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Mechanics provides a complete microscopic description of the state of a system. 

When the equations of motion are combined with initial conditions and boundary conditions, 

the subsequent time evolution of a classical system can be predicted. In systems with more than 

just a few degrees of freedom such an exercise is impossible. There is simply no practical way 

of measuring the initial microscopic state of for example, a glass of water, at some instant in 

time. In any case, even if this was possible we could not then solve the equations of motion for 

a coupled system of 1023 molecules.

In spite of our inability to fully describe the microstate of a glass of water, we 

are all aware of useful macroscopic descriptions for such systems. Thermodynamics provides a 

theoretical framework for correlating the equilibrium properties of such systems. If the system 

is not at equilibrium, fluid mechanics is capable of predicting the macroscopic nonequilibrium 

behaviour of the system. In order for these macroscopic approaches to be useful their laws must 

be supplemented not only with a specification of the appropriate boundary conditions but with 

the values of thermophysical constants such as equation of state data and transport coefficients.  

These values cannot be predicted by macroscopic theory. Historically this data has been 

supplied by experiments. One of the tasks of statistical mechanics is to predict these parameters 

from knowledge of the interactions of the system's constituent molecules. This then is a major 

purpose for statistical mechanics. How well have we progressed?

Equilibrium classical statistical mechanics is relatively well developed. The 

basic ground rules - Gibbsian ensemble theory - have been known for the best part of a century 

(Gibbs, 1902). The development of electronic computers in the 1950's provided unambiguous 

tests of the theory of simple liquids leading to a consequently rapid development of integral 

equation and perturbation treatments of liquids (Barker and Henderson 1976). With the possible 

exceptions of phase equilibria and interfacial phenomena (Rowlinson and Widom, 1982) one 

could say that the equilibrium statistical mechanics of atomic fluids is a solved problem. Much 

of the emphasis has moved to molecular, even macromolecular liquids.

The nonequilibrium statistical mechanics of dilute atomic gases - kinetic theory - 

is likewise, essentially complete (Ferziger and Kaper, 1972). However attempts to extend 

kinetic theory to higher densities have been fraught with severe difficulties. One might have 

imagined being able to develop a power series expansion of the transport coefficients in much 

the same way that one expands the equilibrium equation of state in the virial series. In 1965 

Cohen and Dorfman (1965 and 1972) proved that such an expansion does not exist. The 

Navier-Stokes transport coefficients are nonanalytic functions of density.

It was at about this time that computer simulations began to have an impact on 
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the field. In a celebrated 1957 paper, Kubo (1957) showed that linear transport coefficients 

could be calculated from a knowledge of the equilibrium fluctuations in the flux associated with 

the particular transport coefficient. For example the shear viscosity η, is defined as the ratio of 

the shear stress, -Pxy, to the strain rate, ∂ux/∂y ≡ γ, 

 Pxy
  ≡  -η γ (1.1)

The Kubo relation predicts that the limiting, small shear rate, viscosity, is given by

 η = βV ∫
0

 ∞

 ds < P
xy

(0) P
xy

(s) > (1.2)

where β is the reciprocal of the absolute temperature T, multiplied by Boltzmann's constant kB, 

V is the system volume and the angle brackets denote an equilibrium  ensemble average. The 

viscosity is then the infinite time integral of the equilibrium, autocorrelation function of the 

shear stress . Similar relations are valid for the other Navier-Stokes transport coefficients such 

as the self diffusion coefficient, the thermal conductivity and the bulk viscosity (see Chapter 4).

Alder and Wainwright(1956) were the first to use computer simulations to 

compute the transport coefficients of atomic fluids. What they found was unexpected. It was 

believed that at sufficiently long time, equilibrium autocorrelation functions should decay 

exponentially. Alder and Wainwright discovered that in two dimensional systems the velocity 

autocorrelation function which determines the self-diffusion coefficient, only decays as 1/t. 

Since the diffusion coefficient is thought to be the integral of this function, we were forced to 

the reluctant conclusion that the self diffusion coefficient does not exist for two dimensional 

systems. It is presently believed that each of the Navier-Stokes transport coefficients diverge in 

two dimensions (Pomeau and Resibois, 1975).

This does not mean that two dimensional fluids are infinitely resistant to shear 

flow. Rather, it means that the Newtonian constitutive relation (1.1), is an inappropriate 

definition of viscosity in two dimensions. There is no linear regime close to equilibrium where 

Newton's law (equation (1.1)), is valid. It is thought that at small strain rates, Pxy ~ γlogγ. If 

this is the case then the limiting value of the shear viscosity (lim(γ→0) -∂Pxy/∂γ) would be 

infinite. All this presupposes that steady laminar shear flow is stable in two dimensions. This 

would be an entirely natural presumption on the basis of our three dimensional experience. 

However there is some evidence that even this assumption may be wrong (Evans and Morriss, 

1983). Recent computer simulation data suggests that in two dimensions laminar flow may be 

unstable at small strain rates.

In three dimensions the situation is better. The Navier-Stokes transport 

coefficients appear to exist. However the nonlinear Burnett coefficients, higher order terms in 
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the Taylor series expansion of the shear stress in powers of the strain rate (§2.3, §9.5), are 

thought to diverge (Kawasaki and Gunton, 1973). These divergences are sometimes 

summarised in Dorfman’s Lemma (Zwanzig, 1982):  all relevant fluxes are nonanalytic 

functions of all relevant variables! The transport coefficients are thought to be nonanalytic 

functions of density, frequency and the magnitude of the driving thermodynamic force, the 

strain rate or the temperature gradient etc.

In this book we will discuss the framework of nonequilibrium statistical 

mechanics. We will not discuss in detail, the practical results that have been obtained. Rather 

we seek to derive a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical 

mechanics. At equilibrium we have a number of idealisations which serve as standard models 

for experimental systems. Among these are the well known microcanonical, canonical and 

grand canonical ensembles. The real system of interest will not correspond exactly to any one 

particular ensemble, but such models furnish useful and reliable information about the 

experimental system. We have become so accustomed to mapping each real experiment onto its 

nearest Gibbsian ensemble that we sometimes forget that the canonical ensemble for example, 

does not exist in nature. It is an idealisation. 

A nonequilibrium system can be modelled as a perturbed equilibrium ensemble, 

We will therefore need to add the perturbing field to the statistical mechanical description. The 

perturbing field does work on the system - this prevents the system from relaxing to 

equilibrium. This work is converted to heat, and the heat must be removed in order to obtain a 

well defined steady state. Therefore thermostats will also need to be included in our statistical 

mechanical models. A major theme of this book is the development of a set of idealised 

nonequilibrium systems which can play the same role in nonequilibrium statistical mechanics as 

the Gibbsian ensembles play at equilibrium.

After a brief discussion of linear irreversible thermodynamics in Chapter 2, we 

address the Liouville equation in Chapter 3. The Liouville equation is the fundamental vehicle of 

nonequilibrium statistical mechanics. We introduce its formal solution using mathematical 

operators called propagators (§3.3). In Chapter 3, we also outline the procedures by which we 

identify statistical mechanical expressions for the basic field variables of hydrodynamics.

After this background in both macroscopic and microscopic theory we go on to  

derive the Green-Kubo relations for linear transport coefficients in Chapter 4 and the basic 

results of linear response theory in Chapter 5. The Green-Kubo relations derived in Chapter 4 

relate thermal transport coefficients such as the Navier-Stokes transport coefficients, to 

equilibrium fluctuations. Thermal transport processes are driven by boundary conditions. The  

expressions derived in Chapter 5 relate mechanical transport coefficients to equilibrium 

fluctuations. A mechanical transport process is one that is driven by a perturbing external field  

which actually changes the mechanical equations of motion for the system. In Chapter 5 we 
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show how the thermostatted linear mechanical response of many body systems is related to 

equilibrium fluctuations.

In Chapter 6 we exploit similarities in the fluctuation formulae for the 

mechanical and the thermal response, by deriving computer simulation algorithms for 

calculating the linear Navier-Stokes transport coefficients. Although the algorithms are designed 

to calculate linear thermal transport coefficients, they employ mechanical methods. The validity 

of these algorithms is proved using thermostatted linear response theory (Chapter 5) and the 

knowledge of the Green-Kubo relations provided in Chapter 4. 

A diagrammatic summary of some of the common algorithms used to compute 

shear viscosity, is given in Figure 1.1. The Green-Kubo method simply consists of simulating 

an equilibrium fluid under periodic boundary conditions and making the appropriate analysis of 

the time dependent stress fluctuations using (1.2). Gosling, McDonald and Singer (1973) 

proposed performing a nonequilibrium simulation of a system subject to a sinusoidal transverse 

force. The viscosity could be calculated by monitoring the field induced velocity profile and 

extrapolating the results to infinite wavelength. In 1973 Ashurst and Hoover (1975), used 

external reservoirs of particles to induce a nearly planar shear in a model fluid. In the reservoir 

technique the viscosity is calculated by measuring the average ratio of the shear stress to the  

strain rate, in the bulk of the fluid, away from the reservoir regions. The presence of the 

reservoir regions gives rise to significant inhomogeneities in the thermodynamic properties of 

the fluid and in the strain rate in particular. This leads to obvious difficulties in the calculation of 

the shear viscosity. Lees and Edwards (1972), showed that if one used ‘sliding brick’ periodic 

boundary conditions one could induce planar Couette flow in a simulation. The so-called Lees-

Edwards periodic boundary conditions enable one to perform homogeneous simulations of 

shear flow in which the low-Reynolds number velocity profile is linear. 

With the exception of the Green-Kubo method, these simulation methods all 

involve nonequilibrium simulations. The Green-Kubo technique is useful in that all linear 

transport coefficients can in principle be calculated from a single simulation. It is restricted 

though, to only calculating linear transport coefficients. The nonequilibrium methods on the 

other hand provide information about the nonlinear as well as the linear response of systems. 

They therefore provide a direct link with rheology.
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Green Kubo

Homogeneous shear

Methods for determining the Shear viscosity

Sinusoidal Transverse Force

Momentum Resevoirs

Figure 1.1.

The use of nonequilibrium computer simulation algorithms, so-called 

nonequilibrium molecular dynamics (NEMD), leads inevitably to the question of the large field, 

nonlinear response. Indeed the calculation of linear transport coefficients using NEMD proceeds 

by calculating the nonlinear response and extrapolating the results to zero field. One of our main 

aims will be to derive a number of nonlinear generalisations of the Kubo relations which give an 

exact framework within which one can calculate and characterise transport processes far from 

equilibrium (chapters 7 & 8). Because of the divergences alluded to above, the nonlinear theory 

cannot rely on power series expansions about the equilibrium state. A major system of interest 

is the nonequilibrium steady state. Theory enables one to relate the nonlinear transport 

coefficients and mechanical quantities like the internal energy or the pressure, to transient 

fluctuations in the thermodynamic flux which generates the nonequilibrium steady state 

(Chapter 7). We derive the Transient Time Correlation Function (TTCF, §7.3) and the 

Kawasaki representations (§7.2) of the thermostatted nonlinear response. These results are 

exact and do not require the nonlinear response to be an analytic function of the perturbing 

fields. The theory also enables one to calculate specific heats, thermal expansion coefficients 

and compressibilities from a knowledge of steady state fluctuations (Chapter 9). After we have 

discussed the nonlinear response, we present a resolution of the van Kampen objection to linear 
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response theory and to the Kubo relations in Chapter 7. 

An innovation in our theory is the use of reversible equations of motion which 

incorporate a deterministic thermostat (§3.1). This innovation was motivated by the needs 

imposed by nonequilibrium computer simulation. If one wants to use any of the nonequilibrium 

methods depicted in Figure 1.1 to calculate the shear viscosity one needs a thermostat so that 

one can accumulate reliable steady state averages. It is not clear how one could calculate the 

viscosity of a fluid whose temperature and pressure are increasing in time.

The first deterministic thermostat, the so-called Gaussian thermostat, was 

independently and simultaneously developed by Hoover and Evans (Hoover et. al., 1982, and 

Evans, 1983). It permitted homogeneous simulations of nonequilibrium steady states using 

molecular dynamics techniques. Hitherto molecular dynamics had involved solving Newton’s 

equations for systems of interacting particles. If work was performed on such a system in order 

to drive it away from equilibrium the system inevitably heated up due to the irreversible 

conversion of work into heat.

Hoover and Evans showed that if such a system evolved under their 

thermostatted equations of motion, the so-called Gaussian isokinetic equations of motion, the 

dissipative heat could be removed by a thermostatting force which is part of the equations of 

motion themselves. Now, computer simulators had been simulating nonequilibrium steady 

states for some years but in the past the dissipative heat was removed by simple ad-hoc 

rescaling of the second moment of the appropriate velocity. The significance of the Gaussian 

isokinetic equations of motion was that since the thermostatting was part of the equations of 

motion it could be analysed theoretically using response theory. Earlier ad-hoc rescaling or 

Andersen's stochastic thermostat (Andersen, 1980), could not be so easily analysed. In Chapter 

5 we prove that while the adiabatic (ie unthermostatted) linear response of a system can be 

calculated as the integral of an unthermostatted (ie Newtonian) equilibrium time correlation 

function, the thermostatted linear response is related to the corresponding thermostatted 

equilibrium time correlation function. These results are quite new and can be proved only 

because the thermostatting mechanism is reversible and deterministic.

One may ask whether one can talk about the ‘thermostatted’ response without 

referring to the details of the thermostatting mechanism. Provided the amount of heat Q, 

removed by a thermostat within the characteristic microscopic relaxation time τ, of the system is 

small compared to the enthalpy I, of the fluid (ie. (τ dQ/dt )/I < 1), we expect that the 

microscopic details of the thermostat will be unimportant. In the linear regime close to 

equilibrium this will always be the case. Even for systems far (but not too far), from 

equilibrium this condition is often satisfied. In §5.4 we give a mathematical proof of the 

independence of the linear response to the thermostatting mechanism.
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Although originally motivated by the needs of nonequilibrium simulations, we 

have now reached the point where we can simulate equilibrium systems at constant internal 

energy E, at constant enthalpy I, or at constant temperature T, and pressure p. If we employ the 

so-called Nosé-Hoover (Hoover, 1985) thermostat, we can allow fluctuations in the state 

defining variables while controlling their mean values. These methods have had a major impact 

on computer simulation methodology and practice. 

To illustrate the point: in an ergodic system at equilibrium, Newton's equations 

of motion generate the molecular dynamics ensemble in which the number of particles, the total 

energy, the volume and the total linear momentum are all precisely fixed (N, E, V, ΣΣΣΣp i). 

Previously this was the only equilibrium ensemble accessible to molecular dynamics simulation. 

Now however we can use Gaussian methods to generate equilibrium ensembles in which the 

precise value of say, the enthalpy and pressure are fixed (N, I, p, ΣΣΣΣpi). Alternatively, Nosé-

Hoover equations of motion could be used which generate the canonical ensemble (e-βH). Gibbs 

proposed the various ensembles as statistical distributions in phase space. In this book we will 

describe dynamics that is capable of generating each of those distributions. 

 

A new element in the theory of nonequilibrium steady states is the abandonment 

of Hamiltonian dynamics. The Hamiltonian of course plays a central role in Gibbs' equilibrium 

statistical mechanics. It leads to a compact and elegant description. However the existence of a 

Hamiltonian which generates dynamical trajectories is, as we will see, not essential.

In the space of relevant variables, neither the Gaussian thermostatted equations 

of motion nor the Nosé-Hoover equations of motion can be derived from a Hamiltonian. This is 

true even in the absence of external perturbing fields. This implies in turn that the usual form of 

the Liouville equation, df/dt=0, for the N-particle distribution function f, is invalid. 

Thermostatted equations of motion necessarily imply a compressible phase space.

The abandonment of a Hamiltonian approach to particle dynamics had in fact 

been forced on us somewhat earlier. The Evans-Gillan equations of motion for heat flow 

(§6.5), which predate both the Gaussian and Nosé-Hoover thermostatted dynamics, cannot be 

derived from a Hamiltonian. The Evans-Gillan equations provide the most efficient presently 

known dynamics for describing heat flow in systems close to equilibrium. A synthetic external 

field was invented so that its interaction with an N-particle system precisely mimics the impact a 

real temperature gradient would have on the system. Linear response theory is then used to 

prove that the response of a system to a real temperature gradient is identical to the response to 

the synthetic Evans-Gillan external field.

We use the term synthetic to note the fact that the Evans-Gillan field does not 

exist in nature. It is a mathematical device used to transform a difficult boundary condition 

problem, the flow of heat in a system bounded by walls maintained at differing temperatures, 
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into a much simpler mechanical problem. The Evans-Gillan field acts upon the system in a 

homogeneous way permitting the use of periodic rather than inhomogeneous boundary 

conditions. This synthetic field exerts a force on each particle which is proportional to the 

difference of the particle's enthalpy from the mean enthalpy per particle. The field thereby 

induces a flow of heat in the absence of either a temperature gradient or of any mass flow. No 

Hamiltonian is known which can generate the resulting equations of motion.

In a similar way Kawasaki showed that the boundary condition which 

corresponds to planar Couette shear flow can be incorporated exactly into the equations of 

motion. These equations are known as the SLLOD equations (§6.3). They give an exact 

description of the shearing motion of systems arbitrarily far from equilibrium. Again no 

Hamiltonian can be found which is capable of generating these equations.

When external fields or boundary conditions perform work on a system we 

have at our disposal a very natural set of mechanisms for constructing nonequilibrium 

ensembles in which different sets of thermodynamic state variables are used to constrain or 

define, the system. Thus we can generate on the computer or analyse theoretically, 

nonequilibrium analogues of the canonical, microcanonical or isobaric-isoenthalpic ensembles. 

At equilibrium one is used to the idea of pairs of conjugate thermodynamic 

variables generating conjugate equilibrium ensembles. In the canonical ensemble particle 

number N, volume V, and temperature T, are the state variables whereas in the isothermal-

isobaric ensemble the role played by the volume is replaced by the pressure, its thermodynamic 

conjugate. In the same sense one can generate conjugate pairs of nonequilibrium ensembles. If 

the driving thermodynamic force is X, it could be a temperature gradient or a strain rate, then 

one could consider the N,V,T,X ensemble or alternatively the conjugate N,p,T,X ensemble. 

However in nonequilibrium steady states one can go much further than this. 

The dissipation, the heat removed by the thermostat per unit time dQ/dt, can always be written 

as a product of a thermodynamic force, X, and a thermodynamic flux, J(ΓΓΓΓ). If for example the 

force is the strain rate, γ, then the conjugate flux is the shear stress, -Pxy. One can then 

consider nonequilibrium ensembles in which the thermodynamic flux rather than the 

thermodynamic force is the independent state variable. For example we could define the 

nonequilibrium steady state as an N, V, T, J ensemble. Such an ensemble is, by analogy with 

electrical circuit theory, called a Norton ensemble, while the case where the force is the state 

variable N, V, T, X, is called a Thévenin ensemble. A major postulate in this work is the 

macroscopic equivalence of corresponding Norton and Thévenin ensembles.

The Kubo relations referred to above, only pertain to the Thévenin ensembles. 

In §6.6 we will discuss the Norton ensemble analogues of the Kubo relations and show how 

deep the duality between the two types of ensembles extends. The generalisation of Norton 
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ensemble methods to the nonlinear response leads for the first time, to analytic expressions for 

the nonlinear Burnett coefficients. The nonlinear Burnett coefficients are simply the coefficients 

of a Taylor series expansion, about equilibrium, of a thermodynamic flux in powers of the 

thermodynamic force. For Navier-Stokes processes, these coefficients are expected to diverge. 

However since until recently no explicit expressions were known for the Burnett coefficients, 

simulation studies of this possible divergence were severely handicapped. In Chapter 9 we 

discuss Evans and Lynden-Bell’s (1988) derivation of, equilibrium time correlation functions 

for the inverse Burnett coefficients. The inverse Burnett coefficients are so-called because they 

refer to the coefficients of the expansion of the forces in terms of the thermodynamic fluxes 

rather than vice versa.

In the last Chapter we introduce material which is quite recent and perhaps 

controversial. We attempt to characterise the phase space distribution of nonequilibrium steady 

states. This is essential if we are ever to be able to develop a thermodynamics of nonequilibrium 

steady states. Presumably such a thermodynamics, a nonlinear generalisation of the 

conventional linear irreversible thermodynamics treated in Chapter 2, will require the calculation 

of a generalised entropy. The entropy and free energies are functionals of the distribution 

function and thus are vastly more complex to calculate than nonequilibrium averages. 

What we find is surprising. The steady state nonequilibrium distribution 

function seen in NEMD simulations, is a fractal object. There is now ample evidence that the 

dimension of the phase space which is accessible to nonequilibrium steady states is lower than 

the dimension of phase space itself. This means that the volume of accessible phase space as 

calculated from the ostensible phase space, is zero. This means that the fine grained entropy 

calculated from Gibbs’ relation,

 S  =  -kB   ∫
all ΓΓΓΓ  space

  dΓΓΓΓ    f(ΓΓΓΓ ,t) ln(f(ΓΓΓΓ ,t)) (1.3)

diverges to negative infinity. (If no thermostat is employed the corresponding nonequilibrium 

entropy is, as was known to Gibbs (1902), a constant of the motion!) Presumably the 

thermodynamic entropy, if it exists, must be computed from within the lower dimensional, 

accessible phase space rather than from the full phase space as in (1.3). We close the book by 

describing a new method for computing the nonequilibrium entropy.
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Chapter 2. Linear Irreversible Thermodynamics

2.1 The Conservation Equations

2.2 Entropy production

2.3 Curie's theorem

2.4 Non-Markovian Constitutive Relations: Viscoelasticity
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2.1 The Conservation Equations

At the hydrodynamic level we are interested in the macroscopic evolution of densities of 

conserved extensive variables such as mass, energy and momentum. Because these quantities are 

conserved, their respective densities can only change by a process of redistribution. As we shall 

see, this means that the relaxation of these densities is slow, and therefore the relaxation plays a 

macroscopic role. If this relaxation were fast (i.e. if it occurred on a molecular time scale for 

instance) it would be unobservable at a macroscopic level. The macroscopic equations of motion 

for the densities of conserved quantities are called the Navier-Stokes equations. We will now give a 

brief description of how these equations are derived. It is important to understand this derivation 

because one of the objects of statistical mechanics is to provide a microscopic or molecular 

justification for the Navier-Stokes equations. In the process, statistical mechanics sheds light on the 

limits of applicability of these equations. Similar treatments can be found in de Groot and Mazur 

(1962) and Kreuzer (1981).

Let M(t) be the total mass contained in an arbitrary volume V, then

 M    =    ò
V

dr  r(r, t) (2.1.1)

where r(r,t) is the mass density at position r and time t. Since mass is conserved, the only way 

that the mass in the volume V can change is by flowing through the enclosing surface, S (see 

Figure 2.1).

 
dt

dM
    =   - ò

S

dS .  r(r, t) u(r,t)

=   - ò
V

dr  ÑÑÑÑ. [r(r,t) u(r, t)] (2.1.2)

Here u(r,t) is the fluid streaming velocity at position r and time t. dS denotes an area element of the 

enclosing surface S, and ÑÑÑÑ is the spatial gradient vector operator, (¶/¶x,¶/¶y,¶/¶z). It is clear that the 

rate of change of the enclosed mass can also be written in terms of the change in mass density 

r(r,t), as

 
dt

dM
    =    ò

V

dr  
¶t

¶r(r, t) (2.1.3)
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fluid streaming
velocity

outward directed
surface normal

dS

u(r,t)

arbitrary volume V,
with enclosing

surface S.

mass flux through dS  =
u(r,t) ¥ dS

Rate of increase of mass in V,    dM/dt  =

r

-ò dS ¥ r u(r,t)

Figure 2.1. The change in the mass contained in an arbitrary closed volume V can be calculated 

by integrating the mass flux through the enclosing surface S.

If we equate these two expressions for the rate of change of the total mass we find that since the 

volume V was arbitrary,

 
¶t

¶r(r, t)
   =  - ÑÑÑÑ ¥ [r(r, t) u(r, t)] . (2.1.4)

This is called the mass continuity equation and is essentially a statement that mass is conserved. We 

can write the mass continuity equation in an alternative form if we use the relation between the total 

or streaming derivative, and the various partial derivatives. For an arbitrary function of position r 

and time t, for example a(r,t), we have

 
dt
d

  a(r, t)   =    
¶t
¶

 a(r, t)  +   u .ÑÑÑÑ a(r, t) (2.1.5)

If we let a(r,t) º r(r,t) in equation (2.1.5), and combine this with equation (2.1.4) then the mass 

continuity equation can be written as

 
dt

d r(r, t)
    =   - r(r,t)  ÑÑÑÑ. u(r,t). (2.1.6)
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In an entirely analogous fashion we can derive an equation of continuity for momentum. 

Let G(t) be the total momentum of the arbitrary volume V, then the rate of change of momentum is 

given by

 
dt

d G
    =    ò

V

dr  
¶t

¶ [r(r,t) u(r,t)]  . (2.1.7)

The total momentum of volume V can change in two ways. Firstly it can change by convection. 

Momentum can flow through the enclosing surface. This convective term can be written as,

 
dt

d G
c     =   - ò

S

dS  . r(r,t) u(r, t) u(r, t) (2.1.8)

The second way that the momentum could change is by the pressure exerted on V by the 

surrounding fluid. We call this contribution the stress contribution. The force dF, exerted by the 

fluid across an elementary area dS, which is moving with the streaming velocity of the fluid, must 

be proportional to the magnitude of the area dS. The most general such linear relation is,

 dF   º   - dS  ¥ P  . (2.1.9)

This is in fact the definition of the pressure tensor P. It is also the negative of the stress tensor. 

That the pressure tensor is a second rank tensor rather than a simple scalar, is a reflection of the fact 

that the force dF, and the area vector dS, need not be parallel. In fact for molecular fluids the 

pressure tensor is not symmetric in general. 

As P is the first tensorial quantity that we have introduced it is appropriate to define the 

notational conventions that we will use. P is a second rank tensor and thus requires two subscripts 

to specify the element. In Einstein notation equation (2.1.9) reads  dF a  = - dSb Pba, where the 

repeated index b implies a summation. Notice that the contraction (or dot product) involves the first 

index of P and that the vector character of the force dF is determined by the second index of P . 

We will use bold san serif characters to denote tensors of rank two or greater. Figure 2.2 gives a 

diagrammatic representation of the tensorial relations in the definition of the pressure tensor.

Chapter   2  - 4



dFy

The pressure tensor P, is defined in terms of the infinitesmal force

dF, across an infinitesmal area dS, element which is moving with

the streaming fluid velocity.

dS  =  i0 + jdSx

dF  =  - dS¥P
      =  - idSyPyx - jdSyPyy

dFx

Figure 2.2. Definition of the pressure tensor.

Using this definition the stress contribution to the momentum change can be seen to be,

 
dt

d G
s     =   - ò

S

dS  . P (2.1.10)

Combining (2.1.8, 2.1.10) and using the divergence theorem to convert surface integrals to 

volume integrals gives,

 
dt

d G
   =   ò

V

dr  
¶t

¶ [r(r, t) u(r, t)]
   =   - ò

V

dr  ÑÑÑÑ. [r(r,t) u(r, t) u(r, t) + P ] (2.1.11)

Since this equation is true for arbitrary V we conclude that,

 
¶t

¶ [r(r, t) u(r,t)]
    =   - ÑÑÑÑ. [r(r, t) u(r, t) u(r,t)  +  P] (2.1.12)

This is one form of the momentum continuity equation. A simpler form can be obtained using 

streaming derivatives of the velocity rather than partial derivatives. Using the chain rule the left 

hand side of (2.1.12) can be expanded as,
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 r(r,t)  
¶t

¶ u(r,t)
   +   u(r,t)  

¶t
¶ r(r, t)

   =   - ÑÑÑÑ. [r(r,t) u(r, t) u(r, t)  +  P] (2.1.13)

Using the vector identity

 ÑÑÑÑ     ¥ (ruu)   =   u (ÑÑÑÑ¥ru)  +  ru ¥ ÑÑÑÑu ,

and the mass continuity equation (2.1.4), this becomes                    

 r(r,t) 
¶t

¶ u(r, t)
   =  -    ÑÑÑÑ .[r(r,t) u(r,t) u(r, t)] + u(r,t) ÑÑÑÑ. [r(r,t) u(r, t)]  -  ÑÑÑÑ. P

                          =  - r(r,t) u(r, t) ¥ÑÑÑÑu(r,t)  -  ÑÑÑÑ ¥ P (2.1.14)

Now, 

 r(r,t)  
dt

d u(r,t)
    =    r(r, t)  

¶t
¶ u(r,t)

   +   r(r, t) u(r, t) ¥ÑÑÑÑ u(r, t), (2.1.15)

so that (2.1.14) can be written as, 

 r(r,t)  
dt

d u(r,t)
    =   - ÑÑÑÑ. P (2.1.16)

The final conservation equation we will derive is the energy equation. If we denote the 

total energy per unit mass or the specific total energy as e(r,t), then the total energy density is 

r(r,t) e(r,t). If the fluid is convecting there is obviously a simple convective kinetic energy 

component in e(r,t). If this is removed from the energy density then what remains should be a 

thermodynamic internal energy density, r(r,t) U(r,t).

 r(r,t) e(r, t)   =   r(r, t) 
2

u(r, t)
2

   +   r(r,t) U(r, t) (2.1.17)

Here we have identified the first term on the right hand side as the convective kinetic energy. The 

rate of change of this term is given by

 r(r,t) 
dt
d

 
2

u(r,t)
2

    =   r(r, t) u(r, t) .
dt

d u(r, t)

=  - u(r, t)¥[ÑÑÑÑ ¥P]   =  - uÑÑÑÑ:P  . (2.1.18)
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The second equality is a consequence of the momentum conservation equation (2.1.16). In this 

equation we use the dyadic product of two first rank tensors (or ordinary vectors) u  and ÑÑÑÑ  to 

obtain a second rank tensor uÑÑÑÑ. In Einstein notation  (uÑÑÑÑ)ab º uaÑÑÑÑ b.  In the first form given in 

equation (2.1.18) ÑÑÑÑ is contracted into the first index of P, and then u is contracted into the second 

remaining index. This defines the meaning of the double contraction notation after the second 

equals sign in equation (2.1.18) - inner indices are contracted first, then outer indices - that is 

uÑÑÑÑ :P º (uÑÑÑÑ )ab Pba  º uaÑÑÑÑ b Pba.

For any variable a, using equation (2.1.5) we have

 r(r, t) 
dt

d a(r,t)
  =  r(r,t) 

¶t
¶ a(r, t)

  +  r(r, t) u(r, t). ÑÑÑÑ a(r, t)

                        =   
¶t

¶ [r(r, t) a(r,t)]
   +  r(r,t) u(r, t).ÑÑÑÑ a(r,t)  -  a(r, t) 

¶t
¶ r(r, t) (2.1.19)

Using the mass continuity equation (2.1.4)

 r(r, t) 
dt

d a(r,t)
   =   

¶t
¶ [r(r,t) a(r,t)]

  +  r(r,t) u(r, t).ÑÑÑÑ a(r,t)  +  a(r,t) ÑÑÑÑ .[r(r,t) u(r,t)]

                          =   
¶t

¶ [r(r,t) a(r,t)]
  +  ÑÑÑÑ .[r(r,t) u(r,t) a(r, t)]            (2.1.20)

If we let the total energy inside a volume V be E, then clearly,

 
dt
dE

    =    ò
V

dr  ¶t
¶ [r(r, t) e(r, t)]

  . (2.1.21)

Because the energy is conserved we can make a detailed account of the energy balance in the 

volume V. The energy can simply convect through the containing surface, it could diffuse through 

the surface and the surface stresses could do work on the volume V. In order these terms can be 

written,

 
dt
dE

    =   - ò
S

dS. [r(r, t) e(r, t) u(r,t)  +  JQ]   +   ò
S

(dS ¥P(r, t))¥u(r,t) (2.1.22)

In equation (2.1.22) JQ, is called the heat flux vector. It gives the energy flux across a surface 

which is moving with the local fluid streaming velocity. Using the divergence theorem, (2.1.22) 

can be written as,
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dt
dE

    =   - ò
V

dr  ÑÑÑÑ .[r(r,t) e(r,t) u(r, t)  +  JQ(r, t)  +  P(r, t). u(r, t)] (2.1.23)

Comparing equations (2.1.21) and (2.1.23) we derive the continuity equation for total energy,

 
¶t

¶ [r(r, t) e(r, t)]
   =  -ÑÑÑÑ .[r(r,t) e(r, t) u(r, t) + J

Q
(r, t) + P (r,t). u(r, t)] (2.1.24)

We can use (2.1.20) to express this equation in terms of streaming derivatives of the total specific 

energy

 r(r,t) 
dt

d e(r, t)
    =   - ÑÑÑÑ .[J

Q
(r, t)  +  P (r, t). u(r, t)] (2.1.25)

Finally equations (2.1.17) and (2.1.18) can be used to derive a continuity equation for the specific 

internal energy 

 r(r,t) 
dt

d U(r, t)
    =   - ÑÑÑÑ. J

Q
(r, t)  -  P (r,t)T: ÑÑÑÑ u(r,t) . (2.1.26)

where the superscript T denotes transpose. The transpose of the pressure tensor appears as a result 

of our double contraction notation because in equation (2.1.25) ÑÑÑÑ is contracted into the first index 

of P.

The three continuity equations (2.1.6), (2.1.16) and (2.1.26) are continuum 

expressions of the fact that mass, momentum and energy are conserved. These equations are exact.
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2 . 2 Entropy Production

Thus far our description of the equations of hydrodynamics has been exact. We will 

now derive an equation for the rate at which entropy is produced spontaneously in a 

nonequilibrium system. The second law of thermodynamics states that entropy is not a conserved 

quantity. In order to complete this derivation we must assume that we can apply the laws of 

equilibrium thermodynamics, at least on a local scale, in nonequilibrium systems. This assumption 

is called the local thermodynamic equilibrium postulate . We expect that this postulate 

should be valid for systems that are sufficiently close to equilibrium (de Groot and Mazur, 1962). 

This macroscopic theory provides no information on how small these deviations from equilibrium 

should be in order for local thermodynamic equilibrium to hold.  It turns out however, that the local 

thermodynamic equilibrium postulate is satisfied for a wide variety of systems over a wide range of 

conditions. One obvious condition that must be met is that the characteristic distances over which 

inhomogeneities in the nonequilibrium system occur must be large in terms molecular dimensions. 

If this is not the case then the thermodynamic state variables will change so rapidly in space that a 

local thermodynamic state cannot be defined. Similarly the time scale for nonequilibrium change in 

the system must be large compared to the time scales required for the attainment of local 

equilibrium.

We let the entropy per unit mass be denoted as, s(r,t) and the entropy of an arbitrary 

volume V, be denoted by S. Clearly,

 
dt
dS

    =    ò
V

dr  ¶t
¶ [r(r, t) s(r, t)] (2.2.1)

In contrast to the derivations of the conservation laws we do not expect that by taking account of 

convection and diffusion, we can totally account for the entropy of the system. The excess change 

of entropy is what we are seeking to calculate. We shall call the entropy produced per unit time per 

unit volume, the entropy source strength, s(r,t).

 
dt
dS

    =    ò
V

dr  s(r,t)   -   ò
S

dS  .  JST(r, t) (2.2.2)

In this equation JST(r,t) is the total entropy flux. As before we use the divergence theorem and the 

arbitrariness of V to calculate,

 
¶t

¶ [r(r, t) s(r, t)]
    =    s(r, t)   -   ÑÑÑÑ. J

ST
(r, t) (2.2.3)

We can decompose JST(r,t) into a streaming or convective term r(r,t)s(r,t)u(r,t) in analogy with 
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equation (2.1.8),  and a diffusive term JS(r,t). Using these terms (2.2.3) can be written as,

 
¶t

¶ [r(r, t) s(r, t)]
   =   s(r,t)  -  ÑÑÑÑ . [J

S
(r,t) + r(r, t) s(r, t) u(r,t)] (2.2.4)

Using (2.1.5) to convert to total time derivatives we have,

 r(r,t)  
dt

d s(r, t)
    =    s(r,t)   -   ÑÑÑÑ . J

S
(r,t) (2.2.5)

At this stage we introduce the assumption of local thermodynamic equilibrium. We 

postulate a local version of the Gibbs relation TdS = dU + pdV. Converting this relation to a local 

version with extensive quantities replaced by the specific entropy energy and volume respectively 

and noting that the specific volume V/M is simply r(r,t)-1, we find that,

 T(r,t) 
dt

d s(r, t)
   =   

dt
d U(r, t)

   +   p(r, t)  
dt
d

 r(r, t)
-1

                                     
=   

dt
d U(r, t)

   -   
r(r, t)

2

p(r, t)
  

dt
d r(r, t) (2.2.6)

We can now use the mass continuity equation to eliminate the density derivative,

 T(r,t) 
dt

d s(r, t)
   =   

dt
d U(r, t)

   +   
r(r, t)

p(r, t)
  ÑÑÑÑ . u(r, t) (2.2.7)

Multiplying (2.2.7) by r(r,t) and dividing by T(r,t) gives 

 r(r,t)  
dt

d s(r, t)
   =   

T(r,t)

r(r,t)
  dt

d U(r,t)
   +   

T(r,t)
p(r,t)

  ÑÑÑÑ. u(r,t) (2.2.8)

We can substitute the energy continuity expression (2.1.26) for dU/dt into (2.2.8) giving,

 r(r,t) 
dt

d s(r, t)
   =   

T(r,t)
-1

 [ÑÑÑÑ. J
Q

(r, t) + P (r,t)
T
 :ÑÑÑÑu(r, t) - p(r, t) ÑÑÑÑ. u(r,t)] (2.2.9)

We now have two expressions for the streaming derivative of the specific entropy, r ( r ,t)  
ds(r,t)/dt, equation (2.2.5) and (2.2.9). The diffusive entropy flux JS(r,t), using the time 

derivative of the local equilibrium postulate dQ = TdS, is equal to the heat flux divided by the 

absolute temperature and therefore,
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 ÑÑÑÑ . J
S
(r,t)   =   ÑÑÑÑ . [ 

T(r,t)

J
Q

(r, t)
 ]   =   

T(r, t)

ÑÑÑÑ . J
Q
(r, t)

   -   
T(r, t)

2

J
Q

(r,t). ÑÑÑÑT(r, t)
(2.2.10)

Equating (2.2.5) and (2.2.9) using (2.2.10) gives,

 s(r,t)  =  
T(r,t)

-1
 [P(r, t)T :ÑÑÑÑ u(r, t) - p(r,t)ÑÑÑÑ . u(r, t) + 

T(r, t)

J
Q
(r, t) .ÑÑÑÑ T(r, t)

 ]

=  - 
T(r, t)

2

J
Q

(r, t) .ÑÑÑÑ T(r, t)
   -   

T(r, t)
[P(r, t)T :ÑÑÑÑu(r, t)  -  p(r, t)ÑÑÑÑ. u(r,t) ]

(2.2.11)

We define the viscous pressure tensor PPPP(2), as the nonequilibrium part of the pressure tensor.

 PPPP(r,t)    =    P(r, t)   -   p(r, t) I (2.2.12)

Using this definition the entropy source strength can be written as,

 s(r,t)   =  - 
T(r, t)

2

1
  JQ(r, t). ÑÑÑÑT(r,t)  -  

T(r, t)
1

  PPPP (r, t)T :ÑÑÑÑ u(r, t) (2.2.13)

A second postulate of nonlinear irreversible thermodynamics is that the entropy source 

strength  always takes the canonical form (de Groot and Mazur, 1962),

 s    =    å
i

  Ji  Xi (2.2.14)

This canonical form defines what are known as thermodynamic fluxes, J i, and their conjugate 

thermodynamic forces, Xi. We can see immediately that our equation (2.2.13) takes this canonical 

form provided we make the identifications that: the thermodynamic fluxes are the various Cartesian 

elements of the heat flux vector, JQ(r,t), and the viscous pressure tensor, PPPP (r ,t). The 

thermodynamic forces conjugate to these fluxes are the corresponding Cartesian components of 

the temperature gradient divided by the square of the absolute temperature,  T(r,t)-2 ÑÑÑÑT(r,t), and 

the strain rate tensor divided by the absolute temperature,  T(r,t)-1 ÑÑÑÑu(r,t), respectively. We use 

the term corresponding quite deliberately; the ath element of the heat flux is conjugate to the ath 

element of the temperature gradient. There are no cross couplings. Similarly the a,b element of the 

pressure viscous pressure tensor is conjugate to the a,b element of the strain rate tensor.

There is clearly some ambiguity in defining the thermodynamic fluxes and forces. There 

is no fundamental thermodynamic reason why we included the temperature factors, T(r,t)-2 and 

T(r,t)-1, into the forces rather than into the fluxes. Either choice is possible. Ours is simply one of 
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convention. More importantly there is no thermodynamic way of distinguishing between the fluxes 

and the forces. At a macroscopic level it is simply a convention to identify the temperature gradient 

as a thermodynamic force rather than a flux. The canonical form for the entropy source strength 

and the associated postulates of irreversible thermodynamics do not permit a distinction to be made 

between what we should identify as fluxes and what should be identified as a force. 

Microscopically it is clear that the heat flux is a flux. It is the diffusive energy flow across a 

comoving surface. At a macroscopic level however, no such distinction can be made.

Perhaps the simplest example of this macroscopic duality is the Norton constant current 

electrical circuit, and the Thev�nin constant voltage equivalent circuit. We can talk of the resistance 

of a circuit element or of a conductance. At a macroscopic level the choice is simply one of practical 

convenience or convention.
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2.3 Curie's Theorem

Consistent with our use of the local thermodynamic equilibrium postulate, which is 

assumed to be valid sufficiently close to equilibrium, a linear relation should hold between the 

conjugate thermodynamic fluxes and forces. We therefore postulate the existence of a set of linear 

phenomenological transport coefficients {Lij} which relate the set forces {Xj} to the set of fluxes 

{Ji}. We use the term phenomenological to indicate that these transport coefficients are to be 

defined within the framework of linear irreversible thermodynamics and as we shall see there may 

be slight differences between the phenomenological transport coefficients Lij and practical transport 

coefficients such as the viscosity coefficients or the usual thermal conductivity.

We postulate that all the thermodynamic forces appearing in the equation for the entropy 

source strength (2.2.14), are related to the various fluxes by a linear equation of the form

 Ji   =   å
j

  L ij X j (2.3.1)

This equation could be thought of as arising from a Taylor series expansion of the fluxes in terms 

of the forces. Such a Taylor series will only exist if the flux is an analytic function of the force at 

X=0.

 J
i
(X )  =  J

i
(0)  +  å

j

 
¶X

j

¶J
i |X=0

¥X
j
  +  å

j,k

 
2!
1

 
¶X

j
 ¶X

k

¶2
 J

i |X=0
:X

j
X

k
  +  O(X 3) (2.3.2)

Clearly the first term is zero as the fluxes vanish when the thermodynamic forces are zero. The 

term which is linear in the forces is evidently derivable, at least formally, from the equilibrium 

properties of the system as the functional derivative of the fluxes with respect to the forces 

computed at equilibrium, X=0. The quadratic term is related to what are known as the nonlinear 

Burnett coefficients (see ¤9.5). They represent nonlinear contributions to the linear theory of 

irreversible thermodynamics.

If we substitute the linear phenomenological relations into the equation for the entropy 

source strength (2.2.14), we find that,

 s   =   å
i ,j

  X i L ij Xj (2.3.3)

A postulate of linear irreversible thermodynamics is that the entropy source strength is always 

positive. There is always an increase in the entropy of a system so the transport coefficients are 

positive. Since this is also true for the mirror image of any system, we conclude that the entropy 
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source strength is a positive polar scalar quantity. (A polar scalar is invariant under a mirror 

inversion of the coordinate axes. A pseudo scalar, on the other hand, changes its sign under a 

mirror inversion. The same distinction between polar and scalar quantities also applies to vectors 

and tensors.)

Suppose that we are studying the transport processes taking place in a fluid. In the 

absence of any external non-dissipative fields (such as gravitational or magnetic fields), the fluid is 

at equilibrium and assumed to be isotropic. Clearly since the linear transport coefficients can be 

formally calculated as a zero-field functional derivative they should have the symmetry 

characteristic of an isotropic system. Furthermore they should be invariant under a mirror reflection 

of the coordinate axes.

Suppose that all the fluxes and forces are scalars. The most general linear relation 

between the forces and fluxes is given by equation (2.3.1). Since the transport coefficients must be 

polar scalars there cannot be any coupling between a pseudo scalar flux and a polar force or 

between a polar flux and a pseudo scalar force. This is a simple application of the quotient rule in 

tensor analysis. Scalars of like parity only, can be coupled by the transport matrix Lij.

If the forces and fluxes are vectors, the most general linear relation between the forces 

and fluxes which is consistent with isotropy is,

 Ji   =   å
j

 L i j ¥ X j   =   å
j

 Lij I  ¥ X j   =   å
j

 Lij X j. (2.3.4)

In this equation L ij is a second rank polar tensor because the transport coefficients must be 

invariant under mirror inversion just like the equilibrium system itself. If the equilibrium system is 

isotropic then Lij  must be expressible as a scalar Lij times the only isotropic second rank tensor I, 

(the Kronecker delta tensor I = d ab). The thermodynamic forces and fluxes which couple together 

must either all be pseudo vectors or polar vectors. Otherwise since the transport coefficients are 

polar quantities, the entropy source strength could be pseudo scalar. By comparing the trace of L ij 

with the trace of Lij I, we see that the polar scalar transport coefficients are given as,

 L
ij

   =   
3
1

  tr (L
ij

)   =   
3
1

  L
ij
 : I (2.3.5)

If the thermodynamic forces and fluxes are all symmetric traceless second rank tensors  

Ji, Xi, where  Ji = 1/2 (Ji + JiT) - 1/3Tr (Ji) I, (we denote symmetric traceless tensors as outline 

sans serif characters), then
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 J i

(2)
   =   å

j

  L ij

(4)
 : X j

(2)
(2.3.6)

is the most linear general linear relation between the forces and fluxes. Lij(4) is a symmetric fourth 

rank transport tensor. Unlike second rank tensors there are three linearly independent isotropic 

fourth rank polar tensors. (There are no isotropic pseudo tensors of the fourth rank.) These tensors 

can be related to the Kronecker delta tensor, and we depict these tensors by the forms,

 UUabgh   =   dab d gh (2.3.7a)

 UUabgh      =   dag dbh (2.3.7b)

 U abgh    =   dah  db g . (2.3.7c)
 U

Since Lij(4) is an isotropic tensor it must be representable as a linear combination of isotropic fourth 

rank tensors. It is convenient to write,

          

 L
ij

(4)
  =  L

ij
s  

 é
ê
ë 2

1  æ
ç
è
 UU + UU  ö

÷
ø   

 - 1
  3UU

 ù
ú
û
   +  La

i j 2
1

 æ
ç
è
 UU - UU

 ö
÷
ø   + L

tr
ij

3
1 UU (2.3.8) 

 

It is easy to show that for any second rank tensor A,

 L
ij
 : A

(2)
   =   L

ij
s  A   +   L

ij
a  AA   +   L

ij
tr  A I , (2.3.9)

where A is the symmetric traceless part of A(2), AA = 1/2(A - AT) is the antisymmetric part of A(2) 

(we denote antisymmetric tensors as shadowed sans serif characters), and A = 1/3Tr(A). This 

means that the three isotropic fourth rank tensors decouple the linear force flux relations into three 

separate sets of equations which relate respectively, the symmetric second rank forces and fluxes, 

the antisymmetric second rank forces and fluxes, and the traces of the forces and fluxes. These 

equations can be written as

 J i   =   å
j

  Lij
s

 X j (2.3.10a)

 JJ i   =   å
j

  Lij
a

 XX j (2.3.10b)

 Ji   =   å
j

  Lij
tr

 Xj (2.3.10c)

where JJ i is the antisymmetric part of J,  and J = 1/3Tr(J). As JJ i has only three independent 
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elements it turns out that  JJ i can be related to a pseudo vector. This relationship is conveniently 

expressed in terms of the Levi-Civita isotropic third rank tensor eeee(3). (Note: eeee abg = +1 if abg is 

an even permutation, -1 if abg is an odd permutation and is zero otherwise.) If we denote the 

pseudo vector dual of  JJi as Jips then,

 

                 Ji
ps = - 1

2
3ee( ):JJ i

( )2    and     JJ i
( )2 = ·Ji

ps ee( )3                              ( 2 . 3 . 1 1 )

This means that the second equation in the set (2.3.10b) can be rewritten as,

 Ji

ps
   =   å

j

  Lij
a

 X j

ps
. (2.3.12)

Looking at (2.3.10) and (2.3.12) we  see that we have decomposed the 81 elements of 

the (3-dimensional) fourth rank transport tensor Lij(4),  into three scalar quantities, Lsij, Laij and 

Ltrij. Furthermore we have found that there are three irreducible sets of forces and fluxes. 

Couplings only exist within the sets. There are no couplings of forces of one set with fluxes of 

another set. The sets naturally represent the symmetric traceless parts, the antisymmetric part and 

the trace of the second rank tensors. The three irreducible components can be identified with 

irreducible second rank polar tensor component an irreducible pseudo vector and an irreducible 

polar scalar. Curie's principle states that linear transport couples can only occur between irreducible 

tensors of the same rank and parity.

If we return to our basic equation for the entropy source strength (2.2.14) we see that 

our irreducible decomposition of Cartesian tensors allows us to make the following decomposition 

for second rank fields and fluxes,

 s   =   å
i

 
 æ
ç
è  Ji I : 

  X
i
 I   +   JJ

i
 : XX

i
   +   J

i
 : X

i

 ö
÷
ø

=   å
i

 
 æ
ç
è
 3 J

i
 X

i
   -   2 J

i

ps
 ¥ X

i

ps
   +   J

i
 : X

i

 ö
÷
ø  (2.3.13)

The conjugate forces and fluxes appearing in the entropy source equation separate into irreducible 

sets. This is easily seen when we realise that all cross couplings between irreducible tensors of 

different rank and parity vanish;  I : JJ i = I :  X  =  JJ i : X  = 0, etc. Conjugate thermodynamic 

forces and fluxes must have the same irreducible rank and parity.

We can now apply Curie's principle to the entropy source equation (2.2.13),
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 s(r,t)   =   
T(r, t)

- 1    [ T(r, t)

J
Q
(r, t) ¥ ÑÑÑÑ T(r, t)

  -  P(r, t):Ñu(r,t) 

 -  PPPP
ps

(r, t)¥Ñxu(r, t)  -  P(r,t) ÑÑÑÑ¥u(r,t)]  
(2.3.14)

In writing this equation we have used the fact that the transpose of P is equal to P, and we have 

used equation (2.3.11) and the definition of the cross product ÑÑÑÑxu = - eeee(3): ÑÑ uu to transform the 

antisymmetric part of PT. Note that the transpose of PP  is equal to - PP . There is no conjugacy 

between the vector JQ(r,t) and the pseudo vector ÑÑÑÑxu(r,t) because they differ in parity. It can be 

easily shown that for atomic fluids the antisymmetric part of the pressure tensor is zero so that the 

terms in (2.3.14) involving the vorticity ÑÑÑÑxu(r,t) are identically zero. For molecular fluids, terms 

involving the vorticity do appear but we also have to consider another conservation equation - the 

conservation of angular momentum. In our description of the conservation equations we have 

ignored angular momentum conservation. The complete description of the hydrodynamics of 

molecular fluids must include this additional conservation law.

For single component atomic fluids we can now use Curie's principle to define the 

phenomenological transport coefficients. 

 JQ   =   LQ XQ   =   - LQ 
T

2
ÑÑÑÑ T   (2.3.15a)

 P    =   L
P

 X
P

   =   - L
P

 
T

Ñ u  (2.3.15b)

 P   =   LP XP   =   - LP 
T

3 ÑÑÑÑ  ¥ u   (2.3.15c)

The positive sign of the entropy production implies that each of the phenomenological transport 

coefficients must be positive. As mentioned before these phenomenological definitions differ 

slightly from the usual definitions of the Navier-Stokes transport coefficients.

 J
Q

   =   - l ÑÑÑÑT (2.3.16a)

 P    =   - 2h Ñ u  (2.3.16b)

 P   =   - h
V

 ÑÑÑÑ  ¥ u  (2.3.16c)

These equations were postulated long before the development of linear irreversible 

thermodynamics. The first equation is known as Fourier's law of heat conduction. It gives the 

definition of the thermal conductivity l. The second equation is known as Newton's law of 
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viscosity (illustrated in Figure 2.3). It gives a definition of the shear viscosity coefficient h. The 

third equation is a more recent development. It defines the bulk viscosity coefficient hV. These 

equations are known collectively as linear constitutive equations. When they are substituted into the 

conservation equations they yield the Navier-Stokes equations of hydrodynamics. The 

conservation equations relate thermodynamic fluxes and forces. They form a system of equations 

in two unknown fields - the force fields and the flux fields. The constitutive equations relate the 

forces and the fluxes. By combining the two systems of equations we can derive the Navier-Stokes 

equations which in their usual form give us a closed system of equations for the thermodynamic 

forces. Once the boundary conditions are supplied the Navier-Stokes equations can be solved to 

give a complete macroscopic description of the nonequilibrium flows expected in a fluid close to 

equilibrium in the sense required by linear irreversible thermodynamics. It is worth restating the 

expected conditions for the linearity to be observed: 

1.) The thermodynamic forces should be sufficiently small so that linear 

constitutive relations are accurate.

2.) The system should likewise be sufficiently close to equilibrium for the local 

thermodynamic equilibrium condition to hold. For example the 

nonequilibrium equation of state must be the same function of the local 

position and time dependent thermodynamic state variables (such as the 

temperature and density), that it is at equilibrium.

3.) The characteristic distances over which the thermodynamic forces vary 

should be sufficiently large so that these forces can be viewed as being 

constant over the microscopic length scale required to properly define a local 

thermodynamic state.

4.) The characteristic times over which the thermodynamic forces vary should be 

sufficiently long that these forces can be viewed as being constant over the 

microscopic times required to properly define a local thermodynamic state.
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Figure 2.3. Newton's Constitutive relation for shear viscosity.

After some tedious but quite straightforward algebra (de Groot and Mazur, 1962), the 

Navier-Stokes equations for a single component atomic fluid are obtained. The first of these is 

simply the mass conservation equation (2.1.4).

 
¶t

¶r
   =   - ÑÑÑÑ¥(ru) (2.3.17)

To obtain the second equation we combine equation (2.1.16) with the definition of the stress tensor 

from equation (2.2.12) which gives

 r 
dt
du    =  - ÑÑÑÑ¥P    =  - ÑÑÑÑ¥

 æ
ç
è(p + P) I   +   P  ö

÷
ø  (2.3.18)

We have assumed that the fluid is atomic and the pressure tensor contains no antisymmetric part. 

Substituting in the constitutive relations, equations (2.3.16b) and (2.3.16c) gives

 r 
dt
du    =  - ÑÑÑÑp   +   h

V
 ÑÑÑÑ    (ÑÑÑÑ¥u)   +   2h ÑÑÑÑ¥(Ñ u) (2.3.19)

Here we explicitly assume that the transport coefficients hV and h  are simple constants, 

independent of  position r, time and flow rate u. The ab component of the symmetric traceless 

tensor Ñu is given by
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 (Ñ u )
ab

   =   
2
1  

 æ
ç
è ¶xa

¶ub
  +  

¶xb

¶ua
 ö
÷
ø

   -   d ab  3
1

  
¶xg

¶ug
  (2.3.20)

where as usual the repeated index g  implies a summation with respect to g . It is then 

straightforward to see that

 ÑÑÑÑ ¥(Ñ u)   =   
2
1  Ñ2

u   +   
6
1  ÑÑÑÑ(ÑÑÑÑ ¥u) (2.3.21)

and it follows that the momentum flow Navier-Stokes equation is

    r 
dt
du    =  - ÑÑÑÑp   +   h Ñ2

u   +   
 æ
ç
è 3

h
  +  h

V

 ö
÷
ø ÑÑÑÑ    (ÑÑÑÑ¥u)  (2.3.22)

The Navier-Stokes equation for energy flow can be obtained from equation (2.1.26) and 

the constitutive relations, equation (2.3.16). Again we assume that the pressure tensor is 

symmetric, and the second term on the right hand side of equation (2.1.26) becomes

 P
T
 : ÑÑÑÑu   =   

 æ
ç
è(p + P) I  +  P ö

÷
ø : 

 æ
ç
è 3
1 (ÑÑÑÑ  ¥u) I  +  Ñ u

 ö
÷
ø  

=   
 æ
ç
è
(p  -  h

V
(ÑÑÑÑ ¥u)) I  -  2h Ñ u  ö

÷
ø : 

 æ
ç
è 3
1(ÑÑÑÑ ¥u) I  +  Ñ u

 ö
÷
ø

=   p(ÑÑÑÑ¥u)   -   h
V

(ÑÑÑÑ ¥u)
2
   -   2h Ñ u : Ñ u  (2.3.23)

It is then straightforward to see that

 r 
dt

dU   =   l Ñ2T   -   p(ÑÑÑÑ ¥u)   +   h
V

(ÑÑÑÑ¥u)2   +   2h Ñ u : Ñ u.  (2.3.24)
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2.4  Non-Markovian Constitutive Relations: Viscoelasticity

Consider a fluid undergoing planar Couette flow. This flow is defined by the streaming 

velocity,

 u(r, t)  =  (u
x
,u

y
,u

z
)  =  (gy,0,0)                            (2.4.1)

According to Curie's principle the only nonequilibrium flux that will be excited by such a flow is 

the pressure tensor. According to the constitutive relation equation (2.3.16) the pressure tensor is,

                 P =
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

p

p

p

hg
hg

0

0

0 0

                                                                                 (2.4.2)

where h is the shear viscosity and g is the strain rate. If the strain rate is time dependent then the 

shear stress, -Pxy = -Pyx = hg(t). It is known that many fluids do not satisfy this relation 

regardless of how small the strain rate is. There must therefore be a linear but time dependent 

constitutive relation for shear flow which is more general than the Navier-Stokes constitutive 

relation.

Poisson (1829) pointed out that there is a deep correspondence between the shear stress 

induced by a strain rate in a fluid, and the shear stress induced by a strain in an elastic solid. The 

strain tensor is, ÑÑÑÑeeee where eeee(r,t) gives the displacement of atoms at r from their equilibrium lattice 

sites. It is clear that,

 
dt

dÑÑÑÑ eeee   =  ÑÑÑÑu (2.4.3)

Maxwell (1873) realised that if a displacement were applied to a liquid then for a short time the 

liquid must behave as if it were an elastic solid. After a Maxwell relaxation time the liquid would 

relax to equilibrium since by definition a liquid cannot support a strain (Frenkel, 1955).

It is easier to analyse this matter by transforming to the frequency domain. Maxwell said 

that at low frequencies the shear stress of a liquid is generated by the Navier-Stokes constitutive 

relation for a Newtonian fluid (2.4.2). In the frequency domain this states that,

 ~Pxy(w)   =  - h ~g(w)  (2.4.4)

where,
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 ~A(w)   =   ò
0

¥

 dt  e-iwt  A(t)  (2.4.5)

denotes the Fourier-Laplace transform of A(t).

At very high frequencies we should have,

 ~Pxy(w)   =  - G 
¶y
¶~eeee x   ,  (2.4.6)

where G is the infinite frequency shear modulus. From equation (2.4.3) we can transform the 

terms involving the strain into terms involving the strain rate (we assume that at t=0, the strain 

eeee(0)=0). At high frequencies therefore,

 ~Pxy(w)   =  - 
iw
G  

¶y
¶ ~ux    =  - 

iw
G   ~g(w) .  (2.4.7)

The Maxwell model of viscoelasticity is obtained by simply summing the high and low frequency 

expressions for the compliances  iw/G and h-1,

 ~g(w)   =  - 
 æ

ç
è G

iw   +  h
1  ö

÷
ø  ~Pxy(w)   =  - ~h

M
(w)

~
Pxy(w)

 .  (2.4.8)

The expression for the frequency dependent Maxwell viscosity is,

 ~h
M

(w)   =   
1  +  iwt

M

h
 .  (2.4.9)

It is easily seen that this expression smoothly interpolates between the high and low frequency 

limits. The Maxwell relaxation time tM = h/G controls the transition frequency between low 

frequency viscous behaviour and high frequency elastic behaviour. 
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Figure 2.4. Frequency Dependent Viscosity of the Maxwell Model.

The Maxwell model provides a rough approximation to the viscoelastic behaviour of so-called 

viscoelastic fluids such as polymer melts or colloidal suspensions. It is important to remember that 

viscoelasticity is a linear phenomenon. The resulting shear stress is a linear function of the strain 

rate. It is also important to point out that Maxwell believed that all fluids are viscoelastic. The 

reason why polymer melts are observed to exhibit viscoelasticity is that their Maxwell relaxation 

times are macroscopic, of the order of seconds. On the other hand the Maxwell relaxation time for 

argon at its triple point is approximately 10-12 seconds! Using standard viscometric techniques 

elastic effects are completely unobservable in argon.

If we rewrite the Maxwell constitutive relation in the time domain using an inverse 

Fourier-Laplace transform we see that,

 Pxy(t)  =  -ò
0

t

  ds h
M

(t-s) g(s) (2.4.10)

In this equation hM(t) is called the Maxwell memory function. It is called a memory function 

because the shear stress at time t is not simply linearly proportional to the strain rate at the current 

time t, but to the entire strain rate history, over times s where 0 £ s £ t. Constitutive relations 

which are history dependent are called non-Markovian. A Markovian process is one in which the 

present state of the system is all that is required to determine its future. The Maxwell model of 

viscoelasticity describes non-Markovian behaviour. The Maxwell memory function is easily 

identified as an exponential,
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(t)  =  G e
-t/tM

(2.4.11)
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Figure 2.5. The transient response of the Maxwell fluid to a step-function strain rate is the 

integral of the memory function for the model, hM(t).
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Figure 2.6. The transient response of the Maxwell model to a zero time delta function in the 

strain rate is the memory function itself, hM(t).

Although the Maxwell model of viscoelasticity is approximate the basic idea that liquids 

take a finite time to respond to changes in strain rate, or equivalently that liquids remember their 
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strain rate histories, is correct. The most general linear relation between the strain rate and the shear 

stress for a homogeneous fluid can be written in the time domain as,

 Pxy(t)   =  - ò
0

t

 ds  h(t-s) g(s) .  (2.4.12)

There is an even more general linear relation between stress and strain rate which is appropriate in 

fluids where the strain rate varies in space as well as in time,

 Pxy(r,t)   =  - ò
0

t

 ds  ò  dr'   h(r-r' , t-s) g(r' , s) . (2.4.13)

We reiterate that the differences between these constitutive relations and the Newtonian constitutive 

relation, equations (2.3.16), are only observable if the strain rate varies significantly over either the 

time or length scales characteristic of the molecular relaxation for the fluid. The surprise is not so 

much the validity of the Newtonian constitutive relation is limited. The more remarkable thing is 

that for example in argon, the strain rates can vary in time from essentially zero frequency to 

1012Hz, or in space from zero wavevector to 10-9m-1, before non-Newtonian effects are 

observable. It is clear from this discussion that analogous corrections will be needed for all the 

other Navier-Stokes transport coefficients if their corresponding thermodynamic fluxes vary on 

molecular time or distance scales.
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3 . 1 Classical mechanics

In nonequilibrium statistical mechanics we seek to model transport processes 

beginning with an understanding of the motion and interactions of individual atoms or 

molecules. The laws of classical mechanics govern the motion of atoms and molecules so in this 

chapter we begin with a brief description of the mechanics of Newton, Lagrange and Hamilton. 

It is often useful to be able to treat constrained mechanical systems. We will use a Principle due 

to Gauss to treat many different types of constraint - from simple bond length constraints, to 

constraints on kinetic energy. As we shall see, kinetic energy constraints are useful for 

constructing various constant temperature ensembles. We will then discuss the Liouville 

equation and its formal solution. This equation is the central vehicle of nonequilibrium statistical 

mechanics. We will then need to establish the link between the microscopic dynamics of 

individual atoms and molecules and the macroscopic hydrodynamical description discussed in 

the last chapter. We will discuss two procedures for making this conection. The Irving and 

Kirkwood procedure relates hydrodynamic variables to nonequilibrium ensemble averages  of 

microscopic quantities. A more direct procedure we will describe, succeeds in deriving 

instantaneous expressions for the hydrodynamic field variables. 

Newtonian Mechanics

Classical mechanics (Goldstein, 1980) is based on Newton's three laws of motion. 

This theory introduced the concepts of a force and an acceleration. Prior to Newton's work, the 

connection had been made between forces and velocities. Newton's laws of motion were 

supplemented by the notion of a force acting at a distance. With the identification of the force of 

gravity and an appropriate initial condition - initial coordinates and velocities - trajectories could 

be computed. Philosophers of science have debated the content of Newton's laws but when 

augmented with a force which is expressible as a function of time, position or possibly of 

velocity, those laws lead to the equation,

 m 
. .
r   =   F(r,

.
r,t) (3.1.1)

which is well-posed and possesses a unique solution.

Lagrange's equations

After Newton, scientists discovered different sets of equivalent laws or axioms upon 

which classical mechanics could be based. More elegant formulations are due to Lagrange and 

Hamilton. Newton's laws are less general than they might seem. For instance the position r, 

that appears in Newton's equation must be a Cartesian vector in a Euclidian space. One does not 

have the freedom of say, using angles as measures of position. Lagrange solved the problem of 
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formulating the laws of mechanics in a form which is valid for generalised coordinates. 

Let us consider a system with generalised  coordinates q. These coordinates may be 

Cartesian positions, angles or any other convenient parameters that can be found to uniquely 

specify the configuration of the system. The kinetic energy T, will in general be a function of 

the coordinates and their time derivatives dq/dt. If V(q) is the potential energy, we define the 

Lagrangian to be  L º T(q,dq/dt) - V(q). The fundamental dynamical postulate states that the 

motion of a system is such that the action, S, is an extremum

                 d dS dt L q q t
t

t
= =ò ( , Ç, )

0

1

0                                                         (3.1.2)

Let q(t) be the coordinate trajectory that satisfies this condition and let  q(t)+dq(t) where dq(t) is 

an arbitrary variation in q(t), be an arbitrary trajectory. The varied motion must be consistent 

with the initial and final positions. So that, dq(t1) = dq(t0) = 0. We consider the change in the 

action due to this variation.

 dS  =  ò
t
0

t
1

dt L(q+dq, .q+d .q, t)  -  ò
t
0

t
1

dt L(q, .q,t)  =  ò
t
0

t
1

dt 
 æ
ç
è ¶q

¶L  dq + 
¶ .

q
¶L d .q

 ö
÷
ø (3.1.3)

Integrating the second term by parts gives

 dS  =  
 é
ê
ë
 ¶ .q

¶L dq
 ù
ú
û
t0

t1

  +  ò
t
0

t1

  
 é
ê
ë
 ¶q

¶L  -  
dt
d  ( ¶.

q
¶L ) 

 ù
ú
û  dq dt (3.1.4)

The first term vanishes because dq is zero at both limits. Since for t0  < t < t1, dq(t) is arbitrary, 

the only way that the variation in the action dS, can vanish is if the equation,

 
dt
d  

 æ
ç
è ¶ .

q
¶L  ö

÷
ø  -  ¶q

¶L   =   0 (3.1.5)

holds for all time. This is Lagrange's equation of motion. If the coordinates are taken to be 

Cartesian, it is easy to see that Lagrange's equation reduces to Newton's.

Hamiltonian mechanics

Although Lagrange's equation has removed the special status attached to Cartesian 

coordinates, it has introduced a new difficulty. The Lagrangian is a function of generalised 

coordinates, their time derivatives and possibly of time. The equation is not symmetric with 

respect to the interchange of coordinates and velocities. Hamilton derived an equivalent set of 
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equations in which the roles played by coordinates and velocities can be interchanged. 

Hamilton defined the canonical momentum  p,

 p   º   
¶.
q

¶L(q,
.
q, t) (3.1.6)

and introduced the function

 H(q,p,t)   º   
¶.
q

¶L  
.
q   -   L   =   p 

.
q   -   L (3.1.7)

This function is of course now known as the Hamiltonian. Consider a change in the 

Hamiltonian which can be written as

 dH   =    q
.

 dp   +   p  dq
.
   -  dL (3.1.8)

The Lagrangian is a function of q, dq/dt and t so that the change dL, can be written as

 dL  =  
¶q

¶L
  dq +  

¶q
.

¶L
 dq

.
  +  

¶t

¶L
 dt (3.1.9)

Using the definition of the canonical momentum p, and substituting for dL, the expression for 

dH becomes

 dH  =  q
.

 dp  -  
¶q
¶L

 dq  -  
¶t

¶L
 dt (3.1.10)

Lagrange's equation of motion (3.1.5), rewritten in terms of the canonical momenta is

 p.   =  
¶q
¶L

(3.1.11)

so that the change in H is

 dH  =  q.  dp  -  p.  dq  -  
¶t
¶L

 dt (3.1.12)

Since the Hamiltonian is a function of  q,p and t, it is easy to see that Hamilton equations of 

motion  are

 q.   =  
¶p
¶H

          and         p.   =  - 
¶q
¶H

(3.1.13)

Chapter   3  - 4



As mentioned above these equations are symmetric with respect to coordinates and momenta. 

Each has equal status in Hamilton's equations of motion. If H has no explicit time dependence, 

its value is a constant of the motion. Other formulations of classical mechanics such as the 

Hamilton-Jacobi equations will not concern us in this book.

Gauss' Principle of Least Constraint

Apart from relativistic or quantum corrections, classical mechanics is thought to give 

an exact description of motion. In this section our point of view will change somewhat. 

Newtonian or Hamiltonian mechanics imply a certain set of constants of the motion: energy, 

and linear and angular momentum. In thermodynamically interesting systems the natural fixed 

quantities are the thermodynamic state variables; the number of molecules N, the volume V and 

the temperature T. Often the pressure rather than the volume may be preferred. 

Thermodynamically interesting systems usually exchange energy, momentum and mass with 

their surroundings. This means that within thermodynamic systems none of the classical 

constants of the motion are actually constant. 

Typical thermodynamic systems are characterised by fixed values of thermodynamic 

variables: temperature, pressure, chemical potential, density, enthalpy or internal energy. The 

system is maintained at a fixed thermodynamic state (say temperature) by placing it in contact 

with a reservoir, with which it exchanges energy (heat) in such a manner as to keep the 

temperature of the system of interest fixed. The heat capacity of the reservoir must be much 

larger than that of the system, so that the heat exchanged from the reservoir does not affect the 

reservoir temperature. 

Classical mechanics is an awkward vehicle for describing this type of system. The 

only way that thermodynamic systems can be treated in Newtonian or Hamiltonian mechanics is 

by explicitly modelling the system, the reservoir and the exchange processes. This is complex, 

tedious and as we will see below, it is also unnecessary. We will now describe a little known 

principle of classical mechanics which is extremely useful for designing equations of motion 

which are more useful from a macroscopic or thermodynamic viewpoint. This principle does 

indeed allow us to modify classical mechanics so that thermodynamic variables may be made 

constants of the motion.

Just over 150 years ago Gauss formulated a mechanics more general than Newton's. 

This mechanics has as its foundation Gauss' principle of least constraint. Gauss (1829) referred 

to this as the most fundamental dynamical principle (Whittacker 1904, Pars 1979). Suppose 

that the cartesian coordinates and velocities of a system are given at time t. Consider the 

function C, referred to by Hertz as the square of the curvature, where
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C is a function of the set of accelerations {d2ri/dt2}. Gauss' principle states that the actual 

physical acceleration corresponds to the minimum value of C. Clearly if the system is not 

subject to a constraint then C=0 and the system evolves under Newton's equations of motion. 

For a constrained system it is convenient to change variables from ri to wi where

 w
i
   =   m

i
2
1

  ri

ÁÁÁÁ
i
   =   m

i

- 
2
1

  F
i
 

(3.1.15)

Because the {wi},  are related to the Jacobi metric, we will refer to this coordinate system as the 

Jacobi frame.

The types of constraints which might be applied to a system fall naturally into two 

types, holonomic and nonholonomic. A holonomic constraint is one which can be 

integrated out of the equations of motion. For instance, if a certain generalised coordinate is 

fixed, its conjugate momentum is zero for all time, so we can simply consider the problem in 

the reduced set of unconstrained variables. We need not be conscious of the fact that a force of 

constraint is acting upon the system to fix the coordinate and the momentum. An analysis of the 

two dimensional motion of an ice skater need not refer to the fact that the gravitational force is 

exactly resisted by the stress on the ice surface fixing the vertical coordinate and velocity of the 

ice skater. We can ignore these degrees of freedom.

Nonholonomic constraints usually involve velocities. These constraints are not 

integrable. In general a nonholonomic constraint will do work on a system. Thermodynamic 

constraints are invariably nonholonomic. It is known that the Action Principle cannot be used to 

describe motion under nonholonomic constraints (Evans and Morriss, 1984b). 

We can write a general constraint in the Jacobi frame in the form

 g(w ,
.
w ,t)   =   0  (3.1.16)

where g is a function of Jacobi positions, velocities and possibly time. Either type of constraint 

function, holonomic or nonholonomic, can be written in this form. If this equation is 

differentiated with respect to time, once for nonholonomic constraints and twice for holonomic 

constraints we see that,
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 n(w ,
.

w ,t) ¥ 
. .
w    =   s(w ,

.
w ,t). (3.1.17)

We refer to this equation as the differential constraint equation and it plays a fundamental role 

in Gauss' Principle of Least Constraint. It is the equation for a plane which we refer to as the 

constraint plane. n is the vector normal to the constraint plane.

Our problem is to solve Newton's equation subject to the constraint. Newton's 

equation gives us the acceleration in terms of the unconstrained forces. The differential 

constraint equation places a condition on the acceleration vector for the system. The differential 

constraint equation says that the constrained acceleration vector must terminate on a hyper-plane 

in the 3N-dimensional Jacobi acceleration space (equation 3.1.17).

Imagine for the moment that at some initial time the system satisfies the constraint 

equation g=0. In the absence of the constraint the system would evolve according to Newton's 

equations of motion where the acceleration is given by

 . .w
i
u   =   ÁÁÁÁ

i
 (3.1.18)

This trajectory would in general not satisfy the constraint. Further, the constraint function g tells 

us that the only accelerations which do continuously satisfy the constraint, are those which 

terminate on the constraint plane. To obtain the constrained acceleration we must project the 

unconstrained acceleration back into the constraint plane.

Gauss' principle of least constraint gives us a prescription for constructing this 

projection. Gauss' principle states that the trajectories actually followed are those which 

deviate as little as possible, in a least squares sense, from the unconstrained Newtonian 

trajectories. The projection which the system actually follows is the one which minimises the 

magnitude of the Jacobi frame constraint force. This means that the force of constraint must be 

parallel to the normal of the constraint surface. The Gaussian equations of motion are then

 ..w
i
   =   ÁÁÁÁ

i
   -   ln,  (3.1.19)

where l is a Gaussian multiplier which is a function of position, velocity and time. 
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Jacobi acceleration
space

unconstrained Jacobi
acceleration

- ln

constraint plane

Gauss' Principle of Least Constraint

constraint satisfying accelaration, w¥¥

normal to the constraint
plane,  n(w,w,t)¥

Figure 3.1 Gauss' Principle of Least Constraint

To calculate the multiplier we use the differential form of the constraint function. Substituting 

for the acceleration we obtain

 l   =   n ¥ n
n ¥ ÁÁÁÁ  -  s . (3.1.20)

It is worthwhile at this stage to make a few comments about the procedure outlined 

above. First, notice that the original constraint equation is never used explicitly. Gauss' 

principle only refers to the differential form of the constraint equation. This means that the 

precise value of the constrained quantity is undetermined. The constraint acts only to stop its 

value changing. In the holonomic case Gauss' principle and the principle of least action are of 

course completely equivalent. In the nonholonomic case the equations resulting from the 

application of Gauss' Principle cannot be derived from a Hamiltonian and the principle of least 

action cannot be used to derive constraint satisfying equations. In the nonholonomic case, 

Gauss' principle does not yield equations of motion for which the work done by the constraint 

forces is a minimum.

The derivation of constrained equations of motion given above is geometric, and is 

done in the transformed coordinates which we have termed the Jacobi frame. It is not always 
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convenient to write a constraint function in the Jacobi frame, and from an operational point of 

view a much simpler derivation of constrained equations of motion is possible using Lagrange 

multipliers. The square of the curvature C is a function of accelerations only (the Cartesian 

coordinates and velocities are considered to be given parameters). Gauss' principle reduces to 

finding the minimum of C, subject to the constraint. The constraint function must also be 

written as a function of accelerations, but this is easily achieved by differentiating with respect 

to time. If G is the acceleration dependent form of the constraint, then the constrained equations 

of motion are obtained from

 
¶ . .r
¶  (C  -  lG)   =   0. (3.1.21)

It is easy to see that the Lagrange multiplier l, is (apart from the sign) equal to the Gaussian 

multiplier. We will illustrate Gauss' principle by considering some useful examples.

Gauss' Principle for Holonomic Constraints

The most common type of holonomic constraint in statistical mechanics is probably 

that of fixing bond lengths and bond angles in molecular systems. The vibrational degrees of 

freedom typically have a relaxation timescale which is orders of magnitude faster than 

translational degrees of freedom, and are therefore often irrelevant to the processes under study. 

As an example of the application of Gauss' principle of least constraint for holonomic 

constraints we consider a diatomic molecule with a fixed bond length. The generalisation of this 

method to more than one bond length is straightforward (see Edberg, Evans and Morriss, 1986) 

and the application to bond angles is trivial since they can be formulated as second nearest 

neighbour distance constraints. The constraint function for a diatomic molecule is that the 

distance between sites one and two be equal to d12, that is

 g(r, .r,t)   =   r
12
2    -   d

12
2    =   0, (3.1.22)

where we define r12 to be the vector from r1 to r2, (r12 º r2 - r1). Differentiating twice with 

respect to time gives the acceleration dependent constraint equation,

 r
12

¥ . .r
12

   +   (.r
12

)2   =   0. (3.1.23)

To obtain the constrained equations of motion we minimise the function C subject to the 

constraint equation (3.1.23). That is

 
¶ . .r

i

¶  

 æ
ç
è 2

1  m1

 æ
ç
è

..
r

1
 - m

1

F
1

 ö
÷
ø

2

  +  
2
1 m2

 æ
ç
è

. .
r

2
 - m

2

F
2

 ö
÷
ø

2

  -  l
 æ
ç
è
r12 ¥ 

. .
r12  +  (

.
r12)

2 ö
÷
ø

 ö
÷
ø

   =   0 (3.1.24)
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For i equal to 1 and 2 this gives

 m
1

..r
1
   =   F

1
  -  lr

12
(3.1.25)

m
2

..r
2
   =   F

2
  +  lr

12

Notice that the extra terms in these equations of motion have opposite signs. This is because the 

coefficients of the  r1 and r2 accelerations have opposite signs. The total constraint force on the 

molecule is zero so there is no change in the total momentum of the molecule. To obtain an 

expression for the multiplier l we combine these two equations to give an equation of motion 

for the bond vector r12,

 
. .
r12   =   

 æ
ç
è m2

F
2   -  m

1

F
1

 ö
÷
ø    +   l

 æ
ç
è m2

1   +  m1

1  ö
÷
ø  r12 (3.1.26)

Substituting this into the differential form of the constraint function (3.1.23), gives

 l   =  - 
(m

1
 + m

2
) r

12
2

r
12

 ¥ (m
1
F

2
  -  m

2
F

1
)   +   m

1
m

2
.r

12
2

 . (3.1.27)

It is very easy to implement these constrained equations of motion as the multiplier is a simple 

explicit function of the positions, velocities and Newtonian forces. For more complicated 

systems with multiple bond length and bond angle constraints (all written as distance 

constraints) we obtain a set of coupled linear equations to solve for the multipliers.

Gauss' Principle for Nonholonomic Constraints

One of the simplest and most useful applications of Gauss' Principle is to derive 

equations of motion for which the ideal gas temperature (ie. the kinetic energy) is a constant of 

the motion (Evans et. al. 1983). Here the constraint function is

 g(r,r
.
, t)   =   å

i=1

N

  
2

m
i
r

i
2

   -   
2

3NkBT
    =    0

.

 (3.1.28)

Differentiating once with respect to time gives the equation for the constraint plane 

 å
i=1

N

  m
i
 

.
r

i
 ¥ 

. .
r

i
   =   0. (3.1.29)

Therefore to obtain the constrained Gaussian equations we minimise C subject to the constraint 

equation (3.1.29). That is
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¶ . .
ri
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è2

1   å
j=1

N

  m
j
 

 æ
ç
è

..r
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  -  m

j

F
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 ö
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ø

2

   +   l   å
j=1

N

  m
j
 .r

j
 ¥ 

. .r
j

 ö
÷
ø

   =   0.  (3.1.30)

This gives

 m
i

..r
i
   =   F

i
   -   lm

i
.r
i
 .  (3.1.31)

Substituting the equations of motion into the differential form of the constraint equation, we 

find that the multiplier is given by

 l   =   

å
i=1

N

  m
i
 

.
r

i

2

å
i=1

N

  F
i
 ¥ 

.
r

i

  .  (3.1.32)

As before, l is a simple function of the forces and velocities so that the implementation of the 

constant kinetic energy constraint in a molecular dynamics computer programme only requires a 

trivial modification of the equations of motion in a standard programme. Equations (3.1.31 & 

32) constitute what have become known as the Gaussian isokinetic equations of motion. 

These equations were first proposed simultaneously and independently by Hoover et. al. (1982) 

and Evans (1983). In these original papers Gauss' principle was however not referred to. It 

was a year before the connection with Gauss' principle was made.

With regard to the general application of Gauss' principle of least constraint one 

should always examine the statistical mechanical properties of the resulting dynamics. If one 

applies Gauss' principle to the problem of maintaining a constant heat flow, then a comparison 

with linear response theory shows that the Gaussian equations of motion cannot be used to 

calculate thermal conductivity (Hoover 1986). The correct application of Gauss' principle is 

limited to arbitrary holonomic constraints and apparently, to nonholonomic constraint functions 

which are homogeneous functions of the momenta.
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3 . 2 Phase space

To give a complete description of the state of a 3-dimensional N-particle system at 

any given time it is necessary to specify the 3N coordinates and 3N momenta. The 6N 

dimensional space of coordinates and momenta is called phase space (or GGGG-space). As time 

progresses the phase point GGGG, traces out a path which we call the phase space trajectory of the 

system. As the equations of motion for GGGG are 6N first order differential equations, there are 6N 

constants of integration (they may be for example the 6N initial conditions GGGG(0)). Rewriting the 

equations of motion in terms of these constants shows that the trajectory of GGGG is completely 

determined by specifying these 6N constants. An alternate description of the time evolution of 

the system is given by the trajectory in the extended GGGG '-space, where GGGG '= (GGGG ,t). As the 6N 

initial conditions uniquely determine the trajectory, two points in phase space with different 

initial conditions form distinct non-intersecting trajectories in GGGG'-space.

Phase Space
6N-dimensional     G-space

x1

px1

y1

As time evolves the system traces out a trajectory in
6N-dimensional G-space.

(x1(t),y1(t),z1(t), ...zN(t),px1(t),py1(t), ... ,pzN(t)) = G(t)

G(t)

Figure 3.2 Phase Space Trajectory

To illustrate the ideas of GGGG-space and GGGG '-space it is useful to consider one of the 
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simplest mechanical systems, the harmonic oscillator. The Hamiltonian for the harmonic 

oscillator is  H = 1/2(kx2 + p2/m)  where m is the mass of the oscillator and k is the spring 

constant. The equations of motion are

 
.
x   =   

¶p
¶H   =   m

p

(3.2.1)

.
p   =  - 

¶x
¶H   =  - kx  

and the energy (or the Hamiltonian) is a constant of the motion. The GGGG-space for this system is 

2-dimensional (x,p) and the GGGG-space trajectory is given by

 (x(t),p(t))   =   (x0
cos wt  +  

mw

p
0  sin wt, p0

cos wt  -  mwx0
sin wt) (3.2.2)

The constants x0 and p0 are the 2 integration constants written in this case as an initial 

condition. The frequency w is related to the spring constant and mass by w2 = k/m. The GGGG-

space trajectory is an ellipse,

 m2w2x(t)
2
   +   p(t)

2
   =   m2w2x0

2  +  p0
2  (3.2.3)

which intercepts the x-axis at  ± (x02 + p02/m2w2)1/2, and the p-axis at  ± (p02 + m2w2x02)1/2. 

The period of the motion is T = 2p/w = 2p(m/k)1/2. This is the surface of constant energy for 

the harmonic oscillator. Any oscillator with the same energy must traverse the same GGGG-space 

trajectory, that is another oscillator with the same energy, but different initial starting points 

(x0,p0) will follow the same ellipse but with a different initial phase angle.

The trajectory in GGGG'-space is a elliptical coil, and the constant energy surface in GGGG'-

space is a elliptical cylinder, and oscillators with the same energy start from different points on 

the ellipse at time zero (corresponding to different initial phase angles), and wind around the 

elliptical cylinder. The trajectories in GGGG'-space are non-intersecting. If two trajectories in GGGG '-

space meet at time t, then the two trajectories must have had the same initial condition. As the 

choice of time origin is arbitrary, the trajectories must be the same for all time.

In GGGG-space the situation is somewhat different. The trajectory for the harmonic 

oscillator winds around the ellipse, returning to its initial phase point  (x0, p0) after a time T. 

The period of time taken for a system to return to (or to within an e-neighbourhood of) its initial 

starting phase is called the Poincar� recurrence time. For a simple system such as the harmonic 

oscillator the recurrence time is trivial to calculate, but for higher dimensional systems the 

recurrence time quickly exceeds the estimated age of the universe.
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3 . 3 Distribution functions and the Liouville equation

In the first few sections of this chapter we have given a description of the mechanics 

of individual N-particle systems. The development which follows describes an ensemble of 

such systems; that is an essentially infinite number of systems characterised by identical 

dynamics and identical state variables (N,V,E or T etc.) but different initial conditions, (GGGG(0)). 

We wish to consider the average behaviour of a collection of macroscopically identical systems 

distributed over a range of initial states (microstates). In generating the ensemble we make the 

usual assumptions of classical mechanics. We assume that it is possible to know all the 

positions and momenta of an N particle system to arbitrary precision at some initial time, and 

that the motion can be calculated exactly from the equations of motion.

The ensemble contains an infinite number of individual systems so that the number 

of systems in a particular state may be considered to change continuously as we pass to 

neighbouring states. This assumption allows us to define a density function f(GGGG ,t), which 

assigns a probability to points in phase space. Implicit in this assumption is the requirement that 

f(GGGG,t), has continuous partial derivatives with respect to all its variables, otherwise the phase 

density will not change continuously as we move to neighbouring states. If the system is 

Hamiltonian and all trajectories are confined to the energy surface then f(GGGG,t) will not have a 

continuous partial derivatives with respect to energy. Problems associated with this particular 

source of discontinuity can obviously be avoided by eliminating the energy as a variable, and 

considering f(GGGG,t) to be a density function defined on a surface of constant energy (effectively 

reducing the dimensionality of the system). However it is worth pointing out that other sources 

of discontinuity in the phase space density, may not be so easily removed. 

To define a distribution function for a particular system we consider an ensemble of 

identical systems whose initial conditions span the phase space specified by the macroscopic 

constraints. We consider an infinitesimal element of phase space located at q, p º GGGG . The 

fraction of systems dN, which at time t have coordinates and momenta within dq, dp of q, p is 

used to define the phase space distribution function f(q,p,t), by

 dN   =   f(q ,p ,t) dq dp. (3.3.1)

The total number of systems in the ensemble is fixed, so integrating over the whole phase space 

we can normalise the distribution function,

 1   =    ò f(q,p ,t)  dq  dp . (3.3.2)

If we consider a small volume element of phase space, the number of trajectories 

entering the rectangular volume element  dq dp through some face will in general be different 

from the number which leave through an opposite face. For the faces normal to the q1-axis, 
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located at q1, and q1+ dq1, the fraction of ensemble members entering the first face is

 f(q
1
,. . . .) .q

1
(q

1
, . . .. )  dq

2
 . . ..  dq

3N
  dp .

Similarly the fraction of points leaving through the second face is

 f(q
1
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,. . . .) .q
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Combining these expressions gives the change in dN due to fluxes in the q1 direction

 
dt
d  dNq

1
   =  - 
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è
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q

1
 ¶q

1

¶f   +  f ¶q
1

¶ .q
1  ö

÷
ø   dq dp. (3.3.3)

Summing over all coordinate (and momentum) directions gives the total fractional change dN as
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  dq dp.  (3.3.4)

Dividing through by the phase space volume element  dq dp we obtain the rate of change in 

density f(q,p), at the point (q,p), 

 
dq dp

1
  

dt
d

 dN    =   
¶t
¶  (

dq dp

dN )   =   
¶t

¶f
 |

q,p

(3.3.5)

Using the notation, GGGG    = (q,p) = (q1, q2, ...... q3N, p1, p2, ...... p3N) for the 6N-dimensional 

phase point, this may be written as

 
¶t
¶f  |

GGGG
   =  - f 

¶GGGG
¶  ¥ 

.
GGGG    -   

.
GGGG  ¥ 

¶GGGG
¶f    =  - 

¶GGGG
¶  ¥ ( .

GGGG  f). (3.3.6)

This is the Liouville equation for the phase space distribution function. Using the streaming or 

total time derivative of the distribution function, we can rewrite the  Liouville equation in an 

equivalent form as,

 
dt
df    =   

¶t
¶f   +   

.
GGGG ¥ 

¶GGGG
¶f    =   - f 

¶GGGG
¶  ¥ 

.
GGGG   º  - f L(GGGG). (3.3.7)

This equation has been obtained without reference to the equations of motion. Its correctness  

Chapter   3  - 15



does not require the existence of a Hamiltonian to generate the equations of motion. The 

equation rests on two conditions: that ensemble members cannot be created or destroyed and 

that the distribution function is sufficiently smooth that the appropriate derivatives exist. L(GGGG ) 

is called the phase space compression factor since it is equal to the negative time derivative of 

the logarithm of the phase space distribution function.

 
dt
d

 ln[f(GGGG , t)]   =  - L(GGGG) (3.3.8)

The Liouville equation is usually written in a slightly simpler form. If the equations 

of motion can be generated from a Hamiltonian, then it is a simple matter to show that L(GGGG) =0. 

This is so even in the presence of external fields which may be driving the system away from 

equilibrium by performing work on the system.
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The existence of a Hamiltonian is a sufficient, but not necessary condition for the phase space 

compression factor to vanish. If phase space is incompressible then the Liouville equation takes 

on its simplest form,

 
dt
df    =   0. (3.3.10)

Time Evolution of the distribution function

The following sections will be devoted to developing a formal operator algebra for 

manipulating the distribution function and averages of mechanical phase variables. This 

development is an extension of the treatment given by Berne (1977) which is applicable to 

Hamiltonian systems only. We will use the compact operator notation

 
¶t

¶f
   =   - iL  f   =  - 
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è
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GGGG ¥ ¶GGGG

¶  ö
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ø  f  (3.3.11)

for the Liouville equation, equation (3.3.6). The operator iL is called the distribution function 

(or f-) Liouvillean. Both the distribution function f, and the f-Liouvillean are functions of the 

initial phase GGGG. We assume that there is no explicit time dependence in the equations of motion 

(time varying external fields will be treated in Chapter 8). Using this notation we can write the 

formal solution of the Liouville equation for the time dependent N-particle distribution function 
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f(t) as

 f(GGGG ,t)   =   exp(-iL t) f(GGGG ,0), (3.3.12)

where f(0), is the initial distribution function. This representation for the distribution function 

contains the exponential of an operator, which is a symbolic representation for the infinite series 

of operators. The f-propagator is defined as,

 exp(-iL t)   =   å
n=0

¥

  
n!

(- )n

  (iL)
nt

(3.3.13)

The formal solution given above can therefore be written as
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¥
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(-t)n
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n
  f(0)   =   å
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¥
  

n!
tn   

¶tn
¶n

  f(0). (3.3.14)

This form makes it clear that the formal solution derived above is the Taylor series expansion of 

the explicit time dependence of f(GGGG,t),  about  f(GGGG,0).

Time Evolution of phase variables

We will need to consider the time evolution of functions of the phase of the system. 

Such functions are called phase variables. An example would be the phase variable for the 

internal energy of a system, H0 = Si pi2/2m + F(q) = H0(GGGG). Phase variables by definition, do 

not depend on time explicitly, their time dependence comes solely from the time dependence of 

the phase GGGG. Using the chain rule, the equation of motion for an arbitrary phase variable B(GGGG) 

can be written as

 
.
B(GGGG)   =   

.
GGGG ¥ ¶GGGG

¶  B   =   å
i=1

N

  é
ê
ë

.
q

i
¥ ¶q

i

¶   +  
.
p

i
¥ ¶p

i

¶  ù
ú
û
 B(GGGG )   º   iL(GGGG ) B(GGGG). (3.3.15)

The operator associated with the time derivative of a phase variable iL( GGGG) is referred to as the 

phase variable (or p-) Liouvillean. The formal solution of this equation can be written in terms 

of the p-propagator, eiLt. This gives the value of the phase variable as a function of time

 B(t)   =   exp(iLt) B(0). (3.3.16)

This expression is very similar in form to that for the distribution function. It is the Taylor series 

expansion of the total time dependence of B(t), expanded about B(0). If the phase space 

compression factor L(GGGG) is identically zero then the p-Liouvillean is equal to the f-Liouvillean, 

and the p-propagator is simply the adjoint or Hermitian conjugate of the f-propagator. In general 
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this is not the case.

Properties of Liouville Operators

In this section we will derive some of the more important properties of the Liouville 

operators. These will lead us naturally to a discussion of various representations of the 

properties of classical systems. The first property we shall discuss relates the p-Liouvillean to 

the f-Liouvillean as follows,

 òdGGGG f(0) iL  B( GGGG )    =   - òdGGGG B (GGGG ) iL  f(0) (3.3.17)

This is true for an arbitrary distribution function f(0). To prove this identity the LHS can be 

written as
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=  -  òdGGGG B(GGGG ) iL f(GGGG). (3.3.18)

The boundary term (or surface integral) is zero because f(0) ® 0 as any component of the 

momentum goes to infinity, and f(0) can be taken to be periodic in all coordinates. If the 

coordinate space for the system is bounded then the surface S is the system boundary, and the 

surface integral is again zero as there can be no flow through the boundary.

Equations (3.3.17 & 18) show that L, L are adjoint operators. If the equations of 

motion are such that the phase space compression factor, (3.3.8), is identically zero, then 

obviously L=L and the Liouville operator is self-adjoint, or Hermitian.

Schr�dinger and Heisenberg Representations

We can calculate the value of a phase variable B(t) at time t by following B as it 

changes along a single trajectory in phase space. The average < B(GGGG(t)) > can then be calculated 

by summing the values of B(t) with a weighting factor determined by the probability of starting 

from each initial phase GGGG. These probabilities are chosen from an initial distribution function 

f(GGGG,0). This is the Heisenberg picture of phase space averages.

 < B(t) >   =   òdGGGG  B(t)  f(GGGG )   =   òdGGGG  f(GGGG)  exp( iLt )  B(GGGG) (3.3.19)
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The Heisenberg picture is exactly analogous to the Lagrangian formulation of fluid mechanics; 

we can imagine that the phase space mass point  has a differential box dGGGG surrounding it which 

changes shape (and volume for a compressible fluid) with time as the phase point follows its 

trajectory. The probability of the differential element, or mass f(GGGG)dGGGG remains constant, but the 

value of the observable changes implicitly in time. 

 The second view is the Schr�dinger, or distribution based picture. 

¶

The Schrodinger-Heisenberg

Equivalence

The Heisenberg Picture

G(t)

DG(0)

B(G(0)) B(G(t))

DG(t)

B
.

= G
.

. G B º iL(G) B(G)¶
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The Schrodinger Picture

DG

t
¶

¶ ¶
¶f(G,t)

= -
G . G

.
f(G,t) º -iL f(G,t)

f(G,t) ~ DG
DN(t) the local density of ensemble

representatives=

Figure 3.3 The Schr�dinger-Heisenberg Equivalence 

In this case we note that < B(t) > can be calculated by sitting at a particular point in phase space 

and calculating the density of ensemble points as a function of time. This will give us the time 

dependent N-particle distribution function f(GGGG,t). The average of B can now be calculated by 

summing the values of B(GGGG) but weighting these values by the current value of the distribution 

function at that place in phase space. Just as in the Eulerian formulation of fluid mechanics, the 

observable takes on a fixed value B(GGGG) for all time, while mass points with different probability 

flow through the box.

 < B(t) >   =   òdGGGG  B(GGGG )  f(GGGG ,t)   =   òdGGGG  B(GGGG)  exp( -iLt )  f(GGGG ,0) (3.3.20)

The average value of B changes with time as the distribution function changes. The average of 

B is computed by multiplying the value of B(GGGG), by the probability of find the phase point GGGG at 

time t, that is f(GGGG,t).

As we have just seen these two pictures are of course equivalent. One can also prove 

their equivalence using the Liouville equation. This proof is obtained by successive integrations 

by parts, or equivalently by repeated applications of equation (3.3.17). Consider
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 òdGGGG  f(GGGG) B(t)   =   òdGGGG  f(GGGG) exp(iLt) B(GGGG)

=   å
n=0

¥

  
n!
1   òdGGGG  f(GGGG) (iLt)

n
 B(GGGG)

=   å
n=0

¥

  
n!
1   òdGGGG  f(GGGG) 

 æ
ç
è
t    

.
GGGG ¥ 

¶GGGG
¶  ö

÷
ø

n

  B(GGGG).  (3.3.21)

One can unroll each p-Liouvillean in turn from the phase variable to the distribution function 

(for the first transfer we consider (iL) n-1 B to be a composite phase variable) so that equation 

(3.3.21) becomes,

 =   å
n=0

¥
  

n!
1   òdGGGG  

 ì
í
î
-t ¶GGGG

¶
 ¥ 

 æ
ç
è

.
GGGG f(GGGG)

 ö
÷
ø
 ü
ý
þ 

 æ
ç
è
t 

.
GGGG ¥ ¶GGGG

¶  ö
÷
ø

n-1

 B(GGGG)  

This is essentially the property of phase and distribution function Liouvilleans which we have 

already proved, applied to nth Liouvillean. Repeated application of this result leads to

 =   å
n=0

¥

  
n!

(- )n

  òdGGGG  [ (
¶GGGG

¶
. GGGG )

n
  f(GGGG) ]  B(GGGG)

.t
=   òdGGGG  B(GGGG)  exp(-iLt)  f(GGGG)

So finally we have the result,

 òdGGGG f(GGGG) B(t)  =   òdGGGG  B(GGGG )  f(GGGG, t) (3.3.22)

The derivation we have used assumes that the Liouvillean for the system has no explicit time 

dependence. (In Chapter 8 we will extend the derivation of these and other results to the time 

dependent case.) Our present derivation make no other references to the details of either the 

initial distribution function, or the equations of motion for the system. This means that these 

results are valid for systems subject to time independent external fields, whether or not those 

equations are derivable from an Hamiltonian. These results are also independent of whether or 

not the the phase space compression factor vanishes identically . 

A final point that can be made concerning the Schr�dinger and Heisenberg pictures is 

that these two ways of computing phase averages by no means exhaust the range of 

possibilities. The Schr�dinger and Heisenberg pictures differ in terms of the time chosen to 

calculate the distribution function, f(GGGG,t). In the Heisenberg picture that time is zero while in the 

Schr�dinger picture the time is t. One can of course develop intermediate representations 

corresponding any time between 0 and t (eg. the interaction representation).
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3 . 4 Ergodicity, Mixing and Lyapunov exponents

For many systems it is apparent that after possible initial transients lasting a time t 0, 

the N particle distribution function f(GGGG ,t), becomes essentially time independent. This is 

evidenced by the fact that the macroscopic properties of the system relax to fixed average 

values. This obviously happens for equilibrium systems. It also occurs in some nonequilibrium 

systems, so-called nonequilibrium steady states. We will call all such systems stationary.

For a stationary system, we may define the ensemble average of a phase variable 

B(GGGG), using the stationary distribution function f(GGGG), so that

 < B >   =   òdGGGG  f(GGGG)  B(GGGG).  (3.4.1)

On the other hand we may define a time average of the same phase variable as,

 < B >t  º   lim
T®¥

   
T
1

  ò
t0

t0+T

  dt  B(t) (3.4.2)

where t0 is the relaxation time required for the establishment of the stationary state. An ergodic 

system is a stationary system for which the ensemble and time averages of usual phase 

variables, exist and are equal. By usual we mean phase variable representations of the common 

macroscopic thermodynamic variables (see ¤3.7).  

It is commonly believed that all realistic nonlinear many body systems are ergodic.

Example

We can give a simple example of ergodic flow if we take the energy surface to be the 

two-dimensional unit square 0<p<1 and 0<q<1. We shall assume that the equations of motion 

are given by

 p
.
   =   a                   q

.
   =   1 (3.4.3)

and we impose periodic boundary conditions on the system. These equations of motion can be 

solved to give 

 p(t)   =   p0   +   at
(3.4.4)

q(t)   =   q
0
   +   t

The phase space trajectory on the energy surface is given by eliminating t from these two 
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equations

 p   =   p
0
   +   a(q - q

0
) (3.4.5)

If a is a rational number, a =m/n, then the trajectory will be periodic and will repeat after a 

period T=n. If a is irrational, then the trajectory will be dense on the unit square but will not fill 

it. When a is irrational the system is ergodic. To show this explicitly consider the Fourier series 

expansion of an arbitrary phase function A(q,p),

 A(q,p)   =   å
j, k=-¥

¥

   A
jk

   exp(2pi(jq + kp)) (3.4.6)

We wish to show that the time average and phase average of A(q,p) are equal for a irrational. 

The time average is given by

 <A>t   =   lim
T®¥

   ò
t0

t0+T

  dt   å
j,k=-¥

¥

   Ajk  exp( 2pi [ j(q0+t) + k(p0+at) ] )

=  A
00

 +  lim
T®¥

   
T
1

  å
j,k¹0

   A
jk

  e
2pi[j(q0+t0)+k(p0+at0)]

  
2pi(j+ak)

e2pi(j+ak)T  -  1
(3.4.7)

For irrational a, the denominator can never be equal to zero, therefore

 <A>
t
   =   A

00
(3.4.8)

Similarly we can show that the phase space average of A is

 <A>
qp

   =   ò
0

1

dq  ò
0

1

dp   A(q,p)   =   A
00

(3.4.9)

and hence the system is ergodic. For rational a the denominator in (3.4.7) does become 

singular for a particular jk-mode. The system is in the pure state labelled by jk. There is no 

mixing. 

Ergodicity does not guarantee the relaxation of a system toward a stationary state.   

Consider a probability density which is not constant over the unit square, for example let 

f(q,p,t=0) be given by

 f(q,p,0)   =   sin(pp
0
) sin(pq

0
), (3.4.10)
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then at time t, under the above dynamics (with irrational a),  it it will be 

 f(q,p, t)   =   sin(p(p
0
-at)) sin(p(q

0
-t)). (3.4.11)

The probability distribution is not changed in shape, it is only displaced. It has also not relaxed 

to a time independent equilibrium distribution function. However after an infinite length of time 

it will have wandered uniformly over the entire energy surface. It is therefore ergodic but it is 

termed nonmixing.

It is often easier to show that a system is not ergodic, rather than to show that it is 

ergodic. For example the phase space of a system must be metrically transitive for it to be 

ergodic. That is, all of phase space, except possibly a set of measure zero, must be accessible to 

almost all the trajectories of the system. The reference to almost all , is because of the 

possibility that a set of initial starting states of measure zero, may remain forever within a 

subspace of phase space which is itself of measure zero. Ignoring the more pathological cases, 

if it is possible to divide phase space into two (or more) finite regions of nonzero measure, so 

that trajectories initially in a particular region remain there forever, then the system is not 

ergodic. A typical example would be a system in which a particle was trapped in a certain region 

of configuration space. Later we shall see examples of this specific type.

Lyapunov Exponents

If we consider two harmonic oscillators (see ¤3.2) which have the same frequency w 

but different initial conditions (x1,p1) and (x2,p2), we can define the distance between the two 

phase points by

 d  =  || GGGG ||  = (GGGG¥GGGG )
2
1

  =    (x2 - x1)
2
 + 

m2w2

(p
2
 - p

1
)
2

(3.4.10)

Using the equation for the trajectory of the harmonic oscillator (3.2.2), we see that as a function 

of time this distance is given by

 d(t)  =    (x2(t) - x1(t))
2
 + 

m2w2

(p
2
(t) - p

1
(t))

2

    =   d(0)  (3.4.11)

where xi(t) and pi(t) are the position and momenta of oscillator i, at time t. This means that the 

trajectories of two independent harmonic oscillators always remain the same distance apart in in 

GGGG-space.
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This is not the typical behaviour of nonlinear systems. The neighbouring 

trajectories of most N-body nonlinear systems tend to drift apart with time. Indeed it is clear that 

if a system is to be mixing then the separation of neighbouring trajectories is a precondition. 

Weakly coupled harmonic oscillators are an exceptions to the generally observed trajectory 

separation. This was a cause of some concern in the earliest dynamical simulations (Fermi, 

Pasta & Ulam, 1955).

 As the separation between neighbouring trajectories can be easily calculated in a 

classical mechanical simulation, this has been used to obtain quantitative measures of the mixing 

properties of nonlinear many-body systems. If we consider two N-body systems composed of 

particles which interact via identical sets of interparticle forces, but whose initial conditions 

differ by a small amount, then the phase space separation is observed change exponentially as

 d(t)   º    
 æ
ç
è

GGGG 1(t)  -  GGGG 2(t) ö
÷
ø

2

   @    c exp(lt).   (3.4.12)

At intermediate times the exponential growth of d(t) will be dominated by the fastest growing 

direction in phase space (which in general will change continuously with time). This equation 

defines the largest Lyapunov exponent  l for the system (by convention l is defined to be real, 

so any oscillating part of the trajectory separation is ignored). For the harmonic oscillator the 

phase separation is a constant of the motion and therefore the Lyapunov exponent l, is zero. In 

practical applications this exponential separation for an N particle system continues until it 

approaches a limit imposed by the externally imposed boundary conditions - the container walls, 

or the energy, or other thermodynamic constraints on the system (¤ 7.8). If the system has 

energy as a constant of the motion then the maximum separation is the maximum distance 

between two points on the energy hypersphere. This depends upon the value of the energy and 

the dimension of the phase space.

The largest Lyapunov exponent indicates the rate of growth of trajectory separation 

in phase space. If we consider a third phase point GGGG3(t), which is constrained such that the 

vector between GGGG1 and GGGG3 is always orthogonal to the vector between GGGG1 and GGGG2, then we can 

follow the rate of change of a two dimensional area in phase space. We can use these two 

directions to define an area element V2(t), and rate of change of the volume element is given by

 V
2
(t)    =    V

2
(0)  exp ( [l

1
  +  l

2
] t ) (3.4.13)

As we already know the value of l1, this defines the second largest Lyapunov exponent l2. In 

a similar way, if we construct a third phase space vector GGGG14(t) which is constrained to be 

orthogonal to both GGGG 12(t) and GGGG 13(t), then we can follow the rate of change of a three 

dimensional volume element V3(t) and calculate the third largest exponent l3;
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 V
3
(t)   =   V

3
(0)  exp ([l

1
  +  l

2
  +  l

3
] t ) (3.4.14)

This construction can be generalised to calculate the full spectrum of Lyapunov 

exponents for an N particle system. We consider the trajectory GGGG(t) of a dynamical system in 

phase space and study the convergence or divergence of neighbouring trajectories by taking a 

set of basis vectors (tangent vectors) in phase space {dddd1,dddd2,dddd3,....}, where  dddd i= GGGG i-GGGG0. Some 

care must be exercised in forming the set of basis vectors to ensure that the full dimension of 

phase space is spanned by the basis set, and that the basis set is minimal. This simply means 

that constants of the motion must be considered when calculating the dimension of accessible 

phase space. If the equation of motion for a trajectory is of the form

 GGGG
¥
    =    G(GGGG ) (3.4.15)

then the equation of motion for the tangent vector  ddddi  is

 dddd
¥
 
i
    =    F

i
(GGGG)    =    T(GGGG) ¥ dddd

i
   +   O(dddd

i
2) (3.4.16)

Here T(GGGG) is the Jacobian matrix (or stability matrix ¶G/¶GGGG) for the system. If the magnitude of 

the tangent vector is small enough the nonlinear terms in equation (3.4.16) can be neglected. 

The formal solution of this equation is

 dddd
i
(t)    =    exp[ò

0

t

ds  T(s)]  dddd
i
(0) (3.4.17)

The mean exponential rate of growth of the ith tangent vector, gives the ith Lyapunov exponent

 l
i
(GGGG (0), dddd

i
(0))    =    lim

t® ¥
    

t

1
  ln  

|| dddd
i
(0) ||

|| dddd
i
(t) ||

(3.4.18)

The existence of the limit is ensured by the multiplicative ergodic theorem of Oseledec [1968] 

(see also Eckmann and Ruelle [1985]). The Lyapunov exponents can be ordered  l1 > l2 >.... 

> lM and if the system is ergodic, the exponents are independent of the initial phase GGGG(0) and 

the initial phase space separation ddddi(0).

If we consider the volume element VN where N is the dimension of phase space then 

we can show that the phase space compression factor gives the rate of change of phase space 

volume, and that this is simply related to the sum of the Lyapunov exponents by
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 V
¥
 
N

   =    < 
¶GGGG

¶
 ¥GGGG

¥
 >  V

N
    =    (å

i=1

N

  l
i
 )  V

N
(3.4.19)

For a Hamiltonian system, the phase space compression factor is identically zero, so the phase 

space volume is conserved. This is a simple consequence of Liouville's theorem. From equation 

(3.4.19) it follows that the sum of the Lyapunov exponents is also equal to zero. If the system 

is time reversible then the Lyapunov exponents occur in pairs (-li,li). This ensures that d(t), 

V2(t), V3(t), etc. change at the same rate with both forward and backward time evolution. It is 

generally believed that it is necessary to have at least one positive Lyapunov exponent for the 

system to be mixing. In chapters 7 and 10 we will return to consider Lyapunov exponents in 

both equilibrium and nonequilibrium systems.
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3 . 5 Equilibrium Time Correlation Functions

We shall often refer to averages over equilibrium distribution functions f0 (we use 

the subscript zero to denote equilibrium, which should not be confused with f(0), a distribution 

function at t=0). Distribution functions are called equilibrium if they pertain to steady, 

unperturbed equations of motion and they have no explicit time dependence. An equilibrium 

distribution function satisfies a Liouville equation of the form

 
¶t
¶

 f0   =   - iL f0   =   0 (3.5.1)

This implies that the equilibrium average of any phase variable is a stationary quantity. That is, 

for an arbitrary phase variable B,

 
dt
d

 < B(t) >
0
   =   

dt
d

 òdGGGG  f
0
(GGGG )  exp(iLt)  B(GGGG )

=    òdGGGG  f0  ¶t
¶  exp(iLt)  B(GGGG)

=    òdGGGG  f
0
  iL exp(iLt)  B(GGGG)

=   - òdGGGG  [iL f
0
(GGGG)]  exp(iLt)  B(GGGG)   =   0 (3.5.2)

 We will often need to calculate the equilibrium time correlation function of a phase 

variable A with another phase variable B at some other time. We define the equilibrium time 

correlation function of A and B by

 CAB(t)   º     ò  dGGGG f0 B
*
 e

iLt
A  = < A(t) B

*>0 (3.5.3)

B* denotes the complex conjugate of the phase variable B. Sometimes we will refer to the 

autocorrelation function of a phase variable A. If this variable is real one can form a simple 

graphical representation of how one calculates such functions (see Figure 3.4).
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A(t)

time

Dt Dt

t1 t  +Dt1 t 2 t 2 +Dt

t

 < A(0)A(Dt) > = Nt

1 å
i=1

Nt

 A(ti)A(ti+Dt)    ,     ti=0, t, 2t, ......

for samples in the sum to be independent, t should be chosen so that,

< A(0)A(t ) > << < A(0)  >2

Equilibrium time auto-correlation 
function of a real variable A.

Figure 3.4

Because the averages are to be taken over a stationary equilibrium distribution 

function, time correlation functions are only sensitive to time difference between which A and B 

are evaluated. CAB(t) is independent of the particular choice of the time origin. If  iL  generates 

the distribution function f0, then the propagator exp(-iLt)  preserves f0. (The converse is not 

necessarily true.) To be more explicit  f0(t1) = exp(-iLt1) f0  =  f0, so that CAB(t) becomes

 C
AB

(t)  =  ò  dGGGG f
0
 B* eiLtA  = ò dGGGG f

0
(t

1
) B* eiLtA

=   ò dGGGG  (exp[-iL t1] f0) B
*
 exp[iLt] A 

=  ò dGGGG  f
0
 (exp[iLt

1
]B

*
) (exp[iL(t+t

1
)] A

=   òdGGGG  f
0
  A(t

1
+ t)  B (t

1
)* (3.5.4)

In deriving the last form of (3.5.4) we have used the important fact that since iL=dGGGG/dt¥¶/¶GGGG 

and the equations of motion are real it follows that L is pure imaginary. Thus, (iL)*=iL and 

(eiLt)*= eiLt. Comparing (3.5.4) with the definition of CAB(t), above we see that the equilibrium 

time correlation function is independent of the choice of time origin. It is solely a function of the 

difference in time of the two arguments,  A and B. A further identity follows from this result if 

we choose t1 to be -t. We find that

 C
AB

(t) = <A(t)B*(0)>
0
 = <A(0)B*(-t)>

0
 (3.5.5)
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So that,

 C
AB
 * (t) = < A* B(-t) > = C

BA
(-t) (3.5.6)

or using the notation of section 3.3,

                                     

 

 é
ê
ë
 òdGGGG f

0
 B* eiLt A 

 ù
ú
û

*

   =   
 é
ê
ë
 òdGGGG  A e-iLt 

 æ
ç
è
f
0
 B* ö

÷
ø

 ù
ú
û

*

=   
 é
ê
ë
 òdGGGG  f

0
 A e-iLt B* 

 ù
ú
û

*

=   òdGGGG f0 A* e-iLt B.  (3.5.7)

The second equality in equation (3.5.7) follows by expanding the operator exp(-iL t) and 

repeatedly applying the identity

 iLt 
 æ
ç
è
f
0
 B*  ö

÷
ø    =   

¶GGGG
¶

 ¥ 
 æ
ç
è

.
GGGG  f

0
 B* ö

÷
ø    =   B* 

¶GGGG
¶

 ¥ 
 æ
ç
è

.
GGGG  f

0
 ö
÷
ø   +  f

0
 

.
GGGG ¥ 

¶GGGG
¶  B*

=   B* iL f
0
  +  f

0
 iL B*

=   f
0
 iL

The term iL f0 is zero from equation (3.5.1).

Over the scalar product defined by equation (3.5.3), L is an Hermitian operator. The 

Hermitian adjoint of L denoted, L  can be defined by the equation,

 [ò dGGGG f0 B
*
 e

iLt
A ]

*

  º  ò  dGGGG f0 A
*
 exp[ -iL

 
t] B (3.5.8)

Comparing (3.5.8) with (3.5.7) we see two things: we see that the Liouville operator L is self 

adjoint or Hermitian (L=L ); and therefore the propagator e iLt, is unitary. This result stands 

in contrast to those of ¤3.3, for arbitrary distribution functions.

We can use the autocorrelation function of A to define a norm in Liouville space. 

This length or norm of a phase variable A, is defined by the equation,
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 || A ||
2
   =   òdGGGG  f

0
  A(GGGG )  A*(GGGG )  =   òdGGGG  f

0
  | A(GGGG) |

2
 

=   < | A(GGGG) |2 >
0
   ³    0 (3.5.9)

We can see immediately that the norm of any phase variable is time independent because

 || A(t) ||2   =   òdGGGG  f
0
  A(t)  A*(t)

=   òdGGGG  f0  (exp(iLt)  A(GGGG))(exp(iLt)  A
*
(GGGG))

=   òdGGGG  f
0
  exp(iLt) (A(GGGG)  A

*
(GGGG))

=   òdGGGG  (exp(-iL
 
t)  f

0
)  |A|

2
 = || A(0) ||

2
(3.5.10)

The propagator is said to be norm preserving. This is a direct result of the fact that the 

propagator is a unitary operator.  The propagator can be thought of as a rotation operator in 

Liouville space. 

A(t) = eiLtA

A(0) = eiL0A = A

r(t)  =  <|A(t)|2>0
1/2

       =    r(0)

The propagator is norm preserving.

Note:   < B >0  =  º dG f0 B

Figure 3.5

A phase variable whose norm is unity is said to be normalised. The scalar product, (A,B*) of 

two phase variables A,B is simply the equilibrium average of A and B* namely <AB*>0. The 
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norm of a phase variable is simply the scalar product of the variable with itself. The 

autocorrelation function CAA(t) has a zero time value which is equal to the norm of A. The 

propagator increases the angle between A* and A(t), and the scalar product which is the 

projection of A(t) along A*, therefore decreases. The autocorrelation function of a given phase 

variable therefore measures the rate at which the 6N-dimensional rotation occurs.

We will now derive some relations for the time derivatives of time correlation 

functions. It is easy to see that

 
dt
d

  C
AB

(t)   =   
dt
d

 òdGGGG  f
0
  (exp(iLt)  A(GGGG ))  B*(GGGG)

  =   òdGGGG   f0  (iL exp(iLt)  A(GGGG ))  B (GGGG )   =   C
A
.
B

(t)
*

(3.5.11)

=  - ò dGGGG (e
iLt

A) iL (f
0
B

*
) = - ò dGGGG    A(t) 

¶GGGG
¶

 (GGGGf
0
B

*
)

¥

=   - òdGGGG  f0  (exp(iLt)  A(GGGG))  iL B
*
(GGGG)

=   - òdGGGG  f
0
  (exp(iLt)  A(GGGG))  

.
B

*
(GGGG)

=   - C
AB

. (t) (3.5.12)
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3.6   Operator Identities

In this section we develop the operator algebra that we will need to manipulate 

expressions containing Liouvilleans and their associated propagators. Most of the identities 

which we obtain are valid for arbitrary time independent operators. Thus far we have been 

dealing with  propagators in the time domain. For many problems it is more useful to consider 

their frequency dependent Laplace, or Fourier-Laplace, transforms. A useful mathematical 

object is the Laplace transform of the propagator. This is called the resolvent. The resolvent is 

an operator in the domain of the Laplace transform variable s,

 G(s)   =   ò
0

¥

dt  e
-s t

 e
-iLt

(3.6.1)

Our first operator identity is obtained by considering two arbitrary operators A and B,

 ( A + B )-1   =   A-1   -   A-1 B ( A + B )-1 (3.6.2)

This identity is easily verified by operating from the right-hand side of this equation with (A + 

B), so

 ( A + B )-1 ( A + B )   =   [ A-1  -  A-1 B ( A + B )-1 ]  ( A + B )

=   A
-1

 ( A + B )   -   A
-1

 B

=   A
-1

 A  +  A
-1

 B  -  A
-1

 B  = I (3.6.3)

The operator expression  (A+B)-1 is the inverse of the operator (A+B). To interpret an operator 

inverse of (A+B)-1, we use the series expansion

 ( I + A )
-1

   =    å
n=0

¥

  ( - A )
n

(3.6.4)

First we prove that the right-hand side of this expression is indeed the inverse of the operator 

(I+A). To do this consider

 å
n=0

¥

  ( - A )
n
 ( I + A )   =   å

n=0

¥

  ( - A )
n
   -   å

n=1

¥

  ( - A )
n
   =   I (3.6.5)

so that this series expansion allows us to represent the inverse of (I+A) in terms of an infinite 

series of products of the operator A. 
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The Dyson Decomposition of Propagators

Now we can investigate the Laplace transform (or resolvent) of the exponential of an operator in 

more detail. We use the expansion of the exponential to show that

 ò
0

dt  e
-st

  e
-At

   =   ò
0

dt  e
-st

  å
n=0

¥

 
n!
(-)n

 A
n
 t

n
   =   å

n=0

¥

 
n!

(-)n

 A
n
  ò

0

¥

dt t
n
 e

-st

¥ ¥

=   å
n=0

¥

  (-)
n
  

s
n+1

A
n

   =   
s
1

 ( I +
s
A

 )
-1

   =   ( s + A )
-1

(3.6.6)

This means that the resolvent of the operator, e-At, is simply (s+A)-1. We can now consider the 

resolvent derived from the operator A+B, and using the first identity above, relate this resolvent 

to the resolvent of A. We can write

 ( s + A + B )-1   =   ( s + A )-1   -   ( s + A )-1  B ( s + A + B )-1 (3.6.7)

Substituting the Laplace integrals for the operators (s+A)-1 and  (s+A+B)-1 into this equation 

gives

 ò
0

¥

dt  e
-st

  e
-(A+B)t

   =   ò
0

¥

dt  e
-s t

  e
-At

   -   ò
0

¥

dt
1
  e

-s t1
  e

-At1 B  ò
0

¥

dt
2
  e

-s t2
  e

-(A+B)t2

=   ò
0

¥

dt  e
-st

  {e
-At

   -   ò
0

t

dt
1
  e

-At1
  B  e

-(A+B)(t-t1)
  } (3.6.8)

As the equality holds for all values of s, the integrands must be equal, so

 e
-(A+B)t

   =   e
-At

   -   ò
0

t

dt
1
  e

-At1
  B  e

-(A+B)(t-t1)
(3.6.9)

This result is a very important step towards understanding the relationship between different 

propagators and is referred to as the Dyson decomposition when applied to propagators 

(Dyson, 1949). The derivation that we have used here is only valid if both of the operators A 

and B have no explicit time dependence. (We consider the time dependent case in Chapter 8.) If 

we consider the propagators exp((A+B)t) and exp(At), then a second Dyson decomposition can 

be obtained:
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 e
(A+B)t

   =   e
At

   +   ò
0

t

dt
1
  e

At1
  B  e

(A+B)(t-t1)
(3.6.10)

It is handy to use a graphical shorthand for the Dyson equation. Using this shorthand 

notation these two equations become,

ÜÜÜÜ    =   ¬¬¬¬   -       ÜÜÜÜ      (¨ - o) ¬¬¬¬ (3.6.11)

and

ÞÞÞÞ    =   ®®®®   +       ÞÞÞÞ  (¨ - o) ®®®® (3.6.12)

The diamond ¨ denotes the (A+B)-Liouvillean and the circle o denotes the A-Liouvillean; the 

arrows ÜÜÜÜ  and ÞÞÞÞ denote the propagators exp(-i(A+B)t) and exp(i(A+B)t) respectively, while 

¬¬¬¬ and ®®®® denote exp(-At) and exp(At) respectively. An n-1 fold convolution is implied by a 

chain of n arrows.

As an example of the application of this result, consider the case where B is a small 

perturbation to the operator A. In this case the Dyson decomposition gives the full (A+B)-

propagator as the sum of the unperturbed A-propagator plus a correction term. One often faces 

the situation where we want to compare the operation of different propagators on either a phase 

variable or a distribution function. For example one might like to know the difference between 

the value of a phase variable A(GGGG) propagated under the combined influence of the N-particle 

interactions and an applied external field Fe, with the value the phase variable might take at the 

same time in the absence of the external field. In that case (Evans and Morriss, 1984a)

A(t,Fe) = ÞÞÞÞ  A(GGGG)

= [®®®®   +       ®®®®  (¨ - o) ®®®®        +  ®®®®  (¨ - o) ®®®®    (¨ - o) ®®®®
+   ®®®®    (¨ - o) ®®®®    (¨ - o) ®®®®    (¨ - o) ®®®®
+   ®®®®    (¨ - o) ®®®®    (¨ - o) ®®®®    (¨ - o) ®®®®    (¨ - o) ®®®®
+   .................     ]  A ( GGGG )

Therefore we can write,

 ÞÞÞÞ  A(GGGG )    =    å
n=0

¥

   ®®®®  [ (¨̈̈̈ - o) ®®®® ]
n

   A(GGGG ) (3.6.13)

This equation is of limited usefulness because in general, ¨ and ®®®® , do not commute. This 

means that the Liouvillean frequently represented by ¨, is locked inside a convolution chain of 

propagators with which it does not commute. A more useful expression can be derived from 

(3.6.12) by realising that ¨ commutes with its own propagator namely,  ÞÞÞÞ . Similarly o 
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commutes with its own propagator, ®®®®. We can 'unlock' the respective Liouvilleans from the 

chain in (3.6.12) by writing,

ÞÞÞÞ    =   ®®®®   +   ¨    ÞÞÞÞ ®®®® -  ÞÞÞÞ®    o (3.6.14)

We can recursively substitute for ÞÞÞÞ, yielding,

ÞÞÞÞ    =   ®®®®    +   ¨    ®®®® ®®®®         -        ®®®®®®®®    o
 +   ¨ ¨    ®®®® ®®®®®®®® -  2¨    ®®®® ®®®®®®®® o  +  ®®®®®®®®®®®®    o    o 

 +    ........

(3.6.15)

Now it is easy to show that,

(®®®®)n+1  =  (tn/n!) ®®®® (3.6.16)

Thus (3.6.15) can be written as,

ÞÞÞÞ    =  {1  +  t (¨ - o)  +  ( t2 /2!) (¨ ¨ - 2 ¨ o +  o o)

+ ( t3 /3!) (¨ ¨ ¨ - 3 ¨ ¨ o +  3 ¨ o o  - o o o )

+  ........}®®®®
(3.6.17)

This equation was first derived by Evans and Morriss (1984a). Its utility arises from the fact 

that by 'unrolling' the Liouville operators to the left and the propagator to the right, explicit 

formulae for the expansion can usually be derived. A limitation of the formula is that successive 

terms on the right hand side do not constitute a power series expansion of the difference in the 

two propagators in powers of the difference between the respective Liouvilleans. To be more 

explicit, the term, (t3/3!) (  ̈̈  ̈  - 3  ̈̈  o +  3 ¨ o o  - o o o ) is not in general of order (  ̈- 

o)3.

Campbell-Baker-Hausdorff Theorem

If A and B are noncommuting operators then the operator expression  exp(A) 

exp(B)  can be written in the form  exp(C) where C is given by

 C   =   A + B  +  
2
1

 [A,B]  +  
12
1 {[[A,B],B]  +  [[B,A],A]}  +  . . . (3.6.18)
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The notation [ , ] is the usual Quantum Mechanical commutator. A rearrangement of this 

expansion, known as the Magnus expansion is well known to quantum theorists (Magnus, 

1954). Any finite truncation of the Magnus expansion for the time displacement operator, gives 

a unitary time displacement operator approximation (Pechukas and Light, 1966). This result has 

not proved as useful for nonequilibrium statistical mechanics as it is for quantum theory. We 

give it here mainly for the sake of completeness.
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3 . 7 The Irving-Kirkwood Identification of Thermodynamic Fluxes

In Chapter 2 we gave a brief outline of the structure of macroscopic hydrodynamics. 

We saw that given appropriate boundary conditions, it is possible to use the Navier-Stokes 

equations to describe the resulting macroscopic flow patterns. In this chapter we began the 

microscopic description of nonequilibrium systems using the Liouville equation. We will now 

follow a procedure first outlined by Irving and Kirkwood (1950), to derive microscopic 

expressions for the thermodynamic forces and fluxes appearing in the phenomenological 

equations of hydrodynamics.

In our treatment of the macroscopic equations we stressed the role played by the 

densities of conserved quantities. Our first task here will be to define microscopic expressions 

for the local densities of mass, momentum and energy. If the mass of the individual atoms in 

our system is m then the mass per unit volume at a position r and time t can be obtained by 

taking an appropriate average over the normalised N-particle distribution function f(GGGG,t). To 

specify that the particles should be at the macroscopic position r, we will use a macroscopic 

delta function, d(r-ri). This macroscopic delta function is zero if atom i is outside some 

microscopic volume dV; it is a constant if atom i is inside this volume ( d is a smeared out 

version of the usual point delta function). We will assume that particle dynamics are given by 

field-free Newtonian equations of motion. The value of the constant is determined from the 

normalisation condition,

 ò
V

dr  d(r)   =   1 (3.7.1)

The volume V is envisioned to be infinitesimal on a macroscopic scale.

The mass density r(r,t) can be calculated from the following average,

 r(r, t)   =   òdGGGG  f(GGGG ,t)  å
i

  m d(r - r
i
)

            
            =   òdGGGG  f(GGGG ,0) å

i

  m d(r - r
i
(t))

            =  < å
i

 m | r
i
(t)=r > (3.7.2)

The first line of this equation is a Schr�dinger representation of the density while the second and 

third lines are written in the Heisenberg representation. The equivalence of these two 

representations is easily seen by 'unrolling' the propagator from the distribution function onto 

the phase variable. Since r, is a constant, a nominated position it is unchanged by this 
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'unrolling' procedure. 

The momentum density, ru , and total energy density, re, are defined in an 

analogous manner.

 r(r, t) u(r,t)   =   òdGGGG  f(GGGG, t)  å
i

  mv
i
 d(r - r

i
)

                      =   òdGGGG  f(GGGG, t)  å
i

  p
i
  d(r - r

i
)

                      =   < å
i

  p
i
(t) | r

i
(t)=r > (3.7.3)

 r(r, t) e(r,t)   =   òdGGGG  f(GGGG, t) [
2
1

 å
i

 mv
i
2   +   

2
1

 å
i, j

 f
ij

 ]  d(r - r
i
)

                     =   < 
2
1

 å
i

 mv
i

2
(t)   +   

2
1

 å
i, j

 f
ij
(t) | r

i
(t)=r > (3.7.4)

In these equations vi is the velocity of particle i, pi is its momentum, rij º  rj - ri, and we 

assume that the total potential energy of the system, F is pair-wise additive and can be written 

as,

 F   =   
2

1
 å

i, j

 f
ij

(3. 7.5)

We arbitrarily assign one half of the potential energy to each of the two particles which 

contribute fij to the total potential energy of the system.

The conservation equations involve time derivatives of the averages of the densities 

of conserved quantities. To begin, we will calculate the time derivative of the mass density.

 
¶t

¶ r(r,t)
   =   òdGGGG  

¶t
¶ f(GGGG ,t)

  å
i

 m d(r - r
i
)

                = - òdGGGG  å
i

 m d(r - r
i
)  iL  f(GGGG , t)

                =   òdGGGG  f(GGGG, t)  iL  å
i

 m d(r - r
i
)

=   òdGGGG  f(GGGG, t)  å
i

 m v
i
 ¥ ¶r

i

¶ d(r - r
i
)

= - òdGGGG  f(GGGG, t)  å
i

 m v
i
 ¥ 

¶r

¶ d(r - ri)

= - ÑÑÑÑ ¥ òdGGGG  f(GGGG, t)  å
i

 m v
i
 d(r - r

i
)

= - ÑÑÑÑ ¥ [r(r, t) u(r,t)] (3.7.6)
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The fifth equality follows using the delta function identity,

 
¶x

¶ d(x - y)
   =  - ¶y

¶ d(x - y)
 .  

We have shown that the time derivative of the mass density yields the mass continuity equation 

(2.1.4) as expected. Strictly speaking therefore, we did not really need to define the momentum 

density in equation (3.7.3), as given the mass density definition, the mass continuity equation 

yields the momentum density expression. We will now use exactly the same procedure to 

differentiate the momentum density.

 
¶t

¶ [r(r,t) u(r,t)]
   =   òdGGGG  

¶t
¶ f(GGGG ,t)

  å
i

 m v
i
 d(r - r

i
)

                            = - òdGGGG        å
i

 m v i d(r - ri)  iL  f(GGGG, t)

                            =   òdGGGG  f(GGGG, t)  iL  å
i

 m v
i
 d(r - r

i
)

=   òdGGGG  f(GGGG, t)  å
i

 [d(r - r
i
) iL mv

i
  +  mv

i
 iL d(r - r

i
)]

=   òdGGGG    f(GGGG, t)  å
i

 
 é
ê
ë

 d(r - r
i
) F

i
  +  mv

i
v

i
 ¥ ¶r

i

¶ d(r - r
i
) ù

ú
û

. (3.7.7)

We have used Newtonian equations of motion for the Liouvillean iL.

 
¶t

¶ [r(r,t) u(r,t)]
   =   òdGGGG  f(GGGG, t)  å

i

 [d(r - r
i
) F

i
  -  

¶r
¶

 ¥ mv
i
v

i
 d(r - r

i
)]

=   òdGGGG f(GGGG, t) å
i

 d(r - ri) F i  -  ¶r
¶

 ¥ òdGGGG f(GGGG, t) å
i

 mviv i d(r - ri)

If we consider the second term on the right-hand side then

 
¶r
¶

 ¥ òdGGGG  f(GGGG ,t) å
i

 mv
i
v

i
 d(r - r

i
)   =   

¶r
¶

 ¥ <å
i

 m(v
i
(t)-u(r,t))(v

i
(t)-u(r, t)) | r

i
(t)=r >

+  ¶r
¶

 ¥ <å
i

 m u(r, t) u(r, t) | r
i
(t)=r > (3.7.8)

In the final term in equation (3.7.8), u(r,t) is independent of the particle index and can be 

factored outside the summation. The remaining summation is, using equation (3.7.2), simply 

equal to the mass density rrrr(r,t). Combining these results it follows that
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¶t

¶ [r(r,t) u(r,t)]
   +   

¶r
¶

 ¥ [r(r, t) u(r,t) u(r,t)]

                        =   òdGGGG f(GGGG , t) å
i

 d(r - r
i
) F

i
 

 -  ¶r
¶

 ¥ <å
i

 m(v
i
(t)-u(r,t))(v

i
(t)-u(r, t)) | r

i
(t)=r >  (3.7.9)

We will now consider the first term on the right hand side of this equation in some detail.

 òdGGGG  f(GGGG ,t)  å
i

 d(r - r
i
) F

i
  

 =   - òdGGGG  f(GGGG, t)  å
i ,j

 d(r - ri) ¶r
i

¶f
ij

=  - 
2
1

 òdGGGG   f(GGGG ,t)  å
i, j

 [d(r - r
i
) ¶r

i

¶ f
ij    +   d(r - r

j
) ¶r

j

¶f
ji  ]

=  -  

2
1

 òdGGGG   f(GGGG ,t)  å
i, j

 [d(r - r
i
) ¶r

i

¶ f
ij    -   d(r - r

j
) ¶r

i

¶f
ij  ]

=  - 
2
1

 òdGGGG   f(GGGG ,t)  å
i, j

 [d(r - r
i
)   -   d(r - r

j
)] ¶r

i

¶f
i j

(3.7.10)

Treating the macroscopic delta function as an analytic function, we may expand d(r - rj) as a 

Taylor series about d(r - ri). This gives

 d(r - r
j
)   =   d(r - r

i
)  +  r

ij
¥

¶ri

¶ d(r - r
i
)
  +  

2!
1

 r
i j
 r

ij
 : 

¶r
i
2

¶2 d(r - r
i
)
   +   . .. .

               =   d(r - ri)   -  rij¥ ¶r

¶ d(r - r
i
)
   +   

2!
1

 rij ri j : 
¶r

2

¶2
 d(r - r

i
)
   -   .. . (3.7.11)

Thus the difference between the two delta functions is

 d(r - r
i
)  -  d(r - r

j
)   =   r

ij
¥

¶r

¶ d(r - r
i
)
   -   

2!
1

  r
ij
 r

ij
 : 

¶r2

¶2 d(r - r
i
)
   +   .. .

                                 =   
¶r
¶  ¥ r

ij
 O

ij
 d(r - r

i
)  (3.7.12)

where the operator Oij is given by,

 Oij   º   1   -   
2!
1

 rij¥ ¶r
¶

   +   . . . . .   +   
n!
1

 [- rij¥ ¶r
¶

 ]
n-1

   +   . . . (3.7.13)

Chapter   3  - 41



Using this equation for the difference of the two delta functions d(r - ri) and d(r - rj) leads to

 
¶t

¶ [r(r,t) u(r,t)]
   +   

¶r
¶

 ¥ [r(r, t) u(r,t) u(r,t)]   

                            =   -  
¶r
¶

 ¥ [2

1  òdGGGG f(GGGG ,t) å
i, j

 r
ij

 O
ij

 d(r - r
i
) 

¶ri

¶f
ij    

                             +   < å
i

 m(v
i
(t)-u(r,t))(v

i
(t)-u(r, t)) | r

i
(t)=r > ] (3.7.14)

Comparing this equation with the momentum conservation equation (2.1.12) we see that the 

pressure tensor is,

 P(r, t)  =  < å
i

 m(v
i
(t)-u(r,t))(v

i
(t)-u(r, t))  -  

2
1å

i ,j

 r
ij
(t)O

ij
(t)F

i j
(t) | r

i
(t)=r > (3.7.15)

where Fij = -¶fij/¶ri is the force on particle i due to particle j.

We will now use the same technique to calculate the microscopic expression for the 

heat flux vector. The partial time derivative of the energy density is (from equation (3.7.4))

 
¶t

¶ [r(r,t) e(r, t)]
   =   òdGGGG  

¶t
¶ f(GGGG ,t)

 [
2

1  å
i

 mv
i

2
   +   

2

1  å
i, j

 f
ij

 ] d(r - r
i
)

=   òdGGGG  f(GGGG ,t) { iL [
2

1  å
i

 mvi
2
   +   

2

1  å
i, j

 fij ]} d(r - ri) 
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1  å
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 mv
i

2
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2

1
 å

i ,j

 f
i j
 ]  iL d(r - r

i
)

 =   òdGGGG   f(GGGG ,t) [å
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i
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1
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i ,j
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i
¥F

i j
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¥F
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+   òdGGGG   f(GGGG ,t)  [
2

1
 å

i

 mv
i
2  +  

2

1
 å

i, j

 f
ij
 ]  v

i
¥ 

¶r
i

¶ d(r - r
i
)

=   òdGGGG   f(GGGG ,t)  [
2

1
 å

i ,j

 v i¥F i j [d(r - ri) - d(r - rj)]

  -  ¶r
¶

 ¥  [
2

1å
i

 mv
i

2
  +  

2

1 å
i, j

 f
ij
] v

i
 d(r-r

i
)] (3.7.16)

In the second term, the gradient operator ¶/¶r is contracted into vi. Using our previous result 

for the difference of two delta functions, equation (3.7.12), gives
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¶t

¶ [r(r, t) e(r,t)]
   =   

¶r
¶

 ¥ òdGGGG   f(GGGG ,t) [
2
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 å

i, j
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ij

 O
ij
 v

i
¥F

ij
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2
1 å

i
mv i

2
 + 

2
1  å

i,j
fi j) ] d(r-ri)v i

(3.7.17)

From equation (2.1.24) we conclude that,

 J
Q

(r, t)   +   P(r, t) ¥ u(r, t)   +   r(r, t) e(r,t) u(r,t)

 =   òdGGGG f(GGGG, t) [- 
2

1 å
i, j

 r
i j
O

ij
 v

i
¥F

ij
  + (

2

1å
i

 mv
i

2
  +  

2

1 å
i, j

 f
ij

)v
i
] d(r-r

i
) (3.7.18) 

Now the definition of the energy density, equation (3.7.4) gives

 r(r, t) e(r,t) u(r, t)    =   òdGGGG  f(GGGG ,t)  [
2

1
 å

i

 mv
i

2
  +  

2

1
 å

i, j

 f
ij

 ] d(r - r
i
) u(r, t),  (3.7.19)

so that,

 J
Q

(r, t)  +  P (r, t)¥u(r,t)   =   òdGGGG  f(GGGG, t)  [- 
2
1

 å
i, j

 r
ij
 O

ij
 v

i
¥F

i j
 

                                            +  (
2
1 å

i

 mv
i
2  +  

2
1å

i, j

 f
ij
)(v

i
-u(r,t))]d(r-r

i
) (3.7.20)

Similarly, from the definition of the pressure tensor P(r,t) (see equation (3.7.15)), we know 

that

 P(r, t) ¥ u(r, t)   =   òdGGGG f(GGGG ,t) [å
i

 m(v
i
-u)(v

i
-u)  -  

2

1
 å

i, j

 r
ij
O

ij
F

ij
]¥u  d(r - r

i
) (3.7.21)

thus we identify the heat flux vector as,

 J
Q

(r, t)   =   òdGGGG  f(GGGG, t)  [(
2
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 å

i

 mv
i

2
 + 

2

1
 å

i, j

 f
ij
)(v

i
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                                       -  
2

1
 å

i, j

 r
i j
 (v

i
- u)¥F
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2
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 (v

i
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ij
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i
).  (3.7.22)

From the definitions of the mass density and momentum density (equations (3.7.2) and (3.7.3)) 
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we find that

 òdGGGG  f(GGGG ,t)  å
i

 (v
i
- u) mu

2
  d(r - r

i
)   =   0 (3.7.23)

so there is no contribution from the  u2  term. Further, if we define the peculiar energy of 

particle i to be

 e
i
   =   

2

m
 (v

i
 - u)

2
   +   

2

1
 å

j

 f
i j

(3.7.24)

then the heat flux vector can be written as
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ij
 O

i j
]  d(r - r

i
)

or,

 J
Q

(r, t)   =   < å
i

 (v
i
(t) - u(t)) e

i
(t) 

             -  
2

1
 å

i ,j

 r
i j
(t) (v

i
(t) - u(t)) ¥ F

i j
(t) O

ij
(t) | r

i
(t)=r >  (3.7.25)
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3.8  Instantaneous Microscopic representation of Fluxes

The Irving-Kirkwood procedure has given us microscopic expressions for the 

thermodynamic fluxes in terms of ensemble averages. At equilibrium in a uniform fluid, the 

Irving-Kirkwood expression for the pressure tensor is the same expression as that derived using 

Gibbs' ensemble theory for equilibrium statistical mechanics. If the fluid density is uniform in 

space, the Oij operator appearing in the above expressions reduces to unity. This is easier to see 

if we calculate microscopic expressions for the fluxes in k-space rather than real space. In the 

process we will better understand the nature of the Irving-Kirkwood expressions.

In this section we derive instantaneous expressions for the fluxes rather than the 

ensemble based, Irving-Kirkwood expressions. The reason for considering instantaneous 

expressions is two-fold. The fluxes are based upon conservation laws and these laws are valid 

instantaneously for every member of the ensemble. They do not require ensemble averaging to 

be true. Secondly, most computer simulation involves calculating system properties from a 

single system trajectory. Ensemble averaging is almost never used because it is relatively 

expensive in computer time. The ergodic hypothesis, that the result obtained by ensemble 

averaging is equal to that obtained by time averaging the same property along a single phase 

space trajectory, implies that one should be able to develop expressions for the fluxes which do 

not require ensemble averaging. For this to be practically realisable it is clear that the mass, 

momentum and energy densities must be definable at each instant along the trajectory.

We define the Fourier transform pair by

 f(k)   =   òdr  e
ik¥r

  f(r)

f(r)   =   
(2p)3

1
  òdk  e

-ik¥r
  f(k) (3.8.1)

In the spirit of the Irving-Kirkwood procedure we define the instantaneous r-space mass density 

to be,

 r(r, t)   =   å
i=1

N

  m d(r - r
i
(t)) (3.8.2)

where the explicit time dependence of r(r,t) (that is the time dependence differentiated by the 

hydrodynamic derivative ¶/¶t, with r fixed) is through the time dependence of ri(t). The k-space 

instantaneous mass density is then
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 r(k, t)   =   òdr     å
i=1

N

 m d(r - r
i
(t)) e

ik . r

             =    å
i=1

N

  m e
ik  ¥ r

i
(t) (3.8.3)

We will usually allow the context to distinguish whether we are using ensemble averages or 

instantaneous expressions. The time dependence of the mass density is solely through the time 

dependence of  ri, so that 

 
dt

d r(k,t)
   =   ik.  å

i=1

N

 mv
i
 e

ik .r
i
(t)

(3.8.4)

Comparing this with the Fourier transform of (2.1.4) (noting that d/dt|kin (3.8.4) corresponds 

to ¶/¶t|r in (2.1.4)) we see that if we let J(r,t) = r(r,t)u(r,t) then,

 J(k, t)   =   å
i=1

N

 mv
i
 e

ik . r
i
(t)

(3.8.5)

This equation is clearly the instantaneous analogue of the Fourier transform of the Irving-

Kirkwood expression for the momentum density. There is no ensemble average required in 

(3.8.4). To look at the instantaneous pressure tensor  we only need to differentiate equation 

(3.8.5) in time.

 
dt

d J(k ,t)
   =   å

i=1

N

 (ik .mv
i
(t)v

i
(t) e

ik .r
i
(t)

  +  F
i
e

ik . r
i
(t)

) (3.8.6)

We can write the second term on the right hand side of this equation in the form of the Fourier 

transform of a divergence by noting that,

 å
i=1

N

 F
i
 e

ik .ri
   =   

2
1

 å
i=1

N

å
j=1

N

 (F
ij
 e

ik . ri
   +   F

ji
 e

ik . rj)
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2
1
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N
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  F
ij

 (e
ik .ri

  -  e
ik. rj
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=   
2
1
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i=1

N

å
j=1

N

  F
ij

 (e
-ik .rij

  -  1) e
ik. rj

=  - ik . 
2
1

 å
i=1

N

å
j=1

N

 r
ij

 F
ij

  
-ik. r

ij

e
-ik .rij

  -  1
  e

ik .rj
(3.8.7)
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Combining (3.8.6) and (3.8.7) and performing an inverse Fourier transform we obtain the 

instantaneous analogue of equation (3.7.15). We could of course continue the analysis of ¤3.7 

to remove the streaming contribution from the pressure tensor but this is more laborious in k-

space than in real space and we will not give this here. We can use our instantaneous expression 

for the pressure tensor to describe fluctuations in an equilibrium system. In this case the 

streaming velocity is of course zero, and

 P(k, t)    =    å
i=1

N

 mv
i
(t)v

i
(t) e

ik . r
i
(t)

  -  
2
1å

i, j=1

N

  r
i j
(t)F

ij
(t)   

-ik. rij(t)
e

-ik. rij(t)
 -  1   e

ik . r
j
(t)

(3.8.8)

The k-space analysis given provided a better understanding of the Irving-Kirkwood operator 

O ij. In k-space it is not necessary to perform the apparently difficult operation of Taylor 

expanding delta functions. 

Before we close this section we will try to make the equation for the momentum 

density, J(r,t) = r(r,t)u(r,t), a little clearer. In k-space this equation is a convolution,

 J(k, t)   =   òdk'   r(k-k ' ,t)  u(k ', t) (3.8.9)

Does this definition of the streaming velocity u, make good physical sense? One sensible 

definition for the streaming velocity u, would be that velocity which minimises the sum of 

squares of deviations from the particle velocities vi. For simplicity we set t=0, and let R, be that 

sum of squares,

 R   =   å
i=1

N

 
 æ
ç
è
v

i
- u(r

i
)  ö

÷
ø

2

   =   å
i=1

N

 
 æ
ç
è
v

i
 - å

n

 u(kn) e
-ik n .r

i ö
÷
ø

2

 .  (3.8.10)

If u(r) minimises this sum of squares then the derivative of R with respect to each of the Fourier 

components u(km), must be zero. Differentiating (3.8.10) we obtain,

 
¶u(km)

¶ R    =   2 å
i=1

N

 
 æ
ç
è
v

i
 - å

n

 u(kn) e
-ik n. ri ö

÷
ø  e

-ik m .r
i   =   0.  (3.8.11)

This implies that

 å
i=1

N

 mv
i
 e

-ik m. r
i   =   å

i=1

N

 å
n

 mu(kn) e
-ik n .r

i  e
-ik m . r

i  (3.8.12)

Both sides of this equation can be identified as k-space variables,
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 J(-km)   =   å
n

 u(kn) r(-km-kn). (3.8.13)

So that

 J(km)   =   å
n

 u(kn) r(km-kn). (3.8.14)

This is the Fourier series version of equation (3.8.9).

We can use the same procedure to calculate an expression for the heat flux vector. As 

we  will see this procedure is very much simpler than the Irving-Kirkwood method described in 

¤3.7. We begin by identifying the instantaneous expression for the instantaneous wavevector 

dependent energy density in a fluid at equilibrium,

 re(k,t)  =  å
i

 (
2
1mv

i
2(t)  +  

2
1  å

j

 f
ij

(r
ij
(t))e

ik . ri(t) (3.8.15)

This is instantaneous, wavevector dependent analogue of (3.7.4). To simplify notation in the 

following we will suppress the time argument for all phase variables. The time argument will 

always be t. If we calculate the rate of change of the energy density we find,

 
dt

dre(k ,t)
  =  ik¥å

i

v
i
(
2
1mv

i
2 + f

i
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ik. ri  + å
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i j

) e
ik. r

i (3.8.16)

Where we use the notation f i = 1/2Sj fij. If we denote the energy of particle i as ei and Fij as 

the force exerted on particle i due to j then (3.8.16) can be rewritten as,
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i
e
i
e
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i
¥F

i
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(e

ik. r
i - e
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 ) (3.8.17)

This equation involves the same combination of exponents as we saw for the pressure tensor in 

(3.8.7). Expanding exponentials to first order in k, and using equation (2.1.26) we find that the 

wavevector dependent heat flux vector can be written as
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i
    +   O(k2) (3.8.18)

In r-space rather than k-space the expressions for the instantaneous pressure tensor 

and heat flux vector become,

 P(r, t)   =   å
i=1

N

 [m(v
i
(t) - u(t))(v

i
(t) - u(t))  -  

2

1å
j=1

N

  r
ij
(t) F

ij
(t)] d(r

i
(t) - r) (3.8.19)

 J
Q

(r, t)   =   å
i=1

N

[(v
i
(t) - u(t)) e

i
(t)  -  

2

1
 å

j=1

N

 r
ij

(t) (v
i
(t) - u(t)) ¥ F

ij
(t)] d(r

i
(t) - r) (3.8.20)

Our procedure for calculating microscopic expressions for the hydrodynamic 

densities and fluxes relies upon establishing a correspondence between the microscopic and 

macroscopic forms of the continuity equations. These equations refer only to the divergence of 

the pressure tensor and heat flux. Strictly speaking therefore we can only determine the 

divergences of the flux tensors. We can add any divergence free quantity to our expressions for 

the flux tensors without affecting the identification process. 
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3.9    The Kinetic Temperature

We obtain an instantaneous expression for the temperature by analysing the 

expression for the pressure tensor (3.8.17) for the case of an ideal gas at equilibrium. Thus if 

n(r,t) is the local instantaneous number density,

                
3

2
1
2

2

1

n t k T t
m t t tB

i
i

N

i

( , ) ( , )
( ( ) ( , )) ( ( ) )

r r
v u r r r= - -

=
å d                         (3.9.1)

We will call this expression for the temperature, the kinetic temperature. In using this 

expression for the temperature we are employing a number of approximations. Firstly we are 

ignoring the number of degrees of freedom which are frozen by the instantaneous determination 

of u(r,t). Secondly , and more importantly, we are assuming that in a nonequilibrium system 

the kinetic temperature is identical to the thermodynamic temperature TT,

 TT    =    ¶S
¶E|

V
(3.9.2)

                               

This is undoubtedly an approximation. It would be true if the postulate of local thermodynamic 

equilibrium was exact. However we know that the energy, pressure, enthalpy etc. are all 

functions of the thermodynamic forces driving the system away from equilibrium. These are 

nonlinear effects which vanish in Newtonian fluids. Presumably the entropy is also a function 

of these driving forces. It is extremely unlikely that the field dependence of the entropy and the 

energy are precisely those required for the exact equivalence of the kinetic and thermodynamic 

temperatures for all nonequilibrium systems. Recent calculations of the entropy of systems very 

far from equilibrium support the hypothesis that the kinetic and thermodynamic temperatures are 

in fact different (Evans, 1989). Outside the linear  (Newtonian), regime the kinetic temperature 

is a convenient operational (as opposed to thermodynamic) state variable. If a nonequilibrium 

system is in a steady state both the kinetic and the thermodynamic temperatures must be constant 

in time. Furthermore we expect that outside the linear regime in systems with a unique 

nonequilibrium steady state, that the thermodynamic temperature should be a monotonic 

function of the kinetic temperature. 
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Chapter 4.   The Green Kubo Relations

4.1 The Langevin Equation

4.2 Mori-Zwanzig Theory

4.3 Shear Viscosity

4.4 Green-Kubo Relations for Navier-Stokes Transport 

Coefficients



4.1 The Langevin Equation

In 1828 the botanist Robert Brown (1828a,b) observed the motion of pollen grains 

suspended in a fluid. Although the system was allowed to come to equilibrium, he observed that 

the grains seemed to undergo a kind of unending irregular motion. This motion is now known as 

Brownian motion. The motion of large pollen grains suspended in a fluid composed of much 

lighter particles can be modelled by dividing the accelerating force into two components: a slowly 

varying drag force, and a rapidly varying random force due to the thermal fluctuations in the 

velocities of the solvent molecules. The Langevin equation as it is known, is conventionally 

written in the form,

 
dt
dv

    =    - ζv    +   FR (4.1.1)

 

Using the Navier-Stokes equations to model the flow around a sphere with stick boundary 

conditions, it is known that the friction coefficient ζ= 3πηd/m, where η is the shear viscosity of 

the fluid, d is the diameter of the sphere and m is its mass. The random force per unit mass FR, is 

used to model the force on the sphere due to the bombardment of solvent molecules. This force is 

called random because it is assumed that <v(0).FR(t)> = 0, ∀ t. A more detailed investigation of 

the drag on a sphere which is forced to oscillate in a fluid shows that a non-Markovian 

generalisation (see §2.4), of the Langevin equation (Langevin, 1908) is required to describe the 

time dependent drag on a rapidly oscillating sphere,

 
dt

dv(t)
  =  - ∫

0

t

  dt'   ζ(t-t' ) v(t' )  +  FR(t) (4.1.2)

In this case the viscous drag on the sphere is not simply linearly proportional to the instantaneous 

velocity of the sphere as in (4.1.1). Instead it is linearly proportional to the velocity at all previous 

times in the past. As we will see there are many transport processes which can be described by an 

equation of this form. We will refer to the equation 

 
dt

d A(t)
    =   - ∫

0

t

dt'   K(t-t' )  A(t' )   +   F(t) (4.1.3)

as the generalised Langevin equation for the phase variable A(ΓΓΓΓ ). K(t) is the time dependent 

transport coefficient that we seek to evaluate. We assume that the equilibrium canonical ensemble 

average of the random force and the phase variable A, vanishes for all times .

    
 < A(0) F(t) >   =   < A(t0) F(t0+t) >   =   0,   ∀  t and t0.  (4.1.4)
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The time displacement by t0 is allowed because the equilibrium time correlation function is 

independent of the time origin. Multiplying both sides of (4.1.3) by the complex conjugate of A(0) 

and taking a canonical average we see that,

 
dt

d C(t)
    =   - ∫

0

t

dt'   K(t-t' ) C(t' ) (4.1.5)

where C(t) is defined to be the equilibrium autocorrelation function,

 C(t)   ≡   < A(t) A* (0) >. (4.1.6)

Another function we will find useful is the flux autocorrelation function φ(t)

 φ(t)   =   < 
.
A(t) 

.
A* (0) >. (4.1.7)

Taking a Laplace transform of (4.1.5) we see that there is a intimate relationship between the 

transport memory kernel K(t) and the equilibrium fluctuations in A. The left-hand side of (4.1.5) 

becomes

 ∫
0

∞

dt e-st  
dt

dC(t)   =   
 

 e

-st C(t)
 


0

∞
   -   ∫

0

∞

dt (-se-st) C(t)   =   s∼C(s)  -  C(0),

and as the right-hand side is a Laplace transform convolution, 

 sC
~
(s)  - C(0)  =  - K

~
(s) C

~
(s) (4.1.8)

So that

 C
~
(s)  =  

s + K
~
(s)

C(0)
(4.1.9)

One can convert the A autocorrelation function into a flux autocorrelation function by realising that, 

 
dt2

d
2
 C(t)

   =   
dt
d  < 

dt
dA(t)

 A* (0) >   =   
dt
d  < [iLA(t)] A * (0) >

=   
dt
d  < A(t) [-iLA * (0)] >   =  - < [iLA(t)] [-iLA *(0)] >   =  - φ(t).
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Then we take the Laplace transform of a second derivative to find,

 -φ
~
(s)  =  ∫

0

∞

dt e-st  
dt2

d
2
 C(t)

   =   
 


e-st 

dt
dC(t) 



0

∞

   +   s ∫
0

∞

dt e-st 
dt

dC(t)

=   s 
 


e-st C(t)

 


0

∞
   +   s2 ∫

0

∞

dt e-st C(t)   =   s2 
∼
C(s)  -  s C(0).  (4.1.10)

Here we have used the result that dC(0)/dt = 0. Eliminating  
∼
C(s)  between equations (4.1.9) and 

(4.1.10) gives

 K
~
(s)  =  

C(0) - s
φ∼ (s)

φ
~
(s)

(4.1.11)

Rather than try to give a general interpretation of this equation it may prove more useful 

to apply it to the Brownian motion problem. C(0) is the time zero value of an equilibrium time 

correlation function and can be easily evaluated as kBT/m, and dv/dt = F/m where F is the total 

force on the Brownian particle.

 ∼
ζ(s)  =  

mk
B
T - s

∼
C

F
(s)

∼
C

F
(s)

(4.1.12)

where

 C
~
 F(s)    =    

3
1

  < F(0) • F
~
(s) > (4.1.13)

is the Laplace transform of the total force autocorrelation function. In writing (4.1.13) we have 

used the fact that the equilibrium ensemble average denoted < .. >, must be isotropic. The average 

of any second rank tensor, say < F(0) F(t) >, must therefore be a scalar multiple of the second 

rank identity tensor. That scalar must of course be 1/3tr{< F(0) F(t) >}= 1/3 < F(0) • F(t) >. 

In the so-called Brownian limit where the ratio of the Brownian particle mass to the 

mean square of the force becomes infinite,
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 ∼ζ(s)  =  
3m
β

  ∫
0

∞

 dt  e-st  < F(t) • F(0) > (4.1.14)

For any finite value of the Brownian ratio, equation (4.1.12) shows that the integral of the force 

autocorrelation function is zero. This is seen most easily by solving equation (4.1.12) for CF and 

taking the limit as s → 0.

Equation (4.1.9), which gives the relationship between the memory kernel and the 

force autocorrelation function, implies that the velocity autocorrelation function Z(t)  =  
1/3<v(0).v(t)> is related to the friction coefficient by the equation,

 ∼Z(s)  =  
s + 

∼
ζ(s)

k
B
T/m

(4.1.15)

This equation is valid outside the Brownian limit. The integral of the velocity autocorrelation 

function, is related to the growth of the mean square displacement giving yet another expression 

for the friction coefficient,

 ∼
Z(0)   =   lim

t→∞
   ∫

0

t

dt'  
3
1 < v(0) • v(t' ) >   =   lim

t→∞
   ∫

0

t

dt'   
3
1 < v(t) • v(t' ) >

=   lim
t→∞

   
3
1 < v(t) • ∆r(t) >   =   lim

t→∞
   6

1  
dt
d  < ∆r(t)

2
 >. (4.1.16)

Here the displacement vector ∆r (t) is defined by

 ∆r(t)   =   r(t)  -  r(0)   =   ∫
0

t

dt'  v(t' ). (4.1.17)

Assuming that the mean square displacement is linear in time, in the long time limit, it follows 

from (4.1.15) that the friction coefficient can be calculated from

 
m

∼
ζ(0)

k
B
T

  ≡  D  =  
6
1  lim

t→∞
   

dt
d  < ∆r(t)2 >   =  

6
1  lim

t→∞
   t

< ∆r(t)
2
 > .  (4.1.18)

This is the Einstein (1905) relation for the diffusion coefficient D. The relationship between the 

diffusion coefficient and the integral of the velocity autocorrelation function (4.1.16), is an 

example of a Green-Kubo relation (Green, 1954 and Kubo, 1957).

Chapter  4 - 5



It should be pointed out that the transport properties we have just evaluated are 

properties of systems at equilibrium. The Langevin equation describes the irregular Brownian 

motion of particles in an equilibrium system. Similarly the self diffusion coefficient characterises 

the random walk executed by a particle in an equilibrium system. The identification of the zero 

frequency friction coefficient 6πηd/m, with the viscous drag on a sphere which is forced to move 

with constant velocity through a fluid, implies that equilibrium fluctuations can be modelled by 

nonequilibrium transport coefficients, in this case the shear viscosity of the fluid. This hypothesis 

is known as the Onsager regression hypothesis (Onsager, 1931). The hypothesis can be inverted: 

one can calculate transport coefficients from a knowledge of the equilibrium fluctuations. We will 

now discuss these relations in more detail.
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4.2  Mori-Zwanzig Theory

We will show that for an arbitrary phase variable A(ΓΓΓΓ ), evolving under equations of 

motion which preserve the equilibrium distribution function, one can always write down a 

Langevin equation. Such an equation is an exact consequence of the equations of motion. We will 

use the symbol iL, to denote the Liouvillean associated with these equations of motion. These 

equilibrium equations of motion could be field-free Newtonian equations of motion or they could 

be field-free thermostatted equations of motion such as Gaussian isokinetic or Nosé-Hoover 

equations. The equilibrium distribution could be microcanonical, canonical or even isothermal-

isobaric provided that if the latter is the case, suitable distribution preserving dynamics are 

employed. For simplicity we will compute equilibrium time correlation functions over the 

canonical distribution function, fc, 

 fc(ΓΓΓΓ )  =  

∫  dΓΓΓΓ  e
-βH0(ΓΓΓΓ )

e
-βH0(ΓΓΓΓ )

(4.2.1)

We saw in the previous section that a key element of the derivation was that the correlation of the 

random force, FR(t) with the Langevin variable A, vanished for all time. We will now use the 

notation first developed in §3.5, which treats phase variables, A(ΓΓΓΓ ), B(ΓΓΓΓ ), as vectors in 6N-

dimensional phase space with a scalar product defined by  ∫dΓΓΓΓ  f 0 (ΓΓΓΓ)B(ΓΓΓΓ)A*(ΓΓΓΓ), and denoted as 

(B,A*). We will define a projection operator which will transform any phase variable  B,  into a 

vector which has no correlation with the Langevin variable, A. The component of B parallel to A is 

just,

 P B(ΓΓΓΓ ,t)   =   
(A(ΓΓΓΓ ),A*(ΓΓΓΓ ))

(B(ΓΓΓΓ , t),A*(ΓΓΓΓ ))   A(ΓΓΓΓ ). (4.2.2)

This equation defines the projection operator P. 

The operator Q=1-P, is the complement of P and computes the component of B 

orthogonal to A.

 (QB(t),A* )   =   (B(t) - 
(A,A* )

(B(t),A*)
 A, A* )

=   (B(t),A*)  -  
(A,A* )

(B(t),A* )
 (A,A* )   =   0  (4.2.3)

In more physical terms the projection operator Q computes that part of any phase variable which is 

random with respect to a Langevin variable, A.
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A*

B

PB = (B,A*)(A,A*)-1A

QB = (1-P)B
       = B - (B,A*)(A,A*)-1A

Figure 4.1. The projection operator P, operating on B produces a vector which is the component 

of B parallel to A.

Other properties of the projection operators are that,

 PP  =  P,        QQ  =  Q,        QP  =  PQ  =  0, (4.2.4)

Secondly, P and Q are Hermitian operators (like the Liouville operator itself). To prove this we 

note that,

 (PB,C*)*    =   
(A,A*)*

((B,A* )A,C* )*
   =   

(A,A* )

(B,A*)*  (A,C*)*

=   
(A,A*)

(B* ,A) (A* ,C)   =   
(A,A* )

(A,B*) (C,A*)

=   
(A,A*)

((C,A* )A,B* )
    =   (PC,B* ).   (4.2.5)

Furthermore, since Q=1-P where 1 is the identity operator, and since both the identity operator and 

P are Hermitian, so is Q.

We will wish to compute the random and direct components of the propagator eiLt . The 

random and direct parts of the Liouvillean iL are iQL and iPL respectively. These Liouvilleans 

define the corresponding random and direct propagators, eiQLt  and eiPLt. We can use the Dyson 

equation to relate these two propagators. If we take eiQLt as the reference propagator in (3.6.10) 

and eiLt as the test propagator then,
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 eiLt    =   eiQLt   +   ∫
0

t

dτ  eiL(t- τ)  iPL  eiQLτ.   (4.2.6)

The rate of change of A(t), the Langevin variable at time t is,

 
dt

d A(t)   =   eiLt  iLA   =   eiLt  i(Q + P) LA. (4.2.7)

But,

 eiLt  iPLA   =   eiLt  
(A,A* )

(iLA,A * ) A   =   
(A,A* )

(iLA,A * )  eiLt A   ≡   iΩ A(t). (4.2.8)

This defines the frequency iΩ which is an equilibrium property of the system. It only involves 

equal time averages.  Substituting this equation into (4.2.7) gives,

 
dt

dA(t)   =   iΩ A(t)  +  eiLt  iQLA.  (4.2.9)

Using the Dyson decomposition of the propagator given in equation (4.2.6), this leads to,

 
dt

dA(t)   =   iΩ A(t)   +   ∫
0

t

dτ  eiL(t- τ)  iPL  eiQLτ  iQLA   +   eiQLt  iQLA. (4.2.10)

We identify eiQLt iQLA as the random force F(t) because,

 (F(t),A*)   =   (eiQLt iQLA,A* )   =   (QF(t),A* )   =   0, (4.2.11)

where we have used (4.2.4). It is very important to remember that the propagator which generates 

F(t) from F(0) is not the propagator eiLt , rather it is the random propagator eiQLt. The integral in 

(4.2.10) involves the term, 

 iPL e
iQLt

 iQLA   =   iPLF(t)   =   iPLQF(t)

 =   
(A,A* )

(iLQF(t),A* )
 A

=  - 
(A,A* )

(QF(t),(iLA)* )
 A

as L is Hermitian and i is anti-Hermitian, (iL)*=(d/dt)*=(dΓΓΓΓ /dt•d/dΓΓΓΓ )∗ =d/dt=iL, (since the 
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equations of motion are real).  Since Q is Hermitian,

 iPL e
iQLt

 iQLA   =   - 
(A,A* )

(F(t),(QiLA)*)
 A

=   - 
(A,A* )

(F(t),F(0)* )
 A   ≡   - K(t) A, (4.2.12)

where we have defined a memory kernel K(t). It is basically the autocorrelation function of the 

random force. Substituting this definition into (4.2.10) gives

 
dt

dA(t)
   =   iΩ A(t)  -  ∫

0

t

dτ e
iL(t-τ)

 K(τ) A  +  F(t)

=   iΩ A(t)  -  ∫
0

t

dτ  K(τ)  A(t-τ)   +   F(t).  (4.2.13)

This shows that the Generalised Langevin Equation is an exact consequence of the equations of 

motion for the system (Mori, 1965a, b; Zwanzig, 1961). Since the random force is random with 

respect to A, multiplying both sides of (4.2.13) by A*(0) and taking a canonical average gives the 

memory function equation,

 
dt

dC(t)   =   iΩ C(t)   -   ∫
0

t

dτ  K(τ) C(t-τ). (4.2.14)

 This is essentially the same as equation (4.1.5).

As we mentioned in the introduction to this section the generalised Langevin equation 

and the memory function equation are exact consequences of any dynamics which preserves the 

equilibrium distribution function. As such the equations therefore describe equilibrium fluctuations 

in the phase variable A, and the equilibrium autocorrelation function for A, namely C(t).

However the generalised Langevin equation bears a striking resemblance to a 

nonequilibrium constitutive relation. The memory kernel K(t) plays the role of a transport 

coefficient. Onsager's regression hypothesis (1931) states that the equilibrium fluctuations in a 

phase variable are governed by the same transport coefficients as is the relaxation of that same 

phase variable to equilibrium. This hypothesis implies that the generalised Langevin equation can 

be interpreted as a linear, nonequilibrium  constitutive relation with the memory function K(t), 

given by the equilibrium  autocorrelation function of the random force.
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Onsager's hypothesis can be justified by the fact that in observing an equilibrium 

system for a time which is of the order of the relaxation time for the memory kernel, it is 

impossible to tell whether the system is at equilibrium or not. We could be observing the final 

stages of a relaxation towards equilibrium or, we could be simply observing the small time 

dependent fluctuations in an equilibrium system. On a short time scale there is simply no way of 

telling the difference between these two possibilities. When we interpret the generalised Langevin 

equation as a nonequilibrium constitutive relation, it is clear that it can only be expected to be valid 

close to equilibrium. This is because it is a linear constitutive equation.
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4.3   Shear Viscosity

It is relatively straightforward to apply the Mori-Zwanzig formalism to the calculation 

of fluctuation expressions for linear transport coefficients. Our first application of the method will 

be the calculation of shear viscosity. Before we do this we will say a little more about about 

constitutive relations for shear viscosity. The Mori-Zwanzig formalism leads naturally to a non-

Markovian expression for the viscosity. Equation (4.2.13) refers to a memory function rather than 

a simple Markovian transport coefficient such as the Newtonian shear viscosity. We will thus be 

lead to a discussion of viscoelasticity (see §2.4). 

We choose our test variable A, to be the x-component of the wavevector dependent 

transverse momentum current J⊥ (k,t).

k

 J(k, t)

 J


(k, t)

 J(k, t)=  J
⊥
(k, t)  +  J


(k, t)

 J
⊥
(k, t)

Figure 4.2. We can resolve the wavevector dependent momentum density into components 

which are parallel and orthogonal to the wavevector, k.

For simplicity, we define the coordinate system so that k is in the y direction and J⊥  is in the x 

direction.

 J
x
(k

y
,t) = ∑ mv

xi
(t) exp(ik

y
y

i
(t)) (4.3.1)

In §3.8 we saw that

 
.
J   =   ik Pyx(k,t) (4.3.2)

where for simplicity we have dropped the Cartesian indices for J and k. We note that at zero 

wavevector the transverse momentum current is a constant of the motion, dJ/dt=0. The quantities 

we need in order to apply the Mori-Zwanzig formalism are easily computed. 
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The frequency matrix iΩ, defined in (4.2.8), is identically zero. This is always so in the 

single variable case as -<A*dA/dt> = 0, for any phase variable A. The norm of the transverse 

current is calculated

 (J(k),J
*
(k)) = < ∑

i=1

N

 p
xi

e
iky i

 ∑
j =1

N

 p
xj

 e
-iky j

 >

= N<p
x1
2 > + N(N-1) <p

x1
p

x2
 e

ik(y1-y2)
 >

= Nmk
B
T (4.3.3)

At equilibrium pxi is independent of px2 and (y1-y2) so the correlation function factors into the 

product of three equilibrium averages. The values of <px1> and <px2> are identically zero. The 

random force, F, can also easily be calculated since

 P Pyx(k)   =   
< | J(k) |

2
>

(Pyx(k),J(-k))
  J   =   0, (4.3.4)

we can write,

 F(0)  =  iQLJ   =   (1-P) ik Pyx(k)   =   ik Pyx(k). (4.3.5)

The time dependent random force (see (4.2.11)), is 

 F(t)  =  eiQLt ik P
yx

(k) (4.3.6)

A Dyson decomposition of eQiLt in terms of eiLt shows that,

 eiLt   =   eQiLt    +      ∫
0

t

 ds eiL(t-s) PiL eQiLs (4.3.7)

Now for any phase variable B,

 PiLB = < J
*
iLB > 

Nmk
B
T

J
  =  -< B(iLJ)

*
>

Nmk
B
T

J
 

 = - ik<BP
yx

(-k)>
Nmk

B
T (4.3.8)

J
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Substituting this observation into (4.3.7) shows that the difference between the propagators eQiLt 

and eiLt is of order k, and can therefore be ignored in the zero wavevector limit.

From equation (4.2.12) the memory kernel K(t) is <F(t)F* (0)>/ <AA * >. Using 

equation (4.3.6), the small wavevector form for K(t) becomes,

 K(t)   =   k2 
Nmk

B
T

< P
yx

(k,t) P
yx

(-k,0)>
(4.3.9)

The generalised Langevin equation (the analogue of equation 4.2.13) is 

 lim  
dt

dJ
x
(k

y
, t)

  =  
NmkBT

-k
2

 ∫
0

t

 ds < P
yx

(k
y
,s) P

yx
(-k

y
,0) >

0
 J

x
(k

y
, t-s)

k→0

                                                    + ik
y
 P

yx
(k

y
,t) (4.3.10)

where we have taken explicit note of the Cartesian components of the relevant functions. Now we 

know that the rate of change of the transverse current is  ik Pyx(k,t). This means that the left hand 

side of (4.3.10) is related to equilibrium fluctuations in the shear stress. We also know that  J(k) 

=∫ dk' ρ(k'-k) u(k'), so, close to equilibrium, the transverse momentum current (our Langevin 

variable A), is closely related to the wavevector dependent strain rate γ(k). In fact the wavevector 

dependent strain rate γ(k) is -ikJ(k)/ρ(k=0). Putting these two observations together we see that 

the generalised Langevin equation for the transverse momentum current is essentially a relation 

between fluctuations in the shear stress and the strain rate - a constitutive relation. Ignoring the 

random force (constitutive relations are deterministic), we find that equation (4.3.10) can be 

written in the form of the constitutive relation (2.4.12),

 lim  P
yx

(t)   =   - ∫
0

t

ds  η(k=0,t-s)  γ(k=0,s)
k→0

(4.3.11)

If we use the fact that,  PyxV = lim(k→0) Pyx(k),  η(t) is easily seen to be

 η(t)   =   βV < P
xy

(t) P
xy

(0) > (4.3.12)

Equation (4.3.11) is identical to the viscoelastic generalisation of Newton's law of viscosity 

equation (2.4.12). 

The Mori-Zwanzig procedure has derived a viscoelastic constitutive relation. No 

mention has been made of the shearing boundary conditions required for shear flow. Neither is 
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there any mention of viscous heating or possible nonlinearities in the viscosity coefficient. 

Equation (4.3.10) is a description of equilibrium fluctuations. However unlike the case for the 

Brownian friction coefficient or the self diffusion coefficient, the viscosity coefficient refers to 

nonequilibrium rather than equilibrium systems. 

The zero wavevector limit is subtle. We can imagine longer and longer wavelength 

fluctuations in the strain rate γ(k). For an equilibrium system however  γ(k=0) ≡ 0 and < γ(k=0) 

γ∗ (k=0) > ≡ 0. There are no  equilibrium fluctuations in the strain rate at k=0. The zero 

wavevector strain rate is completely specified by the boundary conditions.

If we invoke Onsager's regression hypothesis we can obviously identify the memory 

kernel η(t) as the memory function for planar (ie. k=0) Couette flow. We might observe that there 

is no fundamental way of knowing whether we are watching small equilibrium fluctuations at 

small but non-zero wavevector, or the last stages of relaxation toward equilibrium of a finite k, 

nonequilibrium disturbance. Provided the nonequilibrium system is sufficiently close to 

equilibrium, the Langevin memory function will be the nonequilibrium memory kernel. However 

the Onsager regression hypothesis is additional to, and not part of, the Mori-Zwanzig theory. In 

§6.3 we prove that the nonequilibrium linear viscosity coefficient is given exactly by the infinite 

time integral of the stress fluctuations. In §6.3 we will not use the Onsager regression hypothesis.

At this stage one might legitimately ask the question: what happens to these equations if 

we do not take the zero wavevector limit? After all we have already defined a wavevector 

dependent shear viscosity in (2.4.13). It is not a simple matter to apply the Mori-Zwanzig 

formalism to the finite wavevector case. We will instead use a method which makes a direct appeal 

to the Onsager regression hypothesis.

Provided the time and spatially dependent strain rate is of sufficiently small amplitude, 

the generalised viscosity can be defined as (2.4.13),

 P
yx

(k,t)  =  - ∫
0

t

 ds η(k, t-s) γ(k,s) (4.3.13)

Using the fact that γ(k,t) = -ikux(k,t) = -ikJ(k,t)/ρ, and that dJ(k,t)/dt = ikPyx(k,t), we can rewrite 

(4.3.13) as,

 J(k,t)   =   - 
ρ
k

2

 ∫
0

t

 ds  η(k, t-s) J(k,s)
•

(4.3.14)

If we Fourier-Laplace transform both sides of this equation in time, and using Onsager's 
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hypothesis, multiply both sides by J(-k,0) and average with respect to the equilibrium canonical 

ensemble we obtain,

 C
~
(k,ω)   =   

 iω + 
ρ

k2η~(k,ω)

C(k,0)
(4.3.15)

where C(k,t) is the equilibrium transverse current autocorrelation function <J(k,t) J(-k,0)> and the 

tilde notation denotes a Fourier-Laplace transform in time,

 ∼C(ω)   =   ∫
0

∞

dt  C(t) e-iωt . (4.3.16)

We call the autocorrelation function of the wavevector dependent shear stress,

 N(k,t)  ≡  
Vk

B
T

1
  < P

yx
(k,t) P

yx
(-k,0) > (4.3.17)

We can use the relation dJ(k,t)/dt = ikPyx(k,t), to transform from the transverse current 

autocorrelation function C(k,t) to the stress autocorrelation function N(k,t) since,

 
dt2
d

2
  < J(k,t) J(-k,0) >   =  - < 

.
J(k,t) 

.
J(-k,0) >

=  - k
2
 < Pyx(k,t) Pyx(-k,0) >  (4.3.18)

This derivation closely parallels that for equation (4.1.10) and (4.1.11) in §4.1. The reader should 

refer to that section for more details. Using the fact that, ρ=Nm/V, we see that,

 k2 Vk
B
T N~(k,ω)   =   ω2 C~(k,ω) + iω C(k,0). (4.3.19)

The equilibrium average C(k,0) is given by equation (4.3.3). Substituting this equation into 

equation (4.3.15) gives us an equation for the frequency and wavevector dependent shear viscosity 

in terms of the stress autocorrelation function,

 η~(k,ω)   =   

1 -  
iωρ

k
2
 N
~

(k,ω)

N
~
(k,ω)

(4.3.20)
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This equation is not of the Green-Kubo form. Green-Kubo relations are exceptional being only 

valid for infinitely slow processes. Momentum relaxation is only infinitely slow at zero 

wavevector. At finite wavevectors momentum relaxation is a fast process. We can obtain  the 

usual Green-Kubo form by taking the zero k limit of equation (4.3.20 ). In that case 

 η~(0,ω)  =  lim  N~(k,ω)
k→0

(4.3.21)

k

ω

η(k,ω)~

N(k,ω)
~

Schematic Diagram of the frequency and 
wavevector dependent viscosity and stress 

autocorrelation function.

(0,0) N(k,0)=0
~

Figure 4.3.  The relationship between the viscosity, η(k,ω), and the stress autocorrelation 

function, N(k,ω). At k=0 both functions are identical. At ω=0 but k≠0, the stress autocorrelation 

function is identically zero. The stress autocorrelation function is discontinuous at the origin. The 

viscosity is continuous everywhere but non-analytic at the origin (see Evans, (1981)).

Because the are no fluctuations in the zero wavevector strain rate the function N(k,ω) is 

discontinuous at the origin. For all nonzero values of k, N(k,0) = 0! Over the years many errors 

have been made as a result of this fact. Figure 4.3 above illustrates these points schematically. The 

results for shear viscosity precisely parallel those for the friction constant of a Brownian particle. 

Only in the Brownian limit is the friction constant given by the autocorrelation function of the 

Brownian force.

An immediate conclusion from the theory we have outlined is that all  fluids are 
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viscoelastic. Viscoelasticity is a direct result of the Generalised Langevin equation which is in turn 

an exact consequence of the microscopic equations of motion.
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4 . 4 Green-Kubo Relations for Navier-Stokes Transport Coefficients

It is relatively straightforward to derive Green-Kubo relations for the other Navier-

Stokes transport coefficients, namely bulk viscosity and thermal conductivity. In §6.3 when we 

describe the SLLOD equations of motion for viscous flow we will find a simpler way of deriving 

Green-Kubo relations for both viscosity coefficients. For now we simply state the Green-Kubo 

relation for bulk viscosity as (Zwanzig, 1965),

 η    =    
Vk

B
T

1
  ∫

0

∞

dt  < [ p(t)V(t) - <pV> ][ p(0)V(0) - <pV> ] >
V

(4.4.1)

The Green-Kubo relation for thermal conductivity can be derived by similar arguments 

to those used in the viscosity derivation. Firstly we note from (2.1.26), that in the absence of a 

velocity gradient, the internal energy per unit volume ρU obeys a continuity equation, ρdU/dt = -

∇∇∇∇ •JQ. Secondly, we note that Fourier's definition of the thermal conductivity coefficient λ, from 

equation (2.3.16a), is JQ = -λ ∇∇∇∇ T. Combining these two results we obtain

 ρ 
dt
dU   =   λ ∇ 2T . (4.4.2)

Unlike the previous examples, both U and T have nonzero equilibrium values; namely, <U> and 

<T>. A small change in the left-hand side of equation (4.4.2) can be written as (ρ+∆ρ) 

d(<U>+∆U)/dt. By definition d<U>/dt=0, so to first order in ∆, we have ρd∆U/dt. Similarly, the 

spatial gradient of <T> does not contribute, so we can write

 ρ 
dt

d∆U   =   λ  ∇ 2 ∆T . (4.4.3)

The next step is to relate the variation in temperature ∆T to the variation in energy per 

unit volume ∆(ρU). To do this we use the thermodynamic definition,

 
V
1   

∂T
∂E |

V
   =   

∂T
∂(ρU)

|
V

   =   ρc
V
  (4.4.4)

where cV is the specific heat per unit mass. We see from the second equality, that a small variation 

in the temperature ∆T is equal to ∆(ρU)/ρcV. Therefore, 

 ρ
.

∆U  =  ρc
V

λ  ∇ 2ρ∆U (4.4.5)
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If DT ≡ λ/ρcV is the thermal diffusivity, then in terms of the wavevector dependent internal energy 

density equation (4.4.5) becomes,

 ρ∆
.
U(k ,t)  =  - k2D

T
 ρ∆U(k, t) (4.4.6)

If C(k,t) is the wavevector dependent internal energy density autocorrelation function,

 C(k,t)  ≡  < ρ∆U(k , t) ρ∆U(-k ,0) > (4.4.7)

then the frequency and wavevector dependent diffusivity is the memory function of energy density 

autocorrelation function,

 ∼
C(k,ω)   =   

iω + k
2 ∼
D

T
(k,ω)

C(k,0)
(4.4.8)

Using exactly the same procedures as in §4.1 we can convert (4.4.8) to an expression for the 

diffusivity in terms of a current correlation function. From (4.1.7 & 10) if φ = - d2C/dt2 then,

 φ(k,t)   =   k2< J
Qx

(k,t) J
Qx

(-k,0) > (4.4.9)

Using equation (4.1.10), we obtain the analogue of (4.1.11),

 k
2
 
∼
DT(k,ω)   =   ∼C(k,ω)

C(k,0)  -  iω∼
C(k,ω)

   =   

C(k,0)  -  
iω

∼φ(k,ω)

∼φ(k,ω)
 .  (4.4.10)

If we define the analogue of equation (4.3.17), that is φ(k,t) = k2 NQ(k,t), then equation (4.4.10) 

for the thermal diffusivity can be written in the same form as the wavevector dependent shear 

viscosity equation (4.3.20). That is

 ∼
DT(k,ω)   =   

C(k,0)  -  
iω
k

2
 

∼
N

Q
(k,ω)

∼
N

Q
(k,ω)

 .  (4.4.11)

Again we see that we must take the zero wavevector limit before we take the zero frequency limit, 

and using the canonical ensemble fluctuation formula for the specific heat,

               ρc
C
Vk TV

B

= ( , )0 0
2                                                                              (4.4.12)
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we obtain the Green-Kubo expression for the thermal conductivity

 λ  =  
k

B
T

2

V
  ∫

0

∞

 dt  < J
Qx

(t) J
Qx

(0) > .  (4.4.13)

This completes the derivation of Green-Kubo formula for thermal transport coefficients. These 

formulae relate thermal transport coefficients to equilibrium properties. In the next chapter we will 

develop nonequilibrium routes to the thermal transport coefficients.
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Chapter 5. Linear Response Theory

5.1 Adiabatic linear response theory 

5.2 Thermostats and thermostatted distribution functions

5.3 Isothermal linear response theory 

5.4 The equivalence of the thermostatted linear responses



5 . 1 Adiabatic Linear Response Theory

In this chapter we will discuss how an external field Fe, perturbs an N-particle 

system. We assume that the field is sufficiently weak that only the linear response of the system 

need be considered. These considerations will lead us to equilibrium fluctuation expressions for 

mechanical transport coefficients such as the electrical conductivity. These expressions are 

formally identical to the Green-Kubo formulae that were derived in the last chapter. The difference 

is that the Green-Kubo formulae pertain to thermal  transport processes where boundary 

conditions perturb the system away from equilibrium - all Navier-Stokes processes fall into this 

category. Mechanical transport coefficients on the other hand, refer to systems where mechanical 

fields which appear explicitly in the equations of motion for the system, drive the system away 

from equilibrium.

As we will see it is no coincidence that there is such a close similarity between the 

fluctuation expressions for thermal and mechanical transport coefficients. In fact one can often 

mathematically transform the nonequilibrium boundary conditions for a thermal transport process 

into a mechanical field. The two representations of the system are then said to be congruent.  

A major difference between the derivations of the equilibrium fluctuation expressions 

for the two representations is that in the mechanical case one does not need to invoke Onsager's 

regression hypothesis. The linear mechanical response of a nonequilibrium system is analysed 

mathematically with resultant expressions for the response that involve equilibrium time correlation 

functions. In the thermal case - Chapter 4 - equilibrium fluctuations were studied and after invoking 

Onsager's hypothesis, the connection with nonequilibrium transport coefficients was made. Given 

a congruent mechanical representation of a thermal transport process, one can in fact prove the 

validity of Onsager's hypothesis.

The mechanical field Fe, performs work on the system, preventing relaxation to 

equilibrium. This work is converted into heat. It is easy to show that the rate at which the field 

performs work on the system is, for small fields, proportional to Fe2. As such this is, at least 

formally, a nonlinear effect. This is why, in the complete absence of any thermostatting 

mechanism, Kubo (1957) was able to derive correct expressions for the linear response. However 

in spite of heating being a nonlinear effect, a thermostatted treatment of linear response theory leads 

to a considerably more satisfying discussion. We will therefore include in this chapter a description 

of thermostats and isothermal linear response theory.

Consider a system of N atoms suddenly subject, at t=0, to a time dependent external 

field, Fe. The generalisation of our discussion to vector or tensor fields is straightforward. For 

simplicity we will assume that the particles move in a three dimensional Cartesian space. For times 

greater than zero the system is assumed to obey the dynamics given in the equations below,
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.
qi    =   m

pi    +   Ci  Fe(t)

.
pi    =   F i    +   Di  Fe(t) .  (5.1.1)

 

The phase variables Ci(ΓΓΓΓ) and Di(ΓΓΓΓ) describe the coupling of the field to the system. We assume 

that the equations have been written in such a way that at equilibrium in the absence of the external 

field the canonical kinetic energy K, satisfies the equipartition relation,

 
2
3

 NkBT  = < ∑
i=1

N

 
2m

pi
2

  >  ≡ < K > (5.1.2)

  

This implies that the canonical momenta give the peculiar velocities of each of the particles and that 

therefore,

 ∑
i=1

N

  pi   =  0 (5.1.3)

In this case H0,

 H0(ΓΓΓΓ )    ≡    ∑
i=1

N

 
2m

pi
2

    +    Φ(q) (5.1.4)

 

is the instantaneous expression for the internal energy. We do not assume that a Hamiltonian exists 

which will generate the field-dependent equations of motion. In the absence of the external field 

and the thermostat, H0 is the total energy, and is therefore a constant of the motion. The rate of 

change of internal energy due to the field is

 
.

H0(ΓΓΓΓ ,t)   =   ∑
i=1

N

 
 

 m

.
pi

(t) • pi    -   
.
qi (t) • F i

 
 



=  - ∑
i=1

N

 
 


 - Di  • m

pi    +   Ci  • F i  
 


 Fe(t)

≡  - J(ΓΓΓΓ ) Fe(t),  (5.1.5)

where J(ΓΓΓΓ ),  is called the dissipative flux.
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The response of the system to the external field can be assessed by monitoring the 

average response of an arbitrary phase variable B(ΓΓΓΓ) at some later time t. The average response of 

the system is the response that is obtained by perturbing an ensemble of initial phases. It is usual to 

select the starting states from the equilibrium canonical ensemble, thus

 f(ΓΓΓΓ ,0)   =   fc(ΓΓΓΓ )   =   

∫dΓΓΓΓ ' exp[-βH0(ΓΓΓΓ ' )]

exp[-βH0(ΓΓΓΓ )
   =   

Z(β)
e

-βH
0
(ΓΓΓΓ )

 .  (5.1.6)

The average response <B(t)> can be calculated from the expression,

 < B(t) >    =    ∫dΓΓΓΓ     B(ΓΓΓΓ )  f(ΓΓΓΓ ,t) (5.1.7)

This is the Schrödinger representation for the response of B. The problem of determining the 

response then reduces to determining the perturbed distribution function f(t). The rate of change in 

the perturbed distribution function is given by the Liouville equation

 
∂t
∂

 f(ΓΓΓΓ , t)  =  -iL f(ΓΓΓΓ ,t)  =  - [ (
∂ΓΓΓΓ

∂
 •ΓΓΓΓ

•
(t)) + ΓΓΓΓ

•
(t)•

∂ΓΓΓΓ

∂
 ]  f(ΓΓΓΓ , t) (5.1.8)

 
      .
The ΓΓΓΓ (t) in these equations is given by the first order form of the equations of motion with the 

external field evaluated at the current time, t. 

If the equations of motion are derivable from a Hamiltonian it is easy to show that 

∂(dΓΓΓΓ /dt)/∂ΓΓΓΓ  = 0, (§3.3). We will assume that even in the case where no Hamiltonian exists which 

can generate the equations of motion (5.1.1), that ∂(dΓΓΓΓ /dt)/∂ΓΓΓΓ  = 0. We refer to this condition as the 

Adiabatic Incompressibility of Phase Space (AIΓΓΓΓ). A sufficient, but not necessary, condition for this 

to hold is that the unthermostatted or adiabatic equations of motion are derivable from a 

Hamiltonian. It is of course possible to pursue the theory without this condition but in practise it is 

rarely necessary to do so (the only known exception is discussed: Evans and MacGowan, 1986).

Thus in the adiabatic case if AIΓΓΓΓ holds, we know that the Liouville operator is Hermitian 

(see §3.3 & §3.5) and therefore,

 iL A   =   
∂ΓΓΓΓ
∂  • 

.
ΓΓΓΓ    A   =   

.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂  A   =   iL A. (5.1.9)

If we denote the Liouvillean for the field free equations of motion as iL0, and we break up the total 

Liouvillean into its field free and field dependent parts, equation (5.1.8) becomes,
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∂t
∂ (f  + ∆f(ΓΓΓΓ , t))   =   - (iL0 + i∆L(t)) (f   +  ∆f(ΓΓΓΓ , t))cc

(5.1.10)

where the distribution function f(ΓΓΓΓ ,t), is written as fc + ∆f(ΓΓΓΓ ,t). Since H0 is a constant of the motion 

for the field free adiabatic equations of motion, iL0  therefore preserves the canonical ensemble,

 iL0 fc   =   
.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂  fc   =   ∑

i=1

N

 
 



.
qi •∂q i

∂   +  
.
pi •∂pi

∂  

   Z(β)

e
-βH

0
(ΓΓΓΓ )

=   
Z(β)

-βe
-βH

0

  ∑
i=1

N

 
 



.
qi • ∂qi

∂H0  +  
.
pi • ∂pi

∂H0 


   =   0. (5.1.11)

Substituting (5.1.11) into equation (5.1.10) we see,

 
∂t
∂  ∆f(ΓΓΓΓ , t)   +   iL0 ∆f(ΓΓΓΓ , t)   =   -  i∆L(t) fc(ΓΓΓΓ )  +  O(∆2

) (5.1.12)

In (5.1.12) we are ignoring perturbations to the distribution function which are second order in the 

field. (The Schrödinger-Heisenberg equivalence (§3.3), proves that these second order terms for the 

distribution are identical to the second order trajectory perturbations.) In §7.8 we discuss the nature 

of this linearisation procedure in some detail. To linear order, the solution of equation (5.1.12) is,

 ∆f(ΓΓΓΓ , t)   =   - ∫
0

t

ds  exp(-iL0(t-s))  i∆L(s)  fc(ΓΓΓΓ ) + O(∆2
) (5.1.13)

The correctness of this solution can easily be checked by noting that at t=0, (5.1.13) has the correct 

initial condition, (∆f(ΓΓΓΓ,t=0)=0) and that the solution for ∆f(ΓΓΓΓ ,t) given in (5.1.13) satisfies (5.1.12) 

for all subsequent times. 

We will now operate on the canonical distribution function with the operator, iL(t). We 

again use the fact that iL0 preserves the canonical distribution function. 

 i∆L(t) fc(ΓΓΓΓ )   =   iL(t) fc(ΓΓΓΓ )   =   
.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂   

Z(β)

exp[-βH0(ΓΓΓΓ )]

=  - β fc(ΓΓΓΓ )  
.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂H0

=  - β 
.
H0

ad
 fc(ΓΓΓΓ ) . (5.1.14)

The adiabatic time derivative of H0 is given by the dissipative flux (5.1.5), so,
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 i∆L(s) fc(ΓΓΓΓ )   =  - β
.
H0

ad
(s) fc(ΓΓΓΓ )   =   β J(ΓΓΓΓ ) Fe(s) fc(ΓΓΓΓ ) . (5.1.15)

The time argument associated with i∆L(s) is the time argument of the external field. 

Substituting (5.1.15) into (5.1.13) and in turn into (5.1.7), the linear response of the 

phase variable  B is given by

 < B(t) >   =   < B(0) >   +   ∫dΓΓΓΓ   B(ΓΓΓΓ)  ∆f(ΓΓΓΓ , t)

=   < B(0) >   -   ∫
0

t

ds ∫dΓΓΓΓ   B(ΓΓΓΓ )  exp(-iL0(t-s))  βJ(ΓΓΓΓ )Fe(s) fc(ΓΓΓΓ )

=   < B(0) >   -  β ∫
0

t

 ds ∫ dΓΓΓΓ  B(ΓΓΓΓ ;t-s) J(ΓΓΓΓ ;0) fc(ΓΓΓΓ ) Fe(s) (5.1.16)

In deriving the third line of this equation from the second we have unrolled the propagator from the 

dissipative flux onto the response variable B. Note that the propagator has no effect on either the 

canonical distribution function (which is preserved by it), or on the external field Fe(t) which is not a 

phase variable. 

It is usual to express the result in terms of a linear susceptibility χBJ, which is defined in 

terms of the equilibrium time correlation function of B and J,

 χBJ(t)  ≡  β < B(t) J(0) > (5.1.17)

To linear order, the canonical ensemble averaged linear response for B(t) is,

 < B(t) >  =  < B(0) >  -  lim  ∫
0

t

 ds χBJ(t-s) Fe(s)
Fe→0

(5.1.18)

This equation is very similar to the response functions we met in Chapter 4 when we discussed 

viscoelasticity and constitutive relations for thermal transport coefficients. The equation shows that 

the linear response is non-Markovian. All  systems have memory. All N-body systems remember the 

field history over the decay time of the relevant time correlation function, <B(t)J(0)>. Markovian 

behaviour is only an idealisation brought about a lack of sensitivity in our measurements of the time 

resolved many-body response.

There are, a number of deficiencies in the derivation we have just given. Suppose that by 

monitoring <B(t)> for a family of external fields Fe, we wish to deduce the susceptibility χ(t). One 
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cannot blindly use equation (5.1.18). This is because as the system heats up through the conversion 

of work into heat, the system temperature will change in time. This effect is quadratic with respect to 

the magnitude of the external field. If χ increases with temperature, the long time limiting value of 

<B(t)> will be infinite. If χ decreases with increasing temperature the limiting value of <B(t)> could 

well be zero. This is simply a reflection of the fact that in the absence of a thermostat there is no 

steady state. The linear steady state value for the response can only be obtained if we take the field 

strength to zero before we let time go to infinity. This procedure will inevitably lead to difficulties in 

both the experimental and numerical determination of the linear susceptibilities.

Another difficulty with the derivation is that if adiabatic linear response theory is applied 

to computer simulation, one would prefer not to use canonical averaging. This is because a single 

Newtonian equilibrium trajectory cannot generate or span the canonical ensemble. A single 

Newtonian trajectory can at most span a microcanonical subset of the canonical ensemble of states. A 

canonical evaluation of the susceptibility therefore requires an ensemble of trajectories if one is using 

Newtonian dynamics. This is inconvenient and very expensive in terms of computer time.

One cannot simply extend this adiabatic theory to the microcanonical ensemble. 

Kubo(1982) recently showed that if one subjects a cumulative microcanonical ensemble (all states 

less than a specified energy have the same probability) to a mechanical perturbation, then the linear 

susceptibility is given by the equilibrium correlation of the test variable B and the dissipative flux J, 

averaged over the delta microcanonical ensemble (all states with a precisely specified energy have the 

same probability). When the equilibrium ensemble of starting states is not identical to the equilibrium 

ensemble used to compute the susceptibilities, we say that the theory is ergodically inconsistent. We 

will now show how both of these difficulties can be resolved.
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5 . 2 Thermostats and equilibrium distribution functions

The Gaussian Isokinetic Thermostat

Thermostats were first introduced as an aid to performing nonequilibrium computer 

simulations. Only later was it realised that these devices have a fundamental role in the statistical 

mechanics of many-body systems. The first deterministic method for thermostatting molecular 

dynamics simulations was proposed simultaneously and independently by Hoover and Evans 

(Hoover, Ladd and Moran, 1982, and Evans, 1983). Their method employs a damping or friction 

term in the equations of motion. Initially the use of such damping terms had no theoretical 

justification. Later it was realised (Evans, Hoover, Failor, Moran and Ladd, 1983) that these 

equations of motion could be derived using Gauss' principle of least constraint (§3.1). This 

systematised the extension of the method to other constraint functions.

Using Gauss' Principle (Chapter 3), the isokinetic equations of motion for a system 

subject to an external field can be written as,

 .
qi    =   m

pi    +   Ci  Fe(t)

.
pi    =   F i    +   Di  Fe(t)   -   α  pi  .  (5.2.1)

This is the thermostatted generalisation of equation (5.1.1) where the thermostatting term −αpi has 

been added. In writing these equations we are assuming: 

1). that the equations have been written in a form in which the canonical momenta 

are peculiar with respect to the streaming velocities of the particles;

2). that Σ pi  =  0;

3). and that H0 is the phase variable which corresponds to the internal energy.

In order to know that these three conditions are valid, we must know quite a lot about the possible 

flows induced in the system by the external field. This means that if we are considering shear flow 

for example, the Reynolds number must be small enough for laminar flow to be stable. Otherwise we 

cannot specify the streaming component of a particles motion (C i  must contain the local 

hydrodynamic flow field u(r ,t)) and we cannot expect condition 1.  to be valid.

The isokinetic expression for the multiplier is easily seen to be ,

 α    =   α0 + α1Fe(t)   =   

∑
i

 mi

1  pi
2

∑
i

 mi

F i  • p i

   +   

∑
i

 mi

1  pi
2

∑
i

 mi

Di  • pi

 Fe(t) . (5.2.2)
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It is instructive to compare this result with the corresponding field free multiplier given in (3.1.32). It 

is important to keep in mind that the expression for the multiplier depends explicitly on the external 

field and therefore on time. This is why we define the time and field independent phase variables 

α 0,α 1.

It is easy to show that if Gauss' Principle is used to fix the internal energy H0, then the 

equations of motion take on exactly the same form (Evans, 1983), except that the multiplier is,

                 α =
• − •∑
∑

D p C F
p

i i i i

i
e

m

m

F t
/

( )2                                                     (5.2.3)

It may seem odd that the form of the field dependent equations of motion is independent of whether 

we are constraining the kinetic or the total energy. This occurs because the vector character of the 

constraint force is the same for both forms of constraint (see §3.1). In the isoenergetic case it is clear 

that the multiplier vanishes when the external field is zero. This is as expected since in the absence of 

an external field, Newton's equations conserve the total energy.

Gaussian thermostats remove heat from the system at a rate dQ/dt ≡ - dH0/dt)therm,

 
.

Q(t)   =   α(t)  ∑
i=1

N

  mi

pi
2

 ,  (5.2.4)

by applying a force of constraint which is parallel to the peculiar velocity of each particle in the 

system.

We will now discuss the equilibrium properties of Gaussian isokinetic systems in more 

detail. At equilibrium the Gaussian isokinetic equations become,

 .
qi    =   m

pi  

.
pi    =   F i    -   α  pi  .  (5.2.5)

with the multiplier given by equation (5.2.2) with Fe = 0. Clearly the average value of the multiplier 

is zero at equilibrium with fluctuations in its value being precisely those required to keep the kinetic 

energy constant. Following our assumption that the initial value of the total linear momentum is zero, 

it is trivial to see that like the kinetic energy, it is a constant of the motion.

The ergodically generated equilibrium distribution function fT(ΓΓΓΓ ), can be obtained by 

solving the Liouville equation for these equations of motion. It is convenient to consider the total time 
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derivative of f. From the Liouville equation (3.3.7), we see that,

 
dt
df   =  - f 

∂ΓΓΓΓ
∂  • 

.
ΓΓΓΓ    =  - f  ∑

i=1

N

 
∂pi

∂  • 
.
p i   =   f  ∑

i=1

N

 
∂pi

∂  • αpi  .  (5.2.6)

In computing the final derivative in this equation we get 3N identical intensive terms from the 3N 

derivatives, α∂pi•/∂pi. We also get 3N terms from pi•∂α/∂pi which sum to give -α. Since we are 

interested in statistical mechanical systems we will ignore terms of relative order 1/N, in the 

remaining discussion. It is certainly possible to retain these terms but this would add considerably to 

the algebraic complexity, without revealing any new physics. This being the case, equation (5.2.6) 

above becomes,

 

 
dt
df

  =  3Nα f  +  O(1)f (5.2.7)

From (5.2.2) it is can be shown that ,

 
dt
df

  =  - 
2K
3N

 f 
.
Φ, (5.2.8)

or,

 
dt

d ln f
    =   - 

2K
3N

 
dt
dΦ (5.2.9)

Integrating both sides with respect to time enables us to evaluate the time independent equilibrium 

distribution function,

 fT(ΓΓΓΓ )    =    

∫ dΓΓΓΓ   exp[-βΦ(ΓΓΓΓ )]  δ(K(ΓΓΓΓ ) - K0)

exp[-βΦ(ΓΓΓΓ )]  δ(K(ΓΓΓΓ ) - K0)
(5.2.10)

where the constant, β = 3N/2K0. We call this distribution function the isokinetic distribution fT 

(Evans and Morriss, 1983a,b). It has a very simple form: the kinetic degrees of freedom are 

distributed microcanonically, and the configurational degrees of freedom are distributed canonically. 

The thermodynamic temperatures (∂E/∂S)N,V=T ) of these two subsystems are of course identical. 

If one retains terms of order 1/N in the above derivation, the result is the same except that 

β = (3N-4)/2K0. Such a result could have been anticipated in advance because in our Gaussian 

isokinetic system four degrees of freedom are frozen, one by the kinetic energy constraint, and three 

because the linear momentum is fixed.
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One can check that the isokinetic distribution is an equilibrium solution of the 

equilibrium Liouville equation. Clearly dfT/dt ≠ 0. As one follows the streaming motion of an 

evolving point in phase space ΓΓΓΓ(t), the streaming derivative of the comoving local density is,

 
dt

dfT    =   
2K(ΓΓΓΓ )

3N
 

.
Φ(ΓΓΓΓ ) fT(ΓΓΓΓ )   ≠   0. (5.2.11)

This is a direct consequence of the fact that for a Gaussian isokinetic system, phase space is 

compressible. It is clear however, that in the absence of external fields  <dfT/dt > = 0, because the 

mean value of dΦ/dt must be zero. If we sit at a fixed point in phase space and ask whether, under 

Gaussian isokinetic dynamics, the isokinetic distribution function changes, then the answer is no. 

The isokinetic distribution is the equilibrium distribution function. It is preserved by the dynamics. 

Substitution into the Liouville equation gives,

 
∂t

∂fT   =  - 
.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂fT  -  fT 

∂ΓΓΓΓ
∂  • 

.
ΓΓΓΓ    =   (β 

.
Φ  +  3Nα) fT   =   0. (5.2.12)

The proof that the last two terms sum to zero is easily given using the fact that, β=3N/2K and that 

K=Σp2/2m is a constant of the motion.

 βΦ
•
 + 3Nα  =  - β∑  Fi • m

pi   + 3N

∑ 
m

pi
2

∑ F i • m

pi

  = 0 (5.2.13)

If the equilibrium isokinetic system is ergodic, a single trajectory in phase space will 

eventually generate the isokinetic distribution. On the other hand a single isokinetic trajectory cannot 

ergodically generate a canonical distribution. We can however, ask whether isokinetic dynamics will 

preserve the canonical distribution. If we integrate the equations of motion for an ensemble of 

systems which are initially distributed canonically, will that distribution be preserved by isokinetic 

dynamics? Clearly,

 
∂t
∂fc   =   fc 

 

 3Nα   +  β

.
K  +  β

.
Φ 




=   fc 
 


β  -  

2K(ΓΓΓΓ )
3N  


  

 
.
Φ(ΓΓΓΓ )   =   fc ∆(β) 

.
Φ(ΓΓΓΓ ) (5.2.14)

 is not identically zero. In this expression K is a phase variable and not a constant, and dΦ/dt is only 
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equal to zero on average. K would only be a constant if all members of the ensemble had identical 

kinetic energies. The mean value of 3N/2K is of course β.

Consider the time derivative of the canonical average of an arbitrary extensive phase 

variable, B, where the dynamics is Gaussian isokinetic.

 
dt
d  < B(t) >   =   ∫dΓΓΓΓ  B 

∂t
∂fc   =   ∫dΓΓΓΓ B ∆(β) 

.
Φ fc . (5.2.15)

The time derivative of the ensemble average is,

 
dt
d  < B(t) >   =   < B (

2K
3N - β) 

.
Φ >

=   
K0

β
  < B ∆K 

.
Φ >   +   O(∆2

) , (5.2.16)

where ∆(K) ≡ K-<K> = K-K0. Equation (5.2.16) can be written as the time derivative of a product 

of three extensive, zero-mean variables.

 
dt
d   < B(t) >   =   

K0

β
 [ < B >< ∆K 

.
Φ >  +  < ∆B ∆K 

.
Φ > ]

=   
K0

β
  < ∆B ∆K 

.
Φ >   =   O(1).  (5.2.17)

In deriving these equations we have used the fact that  < ∆(K) dΦ/dt > = 0, and that the ensemble 

average of the product of three extensive, zero mean phase variables is of order N, while K0=<K> is 

extensive.

The above equation shows that although B is extensive, the change in < B(t) > with time, 

(as the ensemble changes from canonical at t=0, to whatever for the Gaussian isokinetic equations 

generate as t→∞) is of order 1 and therefore can be ignored relative to the average of B itself. In the 

thermodynamic limit the canonical distribution is preserved by Gaussian isokinetic dynamics.
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Nosé-Hoover thermostat - canonical ensemble

The Gaussian thermostat generates the isokinetic ensemble by a differential  feedback 

mechanism. The kinetic temperature is constrained precisely by setting its time derivative to be zero. 

Control theory provides a range of alternative feedback processes. After the Gaussian thermostat was 

developed, Nosé (1984a,b) utilised an integral feedback mechanism. As we will see the Nosé 

thermostat, especially after a simplifying reformulation by Hoover (1985), provides a simple and 

direct way of ergodically generating the canonical ensemble. 

The original Nosé method considers an extended system with an additional degree of 

freedom s, which acts like an external reservoir, interacting with the system of interest by scaling all 

the velocities of the particles,  vi = sdqi/dt. The new potential energy that Nosé chose to associate 

with this new degree of freedom was  (g+1)kBT ln s, where g is related to the number of degrees of 

freedom of the system and T is the desired value of the temperature. It is essentially the choice of the 

potential for s which leads to dynamics which generate the canonical ensemble.

The equivalent Hoover formulation of the Nosé thermostat uses equations of motion with 

the same form as the Gaussian equations. The difference being that the thermostatting multiplier α , is 

determined by a time integral of the difference of the actual kinetic temperature from its desired value. 

All present applications of the Nosé thermostat use the Hoover reformulation rather than the original, 

somewhat cumbersome approach.

The Nosé Hamiltonian for the extended system is,

 HN(q,p,s,ps)   =   ∑
i=1

N

 
2m s

2

pi
2

  +  Φ(q)  +  
2Q

ps
2

  +  (g+1)kBT ln s (5.2.18)

where Q is effectively the mass associated with the heat bath (s is dimensionless so the parameter Q 

does not have the dimensions of mass). The equations of motion generated by this Hamiltonian are

 
.
qi    =   

m s2

pi .
pi    =   F i

.
s   =   

Q
ps 

.
ps   =   ∑

i=1

N

 
m s3

pi
2

  -  s
(g+1)kBT

  (5.2.19)

If we eliminate the variable ps from the equations of motion obtaining instead of the last two 

equations a single second order differential equation for s,
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dt
2

d
2
s
    =    

Q
1

 (∑
i=1

N

 
m s

3

pi
2

  -  
s

(g+1)kBT) (5.2.20)

If the system is at equilibrium, the average force on the s coordinate must be zero, so that

 <∑
i=1

N

 
m s

3

pi
2

 >   =   <∑
i=1

N

 
s

m s
2
 qi

2

 >   =   (g+1)kBT < 
s
1

 >
.

(5.2.21)

Suppose we interpret the time appearing in (5.2.19) to be a non-Galilaean fictitious time, and the real 

velocities to be v i  = s(dqi/dt). The instantaneous temperature is related to ΣΣΣΣ i mvi2, and its time 

averaged value is equal to (g+1)kBT, where g+1 is the number of degrees of freedom. This is 

consistent with a non-Galilaean time average being given by

 < A >t   =    

∫
0

T

 dt 
s
1

∫
0

T

 dt 
s

A(t)

(5.2.22)

This is an unusual definition of a time average as it implies that equal intervals non-Galilaean time  dt, 

correspond to unequal intervals in real time of dt/s. Large values of s can be understood as 

corresponding to a rapid progress of fictitious time t. Division by s in the time averages appearing in 

(5.2.22) cancels out the uneven passage of fictitious time restoring the averages to their correct 

Galilean values.

To calculate the equilibrium distribution function corresponding to the Nosé Hamiltonian 

we use the fact that for an ergodic system, the equilibrium distribution function for Nosé's extended 

system is microcanonical. The microcanonical partition function for the extended system is,

 Z   =   
N!
1

 ∫ dp dq dps ds   δ(HN(q,p,s,ps) - E) (5.2.23)

 Z  =  
N!
1  ∫dp dq dps ds δ

 


∑
i=1

N

 
2ms2
pi

2

  + Φ(q) + 
2Q
ps

2

  + (g+1)kBT ln s  -  E
 



(5.2.24)

where q and p are 3N-dimensional vectors, q≡(q1,..,qN) and p≡(p1,..,pN). If we change variables 

from p to p', where p'i = pi /s for all i, then
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 Z   =   
N!
1

 ∫ dp'  dq dps ds s
3N

  δ(H0' (q,p' )  +  
2Q

ps
2

  +  (g+1)kBT ln s  -  E) (5.2.25)

where H0' is the usual N particle Hamiltonian ΣΣΣΣi p'i2/2mi + Φ(q), (the prime indicates that H0' is a 

function of p'). The integral over s can be performed as the only contributions come from the zeros 

of the argument of the delta function. If G(s) = H0' + ps2/2Q + (g+1)kBT ln s - E, then G has only 

one zero, that is

 s0   =   exp[ - 
(g+1)kBT

H0
'
  +  

2Q

ps
2

  -  E
 ] (5.2.26)

Using the identity  δ(G(s)) = δ (s - s0) / G'(s) it is easy to show that performing the integral over s 

gives

 Z  =  
N!
1  ∫dp'  dq dps (g+1)kBT

1   exp[ - 
(g+1)kBT

3N+1  (H0
'  + 

2Q
ps

2

  - E)] (5.2.27)

The integral over ps is the infinite integral of a Gaussian and the result is

 Z  =  
N!
1

(g+1)(3N+1)kBT
2πQ

 ∫ dp ' dq  exp[ - 
(g+1)kBT
3N+1

 (H0
'
 - E) ] (5.2.28)

If we choose  g = 3N then this partition function is simply related to the canonical partition function 

 Z  =  
3N+1

1  
kBT
2πQ

   
N!
1

  ∫ dp'  dq  exp[ - 
kBT

H0
'
 - E

 ] (5.2.29)

If the variables q,p,s,ps are distributed microcanonically then variables p ' and q are canonically 

distributed. The notion of non-Galilaean time makes this formulation of the Nosé thermostat rather 

cumbersome to use and difficult to interpret.

The next step in the development of this method was made by Hoover (1985) who 

realised that if one's interest lies solely in computing averages over q,p' in real time then you may as 

well rewrite the equations of motion in terms of q,p' and real time, t', and eliminate the p,s,ps,t 

variables entirely. He used the time transformation
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 t'    =   ∫
0

t

  
s
dτ

(5.2.30)

so that dt' = dt/s, to rewrite the Nosé equations of motion as

 
dt'

dqi    =   m
pi

'
  

dt'

dpi
'
   =   F i   -  ζpi

'   

dt'
dζ

   =   
Q
1 

 


∑
i=1

N

 m
pi

'2

  -  (g+1)kBT
 



   =   
τ2
1  

 

 K0

K(p' )
  -  1

 



dt'
ds   =   ζs (5.2.31)

where K0 is the value of the kinetic energy corresponding to the required value of the temperature 

K0=(g+1)kBT/2, K(p') is the instantaneous value of the kinetic energy, τ is a relaxation time which 

is related to the mass of the s degree of freedom (τ2 = Q/2K0) and ζ=ps/Q. The motion of the system 

of interest can now be determined without reference to s. It is an irrelevant variable which can be 

ignored. The variable dζ/dt is a function of p' only, so the complete description of the system can be 

given in terms of the variables q and p'.

An important result, obtained from this time transformation by Evans and Holian (1985), 

is that time averages in terms of the variables q , p' and t' take their usual form, that is

 < A(q,p' ) >t'   =   
T'
1

  ∫
0

T'

  dt'   A(q,p' , t' )   =   < A(q,p' ) >canonical (5.2.32)

To obtain this result we start by considering the Nosé-Hoover phase variable Liouvillean  

iLNH(q,p',s,ps;t') and relating it to the Nosé Liouvillean  iLN(q,p,s,ps;t).

 iLN(q,p,s,ps,t)  =  
.
q•

∂q
∂   +  

.
p•

∂p
∂   +  

.
s
∂s
∂   +  

.
ps∂ps

∂   

=   
m s

2

p
.
∂q
∂   +  F.

∂p
∂ |

s
  +  

Q

ps 
∂s
∂ |

p
  +  (∑

i=1

N

 
m s

2

pi
2

 - (g+1)kBT) 
s
1

 
∂ps

∂   (5.2.33)

Using the results:

 
∂s
∂ |

p
   =   

∂s
∂ |

p '
   -   p' .

∂p
∂ |

s

(5.2.34)
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and

 
∂p
∂ |

s
   =   

s
1

 
∂p'
∂ |

s

(5.2.35)

equation (5.2.33) becomes

 iLN  =   
m s

2

p
.
∂q
∂   +  (F - p'

Q

ps)
s
1

.
∂p'
∂ |

s
  +  

Q

ps 
∂s
∂ |

p '
  +  (∑

i=1

N

 
m s

2

pi
2

  -  (g+1)kBT)
s
1

 
∂ps

∂

=   
m s
p'

.
∂q
∂   +  (F - ζp' )

s
1

.
∂p'
∂ |

s
  +  ζ 

∂s
∂ |

p '
  +  (∑

i=1

N

 
m

pi
' 2

  -  (g+1)kBT)
s
1

 
∂ps

∂

=   
s
1

 [  
m
p'

.
∂q
∂   +  (F - ζp' ).

∂p'
∂ |

s
  +  sζ 

∂s
∂ |

p '
  +  (∑

i=1

N

 
m

pi
' 2

 - (g+1)kBT) 
∂ps

∂  ]

=   
s
1

  iLNH(q,p' ,s,ps,t' ) (5.2.36)

If  A  is an arbitrary phase variable then the Liouvillean describes the rate of change of A. 

If we consider A to be a function of q and p then the rate of change of A with respect to time t is

 
dt

d A(q,p)
    =    iLN(q,p,s,ps,t)  A(q,p) (5.2.37)

Since iLN contains no explicit time dependence, integrating with respect to time gives

 A(q,p, t)  =  exp[∫
0

t

dτ  iLN(q,p,s,ps)] A(q,p,0)  =  exp[iLN(q,p,s,ps)t] A(q,p,0) (5.2.38)

In a similar fashion we can consider A to be function of q and p'. In that circumstance it is natural to 

ask for the value of A at t'.

 A(q,p' , t' )  =  exp[∫
0

t'

dτ ' iLNH(q,p' )]  A(q,p ',0)  =  exp[iLNH(q,p' )t]  A(q,p' ,0) (5.2.39)

Now A is function of the reduced phase space only, so the dependence on s and ps can be ignored. 

These two different representations of the phase variable can be equated. To do this consider the time 

transformation (5.2.30). It implies,
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 t'   =  ∫
0

t'

dτ '  =  ∫
0

t

s
dτ

(5.2.40)

So that  dτ ' = dτ/s, and

 A(q,p, t)   =   exp[ ∫
0

t

dτ  iLN(q,p)]  A(0)   =    exp[ ∫
0

t

s
dτ

  iLNH(q,p' )]  A(0) 

=   exp[ ∫
0

t'

dτ '  iLNH(q,p' )]  A(0)   =   A(q,p' , t' )  (5.2.41)

Using (5.2.41)  and the time transformation (5.2.30) we find that  T' = ∫∫∫∫0T' dt'  = ∫∫∫∫0T dt 1/s  so that 

we can rewrite the time average in the usual form,

 < A >t   =   

∫
0

T'

  dt'

∫
0

T'

  dt'   A(q,p, t' )

   =   
T '
1

  ∫
0

T'

  dt'   A(q,p, t' )   =   < A >t' (5.2.42)

So the time average over t is equal to the time average over t'. Using the variables q,p ' and t' the 

time average over equal intervals of t' takes the usual form. The time average over q ,p  and t 

however, involves the scaling variable s, or equivalently a time average over unequal intervals of t.

One can of course dispense with the original form of Nosé's equations entirely. There is 

now no need to consider the notion of non-Galilaean time. We simply repeat the derivation we gave 

for the isokinetic distribution based on the Gaussian isokinetic equations of motion, for the Nosé-

Hoover equations. Since there is no need to refer to non-Galilaean time we refer to q,p',t' simply as, 

q,p,t (dropping the prime). The N particle distribution function f(ΓΓΓΓ ,ζ) generated by the Nosé-

Hoover equations of motion can be obtained by solving the Liouville equation for the equations of 

motion written in terms of q,p and t. It is convenient to consider the total time derivative of f which 

from the Liouville equation is

 

dt
df   =   - f(

∂ΓΓΓΓ
∂  •

.
ΓΓΓΓ   +  

∂ζ
∂ .

ζ) (5.2.43)

From the equations of motion (5.2.31), dropping the primes, it is easy to see that dζ/dt is a function 

of q and p, and hence independent of ζ. The only nonzero contribution to the right hand side comes 

from the p dependence of dp/dt, so that
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dt
df  =  3Nζf (5.2.44)

Consider the time derivative of the quantity  H0 + Qζ2/2

 
dt
d  (H0 + 

2
Qζ

2

 )  =  
.
H0  +  Qζ

.
ζ

                          =  −ζ ∑
i=1

N

 m
pi

2

  +  ζ(∑
i=1

N

 m
pi

2

  -  (g+1)kBT)

        
                          =  −ζ(g+1)kBT (5.2.45)

If we take g = 3N - 1 then we find that

 
dt
d  ln f  =  - β 

dt
d  (H0  + 

2
Qζ

2

 ) (5.2.46)

So that the equilibrium distribution function is the extended canonical distribution fc,

 fc(ΓΓΓΓ ,ζ)   =   

∫ dΓΓΓΓ  dζ  exp[ - β(Η
0
 + 

2
1

Qζ2) ]

exp[ - β(H0 + 
2
1

Qζ2) ]
(5.2.47)

In the Hoover representation of the equations of motion, the scaling variable s has essentially been 

eliminated so the number of degrees of freedom of the system, changes from 3N+1 to 3N.
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5 . 3 Isothermal Linear Response Theory

In §5.2 we considered two forms of thermostatted dynamics - the Gaussian isokinetic 

dynamics and the Nosé-Hoover canonical ensemble dynamics. Both of these thermostatted equations 

of motion can add or remove energy from the system to control its temperature. It is particularly 

important to incorporate thermostatted dynamics when the system is perturbed by an external field. 

This allows the irreversibly produced heat to be removed continuously, and the system maintained in 

a steady, nonequilibrium state. We now generalise the adiabatic linear response theory of §5.1, to 

treat perturbed thermostatted systems we have developed in §5.2. We consider (Morriss and Evans, 

1985) an N-particle system evolving under the Gaussian isokinetic dynamics for t<0, but subject for 

to an external field Fe, for all times t>0. The equations of motion are given by

 .
qi    =   m

pi    +   Ci  Fe(t)

.
pi    =   F i    +   D

i
 Fe(t)   -   α  pi  .  (5.3.1)

The term αpi couples the system to a thermostat and we shall take

 α    =   α0 + α1
Fe(t)   =   

∑
i

 mi

1  pi
2

∑
i

 mi

F i  • p
i

   +   

∑
i

 mi

1  pi
2

∑
i

 mi

Di  • pi

 Fe(t) .  (5.3.2)

 

so that the peculiar kinetic energy, K(ΓΓΓΓ ) = Σi  pi2/2m = K0,  is a constant of the motion. In the 

absence of the field these equations of motion ergodically generate the isokinetic distribution 

function, fT, equation (5.2.10), with β = 3N/2K0. As we have seen, the isokinetic distribution 

function fT, is preserved by the field free isokinetic equations of motion and that,

 
∂t

∂fT
   =   - iLT fT   =   0 (5.3.3)

we use iLT for the zero field, isokinetic Liouvillean.

To calculate the linear thermostatted response we need to solve the linearised Liouville 

equation for thermostatted systems. Following the same arguments used in the adiabatic case 

(equations (5.1.8-12)), the linearised Liouville equation is,

 
∂t
∂  ∆f(ΓΓΓΓ , t)  +  iL

T
∆f(ΓΓΓΓ , t)  =  -∆iL(t) fT(ΓΓΓΓ )  +  O(∆2

) (5.3.4)
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where  iL(t)  is the external field dependent, isokinetic Liouvillean and ∆iL(t) = iL(t) - iLT. Its 

solution is the analogue of (5.1.13), namely

 ∆f(ΓΓΓΓ , t)   =   - ∫
0

t

ds  exp(-iLT(t-s))  ∆iL(s)  fT (ΓΓΓΓ ) + O(∆2
) (5.3.5)

Using equations (5.1.8), (5.2.10) and (5.3.1), and the fact that β=3N/2K0, it is easy to 

show that

 ∆iL(t) fT(ΓΓΓΓ )  =  iL(t) fT(ΓΓΓΓ ) - iLT fT(ΓΓΓΓ )   =   iL(t) f (ΓΓΓΓ )T

                     =  [ .
ΓΓΓΓ (t)•

∂ΓΓΓΓ
∂   +  (

∂ΓΓΓΓ
∂  •

.
ΓΓΓΓ(t))] fT(ΓΓΓΓ )

                     =  -β
.
ΦfT(ΓΓΓΓ )  -  fT(ΓΓΓΓ )  ∑

i=1

N

  
∂pi

∂  • (αpi ) (5.3.6)

There is one subtle point in deriving the last line of (5.3.6),

 ∑
i=1

N

 
.
pi  • ∂pi

∂fT    =   ∑
i=1

N

 
.
pi  • ∂pi

∂   
ZT(β)

δ(K(p)-K0) e
-βΦ(q)

  

=   
ZT(β)
e

-βΦ(q)
  ∑

i=1

N

 
.
pi  • ∂pi

∂K(p)
  

∂K(p)

∂δ(K(p)-K0)

=   
ZT(β)
e-βΦ

  
.
K(p)  

∂K(p)

∂δ(K(p)-K0)
    =   0,  (5.3.7)

The last line follows because K(p) is a constant of the motion for the Gaussian isokinetic equations 

of motion. We have also assumed that the only contribution to the phase space compression factor 

comes from the thermostatting term αpi. This means that in the absence of a thermostat, that is the 

adiabatic case, the phase space is incompressible and 

 
∂ΓΓΓΓ
∂  • 

.
ΓΓΓΓ (t)

ad
   =   ∑

i=1

N

 
 

 ∂qi

∂
 • Ci   +  

∂p
i

∂  • Di
 

    =   0 . (5.3.8)

This assumption or condition, is known as the Adiabatic Incompressibility of Phase space  (AIΓΓΓΓ). 

A sufficient, but not necessary condition for it to hold is that the adiabatic equations of motion should 

be derivable from a Hamiltonian. It is important to note that AIΓΓΓΓ does not imply that the phase space 

for the thermostatted system should be incompressible. Rather it states that if the thermostat is 

removed from the field dependent equations of motion, the phase space is incompressible. It is 
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essentially a condition on the external field coupling terms Ci(q,p) and Di(q,p). It is not necessary 

that Ci be independent of q, and Di be independent of p. Indeed in §6.3 we find that this is not the 

case for planar Couette flow, but the combination of partial derivatives in equation (5.3.8) is zero. It 

is possible to generalise the theory to treat systems where AIΓΓΓΓ  does not hold but this generalisation 

has proved to be unnecessary.

Using equation (5.3.2) for the multiplier α, to first order in N we have

 ∆iL(t) fT(ΓΓΓΓ )  =  -(β
.
Φ(t)  +  3Nα) fT(ΓΓΓΓ )

                     =  β ∑
i=1

N

 [ Ci •F i   -  D i
• m
pi   ]  Fe(t) fT(ΓΓΓΓ )

                      
                     =  βJ(ΓΓΓΓ ) Fe(t) fT(ΓΓΓΓ ) (5.3.9)

This equation shows that ∆iL(t)f(ΓΓΓΓ) is independent of thermostatting. Equations (5.3.9) and (5.1.15) 

are essentially identical. This is why the dissipative flux J is defined in terms of the adiabatic 

derivative of the internal energy. Interestingly, the kinetic part of the dissipative flux, J(ΓΓΓΓ ), comes 

from the multiplier α, while the potential part comes from the time derivative of Φ.

Substituting (5.3.9) into (5.3.5), the change in the isokinetic distribution function is 

given by

 ∆f(ΓΓΓΓ ,t)   =  - β ∫
0

t

ds  exp(-iL(t-s)) J(ΓΓΓΓ) Fe(s) fT(ΓΓΓΓ ).  (5.3.10)

Using this result to calculate the mean value of B(t), the isothermal linear response formula 

corresponding to equation (5.1.16), is,

 <B(t)>T  -  <B(0)>T  =  ∫dΓΓΓΓ  B(ΓΓΓΓ ) ∆f(ΓΓΓΓ ,t)

=  - β∫
0

t

ds ∫dΓΓΓΓ B(ΓΓΓΓ ) exp(-iL(t-s)) J(ΓΓΓΓ ) Fe(s) fT(ΓΓΓΓ )

=  - β ∫
0

t

ds ∫dΓΓΓΓ J(ΓΓΓΓ ) fT(ΓΓΓΓ )  exp(iL(t-s)) B(ΓΓΓΓ ) Fe(s)

=  - β ∫
0

t

ds ∫dΓΓΓΓ B(t-s) J(ΓΓΓΓ ) fT(ΓΓΓΓ ) Fe(s)

=  - β ∫
0

t

ds  < B(t-s) J(0) >T,0  Fe(s) . (5.3.11)  
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Equation (5.3.11) is very similar in form to the adiabatic linear response formula derived 

in §5.1. The notation <..>T,0 signifies that a field-free (0), isokinetic (T) ensemble average should be 

taken. Differences from the adiabatic formula are that;

1). the field-free Gaussian isokinetic propagator governs the time evolution in the 

equilibrium time correlation function <B(t-s)J(0)>T,0 ,

2). the ensemble averaging is Gaussian isokinetic rather than canonical,

3). because both the equilibrium and nonequilibrium motions are thermostatted, the long 

time limit of < B(t) >T on the left hand side of (5.3.11), is finite,

4). and the formula is ergodically consistent. There is only one ensemble referred to in the 

expression, the Gaussian isokinetic distribution. The dynamics used to calculate the time 

evolution of the phase variable B in the equilibrium time correlation function, ergodically 

generates the ensemble of time zero starting states fT(ΓΓΓΓ). We refer to this as ergodically 

consistent linear response theory.

The last point means that time averaging rather than ensemble averaging can be used to generate the 

time zero starting states for the equilibrium time correlation function on the right hand side of 

equation (5.3.11).

It can be useful, especially for theoretical treatments, to use  ergodically inconsistent 

formulations of linear response theory. It may be convenient to employ canonical rather than 

isokinetic averaging, for example. For the canonical ensemble, assuming AIΓΓΓΓ , we have in place of 

equation (5.3.7),

 ∆iL(t) fc(ΓΓΓΓ )  =  - ( β∆Φ
•
  +  3N∆α) fc(ΓΓΓΓ )

 =  (β∑ F i •Ci   -  2K
3N

 ∑ 
m

pi  •Di ) Fe fc(ΓΓΓΓ )

 =  β J(ΓΓΓΓ ) Fe fc (ΓΓΓΓ )  +  β 
< Κ >

∆K
 ∑ m

pi
 • D

i
 Fe fc(ΓΓΓΓ ) (5.3.12)  

where ∆dΦ/dt is the difference between the rate of change of Φ with the external field turned on and 

with the field turned off (dΦ(Fe)/dt - dΦ(Fe=0)/dt). Similarly ∆α = α(Fe) - α(Fe=0) = α1Fe (see 

equation 5.3.2). The response of a phase variable B, is therefore,

 < B(t) >c  =  < B(0) >c  -  β∫
0

t

 ds < B(t-s) J(0) >c,0 Fe(s)

             
                         - β∫

0

t

 ds < B(t-s) 
< K >

c,0

∆K(0)
  ∑ 

m

pi (0)
 • Di (0) >c,0 Fe(s)  (5.3.13)
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Using the same methods as those used in deriving equation (5.2.17), we can show that if B is 

extensive, the second integral in equation (5.3.13) is of order 1 and can therefore be ignored. 

Thus for a canonical ensemble of starting states and thermostatted Gaussian isokinetic 

dynamics, the response of an extensive variable B, is given by

 < B(t) >c   =   < B(0) >c  -  β ∫
0

t

ds < B((t-s)T) J(0) >c,0 Fe(s) .  (5.3.14)

Like the isokinetic ensemble formula, the response, < B(tT) >c, possesses well defined steady state 

limit.

It is straightforward to apply the linear response formalism to a wide variety of  

combinations of statistical mechanical ensembles, and equilibrium dynamics. The resultant 

susceptibilities are shown in the Table 5.1 below. It is important to appreciate that the dissipative 

flux J(ΓΓΓΓ ) is determined by both the choice of equilibrium ensemble of starting states and the 

choice of the equilibrium dynamics.
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______________________________________________________________________________

Table 5.1      Linear Susceptibilities expressed as 

          Equilibrium Time Correlation Functions

______________________________________________________________________________

Adiabatic response of canonical ensemble

 

χ  =  β < B(tN) J(0) >c (T.1)

 

Isothermal response of canonical or isothermal ensemble

 

χ  =  β < B(tT) J(0) >c,T (T.2)

 

Isoenergetic response of canonical or microcanonical ensembles (Evans and Morriss, 1984b)

 

χ(t)  =  β < B(tN) J(0) >c,E   (T.3)

 

Isoenthalpic response of isoenthalpic ensemble

 

χ  =  β < B(tI) J(0) >I (T.4)

-J Fe ≡ dI/dt , isoenthalpic dynamics defined in (Evans and Morriss, 1984b).

 

Nosé dynamics of the canonical ensemble

 

χ  =  β < B(tc) J(0) >c (T.5)

______________________________________________________________________________

Legend: 

Equilibrium Dynamics:- tN  Newtonian;  tT  Gaussian isokinetic;

tI  Gaussian isoenthalpic; tc  Nosé-Hoover; tE Gaussian isoenergetic .

Ensemble averaging:- >c  canonical; >T  isokinetic; >E  microcanonical; >I  isoenthalpic.

______________________________________________________________________________

Proof of (T.5) can be found in a paper by Holian and Evans (1983).
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5.4   The Equivalence of Thermostatted Linear Responses

We shall now address the important question of how the various linear susceptibilities 

described in Table 5.1, relate to one another. For simplicity let us assume that the initial unperturbed 

ensemble is canonical. In this case the only difference between the adiabatic, the isothermal, the 

isoenergetic and the Nosé susceptibilities is in the respective field free propagators used to generate 

the equilibrium time correlation functions. We will now discuss the differences between the adiabatic 

and isothermal responses, however the analysis of the other cases involve similar arguments.  

Without loss of generality we shall assume that the dissipative flux J and the response phase variable 

B are both extensive and have mean values which vanish at equilibrium. The susceptibility is of 

order N.

The only difference between (T.1) and (T.2) is in the time propagation of the phase 

variable B,

 
 B(tT)   =   UT(t) B(ΓΓΓΓ )   =   exp(iLTt) B(ΓΓΓΓ ),  (5.4.1)

and 
 B(tN)   =   UN(t) B(ΓΓΓΓ )   =   exp(iLNt) B(ΓΓΓΓ ).  (5.4.2)

 

In equations (5.4.1) and (5.4.2) the Liouvillean iLN is the Newtonian Liouvillean, and iLT is the 

Gaussian isokinetic Liouvillean obtained from the equations of motion (5.2.5), with α given by the 

Fe→0 limit of equation (5.2.2). In both cases there is no explicit time dependence in the Liouvillean. 

We note that the multiplier α, is intensive.

We can now use the Dyson equation (3.6.12), to calculate the difference between the 

isothermal and adiabatic susceptibilities for the canonical ensemble. If ⇒⇒⇒⇒  denotes the isothermal 

propagator and →→→→  the Newtonian, the difference between the two relevant equilibrium time 

correlation functions is

 

<J  ⇒⇒⇒⇒  B>  -  <J →→→→ B>   =   <J ⇒⇒⇒⇒  ∆ →→→→ B>   ≡   δ <J ⇒⇒⇒⇒  B> (5.4.3) 

where we have used the Dyson equation (3.6.12). Now the difference between the isothermal and 

Newtonian Liouvillean is

 ∆   =   iLT  -  iL
N
   =   ∆

.
ΓΓΓΓ  • 

∂ΓΓΓΓ
∂    =  - α  ∑

i=1

N

 pi  • ∂pi

∂  .  (5.4.4)

 

Thus
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 δ < J ⇒ B >   =  - ∫
0

t

ds < J exp(iLTs) α  ∑
i=1

N

 pi  • ∂pi

∂  exp(iLN(t-s)) B > , (5.4.5)

 

where α is the field-free Gaussian multiplier appearing in the isothermal equation of motion.  We 

assume that it is possible to define a new phase variable B' by

 exp(iL
N
t) B '   =   ∑

i=1

N

 p
i
 • 

∂p
i

∂   exp(iL
N
t) B . (5.4.6)

This is a rather unusual definition of a phase variable, but if B is an analytic function of the 

momenta, then an extensive phase variable B' always exists. First we calculate the average value of 

B'(t).

 < B' (t
N
) >   =   < ∑

i=1

N

 p
i
 • 

∂p
i

∂   B(t
N
) >   =   ∫dΓΓΓΓ  fc(ΓΓΓΓ ) ∑

i=1

N

 p
i
 • 

∂p
i

∂  B(t
N
) 

 =  - ∫dΓΓΓΓ  B(t
N
) ∑

i=1

N

 
∂p

i

∂
 • (p

i
 fc(ΓΓΓΓ ))  

=  - 3N < B(t
N
) >   +   2β < B(t

N
) K(0) > . (5.4.7)

Unless B is trivially related to the kinetic energy K, the second term in (5.4.7) will vanish. Typically 

B will be a thermodynamic flux such as the heat flux vector or the symmetric traceless part of the 

pressure tensor. In these cases the term vanishes because of Curie's Principle (§2.3). If B is some 

scalar function of the kinetic energy, such as the energy, the kinetic energy or the hydrostatic 

pressure, <B'(tN-sN)> is non-zero. 

Assuming, without loss of generality, that < B(tN) > = 0, then we can show ,

 δ < J ⇒  B >   =  - ∫
0

t

ds < J exp(iL
T
s) α exp(iL (

N
t-s)) B' > 

=  - ∫
0

t

ds < J(-s
T
) α (0) B' (t

N
-s

N
) > .  (5.4.8)

This is because <J> = < α > = 0. Because J, B and B' are extensive and α is intensive, equation 

(5.4.8) can be expressed as the product of three zero mean extensive quantities divided by N. The 

average of three local, zero mean quantities is extensive, and thus the quotient is intensive. 

Therefore, except in the case where B is a scalar function of the kinetic energy, the difference 
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between the susceptibilities computed under Newton's equations and under Gaussian isokinetic 

equations, is of order 1/N compared to the magnitude of the susceptibilities themselves. This means 

that in the large system limit the adiabatic and isokinetic susceptibilities are equivalent. Similar 

arguments can be be used to show the thermodynamic equivalence of the adiabatic and Nosé 

susceptibilities. It is pleasing to be able to prove that the mechanical response is independent of the 

thermostatting mechanism and so only depends upon the thermodynamic state of the system.

Two further comments can be made at this stage: firstly, there is a simple reason why 

the differences in the respective susceptibilities is significant in the case where B is a scalar function 

of the kinetic energy. This is simply a reflection of the fact that in this case B, is intimately related to 

a constant of the motion for Gaussian isokinetic dynamics. One would expect to see a difference in 

the susceptibilities in this case. Secondly, in particular cases one can use Dyson decomposition 

techniques, (in particular equation (3.6.17)), to systematically examine the differences between the 

adiabatic and isokinetic susceptibilities. Evans and Morriss (1984a) used this approach to calculate 

the differences, evaluated using Newtonian and isokinetic dynamics, between the correlation 

functions for each of the Navier-Stokes transport coefficients. The results showed that the 

equilibrium time correlation functions for the shear viscosity, for the self diffusion coefficient and 

for the thermal conductivity and independent of thermostatting in the large system limit.
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6 . 1 Introduction.

We will now show how linear response theory can be used to design computer 

simulation algorithms for the calculation of transport coefficients. There are two types of transport 

coefficients: mechanical and thermal. In this chapter we will show how thermal transport 

coefficients can be calculated using mechanical methods.

In nature nonequilibrium systems may respond essentially adiabatically, or depending 

upon circumstances, they may respond in an approximately isothermal manner - the quasi-

isothermal response. No natural systems can be precisely adiabatic or isothermal. There will 

always be some transfer of the dissipative heat produced in nonequilibrium systems towards 

thermal boundaries. This heat may be radiated, convected or conducted to the boundary reservoir. 

Provided this heat transfer is slow on a microscopic timescale and provided that the temperature 

gradients implicit in the transfer process lead to negligible temperature differences on a microscopic 

length scale, we call the system quasi-isothermal. We assume that quasi-isothermal systems can 

be modelled on a microscopic scale in computer simulations, as isothermal systems. 

In view of the robustness of the susceptibilities and equilibrium time correlation 

functions to various thermostatting procedures (see ¤5.2,4), we expect that quasi-isothermal 

systems may be modelled using Gaussian or Nos�-Hoover thermostats or enostats. Furthermore, 

since heating effects are quadratic functions of the thermodynamic forces, the linear response of 

nonequilibrium systems can always be calculated by analysing, the adiabatic, the isothermal or the 

isoenergetic response.

Because of the fundamental relations between the linear nonequilibrium response and 

time dependent equilibrium fluctuations (Table 6.1) we have two ways of calculating the 

susceptibilities. We could perform an equilibrium simulation and calculate the appropriate 

equilibrium time correlation functions. The principle advantage of this method is that all possible 

transport coefficients can, in principle, be calculated from a single molecular dynamics run. This 

approach is however, very expensive in computer time with poor signal-to-noise ratios, and results 

that often depend strongly and nonmonotonically upon the size of the system being simulated. A 

frequently more useful approach is to perform a non-equilibrium simulation of the transport 

process. For mechanical transport processes we apply an external field, Fe, and calculate the 

transport coefficient L, from a linear constitutive relation:

 L   =   ò
0

¥

dt  c(t)   =   lim
Fe®0

   lim
t®¥

    
F

e

< B(t) > (6.1.1)

The use of equation (6.1.1) necessitates a thermostat since otherwise, the work done on the system 

would be transformed continuously into heat and no steady state could be achieved (the limit, 

t®¥, would not exist). This method, known as non-equilibrium molecular dynamics (NEMD), 
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has the added advantage that it can, in principle, be used to calculate non-linear as well as linear 

transport coefficients. They can be calculated as a function of external field strength, frequency or 

wavevector. The most efficient, number independent way to calculate mechanical transport 

coefficients is to ignore the beautiful results of response theory and to duplicate the transport 

process, essentially as it occurs in nature.

Thermal transport processes are in principle much more difficult to simulate on the 

computer. A thermal transport process is one which is driven by boundary conditions rather than 

mechanical fields.  For thermal processes we cannot perform time dependent perturbation theory 

because there is no external field appearing in the Hamiltonian which could be used as a 

perturbation variable. In spite of this difference, susceptibilities for thermal processes show many 

similarities to their mechanical counterparts (compare (5.3.8) with the results of Chapter 4). If J, is 

the flux of some conserved quantity (mass, momentum or energy) and if X is a gradient in the 

density of that conserved quantity, then a linear Navier-Stokes transport coefficient is defined by a 

constitutive relation of the form,

 

J   =   LX (6.1.2)

In Chapter 4 we showed that each of the Navier-Stokes transport coefficients L, is 

related to equilibrium fluctuations by Green-Kubo relations. These relations are set out in Table 

6.1. Remarkably Navier-Stokes thermal transport coefficients are related to equilibrium time 

correlation functions in essentially the same way as mechanical transport coefficients. We must 

stress however that this close formal similarity between thermal and mechanical transport 

coefficients only applies to Navier-Stokes thermal transport processes. If fluxes of non-conserved 

variables are involved, then Green-Kubo relations must be generalised (see equation (4.1.12) & 

¤4.3).
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_____________________________________________________________________________

 Table 6.1        Green-Kubo Relations for Navier-Stokes transport coefficients.

self diffusion

 D   =   
3
1  ò

0

¥

dt  < v
i
(t) ¥ v

i
(0) >  (T.6.1)

 

thermal conductivity

 l   =   
3k

B
T

2
V   ò

0

¥

dt  < J
Q
(t) ¥ J

Q
(0) >  (T.6.2)

shear viscosity

 h   =   
k

B
T

V   ò
0

¥

dt  < Pxy(t) Pxy(0) >  (T.6.3)

 

bulk viscosity

 hv   =   
Vk

B
T

1   ò
0

¥

dt  < (p(t)V(t) - <pV>) (p(0)V(0) - <pV>) >  (T.6.4)

____________________________________________________________________________

The ensemble averages employed in Table 6.1, are usually taken to be canonical while 

the time dependence of the correlation functions is generated by field free Newtonian equations of 

motion. In ¤5.4, we proved that, except for bulk viscosity, thermostatted equations of motion can 

also be used to generate the equilibrium time correlation functions. For bulk viscosity the 

correlation function involves functions of the kinetic energy of the system. We cannot therefore 

use Gaussian isokinetic equations of motion (see equation (5.4.7,8)). This is because, for these 

equations, the kinetic energy is a constant of the motion.

To calculate thermal transport coefficients using computer simulation we have the same 

two options that were available to us in the mechanical case. We could use equilibrium molecular 

dynamics to calculate the appropriate equilibrium time correlation functions, or we could mimic 

experiment as closely as possible and calculate the transport coefficients from their defining 

constitutive relations. Perhaps surprisingly the first technique to be used was equilibrium 

molecular dynamics (Alder and Wainwright, 1956). Much later the more efficient nonequilibrium 

approach was pioneered by Hoover and Ashurst (1975). Although the realistic nonequilibrium 
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approach proved more efficient than equilibrium simulations it was still far from ideal. This was 

because for thermal transport processes appropriate boundary conditions are needed to drive the 

system away from equilibrium - moving walls or walls maintained at different temperatures.  

These boundary conditions necessarily make the system inhomogeneous. In dense fluids particles 

pack against these walls, giving gives rise to significant number dependence and interpretative 

difficulties.

The most effective way to calculate thermal transport coefficients exploits the formal 

similarities between susceptibilities for thermal and mechanical transport coefficients. We invent a 

fictitious external field which interacts with the system in such a way as to precisely mimic the 

linear thermal transport process. The general procedure is outlined in Table 6.2. These methods are 

called 'synthetic' because the invented mechanical perturbation does not exist in nature. It is our 

invention and its purpose is to produce a precise mechanical analogue of a thermal transport 

process.

_____________________________________________________________________________

Table 6.2.  Synthetic NEMD.

 

1. For the transport coefficient of interest Lij,  J i º LijXj. Identify the Green Kubo relation 

for the transport coefficient,

 L
ij
   =   ò

0

¥

dt  < J
i
(t) J

j
(0) >  

2. Invent a fictitious field Fe and its coupling to the system such that the dissipative flux 

 J   º   H¥ 
0
   =   Jj   
ad

3. Ensure AIGGGG is satisfied, that the equations of motion are homogeneous and that they are 

consistent with periodic boundary conditions.

4. Apply a thermostat.

5. Couple Fe to the system isothermally or isoenergetically and compute the steady state 

average, <Ji(t)>,  as a function of the external field, Fe.  Linear response theory then proves,

 L
ij
  =     lim        lim     

Fe

< J
i
(t) >

            Fe®0    t®¥
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_____________________________________________________________________________

With regard to step 3 in Table 6.2, it is not absolutely necessary to invent equations of 

motion which satisfy AIGGGG    (see ¤5.3). One can generalise response theory so that AIGGGG  is not 

required.  However it is simpler and more convenient to require AI GGGG and thus far it has always 

proved possible to generate algorithms which satisfy AIGGGG. Although AIGGGG is satisfied, most sets of 

equations of motion used in synthetic NEMD are not derivable from a Hamiltonian. The preferred 

algorithms for thermal conductivity and shear viscosity are not derivable from Hamiltonians. In the 

case of thermal conductivity the Hamiltonian approach must be abandoned because of conflicts 

with the periodic boundary condition convention used in simulations. For shear viscosity the 

breakdown of the Hamiltonian approach occurs for deeper reasons.

Equations of motion generated by this procedure are not unique, and it is usually not 

possible a priori  to predict which particular algorithm will be most efficient. It is important to 

realise that the algorithms generated by this procedure are only guaranteed to lead to the correct 

linear (lim Fe®0 ) transport coefficients. We have said nothing so far about generating the correct 

nonlinear response.

Many discussions of the relative advantages of NEMD and equilibrium molecular 

dynamics revolve around questions of efficiency. For large fields, NEMD is orders of 

magnitude more efficient than equilibrium molecular dynamics. On the other hand one can 

always make NEMD arbitrarily inefficient by choosing a sufficiently small field. At fields which 

are small enough for the response to be linear, there is no simple answer to the question of whether 

NEMD is more efficient than equilibrium MD. The number dependence of errors for the two 

methods are very different - compared to equilibrium MD, the relative accuracy of NEMD can be 

made arbitrarily great by increasing the system size.

These discussions of efficiency ignore two major advantages of NEMD over equilibrium 

molecular dynamics. Firstly, by simulating a nonequilibrium system one can visualise and 

study the microscopic physical mechanisms that are important to the transport processes (this is 

true both for synthetic and realistic NEMD). One can readily study the distortions of the local 

molecular structure of nonequilibrium systems. For molecular systems under shear, flow one can 

watch the shear induced processes of molecular alignment, rotation and conformational change 

(Edberg, Morriss and Evans, 1987). Obtaining this sort of information from equilibrium time 

correlation functions is possible but it is so difficult that no one has yet attempted the task. It is 

likely that no one ever will. Secondly, NEMD opens the door to studying the nonlinear response 

of systems far from equilibrium.

We will now give an extremely brief description of how one performs molecular 

dynamics simulations. We refer the reader to far more detailed treatments which can be found in 

the excellent monograph by Allen and Tildesley (1987) and in the review of NEMD by the present 
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authors (Evans and Morriss, 1984a). 

Consider the potential energy, F, of a system of N interacting particles. The potential 

energy can always be expanded into a sum of pair , triplet, ... interactions:

 F(r)  =  
2!
1   å  f(2)

(r
i
,r

j
)  +  

3!
1   å  f(3)

(r
i
,r

j
,r

k
)  +  . . . . (6.1.3)

For the inert gas fluids it is known that the the total potential energy can be reasonably accurately 

written as a sum of effective pair interactions with an effective pair interaction potential denoted 

f(ri,rj). The Lennard-Jones potential, fLJ, is frequently used as an effective pair potential,

 fLJ(ri,rj)  =  fLJ(rij)  º  4e[(rij

s )12  -  (rij

s )6] (6.1.4)

The potential energy of the two particles i,j is solely a function of their separation distance rij and is 

independent of the relative orientation of their separation vector  rij.  The Lennard-Jones potential 

is characterised by a well depth e, which controls the energy of the interaction, and a distance s , 

which is the distance at which the potential energy of the pair changes sign due to the cancellation 

of the Van der Waals attractive forces by the short ranged quantum repulsive forces. If 

e/kB=119.8K and s=3.405�, the Lennard-Jones potential forms a surprisingly accurate 

representation of liquid argon (Hansen and Verlet, 1969). For proper scaling during simulations, 

all calculations are performed in reduced units where e/kB=s=m=1. This amounts to measuring all 

distances in units of s, all temperatures in units of e/kB  and all masses in units of m. The 

Lennard-Jones potential is often truncated at a distance, rc=2.5s. Other potentials that are 

commonly used include the Weeks-Chandler-Andersen potential, usually written as WCA, which 

is the Lennard-Jones potential truncated at the position of minimum potential energy (21/6s) and 

then shifted up so that the potential is zero at the cutoff.
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(6.1.5)

The main advantage of this potential is its extremely short range of interaction. This permits 

simulations to be carried out much more quickly than is possible with the longer ranged Lennard-

Jones potential. Another short ranged potential than is often used is the soft sphere potential which 

omits the r-6 term from the Lennard-Jones potential. The soft sphere potential is often truncated at 

1.5s.

In molecular dynamics one simply solves the equations of motion for a system of (N ~ 

100 - 100000) interacting particles. The force on particle i, due to particle j, Fij, is evaluated from 

Chapter  6 - 7



the equation,

 F
ij

  =  -  
¶r

i

¶f
ij (6.1.6)

The N interacting particles are placed in a cubic cell which is surrounded by an infinite 

array of identical cells - so-called periodic boundary conditions. To compute the force on a given 

particle in the primitive cell one locates the closest (or minimum) image positions of the other N-1 

particles. The minimum image of particle i, may be within the primitive cell, or in one of the 

surrounding image cells (see Figure 6.1). One then finds all the minimum images particles for i, 

that lie within the potential cutoff distance rc and uses (6.1.6) to compute the contributions to the 

force on i, Fi=SFij.

    

rc

L

Minimum Image cell of 
particle:

Primitive cell

r  must be < Lc

Orthogonal Periodic Boundary 
Conditions

 

Figure 6.1.

Finally one solves NewtonÕs or HamiltonÕs equations of motion for the system

 .r
i
   =   m

p
i

.
p

i
   =   F

i
  (6.1.7)

If, during the course of the motion, particle i leaves the primitive cell it will be replaced under the 

periodic boundary condition convention by an image of itself, travelling with exactly the same 
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momentum, one lattice vector distant. We prefer to use HamiltonÕs form for the equations of 

motion because this form is much more convenient than the Newtonian form both for NEMD and 

and for equilibrium molecular dynamics with velocity dependent forces (such as thermostats). We 

often solve these equations of motion using a 5th order Gear predictor-corrector method. In studies 

of the transient response of systems to external fields we use the less efficient Runge-Kutta 

methods. Unlike the Gear algorithms, Runge-Kutta methods are self-starting, achieving full 

accuracy in the first timestep.

 We will now give a summary of some of the synthetic NEMD algorithms that have been 

used to calculate Navier-Stokes transport coefficients. 
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6 . 2 Self Diffusion

The first NEMD algorithm for self-diffusion was devised by Holian (Erpenbeck and 

Wood, 1977). In this elegant scheme the self-diffusion coefficient was evaluated as the limiting 

value of the mutual diffusion coefficient as the two species become identical. In this limit the two 

species differ only by a colour label which plays no role in their subsequent dynamics but which is 

reset in a probabilistic fashion as particles cross a labelling plane. A concentration gradient in 

coloured species is set up and the mutual diffusion coefficient is calculated from the constitutive 

relation (colour current/colour gradient). If the labels or colours of the atoms are ignored, the 

simulation is an ordinary equilibrium molecular dynamics simulation. If one calculates the species 

density as a function of position, the periodic boundary conditions imply that it is a periodic saw 

tooth profile. Exactly how sharp the teeth are, is not clear. The technique is inhomogeneous and is 

not applicable to mutual diffusion of species which are really different molecules. If the species are 

really distinct, the relabelling process will obviously generate discontinuities in pressure and 

energy.

The techniques we will describe are homogeneous. They do not create concentration 

gradients or coupled temperature gradients as does the Holian scheme. The algorithms can be 

extended to calculate mutual diffusion or thermal diffusion coefficients of actual mixtures 

(MacGowan and Evans, 1986a and Evans and MacGowan, 1987).

We begin by considering the Green-Kubo relation for the self diffusion coefficient 

(¤4.1):

 D   =   ò
0

¥

dt  < v
xi

(t) v
xi

(0) > (6.2.1)

We design a Hamiltonian so that the susceptibility of the colour current to the magnitude of the 

perturbing colour field is closely related to the single-particle velocity autocorrelation function 

(6.2.1). Consider the colour Hamiltonian (Evans et. al., 1983)

 H   =   H
0
  -  å

i=1

N

 c
i
 x

i
 F(t),        t > 0 (6.2.2)

where H0 is the unperturbed Hamiltonian. The ci are called colour charges. We call this property 

colour rather than charge to emphasise that H0 is independent of the set of colour charges {ci}. At 

equilibrium, in the absence of the colour field, the dynamics is colour blind. For simplicity we 

consider an even number of particles N, with

                 ci   =   (-1)i . (6.2.3)
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The response we consider is the colour current density Jx,

 J
x
   =   

V
1 å

i=1

N

  c
i
 x

i
.

(6.2.4)

Since we are dealing with a Hamiltonian system, AIGGGG    (¤5.3), is automatically satisfied. The 

dissipation function is

 H
0
ad   =   F(t)  å

i=1

N

 c
i
 v

xi
   =   F(t) J

x
V

¥
(6.2.5)

Linear response theory therefore predicts that (¤5.1 & ¤5.3),

 < J
x
(t) >   =   bV  ò

0

t

ds  < J
x
(t-s) J

x
(0) >

0
  F(s) (6.2.6)

where the propagator implicit in Jx(t-s) is the field free equilibrium propagator. (Were we 

considering electrical rather than colour conductivity, equation (6.2.6) would give the Kubo 

expression for the electrical conductivity.) To obtain the diffusion coefficient we need to relate the 

colour current autocorrelation function to the single particle velocity autocorrelation function. This 

relation, as we shall see, depends slightly on the choice of the equilibrium ensemble. If we choose 

the canonical ensemble then

 < J
x
(t) J

x
(0) >

c
   =   

V
2

1   å
i, j

N

 c
i
 c

j
  < v

xi
(t) v

xj
(0) >

c (6.2.7)

In the thermodynamic limit, for the canonical ensemble, if j¹i, then <vxi(t)vxj(0)> = 0, "t. This is 

clear since if c is the sound speed, vxj(0) can only be correlated with other particles within its 

sound cone (ie a volume with radius, ct). In the thermodynamic limit there will always be infinitely 

more particles outside the sound cone than within it. Since the particles outside this cone cannot 

possibly be correlated with particle i, we find that,

 < Jx(t) Jx(0) >c  =  
V

2
1   å

i=1

N

 c
i
2 < v

xi
(t) v

xi
(0) >c  =  

V
2

N  < vx(t) vx(0) >c (6.2.8)

Combining this equation with the Green-Kubo relation for self diffusion gives,

 D   =   
b r
1   lim

t®¥
   lim

F®0
   

F
<Jx(t)> (6.2.9)
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If we are working within the molecular dynamics ensemble in which the total linear momentum of 

the system is zero, then  vxi is not independent of vxj . In this case there is an order N-1 correction 

to this equation and the self diffusion coefficient becomes (Evans et. al., 1983),

 D  =  
N

N-1  
br
1   lim

t®¥
   lim

F®0
   

F
<Jx(t)> (6.2.10)

In the absence of a thermostat the order of the limits in (6.2.9,10) is important. They cannot be 

reversed. If a thermostat is applied to the system a trivial application of the results of ¤5.3 allows 

the limits to be taken in either order.

As an example of the use of thermostats we will now derive the Gaussian isokinetic 

version of the colour diffusion algorithm. Intuitively it is easy to see that as the heating effect is 

nonlinear (that is O(F2)), it does not effect the linear response. The equations of motion we employ 

are:

 ...q
i
   =   

m
p

i (6.2.11)

and

                 Ç /p F i p ii i i i i xc F m c J n= + - -( )a                                                  (6.2.12)

where the Gaussian multiplier required to thermostat the system is obtained from the constraint 

equation

                         
1

3
2

1m
m c J n Nk Ti i x

i

N

Bp i-( ) =
=

å /                                                               (6.2.13)

In this definition of the temperature we calculate the peculiar particle velocities relative to the 

streaming velocity of each species. If one imagined that the two species are physically separated, 

then this definition of the temperature is independent of the bulk velocity of the two species. In the 

absence of this definition of the peculiar kinetic energy, the thermostat and the colour field would 

work against each other and the temperature would have an explicit quadratic dependence on the 

colour current. Combining (6.1.12 & 13) we identify the thermostatting multiplier as

                       a =
· -( )

· -( )
å

å
m m c J n

m c J n
i i i x

i i i x

F p i

p p i

/

/
                                                                     (6.2.14)

In the original paper, (Evans, et.al., 1983), the thermostat was only applied to the components of 

the velocity which were orthogonal to the colour field. It can be shown that the linear response of 

these two systems is identical, provided the systems are at the same state point (in particular if the 

systems have the same temperature). 
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The algorithm is homogeneous since if we translate particle i and its interacting 

neighbours, the total force on i remains unchanged. The algorithm is also consistent with ordinary 

periodic boundary conditions (Figure 6.1). There is no change in the colour charge of particles if 

they enter or leave the primitive cell. It may seem paradoxical that we can measure diffusion 

coefficients without the presence of concentration gradients, however we have replaced the 

chemical potential gradient which drives real diffusion with a fictitious colour field. A gradient in 

chemical potential implies a composition gradient and a coupled temperature gradient. Our colour 

field acts homogeneously and leads to no temperature or density gradients. Linear response theory, 

when applied to our fictitious colour field, tells us how the transport properties of our fictitious 

mechanical system relate to the thermal transport process of diffusion.

By applying a sinusoidal colour field F(t) = F0eiw t, we can calculate the entire 

equilibrium velocity autocorrelation function. Noting the amplitude and the relative phase of the 

colour current we can calculate the complex frequency dependent susceptibility

 c(w)   =   ò
0

¥

dt  e-iwt  c(t)   =   - lim
F®0

   
F(w)

J(w) (6.2.15)

An inverse Fourier-Laplace transform gives of c(t) gives the velocity autocorrelation function.

Figure 6.2 shows the results of computer simulations of the diffusion coefficient for the 

108 particle Lennard-Jones fluid at a reduced temperature of 1.08 and a reduced density of 0.85. 

The open circles were obtained using the algorithm outlined in this section (Evans et. al., 1983) 

which is based on equation (6.2.10). We see the colour conductivity (left y-axis) and the diffusion 

coefficient (right y-axis), plotted as a function of the colour current. The self diffusion coefficient 

is obtained by extrapolating the current to zero. The arrow denoted ÔEMDÕ, shows the results of 

equilibrium molecular dynamics where the diffusion coefficient was obtained (Levesque and 

Verlet, 1970), by integrating the velocity autocorrelation function (¤4.1). The nonequilibrium and 

nonequilibrium simulations are in statistical agreement with each other. 

Also shown in Figure 6.2, are the results of simulations performed at constant colour 

current, rather than constant applied colour field. We will return to this matter when we describe 

Norton ensemble methods in ¤6.6. 
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Figure 6.2
The filled in squares are the results of nonequilibrium simulations which were performed at constant 

colour current rather than constant applied colour field. The constant current methods will be described in more detail 
in ¤6.8. Briefly, one treats the colour field F(t) as a Lagrange multiplier whose value is chosen in such a way that 
the colour current is a constant of the motion. It is clear from the diagram that the constant current and constant 
colour field simulations are also in statistical agreement with each other.

In terms of computational efficiency, the self diffusion coefficient, being a single particle 

property, is far more efficiently computed from equilibrium simulations rather than from the 

algorithm given above. The algorithm we have outlined above is useful for pedagogical reasons. It 

is the simplest NEMD algorithm. It is also the basis for developing algorithms for the mutual 

diffusion coefficients of mixtures (Evans and MacGowan, 1987). The mutual diffusion 

coefficient, being a collective transport property, is difficult to calculate using equilibrium 

molecular dynamics (Erpenbeck, 1989). If the two coloured species are distinct electrically charged 

species, the colour conductivity is actually the electrical conductivity and the algorithm given above 

provides a simple means for its calculation.
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6.3   Couette Flow and Shear Viscosity

We now describe a homogeneous algorithm for calculating the shear viscosity. Among 

the Navier-Stokes transport processes, shear viscosity is unique in that a steady, homogeneous, 

algorithm is possible using only the periodic boundary conditions to drive the system to a 

nonequilibrium state. Apart from the possible presence of a thermostat, the equations of motion 

can be simple Newtonian equations of motion. We will begin by describing how to adapt periodic 

boundary conditions for planar Couette flow. We will assume that the reader is familiar with the 

use of fixed orthogonal periodic boundary conditions in equilibrium molecular dynamics 

simulations (Allen and Tildesley, 1987). Because shearing periodic boundaries alone can be used 

to drive shear flow, an understanding of the so-called Lees and Edwards boundary conditions   

(Lees and Edwards, 1972) is sufficient to define an algorithm for planar Couette flow. This 

algorithm is called the Boundary Driven algorithm. As this algorithm is based simply on the 

adaption of periodic boundary conditions to simulations of shear flow, the algorithm is exact 

arbitrarily far from equilibrium.

From a theoretical point of view the Boundary Driven algorithm is difficult to work 

with. Because there is no explicit external field appearing in the equations of motion one cannot 

employ response theory to link the results obtained from these simulations with say, the Green-

Kubo relations for shear viscosity. From a numerical point of view this algorithm also has some 

disadvantages. This will lead us to a discussion of the so-called SLLOD algorithm. This algorithm 

still employs Lees-Edwards boundary conditions but it eliminates all of the disadvantages of the 

simple boundary driven method. The SLLOD algorithm is also exact arbitrarily far from 

equilibrium.

Lees Edwards Shearing Periodic Boundaries

Figure 6.3 shows one way of representing planar Couette flow in a periodic system. In 

the Figure we only employ 2 particles per unit cell. In an actual computer simulation this number 

typically ranges from about one hundred to possibly several tens of thousands. As the particles 

move under Newton's equations of motion they feel the interatomic forces exerted by the particles 

within the unit cell and by the image particles whose positions are determined by the instantaneous 

lattice vectors of the periodic array of cells. The motion of the image cells defines the strain rate, g 
º ¶ux/¶y, for the flow. The motion of the cell images is such that their individual origins move 

with an x-velocity which is proportional to the y-coordinate of the particular cell origin. 

 u(r, t)   =   i g y (6.3.1)
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If the Reynolds number is sufficiently small and turbulence does not occur, we expect that the 

motion of image particles above and below any given cell will, in time , induce a linear streaming 

velocity u(r), on each of the particles within the cell.

If during the course of time, a given particle moves out of a cell it will be replaced by its 

periodic image. If the particle moves through a y-face of a cell (that is, through the planes y=0 or 

y=L) the replacing image particle will not have the same laboratory velocity, nor necessarily the 

same x-coordinate. This movement of particles into and out of the primitive cell promotes the 

generation of a stable linear streaming velocity profile. 

Although there are jump discontinuities in both the laboratory coordinates and the 

laboratory velocities of particles between cells there is no way in which the particles can actually 

sense the boundaries of any given cell. They are merely bookkeeping devices. The system is 

spatially homogeneous. As we shall see those components of particle velocity and position which 

are discontinuous have NO thermodynamic meaning.

We have depicted the Lees Edwards boundary conditions in the so-called sliding brick  

representation. There is a completely equivalent deforming cube  representation that one can use if 

one prefers (see Figure 6.4). We will mainly use the language of the sliding brick representation - 

our choice is completely arbitrary however.
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Figure 6.4

We will now consider the motion of particles under Lees Edwards boundary conditions 

in more detail. Consider a simulation cube of side L, located so that the streaming velocity at the 

cube origin is zero (that is the cube 0 < {x,y,z} < L). The laboratory velocity of a particle i is then 

the sum of two parts; a peculiar or thermal velocity ci, and a streaming velocity u(ri), so

 r
i
   =   c

i
   +   u(r

i
)

¥
(6.3.2)

Imagine that at t = 0 we have the usual periodic replication of the simulation cube where the 

boundary condition is

 r
i
   =   (r

i
)
mod L

(6.3.3)

(with the modulus of a vector defined to be the vector of the moduli of the elements). As the 

streaming velocity is a function of y only, we need to consider explicitly boundary crossings in the 

y direction. At t = 0, ri has images at  ri'  at  ri + jL, and  ri"  at  ri - jL. After time t the positions 

of particle i and these two images are given by

 r
i
(t)   =   r

i
(0)   +   ò

0

t

ds  r
i
(s)   =   r

i
(0)   +   ò

0

t

ds (c
i
  +  i g y

i
)

.

 r
i
 '(t)   =   r

i
 '(0)  +  ò

0

t

ds (c
i
 '  +  i g y

i
 ' ) (6.3.4)
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 " (0)  +  ò
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t

ds (c
i
 "   +  i g y

i
 "  )

where ci and yi (and their images) are functions of time. Now by definition the peculiar velocities 

of a particle and all of its periodic images are equal, ci = ci' = ci", so that

 r
i
 '(t)   =   r

i
(0) + j L  +   ò

0

t

ds (c
i
 + i g (y

i
 + L))

  =   r
i
(0)  +  ò

0

t

ds (c
i
 + i g y

i
)   +   j L   +   i g Lt

  =   r
i
(t)   +   j L   +   i g Lt (6.3.5)

Similarly we can show that

 r
i
 "(t)   =   r

i
(t)   -   j L   -   i g Lt (6.3.6)

If ri(t) moves out the bottom of the simulation cube, it is replaced by the image particle at ri'(t)

 r
i
new   =   (r

i
 ' )

mod L
   =   (r

i
 + i g Lt)

mod L
(6.3.7)

or if ri(t) moves out of the top of the simulation cube, it is replaced by the image particle at ri(t)"

 r
i
new   =   (r

i
 " )

mod L
   =   (r

i
 - i g Lt)

mod L
(6.3.8)

The change in the laboratory velocity of a particle is given by the time derivative of equations 

(6.3.7) and (6.3.8). These rules for imaging particles and their velocities are shown schematically 

in Figure 6.4. 

There is a major difficulty with the boundary driven algorithm. The way in which the 

boundaries induce a shearing motion to the particles takes time to occur, approximately given by 

the sound traversal time for the primitive cell. This is the minimum time taken for the particles to 

realise that the shear is taking place. The boundary driven method as described above, therefore 

cannot be used to study time dependent flows. The most elegant solution to this problem 

introduces the SLLOD algorithm. We will defer a discussion of thermostats and the evaluation of 

thermodynamic properties until after we have discussed the SLLOD algorithm.
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The SLLOD Algorithm

The Boundary Driven shear flow algorithm has a number of disadvantages, the principle 

one being its lack of contact with response theory. We will now describe two synthetic field 

algorithms for simulating any form of flow deformation. Historically the first fictitious force 

method proposed for viscous flow calculations was the DOLLS tensor method (Hoover et.al, 

1980). This method can be derived from the DOLLS tensor Hamiltonian,

 H   =   H
0
   +   å

i=1

N

  q
i
p

i
 : (ÑÑÑÑu(t))T (6.3.9)

It generates the following equations of motion

 q
i
   =   

m

p
i    +   q

i
¥ ÑÑÑÑ u

p
i
   =   F

i
   -   ÑÑÑÑ u ¥ p

i  
(6.3.10)

¥

¥

These equations of motion must be implemented with compatible periodic boundary conditions. If 

the strain rate tensor has only one nonzero element and it is off-diagonal, the deformation is planar 

Couette flow and Lees-Edwards boundary conditions must be used. If the strain rate tensor is 

isotropic then the flow is dilational and the appropriate variation of Lees-Edwards boundaries must 

be used. Other flow geometries can also be simulated using these equations.
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One can see from the first of the equations (6.3.10), that since dqi/dt is obviously a 

laboratory velocity, the momenta pi are peculiar with respect to the low Reynolds number 

streaming velocity u(r) = r¥ÑÑÑÑu. We call this streaming velocity profile the zero wavevector profile. 

If the Reynolds number is sufficiently high for turbulence to occur, the pi are peculiar only with 

respect to the zero wavevector profile. They will not be peculiar with respect to any possible 

turbulent velocity profiles.

 From (6.3.10) the dissipation is easily shown to be

 H
0
ad   =   - ÑÑÑÑ u:PV

¥
(6.3.11)

where P is the instantaneous pressure tensor (3.8.19), whose kinetic component is given in terms 

of the peculiar momenta pi. Since the DOLLS tensor equations of motion are derivable from a 

Hamiltonian, the AIGGGG  condition is clearly satisfied and we see immediately from equations 

(6.3.11) and (5.3.8), that in the linear regime, close to equilibrium, the shear and bulk viscosities 

will be related to equilibrium fluctuations via the Green-Kubo formula (T.6.3). This proves that 

the DOLLS tensor algorithm is correct for the limiting linear regime. The linear response of the 

pressure tensor is therefore,

 < P(t) >   =  - bV  ò
0

t

ds  < P(t-s) P  > : ÑÑÑÑu (6.3.12)

 The DOLLS tensor method has now been replaced by the SLLOD algorithm (Evans and 

Morriss,1984b). The only difference between the SLLOD algorithm and the DOLLS tensor 

equations of motion involves the equation of motion for the momenta. The Cartesian components 

that couple to the strain rate tensor are transposed. Unlike the DOLLS tensor equations, the 

SLLOD equations of motion cannot be derived from a Hamiltonian.

 q
i
   =   

m

p
i    +   q

i
¥ ÑÑÑÑ u

p
i
   =   F

i
   -   p

i
¥ÑÑÑÑ u  (6.3.13)

¥

¥

It is easy to see that the dissipation function for the SLLOD algorithm is precisely the same as for 

the DOLLS tensor equations of motion. In spite of the absence of a generating Hamiltonian, the 

SLLOD equations also satisfy AIGGGG . This means that the linear response for both systems is 

identical and is given by (6.3.12). By taking the limit g®0, followed by the limit t®¥, we see 

that the linear shear viscosity can be calculated from a nonequilibrium simulation, evolving under 

either the SLLOD or the DOLLS tensor equations of motion. With, ÑÑÑÑ u = ji(¶ux/¶y), and 

calculating the ratio of stress to strain rate we calculate,
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 h  =  lim
t®¥

    lim
g®0

    g
-  < Pxy(t) > (6.3.14)

From (6.3.13) we see that the susceptibility is precisely the Green-Kubo expression for the shear 

viscosity (Table 6.1). Because the linear response of the SLLOD and DOLLS tensor algorithms are 

related to equilibrium fluctuations by the Green-Kubo relations, these algorithms can be used to 

calculate the reaction of systems to time-varying strain rates. If the shear rate is a sinusoidal 

function of time, then the Fourier transform of the susceptibility gives the complex, frequency-

dependent shear viscosity measured in viscoelasticity (¤2.4 & ¤4.3). 

If the strain rate tensor is isotropic then the equations of motion describe adiabatic 

dilation of the system. If this dilation rate is sinusoidal then the limiting small field bulk viscosity 

can be calculated by monitoring the amplitude and phase of the pressure response and extrapolating 

both the amplitude and frequency to zero (Hoover et.al.1980). It is again easy to see from (6.3.13) 

that the susceptibility for the dilation induced pressure change, is precisely the Green-Kubo 

transform of the time dependent equilibrium fluctuations in the hydrostatic pressure (Table 6.1).

Although the DOLLS tensor and SLLOD algorithms have the same dissipation and give 

the correct linear behaviour, the DOLLS tensor algorithm begins to yield incorrect results at 

quadratic order in the strain rate. These errors show up first as errors in the normal stress 

differences. For irrotational flows (ÑÑÑÑu = (ÑÑÑÑu)T) so the SLLOD and DOLLS tensor methods are 

identical, as can easily be seen from their equations of motion.

We will now show that the SLLOD algorithm gives an exact description of shear flow 

arbitrarily far from equilibrium. This method is also correct in the high Reynolds number 

regime in which laminar flow is unstable. Consider superimposing a linear velocity profile on a 

canonical ensemble of N-particle systems. This will generate the local equilibrium distribution 

function for Couette flow, fl

                f
m v i y

d m v i y
l

i i

i i

=
- + +[ ]

- + +[ ]
å

ò å
exp [ ( ) / ]

exp [ ( ) / ]

b g

b g

2

2

2

2

F

FGG
                                         (6.3.15)

Macroscopically such an ensemble is described by a linear streaming velocity profile,

 u(r, t)   =   i g y (6.3.16)

so that the second rank strain rate tensor, ÑÑÑÑu, has only one nonzero element, (ÑÑÑÑ u)yx = g.  The 

local equilibrium distribution function is not the same as the steady state distribution. This is easily 

seen when we realise that the shear stress evaluated for fl, is zero. The local distribution function is 

no more than a canonical distribution with a superimposed linear velocity profile. No molecular 

relaxation has yet taken place. 
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If we allow this relaxation to take place by advancing time using Newton's equations 

(possibly supplemented with a thermostat) the system will go on shearing forever. This is because 

the linear velocity profile of the local distribution generates a zero wavevector transverse 

momentum current. As we saw in ¤ 3.8, the zero wavevector momentum densities is conserved. 

The transverse momentum current will persist forever, at least for an infinite system. 

Now let us see what happens under the SLLOD equations of motion (6.3.12), when the 

strain rate tensor is given by (6.3.16). Differentiating the first equation, then substituting for dpi/dt 

using the second equation gives,

 m q
. .

 
i

   =    F
i
  -  i g p

yi
  +  i (g p

yi
  +  m g.  y

i
)   =   F

i
   +   i m g.  y

i
(6.3.17)

If the strain rate g is switched on at time zero, and remains steady thereafter, 

 g(t)  =  g Q(t)   Þ  .g  =  g d(t) (6.3.18)

Thus dg/dt is a delta function at t=0. Now consider subjecting a canonical ensemble to these 

transformed SLLOD equations of motion, (6.3.17). If we integrate the velocity of particle i, over 

an infinitesimal time interval about zero. We see that,

 v
i
(0+) - v

i
(0)  =  ò

0

0
+

 ds .v(s)  =  i gy
i

(6.3.19)

So at time 0+ the x-velocity of every particle is incremented by an amount proportional to the 

product of the strain rate times its y coordinate. At time 0+, the other components of the velocity 

and positions of the particles are unaltered because there are no delta function singularities in their 

equations of motion. Applying (6.3.19) to a canonical ensemble of systems will clearly generate 

the local equilibrium distribution for planar Couette flow.

The application of SLLOD dynamics to the canonical ensemble is thus seen to be 

equivalent to applying Newton's equations to the local distribution function. The SLLOD 

equations of motion have therefore succeeded in transforming the boundary condition expressed in 

the form of the local distribution function into the form of a smooth mechanical force which 

appears as a mechanical perturbation in the equations of motion. This property is unique to 

SLLOD dynamics. It is not satisfied by the DOLLS tensor equations of motion for example.  Since 

one cannot really call into question, the validity of the application of Newtonian dynamics to the 

local distribution as a correct description of Couette flow we are lead to the conclusion that the 

adiabatic application of SLLOD dynamics to the canonical ensemble gives an exact description of 

Couette flow.
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Figure 6.6

Knowing that the SLLOD equations are exact, and that they generate Green-Kubo 

expressions for the shear and bulk viscosities, provides a proof of the validity of the Green-Kubo 

expressions themselves. The SLLOD transformation of a thermal transport process into a 

mechanical one, provides us with a direct route to the Green-Kubo relations for the viscosity 

coefficients. From equation (6.3.13) we see that we already have these relations for both the shear 

and bulk viscosity coefficients. We also see that these expression are identical to those we derived 

in Chapter 4, using the generalised Langevin equation. It is clear that the present derivation is 

simpler and gives greater physical insight into the processes involved.

Compared to the boundary driven methods, the advantages of using the SLLOD 

algorithm in computer simulations are many. Under periodic boundaries the SLLOD momenta 

which are peculiar with respect to the zero wavevector velocity field, and are continuous functions 

of time and space. This is not so for the laboratory velocities vi. The internal energy and the 

pressure tensor of the system are more simply expressed in terms of SLLOD momenta rather than 

laboratory momenta. The internal energy E is given as,

 E(T,r,N ,g)  =  < H
0
 >  =  < å

i=1

N

2m
p

i
2

  +  
2
1 å

i, j

N

 f
ij

 > (6.3.21)

while the ensemble averaged pressure tensor is,

Chapter  6 - 23



 P(T,r ,N,g)V  =  < å
i=1

N

 m
p

i
p

i  -   
2
1 å

i, j

N

 r
ij
F

ij
 > (6.3.21)

For simulations of viscoelasticity special measures have to be taken in the boundary 

driven algorithm to ensure that the time varying strain rate is actually what you expect it to be. In 

the SLLOD method no special techniques are required for simulations of time dependent flows. 

One simply has to solve the equations of motion with a time dependent strain rate and ensure that 

the periodic boundary conditions are precisely consistent with the strain derived by integrating the 

imposed strain rate g(t).

Since the SLLOD momenta are peculiar with respect to the zero wavevector velocity 

profile, the obvious way of thermostatting the algorithm is to use the equations,

 .q
i
   =   m

p
i   +   i  g y

i

.p
i
   =   F

i
   -   i g p

yi
   -   ap

i
 .    (6.3.22)

The thermostatting multiplier a, is calculated in the usual way by ensuring that d(S pi2)/dt =0. 

 a   =   
å p

i
2

å (F
i
 ¥ p

i
  -  g p

xi
 p

yi
)
 .  (6.3.23)

The temperature is assumed to be related to the peculiar kinetic energy. These equations assume 

that a linear velocity profile is stable. However as we have mentioned a number of times the linear 

velocity profile is only stable at low Reynolds number, (Re=rmgL2/h).

In Figure 6.7 we show the shear viscosity of 2048 WCA particles as a function of strain 

rate. The fluid is close to the Lennard-Jones triple point. The reduced temperature and density are 

0.722 and 0.8442 respectively. The simulations were carried out using the Gaussian isokinetic 

SLLOD algorithm. We see that there is a substantial change in the viscosity with shear rate. 

Evidently WCA fluids are shear thinning in that the viscosity decreases with increasing strain rate. 

It turns out that this is common to all simple fluids for all thermodynamic state points. Shear 

thinning is also a widely observed phenomenon in the rheology of complex molecular fluids.

The imposed shear causes a major change in the microscopic fluid structure. This is 

manifest in all the thermodynamic properties of the system changing with shear rate. In Figure 6.8 

we see the internal energy of the fluid plotted as a function of strain rate. For reduced strain rates in 

the range 0 - 1.5, we see that both the shear viscosity and the internal energy change by 

approximately 50% compared to their equilibrium values. Furthermore the viscosity coefficient 

appears to vary as the square root of the strain rate while the energy appears to change with the 1.5 

power of the strain rate. Over the range of strain rates studied, the maximum deviation from the 
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functional forms is 2.5% for the viscosity, and 0.1% for the internal energy. There has been much 

recent discussion of the relation of these apparently non-analytic dependences to mode-coupling 

theory (see, Yamada and Kawasaki, 1973; Kawasaki and Gunton, 1973; Ernst et. al., 1978; 

Evans , 1983; Kirkpatrick, 1984, van Beijeren, 1984 and deSchepper et. al., 1986). It is clear that 

the final resolution of this matter is still a long way off.
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Viscosity of the N=2048, WCA fluid.
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Figure 6.7

One of the most interesting and subtle rheological effects concerns the diagonal elements 

of the pressure tensor. For Newtonian fluids (ie fluids characterised by a strain rate independent 

and frequency independent viscosity) the diagonal elements are equal to each other and to their 

equilibrium values. Far from equilibrium, this is not true. We define normal stress coefficients, 

h0, h-, (the so-called out-of-plane and in-plane normal stress coefficients) as,

h g0 1 2 2º - - +[ ( )] /P P Pzz xx yy (6.3.24)

h-  º  - (Pxx - Pyy))/2g (6.3.25)

Figure  6.9 shows how these coefficients vary as a function of g0.5 for the WCA fluid.The out-of-

plane coefficient is far larger than the in-plane coefficient, except at very small strain rates where 

both coefficients go to zero (ie the fluid becomes Newtonian). These coefficients are very difficult 

to compute accurately. They require both larger and longer simulations to achieve an accuracy that 

is comparable to that for the shear viscosity. In terms of the macroscopic hydrodynamics of Non-

Newtonian fluids, these normal stress differences are responsible for a wide variety of interesting 

phenomena (eg the Weissenberg effect see Rainwater et. al. (1985 a,b)).
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If one allows the strain rate to be a sinusoidal function of time and one extrapolates the 

system response to zero amplitude, one can calculate the linear viscoelastic response of a fluid. 

Figure 6.10 shows complex frequency dependent shear viscosity for the Lennard-Jones fluid 

(Evans, 1980), at its triple point.
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Figure 6.9

If one compares Figure 6.10 with the Maxwell model for viscoelasticity, Figure 2.4, 

one sees a qualitative similarity with the low frequency response being viscous and the high 

frequency response being elastic. The shape of the two sets of curves is however quite different. 

This is particularly so at low frequencies. An analysis of the low frequency data shows that it is 

consistent with a nonanalytic square root dependence upon frequency.
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R

(w)  =  h(0) -  hw1
 w0.5  +  O(w)

(6.3.26)
 ~h

I
(w)  =  hw1

 w0 .5  +  O(w)

In (6.3.26) hR, hI, are the real and imaginary parts of the viscosity coefficient. Since the 

frequency dependent viscosity is the Fourier-Laplace transform of the memory function (2.4.12), 

we can use the Tauberian theorems (Doetsch, 1961), to show that if (6.3.26) represents the 

asymptotic low frequency behaviour of the frequency dependent viscosity, then the memory 

function must have the form,

 lim
t®¥  

 h(t)  =  
2p

hw1t
- 

2
3

(6.3.27)

This time dependence is again consistent with the time dependence predicted by mode-coupling 

theory (Pomeau and Resibois,1975). However as was the case for the strain rate dependence the 

amplitude of the effect shown in Figure 6.10, is orders of magnitude larger than theoretical 

predictions. This matter is also the subject of much current research and investigation.
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Figure 6.10

Similar enhanced long time tails have been observed subsequently in Green-Kubo 

calculations for the shear viscosity (Erpenbeck and Wood, 1981). Whatever the final explanation 

for these enhanced long time tails, they are a ubiquitous feature of viscous processes at high 

densities. They have been observed in the wavevector dependent viscosity (Evans, 1982a) and in 
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shear flow of 4-dimensional fluids (Evans, 1984). The situation for two dimensional liquids is 

apparently even more complex (Evans and Morriss 1983a and Morriss and Evans 1989).
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6.4   Thermostatting shear flows.

While performing NEMD simulations of thermostatted shear flow for hard-sphere 

fluids, Erpenbeck (1984) observed that at very high shear rates, fluid particles organised 

themselves into strings. This was an early observation of a nonequilibrium phase transition. This 

organisation of particles into strings reduces the rate at which entropy is produced in the system by 

the external field. This effect is in competition with the kink instability of the strings themselves. If 

the strings move too slowly across the simulation cell, thermal fluctuations in the curvature of the 

strings lead to their destruction. A snapshot of a string phase is shown in Figure 6.11. The 

velocity gradient is vertical and the streaming velocity is horizontal. The system is 896 soft discs at 

a state point close to freezing and a reduced shear rate of 17.

  

High shear rate string phase in soft disks

Figure 6.11

The string phase is in fact, stabilised by the use of a thermostat which assumes that a 

linear velocity profile, (implicit in equation (6.3.22)), is stable. Thermostats which make some 

assumption about the form of the streaming velocity profile are called Profile Biased Thermostats 

(PBT). All the thermostats we have met so far are Profile Biased. At equilibrium there can be little 

cause for worry, the streaming velocity must be zero. Away from equilibrium we must be more 

careful.

 Any kink instability that might develop in ErpenbeckÕs strings, leading to their breakup, 

would necessarily lead to the formation of large scale eddies in the streaming velocity of the fluid. 

The Profile Biased Thermostat would interpret any incipient eddy motion as heat, and then 

thermostat would try to cool the system by suppressing the eddy formation. This in effect 
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stabilises the string phase (Evans and Morriss,1986).

Thermostats for streaming or convecting flows - PUT

Profile Biased Thermostats for shear flow assume that the kinetic temperature TB, for a 

system undergoing planar Couette flow can be defined from the equation,

 dNk
B
T

B
   =   < å

i=1

N

 m (v
i
 - igy

i
)2 > .   (6.4.1)

In this equation d is the number of dimensions and N is the number of particles. The term igyi is 

the presumed streaming velocity at the location of particle i. Once the form of the streaming 

velocity profile is established it is a simple matter to use peculiar velocity scaling, Gaussian 

isokinetic or Nos� methods to thermostat the shearing system.

At small shear rates and low Reynolds number, the Lees-Edwards shearing periodic 

boundary conditions do indeed lead to a planar velocity profile of the form assumed in (6.4.1). In 

ErpenbeckÕs (1984) simulations the Reynolds numbers, (Re=rmgL2/h), were very large (103-

105). The assumption of a linear streaming velocity profile under these conditions is extremely 

dubious. Suppose that at high Reynolds number the linear velocity profile assumed in (6.4.1) is 

not stable. In a freely shearing system with Lees-Edwards geometry, this might manifest itself in 

an S-shaped kink developing in the velocity profile. If (6.3.22) is used to maintain the 

temperature, the thermostat will interpret the development of this secondary flow as a component 

of the temperature. This increase in temperature will be continuously removed by the thermostat, 

leading to a damping of the secondary flow.

If we rewrite the SLLOD equations in terms of laboratory momenta,
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) (6.4.2)

then the momentum current, J,
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satisfies the following continuity equation,
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The derivation of this equation is carried out by a simple supplementation of the Irving-Kirkwood 

procedure (¤3.7,8). We have to add the contribution of the thermostat to equation (3.7.7 - 15). 

Comparing equation 6.4.4) with the momentum conservation equation (2.1.12) we see that the 

thermostat could exert a stress on the system. The expected divergence terms (ruu +  P), are 

present on the right hand side of (6.4.4). However the term involving a, the thermostatting term, 

is new and represents the force exerted on the fluid by the thermostat. It will only vanish if a linear 

velocity profile is stable and,

 J(r, t)   =   r(r, t) u(r, t)   =   i mgy   "  r.   (6.4.5)

At high Reynolds number this condition might not be true. For simulations at high Reynolds 

numbers one needs a thermostat which makes no assumptions whatever about the form of the 

streaming velocity profile. The thermostat should not even assume that a stable profile exists. 

These ideas led to development (Evans and Morriss, 1986), of Profile Unbiased Thermostats 

(PUT). 

 The PUT thermostat begins by letting the simulation itself define the local streaming 

velocity u(r,t). This is easily done by replacing the delta functions in (6.4.3) by microscopically 

small cells in the simulation programme. The temperature of a particular cell at r, T(r,t), can be 

determined from the equation,

 
2

dn(r, t) -d  k
B

T(r,t)  º  å  
2
m  (v

i
  -  u(r,t))2  d(r

i
(t)  -  r) (6.4.6)

where n(r,t) is the number density at r,t (the delta function has unit volume). The number of 

degrees of freedom in the cell is dn(r,t) - d, because d degrees of freedom are used to determine 

the streaming velocity of the cell.

The PUT thermostatted SLLOD equations of motion can be written as,

 
dt
dri   =  

m
pi   ,   

dt
dpi   =  F i - a(

m
pi  - u(r, t)) d(ri - r) (6.4.7)

The streaming velocity, u(r,t), is not known in advanced but is computed as time progresses from 

its definition, (6.4.3). The thermostat multiplier a, could be a Gaussian multiplier chosen to fix the 

peculiar kinetic energy (6.4.6). Equally well the multiplier could be a Nos�-Hoover multiplier. The 

momentum equation for the PUT thermostatted system reads,

 
dt
dJ   =  - ÑÑÑÑ ¥(P  +  ruu)  -  aå (m

p
i  -  u(r,t))d(ri - r)

       =  - ÑÑÑÑ ¥(P  +  ruu)  -  m
a  (J(r, t) - r(r, t)u(r,t)) (6.4.8)
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From the definition of the streaming velocity of a cell we know that, n(r,t)u(r,t) = Spi/m d(ri(t)-

r). We also know that, n(r ,t)u (r ,t) = S  u(r,t) d(r i(t)-r) = u(r,t)S  d(r i(t)-r). Thus the 

thermostatting term in (6.4.8), vanishes for all values of r. 

In terms of practical implementation in computer programmes, PUT thermostats can 

only be used in simulations involving large numbers of particles. Thus far their use has been 

restricted to simulations of two dimensional systems. At low Reynolds numbers where no strings 

are observed in Profile Biased simulations, it is found that Profile Unbiased simulations yield 

results for all properties which are indistinguishable from those computed using PBT methods. 

However at high strain rates the results obtained using the two different thermostatting methods are 

quite different. No one has observed a string phase while using a PUT thermostat. 
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6.5   Thermal Conductivity

Thermal conductivity has proven to be one of the most difficult transport coefficients to 

calculate. Green-Kubo calculations are notoriously difficult to perform. Natural NEMD where one 

might simulate heat flow between walls maintained at different temperatures (Tenenbaum, Ciccotti 

& Gallico [1982]) is also fraught with major difficulties. Molecules stack against the walls leading 

to a major change in the microscopic fluid structure. This means that the results can be quite 

different from those characteristic of the bulk fluid. In order to measure a statistically significant 

heat flux, one must use enormously large temperature gradients. These gradients are so large that 

the absolute temperature of the system may change by 50% in a few tens of �ngstroms. The 

thermal conductivity that one obtains from such simulations is an average over the wide range of 

temperatures and densities present in the simulation cell. 

We will now describe the most efficient presently known algorithm for calculating the 

thermal conductivity, (Evans, 1982b). This technique is synthetic, in that a fictitious field replaces 

the temperature gradient as the force driving the heat flux. Unlike real heat flow, this technique is 

homogeneous with no temperature or density gradients. We start with the Green-Kubo expression 

for the thermal conductivity (¤4.4),

 l   =   
k

B
T2

V   ò
0

¥

dt  < J
Qz

(t) J
Qz

(0) > (6.5.1)

where JQz, is the z component of the heat flux vector. It appears to be impossible to construct a 

Hamiltonian algorithm for the calculation of thermal conductivity. This is because the equations of 

motion so obtained are discontinuous when used in conjunction with periodic boundary 

conditions. We shall instead invent an external field and its coupling to the phase of the N-particle 

system so that the heat flux generated by this external field is trivially related to the magnitude of 

the heat flux induced by a real temperature gradient.

 

Aided by the realisation that the heat flux vector is the diffusive energy flux, computed 

in a co-moving coordinate frame (see equation 3.8.18), we proposed the following equations of 

motion,

 
.
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p
i (6.5.2)
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where Ei is the energy of particle i and,
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the instantaneous average energy per particle.

There is no known Hamiltonian which generates these equations but they do satisfy 

AIGGGG. This means that linear response theory can be applied in a straightforward fashion. The 

equations of motion are momentum preserving, homogeneous and compatible with the usual 

periodic boundary conditions. It is clear from the term  (Ei - E ) F(t)  that these equations of 

motion will drive a heat current. A particle whose energy is greater than the average energy will 

experience a force in the direction of F, while a particle whose energy is lower than the average 

will experience a force in the -F direction. Hotter particles are driven with the field; colder 

particles are driven against the field.

If the total momentum is zero it will be conserved and the dissipation is 
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Using linear response theory we have
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(t-s) J
Q

 > ¥ F(s) (6.5.6)

Consider a field F=(0,0,Fz), then taking the limit t®¥ we find that the ratio of the induced heat 

flux to the product of the absolute temperature and the magnitude of the external field is in fact the 

thermal conductivity.
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In the linear limit the effect the heat field has on the system is identical to that of a logarithmic 

temperature gradient (F = ¶lnT/¶z). The theoretical justification for this algorithm is tied to linear 

response theory. No meaning is known for the finite field susceptibility.

In 1983 Gillan and Dixon introduced a slightly different synthetic method for computing 

the thermal conductivity (Gillan and Dixon, 1983). Although their algorithm is considerably more 

complex to apply in computer simulations, their equations of motion look quite similar to those 

given above. GillanÕs synthetic algorithm is of some theoretical interest since it is the only known 
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algorithm which violates momentum conservation and AIGGGG, (MacGowan and Evans, 1986b). 
 

0.60.50.40.30.20.10.0
6.4

6.6

6.8

7.0

7.2
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Figure 6.12

Figure 6.12 shows the thermal conductivity of the triple point Lennard-Jones fluid 

computed as a function of the strength of the heat field. We also show the experimental data for 

argon assuming that argon can be modelled by the standard Lennard-Jones model ( e/kB=119.8K, 

s=3.405�). The experimental uncertainties are so large that that if we used an accurate potential 

function, we could calculate the thermal conductivity more accurately than it can be measured.
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6.6   Norton Ensemble Methods

Norton and Th�venin's theorems are of fundamental importance in electrical circuit 

theory (Brophy, 1966). They prove that any network of resistors and power supplies can be 

analysed in terms of equivalent circuits which include either ideal current or ideal voltage sources. 

These two theorems are an example of the macroscopic duality that exists between what are 

generally recognised as thermodynamic fluxes and thermodynamic forces - in the electrical circuit 

case, electrical currents and the electromotive force. Indeed in our earlier introduction to linear 

irreversible thermodynamics (Chapter 2), there was an apparent arbitrariness with respect to our 

definition of forces and fluxes. At no stage did we give a convincing macroscopic distinction 

between the two.

Microscopically one might think that there is a clear and unambiguous distinction that 

can be drawn. For an arbitrary mechanical system subject to a perturbing external field the 

dissipation can be written as, dH0ad/dt º -J(GGGG)Fe(t). The dissipative flux is the phase variable J(GGGG) 

and the force is the time dependent independent variable, Fe(t).This might seem to remove the 

arbitrariness. However, suppose that we complicate matters a little and regard the external field 

Fe(t), as a Gaussian multiplier in a feedback scheme designed to stop the flux J( GGGG ), from 

changing. We might wish to perform a constant current simulation. In this case the imposed 

external field Fe(t), is in fact a phase variable, Fe(GGGG). Even microscopically the distinction 

between forces and fluxes is more complex than is often thought.

 In this section we will explore the statistical mechanical consequences of this duality. 

Until recently the Green-Kubo relations were only known for the conventional Th�venin ensemble 

in which the forces are the independent state defining variables. We will derive their Norton 

ensemble equivalents. We will then show how these ideas have been applied to algorithms for 

isobaric molecular dynamics simulations. This work will provide the necessary background for the 

derivations, in Chapter 9, of fluctuation expressions for the derived properties of nonequilibrium 

steady states including the nonlinear inverse Burnett coefficients.

Gaussian Constant Colour Current Algorithm

From the colour Hamiltonian (6.2.2) we see that the equations of motion for colour 

conductivity in the Th�venin ensemble are,

 
.
q

i
   =   m

p
i

.
p

i
   =   F

i
  +  c

i
 F(t) .   (6.6.1)

These equations are the adiabatic version of (6.2.11 &12). We will now treat the colour field as a 

Gaussian multiplier chosen to fix the colour current and introduce a thermostat.
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Our first step is to redefine the momenta (Evans and Morriss, 1985), so that they are 

measured with respect to the species current of the particles. Consider the following set of 

equations of motion
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(6.6.2)
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where a is the thermostatting multiplier and llll is the current multiplier. These equations are easily 

seen to be equivalent to (6.2.11 & 12). We distinguish two types of current, a canonical current J 

defined in terms of the canonical momenta,

 J  º  å  m
c

i
 p

i (6.6.3)

and a kinetic current I, where

 I  º  å  c
i

.
qi (6.6.4)

We choose llll so that the canonical current is always zero, and a so that the canonical (ie. peculiar) 

kinetic energy is fixed. Our constraint equations are therefore,

 g
d
  =  å  m

ci pi  -  J  =  0 (6.6.5)

and

 g
T
  =  m

1   å  p
i
2  -  3NkB

T  =  0 (6.6.6)

The Gaussian multipliers may be evaluated in the usual way by summing moments of the 

equations of motion and eliminating the accelerations using the differential forms of the 

constraints. We find that

 llll  =  

å  ci
2

å  ci F i
(6.6.7)

and
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If we compare the Gaussian equations of motion with the corresponding Hamiltonian 

equations we see that the Gaussian multiplier llll can be identified as a fluctuating external colour 

field which maintains a constant colour current. It is however, a phase variable. Gauss' principle 

has enabled us to go from a constant field nonequilibrium ensemble to the conjugate ensemble 

where the current is fixed. The Gaussian multiplier fluctuates in the precise manner required to fix 

the current. The distinction drawn between canonical and kinetic currents has allowed us to 

decouple the Lagrange multipliers appearing in the equations of motion. Furthermore setting the 

canonical current to zero is equivalent to setting the kinetic current to the required value I. This can 

be seen by taking the charge moment of (6.6.2). If the canonical current is zero then,

 å ci
.
q  =  

åci
2

åci
2 I(t)

  =  I(t) (6.6.9)

In this equation the current, which was formerly a phase variable has now become a possibly time 

dependent external force.

In order to be able to interpret the response of this system to the external current field, 

we need to compare the system's equations of motion with a macroscopic constitutive relation. 

Under adiabatic conditions the second order form of the equations of motion is

 m
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i
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We see that to maintain a constant current I(t) we must apply a fluctuating colour field Eeff,

 Eeff(t)  =  
å  c

i
2

m 
.
I(t)

   -  llll (6.6.11)

The adiabatic rate of change of internal energy H0 is given by
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As the current, J=J(GGGG) is fixed at the value zero, the dissipation is -I(t)¥llll(GGGG). As expected the 

current is now an external time dependent field while the colour field is a phase variable. Using 

linear response theory we have
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which gives the linear response result for the phase variable component of the effective field. 

Combining (6.6.13) with (6.6.11) the effective field is therefore
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where the susceptibility c is the equilibrium l autocorrelation function,

 c(t)  º  b< l(t) l(0) > (6.6.15)

Fourier-Laplace transforming we obtain the frequency dependent colour  resistance,
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To compare with the usual Green-Kubo relations which have always been derived for 

conductivities rather than resistances we find, 
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This equation shows that the Fourier-Laplace transform of c(t) is the memory function of the 

complex frequency dependent conductivity. In the conjugate constant force ensemble the frequency 

dependent conductivity is related to the current autocorrelation function

 ~s(w)  =  
3Vk

B
T

1    ò
0

¥

  dt  e-iwt  < J(t)¥J(0) >
E=0 (6.6.18)

From equations (6.6.15 - 18) we see that at zero frequency the colour conductivity is 

given by the integral of the Th�venin ensemble current correlation function while the resistance, 

which is the reciprocal of the conductivity, is given by the integral of the colour field 

autocorrelation function computed in the Norton ensemble. Thus at zero frequency the integral of 

the Th�venin ensemble current correlation function is the reciprocal of the integral of the Norton 
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ensemble field correlation function. Figure 6.2 gave a comparison of Norton and Th�venin 

algorithms for computing the colour conductivity. The results obtained for the conductivity are 

ensemble independent - even in the nonlinear regime far from equilibrium.
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Figure 6.13

The colour conductivity as a function of the Laplace transform variable, s.

In Figure 6.13 we show the reduced colour conductivity plotted as a function of 

frequency (Evans and Morriss, 1985). The system is identical to the Lennard-Jones system studied 

in Figure 6.2. The curves were calculated by taking the Laplace transforms of the appropriate 

equilibrium time correlation functions computed in both the Th�venin and Norton ensembles. 

Within statistical uncertainties, the results are in agreement. The arrow shows the zero frequency 

colour conductivity computed using NEMD. The value is taken from Figure 6.2.
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6 . 7 Constant Pressure ensembles

For its first 30 years, molecular dynamics was limited to the microcanonical ensemble. 

We have already seen how the development of thermostats has enabled simulations to be 

performed in the isochoric, canonical and isokinetic ensembles. We will now describe molecular 

dynamics algorithms for performing simulations at constant pressure or constant enthalpy. The 

technique used to make the pressure rather than the volume, the independent state defining 

variable, uses essentially the same ideas as those employed in ¤6.6 to design Norton ensemble 

algorithms. The methods we describe now are of use for both equilibrium and nonequilibrium 

simulations. 

It is often advantageous, particularly in studies of phase transitions, to work within the 

isobaric ensemble. It is possible to stabilise the pressure in a number of ways: we will describe the 

Gaussian method (Evans and Morriss, 1983b) since it was both the first deterministic isobaric 

technique to be developed and it is conceptually simpler than the corresponding Nos�-Hoover 

(Hoover, 1985) and Rahman-Parrinello (1980a,b, 1981) schemes. Although it may be slightly 

more difficult to write the computer programmes, once written they are certainly easier to use. The 

Gaussian method has the distinct advantage that the pressure is a rigorous constant of the motion 

whereas the Nos� based schemes (Nos�, 1984) and those of Parrinello and Rahman allow 

fluctuations in both the pressure and the volume. 

If one makes a poor initial guess for the density, Nos�-Hoover isobaric algorithms 

induce sharp density changes in an attempt to correct the density, to that appropriate for the 

specified mean pressure. Because bulk oscillations damp quite slowly, Nos�-Hoover methods can 

easily result in the system exploding - a situation that cannot be reversed due to the finite range of 

the interaction potentials. Gaussian isobaric algorithms are free of these instabilities.

 Isothermal-Isobaric molecular dynamics

Consider the SLLOD equations of motion where the strain rate tensor ÑÑÑÑu is isotropic . 

The equations of motion become

 q
i
   =   

m

p
i    +   e

....
 q

i

.
(6.7.1)

 p
i
   =   F

i
   -    e p i

..
(6.7.2)

Now if the system was cold (pi=0 for all i), and non-interacting (fij=0), these equations would 

reduce to
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Since this equation is true for all particles i, it describes a uniform dilation or contraction of the 

system. This dilation or contraction is the same in each coordinate direction, so if the system 

initially occupied a cube of volume V, then the volume would satisfy the following equation of 

motion.

 V   =   3 V e
..

(6.7.4)

For warm, interacting systems, the equation of motion for qi shows that the canonical momentum 

pi is in fact peculiar with respect to the streaming velocity d e/dt qi. The dissipation for the system 

(6.7.1&2) is
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(6.7.5)

Since H0 is the internal energy of the system we can combine (6.7.5) with the equation of motion 

for the volume to obtain the first law of thermodynamics for adiabatic compression,

 H0
¥

   =   - 3 pV e
¥

   =   - pV
¥

(6.7.6)

It is worth noting that these equations are true instantaneously. One does not need to employ 

any ensemble averaging to obtain equation (6.7.6). By choosing the dilation rate d e/dt to be a 

sinusoidal function of time, these equations of motion can be used to calculate the bulk viscosity. 

Our purposes are however to use the dilation rate as a multiplier to maintain the system at a 

constant hydrostatic pressure. Before we do this however, we will introduce a Gaussian 

thermostat into the equations of motion;
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(6.7.7)

 p
i
   =   F

i
   -    e p i   -   a  p

i

. .
(6.7.8)

The form for the thermostat multiplier is determined by the fact that the momenta in (6.7.7&8) are 

peculiar with respect to the dilating coordinate frame. By taking the moment of (6.7.8) with respect 

to pi, and setting the time derivative of the peculiar kinetic energy to zero we observe that,
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Differentiating the product pV, (6.7.5) with respect to time gives,
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The first term on the LHS is zero because the pressure is constant, and the first term on the RHS is 

zero because the peculiar kinetic energy is constant. Substituting the equations of motion for dqi/dt 

and dV/dt, and we can solve for the dilation rate.
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(6.7.11)

combining this equation with (6.7.9) gives a closed expression for the thermostat multiplier a.

In summary our isothermal/isobaric molecular dynamics algorithm involves solving 

6N+1 first order equations of motion (equations (6.7.4,7&8)). There are two subtleties to be 

aware of before implementing this method. Firstly the pressure is sensitive to the long range tail of 

the interaction potential. In order to obtain good pressure stability the long range truncation of the 

potential needs to be handled carefully. Secondly, if a Gear predictor corrector scheme is used to 

integrate the equations of motion then some care must be taken in handling the higher order 

derivatives of the coordinates and momenta under periodic boundary conditions. More details are 

given in Evans and Morriss (1983b) and (1984a).

 Isobaric-isoenthalpic molecular dynamics

For the adiabatic constant pressure equations of motion we have already shown that the 

first law of thermodynamics for compression is satisfied

 H0

¥
   =   - p V

¥
(6.7.12)
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It is now easy to construct equations of motion for which the enthalpy I = H0 + pV, is a constant 

of the motion. The constraint we wish to impose is that

 I
¥
   =   H0

¥
   +   p

¥
V   +   pV

¥
   =    0 (6.7.13)

Combining these two equations we see that for our adiabatic constant pressure equations of motion 

the rate of change of enthalpy is simply

 I
¥
   =   p

¥
V (6.7.14)

This equation says that if our adiabatic equations preserve the pressure then the enthalpy is 

automatically constant. The isobaric-isoenthalpic equations of motion are simply obtained from the 

isothermal-isobaric equations by dropping the constant temperature constraint. The isoenthalpic 

dilation rate can be shown to be (Evans and Morriss, 1984a),
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(6.7.15)
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6 . 8 The Constant Stress ensemble

We will now give another example of the usefulness of the Norton ensemble. Suppose 

we wish to calculate the yield stress of a Bingham plastic - a solid with a yield stress. If we use the 

SLLOD method outlined above the Bingham plastic will always yield simply because the strain 

rate is an input into the simulation. It would not be easy to determine the yield stress from such a 

calculation. For simulating yield phenomena one would prefer the shear stress as the input 

variable. If this were the case simulations could be run for a series of incremented values of the 

shear stress. If the stress was less than the yield stress, the solid would strain elastically under the 

stress. Once the yield stress was exceeded, the material would shear.

Here we discuss a simple method for performing NEMD simulations in the stress 

ensemble. We will use this as an opportunity to illustrate the use the Nos�-Hoover feedback 

mechanism. We will also derive linear response expressions for the viscosity within the context of 

the Norton ensemble. The equations of motion for shear flow, thermostatted using the Nos�-

Hoover thermostat are

 q
i
   =   

m

p
i    +   n

x
 g y

i

.
(6.8.1)

 p
i
   =   F

i
   -   n

x
 g p

yi
   -   x p

i

.

(6.8.2)

   =   
Q

x

K(GGGG ) - K
0   =   

t
x
2

1
  ( 

K
0

K(GGGG )
  -  1 )x

.
(6.8.3)

Using the Nos�-Hoover feedback mechanism we relate the rate of change of the strain rate, g, to 

the degree to which the instantaneous shear stress, -Pxy(GGGG) differs from a specified mean value, -

Sxy(t). We therefore determine the strain rate from the differential equation, 

 

 g   =   
Q

g

(P
xy

(GGGG) - S
xy

(t)) V
   (6.8.4)

.

If the instantaneous stress is greater (ie more negative) than the specified value, the strain rate will 

decrease in an attempt to make the two stresses more nearly equal. The relaxation constant Qg 

should be chosen so that the timescale for feedback fluctuations is roughly equal to the natural 

relaxation time of the system.

From the equations of motion, the time derivative of the internal energy Ho = Si pi2/2m 

+ F, is easily seen to be,

 .
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H0   =   - PxyV g  -  x K (6.8.5)

 

The Nos� constant stress, constant temperature dynamics satisfy a Liouville equation in which 

phase space behaves as a compressible 6N+2 dimensional fluid. The equilibrium distribution 

function is a function of the 3N particle coordinates, the 3N particle momenta, the thermostatting 

multiplier x, and strain rate g,  f0 = f0(GGGG,x, g ). The Liouville equation for this system is then

 
dt

d f
0    =   - f

0
  ( 

¶GGGG
¶

 .  GGGG   +   
¶x

¶
 x   +   

¶g
¶

 g  )
...

(6.8.6)

Since

 x   =   x(GGGG)   and   g   =   g(GGGG)    then    
¶x

¶
 x  =  

¶ g

¶
 g  =  0
......

(6.8.7)

the phase space compression factor L(GGGG ) is easily seen to be -3Nx. If we consider the time 

derivative of  the extended internal energy H0+1/2Qxx2+ 1/2Qgg2  we find that

 
dt
d

 (H
0
 + 

2
1

Q
g

g2 + 
2
1

Q
x

x2)    =    H
0
  +  Q

g
gg   +   Q

x
xx

=   - P
xy

Vg  -  x K  +  x (K - K
0
)  +  (P

xy
 - S

xy
)Vg

  =   - x K
0
   -   S

xy
Vg .   (6.8.8)

..

If we consider the situation at equilibrium when the set value of the shear stress, -Sxy(t), is zero 

and K0 = 3N/2b, the Liouville equation becomes

 
dt

d f
0    =   b  x K

0
 f

0
   =   - b f

0
  

dt

d (H0 + 
2
1

Q
g

g2  + 
2
1

Q
x

x2)
(6.8.9)

 

Integrating both sides with respect to time gives the equilibrium distribution function for the 

constant stress Norton ensemble to be

    =   

ò dGGGG ò dg ò dx  exp[-b(H0 +
2
1

Q
g

g2  + 
2
1

Q
x

x2) ]

exp[-b(H
0
 + 

2
1

Q
g

g2  + 
2
1

Q
x

x2)]
f
0

(6.8.10)

The equilibrium distribution function is thus a generalised canonical distribution, permitting strain 

rate fluctuations. Indeed the mean square strain rate is 
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 < g2  >S xy=0   =   
bQ

g

1
   (6.8.11)

so the amplitude of the strain rate fluctuations are controlled by the adjustable constant Qg.

We wish to calculate the linear response of an equilibrium ensemble of systems 

(characterised by the distribution f0, at time t=0), to an externally imposed time dependent shear 

stress, -Sxy(t). For the Nos�-Hoover feedback mechanism the external field is the mean shear 

stress, and it appears explicitly in the equations of motion (Hood, Evans and Morriss, 1987). This 

is in contrast to the more difficult Gaussian case (Brown and Clarke, 1986). For the Gaussian 

feedback mechanism the numerical value of the constraint variable does not usually appear 

explicitly in the equations of motion. This is a natural consequence of the differential nature of the 

Gaussian feedback scheme. 

The linear response of an arbitrary phase variable B(GGGG) to an applied time dependent 

external field is given by

 <B(t)>   =   <B(0)>   -   ò
0

t

ds òdGGGG  B(GGGG)  exp(-iL
0
(t-s))  iDL(s)  f

0
(GGGG) (6.8.12)

where iL0 is the equilibrium (Nos�-Hoover thermostatted) f-Liouvillean and iDL(s) = iL(s)  - iL0  

where iL(s) is the full field dependent thermostatted f-Liouvillean. It only remains to calculate  

iDL(s) f0. Using the equations of motion and the equilibrium distribution function obtained 

previously we see that,

 iDL(s)  f
0
   =   [ GGGG . 

¶GGGG
¶

  +  x 
¶x

¶
  +  g 

¶g

¶
 ]  f

0
   +   f

0
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¶GGGG
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 . GGGG  +  
¶x

¶
 x  +  

¶ g

¶
 g ]
......

 =   - b (H
0
  +  g g Q

g
  +  x x Q

x
)  f

0
   -   3N x f0

...

 =   bV S
xy

(t) g(GGGG)  f
0

(6.8.13)

Here we make explicit reference to the phase dependence of g, and the explicit time dependence of 

the external field Sxy(t). The quantity  -Sxy(t)V g(GGGG)  is the adiabatic derivative of the extended 

internal energy,  E = H0 + 1/2 Qgg2.

Combining these results the linear response of the phase variable B is
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 <B(t)>   =   <B(0)>   -   bV ò
0

t

ds  <B(t-s) g>
0
  S

xy
(s) (6.8.14)

In order to compute the shear viscosity of the system we need to calculate the time dependence of 

the thermodynamic force and flux which appear in the defining constitutive relation for shear 

viscosity.  Because of the presence of the Nos�-Hoover relaxation time, controlled by the 

parameter Qg, the actual shear stress in the system -Pxy(GGGG), does not match the externally imposed 

shear stress Sxy(t), instantaneously.  To compute the shear viscosity we need to know the precise 

relation between Pxy and g, not that between Sxy and the strain rate. The two quantities of interest 

are easily computed from (6.8.14).

 < g(t) >   =   - bV ò
0

t

ds  <g(t-s) g>
0
  S

xy
(s) (6.8.15)

 < P
xy

(t) >   =   - bV ò
0

t

ds  <P
xy

(t-s) g>
0
  S

xy
(s) (6.8.16)

Fourier-Laplace transforming we obtain the frequency dependent linear response relations

 < ~g(w) >  =  - ~cgg(w) 
~
Sxy(w) (6.8.17)

 < 
~
Pxy(w) >   =  - ~c

Pxyg(w)  
~
Sxy(w) (6.8.18)

where the Fourier-Laplace transform of c(t)  is defined to be

 
~c
AB

(w)   =   ò
0

¥

dt  exp(-iwt)  c
AB

(t)   =   - bV ò
0

¥

dt  exp(-iwt)  < A(t) B >
0

(6.8.19)

The linear constitutive relation for the frequency dependent shear viscosity is (¤2.4),

 ~Pxy(w)  º  - ~h(w) g(w) (6.8.20)

so that the frequency dependent viscosity is
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 ~h(w)   =   - 
~c

g g
(w)

~c
Px yg

(w)
(6.8.21)

This expression shows that the complex frequency dependent shear viscosity is given by ratio of 

two susceptibilities. However, these two different time correlation functions can be related by 

using the Nos�-Hoover equation of motion (6.8.4),

 c
gg

(t)   =   - bV  < g(t) g >
0

..

 =   - 
Q

g

bV
2

  < P
xy

(t) g >
0

 =   
Q

g

V
  c

Pxyg
(t) (6.8.22)

In the frequency domain this relation becomes,

 
Q

g

V
 ~c

Pxyg
(w)   =   - c

gg
(t=0)   +   iw ~c

g g
(w)

 =   
Q

g

V
   +   iw ~c

gg
(w) (6.8.23)

The frequency dependent shear viscosity in the constant stress ensemble can be written as,

 ~h(w)   =   - 
~c

g g
(w)

1  +  
V

iw Q
g
 ~c

gg
(w)

(6.8.24)

In a similar way it is possible to write the frequency dependent viscosity in terms of either the 

Norton ensemble stress autocorrelation function, or the Norton ensemble stress-strain cross 

correlation function.  Using equation (4.1.10), the stress autocorrelation function can be related to 

the strain autocorrelation function using the relation,

 

dt
2

d
2

  c
gg

(t)    =    - 
Q

g
2

V
2

  c
Px yPxy

(t) (6.8.25)

In the frequency domain this becomes,
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V
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iwQ
g

V
  ~cPxyPx y

(w) ) (6.8.26)

Substituting this equation into (6.8.24) gives,

 ~h(w)    =    
1  +  

iwQ
g

V
 ~c

Px yPxy
(w)

-  ~c
PxyPxy

(w)
(6.8.27)

In terms of the cross correlation function, the frequency dependent viscosity is

 ~h(w)    =   - 
V

iwQ
g  

~c
Px yg

(w)  -  1

~c
Pxyg

(w)
(6.8.28)

In Figure 6.14 we show the results of a test of the theory given above.  Hood, Evans 

and Morriss (1987) computed the strain rate autocorrelation function in the Norton ensemble and 

the stress autocorrelation function in the Th�venin ensemble. They then used equation (6.8.24) to 

predict the strain rate autocorrelation function on the basis of their Th�venin ensemble data. The 

system studied was the Lennard-Jones triple point fluid. The smooth curves denote the 

autocorrelation function computed in the Norton ensemble and the points give the predictions from 

the Th�venin ensemble data. The two sets of data are in statistical agreement. This analysis shows 

that in spite of the fact that the damping constant Qg, has a profound influence on the time 

dependent fluctuations in the system, the theory given above correctly relates the Qg-dependent 

fluctuations of strain rate and stress to the Qg-independent, frequency dependent viscosity
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Figures 6.15-17 show the various Norton ensemble susceptibilities as a function of 

frequency. The system is the Lennard-Jones triple point fluid.
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 7 . 1 Kubo’s form for the nonlinear response

In Chapter 6 we saw that nonequilibrium molecular dynamics leads inevitably to 

questions regarding the nonlinear response of systems. In this chapter we will begin a 

discussion of this subject.

It is not widely known that in Kubo's original 1957 paper (Kubo, 1957), he not 

only presented results for adiabatic linear response theory, but that he also included a formal 

treatment of the adiabatic nonlinear response. The reason why this fact is not widely known is 

that, like many treatments of nonlinear response theory that followed, his formal results were 

exceedingly difficult to translate into a useful, experimentally verifiable forms. This difficulty 

can be traced to three sources. Firstly, his results are not easily transformable into explicit 

representations that involve the evaluation of time correlation functions of explicit phase 

variables. Secondly, if one wants to study nonequilibrium steady states, the treatment of 

thermostats is mandatory. His theory did not include such effects. Thirdly, his treatment gave a 

power series representation of the nonlinear response. We now believe that for most transport 

processes, such expansions do not exist. 

We will now give a presentation of Kubo's perturbation expansion for the 

nonequilibrium distribution function, f(t). Consider an N-particle system evolving under the 

following dynamics,

 q
•
 
i
   =   

m

p i     +   C
i
(ΓΓΓΓ ) F

e

(7.1.1)

p
•
 
i
   =   F

i
   -   D

i
(ΓΓΓΓ ) F

e

The terms Ci(ΓΓΓΓ) and Di(ΓΓΓΓ) describe the coupling of the external field Fe, to the system. In this 

discussion we will limit ourselves to the case where the field is switched on at time zero, and 

thereafter remains at the same steady value. The f-Liouvillean is given by

 iL  =  
.
ΓΓΓΓ •

∂ΓΓΓΓ
∂   +  

∂ΓΓΓΓ
∂  • 

.
ΓΓΓΓ         =  iL

0
  +  i∆L (7.1.2)

where iL0 is the equilibrium Liouvillean and i∆L  is the field dependent perturbation which is a 

linear function of Fe. The Liouville equation is,

 
∂t

∂ f(t)
   =   - iL  f(t) (7.1.3)

To go beyond the linear response treated in §5.1, Kubo assumed that f(t) could be expanded as a 
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power series in the external field, Fe,

f(t)    =     f0  + f1(t) + f2(t) + f3(t) + f4(t) +  ....... (7.1.4)

where, fi(t) is ith order in the external field Fe. The assumption that f(t) can be expanded in a 

power series about Fe =0 may seem innocent, but it is not. This assumption rules out any 

functional form containing a term of the form, Feα, where α is not an integer. Substituting 

(7.1.4) for f(t), and the expression for iL, into the Liouville equation (7.1.3), and equating terms 

of the same order in Fe, we find an infinite sequence of partial differential equations to solve,

 
∂t

∂f
i
(t)

   +  iL
0
 fi (t)  =  -i∆L fi-1(t) (7.1.5)

where i ≥ 1. The solution to this series of equations can be written as,

 f
i
(t)   =   - ∫

0

t

 ds  exp( -iL
0
(t-s))  i∆L  f

i-1
(s) (7.1.6)

To prove that this is correct, one differentiates both sides of the equation to obtain (7.1.5). 

Recursively substituting (7.1.6), into equation (7.1.4), we obtain a power series representation 

of the distribution function

f(t)   =   f(0)  +  ∑
i=1

∞

 (-1)
i
  ∫

0

t

dsi ∫
0

si-1

dsi-1...∫
0

s2

ds1  e
-iL0(t-s)

∆L...e
-iL0(s2-s1)∆L f(0)

(7.1.7)

Although this result is formally exact, there are a number of difficulties with this 

approach. The expression for f(t) is a sum of convolutions of operators. In general the operator  

i∆L  does not commute with the propagator, exp(-iL 0t), and no further simplifications of the 

general result are possible. Further, as we have seen in Chapter 6, there is a strong likelihood 

that fluxes associated with conserved quantities are non-analytic functions of the thermodynamic 

force, Fe. This would mean that the average response of the shear stress, for example, cannot be 

expanded as a Taylor series about Fe (= γ) = 0. In Chapter 6 we saw evidence that the shear 

stress is of the form,  <Pxy > = -γ ( η 0 + η1 γ1/2) (see §6.3). If this is true then  f2(t) ( ≡ 
1/2γ2∂2f(γ)/∂γ2|γ=0 )  must be infinite.
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7 . 2 Kawasaki Distribution Function

An alternative approach to nonlinear response theory was pioneered by Yamada and 

Kawasaki (1967). Rather than developing power series expansions about Fe=0, they derived a 

closed expression for the perturbed distribution function. The power of their method was 

demonstrated in a series of papers in which Kawasaki first predicted the non-analyticity of the 

shear viscosity with respect to strain rate (Kawasaki and Gunton, 1973, and Yamada and 

Kawasaki, 1975). This work predates the first observation of these effects in computer 

simulations. The simplest application of the Kawasaki method is to consider the adiabatic 

response of a canonical ensemble of N-particle systems to a steady applied field Fe. 

The Liouville equation for this system is

 
∂t
∂f   =  -iL f (7.2.1)

The Liouvillean appearing in this equation is the field dependent Liouvillean defined by the 

equations of motion, (7.1.1). Equation (7.2.1) has the formal solution,

f(t) = exp [- iL t] f(0). (7.2.2)

For simplicity we take the initial distribution function f(0), to be canonical, so that f(t) becomes

 f(t)   =   e
-iL t

  

∫ dΓΓΓΓ  e
-βH0

e
-βH0

(7.2.3)

The adiabatic distribution function propagator is the Hermitian conjugate of the phase variable 

propagator, so in this case exp(-iL t) is the negative-time phase variable propagator, (exp(iL(-t)). 

It operates on the phase variable in the numerator, moving time backwards in the presence of the 

applied field. This implies that

 f(t)   =   

∫ dΓΓΓΓ  e
-βH0

e
-βH0(-t)

(7.2.4)

Formally the f-propagator leaves the denominator invariant since it is not a phase variable. The 

phase dependence of the denominator has been integrated out. However since the distribution 

function must be normalised, we can obviously also write,
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 f(t)   =   

∫ dΓΓΓΓ  e
-βH0(-t)

e
-βH0(-t)

(7.2.5)

This equation is an explicitly normalised version of (7.2.4) and we will have more to say 

concerning the relations between the so-called bare Kawasaki form, (7.2.4), and the 

renormalized Kawasaki form, (7.2.5), for the distribution function in §7.7. In Kawasaki’s 

original papers he referred only to the bare Kawasaki form, (7.2.4).

Using the equations of motion (7.1.1) one can write the time derivative of H0 as the 

product of a phase variable J(ΓΓΓΓ) and the magnitude of the perturbing external field, Fe.

 
.

H
0

ad
  =  - J(ΓΓΓΓ ) Fe (7.2.6)

For the specific case of planar Couette flow, we saw in §6.2 that dH0/dt)ad is the product of the 

strain rate, the shear stress and the system volume, -γPxyV and thus in the absence of a 

thermostat we can write,

 H
0
(-t)   =   H

0
(0)    -   ∫

0

t

 ds H
0
(-s)   =   H

0
(0)   +   γV ∫

0

t

 ds P
xy

(-s)
.

(7.2.7)

The bare form for the perturbed distribution function at time t is then

 f(t)   =   exp [ - βγV ∫
0

t

 ds P
xy

(-s) ]   f(0) (7.2.8)

It is important to remember that the generation of Pxy(-s) from Pxy(0) is controlled by the field-

dependent equations of motion. 

A major problem with this approach is that in an adiabatic system the applied field 

will cause the system to heat up. This process continues indefinitely and a steady state can never 

be reached. What is surprising is that when the effects of a thermostat are included, the formal 

expression for the N-particle distribution function remains unaltered, the only difference being 

that thermostatted, field-dependent dynamics must be used to generate H0(-t) from H0(0). This 

is the next result we shall derive.

Consider an isokinetic ensemble of N-particle systems subject to an applied field. 

We will assume field dependent, Gaussian isokinetic equations of motion, (5.3.1). The f-

Liouvillean therefore contains an extra thermostatting term. It is convenient to write the Liouville 
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equation in operator form

 
∂t

∂ f(t)
   =   - iL  f(t)   =   - iL f(t)   -  f(t) Λ   =   - 

∂ΓΓΓΓ
∂ .(ΓΓΓΓ  f)

.
(7.2.9)

The operator iL is the f-Liouvillean, and iL is the p-Liouvillean. The term Λ,

 Λ  =  ∂ΓΓΓΓ
∂   • 

.
ΓΓΓΓ   =  - 

f
1  

dt
df  =  -  

dt
d ln f (7.2.10)

is the phase space compression factor (§3.3). The formal solution of the Liouville equation is 

given by

f(t)  =  exp [- iL t]  f(0)   =  exp [ -(iL + Λ)t ]  f(0), (7.2.11)

In the thermostatted case the p-propagator is no longer the Hermitian conjugate of the f-

propagator. 

We will use the Dyson decomposition derived §3.6, to relate thermostatted p- and f-  

propagators. We assume that the both p-Liouvilleans have no explicit time dependence. We 

make a crucial observation, namely that the phase space compression factor Λ, is a phase 

variable rather than an operator. Taking the reference Liouvillean iL0, to be the adjoint of iL, we 

find

 exp[-iLt-Λt]  =  exp[-iLt]  -  ∫
0

t

 ds exp[-iLs - Λs] Λ exp[-iL(t-s)] (7.2.12)

Repeated application of the Dyson decomposition to  exp[-iLs - Λs]  on the right hand side gives

 exp[-iLt - Λ]   =   ∑
n=0

∞
 (-)n ∫

0

t

ds
1
 . ..  ∫

0

s
n-1

dsn exp[-iLsn] Λ exp[-iL(s
n-1

-sn)] Λ . . .  exp[-iL(t-s
1
)]

 =   ∑
n=0

∞
 (-)n ∫

0

t

ds
1
 ...  ∫

0

s
n-1

dsn  Λ(-sn) Λ(-s
n-1

) .. . .  Λ(-s
1
)  exp[-iLt] 

 =   exp[ -∫
0

t
ds Λ(-s)]  exp[-iLt] (7.2.13)

In deriving the second line of this equation we use the fact that for any phase variable B, exp[-

iLs]B = B(-s)exp[-iLs]. Substituting (7.2.13) into (7.2.11) and choosing, f(0) =  fT(0) = δ(K-

K0) exp(-βΦ) / Z(β), we obtain
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 f(t)  =  
Z(β)

δ(K-K
0
)  exp[ - ∫

0

t

 ds Λ(-s)]  exp(-βΦ(-t))

(7.2.14)

If we change variables in the integral of the phase space compression factor and calculate Φ(-t) 

from its value at time zero we obtain,

 f(t)  =  
Z(β)

δ(K-K
0
) exp(-βΦ(0)) exp[∫

0

-t

 ds Λ(s) - β
.
Φ(s)]

(7.2.15)

We know that for the isokinetic distribution, β = 3N/2K (see §5.2). Since under the isokinetic 

equations of motion, K, is a constant of the motion, we can prove from  (5.3.1), that,

 Λ - βdΦ/dt  =  βJFe. (7.2.16)

If AI ΓΓΓΓ  is satisfied the dissipative flux, J, is defined by equation (7.2.6). Substituting (7.2.20) 

into (7.2.19) we find that the bare form of the thermostatted Kawasaki distribution function can 

be written as,

 f
T
(t)  =  f

T
(0) exp[ β∫

0

-t

  ds J(s)Fe]

         =  f
T
(0) exp[-β ∫

0

t

  ds J(-s)Fe] (7.2.17)

Formally this equation is identical to the adiabatic response (7.2.8). This is in spite of the fact 

that the thermostat changes the equations of motion. The adiabatic and thermostatted forms are 

identical because the changes caused by the thermostat to the dissipation (dH0/dt), are exactly 

cancelled by the changes caused by the thermostat to the form of the Liouville equation. This 

observation was first made by Morriss and Evans (1985). Clearly one can renormalize the 

thermostatted form of the Kawasaki distribution function giving (7.2.18), as the renormalized 

form of the isokinetic Kawasaki distribution function, fTrn(t).

 f
Trn

(t)  =  

< exp[-β∫
0

t

 ds J(-s)Fe] >

exp[-β∫
0

t

 ds J(-s)Fe] fT(0)

(7.2.18)
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As we will see, the renormalized Kawasaki distribution function is very useful for 

deriving relations between steady state fluctuations and derivatives of steady state phase 

averages. However, it is not useful for computing nonequilibrium averages themselves. This is  

because it involves averaging exponentials of integrals which are extensive. We will now turn to 

an alternative approach to this problem.
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7 . 3 The Transient Time Correlation Function Formalism

The Transient Time Correlation Function formalism (TTCF), provides perhaps the 

simplest nonlinear generalisation of the Green-Kubo relations. A number of authors 

independently derived the TTCF expression for adiabatic phase averages, (W.M. Visscher, 

1974, Dufty and Lindenfeld, 1979 and Cohen, 1983). We will illustrate the derivation for 

isokinetic planar Couette flow. However the formalism is quite general and can easily be applied 

to other systems. The theory gives an exact relation between the nonlinear steady state response 

and the so-called transient time correlation functions. We will also describe the links between the 

TTCF approach and the Kawasaki methods outlined in §7.2. Finally, we will present some 

numerical results which were obtained as tests of the validity of the TTCF formalism.

Following Morriss and Evans, (1987), we will give our derivation using the 

Heisenberg, rather than the customary Schrödinger picture. The average of a phase variable, 

B(ΓΓΓΓ), at time, t, is,

 < B(t) >  =  ∫ dΓΓΓΓ  B(ΓΓΓΓ ) f(t)  =  ∫ dΓΓΓΓ  f(0) B(ΓΓΓΓ ;t) (7.3.1)

where the second equality is a consequence of the Schrödinger-Heisenberg equivalence. For 

time independent external fields, differentiating the Heisenberg form with respect to time 

yields,

 
dt

d< B(t) >  =  ∫ dΓΓΓΓ  f(0) 
.
ΓΓΓΓ• 

∂ΓΓΓΓ
∂B(t) (7.3.2)

In deriving (7.3.2) we have used the fact that, dB(t)/dt = iL exp(iLt) B = exp(iLt) iLB. This 

relies upon the time independence of the Liouvillean, L. The corresponding equation for the time 

dependent case, is not true. Integrating (7.3.2) by parts we see that,

 
dt

d< B(t) >  =  - ∫ dΓΓΓΓ  B(t) 
∂ΓΓΓΓ
∂  •(

.
ΓΓΓΓ f(0)) (7.3.3)

The boundary term vanishes because: the distribution function, f(0), appoaches zero when the 

magnitude of any component of any particle’s momentum becomes infinite, and because the 

distribution function can be taken to be a periodic function of the particle coordinates. We are 

explicitly using the periodic boundary conditions used in computer simulations.

Integrating (7.3.3) with respect to time we see that the nonlinear nonequilibrium 

response can be written as,
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 < B(t) >  =  < B(0) >  -  ∫
0

t

  ds  ∫  dΓΓΓΓ B(s) 
∂ΓΓΓΓ
∂   . ΓΓΓΓ     f(0)                                   (7.3.4)

.

 

The dynamics implicit in B(s), is of course driven by the full field-dependent, thermostatted 

equations of motion ((7.1.1) and (7.1.2)). For a system subject to the thermostatted shearing 

deformation, dΓΓΓΓ/dt is given by the thermostatted SLLOD equations of motion, (6.3.22). 

If the initial distribution is Gaussian isokinetic it is straightforward to show that,  

(∂/∂ΓΓΓΓ ).(f(0) dΓΓΓΓ /dt)  =  βVPxy f(0).  If the initial ensemble is canonical then, to first order in the 

number of particles, (∂/∂ΓΓΓΓ ).(f(0) dΓΓΓΓ /dt)  is  βVPxy f(0). To show this one writes, (following 

§5.3),

< B(t) >
C
  =  < B(0) >

C
  -  β γV ∫

0

t

 ds  <  B(s) [ P
xy

(0) - P
xy
K (0) 

<K>
C

∆(K(0))
 ] >

C

(7.3.5)

where PxyK(0)  is the kinetic part of the pressure tensor evaluated at time zero (compare this with 

the linear theory given in §5.3). Now we note that <PxyK(0) ∆(K(0))/<K>>C = 0. This means 

that equation (7.3.5) can be written as,

< B(t) >
C
  =  < B(0) >

C
  -  βγV ∫

0

t

 ds  <  B(s) [ P
xy

(0) - P
xy
K (0) 

<K>
C

∆(K(0))
 ] >

C
∆( )

(7.3.6)

As in the linear response case (§5.3), we assume, without loss of generality, that B is extensive. 

The kinetic fluctuation term involves the average of three zero mean, extensive quantities and 

because of the factor 1/< K(0) >,  gives only an order one contribution to the average. Thus for 

both the isokinetic and canonical ensembles,  we can write,

         

 < B(t) >  =  < B(0) >  -  βγV  ∫
0

t

  ds  < B(s) Pxy
(0) >∆( ) (7.3.7)

This expression relates the non-equilibrium value of a phase variable B at time t, to the integral 

of a transient time correlation function (the correlation between Pxy in the equilibrium starting 

state, Pxy(0), and B at time s after the field is turned on). The time zero value of the transient 

correlation function is an equilibrium property of the system. For example, if B = Pxy, then the 

time zero value is <Pxy2(0)>. Under some, but by no means all circumstances, the values of 
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B(s) and Pxy(0) will become uncorrelated at long times. If this is the case the system is said to 

exhibit mixing. The transient correlation function will then approach <B(t)><Pxy(0)>, which is 

zero because <Pxy(0)>=0. 

The adiabatic systems treated by Visscher, Dufty, Lindenfeld and Cohen do not 

exhibit mixing because in the absence of a thermostat, d<B(t)>/dt does not, in general, go to 

zero at large times. Thus the integral of the associated transient correlation function does not 

converge. This presumably means that the initial fluctuations in adiabatic systems are 

remembered forever. Other systems which are not expected to exhibit mixing are turbulent 

systems or systems which execute quasi-periodic oscillations.

If AI ΓΓΓΓ (§5.3) is satisfied, the result for the general case is,

 < B(t) >  =  < B(0) >  -  β   ∫
0

t

  ds  < ∆B(s) (0) >  JFe (7.3.8)

We can use recursive substitution to derive the Kawasaki form for the nonlinear 

response from the transient time correlation formula, equation (7.3.8). The first step in the 

derivation of the Kawasaki representation is to rewrite the TTCF relation using iL to denote the 

phase variable Liouvillean, and -iL to denote its nonhermitian adjoint, the f-Liouvillean. Thus 

dB/dt ≡ iLB and ∂f/∂t ≡ -iL f. Using this notation equation (7.3.8) can be written as,

 < B(t) >  =  ∫ dΓΓΓΓ Bf(0)  -  βγV∫
0

t

  ds  ∫  dΓΓΓΓ f(0) e
iLs

 B e
-iLs

J               (7.3.9)

 =  ∫  dΓΓΓΓ  B f(0)  -  β γV ∫
0

t

  ds  ∫  dΓΓΓΓ  (e
-iL s

 f(0)) B e
-iLs

J           (7.3.10)

where we have unrolled the first p-propagator onto the distribution function. Equation (7.3.10) 

can be written more simply as,

 < B(t) >  =  ∫  dΓΓΓΓ B f(0)  -  β γV ∫
0

t

  ds  ∫  dΓΓΓΓ         B(0) J(-s) f(s)               (7.3.11)

Since this equation is true for all phase variables B, the TTCF representation for the N-particle 

distribution function must be,
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 f(t)  =  f(0)  -βγV ∫
0

t

  ds  J(-s) f(s)                                                           (7.3.12)

We can now successively substitute the transient correlation function expression for the 

nonequilibrium distribution function into the right hand side of (7.3.12). This gives,

< B(t) >  =  ∫  dΓΓΓΓ    B f(0)  -  βγV∫
0

t

  ds1  ∫  dΓΓΓΓ        B(0) J(-s1) f(0)

+ (βγV)
2
  ∫

0

t

  ds1 ∫
0

s1

  ds2  ∫  dΓΓΓΓ   B(0) J(-s1) J(-s2) f(0)  +..........

 =  ∫  dΓΓΓΓ        B(0) exp[ -βγV ∫
0

t

  ds J(-s) ] f(0)                                             (7.3.13)

This is precisely the Kawasaki form of the thermostatted nonlinear response. This expression is 

valid for both the canonical and isokinetic ensembles. It is also valid for the canonical ensemble 

when the thermostatting is carried out using the Nosé-Hoover thermostat. 

One can of course also derive the TTCF expression for phase averages from the 

Kawasaki expression. Following Morriss and Evans, (1985) we simply differentiate the  

(7.3.13) with respect to time, and then reintegrate.

 
dt
d  <B(t)>  =  -βγV ∫ dΓΓΓΓ  BJ(-t) exp[-β γV∫

0

t

 ds J(-s)] f(0)

 =  - β γV ∫ dΓΓΓΓBJ(-t) f(t)

 =  -β γV∫ dΓΓΓΓ  B(t) J(0) f(0)

 =  -β γV < B(t) J(0) > (7.3.14)

A simple integration of (7.3.14) with respect to time yields the TTCF relation (7.3.8). We have 

thus proved the formal equivalence of the TTCF and Kawasaki representations for the nonlinear 

thermostatted response.

Comparing the transient time correlation expression for the nonlinear response with 

the Kawasaki representation, we see that the difference simply amounts to a time shift. In the 

transient time correlation form, it is the dissipative flux J, which is evaluated at time zero 
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whereas in the Kawasaki form, the response variable B, is evaluated at time zero. For 

equilibrium or steady state time correlation functions the stationarity of averages means that such 

time shifts are essentially trivial. For transient response correlation functions there is of course 

no such invariance principle, consequently the time translation transformation is accordingly 

more complex.

The computation of the time dependent response using the Kawasaki form directly, 

equation (7.3.13), is very difficult. The inevitable errors associated with the inaccuracy of the 

trajectory, as well as those associated with the finite grid size in the calculation of the extensive 

Kawasaki integrand, combine and are magnified by the exponential. This exponential is then 

multiplied by the phase variable B(0), before the ensemble average preformed. In contrast the 

calculation of the response using the transient correlation expression, equation (7.3.8), is as we 

shall see, far easier.

It is trivial to see that in the linear regime both the TTCF and Kawasaki expressions  

reduce to the usual Green-Kubo expressions. The equilibrium time correlation functions that 

appear in Green-Kubo relations are generated by the field free thermostatted equations. In the 

TTCF formulae the field is ‘turned on’ at t=0.

The coincidence at small fields, of the Green-Kubo and transient correlation 

formulae means that unlike direct NEMD, the TTCF method can be used at small fields. This is 

impossible for direct NEMD because in the small field limit the signal to noise ratio goes to zero. 

The signal to noise ratio for the transient correlation function method becomes equal to that of the 

equilibrium Green-Kubo method. The transient correlation function method forms a bridge 

between the Green-Kubo method which can only be used at equilibrium, and direct NEMD 

which is the most efficient strong field method. Because a field is required to generate TTCF 

correlation functions, their calculation using a molecular dynamics, still requires a 

nonequilibrium  computer simulation to be performed.

It is also easy to see that at short times there is no difference between the linear and 

nonlinear stress response. It takes time for the nonlinearities to develop. The way to see this is to 

expand the transient time correlation function in a power series in γt. The coefficient of the first 

term in this series is just  V<Pxy2>/kBT, the infinite frequency shear modulus, G∞. Since this is 

an equilibrium property its value is unaffected by the strain rate and is thus the same in both the 

linear and nonlinear cases. If we look at the response of a quantity like the pressure whose linear 

response is zero, the leading term in the short time expansion is quadratic in the strain rate and in 

time. The linear response of course is the first to appear. 
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7.4  Trajectory Mappings.

In calculations of transient time correlation functions it is convenient to generate the 

initial ensemble of starting states from a single field free, Gaussian isokinetic trajectory. As 

Gaussian isokinetic dynamics ergodically generates the isokinetic ensemble, a single field free 

trajectory is sufficient to sample the ensemble. At equally spaced intervals along this single field 

free trajectory (every Ne timesteps), field dependent simulations are started and followed for Nn 

timesteps. The number Nn should be greater than the characteristic time required for the system 

to relax to a steady state and Ne should be large enough to ensure that the initial phases are 

uncorrelated. Each of these cycles gives one initial phase ΓΓΓΓ , for the transient correlation 

function. This process can be made more efficient if we use this single equilibrium starting state 

to provide more than one initial phase for the nonequilibrium trajectories. To do this we use a 

group of phase space mappings.

In this section we develop mappings of the phase, ΓΓΓΓ  which have useful properties, 

for the theoretical interpretation and practical implementation of nonlinear response theory. For 

convenience we shall write the phase, ΓΓΓΓ , as (q ,p) = (x,y,z,px,py,pz), where each of the 

components x,y,z,px,py,pz is itself an N-dimensional vector. The time evolution of an 

arbitrary phase variable B(ΓΓΓΓ) is governed by the phase variable propagator  exp(iLt),  so that  

B(t) = B(ΓΓΓΓ(t)) = exp(iLt) B(ΓΓΓΓ). Note that the propagator is an operator which acts on the initial  

phases ΓΓΓΓ, so in order to calculate the action of the propagator on a phase variable at a time other 

than zero, B(t) has to be expressed as a function of the initial phases ΓΓΓΓ  and not the current 

phases ΓΓΓΓ(t). We assume that the equations of motion have no explicit time dependence (by way 

of a time dependent external field). The propagator is therefore a shift operator. In the time 

dependent case, the propagator is not a simple shift operator and the results which follow will 

need to be generalised. We leave this generalisation until Chapter 8.

The phase variable B at time t, B(t), can be traced back to time zero by applying the 

negative-time phase variable propagator  exp(-iLt), 

 exp(-iLt) B(t)   =   exp(-iLt) exp(iLt) B(ΓΓΓΓ)   =   B(ΓΓΓΓ). (7.4.1)

Reversing the sign of the time in the propagator retraces the original trajectory. It is possible to 

return to the original phase point ΓΓΓΓ(0) without changing the sign of the time. This is achieved 

by mapping the phase point ΓΓΓΓ(t) so that a combination of positive time evolution and mapping 

takes ΓΓΓΓ (t) => ΓΓΓΓ (0). This mapping is called the time reversal mapping M T. For field free 

equations of motion, this is straightforward as the mapping simply consists of reversing the 

signs of all the momenta.

 MT(q,p)   =   (qT,pT)   =   (q,-p). (7.4.2)
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It is important to realise that this process does not lead to a retracing of the original trajectory, 

as everywhere along the return path the momenta are the opposite sign to those of the forward 

path. Noting that eiLt  = eiL(ΓΓΓΓ)t, this can be summarised: MTeiLtMTeiLt ΓΓΓΓ(0) = MTeiLtMT ΓΓΓΓ (t) = 

e-iLt ΓΓΓΓ(t) = ΓΓΓΓ(0). These results will be derived in more detail later.

Given an initial starting phase ΓΓΓΓ= (x,y,px,py) then four starting phases, which 

occur within the equilibrium distribution with the same probability as ΓΓΓΓ , can be obtained using 

the mappings M I, MT, MY and  MK ;

 

ΓΓΓΓ I   =    M I [ΓΓΓΓ ]      =    (x, y, z, px, py, pz )

 

ΓΓΓΓT   =    M T [ΓΓΓΓ ]    =    (x, y, z, -px, -py, -pz )

 (7.4.3)

ΓΓΓΓY   =    M Y [ΓΓΓΓ ]    =    (x, -y, z, px, -py, pz )

 

ΓΓΓΓK   =    M K [ΓΓΓΓ ]    =    (x, -y, z, -px, py, -pz ).

 

Here M I is the identity mapping; M T is the time reversal mapping introduced above; M Y is 

termed the y-reflection mapping; and M K is called the Kawasaki mapping (it is the combined 

effect of time reversal and y-reflection mapping M K = M T M Y ). For shear flow these four 

configurations give four different starting states, and lead to four different field dependent 

trajectories from the single equilibrium phase point ΓΓΓΓ. Each of the mappings consists of a pair 

of reflections in a coordinate or momentum axis. In total there are 24 states that can be obtained 

using the reflections of a 2-dimensional phase space however, only 23 of these states will result 

in at most a sign change in the instantaneous shear stress Pxy(ΓΓΓΓ ). Only 22 of the remaining 

mappings lead to different shearing trajectories. The shear stress obtained from trajectories 

starting from ΓΓΓΓ i and -ΓΓΓΓ i for example, are identical. The probability of each of these states 

occurring within the equilibrium distribution, is identical because the Hamiltonian H0, is 

invariant under these mappings.

There is a second, more important, advantage of this procedure.  If we examine the 

transient response formula (7.3.7), we see that at long time the correlation function 

<B(t)Pxy(0)> approaches  <B(∞)><Pxy(0)>. The steady state average of B is usually non-zero 

(in contrast to equilibrium time correlation functions). To minimise the statistical uncertainties in 

calculating the transient correlation integral, it is necessary to choose equilibrium starting states 

ΓΓΓΓ  in such a way that <Pxy(0)> ≡ 0.  The phase mapping procedure described above achieves 

this. If the shear stress computed from the original starting phase is Pxy, then the shear stress 

from ΓΓΓΓT is also equal to Pxy, but the shear stresses from both ΓΓΓΓY and ΓΓΓΓΚ are equal to -Pxy. This 

means that the sum of the shear stresses from these four starting phases is exactly zero, so if 

each chosen ΓΓΓΓ  is mapped in this way the average shear stress is exactly zero regardless of the 

number of samplings of ΓΓΓΓ. The statistical difficulties at long time, associated with a small non-

zero value the average of Pxy(0), are eliminated.
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There are two further operations on these mappings which we need to complete the 

development of the mapping algebra. First we need to know how each of the mappings affect 

phase variables. Second we must understand the effect of the mapping on the phase variable 

Liouvillean iL(ΓΓΓΓ ), as it is also a function of the initial phase point ΓΓΓΓ . To do this we need to 

know how the equations of motion transform. First we will discuss the transformation of 

Hamiltonian equations of motion under the mapping, and then consider the transformation of 

the field dependent dynamics. This will require an extension of the mappings to include the field 

itself.

To illustrate the development we will consider the time reversal mapping M T in 

detail, and simply state the results for other mappings.  In what follows the mapping operator 

M T operates on all functions and operators (which depend upon ΓΓΓΓ  and γ) to its right. A 

particular example is useful at this stage, so consider the shear stress Pxy

 M
T
 [Pxy]   =   M

T 
[ ∑

i=1

N

 m

pxipyi
  + ∑

i=1

N

 y
i
F

xi
 ]

= ∑
i=1

N

 m

(-pxi )(-pyi )
  +  ∑

i=1

N

 y
i
F

xi

=   Pxy (7.4.4)

Here Pxy is mapped to the same value. For thermodynamically interesting phase variables the 

operation of the mappings involve simple parity changes

 M
X
  B(ΓΓΓΓ)   =   p

B
X  B(ΓΓΓΓ) (7.4.5)

where pBX = ±1. In the following table we list the values of the parity operators for shear 

stress, pressure and energy for each of the mappings.

___________________________________________________________________________

Table 7.1          Mapping Parities

___________________________________________________________________________

Parity Operators Mapping shear stress pressure energy

M I Identity 1 1 1

MT Time reversal 1 1 1

MY y-reflection -1 1 1

MK Kawasaki -1 1 1

___________________________________________________________________________

The operation of the mapping MT on the Hamiltonian equations of motion is
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 M
T
 
.
q i    =   M

T
 [ m

p
i  ]   =   m

p
i
T

     =   m
- p i    =   - 

.
q

i
(7.4.6)

 M
T
 
.
p i    =   M

T
 [ F

i
(q) ]   =   F

i
(q

T
 )   =   Fi (q)   =   

.
p

i
(7.4.7)

where the transformed coordinate and momenta are denoted by the superscript (T). The vector 

character of the force F is determined by the coordinate vector  q, so that under this mapping 

the force is invariant. Because dq/dt and p change sign under the mapping M T, the phase 

variable Liouvillean becomes

 M
T
  iL(ΓΓΓΓ )   =   M

T
 [ 

.
ΓΓΓΓ.

∂ΓΓΓΓ
∂  ]   =   M

T
 [ ∑

i=1

N

 (
.
q

i
.
∂qi

∂   +  
.
p

i
.
∂p i

∂ ) ]

= ∑
i=1

N

 ( .q
i

T
.
∂q

i

T
∂   + .p

i

T
.
∂p

i

T
∂ )

=   ∑
i=1

N

 (-
.
q

i
. ∂q

i

∂   +  
.
p

i
. ∂(-p

i
)

∂ )   =   - iL(ΓΓΓΓ) (7.4.8)

It is straightforward to use this result and the series expansion of the propagator to show that

 M
T
  exp(iL(ΓΓΓΓ )t)   =   exp(-iL(ΓΓΓΓ )t) (7.4.9)

To see exactly how this combination of the M T mapping, and forward time 

propagation combine to give time reversal we consider the time evolution of ΓΓΓΓ itself,

 ΓΓΓΓ    =   exp(-iL(ΓΓΓΓ )t)  exp(iL(ΓΓΓΓ)t)  ΓΓΓΓ

   =   M
T
 M

T
  exp(-iL(ΓΓΓΓ )t)  exp(iL(ΓΓΓΓ)t)  ΓΓΓΓ

=   M
T
  exp(M

T
 [-iL( ΓΓΓΓ )] t)  M

T
  exp(iL(ΓΓΓΓ )t)  ΓΓΓΓ

=   M
T
  exp(iL(ΓΓΓΓ)t)  M

T
  exp(iL(ΓΓΓΓ)t)  ΓΓΓΓ (7.4.10)

This implies that

MT exp(iL(ΓΓΓΓ)t)  MT exp(iL(ΓΓΓΓ)t)      =  1. (7.4.11)

If we start with ΓΓΓΓ (0), propagate forward to time t, map with MT (changing the signs of the 
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momenta), propagate forward to time t, and map with MT (changing the signs of the momenta 

again), we return to ΓΓΓΓ (0). An analogous identity can be constructed by considering  ΓΓΓΓ (0) =  

exp(iL(ΓΓΓΓ)t) ΓΓΓΓ(-t), that is

MT exp(-iL(ΓΓΓΓ)t)  MT exp(-iL(ΓΓΓΓ)t)   =  1. (7.4.12)

This says that we can complete a similar cycle using the backward time propagator exp(-iLt) 

first. These to results demonstrate the various uses of this time reversal mapping.

When the equations of motion for the system involve an external field the time 

reversal mapping can be generalised to include the field. This is necessary if we wish to 

determine whether a particular mapping leads to different field dependent dynamics. Here we 

limit consideration to the isothermal SLLOD algorithm for shear flow. It is clear that all the 

momenta must change sign so a suitable choice for the mapping is

 M
T
 (q,p,γ)   =   (q,-p,-γ). (7.4.13)

As the field has units of inverse time the field changes sign together with the momenta. The 

equations of motion for the mapped variables become

 M
T
 .q

i
   =   M

T
 [m

p i   +  nxγy
i
]

=   m
p

i

T

  +  nxγT
yi

T

=   m

-p
i   +  nx(-γ)y

i

=   - .q
i

(7.4.14)

and

 M
T
 .p

i
   =   M

T
[F

i
(q)  -  nxγp

yi
  -  αp

i
]

=   F
i
(q

T
)  -  nxγT

p
yi
T
  -  αT

p
i

T

=   F
i
(q)  -  nx(-γ)(-pyi

)  -  (-α )(-p
i
)

=   F
i
(q)  -  nxγp

yi
  -  αp

i

=   .p
i

(7.4.15)

Notice also that for the thermostatting variable α
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 αT
   =   M

T
 α   =   M

T [
∑
i=1

N

 p
i
2

∑
i=1

N

 (F
i
.p

i
  -  γp

xi
p

yi
)

] =   -α (7.4.16)

as the numerator changes sign and the denominator is invariant under the time reversal 

mapping. The mapping of the Liouvillean is similar to the field free case and it can be shown 

that

 M
T
  iL(ΓΓΓΓ ,γ)   =   - iL(ΓΓΓΓ ,-γ) (7.4.17)

In the field dependent case the two operators, equations (7.4.11,7.4.12) generalise to

M T exp(iL(ΓΓΓΓ ,-γ)t)  MT exp(iL(ΓΓΓΓ ,γ)t)      =  1. (7.4.18)

M T exp(-iL(ΓΓΓΓ ,-γ)t)  MT exp(-iL(ΓΓΓΓ ,γ)t)   =  1. (7.4.19)

As a phase variable by definition is not a function of the field, the parity operators associated 

with mapping phase variables are unchanged.

The second mapping we consider is the y-reflection mapping M Y, as it acts to 

change the sign of the shear rate but not the time or the Liouvillean. This mapping is defined by

  

 MY (x ,y ,z,p
x
,p

y
,p

z
,γ)   =   (x ,-y ,z,p

x
,-p

y
,p

z
,-γ) (7.4.20)

This mapping consists of a coordinate reflection in the x,z-plane, and momenta reflection in the 

px,pz-plane. Substituting this mapping into the SLLOD equations of motion shows that the time 

derivatives of both y and py change sign, while the thermostatting variable remains unchanged. 

The y-reflection  Liouvillean is related to the standard Liouvillean by

 M
Y
  iL(ΓΓΓΓ ,γ)   =   iL(ΓΓΓΓ, -γ) (7.4.21)

We now define the combination Kawasaki mapping ΜΜΜΜK, which consists of the time 

reversal mapping followed by the y reflection mapping, so that

 M
K
 (x ,y ,z,px,py,pz,γ)   =   (x ,-y ,z,-px,py,-pz,γ) (7.4.22)
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Under the Kawasaki mapping the Liouvillean is transformed to

 M
K
  iL(ΓΓΓΓ ,γ)   =   - iL(ΓΓΓΓ ,γ) (7.4.23)

___________________________________________________________________________

Table 7.2 Summary of Phase Space Mappings

___________________________________________________________________________

Time Reversal Mapping.

M T (q,p,γ) = (qT,pT,γT) = (q,-p,-γ).

M T iL(ΓΓΓΓ ,γ) = iL(ΓΓΓΓT,γT) = -iL(ΓΓΓΓ ,-γ).

y-Reflection Mapping

M Y  (x,y,z,px,py,pz,γ) = (x,-y,z,px,-py,pz,-γ).

M Y iL(ΓΓΓΓ ,γ) = iL(ΓΓΓΓY,γY) = iL(ΓΓΓΓ ,-γ).

Kawasaki mapping

M K (x,y,z,px,py,pz,γ) = (x,-y,z,-px,py,-pz,γ).

M K iL(ΓΓΓΓ ,γ) = iL(ΓΓΓΓK,γK) = -iL(ΓΓΓΓ ,γ)

___________________________________________________________________________

Using the results obtained in this section it easy to show that the following four time 

evolutions of the phase variable B yield identical values. That is

 exp(iL(ΓΓΓΓ ,γ)t) B(ΓΓΓΓ)   =   p
B
T  exp(-iL(ΓΓΓΓT,-γT)t) B(ΓΓΓΓT)

=   p
B
Y  exp(iL(ΓΓΓΓY

, -γY)t) B(ΓΓΓΓY
)

=   p
B
K  exp(-iL(ΓΓΓΓK,γK)t) B(ΓΓΓΓK) (7.4.24)

Notice that these four time evolutions involve changing the sign of the time and/or the sign of 

the field. If we consider the phase variable Pxy(ΓΓΓΓ ), the time evolution leads to a negative 

average value at long time, and where a single sign change is made in the propagator, the parity 

operator is -1. The third equality has been used to interpret the propagation of the dissipative 

flux in the Kawasaki exponent; negative time evolution with a positive external field from ΓΓΓΓ , is 

equivalent to positive time evolution with a positive field from ΓΓΓΓ K. As each of the time 

evolutions in equation (7.4.24) represent different mathematical forms for the same trajectory, 

the stabilities are also the same.

The Kawasaki mapping is useful as an aid to understanding the formal expression 

for the Kawasaki distribution function. The particular term we consider is the time integral of 

the dissipative flux  in the Kawasaki exponent
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-β ∫
0

t

  ds  γ Pxy(-s,γ,ΓΓΓΓ) V

using the Kawasaki mapping the negative time evolution can be transformed to an equivalent 

positive time evolution. To do this consider

Pxy(-s,ΓΓΓΓ ,γ) =  exp(-iL(ΓΓΓΓ ,γ) s) Pxy(ΓΓΓΓ )

=  exp(iL(ΓΓΓΓK,γK) s)  pKPxy Pxy(ΓΓΓΓK)

=  - exp(iL(ΓΓΓΓK,γK) s) Pxy(ΓΓΓΓK)

=  - Pxy(s,ΓΓΓΓ K,γK)

=  - Pxy(s,ΓΓΓΓ K,γ) (7.4.25)

The last equality follows from the fact that γK  = γ. So we may think of  Pxy(-s,γ,ΓΓΓΓ )  as 

equivalent (apart from the sign of the parity operator) to the propagation of Pxy forward in time, 

with the same γ, but starting from a different phase point  ΓΓΓΓK. The probability of this new 

phase point ΓΓΓΓK in the canonical (or isothermal) distribution is the same as the original ΓΓΓΓ , as the 

equilibrium Hamiltonian H0, is invariant under time reversal and reflection. Therefore the 

Kawasaki distribution function can be written as

                

f t V ds P s f

V ds P s f

t

xy

t

xy
K K

( , ) exp ( , , ) ( , , )

exp ( , , ) ( , , )

ΓΓ ΓΓ ΓΓ

ΓΓ ΓΓ

= − −[ ]
= + +[ ]

∫

∫

βγ γ

βγ γ

0

0

0 0

0 0

                          (7.4.26)

In this form the sign of the exponent itself changes as well as the sign of the time evolution. At 

sufficiently large time Pxy(s,ΓΓΓΓK,γ) approaches the steady state value  <Pxy(s,γ)>, regardless of 

the initial phase point  ΓΓΓΓK.
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7.5 Numerical Results for the Transient Time Correlation Function.

Computer simulations have been carried out for two different systems (Evans and 

Morriss, 1988). Two statistical mechanical systems were studied. The first was a system of 72 

soft disks, (φ=4ε(σ/r)12), in two dimensions at a reduced density, ρ* =ρσ2 = 0.6928, a 

reduced temperature, T* = kT/ε = 1, and for a range of reduced strain rates, γ* = γ(m/ε)1/2σ = 
∂ux/∂y (m/ε)1/2σ. The second system was studied more extensively. It consisted of 256 WCA 

particles. The system was three dimensional and the density was set to ρ*=ρσ3 = 0.8442 while 

the temperature was T* = kT/ε = 0.722 (ie the Lennard-Jones triple point state). 

 In each simulation the direct NEMD average of the shear stress, pressure, normal 

stress difference and thermostat multiplier α , were calculated along with their associated 

transient correlation functions using typically 60,000 nonequilibrium starting states. For the 

three dimensional system each nonequilibrium trajectory was run for a reduced time of 1.5 (600 

timesteps). Each 60,000 starting state simulation consisted of a total of 54 million timesteps 

made up of 2 x 15,000 x 600 timesteps at equilibrium and 4 x 15,000 x 600 perturbed 

nonequilibrium timesteps. The trajectory mappings described in §7.4 were used to generate the 

4 starting states for the nonequilibrium trajectories.

In Figure 7.1 we present the results obtained for the reduced shear stress 

Pxy*=Pxy(σ2/ε), in the 2 dimensional soft disk system. The imposed reduced strain rate is 

unity. The values of the shear stress calculated from the transient correlation function 

expression, (Pxy(T)), agree within error bars, with those calculated directly, (Pxy(D)). The 

errors associated with the direct average are less than the size of the plotting symbols whereas 

the error in the integral of the transient correlation function is approximately ±2.5% at the 

longest times. Although the agreement between the direct simulation results and the TTCF 

prediction is very good it must be remembered that the total response for the shear stress is the 

sum of a large linear effect which could be correctly predicted by the Green-Kubo formula and a 

smaller (~25%) nonlinear effect. Thus the statistical agreement regarding the TTCF prediction 

of the intrinsically nonlinear component of the total response is therefore approximately 10%. 
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Figure 7.1

The shear-induced increase in pressure with increasing strain rate (shear dilatancy) is 

an intrinsically nonlinear effect and is not observed in Newtonian fluids. The Green-Kubo 

formulae predict that there is no coupling of the pressure and the shear stress because the 

equilibrium correlation function, <∆p(t)Pxy(0)>, is exactly zero at all times. In Figure 7.2 we 

present the direct and transient correlation function values of the difference between the pressure 

p*=p(σ2/ε) and its equilibrium value, p0* , (∆p*=p*-p0*). The agreement between the direct 

average, and the value obtained from the transient correlation function expression at γ* = 1.0 is 

impressive. It is important to note that the agreement between theory and simulation shown in 

Figure 7.2, is a test of the predictions of the theory for an entirely nonlinear effect. It is a more 

convincing check on the validity of the TTCF formalism than are the results for the shear stress 

because there is no underlying linear effect.
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Figure 7.2

The results for the x-y element of the pressure tensor in the three dimensional WCA 

system are given in Figure 7.3. Again the agreement between the TTCF prediction (T), and the 

Direct simulation (D), is excellent. We also show the long time steady state stress computed by 

conventional NEMD (denoted, SS). It is clear that our time limit for the integration of the 

Transient Time Correlation Functions is sufficient to obtain convergence of the integrals (i.e. to 

ensure relaxation to the nonequilibrium steady state). We also show the Green-Kubo prediction 

for the stress (GK). A comparison of the linear and nonlinear responses shows that the 

intrinsically nonlinear response is only generated at comparatively late times. The response is 

essentially linear until the stress overshoot time (t* ~ 0.3). The figure also shows that the total 

nonlinear response converges far more rapidly than does the linear GK response. The linear 

GK response has obviously not relaxed to its steady state limiting value at a t*  value of 1.5. 

This is presumably because of long time tail effects which predict that the linear response 

relaxes very slowly as t-1/2, at long times.

1.51.00.50.0
-2.5

-1.5

-0.5
Pxy(D)
Pxy(T)
Pxy(GK)

time

SS

Figure 7.3

In Figure 7.4 we show the corresponding results for shear dilatancy in three 

dimensions. Again the TTCF predictions are in statistical agreement with the results from direct 

simulation. We also show the steady state pressure shift obtained using conventional NEMD.  

Again it is apparent that t*  = 1.5 is sufficient to obtain convergence of the TTCF integral. 

Although it is not easy to see in the figure, the initial slope of the pressure response is zero. 
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Figure 7.4

This contrasts with the initial slope of the shear stress response which is G∞ . This is in 

agreement with the predictions of the transient time correlation formalism made in §7.3. Figures 

7.1,7.3 clearly show that at short time the stress is controlled by linear response mechanisms. It 

takes time for the nonlinearities to develop but paradoxically perhaps, convergence to the steady 

state asymptotic values is ultimately much faster in the nonlinear, large field regime.

Comparing the statistical uncertainties of the transient correlation and direct NEMD 

results shows that at reduced strain rates of unity conventional NEMD is clearly the most 

efficient means of establishing the steady state response. For example under precisely the same 

conditions: after 54 million timesteps the TTCF expression for Pxy is accurate to ± 0.05%, but 

the directly averaged transient response is accurate to ± 0.001%. Because time is not wasted in 

establishing the steady state from each of 60,000 time origins, conventional steady state NEMD 

needs only 120 thousand timesteps to obtain an uncertainty of ± 0.0017%. If we assume that 

errors are inversely proportional to the square root of the run length, then the relative 

uncertainties for a 54 million timestep run would be ± 0.05%, ± 0.001% and 0.00008% for the 

TTCF, the directly averaged transient response and for conventional NEMD, respectively. 

Steady state NEMD is about 600 times more accurate than TTCF for the same number of 

timesteps. On the other hand, the transient correlation method has a computational efficiency 

which is similar to that of the equilibrium Green-Kubo method. For TTCFs time origins cannot 

be taken more frequently than the time interval over which the TTCFs are calculated. An 

advantage of the TTCF formalism is that it models the rheological problem of stress growth 

(Bird et. al., 1977), not simply steady shear flow, and we can observe the associated effects 

such as stress overshoot, and the time development of normal stress differences.
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Figure 7.5 shows the transient responses for the normal stress differences, Pyy-Pzz 

and Pxx-Pyy, for the three dimensional WCA system at a reduced strain rate of unity. The 

normal stress differences are clearly more subtle than either the shear stress or the hydrostatic 

pressure. Whereas the latter two functions seem to exhibit a simple overshoot before relaxing to 

their final steady state values, the normal stress differences show two maxima before achieving 

their steady state values (indicated SS, in the figure). As before it is apparent that t*  = 1.5, is 

sufficient time for an essentially complete relaxation to the steady state.

1.501.251.000.750.500.250.00
-0.2
-0.1
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0.5

time

SS

 Pxx - Pyy

 Pyy - Pzz

Figure 7.5

Over the years a number of numerical comparisons have been made between the 

Green-Kubo expressions and the results of NEMD simulations. The work we have just 

described takes this comparison one step further. It compares NEMD simulation results with the 

thermostatted, nonlinear generalisation of the Green-Kubo formulae. It provides convincing 

numerical evidence for the usefulness and correctness of the Transient Time Correlation 

Function formalism. The TTCF formalism is the natural thermostatted, nonlinear generalisation 

of the Green-Kubo relations.
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7 . 6 Differential Response Functions.

Surprisingly often we are interested in the intermediate regime where the Green-

Kubo method cannot be applied and where, because of noise, direct NEMD is very inefficient. 

We have just seen how the TTCF method may be applied to strong fields. It is also the most 

efficient known method for treating fields of intermediate strength. Before we demonstrate the 

application of TTCFs to the small field response, we will describe an early method that was 

used to calculate the intermediate field response. 

Prior to the development of Transient Time Correlation Function method, the only 

way of computing the small but finite field response of many-body systems was to use the 

Subtraction or Differential response method. The idea behind this method is extremely simple. 

By considering a sufficiently small field, the systematic response (ie the field induced response) 

will be swamped by the natural (essentially equilibrium) fluctuations in the system. However it 

is clear that for short times and small applied fields, there will be a high degree of correlation in 

the transient response computed with, and without, the external field, (see Figure 7.6).

Equilibrium Response,

Nonequilibrium Response,

A(t)

time

Systematic  Response

 (eiL(Fe)t  - eiL(Fe=0)t
 ) A

 eiL(Fe=0)t A

 eiL(Fe)t A

Figure 7.6

If we compute A(t) for two trajectories which start at the same phase, ΓΓΓΓ , one with the field on 

and the other with the field off, we might see what is depicted in Figure 7.6. Ciccotti et. al. 

(1975, 1976, 1979), realised that, for short times, the noise in A(t) computed for the two 

trajectories, will be highly correlated. They used this idea to reduce the noise in the response 
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computed at small applied fields.
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Figure 7.7

To use their Subtraction Method one performs an equilibrium simulation (Fe=0), from which 

one periodically initiates nonequilibrium calculations (Fe≠0). The general idea is shown in 

Figure 7.7. The phases {ΓΓΓΓ i}, are taken as time origins from which one calculates the 

differences of the response in a phase variable with and without the applied field. The 

systematic or nonequilibrium response is calculated from the equation,

 < A(t;Fe) >  =  < A(t;Fe) > - < A(t;0) >  =  
N
1 ∑

i=1

N

 [e
iL(Fe)t - e

iL(0)t
]A(ΓΓΓΓ

i
)

(7.6.1)

For many years this was the only method of calculating the small field 

nonequilibrium response. It suffers from a major problem however. For the method to work, 

the noise in the the value of A(t) computed with and without the field, must be highly 

correlated. Otherwise the equilibrium fluctuations will completely swamp the desired response. 

Now the noise in the two responses will only be correlated if the two systems remain 

sufficiently close in phase space. The Lyapunov instability (§3.4) will work against this. The 

Lyapunov instability will try to drive the two systems apart exponentially fast. This can be 

expected to lead to an exponential growth of noise with respect to time. This is illustrated in 

Figures 7.8,9 in which the TTCF, denoted (T), and Subtraction techniques, denoted (sub), are 

compared for the 256 particle WCA system considered in §7.5.

Figure 7.8 shows the shear stress for the three dimensional WCA system at the 

comparatively small strain rate of γ*  = 10-3. At this field strength conventional steady state 

NEMD is swamped by noise.  However the Subtraction technique can be used to substantially 
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improve the statistics. It is important to note that both the Subtraction and TTCF technique are 

based on an analysis of the transient response of systems. The results compared in Figure 7.8 

were computed for exactly the same system using exactly the same data. The only difference 

between the two sets of results is how the data were analysed. Lyapunov noise is clearly 

evident in the Subtraction results labelled in Figure 7.8 as Pxy(sub). For longer times, during 

which we expect the slow nonlinearities to complete the relaxation to the steady state, the 

Subtraction technique becomes very noisy.
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-0.0025

-0.0015

-0.0005

Pxy(sub)
Pxy(T)

time

Figure 7.8

Figure 7.9 shows the corresponding results for shear dilatancy. Here the Subtraction 

technique (labelled ‘sub’), is essentially useless. Even the TTCF method becomes somewhat 

noisy at long times. The TTCF results clearly show the existence of a measurable, intrinsically 

nonlinear effect even at this small strain rate.
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Figure 7.9 
Although the TTCF method allows us to compute the response of systems to fields 
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of arbitrary, even zero, strength, we often require more information about the small field 

response than it is capable of providing. For example at small fields the response is essentially 

linear. Nonlinear effects that we may be interested in are completely swamped by the linear 

response terms. The Differential Transient Time Correlation Function (DTTCF) is an 

attempt to provide an answer to this problem. It uses a subtraction technique on the TTCFs 

themselves to formally subtract the linear response.

In the DTTCF method we consider the difference between B(s) evaluated with and 

without the external field, starting from the same initial phase point. From the transient 

correlation function expression this gives

 

 <(B(t,γ)  -  B(0,γ))>  =  - β γV ∫
0

t

 ds <(B(s,γ) - B(s,0) + B(s,0)) P
xy

>

                      =   - β γV ∫
0

t

 ds <(B(s,γ) - B(s,0)) P
xy

>  +  β γV ∫
0

t

 ds <B(s,0) P
xy

 >

(7.6.2)

In this equation B(s,γ) is generated from B(0) by the thermostatted field dependent propagator. 

B(s,0), on the other hand is generated by the zero-field thermostatted propagator. The last term 

is the integral of an equilibrium time correlation function. This integral is easily recognised as 

the linear, Green-Kubo response. The first term on the RHS is the integral of a differential 

transient time correlation function (DTTCF), and is the intrinsically nonlinear response. The 

LHS is termed the direct differential, or subtraction average.

There are two possible cases; the first in which B has a non-zero linear response 

term, and the second where the linear response is identically zero. If B is chosen to be Pxy the 

third term in (7.6.2) is the Green-Kubo expression for the response of the shear stress  -η(0)γ, 
where η(0) is the zero shear rate shear viscosity. The definition of the shear rate dependent 

viscosity, η(γ) ≡ - <Pxy> / γ gives

 η(γ) - η(0)  =  βV ∫
0

∞

 ds <(P
xy

(s,γ) - P
xy

(s ,0)) P
xy

 > (7.6.3)

as the intrinsically nonlinear part of the shear viscosity. As  s→∞ the differential transient time 

correlation function (using the mixing assumption) becomes <(Pxy(s,γ)-Pxy(s,0))> <Pxy> = 

<Pxy(s,γ)> <Pxy> . This is zero because <Pxy(0)>  is zero. On the other hand <(Pxy(s,γ)> is 

clearly non-zero which means that the use of our trajectory mappings will improve the statistics 

as s→∞.

To apply the phase space mappings in the differential response method we consider 
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the identity (7.4.24). We can obtain four different time evolutions of B(ΓΓΓΓ) by simply removing 

the minus signs and parity operators from each of the equivalent forms in equation (7.4.24). If 

we use the index α to denote the 4 mappings {I,T,Y,K}, then

 ∑
α = {I,T,Y,K}

        B(t,ΓΓΓΓα ,γα )   =   ∑
α

   exp(iL(ΓΓΓΓα ,γα )t)  B(ΓΓΓΓα )

=   ∑
α

   exp(M
α
[iL( ΓΓΓΓ ,γ)] t)  pB

α
  B(ΓΓΓΓ)

=   { exp(iL(ΓΓΓΓ ,γ)t) pB
I
   +   exp(-iL(ΓΓΓΓ ,-γ)t) pB

T

exp(iL(ΓΓΓΓ, -γ)t) p
B
Y   +   exp(-iL(ΓΓΓΓ ,γ)t) p

B
K }   B(ΓΓΓΓ) (7.6.4)

This is the direct response of the phase variable B(ΓΓΓΓ ) from one sampling of ΓΓΓΓ , where the 

mappings are used to generate four starting phase points. To calculate the differential response 

of B we need to subtract the field free time evolution of B(ΓΓΓΓ) from each of these four starting 

states. The four field free time evolutions are found by setting γα=0 in equation (7.6.4). That is

 ∑
α = {I,T,Y,K}

        B(t,ΓΓΓΓ α ,γα=0)   =   { p
B
I  exp(iLt)  +  p

B
T exp(-iLt)

     + p
B
Y exp(iLt)  +  p

B
K exp(-iLt)}  B(ΓΓΓΓ) (7.6.5)

Clearly there are only two different field free time evolutions; the remaining two can be obtained 

from these by the sign changes of the parity operators. In practice, a single cycle of the 

numerical evaluation of a differential transient time correlation function will involve the 

calculation of four field dependent trajectories and two field free trajectories, yielding four 

starting states.

The use of the symmetry mappings implies some redundancies in the various 

methods of calculating the response. In particular the direct response of Pxy(t) is exactly equal 

to the direct differential response for all values of the time. This means that the contribution 

from the field free time evolutions is exactly equal to zero. This is easy to see from equation 

(7.6.4) as there are only two different time evolutions; those corresponding to exp(iLt) and 

exp(-iLt) respectively, and for Pxy each comes with a positive and negative parity operator. 

Therefore these two responses exactly cancel for all values of time.

The second redundancy of interest is that the transient response of the pressure p(t) 

is exactly equal to the differential transient response for all values of time. This implies that 

the contribution to the equilibrium time correlation function  <p(t) Pxy> from a single sampling 

of ΓΓΓΓ  is exactly zero. Clearly this equilibrium time correlation is zero when the full ensemble 

average is taken, but the result we prove here is that the mappings ensure that Σ p(t) Pxy is zero 
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for each  starting state ΓΓΓΓ    for all values of t. The contribution from the field free trajectories is

 ∑
α = {I,T,Y,K}

        p(t,ΓΓΓΓ α ,γα=0) Pxy(ΓΓΓΓ
α)   =   Pxy(ΓΓΓΓ ) { p

Px y

I  pp
I  exp(iLt)  +  p

Pxy

T  pp
T exp(-iLt)

+   p
Pxy

Y  pp
Y exp(iLt)  +  p

Px y

K  pp
K exp(-iLt) }  p(ΓΓΓΓ )

=   0 (7.6.6)

Again the product of parities ensures that the two field free time evolutions exp(iLt), and exp(-

iLt) occur in cancelling pairs. Therefore the field free contribution to the differential time 

correlation function is exactly zero and the differential transient results are identical the transient 

correlation function results.

The DTTCF method suffers from the same Lyapunov noise characteristic of all 

differential or subtraction methods. In spite of this problem Evans and Morriss (1987) were 

able to show, using the DTTCF method, that the intrinsically nonlinear response of 3-

dimensional fluids undergoing shear flow is given by the classical Burnett form (see §9.5). 

This is at variance with the nonclassical behaviour predicted by mode coupling theory. 

However, nonclassical behaviour can only be expected in the large system limit. The classical 

behaviour observed by Morriss and Evans (1987), is presumably the small strain rate, 

asymptotic response for finite  periodic systems.

A much better approach to calculating and analysing the asymptotic nonlinear 

response will be discussed in §9.5.
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7 . 7 Numerical results for the Kawasaki Representation

We now present results of a direct numerical test the Kawasaki representation of the 

nonlinear isothermal response. We show that phase averages calculated using the explicitly 

normalised Kawasaki distribution function agree with those calculated directly from computer 

simulation.

The system we consider is the thermostatted NEMD simulation of planar Couette 

flow using the isothermal SLLOD algorithm (§6.3). As remarked ealier, the primary difficulty in 

using the Kawasaki expression in numerical calculations arises because it involves calculating 

an extensive exponential. For a 100-particle Lennard-Jones triple point system we would have 

to average quantities of the order of, e200, to determine the viscosity. Larger system sizes 

would involve proportionately larger exponents! The simulations presented here attempt to 

reduce these difficulties by using two strategies: they use a comparatively small number of 

particles, N=18 in two dimensions, and they were carried out at a low density, ρ*=0.1, where 

the viscosity is ~50 times smaller than its triple point value. For small systems it is necessary to 

take into consideration terms of order, 1/N, in the definition of the temperature,T = (ΣΣΣΣi pi2/m 

)/(dN-d-1), and the shear stress, PxyV=.(dN-d)/(dN-d-1)ΣΣΣΣi pxi pyi/m )-(1/2)ΣΣΣΣijyijFxij. 

The first order equations of motion were solved using the 4th order Runge-Kutta 

method with a reduced timestep of 0.005. The reduced shear rate γ*  = 1, and the reduced 

temperature was also set to unity. 

The simulation consisted of a single equilibrium trajectory. At regular intervals 

(every 399 timesteps) the current configuration was used to construct four different 

configurations using the trajectory mappings described in §7.4. Each of these configurations 

was used as an initial starting point for a non-equilibrium simulation of 400 timesteps, with a 

negative timestep and reduced shear rate γ = 1. Time dependent averages were calculated, with 

the time being measured since the last equilibrium starting state. The aim was to produce the 

Kawasaki averages by exactly programming the dynamics in the Kawasaki distribution function 

(equation 7.2.19).

The phase space integral of the bare  Kawasaki distribution function f(t), equation 

(7.2.19), is 

 Z(t)   =   ∫dΓΓΓΓ  f(ΓΓΓΓ ,t)   =   ∫dΓΓΓΓ   f(ΓΓΓΓ ,0)  exp[ -βF
e
 ∫
0

t

ds J(-s)] (7.7.1)

Z(0) is the phase integral of the equilibrium distribution function which is equal to unity since 

f(0) is the normalised equilibrium distribution function. It is interesting to consider the rate of 
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change of Z(t) after the external field is switched on. Using manipulations based on the 

reversible Liouville equation we can show that,

 
dt

d Z(t)
    =    ∫dΓΓΓΓ  f(0) 

∂t

∂
 exp [ -βF

e
 ∫
0

t

ds J(-s) ]

              
=  -  βF

e
 ∫dΓΓΓΓ  f(t)  J(-t)

    =   - βF
e
 ∫dΓΓΓΓ  f(0)  J(0)     =     0 (7.7.2)

The last equality is a consequence of the Schrödinger-Heisenberg equivalence (§3.3). This 

implies that the bare Kawasaki distribution function is normalised for all times t. This is a direct 

result of the reversibility of the classical equations of motion. In Figure 7.10 we present the 

numerical results for Z(t). Figure 7.10 shows that equation (7.7.2) is clearly false. The 

normalisation is unity only for a time of the order of the Lyapunov time for the system. After 

this time the normalisation decreases rapidly. The explanation of this apparent paradox is that 

the analysis used to establish (7.7.2) is based on the reversible Liouville equation. The 

simulation used to generate the results shown in Figure 7.10 is, however, not time reversible. 

Trajectories which imply a long periods (compared to the Lyapunov time) of entropy decrease 

are mechanically unstable both in nature and in computer simulations. Because it is impossible 

to integrate the equations of motion exactly, these entropy decreasing trajectories are not 

observed for times longer than the Lyapunov time which characterises the irreversible instability 

of the equations of motion. 
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The form of the function, Z(t), shown in Figure 7.10, is determined by the accuracy 

with which the calculations are carried out. In principle by using ever more powerful computers 

one could, by increasing the word length and by decreasing the integration time step, ensure 

that the computed Z(t) stayed close to unity for longer and longer times. The exact result is that 

Z(t)=1. For a hard sphere system, the time over which the trajectory accuracy is better than a set 

tolerance only grows like, -ln(ε1/λ) where λ is the largest Lyapunov exponent for the system 

and ε is the magnitude of the least significant digit representable on the computer. However our 

ability to numerically extend the times over which Z(t)~1, is much worse than this analysis 

implies. As we compute (7.7.1) for longer times, the variance in <exp[-βFe 0∫t ds J(-s)]> grows 

exponentially in time, regardless of the accuracy with which the trajectories are computed! 

We have discussed the Kawasaki normalization in terms of numerical procedures. 

However exactly the same arguments apply to the experimental observation of the 

normalization. In nature, the problems in observing Z(t)~1 for long times result from 

uncontrolled external perturbations on the system rather than from numerical errors. However 

numerical error can be regarded as a particular form of external perturbation (ε above, would 

then be a measure of the background noise level). Of course the act of observation itself is a 

source of ‘external’ noise.

The results in Figure 7.10, show that the computed bare Kawasaki distribution 

function is not be properly normalised. Thus we should not surprised to see that the bare 

Kawasaki expression for the average shear stress is inconsistent with the results of direct 

calculation as is shown in Figure 7.11.

The obvious way around this problem is to explicitly normalise  the distribution 

function (Morriss and Evans, 1987). The explicitly normalised form is

 f(t)    =    

∫dΓΓΓΓ   f(0)  exp [-βF
e
 ∫
0

t

ds J (-s) ]

f(0)  exp [-βFe ∫
0

t

ds J(-s) ]

(7.7.3)

The renormalized average of the shear stress is then

 < P
xy

(t) >    =    

∫dΓΓΓΓ  f(0)  exp[-βF
e
 ∫
0

t

ds  J(-s) ]

∫dΓΓΓΓ   P
xy

(ΓΓΓΓ)  f(0)  exp[-βF
e
 ∫
0

t

ds  J(-s) ]

(7.7.4)
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We used computer simulation to compare the direct NEMD averages, and the bare 

and renormalized Kawasaki expressions for the time dependent average shear stress in a fluid. 

The results shown in Figure 7.11 are very encouraging. The renormalized Kawasaki result 

(denoted 'Kawasaki') agrees with that calculated directly and with the TTCF result. This is 

despite the fact that the normalisation has decreased by nearly two orders of magnitude at t* = 

2.0. The results show that the bare Kawasaki result is incorrect. It is two orders of magnitude 

smaller than the correct results. 

Incidentally Figure 7.11 shows extraoridinarily close agreement (~0.2% for  

0<t*<2) between the TTCF prediction and direct NEMD. The agreement between direct NEMD 

and TTCF results for both the hydrostatic pressure and the normal stress difference is of a 

similar order. This indicates that one does not need to take the thermodynamic limit for the 

TTCF or GK formulae to be valid. Provided correct expressions are used for the temperature 

and the various thermodynamic fluxes, 18 particles seems sufficient.
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Clearly no one should plan to use the renormalized Kawasaki formalism as a routine 

means of computing transport coefficients. It is probably the least efficient known method for 

computing nonequilibrium averages. The Kawasaki formalism is however, a very important 

theoretical tool. It was of crucial importance to the development of nonlinear response theory 

and it provides an extremely useful basis for subsequent theoretical derivations. As we will see 

in Chapter 9, the renormalized Kawasaki formalism, in contrast to the TTCF formalism, is very 
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useful in providing an understanding of fluctuations in nonequilibrium steady states.
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7 . 8 The van Kampen Objection to Linear Response theory.

Having explored some of the fundamentals of nonlinear response theory, we are 

now in a better position to comment on one of the early criticisms of linear response theory. In 

an oft-cited paper van Kampen (1971), criticised linear response theory on the basis that 

microscopic linearity which is assumed in linear response theory, is quite different from the 

macroscopic linearity manifest in linear constitutive relations. Van Kampen correctly noted that 

to observe linear microscopic response (ie of individual particle trajectories) over macroscopic 

time  (seconds, minutes or even hours), requires external fields which are orders of magnitude 

smaller than those for which linear macroscopic behaviour is actually observed. Therefore, so 

the argument goes, the theoretical justification of, the Green-Kubo relations for linear transport 

coefficients, is suspect.

In order to explain his assertion that linearity of microscopic motion is entirely 

different from macroscopic linearity, van Kampen considered a system composed of 

electrons which move, apart from occasional collisions with impurities, freely through a 

conductor. An imposed external electric field, Fe, accelerates the particles between collisions. 

The distance an electron moves in a time t, under the influence of the field, is 1/2t2(eFe/m). In 

order for the induced current to be linear one requires that t2(eFe/2m) << d, the mean spacing of 

the impurities. Taking d~ 100Å and t to be a macroscopic time, say 1 second, we see that the 

field must be less than ~10-18Volts/cm!

As a criticism of the derivation of linear response theory, this calculation implies 

that for linear response theory to be valid, trajectories must be subject to a linear perturbation 

over macroscopic times - the time taken for experimentalists to make sensible measurements of 

the conductivity. This however, is incorrect. 

The linear response theory expression for the conductivity, σ (≡J/Fe) is,

 σ  =  βV ∫
0

∞

 dt  < J(t) J(0) >
eq (7.8.1)

Now it happens that in three dimensional systems the integral of the equilibrium current 

autocorrelation function converges rapidly. (In two dimensional systems this is expected not to 

be so.) The integral in fact converges in microscopic time, a few collision times in the above 

example. Indeed if this were not so one could never use equilibrium molecular dynamics to 

compute transport coefficients from the Green-Kubo formulae. Molecular dynamics is based on 

the assumption that transport coefficients for simple fluids can be computed from simulations 

which only follow the evolution systems for ~10-10 seconds. These times are sufficient to 

ensure convergence of the Green-Kubo correlation functions for all the Navier-Stokes transport 

coefficients. If we require microscopic linearity over 10-10 seconds (rather than van Kampen's 
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1 second) then we see that the microscopic response will be linear for fields less than about 

100Volts/cm, not an unreasonable number. It simply does not matter that for times longer than 

those characterising the relaxation of the relevant GK correlation function, the motion is 

perturbed in a nonlinear fashion. In order for linear response theory to yield correct results for 

linear transport coefficients, linearity is only required for times characteristic of the decay of the 

relevant correlation functions. These times are microscopic.

We used nonequilibrium molecular dynamics simulation of shear flow in an atomic 

system to explore the matter in more detail (Morriss et. al., 1989). We performed a series of 

simulations with and without an imposed strain rate, γ (≡∂ux/∂y), to measure the actual 

separation d, of phase space trajectories as a function of the imposed strain rate. The phase 

space separation is defined to be,

 d(t,γ)   ≡   (ΓΓΓΓ (t,γ) - ΓΓΓΓ(t,0))2   (7.8.2)

where ΓΓΓΓ ≡ (q1,q2,... qN,p1,p2, .. ,pN) is the 6N-dimensional phase space position for the 

system. In measuring the separation of phase space trajectories we imposed the initial condition 

that at time zero the equilibrium and nonequilibrium trajectories start from exactly the same 

point in phase space, d(0,γ)=0, ∀γ . We used the 'infinite checker board' convention for 

defining the Cartesian coordinates of a particle in a periodic system. This eliminates trivial 

discontinuities in these coordinates. We also reported the ensemble average of the phase space 

separation, averaged over an equilibrium ensemble of initial phases, ΓΓΓΓ(0,0). 

The equations of motion employed were the SLLOD equations. As we have seen 

the linear response computed from these equations is given precisely, by the Green-Kubo 

expression for the shear viscosity. The system studied in these simulations was the Lennard-

Jones fluid at its triple point (ρ*=ρσ3=0.8442,T*=kBT/ε=0.722, t*=t(ε/m)1/2σ-1). A Lees-

Edwards periodic system of 256 particles with a potential truncated at, r* =r/σ=2.5, was 

employed.

Before we begin to analyse the phase separation data we need to review some of the 

relevant features of Lennard-Jones triple point rheology. Firstly, as we have seen (§6.3) this 

fluid is shear thinning. The strain rate dependent shear viscosities of the Lennard-Jones triple 

point fluid are set out in the table below.
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__________________________________________________________________________

Table 7.3

Strain rate dependent shear viscosities for the Triple Point Lennard-Jones 

fluid

__________________________________________________________________________

reduced strain rate                          reduced viscosity              percentage nonlinearity

1.0 2.17 ± 0.03 37%

0.1 3.04 ± 0.03 12%

0.01 3.31 ± 0.08 ~4%

0.0 3.44 ± 0.2 0% NEMD est

__________________________________________________________________________

The most important relevant fact that should be noted from these results is that for reduced 

strain rates, γ*<~10-2, the fluid is effectively Newtonian with a viscosity which varies at most, 

by less than ~4% of its zero shear value. (Because of the uncertainty surrounding the zero shear 

viscosity, we cannot be more certain about the degree of nonlinearity present at γ*=0.01.)

The second relevant fact that we should remember is that the GK equilibrium time 

correlation function whose integral gives the shear viscosity, has decayed to less than 1% of its 

zero time value at a reduced time t*=2.0. Values are shown below.

__________________________________________________________________________

Table 7.4

Green Kubo equilibrium stress correlation function

for shear viscosity

__________________________________________________________________________

t*                  correlation function percentage of t=0 value

0.0 24.00 100%

0.1 7.17 29%

1.0 0.26 1%

2.0 0.09 0.3%

__________________________________________________________________________

Of course the viscosity which is the time integral of this correlation function converges 

relatively slowly due to the presence of the slowly decaying t-3/2 long time tail. Here again there 
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is some uncertainty. If one believes that enhanced long time tail phenomena (§6.3), are truly 

asymptotic and persist indefinitely then one finds that the viscosity converges to within ~13% of 

its asymptotic value at t*=1.0 and to within ~5% of the asymptotic value at t*=10.0.  (If we map 

our simulation onto the standard Lennard-Jones representation of argon, t*=1.0  corresponds to 

a time of 21.6 picoseconds.)  If enhanced long time tails are not asymptotic then the GK 

integrand for the shear viscosity converges to within  ~5% of its infinite time value by t*=2. 

The only important observation that concerns us here is that the GK estimate for the 

shear viscosity is determined in microscopic time, a few hundreds of picoseconds at the very 

most, for argon. This observation was omitted from van Kampen's argument. We call the range 

of times required to ensure say 5%, convergence of the GK expression for the viscosity, the 

GK time window.
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 Figure 7.12 shows the common logarithm of the ensemble average of the phase 

space separation plotted as a function of reduced time for various values of the imposed shear 

rate.  The shear rates employed were: γ*=1.0, 10-1, 10-2, 10-3, 10-5, 10-7. Note that for the 

standard Lennard-Jones argon representation, these strain rates correspond to shear rates of 

4.6*1011 to 4.6*105 Hz. It will be clear from the present results that no new phenomena would 

be revealed at strain rates less than γ* ~ 10-4.

One can see from the figure that at a shear rate of 10-7, the phase space separation 

increases very rapidly initially and then slows to an exponential increase with time. The same 

pattern is followed at a strain rate of 10-5 except that the initial rise is even more rapid than for a 
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strain rate of 10-7. Remember that at t=0 the phase space separations start from zero, and 

therefore the logarithm of the t=0 separations is -∞, for all strain rates.

For strain rates >10-5, we notice that at long times the phase separation is a constant 

independent of time. We see an extremely rapid initial rise, followed by an exponential increase 

with a slope which is independent of strain rate, followed at later times by a plateau. The 

plateau is easily understood.  

The simulations shown in Figures 7.12,13 are carried out at constant peculiar 

kinetic energy Σpi2/2m = 3NkBT. The 3N components of the phase space momenta therefore lie 

on the surface of a 3N-dimensional sphere of radius, rT = √(3NmkBT). Once the phase space 

separation exceeds this radius, the curved nature of accessible momentum space will be 

apparent in our phase space separation plots. The arrow marked on Figure 7.12 shows when 

the logarithm of the separation is equal to this radius. The maximum separation of phase points 

within the momentum sub-space is of course 2r. It is clear therefore that the exponential 

separation must end at approximately, d(t,Γ) = rT. This is exactly what is observed in Figure 

7.12.

Between the plateau and the initial (almost vertical) rise is an exponential region. As 

can be see from the graph the slope of this rise is virtually independent of strain rate. The slope 

is related to the largest positive Lyapunov exponent for the system at equilibrium. The 

Lyapunov exponent measures the rate of separation of phase trajectories that start a small 

distance apart, but which are governed by identical dynamics. After initially being separated by 

the external field, the rate of phase space separation thereafter is governed by the usual 

Lyapunov instability. The fact that the two trajectories employ slightly different dynamics is a 

second order consideration. The Lyapunov exponents are known to be insensitive to the 

magnitude of the perturbing external field for field strengths less than 10-2.

This conjecture regarding the role played by the Lyapunov exponent in the 

separation of equilibrium and nonequilibrium trajectories which start from a common phase 

origin is easily verified numerically. Instead of measuring the separation, d, induced by the 

strain rate, we ran a simulation in which two trajectories started at slightly different phases and 

which evolved under (identical) zero strain rate equations of motion. The resulting displacement 

is shown in Figure 7.12 and labelled as ‘lyap’ in the legend. One can see that the slope of this 

Lyapunov curve is essentially identical to the exponential portions of the strain rate driven 

curves. The time constants for the exponential portions of the curves are given in Table 7.5.

At this stage we see that even at our smallest strain rate, the trajectory separation is 

exponential in time. It may be thought that this exponential separation in time supports van 

Kampen's objection to linear response theory. Surely exponentially diverging trajectories imply 

nonlinearity? The assertion turns out to be false.
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__________________________________________________________________________

Table 7.5

Exponential time Constants for phase separation in the Triple Point Lennard-

Jones fluid under shear

__________________________________________________________________________

time constant reduced strain rate

1.715 ± 0.002 0.0 Lyapunov 

1.730 ± 0.002 10-7 shear induced

1.717 ± 0.002 10-5 "

1.708 ± 0.012 10-3 "

1.689 ± 0.03 10-2 "

__________________________________________________________________________

In Figure 7.13 we examine the field dependence of the phase separations in more 

detail. In this figure we plot the ratio of the separations to the separation observed for a field, 

γ∗ =10-7.
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If the ensemble averaged trajectory response is linear then each of the curves in Figure 7.13 will 

be equispaced horizontal lines. The curves denoted 'av' refer to the ensemble averaged 

separations shown in Figure 7.12. One can see immediately that within the GK time window, t* 

< 2.0, all the separations are linear in the field except for the largest two strain rates γ* = 1.0, 

0.1. We should expect that all strain rates exhibiting linearity within the GK time window 

should correspond to those systems exhibiting macroscopic linear behaviour (ie. those which 

are Newtonian). Those exhibiting microscopic nonlinearity within the GK time window should 

display non-Newtonian macroscopic behaviour.  Comparing table 7.3 with Figure 7.12, this is 
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exactly what is seen.

Although systems at a shear rate γ*=10-2 & 10-4, do exhibit a nonlinear growth in 

the phase space separation, it occurs at times which are so late, that it cannot possibly effect the 

numerical values of the shear viscosity. These nonlinearities occur outside the GK time 

window.

A possible objection to these conclusions might be: since we are computing 

ensemble averages of the phase space separations, it might be the averaging process which 

ensures the observed microscopic linearity. Individual trajectories might still be perturbed 

nonlinearly with respect to the strain rate. This however, is not the case. In Figure 7.13 the 

symbols plotted represent the phase space separation induced in single trajectories. For all 

strain rates a common phase origin is used. We did not average over the time zero phase origins 

of the systems. 

What we see is a slightly noisier version of the ensemble averaged results. Detailed 

analysis of the un-averaged results reveals that: 

1. for γ*< 10-2 linearity in strain rate is observed for individual trajectories;  and

 2. the exponential behaviour in time is only observed when d(γ,t) is averaged over 

    some finite but small, time interval. 

The exponential Lyapunov separation is of course only expected to be observed 'on average' 

either by employing time or ensemble averages. The main point we make here is that even for 

individual trajectories where phase separation is not exactly exponential in time, trajectory 

separation is to 4 significant figure accuracy, linear in the field. The linearity of the response is 

not produced by ensemble averaging.

We conclude from these studies that within the GK time window, macroscopic and 

microscopic linearity are observed for identical ranges of strain rates. For times shorter than 

those required for convergence of the linear response theory expressions for transport 

coefficients, the individual phase space trajectories are perturbed linearly with respect to the 

strain rate for those values of the strain rate for which the fluid exhibits linear macroscopic 

behaviour. This is in spite of the fact that within this domain the strain rate induces an 

exponential separation of trajectories with respect to time. We believe that many people have 

assumed an exponential trajectory separation in time implies an exponential separation with 

respect to the magnitude of the external field. This work shows that within the GK time 

window, the dominant microscopic behaviour in fluids which exhibit linear macroscopic 

behaviour, is linear in the external field but exponential in time.

We have seen in Figure 7.12 that for intermediate times the phase separation takes 

the form,
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 d = Aγ exp[t/τ
L
] (7.8.5)

where the Lyapunov time, τL, is the inverse of the largest Lyapunov exponent for the system at 

equilibrium. We can explain why the phase separation exhibits this functional form and 

moreover, we can make a rough calculation of the absolute magnitude of the coefficient, A. We 

know that the exponential separation of trajectories only begins after a time which is roughly the 

Maxwell relaxation time τM, for the fluid. Before the particles sense their mutual interactions, 

the particles are freely streaming with trajectories determined by the initial values of 

(dq/dt,dp/dt). After this initial motion the particles will have coordinates and momenta as 

follows,

 q
i
(t)  =  q

i
(0) + [ m

p
i
(0)

  +  iγy
i
(0)]t

(7.8.6)
 p

i
(t)  =  p

i
(0)  +  [F

i
(0)  -  i γp

yi
(0)]t

When this approximation breaks down, approximately at the Maxwell relaxation time, τM≡η/G, 

the phase separation d(τM,γ) will be,

 d(τ
M

,γ)  =  γτ
M

   ∑
i=1

N
 [ y

i
2(0) + p

yi
2 (0) ]  (7.8.7)

For our system this distance is,

 d(τ
M

,γ)  =  γτ
M
{  

3n2/3
N

5/3

  +  NT }
1/2

  ~  8.7γ (7.8.8)

We have used the fact that the reduced Maxwell time is 0.137. After this time the phase 

separation can be expected to grow as,

 d(γ, t)  ~  d(γ,τ
M

) exp[
τL  +  O(γ2)

t  ] (7.8.9)

where, as before τL is the inverse of the largest zero-strain rate Lyapunov exponent. For fields 

less than γ*=10-2, the equilibrium Lyapunov time dominates the denominator of the above 

expression. This explains why the slopes of the curves in Figure 7.12 are independent of strain 

rate. Furthermore by combining equations (7.8.5,8,9) we see that in the regime where the strain 

rate corrections to the Lyapunov exponents are small, the phase separation takes the form given 

by equation (7.8.5) with the coefficient, A~8.7. Equation (7.8.9) is plotted, for a reduced strain 

rate of 10-7, as a dashed line in Figure 7.12. It is in reasonable agreement with the results. The 

results for other strain rates are similar. The greatest uncertainty in the prediction is the 
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estimation of the precise time at with Lyapunov behaviour begins.
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8 . 1 Introduction

In this chapter we extend the nonlinear response theory discussed in Chapter 7 to 

describe the response of classical, many-body systems to time dependent external fields. The 

resulting formalism is applicable to both adiabatic and thermostatted systems. The results are then 

related to a number of known special cases: time dependent linear response theory, and time 

independent nonlinear response theory as described by the transient time correlation approach and 

the Kawasaki response formula.

We begin by developing a formal operator algebra for manipulating distribution 

functions and mechanical phase variables in a thermostatted system subject to a time dependent 

applied field. The analysis parallells perturbation treatments of quantum field theory (Raimes, 1972 

and Parry, 1973). The mathematical techniques required for the time dependent case are sufficiently 

different from, and more complex than, those required in the time independent case that we have 

reserved their discussion until now. One of the main differences between the two types of 

nonequilibrium system is that time-ordered exponentials are required for the definition of 

propagators in the time dependent case. New commutivity constraints which have no counterparts 

in the time independent case, place severe limitations on the mathematical forms allowed to express 

the nonlinear time dependent response. In the time independent case two forms have already been 

met in Chapter 7: the Kawasaki and the Transient Time Correlation Function forms. In this chapter 

we will meet yet another. Of these three forms only one is applicable in the time dependent case.
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8 . 2 Time evolution of phase variables

When a system is subject to time dependent external fields the equations of motion 

for both the distribution function and phase variables, become quite complex. There are two time 

dependences in such a system. One is associated with the time at which you wish to know the 

phase position ΓΓΓΓ(t) and the other is associated with the explicit time dependence of the field, Fe(t). 

In order to deal with this complexity in a convenient way we introduce a more compact notation for 

the propagator. Apart from some important notational differences the initial development parallells 

that of Holian and Evans (1985). We define the p-propagator UR(0,t) to be the operator which 

advances a function of ΓΓΓΓ  only, forward in time from 0 to t (the meaning of the subscript will 

emerge later). That is

 ΓΓΓΓ (t)   =   U
R
(0,t)  ΓΓΓΓ (0) (8.2.1)

The operator UR(0,t) operates on all functions of phase located to its right. The equations of motion 

for the system at time t, which are themselves a function of phase ΓΓΓΓ, are given by

 ΓΓΓΓ (ΓΓΓΓ (t),t)    =    U
R
(0, t)  ΓΓΓΓ (ΓΓΓΓ(0),t)

••
(8.2.2)

The notation dΓΓΓΓ(ΓΓΓΓ(t),t)/dt implies that the derivative should be calculated on the current phase ΓΓΓΓ (t), 
using the current field Fe(t). On the other hand dΓΓΓΓ(ΓΓΓΓ(0),t)/dt implies that the derivative should be 

calculated on the initial phase ΓΓΓΓ(0), using the current field Fe(t).  The p-propagator UR(0,t) has no 

effect on explicit time. Its only action is to advance the implicit time dependence of the phase, ΓΓΓΓ. 

The total time derivative of a phase function B(ΓΓΓΓ) with no explicit time dependence 

(by definition a phase function cannot have an explicit time dependence) is

 
dt
d

 B(ΓΓΓΓ(t))    =   ΓΓΓΓ [ΓΓΓΓ (t), t] .  
∂ΓΓΓΓ

∂ B(ΓΓΓΓ )|
ΓΓΓΓ =ΓΓΓΓ (t)

.

    ΓΓΓΓ [ΓΓΓΓ , t] .  
∂ΓΓΓΓ
∂  B(ΓΓΓΓ )

.
                                  |

ΓΓΓΓ
====    U

R
(0,t)

 =    U
R
(0,t)  iL(t)  B(ΓΓΓΓ )

 =  
∂t
∂  U

R
(0,t) B(ΓΓΓΓ ) (8.2.3)

where we have introduced the time dependent p-Liouvillean,  iL(t) ≡ iL( ΓΓΓΓ ,t) which acts on 

functions of the initial  phase ΓΓΓΓ , but contains the external field at the current time. The partial 

derivative of B with respect to initial phase ΓΓΓΓ  is simply another phase function, so that the 
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propagator UR(0,t) advances this phase function to time t (that is the partial derivative of B with 

respect to phase evaluated at time t). In writing the last line of (8.2.3) we have used the fact that the 

p-propagator is an explicit function of time (as well as phase), and that when written in terms of the 

p-propagator, dB(ΓΓΓΓ (t))/dt, must only involve the partial time derivative of the p-propagator. 

Equation (8.2.3) implies that the p-propagator UR(0,t) satisfies an operator equation of the form

 
∂t
∂

 U
R
(0,t)    =    U

R
(0,t)  iL(t) (8.2.4)

where the order of the two operators on the right-hand side is crucial. As we shall see shortly, 

UR(0,t) and iL(t) do not commute since the propagator UR(0,t) contains sums of products of iL(si) 

at different times si, and iL(si) and iL(sj) , do not commute unless si= sj. The formal solution of 

this operator equation is

   =   ∑
n=0

∞

  ∫
0

t

ds
1
 ∫
0

s1

ds
2
 . .. .  ∫

0

sn-1

 ds
n
  iL(s

n
) . . . .  iL(s

2
) iL(s

1
)U

R
(0,t) (8.2.5)

Notice that the p-Liouvilleans are right ordered in time (latest time to the right). As Liouvilleans do 

not commute this time ordering is fixed. The integration limits imply that  t > s1 > s2 > .... > sn, so 

that the time arguments of the p-Liouvilleans in the expression for UR(0,t) increase as we move 

from the left to the right. It is very important to remember that in generating B(t) from B(0) using 

(8.2.5), if we write the integrals as say, a trapezoidal approximation it is the Liouvillean at the 

latest time iL(t), which attacks B(0) first. The Liouvilleans attack B in an anti-causal order. We 

will have more to say on this issue in §8.4.

We can check that (8.2.5) is the solution to (8.2.4) by differentiating with respect to 

time. We see that, 0∫∫∫∫∞ ds1 disappears and the argument iL(s1), changes to iL(t). This term appears 

on the right hand side, as it must to satisfy the differential operator equation. It is easy to derive an 

equation for the incremental p-propagator UR(τ,t) which advances a phase function from time τ to 

t,

   =   ∑
n=0

∞

  ∫
τ

t

ds
1
 ∫
τ

s1

ds
2
 . . ..  ∫

τ

sn-1

 ds
n
  iL(s

n
) . . . .  iL(s

2
) iL(s

1
)U

R
(τ,t) (8.2.6)

Our convention for the time arguments of the U-propagators is that the first argument (in this case 

τ), is the lower limit of all the integrals. The second argument (in this case t), is the upper limit of 

the first integral.
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8 . 3 The Inverse Theorem

We will assume that t > 0. Intuitively it is obvious that the inverse of UR(0,t), which 

we write as UR(0,t)-1, should be the propagator that propagates backwards in time from t to 0. 

From (8.2.6) we can write down

 U
R
(0,t)-1    =    ∑

n=0

∞

  ∫
t

0

ds
1∫

t

s1

ds
2
 . . .  ∫

t

sn-1

ds
n
  iL(s

n
) . . .  iL(s

2
) iL(s

1
) (8.3.1)

Before proceeding further we will introduce an identity which is useful for 

manipulating these types of integrals. Often we will have a pair of integrals which we want to 

exchange. The limits of the inner most integral depend on the integration variable for the outer 

integral. The result we shall use is the following, that

 ∫
t0

t

ds
1
 ∫
t0

s1

ds
2
    =    ∫

t0

t

ds
2
 ∫
s2

t

ds
1 (8.3.2)

tt
s1s1

s2s2

Figure 8.1

As can be seen from Figure 8.1, the range of integration for both integrals is the same. If we 

approximate the integral as a sum we see that the difference is in the order in which the 

contributions are summed. As long as the original integral is absolutely convergent the result is 

true. We will assume that all integrals are absolutely convergent.

It is illustrative to develop other representations of UR(0,t)-1 so we consider the 

expression (8.3.1) term by term,
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   =   1   +   ∫
t

0

ds iL(s)   +   ∫
t

0

ds1∫
t

s1

ds2 iL(s2) iL(s1)   +   ∫
t

0

ds1∫
t

s1

ds2∫
t

s2

ds3 iL(s3)iL(s2)iL(s1)UR(0,t)
-1

                            +   ......  (8.3.3)

Interchanging the integration limits in every integral gives a factor of minus one for each 

interchange.

   =   1  -  ∫
0

t

ds iL(s)  +  ∫
0

t

ds1∫
s1

t

ds2 iL(s2)iL(s1)  -  ∫
0

t

ds1∫
s1

t

ds2∫
s2

t

ds3 iL(s3)iL(s2)iL(s1)  + ..UR(0,t)
-1

(8.3.4)

We can use the integral interchange result (8.3.2) on the third term on the RHS (note that the 

integrand is unchanged by this operation). In the fourth term we can use the interchange result three 

times to completely reverse the order of the integrations giving,

   =   1  -  ∫
0

t

ds iL(s)  +  ∫
0

t

ds2∫
0

s2

ds1 iL(s2)iL(s1)  -  ∫
0

t

ds3∫
0

s3

ds2∫
0

s2

ds1 iL(s3)iL(s2)iL(s1)  +  .UR(0,t)
-1

(8.3.5)

The final step is to relabel the dummy integration variables to give

   =   1  -  ∫
0

t

ds iL(s)  +  ∫
0

t

ds1∫
0

s1

ds2 iL(s1)iL(s2)  -  ∫
0

t

ds1∫
0

s1

ds2∫
0

s2

ds3 iL(s1)iL(s2)iL(s3)  +  ..UR(0,t)
-1

   =   ∑
n=0

∞

 (-)n ∫
0

t

ds
1∫

0

s1

ds
2
.. .∫

0

sn-1

ds
n
 iL(s

1
) iL(s

2
) . . .  iL(s

n
)U

R
(0,t)-1 (8.3.6)

As t > 0, an examination of the integration limits reveals that the Liouvilleans in this expression are 

left-ordered. Comparing this expression with the definition of UR(0,t) there are two differences, 

the time ordering and the factor of (-)n. We now define the operator UL(0,t) to be equal to the RHS 

of (8.3.6), so we have

   ≡   ∑
n=0

∞
 (-)n ∫

0

t

ds1∫
0

s1

ds
2
...∫

0

sn-1

ds
n
 iL(s

1
) iL(s

2
) .. .  iL(s

n
)U

L
(0,t) (8.3.7)

Chapter 8 - 6



and

 U
R
(0,t)-1    =    U

L
(0,t) (8.3.8)

From this  definition of UL(0,t), it can be shown that UL(0,t) satisfies the operator equation

 
∂t
∂

  U
L
(0,t)   =   - iL(t)  U

L
(0,t) (8.3.9)

This result can be obtained by differentiating the definition of UL(0,t), (8.3.7), or by differentiating 

UR(0,t)-1, (8.3.1), directly. Equation (8.3.9) allows us to verify that UL(0,t) is the inverse of 

UR(0,t) in a new way. First we note that UL(0,t) UR(0,t) = 1 is true for t=0. Then differentiating 

with respect to time we find that,

 
∂ t
∂

  [U
R
(0,t) U

L
(0,t) ]   =   [ 

∂ t
∂

 U
R
(0,t) ] U

L
(0,t)   +   U

R
(0,t) [ 

∂ t
∂

 U
L
(0,t) ]

 =   UR
(0,t) iL(t) UL(0,t)   -   UR(0,t) iL(t) UL(0,t)

                  =   0,     ∀ t. (8.3.10)

As the result is true at t=0, and the time derivative of each side of the equation is true for all time, 

the result is true for all time.
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8 . 4 The Associative Law and Composition Theorem

The action of the p-propagator UR(0,t) is to advance the phase ΓΓΓΓ, or a phase variable, 

forward in time from 0 to t. This must be equivalent to advancing time from 0 to s, then advancing 

time from s to t, whenever  0 < s < t. This implies that

 UR(0,t)  B(ΓΓΓΓ)    =    UR(s,t)  [  UR(0,s)  B(ΓΓΓΓ) ]  =  UR(s,t) B(s) (8.4.1)

The right hand side of (8.4.1) is a physical rather than mathematical statement. It is a statement of 

causality. If we wish to understand how we can generate B(t) from B(0) through an intermediate 

time s, we find that we will have to attack B first with the operator UR(s,t) and then attack the 

resultant expression with UR(0,s). The operator expression UR(s,t)UR(0,s)B cannot be equal to 

UR(0,t), because its time arguments are not ordered from left to right. The correct operator equation 

is

 UR(0,t)    =    UR
(0,s)  UR(s,t) (8.4.2)

To prove (8.4.2) we consider the product on the right-hand side and show that it is 

equal to UR(0,t).

    =   ( ∑
m=0

∞

 ∫
0

s

ds
1
..∫

0

sm-1

ds
m

 iL(s
m

).. . iL(s
1
))( ∑

n=0

∞

 ∫
s

t

ds
1
'
. .∫

s

sn-1
'

ds
n
'
 iL(s

n
'
). . . iL(s

1
'
)U

R
(0,s)U

R
(s,t)

=   1   +   ∫
0

t

ds1 iL(s1)   +   ∫
0

s

ds1∫
0

s1

ds2  iL(s2) iL(s1)

 +   ∫
0

s

ds
1
 iL(s

1
) ∫

s

t

ds
1
'
 iL(s

1
'
)   +   ∫

s

t

ds
1
'
 ∫
s

s1
'

ds
2
'
 iL(s

2
'
) iL(s

1
'
)   +   . .. . .

(8.4.3)

The first two terms are straightforward so we will consider in detail the three second order terms. 

In the second of these three terms the integration limits imply that

 0  <  s
1
  <  s  <  s

1
'   <  t

so that the time arguments of the operator product are correctly ordered, and we relabel them as 

follows:
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 s
1
'     →   s

1
      and      s

1
    →    s

2

The integration limits are independent, so we can interchange the order of integration, (8.3.2). 

After dropping the primes in the third term, all three terms have the same integrand so we need only 

consider the integration limits. The three second order terms are

 ∫
0

s

ds
1∫

0

s1

ds
2
   +   ∫

s

t

ds
1∫

0

s

ds
2
   +   ∫

s

t

ds
1∫

s

s1

ds
2

In the second and third terms, the s1 integrals are the same and the s2 integrals add together to give

 ∫
0

s

ds
1∫

0

s1

ds
2
   +   ∫

s

t

ds
1∫

0

s1

ds
2

Now the s2 integrals are identical and the s1 integrals add together to give the required result

 ∫
0

t

ds
1∫

0

s1

ds
2

This is exactly the second order term in UR(0,t). It may seem that we have laboured through the 

detail of the second order term, but it is now straightforward to apply the same steps to all the 

higher order terms and see that the result is true to all orders. Indeed it is a useful exercise for the 

reader to examine the third order term, as there are four integrals to consider, and after the same 

relabelling process is applied to the second and third terms, the four integrals obtained collapse 

from the right-hand side.

Combining equations (8.4.1) and (8.4.2) we see that the p-propagator UR obeys an 

anti-causal associative law, (8.4.1). The fundamental reason for its anti-causal form is implicit in 

the form of the p-propagator itself, UR. In applying the p-propagator to a phase variable it is, as we 

have seen, the latest times that attack the phase variable first.

Apart from the present discussion we will always write operators in a form which 

reflects the mathematical rather than the causal ordering. As we will see any confusion that arises 

from the anti-causal ordering of p-propagators can always be removed by considering the f-

propagator form and then unrolling the operators in sequence to attack the phase variables. The f-

propagators are causally ordered.
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8 . 5 Time evolution of the distribution function

The Liouville equation for a system subject to a time dependent external field is given 

by

 
∂t
∂

 f(t)   =   -  
∂ΓΓΓΓ
∂

 •[ΓΓΓΓ (ΓΓΓΓ , t) f(ΓΓΓΓ, t)]   =   - iL(t) f(t)
•

(8.5.1)

where we have defined the time dependent f-Liouvillean, iL(t). This equation tells you that if you  

sit at a fixed point in phase space denoted by the dummy variable ΓΓΓΓ , the density of phase points 

near ΓΓΓΓ,  changes with time in accord with (8.5.1). In the derivation of this equation we related the 

partial derivative of f(t) to various fluxes in phase space at the same value of the explicit time. 

We define the distribution function propagator UR†(0,t) which advances the time 

dependence of the distribution function from 0 to t, by

 f(ΓΓΓΓ , t)    =    U
R
†(0,t)  f(ΓΓΓΓ ,0) (8.5.2)

 

In this equation UR†(0,t) is the adjoint of UR(0,t). It is therefore closely related to UL(0,t)  except 

that the Liouvilleans appearing in equation (8.3.7) are replaced by their adjoints iL(si). Combining 

equation (8.5.2) with the Liouville equation (8.5.1) we find that UR†(0,t) satisfies the following  

equation of motion

 
∂t
∂

 U
R
†(0,t)    =    - iL(ΓΓΓΓ , t)  U

R
†(0,t) (8.5.3)

The formal solution to this operator equation is

      ∑
n=0

∞

 (-)n  ∫
0

t

ds
1
 ∫

0

s1

ds
2
 . . . . ∫

0

sn-1

ds
n
  iL(s

1
) iL(s

2
) . . . .  iL(s

n
)U

R
†(0,t) = (8.5.4)

In distinction to the propagator for phase variables, the integration limits imply that t > s1 > s2 > 

.... > sn , so that the f-Liouvilleans are left time ordered. The time arguments increase as we go 

from the right to the left. This is opposite to the time ordering in the p-propagator UR(0,t) but the 

definition of UR†(0,t) is consistent with the definition of UL(0,t).

For the f-propagator UR†(0,t), the usual associative law is satisfied as the time 

arguments are ordered right to left,

 U
R
†(0,t) f(0)   =   [ U

R
†(s,t) U

R
†(0,s) ] f(0)   =   U

R
†(s ,t) [ U

R
†(0,s) f(0) ]

Chapter 8 - 10



(8.5.5)

This equation can be verified directly using similar arguments to those used in §8.4.
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8 . 6 Time Ordered Exponentials

A notation which is common in quantum mechanics is to refer to the phase and 

distribution function propagators as right and left ordered exponentials (expR and expL) 

respectively. To exploit this notational simplification we introduce the time ordering operators TR 

and TL. The operator  TR simply reorders a product of operators so that the time arguments increase 

from left to right. In this notation we write the p-propagator UR(0,t) as

 U     =    exp
R
( ∫

0

t

ds iL(s) )    =    T
R
  exp( ∫

0

t

ds iL(s) )U
R
(0,t) (8.6.1)

Using the series expansion for the exponential this becomes

   =   T
R
  ∑

n=0

∞

  
n!
1

  ∫
0

t

ds
1∫
0

t

ds
2
.. .∫

0

t

ds
n
 iL(s

n
) . . . iL(s

2
) iL(s

1
)U

R
(0,t) (8.6.2)

Taking this series term by term the first two terms are trivial. We will consider the second order 

term in some detail.

TR  
2!
1

  ∫
0

t

ds1∫
0

t

ds2  iL(s2) iL(s1)

=   
2!
1

  TR  {  ∫
0

t

ds1∫
0

s1

ds2  iL(s2) iL(s1)   +   ∫
0

t

ds1∫
s1

t

ds2  iL(s2) iL(s1)  }

(8.6.3)

The time arguments in the first integral are time ordered from left to right so the operator will have 

no effect. In the second integral the order of the integrations can be interchanged to give

 ∫
0

t

ds
2∫

0

s2

ds
1
 iL(s

2
) iL(s

1
)   =   ∫

0

t

ds
1∫

0

s1

ds
2
  iL(s

1
) iL(s

2
) (8.6.4)

The second form is obtained by relabelling the dummy variables s1 and s2. Now both integrals 

have the same integration limits, and after the operation of TR both integrands are the same, so the 

second order term is
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 ∫
0

t

ds
2∫

0

s2

ds
1
 iL(s

2
) iL(s

1
)

Using exactly the same steps we can show that each of the higher order terms are the same as those 

in the original representation of UR(0,t). After manipulating the integrals to obtain the same range 

of integration for each term of a particular order, the integrand is the sum of all permutations of the 

time arguments. At the nth order there are n! permutations, which after the operation of TR are all 

identical. This n! then cancels the (n!)-1 from the expansion of the exponential, and the result 

follows. Using the same arguments, the f-propagator UR†(0,t) also be written in this form

    =    exp
L
( - ∫

0

t

ds iL(s) )    =    T
L
  exp( - ∫

0

t

ds iL(s) )U
R
†(0,t) (8.6.5)

The use of the time ordering operator can realise considerable simplifications in many 

of the proofs that we have given.

Using time ordered exponentials, the Composition theorem can be derived quite 

easily.

 B(t)  =  T
R
 exp[∫

0

t

 dτ iL(τ)] B

        =  T
R
 exp[∫

0

s

 dτ iL(τ)] exp[∫
s

t

 dτ iL(τ)] B (8.6.6)

Because the exponentials are already right ordered we can write them as,

 B(t)  =   T
R
{ exp[∫

0

s

 dτ iL(τ)]} T R { exp[∫
s

t

 dτ iL(τ)]  }B

        =   exp
R
[∫
0

s

 dτ iL(τ)]  expR[∫
s

t

 dτ iL(τ)]  B (8.6.7)
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8 . 7 Schrödinger and Heisenberg Representations

In this section we will derive some of the more important properties of the Liouville 

operators. These will lead us naturally to the discussion of the various representations for the 

properties of classical systems. The first property we shall discuss relates the p-Liouvillean to the f-

Liouvillean as follows;

 ∫dΓΓΓΓ  f(0) iL(t) B(ΓΓΓΓ)   =   - ∫dΓΓΓΓ  B(ΓΓΓΓ ) iL(t) f(0) (8.7.1)

The proof is a straightforward application of integration by parts.

 ∫dΓΓΓΓ     f(0) ΓΓΓΓ ( ΓΓΓΓ , t).
∂ΓΓΓΓ
∂ Β|

ΓΓΓΓ

.

 =   f(0) ΓΓΓΓ ( ΓΓΓΓ , t ) B(ΓΓΓΓ ) ]
S

   -   ∫dΓΓΓΓ  B(ΓΓΓΓ ) 
∂ΓΓΓΓ
∂ . (f(0) ΓΓΓΓ (ΓΓΓΓ , t ) )

..

 =   - ∫dΓΓΓΓ  B(ΓΓΓΓ ) { ΓΓΓΓ ( ΓΓΓΓ , t ).
∂ΓΓΓΓ
∂    +   

∂ΓΓΓΓ
∂ . ΓΓΓΓ (ΓΓΓΓ , t )  }  f(0)

..

 =   - ∫dΓΓΓΓ     B(ΓΓΓΓ ) iL(t) f(0) (8.7.2)

Equation (8.7.1) shows that iL(t) and -iL(t) are adjoints.

We can compute the average of a phase variable B at time t by following the value of 

B(t) as it changes along single trajectories in phase space. The average is taken by summing over 

the values of B for trajectories starting from each possible initial phase point ΓΓΓΓ, but weighting each 

B(t) with the probability of that starting phase. These probabilities are chosen from an initial 

distribution function f(ΓΓΓΓ,0). This is the so-called Heisenberg picture.

 < B(t) >   =   ∫dΓΓΓΓ   B(ΓΓΓΓ (t))  f(ΓΓΓΓ ,0)   =   ∫dΓΓΓΓ   f(ΓΓΓΓ ,0)  U
R
(0,t)  B(ΓΓΓΓ ) (8.7.3)

The Heisenberg picture is exactly analogous to the Lagrangian formulation of fluid mechanics, we 

can imagine that the phase space mass point has a differential box dΓΓΓΓ  surrounding it which 

changes shape (and volume for a compressible fluid) with time as the phase point follows its 

trajectory. The probability of the differential element, or mass f(ΓΓΓΓ ) dΓΓΓΓ  remains constant, but the 

value of the observable changes implicitly in time. 

 The second view is the Schrödinger, or distribution based picture, where the ΓΓΓΓ  

refers not to the initial value of the phase point, but to a stationary point (fixed for all time) inside a 
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stationary differential box dΓΓΓΓ . Just as in the Eulerian formulation of fluid mechanics, the 

observable takes on a fixed value for all time B(ΓΓΓΓ), while mass points with different probability 

flow through the box.

 < B(t) >   =   ∫dΓΓΓΓ   B(ΓΓΓΓ )  f(ΓΓΓΓ ,t)   =   ∫dΓΓΓΓ B(ΓΓΓΓ )  U
R
†(0,t)  f(ΓΓΓΓ ,0) (8.7.4)

The average value of B changes with time as the distribution function changes. The average of B is 

computed by multiplying the value of B at ΓΓΓΓ, by the probability of find the phase point ΓΓΓΓ at time t, 

that is f(ΓΓΓΓ ,t).

The average value of a phase variable B at time t can be evaluated in the two ways. 

The mathematical proof of the equivalence of the Schrödinger and Heisenberg pictures can be 

obtained by successive integrations by parts. Consider

 ∫dΓΓΓΓ  f(0) B(ΓΓΓΓ (t))   =   ∫dΓΓΓΓ   f(0)  U
R
(0,t)  B(ΓΓΓΓ )

 =   ∑
n=0

∞

  ∫
0

t

ds
1
 . . .  ∫

0

sn-1

ds
n
  ∫dΓΓΓΓ   f(0)  iL(s

n
) . . .  iL(s

1
) B(ΓΓΓΓ ) (8.7.5)

One can unroll each Liouvillean in turn from the phase variable onto the distribution function using 

equation (8.7.1). For the first transfer we consider iL(sn-1)...iL(s1)B to be the composite phase 

variable, so that the right hand side becomes,

 =   ∑
n=0

∞

  ∫
0

t

ds
1
 . . .  ∫

0

sn-1

ds
n
  (-) ∫dΓΓΓΓ (iL(s

n
) f(0)) iL(s

n-1
) . . .  iL(s

1
) B(ΓΓΓΓ )

We can then repeat this operator unrolling,

 =   ∑
n=0

∞

  ∫
0

t

ds
1
 . . .  ∫

0

sn-1

ds
n
  (-)2 ∫dΓΓΓΓ   ( iL(s

n-1
) iL(s

n
) f(0) ) iL(s

n-2
) . . .  iL(s

1
) B(ΓΓΓΓ )

Repeated unrolling leads to

 

 =   ∑
n=0

∞

  ∫
0

t

ds
1
 . . .  ∫

0

sn-1

ds
n
  (-)n ∫dΓΓΓΓ  B(ΓΓΓΓ ) iL(s

1
) iL(s

2
) . . . .  iL(s

n
) f(0)
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 =   ∫dΓΓΓΓ B(ΓΓΓΓ )  ∑
n=0

∞

 (-)n ∫
0

t

ds
1
 . . .  ∫

0

sn-1

ds
n
  iL(s

1
) . . . . .  iL(s

n
) f(0)

 =   ∫dΓΓΓΓ  B(ΓΓΓΓ )  U
R
†(0,t)  f(0)

 =   ∫dΓΓΓΓ  B(ΓΓΓΓ )  f(t) (8.7.6)

We have obtained this result where the Liouvilleans explicitly depend on time. The derivation we 

have used has not made any reference to the details of either the initial distribution function or the 

first order equations of motion of the system. That means that these results are valid for arbitrary 

equations of motion, in particular the equations of motion can contain a time dependent external 

field. The initial distribution function is also arbitrary, the only constraint is that the distribution 

function at time t must have evolved from the initial distribution function under the influence of the 

perturbed equations of motion. They are also valid regardless of whether the equations of motion 

can be derived from a Hamiltonian or whether they satisfy AIΓΓΓΓ    (§5.3). 
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8 . 8 The Dyson Equation

The Dyson equation is useful for deriving relationships between propagators. We 

first met a restricted form of this equation in §3.6 when we were dealing with time independent 

propagators. We will now give a general derivation of the Dyson equation.

For two arbitrary p-Liouvilleans, the most general form of the Dyson equation is

 U
R
(0,t)    =    U

R0
(0,t)   +   ∫

0

t

ds  U
R
(0,s)  (iL(s) - iL

0
(s))  U

R0
(s,t) (8.8.1)

and

 U
R
(0,t)    =    U

R0
(0,t)   +   ∫

0

t

ds  U
R0

(0,s)  (iL(s) - iL
0
(s))  U

R
(s,t) (8.8.2)

 

Both Liouvilleans iL(t) and iL0 (t) may be time dependent. One can prove the correctness of these 

equations by showing that the left and right hand sides of (8.8.1) and (8.8.2) satisfy the same 

differential equations with identical initial conditions. The corresponding equations for left ordered 

propagators are:

 U
R
†(0,t)    =    U

R0
† (0,t)   -   ∫

0

t

ds  U
R
†(s,t)  (iL(s) - iL

0
(s))  U

R0
† (0,s) (8.8.3)

 U
R
†(0,t)    =    U

R0
† (0,t)   -   ∫

0

t

ds  U
R0
† (s,t)  (iL(s) - iL

0
(s))  U

R
†(0,s) (8.8.4)

We will give a proof for one of these equations, equation (8.8.2). Proofs for the other equations 

are very similar. If we let LHS denote UR(0,t), the left hand side of (8.8.2), we know that,

 
∂t
∂

 LHS  =  U
R
(0,t) iL(t)  =  LHS iL(t) (8.8.5)

On the other hand we see that,

 
∂t
d  RHS  =  U

R0
(0,t)iL

0
(t) + U

R0
(0,t)(iL(t) - iL

0
(t)) + ∫

0

t

 ds U
R0

(0,s)(iL(s) - iL
0
(s))U

R
(s,t)iL(t)

 =  RHS iL(t) (8.8.6)
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Thus since both sides of equation (8.8.1) satisfy the same differential equation with the same initial 

condition, both sides must be the same for all time.
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8 . 9 Morriss' Lemma

In order to be able to manipulate propagators for thermostatted systems it is useful to 

be able to relate p-propagators and f-propagators. The relation we shall derive is a time dependent 

generalisation of equation (7.2.17). It is a relatively straightforward application of the Dyson 

equation. We let UR(0,t) = expR ∫∫∫∫0t iL(s)ds, be the test propagator and UR0(0,t) = expR ∫∫∫∫0t iL(s) 

ds, be the reference propagator. iL(s)A(ΓΓΓΓ) = ∂(A(ΓΓΓΓ) dΓΓΓΓ/dt)•/∂ΓΓΓΓ     and iL(s)A( ΓΓΓΓ) = dΓΓΓΓ/dt • ∂( A( ΓΓΓΓ) 

)/∂ΓΓΓΓ .

Substitution into the Dyson equation gives,

 U
R
(0,t)  =  U

R0
(0,t)  +  ∫

0

t

  ds U
R
(0,s) (iL(s) - iL(s)) U

R0
(s,t) (8.9.1)

We define,

 iL(s) - iL(s)  ≡ Λ(ΓΓΓΓ ,s)  =  [
∂ΓΓΓΓ
∂

 • ΓΓΓΓ (s)]
•

(8.9.2)

It is important to realise that Λ is a phase variable not an operator. Λ is known as the phase space 

compression factor since dlnf(t)/dt = - Λ = 3Nα(t) + O(1) (see (7.2.10)).

One can recursively substitute for UR in equation (8.9.1) to eliminate UR from the 

right hand side. This gives,

UR(0,t)  =  UR0(0,t)  +  ∫
0

t

  ds1 UR0(0,s1) Λ(s1) UR0(s1,t)

+  ∫
0

t

  ds1  ∫
0

s1

  ds2  UR0(0,s2) Λ(s2) UR0(s2,s1) Λ(s1) UR0(s1,t)  +  ...........

(8.9.3)

Using the fact that Λ is a phase variable rather than an operator we see that,

UR(0,t)  =  UR0(0,t)  +  ∫
0

t

  ds1 Λ(ΓΓΓΓ (s1 ) UR0(0,t)),s1
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+  ∫
0

t

  ds1  ∫
0

s1

  ds2  Λ(ΓΓΓΓ (s2),s2) Λ(ΓΓΓΓ (s1),s1) UR0(0,t)  +  ...........

(8.9.4)

So that,

 U
R
(0,t)  =  exp[ ∫

0

t

  ds  Λ(ΓΓΓΓ (s),s) ]  U
R0

(0,t) (8.9.5)

or,

 exp
R
[ ∫

0

t

  ds  iL(s) ]  =  exp[∫
0

t

  ds  Λ(ΓΓΓΓ (s),s)]  exp
R
[ ∫

0

t

  ds  iL(s) ] (8.9.6)

This result is fundamental to our understanding of the dynamic behaviour of thermostatted 

systems. Its correctness can easily be checked by verifying that the left and right hand sides satisfy 

the same differential equation with the same initial condition. At zero time both sides are equal to 

unity. The derivative of the left hand side is,

 
∂t
∂

  [LHS]  =  exp
R
[ ∫

0

t

  ds iL(s)] iL(t)  =  LHS iL(t) (8.9.7)

While the derivative of the right hand side is,

 
∂t
∂

  [RHS]  =  exp [ ∫
0

t

  ds Λ(ΓΓΓΓ (s),s)] Λ(ΓΓΓΓ (t), t) exp
R
[ ∫

0

t

  ds iL(s)]

+  RHS  iL(ΓΓΓΓ ,t)

 =  [ RHS ] Λ(ΓΓΓΓ ,t)  +  [ RHS ] iL(ΓΓΓΓ , t)  =   RHS  iL(ΓΓΓΓ , t) (8.9.8)

Thus the right hand side and the left hand sides are identical.
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8 . 1 0 Time Dependent Response Theory

Consider an equilibrium ensemble of systems, characterised by a distribution 

function, f0, subject at t=0, to an external time dependent field Fe(t). We assume that the 

equilibrium system (t<0), has evolved under the influence of the Gaussian isokinetic Liouvillean 

iL0. This Liouvillean has no explicit time dependence. The equilibrium distribution could be the 

canonical or the isokinetic distribution. These assumptions are summarised by the equation,

 
∂t

∂f
0  =  - iL

0
 f

0
  =  0 (8.10.1)

The equations of motion for the system can be written as,

 q
•
 
i
   =   

m

p
i    +   C

i
(ΓΓΓΓ ) F

e
(t)

(8.10.2)

p
•
 
i
   =   F

i
   +   D

i
(ΓΓΓΓ ) F

e
(t)   -   α (ΓΓΓΓ , t) p

i

Provided that the temperature can be obtained from the expression, 3NkBT/2 = ΣΣΣΣpi2/2m, the term 

αpi represents the Gaussian thermostat. α is chosen so that ΣΣΣΣpi2/2m is a constant of the motion.

 α   =  

∑ p
i
2

∑  p
i
 •F

i
  +  ∑  p

i
•D

i
 F

e (8.10.3)

The terms C,D couple the external field Fe(t) to the system. The adiabatic, unthermostatted 

equations of motion need not be derivable from a Hamiltonian (i.e. C,D do not have to be perfect 

differentials). We assume that the AIΓΓΓΓ holds,

 
∂ΓΓΓΓ
∂

 • iLad(s) ΓΓΓΓ   =  0 (8.10.4)

The dissipative flux is defined in the usual way,

 iL
ad

(s) H0  ≡  - J(ΓΓΓΓ ) Fe(s) (8.10.5)

where,

 H
0
  =    

2m

p
i
2

   +  
2
1

 ∑
i, j

  φ
ij∑

i

(8.10.6)
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The response of an arbitrary phase variable B(ΓΓΓΓ) can obviously be written as,

 < B(t) >  =  ∫  dΓΓΓΓ  f
0

 e
∫
0

t

  ds iL(s)

 B(ΓΓΓΓ )R =  ∫  dΓΓΓΓ  f
0
 U

R
(0,t) B (8.10.7)

In this equation iL(t) is the p-Liouvillean for the field-dependent Gaussian thermostatted dynamics, 

t>0. If we use the Dyson decomposition of the field-dependent p-propagator in terms of the 

equilibrium thermostatted propagator we find that,

 < B(t) >  =  < B(0) >  + ∫
0

t

  ds  ∫  dΓΓΓΓ  f
0
 U

R0
(0,s)(iL(s)-iL

0
)U

R
(s,t)B (8.10.8)

By successive integrations we unroll UR0 propagator onto the distribution function.

 < B(t) >  =  < B(0) >  +  ∫
0

t

  ds  ∫  dΓΓΓΓ  [U
R0
† (0,s) f

0
] (iL(s)-iL

0
) U

R
(s,t) B

(8.10.9)

However U†R0 is the equilibrium f-propagator and by equation (8.10.1) it has no effect on the 

equilibrium distribution f0.

 < B(t) >  =  < B(0) >  +  ∫
0

t

  ds  ∫  dΓΓΓΓ  f
0
 (iL(s)-iL

0
) U

R
(s,t) B (8.10.10)

We can now unroll the Liouvilleans to attack the distribution function rather than the 

phase variables. The result is,

 < B(t) >  =  < B(0) >  - ∫
0

t

  ds  ∫  dΓΓΓΓ     [(iL(s)-iL
0
) f

0
] U

R
(s,t) B (8.10.11)

From equation (8.10.1) it is obvious that it is only the operation of the field-dependent Liouvillean 

which needs to be considered. Provided AIΓΓΓΓ  is satisfied, we know from (7.3.4., et. seq.) that,

 iL(s) f
0
  =  βf

0
J(ΓΓΓΓ)F

e
(s) (8.10.12)

For either the canonical or Gaussian isokinetic ensembles therefore,
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 < B(t) >  =  < B(0) >  - β∫
0

t

  ds  ∫  dΓΓΓΓ     f
0
 J F

e
(s) U

R
(s,t) B (8.10.13)

Thus far the derivation has followed the same procedures used for the time dependent 

linear response and time independent nonlinear response. The operation of UR(s,t) on B however, 

presents certain difficulties. No simple meaning can be attached to UR(s,t) B. We can now use the 

Composition and the Inverse theorems to break up the incremental p-propagator UR(s,t). Using 

equations (8.4.4),

 U
R
(s,t)  =  U

R
-1(0,s) U

R
(0,t) (8.10.14)

Substituting this result into (8.10.13) we find

 < B(t) >  =  < B(0) >  -β∫
0

t

  ds  ∫  dΓΓΓΓ  Fe(s) f0J UR
-1(0,s) UR(0,t) B (8.10.15)

Using the Inverse theorem (8.3.1), and integrating by parts we find,

 < B(t) >  =  < B(0) >  - β∫
0

t

  ds  ∫  dΓΓΓΓ  F
e
(s) B(t) exp

R
[ ∫

0

s

 ds
1
 iL(s

1
)] J f

0

(8.10.16)

where after unrolling UR-1(0,s) we attack B with UR(0,t) giving B(t). As it stands the exponential 

in this equation has the right time ordering of a p-propagator but the argument of the exponential 

contains an f-Liouvillean. We obviously have some choices here. We choose to use Morriss' 

Lemma (8.9.5) to rewrite the exponential in terms of a p-propagator. This Lemma gives,

 expR[∫
0

s

  ds1 iL(s1) ]  =  exp [ ∫
0

s

  ds1 Λ(s1)]  UR(0,s) (8.10.17)

where,

 Λ(s
1
)  =  - 3N α(ΓΓΓΓ(s1),s1)  +  O(1) (8.10.18)

α(ΓΓΓΓ,s) is the Gaussian isokinetic multiplier required to maintain a fixed kinetic energy. Substituting 

these results into equation (8.10.16), using the fact that,
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 iL(s) H
0
(ΓΓΓΓ )  =  -J(ΓΓΓΓ ) Fe

(s)  -  3NkBT α(ΓΓΓΓ,s) (8.10.19)

gives,

 < B(t) >  =  < B(0) >  - β∫
0

t

  ds
1
 ∫  dΓΓΓΓ  f

0
 B(t) J(s

1
) exp[∫

0

s1

  ds
2
 βJ(s

2
)F

e
(s

2
)] F

e
(s

1
)

(8.10.20)

or,

 < B(t) >  =  < B(0) >  -β ∫
0

t

  ds
1
  < B(t) J(s

1
) e

 β∫
0

s1

  ds2 J(s2) Fe(s2)

> F
e
(s

1
)

(8.10.21)

This equation is the fundamental result of this chapter. It must be remembered that all time 

evolution is governed by the field-dependent thermostatted equations of motion implicit in the 

Liouvillean, iL(t).
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8 . 1 1 Renormalisation

We can apply our fundamental result, equation (8.10.21), to a number of known 

special cases. In the linear regime our equation obviously becomes,

 < B(t) >  =  < B(0) >  -  β ∫
0

t

  ds  < B(t) J(s) >
0
 F

e
(s) (8.11.1)

The notation '< .. >0' denotes an equilibrium average over the field-free thermostatted dynamics 

implicit in the Liouvillean, iL0. This equation is the well-known result of time dependent linear 

response theory, (see §5.3).

Another special case that can be examined is the time independent nonlinear 

response. In this circumstance the Liouvillean iL(t) is independent of time, iL, and the propagator, 

UR(0,t) becomes much simpler,

 U
R
(0,t)  =  eiLt (8.11.2)

One does not need to use time ordered exponentials. In this case the response is,

 < B(t) >  =  < B(0) >  -βF
e
 ∫
0

t

  ds < B(t) J(s) e

βFe ∫
0

s

  ds1 J(s1)

  > (8.11.3)

Again all time propagation is generated by the field-dependent thermostatted Liouvillean, iL. This 

equation is new. As was the case for the Kawasaki form of the nonequilibrium distribution 

function, explicit normalisation can be easily achieved.

Comparing equation (8.11.3) with the following identity that can be obtained using 

the equivalence of the Schrödinger and Heisenberg representations, (§8.7),

 < B(t) >  =  < B(0) >  +  ∫  dΓΓΓΓ  B(t) (f(0) - f(-t)) (8.11.4)

implies that,

 f(0)  -  f(-t)  =  -βF
e
 ∫
0

t

  ds  f(0) J(s) e

 β∫
0

s

  ds1 J(s1) Fe

(8.11.5)
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The  integral (0,t), on the right hand side of the equation can be performed yielding,

 f(-t)  =  f(0) e

 βF
e
 ∫
0

t

  ds J(s)

(8.11.6)

The correctness of this equation can easily be checked by differentiation. Furthermore it is clear that 

this expression is just the unnormalised form of the Kawasaki distribution function (7.2.19).

This equation can be used to renormalize our expression for the time independent 

nonlinear response. Clearly

 f(-t)  =   

∫  dΓΓΓΓ  f(0) exp[ β Fe∫
0

t

  ds J(s) ]

f(0) exp[ β Fe ∫
0

t

  ds J(s) ]

(8.11.7)

is an explicitly normalised distribution function. By differentiating this distribution in time and then 

reintegrating we find that,

f(0) - f(-t)  =  -β Fe ∫
0

t

  ds1 

< exp[βFe ∫
0

s1

  ds2 J(s2)] >

f(0) J(s1) exp[βFe ∫
0

s1

  ds2 J(s2){

-  

< exp[βFe ∫
0

s1

  ds2 J(s2) >
2

f(0) exp[βFe∫
0

s1

  ds2 J(s2)] < J(s1) exp[βFe ∫
0

s1

  ds2 J(s2)] >

  }

(8.11.8)

To simplify the notation we define the brace  {   }s to be,
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 { B(t) }
s
  ≡  

∫ dΓΓΓΓ f(0) exp[βFe ∫
0

s

 ds1 J(s1)]

∫ dΓΓΓΓ  B(t) f(0) exp[βFe ∫
0

s

 ds
1
 J(s

1
)]

(8.11.9)

Using this definition our renormalised expression for the response is,

 < B(t >  =  < B(0) >  - βF
e
 ∫
0

t

  ds  { [B(t) - {B(t)}
s
][J(s) - {J(s)}

s
]}

s

(8.11.10)

This new representation for the thermostatted nonlinear response to time independent external fields 

was first derived by Evans, (Evans and Morriss, 1988).
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8 . 1 2 Discussion

We have described a consistent formalism for the nonlinear response of many-body 

systems to time dependent external perturbations. This theory reduces to the standard results of 

linear response theory in the linear regime and can be used to derive the Kawasaki form of the time-

independent nonlinear response. It also is easy to show that our results lead to the transient time 

correlation function expressions for the time-independent nonlinear case.

If we consider equation (8.10.13) in the time-independent case and remember that,

 U
R
(s,t)  =  exp

R
 ∫
s

t

  ds
1
 iL(s

1
)  =  exp[(t-s)iL] (8.12.1)

then we can see immediately,

 < B(t) >  =  < B(0) > - βFe∫
0

t

  ds ∫  dΓΓΓΓ  f0J B(t-s)

               =   < B(0) >   -   βF
e
 ∫
0

t

 ds  < J(0) B(s) > (8.12.2)

This is the standard transient time correlation function expression for the nonlinear response, 

(7.3.8).

It may be thought that we have complete freedom to move between the various forms 

for the nonlinear response: the Kawasaki form equation (8.11.6), the transient correlation function 

expression equation (8.12.2) and the new formulation developed in this chapter, equation 

(8.11.10). These various formulations can be characterised by noting the times at which the test 

variable B and the dissipative flux J, are evaluated. In the Kawasaki form B is evaluated at time 

zero, in the transient correlation approach J is evaluated at time zero, and in the new form 

developed in this paper, B is evaluated at time t. These manipulations are essentially trivial for the 

linear response. 

As we have shown, these forms are all equivalent for the nonlinear response to time-

independent external fields. However for the time-dependent nonlinear case only our new form 

equation (8.11.10), seems to be valid. One can develop a Kawasaki version of the nonlinear 

response to time-dependent fields but it is found that the resulting expression is not very useful. It, 

like the corresponding transient correlation form, involves convolutions of incremental 

propagators, Liouvilleans and phase variables which have no directly interpretable meaning. None 

of the operators in the convolution chains commute with one another and the resulting expressions 

are intractable and formal.
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Chapter 9.  Steady State Fluctuations
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9 . 1 Introduction

Nonequilibrium steady states are fascinating systems to study. Although there are 

many parallells between these states and equilibrium states, a convincing theoretical description 

of steady states, particularly far from equilibrium, has yet to be found. Close to equilibrium, 

linear response theory and linear irreversible thermodynamics provide a relatively complete 

treatment, (§2.1 - 2.3). However, in systems where local thermodynamic equilibrium has 

broken down, and thermodynamic properties are not the same local functions of thermodynamic 

state variables that they are at equilibrium, our understanding is very primitive indeed.

In §7.3 we gave a statistical mechanical description of thermostatted, nonequilibrium 

steady states far from equilibrium - the Transient Time Correlation Function and Kawasaki  

formalisms. The Transient Time Correlation Function is the nonlinear analogue of the Green-

Kubo correlation functions. For linear transport processes the Green-Kubo relations play a role 

which is analogous to that of the partition function at equilibrium. Like the partition function, 

Green-Kubo relations are highly nontrivial to evaluate. They do however provide an exact 

starting point from which one can derive exact interrelations between thermodynamic quantities. 

The Green-Kubo relations also provide a basis for approximate theoretical treatments as well as 

being used directly in equilibrium molecular dynamics simulations.

The TTCF and Kawasaki expressions may be used as nonlinear, nonequilibrium 

partition functions. For example if a particular derivative commutes with the thermostatted, field-

dependent propagator then one can formally differentiate the TTCF and Kawasaki expressions 

for steady state phase averages, yielding fluctuation expressions for the so-called derived 

properties. The key point in such derivations is that the particular derivative should commute 

with the relevant propagators. If this is not so one cannot derive tractable or useful results. 

In order to constrain thermodynamic variables two basic feedback mechanisms can 

be employed: the integral feedback mechanism employed for example in the Nose-Hoover 

thermostat, (§5.2) and the differential mechanism employed in the Gaussian thermostat. A third 

mechanism, the proportional mechanism has not found much use either in simulations or in 

theory because it necessarily employs irreversible equations of motion. 

In this chapter we will derive fluctuation expressions for the derivatives of steady 

state phase averages. We will derive expressions for derivatives with respect to temperature, 

pressure and the mean value of the dissipative flux. Applying these derivatives in turn to 

averages of the internal energy, the volume and the thermodynamic driving force yields 

expressions for the specific heats, the compressibility and the inverse Burnett coefficients 

respectively. In order to ensure the commutivity of the respective derivatives and propagators, 

we will employ the Gaussian feedback mechanism exclusively. Corresponding derivations using 

Nose-Hoover feedback are presently unknown.
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Rather than giving a general but necessarily formal derivation of the fluctuation 

formulae, we will instead concentrate on two specific systems: planar Couette flow and colour 

conductivity. By concentrating on specific systems we hope to make the discussion more 

concrete and simultaneously illustrate particular applications of the theory of nonequilibrium 

steady states discussed in Chapter 7.
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9 . 2 The Specific Heat

In this section we illustrate the use of the Kawasaki distribution function and the 

Transient Time Correlation Function formalism by deriving formally exact expressions for the 

temperature derivative of nonequilibrium averages. Applying these expressions to the internal 

energy, we obtain two formulae (Evans and Morriss, 1987), for the isochoric specific heat. One 

of these shows that the specific heat can be calculated by analysing fluctuations in the steady 

state. The second formula relates the steady state specific heat to the transient response observed 

when an ensemble of equilibrium systems is perturbed by the field. 

Transient Time Correlation Function Approach

For a system undergoing planar Couette flow the transient correlation function 

expression for the canonical ensemble average of a phase variable B is,

 < B(t) >  =  < B(0) >  -  βγV  ∫
0

t

  ds  < B(s) P
xy

(0) >                              (9.2.1)

This expression relates the nonequilibrium value of a phase variable B at time t, to the integral of 

a transient time correlation function (the correlation between Pxy in the equilibrium starting state, 

Pxy(0), and B at time s after the field is turned on). The temperature implied by the β is the 

temperature of the initial ensemble. The steady state is tied to the initial ensemble by the 

constraint of constant peculiar kinetic energy. For systems that exhibit mixing, equation (9.2.1) 

can therefore be rewritten as,

 < B(t) >  =  < B(0) >  -  βγV  ∫
0

t

  ds  < ∆B(s) P
xy

(0) >                            (9.2.2)

where the difference variable ∆B(s) is defined as the difference between the phase variable at s 

and its average value at s,

 
 ∆B(s)  ≡  B(s)  -  < B(s) > (9.2.3)

Systems which are not expected to exhibit mixing are turbulent systems or systems which 

execute quasi-periodic oscillations.

An important property of the Gaussian thermostat is that although it fixes the kinetic 

energy of a system, the Gaussian isokinetic Liouville operator is independent of the 

temperature of the initial distribution. For each member of the ensemble, the Gaussian thermostat 
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simply constrains the peculiar kinetic energy to be constant. As the Liouvillean, and the 

propagator in (9.2.2), are independent of the value of the temperature we can calculate the 

temperature derivative very easily. The result is,

 
∂T
∂   < B(t) >  =  k

B
β2 < ∆(B(0)) ∆(H

0
(0)) >  -  k

B
β ( < B(t) > - < B(0) > )

 -  k
B
β3 F

e
 ∫
0

t

  ds  < ∆( B(s)J(0) ) ∆( H
0
(0) ) > (9.2.4)                               

The first term on the right hand side of (9.2.4) is the equilibrium contribution. This is easily seen 

by setting t=0. The second and third terms are nonequilibrium terms. In deriving the second term 

on the right hand side of (9.2.4) we use equation (9.2.3) to simplify a number of terms. It is 

worth noting that equation (9.2.4) is not only valid in the steady state limit t→∞, but is also 

correct for all intermediate times t, which correspond to the transients which take the system 

from the initial equilibrium state to the final nonequilibrium steady state. 

If we choose to evaluate the temperature derivative of the internal energy H0, we can 

calculate the specific heat at constant volume and external field, Cv,Fe.  The result is (Evans and 

Morriss, 1987),

 C
V,Fe

(t)  =  k
B
β2 < ∆( H

0
(0)2 >  - k

B
β ( < H

0
(t) > - < H

0
(0) > )

-   k
B
β3 F

e
 ∫
0

t

  ds  < ∆( H
0
(s) J(0) ) ∆( H

0
(0) ) > (9.2.5)                                  

Again the first term on the right hand side is easily recognised as the equilibrium specific heat. 

The second and third terms are nonlinear nonequilibrium terms. They signal the breakdown of 

local thermodynamic equilibrium. In the linear regime for which linear response theory is valid, 

they are of course both zero. The third term takes the form of a transient time correlation 

function. It measures the correlations of equilibrium energy fluctuations, ∆H0(0), with the 

transient fluctuations in the composite-time variable, ∆( H0(s) J(0) ). The second term can of 

course be rewritten as the integral of a transient time correlation function using (9.2.1).

Kawasaki representation.

Consider the Schrödinger form,

 < B(t) >   =   ∫ dΓΓΓΓ  B(ΓΓΓΓ ) f(t)                                    (9.2.6)

The thermostatted Kawasaki form for the N-particle distribution function is,
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 f(t)   =   exp[ -βF
e
 ∫
0

t

 ds J(-s) ]   f(0)                   (9.2.7)

Since f(t) is a distribution function it must be normalised. We guarantee this by dividing the right 

hand side of equation (9.2.7) by its phase integral. If we take the initial ensemble to be 

canonical, we find,

 f(t)  =  

∫ dΓΓΓΓ  exp[-β(H
0
 + Fe∫

0

t

 ds J(-s))]

exp[-β(H
0
 + Fe∫

0

t

 ds J(-s))]

(9.2.8)

The exponents contains a divergences due to the fact that the time average of J(-s) is nonzero. 

This secular divergence can be removed by multiplying the numerator and the denominator of the 

explicitly normalised form by   exp[+βFe 0∫t ds <J(-s)>]. This has the effect of changing the 

dissipative flux that normally appears in the Kawasaki exponent from J(-s) to ∆J(-s), in both the 

numerator and denominator. The removal of the secular divergence has no effect on the results 

computed in this chapter and is included here for largely aesthetic reasons.

 f(t)  =  

∫ dΓΓΓΓ  exp[-β(H
0
 + Fe∫

0

t

 ds ∆J(-s))]

exp[-β(H
0
 + Fe∫

0

t

 ds ∆J(-s))]

(9.2.9)

The average of an arbitrary phase variable B(Γ) in the renormalized Kawasaki representation is,

 < B(t) >  =  < B(0) >  +  

∫  dΓΓΓΓ   exp[ -β(H
0
 + ∫

0

t

  ds ∆J(-s) F
e
)]

∫  dΓΓΓΓ  ∆(B) exp[ -β(H
0
 + ∫

0

t

  ds ∆J(-s) F
e
)]

(9.2.10)

To obtain the temperature derivative of equation (9.2.10) we differentiate with 

respect to β. This gives

∂β

∂<B(t)>
   =   - ∫ dΓΓΓΓ  B (H0 +  Fe ∫

0

t

 ds ∆J(-s)) f(t)
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 +   (∫ dΓΓΓΓ    B f(t) ) (∫ dΓΓΓΓ (H
0
 +  F

e
 ∫
0

t

 ds ∆J(-s)) f(t) ) (9.2.11)

Using the Schrödinger-Heisenberg equivalence we transfer the time dependence from the 

distribution function to the phase variable in each of the terms in equation (9.2.11). This gives

 
∂β

∂<B(t)>
   =   - < ∆B(t) ∆(H

0
(t) +  F

e
 ∫
0

t

 ds ∆J(t-s)) > (9.2.12)

Substituting the internal energy for B in equation (9.2.12) and making a trivial change of variable 

in the differentiation (β→T) and integration (t-s→s), we find that the specific heat can be written 

as,

 C
V,Fe

 (t)  =  k
B
β2 < ∆(H

0
(t)

2
) >  +  k

B
β2 F

e∫
0

t

  ds  < ∆H
0
(t) ∆J(s) > (9.2.13)

The first term gives the steady state energy fluctuations and the second term is a steady state time 

correlation function. As t → ∞, the only times s, which contribute to the integral are times within 

a relaxation time of t, so that in this limit the time correlation function has no memory of the time 

at which the field was turned on.

These theoretical results for the specific heat of nonequilibrium steady states have 

been tested in nonequilibrium molecular dynamics simulations of isothermal planar Couette flow 

(Evans, 1986 and Evans and Morriss, 1987). The system studied was the Lennard-Jones fluid  

at its triple point, (kBT/ε=0.722, ρσ3=0.8442). 108 particles were employed with a cutoff of 

2.5σ.

The steady state specific heat was calculated in three ways: from the transient 

correlation function expression equation (9.2.5), from the Kawasaki expression equation 

(9.2.13) and by direct numerical differentiation of the internal energy with respect to the initial 

temperature. The results are shown in the Table 9.1 below. Although we have been unable to 

prove the result theoretically, the numerical results suggest that the integral appearing on the right 

hand side of (9.2.5) is zero. All of our simulation results, within error bars, are consistent with 

this. As can be seen in the Table 9.1 the transient correlation expression for the specific heat 

predicts that it decreases as we go away from equilibrium. The predicted specific heat at a 

reduced strain rate (γσ(m/ε)1/2) = 1 is some 11% smaller than the equilibrium value. This 

behaviour of the specific heat was first observed in 1983 by Evans (Evans, 1983).

The results obtained from the Kawasaki formula show that although the internal 

energy fluctuations are greater than at equilibrium, the specific heat decreases as the strain rate is 
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increased. The integral of the steady state energy-stress fluctuations more than compensates for 

increase in internal energy fluctuations. The Kawasaki prediction for the specific heat is in 

statistical agreement with the transient correlation results. Both sets of results also agree with the 

specific heat obtained by direct numerical differentiation of the internal energy. Table 9.2 shows 

a similar set of comparisons based on published data (Evans, 1983). Once again there is good 

agreement between results predicted on the basis of the transient correlation formalism and the 

direct NEMD method.

As a final comment of this section we should stress that the specific heat as we have 

defined it, refers only to the derivative of the internal energy with respect to the temperature of 

the initial  ensemble (or equivalently, with respect to the nonequilibrium kinetic temperature). 

Thus far, our derivations say nothing about the thermodynamic temperature ( ≡ ∂E/∂S ) of the 

steady state. We will return to this subject in Chapter 10.
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___________________________________________________________________________

Table 9.1.  Lennard-Jones Specific Heat Data.

Potential:  Φ(r) = 4ε[(r/σ)-12 - (r/σ)-6].  

State point:   T*  = 0.722,  ρ*  = 0.8442, γ*  = 1.0, N = 108, rc*  = 2.5.

___________________________________________________________________________

Transient Correlation Results: 200K timesteps

Cv,γ=0*  /Ν 2222....666666662222    ±    0000....000000004444

(<Εγ*>ss - <Eγ*>γ=0)/ΝΤ* 0.287± 0.0014

γ*T*-3ρ* -1 0∫∞ ds < ∆(H0*(s)Pxy* (0))∆(H0*(0))> -0.02 ± 0.05

Cv,γ=1*  /Ν 2222....333399995555±    0000....00006666

Kawasaki Correlation results: 300K timesteps

< ∆(E)*2 >ss/NT*2 3.307 ±0.02

γ*T*-2ρ*-1 0∫ ∞ds < ∆E*(s) ∆Pxy*(0) >ss    -1.050±0.07

Cv,γ=1*  /Ν 2.257±0.09

Direct NEMD calculation 100K timesteps

Cv,γ=1*  /Ν 2.35 ±0.05

Reduced units are denoted by *. Units are reduced to dimensionless form in terms of the 

Lennard-Jones parameters, m,σ,ε. γ*=∂ux/∂y σ(m/ε)1/2.  ∆t*= 0.004. < >ss denotes 

nonequilibrium steady state average.

___________________________________________________________________________
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___________________________________________________________________________

Table 9.2. Comparison of Soft Sphere Specific Heats as a function of Strain 

Rate

 Potential:  Φ(r) = ε(r/σ)-12 .  State point:     T* = 1.0877,   ρ∗ =  0.7, N = 108,  rc*  = 1.5.

___________________________________________________________________________

γ* E*/NT*     CV,γ* /N CV,γ * /N

direct transient correlation

0.0 4.400 2.61 2.61

0.4 4.441 2.56 2.57

0.6 4.471 2.53 2.53

0.8 4.510 2.48 2.49

1.0 4.550 2.43 2.46 ±0.002

±0.01 ±0.01

____________________________________________________________________________

Note: In these calculations, the transient time correlation function integral, (9.2.5), was assumed 

to be zero.

Data from (Evans, 1983, Evans, 1986, Evans and Morriss, 1987)

___________________________________________________________________________
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9 . 3 The Compressibility and Isobaric Specific Heat

 

In this section we calculate formally exact fluctuation expressions for other derived 

properties including the specific heat at constant pressure and external field, Cp,Fe, and the 

compressibility, χT,Fe ≡ -∂lnV/∂p)T,Fe. The expressions are derived using the isothermal  

Kawasaki representation for the  distribution function of an isothermal isobaric steady state.

The results indicate that the compressibility is related to nonequilibrium volume 

fluctuations in exactly the same way that it is at equilibrium. The isobaric specific heat, Cp,Fe, on 

the other hand, is not simply related to the mean square of the enthalpy fluctuations as it is at 

equilibrium. In a nonequilibrium steady state, these enthalpy fluctuations must be supplemented 

by the integral of the steady state time cross correlation function of the dissipative flux and the 

enthalpy.

We begin by considering the isothermal-isobaric equations of motion considered in 

§6.7. The obvious nonequilibrium generalisation of these equations is,

 
dt

dq
i   =  

m

p
i   +  εq

i
  +  C(ΓΓΓΓ )F

e
(t)

 
dt

dp
i   =  F

i
  -  εp

i
  +  D(ΓΓΓΓ)F

e
(t)  -  α (ΓΓΓΓ ,t)p

i
(9.3.1)

 
dt
dV

  =  3V
.ε

In the equations dε/dt is the dilation rate required to precisely fix the value of the hydrostatic 

pressure, p =Σ (p2/m + q.F)/3V.  α is the usual Gaussian thermostat multiplier used to fix the 

peculiar kinetic energy, K. Simultaneous equations must be solved to yield explicit expressions 

for both multipliers. We do not give these expressions here since they are straightforward 

generalisations of the field-free (Fe=0), equations given in §6.7.

The external field terms are assumed to be such as to satisfy the usual Adiabatic 

Incompressibility of Phase Space (AIΓΓΓΓ ) condition.We define the dissipative flux, J,  as the 

obvious generalisation of the usual isochoric case.

 
dt

dI0)
ad

  ≡  - J(ΓΓΓΓ)Fe (9.3.2)

This definition is consistent with the fact that in the field-free adiabatic case the enthalpy I0 ≡ H0 

+pV, is a constant of the equations of motion given in (9.3.1). It is easy to see that the 

isothermal isobaric distribution, f0, is preserved by the field-free thermostatted equations of 
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motion.

 f
0
 = 

∫
0

∞

 dV∫ dΓΓΓΓ e
-βI0

e
-βI0

(9.3.3)

It is a straightforward matter to derive the Kawasaki form of the N-particle 

distribution for the isothermal-isobaric steady state. The normalised version of the distribution 

function is,

 f(t) = 

∫
0

∞

 dV ∫ dΓΓΓΓ  exp-β[I
0
 + ∫

0

t

 ds J(-s)F
e
] 

exp-β[I
0
 + ∫

0

t

 ds J(-s)F
e
]

(9.3.4)

The calculation of derived quantities is a simple matter of differentiation with respect 

to the variables of interest. As was the case for the isochoric specific heat, the crucial point is that 

the field-dependent isothermal-isobaric propagator implicit in the notation f(t), is independent of 

the the pressure and the temperature of the entire ensemble. This means that the differential 

operators ∂/∂T and ∂/∂p0 commute with the propagator.

The pressure derivative is easily calculated as,

 
∂p

0

∂< B(t) >)T,Fe
 =  -β< B(t)V(t) > + β< B(t) >< V(t) > (9.3.5)

If we choose B to be the phase variable corresponding to the volume then the expression for the 

isothermal, fixed field compressibility takes on a form which is formally identical to its 

equilibrium counterpart.

 χ
T,Fe

  =  lim
t→∞

    - 
V
β

  < ∆V(t)2 > (9.3.6)

The limit appearing in (9.3.6) implies that a steady state average should be taken. This follows 

from the fact that the external field was 'turned on' at t=0.

The isobaric temperature derivative of the average of a phase variable can again be 

calculated from (9.3.4).
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∂β

∂
  <B(t) >  =  ∫

0

∞

  dV ∫dΓΓΓΓ         f(t) B(0) (I
0
 - ∫

0

t

 ds J(-s)F
e
)

 - < I (t) >∫
0

∞

  dV ∫  dΓΓΓΓ f(t) ( I
0
 + ∫

0

t

  ds J(-s)F
e
)

0
(9.3.7)

In deriving (9.3.7) we have used the fact that ∫∫∫∫dV∫∫∫∫dΓ f(t) B(0) = < B(t) >. Equation (9.3.7) can 

clearly be used to derive expressions for the expansion coefficient. However setting the test 

variable B to be the enthalpy and remembering that 

 C
p,Fe

  =  
∂T

∂I0)
p,Fe

(9.3.8)

leads to the isobaric specific heat,

 C
p,Fe

  = li
  t→∞

m  
k

B
T2
1  {  < ∆(I

0
(t))

2
 > + Fe ∫

0

t

 ds <∆ I
0
(t) ∆J(s) > } (9.3.9)

This expression is of course very similar to the expression derived for the isochoric specific heat 

in §9.2.

In contrast to the situation for the compressibility, the expressions for the specific 

heats are not simple generalisations of the corresponding equilibrium fluctuation formulae. Both 

specific heats also involve integrals of steady state time correlation functions involving cross 

correlations of the appropriate energy with the dissipative flux. Although the time integrals in 

(9.2.13) & (9.3.9) extend back to t=0 when the system was at equilibrium, for systems which 

exhibit mixing, only the steady state portion of the integral contributes. This is because in such 

systems, lim(t→∞) <∆B(t) ∆J(0)> = <∆B(t)><∆J(0)> = 0. These correlation functions are 

therefore comparatively easy to calculate in computer simulations.
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9.4        The Differential Susceptibility

In §2.3 we introduced the linear transport coefficients as the first term in an 

expansion, about equilibrium, of the thermodynamic flux in terms of the driving thermodynamic 

forces. The nonlinear Burnett coefficients are the coefficients of this Taylor expansion. Before 

we address the question of the nonlinear Burnett coefficients we will consider the differential 

susceptibility of a nonequilibrium steady state. Suppose we expand the irreversible fluxes in 

powers of the forces, about a nonequilibrium steady state. The leading term in such an expansion 

is called the differential susceptibility. As we will see, difficulties with commutation relations 

force us to work in the Norton rather than the Thévenin ensemble. This means that we will 

always be considering the variation of the thermodynamic forces which result from possible 

changes in the thermodynamic fluxes.

Consider an ensemble of N-particle systems satisfying the following equations of 

motion. For simplicity we assume that each member of the ensemble is electrostatically neutral 

and consists only of univalent ions of charge, ±e = ±1. This system is formally identical to the 

colour conductivity system which we considered in §6.2.

 .q
i
  =  m

p
i   ≡  v

i
(9.4.1)

 m.v
i
  =  F

i
  +  iλe

i
  - α(v

i
 - i  e

i
 J) (9.4.2)

In these equations, λ and α are Gaussian multipliers chosen so that the x-component of the 

current per particle, J =Σ eivxi/N and the temperature T = Σ m(vi - i eiJ)2/3NkB are constants of 

the motion.  This will be the case provided that,

 λ   =  - 
N

∑ F
xi

 e
i

(9.4.3)

and

 α   =  
∑ v

i
•(v

i
 - i e

i
J)

∑ F
i
•(v

i
 - i e

i
J)

(9.4.4)

In more physical terms λ can be thought of as an external electric/colour field which takes on 

precisely those values required to ensure that the current J is constant. Because it precisely fixes 

the current, it is a phase variable. It is clear from (9.4.3) that the form of the phase variable λ is 

independent of the value of the current. Of course the ensemble average of λ will depend on the 

average value of the current. It is also clear that the expression for α is similarly independent of 

the average value of the current for an ensemble of such systems.
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These points can be clarified by considering an initial ensemble characterised by the 

canonical distribution function, f(0),

 f(0)  =  

∫ dΓ  exp{-β[∑ 
2
m(v

i
 - e

i
J

0
)2 + Φ]}

exp{-β[∑ 
2
m(v

i
 - e

i
J

0
)2 + Φ]}

(9.4.5)

In this equation J0 is a constant which is equal to the canonical average of the current,

 < J(0) >  =  J
0
  =  i  J0 (9.4.6)

If we now subject this ensemble of systems which we will refer to as the J-ensemble, to the 

equations of motion (9.4.1,2), the electrical current and the temperature will remain fixed at their 

initial values and the mean value of the field multiplier λ, will be determined by the electrical 

conductivity of the system. 

It is relatively straightforward to apply the theory of nonequilibrium steady states to 

this system. It is easily seen from the equations of motion that the condition known as the 

Adiabatic Incompressibility of Phase Space (AIΓ ) holds. Using equation (9.4.1,2,5),  the 

adiabatic time derivative of the energy functional is easily seen to be,

 .
H)ad  ≡  

dt
d )

ad
 ∑

i

 
2
m (v

i
 - e

i
J

0
)2 + Φ  =  Nλ(Γ)J(Γ) (9.4.7)

 This equation is unusual in that the adiabatic derivative does not factorise into the product of a 

dissipative flux and the magnitude of a perturbing external field. This is because in the J-

ensemble the obvious external field, λ, is in fact a phase variable and the current, J, is a constant 

of the motion. As we shall see this causes us no particular problems. The last equation that we 

need for the application of nonlinear response theory is the derivative,

 
∂J

0

∂  H  =  - mN (J - J0) (9.4.8)

Kawasaki Representation

If we use the isothermal generalisation of the Kawasaki expression for the average 

of an arbitrary phase variable, B, we find,
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 < B(t) >  =  

< exp[βN ∫
0

-t

 ds J(s) λ (s)] >

< B(0) exp[βN ∫
0

-t

 ds J(s) λ (s)] >

(9.4.9)

In distinction to the usual case we considered in §7.2, the Kawasaki exponent involves a product 

of two phase variables J and λ, rather than the usual product of a dissipative flux (ie. a phase 

variable), and a time-dependent external field. The propagator used in (9.4.9) is the field-

dependent thermostatted propagator implicit in the equations of motion (9.4.1 - 4).  The only 

place that the ensemble averaged current appears in (9.4.9) is in the initial ensemble averages. 

We can therefore easily differentiate (9.4.9) with respect to J0 to find that (Evans and Lynden-

Bell, 1988),

 
∂J

0

∂ < B(t) >
  =  βmN < ∆B(t) ∆J(0) > (9.4.10)

where ∆(B(t)) ≡ B(t) - <B(t)> and ∆(J(t)) ≡ J(t) - <J(t)> = J(0) - J0.  This is an exact canonical 

ensemble expression for the J-derivative of the average of an arbitrary phase variable. If we let t 

tend toward infinity we obtain a steady state fluctuation formula which complements the ones we 

derived earlier for the temperature and pressure derivatives. Equation (9.4.10) gives a steady 

state fluctuation relation for the differential susceptibility of, B. 

One can check that this expression is correct by rewriting the right hand side of 

(9.4.10) as an integral of responses over a set of Norton ensembles in which the current takes on 

specific values. Using equation (9.4.5) we can write the average of B(t) as,

 < B(t) >  =  

∫ dJ exp[-βmN∆J
2
/2]

∫ dJ exp[-βmN∆J
2
/2] < B(t);J >

(9.4.11)

We use the notation < B(t) ; J > to denote that subset of the canonical ensemble, (9.4.5), in 

which the current takes on the exact value of J. The probability of the J-ensemble taking on an 

initial x-current of J is easily calculated from (9.4.5) to be proportional to, exp[-βmN∆J2/2]. 

Since the current is a constant of the motion we do not need to specify a time at which the current 

takes on the specified value. 

Differentiating (9.4.11) we can write the derivative with respect to the average 

current as a superposition of ∆J-ensemble contributions,
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∂J

0

∂< B(t) >  =  βmN

∫ dJ exp[-βmN∆J
2
/2]

∫ dJ exp[-βmN∆J
2
/2] ∆J < B(t);J >

(9.4.12)

                  = βmN< ∆B(t)∆J(0) >

This expression is of course identical to equation (9.4.10) which was derived using the 

Kawasaki distribution. It was derived however, without the use of perturbative mechanical 

considerations such as those implicit in the use of the Kawasaki distribution. This second 

derivation is based on two points: the initial distribution is a normal distribution of currents about 

J0, and;  the dynamics preserves the value of the current for each member of the ensemble. Of 

course the result is still valid even when J is not exactly conserved provided that the time-scale 

over which it changes is much longer than the time-scale for the decay of steady state 

fluctuations. This derivation provides independent support for the validity of the renormalized 

Kawasaki distribution function.

We will now derive relations between the J-derivatives in the J-ensemble and in the 

constrained ensemble in which J takes on a precisely fixed value (the ∆J-ensemble). In the 

thermodynamic limit, the spread of possible values of ∆J will become infinitely narrow 

suggesting that we can write a Taylor expansion of < B(t) ; J > in powers of ∆J about J0.

 < B(t);J >  =  < B(t);J
0
 > + ∆J

∂J

∂< B(t);J0 >
  +  2!

∆J
2

 
∂J

2

∂2
< B(t);J

0
 >

  + . . . . .

(9.4.13)

Substituting (9.4.13) into (9.4.12) and performing the Gaussian integrals over J, we find that,

 
∂J0

∂< B(t) >
   =  

∂J

∂< B(t);J0 >
  +  

2βmN
1  

∂J
3

∂< B(t);J0
 >

  +  . . . (9.4.14)

This is a very interesting equation. It shows the relationship between the derivative 

computed in a canonical ensemble and a ∆J-ensemble. It shows that differences between the two 

ensembles arise from non-linearities in the local variation of the phase variable with respect to the 

current. It is clear that these ensemble corrections are of order 1/N compared to the leading 

terms.
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9.5  The Inverse Burnett Coefficients

We will now use the TTCF formalism in the Norton ensemble, to derive expressions 

for the inverse Burnett coefficients. The Burnett coefficients, Li, give a Taylor series 

representation of a nonlinear transport coefficient L(X), defined by a constitutive relation 

between a thermodynamic force X, and a thermodynamic flux J(Γ),

 < J >  =  L(X)X

          =  L
1
X + 

2!
1  L

2
X2 + 

3!
1  L

3
X3 + . . . (9.5.1)

It is clear from this equation the the Burnett coefficients are given by the appropriate partial 

derivatives of < J >,  evaluated at X=0. As mentioned in §9.4 we will actually be working in the 

Norton ensemble in which the thermodynamic force X, is the dependent rather than the 

independent variable. So we will in fact derive expressions for the inverse Burnett coefficients, 

L i .

 < X >  =  L(J)J

          =  L
1
J + 

2!
1  

  2
L J2 + 

3!
1  L

3
J3 + .. . (9.5.2)

The  Transient Time Correlation Function representation for a steady state phase 

average for our electrical/colour diffusion problem is easily seen to be.

 < B(t) >  =  < Β(0) >  +  βN∫
0

t

  ds < ∆B(s) λ (0)J(0) > (9.5.3)

We expect that the initial values of the current will be clustered about J0. If we write,

 < ∆B(s) λ(0)J(0) >  =  < ∆B(s) λ(0) > J0 +  <∆B(s) λ(0)∆J(0) > (9.5.4)

it is easy to see that if B is extensive then the two terms on the right hand side of (9.5.4) are O(1) 

and O(1/N) respectively. For large systems we can therefore write,

 < B(t) >  =  < Β(0) >  +  βN∫
0

t

  ds < ∆B(s) λ (0) > J
0

(9.5.5)

It is now a simple matter to calculate the appropriate J-derivatives.
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∂J

0

∂< B(t) >
  =  βN∫

0

t

  ds < B(s) λ (0) >  +  βJ
0
N∫

0

t

  ds ∫  dΓ B(s) λ(0) 
∂J

0

∂f(0)

                   =  βN∫
0

t

  ds < B(s) λ(0) >  +  β
2
J0mN

2∫
0

t

  ds < B(s) λ(0)∆J(0) >

(9.5.6)

This equation relates the J-derivative of phase variables to Transient Time Correlation Functions. 

If we apply these formulae to the calculation of the leading Burnett coefficient we of course 

evaluate the derivatives at J0=0. In this case the TTCFs become equilibrium time correlation 

functions. The results for the leading Burnett coefficients are (Evans and Lynden-Bell, 1988):

 
∂J0

∂< B(t) >)
J0=0

 =  βN∫
0

t

  ds < B( s) λ(0) >eq (9.5.7)

 
∂J

0
2

∂2< B(t) >)
J0=0

 =  2β
2
mN

2∫
0

t

  ds < B(s ) λ (0)∆J(0)) >eq (9.5.8)

 

∂J
0
3

∂3< B(t) >)
J0=0

 =  3β
3
m2N

3∫
0

t

  ds < B(s) λ (0) {∆ [J(0)]
2

 - <∆ [J(0)]
2

>} > eq    

(9.5.9)

Surprisingly, the expressions for the Burnett coefficients only involve equilibrium, 

two-time correlation functions. At long times assuming that the system exhibits mixing they each 

factor into a triple product < B(s→∞)><λ(0)><cum(J(0))>. The terms involving λ(0) and the 

cumulants of J(0) factor because at time zero the distribution function (9.4.5), factors into kinetic 

and configurational parts. Of course these results for the Burnett coefficients could have been 

derived using the ∆J-ensemble methods discussed in §9.4.

It is apparent that our discussion of the differential susceptibility and the inverse 

Burnett coefficients has relied heavily on features unique to the colour conductivity problem. It is 

not obvious how one should carry out the analogous derivations for other transport coefficients. 

General fluctuation expressions for the inverse Burnett coefficients have recently been derived by 

Standish and Evans (1989). The general results are of the same form as the corresponding colour 

conductivity expressions. We refer the reader to the above reference for details.
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1 0 . 1 Introduction

In the previous three chapters we have developed a theory which can be applied to 

calculate the nonlinear response of an arbitrary phase variable to an applied external field. We have 

described several different representations for the N-particle, nonequilibrium distribution function, 

f(ΓΓΓΓ ,t): the Kubo representation (§7.1) which is only useful from a formal point of view; and two 

related representations, the Transient Time Correlation Function formalism (§7.3) and the 

Kawasaki representation (§7.2), both of which can be applied to obtain useful results. We now 

turn our interest towards thermodynamic properties which are not simple phase averages but rather 

are functionals of the distribution function itself. We will consider the entropy and free energy of 

nonequilibrium steady states. At this point it is useful to recall the connections between equilibrium 

statistical mechanics, the thermodynamic entropy (Gibbs, 1902), and Boltzmann's famous H 

theorem (1872). Gibbs pointed out that at equilibrium, the entropy of a classical N-particle system 

can be calculated from the relation,

 S(t)   =   - kB∫dΓΓΓΓ  f(ΓΓΓΓ) log f(ΓΓΓΓ) (10.1.1)

where f(ΓΓΓΓ ) is a time independent equilibrium distribution function. Using the same equation, 

Boltzmann calculated the nonequilibrium entropy of gases in the low density limit . He showed 

that if one uses the single particle distribution of velocities obtained from the irreversible 

Boltzmann equation, the entropy of a gas at equilibrium is greater than that of any nonequilibrium 

gas with the same number of particles, volume and energy. Furthermore he showed that the 

Boltzmann equation predicts a monotonic increase in the entropy of an isolated gas as it relaxes 

towards equilibrium. These results are the content of his famous H-theorem (Huang, 1963). They 

are in accord with our intuition that the increase in entropy is the driving force behind the relaxation 

to equilibrium.

One can use the reversible Liouville equation to calculate the change in the entropy of a 

dense many body system. Suppose we consider a Gaussian isokinetic system subject to a time 

independent external field Fe, (8.10.2). We expect that the entropy of a nonequilibrium steady state 

will be finite and less than that of the corresponding equilibrium system with the same energy. 

From (10.1.1) we see that,

 
.

S  =  - kB ∫ dΓΓΓΓ  [1 + lnf] 
∂t
∂f (10.1.2)

Using successive integrations by parts one finds for an N-particle system in 3 dimensions,
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.
S  = - kB ∫ dΓΓΓΓ   f 

.
ΓΓΓΓ•

∂ΓΓΓΓ
∂  [1 + lnf]

    = - kB  ∫ dΓΓΓΓ   
.
ΓΓΓΓ•

∂ΓΓΓΓ
∂f

    =   kB  ∫ dΓΓΓΓ        f(t) 
∂ΓΓΓΓ
∂  •

.
ΓΓΓΓ        ====        -3NkB < α(t) > (10.1.3)

Now for any nonequilibrium steady state, the average of the Gaussian multiplier α, is positive. 

The external field does work on the system which must be removed by the thermostat. This means 

that the Liouville equation predicts that the Gibbs entropy (10.1.1), diverges to negative infinity! 

After the decay of initial transients (10.1.3) shows the rate of decrease of the entropy is constant. 

This paradoxical result was first derived by Evans (1985). If there is no thermostat, the Liouville 

equation predicts that the Gibbs entropy of an arbitrary system, satisfying AIΓΓΓΓ  and subject to an 

external dissipative field, is constant! This result was known to Gibbs (1902). 

Gibbs went on to show that if one computes a coarse grained entropy, by limiting the 

resolution with which we compute the distribution function, then the coarse grained entropy based 

on (10.1.1), obeys a generalized H-theorem. He showed that the coarse grained entropy cannot 

decrease (Gibbs, 1902). We shall return to the question of coarse graining in §10.5.

The reason for the divergence in (10.1.3) is not difficult to find. Consider a small 

region of phase space, dΓΓΓΓ, at t=0, when the field is turned on. If we follow the phase trajectory of 

a point originally within dΓΓΓΓ, the local relative density of ensemble points in phase space about ΓΓΓΓ(t) 

can be calculated from the Liouville equation,

1
3

f t
df t

dt
N t

( )
( )

( )= α (10.1.4)

If the external field is sufficiently large we know that there will be some trajectories 

along which the multiplier, α(t), is positive for all time. For such trajectories equation (10.1.4) 

predicts that the local density of the phase space distribution function must diverge in time, towards 

positive infinity. The distribution function of a steady state will be singular at long times. One way 

in which this could happen would be for the distribution function to evolve into a space of lower 

dimension that the ostensible 6N dimensions of phase space. If the dimension of the phase space 

which is accessible to nonequilibrium steady states is lower than the ostensible dimension, the 

volume of accessible phase space (as computed from within the ostensible phase space), will be 

zero. If this were so, the Gibbs entropy of the system (which occupies zero volume in ostensible 

phase space) would be minus infinity.

At this stage these arguments are not at all rigorous. We have yet to define what we 

mean by a continuous change in the dimension. In the following sections we will show that a 
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reduction in the dimension of accessible phase space is a universal feature of nonequilibrium steady 

states. The phase space trajectories are chaotic and separate exponentially with time, and for 

nonequilibrium systems, the accessible steady state phase space is a strange attractor whose 

dimension is less than that of the initial equilibrium phase space. These ideas are new and the 

relations between them and nonlinear response theory are yet to develop. We feel however, that the 

ideas and insights already gleaned are sufficiently important to present here.

Before we start a detailed analysis it is instructive to consider two classic problems 

from the new science of dynamical systems - the quadratic map and the Lorenz model. This will 

introduce many of the concepts needed later to quantitatively characterize nonequilibrium steady 

states.
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1 0 . 2 Chaotic Dynamical Systems

The study of low dimensional dynamical systems which exhibit chaos is a very active 

area of current research. A very useful introductory account can be found in Schuster (1988). It 

was long thought that the complex behavior of systems of many degrees of freedom was inherently 

different to that of simple mechanical systems. It is now known that simple one dimensional 

nonlinear systems can indeed show very complex behavior. For example the family of quadratic 

maps  Fµ(x)=µx(1-x)  demonstrates many of these features. This is very well described in a recent 

book by Devaney (1986). The connection between a discrete mapping, and the solution of a 

system of ordinary differential equations in a molecular dynamics simulation is clear when we 

realise that the numerical solution of the equations of motion for a system involves an iterative  

mapping of points in phase space. Although we are solving a problem which is continuous in time, 

the differential equation solver transforms this into a discrete time problem. The result is that if the 

mapping f takes     ΓΓΓΓ (0) to ΓΓΓΓ(∆) where ∆ is the time step, then  ΓΓΓΓ(n∆) = fn[ΓΓΓΓ(0)]. Here fn means the 

composite mapping consisting of n repeated operations of f,  f[ f[ ... f[ΓΓΓΓ(0)]] ... ] .

An important difference exists between difference equations and similar differential 

equations, for example if consider the differential equation

 
dt
dx

    =    µ x (1 - x) (10.2.1)

the solution can easily be obtained

 x(t)    =    
1  -  x0  +  x0e

µt

x0e
µt

 (10.2.2)

where x0=x(t=0). The trajectory for this system is now quite straightforward to understand. The 

solution of the quadratic map difference equation is a much more difficult problem which is still not 

completely understood.

The Quadratic Map

The quadratic map is defined by the equation

 xn+1   =   Fµ(xn)   =   µ xn (1 - xn)   (10.2.3)

If we iterate this mapping for µ=4, starting with a random number in the interval between 0 and 1, 

then we obtain dramatically different behavior depending upon the initial value of x. Sometimes the 

values repeat; other times they do not; and usually they wander about in the range 0 to 1. Initial 

values of x which are quite close together can have dramatically different iterates. This 
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unpredictability or sensitive dependence on initial conditions is a property familiar in statistical 

mechanical simulations of higher dimensional systems. If we change the map to xn+1=3.839xn(1-

x n) then a random initial value of x leads to a repeating cycle of three numbers 

(0.149888..,0.489172..,0.959299..). This mapping includes a set of initial values which behave 

just as unpredictably as those in the µ=4 example but due to round-off error we don't see this 

randomness.

Before we look at the more complicated behavior we consider some of the simpler 

properties of the family of quadratic maps. First we require some definitions;  x1 is called a fixed 

point of the map f if  f(x1) = x1.  x1 is a periodic point, of period n, if  fn(x1) = x1, where fn 

represents n applications of the mapping f. Clearly a fixed point is a periodic point of period one. 

The fixed point at x1 is stable if  |f'(x1)| < 1. We will consider the quadratic map  Fµ(x)  on the 

interval  0 < x < 1, as a function of the parameter µ.

Region 1 0 < µ < 1 

The mapping Fµ(x) has only one fixed point  x=0.  Fµ'(0) = µ so in this region the 

fixed point at x=0 is attracting (or stable).

Region 2 1 < µ < 3

Fµ(x) has two fixed points x=0 and xp=(µ-1)/µ. The fixed point x=0 is repelling (or 

unstable) while Fµ'(xp) = 2-µ  so that  xp is an attracting (or stable) fixed point.

Region 3 3 < µ < 1+√6

In this region both the fixed points of Fµ(x) are unstable so it is useful to consider the 

composite mapping Fµ2(x) = Fµ(Fµ(x)) = µ2x(1-x)[1-µx(1-x)]. Fµ2  has the fixed points of the 

original mapping Fµ(x) at x=0 and xp, but as before both of these are unstable. Fµ2 also has two 

new fixed points at  x±={1±[( µ-3)/(µ+1)]1/2}( µ+1)/2µ. These two fixed points x± of Fµ2 are 

points of period two in the original mapping Fµ(x), (referred to as a 2-cycle). (Fµ2)'(x±) = 4+2µ-

µ2 so the 2-cycle is stable for 3 < µ < 1+√6.

Region 4 ,5, etc 1+√6 < µ < µ∞

The period doubling cascade where the stable 2-cycle loses its stability, and a stable 4-

cycle appears; increasing µ the 4-cycle loses stability and is replaced by a stable 8-cycle; increasing 

µ again leads to the breakdown of the 2n-1-cycle and the emergence of a stable 2n-cycle. The µ 

bifurcation values get closer and closer together, and the limit as n→∞ the bifurcation value is 

approximately µ∞ = 3.5699456.
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µ = 2.0 µ = 2.9

µ = 3.3 µ = 3.5

µ = 3.561 µ = 3.83

Figure 10.1 The iterates of the quadratic map for some particular values of 
the parameter µ. The horizontal axis is xn and the vertical axis 
is xn+1. For µ=2 and 2.9 there is a single stable fixed point. 
For µ=3.3 there is a stable 2-cycle; for µ=3.5 a stable 4-cycle 
and for µ=3.561 a stable 8-cycle. The value µ=3.83 is in the 
period three window.
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Figure 10.2 The iterates of the quadratic map as a function of the parameter 
µ . The horizontal axis is the parameter 1≤µ≤4, and the 
vertical axis is the iterate 0≤xn≤1.

The Chaotic Region µ∞ < µ < 4

Here stable periodic and chaotic regions are densely interwoven. Chaos here is 

characterized by sensitive dependence on the initial value x0. Close to every value of µ where there 

is chaos, there is a value of µ which corresponds to a stable periodic orbit, that is, the mapping 

also displays sensitive dependence on the parameter µ. The windows of period three, five and six 

are examples. From the mathematical perspective the sequence of cycles in a unimodal map is 

completely determined by the Sarkovskii theorem (1964). If f(x) has a point x which leads to a 

cycle of period p then it must have a point x' which leads to a q-cycle for every q ← p where p and 

q are elements of the following sequence (here we read ← as precedes)

1 ← 2 ← 4 ← 8 ← 16 ← 32 ← ... ← 2m ← ...
... ← 2m .9 ← 2m .7 ← 2m .5 ← 2m .3 ←...

... ← 22 .9 ← 22 .7 ← 22 .5 ← 22 .3 ←...

... ← 21 .9 ← 21 .7 ← 21 .5 ← 21 .3 ←...

... ←       9  ←      7 ←       5 ←       3 

This theorem applies to values of x at a fixed parameter µ, but says nothing about the stability 

of the cycle or the range of parameter values for which it is observed.
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Figure 10.3 The iterates of the quadratic map as a function of the parameter 
µ. This is an expanded version of Figure 10.2 to include more 
detail in the chaotic region. The horizontal axis is the 
parameter 3.5≤µ ≤4, and the vertical axis is the iterate 
0≤xn≤1. The windows of period three (at about µ=3.83), 
period five (at about µ=3.74), and period six (at about 3.63) 
are clearly visible.

Region ∞- µ = 4

Surprisingly for this special value of µ it is possible to solve the mapping exactly 

(Kadanoff, 1983).  Making the substitution  xn = (1 - cos 2πθn)/2

 xn+1   =   
2
1

 (1 - cos 2πθn+1)   =   4 
2

(1 - cos 2πθn)
  [1 - 

2

(1 - cos 2πθn)
 ]

                                               =   
2
1

 (1 - cos 4πθn) (10.2.4)

A solution is  θn+1 = 2 θn mod 1, or  θn = 2n θ0 mod 1.  Since xn is related to cos 2πθn 

adding an integer to θn leads to the same value of xn. Only the fractional part of θn has 

significance. If θn is written in binary (base 2) notation

 θn   =   0.a1a2a3a4a5. . . . ..    =   ∑
i=1

∞

 ai 2
-i

(10.2.5)
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then the mapping is simply shifting the decimal point one place to the right and removing the 

integer part of θn+1. The equivalent mapping is

 f(0.a1a2a3a4a5. . . . .. )   =   0.a2a3a4a5. .. . .. (10.2.6)

It is easy to see that any finite precision approximation to the initial starting value θ0 consisting of 

N digits will lose all of its significant digits in N iterations.

If x0 evolves to f(x0) after one iteration then the distribution δ(x-x0) evolves to δ(x-

f(x0)) after one iteration. This can be written as

 δ(x-f(x
0
))   =   ∫

0

1

dy  δ(x-f(y))  δ(y-x
0
) (10.2.7)

An arbitrary density ρn(x) constructed from a normalized sum of (perhaps infinitely many) delta 

functions, satisfies an equation of the form

 ρ
n+1

(x)   =   ∫
0

1

dy  δ(x-f(y))  ρn(y) (10.2.8)

The invariant measure ρ(x), or steady state distribution, is independent of time (or iteration number 

n) so

 ρ(x)   =   ∫
0

1

dy  δ(x-f(y))  ρ(y). (10.2.9)

There is no unique solution to this equation as ρ(x) = δ(x-x*) where x* is an unstable fixed point 

of the map, is always a solution. However, in general there is a physically relevant solution and it 

corresponds to the one that is obtained numerically. This is because the set of unstable fixed points 

is measure zero in the interval [0,1] so the probability of choosing to start a numerical calculation 

from an unstable fixed point x* , and remaining on x* , is zero due to round off and truncation 

errors.

In Figure 10.4 we present the invariant measure of the quadratic map in the chaotic 

region. The parameter value is µ=3.65. The distribution contains a number of dominant peaks 

which are in fact fractional power law singularities.
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0.00

0.01

0.02

0.03
Quadratic Map    = 3.65

x

Prob(x)
µ

Figure 10.4 The distribution function for the iterates of the quadratic map 
in the chaotic region, at  µ=3.65.  The horizontal axis is the 
value of the iterate, and the vertical axis is the probability. 
Notice the distribution of narrow peaks which dominate the 
probability distribution.

For the transformed mapping θn+1 = 2 θn mod 1, it is easy to see that the continuous 

loss of information about the initial starting point with each iteration of the map, means that the 

invariant measure as a function of θ is uniform on [0,1] (that is g(θ)=1). From the change of 

variable x = (1- cos 2πθ)/2 it is easy to see that x is a function of θ, x = q(θ) (but not the reverse). 

If x 1 = q(θ1), then the number of counts in the distribution function histogram bin centered at  x1  

with width dx1, is equal to the number of counts in the bins centered at θ1 and 1−θ1 with widths 
dθ1. That is

 f(x
1
)   =   

|dx/dθ|

g(θ1)  +  g(1-θ
1
)
 . (10.2.10)

It is then straightforward to show that the invariant measure as a function of x is given by

 f(x)   =   π
1  

x(1-x)
1   .  (10.2.11)

In Figure 10.5 we present the invariant measure for the quadratic map at µ=4. The two 

singularities of type (x-x0)-1/2 at x0 = 0 and x0 = 1 are clearly shown.
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Quadratic map    = 4
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Prob(x) µ

Figure 10.5 The distribution of iterates for the quadratic map at µ=4. The 
horizontal axis is the iterate, and the vertical axis is the 
probability. When correctly normalized, this agrees well will 
equation (10.2.11).

Region ∞ µ > 4

Here the maximum of Fµ(x) is greater than one. Once the iterate leaves the interval 

0<x<1 it does not return. The mapping Fµ2(x) has two maxima, both of which are greater than 

one. If I is the interval 0 to 1, and A1 is the region of I mapped out of I by the mapping Fµ(x), A2 

the region of I mapped out of I by Fµ2(x), etc., then the trajectory wanders the interval defined by  I 

- (A0 ∪  A1 ∪   A2 ∪  ....). It can be shown that this set is a Cantor set.

This example of a seemingly very simple iterative equation has very complex behaviour 

as a function of the parameter µ. As µ is increased the stable fixed point becomes unstable and is 

replaced by stable 2n - cycles (for n=1,2,3,etc.), until chaotic behaviour develops at µ∞ (about 

3.5699456). For µ∞>3.5699456 the behaviour of the quadratic map shows sensitive dependence 

upon the parameter µ, with an infinite number of islands of periodic behaviour immersed is a sea 

of chaos. This system is not atypical, and a wide variety of nonlinear problems show this same 

behaviour. We will now consider a simple model from hydrodynamics which has had a dramatic 

impact in the practical  limitations of weather forecasting.
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The Lorenz Model

Consider two flat plates, separated by a liquid layer. The lower plate is heated and the 

fluid is assumed to be two-dimensional and incompressible. A coupled set of nonlinear field 

equations must be solved in order to determine the motion of the fluid between the plates (the 

continuity equation, the Navier-Stokes equation and the energy equation). These equations are 

simplified by introducing the stream function in place of the two velocity components. Saltzman 

(1961) and Lorenz (1963) proceed by making the field equations dimensionless and then 

representing the dimensionless stream function and temperature by a spatial Fourier series (with 

time dependent coefficients). The resulting equations obtained by Lorenz are a three parameter 

family of three-dimensional ordinary differential equations which have extremely complicated 

numerical solutions. The equations are

 

 



  x
•
  

  y
•
  

  z
•
  

 


     =     

 



  - σ (x - y)  

  (r - z) x   -   y  

  x y   -   b z  

 



(10.2.12)

where  σ, r and b are three real positive parameters. The properties of the Lorenz equations have 

been reviewed by Sparrow (1982) and below we summarize the principle results.

Simple Properties:

1)  Symmetry  - The Lorenz equations are symmetric with respect to the mapping (x,y,z) → (-x,-

y,z).

2)  The z-axis is invariant. All trajectories which start on the z-axis remain there and move toward 

the origin. All trajectories which rotate around the z-axis do so in a clockwise direction (when 

viewed from above the z=0 plane). This can be seen from the fact that if x = 0, then dx/dt > 0 

when y > 0, and dx/dt < 0 when y < 0.

3)  Existence of a bounded attracting set of zero volume, that is the existence of an attractor. The 

divergence of the flow, is given by

 
∂x
∂x

•

   +   ∂y
∂y

•

   +   ∂z
∂z

•

    =    - (1  +  b  +  σ). (10.2.13)

The volume element V is contracted by the flow into a volume element V exp[-(1+b+σ)t] in time t. 

We can show that there is a bounded region E, such that every trajectory eventually enters E and 

remains there forever. There are many possible choices of Lyapunov function which describe the 

surface of the region E. One simple choice is V = rx2 + σy2 + σ(z - 2r)2. Differentiating with 

respect to time and substituting the equations of motion gives

 
dt
dV   =  - 2σ 

 

rx

2 + y2 + bz2 - 2brz
 

  .   (10.2.14)
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Another choice of Lyapunov function is  E = r2x2 + σy2 + σ(z - r(r-1))2  for b ≤ r + 1. This shows 

that there exists a bounded ellipsoid, and together with the negative divergence shows that there is 

a bounded set of zero volume within E towards which all trajectories tend.

4)  Fixed points. The Lorenz equations have three fixed points; one at the origin, the other two are 

at  C1 = (-√b(r-1), -√b(r-1), r-1) and C2 = (√b(r-1), √b(r-1), r-1).

5)  Eigenvalues for linearized flow about the origin are

 λ 1   =   -b

 λ 2   =   
2

-(σ+1) - (σ+1)2 - 4σ(1-r)
  

 λ 3    =   
2

-(σ+1) + (σ+1)2 - 4σ(1-r)
  

6)  Stability

0 < r < 1 The origin is stable

r  > 1 The origin is non-stable. Linearized flow about the origin has two negative 

and one positive, real eigenvalues.

1 < r  <  470/19 C1 and C2 are stable. All three eigenvalues of the linearized flow about C1 

and C2, have negative real part. For r > 1.346 (σ=10, b=8/3) there is a 

complex conjugate pair of eigenvalues.

r  >  470/19 C1 and C2 are non-stable. Linearized flow about C1 and C2 has one 

negative real eigenvalue and a complex conjugate pair of eigenvalues with 

positive real part.

Again we have a nonlinear system which is well behaved for small values of the parameter r, but 

for r > 470/19 chaotic behaviour begins.
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Figure 10.6 The iterates of the Lorenz Model for a typical set of 
parameters which leads to chaotic behaviour. The iterates are 
the values obtained at the end of each 4th order Runge-Kutta 
step.
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1 0 . 3 The Characterization of Chaos

The experimental measurement of the onset and development of chaos in dissipative 

physical systems is often accompanied by some arbitrariness in the choice of the measured 

dynamical variable. Taking fluid systems as an example, one can measure the fluid velocity, its 

temperature, heat flux etc. Rarely does one measure more than one variable simultaneously. 

Moreover, one rarely knows what is the correct, or complete, phase space in which the dissipative 

dynamics takes place. Thus the extraction of relevant information calls for measurement of 

quantities that remain invariant under a smooth change of coordinates and which can be used for a 

valid characterization of the dynamical system. There are two classes of these invariants. The static 

ones, dependent primarily on the invariant measure (the underlying distribution function for the 

attractor) and appear as the dimension of the attractor (either fractal, information, correlation) and 

as other mass exponents which have to do with various static correlation functions. The dynamic 

ones depend on properties of trajectories and include various entropies (topological, metric etc), the 

Lyapunov exponents, and moments of the fluctuations in the Lyapunov exponents. Here we 

present a short review of the theory of these invariants and the interrelations between them.

Studies of simple dissipative systems have shown that if we begin with a Euclidian 

space of initial phase positions, then as time passes, transients relax, some modes may damp out, 

and the point in phase space that describes the state of the system approaches an attractor. In this 

process it is common for the number of degrees of freedom to be reduced, and hence the 

dimension of the system is lowered. This change in dimension is a continuous process and to 

describe such systems we have to generalize the concept of dimension (Farmer, 1982 and Farmer, 

Ott and Yorke, 1983). We distinguish three intuitive notions of dimension; direction, capacity and 

measurement. These lead to the definition of; topological dimension (Hurewicz and Wallman, 

1948), fractal dimension (Mandelbrot, 1983) and information dimension (Balatoni and Renyi, 

1976). As we will see the fractal and information dimensions allow the dimension to be a 

continuous positive variable.

The Fractal and Information dimensions

The fractal dimension of an attractor can be defined by the following construction. Let 

b(ε) be the minimum number of balls of diameter ε needed to cover the attractor. The fractal 

dimension is defined by the limit,

 D
F
    =    lim

ε→0
   

| ln ε |
ln b(ε) . (10.3.1)

As the length scale ε is reduced, the number of balls required to cover the attractor increases. As 

b(ε) is a positive integer, its logarithm is positive. The term  ln ε  is negative as soon as the length 

scale ε is less than one (in the appropriate units), so the dimension is a positive real quantity.
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To obtain the information dimension we suppose an observer makes an isolated 

measurement of the coarse grained probability distribution function pi. Coarse graining implies a 

length scale ε for the observation, and an associated number of cells N(ε). The discrete, or coarse 

grained, entropy S(ε) as a function of the length scale is given by

 S(ε)   =   - ∑
i=1

N(ε)

  p
i
  ln p

i
(10.3.2)

Notice that S(ε) is positive as for each i, -pi ln pi  is positive. The information dimension DI is then 

defined by

 D
I
    =    lim

ε→0
  

| ln ε |

S(ε)
(10.3.3)

This dimension is a property of any distribution function as nothing in the definition is specific to 

attractors, or to some underlying dynamics.

If all the N(ε) elements have the same probability then S(ε) = ln N(ε). Further if b(ε) is 

a minimal covering, then a smaller covering can be formed by removing the overlapping parts of 

circles so that  ln b(ε) ≥ ln N(ε) = S(ε). It is then straightforward to see that the fractal dimension 

is an upper bound on the information dimension. (We will generalize this result later.) From a 

computational point of view it is easier to tabulate the steady state distribution function and 

calculate DI, rather than to attempt to identify the attractor and construct a covering to calculate DF.

Correlation Dimension

The correlation dimension DC introduced by Grassberger and Procaccia (1983) is a 

scaling relation on the correlation function C(ε) where

 C(ε)   =   
N

2
1   ∑

i ≠j

  θ(ε - |ΓΓΓΓi  - ΓΓΓΓ j|) (10.3.4)

Here θ(x) is the Heavyside step function. C(ε) is the correlation integral which counts the number 

of pairs of points whose distance of separation |ΓΓΓΓ i    −−−−    ΓΓΓΓ j| is less than ε. The correlation dimension is

 D
C
   =   lim

ε→0
   lim

N→∞
   

| ln ε |
ln C(ε)  .   (10.3.5)

It has been argued that the correlation dimension can be calculated numerically, more easily and 

more reliably than either the information dimension or the fractal dimension.

Generalized Dimensions
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In a series of paper by Grassberger (1983), Hentschel and Procaccia (1983) Halsey et. 

al. (1986), and Procaccia (1985) it has been shown that the concept of dimension can be 

generalized further. They introduce a generating function Dq which provides an infinite spectrum of 

dimensions depending upon the value of q. We will show that all previous dimensions are related 

to special values of q. Again we divide the attractor into boxes of linear dimension ε, and let pi be 

the probability that the trajectory on the strange attractor visits box i. By averaging powers of the 

pi's over all boxes, the generalized dimension Dq is obtained

 Dq   =  - lim
ε→0

   
q-1
1   

| ln ε |
1   ln 

 


∑

i

 pi
q 

  

.   (10.3.6)

There are formal similarities between the Dq and the free energy per particle Fβ  in the 

thermodynamic limit,

 Fβ   =   -  lim
N→∞

   
β
1  

N
1   ln (∑

i

 (e
-E

i )
β) (10.3.7)

where Ei are the energy levels in the system, N is the number of particles and β = (kBT)-1 is the 

inverse temperature. The analogy is not a strict one as the probability of state i, is  exp(-βEi)  rather 

than simply  exp(-Ei) as implied above. Also the probabilities pi are normalized, while neither 

exp(-βEi) nor exp(-Ei) are normalized. This is crucial in statistical mechanics since if normalized 

probabilities are inserted into equation (10.3.7) in place of exp(-βEi), the free energy Fβ is trivially 

zero.

It straightforward to see that Dq gives each of the previously defined dimensions. For 

q=0,  piq = 1 for all values of i, so that

 D0   =   lim
ε→0

   
| ln ε |

ln ∑
i=1

N(ε)

 1

   =   lim
ε→0

   
| ln ε |
ln N(ε)

 .  (10.3.8)

This is the fractal or Hausdorff dimension equation (10.3.1).

For q=1 consider the limit

 lim
q→1

   
q-1

ln ∑
i

 p
i

q

   =   lim
q→1

   

dq
d  (q-1)

dq
d   ln ∑

i

 p
i

q

   =   ∑
i

 pi  ln pi   =  - S(ε).   (10.3.9)

Substituting this limit into the expression for Dq gives
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 lim
q→1

   Dq   =   lim
ε→0

  
| ln ε |
S(ε)    =   D

1
.   (10.3.10)

This is simply the information dimension. For q=2 it is easy to show that the generalized 

dimension is the correlation dimension.

The generalized dimension Dq is a non-increasing function of q. To show this we 

consider the generalized mean M(t) of the set of positive quantities {a1,...., an}, where pk is the 

probability of observing ak. The generalized mean is defined to be

 M(t)   =   ( ∑
k=1

n

 p
k
 a

k
t  )

1/t
(10.3.11)

This reduces to the familiar special cases; M(1) is the arithmetic mean and the limit as t→0 is the 

geometric mean. It is not difficult to show that if ak = pk(ε), where the pk(ε) are a set of discrete 

probabilities calculated using a length scale of ε, then the generalized dimension in equation 

(10.3.6) is related to the generalized mean by

 Dq   =  - lim
ε→0

   
| ln ε |

ln M(q-1) .   (10.3.12)

Using a theorem concerning generalized means, M(t) ≤ M(s) if t<s (Hardy, Littlewood and Pólya 

(1934), page 26) it follows that if  s>t then Ds ≤ Dt.

The Probability Distribution on the Attractor

If we consider the quadratic map for µ=4, the distribution of the iterates shown in 

Figure 10.5, is characterized by the two singularities at x=0 and x=1. For µ=3.65, the distribution 

of iterates, shown in Figure 10.4, has approximately ten peaks which also appear to be 

singularities. It is common to find a probability distribution on the attractor which consist of sets of 

singularities with differing fractional power law strengths. This distribution of singularities can be 

calculated from the generalized dimension Dq. To illustrate the connection between the generalized 

dimensions Dq and the singularities of the distribution function, we consider a one-dimensional 

system whose underlying distribution function is 

 ρ(x)   =   
2
1 x-1/2          for  0 ≤ x ≤ 1. (10.3.13)

First note that, despite the fact that ρ(x) is singular, ρ(x) is integrable on the interval 0≤x≤1 and it 

is correctly normalized. The generalized dimension Dq is defined in terms of discrete probabilities 

so we divide the interval into bins of length ε - [0,ε) is bin 0, [ε,2ε) is bin 1, etc.. The probability 

of bin 0 is given by
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 p
0
   =   ∫

0

ε

 dx  
2
1 x-1/2   =   ε1/2 (10.3.14)

and in general the probability of bin i is given by

 pi    =   ∫
xi

x
i
+ε

 dx  
2
1 x-1/2   =   (xi+ε)1/2

   -   xi
1/2 (10.3.15)

where xi = iε. As  (xi+ε)1/2 is analytic for i≠0, we can expand this term to obtain

 p
i
   =   

2
1 x

i
-1/2 ε  +  O(ε2)   =   ρ(x

i
) ε  +  O(ε2) (10.3.16)

So for i=0,  pi ~ ε1/2  but for all nonzero values of i,  pi ~ ε. To construct Dq we need to calculate

 ∑
i=0

  pi
q
    =    p0

q
   +   ∑

i≠0

  pi
q
   =   εq/2

   +   εq-1
  ∑

i≠0

  ρ(xi )
q
 ε (10.3.17)

We can replace the last sum in this equation by an integral,

 ∑
i≠0

  ρ(x
i
)
q
 ε   ≅     ∫

ε

1

 dx  ρ(x)
q
   =   a (1 - ε1-q/2) (10.3.18)

where  a = (1/2)q (1 - q/2)-1. Combining this result with that for i=0 we obtain

 ∑
i

  pi
q
   =   (1 - a) ε

q/2
   +   a εq-1

 (10.3.19)

The distribution function ρ(x) in equation (10.3.13) gives rise to singularities in the discrete 

probabilities pi.

If the discrete probabilities scale with exponent α, so that pi~ εαi and

 p
i
q   ~   ε

α
i
q
,  (10.3.20)

then α  can take on a range of values corresponding to different regions of the underlying 

probability distribution. In particular, if the system is divided into pieces of size ε, then the number 

of times α takes on a value between α' and α'+dα' will be of the form
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 dα '   ρ(α ')  ε-f(α '), (10.3.21)

where f(α ') is a continuous function. The exponent f(α ') reflects the differing dimensions of the 

sets whose singularity strength is α '. Thus fractal probability distributions can be modeled by 

interwoven set of singularities of strength α, each characterized by its own dimension f(α).

In order to determine the function f(α) for a given distribution function, we must relate 

it to observable properties, in particular we relate f(α) to the generalized dimensions Dq. As q is 

varied, different subsets associated with different scaling indices become dominant. Using 

equation (10.3.21) we obtain

 ∑
i

  pi
q
   =   ∑

i

  εi
αq

   =   ∫dα '  ρ(α ') ε-f(α ')
  εα 'q

.  (10.3.22)

Since ε is very small, the integral will be dominated by the value of α' which makes the exponent 

qα'-f(α') smallest, provided that ρ(α') is nonzero. The condition for an extremum is

 
dα '
d  [qα ' - f(α ' )]   =   0   and    

dα '
2

d
2

 [qα '  - f(α ' )]   >   0, (10.3.23)

If α(q) is the value of α ' which minimizes qα '-f(α ') then f'(α(q)) = q and f"(α(q)) < 0. If we 

approximate the integral in equation (10.3.22) by its maximum value, and substitute this into 

equation (10.3.6) then

 Dq   =     
q - 1

1  [qα(q)  -  f(α (q))]. (10.3.24)

so that

 f(α)   =   q α (q)  -  (q-1) Dq.  (10.3.25)

Thus if we know f(α), and the spectrum of α values we can find Dq. Alternatively, given Dq we 

can find α(q), since f'(α) = q implies that

 α(q)   =   
dq
d  [(q - 1) Dq], (10.3.26)

and knowing α(q), f(α(q)) can be obtained.

Dynamic Invariants

Grassberger and Procaccia (1983) and Eckmann and Procaccia (1986) have shown 
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that it is possible to define a range of scaling indices for the dynamical properties of chaotic 

systems. Suppose that phase space is partitioned into boxes of size ε, and that a measured 

trajectory X(t) is in the basin of attraction. The state of the system is measured at intervals of time 

τ. Let p(i1,...,in) be the joint probability that X(t=τ) is in box i1, X(t=2τ) is in box i2,..., and 

X(t=nτ) is in box in. The generalized entropies Kq are defined by

 Kq   =  -  lim
τ→0

   lim
ε→0

   lim
n→∞

   
nτ
1  

q-1
1   ln   ∑

i
1
,i

2
,. . , i

n

    p
q
(i1,i2, . . . ,in) (10.3.27)

where the sum is over all possible sequences i1,...,in. As before the most interesting Kq for 

experimental applications are the low order ones. The limit q→0 Kq = K is the Kolmogorov or 

metric entropy, whereas K2 has been suggested as a useful lower bound on the metric entropy. 

For a regular dynamical system K=0, and for a random signal K=∞. In general for a chaotic 

system K is finite, and related to the inverse predictability time and to the sum of the positive 

Lyapunov exponents. The Legendre transform of (q-1)Kq, that is g(Λ ), is the analogue of 

singularity structure quantities f(α) introduced in the last section (see Jensen, Kadanoff and 

Procaccia, 1987 for more details).

Lyapunov Exponents

In §3.4 we introduced the concept of Lyapunov exponents as a quantitative measure of 

the mixing properties of a system. Here we will develop these ideas further, but first we review the 

methods which can be used to calculate the Lyapunov exponents. The standard method of 

calculating Lyapunov exponents for dynamical systems is due to Benettin et. al. (1976) and 

Shimada and Hagashima (1979). They linearize the equations of motion and study the time 

evolution of a set of orthogonal vectors. To avoid problems with rapidly growing vector lengths 

they periodically renormalize the vectors using a Gram-Schmidt procedure. This allows one vector 

to follow the fastest growing direction in phase space, and the second to follow the next fastest 

direction, while remaining orthogonal first vector, etc. The Lyapunov exponents are given by the 

average rates of growth of each of the vectors.

A new method of calculating Lyapunov exponents has been developed by Hoover and 

Posch (1985) and extended to multiple exponents by Morriss (1988) and Posch and Hoover 

(1988). It uses Gauss' principle of least constraint to fix the length of each tangent vector, and to 

maintain the orthogonality of the set of tangent vectors. The two extensions of the method differ in 

the vector character of the constraint forces - the Posch-Hoover method uses orthogonal forces, 

while the Morriss method uses non-orthogonal constraint forces. In earlier chapters we  have used 

Gauss' principle to change from one ensemble to another. This application of Gauss' principle to 

the calculation of Lyapunov exponents exactly parallels this situation. In the Benettin method one 

monitors the divergence of a pair of trajectories, with periodic rescaling. In the Gaussian scheme 

we monitor the force required to keep two trajectories a fixed distance apart in phase space.
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Lyapunov Dimension

The rate of exponential growth of a vector δx(t) is given by the largest Lyapunov

 exponent. The rate of growth of a surface element δσ(t)=δx1(t)×δx2(t) is given by the sum of the 

two largest Lyapunov exponents. In general the exponential rate of growth of a k-volume element 

is determined by the sum of the largest k Lyapunov exponents λ1+....+λk. This sum may be 

positive implying growth of the k-volume element, or negative implying shrinkage of the k-volume 

element.

A calculation of the Lyapunov spectrum gives as many  Lyapunov exponents as phase 

space dimensions. All of the previous characterizations of chaos that we have considered, have  led 

to a single scalar measure of the dimension of the attractor. From a knowledge of the complete 

spectrum of Lyapunov exponents Kaplan and Yorke (1979) have conjectured that the effective 

dimension of an attractor is given by that value of k for which the k-volume element neither grows 

nor decays. This requires some generalization of the idea of a k-dimensional volume element as the 

result is almost always non-integer. The Kaplan and Yorke conjecture is that the Lyapunov 

dimension can be calculated from 

 D
L
KY

    =    n   +   
| λ

n+1
 |

∑
i=1

n

  λ
i

(10.3.28)

 where  n  is the largest integer for which    ∑
i=1

n

  λ
i
   >   0.

Essentially the Kaplan-Yorke conjecture corresponds to plotting the sum of Lyapunov exponents 

ΣΣΣΣin λi versus n, and the dimension is estimated by finding where the curve intercepts the n-axis by 

linear interpolation. 
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Figure 10.7 We show the sum of the largest n exponents, plotted as a function of 
n, for three-dimensional 8-particle Couette flow at three different shear 
rates γ = 0, 1, and 2. The Kaplan-Yorke dimension is the n-axis 
intercept.

There is a second postulated relation between Lyapunov exponents and dimension due 

to Mori (1980). 

 D
L
M    =    m

0
   +   m+ (1  +  

| λ -
 |

| λ+
 |
 ) (10.3.29)

where  m0  and  m+  are the number of zero and positive exponents respectively, and  λ± is the 

mean value of the positive or negative exponents (depending upon the superscript). Farmer (1982) 

gives a modified form of the Mori dimension which is found to give integer dimensions for 

systems of an infinite number of degrees of freedom.
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1 0 . 4 Chaos in Planar Couette Flow

We have seen in §10.2 that in apparently simple dynamical systems such as the 

quadratic map and the Lorenz model, a single trajectory or sequence of iterates can have quite 

unusual behavior. In §10.3 we introduced a number of techniques to characterize the dynamical 

behavior of a system with a strange attractor. Here we will apply those techniques to the SLLOD 

planar Couette flow algorithm that was introduced in Chapter 6. The first difficulty is that to apply 

the various techniques that determine the dimension of an attractor, the dimension of the initial 

phase space must be small enough to make the numerical calculations feasible. To calculate the 

static dimensions Dq we need to calculate the discrete probability distribution function. To do this 

we divide phase space up into boxes of size ε. The number of boxes needed varies as (1/ε)6N, for a 

6N dimensional phase space. Such a calculation quickly becomes impractical as the phase space 

dimension increases. A typical statistical mechanical system has a phase space of 2dN dimensions 

(where d is the dimension of the translational coordinate space of a single particle) so clearly N 

must be small, but also N must be large enough to give nontrivial behavior. Surprisingly enough 

both of these considerations can be satisfied with d=2 and N≥2 (Ladd and Hoover, 1985, Morriss 

et.al., 1985,1986).

The SLLOD equations of motion for Gaussian thermostatted planar Couette flow are;

 .
q i    =   m

p
i    +   i  γ yi

.
p i    =   F i    -   i  γ pyi   -   αp i   (10.4.1)

 α     =    

∑
i=1

N

  p
i

2

∑
i=1

N

  ( F i .pi   -   γ pxi  pyi  )

(10.4.2)

i is the unit vector in the x-direction, and γ is the strain rate. The dissipative flux J(ΓΓΓΓ ) due to the 

applied field is found from the adiabatic time derivative of the internal energy H0. Here J(ΓΓΓΓ) is the 

shear stress Pxy(ΓΓΓΓ) times the volume V;

 P
xy

(ΓΓΓΓ ) V   =   ∑
i=1

N

 (
m

p
xi

 p
yi   +  y

i
 F

xi
 ) (10.4.3)

and the shear rate dependent viscosity η(γ) is related to the shear stress in the usual way  η (γ) γ = 

-<Pxy>.

  If we consider a two-dimensional, two-body, planar Couette flow system we find that 

Chapter 10 - 25



the total phase space has eight degrees of freedom - {x1,y1,x2,y2,px1,py1,px2,py2}. We then 

construct an infinite system made up of periodic replications of the central two-particle square, 

using the usual sliding brick periodic boundary conditions (see §6.3). We choose an origin for the 

coordinate axis where ΣΣΣΣi    pi = 0 and ΣΣΣΣi yi = 0. In this case both the centre of mass and the total 

momentum are constants of the motion. If the total kinetic energy (kinetic temperature) is also 

fixed, the accessible phase space has three dimensions. A convenient choice for these three 

variables is; the relative separation of the two particles (x12,y12) = (x2-x1, y2-y1), and the direction 

of the momentum vector of particle one (px1,py1) with respect to the x-axis, which we call θ. The 

magnitude of the momentum is fixed by the total kinetic energy constraint and the fact that 

p1+p2=0. For N>2 we find the total phase space reduces from 4N degrees of freedom to 4N-5, 

when the fixed centre of mass, fixed linear momentum and the constant value of kinetic energy are 

taken into account. The sliding brick periodic boundary conditions in the Couette flow algorithm 

induce an explicit time dependence into the equations of motion for Couette flow. This is most 

easily seen by removing the potential cutoff. The force on particle i due to particle j is then given by 

a lattice sum where the positions of the lattice points are explicit functions of time. The equations of 

motion are then nonautonomous and hence do not have a zero Lyapunov exponent. These 4N-5 

equations can be transformed into 4N-4 autonomous equations by the introduction of a trivial extra 

variable whose time derivative is the relative velocity of the lattice points one layer above the central 

cell. In this form there is a zero Lyapunov exponent associated with this extra variable (see Haken, 

1983). Here we work with the 4N-5 nonautonomous equations of motion and we ignore this extra 

zero Lyapunov exponent.

Information dimension

The first evidence for the existence of a strange attractor in the phase space of the two-

dimensional, two-body planar Couette flow system was obtained by Morriss (1987). He showed 

numerically that the information dimension of two-body planar Couette flow is a decreasing 

function of the strain rate, dropping steadily from three towards a value near two, before dropping 

dramatically at a critical value of the strain rate to become asymptotic to one. These results are for 

the WCA potential (equation 6.1.5) at a reduced temperature of 1 and a reduced density of 0.4. The 

sudden change in dimension, from a little greater than two to near one, is associated with the onset 

of the string-phase for this system (see §6.4). A change in effective dimensionality for shearing 

systems of 896 particles, under large shear rates, has been observed. In this case the vector 

separation between two atoms r ij = (xij ,yij ) has components whose sign is independent of time. 

This arises because within strings the atoms are ordered, and the strings themselves once formed 

remain forever intact, (and in the same order). It has been shown that the string phase is an artifact 

of the definition of the temperature with respect to an assumed streaming velocity profile (§6.4), 

so it is likely that this decrease in dimensionality is pathological, and not associated with the 

attractor which is found at intermediate strain rates.
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Generalized Dimensions

Morriss (1989) has calculated the generalized dimension Dq and the spectrum of 

singularities f(α) for the steady state phase space distribution function of two dimensional two-

body planar Couette flow using the WCA potential at a reduced temperature of 1 and a reduced 

density of 0.4. This system is identical to that considered in the information dimension calculations 

referred to above. The maximum resolution of the distribution function was 3x26 bins in each of 

the three degrees of freedom, leading to more accurate results than the previous information 

dimension calculations. He found that at equilibrium the discrete probabilities pi(ε) scale with the 

dimension of the initial phase space. Away from equilibrium the pi(ε) scale with a range of indices, 

extending from the full accessible phase space dimension to a lower limit which is controlled by the 

value of the shear rate γ.

3.02.82.62.42.22.0
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Figure 10.8 The spectrum of phase space singularities for two dimensional 2 particle planar 
Couette flow at T*=1 and ρ*=0.4 as a function of γ. The function f(α) is the 
dimension of the set of points on the attractor that scale with exponent α. The 
range of singularities extends from 3 to αmin where the value of αmin  
decreases with increasing strain rate.

In Figure 10.8 we present the singularity distribution f(α) for a number of values of the 

strain rate γ. The results near γ=0 depend significantly on the values of grid size used, and could 

be improved by considering finer meshes (the minimum grid size is limited by computer memory 

size). At higher values of γ (say γ=1) the values of f(α) above the shoulder in Figure 10.8, are 

insensitive to grid size. However, the position of the shoulder does change with grid size. In the 

limit q→∞, the value of Dq and hence the value of α = αmin for which f(α)→0, is controlled by 

the scaling of the most probable pi in the histogram pmax. It is easy to identify pmax and determine 

its scaling as an independent check on the value of αmin. Just as large positive values of q weight 

the most probable pi most strongly, large negative values of q weight the least probable pi most 

strongly. The accuracy with which the least probable pi can be determined limits the minimum 
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value of q for which the calculation of Dq is accurate. This is reflected in poor values of Dq for 

q≤0.5, and we believe is a contributing factor in obtaining inconsistent values of the fractal 

dimension D0.

We interpret the results shown in Figure 10.8 as follows. The value of f(α) is the 

dimension of the set of points on the attractor which scale as εα in the discrete phase space 

distribution function {pi}. For this system it implies singularities of the form  |ΓΓΓΓ -ΓΓΓΓ0|α-3  in the 

underlying (continuous) phase space distribution function  f(ΓΓΓΓ ,γ). At equilibrium most pi's scale 

as ε3, with a very narrow spread of lower α values. Indeed with finer grid sizes this distribution 

may narrow still further. Away from equilibrium two effects are clearly discernible. First the 

dimension of the set of pi's which scale as ε3 drops with increasing γ. Second the distribution of 

values of α increases downwards with the lower limit αmin controlled by the value of γ. This 

distribution is monotonic with the appearance of a shoulder at an intermediate value of α.

Having calculated the full phase space distribution function on a resolution ε we can 

investigate the behavior of the various reduced distributions, for example we may consider the 

coordinate space distribution function f2(r,φ), or the distribution of the momentum angle θ. Each 

of these reduced distributions is obtained by integrating (or summing) over the redundant 

coordinates or momenta. Perhaps the most interesting of these reduced distribution functions is the 

coordinate space distribution f2(x12,y12), shown in Figure 10.9.

Figure 10.9 The coordinate space distribution function for the relative position coordinate 
(x12,y12) at γ=1.25. The centre of the plot is the position of particle 1 
(x1,y1), that is x12=y12=0. Notice that there is a preference for collisions to 
occur in the top right-hand side and lower left-hand side, and a significant 
depletion of counts near x12=0. ρ*=0.4,e*=0.25.
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If the underlying continuous distribution function has a singularity of the form |ΓΓΓΓ-ΓΓΓΓ0|α-3, then f2 

can have singularities of the form |ΓΓΓΓ -ΓΓΓΓ0|α-2. However, if  2≤α≤3 then these points are no longer 

singularities, and the reduced distribution f2 has a different character to the full phase space 

distribution. If the exponent  α-2 is positive, then f2 is zero at  ΓΓΓΓ0 and the discrete probability pi(ε) 

which includes ΓΓΓΓ0 will scale as ε2, whereas if α-2 is negative then f2 is singular. 

In this study all  the two variable distribution functions, although being highly 

structured in many cases, did not show any evidence of singularity sets of non-zero measure. This 

observation has important ramifications for the Green entropy which we will meet in §10.5.

Lyapunov Exponents

The complete set of Lyapunov exponents for two and three-dimensional planar Couette 

flow have been calculated for 2,4 and 8 particle systems by Morriss (1988,1989). For the two 

particle system the Lyapunov dimension DL has been calculated using both the Mori and Kaplan-

Yorke conjectures (equations 10.3.31 and 10.3.32). This requires the complete set of Lyapunov 

exponents (that is 3 exponents for N=2) and has the advantage over static dimensions that no 

subsequent extrapolation procedure is needed. The following table contains the results for the two-

body, two-dimensional Couette flow system at the same state point as that used in the information 

and generalized dimension calculations.

For both the Kaplan-Yorke and Mori forms, the Lyapunov dimension is found to be a 

decreasing function of the shear rate. This is consistent with the contraction of phase space 

dimension that we have already seen from the numerical evaluated static dimensions Dq. It 

confirms that the nonequilibrium distribution function is a fractal attractor whose dimension is less 

than that of the equilibrium phase space. When the shear rate γ is zero, both methods of calculating 

the Lyapunov dimension agree. However, as soon as the shear rate changes from zero, differences 

appear. In the Kaplan-Yorke formula (equation 10.3.31), the value of  n  is  2  from  γ = 0,  until 

the magnitude of λ2 exceeds that of λ1 (somewhere between γ = 2 and 2.5). This means that  2 < 

DLKY < 3  in this range. For γ > 2,  1 < DLKY < 2 as long as λ1 remains positive. The value of λ3 

is irrelevant as soon as | λ2 | > λ1. Then as λ1 becomes negative the dimension is equal to zero. 

The Kaplan-Yorke formula can never give fractional values between zero and one. In the Mori 

formula the value of λ3 always contributes to the dimension, and its large negative value tends to 

dominate the denominator, reducing DLM. The transition from DLM > 2 to DLM < 2 is somewhere 

between γ = 1 and 1.5. Indeed the Mori dimension is systematically less than the Kaplan-Yorke 

dimension.
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__________________________________________________________________________

Table 10.1:       Lyapunov Exponents for N = 2        Dimension

γ λ1 λ2 λ3 DLKY DLM

0 2.047(2) 0.002(2) -2.043(2) 3.003 3.00

0.25 2.063(3) -0.046(2) -2.1192(3) 2.952 2.90

0.5 1.995(3) -0.187(4) -2.242(3) 2.81 2.64

0.75 1.922(4) -0.388(3) -2.442(3) 2.62 2.36

1.0 1.849(5) -0.63(1) -2.74(1) 2.445 2.10

1.25 1.807(4) -0.873(5) -3.17(1) 2.295 1.89

1.5 1.800(5) -1.121(2) -4.12(5) 2.14 1.68

1.75 1.733(4) -1.424(3) -5.63(6) 2.058 1.49

2.0 1.649(9) -1.54(1) -7.36(8) 2.015 1.37

2.25 1.575(3) -1.60(1) -9.25(9) 1.981 1.29

2.5 1.61(2) -2.14(1) -11.5(1) 1.75 1.24

2.75 0.2616(8) -2.12(1) -19.84(3) 1.123 1.02

3.0 0.678(5) -2.69(1) -19.85(2) 1.252 1.06

3.5 -0.111(4) -2.62(1) -17.49(4) 0 0

4.0 0.427(4) -4.25(1) -14.43(5) 1.10 1.05

4.5 -0.674(5) -2.96(1) -10.78(3) 0 0

5.0 -0.132(2) -1.97(1) -8.152(3) 0 0

__________________________________________________________________________

In Table 10.2 we compare the values of Dq for 2 particle two-dimensional planar 

Couette flow for several values of q, with the Kaplan-Yorke Lyapunov dimension for this system 

obtained from the full spectrum of Lyapunov exponents. Of the two routes to the Lyapunov 

dimension the Kaplan-Yorke method agrees best with the information dimension results of Table 

10.2, whereas the Mori method does not. In particular the Kaplan-Yorke method and the 

information dimension both give a change from values greater than two, to values less than two at 

about  γ = 2.5. There are a number of points to note about the results in this table. First, it can be 

shown that D1 is a lower bound for D0, however the numerical results for D0 and D1 are 

inconsistent with this requirement as D0< D1. As we remarked previously, the results for Dq when 

q<0.5 are poor. It has been argued that the fractal (Hausdorff) dimension and Kaplan-Yorke 

Lyapunov dimension should yield the same result, at least for homogeneous attractors. In this 

work we find that DLKY is significantly lower than D1 (which is itself a lower bound on D0) for all 

values of the strain rate. Indeed DLKY is approximately equal to Dq, where q somewhat greater than 

3.
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__________________________________________________________________________

Table 10.2 Generalized Dimensions

γ D0 D1 D2 D3 DLKY

0.0 2.90(1) 2.98(2) 2.98(2) 2.98(2) 3.003

0.1 2.91 2.98 2.98 2.98 -

0.25 2.91 2.98 2.98 2.97 2.95

0.5 2.91 2.97 2.95 2.91 2.81

1.0 2.89(1) 2.90(3) 2.67(3) 2.49(3) 2.445

1.5 2.87 2.75 2.290 2.15 2.14

2.0 2.80(3) 2.65(3) 2.20(2) 2.10(3) 2.015

__________________________________________________________________________

It is possible to calculate the Lyapunov exponents of systems with more than two 

particles, whereas extending the distribution function histograming algorithms for the information 

dimension or  generalized dimension is much more difficult. The full Lyapunov spectrum has been 

calculated for 4 and 8 particle planar Couette flow systems in both two and three dimensions.

In Figure 10.10 we show the Lyapunov spectra for the 4 particle system at ρ=0.4 for a 

range of values of the shear rate. For the equilibrium spectrum (γ=0) one exponent is zero, while 

the others occur in Smale pairs {λ-i,λ+i}, where λ-i = -λi. This symmetry is a consequence of the 

time reversibility of the equations of motion and the conservation of phase space volume from the 

Liouville theorem. For the two-dimensional system the exponents appear to be essentially linear in 

exponent number, but a linear fit to the positive exponents is not consistent with an exponent of 

zero for exponent number zero. As the external field is increased systematic changes in the 

Lyapunov spectrum occur.

The positive branch decreases, with the smallest positive exponent decreasing most. The largest 

positive exponent seems almost independent of the external field. We expect that the most vigorous 

mixing in phase space, which is controlled by the positive exponents, is first a function of the 

curvature of the particles themselves (the higher the curvature, the more defocusing is each 

collision), and second depends on the collision frequency (and hence the density). It could be 

argued that the insensitivity of the largest exponent is associated with only a small change in 

collision frequency with strain rate, at this density. The zero exponent becomes more negative with 

increasing field, as does the negative branch of the Lyapunov spectrum. The change in the negative 

branch is larger than the change in the positive branch. The change in the sum of each exponent 

pair is the same, that is  λ-i + λ+i = c, where c is constant independent of i and related directly to the 

dissipation. The change in the exponent which is zero at equilibrium is 1/2c.

 

Chapter 10 - 31

Denis Evans
This relationship is now known as the Conjugate Pairing Rule of Lyapunov exponents. It was first discussed and proved: Evans D.J., Cohen E.G.D. and Morriss G.P., "Viscosity of a simple fluid from its maximal Lyapunov exponents", Phys. Rev. A., 42, 5990-5997 (1990). See also, Sarman S., Evans D.J. and Morriss G.P., "Conjugate pairing rule and thermal-transport coefficients", Phys. Rev. A, 45, 2233-2242 (1992); Searles D.J., Evans D.J. and Isbister D.J., "The conjugate-pairing rule for non-Hamiltonian systems", Chaos, 8, 337-349 (1998).



6543210
-4

-2

0

2

0
1
2

Figure 1

n

Figure 10.10 The Lyapunov spectra for two-dimensional 4 particle planar Couette flow 
at T*=1 and ρ*=0.4. The open squares are for γ=0, the filled triangles are 
for γ=1 and the open circles are for γ=2. The Lyapunov spectra shifts 
downwards with increasing strain rate with the largest exponent shifting 
least. The sum of the exponents is zero at equilibrium and become more 
negative with increasing strain rate.

The idea of being able to characterize the Lyapunov spectrum without having to 

calculate all of the exponents is very attractive, as the computation time for the Gaussian constraint 

method depends on the fourth power of the number of particles N. We decided to compare the 

Lyapunov spectra as a function of system size, at the same state point. It is well known that the 

bulk properties will have some system size dependence, but the trends as a function of density and 

temperature should be reliable. In Figure 10.11 we present the Lyapunov spectra for an 

equilibrium system at ρ=0.4, for a range of system sizes N=2, 4 and 8. Each spectra is scaled so 

that the largest positive and negative exponents have the same exponent number regardless of 

system size. These results look very encouraging as the spectra of all three systems are very 

similar. The linear fit to the positive branch for N=4 and N=8 have slightly different slopes but the 

qualitative features are the same.
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Figure 10.11 The Lyapunov spectra for two-dimensional 2,4 and 8 particle equilibrium 
simulations at T*=1 and ρ*=0.4.  The spectra are scaled so that the largest 
positive exponent occurs at the same exponent number regardless of system 
size. The open squares are for N=2, the filled circles for N=4 and the open 
circles for N=8.

 In Figure 10.12 we present the Lyapunov spectra for a strain rate of γ=1.0 at ρ=0.4, for system 

sizes of N=2, 4 and 8. This shows that there is also a close correspondence between the results at 

different system sizes away from equilibrium.
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Figure 10.12 The Lyapunov spectra for two-dimensional 2,4 and 8 particle planar 
Couette flow at T*=1, ρ*=0.4, and γ=1.0.  The spectra are scaled so that 
the largest positive exponent occurs at the same exponent number 
regardless of system size. The open squares are for N=2, the filled circles 
for N=4 and the open circles for N=8. The open squares are for N=2, the 
filled circles for N=4 and the open circles for N=8.

In Figure 10.13 we show the Lyapunov dimension of the planar Couette flow system 

at ρ=0.4 as a function of strain rate, for a range of system sizes. For each system size the 

Lyapunov dimension is scaled by the equilibrium value, so that the plotted results represent the 

proportional reduction in dimension. The qualitative trends are the same. There is a decrease in 

dimension with increasing strain rate. The proportional change in dimension is greatest for the two 

particle system and smallest for the eight particle system, whereas the absolute changes are in the 

opposite order. 
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Figure 10.13 The Lyapunov dimension for two-dimensional 2, 4 and 8-particle 

Couette flow at T*=1, ρ*=0.4, as a function of strain rate. The 
values of dimension are scaled with respect to the equilibrium 
dimension so that the y-axis represents the proportional change in 
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dimension. The open squares are for N=2, the filled circles for N=4 
and the open circles for N=8.

In summary, the results confirm the dimensional contraction observed previously in 

two body, two-dimensional planar Couette flow simulations. The initial phase space dimension of 

D=2dN-2d-1, contracts with increasing external field, and the distribution function is only nonzero 

on a fractal attractor of dimension less than 2dN-2d-1. Although the results for these systems differ 

in detail from the generalized dimension results, the observation of significant dimensional 

contraction is universal. An approach which may help reduce the magnitude of the numerical 

calculations is the observation that the qualitative features of the spectra are essentially independent 

of system size.

If we consider the volume element V2dN where 2dN is the phase space dimension of the 

initial system (d is the spatial dimension and N is the number of particles), then we have that the 

phase space compression factor gives the rate of change of phase space volume (see equation 

3.4.19), so that the average of the divergence is equal to the sum of the Lyapunov exponents. A 

careful calculation of the divergence for the SLLOD algorithm, taking into account the precise 

number of degrees of freedom gives

 ∑
i=1

2dN-2d-1

 λ
i
   =   - (dN-d-1)α   +   

(dN-d-1) kT

γ Pxy
K

 V
(10.4.4)

where PxyK is the kinetic contribution to the shear stress and V is the volume. The term involving 

PxyK is order one whereas the first term is order N, so for many particle systems the second term 

can be ignored. For the systems considered here both terms must be included. This is a valuable 

consistency check on the accuracy of the numerical calculation of Lyapunov exponents.

We have now identified two effects associated with the phase space distribution 

functions of nonequilibrium systems; the first was dimensional contraction, and the second is a 

range of sets of fractional power law singularities. The two results are consistent in the sense that 

as each distribution function is normalized, the loss of probability due to dimensional contraction, 

is compensated for by the appearance of singularities in the distribution function.

Studies of two and three-dimensional colour diffusion systems by Posch and Hoover 

(1988) have produced an impressive calculation - the full Lyapunov spectrum for a three 

dimensional system of 32 repulsive Lennard-Jones atoms (185 Lyapunov exponents) - as well as 

results for the same system with 8 atoms. Lyapunov spectra are insensitive to ensemble, both at 

and away from equilibrium. All indications are that nonequilibrium systems are also insensitive to 

the details of the ensemble or thermostatting mechanism. On the other hand boundary effects do 

have a significant influence on the shape of spectra for small system. In particular, the 

homogeneous algorithms for shear flow (such as SLLOD) give different Lyapunov exponents to 

boundary reservoir methods (Posch and Hoover, 1989).

Chapter 10 - 35



As small NEMD simulations of planar Couette flow and colour diffusion are dominated 

by a fractal attractor whose dimension is determined by the strength of the applied field, this 

behaviour can be expected for all nonequilibrium steady state simulations. The existence of a fractal 

attractor is a vital clue to understanding the nonequilibrium entropy, but as yet we only have 

information concerning the rate of approach of a trajectory to the attractor, and measures of its 

effective dimension. We know a good deal about the structure of the attractor, and the singularities 

of the the nonequilibrium distribution function. Some recent work in the study of dynamical 

systems (Takahashi and Oono, 1984) shows that modeling chaotic behaviour with statistical 

mechanical analogues is a useful approach however, but to date the approach parallels irreversible 

thermodynamics with a continuous production of entropy. For a theory of nonequilibrium steady 

states, we need to be able to calculate an entropy shift from equilibrium to the steady state which 

is finite. The appearance of an attractor, and the relative stability of entropy producing trajectories 

provides a plausible explanation for the observation of irreversibility and a mechanism for the 

resolution of Löschmidt's paradox (Holian, Hoover and Posch, 1987).

It is interesting to make a connection between the results given here and the numerical 

calculations based on the Kawasaki distribution function. In §7.7 we described some very recent 

numerical studies of the Kawasaki form for the full nonlinear response of an equilibrium system 

subject to the sudden application of a fixed shear rate. From a theoretical point of view there are 

two points of interest in this stress growth experiment. First, is the renormalized Kawasaki shear 

stress equal to that observed directly? Second, how does the Kawasaki normalization behave as a 

function of time? The results show that the renormalized Kawasaki shear stress is in quite good 

agreement with the direct result, and that the Kawasaki normalization which is one initially, 

decreases with time. The results obtained here for the 2-body system suggest that the Kawasaki 

distribution function may have singularities which compensate for the observed decrease in both 

the individual probabilities and the normalization, and that these singularities are not adequately 

represented in the phase space sampling used.

Equation (10.1.4) implies that if we consider a comoving phase space volume element  

containing a fixed number of trajectories, then the local density of phase space increases 

indefinitely because the associated Lagrangian volume is constantly decreasing (because the sum of 

the Lyapunov exponents is negative). Since the contraction of the accessible phase space is 

continuous there is in a sense, no possibility of generating a steady state distribution function. 

Computed from the ostensible phase space the volume of accessible phase space shrinks at a 

constant rate becoming zero at infinite time. A steady state is in fact characterized by a constant rate 

of decrease in the relative volume occupied by accessible phase space. This is in spite of the fact 

that in a steady state averages of phase variables are constant. This apparent contradiction can be 

understood by considering the following example.

Suppose we consider a system which at t=0 occupies a 2-dimensional phase space 
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0<x,y<L. Suppose that by some means this thermostatted system is subject to a dissipative 

external field which, after initial transients, causes the distribution function, f(x,y), to collapse 

towards a one dimensional attractor, x2+y2=r2. At some time t, the distribution function is given 

by the equation,

 f(x,y,t)  ~  
2πr∆(t)

1      ;              r2 < x2 + y2 < (r+∆(t))2

              =     0            ;                        otherwise (10.4.5)

Further, we suppose that the width of the annulus which forms the distribution function satisfies 

an equation of motion,

 
dt

d∆(t)   =  -α∆(t) (10.4.6)

for some positive constant value of α. It is easy to see that in the steady state , df/dt = αf, which is 

the analog of (10.1.4). The phase space distribution function diverges at a constant rate, α. In spite 

of this, if we compute the phase average of a nonsingular phase variable B(x,y), time averages will 

converge exponentially fast towards their steady state values, <B(t)> - <B(∞)> ~ e-α t. This 

example points out that although the distribution function, as computed from the ostensible phase 

space, may be diverging at a constant rate, steady state phase averages may still be well defined 

and convergent. The distribution function computed from within the accessible phase space has no 

singularities, facc(x,y,t) ≡ f(x,y,t)/(2πr∆(t)) = 1, ∀ t,  provided, r2 < x2+y2 < (r+∆(t))2. In our 

example it is always uniform and constant in time. Phase averages are fundamentally functions of 

phase space distances not of volumes. Indeed the notion of a phase space volume is somewhat 

arbitrary.
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1 0 . 5 Green's Expansion for the Entropy

Since the dimension of the accessible phase space decreases to less than the ostensible 

2dN dimensions, the volume of the accessible phase space, as measured from the ostensible space 

is zero. The entropy of a system is proportional to the logarithm of the accessible phase volume. 

Since that volume as determined from the ostensible phase space, is zero, the entropy will diverge 

to negative infinity. These simple observations explain the divergence of entropy as computed in 

the ostensible space.  Presumably the thermodynamic entropy should be arrived at by integrating 

over the accessible phase space only. This would remove the apparent divergence. However the 

determination of the topology of the phase space which is accessible to nonequilibrium steady 

states is exceedingly complex. Even the dimension of the accessible space is only known 

approximately. Such a program for the calculation of the nonequilibrium entropy would therefore 

appear quite hopeless.

 The fine grained entropy as computed from the ostensible phase space dimension has a 

number of further difficulties. From a quantum mechanical point of view, if a system such as the 

one depicted in Figure 10.9 is meant to represent argon, it is in violation of the Heisenberg 

uncertainty principle. The uncertainty principle puts an absolute limit on the degree to which a 

distribution function can be fractal. There is a lower limit imposed by Planck's constant, to the 

scale of features in that can be found in phase space. The extreme fineness of the filaments depicted 

in Figure 10.9 implies extreme sensitivity to external perturbations. The finer the length scale of the 

phase space structures, the more sensitive those structures will be to external perturbations. If the 

distribution function is fractal, there is no limit to the smallness of the phase space structures and 

therefore no limit to the sensitivity of the full distribution function to uncontrolled external 

perturbations. In an experiment, averaging over an ensemble of possible external fluctuations 

would of course wash out the fine structure below a critical length scale. The precise cut-off value 

would be determined by the amplitude and spectrum of the external fluctuations. This washing out  

of fine structure provides an ansatz for the computation of the entropy of nonequilibrium steady 

states.

Evans(1989) described a systematic method for computing the coarse grained entropy 

of nonequilibrium steady states. The coarse graining is introduced by decomposing the Gibbs 

(1902) entropy, into terms arising from the partial distribution functions involving correlations of 

successive numbers of particles. If the expansion is carried out to order N, the total number of 

particles in the system, the results will of course be identical to the fine-grained Gibbs entropy. The 

expansion has been tested at equilibrium and it has been found that for densities less than ~ 75% of 

the freezing density, the singlet and pair contributions to the entropy appear to be accurate to more 

than ~90%. At equilibrium, the expansion therefore appears to converge rapidly. Away from 

equilibrium the expansion will consist of a series of finite terms until the dimension of the partial 

distribution function exceeds the dimension of the accessible phase space. Once this occurs all 

succeeding terms will be infinite. The method yields finite terms below this dimension because all 

Chapter 10 - 38

Denis Evans
For a mole of triple point argon sheared at the rate of 1Hz, the decrease of the Kaplan-Yorke dimension from the ostensible dimension of phase space (O(10^-23) is tiny namely ~3! Under the highest shear rates found in automobile engines the dimension reduction is 16 orders of magnitude greater than in 1Hz triple point argon, the relative dimension loss is still only 1 part in 10^7.  The relative smallness of the dimensional loss is the likely explanation of why linear irreversible thermodynamics provides such a useful description of deterministic nonequilibrium systems close to equilibrium, in spite of the fact that the fine grained Gibbs entropy diverges to negative infinity.  Apart from the fine grained Gibbs entropy, thermodynamic properties are insensitive to high order multi-body distribution functions.  The low order distribution functions "do not know" that the dimension of the steady state attractor is a couple of dimensions smaller than the ostensible ~10^23 dimensions of phase space! See:D J Evans, E G D Cohen D J Searles & F Bonetto J Stat Phys (to appear) http://xxx.lanl.gov/abs/cond-mat/9911455



the lower dimensional integrals are carried out in the accessible phase space.

H.S. Green used Kirkwood's factorization (1942) of the N-particle distribution 

function to write an expansion for the entropy. If we define z-functions in an infinite hierarchy, as
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where the various f-functions are the partial 1,2,3, .. -body distribution functions, then Green 

showed that Gibbs' fine grained entropy (equation 10.1.1) can be written as an infinite series,
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Using equation (10.5.1) one can easily show that the entropy per particle is given by the following 

series.
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In deriving this equation we have assumed that the fluid is homogeneous. This enables a spatial 

integration to be performed in the first term. This equation is valid away from equilibrium. Using 

the fact that at equilibrium the two body distribution function factors into a product of kinetic and 

configurational parts equation (10.5.3) for two dimensional fluids, reduces to,
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where g(r12) is the equilibrium radial distribution function. Equation (10.5.4) has been tested using 

experimental radial distribution function data by Mountain and Raveché (1971) and by Wallace  

(1987). They found that the Green expansion for the entropy, terminated at the pair level, gives a 

surprisingly accurate estimate of the entropy from the dilute gas to the freezing density. As far as 

we know prior to Evans’ work in 1989, the Green expansion had never been used in computer 

simulations. This was because, in the canonical ensemble, Green’s entropy expansion is non-local. 
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In Evans’ calculations the entropy was calculated by integrating the relevant distribution functions 

over the entire simulation volume. A recent reformulation of (10.5.4) by Baranyai and Evans, 

(1989), succeeds in developing a local expression for the entropy of a canonical ensemble of 

systems. Furthermore the Baranyai-Evans expression for the entropy is ensemble independent.

Evans (1989), used a simulation of 32 soft discs (φ(r) = ε(σ/r)12 truncated at r/σ=1.5) 

to test equation (10.5.4) truncated at the pair level. All units were expressed in dimensionless form 

by expressing all quantities in terms of the potential parameters σ,ε and the particle mass m. Table 

10.3, below shows some of the equilibrium data gathered for the soft disc fluid. All units are 

expressed in reduced form. Each state point was generated from a ten million timestep simulation 

run using a reduced timestep of 0.002. The energy per particle is denoted e, and the total 1 and 2-

body entropy per particle is denoted by s.  The entropy was calculated by forming histograms for 

both g(r ) and f(p). These numerical approximations to the distribution functions were then 

integrated numerically. The radial distribution function was calculated over the minimum image cell 

to include exactly the long ranged, nonlocal, contributions arising from the fact that at long range, 

g(r) = (N-1)/N. The equipartition, or kinetic, temperature corrected for O(1/N) factors, is denoted 

by Tk. The thermodynamic temperature Tth was calculated from equation (10.5.4) using the 

thermodynamic relation, Tth=∂e/∂s)V.  For each density the three state points were used to form a 

simple finite difference approximation for the derivative. 

The analytical expression for the kinetic contribution to the entropy was not used, but 

rather this contribution was calculated from simulation data by histograming the observed particle 

velocities and numerically integrating the single particle contribution. The numerical estimate for 

the kinetic contribution to the entropy was then compared to the theoretical expression (basically 

the Boltzmann H-function) and agreement was observed within the estimated statistical 

uncertainties.

By using the entropies calculated at ρ = 0.6, 0.7 to form a finite difference 

approximation to the derivative ∂s/∂ρ-1 one can compare the pressure calculated from the 

relation p=T∂S/∂V) E, with the virial expression calculated directly from the simulation. The virial 

pressure at e=2.134, ρ=0.65, is 3.85 whereas the pressure calculated exclusively by numerical
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__________________________________________________________________________

Table 10.3. Equilibrium moderate density data

ρ e s Tk Tth

__________________________________________________________________________

0.6 1.921 3.200
0.6 2.134 3.341 1.552 1.614
0.6 2.347 3.464

0.625 1.921 3.034
0.625 2.134 3.176 1.499 1.500
0.625 2.347 3.318

0.65 1.921 2.889
0.65 2.134 3.044 1.445 1.454
0.65 2.347 3.182

0.675 1.921 2.754
0.675 2.134 2.919 1.306 1.374
0.675 2.347 3.064

0.7 1.921 2.889
0.7 2.134 3.044 1.326 1.291
0.7 2.347 3.182

The uncertainties in the entropies are ±0.005.
__________________________________________________________________________

differentiation of the entropy is 3.72 ± 0.15. The largest source of error in these calculations is 

likely to be in the finite difference approximation for the various partial derivatives.

Away from equilibrium the main difficulty in using even the first two terms in equation 

(10.5.3) is the dimensionality of the required histograms. The nonequilibrium pair distribution 

function does not factorize into a product of kinetic and configurational parts. One has to deal with 

the full function of 6 variables for translationally invariant two dimensional fluid. In his work, 

Evans reduced the density to ρ~0.1 where the configurational contributions to the entropy should 

be unimportant. He evaluated the entropy of the same system of 32 soft discs, but now the system 

was subject to isoenergetic planar Couette flow, using the SLLOD equations of motion. In this 

simulation a constant thermodynamic internal energy H0 ≡  Σp2/2m + Φ was maintained. The 

thermostatting multiplier α, takes the form (see equation 5.2.3),

 α   =  -  

∑  m
pi

2

PxyγV
  (10.5.5)

where Pxy is the xy-element of the pressure tensor.

To check the validity of our assumption that at these low densities, the configurational 

parts of the entropy may be ignored, he performed some checks on the equilibrium thermodynamic 

properties of this system. Table 10.4 shows the thermodynamic temperature computed using a 
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finite difference approximation to the derivative, ∂e/∂s, (e=<H0>/N, s=S/N). It also shows the 

kinetic temperature computed using the equipartition expression. At equilibrium, the data at a 

reduced density of 0.1 predicts a thermodynamic temperature which is in statistical agreement with 

the kinetic temperature, 2.12±0.04 as against 2.17, respectively. The equilibrium data at e=2.134, 

ρ=0.1, gives a thermodynamic pressure of 0.22, in reasonably good agreement with the virial 

pressure (including both kinetic and configurational components) of 0.24. The disagreement 

between the thermodynamic and the kinetic expressions for both the temperature and the pressure 

arise from two causes; the absence of the configurational contributions, and the finite difference 

approximations for the partial derivatives.

Figure 10.14 shows the analogue of Figure 10.9 for a 32 particle system under shear. 

The nonequilibrium pair distribution function is free of the singularities apparent in the 2-particle 

system. The reason why it is smooth is that for 1 and 2-particle distributions in systems of many 

particles, one averages over all possible positions and momenta for the other N-2 particles. This 

averaging washes out the fine structure. These distributions even at very high strain rates, are not 

fractal. If the Green expansion converges rapidly we will clearly arrive at a finite value for the 

entropy.

Table 10.4 gives the computed kinetic contribution to the entropy as a function of 

energy, density and strain rate. At low densities the increased mean free paths of particles relative 

to the corresponding situation in dense fluids means that considerably longer simulation runs are 

required to achieve an accuracy comparable to that for dense fluids. The data given in table 10.4 is 

taken from 15 million timestep simulation runs. Away from equilibrium the strain rate tends to 

increase the mixing of trajectories in phase space so that the errors actually decrease as the strain 

rate is increased.

For a given energy and density, the entropy is observed to be a monotonically 

decreasing function of the strain rate. As expected from thermodynamics, the equilibrium state 

has the maximum entropy. Although there is no generally agreed upon framework for 

thermodynamics far from equilibrium, it is clear that the entropy can be written as a function, S = 

S(N,V,E,γ). Defining Tth as ∂E/∂S)V,γ, pth as T∂S/∂V)E,γ and ζ th as -T∂S/∂γ)E,V, we can write,

 dE  =  T
th

dS  -  pthdV  +  ζth
dγ (10.5.6)

Some years ago Evans and Hanley (1980) proposed equation (10.5.6) as a generalized Gibbs 

relation, however, at that time there was no way of directly computing the entropy or any of the 

free energies. This forced Evans and Hanley to postulate that the thermodynamic temperature was 

equal to the equipartition or kinetic temperature, Tk ≡ 2K/(dNkB), for systems in d dimensions. 

Evans and Hanley observed that away from equilibrium, although the pressure tensor is 

anisotropic, the thermodynamic pressure must be independent of the manner in which a virtual 

volume change is performed. The thermodynamic pressure must therefore be a scalar. They 
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assumed that the thermodynamic pressure would be equal to the simplest scalar invariant of the 

pressure tensor that was also consistent with equilibrium thermodynamics. In two dimensional 

systems they assumed that  p=(Pxx+Pyy)/2. 

Figure 10.14 Shows the pair distribution function for the 32-particle soft disc 
fluid at a relatively high reduced strain rate of 2.0. The reduced 
density and total energy per particle is 0.1, 1.921, respectively. 
The run length is 24 million timesteps. The distribution is, as 
far as can be told from the simulation data, completely smooth. 
In spite of the high anisotropy of this distribution, the 
configurational contribution to the system entropy is only about 
0.4%.

Since we can now calculate the coarse grained Gibbs entropy directly, we can check the 

correctness of these postulates. We assume, that the internal energy is given by the sum of the 

peculiar kinetic energy and the potential energy, that we know the system volume and strain rate 

and that the thermodynamic entropy is equal to the coarse grained Gibbs entropy which at low 

densities can be approximated by the first term of equation (10.5.3). Table 10.4 below shows a 

comparison of kinetic and thermodynamic temperatures for the 32-particle soft-disc system.
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_________________________________________________________________________

Table 10.4. Low density data

ρ γ e s Tk Tth

__________________________________________________________________________

0.075 0.0 2.134 6.213

0.1 0.0 1.921 5.812
0.1 0.0 2.134 5.917(27) 2.175 2.12(6)
0.1 0.0 2.346 6.013

0.125 0.0 2.134 5.686

0.075 0.5 1.921 5.744
0.075 0.5 2.134 5.852 2.190 2.088
0.075 0.5 2.347 5.948

0.1 0.5 1.921 5.539
0.1 0.5 2.134 5.653 2.171 2.048
0.1 0.5 2.346 5.747

0.125 0.5 1.921 5.369
0.125 0.5 2.134 5.478 2.153 2.088
0.125 0.5 2.347 5.573

0.075 1.0 1.921 5.380
0.075 1.0 2.134 5.499 2.188 1.902
0.075 1.0 2.347 5.604

0.1 1.0 1.921 5.275
0.1 1.0 2.134 5.392 2.169 1.963
0.1 1.0 2.346 5.492

0.125 1.0 1.921 5.157
0.125 1.0 2.134 5.267 2.149 2.019
0.125 1.0 2.347 5.368

Away from equilibrium the uncertainties in the entropy are ±0.005.
__________________________________________________________________________

As has been known for some time (Evans, 1983), ∂Tk/∂γ)V,E is negative leading 

to a decrease in the kinetic temperature with increasing strain rate. For this low density system 

the effect is far smaller than has been seen for moderately dense systems. At a density of 0.1 

the kinetic temperature drops by 0.3% as the shear rate is increased to unity. The precision of 

the kinetic temperature for these runs is about 0.01%. The thermodynamic temperature also 

decreases as the strain rate is increased but in a far more dramatic fashion. It decreases by 10% 

over the same range of strain rates. The results clearly show that away from equilibrium the 

thermodynamic temperature is smaller than the kinetic or equipartition temperature. As the 

strain rate increases the discrepancy grows larger.

Using the simulation data at e=2.134, one can estimate the thermodynamic pressure as 

a function of strain rate. Table 10.5 shows the finite difference approximation for the 

thermodynamic pressure, pth, the hydrostatic pressure, ptr= (Pxx+Pyy)/2 and the largest and 
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smallest eigenvalues of the pressure tensor p1,p2 respectively. As expected the hydrostatic pressure 

increases with shear rate. This effect, known as shear dilatancy, is very slight at these low 

densities. The thermodynamic pressure shows a much larger effect but it decreases as the strain 

rate is increased. In an effort to give a mechanical interpretation to the thermodynamic pressure we 

calculated the two eigenvalues of the pressure tensor. Away from equilibrium, the diagonal 

elements of the pressure tensor differ from one another and from their equilibrium values, these are 

termed normal stress effects. The eigenvalues are influenced by all the elements of the pressure 

tensor including the shear stress. One of the eigenvalues increases with strain rate while the other 

decreases and within statistical uncertainties the latter is equal to the thermodynamic pressure.

__________________________________________________________________________

Table 10.5. Nonequilibrium pressure.

e=2.134, ρ=0.1

__________________________________________________________________________

γ pth ptr p1 p2

0.0 0.215(7) 0.244 0.244 0.244
0.5 0.145 0.245 0.361 0.130
1.0 0.085 0.247 0.397 0.096

__________________________________________________________________________

Evans(1989) conjectured that the thermodynamic pressure is equal to the minimum 

eigenvalue of the pressure tensor, that is pth= p2. This relation is exact at equilibrium and is in 

accord with our numerical results. It is also clear that if the entropy is related to the minimum 

reversible work required to accomplish a virtual volume change in a nonequilibrium steady state 

system, then p2dV is the minimum pV work that is possible. If one imagines carrying out a virtual 

volume change by moving walls inclined at arbitrary angles with respect to the shear plane then the 

minimum virtual pV work (minimized over all possible inclinations of the walls) will be p2dV.

Figure 10.15 shows the kinetic contribution to the entropy as a function of strain rate 

for the 32-particle system at an energy e=2.134 and a density ρ=0.1. The entropy seems to be a 

linear function of strain rate for the range of strain rates covered by the simulations. Combining 

these results with those from Table 10.4 allows us to compute ζ th as a function of strain rate. For 

γ=0.0, 0.5, 1.0 we find that ζth/N = 1.22, 1.08, and 0.91 respectively. Most of the decrease in ζ is 

due to the decrease in the thermodynamic temperature with increasing strain rate. We have assumed 

that asymptotically s is linear in strain rate as the strain rate tends to zero. It is always possible that 

at strain rates which are too small for us to simulate, that this linear dependence gives way to a 

quadratic variation. 

Although these calculations are restricted to the low density gas regime, the results 

suggest that a sensible definition for the nonequilibrium entropy can be given. A definition, based 

on equation (10.5.3), avoids the divergences inherent in the fine grained entropy due to the 
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contraction of the nonequilibrium phase space. At low densities this entropy reduces to the 

Boltzmann entropy implicit in the Boltzmann H-function. Our entropy is, for states of a specified 

energy and density, a maximum at equilibrium.

Defining a temperature on the basis of this entropy, indicates that far from equilibrium 

there is no reason to expect that the equipartition, or kinetic temperature is equal to the 

thermodynamic temperature. Similarly there seems to be no reason to expect that the average of the 

diagonal elements of the pressure tensor will be equal to the thermodynamic pressure far from 

equilibrium. The concept of minimum reversible virtual work, together with our numerical results 

suggests that the thermodynamic pressure is instead equal to the minimum eigenvalue of the 

pressure tensor.
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Figure 10.15 Shows the kinetic contribution to the system entropy as a 
function of strain rate. The system density is 0.1 and the energy 
per particle is 2.134. Within the accuracy of the data the entropy 
is essentially a linear function of strain rate. The derivative of the 
entropy with respect to strain rate gives ζ /T. ζ  is positive but 
decreases with strain rate, mostly due to the decrease in the 
thermodynamic temperature with increasing strain rate.

One can form an exact fluctuation expression for our nonequilibrium entropy. In the 

low density regime one can use the exact time correlation function formalism (§7.3) to show that 

the single particle velocity distribution is related to transient correlations of the equilibrium stress, -

Pxy(0) and the transient probability that at a time s, a particle had a momentum p.
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 fss(p)  =  feq(p)
 



1 - βγV∫
0

∞

ds  Pxy(0) f(s;p) 
 



(10.5.7)

In this equation fSS is the steady state single particle distribution function. It is equal to the limit as 

s→∞, of f(s;p). feq is the initial equilibrium Maxwell-Boltzmann distribution with Boltzmann 

factor β=1/kBT, (note: f(s=0;p)= feq). Equation (10.5.7) may be substituted into the first term of 

(10.5.3), to give an exact expression for the low density entropy. It can then be used to compute 

various inter-relationships between entropy derivatives. It remains to be seen whether the entropy 

so defined, is a local maximum in nonequilibrium steady states. If this can be satisfactorily 

demonstrated then we will have for the first time a fundamental basis for a generalized 

thermodynamics of steady states far from equilibrium.
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