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Preface

One of us �GG� gave a series of six lectures �two hours each� at the

IIIe cycle de la Suisse Romande in January�February ����� The notes

on the lectures gave us the idea of writing the present book� Our intent

has been to stress the ideas and the conceptual developments� referring

to the literature for the proofs� Even so we realize that we were forced

to make several compromises with the formalism �particularly in Chap�

ter ��� obviously the heart of the matter�� and� as a consequence� this

book assumes that the reader has some familiarity with classical quantum

	eld theory� What is really required is that the reader has worked out the

details of some classical perturbation theory result �e�g�� the Compton

scattering in QFT� the removal of some divergences in one�loop radia�

tive corrections� and some elementary calculations in the 	eld theory

approach to many�body theory��

Therefore the book is dedicated to scholars wishing to re
ect on some

details of the foundations of the modern renormalization group approach

and to think of them in the light of the few known rigorous results� We

use them here to provide support for an approach that has proven useful

in many problems�

We do not take the point of view of mathematical physics� Rather

we expose how the renormalization group looks to us as physicists� this

means the achievement of a coherent perturbation theory based on second

order �or lowest�order� calculations� The contribution of mathematical

physics to the subject has been� we believe� the clari	cation of the foun�

dations �certainly clear to the initiators of the subject� but less so to

many others� and to provide proofs � often only partial � that the

higher�order corrections do not matter�

Therefore we do not dwell at all on the successes of the renormal�

ization group methods as a mathematical physics subject �hierarchical

model� ��
� scalar 	eld theory� d  � Coulomb gas and dipole gas� d  �

critical point� to mention a few� or on the general n� bounds �such as

���� below�� This is so not only because it would expand our work

almost without limits� but also because it is time that such results be�

came accepted �without the need to explain them from the beginning to

vii



Preface

audiences who do not really care�� allowing us a discussion of the renor�

malization group by keeping the rigorous results in the background� in a

context that illustrates the key ideas without requiring sophisticated �or

perhaps just complicated� mathematical tools and technical analysis� We

use the mathematical results only by occasionally quoting them to say

that the higher order corrections do not change the picture�

The material collected here is 	arly standard except for the part on

the Bose condensation� which we added because it is a summa of all the

previously illustrated ideas and in order to stimulate a discussion on one

of the most controversial subjects in condensed matter theory�

We restrict our attention to some typical problems that can be for�

mulated as 	eld theories� but the methods are quite general� The ideas

re
ect the approach that was developed in Roma during the last �� years

�eighteen as of this writing�� We are indebted to many for encourag�

ing us by simply paying attention to our e�orts and for often providing

suggestions that we have incorporated� possibly �but not intentionally�

without reference� because ours was� at least at the beginning� a fasci�

nating joint cultural development� While this work shows us how much

lower the results have been compared to the expectations� we 	nd it useful

to report our point of view to a wider audience�

The aim of the lectures in Lausanne was to present the results of the

renormalization group concisely and in a nontechnical form� The hope

was to convey the enthusiasm evoked in the lecturer when he realized �

	nally getting a 
ash of ideas from the papers of �DJ�� �D�� �GJ�� �BS���

�WF� whose deep signi	cance had remained obscure to him for long years

� that mean 	eld theory of phase transitions had 	nally been surpassed

and not only nontrivial critical exponents were naturally emerging� but

also at the same time� and for the same reason� renormalization theory

of relativistic QFT became fairly transparent� The technicalities of the

exposition that we could not avoid both in the original version and� more

so� in the present probably obscure the original intention� but we hope

that some traces of the revelation still survive�

We are greatly indebted to Professor Arthur Wightman for his inter�

est� his comments� and his encouragement as well as for making possible

the publication of this book through Princeton University Press�

Roma� ����
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Chapter �
Introduction

The notion of renormalization group is not well de�ned� It arises

in theories in which a prominent role is played by scale invariance or

covariance properties� of various quantities� with respect to a noninvert�

ible transformation of coordinates� The noninvertibility is an essential

feature� it is supposed to allow one to reduce e�ectively the di�culty of

the problem�

Examples of problems that have been treated implicitly or explicitly

via such techniques are the following�

�� The KAM theory of Hamiltonian stability

�� The constructive theory of euclidean �elds

�� The universality theory of the critical point in statistical mechanics

�� The onset of chaotic motions in dynamical systems

�� The convergence of Fourier series on the circle

	� The theory of the Fermi surface in Fermi liquids

To the above one can add a less�established problem� which we present

here because it seems to us that it summarizes and merges many of the

ideas illustrated in this book�


� The Bose condensation�

The term renormalization group started to be used in the above sense

with the work of Di Castro and Jona�Lasinio �DJ�� and the method

was developed to its major successes in the works of Wilson �W��� �W���

�W��� �WF�� In retrospect one can say that the same ideas had been

used several times in earlier works� for instance in ���� ���� and ����

furthermore� it would be very easy to illustrate the methods used in

the analysis of the above problems without even mentioning the words

renormalization group� this certainly happened in the early works on

���� ��� and ����
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On the other hand� it is widely believed that the renormalization

group point of view is a very useful unifying conceptual scheme� orga�

nizing scaling ideas occurring in the solution of a problem� It allows us

to transform into mathematical propositions �which still may be very

hard to prove� many intuitions that one develops about the qualitative

behavior of several systems�

In these lectures we shall illustrate some examples taken from the

class of problems in ���� ���� and �	�� trying to avoid technicalities about

which the reader can �nd abundant literature�
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Chapter �

Problems Equivalent to the Analysis of

Suitable Functional Integrals�

Critical Point and Field Theory

Let us begin with the problem of critical points in statistical mechan�

ics �item � in chapter ��� The thermodynamic functions are expected to

have singularities as functions of the temperature T at the critical tem�

perature� Tc� and to behave like �T � Tc�� for T su�ciently close to Tc�

The exponents� �� are called critical indices� We ask of our renormal�

ization group technique that it makes possible the calculation of critical

indices for some family of interactions�

The simplest systems to study are lattice systems� we write the Hamil�

tonian

H��� 
�

�
p�d��
�

X
x�y��

J�x� y���x � �y�� � p�d�

X
x��

r��
x �����

for a system with no magnetic 	eld� i�e�� with no term linear in � in

������ enclosed in a cubic box � � R
d centered at the origin� and with

side L� L� x� and y are integer multiples of the lattice step� denoted p��
� �

Periodic boundary conditions in the box � are imposed on the real�

valued functions� �� Evidently� H��� can be regarded as the interaction

energy of a system in which there is a continuous spin� �x � R� at each

lattice site x in the box �� and there is a pairwise interaction between the

spins at x and y given by �p�d��
� ��xJ�x�y��y� with J�x�  J��x� and

J���  �� as well as a self�interaction p�d� �r � p��
P

x�� J�x����
x� In the

case of �rst�neighbors interaction H��� has a formal limit� as p��
� � ��

equal to J
R
dx���x�� � r

R
dx��

x�

The problems that we study in what follows are formulated with

some generality� but they are interesting and nontrivial already in the

cases J�x � y� � � for jx � yj  p��
� �nearest�neighbor interaction� or

jx�yj � �p��
� �next nearest�neighbor interaction� or a simple long�range

interaction J�x�y�  J jx�yj��� The reader should think to such cases

when bothered by the generality of our formulation�
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The partition function for this Hamiltonian is

Z��� 

Z
e��H���

Y
x��

e�����x�d�x � �����

where exp��������d� is some a priori distribution on the spins� describ�

ing the high temperature statistics �� � �� of the spins� More physically

the spin �x associated with the lattice site x is itself a sum of many ele�

mentary spins interacting with a much stronger interaction so that there

is a regime in which � can be regarded as not being small enough to re�

solve the spins composing each �x� Thus they will behave as being in

their ground states �in which their sum is assumed to have a distribution

exp��������d���

We take� as an example�

�����  p�d�

�
L��

� �R��
�
�
� L� 	 �� R� � � � �����

which has received a great deal of attention �sometimes being called the

���model or the Landau�Ginsburg model��

If r  �� H��� can be written in the form ��
��
P

x�y���xAx�y�y
and it is convenient to introduce the function �J�p�� which is de�ned in

terms of the �discrete� Fourier transform �A�p� 
P

x��Axe
�ixp of Ax

through the equation

�A�p�  �p��d�

X
x��

J�x���� cos px�  p�d�
�J�p� � �����

Here p � R
d has components that are integer multiples of ��
L� and px

stands for
Pd

j	� pjxj�

We assume that
P

x jJ�x�j � � as well as �J�p� � � and one among

the following three possibilities�

�J�p�  �J� jpj� �O�jpj��
�J�p�  �J� jpj��� � o�jpj���� � 	 � 	 �

�J�p�  �J� jpj��� �O�p���� � 	 �� � even �

�����

where �J� can depend only on the direction of p�

The �rst case in ����� will be called the short�range ferromagnetic

case� it is realized when
P

x J�x�jxj� � �� J�x� � �� The third case

will be called the short�range nonferromagnetic case� it is realized when

the interaction has short range so that �J�p� is analytic at p  �� but there
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are suitable cancelations between the various contributions to �J�p�� likeP
x�px��J�x�  �� The second case is the long�range potential and it

arises when J�x� 	 jxj��� � 	 d� the relation between � and the decay

rate of the potential J is given by

�  d� �� � if jJ�x�j 
 jxj�� � ���	�

The partition function of our system can be rewritten as

Z��� 
�

N
Z

exp

�
p�d�

X
x��

��L��
�
x �M������

x

��
P��d�� � ���
�

where N is a trivial normalization factor� P� is a Gaussian process with

covariance or propagator�

C�
xy 

�

����d

Z �p�

��p�

eip�x�y�

� �J�p�
ddp 

�

�
C�
xy � �����

with �����d
R �po
��po d

dp a shorthand notation for �
j�j
P

p� and

M����  �R� � �r � �����

Finally the �trivial factor� mentioned above is the exponential of

j�j
�

�
�pd� log�

��

�
pd�� �

�

����d

Z �p�

��p�
log �J�p� ddp

�
� ������

with the same meaning for �����d
R �po
��po d

dp�

Since the sums in ����� are rather clumsy� one could use the represen�

tation�

C�
x�y 

X
n�Zd

Cx�y�nL� Cx�y 
�

����d

Z �p�

��p�

eip�x�y�

�J�p�
ddp � ������

corresponding to the image method of electrostatics� and this time the

integral has to be interpreted literally�

The analysis of the above problem is technically somewhat simpler

if ���
� is replaced by a truly �eld�theoretic problem� i�e�� if one thinks

that �x is de�ned for all x � R
d inside the box �� One replaces Z����

�calling  
p
��� with

Z 
�

N
Z

exp

�Z
�

��L��
���

x �M��������
x

�
dx

�
P �d� � ������
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where P is the Gaussian process with propagator

Cxy 
�

����d

��Z
��

��p�eip�x�y�

p���
ddp � ������

where �J�p� in ����� has been simpli�ed into p��� and ��p� is a cuto�

function corresponding to the integral extremes ��p� in ������ and the

integral has to be interpreted literally� For instance� a good choice �

essentially as good as any other with the same features � is ��p� 

�p
p��
��� R�

� e��p
��p�������d��

The fact that the volume is �nite and that there are boundary con�

ditions is important in some arguments� for example� when translation

invariance is used or cancelations due to integrations by parts are ex�

ploited�

However� to avoid rather clumsy expressions� we shall use C in ������

or ������ as propagator rather than the periodized version C�� in this

way one breaks translation invariance� but we shall nevertheless perform

the mentioned cancelations� where they are needed� without worrying

about the inconsistency� it is possible to see that all the results reported

in this review could be correctly reformulated in terms of the original

model ���
�� ������ The reason is simply that all the rigorous results

depend on bounds on the propagator �or better its multiscale decom�

position� see chapter ��� which are uniform in the volume� The formal

results are usually obtained in the literature� on the other hand� without

worrying about �boundary corrections� and are very often given �in the

limit � ����

The model ������� ������ is manifestly close to the problem of eu�

clidean quantum �eld theory� The latter problem is� in fact� related to

the analysis of the same integral with ��p� replaced by �� � ��p�� and

�  �� more generally it is formulated as the problem of studyingZ
P �d� exp

Z
�

����
x � ��

x

�
dx � ������

with P �d� being a Gaussian measure with propagator given by ������

with C replaced by

Cxy 
�

����d

Z
ddp

�� e�p
��p��

p�
eip�x�y� � ������

Here p� is some inverse length scale �xed in advance �bare mass of the

theory��



Critical Point and Field Theory �

The above model is called the ���model and it can be naturally gener�

alized to the V ��� model� where V is an arbitrary function� by replacing

the integral over � in ������ by

�
Z
�

V �x�dx � ����	�

We have to make more precise the meaning of the problem of studying

the two integrals ������ or �������

The �rst is really a problem only in the limit � � �� i�e�� it is

an infrared problem because its di�culty is due to the singularity at

p  � of the integral in ������� It is usually formulated in terms of the

singularities in the ��dependence of the free energy

F ���  � lim
���

�

�j�j logZ��� � ����
�

or in terms of the generating functional S��f���

exp ST� �f� 


�

Z���

Z
e

�
��f��

R
�
��L��

����
x�M�����

����
x�dx

�
P �d� �

�f� �
Z

xf�x�dx �

������

The equation ������ is usually written� with obvious symbols

ST� �f�  log he��f�i � ������

The generating functional ST� �f� is analytic in f and its Taylor coe��

cients

ST� �x�   xn� 
�n

�f�x��    �f�xn�
log he��f�i

����
f	�

������

are called the truncated Schwinger functions�

One is interested in ST �x��   �  lim��� ST� �x��   � and more pre�

cisely in their behavior when their arguments are sent far apart� For �

small� � � �c� the behavior of ST �x�� x��� for instance� is well known to

be typically �the same as that� of� J�x� � x��� but for �  �c it may

� At high temperature and low density this is even a theorem in many cases� see�

for example� �Gr�� �BGr�� and references therein�



�	 Chapter �

change� signaling the �normal� critical point� to that of C�x�� x�� �i�e��

from �
jx� � x�jd���� � see ���	�� to �
jx� � x�jd���� which is slower

because � � �� see �������

The statement �the same as that� of J is valid in the cases in which

J is eventually monotonic� In the case that J has a decay faster than

exponential� it means that the correlations decay exponentially� For

J decaying slower than exponential� but faster than jxj�d� it literally

means asymptotic to J �

In contrast to the infrared problem ������� ������� the �eld theory

problem ������� ������ �or ����	�� is nontrivial already for � �nite� In fact

it is easy to see that ������ is not properly de�ned� if d 	 �� The reason is

simply that �
x is not well de�ned� hence ������ itself is not meaningful�

because if one chooses a �eld  randomly with probability distribution

P �d� given by ������� then with probability � it is �
x  �

x  �� In

other words� �
x as well as

R
� 

�
x is not a P �measurable function� hence

it cannot be integrated by P �and its exponential either cannot be inte�

grated or has a zero integral depending on whether
R
�

����
x � ��

x

�
dx

is plus or minus in�nity��

The proper de�nition of the ��nite �� ultraviolet problem is therefore

the following� Let N be a cuto� parameter and replace ������ by

C
��N�
xy 

�

����d

Z
ddp

e����Np��p�� � e�p
��p��

p�
eip�x�y� � ������

and let PN be the Gaussian measure with propagator ������� Let �N 	 ��

�N real and de�ne

STN �f�  log

R
e��f�e

�
R
�
�	N��

x�
N��
x�dxPN �d�R

e
�
R
�
�	N��

x�
N��
x�dxPN �d�

� ������

which is now a well�de�ned integral �in fact� the regularity of C��N�
xy

implies that x is a C� function of x with probability � with respect to

PN ��

We keep � �nite and try to see whether one can �nd �N � �N so that

the limit ST � as N ��� of STN �f� exists� To avoid triviality one has to

require also that ST �f� shall not be a quadratic form in f � If �N � �

fast enough and �N � � fast enough then it is easy to prove that� in

fact�

lim
N��

STN �f� 
�

�

Z
f�x�Cxyf�y�dxdy � �

�
�f� Cf� � ������
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obviously uninteresting and trivial� since the r�h�s� is the value of ������

when �N  �N  ��

More generally� �eld theory with an arbitrary V � see ����	�� can be

formulated by replacing V by VN � where VN is allowed to vary with N

in some space of functions �e�g�� the sixth�degree polynomials� of x or�

even more generally� in some space of function of x and �x� Then one

studies the functions STN �f� de�ned by ������ with the integral in the

exponent replaced by Z
�

VN �x�dx � ������

and one asks similar questions�

The latter problems really are the problem of trying to �nd a probabil�

ity measure on the space of the �elds  which is not Gaussian yet is local�

i�e�� obtained by modifying the Gaussian measure P �d� with propaga�

tor ������� by multiplying it by a function of the form exp� R V �x�dx�

As such� the problem can be further generalized� but we shall not dwell

on this �see �GR��� We shall discuss� in what follows� only the ultraviolet

problem with VN restricted to being a fourth�order polynomial in x and

second�order in �x� This is what is called traditionally the ���problem

and it will be considered for � � d � ��
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Other Functional Integrals� Fermi Sphere
and Bose Condensation

In the previous section we have considered two main examples of

problems associated with functional integrals� There are many others�

Here we mention two more problems� the theory of the ground state

of a Fermi liquid� and that of a Bose gas� For lack of space we shall

study only the very simplest cases� spinless fermions in one dimension

and spinless bosons in three dimensions�

��� The d  � Fermi Liquid

This case is surprisingly rich in structure in spite of its absolute sim�

plicity if compared with the more interesting case of one�dimensional

spinning fermions or with the far more interesting d 	 � cases �see

�BG����

The problem is the following� Let

H 
NX
s	�

	
���xi

�m
� �



� ��

X
i�j

v��xi � �xj� �����

be the Hamiltonian describing a system of N fermions in R
d� enclosed�

as in chapter �� in a periodic box �� interacting with a pair potential v

that is supposed to be C�� and with short range�

Let ��x be the creation and the annihilation operators for the fermions

and de�ne� for � � ti � �� i  �� � � � � n� with ti � tj for i � j�

S����n��x�t�� � � � � �xntn�  ����� lim
���

lim
���

 �����


Tr

�
e����t�����H�����x����

e��t�����t�����H�����x����
  ��n��x��n�

e�t��n�H
�

Tr e��H
�

where �i  ��� � is the permutation of ��� � � � � n�� such that t���� 	

t���� 	 � � � 	 t��n� and ����� is the permutation parity� In particular�

consider

S�x�  S�����x� t�� ���� ��� if x  ��x� t� � R
d�� � �����
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The functions ����� and ����� describe the properties of the ground state

of the above Fermi system �essentially by de	nition� in the grand canon�

ical ensemble with chemical potential � and when the mass of the par�

ticles is m� They are called the Schwinger functions of the ground state

of the system ������

The case �  � is trivial and one �nds that� if � 	 �� S�x�  lim���
lim��� g�x�� with

g�x� 
X

�n�Zd� n��Z
����n�g��x� �nl�� t� n��� �

g�x� 
�

����d��

Z
e�ikx

�ik� � ��k� � p�F �
�m
dk�d

d�k

�����

�k  ��k� k��� x  ��x� x�� and pF  ��m������� which shows that the

free�system ground state has a one�particle distribution function S�x�

singular on the �Fermi sphere� k�  �� j�kj  pF
�� In fact� the occupa�

tion number of the momentum �k is related to the Fourier transform of

�g��x� ��� which� in the limit � ��� is

n�k  ��j�kj � pF �  ha��k a
�
�k
i � �����

the familiar result �Fermi distribution��

The importance of the function ������ the free propagator� was dis�

covered by Bloch and De Dominicis� who started a series of papers

culminating in a rather �nal perturbation theory of the Fermi surface

by Luttinger and Ward �BD�� �LW��

The conclusion of the theory is that it is possible to express the inter�

acting S�functions in ����� as a functional integral with propagator g�x�

described by ������ In fact� one �nds� if �  ���
���

�
��� � ���

�L�
�
�L� is

considered with periodic boundary conditions�

S����n�x�� � � � � xn�  lim
���

lim
���




R
P �d� e

�	
R
�
��
x �

�
x �

�
y �

�
y ��x��y��v��x��y�dxdy �x�   nxnR

P �d� exp
R
�      

�

���	�

The main feature� of ���	� is that the �x are not elements of the usual al�

gebra of the real numbers� but they form� as x varies in Rd��� a basis for

� For a derivation of ������ see appendix 	�
� For a discussion of the notion of Grassmann algebra and of Grassmannian inte


gration� see appendix ��
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a Grassmann algebra G� The latter consists in the linear combination of

monomials of the form �
x�   �

xn
�
y�   �yn � two such combinations are

identi�ed if one can be reduced to the other by assuming the identities

x
�

y � 
�

y x � �� �x� y� �� �� � ���
�

The
R
P �d�  is a linear functional over G� thus it su�ces to de�ne

the P �integral of the most general monomial� The latter is de�ned by

the formula �Wick�s rule�

Z
P �d��x�   �xn�

y�   �
yn 

X
�

�����
nY
i	�

g�xi � y��i�� � �����

the sum being over the n� permutations � of ��� � � � � n� and ����� is the

permutation parity� The propagator g is as described in ������

The derivation of ���	� from ������ ����� is a matter of simple alge�

bra based on Trotter s product formula �see �LW�� �BG���� it is checked

order by order of the � expansion of both sides of ���	�� If the various

contributions of the same order in � are collected together and summed�

the series resulting from this procedure are absolutely convergent �see

�GK��� �BGPS��� and one says that the integral in ���	� is well de�ned

and given by the appropriate sum �the di�cult problem is of course to

prove bounds uniform in ���

��� The d  � Bose Gas�

The Hamiltonian is the same as ������ acting� however� on symmetric

wave functions�

Let ��x be the creation and annihilation operators for bosons� and

de�ne the �nite L positive �� Schwinger functions S��L� �����n
�x�� � � � � xn�

by the ratio in the r�h�s� of ������ with � � ���

The �  � case is� of course� trivial� and the functions S��L are given

by the Wick rule ����� with ����� � �� � � �� and g�x� replaced by

S��L�x�  S��L�� �x� �� 

L�d
X
�k

e�i�k��xe����k�t
� ��t 	 ��

�� e�����k�
�
e�����k���t � ��

�� e�����k�

�


 �e
t
�
e��
��t 	 �� � ��t � ��

�
� L�d

X
�k�	��

�same as above� �

�����
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where ���k� 
�k�

�m � �� ��x 	 �� means � if x 	 � and � otherwise� and �

is de�ned by

�  L�de�
 ��� e�
���� ��  log
�Ld

� � �Ld
� ������

and it will be called the condensate density �equal to the actual total

density S��L���� ��� in the free case��

One �nds� if � 	 � is kept �xed�

S��L�x�������
��L�� S�x�  S��x� � ��

�

�����

Z
dk

e�ikx

�ik� � �k�
�m
� ������

Note that � � �� as �� L��� in fact� one cannot �x �  � �because

one would divide by � in ������� nor � � � �because this would imply

S��x� t�  � for t � �� i�e�zero density� the vacuum�� The choice � 	 �

is not allowed� in fact� even if one took L such that ���k� � � for all
�k s �thus avoiding a division by ��� one could not avoid generating an

unphysical negative density�

Following the same procedure used to deduce ���	� from ������ ������

it can be easily found that ����� can be written as

S����n�x� � � �xn�  lim
���

Z
��x� � � ��

n
xne

�V ���P �d��R
e�V ���P �d��

� ������

where �  ���
���

�
��� � ���

�L�
�
�L��� and P �d�� is a Gaussian integral�

such thatZ
��x �

�
y P �d��  S��L�x � y� �

Z
�x�


yP �d��  � � ������

and�� if x  �x�� �x�� y  �y�� �y��

V ���  �

Z
�
v��x� �y���x� � y���

�
x �

�
x �

�
y �

�
y dx dy � ������

� The term �Gaussian distribution attributed to P �d�� is justi�ed because ��x
can be regarded as complex Gaussian random �elds� de�ned in terms of two real�
independent� Gaussian random �elds ��x��

�
x and two real Gaussian� scalar variables

��� ��� One can set
��x � �� � i�� �O���� � i��� �

where O� � 	 and O� � ��t � ��m����� Then� if the covariance of �j is ��� and

the Fourier transformof the covarianceof �� is �k�
�
���k���m������ the propagator for

the �elds ��x is ���		�� Note that� in this representation� the �elds �� and �� are not

complex conjugate� The asymmetry of the above representation implies the existence
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This time the integrals in ������ are true functional integrals� convergent

if �v��x � �y� 	 � �so that V���� � �� because ��x and ��
x are complex

conjugate��

Remarks

�� Note that� in the case of the Fermi gas� formula ���	� can be written

in several ways� if� instead of setting �  p�F
�m � one sets �  p�F

�m � �� then

the Schwinger functions are given by

S����n�x� � � �xn�  lim
���

Z
�x� � � �

n
xn

e�V ���P �d�R
e�V ���P �d�

�

V ��  �

Z
v��x � �y���x� � y��

�
x 

�
x 

�
y 

�
y dx dy�

� �

Z
�
x 

�
x dx �

������

where P is the measure with propagator g�x�� see ������

In other words the chemical potential can be arbitrarily split into a

part� p�F
�m � that is regarded as �part of the free system� and into a �part

of the interaction�� Hence pF is not intrinsically de�ned by �������

�� The same comment can be made about the Bose gas� the chemical

potential can be written �  �
�

log Ld��� � Ld���� � �� and ������

becomes ������ with  � �� This means that we can �x arbitrarily �

provided we compensate it with a value � such that � stays the same�

Hence � is not intrinsically de�ned by �������

�� Nevertheless one can de�ne uniquely the notions of Fermi momentum

and Bose condensate density in terms of properties of the Schwinger

functions� One notes that� in the Fermi gas with �  � and given pF �

the pair Schwinger function S��x� ��� has asymptotic behavior that is

	 sin pF j�xj
j�xj � Therefore� one says that an interacting Fermi gas has Fermi

momentum pF if S��x� ��� oscillates as j�xj � � as sin pF j�xj� Of course

of another representation with the O� operators exchanged� but no representation

is possible with �� conjugate of ��� This makes the functional integral somewhat

unusual and it is perhaps better to regard it as a formal rule for the calculation of

the perturbation expansions� this causes no problems until one starts worrying about

the remainder estimates� We are not aware of any attempt to treat such question

with mathematical accuracy�
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if one uses ������ with � 
p�F
�m � �� the function S��x� ��� will neither

oscillate with scale pF nor with scale
p

�m�� but it will oscillate with

some scale pF ��� �� �assuming that things are not too di�erent in the

interacting and in the free cases� for small coupling at least��

This shows that a natural approach would be to �x a prioripF as the

scale of the oscillations of the interacting pair Schwinger function� and

to see if there is a value of the chemical potential � such that� writing

�  p�F
�m � �� the ������ produces a S��x� ��� oscillating exactly on scale

pF �

This means that one regards pF as a �physical constant� and � as a

�bare constant� to be �xed to generate a model whose physical Fermi

momentum is the prescribed one� One expects that � will turn out to

be �  ��pF � ��  O���� i�e��  p�F
�m � ��pF � ����

One expects that the perturbation theory would be simpler at �xed

pF rather than at �xed �� because in this way the Schwinger functions

have the same singularities as the free ones� or at least some common sin�

gularities� so that they can be more naturally regarded as perturbations

of each other�

�� Likewise in the Bose gas one sees that the asymptotic behavior of the

free S�x� as x � � is simply S�x� � � �see �������� But again� if one

uses ������ with  � � and with P having a propagator ������ and �

�xed� we can expect� at best� that S�x�����x�� � � r��� ��� Therefore� we

expect that a less singular perturbation analysis will be necessary� if �

is �xed a priori�and called the condensate density�� and �  ���� �� in

������ is determined so that S�x�����x�� � exactly� We see that the Bose

and Fermi gases are completely analogous in this respect�

�� Once the physical parameters pF or � are �xed in ������ by suitably

determining �� one can inquire whether the subleading corrections to the

asymptotic behavior are also in agreement with the �respective� free�gas

cases�

The subleading behaviors are

Sfermi� d	��x� � � �

�

sin�pFx� arctg vF t
x�

�x� � �vF t������
� vF 

pF
m

�

Sbose� d	� � � � e�m�x��t

��tm������
�

����	�

� If one really insists in �xing � rather than pF � then the last relation should be

regarded as an equation for pF � given �� �� and thus it would determine pF �
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so that� if one could prove that the above are the correct asymptotic

behaviors also in the interacting cases� for suitably chosen m  m��� pF �

or m  m��� ��� it would be natural to use ����	� as de�nitions of the

physical mass of the particles� Or� as in the cases of pF and �� one could

�x the physical mass m and use ������ with a free �eld with propagator

containing the physical value of the mass parameter m and add to the

V� in ������ a term

�

Z
�

��� p�F
�m

�
x 

�
x dx � ����
�

with ��m� pF � �� such that the interacting Schwinger function has the

behavior ����	�� The Bose case is essentially identical� with  � ��

�� However it may happen that the subleading behaviors do not behave

as ����	�� For instance� in the Fermi gas case it turns out that the

asymptotic behavior is

S��x�

�x� � �vF t�����	���
������

if S��x� denotes the free Schwinger function� and if � is a suitably de�ned

function ����  O����� This still de�nes the parameter vF � hence the

physical mass pF
vF � We discuss this point in chapter ���

In the Bose case also one does not expect ����	� to hold� We shall

discuss this point in chapters �� and ��� The result will be essentially

the same� the physical mass can be �xed by adding to V� in ������ a

term like ����
� with  � ��

The existence of substantial corrections to the ����	� �such as �������

is usually called an anomaly to stress that the asymptotic behavior of

the Schwinger functions is not the free one�
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Chapter �
E�ective Potentials and Schwinger
Functions

The problems of Chapters � and � are studied by the renormalization

group approach via the theory of the e�ective potentials�

There are various objects that bear the name e�ective potential� Our

de�nition is one variant of the concept introduced in the basic paper of

Jona�Lasinio�J� �see also �CW�� �Po����

Consider the functional integrals ������� ������� ���	� and de�ne

e�Veff ��� � �

N
Z

P �d�e�V ����� � �����

where N is a normalization constant� chosen so that Ve
 ���  �� and�

respectively�

V �� 

Z
�

�
L��

���
x � M��������

x

�
dx �

V �� 

Z
�

�
�N

�
x � �N

�
x

�
dx � �����

V �� �

Z
�
v��x � �y���x� � y���

x 
�
x 

�
y 

�
y dxdy � �

Z
�
�
x 

�
x dx �

and P �d� denotes the Gaussian measure with propagator ������� ������

or the Grassmannian Gaussian de�ned by ������ ������ The �eld � is a

test function �i�e�� a smooth� rapidly decreasing function on R
d� in the

�rst two cases� In the third case � is� instead� an element of a Grassmann

algebra obtained by enlarging the basic one� generated by the �x �eld�

by adding to it new basic elements ��x �which� therefore� anticommute

with each other as well as with the  s��

The case of the Bose condensation problem is very analogous to the

�rst two �see chapter ����

The e�ective potential ����� is the object of main interest� It might

look somewhat unnatural� we have� in fact �see chapters �� ��� stated

that what is really interesting is the family of functions ST �see ��������

It is� however� easy to see that there is a very simple connection between
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the e�ective potential and the truncated Schwinger functions ST � In the

scalar cases one has

ST �f� 
�

�
�Cf� f� � Ve
�Cf� � �����

This means that the convolution of the e�ective potential with the free

propagator is the correction that has to be added to the free Schwinger

functions �given� trivially� by ST� �f� � �
� �Cf� f�� see ������� to obtain

the ones in presence of interaction�

More explicitly ����� says� for n 	 ��

ST �x�� � � � � xn�  �
Z

Ve
�y�   yn�Cx�y�   Cxnyndy�   dyn � �����

if ST �x�   �� and Ve
�y�   � are the Taylor coe�cients of ST �f�� Ve
�f��

For n  � and if �ST �k� denotes the Fourier transform of ST �x�� x��

in x� � x�� and �Ve
�k� denotes the analogous transform of Ve
�x�� x��

�assuming � ����

�ST �k�  �C�k� � �C�k�� �Ve
�k� � �����

����� does not look like a double convolution� like ������ because we can

exploit the translation invariance� The case of the Bose condensation

problem is the same�

In the case of Fermi liquids there is a similar formula� On can de�ne

ST ���  log

Z
P �d� e�V ����

R
���

x �
�
x ��

�
x �

�
x �dx ���	�

and the connection between ST �x�   xn� �where n is even and the �rst

n
� x�variables are associated with � �elds� and Ve
�x�   xn� is still

������ ������

We just give a formal proof of ������ which could be made rigorous

�as long as � is kept �nite�� In fact� the basic reason for the validity of

������������ i�e�� of ������ is the important formal representation of P �d�

as

P �d� �� const e�
�
� �C

������
Y
x�Rd

dx � ���
�

Starting from ���
�� one sees that �rede�ning  as � � ��

e�Veff ���  const

Z
e�

�
� �C

�������V �����
Y

dx 

 const

Z
e�

�
� �C

��������� �
� �C

��������C�������e�V ����
Y

d�x 

 e�
�
� �C

�������ST �C���� �

�����
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yielding ������

The case of fermion liquids is treated similarly by using the analogue

of ���
��

P �d� ��const e��g������
Y

x�Rd��

dx � �����

where
Q

x dx is formally de�ned as a Grassmannian integration rule in

which the g�x�y�� in ������ is replaced by ��x�y�� We use the notation

�g��� � 

Z
g���x � y��

y 
�
x d

d��xdd��y � ������

The representations ���
�� ����� are extremely useful for heuristic pur�

poses� To turn the heuristic arguments into rigorous ones it is necessary�

for instance� to imagine ���
�� ����� as the expressions obtained by re�

placing R
d�� by a lattice with small but positive lattice spacing and

�nite spatial extension� and then by considering the limit in which the

lattice becomes Rd��� Or one can use the ideas introduced in appendix

��
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Chapter �
Multiscale Decomposition of Propagators
and Fields� Running E�ective Potentials

All the model problems that we are considering have a common fea�

ture� When formulated as functional integrals� they give rise to propa�

gators with some kind of singularity� The singularity is at p  � in the

critical point theory of chapter �� at p  � in the ultraviolet problems

of �eld theory considered in chapter �� and both at k�  �� j�kj  pF
��k  �� and at k  � in the Fermi liquid �Bose gas� case�

The Bose gas problem has some peculiarity that we shall discuss in

chapter ��� here we shall consider only the other three problems�

The �rst two problems are simpler because the singularity occurs just

in one point� The third problem has a singularity in one point ���

plus a new type of singularity at the Fermi surface� which has codimen�

sion � �whatever d is�� To be more precise� the ultraviolet problem in

its regularized version involves a non�singular propagator ������� which�

however� becomes singular at p  � when one considers� as one must�

the limit N � �� The Fermi liquid problem has two problems built

in� an ultraviolet problem and an infrared one �and the singularity at

the Fermi surface manifests itself in a slowly oscillating decay� at large

distance� of the propagator��

Since the novelty of the third case rests on the singularity on the Fermi

surface we shall� from now on� simplify also this problem by replacing g

in ����� by�

g�x� 
�

����d��

Z
e��k�����

�k����p��e�ikx

�ik� � ���k�
dd��k � �����

where ���k�  ��k� � p�F �
�m� thus eliminating the singularity at �� by

cutting o� the k�values large compared to some pre�xed scale p�� which

can be conveniently taken to be the inverse of the range of the interaction

potential�

Moreover� we shall neglect the boundary problems related to the �nite

volume also in the Fermi case �see discussion in chapter ��� hence� we

shall take ����� as the full covariance�
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The singularities present in the propagators ������ �infrared singular

at p  ��� ������ �ultraviolet singular at p  ��� and ����� �singular

on a surface of codimension � away from the origin� can be �resolved�

into scales by using a procedure well known in harmonic analysis �in the

theory of convergence of Fourier series �see �C�� �F��� and� more generally�

of expansions in orthogonal functions� like the Walsh series �see �Go����

One simply writes the identities for� respectively� ������� ������� and

������

��p�

p���


�

p����

�X
h	��

����
�
��hp
p�

�
�������h 

e����Np��p�� � e�p
��p��

p�


�

p��

NX
h	�

��

�
��hp
p�

�
���h 

e��k�����
�k����p��

�ik� � ���k�


�

p��

�X
h	��

���h
�
ik� � ���k�

�



Z �

�

e�����h�k�����
�k����p��d� �

�����

where the ���� are analytic functions of the square of their argument�

with domain containing a strip along the real axis� and are rapidly de�

caying at ���

The �rst two decompositions in ����� can be written as

Cxy 
�X

h	��
�C
�
�hp��x� y�

�
��d�����h �

Cxy 
NX
h	�

�C
�
�hp��x� y�

�
��d���h �

�����

where �C is a C� function rapidly decreasing at � and independent of

h� In the infrared case� p��
� can be interpreted as a lattice spacing� while

in the ultraviolet case p� can be thought of as a physical mass�

�
Exercise� Show that

�����q� �

Z �

�

e��q
� d	

	���
��
��

if ��p� is chosen as after ���	���
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The last of ����� cannot be written simply as ������ i�e�� as the sum of

terms identical up to scaling� If d  �� one can� however� see that ��BG���

appendix A�� choosing units so that the Fermi velocity pF 
m  ��

g�x� y� 
�X

h	��

X
��	��

e�ipF �����x��y� �h �g�h�
�
�hp��x� y�� ��

�
�

��g
�h�

�k� ��� �ik� � ��  �k�p����k� �� � o��h�� �

�����

p��
� can be chosen as the range of the interaction to avoid the introduc�

tion of an extra�length scale�

As a �nal simpli�cation of the model� we shall neglect the terms o��h��

so that �g�h� becomes in fact h�independent and our fermion propagator

takes the form

g�x� y� 
X
��	��

e�ipF �����x��y�
�X

h	��
�h �g

�
�hp��x� y�� ��

�
�

��g�k� ��� �ik� � �� �k� �C�k� �

���	�

and ������ ���	� show manifest analogies� It is interesting to remark that

���	�� i�e�� the decomposition of the leading part �as one approaches the

Fermi surface or� in other terms� as h � ��� of ������ corresponds to

the approximation

g�x� y� 
X
��	��

Z
e�ik�x�y�

�ik� � �� �k e
�ipF �����x��y� d�k ���
�

if d  ��

The above decompositions of the propagators can be used to rep�

resent the �elds x as sums of other �elds� with the integrations over

the  s replaced by independent integrations over auxiliary �elds� The

representation will be called a multiscale decomposition�

In the scalar cases we write� respectively�

x 
�X

h	��
�h�
x or x 

�X
h	�

�h�
x � �����

where 
�h�
x are Gaussian �elds with propagators

�hh� �C
�
�hp��x� y�

�
��d�����h � �����
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So that the distribution of �h�
x is the same as that of ���

x suitably

rescaled� i�e��

�h�
x

dist
 ��d�����h��

���
�hx � ������

And we can write the functional integral for the e�ective potential as

e�Veff ��� 
�

N
Z Y

h

P �d�h�� e�V
�
��
P

h
��h�

�
� ������

where h ranges between �� and � in the infrared problems� and between

� and N in the ultraviolet problems� V is given by the �rst two of ������

respectively�

Likewise� in the Fermi liquid case� equation ���	� can be used� sup�

posing for simplicity that pFL
� is integer� as follows� Let ���
x�� � ����

x�� �

� � � be a basis for a Grassmann algebra and introduce the integration

with the propagator

�������hh� �g
�
�hp��x� y�� ��

�
�h � ������

Then� if we de�ne

�x 
X
��	��

�X
h	��

e�ipF ����x��h�
x�� � ������

we see that the e�ective potential can be written exactly as ������� with

now �x��� 
�h�
x�� being interpreted as the basic �elds of a Grassmann alge�

bras and with V given by the last of ������ They will be called the quasi

particle �elds�

We can illustrate the interest of the multiscale decomposition by tak�

ing� for example� the ultraviolet case� The x s have p��
� as independence

scale in the sense that Cxy � � if jx� yjp� � � so that we would like to

regard our �elds x s as constant on square boxes of size p��
� � This is�

however� clearly impossible� because as x� tends to x� we have that Cxx�

diverges as �
jx� x�jd���

But in the case of the 
�h�
x  s� the independence scale is ��hp��

� �i�e��

C
�h�
xy � �� if �hp��

� jx�yj � ��� and it is now possible to regard the 
�h�
x  s

as almost constant on boxes of size ��hp��
� � because when x� tends to x

it is C�h�
xx� � �C�����d���h� i�e�� C�h�

xx� becomes �essentially� constant when

x� x� are in the same box of a lattice with lattice spacing ��hp��
� �

Note that if one de	nes C
�h�
xx�  ��d���h� if x� x� are in the same box

of a hierarchical sequence of lattices of size ��hp��
� � and C

�h�
xy is set
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equal to zero� if x� y belong to di�erent boxes� one obtains what is

called the hierarchical model� leading to the Wilson recursion relation

�see �W����G����

The ������ leads naturally to the de�nition of e�ective potential on

scale h�

e�V
�h���� 

Z Y
h��h

P �d�h���e
�V ���

P
h��h

��h���
� ������

so that Ve
���  limh��� V �h���� in the infrared cases and Ve
��� 

limN�� V ������ in the ultraviolet cases�

Hence the following recursion relation between the V �h� holds� by

������� ������� �������

e�V
�h������ 

Z
P �d���� e

�V �h������h����

�h�
�
� ������

where �  �d� � � ��
� in the scalar cases and �  �
� in the fermion

case� The quantity � is called the scaling dimension of the �eld�

The sequence V �h� as h varies in its range �i�e� h  �������� � � �

in the infrared cases and h  �� �� �� � � �� N in the ultraviolet cases� is

called the renormalization group 
ow� Its analysis becomes the primary

subject of investigation�

Sometimes the sequence V �h� is called the running e�ective potentials

sequence �see �G��� �BG����
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Chapter �
Renormalization Group�
Relevant and Irrelevant Components
of the E�ective Potentials

If we introduce the dimensionless e�ective potential �see �������

V
�h�

��� � V �h����h��h�� � �	���

the recursion relation ������ becomes

e�V
�h���

��� 

Z
P �d�e�V

�h�
������������ � �	���

where P is the Gaussian measure describing the same distribution as

that of the �eld ���� �or in the fermionic case ������

In �	��� we can try to forget the scale index h and the fact that the

initial choice of V has a special form� and regard it as a map R�

V ����  � log

Z
P �d�e�V ������������ � RV ��� � �	���

One should keep in mind that R is a noninvertible map� so at each

application of R we are losing information� but we expect that what is

kept is the essence of the problem� as will appear more clearly at the

end �see also the Introduction��

Note that� had we taken correctly into account the volume dependence

of the �elds �see discussion in chapter ��� the measure P �d� and the

map R would have a slight dependence on h� but the following analysis

would not change in an essential way�

In trying to assign to R a domain of de�nition� one supposes that

V ��� has the form� in the scalar cases�

V ��� 
X

n�p����pn

Z
�

Vn�p����pn�x� � � �xn�!p�
x�
� � �!pn

xn
dx� � � �dxn � �	���

The Vn�p����pn are suitable kernels �smooth up to some delta function

factor� and !x are �elds x or �ix �in the latter case Vn should also
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contain the indices necessary to contract the gradient indices� omitted

in �	��� for simplicity of notation��

In the Fermi liquid problem� the �	��� takes the form

V ��� 
X
�

Z
�

V��x� � � � xn�!x�   !xne
ipF

P
i
i��i�xidx� � � � dxn � �	���

where !xi  �ixi��i or D�ixi��i � D being a convenient di�erential operator

�which could be the gradient� but which will turn out� below� to be

more conveniently chosen otherwise�� the summation is over the labels

�  �n� ��� � � � � �n� ��� � � � � �n�� and the monomial in the ! contains as

many �� as �� quasi�particle variables� The sum over the �� indices

should be interpreted as an integral� if d 	 �� but we shall consider in

the following only the case d  ��

The integral in �	��� has to be understood in the sense in which one

usually understands the Hamiltonians of in�nite systems� In principle�

the integral in �	��� has to be restricted to a �nite region �� then one

evaluates �	��� with such a modi�ed V � One gets a V ��� which will be

written� if possible� as �	��� with kernels V
����
n�p����pn � Finally� the kernels

V �n�p����pn of V � will be the limits of the corresponding ones in V
�����

If one performs this step �i�e�� forgetting the �niteness of � and � and

the related boundary conditions problems� see chapter ��� essentially

amounting at a not yet justi�ed interchange of limits� it is then not

di�cult to show that the above procedure leads to formal expressions

for the V �n in power series of the Vn whenever the Vn verify certain

properties�

Such properties can be checked to hold for all the V  s that are ob�

tained by successive applications ofR to the V  s that we have considered

in our ultraviolet and infrared models as well as the Fermi liquid model�

In the latter case� in fact� it can be shown that the V  s are de�ned by

convergent series �so that R is really well de�ned�� if d  � �see be�

low and also �BG��� x��� �BGPS��� It is therefore possible to proceed by

developing the theory at least formally�

This is a somewhat technical aspect that should be ignored until

one really tries to perform a mathematically rigorous analysis of some

problem� a task that has to be delayed until the conceptual framework

which we are trying to set up is fully developed� In practice� in the cases

that can be treated rigorously� it turned out that the formal analysis

revealed itself as a very important guideline and the di�culties met in

elaborating the theory and related to the above boundary conditions

�i�e�� to keep L �nite� have been quite minor ones�
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The possibility of de�ning R� at least via formal expansions� has been

exploited very deeply� leading to the possibility of controlling impressive

resummations of the �equally divergent but often asymptotic� perturba�

tion series solving formally the problems posed in the previous sections�

A simple reinterpretation of the old renormalization theory in QFT has

been one important consequence of the possibility of de�ning R in a

precise� yet formal� sense ��FHRW���

The �	��� is a map and ��R�R�� � � � is a family of maps forming a

semigroup that is usually called the renormalization group of our prob�

lems� In practice� one will always be interested only in sequences� called

renormalization group 
ow or trajectories� RjhjV �with h � �� de�

pending on the infrared or ultraviolet character of the problem�� which

start with a very special V �

Nevertheless� one can try to build one s intuition by imagining to

apply R also to other V  s and using concepts of the theory of dynamical

systems� One of the �rst actions taken� when trying to understand the

properties of the iterations of a map� is to analyze its �xed points and

to study its linearization around them�

The imprecise de�nition of the domain of R makes this problem par�

ticularly hard when one tries to go beyond formal considerations� In

these notes� however� we do not have this ambition and we proceed to

reproduce the classical analysis of Wilson�

For instance� to study the scalar �eld problem� one can begin by

remarking that V  � is a trivial �xed point of the map R �see �	�����

The linearization DR of R around V  � is simply

DRV ��� 

Z
P �d�V ��������� � � � �	�	�

and the same formula holds in the case of the Fermi liquid� with a

di�erent meaning of the symbols�

Eigenfunctions of DR can be easily found� Since P �d� is a Gaussian

integral� we expect them to be a kind of generalization of the Hermite

polynomials� In fact� the eigenfunctions are related to the Wick mono�

mials which we denote � �x�   �xn �� The latter are de�ned recursively

by
� � �  � � � �x �  �x �

� �x� � � ��xn � �x� � �x� � � ��xn � �

�
nX
j	�

Cx�xj � �x� � � ��xj���xj�� � � � �xn � �

�	�
�
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where �x is a general Gaussian random �eld with mean � and propagator

Cxy� It is convenient to regard Wick monomials as de�ned also when

� is not random �i�e�� it is an external 	eld�� by assigning to � formally

propagator � �so that � �x� � � ��xn � �x� � � � �xn��

The equations �	�
� clearly extend the recursion relation for the Her�

mite polynomials and one can� for instance� check that

� �nx �  ��Cxx�n��Hn

�
�x
��Cxx����

�
� �	���

The property that we need here is simply that
R

� �x�   �xn �

P �d�� � � if n � �� This is an easy exercise based on �	�
� and on

the Wick rule for Gaussian integrals�Z
�x� � � ��xn P �d�� 

X
pairings

Y
p�pairs

Cp � �	���

where a pairing is a choice of n
� pairs p  �z� z�� among x�� � � � � xn
with no point common to di�erent pairs �hence n is even� or �	��� is

interpreted as zero��

Another property of the Wick ordered polynomials is their multilin�

earity� If ��  are independent Gaussian �elds� then

� �x� � �x��    �xn � �xn� � 


X

X��x� �����xn�
X��xj�

�����xjp
�

X���x
j�
�
�����x

j�p
�

� xj� � � �xjp � � �xj�
�

� � ��xj�
n�p

�
� �	����

valid even if � or  is an external �eld� then if fx����xm ��� denotes the

monomial � �n�x�   �
np
xp ��

np��
xp��   ��nmxm �� this shows immediately that

�DR fx����xm ���� ����n������np��������np�������nm�
 f���x�������xm��� �

�	����

with �  �d� � � ��
��

Similar de�nitions and properties hold in the Fermi liquid case� The

recursive de�nition �	�
� is replaced by a new formula in which a sign �
is inserted in the sum in �	��� alternating with the parity of the permuta�

tion needed to bring the terms of each pair next to each other� Checking

this is left to the reader with the hint that everything follows from our

de�nition of Grassmanian integral that replaces �	��� by ����� �interpret
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the terms involving pairings of �� �elds or of �� �elds as vanishing

because the propagator between such �elds has to be considered zero�

see �������

The �	���� implies immediately that expressions such as

F ��� 

Z
�Rd�m

dx� � � �dxmW��x�� � � � � xm�

 � �n�x� � � � �
np
xp ��

np��
xp�� � � ���

nm
xm �

�	����

are eigenfunctions of DR if W� is a homogeneous locally summable

function of degree �� In fact the eigenvalues corresponding to them are

simply

�F  ��F � �F  � �

pX
i	�

���ni � d� �
mX

i	p��

���� � ��ni � d� � �	����

which is usually read as saying that the dimension of the operator F is

the sum of the �eld dimension ��� for each � and ������ for each ���

plus the dimension of the volume elements �d each� plus the dimension

of the coe�cient ����

One says that F is relevant if �F � �� �F � �� and irrelevant otherwise�

F is called an operator� without strong philosophical implications�

It is easy to list all the relevant operators even in �� which are local�

i�e�� which only involve �elds evaluated at one point �hence in �	����

there is only one integration variable�� We restrict ourselves only to

even monomials� as they are the only ones arising in our a priorieven

potentials�

They are the F  s� denoted respectively F�� F�� F��� F�� obtained by

integrating the following expressions�

� ��
x � � �F  �� � � � ��

x � � �F  �� d� �� �

� ���x�� � � �F  �� � � ��
x � � �F  	� �d� �� �

�	����

whenever the r�h�s� are � �� or more generally by integrating the � ��n
x �

when their �F  s� given by �F  d� n�d� � � ��� are nonnegative�

If we restrict d � � and � � �� but �d� �� � ��� ��� the relevant terms

are among the �	����� If we let d vary continuously with d � � �the

noninteger values have no physical interest�� we see that more and more

operators become relevant� and if d  �� �  �� all the Wick monomials

are relevant�
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The above list should be enlarged by adding � �x��x �� with �F 

� � �� or� if d  � and �  �� also � ��n
x ���x�� �� But such expressions

will turn out never to arise in our theories� or to be reducible to others�

so we leave them out�

Much longer would be the list of the nonlocal relevant operators�

as in such cases one has the freedom of the choice of � and of the W�

functions�

The above remarks on the eigenfunctions of DR make it natural to

represent the e�ective potentials V in �	���� �	��� by expanding them in

Wick monomials rather then in ordinary monomials� Hence we imagine

to rede�ne Vn so that �	���� �	��� can be written� respectively�

V ��� 
X

n�p����pn

Z
Vn�p����pn�x�� � � � � xn� � !p�

x� � � �!
pn
xn � d�x �

V ��� 
X
�

Z
V��x�� � � � � xn� � !x�   !xn � eipF

P
i
i��i�xi d�x �

�	����

where d�x � dx� � � � dxn�

We shall see that one of the main developments of the theory is that�

in all our "ows RjhjV � the kernels V n�x� � � �� that can arise in �	���� in

dimensionless form will have bounds of the form���V �h�
n �x�� � � � � xn�

��� � Cne
��d�x����xn�p� � �	��	�

where p� is the momentum scale used in the multiscale decomposition�

� 	 � is a numerical constant �depending only on the problem considered

but not on h� n�� and Cn is a constant� d�x� � � �xn� is the tree distance

of x�� � � � � xn  length of the shortest tree connecting x�� � � � � xn�

The �	��	� will be a bound valid to all orders of a perturbation ex�

pansion of V �h�
n � when the theory can be worked out only perturbatively

�and the dependence of Cn on the order k of perturbation will be rather

bad� typically proportional to k���

The �	��	� expresses the key fact that the e�ective potentials �dimen�

sionless� keep a �xed range� �nite� uniformly in the scale parameters to

all orders of perturbation theory� Hence the myriad of relevant nonlocal

operators are not represented in the expansions �	�����

In the following chapter� we will examine the implications of the above

analysis� We shall conclude this chapter by mentioning that in the case

of Fermi liquids a similar analysis can be performed and one �nds that
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the only local operators that can arise in the theory s e�ective potentials

are the following� if d  ��

F� 

Z
� �

x��
�
x��

�
x��

�
x�� � dx �

F� 

Z
� �

x���
�x��� � ei���������pF�x dx �

F� 

Z
��� � �

x���
�D���

�
x���

� ei���������pF �x dx �

F� 

Z
� �

x���
�t

�
x���

� ei���������pF�x dx �

�	��
�

Note that there is only one local term of fourth order in the �eld because

of the Fermi statistics and the fact that �  �� and that our fermions

are spinless�

The operators �	��
�� if the �� s are �xed so that ��� � ���  �� are

eigenfunctions of DR with eigenvalues �F  ��F with

�F�  �� �F�  �� �F	  �F�  � � �	����

with only one relevant operator�

The case of the Bose gas is similar and is discussed in chapters ��

and ���
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Chapter �
Asymptotic Freedom�
Upper Critical Dimension

The implications of the analysis of the previous section can be easily

appreciated in the ultraviolet problem or in the infrared problem in the

simple cases with � 	 �� which we assume below �unless explicitly stated

that the case considered is �  ���

Assume that the couplings �bare couplings� de�ning the initial V are

small� Then we want to see if the V �h� stay consistently small as h

evolves to � ��� in the infrared cases� �� in the ultraviolet�� at least

if one uses the linearized approximation for R� �	�	��

In this approximation we simply have to write the initial V in dimen�

sionless form V �see chapter 	�� and express V as a superposition of the

eigenvectors of DR�

Taking into account that V has the form ������ and calling� as in

chapter 	�  the dimensionless �eld variables� we �nd in the scalar cases

V �� 

Z �
� � 

�
x � �� � 

�
x �
�
dx �
���

�see ������ ������ and recall that � ��
x �  ��

x � 	Cxx�
�
x � �C�

xx� � ��
x � 

��
x �Cxx�� with


�  L��

��

�  	�Cxx �M�������


�  �N�����d����N

�  ��N � 	�NC
��N�
xx ��������N �
���

the left relations pertaining to the infrared problem and the right to the

ultraviolet�

In the linearized "ow� the e�ective potential on scale h can be written

as V
�h�

 DRjhjV with the scale label h  �������� � � � ��� in the

infrared case� while it is V
�N�h�

 DRhV � h  N�N � �� � � � � �� in the

ultraviolet case� In fact V
�h�

have� for the appropriate values of h� still

the form �
��� with �� � replaced by �h� �h verifying �see �	�����

�h��  ���d����h � �h��  �����h � �
���
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Hence we see that our hypothesis that �h and �h stay small for all h s

of interest has a di�erent meaning in the two cases�

In the infrared problem the latter hypothesis leads to the conditions

�h � � and ��d��� � �� Expressing this in terms of the range exponent

of the spin potential J�x� � �
jxj�� recalling ���	� with �  d� � � ��

we see that this means

� �
�

�
d �
���

�and our assumption � 	 � 	 � means d � � � d� ��� hence �
��� is a

condition that the potential should have �very long range�� Note that

if d � �� �very long range� is any power law potential �as �� d� �� � �

for � 	 ���

Of course� in the linear approximation the �h grow exponentially� if

�� � � � �� and we have to expect that the condition �  � is modi�ed

by the nonlinear terms into a condition like �  ����� i�e�� that there

should be only one special choice of � for which it will be possible that

the e�ective potentials� in dimensionless form� stay uniformly bounded

and small�

And if � is so chosen �i�e�� �  � in the linear approximation� with

�
��� veri�ed�� then �h � �� �h � � as h��� and we see that for such

value of � the correction to the ST �x�� x��� i�e�� to the pair correlation

function� on large scales vanishes ���� �� � �� and the pair correlation

function decays as the free propagator� rather than like the potential�

signaling that we are at the critical point �see comment following ����	���

In the linear approximation� the �
���� ����� and the condition �  � give

us even the value of �c as the solution of

	L��
��Cxx � ��R� � �r����  � � �
���

which has a solution if r � R�
�
��LoCxx�

The above conclusion is quite exciting� as it provides a scheme to

calculate the critical point whose existence and nature are sensitive to

the space dimension and to the range of the potential� We realize also

that we have found that the models considered have a trivial or free

or mean 	eld critical point� if the interaction has long enough range

or if d 	 � �always taking � 	 �� i�e�� a polynomial decay of the pair

potential��

The cases with ��d���  � and � � � will be discussed later� note

that the property that �h� �h stay small for all h s is not decidable to

�rst order because the expansion rate of � will be exactly � �marginality

of ���
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Leaving aside� for the moment� the cases d� �� �  � or �  �� note

that the above discussion gives no information about the case � � ����

�or � � �c�� In fact �h is in this case growing so that� after a few

iterations of R� there cannot be any ground to proceed as if the higher

order corrections to the approximation R � DR were negligible�

Let us now look at the implications of the above analysis in the case

of the ultraviolet problem� In this case there is no �� However we

are interested in a di�erent question� Namely� �� � are free �as such

are �N � �N � and we must show that they can be so chosen that after

N iterations of the renormalization map we built an e�ective potential

�small� of course� to be consistent with our linear approximation� that

is nontrivial�

In our approximation� this simply means that ��� �� have to be �nite

�small� and �� � � �to make sure that the e�ective potential V ��� is not

a quadratic form�� Manifestly if d  �� � �i�e�� d � ��� this is possible�

and in many ways� Namely� one just �xes ��� �� and determines �� � as

�N � �  ���
����d�N � �N � �  ���

��N � �
�	�

which is perfectly acceptable� as this means that �h� �h are small for all

values of h  �� �� � � � � N and in fact very small for most h s�

The evolution of the running coupling constants� �h� �h� in the above

cases is thus such that one can �nd initial data for V that generate

a family of running coupling constants which approaches zero as their

scale labels h go to � ��� in the infrared case or �� in the ultraviolet

case�� At the same time� they have nonzero values on scales of order �

�jhj � ��� and the constants value relative to the nonquadratic relevant

operators is not zero �an important condition� as it excludes triviality��

One says that the above infrared problem under condition �
��� and

the ultraviolet problem with d � � are asymptotically free�

More generally one says that a problem is asymptotically free if

�� one can �nd a way to go systematically beyond the linear approxima�

tion DR to R by successive approximations� and

�� the �rst approximation to R for which the nonquadratic relevant op�

erators evolve nontrivially starting from a suitably chosen small initial
#V has the property that the corresponding dimensionless couplings

approach zero for large values of the scale labels� although they have

a nonzero �small� value at scales of order �� at the same time the

other relevant couplings remain small and approach zero� or at least
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stay bounded and small over the whole range of scales�

Most cases of physical interest have� however� the feature that the

asymptotic freedom property does not hold or its validity cannot be

decided by simply looking at the linear approximation of R�

The reason for this is that there exist marginal operators that are not

quadratic in the �elds and which� in the linear approximation� have

running couplings that stay constant �i�e�� have �F  ��� We have

already met the most prominent examples�

�� the infrared problem with � � � � � and �� d� ��  ��

�� the infrared problem with �  �� d  �� and

�� the ultraviolet problem with d  ��

which are listed in order of increasing di�culty� Later we shall discuss

the Bose condensation problem�

Case � is asymptotically free to second order� Case � is also asymp�

totically free but only the running constants associated with the non�

quadratic relevant operators approach � as h � ��� Case � is very

famous� as it is the simplest example of a nonasymptotically free model

whose asymptotic freedom cannot be decided in the linear approxima�

tion �as it is the case in the infrared problems with �� d� �� 	 � or in

the d 	 � ultraviolet problems��

�� The d  � �spinless� Fermi liquid problem is a fourth problem for

which the asymptotic freedom cannot be decided from the linear ap�

proximation �see �	������ And it is particularly interesting because

its asymptotic freedom cannot be decided in any �nite order approx�

imation� As we shall discuss� eventually� it will turn out that it is not

asymptotically free�

�� The Bose condensation problem� which we discuss in chapter ��� rep�

resents a remarkable instance in which in some appropriate sense

asymptotic freedom holds�



��

Chapter 	
Beyond the Linear Approximations� The

Beta Function and Perturbation Theory

The beta function is a powerful tool to investigate properties of im�

properly convergent series expansions and to turn perturbation theory in

statistical mechanics or quantum �eld theory into a �sometimes� useful

algorithm�

In fact� until recently it was not clear how to turn the enormous

amount of work performed in renormalization theory of quantum �elds

into a constructive algorithm� This was similarly true for the theory of

perturbations in classical mechanics before the development of the KAM

theory out of the work of Kolmogorov �which� as already mentioned� is

also an ante litteram instance of an application of renormalization group

ideas��

The beta function arises when one tries to �nd the corrections to the

linear approximation to the renormalization map R� It is particularly

useful in the linearly undecidable cases listed at the end of chapter 
�

The idea is that the �dimensionless� potential on scale h� #V �h�� can

be written as

#V �h�  L#V �h� � ���L� #V �h� � �����

where L is a projection operator extracting out of #V �h� its relevant com�

ponents� So L is a linear operator with often �nite dimensional range�

coinciding with the linear span of the relevant operators �which� in the

four linearly undecidable cases of chapter 
� are �nitely many��

At this point one can ask how is L determined if one knows nothing�

In the early days of the renormalization group methods� it was often

stated that basically there is no way to tell a prioriwhich is the renor�

malization transformation to use� the good one is that which works� �

� To no one�s surprise� loosely speaking one can say that the renormalization group

cannot be an easy way to solve a problem� �nding a renormalization group transfor


mation that solves a problem is always preceded �to our knowledge� by an understand


ing of the basic features of the problem� at least at an intuitive or phenomenological

level�
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Thus the �rst thing one has to realize is that the formalism is ab�

solutely general� and one has as much freedom as one can imagine in

de�ning the operator L� Therefore it is important to understand the

ideas without really �xing L�

It turns out� however� that after a while one realizes that L is always

the same� and the real di�culty is to �nd an �appropriate� functional

integral formulation of the problem� at least for the problems that can be

formulated as functional integrals�� The �old� ambiguity in the choice

of the renormalization transformation goes into that of �nding the ap�

propriate functional integral formulation �this is really well illustrated

by the Bose condensation problem��

Hence we shall illustrate the general formalism with a special choice

of L� i�e�� the one that will turn out to be the correct one �essentially

unique up to trivialities� as far as we know�� But no real use is made of

the special form of L� unless when we discuss bounds �which can only

be found in a useful form if the choice of L is the indicated one��

The reader should read what follows in this spirit� The fact that

the choice of L is correct is expressed by the bound ������ for the cases

discussed in this section� Its proof is a nontrivial �although not really

hard� task� essentially identical to a proof of renormalizability of a scalar

�eld theory� we shall not give the proof of ���� in the cases at hand�

The validity of ������ �i�e�� the scale independence of the beta function�

to second order of the perturbation expansion is often considered by

most physicists as good enough for a formal theory��

The operator L has to be devised� if possible� so that the irrelevant

part of V �h�� �� � L�V �h�� can be expressed in terms of the values of

the coe�cients �vh� of the relevant operators in LV �h��� h� 	 h� if this

is possible� the problem of the analysis of the sequence� Rn #V � n � �

� Not all the problems listed in the introduction are reducible to a functional in


tegration� although in the future they might be formulated as such� For instance�

recently� and quite surprisingly� the problem of the determination of the invariant

tori in the KAM theory was formulated as a functional integral �see �G����
� One should add that they are aware that this makes sense only if a scale indepen


dent bound like ������ holds� and sometimes it is declared to be obviously true� �by

the renormalizability theorems�
� It is perhaps worth stressing that in all cases n � �� The transformation R��

is never studied� The map R should always be regarded a noninvertible one in the

same sense in which the evolution governed by the heat equation is not invertible�

the forward evolution is very nice� while the backward evolution is� even when it



�	 Chapter �

becomes that of understanding the properties of the sequence �vh of the

running coupling constants�

To de�ne L� in the scalar case� we imagine V �h� expressed as in �	���

and de�ne L by linearity� prescribing its action on the Wick monomials�

Considering only the cases �� d� �� � �� � � �� d � � in the infrared

problem and d  �� � in the ultraviolet� we de�ne

a� L � �x��x��x	�x� � 
�

�

�X
j	�

� ��
xj

� �����

b� L � �x��x� �
�

�

�
� ��

x� � ��x� � x�� � �x���x� � �

�
�

�
�x� � x��

� � �x��
��x� �

�
� ������

if �  � and� more simply� �b� can be de�ned to be

b � L � �x��x� � 
�

�

�
� ��

x� � ��x� � x�� � �x���x� �
�

�

� �� � ��
�����

when � 	 �� � � � or

b�� L � �x��x� �
�

�

�X
j	�

� ��
xj � �����

when � 	 ��

Similarly in the case of Fermi liquids �and d  ��� we de�ne

L � �
x����

�
x����

�x	��	
�
x����

� 
�

�

�X
j	�

� �
xj���

�
xj���

�xj��	
�
xj���

� �

L � �
x����

�x���� � 

� �
x����

�x���� � ��x� � x�� � �
x����

D���
�
x����

� �

�����

where D��  ��t� ��x�i����x
�pF � is a convenient di�erential operator� we

could use �  ��t� ��x� instead of D�� � but the latter is more natural and

could be de�ned� in many ways singular �and of little interest for our purposes�� The

fact that the same transformation is interesting for widely di�erent problems� like

the infrared problem of the critical point and the ultraviolet problems of scalar �eld

theory� is certainly a unifying feature justifying the interest that the renormalization

group methods have elicited in theoretical physics�
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its use simpli�es the calculations� as one can realize by trying to do some

of them� The D�� operator is a kind of covariant derivative in the sense

that its consistent use in the calculations keeps �more� manifest the basic

property that the quasi particles have been introduced as a technical

device to study e�ective potentials which only depend on particle 	elds�

this implies that the dependence on the ���variables is somewhat special

as it always has to be possible to perform the ���integrals to reexpress

the V �h� as functions of particle �elds�

We de�ne L to be zero on the monomials of degree higher than ��

It is easy to see that� with the notation de�ned in the lines above

�	�����
LV �h����  �hF���� � �hF���� � �hF���� if �  �
LV �h����  �hF���� � �hF���� if � 	 � �

���	�

where no operator with � �x��x � appears� as such terms can be inte�

grated by parts ��x��x  ������
x� and disappear� and in the Fermi

liquid case �d  ���

LV �h�  �hF� �
X
���

��hF� � �hF� � �hF�� � ���
�

Here� we have used �	�
�� �	��
��

In the scalar cases we see that L� as de�ned above� indeed projects

on the space of the relevant operators� with the exception of the case

d  �� �  �� and this is a real problem in the infrared case because the

sixth�order operators � ��
x �� as soon as they are created by the nonlinear

terms� will remain forever and will give important contributions to the

further evolution of the e�ective potential� This is less serious in the

ultraviolet problem because there we have already seen that we have

to take #�N and #�N extremely small� this implies that the sixth�order

relevant terms generated are very small and do not contribute much to

the e�ective potentials�

It is� however� a very serious di�culty in the infrared problem� there�

fore we exclude the infrared case d  �� �  �� which is clearly more

di�cult than the others� We will come back to it �see chapter ���� and

we shall give up playing the game of trying to modify the de�nition

of L to �x the just�mentioned di�culty �the reader should try this as

an exercise�� In fact� it will appear that such direction is not at all a

promising one�

In the Fermi liquid case we see that L projects on operators con�

taining components on F�� F�� F� that are sums of eigenvectors of DR
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�corresponding to ���  ��� in �	��
�� and of operators that are not eigen�

vectors of DR �corresponding to ���  ������ It is convenient� however�

not to modify the de�nition of L to impose that it strictly projects over

the relevant eigenvectors� in this way� in fact� one keeps more easily

track of a kind of gauge invariance property� The latter property is a

deep consequence of the fact that we know a priori that all our e�ec�

tive potentials can be expressed in terms of the particle �elds� since the

original potential had this property� It also implies that the running

couplings are in fact independent of �� ��� as in ���
��

The important point is that L extracts out of V �h� the relevant part�

and the fact that it also extracts a piece of what we would like to consider

irrelevant does not a�ect the discussion� In general� one may expect to

be free� at least to some extent� to decide that some irrelevant operators

are treated as relevant and that this should not really a�ect the analysis�

Having de�ned the operators L� we come to the following problems�

�� Find an expansion of �� �L�V �h� in powers of �vh� � h� 	 h�

�� Find the relation between �vh and �vh���

If ��� can be solved� the whole problem will have been reduced to that

of studying the sequence of the running couplings �vh�

Basically the only known method to study ���� ��� is perturbation

theory�

Let #V be the initial dimensionless potential� We begin by decom�

posing it into relevant and irrelevant parts� and this is accomplished by

applying L and ��L�

In the scalar cases� #V � L#V � obviously� This is not the case in the

Fermi liquid problem� In this case� in fact� we recall that

#V 

Z
�v��x � �y���x� � y�� � �

x 
�
x 

�
y 

�
y � dxdy�

�

Z
� � �

x 
�
x � dx�

Z
� � �

x

��� p�F
�m

�x � dx �

�����

and we see that the quartic part of V is nonlocal�

The ����� is slightly more general than the one considered so far �see

the third of ����� which had �  �  ��� The reason for this more

general starting point is that the two extra parameters can be roughly

interpreted as variations of the chemical potential �� � � � �� and of

the mass of the particles �
m� �� ���
m� Therefore� introducing two

such parameters allows us to think that they can be conveniently �xed so

that the long�range behavior ��physically observable�� of the S�x� func�

tion corresponds indeed to a singularity in k�space at jkj  pF � k�  �
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describing particles of physical mass m �in a sense to be understood�� In

others words� adding two parameters �� � has the purpose of permitting

us to �x a priorithe physical values pF and m of the Fermi momen�

tum and of the mass �foreseeing that they could change because of the

interaction��

The Wick ordering in ����� can be put in or taken out at will at

the price of suitably changing the quadratic term �possibly making it

nonlocal��

Using ������ we see that �V � ������ becomes� in terms of the quasi�

particles �elds�X
���������

Z
�v��x � �y���x� � y��e

i�������	�pF�x����������pF �y

 � �
x���

�x��	
�
y���

�y��� � dx dy �
X
������

Z �
� � �

x���
�x��� � �

� � � �
x���

��i����D���
�
x���

�
�
ei���������pF�x dx �

�����

thus� applying ������ we �nd� recalling �	��
� and after a short calcula�

tion�

L#V ��F� �
X
�����

���F� � ��F� � ��F�� �

�� ����v���� �v��pF ��� ��  �� ��  �� ��  � �

������

while

��� L� #V 
X

���������

R
�v��x� �y���x� � y�� 

 ei�������	�pF�x�i���������pF �y  ������


h
� �

x���
�x����

�
y��	

� �
x��	

��y��	 � � � �
x���

�x���
�
x��	

��
y��	

� �x��	� �
i
�

The role of the initial irrelevant part ������ in the following analysis is

a minor one if one forgets about the gauge symmetry� i�e�� the a priori�

obvious fact that V �h� has to be expressible in terms of particles �elds�

The latter is the reason we do not make here the further simpli	cation

of simply discarding it�

To proceed� it is better to develop the formalism �rst in the scalar

cases where in #V no irrelevant terms are present �calling �irrelevant�

also ���L� #V � a name which will be justi�ed by the coming analysis���

� It wil become clear that �irrelevant does not at all mean negligible� in fact�

the physically interesting quantities are just expressed in terms of the truncated

Schwinger functions which are simply related to the irrelevant operators�
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We set up a recursive scheme to evaluate R as follows� Let X�� � � � � Xp

be p random variables and denote by E the integration over their �joint�

distribution� Then we introduce the truncated expectations ET �X�� � � � �

Xp�� sometimes called cumulants or connected expectations� as

ET �X�� � � � � Xp� 
�p

��� � � ���p
log E

�
e
P

i
�iXi

�����
�i	�

� ������

which certainly makes sense if ecjXij are E�integrable for all c 	 �� but

it is clear that ������ is a �nite combination of products of expectations

�of products of some� of the Xi s� hence in fact ������ makes sense under

the much weaker hypothesis that jXijq is E�integrable for all q 	 ��

Then� formally�

�R#V � #�� 
�X
p	�

�

p�
ET �

z �� �
�#V ���� #����� � �� � � � ��#V ���� #����� � �� �

������

where the number of arguments under the curly bracket are p�

Note that ������ is nothing else �see ������� but the development of

the expression logE�e�tV ������������� developed in a formal Taylor series

and evaluated at t  ��

To proceed� it is more convenient to work with the dimensional e�ec�

tive potentials making them dimensionless only when the results have to

be expressed� Thus calling V the dimensional potential corresponding

to #V � we rewrite ������ as

�RV ��� 
�X
p	�

�

p�
ET ��V ��� �� � � � ��V �� � �� � ������

To �x the ideas� let us investigate the ultraviolet problem� Then V �
V �N�� #RV � V �N���� E � EN denotes the integration with respect to

�N� and ������ is

�V �N������ 
�X
p	�

�
p� ETN ��V �N��� � �� � � � ��V �N���� ��

�
X
p

V
�N���
p ��� �

������



Beyond Linear Approximations ��

We iterate the above relation� This rather involved operation can be

visualized by using the following graphical representation�

�V �N� �
N

�V �N��� 
�X
p	�

�

p�
ETN �

z �� �
�V �N�� � � � ��V �N�� �

�X
p	�

N�� N

����	�

where the number of terms under the curly bracket is p and the number

of endlines in the second graph is also p�

Thus ������ can be represented as

�V �N��� 



� � � � � � 
N�� N�� N��

N��

N N N
����
�

so that� with the same notation�

�V �N���  � � � � �
N�� N��N�� N��

������

and then using ����
� and taking into account the multilinearity of the

ET �see ������� we can write
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�V �N��� 
N�� N�� N N�� N�� N

� ����

� ����
N�� N��

N

N

N�� N��

N

N

������

Therefore�

V �h� 
X
trees

h h��

h��

������

and we see that V �h� can be represented in terms of the planar trees

with an arbitrary number of vertices arranged at points of abscissa

h� h � �� � � � � N at each of which there is a bifurcation into �� �� �� � � �

branches� the branches go all the way up to the highest scale index� The

vertices symbolize truncated expectations of whatever symbolizes every

line emerging from the vertex �we read the tree from left to right�� Thus�

for instance� the tree
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N�� N��

N

N

������

means
�

��
ETN��

� �

��
ETN ��V �N���V �N��� ETN ��V �N��

�
� ������

where V �N�  V �N��� � �N��� � �N�� and EN � EN�� denote the inte�

grations with respect to the distributions of �N� and �N����

Clearly the above procedure produces a power�series expansion of

V �h� in powers of the couplings �vN � it is the usual nonrenormalized

expansion of the e�ective potential V �h� and� if we set� for h  ���

V ������� � �Ve
���� it gives the usual perturbation expansion of QFT�

with its usual problems� i�e�� divergences as N ���

But of course our program is to build a di�erent series� namely� a series

in the running couplings� The above algorithm has the great advantage

of being designed exactly to construct such expansion from the previous

one� essentially at no extra work�

The procedure is the following� construct V �N��� as in ����
�� Apply

L to V �N��� and ���L� to each of the terms in ����
� composing V �N����

and denote

��� �L�V �N��� 

�LV �N��� 

� �

� � � � �

N�� N��

N��

N��

N N

N

R R

R

������

Noting that the �rst term in ����
� just represents the action of the

linearized renormalization map� hence the action of ���L� on it gives ��

we can rewrite ����
� as�
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�V �N���  � � � � � �
N�� N�� N��N N

R R
������

where the �rst term represents LV �N���� hence it is determined by the

running coupling �vN�� and the others add up to �� �L�V �N����

We now iterate the procedure� clearly the result is

LV �h�  �
X

treesh h�� h h��

L

R
R

R

R

R
R

R
R
R

������

where now the sum runs over trees of the same type considered before

but which no longer end up on the highest scale index� Furthermore�

the last branches now represent LV �k� if they are attached at scale k

and the label L on the vertex nearest to the root in ������ indicates the

action of L� Also�

���L�V �h� 
X

trees h h��

R

R
R

R

R

R
R

R
R
R

����	�

So that we see that ������ provide us with a recursive calculation of

LV �h�� giving �vh� in terms of LV �h���� � � � �LV �N� � V �N�� i�e�� in terms
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of a power series in �vh��� � � � � �vN � Also we see that ����	� provides us

with a power series expansion of ���L�V �h� in powers of �vh��� � � � � �vN �

What have we gained$ Basically it turns out that the expansion ����	�

is much more regular than ������ in powers of �vN alone� The basic fact is

that� if we assume that the running couplings are uniformly bounded by

some � �for d  ��� then the sum of all the n�th order terms is bounded

by Cn  n�Cn�n and the kernels V �x�� � � � � xp� can be bounded for all

h as claimed in �	��	�� provided one allows for a wider interpretation of

the �elds ! appearing in �	����

To understand the latter observation� we can go back to the only

explicit calculation of an irrelevant term done so far� namely ������� We

see in that case that ���L� #V naturally involves the �elds �the jy�xj��

is added for convenience�

D�
yx�� 

�
�y�� � �x��

�

jy � xj � ����
�

which it is convenient not to split and to allow it to be one of the !z

�elds in �	���� interpreting of course the z as a pair �x� y� of points and

dz as dxdy�

A discussion of the details of the simple technical ideas involved in

deriving the bounds can be found in x�	 and �
 of �G��� most of the

key arguments are purely dimensional in nature and do not involve hard

analytical estimates�

In all the above cases �infrared� ultraviolet� or Fermi liquid� one meets

the same situation� the e�ective potential can be represented as in �	���

or �	��� by extending the meaning of ! to cover a few ��nitely many�

more possibilities among which ����
� is an example �see �G��� �BG���

We now turn to ������� which gives us a recursive construction of

the running constants �vh� The ultraviolet case with d  � is somewhat

di�erent from the others because of the peculiarity already remarked� it

is� however� easier to the point that it is one of the few cases in which

the point of view that we are describing has been actually turned into

proof �see �G��� �Rm��� �Rm���� Therefore� we leave it aside to turn to

the remaining more interesting cases �� 	 �� d � �� � � d � �� � �

infrared� or d  � ultraviolet� or d  � Fermi liquid�� The �rst basic

result is a bound on the coe�cients of the n�order term in the expansion

������� In all the above cases one �nds that� provided j�vkj � � for all

k s� the sum of the absolute values of the n�th order terms in the series

������ is bounded� for a suitable C� by

DCn��n� �n for all k � ������
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where D�C are suitable constants �depending only on the model and on

the basic scale used in the multiscale analysis� but not on k� This is

called the n� bound� found in the remarkable work ��DCR�� on scalar ��
�

�eld theory �see also �G��� �BG���

The formal perturbation series in vh��� � � � � v�� de�ned in ������� is

called the beta functional Bh�vh��� � � ���

Furthermore� if �� d� �� � �� � 	 �� infrared� or d  �� ultraviolet�

and in the Fermi liquid case� one can also show� if k 	 h� that �v�k� admit

a power series expansion� in terms of �v�h� alone in the scalar cases and

in terms of �v�h� and �v��� in the case of the Fermi liquid� with coe�cients

again verifying bounds like ������ with an extra factor �k�h�n appearing

�see �G��� x��%��� �BG���� Note that the �extra factor� diverges as

k � h � �� making it impossible� unless the bound is improved� to

make an expansion in terms of the bare constants�

This means that a formal power series links the running couplings �v�h�

and �v�h��� on neighboring scales� furthermore� the coe�cients verify a

uniform bound like ������ and� �nally� they can be shown to have an

order by order limit as h � �� or N � �� �depending on whether

the problem is infrared or ultraviolet�� One thus de�nes formal power

series B��v�� B���v� such that

�vh��  B��vh� � �vh  B���vh��� � ������

which links� up to corrections vanishing as h becomes large� the running

couplings on neighboring scales� The functions B and its inverse B �

which are only formal power series� de�ne the beta function�

If one could show that the series for B and B converge or at least

are asymptotically correct in describing the connection between �vh and

�vh��� then we would have a method to control the �vh by studying the

dynamical system

�v�  B��v� � ������

The models for which the B function exists as a well de�ned formal

power series are called renormalizable�

The existence of the beta function� as a well�de�ned formal series�

is the modern way to state the renormalizability of the model� We

want to emphasize again that this procedure resums a huge number of

Feynman graphs that are collected and summed to form the parameters

vh s �such values are very hard to compute and our real aim is not

to really compute them�� We will �nd that this can be possible if the

relation ������ between these parameters is at least an asymptotic series�
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Such information �or assumption� is su�cient in most cases to analyze

perturbatively the asymptotic freedom and the possible triviality of the

theory�

There are a few models for which the bound ������ can be improved

by removing the n�� For such models� the beta functional is actually

a holomorphic function of the parameters vh near the origin �i�e�� for

jvhj � � for some � 	 � and all h � ��� in such cases one can really

apply the program of the theory as we are developing it�

An example is the Fermi liquid beta functional which is in fact conver�

gent at small jvhj� An ultraviolet model for which the beta functional

can be shown to exist and converge at small couplings is the d  �

Gross�Neveu model �GK��� The above convergence properties of the

Fermi liquid beta functional rest upon the close connection between the

Gross�Neveu model and the d  � Fermi liquid problem pointed out in

�BG���
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The Beta Function as a Dynamical System�
Asymptotic Freedom of Marginal Theories

The use that one makes of the beta function is typically the following�

One forgets that the series de�ning it is only formal� One assumes

that it is an asymptotic series to a well�de�ned function and� if so� one

can argue that the sequence of running couplings behaves as prescribed

by the approximations to B obtained by a truncation BT of the beta

function series� If all such approximations predict a bounded "ow fol�

lowing suitable initial data� we have an algorithm to compute the �vh in

the given approximation for B and� therefore� all the e�ective potentials

as power series of the running couplings� such power series are free of

divergences at any order�

This of course does not mean that the e�ective potentials are not

singular in terms of the couplings �v��� on scale h  � �usually called

the physical couplings�� It only says that we can hope that the e�ective

potentials are analytic or C� as functions of all the running coupling

�v�h�� but it may well be that the structure of the dynamical system

connecting the �v�h� s on neighboring scales is such that the couplings

�v�h� as functions of �v��� have singularities�

In other words� the above scheme� when the running couplings remain

bounded uniformly� makes manifest that the e�ective potentials singu�

larities as functions of the physical couplings are rather simple because

they are due to singularities of the running couplings as functions of the

physical ones� i�e�� with respect to one among them �say �v�����

To go beyond such results� one needs to understand precisely the

convergence or analyticity properties of the beta function� which most

of the time is an open and very di�cult problem� But the progress

achieved in understanding perturbation theory is in any case a major

one�

We now apply the above program to the d  � ultraviolet problem

and to the � � d � ��  �� � � �� d 	 � infrared problem as well as to

the Fermi liquid using as BT the simplest truncation� namely that to

second order�

The calculation is elementary� one does not need the general tree
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formalism� which is necessary only to study the problem of the structure

of the high orders�

The result is the following� for B�

�� � � ���
� � ����� �

�� ������ �����
� � ����� ��� ������ �� 	 �� �� d� ��  � �

�����

with �� 	 �� and �see �G��� x���

�� � � ��� � ���� �

�� ��� ���� � ����� � ������� ������� �

�� �� ����� � ������ � ������� �

�����

for d  � ultraviolet and d  �� �  � infrared� with � 	 �� while for

the Fermi liquid �d  ���

��  �� ��  ��� ��  � � ����� ��  �� ���� � �����

with �� 	 ��

In the case ����� it is then easy to check� by using general methods of

stability theory� that� given �� is small enough� one can �nd ��  O�����

such that �h � �� �h � � as h��� essentially as

�h � ��
�� ��h��

� �h � O���h� � �����

The case ������ infrared� can also be treated� In this case we want

to take ��  � �as no gradient term is present at the beginning in the

infrared problem�� One easily �nds that ��  O����� can be found so

that ����� generates a "ow verifying ����� as well as

�h �� ��  O����� � ���
��X
h	�

	
��

�� �h��


�

�����

�and we see that �� cannot be expected to be analytic at ��  ��� So

we conclude that� in the second�order approximation� the critical point

exists and is a mean 	eld critical point if � 	 � �in the sense that the

pair correlation behaves at large distance exactly as the free propagator��

While the d  �� �  � critical point is a mean 	eld model with� however�

a wave function correction� i�e�� at large distance the leading decay of
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the pair correlation is not equal to the free covariance but� rather� it is

proportional to it with a constant of proportionality �� � ����� � ��

The application of ����� to the d  � ultraviolet problem shows� of

course� that it is not asymptotically free� one has to use ����� to evaluate

� from �� �i�e�� the inverse of the beta function� as we want to start from

��� ��� �� and construct �h� �h� �h for large h� But no matter how

small we start with ��� ����� will make �h grow to O��� at some �nite

h so that we are sure that we get out of a small neighborhood of the

origin where the truncation approximation used for B is not justi�ed�

Similarly� one could try to start by taking a small �v�N�� However� in

this case the v�h�� h � N � would have to be constructed by using �����

and this can be seen to imply that �� will be O��N
�� � �N�N �� � ��

N ���

The latter remark is at the origin of the well�known triviality conjec�

ture of the quartic scalar model of QFT in d  �� The status of this

conjecture can be considerably improved ��Fr��� but the problem is wide

open �see �GR���

Coming to the Fermi liquid problem� we want to �x �� small and

show that �� and �� can be �xed as functions of �� so that taking

��  � �as prescribed by the physical interpretation of the model�� it

is �h � �� �h � � �the latter to preserve the location of the Fermi

surface�� �h � �h � �� �h� �h � �� as h � �� In this case we would

have that the function S�x� becomes at large distance proportional to

�� � �����g�x� and we have a normal Fermi surface at pF describing

particles of mass m�

But it is clear that ����� is insu�cient to draw such a conclusion�

The second�order approximation does not allow us to decide whether �h
grows or decreases� However� the fact that no �� term is present means

that� even if we go to higher order and eventually �nd that �h � �� the

convergence to zero will not be very fast� so that
P

h �
�
h  �� �e�g�� if

the recursion was ��  � � ���� then �h � O��

p�h��� In particular�

the relations for �� � suggest that since
P

��h  � it would happen that

� and � grow out of the domain where the truncation of B can be hoped

to have a meaning�
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This is a new situation very close to the one that one would meet in

treating the infrared problem in d  �� �  � �which we have carefully

avoided considering� so far �see chapter ����� It is clear that in this case

there seems to be a serious conceptual problem and perturbation theory

does not seem possible in a consistent way� A new idea is necessary and

in fact it was developed in the early days of renormalization group� We

analyze it in the next chapters�



��

Chapter ��
Anomalous Dimension

The outcome of the discussion at the end of the last chapter� sug�

gesting that �h � �� can be interpreted as evidence that in the cases

considered the scaling hypothesis is not correct and that at the critical

point the asymptotic behavior of the pair Schwinger function is neither

that of the potential nor that of the free propagator �corresponding to

the trivial �xed point� V  �� of R��

We can extend the renormalization group methods so far followed to a

more general approach which� when it works properly� would imply that

the critical behavior of the pair Schwinger function is di�erent from that

of the free propagator�

We take as an example the d  �� �  � infrared problem� historically

the �rst to be treated in this way ��WF��� But what we say applies word

by word also to the theory of the Fermi surface� although we shall see

that the results are quite di�erent�

We start by setting Z�  � and by writing the e�ective potential

integral ����� as

e�Veff�
p
Z��� 

�

N
Z
P

���
Z�

�d�e�V
����

p
Z������� � ������

where P �h�
Z�

is the Gaussian measure with propagator with Fourier trans�

form Z��
� &h�p�p�� with

&h�p�  e����hp�p��
�

� ������

Then the �eld  can be represented as a sum of two independent �elds�

  ���� � ���� � ������

where the propagators for the two �elds are� in order�

�

Z�
�g����p� 

�

Z�

&��p�� &���p�

p�
�

�

Z�

&���p�

p�
� ������

where the propagators are described symbolically by their Fourier trans�

forms�
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Therefore we can write

e�Veff �
p
Z��� 



Z
P ����d ���P

����
Z�

�d�����e�V
����

p
Z�� ��

����������� 



Z
P

����
Z�

�d�����e��V �����
p
Z���

�������� �

������

and �V ���� is de�ned by the same formulas describing V ���� in the previ�

ous sections� as the P ��d ��� integration is the same integral considered

there�

Let L�
�V  ��F� be the projection of �V onto the direction F��� R

dx � x�����x � obtained by applying the localization operator L in

����� and by selecting the part proportional to F�� We can de�ne

L�
�V �����

p
Z� � ����F��

p
Z� � �

Z�� Z� � �����Z� �

�V �����
p
Z� � V �����

p
Z��� � ����F��

p
Z� � �

����	�

where V ���� is de�ned by the last relation� and it should not be confused

with the V ���� introduced in the previous sections �which coincides� at

least in this �rst integration� with the above �V ������

Using ����	� and setting D�  Z�� � Z�� ����� we can write the

exponential in ������� e�Veff�
p
Z� ��� as

c

Z
e�V

�����
p
Z�� ��

���������e�
�
�Z���

�����p����
���

�����

e�Z� ������
��������p

� ��������� ��d����  ����
�

c e�
�
� �D����p

����

Z
d���� e�

�
�

�
�Z��

��
���D���

�����p� �����
�


 e�D���
�����p����e�V

����
�p

Z�� ��
��������

�


c e�
�
�

�
D����D�

��Z��
��
���D��

�����p
� ���

Z
d e�

�
� ��Z��

��
���D�� p

�����

 e�V ����
�p

Z�� ������D��Z��
��
���D��

�����
�
�

where the Gaussian integral over ���� has been formally written as an

integral over d���� times the exponential of the appropriate quadratic

form� and c denotes the di�erent �formal� normalizations�
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Setting

��� �
Z�&

��
��

Z�&
��
�� �D�

�� 
�

� � D�Z
��
� &��

�� �

�

Z�&
��
�� � D�

�

p�


�

Z��
�g�����p� �

&���p�

Z��

�

p�
�

������

the Gaussian integral in the last step of ����
� can also be thought of as

an integral over two independent �elds adding up to   �����������

with propagators given by the last two terms in the second of equations

������� Hence�

e�Veff�
p
Z� ��� 

 c

Z
e�V

���
�p

Z� � ��
�������������

�
P ����d �����P ����

Z�
�d����� 

 c e�
�
�D������p

���� ������


Z
e
�V ����

�p
Z�� � ��

����������������
�
P �����d ������P

����
Z��

�d������ �

which can be easily iterated to yield

e�Veff ����  c e
� �

�

P��

j�h
Dj��

�
�j �p

��j��

�



Z

e�V
�h�
�p

Zh � ��
�h�����h���h�

�
P �h��d ��h��P

�h���
Zh

�d��h�� �
�������

with Dj  Zj�� � Zj � and

�h 
�Y

j	h��

�

� �
�
Zj��

Zj
� �

�
&j���p�

�� �

�

Zh
�g�h��p� �

�
�

Zh��&��
h �p� �Dh��

� �

Zh&��
h���p�

�
�

p�
�

�������

and

V �h��
p
Zh � 

 ��� �L�� log

Z
P �h����d ��h���� e�V

�h����
p
Zh�� � ��

�h������� �

� ��� L�� �V �h��
p
Zh�� � � �������

Zh  Zh�� � ���hZh�� if L�
�V �h���  ��hF��� �
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One can check that� if h � ���

p��g�h��p� 
�
&h�p��&h���p�

�
�&h�p�

�
��&h�p�

� zh
� � zh&h�p�

� �������

if zh  �Zh � Zh���Z��
h��� Therefore� if zh is asymptotically constant�

say if zh  ��� � � � O��h� for some � �i�e�� if Zh � ����h�� the �elds
��h� have essentially the same distribution as the �elds

��hp
Zh

�h� � �������

where �  d��
� and  has propagator �g calculated from �������� with

h  � and z� replaced by ��� � ��

It is therefore convenient to introduce the dimensionless anomalous

e�ective potential on scale h �see �	���� by

V
�h�

���  V �h����h�h�� �������

so that the recursion relation becomes

V
�h���

�� 

 ��� �L�� log

Z
P �d� exp�V �h�

� �
q

Zh
Zh��

��������
�����	�

and the integral over  is a Gaussian integral with propagator �������

with &h�p� replaced by &��p�� and &h�� by &�� The equation �����	� has

to be complemented by the de�nition of Zh� namely� Zh��  Zh����hZh
with ��hZh
Zh�� being the coe�cient of F� in L�

�V if �V is the argument

of the logarithm in �����	��

If Zh
Zh��

can be regarded as essentially proportional to ����� the rela�

tion �����	� becomes �essentially� the scale�independent map�

V
�
��  ���� L�� log

Z
P �d� exp�V � � ���

�

�����

� R�V �

�����
�

where �	 � � � � and the  Gaussian integration is with propagator

g�p��

g�p� 
�

p�
�
&��p� � &���p�

�
�

� &��p�
�
�� &��p�

� ��� � �

� � ���� � ��&��p�
�

�������
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Of course� the value of � is not a prioriknown and therefore one should

still use the map �����	� with the accompanying de�nition of Zh in order

to obtain the sequence of V �h��

By the methods of the previous sections one establishes the existence

of a beta functional with the running couplings vh  �����h � �
���
h � �h� be�

ing related to the coe�cients ����h � �h����h � ��h�h of F��
p
Zh ��

F��
p
Zh � and F��

p
Zh �� i�e�� of the relevant and marginal operators�

note that by the construction no operator F� will ever appear� Further�

more� the beta functional will depend on the ratios Zq
Zq��� q � h�

which in turn are determined recursively �i�e�� in some sense the se�

quence of missing running couplings has been replaced by the sequence

Zh
Zh����

One �nds a relation such as

vh��  Mhvh � Bh�vh� vh��� � � � � v��
Zh��

Zh
� � � �� �

� 
Zh
Zh��

�
� � Ah�vh� vh��� � � � � v��

Zh��

Zh
� � � ��

�
�

�������

where the Ah� Bh are formal power series in their arguments vj � and Mh

is a diagonal matrix with diagonal elements � � if Zh
Zh�� � �� More

precisely the diagonal elements are� respectively�� Zh
Zh��

��
����d�

� Zh
Zh��

��
���d�

� Zh
Zh��

��
�� � �������

with d  �� in the present case�

One can prove that if

���
s

Zh
Zh��

��� � � �������

for some � 	 �� and for all h � �� then the coe�cients of the expansions

in the v s verify bounds such as

jC�nj � �aj�nj��bs��n� j�nj�D �������

if �n  fn�� � � � � njhjg and C�n  �coe�� of the monomial vn�h��v
n�
h�� � � �

v
njhj
� �� and s��n�  k � h if nk��  nk��  � � �  njhj  � but nk 	 ��

the a� b�D are positive constants dependent on � but independent of h�

The term ��bs shows that the beta functional has short memory as it

means that Ah� Bh depend only very slightly on the running couplings

of order k large compared to h�
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Likewise� the dimensionless e�ective potentials are expressed as

V
�h�

��� 
XZ

V
�h�

�x�� � � � � xm�
mY
i	�

�
j��ixi � �������

with �i � 	 �	 being the maximal degree of the relevant and marginal

operators� nonnegative integers and �j � �� and the kernels V �� admit

an expansion in the running constants vh��� � � � � v� with coe�cients de�

pending on the ratios Zq
Zq�� with q 	 h� and if the latter are bounded

as in �������� they verify the bounds similar to �������� with the nota�

tions of ������� the bounds are� for � 	 � suitable�

jV �h�
�n �x�� � � � � xm�j � �aj�nj��bs��n�j�nj��D e��d�x� ����xm� � �������

with d�x�� � � � � xm� being the length of the shortest graph connecting the

points x�� � � � � xm�

The �������� ������� are a convenient way of expressing the V
�h�

and

its qualitative properties� However� the proof of ������� leads to an

expression of V
�h�

of somewhat di�erent and more involved form� im�

plying the �������� quite naturally associated with the theory s Feynman

graphs� Such a �more natural� expression is brie"y summarized in ap�

pendix ��

The bound ������� and the equation ������� make it manifest that the

functional derivative of V
�h�

have kernels verifying the same bounds� e�g��

if we write

�V
�h�

���

��x

XZ

V
�h�
x �x�� � � � � xm�

mY
i	�

�
j��ixi � �������

the kernels V
�h�
x verify

jV �h�
x��nj � �aj�nj��bs��n� j�nj��D e��d�x�x����xm� � �����	�

Note that this bound is not a trivial consequence of �������� since the

functional derivative of ��y with respect to �x is the derivative of the

delta function ��x�y�� and� therefore� a bound on the functional deriva�

tives of V
�h�

involves a bound on the smoothness properties of the kernels

in ������� �see �BGPS���
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This shows that if one can �nd an initial V ��� so that ������� holds

and jvhj � � for some �� �� � 	 � independent on h � �� then a perturba�

tion theory in terms of the running couplings for V
�h�

can be formally

constructed�

Alternatively� one can look for a nontrivial �xed point of the anoma�

lous renormalization transformation� i�e�� for a pair v� � and for a suitable

matrix M� � such that

v  M�v � lim
h���

Bh�v� v� ��� v� ����� ����� ���  M�v �B�v� �� �

�  ����
�
� � lim

h���
Ah�v� v� ��� v� ����� ����� ���

�
 �����
�

 ������ �A�v� ��� �

which� at least if A�B are supposed to admit an asymptotic expansion

in powers of v� �� can be studied by series expansion� We discuss this

point in some detail in chapter ���

If a solution v	� �	 to �����
� can be found� then one can consider the

e�ective potential V 	 de�ned by setting all vj equal to v	 and all the

ratios Zh
Zh�� equal to ����� in the series de�ning the kernels for the

V �h� s� for h���� It is very remarkable that V 	 will� by construction�

be such that

R��V
	�V 	 � �������

i�e�� it is a �formal� �xed point for the anomalous renormalization trans�

formation�

If the V 	 is an unstable �xed point� with a one�dimensional instability

�i�e�� if the linearization of the anomalous R�� transformation around

V 	 has only one eigenvector with eigenvalue 	 ��� then by changing

the inverse temperature � we can hope that the curve described by V ���

crosses the stable manifold of V 	 for some value �c� At such temperature�

the asymptotic behavior of the pair Schwinger function will be described

by V 	 rather than by the trivial �xed point V  � �as in the cases with

d 	 �� or even d  � and �  �� where the trivial �xed point has a

one�dimensional instability��

It is not di�cult to give heuristic arguments showing that the asymp�

totic behavior of the pair Schwinger function will be anomalous� in

the circumstances considered in the last comment� in the sense that

at �  �c the behavior will be � jx� yj��d������� instead of the trivial

� jx� yj��d��� �see �BG��� �BGM���
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To obtain a more precise statement it is necessary to �nd an expres�

sion of the Schwinger functions in terms of the anomalous e�ective poten�

tials� That the problem is somewhat tricky can be immediately realized

from ������� ������� and from the general relation ������ which would

in fact lead to expressing the generating functional for the Schwinger

functions STint��� as something like
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where �  �� and �j � j � �� is de�ned by ��������

But the equation ������� does not immediately make sense at h  ��
because� for instance� the series is manifestly divergent� However� a

simple heuristic argument suggests that to study the STint the h in �������

should not be sent to �� but rather it should be �xed so that �hp� is

the smallest momentum scale in the Fourier transform of � �i�e�� a value

below which the Fourier transform of � is essentially zero�� which can be

interpreted as an infrared cuto�� Hence� one expects that� if p � �
hp��

the Fourier transform �S��p� of the pair Schwinger function behaves as
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In fact� if h � #h� the �rst of ������� implies that �j � �
Zj � it follows

that� if Zh � ����h� �S��p� � p�������� implying that S��x � y� �
jx� yj��d������ for jx� yj � ��

It is� however� not easy to make the latter statement more precise and

it is more convenient to �nd an expression for the Schwinger functions

generating functional STint� which depends on the V �h� and which involves

no divergent pieces� This can be achieved under the sole assumption

that the dimensionless potentials verify the bounds �������� �����	� �see

�BGPS���

The conclusion is that under the hypothesis that the latter bounds

hold and that Zh � ����h� the pair Schwinger function S�x� y� can be

shown to have the asymptotic behavior
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provided �h�����h��� �� The ������� is easily seen to imply that S behaves

at � as jx � yj��d������ �see �BGPS� for a detailed analysis�� The

�h � � as h � �� is the natural condition that can be imposed to

determine the initial V ���� i�e�� the critical temperature�

Therefore� it is natural to try to see if there is another nontrivial

�xed point of the mapR� � We do not examine here the evidence for the

existence of such a �xed point� We point out that just the possibility

of performing the above analysis and of discovering the possible mecha�

nism for the development of an anomalous dimension in the long�range

behavior at the critical point has been an important success of the renor�

malization group methods of analysis �WF� and� even if one regards the

analysis as purely heuristic� it has to be stressed that the possibility of

nonclassical critical indices �i�e�� of nonzero anomaly �� is probably the

most important achievement of the renormalization group�

The analysis can be repeated in the case of Fermi liquids� One has�

however� to decide which of the two gradient terms one should elimi�

nate at every step from the e�ective potential� for instance� one can

decide to eliminate the appropriate part of �F� �or equivalently that of

�F��� because now � � � and one has here an arbitrary choice� Elimi�

nating �F� and calling now �h the coe�cient of F�� the �nal result for

the pair Schwinger function is similar to �������� and it has the same

interpretation

S�x � y� ��� 
�

�x� � i��  �x��x�� � �x���
 �� �O�max

h
jvhj��� � �������

if �h� �h � �� so we see that �h� �h � � are the natural conditions to

determine ��� �� in terms of ���

In the physics literature� &h�p� is often replaced by the characteristic

function ��j�hpj � p�� and the formal analysis becomes clearer in some

respects �and obscure in others�� An example of such analysis can be

found in chapter ���

We conclude this chapter by a rather simple remark� it is clear that

the formal power series in vh� � � � � v� can be rewritten� by formal series

manipulations� in the form
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and it is interesting to note that the bounds ������� together with the

fact that the diagonal matrix elements of Mh are � �� if Zh
Zh�� 	 ��

imply that the coe�cients of �B� �A in the vh can be bounded by

jah�nj� jbh�nj � �D �Cnn� � �������

with �D� �C computable in terms of a� b�D in ��������

This is done by �rst eliminating the ratios Zp
Zp�� obtaining a recur�

sion relation for the vh having the form vh��  Mhvh � �Bh�vh� � � � � v���

with the �Bh given by formal power series verifying the same bounds

as the Bh and� subsequently� by expressing vh�� in terms of vh� and

vh��� � � � � v� by inverting

vh��  M��
h��vh �M��

h��
�Bh�vh��� � � � � v�� � �������

and then vh�� in terms of vh� vh��� vh��� � � � and so on until all the vj �

j 	 h are eliminated�

One can show that the formal functions �Bh�v� w�� �Ah�v� w� thus ob�

tained have a limit as h��� order by order in v and for each w� The

formal limits �A�v� w�� �B�v� w� de�ne the scaling beta function� and the

formal functions �Ah� �Bh de�ne the beta function�

It should be noted� however� that the beta functional is a better�

de�ned object� as one can see that in some simple cases the series in the

many variables vh de�ning it are convergent if� for a small enough � 	 ��

jvhj � � for all h � �� But in the same cases the beta functions de�ning

formal series are very probably not convergent�

This raises a very interesting problem� Does there exist a family of

functions �Bh� �Ah such that the running couplings can be de�ned by the

dynamical system described by ������� starting from suitably restricted

initial v�$ And admitting an asymptotic series at the origin given by

the formal power series de�ned above$

In most works on the renormalization group such an assumption is

tacitly or explicitly made� although there seems to be no general non�

perturbative de�nition of the beta functions �in the models that we are

considering�� This is not very visible� usually� because the use that

is made of the beta function is to regard as a good approximation to it

the second�order truncation of the formal series de�ning them� which� by

the way� coincides with the second order truncation of the corresponding

beta functionals� Nevertheless� this constitutes one of the outstanding

problems of the theory � a problem for which there seems to be not

only no solution in sight� but not even ideas toward obtaining a solution�
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Chapter ��
The Fermi Liquid and the Luttinger Model

We have seen that the beta function for this model� discussed in chap�

ter �� seems inconsistent with the normal scaling� i�e�� with an asymptotic

behavior of the interacting propagator equal or proportional to that of

the free propagator�

Note that this is true in spite of the fact that the beta functional is

given by a convergent series for small couplings� Thus this shows that

it is possible that the beta functional exists not only formally but as a

convergent power series in the running couplings� but� nevertheless� it

does not help in solving the problem because it generates a "ow leading

away from the neighborhood of the origin where the functional makes

sense�

We attribute the above accident to the fact that the scaling is anoma�

lous� i�e�� that the pair Schwinger function behaves at � di�erently from

the free one� Hence we can try to apply the scheme devised in the pre�

vious section to discuss the possibility of an anomalous scaling�

The e�ective potentials now have a di�erent de�nition� and basically

at every application of R one extracts a part of the newly created e�ec�

tive potential and puts it in the Grassmannian integration� as described

in deriving the recursion relation ��������

We choose to extract the part with the
R

� �
x���t

�
x��� � ei������

����x pF

operator �we could also choose
R

� �
x���

��� D���
�
x���

� ei����������xpF �� i�e��

we try to de�ne the renormalization transformation so that �h � � �in

the example of chapter �� we imposed �h  ��� From the point of view

of the theory of the beta functional� one has to do essentially the same

analysis and the above is a minor modi�cation�

One �nds that� calling �h the coe�cient of F� and vh  ��h� �h� �h��

the beta functional can be written as the recurrence relation�

vh��  �vh �B�vh��Bh�vh� vh�vh��� vh�vh��� � � � � vh�v�� � ������

with � linear and diagonal� and B�Bj analytic in their arguments in

a polydisk of radius ��� The latter is a remarkable property that is a

consequence of the fermionic nature of the model and can be proved

by using the same ideas that lead to the theory of the two�dimensional
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Gross%Neveu model ��GK���� The ratios Zh
Zj� j 	 h that one would

expect to appear in the r�h�s� have been eliminated by using the de�ni�

tion of Zh��
Zh that comes from the relation analogous to the second

of ��������

Furthermore� Bj are functions with short memory� this means that

functions Dk
j ��xk� �xk��� � � � � �x��� �x�� exist such that for some b� d 	 ��

Bj��xj � �xj��� � � � � �x��� �x�� 
��X
k	j

Dk
j ��xj� �xk��� � � � � �x��� �x�� �

jDk
j j � ���k�j�b j�xjj

�
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k��k

j�xk�j
�
d� k � j �

������

The exponential decay of the D�functions has the practical consequence

that the dynamical system without memory de�ned by the map� v � 

�v�B�v�� and the one in ������ behave essentially in the same way near

vh  ��

The important part of ������ is the one that does not tend to zero

because h ���� when the xh have a limit� i�e�� it is the one obtained

by setting Bj � ��

The dynamical system v�  �v�B�v� has properties depending crit�

ically on the function G��� �� � B��� �� ���

For instance� if we look for a nontrivial �xed point v  v�B�v� with

v  ��� �� ��� we see that one exists if G��� ��  � has a solution�

Assuming ��G��� ��  ��p � ���p�� � � � � � for some p � � we �nd�

by a slightly more detailed analysis of the structure of the functions B�

that there are trajectories in which �h� �h � � as h����

On such trajectories �h � � for h � ��� if ��p��
� � � but very

slowly �like �
jhj���p����� The last of �������� neglecting terms that

tend to zero as O��h� for h� ��� in the present case becomes

� 
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with B���� �� � � � � �� � �� And in the latter case� still neglecting for

consistency the terms tending to zero for h���� yields

logZh 	
X
h��h

jh�j���p����� � jhj����p�����

� ������
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hence Zh does not have the form ��h� for some � 	 ��

This is the remark that provides us a key to the proof that G  ��

To study the latter conjecture we can try to look for a model� possibly

totally di�erent from our Fermi liquid� for which

�� one can describe it by a renormalization group method�

�� the beta functional of the model has the same form as ������ with

possibly di�erent D functions�

�� G��� is the same for both models�

�� one knows that the model has �����  #���� � O�����

In �BG�� a simple proof is presented showing that the Luttinger model

meets the requirements of ���� ���� ���� It is also known from the exact

solution of the Luttinger model ��L�� by Mattis and Lieb ��ML�� �LM��

that the propagator decays at � faster than the free propagator by a

factor 	 jx� yj���	��� �����  ���
#� � � � � �

In �BGPS� it is shown that the converse� G��� �� � �� is incompat�

ible with the known asymptotic behavior of the exact solution of the

Luttinger model� Therefore it follows that G��� �� must be zero�

The � � � intuitively corresponds to a singularity at the Fermi surface

of the Fourier transform of the propagator that is weaker than the usual

jump but is described by a vertical slope such as jj�kj � pF j���

�  #���� � � � � �

If G��� ��  �� the analysis of the "ow ������ is easy� and we see that

one can always �x �� and �� �i�e�� �� and ��� so that �h� �h � � and

�h � ��� ��BGPS���

In this case the heuristic arguments leading to ������� can be made

rigorous and the ������ provides us with an asymptotic limit for ��� 

limh��� Zh��
Zh and �  O������� thus determining an �anomalous�

asymptotic behavior of the pair Schwinger function�

More generally� given �� and ��� one can �x ��  ������ ��� so that

the pair Schwinger function behaves asymptotically as in �������� with

a coe�cient ����� ��� � � in front of i��  �x�

The above properties can also be qualitatively stated as follows� the

spinless� d  �� Fermi liquid is well described by the Luttinger model� as

far as the interacting propagator is concerned� and it corroborates the

pioneering work of Tomonaga ��T���

We �nally remark that the fact that vh � v�� and Zh��
Zh � ���

can be interpreted as saying that the recursion relation for the dimen�

sionless anomalous e�ective potential introduced in ������� and corre�
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sponding to the sequence of the running couplings vh�v����� evaluated

at scale h � �� is a �xed point for the anomalous recursion relation

�����
��

Hence the asymptotic behavior of the renormalization group "ow is

controlled by a two�dimensional continuum of nontrivial �xed points

parameterized by ��� ��
�� and determined by the exact solutions of the

Luttinger model �because the leading part of the beta function for the

Luttinger model and that for the class of models considered coincide��

� Recall that once the sequence of the running couplings vh is given and they are

su�ciently small� one can reconstruct the full e�ective potential by a convergent

series expansion in the sequence�
� But the �� plays a somewhat trivial role and disappears if one decides to �x the

Fermi velocity at 	� hence sometimes one says that there is a �line of �xed points�
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Chapter ��
The Generic Critical Point for d�� ����
The ��Expansion

The Fermi liquid model �with d  �� is a rather special example

of anomalous scaling �as the beta function vanishes�� A more classical

but somewhat more complicated example is provided by the statistical

mechanics of three�dimensional spin systems� this is the d  �� �  �

case of chapter �� for which we have not yet reached any conclusions�

In this case the relevant operators are all the four operators in �	�����

and we thus have four running couplings� which we denote �h � for

� �� ��� �h �for � ����� ��� �
���
h �for � �� �� and �

���
h �for � �� ��� �vh 

��
���
h � �

���
h � �h� �h��

We can easily compute the beta function to second order as �writing

only a selected few of the second order terms�

�
���
h��  �

���
h � ��

����
h � �������h � � � � �

�
���
h��  ��

���
h � � � � �

�h��  ��h � � � � �

�h��  �h � ������� � � � � �

������

where �� ��� �� 	 � and no ��
h terms appear in the last recursion� as well

as no terms that are linear in �h besides the one involving �h�h�

We are interested� when studying the �� model of chapter �� to start

with �see �
����

�
���
�  � � �

���
�  L��

�� �

��  � � ��  	L��
��Cxx � ��R��

�� � r� �
������

We see that� already in the linear approximation� we cannot keep �
���
h

bounded because it is now ampli�ed by a factor � in each iteration�

If we had �
���
� 	 � and �

���
� as a free parameter we could think of

�xing �
���
� � �� as functions of �

���
� so that the running couplings had a

bounded "ow� To �rst order we would have to take �
���
�  �  �� To

second order �or higher� we would have to take �
���
� � �� as functions of

�
���
� so that the running couplings stay bounded�



Critical Point for d  � ��

Thus we see that a general ���model� i�e�� a model with high temper�

ature distribution �see chapter �� de�ned by

�����  ��L��
� � L��

� � R��
��p�d� �

with �L� 	 �� will have a bounded "ow for �vh only if� given �L�� we �x L�

conveniently so that� by further choosing also the inverse temperature �

conveniently� the two parameters �
���
� �L�� ��� ���L�� �� have the correct

value in terms of �L��

In other words� we see that� if d  � and �  �� one does not expect to

see a normal or trivial critical behavior with two�point functions decaying

proportionally to jx � yj��� i�e�� proportionally to the free propagator

� unless the model has one more free parameter to adjust besides the

temperature� and the parameter should be such that� by changing it� one

a�ects the ratio �L�
L� of the nonquadratic terms in the a priorihigh�

temperature distribution�

Clearly we do not have this freedom in the model of chapter �� as
�L� � � there� and there is no reason� therefore� to expect normal critical

behavior in the model of chapter � or� more generally� in generic spin

models with a prioridistribution with no free parameters�

In a pure ���model with no free parameter �L�� what we see is that

������ implies that �
���
�� � � and� then� at best stays bounded� This

implies� however� divergences in the recursive construction of �h� even

if ����h � �h behaved well �which they do not� by ������� either�� In other

words� we �nd ourselves in a situation in which� in the previous sections�

we introduced the anomalous dimension�

The interpretation is that �h �and �
���
h � grow because what is really

happening is that the e�ective potential becomes of longer and longer

range because we are looking at it on a wrong scale� and� eventually� we

cannot any longer follow it by perturbation methods�

The introduction of the more "exible anomalous scaling procedure to

de�ne the e�ective potentials solves the problem of the evolution of �h�

which disappears from the scene being replaced by the evolution of the

Zh� But this does not solve the problem of the divergence of �
���
h � which

is left� as in ������� a relevant operator �at least if we want to think that

�vh  ��
���
h � �

���
h � �h� are small� to apply perturbation theory��

In other words� it is not possible to keep the running couplings "ow

bounded by simply allowing for an anomalous dimension� at least if one

keeps hoping to treat the problem perturbatively� i�e�� to use e�ective

potentials and couplings determined by a perturbatively de�ned beta

functional�



�� Chapter ��

The only hope one has in order to have a bounded "ow that can be

studied by perturbation theory is that the anomalous "ow� which can

be easily evaluated to second order �in terms of suitable� numerically

computable� constants #�� #��� #��� � � �� as

�
���
h��  �

Zh
Zh��

��
�
�
���
h � #������h � #�������h � � � �

�
�

�
���
h��  � �

Zh
Zh��

��
�
�
���
h � � � �

�
�

�h��  � �
Zh
Zh��

�
�
�h � � � �

�
�

�  �
Zh
Zh��

�
�
� � #���

����
h � #���������h � � � �

�
�

������

has a �xed point with Zh
Zh��  ��� and �w  ������ ����� �� such that

����  ����
�
���� � #������ � #������� � � � �

�
�

����  � ����
�
���� � � � �

�
�

�  � ���
�
�� #������� � � � �

�
�

�  ���
�
� � #��������� � � � �

�
�

������

or �w  B��w�� with � also de�ned by �������

And� furthermore� the �xed point �w happens to be small enough

to think it reasonable that B��w� evaluated to second order is a good

approximation to B��w� itself �assumed existent� which is not obvious

because of the remarks at the end of chapter ���� The latter property

depends on the relative size of #��� #�� #��� i�e�� on the numerical value of
#��
#�� #��
#� that should be small�

In this way we would have the possibility of thinking that� if the scal�

ing parameter � is appropriate� the running couplings evolve by staying

small� so that the critical point is described by a pair Schwinger function

decaying di�erently from the free propagator �by the heuristic arguments

of chapter ���� i�e�� not proportionally to jx� yj�� �but as jx� yj������

The dimensionless e�ective potentials� computed with the correct

scaling �determined by the solutions �� v of �������� can be regarded

as a short�range potential that stays small on all scales� converging to a

nonzero limit as h� ���

Of course one could try to look for a nontrivial �xed point directly

for the normal scaling recursion ������� But in this case the linear terms

in ������ for ���� and for � drop out of the �xed point equation� and the
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equation will necessarily involve the third�order terms� and one would

have even more doubts about the use of the perturbation theory leading

to ������ itself�

The only known attempt to a more detailed analysis of the problem

is the following ��WF��� The coe�cients #�� #��� #�� � � � of the beta function

are expressed as integrals involving products of propagators depending

on the space dimension d� If the d dependence is taken into account� the

������ or ������ takes a more general form� For instance� ������ becomes

�again writing only a few selected second order terms�

�
���
h��  ����d�

Zh
Zh��

��
�
�
���
h � #��d��

����
h � #��d�������h � � � �

�
�

�
���
h��  ���d�

Zh
Zh��

��
�
�
���
h � � � �

�
�

�h��  ��
Zh
Zh��

�
�
�h � � � �

�
�

�  �
Zh
Zh��

�
�
� � #��d���

����
h � #��d���������h � � � �

�
�

������

and ������ is similarly changed�

The coe�cients #���d� turn out to depend on d in a way that admits

an analytic interpolation between d  � and d  �� Of course there

is a considerable ambiguity in determining the interpolation� even the

linear terms are really determined for integer d� and to say that they

are as in ������ is only one possibility �in some sense quite natural but�

nevertheless� arbitrary��

One chooses one particular interpolation �reasonable or natural� and

then one can regard ������ as a one�parameter family of recursion rela�

tions� A similar procedure could be followed starting from ������ �and

one would �nd ������ with other coe�cients and Zh
Zh�� � �� plus an

equation for �h replacing the last of ��������

One �nds� unless one chooses the analytic interpolation of the #�� s in a

strange way� that for d  �� � the anomalous equations ������ do admit

a nontrivial �xed point �����  O���� ����  O����  �� Zh
Zh�� 

��� �  O������ which can be computed as a formal power series in �

��WF��� The �rst nontrivial term in such expansion can be evaluated at

�  � and it is still somewhat small at �  �� So that one is led to

conjecture that the full anomalous recursion �w�  B��w� has a nontrivial

�xed point if d  �� with � computed as above to �rst nontrivial order

in � �but �  ����
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If one tried to do the same analysis with normal scaling� one would

not be able to �nd a nontrivial solution even for � small� because the

second�order equations for � or ���� do not contain ��� and this implies

that a nontrivial solution would have O��� values for the couplings even

for � small� hence one cannot really consider that� in such situations�

the beta function is given with good approximation by a power series

expansion in the couplings truncated to second order or to a �nite order�

We thus see that if d  �� �  � we expect� for generic a priorispin

distribution� a critical point with anomalous dimension�

Unfortunately� the above analysis rests on a somewhat too conjectural

basis and it would be desirable to have a stronger evidence for such a

nontrivial anomalous �xed point�

For this reason� starting with Wilson ��W��� �W��� �W��� �W��� models

that are simpler than the one of chapter � have been introduced and

investigated ��G��� x��� �G��� �Rm���� These are models so simpli�ed

that the beta function can be given a well�de�ned meaning even beyond

perturbation theory� They can therefore be used to test the above ideas

and methods� for instance� the existence of a nontrivial �xed point was

found� numerically� by Wilson ��W��� �W���� in one such model�

Only recently has it become possible to establish rigorously the ex�

istence of a nontrivial �xed point for some of the so�called hierarchical

models in dimension d  � �see �KW��� �KW��� � a remarkable achieve�

ment of the new techniques developed to construct computer�assisted

proofs�

We can say that� to a large extent� the renormalization group only

rarely can be carried to a high level of mathematical rigor� with some re�

markable exceptions �see �G�� for a list of references�� It does� however�

provide a beautiful and rich general scheme to set problems in perspec�

tive� gaining some deep insights that go well beyond the ones provided

by the previously known theoretical approaches�



��

Chapter ��
Bose condensation� Reformulation

This problem will be studied at an heuristic level� i�e�� in a way similar

to the theory of the critical point in d � �� � dimensions �see chapters

� and ���� One should not forget that the latter problem� considered by

many one of the major successes of the renormalization group approach�

is still awaiting a rigorous formulation� not only for � � �� but also for

any � � �� Therefore� we think that a formal theory is nevertheless

an interesting way to attack the Bose condensation problem in d � 	

dimensions� This will be� in fact� the best illustration of the methods we

try to illustrate about the renormalization group� as it embodies all the

ideas discussed in the various cases met so far� The analysis that follows

is due to 
B�� and we follow his treatment with some minor changes�

What follows could also be regarded as a test of the usual claim that

the zero temperature Bose gas has a linear dispersion relation for small

momenta� This property is considered typical of super�uid behavior

and was �rst veri�ed by Bogoliubov �
Bo�� in an approximate exactly

soluble model� the socalled Bogoliubov model� After that� the super�uid

behavior hypothesis received strong support from rough perturbative

arguments �see� for example� 
ADG�� where it is possible to �nd relevant

references�� More recently� more convincing arguments were presented

in the papers of 
NN� and 
PS��

The problem is formulated as a functional integration in chapter 	�

The functional integral isR
���x� � � ��

�n
xn e

�V����P �d��R
e�V���� P �d��

� ��	���

with � � 
��
���

�
���� 
��

�L�
�
�L�

��

V���� ��

Z
v��x� �y���x� � y�� ���x�

�
x ���

�
y �

�
y � dx dy�

� 	

Z
�

��x�
�
x dx �

��	���

and P �d�� is the Gaussian measure with propagator h��x��y i � � and

h��x ��y i � S�x� � 
 �
�

�����

Z
dk

e�ikx

�ik� � �k���m
� ��	�	�
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As explained in chapter 	� the problem is to �x 
 � � and to show that

one can �x 	 � 	��� 
� so that the interacting pair Schwinger function

converges to 
 as x��� This is interpreted �see chapter 	� by saying
that the Schwinger functions thus obtained describe a Bose condensed

state with condensate density 
 equal to the o�diagonal longrange

order parameter�

We also� and mainly� want to understand the behavior of S�x� � 
�

and in particular we would like to check the prediction �following from

super�uid behavior hypothesis� that for large x the function S�x� � 


vanishes at � as some inverse power of v�x��� �x�� where v is the sound

velocity �see 
ADG��� Note that� in the Bogoliubov model� v� � v�B �

�m����v����
� if �v���� � R v��x�d��x�
We begin by supposing that the problem has an ultraviolet cuto� on

the scale p� of the range of the potential� This means that we consider

the functional integral ��	��� with a �eld � with propagator h��x��y i � �
and

g���x� y� � h��x ��y i � 
 �
�

�����

Z
dk

e�ik�x�y�t��k�

�ik� � �k���m
� ��	���

where t��k� is a smooth ultraviolet cuto� on scale p�� which we choose to

be a regularization of the characteristic function of the set ff�k� � �k���
�k�

�m
p��
�m � � �

p��
�m �

�g� It will be a function t��k� � � if f�k� � � and t�k� � �
if f�k� � ���
The assumed presence of the ultraviolet cuto� on the scale of the

interaction potential is reasonable only if 
p��� � �� i�e�� only if there

is� in mean� less than one particle in a cube with the side equal to the

range of the potential �which we call p��� ��

If such a situation is realized� the interaction potential can be replaced

by the simpler

V local
� ��� � ��v����

Z
�

���x �
�
x �

� dx� 	

Z
�

��x�
�
x dx � ��	���

Therefore we shall study the functional integral

e�V
local
� ��� P �d�� � ��	���

with P �d�� being the Gaussian measure with propagator ��	����

The form of the propagator ��	��� shows that the �eld ��x can be
represented as

��x � �� � ��x � ��	���



Bose Condensation� Reformulation ��

where �� � are independent� with propagators h����i � �� h��x��y i � ��
h��x ��

y i given by the integral in ��	��� and h����i � 
�

If one de�nes W ������� � � �
� log

R
e�V������P �d��� we see that the

computation of h����i in the presence of interaction will lead �if we set
�� � �� � i��� to the integral


 �

Z
d��d��
��


���� � ���� e
��������� ��� e��W

� ���� 	W �j�j � ��	���

where �W is a normalization constant� and the equality to 
 of the above

integral is just the requirement that the condensate density should be 
�

Therefore� equality ��	��� can hold if and only if the function W�����
which is a function of the product ����� by symmetry considerations�
reaches its minimum at ���� � 
� And in this case ���� will be a sure
random variable� provided the minimum is nondegenerate� The only

rigorous general result in this direction is provided by the work in 
Gi��

Hence 	� i�e�� the chemical potential� is simply determined by im

posing the condition ��W
��
� � �� and we expect that if 	 is so

�xed� then the Schwinger functions will be computable by simply setting

�� � �� �
p

 in the functional integral e�V����P �d�� with

V���� �

� ��v���

Z
�

���
x �

�
x �

� dx� ���v���
p



Z
�

��
x �

�
x ��

�
x � ��x � dx�

� ����v���
� 	�

Z
�

��
x �

�
x dx� ��v���


Z
�

����
x �

� � ���x �
�� dx�

� j�j�	
� ��v���
�� � ��	���

where h��x��y i � �� h��x ��
y i is given by the integral in ��	���� this model

is called the Bogoliubov approximation� One has to show that� if 	 is suit

ably �xed� then � log R exp�V����P �d�� has a derivative with respect
to 
 at �xed 	 vanishing �and� in fact� corresponding to a minimum��

The wellknown analysis of Hughenoltz and Pines �
HP��� based on

formal perturbation theory� shows that this condition for 	 is formally

equivalent to the following one

������ � ������ � ��	����

where ������k� is the Fourier transform of the sum of all oneparticle

irreducible graphs �connected graphs that cannot become disconnected

by cutting one leg� with two external lines ���x � �
��
y � see 
ADG��
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The Bogoliubov model is obtained by neglecting in ��	��� the quar

tic and cubic terms� It is easy to see that� in this approximation� the

condition ��	���� should be ���v���
 � 	 � ��

Therefore the functional integral ��	��� should be written as

e�V
������PB�d�� � ��	����

where PB�d�� is the Gaussian measure obtained by including the quad

ratic terms in ��	��� into the free measure

PB�d�� � P �d��e
��
v����

R
�
���

x ��
�
x ���dx

� ��	����

and 	 is replaced by ����v���
 � 	�� where 	� is the correction to the

chemical potential due to the quartic and cubic interaction terms� so

that

V ������ � ��v���

Z
�
���

x �
�
x �

� dx�

� ���v���
p



Z
�

��
x �

�
x ��

�
x � ��x � dx� 	�

Z
�

��
x �

�
x dx �

��	��	�

and the parameter 	� has to be determined� as above� so that condition

��	���� is satis�ed�

It is convenient� before proceeding� to change the basic �elds and to

perform a rescaling �amounting at �xing 
 � ��� we set

��x �
�p
�

��� � ���� �� �

r



�
��� � ��� �

� ���v����

�m

p��
�

��	����

so that V ������ becomes a function of �

V ������ �
p��


�m

��
�

Z
�

����x �
� � ����x �����x �� � ���x ���dx�

� �
p
�

Z
�
����x �

� � ���x ����x � dx�

�
	�

�

�m

p��

Z
�

����x �
� � ���x ��� dx

�
�

��	����

and the propagator of the �elds �� in the distribution ��	���� is

h���x ���y i � g�����x� y� � ��	����
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which� in the limit as ���� is easily computed

g�����x� �
�

�����

Z
e�ikxt��k�G��� �k����� � ��	����

where the matrix G��k�� which we call the propagator matrix of ��	�����

is de�ned by

G��k� � 


�
�k�

�m � ��
p��
�m t��k� ik�

�ik� � �k�

�m

�
� ��	����

where the �rst row and column correspond to � � � and the second row

and column correspond to � � �� so that G��k��� is the �rst element

of the matrix� In appendix � we discuss the derivation of ��	���� in a

form that will be repeatedly used in the following�

The � �elds Schwinger functions in the Bogoliubov model are� there

fore� immediately deduced from ��	����� The main feature of the ap

proximation is that� if it is assumed� it follows that the singularity at

k � � of the propagator is determined by the determinant of the ma

trix G��k� �because the propagator is just the inverse of G��� And it is

clear that the determinant vanishes as k�� � ��
p��
�m

�k�

�m � so that the speed

of sound c��k� on scales j�kj � p� is� if � is de�ned as in ��	�����

c��k�� � �v�� � v� �
p�
m

� ��	����

instead of
�k�

�m�����
�k���

�� which would be the free �eld result�

Checking the validity of the super�uid behavior hypothesis means�

mainly� to check that the anomalous �with respect to the free case� be�

havior ������� remains valid when the potential V ��� in �������� �������

is not set equal to �� possibly with a di	erent value of c��k��

In the next chapter we start the check by constructing an algorithm

to evaluate recursively the integral ��	����� de�ning e�ective potentials

V �h� on scales hp�� where  is a scaling parameter�

In passing from V �h��� to V �h� we shall see that the e�ective potential

retains� essentially� the same form ��	��	� with new coe�cients that

approach � as h��� provided the Gaussian integral PB is replaced by

a new Gaussian integral which� besides having a cuto� function th�k� �

t���hk� �i�e�� a lower ultraviolet cuto��� also has a new sound speed ch�
i�e�� a new ratio between the coe�cients of �k� and k�� in the propagator

th�k�Gh�k�
�� �that is� in detGh�k���
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Hence� there is super�uid behavior� if ch has a �nite limit as h����
In particular� the analysis will imply that the pair Schwinger function

S�x� tends to 
 as x � �� i�e�� the existence of longrange order and�
therefore� an important part of the usual picture of the Bose condensa

tion�

Our analysis will be performed �to leading order� in the running cou

plings� we shall show also that the results do not change if the analysis

is pushed to an arbitrarily high order in the running couplings� as long

as it is �nite� The leading order turns out to coincide with the �oneloop

approximation� in the beta function and in the running couplings� Go

ing beyond all orders of perturbation theory requires a nonperturbative

treatment of the �large �elds�� which is hard in this case because the

�elds are complex valued�
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Bose Condensation� E�ective Potentials

We begin by de�ning the running couplings� once their �ow� i�e��

their scale dependence� is controlled� one can straightforwardly control

the Schwinger functions by proceeding as in chapter ���

Given V ������ as in ��	���� we set

� � ������ � ���� � ������

where ���� and ������ have propagators

g����� �k� �T��k�G
��
� �k����� � �g������� �k� � t���k�G��� �k����� �

T��k� � t��k�� t��k�� t���k� � t��k� �
������

which decompose the propagator g�� in ��	���� if the matrix G��k� is

de�ned as in ��	����� And  � � is a scaling parameter�

The integral for the �partition function� can� therefore� be written

I �

Z
e�V

����������������P��d�
���� �P����d������� � ����	�

After the integration over ���� equation ����	� becomes

I �

Z
e� �V ����������� � �P����d������� � ������

where ������ has propagator �g��� and ���� has propagator g��
Since we suspect an anomalous behavior� we look at the quadratic

part of �V ����� as in chapter ��� before splitting ������ into ������������

and iterating the integrations� we shall split o� the quadratic terms

in �V ���� the marginal ones� and include them in the �P measure� thus
changing it to a measure that we can denote P����d�� with a new
propagator matrix t���k���G�����k�� Once G�� is determined we shall
split its inverse �c�f�r� chapter ��� as T���k�G�����k� � t���k�G�����k��
with T���k� � t���k� � t���k� and t���k� � t���k�� We generate in
this way a decomposition of the �eld ������ � ������������� This will
allow us to de�ne �V ���� and to proceed recursively�
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Calling V ���� the part of �V ���� without the marginal quadratic op
erators� we establish the chain of identities

I �

Z
e�V

����������������P��d�
���� �P����d������� �

�

Z
e��V ������������ �P����d������� � � � �

� � � �

Z
e��V �h�����h�� �P�h�d���h�� �

�

Z
e�V

�h�����h������h��Ph�d�
�h�� �P�h���d���h���� �

������

If the quadratic part of �V �h�����h�� that is marginal is described by a
matrix  ���

h �k�� i�e�� if the marginal quadratic part of �V ��h� has the
form ���x � ����

�� R dk exp�i�kx���k ��
X

�	����

Z
 ���

h �k����k�
��

���k dk � ������

then given Gh���k�� the propagator matrix Gh�k� will� naturally� be

de�ned by

�

�
th�k�

��Gh���k� �  h � �

�
th�k�

��Gh�k� � ������

Therefore the �only task� in order to de�ne completely the recursive

algorithm for the computation of the partition function integral I via

������ is the identi�cation of the relevant and marginal operators in
�V �h������

Without repeating the heuristic analysis leading to the identi�cation

of the relevant and marginal terms� we simply de�ne the relevant and

marginal operators by a localization operator L� as in all the previously
treated cases� The reason this is a natural de�nition �and� up to trivial

ities� the only possible one� should be clear to the reader who followed

us in the preceding chapters� The reason it is interesting is that it leads

to an understanding of super�uid behavior�

It will turn out that the appropriate representation of the �elds

���h�� in terms of dimensionless �elds �if one wanted to proceed as in
chapter �� is

��x � h��

hx

� ��x � �h��

hx

� ������
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where the di�erent scaling of �� and �� is a new essential feature of
the problem we are discussing� Accepting the above scaling� it is clear

that the marginal operators are

F�� �

Z
�

���x �
� dx� F�� �

Z
�

���x �
����x � dx �

F�� �

Z
�

���x �
� dx �

Dtt �� ��m
p��
��
Z
�

��x��
�
x �

� dx � ������

Dss �� p���

Z
�
���x�

�
x �

� dx� Dt � ��m
p��

Z
�
��x �x��

�
x dx �

We did not include in the list the operator � R� dx��x ��x��x � �����Pk

��k i
�k��k � since it is identically zero� in fact� the �elds �

�
k are even func

tions of �k��

Let us now consider the relevant operators� As usual� the operatorsR
�
dx��x ��

�
x and

R
�
dx���x �

����x are absent� since they are integrals of
total derivatives and the �elds satisfy periodic boundary conditions� The

operator

F�� �

Z
�

���x �
�dx �������

is the only relevant operator left� In fact the operators of degree �� which

would also be relevant� vanish because the �elds ��� hence the ��� have
zero average�� Also� the operators

R
dx��x �

�
x and

R
dx���x ��� which

would also be relevant� are absent� as a consequence of the particular

structure of the potential ��	���� which implies that the local monomials

of order � and 	 in the �elds �� must appear in the following combina

� Here periodic boundary conditions are important� as noted in chapter � this�

however� implies a discussion somewhat more detailed� which we skip �as already

done in the previous cases��
� This holds essentially by construction� note� however� that the construction is

possible because the free Bose gas has condensation for d � �� This would also

be possible if d � � because our reference measure is the Bogoliubov distribution

rather than the free Bose gas� and the Bogoliubov propagator has a singularity like

k����v��
�k� rather than k�����k���m��� But it would de	nitely be impossible if d � 
�

This makes us think� in principle� of adapting the methods discussed here to the

d � � case� But the work remains to be done�
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tions

���
x �

� � ���x �
� � �


���

����
����x �

� � 	�� ������ �

��
x �

�
x ��

�
x � ��x � � �


���

����
����x �

� � ���x ����x ��� �

��
x �

�
x �




�
����x �

� � ���x ��� �

���
x �

� � ���x �
� � �




�
����x �

� � ���x �
�� �

�������

Therefore the localization operator L that we introduce is identical with
the �rst of ����� for the monomials of degree � in ��� and it is similarly
de�ned for all the other monomials� giving rise to local marginal opera

tors� while for the monomial ��x ��y it will be de�ned by ���	��� Finally�
we have to consider the localization of the monomial ��x �

�
y � which has

dimension �� its local part is obtained by a �rstorder Taylor expansion

of the �eld ��y and� as explained before� the term of order zero should
not give any contribution�

Therefore� the result of the application of the localization operator to
�V �h���� will be� necessarily�

L�V �h���� �
p��


�m

�
�hF�� � �hF�� � �h	hF���

� �zhF�� � ��hDtt � ��hDss � �dhDt

�
�

�������

The running couplings �h� �h� 	h and the renormalization constants zh�

�h� �h� dh are de�ned by �������� the factors � are introduced only for

consistency with the de�nitions used in 
B�� The dimension �xing factor
p���
�m
is introduced to keep track of the dimensions of the various quantities

�its physical dimension is that of an action density� in space time� recall

also that� we set� once and for all� �h � ���

Comparing ������� with ��	����� we see that V ��� contains some ir

relevant operators as well as a few relevant or marginal ones� the latter

appear with coe�cients

�� �
�

�
� �� � ��

p
�� 	� �

	�

�

�m

p��
� z� � 	� �

�� � �� � d� � � �

�����	�

� Note that this is the obvious extension to the present case of the ideas used to

discuss the previous cases� we feel that repeating the heuristic motivation is useless

here�
� Unfortunately�
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It follows from ������� that� in general� the matrix  �h� of the quadratic

marginal operators� c�f�r� ������� will be

 �h� � 


�
�zh

p��
�m idhk�

�idhk� ���m
p��
k���h � ��h �k�

�m

�
� �������

Therefore the recursive scheme to evaluate the integral I can be sum

marized as follows�

Suppose that it has been proved that

I �

Z
e�V

�h������h
�������h

���Ph���
�h��� �P�h����d���h

����� �������

holds for h� � ����� � � � � h� �� with suitably chosen V �h�� and with the

Gaussian integrals having propagators

Th�G
��
h� � th��k�G

��
h� �

th� �k� � t��
�h�k�� Th� �k� � th� �k� � th����k� �

�������

and with Gh��k� given by

Gh��k� � 


� �k�

�m �
�p��
m Zh� ik�Eh�

�ik�Eh� �� �k��m � Bh�mk��
p��

� �Ah�
�k�

m �

�
� �������

Then performing the integration over ��h��� we write

e��V �h�����h�� �

Z
e�V

�h��� ����h����h����Ph���d�
�h�� � �������

and de�ning V �h���� � �V �h���� � L�
�V �h����� if L�

�V �h� is the part of

L�V �h� containing the three marginal terms of degree �� we see that

I �

Z
e�V

�h�����h������h��Ph��
�h�� �P�h���d���h���� �������

if the propagator matrix G�h��k� is de�ned by �������� �������� with

Zh�k� �Zh���k� � th�k�zh �

Bh�k� �Bh���k� � th�k��h �

Ah�k� �Ah���k� � th�k��h �

Eh�k� �Eh���k� � �th�k�dh �

�������
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with Z� � �t��k�� E� � �� and A� � B� � ��

From now on we shall use a sharp cuto� function t��k�� equal to � if

k�� �
p��
�m

�k�

�m � � p
�
�

�m �
� and equal to � otherwise� We shall see that some

times one also needs the derivatives of th�k�� they will be treated as the

appropriate delta functions� It seems a wellknown fact that the delta

functions thus introduced� which sometimes even appear raised to some

power� never give divergent contributions� whenever they try� the diver

gent contributions are several and they cancel exactly� We have checked

that this is the case in our problem too �see appendix ��� This will sim

plify the calculations considerably as the functions Zh�k�� Ah�k�� Bh�k�

become constants Zh� Ah� Bh for k in the region where th does not van

ish�

The square of the sound speed ch on scale hp�� if 	� can be so

chosen that the running couplings �h� �h� 	h�����h��� �� is simply given

by the ratio of the coe�cients of �k� and k�� in the scale h propagator

singularity� i�e�� in the determinant detG�h��k�� This is

c�h �
�
p��
�m

�
�mZh �� � �Ah�

E�
h � ��BhZh

� v��Zh
� � �Ah

E�
h � ��BhZh

� �������

It was already noted that c�� � �v�� if v� �
p�
m and � � Z� � ��v����


�mp��� �

In chapter �� we write the recursion relation between ��h� �h� 	h� Ah�

Bh� Eh� Zh� at di�erent values of h and show that� if the free parameter

	� is suitably �xed� then �h� �h� 	h� Zh� Eh approach � �asymptotic

freedom� at the same rate ��jhj� while

Ah�����h��� A��� Bh�����h��� B�� � �������

with A�� � O��� and B�� � ��������� � O�
p
���� so that the speed

of sound has a well de�ned limit as h���� given by

c��� � v�B�� � O�
p
��� � �����	�
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Chapter ��
The Beta Function
for the Bose Condensation

The renormalization group �ow has been de�ned recursively and sum

marized in the discussion between ������� and ��������

It is possible to see that the condition ��	����� which determines

the chemical potential given 
� is satis�ed if 	h�����h��� �� We shall

check that the �ow is asymptotically free� with the running couplings

�h� �h� 	h�����h��� �� if 	� is suitably tuned� and the renormalization con
stants Zh� Eh�����h��� � at the same rate� while Ah� Bh�����h��� const �so

that the speed of sound tends to a �nite limit��

The analysis would be totally inconclusive without the following extra

property� which is a deep identity of the type of the Ward identities� and

which plays for the Bose gas the same role as the vanishing of the beta

function plays in the d � � Fermi gas� This identity �see 
B�� is

Zh � � �p
�
�h � �h	h� h � � � ������

while for h � � it is Z� � � ��p
�
��

In fact� if such relation did not hold� the renormalization group �ow

would have been very unstable and the results would depend on very

tiny details on the initial data� on which no assumptions could be made

as we perform only approximate calculations �neglecting highorder cor

rections�� On the other hand� the a priorivalidity of ������ will stabilize

the results� which turn out to be no longer dependent on the initial data

for the �ow� and they remain the same no matter how many perturba

tive orders for the beta function we take �once the full leading order is

accurately computed��

The identity ������ holds for the model that we are studying� ��	����

or even for the nonlocal model ��	��� �which could also be studied with

the techniques we are presenting and would lead exactly to the same

� Because in the expression for V ��� we left out an operator proportional to the

marginal operatorG�� with coe�cient ��� which is a choice that we modi	ed on the

following scales h � � so that V �h� contains no marginal operators at all�
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qualitative results�� It is an identity for any choice of �� and 	�� and it

holds as an identity valid to all orders of the formal expansion of both

sides in powers of ��� 	��

We reproduce here the proof of ������� from 
B�� Note that the con

stants �h� �h� Zh� Ah� Bh� Eh can be de�ned in another equivalent way

by the following steps�

�� We �rst integrate in a single step the �uctuations up to scale h� ��

without any free measure renormalization and by using the original rep

resentation ��	��� �or� if one dislikes the local model� ��	���� of the po

tential� This simply means that we write the propagator ��	���� with

out the constant term� as g�h�x� � g�h�x�� where g�h�x� and g�h�x�

are de�ned respectively by replacing t��k� in ��	��� by t���hk� and
�t��k� � t���hk��� The result of the integration de�nes an e�ective
potential �Uh��� such thatZ

P �d��e�V���� �
Z

P ��h��d��e� �Uh��� � ������

where P ��h��d�� has propagator g�h�x��
The potential �Uh can be written in the general form

�Uh��� �
�X
s��

Z
d�xd�yWh	s��x� �y��

�
x� 	 	 	��xs��y� 	 	 	��ys � ����	�

where �x � �x�� � � � � xs�� �y � �y�� � � � � ys��

�� We insert the representation ��	��� of �� in ����	� collecting the
operators containing the monomials �

Qr�
i�� �

�
xi��

Qr�
j���

�
yj �� with � �

r� � r� � �� and we localize them� by a Taylor expansion of the �elds
pushed to order �� if r� � r� � �� and to order �� if r� � r� � ��

Looking for instance at the operators that do not contain any �eld

derivatives� we see that they must have the form

�r�	r�h

Z
dx���

x �
r� ���x �

r� � ������

with

�r� 	r�h �
�X
s��

�
s

r�

��
s

r�

�
�Wh	s


s� �
� �r��r�� �

�Wh	s � lim
j�j��

�

�

Z
d�xd�yWh	s��x� �y� �

������
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	� We insert the representation ��	���� in ������ and we collect the

terms proportional to F��� F��� F��� and F��� Their coe�cients are

written p���
�m times ��h� ��h� ��h�	h and �Zh� respectively� And ������

implies immediately that

p��


�m
��h �

�

�

�X
s��

�Wh	s

s

�X
r��

����r
�
s

r

��
s

�� r

�
�

p��


�m
��h � � �p

�

�X
s��

s�s � �� �Wh	s

s �

p��


�m
�Zh �

�

�

�X
s��

s�s � �� �Wh	s

s � � �p

�
�h �

������

The full coe�cient of F�� �
R
���x �

�dx is� therefore� �Zh�
�h�	h� if h � ��

Furthermore� it is clear that ��h� ��h� �	h� �Zh � �h�	h are identical to

the corresponding constants �h� �h� 	h� Zh de�ned previously� Hence�

Z� � � �p
�
��� Zh � � �p

�
�h � �h	h if h � � � ������

is proved�

We are now ready to study the �ow of the running couplings and

renormalization constants rh � ��h� 	h� Zh� Ah� Bh� Eh�� the �h is elim

inated from the scene by �������

As we repeatedly anticipated� we shall study the problem only to the

leading nonlinear order� At �rst it is not really clear what this means�

Note that in fact we have two small parameters� � � ��v����
�mp��� � and

� itself�

We would like to take � �xed and � small� But this is not possible

without violating the assumptions that made possible approximating

��	��� with the local interaction ��	���� i�e�� 
p��� � ��� This forces us

to take 
 �xed� and the only small parameter is � �or � equivalently� see

�����	���

The strategy will be the following� Considering � as a parameter

independent on �� we show that the �rst h� integrations� with h� de�ned

by

�h�
def
� �� � ������

� Dropping such an assumption would force us to study a nontrivial ultraviolet

problem� hence there is not much to gain in doing so� if one is interested in studying

the simplest case of Bose condensation�
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can be performed producing an e�ective potential V �h��� with running

couplings �h� 	h� �h �hence Zh� still of order � and

j�hj � ���� j	hj � ���� jZhj � ��h� ������

jAhj � �
�
� j�hBhj � �

�
� jEh � �j � �

�
� �������

This is done by a straightforward use of perturbation expansions in the

bare constant �� � ��� �see �����	��� The results are uniform in �

because the term in � in the determinant of G����k� �see ��	������ i�e��

��
p��
�m

�k�

�m � is small compared to �
�k�

�m �
� � k��� as long as

�k�

�m � ��
p��
�m � i�e��

as long as we are on scale h � h��

Note that h� is the scale below which the Bogoliubov model propa

gators become symmetric in spacetime� i�e�� its dependence on k� and �k

is essentially via k�� � �v��
�k��

In order to understand� assuming �������� that the running couplings

�h� 	h stay small all the way down to the scale h�� where the propagators

start scaling �correctly�� one notes that for h � h� one can easily check

that the rescaled propagators� i�e�� those for the dimensionless �elds ��h�

in ������� are bounded by

j�g����h �x�j � �
�
� �������hf�hx�� �x� � �������

where f is a rapidly decaying function�

This means that in this �rst bunch of integrations the power counting

is somewhat di�erent� i�e�� there are substantial corrections with respect

to the asymptotic power counting� which we shall discuss further on�

Consider a graph contributing to the �ow equation for �h� or �h �i�e��

Zh� by ������� �the case of 	h is analogous and in some sense easier� as

	h is a relevant operator and we have the freedom of choice of 	� to

enforce smallness of 	h�� and denote n� the number of external lines of

type ��� n� the number of �vertices� and n� the number of �vertices�

To estimate the contribution of the graph� we see that the bound

������� implies that each internal halfline of type �� gives a contribution

�h��� �on top of the �normal power counting��� while each one of the
�n� � n� � �� integrations that one has to perform to evaluate the local
part of the graph gives a contribution proportional to �h �on top of
the �normal power counting���

Hence� up to a constant� the graph �which with a normal power count

ing would� by construction� be a scale independent constant times the
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appropriate power of the couplings� can be bounded by

j�hjn� j�hjn�h� �� ��n���n��n��� �
� �n��n����n��n����� �

� j�hjn�j�hjn�h�n�� �
�n��

�
� �n��n����� �

�������

If we denote NL the number of independent loops of the graph �equal

to the number of propagators �
���n��	n��n� �n�� minus the �mini

mum number of propagators� necessary to form a connected graph� i�e��

n��n����� NL � n��
�
�n�� �

��n��n����� and if we use the �������
i�e�� Zh � � �p

�
�h �neglecting for simplicity the very small 

�h	h�� we

can write the bound ������� in the form

j�hjn��Z�
h
��h�n���h�NL�n�� � j�hjn�Zn���

h h�NL�n�� � �����	�

having used ������ as well�

The contributions of the irrelevant terms are easily seen to be smaller

by at least a power of h �because one should recall that ������� holds

for the propagators already �normally scaled���

The contributions from the graphs containing n 	h vertices are smal

ler by a factor �n� � if j	hj � O��� �which can be imposed� if ������ stays

true�� In fact� each 	h vertex can appear only as an insertion in an

internal �g�� propagator� hence it produces an increase of two in the
number of internal halflines of type �� and an increase of one in the
number of integrations� But this does not change the power of h in

�������� so that each 	h vertex changes the bound �����	� only by a

factor � � �h�

Note that the contribution of a graph to the beta function is obtained

by calculating its value at zero momentum of the external lines� There

fore no graph with NL � � can contribute� because the single scale

propagator vanishes at zero momentum� Furthermore� we know that

�� �
�
� �

Z�
� � so that the variations of Zh� from �����	�� are bounded by

a series with sum of order O���� if �h � ��� �see Remark below�� This
is proved� formally� by induction because �����	� implies that the dom

inant contributions arise from the oneloop graphs� hence one expects

that there is a constant c such that

j�h�� � �hj � c���
h

jZh�� � Zhj � �p
�
j�h�� � �hj � c�

���
� �h �

�������

which implies j�hj � ��� and Zh � �Z� � �
�h� � ��h for h � h�� if

�� is small enough�
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Therefore� if the relations ������� hold for h � h�� the relations ������

follow�

The discussion still requires the analysis of the relations �������� For

this purpose note that all the graphs contributing to Bh�� and Ah��
are graphs with n� � �� n� � �� their contribution has the formR
dxx��WG�x� and

R
dx�x�WG�x�� respectively� Hence� by �����	� �and

�������� we see that the bound on the variation Ah�� � Ah is O���
h��

while that of Bh�� � Bh has to be multiplied by the extra factor ��h

�because �x��� is scaled in ������� by �h�� Hence�

jBh�� �Bhj � c��
�h� jAh�� �Ahj � c��

h � �������

In a similar way one can prove that

jEh�� � Ehj � �jdhj � c��
h � �������

The relations ������� easily follow� if �� is small enough�

Remark� To repeat once more� the above is just a consistency check on

the expansions in powers of �h� 	h� In order to make it into a rigorous

proof one cannot just use the perturbative series as we expect them not

to be convergent but only asymptotic� As in chapter � one can only hope

to prove an n! bound on the sum of all graphs with n vertices�

All that the above preliminary discussion shows is that �to no one"s

surprise� it is su�cient to study the running couplings �ow in the region

h � h�� The latter is the region where� if� for some constants c� c�

�

�
� � � �Ah � c� cZh � E�

h � ��BhZh � c�Zh �

� � Zh � �Z� � �� �
�������

the rescaled propagators �g��h �x� and �g��h �x� are essentially independent

of h� i�e�� they can be bounded by a rapidly decaying function f�x��

uniformly in Ah� Bh� Zh� Eh� verifying ������� �see appendix ��� On the

contrary� the propagator �g��h �x� can be bounded by f�x��Zh �

The previous properties of the rescaled propagators and the identity

������ imply that� in the bound of a generic graph contributing to the

beta function� two �h vertices are essentially equivalent to one �h vertex�

A further simple analysis allows us to prove that� if we want to keep in

each �ow equation only the leading terms� then we have to consider only

one loop graphs without 	h vertices�
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There are very �few� graphs with one loop� therefore the calculation

is straightforward� but quite long� Here we report the result� while the

details are exposed in appendix �� Neglecting terms of order �h �which

essentially come from the corrections to the scaling of the propagators�

which become quickly scale independent�� and the contributions from the

graphs with more than one loop� one �nds after using ������ to eliminate

�h from the row result �see appendix �� and after setting �h � �Zh��

�h�� � �h � 	���	h��h
�
�h � �h

��

��
�

�h�� � �h � �
�
��	h�

�
h �

Eh�� � Eh � �
�
��	h�

�
hEh � �������

Ah�� � Ah �

Bh�� � Bh �
�

��
��	h�

�
hE

�
h �

	h�� � �
�
	h � ��	h���h�h � �

�
��h�
�
�

where

��	h �
log 

���
p
a�hbh

p��


� ��	h �

�� ��

����
p
ahbh � ah�

p��



�

ah � �h�� � �Ah�� bh � �E
�
h � ��hBh� �

�������

and the terms in �h	h coming from the application of ������ to eliminate

�h have been dropped� as we plan to impose that 	h�����h��� �� so that

they are at least of order O��h��

It is very easy to analyze this �ow� under the conditions ��������

implying that ��	h is of order �
��
h � In fact� this observation is su�cient

to prove that �h � O���jhj� for h � ��� But this property has to be
true also for Eh� since� by ��������

Eh�� � Eh

Eh
�

�h�� � �h
�h

� �������

It is now very easy to check that

Bh�����h��� B�� � � � �������

� The notation should not mislead the reader into confusing the present �h with

the renormalization constant in �
�
���
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while Ah stays constant �indeed a small constant� roughly equal to its

value on scale h���

Finally� if we de�ne

c� �
p�� log 

����

p
B���� � �A����

� �������

we see that the �rst two equations in ������� can be written� for h �
��� in the form

�h�� ��h � 	�c���h
�
�h
�h

� �

��

��

�

�h�� ��h � c�
�
��h

�����	�

�where the fact that the �rst equation sums to a perfect square should

come from some a priorireason that we have not been able to discover��

The discussion of the above equations is elementary and� starting

from initial data �� � ��� �� � ����� �or any others close to them�� the

result is that� if 	� is chosen so that 	h is bounded uniformly in h� then�

asymptotically�

Zh � �c jhj��� �h �
�

�
Zh� 	h � O��h� � �������

if �c is a suitable constant �� independent��

Note that these results are consistent with �������� which can then

be proved inductively� together with ��������

At this point it is very easy to check that all the neglected terms

in the beta function are at least of order ��jhj�� Hence they cannot
change in a substantial way the asymptotic properties of the �ow �up to

convergence problems� see the remark above�� only the values of A���
B��� and c depend on them� and A�� has to be a small number �of

order ��� Note that this last observation is important� in order to be

sure that the �rst condition in ������� is preserved� since we do not have

a control on the sign of A���
The main consequence of the previous discussion is that� for k � �

�that is for h����� the model is Gaussian �asymptotic freedom� and
the pair Schwinger function of the �elds �� behaves as

�S���k� � � �S���k� � � �S���k� 
 p��
��m
B��

�

k�� � c����k�
� �������
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where the sound speed c�� is given by

c��� �
�� � �A���v��
��B��

� v�B 
� �O�
p
��� � �������

where v�B � �v�� is the square sound speed in the Bogoliubov model� In

fact� the bound ������� implies that Ah� is of order �� and Bh� is of orderp
�� ������� implies that � � Eh� is of order � and ������� implies that

Zh� � �
� �O�
p
���� moreover� by �������� for h � h��

Zh 
 Zh�
Eh�

Eh � �Eh
� � O�
p
��� � �������

and� by ��������

Bh�� � Bh

Eh�� � Eh
� � Eh

��Zh
� � �

���

� �O�

p
��� � �������

implying that B�� is of order ���� since E�� � �� so that

B�� �
�

���

� � O�

p
��� � �������
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A Brief Historical Note

At the request of the series editor� Prof� Arthur Wightman� we pro

vide here a very personal attempt at some historical considerations on

the development of the renormalization group ideas� We do not feel

particularly quali�ed to do history seriously because our knowledge of

the literature is very partial� Therefore� what follows really represents

the history of our cultural evolution through the subject� The papers

and works that we quote are the ones that we met in the course of

our active research� either in trying to solve some of the problems in

which we have been involved or in attending related conferences and

schools� Among the latter we mention the Cargese summer school ���	�

the Roma conference on mathematical physics of spring ����� and the

Les Houches summer school ����� And since our background is in math

ematical physics it is inevitable that we give our sketch a mathematical

physics perspective�

Many years ago ������� the discovery of renormalizability of QED

gave rise to the �rst form of the renormalization group� as a �semi�group

of covariance of the Schwinger functions of a �eld theory with respect to

the renormalization procedures used to construct them �i�e�� their formal

perturbation expansion��

This approach led to an understanding of how the perturbation the

ory could be improved by resumming some classes of contributions to

the value of a Schwinger function� associated with families of Feynman

graphs �e�g�� oneloop chains��

The �rst to realize� to our knowledge� that the renormalization group

ideas could be applied to statistical mechanics and in particular to the

analysis of critical behavior were Di Castro and JonaLasinio 
DJ�� their

paper� however� did not attempt any concrete calculation �because they

�contented� themselves with indicating that� under suitable assump

tions� the scaling laws of the critical point of a ferromagnet would be a

consequence of renormalizability of �� scalar �eld theories�� The work

went largely unnoticed �see 
W���� Sometimes the paper was even iron

ically commented upon�

At about the same time� an independent and fresh approach to the

problem was developed by Wilson� His work on the hierarchical model

�the socalled Wilson recursion relation�� with its simplicity and clar
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ity� opened up new horizons to many� and led to the success of the

�expansion devised by Wilson and Fisher and intensively applied to

many problems� particularly by the French schools �
IZ��� Many others

were convinced that this was the right approach to the critical point

theory and to the renormalization theory in QFT�

The novel notion of asymptotic freedom was the really new informa

tion beyond the work of Dyson� Feynman� and Schwinger� its spectacular

application to QFT in the frame of noncommutative gauge theories was

one of its major successes �
Ho���

Some predictions were quite striking� for instance the prediction of

the values of the critical exponents in d � � ferromagnets� though they
were met with skepticism in the mathematical physics community�

By ���	 the subject began to attract the attention of mathematical

physicists with the work of 
BS�� on Dyson"s hierarchical model �a model

for which the Wilson recursion relations are exact�� A few years later

came the rederivation of the ultraviolet stability in scalar QFT by the

Roma school� which dealt for the �rst time with the problem of treating

the remainders of perturbation theory �the large �eld problem� in QFT

by literally computing the e�ective potentials that were so widely used

in the formal treatments of QFT and controlling their sizes� In the

hierarchical case the ideas were essentially the same as the ones in 
BS���


BS��� They were carried over to the nonhierarchical QFT �in d � 	

space time dimensions� �
Rm����

Not only did this establish a connection with all the works on QFT

that were done until that time in constructive �eld theory by Nelson�

GlimmJa�e� and Guerra �
N�� 
GJ�� 
Gu��� but it permitted us to realize

that the ideas and methods in the two �elds were deeply similar� The

Wilson approach to QFT was thus quite clearly related� on a technical

level� to the corpus of results on QFT emanating from the classical for

mulation of the GardingWightman axioms �
WG��� which had attained

their highest levels only in the previous years� in parallel to the develop

ment of the Wilson theory� with the works of Glimm� Ja�e and Spencer�

Feldman and Osterwalder� and Magnen and Seneor �
GJS�� 
FO�� 
MS��

and that would still produce important results �De Calan and Rivasseau�


DCR���

The work on Anderson"s localization provided independent evidence

that the new ideas were suited to the analysis of many other problems�

The number of results obtained in mathematical physics by �renor

malization group methods� quickly became very large� The summer
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school of Les Houches gives a good cross section of the status at the

time� Besides the new renormalization theory approaches that stemmed

out of Hepp"s work �
H�� in 
GN��� 
GN��� 
G��� there were also the

important results of Gawedski and Kupiainen on ��� infrared �critical

point of ferromagnets� �
GK	���

Other branches of physics pro�ted as well� as in the theory of break

down of invariant tori in classical mechanics by McKay and by Shenker

and Kadano� �
McK�� 
SK���

The fundamental work of Russo �
Ru�� on the d � � Ising model

and its subsequent �independent� developments by Aizenman 
Ai�� and

Higuchi 
Hi� gave rise to developments that led Aizenman 
Ai�� to con

�rm the renormalization group predictions about the critical point be

havior of ferromagnets in d � �� The triviality conjecture about ��� also
became much better understood �Fr#ohlich 
Fr� and Aizenman 
Ai����

although today it is essentially still as open �and challenging� as it was

left after the justmentioned works�

The present status of the �eld is not very satisfactory� there are

quite a few papers whose claims have not been checked by anyone but

the authors themselves� Some of them are quite important�

It is unclear why we are in such a situation� Basically this might

be because the papers have become very technical� and� except in a

few cases� the results are �of little physical interest� because they are

allegedly well understood by physicists� Therefore no one appears to be

interested in devoting the huge amount of time necessary to the checking

of the results�

This means that often the same results are repeated� with the authors

apparently not even noticing that what they are doing was already done

elsewhere� This situation is not all bad� as the more a result is indepen

dently derived� the more reliable it becomes and the less likely it is to

be forgotten�

This also means that another mechanism might be operating� people

do not like results that cannot be tested quickly for correctness� Neither

do they like results that can be obtained quickly from results they did

not test themselves� This leads necessarily to the attempt on the part

of the authors to write selfcontained papers that become longer and

longer and� therefore� more and more unreliable�

There seems to be no way out of this in the foreseeable future� we

hope that the new generations will consider the renormalization group

approaches as natural as we �nd the Feynman graphs in perturbation
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expansions today� so that papers can �nally be written without going

back to the origins each time�

But it is necessary also that scientists give up the aristocratic view

that good science is �simple�� there are matters that might be intrinsi

cally involved and di�cult and require long analysis� We may have just

exhausted the �simple� problems in classical and quantum physics� at

least the ones that our generation is willing to consider simple� And we

should adapt to the new knowledge that has been created�

Of course the authors bear the responsibility of making their work

accessible� and they should make all possible e�orts to try to simplify

their work� thus helping both themselves and others in the necessary

checks�
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Chapter �

Other problems treated with the renormalization group are the theory

of the KosterlitzThouless transition by Fr#ohlich and Spencer �
FS��� the

theory of the dipole gas �
GK���� and the Kondo e�ect �
W���� A general

uni�ed exposition of the methods and of the physical ideas is in 
P��

Chapter �

The extensions of the Fermi liquid ground state to dimensions higher

than � are formally quite easy� The extension of the notion of �eld

and the related functional integral is discussed in 
BG��� 
BG��� An

alternative approach is in 
FT��� 
FT��� However� at this moment ������

the results still seem to be quite incomplete� The de�nition of �complete

result� that we use is a result that can be formulated without referring

to technical problems generated by the formalism� hence� that which

can be explained by referring only to the system under study �i�e�� as a

property of the Hamiltonian�� Recently� a number of interesting papers

and ideas have appeared that allow us to formulate a rather precise set

of conjectures �
Po��� 
Sh�� 
We�� 
FMRT��� 
FMRT��� for Fermi liquids�

a related paper is 
BG��� Such results� which cannot yet be considered

as mathematically rigorous� develop a picture of the superconductivity

phenomenon in Fermi liquids in dimension d � �� 	 by relating it to the

properties of an N component system of interacting fermions in the limit

N ��� The lack of mathematical completeness is not the reason we do
not treat such cases here� In fact� we have already explained that this

book is not meant at all to be a mathematical treatise� In this book we

prefer to discuss another problem at a comparable level of development�

namely the theory of the d � 	 Bose gas� because it is relatively newer

and more controversial� or at least as controversial �and we control it

better from a technical point of view�� On the other extreme are recent

works on the onedimensional �spinning� Fermi liquids on a periodic

potential in d � �� which we do not discuss for lack of space and because

they were completed after the present book was essentially laid down

�long ago� in fact�� but which complete considerably the picture that

stems out of the treatment of the spinless fermions in d � � presented
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here �
BM���

The book by Rivasseau �
R�� is a presentation of similar problems

with more attention given to the mathematical aspects� It also develops

in detail the point of view on the renormalization group developed by

the French school�

Chapter 


The key to the development of the notions of relevant� marginal� and

irrelevant operators are the works of Wilson on the hierarchical model�

They were then developed to mathematical theories on Dyson"s hierar

chical model by Bleher and Sinai �
BS�� 
BS���� and summarized and

extended in the book by Collet and Eckmann �
CE��� The application

of Wilson"s ideas to quantum �eld theory appeared shortly afterwards

and in 
G��� 
Rm��� and 
Rm��� where the basic ideas on how to control

the �large �elds� problem �i�e�� on how to obtain remainder estimates

on the perturbation theory expansions� are developed�

Chapter �

The notion of asymptotic freedom� due to Wilson� is perhaps the key

notion that was missing in the original renormalization theory of Dyson�

Feynman� and Schwinger� It allows us to put a �ner distinction between

theories that are renormalizable�

Chapter �

The beta function essentially appears in the work by Wilson and

Fisher �
WF��� It was developed to become a very widely used tool by

many �see 
IZ� for an early summary�� The formalism developed here is

the socalled tree formalism� it goes back to Hepp �
H��� The interpre

tation in terms of beta function presented here is due to Gallavotti and

Nicol$o �
GN��� 
GN���� Rather di�erent uses of the same ideas have been

made in the theory of the critical point in ferromagnets by Aizenman

�
Ai���� The triviality conjecture of ��� discussed by Fr#ohlich �
Fr�� and

Aizenman �
Ai��� also rests on similar ideas or initiates related ideas�

Chapter �

The anomalous dimension arose in the work of Wilson and Fisher

�
WF��� The work of Felder �
Fe�� and then Gawedski and Kupiainen

�
GK��� began to introduce the theme in the mathematical physics lit
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erature� In the latter papers� however� the anomalous dimension is pre

scribed a priori� not determined� as in 
WF�� �dynamically�� The discus

sion here is only about the dynamical anomalous dimension� it follows

a scheme that was explained to one of us �GG� by Felder in the case of

a scale decomposition with sharp cuto�s separating the various scales�

Felder"s point of view is not published� the present exposition is quite

faithful if performed in the sharp cuto� case �such a cuto� is in fact very

convenient for calculations once one understands that the discontinuities

in the cuto� functions do not produce divergencies in the calculation� as

discussed for instance in chapter ���� See also 
P��

The dynamical anomalous dimension appears� with an attempt at

deriving it on mathematically rigorous grounds �in a case in which it is

actually present�� in the thesis of Da Veiga �
DaV�� and in 
BGPS�� The

treatment in the latter paper is at the basis of the exposition presented

here�

Chapter ��

The Luttinger model was� in fact� solved exactly by Lieb and Mattis

�
ML��� The theory of the spinless d � � Fermi liquid was basically

explained by Tomonaga �
T��� The use of the properties of an exactly

soluble model to infer properties of the beta function for a nonsoluble

one is an idea developed in 
BG��� 
BGM�� and brought to completion

in 
BGPS�� It has been proposed to be useful in the theory of d � �

Fermi liquids by Anderson �
A�� 
A��� see also 
G	��� The idea has

not yet developed into a mathematical theory� The �rst theory of the

d � � Fermi liquid� including spinning fermions� is due to S%olyom �
So���

the works of 
BGPS�� 
BM� are� essentially� a mathematically rigorous

version of it�

Chapter ��

This chapter represents our version of the � expansion of 
WF� and


WK�� It is based on the version of the anomalous dimension theory in

chapter ��� A more classical version can be found in 
P��

Chapter ��

The theory of the Bose gas is in a quite primitive stage� There do not

seem to be treatments based on the renormalization group & at least no

noncontroversial treatments� Here we propose one more due to one of us
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�
B��� The standard ideas can be found in �
ADG��� We do not discuss

the d � � exactly soluble cases� treated by Lieb and Liniger �
LL��� who

initiated a wide research on the theme� culminating in the papers by

Vaidya and Tracy �
VT��� and by Jimbo� Miwa� Mori� Sato �
JMMS���

There are few mathematically rigorous results� among them the papers

by Ginibre �
Gi�� and by Kennedy� Lieb and Shastri �
KLS�� are cer

tainly prominent� The theory of Bogoliubov �
Bo�� is well accepted as

a �rst approximation� It seems unlikely that it is basically wrong� our

logarithmic corrections to it are� in some sense� minor variations�



��


Appendix �
The Free Fermion Propagator

In the free case the pair correlation function �see �	���� can be written

S��x � �y� t� t�� �

�
h���x	t��

�y	t�i t � t�

�h��
�y	t��

�
�x	ti t � t� �

�A����

where jt� t�j � �� hAi � Tr �Ae��H ��Tr�e��H �� H is the second quan

tization version of the operator �	��� with � � ��

���x	t � etH���x e
�tH �

�p
Ld

X
�k

e�i�k��xe����k�ta��k �

� �p
Ld

X
�k

e�i�k��xa��k	t

�A����

and

���k� �
�k� � p�F
�m

� �A��	�

One notes that ha��k	ta
�
�k�	t�

i � � unless �k � �k�� Supposing � � t � t� �
�� it is

ha��k	ta
�
�k�	t�

i �
P

E hEj e����t�Ha��k e
��t�t��Ha��k e

�t�H jEiP
E e��E

� �A����

where jEi denotes a generic eigenvector jEi � j�k�� � � � � �kni of the oper
ator H consisting of n occupied momentum levels �k�� � � � � �kn� Then one

immediately �nds

ha��k	ta
�
�k	t�
i � e��t�t

�����k�

� � e�����k�
� t � t� � � � �A����

Likewise� if t � t�

ha��k	ta
�
�k	t�

i � e�����t�t
������k�

� � e�����k�
� � � �t � t�� � � � �A����
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Hence S���� � � in �A���� is given by

�

Ld

X
�k

e�i�k���
�
��� � ��

e�����k�

� � e�����k�
� ��� � �� e

���������k�

� � e�����k�

�
� �A����

where the sum runs over the �k"s such that e�i�kL � �� ��	� denotes the
characteristic function of the event described in the � argument and

j� j � ��

The expression in parentheses can be written as

�

�

X
k�

e�ik��

�ik� � �
� � �

�

X
k�

e�ik������

�ik� � �
� �A����

where the sum is over the k�"s such that e�ik�� � ���
In fact� if � � �� the �rst expression of �A���� can be written as

I
dz

��

e�iz�

��iz � ���� � e�i�z�
� �A����

where the contour runs just below the real axis from �� to �� and

comes back just above it from �� to ��� picking up the residues at
the poles where e�i�z � ��� On the other hand� if � � � � �� the

above two contours can be made to recede to � and the integral is

minus the residue at z � �i� �because the contour below the real axis
is deformed to a clockwise circle around �i��� hence the value of �A����
is e��� �� � e�������
If � � � we repeat the same argument by using the second expression

in �A����� and that � � � � � � �� We �nd that for � � � the value of
�A���� is �e��������� � e�������
Finally we can compute the density�


 � �S��x� ��� � h��
�x	��

�
��	�
i � �

Ld

X
�k

e�i�k��x
e�����k�

� � e�����k�
� �A�����

and we see that� if L��� � ��� it is


 �
�

����d

Z
dd�k e�i�k��x�����k� � �� � �A�����

which de�nes the Fermi sphere in the free case�
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Appendix �
Grassmannian Integration

Consider the algebra generated by the identity and by a family of

pairwise anticommuting operators ��k � A
�
k � where the labels � are ��

and the k"s are k � �k�� �k� � Rd��� verifying

e�ik�� � ��� e�i�kL � �� � �A����

and pairwise anticommuting is required also for the pairs consisting of

identical operators� The �� A operators will be called Grassmannian

variables�

It is most convenient to think of the A� � as concrete objects by using a

representation on a Hilbert space h� The best Hilbert space is probably

a countable tensor product of twodimensional spaces C�� h � ��j��C�

based on the vector j'i ��vacuum�� which is an in�nite tensor product
of vectors

�
�
�

�
� Then we order �absolutely arbitrarily� the variable

labels� by replacing each of them with an integer label j � �� �� � � � and

set the j�th� Grassmannian variable� to be



Y
i�j

�zi ��
�
j � �A����

where �z � �� are the usual Pauli matrices�

Hence the Grassmannian variables can be regarded as a set of cre

ation operators �just creation and no annihilation� on a Fock space �the

vacuum being the vector j'i used to de�ne the tensor product��
The A� � variables are norm � operators on h� They will be used to

de�ne the euclidean �eld with ultraviolet cuto	 on scale �U and infrared
cuto	 on scale �R� ��x � and the external �eld ��x as

��x �
X
k

ei�kxp
�L

�e�k
�
��U � e�k

�
��R ����q
�ik� � e��k�

A�
k �

��x �
X
k

ei�kxp
�L

��k �

�A��	�
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where x � ��x� t�� k� � k�� � e��k�� and U��R are large positive numbers�
while  is an arbitrary scale parameter �which we take to be  � �� to

�x the ideas��

The above operators will be generically denoted (�x and sometimes
the �elds with cuto�s at U and R will be denoted �

�U	R��
x � when the

cuto� dependence has to be made explicit� They are bounded operators

on h� because the A"s have norm ��

We call G� the algebra generated by the A� � operators and G its
norm closure in the norm of the Hilbert space h� The cuto� �elds� of

course� are elements of G� It is also convenient to de�ne the norm closed
algebra G generated by the operators in G together with their adjoints�

In mathematical terms� one sees that G is a C� algebra�
Consider the elements O of G that can be written as

O �
X
n

Z
On�x�� � � � � yn�Dx�(

�
x� � � �Dyn(

�
yn dx� � � � dyn � �A����

where the On�� � �� are the �kernels of O�� antisymmetric in the permu�

tations of the x�s or y�s� and (� are Grassmannian �eld operators� and
Dx� � � �Dxn are di�erentiation operations of order bounded by some n��

for all n� Furthermore� the On should be measures �i�e�� � functions are

allowed� and

jO�(�jz �
X
n

zn
Z
jOn�x�� � � � � yn�jdx����dyn �� z � � � �A����

Using that G is a C� algebra generated by creation and annihilation
operators� it is not di�cult to see that an element of G admits at most
one representation like �A����� �A����� Note also that the operators A� �

themselves admit a representation like �A����� �A�����

De�nition� Let O��� �� be an operator in G admitting the repre�

sentation �A����� �A����� Then O will be called integrable� Let O be

written� with dx � dx� � � �dxn� dy � dy� � � � dyn� etc��

O��� �� �
X

m�	n�

Z
dx dy du dv 	

	O�x�� � � � � xn� � y�� � � � � yn� � u�� � � � � um� � v�� � � � � vm��	

	
� n�Y
i��

Dxi�
�
xi

�� n�Y
i��

Dyi�
�
yi

��m�Y
i��

Dui�
�
ui

��m�Y
i��

Dvi�
�
vi

�
�

�A����
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The integral of O��� �� with respect to � will be de	ned as

'��� �
X

m�	n��n�

Z
dx dy du dv 	

	O�x�� � � � � xn� y�� � � � � yn� u�� � � � � um� � v�� � � � � vm� �	 �A����

	
	� nY

i��

DxiDyi

�
det g�R	U ��xi � yj�


�m�Y
i��

Dui�
�
ui

��m�Y
i��

Dvi�
�
vi

�
�

where n is the common value of n� and n�� and g�R	U ��x � y� is the

propagator

g�R	U ��x� y� �

�

�L

X
k

e�ik�x�y�
e��

��U �k���e�
�k��� � e��

��R�k���e�
�k���

�ik� � e��k�
�

�A����

Remarks

�� This is well de�ned because the representation �A���� is unique�

and the convergence is assured by the assumption �A���� and by the

Hadamard inequality �see 
GK����

jD� � � �D�n det
h
g�R	U ��xi� yj�

i
j � Bn

R	U � �A����

�� The de�nition above is consistent with an alternative de�nition

that de�nes the Grassmannian integral by linearity from the following

propagator �������
�������

Z
P �d��A�k A

�
k� � �k	k� �Z

P �d��A�
kA

�
k� � � �Z

P �d��A�k A
�
k� � � �

�A�����

while the integrals of monomials of higher order are given by the �Wick

rule� with propagator �A������ This means that the integral of an ar

bitrary monomial in the A� and A� is obtained by considering the
pairings of the monomial factors into pairs with nonzero propagator�

and then summing the product of the propagators corresponding to the

pairs times a sign � equal to the parity of the permutation necessary
to bring the elements of the considered pairs next to each other� The �
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�elds �and the constants� act as constants in the de�nition of integral�

In fact� it is not di�cult to see that the determinants in �A���� arise

precisely from the summations of the pairings�

	� An obvious extension is the multiple Grassmannian integrals of

independent Grassmannian variables� suppose that instead of just one

we have many A variables� labeled by an extra label �� Calling �����

the corresponding �elds with cuto�s 
U�� R��� we can consider operators

O����� �� � � � � ���q �� �� and de�ne the partial integrations as in remark ���

with the propagator�������
�������

Z
P �d��A����

k A
�����
k� � �����k	k� �Z

P �d��A
����
k A

�����
k� � � �Z

P �d��A����
k A

�����
k� � � �

�A�����

The integration can be denoted
R
P �d����� � � �P �d������

And� with reference to remark �	� one can prove the following theo

rem�

Theorem� Let ����� ����� � � � � ��q� be a family of independent Grass

mannian �elds� Then the integrals of operators depending only on the

sum � � ���� � ���� � � � �� ��q� verify

Z qY
i��

P �d��i�� O�
X
i

��i�� �

�

Z
P �d�����

�Z qY
i��

P �d��i�� O�
X
i

��i��

�
�

�

Z
P �d�� O��� �

�A�����

where � is a Grassmannian variable with propagator

g�x � y� �

qX
i��

g�i��x� � �A���	�

The above �A����� statement can be called Fubini"s theorem and the

�A���	� makes the above Grassmannian integrations very close to the

gaussian integrations of functionals of random �elds� The important

di�erence is that no positive de�niteness is required on the propagators
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g�i�� The latter is not surprising because the above Hadamard inequality

�A���� solves all the convergence problems that one has to worry about

in the theory of gaussian integrals�

An example of the above analysis is statement �	���� One checks that

the operator V � �
R
� �

�
x �

�
x �

�
y ��y ��x� � y�� v��x � �y�dxdy has the

form �A����� �A���� and that e�V ������x� � � ��
�n
xn as well as e

�V ����� also

have the same form� Hence it makes sense to evaluate

S������n �x�� � � � � xn�U	R	�	� �

R
P �d��e�V ���x� � � ��

�n
xnR

P �d��e�V
�A�����

or Z
P �d��e�V ����� � �A�����

It follows from the above de�nitions and the Hadamard inequality that

the numerator and denominator in �A����� and �A����� are entire func

tions of the variable �� Assuming �v�k� � �� it can be proved that the
analyticity domain in � is� uniformly in U�R� � for �xed �� the right

half plane in general� and the full plane if d � � or the full half plane

plus a disk around the origin if d � �� In fact� if d � � the Hamiltonian

is stable for all �"s� while if d � � it is stable only if � is small or if

Re � � ��
It can be proved that the analyticity property is uniform in U�R� � if

z is small enough and � is pre�xed and that the limit as U ��� R�
��� � �� coincides with the limit as � �� of the ratio of traces in

�	��� �which in fact is equal to the limit as U ��� R��� of SU	R	�	�
in �A������� Hence statement �	��� follows�
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Trees and Feynman Graphs

We consider the de�nition of the e�ective potential ������ and make

the change of coordinates ����� � �� � �� getting

e�Veff�
p
Z� ��� � c

Z
P
���
Z�
�d������e�V

����
p
Z� �

�������� �

� e�
�
� ���	Z��

��
� p���� c	

	
Z

P
���
Z�
�d��e�V

����
p
Z� ��e��	Z��

��
� p���� �

�A	���

where c denotes the di�erent �formal� normalizations� Hence�

Ve����� �
�

�
Z�����)

��
� p����� q���Z�)

��
� p���� � �A	���

where q������� de�ned by

eq
���� ���� �

Z
P
���
Z�
�d��e�V

����
p
Z� �����	��� � �A	�	�

is the generating functional of the Schwinger functions� In particular

the twopoint Schwinger function can be calculated by

S�����x� y� �
��q�������
��x��y

���
���

� �A	���

We �rst remark that the evaluation of the anomalous e�ective poten

tials admit a graphical representation very similar to the one discussed

in chapter � for the normal e�ective potential�

We represent �V ����
p
Z� �� as

�
	 �A	���

and we note that L�V
��� � � because no term proportional to F��

p
Z� ��

is present in the potential ������
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Then we compute ��V ���� as

� � � � � � �
�� �� ��� � �

�A	���

this di�ers from V ���� of chapter �� because each term� in general� will
have a nonzero projection on F���� �

R
���x�

� dx� The vertex labeled

� represents integration with respect to a �eld with propagator �
Z�
�g����

We apply to each term the operation ���L��� collecting all the contri

butions to F� �obtained by applying L� to each term� into a functional

����Z�F����� and for later use we denote the coe�cient of F� in L�V

as 
L�V �� And we discard all such terms� which leave �as only trace of

their coming to attention� the de�nition of Z��

Z�� � Z� � �����Z� � Z� � �
L�
�V �����

p
Z� ��� � �A	���

The part obtained by applying ���L�� will naturally represent a function

of
p
Z� �� however� we want to think of it as a function of

p
Z�� �� this

means that we imagine the n �eld kernels de�ning V �����
p
Z�� �� to

be given by those of ���L�� �V ������� multiplied by
q

Z�
Z��

n

�

The latter operation can be conveniently described in terms of an

operator O� which acts on a �eld monomial of degree n as

Oh �x� � � � �xn �
�q

Zh
Zh��

�n
�x� � � ��xn � �A	���

with h � � �the more general case h � � will appear later��

The function V �����
p
Z�� �� is then split into its relevant part and

its irrelevant part by the usual localization procedure�

V �����
p
Z���� � LV �����

p
Z���� � ���L�V �����

p
Z�� �� �A	���

and

LV ���� �������

Z p
Z��

�
��
x dx� ��

���
��

Z p
Z��

�
��
x dx�

� ��������

Z p
Z��

�
��
x dx �

�A	����

with no term proportional to F� �
R
���x�� dx� by our construction�
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We represent the splitting in �A	��� graphically as

� � � � � � �
�� �� ��� �

�R �R
�A	����

with

� � � � � � �
�� �� ��� �

�L
�A	����

where the tilde over R�L is to remind us that we are following the

anomalous integration procedure� The di�erence with respect to chapter

�� i�e�� normal procedure� is �very slight�� namely� the localization is

L�� � L�� for the local part and the remainder is �� � L�� instead of
the normal L and �� � L�� furthermore the truncated expectations are
evaluated with the propagator �

Z�
�g��� rather than g��� �which� however�

coincide accidentally as Z� � ��� and �nally the n �eld kernels are altered

by applying the operator O� and are evaluated at
p
Z�� ��

Hence the relevant and irrelevant parts of V ������� and the de�nition
of Z�� are simply

V
����
rel �

p
Z�� �� � O�L ��� L�� �V

�����
p
Z� �� �

V
����
irr �

p
Z�� �� � O� ���L� �V �����

p
Z� �� �

� �
Z�

Z��

�
� � �

�L�
�V �����

p
Z� ��

��
�

�A	��	�

The iteration of the above calculation leads to the representation

V �h��
p
Zh �� � V

�h�
rel �

p
Zh �� � V

�h�
irr �

p
Zh �� �A	����

and
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V
�h�
irr ��� �

X
trees

h h��

h��

�R

�R

�R

�R
�R

�A	����

where the tree vertices on scale k represent truncated expectations eval

uated with the propagator �
Zk
�g�k�� also�

V
�h�
rel ��� � �

X
trees

h h��h h��

h��

�L

�L

�L

�L
�L

�A	����

It is now possible to describe the operations to be performed in the ac

tual computations of the e�ective potential in terms of Feynman graphs�

The �rst step is to represent a tree as a hierarchy of boxes� each

vertex v �including the trivial vertices and the endpoints� is represented

by a box and all the sv � � tree vertices v�� � � � � vsv following it are

represented as boxes drawn inside it� etc�

�A	����
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Each tree vertex carries in our constructions a scale label correspond

ing to the scale of the propagator to be used in the evaluation of the

truncated expectation that it represents� If p is such label� then� in the

tree representation� it will be attached to the corresponding box�

Inside the innermost boxes one draws the �graph elements� repre

senting the relevant terms of the theory� In the �� case in d � 	 one

has

x x x
�A	����

Such graph elements represent� respectively�

p
Zp �

�j�
p �jx� j � �� �� � � �A	����

if p is the scale label of the considered box�

Then we form a graph by joining together some of the lines of the

graph elements� the pairs of lines thus joined form an inner line and the

ones that are not paired with others are called external lines� Further

more�

�� Only n lines are regarded as external� And all the internal lines are

drawn in such a way to be entirely contained at least in one of the

boxes�

�� Each inner line is assigned a scale identical to the scale of the smallest

box enclosing it�

	� Each box must contain a connected graph formed by its inner lines�

�� Each box must contain at least one inner line that is not contained

in smaller boxes� if the corresponding tree vertex is not trivial� that

is sv is greater than ��
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To each such graph �obviously called a Feynman graph� G�

�A	����

we associate a kernel�

V G

�
x�� � � � � xm
	�� � � � � 	m

�
� �A	����

which is de�ned by �rst multiplying the following factors�

a� A factor ��d��j�kv��j�kv
for each graph element of type j attached to a

point in a box v with scale label kv �with � � �d� ���� � �����
b� A factor �Zk�Zk��Z

�
k�

��� for each inner line of scale k joining two

space vertices x� y of scales k�� k�� the scale of a space vertex being

the one of the innermost box containing it�

c� A factor �Zk�Zh���� for each external line emerging from a space

vertex of scale k�

d� A factor �g�k��x� y� for each inner line of scale k joining the vertices

x� y�

The contribution to the e�ective potential from the selected graph is

then obtained by integrating over all the positions of the space vertices

the justbuilt kernel times a product of �elds �xi � one per each external

line emerging from the vertex xi� Such contribution will have the form

Z
V G

�
x�� � � � � xp
	�� � � � � 	p

� pY
j��

�jxj �A	����

if we assume that the points out of which the external lines emerge are

the �rst q�

However� the above simple rule has to be modi�ed if the graph has

q � �� �� � external lines or even if its subgraphs associated with the

inner boxes present �� �� � external lines�
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In the last cases a second operation has to be performed� it describes

graphically the operations of subtraction that are implicit in the L� ��L�
L� operations� One looks at the boxes� called renormalization boxes

below� containing subgraphs with �� �� � lines �inner or external� going

out of them�

The simplest situation arises when the boxes with the above prop

erty are disjoint �nonoverlapping�� In such case� consider one of the

renormalization boxes� Associated with it there will be a product�

C��x� �x�� �
q�Y
j��

�g�
�hj ��xj � xj��

qY
j�q���

�xj � �A	��	�

where �x � �x�� � � � � xq� are the vertices inside the box and �x
� � �x��� � � � �

x�q� � are the points where the q
� inner lines that are external to the box

end� Then the factor �A	��	� appearing in �A	���� has to be replaced

in �A	���� by

 C��x� �x�� �C��x� �x��� Taylor expansion in �x� �x� of C��x� �x��

to order � if q � � or to order � otherwise� �A	����

where �x� is the qple �x�� x�� � � � � x���

The equation �A	���� is not obviously generalizable to the case when

the renormalization box contains other renormalization boxes� this un

pleasant problem was lurking in the literature until it was solved by

Hepp �
H��� and it is still lurking because the latter paper is not as well

known as it deserves to be�

The description� following the work of Gallavotti and Nicol%o �see


G���� is somewhat technical� One needs a table of the results of the

localization operator

L � �x� � � ��x� � � � ��x� �

L � �x� � � ��x� � � � ��x� � �
h �X
j��

��x��xj � x����x�

i
�A	����

L � �x��x� � � � �x�
�
�x� �

�
�x� � x����x�

�
�
�

�
�x� � x��

����x�

�
� �

where the terms in square brackets can be omitted as the above expres

sions always appear multiplied by a kernel� symmetric function of the

�eld arguments� after integration the terms in square brackets are for

mally integrals of exact derivatives and give zero �after integration by
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parts�� Here there is� in fact� a further problem to worry about because

the last statement is strictly correct only if one is considering a �nite

box with periodic boundary conditions� in this case� however� �xj � xi�

does not really make sense� being nonperiodic� and it should be replaced

by �xj�� � �xi�� � L sinL��
�
�xj�� � �xi��

�
� if L is the side size of the

periodic box� We� however� ignore this boundary condition problem�

contenting ourselves at having hinted at its solution �see 
G��� chapter

����

The operation � � L can be conveniently described in terms of the
following �elds

Dx�x� � �x� � �x� �

Sx�x� � �x� � �x� � �x� � x����x� �

Tx�x� � �x� � �x� � �x� � x����x� �
�

�
�x� � x��

����x� �

Sx	x�x� � �x� � x�����x� � ��x�� �

�A	����

Then one can show inductively that V
�h�
irr will admit a representation�X

g��

Z
dx du ds dt d�t �A	����

V

�
� az �� �

x�� ��
��� ��

bz �� �
�u�� u���� ��
��� ��

cz �� �
�s�� s���� ��
��� ��

fz �� �
�t�� t���� ��
��� ��

	fz �� �
��t�� �t��� �t����� ��

���� ��

�
A

p
Zh

n�n�
aY
��xi�

�i

bY
�Duiu�i

��i
cY
�Ssis�i�

�i

tY
�Ttit�i�

�i

	tY
�S	ti		t�i	

	t��
i
�	�i �

where a� b� c� f� �f are the number of terms under the curly brackets and

x� u� s� t��t are points in Rd� and �� �� �� �� �� are integers � �� and
m � a� �b� �c� �f � 	 �f �


 �
X

�i � �
X

�i � 	
X

�i � �
X
��i �

n �
X

�i �
X

�i �
X

�i �
X

�i� n� �
X
��i �

g � � dm� � d� 
�
d� �
�

n�
d

�
n� �

�A	����

m� � m being the number of di�erent space vertices appearing in the

di�erent �elds�

The sum in �A	���� runs over g � � and over various choices of the

various labels� The kernels V that can appear in the sum are describable
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by the same Feynman graphs introduced above �see �A	����� with a few

more labels attached�

More precisely� given a graph G of the type considered above� one

looks at the innermost renormalization boxes and puts labels on their

outcoming lines which have the interpretation that the �elds they rep

resent are no longer � �elds but could also be D�S� T� S �elds with

arguments from the x"s that are among the points out of which the

external lines emerge�

The precise rule for attaching the labels is simply that one imagines

applying the R operation to the product of �elds represented by the

renormalization box and the graph that it contains� such operation pro

duces a linear combination of products of �elds of the type in �A	�����

the labels a�xed to the lines determine which term is actually selected�

The operation is repeated for the renormalization boxes containing

renormalization boxes� the novelty being that now the lines that come

out of a renormalization box may contain some nonlocal �elds of type

�A	���� �produced by the action of R on the lines of some inner box��
One just checks that the action of R can still be represented via the

�elds in �A	���� and does not produce further nonlocal �elds �in fact�

for the innermost renormalization boxes one does not need all the �elds

in �A	������

After �nishing the �decoration� of the graph with all the labels �one

can see that each graph cannot generate more than ��n labeled graphs��

one evaluates the value of the graph by the rule of replacing each inner

line by a propagator� but some of the inner lines may represent the new

nonlocal �elds� and the propagator corresponding to them has to be the

propagator between the �elds corresponding to the two lines that are

contracted to form the inner line �such a propagator is just the integral

of the product of the �elds with respect to the measure ZkP
�k�
Zk
�d����

In the end the total e�ective potential can be represented as a linear

combination of not more than about ��nn!� terms� each corresponding

to a decorated graph evaluated as described�

If the construction of the e�ective potential is performed according to

the above rules� it is quite simple to check that the bound ������� holds�

For more details� see the analogous calculation described in 
G�� for the

d � � �normal scaling� theory� note that in the latter case �� is an

irrelevant term so that the bounds improve �as the number of Feynman

graphs of order n grows as n!� rather than n!� and n!� is replaced by

n!��
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Appendix �
Schwinger Functions and Anomalous Dimension

We compute Ve��
�

Z�p�
)��p���� or� better� q

��������� which� by ���	�
and �A	���� �A	�	�� is the generating functional of the truncated Schwin

ger functions�

eq
���� ���� �

Z
P
���
Z�
�d��e�V

����
p
Z� ������	�� � �A����

To compute the pair Schwinger function we evaluate the integral by

using the procedure of chapter ���

We have to evaluate only the part of q���� that is quadratic in �� We
represent the argument of the exponential in �A���� inside the integral

as

� �
��V Q �A����

and we suppose inductively that� �xing Q� � �� G� � �� the successive

integrals over the various scales modify the exponent in the the integrand

exponential into a functional representable as

h h h h
V Q G G�� � �

�A��	�

where the �rst term symbolizes the �anomalous� e�ective potential con

structed in chapter ��� the second and the third terms represent �for

suitable convolution operators Qh� Gh�� respectively�Z
dx�x �Qh ���x � �A����

and the functional Z
dx�x 
Gh � �V

�h�

��
�x � �A����
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and� �nally� the last term represents the contribution of all the connected

graphs with two � �elds produced by the successive integrations�

Then� integrating as usual with the method of chapters � and ��� we

can express the result of the integral over the momentum shell of scale

h graphically as

h� �

h� � h

h� �

h� � h

h� �h
V Q G�� �

� �

V

V

Q

V

V

G

p � � p � ��A����

We see that the sum of the graphs in the �rst term of the second line is

Qh � �
Zh
�g�h� � �

�V �h���

��
� �A����

and the sum of the graphs in the last term is

Gh � �
�V �h���

��
� �A����

So that� writing �V �h����
p
Zh �� � V �h����

p
Zh�� �� � �

�zh��ZhF�����
we see that

Qh�� � Qh � zh��
�X

j�h

Zh
Zj

wj �Qj � Q� � � �

Gh�� �
�X

j�h

�

Zj
�g�j� �Qj� wh�k� � k��g�h��k� �

�A����

and we see that the secondorder term can be simply evaluated by a

graphical rule almost identical to the one elaborated in chapter �� and

appendix 	� but with the following modi�cations �see �g� �A�������
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r v�

vxy

vx

vy

k h � ��

�A�����

�� There are n � � endpoints� n � �� and two of them� denoted vx
and vy in the �gure� represent the following functionZ

dx�x

�
Qh � ���h�

x �Gh � �

��x

�
V �h��

p
Zh��

��
� �A�����

where the following recursive relations for the convolution operators Qh�

Gh hold�

Qh�� � Qh � zh��Zh
����Gh�� � Qh � zh��
�X

j�h

Zh
Zj

wj �Qj �

Gh�� � Gh � �g
�h� �Qh �

�X
j�h

�

Zj
�g�j� �Qj � �A�����

wh�k� � k� �g�h��k� �

�� The two special endpoints of item ��� belong to the vertical line

with frequency index h�� and are attached at the same tree vertex vxy
bearing a frequency label h� This implies that h is the scale at which

the lines �x and �y become connected by graph lines�

	� There are no external lines in the root of the tree�

�� There are noR� labels associated with the tree vertices v belonging
to the line l joining the root to vxy�

It can be checked� by the same techniques of 
BGPS�� that �g�h��x�

satis�es a bound such as

j�g�h� �Qh�x�j � Che��

h jxj �A���	�
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for some � � �� provided the zh verify jzhj � C�� for all h� with � small

enough �i�e�� by the bounds of chapter �� provided the running couplings

rh verify jrhj � � for � small enough��

Hence� for the purpose of establishing bounds in x space� we could

replace Qh by �� It is possible to prove that a similar property is valid

in k space� the key property being the consequence of the recursive

de�nition of Qh�

Qh�k� �

�
� � �� bh�

�hk� log
�
e � �

k�h

p�
��
�� 	

	 �� � �k�h
p�

��
�C��

�

�A�����

where C � � is a constant and bh�k� is analytic in a strip of imaginary

width p�� �for some � � �� around the real axis �in the two k variables�

and is bounded there by a constant B �h independent�� provided the zh
verify jzhj � �� for all h with � small enough �i�e�� by the discussion of

chapter �� we expect that � is of the order of maxh jvhj���
The latter �A����� shows that� for the purpose of establishing bounds

�both in x space and in k space�� we could replace in ������ Qh by � and

Gh by �g
�h� �

P
h��h

�
Zh
�g�h

���

The �A���	�� or �A������ implies �see 
BGPS�� that

Theorem

The pair Schwinger function can be written in the form

Sint�x� y� �
�X

h���

�

Zh
�g�h��x� y� �� �O���� � �A�����

where � is supposed to be small enough and to be a bound on the running

couplings on all scales� and

j�g�h��x� y�j � Bhe�	�jx�yj � �A�����

B � �� �� being suitable constants� independent on �� The O��� is a

function� which is a formal power series in the running couplings and

with coe�cients that are bounded by n!� to order n� independently on

x� y�

An immediate corollary of the theorem is that the pair Schwinger

function decays for jx� yj � � to all orders of perturbation expansion

in the running couplings� as jx� yj������ with � de�ned by
Zh�Zh�������h��� �

���
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Appendix �
Propagators for the Bose Gas

Let P �t��d�� be the formal complex Gaussian measure with covariance

g�t��x� �
�

�����

Z
dk e�ikx

t�k�

�ik� � �k�

�m

� �A����

where x � �x�� �x�� k � �k�� �k� and t�k� is a positive cuto� function�

We consider the �elds ��x �
�p
��
���

x � ��x � � ������
R
dke�ikx��k �

Their propagator has the form

h��x��
�

y i �
�

�����

Z
e�ikxt�k�G���k���� � �A����

where the matrix G� which we call the propagator matrix� is

G � 


�
�k�

�m ik�

�ik� � �k�

�m

�
� �A��	�

Therefore the formal Gaussian measure�

P �t��d��e��
P

���

R
���k�����

��

���k
dk � �A����

has a propagator matrix G� � G� �
 t�k�� In particular� if  is asso

ciated with the quadratic form

Z
dx
�a���x �

� � �
�X
i��

bi��i�
�
x �

� � �c��x ����x � � �A����

with a� b�� b � b� � b� � b�� c not negative real numbers� that is�

 �

�
�a ick�

�ick� ���b�k�� � b�k��

�
� �A����

then it is

G� � 


�
�k�

�m � �at�k� ik�
� � �ct�k��

�ik�
� � �ct�k�� � �k�

�m � ��bk�� � b�k��t�k�

�
� �A����
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And the �� �eld propagators with respect to the measure P �t�
ab �d�� with

propagator matrix G� can be immediately checked to beZ
P
�t�
a	b�d���

�
x �

�
y �

�

�����

Z
dk e�ik�x�y�	 �����

	 ik�
� � �ct�k�� � �k� � �d��k�t�k�


� � �ct�k���k�� �
�k� � �d��k��k�t�k� � ��a�

P�
i�� bik

�
i �t�k�

�
t�k�

and Z
P
�t�
a	b�d���

�
x �

�
y �

Z
P
�t�
a	b�d���

�
x �

�
y �

�
�

�����

Z
dk e�ik�x�y�	 �����

	 ��d��k�t�k�

� � �ct�k���k�� �

�k� � �d��k��k�t�k� � ��a�
P�

i�� bik
�
i �t�k�

�
t�k� �

where d��k� � a� �b�k�� � b�k��� Note that ����� can be derived also by

performing a Bogoliubov transformation�
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Appendix �
The Beta Function for the Bose Gas

In this appendix we want to prove �������� We �rst note that all the

terms in the r�h�s� of ������� are obtained by applying the localization

operator to

V ��h �Eh�Vh�� �

�!
ETh �V �

h � �
�

	!
ETh �V �

h � �
�

�!
ETh �V �

h � � �A����

where Eh and ETh denote� respectively� the expectation and the truncated
expectation with respect to the measure describing the �uctuations on

scale h� whose propagator is given by

���
�����

� �h�g����h �hx� � �A����

where

�g����h �x� �
�

�����

Z
dk

e�ikx T��k� �p����h �k�


Dh�k�
�A��	�

Dh�k� � bh�k�k
�
� � ah�k�

v��
�
�k��

� �h

�k�

�m�
�� � �Ah�k�� � �Bh�k�

k��
�k�

p��
� � �A����

ah�k� � �Zh�k� � ��Zh�k�Ah�k� �

bh�k� � Eh�k�
� � ��Zh�k�Bh�k� � �A����

�p��h �k� � �p��h ��k� � �ik�Eh�k� �

�p��h �k� �
�k�

�m
� �
Bh�k�k

�
�

�m

p��
�Ah�k�

�k�

�m
� �

�p��h �k� � ��h
�k�

�m
� �Zh�k� p

�
�

�m
� �A����

Some other remarks are important�

�� In order to calculate the beta function one has to evaluate some

Feynman graphs at zero momentum of the external lines� Therefore�

only terms without internal lines or terms with at least one loop can

contribute� sincethe single scale propagator vanishes at zero momentum�
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�� The previous remark also implies that� in the graphs with only one

loop� all internal lines must carry the same momentum� Hence� if we

suitably choose the cuto� function t��k�� the internal lines of the loop

may only have propagators of scale h or h � �� in fact� at least one

propagator must be of scale h and the supports of the Fourier transforms

of the propagators of scale h and h� � h are disjoint if h� � h� �� This

implies that the trees �see chapter � for the de�nitions� that one has

to consider in evaluating the contribution of such graphs are the trees

with only one vertex of scale h and at most three endpoints� and the

trees with one vertex on scale h and one nontrivial vertex on scale h���

corresponding to some irrelevant contribution�

	� In the calculation of the graphs with only one loop� the subgraph

associated with the tree vertex of scale h� � has no loop� Therefore� in

this tree vertex the R operation coincides with the identity�
�� Since we are interested only in the leading orders� we can neglect in

the rescaled propagators �A��	� the terms proportional to �h and the

dependence on k of Zh� Ah� Bh� and Eh �see ��������� For the same

reason we can approximate Zh��� Ah��� Bh�� and Eh�� by Zh� Ah�

Bh� and Eh in the expression of �g
����
h�� �x�� Finally� we can neglect the

di�erence between �h��� �h�� and �h� �h in the endpoints of the trees

involving a tree vertex on scale h � ��

The previous remarks imply that the leading terms in the beta func

tion can be obtained by the following steps�

�� Evaluate the graphs with one loop and propagator given by the sum

of the singlescale propagators of scale h and h � �� approximated as

explained in remark ���� that is�

���
�
� ��������hg�����	h �

hx� � �A����

where� if Dh�k� denotes the determinant of the propagator matrix G�h��

see �������

g�����	h �x� �
�

�����

Z
dk e�ikx

T��k� �p
����
h �k�


Dh�k�
� �A����

Here Dh�k� and �p
����
h denote the expressions �A���� and �A����� modi�ed

as explained in remark ��� above� that is�

Dh�k� � bhk
�
� � ah

v��
�
�k� � �A����

ah � �Zh�� � �Ah�� bh � E�
h � ��ZhBh � �A�����
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�p��h �k� � ��q�Zh� �p��h �k� � �p��h ��k� � �ik�Eh �

�p��h �k� �
��ZhBhk

�
� � ah�k

� v
�
�
�

�q�Zh
� q� �

p��
�m

� �A�����

and

T��k� � T��k� � T��
��k� � t��

��k� � t��k� � �A�����

�� Evaluate the same graphs with propagator of scale h � �� again

approximated as in remark ���� This propagator is obtained from �A����

by substituting T��k� with

T��k� � T��
��k� � t��

��k�� t��k� � �A���	�

We shall denote g�����	h the corresponding rescaled propagator�

	� Subtract the values found in ��� from the values found in ��� and add

the trivial graphs without any internal line�

�� Approximate in the result the cuto� function t��k� by the character

istic function of the set fk�� � �k� � �g� Note that this approximation
is everywhere equivalent to calculating the graphs with all propagators

on the single scale h� except in the case of the beta function for Bh���
Ah��� and Eh��� which involve derivatives with respect to the loop mo
mentum� Hence� except in this case� we have to calculate the graphs by

using the propagator obtained from �A���� by substituting T��k� with

T��k�� we shall denote g
����
h this rescaled propagator�

The trivial graphs give the linear terms in the r�h�s� of �������� except

the term linear in �h appearing in the equation for 	h��� This term is
obtained by contracting two �� �elds in the �h vertex� one gets

�
�
�

�

�
p��
�m

�h
�h�q�Zh��	hF�� � �A�����

where F�� is de�ned as in ������� and

��	h �

Z
dk

�����
T��k�

Dh�k�
�

�� ��

����
p
ahbh � ah�

q��

�
�

v�

��

� �A�����

The quadratic terms in the equations for �h and �h are associated

with the graphs drawn in �g� �A������ where the heavy lines represent

the �� �elds and the dotted ones represent ���
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Note that the coe�cients in front of the di�erent graphs� here and in

the following �gures� indicate how many times the graph appears� if one

expands the powers of the potential in the r�h�s� of �A���� in terms of

the di�erent monomials of the �eld� whose sum gives the potential� and

consider the di�erent possibilities of connecting di�erent point vertices�

giving rise to the same graph� In order to get the right contribution to

the beta function� one has to consider also the coe�cients of the expec

tations in �A���� and the combinatorial factors that count the di�erent

possibilities of choosing the external lines in the di�erent vertices of the

graph and the di�erent possibilities of contracting the internal lines�

� �
�A�����

The contribution to LVh����� coming from the graphs in �A����� is

� �
�

h��
�

��

���h��q�Zh�
���	hF��

� �

�
�

�

�
��h�h��q�Zh�

���	hF��

i� p��
�m

��
�

�A�����

where

��	h �

Z
dk

�����
T��k�

Dh�k��
�

log

���
p
a�hbh

�
�

v�

��

� �A�����

The cubic terms in the equations for �h and �h are associated with

the graphs drawn in �A������

� � � � � �

� � � � �

�A�����
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The contribution to LVh����� coming from the graphs in �A����� is

�

�
	 	 �

h��
�

�
�h�

�
hF�� � ��hF��

i� p��
�m

��

��	h � �A�����

where

��	h � 
�
Z

dk

�����

h
g��h �k��g��h �k� � �g��h �k�g��h �k���

� g��h �k�g��h �k�g��h �k�
i
�

� 
�
Z

dk

�����

h
g��h �k��g��h �k� � g��h �k�g��h �k��

i
�

� �q�Zh��	h �

�A�����

The last equality follows from the identity


�
g��h �k�g��h �k� � g��h �k��� � �T��k�
�

Dh�k�
�A�����

and from the observation that T��k�
� � T��k�� in the approximation

of item ��� above� We also used the fact that g��h �k� � �g��h �k� �

�g��h ��k�� Hence �A����� can be written as

�
h��
�

�
�h�

�
hF�� � ��hF��

i
�q�Zh

�
p��
�m

��

��	h � �A���	�

The quartic term in the equation for �h is associated with the graphs

drawn in �A������

� �� � ��

� ��� � � �

�A�����
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The contribution to LVh����� coming from the graphs in �A����� is

� �
�!
�� 	 �

�
p��
�m

��

��h��	hF�� � �A�����

where

��	h � 
�
Z

dk

�����

h
g��h �k��g��h �k�� � �g��h �k�g��h �k��g��h �k��

� g��h �k�� � �g��h �k�g��h �k��g��h �k� � �g��h �k�g��h �k��g��h �k�
i
�

� 
�
Z

dk

�����

h
g��h �k�g��h �k� � g��h �k��

i�
� ��	h � �A�����

where we used again the identity �A������

The leading contribution in the �ow equation for Zh is the quadratic

term associated with the graph in the �rst line of �A������ whose con

tribution to the local part is

��
�
�

�
p��
�m

��

��h��q�Zh�
���	hF�� �A�����

�

�A�����

and no operators involving �eld derivatives arise because this is a margin

al operator�

The contribution to the local part of the last two graphs of �A�����

is

� �
�
��
�
p��
�m

��

��h

n
�hF��

Z
dk

�����

h
g��h �k�g��h �k� � g��h �k��

i
�

� �
�

�

���
t	h � �

���
t	h �q

�
�Dtt � �

�

�

���
s	h � �

���
s	h��m

�q��Dss

o
� �A�����
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where Dtt and Dss are de�ned as in ������ and

�
�i�
t	h �

Z
dx x��

h
g��i	h �x�

� � g��i	h �x�g
��
i	h �x�

i
�

�
�i�
s	h �

Z
dx �x�

h
g��i	h �x�

� � g��i	h �x�g
��
i	h �x�

i
�

�A��	��

g����i	h �x� �
�

�����

Z
dk

e�ikx Ti�k� �p����h �k�


Dh�k�
� �A��	��

We have


��
�i�
t	h �

Z
dk

�����

n
E�
h

h �

�k�

k�Ti
Dh

i�
�

�
h �

�k�

Ti
Dh

i �

�k�

h�
�� E�

hk
�
�

Dh

�
Ti

io
�

�

Z
dk

�����

n
E�
h

T �
i

D�
h

�
� �

�k�

Ti
Dh

��Ti
�k�

o
�

�A��	��

It is easy to see that the terms containing the derivatives of Ti give the

same contribution to �
���
t	h and �

���
t	h � so that� by doing in the remaining

term the approximation of item ��� above� we get


�
�
���
t	h � �

���
t	h � � ��	hE

�
h � �A��		�

We have also


��
�i�
s	h �

�X
j��

Z
dk

�����

n
E�
h

h �

�kj

k�Ti
Dh

i�
�

� �
h �

�kj

Ti
Dh

i �

�kj

h�
�� E�

hk
�
�

Dh

�
Ti

io
�

�
�X

j��

Z
dk

�����

� �

�kj

Ti
Dh

��Ti
�kj

�

�A��	��

and one can see again that the terms containing the derivative of Ti give

the same contribution to ����s	h and �
���
s	h� so that

�
���
s	h � �

���
s	h � � � �A��	��

In summary� the contribution to the local part of the last two graphs

of �A����� is

���	h

�
p��
�m

��

��h
�hF�� � ��	hE

�
h

�
p��
�m

��

��hq
�
�Dtt � �A��	��
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�A��	��

The leading contribution in the �ow equation for Eh is associated with

the graph drawn in �A��	��� whose local part is calculated by taking the

�rstorder Taylor expansion of the external �� �eld� The term of order
zero� which would contribute to the relevant term F��� cancels out for

parity reasons� as well as the term of order one containing the spatial

derivatives� so that the local part is equal to

��
�
� � �

�
p��
�m

��

��h��
���
�	h � �

���
�	h�q���Dt� � �A��	��

where Dt is de�ned as in ������ and� if we use also the de�nition �A��	���

�
�i�
�	h � 
�

Z
dx x�g

��
i	h �x�g

��
i	h �x� � �A��	��

We have

�
�i�
�	h � �q�ZhEh

Z
dk

�����
k�Ti
Dh

h �

�k�

Ti
Dh

i
� �A�����

and we can see� as before� that the terms containing the derivatives of

Ti give the same contribution to �
���
�	h and �

���
�	h� so that� in the usual

approximation�

�
���
�	h������	h � ��q�ZhEhbh

Z
dk

�����
k��T��k�

D�
h

� ��q�ZhEh��	h � �A�����

where the last equality follows from an explicit calculation and ��	h is

exactly the same function of ah and bh de�ned in �A������ Hence� the

local part of the graph drawn in �A��	�� can be written as

��
�
p��
�m

��

q���
�
hZhEh��	hDt � �A�����

The �ow equations immediately follow from �A������ �A������

�A���	�� �A������ �A������ �A��	��� and �A������

�h�� � �h � 	���Zh����	h
�
�h � ��h

��Zh

��
�
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�h�� � �h � ����Zh����	h�h
�
�h � ��h

��Zh

�
�

Zh�� � Zh � �Z�
h��	h�

�
h � �A���	�

Ah�� � Ah �

Bh�� � Bh �
�

�
��	hE

�
h�

�
h �

Eh�� � Eh � �ZhEh��	h�
�
h �

	h�� � �
h
	h � ��Zh��	h�h � ���	h��h

i
�

where

��	h �
log 

���
p
a�hbh

p��


� ��	h �

�� ��

����
p
ahbh � ah�

p��



� �A�����

with

ah � �Zh�� � �Ah�� bh � E�
h � ��ZhBh � �A�����

and the ������� follow immediately from the above by replacing �h via

������ and by adopting the notations declared for ��������

One may wonder whether it might be that the equation for �h is

compatible with the others� Of course� if ������ is valid� it must be�

this can also be seen directly �and in fact it is this remark that would

make one conjecture the exact relation ������� if one did not know it��

However� the compatibility is true only to the order of the calculation

that we are performing� i�e�� within the neglected corrections� if we did

not know a priorithe validity of ������� we could not guarantee that

the corrections and the incertitude of the initial data would not spoil

the relation ������ and turn the �ow equation into an unmanageable

relation of little use�
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