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Preface

These notes contain material from lectures in two courses PHYS 303 and
455 at UBC. Sections 1-7 largely presents material given fall 1996. That
year I went on to present the theory of Bose Einstein condensation and
superfluidity following closely the discussion of a book that I co-authored
with Michael Plischke at Simon Fraser University[1]. Since this material is
in print I do not reproduce it here. Instead I have added a discussion of
phase transitions from PHYS 455 some years earlier. Some of that material
is also incorporated in the book mentioned above, but the emphasis is quite
different. I have also added to section 2 some subsections on the Weibull
distribution and on scale free distributions (”Pareto tail”). This material
was taught in PHYS 455 but not in 303.

1 The historical origin of statistical mechanics

The foundation of statistical physics was laid towards the end of the nine-
teenth century by James Clerk Maxwell, Ludwig Boltzmann, Josiah Willard
Gibbs!, and largely completed by Albert Einstein in 1905.

Maxwell’s kinetic theory of gases can be said to represent the starting
point. We will get a flavor of his arguments from an outline of his derivation
of what is now called the Maxwell velocity distribution.

Boltzmann made the argument more general and introduced the concept
of ensembles. Instead of considering a single system he considered a large
number of equivalent systems which had been prepared in the same way.
He obtained probabilities for the possible states by calculating the relative
frequency that a given state would occur in the ensemble, using the principle
of a priori equal probabilities. Gibbs followed up by establishing the equiv-
alence of statistical physics and thermodynamics. He did this by stressing
an analogy with classical mechanics, which was the best understood branch
of theoretical physics at the time. Finally Einstein rounded out the picture
by his theory of fluctuations, diffusion and Brownian motion.

These developments happened before the advent of quantum mechan-
ics. Einstein’s theory of the photoelectric effect only appeared in 1905, and

'Readers who are interested in the history of science will enjoy Boltzmann’s own de-
scription of his ’sabbatical’ visit to California[2], and the article by Martin J Klein on the
life and times of Gibbs[3].



a comprehensive theory of quantum mechanics only became available two
decades later. However, statistical physics becomes simpler if one can appeal
to some quantum concepts.

Our starting point is the idea that one can count the number of available
states of a system. For us these will be discrete quantum states,although for
a large system the states will be very closely spaced. In classical mechanics
we describe a microscopic system by specifying the coordinates and momenta
of the particles. The allowed value of these form a continuum. The procedure
of counting requires, however discrete states. The modern way of getting
around this difficulty is to consider classical mechanics as a limiting case of
quantum mechanics, and we will take this approach, rather than following
the historical route.

We begin by reviewing some concepts of probability theory.

2 Probability distributions

2.1 Probabilities and averages.

There are two main approaches to the problem of estimating how often pos-
sible outcomes of random events will occur. We may predict the frequency
of allowed outcomes in repeated experiments from a prior: (first principles)
knowledge of the probabilities of contributing factors, making use of proper-
ties of permutations, combinations and binomial coefficients. Alternatively,
we may be able to observe the possible outcomes as they occur, and we may
wish to estimate a posteriori (after the fact) their probability from measured
frequencies of occurrence.

In the latter case, one way to proceed is to plot the data in a bar chart
(or histogram). As an example let us consider the distribution of speeds v
of a system of N particles. We divide the range of v into intervals or bins
of width A. The speed of a given particle lies in the i—th bin if its speed is
between v; and v; + A. We then count the number n; in each bin and plot
the result. If we only include a moderate number of particles, the resulting
bar chart will typically have a ragged shape as in figure 1 a. On the other
hand if we measure the speeds of a much larger number of particles it is
likely to have a more regular shape as indicated in figure 1 b.

According to the law of large numbers the relative frequency after many
measurements will almost always be close to a limiting value. This limiting



value is the probability p;, of any given particle being in the i—th bin

. n;
=1 - 1
Pi Ngnoo N ( )
An important property of probabilities is the fact that if two possible events
1 and j are exclusive the probability that one or the other happens is

p(i.or.g) = p(i) + p(5) (2)

Similarly if two possible events ¢ and j are independent the probability that
they both happen is

p(i.and.j) = p(i)p(j) (3)
If the two events are not independent they are said to be correlated. The
probability distribution for exclusive events satisfies the normalization con-

dition
1=3 pi (4)
[

The histogram represents a discrete distribution. The particle speed can in
general take on a continuous range of values. The continuous probability
distribution obtains from the limit

. P
;) = lim — 5
plog) = lim & 5)
The continuous probability distribution associated with the particle speed
may then look like figure 4. The probability that the speed of a particle is
between v; and v; +dv is p(v;)dv, and the continuous probability distribution

satisfies the normalization condition
[ po)dv =1 ®)

Equation (6) is a statement of the fact that since all the particles must have

some speed, the probabilities will add up to one. The mean speed is given
by

() = [ op(e)io ™)

Let f(v) be some property associated with the speed of a particle (e.g. the
particle kinetic energy is given by f(v) = lmw?, where m is the particle

2
mass). The average value of f(v) is then

() = [ £p()de (5)
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Figure 1: Speed distribution for (a) a large (b) a small number of particles.

In general, we will use angular brackets ( ) to describe averages. When
applied to a probability distribution, the mean is the average outcome. Since
we are dealing with probabilities, actual outcomes will typically deviate or
fluctuate from the average. Let x be a stochastic variable, i.e. a quantity
that can take on different values with some probability. A useful estimate of
a typical deviation of the value of x from the mean is the standard deviation
o or root mean square fluctuation

o= (@ - @) =/ - (@)? (9)

A closely related quantity is the variance: var = o2.

Sometimes it is useful to be able to change variables. Suppose a variable
v has a probability distribution p(v), i.e. the probability that v is between
and v+dv is p(v)dv. Let g(v) be some function of v. What is the probability
distribution p'(g) for g?

The situation is simple if g(v) has an inverse, i.e. only one value of
v corresponds to each allowed value of g. Then, the probability that g is
between g and g + dv can be expressed as

P'(9)ldgl = p(v)|dv] (10)
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Figure 2: The normal distribution.

If more than one value of v corresponds to each value of g one must divide
the range of v into intervals in which the derivative does not change sign.
One can then add up contributions to the probability from each interval.
Question: Why is it necessary to use the absolute value in 10?7

2.2 The Gaussian distributions and the random walk.

A probability distribution which occurs in many context is the Gaussian
or normal distribution which can be expressed in terms of the mean and

varian _(:B B <x>)2]

2(var)

g(z) = S — exp l

11

27 (var) (11)

The normal distribution is plotted in figure 2. The importance of the
this distribution is related to the central limit theorem of statistics:

Suppose z; is a random variable and X is the sum of N inde-
pendent such variables all with the same mean (z) and variance
var = (22) — (x)? In the limit that N gets very large the prob-
ability distribution for X will be Gaussian with mean N (z) and
variance V = N var.

Note that we are not assuming that the probability distribution for z is
Gaussian, only that it has a finite mean and a variance. The above result
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Figure 3: Error function

can be given a physical interpretation as a random walk. Consider a particle
which is moving either to the left or right with speed v. From time to
time the particle undergoes a collision, after which the particle with equal
probability either changes direction or moves on. Let the particle collide at
a constant rate. We first need to work out the survival probability p(r) that
a particle can travel a distance r without undergoing any collisions. The
probability that a collision occurs between r and r + dr is proportional to
dr. Let the proportionality constant be 1/, where [ is the mean free path.
The probability p(r 4+ dr) that no collisions occur in an interval of length
r 4 dr is thus p+ dp = p(r + dr) = p(r)(1 — %) or
pdr

dp = —= (12)

Since p(0) = 1 we find that p(r) satisfies the Poisson distribution
p(r) = exp(—r/l) (13)
The mean time between collisions is

1rd T d 17 !
T = rap _ —/r—pdr =1 /rexp(—r/l)dr = —
v v

0 0

0o v vdr



Since the particle travels with equal probability in either direction the mean
distance traveled is zero, while the variance is

o0 100
(r?) = (r)? _/ r’dp = — /2pdr—7/r exp(—r/l)dr = 21?
0

After some time t (assumed to be long compared to the mean time 7 between
collisions) the particle will have undergone
t t
N~ — = w
T l
collisions. From the central limit theorem the mean total distance traveled
will be zero while the variance is 212N = 2lvt. The probability distribution

of distances traveled is
— 2

4lvt

exp(-—) (14)

1
1) =
p(a,t) Varlot

The probability distribution for the distance traveled after one or a few
collisions will not be Gaussian, but the central limit theorem becomes ap-
proximately valid after a few collisions. Note that holds after many collisions
When dealing with Gaussian distributions the following integrals are useful

/ exp(—ax?)dz = 20/exp(—aa:2)da: = \/g (15)

—o0

o0 [o.¢] 1
/ 2% exp(—ax 2/x2 exp(—az?)dx = % g (16)
—00 0

/ zexp(— dx =0 (17)
—o0
o0

/xexp dr = 1 (18)

2a

The error function is defined as

T

/exp(—sz)ds (19)

—X

erf(z) = \/LE
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Figure 4: Maxwell speed distribution

and has the properties
erf(0) =0; erf(l) =1; erfc(z)=1— erf(z) (20)

where erfc(z) is called the complementary error function. Tables of the error

function are readily available. Plots of the error function is given in figure
3.

2.3 Maxwell speed distribution

Consider a gas at a given temperature 7. The molecules of the gas will
move about with different speeds in random directions. The likelihood that
a molecule has a given speed can be represented by a distribution function
p(v) according to which the probability that a given molecule has speed
between v and v 4+ dv is p(v)dv. The Maxwell speed distribution is

o))

10



where m is the mass of a molecule and kg = 1.38041 x 10~ Joules/Kelvin
is the Boltzmann constant. The distribution is normalized, i.e.

/oop(v)dv —1 (22)
0

) = [ wple)do = |22 (23)

The most probable speed v, of the distribution is the position of the peak
(see figure 4) and can be obtained by differentiating p(v) and putting the
result equal to zero. One finds

2kpT
vp = 4/ - (24)

02 = [ vpe)a = 22T (25)

m

The mean speed is

The mean square speed is

The mean speed and the root mean square (rms) speed are often used in
kinetic theory to describe a typical speed of a molecule.

To derive the result in Eq.(21) we must assume that the gas molecules are
in thermal equilibrium and that they obey classical (Newtonian) mechanics.
In particular, the only velocity dependence of the energy of a molecule is
the kinetic energy mv?/2.

Maxwell’s original derivation of the distribution was published in 1860
and was based on the notions of isotropy of space and the assumption that
the probability distributions for velocity components in orthogonal direc-
tions should be uncorrelated (i.e. independent of each other). Let f(v,)dv,
be the probability that the z—component of the velocity is between v, and
vy + dvg and let f(vy) and f(v,) be the corresponding distributions for the
y— and z—components. The probability that a particle has velocity compo-
nents between v, and v, + dv, and also between vy and v, + dv, and v, and
v, + dv, will then be

f(vz) f(vy) f(v2)dvedvydu, (26)

11



The orientation of the coordinate axes is arbitrary, and therefore the product
f(ve)f(vy)f(v,) must depend only on the speed v which can be obtained
from v? = v2 + v; + v2. We therefore can define a function ¢ by

f(vz) f(vy) f (v:) = vz + vy + v7) (27)

Since f and ¢ are probability distributions they must be positive, and can
be written as the exponential of a function. Since directions do not matter
f(vg) = f(—v,). We must thus be able to express f in terms of the square
of the velocity component. Therefore

2

flos) = M=) §(0] + 0] + 02) = X (28)
or
h(v2) + h(vy) + h(v}) = $(v] + v] + v7) (29)

implying that ¢ must be a linear function. We also require that the proba-
bility becomes small for large speeds and find that the distribution must be
on the form

flvs) = Ce /% g(v?) = CPe "/ (30)

From the normalization condition
1 =/ dvy f(vy) = C/ma (31)

C =1/y/ma. We can also calculate the mean kinetic energy by evaluating

m(v?)
2

_ 3ma

3 o0
_ Tm/m dvgef (v) = 2= (32)

The constant a is therefore closely related to the mean kinetic energy of the

(v?) 3kpT 2kpT
m

gas. If we require that mT = =2= we find a = To calculate the

speed distribution from the distribution for the velocity components we go
to polar coordinates v, = v cos @, vy = vsinf cos ¢, v, = vsinfsin¢

dvgdvydv, = v?dv sin 0d0de (33)
The speed distribution can be obtained by integrating over the angles
p(v) = v? /0 " sin0de /0 o dpC3e V1 = 4m?Cle~v"/0 (34)
Substituting the values for C and a we finally obtain (21)

12



The result turns out to be valid even if the gas is not ideal i.e. velocity
independent forces between the particles will not change the result. On the
other hand, the speed distribution will need to be modified if the tempera-
ture is so high that speeds become relativistic. We will also find that there
will be significant corrections to the Maxwell speed distribution at low tem-
peratures when quantum effects are important, and one must correct for the
Fermi-Dirac or Bose-Einstein characters of the particles in a gas. Finally
the Maxwell speed distribution only holds if the gas is in thermal equilib-
rium The ionized gas in the outer atmosphere of the sun, or the ionosphere
outside the earth is typically produced in a non equilibrium setting. Ma-
jor deviations from the Maxwell velocity distribution are known to occur in
such situations. It is far from obvious from the above derivation why these
restrictions apply. Later on in this course we will find a more "modern” way
of deriving the distribution which makes the limitations clear. This method
involves the concept of the Boltzmann factor and the canonical ensemble.

2.4 Owutcome of coin tosses

In this section we will attempt to make the central limit theorem plausible
by demonstrating that it works in a particular case. We will also find an
example system which does not satisfy the conditions set by the theorem.

A coin is tossed N times. We associate the value z = 41 for “heads” and
z = 0 for “tails”.The average value (z) of z is then 1 if the coin is unbiased.
The average value of 22 is (22) = % The variance associated with a single
toss is thus var = (z%) — (z)? = 7. After N tosses the number of times
heads has come up will be X. By the central limit theorem the mean value
of X will be (X) = N/2, the variance will be V' = N/4, and the probability
distribution in the limit of large N will be

_ _ 2
p(X) = | S exp [%] (35)

Since we did not derive the central limit theorem it is useful to derive (35)
independently. An exact formula for the probability distribution of the
outcome of N coin tosses is obtained from the binomial distribution. There
are two possible outcomes of each toss - heads or tails. After N tosses there
are thus 2V possible outcomes. Of these

N!

XI(N — X)! (36)

13



correspond to the outcome X. The probability distribution for X is thus in
general

N!
X)= o
PX) = svxiv = X)) (37)
To see that (35) is a good approximation to (37) we define
N
y=X— o5 (38)

as the deviation from the mean. We expect that y << N ”almost always”
when N is large. We use the Stirling approzimation®

1 1
In(z!) = 3 In(27) + (2 + 5) In z — z + terms small compared to unity (39)

as z — 0o0. After substitution of (38) and (39)into (37), taking the logarithm
of both sides we find after some algebra

1, 2 N+1 dy? 14 %

Assuming that y/N << 1 we can expand the logarithm In(1+z) ~ 1+
and we obtain again after some algebra

[ 2 —2¢?
p= W—NeXP( N ) (40)

Finally, substitution of X from (38) into (40) gives us the desired result (35).

Not all distribution have a finite mean or a variance. A famous counter-
example, discussed already in the early days of probability theory (~ 1730),
is Daniel Bernoulli’s St. Petersburg paradoz. Imagine that you are allowed
to play the following game against “the bank”. The banker tosses a ”fair”
coin. If the outcome is “tails” you are given a ducat (or whatever they used
for money in St. Petersburg in the 18’th century). If the outcome is “heads”
the coin is tossed again until the outcome is “tails”. If tails come up in the
second trial you get 2 ducats. If tails only comes up after n trials you get
271 ducats.

%It is frequently adequate to use an approximation for In z! where the error is small
compared to z. The approximation In z! &~ zIn z — 2 is then sufficient

14



The probability that tails comes up for the first time after n trials is
the probability 27T that the first n — 1 trials yielded “heads” times the
probability % that the next trial gives heads or 27". The mean profit is then

1 1 1 1 1 1
=424 2" =t o= 41
($) 2-|-4-|- on + 2-|-2-|-2-|- 00 (41)
Thus, although the probability distribution is well defined with a finite value
for each possible outcome, the mean is infinite! How much would you be

willing to pay to be allowed to take part in this game?

2.5 School of hard knocks: lognormal distributions

The normal distribution results when the outcome of an event is the result
of a large number of additive random factors. Sometimes situations arise in
which an outcome depends on the successful completion of a number of sub-
tasks. The probability of success is then the product of the probabilities for
each subtask. This may give rise to a lognormal distribution - one in which
the logarithm of the outcome follows a normal distribution. This distribu-
tion was first introduced by Francis Galton in 1879 but it is only relatively
recently that is been realized that this distribution is common. According
to the lognormal distribution the probability that a random variable has a
probability between x and x + dz is

exp[—(ln £)2 x
p(x)dx = ol \(/Iﬁ) ﬂb]% (42)

where a and b are the parameters of the distribution (the mean and the vari-
ance of the logarithm of the random variable). We obtain (42) by a change
of variable, assuming that the logarithm of x has a Gaussian distribution
with mean Ina and variance b.

As an example let us consider a model due to the Russian mathemati-
cian and physicist A.N. Kolmogorov for the size distribution of particles in
crushed rock. Let x be a measure of the size of a rock (e.g. the volume).
We start out with the distribution fo(x) of rocks of different sizes. We then
let a crusher come down n times after which the probability distribution
becomes fy(z). He constructed the following simple model to describe the
situation:

Let us follow the history of a rock of size n through its parentage. The
size of a fragment x, will in general be some fraction of the parent rock

15
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Tp—1-
Tp = RyTpn_1 = H R;xg (43)
i=1
giving
N zN
> InR,=In— (44)
— Zo
n=1

We now assume that In R, is a random variable with a mean and a
variance. As N becomes large the sum over In R will approach a Gaussian
from the central limit theorem. We see that the logarithm of the particle size
will follow a normal distribution and the size distribution will be lognormal.
Another examples of a distribution which is approximately lognormal is the
distribution of family incomes for most members of society (all but the very
rich).Many environmental distribution (e.g. concentrations of pollutants in a
series of samples) also often follow an approximately lognormal distribution.

2.6 Weibull distribution

There are a number of situations, e.g. in problems involving fracture or
failure where what matters is not the average property of the system, but
rather the behavior of the weakest link. A very practical approach to such
problems was taken by the Swedish engineer Waloddi Weibull [4].

16



2.5f

1.5

0.5

(b)

Figure 6: (a) A chain with n = 5 links subject to tensile stress . (b) Plot

c
of P(c) and ¢(o) if g = 1 and ¢ = o® in appropriate units.
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Figure 7: (a) A rope is made by bundling pairs of fibers and then bundling
pairs of bundles. (b) Plot of P(s) and é(o) if 09 = 0.5 and ¢ = o3 in
appropriate units for the n = 0,1,2,3. The dotted curve represents the
approximation (49)
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Consider a chain made up of n links (see figure 6(a)). Each link ¢ has
a yield threshold stress o; which may depend on microscopic flaws and will
vary from link to link. We assume the probability that a link breaks with a

stress o is given by
P(o)=1—e %)

The probability that the link will not break is then e~ ?(?) where ¢(o) is
some monotonically increasing function of o. If any one of the links fails the
whole chain fails. Therefore, the probability that the whole chain survives
is e ™9(%) and the probability that the chain will break under stress o is

Pehain =1 — e—n¢(cr) (45)
Weibull suggested the form
¢(0) < (o —a9)’; for o > ag (46)

where o is some minimum failure stress (which may be zero). The exponent
p must be expected to be a property of the link material (Weibull found
p =~ 3 for Bofors steel, and p ~ 1.46 for Indian cotton.). The proportionality
constant in (46) will from (45) not be a material property, but will depend
on the length of the chain and the size of the links.

Consider next a rope which is made by bundling fibers together (Figure
7(a), see also [5]) Let the stress o be the average tensile force per fiber.
P(o) will, as before, represent the cumulative probability of breakage under
stress. Each fiber is paired with another fiber to form a bundle, with each
bundle paired again etc. On the n’th level there are m = 2" fibers.

If a fiber breaks the stress is transferred to the other members of the pair.
A bundle fails if (i) either both fibers fail under the original stress, or (ii)
only one fails initially, but the redistributed stress is too much for the other
member of the pair. The probability (i) is P,(c)?, while the probability for
(ii) is 2Py (0)[Pn(20) — Py(o)]. The cumulative failure probability on level
n+1

is then

Pri1 = Pa(0)[2Pn(20) — Pa(0)] (47)

As before we assume a Weibull distribution for the failure of a single fiber
Py(o) =1 —exp[—a(o — 09)?]; o> 09 (48)

The typical behavior of P, for n=0,1,2,3 is illustrated in figure 7(b). We
can find an upper bound for the failure probability by putting P(20) = 1 in

18



(47). We then solve for P, and find for o > o9
Pn(0) =1 — exp[—am(o — 09)"] (49)

i.e. we find that the Weibull form is retained for the rope, with an un-
changed exponent p, but the constant a is proportional to the number of
fibers. Of course, in practice it may not be realistic to assume that all the
load is redistributed locally to the other member of the pair when failure
occurs. Nevertheless, the above discussion suffices to show that material
properties such as yield stress cannot normally be treated as an intensive
thermodynamic variable analogous to bulk the modulus or the elastic con-
stants.

2.7 Pareto tail

The income distribution in most societies is approximately lognormal for
most people who do have an income, up to approximately the 97th per-
centile. However, the lognormal distributions does not to hold for the 2-3%
who are extremely rich.

The Italian sociologist and economist Vilfredo Pareto tried, during the
last part of the 19th and the early part of the 20th century, to make
economics and sociology into an exact science by pursuing analogies with
physics and mechanics. He was particularly interested into the dynamics
of business cycles and the rise and fall of empires and elites, and his work
remains somewhat controversial. He is possibly best known for collecting
statistics on the income of individuals at various times and places. This
convinced him in 1897 that

In all places and at all times the distribution of income in
a stable economy, when the origin of measurement is at a suf-
ficiently high income level, will be given approximately by the
empirical formula y= ax~", where y is the number of people
having an income x or greater and v is approximately 1.5.

Income tax data in several countries are compatible with Pareto’s observa-
tion also in more recent times. Indeed, numerous such power law distribu-
tions have been studied and popularized by Mandelbrot [6], and the reader
is encouraged to peruse his fascinating book. Power law distributions are
ubiquitous in critical phenomena associated with phase transitions, as we
shall see later. Recently much interest have focused on ’self-organized criti-
cally’ which occur in driven non equilibrium systems and give rise to Pareto

19



like distributions for the size of avalanches, epidemics, energy dissipation in
earthquakes, size of forest fires etc. Returning to the income distribution,
there are probably several mechanisms responsible, and the distribution of
very high income may be more complex than a single exponent. These
mechanisms have in common that some form of amplification is involved.
Montroll and Shlesinger [7] [8] builds a model to explain the data from the
observation that

The leverage people in the investment business have their
style of amplification. During certain periods of prosperity easy
money become available for investment, sometimes in stock, some-
times in real estate or perhaps in silver or Rembrandts. A com-
mon feature of such times is that the daring may exploit the easy
money to acquire some speculative commodity through margin
payment, say, 10% with a promise to pay the remainder. If the
commodity doubles in price a 10% margin is amplified into a
ninefold profit.

Following Mandelbrot [6] we will pursue a different mechanism originally due
to Lydall [9]. Suppose the employees within an enterprise are arranged in the
form of a pyramid, or hierarchy, with a director at the top and numerous
levels of supervisory personnel below. Let y; be the number of people at
the ¢’th level and let ¢ + 1 be the level above. We assume that the ratio
of personnel at the two levels are n = y;/y;+1. Suppose each operator on
the 7’th level earn their income z; from a commission of a fraction A of the
income of the people in the level below in return a fraction A of the income
is paid to the immediate boss above. The income at the i+1 level is thus
ziy1 = n(1 — A)Az;. If p[z] is the probability distribution for income z we
find

npln(1 — M) = ple] (50)

Taking the logarithm on both sides we find that (50) leads to a power law
distribution of the Pareto form with

Inn

Ot = A = V]

In order for amplification to take place we must impose the restriction
nA(1 — X))1. Note that v is the exponent of the cumulative distribution i.e.
n ~ %71 It is worth noting that the exponent v is not universal, but
depends on the parameters n and A which must be expected to vary from
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society to society. This suggests that the mechanism suggested above is not
quite satisfactory. An introduction to Pareto’s own thoughts on the subject
can be found in [10] and [11].

2.8 Problem set 1

1:

: Construct a histogram for the probabilities of the outcome of 5 tosses of

a fair coin (5 heads, four heads one tail etc.). Are there any significant
difference between results obtained using the binomial distribution and
the Gaussian approximation?

: Estimate the probability of 1050 heads in 2000 tosses of a fair coin

using the Gaussian approximation.

: Estimate the parameters a and b of (42) to the Kolmogorov model of

crushed rock. Assume that you are starting from a single rock of size
1, use the lognormal approximation, assume that R, has a uniform
distribution between 0 and 1, and that you have N = 12.

: Plot the lognormal distribution found under a.

: (Optional). You may wish to verify the theoretical result under a:and

b: by making a computer simulation.

3 The information theoretic approach

3.1 Micro- and macro-states

Our description of the world takes place on many scales, for example:
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?
galaxy cluster
galaxy
solar system
sun, planets and moons
continents and oceans
countries, mountain ranges
provinces and towns
things, people, animals and trees
matter
atoms and ions
elementary particles

quarks
?

At each level we avoid describing in detail what goes on the level below,
replacing a detailed description by a statistical treatment: ‘Things average
out’. Similarly - what goes on in the next level up is often not considered:
‘One doesn’t see the forest for the trees’.

Conventional statistical mechanics is mainly concerned with the interface
between ‘matter’ and ‘atom and ions’ levels.

Hawve: ‘particles’ with forces between them.
Want: macroscopic behavior, equations of state.

The terms used to describe systems at various levels in the hierarchy are
quite different. A possible state of the system at the lower level is called a
micro-state. At the higher level much detail is lost and many micro-state
appears indistinguishable. The states at the higher level are called macro-
states. Each macro-state can be realized by many micro-states.

Assumption: It is possible to describe a large system by a
small number of macro state variables. Some of these are in-
dependent variables, or control parameters others are dependent
and given by an equation of state. The dependent variables will
in general fluctuate about the mean value given by the equation
of state, but for a large enough system these fluctuations are
small.

In our coin toss example one dependent state variable would be X, the
number of heads after N tosses (N being a control, or independent variable).
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Another possible control variable would be the probability P that head will
come up in a single toss (P = 1/2 in our example. The equation of state
would then be X = NP. The microstate would be a description of the
outcome of each toss. The number of microstates associated with a given

macrostate will then be
N!

XN - X)!

One of the goals of statistical mechanics is to derive equations of state
from a description of the microscopic dynamics. A partial list of state vari-
ables for a thermodynamic system is given in the table below. The most
common variables are listed in the columns to the left. Special systems such
as dielectrics, magnetic systems or liquid interfaces require further state
variables as indicated in the columns to the right.

Q

P | pressure P | polarization
V| volume & | electric field
i | chemical potential || M | magnetization
N | # of particles B | magnetic field
T temperature o | surface tension
S | entropy A | surface area

U, E | internal energy

The following basic assumption of thermodynamics is sometimes referred to
as that of ‘existence of matter’

State variables can be separated into eztensive variables which
are proportional to the size of the system, and intensive variables
which are independent of the size of the system.

We will come back to this assumption later and also note some important
exceptions. Of the variables listed in the table above P, u, T, £, B, o, are
intensive while V., N, S, U, P, M, A are extensive. In our coin toss example
X and N are extensive P is intensive.

In the case of the Kolmogorov model of crushed rock it is the logarithm
of the size, rather than the size itself, that is used. A thermodynamic
description in terms of extensive and intensive variables therefore doesn’t
seem useful. Similar considerations apply to the Weibull distribution. Since
the rupture stress of an object depends on its size in a non-trivial it is not
a proper thermodynamic variable. Income and wealth as discussed earlier
does not fit either into the thermodynamic picture of extensive and intensive
variables. There is thus something very special about ”matter”.
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3.2 A measure of uncertainty

Consider a system where there are a number of possible states that we label
1 =1,2,3....r, with r the total number of possible states. Assume that we
have only partial knowledge as to the state in which the system actually is.
We represent this state of affairs by saying that there is a probability P;
that the system is in state 7. In what follows it turns out to be extremely
useful to find a measure H({P;}) of the degree of uncertainty associated
with the probability distribution. In order to proceed, let us appeal to the
a posteriori definition of probability. Let us imagine that we prepare the
system N times and measure its state each time. Since this is theory, we
can assume that N is very large. By the law of large numbers the state 1
will come up approximately N P; times, state 2 will come up approximately
NP, times etc. A possible measure of the uncertainty would then be the
number of ways these outcomes can be reordered

NI

Oy = ri'
i:l(NPj!)

(51)
Indeed, the more possible outcomes there are of our experiment, the more
uncertain is the result! This is not the only possible measure of uncertainty,
any function H () of the number of sequences ) that leads to the same
result will serve, provided that the function satisfies the condition that if
Q1 > Qg then H(Qq) > H(Qs) (i.e. H(Q) must be a monotonic function of
Q). Consider next a system made up of two independent subsystems. We
imagine that we measure the state of subsystem 1 N; times and subsystem
2 N> times. The number of possible sequences is now Q = 1. We next
limit the choice of possible functions H by requiring our uncertainty to be
the sum of the un certainties associated with the two subsystem, i.e. we
require that H is an extensive variable:

H(Q1Q2) = H() + H(2) (52)

The choice of the function H is now essentially unique. To see this let us
differentiate (52) two different ways

dH(Q1Q2) dH(Qy)
a0 4o

Q9

dH(Q)  dH(Q)
d ()  dQ,

971

24



We multiply (53) by Q2 and (54) by Q; and subtract the two equations. The
result is

dHQ)  dH(Q)
H—=0——
Ydoy YA, (55)
Since the left hand side of (55) is independent of Q3 and the right hand side
is independent of €2; they must both be equal to a constant. We call this
constant c¢g. We now drop the subscripts and find
d H(Q)

0 —
iq

We integrate this equation to obtain

H(Q)=colnQ+ ¢y

where ¢, is another constant. If there is no uncertainty, i.e. if we know the
outcome then Q = 1 and we require that H(1) = 0. This gives ¢; = 0 and
we are left with

H(Q)=cylnQ

The choice of the constant ¢y is arbitrary at this stage, the constant es-
sentially determines the ”unit of uncertainty”. We will for the time being
choose the constant to be ¢g = 1. Later on we will identify H with the
entropy and choose ¢y to be equal to the Boltzmann constant kp.
Going back to (51) we find that the uncertainty associated with N re-
peated experiments is
Hy =1InQpn

Since H is extensive we now define the ”uncertainty” associated with the
probability distribution itself to be 1/N times the uncertainty associated
with N repetitions of the experiment. This gives for the "uncertainty” of
the probability distribution

!
H= lim "
N—oo N [[im1 (N B)!

Since we only need to evaluate the logarithm of the factorials to accuracy
N we can use the simple version of Stirling’s formula

InN!'~NInN - N

and we find after some algebra

r
H=-) PP (56)
i—=1
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Equation (56) was derived by Shannon[12] in shortly after the second world
war and is generally considered to be one of the fundamental results of
information theory

3.3 The principle of least bias

We have shown how to calculate the uncertainty associated with a given
probability distribution. Now, we turn this question around and address
how to find the most likely probability distribution given the information
we have about the system. We do this by applying the principle of least
bias which states that the most reasonable distribution is the one which
maximizes the uncertainty about the outcome subject to what we know. If
we use a distribution with less uncertainty we are biasing the probability
by providing information which is not in evidence. As our first example
consider the case of a single coin toss. Let P be the probability that the
outcome is "heads” and let P, = 1 — P, be the probability for ”tails”. The
”uncertainty” about the outcome is

H = _Ph lnPh — (1 — Ph) ln(l — Ph)

by differentiating the above expression we find that the probability which
produces the least bias satisfies

dH Py
=——=—-In

d Py 1— Py

0

or P, =1/2, ie. the probabilities of the two outcomes are equal. Any other
value of P, would mean that the coin is biased.

Next consider the case of r possible outcome. Let P; be the probability
of the ¢‘th outcome. The uncertainty is now

H= —ZPilnPi (57)
i=1

The different probabilities P; can not take on completely arbitrary values
since they are subject to the restriction

zrjpi =1 (58)
i=1
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We can calculate the maximum of (57) subject to the normalization restric-
tion (58) by using the method of Lagrange multipliers according to which
one first finds the maximum of

r
—Y PInP;+ \P; (59)
i=1

for arbitrary values of the Lagrange multiplier A and the adjusts A so that
the restraint (58) is satisfied. Putting the derivative of (59) with respect to
any of the P;s equal to zero yields

“InP,—14+X=0

with solution
f)i — e>\—1

The normalization condition (58) then gives

_ 1
e
-

and we finally get
1

P ==
r
Put in words: If we do not have any reason to believe that any one outcome
is more likely than any other, we must, according to the principle of least
bias, assume that they are equally probable.
Consider next the case of a loaded die. When we throw a die any one of
the numbers 1,2..6 my come up. Let P; bet the probability that the number

1 comes up and let
6

a=)Y iP (60)

i=1
be the average value of the number. If the die is unbiased a = 3.5 but for
a loaded die we could have an arbitrary 1 < a < 6. Suppose that by some
means or other we know the average vale a. How should we modify the
unbiased probabilities P; = 1/6 to incorporate this new information? The
simplest way to do this is to introduce one more Lagrange multiplier i.e. we

maximize
6

Y (=P InP;+ AP, +iB) (61)
i—=1
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and to choose A and £ so that the normalization condition and (60) are both
satisfied. If we differentiate (61) with respect to P; and put the result to
zero we now find

0=-InP+X-1+41f

with solution
Pi — e)\fle,@i

Eliminating A from the normalization condition gives
e
a 2?21 ePi

We can substitute (62) into (60) and require that e’? be real and nonzero. If
we introduce the new variable y = e? this will lead to a fifth order polynomial
equation for y which will have to be solved numerically. If 1 < a < 6
there will be only one real root form which the probabilities easily can be
calculated.

It should be noted that the solution (62) need not be accurate, given
the particular manufacturing flaw that produced a bias. It is, however,
according to the principle of least bias the best result we can come up with
from the information available.

P, (62)

3.4 Statistical definition of thermodynamic variables

We are now in the position that we can make a connection between thermo-
dynamics and a statistical description of physics. We do this by developing a
theory of thermodynamics from scratch and establish the contact with con-
ventional thermodynamics by showing that the new theory gives familiar
results.

Our starting point is the idea that one can count the number of available
states of a system. In principle, these are discrete quantum states. For a
large system the states will be very closely spaced. We will later show how
one can use the correspondence principle of quantum mechanics to count the
number of states for systems obeying classical Newtonian mechanics. The
number of possible states with energy between F and E + JF is

Q(FE) =g(E)dE, (63)

where g(E) is the density of states. Next, consider a closed system with
fixed volume V', number of particles N, and energy E. In order to avoid
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problems associated with the discreteness of the quantum states we take
the energy to be specified within a tolerance §E. This tolerance should be
chosen so that for a large system the precise value of §E does not matter.
We do not know in which of the 2 allowed states the system finds itself.
In fact, our fundamental assumption is that at equilibrium our ignorance
in this matter is complete, and that all the Q(E,V, N) possible states are
equally likely, i.e. all memory of how the system was initially prepared is
lost, except for the values of the energy, volume, and number of particles.
We define the entropy as

S =kpInQ(E, N,V). (64)

Consider next an infinitesimally small change from an equilibrium state
E,V, N to another, slightly different, equilibrium state £ +dE,V +dV, N +
dN. The change in the entropy is then

as as aS
dS = SdE + o ndV + o dN. (65)

The change in energy in this process is given by
dE=dQ +dU, (66)

We distinguish between two forms of energy heat and work. Heat is a form of
energy associated with random or thermal motion of atoms and molecules.
Consider a gas of low density. The molecules will move in straight trajecto-
ries until they collide with other molecules or the walls of the gas container.
After a few collisions it becomes practically impossible to relate the velocity
and position of the molecules to the corresponding quantities at an earlier
time. The difficulty is not just the enormous amount of data required to
describe a large number of particles. A more fundamental problem is the
fact that after a few collisions the positions and the velocities of the particles
become extremely sensitive to the initial conditions. A very similar situa-
tion occurs when throwing an unbiased die or tossing a coin. In principle,
it should be possible to predict the outcome of the toss using Newton’s laws
and the initial velocity and position. In practice, the calculation will not
be able to predict the behavior of real coins, because initial conditions that
give rise to radically different outcomes are so close together that the prob-
lem of specifying the initial conditions and parameters of the problem with
sufficient accuracy becomes severe. This type of motion has been described
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as chaotic. Each particle is just as likely to move in any direction as in any
other, and the speed of the particles is frequently changing.

We distinguish between the random motion of a molecule and bulk (or-
dered) movement. An example of the latter is the flight of a solid object
such as a pebble thrown in the air. We refer to changes in energy associated
with bulk motion or transport of matter as work. In (66) d @ is the heat
supplied to the system and dU the work done on the system. The internal
energy E is a state variable and its differential is exact, i.e. dE depends
only on the initial and final state and is independent of the process leading
to the change. On the other hand "heat” and ”work” are not state variables
and the partition into heat and work depends on the process. Hence, the
difference in notation: dE, but d@Q and dU. Please be warned that different
texts use different sign conventions for heat and work, this can be tricky,
particularly for magnetic and dielectric work where the sign is not obvious.

We have not yet defined the variables P, T and p. We want to do this
in such a way as to allow us to write

dE = TdS — PdV + pdN (67)

or
1 I P

= —dE — =dN + =dV.

as Td Td +TdV

We now define the temperature, pressure, and chemical potential as

-1
T - <§> p= T <§> P=T <§> (68)
oF N,V ON EV oV N,E

It is important to note that our basic assumption is that all allowed states
are equally likely. The second law of thermodynamics now becomes the
statement that a closed system will tend to approach a macroscopic state
which can be achieved the most possible ways according to the principle
of least bias. The conventional mathematical formulation of the second
law (67) on the other hand only becomes an essentially trivial matter of
definition. We must next show that these definitions lead to familiar looking
results- otherwise they would not be useful.

3.5 The zeroth law of thermodynamics

To establish the equivalence of our definitions and the conventional thermo-
dynamic ones we shall make contact with the zeroth law of thermodynamics.
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This law has an analogy with mechanics, where in equilibrium the forces are
balanced. In particular if two subsystems (which we label 1 and 2) are in
contact and in equilibrium:

Ty = T, — thermal equilibrium
P, = P, - mechanical equilibrium (69)
p1 = e — chemical equilibrium

The zeroth law has a fairly straightforward statistical interpretation and this
will allow us to begin to establish the equivalence between the statistical
definitions and the conventional thermodynamic ones.

Consider two systems that are free to exchange energy but are isolated
from the rest of the universe by an ideal insulating surface. The particle
numbers Ny, No and volumes V7, V5 are fixed for each subsystem. The total
energy will be constant under our assumptions and we assume further that
the two subsystems are sufficiently weakly interacting that

E = E1 + Es, (70)

where F; and F, are the energies of the subsystems. Assume that the
densities of state g(F), g1(E), g2(E) are coarse grained so that = g(E)JE,
Ql = gl(E]_)(SE, Qg = gz(Ez)(SE We then have

9(E) = /dE192(E — E1)g1(Er), (71)

If the subsystems are sufficiently large, the product go(FE — Eq)g1(E71) will
be a sharply peaked function of Fy. The reason for this is that ¢g; and
go are rapidly increasing functions of F; and E — FEj, respectively. From
the definition of the entropy we note that it is a monotonically increasing
function of g and that the product g;g2 will be at a maximum when the
total entropy

S(E, Er) = S1(E1) + S2(E — En) (72)

is at a maximum. The most likely value (E7) of Fj is the one for which

951 | 082 0B, _
OF, + dF, 0B, 0- (73)

Since 0E,/0FE, = —1, we find using (68), that

1 1
- — = 4
" Ty 0 (74)

31



or Tt = T5. The most probable partition of energy between the two systems
is the one for which the two temperatures are the same.

Consider next two subsystems that are separated by a movable wall. The
two systems are free to exchange energy, but the number of particles is fixed
in each subsystem and the total volume V = V; + V5 is constant. We write
E = FE1 + FEs. The density of allowed states for the total system is then

(B = % /ﬁEﬂmmEhmme—EhV—m)

volume settings

The integrand is sharply peaked for large systems and takes on its maximum
value when S1(FE1,Vi) + So(E — E1,V — Vi) = max. Differentiation using

aS 1 /9S _ P
(58)n =7t (57) 0= 7
implies that it is overwhelmingly probable that the system will be near a
state for which
1 1 P P
L T T
or Ty = T5, P; = P,. Conventionally, one would say that the pressure in the
two compartments must be equal at equilibrium because the forces have to
be in balance. The argument now being made is quite different, there are no
forces, instead the movable wall is guided to its equilibrium by the invisible
hand of the law of large numbers.
Similarly, consider two systems 1 and 2 which are free to exchange par-
ticles and energy. It is easy to show that the most probable configuration is

the one for which Th = T, u1 = po.

4 Boltzmann statistics

4.1 Boltzmann factor

Consider now a system in contact with a heat bath, or reservoir. System 1
is the one we are interested in, and we want to find the probability P(E})
that it has energy E7;. We assume that system 2 is much larger than 1, so
that F1 << F = F1 + F>. Another way of putting this is to say that the
heat capacity C5 of system 2 is very large. We assume that all compatible
microstates are equally likely. We have

91(E1)g2(E — B1)dE,
[ dE1g1(F1)g2(E — Ey)

P(Ey)dE, =
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From the definition of entropy

We expand in a Taylor series
05 n E_12 025,
OF 2 OFE?

With T the temperature of the heat bath and C' its heat capacity, the partial
derivatives are given by

Sy(E — Ey) = So(E) — By

+oo (75)

0S5y 1
oF T (76)
0”5 _%__i@_T__L (77)
0E2 9E  T290E  TC
Since Fy << T'C we neglect the last term in (75) giving
ga = const. exp [;T';] = const.e PP
where we define 8 = 1/(kgT) . We conclude
P(E;) = const.gi(Ey)e PE1 (78)

The factor e P is the Boltzmann factor. When a system is in contact with
a heat bath at a certain temperature, all possible microstates of the system
are no longer equally likely. Instead, the Boltzmann factor acts as a weight
factor biasing the distribution towards states with lower energy.

33



4.2 Partition function and the canonical distribution

The constant in (78) can be determined by normalizing the probability
distribution i.e. requiring that

/ p(E)dE = 1

Let us define the canonical partition function (a = microstate)
Ze=Y e PP) = / dEg(E)e PE
«
We find that the probability p(«) that a state is in a given microstate

1
= —e PP 79
o) = e (79)
Eq. (79) is the canonical distribution. If z(«) is the value of some phys-
ical property in microstate «, and E(«) the energy of this state then the
canonical ensemble average is given by

1

() = > a(a)e PP (80)

C «a

Equation (80) is a very useful formula, and we will give many examples of
its use.

4.3 Isothermal atmosphere

Consider a gas in a gravitational field. We chose the potential energy to be
zero at ground level. If the height Z is not so large that the z-dependence
of the acceleration of gravity g needs to be taken into account the potential
energy of a molecule at height z will be mgz, with g the m the mass of a
molecule. The kinetic energy of the molecules depend only on the tempera-
ture and not on the height. At thermodynamic equilibrium the temperature
of the atmosphere is constant, the density at height z must be proportional
to the probability of finding a molecule there, i.e. to exp(—pBmgz). With the
density at ground level given as pg the density of height z will be

p = po exp(—pmgz) (81)

The isothermal assumption is not a particularly realistic one, because the
atmosphere is generally not in thermal equilibrium, being exposed to radia-
tion from the sun and in turn radiating excess heat into space. Sometimes
the adiabatic atmosphere is a better approximation.
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4.4 Helmholtz free energy

For an isolated system S = S(E,V,N), with E|V, N independent variables.
For a system in contact with a heat bath at a given temperature, T be-
comes an independent variable, or control parameter. The energy £ and
entropy S will then fluctuate about their mean values (E) and (S). E and
S become dependent variables given by equations of state. The change of
variables is handled most efficiently by introducing he Helmholtz free energy.
In thermodynamics it is defined as

F=FE-TS

Imagine a reversible process which takes the system from one equilibrium
state to another

dE = TdS — PdV + udN = dE(S,V,N)

dF = dE — TdS — SdT = —SdT — PdV + pdN = dF(T,V,N)

We see that the Helmholtz free energy is should be considered to be depen-
dent on the control variables T, V, N. We have

_9oF
T

_oF
oT
_or

ON
In statistical mechanics we define the Helmholtz free energy as

S =

P=

A=—-kpTlnZ,
We wish to show that for a large system
A= (E)-T(S) = (F) (82)

Proof:
The canonical partition function is

Z, = / dEg(E)e PP
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/ exp {B[E — TS(E,V, N[} (83)

We evaluate this integral using the saddle point method. Almost all the
contribution to the integral will come from values of E near E = (E) the
value for which £ — T(S, E,V,N) = minimum. We let S((E),V,N) = (S)
and

1 , 0%8

E-TS~(E)-T(S) - -T(E - (E)) 35 +-

Substituting (77) into (83) we obtain

Ze = expl=B((E) ~T(5)] [ 42 exp {%} (s4)
Using (15) we find
zo~ VPTG olop((B) — T(8))]
and from (84)
A= —kgTnZ, = (E) — T(S) — kzTIn [@] (85)

The last term in (85) will be small compared to the first two terms for a large
system, and it is possible to choose the tolerance §E so that it is identically
zero. We have therefore shown that (82) is correct. We have also shown
that for a large system with a constant number of particles, the volume and
temperature will almost always be in a macrostate for which the Helmholtz
free energy is a minimum.

4.5 Quantum harmonic oscillator

The energy levels of a quantum harmonic oscillator are (n + %)hw, where
w = 27 f is the angular frequency of oscillation. We wish to calculate the
thermal properties of the oscillator when it is in contact with a heat bath
at fixed temperature. The partition function is

o) —Bhw/2
_ —Bnt+3)hw _ _©
Zc—Ze e p—cT
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The free energy is on the average

-1 hw 1
Fy=—1InZ.=—+ —In(l — e P 86
(F)= 5 nZ =+ 5in(1 — ™M) (36)
We may also estimate the mean energy. For this purpose we derive a useful
thermodynamic identity:
_ [dEEg(E)e PP ) dB(F)

B) = FiEg(mye PF a5 %= a5 (87)

If we apply (87) to the harmonic oscillator we get

hw hw
(B) =5+ Gra 1 (88)
The first term in (88) is the zero point energy. It is important to realize
that eq. (88) gives a mean value not the actual value of the energy of the
oscillator.

4.6 Energy fluctuations in the canonical ensemble

In a finite size system there will be limitations on the accuracy by which we
can determine thermodynamic quantities As an example let us consider the
energy
7,3Eo¢
w107 (59)
- YePBa 7B
o
In order to calculate the mean square fluctuation ((§E)2) = (E2?) — (E)? we
need )
( 2> - l@_Z
Z 0B?
As we shall see, the mean square fluctuation of the energy is closely related
to the specific heat, which is given by

OE) O(E)op  09(E) 1

oT 08 0T~ 9B kgT?

Cy =

By differentiating (89) we get

o(E 7z 0z
B &y =) - ey



((6E)?) = kpT*Cy (90)

As we will discuss later in more detail this formula is very useful in computer
simulations. In a simulation at constant temperature T' the energy of the
system will fluctuate during a run. We can then obtain the specific heat
from an average of (E?) — (E)2. We can also approximate Cy by running at
two different temperatures:

(E(T+6) — E(T —9))

If the results don’t agree, this is a good indication that the simulation has
not run long enough. Generally (90) is a more convenient way of calculating
the heat capacity than (91) since it can be evaluated at a fixed temperature.

4.7 Problem set 2

1: A system is made up of two different kinds of atoms, A and B, and they
can associate chemically to form an AB molecule. The energy of association
of an AB molecule is —|e|. Assume that there are N4 and Np atoms of each
kind (either free or as part of an AB molecule). What is the equilibrium
number of AB molecules at temperature T'?7 Assume that the mixture forms
an ideal gas with a Helmholtz free energy which is the sum of the contri-
butions from each component. Contributions to the free energy of the AB
molecule from internal degrees of freedom are assumed to be incorporated
into €. The mass of an A atom is m4 that of a B atom mp.

2: In a certain system the internal energy F is related to the entropy S,
particle number IV, and volume V through

D
E = constN <g> exp [ DS ]

Nkp

(a) Show that the system satisfies the ideal gas law independent of the
value of the constant D.

(b) Find the coefficient  in the adiabatic equation of state PV = const.
and the molar specific heats Cp and Cy of the system. (Adiabatic here
means that the entropy is constant)

3:

Imagine that a hole has been drilled to the center of a small planet of
radius R. If the acceleration of gravity at the surface of the planet is g it
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will, at distance » < R from the center, be %. If the atmospheric pressure at
the surface is P, find the pressure P(r), for r < R, assuming an isothermal
ideal gas at temperature 7. (Hint: If the gravitational force mg(r) depends
on the distance to the center of the planet r, the potential energy will not
be just mgr).

5 Ideal gases and generalizations

5.1 Counting quantum states

In statistical mechanics one is very often dealing with a situation in which
there are a very large number of possible microstates which a priori are
equally likely. Each macrostate can be realized in very many different ways
and the probability of the different macrostates will be proportional to the
number of allowed realizations. This means that we must learn how to
count states. In the examples so far the counting of microstates was not
too difficult, it was fairly obvious what constituted a discrete microstate. In
classical mechanics one is dealing with continuous states - can we still define
the number of states’? As we shall see this can be done, but we will need
to appeal to quantum mechanical ideas. Consider first a free particle in a,
cubic box (see fig. 8a) The volume of the box V = L3., where L is the length
of a side of the cube. First consider the simplest case of periodic boundary
conditions. The wave function of the particle satisfies

(o = 0) = v(x = L).

The quantum eigenstates of the system are then given by

1 1
r)= —e"" = ——exp(tlkyx + kyy + k.2
where 5 5 5
™ ™ ™
= z k = y . = z 2
L » Yy L ) L (9)

and ng,ny,n, can take on the values 0,41,+2... i.e. are integers. The
number of allowed k-values inside a “volume” d3k in k-space is from (92),
noting the relation p = hk between momentum and wave-vector

Vdk
(2m)?
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When summing over allowed k-states we can replace a sum by an integral
in the large V, or continuum limit

% s | 4 9

The same result holds if 9 is the amplitude of a wave instead of the wave-
function of a particle and we want to sum over the allowed wave vectors.
Later on when we get to counting states described by classical (Newtonian)
mechanics we generalize the above result to the concept of phase space. The
z-component of the momentum is p, = hk, = hn,/L and we have similar
expressions for the other components. Consider now a volume in phase space
W = L3AprpyApz where the components are in the intervals

P1 < Pz < p1+ Apy

p2 < pz <p2+ Apy (94)
p3s <p. <p3+ Ap:
We find that the number of states in W is given by

3

& h3 R

The rule (97) must be applied with some discretion. Suppose we change
the boundary conditions and consider a box with hard walls. The boundary
condition is ¢ = 0 at surface. The eigenstates are now

P = \/gsin(kzx) sin(kyy)sin(k,z)

with n o
T ky = Tya kz = LZ (96)

Note the absence of the factor of 2 in (96). The number of states in the
interval (94) is then

23ApzApyAsz3 8w

h3 e
The reason for this apparent paradox is that the ‘standing wave’ states
associated with the hard wall boundary condition must be considered to be
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mixtures of states propagating back and forth. The states k, and -k, are
not distinct. So while

# of states
Volume of phase space

= 8 times larger

only 1/8 th of the momentum states are distinct. The periodic boundary
condition result corresponds to a classical picture where particles can move
back and forth and the components of the momentum can be either positive
or negative.

We generalize our results for free particles in a box through the Bohr-
Sommerfeld quantization rule. Suppose we have a particle with coordinate ¢
and momentum p. By integrating the equations of motion ¢ = %, p = force,
one can in principle construct the ‘orbits’ p(¢q). The p — ¢ plane is called the
phase plane (figure 8(a)). The rule is now that the orbit for which

/ p(g)dg = nh

orbit

correspond to quantum states if n is an integer and h is Planck’s constant.
Consider next an ‘area’ W in the phase plane containing many orbits.

/@/@:W

The number of quantum states in W is then @ = W/h . We can generalize
to a system with many degrees of freedom q1, g2..qn 1, p2..pAr- To a ‘volume’
in phase space

W = /dql/dqz.../dq/\//dpl/dpz.../dp/\/

corresponds a number of states

w
Q:h_N

5.2 Black body radiation

Electromagnetic radiation is made up of transverse waves. For each wave
vector k there are two modes, or polarizations. The quanta of electromag-
netic radiation are called photons. We have

w=ck (98)

41



\ 4

A

7

A

y
@) (b)

Figure 8: (a) Orbit in phase plane. (b) Particles in box.

where ¢ is the velocity of light, and hw is the energy of the photon. The
photon momentum is

=hk = —
P 2T

The number of modes in an element d®k of ‘wave vector space’ is thus

2Vd3k

(2m)3
where V' is the volume of the cavity containing the black body radiation.

There may be 0,1,2,3... photons with any allowed wave vector. The partition
function the modes with a given wave vector is

= 1
7 — —nphw _

The free energy associated with the photons of any one wave vector is
from our discussion of the harmonic oscillator

f(w) = kpTIn(1 — ™)

From (98) ,
4rwdw

c3

A3k =
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The free energy of the black body radiation is thus from (86)

/w2dw In(1 — e Bhw) (99)
0

%

F =
Br2c3

We substitute = fhw into (99) and get

_ VI
o 5471'2637'13

where one can show that

I Y 22deln(l—e ) =T
——/0 z%dzIn(l —e )_E
using the method of contour integration. We get
w2V
F=——"F—#+ 100
45R3c3 54 (100)
From (87)
2
E = 7’37‘/
15h°c3 34

which the reader might recognize as the Stefan-Boltzmann law of radiation.
The radiation pressure of black body radiation is

OF E

P=-""=-
v 3V

This can be considered as the equation of state for black body radiation.
Since we have an explicit form for the free energy in terms of its independent
variable we compute anything we want to know about the thermodynamics
of black body radiation by using appropriate thermodynamic identities.
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5.3 The classical ideal gas

We next show how we can calculate the partition function for an ideal gas
and demonstrate that this partition function yields the expected expressions
for the energy and pressure. In addition we find expressions for the entropy
and chemical potential which cannot be obtained directly from the ideal gas
laws. Consider a system made up of a single particle in contact with a heat
bath. From our state counting rules the number of states with momentum
components between p, and p, + dpg, p, and p, + dp, is Vdpydpydp./ h3

and
pm-l-p + p; V /2rm)\3/?
dpo [ d dp. v _V (2
V/ p/ py/ pexP( 9mkpT ) h3( 5)

(101)
It is convenient to define the thermal wavelength X\ as
h2p
A=} — 102
2mm (102)

With this definition we find that the single particle partition function is
given by the simple expression

7y = — (103)

From Eq.(87) we find the familiar result for the mean energy per particle of
a monatomic gas with no internal degrees of freedom

0lnZ 3 3
(E) =— 95 25 kBT (104)
Using
(P) = OkpTInZ
1%

we find mean contribution per particle to the pressure to be kgT/V. If we
assume that the total pressure is the sum of the contributions from each
particle we find

P =NkgT (105)

again a familiar result. Getting the entropy or the chemical potential is a
bit more tricky. The problem is that the free energy of N particles is not
just N times the free energy of a single particle. If the particles in the gas

44



are indistinguishable, quantum mechanics tells us that we must not treat as
distinct states that only differ by which particles are in which state. Instead
we find the number of states where there are particles in the system with
momenta between p, ; and py i +dpg i, Dy,i and py ;+dpy;, P2 and p, ;+dp. ;,
fori=1,...N.
VN
73N N dpz,idpy,idp. ;. (106)
If the factor N! had not been included we would have counted the state where
particle 1 has momentum p; and particle 2 has momentum ps as distinct
from a state in which it is particle 2 that has momentum p; and particle 1
has momentum py. The need for the inclusion of the N! term goes under
the name Gibbs paradox. Before the introduction of quantum mechanics
this term was hard to justify. We will come back to Gibbs paradox later on
when we discuss entropy of mixing.

It is useful to notice the contrast between the way we treat the black
body radiation problem and the ideal gas. In the case of the radiation we
analyzed the states and we summed up the contributions to the partition
function from situations in which there were 0,1,2.. photons in each state.
Nothing is said about which photon is in which state, and the states are
distinct. Hence there is no need for any N! factor when we sum over the
states. In the case of the ideal classical gas we number the particles and
sum over all allowed states for each particle. If the particles are identical
this leads to over counting of the number of different microstates, and we
correct for this by dividing by N!.

We find for the partition function of an ideal gas of N particles
VAN 1%

IN = N1 T Noew (107)

Using Stirling’s formula In N! =& NIn N — N we find the free energy

(A) = —NkgT(In 1) (108)

v

N3

Differentiation of the expression for A, using

OkgTInZ

S)y=—7"F"—
(S) 5T

we obtain the so-called Sackur—Tetrode formula

5

v
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and s

N
In the case of molecules containing more than one atom there will be correc-
tions to the entropy and chemical potential from vibrational and rotational

degrees of freedom. We will come back to this later.

5.4 Gibbs-Duhem relation, and the Gibbs energy.

Quantum systems are often more conveniently handled if we allow the num-
ber of particles to be variable, rather than considering a fixed number of
particles. We will also frequently encounter systems in contact with a heat
bath, that can exchange particles at a given chemical potential. Before
carrying out the change in variables which does this, it is useful to derive
another thermodynamic identity. Consider a system described by the mi-
cro canonical ensemble. The independent variables S, V, N and the energy
E(S,V,N) are assumed to be extensive while the dependent variables

OF OF 0F

T=es "= v " on

are intensive. Consider two systems the second 7 times larger than the first
but identical in all other respects.

vE = E(vS,7YV,yN)

Since the temperature, pressure and chemical potential are the same in the
two systems differentiation with respect to v gives

E=ST—-PV+uN (111)
The Gibbs free energy is defined as
G=E-ST+PV

and we get the Gibbs-Duhem relation
- = 112
N F (112)

This relationship will prove very useful in what follows.
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5.5 The grand canonical ensemble

We now wish to consider systems in which the number of particles is a
dependent variable. Just as we did earlier, we consider two systems in
thermal contact with each other. We will also assume that the two systems
are separated by a permeable wall, i.e. they are free to exchange particles.
We write

Ei1+ Ey,=Er

The density of states for the two systems together is

9(Er,Nt) = Z /dElgl E1,Ni1)g2(Er — Eq, Nt — Ny)
N1=0

As before we expect the integrand to be sharply peaked for values of N7 and
E; such that the sum of the entropies S1(E1, Ny)+ So(Er — E1, Ny — Np) =
mazrimum Using
oS 1 9S p
OE T N T
we find that the maximum occurs when p1 = po, Ty = T in agreement with
the zeroth law of thermodynamics.

Now, assume that system 2 is much larger than system 1 so that the
former can be consider a reservoir of energy and particles. System 1 is a
system whose properties we wish to study as a function of temperature and
chemical potential. We have

(113)

exp[S2(Er — E1, Ny — N1)/kp]
0FE

1,88, 95
kg (ElaE NlaN)

Using (113) we find for the probability that system 1 has energy F; and Ny
particles

92(Er — E1, Ny — Ny) =

= g2(E7, N1) exp

E, N
p(E1, Ni) = ACHATAY Zl 188 u)
G

where Z¢ is the grand canonical partition function

o0

Za(u, T, V) = exp[fuN]Z.(N,T,V) (114)
N=0
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In the grand canonical ensemble a physical property x(a) has the average
value

1
r) = —
@=7:3
T,u,V are now the control parameters and S, N and P are dependent vari-

ables. We can proceed in analogy with what we did for the canonical en-
semble and write for a large system

z(a)e PE(e)—pN(a)) (115)

Zag = Z exp|BuN]Z,
N=0

~ Y exp[~B(F — uN)]
N=0

I leave as an exercise to the reader to convert the sum to an integral and to
use the saddle point method to get

—kpTlnZg=L=F —uN
where L is called the grand potential or the Landau free energy®. If we use
dF = -TdS — PdV + pdN
We find for an infinitesimal reversible process
dL = —SdT — PdV — Ndu = dL(T,V, u)

i.e. the natural independent variable for the Landau potential are the tem-
perature, volume and chemical potential and

P=-— (116)

We interpret (115) as implying that for a system with fixed temperature,
volume and chemical potential the equilibrium state - the state most likely
to occur - is the one for which the Landau potential is as small as possible.

From the Gibbs-Duhem relation (112) E = T'S — PV + uN we find that

L=-PV (117)

3 After Lev Davidovich Landau 1908-68

48



@

K —

(a) (b)

Figure 9: Physisorption at a surface. (a) Honeycomb graphite surface

5.6 Langmuir adsorption isotherm

We wish to construct a model for physisorption, the adsorption of gas atoms
at adsorption sites on the surface of a solid (figure 9). We define |e|] = —e
as the adsorption energy per site and let p be the chemical potential the
surrounding gas. We assume that we are dealing with a dilute gas. The
ideal gas formula (110) for u should therefore be a good approximation.

A material which adsorbs many gases is graphite. The carbon atoms in
graphite form a planar honey-comb lattice (figure 9(a)). The centers of the
honey-combs often form good adsorption sites. Graphite can be exfoliated,
and then has an enormous surface to volume ratio. The attractive interac-
tion responsible for the adsorption is the van der Waals force between the
carbon layer and the gas atoms. This interaction is typically stronger than
the gas atom gas atom interaction. We make the following approximations:

(1) The atoms occupy discrete adsorption sites that are either
occupied or empty. The adsorbed phase is taken to be a lattice
gas.

(2) We neglect the interaction between adsorbed gas atoms.
At low temperatures the adsorbed atoms may condense to form
puddles and our model will then break down.

In the gas phase the chemical potential is given by (110). It is conven-
tional to define the fugacity as

z = ePH
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For the ideal gas
P)3
z==X\="
14 kgT
Consider now a system consisting of a single adsorption site. This system
has only two microstates: empty or occupied. The grand canonical partition
function for this system is

Za=1 -|-67’8(67“)

the probability that the site is occupied is thus

—B(e—p) P
f=—= - - (118)
eBle=n) 41 efetrz Py+ P
where T
Py = —§3 ede

Equation (118) is called the Langmuir isotherm. If |¢| >> kpT f — 1. Note
that if f ~ 1 one must consider the possibility that more than one layer is
formed.

5.7 Fermi Dirac distribution

Subatomic particles such as electrons, protons, neutrons and muons are
Fermions, they satisfy the Pauli exclusion principle: two Fermions of the
same species cannot occupy the same state. Let us consider a system to be
a single particle state characterized by a wave vector k and spin ¢ which is
either 1 or | . This state is either occupied or not.

Zor =1+ e Blero—n)

where €j,is the energy of the state. The probability that a state is occupied

is then
1

exp[B(ers — p)] + 1
the probability that the state is empty is

(nke) = (119)

1
1 + exp[—B(ero — p)]

1- <nk0> =

The qualitative behavior of the Fermi-Dirac distribution (119) is drawn in
figure (87). As T — 0,3 — oo the distribution approaches a step function
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Figure 10: (a) Fermi Dirac distribution at nonzero temperature. (b) Fermi
Dirac distribution at T=0.

nge = 1, for exy < p,nge = 0 for €x, > p (figure 10(b)). The Fermi energy
(121) is related to the chemical potential by

er = u(T' =0)

If the Fermions are non-interacting the different states are independent
and we get for the grand canonical partition function of an ideal gas of
Fermions

Zg = [J (1 + e Blera—r) (120)
ko

5.8 Free electron gas at zero temperature

At zero temperature the system will be in its lowest energy state, the ‘ground
state’. Electrons are Fermions and the Pauli exclusion principle for Fermions
states that no two particles can occupy the same state. The single particle
states can be characterized by a wave vector k and spin . The number of
allowed k-values inside a ‘volume’ d®k in k-space is from (95), noting the
relation p = Ak between momentum and wave-vector

Vdik

(2m)?

When summing over allowed k-states we can replace a sum by an integral
in the large V, or continuum limit as shown in(93).We will neglect the
interaction between the electrons. The energy of a state with wave vector k

51



is By = f‘;—::f, i.e. it increases monotonically with increasing k. The lowest
energy state then has all momentum states occupied up to a maximum wave
vector kp, the Fermi wave vector. The number of states with wave vector

less than kp is then (including a factor 2 for spin)

N Vz x drkp® _ Vkp®
3(2m)3 32

We refer to the k-space volume with & < kg as the Fermi sphere and its
surface as the Fermi surface. The momentum of a particle with wave vector
kr is called the Fermi momentum pr = hkp. The energy of a particle with
wave vector kp is the Fermi energy

_pF?

=5 (121)

€F
The free electron gas is often used as a starting point to describe the elec-
tronic properties of metals. Let us make some order of magnitude estimates
from this application.
Length scale: The Wigner-Seitz radius rs is defined as the ratio

radius of sphere containing one electron

Bohr radius
so that

vV dragdrgd

N 3
Here ag = 0.529 x 10~ is the Bohr radius. If Z is the valence of a metal
then the number of conduction electrons is N = ZNgtoms. From tables of
the density, atomic weight and Avogadro’s number one can then work out
the value of r;. For the metallic elements one typically has 2 < ry < 6.
Aluminum is a high density metal with r; = 2.07, cesium is a low density
metal with r; = 5.62.

Wave vectors: We have

kp® N 3

S 122
3r2 V. 4magdrd (122)
giving
97 1 1.92
kp = (50)Y3 = = == 12
aokF (4) e (123)

The Fermi wave vector kg is of the order of the inverse Bohr radius.
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Velocity: The Fermi velocity is given by
hkp 4.2
=—=—x
m s
This velocity is of the order 1% of the velocity of light, or 1000 times a
typical sound velocity. We conclude that electrons in metals are supersonic,

but non-relativistic.

Energy: It is instructive to compare the Fermi energy with the Rydberg,
the ground state energy of the hydrogen atom. We have

108ms!

VF

2

e
1Ry = — =13.
Ry Ireqdag 3.6eV

From (123)

h2kp? B2 (97r>2/3 1
€F = — —

: - (124)

2m  2mag? s

Substituting numbers gives

50.1eV
€ = )

Ts
For aluminum, ep = 11.7eV, for cesium e = 1.59eV. The model which
we have described above is commonly called the Sommerfeld model. We
have neglected the electron-electron interaction. Real electrons are charged
particles. The energy associated with the Coulomb repulsion between two
electrons a distance r apart is

62

4meqr

A typical nearest neighbor distance between electrons is ~ agrs and we see
that the Coulomb energy and the kinetic energy is comparable. Nevertheless,
the Sommerfeld model explains many of the qualitative properties of the
physics of metals. Since the kinetic energy is ~ 1/r,2 and the model will
work best when r; is small- and for many purposes aluminum is the most
free electron like metal.

Temperature: Thermal energies available to electrons are of the order
kpT. It is instructive to compare this quantity to the Fermi energy. For this
purpose one can define the Fermi temperature as

TF = GF/kB

The Fermi temperature is 13.6x10* K for Al and 1.84x10* for cesium. These
are high temperatures compared to room temperature.
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5.9 Gravitational collapse of a star

We next will next make some order of magnitude estimates for a situation
which is very different from what obtains here on earth. Our argument
will show that when the properties of matter are dominated by long range
forces such as gravitational interactions we do not have a neat separation
into extensive and intensive thermodynamic variables. Since gravitational
interactions are attractive any body held together by gravitational forces
alone would find it energetically favorable to become as compact as possi-
ble. If the object has a net electric charge the Coulomb interaction would
overcome the gravitational forces so we will consider a star as made up of an
equal number N of electrons and protons that are contained inside a radius
R, volume V = 47 R3/3. Somewhat arbitrarily we also assume that there is
an equal number of neutrons and protons.

On earth the gravitational pressure is not large enough to overcome the
repulsive forces between atoms and molecules at short distances. Inside the
sun matter will not exist in the form of atoms and molecules, but since it is
still burning there is radiation pressure which keeps it from collapsing. Let
us consider a burnt out star such as a white dwarf.

We assume that the temperature of the star is low enough compared to
the electron Fermi temperature that the electrons can be approximated by
a T = 0 electron gas. The kinetic energy of the protons and neutrons can
be neglected in comparison (see (124) noting that the mass of protons and
neutrons is much larger that the mass of electrons).

Let us first assume that the electron gas is non relativistic the kinetic
energy of the electron gas is then with m, the electron mass

27,2 9 IR3K2 L 5
Ekm—22hk V3TL 4/k4dk R°h°kp
o 2me (27)3 2me 157rme

From (122) we find Rkp = (%)1/ 3 and we conclude that the expression
for the kinetic energy can be rewritten as

352 /9r\2/3 N5/3
ki 10m, ( ) ‘R?
The gravitational potential energy is dominated by the neutrons and

protons. Let m, be the nucleon mass. The mass density will then be
approximately p = 2Nm,,/V if there is an equal number of protons and
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neutrons. With G the gravitational constant we find for the potential energy

R
47 R3 12 N?
Epot = —/dR47rR2G mR p 12 26DV (125)
0

3R 5 R

Suppose N is fixed. The radius for which the kinetic plus potential energy
is a minimum can then be found by differentiation. We find

1 /97\2/3 h2
e (5 o
4\ 4 NY3m.m,2G

The gravitational constant is 6.67 x 101! Nm?/kg?, the mass of a nucleon
1.67 x 10727kg, the mass of an electron is 9.11 x 1073!. The solar mass is
1.99 x 103%kg. The radius of the sun is 6.96 x 108m. The radius for which
the energy of a white dwarf with the same mass as the sun will be minimum
will then be ~ 7.2 x 106m or ~ 1/100 that of the sun.

If the density is too large the Fermi velocity becomes comparable with
the velocity of light and we should use the relativistic formula

e(p) = y/m2c* + p3c?

for the relationship between energy and momentum. Consider next an ultra
relativistic gas (e =~ cp) the electron kinetic energy will now be

V N3 he /9n\4/3
Erin = 2 hke = ——4rh k3dk = — = 126
b gk: €= i c/ R 3n ( 4 ) (126)

while the potential energy is unchanged. Comparing (126) and (125) we find
that for fixed IV the potential and gravitational energies are both inversely
proportional to R. Since N2 >> N*/3 for large N we find that if the mass
of the star is large enough the potential energy will dominate. This suggests
that if a star is sufficiently heavy it will undergo a gravitational collapse.
The critical value of N is

5he 3/2 197\ 2
Nopit = (—2€__ o 12
eret (367Tmn2G> ( 4 > (127)

Substituting numbers we find that this corresponds to approximately 1.71
solar masses.
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5.10 Low temperature electronic specific heat

At nonzero temperatures not all the electrons will occupy states inside the
Fermi sphere. Some electrons will be excited from states inside the Fermi
sphere to an electronic state outside the sphere leaving a hole behind, see fig-
ure 11(b). Let f(e) be the probability that a state with energy e is occupied
in a system with chemical potential

1
fle) = P 1 (128)
The mean number of particles is then given by
(N) =2 /d3kf(e ) (129)
~ @) ’

The condition (129) determines the chemical potential . For T' = 0 we have
i = ep, while for T # 0 p will be a slowly varying function of T. When
discussing thermodynamic properties of the Fermi gas it is convenient to
change the integration variable from wave vector to energy. We have

Rk

21,2
_ R g = drk?dk, de = —dk
m

€ )
2m

o0
) = [ deD(O1(e)
where the density of states is given by (see figure 11)

D0 = o (22) " e

The density of states allows us to evaluate thermal averages simply. The
internal energy of the ideal Fermi gas is e.g.

0
U= / D(e)ef (€)de (130)
Let us use this result to find a formula for the specific heat

oUu
Cv = (a—T>VN

The only quantity in (130) which depends on temperature is f(e). The trou-
ble is that the other independent variable is g not N. When differentiating
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Figure 11: (a)Density of states of free electrons. (b) Particles and holes.

f with respect to T' we must therefore consider u to be an implicit function
of T, N,V. We can obtain the leading term in a low temperature expansion
for the specific heat by noting that for T = 0,u = ep. The temperature
dependence of U at constant N comes about because of thermal excitations
in which particles are excited into previously unoccupied states outside the
Fermi surface leaving holes behind (figure 11 (b)).

We use er as our reference energy: Then € — ep is the excitation energy
of a particle outside Fermi surface. Similarly the excitation energy of a hole,
i.e. a particle missing from a single particle state of energy € is ep — €. The
change in internal energy due to thermal excitations is then

AU = /dee—eF +/d€ er —€)(1 — f(€))D(e)

We differentiate inside the integrand to get

of

Cy = / de(e — ep) ==D(e) (131)

We now approximate pu ~ ep and neglect the temperature dependence of u

of e—ep eBleer)

AT~ kpT? (eBle—er) 4 1)2
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Because of the factor 9f /90T the integrand in (131) will be sharply peaked
near € = ep. If we assume that near € = ep, D(¢) ~ D(er) and put z =

B(e — er) we get

EEmP (132)

(e}
z2e”
CV ~ kB2TD(€F) / d$(
— 00
The integral in (132) can be evaluated to yield "3—2 and we get the formula
for the electronic specific heat

_ Tr2kg?

Cv 3

D(er) (133)

Note that we have not made use of the formula ¢ = h;—f: for the electron
energy. In a metal electrons occupy energy bands where € may be a com-
plicated function of k. Equation (133) still remains valid in this situation.
If we substitute the free electron value for the energy we get
_ mNkp T

— 134
Cv > Ty (134)

An important aspect of (133) and (134) is the linear temperature depen-
dence. We will later show that for low temperatures the contribution to the
specific heat from lattice vibrations will be proportional to 7. Therefore,
the specific heat of metals at low temperatures (T< 10K) will be domi-
nated by the electronic contribution. This contribution is still small. The
factor T'/TF in (134) indicates that only a small fraction of the conduction
electrons will be thermally excited even at room temperature. At ordinary
temperatures the lattice specific heat dominates.

5.11 Problem set 3:

1 A cylinder of cross sectional area A and height L is sealed at both ends. It
contains an airtight piston (mass m) and N ideal gas molecules on each side
of the piston ( see figure 12). The temperature is 7. Find the equilibrium
height of the piston by minimizing the free energy of the gas + piston. Does
this result agree with what you would expect by considering mechanical
equilibrium?

2. Pressure of the ideal Fermi gas.

58



LTX N,T
l

I
I
i N,T

Figure 12:

Consider an ideal Fermi gas with N particles in a volume V. The energy
of a one-particle state with wave vector k is h;—rlf There are two spin states
for each orbital k.

(a). Express the ground state energy in terms of N and V.

(b). What is the pressure of the Fermi gas at T' = 07

(c). What is the bulk modulus —V 457
3. Cosmic background radiation

Show that TV'/? is constant for adiabatic (isentropic) expansion of a,
volume V' containing black body radiation in thermal equilibrium. Assume
that the temperature of the cosmic black body radiation was decoupled from
that of matter when both were at 3000K and that it is at 3K now. By what

factor have distances expanded since then?

6 Kinetic theory

6.1 Drude model

In this section we will discuss transport properties associated with the con-
duction electrons, mainly the conductivity of a metal subject to a DC electric
field or an alternating electromagnetic field. The latter extension of the the-
ory will also will allow us to discuss the optical properties of a metal. We
will employ a simple classical model called the Drude model. For simplicity
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we will assume that the metal is isotropic and neglect all band structure
effects.

Let us first consider the DC' conductivity of a metal containing n conduc-
tion electrons per unit volume. Each electron will have a velocity v which
will be some fraction of the Fermi velocity, but in the absence of an electric
field the electrons are equally likely to move in any direction, so the average
velocity (v) = 0. However, if we apply an electric field & the electrons will
be accelerated in the field, and there will be an average nonzero drift velocity
Varift- We let the charge of the electrons be e = —|e| and the mass be me..
From time to time the electrons will undergo collisions with impurities and
vibrating atoms in the lattice and we assume that after each collision the
electron will be equally likely to travel in any direction, so that immediately
after each collision the average velocity is zero. Let v(0) be the velocity
immediately after a collision. Some time ¢ after that collision, but before
the next collision the electron velocity will be

egt

Me

v(t) =v(0) + (135)

The average time between collisions, 7, is commonly called the relazation
time. We see from (135) that the drift velocity in our simple model will be

Varigt = (v(7)) = ‘;‘iT (136)

The electric current density (current per unit area) is then

TL62T >

(137)

J=nevgpif =
(]

According to Ohm’s law the electric field needed to produce a given current

is given by

—

&=pj
where p is the resistivity. Conversely we put
j = 0’05

with o¢ the DC conductivity. We thus find in the Drude model

’I'L€27'

(138)

gy =
Me
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It is instructive to construct a differential equation for the average velocity
(v(t)). If the average time between collisions is 7, the probability of a
collision taking place in the time interval d¢ will be dt/7. The mean speed
will then increase by
e£dt
d{v(t)) = (139)

Me

with probability (1 —dt/7) or drop to zero with probability dt/r. Neglecting
terms of order dt?> we find

dv(t)) _ €  (v(t))

dt Me T

In the steady state (v(t)) — vgripe and

e€T

Vdrift =
e

and we get the same result as before.
We can also consider the response to a AC electric field

& = Re[€(w)e ™

Assuming a steady state response

(v(t)) = v(w)e ! (140)
we find .
—twv(w) = eii:u) - V(Tw)

Putting j(t) = Re[j(w)e™*!] we write

i) = o(w)é(w)
and we find after some algebra

g0

o(w) = (141)

1 —dwr
We see that (141) exhibits two distinct régimes: a low frequency régime
where w7 << 1 in which the current is approximately in phase with the
field, and a high frequency régime wr >> 1 in which the current will be
approximately 90° out of phase .



Another way of looking at the system is in terms of a complex dielectric
constant.

e(w) = e (w)eg
where €, is the relative dielectric constant and €y is the permittivity of
vacuum. We have

D=¢é +P
where D is the electric displacement and P the electric polarization per unit

volume, P = neu and u is the displacement of an electron, caused by the

applied field
du
i
In analogy with (140) we put u = u(w)e~** and find —iwu(w) = v(w) and
after a little algebra we find

e =14 W) (142)
Eqw
We define the Plasma frequency as
2
Qp = 4| = (143)
€Egm

The formula (142) for the relative dielectric constant can be rewritten as

Qp
e =1— o+ /7 (144)
You will learn from other courses that an electromagnetic wave with fre-
quency w propagates in a medium with dielectric constant ¢, with wave
vector
q = qo+/€ where go = w/c is the wave vector in vacuum. If the dielectric
constant is complex the wave will be damped and it is customary to write

Ver =n+ik

where n and k are optical constants. The normal incidence reflectivity from
vacuum can be shown to be given in terms of the optical constants as

n—1)2 + k2
R:m (145)
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Figure 13: (a) Optical constants n and k and (b) normal incidence reflec-
tivity in the Drude model. Frequencies are shown in units of the plasma
frequency 2,; and the curves are drawn for the case (2,7 = 20

In figure 13 we plot the optical constants and the reflectivity in the Drude
model. For frequencies which are small compared to the plasma frequency
the imaginary part of the index of refraction will be large and electromag-
netic waves can only penetrate a short distance in a metal (skin effect). The
intensity of the wave will decay according to

2wk
I o £2 ocexp(—Lz)
c

where z is the penetration depth.

For frequencies higher than the plasma frequencies k will typically be
very small and the metal will be transparent to electromagnetic radiation.
Similarly, the reflectivity of a metal will be high for frequencies below the
plasma frequency, and low for higher frequencies.

6.2 Problem set 4
1: Ferm: enerqgy
(a) Estimate the Fermi energy in eV of the conduction electrons in

sodium metal. The atomic weight of sodium is 23g/mol, the density of
sodium is 0.950g/cm? and Avogadro’s number is 6.022 x 10?3 /mol.
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(b) 3He atoms obey Fermi statistics. (Consider each ®He atom to be

single Fermi particle. At low temperatures >He forms a liquid with a volume
4.62 x 1072°m? per helium atom. The mass of a 3He atom is 5.01 x 10™2"kg
Calculate the Fermi temperature (kg = 1.38 x 10 23J/K).
2: Phase and group velocities. Consider a metal for which wyr >> 1.
The dielectric constant for frequencies larger than the plasma frequencies
will then be approximately real, but less than one. The phase velocity for
electromagnetic waves is w/q, with the wave vector ¢ = 27/A. The phase
velocity for w > Q will then be faster than the speed of light. This will
not violate special relativity since signals propagate with the group velocity
given by vgroup = dw/dq.

(a). Show that the group velocity of light is less that the speed of light
for w > €2y, in the Drude model.

(b). One consequence of the fact that for w > €2, the index of refraction
n < 1 in the Drude model is that there will be total reflection of X-rays
impinging with an angle of incidence larger than a critical angle given by
sin(f.) = n. Calculate the critical angle of incidence for light with frequency
2Q.

3: Calculate the penetration depth at which the intensity of an electro-
magnetic wave in a sodium sample with relaxation time 7 = 107145 will be
reduced by a factor of 2 at the frequency of

(a) w=2710"Hz.

(b) w=2710"Hz.

6.3 The Boltzmann Equation: Fields drift and collisions

In this section we discuss transport theory from the point of view of the
Boltzmann equation. We assume, that the system of interest can be ade-
quately described in terms of a single-particle distribution, fp(r), which is
the density of particles with momentum p at position r. The distribution is
normalized, so that

/d3k/d3rfk(r) =N (146)

where N is the number of particles.
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In the case of a quantum system, a particle with momentum p is repre-
sented as having wave vector k = p/h, energy €. velocity vi*. Because of
the uncertainty principle, we must assume that fp(r) is coarse grained over
a sufficiently large volume that r can be considered to be a macroscopic
variable. In order to be able to do this we must assume that densities and
fields are sufficiently slowly varying that they are well defined locally. We
will take a semiclassical approach to quantum systems, that is, we assume
that in the presence of macroscopic electric and magnetic fields the equation
of motion for particles of charge e is

b= ik = ¢ (€ +vic x B) (147)

If the acceleration of the particles due to the fields were the only effect
causing changes in the distribution function, we would have

fi(t +0t) = fu—sk(t)

or

Ifk(r) a dfx
I (£+vixB)- o (148)
If we take the fields to be slowly varying, we can visualize the states as wave
packets that are accelerated by the fields according to the classical equations
of motion. This assumption is difficult to justify rigorously and we will not
attempt to do so. In some cases, such as in inhomogeneous semiconductors,
near surfaces, or in insulators subjected to intense fields, the electric fields
are strong enough to cause tunneling. The semiclassical approach is then
not appropriate.

Particles from time to time undergo collisions with obstacles in their
path. Electrons in solids are scattered by impurities, vacancies, disloca-
tions, and phonons. Because of screening, the interactions responsible for
scattering are generally short-ranged. We will assume that the scattering
events are discrete (quantum) events Let W (k, k') be the transition rate
(transition probability per unit time) from state k to state k. The distribu-
tion function then changes in time due to transitions ¢nto and out of state
k and we may write

o1
ot coll

=3 @ — fiOW (K, k) — fi(1 — fir)W (k, k)]

kl

“For plane waves the velocity of propagation is p/m. In the case of electrons in a
crystalline solid the relationship between momentum and velocity and momentum is more
complicated and we should use the more general formula vy = dex /Onk.

65



The calculation of the transition probability would take us deeply into quan-
tum mechanics and solid state physics and we will not attempt this. In what
follows we also limit ourselves to the simplest treatment of collisions and
work within the relaxation time approximation.

We assume that the external fields produce only a small change in the
distribution function and write

fio = e+ 9k (149)

where f is the equilibrium (zero-field) distribution given, as appropriate
by the Boltzmann, Bose—Einstein, or, in our case, the Fermi-Dirac distribu-
tions. In the relaxation-time approximation one assumes that if the external
fields were switched off, the non equilibrium part of the distribution function
would decay exponentially with time:

g (t) = gic(0)e /7
where 7 is the relaxation time. We thus obtain

o
ot

9k o}
_— = - ]_
ot T (150)

coll

If the distribution is inhomogeneous, it will change in time due to drift.
If the particles are not subject to any forces,

fr(r,t 4 6t) = fi(r — vidt, ) (151)
and hence of o7
k — oy 2k
E drift = —Vk 81‘ . (152)

Combining the various terms, we obtain the Boltzmann equation for the
distribution function:

dh _ O
dt ot

9fx
field Ot

dfi

153
coll ot ( )

drift

In a steady-state situation we require dfy/dt = 0.
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6.4 DC conductivity of a metal revisited

Consider a metal subject to a weak electric field but no magnetic field. The
field term is .
_e€ A+ gi)
h ok

In the case of a weak &, , the non equilibrium part, gy, will be proportional
to € and thus be small compared to fl?- Thus, for a weak field, the non-
equilibrium part of the distribution can be neglected in (154). Since the
equilibrium part of f does not contribute to the collision term the non
equilibrium part must be taken into account in the collision term. We obtain
the linearized Boltzmann equation

(154)

eE_af{g 9% _,

h Ok T
or . 0 0
_ efrdf dac _ »  Of
9= " he ok - Vi e,

(Remember our sign convention according to which the charge of an electron
to is e.) The electrical current density is given by

.2
1=y Z eViJk (155)
Kk

This in turn yields the conductivity

2e21 of
o=—= zk:vk:vka—ek (156)

We here use the dyadic notation, i.e. vy : vy is a tensor. This formula
illustrates that the current for an anisotropic system will not necessarily
flow in the direction of the field, the conductivity is a tensor. In component

form
Ji = Z OimPm
m
and we have, for example,

2e2r

_ ofy
Oy = v ;(vk)q; 861(
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0
For a metal at moderate temperatures % will be sharply peaked at the
Fermi energy. Only electrons close to the Fermi surface thus contribute to
the conductivity.

It is useful to interpret the result

Ofu

e (157)

fu=fu+gx=fii —me(€ - vi)
in terms of the drift velocity. To first order in £, we can rewrite (157) in the
form

fo = fifec —Te(€ - vi)} .
The right-hand side of this equation is simply the equilibrium distribution
of the system with all energies shifted by an amount

5€k = 7’6(5- ’Uk)

i.e., by precisely the amount expected classically for particles moving with
constant velocity v for a time 7 in a force field €. The extra energy gained
in this way can be interpreted in terms of a drift velocity Jvy in the direction
of the field so that

p) .
ovy - ﬁ =er(vk- &)
If
L
we obtain or
5Vk = ¢
m

For n particles per unit volume, we have for the current,
j = nedv

and we recover our previous result for the DC conductivity.

In the case of a metal the drift velocities are typically very small com-
pared to the Fermi velocity vg, mainly because the electric fields inside a
metal tend to be small. In a semiconductor one sometimes deals with fields
which are large enough that non ohmic effects are important. It is then not
adequate to linearize the Boltzmann equation and one must consider the
nonlinear problem. In such situations collisions often occur so frequently
that one cannot describe them as independent events, and the whole Boltz-
mann approach becomes suspect.
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6.5 Thermal conductivity and thermoelectric effects

To give an example of the use of the Boltzmann equation when the system
is not spatially uniform, and the drift term comes into play, we discuss
the case of a time-independent temperature gradient maintained across a
metallic sample. In analogy with Ohm’s law, there will be a heat current
whenever there is a temperature gradient.

We also allow for an electric field &, , with corresponding scalar potential
o(r). Let u, dq, n be, respectively, the internal energy, heat supplied and
electron density per unit volume. From thermodynamics we have

du=dq+ (p+ep)dn = dq+ pu'dn

where ' = pu + ed(r) is the electrochemical potential at point r. Hence the
heat current density is given by

jo=Jjv—1in . (158)

where ji7 is the energy current density and juy is the particle current density.
We assume that the heat current is due entirely to the motion of elec-
trons and neglect the lattice thermal conductivity. In the presence of the

electrostatic potential ¢(r) the electronic energies will be locally shifted by
an amount e@(r) so that the energy current density is then given by

i0(®) = g [ e+ e )] vichilo)

and the particle current density is

in(r) = (272r)3 /d3kkak(r) (159)

which, of course, also implies an electrical current density jo = ejny. Thus
the heat current (158) is given by

iolt) = G [ o= pivichls) (160)

As before we write

g(r) = fi(r) — fi
and, in addition, assume that the thermal gradient is small enough that
it is meaningful to talk about a local temperature and electro- chemical
potential. With these assumptions, the Boltzmann equation becomes

e e g0 O

—0.
e S " T
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We take f(r) to be the equilibrium distribution with the local temperature
T(r) and the local electro-chemical potential p'(r) controlling the density at
point r. Noting that ex + e¢(r) — p/(r) = ex — p(r), we have

72 = e e, 709} = [erp { AL ] h

kgT(r)
and hence
ofy  ofp afp
or 8TVT+ ou Vi

We next make the relaxation-time approximation (151) and in the spirit of
the linearized Boltzmann equation, neglect terms such as

dg e > Og
= d 2.9
ar 0 RY ok
Using
Ofi _ _ex—pOfe.  Of _ _Of¢
8T kBT2 8€k ’ 8/1 861(
and collecting terms, we obtain
Lo Ok, [_ek —
Tgk N 8€k k kBT2

VT + (e€ — V) (161)

The potential difference measured by, say, a voltmeter will be given by a
line integral of a field along the path of the current, However, it is not given

by
/ £-dl
but rather by the quantity

\I/=/<§— 1w> dl
e

We therefore introduce the “electromotive field” or “observed” field

E=E- ng = —ng' (162)
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Clearly, E is of more interest than the electric field £ itself. We now define
the kinetic coefficients Lo, L@, Lgc, and Lgg through 5

je = LccE - LegVT
Jo = LqocE—LooVT (163)

Using (159) and (160), we see that the kinetic coefficients can all be
expressed in terms of the integral

0
I, — / de (-%) (€ =)o (e) (164)

where
, [ &k
ole) =e*t | —=d(e — ex) VK : Vi (165)
473

is the generalized energy-dependent form of the conductivity tensor (156).
We shall evaluate I, for conditions appropriate to a metal and in this case

_0f° _ Bexp{B(e—n)}
de  [exp{B(e — p)} +1]?

can be taken to be nonzero only in a narrow energy range of order kT
around er. We introduce the new variable z = (e — ) and expand

(166)

)
o(kgTz + 1) = o(p) + kBTzﬁ o

Substituting in (165), we then have the transport coefficients expressed in
terms of

I, ~ (kT)® / ¢ ze (167)

60]
1+ e?)? '

[a(u) + kBT%

Defining

00 p 2J
Qi = /_oo e+ +1)
we have Qg = 1, Q1 = 0, Q2 = 72/3, and Q3 = 0. Taking p =~ er, we thus
obtain
Loc=o0(ep) =0 (168)

®The kinetic is sometimes defined using V(1/T) rather than VT as a driving term.
The resulting coefficients will differ by factors of T2.
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w2 Oo(e
Log=TLoc = gk?gT?’ a(e ) (169)
€E=€p
? 2 3

We see that ¢cg = T'Lgc. This result turns out to have a much more general
validity than our derivation here suggests and is known as an Onsager reci-
procity relation. We note also that for electrons (e = —le|), Lgc and L¢g
are negative. If these coefficients are found experimentally to be positive, it
is an indication that the charge carriers are not electrons but holes.

To obtain the thermal conductivity we require that there be no electric
current, or from (163),

1
£=—LgtLegV <f> : (171)

Substituting into the second equation of (163), we have for the thermal
conductivity
_ Lgo — LocLgcLeg
K= T2 .
We now argue that in a metal the second term in (172) is small compared
to the first. We first note that the second law of thermodynamics implies
that x is positive or LccLgg > LeogLge- To obtain an order-of-magnitude
estimate, we make the approximation (on dimensional grounds) do/de ~
o /e (for free electrons do/de = 30 /2¢) and thus have

LegLge 7T_2 (kBT>2 104
LchQQ 3 €F

(172)

for a typical metal at room temperature. Neglecting the second term in
(172), we therefore find

L 2
k=29 T j27, (173)
e

This result is known as the Wiedemann-Franz law, and is in general agree-
ment with experiment for a number of metals.

The coupled transport equations (163) suggest a number of thermoelec-
tric effects. Consider a circuit consisting of two wires made of different
material with different transport coefficients. The two wires are joined at
one end and the junction is kept at temperature 77 at the other end the
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temperature is T5 if the circuit is open at the other end there will be a
voltage difference between the two ends at temperature 75 which can be
picked up by a voltmeter (Seebeck effect). Similarly, if one forms a closed
circuit of the two wires and forces a current through by applying a voltage,
one junction will heat and the other cool depending on the direction of the
current (Peltier effect)[13]

6.6 Problem set 5

1:
(a) Show that the energy-dependent conductivity tensor

3k
o(e) = €21 | —=8(e — ex) Vi : Vi
473
is diagonal (i.e o4y = 04, = 0y, = 0) for the free Fermi gas ¢, = gi’:g
hk

(b) Determine the diagonal components 0, = 0yy = 02, if € = 5.

(¢) Use the result under (b) to find the transport coefficients of the Fermi
gas

Lec=o(er) =0

72 0o (e
Lw:T%C:$%W é)
€E=€FR
71_2

2: Consider an anisotropic material for which the relationship between
energy is

21,2
:ﬁ@+h@+#@

€k 2my 2my 2m,

where m,, my, and m, are constants.

(a) The Fermi surface will now be an ellipsoid with axes (kr)z, (kr), and
(kr)e. Find (kp)z, (kF)y and (kr)c. [hint: it is a good idea to rescale the
three components of k so that the equal energy surface becomes a sphere]
(b) Using the expression

_ Oeg,

Ok

show that the conductivity tensor will still be diagonal in the z,y, z coor-
dinate system, but the diagonal components will be different in the three
directions if m,, m, and m, are different.

Vk
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¢ The result under (b) implies that if the electric field is at an angle to the
three principal directions {x,y,z}, the current will not be in the direction of
the field. Plot the angle ¥ of the current with respect to the z—axis against
the angle ¢ of the field with respect to the z—axis if 0, = oyy = 50..

7 Phonons

7.1 The harmonic chain

We leave the electrons for a while and concentrate instead on the thermal
properties of a solid due to lattice vibrations. We will not have time to
discuss the solid state aspects in any detail and we will make use of a very
simple model due to Debye which captures many of the essential aspects.
To motivate this model we first consider a one dimensional caricature of a
solid, the harmonic chain. Consider a long chain consisting of N masses
m connected by springs with spring constant K (figure 14). Let a be the
equilibrium spacing between the masses, so that x = na is the equilibrium
position of the n’th mass. The actual position of the n’th mass is

rn = na + u(n)

and the potential energy of the spring connecting the n’th and the (n+1)’st

mass is S[u(n + 1) — u(n)]®. We assume periodic boundary conditions, i.e.

we let the N’th mass be connected with the first mass. Formally, we do this
by requiring that (N + 1) = u(1) and in general
u(N 4+ n) = u(n) (174)

The force on the n’th mass is K[u(n + 1) +u(n — 1) — 2u(n)] and Newton’s
second law gives rise to a coupled set of differential equations

mi(n) = Klu(n 4+ 1) + u(n — 1) — 2u(n)] (175)
We can find solutions to (175) on the form
u(n) = Aelnka=wt) (176)
where k is the wave vector . Substitution of (176) into (175) yields

_mw2Aei(nka7wt) — AK {ei[(n+1)ka7wt} + ei[(nfl)kafwt] _ 2ei[nka7wt]}

or
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atu(n-un-1) . _a +u(n+1) - u(n)

\
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Figure 14: The harmonic chain

w? = %[1 — cos(ka)]

We use the trigonometric identity
. 9, ka
2sin (7) = [1 — cos(ka)] (177)

By convention the frequency w is positive and we find

|K
w=24—
m

The periodic boundary condition (174) determines which values of k are
allowed. Substitution of (176) into (174) gives

. ka
sin —

. (178)

cihNa _
or k = 2% with [ an integer. From (176) we see that I’ = [ + N and [ give
rise to identical solutions, and we can without loss of generality restrict [ to

the values N N N

- ==1,---1,2,.— —1 1
27 2 ) Y ) 2 ( 79)

From (179) we note that there are N distinct values of [. This result is

compatible with the fact that the system has N degrees of freedom. The

restriction on the wave vector is

| =

Tek<l (180)
a a

75



SJJ|:|——-
$D|=l—

Figure 15: The harmonic chain

The relationship (178) between frequency and wave vector is plotted in figure
(15) The physical displacement is, of course, real. Since the differential equa-
tion (175) is linear and real, both the real and imaginary part of a complex
solution are also solutions. With these considerations the general solution
to (175) is then with A, B, C; and S; arbitrary constants of integration

2 2
u(n) = E [Cl cos( 7]r\l[n —wit) + S sin(% —wit)| + A+ Vit (181)

The case [ = 0 in (181 requires special attention. If [ = 0 the wave vector
k = 0. This means that all displacements u are the same. The differential
equation (175) now becomes

mii(n) =0

with solution u = A4Vt where A and V are constants. Usually the situation
where the chain moves uniformly (as a whole) is not of much interest in
lattice vibrational problems.

It is instructive to solve the harmonic chain problem with various bound-
ary conditions. First, consider the situation where we ”pluck” the chain by
displacing the atom at the origin by a fixed amount 6.
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The initial conditions are then
u(0,t=0)=46; u(n,t=0)=0 for n#0 (182)

w(n,t =0) =0 foralln (183)

It is convenient to use the complex form for the normal mode expansion

N/2-1
u(n) = Z AytCGrrl/N=wt) 4 4 4 vy
I=—N/2,I£0
giving
N/2-1
un,t=0)= Y AN 4 4 (184)
I=—N/2,I£0
N/2—-1
O=a(nt=0)= Y —iwAeCm/N 1y (185)
I=—N/2,1£0

The fundamental formula for inverting discrete Fourier series is

_p2mi(i=1")
Z 2mi(1-1") /N _ ;;iw = 0; fO’f‘ l 7é A (186)
— N; for 1 =1
Equating (182) and (184) and multiplying by ™"V and summing over n
gives
)
A=A =—
N

i.e. all modes are excited with equal amplitude. The actual motion is the
real part of the solution giving

I=—N/2,1£0

5 N/2—-1
u(n) = ( > cos(2mnl/N — wt) + 1) (187)

Next consider the case where the atom at the origin is given a ”kick” so
that it has velocity v (in units of lattice spacings per unit time) starting at
the origin with all the other atoms at rest. The initial condition is now

w(0,t =0) =v; u(n,t=0)=0 forn#0 (188)

u(n,t =0) =0 foralln (189)
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We find equating (185) and (188) using the Fourier transform formula
(186)

v
V=—
N
and .
w
A= —
! wN

The actual motion of the masses is obtained by taking the real part or

v N/2-1
u(n) = ~ (— Z —sin(27nl/N — wt) + t) (190)
1= N/2,I#0

Returning to the general case: we refer to the individual terms in the |
] of 181 as normal modes and to (180) as a normal mode expansion.
From (178) we note that there is a maximum frequency

K
Wmaz = 2 E

If an atom is subject to a periodic force with frequency w < wiq, this will
set up traveling waves with wave vectors satisfying (178). The phase velocity
of this wave is

w 2 |K

k k\ m

. ka
sm(7)

while the group velocity is

ow K
Vg = o = ay/ p cos(ka)

Note that the group velocity — 0 as w — wWmae- A local disturbance with
frequency > wmgay cannot propagate through the lattice, but stays trapped.
In the long wave length limit & — 0, A = 27/k — oo the phase and group
velocities approach a common limit

We refer to long wave length lattice vibrations as sound waves with s the
speed of sound.
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Figure 16: Lennard-Jones potential.

7.2 Lattice vibrations in a solid

Let us now try to form a more realistic picture of the lattice vibrations in
a solid. To a reasonable approximation, the interaction energy between two
atoms, one at r; one at r,,, can be described by a pair potential v(r; — ryp).
This potential can be thought of as made up of two parts. At short range
when the atomic cores overlap there is a strong repulsion, whose origin lies
in the Pauli exclusion principle. Since two electrons cannot occupy the same
state, the core states will have to be distorted when two atoms get too close
together, and there is a large energy cost associated with such distortions.

At larger distances there is no significant overlap between the electron
states of neighboring atoms. The interaction would then tend to be attrac-
tive (otherwise the solid would not stick together). The simplest cases are
the crystals formed from the inert gases neon (Ne), argon (Ar), krypton
(Kr) and xenon (Xe). The dominant force is then due to the van der Waals
attraction. In this case the atoms have spherical symmetry and the poten-
tial is central v = v(|r; — rp,|) The corresponding potential falls off as the
sixth power of the distance— and since force is minus the gradient of the
potential, the corresponding force will be ~ 1/R7. This r dependence can
be understood from the following argument:

If an atom is exposed to an electric field £ the force on the negatively
charged electrons and the positively charged nucleus will be in opposite
directions. This will induce a dipole moment

p = af (191)

where « is the polarizability. If the electric field is absent the average dipole
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moment will be zero, but there will still be a fluctuating dipole moment due
to quantum effects (zero point motion). The electric field due to a dipole
falls off as the inverse third power of the distance, and it will induce a dipole
moment in neighboring atoms which is proportional to the field according
to (191). The interaction energy will then be of the form

(=pi-Em) = lED,)

where p; is the induced dipole moment on atom [ due to the fluctuating
field £,, from atom m. The angular brackets () indicate average value. The
average value of the fluctuating electric field is (£) = 0, while the mean
square value will be non-zero. Since the fluctuating field falls off as the
inverse third power of the distance, the mean square field will be proportional
to the inverse sixth power of the distance to the fluctuating atom. The van
der Waals interaction energy is thus ~ 1/76 .

An approximate way of combining the repulsive and attractive interac-
tions between the atoms in a molecular crystal is the Lennard-Jones potential

o) = 2 By @y

o
rl2 6 r r

)°] (192)
where A and B are constants which depend on which atom or molecule is
involved. It is conventional to parameterize the potential in terms of an
energy parameter € and length parameter o, in terms of which A= 4ec'2,
B= 4e0%. We plot the Lennard -Jones potential in figure 16.

The potential changes sign at r = o. By differentiating (192) we find
that the potential has minimum at r» = 21/6¢. The value of the potential at
the minimum is —e.

In other solids the mechanism for the attractive part of the interactions
will be different. In ionic solids the crystal is made up of positively and
negatively charged ions (e.g. common salt is Na™ C17). The crystal struc-
ture will be such that the nearest neighbors have opposite charge and thus
attract each other). In a metal all the ions are positively charged but each
ion is surrounded by a negatively charged screening cloud. Since this cloud
will be closer to the neighboring ions than the ions themselves there will be
a net attraction. We have already mentioned that conduction electrons, be-
cause of their light mass move much faster than the ions. On the time scale
of the ion movement the electrons will have time to adjust to that motion
and the screening cloud can be thought of as effectively attached to its ion.

Consider now a chain of atoms interacting with a potential similar to
that of figure 16. When at rest the atoms in the chain will be spaced at a
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distance a which corresponds to the minimum of the potential. For small
amplitude oscillations (r = a + u, where u is the displacement) the potential
will be approximately given by

u? d?v(r)

v(r) = v(a) + R

r=a-+u

The ”spring constant” for the atomic chain is then just the second derivative
of the interatomic potential evaluated at the equilibrium distance between
the atoms.

We now wish to establish a more general formalism based on the above
ideas. Let R; be the equilibrium position of the I’th ion, u; the displacement
of this ion from the rest position. The actual position of the ion is then

rr=R;+uy

We write uj, (@ = z,y,2) for the components of the displacement. The
components of the force on the I’th ion is

oV (ry,re,..ry,..rN)
Oryq

fla:_

or in the more compact vector notation

ov
fi=—— 193
=5 (193)
For small amplitude vibrations we can make a Taylor series expansion of the
potential energy function

oV (ry,re,..r
V(rl’FQ"'rN) = V(Rl’RQa--RN)+ZUla ( 18 ’ N) +
la Tla ria=Rio foralll
1 0*V (ry,ry,..r
+§ Z UlaUmp 8( ! 82 v) + - (194)
Imaf TlaOTmp riqa=Rjo for alll

When all the ions are at their equilibrium positions, the net force (193) on
them is zero. The second term on the right hand side of (194) must therefore
vanish.

The harmonic approzimation consists of stopping at the last term on the
right hand side of (194). This allows us to think of the lattice as made up a
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set of masses connected by springs. Each spring is represented by a spring
constant
82‘/(rla ro,: - I'N)

for all { 195
0710 0T mp ora (195)

(blma,B =
ria=Ria

The equation of motion for the a’component of the displacement of the I’th
atom is then according to Newton’s second law

mﬂla = fla = - Z élma,@um,@ (196)
mp3
If the crystal potential and structure is known, e.g. if the atoms interact
pairwise via a Lennard—Jones potential (192), the force constants (195) can
be computed by straightforward if tedious algebra. The force constant (195)
will be a function of the equilibrium distances s = R; — R,,,.

cDlma,@ = (baﬁ(s)

For simplicity we assume that the crystal only contains one kind of atom
(or ion), and that all the equilibrium sites in the lattice are equivalent (have
the same symmetry). We can now make a few general statements about
properties of ®,4(s) that do not depend on the details of the potential.

First note that me may exchange the order of differentiation in (195).
Hence

Pap(s) = ®pa(—s)
Since there is an equivalent neighbor at -s for every neighbor at s we also
have

Dap(s) = Pap(—s)
There can be no change in energy associated with a uniform translation of
the crystal as a whole i.e. if u; =constant for all /. This means that

> Pap(s) =
S
We can now solve (196) by looking for solutions on the form
iy (t) = eefk Rt (197)

The amplitude of the oscillations is now the polarization vector €, with com-
ponents €, (@ = z,y, z). Substitution of (197) into (196) gives

—mw?e, = Z@ag ’ks
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The Fourier transform of the force constant matrix ® is the dynamical matriz
k) =) ®ag(s)e”™"
S

which because of the symmetries discussed above can be rewritten

Z §a,8 1k ‘s e—ik~s _ 2]

or

k .S
= —22%5 ) sin? —) (198)
This form is very similar to what we had for the harmonic chain. In that
case there is only one component of the matrix and only two neighbors s
and the "home site” s = 0 which contribute to the sum. The normal mode
frequencies can thus be found by solving the cubic determinantal equation

Dyp(k) — mw? Dy (k) D, (k)
Dy, (k) Dy, (k) — mw? D, (k) =0 (199)
D..(k) D, (k) D,.(k) — mw?

and the polarization vector € is an eigenvector of the dynamical matrix. The
dynamical matrix will be real. From the symmetries discussed above we find
that it also will be symmetric. It is a theorem of linear algebra that a real
symmetric matrix has real eigenvalues and that the eigenvectors € will be
orthogonal to each other. The eigenvalues must also be positive, if not we
would have solutions the dynamical equations with imaginary frequencies.
This would allow solutions which grow exponentially in time, and would
imply that the crystal is unstable. Mathematically a negative eigenvalue
would mean that there would be some direction in which the restoring force
associated with a displacement would be negative, i.e. the crystal potential
at the equilibrium site has a maximum or a saddle point. The cubic equation
which results when one multiplies out the determinant in (199) will thus have
three positive roots for w?. If we take the square root of w? we thus get real
frequencies.

Let us consider the case where the wave vector k is small and let k = kk
where k is a unit vector in the direction of k. For small z we have that
sinz ~ x and

Who = Z Pop(s) (200)
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We see that, if the lattice potential is sufficiently short range that the sum
in (200) is convergent, the frequency will be proportional to k. The propor-
tionality constant is the velocity of sound, which in principle will depend on
both the direction of k¥ and of the polarization €.

One can show that for small values of k one of the eigenvectors € will
be parallel to k, i.e. the vibrations will be longitudinal. The two other
modes will have € perpendicular to k and the vibrations will be transverse.
In the general case the amplitude vector will not be exactly parallel or
perpendicular to k, but the three vectors € corresponding to a given k will
be orthogonal to each other.

7.3 Phonons

We treat the normal modes of the lattice as a set of independent harmonic
oscillators (see section 4.5) each with frequency wy,, -

_ hwka hwia
(E) = 2 ePhwka — 1

Each mode will contribute a term

OE) BE)OS 1 (hure)ene
or o8 oT  kpT? (eﬂhwka —1)2

to the specific heat. At high temperatures § — 0, and

Bhw B hw
€ =1+ phw=1+ kB—T
and the contribution to the specific from each mode approaches kg.

In what follows we will need to calculate thermal averages which involves
summing over contributions from all the individual modes. For this purpose
we need to find a way to convert sums over allowed k-values into a volume
integral over d3k, just as we did in the case of black-body radiation and for
electrons. For simplicity we let the crystal contain N = L x L x L cubic
cells, of side a, each of which contains one atom. With periodic boundary
conditions the allowed values of the k-vector are

ng,  n2.  mn3.

k="gq M2, 18 201
Lx+Ly+Lz (201)

Consider the modes for which the integers ni,ny and ng in (7-22) are
between
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ny and ny + dny
ng and ng + dno
n3 and ng + dns
The total number of such modes is

dnidnadns = dn (202)
From (201) and (202) we see that these modes occupy a ‘volume’ in k-space

2m)3
d3k — (
V

d*n

Only the modes for which % <n < % < ng < 2, 2 <ng< L 5, can be
considered to be distinct and there will be N such k-values. If the volume V
is macroscopically large the k-values for successive normal modes are very
close together and we can replace a sum of allowed k-states by an integral

according to
V / 3
= 3k (203)
= (2m)?

Since there are three modes for each k-value, there are 3N normal modes.

7.4 Debye model

In general, the lattice heat capacity will be the sum of the contributions
from the individual modes. We find

Z [hw(k, a)]? el
k:BT2 v eﬁﬁwm—n?

Cy = (204)

Here, wy o is the frequency of one of the three modes with wave vector k.

We now describe a simplified model which allows us to evaluate (204),
to a good approximation. In the Debye model one makes the following
assumptions:

(1). The frequency of a normal mode with wave vector k is
approximated as
wk,a) = sk (205)

where s is an average sound velocity.
(2). The region of k-space that corresponds to distinct modes
is approximated by a sphere. The radius gp of the sphere is given
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by the requirement that the number of allowed wave vectors
inside the sphere should be equal to the number of atoms IV

dr 5V

= =N
310 (27)3

or N
ap = (67r27)1/3 (206)

The maximum phonon frequency in the Debye model is called the Debye
frequency
wp = $qp (207)

We also define the Debye temperature as
0p = —— (208)

We substitute (205) into (204)

h2 2k2e,8hsk
Cv=r 37 m /k2 (Bhsk _ 1\2
271' kBT (ePhsk — 1)2

(The factor of 3 comes from the sum over «.). We introduce the dimension
less variable £ = Bhsk and find

Bh
3V kg?T? /SQD rie®dr
(

ﬁ R3s3 e? — 1)2

vV =

which simplifies, using (206) (207) and (208), to
T te?d
Cy = ONkp(—)? / (Z’fixz (209)

Equation (209) can be evaluated analytically in some limits. At low temper-
atures p/T — oo. The integral in (209) can the be evaluated analytically

to ~
/ rie®dr _ ﬁ
(e —1)2 15
0
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Table 1: Debye temperatures of some elements and compounds

Element | 8p[K] | Compound | 6p[K]
Ls: 335 | NaCl 280
Na 156 | KCl 230
K 91 | CaFy 470
Cu 343 | LiF 680
Ag 226 | Quartz 255
Au 162
Al 428
Ge 378
Si 647
Diamond | 1860

and we get

4 3
lim Cy = HT”NkB (%) (210)
i. e. the low temperature specific heat will be proportional to T3. For high
temperatures we note that for small values of x the integrand in (209) is
~ 2. The integral is then ~ %(OD/T)?’ and we recover the Dulong and Petit
heat capacity.

Cy = 3Nkp

Finally, we note that if we plot the specific heat per mole vs. the temperature
in units of the Debye temperature, (209) predicts a universal curve (see figure
17). This prediction is remarkably accurate. To get the good agreement the
Debye temperature should be considered as a fitting parameter, i.e. the
value of Op was chosen which gave the best overall fit. Some fitted Debye
temperatures are tabulated above.

7.5 Problem set 6

1: Consider a linear chain of atoms. Each atom interacts with its near-
est neighbor on either side via a Lennard-Jones potential (192). Assume
parameter values appropriate to krypton (o = 3.65A, € = 0.0140 eV).

(a). Find the equilibrium spacing between the atoms.

(b). Find the sound velocity.
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Figure 17: Heat capacity in the Debye model.

(¢). What is the maximum frequency?
2: Plot by evaluating (190), for a sequence of times, the amplitude of a
monatomic chain of 100 atoms with periodic boundary conditions. Give a
physical interpretation of the evolving pattern, by making use of the fact
that the sound velocity of the harmonic chain increases with increasing wave-
length.
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8 Phase transitions

8.1 Gibbs phase rule

Our next topic is phase transitions. We first consider the thermodynamics
of the situation. A pure substance can typically exist as either a solid, a
liquid or a gas. The Helmholtz free energy per particle f(7,v) = F/N can
be considered as a function of the temperature and volume per particle,
v = V/N. The pressure is given by the equation of state

p- _9F __9f

v v

The equation of state can be thought of as defining a surface in P, v, T space
(see figure 18). For coexistence of two phases, labeled by subscripts 1 and
2, (e.g. liquid and vapor) we must have P = P, T} = Ty, pu; = pa. The
restriction on the chemical potential represents an additional constraint on
the equation of state surface and defines a line on that surface. In figure 8-2
we project such lines on the P, T plane.

We notice that there are special points, the critical point C and the triple
point T'. The triple point involves three phase coexistence. The additional
constraint g3 = ps = us restricts us to an isolated point on the phase
boundary. Similarly the condition that the partial volumes be the same at
the critical end point of the gas liquid co-existence line restricts us to an
isolated point.

Consider next an r-component mixture containing s coexisting phases.
Let ¢(7,7) be the mole fraction of constituent i in the j'th coexisting phase.
We have ¢ = 1,2...r, and j = 1,2,...s . How many coexisting phases s can
we have?

Let us consider the restriction on the variables. T,v are independent
variables (control parameters). The mole-fractions are restricted by the

condition
T

Zc(i,j) =1 forallj

i=1
There are therefore s(r — 1) independent concentration variables. Equating
the s chemical potentials of the coexisting phases gives rise to r(s — 1)
equations. For these equations to have solutions we must not have more
equations than we have variables or:

s(r—1)+2>r(s—1)

89



isotherm
sothe S/R\
Y

A

— —critical point

solid+vapor

v
N

Figure 18: Equation of state surface

90



P
solid
critical point

liquid

triple point gas
vapor

>
T

Figure 19: Projection of equation of state surface on P, T plane

8.2 ‘Magnetic’ models

According to current theory there are two main types of types of magnetism:

(1). The magnetic moments are localized on distinct sites
(ions).

(2). Magnetization arises because of difference in occupa-
tion of electronic bands for electrons of different spins (itinerant
electrons). The magnetism in the two most important magnetic
materials, iron and nickel are of this type.

In both cases there is an energy of interaction between the electronic spins
(exchange energy) which favors parallel (ferromagnetic) or anti-parallel (anti-
ferromagnetic) alignment of the spins.

We will here restrict our attention to case (1), since as we have already
seen models of this types have many applications also outside the field of
magnetism. There are three main types of discrete site models.

(a). Ising models.
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The magnetic energy (or enthalpy if we stick with the good intentions
established earlier) can be written

H= —%Zjijs,-sj —BpY s (211)
i#j i

Here J;; is the exchange energy . If J;; > 0 the coupling between the spins is
ferromagnetic, if J;; < 0 the coupling is anti-ferromagnetic while if J;; is a
random variable with sometimes positive sometimes negative sign (as e.g. in
the neural networks) the coupling is of the spin glass type. The site variable
s; can only take on one of two values s; = 1. It is possible to generalize to
more than two possibilities, but in the Ising model their number is always
finite and they are discrete.

(b).  —y model.

In this model the spin is a two component vector s; = (s;z, Siy). The
interaction between any pair of spins is of the type

JijSi . S]'

The spins can be classical in which case the components are continuous
variables, but with the length (s)? fixed. In that case the model is sometimes
referred to as a ‘clock model’. Alternatively we might assume quantum spins
and let the components of s be Pauli spin matrices.

(c). Heisenberg model

This model is similar to the £ — y model but the spins are three dimen-
sional vectors.

8.3 Mean field theory for the Ising model

We will here concentrate on the Ising model, both because it is the simplest
of the above models, and also because this model has most applications
outside the field of magnetism.

Let us first consider the case

K
Jij = constant for all spins = ¥

where we assume that K > 0 (ferromagnetic case). For a large system the
magnetization fluctuates about its mean value

1
o= (s;)= N E s; + small fluctuations
i
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We refer to o as the order parameter. Introducing the reduced magnetic
field h = Bp we have for the Hamiltonian (211)

K
= QNZSVQJ tht———Zsi)(ZSj)—i-WZSiQ—thi
i£] J i i
KNo? K

=— 20 — Nho + > + fluctuations (212)
the last two terms on the right hand side of (212) will be small compared
to the first two in the limit N — oco. We next turn to the entropy. If the
magnetization is No there will be §(1 + o)+ spins and §(1 — o)— spins
and we find for the entropy

! B -
sszm{ N 1+"1n[1+"]+1 "m[l "]

(51 +oT (1—0)]'}_ NkB{ 2 2 2 2
(213)

where we have used the Stirling formula. Collecting terms we find for the

free energy

Ko2 1[1+o 1+o0 l1—-0 1—-0

At equilibrium the order parameter o will take on the value for which F' is
a minimum. Differentiation gives

oG 1+o
— =N{—-Ko— —1 214
do { 7 +2ﬂ (1—0>} (214)
We put the right hand side of (214) to zero and get
1+o
26(K h)| =
exp[2B(Ko + 1) = 12
or
o = tanh[3(Ko + h)] (215)
In the special case h = 0 (215) reduces to
o = tanh(SKo) (216)

We see that o = 0 is always a solution to (216). If we differentiate (214)
once more we find

LGZ_G__IHL( 1,1 )
N 902 26\14+0 1-0
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Figure 20:

For 8 < 1/K or T > T, = K/kp the second derivative is positive for o = 0.
The non magnetic state 0 = 0 will then represent a minimum of the free
energy. For 3 > 1/K or T < T, the second derivative becomes positive and
o = 0 represents a maximum in the free energy. The non magnetic state
then becomes unstable and there will be a spontaneous magnetization.

The equilibrium value of the magnetization for T' < T, can easily be
computed by choosing a value of x = SKo. One can then find o from (216)
and T from K

r_ Ko
kpx

The resulting magnetization is plotted in the figure 20(a). The same method
can be used to calculate the magnetization in a non-zero field and the result
is sketched in figure 20(b). In that case there will also be a solution in which
the magnetization is opposite to the field. It is easy to verify that the free
energy of this solution is larger than when ¢ and h have the same sign, and
we can discard this solution. We next turn to a non magnetic application of
the ferromagnetic Ising model.
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8.4 Solubility gaps

Consider a mixture of two molecular species A and B and let « be the mole-
fraction of A molecules and 1 — x the mole-fraction of B molecules. We
wish to address the well known phenomenon that certain fluids, such as oil
and vinegar, do not mix at low temperatures for all concentrations. For
simplicity assume that the molecules are of the same size so that the volume
stays constant as the mole-fraction is varied. We introduce

uAA(r) = interaction energy between two A molecules at dis-
tance r.

upp(r) = interaction energy between two B molecules at
distance 7.

uap(r) = interaction energy between an A and a B molecule
separated by 7.

Again for simplicity we assume that the interactions are long range so that
we can work with the average energy

UAL €AA u €BB uA €EAB
N’ N’ N
We have N(Na1
NalNa—l) %:c2N2 = # of AA pairs

2
Np(Np—1) 1(1 - 2)2N? = # of BB pairs

2 =3
NaoNp ~z(1—2z)N?> =4 of AB pairs
The energy is then
N
E = ?[:chAA + (1 —z)%epp + 22(1 — x)eap] (217)

In analogy with (213) we find for the entropy
S =—-Nkp[zlnz + (1 —z)In(1l — z)] (218)

One method to search for the possible existence of solubility gap is to
consider the grand potential

Q=FE—TS - uaNs — upNp (219)

where 4, up are the chemical potentials for the two species. At the equi-
librium concentration we require that the grand potential is a minimum and
get the equation of state
o0
0
oz
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The solubility gap then arises, because certain x values do not give rise
to a minimum in 2. We find after straightforward algebra

T (eas+enn —2eap) +a( )+
N — g \e4a T e —2eap)+r(eap —€pp)+ 5€BB
1
-I-B(mln:v-l—(l—m)ln(l—m))—(uA—uB)m—uB (220)
Define
€ =2e4AB — €4 — €B
‘- 1
= %
1
p=—(na—pp —ean +epp)
Q z?
w—m——7—um-l—t[a:lna:-l—(l—m)ln(l—x)]

We assume that € < 0 (otherwise it wouldn’t be energetically favorable for
the mixture to separate). We have

Oow x
— = —z— tl 221
oz Topt nl—m (221)
w 1
142
Oz2 + (:c+1—x)
It is easy to show that
1 1
r 1—=z

has its smallest value 4 in the interval 0,z,1 for x = .5. We see that if the
reduced temperature ¢ > % then 0%w/0x? > 0, always. On the other hand if
t < % the second derivative will take on both positive and negative values.
Putting the derivative in (221) to zero gives

pz—:c—i—tlnlx = ¢(x)

A plot of ¢(z) vs. x is given in figure 21 for the two cases t < %, t> %.
We conclude that for ¢ > 1/4 the mixture is stable for all concentrations.
For t < 1/4 there will be two concentrations x1, z2 for which two mixtures
with different concentrations x; and xocan co-exist. To find the precise vales
z1 and z2 we have to make use of the additional condition w(z1) = w(x2).
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Figure 21:

In a mixture for which 1 < & < 2 the system will split into two coexisting
phases of concentration x1 and xs respectively. Finally if x< z1 or x> 9
the mixture is stable. Note the analogy between the present situation and
the isotherms of a van der Waals fluid. The t vs. x phase diagram is plotted
in figure 22.

8.5 Self-consistent field method

It is instructive to derive some of the results of the previous section using
a different method. Consider the Hamiltonian associated with long range
interactions in zero field

K
H=-v Z 8i8; (222)
i#]
We consider, as a subsystem, a given site spin sy . The terms in H which

depend on s¢ come from the terms in (222) for which either ¢ = 0 or j= 0.
These terms are

-K
H() = TS(] ZSi =
1#0

_ Kso(N —1)o

N + fluctuations ~ — K sgo

The partition function for the subsystem is

Zy = PKo 4 e7PKT — 9 cosh(BK o)
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Figure 22:

and we have
eBKcr _ e—BKO'

<80> = W = tanh(ﬂKU)

Since the selection of the ‘home spin’ sy was completely arbitrary self con-
sistency requires that (sg) = o giving

o = tanh(SKo)

which is the same as (222). This is an exact result for the system with long
range interactions. It is equivalent to the mean field theory discussed in the
previous section. Both formulations can be generalized as an approximate
method for systems with short range forces.

8.6 Order disorder transition in a binary alloy

When the mean field theory is applied to systems with short range interac-
tion it is called the Bragg- Williams approrimation. As an example we con-
sider the order disorder transition in a binary alloy. The most well known
example of such a transition occurs in 8 — brass an alloy consisting of ap-
proximately 50% Cu and 50% Zn.

The alloy has a body centered cubic structure (figure 23). We may think
of the ordered phase as one in which the corners of the cube are mainly
occupied by Zn atoms while the cube centers are mainly occupied by Cu
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Figure 23: Ordered phase of -brass

atoms. The corners and the cube centers both constitute two simple cubic
sublattices.

In the high temperature disordered phase the atoms are randomly dis-
tributed between the cube corners and cube centers. We will use a notation
in which A and B refer to the two atomic species and where the subscript
1 refers to a corner position and 2 a body center. For example, N4 is the
number of A atoms in corner positions. We assume that the interactions are
short range so short range that there are only nearest neighbor interactions
(body center to corner).

We define

N4 = # of nearest neighbor AA pairs
Nap = # of nearest neighbor AB pairs
Npp = # of nearest neighbor BB pairs

and write for the energy
E = Naseaa+ Napeap + Nppesn

For simplicity we assume that exactly 50% of the atoms are of the A type
and 50% are of the B type. This allows us to write

N
5 = Na1+ Na2 = N1 + Np2 = Na1 + Np1 = Na2 + Np2
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We introduce the order parameter

_ Na1 — Nao
m = AL VA2

1
N
where —1 < m < 1. We have
N
N1 = Np2 = E(l +m)

N
Na2 = Np1 = 5(1 —m)

We define ¢ as the number of nearest neighbors (¢ = 8 for the body centered
cubic lattice). In the mean field approximation we put for the number of
nearest neighbor pairs of different type

2N 4
Naa =qNa N 2
2Np
NBp = qNpB1 N 2
2q

Nap = —(Na1Np2 + Na2Np1)

N
We define
e =q(eas +epp — 2eapB)

In the present problem we assume that € > 0. This is the opposite of the
situation that we had in case of phase separation. We now assume that it
is energetically more favorable for A atoms to associate with B atoms than
with their own kind. The coupling is now anti-ferromagnetic. The energy
is now given by

FE
N = —em? + q(eas + epB + 2e4B)

We write for the entropy

Nai!Np1!Nag!N 1 1 1—m 1-
S:kBln< ALTBL A2 BQ):N]CB{ My 2t m = m}

1 1
(IN1)2 > T2 T3 T
(223)
The last step in (223) follows after some algebra using Stirling’s formula.

The approximate free energy is then

F 1 1 1-— 1-—
f:N:const.—em2+kBT{ -;mln -;m—l- 2mln 2m}
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Figure 24: Free energy as a function of order parameter for different tem-
peratures

The equilibrium of the order parameter m is the one for which the free
energy is a minimum. We have

of kgT . 1+m
2l _0=-9 YBY p
o 0 em + 2 nl—m
0 f kgT 1 1
Zd 9
Om? €t 2 (1—|—m+1—m>

We see that for kgT > €/2 the free energy has a minimum for m = 0.
This is the high temperature disordered state. For kT < €/2 there are
two symmetric minima with m # 0 corresponding to the ordered alloy. The
behavior of the free energy above and below T = T, = ﬁ is shown in
figure 24 respectively. The plot of the temperature dependence of the order
parameter will look like figure 20(a) except o is replaced by m.

8.7 Critical Phenomena

The physics near critical points in the phase diagram has interested physi-
cists for many years as a research topic. In recent years particular attention
has been paid to critical non equilibrium phenomena, although we will here
only discuss briefly the equilibrium theory. Many properties of a system
such as the order parameter, the specific heat, critical isotherms and the
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susceptibility will exhibit singular behavior near a critical point. Near such
a point small changes in parameter values causes a qualitative change in the
system behavior. Because of the lack of stability in the response the system
will then exhibit large fluctuations. At the critical point fluctuations occur
on all scales.

Let us revisit the mean field theory for the Ising model. We rewrite the
self consistent equation for the order parameter o in zero field

K T,
o = tanh (lfB—C;> = tanh ( ,}0>

Below, but near, the critical temperature the order parameter o will be
small. We use the Taylor expansion for the hyperbolic tangent

3
tanh(z) =2 — — +
to find 5
T, 1 (T\3
— () o2 (2 224
o (T>0' 3(T> o’ + (224)
giving

3/2
o(T) ~ 3/2 <%> (% —1)1/2

The order parameter will thus approach zero in a singular manner as T" — 7,
from below. The asymptotic form is

T, 1/2
7~ (? B 1)

The exponent for the power law behavior of the order parameter is conven-
tionally given the symbol . In more realistic theories, and in real ferromag-
nets it will not be given by the simple fraction 1/2 found here.

Next consider the magnetic susceptibility per spin which is defined as

where h is the magnetic field in reduced units. Recall that the self-consistent
equation in the presence of a field is

o = tanh [KU + h]

kT
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by differentiating we find

do
~— — cosh™2
o cos [

Ko+h] 1 do
— | K—+1
ot | e (Ko )

where Using T, = % and taking the limit h— 0 we find

1 1 1

0,T) =
x(0,7) kBT cosh?(%22) (1 — 22 cosh ?(%2))

For small z .

cosh(z) ~ 1+ % (225)
For T > T,., 0 =0 and

1

XO.T) = T )

For T < T, but close to T,, we find after some algebra using (224) and (225)

1
0,T7T)= ——
X( ) 2kB (Tc - T)
In both cases the susceptibility diverges as T' — T.. It is conventional to

write for x near T,
x(0,T) ~ |T - T

In our mean field theory v = 1 while different values are found in other
models and in real magnets.
Finally let us consider the specific heat. The internal energy in our mean
field theory is for h =0
KNo?

2
From (224) we find that as T — T, from below

Ch = (8—H> — §kB
h=0 2

H=-

while C, = 0 above T,. Thus, the mean field theory produces a discontinuity
at the transition. Other models exhibit a power law singularity in the specific
heat

Cp~|T—-T. ¢
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where « is the conventional symbol for the specific heat exponent.

It is natural to ask oneself on what do these exponents depend? Landau
showed some 50 years ago that if the free energy is an analytic function of the
order parameter near ¢ = 0, one finds that under very general conditions
a=07p8= %,fy = 1. On the other hand, in the Ising model with short
range interactions one can show that for a two dimensional lattice a =
0,6 = .125,y = 1.75. There is no transition in one dimension. In three
dimensions the exact results are not known, but simulation studies and
advanced analytical methods are consistent with a ~ 0.124,5 ~ 0.31,~v ~
1.25. The value of the exponents does not depend on the lattice type. Some
other critical phase transitions such as the gas liquid transition appears to
have the same exponents as the Ising model. The Heisenberg model on the
other hand has no transition in one or two dimensions while the exponents
in three dimensions differs from the Ising exponents.

9 Some old exam questions

9.1 April 1990 PHYS 455 Exam

This paper contains 2 parts (I) Problems, (IT) Questions. Solve 4 of the 5
problems and answer 4 out of the 5 questions. Allowed aids: 1 double sided
‘cheat sheet’. Time 3 hours.

I Problems:

1: Entropy of mizing

(a). Consider two ideal gases both at the same temperature 7" and
pressure P. One gas occupies the volume V; the other the volume V5. The
gases are mixed so they occupy the volume Vj + V5. Derive a formula for the
entropy of mixing.

(b). 1 mole of argon and one mole of krypton are mixed at a fixed
temperature. Originally the volume of each gas was V. After the mixing
the volume is 2V, Subsequently the gas is compressed isothermally to the
volume V. What is the difference in entropy of the gases before and after
mixing, before and after the isothermal compression.

(c). A 10 kg rock falls off a cliff 100m above the surface of a 100m deep
lake. The rock settles at the bottom of the lake. What is the change of
entropy of the rock? of the lake ? The density of the rock is 2000 kg/m? of
the lake 1000 kg/m3. Assume that initially the temperature of the rook and
of the lake was 300K and that the potential energy of the rock is dissipated
as heat in the lake. 4: Polymer model.
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N monomeric molecules are arranged along a straight line to form a
chain molecule. Each monomeric unit can be in an « state or a v state. In
the former case the length of a monomer is a and the energy is E,. The
corresponding values in the latter state are g and E,.

(a). Derive the relation between the length L of the chain molecule and
the tension X applied between the two ends of the molecule.

(b). Under what conditions will the chain contract when heated under
constant tension.

5: A dipolar gas.

Show that the electric polarization P of an ideal gas consisting of N
diatomic molecules having a constant electric dipole moment p is given by

wE kT

Nu
P_—{COth(kBT) . }

%

IT Questions:
Answer briefly 4 of the 5 questions.

3: Give an argument why *He is superfluid at low temperatures while
an ideal Bose gas below the Bose Einstein transition temperature is not.

4: What is the Dulong Petit heat capacity?

Some formulas:

dE = TdS — PdV + udN; F=E —TS; G =F + PV; du = vdP — sdT

d(BF) 1 OF 3 (kaT>3/2
B p Ov=%r - Ath 27h2

kT’
v
Fideal gas — —NkgT<{1+1In m

9.2 April 1991 PHYS 455 Exam

This paper contains 2 parts (I) problems (II) questions. Solve 4 out of the 5
problems and answer 4 out of the 5 questions. Time 3 hours. Closed book
exam

I Problems:

1:

A liquid is in equilibrium with its vapor at temperature T and pressure
P. An inert gas which is insoluble in the liquid, is introduced into the
container. The partial pressure of the inert gas in the vapor phase is p;. The

105



Figure 25:

volume change of the liquid can be neglected and p; << P. Show that vapor
pressure will increase by an amount dp which is approximately given by

ép _ piv _ pivL

P kgT — Pv; kgT

where vy, is the specific volume in the liquid phase (volume per particle).

2:

The surface energy of soap bubble is 20 A, where o is the surface tension,
A is the area and the factor of 2 comes from the fact that the bubble has
an inside and an outside.

(a). Show that the excess pressure inside a soap bubble is 40 /r, where
r is the radius of the bubble.

(b). Consider two equal bubbles attached to the ends of a straw as
shown in figure 25 The system is perturbed from equilibrium by making one
bubble slightly larger than the other. Common intuition would suggest that
the bubbles would then undergo small oscillations about an equilibrium size.
Instead the smaller bubble collapses. Explain why!

(¢). A professor wishes to demonstrate the soap bubble experiment in
his class. The professor is unable to create soap bubbles simultaneously at
both ends of a straw and decides to use rubber balloons attached to a glass
tube instead. When the balloons are blown up and attached to the ends of
the glass tube they undergo small oscillations in size about an equilibrium
position. Explain why!

[Hint: the energy associated with stretching the surface of the balloon
is elastic. If the balloon when blown up is much larger than its original size
the energy can be taken to be proportional to the square of the area.]

3:
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(a). Show that the energy fluctuations in the canonical ensemble are
given by
(B?) — (B)* = (§(E)*) = kpT*Cv

where Cy is the specific heat at constant volume.

(b). Evaluate the energy fluctuations (E2) — (E)? for a quantum har-
monic oscillator with frequency w.

5:

(b). A system contains spins at two distinct sites. Each spin is either
1 or | . When both spins point up or both spins point down the energy
of the system is —e. When the two spins point in opposite directions the
energy is 0. For what value of the temperature parameter 5 = 1/kpT will
the probability that the two spins point in the opposite direction be 1/3.

IT Questions:

Answer 4 out of 5 questions.

2: Sketch the behavior of the chemical potential of an ideal Bose gas as
the temperature is varied. What is the qualitative difference between the
isotherm (pressure vs. volume at constant T') of an ideal Bose gas and a
classical ideal gas.

3: Explain the fountain effect in superfluid helium.

Some formulas:

dpy = —sdT; s=S/N; v=V/N; G=uN = E-TS+PV; dE = TdS—PdV

E
F=FE-TS;InN!'=NInN—-N; S=kglng Cy = 8—

aT VN
ZC — Z efﬁEa; ZG — Zefﬁ(Ea*/lN)
«a alN

9.3 April 1992 PHYS 455 Exam

Closed book exam. Time 3 hours. Answer 4 out of the 6 questions. If
you answer more than 4 questions you will be given credit for the four best
marks. All questions have equal value.

1:

A system is made up of two distinguishable particles. Each particle can
occupy one of three possible states labeled 1,2 and 3. If the two particles are
in a state with the same label the energy of the system is —e, if the labels
are different the energy is 0. The temperature is T= 1/(8kp).

(a). Find the mean energy of the system.
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(b). Calculate the entropy as a function of the temperature.

(c). What is the mean entropy of the system (i) in the limit of high
temperature, (i7) in the limit of low temperature. Can you give a simple
argument why these result are expected?

2:

Consider a system of particles in the grand canonical ensemble.

(a). If the temperature is given in terms of 8 = 1/(kpT'), the chemical
potential is u and the volume V is held fixed show that the mean number

of particles is
_ 0In(Zg)

(N) = —5—
Bop
where Zg is the partition function.
(b). Show that the statistical variance in the number of particles is

_ o)
~ Bop

(c). A surface contains M potential adsorption sites, each site is occu-
pied with probability

((6N)?) = (N?) — (N)?

_ 1
explBle—p)]+1

where €(0 is the energy of adsorption. Calculate the mean number of parti-
cles on the surface and the variance in the number of absorbed particles.

3: Two 3-dimensional vectors s; and sy of unit length (s;2 = 552 = 1)
are free to rotate about the origin. The temperature is 7" and we can ignore
the kinetic energy. The potential energy of the system is, with 6 the angle
between the vectors and J a constant.

U=—Js; -89 = —Jcos(h)

(a). Calculate the partition function for the system.

(b). Calculate the mean value of (cos#).

(c). Is {A) = cos {cos §)?

5:

A sealed cylindrical vessel is in contact with a heat bath at constant
temperature T. A friction-less airtight piston of weight mg divides the
container into two volumes Vi and Vo = V — V4. There are N; ideal gas
atoms in the top partition and Ny in the bottom partition.

(a). Find the equilibrium height of the piston.
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(b). The ideal gas is replaced by a real single component gas. At a
certain temperature the bottom partition is found to contain a puddle of
liquid coexisting with its vapor. Which of the following statements may be
true at equilibrium:

(i). The top partition contains a liquid in coexistence with
its vapor.

(ii). The top partition contains only vapor.

(iii). The top partition contains only liquid.

(¢). Assume that the cylinder is turned around so that the piston moves
horizontally and that Ni = Na. Which of the three statements in part (b)
may now be true.
6:
(a). Explain the difference between * He below the A point and an ideal
Bose gas, that makes the former a superfluid, while the latter is not.
(b). What is second sound and how can it be demonstrated?
Formulas:

dE =TdS — PdV +pudN; F=E —-TS = —kpTlnZ¢

dF = —SdT + pdN — PdV; du = vdP — sdT

OBF 1
B=357 = tor
OF
Cy = 8—T‘V; S=kplng;, Zc = ;exp(—ﬁEa)
21h?
Zg = —B[Eq — uN]); A =
e QZNGXP( Bl pNT) kT

Fideal gas = —NkgT {ln(%) + 1} E=ST—-PV +uN

9.4 April 1994 PHYS 455 exam

Time 2 1/2 hours. ‘Closed book exam’. Answer 4 out of the 5 questions.
All questions have equal value. If you answer more than 4 questions you
will be given credit for the 4 best answers.

2:
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Consider a system of four spins each can be in either a s = +1 or a
s = —1 state. If all spins are in the same state the energy is —6e, where € is
a positive constant. If three spin are in one state and one in the other the
energy is zero, if there are two spins in each state the energy is +2e.

a: What is the mean energy of the system at temperature 7.

b: What is the mean entropy of the system at temperature 7.

c: What value does the entropy approach as T — oo? as T' — 07 Give
a physical interpretation of your result.

4:
A fiber has an average length (L) when pulled with force X'. The enthalpy
of the fiber is

H=U(LT)-LX

where the internal energy U(L,T) is a function of the length of the fiber
and the temperature. Derive an expression for the Young modulus

- (o),

in terms of the temperature and the mean square fluctuation

((6L)%) = (L?) - (L)?

5:

N4 molecules of one species and Ng molecules of another species are
initially kept separate in two containers each at pressure P and temperature
T. The free energy of a mixture of the two gases can be approximated by
the hard sphere expression by

V — Naby — Npbp

F(Na,Np,V,T) = —=(Na+ Np)kpT{ln G +1}
where A = %ZZQT, and b4 and bg and m are constants.

a: If the two gases are mixed at constant temperature and pressure,
what is the volume of the mixture?

b: What is the entropy of mixing?

Some formulas

((6E)?) = (B?) — (B)* = kgT*Cy

111



7 = Ze_ﬂH"‘
«

oF
S = ~aT =kplng

F=—kgTnZc
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