, is present in a more

complicated system with five degrees of freedom [41]: a body, suspended at a massless

rigid bar (a string), moves in a gravity field [153]. To be integrable, even in the presence

of the above mentioned integrals, this system needs three more integrals in involution.

They are unknown, and the only integrable case concerns complete separation of motions

when the point of body fixation at the string coincides with the center-of-mass.

Known integrable cases. In the case of a single field, axially symmetric

in space, i. e., at U = U(γ), W = W (γ), different authors noticed the follow-

ing analogues of the Hess integral which in this case is sufficient for complete

integrability:

1. U(γ) = µγ3,W (γ) = 0: the classical Hess case for the Euler –Poisson

equations [228].

2. U(γ) = µγ3, W = (ca′13, ca
′
23, k3), k3 = const: a gyrostatic general-

ization of the Hess case. It was shown by L. N. Stretenskiy [159].

3. U(γ) = (γ, Cγ), C = diag(c1, c1, c3), W = (b11γ1 + b12γ2,−
−b12γ1 + b11γ2, b31γ1 + b32γ2 + b33γ3): a particular case of integrability

(S. A. Chaplygin [178], V. V. Kozlov, D. A. Onischenko [98]) of the Kirch-

hoff equations.

Cases 1, 2, 3 satisfy general conditions (4.3), (4.5).

Remark 4. All generalizations of the Hess case, shown on algebra e(3), can be

naturally transferred to the case of a bundle

�

x, due to the fact that equations for

�

are

the same on the whole bundle. Here the Hess invariant relation does not depend on the

bundle parameters.

In the case of two force fields system (4.4) was considered in the paper [45]

(A. A. Burov, G. I. Subhankulov), though in it potentials (4.4) are interpreted

from the hydrodynamical viewpoint. The paper [45] contains two particular
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cases of existence of the Hess integral M3 = 0 for a system. However, the

question of complete integrability is not discussed. It turns out that in one of

these cases the system is integrable, and in the other is not.

The first case

U = 1
2

(
c
(1)
11 (α2

1 + α2
2) + c

(1)
33 α

2
3

)
+ 1

2

(
c
(2)
11 (β2

1 + β2
2) + c

(2)
33 β

2
3

)
.

The Hamiltonian of reduced system (4.6) can be represented in the form

H = 1
2
a′11N

2 + 1
2
(c

(1)
33 − c

(1)
11 )p2

1 + 1
2
(c

(2)
33 − c

(2)
11 )p2

2.

Due to relation (N , p) = M3 = 0, this case is isomorphic to the Neumann

system which is integrable.

The second case

U = r3α3 + 1
2

(
c11(β

2
1 + β2

2) + c33β
2
3

)
.

The reduced system has the form

H = 1
2
a′11N

2 + r3p1 + 1
2
(c33 − c11)p

2
2, (N , p) = 0.

This Hamiltonian corresponds to a spherical pendulum in a gravity field and in

the Brun field, perpendicular to it. Such a system seems to be nonintegrable.

Now, consider the application of these general conditions to three contiguous

problems of rigid body dynamics.

A rigid body on a smooth plane. The paper [42] (A. A. Burov) contains

the Hess invariant relation for rigid body dynamics with a gyrostat on a smooth

horizontal plane. However, due to using angular velocities ω and a system of

principal axes, this relation has a bit unexpected form. Here we give conditions

of existence of the Hess integral for equations in the Hamiltonian form on an

algebra e(3) in case when the force field potential is symmetrical with respect

to rotations around a vertical line.

As it is shown in ch. 1, the equations of motion can be written in the

Hamiltonian form on algebra e(3) with the Hamilton function

H = 1
2
(A(M −K), IA(M −K)) + 1

2
m(a, A(M −K)) + U(γ),

a = r × γ, A = (I +ma⊗ a)−1,
(4.8)
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where K is a gyrostatic moment vector, constant in the system of axes bound to

the body; γ is a vector normal to the plane;M is a vector of angular momentum

with respect to the contact point. It is connected with the angular velocity by

formula

M = Iω +ma(a, ω). (4.9)

Here I is a tensor of inertia with respect to the center-of-mass, m is a mass of

the body.

Vector r(γ) is found from the condition

γ = − gradF (r)

| gradF (r)| ,

where F (r) = 0 specifies the equation of (everywhere convex) surface of the

body.

Let a body be bounded by an axially symmetric surface whose symmetry

axis is perpendicular to the circular section of a gyration ellipsoid of the form

(M , I−1M) = const.

Choose a frame of reference such that one of its axes Ox3 is perpendicular

to the circular section, and the other Ox2 is directed along the mean axis of

inertia, then if U depends only on γ3 and the relation

K2 = 0, a
(0)
11 K1 + a

(0)
13 K3 = ca

(0)
13 ,

where A(0) = ‖a(0)
ij ‖ = I−1, is valid, the Hess invariant relation takes the form

M3 − c = 0.

Proof of this statement is direct examination done by any means of analyt-

ical computations.

The Hamiltonian in the Hess case differs from Hamiltonian in the Lagrange

case on a smooth plane (2.12) (§ 1 ch. 3) by the presence of an additional term

of the form (M3 − c)f(M , γ). It turns to zero on the Hess integral level, where

it is also possible to transfer to a reduced system defined by variables (2.6) (§ 1

ch. 3).

Remark 5. In the chosen frame of reference

A
(0) =

��
�
�

a
(0)
11 0 a

(0)
13

0 a
(0)
11 0

a
(0)
13 0 a

(0)
33

��
�
� ,
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the equation of the body surface has the form

F = F (x2
1 + x2

2, x3) = 0,

and vector � in (4.8) can be represented as

� = (−f(γ3)γ2, f(γ3)γ1, 0),

where f depends on γ3 only.

Remark 6. For motion of a rigid body on the absolutely rough plane (a nonholo-

nomic system) the Hess case analogue has not been found up to this day. Nevertheless,

the generalization of the Lagrange problem about rolling of an axially symmetric body

on the plane exists, and was integrated by S.A. Chaplygin [122].

A gyroscope in a gimbal. In this problem kinetic energy also depends on

positional variables, causing additional difficulties. Here it is also convenient to

use the Hamiltonian form of system notation (for details see § 4 ch. 1). Since

the obtained expressions are cumbersome, we shall give here only final result in

the absence of a gyrostatic moment.

Let a dynamically asymmetrical rigid body be fixed in a gimbal so that

the axis of fixation at the internal frame (see fig. 10 ch. 1) coincides with the

perpendicular to the circular section of a gyration ellipsoid, and potential energy

of the body in the external field is invariant with respect to rotations of the body

on the internal frame axis. Then there exists an invariant relation of the Hess

type which in the frame of reference, one of whose axes (Ox3) coincides with

the perpendicular to the circular section, has the form

M3 = 0. (4.10)

For the first time, this case seems to be mentioned by the authors of [33].

For the case of a gravity field the body center-of-mass should lie at the

internal frame axis.

Remark 7. It is easy to show generalization of this result to the case of a gyrostat.

Then relation (4.10) will take the form M3 = c, where c is a fixed constant, depending

on a gyrostatic moment.

The Hess integral in the Chaplygin equations. Show one more case of

existence of the Hess invariant relation for a nonautonomous system, describing

a rigid body fall in fluid without initial impulse § 7 ch. 1. The surface, bounding

the body, is axially symmetric, and the symmetry axis is perpendicular to the
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circular section of a gyration ellipsoid. A Hamiltonian can be represented in the

form

H = 1
2
(M2

1 +M2
2 + aM2

3 + 2a13M1M3) + 1
2
µt2γ2

3 . (4.11)

In the chosen frame of reference an invariant relation has the form

M3 = 0. (4.12)

Here it is possible to obtain the equation for a nutation angle which does not

differ from the axially symmetric case (see § 2)

− sin θθ̈ = −c cos θ

sin2 θ
− µt2 sin2 θ cos θ, c = (M , γ). (4.13)

The proper rotation angle in this case is specified by the system

ϕ̇ = −c cos θ

sin2 θ
+ a13M1, Ṁ1 = q3M1M2 + µt2γ2γ3,

where γ3 = cos θ, γ1 = sin θ sinϕ, γ2 = sin θ cosϕ, and M2 can be found from

relation

M2
1 +M2

2 =
c2 + γ̇2

3

1 − γ2
3

.

It should be noted that, due to the validity of equations (4.13), the qualita-

tive analysis of motion carried out in [93] holds true for the Hess case at c = 0.


