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PREFACE

This book presents a detailed and comprehensive treatment of laser physics and
laser theory which can serve a number of purposes for a number of different
groups. It can provide, first of all, a textbook for graduate students, or even
well-prepared seniors in science or engineering, describing in detail how lasers
work, and a bit about the applications for which lasers can be used. Problems,
references and illustrations are included throughout the book.

Second, it can also provide a solid and detailed description of laser physics
and the operational properties of lasers for the practicing engineer or seientist
who needs to learn about lasers in order to work on or with them.

Finally, the advanced sections of this text are sufficiently detailed that this
book will provide a useful one-volume reference for the experienced laser engineer
or laser researcher’s bookshelf. The discussions of advanced laser topics, such as
optical resonators, Q-switching, mode locking, and injection locking, extend far
enough into the current state of the art to provide a working reference on these
and similar topics. References for further reading in the recent literature are
included in nearly every section.

One unique feature of this book is that it removes much of the quantum
mystique from “quantum electronics” (the generic label often applied to lasers
and laser applications). Many people think of lasers as quantum devices. In
fact, however, most of the basic concepts of laser physics, and virtually all the
practical details, are classical in nature. Lasers (and masers) of all types and in all
frequency ranges are simply electronic devices, of great interest and importance
to the electronics engineer.

In the analogous case of semiconductor electronics, for example, the transis-
tor is not usually thought of as a quantum device. Mental images of holes and
electrons as classical charged particles which accelerate, drift, diffuse and re-
combine are used both by semiconductor device engineers to de practical device
engineering, and by solid-state physics researchers to understand sophisticated
physics experiments. These classical concepts serve to explain and make under-
standable what is otherwise a complex quantum picture of energy bands, Blech
wavefunctions, Fermi-Dirac distributions, and occupied or unoccupied quantum
states. The same simplification can be accomplished for lasers, and laser devices
can then be very well understood from a primarily classical viewpoint, with enly
limited appeals to quantum terms or concepts.

The approach in this book is to build primarily upon the classical electron
oscillator model, appropriately extended with a descriptive picture of atomic en-

ergy levels and level populations, in order to provide a fully accurate, detailed

and physically meaningful understanding of lasers. This can be accomplished

xiii
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PREFACE

without requiring a previous formal background in quantum theory, and also
without attempting to teach an abbreviated and inadequate course in this sub-
ject on the spot. A thorough understanding of laser devices is readily available
through this book, in terms of classical and descriptively quantum-mechanical
concepts, without a prior course in quantum theory.

I have also attempted to review, at least briefly, relevant and necessary back-
ground material for each successive topic in each section of this book. Students
will find the material most understandable, however, if they come to the book
with some background in electromagnetic theory, including Maxwell’s equations;
some understanding of the concept of electromagnetic polarization in an atomic
medium; and some familiarity with the fundamentals of electromagnetic wave
propagation. An undergraduate-level background in optics and in Fourier trans-
form concepts will certainly help; and although familiarity with quantum theory
is not required, the student must have at least enough introduction to atomic
physics to be prepared to accept that atoms do have quantum properties, espe-
cially quantum energy levels and transitions between these levels.

The discussions in this book begin with simple physical descriptions and
then go into considerable analytical detail on the stimulated transition process
in atoms and molecules; the basic.amplification and oscillation processes in laser
devices; the analysis and design of laser beams and resonators; and the com-
plexities of laser dynamics (including spiking, Q-switching, mode locking, and
injection locking) common to all types of lasers. We illustrate the general princi-
ples with specific examples from a number of important common laser systems,
although this book does not attempt to provide a detailed handbook of different
laser systems. Extensive references to the current literature will, however, guide
the reader to this kind of information.

There is obviously a large amount of material in this book. The author has
taught an introductory one-quarter “breadth” course on basic laser concepts for
engineering and applied physics students using most of the material from the
first part of the book on “Basic Laser Physics” (see the Table of Contents),
especially Chapters 1-4, 6-8 and 11-13. A second-quarter “depth” course then
adds more advanced material from Chapters 5, 9, 10, 30, 31 and selected sections
from Chapters 24-29. A complete course on optical beams and resonators can
be taught from Chapters 14 through 23.

I am very much indebted to many colleagues for help during the many years
while this book was being written. I wish it were possible to thank by name all the
students in my classes and my research group who lived through too many years
of drafts and class notes. Special thanks must go to Judy Clark, who became
a TgX and computer expert and did so much of the editing and manuscript
preparation; to the Air Force Office of Scientific Research for supporting my
laser research activities over many years; to Stanford University, and especially
to Donald Knuth, for providing the environment, and the computerized text
preparation tools, in which this book could be written; and to the Alexander
von Humboldt Foundation and the Max Plarick Institute for Quantum Optics in
Munich, who supplied the opportunity for the manuscript at last to be completed.
Finally, there are my wife Jeannie, and my family, who made it all worthwhile.

Anthony E. Siegman

UNITS AND NOTATION

The units and dimensions in this book are almost entirely mks, or SI, except for
a few concessions to long-established habits such as expressing atomic densities
N in atoms/cm® and cross sections ¢ in cm?. Such non-mks values should of
course always be converted to mks units before plugging them into formulas.

In general, lower-case symbols in bold-face type such as E(r,t), b(r,t),
h(r, t), and so on refer to electromagnetic field quantities as real vector functions
of space and time, while £(r,t), b(r,t), h(r,?), etc., refer to the scalar counter-
parts of the same quantities. Bold-face capital letters E, B, H, etc., refer to the
complex phasor amplitudes of the same vector quantities with ei®* variations,
while E, B, H, etc., are the complex phasor amplitudes of the corresponding
scalars. As illustrated here, complex quantities are sometimes, but not always,
identified by a superposed tilde.

In writing sinusoidal signals and waves, waves propagating toward positive z
are written in the “electrical engineer’s form” of exp J(wt — B2) rather than the
“physicist’s form” of exp i(kz — vt). (This of course does not imply that ¢ = —j!)
Linewidths Af, Aw, AX and pulsewidths At, T or T, unless specifically noted,
always mean the full width at half maximum (FWHM).

In contrast to much of the published literature, an attenuation or gain co-
efficient o in this book always refers to an amplitude or voltage growth rate,
such as for example £(z) = £(0) exp £az. Signal powers or intensities in this
book, therefore, always grow or attenuate with exponential growth coefficients
2« rather than a.

The notation in the book has a few other minor idiosyncrasies. First, we are
often concerned with signals and waves inside laser crystals, in which the host
crystal itself has a dielectric constant € and an index of refraction n even without
any atomic transition present. To take the dielectric properties of a possible host
medium into account, the symbols ¢, ¢ and A in formulas in this text always refer
to the dielectric permeability, velocity of light and wavelength of the radiation
in the dielectric medium if there is one. We then use ¢ and Ap in the few cases
where it is necessary to refer to these same quantities specifically in vacuum.
The advantage of this choice is that all our formulas involving €, ¢ and A remain
correct with or without a dielectric host medium, without needing to clutter
these formulas with different powers of the refractive index n.

The other special convention peculiar to this book is the nonstandard manner
in which we define the complex susceptibility ¥,: associated with a resonant
atomic transition. In brief, we define the linear relationship between the induced
polarization P, on an atomic transition in a laser medium and the electric field
E that produces this polarization by the convention that By = XateE where €
is the dielectric permeability of the host laser crystal rather than the vacuum
value €o usually used in this definition. The merits of this nonstandard approach
are argued in Chapter 2. ‘
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LIST OF SYMBOLS

Throughout this text we attempt to follow a consistent notation for subscripts,
using the conventions that:

a =

either atomic, as in atomic transition frequency w, or homogeneous
atomic linewidth Aw,; or sometimes absorption, as in absorption coef-
ficient .

cavity, as in cavity decay time 7. or cavity energy decay rate .; also,
carrier, as in carrier frequency w,. :

doppler, as in doppler broadening with linewidth Awg, and by extension
any other kind of inhomogeneous broadening.

external, as in cavity external coupling factor d. or external decay rate
Ye; also, sometimes, effective, as in effective lifetime or pumping rate.

molecular or maser, generally used to refer to atomic or maser or laser
quantities, e.g., laser gain coefficient a,, or laser growth rate ~,.

ohmic, referring generally to internal ohmic and/or scattering losses, as
in the ohmic loss coefficient g or ohmic cavity decay rate -yo. Also used
in several other ways, generally to indicate an initial value; a thermal
equilibrium value; a small-signal or unsaturated value; a midband value;
or a free-space (vacuum) values, as in ¢y, €9, and Ag.

pump, as in pumping rate R, or pump transition probability W,.

‘We also frequently use az = axial; avail = available; circ = circulating;
eff = effective; eq = equivalent; inc = incident; opt = optimum; out
= output; refl = reflected; rt = round-trip; sat = saturation; sp =
spontaneous or spiking; ss = small-signal or steady-state; and th =
threshold as compound subscripts.

A partial list of symbols used in the text then includes:

o =

all _
Q=

Qg =

Br =
ﬁ’yﬂ” =
A,Bm =

exponential gain or loss coefficient for amplitude (or voltage); also, am-
plitude parameter for gaussian optical pulse

second derivative of a(w) with respect to w

complex amplitude of n-th order Hermite-gaussian mode
maser/laser/molecular gain (or loss) coefficient

ohmic and/or scattering loss coefficient

= propagation constant, including host dielectric effects, but usually not

loss or atomic transition effects; also, chirp parameter for gaussian
pulse; relaxation-time ratio in multilevel laser pumping systems; Bohr
magneton

Nuclear magneton

first and second derivatives of B(w) with respect to w

added propagation constant term due to reactive part of an atomic
transition



xvii LIST OF SYMBOLS
v = in general, an energy or population decay rate
7. = decay rate for cavity stored energy (= 1/7.)
v; = total downward population decay rate from energy level E;
7 = population decay rate from upper level E; to lower level E;
4nr = nonradiative part of total decay rate for a classical oscillator or an
atomic transition
Yred = radiative decay rate for classical electron oscillator or real atomic tran-
sition
4 = complex eigenvalue for optical resonator or lensguide
Amn = complex eigenvalue for mn-th order transverse eigenmode
I' = a+ jB = complex propagation constant for an optical wave
= a — jf = complex gaussian pulse parameter
§ = coefficient of (logarithmic) fractional power gain or loss, per bounce or
per round trip
6. = total (round-trip) power loss coefficient due to cavity losses plus exter-
nal coupling
8¢ = cavity loss coefficient due to external coupling only
6m = power gain coefficient due to laser atoms -
8o = cavity loss coefficient due to internal (ohmic) losses only
A, = AM or FM modulation index
€ = dielectric permeability of a medium
€o = dielectric permeability of free space. (vacuum)
1 = efficiencies of various sorts; also, characteristic impedance \/;T/E of a
dielectric medium
7o = characteristic impedance of free space (vacuum)
A = optical wavelength (in a medium); also, eigenvalue for optical ray matrix
Ao = optical wavelength in vacuum
ey Ap = eigenvalues of periodic lensguide or ABCD matrix
= spatial period of optical grating
= electric or magnetic dipole moment; also, magnetic permeability of a
magnetic medium
pe = electric dipole moment
Mm = magnetic dipole moment
po = magnetic permeability of free space
p = amplitude reflection or transmission of optical mirror or beamsplitter;
also, distance between two points; p(w) = cavity mode density
p = complex amplitude reflection or transmission of optical mirror or beam-
splitter
o = ohmic conductivity; also, transition cross section, standard deviation
oij = cross section for stimulated transition from level E; to E;
T = lifetime or decay time
T = cavity decay time due to all internal losses plus external coupling
7; = total lifetime (energy decay time) for energy level E;
0,4, = phase shifts and phase angles of various sorts
(7, t) = Schrodinger wave function

1/)17!‘"

X x"
)zat

Xes Xm =

Wo
Wh
We
w;(t)

Sy]

o

Qs

cC
CEO

ISH

LIST OF SYMBOLS xix

Guoy phase shift for an mn-th order gaussian beam
susceptibility of a dielectric or magnetic medium = ¥’ + jx”
real and imaginary parts of x

susceptibility of a resonant atomic transition

electric (magnetic) dipole susceptibilities

frequency (in radians/second)

in general, a frequency that has been shifted, pulled, or modified in
some small manner

atomic transition frequency

a beat frequency (between two signals)

cavity or circuit resonant frequency; also, carrier frequency’
instantaneous frequency of a phase-modulated signal
generally, a modulation frequency of some sort

resonant frequency of g-th axial mode

Rabi frequency on an atomic transition

Spiking or relaxation-oscillation frequency

frequency pulling of axial mode frequency w,

linewidth, or frequency tuning, in radians/sec

atomic linewidth, (FWHM)nin radians/sec

axial mode spacing between adjacent axial modes,

solid angle; also, radian frequency or rotation rate

normalized wave amplitudes

area

Einstein A coefficient on E; — E; transition

matrix elements for optical ray matrix or paraxial optical system
magnetic field as real function of space and time; also, confocal param-
eter for gaussian beam

magnetic field as real vector function of space and time; also, confocal
parameter for gaussian beam

magnetic field; also, pressure-broadening coefficient or “B integral” for
nonlinear interaction

phasor amplitude of sinusoidal B field

velocity of light in a material medium

velocity of light in vacuum

in general, an unspecified constant; also, electrical capacitance; coupling
coefficient in mode competition analysis

complex conjugate (of preceding term)

classical electron oscillator model

electric displacement as real function of space and time; also, distance
or displacement

electric displacement as real vector function of space and time
dimensionless dispersion parameter

phasor amplitude of sinusoidal electric displacement

magnitude of electronic charge

electric field; usually, real field £(z,t) as function of space and time



LIST OF SYMBOLS
E = phasor amplitude of sinusoidal E field
E,(t) = amplitude of n-th mode in a normal mode expansion

!
f#
Af
Afa =
Afy=
F =
F=
ﬁ'(z) =
Fj =
g =

9(v),9(w) =
g =

9i, 95 =

g1 =

grt =

G =

Gip =

frequency in Hz (= cycles/sec); also, lens focal length

lens f-number

linewidth, or frequency detuning, in Hz

atomic transition linewidth (FWHM) in Hz

doppler or inhomogeneous linewidth (FWHM) in Hz

oscillator strength for an atomic transition; also, lens f-number
finesse, of interferometer or laser cavity

Fresnel integral function

oscillator strength of E; — E; atomic transition ="y;aq,ji/37rad,ceo
amplitude (or voltage) gain, as a number; also, gaussian stable resonator
parameter; magnetic resonance g value

normalized lineshapes

complex amplitude (or voltage) gain, as a (complex) number
degeneracy factors for quantum energy levels E; and E;

nuclear magnetic resonance g value

round-trip voltage gain inside an optical cavity

power gain (as a number); also, electrical conductance

power gain in decibels

= magnetic intensity as real function of space and time; also, Planck’s

constant

h/2m

magnetic H field as real vector function of space and time
n-th order polynomial function

= phasor amplitude of sinusoidal H field

n-th order hermite polynomial
intensity (power/unit area) of an optical wave; also sometimes, loosely,
total power in the wave

= modified Bessel function of order m
= amplifier (or absorber) saturation intensity

current density as real function of space and time; also, v/—1
current density as real vector function of space and time
phasor amplitude of sinusoidal current density

= Bessel function of order m

propagation vector of optical wave = w/e

= scalar constant in various equations (especially coupled rate equations);

also, spring constant in classical oscillator model

= length; electrical inductance

electron mass; also, magnetization (magnetic dipole moment per unit
volume) as real function of time

magnetization (magnetic dipole moment per unit volume) as real vector
function of space and time

= half-trace parameter for ray or ABC D matrix
= proton mass; molecular mass

Tp

0§

MR e ow &

LIST OF SYMBOLS

phasor amplitude of sinusoidal magnetic dipole moment

optical ray matrix or ABCD matrix

refractive index; also, photon number n(t) (number of photons per cav-
ity mode)

optical Kerr coefficient nog or noy

atomic number or level population; usually interpreted as atoms per
unit volume, sometimes as total number of atoms

population difference, or population difference density, on an atomic
transition (AN;; = N; — Nj)

Fresnel number a2/L) for an optical beam or resonator

collimated Fresnel number for an unstable optical resonator
equivalent Fresnel number for an unstable optical resonator
population, or population density, in atomic energy level E;
perimeter, period or round-trip path length, for cavities or periodic
lensguides; also, electric polarization (electric dipole moment per unit
volume) as real function of time, and laser mode density or mode num-
ber

electric polarization (electric dipole moment per unit volume) as real
vector function of space and time

path length (round-trip) through an atomic or laser gain medium
power, in watts; also, pressure, in torr

= polarization driving term for n-th order cavity mode in coupled-mode

expansion
phasor amplitude of sinusoidal electric polarization

-axial mode index

complex gaussian beam parameter or complex radius of curvature
reduced gaussian beam parameter, §/n

= amplitude reflectivity of mirror or beamsplitter; also, dimensionless or

normalized pumping rate; displacement off axis of optical ray

reduced slope n dr/dz for optical ray

shorthand for spatial coordinates z,y, z

complex scattering matrix element, or mirror or beamsplitter reflection
coefficient

dimensionless pumping rate or inversion ratio, relative to threshold
pumping rate or threshold inversion density

= volume element, dV" or dz dy dz

= power reflectivity of mirror or beamsplitter (= |r|?); also, electrical

resistance; radius of curvature for mirror, dielectric interface, or optical
wave

reduced radius of curvature R/n

pumping rate in atoms per second and, usually, per unit volume
spatial frequency (cycles/unit length)

shorthand for transverse spatial coordinates x,y

transverse area element dA or dx dy

= multiport scattering matrix (matrix elements S;;)
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time; also, amplitude transmission through mirror, beamsplitter, or
light modulator

complex amplitude transmission coefficient through mirror, beamsplit-
ter or light modulator

complex scattering matrix element, or mirror/beamsplitter transmis-
sion coefficient

power transmission of mirror or beamsplitter (= |¢|2); also, cavity
round-trip transit time, or temperature (K)

dimensionless susceptibility tensor

laser oscillation build-up time

temperature of “nonradiative” surroundings

temperature of radiative surroundings

energy decay time, population recovery time, longitudinal relaxation
time

dephasing time, collision time, transverse relaxation time

effective T, or dephasing time for inhomogeneous (gaussian) transition
complex (and usually normalized) optical wave amplitude

energy or, more commonly, energy density (energy per unit volume)

energy density in a collection of atoms or atomic energy level popula-
tions

= energy density of blackbody radiation

velocity of an atom, an electron, or a wave
complex spot size for Hermite-gaussian modes
group velocity

= phase velocity
= volume (of a cavity mode-er field pattern)

gaussian spot size parameter (1/e amplitude point)

total relaxation transition probability (per atom, per second) from level
E; to level E;

stimulated transition probability (per atom, per second) from level E;
to level E;

= pumping transition probability (per atom, per second)

displacement of electronic charge in classical electron oscillator model
dispersion length for dispersive pulse broadening
Rayleigh range for a gaussian or collimated optical beam

= atomic number

dimensionless population saturation factor, with values between 2* =1
(lower level empties out rapidly) and 2* = 2 (lower level bottlenecked)
dimensionless polarization overlap factor for atomic interactions, with
numerical value between 0 and 3
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AN INTRODUCTION TO LASERS

Lasers are devices that generate or amplify coherent radiation at frequencies
in the infrared, visible, or ultraviolet regions of the electromagnetic spectrum.
Lasers operate by using a general principle that was originally invented at micro-
wave frequencies, where it was called microwave amplification by stimulated
emission of radiation, or maser action. When extended to optical frequencies
this naturally becomes light amplification by stimulated emission of radiation,
or laser action.

This basic laser or maser principle is now used in an enormous variety of
devices operating in many parts of the electromagnetic spectrum, from audio
to ultraviolet. Practical laser devices in particular employ an extraordinary va-
riety of materials, pumping methods, and design approaches, and find a great
variety of applications. The study of laser and maser devices and their scientific
applications is often referred to as the field of quantum electronics.

From an electronics-engineering viewpoint, the developments that followed
the operation of the first ruby laser in 1960 suddenly pushed the upper limit of
coherent electronics from the millimeter-wave range, using microwave tubes and
transistors, out to include the submillimeter, infrared, visible, and ultraviolet
spectral regions (and soft X-ray lasers are now on the horizon). All the familiar
functions of coherent signal generation, amplification, modulation, information
transmission, and detection are now possible at frequencies up to a million times
higher, or wavelengths down to a million times shorter, than previously. But
it has also become possible for engineers and scientists, in fields of technology
ranging from microbiology to auto manufacture, to perform an almost unlimited
variety of new and unexpected functions made possible by the short wavelengths,
high powers, ultrashort pulsewidths, and other unique characteristics of these
laser devices.

In the twenty-odd years since the first appearance of coherent light, lasers
have become widespread and almost commonplace devices. The importance and
the excitement of the laser and its applications, however, still can hardly be
overestimated. The objective of this book is to explain in detail how lasers work,
what the performance characteristics of typical lasers are, and how lasers are
employed in a wide variety of applications. Our goal in this opening chapter is '
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Elements of a typical laser oscillator.

to give an abbreviated overview of these same points, as a synopsis of what will
be presented in much more detail in the remainder of the book.

1.1 WHAT IS A LASER?

Lasers, broadly speaking, are devices that generate or amplify light, just as tran-
sistors and vacuum tubes generate and amplify electronic signals at audio, radio,
or microwave frequencies. Here “light” must be understood broadly, since differ-
ent kinds of lasers can amplify radiation at wavelengths ranging from the very
long infrared region, merging with millimeter waves or microwaves, up through
the visible region and extending now to the vacuum ultraviolet and even X-
ray regions. Lasers come in a great variety of forms, using many different laser
materials, many different atomic systems, and many different kinds of pump-
ing or excitation techniques. The beams of radiation that lasers emit or amplify
have remarkable properties of directionality, spectral purity, and intensity. These
properties have already led to an enormous variety of applications, and others
undoubtedly have yet to be discovered and developed.

Essential Elements of a Laser

The essential elements of a laser device, as shown in Figure 1.1, are thus: (i)
a laser medium consisting of an appropriate collection of atoms, molecules, ions,
or in some instances a semiconducting crystal; (ii) a pumping process to excite
these atoms (molecules, etc.) into higher quantum-mechanical energy levels; and
(iii) suitable optical feedback elements that allow a beam of radiation to either
pass once through the laser medium (as in a laser amplifier) or bounce back and
forth repeatedly through the laser medium (as in a laser oscillator).
These elements come in a great variety of forms and fashions, as we will see
when we begin to examine each of them in more detail.

Laser- Atoms and Laser Pumping

For simplicity we will from now on use “atoms” as a general term for
whatever kind of atoms or molecules or ions or semiconductor electrons may
be used as the laser medium. A pumping process is then required to excite
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these atoms into their higher quantum-mechanical energy levels. Practical laser
materials can be pumped in many ways, as we will describe later in this text.

For laser action to occur, the pumping process must produce not merely
excited atoms, but a condition of population inversion (Figure 1.2), in which
more atoms are excited into some higher quantum energy level than are in some
lower energy level in the laser medium. It turns out that we can obtain this
essential condition of population inversion in many ways and with a wide variety
of laser materials—though sometimes only with substantial care and effort.

Laser Amplification

Once population inversion is obtained, electromagnetic radiation within
a certain narrow band of frequencies can be coherently amplified if it passes
through the laser medium (Figure 1.3). This amplification bandwidth will extend
over the range of frequencies within about one atomic linewidth or so on either
side of the quantum transition frequency from the more heavily populated upper
energy level to the less heavily populated lower energy level.

Coherent amplification means in this context that the output signal after
being amplified will more or less exactly reproduce the input signal, except for
a substantial increase in amplitude. The amplification process may also add
some -small phase shift, a certain amount of distortion, and a small amount of
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amplifier noise. Basically, however, the amplified output signal will be a coherent
reproduction of the input optical signal, just as in any other coherent electronic
amplification process. '

Laser Oscillation

Coherent amplification combined with feedback is, of course, a formula for
producing oscillation, as is well known to anyone who has turned up the gain on
a public-address system and heard the loud squeal of oscillation produced by the
feedback from the loudspeaker output to the microphone input. The feedback in
a laser oscillator is usually supplied by mirrors at each end of the amplifying laser
medium, carefully aligned so that waves can bounce back and forth between these
mirrors with very small loss per bounce (Figure 1.4). If the net laser amplification
between mirrors, taking into account any scattering or other losses, exceeds the
net reflection loss at the mirrors themselves, then coherent optical oscillations
will build up in this system, just as in any other electronic feedback oscillator.

When such coherent oscillation does occur, an output beam that is both
highly directional and highly monochromatic can be coupled out of the laser
oscillator, either through a partially transmitting mirror on either end, or by some
other technique. Thisoutput in essentially all lasers will be both extremely bright
and highly coherent. The output beam may also in some cases be extremely
powerful. Just what we mean by “bright” and by “coherent” we will explain
later.

REFERENCES

The first stimulated emission devices, before lasers, were various kinds of masers, which
operated on essentially the same basic physical principles, but at much lower frequencies
and with much different experimental techniques. For an overview and unified approach
to all these devices, see my earlier texts Microwave Solid-State Masers (McGraw-Hill,
1964) and An Introduction to Lasers and Masers (McGraw-Hill, 1971).

Some other good books on lasers can be found. A more elementary introduction,
with good illustrations, is D. C. O’Shea, W. R. Callen, and W. T. Rhodes, Introduction
to Lasers and Their Applications (Addison-Wesley, 1977). A good general coverage is
also given in O. Svelto, Principles of Lasers (Plenum Press, 1982). Two well-known texts
by A. Yariv are Introduction to Optical Electronics (Rinehart and Winston, 1971) and
the more advanced Quantum Electronics (Wiley, 1975).

1.1 WHAT IS A LASER?

For full quantum-mechanical treatments of lasers, two good choices are M. Sargent
III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, 1977), and H.
Haken, Laser Theory (Springer-Verlag, 1983).

A useful short biblibgraphic survey of laser references, aimed particularly at the
college teacher, can be found in “Resource Letter L-1: Lasers,” by D. C. O’Shea and
D. C. Peckham, Am. J. Phys. 49, 915-925 (October 1981).

For more advanced information on various laser topics, the four-volume Laser Hand-
book, edited by F. T. Arecchi and E. O. Schulz-Dubois (North-Holland, Amsterdam,
1972), provides an encyclopedic source with detailed articles on nearly every topic in
laser physics, devices, and applications. If you’d like to look at some of the impor-
tant original literature on lasers for yourself, well-chosen selections can be found in
F. S. Barnes, ed., Laser Theory (IEEE Press Reprint Series, IEEE Press, 1972), or
in D. O’Shea and D. C. Peckham, Lasers: Selected Reprints (American Association of
Physics Teachers, Stony Brook, N. Y., 1982).

If you would like to do experiments with a home-made laser or just see how one might
be constructed, a useful collection of articles from the “Amateur Scientist” section
of Scientific American has been reprinted under the title Light and Its Uses, with
introduction by Jearl Walker (W. H. Freeman and Company, 1980). Topics covered
include simple helium-neon, argon-ion, carbon-dioxide, semiconductor, tunable dye,
and nitrogen lasers, plus experiments on holography, interferometry, and spectroscopy.

Problems for 1.1

1. Diagramming the electromagnetic spectrum. On a large sheet of paper lay out a
logarithmic frequency scale extending from the audio range (say, f = 10 Hz) to
the far ultraviolet or soft X-ray region (say, A = 100 A). Mark both frequency
and wavelength below the same scale in powers of 10 in appropriate units, e.g.,
Hz, kHz, MHz, and m, mm, um. (You might also mark a “wavenumber” scale
for 1/ in units of cm™, and an energy scale for fiw in units of eV.) Above the
scale indicate the following landmarks (plus any other significant ones that occur
to you):

e Audio frequency range (human ear) (20-15000 Hz)
e Standard AM and FM broadcast bands (535-1605 kHz, 88-108 MHz)
o Television channels 2-6 (54-88 MHz) and 7-13 (174-216 MHz)
e Microwave radar “S” and “X” bands (2-4 and 8-12 GHz)
e Visible region (human eye)
e Important laser wavelengths, including:

HCN far-IR laser (311, 337, 545, 676, 744 pm)

H.O far-IR laser (28, 48, 120 pm)

COz laser (9.6-10.6 pm)

CO laser (5.1-6.5 pm)

HF chemical laser (2.7-3.0 pm)

Nd:YAG laser (1.06 pm)

He-Ne lasers (1.15 pm, 633 nm)

GaAs semiconductor laser (870 nm)

Ruby laser (694 nm)
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Helium discharge spectrum observed through an inexpensive replica transmission
grating.
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1.2 ATOMIC ENERGY LEVELS AND SPONTANEOUS EMISSION

Our objective in this section is to give a very brief introduction to the concepts
of atomic energy levels and of spontaneous emission between those levels. We
attempt to demonstrate heuristically that atoms (or ions, or molecules) have
quantum-mechanical energy levels; that atoms can be pumped or excited up
into higher energy levels by various methods; and that these atoms then make
spontaneous downward transitions to lower levels, emitting radiation at char-
acteristic transition frequencies in the process. (Readers already familiar with
these ideas may want to move on to Section 1.3.)

The Helium Spectrum

Figure 1.5 illustrates a simple experiment in which a small helium discharge
lamp (or lacking that, a neon sign) is viewed through an inexpensive transmission
diffraction grating of the type available at scientific hobby stores. (If you have
never done such an experiment, try to do this demonstration for yourself.)

T
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Helium spectral lines, four common laser lines, and human visual sensitivity.

When viewed directly the discharge helium lamp appears to emit pinkish-
white light. When viewed through the diffraction grating, however, each wave-
length in the light is diffracted at a different angle. Upon looking through the
grating, you therefore observe multiple images of the lamp, each displaced to a
different discrete angle, and each made up of a different discrete wavelength or
color emitted by the helium discharge. A strong yellow line at 5876A (or 588 nm)
is particularly evident, but violet, green, blue, red, and deep red lines are also
readily seen. These visible wavelengths are plotted in Figure 1.6, along with (as a
matter of curiosity) the relative response of the human eye, and the wavelengths
of four of the more common visible lasers.

These different wavelengths are, of course, only a few of the discrete compo-
nents in the fluorescence spectrum of the helium atoms. In the helium discharge
tube a large number of neutral helium atoms are present, along with a small
number of free electrons and a matching number of ionized helium atoms to
conduct electrical current. The free electrons are accelerated along the tube by
the applied electric field, and collide after some distance with the neutral he-
lium atoms. The helium atoms are thereby excited into various higher quantum
energy levels characteristic of the helium atoms. A small fraction are also ion-
ized by the electron collisions, thereby maintaining the electron and ion densities
against recombination losses, which occur mostly at the tube walls.

After being excited into upper energy levels, the helium atoms soon give up
their excess energy by dropping down to lower energy levels, emitting sponta-
neous electromagnetic radiation in the process. This spontaneous emission or
fluorescence is the mechanism that produces the discrete spectral lines.
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The Discovery of Helium

Helium was first identified as a new element by its fluorescence spectrum in the solar
corona. During the solar eclipse of 1868 a bright yellow line was observed in the emission
spectrum of the Sun’s prominences by at least six different observers. This line could be
explained in relation to the known spectral lines of already identified elements only by
postulating the existence of a new element, helium, named after the Greek word Helios,
the Sun. This same element was later, o£ course, identified and isolated on Earth.

Quantum Energy Levels

Figure 1.7 shows the ratheér complex set of quantum energy levels possessed
by even so simple an atom as the He atom. The solid arrows in this diagram
designate some of the spontaneous-emission transitions that are responsible for
the stronger lines in the visible spectrum of helium. The dashed arrows indicate
a few of the many additional transitions that produce spontaneous emission
at longer or shorter wavelengths in the infrared or ultraviolet portions of the
spectrum, lines which we can “see” only with the aid of suitable instruments.

Every atom in the periodic table, as well as every molecule or ion, has its
own similar characteristic set of quantum energy levels, and its own characteristic
spectrum of fluorescent emission lines, just as does the helium atom. Understand-
ing and explaining the exact values of these quantum energy levels for different
atoms and molecules, through experiment or through complex quantum analy-
ses, is the task of the spectroscopist. The complex labels given to each energy
level in Figure 1.7 are part of the working jargon of the spectroscopist or atomic
physicist. In this text we will not be concerned with predicting the quantum
energy levels of laser atoms, or even with understanding their complex labeling
schemes, except in a few simple cases. Rather, we will accept the positions and
properties of these levels as part of the data given us by spectroscopists, and will
concentrate on understanding the dynamics and the interactions through which
laser action is obtained on these transitions.

Planck’s Law

The relationship between the frequency wy; emitted on any of these tran-
sitions and the energies E2 and E; of the upper and lower atomic levels is given
by Planck’s Law

wa1 = ¥, 1
where % = h/2m, and Planck’s constant h = 6.626 x 1073 Joule-second.

In this text, as in real life, optical and infrared radiation will sometimes be
characterized by its frequency w, and sometimes by its wavelength Ao expressed
in units such as Angstroms (A), nanometers (nm), or microns (ym). Quantum
transitions and the associated transition frequencies are also very often charac-
terized by their transition energy or photon energy, measured in units of electron
volts (eV), or their inverse wavelength 1/X¢ measured in units of “wavenumbers”
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An energy-level diagram for the helium atom, showing the transitions responsible for the
strong visible spectrum, as well as various ultraviolet and infrared transitions.

or cm™!. Since we will be jumping back and forth between these units, it will be
worthwhile to gain some familiarity with their magnitudes. Some useful rules of
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thumb to remember are that
1 pm (“one micron”) = 1,000 nm = 100004 (2)

and that, in suitable energy units,

1.24
[wavelength Ag in microns]

®3)

[transition energy E2 — Ey in eV] =

Hence 10000A or 1 pm matches up with 16,000 cm™! or ~ 1.24 eV. A visible
wavelength of 500 nm or 5000A or 0.5 um thus corresponds to a photon energy
of 20,000 cm™! or ~ 2.5 eV. Note that this also corresponds to a transition
frequency of wg; /2™ = 6 x 10** Hz, expressed in the conventional units of cycles
per second, or Hertz.

Energy Levels in Solids: Ruby or Pink Sapphire

As another simple illustration of energy levels, try shining a small ultravio-
let lamp (sometimes called a “mineral light”) on any kind of fluorescent mineral,
such as a piece of pink ruby or a sample. of glass doped with a rare-earth ion,
or on a fluorescent dye such as Rhodamine 6G. These and many other materials
will then glow or fluoresce brightly at certain discrete wavelengths under such ul-
traviolet excitation. A sample of ruby, for example, will fluoresce very efficiently
at A = 694 nm in the deep red, a sample of crystal or glass doped with, say, the
rare-earth ion terbium, Tb3*, will fluoresce at A ~ 540 nm (bright green), and
a liquid sample of Rhodamine 6G dye will fluoresce bright orange.

Since ruby was the very first laser material, and is still a useful and instructive
laser system, let us examine its fluorescence in more detail. Figure 1.8 shows a
more sophisticated version of such an experiment, in which a scanning monochro-
mator plus an optical detector are used to examine the ruby fluorescent emission
in more detail. The lower trace shows the two very sharp (for a solid) and very
closely spaced deep-red emission lines that will be observed from a good-quality
ruby sample cooled to liquid-helium temperature. (At higher temperatures these
lines will broaden and merge into what appears to be a single emission line.)

Figure 1.9 shows the crystal structure of ruby. Ruby consists essentially of
lightly doped sapphire, Al,O3, with the darker spheres in the figure indicating
the A13* jons. (The lattice planes shown in the figure are ~ 2.16A apart.) Sap-
phire is a very hard, colorless (when pure), transparent crystal which can be
grown in large and optically very good samples by flame-fusion techniques. The
transparency of pure sapphire in the visible and infrared means that its Al3*
and 02~ atoms, when they are bound into the sapphire crystal lattice, have no
absorption lines from their ground energy levels to levels anywhere in the in-
frared or visible regions. Indeed, no optical aﬂsorption appears in pure sapphire
below the insulating band gap of the crystal in the ultraviolet.

We can, however, replace a significant fraction (several percent) of the A3+
ions in the lattice by chromium or Cr®* ions. The sapphire lattice as a result
acquires a pink tint at low chromium concentrations, or a deeper red color at
higher concentrations, and becomes what is called “pink ruby.” The individual
chromium ions, when they are bound into the sapphire lattice, have a set of
quantum energy levels that are associated with partially filled inner electron
shells in the Cr®+ ion. These energy levels are located as shown in Figure 1.10.
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FIGURE 1.8
Fluorescent emission from a ruby crystal. The numbers under the spectrum indicate the
slightly shifted transition frequencies corresponding to different isotopes of chromium.

The chromium ions can then absorb incident light in broad wavelength bands
extending across much of the visible and near ultraviolet, by making transitions
upward from the ground or A, Cr®* energy level to the series of broad bands
or groups of levels labeled F and 2F in Figure 1.10. The chromium ions that
are excited up into these levels then drop down by rapid nonradiative processes
(which we will discuss shortly) to the two sharp 2E levels shown in the figure.
From there, these ions relax across the remaining energy gap down to the ground
state by almost totally radiative relaxation, emitting the deep-red fluorescent
emission characteristic of ruby. (The two sharp 2E levels are often called the Ry
and R, levels, with most of the fluorescent emission coming from the lower or R;
level. The two very sharp emission lines shown in Figure 1.10 then represent the
separate transitions from the R; level down to the two closely spaced sublevels
of the *A; ground level.)

—%

Synthetic Sources of Pink Ruby

Sapphire, or rather pink ruby, was first grown in large amounts for use as jewels in the
Swiss watch industry (it is said the pink color was added to make the tiny jewels easier
to see and handle). Note that the energy levels of the Cr®* ion in ruby are very strongly
shifted by Stark effects associated with the bonding of the Cr®+ ion to the surrounding
lattice ions. Hence these levels are very different from what would be the energy levels
of an isolated Cr®* ion in free space. Many other colors of sapphire can also be created
by adding other impurities, such as Fe, Mn, or Co, but only chromium-doped sapphire
makes a good laser material.
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C axis

FIGURE 1.9
Sapphire crystal lattice.

Energy Levels in Solids: Rare Earth lons

Figures 1.11 and 1.12 show how a typical rare-earth ion such as Nd3* or
Tb3* can be bonded into an irregular glassy lattice structure, together with the
quantum energy levels associated with a trivalent terbium Tb3+ jon when such
an ion is dispersed at low concentration, either in a glass or in a crystal structure
(for example, CaF3).

Note that the energy levels of rare-earth ions such as Tb3* or Nd** are
associated with the electrons in the partially filled 4f inner shell of the rare-earth
atom. In nearly all solid materials, these inner electrons are well shielded, by
surrounding outer filled electron shells, from the crystalline Stark effects caused
by the bonds to surrounding atoms in the crystal or glass material. Hence the
quantum energy levels of such rare-earth ions are almost unchanged in many
different crystalline or glass host materials.

Almost any material containing small amounts of Tb3*, for example, will
fluoresce with the same brilliant green color around 540 nm, and materials con-
“taining Nd** all flioresce strongly around 1.06 pm in the niear infrared. There
are also several other sich rare-earth ions, including Dy?* , Tm?*, Ho+, Eu3+,
and Er®*, that make good to excellent laser materials.
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Optical Pumping of Atoms

All of these minerals illustrate another basic method for pumping or excit-
ing atoms into upper energy levels, that is, through the absorption of light at an
appropriate pumping wavelength. The high-pressure mercury lamp used as the
excitation source in a “mineral light” emits a broad continuum of visible and
ultraviolet wavelengths. As shown in Figures 1.8 and 1.12, some of these wave-
lengths will coincide with the transition frequencies from the lowest or ground
levels of the chromium or terbium ions (nearly all the ions are located at ground
level when in thermal equilibrium) up to some of the higher energy levels of these
ions.

These ions can thus absorb radiation (“absorb photons”) from the UV light
source at these particular frequencies, and as a result be lifted up to various of
the upper levels. This excitation is enhanced by the fact that in solids the higher
energy levels are often rather broad bands of levels. The absorption linewidths
of the ruby and terbium absorption lines are thus relatively broad, permitting
reasonably efficient absorption of the continuum radiation from the mercury
lamp.

Once they are lifted upward by this so-called “optical pumping,” the ions in
each case then relax or fluoresce down to lower energy levels, as shown in Figure
1.12, emitting a relatively sharp fluorescence at two or three visible wavelengths
as they drop from upper to lower levels.

Spontaneous Energy Decay or Relaxation

Let us discuss a little more the spontaneous decay or relaxation process
we have introduced here. Suppose that a certain number N of such atoms have
been pumped into some upper energy level E2 of an atom or molecule, whether
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FIGURE 1.11
A single rare-earth ion (largest sphere) imbedded in a BaF2 glass matrix. The
larger spheres in the matrix represent barium, the smaller fluorine.

by electron collision in a gas like helium, or by optical pumping in a solid like
ruby, or by some other mechanism. These atoms will then spontaneously drop
down or relax to lower energy levels, giving up their excess internal energy in
the process (Figure 1.13). (We will see where this energy goes in a moment.)

The rate at which atoms spontaneously decay or relax downward from any
upper level N, is given by a spontaneous energy-decay rate, often called 7z, times
the instantaneous number of atoms in the level, or

dN-
_Etz = —yaNy = —N3/7,. (4)

spon

If an initial number of atoms Nag are pumped into the level at ¢ = 0, for example,
by a short intense pumping pulse, and the pumping process is then turned off,
the number of atoms in the upper level will decay exponentially in the form

Nz(t) = Nzoe—”t = Nzoe_t/‘rz, (5)

where 73 = 1/, is the lifetime of the upper level E; for energy decay to all lower
levels.
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Optical pumping of the upper quantum-mechanical energy levels in the
rare-earth ion terbium, Tb3*,

The lifetime of the R levels in the ruby crystal happens to be long enough
(about 4 msec), and the visible fluorescence strong enough, that we can rather
easily demonstrate this kind of exponential decay by using the simple apparatus
shown in Figure 1.15. The pulsed stroboscopic light source emits a broadband
flash of visible and ultraviolet light about 60 usec long. This flash of light optically
pumps the Cr3+ ions in the ruby sample up to upper levels, from which they
very rapidly decay to the metastable R levels. These levels then decay to the
ground level by emitting visible red fluorescence with a decay time 7 ~ 4.3 msec.
(Similar fluorescence lifetime measurements can also be made for any of the other
materials we have mentioned, but some of the lifetimes are much shorter, and
the fluorescent intensities much smaller, making the experiment more difficult.)

Radiative and Nonradiative Relaxation

There are actually two quite separate kinds of downward relaxation that
occur in these solid-state materials, as well as in most other atomic systems.
One mechanism is radiative relaxation, which is to say the spontaneous emission
of electromagnetic or fluorescent radiation, as we have already discussed. We
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General concept of upper-level \
excitation by electron impact or \
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can usually measure this emitted radiation directly, with some suitable kind of
photodetector.

The other mechanism is what is commonly called nonradiative relaxation.
In terbium, for example, when the terbium ions relax from higher energy levels
shown in Figure 1.12 down into the 5Dy level, they get rid of the fransition en-
ergy not by radiating electromagnetic radiation somewhere in the infrared, but
by setting up mechanical vibrations of the surrounding crystal lattice. To put
this in another way, the excess energy is emitted as lattice phonons, or as heat-
ing of the surrounding crystal lattice, rather than as electromagnetic radiation
or photons—hence the term nonradiative relaxation. This kind of nonradiative
emission is usually difficult to measure directly, since it mostly goes into a very
small warming up of the surrounding medium. This same kind of nonradiative
relaxation process also allows excited ruby atoms to relax down into the 2E levels.

The total relaxation rate -y on any given transition will thus be, in general, the
sum of a radiative or fluorescent or electromagnetic part, described by a purely
radiative decay rate that we often write as y;aq; plus a nonradiative part, with a
nonradiative decay rate that we often write as -yn,. The total or measured decay
rate for atoms out of the upper level will then be the sum of these, or yo; =
“rad + Yur- The actual numerical values for these rates, and the balance between
radiative and nonradiative parts, will in general be different for every different
atomic transition, and -may depend greatly on the immediate surroundings of
the atoms, as we will discuss in much more detail later. The one certain thing is
that atoms placed in an upper level will decay downward, by some combination
of radiative and/or nonradiative decay processes.

Nonradiative relaxation can be a particularly rapid process for relaxation
across some of the smaller energy gaps for rare-earth ions and other absorbing
ions in solids, as we will see in more detail later. For example, in terbium as in
many other rare-earth ions, there may be many rather closely spaced levels or
bands at higher energiés; but then the energy gap down from the lowest of these
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upper levels (the °Dy level in terbium) to the next lower group of levels may be
larger than the frequency fiw of the highest phonon mode that the crystal lattice
can support.

As a result, the terbium ion cannot relax across this gap very readily by
nonradiative processes, i.e., by emitting lattice phonons, since the lattice cannot
accept or propagate phonons of this frequency. Instead the atoms relax across
this gap almost entirely by radiative emission, i.e., by spontaneous emission of
visible fluorescence. Across other, smaller gaps, however, the nonradiative relax-
ation rate is so fast that any radiative decay on these transitions is completely
overshadowed by the nonradiative rate.

This behavior is typical for many other rare-earth ions in crystals and glasses.
Following optical excitation to high-lying levels, the atoms relax by rapid nonra-
diative relaxation into some lower metastable level, from which further nonradia-
tive relaxation is blocked by the size of the gap to the next lower level. Efficient
fluorescent emission from here to the lower levels then occurs, followed by fur-
ther fast nonradiative relaxation across any remaining energy gaps to the ground
level. The nonradiative decay time of the atoms via phonon emission across the
smaller energy gaps may be in the subnanosecond to picosecond range—too fast
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FIGURE 1.15
Measurement of ruby fluorescent lifetime.

to be easily measured—and the average lifetime of the same rare-earth ions in
their metastable levels, before they radiate away their energy and drop down, is
typically between a few hundred usec and a few msec.

We will see later that in many rare-earth samples it is possible, by pumping
hard enough, to actually build up enough of a population inversion between
the metastable level and lower levels to permit laser action on these transitions.
Several different rare-earth atoms can thus be used as good optically pumped
solid-state lasers (though terbium itself is not among the best of these).
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1.3 STIMULATED ATOMIC TRANSITIONS

Having introduced spontaneous (downward) transitions, we will now look at the
stimulated (upward and downward) transitions that are the essential processes
in all kinds of laser and maser action.
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FIGURE 1.16
An elementary grating spectrometer.

Atomic Absorption Lines

Suppose we now examine more carefully the absorption of radiation by a
collection of atoms as a function of the wavelength of the incident radiation.
Figure 1.16 shows a very elementary example of a grating spectrometer such as
might be used for such measurements. (A tunable laser would be a very useful
alternative, if one were conveniently available.)

In this spectrometer the radiation from a broadband continuum light source
is collected into a roughly parallel beam by a collimating mirror, and is then
reflected from a diffraction grating located on a rotatable mount. At any one
orientation of the grating, only one wavelength (rather, a finite but narrow band
of wavelengths) is reflected at the correct angle to be collected by another curved
mirror, focused down through a narrow slit, and passed through the experimen-
tal sample onto a detector. By rotating the grating, we can tune the wavelength
of the radiation that passes through the sample and thereby measure the trans-
mission through the sample as a function of frequency or wavelength. (Figure
1.17 shows a more compact in-line version of such an instrument.)

The result of such an experiment will often appear as shown schematically in
Figure 1.18. The atomic sample will have absorption transitions from the lowest
energy level to higher energy levels; so it will exhibit discrete absorption lines—
that is, narrow bands of frequency in which the sample exhibits more or less
strong absorption—at exactly those wavelengths. These wavelengths will corre-
spond through Planck’s law to the energy gaps between the lowest and higher
levels. If there happen to be some atoms already located in higher-lying levels,
then absorption lines from those levels to still higher levels may also be seen, as
illustrated by transition C in the figure. These excited-state absorptions, how-
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FIGURE 1.18 . '
Absorption transitions (top) and absorption lines (bottom).

ever, will usually appear substantially weaker, simply because there will normally
be many fewer atoms in the higher energy levels. .

As a specific illustration of atomic absorption, Figure 1.19 shows some of
the sharp absorption lines observed when radiation at wavelengths a:round 540
nm in the visible is transmitted through a crystal of lanthanum fluoride (LaF3)

————
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FIGURE 1.19

Light transmission versus wavelength through crystals of lanthanum fluoride (LaF2) con-
taining a small amount of the rare-earth ion erbium Er®* (upper trace), and strontium
fluoride (SrF2) containing a small amount of the rare-earth ion gadolinium Gd** (lower
trace).

containing a small percentage of the rare-earth ion erbium, or when radiation
at wavelengths around 300 nm in the near ultraviolet is transmitted through a
crystal of strontium fluoride (SrF3) containing a small percentage of the rare-
earth ion gadolinium. These absorption lines all represent different transitions
from the lowest or ground levels of the Er*+ or Gd®* ions to higher-lying levels,
exactly analogous to the terbium levels shown in Figure 1.13. Of course, if a
pure lanthanum or strontium fluoride crystal is grown without any erbium or
gadolinium present, no such absorption lines are observed.
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Absorption Lines in Gases, and Molecular Spectroscopy

Absorption experiments of this sort are, of course, by no means limited
to solids or to rare earths. Isolated atoms or ions in gases will exhibit such
absorption lines in the visible, and especially the UV. Molecules in gases, liquids,
and solids will exhibit an extremely rich spectrum of absorption lines, notably
in the infrared as well as in the visible and ultraviolet. The absorption lines of
atoms and molecules in gases are typically sharper or narrower than those in
solids or liquids, since the energy levels in gases are not subject to some of the
perturbing influences that tend to broaden, or smear out the energy levels in
liquids or solids.

As just one more example to illustrate absorption spectroscopy, Figure 1.20
shows a few of the sharp absorption lines characteristic of the formaldehyde
molecule H,CO in a narrow range of wavelengths near 3.57 pm. This particular
spectrum was taken by using a continuously tunable laser source (a cw injec-
tion diode laser using a lead/cadmium sulfide diode) rather than an incoherent
spectrometer. The dashed envelope in Figure 1.20(a) is the power output of the
tunable laser versus wavelength, over a tuning range that is extremely large in
absolute terms (~ 3 x 1010 Hz), yet extremely narrow (~ 0.04%) relative to the
center frequency. The solid line is the power transmitted through the vapor-filled
cell.

Many different molecules exhibit exactly such characteristic sharp lines, spe-
cific to the individual molecules, in rich profusion through the near and middle
infrared regions. These sharp lines are extremely useful not only as potential laser
lines, but as characteristic signatures of different molecules, for use in chemical
diagnostics or in identifying the presence of specific pollutant molecules or haz-
ardous chemicals. Note that the sensitivity and the laser scanning rate in the
experiment allow a small portion of the formaldehyde absorption spectrum to
be displayed on an oscilloscope in real time.

Emission spectroscopy, using the spontaneous emission lines radiated from
an excited sample as in Figure 1.5, is thus one way of observing and learning
about the discrete transitions and the quantum“energy levels of atoms, ions,
and molecules. Absorption spectroscopy, as briefly described here, is another
and complementary method of obtaining the same kind of information. These
methods are in fact complementary in their utility, since emission spectroscopy
tends to give information about downward transitions emanating from high-lying
levels, whereas absorption spectroscopy tends to give information about upward
transitions from the ground level or low-lying atomic levels. The formaldehyde
example illustrates the possibilities for applying tunable lasers to spectroscopy,
to analytical chemistry, and to practical applications such as pollution detection.

Stimulated versus Spontaneous Atomic Transitions

‘We have now seen that there are two basically different kinds of transition
processes that can occur in atoms or molecules.

First, there are spontaneous emission or relaxation transitions, in which
atoms spontaneously drop from an upper to a lower level while emitting electro-
magnetic and/or acoustic radiation at the transition frequency. Fluorescence, en-
ergy decay, and energy relaxation are other names for this process. When.atoms
emit this kind of fluorescence or spontaneous electromagnetic radiation, each in-
dividual atom acts almost exactly like a small randomly oscillating antenna—in
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FIGURE 1.20

Absorption spectroscopy of formaldehyde using a tunable laser source near A =
3.57um.

most common cases, a small electric dipole antenna—internally driven at the
transition frequency. Each individual atom radiates independently, with a tem-
poral phase angle that is independent of all the other radiating atoms. Thus, the
total fluorescent emission from a collection of spontaneously emitting atoms is
noise-like in character (Figure 1.21), even though it will be limited in spectral
width to the comparatively narrow linewidth of the atomic transition. Indeed,
such spontaneously emitted radiation has all the statistical properties of narrowly
bandlimited gaussian noise. We usually refer to it as incoherent emission.

Second, there are the stimulated responses or stimulated transitions—both
stimulated absorption and stimulated emission—that occur when an external
radiation signal is applied to an atom. In these transitions each individual atom
acts like a miniature passive resonant antenna (again, usually an electric dipole
antenna) that is set oscillating by the applied signal itself. That is, the internal
motion or oscillation in the atom is not random, but is driven by and coherent
with the applied signal.
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FIGURE 1.21
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Atomic Rate Equations

Suppose we have very many identical atoms, each of which has two just
energy levels, E; and Ej. (Real atoms will undoubtedly have many other energy
levels as well, but we will ignore other levels for the moment.) Suppose that

Ni(?) of the atoms present are in level Ey and Na(t) atoms are in level Ey. This.

situation can be illustrated by an energy-level population diagram, as in Figure
1.22. .

We have already stated that the spontaneous-relaxation rate down from level
E; to level E, is directly proportional to the upper-level population N,(t) and is
not influenced at all by the lower-level population N (t). Hence the spontaneous-
emission rate out of level 2 and into level 1 is given by

dN,(t) _dNy(t)
dt - dt

spontaneous

- “’)’21N2(t)7 (6)

spontaneous
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where 72, indicates the total spontaneous-transition rate or decay rate (radiative
plus nonradiative) from level 2 to level 1.

Suppose now an optical signal is applied to these atoms to cause stimulated
transitions, as in the optical pumping or absorption spectroscopy experiments
we have just discussed. This signal must, of course, be tuned in frequency close
to the transition frequency of interest, i.e., w & we; + Aw,, where Aw, is the
linewidth of the atomic transition. We might then characterize the strength of
this signal by its intensity I (dimensions of power per unit area), or by the
strength of its E or H fields. In discussions of stimulated transitions, however,
the applied signal intensity or energy density is often expressed in units of the
number of signal photons n(t) per unit volume in the applied signal. This does
not necessarily imply anything about photons as being billiard-ball-like point
particles; it merely means that n(t) is the electromagnetic energy density of the
applied signal divided by the quantum energy unit Aw.

Such an applied signal will cause atoms initially in the lower energy level
to begin making stimulated transitions er “jumps” upward to the upper energy
level, at a rate proportional to the applied signal intensity (or power density)
times the number of atoms in the starting level. The number of stimulated up-
ward transitions per unit time caused by the applied signal can then be written
as

dN,(t)

dt stimulated
upwari

= Kn(t)N1(t). (M

That is, the stimulated upward transition rate is directly proportional to the
photon density n of the applied signal. Each such upward transition absorbs
one quantum of energy from the applied signal and—at least in an elementary
description—transfers it to one of the atoms which is lifted upward. This is the
process of stimulated absorption.

But the essential point is that the same applied signal will also cause any
atoms initially in the upper energy level to begin making similar stimulated
transitions or jumps downward in energy, at a rate which is again proportional
to the applied signal intensity times the number of atoms in the initial (i.e.,
upper) level. The number of stimulated downward transitions per unit time can
thus similarly be written as

dN>(t) o
T stimulated - Kn(t)N2(t). (8)
downwa,

This is the process of stimulated emission. The atoms in this case jump down-
ward, giving up energy. This energy must go into the stimulating optical signal,
which is therefore strengthened or amplified. '

The constant K in each of these equations is just a proportionality constant
that measures the absolute strength of the stimulated response on the particu-
lar atomic transition. A fundamental and essential point, however, is that this
proportionality constant necessarily has exactly the same value for transitions in
either direction. This constant K will also be largest for an applied signal tuned
exactly to the atomic transition frequency, and will rapidly become small to neg-
ligible as the signal frequency w is tuned away from the transition frequency wa;
by more than a linewidth or so.
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The total rate equation for the atomic populations in this simple example,
including stimulated plus spontaneous transitions, is thus given by

dNy(t)|  _ dNa(t) dN,(t) L dNa(t)
) dt total dt ig&:}(?md dt 3‘2&‘:&5&1 dt spontaneous
’

N1 (t)

= Kn(t) x [N1(t) — Na(t)] = 121 N2(t) = — —3

total

(9)

“where n(t) is directly proportional to the applied signal intensity or power den-

sity.

Quantum Derivation of the Spontaneous Emission Process

In a quantum-mechanical analysis the constant K in the stimulated-transition rate
Kn(t)N(t) is usually derived by using a semiclassical quantum analysis, in which
the atoms are treated quantum-mechanically but the applied electromagnetic signal is
treated classically. The spontaneous emission processes described by the spontaneous-
relaxation probability <y21N2(t) can, however, only be derived from a fully quantum
electrodynamic analysis in which both the atoms and the electromagnetic field itself
are treated quantum-mechanically.

Some people note that there is a correspondence in quantum theory between the
spontaneous-emission rate, which corresponds to the downward stimulated-transition
rate that would be caused by one extra photon, and the presence of zero-point fluctua-
tions in the quantum electromagnetic fields, with a magnitude equivalent to an energy
of one photon per mode; and deduce from this that zero-point fluctuations “cause” or
“stimulate” the spontaneous emission. This can be a convenient way to calculate the
spontaneous-emission rate or the quantum noise magnitude in a laser calculation, but
attributing a causal relation to the zero-point fluctuations is a more dubious proposi-
tion. Zero-point fluctuations and spontaneous emission are both predicted, separately
and independently, by quantum field theory, but nothing in the theory says that either
one causes the other: they each arise independently of the other, from the commutation
properties of the quantum field operators.

Stimulated Transitions and Laser Amplification

The total rate at which atoms make signal-stimulated transitions between
two energy levels (i.e., “up” minus “down”) is thus given by Kn(t) x [Ny(t) —
N,(t)]. Each upward transition transfers hw of energy from the signal to the
atoms; each downward transition does the reverse.

But this implies that the net rate at which energy per unit volume is absorbed
from the signal by the atoms is then given by this net flow rate times the energy
hw per jump. That is, the net energy transfer rate to the atoms is

d-gtﬂ = Kn(t) x [N1(t) — Na(t)] x fw, (10)

&F
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where U, is the energy density in the forced internal oscillation of the atoms.

This same energy must at the same time be coming out of the signal. Hence
the energy density Usig(t) = n(t) X hw in the applied signal must be decreasing
with time according to the reverse expression

dUsig -

38 = —K[Ni(t) - Na(®)] x n(t) x hw = —K[N:(t) = Na(8)] x Usig() (11)

or, in terms of photon density,

B o —KIN(0) ~ N]n) (12)
The signal energy density Usig(t), or the photon density n(t), may thus either
decay or grow with time, depending on the sign of the population difference
AN(t) = Ny1(t) — Na(t) in the square brackets.

The signal growth rate described by Equation 1.12 leads to the essential
concept of laser amplification. This equation says that if an external signal is
applied to a collection of atoms where there are more atoms in the lower energy
level than in the upper, o where Ni(t) > Na(t), then the net transition rate
or net flow of atoms between the levels will be upward. In this case net energy
is being supplied to the atoms by the applied signal; so the applied signal must
become absorbed or attenuated.

If, however, we can somehow produce a condition of population inversion, in
which there are more atoms in the upper level than in the lower, or N2 > Ny,
then both the quantity N3 — Ny and hence the net energy flow between signal and
atoms will change sign. The net stimulated-transition rate for the atoms will now
be in the downward direction. Net energy will then be given up by the atoms,
and taken up by the applied signal. This energy flow will in fact produce a net
amplification of that signal, at a rate proportional to the population difference
and to the strength of the external signal.

Boltzmann's Principle

One of the fundamental laws of thermodynamics, Boltzmann’s Principle,
states that when a collection of atoms is in thermal equilibrium at a positive
temperature T, the relative populations of any two energy levels E; and E; are
given by

Ny E, - E;
= -exp( - ) , (13)

which of course means that
AN=N; - N, = (1 - e—"“/’m) Ni. (14)

Thus for a collection of atoms in equilibrium at a normal positive temperature T,
an upper-level population is always smaller than a lower-level population (much

_smaller if the energy gap E; — E; is an optical-frequency gap).

The total stimulated-transition rate on such an equilibrium transition is thus
always absorptive or attenuating rather than amplifying. To create laser ampli-
fication, we must find some pumping process which will put more atoms into an
upper level than into a lower level, and thus create a nonequilibrium condition
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of population inversion. In Section 1.5 we give some information on how this can
be done in practice.

Coherence in Stimulated Transitions

If we want, we can think of the basic stimulated transition process as the
sum of two separate processes: in one, atoms initially in the lower energy level are
stimulated by the applied signal to make transitions upward; in the other, atoms
initially in the upper energy level are stimulated by the applied signal to make
transitions downward. It is vital to understand, however, that the stimulated-
transition probability produced by an applied signal (probability of transition
per atom and per second) is always exactly the same in both directions. The net
flow of atoms is thus always from whichever level has the larger population at
the moment, to whichever level has the smaller population.

There is also no conceivable way to “turn off” one or the other of the stim-
ulated "absorption or emission processes separately. If the lower level is more
heavily populated, the signal is attenuated. If the upper level is more heavily
populated, the signal is amplified. This is the essential amplification process in
all lasers and other stimulated-emission devices.

It is also essential to keep in mind that the stimulated transition process
we have been introducing here results from a resonant response of the atomic
wave function, or of the atomic charge cloud in each individual atom, to the
applied signal. That is, the internal induced oscillation or dipole response that is
produced in each atom is stimulated by and thus fully coherent with the applied
signal.

The net amplification (or attenuation) process is thus a fully coherent one,
in which the atomic oscillations follow the driving optical signal coherently in
amplitude and phase. The output signal from an amplifying laser medium is a
linear reproduction of the input signal, and of any amplitude modulation or phase
modulation that may be on the input signal, except that (i) the output signal is
amplified or increased in magnitude; (ii) the signal modulation may be decreased
somewhat in bandwidth because of the finite bandwidth of the atomic response;
and (iii) the signal in general has a small amount of spontaneous emission noise
added to it.
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Incoherent spontaneous emission and coherent stimulated amplification occur
simultaneously and in parallet in the laser medium.

Spontaneous Versus Stimulated Transitions

Note also that in a collection of laser atoms with a population inversion,
and with an applied signal present, both the spontaneous transitions and the
stimulated transitions will occur simultaneously and essentially independently.
The stimulated-transition rates and the spontaneous-relaxation rate can be sim-
ply added together. The spontaneous emission, however, will emerge in all di-
rections, as in Figure 1.24, and will have the spectral and statistical character
of narrowband random noise; whereas the stimulated emission (and absorption)
will all be in the same direction and at the same frequency as the applied signal.

In a laser amplifier the input signal will thus be amplified by the stimulated
transitions. At the same time, a small amount of the spontaneous emission (in
essence, that portion traveling exactly parallel to the applied signal) will be
added to the output signal by the spontaneous emission process. The spontaneous
emission in this situation thus acts essentially like a small additive amplifier noise
source insofar as the stimulated amplification process is concerned. Unless the
applied signal is very small, approaching the noise limit of the laser amplifier,
the added spontaneous-emission noise can normally be ignored in discussions of
the basic stimulated amplification process. '
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clearly outlined by A. Einstein in “On the quantum theory of radiation,” Physikalische
Zeitschrift 18, 121 (1917), and again by R. C. Tolman, “Duration of molecules in upper
quantum states,” Rev. Mod. Phys. 23, 693-709 (June 1924).

An interesting and instructive early study on purely spontaneous emission from
atoms is reported by E. Gaviola in “An experimental test of Schrodinger’s theory,”
Nature 122, 772 (1928). Gaviola observed the spontaneous emission lines from a_mer-
cury discharge at 435.8 nm and 404.6 nm from a common 233; upper level down to
the 2°P; and 2%Py lower levels, under widely varying conditions of pressure and with
various added buffer gases. The relative populations of these levels could then be ex-
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pected to vary widely under these different conditions. Although Gaviola had no way
to measure any of these populations, he could observe that the ratio of the intensities
on the 435.8 nm and 404.6 nm lines always remained fixed, even though their abso-
lute intensities changed widely. This strongly implied that the emission rates on these
transitions depended only on their common upper-level population and not on either
of the lower-level populations.

The first successful demonstration of amplification and oscillation using stimulated
emission, employing an inverted population in ammonia at a microwave frequency,
was accomplished by J. P. Gordon, H. J. Zeiger, and C. H. Townes, as reported in
“The maser—new type of microwave amplifier, fréequency standard, and spectrometer,”
Phys. Rev. 18, 1264-1274 (August 15, 1955). Other references to the early history of
stimulated emission devices are given in Section 1.10.

1.4 LASER AMPLIFICATION

Using the principles of stimulated emission outlined in the preceding section as a
foundation, we next outline briefly how a laser material with an inverted atomic
population produces useful laser amplification.

Signal Absorption and Attenuation

Suppose first that we send a wave of tunable optical radiation through a
collection of absorbing atoms, as illustrated in Figure 1.25, with this radiation
tuned to a frequency w near the transition frequency wy; between two energy
levels E; and E; of the atoms. Let the populations of these energy levels be Ny
and N, as shown earlier. (The symbols N; and N, nearly always in this book
mean population densities; i.e., they have dimensions of atoms per unit volume
inside the laser medium.)

For an absorbing population difference, we will find that this wave will be
absorbed or attenuated with distance in passing through the atoms, in the form

E(z) = & % exp[—a(w)z]. (15)

For many atomic transitions the attenuation coefficient a(w) due to the atoms
will be given (as we will derive later) by an expression of the general form

2% Yrad N1 - N
A1 Aw, 1+ [2(w — wa1)/Aw,]?’

a(w) = (16)

This expression contains factors such as the transition wavelength A (in the
laser material); the radiative decay rate 7rag of the transition; and the transition
linewidth Aw,. Most important, it contains the population difference N; — Nj,
and a lineshape factor (in the final term) giving the frequency lineshape of the
transition. This lineshape will in general be a sharp resonance curve, as illustrated
in Figure 1.25, with a finite linewidth or bandwidth Aw,.

The particular lineshape given by Equation 1.16 is known as a lorentzian
lineshape, and is characteristic of many real atomic transitions. Other transi-
tions, for various reasons, may have somewhat different lineshapes, for example,
a doppler-broadened or gaussian lineshape. The general dependence of the gain
coefficient on the important atomic parameters for any real atomic transition
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will still be very much like Equation 1.16, even though the exact lineshape is
somewhat different.

The signal wave passing through such an absorbing laser medium will also
experience a small frequency-dependent phase shift due to the atoms, as shown
by Figure 1.25(c). This atomic phase shift can have practical implications (such
as laser frequency-pulling effects), which we will discuss in later chapters.

T

Attenuation Coefficients

Note that the power flow carried by the wave passing through the atoms,
or the wave intensity I(z) (in units of power per unit area), is given by

I(z) = |£(2)]* = I exp[—2a(w)z). 17)

Hence the power or intensity attenuates with distance in the form dI (2)/dz =
—2a(w)I(z). Thus in our notation the power-attenuation coefficient is given by
2a(w). We will consistently use « in this text to represent an amplitude or “volt-
age” attenuation (or gain) coefficient, and 2a to represent a power or intensity
coefficient. In the journal literature, however, o by itself is often used to represent
a power-attenuation or power-gain coefficient.

L

uninverted atomic transition.
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Laser Amplification

Suppose now the population difference on an atomic transition can, through
some “pumping” process, be made to change sign, creating a population inver-
sion. The same expression for the absorption coefficient a(w) as in Equation 1.16
then remains valid, except that the population difference and absorption coefli-
cient are both reversed in sign. To emphasize this, let us rewrite Equation 1.16
in the form

_ A2")'ra,d Ny — Ny
T 4rAwe 1+ [2(w — wa1)/Aw,]?’

(18)

—a(w) = am(w)

where a,,(w) means the “molecular” or “maser” or “laser” amplification coeffi-
cient. The wave amplitude and power will now grow or amplify with distance in
the form

£(2) = Ep exp|+am(w)z] and I(z) = Iy exp[+2am(w)z] (19) A

as shown in Figure 1.26(b). The energy for this amplification comes, of course,
from the inverted atoms—that is, the upper-level atoms supply energy to the
wave, whereas the lower-level atoms still absorb energy. But since there are more
upper-level atoms, the net effect is amplification rather than attenuation.
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Photon description of stimulated ab-
sorption (top) and stimulated emission
(bottom). (This viewpoint is not recam-

mended!)

The laser amplification coefficient ., (w) thus has exactly the same lineshape
and all other properties as the absorption coefficient a(w) for the same transition
without inversion. The only difference between stimulated absorption and stim-
ulated emission is in the sign of the population difference. The net atomic phase
shift, in fact, also changes sign as the population difference goes from absorbing
to amplifying.

Coherence and “Photons”

We have hardly mentioned photons yet in this book. Many descriptions
of laser action use a photon picture like Figure 1.27, in which billiard-ball-like
photons travel through the laser medium. -Each photon, if it strikes a lower-
level atom, is absorbed and causes the atom to make a “jump” upward. On the
other hand, a photon, when it strikes an upper-level atom, causes that atom
to drop down to the lower level, releasing another photon in the process. Laser
amplification then appears as a kind of photon avalanche process.

Although this picture is not exactly incorrect, we will avoid using it to de-
scribe laser amplification and oscillation, in order to focus from the beginning
on the coherent nature of stimulated transition processes. The problem with the
simple photon description of Figure 1.27 is that it leaves out and even hides the
important wave aspects of the laser interaction process. A photon description
leads students to ask questions like, “How do we know that the photon emitted
in the stimulated emission process is coherent with the stimulating photon?” The
answer is that the whole stimulated transition process should be treated not as
a “photon process” but as a coherent or wave process. These coherence effects
are present, and must be considered, in at least two different ways.

First, when an electromagnetic signal wave passes through a collection of
atoms, a much more accurate description of the stimulated transition process is
that the electromagnetic fields in the wave cause the electronic charges inside the
atoms to begin vibrating or oscillating in a coherent relationship to the driving
signal fields. The atoms in fact both respond and reradiate like miniature atomic
antennas. The fields reradiated by the individual atoms combine coherently with
the incident signal fields to produce absorption or amplification (and also phase
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(a) The stimulated emission or reradiation from each laser atom is spatially co-
herent or spatially in phase with the incident signal radiation. (b) The stimu-
lated emission is also temporally coherent with, and at the same frequency as,

the incident signal radiation.

shift) in a manner that is both spatially and spectrally coherent, as illustrated
in Figure 1.28. .
Quantum mechanics tells us in fact that these atoms resp9nd very rnuqh 'hke
little classical electronic dipole oscillators (as we will discuss in great detail ina
later chapter), except that atoms initially in the lo.wer energy level resp(?m'i ina
way that tends to cancel or absorb the incident signal, whereas fa,torx}s initially
in the upper level respond in exactly opposite phase to the applied §1gnal.'The
waves reradiated by the upper-level atoms thus tend to add to the driving signal
wave, and amplify it, whereas the wavelets reradiated by lowejr-level atoms ten‘d
to add out of phase to the driving signal and thus attenuate it. Other Fhan ‘thlS
phase difference, the stimulated absorption and emission processes are identical.

1.5 LASER PUMPING AND POPULATION INVERSION

Quantum Description of Stimulated Transitions

A second important aspect of stimulated transitions can also be obscured
by the photon picture. In a fully correct quantum description, most atoms are
not likely to be exactly “in” one quantum level or another at any given instant
of time. Rather, the instantaneous quantum state of any one individual atom
is usually a time-varying mixture of quantum states, for example, the upper
and lower states of a laser transition. The populations N; and N3 do not really
represent discrete integer numbers of atoms in each level. Rather, each individual
atom is partly in the lower level and partly in the upper level (that is, its quantum
state is a mixture of the two eigenstates); and the numbers N; and N, represent
averages over all the atoms of the fractional amount that each atom is in the
lower or the upper quantum state in its individual state mixture.

Applying an external signal therefore does not cause an individual atom to
make a sudden discrete “jump” from one level to the other. Rather, it really
causes the quantum-state mixture of each atom to begin to evolve in a continuous
fashion. Quantum theory says that an atom initially more in the lower level tends
to evolve under the influence of an applied signal toward the upper level, and
vice versa. This changes the state mixture or level occupancy for each atom,
and hence the averaged values N7 and NNV; over all the atoms. Individual atoms
do not make sudden jumps; rather, the quantum states of all the atoms change
somewhat, but each by a very small amount.

We should emphasize, finally, that laser materials nearly always contain a
very large number of atoms per unit volume. Densities of atoms in laser materials
typically range from ~. 10'2 to ~ 10'° atoms/cm?®. This density is sufficiently
high that laser amplification is an essentially smooth and continuous process,
with very little “graininess” or “shot noise” associated with the discrete nature
of the atoms involved.

Problems for 1.4

1. Numerical values for the Boltzmann ratio. The relative numbers of atoms Ny
and N in two energy levels E; and E> separated by an energy gap E; — E; are
given at thermal equilibrium by the Boltzmann ratio. To gain some feeling for
real situations, evaluate the ratio Nz /N for the following cases:

(a) an optical transition, A = 500 nm, at room temperature, 300 K;
(b) a microwave transition, f = 3 GHz, at room temperature;
(c) a 10 GHz transition at liquid-helium temperature, 4.2 K.

For an optical transition at A = 500 nm to have N2/N; = 0.1, what temperature
is required? What is the energy k7" corresponding to room temperature, expressed
in wave numbers?

1.5 LASER PUMPING AND POPULATION INVERSION

Let us now examine in elementary terms the kind of pumping process that can
produce the population inversion needed for laser amplification.
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Four-Level Pumping Model

As a simplified but still quite realistic model of many real laser systems,
we can. consider the four-level atomic energy system shown in Figure 1.29. We
assume here that there is a lowest or ground energy level Ey and two higher
energy levels E; and E,, between which laser action is intended to take place,
plus a still higher level, or more often a group of higher levels, into which there
is effective pumping from the ground level Ey. We can for simplicity group all
these higher levels into a single upper pumping level E3. At thermal equilibrium,
under the Boltzmann relation, essentially all the atoms will be in the ground
energy level Ey.

We then assume that there is a pumping rate Ry (atoms/second) from the
ground level Ey into the upper pumping level or levels E3. This pumping rate may
be produced by electron impact with the ground-level atoms in a gas discharge,
as in many gas lasers; or by pumping with intense incoherent light from a pulsed
flashlamp or a cw arc lamp, as in many optically pumped solid-state lasers; or by
several other mechanisms we have not yet discussed. In any event, the properties
of atoms do permit selective excitation from a lowest level primarily into certain
selected upper levels, as assumed in this example.

1t is then a realistic description of many practical lasers that a certain fraction
np of the atoms excited upward will relax down, perhaps through a series of
cascaded steps, from the upper pumping level E3 into the intended upper laser

1.5 LASER PUMPING AND POPULATION INVERSION

FIGURE 1.30

level laser system.

level E,. 'We might call 7, the pumping efficiency for the laser system, since
the effective pumping rate into the upper laser level (again in atoms/ secc;nd) is
de= npR?,o. This pumping efficiency can be close to unity in some solid-state
:;Stec;xrl?mc dye lasers, and only parts per thousand or less in many gas laser
We can also assume in the simplest case that atoms relax from level E

d(.)wn to level F; with a relaxation rate 721 and from level E; down to level E2
with a ¥e]axation rate v10. The relaxation processes between these levels may bg
a com}'nnat;ion of the radiative and nonradiative processes we have described in
preceding sections. In many practical lasers the fractional number of atoms lifted
up out of the ground level E, into all the upper excited levels also remains small
S0 tha:t the ground-level population remains essentially unchanged whether thej
pumping process is on or not.

) The flow of atoms between energy levels under the influence of these pump-
ing a‘nd relaxation processes (but not laser action for the minute) can then be
described by atomic rate equations which we will discuss in much more detail in
latfzr ch‘apters. For example, the rate equations describing the laser-level popu-
lations in the system shown in Figure 1.29 may be written as (Figure 1.30)

dN,
o e (20)

and
: 2~ 721N2 = molNy. (21)

These' equations include the upward pumping rate and the downward relaxation
rates into and out of levels E; and E,.

If the pumping process is applied in a continuous fashion and the system
comes to a stea)d'y-state equilibrium in which dN; /dt = dN, /dt = 0, we can
solve these equations for the steady-state populations and population difference
on the laser transition, in the form

Nass = Rp/¥21 and  Nig = (121/710) Noss, (22)

Rates of flow between atomic energy levels in an ideal four-
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and hence

Rp(v10 — 121)

= Rym1 x (1 — 7T10/721), (23)
Y10721

. (N 2— N 1)ss =
where 121 = 1/’}’21 and T19 = 1/’)’10.

This formula shows that if the lower-level decay rate 1o is fast compared
to the upper-level decay rate 721, so that 10 < 721, then there will inevitably
be a population inversion on the 2 — 1 laser transition produced by the pump-
ing process. Whether this inversion will be large enough to permit continuous
laser amplification or oscillation on this tramsition is another question, obviously
depending in part on the pumping efficiency and on how hard we can pump.

Conditions for Population Inversion

The basic physical requirement to obtain continuous population inversion
in this system is that atoms should relax out of the lower laser level E; down
to still lower levels faster than atoms relax into this level from the upper laser
level Es. The absolute strength of the population inversion also depends on a
strong pumping rate R, and a long upper-level lifetime 72, = 1 /721; but the
essential condition for population is still that the relative relaxation rates obey
the condition that 19 > 721.

The rate equations for real laser systems can become considerably more com-
plicated, and involve more energy levels and relaxation rates than this simplest
example; but the essential features will still be quite similar. The upper levels in
many real lasers, for example, are more or less metastable—that is, they have
comparatively long lifetimes. If we can pump efficiently into such a longer-lived
upper level, and if there is a lower energy level with a short lifetime or rapid
downward relaxation rate, then a population inversion is very likely to be estab-
lished between these levels by the pumping process.

As we have mentioned, gas discharges and optical pumping are the two most
widely used laser pumping processes. The gas discharges may be continuous
(usually in lower-pressure gases) or pulsed (typically in higher-pressure gases).
Direct electron impact with atoms or ions, and transfer of energy by collisions
between different atoms, are the two main mechanisms involved in gas discharge
pumping.

Optical pumping techniques may also be continuous or pulsed. The sources
of the pumping light may be continuous-arc lamps, pulsed flashlamps, exploding
wires, another laser, or even focused sunlight. Other more exotic pumping mech-
anisms include chemical reactions in gases, especially in expanding supersonic
flows; high-voltage electron-beam pumping of gases or solids; and direct current
injection across the junction region in a semiconductor laser.

Problems for 1.5

1. Slightly more complicated laser pumping system. Add a third relaxation rate
directly from level 2 to level 0 in Figure 1.29, with a downward rate on this
transition ‘given by ~20/Ns. Write out and solve the new rate equations including
this term, and discuss the new conditions that are now necessary for population
inversion.

1.6 LASER OSCILLATION AND LASER CAVITY MODES

1.6 LASER OSCILLATION AND LASER CAVITY MODES

Adding laser mirrors and hence signal feedback, as we will do in this section, is
then the final step necessary to produce coherent laser oscillation and thus to
obtain a working laser oscillator.

Condition for Build-Up of Laser Oscillation

Suppose in fact that we have a laser rod or a laser tube containing atoms
that are properly pumped so as to produce population inversion and amplifi-
cation on a certain laser transition. To make a coherent oscillator using this
medium, we must then add partially reflecting, carefully aligned end mirrors to
the laser medium, as shown in Figures 1.1 or 1.4.

Suppose that we do this, and that a small amount of spontaneous emission
at the laser transition frequency starts out along the axis of this device, being
amplified as it goes. This radiation will reflect off one end mirror and then be
reamplified as it passes back though the laser medium to the other end mirror,
where it will of course again be sent back though the laser medium (Figure 1.31).

If the round-trip laser gain minus mirror losses is less than unity, this radiation
will decrease in intensity on each pass, and will die away after a few bounces.
But, if the total round-trip gain, including laser gain and mirror losses, is greater
than unity, this noise radiation will build up in amplitude exponentially on each
successive round trip; and will eventually grow into a coherent self-sustained
oscillation inside the laser cavity formed by the two end mirrors. The threshold
condition for the build-up of laser oscillation is thus that the total round-trip
gain—that is, net laser gain minus net cavity and coupling losses—must have a
magnitude greater than unity.

Steady-State Oscillation Conditions

Net gain greater than net loss for a circulating wave thus leads to signal
build-up at the transition frequency within the laser cavity. This exponential
growth will continue until the signal amplitude becomes sufficiently large that
it begins to “burn up” some of the population inversion, and partially saturate
the laser gain.

Steady-state oscillation within a laser cavity, just as in any other steady-state
oscillator, then requires that net gain just exactly equal net losses, or that the
total round-trip gain exactly equal unity, so that the recirculating signal neither
grows nor decays on each round trip, but stays constant in amplitude.

In mathematical terms, using the more detailed model shown in Figure 1.32,
the steady-state ‘oscillation condition for a linear laser cavity with spacing L
between the mirrors is that the total voltage gain and phase shift for a signal

& & 7
FIGURE 1.31
Q ) Round-trip amplification in a laser
cavity.
N
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wave at frequency w in one complete round trip must satisfy the.condition that
E2/&1 = rirz2exp (20 Ly, — j2wLl/c) =1 at steady state, (24)

where the coefficients 7, and 72 (Jr] < 1) are the wave-amplitude or “voltage”
reflection coefficients of the end mirrors; exp(2ay, Ly, ) is the round-trip voltage
amplification through the laser gain medium of length L,,; and exp(—2jwL/c) is
the round-trip phase shift around the laser cavity of length L. (For simplicity we
have left out here any internal losses inside the laser cavity, and also any small
additional phase-shift effects caused by the laser atoms or the cavity mirrors.)
If the laser employs instead a ring cavity of the type shown in Figure 1.33—as
is becoming more common in laser systems—then this condition becomes instead

Ea/E1 = rirarsexp (amPm — jwp/c) =1 at steady state, (25)
where now p is the perimeter or full distance around the ring, and py, is again
the single-pass distance through the laser medium.

Round-Trip Amplitude Condition

Either of these conditions on steady-state round-trip gain then leads to
two separate conditions, one on the amplitude and the other on the phase shift
of the round-trip signal transmission. For example, the magnitude part of the
steady-state oscillation condition expressed by Equation 1.24 requires simply

1.6 LASER OSCILLATION AND LASER CAVITY MODES

that
(2amLm) =1 or « —Lln ! (26
T17T2 €Xp mbim) = m = L, RiR; 3 )
where R; = |r1|?> and Ry = |rp|? are the power reflectivities of the two end
mirrors.

This condition determines the net gain coefficient or the minimum population
inversion in the laser medium that is required to achieve oscillation in a given
laser system. Using Equation 1.18 for the laser gain coefficient, we can convert
this to the often-quoted threshold inversion density

_ : _ mAw, 1

AN =Ny — N; 2 ANy = Nyl In (R1R2> . (27)
This expression on the one hand gives the minimum or threshold population in-
version A Vy, that must be created by the pumping process if oscillation build-up
toward sustained coherent oscillation is to be achieved. On the other hand, Equa-
tions 1.26 and 1.27 also give the saturated gain coefficient «,, or the saturated
inversion density AN (atoms per unit volume) that must just be maintained to
have unity net gain at steady state.

A laser oscillator will always start out with inversion somewhat greater than
threshold. It will then build up to an oscillation level that just saturates the net
laser gain down to equal net loss. This saturation occurs (as we will show in more
detail later) when the laser oscillation begins to use up atoms from the upper
level at a rate which begins to match the net pumping rate into that level; and
it is just this gain saturation process which stabilizes the amplitude of a laser
oscillator at its steady-state oscillation level.

Equation 1.27 makes clear that reaching laser threshold will be easiest if the
laser has a narrow transition linewidth Aw,, and low cavity losses, including
Ry, R; — 1. Note also that laser action generally gets more difficult to achieve
as the wavelength A gets shorter—infrared lasers are often easy, ultraviolet lasers
are hard.

Round-Trip Phase or Frequency Condition

Equations 1.24 or 1.25 also express a round-trip phase shift condition which
says that the complex gain in these equations must actually be equal to unity
modulo some large factor of e77%7; so for a linear cavity,

exp (—j2wL/c) = exp (—jq2m) or - = q2m, ¢ = integer. (28)

In other words, the round-trip phase shift 2wL/c inside the cavity must be some
(large) integer multiple of 27, or the round-trip path length must be an integer
number of wavelengths at the oscillation frequency.
In the linéar cavity case this phase condition is met at a set of discrete and
equally spaced axial-mode frequencies given by
c
=Wy =q¢X2T X (——-) . 29
W=wg=gXxam oL (29)
The phase shift condition thus leads to a resonance frequency condition for the
laser cavity, or equivalently to an oscillation frequency condition for the laser
oscillator. The set of frequencies w, are called axial modes because they represent
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Multiple axial-mode frequencies under the atomic gain profile in a typical
laser system.

the resonant frequencies at which there are exactly ¢ half-wavelengths along the
resonator axis between the laser mirror in the linear or standing-wave case.

This same round-trip phase shift condition becomes wp/c = ¢27 in the ring
cavity case, and the resonant frequencies wy; = ¢ X 2w X (c¢/p) are then the
frequencies at which the ring perimeter p is an integer number of full wavelengths.
The axial-mode integer ¢ is typically a very large number in any real laser; e.g.,
for the standing-wave case

g=20" =22 = B 108 — 108, (30)

since L (or p) is always > ) for any except very unusual laser cavities.
The axial resonant modes of the laser cavity are thus equally spaced in fre-
quency, with axial-mode separation Aw,y given by

c c
Awyyx = Wgy1 —Wq =27 X 5= =27 X —
. 2L p (31)
=~ 27 x 300 MHz for L =50 cm.
For many (though not all) practical lasers, this mode spacing is smaller than
the atomic linewidth Aw,; and hence there will be several axial-mode cavity
resonances within the atomic gain curve, as shown in Figure 1.35. The laser may
then oscillate, depending on more complex details, on just the centermost one of
these axial modes, or on several (or even many) axial modes simultaneously.
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Transverse Spatial Properties: The Plane Mirror Approximation

‘We need to consider also the transverse variation of the optical fields in the
laser cavity—that is, the variation over the cross-sectional planes perpendicular
to the laser axis—since it is this variation that determines the spatial coherence
or the transverse-mode properties of the laser oscillator.

In the simplest description, a laser will oscillate in the form of a more or
less uniform, quasi-plane-wave optical beam bouncing back and forth between
carefully aligned mirrors at the two ends of the laser resonator, as in Figure
1.36. The earliest successful lasers, and even some practical lasers today, in fact
used flat or planar mirrors carefully aligned exactly parallel to each other and
perpendicular to the axis of the laser.

If the optical wave in Figure 1.36 travels at even a slight angle to the res-
onator axis running perpendicular to the two mirrors, the radiation will walk
out the open sides of the cavity, past the mirror edges, after some small number
of bounces, as in Figure 1.37. This will represent a large “walk-off” loss from
the laser cavity, so that only waves that are very accurately aligned with the
resonator axis will remain within the cavity and be able to oscillate. Hence the
beam direction for the oscillating waves will lie very accurately along the cavity
axis. (This of course also requires strictly parallel alignment of the two mirrors.)

To the extent that the oscillating beam then approximates a finite diameter
beam with a nearly planar (or possibly slightly spherical) wavefront, the phase
of the emerging wavefront will be essentially uniform across the output mirror,
a condition sometimes referred to as a “uniphase” wavefront. There will also
then be a very high degree of coherence between the instantaneous phase of
the wavefront emerging from widely separated points across the output mirror
(but within the overall envelope of the laser beam); and so we can also say that
there is a very high degree of “spatial coherence” to the laser output. The laser
output beam coming through a partially transmitting end mirror,” at least in
this simplified description, will thus be a highly directional beam with a uniform
phase across the mirror surface and hence essentially perfect spatial coherence
in the output beam.
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Transverse Modes in Real Laser Cavities

In a real laser cavity, any such quasi-plane wave, as it bounces back and
forth, will of course spread transversely because of diffraction, so that some of
its energy will spill over the edges of the finite laser mirrors. This spillover will
represent a diffraction loss mechanism, which becomes part of the overall round-
trip losses of the laser cavity. ¢

It is even more important to recognize, however, that such a wave, as it
bounces back and forth between two mirrors, will also undergo distortion of
its transverse amplitude and phase profile in each trip around the laser cavity
because of these same diffraction effects. A uniform plane wave coming from a
finite aperture, for example, will acquire significant Fresnel diffraction ripples
in even one pass down the laser cavity. When this rippled beam bounces off a
finite-aperture end mirror and the truncated wavefront travels back the other way
along the laser cavity, it will acquire still further distortion because of additional
diffraction and propagation effects.

The simple bouncing-plane-wave description of Figure 1.36 therefore cannot
be fully correct, first because the uniform plane waves will spread and distort
because of diffraction, and second because real laser cavities most often employ
spherically curved mirrors, as in Figure 1.38, rather than flat or planar mirrors,
for reasons we will soon consider. These mirrors have finite transverse widths or
diameters, which effectively act as apertures for the circulating laser beam; and
in additioni there are often additional apertures elsewhere along the laser axis,
either deliberately added or caused by the finite diameter of the laser tube or
other intracavity elements.

To understand the transverse beam properties in real laser cavities, therefore,
we must examine more carefully what happens to a propagating optical wave with
a given transverse amplitude and phase pattern when it propagates through one
complete round trip around a laser cavity, including all the focusing, aperturing,
and diffraction effects in the round trip.

Self-Reproducing Transverse Mode Patterns

The round-trip wave propagation in a real laser cavity can be studied by
carrying out analytical or computer calculations of the manner in which the
transverse field pattern of the optical beam changes on repeated round trips
within a given resonator. Optical resonator mode calculations of this type were
first pioneered in the early 1960s by A. G. Fox and T. Li at the Bell Telephone
Laboratories, and are often referred to as “Fox and Li” calculations.

Such calculations are usually carried out with the laser gain omitted for sim-
plicity. It then turns out that for any given laser cavity, employing either finite-
diameter planar or (more usually) finite-diameter curved end mirrors, one will
always find a certain discrete set of transverse eigenmodes, or distinct amplitude
and phase patterns for the circulating beam in the cavity, which will reproduce
themselves in form, though slightly reduced in overall amplitude, after one round
trip. A typical example of such a self-reproducing transverse beam pattern is
shown in Figure 1.38. These self-reproducing transverse field patterns represent
the characteristic set of lowest-order and higher-order transverse eigenmodes or
transverse spatial modes characteristic of that particular laser resonator.

These self-reproducing transverse eigenmodes, with amplitude and phase pat-
terns that depend on the specific curvature and shape of the laser mirrors,

1.6 LASER OSCILLATION AND LASER CAVITY MODES

self-reproducing
transverse amplitude
and phase profile

1
/
/
/

-
\\\\ - —" ’/"
———— T
b v
!
] I
————mmm T =l e ]
-—— 174 -
=~
diffraction “spillover”
past the mlrro‘:' edges
FIGURE 1.38

Example of a self-reproducing transverse mode pattern with finite diffraction
losses in a typical real laser cavity.

are analogous to the transverse modes in a closed waveguide, or even more
closely analogous to the lowest-order and higher-order propagation modes in
a leaky optical lensguide. Indeed, we can view the repeated round trips in either
a standing-wave or a ring laser resonator as essentially equivalent to passage
through repeated sections of an iterated periodic lensguide, with reflection from
the finite-aperture cavity mirrors being replaced by transmission through equiv-
alent finite-aperture lenses having the same focal power.

These transverse eigenmodes can then provide self-consistent oscillation beam
patterns for an oscillating laser. The amplitude reduction on each pass—which is
generally different for each such transverse mode—simply represents the diffrac-
tion or spillover losses for that particular mode, caused by whatever finite aper-
tures are present in the cavity. If the laser then begins oscillating in one of these
patterns, and if the laser medium can maintain sufficient round-trip gain to over-
come the diffraction losses of that particular transverse mode, along with all the
other losses in the cavity, this will be one possible steady-state beam pattern or
beam profile for the laser oscillation.

Planar Resonator Modes

In any reasonably well-designed laser cavity with finite-width or finite-
diameter end mirrors, we will normally find that there is one such lowest-order
transverse mode pattern, which is usually reasonably smooth in its transverse
amplitude and phase profile, and which has the lowest diffraction loss of all the
self-reproducing transverse mode patterns in that particular resonator.

In a properly aligned planar resonator, for example, the lowest-order trans-
verse mode will generally have an amplitude profile which looks something like
the upper part of figure 1.39. That is, this mode will typically look something like
the central lobe of a Jo(r) Bessel function across the mirror for circular end mir-
rors, or like a single lobe of a cosine wave, that is £(z,y) = cos(wz/a) cos(ry/b)
for rectangular mirrors of width 2a by 2b. The exact amplitude pattern of this
lowest-order mode will, however, also have diffraction ripples, as in the upper
part of Figure 1.39, whose amplitude and spacing depend on the finite mirror
size; and the quasi-Bessel function or cosine variation will not drop quite to zero
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at the mirror edges, in agreement with the inevitable diffraction losses in such
an open-sided resonator.

The phase variation of the lowest-order mode in a typical planar resonator
will also exhibit some small Fresnel diffraction ripples, along with some small
curvature of the wavefront along the outer edges of the resonator, as in the lower
part of Figure 1.39; but over the major portion of the mode the wavefront will in
fact be a very good approximation to a planar wavefront. A plane-mirror cavity
oscillating in this lowest-order transverse mode will thus in fact have output
beam properties very close to those of the simple plane wave described earlier.

The unwanted diffraction losses past the mirror edges for this lowest-order
transverse mode will also typically be very small, unless the mirror sizes are
made very small. The lower-order self-consistent transverse modes in almost any
type of resonator in fact exhibit an uncanny ability to shape their amplitude and
phase patterns in ways that minimize their diffraction losses on each round trip.

Higher-Order Modes

This same laser cavity will generally also have many higher-order transverse
modes. These will generally have larger diffraction losses and also more complex
transverse amplitude and phase variations, like the higher-order transverse modes
in waveguides. And they will generally have several transverse nulls and phase
reversals, with either even or odd symmetry in simple cases. Their transverse
spread inside the cavity is generally larger, which makes their diffraction losses
larger than those of the lowest-order transverse mode; and their diffraction spread
or beam spread outside the cavity is also generally larger than that for the lowest-
order transverse mode. For these reasons, laser oscillation in these higher-order
modes is generally considered undesirable. We will analyze the mode properties
of these transverse modes in great detail in Chapters 14 through 23.

FIGURE 1.40
Hermite-gaussian transverse-mode patterns in a stable laser resonator.

Stable and Unstable Laser Resonators

Practical laser cavities most often employ curved rather than planar end
mirrors, in order to shape the transverse modes of the cavity and control the
diffraction losses. There is one broad class of such curved-mirror resonator de-
signs, the so-called stable laser resonators, in which the diffraction losses are
generally very small, and the lowest-order and higher-order modes*have the form
(very nearly) of Hermite-gaussian functions,-as in Figure 1.40, with the lowest-
order mode having a gaussian transverse profile of the form £(r) = exp(—r?/w?).
Such gaussian modes and the resulting gaussian output beams are particularly
easy to handle both analytically and in experiments, and practical lasers are very
often designed in this fashion.

On the other hand, these Hermite-gaussian modes in realistic laser cavities
do turn out to be very slender in diameter, so that they do not readily fill all the
volume of larger-diameter laser tubes or rods. The laser must then oscillate in a
mixture of lowest-order and higher-order modes (which tends to spoil the beam
collimation properties) in order to fill and extract all the available power from
the laser volume.

There is also a class of so-called unstable optical resonators, which make
use of deliberately diverging laser wavefronts as shown in Figure 1.41. These
resonators have transverse mode patterns that much more readily fill large laser
volumes, but still suppress higher-order transverse modes. These unstable optical
resonators necessarily have much larger output coupling or lower effective mirror
reflectivity than stable resonators, since the diffraction spread past the output
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mode

1.7 LASER OUTPUT-BEAM PROPERTIES

Note also that the transverse mode properties we have just been discussing,
and the axial mode or resonant frequency properties we discussed earlier, are
almost independent of each other. There are some important secondary con-
nections between these properties, and we will discuss them in detail in later
chapters. In simplified terms, however, the round-trip propagation length de-
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intensity termines the resonant axial-mode frequencies of the laser, whereas the focusing
and diffraction effects associated with mirrors and apertures in the round-trip
propagation determine the transverse mode patterns.

FIGURE 1.41 I:
A 'typical unstable resonator

transverse-mode profile.

mirror edges is used as the output coupling mechanism. This property limits the
usefulness of unstable resonators for low-gain laser systems.

The mode properties of such unstable resonators are also rather more com-
plex and esoteric than the simple Hermite-gaussian stable modes. (Note that
the “stability” referred to in these resonator classifications is that of geometrical
rays bouncing back and forth in the cavity designs in question, and has nothing
directly to do with the stability or instability of the laser oscillation in the re-
sulting transverse eigenmodes.) Perhaps the most useful class of laser resonator
modes in the future will be the geometrically unstable but still Hermite-gaussian
modes that can be obtained in so-called “complex paraxial” resonators by using
variable reftectivity mirrors, as will be described in Chapter 23.

General Transverse-Mode Oscillation Properties

Each different optical-resonator design, whether planar, stable, unstable,
or still more complex, will thus possess some lowest-order transverse mode pat-
tern which can circulate repeatedly around the laser cavity without changing
its amplitude or phase profile. The phase profile of this lowest-order transverse
mode will usually be comparatively smooth and regular across the output mirror
of the laser cavity (as well as at any other transverse plane within the cavity).
The phase front is often quasi spherical across the output plane of the laser, but
this spherical curvature can be removed by a simple lens to convert the output
beam into a fairly well-collimated plane wave.

A laser cavity which oscillates only in this lowest-order transverse mode will
thus generally produce an output beam with good transverse characteristics and
with a nearly uniphase character across the output mirror. If the laser oscillates
simultaneously in several transverse modes, however, as can readily happen in
real lasers, the output wavefront will no longer be “uniphase,” and the collimation
and focusing properties of the beam will generally deteriorate.

Forcing laser oscillation to occur only in the lowest-order transverse mode
is thus a practical design objective, which is achieved in some though not all
practical lasers. The primary obstacle to achieving single-transverse-mode os-
cillation in higher-power (or higher-gain) lasers is that the diffraction losses of
the lowest- and higher-order modes in a large-diameter cavity are all small and
nearly identical; so there is little or no loss discrimination between the different
transverse modes. A designer must then add mode-control apertures, employ
unstable resonator designs, or use other tricks to suppress the unwanted higher-
order transverse modes.
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1.7 LASER OUTPUT-BEAM PROPERTIES

The output beam from a laser oscillator thus basically consists of electromag-
netic radiation, or light, that is not fundamentally different in kind from the
radiation emitted by any other source of electromagnetic radiation. There are
several important and fundamental differences in detail, however, between the
“incoherent” light emitted by any thermal light source, such as the flashlight in
Figure 1.42, and the “coherent” light emitted by a laser oscillator.

The output beams produced by laser oscillators in fact have much more in
common with the outputs of conventional low-frequency electronic oscillators,
such as transistors or vacuum tubes, than they do with any kind of thermal
light sources. Laser beams are often described as being different from ordinary
light sources in being both spatially coherent and temporally or spectrally coher-
ent. These rather vague phrases refer to some' characteristic laser output-beam
properties that we will review briefly in this section.

An important point to keep in mind is that all these coherence properties arise
primarily from the classical resonant-cavity properties of the laser resonator, as
we described in the preceding section, rather than from any of the quantum
transition properties of the laser atoms.

Ideal Laser Monochromaticity and Frequency Stability

The flashlight shown in Figure 1.42, like any other thermal light source,
emits a generally broadband continuum of light at many different wavelengths.
There are light sources, such as discharge lamps, that emit only comparatively
few spectral lines or narrow bands of wavelengths, but the spectral widths of the
light emitted by even the best such sources are still limited by the linewidths of
the atomic transitions in the discharge atoms.
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FIGURE 1.42
Incoherent light from a flashlight (top) and coherent light from a laser (bottom).

The output beams from most lasers can be, by contrast, highly monochro-
matic, and in ideal lasers can consist almost entirely of a single frequency. That
is, the output signal from a near-ideal laser will be a nearly pure, constant-
amplitude, highly stable, single-frequency sine wave, exactly like the signal gen-
erated by a highly stable electronic oscillator in any other frequency range.

Atomic transitions typically have fractional atomic linewidths Aw, /w ranging
from 1 part in 100 (broadband dye or semiconductor materials) to narrower than
1 part in 10 (narrow-line atomic transitions in gases); and it is this linewidth
that characterizes the spontaneous or fluorescent emission from such atoms. In
absolute terms such linewidths range from a few GHz (as in typical doppler-
broadened gas lasers in the visible) to a few tens or hundreds of GHz (as in
typical solid-state lasers). The short-term spectral purity of a good-quality single-
frequency laser oscillator, by contrast, can range from a few tens of MHz (in a
moderately well-stabilized gas laser) down to only a few Hz in a very highly
stabilized system.

As we have said, it is the laser cavity and not the laser atomic transition that
is primarily responsible for these spectral properties. Continuous oscillations can
be sustained in a laser resonator only at those discrete axial-mode frequencies
where the round-trip phase shift inside the laser cavity is an integer ¢ times
2w. The laser atomic transition then serves primarily to provide gain at these
cavity resonance frequencies, not to determine the oscillation frequency (except
for small, second-order frequency-pulling effects that we have not yet discussed).

Spectral Purity in Practical Lasers

Both the short-term frequency jitter and the long-term frequency drift of
a laser oscillator usually result primarily from mechanical vibrations and noise,
thermal expansion, and other effects that tend to change the length L of the
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FIGURE 1.43
Sine wave from a coherent oscillator (top) and “noise wave” from a narrowband ther-
mal source (bottom).

laser cavity. Very highly stabilized laser oscillators can nonetheless have long-
term absolute frequency stabilities better than 1-part in 10!°, and short-term
spectral purities as high as 1 part in 10’3, making them equal to or better than
the best atomic clocks available in any frequency range.

The ultimate limit on laser spectral purity is finally set by quantum noise fluc-
tuations caused by the spontaneous emission from the atoms inside the laser cav-
ity. These quantum noise effects, which are described by the so-called “Schawlow-
Townes formula,” can be observed with great difficulty only on the very best and
most highly stabilized laser oscillators.

Laser Statistical Characteristics

In addition to being highly frequency-stable, a good-quality laser oscillator
will generally have all the other statistical and amplitude-stabilization properties
associated with a coherent electronic oscillator in any frequency range.

The most basic of these properties is that the instantaneous optical field in
a single oscillating cavity mode will be essentially a pure optical-frequency sine
wave, whose amplitude remains closely stabilized to the steady-state value at
which the saturated laser gain just equals the net mode losses. This is usually a
self-stabilizing situation: if the gain increases slightly above the loss because of
some random fluctuation, the oscillation amplitude begins to grow slightly, and
the slightly increased signal amplitude pulls the gain back down. Conversely, if
the amplitude fluctuates slightly above its average value, this pushes the gain
down below the loss, and pulls the oscillation amplitude back down.



52

CHAPTER 1: AN INTRODUCTION TO LASERS

EW

[ 10

(a) (b) (c)

FIGURE 1.44

(a) The complex phasor amplitude of a sinusoidal signal at any one instant of time,
and its statistical distributions for (b). a narrowband gaussian noise source, and (c) an
amplitude-stabilized oscillator.

A well-stabilized single-frequency laser can in fact have almost negligible am-
plitude fluctuations, limited mostly by random fluctuations in the pumping rate
and the cavity parameters. The output signal from a well-stabilized high-quality
single-frequency laser can thus be best described as an optical sine wave with a
highly stabilized amplitude and frequency, whose amplitude changes very little,
but whose absolute phase drifts randomly and slowly through all possible values,
because of small random environmental fluctuations and ultimately because of
quantum noise.

Laser Signals Versus Narrowband Incoherent (Thermal) Signals

The output signal from such a high-quality laser will also differ in another
quite fundamental way from the spontaneous emission emitted by any thermal
or “incoherent” light source. Suppose that the output signal from some very
bright thermal light source could be first filtered throtigh some extraordinarily
narrowband optical filter, and then amplified through some very high-gain linear
optical amplifier (perhaps a laser amplifier), so that the resulting signal was both
as narrowband and as powerful as a typical high-quality laser beam. (Though
this conceptual experiment would be extremely difficult in practice, there is no
fundamental barrier to it in principle.) This output will then also look like an
optical-frequency sine wave, but this sine wave will not have constant amplitude
or phase, no matter how narrowly filtered it may be. Rather, it will always look
something like the incoherent narrowband noise wave in the lower part of Figure
1.43.

Suppose that we write the instantaneous electric field for both the signals in
Figure 1.43 in the form £(t) = E(t) coswot + ¢(t)], where wy is the midband or
carrier frequency, and E(t) and ¢(t) are the slowly varying amplitude and phase
of the signals. We can then represent each signal during any short interval of time
by its instantaneous phasor amplitude E(t)e?¢®), where this phasor amplitude
moves around in time in the complex plane as shown in Figure 1.44(a).

For a thermal noise source, the instantaneous phasor amplitude will then
move slowly but randomly through many different phase angles and amplitudes,
tracing out a two-dimensional random walk as shown in Figure 1.44(b). The
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In three dimensions, the distribution in Figure

1.44(b) is a “gaussian molehill.”

bandwidth of the noise signal, no matter how narrow, will determine only how
rapidly the phasor moves around within this region—not how far it moves, or
with what probability distribution. This noise signal, though having the same
power and bandwidth (and hence the same power spectral density) as the laser,
will still have the statistical character of narrowband gaussian noise. That is, both
the phase and the amplitude of this thermal signal will luctuate slowly with time,
at a rate given essentially by the inverse bandwidth of the signal. The probability
distribution for the instantaneous phasor amplitude of the thermal signal will be
a “gaussian molehill” (Figure 1.45), with the z and y axes corresponding to the
amplitudes of the sin(wot) and cos(wot) components of the signal, and the height
of the molehill corresponding to the probability of the signal having these sin
and cos components at any instant.

However, the laser oscillator signal, like any other conventional oscillator,
will fluctuate primarily only in phase, with only small fluctuations in amplitude
about its steady-state value. Its phase angle will wander slowly but randomly
through all possible phase angles, in a manner corresponding to its small residual
frequency uncertainty; but its amplitude will not. Its probability distribution will
thus be a “gaussian molerun” (Figure 1.46) rather than a molehill.

Amplitude Fluctuations in Semiconductor Diode Injection Lasers

The active volume in a semiconductor diode is very small; the passive cavity Q is com-
paratively low; the atomic lifetimes are fairly short; and the atomic linewidth is very
wide compared to most other lasers. As a result of all these characteristics, sponta-
neous emission effects or fundamental quantum noise fluctuations are generally more
significant in semiconductor lasers than in many other types of lasers, and the result-
ing amplitude and phase fluctuations are larger and more easily observed than in most
other lasers. A particularly clean illustration of amplitude-fluctuation effects in semi-
conductor injection lasers is given, for example, by P.-I. Liu, et. al., in “Amplitude
fluctuations and photon statistics of InGaAsP injection lasers,” IEEE J. Quantum
Electron. QE-19, 1348-1351 (September 1983). One of the conclusions of this study
is that the output signal from a laser oscillator can be very accurately described as the
combination of a coherent (highly stabilized) sinusoidal oscillation, plus an additive

53



54

CHAPTER 1: AN INTRODUCTION TO LASERS

Im [E]

Re [E]
FIGURE 1.46
In three dimensions, the distribution in Figure 1.44(c) is a “gaussian
molerun.”

gaussian noise component which represents the net effect of spontaneous emission from
the inverted laser medium inside the cavity.

Laser Temporal Coherence

The preceding descriptions make more precise what is generally meant by
the “temporal coherence” of a laser output signal. However, the term “coherence”
is often used carelessly, both in discussions of lasers and in other situations, and
this has led to some confusion. The term coherence necessarily refers not to one
property of a signal at a single point in space and time, but to a relationship, or
a family of relationships, between one signal at one point in space and time, and
the same or another signal at other points in space and time.

There are, for example, certain precise mathematical definitions of coher-
ence functions as used in coherence theory. These functions give the degree of
correlation, described in a specific mathematical fashion, between two signals
observed at different points in space and/or time. More colloquially, a signal is
called “temporally coherent” if there is strong correlation in some sense between
the amplitude and/or phase of the signal at any one time and at earlier or later
times.

Both the amplitude and the phase of a good-quality laser oscillator will in
fact change only slowly with time, so that the amplitude and phase of the output
sine wave from the laser at any one time will be strongly correlated with the
amplitudes and phases at considerably earlier or later times. A good laser beam
might thus be said to be temporally coherent because of this strong correlation
between the amplitudes and phases of the signal at not very different points in
time. Much the same might be said, however, of the narrowband noise signal
described earlier, since there is considerable coherence between the signals at
any two times that are less than one reciprocal bandwidth apart. In fact, a high
degree of coherence in the formal mathematical sense does not by itself imply
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that signals are the kind of “clean” and amplitude-stable sinusoidal escillation
signal generated by a good laser oscillator. Two highly disorderly or irregular
signals can still have a very high degree of coherence between themselves.

Laser Spatial Coherence

We have already noted that a good-quality laser oscillator can also oscillate
in a single transverse-mode pattern, which has a definite and specific amplitude
and phase pattern across any transverse plane inside the laser, and particu-
larly across the output mirror. In this situation there is a very high degree of
correlation between the instanteous amplitudes, and especially between the in-
stantaneous phase angles, of the wavefront at any two points across the output
beam. We can then also say that the output beam possesses a very high de-
gree of “spatial coherence” (in the transverse direction) as well as the temporal
coherence discussed above.

Often this lowest-order output-beam pattern will vary reasonably smoothly
in amplitude, and its phase variation will approximate reasonably closely either
a plane wave or a spherical wave (which can be converted into a plane wave with
a simple lens). In contrast, if there are badly distorted optical elements inside the
laser cavity, the amplitude and especially the phase profile across the beam may
be badly distorted. But if this pattern still represents a single transverse cavity
mode, however badly distorted, then there will still be a high degree of coherence
between the wavefront phasor at different transverse points; i.e., this beam will
still be “spatially coherent” in some sense. In principle, we could therefore design
a complex “deaberrating lens” or deaberrating spatial filter that can convert this
distorted but stationary wavefront into a smooth and uniphase wavefront of the
type that is desirable in a laser output beam.

Laser Beam Collimation

Thermal light sources not only usually emit many wavelengths, but also
emit them quite randomly, in essentially all directions. Even if we capture some
fraction of this radiation and collimate it with a lens or mirror, as in a searchlight
or in the flashlight in Figure 1.42, the resulting degree of collimation, or the
amount of radiation emitted per unit solid angle; is still much smaller than in
even a very poor quality laser oscillator.

A single-transverse-mode laser oscillator can produce (usually in practice, and
always in principle) an output beam that is more or less uniform in amplitude
and constant in phase (“uniphase”) across its full output aperture of width or
diameter d. Such a beam can propagate for a sizable distance with very little
diffraction spread; will have a very small far-field angle at still larger distances;
and can be focused into a spot only a few wavelengths in diameter.

Elementary diffraction theory says, for example, that a uniphase plane wave
coming from an aperture of diameter d will have a minimum angular diffraction
spread A in the far field (Figure 1.47) given by

Al = (in radians). (32)

>

For a visible laser with A = 0.5 pum and an output aperture of, say, d = 0.5 cm,
this gives an angular spread of Af ~ 10~* radians, which we might alternatively
express as 0.1 milliradians or 100 yrad.
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FIGURE 1.47
Laser beam collimation and diffraction spreading.

FIGURE 1.48 d Mxd
Beam-expanding telescope.

The axial distance over which this same beam will stay approximately parallel
and collimated before diffraction spreading begins to significantly increase the
beam size—sometimes called the Rayleigh range—is then given (see Figure 1.47)
by d/zr = A/d, or

2r = d2/ (33)

A visible beam with a diameter of 5 mm thus has a Rayleigh range of zg ~ 50
meters.

Suppose this same uniphase beam is magnified by a 20-power telescope at-
tached to the laser output and focused to infinity, as in Figure 1.48. Then the
source aperture diameter is increased to d = 10 cm, and these results change to
Af ~ 5 pyrad and zr =~ 20 km. Uniphase laser beams can be propagated for very
large distances with very small diffraction spreads.

Laser Beam Focusing

Suppose this same uniphase laser beam with initial diameter d is focused
down to a spot of diameter dy by means of a simple lens of focal length f. The
diameter dy of the focused spot can then be calculated by applying the same
angular spread condition in reverse, to obtain

A

~
~

(34)

sl

or
dod ~ f/\, (35)

since the focal point will occur essentially one focal length f beyond the lens.
Suppose we follow the common practice in optics of defining the “f-number”
or “f-stop” of the focusing lens by f# = f/d, i.e., focal length over diameter. (We

1.7 LASER OUTPUT-BEAM PROPERTIES

7 do~fA/d

Af~\/d,

FIGURE 1.49

: Laser-beam focusing.
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are really defining this quantity in terms of the input beam diameter rather than
of the lens diameter, but this of course determines the minimum lens diameter
that can be employed.) The approxlmate diameter of the focused spot can then
be written as simply

do = f#A. (36)

Photography buffs will know that lenses with f# > 10 are fairly easy to ob-
tain; lenses with f# less than about 2 become expensive; and lenses with f#
approaching unity become very expensive.

All the power in a truly uniphase laser beam can thus be focused into a
spot a few laser wavelengths in diameter, if we use a powerful lens. (Microscope
objectives are usually used for this purpose, at least for laser beams that are not
too high in power. A focusing lens for single-wavelength laser radiation of course
requires no correction for chromatic aberration, which helps.)

Nonideal Laser Oscillators: Multimode and Multifrequency Oscillation

Many real lasers can produce output beams which come very close to the
ideal temporal and spatial behavior described in the preceding paragraphs. Other
lasers, however—especially including some of the higher-power laser systems—
are more likely to oscillate in both multiple axial and multiple transverse cavity
modes. The coherence properties, both temporal and spatial, of such lasers then
necessarily deteriorate relative to more ideal single-mode lasers; and the effort
to obtain both single-axial-mode (or single frequency) oscillation, and single-
transverse-mode (or “diffraction limited”) beam quality, provides a continuing
struggle for those who design and construct lasers.

Forcing a practical laser to oscillate in only a single centermost axial mode
within the atomic linewidth is most easily accomplished if the laser cavity is
made short in order to increase the ¢/2L axial mode spacing, and if the atomic
linewidth is narrow. The laser transition should also preferably be “homoge-
neously” rather than “inhomogeneously” broadened (we will define these spe-
cialized terms later). Special mode-selection techniques employing intracavity
etalons and other special filters can also be used to reinforce one selected axial
mode and suppress others.

Many practical lasers, however, actually oscillate in several axial modes si-
multaneously, usually in only a few, but perhaps in a few hundred in extreme
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cases. The outputs from such lasers, though no longer single-frequency, can still
be quite narrowband compared to incoherent light sources; and multi-axial-mode
oscillation is not a serious defect for many practical laser applications.

In such multi-axial-mode lasers there are more likely to be large random
fluctuations of individual mode amplitudes, as individual mode frequencies drift
across the gain profile because of thermal cavity expansion, and as individual
modes compete with each other. The total intensity in all the axial modes is,
however, somewhat more likely to remain constant. Real laser devices can also be
operated in various internally modulated and pulsed forms, and may be subject
to various kinds of instabilities and relaxation oscillations, such as “spiking,”
which we will discuss in more detail in later chapters.

The output signals from such less-than-perfect lasers may thus usually be
described as the summation of several simultaneous and independent oscillation
frequencies, and may have substantial random variations in amplitude and fre-
quency for each separate oscillation. Such a rather random multifrequency out-
put, though not really the same as a gaussian random noise signal, may appear
much like random noise according to various statistical and spectral measures.

Real Laser Oscillators: Multiple-Transverse-Mode Oscillation

Many real lasers produce output beams which also approach the desirable
single-transverse-mode character. A laser beam having the necessary single-mode
and uniphase character is often said to be “diffraction limited,” since its far-field
diffraction angle and focal spot size will approach the ideal limits given just
above; whereas beams whose far-field angular spread or focused spot size are k
times larger than this are said to be k times diffraction-limited in performance.

More detailed diffraction calculations show that the far-field beam spread of
a nonideal beam from an aperture of diameter d is not greatly affected by the
exact amplitude pattern of the beam across the aperture; that is, it does not
matter greatly whether the amplitude pattern is uniform, gaussian, cosine, or
Bessel function, nor do moderate amplitude ripples on the beam lead to serious
far-field beam spreading. However, phase variations across the beam wavefront,
whether random or regular in character, do begin to substantially increase the
far-field beam spread or the focal spot size as soon as they approach the order of
90° phase shift—a distortion of more than a quarter of an optical wavelength—
anywhere across the beam width.

A rough argument for the deterioration in beam quality that results from
multiple-transverse-mode operation can be developed as follows. Let us call the
number of simultaneously oscillating transverse modes in some real laser Nyy,.
Then the far-field angular spread of the output beam from that laser will usually
be ~ Ntl,,/.,2 times larger than the ideal value for a uniphase beam coming from an
aperture of the same size, and the focused spot diameter will be ~ Ntl,flz times
larger than for an ideal beam. (The spot area will, of course, be ~ Ny, times
larger.)

The ratio Ntl,{lz is sometimes referred as the “times diffraction limited” or
“TDL” ratio of the real laser oscillator. This TDL ratio may range from about 1
up to a few factors of ten in real lasers. (In practice, a designer can often insert
some suitable aperture inside a real laser cavity to improve the transverse beam
quality, at the price of a corresponding reduction in total output power.)

1.7 LASER OUTPUT-BEAM PROPERTIES
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advanced-level optics text, found on every laser worker’s bookshelf.
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Max Garbuny, Optical Physics (Academic Press, 1965). Not really an optics text;
concerned rather with topics in physics that involve optical radiation, including thermal
radiation, atomic spectra, and the interaction of optical radiation with matter.

Eugene Hecht and Alfred Zajac, Optics (Addison-Wesley, 1974). Another modern
basic optics text, including elementary introductions to lasers and holography.
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on interference and diffraction.

A. Nussbaum and R. A. Phillips, Contemporary Optics for Scientists and Engineers
(Prentice-Hall, 1976). Modern-coverage of geometrical and physical optics, emphasizing
matrix optics and the Fourier analysis approach, plus holography, interferometry, and
nonlinear optics.

John M. Stone, Radiation and Optics (McGraw-Hill, 1963). More analytical, de-
tailed, and mathematically sophisticated, and with more emphasis on atomic phenom-
ena than the other basic texts in this list.

Robert W. Wood, Physical Optics (Dover Publications, 1967). Though many parts
of this classic book have become outdated by the passage of four decades since its last
revision, this Dover reprint is still valuable for clear descripions, physical and historical
insights, and ingeniously simple demonstrations of optical phenomena.

Problems for 1.7

1. Fraunhofer (far field) aperture diffraction patterns. From an optics text find the
Fraunhofer diffraction patterns for (a) a square aperture of width d, or (b) a
circular aperture of diameter d, when illuminated by a uniform plane wave. Let
the beam width of either of these diffraction patterns be defined arbitrarily as the
full width between the first nulls in each pattern. Determine the angular width
(in radians) and the full solid angle (in steradians) of either far-field pattern as a
function of wavelength and aperture area. Compare with the A/d rule of thumb
developed in this chapter.

2. Huygens’ integral and the on-axis intensity in the far field. Look up a mathemat-
ical statement of Huygens’ principle in its simplest form. Then suppose a colli-
mated plane wave (i.e., uniform intensity and phase) emerges with total power
Py through a transmitting aperture of total area Ao. Using Huygen’s integral,
show that optical intensity or power density (Watts per unit area) on the beam
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axis at large distance z in the far field will be I = AgPy/(2A)? independent of
the shape of the transmitting aperture. Verify that this is compatible with the
far-field angular spread A@ =~ )\/d asserted in this section.

1.8 A FEW PRACTICAL EXAMPLES

Let us look at just a few practical examples of real lasers that illustrate some of
the points we have been discussing, notably the ruby solid-state laser, and the
helium-neon gas laser.

The Ruby Laser

The first laser of any type ever to be operated was in fact the flash-pumped
ruby laser demonstrated by T. H. Maiman at the Hughes Research Laboratory
in early 1960. We have already shown in Figure 1.10 the quantum energy levels
associated with the unfilled 3d inner shell of a Cr®t ion when this ion replaces
one of the AI** ions in the sapphire or Al;Oj3 lattice. Up to ~ 1% of such
replacements can be made in the sapphire lattice to create pink ruby.

By placing such a ruby rod shaped roughly like a slightly overweight cigarette
inside a spiral flashlamp filled with a few hundred Torr of xenon (Figure 1.50),
and then discharging a high-voltage capacitor bank through this lamp, Maiman
was able to use the blue and green wavelengths from this lamp to optically pump
atoms from the A, ground level of the Cr®* ions in the lattice into the broad
4F, and 4F; bands of excited levels. In ruby, atoms excited into these levels will
relax very rapidly, and with close to 100% quantum efficiency, down into the
comparatively very sharp 2E levels, or R; and Ry levels, lying ~14,400 cm or
694 nm (~1.8 eV) above the ground level.

The ruby laser is, however, a three-level laser system, in which the lower
laser level is also the ground energy level. By pumping hard enough, we can
nonetheless cycle more than half of the Cr®* ions from the ground level up
through the pumping bands and into the highly metastable upper laser level,
with its fluorescent lifetime of 7 =~ 4.3 msec. Thus, even though ruby is a three-
level system rather than a four-level system, which is usually very unfavorable,
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with sufficiently hard pumping Maiman was able to produce a powerful burst of
laser action from the ruby rod.

In a small flash-pumped laser such as ruby, or others, the flashlamp may
be connected to a capacitor bank of perhaps 10 to 100 microfarads charged
to a prebreakdown voltage of perhaps 1,000 to 1,500 volts, corresponding to
~5 to 50 J of stored energy. The lamp itself is then triggered or ionized by a
high-voltage pulse, so that it becomes conducting. The capacitor energy then
discharges through the lamp with a typical pulse length of perhaps 200 usec,
peak currents of up to a few hundred amperes, and peak electrical power input
of 25 to 250 kW. The laser rod may convert the pump light in a typical solid-state
laser into laser energy with ~ 1% efficiency, leading to laser output energies of 50
mJ to 0.5 J per shot, and average powers during the pulse of 2.5 to 25 kW. (We
will discuss later the technique of “@-switching,” which can extract the same
laser energy in a very much shorter pulse with very much higher peak power.)

The laser action in ruby actually occurs not as a clean and continuous laser
action during the pulse, but as a series of short “spikes” or relaxation-oscillation
bursts during the entire pumping time (see Figure 1.51). We will discuss this
spiking behavior in more detail in a later chapter.

Other Solid-State Lasers

There are many such solid-state lasers besides ruby (though unfortunately
not many in the visible region). The most common of these are the rare-earth ions
in crystals or glasses, with by far the most widely used examples being Nd3+
lasers using Nd:YAG (Nd3t ions in yttrium aluminum garnet) and Nd:glass
materials. The spiral flashlamp and diffusely reflecting pump enclosure used in
Maiman'’s first ruby laser is now almost always replaced by one or more straight
lamps placed parallel to the rod along the axes of an elliptical pump cavity
(Figure 1.52).

In the first ruby lasers, partially transparent metallic silver mirrors were
evaporated directly onto the polished ends of the laser rod (though such metallic
mirrors are quite sensitive to optical damage at higher powers). Later solid-state
lasers quickly shifted to the use of external dielectric-coated mirrors, just as in gas

Output versus time from a typical “long-pulse”
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lasers. The round-trip gains in ruby and other solid-state lasers are often much
higher than in gas lasers—up to round-trip power gains of 10X and higher—so
that mirrors with much lower reflectivity or higher transmission output can be
employed.

Pulsed solid-state lasers are used for a variety of smaller-scale laser cutting,
drilling, and marking applications; as military rangefinders and target designa-
tors; and in an enormous variety of scientific and technological experiments. By
taking advantage of improved lamp efficiencies and laser materials, as well as the
fact that most other materials are four-level lasers, we can also operate several
solid-state lasers continuously at cw power outputs in the 1-100 W range with
efficiencies of ~ 1% or slightly higher, using electrical inputs of 100 W to 10
kW into xenon or krypton-filled arc lamps. (Both laser rod and lamps must, of
course, be carefully water-cooled.) Even ruby can, with some difficulty, be made
to oscillate on a cw basis. We will discuss the very useful Nd3* laser system in
detail in later chapters.

The Helium-Neon Laser

Another of the most common and familiar types of laser is the helium-
neon gas laser developed at the Bell Telephone Laboratories in 1960 and 1961.
The laser tube in a He-Ne laser consists of a few Torr of helium combined with
approximately one-tenth that pressure of neon inside a quartz plasma discharge
tube, which is usually provided with an aluminum cold cathode and an anode,
as in Figure 1.53. This discharge tube may be 10 to 50 cm long and a few mm in
diameter in a typical small laser. To avoid broadening of the laser transition by
isotope shifts (and for other more complex reasons), a mixture of single-isotope
He?® and Ne?? is usually employed; and it is found empirically that the optimum
pressure-diameter product pd in such a laser is a few Torr-mm and that the
optimum gain per unit length varies inversely with tube diameter d.

This tube is then excited with a dc discharge voltage typically of order 1,000
to 1,500 vdc, producing a dc current typically of order ~10 mA from a special
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high-purity aluminum cold cathode. (Radio-frequency excitation through exter-
nal electrodes was also employed in many early lasers, but has been found to
be generally less convenient.) Because a dc glow discharge in this pressure range
has a negative-resistance I-V curve (Figure 1.54), a ballast resistance in series
with the dc voltage supply is necessary to stabilize the discharge; and an initial
higher-voltage spike must be supplied to ionize the gas and break down the gas
discharge each time the tube is turned on.

The discharge tubes in many gas lasers (especially with longer lasers, or lasers
for research purposes) may be provided with Brewster-angle end windows which
transmit light of the proper linear polarization with essentially zero reflection
loss at either face. (Because of the very low gain in the He-Ne system, reflection
losses of several percent at each of the air-dielectric interfaces would be totally
intolerable.) In many small inexpensive internal-mirror He-Ne lasers, however,

Lower Elementary design for a helium-
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the end mirrors are sealed directly onto the discharge tube, as part of the laser
structure (Figure 1.55). Extreme cleanliness and purity of the laser gas fill is vital
in the inherently low-gain He-Ne system; the tube envelope must be very carefully
outgassed during fabrication, and a special aluminum cathode employed, at least
in long-lived sealed-off lasers. The end mirrors themselves are carefully polished
flat or curved mirrors with multilayer evaporated dielectric coatings, having as
many as 21 carefully designed and evaporated layers to give power reflectivities
in excess of 99.5% in some cases.

The pumping mechanism in the He-Ne laser is slightly more complex than
those we have discussed so far. The helium gas, as the majority component,
dominates the discharge properties of the He-Ne laser tube. Helium atoms have
in fact two very long-lived or metastable energy levels, generally referred to as
the 215 (“2-singlet-S”) and 23S (“2-triplet-S”) metastable levels, located ~20
eV above the helium ground level. Free electrons that are accelerated by the
axial voltage in the laser tube and that collide with ground-state neutral helium
atoms in the laser tube then can excite helium atoms up into these metastable
levels, where they remain for long times.

There is then a fortuitous—and very fortunate—near coincidence in energy
between each of these helium metastable levels and certain sublevels within the
so-called 2s and 3s groups of excited levels of the neutral neon atoms, as shown in
Figure 1.56. (The atomic energy levels in neon, as in other gases, are commonly
labeled by means of several different forms of spectroscopic notation of various
degrees of obscurity.)

When an excited He atom in one of the metastable levels collides with a
ground-state Ne atom, the excited He atom may drop down and give up its
energy, while the Ne atom simultaneously takes up almost exactly the same
amount of energy and is thus excited upward to its near-coincident energy level.
This important type of collision and energy-exchange process between the He
and Ne atoms is commonly referred to as a “collision of the second kind.” Any
small energy defect in the process is taken up by small changes in the kinetic
energy of motion of one or the other atom.

This process thus amounts to a selective pumping process, carried out via the
helium atoms, which efficiently pumps neon atoms into certain specified excited
energy levels. As Figure 1.56 shows, laser action is then potentially possible from
these levels into various lower energy levels in the so-called 2p and 3p groups.
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The first successful laser action in any gas laser was in fact accomplished by
A. Javan and co-workers at Bell Labs in late 1960 on the 2s; — 2p4 transition
of helium-neon at 1.1523 microns in the near infrared. Shortly thereafter A. D.
White and J. D. Rigden discovered that the same system would lase on the
familiar and very useful 3s; — 2py4 visible red transition at 633 nm (or 63284),
as well as on a much stronger and quite high-gain set of 3s — 3p transitions near
3.39 microns. (A half-dozen or so different nearby transitions within each of these
groups can actually be made to lase, with the strongest transition in each group
being determined in part by the relative pumping efficiencies into each sublevel
and in part by the relative transition strengths of the different transitions.)

Characteristics of Gas Lasers

The laser gain in the He-Ne 633 nm system is quite low, with perhaps
2am =~ 0.02 to 0.1 cm™! (often expressed as “2% to 10% gain per meter”);
and the typical power output from a small He-Ne laser may be 0.5 to 2.0 mW.
With a dc power input of ~10 W, this corresponds to an efficiency of ~0.01%.
Several manufacturers supply inexpensive self-contained laser tubes of this type
for about $100 retail and considerably less in volume production. Such lasers are
very useful as alignment tools in surveying, for industrial and scientific alignment
purposes, supermarket scanners, video disk players, laser printers, and the like.
(The dominance of the He-Ne laser in such applications may soon be ended by
even cheaper and simpler semiconductor injection lasers.) Larger He-Ne lasers
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with lengths of 1 to 2 meters that can yield up to 100 mW output at comparable
efficiencies are also available.

There are also scores of other gas lasers that are excited by using electrical
glow discharges, higher-current arc discharges, hollow-cathode discharges, and
transverse arc discharges. One notable family of such lasers are the rare-gas ion
lasers, including argon, krypton, and xenon ion lasers, in which much larger
electron discharge currents passing through, for example, a He-Ar mixture can
directly excite very high-lying argon levels to produce laser action in both singly
ionized Ar* and doubly ionized Art™ ions. Such ion lasers are generally larger
than the He-Ne lasers, and even less efficient, but when heavily driven can pro-
duce from hundreds of milliwatts to watts of cw oscillation at various wavelengths
in the near infrared, visible, and near ultraviolet. Longer-wavelength molecular
lasers, such as the CO; laser, and shorter-wavelength excimer lasers are other
examples of important gas laser systems.

REFERENCES

For a recent summary of practical laser systems and many of their applications, see,
for example W. W. Duley, Laser Processing and Analysis of Materials (Plenum Press,
1983).

1.9 OTHER PROPERTIES OF REAL LASERS-

Practical lasers in fact come in a great variety of forms and types, using many
different kinds of atoms, molecules, and ions, in the form of gases, liquids, crys-
tals, glasses, plastics, and semiconductors. These systems oscillate at a great
many different wavelengths, using many different pumping mechanisms. Nearly
all real lasers have, however, certain useful properties in common.

Temporal and Spatial Coherence

As we have discussed in some detail in earlier sections, nearly all lasers can
be:

(a) Very monochromatic. Real laser oscillators can in certain near-ideal
situations oscillate in a single, essentially discrete oscillation frequency, exactly
like a coherent single-frequency electronic oscillator in more-familiar frequency
ranges. This oscillation will, as with any other real oscillator, still have some very
small residual frequency or phase modulation and drift, because of mechanical
vibrations and thermal expansion of the laser structure and other noise effects,
as well as small amplitude fluctuations due to power supply ripple and the like.
Such a high-quality laser can still be, however, one of the most spectrally pure
oscillators available in any frequency range.

More typically, a real laser device will oscillate in some number of discrete
frequencies, ranging from perhaps 5 or 10 simultaneous discrete axial modes in
narrower-line lasers up to a few thousand discrete and closely spaced frequencies
in less well-behaved lasers with wider atomic linewidths.

1.9 OTHER PROPERTIES OF REAL LASERS

Real lasers will also in many cases jump more or less randomly from one
oscillation frequency to another, and the amplitudes and phases of individual
modes will fluctuate randomly, because of mode competition combined with the
kinds of unavoidable mechanical and electronic perturbations mentioned above.
Nonetheless, the degree of temporal coherence in even a rather bad laser will
generally be much higher than in any purely thermal or incoherent light source,
and especially in any thermal source providing anywhere near the same power
output as the laser’s oscillation output power.

(b) Very directional. The output beam from a typical real laser will also
be very directional and spatially coherent. This occurs because, with properly
designed mirrors, many lasers can oscillate in a cavity resonance mode which is
essentially a single transverse mode; and this mode can approximate a more or
less ideal quasi-plane wave bouncing back and forth between carefully aligned
end mirrors. ’

As we discussed in the preceding section, the resulting output beam from the
laser can then be a highly collimated or highly directional beam, which can also
be focused to a very tiny spot. Such a beam can be projected for long distances
with the minimum amount of diffraction spreading allowed by electromagnetic
theory. It can also be focused to a spot only a few wavelengths in diameter,
permitting all the power in the laser beam to be focused onto an extremely
small area.

Even lasers with nonideal spatial properties (perhaps because of distorted
laser mirrors or, more commonly, because of optical aberrations and distortions
in the laser medium or in other elements inside the laser cavity) will typically
oscillate in only some moderate number of transverse modes, representing some
lowest-order transverse mode and a number of more complicated higher-order
transverse modes.

Note again that the longitudinal-mode or frequency properties and the trans-
verse-mode or spatial properties of most laser oscillators are more or less inde-
pendent, so that, for example, even wide-line or multifrequency lasers can very
often have well-controlled transverse mode properties and can oscillate in a nearly
ideal single transverse mode.

Other Real Laser Properties

Besides these two basic properties, specific individual lasers can be:

(c) Very powerful. Continuous powers of kilowatts or even hundreds of
kilowatts are obtained from some lasers, and peak pulse powers exceeding 103
Watts are generated by other lasers. (It is interesting to note that this peak
power is an order of magnitude more than the total electrical power-generating
capacity of the United States—but of course for a very short time only.)

(d) Very frequency-stable. Both the spectral purity and the absolute fre-
quency stability of certain lasers can equal or surpass that of any other electronic
oscillator; so these lasers can provide an absolute wavelength standard with an
accuracy exceeding that of any other presently known technique.

(e) Very widely tunable. Although most common lasers are limited to
fairly sharply defined discrete frequencies, those of the spectral lines of the spe-
cific atoms employed in certain lasers (e.g., organic dye lasers and to a lesser
extent semiconductor lasers) can be tuned over enormous wavelength ranges,
and so are extremely useful for spectroscopic and chemical applications.
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for military applications. There are also development efforts to a lesser extent
on the copper vapor laser, various hollow-cathode visible gas lasers, and a few
others. Most of the other known laser systems are available only as (expensive)
custom prototypes, or by constructing one’s own “home-built” version. (Many
chemists, biologists, solid-state physicists, and spectroscopists have now become
expert amateur laser builders.)

Commercial development of many other lasers has been rather slow, because
the expensive engineering effort to develop a commercially engineered product
cannot be justified until a market has been clearly identified. At the same time,
commercially significant applications for certain lasers cannot be easily developed
if the lasers are not available in commercially developed form.

Laser-Pumping Methods

The list of successful laser-pumping methods that have been demonstrated
to date includes the following.

o Gas discharges, both dc, rf,.and pulsed, including glow discharges, hollow
cathodes, arc discharges, and many kinds of pulsed axial and transverse
discharges, and involving both direct electron excitation and two-stage
collision pumping.

e Optical pumping, using flashlamps, arc lamps (pulsed or dc), tung-
sten lamps, semiconductor LEDs, explosions and exploding wires, other
lasers, and even gas flames and direct sunlight.

e Chemical reactions, including chemical mixing, flash photolysis, and di-
rect laser action in flames. It is instructive to realize that the combustion
of one kg of fuel can produce enough excited molecules to yield several
hundred kilojoules of laser output. A chemical laser burning one kg per
second, especially if combined with a supersonic expansion nozzle, can
thus provide several hundred kW of cw laser output from what becomes
essentially a small “jet-engine laser.”

Direct electrical pumping, including high-voltage electron beams di-
rected into high-pressure gas cells, and direct current injection into semi-
conductor injection lasers.

e Nuclear pumping of gases by nuclear-fission fragments, when a gas laser
tube is placed in close proximity to a nuclear reactor.

Supersonic expansion of gases, usually preheated by chemical reaction
or electrical discharge, through supersonic expansion nozzles, to create
the so-called gasdynamic lasers.

e Plasma pumping in hot dense plasmas, created by plasma pinches, fo-
cused high-power laser pulses, or electrical pulses. There are also widely
believed rumors that X-ray laser action has in fact been demonstrated in
a rod of some laser material pumped by the ultimate high-energy pump
source, the explosion of a nuclear bomb.

In general, any nonequilibrium situation that involves intense enough energy
deposition is reasonably likely to produce laser action, given the right conditions.
Schawlow’s Law (attributed to A. L. Schawlow, but apparently thus far unpub-
lished) asserts in fact that anything will lase if you hit it hard enough. Schawlow
himself has attempted to illustrate this by building, and then consuming, the

1.9 OTHER PROPERTIES OF REAL LASERS

first edible laser— a fluorescein dye in Knox gelatine, “prepared in accordance
with the directions on the package” and then pumped with a pulsed N, laser.
The fumes of Scotch whiskeys are also rumored to give molecular laser action
in the far infrared when pumped with CO. radiation at 10.6 pm; and Israeli
ingenuity has demonstrated a gasoline-fueled chemical laser which is ignited by
an automobile spark plug (kilojoules per gallon and resulting pollution problems
not identified).

Lasers and Masers as Carnot-Cycle Heat Engines

A microwave laser or maser can be pumped in principle—and even in practice—by
connecting a very hot, purely thermal source to the pumping transition, and connecting
much colder thermal reservoirs to the other transitions (other than the laser transition)
on which efficient downward relaxation is required. In practice, connecting a thermal
source only to the pumping transition can mean either varying the emissivity versus
wavelength of the pumping source, or putting appropriate wavelength filters between
the pumping source and the laser medium, so that the laser medium “sees” the pumping
source only within the desired pumping bands.

The maser or laser then functions as a heat engine, extracting energy from the hot
pumping source, and converting it partly into coherent oscillation or work, and partly
into waste heat delivered to the cold thermal reservoirs with which the other transitions
must be in contact. The elementary thermodynamics of this have been discussed by H.
E. D. Scovil and E. O. Schulz-DuBois, “Three-level masers as heat engines,” Phys. Rev.
Lett. 2, 262-263 (March 15, 1959), who show that the limiting efficiency of these engines
is exactly given by the Carnot-cycle efficiency between the hot pumping source and the
cold reservoirs. For an experimental example, see J. M. Sirota and W. H. Christiansen,
“Lasing in N2O and CO; isotope mixtures pumped by blackbody radiation,” IEEE J.
Quantum Electron. QE—21, 1777-1781 (November 1985),

Scovil and Schulz-DuBois also point out that a multilevel atomic system can be
used as an atomic refrigerator, in which coherent radiation is applied to one of the
transitions in order to reduce the Boltzmann temperature appropriate to some other
transition in the same atomic system. Atomic refrigeration experiments of this sort
have in fact been demonstrated, using another laser or coherent oscillator as the pump.

Laser Performance Records

Much ingenuity as well as much sophisticated physics and engineering have
thus far gone into laser research and development. As a result of this, plus the
enormous flexibility of the stimulated-emission principle, in nearly every per-
formance characteristic that we can define, the world record for any type of
electronic device can be claimed by some laser device or laser system (generally
a different laser for each characteristic). Different lasers can claim the current
performance records in the following areas.

(a) Instantaneous peak power. A rather modest amplified mode-locked
solid-state laser system can generate a peak instantaneous power in excess of
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~ 10'3 W—or several times the total installed-electrical generating capacity of
the United States—though only for a few picoseconds.

(b) Continuous average power. The unclassified power outputs from cer-
tain infrared chemical lasers are in the range of several hundred kilowatts to one-
half megawatt of continuous power output. The classified figures for cw power
output are, at a guess, probably several megawatts cw or greater.

(c) Absolute frequency stability. The short-term spectral purity of a
highly stabilized cw laser oscillator can be at least as good as 1:10'3. The ab-
solute reproducibility of, for example, a He-Ne 3.39 pm laser stabilized against
a methane absorption line will exceed 1 part in 10'°, and may become much
better. The absolute standard of time at present is already an atomic stimulated
absorption device, the cesium atomic clock. This may be replaced in the future
as an absolute standard for both frequency and time by a very stable laser,
stabilized against an IR or visible absorption line.

(d) Short pulsewidth. Mode-locked laser pulses shorter than 1 ps (10~12
sec) in duration are now fairly routine. The current record is in fact a mode-locked
and then compressed dye laser pulse with duration (full width at half maximum)
of 7, & 12 femtoseconds, or 1.2x10~'* seconds. Since this corresponds to a burst
of light only ~6 optical cycles in duration, further sizeable improvements may
be difficult.

(e) Instantaneous bandwidth and tuning range. Most common lasers are
limited to sharply defined discrete frequencies of operation that depend on the
transitions of the specific atoms employed in the laser, and to fairly narrow
tuning ranges that depend on the linewidths of these atomic' transitions. Both
organic dye lasers in the visible and semiconductor lasers in the near infrared
can offer, however, instantaneous amplification bandwidths of order AX = 200A.
This corresponds, for the former, to a frequency bandwidth Af ~ 24 x 102 Hz,
or 24,000 GHz, or about one telephone channel for every person on Earth.

(f) Antenna beamwidths. The diffraction-limited beamwidth of a visible
laser beam coming from a telescope 10 cm in diameter is considered easy to
obtain. In order to obtain such a beamwidth at even a high microwave frequency
of 30 GHz (A = 1 cm), we would have to use diffraction-limited microwave
antenna two kilometers in diameter.

(g) Noise figure. Laser amplifiers actually do not offer particularly good
noise-figure performance in the usual sense of this term, because of the unavoid-
able added noise that comes from spontaneous emission in the laser medium. (It
is simply not possible to have an inverted laser population without also having
spontaneous emission from the upper level.)

This comparatively poor noise performance is, however, really an inherent
limitation of the optical-frequency range rather than of the laser principle. That
is, it can be shown that no coherent or linear phase-preserving amplifier of any
kind can be a highly sensitive receiver or detector at optical frequencies, because
“quantum noise” imposes a rather poor noise limitation, equivalent to an input
noise of one photon per inverse amplifier bandwidth, on any such optical ampli-
fier, no matter how it operates. Spontaneous emission is the putative source of
this noise in a laser device, but any other conceivable optical amplifier with the
same performance characteristics will have some equivalent noise source. (This
noise limitation can be viewed as representing, if you like, the quantum uncer-
tainty principle appearing in another guise.) Real lasers can, however, operate
very close to this quantum noise limit.

Maser amplifiers can, in any case, provide noise figures in the microwave and
radio-frequency ranges that are lower than those for any other electronic types of
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amplifiers at the same frequencies (though both cooled parametric amplifiers and
even-microwave traveling-wave tubes can come very close to the same values).

Natural Masers and Lasers

It is also very challenging to realize that naturally occurring molecular
masers and lasers with truly enormous power outputs have been oscillating for
eons in interstellar space, on comets, and in planetary atmospheres in our own
solar system.

Naturally occurring maser action was first identified from observations that
certain discrete molecular lines in the radio emission coming from interstellar

clouds had enormously large intensities (equivalent to blackbody radiation tem-.

peratures of 10'% to 10!® K), but at the same time had very narrow doppler
linewidths, corresponding to kinetic temperatures below 100 K. The radiation
was also found to be sometimes strongly polarized, and to occur only on a very
few discrete lines in the complex spectra of these molecules.

The only reasonable explanation is that these emissions represent naturally
occurring microwave maser action on these particular molecular transitions. Such
astronomical maser amplification has been seen on certain discrete vibrational
and rotational transitions of molecules, such as the hydroxyl radical (OH™, 1,600
to 1,700 MHz), water vapor (H20, ~ 22 GHz), silicon monoxide (SiO, mm wave
region), and a few others. The pumping mechanism responsible for producing
inversion is still uncertain, but may involve either radiative pumping by IR or
UV radiation from nearby stellar sources or collision pumping by energetic par-
ticles. There is of course no feedback; so the observed radiation represents highly
amplified spontaneous emission or “ASE” rather than true coherent oscillation.

More recently, amplified spontaneous-emission lines corresponding to popula-
tion inversion on known CO;, laser transitions near 10.4 and 9.4 ym have similarly
been observed coming from the planetary atmospheres, or mesospheres, of the
planets Mars and Venus. The pumping mechanism is believed to be absorption
of sunlight by the CO2 molecules. The net gains through the atmospheric layers
are remarkably small (< 10%) but the total powers involved quite large, because
of the large volumes involved in these “natural lasers.”
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Reid and J. M. Moran, “Masers,” Ann. Rev. Astron. Astrophys. 19, 231-276 (1981);
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54, 1225-1260 (October 1982). _

Recent reports of natural laser action can e found in M. J. Mumma et. al., “Dis-
covery of natural gain amplification in the 10 pm CO2 laser bands on Mars: A natural
laser,” Science 212 45-49 (1981); and in D. Deming et. al., “Observations of the 10-y4m
natural laser emission from the mesospheres of Mars and Venus,” Icarus 55, 347-355

(1983).

1.10 HISTORICAL BACKGROUND OF THE LASER

Readers of H. G. Wells’ novel The War of the Worlds might quite reasonably
conclude that the first laser device to be operated on Earth was in fact brf)ught
here by Martian invaders a century ago, at least according to the description

that:

“In some way they (the Martians) are able to generate an intense heat
in a chamber of practically absolute nonconductivity. . . . This intense heat
they project in a parallel beam against any object tl?e.y choose, by means
of a polished parabolic mirror of unknown composition... . However it
is done, it is certain that a beam of heat is the essence of th.e matter.
What is combustible flashes into flame at its touch, lead runs like water,
it softens iron, cracks and melts glass, and when it falls upon water, that

explodes into steam.”

(From Pearson’s Magazine, 1897 )

Those who have seen the effects produced by the beam from a modern multikilo-
watt CO laser will not be surprised at the recent discovery that the at‘mosphere
of Mars consists primarily of carbon dioxide, and that natural laser action occurs
in it!

Whether or not Martians operated CO2 lasers in 1897, the first man-made
stimulated-emission device on Earth came in early 1954, when Charles H. Townes
at Columbia University, assisted by J. P. Gordon and H. Zeiger, operated an am-
monia beam maser, a microwave-frequency device that oscillated (very weakly) at
approximately 24 GHz. This was closely followed by a similar devglopment by N.
G. Basov and A. M. Prokhorov in the Soviet Union. The Columbia group qomed
the name maser to represent microwave amplification by stimulated emission of
radiation. )

‘There was then much discussion and some experimental work in subsequent
years on radio and microwave-frequency maser devices, using both molecular
beams and magnetic resonance in solids, and also on theoretical developments
toward an optical-frequency maser or laser. Perhaps the most importz'mt f’f these
developments was when Nicolaas Bloembergen of Harvard I'Jr‘livermty in 1956
suggested a continuous three-level pumping scheme for obtaining a continuous
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population inversion on one microwave resonance transition, by pumping with
continuous microwave radiation on another transition.

Bloembergen’s ideas were quickly verified in other laboratories, leading to a
series of microwave paramagnetic solid-state masers. These microwave masers
were useful primarily as exceedingly low noise but rather complex and narrow-
band microwave amplifiers. They are now largely obsolescent, except for a few
highly specialized radio-astronomy experiments or deep-space communications
receivers.

The extension of microwave maser concepts to obtain maser or laser action at
optical wavelengths was being considered by many scientific workers in the late
1950s. A widely cited and influential paper on the possibility of optical masers
was published by Charles Townes and A. L. Schawlow in 1958. Much recent
attention has been given to a series of patent claims based on notebook entries
recorded at about the same time by Gordon Gould, then a graduate student at
Columbia.

The first experimentally successful optical maser or laser device of any kind,
however, was the flashlamp-pumped ruby laser at 694 nm in the deep red op-
erated by Theodore H. Maiman at the Hughes Research Laboratories in 1960.
The very important helium-neon gas discharge laser was also successfully oper-
ated later in the same year by Ali Javan and co-workers at the Bell Telephone
Laboratories. This laser operated initially at 1.15 pm in the near infrared, but
was extended a year later to the familiar helium-neon laser transition oscillating
at 633 nm in the red.

An enormous number of other laser devices have of course since emerged,
not only in the first few years following the initial demonstration of laser action,
but steadily during the more than two decades since that time. The variety of
different types of lasers now available is enormous, with several hundred thou-
sand different discrete wavelengths available, from perhaps close to a thousand
different laser systems. Commercially important and widely used practical lasers
are very much fewer, of course, but still numerous. Some of the more interesting
and/or useful laser systems have been described earlier in this chapter.
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1.11 Additional Problems for Chapter 1

1. Energy storage and Q-switching in a solid-state laser. Solid-state lasers (and some
gas lasers) can be operated in a useful fashion known as “Q-switching,” in which
laser oscillation is prevented by blocking (or misaligning) one of the cavity end
mirrors, and building up a very large population inversion in the laser medium
using a long pump pulse. At the end of this pumping pulse, the mirrors are
suddenly unblocked, and the laser then oscillates in a short but very intense burst
that “dumps” most of the energy available in the inverted atomic population.

Pink ruby of the type used in ruby lasers contains ~ 2 x 10'® chromium Cr3t
ions/cm®. In a typical Q-switched ruby laser, almost all the ions in the laser
rod can be pumped into the upper laser level while the mirrors are blocked,
by a flashlamp pump pulse lasting ~1 ms. Since the resulting Q-switched pulse
when the mirrors are unblocked typically lasts only ~50 ns, there will be no
further pumping or repumping once the Q-switched pulse begins. What will be
the maximum possible energy output in such a single-shot Q-switched burst from
a cylindrical ruby rod 7.5 cm long by 1 cm diameter? What will be the peak laser
power output (approximately)?

2. Optical intensity in a focused laser-beam spot. If the laser pulse in the preceding
problem is focused onto a circular spot 1 mm in diameter, what will be the peak
power density (in W/cm?) in the spot? What will be the optical E field strength
in the spot?

3. Stimulated transition rate for molecules in a CO; laser. A typical low-pressure
glow-discharge-pumped CO2 laser uses a mixture of He, N2, and CO, with an
8:1:1 ratio of partial pressures for the three gases and a total gas pressure at
room temperature of 20 Torr (though this may vary somewhat depending on
tube diameter). The cw laser power output at A = 10.6 pm from an optimized
CO, laser tube 1 ¢cm in diameter by 1 meter long might be 50 W. At this power
output, how many times per second is an individual CO2 molecule being pumped
upward to the upper laser level and then stimulated downward to the lower laser
level by stimulated emission? Note that.the relation between pressure p and
density N in a gas is N(molecules/cm®) = 9.65 x 10**p(Torr)/T(K).
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4. Stored energy and energy output in a TEA CO; laser. A CO2 laser at 10.6um

can be operated at low gas pressures, in the range of 20 to 50 Torr, as a low-
to medium-power cw gas laser pumped by a cw glow discharge. It can also be
operated at much higher gas pressures, in the range of 1 to 10 atmospheres (1
atmosphere = 760 Torr) as a pulsed laser with much higher peak power out-
put. Since it is impossible to maintain a stable glow discharge at such high gas
pressures, and since the discharge voltage per unit length goes up rapidly with
increasing ‘gas pressure, such a laser must be pumped with a very short high-
voltage discharge, lasting perhaps a few microseconds, which is usually applied
transversely across the laser tube rather than along the tube. A laser of this type
is thus referred to as a Transverse Electric Atmospheric, or TEA, type of laser.

Suppose every CO2 molecule in such a laser is lifted up to the upper laser level and
then drops down by laser action just once during a single laser pulse. Calculate
the resulting pulse energy output in Joules per 1,000 cm® of gas volume per Torr
of CO;, gas pressure: Calculate also the total energy output per pulse from a laser
1 meter long by 2 cm diameter operating with 760 Torr partial pressure of COa.

Real TEA CO, lasers more typically yield ~ 40 Joules of output per liter-
atmosphere of gas volume during a laser oscillation pulse lasting from a few
hundred nanoseconds to perhaps half a microsecond. How many times on aver-
age does each CO2 molecule circulate up through the upper laser level during the
pulse?

. Heating effects due to focused laser beams. We wish to gain some feeling for the

heating effects of focused laser beams, by calculating these effects for some highly
idealized (and hence not fully realistic) examples, as follows.

(a) A 1-Joule, 100-nanosecond pulse from a Q-switched Nd:glass laser is focused
onto a metallic surface and totally absorbed in a volume of material 20 microns
in diameter by 10 nm (100A) deep. Neglecting surface losses and heat conduction
into the material, what will be the initial rate of rise of the temperature in the
absorbing volume?

(b) A 1-Watt laser beam (perhaps from a 1-Watt cw Nd:YAG laser) is focused by a
good-quality lens into the same spot. If both heat conduction and vaporization of
the material are ignored (which is clearly not realistic), what will be the predicted
steady-state temperature of the surface in the focused spot?

(c) Suppose a 100-Watt cw beam is used, and all the laser power goes into va-
porizing material in and near the spot, so that the laser beam tunnels a hole
with a constant 50 pm diameter into the medium. What is the drilling rate in
meters/second?

In each of (a) to (c), assume for simplicity a material density of 2 gms/cm?®, a
material specific heat of 1 cal/gm-deg K, and in (c) a vaporization temperature
of 1,800 K .

6. Laser fusion: laser design and fundamental economics. Fusion researchers hope it

may be possible in the future to heat and compress tiny nuclear-fuel pellets with
short, intense laser pulses until nuclear fusion occurs inside the compressed pellet.
Such a process would release useful energy in the form of neutrons emitted from
a nuclear micro-explosion. This potentially unlimited energy source faces many
practical difficulties, however. Some estimates say laser pulses of ~ 10° Joules in
~ 100 psec may be needed even to reach “scientific break-even,” i.e., the point
where nuclear energy released just equals laser energy incident.



78

CHAPTER 1: AN INTRODUCTION TO LASERS

Preliminary laser fusion experiments use a small mode-locked neodymium-YAG
laser oscillator to generate a 10 mJ input pulse at A = 1.06 pm, followed by
a chain of successively larger Nd:glass amplifiers to amplify the pulse to the
required final energy. The amplifier material consists of a special glass doped
with ~ 5% by weight of Nd3Os to give ~ 4.6 x 10?2 Nd** ions/cm®. The laser
transition is between two excited energy levels of the Nd ions. Some of the design
considerations for a Nd:glass fusion laser are as follows.

(a) As a reasonable estimate, perhaps 10% of the available Nd ions can be pumped
into the upper laser energy level, and then 1% of those excited ions can be
stimulated to make downward transitions by the ultrashort laser pulse as it passes
down the amplifier chain. What minimum total volume of laser glass will be
required in the amplifier chain?

(b) The laser glass when fully pumped has a power gain coefficient 2am = 0.1
cm™!. What overall length of glass will be required in the amplifier chain?

(c) Laser glass may be permanently damaged if the optical power density in a
short optical pulse exceeds ~ 10'® W/cm?. What aperture size will be required
at the output of the final amplifier stage?

(d) The energy efficiency of this type of laser, from electrical energy initially
stored in the power supply to potential laser energy stored in the upper energy
level, is about 1% ; and then only ~ 1% of this is usefully extracted by a short
pulse. If energy-storage capacitors for laser power supplies cost about 10 cents
per Joule of energy stored, what will the capacitor bank for this system cost?

(e) Suppose things go well, and each pellet releases 10° Joules (1 MJ) of energy
when it is “zapped” by the laser. If the price of electricity is currently 10 cents per
kilowatt-hour, what is the retail value of the fusion energy produced per shot?

. Thermal light sources versus coherent light sources. To gain some appreciation

for the differences between a thermal and a laser light source, we can compare
the visual brightness of a weaklaser beam and of a powerful searchlight beam as
seen by a distant observer standing in the center of each beam and looking back
toward the source.

(a) Consider first a 10-mW 6328A Ne-Ne laser with a beam expansion telescope
attached. The beam from such a laser usually has a gaussian transverse intensity
profile; but let’s assume for simplicity that the output beam has a uniform plane-
wave distribution across an output aperture 1 cm in diameter. What will be the
power density (W/m?) at the center of this beam as a function of distance in
the far field, i.e., at large distances from the source? Note that such a laser will
require an electrical power input of perhaps 100 Watts.

A human eye can, under optimum conditions, detect as little as 100 photons per
second entering a fully dark-adapted eye with an entrance pupil diameter of ~8
mm. From how far away could this laser be seen (assuming you are standing in
the center of the beam in the far field)?

(b) Consider next a simple searchlight consisting of a spherical hot spot (for
example, an electric arc) located at the focal point of a large lens or, more likely,
a large spherical mirror. Assume the hot spot can be modeled as a thermally
emitting ball-shaped blackbody radiator 1 cm in diameter with a temperature of
6,000 K. (Note: melting point of tungsten ~3,700 K and of carbon ~3,850 K.)
What is the total thermal radiation in Watts from the surface area of this ball
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at this temperature (which is also the minimum electrical input power required
to drive the searchlight)?

Assume that roughly 15% of this total radiated power falls within the 100-nm-
wide band of visible wavelengths. Let both the searchlight mirror diameter and
its focal length be 1 meter. What fraction of the total visible emitted radiation is
then collimated by the searchlight mirror, and what is the far-field beamspread
of this collimated radiation? When all factors are included, what is the far-field
visible power density as a function of distance in the searchlight beam? How do

the small milliwatt laser and the large kilowatt searchlight compare in far-field
brightness?

(c) How do these comparisons change (i) if another 10-power telescope expands
the laser beam initially to 10 cm in diameter? (i) If the diameter of the searchlight
hot spot is increased to 2 cm? (jii) If the searchlight mirror is changed to 2 meters
diameter with the same focal length for the mirror? (iv) If the searchlight mirror
diameter and its focal length are both doubled, so that the f-number stays the
same?

8. Legal and illegal laser applications. How many methods (legal or illegal) can you

think of to measure the height of a tall building using a laser—without turning
on the laser?
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2

STIMULATED TRANSITIONS: THE
CLASSICAL OSCILLATOR MODEL

Our first major objective in this text is to understand how optical signals act on
atoms (or ions, or molecules) to excite resonance responses and to cause tran-
sitions between the atomic energy levels. In later chapters we will examine how
the excited atoms or molecules react back on the optical signals to produce gain
and phase shift. Eventually we will combine these two parts of the problem into

a complete, self-consistent description of laser action. For the minute, however,

all we want to consider is what optical fields do to atoms.

The effect of a near-resonant applied signal on a collection of atoms can be
divided into two parts. First, there is a resonance excitation of some individual
transition in the atoms. This can be modeled by a resonant oscillator model,
which leads to a resonant atomic susceptibility, among other things. In this
chapter we will develop the classical electron oscillator model for an atomic
resonance, and show how this model can lead to equations that describe all the
essential features of a single atomic transition. In Chapter 3 we will show in more
detail how this purely classical model can in fact describe and explain even the
most complex quantum-mechanical aspects of real atomic transitions.

The second aspect of the atomic response in real atoms is that, under the in-
fluence of an applied signal, atoms begin to make stimulated transitions between
the upper and lower levels involved in the transition, so that the atomic level
populations begin to change. These stimulated transition rates are described by
the atomic rate equations that we introduced in the opening chapter of this book.
We will discuss these rate equations in more detail in several later chapters.

2.1 THE CLASSICAL ELECTRON OSCILLATOR

Let us first review some of the important physical properties of real atoms.
Note that throughout this text, we will speak of “atoms” as a shorthand for
simple free atoms, ions, or molecules in gases; or for individual laser atoms,
ions, or molecules in solids or in liquids (such as the Cr3* ions in ruby, or
the Rhodamine 6G dye molecules in a laser dye); or even for the valence and
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conduction electrons responsible for optical transitions in semiconductors. Some
of the important background facts about real atoms are as follows.

e Atoms consist in simplified terms of a massive fixed nucleus plus a sur-
rounding electron-charge distribution, whether we think of this distri-
bution as a fuzzy charge cloud, or as a set of electronic orbits, as shown
in Figure 2.1(a), or as a quantum wavefunction.

e Atoms exhibit sharp resonances both in their spontaneous-radiation
wavelengths and in their stimulated response to applied signals.

e These resonances are usually simple harmonic resonances—that is; there
are usually no additional responses at exactly integer multiples of these
sharp resonant frequencies.

e Most (though not all) atoms respond to the electric field of an ap-
plied signal rather than the magnetic field. In more technical terms,
the strongest atomic transitions, and those most important for laser ac-
tion, are usually of the type known as electric dipole transitions. (There
do exist other types of atomic transitions, including some laser transi-
tions, that are classified as magnetic dipole, electric quadrupole, or even
higher order. Magnetic dipole transitions are described, using a different
classical model, in a later chapter of this text.)

All these properties lead us to use the classical electron oscillator (CEO) model
shown in Figure 2.1 as a classical model to represent a single electric-dipole
transition in a single atom. With some simple extensions, which we will describe
later, this CEO model will give a complete and accurate description of every
significant feature of a real atomic quantum transition.

Analysis of the Classical Electron Oscillator Model

The CEO model envisions that the electronic charge cloud in a real atom
may be displaced from its equilibrium position with an instantaneous displace-
ment z(t), as shown in Figure 2.1(b). Because of the positive charge on the nu-
cleus, this displacement causes the electronic charge cloud to experience a linear
restoring force —Kz(t). The electronic charge cloud is thus in many ways similar
to a point electron with mass m and charge —e that is located in a quadratic
potential well, with potential V' = Kz?%(t), or that is attached to a spring with
spring constant K. An externally applied signal with an electric field &;(t) may
also be applied to this charge cloud.

The classical equation of motion for an electron trapped in such a potential
well, or suspended on such a spring, and subjected to an applied electric field
&(t), is then

d?z(t)
Fr R —-Kz(t) — ez (1), (1)
which we may write in more abstract form as
d*z(t
) 4 o2m(t) = ~(e/m)Ea(t), ?)

The frequency w, is then the classical oscillator’s resonance frequency, given by
w2 = K/m. We will equate this resonance frequency for the CEO model with the
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(a) Electronic models for a real atom. (b) The classical electron oscillator model.

transition frequency wo1 = (E2 — E1)/h of a real atomic transition in a real atom.
More generally, we will identify any one single transition in an individual atom
with a corresponding classical electron oscillator, so that from here on we will
refer to real atoms or to individual classical oscillators almost interchangeably.

Damping and Oscillation Energy Decay

The oscillatory motion of the electron in the CEO model, or of the charge
cloud in a real atom, must be damped in some fashion, however, since it will
surely lose energy with time. Hence we must add a damping term to the equation
of motion in the form

dz(t) +wlz(t) = —%Ez(t), 3)

d?z(t) +
aez " ar

where v is a damping rate or damping coeflicient for the oscillator. The electronic
motion z(t) without any applied signal will then oscillate and.decay in the fashion
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z(t) = @(to) exp[—(7/2)(t — to) + jwo (t —to)], (4)

where w], is the exact resonance frequency given by

wh = Vw2 = (7/2)2. (5)

The Q of an optical frequency transition in an atom will always be high enough
to allow us to simplify life from now on by ignoring the difference between w,
and w),. The energy associated with the internal oscillation in the CEO model,
which we will write as U,(t), thus decays as

Ua(t) = %K:z:z(t) + %mvg(t) = Ua(to)e™ %) = U, (to)e~ /™. (6)

The decay rate v is thus the energy decay rate, and the lifetime 7 = v~ ! is the
energy decay time for the oscillator model.

Both classical electron oscillators and real atomic transitions will always lose
energy in part by radiating away electromagnetic radiation, in what we call spon-
taneous emission or fluorescence, at the transition frequency w,. This radiation
of electromagnetic energy from the oscillating charge cloud, as shown in Figure
2.2, leads to a purely radiative part of the decay rate -y, which we will call y,,4.

Real atomic transitions in many cases, however, also lose additional oscilla-
tion energy by other “nonradiative” mechanisms, such as collisions with other
atoms, or the emission of heat vibrations into a surrounding crystal lattice. This
additional energy loss leads to an additional nonradiative part of the total decay
rate, which we will denote by .. The total energy decay rate is then generally
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given by

1 dU,

1 Vs _ - 7
U, dt Yrad + Y ( )

~

Note that the energy U, we are talking about here is the energy associated with
the internal charge cloud oscillation within the atom. This energy is quite distinct
from other kinds of energy the atom may also possess, such as the kinetic energy
of motion the same atom may possess if the atom as a whole is moving rapidly
in a gas.

The energy decay rate for an atomic trahsition may thus include both ra-
diative and nonradiative parts. Radiative decay, which is exactly the same thing
as spontaneous electromagnetic emission or fluorescent emission from the atom,
is always present, though sometimes very weak. Nonradiative decay can also be
present, sometimes much more strongly and sometimes much less strongly than
the radiative part of the total decay, depending on individual circumstances. The
causes of nonradiative decay can include inelastic collisions of atoms with each
other, or with the walls of a laser tube, so that the internal oscillating energy
of the atoms gets converted into kinetic energy of the gas atoms, or goes into
heating up the tube walls. Nonradiative decay in solids or liquids can also in-
volve the loss of energy from the electronic oscillation of the atoms into lattice
vibrations and hence into heat in the surrounding crystal lattice in a solid. The
general property of all nonradiative atomic relaxation or decay mechanisms is
that energy is lost from the internal oscillatory motion of the individual atomic
charge clouds, and that this energy goes into simple heating up of surrounding

gas atoms or tube walls or crystal lattices.

Radiative Decay Rates

The purely radiative decay rate or spontaneous emission rate for a classical
electron oscillator can be calculated from classical electromagnetic theory (see
Problems). The sinusoidally oscillating electron radiates energy outward exactly
like an oscillating dipole antenna or an oscillating current source; and this energy
is the spontaneous emission. The resulting decay rate for a classical electron
oscillator imbedded in an infinite medium of dielectric permittivity € is given by

2,2
e‘wy

@)

d,ceo = .
Trad,ceo = G emcd

Note that according to the conventions used in this text, € and c are the dielectric
permeability and the velocity of light in any surrounding dielectric medium,
and not necessarily the free-space values ¢y and cp. (You might now review the
discussion of units and notation for this text given in the Introduction.) This
classical oscillator radiative decay rate has a value Yrad,ceo = 108 sec™! for a
visible frequency oscillator, compared to an oscillation frequency of w, ~ 4 x 1015
sec”L. Hence, the decay rate is very small compared to the oscillation frequency.

Real atomic transitions have radiative decay rates that are determined by
quantum considerations. These rates for real atoms are different from the classical
expression just given, and are different for each different atomic transition. For
many transitions, however, the real atomic decay rates for so-called strongly
allowed transitions are of the same order of magnitude as the purely classical
radiative decay rate for a CEO with the same resonance frequency.
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More On Radiative Damping.

The radiative damping process for a classical oscillating electron has other, more com-

plex aspects that we have avoided discussing. here. These properties are discussed, for
example, in Chapter 25 of W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism (Addison-Wesley, 1955), or in Chapter 12 of J. M. Stone, Radiation and
Optics (McGraw-Hill, 1963). An advanced discussion is given by F. Rohrlich, Classical
Charged Particles (Addison-Wesley, 1965). Other interesting discussions can be found
in R. G. Newburgh, “Radiation and the classical electron,” Am. J. Phys. 36, 399 (May
1968); in W. L. Burke, “Runaway solutions: Remarks on the asymptotic theory of radi-
ation damping,” Phys. Rev. A2, 1501 (October 1, 1970); and in G. N. Plass, “Classical
electrodynamic equations of motion with radiative reaction,” Rev. Mod. Phys. 33, 37
(January 1961). A short summary can also be found. on pp. 70-71 of A. E. Siegman,
An Introduction to Lasers and Masers (McGraw-Hill, 1971).

Microscopic Dipole Moments and Macroscopic Polarization

The next important step we must take is to go from microscopic individual
atoms, represented by individual electron oscillators, to macroscopic electromag-
netic effects in real laser materials. We do this by adding up the microscopic
electric dipole moments from many individual atoms or classical oscillators to
produce a macroscopic electromagnetic polarization in the laser material.

We first note that displacement of the electronic charge cloud of an atom
away from its equilibrium position around the nucleus by an effective distance
z(t) means that there is a displacement of the center of the negative electronic
charge, with value —e, away from the matching positive charge +e of the heavy
and nearly immobile nucleus. This displacement creates a microscopic electric
dipole moment () associated with that individual oscillator or atom, which is
given by

pz(t) = [charge] x [displacement] = —ex(t) 9)

as shown in Figure 2.3.
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Macroscopic electric polar-
ization produced by a col-
lection of individual dipole
moments.
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Let us then recall that in electromagnetic theory Maxwell’s equations are
written in the form

V x E(r,t) = - 20D
ot
(10)
Y x hir,t) = j(r,t) + 2408,
ot
together with the definitions
d(T7 t) = E08("'7 t) + p(r, t),
(11)

b("‘» t) = Mob(ﬁ t) + m("‘: t),

in which p(r, t) and m(r,t) are the electric and magnetic polarizations, or dipole
moments per unit volume, at point r and time ¢.

The electric polarization p(r,t) at any point in an atomic medium is thus, by
definition, the net electric dipole moment per unit volume in a small differential
volume surrounding that point. In a laser medium in particular, this polarization
p must be calculated by adding up the vector sum of the individual dipole
moments py of all the atoms in that unit volume.

Consider, for example, a tiny volume of a laser medium containing a very large
number of microscopic atoms or classical oscillators, as shown schematically in
Figure 2.4. (Note that in a typical laser medium the density of atoms may be
anywhere from 102 to 10'° laser atoms/cm?; so there may be anywhere from
10 to 10!° atoms even in a tiny cube only 10 optical wavelengths on a side.)
Let each atom in this volume be labeled by an index 4, and let each atom have
an instantaneous electric dipole moment _u.i(t) = —ex;(t).

This medium will then have a macroscopic electric polarization p around that
point 7 in the medium whose = component is given by

NV
pa:("'» t) =v! Z ,ua:i(t)‘ (12)
i=1

gy 5
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The volume V' here can represent any small unit volume (but still containing
many dipoles) surrounding the point 7, and N is the density of individual dipoles
in that volume, so that NV is the total number of dipoles.

We could, to be more general, write both the microscopic dipole moments
and the macroscopic polarization in this formula as vector quantities, in which
case the macroscopic polarization p would be the vector sum over all individual
dipoles p; within that volume. However, for now we are focusing only on the
linearly polarized z components of p(r,t) and p;(t). Also, in real materials both
the applied field £(r,t) and the polarization p(r,t) will in general be functions
of position r, though the changes in value will be very small compared to in-
teratomic spacings. We will not be worrying about the spatial variation of this
macroscopic polarization until later, however.

The step we have just taken, of going from individual microscopic atomic
dipole moments j,; to a macroscopic electric polarization p;, is a crucial step
in the theoretical analysis of laser action. To analyze the response of a laser
material, we use quantum theory—or as a substitute we use the CEO model—
to calculate the microscopic dipole moments of individual laser atoms. These
responses are then summed over large numbers of such atoms per unit volume in
a real laser medium to produce the macroscopic polarization. This polarization
then goes into Maxwell’s equations to produce laser absorption, gain, and/or
phase shift (as we will see later). We measure in the laboratory, or employ in
laser devices, only the macroscopic effects of this atomic polarization. We seldom
if ever observe the minute microscopic effects produced by one tiny single atom
acting alone.

Discussion

The primary concept introduced in this section is that we can use the clas-
sical electron oscillator model, with resonance frequency w,, as a substitute for
a single atomic transition with transition frequency ws; in a single real quantum
atom. The very great utility of the CEO model for this purpose will become ap-
parent in following sections. The essential accuracy of this simple classical model
can, however, be further illustrated by the following point.

Suppose a classical oscillating electric dipole antenna is placed close to a
reflecting metallic surface, or close to one or more dielectric layers or surfaces.
The spatial radiation pattern, the radiative decay rate, and even the resonance
frequency of the classical dipole will then all be changed by significant amounts.
This occurs, in classical terms, because the radiating dipole is influenced by
its own radiated fields reflected back from the nearby surfaces. These effects
are strongest, of course, when the oscillator is close to the surface, within one
wavelength or less.

Experimental studies of exactly these same effects have also been carried out
on real atomic transition dipoles, using real radiating atoms placed very close to
dielectric or metal surfaces, with exactly the same results being obtained for the
real atoms. Such experiments have been carried out, for example, by using thin
monomolecular layers of radiating dye molecules adsorbed onto dielectric films
one wavelength or less thick attached to a reflecting silver surface or to another
dielectric surface or layer. The observed changes in the radiative behavior of
these real atomic (or molecular) dipoles have been found to agree completely
with theoretical calculations using purely classical models for both the radiating
atoms and the electromagnetic fields.
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Problems for 2.1

1. More detailed classical electron oscillator model. A more detailed semiclassical
model of an atom might picture the electronic charge cloud as a rigid, uniform,
spherical distribution of negative charge with total charge —Ze, total mass Zm,
and diameter 2a, surrounding a point nucleus of mass ZM and charge +Ze,
where Z is the atomic number, m the electron mass, M the proton mass, and —e
the charge on an electron. Suppose this rigid electronic charge cloud is displaced
slightly from a concentric position about the nucleus (the charge cloud is assumed
to be “transparent” to the nucleus, so that they can easily move with respect to
each other).

Find the net restoring force on the displaced charge cloud (or, alternatively, find
the resulting change in total potential energy of the system) for small displace-
ments of the charge cloud with respect to the nucleus; and then find the classical
resonance frequency at which the charge cloud will oscillate about the nucleus.
(It may be assumed that only the electronic charge cloud will move appreciably,
since M > m.)

In the simplified Bohr model of the hydrogen atom, the radius of the first electron
orbit is ao = 0.534 (1A = 107'° m or 0.1 nm). Using twice this value as a first

2.2 COLLISIONS AND DEPHASING PROCESSES
hS

guess for the outside radius of the charge cloud in a typical atom, compute a
numerical value for the resonance frequency derived above. To what wavelength
does this correspond?

2. Q-value for a classical electron oscillator. One way (though not the most gen-
eral way) of defining the @ or “quality factor” of any resonant system is as the
ratio of its resonant frequency to its energy decay rate. At what frequency and
what wavelength will the @ of a classical electron oscillator be reduced to unity,
provided that purely radiative decay is the only energy decay mechanism that is
operative?

3. Classical derivation of the radiative decay rate. The time-averaged rate (aver-
aged over a few cycles) at which power is radiated into the far field in all di-
rections by a dipole antenna or by a sinusoidally oscillating charge with an elec-
tric dipole moment p4(t) = p1coswt is, from classical electromagnetic theory,
Pay = wipf/12mec®. Use this formula to verify Equation 2.8 for the radiative
decay rate yraq of a classical electron oscillator.

2.2 COLLISIONS AND DEPHASING PROCESSES

The next important concept that we have to introduce—a particularly funda-
mental and important concept—is the effect of dephasing events, such as atomic
collisions, on the oscillation behavior of classical oscillators or of real atoms.

Coherent Dipole Oscillations

Any single microscopic electric dipole oscillator, when left by itself, obeys
the equation of motion
dyz (t)

Pug(t)
o R (1) = (2 /m)Ea() (13)
which is obtained by multiplying —e into both sides of Equation 2.3 and using
Equation 2.9. Hence the oscillating moment of a single atom with no applied
field &, present has the exponentially decaying sinusoidal form

Bz (t) = pizo exp [_(7/2)(t —to) + jwa(t — to) + jo], (14)

where Hz0 is the magnitude and ¢y the phase (at time o) of the initial oscillation
that has been set up in the dipole oscillator, perhaps by some pulsed applied
signal.

We have already pointed out that even a small volume of laser material may
contain a large number of laser atoms, or tiny oscillating dipoles. We might
therefore label each individual atom or dipole by an index i, and write the
oscillating dipole moment of the i-th atom as

Hz,i(t) = |Koo,i(to)] exp [—(/2)(t — to) + jwa(t — to) + jdi] , (15)

where ¢; is the phase angle of the i-th dipole oscillator at the starting time %g.
Now suppose first that these dipoles are all oscillating together, all at the
same frequency, and more importantly all initially in phase—that is, all with the
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same value of ¢; at the same reference time ¢o. Then the total dipole moment
due to the vector sum of all these moments in some small volume will be

NV all dipoles
Batot() = Y i i(t) = NV iz (2) {oscillating (16)
i=1 in phase,

where ,(t) is the moment of any one dipole; N is the density of dipoles (i.e.,
the number per unit volume); and NV is the total number of dipoles in a small
volume V. The macroscopic polarization, or the dipole moment per unit volume,
will then be given by p,(t) = pz t0t(t)/V, oF

all dipoles

pz(t) = Npgo ex’p[[—(7/2) + jw,|(t —to) + j¢o] oscillating 17)
in phase.

The macroscopic polarization p,(t) in the atomic medium will thus have the
same natural oscillation frequency w, and the same energy decay rate /2 as the
individual dipoles. In this example its magnitude will also be N times as large
as any one individual dipole—but if (and only if) the individual dipoles all keep
oscillating unperturbed and with the same phases.

This macroscopic polarization when all the dipoles are oscillating in time-
phase with each other may be rather large in real situations. The dipoles are
then said to be oscillating coherently, or fully aligned with each other.

Dephasing Effects: Random Collisions

This is not the usual situation with real atoms, however. There are almost
always perturbation effects, or dephasing effects, which scramble or randomize
the time-phases ¢; of individual dipole oscillators, and which thereby cause the
macroscopic polarjzation p;(t) to become much smaller than the result given
by the two preceding equations. To understand this, let us look first at a very
simple example of how a particular type of dephasing process, namely, randomly
occurring and instantaneous dephasing-events or “collisions,” might operate to
destroy the macroscopic polarization or coherent dipolar oscillation in a collection
of atoms.

Figure 2.5 shows three assumed dipole moments, which we label pu; ;(t),
by 2(t), and pg 3(t), all oscillating initially in phase and at the same oscilla-
tion frequency. The total moment iy to1(t), as shown at the bottom of the figure,
is then initially three times as large as the moment of any one dipole. Sup-
pose, however, that after random time intervals first one and then another of the
dipoles suffers an instantaneous dephasing event or “collision,” which does not
reduce the amplitude of the oscillating moment, but does shift it to a new phase
angle in time.

After each such collision the amplitude of the total moment is reduced, be-
cause the individual moments no longer add in phase. (The individual dipole
oscillations will also slowly decay in amplitude themselves because of energy de-
cay, as discussed in the previous section; but we have not illustrated this point
here.) Random collisions thus gradually destroy the macroscopic polarization,
even without any energy decay.

Figure 2.6 illustrates in another manner this difference between dipole oscil-
lators that are “aligned” or oscillating coherently in phase, and randomly phased
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Decay of the total dipole moment resulting from random dephasing collisions in a col-

lection of oscillating dipoles.

dipole oscillators, by showing the results of adding up three phasors tpat‘r(’epre—
sent the amplitude and instantaneous time-phase of the three §eparate individual
dipole oscillators. In (a) the three phasors are fully aligned; in (b) and (c) they
are gradually shifted in phase or “dephased” to produce a smaller and smaller
resultant sum. Note that these are phasor diagrams, in which the horizontal and
vertical axes for each vector are the real and imaginary parts of the phasor am-
plitudes of the oscillating moments, or the cosine and sine parts of the sinusoidfal
oscillations. These axes do not represent the vector coordinates of the dipoles in
space, since we are talking here for the moment only about the z component of

the dipole oscillations iz (t).

Large Numbers of Dipoles

Suppose that we add up the phasor amplitudes of a large number NV of
dipoles, but with the phase angles randomly distributed over all values pe—
tween 0 and 27. This then becomes the standard statistical problem of adding
up many randomly phased sine waves, and we can find that the resulting total
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Addition of phasors. (a) All three phasors in phase. (b) Partially ran-
domized phases. (c) More completely randomized.

dipole moment g 40¢(t) in any small volume V' will now be a random quantity;
i.e., its amplitude and phase will vary randomly from one small volume to an-
other. Moreover, the total dipole moment in any small volume will have a mean
value of zero, i.e.,

(bz,tot(t)) =0 (randomly phased dipoles), ~ (18)
but will have a root-mean-square value given by
(B2 4ot (8)/? = (NV)¥? |ug(t)]  (randomly phased dipoles),  (19)

where |p;| refers to the value for any one single dipole by itself.

The quantity NV will be a very large number eyen for very small volumes
V. Hence the rms moment, or rms macroscopic polarization, for the randomly
phased case, which is proportional to (NV)/2|u,|, will be very much smaller
than the possible coherent polarization of order NV u| that could be produced
by the same number of dipoles oscillating in phase. (The rms polarization in
the randomly phased case is in fact essentially random noise; and this noise
is essentially the same thing as the spontaneous emission from a collection of
quantum atoms, although we will not discuss this topic here.)

Dephasing Mechanisms

The crucial point, then, is that any effect which tends to randomize the os-
cillation phases ¢; in a large collection of individual dipoles (such as are present
in even a small volume of laser material) will act to destroy any coherent macro-
scopic polarization that may be present in this collection of dipole oscillators.
Such dephasing effects do exist in real atomic systems, and understanding these
additional dephasing effects is our primary task in this section.

These dephasing effects that cause the oscillation phases of individual atomic
oscillators to become randomized, even though each dipole continues to oscillate
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with the same decaying amplitude and average frequency, are often referred to
for simplicity as collisions. However, the actual physical processes that can cause
dephasing of the individual internal atomic oscillations in a collection of atoms
can include the following.

e Atoms (or ions or molecules) in gases, moving with their normal ther-
mal or Brownian motion, can in fact make random physical collisions
with each other, or with other gas atoms, or with the walls of the laser
tube. Even if these collisions are elastic—that is, even if they do not
take any energy away from the internal electronic oscillation energy of
the atoms—in general such collisions between atoms will scramble and
randomize the phases of the electronic oscillations inside the colliding
atoms.

For laser atoms in solids, the quantum energy-level spacings and hence
the exact transition frequencies w, of the laser atoms are affected by
nearby host atoms, and hence depend on the exact distances to nearby
atoms in the host crystal lattice. Thermal vibrations of the crystal lattice
will modulate these distances slightly, and thus modulate the atomic
transition frequencies w, by small but random amounts with time. This
is called phonon broadening, and it produces in turn a random phase
modulation and hence a “phase smearing” of the dipole oscillations in
the laser atoms.

In materials where the laser atoms are sufficiently dense, the local time-
varying electric (or magnetic) fields produced by any one oscillating
dipole may spread out to, and be felt by, other neighboring laser atoms.
The individual oscillating dipoles are then no longer totally independent,
but become weakly coupled to each other through what is called dipolar
coupling. This kind of weak coupling between individual resonant sys-
tems, ‘even if they are all identical, always tends to randomize and to
broaden the overall response of the collection. (This is true of weakly
coupled resonant electric circuits, as well as weakly coupled resonant
atoms.) This process of dipolar coupling is thus still another mechanism
for producing random phase smearing in the atomic dipoles. Moreover,
this dipolar coupling itself will be randomly modulated in atoms by the
thermal motion of the atoms, whether by gas kinetics in gases or lattice
vibrations in solids.

Whatever may be the physical cause, the net result of each of these physical
processes is to randomize or “dephase” the phases of individual atomic oscilla-
tors with respect to each other. The coherent dipole oscillations get converted
eventually into incoherent oscillations.

More on Collision Broadening. ,

In a more sophisticated description of collision broadening in gases, the discrete col-
lision between two atoms in the gas is not really instantaneous. Rather, when two
quantum atoms in a gas come very near each other, their quantum wavefunctions over-
lap. The presence of each atom then causes a small but not insignificant shift in the
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quantum energy levels of the other atom. (More precisely, we must calculate the shifted
quantum levels of the two atoms taken together as a single combined quantum system.)
The resonance frequency of each atom is thus shifted by a small, time-varying amount
as the atoms pass near each other. The collision interval during which the atoms are
close enough to influence each other is short enough (~ 1073 sec) to be “instanta-
neous” on a practical time-scale; yet it is long enough for the accumulated shifts in
optical frequency cycles to leave the final phases of the oscillators essentially random-
ized relative to their initial phases. This brief interaction acts for all practical purposes,
then, like an instantaneous randomizing collision.

1

Exponential Decay: The Dephasing Time T

A simple formula for the rate at which a macroscopic polarization p;(t)
will be destroyed by random dephasing events can be developed as follows. Sup-
pose that not just a few dipoles, as in the preceding examples, but a very large
number of individual (but identical) oscillators are involved. Suppose also that
the dephasing events for individual dipoles happen randomly both in their times
of occurrence and in the phase changes they produce. Let there then be some
large number Ny of dipoles in a unit volume, all initially oscillating in phase, so
that the magnitude of the initial polarization at a starting time ¢, is

Pz(to) = Nopgo- (20)

At any later time t > g, we can then divide these Np dipoles into (a) a decreasing
number of dipoles N(t) that have not yet suffered any collisions at all; and (b) an
increasing number Ny — N(¢) of dipoles that have suffered at least one collision,

and perhaps more. The N(t) dipoles that have not yet undergone any collisions’

or dephasing events will then continue to oscillate in phase and to produce a
macroscopic polarization

Pz (t) = N()pz(t) = N(t) 0 COS wat. (21)

" Those dipoles that have suffered even one collision, however, will have phases that

are entirely random (assuming, as is normally done, that the phase of a dipole
oscillation is entirely randomized after each collision). Hence those dipoles will
add up to produce no coherent polarization at all, on the average.

The coherent polarization after any time ¢ > ¢, thus comes entirely from the
remaining uncollided dipoles. [A more precise statement is that the N dipoles
oscillating coherently in phase will add up to produce a macroscopic polarization
proportional to N uzo, whereas the No— N dipoles oscillating with random phases
will add up to produce a macroscopic sum with a mean value of zero and an rms
value proportional to (No— N )1/ 2 41z0- Since the number of atoms involved in any
atomic system is always very large, the latter quantity is negligible compared to
the coherent part of the oscillation; and we can neglect the contribution from
the randomly phased dipoles in the latter group.]

The number of uncollided dipoles N(t) will of course decrease steadily with
time. How can we calculate the rate at which the number of uncollided atoms
N(t) decreases? Let us suppose that collisions occur at a random rate of 1/T
collisions per atom per second. Then, the total number of collisions dN that
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FIGURE 2.7

uncollided dipoles.

/T,

members of this uncollided group will undergo in a little time interval dt about
time ¢, or the loss rate from the uncollided group N(t) in time dt, will be given
by

, N(t
dN(t) = -——(—)» dt. (22)
T,
The size of the uncollided group will thus decay as
N(t) = Noe—<t"t°)/T2 s t > 1. - (23)

The coherent macroscopic polarization produced by these still uncollided oscil-
lators will therefore also decay as

Po(t) = N(t)ps(t)
= Noe™ (%) x yiog exp [—(7/2)(t = to) + jwa(t — to) + jgo]  (24)
=pzoexp [—(7/2 +1/T2)(t — to) + jwa(t — to) + jbo] -

In other words, the amplitude decay rate /2 appropriate for the individual
dipoles must be replaced by %fy + Ty ! as the effective amplitude decay rate for
the coherent polarization p,(t), or

ingle-dipol . macroscopic
f_y) single-dipole vy, 1 L.
(2 ( decay rate ) = (2 + Tz) polarization |.  (25)

decay rate

It may seem slightly odd that in this substitution the dephasing rate 1/T; gets
added to the quantity /2 = 1/2r, which is half the energy decay rate. The
reason for this difference of a factor of two—which will continue to be with us—
is essentially that 1/T> and 1/27 are both decay rates for sinusoidal amplitudes
}ike u'%(t) or p;(t); whereas + itself is an energy decay rate for the quantity
Ha(E)]*

Decay of the number of
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Summary

The primary conclusion of this section, therefore, is that although the
macroscopic polarization p,(t), has the same resonance frequency as the in-
dividual microscopic dipole oscillations p.(t), it may have a faster decay rate
because of dephasing effects. Individual atomic dipole oscillations, in the inter-
vals between dephasing events, can thus be described as obeying the equation of
motion

A2, (t dpz(t

Tielt) 4 (8= | 2ult) = (€ mEa®) (26)
dt dt -

with an amplitude decay rate /2. But the coherent polarization px(t)‘ must be

described as obeying the equation

d?p,(t) dps(t)
dt? . dt

where there is an additional factor of 1/T% in the amplitude decay rate because
the dephasing processes cause the oscillations of individual atoms to become
randomized in phase at a rate 1/T. (Note again the difference of a factor of 2
between the v and 1/T5 terms.)

In the analysis we have presented here—which is in fact very similar to the
approach in much more sophisticated quantum treatments—the time constant 75
thus has the physical significance of the mean time between dephasing events or

+ wsz(t) = (Nez/m)gz(t)v (27)

+ (7 +2/T2)

. collisions for any one individual atom, so that 1/T% is the collision frequency for

any one individual atom. The time constant T5 is thus often called the collision
time. This same time constant is often referred to more broadly as the dephasing
time, or even the dipolar interaction time for p,(t). In quantum analyses or in
the Bloch equations for magnetic resonance, T is also called the off-diagonal or
transverse relaxation time.

REFERENCES

The concepts of collisions and dephasing as presented here were apparently first intro-
duced by H. A. Lorentz in the Proceedings of the Amsterdam Academy of Science 8,
591 (1906). The number of discussions of collisions and line broadening in the literature
is now extremely large. We will give many references to these in Section 3.2, where we
discuss collision broadening and line broadening in real atoms in more detail.

Problems for 2.2

1. Collision broadening with a different kind of collision statistics. Consider a some-
what unusual collection of atoms, in which each individual atom suffers its de-
phasing collisions at absolutely regular intervals, spaced by an intercollision time
T¢, so that the collisions for a given atom occur at instants ¢ = to, to +7T¢, to+27T¢,
and so forth, with the intercollision time T being the same for all the atoms.
(You might think of each individual atom as bouncing back and forth between
two walls at the same constant velocity, not hitting any other atoms, but being
dephased each time it hits the walls.) The reference time or “first-collision time”
to is different for each atom, however, with values uniformly distributed between
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0 and T¢ (i.e., the atoms at any instant are, uniformly distributed in the space
between the walls).

Suppose that a group of atoms with these oddball collision properties are all set
oscillating internally, with their internal oscillations initially in phase at t = 0.
Describe how the macroscopic polarization ps(t) will decrease with time, includ-
ing both energy decay and this oddball dephasing; and plot pz(t) versus t/Tc for
values of the parameter vT. = 0.1, 1, and 10.

2.3 MORE ON ATOMIC DYNAMICS AND DEPHASING

Since dephasing effects are a particularly important aspect of atomic dynamics,
let us look a bit further at some of the additional consequences and varieties of
dephasing effects in real atomic systems.

Dephasing Effects Plus Applied Signals

One basic assumption in discussions of dephasing is that dephasing effects
and applied signal fields such as £,(t) will act on individual dipoles simultane-
ously and independently—that is, we can simply add up their-effects in comput-
ing the total internal motion of individual atoms. What, then, are the relative
strengths of these two effects? To explore this, let us consider, for example, the
response of a single dipole oscillator subjected to an on-resonance sinusoidal ap-
plied field £;(t) = Eycosw,t during the period just after this atom has suftered
a randomizing collision at ¢ = ¢;. How rapidly can the applied signal £,(t) “pull”
the individual dipole moment . (t) back into a coherent phase relationship with
the applied signal, following a dephasing collision?

The problem here is clearly to solve the single-dipole equation of motion
(Equation 2.26) with the specified applied signal and with an arbitrary initial
condition on the phase (i.e., the position and velocity) of the oscillator at time
t = 0. This can be done straightforwardly, although the exact solution is a
bit messy. We know, however, that an equation of this type has a transient or
homogeneous solution, independent of &;(t), of the form

pz(t) = piso €xp [~ (7/2)(t — to) + jwa(t — to) + jo] - (28)

(There is a minor approximation in this expression, namely, the replacing of w/,
by w,.) We will also show in Section 2.4 that an on-resonance applied signal will
produce a steady-state or forced sinusoidal solution of the form

pz(t) = Re |—j CB1 gjuet] = Re [sse’="] (29)
T mw“’y S8 ’

where fiss = j(e/mw,7Y)E1 is the steady-state phasor amplitude of the motion
produced by the field E;. Suppose we also define fip = pgoexpjd(0) as the
complex phasor amplitude (magnitude and phase) of the sinusoidal motion of
1z (t) immediately after the collision. (The phase ¢(0) will take on random values
for different dipoles after different collisions.)

The total solution for u,(t) following any given collision will then be a linear
combination of the forced plus transient solutions, with just enough transient
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solution included to meet the initial boundary condition at #o, or
ta(t) = Re [ﬂ + (a0 — ﬂss)e—(v/zxt—to)} eIwalt—to) (30)
This says, in effect, that we can write () in the form
pa(t) = Re [ft)er =] (31)
where fi(t) is a slowly changing complex phésor amplitude given by

B(t) = fiss + [fio — fiss) €™ 10)/27, (32)

In other words, following a collision the phasor amplitude ji(t) of the sinusoidal
motion “pulls in” from the initial random post-collision value Lo, toward the
forced or steady-state value fi,s, with an exponential time constant 2r. Note
that this pull-in time constant does not depend at all on the strength of the
applied field.

Now, we will see later that for most real laser transitions the dephasing
time T is usually much shorter than the energy decay time 7; 80 the dephasing
time constant T is also much shorter than the pull-in time constant (or 27).
Any individual atom is, therefore, very likely to be dephased again by another
collision, after a short time ~ Tb, well before it gets pulled completely into phase
by the applied signal £,(¢). In real laser systems, therefore, even with applied
signals present, the motions of the individual dipoles are mostly dephased, or
randomly phased, by the dephasing processes. A coherent applied signal &,(t)
can usually only struggle to impose a small amount of phase ordering on this
unruly bunch of oscillators. ‘

Exceptions to this usual situation occur only for applied signals that are
strong enough to produce the kind of Rabi flopping behavior that we will dis-
cuss in Chapter 5. Most signals in common lasers are “weak signals” which do
not produce this kind of behavior; and the dipole motion in these system will
be mostly random, with a small fractional amount of signal-imposed coherent
ordering.

Dephasing by Random Frequency Modulation

Let us also look in a bit more detail at another type of dephasing that
occurs in many solid-state laser materials.

The most graphic way of picturing dephasing effects in any collection of atoms
is probably the kind of sudden, sharp, discrete, randomly occurring dephasing
events or “collisions” that we have described above. An important alternative
dephasing process for atoms, however, especially in crystals and other solids, is
phonon broadening, or phonon frequency modulation of the atomic transitions,
rather than genuine collisions between different atoms as in a gas.

In systems with phonon broadening (or with dipolar coupling as well) the
dephasing process results not from sudden collisions, but from a more continuous
but still random frequency modulation of each individual dipole’s oscillation
frequency. The net result, however, is essentially the same: dipoles that begin
oscillating in phase gradually end up, after a time on the order of T3, with their
phases completely randomized.

2.3 MORE ON ATOMIC DYNAMICS AND DEPHASING

Consider, for example, the chromium Cr3* ions in a ruby crystal or the
neodymium Nd3* ions in a Nd:YAG crystal or glass lattice, such as we showed
in Chapter 1; and suppose the internal electronic charges of several such ions
have been set oscillating in an internal dipole oscillation with the same initial
phase. Now, the surrounding lattice itself will also be vibrating slightly at any
finite temperature, because of thermal agitation; so the spacing between each ion
and its nearest neighbors in the lattice will be changing slightly in a random way
that is different for each ion. But for ions in solids, small changes in the lattice
spacing will cause very small but finite shifts in the exact resonance frequency w,
of the transition in each ion. The sinusoidal dipole oscillations of the various ions,
as a result, will proceed at slightly different and randomly changing frequencies;
and the dipole oscillations will thus drift slowly and randomly out of phase with
each other.

This same argument can hold for dipole oscillations in a crystal lattice, in a
glassy solid, in a liquid, or in any condensed atomic medium. Dipoles initially
oscillating in phase will eventually be converted to random phases. It is not
so evident here that this will lead to an exponential decrease in the coherent
polarization component. The fact is, however, that the same assumption of ex-
ponential decay that we made for the macroscopic polarization is just as good
an approximation for these situations also.

Note on Phonon Broadening.

The shifts in resonance frequencies of ionic transitions in solids due to changes in
the local lattice spacing can be demonstrated experimentally simply by squeezing the
crystals to compress the lattice spacing slightly, and noting that there are small but
finite pressure shifts for the transition frequencies of the ions in the crystals. These
pressure shifts may be viewed as small changes in the Stark shifts of the atomic energy
levels which are produced by the electric fields associated with the bonds between atoms
in the crystal lattice.

Some Typical Numbers for Dephasing Effects

The magnitudes of the dephasing effects and the values of the dephasing
time T% exhibit very large variations in different kinds of atomic media. Recall
first that visible transitions have oscillation frequencies on the order of 6 x 1014
Hz and thus oscillation periods of the order of 10~15 sec.

The collision frequencies for atoms in real gases can vary over a wide range,
depending on gas pressure; but values in the range of 1/T> ~ 108 to 10° sec™?, or
dephasing times of T = 10~8 to 10~ sec at low pressures, are not uncommon.
Energy decay times in the range of 7 = y7! ~ 1075 to 107 sec for transitions of
interest are also reasonable. The general conclusion is thus that there are always
an enormous number of optical cycles between each collision or dephasing event.
The collision rate is usually an order of magnitude or more higher than the
energy decay rate; so the 1/T> term in the polarization decay often dominates
over the /2 part of the decay.
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For atoms in solids, the lattice vibrational frequencies that are excited by
thermal agitation, and that cause the thermal frequency dephasing, range from
zero up to ~ 103 Hz. The lattice modulation of the atomic transition frequencies
is thus in general very fast compared to any measurements we might try to make
on the atoms, but still slow compared to the actual transition frequencies w,.
We must then ask not only how rapidly the lattice atoms vibrate, but also
how strongly they modulate or shift the transition frequencies w,. The answer
in typical lasers (e.g., ruby or Nd:YAG) is that these frequencies are shifted
randomly by amounts on the order of 10!! to 10'2 Hz.

Now, two dipoles having a random frequency difference of wz2 — w,; will get
27 out of time-phase with each other after an interval of 27 /(wg2 — wq;) seconds.
The effective T, dephasing times for ionic transitions in solids are thus often
of the order of 107! to 1072 sec. The energy decay times in solids on good
laser transitions are sometimes as slow as 1072 to 10 sec. Again, the 1/T;
dephasing component dominates, generally by a very large amount, over the /2
energy decay rate. )

Coherent Versus Incoherent Decay

Suppose, as a final mental exercise, that a large number of atoms Ny are
initially all oscillating and radiating together in phase, as we described earlier.
(Preparing a group of atoms in this coherently phased initial condition is not
always easy to accomplish, as we will see later. It generally requires very strong
applied signals, applied in very short pulses.)

Given this initial preparation, all these atoms or oscillators will then radiate
together as one giant coherent dipole. The initial value of this dipole will be
Nopizo, where pigo is the dipole moment of one individual atom; and the rate
at which this collection of coherently oscillating atoms radiates energy will be
proportional to NZ|puz0|?. The esséntial point is that all the dipoles are radiating
coherently, that is, in time-phase with each other.

This coherence will, however, be destroyed by dephasing processes in a time
of order T, which for real atomic transitions is often very short (from nanosec-
onds down to less than picoseconds). Once the coherent oscillation is destroyed,
after a few dephasing times T, the individual dipoles will in general still be
oscillating and radiating energy, since their energy decay time 7 = v~ is gener-
ally longer (sometimes much longer) than the dephasing time T5. The individual
dipoles will continue, in fact, to radiate energy through the vaq and 4y pro-
cesses, but they now radiate individually and incoherently, with random phase
relationships between the dipoles. The radiation that now comes out from the

"sample is essentially narrowband noise, or spontaneous emission, or, fluorescence

centered at the atomic transition frequency w,. It comes out in all directions,
and with a narrowband but essentially noise-like spectrum. The power radiated
is simply the sum of the individual powers radiated by the Ny individual dipoles,
and hence is now proportional to No|uz0|? rather than to NZ|uzo|2.

Suppose we perform an experiment in which we set a collection of atomic
dipoles oscillating coherently, perhaps using some kind of pulsed applied signal,
and then observe how the atoms radiate afterward. We can expect to see two
transients: first the coherent transient radiation, which may be strong but very
fast (time constant = T3); and then the incoherent transient radiation, generally
much weaker but longer-lived, corresponding to normal spontaneous emission

-or fluorescence (time constant = T}). So-called coherent pulse or coherent free-
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induction decay experiments displaying the first type of behavior can be per-
formed on atoms at optical frequencies. These experiments are generally rather
difficult, however, requiring short but intense coherent laser pulses for excitation,
together with high-speed detectors for the coherently radiated signals.

Much more common are ordinary fluorescent lifetime experiments, such as
we will illustrate later. In these, a group of atoms are again set oscillating, but
the excitation mechanism is some form of incoherent excitation, such as a pulse
of broadband light from an incoherent flashlamp, or a short burst of current
through a collection of gas atoms. There is no initial phase coherence to the
excitation in these cases, and hence no coherent initial polarization to either
radiate coherently or decay at the T, rate. The radiation in this case comes
entirely from incoherent spontaneous emission or fluorescence, and the measured
decay rate will be simply the energy decay rate ¥ = Yrad +7ar- Understanding the
distinction between these coherent and incoherent types of processes is extremely
important in understanding the atomic phenomena involved in lasers.

Problems for 2.3

1. Dephasing by random frequency modulation. 1t is claimed in this section that
a continuous but random modulation of the resonance frequencies of a system
can lead to a net exponential result for dephasing behavior. To examine this
basic idea in more detail, consider a large number of individual dipole oscillators
all having the same natural oscillation frequency wa, and all oscillating initially
in phase with each other in the general form coswgt. Suppose, however, that
each oscillator is randomly phase-modulated (or frequency-modulated) by some
external perturbation, so that after a time ¢ any individual oscillator oscillates as
cos|wat + ¢;(t)], where ¢;(t) is a random phase angle for the i-th oscillator after
time ¢.

If the individual oscillators randomly diffuse in phase angle with increasing time,
the probability density distribution of oscillation phases for different oscillators af-
ter a time ¢ may take on the gaussian form Pr¢;] = exp[—¢7 /20%(1)]//2m0(t).
If, for example, the phases of different oscillators diffuse as a random-walk pro-
cess, standard statistical arguments say that the random phases will have just
this kind of gaussian probability distribution, and that the variance a? of this
distribution will increase linearly in time in the form o?(t) = 2Dt, where D is a
diffusion coefficient for the phases.

Using this probabilistic model, evaluate how the macroscopic polarization p(t)
obtained by summing over a large number of microscopic dipoles x;(t) per unit
volume will decay in time, assuming all the dipoles start out oscillating in phase
(i.e., with ¢;(0) = 0). Hints: The expected value or average value for some func-
tion f(y), where y is a random variable with probability distribution Pr[y], is
given by < f >= f f(y) Prly] dy. A useful formula to rémember is that

* —Ay?-2By _ B2/A
e dy =+/7n/Ae .

This formula holds for A and B complex, provided only that Re[A] > 0.
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2.4 STEADY-STATE RESPONSE: THE ATOMIC SUSCEPTIBILITY

Our next task is to compute the steady-state response of a collection of oscillators
or atoms to a sinusoidal applied signal, and to express this response as a linear
resonant electric susceptibility.

Phasor Analysis

Suppose that the electric field £;(¢) applied to a collection of classical
oscillators, or electric dipole atoms, is a sinugoidal signal with frequency w, which
we write in the form

Ex(0) = Rel ) = 3 [Buei* + Bye] (33)

In electrical engineering jargon the complex quantity E, is a “phasor” whose
magnitude and phase angle give the amplitude and phase of the real quantity
&4 (t). Suppose, for example, that the complex phasor E, has the magnitude and
phase angle E, = |E;|e’®. Then the real field £,(t) will be given by &,(t) =
Re[|E;|e?“t+9)] = | E,| cos(wt + ¢), so that obviously |E,| is the magnitude and
¢ the phase angle (in time) of the cosinusoidal signal.

The steady-state response from a linear atomic system will then have the
same sinusoidal form, i.e.,

~ . 1 -~ . ~ .
Px(t) = Re[Pre??] = E[Pze"‘" + Preiwt), (34)

so that a similar description will obviously prevail for the magnitude and phase
angle of the real polarization p,(t) and its complex phasor amplitude P,.

Both the e/t and the e~7** terms in these phasor expansions are needed to
give the complete real fields; but in any linear system with a linear differential
equation, such as we are considering here, the E, e’ part of the applied field will
be connected only to the P,e’t part of the induced polarization, and similarly
for the E}e~9“! and P}e™7*! parts of these quantities. Moreover, these separate
responses in any real physical system will be simply the complex conjugates
of each other, so that the complex-conjugate or e~9“* terms really contain no
additional information over and above the e/** terms.

Following the usual practice in phasor analyses, therefore, we will focus only
on the e/** terms from now on. Moreover, for simplicity we will generally leave
off the “Re” notation from now on and write the real fields in the form &£,(t) =
E, e, with the operation of taking the real part being understood.

If we put these sinusoidal phasor expansions into the equation of motion
for p;(t), Equation 2.27, and separate out the e/“* terms, we obtain a relation
between the complex phasor amplitudes:

. ~ Ne? -
[—w? + jw(y +2/Ts) + w?] B, = %Em (35)
which we will rearrange into the form

Ne? 1
m w2 —w?+jw(y+2/Ts)

Ejzl:ur

(36)
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This is the linear steady-state relationship between the phasor polarization B,
induced in the collection of oscillators or atoms and the field E, applied to them.
In linear-system terms, it is the transfer function for the response of the atomic
medium.

Electric Polarization and Susceptibility: Standard Definitions

This transfer function is more commonly known as the electric susceptibil-
ity of the atomic medium, as produced by the polarization response of the atoms
or oscillators. We can recall that the electric field F, the electric polarization P,
and the electric displacement D in any arbitrary dielectric medium are related
under all circumstances by the basic definition from electromagnetic theory

D =¢k +P. ®Bn

In the more restrictive case of a-linear and isotropic dielectric medium, the
polarization P and the electric field E will also be related, by an expression
which is conventionally written in the form

P(w) = x(w)eoE(w), (38)

so that the quantity ¥(w) defined by

o Pw) :
Xw =205 (39)

is the electric susceptibility of the medium, with € being the dielectric perme-
ability of free space. We will adopt a slightly modified version of this definition
a few paragraphs further on. ~ ;

The relationship between the electric displacement D and the electric field £
in a linear medium can then be written, using the standard definition of Equation
2.39, as

D=¢[1+ % E=¢E, (40)
which means that the complex dielectric constant é(w) is given by
é(w) = eo(1 + X)- (41)

For a completely general description, the field quantities D, E, and P really
should be treated as vector quantities in these relations; and in the more general
linear but anisotropic case the susceptibility X then becomes a tensor quantity.
For simplicity, however, let us stick with scalar notation at this point.

The electric susceptibility relating the applied signal E, and the atomic po-
larization P, in an atomic medium is very important in calculating laser gain,
phase shift, and many other properties, as we will see shortly. Before going fur-
ther with this discussion, however, we must introduce a slightly nonstandard
definition of the electric susceptibility ¥, which is peculiar to this book, but
which will turn out to be very useful in simplying later formulas.
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Atomic Susceptibility: A Modified Definition

In a sizable fraction of the laser materials of interest to us, the resonant
oscillators or the laser atoms that produce the resonant polarization P, are
not located in free space. Rather, these atoms are imbedded in a laser crystal,
or perhaps in a glass or a liquid host material. In the laser material ruby, for
example, the Cr3*t laser atoms that are responsible for the laser behavior are
dispersed (at ~ 1% density) in a host lattice of colorless Al,O3, or sapphire. In
dye laser solutions the dye molecules, for example, Rhodamine 6G, are dissolved
at perhaps 10~3 molar concentration in a liguid solvent such as water or ethanol.

In all these devices, the host materials in the absence of the laser atoms are
transparent dielectric materials that are nearly lossless at the laser wavelength,
but have a relative dielectric constant ¢/eo or an index of refraction n that is
significantly greater than unity. These materials will possess, therefore, a large
nonresonant linear electric polarization Pyog that is associated with the host
material by itself, and that has no direct connection with the generally much
weaker resonant polarization P,y that comes from the resonant response of the
classical oscillators or from the resonant transitions in the laser atoms.

We can therefore write the total displacement vector in such a material in
more detail as

D = GOE + ﬁhost + Pat- (42)

In this equation Pyogt refers to the large, broadband, linear nonresonant polariza-
tion associated with the host material by itself; whereas P,; refers to the weak,
narrowband, linear resonant polarization produced by the classical oscillators or
atoms imbedded in the host material. Following conventional electromagnetic
notation, we can then define a nonresonant susceptibility ¥nost and a dielectric
constant epos¢ for the host material according to the usual definitions, in the form

jjhost = ihosteoé and €host = 60(1 + ihost)- (43)
The total polarization can therefore be written as
D = €o [1 + Xhost] E + Pat = fhostE + Pat.' (44)

Note that in typical laser crystals or liquids the host dielectric constant (at optical
frequencies) will have magnitude €nost/€0 = 2 to 3, so that the dimensionless host
susceptibility will have magnitude Xnost = 1 to 2. To put this in another way, the
index of refraction of typical laser host materials, given by nhost = 1/€nost/€o0,
will have values of nyest = 1.5 to 2.0 for typical liquids or crystals.

Suppose now that we were also to define a separate susceptibility Xat for the
atomic or resonant oscillator part of the response in the laser medium, using the
same conventional definition as given earlier, namely,

(45)

- ~ ~ conventional
Xav = Fas/ 0B ( definition )

Then we would end up with a result of the form

- o - = conventional
D = epost B + Xat€oE = fhost[l + (Eo/fhost)Xat]E ( ) (46)

definition

Now, there will be many times in later chapters when we will want to expand
the bracketed factor involving X,¢ to various orders in (ep/€nost)Xat, since this
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quantity is always small compared to unity. If we follow this conventional defini-
tion for Xat, using €, we will end up carrying along perpetual factors of €p/€nost
to various powers in all these expressions.

To avoid this, we will instead consistently use in this book an alternative
nonstandard definition for X,y which we obtain by writing

-~ - this book’s
=X E
Pat = Xathost ( definition ) ! (47)

so that the atomic resonance part of the susceptibility is defined by the expression

i Pat(w) this book’s
€host B (w) definition /

Xat =
Note that we are not rewriting any laws of electromagnetic theory by doing
this—we are merely introducing a slightly unconventional way of defining Xa
for an atomic transition, in which epost is used as a ndrmalizing constant in
the denominator, rather than €y as in the standard definition. If we use this
definition, as we will from here on, the total electric displacement in any laser
material is then given by the simpler form

(48)

. L. . { this book’s
D= E+ P,y = 1+ Xat] E . 49

€nost £ + Paty = €host [ + Xat] < definition ) ( )
This alternative form avoids the factor of €g/€enost in Equation 2.46. For simplicity,
from here on we will also drop all the “host” subscripts and simply write €post
as €.

To keep all this straight, just remember: from here on ¢ is the dielectric con-
stant of the host lattice or dielectric material without the laser atoms; whereas
Xat, defined according to the alternative definition of Equation 2.48, is the ad-
ditional (weak) contribution due to. the resonant atomic transition in the laser

atoms. Of course, if the laser material is a dilute gas with enost = €9, there is no

" difference anyway.

Resonant Susceptibility: The Resonance Approximation

With this definition we can write the general susceptibility X, for the
resonant response in a collection of resonant oscillators or atoms by combining
Equations 2.36 and 2.48 to obtain

_ . \_ P, _Neé 1
Xar(w) = eB,  me w?—w?+jwlAw,’ (50)

We have introduced here the important quantity
Aw, =v+2/T3, (51)

which we will shortly identify as the atomic linewidth (FWHM) of the atomic
resonance. Since both v and 2/T, are always small compared to optical frequen-
cies, this linewidth Aw, is very small compared to the center frequency w, for
essentially all transitions of interest in lasers—never more than 10% at absolute
most, and usually much, much narrower. (In fact, fractional linewidths greater
than a fraction of a percent occur in practice only in semiconductor injection
lasers and organic dye lasers.)
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We are most often interested only in the response of the atoms to signal
frequencies w that lie within a few linewidths of either side of the resonant
frequency w,. Within this region we can make what is called the resonance
approximation by writing

wW? — w2 = (W+ we) (W — wa) = 2we(w — wa) = 2w(w — wa), (52)
Wt —ov = (Vo + W) (Wa - W) X 1Wa (g - D) X 1L (U -
so that the frequency-dependent part of the susceptibility expression’becomes
1 1 1

~

w2 —w? 4 jwhAw,  2w(we —w)+ Jwhw, ™ 2w (we — w) + jwAw,

(53)

By using this we can then convert Equation 2.50 into the simpler resonant form

—jNe? 1
MwaeAwg 1+ 2j(w — wg)/Awg”

Xat(w) = (54)
It is evident that this response will decrease rapidly compared to its midband
value as soon as the frequency detuning w — w, becomes more than a few times
the linewidth +Aw,; and hence it really does not matter at all whether we use
w or w, in the denominator in the first part of this expression, so long as we do
not tune away from w, by more than, say, +10%.

The Lorentzian Lineshape

The right-hand part of Equation 2.54 exhibits a very common frequency
dependence known as a complex lorentzian lineshape. Since we will be seeing this
frequency dependence over and over in the remainder of this text, let us gain a
little familiarity with its properties.

Suppose that, for simplicity, we define a normalized frequency shift away from
line center by

w—w,
Aw, ’
so that Az = 0 corresponds to midband and Az = %1 corresponds to a frequency

shift of half a linewidth away from line center on either side. Then the complex
lorentzian lineshape is given by

Az =2

(55)

- o aon 1 — 1
Xat(w) = 2w e vy VA LG pry vt (56)
where
Ne?
"_
Xo = MwaeAw, (57)

is the magnitude of the negative-imaginary value at midband.
Readers familiar with- Fourier transforms will recognize that this complex
lorentzian lineshape is simply the Fourier transform in frequency space of the

exponential time decay of the polarization p,(t). (Whether the —j factor in
front of the 1/(1 + jAz) frequency dependence is to be considered part of the
complex lorentzian lineshape or not is entirely a matter of style.) Note once
again that in examining the frequency dependence of lorentzian transitions—
for example, in solving some of the problems at the end of this section—the
frequency dependence of the constant xj can be entirely ignored; i.e., it makes

i o
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no practical difference whether we use w or w, in the denominator of Equation
2.57. This constant in front can be treated as entirely independent of frequency
within the resonance approximation.

The real and imaginary parts of this complex lorentzian lineshape then have
the forms ‘

Az p 1
1+az2 I1xaz2|’

Xat(w) = X' () + X" (@) = —x0 (58)
where ¥/(w) and ¥”(w) are the real and imaginary parts of this function, as
plotted in Figure 2.8. The imaginary part of this response, or x”(w), has a
resonant response curve of the form

1 1
" = ! = — ”—————.
X (w) - XOI + [2(w_wa,)/Awa]2 Xo 1 +A.’B2

(59)

This lineshape is conventionally called the real lorentzian lineshape, with a re-
sponse centered at Az = 0 or w = w,, and with a full width between the
half-power points w — w, = +Aw, given by

Awg = +2/Ts. (60)

The linewidth Aw, is thus the full width at half maximum (FWHM) linewidth
of the atomic transition. We will shortly identify x”(w) as the absorbing (or
amplifying) part of the atomic response.

The real part of the lorentzian susceptibility, or x'(w), has the frequency
dependence

PN 2w~ wa)/Aw, R Az
X(w) = X°~1+[2(w-wa)/Aw,,]2 T T AR

(61)

which has the antisymmetric or roughly first-derivative form shown in Figure
2.8. We will shortly identify this x’(w) part as the reactive, or phase-shift, or
dispersive part of the atomic response.

Note that the literature on atomic transitions and lasers uses many different
linewidth definitions for Aw, Af, AM, etc., which in different publications are
sometimes defined as the half widths of resonance lines; sometimes as the full
widths, as here; and sometimes even as rms linewidths, or 1/e? linewidths, or
other exotic widths. We will be consistent in this text in always using a FWHM
definition for any linewidth Aw, Af, or A\, unless we explicitly say otherwise.

Magnitude of the Steady-State Atomic Response

Let us emphasize once more that the atomic response of a collection of
atoms to an applied signal is coherent, in the sense that the steady-state in-
duced polarization I5(w) follows, in amplitude and time-phase, the driving signal
field E(w) in the manner described by the complex susceptibility or transfer
function ¥ (w). The susceptibility ¥(w) given by Equations 2.50, 2.54 or 2.56 is a
dimensionless quantity. We will see later that in essentially every case of inter-
est to us, the numerical value of this quantity is very small compared to unity.
Only for very large atomic densities, very strongly allowed transitions, and very
narrow linewidths does the numerical magnitude of ¥ approach unity; and these
conditions are not normally all present at once in laser materials.
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FIGURE 2.8
Real and imaginary parts of the complex lorentzian lineshape.

‘We might also note that the magnitude of the atomic susceptibility at mid-
band is proportional to the inverse linewidth 1/Aw,, where the linewidth Aw,
for classical oscillators is given by

Awg = Yrad + Yar + 2/T2 (62)

As the dephasing time T, becomes smaller, this linewidth becomes larger, and
hence the relative strength of the induced atomic response decreases in direct
proportion to the dephasing processes as measured by 2/T5.

If there were no dephasing processes, so that 75 — 00, then the applied signal
field E could drive all the individual atomic dipoles to oscillate completely in
phase, and would produce the largest possible induced response, limited only by
the dipole energy decay rate. The dephasing processes associated with any finite

T, value, however, operate to “fight” the coherent phasing effects of the applied

signal, and to reduce the coherent polarization that can be developed. The usual
situation in most (though not all) laser materials is that the 2/T, dephasing
term dominates over the energy decay rate 7; as a result, the applied signal
can produce only a small fractional coherent ordering of the dipole oscillation’s
steady state, working against the randomizing effects of the dephasing processes.

2.4 STEADY-STATE RESPONSE: THE ATOMIC SUSCEPTIBILITY

Problems for 2.4

1. Radiative decay rate at' the He-Ne laser transition frequency. Evaluate the radia-
tive decay rate and the radiative lifetime for a classical electron oscillator with
the same resonance frequency as the He-Ne 6328A laser line. Also evaluate the
atomic linewidth Aw, that would apply if this were the only damping or line-
broadening effect present. (Note: The actual 6328A transition in neon is much
weaker, i.e., has a much slower radiative decay rate; and other broadening mech-
anisms, including both collision and doppler-broadening, are present in the real
He-Ne laser.)

2. Classical-mechanics description of power transfer from field to atoms. Describe,
using suitable plots, the magnitude and phase of the induced dipole response
pz(t) of a classical electron oscillator to a sinusoidal applied field £z(t) as a
function of the driving frequency w, from well below to well above resonance.
Using the fact that the work done by a force fz(t) pushing on an object moving
with velocity vz(t) is given by dW/dt = fz(t)vz(t), explain in mechanical terms
the steady-state power transfer from the applied signal to the oscillating dipole,
both for frequencies near resonance and in the reactive regimes well away from
resonance.

3. Lorentzian lineshape for a resonant electrical circuit. Show that the electrical
impedance Z(w) as a function of frequency for a resistance R, an inductance L,
and a capacitance C connected in parallel can also be approximated by a complex
lorentzian lineshape. .

4. Lorentzian lineshape locus in the complex plane. The complex lorentzian suscep-
tibility X(w) can be plotted as a contour in the complex plane with x’' and x”
as the horizontal and vertical axes, respectively, and w as a parameter along this
contour. Plot a few points to trace the geometric form of this contour. Can you
give a simple analytic form for the contour (in the resonance approximation)?

5. Range of validity for the resonance approximation. The resonance approximation
leading to the lorentzian lineshape for a high-Q classical oscillator is said to be
valid “near resonance.” How far from resonance on either side can you in fact vary
the frequency tuning w — wge before the magnitude of the difference between the
exact form and the approximate lorentzian form for the complex susceptibility of
a classical electron oscillator becomes as large as 10 percent?

6. Derivative spectroscopy. Some types of spectrometers used to study atomic res-
onances give an output signal proportional not to the atomic absorption line
x" (w) itself as a function of w, but rather to its first derivative dx” (w)/dw . This
first-derivative curve has two peaks of opposite sign centered about wq. Find the
spacing Awpy, between these two peaks in terms of the usual FWHM atomic
linewidth Aw, for a high-Q lorentzian line.

7. Overlapping lineshapes: maximally flat condition. Suppose an atomic medium
contains two groups of resonant oscillators with the same linewidth, density, and
other parameters, but with slightly different resonant frequencies wq1 and waz.
Using the resonance approximation for each line, plot the total susceptibilities
X'(w) and x”(w) versus w due to both groups of atoms combined, for frequency
separations wg2 — wa1 of 0.2, 0.5, 1, 2, and 5 times the linewidth Aw,. What
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frequency separation will cause the first derivative dx’(w)/dw to be exactly zero
at the midpoint between the two lines?

2.5 CONVERSION TO REAL ATOMIC TRANSITIONS

The classical electron oscillator results derived in the preceding sections can be
converted into quantum-mechanically correctformulas for real atomic transitions
in real atoms by making a few simple and almost obvious substitutions. These
substitutions are briefly introduced in this section, and then discussed in more
detail in the following chapter.

Substitution of Radiative Decay Rate

The first step in converting from the CEO model to real atomic transitions
is to notice a similarity between the constant in front of the classical oscillator
susceptibility expression of Equation 2.57 in the preceding section, which has the
form

Ne?
MweeAw, '

" —

Xo = (63)
and the classical oscillator radiative decay rate that we introduced in Equation
2.8, which is given by

e%w?

6memc3’ (64)

Yrad,ceo =
In fact, if we substitute the second of these into the first, we can write the
amplitude of the classical oscillator susceptibility at midband in the form

Xo = 47r2 Awa (65)

In this form all the atomic and electromagnetic constants appearing in the clas-
sical oscillator model (charge e, mass m, and the dielectric constant €) drop
out; and the resulting expression depends only on directly measurable proper-

ties of the classical oscillator, namely, the transition wavelength )\, the density.

of oscillators N, the radiative decay rate 7rad,ceo, and the linewidth Aw, of the
transition itself. This expression is a more fundamental and useful way of writing
the susceptibility, since it is now equally valid for either classical oscillators or
real atoms, provided only that we use the appropriate values of A, a4, and Aw,
in each case.

Introduction of Population Difference

The second and more fundamental step in converting from classical oscil-
lators to real atoms is to notice that the classical electron oscillator response we
have derived here is proportional to the number density N of the classical oscilla-
tors. But we learned in Chapter 1 that the response on real quantum transitions
is proportional to the population difference density ANys = N; — N, between
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Abls T AR

2.5 CONVERSION TO REAL %TOMIC TRANSITIONS

the populations (atoms per unit volume) in the lower and upper levels of the
atomic transition.

That is, a collection of classical oscillator “atoms” can only absorb energy, at
least in steady state. Both quantum theory and experiments show, however, that
when a signal is applied to a collection of real quantum atoms, the steady-state
response is always such that the lower-level atoms absorb energy through upward
transitions, but the upper-level atoms emit energy through downward transitions.
The lower-level atoms thus act essentially like conventional classical oscillators,
but the upper-level atoms act somehow like “inverted” classical oscillators.

The single most crucial step in converting our classical oscillator results to
accurate quantum formulas for real atomic transitions is thus to replace the clas-
sical oscillator density N by a quantum population difference AN;2 = N; — Na,
where N; and N, are the number of atoms per unit volume, or the “level popu-
lations,” in the lower and upper energy levels. This substitution is the primary
point where quantum theory enters the classical oscillator model.

Quantum Susceptibility Result

If we make both of these substitutions, and also for simplicity leave off
all the classical oscillator labels, then the resonant susceptibility expression for
either a collection of classical oscillators or a real atomic transition is given by
the same expression, namely,

i 3 AN)‘af)'rad 1
I 2 Aw, 14+2j(w—w,)/Aw,’

Xat(w) = (66)

It will often be convenient to write this expression for the complex lorentzian
susceptibility in the form

1
14+ 2j(w — wa)/Aw,

Xat(w) = _ng X

(67)
! 2(w — wy)/Aw, i 1
142w - wa)/Aw]” T+ B(w = wa)[Awa]? |’
where —jxg is the given midband susceptibility, with magnitude given by
N3y,
" i A Yrad . (68)

X0 = 2 Awg

This expression then becomes an essentially quantum-mechanically correct ex-
pressions for the resonant susceptibility of any real electric-dipole atomic tran-
sition, provided simply that we use in these formulas the real (i.e., measured)
values of the parameters A, Vrad, Aw,, and AN for that particular atomic tran-
sition.

Discussion

The preceding results thus say that the linear response to an applied signal,
as expressed by x(w), for a collection of classical oscillators or for a real atomic
transition, depends only on the following.

1



112

CHAPTER 2: STIMULATED TRANSITIONS: THE CLASSICAL OSCILLATOR MODEL

e For the classical case the number of oscillators N3, or for the quantum
case the net population difference AN )3, contained in a volume of one
wavelength cubed, where A = Ao/n is the wavelength in the host. crystal
medium.

e The radiative decay rate 7,4 characteristic of that particular oscilla-
tor, or of that particular atomic transition. This is a very fundamental
and ‘important point: different transitions in real atoms will have very
different strengths, as measured by their radiative decay rates. We see
here that the induced or stimulated response on each such transition will
be directly proportional to the sportaneous emission rate on that same
transition. Oscillators that radiate strongly also respond strongly:

e The inverse linewidth 1/Aw, of that transition. This says.in effect that
there is a characteristic area under each such resonance (with a mag-
nitude proportional to ANM3y.,4). Transitions that are broadened or
smeared out by dephasing effects, or by other line-broadening mecha-
nism, then have proportionately less response at line center.

e And finally, there is the complex lorentzian lineshape that gives the
frequency variation of the atomic response as a system is tuned on either
side of the resonance frequency.

Each of these points is fundamental, and will reoccur many times in discussions
of real atomic responses later on.
The Quantum Polarization Equation of Motion

We can also make the same substitutions in the differential equation of
motion for p(t) in the time domain, and rewrite Equation 2.27 in the form

d?p.(t dp(t 3waeXYea
dt2( ) 1 Aw, 2 dt( )+ wpalt) = EANME®),  (69)

after which this also becomes an essentially quantum-mechanically correct equa-
tion for the induced polarization response p(t), or at least for its quantum ex-
pectation value, on a real atomic transition. We will make further use of this
quantum equation in later chapters.

Notice that after making this conversion to the quantum case, we now have
a situation in which the population difference AN(¢) on the right-hand side of
the equation may itself be an explicit function of time, as a result of stimulated
transitions, pumping effects, and/or relaxation processes, rather than being a
constant value N as in the classical case. This makes the quantum equation
essentially nonlinear, as contrasted with the essentially linear character of the
classical oscillator model.

We will see later that in most cases of interest in lasers, the rate of change of
the population difference AN(t) is slowl compared to the inverse of the atomic
linewidth Aw,. This represents the so-called rate-equation limit, in which we can
validly solve the polarization differential equation of motion in a linear fashion,
just as we did in this chapter, and thereby obtain the linear resonant sinusoidal
susceptibility given above.

There are other situations, however, in which the applied signal becomes
strong enough (or the transition linewidth is narrow enough) that we move into
a large-signal regime where the time-variation of AN(t) does become important.

2.5 CONVERSION TO REAL ATOMIC TRANSITIONS

In this large-signal regime it is no longer possible to solve Equation 2.69 as a
simple linear differential equation; and hence the ligear susceptibility x(w) is no
longer an adequate description of the atomic response. We must instead solve the
nonlinear polarization equation for p(t), Equation 2.69, together with a separate
rate equation for the time variation of AN(t) that we will derive in a later
chapter, in order ‘to get the full large-signal atomic behavior. The result in the
large-signal limit is a more complex form of behavior, commonly referred to as
Rabi flopping behavior, which we will describe in more detail in a later chapter.

The polarization equation of motion is thus more general than the sinusoidal
susceptibility results, which are valid only within the so-called “rate-equation
limits.” Most laser devices in fact operate in the rate-equation regime; but there
are also more complex large-signal phenomena, often referred to as “coherent
pulse phenomena,” which occur only in the Rabi-frequency regime. Such coherent
pulse effects can be demonstrated experimentally using appropriate high-power
laser beams and narrow-line atomic transitions.

Additional Substitutions

Let us finally give a brief but complete list of all the other steps that are
necessary to convert the classical oscillator results derived in this chapter into the
completely correct quantum results for any real electric-dipole atomic transition.
Converting the classical oscillator formulas to apply to a real atomic transition
requires the following steps.

1. Transition frequency. Any single kind of atom will of course have nu-
merous resonant transitions among its large number of quantum energy levels
E;. The classical electron oscillator can model only one such transition between
two selected levels, say E; and E; > E;, at a time. To treat several different
signals applied to different transitions at different frequencies simultaneously, we
must in essence employ multiple CEO models, one for each transition. The level
populations N;(t) in the different levels involved are then interconnected by rate
equations, as we will discuss in a later section.

The classical resonance frequency w, must be replaced by the actual transi-
tion frequency wj; in the real atom, i.e.,

E; - E;

5 (70)

Wq = Wji =

The actual transition wavelength A, measured in the laser host medium, must of
course also be used.

2. Atomic population difference. The population difference must be re-
placed by the population difference on that particular transition, i.e.,

AN = AN,'J' = N,' - Nj, (71)

where N; is the lower-level and N; the upper-level population density.

3. Radiative decay rate. The radiative decay rate 7,4 must be replaced
by a quantum radiative decay rate appropriate to the specific i — j transition
under consideration, i.e.,

Yrad = VYrad,ji- (72)
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Every real atomic transition between two energy levels E; and E; will have such a
characteristic spontaneous-emission rate, which is the same thing as the Einstein
A coefficient on that transition, i.e., Yraq,ji = 4ji-

4. Transition linewidth. The linewidth Aw, must be replaced by a
linewidth Aw, ;; characteristic of the real transition in the real atoms, i.e.,

Awg = Awgij. (73)

This involves using real-atom values for the linewidth contributions of both the
energy decay rate, i.e., v;;, and the depha.smg time T ;; on that particular tran-
sition, as well as any other broadening mechanisms that may be present. We
will say more later about what these real-atom values mean and how they are
obtained. Note also that different ¢ — j transitions in a given atom may have
quite different linewidths Aw, ;5.

5. Transition lineshape. More generally, the complex lineshape of ¥at(w)
for a real atomic transition may not be exactly lorentzian, although many real
atomic fransitions are. It may be necessary for some transitions to replace the
lorentzian frequency dependence with some alternative lineshape or frequency
dependence for x(w). Whatever this lineshape may be, however, the real and
imaginary parts x'(w) and x”(w) near resonance will almost always have line-
shapes much like those in Figure 2.8.

6. Tensor properties. We assumed in previous sections a classical oscillator
model that was linearly polarized along the z direction. We have thus derived
essentially only one tensor component of the linear susceptibility, that is, the
component defined by

Pp(w) = Xoo(w)eEy (w). (74)

The response of a real atomic transition may involve a more complicated
and anisotropic (though still linear) response of all three vector components
P(w) = [P;, P, P,] to the vector field components E(w) = [E;, Ey, E,]. The
susceptibility x(w) must then be replaced by a tensor susceptibility x(w), i.e.,

X(w) = x(w). (75)
where x(w) is a 3 x 3 susceptibility tensor defined by
P(w) = x(w)eE(w). (76)

We discuss the resulting tensor properties of real transitions in more detail later.

7. Polarization properties. The magnitude of the response of an atomic
transition to an applied signal in the tensor case will also depend on how well
the applied field polarization E lines up or overlaps with the tensor polarization
needed for optimum response from the atoms. If the applied field is not properly
polarized or oriented with respect to the atoms, the observed response will be
reduced. We can account for this by replacing the numerical factor of 3 that

appears in the susceptibility expression with a factor we call “three star,” i.e.,
3 3*
w7 ()

where the numerical value of this 3* factor (to be explained in more detail in the
following chapter) is 0 < 3* < 3.

(T
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8. Degeneracy effects. What appears to be a single quantum energy level
E; may be in many real atomic systems some number g; of degenerate energy
levels, i.e., separate and quantum-mechanically distinct energy states all with the
same or very nearly the same energy eigenvalue E;. To express the net small-
signal response summed over all the distinct but overlapping transitions between
these degenerate sublevels, the population-difference term N; — N; for systems
with degeneracy must be replaced by

AN;; = (N; = N;) = AN;; = (g5/9:) Ni — N, (78)

where FE; is the lower and E; the upper group of levels; g; and g; are the statistical
weights or degeneracy factors of these lower and upper groups of levels; and NN;
and N; are the total population densities in the degenerate groups of lower and
upper levels.

9. Inhomogeneous broadening. Finally, additional line-broadening and
line-shifting mechanisms, the so-called “inhomogeneous” broadening mecha-
nisms, will often broaden and change the lineshapes of real atomic resonances,
over and above the broadening due to energy decay and dephasing as expressed

in the linewidth formula Aw, = 7+ 2/T5."The homogeneous linewidth Aw, then

gets replaced (at least for certain purposes) by an inhomogeneous linewidth Awy,
ie.,

Awg = Awy. (79)

When this happens, the lineshape often gets changed also, from lorentzian to
something more like gaussian in shape; and the 3* /472 numerical factor in front
of the susceptibility expression may be increased by ~ 50%. What is meant by
inhomogeneous broadening, and how these additional broadening mechanisms
affect real atomic resonances, is described in the final section of the following
chapter.

Further details on all the topics introduced in this section are given in
the next chapter. With these conversion factors included, the basic polariza-
tion equation of motion and the resulting linear susceptibility formula for a real
homogeneously broadened atomic transition become quantum-mechanically and
quantitatively correct for real quantum atomic transitions.
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Problems for 2.5

1. Classical oscillator model for the index of refraction in gases. Can the classical
oscillator model be used to explain not only the resonance behavior of atomic
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transitions, but also the low-frequency dielectric properties of gases and solids?
For example, the CRC Handbook of Chemistry and Physics gives the values
shown in the following table for the low-frequency relative dielectric constant
€/€o for some simple gases at 0°C and atmospheric pressure (760 torr), measured
from dc through radio and microwave frequencies, as well as the optical index of
refraction n measured across the visible region.

\

Gas (e/€o — 1) x 10* (n—1)x 10*
He 0.6 ’ 0.36

Ar 5.1-5.4 2.8

H, 2.5 1.3-1.4
CO, 9.2 4.5

Air .5.3 2.9

Can these values be explained, at least as to order of magnitude, using a simple
CEO model for the atoms involved?

To answer this question, we must realize that in simple gases such as He, the
strongest upward electric-dipole transition from the atomic ground state is usually
to some first excited level that is located well into the ultraviolet. Such an atom
can then be modeled for many purposes by a classical electron oscillator with a
resonance frequency wq located somewhere in the ultraviolet. The low-frequency
dielectric constant, as well as the index of refraction through the visible region,
are then both caused primarily by the low-frequency “tail” of this first strong
ultraviolet transition, with both of these quantities being only very slightly larger
than unity in numerical value.

To demonstrate this analytically, suppose a dc electric field Ey is applied to a
collection of such classical oscillators with the same density N as a standard gas
at room temperature and atmospheric pressure (which implies a density N =~
2.5 x 10’9 atoms/cm®). Assume these oscillators have a resonance frequency we
corresponding to Aq = 100 nm, which is in the vacuum ultraviolet. Using the
CEO model, what will be the induced dc polarization Py/Eo in this gas? What
will be its dc dielectric constant € compared to the value of € for a vacuum, and
by how much will its index of refraction n = 1/¢€/eo differ from unity? Why does
argon have a larger value than helium, and why do the molecular gases also have
significantly larger values?

. Classical oscillator model for the index of refraction in solids. Let us now apply the

same argument as in Problem 2 to a solid material. The host crystal in a typical
solid-state laser material, for example, itself consists of atoms, and these atoms
(in the crystalline form) usually have their lowest atomic resonance frequency in
the near ultraviolet. Can the CEO model also give a reasonable explanation of
the dielectric polarization properties of the host laser material itself, independent
of any laser atoms that may be present in the material?

To test this, evaluate the dielectric polarization P and the relative dielectric con-
stant enost/€o at visible and near-infrared wavelengths for a medium consisting
of a collection of classical oscillators, if the classical oscillators have a resonance

2.5 CONVERSION TO REAL ATOMIC TRANSITIONS

fréquency wq in the near ultraviolet, say, at X = 300 nm (which is not an unreal-
istic value for the band edge or ultraviolet edge in typical solid materials). Find
the numerical value of this relative dielectric constant, assuming the oscillators
have a density N comparable to typical solid densities, e.g., 102 atoms/cm®.

117



118

3

ELECTRIC-DIPOLE TRANSITIONS
IN REAL ATOMS

In the previous chapter we developed the classical electron oscillator model for an
atomic transition, and showed how it could lead to quantum-mechanically correct
expressions for the equation of motion and for the resonant susceptibility on a
single atomic transition in a real quantum atom. In this chapter we continue this
discussion to show how, with some simple extensions, this same purely classical
model can explain even the most complex quantum-mechanical aspects of real
atomic transitions. We also give some typical numerical values and experimental
examples of these properties in real laser transitions.

3.1 DECAY RATES AND TRANSITION STRENGTHS IN REAL ATOMS

This section discusses in more detail the energy decay rates and the transition
strengths of real atomic transitions, and their relationship to the purely classical
oscillator model introduced in Chapter 2.

Energy Decay Processes in Real Atoms

Real atoms of course have a large number of quantum energy levels, with
many transitions and decay rates among these levels. The atoms in an upper
energy level E; in a collection of real atoms will relax to many different lower
levels E; via both radiative and nonradiative decay mechanisms, as illustrated
in Figure 3.1. The total rate at which atoms will decay from an upper energy
level Ej; through all downward relaxation paths may be expressed by a “rate
equation” of the form

dN;
- == 2 ilNj=~7N; = =N/, 1)
E<E;

where 7; is the total lifetime of the excited state E;, and «; is its total decay
rate. The total decay rate v; is given by the sum over all the downward decay
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FIGURE 3.1
Downward relaxation of atoms from an upper
E, energy level.
%
E,
paths, i.e.,
1
HE== S vi= Y [eadji + Yaril (2)
7 Ei<E; E;<E;

so that this sum includes both radiative and nonradiative rates to all lower levels
E; < Ej. i

In the absence of any applied signals, the population N;(t) of the upper level
will thus decay with time in the exponential form

Nj(t) = Nj(to)e ™ ¢=%) = Nj(to)e™¢to)/m, (3)

The decay rate v; given by these equations is the quantum analog for level E;
of the energy decay rate < in the classical oscillator model.

Fluorescent Lifetime Measurements

The lifetime 7; of an upper energy level can be measured by observing the
fluorescent emission from the upper level E; to any other lower level E; immedi-
ately after a short pulse of pumping light applied to a solid-state laser material,
or a short current pulse sent through a gaseous atomic system, has lifted an
initial number of atoms up into the upper level. Figure 3.2 illustrates this kind
of fluorescent lifetime measurement on a ruby sample, using a stroboscopic light
source that produces repeated pumping pulses a few tens of us long, and an op-
tical filter that blocks most of the excitation light, so that only the exponentially
decaying ruby fluorescence (7 ~ 4.3 ms) reaches the detector.

The measured intensity of the fluorescent emission on some specific j — %
transition will be proportional to the radiative decay rate v;aq,ji on that transi-
tion and to the upper-level population as a function of time, i.e.,

Ig(t) = const X Yraq,ji N;(t). (4)

Since the upper-level population N;(t) decays with an exponential decay rate
equal to the total decay rate <y;, the measured exponential behavior for the
fluorescent emission will be like

Ig(t) = const x N;(t) = const x e tm, (5)
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FIGURE 3.2
Fluorescent lifetime measurement using a pulsed light source.

A fluorescence decay measurement thus measures only the total lifetime 7; of the
upper level E;, not the radiative decay rate Yraq,ji: on any individual transition
(even though it is this radiative decay rate that produces the observed fluorescent
emission).

Nonradiative Decay Rates

It is important to distinguish between the radiative and the nonradiative
parts of the total energy decay rate «;; on each downward transition. The total
decay rate, just as for a classical oscillator, is the sum of both  mechanisms; so
the total decay rate on the j — ¢ transition is

Yji = Yrad,ji + Var,ji- (6)

The radiative part of this decay represents spontaneous emission of electromag-
netic radiation, which is physically the same thing as fluorescence. Radiative
decay is always present (although sometimes very weak) on any real atomic
transition.

The nonradiative part of the decay represents loss of energy from the atomic
oscillations into heating up the immediate surroundings in all other possible
ways, such as into inelastic collisions, collisions with the laser tube walls, lattice
vibrations, and so forth. Nonradiative decay may or may not be significant on
,any specific transition, and its magnitude may change greatly for different local
surroundings of the atoms (e.g., the nonradiative decay rate can be quite different
for the same solid-state laser ion in different host lattices).

Purely Radiative Decay in Real Atoms

The radiative part of the total decay rate on a real atomic transition has
a very close analogy to the radiative decay rate of a classical oscillator. An os-
cillating atom, like an oscillating classical dipole, will radiate electromagnetic

-
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energy (photons) at its discrete oscillation frequencies; this radiation will de-
crease or decay with time; and many real atomic transitions will radiate with an
electric-dipole-like radiation pattern.

The radiative decay rate for a real atomic transition is exactly the same thing
as the Einstein-A coefficient for that transition, i.e. rad,ji = Aji,pWhere Ej is
the upper and E; the lower energy level involved. The numerical value of Aj; or
Yrad,ji OD any real atomic transition is given by the quantum-mechanical integral

[[[#wer w(rydr] )

82
A=

which involves the dipole moment operator er and the product of the quantum
wave functions of the two quantum states involved. Hence the quantum radiative
decay rate for a real atomic transition can in principle always be calculated
(though not always easily) if the quantum wave functions 1; and 1; of the two
levels are known. Calculated values for simpler atoms and molecules can also be
found in handbooks and in the literature.

‘We pointed out earlier that the classical electron oscillator has a radiative
decay rate given by ’

e?w?

Yrad,ceo = -GMT.CS ~ 247 x 10722 x nf2, (8)

where n is the index of refraction of the medium in which the oscillator is imbed-
ded, and the oscillation frequency is measured in Hz (=cycles/second). A useful

‘ rule of thumb is that the purely radiative lifetime for a classical oscillator is

approximately given by

; 2
Teadcao(15) & 45 x [Ag(:lcrons)] ’ ©)

where n is again the index of refraction and )y is the free-space wavelength in pm.
(These two equations are among the few formulas in this book where an index
of refraction term is explicitly needed.) For example, at the visible wavelength
Ao = 500 nm or 0.5 pm, the classical oscillator lifetime is Tiaq,ceo ~ 11 ns,
OF “Yrad,ceo = 108 sec™!. Note also the wavelength-squared dependence of this
lifetime: infrared oscillators will have substantially longer lifetimes than UV or
especially X-ray oscillators.

Oscillator Strength

It is then a general rule that the radiative decay rate for any real atomic
or molecular transition will always be slower than, or at best comparable to,
the radiative decay rate for a classical oscillator at the same frequency, so that
Yrad,ji < Yrad,ceos OF Trad,ji = Trad,ceo- WWe can also recall that the induced response
to an applied signal of either a real atomic transition or a classical electron
oscillator will be directly proportional to the radiative decay rate 7aq, with
essentially the same proportionality constant in each case.

Because of this, it has become conventional to define a dimensionless oscillator
strength as a measure of the strength of the response on a real atomic transition
relative to the response of a classical electron oscillator at the same frequency.
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This oscillator strength is defined formally for a transition from level j down to
level i by
]:ji = 3’7rs,d,ji - 7'raLd,ceo. (10)
Yrad,ceo 3Trad,ji
A factor of 3 appears in this definition because of the polarization properties of
real atoms compared to classical oscillators, in a fashion which will emerge later.

TABLE 3.1
Typical Radiative Decay Rates

Radiative Oscillator
Transition Wavelength decay rate strength Comments
Atomic sodium resonance lines:
35— 3p 589 nm 6.3 x 107 s71 0.33 Strong sodium
(1.6 ns) D line
3s — 4p 330 nm 2.9 x 108 571 0.0047 Weaker UV
(350 ns) transition
He-Ne laser transitions:
33y — 2ps 633 nm 1.4 x 108 s~1 0.0084 Red laser line
(0.7 us)
259 — 2py 1.153um 4.4 x 108 57! 0.09 Near IR laser
(0.23 us)
389 — 3ps 3.392um 9.6 x 10% ! 0.17 Middle IR laser
(1.04 ps)
Selenium quasi forbidden laser lines:
150 — %P, 489 nm 7781 3x1078%  Magnetic-dipole
(130 ms) ‘ transition
1So = D, 777 nm 2.3 571 2x107°  Electric-
(430 ms) quadrupole
Neodymium YAG laser transition:
4F3/3 — *I3)2 1.064 pm 820 571 ~8x10~® Measured 7 is
(1.22 ms) 230 ps
Ruby laser transition:
2E — %A, 694 nm 230 57! ~ 106 Decay is almost
(4.3 ms) purely radiative
Rhodamine 6G dye laser transition:
S1 — So 620 nm 3x 108 s ~1.1 Decay is almost
(3.3 ns) purely radiative

3.1 DECAY RATES AND TRANSITION STRENGTHS IN REAL ATOMS

t

Some typical oscillator strengths for real atomic transitions are given in Table
3.1. Note that strongly allowed transitions starting from the ground level of a
simple atom in a gas to the first excited level of opposite parity—for example, the
3s — 3p transition in Na, or the 2s — 2p transition in a Li atom—have oscillator
strengths very close to unity, and hence radiative decay rates close to the classical
oscillator values. These transitions are sometimes called the resonance lines of the
atoms, since they show up very strongly in both the spontaneous emission and
the absorption spectra of these atoms. Other allowed electric-dipole transitions
in the same atoms may be from 10~2 to 10~° times weaker, and magnetic-dipole
and electric-quadrupole transitions may have oscillator strengths of F =~ 10~7 or
smaller. Laser transitions in solids or in gaseous molecules typically have similarly
weak oscillator strengths, whereas the strong visible singlet-to-singlet transitions
in organic dye molecules, such as the Rhodamine 6G dye laser molecule, may
have oscillator strengths near unity, and hence radiative decay rates close to the
classical oscillator value (e.g., radiative decay times of several nanoseconds).

A strongly allowed atomic transition with oscillator strength of the order
of unity will thus have a stimulated response to an applied signal of the same
magnitude as a classical electron oscillator at the same frequency. Very weakly
allowed atomic transitions, on the other hand, may have an oscillator strength
or response ratio as small as F ~ 1075 to 10~7 times weaker. So-called “for-
bidden transitions,” or atomic transitions on which virtually no response can be
obtained, will have Vrad,ji K Yrad,ceo and hence Fj — 0 in principle, although
in fact the decay rate is never absolutely zero.

Sum Rules, and Oscillator Strengths for Degenerate Transitions

When the upper and lower energy levels are degenerate, with degeneracy
factors g; and g; (to be explained in a later section), the upward and downward
oscillator strengths for a given transition are usually defined more precisely by
- Vrad,ji and fijlup =4 95 _Trad,ji (11)

7" 3Vrad ,ceo 9i 3’Yra,d,ceo

Idown
With these more precise definitions also go quantum-mechanical sum rules, which
say that the numerical sum of the oscillator strengths ¥ i T (including sign)
from a given level Ej; to all other levels above and below it in the same atom.has
some simple value, which is usually close to unity.

Example: The Nd:YAG Laser Transition

The 1.06 pm transition in the Nd:YAG laser is not only of great practical
importance, but can provide a good illustration of many of the practical factors
that determine the radiative decay rate and the oscillator strength for a real
atomic transition.

The solid arrow in Figure 3.3 shows the strong laser transition at Ay = 1.0642
pm on the *F3/5 to “Iy1/5 group of transitions in Nd:YAG. (The dashed lines
on the left in this figure indicate other transitions near 1.35 ym and 880 nm on
which useful laser oscillation can also be obtained; the transitions from the 4F; /2
to 4T, /2 levels, with wavelengths near 1.8 um, are very weak and oscillate only
with difficulty if at all.)

The measured fluorescent lifetime of the 4F3/2 upper energy level (call this
level E5) in this material is 72 & 230 us; so the total decay rate for this compound
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FIGURE 3.3
Quantum-mechanical energy levels of the Nd** ion in a Nd:YAG laser crystal.

level or group of levels is ¥2 = Yrad + Yur = 4350 s~1. The measured quantum
efficiency for this level, however, defined as the ratio of radiative decay (photons
emitted) to total decay (i.e., total atoms relaxing down) turns out to have an
experimental value

radiative decay rate _  7Yrad

= ~ 0.56; (12)
total decay rate “Yrad + Yar

so the purely radiative decay rate is yraq = 0.56x4350 =~ 2435 s~!. (The quantum
efficiency is measured by shining a calibrated light source onto the crystal, and
making a difficult measurement of the total number of input photons absorbed
compared to total fluorescent photons emitted.)

The upper level E; in Nd:YAG really consists, however, of two distinct but
closely spaced and partially overlapping levels (call them Ez, and Eg), which
are sometimes called the R; and R; levels, and which have an energy spacing
of ~80 cm™!. The upper level Eg, is the actual upper laser level. These two
levels at room temperature will have Boltzmann population ratios Nop/Ny = 0.4
and Np,/No = 0.6, and will be held to these ratios by fast relaxation processes
between the two levels. Both of these levels will then radiate spontaneously with
different strengths to six different lower levels; so there are actually 12 closely
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spaced fluorescent lines from the two upper levels to the six lower levels in the
1.06 um group, with the relative strengths of these lines varying by more than
an order of magnitude.

The branching ratio, or the amount of spontaneous radiation on the actual
1.0642 pm laser transition, relative to the total radiative emission from both
4F3 /2 levels to all lower levels, has been measured to be

Yrad(1.0642 pm laser. line) X Nop
Yrad(all 1.06 pm lines) x Ny

~ 0.135. (13)

Hence we can finally deduce that the purely radiative decay rate for the isolated
YAG laser transition by itself is

Yrad(1.0642 pm) = (0.135/0.40) x 2.435 x 10% ~ 820 sec™*. (14)

‘This corresponds to a purely radiative lifetime of 1/820 sec ~ 1.22 ms (to be
compared to the measured fluorescent lifetime of 230 us).

The numbers quoted here represent a current best estimate, at the time of
writing, for the value of ;aq,j; that should be used in formulas for the response
on this particular Nd:YAG laser transition. However, even in a system as heavily
studied as Nd:YAG, these numbers are uncertain, largely because of the experi-
mental difficulties of measuring accurately such quantities as the branching ratio
and the absolute fluorescent quantum efficiency. There is no observable physical
quantity anywhere in this system that actually decays with this radiative lifetime
of 1.22 ms.
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(July 1, 1972). The oscillator strengths for the various transitions of this ion all turn
out to have values of 10~® to 10~7, typical of such rare-earth ions.

As we said, the numbers given in the literature for the basic properties of the
Nd:YAG laser transition are by no means all in agreement, despite the widespread
use of this laser material. The most extensive and detailed review of all aspects of
the Nd:YAG laser is probably the chapter on “Progress in Nd:YAG Lasers” by H. G.
Danielmeyer in Vol. 4 of Lasers: A Series of Advances, edited by A. K. Levine and A.
J. DeMaria (Marcel Dekker; 1976), pp. 1-71. The numbers given in this section come
primarily from the careful measurements and analysis by S. Singh, R. G. Smith, and L.
G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of
Nd3* in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566-2572
(September 15, 1974).

As if to illustrate the difficulty of accurate optical measurements; a more recent
publication by M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross
section of Nd:YAG at 1064 nm,” J. Appl. Phys. 52, 1212-1215 (March 1981), argues
that the stimulated transition cross section and the quantum efficiency for Nd:YAG are
both about twice the values previously given by Singh et al.

Problems for 3.1

1. Quantum calculation: Hydrogen-atom oscillator strengths. The energy eigenstates
for the hydrogen atom, and the formula for calculating the transition strength
or the Einstein A coefficient of a transition given the upper and lower quantum
wave functions, can be found in any standard quantum-theory text. Using these,
calculate the oscillator strengths for the three allowed transitions from the n =1,
1 =0, m = 0 ground state of the hydrogen atom to the n = 2, l=1,m=-1,
0, and +1 levels (taken together, these transitions form the 1216A Lyman o
transition). Note: This calculation is straightforward, but becomes a bit messy.

3.2 LINE-BROADENING MECHANISMS IN REAL ATOMS

Let us now consider a few of the more important line-broadening mechanisms
responsible for the atomic linewidths Aw, in real atoms. All of these mecha-
nisms are, as we will see, basically extensions of those derived for the classical
electron oscillator. In this section we give more information on homogeneous
line-broadening mechanisms in real atoms, and on how these relate to the CEO
model.

Homogeneous Broadening

All the line-broadening mechanisms we have considered thus far produce
what is called homogeneous broadening. This means simply that all the energy-
decay and dephasing mechanisms we have discussed thus far act on all the dipoles
in a collection in the same way, so that the response of each individual oscillator
or atom in the collection is broadened in the same fashion. The homogeneous
lorentzian linewidth (FWHM) that we derived for the stimulated response of a
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collection of classical oscillators is then»
Awg =+ 2/To, (15)

where + is the energy decay rate and 1/T;, the rate at which “dephasing events”
occur, whatever may be the cause of these dephasing events. There do exist ad-
ditional and basically different types of broadening effects called inhomogeneous
broadening effects, which we will introduce in the last section of this chapter.
Doppler broadening is one primary example of such.an inhomogeneous broaden-
ing mechanism.

Lifetime Broadening in Real Atomic Transitions

That part of the homogeneous linewidth Aw, caused by the total energy
decay rate 7 = 7Yrad + 7Yar is called lifetime broadening. Lifetime broadening is
basically a Fourier-transform effect. An exponentially decaying signal of the form
E(t) = exp[—(7/2 + jwa)t] for t > 0 has a complex lorentzian Fourier transform
of the form E(w) = 1/[1+2j(w—wg) /7], which has a FWHM linewidth Aw, =

If dephasing effects are absent, only this lifetime broadening will remain.
If in addition all nonradiative mechanisms are turned off, then only radiative
decay will be left, and the linewidth will take on its minimum possible value
Aw, = 9rad- This is called purely radiative lifetime broadening. This purely
radiatively broadened.condition may sometimes occur for real atoms in very
low-pressure gases, where the atoms are highly isolated, and where no collisions
or nonradiative effects can occur (although doppler broadening, to be discussed
later, will also be present and of great importance in such a gas).

In a collection of real atoms, the transition at frequency w;; between two en-
ergy levels E; and E; with total decay rates -; and +;, respectively, will generally
have a lifetime-broadening contribution that is given in a more exact analysis by

Awe = v; + 75 + 2/T23, (16)

where 2/T;; is the dephasing rate appropriate to that particular transition.
The main point here is that in most cases the  term in the classical oscillator
linewidth is replaced by the sum of the upper-state and lower-state energy decay
rates y; + y;, so far as lifetime-broadening effects are concerned.

We have noted previously that energy decay rates -; for real atomic tran-
sitions take on widely different values, depending on both radiative and nonra-
diative processes. For strong visible-wavelength atomic transitions in gases, Yrad
may become as large as =~ 107 to 108 s7!, leading to a lifetime-broadening con-
tribution Aw, /27 ranging from a few MHz to a few tens of MHz. This can be
a significant source of homogeneous line broadening for a transition in a low-
pressure gas.

For the Nd:YAG laser on the other hand, the upper-level energy decay time is
Tj = 230 ps. This gives a lifetime-broadening contribution of only 700 Hz, which
is absolutely insignificant compared to the enormously larger phonon-broadening
dephasing contribution of Aw, /27 ~ 120 GHz.

Dephasing Collisions and Pressure Broadening in Gases

The primary dephasing events for atoms or molecules in gases are real colli-
sions between the radiating atoms or molecules and various collision partners. In
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FIGURE 3.4
Pressure broadening of the CO2 laser transition in various gas mixtures. (Adapted from
R..L. Abrams, Appl. Phys. Lett. 25, 609-611, November 15, 1974.)

a typical gas mixture atoms may collide with other atoms of the same kind (called
“self-broadening”); with atoms of different kinds (called “foreign-gas broaden-
ing”); or with the tube walls (generally not of importance at optical frequencies).
The total collision-broadening contribution to the homogeneous linewidth of a
given atomic transition will then be directly proportional to the density, or to
the partial pressure, of each species that is present. The homogeneous linewidth
will therefore increase linearly with total gas pressure (assuming a constant gas
mixture) in the general form

Awg = A+ BP, (17)

where A and B are constants that are different for different atomic transitions
and gas mixtures. This behavior is naturally referred to as pressure broadening,

and Equation 3.17 is sometimes referred to as the Stern-Vollmer equation. (The’

coefficients A and B used here have nothing at all to do with the Einsten A and
B coefficients).

Figure 3.4 illustrates some measured homogeneous pressure-broadening re-
sults for the 10.6 um laser transition in COy caused by CO2 molecules colliding
with other CO2 molecules and also with He atoms or N2 molecules in various
gas mixtures. Note that here (as in many other common gases) a few tens of torr
of total pressure gives a few hundreds of MHz of pressure broadening. Note also
that the lifetime-broadening contribution in these mixtures is apparently negli-
gible, as indicated by the essentially zero intercept of the pressure-broadening
curves at zero pressure.

Typical Numerical Values

The amount of dephasing and line broadening that actually occurs in a
real collision between two atoms (or molecules, or ions) depends on how close
the two partners come to each other; how their quantum wave functions overlap
and interact with each other during the collision; and (to a slight extent) how
fast the atoms are traveling. The atomic wave functions that are involved are,
of course, different for different energy states E; or E; of the colliding partners.
Therefore the amount of pressure broadening, or the constant factor B in the
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Stern-Vollmer formula, can often be different for different transitions even in the
same atom.

TABLE 3.2
Typical pressure-broadening coefficients
Collision Pressure
Wavelength partmers broadening
Mercury resonance line:
2537A Hg + Ar,N,,CO, 10-20 MHz/torr

Sodium resonance line:
589 nm Na + Na ~ 2000 MHz/torr
He-Ne laser transitions: '
633 nm He+Ne ~ 70 MHz/torr
3.39 ym He+Ne 50-80 MHz/torr

COy laser transition:

10.6 ym CO2 + CO, 7.6 MHz/torr
(5.8 GHz/atm)
10.6 pm CO2 + N» 5.5 MHz/torr
(4.2 GHz/atm)
10.6 pm CO; + He 4.5 MHz/torr)
(3.5 GHz/atm)
10.6 pm CO; + H,O 2.9 MHz/torr

(2.2 GHz/atm)

Pressure-broadening coefficients are often expressed in practice in units
of MHz/torr or, in some cases, GHz/atmosphere, as in Table 3.2. Collision-
broadening coefficients are also- sometimes given in the literature as frequency
broadening (in various units) versus gas density N rather than gas pressure P.
It is then convenient to remember that

g P(torr)

N(atoms/cms) =9.65 x 10} (&)

(18)

for the relation between partial pressure and density of each species in a gas
mixture.

The results for the CO; laser transition in Table 3.2 and in Figure 3.4 also
illustrate how the pressure-broadening coefficient, or the effective cross section
of a gas molecule for dephasing collisions, can be different for different collision
partners. In a typical He:Ny:CO2 laser gas mixture, the total pressure broadening
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of the 10.6 micron CO; laser transition must be written as an expression like
Awa(COZ) = A+ ByePye + BNZPNZ + Bcogpooz, (19)

where each P, is the partial pressure of a different gas, and the pressure-
broadening coefficients B, have different values for each different collision part-
ner.

X

Nonlorentzian Lineshapes in Collision Broadening.

It can be shown from various statistical arguments that dephasing collisions that have
zero duration and that completely randomize the oscillation phases after each collision
should in theory produce an exponential polarization decay, and hence an associated
exact lorentzian lineshape. It can also be shown that zero-duration collisions that shift
the oscillation phases by very small but randomly distributed amounts (¢ < 2 after
each collision) should also produce a lorentzian lineshape. Collisions that last for a
short but finite duration, however, may lead to small but observable deviations from
the ideal lorentzian lineshape.

The simplest form of extended theory for finite-duration collisions predicts a modi-
fied lorentzian lineshape, in which the linewidth Awg itself becomes frequency-depend-
ent, with a midband value Awgo plus an added term of the form —C X (w — wq) at
frequencies away from line center. Hence the lineshape deviates increasingly from an
exact lorentzian with increasing detuning from line center, with this deviation becom-
ing most observable in the outer wings of the atomic line, many linewidths from line
center.

Clearcut measurements of this small deviation in the wings of the sodium D; and
D; lines at ~589 nm, caused by collisions with He, Ne, Ar, Kr, and Xe atoms, have
recently been made by observing the scattering of a tunable single-frequency laser beam
from a sodium cell. Results in good agreement with an extended theory are reported
by R. E. Walkup, A. Spielfiedel, and D. E. Pritchard, “Observation of non-lorentzian
spectral lineshapes in Na-noble-gas systems,” Phys. Rev. Lett. 45, 986-989 (September
22, 1980).

Phonon Broadening (FM Broadening) of Real Atoms in Solids

Another kind of homogeneous line broadening that is important for many
solid-state laser transitions is phonon broadening. Phonon broadening refers to a
rapid and random frequency modulation of the instantaneous atomic-transition
frequency for an atom in a solid (or liquid) caused by high-frequency lattice
vibrations in the surrounding crystal lattice. This process is physically quite
different from a discrete collision-type process having a mean time 7% between
collisions, but the net result in terms of randomizing the phases and broadening
the response of a collection of oscillators is very much the same, and can in fact
be described by an effective dephasing time T5.

Phonon broadening does not depend directly on atomic density N as does
pressure broadening. It does, however, depend strongly on lattice temperature,
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Phonon broadening and resonance frequency shifting versus temperature in two solid-
state laser materials. (From D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34,
1682, June 1963.)

since the lattice vibrations result from thermal excitation of the lattice modes.
Figure 3.5 shows, for example, the linewidths of two common solid-state laser
transitions plotted versus temperature. The 694 nm laser transition in ruby shows
a residual inhomogeneous strain broadening at lower temperature, changing
over to thermal FM or phonon broadening at higher temperatures, whereas the
linewidth of the 1.06 pm laser transition in Nd:YAG shows strongly temperature-
dependent thermal phonon broadening over essentially the entire range plotted.

The phonon-broadening contribution will become very small for temperatures
below a few tens of degrees Kelvin. There may then be a residual linewidth
contribution of inhomogeneous type, which arises from residual static strains
and imperfections in the solid-state material. This residual strain broadening
may be quite different from sample to sample, depending on the perfection of
individual crystal samples.

Note also that besides phonon broadening in these solids, there may also be a
significant thermal shift of the exact center frequencies of the transitions, which
can sometimes be useful (and sometimes not so useful).

Dipolar Broadening

A third important mechanism that produces homogeneous dephasing and
line broadening in certain materials at higher densities is dipolar broadening.
Dipolar broadening results from the random interaction and coupling between
nearby atoms through their overlapping dipolar electric or magnetic fields (Figure
3.6). The random perturbation of each dipole oscillator by the random fields from
its neighbors can cause a time-varying frequency shift in the exact resonance
frequency of each such dipole; and this in turn leads to an effective dephasing
and line broadening in a fashion somewhat similar to phonon broadening.
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Dipolar broadening is not commonly of great importance in laser materials,
since they do not usually have the combination of high atomic density and strong
atomic dipoles needed to make dipolar broadening predominate over the colli-
sion or thermal phonon-broadening mechanisms. However, dipolar broadening
can be observed, for example, in rare-earth pentaphosphates and certain other
solid-state materials that can have a high intrinsic density of rare-earth atoms,
and that are sometimes used for miniature optically pumped solid-state lasers.
If these materials are carefully prepared and cooled to liquid-helium tempera-
tures, where thermal phonon broadening becomes negligible, dipolar-broadened
linewidths of a few kHz can be observed by various sophisticated experiments.

Transit-Time Broadening

There can be some experiments in which the atoms in a gas move across the
full width of the optical beam with which they are interacting in a transit time
T}, which is small compared with either the energy decay lifetime 7 = 1/ or the
dephasing time T of the atoms. In such a situation, it is this transit time which
limits the duration of the coherent interaction between the atoms and the applied
signals, and which thus determines a kind of effective lifetime broadening. This
is generally referred to as transit-time broadening, with an effective linewidth
contribution on the order of Aw, = 1/T4,.

Since the thermal velocity of an atom or molecule in a gas is typically on the
order of ~ 105 cm/s, transit-time broadening will produce only a few hundred
kHz of broadening for a beam width or interaction length even as small as a few
mm. Transit-time broadening thus becomes significant only in special situations,
for example, very high-resolution molecular-beam experiments involving tightly
focused optical beams and high-speed moleculés. Transit-time broadening must
also sometimes be considered with larger gas cells in experiments using extraor-
dinarily high-resolution laser frequency standards, very low-pressure gases, and
very long-lived molecular absorption lines.

3.2 LINE-BROADENING MECHANISMS IN REAL ATOMS

Coherent Pulse Experiments: Dephasing Versus Energy Decay

As we have noted in earlier discussions, it is important, and somewhat
subtle, to distinguish clearly between those effects involved in energy decay and
those involved in line broadening and dephasing of real atoms.

We described earlier, for example, an excited-state lifetime measurement in
which atoms were excited into an upper energy level E;, and the spontaneous
emission or fluorescence on a downward transition £; — E; was then observed.
This fluorescent emission is purely spontaneous emission, that is, incoherent
random noise with a narrow spectrum (of width Aw,) centered at the transition
frequency wji. The excitation mechanism (pumping light or electric current) ex-
cites the atoms into level E; in an incoherent fashion. The atoms then oscillate
spontaneously at frequencies like w;;, but with no phase coherence between in-
dividual atoms. We add the radiated powers from each atom (not the voltages)
to get the total spontaneous emission. This emission comes out randomly in
all directions, and has the statistical and spectral characteristics of narrowband
random noise. i

It is also possible, though usually much more difficult, to perform a more com-
plicated experiment to demonstrate coherent atomic emission and the effects of
dephasing on this coherent emission. Suppose some incoherent excitation mech-
anism, such as a flash of light or a current pulse in a gas, excites some of the
atoms in an atomic medium up into some excited level E; or E;, or maybe even
into a mixture of both. Spontaneous emission will then start. But before the
populations N; or N; have decayed away, let us send a strong but short coherent
signal pulse at the transition frequency wj; through the atoms. This pulse will
then excite a coherent response p(t) in the atoms on the j — i transition.

This induced polarization p(t) will be given by the transient solution of the
polarization equation of motion (Equation 2.69), taking into account the applied
signal pulse. The applied signal pulse may be too short for the steady-state
solution P(w) given by the linear susceptibility to be reached. But nonetheless,
after the signal pulse passes through the collection of atoms, they will be left
with a coherently oscillating macroscopic polarization p(t) in the medium. The
atoms have all been driven in phase by the same applied signal; and after it
passes they will continue to oscillate coherently and in phase at least for a brief
while. )

In the jargon of quantum electronics, we say that the atoms have been “co-
herently prepared” or “transversely aligned” by the strong signal pulse. They
will then continue to radiate coherently and in the same direction as the applied
signal pulse. This radiation, like the applied signal, will be spatially and tem-
porally coherent radiation, not noise. The atoms will have some memory of how
they were coherently excited by the signal pulse; and we must add vectorially
the radiated voltage, not power, from each oscillating atomic dipole.

The amplitude of this coherent oscillation and radiation will, however, decay
away at a total rate (y/2+1/T,) because of the dephasing plus lifetime processes.
This decay will be faster—often very much faster—than the energy decay rates
v or 7; of the level populations. If the dephasing rate 1/T3 is rapid compared
to ; and 1;, the coherent radiation will rapidly disappear, leaving behind the
much weaker but longer-lasting incoherent spontaneous emission.

This kind of more sophisticated experiment is referred to generally as a “co-
herent pulse” experiment. The presence of a coherent initial signal pulse to set
up the transient coherent polarization p(t) is essential. The exponentially decay-
ing coherent radiation after the coherent signal pulse is turned off is often called
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“free induction decay.” Note that a very narrow atomic transition in a gas might
have a linewidth Aw, /27 ~ 1 MHz, so that T3 =~ 300 ns. Optical signal pulses
shorter than this can be generated, and lifetimes this short can be measured with
fast photodetectors; hence coherent-pulse measurements on such a transition are
feasible.

In Nd:YAG, the 1.06 um laser transition has an upper-level energy-decay life-
time of 73 ~ 230 us. The transverse dephasing time of this transition (its inverse
phonon-broadened linewidth) is, however, more like T = 1 psec at room temper-
ature. This is simply too fast to be either excited or observed with conveniently
available optical tools. ¥
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3.3 POLARIZATION PROPERTIES OF ATOMIC TRANSITIONS

Problems for 3.2

1. Derivative spectroscopy on a variable-pressure gas sample. A spectrometer of the
type that measures dx”(w)/dw versus w is used to study an atomic transition
in a gas for different gas pressures in the sample cell of the spectrometer. The
atomic transition exhibits lifetime broadening plus pressure broadening of the
Stern-Vollmer type. When all pressure-dependent factors are included, what is
the optimum pressure for obtaining the strongest peak-derivative signal in the
spectrometer? Explain physically.

3.3 POLARIZATION PROPERTIES OF ATOMIC TRANSITIONS

The transitions between quantum energy levels in real atoms exhibit anisotropic
vector characteristics, or tensor characteristics, in both their spontaneous emis-
sion behavior and their stimulated response; and we need to understand the
tensor nature of this behavior in order to fully understand real atomic transi-
tions. In the simplest case, the response of a real atomic transition may be either
linearly polarized or circularly polarized on different transitions. In the most gen-
eral case, any single transition in an atom or molecule may have an elliptically
polarized response relative to. some specific set of (z,y, z) axes. The induced re-
sponse in all these situations must then be described by a tensor susceptibility
connecting the vector signal field and the vector atomic polarization.

We can gain a great deal of insight into these tensor properties by examining
the transitions in a collection of single free atoms (not molecules) when these
atoms are placed in a dc magnetic field. The dc field then both provides a ref-
erence axis and also Zeeman-splits the energy levels to eliminate all degeneracy
in the system. In this section we will examine the behavior of such Zeeman-split
transitions; in the next section we will introduce the general tensor-analytical
method.

Zeeman-Split Atomic Transitions

The simplest example of a real atomic transition is probably the transi-
tion between a single lower energy level E; that is an S state, having quantized
angular momentum J = O, and an upper level E, that is a P state, having quan-
tized total angular momentum J = 1. (Such states are characteristic of isolated
single atoms in gases.) An angular-momentum value greater than 0 means that
the upper level really consists of 2J + 1 = 3 distinct quantum levels, which are
degenerate in energy in zero magnetic field. These levels will, however, be split
apart by a dc magnetic field By into 3 distinct energy levels labeled by My =
1, 0, and —1, as illustrated in Figure 3.7. (This splitting into separate energy
levels is, of course, known as Zeeman splitting.) There are then three separate
and distinct transitions from the upper levels to the lower level, at three slightly
different transition frequencies as illustrated in Figure 3.7. Figure 3.8 shows some
real spectral lines recorded on photographic plates in a high-resolution spectrom-
eter for various spontaneous emission lines from excited zinc or sodium atoms,
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Zeeman splitting of atomic energy levels in a simple case.

with and without dc magnetic fields, illustrating both the simplest and more
complicated types of Zeeman splitting.

Pi and Sigma Transitions

If we study the polarization behavior of the central transition (from M; =0
to My = 0) in the example shown in Figure 3.7, we will find that this transi-
tion behaves exactly like a dipole oscillator that is linearly polarized along the
direction of the dc magnetic field, both in its spontaneous radiation and in its
stimulated response to an applied signal. That is, on this particular transition the
atoms act just like our linearly polarized CEO model, with their linear axis along
the dc field. No spontaneous emission comes out in the direction directly along
the dc field axis, for example, since a linearly oscillating ’dipole does not radiate
along its polarization axis; and there will be no stimulated response to applied
E fields perpendicular to that direction. Such a linearly polarized AM; = 0
transition is often called a 7 transition.

3.3 POLARIZATION PROPERTIES OF ATOMIC TRANSITIONS
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FIGURE 3.8

Spectral lines emitted on certain tran-
sitions from excited zinc and sodium
atoms, with and without dc magnetic
fields applied, showing both normal and

weak field anomalous Zeeman splitting.

anomalous patterns

The outer two lines in Figure 3.7 (connected to the M; = +1 and —1 levels)
are then found to be circularly polarized with respect to the magnetic field
axis, with opposite senses of circularity in both their spontaneous emission and
their stimulated responses. These circularly polarized lines are called o4 and o—
transitions.

We will need to use tensors to describe the susceptibility properties of these
transitions. Before we discuss this, however, a brief summary of some of the quan-
tum properties of these atomic transitions may be very useful in understanding
both their polarization properties and the relationship between the quantum
theory and the classical models of these transitions. Readers with limited back-
grounds in quantum theory should skim the next few paragraphs, and not be
concerned if all the details are not clear to them.

Quantum Description of Atomic Transitions

In quantum theory, the quantum state of any real atom at time ¢ is com-
pletely specified by a quantum wave function (7, t), where r indicates a general
position in space. The evolution of this wave function in space and time is gov-
erned, according to quantum theory, by Schrodinger’s equation of motion. We
can, at least in principle, solve Schrodinger’s equation to find (7, t) for a given
atom with given initial conditions and a given applied signal; and we will then
know everything there is to know physically about that atom.

Any isolated quantum system such as a single atom will also have a special set
of quantum energy eigenstates or “stationary states” with associated quantum
wave functions t;(r). These wave functions ;(r) are time-independent solutions
of Schrodinger’s equation with no applied signal present. Each such eigenstate
corresponds to one of the energy levels and energy eigenvalues Ej; of the atom.
These stationary eigenstates then provide a basis set, or a set of normal modes,
for expanding any quantum state of the atom at any time.

A real atom at any instant of time will in general not be in a single energy
eigenstate or energy level. Rather, it will be in a time-varying quantum state
mixture of two or more such eigenstates. The wave function for a single atom at
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any instant of time may then be written in general as
P(r, 1) = a1 ()e Bt Py (r) + Ga(t)e B2 Py (r) + - (20)

where E,, E», etc., are the energy eigenvalues. In the absence of an applied signal
or any other external perturbation, the complex-valued expansion coefficients
@1(t), @z2(t), . .. in this expansion will be constant in time, and there will be only
the exp(—iEjt/h) frequency factor associated with each eigenstate.

One key idea here is that an atom is generally not in just one energy level.
Rather, each atom is generally in a mixture of levels. An individual atom with
a quantum state like that in Equation 3.20 then has a probability |@1]? of being
found in level E;; a probability |a|? of being found in level Es; and so forth.
Averaging these probabilities over many atoms gives the same net effect as if Ny
atoms were in level E;, N, atoms in level E3, and so on.

A second key point is that these state mixtures are “stationary,” in the sense
that the @;’s do not change with time unless there is an external signal or ex-
ternal perturbation applied to the atom. The time-varying phase rotation factor
exp(—jE;t/h) associated with each term in the expansion is necessary to make
(7, t) satisfy the Schrodinger equation in the absence of an applied signal; but
these phase factors do not, of course, change the magnitudes of the coefficients.

Physical Interpretation of the Quantum State

One physical interpretation for the wave function ¥(r,t) of an electron
charge cloud surrounding a fixed nucleus is that |1(r,t)|? gives the probability
density for finding an orbital electron at point r at time t. More generally, we
can say that p(r,t) = —e|t(r,t)|? gives the value (more precisely, the “quan-
tum expectation value”) of the local charge density in the electron charge cloud
around the atom. If the wave function ¥(r,{) is a mixture of, say, two energy
states, the charge density in the atom has the form

p(r,t) = &l(t)e'iE“/h1/)1(r)++&2(t)e—iE2t/h1/)2(r)2 % —C

[ OF W) + laa @) ()l

+ G (£)a (£)r ()03 (r) expli( By — Ex)t/R] (1)
+ &} (8)az (15 (r)a(r) exp[—i( By — Bu)t/R] | % —e

= Pac(T) + Pac(T, ).
The key observation here is that the atomic charge density contams both two
static parts, proportional to the individual level occupancies |a; t)| [ (r)l
and a sinusoidally oscillating component given by the mixed term or cross term

Pac(r.t) = Re [a1(£)aj(t)vs (r)y3 (r)e™?] . (22)

This oscillating component inherently oscillates at the transition frequency we; =
(E2—E1) /1 between the two levels involved. There is in effect a natural quantum
oscillating dipole moment in the real quantum atom, which can be compared with
the oscillating moment p(t) of the CEO model. This is a quantum-mechanically
predicted oscillation in the atom, at the transition frequency between any two
occupied levels.

3.3 POLARIZATION PROPERTIES OF ATOMIC TRANSITIONS

2p(m=0)  2p(m=+1)

FIGURE 3.9
Schematic representations of the electronic charge distributions for Zeeman-split quan-
tum eigenstates.

The magnitude of this oscillating component is proportional to the cross term
a1(t)as(t) between the two level occupancies, and it obviously decays away as
the level occupancy coefficients @, (t) and G2(t) decay away, just as u,(¢) decays
at rate -y in the classical oscillator. The phase ¢; of the atomic oscillation in the
i-th atom depends on the phase-angle difference of the complex coefficients d; =
|a1]e~*** and Gz = |Gz|e™*%* in the combination &;a3 = |@1az|e’(®2~#1). This
phase can be randomized by dephasing processes that randomize the individual
phases of @; and @, without necessarily changing the occupancies | |? or |a|?
of either level.

Zeeman Transitions: Linear and Circular Dipoles

As a specific example of such an oscillating charge pattern and oscillating
dipole moment in a real atom, let us examine the simple but realistic Zeeman-
split example described earlier. We will look in the following paragraphs at
simplified three-dimensional representations of the volume charge distributions

1 (r,t) that correspond to various eigenstates and state mixtures, keeping in
mind that 9 (r,t) itself is a complex function with a sign or phase angle as well
as a magnitude at each point in space.

Figure 3.9 shows in schematic form, for example, the wave functions |1/)(1', 1)|?
for a J = O eigenstate or S state (a spherically symmetric charge cloud); for a
J =1, My = 0 or P, eigenstate (dumbbell shape); and for a J = 1, My = £1
or Py, eigenstate (toroidal ring). Note that in the dumbbell the wave function
1(r) has opposite sign in the upper and lower lobes, whereas in the M; = +1
states the wave function has an exp(+;6) phase variation around the torus.

Linearly Polarized (m) Transition

Suppose, then, that the quantum state ¥(r,t) of an atom is a mixture of,
say, the 19 and the 2P, states of the hydrogen atom (the ball and the dumbbell
in Figure 3.9; the transition between these two levels in the hydrogen atom is,
in fact, the Lyman o line at 1216A). When the phases of the complex coeffi-
cients @ (t) and @x(t) are included, the complex-valued wave functions @141 (r)
and ag1p2(r) associated with these states may interfere constructively and/or
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linear dipole: S(M=0) + P(M=0) states

t=0 =L wae 1= Lwae = 3 waE  1=h/aE
FIGURE 3.10

Upper part: Oscillating charge distribution in the coherent state mixture 15 + 2P as

a function of time for a quantum atom. The atom acts as a linearly oscillating dipole.
Lower part: Corresponding probability density, or quantum charge distribution, for a
quantum state mixture of 15 + 2P; states. This quantum state mixture acts like a ro-
tating, circularly polarized electric dipole. (Adapted from G. R. Fowles, Introduction to

Modern Optics, Holt, Rinehart, and Winston, 1968.)

destructively at different points to create the total wavefunction ¢(r,t); and this
interference will, moreover, rotate through all possible phases at the transition
frequency wa; because of the exp(—iE;t/h) terms.

The upper part of Figure 3.10 shows what the total wave function |¢(r,t)|?
produced by summing and squaring the 1S and the 2P, states will look like
at successive times during one oscillation cycle of the exp(jwait) variation. The
center of charge of the total atomic charge cloud clearly oscillates back and
forth linearly along what is here labeled the z axis. The quantum atom with
this particular mixture of 15 + 2P, states acts exactly like a linearly oscillating
dipole.

Circularly Polarized (o) Transitions

The lower part of Figure 3.10 shows the same type of result when the lower
state E; is again a 15 state, but the upper level E; is now a 2P, state with
Mj; = +1. Because of the exp(+j@) variation of the P, state wave function

3.3 POLARIZATION PROPERTIES OF ATOMIC TRANSITIONS
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around the equatorial plane, the wave functions v; and 9 corresponding to the
“ball” and the “torus” interfere constructively on one side and destructively on
the other side of the rotational axis, producing a cancellation on one side and a
“bulge” on the other side.

As the coefficients a;e and aqe rotate in time-phase, however,
the resulting bulge in the quantity |1 (r)+2(r)|? rotates about the z axis at the
transition frequency ws;. The atom radiates like an oscillator that is circularly
polarized in the z,y plane. The polarization of this rotation will be of opposite
sense (opposite circularity) depending on whether the magnetic quantum number
M; = +1 or —1 in the upper level.

Figure 3.11 summarizes the polarization properties and the radiation charac-
teristics into various directions of these simple Zeeman-split oscillating-electric-
dipole charge distributions. These results represent the quantum-mechanical po-
larization properties of real atomic transitions. They obviously can be very well
represented, however, by the kinds of purely classical electron oscillator models
we have been developing.

These polarization properties of the quantum oscillations in the atomic wave
functions determine both the spontaneous and the stimulated properties of the
real atoms. That is, an atom whose charge distribution can oscillate only in a
certain direction on a given transition will obviously respond only to applied
fields that have the same direction or sense of polarization. Hence Figure 3.11 il-
lustrates equally well both the stimulated response and the spontaneous emission
properties of these transitions.

—iB1t/h —iBat/h

z
|
ik_ FIGURE 3.11
“\/' > ~ Polarization properties and oscillation characteris-

\ l - E tics of simple Zeeman-split atomic transitions.
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Elliptically Polarized Transitions

Many real atomic transitions, particularly the transitions of isolated single
atoms in gases, as well as many molecular transitions, will have either pure linear
or pure circular polarization properties exactly like those illustrated in Figures
3.10 and 3.11. Atomic transitions in crystals or in complex molecules may, how-
ever, have more complex polarization properties. It turns out (though we will not
attempt to illustrate this in detail here) that the most general possible polariza-
tion for either an electric-dipole or a magnetic-dipole type of atomic transition
is an elliptical polarization in an arbitrarily oriented plane of polarization, with
arbitrary ellipticity and arbitrary orientation of the elliptical axes in that plane.
Linear and circular polarization are then elementary limiting cases of this general
form.
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Problems for 3.3

1. Two-dimensional Zeeman-split classical oscillator model. Let us see if it is pos-
sible to develop a purely classical oscillator model that will reproduce in more
detail some of the circular polarization and Zeeman-splitting properties of the
real atomic transitions described in this section.

To do this, consider a two-dimensional classical electron oscillator, consisting of
a point electron that is free to move in two dimensions on an z,y plane. Assume
that there is a central restoring force such that the restoring force terms in the
two transverse directions are fr = —Kz and fy = —Ky. Assume that there is
also a dc magnetic field By normal to the z,y plane. Such a field will cause forces
—eBo(dy/dt) in the z direction and +eBo(dz/dt) in the y direction. Assume also
that there are equal damping factors « in both directions, in exact analogy to
the one-dimensional case.

Assuming then a sinusoidal E, field applied (for simplicity) only in the z direc-
tion, find the resulting steady-state displacements X(w) and Y () of the oscillator
as a function of the applied frequency. Discuss the resonance behavior of the re-
sponse, and identify the resonance frequencies of the oscillator. (Note that you
will need to solve two coupled equations of motion, and that the resulting equa-
tion for the resonance frequencies will be quartic rather than quadratic as for the
simple one-dimensional classical electron oscillator.)

Discuss also, with appropriate sketches, the nature of the induced steady-state
electron motion z(t) and y(t) for signals tuned to one or the other of the Zeeman-
split resonance peaks. The behavior calculated should be similar to the Zeeman
splitting of real atomic resonances when a dc magnetic field is applied. Discuss
also the induced electron motion at we, exactly halfway between the peaks.

3.4 TENSOR SUSCEPTIBILITIES

Hints: It will be convenient to define a cyclotron frequency we = eBy/m, and to
make the assumptions that v € we <« wq. (These assumptions imply that the
magnetic field splitting, or Zeeman splitting, of the resonance at w, will be large
compared to the damping v but still small compared to the unperturbed center
frequency wq.) The algebra involved in this problem will also be easier if you use
a resonance approximation, as well as the other approximations noted above, as
early as possible in the calculations.

2. Computer plots of oscillating atomic charge distributions (research problem). Us-
ing whatever computer graphics facilities may be available to you, carry out
further computer investigations of the oscillating charge density distributions for
quantum state mixtures like those shown in this section. Try making, for example,
contour plots or three-dimensional display plots at different phases in the oscil-
lation cycle, to illustrate the dynamic motion of the charge density—and please
send me copies of any particularly good results! You might also investigate such
plots for simpler one-dimensional cases, such as an electron in a one-dimensional
quadratic or square well potential.

3.4 TENSOR SUSCEPTIBILITIES

Real atomic transitions thus have a tensor character that must be taken into
account to give a complete and accurate description of the stimulated response
on these transitions. In this section we summarize these tensor aspects of electric
(or for that matter magnetic) dipole transitions in real atoms.

Tensor Susceptibility: Linear Dipole Oscillators

Suppose that a sinusoidal signal with frequency w on or near a single atomic
transition is applied to a collection of real electric-dipole atoms. Then the steady-
state vector polarization P(w) induced in the collection of atoms must be related
to the vector field E(w) by a tensor equation of the form

P(w) = x(w)eE(w), (23)

where x(w) is a 3 x 3 tensor form of the susceptibility ¥(w), with components
Xzz(w), Xzy(w), and so forth. Let us first examine the tensor character of this
susceptibility for some simple examples, to get a feeling for the nature of these
tensor responses.

The most elementary example is the linear classical electron oscillator. For
the classical oscillator we calculated the z component of polarization P, induced
by an z-polarized field component E;. In tensor notation this gives us only the
rz tensor component of x, or

P,(w) = )”(m(w)eE,(w). (24)

It is physically evident that no f’y or P, polarization components will occur in
the linear oscillator model (since the electron is by definition not free to move
along those coordinates in the linear model); and also that no response will be
induced in the linear model by field components Ey or E,. Hence we can write
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this response in expanded tensor or matrix form as

3 00

j?z(w) E:‘m(w)
Pw)=|Pw) | =xW)e|0 0 0| [Eyw)|. (25)
PZ(W) 000 z(w)

Following a pattern that we will use repeatedly in this section, we have sepa-
rated the right-hand side of this equation into a dimensionless tensor part with a
trace of magnitude 3, plus a purely scalar (but still complex) susceptibility X (w).

The scalar susceptibility part of this expression for a homogeneously broad-
ened lorentzian transition will then have the usual form

~(w) _ L A-N/\3'7ra.d . 1
X =00 ™ Awe 1+ 2j(@ — wa)/Dwa

(26)

in which the factor of 3 has been left with the dimensionless tensor for reasons
that will become apparent later. Subscripts ¢j might also be attached to each
factor in Equations 3.25 and 3.26 if necessary to identify the specific transition
in a real atom that is involved.

Note that the choice of the x axis for the direction of the linear response here
is entirely arbitrary. We might choose to label the linear response as being along
the y or the z axes, or along some more arbitrary linear axis. If we made this
last choice, the tensor would become more complicated in form, corresponding
to an arbitrary rotation of the coordinate axes with respect to the z,y, z axes.
It would still be, however, a purely real tensor.

Circularly Polarized (Gyrotropic) Responses

Let us next consider circularly polarized transitions, such as the o4 transi-
tions we saw in the previous section. For a transition that is circularly polarized
in the z,y plane (which is true of many simple transitions in free atoms), the
tensor susceptibility becomes

P=|P|=x@exs|+i 1 0| |B|. (7)
p, 0 0 o] |&

where (w) is exactly the same as in Equation 3.26, and the factor of 3/2 is
attached to the tensor part of this circularly polarized expression, in order to
make its trace (i.e., its diagonal sum) have the same value of 3 as for the linearly
polarized expression.

Suppose that the applied signal in this case is linearly polarized along the z
axis, i.e.,

E,=Ey and E,=FE,=0. (28)

Then the induced polarization components will be

. . - 5 .
P, = (3526/2)E0 and Py = ‘3(3)26/2)E07 (29)
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where (3/2)Xe is in general a complex-valued quantity. Hence the real polariza-
tion terms will be.of the form

pa(t) = Re [P,ef“’f] = |(3xe/2)Eo| cos(wt + 6),
] (30)
Py(t) = Re [Pye?!] = +|(3xe/2) Eo| sin(wt + 6),

where 0 is the net phase angle of (3xe/2)Ey. Although the applied signal field
is linearly polarized, the induced polarization p(t) is circularly polarized in the
z,y plane, rotating from z to y for the + sign or from z to —y for the — sign.

The circularly polarized tensor form given in Equation 3.27 inherently leads
to circularly polarized behavior of the induced polarization. This form is char-
acteristic of o-type electric-dipole transitions and many simple magnetic-dipole
transitions, and is often referred to as a gyrotropic tensor response. As before,
rotation to a different coordinate orientation will make the tensor .appear more
complicated, but the essential character will remain the same.

Elliptically Polarized Responses

Suppose a sinusoidal electric field E is applied to an arbitrary two-level”

nondegenerate electric-dipole transition in a real atom. Such a transition will
have a quantum dipole matrix element fi2; given by the integral

TR

21 = —e///z/);‘(r) X r X P (r)dr = ;; | (31)

iz

between the upper and lower levels of the transition. That is, ft2; may be inter-
preted as a column vector with elements given by the z, %, z vector components
of the integral. The hermitian conjugate ﬁgl of this column vector is then a row
vector whose elements [, fiy, ii;] are the complex conjugates of the elements in
the column vector.

An exact quantum analysis then says that the expectation value for the pha-
sor amplitude f& of the dipole moment induced in the atom by the applied field

will be given by

Ju = const x (ﬁgl.E) X fia1

[E=] [ 32)
=const x [fiy iy j]. Ey | x | iy |,
E, L&z

where the dot product is taken in the usual matrix-multiplication fashien between
the Tow vector j}; and the column vector E with elements [E,, E,, £,].

The induced macroscopic polarization f(w) in a cellection of atoms will then
be just the microscopic dipole moment f in each individual atom, as given by
Equation 3.32, summed over all the atoms in any small unit volume. Equation
3.32 contains a scalar constant, times a scalar dot product, times the column vec-
tor fiz1, which is the net vector quantity on the right-hand side of the equation.
Equation 3.32 says, therefore, that the induced response fi or p of the atoms will
-always have exactly the same polarization properties -as the transition’s dipole
matrix element f12;, regardless of the polarization properties of the applied signal
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E. That is, you can drive the atoms with any polarization E you want; but they
will always respond with their own fixed, characteristic form of polarization, as
given by fio;.

The magnitude of this induced response, however, will depend on the dot
product between the applied field E and the hermitian conjugate of the moment
pi21; and this dot product is mathematically the same thing as matrix multipli-
cation between these two quantities. By invoking the associative properties of
matrix and vector multiplication, therefore, we can reorder Equation 3.32 into
the alternative form

_ ji E,
ju = const X figy X fib, x E =const x | fiy | x [ [y i3] x Ey|. (33)
Bz E,

In this reorganized form, the middle product fia; X ;1;‘,1 can now be interpreted
as the matrix product, computed. according to the usual rules, of the two vector
(or matrix) quantities fip; and its hermitian conjugate. But the result of this
multiplication will be a 3 X 3 matrix or tensor T, often called a dyadic product,
which we will write as

ﬂg w t:zz {zy Exz

T = const X fi2; X [1,;1 =const x | f§ | X [fiz By i = tye tyy by |,
ﬂ,: tez tzy tzz

(34)

where the constant is some suitable normalization constant. Note that the nm-th
element of the T matrix is obtained in the usual matrix-multiplication way, by
multiplying the n-th row of the [1.;1 column vector (just one element) times the
m-th column of the fiz; row vector (also just one element).

Hence we can write the macroscopic polarization in a general tensor form as

B(w) = const X fig i, x B(w) = x(w)e x T x E(w), (35)

where the most general form of the susceptibility tensor T for a dipole transition
is given by the dyadic product

T = const X [:,21[4;1. (36)

Suppose the transition matrix element fiz; is a column vector with elements
[1, -4, 0] corresponding to RHCP motion in the z,y plane. The hermitian conju-
gate ﬁ;l is then a row vector with elements [1, +j, 0], and the tensor susceptibility
has the form

3 11 5, [1 4o
T==-x[1-j0]x|j =35 X -j 1 0}. 37)
2 0 0 00

This is, of course, just the RHCP gyrotropic result given in Equation 3.27.

Most General Tensor Form

Simple linearly polarized and circularly polarized responses are the most
common and elementary forms for the tensor responses of electric-dipole and
magnetic-dipole atomic transitions. To obtain the most general possible form for
a dipole susceptibility tensor, we can note that the quantum transition moment
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21 can have at most three complex-valued vector components, namely, ji., f,,
and fi,, or six independent real numbers. Using these values, we can then carry
out the matrix multiplication of the dyadic product as defined in Equation 3.34
to obtain the most general tensor.form T'.

It can then be shown that for any such dipole transition the most general
allowed form of this dyadic-product response will be an elliptically polarized ten-
sor response, with the resulting induced polarization P(w) having some arbitrary
(but fixed) degree of ellipticity and arbitrary orientation of the elliptical axes in
some reference plane which is itself arbitrarily oriented with respect to the z,y, z
axes. This behavior is inherent in the mathematical form itself, independent of
physical properties of the transitions.

There seems to be little point in writing out this general elliptical tensor form
in more detail here. If you wish to know what the resulting tensor looks like, first
add togetheér the tensor responses for two independent linear responses along the
z and. y axes, but with an arbitrary amplitude ratio and arbitrary phase angle
between them. This will produce the tensor form for an arbitrary elliptical re-
sponse in the z,y plane. Performing a conventional coordinate rotation from the
z,Y, 2 axes to an arbitrarily oriented set of new z’,y’, 2’ axes will then generate
the most general possible form for the susceptibility tensor.

Note that the degree of ellipticity of the original ellipse, plus the orientation
of this ellipse in space, accounts for four real parameters. The normalization
condition that the trace of the resulting tensor should be normalized to three,
ie., tzp + {yy +,, = 3, then accounts for the remaining two of the six real num-
bers mentioned above. (Alternatively, we could require only that the magnitude
of the trace be unity, leaving an arbitrary overall phase shift in all the tensor
elements.) There are thus really only four adjustable real parameters among the
nine complex elements of the normalized susceptibility tensor.

Tensor Axes

But what determines the direction of the relevant axes of polarization and
the degree of ellipticity for a real transition in a real atom? A simplified answer
is as follows.

Single atoms floating freely in a gas always have degenerate electronic energy
levels, for example, the Zeeman levels described earlier (except, of course, for

= 0 or S states, which are not degenerate). In this situation we must apply
some static perturbation, such as a dc magnetic field (Zeeman splitting) or a dc
electric field (Stark splitting), to “break” this degeneracy and to separate the
individual transitions into distinct transition frequencies. Each of these separate
Zeeman-split transitions will then have a distinct type and direction of tensor
polarization.

The direction of the static perturbation in this situation will determine one
of the reference axes for the tensor susceptibility; this direction is often chosen
to be the z direction. The dc field direction will thus serve as the reference axis
for the tensor responses on these transitions. For free atoms in such a static field,
the response is then always either linear along this z axis (7 transitions) or else
circularly polarized about it (o transitions), so that no unique choice for the z
and y axes is either necessary or possible.

Atoms in a crystal will have a more complex environment, with more clearly
determined reference axes, but often with a lower order of symmetry. In a crystal,
each individual atom will be imbedded in some surrounding lattice structure
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with a-distinetive. orientation in space. The orientation of this lattice structure
gives: the reference axes against which the polarization-tensor properties of the
atomic transitions can be uniquely evaluated. The most general possible result,
as already noted, is an elliptically polarized tensor response with respect to these
axes.

Finally; in melecules. the structural axes of the molecular structure itself give
reference axes-for the electronic transitions of the electron charge cloud of the
molecule. As the molecule rotates, these ‘axes rotate with it. If a simple molecule
has only a single axis of symmetry (e.g., a diatomic molecule like Ny), all its
electronic transitions are either linear along this axis or circular about it.

Isotropic Responses?

An.important ebservation is that it is not physically possible for the tensor
response of a single, nondegenerate atomic or molecular transition to be isotropic
(that is, to be linear and equal in all directions). That is, a single nondegenerate
transition cannot have a tensor response of the form

Py 10 0] [E
Pyl =x(w)ex}0 1 0f x|Ey]|. (38)
B, 00 1 7,

A response that is effectively isotropic in this fashion can, however, be obtained
by averaging over a collection of atoms. There are two different ways in which
this ean occur, as follows.

o The response of each individual atom in a-collection may be anisotropic,
with one of the nondegenerate tensor forms given earlier; but the atoms
may have their reference axes randomly oriented in all directions. This
would be expected in a randomly oriented collection of gas molecules,
for example, or in a nonerystalline material, such as a liquid, a powder,
or a glass, in which the local surroundings for different atoms may be
randomly oriented. Averaging over all directions of the atomic axes leads
to an isetropic overall response as in Equation 3.38.

e The observed response may be the summation over a complete set of
degenerate atomic transitions that are not resolved in frequency, be-
cause no external perturbation has been applied to break the degeneracy.
These degenerate transitions all coincide in frequency, and hence cannot
be separately excited. Adding up the small-signal tensor responses of
such & complete set of overlapping degenerate transitions then leads to
an isotropie response here also. (Or we could say that there is no way to
define any unique reference axes in the atoms; so the atoms are in effect
randomly oriented.)

In either situation the tensor response will have the apparently isotropic form
given in Equation 3.38, where the scalar ¥(w) is again the same as in Equation
3.26, that is, without the factor of 3 in front. '

To look at this in anether way, suppose we have a collection of randomly
oriented atoms, so that N/3 of them will be in effect ariented along each axis.
The linear response due to these atoms will then be the value of X(w) derived in
the previous chapter, including the initial factor of 3, but with a population (or
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population difference) of only N/3 instead of N. Therefore, the response along
each axis will be given by the scalar x(w) formula in the form we have used
in this section without the initial factor of 3 that appeared in X{(w) in earlier
chapters.

The isotropic tensor form of Equation 3.38 is thus both mathematically simple
and characteristic of certain common physical situations. It also has:a trace equal
to three—at least if we give the diagonal elements the simplest value of unity. It
is largely for this reason that we have adopted the convention that Tr[T' ] = 3 in
writing all of the preceding normalized tensor susceptibilities. The significance
of this factor of 3 is discussed in more detail in the following section.

Problems for 3.4

1. Negative circular polari'zation response -of a .gyrotropic tensor. Using the gy-
rotropic form of tensor response, verify that if you apply a circularly polarized
-E field which has one sense of circular polarization to an atom whose natural
response is the opposite sense of circular polarization, then this applied E field
will produce no atomic response at all.

2. Tensor response of an anisotropic two-dimensional -classical oscillator. Suppose
that you have a two-dimensional classical electron oscillator in which the electron
moves in an anisotropic potential well in such a way that the restoring force in
the z direction is — Kz, but in the y direction is Kyy, where Kz and Ky differ
by an amount that is small compared to their average value, but large compared
to the fractional linewidth of the atomic transitions. The damping.and-collision-
broadening rates for motion along both axes are the same, and no magnetic field is
present. Write the classical electron oscillator susceptibility, including the tensor
form, for a macroscopic collection of such escillators.

3. Tensor response of a three-dimensional Zeeman-split classical oscillator. Consider
as a classical model for an electric-dipole atom an electron that can move in the
z, y, and z directions about a nucleus with a linear central restoring force, where
a dc magnetic field By is also present in the z direction as in Problem 1 of Sec-
tion 3.3. Using the same notation and results-as in that problem (except:that the
electron is now also free to move in the z direction), derive a general expression
for the tensor electric susceptibility of a collection of these classical atoms. As
in the earlier problem, work out the three separate resonance frequencies of this
system (corresponding to separate astomic transitions). Then, making the reason-
able assumptions that wo > we >> Aw, (i-e., small Zeeman splitting, but even
smaller atomic linewidths), discuss tihe tensor character of ¥(w).

4. Field patterns in a “twisted-mode” laser cavity. Circularly polarized optical sig-
nals can be confusing but interesting. Consider, for example, a uniform optical
wave that is right-hand circularly polarized looking along its direction of propa-
gation (that is, at any single transverse ;plane, the field € of this particular wave
rotates from z into y-as time ¢ increaseis). Suppose this wave passes through.a
quarter-wave plate (QWP); bounces off a mirror at normal incidence; and passes
back out through the QWP along the same.optical axis, but propagating in the
opposite direction.

[A quarter-wave plate is an optical element imade of an anistropic or birefringent
material, e.g., crystal quartz, that has two transverse axes; call them the £ and.y
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or “fast” and “slow” axes. When an optical wave passes through such an element
in the z direction, the & component of the optical field vector & sees a slightly
higher index of refraction ny than the value ny seen by the £; field component.
A quarter-wave plate has a thickness d such that (ny — nz)wd/co = (7/2), i.e.,
the optical path length through the QWP is one quarter-wavelength longer for
one polarization component than the other.]

(a) Develop a “snapshot” of the vector field pattern £(z,t) in the standing-wave
region on the side of the QWP away from the mirror, showing how the € fields
appear at any single instant of time ¢, with whatever amount of analysis or
explanation is needed to support this “snapshot.” How does this resulting field
pattern differ from a RHCP propagating wave?

(b) In an ordinary standing-wave laser cavity with linearly polarized £ fields,
there are nulls in the standing-wave field pattern every half-wavelength along the
cavity. Laser atoms located at or near these nulls are thus essentially unaffected
by the optical signal, and in particular deliver no power or gain to the optical
signal, leading to a phenomenon referred to as “spatial hole burning.” Would the
vector field pattern analyzed above eliminate the problems caused by spatial hole
burning?

5. More on the twisted-mode cavity. A laser cavity with no Brewster angle surfaces,
with a quarter-wave plate at each end of the cavity, and with the principal axes
of the two quarter-wave plates rotated by 45° with respect to each other, was
invented once as a means of eliminating spatial inhomogeneity effects in lasers.
Analyze the axial modes in this cavity, and explain why it may be useful for this
purpose. (See my article, “Historical note on spatial hole burning and twisted-
mode laser resonators,” Opt. Commun. 24, 365, March 1978).

3.5 THE "FACTOR OF THREE"

One of the more confusing and often-argued aspects of atomic transitions is the
“factor of three” that appeared in Equations 3.10 and 3.11, in the definition
of oscillator strength, as well as in the trace of the tensor susceptibility in the
preceding section. This section gives a brief but accurate explanation both of how
this factor arises and of how it must be included in the appropriate theoretical
formulas.

Tensor Power Transfer Rates

We showed in Section 3.4 that the tensor susceptibility for a real atomic
transition can be written in the form

X(w) = %(w)T = —jX4T (at midband), (39)
where x(w), or its midband value —5xj, is a scalar susceptilility formula (without
the numerical factor of 3); and T is a dimensionless tensor that we will always

normalize to make

T[T | = 3. (40)

3.5 THE "FACTOR OF THREE"

Let us now do some energy-storage and power-transfer calculations. For exam-
ple, the time-averaged rate of energy transfer per unit volume from an applied
field £(t) to a collection of atoms through the induced polarization p(t) may be
written as

% = <£(t).i‘§)>. (41)

For a steady-state sinusoidal response given by P(w) = x{w)eE(w), this leads
at midband, w = w,, to the time-averaged result

dUs _ _ waxye [E*.TE + E.T*E*]
dt — 4 ‘

(42)

The multiplications on the right-hand side of this equation must be carried out
using the standard rules for matrix multiplication, with vectors to the right of
the dots considered as column vectors and quantities to the left of the dots
considered as row vectors.

The time-averaged stored energy per unit volume in the same signal fields is,
however,

Usig = <%e{£(t)l2> - E[E_2El (43)

Hence a ratio of energy transfer rate (to the atoms) over energy stored (in the
signal fields) may be written as

1 U, , [E*TE+E.T*E*
Uug dt _ oX0 % 2E.E (44)

When the dimensionless ratio in the brackets on the right-hand. side of this
equation is calculated for various forms of the susceptibility tensor T, as given
in the previous section, and for various signal field polarizations E, its value
always turns out to be somewhere between a maximum of 3 and a minimum of
0. (Some examples are shown in Table 3.3. Work a few of these out for practice,
using the tensor forms from Section 3.4.)
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TABLE 3.3
Normalized tensor responses

Saturated Gain

Tensor Applied Field Normalized
Form Polarization Response
Circular, z — £y Circular, T - +y 3
Circular, x — £y Circular, z — Fy 0
Circular, z — ty Linear (z or y) 1.5 &7
Circular, z — +y Linear (z) 0 Q
Circular, z — +y Random 1
Linear (z) Linear (z) 3
Linear (z) Linear (angle 6 from x) 3cos? 6
Linear (z) Circular, z — +y 1.5
Liinear Random 1
Limear (z) Linear (y or z) 0
Isotiropic Arbitrary 1

The Factor of “Three-Star”

The dimensiconless factor that multiplies wg xg in Equation 3.44 thus always
ranges-between 0 amd 3, depending on the nature of the signal polarization and
the normalized tens'or response. In fact, for different situations this dimensionless
factor takes on valuiss as follows.

e For aligned attorns—that is, for any collection of atoms that have a non-
degenerate tramsition, and all of whose atomic axes are aligned in parallel
to give an identical tensor response—there is always some optimum sig-
nal field polariz:ation that will give this dimensionless factor its maximum
value of 3, and thus make (1/Usig)(dUs/dt) = 3 X waXp -

o. For such alignecl atoms there is always also an “anti-optimum” signal
polarization, for which the corresponding value is identically zero. (Lin-
ear dipole transitiions have, in fact, an entire plane in which the induced
response is. identic:ally zero.)

¢ Combining; aligned’atoms with any other signal polarization between the
optimum: and anti-optimum forms gives a value for the dimensionless
factor somewhere: between 3 X woxg and 0 X we X -

3.6 DEGENERATE ENERGY LEVELS AND DEGENERACY FACTORS

e For nonaligned (which is to say, randomly aligned) atoms, and hence
an isotropic tensor response, the dimensionless response always has the
value of unity, so that (1/Usig)(dU,/dt) =1 x wyxg.

e In 3 similar manner, for randomly polarized signal fields combined with
any atomic alignment, the dimensionless response is also always unity.

In our discussions from here on, it would be nice if we did not have to keep
track of the explicit vector nature of the signals or the tensor nature of the
atomic responses. In order to do this, while allowing for the tensor nature of
the atomic response, we will give this dimensionless factor in Equation 3.44 a
name, and include it in the atomic susceptibility expression from now on. That
is, we will from now on in this book often write the susceptibility expression for
a homogeneous lorentzian atomic transition in the form

) = 5 ANV g 1
X =02 ™ Aw, 1+ 2j(w — we )/ Aw,’

(45)

where the parameter 3* (“three-star”) indicates what we will from now on call
the “factor of three.” This parameter, depending on circumstances, may have
the numerical values:

e 3* = 3 for fully aligned atoms plus optimally polarized fields; or

e 3* = 1 either for randomly aligned atoms with arbitrarily polarized
fields, or for randomly polarized fields with any atomic alignment; or

e 3* =0 for fully aligned atoms and “anti-optimum” fields; or
e 0 < 3* <3 for any intermediate case.

This notation will prove very convenient, especially since, as we will see, this
same factor of 3* carries over into many other stimulated-transition and gain
formulas as well.

Problems for 3.5

1. Averaging cos® @ over 4w steradians. Show by direct integration that the average
value of cos? @ averaged over all directions—that is, the value of (47)~! f f cos?
0 dS2, where dQ is the integral over all solid angles—is 1/3.

3.6 DEGENERATE ENERGY LEVELS AND DEGENERACY FACTORS

In many real atomic systems, what appears to be a single atomic resonance
in a collection of atoms, with a single transition frequency ws; between upper
and lower energy levels E; and E;, may in fact be the summation of a number
of overlapping transitions, with different strengths and polarization properties,
between distinct but degenerate sublevels of the upper and lower levels. It is still
possible in discussing the small-signal response of such a system to treat such a
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set of degenerate transitions as a single transition with an isotropic susceptibility.
This section shows, however, that we must modify the definition of population
inversion on such a degenerate transition by adding certain lower-level and upper-
level degeneracy factors, in order to take into account the unresolved degeneracies
of both the upper and lower levels.

Degeneracy Factors

Suppose, to be specific, that two apparently discrete energy levels E; and
E, really each consist of g; and g, quantuni-mechanically distinct sublevels, re-
spectively, as shown in Figure 3.12. The integers g; and g2 are then called the
statistical weights or degeneracy factors of the levels. Let N; and N, be the
total populations in levels E; and E;. At thermal equilibrium the atoms in each
level will then be divided equally among the sublevels, with populations N1 /g1
or Na/gs in each of the respective sublevels. (There are, moreover, very rapid
relaxation processes that usually act to rapidly equalize the populations of de-
generate sublevels, even if they are somehow perturbated from equal populations,
for example, by a strong applied signal.)

Boltzmann’s Law, which relates the relative populations of an upper and
lower energy level at thermal equilibrium, then applies rigorously to each distinct
energy sublevel. In other words, it says that for any pair of such sublevels the
population ratio at thermal equilibrium must be

N2/g2 ( E; — E1)

—— =exp|——— ). 46

Njo OF kT (46)
Hence for the total level populations the Boltzmann ratio really must be written
in the form

Ny g2 E; — Ey)

F} = P exp ( 5T . (47)

I
This is a more precise generalization of the Boltzmann Law. Note that as a
consequence of this, a highly degenerate upper level might possibly have, at
thermal equilibrium, a larger total population than a lower level that is less
degenerate (that is, if go/g1 > exp[(E2 — E1)/kT]). This is not a population
inversion in any sense, however—for example, it does not lead to net stimulated
emission or gain, as we will now show.

Net Susceptibility of a Degenerate Transition

To evaluate the overall stimulated response on a degenerate transition, we
must sum over all the individual subtransitions, as shown in Figure 3.12. Let us
label all the upper sublevels by an index m that runs from m = 1 to m = gs, and
all the lower sublevels by a similar index n. The total response on the transition
is then the sum over n and m of all transitions between all the sublevels E;,
and EZm-

The tensor susceptibility on any one such transition between level E;, and
level Es,, may then be written in the form

Ny N

Xln,2m(w) = g(w) X Yrad,2m—1n X (— - _> X Tln,2m7 (48) \

9 92
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FIGURE 3.12

eigenvalue.

where Tip,2m is the tensor response on that particular transition; Ny /g1 — Na/gs
gives the population difference on that particular transition; VYrad,2m—1n gives
the strength of that particular transition; and the lineshape function §(w) can
usually be assumed to be the same for all transitions, namely,

REPS 1
Yam? Doy 1+ 2j(w — we)/Awg”

§(w) = (49)

(If different subtransitions have different linewidths, this will complicate the
following analysis, but probably not change the results.)
The total response on all the 1n — 2m transitions can then be written as

g1 g2

Xtot(w) = Z Z X1n,2m(w)
n=1m=1
(50)
_ 91 92 Nl Nz
= y(w) X Z Z Yrad,2m—1n (— - —‘—) X Tm,,
n=1m—1 g 92

where T}, is some averaged tensor susceptibility over all the transitions involved.
This tensor will simply be isotropic if the average is over a complete set of
degenerate transitions.

At the same time, the total radiative decay rate downward out of the upper
level E, will be given by

dN:. g1 92 N.
_[EE = - Z Z Yrad,2m—1n (_2> . (51)

n=1m=1 92

That is, we must sum over all radiative decay rates from all upper sublevels to all
lower sublevels. This total downward rate may then be equated to an averaged

Degenerate sublevels of two
quantum energy levels E;
and E;. Each sublevel is a
separate and distinct quan-
tum energy eigenstate, but
the degenerate sublevels

all have the same energy
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or measured radiative decay rate that we will call Yrad,2—1, defined by

dN,

Tt
This will be the measured radiative decay rate for level E; viewed as a single
effective level without degeneracy taken into account. Since the level populations
can be taken outside the sums in all the preceding equations, this averaged decay
rate is given by

= —Yrad,2—1V2. (52)

1
Vrad,2—1 = — Z 2 Yrad,2m—1n (53)
92 T

Combining Equations 3.48 to 3.53 then gives
Xtot(w) = g(“-’) X Yrad,2—1 X (Z_iNl - N2) X Tay- (54)

If we absorb the tensor properties into a factor 3* as in the previous section, this
may be written as a scalar susceptibility

.3 A3’7’1‘&d 2—1 92 ) 1
5 =_ £ rad2=2? (ZN; — N. - ) 95
Xiot(w) Va2 Awg 91 M 2] 1+ 2j(w — wa)/Aw, (55)

where T, will normally be isotropic and 3* will be equal to unity. o

This final result now looks exactly like the nondegenerate susceptibility ex-
pression in earlier sections, except that the population difference AN is replaced
by !

AN = (231\]1 - Ng) . (56)
an

A more precise condition for population inversion and gain on an atomic transi-
tion is thus
Mo N
g2 g1
and not just N3 > Nj. In physical terms, there must be true population inversion
on the individual sublevels, and not simply Nz > Ni.

For degenerate transitions in gases, with randomly aligned atoms, the aver-
aged tensor susceptibility Ty will in fact always be isotropic, leading to 3" =1
in Equation 3.55. For degenerate transitions in solids the situation may be some-
what more complex, and a degenerate transition may still have some anisotropic
character to its tensor response Tyy.

(87)

! Discussion

The main result of this section, then, is that the small-signal steady-state
response on a degenerate transition is exactly the same as for a nondegenerate
transition, except that the effective value of ¥aq2—1 must be employed, and the
effective population difference becomes AN = (g2/g1)N1 — Nz rather than just
N; — Ny. We will use- this result where appropriate in future sections.

This result does assume that the various sublevels of each main level remain
equally populated, so that we can assign an equal fraction N; /g9; of the level pop-
ulation to each one of them. For very strong signals, and perhaps also for very
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short pulses (short compared to T5), some of the transitions between sublevels
E;, and FE2,, will respond more strongly to an applied signal than will others,
because of substantially different values of Y;ad,2m—1n, as well as different po-
larization properties. A strong applied signal will then cause atoms to flow from
certain sublevels Ej, to other sublevels E,,, at quite different rates; and this
difference will tend to unbalance the otherwise equal sublevel populations, es-
pecially if for some reason the relaxation between the sublevels is slowed down.
This kind of selective pumping between lower and upper sublevels, especially
when the degeneracy has been slightly broken, is in fact an essential element of
a spectroscopic technique referred to as optical pumping.

Unless the degeneracy between sublevels is at least partially broken, however,
there will usually also be relaxation processes between sublevels that will tend
to rapidly return the sublevel populations to equality. These so-called “cross-
relaxation” processes can be especially fast, because no energy change is re-
quired to relax an atom from one sublevel to another sublevel within the same
degenerate main level. Strong applied signals can thus override these relaxation
processes, but only temporarily.

The general warning to be taken is the following: In considering the effects
of very strong (or very short-pulse) signals, for example, in so-called “coherent
pulse” experiments, a degenerate transition can no longer be treated as a slightly
modified single transition. It must instead be treated in detail as a set of multiple,
independent, though still closely coupled transitions all at the same frequency.
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3.7 INHOMOGENEOUS LINE BROADENING

As the final step in describing the resonant response of real atomic transitions,
we must introduce an additional and important type of line broadening known as
inhomogeneous broadening, of which doppler broadening is the premier example.
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Homogeneous Broadening

The steady-state response of a homogeneously broadened transition in a
collection of oscillators or atoms is given by the complex lorentzian formula

3 ANX3y4 1

Xn(w5wa) = =] 4?2 Aw, 14+ 2j(w—w)/Aw,” (58)

We have attached a subscript h to indicaté that this is the usual form for a
homogeneous transition; and we have added the second argument to ya(w;wg)
to indicate the explicit dependence on the resonance frequency w, along with
the applied frequency or signal frequency w. This kind of broadening is called
homogeneous broadening because the response of each individual atom in the col-
lection is equally and homogeneously broadened. Many real atomic transitions,
under appropriate conditions, exhibit exactly this lineshape.

Inhomogeneous Broadening

In many other real atomic situations, however, different atoms in a collec-
tion of nominally identical atoms may, for various reasons, have slightly different
resonant frequencies w,, such that the w, values for different atoms are randomly
distributed about some central value w,9. We must then think of the resonance
frequencies w, for different atoms as being randomly shifted by small but differ-
ent amounts. for each atom in the collection.

An applied ‘signal passing through such a collection of atoms will then see
only a total response due to all the atoms—it will have no way to pick out
only those atoms with certain specific frequency shifts. If the random shifting
of the individual center frequencies is sizable compared to the linewidth Aw, of
each individual response, any measurement of the overall response from all the
atoms in the collection will then give a smeared-out or- broadened summation
of the randomly shifted responses of all the individual atoms (see Figure 3.13).
The overall response of the collection of atoms will be substantially broadened,
and the response at line center will be substantially reduced in amplitude. This
general type of behavior is referred to as inhomogeneous broadening.

Spectral Packets

That subgroup of atoms whose resonant frequencies w, all fall within a
range of roughly one homogeneous linewidth Aw, about a given value of w, is
often referred to as a single spectral packet (or spin packet in magnetic-resonance
jargon). All the atoms in a single packet have essentially the same (homogeneous)
response to an applied signal. The total response of an inhomogeneously broad-
ened line is then the sum of the individual responses of all the spectral packets,
each at a different resonance frequency.

If the individual packets are spread out in frequency about wsg by an amount
large compared to their individual homogeneous widths Aw,, as in Figure 3.13,
the line is said to be strongly inhomogeneous. If the inhomogeneous shifting is
small compared to the homogeneous packet widths, the line will remain essen-
tially homogeneous, and the amount of inhomogeneous broadening that does
exist will be of little importance.
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w
FIGURE 3.13
Individual atomic responses, or “spec-
individual atomic tral packets,” within an inhomoge-
overall X'(w) responses neously broadened atomic transition.
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Causes of Inhomogeneous Broadening

There are several possible causes of random resonance-frequency shifting
and thus of inhomogeneous broadening in typical atomic systems.

e In gases, different atoms will have different kinetic velocities through
space. This kinetic motion produces a doppler shift in the frequency of
an applied signal as seen by the atom, or alternatively a doppler shift in
the apparent resonance frequency w, of the atom as seen by the applied
signal. This so-called doppler broadening is an important and widespread
source of inhomogeneous broadening for optical-frequency transitions in
atomic and molecular gases.

e In solids, laser atoms at different sites in a crystal may see slightly dif-
ferent local surroundings, or different local crystal structures, because of
defects, dislocations, or lattice impurities. This produces slightly differ-
ent values for the exact energy levels of the atoms, and thus slight shifts
in transition frequencies. To the extent that the local lattice surround-
ings are similar for every atom but vibrate rapidly and randomly in
time, they produce a dynamic homogeneous phonon broadening. To the
extent that the surroundings are different from site to site but static in
time, they produce a static inhomogeneous lattice broadening or strain
broadening.

Other types of inhomogeneous broadening also exist (for example, inhomoge-
neous dc magnetic fields in magnetic resonance experiments), but these are two
of the most important for optical transitions.
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Doppler Broadening

One of the most common examples of inhomogeneous broadening is doppler
broadening of the resonance transitions in gases. The atoms in an atomic or
molecular gas will have, in addition to their internal oscillations, thermal or
Brownian kinetic motion through space, with a maxwellian distribution of kinetic
velocities. When an atom moving with velocity v, as in Figure 3.14 interacts
with a wave of signal frequency w traveling at velocity ¢ along the z direction
(for example, a wave traveling down the axis of a laser tube), the frequency of
the wave as seen by the atom will be doppler-shifted to a new value w’ given by

W =(1- _vz/c)w. (59)

Resonance of the applied signal with the atomic transition in that particular
atom will then occur when the doppler-shifted signal frequency ' = w(1—wv,/c)
seen by the moving atom equals the atom’s internal resonance frequency wgg.

From an alternative viewpoint, resonance will occur when the signal frequency
w measured in the laboratory frame equals the shifted resonance value w,o(1 +
v,/c¢). In other words, as seen from the lab the resonance frequency of the atom
appears to be doppler-shifted to a new value,

we = (1 + v, /c) wgo. (60)

For an atom or molecule of mass M in a gas at temperature T', the kinetic
velocity v, has a mean-square value given by M (vf) = kT. Hence the average
doppler shift for a moving gas atom will be of order :

Wa—wao _ [ KT _ 10-6 ( for typical atomic )

~ 61
Wao Mc? masses and temperatures (61)

The amount of doppler broadening in a real gas thus depends :(but only rather
slowly) on the kinetic temperature T of the gas and on the molecular weight of
the atom or molecule involved. ‘

Doppler Lineshape

To be more precise, the distribution of axial velocities v, in a gas at thermal
equilibrium will be a maxwellian, or gaussian, probability distribution given by

1 ‘1/2 ,U.Z.
= (— {=2= 2
o(vz) (mz) e"p( 20:,2,) (62)
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We—Wgeo )2
'- Aw,
'
! FIGURE 3.15
! A gaussian inhomogeneous atomic
H lineshape, such as is produced by
‘\‘ doppler broadening in atoms.

wl

wij;h an rms spread given by o = kT/M. The inhomogeneous distribution of
shifted resonant frequencies, call it g(w,), for a doppler-broadened atomic tran-
sition will then similarly have a gaussian form that can be written as

glwa) = (:i—‘lé)m exp [—(41n2) (“’A"—w‘:")z] (63)

as illustrated in Figure 3.15. This expression has been written so that Weao 18
the center frequency; and following our standard convention, the linewidth Awy
has been defined to be the FWHM linewidth of the gaussian distribution, which
means it must take on the form

[(8In2)kT
Awd = (_ZWEL— Wa0- (64)

It is useful to remember that in units of electron volts, kT at room temperature
is 1/40 of an electron volt or 25 meV; and Mc? is the rest-mass energy of the
atom, which for a single proton is ~ 10° eV. For an atom or molecule with an
atomic number of 20, the fractional doppler broadening is thus

Awg _ [(82)kT \/5.5 x 25 x 10—3

~ —6
w0 M2 20 X 10° ~ 2.6 x 10 (65)

or typically a few parts per million. A visible laser transition will have a center
frequency on the order of w, /27 6 x 10** Hz, and a doppler broadening on the
order of Awg/2m ~ 2x10° Hz ~ 2 GHz. The room-temperature doppler broaden-
ing of the He-Ne laser transition at 633 nm, in fact, is just about Awg /2w =~ 1,500
MHz.

General Analysis of Inhomogeneous Broadening

As a more general approach to inhomogeneous broadening, suppose we con-
sider a large collection of nominally identical atoms, with the fractional number
of atoms whose exact resonant frequency is between some value wq and w, + dw,
being given by

dN(wa) = Ng(wa) dw,, (66)

where N is the total number of atoms. (We really should use the population
difference AN here, but let’s write NV instead for simplicity.) The function 9(wa)
is thus the probability density distribution over the resonant frequencies w,, with
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the normalization that

N [T avn) = | " gwa) dwa = 1. (67)

—00

The function g(w,) is always very narrowly clustered about the center frequency
wao, S0 any portion of the analytic function g(w,) extending below w, = 0 can
be ignored. It therefore makes negligible difference whether the lower limit in
this normalization integral is actually 0 or —oo.

To calculate the overall complex susceptibility of any such collection of atoms,
we must then multiply the homogeneous response Xn(w;w,) produced by any
one atom whose resonance frequency is w, by the fractional number of atoms
g(w,}dw, that have the same resonance frequency wi, as illustrated in Figure
3.13, and then integrate that response over all values of w, in the form

%@ = [ " (@5 0a) 0(wa) du. (68)

—00

Suppose the distribution g(w,) is gaussian, as it often is. The full-blown equation
for the complex small-signal susceptibility of an inhomogeneously broadened
transition thus becomes a gaussian distribution of frequency-shifted lorentzian
lines. If we write this out in full, it takes the general form

- )__.i [4In2 NX3v:a4 /°° 1
X(w) = ‘747r2 T AwegAwg J_oo 1+ 2j(w — w,)/Aw,
2
X exp [—(41112) (%) ] dws.
d

This rather messy integral must be evaluated each time an accurate calculation is
needed of the susceptibility of an atomic transition in which doppler broadening
is important. (Even this integral still ignores certain large-signal saturation and
“hole-burning” effects that we will discuss in a later chapter.)

Inhomogeneous broadening in general, whether due to doppler broadening
or to other mechanisms, is usually caused by some kind of random distribution
of velocities, or defects, or whatever; and random distributions, whatever their
cause, are very. often gaussian in form (as sometimes expressed in the Central
Limit Theorem). We will therefore interpret the gaussian expression for doppler
broadening in Equation 3.63 somewhat more broadly, and use it as a general
expression for g(w,) in any kind of inhomogeneous broadening. Similarly, we will
use Awy as a general notation for the inhomogeneous linewidth of an inhomoge-
neously broadened distribution, whether this is due to doppler broadening or to
some other cause.

(69)

Strongly Homogeneous Limit -

The integral in Equation 3.69 cannot be evaluated analytically, at least not
for arbitrary ratios of inhomogeneous broadening Awgy to homogeneous broad-
ening Aw,. The limiting cases of strongly homogeneous broadening and strongly
inhomogeneous broadening can, however, be handled, at least approximately, as
follows.

Let us suppose first that the inhomogeneous broadening effects are small,
which means either that the resonance frequencies of individual packets are
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shifted by very little compared to the homogeneous linewidth Aw,, or alter-
natively that the individual packets have a wide homogeneous linewidth Aw,
compared to the inhomogeneous linewidth Awy. The inhomogeneous distribu-
tion, whether gaussian or otherwise, is then essentially a delta function, i.e.,

9(we) = 6(wg — Wao) if Awg <€ Aw,. (70)

'The integral in Equation 3.69 is now trivial, and physically obvious: the overall

response is simply the unperturbed homogeneous form X (w; wao)- In effect there
is no inhomogeneous or doppler broadening. This is commonly known as the
strongly homogeneous limit.

As one practical example of this, consider the 10.6 yum TEA CO. laser oper-
ating at atmospheric pressure. The inhomogeneous doppler broadening for this
long-wavelength transition is Awg/2m =~ 60 MHz, whereas the homogeneous
pressure broadening at one atmosphere is Aw, /27 ~ 6 GHz or 6,000 MHz. The
individual packets are thus =~ 100 times wider than the doppler broadening, and
the line is essentially homogeneous.

Strongly Inhomogeneous Limit

Now suppose instead that the inhomogeneous linewidth Aw,; is large
enough to shift the spectral packets widely in frequency compared to their ho-
mogeneous linewidth Aw,, so that there are many packets within the overall
linewidth. It is then possible in this limit to obtain an analytic approximation
to Equation 3.69 that is reasonably accurate for the imaginary part x”(w) of the
overall inhomogeneous susceptibility, though not for the x'(w) part.

The approximation for the absorptive part of the overall susceptibility is ob-
tained by expanding the complex lorentzian X, (w;w,) inside the general integral
into its real and imaginary parts. In the limit as Aw, becomes small, the x}, part
of the homogeneous function becomes roughly like a delta function, i.e.,

2 1
TAwg 1+ [2(w — we)/Awg]?

= §(w — wg) if Aw, € Awg. (71)

This lorentzian curve is not a very good delta function, since its wings fall off
only as 1/(w — w,)? far from line center, but it is adequate here. Putting this
into the general equation and integrating over the delta function then gives for
the x”(w) part of the susceptibility

* 3 — 2
X'(w) ~ — wln?%%exp [—(4ln2) (“’A—:;‘ﬂ) ] (12)

in the strongly inhomogeneous limit where Awg > Aw,.

This expression for a strongly inhomogeneous absorption line has the follow-
ing interesting features in comparison with the usual homogeneous lorentzian
absorption line.

e It has a gaussian, not a lorentzian, lineshape for the absorption profile
of x'(w), with a FWHM linewidth of Awg, not Aw,.
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FIGURE 3.16
Comparison of gaussian and

lorentzian lineshapes having the
same half-power linewidth and

the same total area.
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Lorentzian
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linewidths

[-(— Aw, or Awy

o It has essentially the same constant factors in front as does the homoge-
neous lorentzian response for x”{w), except that the response now varies
as 1/Awg, instead of 1/ Aw,.

e But it has an extra numerical factor of vV7In2 =~ 1.48 in front of the
other factors that appear in the lorentzian expression.

In fact, these three simple modifications convert the x" (w) susceptibility expres-
sion for a homogeneous lorentzian transition into the corresponding expression
for a strongly inhomogeneous gaussian or doppler-broadened transition.

Figure 3.16 shows lorentzian and gaussian (i.e., strongly homogeneous and
strongly inhomogeneous) susceptibilities x”(w) normalized to the same FWHM
linewidth and the same area. Note that the gaussian absorption curve x”(w) has
a peak value that is ~ 50% higher, but that it drops off much faster in the wings
than does the lorentzian. The integrated area under each curve is the same, since
the smaller area in the wings of the gaussian profile is balanced by the 50% larger
peak intensity at the center.

It is also interesting to note that the homogeneous packet linewidth Aw,
actually does not appear at all in the strongly inhomogeneous expression given
in Equation 3.72. Measuring the x”(w) response of a strongly inhomogeneous
line tells you Awg, but it does not give any information about the homogeneous
linewidth Aw, of the packets buried within the line—at least not to first order.

Complex Susceptibility in the Strongly Inhomogeneous Limit

It is not possible to develop a similar approximation for the reactive part
of the susceptibility, x'(w), in the strongly inhomogeneous limit. The reason is
essentially that although x”(w) varies like 1/(1 + w?) in frequency, which is a
weak delta function, the real part x/(w) varies like w/(14w?), which is not a delta
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function at all. There is thus no analytic approximation to the exact integral of
Equa;tion 3.69 for x'(w) even in the strongly inhomogeneous limit.

Figure 3.17 does show numerically computed plots of both x/(w) and x”(w)
for the strongly inhomogeneous gaussian limit, Awg > Aw,. The inhomogeneous
susceptibility x’(w), though it cannot be analytically approximated, looks in
general very much like the lorentzian case; i.e., it is antisymmetric and looks
generally (though not exactly) like the first derivative of the x”(w) curve.

Intermediate Region: Voight Profiles and Their Uses

‘In the intermediate region where Aw, ~ Awy and neither of the limiting_
approximations is valid, the general expression for ¥(w) in Equation 3.69 can
only be integrated numerically and then plotted for different ratios of Aw, /Awq.
The lineshapes for the x”(w) curves that are obtained in this region are obvi-
ously intermediate between lorentzian and gaussian lineshapes, and are generally
referred to as Voight profiles. The exact shape of the Voight profile depends on
both the homogeneous and the inhomogeneous linewidths, or, more precisely, on
the ratio of these two linewidths.

Figure 3.18 shows, for example, the measured absorption profile for a molec-
ular transition in carbon monoxide (the v’ = 0,J” = 11 to v/ = 1,J' = 10
transition) at a wavelength of A = 4.76 ym or 1/A = 2,099 cm~?, as measured
with a tunable laser in a 10:2:88 mixture of CO,:Hy:Ar at a temperature of 3,340
K and & pressure of 0.195 atm. (These rather unusual conditions were obtained
in a special shock-tube measuring apparatus.) This absorption profile is clearly
best matched by a Voight profile somewhere intermediate between a gaussian
and a lorentzian.

homogeneous gaussian transi-
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FIGURE 3.18
Measured values of the absorption profile for carbon monoxide (circles) com-
pared with gaussian and Voight functions having the same half-power values.

If we have an experimental plot of x”/(w) for a transition in this intermediate
region that has been measured with sufficient accuracy, we can in fact decon-
volve the lorentzian and gaussian contributions by fitting the measured curve
to numerically a computed Voight profile with the proper ratio of Aw,/Awg.
Since we can predict the doppler linewidth for a given transition in a gas fairly
accurately from the theoretical expression in Equation 3.64, we can then use the
ratio of Aw,/Awy from this kind of Voight profile determinations to derive the
homogeneous linewidth Aw,, provided it is not too small compared to Awy. Fig-
ure 3.19 shows, for example, absorption data for various pressures of pure CO,
taken with a tunable CO, laser and fitted to Voight profiles. (The absorption
measurement technique used here was actually a more effective way of measuring
weak absorptions, called photoacoustic spectroscopy.) The top trace shows the
laser tuning curve, and the middle traces show raw data, with frequency markers
every 30 MHz of frequency tuning. The lower plot shows this data normalized
and fitted to a series of Voight profiles with increasing amounts of lorentzian
pressure broadening.

r 1 L 1

-200 -100 o 100 200
frequency (MHz)

The Transition From Doppler to Pressure Broadening

If we gradually increase the gas pressure in an absorption cell, the measured
absorption profile of a transition in the gas atoms will change over from being
doppler-broadened at low pressures (Aw, < Awg) to being pressure broadened
at high pressures (Aw, > Awy).

Figure 3.20(a) shows, as one example, an apparatus for making accurate
measurements of the absorption profiles of various CO2 gas mixtures at different
pressures using a tunable CO laser. In (b) we see direct midband absorption
data versus total gas pressure measured on a typical He:N2:CO, gas mixture,
and (c) shows the atomic linewidth deduced from this data. Both curves illus-
trate the changeover from inhomogeneous doppler broadening at low pressures to
homogenous pressure (collision) broadening at high pressures. Figure 3.21 which

— Voight lineshape  of inhomogeneous broadening.
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FIGURE 3.20

(a) Apparatus using a tunable CO, laser to measure absorption versus frequency in a
variable-pressure CO3 cell. (b) Midband- (peak) absorption versus gas pressure; and (c)
linewidth versus pressure in a typical He:Ne:CO, mixture, showing changeover from
doppler broadening at low pressures to pressure (collision) broadening above about 10
torr total pressure. (Data from E. T. Gerry and D. A. Leonard, Appl. Phys. Lett. 8, 227,
May 1, 1966.)

shows a very similar variation with pressure of the absorption coefficient on a
certain chemical laser transition in the mid-IR using deuterium fluoride (DF)
molecules (see Problems).

An Alternative Notation: T> and Ty

The lorentzian and gaussian lineshapes that we have developed in this
section are often expressed in an alternative notation, which we can briefly sum-
marize as follows.
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FIGURE 3.21

Midband absorption coefficient versus pressure on a deuterium fluoride (DF) transition,
showing the transition from doppler broadening at low pressures to pressure broadening
at higher pressures. ‘

In the scientific literature on magnetic resonance, where inhomogeneous
broadening was first studied, as well as in other areas of resonance physics, the
complex homogeneous lorentzian lineshape is often written in the alternative
notation

._jx"—}__
0 1 +jT2(w - wa)’

and the real lorentzian lineshape for a homegeneous absorption line is then com-
monly written in normalized form as

Xior(w) = (73)

1 T, 1

2
TAwa 1+ [2(w — wa)/Awa]? ~ 7 14 T2(w — wa)?

Jlor (W) = (74)
with the same normalization that [ gio;(w) dw = 1. In this notation the FWHM
homogeneous linewidth is usually written in the simpler form

1 Aw, =2/T> (75)
Y
rather than as Aw, = y+2/T%. In essence, the  contribution to the homogeneous
linewidth has been absorbed into an expanded definition of 2 /T> that includes
both the dephasing and lifetime-broadening contributions. (We will occasionally
use this expanded definition of T5 later in this book.)
Then, in order to make the gaussian lineshape function ggauss(w) have the
same algebraic constants in front for the same normalization, the inhomogeneous
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function is written in the analogous form

gauss(w) = (%) exp [—M] , (76)

which satisfies the same normalization that [ ggauss(w)dw = 1. The parameter
Ty that has been introduced here is the inhomogeneous analog to the dephasing
time T% in the homogeneous case. It is related to the gaussian inhomogeneous
linewidth Awqg by

ViTRZ 3

Awg = ~—.
“ETTTT

(77)
The quantity Ty ~ 3/Awq is thus the inhomogeneous (or gaussian) analog to
the quantity T = 2/Aw, for the homogeneous (or lorentzian) lineshape.

Physical Significance of T3 and Ty

If we leave out the complications involving the additional y contribution,
the time constant T, is what we identified earlier as the homogeneous dephasing
time. It defines the average time duration within which the coherent oscillations
of two different atomic dipoles are likely to be permanently and irreversibly
randomized by collisions, or by other homogeneous dephasing events.

The time constant Ty can be given an analogous interpretation as the in-
homogeneous dephasing time due to inhomogeneous broadening mechanisms for
a group of oscillating atoms. Consider, for example, two atoms located in dif-
ferent spectral packets within a gaussian inhomogeneous line. The natural os-
cillation frequencies wy; and wes of these two atoms will differ by an amount
Wq1 — We2 that will typically be of order = Awy. Even without any homoge-
neous dephasing events, therefore, these two oscillating dipoles will get out of
phase by one half-cycle after a length of time 6t given by (we1 — wa2) 6t =, or
6t = 7/(wa1 — Wa2) & T/ Awg = Ty.

The time constant Ty is thus the time duration after which different packets
within an inhomogeneous line are likely to have become dephased because of their
different oscillation frequencies, even without any collisions or similar dephasing
events. The condition for a strongly inhomogeneous atomic line can be written
in either of the alternative forms

strongly inhomogeneous line: Awg > Aw, or Ty L Ts. (78)

Thus in a strongly inhomogeneous line the T dephasing of different packets
because of different oscillation frequencies will happen much more rapidly than
the homogeneous dephasing within each packet that is caused by T.

In practical experiments, therefore, if all the different atoms or packets within
a strongly inhomogeneous line are initially set oscillating coherently and in phase
by means of some suitable initial preparation pulse, the coherent macroscopic
polarization p(t) in the collection will disappear after the shorter time T3, not the
longer homogeneous dephasing time T, because of the inhomogeneous frequency-
difference effects. In an inhomogeneous line under small-signal conditions, 75 and
not T3 is the significant dephasing time.

For example, in the He-Ne 633 nm laser transition the doppler linewidth
is Afg ~ 1,500 MHz, and the inhomogeneous dephasing time is thus Ty =
3/(2mrAfg) ~ 320 psec. This must be compared with a homogeneous linewidth
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for individual packets of more like Af, ~ 100 MHz, and hence a homogeneous
dephasing time of Tp =~ 1/Aw, = 3.2 ns.

One vitally important difference between strongly homogeneous and strongly
inhomogeneous systems, however, is that the inhomogeneous dephasing after the
time Ty is fundamentally reversible: the different oscillation phases wq1t, wqat,
and so forth, that develop for different atoms after a time ¢ can in principle be
“unwound” by certain sophisticated large-signal or coherent-pulse techniques. We
will discuss these later, in connection with coherent photon echo experiments.

Inhomogeneous Strain Broadening: Glass Laser Materials

Inhomogeneous broadening is also of considerable importance in certain
solid-state laser transitions. Random strains, defects, and other site-to-site vari-
ations in solid-state laser materials can significantly change the local crystal fields
seen by laser ions that are imbedded in these materials, and this in turn can ran-
domly shift the exact resonance frequencies of laser atoms in those materials,
sometimes by quite large amounts.

This type of inhomogeneous broadening predominates in inhomogeneous ma-
terials such as laser glasses at room temperature, or in more organized crystalline
laser materials at very low temperatures (approaching liquid-helium tempera-
tures), where it is no longer masked by the much larger phonon-broadening
effects. Since this kind of broadening, often called strain broadening, is caused
basically by random defects in the laser material, its magnitude may depend
strongly on material growth and perfection, impurities, and annealing. It is thus
not possible to give any general formulas, since the amount of strain broadening
may vary from sample to sample of the same material.

If these random strains and defects have a gaussian distribution, the resulting
inhomogeneous broadening effects can look and act much like doppler broaden-
ing, even though the underlying physical mechanism is totally different. The
ratio of homogeneous linewidth Aw, to inhomogeneous linewidth Awg will still
be the crucial parameter in determining whether the transition will be strongly
homogeneous, strongly inhomogeneous, or somewhere in between.

For example, the widely used yttrium aluminum garnet (YAG) crystal can be
grown with high crystal quality. The linewidth of the Nd3* ion in Nd:YAG laser
ctystals therefore exhibits only a small amount of inhomogeneous strain broad-
ening. The laser transition is primarily phonon broadened and thus homogeneous
at room temperature. Reducing the temperature to below liquid-nitrogen tem-
perature (77 K) greatly reduces the phonon broadening and makes the residual
strain broadening observable.

On the other hand, tlie same Nd3* ion placed in a Nd:glass laser material,
with its much larger amount of structural randomness, has a much larger 'in-
homogeneous strain-broadening component, which is significant even at room
temperature. This broadening is due to variations in the local crystal fields seen
by the laser ions at different sites within the glassy material. The ratio of inho-
mogeneous to homogeneous broadening in Nd:glass laser materials is not fully
understood and varies considerably (by at least a factor of three) from one glass
composition to another.

The inhomogeneous linewidths in different glasses at room temperature, for
example, vary over a linewidth range of from at least 40 to 120 cm™!. (Linewidths
this wide are more often expressed in units of cm™! or wavenumbers than in
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more conventional units; remember that 1 cm~! = 30 GHz.) The homogeneous
linewidth in the same materials varies over a range from 20 to 75 cm™?, and is
strongly correlated (for reasons that are not well understood) with the velocity
of sound in the glass. This homogeneous linewidth reduces to < 1 cm™! at 4.2
K, where the lattice vibrations and hence the homogeneous phonon broadening
are reduced to nearly zero.

As a general rule, therefore, Nd:glasses are found to fall somewhere in the in-
termediate or mixed category between homogeneous and inhomogeneous broad-
ening, with ratios of Aw,/Awq ranging from 0.16 to 1.9 in different glasses.

z

Far Outside the Resonance Linewidth: All Lines Become Homogeneous

Suppose we go out into the far wings of any atomic resonance transition,
homogeneous or inhomogeneous, and measure the atomic response at 5 or 10
linewidths out from the line center. (Note that in any usual atomic transition we
can do this and still be well within the “resonance approximation” we introduced
earlier, so that the lorentzian and gaussian lineshapes will still apply.)

The gaussian response characteristic of an inhomogeneous transition—for ex-
ample, a doppler-broadened transition—will then fall off as =~ exp [—(w - w,,)z],
whereas the lorentzian response characteristic of a homogeneous transition—or
of a iomogeneous packet within an inhomogeneous transition—will fall off only
at the much slower rate of ~ 1/(w — w,)? for the x” part of the susceptibility,
or the even slower rate of & 1/(w — w,) for the x’ part of the susceptibility.
Figure 3.22 shows, for example, the x”(w) parts of the susceptibility plotted on
the same frequency scale for a gaussian transition with a given linewidth Awy
and for a lorentzian line—or a lorentzian packet within the gaussian line—whose
linewidth Aw, is only 1/5 as large as the gaussian linewidth Awy.

This example makes it clear that if we go far enough out from line center, the
lorentzian response, though it may be 20 or 30 dB down from the midband value,
will clearly dominate over the gaussian response. In other words, far enough
out in the wings, all transitions—even strongly inhomogeneous transitions—
once again appear to be homogeneous in character. If we tune away from an
inhomogeneous transition by a sufficient number of inhomogeneous lineshapes,
the atomic response will be very weak, though possibly still measurable; and
the lineshape of that response will look like a homogeneous lineshape charac-
terized by the Aw, of the individual spectral packets, rather than the Awy of
the inhomogeneous frequency spreading. For sufficiently strong transitions, this
homogeneous response far out in the wings of an inhomogeneous transition can
still be of interest, as we will see later on.

Summary

The differences between homogeneous and inhomogeneous broadening in
the central part of the atomic line play a very significant role in the performance
of a laser material, especially when saturation effects are taken into account.
Many practical laser materials, particularly gases, are strongly inhomogeneous,
but others are strongly homogeneous. We will return to the detailed “hole burn-
ing” properties of inhomogeneous laser systems in a later chapter.
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FIGURE 3.22
Comparison of lorentzian and gaussian lineshapes in the wings far from
line center.
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Problems for 3.7

1. Inhomogeneous broadening with a lorentzian (rather than gaussian) inhomoge-
neous distribution. Most inhomogeneous broadening mechanisms, such as doppler
broadening, lead to a gaussian probability distribution of resonance frequencies,
for reasons associated with the Central Limit Theorem of statistics. Suppose,
however, we could create a collection of atoms having a lorentzian rather than
gaussian inhomogeneous distribution of resonance frequencies, i.e., a distribution
given by

2 1
9(wa) = TAwg 1+ [2(wa — wao)/Awg)?’

The linewidth Awy of this distribution is then exactly analogous to Awy in the
doppler case. (The reason for considering such a distribution is primarily because
it will make the mathematics easier.)

Using such a lorentzian inhomogeneous distribution, calculate the inhomoge-
neously broadened small-signal susceptibility X(w) of a collection of atoms or
oscillators, assuming the usual homogeneous complex lorentzian response for each
individual atom or spectral packet. (Hint: This calculation is easily done if you
know how to evaluate contour integrals in the complex plane using the residue
method; if you’re not familiar with this, ask an acquaintance.) Discuss the re-
sulting general inhomogeneous lineshape, its real and imaginary parts, and their
overall linewidth for various values of the inhomogeneity parameter Awg/Awg.

2. Inhomogeneous broadening with a uniform inhomogeneous distribution. There
might exist an oddball laser crystal with a distribution of defects such that the
atomic frequency shifts produced by these defects were uniformly distributed
between some maximum positive and negative shift values about the unshifted
center frequency wqo. (Or there might be an even more remarkable gas in which
the axial velocities, instead of having a maxwellian distribution, were uniformly
distributed between a minimum and a maximum value.) Either of these unusual
situations would lead to an inhomogeneously broadened transition with a rect-
angular inhomogeneous lineshape g(wq), rather than the much more common
gaussian lineshape discussed in the text.

Let Awg here mean the full width of this rectangular distribution. Find an exact
analytic expression for the complex susceptibility ¥(w), and plot x'(w) and x” (w)
versus (w — wq )/Awg for different degrees of homogeneous versus inhomogeneous
broadening, for example, for Awg/Aws = 1/20, 1, and 20. Find also the midband
value x(wao) in the limits of very large and very small inhomogeneous broadening.
(Hint: You may have to do some thinking about how to interpret the natural
logarithm of a complex argument.)

3. Ditto with a triangular distribution. Repeat the previous problem with a trian-
gular inhomogeneous lineshape having FWHM linewidth Awy and base width
2Awyq.

e Ty
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4. Midband absorption versus pressure in a gas. Why does the midband absorption

value shown in Figure 3.20 at first increase with increasing pressure and then
saturate in the form shown?

. Chemical lasers, and absorption versus pressure in a deuterium fluoride gas

cell. By burning deuterium with fluorine to get chemically excited molecules of
deuterium fluoride (DF'), and then letting the resulting molecules expand through
a supersonic nozzle, we can make a very powerful chemical laser (hundreds of kilo-
watts cw) at wavelengths around A = 3.6 to 4.1 microns in the near infrared. Such
lasers have been considered as military weapons (if the laser beam doesn’t get
you, the toxic chemicals will). The quantum transitions in deuterium fluoride
molecules are thus of some interest.

Figure 3.21 shows the measured signal-absorption coefficient 2a at midband
(w = wa) versus pressure on a certain DF transition at A = 3.67 microns
starting from the ground state (lowest energy level) of the DF molecule. The
power absorption coefficient 2« is related to the transition susceptibility x” by
20(w) = (2m/A)x"(w) (as we will learn later). The midband absorption is plot-
ted against gas pressure in a cell containing unexcited DF molecules at room
temperature. The DF transition is presumably pressure-broadened, lorentzian,
and homogeneous at high gas pressures; but doppler-broadened, gaussian, and
inhomogeneous at low gas pressures (pure lifetime broadening will be negligible
in all cases).

Explain the shape of this experimental curve, and use it to deduce as much as
you can about the properties and numerical coefficients of this particular DF
transition. Some useful numbers: molecular weight of a DF molecule = 21; mass
of a proton, M = 1.67 x 10727 kg; Boltzmann constant k = 1.38 x 10”23 in
mks units; gas density N(molecules/cm®) = 9.65 x 10'®P(torr)/T(K) ; room
temperature ~ 300 K; and 1 atmosphere = 760 torr. .

6. Inhomogeneous Voight profiles far out in the wings. Using any suitable numerical

procedure, calculate the Voight profile for x”(w) versus w for Awg/Aw, = 10,
extending the calculations out to several inhomogeneous linewidths from line
center. Plot the results on a log amplitude scale, and compare the exact Voight
profile to a gaussian curve that matches the Voight profile near line center. Are
there significant differences in the outer wings? Explain.
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ATOMIC RATE EQUATIONS

Applying a sinusoidal signal to a collection of atoms, with the frequency w tuned
near one of the atomic transition frequencies w,, will produce a coherent in-
duced polarization p(t) or P(w) in the collection of atoms, as we have described
in the preceding two chapters. The strength of this induced response will be
proportional to the instantaneous population difference AN on that particular
transition.

At the same time, however, this applied signal field will also cause the popula-
tions N1(t) and Na(t) in the collection of atoms to begin changing slowly because
of stimulated transitions between the two levels Ey and E,, as we will discuss
in this chapter. The rates of change of the populations are given by atomic rate
equations, which contain both stimulated terms and relaxation or energy-decay
terms (and possibly also other kinds of pumping terms). Deriving the quantum
form for these stimulated and relaxation terms is the primary objective of this
chapter.

These atomic rate equations are of great value in analyzing pumping and
population inversion in laser systems. Solutions of the rate equations for strong
applied signals also lead to population saturation effects, which are of very great
importance in understanding the large-signal saturation behavior of laser ampli-

fiers and the power output of laser oscillators. Solving the atomic rate equations.

and understanding these solutions for some simple cases will therefore be the
principal objective of Chapter 6.

4.1 POWER TRANSFER FROM SIGNALS TO ATOMS

We will derive the stimulated transition rates for an atomic transition in this
chapter by examining the power.flow or the energy transfer between an applied
optical signal and an atomic transition. To get started on this, let us learn some-
thing about the rate at which power is transferred from an applied signal to any
material medium, including a collection of resonant oscillators or atoms.

4.1 POWER TRANSFER FROM SIGNALS TO ATOMS

FIGURE 4.1

applied & field.

Power Transfer to a Collection of ‘Oscillators: Mechanical Derivation

When an electric field £;(t) acts on a moving charge, it delivers power to (or
perhaps receives power from) that moving charge. In a single classical oscillator
(as in Figure 4.1), a purely mechanical argument says that the amount of work
dU done by a force f; acting on the electron, when the electron moves through
a distance dz is

dU = fydx = —e&, dx. (1)

The instantaneous rate at which power is delivered by the field to the classical
oscillator is then

du(t)

—dat = —e&,(t)

dz(t)
Tdt

dpg(t)
dt ’

=& (t) (2)
where p,(t) is, of course, the dipole moment of the oscillator.

If we sum this power flow over all the oscillators or atoms in a small unit
volume V, this result says that the average power per unit volume, dU, /dt,
delivered by the field to the atoms or oscillators is

NV
dUa -1 d/—"zi(t) dp (t)
=V @)) L= ==,
i OO RN ®)
This equation, although derived from a mechanical argument, is a very general
electromagnetic or even quantum-mechanical result. That is, this equation still
holds true whether p; () represents the sum of a large number of classical oscilla-
tor dipoles with a number density N, or whether p,(t) represents the effect of a

large number of quantum dipole expectation values proportional to a population
difference AN.

Time-Averaged Power Flow
To obtain the time-averaged power delivered to a collection of atoms by a

sinusoidal signal field, we can write the applied signal and the resulting polar-
ization in phasor form as

Ealt) = SIB@)F + B (w)e )

Mechanical model for a classical electron oscillator with an
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and
Pult) = SIP@) + P (e, %)

The steady-state sinusoidal polarization P(w) on an atomic transition will then
be related to the applied field by

P(w) = X(W)eE(w) = [ (w) + jxX" ()] eEw). (6)

(Remember that we use the host dielectric constant ¢ and not €o in this relation,
for the reasons explained in the previous chapter.)

If we substitute these phasor forms into Equation 4.3 and take the time
average (by dropping the e*2/** terms) we obtain a useful result for the average
power absorbed from the fields, by the atoms, per unit volume, namely,

au,
dt

=2 (BB - BP") = ~Seux (@) B@)P. (7

av

The most important point here is that the power absorption (or emission) by

the atoms depends only on the x”(w) part of the complex susceptibility ¥(w).
This is the “resistive” or lossy part of ¥(w), whereas x’(w) is the purely reactive
part.

The minus sign in the final term of Equation 4.7 merely means that if we
use the definition ¥ = x’ + jx”, then the quantity x” for an absorbing medium
will turn ot to be a negative number, as indeed we have already found for the
classical electron oscillator. (Some authors, attempting to avoid this minus sign,
use instead the definition that x = x’ — jx”.)

Poynting Derivation of Energy Transfer

The results for power transfer obtained above are in fact general electro-
magnetic results, having nothing directly to do with the particular atomic or
quantum process that creates the polarization p;(t). To verify this, let us carry
through a standard electromagnetic derivation of this same result, starting by
writing Maxwell’s equations

VxE&=-8b/ot, V xh=j+0d/ot,

(8)
d=¢e€+p, b=p(h+m),
and then substituting them into the vector identity
h-(VxE)—E-(Vxh)=V-(Exh). (9)

Note that all the vector quantities here, for example, £(r,t), are general vector
functions of space and time at this point.

Equation 4.9 can then be integrated over an arbitrary volume V, bounded
by a closed surface S as in Figure 4.2, using the additional vector identity that

/V-(£><h)dV=—/(£><h):dS, (10)
v S
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ds

FIGURE 4.2

Volume V' with a surface S for the evaluation of electromagnetic

power flow.

surface S

where dS is an inward unit vector normal to the surface S. Rearranging terms
then gives as a general formula

3 (L e A
/s(th) as=1 V(2601£| +Spoln) ) v

+/V(£-j)dV 1)

dp dm

We can give a physical interpretation to each term in this equation.

The surface integral on the left-hand side of this equation gives the integral
over the closed surface S of the inwardly directed instantaneous Poynting vector
€ x h. According to the standard interpretation of electromagnetic theory, this
Poynting integral gives the total electromagnetic power being carried by fields £
and h and flowing into the volume V at any instant.

The terms on the right-hand side of Equation 4.11 tell where this power is
going. The volume integral on the right-hand side of the first line is a purely
reactive or energy-storage term. It gives the instantaneous rate of increase or
decrease in the stored electromagnetic field energy terms %6082 and %,uoh2 in
the volume V. (These are vacuum energy density terms—that is, they do not
include any energy going into atomic polarizations p(t) or m(t) in the volume
V.)

The integral on the right-hand side of the second line gives the instantaneous
power per unit volume being delivered by the £ field to any currents 7, whether
these currents come from ohmic losses (j = c€) or any other real currents j(r,t)
that may be present in the volume.

The integral on the right-hand side of the final line of Equation 4.11 then
accounts for the instantaneous powers per unit volume &- (dp/dt) and poh-
(dm/dt) that are being delivered by these fields to any electric and magnetic
polarizations p(r,t) and m(r,t) that may be present, as a consequence of any
kind of atomic or material medium. The £ - (dp/dt) term represents in particular
the vector generalization of the simple mechanical derivation we gave at the
beginning of this section.

Reactive Versus Resistive Power Flow

Note that power transfer from the signal fields to these atomic polarization
terms does not necessarily mean this power is being dissipated in the atoms. If
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the medium has a purely reactive susceptibility, with x” = 0, then there can be
no time-averaged power transfer, because £(t) and p(t) will be 90° out of time-
phase, and the time-averaged value of the € - dp/dt term will be zero: energy
will flow from the signal into the medium during one quarter cycle, and back out
during the following quarter cycle.

The energy transfer into the polarization in this situation is basically reactive
stored energy, which flows into the atoms during one half-cycle and back out
during the following half-cycle. This reactive energy flow could be combined
with the first integral on the right-hand side of Equation 4.11. If this were done,
the expanded first term would become the time derivative of the more familiar
expressions 1¢|€|? and 2 u|h|?, which give the total electromagnetic energy stored
in a medium rather than in vacuum.

We can also see that the rate of change of polarization dp/dt in the € - dp/dt
term plays the same role as the current density j in the £-j term. It is sometimes
convenient to define a “polarization current density” j, by

Jp = dp/dt, (12)

which can be added to the real current density j in Maxwell’s equations. From
Chapter 3 we realize that this polarization current simply represents the sloshing
back and forth of the bound but oscillating atomic charge clouds that lead to the
oscillating dipole moments p(t) in each atom and to the macroscopic polarization
p(t) in the collection of atoms. To the extent that this current is in phase with the
£(t) term [that is, comes from the x”(w) part of the susceptibility], it represents
additional resistive loss or dissipation in the medium; to the extent that it is 90°
out of phase [the x/(w) part], it represents reactive energy storage.

Quality Factor

The absorptive susceptibility x” in an atomic medium can be interpreted
as a kind of inverse @ or quality factor for the ratio of signal energy stored in a
volume to signal power dissipated in that volume, in just the same fashion as the
Q factor is defined for a mechanical system or an electrical circuit. That is, the
time-averaged stored signal energy per unit volume associated with a sinusoidal
signal field in a host medium of dielectric constant € can be written as

1
Usig = -2-6|E|2. (13)

The inverse @ factor for this little volume can then be defined as

L _ energy dissipated _ 1 dU, _ —x". (14)

Q ~ wx energy stored wUgg dt

The dimensionless atomic susceptibility x”, as we have defined it in this text,
is thus essentially an inverse @ factor describing the average power absorption
per unit volume, by the atoms, from the signal. Of course for an amplifying
transition, this @ becomes a negative number.

For real laser transitions this @ is always very high, since in all practical laser
situations |x”| < 1. We usually think of a high @ value in a system as being in
some sense “good”. Here, however, a high @ means a weak susceptibility, and
hence a small gain in an amplifying laser medium, which is generally not what
we would like to have.

4.2 STIMULATED-TRANSITION PROBABILITY

Tensor Formulation of Power Flow

Real laser transitions may have a linear but anisotropic response, in which
the induced polarization must be described by a tensor susceptibility. To describe
the power transfer properly in this case we must employ a more sophisticated
form for the analysis in terms of the hermitian and antihermitian parts of this
susceptibility tensor.

To do this, we note that the full vector formula for instantaneous power
delivered per unit volume is

dUa (1)
dt

= £ - dp/dt. (15)

The time-averaged power flow in an atomic medium with a tensor atomic sus-
ceptibility x is then given by

dU,| _ jwe o e
=B xE-E - x'B'|=1%
il i x 1

1

3 3
T (X5 — X5:) By (16)

=1 j=1

where ¢ and j are both summed over the three directions z, y, 2. If x happens to

be an isotropic or even a diagonal tensor, then these sums reduce directly to our

previous scalar results. For a general anisotropic tensor susceptibility, however,

we must separate the complex tensor x not into its real and imaginary parts,

but into its hermitian and antihermitian parts, as given by
X = Xh + JXah, (17
where xp and X, are defined by
xv=(1/2)(x'+x) and  xan=(/2) (x' - x), (18)

with x' being the hermitian conjugate of x. Note that x» and xep are not
necessarily the same as the real and imaginary parts of , since x! and x are in
general not simply the complex conjugates of each other.

It can then be shown that the time-averaged power transfer is given by

dU,
dt

= —%NGE*(‘U)Xah(w)E(w)' (19)

av

In the general tensor case it is the antihermitian part jx,n of the susceptibil-
ity temsor, and not just the imaginary part x”, that is the resistive or power-
absorbing part.

4.2 STIMULATED-TRANSITION PROBABILITY

We will next use these results to derive a stimulated-transition probability, which
gives the stimulated-transition rate at which atoms make transitions back and
forth between quantum energy levels under the influence of an applied signal.
We will do this by considering the rate at which an applied signal will deliver
energy to a collection of real quantum atoms, and the manner in which these
atoms can accept this energy.
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FIGURE 4.3
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Energy levels and level populations in an atomic system.
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Energy Transfer From Signal To Atoms

We have learned that when a sinusoidal signal field E(w) produces a steady-
state polarization P(w) on a transition in a collection of atoms, the time-averaged

power transfer per unit volume from the signal to the atoms must be given by
dU, _ 1 " 2
= 5w ") BP, (20)

where the susceptibility for a homogeneous lorentzian atomic transition is given
from the previous chapter by

3 ANyeal® 1 o
4?2 Aw, 1+ [2(w—w,)/Awg]?’ (21)

') =

(For an inhomogeneous gaussian transition exactly the same expression as Equa-
tion 4.21 would apply, except that the homogeneous linewidth Aw, would be
replaced by the inhomogeneous linewidth Awyg; the lorentzian frequency depen-
dence would be replaced by a gaussian; and an additional factor of v In2 ~ 1.48
would appear in front.)

The rate of energy transfer from the signal to the atoms can thus be written
in the general form

dUs _ | 3" ead we| BI2A®
dt |87 Aw, 1+ [2(w — wa)/Aw,]

S| (Vi =1y). (22)

Note that this energy absorption is directly proportional to the population dif-
ference AN = Ny — Ns.

Energy Storage by the Atoms

Now, what will the atoms do with this energy, or how can they accept this
energy from the applied fields? From a quantum viewpoint, the total oscillation
energy stored in a collection of atoms is given by the number of atoms N; in
each quantum energy level, times the energy eigenvalue E; associated with that
level, summed over all the energy levels Ej, as in Figure 4.3. In a collection of
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identical two-level atoms, for example, the total oscillation energy density U,
(energy per unit volume) is given by

Ua(t) = Ni(t) E1 + Na(t)Eo, (23)

where N; and N, are the populations in levels E; and E,. More generally, the
total energy in a collection of multilevel atoms is the sum over all levels

M
Ua(t) = 3_ Ni(t)E;. (24)

Since the energy eigenvalues E; are fixed quantities, if the collection of atoms is
to accept energy the level populations N; must change, with atoms flowing from
a lower energy level to a higher energy level.

In the classical oscillator model the energy of each oscillator was associated
with the internal oscillatory motion |z(#)|?. In a quantum description, however,
the internal energy of each atom must be calculated from the level populations
and energy eigenvalues as above. These two descriptions are not unrelated—for
example, we noted earlier that an atom in a mixture of populations at levels E;
and E, has an internal oscillating dipole moment g(t) at the transition frequency
wa; that is associated with that mixture of populations.

In any event, if energy is to be delivered from a signal to a collection of atoms,
the only way in which the atoms can accept this energy and change their total
internal energy U,(t) is by changing the populations N;(t) in the collection of
atoms. The signal field, as we have seen in the previous chapter, induces a dipole
moment in each atom, and thus produces a coherent macroscopic polarization
proportional to the population difference AN = N; — N,. But, it must also cause
the quantum state of each individual atom to begin to change in such a way that
the populations N;(t) and Na(¢) in the collection of atoms also begin to change.

Stimulated Transition Probabilities

We can emphasize this point by rewriting Equation 4.22 in the alternative
form

dU,
dt

where either of the quantities Wishw, = Wa;hw, corresponds to the collection of
factors inside the set of square brackets in Equation 4.22. By rewriting Equation
4.22 in this alternative form, however, we make the energy flow from the signal to
the atoms seem to be produced by two flows of atoms, one upward from level 1 to
level 2 at an upward stimulated-transition rate given by W15 Ny (units of atoms
per second), as shown by the upward arrow in Figure 4.4; plus an opposite flow
of atoms downward from level 2 to level 1 at a downward stimulated-transition
rate given by Wa1 Na.

In other words, the energy transfer from the signal to the atoms, as given by
Equation 4.25, can be aceounted for by a net flow rate of atoms across the gap,
upward minus downward, given by

= Wi2N1hw, — Wa1 Naohw, (25)

dN,

AL
dt

= —ETI = WiaNy — Wa1 Ny, . (26)
stim stim
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FIGURE 4.4
Upward and downward stimulated transi-
tions between two energy levels.
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as illustrated in Figure 4.4. Both of these flow rates are expressed in units of
atoms per second. To get the net energy flow, each of these rates must be mul-
tiplied by the transition energy or photon energy fwg, since each transit of one
atom across the energy gap represents a net absorption or emission of one quan-
tum of energy by the atoms.

The quantities W12 and Wy, are then referred to as the upward and downward
stimulated-transition probabilities, per atom and per unit time, produced by the
applied signal acting on the lower-level and upper-level atoms, respectively. By
equating Equations 4.22 and 4.25, we can see that these stimulated-transition
probabilities are given by -

3*  Yrad €| E2A3
= Wy = S . 2
Wiz =Wa1 = g FAwe T4 B — wa/Baa] (27)

With this interpretation we may say that the applied signal gives each atom in the
lower level E; a probability W2 per unit time of making a stimulated transition
to the upper level, absorbing a quantum of energy in the process; similarly, the
applied signal gives each atom in the upper level an equal probability Wa; per
unit time of making a transition downward to the lower level, giving up one
quantum of energy to the signal in the process.

Equations 4.25 through 4.27 provide an important and general result, some-
times referred to as “Fermi’s Golden Rule”, which is usually derived only with
the aid of quantum theory. We have obtained the correct quantum answer, how-
ever, from a simple energy argument, thus further illustrating the power of the
classical oscillator arguments used in this text. The reader might reasonably ask,
however, since W1, = Wa1, why didn’t we describe them both by a single symbol?
The answer is, first of all, that later on in writing multilevel rate equations it may
help to keep various terms straight if we use W;; to mean a transition probability
from level 7 to level j, and Wj; to mean the same transition probability in the
reverse direction. In addition, there are some slight additional complications for
the rate equations between degenerate energy levels, as we will see in a moment.
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Quantum Description of Stimulated Transitions.

These signal-stimulated transition rates for atoms between two energy lev-
els are often described in simplified fashion as a process in which the applied
signal causes individual atoms to make discrete jumps back and forth between
the two levels under the influence of the applied signal, exchanging one photon
with each jump. This is the “billiard-ball” or photon model of laser amplification.

A much more correct description, however, even in quantum theory, is to
say that each individual atom in the collection of atoms, rather than making
a discrete “jump” or transition from one level to the other, in fact really only
changes its quantum state by a small amount in response to the applied signal.
We have pointed out earlier that the quantum state of an atom involved in a
transition between two levels Ey and E; can be written in the general form

B(r,t) = G (t)e 1 Moy (1) + ay(t)e " E2t/ Bapy(r). (28)

where the expansion coefficients @, (t) and dp(¢) are constant (stationary) in the
absence of an applied signal. The time evolution of this quantum state in each
individual atom in the presence of an applied signal must then be calculated in a
proper quantum analysis by solving the Schrodinger equation of motion for the
atom in the presence of the signal field.

The net result of such a calculation will be that, under the influence of an
applied signal, the expansiorn coefficients a; (¢) and Gx(t) of each individual atom
will begin to change slowly but continuously with time. In other words, the
quantum state makeup of each individual atom will begin to shift by a small but
continuous amount from quantum state 1, towards quantum state 1, or vice
versa. The probability of finding each atom in one level or the other begins to
change by a small amount; and when these probabilities for individual atoms are
averaged over the entire collection, it appears as if the population in one level
has decreased and in the other has increased.

For many purposes, however, it is acceptable to summarize the results of this
calculation by simply saying that, in the presence of an applied signal, atoms
begin to make stimulated transitions or jumps back and forth between the two
levels E; and E,, thus changing N;(t) and N»(t). The final result averaged
over the collection of atoms is basically the same whether we think of each
individual atom changing its quantum state by a small amount (which is what
really happens), or whether we think of a small fraction of the atoms making
discrete “jumps” from one level to the other (which is how the situation is often
described).

General Atomic Transition With Degeneracy

To take care of the more general case in which we have transition rates
between two arbitrary energy levels E; and E; > E;, where these levels may
have degeneracy factors g; and g;, we must note that the complex susceptibility
on such a transition is given by

3 YradgiMy  [(9i/9:)Ni — Ny
A2 Aw, 1+ [2(w— wji)/Awa,,'j]"”

() = - (29)
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Hence, the power transfer from signal to atoms can be written, first in electro-
magnetic form, and then in rate-equation form, as

@[5 s Bl (5 )
dt 812 Awg 1+ [2(w—wa)/Awa]?| \ gi (30)
= W;; Nihwji — WjiNjhw;i.

By equating these two forms, we see that thergeneral expression for the stimulated
transition probabilities in this case becomes

* F. 1223,
i_ “Yrad,ji EIE'Jl ’\1_1 - (31)
8mw2 hAwa’,;j 1+ [2(&) - wj;)/Awa,,-j]

Wj,' = &W,‘,]‘ =
9;

where Eij is the electric field of the applied signal on the ¢ — j tfam{ition.
Again the flow of atoms upward from level E; to level Ej; is given by. 13he
number of atoms in the lower level N; times an upward stimulated-transition
probability W;;, and the quantity Wj; is similarly the p'ro‘bability of an upper
level atom being stimulated to make a downward transition. The stimulated-
transition probabilities W;; and Wj; in the two directions are, however, related

in general by
9iWi; = g;Wii. (32)

A very fundamental point is that the stimulated-transition probabilities in the
two directions are still identical, except for the minor complication of the degen-

eracy factors g; and g;.

Fundamental Properties of the Stimulated-Transition Probabilities

From Equations 4.27 or 4.31, the important physical parameters involved

in these signal-stimulated transition probabilities W;j and Wj; are evidently

o The applied signal strength, or the signal energy per wavelength cubed,
as measured by ¢|E|2)3.

o The relative strength of the atomic transition, measured by its radiative
decay rate or Einstein A coefficient, Yrad-

o The inverse atomic linewidth, 1/Aw,.

o The frequency of the applied signal w relative to the atomic transi-
tion frequency w,, as measured by the atomic lineshape. Applied signals
tuned away from line center are less effective in producing stimulated
transitions.

e And, finally, the tensor alignment between the applied field and the
atoms, as measured by the factor 0 < 3*<3.

For an inhomogeneous gaussian transition the formulas in Equations 4.27'or
4.31 must be modified by replacing 1/Aw, by 1/Awg; replacing the lorentzla-n
frequency dependence by a gaussian; and adding a factor of V7In2 =~ 1.48 in
front.

4.3 BLACKBODY RADIATION AND RADIATIVE RELAXATION

Note also that in the preceding analysis we speak of the upward and down-
ward' stimulated rates Wi2N; and Wy N2 as if they were separate and dis-
tinct processes. It is, however, only the net transition rate between levels,
Wi1aN; — Wa1 Na, that really counts. There is no way to “turn off” one of these
rates and produce only the other one. They are physically identical or at least
physically inseparable.

The transition rates discussed in this section are called stimulated transition
rates because they are caused by applied signals producing changes in the pop-
ulations N1(t) and Np(t). Populations of atomic levels also change with time
because of pumping effects, and because of energy decay or relaxation transi-
tions between the levels. These relaxation processes produce additional terms in
the rate equations, which we must describe in subsequent sections. The stimu-
lated and relaxation terms must be added together in the total rate equations
to describe how the populations change with time.

REFERENCES

Nearly all the discussions in this book will speak of atoms being acted upon by optical
fields that are part of some traveling wave or beam of light. The atoms really respond,
however, to the local E field strength of the optical signal (at least in an electric-
dipole transition), without caring whether these fields are part of a propagating wave
or perhaps of an evanescent field distribution, as in frustrated total internal reflection,
or in the evanescent fields outside the core of an optical fiber. Experiments to show that
the stimulated-transition probability is in fact exactly the same either for propagating
photons or for evanescent fields have been carried out by C. K. Carniglia, L. Mandel,
and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc.
Am. 62, 479-486 (April 1972).

4.3 BLACKBODY RADIATION AND RADIATIVE RELAXATION

The next objective in this chapter must be to understand how thermal fluctua-
tions, or blackbody radiation fields, can also cause stimulated transitions between
atomic energy levels. We will then go on to show how these “noise-stimulated”
transitions are related to the spontaneous emission or radiative decay processes
we have discussed earlier, and how they provide a very important part of the
relaxation processes in an atomic system.

Blackbody Radiation Density

One of the most basic conclusions of thermodynamics is that any volume
of space that is in thermal equilibrium with its surroundings must contain a
blackbody radiation energy density, made up of noise-like blackbody radiation
fields. Furthermore, the magnitude of these fields depends only on the tempera-
ture of the region and of its immediate surroundings and not at all on the shape
or construction of the volume (provided only that the volume is large compared
to a wavelength of the radiation involved). The electromagnetic fields that make
up this blackbody radiation energy are real, measurable, broadband, noise-like
E and H fields, with random amplitudes, phases, and polarization, which are
present everywhere in the volume.
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FIGURE 4.5
Measurement of the blackbody f
radiation fields inside an arbitrary /

enclosure.

The amount of blackbody radiation energy per unit volume that is present
within a region at temperature Traq, at frequencies within a narrow frequency
range dw about w, is given in fact by the blackbody radiation density

8 hdw

In more precise terms, dUpb;/dw is the spectral density of the blackbody radiation
energy, i.e., the amount of energy per unit volume and per unit frequency range
centered at frequency w. We write the temperature as T;,q in this expression
to indicate that it is the temperature of the “radiative surroundings” of this
region—that is, the temperature of the nearest electromagnetically absorbing
walls or boundaries—that determines the blackbody radiation energy density in
the region.

The energy density dUpp, in.any narrow frequency range dw will have asso-
ciated with it a mean-square electric field intensity d|Epb:|? given by

€ ~
dUpp: = 3 d| By |2 (34)

That is, there will be real measurable electric fields of noise-like character associ-
ated with the blackbody energy within the frequency range dw, and these fields
will have a root-mean-square phasor amplitude Eyp, given by

16m hdw

~ 2 — e e
d|Evie|® = A3 exp(hw/kTiaq) — 1

(35)
With a sensitive enough antenna or probe and a receiver with a low enough
noise figure (Figure 4.5), these noise-like fields can be detected and measured as
a function of center frequency w and temperature 7,4 inside the enclosure.

Blackbody-Stimulated Atomic Transitions

Any atoms that may be present in the region under consideration are then
exposed to these entirely real though noise-like Ebb, fields. These E fields will in
fact act on the atoms just like signal fields, and will cause stimulated transitions
and power absorption at exactly the same rate as would be caused by any other
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blackbody radiation
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atomic transition

FIGURE 4.6

atomic transition.
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applied signal fields with the same mean-square amplitude. We can calculate
the stimulated-transition rates that will be caused by these blackbody radiation
fields by means of the following argument.

Figure 4.6 illustrates how the broadband continuum spectral distribution of
the blackbody noise fields will overlap with the narrow atomic lineshape of a
typical atomic transition. The amount of stimulated-transition probability dW;s
that will be caused in a two-level atomic system by those blackbody radiation
components lying within a small frequency bandwidth dw centered at w within
the atomic linewidth will then be given (for a lorentzian transition) by exactly the
same stimulated-transition probability expression as was derived in the previous
section, namely,

3* € d|Eyp:|223
dW12,bbr = dWay bbr = Jrad | Bt

872 hAwe 1+ 2(w — wa)/Awa]?’ (36)

with d|Eyp:|? given by Equation 4.35. Because these blackbody E fields will be
randomly polarized, the 3* factor will have an averaged value of unity; so we will
drop it from here on.

The total transition rate on the 1 — 2 transition due to blackbody radiation
fields at all frequencies is then easily calculated by integrating the contribution
from each narrow range dw, as given by Equation 4.36, over all the blackbody
signals that are present at all frequencies, in the form

Wiz bbr = Wai,bbr = / dW12,5bc
(37)
/ *° [radiation density] 9 [transition response] dw

_oo | at frequency w at frequency w

For any reasonable atomic transition, the atomic linewidth will always be very
much narrower than the blackbody spectral distribution, as in Figure 4.6. It is
then an entirely valid approximation to give the blackbody distribution function
its value at the line center, w = w,, and take it outside the integral over dw. The

Blackbody radiation spec-
trum, and the absorption
spectrum of a single narrow
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integral of Equation 4.36 over the lineshape then reduces to the simple form

W —-W _ Yrad /oo 2 dw
12,bbr = 21,00y = o (Awa /KT rad) — 1 J o TAwa 1 + [2(w — wa)/Awa]?’
(38

But the integral on the right-hand side of this equation has unity area indepen-
dent of its linewidth Aw,; hence we obtain the very simple and fundamental
result that

Yrad
Wi2,bbr = Wa1,bbr oxp{hon [FToad) =1 (39)
These blackbody-stimulated transition rates turn out to be independent of any
properties of the atomic transition except its radiative decay rate Yraq.

The very basic result that we obtain here is thus that the stimulated transition
rate between any two atomic levels caused by blackbody fields depends only on
the.radiative decay rate for that transition, and on the Boltzmann factor at the
temperature of the radiation, and on nothing else. In particular this result does
not depend at all on the linewidth, or even the lineshape, of the transition.

Power Absorption from the Surroundings?

This argument says that even without any externally applied signals,
thermal-noise-stimulated transitions or “jumps” will be continually taking place
in both directions between any two energy levels E; and E,, with stimulated-
transition probabilities Wiz pb: and Waj pb: given by Equation 4.39. More pre-
cisely, for two energy levels E; and E; > E; having level degeneracies g; and g,
respectively, these thermally stimulated transition rates will be given by

gi _ Yrad,ji
W]t,bbr = g_jwu,bbr = exp(hwj,-/kde) 1 (40)
These transitions are caused entirely by the unavoidable blackbody radiation
fields in which the atoms are always immersed (unless the electromagnetic sur-
roundings can be cooled all the way to absolute zero).

But this in turn implies that there will necessarily be net power absorp-
tion, proportional to the atomic population difference AN = N; — N, from
the blackbody fields to the atoms. In other words, the blackbody fields will be
continuously delivering energy, or heat, to the atoms through these stimulated
transitions. But this in turn raises serious questions about thermal equilibrium
between the atoms and the surroundings. How can a collection of atoms, which
are nominally in thermal equilibrium, remain in equilibrium if they are contin-
ually absorbing energy from their surroundings? Even more serious, how can a
collection of atoms which are supposedly at an atomic temperature Ty, (defined
by the Boltzmann ratio) continually absorb energy from surroundings that might
be at a different thermodynamic temperature T;,4—especially if the surrounding
temperature T;,4 might in some cases be colder than the atomic temperature 7,7

Power Emission to the Surroundings

The answer to these questions comes in remembering that there will also
be in any atomic system purely spontaneous and entirely downward transitions,
due to the spontaneous emission or radiative decay from the upper-level atoms;

4.3 BLACKBODY RADIATION AND RADIATIVE RELAXATION

and these spontaneous transitions or purely radiative decays will transfer power
from the atoms back to the electromagnetic surroundings, with a spontaneous
decay rate given by ¥;ad.

These spontaneous downward transitions in the atoms are to be viewed
as genuinely “spontaneous” and not as “noise-induced” transitions, at least in
the approach we are taking here, since they simply occur spontaneously in a
manner explainable only by quantum theory. However, we will see that these
spontaneous-emission transitions from the atoms to the surroundings can and
do exactly balance the noise-stimulated absorption from the surroundings to the
atoms, when the atoms are in thermal equilibrium with their electromagnetic
surroundings. (Some people find it helpful to describe the spontaneous down-
ward transitions as being “one-way stimulated transitions” which are stimulated
by quantum zero-point fluctuations in the electromagnetic field; but we will not
get involved in that argument here.)

Thermal Balance with the Electromagnetic Surroundings

Figure 4.7 shows schematically the overall transfer of energy that takes
place in both directions between a collection of atoms and their “electromag-
netic surroundings,” through stimulated absorption and emission of blackbody
radiation, plus spontaneous emission of energy from the atoms to the surround-
ings.

Each arrow in Figure 4.7 indicates the direction and magnitude of an energy
flow. The ratio of energy flow from the atoms into the surroundings caused by
blackbody-stimulated plus spontaneous emission, compared to enérgy flow in the
reverse direction due to blackbody-stimulated absorption, is given by

energy flow out of atoms  (Wa1,bbr + Yrad) V2
energy flow into atoms Wi2,bb: N1

(41)
_ W21,bbr + Yrad « EZ_
Wiz, bbr N

Now, the population ratio in a collection of two-level atoms can be described at
any instant by an “atomic temperature” T,, in the sense that the Boltzmann
ratio between the energy-level populations is given by

N, hwq

=2 -2, 42

= exp ( e (42)
At the same time, by using Equation 4.39 the ratio of spontaneous and noise-
stimulated emission rates to noise-stimulated absorption rates is related to the
temperature Tr,q of the electromagnetic surroundings by

W21,bbr + Yrad = exp ( hwa )
Wiz, bbr kTrad

(43)

The ratio of the energy flow rates in the two directions is thus given, in terms of
the temperatures of the atoms and the surroundings, by

energy flow out of atoms _ > ( hw, hwa) (44)

energy flow into atoms KTrad KT,
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FIGURE 4.7

The blackbody radiation fields inside any volume whose surroundings are at
temperature Traq will produce stimulated transitions, and thus power absorp-
tion, in a collection of atoms; the atoms in turn will radiate power back to
the surroundings through spontaneous emission.

These rates will be equal and opposite if and only if the atomic temperature T,
exactly equals the surrounding electromagnetic temperature Trad-

The net energy received by the atoms from the blackbody fields will thus, at
thermal equilibrium, exactly equal the energy radiated back to the surroundings
by the atoms. There will be no net flow of atoms between levels E; and E2, and
no net power transfer between atoms and surroundings—as should certainly be
the case at thermal equilibrium.

Discussion: Thermal Equilibrium

There are several very fundamental conclusions that can be drawn from
the preceding analytical results. First, the existence of a spontaneous, purely
downward emission in any collection of atoms appears to be essential, if for no
other reason than to maintain energy balance with the atomic surroundings at
thermal equilibrium. A collection of atoms in thermal equilibrium at any finite
temperature will always have a net power absorption on its atomic transitions;
and the volume containing these atoms will always have finite blackbody signals

4.3 BLACKBODY RADIATION AND RADIATIVE RELAXATION

to be absorbed by the atoms (unless the surroundings are at absolute zero). The
atoms will therefore always absorb energy from the blackbody fields, producing
a net flow of atoms into the upper energy levels.

These upper-level atoms must then spontaneously drop down and radiate
away energy at a rate given by 7;aq times the number of atoms in the upper level.
This energy reradiation will exactly equal the energy that the same atoms in-
evitably absorb from the blackbody radiation fields in which they are immersed,
if the atoms and the surroundings are at the same temperature.

In the more general situation, the atomic temperature T, of a collection of
atoms and the electromagnetic temperature Traq of their surroundings might be
different, at least on a temporary basis. That is, the atoms might be in inter-
nal thermal equilibrium at a temperature T,, in the sense that all the phases
of individual atomic oscillations are fully dephased or randomized, and all level
populations satisfy the Boltzmann ratios with this temperature value. This tem-
perature might, for example, be relatively hot because the atoms have been im-
mersed in a hot environment. These atoms might then be suddenly moved into
an enclosure which has walls at a substantially colder (or hotter) temperature
Traq-

The atoms will now form one thermal reservoir at temperature T, and the
walls and the blackbody radiation will form another reservoir at Tpaq # T,.
Whichever is hotter, energy will flow from the hotter system to the colder. The
total system will eventually come to a thermal equilibrium at some temperature
in between the initial temperatures, depending on the relative heat capacities
of the two systems. This kind of “atomic transition calorimetry” can in fact be
carried out experimentally, on nuclear magnetic transitions, for example.

Detailed Balance

Overall thermal equilibrium requires, in fact, that the blackbody absorption
and spontaneous emission rates be in exact equilibrium transition by transition,
for each one of the E; — Ej; pairs in a collection of multilevel atoms. This neces-
sity for the net absorption and spontaneous emission to be in balance on each
individual transition at thermal equilibrium is sometimes referred to as “detailed
balance.” Detailed balance applies, in fact, not just transition by transition, but
also frequency component by frequency component within any single transition:
the net absorption rate by the atoms at any frequency w and the spontaneous
emission in a very narrow range dw about that same w must also balance. An
atomic transition must, therefore, by fundamental thermodynamic arguments,
have exactly the same atomic lineshape for spontaneous emission as it does for
stimulated absorption, whether this lineshape be lorentzian, gaussian, or what-
ever.

The simple relationship derived in Equation 4.39 between W;; pbr and 7raq,ji
is therefore hardly accidental. This relation is rather a basic and necessary con-
dition for thermal equilibrium to ensue. The same relation between W;; b and
Yrad,ji must hold generally for any kind of stimulated transition, with any line-
shape or form of tensor response, and any order of electric or magnetic dipole
or multipole character. The direct proportionality we noted earlier between the
stimulated response x(w) and the spontaneous emission rate ;.4 for an atomic
transition is also a necessary consequence of the balance between net blackbody
absorption and spontaneous emission that is required to reach thermal equilib-
rium.
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Stimulated atomic transitions,
spontaneous emission, and
blackbody radiation are con-
nected by the right sort of circu-
lar argument: given any two of noise-stimulated
them we can calculate the third. transitions

The logical arguments we have developed here might be represented by Figure
4.8. The stimulated-transition circle indicates the processes of noise-stimulated
absorption and emission in a collection of atoms. These noise-stimulated pro-
cesses can be derived by a semiclassical derivation—that is, a derivation in which
the atoms are quantized but the electromagnetic fields are not. The blackbody-
radiation and spontaneous-emission circles then indicate the existence of these
two phenomena, either of which can be derived independently of the other, but
only by employing a full quantum electrodynamic calculation in which the elec-
tromagnetic field itself is quantized.

The connecting arrows then indicate that we can-use the existence of any
two of these phenomena, plus the criterion of thermal equilibrium, to derive
the existence and magnitude of the third. It is a matter of choice, for example,
whether we begin with the existence of blackbody radiation, and then use this
to imply the necessity for spontaneous emission; or whether we take some other
direction around the circle. Any two of these processes imply the third.

REFERENCES

An early paper which develops almost exactly the same argument as in this section is
R. C. Tolman, “Duration of molecules in upper quantum states,” Rev. Mod. Phys. 23,
693-709 (June 1924). This paper is interesting and instructive to read even now because
of how clearly Tolman understands (and presents) the fundamental ideas, despite the
confusion over the quantum theory which still prevailed in 1924; and also because he
mentions experimental evidence which confirms the theory. Tolman also clearly foresees
the possibility of coherent. “negative absorption” and hence laser amplification.

Problems for 4.3

1. Thermal equilibration in a two-level atomic system: purely radiative case.
Suppose a collection of two-level atoms has a specified radiative decay rate Jraq,

4.4 NONRADIATIVE RELAXATION

and no nonradiative decay, yar = 0. The atoms are pre-cooled to absolute zero for long
enough to come into equilibrium with N2 = 0, and then are suddenly moved at t = 0
into an enclosure with walls held at a finite temperature Trad. Find formulas for the
populations Ni(t) and N2(t), and for the temperature To(t) of the collection of atoms
for t > 0.

4.4 NONRADIATIVE RELAXATION

The total energy-decay rates for quantum energy levels in atoms can involve both
radiative and nonradiative transfer of energy from atoms to their surroundings.
In a broader viewpoint, therefore, we must really be concerned with the total
atomic relaxation processes that result from interactions between the atoms and
their thermal surroundings, both through electromagnetic or “radiative” inter-
actions and through nonelectromagnetic or “nonradiative” interactions. In this
section we will try to make clear how an atomic transition interacts with both
its electromagnetic and its nonelectromagnetic surroundings; how these interac-
tions lead to both radiative and nonradiative decay; and how these in turn lead
to two different but similar kinds of relaxation transitions associated with these
two mechanisms.

Radiative Relaxation Rates and Transition Probabilities

In the preceding section we obtained the remarkable and very fundamental
result that blackbody radiation from the “electromagnetic surroundings” of a
nondegenerate two-level atom will cause “blackbody stimulated transitions” with
upward and downward transition probabilities given by

Yrad
= r = _—-_—7 4
Wiz,bbr = Wai,bb exp(fiwa/kTraq) — 1 )

where T4 is the temperature of the electromagnetic surroundings. This is a very
fundamental relationship. We can view it as being imposed by the necessity for
thermal equilibrium between the rate at which an atom spontaneously radiates
energy and the rate at which it absorbs energy from blackbody fields.

The transition rates Wig pb: and Way pb: are thus from one viewpoint stim-
ulated transitions caused by the real (if weak), random, omnipresent blackbody
radiation fields. The existence of these fields depends only on the temperature of
the surroundings, however, and on nothing else. There is nothing we can do in
practice to control or modify these blackbody fields (short of cooling everything
in the vicinity down toward absolute zero). Hence we may just as well think of
the blackbody-stimulated transition rates as being part of the relaxation mecha-
nisms which are always present among the atomic-level populations, independent
of anything that we ourselves do.

In earlier chapters we spoke for simplicity only of energy decay, i.e., only of
spontaneous downward relaxation from upper levels to lower levels. The possi-
bility of “upward relaxation,” caused by energy coming back from the thermal
surroundings to the atoms, was not mentioned. We are now seeing that, in a com-
plete and accurate description, when an atom is coupled to external surroundings
it can do more than just relax downward and give energy to those surroundings,
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as we said earlier. It can also (but with inherently lower probability) receive
energy from its thermal surroundings and be lifted or relaxed upward in energy.
This is directly related to the fact that in thermal equilibrium there are always
some numbers of atoms, given by the Boltzmann ratios, in upper energy levels
(though these may be very small numbers). At any temperature greater than
absolute zero, the atoms never relax completely into the lowest energy level, as
would always happen if only downward relaxation occurred.

Of course, for optical-frequency transitions at room temperature, the Boltz-
mann ratio is enormously small (= 10~%¢). Both the upper-level populations and
the upward relaxation rates are truly negligﬂ)le, and only downward relaxation
need be considered. For lower frequencies and mere closely spaced levels, how-
ever, Boltzmann ratios and upward relaxation rates do need to be taken into
account, and therefore we do need to understand the full situation described
here. For microwave and lower-frequency transitions, in fact, the Boltzmann ra-
tio becomes nearly unity, and upward and downward relaxation rates become
very nearly equal.

Nonradiative Relaxation Rates and Transition Probabilities

Blackbody relaxation and energy-exchange mechanisms represent, however,
only the interactions of the atoms with their electromagnetic surroundings, acting
through the blackbody radiation and the radiative decay rate. These interactions
are shown in a schematic form in the top part of Figure 4.9.

We must recognize, however, that real atoms will usually also be in thermal
contact with what we will refer to, in general terms, as “other surroundings”
or “nonradiative surroundings,” as shown schematically in Figure 4.9(b). These
nonradiative surroundings, to which the atoms can also be coupled, can include
a crystal lattice in which the laser atoms are imbedded; or a surrounding liquid
medium in which the laser molecules are dissolved; or other atoms or walls with
which the atoms of interest are colliding in a gas.

The atoms may then exchange energy with these “nonradiative surroundings”
by means of the nonradiative decay processes that are included in the nonradia-
tive decay rate vy, in essentially the same way as the atoms exchange energy
with the “electromagnetic surroundings” through the purely radiative processes
that are involved in 7;aq. But this necessarily implies, from the same kind of
thermodynamic reasoning we employed earlier, that these “nonradiative sur-
roundings” must also be able to cause “nonradiatively stimulated transitions”
between the atomic levels, with stimulated-transition probabilities Wi n, and
Wa1,nr, in a manner exactly analogous to the blackbody transitions Wiz pb: and
Wai,bbr described earlier.

These additional transitions we will refer to generally as nonradiative relax-
ation transitions. The basic physics involved in the nonradiative interaction of
a collection of atoms with their “nonradiative surroundings” will then be the
same in every important aspect as that of the radiative interaction of these same
atoms with their electromagnetic surroundings.

Example: Phonon Interactions in Crystal Lattices

As a specific example of this, let us consider the interaction between a
collection of laser or maser atoms and the lattice vibrations in a surrounding host
crystal lattice, since this is one important type of “nonradiative surroundings.”

4.4 NONRADIATIVE RELAXATION
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FIGURE 4.9

(a) Interaction of a collection of atoms with the “electromagnetic surroundings” only.

(b) Interaction with both “electromagnetic” and “nonradiative” surroundings (which may
in general be at different temperatures). (c) Interaction with both of these types of sur-
roundings, and with an externally applied signal.
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A crystal lattice containing laser atoms can propagate acoustic waves, often
referred to as phonons, at many different frequencies and in many different di-
rections, just as a vacuum or dielectric medium can propagate electromagnetic
waves, or photons. Moreover, like electromagnetic waves, these acoustic waves
can interact with atomic transitions of atoms contained in the crystal lattice,
and can produce stimulated transitions and induced atomic responses.

That is, there will generally be some weak coupling or interaction between the
quantum wave function of an atom imbedded in a crystal lattice and the acoustic
vibrations in the surrounding crystal lattice. This coupling is very analogous to
the weak electric-dipole coupling between the atomic wave functions and the
electromagnetic vibrations (fields) in the surrounding electromagnetic “ether.”
The basic physical principles that apply to electromagnetic interactions with
atoms therefore apply in almost exactly the same way to what we may call
generalized acoustic interactions with the atoms.

For example, a coherent acoustic signal in the form of a lattice vibrational
wave at a frequency w near an atomic transition frequency w, can be absorbed
or amplified through its interaction with the atoms, just like an electromagnetic
wave; and this absorption or amplification of the acoustic wave will depend on the
atomic population difference (and the atomic linewidth and lineshape) exactly
like an electromagnetic wave interaction. It is entirely possible to use an inverted
atomic population to amplify acoustic waves and to produce acoustic-wave os-
cillation in a crystal at the atomic transition frequency. Such “acoustic lasers”
or “acoustic masers” have been experimentally demonstrated at microwave fre-
quencies, using some of the same pumping methods and maser materials used to
produce electromagnetic maser oscillation at the same frequencies on the same
transitions.

Acoustic Transition Rates

Of more importance to us here is the fact that at any finite temperature
such a crystal lattice will have thermal lattice vibrations, or “blackbody acoustic
radiation,” which is exactly analogous in character to blackbody electromagnetic
fields (although the appropriate energy density formulas are somewhat different).
These thermally induced vibrations represent the heat content of the crystal
lattice, and as such can be characterized by a lattice temperature which we
will label more generally as Ty, with the subscripts standing for “nonradiative
surroundings”. The lattice vibrations of course go to zero only if the lattice
temperature T, itself goes to absolute zero.

A critically important point is that the atoms will then be affected by these
thermal lattice vibrations in the surrounding crystal, in basically the same way
that they are affected by the blackbody radiation in the electromagnetic sur-
roundings. To describe this interaction we must use exactly the same arguments
as for the electromagnetic surroundings, but now we refer to interactions with
the “nonradiative” or lattice surroundings rather than with the “electromagnetic
surroundings.”

Generalized Nonradiative Interaction Processes

In fact, by invoking the necessity for detailed thermal balance in the energy
transfer processes between the atoms and the lattice acoustic modes, we can
argue that these acoustically stimulated transition rates Wis o, and Wa; o must

4.4 NONRADIATIVE RELAXATION

be related to the nonradiative decay rate -yn, by exactly the same fundamental
relationship as Equation 4.45 for the radiative case, namely,

“nr

W, =W: =—
12,nr 21,nr exp(hwa/kTm) 1

(46)

Only if these relations hold will the power delivered to the atoms by the sur-

rounding lattice through the Wja o, and Wy o transitions always be exactly.

balanced, under thermal equilibrium conditions, by the power delivered from
the atoms back to the nonradiative lattice surroundings through -y,,. This equa-
tion applies, in fact, in a completely general fashion, not just to the interaction
of atoms with acoustic lattice surroundings in crystals, but also to the nonradia-
tive interactions of a collection of quantum atoms with any kind of nonradiative
thermal surroundings.

That is, suppose the upper-level atoms in a collection of atoms do in fact
lose some of their excitation energy by transferring energy into any kind of
“nonradiative surroundings,” whether to a surrounding crystal lattice or cell
walls, or by collisions with other atoms in a gas mixture. Suppose this energy
loss rate is described by a nonradiative decay rate -y,, times the upper-level
population, and that the surroundings which receive this energy are describable
by a temperature T,.

These other surroundings must then necessarily produce upward and down-
ward thermally stimulated transitions on the same transition in the collection
of atoms, with thermally stimulated transition probabilities Wiz nr and Way nr
exactly as given by Equation 4.46. We use the notations Wy, and Ty, in this
equation, and in Figure 4.9(b), to emphasize that the net interaction with any
“nonradiative thermal surroundings” is completely analogous to the interaction
of the same atoms with the blackbody radiation surroundings, even though elec-
tromagnetic radiation and blackbody radiation fields in the usual sense are not
involved.

Radiative Plus Nonradiative Surroundings

The nonradiative decay rate 7, thus plays the same role in interacting
with any kind of “nonradiative surroundings” as the radiative decay rate a4
plays in interacting with the radiative or electromagnetic surroundings. The gen-
eralization of Equation 4.46 to degenerate transitions is also the same as for the
electromagnetic case, namely,

_ 9 L Ynr,ji

Watar = g, Wiine = e (g W) 1 “o
The combined influence of radiative and nonradiative interactions for any col-
lection of atoms (actually for any single transition in a collection of atoms) can
then be illustrated by an expanded diagram like Figure 4.9(b), in which we
indicate separately the interactions and the relaxation transition rates for the
radiative and the nonradiative surroundings. The only significant parameters in
these interactions are the two relaxation rates 7raq and -y, and the associated
temperatures of the surroundings T;nq and Ty, respectively.

These two temperatures T;,4 and T;,, will usually have the same value; but
in special cases the temperature Ty, of the “nonradiative surroundings” could be
different from the temperature T;,4 of the electromagnetic surroundings. Suppose
the crystal lattice of an atomic medium is essentially lossless and transparent to
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electromagnetic radiation at all frequencies of interest, so that the lattice itself is
not part of the electromagnetic surroundings. The temperature T}, characteristic
of the lattice vibrations when the crystal is cooled, for example, in a liquid
helium bath, may be much colder than the temperature T;,q of the warmer
electromagnetic surroundings seen by the atoms through the windows of the
helium dewar.

Another Nonradiative Example: Inelastic Collisions in Gases
z

As another example of nonradiative interactions, suppose that excited
atoms of type A in a mixture of two different gases can lose some of their exci-
tation energy through inelastic collisions with atoms of type B, with this energy
going into heating up the kinetic motion of the type B atoms. This is a form of
nonradiative decay for the excited atoms of type A, which can be accounted for
by a nonradiative decay rate v, (which will probably be directly proportional
to the pressure or density of the atoms of type B).

From the same arguments.as before, these same collisions must then also
produced collision-stimulated transitions in both directions between the levels
of the type A atoms, with transition rates Wiz nr and Waj n; given by Equation
4.47, and with T}, given by the kinetic temperature of the type B atoms. The
physical details of how the kinetic motion of the type B atoms can react back
to produce collision-stimulated upward and downward transitions in the type A
atoms may not be particularly obvious; and it is certainly not at all clear how
we might use a population inversion in the type A atoms to “amplify” the type
B kinetic motion.

The general rule.is, however, that if a collection of excited atoms can de-
liver energy in any fashion to some part of their nonradiative surroundings, then
they are in some way coupled to those surroundings. As a result, these “other
surroundings” are necessarily coupled back to the atoms, and thermal fluctua-
tions in these “other surroundings” can cause upward and downward thermally
stimulated transition rates in the atomic system by acting through the same
nonradiative interactionsmechanisms.

Note in this instance that collisions between atoms in a gas may contribute
to the homogeneous line broadening of transitions in these atoms in either of
two distinct ways. Elastic collisions between atoms cause dephasing effects, and
thus give a homogeneous. line-broadening contribution 2/T, which is directly
proportional to the collision frequency and thus to the gas pressure. Inelastic
collisions may cause both additional dephasing and an additional nonradiative
energy decay term <y,,, which will in turn give an additional pressure-dependent
lifetime broadening contribution.

Total Relaxation Transition Rates

It is important to understand how there can be separate but essentially
similar relaxation effects produced by both the radiative and the nonradiative
surroundings, as illustrated in Figure 4.9(b). Once we understand the underlying
physics, however, it is then much simpler to combine these two effects (including
the spontaneous relaxation effects) into a single pair of thermally stimulated
relaxation transition probabilities, which we will henceforth denote by w;» and
way, and which are defined as follows.

4.4 NONRADIATIVE RELAXATION

Let the transition rate or flow rate (in atoms/second) in the downward di-

rection due to all these interactions be written in the form

an,
dt

= (W21,bbt + Yrad + W21,nr + ’Ym) N2
downward ( 48)
relaxation

= wa1Na,

and let the corresponding flow rate in the upward direction be written as

‘d—ivt—l .y = (Whz,bbr + Wiz,ar) N1
'War
:er;a.xa.tion (49)
= ’w12N1.
Obviously we then have
wa1 = Way bbr + Wai,nr + Yrad + Yar (50)
in the downward direction, and
w1z = Wizpbr + Wiz,ar (51)

in the upward direction. The downward relaxation transition probability wa; in-
cludes both the thermally stimulated downward transitions and the spontaneous
emission transitions from both radiative and nonradiative mechanisms, whereas
the upward transition probability wi» represents the thermally stimulated up-
ward transitions due to both mechanisms. ] )

Figure 4.10 illustrates these net relaxation rates between any pair of atox?uc
levels. For an arbitrary pair of levels E; and E; > E;, the downward relaxation
probability must be written as

wj; = Wis,obr + Wji,ar + Yrad,ji + Yar,ji (52)
and the upward relaxation probability on the same transition is written as

wij = Wijbbr + Wijnr- (53)

We will from here on use these lowercase notations wia and ws;, or more gen-
erally w;; and wj;, as defined above, to indicate the total relaxation trans%tion
probabilities (per atom and per unit time) in the upward and down'wa.rd dl}‘ec—
tions between any two levels ¢ and j, due to all the purely thermal }ntera,ctlons
plus energy decay processes connecting the atoms to their surroundings.

Also, from now on we will restrict the uppercase symbols Ww and W2’1., or
more generally W;; and Wj;, to indicate signal-stimulated trapsztwn probab1.11t1es
that are produced by external signals or pumping mechamsm‘s that we elt%ler
deliberately apply to the atoms, or that we allow to build up in a laser cavity,
as shown schematically in Figure 4.9(c). That is, from here on the uppercase
Wi;’s signify deliberately induced transition probabilities that we can turn off or
suppress; the lowercase w;;’s are relaxation transition probabilities th'at we can
in essence do nothing about (except possibly by cooling the surroundings).
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FIGURE 4.10

Total thermally stimulated plus spontaneous-emission transition rates between
two energy levels, including both blackbody or radiative relaxation rates and
nonradiative relaxation rates.

Boltzmann Relaxation Ratios

Note that if the surroundings of an atom, radiative and nonradiative, are
both at the same equilibrium temperature Ty = Tyag = T, then the preced-
ing expressions show that the ratio between upward and downward relaxation
probabilities is always given by the Boltzmann ratio

wi(1) - _puwaskr
=e a 54
war (1) 54
or, more generally,
Wi _ 95 gy (BB
wi g P ( kT )’ (55)

where T is the temperature of the thermal surroundings. The upward thermally
induced relaxation rate is always smaller (and on optical-frequency transitions
usually much smaller) than the combination of downward thermally induced
relaxation plus energy decay.

This Boltzmann relation does not depend on the nature or the strength of
the radiative and/or nonradiative relaxation mechanisms that may be present;
it will hold if they are all at the same temperature T. If the radiative and
nonradiative surroundings are somehow at different temperatures, however, each
interaction must be considered separately, and this ratio becomes somewhat more
complicated.

Optical Frequency Approximation

A convenient rule of thumb for visible frequencies is that the equivalent
temperature corresponding to hw,/k is & 25,000 K. For any reasonable temper-
ature T of the surroundings, therefore, the Boltzmann ratio at optical frequencies
is always very small, on the order of

exp (—hw,/kT) ~ exp (—25,000/300) ~ 10736, (56)

4.5 TWO-LEVEL RATE EQUATIONS AND SATURATION

The thermally stimulated terms in the relaxation rates, either upward or down-
ward, are then totally negligible compared to the spontaneous emission rates, and
the relaxation transition probabilities in the two directions can be approximated
by

wi; (1) =0 (upward direction) (57)

and

w;i(1) = Yji = Yrad,ji + Yarji (downward direction). (58)

When we write out the rate equations for lower-frequency transitions, such as for

magnetic resonance or microwave maser experiments, where the photon energy .

hw is < kT, then the relaxation terms in both upward and downward directions
must be included; and we must use the more complete formulation involving
the relaxation probabilities w;; and w;; in both upward and downward direc-
tions. The simplified notation using only 7;; terms and including relaxation or
energy decay in the downward direction only is more commonly employed in
optical-frequency and laser analyses, where the optical-frequency approximation
is almost always valid. Infrared and submillimeter laser transitions fall some-
where in between, and may require use of the more complete formulation on at
least some of the transitions.
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“Interactions of phonons with iron-group ions,” Proc. IEEE 53, 1547 (October 1965).

Problems for 4.4

1. Thermal equilibration: radiative and nonradiative contributions. A collection of
two-level atoms in a crystal is coupled both to the electromagnetic surroundings
with radiative decay rate yraqa and to the crystal-lattice surroundings with decay
rate ynr. Suppose the electromagnetic surroundings are somehow held at a fixed
temperature Ty,qg which is different from the fixed temperature Ty, of the crystal
lattice. Derive a formula for the steady-state equilibrium value of the Boltzmann
temperature T, for the level populations of the two-level atoms in this case, as
a function of the two surrounding temperatures Traq and Ty, the normalized
energy gap hw/k, and the ratio Yrad /¥ar.

4.5 TWO-LEVEL RATE EQUATIONS AND SATURATION

The stimulated transition probabilities and relaxation transition probabilities
derived in the preceding sections of this chapter can now be used to write the
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E2
FIGURE 4.11
Total relaxation rates plus
signal-stimulated transition rates
between two energy levels.

E

general rate equations for any atomic system, taking into account both applied
signals and relaxation processes. In this section we will explore the rate-equation
solutions for an ideal two-level system. This will allow us to introduce a number
of useful concepts, particularly the idea of saturation of the population difference
AN at high enough applied signal levels.

Two-Level Rate Equation

In a simple two-level atomic system with an applied signal present, atoms

flow from level 1 to level 2 at a rate (W12 + wi2) N1, and from level 2 to level 1

at a rate (Wa; + we1) Ny, as illustrated in Figure 4.11. The total rate equation
for the level populations N; and N2 in this system is

dNy(t) __sz(t) _

dt  ~ dt

—[Wi2 + wig]N1(t) + [Wa1 + wa1]Na(2). (59)

If the energy levels have no degeneracy, the stimulated-transition rates are
related by Wy2 = Wy, and the relaxation rates are related by wiz/wa =
exp(—hwq/kT), where T is the temperature of the surroundings of the atoms.

For a two-level system, however, it is usually more convenient to work with the
total number of atoms N;(t) + N2(t) = N and the population difference Ny (t) —
N,(t) = AN(t). Since the thermal equilibrium populations N1 and Nag with no
signal present are related by the Boltzmann ratio Nog/N1p = exp(—Ffiw, /kT), the
population difference ANy on a nondegenerate two-level transition at thermal
equilibrium, with no applied signal, can be written as

ANy = Nio — Nag = 222~ Y12 N — N tanh (hwe /2kT) . (60)

w2 + way
For a simple system with just two levels and a fixed total population, only
one rate equation for the population difference AN(t) is then really needed.
The equations for dNy(t)/dt and dNz(t)/dt can be combined into a single rate
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equation in the form

d W21 — W12
—AN(t) = — (W, Wai) AN(t) — AN(t) - ——= .
AN = = (Wia + Wor) AN(D) = (s + ) (AN(0) - 22222

‘We can make this equation appear even simpler by using the fact that Wy, = W,
for the signal-stimulated transition probability, and by defining a two-level energy
relaxation time or population recovery time T; by

wiz + wey = l/Tl. (62)

If we also recognize that the final term in Equation 4.61 is just the thermal-
equilibrium population difference ANy for the atoms in equilibrium with the
surroundings at temperature T;,4, then this two-level rate equation takes on the
particularly simple and yet very general form

d AN(

t) —

= (63)
This particularly simple form for the ideal two-level case with fixed total popu-
lation turns out to be very useful and important for describing a great variety
of laser and maser phenomena.

Physical Interpretation: The Population Recovery Time T}

Understanding this two-level rate equation is important for understanding
many subsequent aspects of laser behavior. For example, the relaxation term on
the right-hand side of Equation 4.63, namely, —~[AN(t) — AN,]/T}, obviously
causes the population difference AN(t) to relax toward its thermal equilibrium
value ANy in the absence of an applied signal, with an exponential time constant
T,. This time constant 7T is therefore often called the population recovery time
or the energy relaxation time of the system.

Suppose the two-level transition is an optical-frequency transition with
hwe > kT. The upward relaxation probability w;2 is then essentially zero,
whereas the downward relaxation probability wo; is essentially the upper-level
energy decay rate 21 as, we discussed earlier. The definition of T therefore
becomes

/Ty = w1z + way = Y21 = 1/721. (64)

In the optical-frequency limit, the time constant T is thus the same thing as the
total lifetime or energy decay time 72; of the upper energy level.

Steady-State Atomic Response: Saturation

In contrast, the stimulated signal term —2W12AN(¢) on the right-hand side
of Equation 4.63 obviously acts to drive the population difference AN(t) toward
zero, that is, to saturate the population difference. The stimulated-transition
probability W7 is, of course, proportional to the strength of the applied signal,
and so the rate at which AN(¢) is driven toward zero is proportional to the ap-
plied signal intensity. Note that the factor of 2 appears in front of this stimulated
term because the transition of a single atom from level 1 to level 2 both reduces
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FIGURE 4.12
Saturation of the population difference AN with increasing applied signal strength in a
two-level atomic transition.

N (t) by one and increases N»(t) by one, and thus changes AN (¢) by twice that
much.

The steady-state behavior of the population difference AN in the presence of
an applied signal Wi2 must be a balance between these competing population-
recovery and population-saturation effects. To obtain the steady-state solution,
we can set the total time derivative in the rate equation equal to zero, i.e.,

9 AN =0 = —owy,an — AN AN (65) {
dt T

and obtain from this the steady-state population difference

1

AN = AN, = ANp X —————.
s 0 X oWt

(66)
The ratio of the steady-state value AN with signal present to the thermal-
equilibrium value ANy with no applied signal is plotted versus applied signal
strength Wi, in Figure 4.12.

We see that as the applied signal strength or stimulated-transition rate Wi
increases, the steady-state population difference ANg; is driven below the small-
signal or thermal-equilibrium value ANy, and eventually is driven toward zero
at large enough applied signal levels. This steady-state value of the population
difference results from a balance between the stimulated-transition term, which
acts to transfer atoms from the more heavily populated level N; toward the less
heavily populated level N2, and thus tends to equalize the populations, and the 2
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relaxation term, which tends to pull AN back toward its thermal-equilibrium
value ANy.

This reduction in the steady-state population difference with increasing signal
strength has the general form

AN, 1 1 )
ANy 14+ Wjy2/Waa 1+ const x signal power’

where Wg,t = 1/2T) is the value of the stimulated-transition probability at which
the population difference is driven down to exactly half its initial or small-signal
value. This form of reduction in population difference with increasing signal
strength is generally referred to as homogeneous saturation of the population
difference on the two-level transition.

Saturation in Real Laser Systems

This general type of saturation behavior is extremely important in laser
theory. Gain coefficients and loss coefficients in laser materials are directly pro-
portional to the population difference on the laser transition. We will see later
on that in a great many atomic systems the population difference on the atomic
transition will very often saturate with increasing signal strength in the form
given by Equation 4.67, even for initially inverted population differences pro-
duced by laser pumping.

As a result, either the attenuation coefficient or the gain coefficient a,, in an
atomic medium will very often saturate with increasing signal intensity I in the
general fashion given by

1
x
1 + const X signal power’

am = ap(I) = amo X amo (68)

1
141 /T

where ap,g is the small-signal (unsaturated) attenuation or gain coefficient; 7 is
the applied signal intensity (usually expressed as power per unit area); and It
is a saturation intensity at which the gain or loss coeflicient is saturated down
to half its initial value c,g.

This form of saturation behavior is often referred to as homogeneous satu-
ration, since it is characteristic of homogeneously broadened transitions. Inho-
mogeneously broadened transitions, such as doppler-broadened lines, exhibit a
more complex saturation behavior, including “hole burning” effects, which we
will describe in a later chapter.

Saturable Absorption and Saturable Gain

Materials specially chosen to operate as saturable absorbers are often used
in laser experiments for @J-switching, mode-locking, and isolation from low-level
leakage signals. On the other hand, saturation of the inverted population dif-
ference and hence the gain in an amplifying laser medium is what determines a
laser’s power output. When a laser oscillator begins to oscillate, the oscillation
amplitude grows at first until the intensity inside the cavity is sufficient to sat-
urate down the laser gain exactly as we have described. Steady-state oscillation
then occurs when the saturated laser gain beco