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Preface

Classical electromagnetic theory, together with classical and quan-
tum mechanics, forms the core of present-day theoretical training for
undergraduate and graduate physicists. A thorough grounding in these
subjects is a requirement for more advanced or specialized training.

Typically the undergraduate program in electricity and magnetism
involves two or perhaps three semesters beyond elementary physics, with
the emphasis on the fundamental laws, laboratory verification and elabora-
tion of their consequences, circuit analysis, simple wave phenomena, and
radiation. The mathematical tools utilized include vector calculus,
ordinary differential equations with constant coefficients, Fourier series,
and perhaps Fourier or Laplace transforms, partial differential equations,
Legendre polynomials, and Bessel functions.

As a general rule a two-semester course in electromagnetic theory is
given to beginning graduate students. It is for such a course that my book
is designed. My aim in teaching a graduate course in electromagnetism is
at least threefold. The first aim is to present the basic subject matter as a
coherent whole, with emphasis on the unity of electric and magnetic
phenomena, both in their physical basis and in the mode of mathematical
description. The second, concurrent aim is to develop and utilize a number
of topics in mathematical physics which are useful in both electromagnetic
theory and wave mechanics. These include Green’s theorems and Green’s
functions, orthonormal expansions, spherical harmonics, cylindrical and
spherical Bessel functions. A third and perhaps most important pur-
pose is the presentation of new material, especially on the interaction of
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relativistic charged particles with electromagnetic fields. In this last area
personal preferences and prejudices enter strongly. My choice of topics is
governed by what I feel is important and useful for students interested in
theoretical physics, experimental nuclear and high-energy physics, and that
as yet ill-defined field of plasma physics.

The book begins in the traditional manner with electrostatics. The first
six chapters are devoted to the development of Maxwell’s theory of
electromagnetism. Much of the necessary mathematical apparatus is con-
structed along the way, especially in Chapters 2 and 3, where boundary-
value problems are discussed thoroughly. The treatment is initially in
terms of the electric field £ and the magnetic induction B, with the derived
macroscopic quantities, D and H, introduced by suitable averaging over
ensembles of atoms or molecules. In the discussion of dielectrics, simple
classical models for atomic polarizability are described, but for magnetic
materials no such attempt is made. Partly this omission was a question of
space, but truly classical models of magnetic susceptibility are not possible.
Furthermore, elucidation of the interesting phenomenon of ferromagnetism
needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic pheno-
mena, mostly of a macroscopic sort. Plane waves in different media,
including plasmas, as well as dispersion and the propagation of pulses, are
treated in Chapter 7. The discussion of wave guides and cavities in Chapter
8 is developed for systems of arbitrary cross section, and the problems of
attenuation in guides and the Q of a cavity are handled in a very general
way which emphasizes the physical processes involved. The elementary
theory of multipole radiation from a localized source and diffraction
occupy Chapter 9. Since the simple scalar theory of diffraction is covered
in many optics textbooks, as well as undergraduate books on electricity and
magnetism, I have presented an improved, although still approximate,
theory of diffraction based on vector rather than scalar Green’s theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly
more attention from physicists and astrophysicists. Chapter 10 represents
a survey of this complex field with an introduction to the main physical
ideas involved.

The first nine or ten chapters constitute the basic material of classical
electricity and magnetism. A graduate student in physics may be expected
to have been exposed to much of this material, perhaps at a somewhat
lower level, as an undergraduate. But he obtains a more mature view of it,
understands it more deeply, and gains a considerable technical ability in
analytic methods of solution when he studies the subject at the level of this
book. He is then prepared to go on to more advanced topics. The
advanced topics presented here are predominantly those involving the
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interaction of charged particles with each other and with electromagnetic
fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamics still impresses
and delights as a beautiful example of the covariance of physical laws under
Lorentz transformations. The special theory of relativity is discussed in
Chapter 11, where all the necessary formal apparatus is developed, various
kinematic consequences are explored, and the covariance of electrodynamics
is established. The next chapter is devoted to relativistic particle kine-
matics and dynamics. Although the dynamics of charged particles in
electromagnetic fields can properly be considered electrodynamics, the
reader may wonder whether such things as kinematic transformations of
collision problems can. My reply is that these examples occur naturally
once one has established the four-vector character of a particle’s momentum
and energy, that they serve as useful practice in manipulating Lorentz
transformations, and that the end results are valuable and often hard to
find elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy
loss and scattering and develops concepts of use in later chapters. Here
for the first time in the book I use semiclassical arguments based on the
uncertainty principle to obtain approximate quantum-mechanical ex-
pressions for energy loss, etc., from the classical results. This approach, so
fruitful in the hands of Niels Bohr and E. J. Williams, allows one to see
clearly how and when quantum-mechanical effects enter to modify classical
considerations.

The important subject of emission of radiation by accelerated point
charges is discussed in detail in Chapters 14 and 15. Relativistic effects
are stressed, and expressions for the frequency and angular dependence of
the emitted radiation are developed in sufficient generality for all appli-
cations, The examples treated range from synchrotron radiation to
bremsstrahlung and radiative beta processes. Cherenkov radiation and the
Weizsicker-Williams method of virtual quanta are also discussed. In the
atomic and nuclear collision processes semiclassical arguments are again
employed to obtain approximate quantum-mechanical results. I lay con-
siderable stress on this point because I feel that it is important for the
student to see that radiative effects such as bremsstrahlung are almost
entirely classical in nature, even though involving small-scale collisions.
A student who meets bremsstrahlung for the first time as an example of a
calculation in quantum field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion
of scalar and vector fields in spherical waves is developed from first
principles with no restrictions as to the relative dimensions of source and
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wavelength. Then the properties of electric and magnetic multipole radia-
tion fields are considered. Once the connection to the multipole moments
of the source has been made, examples of atomic and nuclear multipole
radiation are discussed, as well as a macroscopic source whose dimensions
are comparable to a wavelength. The scattering of a plane electromagnetic
wave by a spherical object is treated in some detail in order to illustrate a
boundary-value problem with vector spherical waves.

In the last chapter the difficult problem of radiative reaction is discussed.
The treatment is physical, rather than mathematical, with the emphasis on
delimiting the areas where approximate radiative corrections are adequate
and on finding where and why existing theories fail. The original Abraham-
Lorentz theory of the self-force is presented, as well as more recent classical
considerations.

The book ends with an appendix on units and dimensions and a biblio-
graphy. In the appendix 1 have attempted to show the logical steps
involved in setting up a system of units, without haranguing the reader as
to the obvious virtues of my choice of units. I have provided two tables
which I hope will be useful, one for converting equations and symbols and
the other for converting a given quantity of something from so many
Gaussian units to so many mks units, and vice versa. The bibliography
lists books which 1 think the reader may find pertinent and useful for
reference or additional study. These books are referred to by author’s
name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electro-
dynamics which I have taught off and on over the past eleven years, at both
the University of Illinois and McGill University. I wish to thank my
colleagues and students at both institutions for countless helpful remarks
and discussions. Special mention must be made of Professor P. R. Wallace
of McGill, who gave me the opportunity and encouragement to teach what
was then a rather unorthodox course in electromagnetism, and Professors
H. W. Wyld and G. Ascoli of Illinois, who have been particularly free with
many helpful suggestions on the treatment of various topics. My thanks
are also extended to Dr. A. N. Kaufman for reading and commenting on a
preliminary version of the manuscript, and to Mr. G. L. Kane for his
zealous help in preparing the index.

J. D. JACKSON

Urbana, lllinois
January, 1962
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Introduction to
Electrostatics

Although amber and Jodestone were known by the ancient Greeks,
electrodynamics developed as a quantitative subject in about 80 years.
Coulomb’s observations on the forces between charged bodies were made
around 1785. About 50 years later, Faraday was studying the effects of
currents and magnetic fields. By 1864, Maxwell had published his famous
paper on a dynamical theory of the electromagnetic field.

We will begin our discussion with the subject of electrostatics—problems
involving time-independent electric fields. Much of the material will be
covered rather rapidly because it is in the nature of a review. We will use
electrostatics as a testing ground to develop and use mathematical tech-
niques of general applicability.

1.1 Coulomb’s Law

All of electrostatics stems from the quantitative statement of Coulomb’s
law concerning the force acting between charged bodies at rest with respect
to each other. Coulomb (and, even earlier, Cavendish) showed experi-
mentally that the force between two small charged bodies separated a
distance large compared to their dimensions

(1) varied directly as the magnitude of each charge,

(2) varied inversely as the square of the distance between them,

(3) was directed along the line joining the charges,

(4) was attractive if the bodies were oppositely charged and repuisive

if the bodies had the same type of charge.
Furthermore it was shown experimentally that the total force produced
1
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on one small charged body by a number of the other small charged bodies
placed around it was the vector sum of the individual two-body forces of
Coulomb.

1.2 Electric Field

Although the thing that eventually gets measured is a force, it is useful
to introduce a concept one step removed from the forces, the concept of
an electric field due to some array of charged bodies. At the moment, the
electric field can be defined as the force per unit charge acting at a given
point. It is a vector function of position, denoted by E. One must be
careful in its definition, however. It is not necessarily the force that one
would observe by placing one unit of charge on a pith ball and placing it
in position. The reason is that one unit of charge (e.g., 100 strokes of cat’s
fur on an amber rod) may be so large that its presence alters appreciably
the field configuration of the array. Consequently one must use a limiting
process whereby the ratio of the force on the small test body to the charge
on it is measured for smaller and smaller amounts of charge. Experi-
mentally, this ratio and the direction of the force will become constant as
the amount of test charge is made smaller and smaller. These limiting
values of magnitude and direction define the magnitude and direction of the
electric field E at the point in question. In symbols we may write

F =4E (1.1)

where F is the force, E the electric field, and g the charge. In this equation
it is assumed that the charge ¢ is located at a point, and the force and the
electric field are evaluated at that point.

Coulomb’s law can be written down similarly. If F is the force on a
point charge ¢,, located at x,, due to another point charge ¢,, located at
X,, then Coulomb’s law is
(xl _ XZ) (]2)

F = kqyq,
[x; — x2|3

Note that ¢, and ¢, are algebraic quantities which can be positive or
negative. The constant of proportionality k depends on the system of units
used.
The electric field at the point x due to a point charge ¢; at the point x;
can be obtained directly:
X — X
E0) = kg, &2 (13)
x — x|

as indicated in Fig. 1.1. The constant & is determined by the unit of charge
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Fig. 1.1

chosen. In electrostatic units (esu), unit charge is chosen as that charge
which exerts a force of one dyne on an equal charge located one centimeter
away. Thus, with cgs units, k = 1 and the unit of charge is called the
“stat-coulomb.” In the mks system, k = (4we,) ), where ¢, (= 8.854 x
1072 farad/meter) is the permittivity of free space. We will use esu.*

The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of
point charges ¢,, located at x;,, i = 1, 2, ..., n, as the vector sum:

E(X) = Zqz o P (1.4)
If the charges are so small and so numerous that they can be described by
a charge density p(x'} [if Ag is the charge in a small volume Az Ay Az at
the point x’, then Ag = p(x’) Ar Ay Az], the sum is replaced by an
integral:

E(x) = f p(x) X=X oy (L.5)
[x —x'f

where d®’ = dx’ dy’ d2’' is a three-dimensional volume element at x’.

At this point it is worth while to introduce the Dirac delta function. In one
dimension, the delta function, written d(x — @), is a mathematically improper
function having the properties:

(1) é(x —a) =0 forx # a, and
2 f dx —a)dx =1 if theregion of integration includesz = a, and is zero

otherwise,

The delta function can be given rigorous meaning as the limit of a peaked curve
such as a Gaussian which becomes narrower and narrower, but higher and
higher, in such a way that the area under the curve is always constant. L.
Schwartz’s theory of distributions is a comprehensive rigorous mathematical
approach to delta functions and their manipulations.}

* The question of units is discussed in detail in the Appendix.

t A useful, rigorous account of the Dirac delta function is given by Lighthill. (Full
references for items cited in the text or footnotes by author only will be found in the
Bibliography.)
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From the definitions above it is evident that, for an arbitrary function f(),

3) ff(w) Xz — a) dr = f(a), and

@ ff @) ¢z — a) dev = —f"(a),

where a prime denotes differentiation with respect to the argument.
If the delta function has as argument a function f(x) of the independent
variable z, it can be transformed according to the rule,

) @) = > T o =),
%(m:)

i

where f(z) is assumed to have only simple zeros, located at z = z,.
In more than one dimension, we merely take products of delta functions in
each dimension. In three dimensions, for example,

(6) é(x — X) = 6(z; — X7) O(zz — Xp) Oz — Xy)
is a function which vanishes everywhere except at x = X, and is such that
1 if AV contai =X,
@ J‘ 8x — X) d = { 1 contains x .
AV 0 if AV does not contain x = X.

Note that a delta function has the dimensions of an inverse volume in whatever
number of dimensions the space has.

A discrete set of point charges can be described with a charge density by
means of delta functions. For example,

o0 =3 g, ox = x) (1.6)

represents a distribution of n point charges ¢;, Iocated at the points x;. Substitu-
tion of this charge density (1.6) into (1.5) and integration, using the properties of
the delta function, yields the discrete sum (1.4).

1.3 Gauss’s Law

The integral (1.5) is not the most suitable form for the evaluation of
electric fields. There is another integral result, called Gauss’s law, which
is often more useful and which furthermore jeads to a differential equation
for E(x). To obtain Gauss’s ]Jaw we first consider a point charge ¢ and a
closed surface S, as shown in Fig. 1.2. Let r be the distance from the
charge to a point on the surface, n be the outwardly directed unit normal
to the surface at that point, da be an element of surfacc area. If the electric
field E at the point on the surface due to the charge 4 makes an angle 6
with the unit normal, then the normal component of E times the area

element is:
E-nda =q——°°zeda (1.7)
r

Since E is directed along the line from the surface element to the charge g,
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q inside S

g outside S

Fig. 1.2 Gauss’s law. The normal component of electric field is integrated over the
closed surface S. If the charge is inside (outside) S, the total solid angle subtended at
the charge by the inner side of the surface is 4r (zero).

cos 0 da = r?dQ, where d(Q is the element of solid angle subtended by da
at the position of the charge. Therefore

E . nda =gqdQ (1.8)

If we now integrate the normal component of E over the whole surface, it
is easy to see that

__|4mq if q lies inside S
i E-nda = {O if g lies outside S (1.9)



6 Classical Electrodynamics

This result is Gauss’s law for a single point charge. For a discrete set of
charges, it is immediately apparent that

fﬁE-nda=4wzqi (1.10)
S Z

where the sum is over only those charges inside the surface S. For a
continuous charge density p(x), Gauss’s law becomes:

jﬂ E-nda = 4wf p(x) d (1.11)
S 14

where ¥ is the volume enclosed by S.

Equation (1.11) is one of the basic equations of electrostatics. Note that
it depends upon

(1) the inverse square law for the force between charges,

(2) the central nature of the force,

(3) the linear superposition of the effects of different charges.

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields,
with matter density replacing charge density.

It is interesting to observe that before Coulomb’s observations
Cavendish, by what amounted to a direct application of Gauss's law, did
an experiment with two concentric conducting spheres and deduced that
the power law of the force was inverse nth power, where n = 2.00 &+ 0.02.
By a refinement of the technique, Maxwell showed that n = 2.0 £ 0.00005.
(See Jeans, p. 37, or Maxwell, Vol. 1, p. 80.)

1.4 Differential Form of Gauss’s Law

Gauss’s law can be thought of as being an integral formulation of the
law of electrostatics. We can obtain a differential form (i.e., a differential
equation) by using the divergence theorem. The divergence theorem states
that for any vector field A(x) defined within a volume ¥ surrounded by
the closed surface .S the relation

§ A-nda= |V-Adx
s v

holds between the volume integral of the divergence of A and the surface
integral of the outwardly directed normal component of A. The equation
in fact can be used as the definition of the divergence (see Stratton, p. 4).

To apply the divergence theorem we consider the integral relation
expressed in Gauss’s theorem:

36 E-.nda = 47Tf o(x) d3x
K v
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Now the divergence theorem allows us to write this as:

f (V.E — dnp)d®z =0 (1.12)
V

for an arbitrary volume V. We can, in the usual way, put the integrand
equal to zero to obtain
V-E=4dnp (1.13)

which is the differential form of Gauss’s law of electrostatics. This
equation can itself be used to solve problems in electrostatics. However,
itisoftensimpler to deal with scalar rather than vector functions of position,
and then to derive the vector quantities at the end if necessary (see below).

1.5 Another Equation of Electrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three
components of the electric field E(x). Perhaps some readers know that a
vector field can be specified completely if its divergence and curl are given
everywhere in space. Thus we look for an equation specifying curl E as a
function of position. Such an equation, namely,

VxE=0 (1.14)
follows directly from our generalized Coulomb’s law (1.5):
£ =/ (")l( X|)3

The vector factor in the integrand, viewed as a function of x, is the negative
gradient of the scalar 1/]x — x'| :

I(_:::_::[)s - _V(]x —1- x’l)

Since the gradient operation involves x, but not the integration variable x’,
it can be taken outside the integral sign. Then the field can be written

E(x) = —vf P goy (1.15)
Ix — x|
Since the curl of the gradient of any scalar function of position vanishes
(V x Vy =0, for all p), (1.14) follows immediately from (1.15).
Note that V x E =0 depends on the central nature of the force
between charges, and on the fact that the force is a function of relative
distances only, but does not depend on the inverse square nature.
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B

Fig. 1.3

In (1.15) the electric field (a vector) is derived from a scalar by the
gradient operation. Since one function of position is easier to deal with
than three, it is worth while concentrating on the scalar function and giving
it a name. Consequently we define the “scalar potential” ®(x) by the

equation: E— _VD (1.16)
Then (1.15) shows that the scalar potential is given in terms of the charge
density by ,
(%) =fﬂ d* (1.17)
Ix — x|

where the integration is over all charges in the universe, and ® is arbitrary
to the extent that a constant can be added to the right side of (1.17).

The scalar potential has a physical interpretation when we consider the
work done on a test charge ¢ in transporting it from one point (4) to
another point (B) in the presence of an electric field E(x), as shown in Fig.
1.3. The force acting on the charge at any point is

F =gqE
so that the work done in moving the charge from 4 to B is
B B
W:—f F-dl:—q‘f E.dl (1.18)
4 4

The minus sign appears because we are calculating the work done on the
charge against the action of the field. With definition (1.16) the work can
be written

W =qf4 V@-dl:qff dd = g[®,, — D] (1.19)

which shows that g® can be interpreted as the potential energy of the test
charge in the electrostatic field.

From (1.18) and (1.19) it can be seen that the line integral of the electric
field between two points is independent of the path and is the negative of
the potential difference between the points:

3
f E.dl=—(D,—0,) (1.20)
A
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This follows directly, of course, from definition (1.16). If the path is closed,
the line integral is zero,

§;E-dl=0 (1.21)

a result that can also be obtained directly from Coulomb’s law. Then
application of Stokes’s theorem [if A(x) is a vector field, S is an open
surface, and C is the closed curve bounding S,

fﬁcA-dl=L(V x A)-nda

where dl is a line element of C, n is the normal to S, and the path C is
traversed in a right-hand screw sense relative to n] leads immediately back
toV x E=0,

1.6 Surface Distributions of Charges and Dipoles and Discontinuities
in the Electric Field and Potential

One of the common problems in electrostatics is the determination of
electric field or potential due to a given surface distribution of charges.
Gauss’s law (1.11) allows us to write down a partial result directly. If a
surface S, with a unit normal n, has a surface-charge density of o(x)
(measured in statcoulombs per square centimeter) and electric fields E,
and E, on either side of the surface, as shown in Fig. 1.4, then Gauss’s law
tells us immediately that

(E; — E) +n=dno (1.22)

This does not determine E, and E, unless there are no other sources of
field and the geometry and form ¢ are especially simple. All that (1.22)
says is that there is a discontinuity of 4m¢ in the normal component of
electric field in crossing a surface with a surface-charge density o, the
crossing being made from the “inner” to the ‘“‘outer” side of the surface.

Fig. 1.4 Discontinuity in the normal com-
ponent of electric field across a surface layer
of charge.
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The tangential component of electric field can be shown to be continuous
across a boundary surface by using (1.21) for the line integral of E around
aclosed path. Itis only necessary to take a rectangular path with negligible
ends and one side on either side of the boundary.

A general result for the potential (and hence the field, by differentiation)
at any point in space (not just at the surface) can be obtained from (1.17)
by replacing p d%x by o da:

D(x) = f "(x) da (1.23)

Another problem of interest is the potential due to a dipole-layer
distribution on a surface . A dipole layer can be imagined as being formed
by letting the surface S have a surface-charge density o(x) on it, and
another surface ', lying close to S, have an equal and opposite surface-
charge density on it at neighboring points, as shown in Fig. 1.5. The
dipole-layer distribution of strength D(x) is formed by letting S’ approach
infinitesimally close to § while the surface-charge density o(x) becomes
infinite in such a manner that the product of o(x) and the local separation
d(x) of S and S approaches the limit D(x):

lim o(x) d(x) = D(x) (1.24)
d(x)—0

The direction of the dipole moment of the layer is normal to the surface S
and in the direction going from negative to positive charge.

To find the potential due to a dipole layer we can consider a single dipole
and then superpose a surface density of them, or we can obtain the same
result by performing mathematically the limiting process describedin words
above on the surface-density expression (1.23). The first way is perhaps
simpler, but the second gives useful practice in vector calculus. Con-
sequently we proceed with the limiting process. With n, the unit normal to

o(x)

d(x)

s Fig. 1.5 Limiting process involved in
S’ creating a dipole layer.
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Fig. 1.6 Dipole-layer geometry.

the surface S, directed away from §’, as shown in Fig. 1.6, the potential
due to the two close surfaces is

s |x — x| s |x — X" + nd]

For small d we can expand |x — x" 4+ nd|~'. Consider the general
expression |x + a|~1, where |a] < [x|. Then we write

1 _ 1

lx+a|_\/x2+a2+23-x

This is, of course, just a Taylor’s series expansion in three dimensions. In
this way we find that the potential becomes [upon taking the limit (1.24)]:

P(x) =LD(x’)n -V’(l |) da’ (1.25)

'

X—X
Equation (1.25) has a simple geometrical interpretation. We note that

n-V'( 1 )da,=_cos@da’___dQ

Ix — x| Ix — x'|2

where d{2 is the element of solid angle subtended at the observation point
by the area clement da’, as indicated in Fig. 1.7. Note that @Q has a positive
signif 0 is an acute angle, i.e., when the observation point views the ““inner”
side of the dipole layer. The potential can be written:

Ox) = — st(x’) dQ (1.26)
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Fig. 1.7 The potential at P due to the

dipole layer .D on the area element da’ is

just the negative product of 2 and the

solid angle element dQ2 subtend]ed by da’
at P.

For a constant surface-dipole-moment density D, the potential is just the
product of the moment and the solid angle sublcnded at the observation
point by the surface, regardless of its shape. !

There is a discontinuity in potential in crossing a double layer. This
can be seen by letting the observation point come infinitesimally close to
the double layer. The double layer is now imagined to consist of two
parts, one being a small disc directly under the observation point. The
disc is sufficiently small that it is sensibly flat and has constant surface-
dipole-moment density D. Evidently the total potential can be obtained
by linear superposition of the potential of the disc and that of the remain-
der. From (1.26) it is clear that the potential of the“disc alone has a
discontinuity of 47D in crossing from the inner to the outer side, being
—2#D on the inner side and 427D on the outer. The potential of the
remainder alone, with its hole where the disc fits in, is continuous across
the plane of the hole. Consequently the total potential jump in crossing

the surface is: O, — O, = 4nD (1.27)

This result is analogous to (1.22) for the discontinuity of electric field in
crossing a surface-charge density. Equation (1.27) can be interpreted
“physically”’ as a potential drop occurring “inside’” the dipole layer, and
can be calculated as the product of the field between the two layers of
surface charge times the separation before the limit is taken.

1.7 Poisson’s and Laplace’s Equations

In Sections 1.4 and 1.5 it was shown that the behavior of an electro-
static field can be described by the two differential equations:

V-.E =47p (1.13)
VXE=0 (1.14)

the latter equation being equivalent to the statement that E is the gradient
of a scalar function, the scalar potential @:

E=—Vd (1.16)

and



[Sect. 1.7] Introduction to Electrostatics 13

Equations (1.13) and (1.16) can be combined into one partial differential
equation for the single function ®(x):
VIO = —4mp (1.28)

This equation is called Poisson’s equation. In regions of space where there
is no charge density, the scalar potential satisfies Laplace’s equation:

Vip =0 (1.29)
We already have a solution for the scalar potential in expression (1.17):
O = f 2D g (1.17)

Ix — x'|

To verify that this does indeed satisfy Poisson’s equation (1.28) we operate
with the Laplacian on both sides:

Vi — V2 f _PXD) ey =Jp(X')V2( ! ) Fr (1.30)
Ix — x'| Ix — x|

We must now calculate the value of V3(1/|x — x’|). It is convenient (and

allowable) to translate the origin to x" and so consider V3(1/r), where r is

the magnitude of x. By direct calculation we find that V3(1/r) = 0 for

r=+0:

1 1 d 1y _14°

{15 o

r rdre®\ r rdr® o
At r = 0, however, the expression is undefined. Hence we must use a
limiting process. Since we anticipate something like a Dirac delta function,
we integrate V2(1/r) over a small volume ¥ containing the origin. Then we
use the divergence theorem to obtain a surface integral:

[l e vl eo=os(l

=f ﬁm(“l—)rg dQ = —4rn
g Or\r

It has now been established that V(1/r) = 0 for r # 0, and that its volume
integral is —4x. Consequently we can write the improper (but mathe-
matically justifiable) equation, V2(1/r) = —4xd(x), or, more generally,

V2( 1 ) — _4rd(x — X)) (1.31)

Ix — x']

Having established the singular nature of the Laplacian of 1/r, we can
now complete our check on (1.17) as a solution of Poisson’s equation.
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Equation (1.30) becomes
VD =fp(x’)[—‘4m5(x — x)] &' = —4dnp(x)

verifying the correctness of our solution (1.17).

1.8 Green’s Theorem

If electrostatic problems always involved localized discrete or continuous
distributions of charge with no boundary surfaces, the general solution
(1.17) would be the most convenient and straightforward solution to any
problem. There would be no need of Poisson’s or Laplace’s equation. In
actual fact, of course, many, if not most, of the problems of electrostatics
involve finite regions of space, with or without charge inside, and with
prescribed boundary conditions on the bounding surfaces. These boundary
conditions may be simulated by an appropriate distribution of charges
outside the region of interest (perhaps at infinity), but (1.17) becomes
inconvenient as a means of calculating the potential, except in simple cases
(c.g., method of images).

To handle the boundary conditions it is necessary to develop some new
mathematical tools, namely, the identities or theorems due to George
Green (1824). These follow as simple applications of the divergence
theorem. The divergence theorem:

fV-Ad3x=§A-nda
v

S

applies to any vector field A defined in the volume ¥ bounded by the closed
surface S. Let A = ¢Vy, where ¢ and y are arbitrary scalar fields. Now

V. (¢Vy) = ¢Vip + Vs - Vy (1.32)
and
$Vp-n=¢¥ (1.33)
dn

where 9/0n is the normal derivative at the surface S (directed outwards
from inside the volume ¥). When (1.32) and (1.33) are substituted into
the divergence theorem, there results Green’s first identity:

f ($V2p + V- Vy) o = 3@ 6 ¥ da (1.34)
v s On

If we write down (1.34) again with ¢ and y interchanged, and then subtract
it from (1.34), the V¢ - Vy terms cancel, and we obtain Green’s second
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identity or Green’s theorem:

P, 0 0
f (¢VPy — pVig) dz = §L¢ 2 w—ﬂ da (1.35)
v sL” on on

Poisson’s differential equation for the potential can be converted into an
integral equation if we choose a particular y, namely 1/R = 1/|x — x/|,
where x is the observation point and x’ is the integration variable. Further,
we put ¢ = @, the scalar potential, and make use of V2@ = —47p. From

(1.31) we know that V3(1/R) = —4=d(x — x'), so that (1.35) becomes

M—wp(x') o(x — x) + ‘% p(x'):l P’ = ({i l:q) 5% (11_Q ) _ El Z_ﬂ i

If the point x lies within the volume V, we obtain:

)= [ 2D o LHLQ‘P_ i(l_)] :

o) J; R e 47 JsLR on’ @ on'\R da (136)
If x lies outside the surface S, the left-hand side of (1.36) is zero. [Note
that this is consistent with the interpretation of the surface integral as being
the potential due to a surface-charge density o = (1/47)(0®/0n’) and a
dipole layer D = —(1/4m)®. The discontinuities in electric field and
potential (1.22) and (1.27) across the surface then lead to zero field and
zero potential outside the volume V']

Two remarks are in order about result (1.36). First, if the surface S goes
to infinity and the electric field on S falls off faster than R-1, then the
surface integral vanishes and (1.36) reduces to the familiar result (1.17).
Second, for a charge-free volume the potential anywhere inside the volume
(a solution of Laplace’s equation) is expressed in (1.36) in terms of the
potential and its normal derivative only on the surface of the volume. This
rather surprising result is not a solution to a boundary-value problem, but
only an integral equation, since the specification of both ® and 0®/on
(Cauchy boundary conditions) is an overspecification of the problem. This
will be discussed in detail in the next sections, where techniques yielding
solutions for appropriate boundary conditions will be developed using
Green’s theorem (1.35).

1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary
Conditions

The question arises as to what are the boundary conditions appropriate
for Poisson’s (or Laplace’s) equation in order that a unique and well-
behaved (i.e., physically reasonable) solution exist inside the bounded
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region. Physical experience leads us to believe that specification of the
potential on a closed surface (e.g., a system of conductors held at different
potentials) defines a unique potential problem. This is called a Dirichlet
problem, or Dirichlet boundary conditions. Similarly it is plausible that
specification of the electric field (normal derivative of the potential) every-
where on the surface (corresponding to a given surface-charge density)
also defines a unique problem. Specification of the normal derivative
is known as the Neumann boundary condition. We now proceed to prove
these expectations by means of Green’s first identity (1.34).

We want to show the uniqueness of the solution of Poisson’s equation,
V2D = —4mp, inside a volume V' subject to either Dirichiet or Neumann
boundary conditions on the closed bounding surface S. We suppose, to
the contrary, that there exist two solutions ®; and @, satisfying the same
boundary conditions. Let

U=0,— D (1.37)

Then V2U = 0 inside ¥V, and U = 0 or dU/ér = 0 on S for Dirichlet and
Neumann boundary conditions, respectively. From Green’s first identity
(1.34), with ¢ = yp = U, we find

(UVEU + VU - VU) d* = 3£ U Y da (1.38)
v s On

With the specified properties of U, this reduces (for both types of boundary
conditions) to: '

f VU d?x = 0
.

which implies VU = 0. Consequently, inside V, U is constant. For
Dirichlet boundary conditions, U/ = 0 on S so that, inside V, ®, = ®; and
the solution is unique. Similarly, for Neumann boundary conditions, the
solution is unique, apart from an unimportant arbitrary additive constant.

From the right-hand side of (1.38) it is clear that there is also a unique
solution to a problem with mixed boundary conditions (i.e., Dirichlet over
part of the surface .S, and Neumann over the remaining part).

1t should be clear that a solution to Poisson’s equation with both ® and
2®/on specified on a closed boundary (Cauchy boundary conditions) does
not exist, since there are unique solutions for Dirichlet and Neumann
conditions separately and these will in general not be consistent. The
question of whether Cauchy boundary conditions on an open surface define
a unique electrostatic problem requires more discussion than is warranted
here. The reader may refer to Morse and Feshbach, Section 6.2, pp. 692-
706, or to Sommerfeld, Partial Differential Equations in Physics, Chapter
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11, for a detailed discussion of these questions. Morse and Feshbach base
their treatment on the replacement of the partial differential equation by
appropriate difference equations which they then solve by an iterative
procedure. On the other hand, Sommerfeld bases his discussion on the
method of characteristics where possible. The result of these investigations
on which boundary conditions are appropriate is summarized in the table
below (based on one given in Morse and Feshbach), where different types

Type of Equation

;(;ﬁf;:f Elliptic Hyperbolic Parabolic
y o (heat-con-
Condition (Poisson’s eq.) (wave eq.) duction eq.)
Dirichlet
Open surface Not enough Not enough Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution
Neumann
Open surface Not enough Not enough Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution in
general
Cauchy
Open surface Unphysical Unigue, stable|| Too much
results solution
Closed surface Too much Too much Too much

A stable solution is one for which small changes in the boundary conditions
cause appreciable changes in the sclution only in the neighborhood of the

boundary.

of partial differential equations and different kinds of boundary conditions

are listed.

Study of the table shows that electrostatic problems are specified only
by Dirichiet or Neumann boundary conditions on a closed surface (part
or all of which may be at infinity, of course).
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1.10 Formal Solution of Electrostatic Boundary-Value Problem with
Green’s Function

The solution of Poisson’s or Laplace’s equation in a finite volume ¥ with
either Dirichlet or Neumann boundary conditions on the bounding surface
S can be obtained by means of Green’s theorem (1.35) and so-called
“Green’s functions.”

In obtaining result (1.36)—not a solution—we chose the function y to
be 1/|x — x'|, it being the potential of a unit point charge, satisfying the
equation:

vz ( 1 ) = —4md(x — x) (1.31)

[x — x|

The function 1/]x — x| is only one of a class of functions depending on the
variables x and x’, and called Green’s functions, which satisfy (1.31). In

general, V2G(x, X') = —4md(x — x) (1.39)

1
x — X’

where

G(x, x') = | | + F(x, x") (1.40)

with the function F satisfying Laplace’s equation inside the volume V:
V2F(x,x) =0 (1.41)

In facing the problem of satisfying the prescribed boundary conditions
on @ or 0®/0n, we can find the key by considering result (1.36). As has
been pointed out already, this is not a solution satisfying the correct type
of boundary conditions because both ® and d®/0n appear in the surface
integral. It is at best an integral equation for ®. With the generalized
concept of a Green’s function and its additional freedom [via the function
F(x, X)), there arises the possibility that we can use Green’s theorem with
v = G(x, x') and choose F(x, x') to eliminate one or the other of the two
surface integrals, obtaining a result which involves only Dirichlet or
Neumann boundary conditions. Of course, if the necessary G(x,X)
depended in detail on the exact form of the boundary conditions, the
method would have little generality. As will be seen immediately, this is
not required, and G(x, x') satisfies rather simple boundary conditions on S.

With Green’s theorem (1.35), ¢ = @, » = G(x, X'), and the specified
properties of G (1.39), it is simple to obtain the generalization of (1.36):

od 0G(x, x’)] da’

I PO § N
B(x) = fyp(xm(x,x)dx + 4W£ [G(mx)an, o) =2

(1.42)
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The freedom available in the definition of G (1.40) means that we can make
the surface integral depend only on the chosen type of boundary con-
ditions. Thus, for Dirichlet boundary conditions we demand:

G, (x,x)=0 forx onS (1.43)

Then the first term in the surface integral in (1.42) vanishes and the
solution is

9G
PO(x) =pr(x')Gp(x, x) d’z’ — %T i O(x’) a—n’? da’ (1.44)

For Neumann boundary conditions we must be more careful. The
obvious choice of boundary condition on G(x, x') seems to be

%y
on’'

since that makes the second term in the surface integral in (1.42) vanish,
as desired. But an application of Gauss’s theorem to (1.39) shows that

§> dia' = —4x
s on’

(x,x)=0 forx'onS

~

Consequently the simplest allowable boundary condition on Gy, is

%Gy x,x)= — A forx on § (1.45)
on' S

where S is the total area of the boundary surface. Then the solution is
' r 3,7 1 aq) ’
O(x) = (D)g + | p(XVGN(X, X)d’" + — P — Gyda' (1.46)
v 4r Jg on'

where (@) is the average value of the potential over the whole surface.
The customary Neumann problem is the so-called ‘“‘exterior problem” in
which the volume ¥ is bounded by two surfaces, one closed and finite, the
other at infinity. Then the surface area S is infinite; the boundary
condition (1.45) becomes homogeneous; the average value (®)g vanishes.

We note that the Green’s functions satisfy simple boundary conditions
(1.43) or (1.45) which do not depend on the detailed form of the Dirichlet
(or Neumann) boundary values. Even so, it is often rather involved (if
not impossible) to determine G(x, x) because of its dependence on the
shape of the surface S. We will encounter such problems in Chapter 2
and 3.

The mathematical symmetry property G(x, x’) = G(x', x) can be proved
for the Green’s functions satisfying the Dirichlet boundary condition
(1.43) by means of Green’s theorem with ¢ = G(x, y) and » = G(xX', y),
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where y is the integration variable. Since the Green’s function, asa function
of one of its variables, is a potential due to a unit point charge, this sym-
metry merely represents the physical interchangeability of the source and
the observation points. For Neumann boundary conditions the symmetry
is not automatic, but can be imposed as a separate requirement.

As a final, important remark we note the physical meaning of F(x, x').
It is a solution of Laplace’s equation inside ¥ and so represents the
potential of a system of charges external to the volume V. It can be
thought of as the potential due to an external distribution of charges so
chosen as to satisfy the homogeneous boundary conditions of zero
potential (or zero normal derivative) on the surface S when combined with
the potential of a point charge at the source point x’. Since the potential
at a point x on the surface due to the point charge depends on the position
of the source point, the external distribution of charge F(x, x") must also
depend on the “parameter”” x". From this point of view, we see that the
method of images (to be discussed in Chapter 2) is a physical equivalent
of the determination of the appropriate F(x, x) to satisfy the boundary
conditions (1.43) or (1.45). For the Dirichlet problem with conductors,
F(x, x') can also be interpreted as the potential due to the surface-charge
distribution induced on the conductors by the presence of a point charge
at the source point x'.

1.11 Electrostatic Potential Energy and Energy Density

In Section 1.5 it was shown that the product of the scalar potential and
the charge of a point object could be interpreted as potential energy. More
precisely, if a point charge ¢, is brought from infinity to a point x, in a
region of localized electric fields described by the scalar potential ® (which
vanishes at infinity), the work done on the charge (and hence its potential
energy) is given by

W; = q,0(x,) (1.47)

The potential @ can be viewed as produced by an array of (n — 1) charges
g;(j=1,2,...,n — 1) at positions x;. Then

n—1
ox) = > —di— (1.48)
j=1 |x7l - X;fl
so that the potential energy of the charge g; is
n—1
W= 2 —— (1.49)

=1 Ix; — X
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1t is clear that the total potential energy of all the charges due to all the
forces acting between them is:

W= Z qzqf (1.50)

i=1 J<¢
as can be seen most easily by adding each charge in succession. A more
symmetric form can be written by summing over 7 and ; unrestricted, and

then dividing by 2:
_1 9:4;
L 1.51
D R (151

1t is understood that i = j terms (mhmte “self-energy’” terms) are omitted
in the double sum.

For a continuous charge distribution [or, in general, using the Dirac
delta functions (1.6)] the potential energy takes the form:

1 f f PP iy gy (1.52)
2 |x — x|

Another expression, equivalent to (1.52), can be obtained by noting that

one of the integrals in (1.52) is just the scalar potential (1.17). Therefore

W= % f p()D(x) B (1.53)

Equations (1.51), (1.52), and (1.53) express the electrostatic potential
energy in terms of the positions of the charges and so emphasize the
interactions between charges via Coulomb forces. An alternative, and
very fruitful, approach is to emphasize the electric field and to interpret
the energy as being stored in the electric field surrounding the charges. To
obtain this latter form, we make use of Poisson’s equation to eliminate the
charge density from (1.53):

W=— |OVD 4%

T

Integration by parts leads to the result:
w=L f VO Pz = L f E2 & (1.54)
8 8

where the integration is over all space. In (1.54) all explicit reference to
charges has gone, and the energy is expressed as an integral of the square
of the electric field over all space. This leads naturally to the identification
of the integrand as an energy density w:

W= [E? (1.55)

8



22 Classical Electrodynamics
. P

q1

X1 q2
X7
0
Fig. 1.8
This expression for energy density is intuitively reasonable, since regions
of high fields ““must’ contain considerable energy.

There is perhaps one puzzling thing about (1.55). The energy density is
positive definite. Consequently its volume integral is necessarily non-
negative. This seems to contradict our impression from (1.51) that the
potential energy of two charges of .opposite sign is negative. The reason
for this apparent contradiction is that (1.54} and (1.55) contain “‘self-
energy” contributions to the energy density, whereas the double sum in
(1.51) does not. To illustrate this, consider two point charges ¢, and g,
located at x; and x,, as in Fig. 1.8. The electric field at the point P with
coordinate x is

— QX — X)) | (X — Xp)
Ix — x| Ix — X

so that the energy density (1.55) is

- ‘hz 422 Gida(X — X1) * (X — X) (1.56)

+
8rlx — x|t 8mx — Xt dwm|x — x| |x — x,|?
Clearly the first two terms are self-energy contributions. To show that the
third term gives the proper result for the interaction potential energy we_
integrate over all space:

41‘12 J- (x — Xp) - (x — Xp) F (1.57)
x — %1% Ix — x,[2

A change of integration variable to p = (x — x)/|x; — X,| yields

VViut —_ N4z X — fp (P + Il) dp (158)
X, — Xo| 4w J pflp +nf
where n is a unit vector in the direction (x; — X,). By straightforward
integration the dimensionless volume integral can be shown to have the
value 4, so that the interaction energy reduces to the expected value.
Forces acting between charged bodies can be obtained by calculating
the change in the total electrostatic energy of the system under small
virtual displacements. Examples of this are discussed in the problems.
Care must be taken to exhibit the energy in a form showing clearly those



[Probs. 1] Introduction to Electrostatics 23

factors which vary with a change in configuration and those which are
kept constant.

As a simple illustration we calculate the force per unit area on the surface
of a conductor with a surface-charge density o(x). In the immediate
neighborhood of the surface the energy density is

W= € |E]2 = 27a? (1.59)
87

If we now imagine a small outward displacement Az of an elemental area
Aa of the conducting surface, the electrostatic energy decreases by an
amount which is the product of energy density w and the excluded volume

Az Aa: AW = —2n6?Aa Aw (1.60)

This means that there is an outward force per unit area equal to 270® = w
at the surface of the conductor. This result is normally derived by taking
the product of the surface-charge density and the electric field, with care
taken to eliminate the electric field due to the element of surface-charge
density itself.

REFERENCES AND SUGGESTED READING

On the mathematical side, the subject of delta functions is treated simply but rigor-
ously by
Lighthill.
For a discussion of different types of partial differential equations and the appropriate
boundary conditions for each type, see
Morse and Feshbach, Chapter 6,
Sommerfeld, Partial Differential Equations in Physics, Chapter II,
Courant and Hilbert, Vol. II, Chapters ITI-VI.
The general theory of Green’s functions is treated in detail by
Friedman, Chapter 3,
Morse and Feshbach, Chapter 7.
The general theory of electrostatics is discussed extensively in many of the older books.
Notable, in spite of some old-fashioned notation, are
Maxwell, Vol. 1, Chapters If and 1V,
Jeans, Chapters II, VI, VIIL.
Of more recent books, mention may be made of the treatment of the general theory by
Stratton, Chapter I1I, and parts of Chapter II.

PROBLEMS

1.1 Use Gauss’s theorem to prove the following statements:
(a) Any excess charge placed on a conductor must lie entirely on its
surface. (A conductor by definition contains charges capable of moving
freely under the action of applied electric fields.)
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1.2

1.3
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1.5

1.6
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(b) A closed, hollow conductor shields its interior from fields due to
charges outside, but does not shield its exterior from the fields due to
charges placed inside it.

(¢) The electric field at the surface of a conductor is normal to the surface
and has a magnitude 4=c, where o is the charge density per unit area on the
surface.

Two infinite, conducting, plane sheets of uniform thicknesses ¢, and 1,,
respectively, are placed parallel to one another with their adjacent faces
separated by a distance L. The first sheet has a total charge per unit area
(sum of the surface-charge densities on either side) equal to ¢, while the
second has g,. Use symmetry arguments and Gauss’s law to prove that

(@) the surface-charge densities on the adjacent faces are equal and
opposite;

(b) the surface-charge densities on the outer faces of the two sheets are
the same;

(c) the magnitudes of the charge densities and the fields produced are
independent of the thicknesses f; and 7, and the separation L.

Find the surface-charge densities and fields explicitly in terms of ¢, and
g2, and apply your results to the special case g, = —¢qp, = Q.

Each of three charged spheres of radius @, one conducting, one having a
uniform charge density within its volume, and one having a spherically
symmetric charge density which varies radially as »* (n > —3), has a total
charge Q. Use Gauss’s theorem to obtain the electric fields both inside and
outside each sphere. Sketch the behavior of the fields as a function of
radius for the first two spheres, and for the third with n = —2, +2.

The time-average potential of a neutral hydrogen atom is given by

e o
(D = 1 J—
5 (+3)
where ¢ is the magnitude of the electronic charge, and «! = @4/2. Find

the distribution of charge (both continuous and discrete) which will give
this potential and interpret your result physically.

A simple capacitor is a device formed by two insulated conductors adjacent
to each other. If equal and opposite charges are placed on the conductors,
there will be a certain difference of potential between them. The ratio of
the magnitude of the charge on one conductor to the magnitude of the
potential difference is called the capacitance (in electrostatic units it is
measured in centimeters). Using Gauss’s law, calculate the capacitance of

(a) two large, flat, conducting shects of area A, separated by a small
distance d;

(b) two concentric conducting spheres with radii a, b (b > a);

(¢) two concentric conducting cylinders of length L, large compared to
their radii a, 6 (b > a).

(d) What is the inner diameter of the outer conductor in an air-filled
coaxial cable whose center conductor is B&S #20 gauge wire and whose
capacitance is 0.5 micromicrofarad/cm? 0.05 micromicrofarad/cm?

Two long, cylindrical conductors of radii @; and a, are parallel and
separated by a distance 4 which is large compared with either radius.
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Show that the capacitance per unit length is given approximately by

—1
C ~ (4 In _‘?)
a

where a is the geometrical mean of the two radii.

Approximately what B&S gauge wire (state diameter in millimeters
as well as gauge) would be necessary to make a two-wire transmission line
with a capacitance of 0.1 uuf/cm if the separation of the wires was 0.5 cm?
1.5cm? 5.0 cm?

1.7 (a) For the three capacitor geometries in Problem 1.5 calculate the total
electrostatic energy and express it alternatively in terms of the equal and
opposite charges Q and —Q placed on the conductors and the potential
difference between them.

(b) Sketch the energy density of the electrostatic field in each case as a
function of the appropriate linear coordinate.

1.8 Calculate the attractive force between conductors in the parallel plate
capacitor (Problem 1.5a) and the parallel cylinder capacitor (Problem 1.6)
for

(a) fixed charges on each conductor;
(b) fixed potential difference between conductors.

1.9 Prove the mean value theorem: For charge-free space the value of the
electrostatic potential at any point is equal to the average of the potential
over the surface of any sphere centered on that point.

1.10 Use Gauss’s theorem to prove that at the surface of a curved charged
conductor the normal derivative of the electric field is given by

1 9E 1 + 1
Eam  \R 'R,
where R, and R, are the principal radii of curvature of the surface.

L11 Prove Green’s reciprocation theorem: If ®@ is the potential due to a volume-
charge density p within a volume J and a surface-charge density o on the
surface § bounding the volume ¥, while @’ is the potential due to another
charge distribution p’ and ¢, then

»

j p®’ dBx +f a®’ da =J p’® d3x +fo’<1> da
v K v S

1.12 Prove Thomson’s theorem: If a number of conducting surfaces are fixed in
position and a given total charge is placed on each surface, then the electro-
static energy in the region bounded by the surfaces is a minimum when the
charges are placed so that every surface is an equipotential.

1.13 Prove the foliowing theorem: If a number of conducting surfaces are
fixed in position with a given total charge on each, the introduction of an
uncharged, insulated conductor into the region bounded by the surfaces
lowers the electrostatic energy.



Boundary-Value Problems

in Electrostatics: I

Many problems in electrostatics involve boundary surfaces on which
either the potential or the surface-charge density is specified. The formal
solution of such problems was presented in Section 1.10, using the method
of Green’s functions. In practical situations (or even rather idealized
approximations to practical situations) the discovery of the correct Green’s
function is sometimes easy and sometimes not. Consequently a number of
approaches to electrostatic boundary-value problems have been developed,
some of which are only remotely connected to the Green’s function
method. In this chapter we will examine two of these special techniques:
(1) the method of images, which is closely related to the use of Green’s
functions; (2) expansion in orthogonal functions, an approach directly
through the differential equation and rather remote from the direct
construction of a Green’s function. Other methods of attack, such as the
use of conformal mapping in two-dimensional problems, will be omitted.
For a discussion of conformal mapping the interested reader may refer to
the references cited at the end of the chapter.

2.1 Method of Images

The method of images concerns itself with the problem of one or more
point charges in the presence of boundary surfaces, e.g., conductors either
grounded or held at fixed potentials. Under favorable conditions it is
possible to infer from the geometry of the situation that a small number of
suitably placed charges of appropriate magnitudes, external to the rcgion
of interest, can simulate the required boundary conditions. These charges

26
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Fig. 2.1 Solution by method of :
images. The original potential I
problem is on the left, the |
equivalent-image problem on i

the right. |

are called image charges, and the replacement of the actual problem with
boundaries by an enlarged region with image charges but no boundaries is
called the method of images. The image charges must be external to the
volume of interest, sincc their potentials must be solutions of Laplace’s
equation inside the volume; the “particular integral” (i.e., solution of
Poisson’s equation) is provided by the sum of the potentials of the charges
inside the volume.

A simple example is a point charge located in front of an infinite plane
conductor at zero potential, as shown in Fig. 2.1. It is clear that this is
equivalent to the problem of the original charge and an equal and opposite
charge located at the mirror-image point behind the plane defined by the
position of the conductor,

2.2 Point Charge in the Presence of a Grounded Conducting
Sphere

As an illustration of the method of images we consider the problem
illustrated in Fig. 2.2 of a point charge g located at y relative to the origin
around which is centered a grounded conducting sphere of radius a.* We
seek the potential ®(x) such that ®(]x|] = a) = 0. By symmetry it is
evident that the image charge ¢’ (assuming that only one image is needed)
will lie on the ray from the origin to the charge g. If we consider the charge
q outside the sphere, the image position y’ will lie inside the sphere. The

* The term grounded is used to imply that the surface or object is held at the same
potential as the point at infinity by means of some fine conducting connector. The
connection is assumed not to disturb the potential distribution. But arbitrary amounts
of charge of either sign can flow onto the object from infinity in order to maintain its
potential at “*ground” (usually taken to be zero potential). A conductor held at a fixed
potential is essentially the same situation, except that a voltage source is interposed
between the object and “ground.”
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Fig. 2.2 Conducting sphere of
radius a, with charge g and image
charge ¢’.

potential due to the charges g and ¢’ is:

’

__ 9 g
= T Ry @

We now must try to choose ¢’ and |y’| such that this potential vanishes at
|x] = a. Ifnis a unit vector in the direction x, and n’ a unit vector in the
direction y, then

’

o) =—L — 9 (2.2)
lan — yn'|  |Jxn — y'n'|

If « is factored out of the first term and y’ out of the second, the potential
at = a becomes:

Oz = a) = —2 + —1 (2.3)

n— 2w Y
a

a

From the form of (2.3) it will be seen that the choices:

9 4 k4
a

a
Y a y

make ®(x = a) = 0, for all possible values of n - n’. Hence the magnitude
and position of the image charge are

' a ’
q =~——q, y = — (2.4)
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We note that, as the charge g is brought closer to the sphere, the image
charge grows in magnitude and moves out from the center of the sphere.
When ¢ is just outside the surface of the sphere, the image charge is equal
and opposite in magnitude and lies just beneath the surface.

Now that the image charge has been found, we can return to the original
problem of a charge ¢ outside a grounded conducting sphere and consider
various effects. The actual charge density induced on the surface of the
sphere can be calculated from the normal derivative of @ at the surface:

a®
1 80 ' (1 - —2)
- 47 Oz =T 47?512(2) a? ya z (23
o= Y (1+—5-—2—cosy)
Yy Y

where y is the angle between x and y. This charge density in units of
—g[4ma® is shown plotted in Fig. 2.3 as a function of y for two values of
yfa. The concentration of charge in the direction of the point charge g is
evident, especially for y/a = 2. It is easy to show by direct integration
that the total induced charge on the sphere is equal to the magnitude of the
image charge, as it must according to Gauss’s law.

Fig. 2.3 Surface-charge density ¢
induced on the grounded sphere
of radius @ due to the presence
of a point charge ¢ located a dis-
tance y away from the center of
the sphere. o is plotted in units of
—q/4ma® as function of the angular
position y away from the radius
to the charge for ¥y = 2q, 4a.
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dF =2no?da

Fig. 2.4

The force acting on the charge g can be calculated in different ways.
One (the easiest) way is to write down immediately the force between the
charge g and the image charge ¢’. The distance between themis y — y’ =
y(1 — a%y*). Hence the attractive force, according to Coulomb’s law, is:

- 2

For large separations the force is an inverse cube law, but close to the
sphere it is proportional to the inverse square of the distance away from
the surface of the sphere.

The alternative method for obtaining the force is to calculate the total
force acting on the surface of the sphere. The force on each element of
area da is 2mo® da, where o is given by (2.5), as indicated in Fig. 2.4. But
from symmetry it is clear that only the component parallel to the radius
vector from the center of the sphere to ¢ contributes to the total force.
Hence the total force acting on the sphere (equal and opposite to the force
acting on ¢) is given by the integral:

2 2 2\2
L ) s e L
maY Y <1+—~ —cosy)
Y

Integration immediately yields (2.6).

The whole discussion has been based on the understanding that the
point charge g is outside the sphere. Actually, the results apply equally for
the charge g inside the sphere. The only change necessary is in the surface-
charge density (2.5), where the normal derivative out of the conductor is
now radially inwards, implying a change in sign. The reader may transcribe
all the formulas, remembering that now y < . The angular distributions
of surface charge are similar to those of Fig. 2.3, but the total induced
surface charge is evidently equal to —g, independent of y.
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2.3 Point Charge in the Presence of a Charged, Insulated,
Conducting Sphere

In the previous section we considered the problem of a point charge ¢
near a grounded sphere and saw that a surface-charge density was induced
on the sphere. This charge was of total amount ¢’ = —ag/y, and was
distributed over the surface in such a way as to be in equilibrium under all
forces acting.

If we wish to consider the problem of an insulated conducting sphere
with total charge Q in the presence of a point charge ¢, we can build up
the solution for the potential by linear superposition. In an operational
sense, we can imagine that we start with the grounded conducting sphere
(with its charge ¢" distributed over its surface). We then disconnect the
ground wire and add to the sphere an amount of charge (Q — ¢'). This
brings the total charge on the sphere up to Q. To find the potential we
merely note that the added charge (Q — ¢') will distribute itself uniformly
over the surface, since the electrostatic forces due to the point charge ¢ are
already balanced by the charge ¢’. Hence the potential due to the added
charge (Q — ¢') will be the same as if a point charge of that magnitude
were at the origin, at least for points outside the sphere.

The potential is the superposition of (2.1) and the potential of a point
charge (Q — ¢') at the origin:

4 0+ g
o) =—3 - 4 __, ¥ 2.8)
[x — I _a
yx—=y

The force acting on the charge ¢ can be written down directly from
Coulomb’s law. It is directed along the radius vector to ¢ and has the
magnitude:

F=4 _ 48’2y —aM]y 29
iQ Mf—aw]y .

Y
In the limit of ¥ > a, the force reduces to the usual Coulomb’s law for two
small charged bodies. But close to the sphere the force is modified because
of the induced charge distribution on the surface of the sphere. Figure 2.5
shows the force as a function of distance for various ratios of Q/g. The
force is expressed in units of g%/y2; positive (negative) values correspond
to a repulsion (attraction). If the sphere is charged oppositely to g, or is
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Qlg=3

Fig. 2.5 The force on a point charge ¢ due to an insulated, conducting sphere of radius

a carrying a total charge Q. Positive values mean a repulsion, negative an attraction.

The asymptotic dependence of the force has been divided out. Fy?/g® is plotted versus

yla for Qlg = —1,0,1, 3. Regardless of the value of Q, the force is always attractive
at close distances because of the induced surface charge.

uncharged, the force is attractive at all distances. Even if the charge Q is
the same sign as ¢, however, the force becomes attractive at very close
distances. In the limit of Q > g, the point of zero force (unstable equili-
brium point) is very close to the sphere, namely, at y ~ a(l + }V/. (}/_Q~).
Note that the asymptotic value of the force is attained as soon as the charge
g is more than a few radii away from the sphere.

This example exhibits a general property which explains why an excess
of charge on the surface does not immediately leave the surface because of
mutual repulsion of the individual charges. As soon as an element of
charge is removed from the surface, the image force tends to attract it
back. If sufficient work is done, of course, charge can be removed from
the surface to infinity. The work function of a metal is in large part just
the work done against the attractive image force in order to remove an
electron from the surface.
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2.4 Point Charge near a Conducting Sphere at Fixed Potential

Another problem which can be discussed easily is that of a point charge
near a conducting sphere held at a fixed potential . The potential is the
same as for the charged sphere, except that the charge (Q — ¢) at the
center is replaced by a charge (Va). This can be seen from (2.8), since at
[x| = a the first two terms cancel and the last term will be equal to V as
required. Thus the potential is

D(x) = —2 ag __,Ya (2.10)

2
X a X
| yl ylx y2y x|

The force on the charge ¢ due to the sphere at fixed potential is

_4lya— __4_‘2/3_]!
F y2|:Va 7 — g (2.11)
For corresponding values of Va/q and Q/q this force is very similar to that
of the charged sphere, shown in Fig. 2.5, although the approach to
the asymptotic value (Vag/y?) is more gradual. For Va > ¢, the unstable

equilibrium point has the equivalent location y ~ a(l + %\/q/ Va).

2.5 Conducting Sphere in a Uniform Electric Field by Method
of Images

As a final example of the method of images we consider a conducting
sphere of radius a in a uniform electric field E,. A uniform field can be
thought of as being produced by appropriate positive and negative charges
atinfinity. For example, if there are two charges + O, located at positions
z = FR, as shown in Fig. 2.64, then in a region near the origin whose
dimensions are very small compared to R there is an approximately
constant electric field E, ~ 2Q/R? parallcl to the z axis. In the limit as
R, O — oo, with Q/R? constant, this approximation becomes exact.

If now a conducting sphere of radius a is placed’ at the origin, the
potential will be that due to the charges +Q at FR and their images
FQa/R at z = Fa?/R:

- Q _ Q
(r® + R2 4 2rR cos 0)*  (r® + R® — 2rR cos 0)”
_ L _ 20 = (212
s, a 2a®r : 2, a 2a%r
R\ + =+ cos 0 R|¥ +——=—cost
R? R R? R
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Fig. 2.6 Conducting sphere in a uniform electric field by the method of images.

where @ has been expressed in terms of the spherical coordinates of the
observation point. In the first two terms R is much larger than r by
assumption. Hence we can expand the radicals after factoring out RZ.
Similarly, in the third and fourth terms, we can factor out r? and then
expand. The result is:

2 20 a®
(I):l:—R—ngOSQ—!-R—-g%COSO:l—F"‘ (2.13)

where the omitted terms vanish in the limit R — co. In that limit 2Q/R?
becomes the applied uniform field, so that the potential is

3
o= —E0<r — “—2) cos 6 (2.14)
¥

The first term (— Egz) is, of course, just the potential of a uniform field E,
which could have been written down directly instead of the first two terms
in (2.12). The second is the potential due to the induced surface charge
density or, equivalently, the image charges. Note that the image charges
form a dipole of strength D = Qa/R x 24*/R = Ew®. The induced
surface-charge density is

o= _1o® =iE0C056 (2.15)

47 Or 4

r=a
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We note that the surface integral of this charge density vanishes, so that
there is no difference between a grounded and an insulated sphere.

2.6 Method of Inversion

The method of images for a sphere and related topics discussed in the
previous sections suggest that there is some sort of equivalence of solutions
of potential problems under the reciprocal radius transformation,

2
r-r =% (2.16)
r

This equivalence forms the basis of the method of inversion, and trans-
formation (2.16) is called inversion in a sphere. The radius of the sphere is
called the radius of inversion, and the center of the sphere, the center of
inversion. The mathematical equivalence is contained in the following
theorem:

Let @(r, 6, ¢) be the potential due to a set of point charges g, at the
points (r;, 0,, ¢,). Then the potential

, a . {a*
O'(r, 0, ¢) = - <I)(— , 0, ¢>) (2.17)
ro\r
is the potential due to charges,
4/ =4, (2.18)

located at the points (a?/r;, 0,, $,).

The proof of the theorem is as follows. The potential O(r, 0, $) can be

written as
©=2,

where y, is the angle between the radius vectors x and x,. Under trans-
formation (2.16) the angles remain unchanged. Consequently the new

potential @’ is
A/—+ F; ———r Cos ¥,

\/r + 12 —-2rr cos y;

D'(r, 0, ) =
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Fig. 2.7

By factoring (r 2/r?) out of the square root, this can be written

O 0,4 =, (Tq)

4 2
' a a
¢ A/r2+—2—2r—-cosyi

¥

z

This proves the theorem.

Figure 2.7 shows a simple configuration of charges before and after
inversion. The potential @' at the point P due to the inverted distribution
of charge is related by (2.17) to the original potential ® at the point P’ in
the figure.

The inversion theorem has been stated and proved with discrete charges.
It is left as an exercise for the reader to show that, if the potential ®
satisfies Poisson’s equation,

V20 = —47p
the new potential @' (2.17) also satisfies Poisson’s equation,
V2D'(r, 0, ¢) = —4mwp'(r, 0, $) 2.19)
where the new charge density is given by
aV (a®
pr, 0, $) = (;) P(: » 05 ¢) (2.20)

The connection between this transformation law for charge densities and
the law (2.18) for point charges can be established by considering the
charge density as a sum of delta functions:

p(0) = 2 q,8(x — %)
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In terms of spherical coordinates centered at the center of inversion the
charge density can be written

.0, ) = 2.4, = 2) - 8 — 1)

where 6(€ — Q) is the angular delta function whose integral over solid
angle gives unity, and 8(r — r,) is the radial delta function.* Under
inversion the angular factor is unchanged. Consequently we have

2 1 2
o(£.0.4) = Sane -0y L o(% - r)

The radial delta function can be transformed according to rule 5 at the
end of Section 1.2 as

2 2 2 2 2
(E ) =Gl -2) -l
r a r; r; 7.
é(r— a_z)

F
’az)z
(5

i

2

Then

a2 ) ab
—,0,4) = HQ — Q) —
P( 0.4 Z 4 ) iy
and the inverted charge density (2.20) becomes

I3 a5 a‘ ¥ ! N !
P09 =% >0 4f o = x0) = D asx— %0
where x,;" = (a%/r;, 0, $) and g, = (a/r,)q,, as required by (2.18).

With the transformation laws for charges and volume-charge densities
given by (2.18) and (2.20), it will not come as a great surprise that the
transformation of surface-charge densities is according to

o(r, 0, §) = (%)3 o (“—: , 6, ¢) (2.21)

Before treating any examples of inversion there are one or two physical
and geometrical points which need discussion. First, in regard to the
physical points, if the original potential problem is one where there are
conducting surfaces at fixed potentials, the inverted problem will not in
general involve the inversions of those surfaces held at fixed potentials,
This is evident from (2.17), where the factor a/r shows that even if @ is
constant on the original surface the potential @’ on the inverted surface is

"f The factor »,72 multiplying the radial delta function is present to cancel out the r?
Wwhich appears in the volume element %z = r? dr dQQ.
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Fig. 2.8 Geometry of inversion.

Center of inversion is at 0. Radius

of inversion is a. The inversion of

the surface S is the surface S, and
vice versa.

not. The only exception occurs when @ vanishes on some surface. Then
@’ also vanishes on the inverted surface.

One might think that, since @ is arbitrary to the extent of an additive
constant, we could make any surface in the original problem have zero
potential and so also be at zero potential in the inverted problem. This
brings us to the second physical point. The inverted potentials corre-
sponding to two potential problems differing only by an added constant
potential ®, represent physically different charge configurations, namely,
charge distributions which differ by a point charge a®, located at the center
of inversion. This can be seen from (2.17), where a constant term ®, in ®
is transformed into (a®,/r). Consequently care must be taken in applying
the method of inversion to remember that the mapping of the point at
infinity into the origin may introduce point charges there. If these are not
wanted, they must be separately removed by suitable linear superposition.

The geometrical considerations involve only some elementary points
which can be proved very simply. The notation is shown in Fig. 2.8. Let
O be the center of inversion, and « the radius of inversion. The inter-
section of the sphere of inversion and the plane of the paper is shown as
the dotted circle. A surface S intersects the page with the curve 4B. The
inverted surface S’, obtained by transformation (2.16), intersects the page
in the curve A’B’. The following facts are stated without proof:

(@) Angles of intersection are not altered by inversion.

(b) An element of area da on the surface S is related to an element of
area da’ on the inverted surface S’ by da/da’ = r?/r’™.

(c¢) The inverse of a sphere is always another sphere [perhaps of infinite
radius; see (d)].

(d) The inverse of any plane is a sphere which passes through the center
of inversion, and conversely.

Figure 2.9 illustrates the possibilities involved in (¢) and (d) when the
center of inversion lies outside, on the surface of, or inside the sphere.
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As a very simple example of the solution of a potential problem by
jnversion we consider an isolated conducting sphere of radius R with a
total charge Q on it. The potential has the constant value Q/R inside the
sphere and falls off inversely with distance away from the center for points
outside the sphere. By a suitable choice of center of inversion and
associated parameters we can obtain the potential due to a point charge g
a distance d away from an infinite, grounded, conducting plane. Evidently,
if the center of inversion O is chosen to lie on the surface of the sphere of
radius R, the sphere will invert into a plane. This geometric situation is
shown in Fig. 2.10. Furthermore, if we choose the arbitrary additive
constant potential @, to have the value — Q/R, the sphere and its inversion,
the plane, will be at zero potential, while a point charge —a Q/R will appear
at the center of inversion. In order that we end up with a point chargeg a
distance d away from the plane it is necessary to choose the radius of
inversion to be @ = (2Rd)** and the initial charge, Q = —(R/2d)"%q. The
surface-charge density induced on the plane can be found easily from (2.21).
Since the charge density on the sphere is uniform over its surface, the
induced charge density on the plane varies inversely as the cube of the
distance away from the origin (as can be verified from the image solution;
see Problem 2.1).

If the center of inversion is chosen to lie outside the isolated uniformly
charged sphere, it is clear from Fig. 2.9 that the inverted problem can be
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If'ig. 2.9 Various possibilities for the inversion of a sphere. If the center of inversion O
lies on the surface S of the sphere, the inverted surface S is a plane; otherwise it is
another sphere. The sphere of inversion is shown dotted.
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Fig. 2,10 Potential due to isolated, charged,
conducting sphere of radius R is inverted to give
the potential of a point charge a distance d
away from an infinite, flat, conducting surface.

made that of a point charge near a grounded conducting sphere, handled
by images in Section 2.2. The explicit verification of this is left to Problem
2.9.

A very interesting use of inversion was made by Lord Kelvin in 1847.
He calculated the charge densities on the inner and outer surfaces of a thin,
charged, conducting bowl made from a sphere with a cap cut out of it. The
potential distribution which he inverted was that of a thin, flat, charged,
circular disc (the charged disc is discussed in Section 3.12). As the shape
of the bowl is varied from a shallow watch glass-like shape to an almost
closed sphere, the charge densities go from those of the disc to those of a
closed sphere, in the one limit being almost the same inside and out, but
concentrated at the edges of the bowl, and in the other limit being almost
zero on the inner surface and uniform over the outer surface. Numerical
values are given in Kelvin’s collected papers, p. 186, and in Jeans, pp.
250-251.

2.7 Green’s Function for the Sphere; General Solution
for the Potential

In preceding sections the problem of a conducting sphere in the presence
of a point charge has been discussed by the method of images. As was
mentioned in Section 1.10, the potential due to a unit charge and its image
(or images), chosen to satisfy homogeneous boundary conditions, is just
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the Green’s function (1.43 or 1.45) appropriate for Dirichlet or Neumann
boundary conditions. In G(x, x') the variable x’ refers to the location P’
of the unit charge, while the variable x is the point P at which the potential
is being evaluated. These coordinates and the sphere are shown in Fig.
2.11. For Dirichlet boundary conditions on the sphere of radius a the
potential due to a unit charge and its image is given by (2.1) with g = 1
and relations (2.4). Transforming variables appropriately, we obtain the
Green’s function:

G(x, x') = - > (2.22)
X—X , a®
XX - 0 X
X
In terms of spherical coordinates this can be written:
1 1
G(X’ x) = 2 2 ’ 7 2 12 L3
(2% + % — 222’ cos y) (x 9: 4 a® — 22w cos 7/)
a

(2.23)

where y is the angle between x and x’. The symmetry in the variables x
and x’ is obvious in the form (2.23), as is the condition that G = 0 if either x
or X’ is on the surface of the sphere.




42 Classical Electrodynamics

For solution (1.44) of Poisson’s equation we need not only G, but also
9G/on’. Remembering that n’ is the unit normal outwards from the
volume of interest, i.e., inwards along x’ toward the origin, we have

3G
on’

(2* — a%)

B a(x® + a® — 2ax cos y)*

(2.24)

' =a

[Note that this is essentially the induced surface-charge density (2.5).]
Hence the solution of Laplace’s equation outside a sphere with the potential
specified on its surface is, according to (1.44),

a(z* — a?)

(2 + a® — 2azx cos p)*

¢®=iﬁmm¢) QY  (2.25)

where dQ)’ is the element of solid angle at the point (a, §’, ") and cos y =
cos § cos 6" + sin 0 sin 6" cos (¢ — ¢'). For the interior problem, the
normal derivative is radially outwards, so that the sign of 0G/dn’ is opposite
to (2.24). This is equivalent to replacing the factor (22 — 42) by (a® — 2?)
in (2.25). For a problem with a charge distribution, we must add to (2.25)
the appropriate integral in (1.44), with the Green’s function (2.23).

2.8 Conducting Sphere with Hemispheres at Different Potentials

As an example of general solution for the potential outside a sphere
with prescribed values of potential on its surface, we consider the con-
ducting sphere of radius  made up of two hemispheres separated by a small
insulating ring. The hemispheres are kept at different potentials. Tt will
suffice to consider the potentials as &V, since arbitrary potentials can be
handled by superposition of the solution for a sphere at fixed potential
over its whole surface. The insulating ring lies in the z = 0O plane, as
shown in Fig. 2.12, with the upper (lower) hemisphere at potential +
=").

Fig. 2.12
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From (2.25) the solution for ®(z, 0, ¢) is given by the integral:
a(a® — a?)

(a® + #* — 2ax cos y)*t
(2.26)

o(x,0,4) = Z,E f:”dqy{ fo d(cos ') — fid(cos e')}

By a suitable change of variables in the second integral (0 — = — 6/,
¢’ — ¢’ + m), this can be cast in the form:

2 __ 2\ (27 1 s
D(z, 0, P) = %—-ﬁ—)] qu’f d(cos 6")[(a® + #* — 2ax cos y)“/é
T 1] 0
—(a® + 22 + 2axcosy) "M (2.27)

Because of the complicated dependence of cos y on the angles (6, ¢) and
(0, ¢), equation (2.27) cannot in general be integrated in closed form.

As a special case we consider the potential on the positive z axis. Then
cosy =cos 0" since 6 = 0. The integration is elementary, and the
potential can be shown to be

_ (22 _ a2)

At z = q, this reduces to ® = V as required, while at large distances it
goes asymptotically as ® ~ 3Va?/222,

In the absence of a closed expression for the integrals in (2.27), we can
expand the denominator in power series and integrate term by term.
Factoring out (a* + 2?) from cach denominator, we obtain

Va(x* — a?) |[*

YD =

Trqu’fold(cos 69[(1 — 2xcos y)'%
— (14 2xcosy)™ %] (2.29)

where o = ax/(a® + 2%). We observe that in the expansion of the radicals
only odd powers of o cos y will appear:

[(1 = 2xcos y)~* — (1 + 2acos p) "] = 6xcos y + 35a®cos3y + - -+
(2.30)

It is now necessary to integrate odd powers of cos ¥ over d¢’ d(cos 6'):

2r 1 1
f ng’f d(cos 6) cos y = m cos 0 '
0 ’ L (2.31)

27 1
f d¢’f d(cos 0') cos® y = Zcos 6(3 — cos® O)J
0 0
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If (2.30) and (2.31) are inserted into (2.29), the potential becomes

3Va® (x3(x2 -~ az))
O(x, 0, d) = = 0
(0. = LE(EE=0) cos

35 aPa?
X|1+4+=—""—(3—cos*b +:| 2.32
] e ) (232
We note that only odd powers of cos § appear, as required by the symmetry

of the problem. If the expansion parameter is (a?/#2), rather than o2, the
series takes on the form:

_Val sp— 18 (5 a3 ) }

D(x,0, d) = e [cos@ Y (2 cos® 0 2cos€ + (2.33)
For large values of x/a this expansion converges rapidly and so is a useful
representation for the potential. Even for x/a = 5, the second term in the
series is only of the order of 2 per cent. It is easily verified that, for
cos § = 1, expression (2.33) agrees with the expansion of (2.28) for the
potential on the axis. [The particular choice of angular factors in (2.33) is
dictated by the definitions of the Legendre polynomials. The two factors
are, in fact, P;(cos 0) and Py(cos 6), and the expansion of the potential is
one in Legendre polynomials of odd order. We shall establish this in a
systematic fashion in Section 3.3.]

2.9 Orthogonal Functions and Expansions

The representation of solutions of potential problems (or any mathe-
matical physics problem) by expansions in orthogonal functions forms a
powerful technique that can be used in a large class of problems. The
particular orthogonal set chosen depends on the symmetries or near
symmetries involved. To recall the general properties of orthogonal
functions and expansions in terms of them, we consider an interval (a, b)
in a variable & with a set of real or complex functions U,(§),n = 1,2, ...,
orthogonal on the interval (g, b). The orthogonality condition on the
functions U, (&) is expressed by

ben*(E)Um(E) d¢ =0, m=“n (2.34)

If n = m, the integral is finite. We assume that the functions are normal-
ized so that the integral is unity. Then the functions are said to be
orthonormal, and they satisfy

ben*(E)Um(s) & =6, 235
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An arbitrary function f(£), square integrable on the interval (a, ), can
be expanded in a series of the orthonormal functions U,(£). If the number
of terms in the series is finite (say ),

@ > 3 a,U,(8) 236

then we can ask for the ““best” choice of coefficients a,, so that we get the
““pest” representation of the function f(&). If “best” is defined as mini-
mizing the mean square error M :

b
MN =f
a

it is easy to show that the coeflicients are given by

N 2
f& - glanU,xs)l dé (2.37)

a, =ben*(§)f (€) dé& (2.38)

where the orthonormality condition (2.35) has been used. This is the
standard result for the coefficients in an orthonormal function expansion.

If the number of terms N in series (2.36) is taken larger and larger, we
intuitively expect that our series representation of f(£) is ‘‘better” and
“better.”” Our intuition will be correct provided the set of orthonormal
functions is complete, completeness being defined by the requirement that
there exist a finite number N, such that for N > N the mean square error
My can be made smaller than any arbitrarily small positive quantity. Then
the series representation

30,0, =1® 239)

with a,, given by (2.38) is said to converge in the mean to f(£). Physicists
generally leave the difficult job of proving completeness of a given set of
functions to the mathematicians. All orthonormal sets of functions
normally occurring in mathematical physics have been proved to be
complete.

Series (2.39) can be rewritten with the explicit form (2.38) for the
coefficients a,,:

1©=["{ S| e a (.40)

Since this represents any function f(£) on the interval (g, b}, it is clear that
the sum of bilinear terms U, *(£)U,(£) must exist only in the neighborhood
of & = & In fact, it must be true that

PLRGUICEPCRE @41)
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This is the so-called completeness or closure relation. 1t is analogous to the
orthonormality condition (2.35), except that the roles of the continuous
variable £ and the discrete index n have been interchanged.

The most famous orthogonal functions are the sines and cosines, an
expansion in terms of them being a Fourier series. If the interval in « is
(—a/2, a/2), the orthonormal functions are

A/>2 . (Zwm:c) A/E (Zwmvg)
Zsin , [=cos
a a a a

where m is an integer. The series equivalent to (2.39) is customarily
written in the form:

£(2) = 34, + i [Am cos (2’"”“") + B, sin (27’;”7‘)] (2.42)
=

a

where

al2
A, =27 f)cos (2’"””) dx
aJ—-aj2 a
. \ (2.43)
B,=2| f(a)sin (2’"’””) de

a v—a/2 a

If the interval spanned by the orthonormal set has more than one
dimension, formulas (2.34)-(2.39) have obvious generalizations. Suppose
that the space is two dimensional, and that the variable & ranges over the
interval (@, ) while the variable # has the interval (¢, d). The orthonormal
functions in each dimension are U,(£) and V(). Then the expansion of
an arbitrary function f(&, ) is

fED =2 2 a,,U V) (2.44)
where -
Gy = f dé f dnU, OV, ) f(&, m) (2.45)

If the interval (a, b) becomes infinite, the set of orthogonal functions
U,(&) may become a continuum of functions, rather than a denumerable
set. Then the Kronecker delta symbol in (2.35) becomes a Dirac delta
function. An important example is the Fourier integral. Start with the
orthonormal set of complex exponentials,

U,(x) = % ¢! Brma/a) (2.46)
a
m=0, +1, 2, ..., on the interval (—a/2, a/2), with the expansion:

f(@) = j—; D Ay (2.47)

m= =
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where
1 (2 . ,
A, =— g~ H@TmT ) £(4) da’ (2.48)
\/a —aj2
Then let the interval become infinite (¢ — o0), at the same time trans-

forming

27Tm_>k

a

o0 a o0
Zaf dm=—f dk (2.49)
m -0 27T —®

A — |2 Ak
a

The resulting expansion, equivalent to (2.47), is

1 j ® i
z) = —— A(k)e*™ dk 2.50
1@ =] AW (2.50)
where
A(K) = —— f e~ f(2) du (2.51)
\/277 -0
The orthogonality condition is
1 EFTIN gy = ok — k') (2.52)
21T - w

while the completeness relation is

0
if ) gk = 3z — ) (2.53)
27 J-w
These last integrals serve as convenient representations of a delta function.

We note in (2.50)-(2.53) the complete equivalence of the two continuous
variables = and k.

2,10 Separation of Variables; Laplace’s Equation
in Rectangular Coordinates

The partial differential equations of mathematical physics are often
solved conveniently by a method called separation of variables. In the
process, one often generates orthogonal sets of functions which are useful
in their own right. Equations involving the three-dimensional Laplacian
operator are known to be separable in eleven different coordinate systems
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(see Morse and Feshbach, pp. 509, 655). We will discuss only three of these
in any detail—rectangular, spherical, and cylindrical—and will begin wnh
the simplest, rectangular coordinates.
Laplace’s equation in rectangular coordinates is
2 2 2
oo Fe o, (2.54)
ox* 0y 02
A solution of this partial differential equation can be found in terms of
three ordinary differential equations, all of the same form, by the assumption
that the potential can be represented by a product of three functions, one
for each coordinate:
D(z, y, 2) = X() Y(y)Z(2) (2.55)
Substitution into (2.54) and division of the result by (2.55) yields

2 2
L&, LY, Lz, 2.56)
X(z) da? Y(y) dy®  Z(z) d2*
where total derivatives have replaced partial derivatives, since each term
involves a function of one variable only. If (2.56) is to hold for arbitrary
values of the independent coordinates, each of the three terms must be
separately constant:

Qu
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where o + f2 ="

If we arbitrarily choose «* and f? to be positive, then the solutions of the
three ordinary differential equations (2.57) are exp (Liuz); exp (£ify),

exp (£Ve® + B%). The potential (2.55) can thus be built up from the
product solutions:

(D —_ eizam +1ﬂy +\/a +/3 z (258)

At this stage « and § are completely arbitrary. Consequently (2.58), by
linear superposition, represents a very large class of solutions to Laplace’s
equation.

To determine « and f§ it is necessary to impose specific boundary
conditions on the potential. As an example, consider a rectangular box,
located as shown in Fig. 2.13, with dimensions (a, b, ¢) in the (z, y, 2)
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Fig. 2.13 Hollow, rectangular

44
box with five sides at zero x=a
potential, while the sixth (z = c) =0
has the specified potential @ =
x

Wiz, y).

directions. All surfaces of the box are kept at zero potential, except the
surface z = ¢, which is at a potential V(x, ). It is required to find the
potential everywhere inside the box. Starting with the requirement that
O =0forx=0,y=0,2z=0, it is easy to see that the required forms of
X, Y, Z are

X = sin ax

Y = sin By (2.59)

Z = sinh (Vo2 + f%)

In order that ® = 0 at = g and y = b, it is necessary that «a = nw and
Bb = mm. With the definitions,

nw 1
o, = —
a
m
B = —bj g (2.60)

We can write the partial potential ®,,,; satisfying all the boundary
conditions except one,

D,,,, = sin («,2) sin (§,,y) sinh (v,,.2) (2.61)

The potential can be expanded in terms of these @, with initially arbitrary
coefficients (to be chosen to satisfy the final boundary condition):

O 1,2) = 3 Ay sin (4,0) sin B sinh (79)  (262)

n,m=
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There remains only the boundary condition ® = V(z, y) at z = c:

V(z,0) = 3 Ay sin (,2) sin (B,,9) sinh (y,n0) (2.63)

n,m=1
This is just a double Fourier series for the function ¥V(z, ). Consequently
the coefficients 4,,, are given by:

4 f f” ) )
A, =—— | de| dyV(z, . " 2.64
= b sinh (7. 2) Jo z| dy (%, ) sin (o, %) sin (B,y)  (2.64)

If the rectangular box has potentials different from zero on all six sides,
the required solution for the potential inside the box can be obtained by a
linear superposition of six solutions, one for each side, equivalent to (2.62)
and (2.64). The problem of the solution of Poisson’s equation, i.e., the
potential inside the box with a charge distribution inside, as well as
prescribed boundary conditions on the surface, requires the construction of
the appropriate Green’s function, according to (1.43) and (1.44). Discus-
sion of this topic will be deferred until we have treated Laplace’s equation
in spherical and cylindrical coordinates. For the moment, we merely note
that solution (2.62) and (2.64) is equivalent to the surface integral in the
Green’s function solution (1.44).
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PROBLEMS

2.1

2.2

2.3

24

A point charge g is brought to a position a distance d away from an infinite
plane conductor held at zero potential. Using the method of images, find:
(a) the surface-charge density induced on the plane, and plot it;
(b) the force between the plane and the charge by using Coulomb’s law
for the force between the charge and its image;
(¢) the total force acting on the plane by integrating 26 over the whole
lane;
P (d) the work necessary to remove the charge ¢ from its position to
infinity;
(e) the potentia! energy between the charge ¢ and its image [compare the
answer to (d) and discuss].
(f) Find answer (d) in electron volts for an electron originally one
angstrom from the surface.

Using the method of images, discuss the problem of a point charge ¢
inside a hollow, grounded, conducting sphere of inner radius a. Find

(a) the potential inside the sphere;

() the induced surface-charge density;

(c) the magnitude and direction of the force acting on g.
Is there any change in the solution if the sphere is kept at a fixed potential
V'? If the sphere has a total charge Q on it?

Two infinite, grounded, conducting planes are located at z = af2 and
x = —af2. A point charge ¢ is placed between the planes at the point
(@', y', 2"), where —(a/2) <z’ < (af2).

(@) Find the location and magnitude of all the image charges needed to
satisfy the boundary conditions on the potential, and write down the
Green’s function G(x, x).

(b) If the charge g is at (2’,0,0), find the surface-charge densities
induced on each conducting plane and show that the sum of induced
charge on the two planes is —g.

Consider a potential problem in the half-space defined by z > 0, with
Dirichlet boundary conditions on the plane z = 0 (and at infinity).

(a) Write down the appropriate Green’s function G(x, x").

(b) If the potential on the plane z = 0 is specified to be ® = V inside a
circle of radius a centered at the origin, and ® = 0 outside that circle, find
an integral expression for the potential at the point P specified in terms of
cylindrical coordinates (p, ¢, 2).

(c) Show that, along the axis of the circle (p = 0), the potential is given by

Vit + 22
(d) Show that at large distances (p* + 2% > a®) the potential can be
expanded in a power series in (p? 4 2%, and that the leading terms are
Va® z 3a? 5(3p%a* + a%) :|

-
= — —
s T S T
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2.5

2.6

2.7

2.8

Classical Electrodynamics

Verify that the results of (¢) and (d) are consistent with each other in their
common range of validity.
An insulated, spherical, conducting shell of radius a is in a uniform electric
field E,. If the sphere is cut into two hemispheres by a plane perpendicular
to the field, find the force required to prevent the hemispheres from separa-
ting

(a) if the shell is uncharged;

(b) if the total charge on the shell is Q.

A large parallel plate capacitor is made up of two plane conducting sheets,
one of which has a small hemispherical boss of radius a on its inner surface.
The conductor with the boss is kept at zero potential, and the other
conductor is at a potential such that far from the boss the electric field
between the plates is £;.

(@) Calculate the surface-charge densities at an arbitrary point on the
plane and on the boss, and sketch their behavior as a function of distance
(or angle).

(b) Show that the total charge on the boss has the magnitude 3Eqq?/4.

(c) If, instead of the other conducting sheet at a different potential, a
point charge g is placed directly above the hemispherical boss at a distance
d from its center, show that the charge induced on the boss is

1 dZ — a2

1 q[ dvad? + a2]

A line charge with linear charge density 7 is placed parallel to, and a distance
R away from, the axis of a conducting cylinder of radius b held at fixed
voltage such that the potential vanishes at infinity. Find

(a) the magnitude and position of the image charge(s);

(b) the potential at any point (expressed mn polar coordinates with the
line from the cylinder axis to the line charge as the x axis), including the
asymptotic form far from the cylinder;

(c) the induced surface-charge density, and plot it as a function of angle
for R/b = 2, 4 in units of +/2=b;

(d) the force on the charge.

(a) Find the Green’s function for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, and
show that the solution inside the cylinder is given by Poisson’s integral:

1?2 b — r?
_ , 9;
o(r, 9) bﬁ ) e S cos 7 =)

(b) Two halves of a long conducting cylinder of radius b are separated
by a small gap, and are kept at different potentials ¥, and ¥V,. Show that
the potential inside is given by

V. V. V, — 2b
o(r, 0) = 1; LA - Ve tan™? (bz _rrzcos 6)

where 0 is measured from a plane perpendicular to the plane through the
ap.
(¢) Calculate the surface-charge density on each half of the cylinder.
(d) What modification is necessary in (a) if the potential is desired in the
region of space bounded by the cylinder and infinity?
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2.10

2.11

(@) An isolated conducting sphere is raised to a potential V. Write down
the (trivial) solution for the electrostatic potential everywhere in space.

(b) Apply the inversion theorem, choosing the center of inversion
outside the conducting sphere. Show explicitly that the solution obtained
for the potential is that of a2 grounded spherein the presenceof a point charge
of magnitude — VR, where R is the inversion radius.

(¢) What is the physical situation described by the inverted solution if
the center of inversion li¢s inside the conducting sphere?

Knowing that the capacitance of a thin, flat, circular, conducting disc of
radius a is (2/m)a and that the surface-charge density on an isolated disc
raised to a given potential is proportional to {a® — r2~%2 where r is the
distance from the center of the disc,

(a) show that by inversion the potential can be found for the problem
of an infinite, grounded, conducting plane with a circular hole in it and a
point charge lying anywhere in the opening;

(k) show that, for a unit point charge at the center of the opening, the
induced charge density on the plane is

G(F,O,QS) = -

a
222V — 2

(¢) show that (a) and (b) are a special case of the general problem,
obtained by inversion of the disc, of a grounded, conducting, spherical
bowl under the influence of a point charge located on the cap which is the
complement of the bowl.

A hollow cube has conducting walls definced by six planes z =y =2z = 0,
and x =y =2 =aqa. The walls 2z =0 and z = a are held at a constant
potential V. The other four sides are at zero potential.

(2) Find the potential ®(z, y, z) at any point inside the cube.

(0) Evaluate the potential at the center of the cube numerically, accurate
to three significant figures. How many terms in the series is it necessary to
keep in order to attain this accuracy? Compare your numerical result
with the average value of the potential on the walls.

(¢) Find the surface-charge density on the surface z = a.



Boundary-Value Problems
in Electrostatics: 11

In this chapter the discussion of boundary-value problems is con-
tinued. Spherical and cylindrical geometries are first considered, and
solutions of Laplace’s equation are represented by expansions in series of
the appropriate orthonormal functions. Only an outline is given of the
solution of the various ordinary differential equations obtained from
Laplace’s equation by separation of variables, but an adequate summary of
the properties of the different functions is presented.

The problem of construction of Green’s functions in terms of ortho-
normal functions arises naturally in the attempt to solve Poisson’s equation
in the various geometries. Explicit examples of Green’s functions are
obtained and applied to specific problems, and the equivalence of the
various approaches to potential problems is discussed.

3.1 Laplace’s Equation in Spherical Coordinates

In spherical coordinates (r, 8, ¢), shown in Fig. 3.1, Laplace’s equation
can be written in the form:

r?sin 0 96

12 1 a(. a<1>) 1 0
19 o s -0 @1
ran DT 5% T sint 0 g -1)

If a product form for the potential is assumed, then it can be written:

@ = 27 o)) (3.2

54



[Sect. 3.1] Boundary-Value Problems in Electrostatics: I 55

2

X

0

T

~
o o
~

|
|
|
[
|
|
[
|
~ t y
|
|
N
* Fig. 3.1

When this is substituted into (3.1), there results the equation:

d*U UQ d ( . dP) Up d%
PQ— + —=——\sin 6 — — =
¢ ar* * Psin0do\ db 72 sin® 0 d¢?

If we multiply by r?sin? 6/ UPQ, we obtain:
1 d*U 1 d dP 1 &%
S g )] 180
el aE T rmer " aa) 1 T g ap 33

The ¢ dependence of the equation has now been isolated in the last term.
Consequently that term must be a constant which we call {—m?):

1t d?
é E% = —m? (3.4
This has solutions
Q = e*¢ (3.5)

In order that Q be single valued, m must be an integer. By similar con-
siderations we find separate equations for P(f) and U(r):

1 d(. dP) [ m2:1

L4 GnoE) 4 i+ 1) = P=0 36

AN T+ D=5 (3:6)
EU K1+ 1)
———2U=0 3.7
dr2 r2 ( )

where /(/ + 1) is another real constant.
From the form of the radial equation it is apparent that a single power
of r (rather than a power series) will satisfy it. The solution is found to be:

U= Arttl + Br-! (3.8)

but / is as yet undetermined.
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3.2 Legendre Equation and Legendre Polynomials

The 6 equation for P(6) is customarily expressed in terms of z = cos 6,
instead of 0 itself. Then it takes the form:

-d m2

dx 1—2a?
This equation is called the generalized Legendre equation, and its solutions
are the associated Legendre functions. Before considering (3.9) we will

outline the solution by power series of the ordinary Legendre differential
equation with m2 = 0:

((1 — ) %g) + (l(l +1) — )P =0 (3.9)

d o dP _
@prnw)+w+nP—0 (3.10)

The desired solution should be single valued, finite, and continuous on the
interval —1 < 2 <1 in order that it represents a physical potential. The
solution will be assumed to be represented by a power series of the form:

P(x) = x“i a;x’ (3.1

where « is a parameter to be determined. When this is substituted into
(3.10), there results the series:

20{01 + )&+ j — Da,arti—e
— [+ de+i+D—I0+ Dlaat} =0 (3.12)

In this expansion the coefficient of each power of x must vanish separately.
For j = 0, 1 we find that

ifa, # 0, thena(x —1) =10
(3.13)
ifa, %0, theno(a +1)=0

while for a general j value

%m=[“+”@+1+” f”+”}f (3.14)
(c+j+Dle+j+2)

A moment’s thought shows that the two relations (3.13) are equivalent and

that it is sufficient to choose either g, or g, different from zero, but not both.

Making the former choice, we have « = 0 or « = 1. From (3.14) we see

that the power series has only even powers of z(a = 0) or only odd

powers of z(«x = 1).
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For either of the series « =0 or « = 1 it is possible to prove the
following properties:

(a) the series converges for 22 < 1, regardless of the value of /;

(b) the series diverges at x = 1, unless it terminates.
Since we want a solution that is finite at # = £ 1, as well as for z® << 1, we
demand that the series terminate. Since « and j are positive integers or
zero, the recurrence relation (3.14) will terminate only if [ is zero or a
positive integer. Even then only one of the two series converges atz = =£1.
If / is even (odd), then only the « = 0 (« = I) series terminates.* The
polynomials in each case have «! as their highest power of , the next
highest being 2*-2, and so on, down to 20 (z) for / even (odd). By convention
these polynomials are normalized to have the value unity at x = +1 and
are called the Legendre polynomials of order I, Py(x). The first few
Legendre polynomials are:

Py(z) =
Pi(x) ==
Py(z) = 3(32* — 1) (3.15)

Py(x) = §(52% — 32)
Py(x) = §(352* — 3022 + 3)

By manipulation of the power series solutions (3.11) and (3.14) it is
possible to obtain a compact representation of the Legendre polynomials,
known as Rodrigues’ formula:

Py )— ! di(r — 1) (3.16)

[This can be obtained by other, more elegant means, or by direct /-fold
integration of the differential equation (3.10).]

The Legendre polynomials form a complete orthogonal set of functions
on the interval —1 < = < 1. To prove the orthogonality we can appeal
directly to the differential equation (3.10).  We write down the differential
equation for Py(x), multiply by P,(x), and then integrate over the interval:

f P, (9:)[ ((1 - ‘;P ) + U+ l)Pl(z):‘ dz=0 (3.17)

* For example, if / = 0 the o = 1 series has a general coefficient a; = a,/f + 1 for
j=10,2,4,.... Thus the series is ag(x + 32° + 32* + ---.) This is just the power

1
series expansion of a function Qy(x) = 4 In (1 + :) , which clearly diverges at x = =+1.

For each / value there is a similar function Q,(x) with logarithms in it as the partner to
the well-behaved polynomial solution. See Magnus and Oberhettinger, p. 59.
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Integrating the first term by parts, we obtain

' 2 _ P dPy )P {x x =
f_l [(W iy 1z do + (I + DP ()P )] de=0 (3.18)

If we now write down (3.18) with / and /" interchanged and subtract it from
(3.18), the result is the orthogonality condition:

[0+ 1) — I + 1)]f_llPl,(x)Pl(x) dz =0 (3.19)

For / # I’, the integral must vanish. For / = [’, the integral is finite. To
determine its value it is necessary to use an explicit representation of the
Legendre polynomials, e.g., Rodrigues’ formula. Then the integral is
explicitly:
1 1 1 dl dl
P()P de = —— — (2 = D — (2 — ) dz
f—l[ l( )] 221(1!)2 1 d.’L‘l( ) dxl( )

Integration by parts / times yields the result:

1 0 (_l)l 1 0 . d2l 9 .
f_l[Pl(x)] dx = P2 J_l(x -1 del(x — Dide
The differentiation of (+* — 1)* 2/ times yields the constant (2/)!, so that
' . @ [* l
J_I{Pl(x)] dz = PTG L(1 — 2 dz (3.20)

The remaining integral is easily shown to be 22+1(/1)2/(2/ 4+ 1)! Con-
sequently the orthogonality condition can be written:

1
2
f_lPll(x)Pl(x) dx = 21—4_1 5” (321)

and the orthonormal functions in the sense of Section 2.9 are

Ux) = | 31—;——1 P (%) (3.22)

Since the Legendre polynomials form a complete set of orthogonal
functions, any function f () on the interval —1 <« < 1 canbe expanded in

-
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terms of them. The Legendre series representation is:
@ =3 AP() (3.23)

where
A, = 2—’—‘*'—1 f f(#)P () dv (3.24)

As an example, consider the function shown in Fig. 3.2:
f@) = +1forz>0
=—1forz<0

4, = glzil [ f P (@) dz — f Olpl(x) de

Since P,(z) is odd (even) about # = 0 if / is odd (even), only the odd /
coefficients are different from zero. Thus, for / odd,

Then

1
= (2] + 1)[ P(x) dx (3.25)
0
By means of Rodrigues’ formula the integral can be evaluated, yielding
(1—1)/2 — 1"
4= (_ %) QI+ DI =2 (3.26)

2(l+1)!
2

where(2n + D! = 2n+ D2n — 1)2n — 3)--+- X 5 x 3 x 1. Thus the
series for f(z) is:

f(@) = 3Py(2) — §Py(x) + 15Ps(x) — - - (3:27)

Certain recurrence relations among Legendre polynomials of different

order are useful in evaluating integrals, generating higher-order poly-

nomials from lower-order ones, etc. From Rodrigues’ formula it is a
straightforward matter to show that

dpP,.y _ ap,_,

dx dz

This result, combined with differential equation (3.10), can be made to
yield various recurrence formulas, some of which are:

(I + P,y — Q1 + DaP, + 1P, =0 |
dPy R ﬂj_z

dx dx

— @I+ P, =0 (3.28)

—(+DP,=0] (3.29)

dp
2 )=
(@ = D=

— loP, 4+ IP,_, =0

J
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As an illustration of the use of these recurrence formulas consider the
evaluation of the integral:

I =f1 xP(x)P (%) dx (3.30)

From the first of the recurrence formulas (3.29) we obtain an expression
for xP(x). Therefore (3.30) becomes

1 1
—— | Py)[(l + DP, . (2) + IP,_y(®)] d=
T L PO+ DP@) + 1y (@)]
The orthogonality integral (3.21) can now be employed to show that the
integral vanishes unless /" = / & 1, and that, for those values,

[ 20+ 1 =141

1 QI+ DRI+ 3)°

f xP,(x)P,(x) dx = (3.31)

o S LS B
QI—DRI+ 1)’

These are really the same result with the roles of / and !’ interchanged. In
a similar manner it is easy to show that

1=‘

2004+ DI + 2) P =it
[1 ) QL+ DRI+ 320+ 5)°

©"Px)P(z) dz = (3.32)
Jo 2 + 21— 1) =

20— DL+ D)2+ 3)°
where it is assumed that " > /.

3.3 Boundary-Value Problems with Azimuthal Symmetry

From the form of the solution of Laplace’s equation in spherical
coordinates (3.2) it will be seen that, for a problem possessing azimuthal
symmetry, m = 0 in (3.5). This means that the general solution for such
a problem is:

O(r, 6) = 3 [Ayr + Br~“*D]P (cos 6) (3.33)
=0

The coefficients 4, and B, can be determined from the boundary condi-
tions. Suppose that the potential is specified to be V() on the surface of a
sphere of radius g, and it is required to find the potential inside the sphere.
If there are no charges at the origin, the potential must be finite there.
Consequently B, = 0 for all /. The coefficients 4, are found by evaluating
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(3.33) on the surface of the sphere:
V(0) =Y A,a'P(cos 6) (334
i=0

This is just a Legendre series of the form (3.23), so that the coefficients 4,
are:
4, = %’{r—l f V(6)P (cos 0) sin 0 db (3.35)

al Jo

If, for example, ¥(6) is that of Section 2.8, with two hemispheres at equal
and opposite potentials,

V(8) = i (3.36)

then the coefficients are proportional to those in (3.27). Thus the potential
inside the sphere is:

O, 6) = VPI Pi(cos §) — z(—r)aP3(cos 6 + E(iﬁ)sPs(cos 6) — - ]
2a 8 16 \a

a
(337)

To find the potential outside the sphere we merely replace (r/a)’ by (afr)"+.
The resulting potential can be seen to be the same as (2.33), obtained by
another means.

Series (3.33), with its coefficients determined by the boundary conditions,
is a unique expansion of the potential. This uniqueness provides a means
of obtaining the solution of potential problems from a knowledge of the
potential in a limited domain, namely on the symmetry axis. On the
symmetry axis (3.33) becomes (with z = r):

O = 1) =l§0 [A + B (4] (3.38)

valid for positive z. For negative z each term must be multiplied by (— )"
Suppose that, by some means, we can evaluate the potential @(z) at an
arbitrary point z on the symmetry axis. If this potential function can be
expanded in a power series in z = r of the form (3.38), with known
coefficients, then the solution for the potential at any point in space is
obtained by multiplying each power of r! and r—*1) by Py(cos ).
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2

Fig. 3.3

At the risk of boring the reader we return to the problem of the hemi-
spheres at equal and opposite potentials. We have already obtained the
series solution in two different ways, (2.33) and (3.37). The method just
stated gives a third way. For a point on the axis we have found the closed

form (2.28): . o
Oz =r)= V[l _ _L:_a_J
rJr 4+ a?

This can be expanded in powers of a?/r?:

(D(z-—r)——\/—z( 1y & = Z)FJ_ )(%)2j (3.39)

Comparison with expansion (3.38) shows that only odd / values
(I = 2j — 1) enter. The solution, valid for all points outside the sphere,
is consequently:

o(r, 6) = = Z( 1y~ IQ—M( ) Py, (cos 0) (3.40)

J!

This is the same solution as already obtained, (2.33) and (3.37).
An important expansion is that of the potential at x due to a unit point
charge at x':

1 > 7 A
= > = pcosy) (3.41)
X l 1=0 I'>

where r_ (r.) is the smaller (larger) of |x| and |x'|, and y is the angle
between x and x’, as shown in Fig. 3.3. This can be proved by rotating
axes so that x’ lies along the z axis. Then the potential satisfies Laplace’s
equation, possesses azimuthal symmetry, and can be expanded according
to (3.33), except at the point x = x':

= D (At + Br )P cos y) (3.42)

IX*—XI 1=0
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If the point x is on the z axis, the right-hand side reduces to (3.38), while
the left-hand side becomes:

i i 1
Ix — x| (P4 r%—=2r"cos )t jr—r

(3.43)

Expanding (3.43), we find
1 1 N (?" <)l
= — — 3.44
vy L) 344

For points off the axis it is only necessary, according to (3.33) and (3.38),
to multiply each term in (3.44) by P (cos y). This proves the general result
(3.41).

Another example is the potential due to a total charge ¢ uniformly
distributed around a circular ring of radius a, located as shown in Fig. 3.4,
with its axis the z axis and its center at z = b. The potential at a point P
on the axis of symmetry with z = r is just ¢ divided by the distance 4P:

Dz =r) = 4 : 3.45
=" (r2 + & — 2cr cos o) (3.49)

where ¢ = 4® + b% and « = tan™! (a/b). The inverse distance AP can be
expanded using (3.41). Thus, for r > ¢,

©,
D=1 =g r—l‘;—l Py(cos o) (3.46)
1=D

N

Fig. 3.4 Ring of charge of radius a and total
charge ¢ located on the z axis with center at
z=b. x
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For r < ¢, the corresponding form is:

2 1
D=1 =g # P,(cos «) (3.47)
=0

The potential at any point in space is now obtained by multiplying each
member of these series by P,(cos 6):

0 rl<
O(r, 0) =g > L= P,(cos 0)P(cos 0) (3.48)
=0 7>

where r_ (r.) is the smaller (larger) of r and c.

3.4 Associated Legendre Polynomials and the Spherical Harmonics

Y, (0,4)

So far we have dealt with potential problems possessing azimuthal
symmetry with solutions of the form (3.33). These involve only ordinary
Legendre polynomials. The general potential problem can, however, have
azimuthal variations so that m 5= 0 in (3.5) and (3.9). Then we need the
generalization of P,(cos ¢), namely, the solution of (3.9) with /and m both
arbitrary. In essentially the same manner as for the ordinary Legendre
functions it can be shown that in order to have finite solutions on the
interval —1 <« < 1 the parameter / must be zero or a positive integer and
that the integer m can take on only the values —/, —(/ —1),...,0,...,
(I — 1), I. The solution having these properties is called an associated
Legendre function P,"(x). For positive m it is defined by the formula*:

PI) = (— (1 — 2" 4 P a) (3.49)

If Rodrigues’ formula is used to represent P,(z), a definition valid for both
positive and negative m is obtained:

(=H" 2ym/2 am s

me,y NTA) o oeympz & EETY

Pe) == (=)™ @ = 1) (3.50)
* The choice of phase for P,™(x) is that of Magnus and Oberhettinger, and of E. U.

Condon and G. H. Shortley in Theory of Atomic Spectra, Cambridge University Press

(1953). For explicit expressions and recursion formulas, see Magnus and Oberhettinger,

p. 54.
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P,~™x) and P,/™(x) are proportional, since differential equation (3.9)
depends only on m? and m is an integer. It can be shown that

—m m (L — m)!
() = (-1 P™(x) 3.51
T T (3:51)
For fixed m the functions P,"(x) form an orthogonal set in the index /
on the interval —1 <# < 1. By the same means as for the Legendre
functions the orthogonality relation can be obtained:

1 .
f P (2)P(z) do = —— LE ™, (3.52)
-1 20411 ~m)!

The solution of Laplace’s equation was decomposed into a product of
factors for the three variables r, 6, and ¢. It is convenient to combine the
angular factors and construct orthonormal functions over the unit sphere.
We will call these functions spherical harmonics, although this terminology
is often reserved for solutions of the generalized Legendre equation (3.9).
Our spherical harmonics are sometimes called “tesseral harmonics” in
older books. The functions Q,,($) = e’ form a complete set of ortho-
gonal functions in the index m on the interval 0 < ¢ < 27. The functions
P,™(cos 0) form a similar set in the index / for each m value on the interval
—1 < cos § < 1. Therefore their product P,”Q,, will form a complete
orthogonal set on the surface of the unit sphere in the two indices /, m.
From the normalization condition (3.52) it is clear that the suitably
normalized functions, denoted by Y,,,(0, ¢), are:

Y, (0, ) = /2’ + 1 %TT P,(cos B)e™ (3.53)

From (3.51) it can be seen that
Y, - w0, ¢) = (=D)"Y.(6, $) (3.54)
The normalization and orthogonality conditions are

2 T
0 0

The completeness relation, equivalent to (2.41), 13

Zl Y0, ¢)Y,,.(0, ¢) = 8(d — ¢')d(cos 6 — cos §')  (3.56)

nMg

For a few small / values and m = 0 the table shows the explicit form of
the Y,,.(0, ¢). For negative m values (3.54) can be used.
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Spherical harmonics  Y,,,(0, ¢)

o
1)
It
[ w
[¢]
o]
@
>

=2 3 Yo = — /éﬁsin@cos@eid’
v
3
Y20= i —(:0820"‘l
N 4z \2 2

Yo = — ‘-11 E sin® fe3ié

4r
1 /105
Yoo = = /— sin% 6 24
32 4A/27T sin® 6 cos fe

1 . ;
Yy = — i 21 gin 6(5 cos? 0 — 1)ei¢

T

5
Y3 = ﬁ_ (— cos? 0 — 3 cos ())
i 4 \2 2
Note that, for m = 0,

Yol 4) = | 2 Picos 0)

(3.57)

An arbitrary function g(f, ¢) can be expanded in spherical harmonics:

0

1
g(@, ¢) = z z lAlelm(Ga ¢)

l:o m= -

where the coefficients are

(3.58)



[Sect. 3.5] Boundary-Value Problems in Electrostatics: 11 67

A point of interest to us in the next section is the form of the expansion
for 6 = 0. With definition (3.57), we find:

[g(0, $)]o-0 -—z \/MAZO (3.59)

o= 2’4+ 1 f dQ P,(cos 8)g(0, $) (3.60)

All terms in the series with m # 0 vanish at § = 0.

The general solution for a boundary-value problem in spherical coordi-
nates can be written in terms of spherical harmonics and powers of r in a
generalization of (3.33):

where

Or0. ) =3 3 [Anrt + Bpr O 0IV(0 ) (G.61)

=g m=—1

If the potential is specified on a spherical surface, the coefficients can be
determined by evaluating (3.61) on the surface and using (3.58).

3.5 Addition Theorem for Spherical Harmonics

A mathematical result of considerable interest and use is called the
addition theorem for spherical harmonics. Two coordinate vectors x and
x', with spherical coordinates (r, 8, ¢) and (+', 0', ¢'), respectively, have an
angle y between them, as shown in Fig. 3.5. The addition theorem
expresses a Legendre polynomial of order / in the angle y in terms of

2
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products of the spherical harmonics of the angles 0, ¢ and §’, ¢':

4

Pcos y) = N+ 1

l
D, YA, 4V, $) (3.62)
m=-1
where cos y = cos 6 cos §’ + sin 0sin 6" cos ( — ¢). To prove this
theorem we consider the vector x’ as fixed in space. Then P,(cos y) is a
function of the angles 6, ¢, with the angles ', ¢’ as parameters. It may be
expanded in a series (3.58):

© 4

Pycos y) =ZIZO mE L‘Al’m(er’ )Y, (0, $) (3.63)
Comparison with (3.62) shows that only terms with /" = / appear. To see
why this is so, note that, if coordinate axes are chosen so that x’ is on the 2
axis, then y becomes the usual polar angle and P,(cos y) satisfies the
equation:

I+ 1)

9
r-

V’2P(cos y) + Py(cosy) =0 (3.64)

where V'2 is the Laplacian referred to these new axes. If the axes are now
rotated to the position shown in Fig. 3.5, V'2 = V2 and r is unchanged.*
Consequently Py(cos y) still satisfies an equation of the form (3.64); i.e.,
it is a spherical harmonic of order /. This means that it is a linear com-
bination of Y,,.’s of that order only:

1
Pcos y) = z_lAm(G', 61,0, ) (3.65)

The coefficients 4,,(0, $) are given by:

4,0, ) = [ 126, 9P cos ) d0 (3.66)

To evaluate this coefficient we note that it may be viewed, according to
(3.60), as the m’ = 0 coefficient in an expansion of the function

Van/(2l + 1) Y0, 4) in a series of Y,,(y, B) referred to the primed
axis of (3.64). From (3.59) it is then found that, since only one / value is
present, coefficient (3.66) is

A0, ) = —T

2141
In the limit y — 0, the angles (6, ¢), as functions of (y, §), go over into

[Ym(6Cy, B), $(v, B)], =0 (3.67)

* The proof that V’* = V? under rotations follows most easily from noting that
V2y = V - Vy is an operator scalar product, and that all scalar products are invariant
under rotations.
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(¢, #). Thus addition theorem (3.62) is proved. Sometimes the theorem
is written in terms of P,™(cos 6) rather than Y,,. Then it has the form:

Py(cos y) = Py(cos 0)P,(cos ')

i
— !
+2 =m! P,™(cos 0)P;"(cos 0) cos [m(¢ — ¢')] (3.68)
o L+ m)!
It the angle y goes to zero, there results a “sum rule” for the squares of
Yi's: l

2, 0, g =21

m=—1 47T

The addition theorem can be used to put expansion (3.41) of the potential
at x due to a unit charge at x" into its most general form. Substituting
(3.62) for P (cos y) into (3.41) we obtain

(3.69)

1 SN L e
ke 4120 m;ﬂ T YO 0K 0.9) (370)
Equation (3.70) gives the potential in a completely factorized form in the
coordinates x and x’. This is useful in any integrations over charge
densities, etc., where one variable is the variable of integration and the
other is the coordinate of the observation point. The price paid is that
there is a double sum involved, rather than a single term.

3.6 Laplace’s Equation in Cylindrical Coordinates; Bessel Functions

In cylindrical coordinates (p, ¢, 2), as shown in Fig. 3.6, Laplace’s
equation takes the form:

F0 100 170, PO _

— — 371
o " eap tirap e .
The separation of variables is accomplished by the substitution:
Dlp, ¢, 2) = R(p)QAHZ(2) (3.72)
In the usual way this leads to the three ordinary differential equations:
d®Z
— —kZ=0 3.73
dz (3.73)
*Q | s
—= + Y =0 3.74
e (3.74)
2 2
Q+1d_R+(kz_l)R=o (3.75)
dp*  pdp '3
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Fig. 3.6

The solutions of the first two equations are elementary:
Z(z) = e***
O(¢) = e

In order that the potential be single valued, » must be an integer. But
barring some boundary-condition requirement in the z direction, the
parameter k is arbitrary. For the present we will assume that k is real.

The radial equation can be put in a standard form by the change of
variable x = kp. Then it becomes

d*R  1dR »

(3.76)

X

This is Bessel’s equation, and the solutions are called Besse! functions of
order ». If a power series solution of the form:

R(z) = a* Y a;a’ (3.78)
i=0
is assumed, then it is found that
o= v (3.79)
and
a,; = — 1 a (3.80)
27 4](] + OL) 27—2 .
forj=0,1,2,3,.... All odd powers of 2/ have vanishing coefficients.
The recursion formula can be iterated to obtain
—1)T i
Ny (=DT(x + 1) (3.81)

TR+t D) "
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It is conventional to choose the constant a, = [2*I'(a 4+ 1)]7!. Then the

two solutions are
_ Ev X (_1)1 (2)23'
i) = (2) 2 ITG+ v+ D\2 (3:82)

i=0

i (S =l 0w

T JILG—v+ 1)

These solutions are called Bessel functions of the first kind of order +».
The series converge for all finite values of z. 1f v is not an integer, these
two solutions /__ () form a pair of linearly independent solutions to the
second-order Bessel’s equation. However, if » is an integer, it is well known
that the solutions are linearly dependent. In fact, for » = m, an integer,
it can be seen from the series representation that

(@) = (= 1) (%) (3.84)

Consequently it is necessary to find another linearly independent solution

when m is an integer. It is customary, even if » is not an integer, to replace

the pair J_,(x) by J () and N,(z), the Neumann function (or Bessel’s

function of the second kind):

J(x)cos v — J_ ()
sin v

N(x) = (3.85)
For » not an integer, N,(z) is clearly linearly independent of J,(x). In the
limit » — integer, it can be shown that N (z) is still linearly independent
of J,(x). As expected, it involves log x. Its series representation is given
in the reference books.

The Bessel functions of the third kind, called Hankel functions, are

defined as linear combinations of J,(x) and N, (»):
HY(2) = J(2) + iN(2) |
( (2) (@) | (3.86)

HP(x) = J () = iN(@) ]

The Hankel functions form a fundamental set of solutions to Bessel’s
equation, just as do J,(#) and N, ().
The functions J,, N,, HP, H® all satisfy the recursion formulas:

Qy1(2) + Qo) = %Qv(w) (3.87)

Oy () — O 4y(x) = 2 H2) (3.88)
dx
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where ,(z) is any one of the cylinder functions of order ». These may be
verified directly from the series representation (3.82).

For reference purposes, the limiting forms of the various kinds of
Bessel functions will be given for small and large values of their argument.
Only the leading terms will be given for simplicity:

v 1 J&x)—»i?;%iis(gy (3.89)
Nx@*(ioi(g)foan'.)’ y=0 500
e

In these formulas » is assumed to be real and nonnegative.

> 1,v Jv(x)*[cos(x——_z)l
N(x)*A/’SIn(x——_Z)J

The transition from the small « behavior to the large @ asymptotic form
occurs in the region of # ~ ».

From the asymptotic forms (3.91) it is clear that each Bessel function
has an infinite number of roots. We will be chiefly concerned with the
roots of J,(2):

(3.91)

J(x,)=0, n=1273,... (3.92)

z,, is the nth root of J (). For the first few integer values of », the first
three roots are:

v =10, z,,=2.405,5520, 8654,...

vy=1, =z, =3.832,7.016, 10.173, ..

v=2, x,, =15.136,8417, 11.620, ...

For higher roots, the asymptotic formula

T+ (0= P

gives adequate accuracy (to at least three figures). Tables of roots are
given in Jahnke and Emde, pp. 166-168.

Having found the solution of the radial part of Laplace’s equation in
terms of Bessel functions, we can now ask in what sense the Bessel
functions form an orthogonal, complete set of functions. We will consider
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only Bessel functions of the first kind, and will show that 4/ ,z_; J (z, pla), for
fixed v >0,n=1,2,..., form an orthogonal set on the interval 0 <
p < a. The demonstration starts with the differential equation satisfied by
J (@, ,pla):

{4 de(xm B) ) 2
1l — 24 (x_; - ”_2)1 (xmf) =0  (3.93)

pdp dp a p a

If we multiply the equation by pJ,(x,,.p/a) and integrate from O to a, we
obtain

a d( ar,(2.2)
Jv(xvn’ B)_ —_— d
J; a’dp P dp P
a xvn2 ,»2
+ ], = R 2o 2 =0
p a a

Integration by parts, combined with the vanishing of (pJ,J,) at p =0
(for » > 0) and p = a, leads to the result:

. de(mm, B) d.lv(xm—e)
a a
_ f )
0

dp d

p
a [ 2 2

A Y Y
[} a P a a

If we now write down the same expression, with » and »’ interchanged,
and subtract, we obtain the orthogonality condition:

dp

(2, — w)f pJv(xW B)Jv(xm ’—’) dp =0 (3.94)
o a a

By means of the recursion formulas (3.87) and (3.88) and the differential
equation, the normalization integral can be found to be:

a 2
f PJV(x"n’ E)Jv(rvn £) dp = a_ [Jv+1(xvn)]26n’n (395)
0 a a 2

Assuming that the set of Bessel functions is complete, we can expand an
arbitrary function of p on the interval 0 < p < a4 in a Bessel-Fourier
series:

S(p) = iAJ(w L’) (3.96)
n=1

a
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where

A= s [ oo (Z2) ap @397)

Our derivation of (3.96) involved the restriction » > 0. Actually it can
be proved to hold for all ¥ > —1.

Expansion (3.96) and (3.97) is the conventional Fourier-Bessel series
and is particularly appropriate to functions which vanish at p = a (e.g.,
homogeneous Dirichlet boundary conditions on a cylinder; see the
following section). But it will be noted that an alternative expansion is

possible in a series of functions \/;Jy(ymp/a) where ¥, is the nth root of
the equation [dJ,(z)]/dx = 0. The reason is that, in proving the ortho-
gonality of the functions, all that is demanded is that the quantity
[pJ (Ap)d|dp)J (A p)] vanish at the end points p =0 and p = a. The
requirement is met by either 4 = x,,/a or A = y,,/a, where J,(z,,) = 0 and
J. (y,,) = 0. The expansion in terms of the set \/_pJv(ymp/a) is especially
useful for functions with vanishing slope at p = a. (See Problem 3.8.)

A Fourier-Bessel series is only one type of expansion involving Bessel

o0

o
functions. Neumann series |:z a,J, +n(z)], Kapteyn series [Z a, X
n=0 n=0

Jyl(v + n)z)], and Schlomilch series [ ZlanJ,(mc)] are some of the other

possibilities. The reader may refer to Watson, Chapters XVI-XIX, for a
detailed discussion of the properties of these series. Kapteyn series occur
in the discussion of the Kepler motion of planets and of radiation by
rapidly moving charges (see Problems 14.7 and 14.8).

Before leaving the properties of Bessel functions it should be noted that
if, in the separation of Laplace’s equation, the separation constant k? in
(3.73) had been taken as —k?, then Z(2) would have been sin kz or cos kz
and the equation for R(p) would have been:

2 2
55+1d—R-(k2+ 2)Rzo (3.98)
dp*  pdp \ p ,

With kp = =, this becomes

d’R  1dR ( 2)
daxz? + x dx + (3.99)

The solutions of this equation are called modified Bessel junctions. 1t is
evident that they are just Bessel functions of pure imaginary argument.
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The usual choices of linearly independent solutions are denoted by I(z)
and K,(z). They are defined by

I(2) = i"J (ix) (3.100)

K(z) = 12’ PO (i) (3.101)

and are real functions for real x. Their limiting forms for small and large
z are, assuming real » > 0:

z<l  I(2)~ ﬁ(%’) (3.102)
o —(m (f) +0.5772 - - ) y=0 10y
2]

i 9o

cor- s ol

3.7 Boundary-Value Problems in Cylindrical Coordinates

(3.104)

The solution of Laplace’s equation in cylindrical coordinates is ® =
R(p)Q($)Z(z), where the separate factors are given in the previous section.
Consider now the specific boundary-value problem shown in Fig. 3.7.
The cylinder has a radius @ and a height L, the top and bottom surfaces
being at z = L and z = 0. The potential on the side and the bottom of
the cylinder is zero, while the top has a potential ® = ¥V(p, ¢). We want
to find the potential at any point inside the cylinder. In order that @ be
single valued and vanish at z = 0,

0(4) = A sin mé + B cos mp } (3.105)
Z(z) = sinh kz

where ¥ = m is an integer and k is a constant to be determined. The radial
factor is

R(p) = CJu(kp) + DN, (kp) (3.106)
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/Q = V(p,d)

2

o
$ =0
= «_ L
gy y
Y
=0
X
Fig. 3.7

If the potential is finite at p =0, D = 0. The requirement that the
potential vanish at p = a means that k can take on only those special

values:
kpn =22, n=1,2,3,... (3.107)
a

where z,,, are the roots of J,,(x,,,) = 0.
Combining all these conditions, we find that the general form of the
solution is

O, 2= i S J ook o p) sinh (k. 2)[A,,, Sin m¢ + B, cos me]
e (3.108)
At z = L, we are given the potential as V(p, ¢). Therefore we have
Vip, $) = Y sinh (k,,,I)J,.(k,.up)[ 4, 5D M + B,,, cOs mp]
mn

This is a Fourier series in ¢ and a Bessel-Foutier series in p. The coeffi-
cients are, from (2.43) and (3.97),

2 cosech (k,,,L) (%, , (® .
mn — _C—z_sz—('——') f d¢f dP PV(P’ qS)Jm(kmn ) sin m¢
7a Jm+1(k,,ma (1] 0
and (3.109)
2 cosech (kL) [ ¥, [®
B, = ___2T_(__n___) d¢f dp PV(P’ ¢)Jm(kmnp) cos m¢
7a Jm+1(kmna) 0 0

with the proviso that, for m = 0, we use }B,, in the series.

The particular form of expansion (3.108) is indicated by the requirement
that the potential vanish at 2 = 0 for arbitrary p and at p = a for arbitrary
z. For different boundary conditions the expansion would take a different



[Sect. 3.8] Boundary-Value Problems in Electrostatics: I 77

form. An example where the potential is zero on the end faces and equal
to V(¢, z) on the side surface is left as Problem 3.6 for the reader.

The Fourier-Bessel series (3.108) is appropriate for a finite interval in
p, 0 < p < a. If a— oo, the series goes over into an integral in a manner
entirely analogous to the transition from a trigonometric Fourier series
to a Fourier integral. Thus, for example, if the potential in charge-free
space is finite for z = 0 and vanishes for z — co, the general form of the
solution for z > 0 must be

D(p, ¢, 2) = z foz;k e "] (kp)[A,(k) sin m¢ + B, (k) cos m¢] (3.110)
m=0

If the potential is specified over the whole plane z = 0 to be V(p, ¢) the
coefficients are determined by

Vo, $) =, f " dkJ (k) An(K) sin mh + B.,(k) cos mg]
m=0 0

The variation in ¢ is just a Fourier series. Consequently the coefficients
A, (k) and B, (k) are separately specified by the integral relations:

v, ¢){Si“ '"4’} dé =wam(k'p>{Am(k')} dk’ (3.11)
0 cos me 0 B, (k")

These radial integral equations of the first kind can be easily solved, since
they are Hankel transforms. For our purposes, the integral relation,

f "l (k)] (k'x) dx = ié(k’ — k) (3.112)
0

can be exploited to invert equations (3.111). Multiplying both sides by
pJnlkp) and integrating over p, we find with the help of (3.112) that the
coefficients are determined by integrals over the whole area of the plane
z=0:

A, (k) k(" or sin m¢ (.113)
Bm(k)] = ,H.J; dp pfo dé V(p, ¢)Jm(kp){cos mé

As usual, for m = 0, we must use }B,(k) in series (3.110).

3.8 Expansion of Green’s Functions in Spherical Coordinates

In order to handle problems involving distributions of charge as well as
boundary values for the potential (i.e., solutions of Poisson’s equation) it
18 necessary to determine the Green’s functlon G(x, x') which satisfies the
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appropriate boundary conditions. Often these boundary conditions are
specified on surfaces of some separable coordinate system, €.g., spherical or
cylindrical boundaries. Then it is convenient to express the Green’s
function as a series of products of the functions appropriate to the coordi-
nates in question. We first illustrate the type of expansion involved by
considering spherical coordinates.

For the case of no boundary surfaces, except at infinity, we already
have the expansion of the Green’s function, namely (3.70):

o0 i
2 2 S YO 86,9

IX—XI

Suppose that we wish to obtain a similar expansion for the Green’s
function appropriate for the “exterior” problem with a spherical boundary
at r = a. The result is readily found from the image form of the Green’s
function (2.22). Using expansion (3.70) for both terms in (2.22), we obtain:

G(x, x) = 4ﬂz e _ l(izl)m} YA, $) Y0, §) (3.114)

21+1|: 1 g\rr

To sce clearly the structure of (3.114) and to verify that it satisfies the
boundary conditions, we exhibit the radial factors separately for r <7’

and for r > r':
1 : a21+1 ,
r'— =1 r<r
r

1+1 11+1
[ rk l(az) + ] T
rit g\

o a2 1 ey
,z+1 1+1’

First of all, we note that for either r or r’ equal to a the radial factor
vanishes, as required. Similarly, as r or r’ — oo, the radial factor vanishes.
It is symmetric in r and r’. Viewed as a function of r, for fixed 7/, the
radial factor is just a linear combination of the solutions r*and r~¢*1 of the
radial part (3.7) of Laplace’s equation. It is admittedly a different linear
combination for # < 7' and for r > r’. The reason for this will become
apparent below, and is connected with the fact that the Green’s function
is a solution of Poisson’s equation with a delta function inhomogeneity.

Now that we have seen the general structure of the expansion of a
Green’s function in separable coordinates we turn to the systematic con-
struction of such expansions from first principles. A Green’s function for
a potential problem satisfies the equation

(3.115)

V. 2G(x, ') = —4m d(x — X') (3.116)
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subject to the boundary conditions G(x, x) = O for either x or x’ on the
boundary surface S. For spherical boundary surfaces we desire an expan-
sion of the general form (3.114). Accordingly we exploit the fact that the
delta function can be written*

S(x — ) = rlza(r — ) 8(¢ — &) 8(cos O — cos ')

and that the completeness relation (3.56) can be used to represent the
angular delta functions:

o —x)= O = )Y D VaO a6, d) (11T

1=0m=-1
Then the Green’s function, considered as a function of x, can be expanded
as
o) 1]
GO x) =2 2 A0’ )85 1) Yul0, ) (3.118)

m=-

Substitution of (3.117) and (3.118) into (3.116) leads to the results

A, ) = Y (8, ¢) (3.119)
and

1d I+ 1 , 4 ,
1 gty = D gy = — o — 1) 120y
rdr r r

The radial Green’s function is seen to satisfy the homogeneous radial
equation (3.7) for r = r’. Thus it can be written as:

Art 4+ Br~ @D, forr < v’

(r,r) =
8% A'rt + B'r~ @Y, forr > r'

The coefficients 4, B, 4’, B’ are functions of ¢’ to be determined by the
boundary conditions, the requirement implied by é(r — r") in (3.120), and
the symmetry of g,(r, ) in r and #’. Suppose that the boundary sufaces are
concentric spheres at r = g and r = b. The vanishing of G(x, x") for x on

* To express d(x — x°) = 8(z; — #,") 8(x, — x,") 8@y — ") in terms of the coordi-
nates (§,, &, &), related to (z,, x,, z,) via the Jacobian J(z;, &,), we note that the mean-
ingful quantity is 6(x — x’) d®. Hence

1
(S(X ol X’) = m 6(51 - 51’) (5(52 - 52/) 6(53 - ‘53/)
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the surface implies the vanishing of g,(r, r’) for r = a and r = b. Con-
sequently g,(r, r’) becomes

a2[+1
A(r’— z+1)’ F<r
g(r,r) = [ (3.121)
(Tﬂ - b21+1)’ r>r

The symmetry in r and r’ requires that the coefficients A(r") and B'(r') be
such that g,(r, r') can be written

N C . a2l+1 1 rl>
gl(r, r) = Fe— F—l 1 JEIES (3122)

< r

where r_ (r.) is the smaller (larger) of r and r’. To determine the constant
C we must consider the effect of the delta function in (3.120). If we multiply
both sides by r and integrate over the interval fromr = r" — etor =r' +
€, where € is very small, we obtain

(3.123)

_ 4

[dir (rar, r'»] = [di’r (reir, r'))]

»+e€ r'—€

Thus there is a discontinuity in slope at r = r’, as indicated in Fig. 3.8.
Forr=r"4+¢r. =r,r_=r". Hence

d , ) a2 tl d1 pit
desen] =elr=55) 405w

21+1 21+1
r r b
Similarly

l:f;("gz(r, r’))l’_€ = g(l F1a l(%)2l+1>(1 _ (Z_')m”

Substituting these derivatives into (3.123), we find.:

C = 4 (3.124)

@l + 1)[1 - (g)zm}

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion
of the Green’s function for a spherical shell bounded by r = a and r = b:

G(x,x') =
& & Y0, $)Yin(6, H) (1

4'”2 Z . )% 7\2 re — rz+1) ;H——_l_ b2l>+1 (3.125)
=0 m=—1 (21 + 1)[1 - (5) } < z
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rgi(r,r’)—

Fig. 3.8 Discontinuity in slope of
the radial Green’s function.

For the special cases @ — 0, b — o0, and b — oo, we recover the previous
expansions (3.70) and (3.114), respectively. For the “interior” problem
with a sphere of radius b we merely let a — 0. Whereas the expansion for
a single sphere is most easily obtained from the image solution, the general
result (3.125) for a spherical shell is rather difficult to obtain by the method
of images, since it involves an infinite set of images.

3.9 Solution of Potential Problems with the Spherical Green’s Function
Expansion

The general solution to Poisson’s equation with specified values of the
potential on the boundary surface is (see Section 1.10):

(%) =f o(x)G(x, X) d¥ — _cf o) Cda (3.126)
v 4 Js on’
For purposes of illustration let us consider the potential inside a sphere of
radius b. First we will establish the equivalence of the surface integral in
(3.126) to the previous method of Section 3.4, equations (3.61) and (3.58).
With a = 0 in (3.125), the normal derivative, evaluated at ' = b, is:

oG _ 0G

on’ or

- ﬁ’z(g)lYfm(ez SVl ) (3.127)

r=b b2
l,m

Consequently the solution of Laplace’s equation inside r =& with
® = V(0', §') on the surface is, according to (3.126):

000 =3 [10. 63750, 140 |(2) va0. 6 G129

i,m

For the case considered, this is the same form of solution as (3.61) with
(3.58). There is a third form of solution for the sphere, the so-called
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e

a

Fig. 3.9 Ring of charge of radius a and
total charge Q inside a grounded, conduct-
* ing sphere of radius b.

Poisson integral (2.25). The equivalence of this solution to the Green’s
function expansion solution is implied by the fact that both were derived
from the general expression (3.126) and the image Green’s function. The
explicit demonstration of the equivalence of (2.25) and the series solution
(3.61) will be left to the problems.

We now turn to the solution of problems with charge distributed in the
volume, so that the volume integral in (3.126) is involved. It is sufficient
to consider problems in which the potential vanishes on the boundary
surfaces. By linear superposition of a solution of Laplace’s equation the
general situation can be obtained. The first illustration is that of a hollow
grounded sphere of radius & with a concentric ring of charge of radius a
and total charge Q. The ring of charge is located in the z-y plane, as shown
in Fig. 3.9. The charge density of the ring can be written with the help of
delta functions in angle and radius as

p(x') = g o(r' — a) d(cos 6") (3.129)
2ma?

In the volume integral over the Green’s function only terms in (3.125) with
m = 0 will survive because of azimuthal symmetry. Then, using (3.57)
and remembering that ¢ — 0 in (3.125), we find

O(x) = f p(X)G(x, x') &z’
N (1 L
= Q;)PL(O)F<(E‘1 — b—;;—l)P,(cos 6) (3.130)

where now r_ (r.) is the smaller (larger) of r and a. Using the fact that

(—1)"2n — D!
Prnis(®) = 0 and Py (0) = — 20 = DY

O(x) = Z(—l)"(2n—1)”r ( 1 _ )Pzn(cosf)) (3.131)

r2>n+1 b47t+1

, (3.130) can be written as:
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z

Linear
[ density
Q

b1

Fig. 3.10 Uniform line charge of

length 2b and total charge Q inside

a grounded, conducting sphere of
radius b.

In the limit b — oo, it will be seen that (3.130) or (3.131) reduces to
expression (3.48) for a ring of charge in free space. The present result can
be obtained alternatively by using (3.48) and the images for a sphere.

A second example of charge densities, illustrated in Fig. 3.10, is that of
a hollow grounded sphere with a uniform line charge of total charge Q
located on the z axis between the north and south poles of the sphere.
Again with the help of delta functions the volume-charge density can be
written:

p(x) =2 L [8cos & — 1) + d(cos 0 + 1] (3.132)
2b 2

The two delta functions in cos § correspond to the two halves of the line
charge, above and below the z-y plane. The factor 27+'? in the denominator
assures that the charge density has a constant /inear density Q/2b. With
this density in (3.126) we obtain

_23 _ Y U S P
o =2 ;) [P(1) + P(—1)]Pcos e)f0 r<(rl>+1 bz”l) dr (3.133)

The integral must be broken up into the intervals 0 <r’ <r and
r <r' <b. Then we find

[ 1 rl r y , b 1 r/l ,
J; = (rl_ﬂ - b21+1)_[) r'tdr+ rlj; (;7171 T opEtl dr

a2 ()

For / = 0 this result is indeterminate. Applying L’Hospital’s rule, we
have, for I = 0 only,

40— (7))

b

f —imd 7 lim(—-— 4 e““"”’>) = In ('—’) (3.135)
0 dl r

10 d 1-0
— (1
dl( )
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This can be verified by direct integration in (3.133) for / = 0. Using the
fact that P,(—1) = (—1)%, the potential (3.133) can be put in the form:

D(x) = Qb {m (’—’r) + :1% [1 - (i)w]Pz,.(cos 6)} (3.136)

The presence of the logarithm for / = 0 reminds us that the potential
diverges along the z axis. This is borne out by the series in (3.136), which
diverges for cos § = &1, except at r = b exactly.

The surface-charge density on the grounded sphere is readily obtained
from (3.136) by differentiation:

0 [1+ @+ 1

o) = —— = - =
) r=5 4mb? @&+

4 or Pa,(cos 6)}

(3.137)

The leading term shows that the total charge induced on the sphereis —Q,
the other terms integrating to zero over the surface of the sphere.

3.10 Expansion of Green’s Functions in Cylindrical Coordinates

The expansion of the potential of a unit point charge in cylindrical
coordinates affords another useful example of Green’s function expan-
sions. We will present the initial steps in general enough fashion that the
procedure can be readily adapted to finding Green’s functions for potential
problems with cylindrical boundary surfaces. The starting point is the
equation for the Green’s function:

V.2G(x, X) = — ‘%’6@ )K= e —2)  (313)

where the delta function has been expressed in cylindrical coordinates.
The ¢ and z delta functions can be written in terms of orthonormal
functions:

8z —2) = %r f_m dkc e = 1 fo dk cos [k(z — Z’)ﬂ

v

. L (3.139)

o= $) = D e e |

m=—ao

We expand the Green’s function in similar fashion:

1 N @ : ,
G(x,x) = — Z f dk ¢™9~% cos [k(z — 2)1g..(p, p') (3.140)
277' M= — oo 0
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Then substitution into (3.138) leads to an equation for the radial Green’s
function g.(p, p'):

2
taf, Uea) _ (12 4 M= =) G4
pdp\ dp P P

For p # p’ this is just equation (3.98) for the modified Bessel functions,
1.(kp) and K, (kp). Suppose that y,(kp)is some linear combination of
I, and K,, which satisfies the correct boundary conditions for p < p’, and
that wy(kp) is a linearly independent combination which satisfies the
proper boundary conditions for p > p’. Then the symmetry of the Green’s
function in p and p’ requires that

gnlps ) = wa(kp<)yelkp>) (3.142)

The normalization of the product y,y, is determined by the discontinuity
in slope implied by the delta function in (3.141):

dgn 4

_ | _ _4m (3.143)
dp

+ dp

!’

- p
where |, means evaluated at p = p’ & e. From (3.142) it is evident that

[é&n_
dp

_ 98w

J = k(yp1ye’ — way') = kW[, vo] (3.144)
+ dp

where primes mean differentiation with respect to the argument, and
Wlyy, vo] is the Wronskian of ¢; and v,. Equation (3.141) is of the
Sturm-Liouville type

4 () o oo =
Lo L) + glary = 0 (3.145)

and it is well known that the Wronskian of two linearly independent
solutions of such an equation is proportional to [l/p(x)]. Hence the
possibility of satisfying (3.143) for all values of p’ is assured. Clearly we
Mmust demand that the normalization of the product p,y, is such that the
Wronskian has the value:

dar

W), po2)] = — - (3.146)

If there are no boundary surfaces, the requirement is that g,.(p, p') be
finite at p = 0 and vanish at p — oo. Consequently y,(kp) = AI, (kp)and
Yelkp) = K, (kp). The constant 4 is to be determined from the Wronskian
condition (3.146). Since the Wronskian is proportional to (1/x) for all
Values of z, it does not matter where we evaluate it. Using the limiting
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forms (3.102) and (3.103) for small = [or (3.104) for large x], we find
WL, (), K(2)] = — 1 (3.147)
x

so that 4 = 4x. The expansion of 1/|x — x’| therefore becomes:
1 _2
[X — X'[ T

2. f “dk 6= cos [k(z — )] kp <K (kp=) (3.148)
[

m=—o

This can also be written entirely in terms of real functions as:

1 4 |* ,
— = ;J; dk cos [k(z — 2)]
< [40kp IKolkp=) + . cos Dt — $)],kp K olkp)
m=1
(3.149)

A number of useful mathematical results can be obtained from this
expansion. If we let X" — 0, only the m = 0 term survives, and we obtain
the integral representation:

L2 f cos kz K(kp) dk (3.150)
\/ P2+ 2w

If we replace p? in (3.150) by R? = p% + p* — 2pp’ cos (¢ — ¢’), then we

have on the left-hand side the inverse distance |x — x'|" with 2’ = 0, i.e,,

just (3.149) with 2" = 0. Then comparison of the right-hand sides of

(3.149) and (3.150) (which must hold for al/l values of 2) leads to the

identification:

Ky(kv/p® + p2 — 2pp’ cos (6 — ¢'))

— Lkp)Kolkp>) + 2 cos [m($ — VL u(ep K pllep) (3.151)
m=1
In this last result we can take the limit k — 0 and obtain an expansion for
the Green’s function for (two-dimensional) polar coordinates:

i <\//o2 + p? = 2;1)p’ cos (¢ — ¢’))
=In (-pl—>) + mz; %(%)mcos [m(é — ¢)] (3.152)

This representation can be verified by a systematic construction of the
two-dimensional Green’s function for Poisson’s equation along the lines
leading to (3.148).
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3.11 Eigenfunction Expansions for Green’s Functions

Another technique for obtaining expansions of Green’s functions is the
use of eigenfunctions for some related problem. This approach is inti-
mately connected with the methods of Sections 3.8 and 3.10.

To specify what we mean by eigenfunctions, we consider an elliptic
differential equation of the form:

V2p(x) + [f(x) + Ap(x) =0 (3.153)

If the solutions (x) are required to satisfy certain boundary conditions
on the surface S of the volume of interest ¥, then (3.153) will not in general
have well-behaved (e.g., finite and continuous) solutions, except for
certain values of 2. These values of A, denoted by 4,, are called eigenvalues
(or characteristic values) and the solutions y,(x) are called eigenfunctions.*
The eigenvalue differential equation is written:

Vi, (x) + [/ () + A,]y,(0) =0 (3.154)

By methods similar to those used to prove the orthogonality of the
Legendre or Bessel functions it can be shown that the eigenfunctions are
orthogonal:

erwm*(X)wn(X) d*x = b, (3.155)

where the eigenfunctions are assumed normalized. The spectrum of
eigenvalues A, may be a discrete set, or a continuum, or both. It will be
assumed that the totality of eigenfunctions forms a complete set.

Suppose now that we wish to find the Green’s function for the equation:

V2G(x, X) + [f(x) + AG(x, X)) = —4nd(x — x)  (3.156)

where A is not in general one of the eigenvalues 2, of (3.154). Furthermore,
suppose that the Green’s function is to have the same boundary conditions
as the eigenfunctions of (3.154). Then the Green’s function can be
expanded in a series of the eigenfunctions of the form:

G(x, x') = 3 ay(X)p(x) (3.157)

Substitution into the differential equation for the Green’s function leads

to the result:
> 4, (x4 — L)y (x) = —4nd(x — X) (3.158)

* The reader familiar with wave mechanics will recognize (3.153) as equivalent ta the
Schrodinger equation for a particle in a potential.
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If we multiply both sides by y,*(x) and integrate over the volume V, the
orthogonality condition (3.155) reduces the left-hand side to one term, and
we find:

Yu(X)
a,(x') = 4n 3.159
() = dm 222 (3.159)
Consequently the eigenfunction expansion of the Green’s function is:
*®
N — Wu (X)Pu(X)
G(x, X') = 4n ; i (3.160)

For a continuous spectrum the sum is replaced by an integral.

Specializing the above considerations to Poisson’s equation, we place
f(x) =0and 1 =0in (3.156). As a first, essentially trivial, illustration
we let (3.154) be the wave equation over all space:

(V2 + Ky (x) = 0 (3.161)

with the continuum of eigenvalues, k%, and the eigenfunctions:

R S

3.162
Yu(x) = (2n ) ( )

These eigenfunctions have delta function normalization:
fwk'*<x)wk(x) Pz = ok — K) (3.163)
Then, according to (3.160), the infinite space Green’s function has the

expansion: k(x—1)
1 _ 1 f P (3.164)
x —x'| 27° k?

This is just the three-dimensional Fourier integral representation of
1/]x — x|

As a second example, consider the Green’s function for a Dirichlet
problem inside a rectangular box defined by the six planes, z = y = z = 0,
€ =a, y=>b, z=c. The expansion is to be made in terms of eigen-
functions of the wave equation:

(V2 + klmn)Wlmn(x’ Y, Z) =0 (3165)

where the eigenfunctions which vanish on all the boundary surfaces are

8 . Irx . mmy . nme
Iplmn(x’ Y, Z) = —sSsimn|—jsm{——)smj|——
abe a b ¢

and (3.166)
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The expansion of the Green’s function is therefore:

2 a0
G(x, x) = 3bc z

lm,n=
sm( x)m (lf——’)sm(w)sin(m y)sn( )sn (EZ‘?_)
a a b ¢ c
2 m2 n2
(}+§+?)
(3.167)

To relate expansion (3.167) to the type of expansions obtained in
Sections 3.8 and 3.10, namely, (3.125) for spherical coordinates and
(3.148) for cylindrical coordinates, we write down the analogous expansion
for the rectangular box. If the x and y coordinates are treated in the
mannet of (0, ¢) or (¢, z) in those cases, while the z coordinate is singled
out for special treatment, we obtain the Green’s function:

G(x, x) = 16m sin (lﬂf) sin (ll”_) sin (’_"ﬂ) sin (’_"77_?/)
ab oL, a a b b
« [smh (K2 <) sinh (K,(¢c — z>)):| (3.168)

K,,, sinh (K,,,¢)
me\v
) If (3.167) and (3.168) are to be equal, it must

b2

be that the sum over 7 in (3.167) is just the Fourier series representation
on the interval (0, ¢) of the one-dimensional Green’s function in z in
(3.168):

12
where K;,, = ‘rr( +

sin (ﬁi’i)
sinh (K p2<) sinh (Ku(e — 22)) _ 2N —_i
C

K,y sinh (K, ) Skt (
4
(3.169)
The verification that (3.169) is the correct Fourier representation is left as
an exercise for the reader.
Further illustrations of this technique will be found in the problems at
the end of the chapter.

3.12 Mixed Boundary Conditions; Charged Conducting Disc
The potential problems discussed so far in this chapter have been of the

orthodox kind in which the boundary conditions are of one type (usually
Dirichlet) over the whole boundary surface. In the uniqueness proof for
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2

Fig. 3.11

solutions of Laplace’s or Poisson’s equation (Section 1.9) it was pointed
out, however, that mixed boundary conditions, where the potential is
specified over part of the boundary and its normal derivative is specified
over the remainder, also lead to well-defined, unique, boundary-value
problems. There is a tendency in existing textbooks to mention the
possibility of mixed boundary conditions when making the uniqueness
proof and to ignore such problems in subsequent discussion. The reason,
as we shall see immediately, is that mixed boundary conditions are much
more difficult to handle than the normal type.

To illustrate the difficulties encountered with mixed boundary con-
ditions we consider the apparently simple problem of an isolated, infinitely
thin, flat, circular, conducting disc of radius @ with a total charge ¢ placed
on it, as shown in Fig. 3.11. The charge distributes itself over the disc in
such a way as to make its surface an equipotential. We wish to determine
the potential everywhere in space and the charge distribution on the disc.

From the geometry of the problem we see that the potential is symmetric
about the axis of the disc and with respect to the plane containing the disc.
If cylindrical coordinates are chosen with the axis of the disc as the 2 axis
and the origin at the center of the disc, the potential must therefore be of
the form [from (3.110)],

B(p, 2) = Owdk FU)e™ 9 g (kp) (3.170)

The unknown function f(k) must be determined from the boundary
conditions at z = 0. If the potential were known everywhere over the
whole z = 0 plane, f(k) could be found by inverting the Hankel transform,
as in going from (3.110) to (3.113). Unfortunately the boundary con-
ditions at z = 0 are not that simple. For 0 < p < a we do know that the
potential is constant at an unknown value, ® = V = ¢/C, where C is the
capacitance of the disc. But for a < p < o0, the potential is unknown.
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From symmetry, however, we know that the normal derivative of the
potential vanishes there. Thus the boundary conditions are mixed:

D(p, 0) =V, for0 <p<a

(3.171)
aE%)(p,O)=0, fora<p< w

The connection between the potential of the disc ¥ and the total charge g
on it will be established by the fact that at large distances (p and/or z > a)
the potential must approach ¢/(p* 4 2%)*%. From (3.170) and an identity
of Problem 3.12¢ this requirement can be seen to imply

lim f(k) = ¢ (3.172)
k=0

When boundary conditions (3.171) are applied to the general solution
(3.170), there results a pair of integral equations of the first kind:

dekf(k)JO(kp) =V, for0<p<a 1
i (3.173)

f dk k f(k)Jo(kp) =0, fora < p < ooJ
0

Such pairs of integral equations, with one of the pair holding over one
part of the range of the independent variable and the other over the other
part of the range, are known as dual integral equations. The general theory
of dual integral equations is complicated and not highly developed. But
the charged disc problem and variations of it have received considerable
attention over the years. H. Weber (1873) first solved the present problem
by using certain discontinuous integrals involving Bessel functions.
Titchmarsh, p. 334, uses Mellin transforms to effect a solution of a some-
what more general pair of dual integral equations. E. T. Copson [Proc.
Edin. Math. Soc. (2), 8, 14 (1947)] reduces the disc problem to an integral
equation for the surface-charge density of the Abel type. Tranter, p- 50
and Chapter VIII, considers slight generalizations of the pair (3.173). He
introduces a systematic technique of finding the most general form satis-
fying the homogencous member of the pair and then delimiting that form
by substitution into the other equation. The Wiener-Hopf technique can
also be used.

For our purposes it is sufficient to observe that the dual integral
€quations,

® 3
f dyg(pJ (yx) = 2", for0<z<1 L

Ow (3.174)
f dy y g(y)J (yx) = 0, forl < z < ooJ

0
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have the solution,

Mnt+1) o T+
JrT(n + H™" T(n + 4)
In this relation j,(y) is the spherical Bessel function of order # (see Section

16.1). For the set of equations (3.173) the variables are z = pfa and
y = ka, while n = 0. Thus the solution is

gly) = () Tarsg(y)  (3.175)

700 =2 va jy(ka) = 2 va (M) (3.176)
T T ka

Remembering the connection (3.172) which determines the potential ¥
in terms of the charge ¢, we find
y="4
2a

This shows that the capacitance of a disc of radius a is

C=ga

T

This value was experimentally established with remarkable precision by
Cavendish (ca. 1780) by comparing the charges on a disc and a sphere at
the same potential.

The potential anywhere in space is found from (3.170) and (3.176) to be

sin ka

O, 2) =g [ "k K g (3.177)

Values of the potential along the axis and in the plane of the disc can be
found readily by putting p = 0 and z = 0 in (3.177). The results are

D0, 2) = ” 9 tan- (Z)

sin~1 (g), forp >a
O(p, 0) = f

[NST= BN - R

g, for0 <p<a
a

For arbitrary p and z the integral can be transformed into Weber’s form
of the solution:

®(p, 2) = g sin~ [ 24

Vo — a + 22+ J(p + a)? + 22

} (3.178)
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The charge density a(p) on the surface of the disc is given by

a(p) = — 10 (p,0) = _q_f dk sin ka J(kp)
27 0z 2ma Jo

The integral is a well-known discontinuous integral which vanishes for
p > a. For p < a, the charge density is
1

o(p) = 1 ——e (3.179)
27Ta \/az —_ PZ

The (integrable) infinity in o(p) for p — a is a mathematical singularity
which results from the assumption of an infinitely thin disc. In practice
the charge is repelled to the outer regions of a thin disc approximately
according to (3.179), but near the edge the distribution levels off to a large,
but finite, value which depends on the detailed construction of the disc.

We have discussed the charged conducting disc in cylindrical coordinates
in order to illustrate the complications of mixed boundary conditions.
For this particular example, the mixed boundary conditions can be avoided
by separating Laplace’s equation in elliptic coordinates. Then the disc
can be taken to be the limiting form of an oblate spheroidal surface. See,
for example, Smythe, pp. 111, 156, or Jeans, p. 244.
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PROBLEMS

3.1

3.2

33

34

The surface of a hollow conducting sphere of inner radius 4 is divided into
an even number of equal segments by a set of planes whose common line of
intersection is the z axis and which are distributed uniformly in the angle 6.
(The segments are like the skin on wedges of an apple, or the earth’s
surface between successive meridians of longitude.) The segments are kept
at fixed potentials +V, alternately.

(a) Set up a series representation for the potential inside the sphere for
the general case of 2n segments, and carry the calculation of the coefficients
in the series far enough to determine exactly which coefficients are differcnt
from zero. For the nonvanishing terms, exhibit the coefficients as an
integral over cos 6.

(b) For the special case of n = 1 (two hemispheres) determine explicitly
the potential up to and including all terms with / = 3. By a coordinate
transformation verify that this reduces to result (3.37) of Section 3.3.

Two concentric spheres have radii a, b (b > a) and are divided into two
hemispheres by the same horizontal plane. The upper hemisphere of the
inner sphere and the lower hemisphere of the outer sphere are maintained
at potential V. The other hemispheres are at zero potential.

Determine the potential in the region @ < r < b as a series in Legendre
polynomials. Include terms at least up to / = 4. Check your solution
against known results in the limiting cases b — c, and a — 0.

A spherical surface of radius R has charge uniformly distributed over its
surface with a density Q/4=R?, except for a spherical cap at the north pole,
defined by the cone 6 = a.

(@) Show that the potential inside the spherical surface can be expressed

as
o
Q l
= 5 [Pl q(cos &) — P;_4(cos 0)] —— R Py(cos 0)
where, for [ = 0, Pl,l(cos ®) = —1. What is the potential outside?

(b) Find the magnitude and the direction of the electric field at the origin.

(¢) Discuss the limiting forms of the potential (@) and electric field (b) as
the spherical cap becomes (1) very small, and (2) so large that the area
with charge on it becomes a very small cap at the south pole.

A thin, flat, conducting, circular disc of radius R is located in the -y plane
with its center at the origin, and is maintained at a fixed potential V. With
the information that the charge density on a disc at fixed potential is
proportional to (R? — p?)~*, where p is the distance out from the center of
the disc,

{(a) show that for r > R the potential is

2 (1
o(r, 0, ¢) = Q/B 2(1 D) ( ) Py i(cos 6)
"=

(b) find the potential for r < R.
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35

3.6

3.7

3.8

39

A hollow sphere of inner radius a has the potential specified on its surface
to be ® = V(8, ¢). Prove the equivalence of the two forms of solution for
the potential inside the sphere:

_al@® —r?) v, ¢) ,
(a) O(x) = y f e dQ

2 4 g% — 2ar cos )%

where cos ¥ = cos 0 cos 6 + sin 0 sin 6 cos (¢ — ¢°).

®) o) = Z z Alm( ) Yin(6, 4)

=0m=—1

where 4, = f 4 YR, $WE, 6.

A hollow right circular cylinder of radius b has its axis coincident with the
z axis and its ends at z = 0 and z = L. The potential on the end faces is
zero, while the potential on the cylindrical surface is given as F(4, 2).
Using the appropriate separation of variables in cylindrical coordinates,
find a series solution for the potential anywhere inside the cylinder.

For the cylinder in Problem 3.6 the cylindrical surface is made of two
equal half-cylinders, one at potential " and the other at potential —V, so
that

{ V for —%<¢<§
V(¢,2) =4 3
mw U
—Vfor- < qS-\E—

N

(a) Find the potential inside the cylinder.

(b) Assuming L > b, consider the potential at z = L/2 as a function of p
and ¢ and compare it with two-dimensional Problem 2.8.
Show that an arbitrary function f(x) can be expanded on the interval
0 < 2« < gin a modified Fourier-Bessel series

o«

f@=> AnJu(ym g)

n=1
. dJ,
where vy, is the nth root dix)

= 0, and the coefficients A4,, are given by

2

¢ x
A'n = 2 J:) f(x)x',r (yvn ;) dx
2o

1 — —

yn

An infinite, thin, plane sheet of conducting material has a circular hole of
radius a cut in it. A thin, flat disc of the same material and slightly smaller
radius lies in the plane, filling the hole, but separated from the sheet by a
very narrow insulating ring. The disc is maintained at a fixed potential 7,
while the infinite sheet is kept at zero potential.

(@) Using appropriate cylindrical coordinates, find an integral expression
involving Bessel functions for the potential at any point above the plane.
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(b) Show that the potential a perpendicular distance z above the center

of the disc is
0y2) = V( - ——)

Va2

(¢} Show that the potential a perpendicular distance z above the edge of
the disc is

v :
) = 5 [1 - %K(k)}

where k = 2a/(z® + 4a%), and K(k) is the complete elliptic integral of the
first kind.

3.10 Solve for the potential in Problem 3.2, using the appropriate Green’s
function obtained in the text, and verify that the answer obtained in this
way agrees with the direct solution from the differential equation.

3.11 A line charge of length 24 with a total charge Q has a linear charge density
varying as (d% — #2), where z is the distance from the midpoint. A grounded,
conducting, spherical shell of inner radius b > d is centered at the midpoint
of the line charge.

(@) Find the potential everywhere inside the spherical shell as an
expansion in Legendre polynomials.

(b) Calculate the surface-charge density induced on the shell.

(c) Discuss your answers to (a) and (b) in the limit that d < b.

3.12  (a) Verify that
1 @0
p Ap —p) =L kJ y(kp) mikp') dk
(b) Obtain the following expansion:

1
x — x|

- Z f dk €™ S = (kpW pi(kp"Je ~F> —5 D
0

(¢) By appropriate limiting procedures prove the following expansions:

1

\/’,Z—W =f e_"‘z’Jo(kp) dk
0

bzl

JolkVp +p — 2pp cos ¢) = Z e (kp) m(kp)

m=-—
0

etkpcosé — z I'mei'"d’.]m(kp)

m= —

(d) From the last result obtain an integral representation of the Bessel
function:

2w
T (@) = 2Wlim j 217 08 ¢ —imdgp
0

Compare the standard integral representations.
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3.13 A unit point charge is located at the point (p’, #’,2") inside a grounded
cylindrical box defined by the surfaces z = 0,z = L, p = a. Show that the
potential inside the box can be expressed in the following alternative forms:

© © tm(¢ -’ 15 ( mnP)Jm (xmnp’)
d(x, x°) ‘—‘ Z z 4 d
4 m= =1

Ten mmn‘]'r%z +1(mmn) sinh (xm;L)

x sinh |: '”"z<] sinh |: mn (L — z>):|
a

"5
PR In| =
o= 1m(¢ ) nmz nrz

O(x, X') I 2 Z sm(L)sm(L)l (mra)
"\'L
[ () - w52 ()

w o o &M@ —¢)gin ke sin @ Iom xm"P. I M
L L a a
x Z z Z x, \ kn\
m=—w k=1 n=1 l:(%") + (-Z)jl-],%,.q.l(xmn)

Discuss the relation of the last expansion (with its extra summation) to the
other two.

3.14 The walls of the conducting cylindrical box of Problem 3.13 are all at zero

potential, except for a disc in the upper end, defined by p = b, at potential 7.

(@) Using the various forms of the Green’s function obtained in Problem
3.13, find three expansions for the potential inside the cylinder.

(b) For each series, calculate numerically the ratio of the potential at
p =0,z = L/2 to the potential of the disc, assuming b = L/4 = af2. Try
to obtain at least two-significant-figure accuracy. Is one series less rapidly
convergent than the others? Why?

(Jahnke and Emde have tables of J, and J; on pp. 156-163, I; and I; on
pp- 226-229, (2/m)K, and (2/m)K; on pp. 236-243. Watson also has
numerous tables.)



Multipoles, Electrostatics of
Macroscopic Media,
Dielectrics

This chapter is first concerned with the potential due to localized
charge distributions and its expansion in multipoles. The development is
made in terms of spherical harmonics, but contact is established with the
rectangular components for the first few multipoles. The energy of a
multipole in an external field is then discussed. The macroscopic equations
of electrostatics are derived by taking into account the response of atoms
to an applied field and by suitable averaging procedures. Dielectrics and
the appropriate boundary conditions are then described, and some
typical boundary-value problems with dielectrics are solved. Simple
classical models are used to illustrate the main features of atomic polariza-
bility and susceptibility. Finally the question of electrostatic energy in the
presence of dielectrics is discussed.

4.1 Multipole Expansion

A localized distribution of charge is described by the charge density
p(x"), which is nonvanishing only inside a sphere of radius R* around some
origin. The potential outside the sphere can be written as an expansion in
spherical harmonics:

& < 4 Y,,.(0,
o0 =D, > g, R (@)

1=0 m=-1 r

* The sphere of radius R is an arbitrary conceptual device employed merely to divide
space into regions with and without charge.

98
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where the particular choice of constant coefficients is made for later
convenience. Equation (4.1) is called a multipole expansion; the / =0
term is called the monopole term, /=1 is the dipole term, etc. The
reason for these names becomes clear below. The problem to be solved
is the determination of the constants g, in terms of the properties of the
charge density p(x’). The solution is very easily obtained from the
integral (1.17) for the potential:
(D(X) _f P(X) d3 ’
Ix — x|

with expansion (3.70) for 1/|x — x| . Since we are interested at the
moment in the potential outside the charge distribution, r_ = r’ and
r, =r. Then we find:

1 * ’ Nw!l ’ ’ Ylm6~
qm=%zy+ihMmMWMfd—ﬁﬁ (42)

Consequently the coefficients in (4.1) are:

Gim = [ Y50, $rpt) @3

These coefficients are called multipole moments. To see the physical inter-
pretation of them we exhibit the first few explicitly in terms of cartesian
coordinates:

doo = \/4 fP(x) d’x’ = \_/Z; q (4.49)

Iy = — A/;T f(x’ — iy)p(x) &’ = — A/ g (P — ip,)
= JZ [evtor i = ﬁ .

doa = i‘/ f(z iy )2 (x') d’z’ = E (Qu — 2iQ1s — Q) ﬁ

4.5)
q1

<

In = — A/_ JZ (@ —iy)p(x') Pr’' = — _A/ (Q43 — 1Qs) L(4-6)

1
— -~ 312_ 72 ’ d3 /=_A/_
d20 2A/4,,. f( z rp(x) N 4 Oss

Only the moments with m > 0 have been given, since (3.54) shows that for
a real charge density the moments with z <Z 0 are related through

qL,—m = (_1)mq;km (4‘7)




100 Classical Electrodynamics

In equations (4.4)-(4.6), g is the total charge, or monopole moment, p is
the electric dipole moment:

P =fx’ p(x") &’ (4.8)

and Q;; is the quadrupole moment tensor:

Q. =f(3xi'w/ = 1"%0,)p(x") d*’ (4.9)

We see that the /th multipole coefficients [(2/ 4+ 1) in number] are linear
combinations of the corresponding multipoles expressed in rectangular
coordinates. The expansion of ®(x) directly in rectangular coordinates:

qg p-x 1 @,
==+ *— —E d— + 4.10
D(x) r+ 5 +2”Q,r5+ (4.10)

by direct Taylor’s series expansion of 1/|x — x| will be left as an exercise
for the reader. It becomes increasingly cumbersome to continue the
expansion in (4.10) beyond the quadrupole terms.

The electric field components for a given multipole can be expressed
most easily in terms of spherical coordinates. The negative gradient of a
term in (4.1) with definite /, m has spherical components:

_4nl 4 D) Y6, §)
241 " 2

T

4 1 0
Ejg = ———— — —Y,,.(0, 4.11
8 21+ lqlmrH.zaG 1 ( 96) ( )
47 1 im
E = — 27 — 2y (9,
¢ A+17m i 2 gn g ini6 4)

0Y,,/00 and Y,,/sin 0 can be expressed as linear combinations of other
Y,,’s, but the expressions are not particularly illuminating and so will be
omitted. The proper way to describe a vector multipole field is by vecror
spherical harmonics, discussed in Chapter 16.

For a dipole p along the z axis, the fields in (4.11) reduce to the familiar

form:
2pcos 8
r
sin 6
E, = p : (4.12)
r
E,=0

These dipole fields can be written in vector form by recombining (4.12) or
by directly operating with the gradient on the dipole term in (4.10). The
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result for the field at a point x due to a dipole p at the point X’ is:
E(x) = MR- 1) =P “.13)
Ix —x*

where n is a unit vector directed from x’ to x.

4.2 Multipole Expansion of the Energy of a Charge Distribution in an
External Field

If a localized charge distribution described by p(x) is placed in an
external potential ®(x), the electrostatic energy of the system is:

W= f p(X)D(x) (4.14)

If the potential @ is slowly varying over the region where p(x) is non-
negligible, then it can be expanded in a Taylor’s series around a suitably
chosen origin:

O(x) = O0) + x - VO(0) + 222 &, ©) + -+ (4.15)

a 6

Utilizing the definition of the electric field E = — V@, the last two terms
can be rewritten. Then (4.15) becomes-

D(x) = D(0) — x - EQ) — sz 2, 3—5 ©) + -
Since V - E = 0 for the external field, we can subtract
12V . E(0)

from the last term to obtain finally the expansion:
- 1 — 25, % .
d(x) = O(0) — x - E(0) - Z;(sxiz,. 5, o 0) + (4.16)

When this is inserted into (4.14) and the definitions of total charge, dipole
moment (4.8) and quadrupole moment (4.9), are employed, the energy
takes the form:

=q®0) — p - E(O)—— ZQ” f(0)+ 4.17)

This expansion shows the characterlstlc way in which the various multi-
poles interact with an external field—the charge with the potential, the
dipole with the electric field, the quadrupole with the field gradient, and
$o on.
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In nuclear physics the quadrupole interaction is of particular interest.
Atomic nuclei can possess electric quadrupole moments, and their magni-
tudes and signs have a bearing on the forces between neutrons and protons,
as well as the shapes of the nuclei themselves. The energy levels or states
of a nucleus are described by the quantum numbers of total angular
momentum J and its projection M along the z axis, as well as others which
we will denote by a general index «. A given nuclear state has associated
with it a quantum-mechanical charge density* p ;.. (x), which depends
on the quantum numbers (J, M, «), but which is cylindrically symmetric
about the z axis. Thus the only nonvanishing quadrupole moment is gy
in (4.6), or Qg in (4.9).t The quadrupole moment of a nuclear state is
defined as the value of (1/e) Q,; with the charge density p; 5,,(X), where e
is the protonic charge:

Qrma = l f(332 - r2)PJMa(x) dx (4.18)
e

The dimensions of Q. are consequently (length)?.. Unless the circum-
stances are exceptional (e.g., nuclei in atoms with completely closed
electronic shells), nuclei are subjected to internal fields which possess field
gradients in the neighborhood of the nuclei. Consequently, according to
(4.17), the energy of the nuclei will have a contribution from the quadrupole
interaction. The states of different M value for the same J will have
different quadrupole moments Q,,,,, and so a degeneracy in M value
which may have existed will be removed by the quadrupole coupling to the
“external” (crystal lattice, or molecular) electric field. Detection of these
small energy differences by radiofrequency techniques allows the deter-
mination of the quadrupole moement of the nucleus. }

The interaction energy between two dipoles p, and p, can be obtained
directly from (4.17) by using the dipole field (4.13). Thus, the mutual
potential energy is

W — PP — 30 p)(n-py) (4.19)
12 |x1 _ x2|3

where n is a unit vector in the direction (x; — X,). The dipole-dipole
interaction is attractive or repulsive, depending on the orientation of the
dipoles. For fixed orientation and separation of the dipoles, the value of

* See Blatt and Weisskopf, pp. 23 ff,, for an elementary discussion of the quantum
aspects of the problem.

T Actually Q;, and Q,, are different from zero, but are not independent of Q;,, being
given b}’ Q= 0sn= '—%Qas-

1*The quadrupole moment of a nucleus,” denoted by @, is defined as the value of
Q, . in the state M = J. See Blatt and Weisskopf, loc. cit.
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the interaction, averaged over the relative positions of the dipoles, is zero.
If the moments are generally parallel, attraction (repulsion) occurs when
the moments are oriented more or less parallel (perpendicular) to the line
joining their centers. For antiparallel moments the reverse is true. The
extreme values of the potential energy are equal in magnitude.

4.3 Macroscopic Electrostatics; Effects of Aggregates of Afoms

The equations
V-.e=dnp

4.20
Vxe=0 20

govern electrostatic phenomena of all types, provided the “microscopic”
electric field e is derived from the total “microscopic’ charge density p’.
For problems with a few idealized point charges in the vicinity of mathe-
matically defined boundary surfaces, equations (4.20) are quite acceptable.
But there are many physical situations in which a complete specification
of the problem in terms of individual charges would be impossible. Any
problem involving fields in the presence of matter is a case in point. A
macroscopic amount of matter has of the order of 1029 charges in it, all
of them in motion to a greater or lesser extent because of thermal agitation
or zero point vibration.

Setting aside the question of whether electrostatics can be relevant to a
situation in which the charges are in incessant motion, let us consider the
task of handling macroscopic problems with large numbers of atoms or
molecules. Clearly the solution for the electric field:

€(x) = f ﬁ p'(x) &z’ (4.21)

is not very suitable, since (@) it involves a charge density p’ which must
specify the exact positions of very many charges, and (b) it fluctuates
wildly as the observation point moves by only very small distances (of the
order of atomic dimensions). Fortunately, for macroscopic electrostatics
we do not want as detailed information as is contained in (4.21). We are
content with averages of electric field strengths over regions of the order
of 108cm?® (i.e., 10~2cm linear dimension) or greater. Since atomic
volumes are of the order of 1024 cm?, there are of the order of 10'® or more
atoms in the volumes of macroscopic interest. This means that the micro-
scopic fluctuations will be entirely averaged out. We will wish to deal with
an average €(x) and p'(x). The averages will be over a macroscopically
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small volume AV, large enough, however, to contain very many atoms or
molecules:

(X)) = — f e(x + B) d% |
AV Jay ‘

[} (4.22)
! — _1_ 7 3

(p'(x)) = AVP(X +Ed EJ

The averaged quantities are denoted by angle brackets ( ); the variable
& ranges over the volume AV.

The averaging procedure now allows us to answer the question of
whether it is legitimate to talk in static terms when the charges in matter
are in thermal motion. At any instant of time the very many charges in
the volume A¥ will be in all possible states of motion. An average over
them at that instant will yield the same result as an average at some later
instant of time. Hence, as far as the averaged quantities are concerned,
it is legitimate to talk of static fields and charges.* Furthermore, the
averaging can be done as if the atomic charges were fixed in space at the
positions they have at some arbitrary instant. Hence the situation can be
regarded as electrostatic even at the microscopic level for purposes of
calculation.

In the treatment of macroscopic electrostatics it is useful to break up
the averaged charge density (p'(x)} into two parts, one of which is the
averaged charge of the atomic or molecular ions, or excess free charge
placed in or on the macroscopic body, and the other of which is the
induced or polarization charge. In the absence of external fields, atoms
or molecules may or may not have electric dipole moments, but if they do,
the moments are randomly oriented. In the presence of a field, the atoms
become polarized (or their permanent moments tend to align with the
field) and possess on the average a dipole moment These dipole moments
can contribute to the averaged charge density (p’(x)). Since the induced
dipole moments tend to be proportional to the applied field, we will find
that the macroscopic version of (4.20) will involve only one constant to
characterize the average polarizability of the medium involved.

To see how the induced dipole moments enter the problem we first
consider the microscopic field due to one molecule with center of mass at
the point x; in Fig. 4.1 while the observation point is at x. The molecular
charge density is p;’(x’), where X’ is measured from the center of mass of
the molecule. It should be noted that p,” in general depends on the position
of x; of the molecule, since the distortion of the charge cloud depends on
the local field present. The microscopic electric field due to the jth

* This ignores the very small (at room temperature) induction and radiation fields due
to the acceleration of the charges in their thermal motion.
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Fig. 4.1 A molecule with center of

mass at x; gives a contribution to

the potential at the point P with

position x. The internal coordinate

x’ is measured from the center of
mass.

molecule is
€,(x) = ——Vf P,/ (x) -——1——/ d®z’ (4.23)
mol x—x; — x|

For observation points outside the molecule we can expand in multipoles
around the center of mass of the molecule. According to (4.10), this leads

N €(x) = *V[Ix——_x‘l + Vj(;_l_—xj') P } (4.24)

where
ml i |
mol
( (4.25)

b =[x/ b |
<mol
are the molecular charge and the dipole moment, respectively. The
quadrupole term in (4.10) could have been retained, but as long as the
macroscopic variations of field occur over distances large compared to
molecular dimensions it contributes negligibly to the averaged field
relative to the dipole term. Both ¢; and p; are functions of the position of
the molecule.

To obtain the microscopic field due to all the molecules we sum over j:

w=—v3[ et g)] e

We now want to average according to (4.22) in order to obtain a macro-
scopic field. To facilitate this averaging procedure we replace the discrete
sum over the molecules by an integral by introducing apparently con-
tinuous charge and polarization densities:

pmai(x) = 3 ¢,0(x — x;) |

Tmoi(X) = gpjé(x - X;)

(4.27)
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Then (4.26) can be rewritten formally as:

€(x) = —VJ.ds ”[”“‘“‘(") + Tmoi(X”) - V”( 1x ” (4.28)

[x — x|

To illustrate the averaging process we consider the first term in (4.28).
The averaged value is, by (4.22):

(€ (x)) = —v[A‘—V fAV e f & hﬁ%)—ﬁj (4.29)

where we have used the fact that differentiation and averaging can be
interchanged. If the variable of integration x” is replaced by x" = x' + &,

then
(e,(x)) = —V[AVLV d3e f d*z 'M"—J“—E')} (4.30)

x'|

The equality of (4.29) and (4.20) shows the obvious equivalence of averag-
ing by means of moving the observation point around the volume AV
centered at x and averaging by moving the integration point over the
molecules in a volume AV centered around x’. From definition (4.27) it
is clear that the integral of p,, over the volume A¥ at X’ just adds up all
the molecular charges e; inside AV

1 1
— al3 x + e;
AV s Epmor(x’ E) AV;V i
If the macroscopic density of molecules at x” is N(x') molecules per unit
volume and (e, (x)) is the average charge per molecule within the volume
AV at x’, then

1

A_VJ‘AVdaépmol(x/ + g) = N(x’)(emol(x/)> (431)

Now (4.30) can be written
(&y(x)) = _vjﬂ’ﬂfm___‘ﬂ(xw &3’

Ix — x|

Exactly similar considerations can be made for the second term in (4.28).
With the same definitions of averages we have

A‘—V BEMma(x’ + E) = NX)pmoi(x)) (4.32)

Then the averaged form of (4.28) is given by:
1

Px ~

(€®) = -V f N(x ){“’““("” + Prmai(x) - V(

m—— l)} P (4.33)
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To obtain the macroscopic equivalent of (4.20) we take the divergence of
both sides. Recalling that V3(1/|x — x'|) = —4=d(x — x’), we find:

V. {e(x)) = 4wa(x’){ (emal(X))0(x — X') + Pmor(x’)) - V'3(x — x)} d®2’
From the properties of the delta function (Section 1.2) it follows that

V. (e(x)) = 4nN(x){ena(X)) — 47V - (N(X) (Prna(X))) (434

This is of the form of the first equation of (4.20) with the charge density p’
replaced by two terms, the first being the average charge per unit volume
of the molecules and the second being the polarization charge per unit
volume. The presence of the divergence in the polarization-charge density
seems very natural when one thinks of how this part of the charge density is
created. If we consider a small volume in the medium, part of the charge
inside that volume may be due to the net charges on the molecules. But
there is a contribution arising from the polarization of the charge cloud of
the molecules in an external field, since, for example, molecules whose
charge once lay totally inside the volume may now have part of their
charge cloud outside the volume in question. If the polarization is uniform
over the space containing our small volume, then as much charge will be
brought in through the surface of the volume as will leave it, and there will
be no net effect. But if the polarization is not uniform, there can be a net
increase or decrease of charge within the volume, as indicated schemati-
cally in Fig. 4.2. This is the physical origin of the polarization-charge
density.
In (4.34) the two divergences can be combined so that the equation
reads:
V. [(€) + 47N{P,o1)] = 47Ny (4.35)

It is customary to introduce certain macroscopic quantities, namely, the
electric field E, the polarization P (electric dipole moment per unit volume),

Fig. 4.2 Origin of polarization-charge density.

Because of spatial variation of polarization more

molecular charge may leave a given small volume
than enters it.
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the charge density p, and the displacement D, defined as follows:

= (€) 1
P=N
<pm01> (4,36)
P = N<em01>
D =E + 44P

If there are several different kinds of atoms or molecules in the medium
and perhaps extra charge is added, these definitions have the obvious

eneralizations:
s P=3Np) ‘L

4.37)

p=2Nie)+ pexJ

where N, is the number of molecules of type i per unit volume, {e;) is their

average charge, and (p;) is their average dipole moment. p,, is the excess

(or free) charge density. Usually the molecules are neutral, and the total
charge density p is just the free charge density.

With the definitions of (4.36) or (4.37), the macroscopic divergence

equation becomes: V.D =4np (4.38)

The macroscopic equivalent of the other member of the pair (4.20) can be
obtained by taking the curl of (4.33). Obviously the result is

VxE=0 (4.39)

For macroscopic electrostatic problems in the presence of dielectrics,
(4.38) and (4.39) replace the microscopic equations (4.20).

The solution for the electric field (4.33) can be expressed in terms of the
macroscopic variables as

E(x) = -—Vfd?z ‘L ) v + P(x') - V'(I 1 l)} (4.40)
— X
The second term, describing the dipole field, has already been discussed in
Section 1.6.

4.4 Simple Dielectrics and Boundary Conditions

It was mentioned in the previous section that the molecular polarization
depends on the local electric field at the molecule. In the absence of a
field there is no average polarization.* This means that the polarization

* Except for electrets, which have a permanent electric polarization.
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P, which is in general a function of E, can be expanded as a powers series
in the field, at least for small fields. Any component will have an expansion

of the form:
P, =Zaia‘Ea‘ +zbz’ikEiEk + -
3 Ik

A priori it is not clear how important the higher terms will be in practice.
Experimentally it is found that the polarization as a function of applied
field looks qualitatively as shown in Fig. 4.3. At normal temperatures and
for fields attainable in the laboratory the linear approximation is completely
adequate. This is not surprising if it i remembered that interatomic
electric fields are of the order of 10° volts/cm. Any external field causing
polarization is only a small perturbation. For a general anisotropic
medium (e.g., certain crystals such as calcite and quartz), there can be six
independent elements a,;. But for simple substances, called isotropic, P
is parallel to E with a constant of proportionality y, which is independent
of the direction of E. Then P = yE (4.41)

The constant y, is called the electric susceptibility of the medium. We
then find the displacement proportional to E:

D = ¢E (4.42)
where
e =14 4y, (4.43)
is the dielectric constant.
If the dielectric is not only isotropic, but also uniform, e is independent
of position. Then the divergence equation can be written

V.E="2Z, (4.44)
€

and all problems in that medium are reduced to those of previous chapters,
except that the electric fields produced by given charges are reduced by a

Fig. 43 Components of polariza-
tion as a function of applied
electric field.
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Region 2

€2

Region 1

Fig. 4.4

factor 1/e. The reduction can be understood in terms of a polarization of
the atoms which produce fields in opposition to that of the given charge.
One immediate consequence is that thecapacitance ofacapacitorisincreased
by a factor of ¢ if the empty space between the electrodes is filled with a di-
electric with dielectric constant e (true only to the extent that fringing fields
can be neglected).

An important consideration is the boundary conditions on the field
quantities E and D at surfaces where the dielectric properties vary dis-
continuously. Consider a surface S as shown in Fig. 4.4. The unit vector
n is normal to the surface and points from region 1 with dielectric constant
€ to region 2 with dielectric constant €,. In exactly the same manner as in
Section 1.6 we find, by taking a Gaussian pill box with end faces in regions
1 and 2 parallel to the surface S, that

(D, — D)) -n = dno (4.45)

where o is the surface-charge density (rot including polarization charge).
Similarly, by applying Stokes’s theorem to V x E = 0, we find that

(E,—E) xn=0 (4.46)

These boundary conditions on the normal component of D and the
tangential component of E replace the microscopic conditions (1.22) and
below. The macroscopic equivalent of (1.22) can be recovered from (4.45)
by extracting the polarization-charge density from the left-hand side.

4.5 Boundary-Value Problems with Dielectrics

The methods of previous chapters for the solution of electrostatic
boundary-value problems can readily be extended to handle the presence
of dielectrics. In this section we will treat a few examples of the various
techniques applied to dielectric media.
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To illustrate the method of images for dielectrics we consider a point
charge ¢ embedded in a semi-infinite dielectric €, a distance d away from a
plane interface which separates the first medium from another semi-infinite
dielectric €,. The surface may be taken as the plane z = 0, as shown in
Fig. 4.5. We must find the appropriate solution to the equations:

§V +E = 4mp, 2>0 j|
&V-E=0, 2 <0 | (4.47)
and V x E=0, everywhere

subject to the boundary conditions at z = 0:

[61Ez} €2Ez
lim { E, } = lim { E, (4.48)
z—0 " 2—0"
E, | E,

Since V x E = 0 everywhere, E is derivable in the usual way from a
potential @. In attempting to use the image method it is natural to locate
an image charge ¢’ at the symmetrical position 4’ shown in Fig. 4.6. Then
for z > 0 the potential at a point P described by cylindrical coordinates
(p, ¢, 2) will be

’

= 1—(i + q—), 2> 0 (4.49)
€ 'Ry R,

where R, =V p?+(d—2)?% Ry=Vp®+(d+2?2 So far the pro-
cedure is completely analogous to the problem with a conducting material
in place of the dielectric ¢, forz << 0. But we now must specify the potential
for z << 0. Since there are no charges in the region z < 0, it must be a
solution of Laplace’s equation without singularities in that region. Clearly
the simplest assumption is that for z < 0 the potential is equivalent to that
of a charge ¢” at the position 4 of the actual charge ¢:

o=L9"

, z2<<0 (4.50)
&Ry
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€2 €
P
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A’V 1A

Fig. 4.6

d

Since _6_(__1_) = _ g(i) =—
32\R /=0 92\R,/h=0  (¢* + 4"
—p

while f.(i) =i(i) - =
Fp\Ry/lz=0  0p\Ry/li=0 (p* + d¥*

the boundary conditions (4.48) lead to the requirements:

9—4q9'=9q
1 ! 1 "
~(g+4)=—q
€ €9
These can be solved to yield the image charges ¢’ and ¢”:

v (62 — El)
g =—-\"—)q
@tea (4.51)

qr/ _ ( 262 )q
&+ €

For the two cases €, > ¢, and ¢, <C ¢, the lines of force are shown qualita-
tively in Fig. 4.7.

The polarization-charge density is given by —V .P. Inside either
dielectric, P = x,E, so that —V . P = — 4,V . E = 0, except at the point
charge g. At the surface, however, y, takes a discontinuous jump,
Ay, = (1/4m)(e; — €,) as z passes through z = 0. This implies that there
is a polarization surface-charge density on the plane z = 0:

O = —(Py — Pj)em (4.52)

p

where n is the unit normal from dielectric 1 to dielectric 2, and P, is the
polarization in the dielectric i at z = 0. Since

P, = (f___l)E - —(ﬂ;l)mp

4 T
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N\

2
7

©e>¢q <6

Fig. 4.7 Lines of electric force for a point charge embedded in a dielectric €, near a semi-
infinite slab of dielectric €,.

it is a simple matter to show that the polarization-charge density is

q (e—¢) d

Opol = — — .
! 27 ey + ) (p° + dY*

(4.53)

In the limit €, > ¢, the dielectric €, behaves much like a conductor in that
the field inside it becomes very small and the surface-charge density (4.53)
approaches the value appropriate to a conducting surface.

The second illustration of electrostatic problems involving dielectrics is
that of a dielectric sphere of radius @ with dielectric constant ¢ placed in an
initially uniform electric field which at large distances from the sphere is
directed along the z axis and has magnitude E,, as indicated in Fig. 4.8.
Both inside and outside the sphere there are no free charges. Consequently
the problem is one of solving Laplace’s equation with the proper boundary
conditions at r = a. From the axial symmetry of the geometry we can

N Vi
— —

Fig. 4.8
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take the solution to be of the form:

INSIDE D, =D A,r'P(cos 6) (4.54)
=0

OUTSIDE: Oy = D [Byt + Cyr=4tV]P(cos 6) (4.55)
=0

From the boundary condition at infinity (® — —Eyz = — Er cos 6) we
find that the only nonvanishing B, is B, = —E,. The other coefficients are

determined from the boundary conditions at r = a:

TANGENTIAL E: 100y | _ _ 190w
’ a 90 |,_, a 06 |_,
4.56
a(Din a(I)out ( )
NORMAL D: — —— = - —
ar r = ar r=a
The first boundary condition leads to the relations:
C
A= —E, + Fﬁ 1
4.57
c (4.57)
Al=a2’+1’ forl+#1
while the second gives:
€A, = —E, — —CEI-
a

4.58
¢ (4.59)

cddy=—(+ D) oi5,  forl 1}

The second equations in (4.57) and (4.58) can be satisfied simultaneously
only with A, = C, = 0 for all / % 1. The remaining coefficients are given
in terms of the applied electric field Ej:

3
R
1 24 e 0

(4.59)
-1
C, = (€ ) °E,
t e+ 2 @
The potential is therefore
Qi = —( 3 2)E0r cos 0
€+ (4.60)

_ 3
Doyt = —E,rcos 8§ + (€ I)ED‘l cos 0J
2 r?

€+
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The potential inside the sphere describes a constant electric field
parallel to the applied field with magnitude

3

e+ 2

Eijn =

E, < E, (4.61)

Outside the sphere the potential is equivalent to the applied field E, plus
the field of an electric dipole at the origin with dipole moment:

€ — 1 3
= E 4.62
p (€ n 2)“ 0 ( )

oriented in the direction of the applied field. The dipole moment can be
interpreted as the volume integral of the polarization P. The polarization

1S
P= <€ - I)E - i(6 - 1)E0 (4.63)
47 4mr\e + 2

It is constant throughout the volume of the sphere and has a volume
integral given by (4.62). The polarization surface-charge density is,
according to (4.52), 0,5, = (P - 1)/r:

3 (e — 1)
Opol = — E,cos 0 4.64
pol 4m\e + 2 0 ( )

This can be thought of as producing an internal field directed oppositely
to the applied field, so reducing the field inside the sphere to its value (4.61),
as sketched in Fig. 4.9.

The problem of a spherical cavity of radius a in a dielectric medium with
dielectric constant ¢ and with an applied electric field E, parallel to the 2
axis, as shown in Fig. 4.10, can be handled in exactly the same way as the
dielectric sphere. In fact, inspection of boundary conditions (4.56) shows
that the results for the cavity can be obtained from those of the sphere by
the replacement € — (1/¢). Thus, for example, the field inside the cavity

Fig. 4.9 Dielectric sphere in a uniform field E,, showing the polarization on the left
and the polarization charge with its associated, opposing, electric field on the right.
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Fig. 4.10. Spherical cavity in a
dielectric with a uniform field

i

applied.
is uniform, parallel to E,, and of magnitude:
Em=—S_E,>E (4.65)
T 241 07" '

Similarly, the field outside is the applied field plus that of a dipole at the
origin oriented oppositely to the applied field and with dipole moment:

€ — 1 3
= E 4.66
P (2e + 1)a 0 (4.66)

4,6 Molecular Polarizability and Electric Susceptibility

In this section and the next we will consider the relation between
molecular properties and the macroscopically defined parameter, the
electric susceptibility x,. Our discussion will be in terms of simple
classical models of the molecular properties, although a proper treatment
necessarily would involve quantum-mechanical considerations. Fortu-
nately, the simpler properties of dielectrics are amenable to classical
analysis.

Before examining how the detailed properties of the molecules arerelated
to the susceptibility we must make a distinction between the fields acting
on the molecules in the medium and the external field. The susceptibility
is defined through the relation P = y,E, where E is the macroscopic
electric field. In rarefied media where molecular separations are large
there is little difference between the macroscopic field and that acting on
any molecule or group of molecules. But in dense media with closely
packed molecules the polarization of neighboring molecules gives rise to
an internal field E; at any given molecule in addition to the average
macroscopic field E, so that the total field at the molecule is E + E,. The
internal field can be written as

dor
E, = (—5— + S)P (4.67)
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where sP is the contribution of molecules close to the given molecule, and
(47/3)P is the contribution of the more distant molecules. It is customary
to consider the two parts separately by imagining a spherical surface of size
large microscopically but small macroscopically surrounding a molecule,
as shown in Fig. 4.11, and determining the field at the center due to the
polarization of the molecules exterior to the sphere and the resulting charge
density induced on the surface of the sphere. This charge density is
—P - n, where n is the outward normal from the spherical surface. The
resulting field at the center is obviously parallel to P and has the magnitude:

2 4O (—P cos 0)(—cos 0)

sphere r2

E® = - %” P (4.68)

giving the first term in (4.67).

The field sP due to the molecules near by is more difficult to determine.
Lorentz (p. 138) showed that for atoms in a simple cubic lattice s = 0 at
any lattice site. The argument depends on the symmetry of the problem,
as can be seen as follows. Suppose that inside the sphere we have a cubic
array of dipoles such as are shown in Fig. 4.12, with all their moments
constant in magnitude and oriented along the same direction (remember
that the sphere is macroscopically small). The positions of the dipoles are
given by the coordinates x,;;, with the components along the coordinate
axes (ia, ja, ka), where a is the lattice spacing, and i, j, k each take on
positive and negative integer values. The field at the origin due to all the
dipoles is, according to (4.13),

2
E = z 3(p xwk)xuk ZijnP (469)

1, ik
4,4,k 7

The x component of the field can be written in the form: -

3(ipy + ijp, + ikpy) — (* + 15 + KDpy
Ey = : 470
1 z 03(i2 +]2 + k2)é ( )

ijk

n
Spherical RS ﬁ
surface %" ™\ 6
/ //\\
[ & ! P
\  Molecule !
Fig. 4.11 Calculation of the internal field— N /.

contribution from distant molecules. S -
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Fig. 4.12 Calculation of the in-
ternal field—contribution from near-
by molecules in a simple cubic lattice.

Since the indices run equally over positive and negative values, the cross
terms involving (ijp, + ikp,) vanish. By symmetry the sums:

2 2

_——i—‘—— = j2 _ k

are all equal. Consequently

LB B
1= z P+ + kz)% -

0 4.71)

ik
Similar arguments show that the ¥ and z components vanish also. Hence
s = 0 for a simple cubic lattice.

If s = 0 for a highly symmetric situation, it seems plausible that s = 0
also for completely random situations. Hence we expect amorphous
substances like glass to have no internal field due to near-by molecules.
Although calculations taking into account the structural details of the
substance are necessary to obtain an accurate answer, it is a good working
assumption that s ~ 0 for almost all materials.

The polarization vector P was defined in (4.36) as

P=N <pmol>

where (p,,,,) is the average dipole moment of the molecules. This dipole
moment is approximately proportional to the electric field acting on the
molecule. To exhibit this dependence on electric field we define the mole-
cular polarizability vy, as the ratio of the average molecular dipole
moment to the applied field at themolecule. Taking account of the internal
field (4.67), this gives:

<pmo]> = ?"mol(E + E‘l) (472)

Ymo1 1S, il prinéiple, a function of the electrie field, but for a wide range of
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field strengths is a constant which characterizes the response of the
molecules to an applied field (see Section 4.4). Equation (4.72) can be
combined with (4.36) and (4.67) to yield:

P= N‘}/mol(E + %’ P) (4.73)

where we have assumed s = 0. Solving for P in terms of E and using the
fact that P = y,E defines the electric susceptibility of a substance, we find

y, = ——rmol (4.74)

as the relation between susceptibility (the macroscopic parameter) and
molecular polarizability (the microscopic parameter). Since the dielectric
constant is € = 1 + 4my,, it can be expressed in terms of y, .. or
alternatively the molecular polarizability can be expressed in terms of the
dielectric constant:

3 (e - 1)
-3 4.75
Ymol = N\ + 2 (4.75)

This is called the Clausius-Mossotti equation, since Mossotti (in 1850) and
Clausius independently (in 1879) established that for any given substance
(e — 1)/(e + 2) should be proportional to the density of the substance.*
The relation holds best for dilute substances such as gases. For liquids
and solids, (4.75) is only approximately valid, especially if the dielectric
constant is large. The interested reader can refer to the books by Bottcher,
Debye, and Frohlich for further details.

4.7 Models for the Molecular Polarizability

The polarization of a collection of atoms or molecules arises in two ways:

(a) the applied field distorts the charge distributions and so produces
an induced dipole moment in each molecule;

(b) the applied field tends to line up the initially randomly oriented
permanent dipole moments of the molecules.

To estimate the induced moments we will consider a simple model of

* At optical frequencies, € = n?, where n is the index of refraction. With n® replacing
€ in (4.75), the equation is sometimes called the Lorentz-Lorenz equation (1880).
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harmonically bound charges (electrons). Each charge e is bound under
the action of a restoring force

F = —mo,x (4.76)

where m is the mass of the charge, and w, the frequency of oscillation
about equilibrium. Under the action of an electric field E the charge is
displaced from its equilibrium by an amount x given by

mwg*x = eE

Consequently the induced dipole moment is

2

E (4.77)

Pmo1 = €X = 2
mw,
This means that the polarizability is y = e*/mwg?. If there are Z electrons

per molecule, f; having a restoring force constant mw;? (Z f; = Z), then the

molecular polarizability due to the electrons is: I
ez f 7
ya == Z o (4.78)
3

To get a feeling for the order of magnitude of y, we can make two
different estimates. Since y has the dimensions of a volume, its magnitude
must be of the order of molecular dimensions or less, namely y,; < 10-2
cm3. Alternatively, we note that the binding frequencies of electrons in
atoms must be of the order of light frequencies. Taking a typical wave-
length of light as 3000 angstroms, we find w ~ 6 x 10¥sec™!. Then
Vo ~ (€}/mw?) ~ 6 x 107 cm?, consistent with the molecular volume
estimate. For gases at NTP the number of molecules per cubic centimeter
is N = 2.7 x 10, so that their susceptibilities should be of the order of
%, < 107 This means dielectric constants differing from unity by a few
parts in 103, or less. Experimentally, typical values of dielectric constant
are 1.00054 for air, 1.0072 for ammonia vapor, 1.0057 for methyl alcohol,
1.000068 for helium. For solid or liquid dielectrics, N ~ 10%2 — 10%
molecules/cm3. Consequently, the susceptibility can be of the order of
unity (to within a factor 10+1) as is observed.*

The possibility that thermal agitation of the molecules could modify the
result (4.78) for the induced dipole polarizability needs consideration. In
statistical mechanics the probability distribution of particles in phase

* See Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., or
American Institute of Physics Handbook, McGraw-Hill, New York, (1957), for tables of
dielectric constants of various substances.
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space (p, q space) is proportional to the Boltzmann factor
exp (—H|kT) 4.79)
where H is the Hamiltonian. In the simple problem of a harmonically
bound electron with an applied field in the z direction, the Hamiltonian is
H=-L P+ 2 WX — eEz (4.80)
2m 2

where here p is the momentum of the electron. The average value of the
dipole moment is

fd3pjd3x (e2) exp (—H/KT)
(4.81)

(pmor1) =
fd"pfdsx exp (—H/kT)

The integration over (d%p) and (dz dy) can be done immediately to yield

fdz z exp [ (mwo - eEz)]
(Pmo1) = 2
fdz exp [ (mwo 2 — EEZ):|

An integration by parts in the numerator yields the result:

62
<Pm01> = o2 E

Wy

the same as was found in (4.77) by elementary means, ignoring thermal
motion. Thus the molecular polarizability (4.78) holds even in the presence
of thermal motion.

The second type of polarizability is that caused by the partial orientation
of randomly oriented permanent dipole moments. This orientation polari-
zation is important in “polar” substances such as HCl and H,O and was
first discussed by Debye (1912). All molecules are assumed to possess a
permanent dipole moment p, which can be oriented in any direction in
space. In the absence of a field thermal agitation keeps the molecules
randomly oriented so that there is no net dipole moment. With an applied
field there is a tendency to line up along the field in the configuration of
lowest energy. Consequently there will be an average dipole moment. To
calculate this we note that the Hamiltonian of the molecule is given by

H=H,—p,-E (4.82)
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Polar
Yimol
Nonpolar
Fig. 4.13. Variation of molec-
ular polarizability yma with
temperature for polar and non-
polar substances. Ymo1 is plot-
T —— ted versus T

where H, is a function of only the “internal” coordinates of the molecule.
Using the Boltzmann factor (4.79), we can write the average dipole

moment as:
Ecos 6
dQ p, cos 6 ex (&———)
f Do p T

(Pmo1) =
fd*Q exp (pOE cos 6>
kT

(4.83)

where we have chosen E along the z axis, integrated out all the irrelevant
variables, and noted that only the component of p, parallel to the field is
different from zero. In general, (p,E/kT) is very small compared to unity,
except at low temperatures. Hence we can expand the exponentials and

obtain the result:
{Pmot) = 1p E (4.84)
Pmoll = 3%t )

We note that the orientation polarization depends inversely on the tempera-
ture, as might be expected of an effect in which the applied field must
overcome the opposition of thermal agitation.

In general both types of polarization, induced (electronic) and orienta-
tion, are present, and the general form of the molecular polarization is

Ymol =~ Ve + ']:p—o% (4.85)
3kT

This shows a temperature dependence of the form (a + b/T) so that the
two types of polarization can be separated experimentally, as indicated in
Fig. 4.13. For “polar” molecules, such as HCI and H,O, the observed
permanent dipole moments are of the order of an electronic charge times
10~% ¢m, in accordance with molecular dimensions.
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4.8 Flectrostatic Energy in Dielectric Media

In Section 1.11 we discussed the energy of a system of charges in free
space. The result

W= %fp(x)([)(x) &z (4.86)

for the energy due to a charge density p(x) and a potential ®O(x) cannot in
general be taken over as it stands in our macroscopic description of
dielectric media. The reason becomes clear when we recall how (4.86) was
obtained. We thought of the final configuration of charge as being
created by assembling bit by bit the elemental charges, bringing each one
in from infinitety far away against the action of the then existing electric
field. The total work done was given by (4.86). With dielectric media
work is done not only to bring real (macroscopic) charge into position,
but also to produce a certain state of polarization in the medium. If p
and @ in (4.86) represent macroscopic variables, it is certainly not evident
that (4.86) represents the total work, including that done on the dielectric.

In order to be general in our description of dielectrics we will not
initially make any assumptions about linearity, uniformity, etc., of the
response of a dielectric to an applied field. Rather, let us consider a small
change in the energy 6W due to some sort of change dp in the charge
density p existing in all space. The work done to accomplish this change
is

oW = fép(x)(l)(x) d3x (4.87)

where ®(x) is the potential due to the charge density p(x) already present.
Since V . D = 4mp, we can relate the change dp to a change in the dis-
placement of dD:

8p = L V. (D) (4.88)
4z
Then the energy change W can be cast into the form:
ow =L fE . oD & (4.89)
4
where we have used E = — V® and have assumed that p(x) was a localized

charge distribution. The total electrostatic energy can now be written
down formally, at least, by allowing D to be brought from an initial value
D = 0 to its final value D:

D
W= —1— fdsxf E.éD (4.90)
4 0
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If the medium is linear, then
E-6D = 16(E-D) (4.91)

and the total electrostatic energy is
w=1 JE D d*x (4.92)
8

This last result can be transformed into (4.86) by using E = —V® and
V . D = 4mp, or by going back to (4.87) and assuming that p and @ are
connected linearly. Thus we see that (4.86) is valid macroscopically only
if the behavior is linear. Otherwise the energy of a final configuration must
be calculated from (4.90) and might conceivably depend on the past
history of the system (hysteresis effects).

A problem of considerable interest is the change in energy when a
dielectric object is placed in an electric field whose sources are fixed.
Suppose that initially the electric field E, due to a certain distribution of
charges py(x) exists in a medium of dielectric constant e, which may be a
function of position. The initial electrostatic energy is

W0=if1<:0.1)od3x
8

where D, = ¢E,. Then with the sources fixed in position a dielectric
object of volume V4 is introduced into the field, changing the field from E,
to E. The presence of the object can be described by a dielectric constant
e(x), which has the value ¢; inside V; and ¢, outside V;. To avoid mathe-
matical difficulties we can imagine e(x) to be a smoothly varying function
of position which falls rapidly but continuously from ¢, to ¢, at the edge
of the volume V. The energy now has the value

W, = L f E-Ddx
8
where D = ¢E. The difference in the energy can be written:

W=if(E-D——EO-D0)d3x
8w

1
=8_;f(E.Do_D.Eo)d3x+8lwf(E+Eo)-(D— D, d*z (4.93)

The second integral can be shown to vanish by the following argument.
Since V x (E + Ej) = 0, we can write

E+ E,= —Vd
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Then the second integral becomes:
1 3
I=——|VO.(D— D)dx
&
Integration by parts transforms this into
=1 f@V-(D Dy dPr=0
8w

since V - (D — D,) = 0 because the source charge density py(x) is assumed
unaltered by the insertion of the dielectric object. Consequently the energy
change is

W= Si f(E- D, — D-E,) & (4.94)
Yis

The integration appears to be over all space, but is actually only over the
volume V; of the object, since, outside V;, D = ¢E. Therefore we can
write

W= — L | (= ¢)E-Eyd* (4.95)
8w Jry

If the medium surrounding the dielectric body is free space, then ¢, = 1.
Using the definition of polarization P, (4.95) can be expressed in the form:

W= —} f P.E, & (4.96)
Vi

where P is the polarization of the dielectric. This shows that the energy
density of a dielectric placed in a field E, whose sources are fixed is given
by

w=—3P-E, (4.97)

This result is analogous to the dipole term in the energy (4.17) of a charge
distribution in an external field. The factor § is due to the fact that (4.97)
represents the energy density of a polarizable dielectric in an external field,
rather than a permanent dipole. It is the same factor } which appears in
(4.91).

Equations (4.95) and (4.96) show that a dielectric body will tend to
move towards regions of increasing field E, provided ¢; > ¢,. To calculate
the force acting we can imagine a small generalized displacement of the
body 6£. Then there will be a change in the energy 6W. Since the charges
are held fixed, there is no external source of energy and the change in field
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energy must be compensated for by a change in the mechanical energy of
the body. This means that there is a force acting on the body:

Fo=— (%—V;)Q (4.98)

where the subscript O has been placed on the partial derivative to indicate
that the sources of the field are kept fixed.

In practical situations involving the motion of dielectrics the electric
fields are often produced by a configuration of electrodes held at fixed
potentials by connection to an external source such as a battery. As the
distribution of dielectric varies, charge will flow to or from the battery to
the electrodes in order to maintain the potentials constant. This means that
energy is being supplied from the external source, and it is of interest to
compare the energy supplied in that way with the energy change found
above for fixed sources of the field. We will treat only linear media so that
(4.86) is valid. It is sufficient to consider small changes in an already
existing configuration. From (4.86) it is evident that the change in energy
accompanying the changes dp(x) and 00(x) in charge density and potential
is

SW =1} f [p6® + Dop] d*x (4.99)

Comparison with (4.87) shows that, if the dielectric properties are not
changed, the two terms in (4.99) are equal. If, however, the dielectric
properties are altered,

e(x) — €(x) + de(x) (4.100)

the contributions in (4.99) are not necessarily the same. In fact, we have
just calculated the change in energy brought about by introducing a
dielectric body into an electric field whose sources were fixed (ép = 0).
The reason for this difference is the existence of the polarization charge.
The change in dielectric properties implied by (4.100) can be thought of as a
change in the polarization-charge density. If then (4.99)is interpreted asan
integral over both free and polarization-charge densities (i.., a micro-
scopic equation), the two contributions are always equal. However, it is
often convenient to deal with macroscopic quantities. Then the equality
holds only if the dielectric properties are unchanged.

The process of altering the dielectric properties in some way (by moving
the dielectric bodies, by changing their susceptibilities, etc.) in the presence
of electrodes at fixed potentials can be viewed as taking place in two steps.
In the first step the electrodes are disconnected from the batteries and the
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charges on them held fixed (dp = 0). With the change (4.100) in dielectric
properties, the energy change is

oW, = %fpé(bl d (4.101)

where 0@, is the change in potential produced. This can be shown to
yield the result (4.95). In the second step the batteries are connected again
to the electrodes to restore their potentials to the original values. There
will be a flow of charge dp, from the batteries accompanying the change in
potential* 6@, = —J®,. Therefore the energy change in the second step
is

oW, = %J(pé@z + Ddpy) d’xz = —26W, (4.102)

since the two contributions are equal. In the second step we find the
external sources changing the energy in the opposite sense and by twice
the amount of the initial step. Consequently the net change is

oW = —%fpd(l)l d*x (4.103)

Symbolically
oWy = —0W, (4.104)

where the subscript denotes the quantity held fixed. If a dielectric with
e > 1 moves into a region of greater field strength, the energy increases
instead of decreases. For a generalized displacement d¢ the mechanical
force acting is now

ow
F. = <—-) 4.105
¢ =Tt 2% )y ( )
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PROBLEMS

4.1 Calculate the multipole moments g, of the charge distributions shown
below. Try to obtain results for the nonvanishing moments valid for all /, but
in each case find the first rwo sets of nonvanishing moments at the very least.

Conducting circular
disc of radius
a

(a) ) (c)

(d) For the charge distribution (b) write down the mult'ipole expansion
for the potential. Keeping only the lowest-order term in the expansion, plot
the potential in the 2-y plane as a function of distance from the origin for
distances greater than a.

(e) Calculate directly from Coulomb’s law the exact potential for (b) in the
x-y plane. Plot it as a function of distance and compare with the result found
in (d).

Divide out the asymptatic form in parts (d) and () in order to see the
behavior at large distances more clearly.

4.2 A nucleus with quadrupole moment @ finds itself in a cylindrically symmetric
electric field with a gradient (2E,/9z), along the z axis at the position of the
nucleus.

(a) Show that the energy of quadrupole interaction is

e oF
T3 Q( z)
4 0z o
(b) If it is known that Q =2 x 10~ cm? and that W/h is 10 Mc/sec,

where £ is Planck’s constant, calculate (2E,/2z), in units of e/a,3, where
ay = i?/me* = 0.529 x 1078 ¢cm is the Bohr radius in hydrogen.
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(¢) Nuclear-charge distributions can be approximated by a constant
charge density throughout a spheroidal volume of semimajor axis a and
semiminor axis b. Calculate the quadrupole moment of such a nucleus,
assuming that the total charge is Ze. Given that Eul® (Z = 63) has a
quadrupole moment Q = 2.5 x 10~ cm?® and a mean radius

R=(a+b)2=7x 108¢cm,
determine the fractional difference in radius (¢ — b)/R.

4.3 A localized distribution of charge has a charge density

1
—_ — p2—r ‘2@
p®) = 3 4,,’ 2" sin

(@) Make a multipole expansion of the potential due to this charge
density and determine all the nonvanishing multipole moments. Write
down the potential at large distances as a finite expansion in Legendre
polynomials.

(b) Determine the potential explicitly at any point in space, and show
that near the origin

r2

130 Py(cos 8)

D(r) ~ —;-.

(c) If there exists at the origin a nucleus with a quadrupole moment
Q = 10~% cm?, determine the magnitude of the interaction energy, assuming
that the unit of charge in p(r) above is the electronic charge and the unit of
length is the hydrogen Bohr radius a, = A%me® = 0.529 x 1078 cm.
Express your answer as a frequency by dividing by Planck’s constant 4.

The charge density in this problem is that for the m = +1 states of the
2p level in hydrogen, while the quadrupole interaction is of the same order
as found in molecules.

4.4 A very long, right circular, cylindrical shell of dielectric constant € and inner
and outer radii @ and b, respectively, is placed in a previously uniform
electric field E, with its axis perpendicular to the field. The medium inside
and outside the cylinder has a dielectric constant of unity.

(a) Determine the potential and clectric field in the three regions,
neglecting end effects.

(b) Sketch the lines of force for a typical case of b ~ 2a.

(c) Discuss the limiting forms of your solution appropriate for a solid
dielectric cylinder in a uniform field, and a cylindrical cavity in a uniform
dielectric.

4.5 A point charge g is located in free space a distance d from the center of a

dielectric sphere of radius a (@ < d) and dielectric constant €.

(a) Find the potential at all points in space as an expansion in spherical
harmonics.

(b) Calculate the rectangular components of the electric field near the
center of the sphere.

(c) Verify that, in the limit € — o, your result is the same as that for the
conducting sphere.
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4.6 Two concentric conducting spheres of inner and outer radii @ and b,
respectively, carry charges (. The empty space between the spheres is
half-filled by a hemispherical shell of dielectric (of dielectric constant ¢), as
shown in the figure.

(a) Find the electric field everywhere between the spheres.

(b) Calculatc the surface-charge distribution on the inner sphere.

(c) Calculate the polarization-charge density induced on the surface of the
dielectric at r = a.

4.7 The following data on the variation of dielectric constant with pressure are
taken from the Smithsonian Physical Tables, 9th ed., p. 424:

Air at 292°K

Pressure (atm) €
20 1.0108 Relative density of
40 1.0218 air as a function of
60 1.0333 pressure is given in
80 1.0439 AIP Handbook, p.
100 1.0548 4-83.

Pentane (C;H,,) at 303°K

Pressure (atm)  Density (gm/cm?®) €
1 0.613 1.82
108 0.701 1.96
4 x 103 0.796 2.12
8 x 103 0.865 2.24
12 x 108 0.907 2.33

Test the Clausius-Mossotti relation between dielectric constant and density
for air and pentane in the ranges tabulated. Does it hold exactly ? Approxi-
mately? If approximately, discuss fractional variations in density and
(e — 1). For pentane, compare the Clausius-Mossotti relation to the cruder
relation, (¢ ~ 1) « density.

4.8 Water vapor is a polar gas whose dielectric constant exhibits an appreciable
temperature dependence. The following table gives experimental data on
this effect. Assuming that water vapor obeys the ideal gas law, calculate the
molecular polarizability as a function of inverse temperature and plot it.
From the slope of the curve, deduce a value for the permanent dipole
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moment of the HyO molecule (express the dipole moment in esu—stat-
coulomb-centimeters).

T (°K) Pressure (cm Hg) (e — 1) x 10°

393 56.49 400.2
423 60.93 3717
453 65.34 348.8
483 69.75 328.7

4.9 Two long, coaxial, cylindrical conducting surfaces of radii a and b are
lowered vertically into a liquid dielectric. If the liquid rises a distance A
between the electrodes when a potential difference V' is established between
them, show that the susceptibility of the liquid is

(b® — a®pgh In (b]a)
V2

Xe =

where p is the density of the liquid, g is the acceleration due to gravity, and
the susceptibility of air is neglected.



Magnetostatics

5.1 Introduction and Definitions

In the preceding chapters various aspects of electrostatics (i.e., the
fields and interactions of stationary charges and boundaries) have been
studied. We now turn to steady-state magnetic phenomena. From an
historical point of view, magnetic phenomena have been known and
studied for at least as long as electric phenomena. Lodestones were known
in ancient times; the mariner’s compass is a very old invention; Gilbert’s
researches on the earth as a giant magnet date from before 1600. In
contrast to electrostatics, the basic laws of magnetic fields did not follow
straightforwardly from man’s earliest contact with magnetic materials.
The reasons are several, but they all stem from the radical difference
between magnetostatics and electrostatics: there are no free magnetic
charges. This means that magnetic phenomena are quite different from
electric phenomena and that for a long time no connection was established
between them. The basic entity in magnetic studies was what we now know
as a magnetic dipole. In the presence of magnetic materials the dipole
tends to align itself in a certain direction. That direction is by definition
the direction of the magnetic-flux density, denoted by B, provided the
dipole is sufficiently small and weak that it does not perturb the existing
field. The magnitude of the flux density can be defined by the mechanical
torque N exerted on the magnetic dipole:

N=wxB 5.1
where g is the magnetic moment of the dipole, defined in some suitable
set of units.*

* In analogy with the 100 strokes of cat’s fur on an amber rod, we might define our unit
of dipole strength as that of a 4-inch finishing nail which has been stroked slowly 100

times with a certain “‘standard” lodestone held in a certain standard orientation. With
a little thought we might even think of a more reliable and reproducible standard!

132
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Already, in the definition of the magnetic-flux density B (sometimes
called the magnetic induction), we have a more complicated situation than
for the electric field. Further quantitative elucidation of magnetic
phenomena did not occur until the connection between currents and
magnetic fields was established. A current corresponds to charges in
motion and is described by a current density J, measured in units of positive
charge crossing unit area per unit time, the direction of motion of the
charges defining the direction of J. In electrostatic units, current density
is measured in statcoulombs per square centimeter-second, and is some-
times called statamperes per square centimeter, while in mks units it is
measured in coulombs per square meter-second or amperes per square
meter. If the current density is confined to wires of small cross section,
we usually integrate over the cross-sectional area and speak of a current
of so many statamperes or amperes flowing along the wire.

Conservation of charge demands that the charge density at any point
in space be related to the current density in that neighborhood by a
continuity equation:

op .
= +V.-J=0 5.2
3 + (5.2)

This expresses the physical fact that a decrease in charge inside a small
volume with time must correspond to a flow of charge out through the
surface of the small volume, since the total number of charges must be
conserved. Steady-state magnetic phenomena are characterized by no
change in the net charge density anywhere in space. Consequently in
magnetostatics

V.J=0 (5.3)

We now proceed to discuss the experimental connection between current
and magnetic-flux density and to establish the basic laws of magneto-
statics.

5.2 Biot and Savart Law

In 1819 Oersted observed that wires carrying electric currents produced
deflections of permanent magnetic dipoles placed in their neighborhood.
Thus the currents were sources of magnetic-flux density. Biot and Savart
(1820), first, and Ampére (1820-1825), in much more elaborate and
thorough experiments, established the basic experimental laws relating the
magnetic induction B to the currents and established the law of force
between one current and another. Although not in the form in which
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Fig. 5.1 Elemental magnetic induction
P dB due to current element [ dI.

Ampere deduced it, the basic relation is the following. If 4l is an element
of length (pointing in the direction of current flow) of a filamentary wire
which carries a current  and x is the coordinate vector from the element
of length to an observation point P, as shown in Fig. 5.1, then the
elemental flux density @B at the point P is given in magnitude and direction
by

(dl x x)

3

dB = kI (5.4)

x|

It should be noted that (5.4) is an inverse square law, just as is Coulomb’s
law of electrostatics. However, the vector character is very different.

If, instead of a current flowing there is a single charge g moving with a
velocity v, then the flux density will be*

VXX

B = kg E

= kv x E (5.5)

where E is the electrostatic field of the charge g. (This flux density is,
however, time varying. We shall restrict the discussions in the present
chapter to steady-state current flow.)

In (5.4) and (5.5) the constant k depends on the system of units used, as
discussed in detail in the Appendix. If current is measured in esu, but the
flux density is measured in emu, the constant is & = 1/c, where c is found
experimentally to be equal to the velocity of light in vacuo (c = 2.998 X
1010 cm/sec). This system of units is called the Gaussian system. To insert
the velocity of light into our equations at this stage seems a little artificial,
but it has the advantage of measuring charge and current in a consistent
set of units so that the continuity equation (5.2) retains its simple form,
without factors of c. We will adopt the Gaussian system here.

Assuming that linear superposition holds, the basic law (5.4) can be
integrated to determine the magnetic-flux density due to various config-
urations of current-carrying wires. For example, the magnetic induction

* True only for particles moving with velocities small compared to that of light.
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B of the long straight wire shown in Fig. 5.2 carrying a current J can be
seen to be directed along the normal to the plane containing the wire and
the observation point, so that the lines of magnetic induction are concentric
circles around the wire. The magnitude of B is given by

IR | dl 21
Bl = —

a2 5.6
cd-w (R2+B" (R (5.6)

where R is the distance from the observation point to the wire. This is the
experimental result first found by Biot and Savart and is known as the
Biot-Savart law. Note that the magnitude of the induction B varies with
R in the same way as the electric field due to a long line charge of uniform
linear-charge density. This analogy shows that in some circumstances
there may be a correspondence between electrostatic and magnetostatic
problems, even though the vector character of the fields is different. We
shall see more of that in later sections.

Ampére’s experiments did not deal directly with the determination of
the relation between currents and magnetic induction, but were concerned
rather with the force which one current-carrying wire experiences in the
presence of another. Since we have already introduced the idea that a
current element produces a magnetic induction, we phrase the force law as
the force experienced by a current element I, dl; in the presence of a
magnetic induction B. The elemental force is

dF = 1 a1, x B) (5.7)
c
1, is the current in the element (measured in esu), B is the flux density (in

emu), and c is the velocity of light. If the external field B is due to a closed
current loop #2 with current I,, then the total force which a closed current

dl

Fig. 5.2
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Fig. 5.3 Two Amperian current loops.

loop #1 with current I; experiences is [from (5.4) and (5.7)]:

F, = I_zi_z §§ dly X (dly X xq,) (5.8)

|X12|3

The line integrals are taken around the two loops; x;, is the vector
distance from line element dl, to dl;, as shown in Fig. 5.3. This is the
mathematical statement of Ampére’s observations about forces between
current-carrying loops. By manipulating the integrand it can be put in a
form which is symmetric in dl, and dl, and which explicitly satisfies
Newton’s third law. Thus

M x e X x) (- 22 4 ay(TXe) (s

|X12|3 Ix 12|3 |X12|3

The second term involves a perfect differential in the integral over dl,.
Consequently it gives no contribution to the integral (5.8), provided the
paths are closed or extend to infinity. Then Ampere’s law of force between

current loops becomes
_ L §§ (dl; - dlp)xy, (5.10)

lezl

showing symmetry in the integration, apart from the necessary vectorial
dependence on x;,.

Each of two long, parallel, straight wires a distance d apart, carrying
currents 7, and I,, experiences a force per unit length directed perpen-
dicularly towards the other wire and of magnitude,

2L,

5.11
oy (-11)

The force is attractive (repulsive) if the currents flow in the same (opposite)
directions. The forces which exist between current-carrying wires can be
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used to define magnetic-flux density in a way that is independent of per-
manent magnetic dipoles.* We will see later that the torque expression
(5.1) and the force result (5.7) are intimately related.

If a current density J(x) is in an external magnetic-flux density B(x), the
elementary force law implies that the total force on the current distribution
is

= 1J‘J(x) x B(x) d®x (5.12)
4

Similarly the total torque is

N = 1fx x (J x B) d*z (5.13)
4

These general results will be applied to localized current distributions in
Section 5.6.

5.3 The Differential Equations of Magnetostatics
and Ampere’s Law

The basic law (5.4) for the magnetic induction can be written down in
general form for-a current density J(x):

B(x)——fJ( N x X=X ey (5.14)
Ix — x'f?

This expression for B(x) is the magnetic analog of electric field in terms of

the charge density:

E(x) = f o(x') I(" l) o (5.15)

Just as this result for E was not as convenient in some situations as
differential equations, so (5.14) is not the most useful form for magneto-
statics, even though it contains in principle a description of all the
phenomena.

In order to obtain the differential equations equivalent to (5.14) we
transform (5.14) into the form:

_1 J&D) s,
B(x) = -V x e~ dx (5.16)

* In fact, (5.11) is the basis of the internationally accepted standard of current (actually
Ifc here). See the Appendix.
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From (5.16) it follows immediately that the divergence of B vanishes:
V.-B=20 5.17

This is the first equation of magnetostatics and correspondsto V. x E =0
in electrostatics. By analogy with electrostatics we now calculate the curl
of B:

VUxB=lvxvx|I& g, (5.18)

c [x — x'|

With the identity V x (V x A) = V(V.A) — V?A for an arbitrary
vector field A, expression (5.18) can be transformed into

! ) A3z’ — 1 fJ(x’)Vz( 1 ) d3x’
— x| c [x — x/|

(5.19)
V(|x i x |) B _V‘(|x —1 x’|)

V2( L ,)=——41r6(x—x')

Ix — x|

VxB= lv J(x').v(
c |x

Using the fact that

and

the integrals in (5.19) can be written:

—L—) &+ 3% (5.20)
x — x| ¢

VxB= —1va(x').v’(
4

Integration by parts yields

V- IK) o

VxB—-——J+ Vf
Ix — x|

(5.21)

But for steady-state magnetic phenomena V - J = 0, so that we obtain

VxB= 4—"J (5.22)

This is the second equation of magnetostatics, corresponding to V. E =
47p in electrostatics.

In electrostatics Gauss’s law (1.11) is the integral form of the equation
V - E = 4mp. The integral equivalent of (5.22) is called Ampére’s law. 1t
is obtained by applying Stokes’s theorem to the integral of the normal
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n

Fig. 54

component of (5.22) over an open surface S bounded by a closed curve C,
as shown in Fig. 5.4. Thus

foB-nda=41fJ.nda (5.23)
S cJs
is transformed into

§; cdl = —f J-nda (5.24)

Since the surface integral of the current density is the total current 7 passing
through the closed curve C, Ampére’s law can be written in the form:

Sﬁn.dlzi’ﬁ (5.25)
c c
Just as Gauss’s law can be used for calculation of the electric field in highly

symmetric situations, so Ampére’s law can be employed in analogous
circumstances.

5.4 Vector Potential

The basic differential laws of magnetostatics are given by

VxB=2"3
c (5.26)
V:-B=0

The problem is how to solve them. If the current density is zero in the
region of interest, V x B = 0 permits the expression of the vector
magnetic induction B as the gradient of a magnetic scalar potential,
B = —V®,,. Then (5.26) reduces to Laplace’s equation for ®,,, and all
our techniques for handling electrostatic problems can be brought to
bear. There are a large number of problems which fall into this class, but
we will defer discussion of them until later in the chapter. The reason
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is that the boundary conditions are different from those encountered in
electrostatics, and the problems usually involve macroscopic media
with magnetic properties different from free space with charges and cur-
rents.

A general method of attack is to exploit the second equation in (5.26).
If V.B = 0 everywhere, B must be the curl of some vector field A(x),
called the vector potential,

B(x) =V x A(X) (5.27)

We have, in fact, already written B in this form (5.16). Evidently, from
(5.16), the general form of A is

Ax) =1 f Jx) S+ V) (5.28)

I —x

The added gradient of an arbitrary scalar function 'V’ shows that, for a
given magnetic induction B, the vector potential can be freely transformed
according to

A—A+ VY (5.29)

This transformation is called a gauge transformation. Such transformations
on A are possible because (5.27) specifies only the curl of A. For a
complete specification of a vector field it is necessary to state both its curl
and its divergence. The freedom of gauge transformations allows us to
make V - A have any convenient functional form we wish.

If (5.27) is substituted into the first equation in (5.26), we find

Vx((VxA= 41.1
or (5.30)

(V. A) — V2A—4——"J

If we now exploit the freedom implied by (5.29), we can make the con-
venient choice of gauge,* V. A = 0. Then each rectangular component
of the vector potential satisfies Poisson’s equation,

VA= 2y (5.31)
¢

* The choice is called the Coulomb gauge, for a reason which will become apparent
only in Section 6.5.
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From our discussions of electrostatics it is clear that the solution for A in
unbounded space is (5.28) with ¥ = 0:

Ax) =1 IL")— o (5.32)

cJx — x|

The condition'¥" = 0 can be understood as follows. Our choice of gauge,
V-A =0, reduces to V¥ = 0, since the first term in (5.28) has zero
divergence because of V' - J = 0. If V2¥ = 0 holds in all space, ¥" must
vanish identically.

5.5 Vector Potential and Magnetic Induction for
a Circular Current Loop

As an illustration of the calculation of magnetic fields from given
current distributions we consider the problem of a circular loop of radius
a, lying in the z-y plane, centered at the origin, and carrying a current 7, as
shown in Fig. 5.5. The current density J has only a component in the ¢
direction,

J 4 = Id(cos ) A = a) (5.33)
a

The delta functions restrict current flow to a ring of radius a. Only a ¢
component of J means that A will have only a ¢ component also. But this
component A cannot be calculated by merely substituting J; into (5.32).
Equation (5.32) holds only for rectangular components of A.* Thus we
write rectangular components of J:

J, = —J,sin ¢’} (5.3

J, = J4cos ¢

Since the geometry is cylindrically symmetric, we may choose the obser-
vation point in the -2 plane (¢ = 0) for purposes of calculation. Then it is
clear that the x component of the vector potential vanishes, leaving only

* The reason is that the vector Poisson’s equation (5.31) can be treated as three
uncoupled scalar equations, V24; = (—4n/c)J;, only if the components A4;, J; are
rectangular components. If A is resolved into orthogonal components with unit vectors
which are functions of position, the differential operation involved in (5.31) mixes the
components together, giving coupled equations. See Morse and Feshbach, pp. 51 and
116-117.
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Fig. 5.5

the ¥ component, which is 4;. Thus

cos ¢’ 8(cos 0') 8(r' — a)
Ix — x|

Ar, 6) =~ f 2 dr dQY (5.35)
ca
where [x — X'| = [r? + "2 — 2rr'(cos 0 cos 8’ + sin 6 sin 8’ cos $')]*%.
We first consider the straightforward evaluation of (5.35). Integration
over the delta functions leaves the result

Ia > cos ¢’ d¢’

Ay(r, 8) =
o 0) ¢Jo (a® + r® — 2arsin 6 cos ¢

i (5.36)

This integral can be expressed in terms of the complete elliptic integrals X
and E:

Ar, 0) =

4la [(2 — kK (k) — 2E(k)} 537
e a® + 12 + 2arsin 0 k? (337

where the argument of the elliptic integrals is

2 4ar sin 0
a® + r® + 2arsin 0

The components of magnetic induction,

__ L @
T rsin6 @0

10 5.38

(sin 6A4y)

B, =0 J
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can also be expressed in terms of elliptic integrals. But the results are not
particularly illuminating (useful, however, for computation).

For small k%, corresponding to @ >r, a <r, or § <1, the square
bracket in (5.37) reduces to (7k%/16). Then the vector potential becomes
approximately
r sin 0

Ima®
Ay(r, 8) = 3 5.39
o7 6) ¢ (a*+ r* + 2arsin )% (5.39)
The corresponding fields are
2 2 2 :
B, ~ Ima cos 9(2a + 2rf + ar‘sm @ ]
c (a® 4+ r® + 2arsin 6)”
5.40
Ira® . (2a® — r? + arsin ) | (5.40)
By~ — sin 0 ——
c (a® + r® 4+ 2arsin 6) J

These can easily be specialized to the three regions, near the axis (6 < 1),
near the center of the loop (r < @), and far from the loop (r > a).
Of particular interest are the fields far from the loop:

Ima®\ cos 0 |
e

3

7]

Ima?)\ sin
e )
c r

c
(5.41)

Comparison with the electrostatic dipole fields (4.12) shows that the
magnetic fields far away from a circular current loop are dipole in character.
By analogy with electrostatics we define the magnetic dipole moment of the
loop to be

2
m =" (5.42)
C

We will see in the next section that this is a special case of a general
result—localized current distributions give dipole fields at large distances;
the magnetic moment of a plane current loop is the product of the area of
the loop times J/c.

Although we have obtained a complete solution to the problem in
terms of elliptic integrals, we will illustrate the use of a spherical harmonic
expansion to point out similarities and differences between the magneto-
static and electrostatic problems. Thus we return to (5.35) and substitute
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the spherical expansion (3.70) for |x — x'|7*:

_ 4nl Y,.(6,0)
R im
Z 2041

i+1
>

f 2 dr dCY 8(cos 07) 8(r' — a)e'® e Yol6,¢)  (5.43)
r

The presence of e means that only m = 41 will contribute to the sum.
Hence

87%la Y4(6,0) rt [ *( T )}

= Re > -2 /=1y 0 =—, ¢ )e* (5.44)

11 L1 ’
c ; 2041 rg 2

where now r_ (r.) is the smaller (larger) of a and r. The square-bracketed
quantity is a number depending on /:

—_— 0, for l even
_ 20+ 1 Yen
4nll + DL T + DIG) T
forl=2n+1

Then A4 can be written

a3 (—D™2n — D p2ett
 Pu— Pl .. (cos 6 5.46
] c MZO 2”(71 + 1)! r2>n+2 2 +l( ) ( )

where 2n — D =Qn—1)2n—3)(-- ) x 5%x 3 x 1,and the n =0
coefficient in the sum is unity by definition. To evaluate the radial com-
ponent of B from (5.38) we need

di(\/ 1 = 2PY(2) = [l + DP(2) (5.47)
xr
Then we find

_ 2nla & (—1)"2n 4 DI 2

m Z( );n:! ) :2;“‘2 Py, 11(c0s ) (5.48)

The 6 component of B is similarly

- (B3]
wla® & (=120 + DI 2n + 1

B = —_— —— - L 1
® c 2%(n + 1! 1 (a)Zn Pz, +1(cos 0)

n=0 -
r3

r (5.49)
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The upper line holds for r < a, and the lower line for » > a. Forr > a,
only the n = 0 term in the series is important. Then, since P,!(cos 0) =
—sin 6, (5.48) and (5.49) reduce to (5.41). For r < g, the leading term is
again n = 0. The fields are then equivalent to a magnetic induction
2ml/ac in the z direction, a result that can be found by elementary means.

We note a characteristic difference between this problem and a cor-
responding cylindrically symmetric electrostatic problem. Associated
Legendre polynomials appear, as well as ordinary Legendre polynomials.
This can be traced to the vector character of the current and vector
potential, as opposed to the scalar properties of charge and electrostatic
potential.

Another mode of attack on the problem of the loop is to employ an
expansion in cylindrical waves. Instead of (3.70) as a representation of
|x — x’[~! we may use the cylindrical form (3.148) or (3.149). The appli-
cation of this technique to the circular loop will be left to the problems. It
is generally useful for any current distribution which involves current
flowing only in the ¢ direction.

5.6 Magnetic Fields of a Localized Current Distribution;
Magnetic Moment

We now consider the properties of a general current distribution which
is localized in a small region of space, “small” being relative to the scale
of length of interest to the observer. The proper treatment of this problem,
in analogy with the electrostatic multipole expansion, demands a discussion
of vector spherical harmonics. These are presented in Chapter 16 in
connection with multipole radiation. We will be content here with only
the lowest order of approximation. Starting with (5.32), we expand the
denominator in powers of X’ measured relative to a suitable origin in the
localized current distribution, shown schematically in Fig. 5.6:

11 x-x
Ix[?

(5.50)

x — x| |x]

Then a given component of the vector potential will have the expansion,
A (x) = —LfJi(x’) o+ -f],.(x’)x’ B+ - (5.51)
clx| cxf?

For a localized steady-state current distribution the volume integral of J
vanishes because V - J = 0. Consequently the first term, corresponding to
the monopole term in an electrostatic expansion, vanishes.
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The integrand of the second term can be manipulated into a more
convenient form by using the triple vector product. Thus

G- xXW=x-Ix —x x X xJ) (5.52)

The volume integral of the first term on the right can be shown to be the
negative of the integral of the left-hand side of (5.52). Thus we consider
the integral,

J‘iji, d3xr =fvr " (xj,‘])xi, d3 [ —ij’(J 'V,)Z‘i, dsxr
- - f &)/ J; d (5.53)

The step from the first integral to the second depends on V : J = 0; the
following step involves an integration by parts. With this identity (5.52)
can be written in integrated form as

f (x - X)) P’ = —3x x f [x x J(x)] &' (5.54)

We now define the magnetic moment of the current distribution J as
m = El“f" x J(x') & (5.55)
C

Note that it is sometimes useful to consider the integrand in (5.55) as a
magnetic-moment density or magnetization. We denote the magnetization
due to the current density J by

=L xd (5.56)
2¢c

The vector potential (5.51) can be expressed in terms of m as

m x x
||

This is the lowest nonvanishing term in the expansion of A for a localized
steady-state current distribution. The magnetic induction B can be

A(x) =

(5.57)

P

Fig. 5.6 Localized current density

J(x') gives rise to a magnetic induc-

tion at the point P with coordi-
nate Xx.
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da\ dl

Fig. 5.7

calculated directly by evaluating the curl of (5.57):
_3o(n-m) —m + 8_3_77 m 5(x) (5.58)
Here n is a unit vector in the direction x. Since (5.57) and (5.58) have
meaning only outside the current distribution, we drop the delta function
term. The magnetic induction (5.58) has exactly the form (4.13) of the
field of a dipole. This is the generalization of the result found for the
circular loop in the last section. Far away from any localized current
distribution the magnetic induction is that of a magnetic dipole of dipole
moment given by (5.55).

If the current is confined to a plane, but otherwise arbitrary, loop, the
magnetic moment can be expressed in a simple form. If the current 7 flows
in a closed circuit whose line element is dl, (5.55) becomes

m=L §x x dl (5.59)
2¢

For a plane loop such as that in Fig. 5.7, the magnetic moment is perpendi-
cular to the plane of the loop. Since }(x x dl) = da, where da is the
triangular element of the area defined by the two ends of dl and the origin,
the loop integral in (5.59) gives the total area of the loop. Hence the
magnetic moment has magnitude,

[m| =£ X (Area) (5.60)
c

regardless of the shape of the circuit.

If the current distribution is provided by a number of charged particles
with charges ¢; and masses M, in motion with velocities v;, the magnetic
moment can be expressed in terms of the orbital angular momentum of
the particles. The current density is

J =Ygy, 6x—x,) (5.61)
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where x; is the position of the ith particle. Then the magnetic moment
(5.55) becomes

m = 2172‘“("‘ X V) (5.62)

The vector product (x; x v,) is proportional to the ith particle’s orbital
angular momentum, L; = M(x; x v,). Thus (5.62) becomes

q;
= L; 5.63
" Z2M,-c (5.63)

i
If all the particles in motion have the same charge to mass ratio (¢,/M; =
e/M), the magnetic moment can be written in terms of the rofal orbital
angular momentum L:

e
m=—

Li=—L (5.64)
This is the well-known classical connection between angular momentum
and magnetic moment which holds for orbital motion even on the atomic
scale. But this classical connection fails for the intrinsic moment of
electrons and other elementary particles. For electrons, the intrinsic
moment is slightly more than twice as large as implied by (5.64), with the
spin angular momentum S replacing L. Thus we speak of the electron
having a g factor of 2(1.00117). The departure of the magnetic moment
from its classical value has its origins in relativistic and quantum-mechanical
effects which we cannot consider here.

5.7 Force and Torque on a Localized Current Distribution in an External
Magnetic Induction

If a localized distribution of current is placed in an external magnetic
induction B(x), it experiences forces and torques according to Ampére’s
laws. The general expressions for the total force and torque are given by
(5.12) and (5.13). If the external magnetic induction varies slowly over
the region of current, a Taylor’s series expansion can be utilized to find
the dominant terms in the force and torque. A component of B can be
expanded around a suitable origin,

B,(x)=B0) +x-VB0O) + ... (5.65)
The force (5.12) then becomes

F=—1B0) x fJ(x’) P+ L f J(x') x [(x' - VBO)] d°% + - - (5.66)
¢ (o



[Sect. 5.7] Magnetostatics 149

Since the volume integral of J vanishes for steady-state currents, the
lowest-order term is the one involving the gradient of B. Because the
integrand involves J and x, in addition to VB, we expect that the integral
can be somehow transformed into the magnetic moment (5.55). To
accomplish this we use

Ix[(x -V)B]=J x Vx'-B) = —V x [Jx'-B)] (5.67)

The first step depends on the fact that V x B = 0 for the external field,
and that the gradient operator operates only on B. Then the force can be
written

= _lyx fJ(x' B 4 - (5.68)
C

Use can now be made of identity (5.54) with the fixed vector x replaced by
B. Then we obtain

F=Vx(Bxm=m-V)B=VYm-B) (5.69)

where m is the magnetic moment (5.55). The second form in (5.69) follows
from V. B = 0, while the third depends on V. x B = 0.

A localized current distribution in a nonuniform magnetic induction
experiences a force proportional to its magnetic moment m and given by
(5.69). One simple application of this result is the time-average force on a
charged particle spiraling in a nonuniform magnetic field. As is well
known, a charged particle in a uniform magnetic induction moves in a
circle at right angles to the field and with constant velocity parallel to the
field, tracing out a helical path. The circular motion is, on the time average,
equivalent to a circular loop of current which will have a magnetic moment
given by (5.60). If the field is not uniform but has a small gradient (so that
in one turn around the helix the particle does not feel significantly different
field strengths), then the motion of the particle can be discussed in terms
of the force on the equivalent magnetic moment. Consideration of the
signs of the moment and the force shows that charged particles tend to be
repelled by regions of high flux density, independent of the sign of their
charge. This is the basis of the so-called “magnetic mirrors” discussed in
Section 12.10 from another point of view.

The total torque on the localized current distribution is found in a
similar way by inserting expansion (5.65) into (5.13). Here the zeroth-
order term in the expansion contributes. Keeping only this leading term,
we have

N = E f x' x [J x B0)] &’ (5.70)
¢
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Writing out the triple vector product, we get
N= 1J‘[(x’ -B)J — (x' - J)B] d%' (5.711)
c

The first integral is the same one considered in (5.68). Hence we can write
down its value immediately. The second integral vanishes for a localized
steady-state current distribution, as can be seen from the identity,
V. (@J) = 2(x+ J) + 22V - J. Theleading term in the torque is therefore

N =m x B(0) (5.72)

This is the familiar expression for the torque on a dipole, discussed in
Section 5.1 as one of the ways of defining the magnitude and direction of
the magnetic induction.

The potential energy of a permanent magnetic moment (or dipole) in
an external magnetic field can be obtained from either the force (5.69) or
the torque (5.72). If we interpret the force as the negative gradient of a
potential energy U, we find

U=-m-B (5.73)

For a magnetic moment in a uniform field the torque (5.72) can be inter-
preted as the negative derivative of U with respect to the angle between B
and m. This well-known result for the potential energy of a dipole shows
that the dipole tends to orient itself parallel to the field in the position of
lowest potential energy.

‘We remark in passing that (5.73) is not the total energy of the magnetic
moment in the external field. In bringing the dipole m into its final
position in the field, work must be done to keep the current J which
produces m constant. Even though the final situation is a steady-state,
there is a transient period initially in which the relevant fields are time
dependent. This lies outside our present considerations. Consequently
we will leave the discussion of the energy of magnetic fields to Section 6.2,
after having treated Faraday’s law of induction.

5.8 Macroscopic Equations

So far we have dealt with the basic laws (5.17) and (5.22) of steady-state
magnetic fields as microscopic equations in the sense of Chapter 4. We
have assumed that the current density J was a completely known function
of position. In macroscopic problems this is often not true. The atoms in
matter have electrons which give rise to effective atomic currents the
current density of which is a rapidly fluctuating quantity. Only its average
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over a macroscopic volume is known or pertinent. Furthermore, the
atomic electrons possess intrinsic magnetic moments which cannot be
expressed in terms of a current density. These moments can give rise to
dipole fields which vary appreciably on the atomic scale of dimensions.
To treat these atomic contributions we proceed similarly to Section 4.3.
The derivation of the macroscopic equations will only be sketched here.
A somewhat more complete discussion will be given in Section 6.10. The
reason is that for time-varying fields there is a contribution to the atomic
current from the time derivative of the polarization P. Hence all the
contributions to the current appear only in the general, time-dependent
problem.
The total current density can be divided into:
(@) conduction-current density J, representing the actual transport of
charge;
(b) atomic-current density J,, representing the circulating currents
inside atoms or molecules.
The total vector potential due to all currents is

I B 1[I d
a-—cf + f (5.74)

|x — x| [x — x|

We use a small a for the microscopic vector potential, just as we used € for
the microscopic electric field in Chapter 4. For the atomic contribution
we first consider a single molecule, and then average over molecules. The
discussion proceeds exactly as in Section 5.6 for a localized current
distribution. For a molecule with center at x; the vector potential at x is
given approximately by

— Mot X (X — X)) (5.75)

To take into account the intrinsic magnetic moments of the electrons, as
well as the orbital contribution, we interpret m,, as the total/ molecular
magnetic moment. If we now sum up over all molecules, averaging as in
Section 4.3, the macroscopic vector potential can be written

A(x) = -f J(") d3 ' +fM(") X X=X) By (576)
|x — x — x|

where M(x) is the macroscopic magnetization (magnetic moment per unit
volume) defined by
M = N(m,,) (5.77)

where N is the number of molecules per unit volume.
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The magnetization contribution to A in (5.76) can be rewritten in a more

useful form:
f M(x') X l—.—")- d*a -—fM( "y % V’| ; %' (5.78)
— X

Then the identity, V x (4M) = V¢ x M + ¢V x M, can be used to
obtain

f M(x') x ——") VXM —fv' x( Mx,l)d%' (5.79)

I3 |x — x| (x —

(x

M
The last integral can be converted to a surface integral of I;_x_—'l , and so
- X
vanishes if M is assumed to be mathematically well behaved and localized
within a finite volume. Combining the first term in (5.79) with the con-

duction-current term in (5.76), we can write the vector potential as

_1IX) 4+ V' x M(X') ;5 ,
Alx) = Cf = x| d’x (5.80)

We see that the magnetization contributes to the vector potential as an
effective current density J,:
Jy = c(V x M) (5.81)

There is one questionable step in the derivation of (5.80). That is the
use of the dipole vector potential (5.75) for all molecules, even those near
the point x. If a molecule lies within a sphere of radius a few molecular
diameters 4 of x, its vector potential will differ appreciably from the dipole
form (5.75), being much less singular. Thus in (5.80) the contribution
from that sphere around x is in error. To estimate its importance we note
that the magnitude of the vector potential per unit volume near x is
[V x MJ/R, while the volume within a distance R to (R + dR) of the
point x is 47R?dR. Hence the contribution to A from the immediate
neighborhood of x is in error at most by an amount of the order of
d?|V x M|~ (d?/L) (M), where L is a macroscopic dimension measuring
the spatial variation of M. Since the whole vector potential is of the order
of (M)L, the relative error made in using the dipole approximation every-
where is of the order of 4212 This is completely negligible unless the
macroscopic length L becomes microscopic; then the whole development
fails.

To obtain the macroscopic equivalent of the curl equation (5.22) we
calculate B from (5.80) or, what is the same thing, write down (5.22) with
the total current (J 4 J,,) replacing J:

VxB=%"J44v xM (5.82)
[
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The V x M term can be combined with B to define a new macroscopic
field H, called the magnetic field,

H=B— 4M (5.83)
Then the macroscopic equations, replacing (5.26), are
VxH= 3 J
c (5.84)
V-B=0

The introduction of H as a macroscopic field is completely analogous to
the introduction of D for the electrostatic field. The macroscopic
equations (5.84) have their electrostatic counterparts,

(5.85)

V.D=4drp |
VxE=0 }

We emphasize that the fundamental fields are E and B. They satisfy the
homogeneous equations in (5.84) and (5.85). The derived fields, D and H,
are introduced as a matter of convenience in order to take into account in
an average way the contributions to p and J of the atomic charges and
currents.

In analogy with dielectric media we expect that the properties of magnetic
media can be described by a small number of constants characteristic of
the material. Thus in the simplest case we would expect that B and H are
proportional:

B=uH (5.86)

where y is a constant characteristic of the material called the permeability.*
This simple result does hold for materials other than the ferromagnetic
substances. But for these nonmagnetic materials u generally differs from
unity by only a few parts in 10° (# > 1 for paramagnetic substances,
u <1 for diamagnetic substances). For the ferromagnetic substances,
(5.86) must be replaced by a nonlinear functional relationship,

B = F(H) (5.87)

The phenomenon of hysteresis, shown schematically in Fig. 5.8, implies
that B is not a single-valued function of H. In fact, the function F(H)
depends on the history of preparation of the material. The incremental
permeability of u(H) is defined as the derivative of B with respect to H,

* To be consistent with the electrostatic relation D = ¢E, expressing the derived
quantity D as a factor times E, we should write H = w'B. But traditional usage is that
of (5.86). It makes most substances have 4 > 1. Perhaps that is more comforting than
u < 1.
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Fig. 5.8 Hysteresis loop giving Bin a
ferromagnetic material as a function
of H.

assuming that B and H are parallel. For high-permeability substances,
u(H) can be as high as 10%. Most untreated ferromagnetic materials have
a linear relation (5.86) between B and H for very small fields. Typical
values of initial permeability range from 10 to 10%,

The complicated relationship between B and H in ferromagnetic
materials makes analysis of magnetic boundary-value problems inherently
more difficult than that of similar electrostatic problems. But the very
large values of permeability sometimes allow simplifying assumptions on
the boundary conditions. We will see that explicitly in the next section.

5.9 Boundary Conditions on B and H

Before we can solve magnetic boundary-value problems, we must
establish the boundary conditions satisfied by B and H at the interface
between two media of different magnetic properties. If a small Gaussian
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pillbox is oriented so that its faces are in regions 1 and 2 and parallel to
the surface boundary, S, as shown in Fig. 5.9, Gauss’s theorem can be
applied to V - B = 0 to yield

(B,—B)-n=0 (5.88)

where n is the unit normal to the surface directed from region 1 into region
2, and the subscripts refer to values at the surface in the two media.

If we now consider a small, narrow circuit C, as shown in Fig. 5.9, with
normal n’ parallel to the interface and surface S, Stokes’s theorem can be
applied to the curl equation in (5.84) to give

CEH'dl=ﬂT J-n'da (5.89)
< cJs

The contributions to the line integral are the tangential values of H in
the two regions, while the surface integral is proportional to the surface-
current density K (charge/length x time) in the limit of vanishing width
to the loop. Thus (5.89) becomes
(H, —H) - xn)="n.K
or ¢ (5.90)
n x(H2—H1)=iEK
c
We express these boundary conditions in terms of the magnetic field H

and the permeability x. For simplicity assuming no surface currents, we
have

H2'n =(&)H1 n
He (5.91)
H, xn=H; xn

If u, > p,, the normal component of H, is much larger than the normal
component of H,, as shown in Fig. 5.10. In the limit (u,/u,) — o, the

ORI
%m 2R {{/%

Fig. 5.10

N\
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magnetic field H, is normal to the boundary surface, independent of the
direction of H; (barring the exceptional case of H, exactly parallel to the
interface). The boundary condition on H at the surface of a very high-
permeability material is thus the same as for the electric field at the surface
of a conductor. We may therefore use electrostatic potential theory for
the magnetic field. The surfaces of the high-permeability material are
approximately “equipotentials,” and the lines of H are normal to these
equipotentials. This analogy is exploited in many magnet-design problems.
The type of field is decided upon, and the pole faces are shaped to be
equipotential surfaces.

5.10 Uniformly Magnetized Sphere

To illustrate the different methods possible for the solution of a
boundary-value problem in magnetostatics, we consider in Fig. 5.11 the
simple problem of a sphere of radius a, with a uniform permanent
magnetization M of magnitude M, and parallel to the z axis, embedded in
a nonpermeable medium. Outside the sphere, V-B=V x B =0.
Consequently, for r > a, B = H can be written as the negative gradient of
a magnetic scalar potential which satisfies Laplace’s equation,

Bout = —V(I)M 1
(5.92)
VzCDM =0
With the boundary condition that B — 0 for r — oo, the general solution
for the potential is Pycos 6)
O p(r, 0) = Z L T (5.93)

Past experience tells us that only the lowest few terms in this expansion will
appear, probably just / = 1.

Inside a magnetized object we cannot in general use equations (5.92)
because V x B =~ 0. This causes no difficulty in the present simple situation
because (5.83) implies that B, H, and M are all parallel in the absence of
applied fields.

M = Moes
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B. = B,e
o } (5.94)
H;, = (By — 4w M,)e;

Hence we assume that

The boundary conditions at the surface of the sphere are that B, and H,
be continuous, Thus, from (5.92), (5.93), and (5.94), we obtain

B, cos 6 _Z (I 4+ Doy Pycos 6)

Z+2

(5.95)

—(By — 47 M) sin 0 = Z % dP,(cos 6)

1+2
J

Evidently only the / = 1 term survives in the expansion. We find the
unknown constants «, and B, to be

0(1 = ?Moasl

8ar
3

(5.96)

By=—M, J

The fields outside the sphere are those of a dipole (5.41) of dipole moment,
4n

m = 3 M (5.97)
The fields inside are
N
Bln = 8—77 M
3 (5.98)
4
Hipp = — 3’—’ M

We note that B, is parallel to M, while H,, is antiparallel. The lines of B
and H are shown in Fig. 5.12. The lines of B are continuous closed paths,
but those of H terminate on the surface. The surface appears to have a
“magnetic-charge” density on it. This fictitious charge is related to the
divergence of the magnetization (see below).

The solution both inside and outside the sphere could have been
obtained from electrostatic potential theory if we had chosen to discuss H
rather than B. We can treat the equations,

VxH=0 1

(5.99)
V-H= —4xV. MJ
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B H

Fig.5.12 Lines of B and lines of H for a uniformiy magnetized sphere. The lines of B
are closed curves, but the lines of H originate on the surface of the sphere where the
magnetic “‘charge,” —V « M, resides.

These equations show that H is derivable from a potential, and that
~—V - M acts as a magnetic-charge density. Thus, with H = —V®;,, we
find

V20, =47V -M (5.100)

Since M is constant in magnitude and direction, its divergence is zero
inside the sphere. But there is a contribution because M vanishes outside
the sphere. We write the solution for @, inside and outside the sphere as

D (x) = — f%m_M—x(T—) d*x’ (5.101)

Then we use the vector identity V « (¢M) = M . V¢ + ¢V - M to obtain

(I)M(x)____J.VJ M(x) d3 '+fM(X) V(_l‘——,

x — x'| Ix — x|
The first integral vanishes on integration over any volume containing the
sphere. If we convert the derivative with respect to x’ into one with
respect to x according to the rule V' — — V when operating on any
function of |x — x’|, the potential can be written

®y(x) = —V f M(") e = —V.[M0e3far'2dr'fdﬂ' 1 ]
0 [x — x'|

(5.103)

)d-’*x' (5.102)
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Only the / = 0 part of |[x — x'|? contributes to the integral. Therefore

®,,(x) = —4nM,V -[ea f " d"'] (5.104)

0 T
The integral yields different values, depending on whether r lies inside or
outside the sphere. We find easily

2
@ ,,(x) = Mol (fi)coso (5.105)
3 s

where r_ (r.) is the smaller (larger) of r and a. This potential yields a
dipole field outside with magnetic moment (5.97) and the constant value
H,, (5.98) inside, in agreement with the first method of solution.*

Finally we solve the problem using the generally applicable vector
potential. Referring to (5.80), we see that the vector potential is given by

A(x) =f YV XMIX) g, (5.106)
x — x'|
Since M is constant inside the sphere, the curl vanishes there. But because
of the discontinuity of M at the surface, there is a surface integral contri-
bution to A. If we consider (5.79), the required surface integral can be
recovered:
AX) = — f V' x (M—(")—)dsx' —pME) Xm0 (5.107)
x — x| |x — x'|
The quantity ¢(M x n) can be considered as a surface-current density.
The equivalence of a uniform magnetization throughout a certain volume
to a surface-current density ¢(M x n) over its surface is a general result
for arbitrarily shaped volumes. This equivalence is often useful in treating
fields due to permanent magnets.
For the sphere with M in the z direction, (M x n) has only an azimuthal
component,
(M x n), = M, sin §’ (5.108)

To determine A we choose our observation point in the 2-z plane for
calculational convenience, just as in Sections 5.5. Then only the y com-
ponent of —(n x M) enters. The azimuthal component of the vector
potential is then

sin 6 cos ¢’

(5.109)
|x — x'|

Ay(x) = Moa“’fdQ’

* The development from (5.101) to (5.105) is unnecessarily complicated for the simple

calculation at hand. For the uniformly magnetized sphere it is easy to show that

V.M = —M,cos 66(r — a). Substitution into (5.101) and use of (3.70) yields

(5.105) directly. Equation (5.103) is still useful, of course, for more complicated
distributions of magnetization.
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where x’ has coordinates (a, 6, ¢"). The angular factor can be written
sin 0 cos ¢’ = — §3’1 Re[ Y18, 6] (5.110)

Thus with expansion (3.70) for |[x — x'| only the / = 1, m = 1 term will
survive. Consequently

A, = 4?” Muaz(-:-g—) sin 6 (5.111)
where r_ (r.) is the smaller (larger) of r and a. With only a ¢ component
of A, the components of the magnetic induction B are given by (5.38).
Equation (5.111) evidently gives the uniform B inside and the dipole field
outside, as found before.

The different techniques used here illustrate the variety of ways of
solving steady-state magnetic problems, in this case with a specified
distribution of magnetization. The scalar potential method is applicable
provided no currents are present. But for the general problem with
currents we must use the vector potential (apart from special techniques
for particularly simple geometries).

5.11 Magnetized Sphere in an External Field; Permanent Magnets

In Section 5.10 we discussed the fields due to a uniformly magnetized
sphere. Because of the linearity of the field equations we can superpose a
uniform magnetic induction B, = H,, throughout all space. Then we have
the problem of a uniformly magnetized sphere in an external field. From
(5.98) we find that the magnetic induction and field inside the sphere are
now

Bin=B0+§‘37IM

(5.112)
4
Hiu =B — =M

We now imagine that the sphere is not a permanently magnetized object,
but rather a paramagnetic or diamagnetic substance of permeability u.
Then the magnetization M is a result of the application of the external
field. To find the magnitude of M we use (5.86):

Bin = /"’Hin (5'113)
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S

Thus Fig. 5.13
8w 4
B+ M =pu(B,— M (5.114)
This gives a magnetization,
M= i(‘LI)BO (5.115)
4\ + 2

We note that this is completely analogous to the polarization P of a
dielectric sphere in a uniform electric field (4.63).

For a ferromagnetic substance the arguments of the last paragraph fail.
Equation (5.115) implies that the magnetization vanishes when the
external field vanishes. The existence of permanent magnets contradicts
this result. The nonlinear relation (5.87) and the phenomenon of hysteresis
allow the creation of permanent magnets. We can solve equations (5.112)
for one relation between H,, and B, by eliminating M:

B, + 2H;, = 3B, (5.116)

The hysteresis curve provides the other relation between B, and H;,, so
that specific values can be found for any external field. Equation (5.116)
corresponds to lines with slope —2 on the hysteresis diagram with inter-
cepts 3B, on the ¥ axis, as in Fig. 5.13. Suppose, for example, that the
external field is increased until the ferromagnetic sphere becomes saturated
and decreased to zero. The internal B and H will then be given by the
point marked P in Fig. 5.13. The magnetization can be found from (5.112)
with By = 0.

The relation (5.116) between B, and H,, is specific to the sphere. For
other geometries other relations pertain. The problem of the ellipsoid can
be solved exactly and shows that the slope of the lines (5.116) range from
zero for a flat disc to — oo for a long needle-like object. Thus a larger
internal magnetic induction can be obtained with a rod geometry than
with spherical or oblate spheroidal shapes.
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5.12 Magnetic Shielding; Spherical Shell of Permeable Material in a
Uniform Field

Suppose that a certain magnetic induction By exists in a region of empty
space initially. A permeable body is now placed in the region. The lines
of magnetic induction are modified. From our remarks at the end of
Section 5.9 concerning media of very high permeability we would expect
that the field lines would tend to be normal to the surface of the body.
Carrying the analogy with conductors further, if the body is hollow, we
would expect that the field in the cavity would be smaller than the external
field, vanishing in the limit 4 — oo. Such a reduction in field is said to be
due to the magnetic shielding provided by the permeable material. It is of
considerable practical importance, since essentially field-free regions are
often necessary or desirable for experimental purposes or for the reliable
working of electronic devices.

As an example of the phenomenon of magnetic shielding we consider a
spherical shell of inner (outer) radius a (b), made of material of perme-
ability u, and placed in a formerly uniform constant magnetic induction
By, as shown in Fig. 5.14. We wish to find the ficlds B and H everywhere
in space, but most particularly in the cavity (r < a), as functions of u.
Since there are no currents present, the magnetic field H is derivable from
a scalar potential, H = —V®,, Furthermore, since B = uH, the
divergence equation V - B = 0 becomes V - H = 0 in the various regions.
Thus the potential @, satisfies Laplace’s equation everywhere. The
problem reduces to finding the proper solutions in the different regions to
satisfy the boundary conditions (5.88) and (5.90) at r = aand r = b.

For r > b, the potential must be of the form,

@, = —Byrcos 0 + Z ';Tll P (cos 6) (5.117)

=0
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in order to give the uniform field, H = B = B,, at large distances. For
the inner regions, the potential must be

a<<r<b D, =

8 MS

(ﬁlr + z+1) P(cos O)l 11

r<a @, =3 6,;r' Pycos )
1=0

The boundary conditions at r = a and r = b are that H,; and B, be
continuous. In terms of the potential @ ,, these conditions become

®up,) = a‘I’M(b ) a‘DM Qw4

00
Dot (b,) = 222 (b uaq’M(a+) 2

(a;) = ) L
(5.119)

20|

The notation b, means the limit r — b approached from r 2 b, and
similarly for a,. These four conditions, which hold for all angles 6, are
sufficient to determine the unknown constants in (5.117) and (5.118). All

coefficients with /= 1 vanish. The ! =1 coefficients satisfy the four
simultaneous equations

oy — BB — n = b*B,
20, + ub®f; — 2 = —hB

1+ pb*py Y1 0 (5.120)

@h+ yn—a4=0

ua*py — 2uy, — a6 = 0.

The solutions for o, and d, are
o = (2‘“ + 1)(1“ — 1) (b3 _ (13)30

(2 + D(p +2) — 2— (u— 1y

L (5.121)

Su
O+ D +2) — 2‘2—2@ — 1y

[~

5
It
|

B,

The potential outside the spherical shell corresponds to a uniform field
B, plus a dipole field (5.41) with dipole moment «, oriented parallel to B,.
Inside the cavity, there is a uniform magnetic field parallel to B, and
equal in magnitude to —d;,. For u > 1, the dipole moment o, and the
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/\\

Fig. 5.15 Shielding effect of a shell of highly permeable material.

inner field —&, become

oy, — b°B,
by )30 (5.122)

3
a
2/4(1 3

We see that the inner field is proportional to u~'. Consequently a shield
made of high-permeability material with u ~ 10® to 10® causes a great
reduction in the field inside it, even with a relatively thin shell. Figure

5.15 shows the behavior of the lines of B. The lines tend to pass through
the permeable medium if possible.
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PROBLEMS
5.1 Starting with the differential expression
4B — 1d1 >§ X
c X

for the magnetic induction produced by an increment I dl of current, show
explicitly that for a closed loop carrying a current I the magnetic induction

at an observation point P is

B=—ZVQ
c

where (2 is the solid angle subtended by the loop at the point P. This is an
alternative form of Ampére’s law for current loops.

5.2 (@) For a solenoid wound with N turns per unit length and carrying a
current 7, show that the magnetic-flux density on the axis is given approxi-

mately by

B, = ZWTNI (cos 8; + cos 6,)

where the angles are defined in the figure.

(b) For a long solenoid of length L and radius a show that near the axis
and near the center of the solenoid the magnetic induction is mainly parallel
to the axis, but has a small radial component

96w NI ( a*zp
B=— T
correct to order a%/L2, and for z <€ L, p < a. The coordinate z is measured
from the center point of the axis.
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(c) Show that at the end of a long solenoid the magnetic induction near
the axis has components

27N,
B, ~ " 1, sz'”_NI(f)
¢ ¢ la

A cylindrical conductor of radius a has a hole of radius b bored parallel to,
and centered a distance 4 from, the cylinder axis (4 + & < @). The current
density is uniform throughout the remaining metal of the cylinder and is
parallel to the axis. Use Ampére’s law and the principle of linear super-
position to find the magnitude and the direction of the magnetic-flux
density in the hole.
A circular current loop of radius g carrying a current [ lies in the -y plane
with its center at the origin.

(a) Show that the only nonvanishing component of the vector potential is

dla [
Aglp, 2) = T" f dk cos kz 1(kp K, (kp~)
0

where p. (p-) is the smaller (larger) of a and p.
(b) Show that an alternative expression for Ay is

F e 0
Aylp,2) = 271" f dk 112 J,(ka) Jy(kp)
0

(¢) Write down integral expressions for the components of magnetic
induction, using the expressions of (@) and (). Evaluate explicitly the
components of B on the axis by performing the necessary integrations.
Two concentric circular loops of radii a, b and currents /, I’, respectively
(b < a), have an angle « between their planes. Show that the torque on one
of the loops is about the line of intersection of the two planes containing
the loops and has the magnitude:

222015 ~ (n+1)[ T(n + 2) :r(b

2n
= - 1
N ac? = 2n+ 1| T(n+2) T3 ) P}, 1(cos )

a

where P;}(cos «) is an associated Legendre polynomial. Determine the
sense of the torque for « an acute angle and the currents in the same
(opposite) directions.

A sphere of radius a carries a uniform charge distribution on its surface.
The sphere is rotated about a diameter with constant angular velocity w.
Find the vector potential and magnetic-flux density both inside and outside
the sphere.

A long, hollow, right circular cylinder of inner (outer) radius a (b}, and of
relative permeability 4, is placed in a region of initially uniform magnetic-
flux density B, at right angles to the field. Find the flux density at all points
in space, and sketch the logarithm of the ratio of the magnitudes of B on the
cylinder axis to B, as a function of log,, u for a?/b? = 0.5, 0.1. Neglect end
effects.

A current distribution J(x) exists in a medium of unit permeability adjacent
to a semi-infinite slab of material having permeability « and filling the
half-space, z < 0.
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5.10

5.11

5.12

(a) Show that for z > 0 the magnetic induction can be calculated by
replacing the medium of permeability « by an image current distribution,
J*, with components,

uw—1 r—1 n—1
(557) st = (i) e = = (G o =

(b) Show that for z < 0 the magnetic induction appears to be due to a

) J in a medium of unit permeability.

/

NPT i
current distribution (H +1
A circular loop of wire having a radius a and carrying a current / is located
in vacuum with its center a distance 4 away from a semi-infinite slab of
permeability #. Find the force acting on the loop when

(a) the plane of the loop is parallel to the face of the slab,

(b) the plane of the loop is perpendicular to the face of the slab.

(¢) Determine the limiting form of your answers to (a) and (b) when
d > a. Can you obtain these limiting values in some simple and direct
way ?

A magnetically “hard’” material is in the shape of a right circular cylinder
of length L and radius a. The cylinder has a permanent magnetization M,,
uniform throughout its volume and parallel to its axis.

(@) Determine the magnetic field H and magnetic induction B at all
points on the axis of the cylinder, both inside and outside.

(b) Plot the ratios B/4rM, and H/4=M on the axis as functions of z for
Lla = 5.

(a) Starting from the force equation (5.12) and the fact that a magnetiza-
tion M is equivalent to a current density Jy,; = ¢(V x M), show that, in
the absence of macroscopic currents, the total magnetic force on a body
with magnetization M can be written

F=—f(V-M)Bed3x

where B, is the magnetic induction due to all other except the one in
question.
(b) Show that an alternative expression for the total force is

= —f(V-M)Hd%

where H is the roral magnetic field, including the field of the magnetized
body.

Hint: The results of (a) and (b) differ by a self-force term which can be
omitted (why?).
A magnetostatic field is due entirely to a localized distribution of permanent
magnetization.

(@) Show that
fB ‘Hd¥x =0

provided the integral is taken over all space.
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(5) From the potential energy (5.73) of a dipole in an external field show
that for a continuous distribution of permanent magnetization the magneto-
static energy can be written

W = 8i fH-Hd% = —%fM-Hdax
w

apart from an additive constant which is independent of the orientation or
position of the various constituent magnetized bodies.

Show that in general a long, straight bar of uniform cross-sectional area 4
with uniform lengthwise magnetization M, when placed with its flat end
against an infinitely permeable flat surface, adheres with a force given
approximately by

F ~2nAM?*

A right circular cylinder of length L and radius a has a uniform lengthwise
magnetization M.

(a) Show that, when it is placed with its flat end against an infinitely
permeable plane surface, it adheres with a force

K(k) — E(k) _ K(k,) — E(ky)
k ky

F = 8mal M 2|:
where
k= —2a= > kl = —__'a='.
Vda* + L Va? + L2
(b) Find the limiting form for the force if L > a.



Time-Varying Fields,
Maxwell’s Equations,
Conservation Laws

In the previous chapters we have dealt with steady-state problems
in electricity and in magnetism. Similar mathematical techniques were
employed, but electric and magnetic phenomena were treated as indepen-
dent. The only link between them was the fact that currents which produce
magnetic fields are basically electrical in character, being charges in motion.
The almost independent nature of electric and magnetic phenomena
disappears when we consider time-dependent problems, Time-varying
magnetic fields give rise to electric fields and vice-versa. We then must
speak of electromagnetic fields, rather than electric or magnetic fields. The
full import of the interconnection between electric and magnetic fields
and their essential sameness becomes clear only within the framework
of special relativity (Chapter 11). For the present we will content ourselves
with examining the basic phenomena and deducing the set of equations
known as Maxwell’s equations, which describe the behavier of electro-
magnetic fields. General properties of these equations will be established
so that the basic groundwork of electrodynamics will have been laid.
Subsequent chapters will then explore the many ramifications.

In our desire to proceed to other things, we will leave out a number of
topics which, while of interest in themselves, can be studied elsewhere.
Some of these are quasi-stationary fields, circuit theory, inductance
calculations, eddy currents, and induction heating. None of these subjects
involes new concepts beyond what are developed in this chapter and
previous ones. The interested reader will find references at the end of the
chapter.

169
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6.1 Faraday’s Law of Induction

The first quantitative observations relating time-dependent electric and
magnetic fields were made by Faraday (1831) in experiments on the
behavior of currents in circuits placed in time-varying magnetic fields. It
was observed by Faraday that a transient current is induced in a circuit
if (a) the steady current flowing in an adjacent circuit is turned on or off, ()
the adjacent circuit with a steady current flowing is moved relative to the
first circuit, (¢) a permanent magnet is thrust into or out of the circuit. No
current flows unless either the adjacent current changes or there is relative
motion. Faraday interpreted the transient current flow as being due to a
changing magnetic flux linked by the circuit. The changing flux induces
an electric field around the circuit, the line integral of which is called the
electromotive force, &. The electromotlve force causes a current flow,
according to Ohm’s law.

We now express Faraday’s observations in quantitative mathematical
terms. Let the circuit C be bounded by an open surface S with unit normal
n, as in Fig. 6.1. The magnetic induction in the neighborhood of the
circuit is B. The magnetic flux linking the circuit is defined by

=f B-nda (6.1)
s

The electromotive force around the circuit is

& = fﬁ E - dl (6.2)
C

where E’ is the electric field at the element 4l of the circuit C. Faraday’s
observations are summed up in the mathematical law,

&= k% (6.3)
dt :
The induced electromotive force around the circuit is proportional to the
time rate of change of magnetic flux linking the circuit. The sign is
specified by Lenz’s law, which states that the induced current (and
accompanying magnetic flux) is in such a direction as to oppose the change
of flux through the circuit.

The constant of proportionality k depends on the choice of units for the
electric and magnetic field quantities. It is not, as might at first be
supposed, an independent empirical constant to be determined from
experiment. As we will see immediately, once the units and dimensions in



[Sect. 6.11 Time-Varying Fields, Maxweil’s Equations, Conservation Laws 171

Fig. 6.1

Ampére’s law have been chosen, the magnitude and dimensions of k follow
from the assumption of Galilean invariance for Faraday’s law. For
Gaussian units, k = ¢, where ¢ is the velocity of light.

Before the development of special relativity (and even afterwards, when
dealing with relative speeds small compared with the velocity of light), it
was understood, although not often explicitly stated, by all physicists that
physical laws should be invariant under Galilean transformations. That
is, physical phenomena are the same when viewed by two observers
moving with a constant velocity v relative to one another, provided the
coordinates in space and time are related by the Galilean transformation,
x' = x +vt, ' = t. In particular, consider Faraday’s observations. It is
obvious (i.e., experimentally verified) that the same current is induced in a
circuit whether if is moved while the circuit through which current is
flowing is stationary or it is held fixed while the current-carrying circuit is
moved in the same relative manner.

Let us now consider Faraday’s law for a moving circuit and see the
consequences of Galilean invariance. Expressing (6.3) in terms of the
integrals over E’ and B, we have

ﬁE’-dl:—kifB-nda (6.4)
c dtJs

The induced electromotive force is proportional to the total time derivative
of the flux—the flux can be changed by changing the magnetic induction
or by changing the shape or orientation or position of the circuit. In form
(6.4) we have a far-reaching generalization of Faraday’s law. The circuit
C can be thought of as any closed geometrical path in space, not necessarily
coincident with an electric circuit. Then (6.4) becomes a relation between
the fields themselves. It is important to note, however, that the electric
field, E’ is the electric field at dl in the coordinate system in which dl is at
rest, since it is that field which causes current to flow if a circuit is actually
present.
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If the circuit C is moving with a velocity v in some direction, as shown in
Fig. 6.2, the total time derivative in (6.4) must take into account this
motion. The flux through the circuit may change because (a) the flux
changes with time at a point, or (4) the translation of the circuit changes
the location of the boundary. Itis easy to show that the result for the total
time derivative of flux through the moving circuit is*

d J‘aB f#;
— |Benda=! =.nd B - dl 6.5
dtJs naa s Ot nda+ o( V) 6.3)

Equation (6.4) can now be written in the form,

i[E'—k(v x B)] - dl = —kf aalti

S

.nda (6.6)

This is an equivalent statement of Faraday’s law applied to the moving
circuit C. But we can choose to interpret it differently. We can think of
the circuit C and surface S as instantaneously at a certain position in space
in the laboratory. Applying Faraday’s law (6.4) to that fixed circuit, we
find

fﬁE-dl=—kf~a~l—;onda (6.7)
c s ot

where E is now the electric field in the laboratory. The assumption of
Galilean invariance implies that the left-hand sides of (6.6) and (6.7) must
be equal. This means that the electric field E’ in the moving coordinate
system of the circuit is

E' =E + k(v x B) (6.8)
To determine the constant k& we merely observe the significance of E". A
charged particle (e.g., one of the conduction electrons) in a moving circuit

v

~__/
Fig. 6.2

* For a general vector field there is an added term, f (V + B)v  n da, which gives the
8

contribution of the sources of the vector field swept over by the moving circuit. The
general result follows most easily from the use of the convective derivative,

d ad
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will experience a force gE’. When viewed from the laboratory, the charge
represents a current J = gv d(x — x,). From the magnetic force law (5.7)
or (5.12) it is evident that this current experiences a force in agreement
with (6.8) provided the constant & is equal to ¢—1.

We have thus reached the conclusion that Faraday’s law takes the form

éEHﬂ=—li B-nda (6.9)
C

cdtis
where E’ is the electric field at dlin its rest frame of coordinates. The time
derivative on the right is a total time derivative. If the circuit C is moving
with a velocity v, the electric field in the moving frame is

E—E+1( xB) (6.10)
C

These considerations are valid only for nonrelativistic velocities. Galilean
invariance is not rigorously valid, but holds only for relative velocities
small compared to the velocity of light. Expression (6.10) is correct to
first order in v/c, but in error by terms of order v?/c? (see Section 11.10).
Evidently, for laboratory experiments with macroscopic circuits, (6.9) and
(6.10) are completely adequate.

Faraday’s law (6.9) can be put in differential form by use of Stokes’s
theorem, provided the circuit is held fixed in the chosen reference frame
(in order to have E and B defined in the same frame). The transformation
of the electromotive force integral into a surface integral feads to

f(VXE+la—B)-nda=0
s c Ot

Since the circuit C and bounding surface S are arbitrary, the integrand
must vanish at all points in space.
Thus the differential form of Faraday’s law is
VXE+18—B=0 (6.11)
c ot
We note that this is the time-dependent generalization of the statement,
V x E = 0, for electrostatic fields.

6.2 Energy in the Magnetic Field
In discussing steady-state magnetic fields in Chapter 5 we avoided the

question of field energy and energy density. The reason was that the
creation of a steady-state configuration of currents and associated magnetic
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fields involves an initial transient period during which the currents and
fields are brought from zero to their final values. For such time-varying
fields there are induced electromotive forces which cause the sources of
current to do work. Since the energy in the field is by definition the total
work done to establish it, we must consider these contributions.

Suppose for a moment that we have only a single circuit with a constant
current [ flowing in it. If the flux through the circuit changes, an electro-
motive force & is induced around it. In order to keep the current constant,
the sources of current must do work at the rate,

W _ g LdF

dt c dt
This is in addition to ohmic losses in the ¢ircuit which are not to be
included in the magnetic-energy content. Thus, if the flux change through
a circuit carrying a current / is 8F, the work done by the sources is

ow=L1sF
[4

Now we consider the problem of the work done in establishing a general
steady-state distribution of currents and fields. We can imagine that the
build-up process occurs at an infinitesimal rate so that V - J = 0 holds to
any desired degree of accuracy. Then the current distribution can be
broken up into a network of elementary current loops, the typical one of
which is an elemental tube of current of cross-sectional area Ag following
a closed path C and spanned by a surface S with normal n, as shown in
Fig. 6.3.

We can express the increment of work done against the induced emf in
terms of the change in magnetic induction through the loop:

J Ao

c

A(OW) =

jn-éBda
s

where the extra A comes from the fact that we are considering only one
elemental circuit. If we express B in terms of the vector potential A,
then we have
J Ao f
A(OW) = —— | (V x 6A)-nda
c Js

With application of Stokes’s theorem this can be written

AGW) = 229 s . 1
c C
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Fig. 6.3 Distribution of current
density broken up into elemental
current loops.

But JAcgdl is equal to Jd%, by definition, since dl is parallel to J.
Evidently the sum over all such elemental loops will be the volume
integral. Hence the total increment of work done by the external sources
due to a change dA(x) in the vector potential is

SW = -l—faA I &z (6.12)
44

An expression involving the magnetic fields rather than J and dA can be
obtained by using Ampére’s law:

VxH=4—7TJ

c
Then
SW = L;I—WféA'(V x H) d% (6.13)
The vector identity,
V.- PxQ)=Q-(VxP)—P-(Vx Q)

can be used to transform (6.13):
oW = 4% f[H -(V x 0A) + V- (H x 6A)] d®= (6.14)

If the field distribution is assumed to be localized, the second integral
vanishes. With the definition of B in terms of A, the energy increment can
be written:

oW= L fH- 5B d*x (6.15)
47

This relation is the magnetic equivalent of the electrostatic equation (4.89).
In its present form it is applicable to all magnetic media, including ferro-
magnetic substances. If we assume that the medium is para- or dia-
magnetic, so that a linear relation exists between H and B, then

H-.0B=1406H-B)
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If we now bring the fields up from zero to their final values, the total
magnetic energy will be

W= ifH-Bdﬁx (6.16)
: 8

This is the magnetic analog of (4.92).

The magnetic equivalent of (4.86) where the electrostatic energy is
expressed in terms of charge density and potential, can be obtained from
(6.12) by assuming a linear relation between J and A. Then we find the
magnetic energy to be

W= iJ‘J-A d*x (6.17)
2c

The magnetic problem of the change in energy when an object of
permeability g, is placed in a magnetic field whose current sources are
fixed can be treated in close analogy with the electrostatic problem of
Section 4.8. The role of E is taken by B, that of D by H. The original
medium has permeability g, and existing magnetic induction B,. After
the object is in place the fields are B and H. It is left as an exercise for the
reader to verify that for fixed sources of the field the change in energy is

1| ®.H ~H-B) &= (6.18)

8mdy,
where the integration is over the volume of the object. This can be written
in the alternative forms:

W= —1—f (uy — po)H - Hy d®x = L (l - —l—)B -Byd®z  (6.19)
8mJr, 8rdvi\ug
Both u, and g, can be functions of position, but they are assumed inde-
pendent of field strength.
If the object is in otherwise free space (1, = 1), the change in energy can
be expressed in terms of the magnetization as

W=1 f M. B, d®x (6.20)
JYy

It should be noted that (6.20) is equivalent to the electrostatic result
(4.96), except for sign. This sign change arises because the energy W
consists of the total energy change occurring when the permeable body is
introduced in the field, including the work done by the sources against the
induced electromotive forces. In this respect the magnetic problem with
fixed currents is analogous to the electrostatic problem with fixed potentials
on the surfaces which determine the fields. By an analysis equivalent to
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that at the end of Section 4.8 we can show that for a small displacement
the work done against the induced emf’s is twice as large as, and of the
opposite sign to, the potential-energy change of the body. Thus, to find
the force acting on the body, we consider a generalized displacement & and
calculate the positive derivative of W with respect to the displacement:

F, = (%%)J (6.21)

The subscript J implies fixed source currents.

The difference between (6.20) and the potential energy (5.73) for a
permanent magnetic moment in an external field (apart from the factor 3,
which is traced to the linear relation assumed between M and B) comes
from the fact that (6.20) is the total energy required to produce the con-
figuration, whereas (5.73) includes only the work done in establishing the
permanent magnetic moment in the field, not the work done in creating
the magnetic moment and keeping it permanent.

6.3 Maxwell’s Displacement Current; Maxwell’s Equations

The basic laws of electricity and magnetism which we have discussed so
far can be summarized in differential form by these four equations:

Coulomb’s law: V:D =4np
Ampere’s law: VxH-= 4—77J
¢ L (6.22)
Faraday’s law: VxE+ 1?2 =0
c Ot
Absence of free magnetic poles: V-B=0 J

These equations are written in macroscopic form and in Gaussian units.
Let us recall that all but Faraday’s law were derived from steady-state
observations. Consequently, from a logical point of view there is no a
priori reason to expect that the static equations hold unchanged for time-
dependent fields. In fact, the equations in set (6.22) are inconsistent as
they stand.

It required the genius of J. C. Maxwell, spurred on by Faraday’s
observations, to see the inconsistency in equations (6.22) and to modify
them into a consistent set which implied new physical phenomena, at that
time unknown but subsequently verified in all details by experiment. For
this brilliant stroke in 1865, the modified set of equations is justly known as
Maxwell’s equations.
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The faulty equation is Ampere’s law. It was derived for steady-state
current phenomena with V - J = 0. This requirement on the divergence
of J is contained right in Ampére’s law, as can be seen by taking the diver-
gence of both sides:

4—”\7 J=V.(Vx H =0 (6.23)

While V- J = 0 is valid for steady-state problems, the complete relation
is given by the continuity equation for charge and current:
dp _
ot

What Maxwell saw was that the continuity equation could be converted
into a vanishing divergence by using Coulomb’s law (6.22). Thus

v.3+ 28 (6.24)

dp ( 1 aD)
V.-J+ =V {J+——1)=0 6.25
ot 47 Ot (6:25)
Then Maxwell replaced J in Ampére’s law by its generalization,
1 JD
J 4+ == 6.26
47 ot ( )
for time-dependent fields. Thus Ampére’s law became
V><H—4—TrJ+lQ2 (6.27)
¢ c ot

still the same, experimentally verified, law for steady-state phenomena,
but now mathematically consistent with the continuity equation (6.24) for
time-dependent fields. Maxwell called the added term in (6.26) the
displacement current. This necessary addition to Ampeére’s law is of crucial
importance for rapidly fluctuating fields. Without it there would be no
electromagnetic radiation, and the greatest part of the remainder of this
book would have to be omitted. It was Maxwell’s prediction that light
was an electromagnetic wave phenomenon, and that electromagnetic
waves of all frequencies could be produced, which drew the attention of all
physicists and stimulated so much theoretical and experimental research
into electromagnetism during the last part of the nineteenth century.
The set of four equations,

1
V'D=47Tp VXH-——J la—D
¢ (6.28)

V.B=0 VxE+:8_9

¢ Ot
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known as Maxwell’s equations, forms the basis of all electromagnetic
phenomena. When combined with the Lorentz force equation and
Newton’s second law of motion, these equations provide a complete
description of the classical dynamics of interacting charged particles and
electromagnetic fields (see Section 6.9 and Chapters 10 and 12). For
macroscopic media the dynamical response of the aggregates of atoms is
summarized in the constitutive relations which connect D and J with E,
and Hwith B (e.g., D = ¢E, J = oE, B = uH for an isotropic, permeable,
conducting dielectric).

The units employed in writing Maxwell’s equations (6.28) are those of
the previous chapters, namely, Gaussian. For the reader more at home in
other units, such as mks, Table 2 of the Appendix summarizes essential
equations in the commoner systems. Table 3 of the Appendix allows the
conversion of any equation from Gaussian to mks units, while Table 4
gives the corresponding conversions for given amounts of any variable.

6.4 Vector and Scalar Potentials

Maxwell’s equations consist of a set of coupled first-order partial
differential equations relating the various components of electric and
magnetic fields. They can be solved as they stand in simple situations.
But it is often convenient to introduce potentials, obtaining a smaller
number of second-order equations, while satisfying some of Maxwell’s
equations identically. We are already familiar with this concept in
electrostatics and magnetostatics, where we used the scalar potential ® and
the vector potential A.

Since V « B = Ostill holds, we can define B in terms of a vector potential:

B=VxA (6.29)

Then the other homogeneous equation in (6.28), Faraday’s law, can be
written

vV x (E+18A)=0 (6.30)
c ot

This means that the quantity with vanishing curl in (6.30) can be written
as the gradient of some scalar function, namely, a scalar potential ®:

E+1%‘= _VO
or ¢ ot oA (6.31)
E—_vo_ 1%

c ot
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The definition of B and E in terms of the potentials A and @ according to
(6.29) and (6.31) satisfies identically the two homogeneous Maxwell’s
equations. The dynamic behavior of A and @ will be determined by the
two inhomogeneous equations in (6.28).

At this stage it is convenient to restrict our considerations to the
microscopic form of Maxwell’s equations. Then the inhomogeneous
equations in (6.28) can be written in terms of the potentials as

c ot
2
va_laA_v(v-A+162)=—41J (633)
2 o c Ot c

We have now reduced the set of four Maxwell’s equations to two equations.
But they are still coupled equations. The uncoupling can be accomplished
by exploiting the arbitrariness involved in the definition of the potentials.
Since B is defined through (6.29) in terms of A, the vector potential is
arbitrary to the extent that the gradient of some scalar function A can be
added. Thus B is left unchanged by the transformation,

A—>A =A+VA (6.34)

In order that the electric field (6.31) be unchanged as well, the scalar
potential must be simultaneously transformed,

O = LA (6.35)
c ot
The freedom implied by (6.34) and (6.35) means that we can choose a set
of potentials (A, @) such that
10d
V. A+-—=0 (6.36)
c ot
This will uncouple the pair of equations (6.32) and (6.33) and leave two
inhomogeneous wave equations, one for @ and one for A:

Vo — 50— —dmp (6.37)
2
VA — é?—;‘= —46—77J (6.38)

Equations (6.37) and (6.38), plus (6.36), form a set of equations equivalent
in all respects to Maxwell’s equations.
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6.5 Gauge Transformations; Lorentz Gauge; Coulomb Gauge

The transformation (6.34) and (6.35) is called a gauge transformation,
and the invariance of the fields under such transformations is called gauge
invariance. The relation (6.36) between A and © is called the Loreniz
condition. To see that potentials can always be found to satisfy the
Lorentz condition, suppose that the potentials A, ® which satisfy (6.32)
and (6.33) do not satisfy (6.36). Then let us make a gauge transformation
to potentials A’, ®’ and demand that A’, @ satisfy the Lorentz condition:

180’ 180 | o, 1A

V.A + =0=V.A4=-"—4 V3A — (6.39)
c ot c Ot ¢ o
Thus, provided a gauge function A can be found to satisfy
1 @A ( 10@)
VIA— == —|V.A+-— 6.40
¢ or M c 0t (640)

the new potentials A’, ®’ will satisfy the Lorentz condition and the wave
equations (6.37) and (6.38).

Even for potentials which satisfy the Lorentz condition (6.36) there is
arbitrariness. Evidently the restricted gauge transformation,

A—>A+VA
6.41
oo 1% (6.41)
c ot
2
where VA — LFA _ 0 (6.42)
c or®

preserves the Lorentz condition, provided A, @ satisfy it initially. All
potentials in this restricted class are said to belong to the Lorentz gauge.
The Lorentz gauge is commonly used, first because it leads to the wave
equations (6.37) and (6.38) which treat © and A on equivalent footings,
and second because it is a concept which is independent of the coordinate
system chosen and so fits naturally into the considerations of special
relativity (see Section 11.9).

Another useful gauge for the potentials is the so-called Coulomb or
transverse gauge. This is the gauge in which

V.A=0 (6.43)
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From (6.32) we see that the scalar potential satisfies Poisson’s equation,

V0 = —4np (6.44)
with solution,
D(x, 1) = fﬂ—’ﬂ a3’ (6.45)
x — x|

The scalar potential is just the instantaneous Coulomb potential due to
the charge density p(x, ). This is the origin of the name “Coulomb
gauge.”
The vector potential satisfies the inhomogeneous wave equation,
1 0°A 4 100
VA—-—~——S=——J4+-V— 6.46
¢t or? c c ot 6.46)
The “current™ term involving the potential can, in principle, be calculated
from (6.45). Formally, we use the continuity equation to write

v _ —vfw p (6.47)
ot x — x|
If the current is written as the sum of a longitudinal and transverse part,
J=1J, +J (6.48)
where V x J, =0 and V - J, = 0, then the parts can be written
3, = _ivf VT p (6.49)
47 x — x'|

J,= 1 V xV x f a2z’ (6.50)
A7

Ix — x|

This can be proved by using the vector identity, V x (V x J) =
V(V -J) — V2], together with V3(1/|x — x'|) = —4# é(x — x’). Com-
parison of (6.47) with (6.49) shows that

v _ 43, (6.51)
ot

Therefore the source for the wave equation for A can be expressed entirely
in terms of the transverse current (6.50):

VA - =-T1, (6.52)

This is, of course, the origin of the name “transverse gauge.”
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The Coulomb or transverse gauge is often used when no sources are
present. Then ® = 0, and A satisfies the homogeneous wave equation.
The fields are given by

c ot (6.53)

6.6 Green’s Function for the Time-Dependent Wave Equation

The wave equations (6.37), (6.38), and (6.52) all have the basic structure,

) 1 0°
Vi — = 5-2”1 = —dnf(x, f) (6.54)
where f(x, #) is a known source distribution. The factor c¢ is the velocity
of propagation in the medium.
To solve (6.54) it is useful to find a Green’s function for the equation,
just as in electrostatics. Since the time is involved, the Green’s function
will depend on the variables (x, X', #, ¢'), and will satisfy the equation,

2
(sz - la—) Gx, 1; X, )= —4n d(x — xX)6(t — t') (6.55)
c? or
Then in infinite space with no boundary surfaces the solution of (6.54)
will be

Y(x, 1) = f G(x, t; X', ) f (X, t') & dt’ (6.56)

Of course, the Green’s function will have to satisfy certain boundary
conditions demanded by physical considerations.

The basic Green’s function satisfying (6.55) is a function only of the
differences in coordinates (x — x') and times (t — ¢'). To find G we
consider the Fourier transform of both sides of (6.55). The delta functions
on the right have the representation,

8(x —x) ot — 1) = —Lfdakfdweik'(“")e_f“’(“t" (6.57)
@m*
We therefore write the representation of G as

G(x, 1; X, t') = f Bk f dog(k, w)e™ ™ ™) gmiol=1) (6.58)
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The Fourier transform g(k, w) is to be determined. When (6.57) and
(6.58) are substituted into the defining equation (6.55), it turns out that
gk, w) is

1

1
gk, o) = e m (6.59)

2

When g(k, w) is substituted into (6.58) and the integrations over k and
o are begun, there appears a singularity in the integrand at k* = w?/c2.
Consequently solution (6.59) is meaningless without some rule as to how
to handle the singularities. The rule cannot come from the mathematics.
It must come from physical considerations. The Green’s function satis-
fying (6.55) represents the wave disturbance caused by a point source at x’
which is turned on only for an infinitesimal time interval at ' = ¢. We
know that such a wave disturbance propagates outwards as a spherically
diverging wave with a velocity ¢. Hence we demand that our solution for
G have the following properties:

(@) G = 0 everywhere for 1 < ¢'.
(b) G represent outgoing waves for ¢ > ¢'.

If we think of the w integration in (6.58), the singularities in g(k, ) occur
at w = *ck. We can do the w integration as a Cauchy integral in the
complex o plane. For 7 > ¢’ the integral along the real axis in (6.58) is
equivalent to the contour integral around a path C closed in the lower
half-plane, since the contribution on the semicircle at infinity vanishes
exponentially. On the other hand, for ¢ > ¢, the contour must be closed
in the upper half-plane, as shown in Fig. 6.4 by path C".

In order to make G vanish for ¢+ << ¢’ we must imagine that the poles at
o = =tck are displaced below the real axis, as in Fig. 6.4. Then the integral
over C for t > ¢’ will give a nonvanishing contribution, while the integral

t<t

w plane

Fig. 6.4 Complex w plane with contour
C for t > t’ and contour C’ for ¢ <.
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over C’ for t <t will vanish. The displacement of the poles can be
accomplished mathematically by writing (w + i¢) in place of w in (6.59).
Then the Green’s function is given by

tk R—iwr

G(x, t; x', t') ——Jdakfdw ( e (6.60)
— = (w

where R = x — X/, 7 =t — ¢/, and ¢ is a positive infinitesimal.
The integration over w for r > 0 can be done with Cauchy’s theorem
applied around the contour C of Fig. 6.4, giving

c xR sin (¢rk)
G = ._._fd3 A\ 6.61
2n? ke k ( )

The integration over d3k can be accomplished by first integrating over
angles. Then

G= 2—; f dk sin (kR) sin (c7k) (6.62)
0

Since the integrand is even in k, the integral can be written over the whole
interval, — o0 < k << 00. With a change of variable x = ck, (6.62) can
be written

G —_ E;Ef dx(ez[r (R/e))x __ z[r+(R/c)]a:) (663)

From (2.52) we see that the integrals are just Dirac delta functions. The
argument of the second one never vanishes (remember, = > 0). Hence
only the first integral contributes, and the Green’s function is

or, more explicitly,

a(tl_l_ Ix_c'xl_t)
G(x, t;x',t') = ——

(6.64)

This Green’s function is sometimes called the retarded Green’s function
because it exhibits the causal behavior associated with a wave disturbance.
The effect observed at the point x at time ¢ is due to a disturbance which

x — x|
c

originated at an earlier or retarded time t' = t —

at the point x'.
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The solution for the wave equation (6.54) in the absence of boundaries

is
Ix — x'|
8l + —7
w(x, 1) =J ( ] c ) Fx, ) dordr (6.65)

X — X'|

The integration over dt’ can be performed to yield the so-called “retarded
solution,”

w(x 1) j[f(x t)]TEt d3 ’ (666)
The square bracket [ ], means that the time ¢’ is to be evaluated at the
. , [x — x'|
retarded time, t' =t — .
c

6.7 Initial-Value Problem; Kirchhoff’s Surface-Integral Representation

Solution (6.66) is a particular integral of the inhomogeneous wave
equation (6.54). To it can be added any solution of the homogeneous
wave equation necessary to satisfy the boundary conditions. From the
table at the end of Section 1.9 we see that the proper boundary conditions
are Cauchy boundary conditions (y and dy/dn given) on an “open surface.”
For the three-dimensional wave equation an open surface is defined as a
three-dimensional volume specified by one functional relationship between
the four coordinates (z, y, z, #). The customary open surface is ordinary
three-dimensional space at a fixed time, ¢ = ¢, Then the problem is an
initial-value problem with »(x, #,) and dy(x, 1,)/0¢ given for all x. We
wish to determine p(x, ) for all times 7 > £,

To discuss the initial-value problem and also an integral representation
of Kirchhoff for closed bounding surfaces, we use Green’s theorem (1.35),
integrated over time from ¢’ =f,to t' =1, > 1

f:dt’fy P ($Vy — V) = :dt’ i (¢, g — 31’ ) " (66)

We now choose y = y and ¢ = G. With wave equations (6.54) and (6.55)
the left-hand side can be written

51
L-HS =f dt’f &3’ [4711;)(}(’, Néx' —x)d(' — 1)
to v

;o 1{.0% *G
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The first two terms in (6.68) will evidently give the particular integral (6.66).
The last two terms can be integrated by parts with respect to the time to
give
ty
L-HS = 4mp(x, 1) — 447j dt’f ABrf(x, t')G
to 14
1 f oy oG |'=1
+ = d3x’(G = — { 6.69
Ay ot wat =1, ( )

Since G = O att’ = ¢, > ¢, the upper limit vanishes. We can thus combine
(6.69) and (6.67) to give the integral representation for (X, ¢) inside the
volume V, bounded by the surface S, at times ¢ > 1;:

p(x, D =f &3z’ M + _J_f dsx’(G a_’/) —p a_G
V V

x — x| 4rrc? ot’ ot’ L’=to

(" § ( oy aG)
—\ dt' O da’'|G L+ — vw— 6.70
+ 4mrdi, s a on’ wan' ©6.70)

We have written the first term in (6.70) in the usual form (6.66) by using

the explicit result (6.64) for G. We now do the same for the other terms.
For simplicity, first we consider the infinite-domain initial-value

problem with y and dy/0r as given functions of space at ¢t = 1, = 0:

#x0) = F0. 2 (x,0) = Dx) (671)
Then the surface integral in (6.70) can be omitted. To simplify the

notation we take the observation point at the origin and use spherical
coordinates in the integrals. Then we have

(0, 1) =fdQ’f r dr’f(r’, Q. =t — r_) + — fdQ f r dr’
0 4rc?
X |:D(r’, Q) é( - —) — F(r', Q)— 6( + r_ t) } 6.72)
C c t’ =0
The derivative of the delta function can be written

ol
iy | LA
o’ t+

Then, with the properties of the delta function summarized in Section 1.2,
(6.72) becomes

(0, 1) =fdQ’fwr’ dr’f(r’, Ut =t— 1)
0 . c

1 , , 0 ,
+ o fdQ l:tD(ct, Q) + = (F(et, Q ))] (6.73)

=28 — ct)
=0
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This is called Poisson’s solution to the initial-value problem. With no
sources present (f = 0), only values of the initial field at distances ¢z from
the origin contribute at time .

The initial-value problem for the wave equation has been extensively
studied in one, two, three, and more dimensions. The reader is referred to
Morse and Feshbach, pp. 843-847, and to the more mathematical treat-
ment of Hadamard.

The other result which we wish to obtain from (6.70) is the so-called
Kirchhoff representation of the field inside the volume V in terms of the
values of p and its derivatives on the boundary surface S. We thus assume
that there are no sources within ¥ and that the initial values of v and
Oy/dt vanish. (Alternatively, we can assume that the initial time is in the
remote past so that there are no more contributions from the initial-value
solution (6.73) within the volume ¥.) Then the field inside V is given by

t
wix, ) = | dr § da'(c;?l — »ap?g) (6.74)
4md e, s on’ on’

With G given by (6.64) we can calculate 0G/dn’:

_31F0+§’0}

VG= QQV'R =
oR ROR R
R{ 6(t’+5—-t) 6'(t'+5—t);
c C
. 6.75
R R? + cR (6.7

The term involving the derivative of the delta function can be integrated
by parts with respect to the time ¢. Then the Kirchhoff integral repre-
sentation is

1 4; [V'w(x', ) R . = R opx, z')] ,

X, 1) =— of 2 f e — (X, ) — — | d

v 0 4n s“ R R? W ) cRZ  dt'  dret a4
(6.76)

where R = x — X/, and n is a unit normal to the surface S. We emphasize
that (6.76) is not a solution for the field v, but only an integral representa-
tion in terms of its value and the values of its space and time derivatives on
the surface. These cannot be specified arbitrarily; they are known only
when the appropriate Cauchy boundary-value problem has been solved.

The Kirchhoff integral (6.76) is a mathematical statement of Huygens’
principle and is used as the starting point in discussing optical-diffraction
problems. Diffraction is discussed in detail in Chapter 9, Section 9.5 and
below.
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6.8 Poynting’s Theorem

The forms of the laws of conservation of energy and momentum are
important results to establish for the electromagnetic field. We begin by
considering conservation of energy, often called Poynting’s theorem (1884).
For a single charge ¢ the rate of doing work by external electromagnetic
fields E and B is gv - E, where v is the velocity of the charge. The magnetic
field does no work, since the magnetic force is perpendicular to the velocity.
If there exists a continuous distribution of charge and current, the total
rate of doing work by the fields in a finite volume V' is

f J-Edx (6.77)
14

This power represents a conversion of electromagnetic energy into
mechanical or thermal energy. It must be balanced by a corresponding
rate of decrease of energy in the electromagnetic field within the volume V.
In order to exhibit this conservation law explicitly, we will use Maxwell’s
equations to express (6.77) in other terms. Thus we use the Ampére-
Maxwell law to eliminate J: :

f J-Ed”x:—l—f [cE-(v x H)—E-Q—le Bz (6.78)
v 4nlv ot

If we now employ the vector identity,
V. ExH)=H-(VxE)—E-(VxH)
and use Faraday’s law, the right side of (6.78) becomes

oD +H:. a—B} &Pz (6.79)
ot ot

To proceed further we must make two assumptions. The first one is not
fundamental, and is made for simplicity only. We assume that the macro-
scopic medium involved is /inear in its electric and magnetic properties.
Then the two time derivatives in (6.79) can be interpreted, according to
equations (4.92) and (6.16), as the time derivatives of the electrostatic and
magnetic energy densities. We now make our second assumption, namely,
that the sum of (4.92) and (6.16) represents the total electromagnetic
energy, even for time-varying fields. Then if the total energy density is
denoted by

—1
J-Ed3x=—f \:CV-EXH + E-
JV 4rJy ( )

u=L1(E-D+B-H (6.80)
8
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(6.79) can be written

——fJ-Edgx:f [:@+—C.—V-(EXH)}d3x (6.81)
v v Lot 4

Since the volume V is arbitrary, this can be cast into the form of a dif-
ferential continuity equation or conservation law,

27“+v.s=_J.E (6.82)

The vector S, representing energy flow, is called Poynting’s vector. 1t is
given by

S = 4i (E x H) (6.83)

and has the dimensions of (energy/area X time). Since only its divergence
appears in the conservation law, Poynting’s vector is arbitrary to the
extent that the curl of any vector field can be added to it. Such an added
term can, however, have no physical consequences. Hence it is customary
to make the specific choice (6.83).

The physical meaning of the integral or differential form (6.81) or (6.82)
is that the time rate of change of electromagnetic energy within a certain
volume, plus the energy flowing out through the boundary surfaces of the
volume per unit time, is equal to the negative of the total work done by the
fields on the sources within the volume. This is the statement of conser-
vation of energy. If nonlinear effects, such as hysteresis in ferromagnetic
materials, are envisioned, the simple law (6.82) is no longer valid, but
must be supplemented by terms giving the hysteresis power loss.

6.9 Conservation Laws for a System of Charged Particles
and Electromagnetic Fields

The statements (6.81) and (6.82) of Poynting’s theorem have empha-
sized the energy of the electromagnetic fields. The work done per unit time
per unit volume by the fields (J - E) is a conversion of electromagnetic into
mechanical or heat energy. Since matter is ultimately composed of
charged particles (electrons and atomic nuclei), we can think of this rate
of conversion as a rate of increase of energy of the charged particles per unit
volume. Then we can interpret Poynting’s theorem for the microscopic
fields as a statement of conservation of energy of the combined system of
particles and fields. If we denote the total energy of the particles within
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the volume V as
volume, we have

and assume that no particles move out of the

mecll
@Emeen _ f J.Ed% (6.84)

dt v
Then Poynting’s theorem expresses the conservation of energy for the

combined system as

dE
dr

where the total field energy within V is

(Emech + Efiea) = —§ n-Sda (6.85)

Efela =f ud's = if (E? + B & (6.86)
v 8ndv

The conservation of linear momentum can be similarly considered. We
have seen that the force on a charge g in an external field Eis gE. From the
basic law (5.12) for forces on currents we can deduce that the magnetic
force on a charge g moving with velocity vin an external magnetic induction
Bis(g/c)v x B. Thus the total electromagnetic force on a charged particle
is
F = q(E + ¥ x B) (6.87)

c

This is called the Lorentz force. Although we have deduced it within the
framework of steady-state phenomena, it is well verified for all charged
particles with arbitrarily large velocities.

From Newton’s second law we can write the rate of change of the
particle’s momentum as

e _ q(E +¥x B) (6.88)
dt ¢

If the sum of all the momenta of all the particles in the volume V is
denoted by P,..,, we can write

dP @Pmeen f (oE + 1J x B) dx (6.89)

We have converted the sum over particles to an integral over charge and
current densities for convenience in manipulation. The particulate nature
can be recovered at any stage by making use of delta functions, as in
Section 1.2. In the same manner as for Poynting’s theorem, we use
Maxwell’s equations to eliminate p and J from (6.89):

p—Lv.E J—~(VxB_1§E) (6.90)
T 47 c ot
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Note that we have written only E an«l B in (6.90), and not H or D. The
reason is, as mentioned earlier, that ‘'We are imagining all the charges as
treated in the mechanical part of the system and so use the microscopic
equations which involve only E and B. Some remarks will be made in
the next section on the differences whiich arise when some of the particles,
namely, the bound atoms, are included in the “field” energy and momentum
through the dielectric constant and permeability. (See also Problem 6.8.)
With (6.90) substituted into (6.89) the integrand becomes

1 1 1 oE
—JXB=—[EV-E ~Bx ——Bx VxBJ .
E + - SIEV-B) +ZBx B x(VxB)| (69

Then writing
J0E 0 oB
Bx - —=——(E XB)+E x —
ot 6t( ) ot

and adding B(V - B) = 0 to the square bracket, we obtain
1

pE 4+ 13 x B=4L[E(V-E)+B(V-B)~Ex(VxE)
C T

1
~ B x (V x B)] ——Q(E x B) (6.92)
47c Ot
The rate of change of mechanical momentum (6.89) can now be written

deech dj 1 lf
4+ =] —(E X B &z = — EV.E) - E x (V %
di dt V4'}TC( ) & 4 V[( ) ( 5

+ B(V-B) —B x (V x B)]d% (6.93)

We may tentatively identify the volume integral on the left as the total
electromagnetic momentum Py, in the volume V:

Poca = —— | (E x B) d (6.94)
e Jv
The integrand can be interpreted as a density of electromagnetic
momentum. We note that this momentum density is proportional to the
energy-flux density S, with proportionality constant ¢*2.
To complete the identification of the volume integral of - (E x B)as

electromagnetic momentum, and to establish (6.93) as the conservation.
law for momentum, we must convert the volume integral on the right into
a surface integral of the normal component of something which can be
identified as momentum flow.
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Evidently the terms in the volume integral (6.93) transform like vectors.
Consequently, if they are to be combined into the divergence of some
quantity, that quantity must be a tensor of the second rank. While it is
possible to deal with rectangular components of momentum, instead of the
vectorial form (6.93), the tensor can be handled within the framework of
vector operations by introducing a corresponding dyadic. If a tensor in
three dimensions is denoted by T}; (i, j = 1, 2, 3), and ¢, are the unit base
vectors of the coordinate axes, the dyadic correspondmg to the tensor 7,
is defined to be

3 3
=2 Yl (6.95)

The unit vector on the left can form scalar or vector products from the
left, and correspondingly for the unit vector on the right. Given the dyadic,
we can determine the tensor elements by taking the appropriate scalar

roducts:
P “—

T‘L'J' = Gi . T . G, (6.96)
A special dyadic is the idcntity(_fformed with the unit second-rank tensor:

>
I=¢¢€ + €6 + €6 (6.97)

The scalar product of any vector or vector operation with?from either
the left or right merely gives the original vector quantity.

With these sketchy remarks about dyadics, we now proceed with the
vector manipulations needed to convert the volume integral on the right
side of (6.93) into a surface integral. Using the vector identity,

iVB-B)=(B:-V)B+B x (V x B)
the terms involving B in (6.93) can be written
B(V:-B)—B x (VxB)=B(V-B)+ (B-V)B— {VB? (6.98)
This can be identified as the divergence of a dyadic:
B(V-B)+ (B-V)B—{VB>=V.(BB— 11 B2) (6.99)

The electric field term in (6.93) can be put in this same form. Consequently
the conservation of linear momentum becomes

d Rg <«
—_ (Pmecn + Pﬂe[d) =f V . T dsx =§n . T da (6.100)
dt v S
—>
The tensor-dyadic T, called Maxwell’s stress tensor, is

— 1 —
T =~ [EE + BB — } I(E* + BY)] (6.101)
7T
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The elements of the tensor are
T = = [EE, + BB, = 13,(E* + B (6.102)
T

<>
Evidently (—n - T) in (6.100) represents the normal flow of momentum
per unit area out of the volume V through the surface S. Or, in other

words, (—n <T_)) is the force per unit area transmitted across surface S.
This can be used to calculate the forces acting on material objects in
electromagnetic fields by enclosing the objects with a boundary surface .S
and adding up the total electromagnetic force according to the right-hand
side of (6.100).

The conservation of angular momentum of the combined system of
particles and fields can be treated in the same way as we have handled
energy and linear momentum. This is left as a problem for the student
(Problem 6.9).

6.10 Macroscopic Equations

Although the equations of electrodynamics have been written in macro-
scopic form for the most part in this chapter, the reader will be aware that
the derivation of the macroscopic equations from the microscopic ones
was done separately for electrosfatics and magnetostatics in Sections 4.3
and 5.8. Thus there arises the question of whether the derivation still holds
good for time-dependent fields. It is intuitively obvious that it must, since
Maxwell’s addition of the displacement current was done at the macro-
scopic level. Nevertheless, it is useful to examine briefly the derivation to
see in particular how the time variation of the polarization P gives rise to
a current contribution and so converts the microscopic displacement
current 0E/dt into the macroscopic displacement current dD/oz.

The basic assumption inherent in our previous discussions was that the
macroscopic fields E and B which satisfy the two homogeneous Maxwell’s
equations (6.28) are the averages of the corresponding microscopic fields
€ and B:

E(x, 1) = (&), B(x,7) = (B) (6.103)

The averages now involve a temporal and a spatial average, e.g.,

3
© =157 A d EJdTe(X +E 47 (6.104)

where the volume AV and the time interval AT are small compared to
macroscopic quantities.
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Relations (6.103) imply that the macroscopic potentials @ and A are the
averages of their microscopic counterparts,

O(x, 1) = (), A(x,1) = (a) (6.105)

since the fields E and B (or € and ) are derived by differentiation according
to (6.29) and (6.31).

The derivation of the averaged potentials in terms of the molecular
properties proceeds exactly as in Sections 4.3 and 5.8, with two modifi-
cations. The first is that, according to our discussion of the solution of the
wave equation in Section 6.6, we must have a ““retarded” solution. Thusthe
same steps that led to (4.33) now lead to the averaged scalar potential:

@ = oo Ema D 4 iy v ()| e
Ix — x| Ix — x|/ Jret

(6.106)
To this must be added the retarded contribution of the excess free charge,
pex- The second change comes in the vector potential. In the steady-state
situation the molecular contribution to the vector potential was the sum of
terms like (5.75), representing magnetic dipole contributions. The leading
term in the expansion vanished because of the condition V- J = 0. With
time-dependent fields this is no longer true. If we retrace our steps to
equation (5.51), we see that the leading term in the expansion of a,, is

1
Amol = —— J-Jmol(x', t’) dax' + (

magnetic dlpole) 4 - (6.107)
clx — x|

term (5.75)

For simplicity we omit the retarded symbols temporarily. Using the
identity V'« (2J) = J, + z,/V’ + J, the first term can be transformed into

Amor = il fx’(V’ ~Jno) &2 + (5.75) + - -+ (6.108)

clx — x,l
The continuity equation can now be used to write V' - J, | = —9p,,,,/0¢’,
and the definition of molecular electric dipole moment (4.25) can be

employed to cast (6.108) in the form:

amoi(x, 1) =~ l:l dpi(r) 1 + m,(t) x (x — x;)
] 54 at’ [x —-— le |x —_ xjf3

Lt (6.109)

With time-dependent fields we have a leading term proportional to the
time rate of change of the electric dipole moment.* Summing over all
* Actually, for time-varying fields not only does the leading term appear, but also from
1 >
B VAl , where Q

c ot Ix — x'|
is the quadrupole dyadic of the molecule. Since we kept only electric dipole terms in

(6.106), we drop this quadrupole term here.

the second term in (5.51) there arises a term which is
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molecules and averaging according to (6.104) leads to the averaged
microscopic vector potential:

(a) = JN( )[ <] pw <Pmm(x ) ‘

! )} d®*x' (6.110)
Ix — x’] ret
To this must be added the standard contribution from the macroscopic
conduction-current density J(x, 7).

Solutions (6.106) and (6.110), augmented by the free-charge and con-
duction-current contributions, can be written as

— _ﬁ_ 3,/

@ —f[]x — x'l:lretd v
S0

@ = cf[[x — x'| retd

With definitions (4.36) and (5.77) of macroscopic polarization P and
magnetization M, the averaged charge and current densities in (6.111) can
be expressed as

+ clmpo(x’, 1)) X V’(

(6.111)

p)=p—V-P
@ =T+ c(V x M)+ %P (6.112)

where p and J are the macroscopic charge and current densities.

We are now in a position to verify explicitly the deduction of the
macroscopic Maxwell’s equations from the microscopic ones. The
homogeneous ones follow directly from identification (6.103). Of the
inhomogeneous ones, consider the microscopic form of Ampére’s law:

Uxp=try Lo (6.113)
c ¢ Ot
Averaging both sides and using (6.112) for {J), we get
47 oP 10E
VxB-—(J+c(V><M)+ )+z-a—t- (6.114)
With the definitions H = B — 47M and D = E + 47P, this becomes
vxu=47y,190 (6.115)
¢ ¢ Ot

as required. The other equation, V « D = 4xp, follows in an even simpler
way from (6.112).
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As a final remark concerning the macroscopic field equations we discuss
the differences between the microscopic and macroscopic forms of
Poynting’s theorem. We derived the conservation of energy in Section
6.8 in the macroscopic form (6.81). Written out explicitly in terms of all
the fields, it is

—f (E x H)- nda-i———-f ( %l:)d3x=—fVE-Jd3x
(6.116)

The different fields E, D, B, H enter in characteristic ways which can be
understood if we establish contact with the microscopic form of Poynting’s
theorem. We can do this most easily by merely expressing the left side of
(6.116) in terms of the basic fields E and B. Then (6.116) can easily be
shown to be

c 1 oE oB
— Ex B)-nd —J‘ (E- B~—> a2
41rfs( )-mda +417 v ot + dt N

= _f (J +cV X M + aaP) &z (6.117)
vV

From (6.112) we see that (6.117) looks like the statement of Poynting’s
theorem for the microscopic fields, except that each quantity is replaced by
its average. This is not the average of Poynting’s theorem for microscopic
fields, but differs from it by a set of terms which are the statement of energy
conservation for the fluctuating fields measuring the instantaneous
departure of € and  from E and B. Apart from these fluctuating fields,
(6.117) can be interpreted as follows.

If we include in the sources of charge and current the electronic motion
within the molecules as well as the conduction current, then Poynting’s
theorem appears in terms of the basic fields E and B and involves the work
done per unit time by the electric field on a// currents. If we choose to

oP )
treat the work done on the effective molecular current l:—— + ¢(V x M)J

ot
as energy stored or propagated in the medium, that term can be taken
over to the left-hand side and included in the energy-density and energy-
flow terms characteristic of the medium. Then we return to the macro-
scopic Poynting’s theorem (6.116) with only the work done per unit time
by the electric field on the conduction current shown explicitly. It is
natural to absorb the energy associated with the effective molecular
current into the energy stored in the field, since it is a property of the
medium and is in general stored energy (i.e., reactive power) which involves
no time-average dissipation (not true for magnetic media with hysteresis
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effects). The power associated with the conduction current is, on the
other hand, dissipative, since it involves a conversion of electrical energy
into mechanical.
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PROBLEMS

6.1 (@) Show that for a system of current-carrying elements in empty space the
total energy in the magnetic field is

s dg,J(x) Jx)
= -

where J(x) is the current density.
(b) If the current configuration consists of » circuits carrying currents

I, 1y, . .., I,, show that the energy can be expressed as
# " "
=} 2 TE > Y ML,
i=1 =1 §>i

Exhibit integral expressions for the self-inductances (L,) and the mutual
inductances (M ;).

6.2 A two-wire transmission line consists of a pair of nonpermeable parallel
wires of radii @ and b separated by a distance 4 > a 4+ b. A current flows
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6.3

6.4

6.5

6.6

down one wire and back the other. It is uniformiy distributed over the
cross section of each wire. Show that the self-inductance per unit length is

2
L =1+2In (d—)
ab

A circuit consists of a thin conducting shell of radius a and a parallel
return wire of radius b inside. If the current is assumed distributed
uniformly throughout the cross section of the wire, calculate the self-
inductance per unit length. What is the self-inductance if the inner con-
ductor is a thin hollow tube?

Show that the mutual inductance of two circular coaxial loops in a homo-
geneous medium of permeability u is

My, = 4 \/a_bl:(% - k)K(k) - %E(k)]

C2
where
4ab

2=———_—_
k (a + b2 + d?

and a, b are the radii of the loops, 4 is the distance between their centers,
and K and E are the complete elliptic integrals.

Find the limiting value when d < a, b and a ~ b.
A transmission line consists of two, parallel perfect conductors of arbitrary,
but constant, cross section. Current flows down one conductor and returns
via the other.

Show that the product of the inductance per unit length L and the
capacitance per unit length C is

where 1 and e are the permeability and the dielectric constant of the medium
surrounding the conductors, while ¢ is the velocity of light in vacuo.
Prove that any vector field F can be decomposed into transverse and
longitudinal parts,
. F = Fl + Ft

with V. F, = 0 and V x F; = 0, where F, and F; are given by (6.49) and
(6.50).
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6.7 (a) Show that the one-dimensional wave equation,
Py 1 Py
2
has the general solution,
¢
p(x, 1) = %f(t - f) + %f(t + 73) + ff +WO)F(t’) ar’
¢ _ c 2 )i —(ziy

where the boundary conditions are specified by the values of v and 2y/ox
at z = 0 for all time:

¥0,0 =1, 20,0 = F()

(b) What is the corresponding solution if the boundary conditions are
that, at =0,
: dy
¥ 0) =f@), -0 =g@)
6.8 Discuss the conservation of energy and linear momentum for a macro-
scopic system of sources and electromagnetic fields in a medium described
by a dielectric constant € and a permeability #. Show that the energy

density, Poynting’s vector, field-momentum density, and Maxwell stress
tensor are given by

U= (B + uH?)
8=
S =S (E x H)
e
- ne
g =1 (E x H)

1
T, = Z;r[eEiEj + pHH, — 36,(E? + uH?%)]

What modifications arise if € and w are functions of position?

6.9 With the same assumptions as in Problem 6.8 discuss the conservation of
angular momentum. Show that the differential and integral forms of the
conservation law are

d «—>
a_t(gmech +gﬁeld) +V-M=0
and

d | o
— 1 (Prech + L) d*> + | n-Mda =0
dt )y s

where the field angular-momentum density is

Eﬂe,d=x><g=4ﬁ%xx(ExH)

T
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6.10

6.11

6.12

and the flux of angular momentum is described by the tensor

—> &
M=Txx

«r
Note: M can be written as a third-rank tensor, M;;; = Tz, — Tyx;.

But in the indices j and k it is antisymmetric and so has only three inde-
pendent elements. Including the index i, M ;;;, therefore has nine components
and can be written as a pseudo tensor of the second rank, as above.

A plane wave is incident normally on a perfectly absorbing fiat screen.

(a) From the law of conservation of linear momentum show that the
pressure (called radiation pressure) exerted on the screen is equal to the
field energy per unit volume in the wave.

(&) In the neighborhood of the earth the flux of electromagnetic energy

from the sun is approximately 0.14 watt/cm® If an interplanetary “sail-
plane’” had a sail of mass 107 gm/em?® of area and negligible other weight,
what would be its maximum acceleration in centimeters per square second
due to the solar radiation pressure? How does this compare with the
acceleration due to the solar “wind”” (corpuscular radiation)?
A circularly polarized plane wave moving in the z direction has a finite
extent in the = and y directions. Assuming that the amplitude modulation
is slowly varying (the wave is many wavelengths broad), show that the
electric and magnetic fields are given approximately by

. i[O, , O, __
E(w, Y, 2, t) ~ [Eo(.%‘, y)(el + 192) + z(a“wo + 735.0) ea]eﬂcz—zwt

B~ FiVueE

where e,, ,, €, are unit vectors in the «, ¥, z directions.
For the circularly polarized wave of Problem 6.11 caleylate the time-
averaged component of angular momentum parallel to the direction of
propagation. Show that the ratio of this component of angular momentum
to the energy of the wave is

L,

:=:(:_1
U w

Interpret this result in terms of quanta of radiation (photons). Show that
for a cylindrically symmetric, finite plane wave the transverse components
of angular momentum vanish.



Plane Electromagnetic Waves

This chapter is concerned with plane waves in unbounded, or
perhaps semitinfinite, media. The basic properties of plane waves in non-
conducting media—their transverse nature, the various states of polari-
zation—are treated first. Then the behavior of one-dimensional wave
packets is discussed; group velocity is introduced; dispersive effects are
considered. Reflection and refraction of radiation at a plane interface
between dielectrics are presented. Then plane waves in a conducting
medium are described, and a simple model of electrical conductivity is
discussed. Finally the conductivity model is modified to apply to a
tenuous plasma, or electron gas, and the propagation of transverse waves
in a plasma in the presence of an external static magnetic field is con-
sidered.

7.1 Plane Waves in a Nonconducting Medium

A basic feature of Maxwell’s equations for the electromagnetic field is
the existence of traveling wave solutions which represent the transport of
energy from one point to another. The simplest and most fundamental
electromagnetic waves are transverse, plane waves. We proceed to see how
such solutions can be obtained in simple nonconducting media described
by spatially constant permeability and susceptibility. In the absence of
sources, Maxwell’s equations in an infinite medium are:

V-E=0 VxE+1%§=o |

¢ ot (1.1)
V.B=0 vXB_&@=oJ

c Ot

202
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where the medium is characterized by the parameters u, €. By combining
the two curl equations and making use of the vanishing divergences, we
find easily that each cartesian component of E and B satisfies the wave
equation:
8 10%
Vi — iy i 0 (7.2)
where

(7.3)

¢
V= —=

e
is a constant of the dimensions of velocity characteristic of the medium.
The wave equation (7.2) has the well-known plane-wave solutions:

U= eik- Xtk (74)
where the frequency w and the magnitude of the wave vector k are related
by

k=2= /2 (7.5)
v ¢

If we consider waves propagating in only one direction, say, the x
direction, the fundamental solution is

u(w, t) = Aethr—iwt + Be—thke—iwt (7.6)
Using (7.5), this can be written
uk(x’ t) = Aeik(x*vt) + Be—ilc(x+vt) (7.7)

If vis not a function of & (i.e., a nondispersive medium, with e independent
of frequency), we know by the Fourier integral theorem (2.50) and (2.51)
that by linear superposition we can construct from u,(x, ) a general
solution of the form:

ulx, ) = flx — vt) + glx + vp) (7.8)

where f(z) and g(z) are arbitrary functions. It is easy to verify directly
that this is a solution of the wave equation (7.2). Equation (7.8) represents
waves traveling to the right and to the left with velocities of propagation
equal to v, which is called the phase velocity of the wave. If v is a function
of k, the situation is not as simple-—the initial waves f(x) and g(x) are not
propagated without distortion at velocity v (see Section 7.3). For each
frequency component, however, v given by (7.3) is still the phase velocity.

The basic plane wave (7.4) and (7.5) satisfies the scalar-wave equation
(7.2). But we still must consider the vector nature of the electromagnetic
fields and the requirement of satisfying Maxwell’s equations. With the
convention that the physical electric and magnetic fields are obtained by
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taking the real parts of complex quantities, we assume that the plane-
wave fields are of the form:

E(X, t) — €1Eoeik'x—‘i(l)t
B(x, 1) = €,B,e™ ¥~

where €, €, are two constant real unit vectors, and E,, B, are complex
amplitudes which are constant in space and time. The requirements
V.E =0 and V:B = 0 demand that

€ k=0, €-k=0 (7.10)

1.9

This means that E and B are both perpendicular to the direction of
propagation k. Such a wave is called a transverse wave. The curl equations
provide further restrictions. Substitution of (7.9) into the first curl
equation in (7.1) leads to the relation:

i[(k x €)E, — g—)ezBoileik"'m =0 (7.11)
¢
Equation (7.11) (really several equations) has the solution:
€= k x ¢ (1.12)
k
and
By = Ve E, (7.13)

This shows that (e,, €;, k) form a set of orthogonal vectors and that E and
B are in phase and in constant ratio, as indicated in Fig. 7.1. The wave
described by (7.9), (7.12), and (7.13) is a transverse wave propagating in
the direction k. It represents a time-averaged flux of energy given by the

Fig. 7.1 Propagation vector k and
two orthogonal polarization vectors
x €; and €,.
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real part of the complex Poynting’s vector:

s=1C¢pxm (7.14)
2 4n

The energy flow (energy per unit area per unit time) is

=ijama (7.15)
TN p

where €; is a unit vector in the direction of k. The time-averaged density
u is correspondingly

u=_L (E-E*+ L1B.B¥ (7.16)
167w "
This gives
u = — |E|? (7.17)
8

The ratio of the magnitude of (7.15) to (7.17) shows that the velocity of
energy flow is v = ¢/V ue, as expected from (7.8).

7.2 Linear and Circular Polarization

The plane wave (7.9) is a wave with its electric field vector always in the
direction €,. Such a wave is said to be linearly polarized with polarization
vector €,. To describe a general state of polarization we need another
linearly polarized wave which is independent of the first. Clearly the two
waves

E1 — elEle’él{ - x—iwl
_ ik « x—iot
E, = elpe (7.18)
with B_\/_kxE j=1,2

represent two such linearly independent solutions. The amplitudes E;
and E, are complex numbers to allow the possibility of a phase difference
between the waves. A general solution for a plane wave propagating in
the direction Kk is given by a linear combination of E; and E,:

E(x, 1) = (&F; + eEpe™ (7.19)
If E; and E, have the same phase, (7.19) represents a linearly polarized
wave, with its polarization vector making an angle 6 = tan—! (E,/E;) with

€, and a magnitude £ = V'E;2 4+ E,?, as shown in Fig, 7.2.
If E, and E, have different phases, the wave (7.19) is elliptically polarized.
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E

Fig. 7.2 Electric field of a linearly polarized
£ wave.

€1

To understand what this means let us consider the simplest case, circular
polarization. Then E, and E, have the same magnitude, but differ in phase
by 90°. The wave (7.19) becomes:

E(x, t) = Ey(e, + iey)e’™ = (7.20)
0\*1 2

with E, the common real amplitude. We imagine axes chosen so that the
wave is propagating in the positive z direction, while €, and €, are in the z
and y directions, respectively. Then the components of the actual electric
field, obtained by taking the real part of (7.20), are

E (x,1) = E, cos (k2 — wt) } (7.21)

E(x, 1) = FE;sin (kz — wt)

At a fixed point in space, the fields (7.21) are such that the electric vector
is constant in magnitude, but sweeps around in a circle at a frequency o,
as shown in Fig. 7.3. For the upper sign (€; 4 i€,), the rotation is counter-
clockwise when the observer is facing into the oncoming wave. This wave
is called left circularly polarized in optics. In the terminology of modern
physics, however, such a wave is said to have positive helicity. The latter
description seems more appropriate because such a wave has a positive
projection of angular momentum on the z axis (see Problem 6.12). For
the lower sign (e, — i€,), the rotation of E is clockwise when looking into

2

b

L Fig. 7.3 Electric field of a circularly polarized
E(x, ) = Eo(e; + ieg)e’™ > ~ 1t wave.
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nje

ol

- x

Fig. 7.4 Electric field and magnetic induction for an elliptically polarized wave.

the wave; the wave is right circularly polarized (optics); it has negative
helicity.

The two circularly polarized waves (7.20) form an equally acceptable
set of basic fields for description of a general state of polarization. We
introduce the complex orthogonal unit vectors:

1

€=l kin) (7.22)
with properties
€. ¥oep =
€. *-¢g=0 (7.23)
e.”. €. =1

Then a general representation, equivalent to (7.19), is
E(x, 1) = (E €, + E_e_)e™ *™! (7.24)

where E, and E_ are complex amplitudes. If £, and E_ have different
magnitudes, but the same phase, (7.24) represents an elliptically polarized
wave with principal axes of the ellipse in the directions of €; and €,. The
ratio of semimajor to semiminor axis is (1 4+ r)/(1 — r), where E_[E, = r.
If the amplitudes have a phase difference between them, E_[E, = re',
then it is easy to show that the ellipse traced out by the E vector has its
axes rotated byan angle («/2). Figure7.4 shows the general case ofelliptical
polarization and the ellipses traced out by both E and B at a given pointin
space.
For r = £1 we get back a linearly polarized wave.
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7.3 Superposition of Waves in One Dimension; Group Velocity

In the previous sections plane-wave solutions to Maxwell’s equations
were found and their properties discussed. Only monochromatic waves,
those with a definite frequency and wave number, were treated. In actual
circumstances such idealized solutions do not arise. Even in the most
monochromatic light source or the most sharply tuned radio transmitter
or receiver, one deals with a finite (although perhaps small) spread of
frequencies or wavelengths. This spread may originate in the finite
duration of a pulse, in inherent broadening in the source, or in many
other ways. Since the basic equations are linear, it is in principle an
elementary matter to make the appropriate linear superposition of
solutions with different frequencies. In general, however, there are several
new features which arise.

1. If the medium is dispersive (i.e., the dielectric constant is a function
of the frequency of the fields), the phase velocity is not the same for each
frequency component of the wave. Consequently different components of
the wave travel with different speeds and tend to change phase with respect
to one another. This leads to a change in the shape of a pulse, for example,
as it travels along.

2. In a dispersive medium the velocity of energy flow may differ greatly
from the phase velocity, or may even lack precise meaning.

3. In a dissipative medium, a pulse of radiation will be attenuated as it
travels with or without distortion, depending on whether the dissipative
effects are or are not sensitive functions of frequency.

The essentials of these dispersive and dissipative effects are implicit in
the ideas of Fourier series and integrals (Section 2.9). For simplicity, we
consider scalar waves in only one dimension. The scalar amplitude
u(z, t) can be thought of as one of the components of the electromagnetic
field. The basic solution to the wave equation (7.2) has been exhibited in
(7.6). The relationship between frequency w and wave number £ is given
by (7.5) for the electromagnetic field. Either w or k can be viewed as the
independent variable when one considers making a linear superposition.
Initially we will find it most convenient to use k as an independent variable.
To allow for the possibility of dispersion we will consider w as a general
function of k:

w = w(k) (7.25)

Since the dispersive properties cannot depend on whether the wave travels
to the left or to the right, @ must be an even function of k, w( —k) =
w(k). For most wavelengths w is a smoothly varying function of k. But at
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certain frequencies there are regions of “‘anomalous dispersion” where
varies rapidly over a narrow interval of wavelengths. With the general form
(7.25), our subsequent discussion can apply equally well to electromagnetic
waves, sound waves, de Broglie matter waves, etc. For the present we
assume that k and w(k) are real, and so exclude dissipative effects.

From the basic solutions (7.6) we can build up a general solution of the
form

u(z, f) = \/_12;7.7 f _ZA(k)e““'i“’("”dk (7.26)

The factor 1/V/27 has been inserted to conform with the Fourier integral
notation of (2.50) and (2.51). The amplitude A(k) describes the properties
of the linear superposition of the different waves. It is given by the
transform of the spatial amplitude wu(z, f), evaluated at t = 0*:

A(k) = 7 wf u(z, 0)e™ "= dx (7.27)

If u(x, 0) represents a harmonic wave e for all =, the orthogonality

relation (2.52) shows that A(k) = vV 2md(k — k), corresponding to a
monochromatic traveling wave u(z, 1) = e*e* “®o a5 required. If,
however, at ¢t = 0, u(x, 0) represents a finite wave train with a length of
order Ax, as shown in Fig. 7.5, then the amplitude A(k) is not a delta
function. Rather, itis a peaked function with a breadth of the order of Ak,
centered around a wave number k, which is the dominant wave number in
the modulated wave u(z, 0). If Ax and Ak are defined as the rms deviations
from the average values of x and k [defined in terms of the intensities
lu(x, 0)12 and [A(k)|?], it is possible to draw the general conclusion:

Ax Ak =} (1.28)

The reader may readily verify that, for most reasonable pulses or wave
packets which do not cut off too violently, Ax times Ak lies near the lower
limiting value in (7.28). This means that short wave trains with only a
few wavelengths present have a very wide distribution of wave numbers of
monochromatic waves, and conversely that long sinusoidal wave trains
are almost monochromatic. Relation (7.28) applies equally well to
distributions in time and in frequency.

The next question is the behavior of a pulse or finite wave train in time.

* The following discussion slights somewhat the initial-value problem. For a second-
order differential equation we must specify not only u(z, 0) but also du(z, 0)/dr. This
omission is of no consequence for the rest of the material in this section. It is remedied in
the following section.
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u(x, 0)

Ak

A(k)

Fig. 7.5 A harmonic wave train
k of finite extent and its Fourier
spectrum in wave number.

bl S ——

(=3

o

The pulse shown at £ = 0 in Fig. 7.5 begins to move as time goes on. The
different frequency or wave-number components in it move at different
phase velocities. Consequently there is a tendency for the original
coherence to be lost and for the pulse to become distorted in shape. At the
very least, we might expect it to propagate with a rather different velocity
from, say, the average phase velocity of its component waves. The general
case of a highly dispersive medium or a very sharp pulse with a great
spread of wave numbers present is difficult to treat. But the propagation
of a pulse which is not too broad in its wave-number spectrum, or a pulse
in a medium for which the frequency depends weakly on wave number, can
be handled in the following approximate way. The wave at time # is given
by (7.26). If the distribution A(k) is fairly sharply peaked around some
value k,, then the frequency w(k) can be expanded around that value of &:

o) = o + 22| (k — k) + - - (7.29)
dk lo

and the integral performed. Thus
ptlkol(do/ ak)fo— welt

u(z, f) ~ = f A(kyella—@olanlote g (7.30)
v v -—®

From (7.27) and its inverse it is apparent that the integral in (7.30) is just
u(@’, 0), where 2’ = & — (dofdk)|t:

dw
, [y~ ——
u(z, f) u(x p

1, 0) ei[igo(dw/dk) lo—wolt (7,31)
O /
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This shows that, apart from an overall phase factor, the pulse travels along
undistorted in shape with a velocity, called the group velocity:

d

g

v, =

(7.32)

Q
=~
=]

If an energy density is associated with the magnitude of the wave (or its
absolute square), it is clear that in this approximation the transport of

energy occurs with the group velocity, since that is the rate at which the
pulse travels along.

For light waves the relation between « and k is given by

_ k.
w(k) = o (7.33)

where ¢ is the velocity of light in vacuum, and n(k) is the index of refraction
expressed as a function of k. The phase velocity is

. % - %k) (1.34)

and is greater or smaller than ¢ depending on whether n(k) is smaller or
larger than unity. For most optical wavelengths n(k) is greater than unity
in almost all substances. The group velocity (7.32) is

_ c
b= [r(w) + o(dn/dw)]

(7.35)

In this equation it is more convenient to think of » as a function of @ than
of k. For normal dispersion (dn/dw) > 0, and also n > 1; then the
velocity of energy flow is less than the phase velocity and also less than c.
In regions of anomalous dispersion, however, dn/dw can become large and
negative. Then the group velocity differs greatly from the phase velocity,
often becoming larger than c.* The behavior of group and phase velocities
as a function of frequency in the neighborhood of a region of anomalous
dispersion is shown in Fig. 7.6.

* There is no cause for alarm that our ideas of special relativity are here violated;
group velocity is no longer a meaningful concept. A large value of dn/de is equivalent to
a rapid variation of w as a function of k. Consequently the approximations made in
(7.29) fI. are no longer valid. The behavior of the pulse is much more involved.
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n{w)

ole—

Fig. 7.6 Index of refraction n{w)
as a function of frequency w at
a region of anomalous disper-
sion; phase velocity v, and group
velocity v, as functions of w.

7.4 Ilustration of Propagation of a Pulse in a Dispersive Medium

To illustrate the ideas of the previous section and to show the validity
of the concept of group velocity we will now consider a specific model for
the dependence of frequency on wave number and will calculate without
approximations the propagation of a pulse in this model medium. Before
specifying the particular model it is necessary to state the initial-value
problem in more detail than was done in (7.26) and (7.27). As noted there,
the proper specification of an initial-value problem for the wave equation
demands the initial values of both function w(x, 0) and time derivative
du(x, 0)/0¢. If we agree to take the real part of (7.26) to obtain u(x, 1),

u(x, f) = _f A(kye e~ io®t g 4 ¢.c. (7.36)
then it is easy to show that A(k) is given in terms of the initial values by:

A(k) = 7 ﬂfm e_”‘”[u( ,0) +Tik)3( 0)] de  (1.37)

We will take a Gaussian modulated oscillation

u(z, 0) = e~ *72L" cos kyx (7.38)

as the initial shape of the pulse. For simplicity, we will assume that

ou
= (@0 =0 (739)
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This means that at times immediately before 1 = 0 the wave consisted of
two pulses, both moving towards the origin, such that at 1 = 0 they
coalesced into the shape given by (7.38). Clearly at later times we expect
each pulse to re-emerge on the other side of the origin. Consequently the
initial distribution (7.38) may be expected to split into two identical
packets, one moving to the left and one to the right. The Fourier amplitude
A(k) for the pulse described by (7.38) and (7.39) is:

®© 2,0 .2
A(k) == \/% f e e 2L" cog kox du
T < — o0
_ g[e—(ﬁ/z)uc—k.,)"’ 4 om ERER™ (7.40)
5

-~

The symmetry A(—k) = A(k) is a reflection of the presence of two pulses
traveling away from the origin, as will be seen below.

In order to calculate the wave form at later times we must specify
w = w(k). As a model allowing exact calculation and showing the
essential dispersive effects, we assume

w(k) = 1/( 1+ 5‘%"—2) (7.41)

where v is a constant frequency, and a is a constant length which is a typical
wavelength where dispersive effects become important. Since the pulse
(7.38) is a modulated wave of wave number k = k;, the approximate
arguments of the preceding section imply that the two pulses will travel
with the group velocity

da
v, = i (ko) = va?k, (7.42)

and will be essentially unaltered in shape provided the pulse is not too
narrow in space.

The exact behavior of the wave as a function of time is given by (7.36),
with (7.40) for A(k):

L R e 2 2 o 2 2

u(x, t) = i Ref [e (L7/2)(k~ ko) +e (L5/2)(k+ Kp) ]e“‘w ivifl+(ak /2)] g
2\/27T —a0

(7.43)
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The integrals can be performed by appropriately completing the squares
in the exponents. The result is

exp |:_ (x — va’kyt)? ]
P2
2 ia*vt
u(z, 1) = } Re “(1* L2)

- 9.\
(1+1avt)
L2

a®ky?

2 H + ko~ —ky)

X exp [ikox — iv(l +

(7.44)

Equation (7.44) represents two pulses traveling in opposite directions.
The peak amplitude of each pulse travels with the group velocity (7.42),
while the modulation envelope remains Gaussian in shape. The width of
the Gaussian is not constant, however, but increases with time. The width

of the envelope is
a2 \P
Liy=| L+ T)] (7.45)

Thus the dispersive effects on the pulse are greater (for a given elapsed
time), the sharper the envelope. The criterion for a small change in shape
is that L > a. Of course, at long times the width of the Gaussian increases
linearly with time

a’vt

L) >~ (7.46)

but the time of attainment of this asymptotic form depends on the ratio
(L/a). A measure of how rapidly the pulse spreads is provided by a com-
parison of L(r) given by (7.45), with v,t = va®k,t. Figure 7.7 shows two
examples of curves of the position of peak amplitude (v,f) and the positions
v,t £ L(t), which indicate the spread of the pulse, as functions of time. On
the left the pulse is not too narrow compared to the wavelength k,~* and
so does not spread too rapidly. The pulse on the right, however, is so
narrow initially that it is very rapidly spread out and scarcely represents a
pulse after a short time.

Although the above results have been derived for a special choice (7.38)
of initial pulse shape and dispersion relation (7.41), their implications are
of a more general nature. We have seen in Section 7.3 that the average
velocity of a pulse is the group velocity v, = dw/dk = o'. The spreading
of the pulse can be accounted for by noting that a pulse with an initial
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koL >>1 kLS 1

Fig. 7.7 Change in shape of a wave packet as it travels along. The broad packet,
containing many wavelengths (k,L >> 1), is distorted comparatively little, while the
narrow packet (kL < 1) broadens and diffuses out rapidly.

spatial width Az, must have inherent in it a spread of wave numbers
Ak ~ (1/Az,). This means that the group velocity, when evaluated for
various k values within the pulse, has a spread in it of the order

”

Av, ~ " Ak ~ 2 (7.47)
Az,
At a time ¢ this implies a spread in position of the order of Av,t. If we
combine the uncertainties in position by taking the square root of the sum
of squares, we obtain the width Ax(¢) at time ¢:

Mel) =~ f A + (Z;Z J (7.48)

We note that (7.48) agrees exactly with (7.45) if we put Az, = L. The
expression (7.48) for Axz(f) shows the general result that, if »”" %0, a
narrow pulse spreads rapidly because of its broad spectrum of wave
numbers, and vice versa. All these ideas carry over immediately into wave
mechanics. They form the basis of the Heisenberg uncertainty principle.
In wave mechanics, the frequency is identified with energy divided by
Planck’s constant, while wave number is momentum divided by Planck’s
constant.

The problem of wave packets in a dissipative, as well as dispersive,
medium is rather complicated. Certain aspects can be discussed analyti-
cally, but the analytical expressions are not readily interpreted physically.
Wave packets are attenuated and distorted appreciably as they propagate.
The reader may refer to Stratton, pp. 301-309, for a discussion of the
problem, including numerical examples.
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7.5 Reflection and Refraction of Electromagnetic Waves at a Plane
Interface between Dielectrics

The reflection and refraction of light at a plane surface between two
media of different dielectric properties are familiar phenomena. The
various aspects of the phenomena divide themselves into two classes.

(1) Kinematic properties:

(@) Angle of reflection equals angle of incidence.

(b) Snell’s law: Z:l—i = %—, where i, r are the angles of incidence
and refraction, while #z, n" are the corresponding indices of re-
fraction.

(2) Dynamic properties:

(a) Intensities of reflected and refracted radiation.
(b) Phase changes and polarization.

The kinematic properties follow immediately from the wave nature of
the phenomena and the fact that there are boundary conditions to be
satisfied. But they do not depend on the nature of the waves or the
boundary conditions. On the other hand, the dynamic properties depend
entirely on the specific nature of electromagnetic fields and their boundary
conditions.

The coordinate system and symbols appropriate to the problem are
shown in Fig. 7.8. The media below and above the plane z = O have
permeabilities and dielectric constants u, € and ', €, respectively. A plane
wave with wave vector k and frequency o is incident from medium g, e.
The refracted and reflected waves have wave vectors k” and k”, respectively,
and n is a unit normal directed from medium g, € into medium g, €.

©'e .
pe

k/ i ) Fig. 7.8 Incident wave k strikes
k plane interface between different
media, giving rise to a reflected
wave k” and a refracted wave K’.
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According to (7.18), the three waves are

INCIDENT
E = Eoezk-x~1wt
B — \/!;k x E (7.49)
REFRACTED
E = Eoreik’-xwiwt
B oKX E} (7:30)
pe 2
REFLECTED
E’ = Eol/elk”-x——'twl }
K X E (7.51)
B” F— e
pe—
The wave numbers have the magnitudes
” w -
k=K =k=2/u
¢ (7.52)

Kl=k =2 Jue

The existence of boundary conditions at z = 0, which boundary
conditions must be satisfied at all points on the plane,at all times, implies
that the spatial (and time) variation of all fields must be the same at z = 0.
Consequently, we must have the phase factors all equal atz = 0,

(k- %), = (k' - %), = (K" - X, (7.53)

independent of the nature of the boundary conditions. Equation (7.53)
contains the kinematic aspects of reflection and refraction. We see
immediately that all three wave vectors must lie in a plane. Furthermore,
in the notation of Fig. 7.8,

ksini=k'sinr =k"sin+’ (7.54)

Since k" = k, we find i = r’; the angle of incidence equals the angle of
reflection. Snell’s law is

= g (1.55)

The dynamic properties are contained in the boundary conditions—
normal components of D and B are continuous; tangential components of
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B’
n k’
T
-
we
113
B B~
k [ 28 I
E E” Fig. 7.9 Reflection and refraction
with polarization perpendicular to
k” the plane of incidence.

E and H are continuous. In terms of fields (7.49)—(7.51) these boundary
conditions at z = O are:

[€(Ey + Ey") — €Ey]-n =0
[k xEy+ K" xE” —k' x E/]-n=0
Ey+E " —E/)xn=0 (7.56)

[l(kx E, + k" x E; —l/(k' x EO’)] xn=0
#“ p

J

In applying these boundary conditions it is convenient to consider two
separate situations, one in which the incident plane wave is linearly
polarized with its polarization vector perpendicular to the plane of
incidence (the plane defined by k and m), and the other in which the
polarization vector is parallel to the plane of incidence. The general case
of arbitrary elliptic polarization can be obtained by appropriate linear
combinations of the two results, following the methods of Section 7.2.

We first consider the electric field perpendicular to the plane of incidence,
as shown in Fig. 7.9. All the electric fields are shown directed away from
the viewer. The orientations of the B vectors are chosen to give a positive
flow of energy in the direction of the wave vectors. Since the electric
fields are all parallel to the surface, the first boundary condition in (7.56)
yields nothing. The third and fourth equations in (7.56) give

Ey+ ES —E/ =0

< ¢ 7.57
JE(EO_EO,I)COSi_JE_,EO,COSF=O ( )
# p

e —_—
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while the second, using Snell’s law, duplicates the third. The relative
amplitudes of the refracted and reflected waves can be found from (7.57).
These are:

E PERPENDICULAR TO PLANE OF INCIDENCE

Ey 2 2cosisinr
—_— = —
E, | +,utar1i sin (i + r)

u'tanr

{ ptan i e (7.58)

Ey _ _,u’lanra_sin(i—r)
E, 1a ptan i sin (i + r)

W' tanr

The expression on the right in each case is the result appropriate for
4 = p, as is generally true for optical frequencies.

If the electric field is parallel to the plane of incidence, as shown in Fig.
7.10, the boundary conditions involved are normal D, tangential £, and
tangential H [the first, third, and fourth equations in (7.56)]. The
tangential £ and # continuous demand that

cos i(Ey— E,") —cosr Ey

0]
A/E (Eq + E) _A/ E/ =0 ‘L (7.59)

7

Normal D continuous, plus Snell’s law, merely duplicates the second of
these equations. The relative amplitudes of refracted and reflected fields
are therefore

Hlé'
L€ k

Fig. 7.10 Reflection and refrac- B B”
tion with polarization parallel to
the plane of incidence. k”
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E PARALLEL TO PLANE OF INCIDENCE

ED_’_zA/E sin 2i N 2cosisinr
E, P Gin 2 + ﬁ, sin2i S (G+rcos(i—r)
Y
2P . (7.60)
EL" s sin 2i — sin zrﬁtan (i —7)
Eq sin 2r + -‘Lf sin 2i tan (i + 1)
H J

Again the results on the right apply for u’ = pu.
For normal incidence (i = 0), both (7.58) and (7.60) reduce to

Ey _ 2 N 2n
E e’ n+n
0 [£+1

u'e

A/,E_ » (7.61)

E_O”_ y'e _)n’—n
E e’ n +n
bJE

p'e J

For the reflected wave the sign convention is that for polarization parallel
to the plane of incidence. This means that if »" > n there is a phase
reversal for the reflected wave.

7.6 Polarization by Reflection and Total Internal Reflection

Two aspects of the dynamical relations on reflection and refraction are
worthy of mention. The first is that for polarization paraliel to the plane
of incidence there is an angle of incidence, called Brewster’s angle, for
which there is no reflected wave. Putting u’ = u for simplicity, we see
from (7.60) that there will be no reflected wave when i + r = #/2. From
Snell’s law (7.55) we find that this specifies Brewster’s angle to be

ig=tan™! (’l) (7.62)
n

For a typical ratio (n'/n) = 1.5, iz~ 56°. If a plane wave of mixed

polarization is incident on a plane interface at the Brewster angle, the

reflected radiation is completely plane polarized with polarization vector

perpendicular to the plane of incidence. This behavior can be utilized to



[Sect. 7.6} Plane Electromagnetic Waves 221

produce beams of plane-polarized light, but is not as efficient as other
means employing anisotropic properties of some dielectric media. Even
if the unpolarized wave is reflected at angles other than the Brewster angle,
there is a tendency for the reflected wave to be predominantly polarized
perpendicular to the plane of incidence. The success of dark glasses which
selectively transmit only one direction of polarization depends on this fact.
In the domain of radiofrequencies, receiving antennas can be so oriented
as to discriminate against surface-reflected waves (and also waves reflected
from the ionosphere) in favor of the directly transmitted wave.

The second phenomenon is catled total internal reflection. The word
internal implies that the incident and reflected waves are in a medium of
larger index of refraction than the refracted wave (n > n’). Snell’s law
(7.55) shows that, if » > n’, then r > i. Consequently, r = 7/2 when
i == j,, where

; R (n’)

iy = sin — (7.63)

n

For waves incident at i = i), the refracted wave is propagated parallel to
the surface. There can be no energy flow across the surface. Hence at
that angle of incidence there must be total reflection. What happens if
i > i,? To answer this we first note that, for i > i, sin r > 1. This means
that r is a complex angle with a purely imaginary cosine.

CcosS r = A/( sin l) (7.64)
sin i

The meaning of these complex quantities becomes clear when we consider
the propagation factor for the refracted wave:

eik’~ x_ eik’(x sinr+zceosr) — e—k'[(sin ifsin ig)? ~1]‘5z eilc’(sin i/sin ig)x (7.65)
This shows that, for i > ), the refracted wave is propagated only parallel
to the surface and is attenuated exponentially beyond the interface. The
attenuation occurs within a very few wavelengths of the boundary, except
for i~ i,

Even though fields exist on the other side of the surface it is clear that
there is no energy flow through the surface. Hence total internal reflection
occurs for i > i,. The lack of energy flow can be verified by calculating
the time-averaged normal component of the Poynting’s vector just inside
the surface:

S.n= gﬂ Re[n-(E x H*)] (7.66)
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with H' = —— (k' x E'), we find
Qo
c2
S.n= Re [(n - k') |Ey|?] (7.67)
8wy’
But n- k' = k' cos r is purely imaginary, so that S -n = 0.

The phenomenon of total internal reflection is exploited in many
applications where it is required to transmit light without loss in intensity.
In nuclear physics Lucite or other plastic “light pipes” are used to carry
light emitted from a scintillation crystal because of the passage of an
ionizing particle to a photomultiplier tube, where it is converted into a
useful electric signal. The photomultiplier must often be some distance
away from the scintillation crystal because of space limitations or magnetic
fields which disturb its performance. If the light pipe is large in cross
section compared to a wavelength of the radiation involved, the con-
siderations presented here for a plane interface have approximate validity.
When the dielectric medium has cross-sectional dimensions of the order
of a wavelength, however, the precise geometry must be taken into account.
Then the propagation is that of a dielectric wave guide (see Section 8.8).

7.7 Waves in a Conducting Medium

If the medium in which waves are propagating is a conductor, there are
characteristic differences in the propagation, when compared with non-
conducting media. If the medium is characterized by a conductivity o,
as well as a dielectric constant € and permeability z, Maxwell’s equations
are supplemented by Ohm’s law:

J =oE (7.68)
Hence they take the form:
,
voH=0 VxE+48_,
c ot
(7.69)
ViE=0 VxH-S9E_ 4700 _,
c ot c J

In the insulating dielectric we found that the fime-varying fields were
transverse, i.e., the field vectors E and H were perpendicular to the
direction in which the spatial variation occurred. In the limit of zero
frequency we know from our study of electro- and magnetostatics that the
static fields in a dielectric are longitudinal, in the sense that the fields are
derivable from scalar potentials and so point in the direction of the spatial
variation.
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If the conductivity is not zero, modifications arise. For simplicity,
consider fields which vary in only one spatial variable, §. We decompose
the fields into longitudinal and transverse parts:

E(Ea t) = Elong(§5 t) + Etr(E’ t) l
H(& t) = Hlong(‘sa t) + Htr(‘sa t) J

Then, because of the properties of curl operation, we find that the trans-
verse parts of E and H satisfy the two curl equations in (7.69), leading to
transverse waves (see below), while the longitudinal parts satisfy the
equations:

(7.70)

o0& ot

aElong =0 (a 4no ‘

aHlong =0 aHlong =0 WL
+47) Erane = 0
o9& o e )T

(7.71)

The first pair of equations shows that the only longitudinal magnetic field
possible is a static uniform field. This is the same situation as in an
insulator. But the second pair in (7.71) shows that the longitudinal
electric field is uniform in space, while having the time variation:

Eiong(&, 1) = Ege~¥oU¢ (7.72)
0

Consequently, no static longitudinal fields can exist in a conducting
medium in the absence of an applied current density. For good conductors
like copper, o ~ 107 sec™ so that disturbances are damped out in an
extremely short time.

We now consider the transverse fields in the conducting medium.
Assuming that the fields vary as exp (ik - x — iw?), the first curl equation
of (7.69) yields:

H=->(k x E) (7.73)
nw
while the second gives
l(kXH)-i—le—E——AiTgE—O (1.74)

C

Elimination of either H or E from this last equation with (7.73) yields

L IR

This means that the propagation vector k is complex:

K2 —[ueg)— (1 + 14—”3) (1.76)

(a1



224 Classical Electrodynamics

The first term corresponds to the displacement-current and the second to
the conduction-current contribution. In taking the square root to find &
the branch is chosen to give the familiar results when ¢ = 0. Then one
finds, assuming that o is real,

k=oa+if

where
4o \? &
oc} o~ [«/1 + (RZ) * l] (1.77)
pl = Ve 2
4o .
For a poor conductor (—w—— £ 1) we find approximately
€
k—m+,ﬂf\/,¢eﬂ+:2’u/ o (7.78)
c Ne

correct to first order in (o/we). In this limit Re & > Im & and the attenua-
tion of the wave (Im k) is independent of frequency, aside from the possible

. . 4ro
frequency variation of the conductivity. For a good conductor (——— > l),
on the other hand, « and S are approximately equal: we

k~ (1 + i) V2o (7.79)
c

where only the lowest-order terms in (we/c) have been kept.
The waves propagating as exp (ik » x -~ iwf) are damped, transverse
waves. The fields can be written as

E = E —fn-x zotn X —twl

1
L (7.80)
H= Hoe—ﬁn xewcn-x—iwt Jl

where n is a unit vector in the direction of k. The divergence equation for
¥ shows that E; - n = 0, while the relation between H and E (7.73) gives

H, = — (x + if)n x E, (7.81)
Iu(u -

This shows that H and E are out of phase in a conductor. Defining the
magnitude and phase of &:

—_— - 2744
Ikl = No? + 2 = Jue = [1 + (4770)]
C

we
_4 {470
P
[£213

|
} (7.82)
¢ = tan? ]

KR 1
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equation (7.81) can be written in the form:

- 27V
H, = A/ < [1 + (41‘-’)] ¢n x E, (7.83)
u we

The interpretation of (7.83) is that H lags E in time by the phase angle ¢
and has a relative amplitude:

[Hy| _ E[ izﬂ_fﬂ%,
| «/,4 1+(we (7.84)

In very good conductors we see that the magnetic field is very large com-
pared to the electric field and lags in phase by almost 45°. The field energy
is almost entirely magnetic in nature.

The waves given by (7.80) show an exponential damping with distance.
This means that an electromagnetic wave entering a conductor is damped
to 1/e = 0.369 of its initial amplitude in a distance:

lo__¢ (7.85)

- B 2w

the last form being the approximation for good conductors. The distance
0 is called the skin depth or the penetration depth.* For a conductor like
copper, 60 ~ 0.85 cm for frequencies of 60 cps, and § ~ 0.71 x 103 cm
for 100 Mc/sec. This rapid attenuation of waves means that in high-
frequency circuits current flows only on the surface of the conductors.
One simple consequence is that the high-frequency inductance of circuit
elements is somewhat smaller than the low-frequency inductance because
of the expulsion of flux from the interior of the conductors.

The problem of reflection and refraction at an interface between con-
ducting media is rather complicated and will not be treated here. The
interested reader may refer to Stratton, pp. 500 ff., for a discussion of this
point. See, however, Section 8.1 for a treatment of ficlds at the interface
between a dielectric and a good conductor.

7.8 Simple Model for Conductivity
The simplest model of conduction, due originally to Drude (1900), is
that in a metal there are a certain number #, of electrons per unit volume

free to move under the action of applied electric fields, but subject to

* For reference, the skin depth (7.85) appears in mks units as 6 = (2/uwo)*%,
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damping force due to collisions. Thus the equation of motion of such an
electron is

m % + mgv = ¢E(x, 1) (7.86)
where g is the damping constant.* For rapidly oscillating fields the

displacement of the electron is small compared to a wavelength so that
approximately

m % + mgv = eEje™ (7.87)
where E, is the electric field at the average position of the electron. The
steady-state solution for the velocity of the electron is:

e

= ————— Ege " (7.88)
m(g — iw)
so that the conductivity is given by
2
= __._nﬂﬁ..._ (7.89)
m(g — iw)

Assuming one free electron per atom, a metal such as copper (7, ~ 8 X
1022 electronsfcm?, ¢ ~ 5 x 107 sec™) has an empirical damping constant
g~ 3 x 108sec”’. This shows that for frequencies of the order of, or
smaller than, microwave frequencies (~10% sec™!) metallic conductivities
are essentially real (i.e., current in phase with the field) and independent of
frequency. At higher frequencies (in the infrared and beyond), however,
the conductivity is complex and depends markedly on frequency in a
manner qualitatively described by the simple result (7.89).

7.9 Transverse Waves in a Tenuous Plasma

In certain situations, such as the ionosphere or a tenuous plasma, the
damping of the motion of the free electrons due to collisions becomes
negligible. Then the “conductivity” becomes purely imaginary:

n 82
~ 0
Oplasma = 1

(7.90)
maw

* The damping constant g is some sort of average rate of collisions involving appreci-
able momentum transfer. Collisions occur between electrons and lattice vibrations,
lattice imperfections, and impurities. The proper calculation of ¢ involves quantum-
mechanical considerations, including the effects of the Pauli exclusion principle. See
A. H. Wilson, Theory of Metals, 2nd ed., Cambridge University Press (1953).
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Quotation marks are placed on *“conductivity” because there is no resistive
loss of energy if the current and electric field are out of phase. The
propagation of transverse electromagnetic waves in a tenuous plasma is
governed by equation (7.76) of Section 7.7, with o,,,,,, (7.90) inserted for
o*

2 . 2
K2 & (1 —””) (7.91)
where

0} =—" (7.92)

is called the plasma frequency. Since the wave number can be written as
k = nw/c, where n is the index of refraction, we see that the index of

refraction of a plasma is given by

2
W,

(02

e~ — (7.93)
For high-frequency radiation (v > w,) the index of refraction is real and
the waves propagate freely. For frequencies lower than the plasma
frequency @, n is purely imaginary. Consequently such electromagnetic
waves incident on a plasma will be reflected from the surface. Within the
plasma the fields will fall off exponentially with distance from the surface.
The penetration depth 4., is given by

6plusmu = TC_—. ~ i (794)

Jo S Wy

the last value being valid for w < w,. On the laboratory scale, plasma
densities are in the range n, ~ 10'2-10'8 electrons/cm?. This means w, ~
6 x 10'%-6 x 10'2sec™, so that typical penetration depths are of the order
of 0.5cm-5 x 10-3 cm for static or low-frequency fields. The expulsion
of fields from within a plasma is a well-known effect in controlled thermo-
nuclear processes and is exploited in attempts at confinement of hot
plasmas (see Sections 10.5 and 10.6).

The simple result (7.93) for the index of refraction of a plasma is
modified by the presence of an external static magnetic induction. This
circumstance arises not only in the laboratory, but also in the ionosphere,
where the carth’s dipolc ficld provides the external magnetic induction.
To illustrate the influence of the external field we consider the simple

* Sometimes this equation is solved for w® as a function of k:
0 ~wm,? + ck?

Then it is called a dispersion relation for w = w(k).
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problem of a tenuous electronic plasma of uniform density with a strong,
static, uniform, magnetic induction By and transverse waves propagating
parallel to the direction of B,. If thc amplitude of the clectronic motion is
small and collisions are neglected, the equation of motion is approximately:

dv - v

m—r eEe"™ + ¢~ x B, (7.95)
dt c

where the influence of the B field of the transverse wave has been neglected

compared to the static induction B,. It is convenient to consider the

transverse waves as circularly polarized. Then

E = E(e, + i€,) (7.96)

while B, is in the direction of €;. Since we are looking for a steady-state
solution, we will assume that the velocity of the electron is of the form:

V(1) = v(e; + iey)e (7.9
Then from (7.95), using (7.96), we find immediately

v=———E (7.98)

m(w + wp)
where wj is the frequency of precession of a charged particle in a magnetic
field,

wp = —2 (7.99)

me
Result (7.98) can be understood by noting that, in a coordinate system
precessing with frequency wg, the electron is driven by a rotating electric
field of effective frequency w + wp, depending on the sign of the circular
polarization.
The current density in the plasma due to electronic motion is

in0€2
m(w + wg)

When this current density is added to the displacement current, Maxwell’s
generalization of Ampére’s law becomes:

J =enyy =

(7.100)

2
VxH=—i2 [1 — ——(—U——}E (7.101)
c w(w £ wp)

The factor in square brackets can be interpreted as the dielectric constant

or square of the index of refraction:
2
nlt=1-——"2 (7.102)
o(w £ wp)
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This is the extension of (7.93) to include a static magnetic induction. It is
not completely general, since it applies only to waves propagating along
the static field direction. But even in this simple example we see the
essential characteristic that waves of right-handed and left-handed circular
polarizations propagate differently. The ionosphere is birefringent. For
propagation in directions other than parallel to the static field By it is
straightforward to show that, if terms of the order of wy? are neglected
compared to w? and wwp, the index of refraction is still given by (7.102).
But the precession frequency (7.99) is now to be interpreted as that due to
only the component of B, parallel to the direction of propagation. This
means that wp in (7.102) is a function of angle —the medium is not only
birefringent, but also anisotropic.

For the ionosphere a typical maximum density of free electrons is

~ 10%-10°¢ electrons/cm?, corresponding to a plasma frequency of the
order of w,~ 6 x 10%-6 x 107 sec”1. If we take a value of 0.3 gauss as
representative of the earth’s magnetic field, the precession frequency is
wp ™~ 6 x 10%sec™™.

Figure 7.11 shows n .2 as a function of frequency for two values of the
ratio of (w,/wg). In both examples there are wide intervals of frequency
where one of n,% or n_? is positive while the other is negative. At such
frequencies one state of circular polarization cannot propagate in the
plasma. Consequently a wave of that polarization incident on the plasma
will be totally reflected. The other state of polarization will be partially
transmitted. Thus, when a linearly polarized wave is incident on a plasma,
the reflected wave will be elliptically polarized, with its major axis generally
rotated away from the direction of the polarization of the incident
wave.

The behavior of radio waves reflected from the ionosphere is explicable
in terms of these ideas, but the presence of several layers of plasma with
densities and relative positions varying with height and time makes the
problem considerably more complicated than our simple example. The
electron densities at various heights can be inferred by studying the
reflection of pulses of radiation transmitted vertically upwards. The
number of free electrons per unit volume increases slowly with height in a
given layer of the ionosphere, as shown in Fig. 7.12, reaches a maximum,
and then falls abruptly with further increase in height. A pulse of a given
frequency w, enters the layer without reflection because of the slow change
in n,. When the density r, is large enough, however, w (k) ~ w,. Then
the indices of refraction (7.102) vanish and the pulse is reflected. The
actual density »n, where the reflection occurs is given by the roots of the
right-hand side of (7.102). By observing the time interval between the
initial transmission and reception of the reflected signal the height 4,
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w

Fig. 7.11 Indices of refraction as a function of frequency for model of the ionosphere

(tenuous electronic plasma in a static, uniform magnetic induction). n_{w) apply to

right and left circularly polarized waves propagating parallel to the magnetic field.

wg is the gyration frequency; w, is the plasma frequency. The two sets of curves
correspond to w,/wy = 2.0, 0.5.

corresponding to that density can be found. By varying the frequency w,
and studying the change in time intervals the electron density as a function
of height can be determined. If the frequency w, is too high, the index of
refraction does not vanish and very little reflection occurs. The frequency
above which reflections disappear determines the maximum electron
density in a given layer.

o

no(h1)

Fig. 7.12 Electron density as a
function of height in a layer of the
ionosphere (schematic).
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REFERENCES AND SUGGESTED READING

The whole subject of optics as an electromagnetic phenomenon is treated authorita-
tively by
Born and Wolf.
Their first chapter covers plane waves, polarization, and reflection and refraction, among
other topics. A very complete discussion of plane waves incident on boundaries of
dielectrics and conductors is given by
Stratton, Chapter IX.
Another good treatment of electromagnetic waves in both isotropic and anisotropic
media is that of
Landau and Lifshitz, Electrodynamics of Continuous Media, Chapters X and XI.
A more elementary, but clear and thorough, approach to plane waves and their properties
appears in
Adler, Chu, and Fano, Chapters 7 and 8.
The propagation of waves in dispersive media is discussed in detail in the book by
Brillouin.
The distortion and attenuation of pulses in dissipative materials are covered by
Stratton, pp. 301-309.

PROBLEMS

7.1 An approximately monochromatic plane wave packet in one dimension has
the instantaneous form, u(x,0) = f(z)e'*e*, with f(x) the modulation
envelope. For each of the forms f(x) below, calculate the wave-number
spectrum | A(k)|? of the packet, sketch |u(z, 0)|? and |4(k)|?, evaluate explicitly
the rms deviations from the means, Az and Ak (defined in terms of the
intensities |u(x, 0)|> and |A(k)|?), and test inequality (7.28).

(@) f(x) = Nealzi/2
(b) f(x) = Ne o=/

N —ajz]) forajz] <1
0 foraljz] > 1

© [@) = {

for || <a

g _ N
@) f(=) —{0

for |z| >a

7.2 A plane wave is incident on a layered interface as shown in the figure (p. 232).
The indices of refraction of the three nonpermeable media are n;, n,, n;.
The thickness of the intermediate layer is d.

(a) Calculate the transmission and reflection coefficients (ratios of
transmitted and reflected Poynting’s flux to the incident flux), and sketch
their behavior as a function of frequency forn; = 1,1, = 2,n3 = 3; n; =3,
ny=2n,=1; andn, =2,n, =4, n3 =1
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/
x\\\ 4

(b) The medium », is part of an optical system (e.g., a lens); medium r,
is air (n; = 1). It is desired to put an optical coating (medium n,) on the
surface so that there is no reflected wave for a frequency wy,. What thickness
d and index of refraction n, are necessary ?

7.3 Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable,
lossless dielectric with index of refraction n are parallel and separated by an
air gap (n = 1) of width d. A plane electromagnetic wave of frequency
is incident on the gap from one of the slabs with angle of incidence i. For
linear polarization both parallel to and perpendicular to the plane of
incidence,

(@) calculate the ratio of power transmitted into the second slab to the
incident power and the ratio of reflected to incident power;

(b) for i greater than the critical angle for total internal reflection, sketch
the ratio of transmitted power to incident power as a function of d measured
in units of wavelength in the gap.

7.4 A plane polarized electromagnetic wave of frequency o in free space is
incident normally on the flat surface of a nonpermeable medium of
conductivity o and dielectric constant e.

(a) Calculate the amplitude and phase of the reflected wave relative to the
incident wave for arbitrary ¢ and e.

(b) Discuss the limiting cases of a very poor and a very good conductor,
and show that for a good conductor the reflection coefficient (ratio of
reflected to incident intensity) is approximately

R=~1-2-3
where ¢ is the skin depth.

7.5 A plane polarized electromagnetic wave E = Eeik-x—i! is incident normally
on a flat uniform sheet of an excellent conductor (o >> w) having a thickness ¢.
Assuming that in space and in the conducting sheet 4 = e = 1, discuss the
reflection and transmission of the incident wave.

(@) Show that the amplitudes of the reflected and transmitted waves,
correct to the first order in (w/0)!%, are:

E,  —(1-p0 —e

E, (1 —e2) +p(0 + 3¢
E, _ 4pe—*

E, (I —e 3 +p0 +3e %)
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7.6

1.7

where

| ® w0 .
g = %(1—1)—%(1—1)
A= — il

and 6 = ¢/ V2Znwo is the penetration depth.

(b) Verify that for zero thickness and infinite thickness you obtain the
proper limiting resuits.

(¢) Show that, except for sheets of very small thickness, the transmission
coefficient is
32(Re p)%e —2Uo

1 — 228 cos (2t8) + e—4Ulé

Sketch log T as a function of (#/0), assuming Re § = 1072,
Define “very small thickness.”’

Plane waves propagate in a homogeneous, nonpermeable, but anisotropic
dielectric. The dielectric is characterized by a tensor ¢,;, but if coordinate
axes are chosen as the principal axes the components of displacement along
these axes are related to the electric-field components by D; = ¢,E;
(i =1, 2, 3), where ¢; are the eigenvalues of the matrix ¢;.

(a) Show that plane waves with frequency w and wave vector k must
satisfy

T =

w2
kx(k xE) +=D=0

(b) Show that for a given wave vector k = kn there are two distinct
modes of propagation with different phase velocities v = w/k which satisfy

the Fresnel equation,
3 2
2 a5 =
v —p?
i=1

where v; = ¢/ Ve, is called a principal velocity, and »n, is the component of
n along the ith principal axis.

(c) Show that D, - D, = 0, where D,, D, are the displacements associated
with the two modes of propagation.

A homogeneous, isotropic, nonpermeable dielectric is characterized by an
index of refraction n(w) which is in general complex in order to describe
absorptive processes.

(@) Show that the general solution for plane waves in one dimension can
be written

. 1 @
u(xz, t) = —_-f dw e~ A(w)e@IOMU@T 4 B(g)e— i@lom(@i)
V2r)_ o

where u(x, t) is a component of E or B.

(b) If u(z, 1) is real, show that n( —w) = n*(w).

(¢) Show that, if (0, ) and 8u(0, )/ 9= are the boundary values of u
and its derivative at % =0, the coefficients A(w) and B(w) are

{A(w): 11 (>

LT wen w0, n s = 20,0
B(w) T2V, » ¢ u ’):Fwn(w)ax >
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7.8 A very long plane-wave train of frequency w, with a sharp front edge is
incident normally from vacuum on a semi-infinite dielectric described by
an index of refraction n(w) and occupying the half-space = > 0. Just
outside the dielectric (at @ = 0) the incident electric field is

Ey(0, £) = 6(r)e<* sin wt

where 6(¢) is the step function (6(t) = 0 for r < 0, 6(r) = 1 for ¢ > 0). The
exponential decay constant e is a positive infinitesimal.

(a) Using the results of Section 7.5 determine the transmitted field
Ey'(x, 1) at any point in the dielectric as an integral over real frequencies.

(b) Prove that a sufficient condition for causality (that no signal propagate
faster than the speed of light in vacuum) in this problem is that the index of
refraction as a function of complex o be an analytic function, regular in the
upper half @ plane with nonvanishing imaginary part there, and approaching
unity for (o] — .

(¢) Generalize the argument of (b) to apply to any incident wave train.

7.9  (a) Show that, if the index of refraction n(w) is analytic in the upper half
complex @ plane and approaches unity for large |e|, its real and imaginary
parts are related for real frequencies by the dispersion relation,

Ren(w) =1 + sz g Im n(w’) do’

o Jy W —w
where P stands for Cauchy principal value. Write the other dispersion
relation, expressing the imaginary part as an integral over the real.

(b) Show by direct calculation with the dispersion relation that in a
frequency range where resonant absorption occurs there is necessarily
anomalous dispersion.

(c) The elementary classical model for an index of refraction is based on a
collection of damped electronic oscillators and gives an index of refraction,

27 Ne? ﬁc
nw) =1+ Z‘”’Cz

- w? ~ o

where w;, is the resonant frequency of the kth type of oscillator, v, its damping
constant, and f; the number of such oscillators per atom. Verify that this
index of refraction has the appropriate properties to satisfy the dispersion
relation of (a).



Wave Guides

and Resonant Cavities*

Electromagnetic fields in the presence of metallic boundaries form
a practical aspect of the subject of considerable importance. At high fre-
quencies where the wavelengths are of the order of meters or less the only
practical way of generating and transmitting electromagnetic radiation
involves metallic structures with dimensions comparable to the wave-
lengths involved. In this chapter we consider first the fields in the neigh-
borhood of a conductor and discuss their penetration into the surface and
the accompanying resistive losses. Then the problems of waves guided in
hollow metal pipes and of resonant cavities are treated from a fairly
general viewpoint, with specific illustrations included along the way.
Finally, dielectric wave guides are briefly described as an alternative
method of transmission.

* In this chapter certain formulas, denoted by an asterisk on the equation number, are
written so that they can be read as formulas in mks units provided the first factor in
square brackets is omitted. For example, (8.12) is

dPross 1 |uwd
= | — == H,?
da [%J 4 I,
The corresponding equation in mks form is

dPioss wd
da MT Hy
where all symbols are to be interpreted as mks symbols, perhaps with entirely different
magnitudes and dimensions from those of the corresponding Gaussian symbols.

If an asterisk appears and there is no square bracket, the formula can be interpreted
equally in Gaussian or mks symbols.

General rules for conversion of any equation into its corresponding mks form are
given in Table 3 of the Appendix.

235
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8.1 Fields at the Surface of and within a Conductor

As was mentioned at the end of Section 7.7, the.problem of reflection
and refraction of waves at an interface of two conducting media is some-
what complicated. The most important and useful features of the
phenomenon can, however, be obtained with an approximate treatment
valid if one medium is a good conductor. Furthermore, the method, within
its range of validity, is applicable to situations more general than plane
waves incident.

First consider a surface with unit normal n directed outward from a
perfect conductor on one side into a nonconducting medium on the other
side. Then, just as in the static case, there is no electric field inside the
conductors. The charges inside a perfect conductor are assumed to be so
mobile that they move instantly in response to changes in the fields, no
matter how rapid, and always produce the correct surface-charge density X
(capital 2 is used to avoid confusion with the conductivity o):

n-D = [47]Z (8.1)*
in order to give zero electric field inside the perfect conductor. Similarly,
for time-varying magnetic fields, the surface charges move in response to
the tangential magnetic field to produce always the correct surface current
K:

’ 4
nx H= [—}K 8.2)*
c

in order to have zero magnetic field inside the perfect conductor. The
other two boundary conditions are on normal B and tangential E:

n-(B—BC)=O}
nx(E—E)=0

where the subscript ¢ refers to the conductor. From these boundary
conditions we see that just outside the surface of a perfect conductor only
normal E and tangential H fields can exist, and that the fields drop abruptly
to zero inside the perfect conductor. This behavior is indicated schemati-
cally in Fig. 8.1.

For a good, but not perfect, conductor the fields in the neighborhood
of its surface must behave approximately the same as for a perfect con-
ductor. In Section 7.7 we have seen that inside a conductor the fields are
attenuated exponentially in a characteristic length J, called the skin depth.
For good conductors and moderate frequencies, 6 is a small fraction of
a centimeter. Consequently, boundary conditions (8.1) and (8.2) are

(8.3)*
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Fig. 8.1 Fields near the surface of a perfect conductor.

approximately true fora good conductor, aside from a thin transitional layer
at the surface.

If we wish to examine that thin transitional region, however, care must
be taken. First of all, Ohm’s law (7.68) shows that with a finite conduct-
ivity there cannot actually be a surface layer of current, as implied in (8.2).
Instead, the boundary condition on the magnetic field is

nx(H-—H,)=0 (8.4)*

To explore the changes produced by a finite, rather than an infinite,
conductivity we employ a successive approximation scheme. First we
assume that just outside the conductor there exists only a normal electric
field E, and a tangential magnetic field H,, as for a perfect conductor.
The values of these fields are assumed to have been obtained from the
solution of an appropriate boundary-value problem. Then we use the
boundary conditions and Maxwell’s equations in the conductor to find the
fields within the transition layer and small corrections to the fields outside.
In solving Maxwell’s equations within the conductor we make use of the
fact that the spatial variation of the fields normal to the surface is much
more rapid than the variations parallel to the surface. This means that
we can safely neglect all derivatives with respect to coordinates parallel
to the surface compared to the normal derivative.

If there exists a tangential H, outside the surface, boundary condition
(8.4) implies the same H,, inside the surface. With the neglect of the dis-
placement current in the conductor, the curl equations in (7.69) become

E, = 4—V x H,
i (8.5)

H,3=——l£V><Ec
y220;
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where a harmonic variation e=** has been assumed. If nis the unit normal
outward from the conductor and & is the normal coordinate inward into
the conductor, then the gradient operator can be written

0

V~ —pn—

0¢

neglecting the other derivatives when operating on the fields within the
conductor. With this approximation (8.5) become:

E ~ — :{c— n x %—I—”
i ¢ (8.6)
Hc ~ lc_ n X _a..E_:c
e 0&
These can be combined to yield
0* 2i
—mxH)+—-MmxH)=0 8.7
75 (@ X H) + 5 (0 x H) 7
and
n-H,~0 (8.8)

where 0 is the skin depth defined by (7.85). The second equation shows
that inside the conductor H is parallel to the surface, consistent with our
boundary conditions. The solution for H, is:

H, = Hye % %% (8.9)

where H), is the tangential magnetic field outside the surface. From (8.6)
the electric field in the conductor is approximately:

E,~ [E21 — @ x Hye ¥ 4/ (8.10)
8mo

These solutions for H and E inside the conductor exhibit the properties
discussed in Section 7.7: (a) rapid exponential decay, (b) phase difference,
(c) magnetic field much larger than the electric field. Furthermore, they
show that, for a good conductor, the fields in the conductor are parallel
to the surface* and propagate normal to it, with magnitudes which depend
only on the tangential magnetic field H,, which exists just outside the
surface.

* From the continuity of the tangential component of H and the equation connecting
E to V x H on either side of the surface, one can show that there exists in the conductor
a small normal component of electric field, E, - n ~ (iwe/4mo)E,, but this is of the next
order in small quantities compared with (8.10).
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From the boundary condition on tangential E (8.3) we find that just
outside the surface there exists a small tangential electric field given by
(8.10), evaluated at £ = 0:

E, ~ /fﬁ (1 — D@ x Hy) (8.11)

In this approximation there is also a small normal component of B just
outside the surface. This can be obtained from Faraday’s law of induction
and gives B, of the same order of magnitude as E. The amplitudes of
the fields both inside and outside the conductor are indicated schematically
in Fig. 8.2.

The existence of a small tangential component of E outside the surface,
in addition to the normal E and tangential H, means that there is a power
flow into the conductor. The time-average power absorbed per unit area
is

da 87 47 4

This result can be given a simple interpretation as ohmic losses in the body

H,[*  (8.12)%
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Fig. 8.2 Fields near the surface of a good, but not perfect, conductor.
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of the conductor. According to Ohm’s law, there exists a current density
J near the surface of the conductor:

J=0¢E, = ,ua)o-

(1 — D x H)e 097 8.13)
The time-average rate of dissipation of energy per unit volume in ohmic
losses is 4J - E* = (1/20) |J}3, so that the total rate of energy dissipation
in the conductor for the volume lying beneath an area element A4 is

LA f dEy - J* = AARL |H,,|2f e % gE = AA ”“’5 ;H,,|2
20 0 87 0

This is the same rate of energy dissipation as given by the Poynting’s
vector result (8.12).

The current density J is confined to such a small thickness just below
the surface of the conductor that it is equivalent to an effective surface
current K

Kest —f Jdé = |: :|n x H, (8.14)*
47

Comparison with (8.2) shows that a good conductor behaves effectively
like a perfect conductor, with the idealized surface current replaced by an
equivalent surface current which is actually distributed throughout a very
small, but finite, thickness at the surface. The power loss can be written in
terms of the effective surface current:

dPlOSS
—_— = K 8.15)*
da 20 6; etel 8.15)

This shows that 1/¢d plays the role of a surface resistance of the con-
ductor. Equation (8.15), with Kz given by (8.14), or (8.12) will allow us
to calculate approximately the resistive losses for practical cavities, trans-
mission lines, and wave guides, provided we have solved for the fields in
the idealized problem of infinite conductivity.

8.2 Cylindrical Cavities and Wave Guides

A practical situation of great importance is the propagation or excitation
of electromagnetic waves in hollow metallic cylinders. If the cylinder has
end surfaces, it is called a cavity; otherwise, a wave guide. In our
discussion of this problem the boundary surfaces will be assumed to be
perfect conductors. The losses occurring in practice can be accounted for
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adequately by the methods of Section 8.1. A cylindrical surface S of
general cross-sectional contour is shown in Fig. 8.3. For simplicity, the
cross-sectional size and shape are assumed constant along the cylinder axis.
With a sinusoidal time dependence e~*“* for the fields inside the cylinder,
Mazxwell’s equations take the form:

VXxE=i%B V-B=0
¢ (8.16)
VxB=—iuc2E V.E=0
c

where it is assumed that the cylinder is filled with a uniform nondissipative
medium having dielectric constant ¢ and permeability u. If follows that

both E and B satisfy
2\ (E
(V2 + pe -“’—){ } =0 (8.17)
/B

Because of the cylindrical geometry it is useful to single out the spatial
variation of the fields in the z direction and to assume

E(z, y, 2, t)}
B(x9 y’ z’ t)

Appropriate linear combinations can be formed to give traveling or
standing waves in the z direction. The wave number X is, at present, an
unknown parameter which may be real or complex. With this assumed 2
dependence of the fields the wave equation reduces to the two-dimensional

form:
2 E
[vf + (,ue“—)z - kﬁ)}{ } =0 (8.19)
¢ B

where V2 is the transverse part of the Laplacian operator:

_ E(x, y)ej:z'kz—-iwt

- {B(z y)eiikz—imt (818)

vi=vz— L (8.20)

Fig. 83 Hollow, cylindrical wave guide of arbitrary cross-sectional shape.
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It is also useful to separate the fields into components parallel to and
transverse to the z axis:
E=E, +E; 8.21)
where the parallel field is
E, = (e3- E)e; (8.22)
and the transverse field is

E,=(eg X E) x e (8.23)

and e; is a unit vector in the z direction. Similar definitions hold for the
magnetic-flux density B. Manipulation of the curl equations in (8.16) and
use of the explicit z dependence (8.18) lead to the determination of the
transverse fields in terms of the axial components:
[0 4 2 v
) 2 9z
s = )

L (8.29)

E, = —3— [Vt(aEz) - i9e3 x Vthi|
w* 2 0z ¢
s - )
¢ J
These relations show that it is sufficient to determine E, and B, as the
appropriate solutions of the two-dimensional wave equation (8.19). The
other components can then be calculated from (8.24).

The boundary values on the surface of the cylinder will be taken as those
for a perfect conductor:

n-B=0, nxE=0 (8.25)

where n is a unit normal at the surface. Since Maxwell’s equations and
the boundary conditions are internally consistent, it is sufficient to note
that the vanishing of tangential E at the surface requires

E,ls=0 (8.26)

For the normal components of B, using the expression for B, (8.24), we
find that n - B = 0 implies
0B,
on s
where 0/0n is the normal derivative at a point on the surface.

The two-dimensional wave equations (8.19) for E, and B,, together with
the boundary conditions on E, and B, at the surface of the cylinder,
specify eigenvalue problems of the usual sort. For a given frequency o,
only certain values of the axial wave number & will be consistent with

=0 (8.27)
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the differential equation and the boundary conditions (typical wave-guide
situation); or, for a given k, only certain frequencies w will be allowed
(typical resonant-cavity situation). Because the boundary conditions on
E, and B, are different, they cannot generally be satisfied simultaneously.
Consequently the fields divide themselves into two distinct categories:

TRANSVERSE MAGNETIC (TM)
B, = 0 everywhere
The boundary condition is
E,|s=0
TRANSVERSE ELECTRIC (TE)

E, = 0 everywhere
The boundary condition is
0B, _ 0

onls

The designations “Electric (or £) Waves” and “Magnetic (or H) Waves”
are sometimes used instead of Transverse Magnetic and Transverse
Electric, respectively, corresponding to specification of the axial com-
ponent of the field. In addition to these two types of fields there is a
degenerate mode, called the Transverse Electromagnetic (TEM) mode, in
which both £, and B, vanish. From (8.24) we see that, in order to have
nonvanishing transverse components when both E, and B, vanish, the
axial wave number must satisfy the condition:

k= \/,‘;‘c_" (8.28)

Thus TEM waves travel as if they were in an infinite medium without
boundary surfaces. From the two-dimensional wave equation (8.19) we
now find

v,? {ETEM} =0 (8.29)

Broy

showing that each component of the transverse fields satisfies Laplace’s
equation of electrostatics in two dimensions. It is easy to show (a) that
both Epgy and Brygy are derivable from scalar potentials satisfying

Laplace’s equation and (b) that B1y;y, is everywhere perpendicular to Epgyy.
In fact, from Faraday’s law of induction we find

0
Broy = — = (€5 X Eppa) (8.30)
iw 0z
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With z-dependence 'Y #“%/°, we have

Broy = Jue eg X Epgy (8.31)*

which is just the relation for plane waves in an infinite medium.

An immediate consequence of (8.29) is that the TEM mode cannot
exist inside a single hollow, cylindrical conductor of infinite conductivity.
The surface is an equipotential; hence the electric field vanishes inside.
It is necessary to have two or more cylindrical surfaces in order to support
the TEM mode. The familiar coaxial cable and the parallel-wire trans-
mission line are structures for which this is the dominant mode. (See
Problems 8.1 and 8.2.)

*

8.3 Wave Guides

We now consider the propagation of electromagnetic waves along a
hollow wave guide of uniform cross section. With the z-dependence e*2,
the transverse components of the fields for the two types of waves are
related, according to (8.24), as follows:

TM WAVES: B, = "-“—kw e, x K,

¢ (8.32)

TE WAVES: E;= — gke3 x B;
c

The transverse fields are in turn determined by the longitudinal fields:

TM WAVES: E = lij Viy
x

) (8.33)
TE WAVES: B = i; Vi
Y

where y is E, (B,) for TM (TE) waves. The scalar function y satisfies the
two-dimensional wave equation (8.19):

(V& + )y =0 (8.34
where
2
2 e ? g2
Yy = pe 2 k (8.35)
subject to the boundary condition:
plg=0, or A (8.36)
onls

for TM (TE) waves.
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Equation (8.34) for , together with boundary condition (8.36), specifies
an eigenvalue problem. It is easy to see that the constant y? must be non-
negative. Roughly speaking, it is because % must be oscillatory in order
to satisfy boundary condition (8.36) on opposite sides of the cylinder.
There will be a spectrum of eigenvalues y,? and corresponding solutions
v, A=1,2, 3,..., which form an orthogonal set. These different
solutions are called the modes of the guide. For a given frequency w, the
wave number k is determined for each value of 4:

2

w
k) = pe e Vi (8.37)
If we define a cutoff frequency ;,

v, = [c] :/Z;*_e (8.38)*

then the wave number can be written:

k, = [1}@6\/(02 — o (8.39)*
¢
We note that, for w > w,, the wave number k, is real; waves of the 1
mode can propagate in the guide. For frequencies less than the cutoff
frequency, k, is imaginary; such modes cannot propagate and are called
cutoff modes. The behavior of the axial wave number as a function of
frequency is shown qualitatively in Fig. 8.4. We see that at any given
frequency only a finite number of modes can propagate. It is often con-
venient to choose the dimensions of the guide so that at the operating
frequency only the lowest mode can occur. This is shown by the vertical
arrow on the figure.
Since the wave number k; is always less than the free-space value

V pew/c, the wavelength in the guide is always greater than the free-space

!

~<
3

Fig. 84 Wave number k; versus
frequency w for various modes 4. 0 W wo w3 w4 w5
w; is the cutoff frequency. w—>

\\\\
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wavelength. In turn, the phase velocity v, is larger than the infinite space
value:

= —_— - > —
k,  Jue Jl ~ (&)2 Ve (8.40)
The phase velocity becomes infinite exactly at cutoff.

8.4 Modes in a Rectangular Wave Guide

As an important illustration of the general features described in
Section 8.3 we consider the propagation of TE waves in a rectangular wave

guide with inner dimensions a, b, as shown in Fig. 8.5. The wave equation
for y = B, is

0° 0®
(—a—2+a—z+y) ~0 (8.41)
with boundary conditions dy/on =0 at # =0, a and y = 0, b. The
solution for y is consequently

Ymal®, ¥) = B, cos (r_n_w_x) cos (niby) (8.42)
a

where

o m?  n®
Von® = #2(; + E) (8.43)

The single index 4 specifying the modes previously is now replaced by the
two positive integers m, n. In order that there be nontrivial solutions, m
and » cannot both be zero. The cutoff frequency w,,, is given by

= [c] /M( m? '[]’2)/2 (8.44)*

U AN,

ue

fe—— o ——>
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If a > b, the lowest cutoff frequency, that of the dominant TE mode,
occurs form =1, n = 0:
(8.45)

__me
Wyg = \/;Tea
This corresponds to one-half of a free-space wavelength across the guide.
The explicit fields for this mode, denoted by TE, ,, are:

g P
B _ B() cos (__)ezkz it

a
ika LAY
B, = — —7;“ BO sin (;)e’k‘ oot (8.46)
E?, = ,E’E BO sin (77-_1:) eikz—iwt
me a

The presence of a factor i in B, (and E,) means that there is a spatial (or
temporal) phase difference of 90° between B, (and E,) and B, in the
propagation direction. It happens that the TE,, mode has the lowest
cutoff frequency of both TE and TM modes,* and so is the one used in
most practical situations. For a typical choice a = 2b the ratio of cutoff
frequencies ,,, for the next few modes to w,, are as follows:

n—r

0 1 2 3

0 2.00 4.00 6.00
1| 1.00 224 413

m 2200 2.84 448

} 3[3.00 361 500
41400 4.48 5.66
515.00 539
6 | 6.00

There is a frequency range from cutoff to twice cutoff where the TE,q
mode is the only propagating mode. Beyond that frequency other modes
rapidly begin to enter. The field configurations of the TE;, mode and
other modes are shown in many books, e.g., American Institute of Physics
Handbook, McGraw-Hill, New York (1957), p. 5-61.

* This is evident if we note that for the TM modes E, is of the form

E, = E,sin (Tﬁ) sin (@)
. a b

while 2 is still given by (8.43). The lowest mode hasm = n = 1. Its cutoff frequency is

2\V8
greater than that of the TE, , mode by the factor (1 + %) .
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8.5 Energy Flow and Attenuation in Wave Guides

The general discussion of Section 8.3 for a cylindrical wave guide of
arbitrary cross-sectional shape can be extended to include the flow of
energy along the guide and the attenuation of the waves due to losses in the
walls having finite conductivity. The treatment will be restricted to one
mode at a time; degenerate modes will be mentioned only briefly. The
flow of energy is described by the complex Poynting’s vector:

S = [i}%ug x H¥) (8.47)*

whose real part gives the time-averaged flux of energy. For the two types
of field we find, using (8.24):

2
_ wk G[%IVWF + i y; W#*}

st | P
“[ea IV pl® — i L 'P*Vz'ﬂ]
" k

(8.48)

where the upper (lower) line is for TM (TE) modes. Since y is generally
real,* we see that the transverse component of S represents reactive energy
flow and does not contribute to the time-average flux of energy. On the
other hand, the axial component of S gives the time-averaged flow of
energy along the guide. To evaluate the total power flow P we integrate
the axial component of S over the cross-sectional area A4:

P =JS-e3da = wk4
4 8y

{l}f (V,p)* -(Vyp) da (8.49)
)

By means of Green’s first identity (1.34) applied to two dimensions, (8.49)
can be written:

€
p— 2k [3€ w3 ar — f VAV 2y da} (8.50)
8y ; ¢ oOn 4 .

where the first integral is around the curve C which defines the boundary
surface of the cylinder. This integral vanishes for both types of fields

* It is possible to excite a guide in such a manner that a given mode or linear combina-
tion of modes has a complex . Then a time-averaged transverse energy flow can occur.
Since it is a circulatory flow, however, it really only represents stored energy and is not
of great practical importance.
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because of boundary conditions (8.36). By means of the wave equation
(8.34) the second integral may be reduced to the normalization integral for
y. Consequently the transmitted power is

p=|o] L (2)(; “’12%16 = 8.51)*
=i =) il prvde @30

u

where the upper (lower) line is for TM (TE) modes, and we have exhibited

all the frequency dependence explicitly.
It is straightforward to calculate the field energy per unit length of the
guide in the same way as the power flow. The result is

o[BI va oo
M

Comparison with the power flow P shows that P and U are proportional.
The constant of proportionality has the dimensions of velocity (velocity
of energy flow) and is just the group velocity:

2 2
P_ke&_ ¢ [ _o (8.53)

U wpe Jue w
as can be verified by a direct calculation of v, = dw/dk from (8.39),
assuming that the dielectric filling the guide is nondispersive. We note
that v, is always less than the velocity of waves in an infinite medium and
falls to zero at cutoff. The product of phase velocity (8.40) and group
velocity is constant:
2
0,0, = = (8.54)
ue

an immediate consequence of the fact that w Aw oc k Ak.

Our considerations so far have applied to wave guides with perfectly
conducting walls. The axial wave number k, was either real or purely
imaginary. If the walls have a finite conductivity, there will be ohmic
losses and the power flow along the guide will be attenuated. For walls
with large conductivity the wave number will have a small imaginary part:

k, ~ k® + ig, (8.55)*

where k{? is the value for perfectly conducting walls. The attenuation
constant $, can be found either by solving the boundary-value problem
over again with boundary conditions appropriate for finite conductivity,
or by calculating the ohmic losses by the methods of Section 8.1 and



250 Classical Electrodynamics

using conservation of energy. We will use the latter technique. The
power flow along the guide will be given by

P(z) = Py ¥x (8.56)*
Thus the attenuation constant is given by
1 dP
=——— 8.57)*
b= pa (®57

where —dP/dz is the power dissipated in ohmic losses per unit length of the
guide. According to the results of Section 8.1, this power loss is

2
_dr, {_C__} L 3€ n x BJ? dI (8.58)*
dz 167°1200u2 J o

where the integral is around the boundary of the guide. With fields (8.32)
and (8.33) it is easy to show that for a given mode:

< oyl
P (w)2§ w2l on p
dz  32mPodu? 2 2 2
B P [ I e e,
HEW ] w*

8.59

where again the upper (lower) line applies to TM (TE) modes. (83)

Since the transverse derivatives of ¢ are determined entirely by the size

and shape of the wave guide, the frequency dependence of the power loss

is explicitly exhibited in (8.59). In fact, the integrals in (8.59) may be simply
estimated from the fact that for each mode:

2
(Vf + ‘fg“})w =0 (8.60)

This means that, in some average sense, and barring exceptional circum-
stances, the transverse derivatives of y must be of the order of magnitude

of V/ pe(w;fc)y:
%
on
Consequently the line integrals in (8.59) can be related to the normalization
integral of [y|? over the area. For example,
oy

c w2l on

where C is the circumference and A is the area of cross section, while &, is
a dimensionless number of the order of unity. Without further knowledge

2 w 2
)~ In x Vol ~ e % iyl (8.61)

2
dl = &pue S f |yl da (8.62)
AJa
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of the shape of the guide we can obtain the order of magnitude of the
attenuation constant $; and exhibit completely its frequency dependence.
Thus, using (8.59) with (8.62) and (8.51), plus the frequency dependence of
the skin depth (7.85), we find

e U T o nl)] o
\ (U2

where o is the conductivity (assumed independent of frequency), 6, is the
skin depth at the cutoff frequency, and &,, %, are dimensionless numbers
of the order of unity. For TM modes, ;, = 0.

For a given cross-sectional geometry it is a straightforward matter to
calculate the dimensionless parameters &, and #, in (8.63). For the TE
modes with n = 0 in a rectangular guide, the values are £, , = af(a + b)
and 7,0 = 2b/(a + b). For reasonable relative dimensions, these
parameters are of order unity, as expected.

—

T ™
TE
Fig. 8.6 Attenuation constant §;
| as a function of frequency for
3 typical TE and TM modes. For
L/ | | | TM modes the minimum atten-
2 3 4 5 uation occurs at w/wy = V'3, re-
w/wy—> gardless of cross-sectional shape.

[P S ——

The general behavior of §, as a function of frequency is shown in
Fig. 8.6. Minimum attenuation occurs at a frequency well above cutoff.
For TE modes the relative magnitudes of £, and #, depend on the shape
of the guide and on A. Consequently no general statement can be made
about the exact frequency for minimum attenuation. But for TM modes
the minimum always occurs at w_;, = V3w, At high frequencies the
attenuation increases as w’%. In the microwave region typical attenuation
constants for copper guides are of the order §; ~ 10~%w,/c, giving 1/e
distances of 200-400 meters.

The approximations employed in obtaining (8.63) break down close to
cutoff. Evidence for this is the physically impossible, infinite value of
(8.63) at w = w,. A treatment of the problem by perturbation theory
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with the boundary condition (8.11) yields the more accurate result,
k= kP2 + 21 + DB, (8.64)

where g, is still given by (8.63) For k{® > B, this reduces to our previous
expression (8.55). But at cutoff (k¥ = 0) the wave number is now finite
with real and imaginary parts of the order of the geometrical mean of
w,/c and a typical value of §;, say at v ~ 2w,.

In th¢ discussion so far we have considered only one mode at a time.
This procedure fails whenever a TE and a TM mode have the same cutoff
frequency, as occurs in the rectangular guide, for example, with n 5~ 0,
m = 0. The reason for the failure is that the boundary condition (8.11)
for finite conductivity couples the degenerate modes. The calculation of
the attenuation then involves so-called degenerate state perturbation
theory, and the expression for 8 takes the form,

B = 4By + Bre) £ V(Brm — Prr)’ + |K|? (8.65)

where fry and frp are the values found above, while X is a coupling
parameter. The two values of 8 in (8.65) give the attenuation for the
two orthogonal, mixed modes which satisfy the perturbed boundary
conditions.*

8.6 Resonant Cavities

Although an electromagnetic cavity resonator can be of any shape
whatsoever, an important class of cavities is produced by placing end
faces on a length of cylindrical wave guide. We will assume that the end
sutfaces are plane and perpendicular to the axis of the cylinder. As usual,
the walls of the cavity are taken to have infinite conductivity, while the
cavity is filled with a lossless dielectric with constants u, €. Because of
reflections at the end surfaces the z dependence of the fields will be that
appropriate to standing waves:

Asin kz 4+ Bcos kz

If the plane boundary surfaces are at z = 0 and z = d, the boundary
conditions can be satisfied at each surface only if

k=pz—;, p=01,2,... (8.66)

* For the theory of perturbation of boundary conditions in guides and cavities, see
G. Goubau, Electromagnetic Waveguides and Cavities, Pergamon Press, New York,
1961; Sect. 25. Attenuation for degenerate modes in guides is treated by R. Miiller,
Z. Naturforsch., 4a, 218 (1949), and for the rectangular cavity by the same author in
Sect. 37 of the book by Goubau.
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For TM fields the vanishing of E, at z = 0 and z = d requires
E, = y(z, y) cos (”—;’f), p=012,... (8.67)
Similarly for TE fields, the vanishing of B, at z = 0 and z = d requires

B, = p(=, y) sin (”7"2) p=1,23... (8.68)

Then from (8.24) we find the transverse fields:

TM FIELDS
4 (8.69)
B, = Eg-) cos (p—7Tz)e3 x V.,
cy d
TE FIELDS
E,=— l—a)—2 n (—z)e3 x V,p
cy
(8.70)
pr pm
B, = *—cos (-———)V
t dy? d t

The boundary conditions at the ends of the cavity are now explicitly
satisfied. There remains the eigenvalue problem (8.34)—(8.36), as before.
But now the constant 2 is:

2 2
2 e (p_‘n) 8.71
= UE — .
V= e y (8.71)
For each value of p the eigenvalue y,2 determines an eigenfrequency of
resonance frequency w;,,:

w2, = %i—][yf + (%’-ﬂ (8.72)*

and the corresponding fields of that resonant mode. The resonance
frequencies form a discrete set which can be determined graphically on the
figure of axial wave number k versus frequency in a wave guide (see p. 245)
by demanding that k = pn/d. It is usually expedient to choose the
various dimensions of the cavity so that the resonant frequency of operation
lies well separated from other resonant frequencies. Then the cavity will
be relatively stable in operation and insensitive to perturbing effects
associated with frequency drifts, changes in loading, etc.
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x Fig. 8.7

An important practical resonant cavity is the right circular cylinder,
perhaps with a piston to allow tuning by varying the height. The cylinder
is shown in Fig. 8.7, with inner radius R and length d. For a TM mode
the transverse wave equation for y = E,, subject to the boundary con-
dition E, = 0 at p = R, has the solution:

wp, ) = Ju(Vmnp)e™ ™ (8.73)
where
X
mn — -—mn 8.74
4 R (8.74)

%, is the nth root of the equation, J,,(x) = 0. These roots are given on
page 72, below equation (3.92). The integers m and » take on the values
m=20,1,2,...,and n=1, 2, 3,.... The resonance frequencies are
given by
o =L [T P (8.75)*
mnp - 2 2
\/,u,e R d
The lowest TM mode has m = 0, n = 1, p = 0, and so is designated
TM, . Its resonance frequency is

2.405 ¢
w = — == 8.76
010 \/‘ue R ( )
The explicit expressions for the fields are
E, = E, JO(2.405p)e_im
R (8.77)

B, = —iiE, 11(2.4£5p)e_imt

The resonant frequency for this mode is independent of 4. Consequently
simple tuning is impossible.
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For TE modes, the basic solution (8.73) still applies, but the boundary

d
condition on B, (-E = 0) makes
R

op

Vmn = —° (8.78)

where z,,, is the nth root of J,,'(x) = 0. These roots, for a few values of
m and n, are tabulated below:

Roots of J,,/(x) =0

m=0: =z, =3.832,7.016,10.174, . ..
m=1: =, = 18415331, 8536,...
m=2: =z, = 3.054,6.706, 9.970,...
m=13: x5, = 4201, 8.015, 11.336, . ..

The resonance frequencies are given by

_ [c] (—%’ p27r2)%
mnp \//; R2 d2

wherem=0,1,2,...,butn,p=1,2,3,.... The lowest TE mode has
m =n=p =1, and is denoted TE, , ;. Its resonance frequency is

© (8.79)*

1.841 ¢ V4
while the fields are derivable from
1.841 . fmeN L
B, = Bojl(—k-—P) Cos ¢ sin (7)e t (8.81)

by means of (8.70). For d large enough (4 > 2.03R), the resonance
frequency w,y, is smaller than that for the lowest TM mode (8.76). Then
the TE, ; ; mode is the fundamental oscillation of the cavity. Because the
frequency depends on the ratio d/R it is possible to provide easy tuning by
making the separation of the end faces adjustable.

8.7 Power Losses in a Cavity; Q of a Cavity

In the preceding section it was found that resonant cavities had discrete
frequencies of oscillation with a definite field configuration for each
resonance frequency. This implies that, if one were attempting to excite a
particular mode of oscillation in a cavity by some means, no fields of the
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right sort could be built up unless the exciting frequency were exactly equal
to the chosen resonance frequency. In actual fact there will not be a delta
function singularity, but rather a narrow band of frequencies around the
eigenfrequency over which appreciable excitation can occur. Animportant
source of this smearing out of the sharp frequency of oscillation is the
dissipation of energy in the cavity walls and perhaps in the dielectric filling
the cavity. A measure of the sharpness of response of the cavity to external
excitation is the Q of the cavity, defined as 27 times the ratio of the
time-averaged energy stored in the cavity to the energy loss per cycle:

0 = w, Stored energy
Power loss

(8.82)*

Here w, is the resonance frequency, assuming no losses. By conservation
of energy the power dissipated in ohmic losses is the negative of the time
rate of change of stored energy U. Thus from (8.82) we can write an
equation for the behavior of U as a function of time:

dau Wo 17

. . dr Q (8.83)
with solution

U(t) = Uge @

If an initial amount of energy U, is stored in the cavity, it decays away
exponentially with a decay constant inversely proportional to Q. The
time dependence in (8.83) implies that the oscillations of the fields in the
cavity are damped as follows:

E(t) = g gmoot/2Qe o0t (8.84)
A damped oscillation such as this has not a pure frequency, but a super-
position of frequencies around w = w;. Thus,

E@®) = \—/%—T_r mE(w)e_i“” dw

where (8.85)
E(w) = —1_—_-f E, e~ ©0t12Qgil@—w0lt gy
\/ 2w do O
The integral in (8.85) is elementary and leads to a frequency distribution
for the energy in the cavity having a Lorentz line shape:

1
(v — w0)2 + (wole)2

|E(e)}? oc (8.86)
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The resonance shape (8.86), shown in Fig. 8.8, has a full width at half-
maximum (confusingly called the half-width) equal to we/Q. For a
constant input voltage, the energy of oscillation in the cavity as a function
of frequency will follow the resonance curve in the neighborhood of a
particular resonant frequency. Thus, if Aw is the frequency separation
between half-power points, the Q of the cavity is

_ Yo

Ao
Q values of several hundreds or thousands are common for microwave
cavities.

To determine the Q of a cavity we must calculate the time-averaged
energy stored in it and then determine the power loss in the walls. The
computations are very similiar to those done in Section 8.5 for attenuation
in wave guides. We will consider here only the cylindrical cavities of
Section 8.6, assuming no degeneracies (see the footnote on p. 252). The
energy stored in the cavity for the mode 4, p is, according to (8.67)8.70):

o[ e o

where the upper (lower) line applies to TM (TE) modes. For the TM
modes with p = 0 the result must be multiplied by 2.
The power loss can be calculated by a modification of (8.58):

c? 1
Ploss = [m]w[§ dlf dzin x B]sndes + ZLd‘aln x Bignds] (8.89)*

For TM modes with p # 0 it is easy to show that

e [l (2] s oo

(8.87)

Fig. 8.8 Resonance line shape. The

full width Aw at half-maximum (of

the power) is equal to the central

frequency w, divided by the Q of the
cavity.
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where the dimensionless number &, is the same one that appears in (8.62),

C is the circumference of the cavity, and 4 is its cross-sectional area. For

p = 0, & must be replaced by 2£;. Combining (8.88) and (8.89) according

to (8.82), and using definition (7.85) for the skin depth 4, we find the Q of
the cavity:

d 1

A Sy B

(14 ¢, &)

“44

(8.91)*

where y, is the permeability of the metal walls of the cavity. For p =0
modes, (8.91) must be multiplied by 2 and &, replaced by 2¢&,. This
expression for @ has an intuitive physical interpretation when written in
the form:

= -/f'-(i) X (Geometrical factor) (8.92)*
fho \SO

where ¥ is the volume of the cavity, and S its total surface area. The Q of
a cavity is evidently, apart from a geometrical factor, the ratio of the
volume occupied by the fields to the volume of the conductor into which
the fields penetrate because of the finite conductivity. For TM modes in
cylindrical cavities the geometrical factor is

Cd)
1 Pl
( + 24

[ 2..cd) &2
)
( + ¢, 34
for p # 0, and is
2(1 + Eé)
24 (8.94)

Fd
(1+512A

for p = 0 modes. For TE modes in the cylindrical cavity the geometrical
factor is somewhat more complicated, but of the same order of magnitude.

For the TM, ;, mode in a circular cylindrical cavity with fields (8.77),
&, = 1 (true for all TM modes), so that the geometrical factor is 2 and

0 is:
Q=2(-’i 1

d
= 8.95)*
5 (8.95)
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For the TE, ; ; mode calculation yields a geometrical factor*

d2
(1 + 0.344 RE)

(1 + %) 7 o (8.96)
1+ 0.209 — + 0.242 —)
(1+omeromy
and a Q:
2
(1 + 0.344 %_2)
(8.97)*

Q:L(.‘i)
3
2p 0 (1+0.209i+0.242‘1-)
R R

Expression (8.92) for Q applies not only to cylindrical cavities but also
to cavities of arbitrary shape, with an appropriate geometrical factor of

the order of unity.

8.8 Dielectric Wave Guides

In Sections 8.2-8.5 we considered wave guides made of hollow metal
cylinders with fields only inside the hollow. Other guiding structures are
possible. The parallel-wire transmission line is an example. The general
requirement for a guide of electromagnetic waves is that there be a flow of
energy only along the guiding structure and not perpendicular to it. This
means that the fields will be appreciable only in the immediate neighbor-
hood of the guiding structure. For hollow wave guides these requirements
are satisfied in a trivial way. But for an open structure like the parallel-
wire line the fields extend somewhat away from the conductors, falling off
like p~2 for the TEM mode, and exponentially for higher modes.

A dielectric cylinder, such as shown in Fig. 8.9, can serve as a wave guide,
with some properties very similar to those of a hollow metal guide if its
dielectric constant is large enough. There are, however, characteristic
differences which arise because of the very different boundary conditions
to be satisfied at the surface of the cylinder. The general considerations of
Section 8.2 still apply, except that the transverse behavior of the fields is
governed by two equations like (8.19), one for inside the cylinder and one
for outside:

INSIDE

el -0 o

* Note that this factor varies by only 30 per cent as the cylinder geometry is changed
from d/R>1tod/R<L1.
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[Vf + (,uoeo?:— - k2)]{g} —0 (8.99)

Both dielectric (u,, €,) and surrounding medium (1, €,) are assumed to be
uniform and isotropic in their properties. The axial propagation constant
k must be the same inside and outside the cylinder in order to satisfy
boundary conditions at all points on the surface at all times.

In the usual way, inside the dielectric cylinder the transverse Laplacian
of the fields must be negative so that the constant

OUTSIDE

2

v=pma S = K (8.100)

is positive. Outside the cylinder, however, the requirement of no transverse
flow of energy demands that the fields fall off exponentially. (There is no
TEM mode for a dielectric guide.) Consequently, the quantity in (8.99)
equivalent to y* must be negative. Therefore we define a quantity §%:

(1)2

=K = o oy (8.101)

and demand that acceptable wave guide solutions have 2 positive (3 real).

The oscillatory solutions (inside) must be matched to the exponential
solutions (outside) at the boundary of the dielectric cylinder. The
boundary conditions are continuity of normal B and D and tangential E
and H, rather than the vanishing of normal B and tangential E (8.25)
appropriate for hollow conductors. Because of the more involved
boundary conditions the types of fields do not separate into TE and TM
modes, except in special circumstances such as azimuthal symmetry in

Fig. 8.9 Section of dielectric wave
guide.
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circular cylinders, to be discussed below. In general, axial components
of both E and B exist. Such waves are sometimes designated as HE
modes.

To illustrate some of the features of the dielectric wave guide we consider
a circular cylinder of radius a consisting of nonpermeable dielectric with
dielectric constant €, in an external nonpermeable medium with dielectric
constant €,. As a simplifying assumption we take the fields to have no
azimuthal variation. Then in cylindrical coordinates the radial equations
for E, or B, are Bessel’s equations:

2 1d
(d_2+—;l_+y2)y)_0’ p=a
P : (8.102)
& 1d 2)
+._._— = U, > a
(dp2 pdp F)e P JI

The solution, satisfying the requirements of finiteness at the origin and at
infinjty, is found from Section 3.6 to be:

j( Jo(vp) p < a}
’(/) —

| AKo(Bp),  p>a
The other components of E and B can be found from (8.24) when the
refative amounts of E, and B, are known. With no ¢ dependence to the
fields, (8.24) reduces to

(8.103)

INSIDE
pzﬁa_Bg’ B¢=ielwaEz}
7 op Y% Op (8.104)
E¢=_ng’ Ep:ﬁ’iBtb
ck €W

and similar expressions for p > a. The fact that the fields arrange them-
selves in two groups, (B,, E,) depending on B,, and (B,, E,) depending on
E,, suggests that we attempt to obtain solutions of the TE or TM type, as
for the metal wave guides. For the TE modes, the fields are explicitly

B, =Jyyp) |
ik
B, =— > Jyp) p<a (8.105)

iw
E¢ = —Ji(yp) |
cy J
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and
B, = AK(fp)
B, = %—4 Ky(Bp) p>a (8.106)
— _ o4
Eqb = 0,3 K1(/3P)

These fields must satisfy the standard boundary conditions at p = a. This
leads to the two conditions,

AKy(fa) = Jy(ya)

8.10
_4 K,(fa) = Ji(ya) (8.107)
p ¥

Upon elimination of the constant 4 we obtain the determining equations
for y, B, and therefore k-

Ji(ya) + K,(Ba) =0
yJo(ya) ﬂKo(ﬁa)
and, from (8.100) and (8.101), (8.108)

2

w

Vit = — )
c* J

The general behavior of the two parts of the first equation in (8.108) is
shown in Fig. 8.10a. Figure 8.10h shows the two curves superposed

, | |
I |
| | |
<[z N |
82 3|&! | :
oS <3 | !
5 -,
B RN l (Y@)max =
A Ve 4
| i '
. |
<—ﬁa : ; |7a——>
-\ |
o\ |
| |
| 1 '
| | |
| | |
(a) (b)

Fig. 8.10 Graphical determination of the axial propagation constant for a
dielectric wave guide.
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according to the second equation in (8.108). The frequency is assumed to
be high enough that two modes, marked by the circles at the intersections
of the two curves, exist. The vertical asymptotes are given by the roots of
Jo(@) = 0. If the maximum value of ypag is smaller than the first root
(25, = 2.405), there can be no intersection of the two curves for real §.
Hence the lowest “cutoff” frequency for TE, , waves is given by

_ _2405¢ (8.109)

b Ja—ea
At this frequency 2 = 0, but the axial wave number k is still real and
equal to its free-space value Veyw/e. Immediately below this “cutoff”
frequency, the system no longer acts as a guide but as an antenna, with
energy being radiated radially. For frequencies well above cutoff, f and
k are of the same order of magnitude and are large compared to y provided
€, and ¢, are not nearly equal.
For TM modes, the first equation in (8.108) is replaced by

J1(ya) + o Ky(Ba) —0

vlo(ya) & BKy(fa)
It is evident that all the qualitative features shown in Fig. 8.10 are retained
for the TM waves. The lowest “cutoff” frequency for TM,, waves is
clearly the same as for TE, , waves. Fore, > ¢, provided the maximum
value of ya does not fall very near one of the roots of Jy(x) = 0, (8.110)
shows that the propagation constants are determined by J;(ya) ~ 0. This
is just the determining equation for TE waves in a metallic wave guide.
The reason for the equivalence of the TM modes in a dielectric guide and
the TE modes in a hollow metallic guide can be traced to the symmetry
of Maxwell’s equations under the interchange of E and B (with appro-

priate sign changes and factors of 4/ ue ), plus the correspondence between
the vanishing of normal B at the metallic surface and the almost vanishing
of normal E at the dielectric surface (due to continuity of normal D with
€ > ).

If ¢, > €, then from (8.100) and (8.101) it is clear that the outside decay
constant 3 is much larger than p, except near cutoff. This means that the
fields do not extend appreciably outside the dielectric cylinder. Figure
8.11 shows qualitatively the behavior of the fields for the TE,, mode. The
other modes behave similarly. As mentioned earlier, modes with azimuthal
dependence to the fields have longitudinal components of both E and B.
Although the mathematics is somewhat more involved (see Problem 8.6),
the qualitative features of propagation—short wavelength along the
cylinder, rapid decrease of fields outside the cylinder, etc.—are the same
as for the circularly symmetric modes.

(8.110)
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Dielectric wave guides have not been used for microwave propagation,
except for special applications. One reason is that it is difficult to obtain
suitable dielectrics with sufficiently low losses at microwave frequencies.
In a recent application at optical frequencies very fine dielectric filaments,
each coated with a thin layer of material of much lower index of refraction,
are closely bundled together to form image-transfer devices.* The
filaments are sufficiently small in diameter (~ 10 microns) that wave-guide
concepts are useful, even though the propagation is usually a mixture of
several modes.

REFERENCES AND SUGGESTED READING

Wave guides and resonant cavities are dealt with in numerous electrical and communi-
cations engineering books. Among the physics textbooks which discuss guides, trans-
mission lines, and cavities are

Panofsky and Phillips, Chapter 12,

Slater,

Sommerfeld, Electrodynamics, Sections 22-25,
Stratton, Sections 9.18-9.22.

The mathematical tools for the discussion of these boundary-value problems are

presented by
Morse and Feshbach, especially Chapter 13.
Information on special functions may be found in the ever-reliable
Magnus and Oberhettinger.
Numerical values of Bessel functions are given by
Jahnke and Emde,
Watson.

PROBLEMS

8.1 A transmission line consisting of two concentric circular cylinders of metal
with conductivity o and skin depth J, as shown on p. 265, is filled with a

* B. O’Brien, Physics Today, 13, 52 (1960),
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uniform lossless dielectric (s¢, €). A TEM mode is propagated along this line.
(a) Show that the time-averaged power flow along the line is

P= [ﬁl‘/gmz |Hyf2 In (9)
4 € a

where H, is the peak value of the azimuthal magnetic field at the surface of
the inner conductor.

(b) Show that the transmitted power is attenuated along the line as
P(z) = Pye 2%

=[] L :C’_ffl’_)
oS

where

a

{¢) The characteristic impedance Z, of the line is defined as the ratio of
the voltage between the cylinders to the axial current flowing in one of them
at any position z. Show that for this line

ZO=[ﬁT:|i/\/ﬁln (13)
c |27N € a

(d) Show that the series resistance and inductance per unit length of the

line are
rR=_L (1.1
2rnod\a b

et 2t
c® |12 a 4r \a b

where w, is the permeability of the conductor. The correction to the
inductance comes from the penetration of the flux into the conductors by a
distance of order o.

8.2 A transmission line consists of two identical thin strips of metal, shown in
cross section on p. 266. Assuming that b 3> q, discuss the propagation
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of a TEM mode on this line, repeating the derivations of Problem 8.1.

Show that ~ _
p=]C1% [ty

|47 | 24/ €

LT

7= 2 Jaoin
Zo=_i;'r_,\/€(§)
R=55
~[E=s)
-
|
e
-
-
|
nm

|
I |
—>: a h—'

where the symbols have the same meanings as in Problem 8.1.
8.3 Transverse eleciric and magnetic waves are propagated along a hollow,
right circular cylinder of brass with inner radius R.

(a) Find the cutoff frequencies of the various TE and TM modes. Deter-
mine numerically the lowest cutoff frequency (the dominant mode) in terms
of the tube radius and the ratio of cutoff frequencies of the next four higher
modes to that of the dominant mode.

(b) Calculate the attenuation constant of the wave guide as a function of
frequency for the lowest two modes and plot it as a function of frequency.

8.4 A wave guide is constructed so that the cross section of the guide forms a

right triangle with sides of length a, @, V2a, as shown on p. 267. The
medium inside has 4 =€ = 1.
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85

8.6

(@) Assuming infinite conductivity for the walls, determine the possible
modes of propagation and their cutoff frequencies.

S

(b) For the lowest modes of each type calculate the attenuation constant,
assuming that the walls have large, but finite, conductivity. Compare the
result with that for a square guide of side a made from the same material.

A resonant cavity of copper consists of a hollow, right circular cylinder of
inner radius R and length L, with flat end faces.

(@) Determine the resonant frequencies of the cavity for all types of
waves. With (¢/V ueR) as a unit of I requency, plot the lowest four resonant
frequencies of each type as a function of R/L for 0 < R/L < 2. Does the
same mode have the lowest frequency for all R/L?

(b) If R =2cm, L = 3 cm, and the cavity is made of pure copper, what
is the numerical value of Q for the lowest resonant mode?

A right circular cylinder of nonpermeable dielectric with dielectric constant e
and radius a serves as a dielectric wave guide in vacuum.

(@) Discuss the propagation of waves along such a guide, assuming that
the azimuthal variation of the fields is e’™#,

(b) For m = %1, determine the mode with the lowest cutoff frequency
and discuss the properties of its fields (cutoff frequency, spatial variation,
etc.), assuming that € > 1.



Simple Radiating Systems

and Diffraction

In Chapters 7 and 8 we have discussed the properties of electro-
magnetic waves and their propagation in both bounded and unbounded
geometries. But nothing has been said about how to produce these waves.
In the present chapter we remedy this omission to some extent by pre-
senting a discussion of radiation by a localized oscillating system of
charges and currents. The treatment is straightforward, with little in the
way of elegant formalism. It is by its nature restricted to rather simple
radiating systems. A more systematic approach to radiation by localized
distributions of charge and current is left to Chapter 16, where multipole
fields are discussed.

The second half of the chapter is devoted to the subject of diffraction.
Since the customary scalar Kirchhoff theory is discussed in many books,
the emphasis has been placed on the vector properties of the electro-
magnetic field in diffraction.

9.1 Fields and Radiation of a Localized Oscillating Source

For a system of charges and currents varying in time we can make a
Fourier analysis of the time dependence and handle each Fourier com-
ponent separately. We therefore lose no generality by considering the
potentials, fields, and radiation from a localized system of charges and
currents which vary sinusoidally in time:

p(x, 1) = p(x)e™™ t}

J(x, 1) = J(x)e~ 7!
268

6.1
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As usual, the real part of such expressions is to be taken to obtain physical
quantities. The electromagnetic potentials and fields are assumed to have
the same time dependence.

It was shown in Chapter 6 that the solution for the vector potential
A(x, t) in the Lorentz gauge is

Ax, 1) = - fds 'fdt I 1) ( +'X—_c"—"—t) ©.2)

Ix — x|

provided no boundary surfaces are present. The Dirac delta function
assures the causal behavior of the fields. With the sinusoidal time
dependence (9.1), the solution for A becomes

A lfJ y £ d*’ 9.3
(X)—z (X)IX_—X'—I % 9.3)
where k = w/c is the wave number, and a sinusoidal time dependence is
understood. The magnetic induction is given by

B=Vx A (9.4)

while, outside the source, the electric field is

E=-V xB (9.5)
k

Given a current distribution J(x'), the fields can, in principle at least, be
determined by calculating the integral in (9.3). We will consider one or
two examples of direct integration of the source integral in Section 9.4.
But at present we wish to establish certain simple, but general, properties
of the fields in the limit that the source of current is confined to a small
region, very small in fact compared to a wavelength. If the source
dimensions are of order d and the wavelength is A = 27¢c/w, and if d < 4,

then there are three spatial regions of interest:

The near (static) zone: d<r <2
The intermediate (induction) zone: d<r~1
The far (radiation) zone: d<Ai<Lr

We will see that the fields have very different properties in the different
zones. In the near zone the fields have the character of static fields with
radial components and variation with distance which depends in detail on
the properties of the source. In the far zone, on the other hand, the fields
are transverse to the radius vector and fall off as r=2, typical of radiation
fields.



270 Classical Electrodynamics

For the near zone where r < A (or kr & 1) the exponential in (9.3) can
be replaced by unity. Then the vector potential is of the form already
considered in Chapter 5. The inverse distance can be expanded using
(3.70), with the result,

limAQ) = L 3 47 Yl &)

kr—0 cim2l+1
This shows that the near fields are quasi-stationary, oscillating har-
monically as e~ but otherwise static in character.

In the far zone (kr 3> 1) the exponential in (9.3) oscillates rapidly and
determines the behavior of the vector potential. In this region it is
sufficient to approximate

X —x|{~r—mn-x (9.7)
where n is a unit vector in the direction of x. Furthermore, if only the
leading term in kr is desired, the inverse distance in (9.3) can be replaced
by r. Then the vector potential is

ikr
lim A(x) = S | J(x)e~ v g3 (9.8)

kr— o0 cr
This demonstrates that in the far zone the vector potential behaves as an
outgoing spherical wave. It is easy to show that the fields calculated
from (9.4) and (9.5) are transverse to the radius vector and fall off as r—.
They thus correspond to radiation fields. If the source dimensions are
small compared to a wavelength it is appropriate to expand the integral in

IO, $) A (9.6)

(9.8) in powers of k: e* _(—ik)
lim A(x) = — 3 ——‘—fJ(x’)(n -x) d 9.9)
kr— o0 Cr = n!

The magnitude of the nth term is given by
—1; fJ(x’)(kn - x')" d’x (9.10)
n!

Since the order of magnitude of x’ is d and kd is small compared to unity
by assumption, the successive terms in the expansion of A evidently fall
off rapidly with n. Consequently the radiation emitted from the source
will come mainly from the first nonvanishing term in the expansion (9.9).
We will examine the first few of these in the following sections.

In the intermediate or induction zone the two alternative approxi-
mations leading to (9.6) and (9.8) cannot be made; all powers of kr must
be retained. Without marshalling the full apparatus of vector multipole
fields, described in Chapter 16, we can abstract enough for our immediate
purpose. The key result is the exact expansion (16.22) for the Green’s
function appearing in (9.3). For points outside the source (9.3) then
becomes

4rik

A(x) = — 3 i (kr)Y,,,(0, qs)fJ(x')jl(kr’)Y;;(e’, $dx  (9.11)
C 1.m
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If the source dimensions are small compared to a wavelength, j(kr’) can
be approximated by (16.12). Then the result for the vector potential is of
the form of (9.6), but with the replacement,

1 eikr
M
rit r

(1 + ay(ikr) + ay(ikr)® + + - - + a(ikr)')  (9.12)

+1

The numerical coefficients a, come from the explicit expressions for the
spherical Hankel functions. The right hand side of (9.12) shows the
transition from the static-zone result (9.6) for kr < 1 to the radiation-zone
form (9.9) for kr > 1.

9.2 Electric Dipole Fields and Radiation
If only the first term in (9.9) is kept, the vector potential is
ikr
Ax) = ec—r f J(x) e’ (9.13)

Examination of (9.11) and (9.12) shows that (9.13) is the / = 0 part of
the series and that it is valid everywhere outside the source, not just in the

far zone. The integral can be put in more familiar terms by an integration
by parts:

fJ dr = -fx’(V' < dPr = -iwfx’p(x’) d*x' (9.14)
from the continuity equation,

Thus the vector potential is o ©-13)
A(x) = —ikp &
where ™ P F (©.16)
p= {x’p(x’) dx 9.17)
is the electric dipole moment, as defined in electrostatics by (4.8).
The electric dipole fields from (9.4) and (9.5) are
ikr
B = k¥n x p) < (1 ——1—)
r ikr
. (9.18)

2 e 1 ik e
E=K(®mxp) xn—+ [3n(n-p)—pl{5 — )|
r r F J
We note that the magnetic induction is transverse to the radius vector at
all distances, but that the electric field has components parallel and perpen-
dicular to n.
In the radiation zone the fields take on the limiting forms,
ikr
B = K x p) E‘]
,

9.19
E=B xn ( )

showing the typical behavior of radiation fields.
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In the near zone, on the other hand, the fields approach
1 1
B = ik(n x p) - l

r r (9.20)

J

The electric field, apart from its oscillations in time, is just the static
electric dipole field (4.13). The magnetic induction is a factor (kr) smaller
than the electric field in the region where kr < 1. Thus the fields in the
near zone are dominantly electric in nature. The magnetic induction
vanishes, of course, in the static limit £ — 0. Then the near zone extends
to infinity.

The time-averaged power radiated per unit solid angle by the oscillating
dipole moment p is

E=DMrm—m§

dpP ¢

— = —Re[r’n-E x B* 9.21

dQ 8 clrn ] ( )
where E and B are given by (9.19). Thus we find

dpP ¢

— =kt 2 9.22

6= i Kinx (0 x p)l ©22)

The state of polarization of the radiation is given by the vector inside the
absolute value signs. If the components of p all have the same phase, the
angular distribution is a typical dipole pattern,

dP I .
— = — kYp|®sin® 0 9.23
- Ip|” sin (9.23)

where the angle 0 is measured from the direction of p. The total power
radiated is

_ o
3

P Ipl® (9.24)

A simple example of an electric dipole radiator is a centerfed, linear
antenna whose length d is small compared to a wavelength. The antenna
is assumed to be oriented along the z axis, extending from z = (d/2) to
z = —(d/2) with a narrow gap at the center for purposes of excitation, as
shown in Fig. 9.1. The current is in the same direction in each half of the

antenna, having a value J; at the gap and falling approximately linearly to
zero at the ends:

I(2)e ot = 10( [ — %-Z')e—iwt (9.25)
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z

=

YA

Fig. 9.1 Short, center-fed, linear antenna.  x

From the continuity equation (9.15) the linear-charge density p’ (charge
per unit length) is constant along each arm of the antenna, with the value,
wd

the upper (lower) sign being appropriate for positive (negative) values of z.
The dipole moment (9.17) is parallel to the z axis and has the magnitude

p'(z) = (9.26)

(d/2) i
p =f zp'(z) dz = Td 9.27)
—(d/2) 2w
The angular distribution of radiated power is
2
% = 5%0—— (kd)? sin® 0 (9.28)
e
while the total power radiated is
2 2
P = I‘)T(zk?— (9.29)

We see that for a fixed input current the power radiated increases as the
square of the frequency, at least in the long-wavelength domain where
kd <1.

9.3 Magnetic Dipole and Electric Quadrupole Fields
The next term in expansion (9.9) leads to a vector potential,
eik'r 1 i , , 3
Ax) = - —ik) }Ix)n-x") dx (9.30)
cr \r /
where we have included the correct terms from (9.12) in order
to make (9.30) valid everywhere outside the source. This vector

potential can be written as the sum of two terms, one of which
gives a transverse magnetic induction and the other of which gives a
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transverse electric field. These physically distinct contributions can be
separated by writing the integrand in (9.30) as the sum of a part symmetric
in J and x" and a part that is antisymmetric. Thus

—(n x)J = —[(n x)J + (n- Jx'] + (x x J)yxn (930

The second, antisymmetric part is recognizable as the magnetization due
to the current J:

M = l(x x J) (9.32)
2¢

The first, symmetric term will be shown to be related to the electric
quadrupole moment density.
Considering only the magnetization term, we have the vector potential,

AX) = ik(n x m)ir (1 — I—;—F) 9.33)

where m is the magnetic dipole moment,

m =f//t dr = 51- f(x x J) d®x (9.34)
C

The fields can be determined by noting that the vector potential (9.33) is
proportional to the magnetic induction (9.18) for an electric dipole. This
means that the magnetic induction for the present magnetic dipole source
will be equal to the electric field for the electric dipole, with the substitution
p-— m. Thus we find

B = k%*n x m) x n—+[3n(n m)—m](———ic) 9.35)
r?

Similarly, the electric field for a magnetic dipole source is the negative of
the magnetic field for an electric dipole:
iicr
E— —kn x m) ——(1 — —1—) (9.36)
ikr
All the arguments concerning the behavior of the fields in the near and
far zones are the same as for the electric dipole source, with the inter-
changes E— B, B— —E, p—m. Similarly the radiation pattern and
total power radiated are the same for the two kinds of dipole. The only
difference in the radiation fields is in the polarization. For an electric
dipole the electric vector lies in the plane defined by n and p, while for a
magnetic dipole it is perpendicular to the plane defined by n and m.
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The integral of the symmetric term in (9.31) can be transformed by an
integration by parts and some rearrangement:

i!}(-: f[(n XV + n-Dx'd3s = — %(fx’(n xXNp(x) d3x"  (9.37)

The continuity equation (9.15) has been used to replace V- J by iwp.
Since the integral involves second moments of the charge density, this
symmetric part corresponds to an electric quadrupole source. The vector
potential is
k2 ez’kr( 1 )J' , ) N g
AX) = — = — |1 — — ) | X'(n - x)p(x) d*x (9.38)
2 r ikr
The complete fields are somewhat complicated to write down. We will
content ourselves with the fields in the radiation zone. Then it is easy to
see that

=ikn x A ]
[ (9.39)
=1ik(m x A) x n |

Consequently the magnetic induction is

lk3 tkr
B=— — ———f(n x X)(n - x)p(x") dx’ (9.40)
With definition (4.9) for the quadrupole moment tensor,
Qs =f(3xaxﬂ — r*,)p(x) d*x (9.41)
the integral in (9.40) can be written
X fx’(n -xX)p(x') &=’ = §n x Q(n) (9.42)
The vector Q(n) is defined as having components,
0, = % Qupnp (9.43)

We note that it depends in magnitude and direction on the direction of
observation as well as on the properties of the source. With these defi-
nitions we have the magnetic induction,

B=— % om (9.44)
6 r

and the time-averaged power radiated per unit solid angle,

dP c
— = —— k%In x Q(n)|? 945
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The general angular distribution is complicated. But the total power
radiated can be calculated in a straightforward way. With the definition of
Q(n) we can write the angular dependence as

In x Q)P =Q*-Q — In- QJ?
= % Q:,/}Qa:yn/in Z Qar/ny&n nﬂn Ry (9‘46)
&b,y

a,f,7,0

The necessary angular integrals over products of the rectangular com-
ponents of n are readily found to be

\

fn;;n.y dQ = 4?77. 6[?}' l

4 |
fnan,,nyna dQ = 1—’5’ (Ouplys + 0,055 + 5“5,,.,)J

Then we find

ﬁn x Qn)*dQ = 417{% g‘ 1Qul* — [z oF z Q, +2 z IQa/jIZJ}
(9.48)

(9.47)

Since Q,; is a tensor whose main diagonal sum is zero, the first term in the
square brackets vanishes identically. Thus we obtain the final result for
the total power radiated by a quadrupole source:

ck® 2

= . 9.49

0 2 10 ©.49)
The radiated power varies as the sixth power of the frequency for fixed
quadrupole moments, compared to the fourth power for dipole radiation.

A simple example of a radiating quadrupole source is an oscillating

spheroidal distribution of charge. The off-diagonal elements of Q,,; vanish.
The diagonal elements may be written

Qa3 = Oy, On= Qan= _%Qo (9-50)

Then the angular distribution of radiated power is

dP ck® :

d_Q = —]?8; QO SII'l2 6 COS2 6 (95])
This is a four-lobed pattern, as shown in Fig. 9.2, with maxima at 0 = /4
and 37/4. The total power radiated by this quadrupole is

_ ck8Q,2

9.52
240 ©:52)
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4

Fig. 9.2 Quadrupole radiation pattern.

The labor involved in manipulating higher terms in expansion (9.9) of
the vector potential (9.8) becomes increasingly prohibitive as the expansion
is extended beyond the electric quadrupole terms. Another disadvantage
of the present approach is that physically distinct fields such as those of the
magnetic dipole and the electric quadrupole must be disentangled from
the separate terms in (9.9). Finally, the present technique is useful only in
the long-wavelength limit. A systematic development of multipole radia-
tion is given in Chapter 16. It involves a fairly elaborate mathematical
apparatus, but the price paid is worth while. The treatment allows all
multipole orders to be handled in the same way; the results are valid for
all wavelengths; the physically different electric and magnetic multipoles
are clearly separated from the beginning.

9.4 Center-fed Linear Antenna

For certain radiating systems the geometry of current flow is sufficiently
simple that integral (9.3) for the vector potential can be found in relatively
simple, closed form. As an example of such a system we consider a thin,
linear antenna of length 4 which is excited across a small gap at its mid-
point. The antenna is assumed to be oriented along the z axis with its gap
at the origin, as indicated in Fig. 9.3. If damping due to the emission of
radiation is neglected, the current along the antenna can be taken as
sinusoidal in time and space with wave number k = w/e¢, and is symmetric
on the two arms of the antenna. The current vanishes at the ends of the
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antenna. Hence the current density can be written
. (kd
J(x) = I'sin 5 k|z])6(x) 6(v)e, (9.53)

for |2| << (d/2). The delta functions assure that the current flows only
along the z axis. I1is the peak value of the current if kd > 7. The current
at the gap is I, = Isin (kd/2).

With the current density (9.53) the vector potential is in the z direction
and in the radiation zone has the form [from (9.7)]:

ikr (*(d[2) .
A(X) = ¢, Ie f sin (@ — k lz[)e-zkzcoso dz (9‘54)
cr J-(a/2) 2

The result of straightforward integration is

kd kd
o cos 70050 — COS 7
(9.55)
ckr

Since the magnetic induction in the radiation zone is given by B =
ikn x A, its magnitudeis |B| = k sin 6 |43]. Thus the time-averaged power
radiated per unit solid angle is

(kd ) (kd) 2
cos |—cos @) — cos | —
daP _ I’ 2 2
dQ 2me sin 0

The electric vector is in the direction of the component of A perpendicular
to n. Consequently the polarization of the radiation lies in the plane
containing the antenna and the radius vector to the observation point.

A(x) = ¢

sin2 0

(9.56)

Coaxial 8 - |
feed |
7

Fig. 9.3 Center-fed, linear antenna.
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The angular distribution (9.56) depends on the value of kd. In the
long-wavelength limit (kd < 1) it is easy to show that it reduces to the
dipole result (9.28). For the special values kd = m (2m), corresponding to
a half (two halves) of a wavelength of current oscillation along the antenna,
the angular distributions are

cos? (E cos 0)
2

dp _ _ﬁ sin% 0
dQ  2mc 4 cos? (% cos 0)

, kd =
(9.57)

, kd = 2n
L sin® 0
These angular distributions are shown in Chapter 16 in Fig. 16.4, where
they are compared to multipole expansions. The half-wave antenna
distribution is seen to be quite similar to a simple dipole pattern, but the
full-wave antenna has a considerably sharper distribution.

The full-wave antenna distribution can be thought of as due to the
coherent superposition of the fields of two half-wave antennas, one above
the other, excited in phase. The intensity at § = 7/2, where the waves add
algebraically, is 4 times that of a half-wave antenna. At angles away from
6 = m/2 the amplitudes tend to interfere, giving the narrower pattern. By
suitable arrangement of a set of basic antennas, such as the half-wave
antenna, with the phasing of the currents appropriately chosen, arbitrary
radiation patterns can be formed by coherent superposition. The interested
reader should refer to the electrical engineering literature for detailed
treatments of antenna arrays.

For the half-wave and full-wave antennas the angular distributions can
be integrated over angles to give

2 — ¢ .
(lf (_1.__&) dt, kd = =
IZ12Je t

P = _—C_ 1 27 1 1 ar ] (958)
(e L ("= ay ka=2r
L Jo t 2Jo t

The integrals in (9.58) can be expressed in terms of the cosine integral,

Ci(z) = — f cost (9.59)
@ 3
as follows:

f “”(1_—:&5) dt = In (yz) — Ci(z) (9.60)

0
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where y = 1.781 .., is Euler’s constant. Tables of the cosine integral
are given by Jahnke and Emde, pp. 6-9. The numerical results for the
power radiated are

12 [2.44, kd ==

P=— (9.61)

2¢ 16.70, kd = 2n
For a given peak current [ the full-wave, center-fed antenna radiates
nearly 3 times as much power as the half-wave antenna. The coefficient
of I%/2 has the dimensions of a resistance and is called the radiation
resistance R, of the antenna. The value in ohms is obtained from (9.61)
by multiplying the numbers by 30 (actually the multiplier is the numerical
value of the velocity of light divided by appropriate powers of 10). Thus
the half- and full-wave center-fed antennas have radiation resistances of
73.2 ohms and 201 ohms, respectively.

The reader should be warned that the idealized problem of an infinitely
thin, linear antenna with a sinusoidal current distribution is a somewhat
simplified version of what occurs in practice. Finite lateral dimensions,
ohmic and radiative losses, nonsinusoidal current distributions, finite gaps
for excitation, etc., all introduce complications. These problems are
important in practical applications and are treated in detail in an extensive
literature on antenna design, to which the interested reader may refer.

9.5 Kirchhoff’s Integral for Diffraction

The general problem of diffraction involves a wave incident on one or
more obslacles or apertures in absorbing or conducting surfaces. The
wave is scattered and perhaps absorbed, leading to radiation propagating
in directions other than the incident direction. The calculation of the
radiation emerging from a diffracting system is the aim of all diffraction
theories. The earliest systematic attempt was that of G. Kirchhoff (1882),
based on the ideas of superposition of elemental wavelets due to Huygens.
In this section we will discuss Kirchhoff’s method and point out some of
its deficiencies, and in the next section derive vector theorems which
correspond to the basic scalar theorem of Kirchhoff.

The customary geometrical situation in diffraction is two spatial regions
I and II separated by a boundary surface S, as shown in Fig. 9.4. For
example, S may be an infinite metallic sheet with certain apertures in it.
The incident wave, generated by sources in region I, approaches S from
one side and is diffracted at the boundary surface, giving rise to scattered
waves, one transmitted and one reflected. It is usual to consider only the
transmitted wave and call its distribution in angle the diffraction pattern



[Sect. 9.5] Simple Radiating Systems and Diffraction 281
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Fig. 9.4 Diffracting system. The surface
S, with certain apertures in it, gives rise to /// T

reflected and transmitted fields in regions I
and II in addition to the fields which would
be present in the absence of the surface. S

of the system. If the incident wave is described by the fields E,, B,, the
reflected wave by the fields E,, B,, and the transmitted wave by E,, B,,
then the total fields in regions I and II are E = E; 4+ E,, B = B, + B,,
where s stands for r or 7. The basic problem is to determine (E,, B,) and
(E,, B,) from the incident fields (E,, B,) and the properties of the boundary
surface S. To connect the fields in region I with those in region II
boundary conditions for E and B must be satisfied on S, the form of these
boundary conditions depending on the properties of S.

The method of attack used in solving such problems is the Green’s
theorem technique, as applied to the wave equation in Chapter 6. Con-
sider a scalar field y(x, 1) defined on and inside a closed surface S and
satisfying the source-free wave equation in that region. The field y(x, 1)
can be thought of as a rectangular component of E or B. We proved in
Chapter 6 that the value of y inside S could be written in terms of the value
of y and its normal derivative on the surface as

= L§ Moy - R oy - RO gy
¥06 1) —477§3R [V?"(x’t) oA R WAL
(9.62)

where R = x — x’, nis the outwardly directed normal to the surface, and
ret means evaluated at a time t" = ¢t — (R/c). If a harmonic time depen-
dence e ™! is assumed, this integra] form for w(x, f) can be written:

' R ,

p(x) = 4W§ n- liV v+ !k(l + kR)R 1,0:] da (9.63)

To adapt (9.63) to diffraction problems we consider the closed surface
S to be made up of two surfaces S, and S,. Surface S, will be chosen as a
convenient one for the particular problem to be solved (e.g., the con-
ducting screen with apertures in it), while surface S, will be taken as a
sphere or hemisphere of very large radius (tending to infinity) in region 11,
as shown in Fig. 9.5. Since the fields in region 11 are the transmitted fields
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which originate from the diffracting region, they will be outgoing waves in
the neighborhood of S,. This means that the fields, and therefore p(x),
will satisfy the radiation condition,

ek 10 1
y=f0,H =, —Fo ( ik — —) (9.64)

r yor r
With this condition on p it can readily be seen that the integral in (9.63)
over the hemisphere S, vanishes inversely as the hemisphere radius as that
radius goes to infinity. Then we obtain the Kirchhoff integral for ¢(x) in

region 1I:
1 kR

p(x) = — ) e—n . [V'ip + zk(l + — )R zp} da’ (9.65)
T
where n is now a unit vector normal to S, and pointing into region II.

In order to apply the Kirchhoff formula (9.65) to a diffraction problem
it is necessary to know the values of y and dy/0n on the surface S;. Unless
we have already solved the problem exactly, these values are not known.
If, for example, S, is a plane, perfectly conducting screen with an opening
init and y represents the component of electric field parallel to S;, then we
know that  vanishes everywhere on S, except in the opening. But the
value of ¢ in the opening is undetermined. Without additional knowledge,
only approximate solutions can be found by making some assumption
about y and 0y/on on S;. The Kirchhoff approximation consists of the
assumptions:

1. y and Ov/0n vanish everywhere on S, except in the openings.
2. The values of y and dy/0dn in the openings are equal to the values of
the incident wave in the absence of any screens or obstacles.

The standard diffraction calculations of classical optics are all based on the
Kirchheff approximation. It should be obvious that the recipe can have
only very approximate validity. There is a basic mathematical incon-
sistency in the assumptions. It was shown for Laplace’s equation (and
equally well for the Helmholtz wave equation) in Section 1.9 that the

1 5 Fig. 9.5 Possible diffraction

Sources S1 geometries. Region I contains
I the sources of radiation. Region
1Y isthe diffraction region, where

the fields satisfy the radiation
condition.
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solution inside a closed volume is determined uniquely by specifying
(Dirichlet boundary condition) or dy/0n (Neumann boundary condition)
on the surface. Both y and dy/dn cannot be given on the surface. The
Kirchhoff approximation works best in the short-wavelength limit in
which the diffracting openings have dimensions large compared to a wave-
length. Being a scalar theory, even there it cannot account for details of
the polarization of the diffracted radiation. In the intermediate- and
long-wavelength limit, the scalar approximation fails badly, aside from the
drastic approximations inherent in the basic assumptions listed above.
Since the diffraction of electromagnetic radiation is a boundary-value
problem in vector fields, we expect that a considerable improvement can
be made by developing vector equivalents to the Kirchhoff integral (9.65).

9.6 Vector Equivalents of Kirchhoff Integral

To obtain vector equivalents to the Kirchhoff integral (9.63) we first

note that with the definition,
R

R

G(x,x') = 4i (9.66)

the scalar form (9.63) can be written

P(x) = J;S[Gn V'y — yn.-V'G] da’ (9.67)

By writing down the result (9.67) for each rectangular component of the
electric or magnetic field and combining them vectorially, we can obtain
the vector theorem,

E(x) = i[G(n-V’)E — Em-V'G)] da’ (9.68)

with a corresponding relation for B. This result is not a particularly
convenient one for calculations. It can be transformed into a more useful
form by a succession of vector manipulations. First the integrand in
(9.68) can be written

[1]=(@m-V)GE) — 2E(n-V'G) (9.69)
Then the vector identities,
nx (Ex VG =En-VG — m-EVG
VGxmx Ey=n(E-VG —En.-VG }
can be combined to eliminate the last term in (9.69):
[]=m:-V)GE) —n x (E x VG) —nE-VG
—@-E)V'G—(m x E) x VG 9.71)

(9.70)
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Now the curl of the product of a vector and a scalar is used to transform
the second term in (9.71), while the fact that V' . E = 0 is used to re-
express the third term. The result is

[]=m@-V)GE)+n x V' x (GE) —nV'-(GE)

—m-E)VG—mx E)yx VG- Gn x (V' x E)
(9.72)

While it may not appear very fruitful to transform the two terms in (9.68)
into six terms, we will now show that the surface integral of the first three
terms in (9.72), involving the product (GE), vanishes identically. To do
this we make use of the following easily proved identities connecting
surface integrals over a closed surface S to volume integrals over the interior

of S:
§SA-nda =JVV-Ad3x l
fﬁs(n x A)da =LV x A d% | (9.73)
L¢>n da =J;/V¢ A3z ‘

where A and ¢ are any well-behaved vector and scalar functions. With
these identities the surface integral of the first three terms in (9.72) can be
written

fﬁ[(n-v')(cE) +n x V' x (GE) — oV’ + (GE)] da’
S

= f [VXGE) + V' x V' x (GE) — V(V' . (GE))] &=’  (9.74)
Vv

From the expansion, V. x V x A = V(V . A) — V24 it is evident that
the volume integral vanishes identically.*

With the surface integral of the first three terms in (9.72) identically
zero, the remaining three terms give an alternative form for the vector
Kirchhoff relation (9.68). From Maxwell’s equations we have V x E =
ikB, so that the final result for the electric field anywhere inside the volume

* The reader may well be concerned that theorems (9.73) do not apply, since the
vector function (GE) is singular at the point X" = x. But if the singularity is excluded by
taking the surface S as an outer surface §” and a small sphere §” around x” = x, the con-
tribution of the integral over §” can be shown to vanish in the limit that the radius of
S” goes to zero. Hence result (9.74) is valid, even though G is singular inside the volume
of interest.
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bounded by the surface S is

E(x) = — i[ik(n x B) G+ (nx E) x VG + (n-E)V'G]da’ (9.75)
The analogous expression for the magnetic induction is
B(x) = — i[—ik(n x E)G +(n x B) x VG + (n-B)V'G] da” (9.76)

In (9.75) and (9.76) the unit vector nis the usual outwardly directed normal,
These integrals have an obvious interpretation in terms of equivalent
sources of charge and current. The normal component of E in (9.75) is
evidently an effective surface-charge density. Similarly, according to
(8.14), the tangential component of magnetic induction (n x B) acts as an
effective surface current. The other terms (n - B) and (n x E) are effective
magnetic surface charge and current densities, respectively.

Vector formulas (9.75) and (9.76) serve as vector equivalents to the
Huygens-Kirchhoff scalar integral (9.63). If the fields E and B are assumed
to obey the radiation condition (9.64) with the added vectorial relationship,
E =B x (r/r), it is easy to show that the surface integral at infinity
vanishes. Then, in the notation of Fig. 9.5, the electric field (9.75) is

E(x) = fs [(h x E) x V'G + (n- E)V'G + ik(n x B)G]da’ (9.77)

where S, is the surface appropriate to the diffracting system, and n is now
directed into the region of interest.

The vector theorem (9.77) is a considerable improvement over the
scalar expression (9.65) in that the vector nature of the electromagnetic
fields is fully included. But to calculate the diffracted fields it is still
necessary to know the values of E and B on the surface S;. The Kirchhoff
approximations of the previous section can be applied in the short-wave-
lengthlimit. But the sudden discontinuity of E and B from the unperturbed
values in the “illuminated”” region to zero in the “shadow” region on the
back side of the diffracting system must be compensated for mathemati-
cally by line currents around the boundaries of the openings.*

A very convenient formula can be obtained from (9.77) for the special
case of plane boundary surface S;. We imagine that the surface .S,
containing the sources in the right-hand side of Fig. 9.5 is changed in
shape into a large, flat pancake, as shown in Fig. 9.6. The region II of
“transmitted” fields now becomes two regions, II and II', connected
together only by an annular opening at infinity. We denote the two sides

* For a discussion of these line currents, see Stratton, pp. 468-470, and Silver,
Chapter 5.
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Fig. 9.6

of the disc by S; and S;’. The unit vectors nand n’ = —n are directed into
regions II and II’, respectively. Our aim is to obtain an integral form for
the fields in region II in terms of the fields specified on the right-hand
surface ;. This is analogous to the geometrical situation shown in the
left side of Fig. 9.5. We do not care about the values of the fields in region
II'. In fact, the hypothetical sources inside the disc will be imagined to be
such that the fields in region II’ give a contribution to the surface integral
(9.77) which makes the final expression for the diffracted fields in region II
especially useful. Once we have obtained the desired result [equation
(9.82) below] for the fields in region II as an integral over the surface S,
we will forget about the manner of derivation and ignore the whole left-
hand side of Fig. 9.6. Our interest is in the diffracted fields in region II
caused by apertures or obstacles located on the plane surface ;.

If the fields in regions II and II" are E, B and E’, B’, respectively, then
from the figure it is evident that when the thickness of the disc becomes
vanishingly small, integral (9.77) may be written

E(x) =L mx (E—E)xVG+n-(E—EWG

+ ikn x (B — B)G]da’ (9.78)

The field E(x) on the left side is either E or E’, depending on where the
point x lies. But the integral is over the right-hand surface S; only.
One of the most common applications is to conducting surfaces with
apertures in them. The boundary conditions at a perfectly conducting
surface ate n x E=0,n-B =0, but n-E =0, n x B 40. In cal-
culating the surface integral in (9.78) it would be desirable to integrate
only over the apertures in the surface rather than over all of it. The first
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term in (9.78) exists only in the apertures if the screen is perfectly con-
ducting. Consequently we try to choose the fields in region I1” so that the
other terms vanish everywhere on S;. Evidently we must choose

(n-E)g = (n-E)g,
(9.79)
(n x B')g, = (n x B)g,

Of course, the fields E’, B’ must satisfy Maxwell’s equations and the
radiation condition in region I1" if E, B satisfy them in region II. It is easy
to show that the required relationship, giving (9.79) on the surfaces, is
n x E'(x’) = —n x E(x)
n-Ex) =n-E®x)
n x B'(x) =n x B(x)
n-B'(x’)= —n-B(x)

(9.80)

where the point x’ is the mirror image of x in the plane S,. The fields at
mirror-image points have the opposite (same) values of tangential and
outwardly directed normal components of electric field (magnetic
induction).

With conditions (9.80) in (9.78) we obtain the simple result for the field
E(x) in terms of an integral over the plane surface S bounding region II,*

Ex) =2| (n x E) x VG da’ (9.81)
S1

where (n x E) is the tangential electric field on S, n is a unit normal
directed into region II, and G is the Green’s function (9.66). Since
V’ = —V when operating on @, (9.81) can be put in the alternate form,

E(x) = 2V x‘f n x E(x)G(x, x') da’ (9.82)
St

For a diffraction system consisting of apertures in a perfectly conducting
plane screen the integral over S; may be confined to the apertures only.
Result {(9.81) or (9.82) is exact if the correct tangential component of E
over the apertures is inserted. In practice, we must make some approxi-
mation as to the form of the aperture field. But, for plane conducting
screens at least, only the tangential electric field need be approximated
and the boundary conditions on the screen are correctly satisfied [as can
be verified explicitly from (9.82)].

* This form for plane screens was first obtained by W. R. Smythe, Phys. Rev., 72,
1066 (1947), using an argument based on the fields due to a double current sheet filling
the apertures, rather than the present Green’s-theorem technique.
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9.7 Babinet’s Principle of Complementary Screens

Before discussing examples of diffraction we wish to establish a useful
relation called Babinet’s principle. Babinet’s principle relates the dif-
fraction fields of one diffracting screen to those of the complementary
screen. We first discuss the principle in the scalar Kirchhoff approxi-
mation. The diffracting screen is assumed to lie in some surface S which
divides space into regions I and II in the sense of Section 9.5. The screen
occupies all of the surface S except for certain apertures. The comple-
mentary screen is that diffracting screen which is obtained by replacing
the apertures by screen and the screen by apertures. If the surface of the
original screen is S, and that of the complementary screen is S,, then
S, + S, = S, as shown schematically in Fig. 9.7.

If there are sources inside S (in region I) which give rise to a field (x),
then in the absence of either screen the field ¢(x) in region II is given by
the Kirchhoff integral (9.65) where the surface integral is over the entire
surface S. With the screen S, in position, the field y,(x) in region II is
given in the Kirchhoff approximation by (9.65) with the source field  in
the integrand and the surface integral only over S, (the apertures).
Similarly, for the complementary screen S,, the field v,(x) is given in the
same approximation by a surface integral over S,. Evidently, then, we
have the following relation between the diffraction fields y, and ,:

Y,y =y (9.83)

This is Babinet’s principle as usually formulated in optics. If y represents
an incident plane wave, for example, Babinet’s principle says that the

‘T'l
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Fig. 9.7 A diffraction screen §, and its
Sa complementary diffraction screen S,
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diffraction pattern away from the incident direction is the same for the
original screen and its complement.

The above formulation of Babinet’s principle is unsatisfactory in two
aspects: itis a statement about scalar fields, and it is based on the Kirchhoff
approximation. The second deficiency can be remedied by defining the
complementary problem as not only involving complementary screens
but also involving complementary boundary conditions (Dirichlet versus
Neumann) for the scalar fields. But since we are interested in the electro-
magnetic field, we will not pursue the scalar problem further.

A rigorous statement of Babinet’s principle for electromagnetic fields
can be made for a thin, plane, perfectly conducting screen and its comple-
ment. We start by considering certain fields E,, B, incident on the screen
with metallic surface S, (see Fig. 9.7) in otherwise empty space. The
presence of the screen gives rise to transmitted and reflected fields, as
shown in Fig. 9.4. These transmitted and reflected fields will be denoted
collectivelyas scattered fields, E,, B,, unless we need to be more specific. For
a perfectly conducting screen, the surface current K induced by the incident
fields must be such that at all points on the screen’s surface S,, n x E, =
—n x E,. For a thin, plane surface, the symmetry of the problem implies
that the tangential components of scattered magnetic field at the surface
must be equal and opposite, being given from (5.90) by

nxH=2K=—nxH, (9.84)
C

where n points into the transmitted region II. As a matter of fact, by the
same arguments that led from (9.79) to (9.80), it can be established that
at any point x in region II and its mirror-image point x’ in region I, the
scattered fields satisfy the symmetry conditions,
n x E(x) =n x E(x)
n-Ex)=—n-E(x)
n x B(x) = —n x B,(x)
n-B,(x) = n-By(x) J

(9.85)

It will be noted that these relations differ from those in (9.80) by having
the signs of E,(x") and B,(x") reversed. As we see from the work of Smythe
(op. cit., Section 9.6), the fields of (9.80) correspond to a double layer of
current. The present fields have the symmetries (9.85) appropriate to a
single, plane, current sheet radiating in both directions.

An integral expression for the scattered magnetic induction can now be
written down in terms of the surface current K. Since B is the curl of the
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vector potential, we have
B,=V x Y| K6 da' (9.86)
c Js,
where G is the Green’s function (9.66), and the integration goes over the

metallic surface S, of the screen. If we substitute for K from (9.84), we
can write the magnetic induction in region 1I as

B,(x) =2V xf n x B,(x)G(x, xX') da (9.87)
Sa

This result is identical with (9.82) except that

(1) the roles of E and B have been interchanged,

(2) the present integration is only over the body of the screen, whereas that
in (9.82) is only over the apertures,

(3) the total electric field appears in (9.82), whereas only the scattered
fields occur in (9.87).

The comparison of (9.87) with (9.82) forms the basis of Babinet’s
principle. If we write down the result (9.82) for the complement of the
screen with metallic surface S,, we have

E'(x) = 2V xf n x E'(x)G(x, x') da’ (9.88)
Sa

The integration is only over S,, since that is the aperture in the comple-
mentary screen. The field E’ in region II is the sum,

E =E, +E/ (9.89)
where Ey is the incident electric field of the complementary diffraction

problem, and E, the corresponding transmitted or diffracted field.
Evidently the two expressions (9.87) and (9.88) turn into one another under

the transformation,
B, — +(Ey + E,) (9.90)

It is easy to show that the other fields transform at the same time according
to

E,—~ ¥+(B, + B)) (9.91)
the sign difference arising from the fact that the fields must represent
outgoing radiation in both cases. Since we could have started with the
complementary screen initially, it is clear that (9.90) and (9.91) must hold
equally with the primed and unprimed quantities interchanged. Com-
parison of the two sets of expressions shows that the incident fields of the
original and complementary diffraction problems must be related accord-

ing to E, = —B, B, =E, (9.92)

The complementary problem involves not only the complementary screen,
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E
Fig.9.8 Equivalent radiators according to Babinet’s principle. Vs 2%

but also a complementary set of incident fields with the roles of E and B
interchanged.

The statement of Babinet’s principle is therefore as follows: a dif-
fracting system consists of a source producing fields E,, B, incident on a
thin, plane, perfectly conducting screen with certain apertures in it. The
complementary diffracting system consists of a source producing fields
E, = —B,, B,’ = E, incident on the complementary screen. If the
transmitted (diffraction) fields on the opposite side of the screens from the
source are E,, B, and E,/, B, for the diffracting system and its complement,
respectively, then they are related by

E,+ B/ = —-E, = —B/
B, — E/= —B, = +E/
These are the vector analogs of the scalar relation (9.83).

If a plane wave is incident on the diffracting screen, Babinet’s principle
states that, in directions other than the incident direction, the intensity of

the diffraction pattern of the screen and its complement will be the same,
the fields being related by

(9.93)

E = -B/ } (9.94)

B,=E/
The polarization of the wave incident on the complementary screen must,
of course, be rotated according to (9.92).

The rigorous vector formulation of Babinet’s principle is very useful in
microwave problems. For example, consider a narrow slot cut in an
infinite, plane, conducting sheet and illuminated with fields that have the
magnetic induction along the slot and the electric field perpendicular to
it, as shown in Fig. 9.8. The radiation pattern from the slot will be the
same as that of a thin linear antenna with its driving electric field along the
antenna, as considered in Sections 9.2 and 9.4. The polarization of the
radiation will be opposite for the two systems. Elaboration of these ideas
makes it possible to design antenna arrays by cutting suitable slots in the
sides of wave guides.*

* See, for example, Silver, Chapter 9.
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9.8 Diffraction by a Circular Aperture

The subject of diffraction has been extensively studied since Kirchhoff’s
original work, both in optics, where the scalar theory based on (9.65)
generally suffices, and in microwave generation and transmission, where
more accurate solutions are needed. There exist specialized treatises
devoted entirely to the subject of diffraction and scattering. We will
content ourselves with a few examples to illustrate the use of the scalar
and vector theorems (9.65) and (9.82) and to compare the accuracy of the
approximation schemes.

Historically, diffraction patterns were classed as Fresnel diffraction and
Fraunhofer diffraction, depending on the distance of the observation point
from the diffracting system. Generally the diffracting system (e.g., an
aperture in an opaque screen) has dimensions comparable to, or large
compared to, a wavelength. Then the observation point may be in the
near zone, less than a wavelength away from the diffracting system. The
near-zone fields are complicated in structure and of little interest. Points
many wavelengths away from the diffracting system, but still near the
system in terms of its own dimensions, are said to lie in the Fresnel zone,
Further away, at distances large compared to both the dimensions of
the diffracting system and the wavelength, lies the Fraunhofer zone. The
Fraunhofer zone corresponds to the radiation zone of Section 9.1. The
diffraction patterns in the Fresnel and Fraunhofer zones show character-
istic differences which come from the fact that for Fresnel diffraction the
region of the diffracting system nearest the observation point is of greatest
importance, whereas for Fraunhofer diffraction the whole diffracting
system contributes. We will consider only Fraunhofer diffraction, leaving
examples of Fresnel diffraction to the problems at the end of the chapter.

If the observation point is far from the diffracting system, expansion
(9.7) can be used for R = [x — x'|. Keeping only lowest-order terms in
(1/kr), the scalar Kirchhoff expression (9.65) becomes

ikr

px) = — 2

4ar

L le—ik.x»[n V'p(x') + ik - mp(x’):| da’  (9.95)

where x’ is the coordinate of the element of surface area da’, r is the length
of the vector x from the origin O to the observation point P, and k =
k(x/r) is the wave vector in the direction of observation, as indicated in
Fig. 9.9. For a plane surface the vector expression (9.82) reduces in this
limit to

ieikr
E(x) 5

k x f n x Ex)e % dg’ (9.96)
81

wr
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Fig. 9.9

As an example of diffraction we consider a plane wave incident at an
angle « on a thin, perfectly conducting screen with a circular hole of radius
a in it. The polarization vector of the incident wave lies in the plane of
incidence. Figure 9.10 shows an appropriate system of coordinates. The
screen lies in the 2-y plane with the opening centered at the origin. The
wave is incident from below, so that the domain z > 0 is the region of
diffraction fields. The plane of incidence is taken to be the z-z plane. The
incident wave’s electric field, written out explicitly in rectangular com-

onents, is . . :
P ’ E; = E(€; cos & — € sin o)e Hleosa s sinaz) (9.97)

In calculating the diffraction field with (9.95) or (9.96) we will make the
customary approximation that the exact field in the surface integral may
be replaced by the incident field. For the vector relation (9.96) we need

(n x E,)),_, = Ege, cos ae™ ™" ** (9.98)

Then, introducing plane polar coordinates for the integration over the
opening, we have

ie™E, cos a b ikp[sino cos f—sin 6 cos(d—F)]
E(x)=°_(kxe)f df dB ¢tHolsina
2mr 2 0 pap 0 P

(9.99)
where 6, ¢ are the spherical angles of k. If we define the angular function,
& = (sin® 0 + sin® « — 2 sin 6 sin « cos $)*¢ (9.100)

z

Fig, 9.10 Diffraction by a circu- x #E
lar hole of radius a. //// o
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the angular integral can be transformed into
2r . ,
— dﬁ = — f dp'e”® et — J (kp&) (9.101)
2w 0

Then the radial integral in (9.99) can be done directly. The resulting
electric field in the vector Kirchhoff approximation is

E(x) = — a2E0 cos a(k x €) Jl(kf) (9.102)
ka
The time-averaged diffracted power per unit solid angle is
% = P, cos oc(—) (cos® ¢ + cos® f sin® ¢) | === o (9.103)
where :
P, = (ch )'n'a cos « (9.104)
&

is the total power normally incident on the aperture. If the opening is large
compared to a wavelength (ka > 1), the factor [2J,(ka&)/ka&]* peaks
sharply to a value of unity at £ = 0 and falls rapidly to zero (with small
secondary maxima) within a region A& ~ (1/ka) on either side of & = 0.
This means that the main part of the wave passes through the opening in
the manner of geometrical optics; only slight diffraction effects occur.
For ka ~ 1 the Bessel-function varies comparatively slowly in angle; the
transmitted wave is distributed in directions very different from the
incident direction. For ka < 1, the angular distribution is entirely deter-
mined by the factor (k x €,)in (9.102). But in this limit the assumption of
an unperturbed field in the aperture breaks down badly.

The total transmitted power can be obtained by integrating (9.103) over
all angles in the forward hemisphere. The ratio of transmitted power to
incident power is called the transmission coefficient T

COSs o

f d¢f (cos® ¢ 4+ cos? 6 sin® ¢)

In the two extreme limits ka > 1 and ka < 1, the transmission coefficient
approaches the values,

Jcos o, ka > 1
T —

| $ka)*cos @,  ka <1

T sin 846 (9.105)

J1(ka5) ?
&

(9.106)

The long-wavelength limit (ka < 1) is suspect because of our approxi-
mations, but it shows that the transmission is small for very small holes.
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For normal incidence (« = 0) the transmission coefficient (9.105) can be
written

T2
T=f J,2(ka sin 6) (—2—— — sin 0) do (9.107)
0 sin 6
With the help of the integral relations,
/2 22z
f J Xz sin 6) f J21) dt ]
0 sin 6 0 (9 108)
T2
f J . %(z sin O)sin 6 d6 = %f.]zn(t) dt (
0 J

and the recurrence formulas (3.87) and (3.88), the transmission coeflicient
can be put in the alternative forms,

[ 12
1= = > Jamsi2ka) |
T = m=0 (9.109)

1 kaa
1 —— Jo(t) dt
L" 2kalo o)

The transmission coefficient increases more or less monotonically as ka
increases, with small oscillations superposed. For ka > 1, the second form
in (9.109) can be used to obtain an asymptotic expression,

1 T
T — <2k - -) 9.110
2ka 2\/77(ka)% sin \2ka =7 ) + ¢-110)

which exhibits the small oscillations explicitly. These approximate expres-
sions (9.109) and (9.110) for T give the general behavior as a function of
ka, but are not very accurate. Exact calculations, as well as more accurate
approximate ones, have been made for the circular opening. These are
compared with each other in the book by King and Wu (Fig. 41, p.126).
The correct asymptotic expression does not contain the 1/2ka term in
(9.110), and the coefficient of the term in (ka)~*% is twice as large.

We now wish to compare our results of the vector Kirchhoff approxi-
mation with the usual scalar theory based on (9.95). For a wave not
normally incident the question immediately arises as to what to choose for
the scalar function y(x). Perhaps the most consistent assumption is to
take the magnitude of the electric or magnetic field. Then the diffracted
intensity is treated consistently as proportional to the absolute square of
(9.95). If a component of E or B is chosen for vy, we must then decide
whether to keep or throw away radial components of the diffracted field in
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calculating the diffracted power. Choosing the magnitude of E for v,
we have, by straightforward calculation with (9.95),

’

et (cos * + cos 0) Jy(ka¥)
a“E,
2 kat

as the scalar equivalent of (9.102). The power radiated per unit solid angle
in the scalar Kirchhoff approximation is

p(x) = —ik (9.111)

r

2

2J,(kak)
ka&

2 2
4P p, K s (C"S o + cos 0) 9.112)

dQ ' 4n 2 cos o

where P; is given by (9.104).

If we compare the vector Kirchhoff result (9.103) with (9.112), we see
similarities and differences. Both formulas contain the same “diffraction”
distribution factor [Ji(ka&)/kaé]? and the same dependence on wave
number. But the scalar result has no azimuthal dependence (apart from
that contained in £), whereas the vector expression does. The azimuthal
variation comes from the polarization properties of the field, and must be
absent in a scalar approximation. For normal incidence (x = 0) and
ka > 1 the polarization dependence is unimportant. The diffraction is

// \\
// \
| \
' |
\ |
\ /
\ /

\ /
\ y
A
B e
(a) (b)

Fig. 9.11 Fraunhofer diffraction pattern for a circular opening one wavelength in

diameter in a thin, plane, conducting sheet. The plane wave is incident on the screen

at45°, The solid curves are the vector Kirchhoff approximation, while the dotted curves

are the scalar approximation. (a) The intensity distribution in the plane of incidence

(E plane). () The intensity distribution (enlarged 2.5 times) perpendicular to the plane
of incidence (H plane).



[Sect. 9.9] Simple Radiating Systems and Diffraction 297

confined to very small angles in the forward direction. Then both scalar
and vector approximations reduce to the common expression,

ﬁ ~ P, (ka)*

dQ 7

The vector and scalar Kirchhoff approximations are compared in Fig.

9.11 for the angle of incidence equal to 45° and for an aperture one wave-
length in diameter (ka = ). The angular distribution is shown in the plane
of incidence (containing the electric field vector of the incident wave) and a
plane perpendicular to it. The solid (dotted) curve gives the vector (scalar)
approximation in each case. We see that for ka = = there is a considerable
disagreement between the two approximations. There is reason to believe
that the vector Kirchhoff result is close to the correct one, even though the
approximation breaks down seriously for ka < 1. The vector approxi-
mation and exact calculations for a rectangular opening yield results in
surprisingly good agreement, even down to ka ~ 1.*

2

Ji(ka sin 6)
ka sin 6

(9.113)

9.9 Diffraction by Small Apertures

In the large-aperture or short-wavelength limit we have seen that a
reasonably good description of the diffracted fields is obtained by approxi-
mating the tangential electric field in the aperture by its unperturbed
incident value. For longer wavelengths this approximation begins to fail.
When the apertures have dimensions small compared to a wavelength, an
entirely different approach is necessary. We will consider a thin, flat,
perfectly conducting sheet with a small hole in it. The dimensions of the
hole are assumed to be very small compared to a wavelength of the electro-
magnetic fields which are assumed to exist on one side of the sheet. The
problem is to calculate the diffracted fields on the other side of the sheet.
Since the sheet is assumed flat, the simple vector theorem (9.82) is appro-
priate. Evidently the problem is solved if we can determine the electric
field in the plane of the hole.

As pointed out by Bethe (1942), the fields in the neighborhood of the
aperture can be treated by static or quasi-static methods. In the absence
of the aperture the electromagnetic fields near the conducting plane
consist of a normal electric field E, and a tangential magnetic induction
B, on one side, and no fields on the other. By ‘“‘near the conducting plane,”
we mean at distances small compared to a wavelength. If a small hole is

* See J. A. Stratton and L. J. Chu, Phys. Rev., 56, 99 (1939), for a series of figures

comparing the vector Kirchhoff approximation with exact calculations by P. M. Morse
and P. J, Rubenstein, Phys. Rev., 54, 895 (1938).
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Eo

L.

Fig. 9.12

now cut in the plane, the fields will be altered and will penetrate through
the hole to the other side. But far away from the hole (in terms of its
dimensions), although still “near the conducting plane,” the fields will be
the same as if the hole were not there, namely, normal Ej and tangential
B,. The electric field lines might appear as shown in Fig. 9.12. Since the
departures of the fields E and B from their unperturbed values E, and B,
occur only in a region with dimensions small compared to a wavelength,
the task of determining E or B near the aperture becomes a problem in
electrostatics or magnetostatics, apart from the overall sinusoidal time
dependence e ‘. For the electric field, it is a standard potential problem
of knowing the “asymptotic™ values of E on either side of the perfectly
conducting sheet which is an equipotential surface. Similarly for the
magnetic induction, B must be found to yield B, and zero “asymptotically”
on either side of the sheet, with no normal component on the surface. Then
the electric field due to the time variation of B can be calculated and
combined with the “electrostatic” electric field to give the total electric
field near the opening.

For a circular opening of radius a small compared to a wavelength, for
example, the tangential electric field in the plane of the opening can be
shown to be .

Eian = Eo——p— + 2k (n % Bowa? — p? 9.114)

- \/ a® — Pz -

where E, = E,-n is the magnitude of the normal electric field in the
absence of the hole, B, is the tangential magnetic induction in the absence
of the hole, n is the unit vector normal to the surface and directed info the
diffraction region [as in (9.82)], and p is the radius vector in the plane
measured from the center of the opening. With this tangential field deter-
mined in the static limit it is a straightforward matter to determine the
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diffracted fields and power from (9.82). The calculations for the circular
opening will be left to the problems at the end of the chapter (Problems

9.10 and 9.11).

9.10 Scattering by a Conducting Sphere in the
Short-Wavelength Limit

Another type of problem which is essentially diffraction is the scattering
of waves by an obstacle. We will consider the scattering of a plane
electromagnetic wave by a perfectly conducting obstacle whose dimensions
are large compared to a wavelength. For a thin, flat obstacle, the tech-
niques of Section 9.8, perhaps with Babinet’s principle, can be used. But
for other obstacles we base the calculation on vector theorem (9.77) for
the scattered fields. If we consider only the fields in the radiation zone
(kr > 1), the integral (9.77) for the scattered field E, becomes

ikr

[(n xE)xk+ m-E)k — k(n x Bs)]e_“"x' da’
9.115)

where k is the wave vector of the scattered wave, and S, is the surface of
the obstacle. It will be somewhat easier to calculate with the magnetic
induction B, = (k x E)/k:

e
E,—
4mir Js,

kr - ,
B, >~k xf [(n x E)) x li—. n x ste"'""da' (9.116)
S1

Arir

In the absence of knowledge about the correct fields E, and B, on the
surface of the obstacle, we must make some approximations. If the wave-
length is short compared to the dimensions of the obstacle, the surface
can be divided approximately into an illuminated region and a shadow
region.* The boundary between these regions is sharp only in the limit of
geometrical optics. The transition region can be shown to have a width of
the order of (2/kR)*R, where R is a typical radius of curvature of the
surface. Since R is of the order of magnitude of the dimensions of the
obstacle, the short-wavelength limit will approximately satisfy the geo-
metrical condition. In the shadow region the scattered fields on the surface
must be very nearly equal and opposite to the incident fields. In the
illuminated region, the scattered tangential electric field and normal
magnetic induction must be equal and opposite to the corresponding
incident fields in order to satisfy the boundary conditions on the surface

* For a very similar treatment of the scattering of a scalar wave by a sphere, see Morse
and Feshbach, pp. 1551-1555.



300 Classical Electrodynamics

of the perfectly conducting obstacle. On the other hand, the tangential B,
and normal E, in the illuminated region will be approximately equal to
the incident values, just as for an infinite, flat, conducting sheet, to the
extent that the wavelength is small compared to the radius of curvature.
Thus we obtain the following approximate values for the scattered fields
on the surface of the obstacle:

Shadow Region Illuminated Region

E,~ —E; nx E,= —n x E;
B, ~ —B, n-B, = —n:B,
nx B,~nx B,

n-E,~n-E

where E;, B, are the fields of the incident wave. With these boundary
values the scattered magnetic induction (9.116) can be written as

ikr

B ~
s — R
4mir

k x (Fsy + Fin) (9.117)

where

Fep = f 'I-i x (nxE)+n x B,]e"'“"" da’ (9.118)
shL

is the integral over the shadow region, and

Fin = f . ‘-; x (mx E)—n x Bi}e_ik'xlda’ (9.119)

is the integral over the illuminated region.
If the incident wave is a plane wave with wave vector ky,

E(x) = Ege™* }

B = x Ex) 0120

the integrals over the shadow and illuminated regions of the obstacle’s
surface are

1 kg —10x 1
Fon = Ef,, [(k + ko) x (n x Eg) + (n- E)k,Je ™ % da
: (9.121)

Fum || T~k x (0 x B) — (0 Egky]d ™% do
ill

These integrals behave very differently as functions of the scattering angle.
In the short-wavelength limit the magnitudes of k - x" and k, « X" are large
compared to unity. Thus the exponential factors in (9.121) will oscillate
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rapidly and cause the integrands to have very small average values except
in the forward direction where k ~ k,. In that direction the second term
in both F, and F;, is unimportant, since the scattered field (9.117) is
proportional to k x F. The behavior of the two contributions is thus
governed by the first terms in (9.121), at least in the forward direction. We
see that F,; and F;;, are proportional to (k £ ko), respcctively; the
shadow integral will be large and the integral from the illuminated region
will go to zero. As the scattering angle departs from the forward direction
the shadow integral will vanish rapidly, both the exponential and the
vector factor in the integrand having the same tendency. On the other
hand, the integral from the illuminated region will be small in the forward
direction and can be expected to be small at all angles, the exponential and
the vector factor in the integrand having opposite tendencies. The shadow
integral is evidently the diffraction contribution, while the integral from
the illuminated region is the reflected wave.

To proceed much further we must specify the shape of the obstacle. We
will assume that it is a perfectly conducting sphere of radius a. Since the
shadow integral is large only in the forward direction, we will evaluate it
approximately by placing k = k, everywhere except in the exponential.
Then, omitting the second term in (9.121) and using spherical coordinates
on the surface of the sphere, we obtain
/2

Fon =~ —2E,a* f

2r
sin o do cos « ez’ka(l —cos Neos acf d,@ e—ika sin Osina cos(f—¢)
0

0
(9.122)

The angles 6, ¢ and «, f§ are those of k and nrelative to ky. The exponential
factor involving (1 — cos #) can be set equal to unity, since at small angles
its exponent is a factor 6/2 smaller than the other exponent. The integral
over f is 2mJy(ka sin 6 sin o). Hence

rr/é
Fgnh =~ —4wa2E0f Jo(kab sin a)cos o sin o do (9.123)
0
where we have approximated sin 6 ~ §. The integral over « is pro-

kao
portional to the integralf aJo(x) de=kab Jy(kab). Therefore the shadow
scattering integral is ~ v°

Jy(ka)
a

Fsh_ ~ _4772an

(9.124)

We see that this is essentially the diffraction field of a circular aperture
(9.102).

The integral over the illuminated region, giving the reflected or back-
scattered wave, is somewhat harder to evaluate. We must consider
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arbitrary scattering angles, since there is no enhancement in the forward
direction. Then the integral consists of a relatively slowly varying vector
function of angles times a rapidly varying exponential. As is well known,
the dominant contribution to such an integral comes from the region of
integration where the phase of the exponential is stationary. The phase
factor is

f(o, ) = (ko — k) + X" = ka[(1 — cos 6) cos « — sin 0 sin o cos (f — )]

(9.125)
The stationary point is easily shown to be at angles o, ff,, where
m 6
% =~ + =
22 (9.126)
Bo= ¢

These angles are evidently just those appropriate for reflection from the
sphere according to geometrical optics. At this point the unit vector n
points in the direction of (k — kg). If we expand the phase factor around
o = oy, § = Py, We obtain

— _oasin?l1 =2 20 2} 4.
fla, ) = 2kasm2[l 2(x +coszy)+ :l (9.127)

where # = « — oy, ¥ = # — f,. Then integral (9.121) can be approxi-
mated by evaluating the square bracket at o« = ay, 8 = ff;:

Fiy = a®sin 0[2(n, « Ey) o — E,]e™ 2o sin (0/2)

o . . 2 2
N fdx el[k“mwﬂ)]xzfdy ez[kasm(O/Q)cos (6/2)]y (9,]28)

where n, is a unit vector in the direction (k — kg). Provided 0 is not too
small, the phase factors oscillate rapidly for large = or y. Hence the
integration can be extended to 4-co in each integral without error. Using

the result,
RIS T o
f e da = (—1) girit (9.129)

we obtain

Fiu =~ izik“ BRSO (n . Ein,y — K] (9.130)

After some vector algebra the contribution to the scattered field from the
illuminated part of the sphere can be written

. T . .
Egn) ~ 2 EO € _ e-?.zka sin (8/2) € (9131)
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Fig. 9.13 Polarization of reflected
wave relative to the incident polari-
zation.

where the polarization vector €, has a direction defined in Fig. 9.13, If
the polarization vector of the incident wave E, makes an angle § with the
normal to the plane containing the wave vectors k and kg, the azimuthal
angle y of €, measured from the plane containing k and kg, is given by
v = (w/2) — 8. We note that the reflected field (9.131) is constant in
magnitude as a function of angle, although it has a rapidly varying
phase.

The scattered electric field due to the shadow region is, from (9.124) and
9.117),

tkr
B ~ ikg? Jll(;;cg@)eT (k x 1*;;) x k (9.132)

Comparison of the two contributions to the scattered wave shows that in
the forward direction the shadow field is larger by a factor ka > 1. But
for angles much larger than 6 ~ (1/ka) the shadow field becomes very
small and the isotropic reflected field dominates. The power scattered per
unit solid angle can be expressed in the form:

[ (ka? |20y(ka®) [F -, 1

P, _ 4r | kat |’ ka

o=Pd ) (9.133)
—, 6> —
{47 ka

where P, = (cEy%a*/8) is the incident power per unit area times the pro-
Jected area (7a?) of the sphere. At small angles the scattering is a typical
diffraction pattern [see (9.113)]. At large angles the scattering is isotropic.
At intermediate angles the two amplitudes interfere, causing the scattered
power tc have sharp minimum values considerably smaller than the
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Fig. 9.14 ‘Diffraction pattern for
a conducting sphere, showing the
forward peak due to shadow
scattering, the isotropic reflected
contribution, and the interference

0 ~4/ka . .
P maxima and minima.

isotropic value at certain angles, as shown in Fig. 9.14. The amount of
interference depends on the orientation of the incident polarization vector
relative to the plane of observation containing k and k,. For E, in this
plane the interference is much greater than for E, perpendicular to it.*

The total power scattered is obtained by integrating over all angles.
Neglecting the interference terms, the total scattered power is the sum of
the integrals of the diffraction peak and the isotropic reflected part. The
integrals are easily shown to be equal in magnitude. Hence

P, =P, + P, = 2P, (9.134)

We sometimes rephase this result by saying that the effective area of the
sphere for scattering (its scattering cross section) is 2ma® One factor of
7ra® comes from the direct reflection; the other comes from the diffraction
scattering which must accompany the formation of a shadow behind the
obstacle.

Scattering of electromagnetic waves by a conducting sphere is treated
by another method, especially in the long-wavelength limit, in Section 16.9.
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function of ka. - '
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Baker and Copson,
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Morse and Feshbach, Chapter 13,
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PROBLEMS

9.1 Discuss the power flow and energy content of the complete electric dipole
fields (9.18) in terms of the complex Poynting’s vector S = (¢/8x)(E x B*)
and the time-averaged energy density u = (1/167)}E - E* + B -B*), The
real part of S gives the true, resistive power flow, while the imaginary part
represents circulating, reactive power.

(a) Show that the real part of S is in the radial direction and is given by
r~% times equation (9.23).
(b) Show that the imaginary part of S has components in the r and 0
directions given by
ck

Im S,- = W !plz Sinz [V]
ck |pl® 2,2 o
= — 0
Im S, v (1 + k*r%)sin @ cos @

Make a sketch to show the direction of circulating power flow by suitably
oriented arrows, the length of each arrow being proportional to the
magnitude of Im S at that point.

(¢) Calculate the time-averaged energy density:

I Bn(n.p) —p/®>  k*ln-p2  Kk*n x p®

“= 167 ré 4rrt 8nr2

(d) Derive Poynting’s theorem for the complex Poynting’s vector. To
what is Im (V - S) equal? Verify that this holds true for the results of (b)
and (c).

4
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9.2

2.3
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9.5

9.6

Classical Electrodynamics

A radiating quadrupole consists of a square of side a with charges +g¢ at
alternate corners. The square rotates with angular velocity » about an
axis normal to the plane of the square and through its center. Calculate
the quadrupole moments, the radiation fields, the angular distribution of
radiation, and the total radiated power in the long-wavelength approxi-
mation.

Two halves of a spherical metallic shell of radius R and infinite conductivity
are separated by a very small insulating gap. An alternating potential is
applied between the two halves of the sphere so that the potentials are
£V coswt. In the long-wavelength limit, find the radiation fields, the
angular distribution of radiated power, and the total radiated power from
the sphere.

A thin linear antenna of length d is excited in such a way that the sinusoidal
current makes a full wavelength of oscillation as shown in the figure.

(@) Calculate exactly the power radiated per unit solid angle and plot
the angular distribution of radiation.

(b) Determine the total power radiated and find a numerical value for
the radiation resistance.

Treat the linear antenna of Problem 9.4 by the long-wavelength multipole
expansion method.

(a) Calculate the multipole moments (electric dipole, magnetic dipole,
and electric quadrupole).

(b)) Compare the angular distribution for the lowest nonvanishing
multipole with the exact distribution of Problem 9.4.

(¢) Determine the total power radiated for the lowest multipole and the
corresponding radiation resistance.
A perfectly conducting flat screen occupies one-half of the z-y plane
(i.e., z < 0). A plane wave of intensity I, and wave number k& is incident
along the z axis from the region z < 0. Discuss the values of the diffracted
fields in the plane parallel to the z-y plane defined by z = Z > 0. Let the
coordinates of the observation point be (X, 0, Z).

(a) Show that, for the usual scalar Kirchhoff approximation and in the
limit Z > X, the diffracted field is

w(X, 0, Z) ~ [o%eikz—iwz(l_:_i) A/_2_ J‘wem gt
)¢

2i
where & = (k[2Z) X.
(b) Show that the intensity can be written

1=yl =@ + PF + (5© +

where C(§) and S(§) are the so-called Fresnel integrals. Determine the
asymptotic behavior of 1 for £ large and positive (illuminated region) and &



(Probs. 9] Simple Radiating Systems and Diffraction 307

9.7

9.8

9.9

9.10

large and negative (shadow region). What is the value of [ at X =07?
Make a sketch of I as a function of X for fixed Z.

(¢) Use the vector formula (9.82) to obtain a result equivalent to that of

part (a). Compare the two expressions,
A linearly polarized plane wave of amplitude £, and wave number £ is
incident on a circular opening of radius a in an otherwise perfectly con-
ducting flat screen. The incident wave vector makes an angle « with the
normal to the screen. The polarization vector is perpendicular to the plane
of incidence.

(a) Calculate the diffracted fields and the power per unit solid angle
transmitted through the opening, using the vector Kirchhoff formula
(9.82) with the assumption that the tangential electric field in the opening
is the unperturbed incident field.

(b) Compare your result in part (2) with the standard scalar Kirchhoff

approximation and with the result in Section 9.8 for the polarization
vector in the plane of incidence.
A rectangular opening with sides of length a and b > a defined by
@ = (af2), y = £(b/2) exists in a flat, perfectly conducting plane sheet
filling the z-y plane. A plane waveis normally incident with its polarization
vector, making an angle § with the long edges of the opening.

(a) Calculate the diffracted fields and power per unit solid angle with the
vector Kirchhoff relation (9.82), assuming that the tangential electric field
in the opening is the incident unperturbed field.

(b) Calculate the corresponding result of the scalar Kirchhoff approxi-
mation.

(¢c) Forb = a, 8 = 45°, ka = 4, compute the vector and scalar approxi-

mations to the diffracted power per unit solid angle as a function of the
angle 6 for ¢ = 0. Plot a graph showing a comparison between the two
results.
A cylindrical coaxial transmission line of inner radius @ and outer radius b
has its axis along the negative z axis. Both inner and outer conductors end
atz = 0, and the outer one is connected to an infinite plane flange occupy-
ing the whole z-y plane (except for the annulus of radius b around the
origin). The transmission line is excited at frequency o in its dominant
TEM mode, with the peak voltage between the cylinders being V. Use the
vector Kirchhoff approximation to discuss the radiated fields, the angular
distribution of radiation, and the total power radiated.

Discuss the diffraction due to a small, circular hole of radius a in a flat,
perfectly conducting sheet, assuming that ka < 1.

(@) If the fields near the screen on the incident side are normal Egeivt
and tangential Bge~*!, show that the diffracted electric field in the
Fraunhofer zone is

ikr —iot
E=°¢ k2a3[21—‘xB0+Ex(onl—(H
k k k

3ar

where K is the wave vector in the direction of observation.
(b) Determine the angular distribution of the diffracted radiation and
show that the total power transmitted through the hole is

c
P = m k4a6(4B02 + E02)
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9.11 Specialize the discussion of Problem 9.10 to the diffraction of a plane wave
by the small, circular hole. Treat the general case of oblique incidence at an
angle « to the normal, with polarization in and perpendicular to the plane
of incidence.

(a) Calculate the angular distributions of the diffracted radiation and
compare them to the vector Kirchhoff approximation results of Section 9.8
and Problem 9.7 in the limit ka < 1.

(b) Show that the transmission coefficients [defined above (9.105)] for
the two states of polarization are

in2
T, =_64_(ka)4(4 + sin a)

277> 4cosa
4
T, = 2——67 5 (ka)* cos o
m

Note that these transmission coefficients are a factor (ka)® smaller than
those given by the vector Kirchhoff approximation in the same limit.
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Magnetohydrodynamics

and Plasma Physics

10.1 Introduction and Definitions

Magnetohydrodynamics and plasma physics both deal with the
behavior of the combined system of electromagnetic fields and a con-
ducting liquid or gas. Conduction occurs when there are free or quasi-free
electrons which can move under the action of applied fields. In a solid
conductor, the electrons are actually bound, but can move considerable
distances on the atomic scale within the crystal lattice before making
collisions. Dynamical effects such as conduction and Hall effect are
observed when fields are applied to the solid conductor, but mass motion
does not in general occur. The effects of the applied fields on the atoms
themselves are taken up as stresses in the lattice structure. For a fluid, on
the other hand, the fields act on both electrons and ionized atoms to
produce dynamical effects, including bulk motion of the medium itself.
This mass motion in turn produces modifications in the electromagnetic
fields. Consequently we must deal with a complicated coupled system of
matter and fields.

The distinction between magnetohydrodynamics and the physics of
plasmas is not a sharp one. Nevertheless there are clearly separated
domains in which the ideas and concepts of only one or the other are
applicable. One way of seeing the distinction is to look at the way in which
the relation J = oE is established for a conducting substance. In the
simple model of Section 7.8 the electrons are imagined to be accelerated by
the applied fields, but to be altered in direction by collisions, so that their
motion in the direction of the ficld is opposed by an effective frictional
force »mv, where » is the collision frequency. Ohm’s law just represents a

309
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balance between the applied force and the frictional drag. When the
frequency of the applied fields is comparable to #, the electrons have time
to accelerate and decelerate between collisions. Then inertial effects enter
and the conductivity becomes complex. Unfortunately at these same
frequencies the description of collisions in terms of a frictional force tends
to lose its validity. The whole process becomes more complicated. At
frequencies well above the collision frequency another thing happens. The
electrons and ions are accelerated in opposite directions by electric fields
and tend to separate. Strong electrostatic restoring forces are set up by
this charge separation. Oscillations occur in the charge density. These
high-frequency oscillations are called plasma oscillations and are to be
distinguished from lower-frequency oscillations which involve motion of
the fluid, but no charge separation. These low-frequency oscillations are
called magnetohydrodynamic waves.

In conducting liquids or dense ionized gases the collision frequency is
sufficiently high even for very good conductors that there is a wide
frequency range where Ohm’s law in its simple form is valid. Under the
action of applied fields the electrons and ions move in such a way that,
apart from a high-frequency jitter, there is no separation of charge.
Electric fields arise from motion of the fluid which causes a current flow,
or as a result of time-varying magnetic fields or charge distributions
external to the fluid. The mechanical motion of the system can then be
described in terms of a single conducting fluid with the usual hydro-
dynamic variables of density, velocity, and pressure. At low frequencies
it is customary to neglect the displacement current in Ampére’s law. This
is then the approximation which is called magnetohydrodynamics.

In less dense ionized gases the collision frequency is smaller. There
may still be a low-frequency domain where the magnetohydrodynamic
equations are applicable to quasi-stationary processes. Frequently astro-
physical applications fall in this category. At higher frequencies, however,
the neglect of charge separation and of the displacement currentis notallow-
able. The separate inertial effects of the electrons and ions must beincluded
in the description of the motion. This is the domain which we call plasma
physics. There is here a range of physical conditions where a two-fluid
model of electrons and ions gives an approximately correct description of
various phenomena. But for high temperatures and low densities, the
finite velocity spreads of the particles about their mean values must be
included. Then the description is made in terms of the Boltzmann
equation, with or without short-range correlations. We will not attempt
to go into such details here. At still higher temperatures and lower
densities, the electrostatic restoring forces become so weak that the length
scale of charge separation becomes large compared to the size of the
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volume being considered. Then the collective behavior implicit in a fluid
model is gone completely. We have left a few rapidly moving charged
particles interacting via Coulomb collisions. A plasma is, by definition,
an ionized gas in which the length which divides the small-scale individual-
particle behavior from the large-scale collective behavior is small com-
pared to the characteristic lengths of interest. This length, called the
Debye screening radius, will be discussed in Section 10.10. Itis numerically
equal to 7.91 (T/n)** cm, where T is the absolute temperature in degrees
Kelvin and # is the number of electrons per cubic centimeter. For all but
the hottest or most tenuous plasmas it is small compared to 1 cm.

10.2 Magnetohydrodynamic Equations

We first consider the behavior of an electrically neutral, conducting
fluid in electromagnetic fields. For simplicity, we assume the fluid to be
nonpermeable. Itis described by a matter density p(x, £), a velocity v(x, 1),
a pressure p(x, r) (taken to be a scalar), and a real conductivity o. The
hydrodynamic equations are the continuity equation

aa—f; +V-(pv)=0 (10.1)
and the force equation:
p%=—Vp+!(J x B) + F, + pg (10.2)
Cc

In addition to the pressure and magnetic-force terms we have included
viscous and gravitational forces. For an incompressible fluid the viscous

force can be written
F, = nV (10.3)

where 7 is the coefficient of viscosity. It should be emphasized that the
time derivative of the velocity on the left side of (10.2) is the convective
derivative,

d 0
e_0 .V 10.4
dt ot ty (104)

which gives the total time rate of change of a quantity moving instanta-
neously with the velocity v.
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With the neglect of the displacement current, the electromagnetic fields
in the fluid are described by

VxE+1Q§=O1

c ot

4 (10.5)
VxB=-2J

c

The condition V.J =0, equivalent to the neglect of displacement
currents, follows from the second equation in (10.5). The two divergence
equations have been omitted in (10.5). It follows from Faraday’s law that
(d/df) V-B =0, and the requirement V- B = 0 can be imposed as an
initial condition. With the neglect of the displacement current, it is
appropriate to ignore Coulomb’s law as well. The reason is that the
electric field is completely determined by the curl equations and Ohm’s
law (see below). If the displacement current is retained in Ampére’s law
and V- E = 47p, is taken into account, corrections of only the order of
(v*/c?®) result. For normal magnetohydrodynamic problems these are
completely negligible.

To complete the specification of dynamical equations we must specify
the relation between the current density J and the fields E and B. For a
simple conducting medium of conductivity ¢, Ohm’s law applies, and the

current density is

J = oF (10.6)
where J and E’ are measured in the rest frame of the medium. For a
medium moving with velocity v relative to the laboratory, we must trans-
form both the current density and the electric field appropriately. The

transformation of the field is given by equation (6.10). The current density

in the laboratory is evidently
J=J 4+ py (10.7)

where p, is the electrical charge density. For a one-component conducting
fluid, p, = 0. Consequently, Ohm’s law assumes the form,

J= a(E +; x B) (10.8)

Sometimes it is possible to assume that the conductivity of the fluid is
effectively infinite. Then under the action of fields E and B the fluid flows
in such a way that

E+low xB) =0 (10.9)
o4

is satisfied.
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Equations (10.1), (10.2), (10.5), and (10.8), supplemented by an equation
of state for the fluid, form the equations of magnetohydrodynamics. In
the next section we will consider some of the simpler aspects of them and
will elaborate the basic concepts involved.

10.3 Magnetic Diffusion, Viscosity, and Pressure

The behavior of a fluid in the presence of electromagnetic fields is
governed to a large extent by the magnitude of the conductivity. The
effects are both electromagnetic and mechanical. We first consider the
electromagnetic effects. We will see that, depending on the conductivity,
quite different behaviors of the fields occur. The time dependence of the
magnetic field can be written, using (10.8) to eliminate E, in the form:

2
B _v« (v x B) + < V2B (10.10)
ot dmro
Here it is assumed that o is constant in space. For a fluid at rest (10.10)
reduces to the diffusion equation
2

9B _ & gep (10.11)

0t 4no
This means that an initial configuration of magnetic field will decay away
in a diffusion time
_ drol?
- 2

T

(10.12)
[

where L is a length characteristic of the spatial variation of B. The time 7
1s of the order of 1 sec for a copper sphere of 1 cm radius, of the order of 10
years for the molten core of the earth, and of the order of 101 years for a
typical magnetic field in the sun.

For times short compared to the diffusion time = (or, in other words,
when the conductivity is so large that the second term in (10.10) can be
neglected) the temporal behavior of the magnetic field is given by

6_]5 =V x (v x B) (10.13)

ot
From (6.5) it can be shown that this is equivalent to the statement that the
magnetic flux through any loop moving with the local fluid velocity is
constant in time. We say that the lines of force are frozen into the fluid
and are carried along with it. Since the conductivity is effectively infinite,
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the velocity w of the lines of force (defined to be perpendiculaf to B) is
given by (10.9):

(E x B)

W=~

= (10.14)

This so-called “E x B drift” of both fluid and lines of force can be under-
stood in terms of individual particle orbits of the electrons and ions in
crossed electric and magnetic fields (see Section 12.8).

A useful parameter to distinguish between situations in which diffusion
of the field lines relative to the fluid occurs and those in which the lines of
force are frozen in is the magnetic Reynolds number R,;. If V'is a velocity
typical of the problem and L is a corresponding length, then the magnetic
Reynolds number is defined as

1%
Ry = f (10.15)

where 7 is the diffusion time (10.12). Transport of the lines of force with
the fluid dominates over diffusion if R, > 1. For liquids like mercury or
sodium in the laboratory R,, < 1, except for very high velocities. But in
geophysical and astrophysical applications R, can be very large compared
to unity.

The mechanical behavior of the system can be studied with the force
equation (10.2). Substituting for J from (10.8), we find

dv oB?

P F— = (v, —w) (10.16)
where F is the sum of all the nonelectromagnetic forces, and v, is the
component of velocity perpendicular to B. From (10.16) it is apparent
that flow parallel to B is governed by the nonelectromagnetic forces alone.
The velocity of flow of the fluid perpendicular to B, on the other hand,
decays from some initially arbitrary value in a time of the order of

2

r Pc
= 1 10.17
T=" ( )
to a value

2

C
vi=w4+ —F 10.18
1 Bt ( )

In the limit of infinite conductivity this result reduces to that of (10.14),
as expected. The term proportional to B2 in (10.16) is an effective viscous
or frictional force which tends to prevent flow of the fluid perpendicular to
the lines of magnetic force. Sometimes it is described as a magnetic
viscosity. If ordinary viscosity, here lumped into F, is comparable to the
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magnetic viscosity, then the decay time 7’ is shortened by an obvious factor
involving the ratio of the two viscosities.

The above considerations have shown that if the conductivity is large
the lines of force are frozen into the fluid and move along with it. Any
departure from that state decays rapidly away. In considering the
mechanical or electromagnetic effects we treated the opposite quantities as
given, but the equations are, of course, coupled. In the limit of very large
conductivity it is convenient to relate the current density J in the force
equation to the magnetic induction B via Ampére’s law and to use the
infinite conductivity expression (10.9) to eliminate E from Faraday’s law
to yield (10.13). The magnetic force term in (10.2) can now be written

La xB)=—41B x (V x B) (10.19)
c v

With the vector identity
iVB-B)=B:-V)B+ B x(V x B) (10.20)
Equation (10.19) can be transformed into

1 B 1
“( xB)= -V (Z;Z,) +,-(B-V)B (10.21)

This equation shows that the magnetic force is equivalent to a magnetic
hydrostatic pressure, B?
Py =— (10.22)
8w

plus a term which can be thought of as an additional tension along the
lines of force. The result (10.21) can also be derived from the Maxwell
stress tensor (see Section 6.9).

If we neglect viscous effects and assume that the gravitational force is

derivable froma potentialg = — Vy, the forceequation (10.2) takes the form

1
oL = —V(p + py + py) + - (B-V)B (10.23)
dt 47

In some simple geometrical situations, such as B having only one com-
ponent, the additional tension vanishes. Then the static propertles of the

fluid are described by P + pag + py = constant (10.24)

This shows that, apart from gravitational effects, any change in mechanical
pressure must be balanced by an opposite change in magnetic pressure. If
the fluid is to be confined within a certain region so that p falls rapidly to
zero outside that region, the magnetic pressure must rise equally rapidly
in order to confine the fluid. This is the principle of the pinch effect
discussed in Section 10.5.
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10.4 Magnetohydrodynamic Flow between Boundaries with Crossed
Electric and Magnetic Fields

To illustrate the competition between freezing in of lines of force and
diffusion through them and between the E x B drift and behavior imposed
by boundary conditions, we consider the simple example of an incom-
pressible, but viscous, conducting fluid flowing in the z direction between
two nonconducting boundary surfaces at z = 0 and z = a, as shown in
Fig. 10.1. The surfaces move with velocities V; and V,, respectively, in
the z direction. A uniform magnetic field B, acts in the z-direction. The
system is infinite in the # and y directions. We will look for a steady-state
solution for flow in the = direction in which the various quantities depend
only upon 2.

If the fields do not vary in time, it is clear from Maxwell’s equations
(10.5) that any electric field present must be an electrostatic field derivable
from a potential and determined solely by the boundary conditions, i.e.
an arbitrary external field. Expression (10.14) for the velocity of the lines
of force when o is infinite implies that there is an electric field in the y
direction. If we assume that to be the only component of E, then it must
be a constant, E;,. Because the moving fluid will tend to carry the lines of
force with it, we expect an z component B,(z) of magnetic induction, as
well as the z component B,.

The continuity equation (10.1) reducesto V - v = Ofor anincompressible
fluid. This is satisfied identically by a velocity in the x direction which
depends only on z. The force equation, neglecting gravity, has the steady-
state form:

Vp =1 x B) + v (10.25)
c

/ i Bo

Ve

Fig. 10.1 Flow of viscous con-
ducting fluid in a magnetic field

T between two plane surfaces
x Vi moving with different velocities.
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The only component of J that is nonvanishing is J,(z):
J(2) = O’[EO _1 0v(z):| (10.26)
¢

where v is the  component of velocity. When we write out the three
component equations in (10.25), we find

dp cho( B, ) % |

9D _ 95 _ Do ov

oz e\ ¢ v) 07

op _

%= s (10.27)
op o-Bm( B, )

9r _ _ E. — Do

0z e\ )

The magnetic force in the z direction is just balanced by the pressure
gradient. If we assume no pressure gradient in the « direction, the first of
these equations can be written:

% (M 2 (M)2 cE,
2 (E) o= ()2 10.28
022 a) al/ By ( )
where
2 2\\§
M= (%96—2‘-’«-) (10.29)

is called the Hartmann number. From (10.17) M2 can be seen to be the
ratio of magnetic to normal viscosity. The solution to (10.28), subject to
the boundary conditions »(0) = V; and v(a) = V,, is readily found to be

vV, . [ (a — z)} V, (Mz)
M
sinh M sinh a + sinh M sinh
sinh [M(“ = 7‘)] + sinh (-A—Jf)
n cEy [ — a a (10.30)

B, sinh M

In the limit B, — 0, M — 0, we obtain the standard laminar-flow result

v(z) =

oWz) =V + f(r@ — V) (10.31)

In the other limit of M > 1 we expect the magnetic viscosity to dominate
and the flow to be determined almost entirely by the £ x B drift. If we
approximate v(z) for z < a and M > 1, we obtain

cE, ( CEO) ~Mz/a
v(z) ~ —= Vi, — —=2)e 10.32
(2) B, +{" B, ( )
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!
_T__"T—
Rle

Fig. 10.2 Velocity profiles for
large and small Hartmann
numbers M. For M — 0, lami-
nar flow occurs. For M > 1,the
flow is given by the E x B drift
velocity, except in the immediate
neighborhood of the boundaries.

This shows that, while v(z) = V; exactly at the surface, there is a rapid

transition in a distance of order (a/M) to the E x B drift value (cE,/B,).

Near z = a, (10.32) is changed by replacing V; by ¥; and 2 by (@ — 2). The

velocity profile in the two limits (10.31) and (10.32) is shown in Fig. 10.2.
The magnetic field B,(z) is determined by the equation

% 47 4o ( 1 )

0z c c ¢
The boundary conditions on B, at z = 0 and z = g are indeterminate
unless we know the detailed history of how the steady state was created or
can use some symmetry argument. All we know is that the difference in
B, is related to the total current flowing in the y direction per unit length
in the x direction:

B.(a) — BO) =¥ "5, az (10.34)

This indeterminacy stems from the one-dimensional nature of the problem.
For simplicity we will calculate the magnetic field only for the case when
the total current in the y direction is zero.* Then we can assume that B,
vanishes at z = 0 and z = 4. Using (10.30) for the velocity in (10.33), it
is easy to show that then

M M Mz
dmoa®) (v —vi\] | P2 TG T
o=t 1) iy
a M sinh =

L
* This requirement means that cE/B, = (¥, + V).
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The dimensionless coefficient in square brackets in (10.35) may be identified
as the magnetic Reynolds number (10.15), since (¥, — ¥;)/2 is a typical
velocity in the problem and g is a typical length. In the two limits M < 1
and M > 1, (10.35) reduces to

5(1——2), for M < 1

a a

B,(2) = Ry,B, 1 BT, (10.36)
l—[l—(e ¢ e @ )}, forM > 1
M

Figure 10.3 shows the behavior of the lines of force in the two limiting
cases. Only for large R, is there appreciable transport of the lines of force.
And for a given R, the transport is less the larger the Hartmann number.
For liquid mercury at room temperature the relevant physical constants
are
o= 9.4 x 10 sec!

7 = 1.5 x 1072 poise

p = 13.5 gm/cm?®
The diffusion time (10.12) is 7 = 1.31 x 10~*[L (cm)}? sec. The Hartmann
number (10.29) is M = 2.64 x 10728, (gauss) a(cm). With L~ a~ 1cm,
this gives a magnetic Reynolds number R, ~ 10~*V. Consequently
unless the flow velocity is very large, there is no significant transport of
lines of force for laboratory experiments with mercury. On the other hand,
if the magnetic induction B, is of the order of 104 gauss, then M ~ 250 and
the velocity flow is almost completely specified by the E x B drift (10.14).

——a=Vy >V

Ryfa————
T M <1
e | !
& | o\
M
|
Ry /M | M>1 !
ol |
0 z—>
(@) ®

Fig. 10.3 (a) Axial component of magnetic induction between the boundary surfaces
for large and small Hartmann numbers. (b) Transport of lines of magnetic induction in
direction of flow,
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In geomagnetic problems with the earth’s core and in astrophysical
problems the parameters (e.g., the length scale) are such that Ry > 1
occurs often and transport of the lines of force becomes very important.

10.5 Pinch Effect

The confinement of a plasma or conducting fluid by self-magnetic fields
is of considerable interest in thermonuclear research, as well as in other
applications. To illustrate the principles we consider an infinite cylinder
of conducting fluid with an axial current density J, = J(r) and a resulting
azimuthal magnetic induction B, = B(r). For simplicity, the current
density, magnetic field, pressure, etc., are assumed to depend only on the
distance r from the cylinder axis, and viscous and gravitational efiects are
neglected. We first ask whether a steady-state condition can exist in which
the material is mainly confined within a certain radius r = R by the
action of its own magnetic induction. For a steady state with v = 0 the
equation of motion (10.23) of the fluid reduces to

2 2
0= _ 1(5) i (10.37)
dr  dr\8= 4777'

Ampére’s law in integral form relates B(r) to the current enclosed:

B(r) = % J:rJ(r) dr (10.38)

A number of results can be obtained without specifying the form of J(r),
aside from physical limitations of finiteness, etc. From Ampére’s law it is
evident that, if the fluid lies almost entirely inside » = R, then the mag-
netic induction outside the fluid is

B =2 (10.39)
cr
where

R
I =f 2arJ(r) dr
0

is the total current flowing in the cylinder. Equation (10.37) can be
written as

p _

2p? 10.40
dr 87-rr2 dr ( B ( )
with the solution:
1 ("1 d 5.
p(ry=p,— = | —— (r¥*B¥ dr (10.41)
8 Jo r2dr



[Sect. 10.5] Magnetohydrodynamics and Plasma Physics 321

Here p, is the pressure of the fluid at r = 0. If the matter is confined to
r < R, the pressure drops to zero at r = R. Consequently the axial
pressure p, is given by

_1(fLd
T 8mdo P2dr

The upper limit of integration can be replaced by infinity, since the inte-
grand vanishes for r > R, as can be seen from (10.39). With this expression
(10.42) for p,, (10.41) can be written as

Do (r*B® dr (10.42)

p(r) = 1 le 4 (r*B? dr (10.43)
8rJr r2dr ’
The average pressure inside the cylinder can be related to the total

current I and radius R without specifying the detailed radial behavior.
Thus

27 (F
(p) =— | rp(r)dr (10.44)
7R* Jo
Integration by parts and use of (10.40) gives
12
)= 10.45
P 2mR%c? ( )

as the relation between average pressure, total current, and radius of the
cylinder of fluid or plasma confined by its own magnetic field. Note that
the average pressure of the matter is equal to the magnetic pressure (B2/8)
at the surface of the cylinder. In thermonuclear work, hot plasmas with
temperatures of the order of 10%°K (kT ~ 10 kev) and densities of the
order of 101 particles/cm3 are envisioned. These conditions correspond
to a pressure of approximately 105 x 10% ~ 1.4 x 107 dynes/cm?, or 14
atmospheres. A magnetic induction of approximately 19 kilogauss at the
surface, corresponding to a current of 9 x 10*R (cm) amperes, is necessary
for confinement. This shows that extremely high currents are needed to
confine very hot plasmas.

So far the radial behavior of the system has not been discussed. Two
simple examples will serve to illustrate the possibilities. One is that the
current density J(r) is constant for r << R. Then B(r) = (2Ir/cR?) for
¥ < R. Equation (10.43) then yields a parabolic dependence for pressure
versus radius:

12 r2
p(r) = g ( 1— 52) (10.46)

The axial pressure p, is then twice the average pressure {p). The radial
dependences of the various quantities are sketched in Fig. 10.4.
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J |

' Fig. 10.4 Variation of azimuthal

magnetic induction and pressure with

radius in a cylindrical plasma column

0 R . with a uniform current density J.

The other model has the current density confined to a very thin layer on
the surface, as is appropriate for a highly conducting fluid or plasma. The
magnetic induction is given by (10.39) for r > R, but vanishes inside the
cylinder. Then the pressure p is constant inside the cylinder and equal to
the value (10.45). This is sketched in Fig. 10.5.

10.6 Dynamic Model of the Pinch Effect

The simple considerations of the previous section are valid for a static
or quasi-static situation. In actual practice with plasmas, such circum-
stances do not arise. Generally, at some time early in the history of
current flow down the plasma the pressure p is much too small to resist the
magnetic pressure outside. Consequently the radius of the cylinder of
plasma is forced inwards; the plasma column is pinched. This has the
desirable consequence that the plasma is pulled away from its confining
walls. If the pinched configuration were stable for a sufficiently long time,
it would be possible to heat the plasma to very high temperatures without
burning up the walls of the confining vessel.

P
Po I{ x
Fig. 10.5. Variation of azi-

muthal magnetic induction and
h pressure in a cylindrical plasma
] column with a surface-current
density.
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A simple model, first discussed by M. Rosenbluth, exhibits the essential
dynamical features. Suppose that a plasma is created in a hollow con-
ducting cylinder of radius R, and length L. A voltage difference ¥ is
applied between the ends of the cylinder so that a current I flows in the
plasma. This produces an azimuthal magnetic induction B, which causes
the plasma to pinch inwards. The radius of the plasma column at time
t >0 is R(r). The conductivity of the plasma is taken to be virtually
infinite. Then the current all flows on the surface, and the magnetic
induction

21
By, =— (10.47)
cr
exists only between r = R(#) and r = R,. Because of the assumption of
infinite conductivity the electric field at the plasma surface, in the moving
frame of reference in which the interface is at rest, vanishes:

E=E+YxB=0 (10.48)
C

If we now apply Faraday’s law of induction to the dotted loop shown in
Fig. 10.6, the inner arm of which is moving inwards with the interface, we
find that the only contribution to the line integral of E comes from the
side of the loop in the conducting wall. Thus
R
Vo 1417 4 Zd(nn&’)

L cdtJre ? c dt

This is the standard inductive relation between current, voltage, and
dimensions (inductance). The integral of this equation is

(10.49)

Iln (%’) - %2 EOJ: 1) dt (10.50)

where E,f(1) = V/L is the applied electric field. The function f(f) is
assumed known and is normalized so that E is the peak value of applied

$=0 =V
3 N\

A R R R R R R R R R

Fig. 10.6 Plasma column inside a hollow,
cylindrical conductor. L
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field. In order to proceed further we must relate the current 7 in a dynamic
way to the behavior of the plasma radius R.

The desired dynamical connection between I and R is essentially the
momentum-balance equation, or Newton’s second law. Some assumption
about the plasma must be made. If the mean free path for collisions is
short compared to the radius, the dynamic behavior is characteristic of
hydrodynamic shock waves. But for a hot, tenuous plasma the mean free
path is comparable to, or larger than, the radius. Then a model with
particles moving freely inside the plasma is more appropriate. If the
velocity R of the plasma surface is large compared to thermal speeds, each
particle approaches the interface with a velocity R in the frame of reference
in which the interface is at rest. As the particle penetrates into the outer
region, it starts feeling the magnetic induction, is turned around, and leaves
the surface with velocity R. Consequently each particle colliding with the
plasma surface receives a momentum transfer 2MR. The number colliding
with unit area of the surface per unit time is NR, where N is the initial
number of particles per unit volume. Therefore the rate of transfer of
momentum per unit area (i.e., pressure) is

p =2NMR? = 2pR? (10.51)

where p is the initial mass density. At the surface of the plasma there is a
magnetic pressure (B%/87) due to the discontinuity in magnetic induction
from zero inside to the value B just outside. These pressures must balance.

Consequently, using (10.47), we find that the current is related to the
velocity by:

2
= 47TpczR2(%I-—:) (10.52)

Equation (10.52) depends on a rather simplified model of the mechanical-
momentum transfer rate in which each particle collides only once with the
interface. In fact, the velocity of the interface increases with time so that
the surface catches up with particles which were reflected earlier and hits
them again and again. This effect can be approximated by the “snow-
plow” model in which the interface is imagined to carry along with it all
the material which it hits as it moves in. Then the magnetic pressure and
rate of change of momentum are related by

d 5 B?
4 M@ER) = ~20R 2 (10.53)

where M(R) is the mass carried along by the snowplow:

M(R) = mp(R,? — R?) (10.54)
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This leads to the relation

I* = —7pc®R l:(R 2 _ Ry } (10.55)

between current and radius. In the initial stages when R < R, the snow-
plow model and free-particle model give the same relation between current
and radius to within a factor of 2%, and do not differ by an order of
magnitude even at later times.

The equation of motion for R(f) is obtained by substituting 72 from
either (10.52) or (10.55) into the inductive relation (10.50). Choosing the
free-particle model as an illustration, we obtain

t
2R In (B-O)d—R 2 f () dr (10.56)
R/ dt Jamp Jo©
where the signs of the square root have been taken to give R < 0. Without
knowledge of f(f) we cannot solve this equation. Nevertheless, some
idea of the solution can be obtained by introducing the dimensionless

variables:
(conz‘% t
T\ ) R,
TPL Do (10.57)
R
r=—
R,
Then (10.56) becomes
221 2 & ='f F() d’ (10.58)
dr Jo

For the snowplow model the equivalent equation is

T 2

[f f) df'jl

[(1 )dx] L M (10.59)
dr z(In x)?

Without solving these equations it is evident that « changes significantly

in times such that 7 ~ 1. This means that the scaling law for the radial

velocity of the pinch is

25 2

IRl ~ v, = (C Eq ) (10.60)
4mp

This result emerges whatever dynamic model is used, including a hydro-

dynamic one. Typical experimental conditions for a fast pinch in small-

scale hydrogen or deuterium plasmas involve applied electric fields of the

* The factor of 2 comes from the fact that in the one case the particles are elastically
reflected and suffer a velocity change of 2R, while in the other the particles collide
inelastically with the interface and receive a velocity change of R
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Fig. 10.7 Radius of plasma
column as a function of time
after initiation of current flow.
| ! I The characteristic velocity of
0 1 2 8 pinching is given by (10.60).

R(t) —>

order of 10% volts/cm and initial densities of the order of 10~% gm/cm?
(~ 3 x 10" deuterons/cm?®). Then v, is of the order of 107 cm/sec. The
current flowing is, according to (10.52) or (10.55),

2 ,
[ = SRk F(m, d—”) (10.61)
o . dr

where F is a dimensionless function of the order of unity. For a tube
radius of 10 cm and the conditions described, the current 7 is measured in
units of 10% or 10® amperes.

The discussion of the pinching action presented so far is obviously valid
only for short times after the initiation of current flow. The simplified
models indicate that in a time of the order of R,/v, the radius of the plasma
column goes to zero. It is clear, however, that before that will occur (even
approximately) the behavior will be modified. In the hydrodynamic limit,
the radial shock waves caused by the pinch will be reflected off the axis
and move outwards, striking the interface and retarding its inward motion
or even reversing it. This phenomenon is known as bouncing. It is
evidently present also in the free-particle model. Consequently the general
behavior of radius R as a function of time is expected to be as shown in
Fig. 10.7. Although no proper analysis has been made of the subsequent
bounces, it is conjectured that there is an approach to a steady state at
some radius less than R,.

10.7 Instabilities in a Pinched-Plasma Column

In the laboratory long-lived pinched plasmas are extremely difficult to
produce. The dynamic behavior of the previous section is found to be
followed at least qualitatively for times up to around the first bounce.
But then the plasma column is observed to break up rapidly. The reason
for the disintegration of the column is the growth of instabilities. The
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/

Fig. 10,8 (a) Kink instability.
(b) Sausage or neck instability. (b)

column is unstable against various departures from cylindrical geometry.
Small distortions are amplified rapidly and destroy the column in a very
short time. The detailed analysis of instabilities is sufficiently complex
that we will attempt only qualitative arguments. Two of the simpler
unstable distortions will be described.

The first is the kink instability, shown in Fig. 10.8a. The lines of azimu-
thal magnetic induction near the column are bunched together above, and
separated below, the column by the distortion downwards. Thus the
magnetic pressure changes are in such a direction as to increase the
distortion. The distortion is unstable.

The second type of distortion is called a sausage or neck instability,
shown in Fig. 10.85. In the neighborhood of the constriction the azi-
muthal induction increases, causing a greater inwards pressure at the neck
than elsewhere. This serves to enhance the existing distortion.

Both types of instability are hindered by axial magnetic fields within
the plasma column. For the sausage distortion the lines of axial induction
are compressed by the constriction, causing an increased pressure inside
to oppose the increased pressure of the azimuthal field, as indicated
schematically in Fig. 10.9. It is easy to see that the fractional changes in

K -
. . . . [ . f
Fig. 10.9 Hindering neck instability with / [

outward pressure of trapped axial magnetic
fields.
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Fig. 10.10 Hindering kink instability with tension of trapped axial fields.

I

B

—

the two magnetic pressures, assuming a sharp boundary to the plasma,

are Bpy 20 Ap, 4z

, — = (10.62)
pd: R pz R
where « is the small inwards displacement. Consequently, if
B > }B,? (10.63)

the column is stable against sausage distortions.

For kinks the axial magnetic field lines are stretched, rather than com-
pressed laterally together. But the resultis the same; namely the increased
tension in the field lines inside opposes the external forces and tends to
stabilize the column. It is evident from Fig. 10.10 that a short-wavelength
kink of a given lateral displacement will cause the lines of force to stretch
relatively more than a long-wavelength kink. Consequently, for a given
ratio of internal axial field to external azimuthal field, there will be a
tendency to stabilize short-wavelength kinks, but not very long-wavelength
ones. If the fields are approximately equal, analysis shows that if the wave-
length of the kink 4 < 14 R the disturbance is stabilized.

For longer-wavelength kinks stabilization can be achieved by the action
of the outer conductor, provided the plasma radius is not too small
compared to the radius of the conductor. The azimuthal field lines are
trapped between the conductor and the plasma boundary, as shown in
Fig. 10.11. If the plasma column moves too close to the walls, the lines
of force are crowded together between it and the walls, causing an in-
creased magnetic pressure and restoring force.

Fig. 10.11 Stabilization of
long-wavelength kinks with \
outer conductor.
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It is clear qualitatively that it must be possible, by a combination of
trapped axial field and conducting walls, to create a stable configuration,
at least in the approximation of a highly conducting plasma with a sharp
boundary. Detailed analysis* confirms this qualitative conclusion and
sets limits on the quantities involved. It is important to have as little axial
field outside the plasma as possible and to keep the plasma radius of the
order of one-half or one-third of the cylinder radius. If the axial field
outside the plasma is too large, the combined B, and B; cause helical
instabilities that are troublesome in toroidal geometries. If, however, the
axial field outside the plasma is made very large, the pitch of the helix
becomes so great that there is much less than one turn of the helix in a
plasma column of finite length. Then it turns out that there is the possi-
bility of stability again. Stabilization by means of a strong axial field
produced by currents external to the plasma is the basis of some fusion
devices, e.g., the Stellarator.

The idealized situation of a sharp plasma boupdary is difficult to create
experimentally, and even when created is destroyed by diffusion of the
plasma through the lines of force in times of the order of 4woR%/c? (see
Section 10.3). For a hydrogen plasma of 1 ev energy per particle this time
is of the order of 10~* sec for R ~ 10 cm, while for a 10 kev plasma it is
of the order of 10% sec. Clearly the thermonuclear experimenter must try
to create initially as hot a plasma as possible in order to make the initial
diffusion time long enough to allow further heating.

10.8 Magnetohydrodynamic Waves

In ordinary hydrodynamics the only type of small-amplitude wave
motion possible is that of longitudinal, compressional (sound) waves.
These propagate with a velocity s related to the derivative of pressure with
respect to density at constant entropy:

st = (—QB) (10.64)
Op/o

If the adiabatic law p = Kp” is assumed, s* = yp,/p,, Where y is the ratio
of specific heats. In magnetohydrodynamics another type of wave motion
is possible. It is associated with the transverse motion of lines of magnetic
force. The tension in the lines of force tends to restore them to straight-
line form, thereby causing a transverse oscillation. By analogy with
* V. D. Shafranov, Atomnaya Energ. 1, 5, 38 (1956); R. J. Tayler, Proc. Phys. Soc.
(London), B70, 1049 (1957); M. Rosenbluth, Los Alamos Report LA-2030 (1956). See
also Proceedings of the Second International Conference on Peaceful Uses of Atomic
Energy, Yol. 31 (1958), papers by Braginsky and Shafranov (p. 43) and Tayler (p. 160).
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ordinary sound waves whose velocity squared is of the order of the hydro-
static pressure divided by the density, we expect that these magnetohydro-
dynamic waves, called Alfvén waves, will have a velocity

B 2 \V4

vy~ (—L) (10.65)
87p,

where B,?/8 is the magnetic pressure,

To examine the wave motion of a conducting fluid in the presence of a
magnetic field, we consider a compressible, nonviscous, perfectly con-
ducting fluid in a magnetic field in the absence of gravitational forces. The
appropriate equations governing its behavior are:

% 4w =0
ot
ov 1 :
p—+ p(v-V)v=—-Vp— —-B x(V xB) (10.66)
ot 4
9B _V xv xB)
ot J

These must be supplemented by an equation of state relating the pressure
to the density. We assume that the equilibrium velocity is zero, but that
there exists a spatially uniform, static, magnetic induction B, throughout
the uniform fluid of constant density p,. Then we imagine small-amplitude
departures from the equilibrium values:

B =B, + B,(x, 1)
p=pot pix, 1) (10.67)
V= vl(x’ t)

If equations (10.66) are linearized in the small quantities, then they
become:

N

a_Pl‘!‘PoV"H:O

ot
vy 2 B,

Po—+5Vp, +—=%x(VxB)=0; (10.68)
ot 4

%—Vx(leBo)=o

ot J
where s2 is the square of the sound velocity (10.64). These equations can
be combined to yield an equation for v, alone:

2
aatvzl — VWV v) 4+ v, x Vx[Vx(vyxv,)]=0 (10.69)
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where we have introduced a vectorial Alfvén velocity:
A\ S A= ]E_..
Jémp
The wave equation (10.69) for v, is somewhat involved, but it allows
simple solutions for waves propagating parallel or perpendicular to the
magnetic field direction.* With vy(x, 7) a plane wave with wave vector k
and frequency w:

(10.70)

Vi, 1) = vyetk-x it (10.71)
equation (10.69) becomes:

—w?v; + (s + v, (k- vk
+ v, kl(vg - Ky — (v vk — (k- v)v ] =0 (10.72)

If k is perpendicular to v 4 the last term vanishes. Then the solution for v,
is a longitudinal magnetosonic wave with a phase velocity:

Upong = V52 4+ v,2 (10.73)

Note that this wave propagates with a velocity which depends on the sum
of hydrostatic and magnetic pressures, apart from factors of the order of
unity. If k is parallel to v 4, (10.72) reduces to
2
(k%% — v, + (3—2 - l)kz(vA YOV, =0 (10.74)
Va4
There are two types of wave motion possible in this case. There is an
ordinary longitudinal wave (v, parallel to k and v,) with phase velocity
equal to the sound velocity s. But there is also a iransverse wave (v, - v, =
0) with a phase velocity equal to the Alfvén velocity v,. This Alfvén wave
is a purely magnetohydrodynamic phenomenon which depends only on
the magnetic field (tension) and the density (inertia).

For mercury at room temperature the Alfvén velocity is [B, (gauss)/13.1])
cm/sec, compared with sound speed of 1.45 x 10° cm/sec. At all labora-
tory field strengths the Alfvén velocity is much less than the speed of
sound. In astrophysical problems, on the other hand, the Alfvén velocity
can become very large because of the much smaller densities. In the sun’s
photosphere, for example, the density is of the order of 10~7 gm/cm?
(~6 x 10'® hydrogen atoms/cm3) so that v, ~ 10® B, cm/sec. Solar
magnetic fields appear to be of the order of 1 or 2 gauss at the surface, with
much larger values around sunspots. For comparison, the velocity of
sound is of the order of 10°cm/sec in both the photosphere and the
chromosphere.

* The determination of the characteristics of the waves for arbitrary direction of
propagation is left to Problem 10.3.
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(a) (b)
Fig. 10.12 Magnetohydrodynamic waves.

The magnetic fields of these different waves can be found from the third
equation in (10.68):

. :
5 leO fOr k .L Bo
B, =10 for the longitudinal k || B, (10.75)

— Z’:—Bovl for the transverse k | B,

The magnetosonic wave moving perpendicular to B, causes compressions
and rarefactions in the lines of force without changing their direction, as
indicated in Fig. 10.12a. The Alfvén wave parallel to B, causes the lines of
force to oscillate back and forth laterally (Fig. 10.126). In either case the
lines of force are “frozen in” and move with the fluid.

If the conductivity of the fluid is not infinite or viscous effects are present,
we anticipate dissipative losses and a consequent damping of oscillations.
The second and third equations in (10.68) are modified by additional terms:

? B
pot = =5 Vpy — 2 x (V x B + 4 Py
(10.76)
2
%=V x (v; x By + — V2B,
ot 4o

where 7 is the viscosity* and ¢ is the conductivity. Since both additions
cause dispersion in the phase velocity, their effects are most easily seen
when a plane wave solution is being sought. For plane waves it is evident

* Use of the simple viscous force (10.3) is not really allowed for a compressible fluid.
But it can be expected to give the correct qualitative behavior.
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that these equations are equivalent to

po 2= — [——szvpl — 2 X (V Bl)}
! (1 + i ) i L
w
Po (10.77)
3B, 1
= ———————V x (v, x B)
ot (1 4 ckz)
dmow

J

Consequently equation (10.72) relating k and w is modified by (a) multi-
2),2

plying s? and »? by the factor (1 + i 4c ), and (b) multiplying w? by

TTW

7 2

the factor |1 + i—).
Po®

For the important case of the Alfvén wave parallel to the field, the

relation between w and k becomes

272 2
k2vA2=w2(1+i ck )(1+iﬂ£) (10.78)

4mow Potv

If the resistive and viscous correction terms are small, the wave number is
approximately

2 2
k&4 2 3(C—+i) (10.79)
vy 20,°\4ma  p,

This shows that-the attenuation increases rapidly with frequency (or wave
number), but decreases with increasing magnetic field strength. In terms
of the diffusion time = of Section 10.3, the imaginary part of the wave
number shows that, apart from viscosity effects, the wave travels for a time
7 before falling to 1/e of its original intensity, where the length parameter
in 7 (10.12) is the wavelength of oscillation. For the opposite extreme in
which the resistive and/or viscous terms dominate, the wave number is
given by the vanishing of the two factors on the right-hand side of (10.78).
Thus k has equal real and imaginary parts and the wave is damped out
rapidly, independent of the magnitude of the magnetic field.

The considerations of magnetohydrodynamic waves given above are
valid only at comparatively low frequencies, since the displacement
current was ignored in Ampére’s law. It is evident that, if the frequency is
high enough, the behavior of the fields must go over into the *“ionospheric”’
behavior described in Section 7.9, where charge-separation effects play an
important role. But even when charge-separation effects are neglected in
the magnetohydrodynamic description, the displacement current modifies
the propagation of the Alfvén and magnetosonic waves. The form of
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Ampeére’s law, including the displacement current, is:

vxB=2"5_1%,p (10.80)
¢ c* ot

where we have used the infinite conductivity approximation (10.9) in
eliminating the electric field E. Thus the current to be inserted into the
force equation for fluid motion is now

- 190
J=i{v B+—— B} 10.81
o e +.:2E)t(vx ) ( )

In the linearized set of equations (10.68) the second one is then generalized
to read:

ov 1 ov B
P"[a_tl Ly (_a?l x "Aﬂ = —*Vp — 2 x(VxB) (1082)

This means that the wave equation for v, is altered to the form:

0% v, v
Y [vl(l + —;%) — ?‘;(VA -vl)] —s2V(V.v,)
+ v, xVxVx(v,xv,)=0 (10.83)

Inspection shows that for v parallel to v (i.e., By) there is no change from
before. But for transverse v; (either magnetosonic with k perpendicular
to By, or Alfvén waves with k parallel to B) the square of the frequency is
multiplied by a factor [1 + (v,%/c*]. Thus the phase velocity of Alfvén
waves becomes

=4 (10.84)

NEE

In the usual limit where v, < ¢, the velocity is approximately equal to v 4;
the displacement current is unimportant. But, if v, > ¢, then the phase
velocity is equal to the velocity of light. From the point of view of electro-
magnetic waves, the transverse Alfvén wave can be thought of as a wave
in a medium with an index of refraction given by

Uy

Uy = ’-‘; (10.85)
Thus
2 2
n2=1+—c—2=1+4”—”°c— (10.86)
V4 302

Caution must be urged in using this index of refraction for the propagation
of electromagnetic waves in a plasma. It is valid only at frequencies where
charge-separation effects are unimportant.
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10.9 High-Frequency Plasma Oscillations

The magnetohydrodynamic approximation considered in the previous
sections is based on the concept of a single-component, electrically neutral
fluid with a scalar conductivity ¢ to describe its interaction with the
electromagnetic field. As discussed in the introduction to this chapter a
conducting fluid or plasma is, however, a multicomponent fluid with
electrons and one or more types of ions present. At low frequencies or
long wavelengths the description in terms of a single fluid is valid because
the colligion frequency » is large enough (and the mean free path short
enough) that the electrons and ions always maintain local electrical
neutrality, while on the average drifting in opposite directions according
to Ohm’s law under the action of electric fields. At higher frequencies the
single-fluid model breaks down. The electrons and ions tend to move
independently, and charge separations occur. These charge separations
produce strong restoring forces. Comnsequently oscillations of an electro-
static nature are set up. If a magnetic field is present, other effects occur.
The electrons and ions tend to move in circular or helical orbits in the
magnetic field with orbital frequencies given by

oy =8 (10.87)

mc

When the fields are strong enough or the densities low enough that the
orbital frequencies are comparable to the collision frequency, the concept
of a scalar conductivity breaks down and the current flow exhibits a
marked directional dependence relative to the magnetic field (see Problem
10.5). At still higher frequencies the greater inertia of the ions implies that
they will be unable to follow the rapid fluctuation of the fields. Only the
electrons partake in the motion. The ions merely provide a uniform back-
ground of positive charge to give electrical neutrality on the average. The
idea of a uniform background of charge, and indeed the concept of an
electron fluid, is valid only when we are considering a scale of length which
is at least large compared to interparticle spacings (/ > n,*%). In fact, there
isanother limit, the Debye screening length, which for plasmas at reasonable
temperatures is greater than n, ’%, and which forms the actual dividing
line between small-scale individual-particle motion and collective fluid
motion (see the following section).

To avoid undue complications we consider only the high-frequency
behavior of a plasma, ignoring the dynamical effects of the ions. We also
ignore the effects of collisions. The electrons of charge e and mass m are
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described by a density a(x, 7) and an average velocity v(X, #). The equi-
librium-charge density of ions and electrons is Fen,. The dynamical
equations for the electron fluid are

%+V-(nv) =0

(10.88)
?1+(v-V)v=£(E+Y xB) Ly
ot m ¢ mn

where the effects of the thermal kinetic energy of the electrons are described
by the electron pressure p (here assumed a scalar). The charge and
current densities are:

. = e(n — ny)
Pe ™ =7 (10.89)
J = env
Thus Maxwell’s equations can be written
V-E=4me(n —n) |
V:B=0
B
VxE+iB_o | (10.90)
c ot
v xB——l—QI—E=4‘"env
c ot c

We now assume that the static situation is the electron fluid at rest with
n = n, and no fields present, and consider small departures from that
state due to some initial disturbance. The linearized equations of motion
are

on
—+n,V.-v=0
ot 0
ot m mngy \0n/o " (10.91)
V:-E—4dn7en =0
v B_li]i}__4rreno -0
c ot ¢

plus the two homogeneous Maxwell’s equations. Here n(x, ¢) and v(x, )
represent departures from equilibrium. If an external magnetic field B,
is present a [(v/c) x By] term must be kept in the force equation (see
Problem 10.7), but the fluctuation field B is of first order in small quantities
so that (v x B) is second order. The continuity equation is actually not
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an independent equation, but may be derived by combining the last two
equations in (10.91).

Since the force equation in (10.91) is independent of magnetic field, we
suspect that there exist solutions of a purely electrostatic nature, with
B = 0. The continuity and force equations can be combined to yield a
wave equation for the density fluctuations:

2 2
on (4—’”—-@)n _ 1L (Q’-’) Vin =0 (10.92)
o m m \dn/o

On the other hand, the time derivative of Ampere’s law and the force
equation can be combined to give an equation for the fields:

o8 | () 1 (2) gy gy oy 52
7 + ( - E ol 0V(V E)= ¢V x 5 (10.93)
The structures of the left-hand sides of these two equations are essentially
identical. Consequently no inconsistency arises if we put dB/dt = 0.
Having excluded static fields already, we conclude that B = 0 is a possi-
bility. If dB/dr = 0, then Faraday’s law implies V x E = 0. Hence E is
a longitudinal field derivable from a scalar potential. It is immediately
evident that each component of E satisfies the same equation (10.92) as the
density fluctuations. If the pressure term in (10.92) is neglected, we find
that the density, velocity, and electric field all oscillate with the plasma
frequency ,:
2
o2 = I (10.94)
m
If the pressure term is included, we obtain a dispersion relation for the
frequency:
o = w,? + 1 (a_p) k? (10.95)
m \dn/o
The determination of the coefficient of k? takes some care. The adiabatic
law p = py(nfny)” can be assumed, but the customary acoustical value
y = § for a gas of particles with 3 external, but no internal, degrees of
freedom is not valid. The reason is that the frequency of the present
density oscillations is much higher than the collision frequency, contrary
to the acoustical limit. Consequently the one-dimensional nature of the
density oscillations is maintained. A value of y appropriate to 1 trans-
lational degree of freedom must be used. Since y = (m + 2)/m, where m
is the number of degrees of freedom, we have in this case y = 3. Then

1 (a_l’)o 3P0 (10.96)

m \én mny
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If we use py, = n,KT and define the rms velocity component in one direction
(parallel to the electric field),

m{u®) = KT (10.97)
then the dispersion equation can be written
w? = 0,2 + 3W)k? (10.98)

This relation is an approximate one, valid for long wavelengths, and is
actually just the first two terms in an expansion involving higher and
higher moments of the velocity distribution of the electrons (see Problem
10.6). In form (10.98) the dispersion equation has a validity beyond the
ideal gas law which was used in the derivation. For example, it applies to
plasma oscillations in a degenerate Fermi gas of electrons in which all cells
in velocity space are filled inside a sphere of radius equal to the Fermi
velocity V. Then the average value of the square of a component of
velocity is

W% = tVy? (10.99)

Quantum effects appear explicitly in the dispersion equation only in higher-
order terms in the expansion in powers of k2.

The oscillations described above are longitudinal electrostatic oscilla-
tions in which the oscillating magnetic field vanishes identically. This
means that they cannot give rise to radiation in an unbounded plasma.
There are, however, modes of oscillation in a plasma which are transverse
electromagnetic waves. To see the various possibilities of plasma oscil-
lations we assume that all variables vary as exp (ik » x — iwt) and look for
a defining relationship between w and k, as we did for the magnetohydro-
dynamic waves in Section 10.8. With this assumption the linearized
equations (10.91) and the two homogeneous Maxwell’s equations can be
written:

k-v w
n= fy
w
. 2
=@+3~—<u>£k
maow w N
k-E = —idnen L (10.100)
k-B=0
kxB=—2E— ¥,
¢ 4
kxE=2B
c )
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Maxwell’s equations can be solved for v in terms of k and E:

v= () Lt - wE 4 Bl 10100
mw/ o,

Then the force equation and the divergence of E can be used to eliminate v
in order to obtain an equation for E alone:

(@ — 0,2 — HE + (¢ — 3u®)k-E)k =0  (10.102)

If we write E in terms of components parallel and perpendicular to k:

E=E,+E, |
. 10.103
where E, = (ksz)k ( )

then (10.102) can be written as two equations:
(0? — 0,2 — 3WHKHE, = 0}

(10.104
(0 — 0,2 — cR)E, = 0 )

The first of these results shows that the longitudinal waves satisfy the
dispersion relation (10.98) already discussed, while the second shows that
there are two transverse waves (two states of polarization) which have the

dispersion relation:
w? = w,? + %2 (10.105)

Equation (10.105) is just the dispersion equation for the transverse
electromagnetic waves described in Section 7.9 from another point of view.
In the absence of external fields the electrostatic oscillations and the trans-
verse electromagnetic oscillations are not coupled together. But in the
presence of an external magnetic induction, for example, the force equa-
tion has an added term involving the magnetic field and the oscillations
are coupled (see Problem 10.7).

10.10 Short-Wavelength Limit for Plasma Oscillations and the
Debye Screening Distance

In the discussion of plasma oscillations so far no mention has been made
of the range of wave numbers over which the description in terms of
collective oscillations applies. Certainly »§* is one upper bound on the
wave-number scale. A clue to a more relevant upper bound can be
obtained by examining the dispersion relation (10.98) for the longitudinal
oscillations. For long wavelengths the frequency of oscillation is very
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closely @ = w,. It is only for wave numbers comparable to the Debye
wave number ki,

Cl),,2
(u?

that appreciable departures of the frequency from w, occur.
For wave numbers k < kj, the phase and group velocities of the
longitudinal plasma oscillations are:

kp® =

(10.106)

(10.107)

From the definition of k; we see that for such wave numbers the phase
velocity is much larger than, and the group velocity much smaller than,
the rms thermal velocity (u)"f. As the wave number increases towards
kp,, the phase velocity decreases from large values down towards (u2)*,
Consequently for wave numbers of the order of kj, the wave travels with
a small enough velocity that there are appreciable numbers of electrons
traveling somewhat faster than, or slower than, or at about the same speed
as, the wave. The phase velocity lies in the tail of the thermal distribution.
The circumstance that the wave’s velocity is comparable with the electronic
thermal velocities is the source of an energy-transfer mechanism which
causes the destruction of the oscillation. The mechanism is the trapping
of particles by the moving wave with a resultant transfer of energy out of
the wave motion into the particles. The consequent damping of the wave
is called Landau damping.

A detailed calculation of Landau damping is out of place here. But we
can describe qualitatively the physical mechanism. Fig. 10.13 shows a
distribution of electron velocities with a certain rms spread and a
Maxwellian tail out to higher velocities. For small k the phase velocity

no(v)

Fig. 10.13 Thermal velocity
distribution of electrons.



{Sect. 10.10] Magnetohydrodynamics and Plasma Physics 341

lies far out on the tail and negligible damping occurs. But as k — k, the
phase velocity lies within the tail, as shown in Fig. 10.13, with a significant
number of electrons having thermal speeds comparable to v,. There is
then a velocity band Av around v = v, where electrons are moving
sufficiently slowly relative to the wave that they can be trapped in the
potential troughs and carried along at velocity v, by the wave. If there are
more particles in Av moving initially slower than v, than there are
particles moving faster (as shown in the figure), the trapping process will
cause a net increase in the energy of the particles at the expense of the
wave. This is the mechanism of Landau damping. Detailed calculations
show that the damping can be expressed in terms of an imaginary part of
the frequency given by

p ‘ 3 2 2
Im o ~ —w,,A/% (k—lf’)e-(’w /2% (10.108)

provided k<k; To obtain (10.108) a Maxwellian distribution of
velocities was assumed. For k > k;, the damping constant is larger than
given by (10.108) and rapidly becomes much larger than the real part of
the frequency, as given by (10.98).

The Landau formula (10.108) shows that for k < k, the longitudinal
plasma oscillations are virtually undamped. But the damping becomes
important as soon as k ~ kj, (even for k = 0.5kp, Im 0 =~ —0.70,).
For wave numbers larger than the Debye wave number the damping is so
great that it is meaningless to speak of organized oscillations.

Another, rather different consideration leads to the same limiting Debye
wave number as the boundary of collective oscillatory effects. We know
that an electronic plasma is a collection of electrons with a uniform back-
ground of positive charge. On a very small scale of length we must
describe the behavior in terms of a succession of very many two-body
Coulomb collisions. But on a larger scale the electrons tend to cooperate.
If a local surplus of positive charge appears anywhere, the electrons rush
over to neutralize it. This collective response to charge fluctuations is
what gives rise to large-scale plasma oscillations. But in addition to, or,
better, because of, the collective oscillations the cooperative response of
the electrons also tends to reduce the long-range nature of the Coulomb
interaction between particles. An individual electron is, after all, a local
fluctuation in the charge density. The surrounding electrons are repelled
in such a way that they tend to screen out the Coulomb field of the chosen
electron, turning it into a short-range interaction. That something like
this must occur is obvious when one realizes that the only source of
electrostatic interaction is the Coulomb force between the particles. If
some of it is effectively taken away to cause long-wavelength collective
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plasma oscillations, the residue must be a sum of short-range interactions
between particles.

A nponrigorous derivation of the screening effect described above was
first given by Debye and Hiickel in their theory of electrolytes. The basic
argument is as follows. Suppose that we have a plasma with a distribution
of electrons in thermal equilibrium in an electrostatic potential ®. Then
they are distributed according to the Boltzmann factor e ~#/&7 where H is
the electronic Hamiltonian. The spatial density of electrons is therefore

n(x) = n, e~ /KD (10.109)
Now we imagine a test charge Ze placed at the origin in this distribution

of electrons with its uniform background of positive ions (charge density
—eny). The resulting potential ® will be determined by Poisson’s equation

V2D = —4nZe 8(x) — dmeny[e” “PED — 1] (10.110)
If (e®/KT) is assumed small, the equation can be linearized:
ViD — k2,0 ~ —4nZe §(x) (10.111)
where 4 0
9 TTHGe
= 100¢ 10.112
D XT ( )

is an alternative way of writing (10.106). Equation (10.111) has the
spherically symmetric solution:

D(r) = Ze <

—kpr

(10.113)

showing that the electrons move in such a way as to screen out the Coulomb
field of a test charge in a distance of the order of k;,~!. The balance between
thermal kinetic energy and electrostatic energy determines the magnitude
of the screening radius. Numerically

T\%
kp™!= 691 (—) cm , (10.114)
No

where T is in degrees Kelvin, and 7, is the number of electrons per cubic
centimeter. For a typical hot plasma with 7 = 109K and n, = 10'5 cm3,
we find k;71~ 2.2 x 10% cm.

For the degenerate electron gas at low temperatures the Debye wave
number kj, is replaced by a Fermi wave number k:

)
kp~—2 10.115
Y ( )
where Vi is the velocity at the surface of the Fermi sphere. This magni-
tude of screening radius can be deduced from a Fermi-Thomas generaliza-
tion of the Debye-Hiickel approach. It fits in naturally with the dispersion
relation (10.98) and the mean square velocity (10.99).
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The Debye-Hiickel screening distance provides a natural dividing line
between the small-scale collisions of pairs of particles and the large-scale
collective effects such as plasma oscillations. It is a happy and not
fortuitous happening that plasma oscillations of shorter wavelengths can
independently be shown not to exist because of severe damping,
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PROBLEMS

10.1 An infinitely long, solid, right circular, metallic cylinder has radius (R/2)
and conductivity o. It is tightly surrounded by, but insulated from, a hollow
cylinder of the same material of inner radius (R/2) and outer radius R.
Equal and opposite total currents, distributed uniformly over the cross-
sectional areas, flow in the inner cylinder and in the hollow outer one.
At t = 0 the applied voltages are short-circuited.

() Find the distribution of magnetic induction inside the cylinders
before t = 0.

(b) Find the distribution as a function of time after # = 0, neglecting
the displacement current.

(¢) What is the behavior of the magnetic induction as a function of time
for long times? Define what you mean by long times.

10.2 A comparatively stable self-pinched column of plasma can be produced by
trapping an axial magnetic induction inside the plasma before the pinch
begins. Suppose that the plasma column initially fills a conducting tube of
radius R, and that a uniform axial magnetic induction B, is present in the
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tube. Then a voltage is applied along the tube so that axial currents flow
and an azimuthal magnetic induction is built up.

(@) Show that, if quasi-equilibrium conditions apply, the pressure-balance
relation can be written:

4+ B 1 Bd:
+ — dr =0
[p(r) = 81r 871':] 4 r

(b) If the plasma has a sharp boundary and such a large conductivity
that currents flow only in a thin layer on the surface, show that for a
quasi-static situation the radius R(#) of the plasma column is given by the

equation
%m (RO) =_f £ dt

= BzORO
07 CE,

and E, f(¢) is the applied electric field.

(c) If the initial axial field is 100 gauss, and the applied electric field has

an initial value of 1 volt/cm and falls almost linearly to zero in 1 millisecond,
determine the final radius if the initial radius is 50 cm. These conditions are
of the same order of magnitude as those appropriate for the British toroidal
apparatus (Zeta), but external inductive effects limit the pinching effect to
less than the value found here. See E. P. Butt et al., Proceedings of the
Second International Conference on Peaceful Uses of Atomic Energy, Vol. 32,
p- 42 (1958).
Magnetohydrodynamic waves can occur in a compressible, nonviscous,
perfectly conducting fluid in a uniform static magnetic induction B,. If the
propagation direction is not parallel or perpendicular to B, the waves are
not separated into purely longitudinal (magnetosonic) or transverse (Alfvén)
waves. Let the angle between the propagation direction k and the field By
be 6.

(a) Show that there are three different waves with phase velocities given by

where

= (va cos 6)%
ug g = 3(5* + 0a%) £ 3 + 0a?? — 450 cos® )4

where s is the sound velocity in the fluid, and va = (Bg?/4npy)*t is the
Alfvén velocity.

(b) Find the velocity eigenvectors for the three different waves, and
prove that the first (Alfvén) wave is always transverse, while the other two
are neither longitudinal nor transverse.

(c) Evaluate the phase velocities and eigenvectors of the mixed waves in
the approximation that va >>s. Show that for one wave the only appreciable
component of velocity is parallel to the magnetic field, while for the other
the only component is perpendicular to the field and in the plane containing
k and B,.

An incompressible, nonviscous, perfectly conducting fluid with constant

density p, is acted upon by a gravitational potential 4 and a uniform, static,
magnetic induction By,
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(a) Show that magnetohydrodynamic waves of arbitrary amplitude and
form By(x, 1), v(x, t) can exist, described by the equations

— B
By V)B, = =+ Vidmp, 'aTl

B, =4 \/47rp0 v

]

B B,)?
P +eov + (—o—g—i = constant
m

(b) Suppose that at t+ = 0 a certain disturbance B,(x, 0) exists in the
fluid such that it satisfies the above equations with the upper sign. What
is the behavior of the disturbance at later times?

10.5 The force equation for an electronic plasma, including a phenomenological
collision term, but neglecting the hydrostatic pressure (zero temperature
approximation) is

ov e \
Fr + (v V) —;(E +z‘ xB) vV
where » is the collision frequency.

(a) Show that in the presence of static, uniform, external, electric, and
magnetic fields, the linearized steady-state expression for Ohm’s law

becomes
Ji= 2 oiiE;
where the conductivity tensor is ’
1 2B 0
v
Gy = @5 _2B 0

2
o 0 (1+‘°—§)
v

and w,(wp) is the electronic plasma (precession) frequency. The direction
of B is chosen as the z axis,

(b) Suppose that at ¢ = 0 an external electric field E is suddenly applied
in the x direction, there being a magnetic induction B in the z direction.
The current is zero at + = 0. Find expressions for the components of the
current at all times, including the transient behavior.

10.6 The effects of finite temperature on a plasma can be described approxi-
mately by means of the correlationless Boltzmann (Vlasov) equation. Let
f(x, v, 1) be the distribution function for electrons of charge e and mass m
in a one-component plasma. The Viasov equation is

a_of -
EI—-;I‘FV wa+a va—o

where V and V, are gradients with respect to coordinate and velocity, and
a is the acceleration of a particle. For electrostatic oscillations of the
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plasma a = eE/m, where E is the macroscopic electric field satisfying

V.-E = 4we[ff(x, v, ) d% — no]

If fy(v) is the normalized equilibrium distribution of electrons

[no f fov d¥ = no:|

(a) show that the dispersion relation for small-amplitude longitudinal
plasma oscillations is
k_22 = f—k.vvfo &S
, kv—o

(b) assuming that the phase velocity of the wave is large compared to
thermal velocities, show that the dispersion relation gives

2 . .2
_93§1+2<k v,k :)>
@y w w

+.-.

where ¢ ) means averaged over the equilibrium distribution f(v). Relate
this result to that obtained in the text with the electronic fluid model.

(c¢) What is the meaning of the singularity in the dispersion relation when
kev=w?

10.7 Consider the problem of waves in an electronic plasma when an external

magnetic field B, is present. Use the fluid model, neglecting the pressure
term as well as collisions.

(a) Write down the linearized equations of motion and Maxwell’s
equations, assuming all variables vary as exp (ik - x — iw/).

(b) Show that the dispersion relation for the frequencies of the different
modes in terms of the wave number can be written

wHw? — 0,20 — w2 — k2c?)?
= wp¥(w? — k2eD)[w(w? — wpz — k%% + wp2c2(k - b))%
where b is a unit vector in the direction of B,; ©, and wg are the plasma
and precession frequencies, respectively.
(¢) Assuming wp < w,, solve approximately for the various roots for

the cases (i) k parallel to b, (ii) k perpendicular to b. Sketch your results
for w? versus k% in the two cases.
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Special Theory of Relativity

The special theory of relativity has been treated extensively in many
books. Its history is interwoven with the history of electromagnetism. In
fact, one can say that the development of Maxwell’s equations with the
unification of electricity and magnetism and optics forced special relativity
on us. Lorentz laid the groundwork in his studies of electrodynamics,
while Einstein contributed crucial concepts and placed the theory on a
consistent and general basis. Even though special relativity had its origin
in electromagnetism and optics, it is now believed to apply to all
types of interactions except, of course, large-scale gravitational phenomena.
In modern physics the theory serves as a touchstone for possible forms for
the interactions between elementary particles. Only theories consistent
with special relativity need to be considered. This often severely limits the
possibilities. Since the experimental basis and the development of the
theory are described in detail in many places, we will content ourselves
with a summary of the key points.

11.1 Historical Background and Key Experiments

In the forty years before 1900 electromagnetism and optics were cor-
related and explained in triumphal fashion by the wave theory based on
Maxwell’s equations. Since previous experience with wave motion had
always involved a medium for the propagation of waves, it was natural for
physicists to assume that light needed a medium through which to propa-
gate. In view of the known facts about light it was necessary to assume
that this medium, called the ether, permeated all space, was of negligible
density, and had negligible interaction with matter. It existed solely as a
vehicle for the propagation of electromagnetic waves. The hypothesis of

347
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an cther set electromagnetic phenomena apart from the rest of physics,
For a long time it had been known that the laws of mechanics were the
same in different coordinate systems moving uniformly relative to one
another—the laws of mechanics are invariant under Galilean transfor-
mations. The existence of an ether implied that the laws of electro-
magnetism were not invariant under Galilean coordinate transformations.
There was a preferred coordinate system in which the ether was at rest.
There the velocity of light in vacuum was equal to ¢. In other coordinate
frames the velocity of light was presumably not c.

To avoid setting electromagnetism apart from the rest of physics by a
failure of Galilean relativity there are several avenues open. Some of these
are:

1. Assume that the velocity of light is equal to ¢ with respect to a
coordinate system in which the source is at rest.

2. Assume that the preferred reference frame for light is the coordinate
system in which the medium through which the light is propagating is at
rest.

3. Assume that, although the ether has a very small interaction with
matter, the interaction is enough that it can be carried along with astro-
nomical bodies such as the earth.

A large number of experiments led to the abandonment of all these
hypotheses and the birth of the special theory of relativity. Three basic
experiments are:

(1) Observation of the aberration of star positions during the year,

(2) Fizeau’s experiment on the velocity of light in moving fluids (1859),

(3) Michelson-Morley experiment to detect motion through the ether

(1887).

The aberration of star light (the small shift in apparent position of
distant stars during the year) is an ancient phenomenon which finds a
simple explanation in the motion of our earth in its orbit around the sun
at a velocity of the order of 3 x 10% cm/sec. Suppose that the star light
is incident normal to the earth’s surface while the velocity of the earth in
orbit is parallel to the surface. Figure 11.1 shows that a telescope must be
inclined at an angle o, where

x~ 2~ 10 % radian (11.1)

c
in order that the light pass down it to the observer as the telescope moves
along. Six months later the velocity vector v will be in the opposite
direction. The star will then appear at an angle « on the other side of the
vertical. The apparent positions of stars trace out elliptical paths on the
celestial sphere during the year with angular spreads of the order of (11.1).
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Fig. 11.1 Aberration of star positions.

This simple explanation of aberration contradicts the hypothesis that the
velocity of light is determined by the transmitting medium (our atmosphere
in this case) or that the ether is dragged along by the earth. In neither case
would aberration occur.

Fizeau’s experiment involved measuring, by means of an interferometer,
the velocity of light in liquids flowing in a pipe, both in the direction of and
opposed to the propagation of the light. If the index of refraction of the
liquid is », then depending on which of the various hypotheses one
chooses, he expects the velocity to be

u=S<, L4 (11.2)
n n
where v is the velocity of flow. The actual result found by Fizeau was,
within experimental error,
u=" 4 U(I ~ iz) (11.3)
n

n

We note that this result can be made consistent with the ether being dragged
along by the earth only by assuming that smaller bodies are partially
successful in carrying the ether with them. Even then the assumption is
rather artificial in that their effectiveness at carrying the ether involves
their indices of refraction.*

The Michelson-Morley experiment was designed to detect a motion of
the earth relative to a preferred reference frame (the ether at rest) in which
the velocity of light is ¢. The basic apparatus is shown schematically in
Fig. 11.2. A laboratory light source S is focused on a thinly silvered glass
plate P which divides the light into two beams at right angles to each other,
one of which goes to mirror M, and is reflected back through the plate

* Actually formula (11.3) is a theoretical one proposed in 1818 by Fresnel on the basis
of a model in which the density of the elastic ether in matter is proportional to r2.
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—M
—_—f— v
P M
Bi B, Fig. 11.2 Michelson-Morley experiment.

to B, and the other of which goes to mirror M,, back to the plate, and is
reflected to B,. Conditions are such that the two beams travel almost the
same path length. Small differences in path length or in the times taken to
traverse the paths are detected by observing shifts in interference fringes
produced by the two beams. The whole apparatus was attached to a stone
slab floating in mercury so that it could be rotated. Suppose that velocity
v of the earth through the ether is parallel to the light path from P to M,.
Then the velocity of light relative to the apparatus on the path from P to
M, and return is ¢ & v. If the path distance from P to M, is d,, the time
taken by the light to go from P to M, and return is

pm (o ) 22 L (149
c—v c+v c (1_v_>
CZ

For the path from P to M, and return it is convenient to view things from
the preferred coordinate frame. Then it is evident that the path length
traversed is greater than d,, the distance from P to M,, because the mirror
is moving with velocity » through the ether.

Figure 11.3 shows the geometrical relations. Evidently sin « = v/c, so
that the effective path length is

2d; sec o = 2d; ———=
TP
&2
and the time taken is
t, = 2, 1 __ (11.5)
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The difference between the two transit times is
d
At=t,—t, = 2[ d _ L (11.6)
¢ o A/ 2
1 — E 1 — 22-

If we assume that v < ¢, we can expand the denominators, obtaining

2
At~ g[(d2 —d)+ "—2( s — d-lﬂ (11.7)
c c 2
If the apparatus is now rotated through 90°, the transit times become
t2l = 2_d2 _.___1__.
[ /\/ 2
T
(11.8)
, _2d, 1
L, =— BE—
¢, T
c2

and the difference, to lowest order, is

2
NG g[(d2 —dy) + ”—2(@ - dlﬂ (11.7)
c c*\2
Since At and A¢’ are not the same, we expect a shift in the interference
fringes upon rotation of the apparatus, the shift being proportional to

, 1 v’
AY — At = — = (dy + dp) = (11.9)
¢ c

Since the orbital velocity of the earth is about 3 X 10° cm/sec, we expect
v?/c? ~ 1078, at least at some time of the year. With (d, + dp) ~ 3 x 10?
cm, the time difference (11.9) is 1071® sec. This means that the relevant
length (to be compared to a wavelength of light) is ¢ [Ar' — Ar| ~3 x
10-8cm = 300A. Since visible light has wavelengths of the order of

| CZZ3
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3000 A, the expected effect is a fringe shift of about one-tenth of a fringe.
The accuracy of the Michelson-Morley experiment was such that a
relative velocity of 10® cm/sec would have been seen (i.e., one-third of the
above estimate). No fringe shift was found. Since the original work of
Michelson the experiment has been repeated many times with modifi-
cations such as very unequal path lengths. No evidence for relative motion
through the ether has been found. A summary of all the available evidence
has been given by Shankland et al., Revs. Modern Phys., 27, 167 (1955).

The negative result of the Michelson-Morley experiment can be ex-
plained on the ether-drag hypothesis. But that hypothesis is inconsistent
with the aberration of star light. Only the so-called emission theories,
where the velocity of light is constant relative to the source, are consistent
with all three of the experiments cited. And we will see in the next section
that other experiments exclude such theories. On the positive side the
Michelson-Morley experiment can be thought of as restoring electro-
magnetism to the rest of physics in the matter of relativity. No observable
effects were found which depended on the motion of the apparatus
relative to some conjectured absolute reference frame. It should be
mentioned, however, that FitzGerald and Lorentz (1892) explained the
null result while still retaining the ether concept by postulating that all
material objects are contracted in their direction of motion as they move
through the ether. The rule of contraction is

L(v) = LOA/I —Z—z (11.10)

It is clear from (11.4) or (11.7) that this hypothesis leads to a zero result
for (At" — Af) in place of (11.9). The FitzGerald-Lorentz contraction
hypothesis was perhaps the last gasp of the ether advocates, and it contains
the germ of the special theory of relativity. The contraction phenomenon
is present in special relativity, but in a more general way applying to all
systems in relative motion with one another. Going along with it is the
phenomenon of time dilatation (not postulated by FitzGerald or Lorentz),
an experimentally well-founded effect. These are discussed in Section 11.3.

11.2 The Postulates of Special Relativity and the Lorentz
Transformation

In 1904 Lorentz showed that Maxwell’s equations in vacuum were
invariant under a transformation of coordinates given by (11.19) below,
and now called a Lorentz transformation, provided the field strengths were
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suitably transformed. By supposing that all matter was essentially electro-
magnetic in origin and so transformed in the same way as Maxwell’s
equations, Lorentz was able to deduce the contraction law (11.10). Then
Poincaré showed that the transformation of charge and current densities
could be made in such a way that all the equations of electrodynamics are
invariant in form under Lorentz transformations. In 1905, almost at the
same time as Poincaré and without knowledge of Lorentz’s paper, Einstein
formulated special relativity in a general and complete way, obtaining the
results of Lorentz and Poincaré, but showing that the ideas were of much
wider applicability. Instead of basing his discussion on electrodynamics,
Einstein showed that just two postulates were necessary, one of them
involving only a very general property of light.
The two postulates of Einstein were:

1. POSTULATE OF RELATIVITY
The laws of nature and the results of all experiments performed
in a given frame of reference are independent of the translational
motion of the system as a whole. Thus there exists a triply infinite
set of equivalent reference frames moving with constant velocities
in rectilinear paths relative to one another in which all physical
phenomena occur in an identical manner.

For brevity these equivalent coordinate systems are called Galilean
reference frames. The postulate of relativity is consistent with all our
experience with mechanics where only relative motion between bodies is
relevant. It is also consistent with the Michelson-Morley experiment and
makes meaningless the question of detecting motion relative to the ether.

2. POSTULATE OF THE CONSTANCY OF THE VELOCITY OF LIGHT
The velocity of light is independent of the motion of the source.

This hypothesis, untested when Einstein proposed it, is necessary and
decisive in obtaining the Lorentz transformation and all its consequences
(see below). Because our classical concept of time as a variable independent
of the spatial coordinates is destroyed by this postulate, its acceptance was
resisted vehemently for a number of years. Many ingenious attempts were
made to invent theories which would explain all the observed facts without
this assumption. One notable one was Ritz’s version of electrodynamics,
which kept the two homogeneous Maxwell’s equations intact but modified
the equations involving the sources in such a way that the velocity of light
was equal to ¢ only when measured relative to the source. Experiments
have proved all such theories wrong and have established the constancy
of the velocity of light independent of the motion of the source. One such
experiment is the Michelson-Morley interferometer experiment performed
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with starlight, rather than a terrestrial light source. No effect was observed
which could be attributed to a change in the velocity of light due to the
relative motion of the star and the earth. Another experiment on the light
from rotating binary stars showed that the velocity of light depends
negligibly (if ¢’ = ¢ + kv, then k < 0.002) on the motion of the stars
toward or away from us.

The constancy of the velocity of light, independent of the motion of the
source, allows us to deduce the connection between space-time coordinates
in different Galilean reference frames. To see how this is possible we
consider two coordinate systems K and K’. System K’ has its axes parallel
to those of K, but it is moving with a velocity v in the positive z direction
relative to the system K, as shown in Fig. 11.4. Points in space and time
in the two systems are specified by (z, ¥, 2, £) and (¥, ¥', 2/, t'), respectively.
For convenience we suppose that a common origin of time t = ¢ = 0 is
chosen at the instant when the two sets of coordinate axes exactly overlap.
Now we imagine an observer in each reference frame equipped with the
necessary apparatus (e.g., a network of correlated clocks and photocells
at known distances from the origin) to detect the arrival time of a light
signal from the origin at various points in space. If there is a light source
at rest in the system K (and so moving with velocity v in the negative z
direction in system K’) which is flashed on and off rapidly at t = ¢' = 0,
then Einstein’s second postulate implies that each observer wil§see his
photocell network respond to a spherical shell of radiation moving out-
ward from his origin of coordinates with velocity ¢. Consequently the
arrival time ¢ of the pulse at a detector located at (, y, 2) in system K will
satisfy the equation: ‘

P+ +E2—c=0 (11.11D)
Similarly, in system K’ the wave front is described by

224yt 4+ 22— 42 =0 (11.12)
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Relations (11.11) and (11.12) seem to violate the first postulate of relativity.
If two observers in different coordinate systems both see spherical pulses
centered on a fixed origin in each system, the spheres must be different!
This apparent contradiction is resolved when we allow the possibility that
events which are simultaneous in one coordinate system are not necessarily
simultaneous in another coordinate system moving relative to the first. We
can now anticipate that time is no longer an absolute quantity independent
of spatial variables and of relative motion.

To obtain a connection between the coordinates (2, ', 2, t) of system
K’ and (z, y, 2, 1) of system K it is only necessary to assume that the trans-
formation is linear. This seems very plausible and is equivalent to the
assumption that space-time is homogeneous and isotropic. If the trans-
formation is linear, the only possible connection between the quadratic
forms (11.11) and (11.12) is

2?4yt — =2 R 4 2 — 2D (11.13)

where 4 = A(v) with A(0) = 1. The presence of A allows for the possibility
of an overall scale change in going from K to K’. But shells of radiation
are spheres in both systems. From the hypothesis that X’ is moving

parallel to the z axis of K, it is evident that the transformation of 2’, ¥’
must be

'

z = Ax, ¥ =y (11.14)
independent of the time, because motion parallel to the z axis in KX’ must
remain so in K. Then the most general linear connection between 2’, ¢’

and z, ¢ is
2 = Maiz + a5), 1= Mbyt + by2) (11.15)

A factor 4 has been extracted for convenience. The coefficients a, ay, by, b,
are functions of v with the following limiting values as v — 0:

a; 1

im ] % = ]©

ara 1 (11.16)
b, 0

The origin of X’ moves with a velocity v in the system K. Consequently
its position is specified by z = vr. This means that a, = —wva, in (11.15).
If equations (11.15) are now substituted into (11.13), three algebraic
relations between a,, by, and b, are obtained. These are easily solved to
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give the following values, with signs chosen to agree with (11.16):

c* (11.17)

by=—~a

2 C2 1
There remains the problem of the determination of A(v). If a third
reference frame K" is considered to be moving with a velocity —v parallel
to the z axis relative to K’, the coordinates (2", y”, 2”, ¢} can be obtained
in terms of (2',y’, 7, ¢") from the above results merely by the change
v — —v. But the system K" is just the original system K, so that 2" = «,

y" =y, 2" =z, t" = t. This leads to the requirement that

M) A(—v) = 1 (11.18)

But A(v) must be independent of the sign of v, since it represents a scale
change in the transverse direction. Consequently A(v) = 1. Then we can
write down the Lorentz transformation, connecting coordinates in X’ to
those in X:

- (11.19)

2

v

1 —=
«/ 2 )

Transformation (11.19) represents a special case in which the relative
motion of K and K’ is parallel to the z axis. It is a straight-forward matter
to write down the result for an arbitrary velocity v of translation of X’
relative to K, as shown in Fig. 11.5. Equation (11.19) clearly applies to
parallel and perpendicular components of the coordinates relative to v:

. 1

vﬁ
A/l—;z

(xy — v), X, = XJ

L (11.20)
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With the definition that x, = [(v-x)v]/t* and x, = x — x,, equations
(11.20) can be combined to yield the general Lorentz transformation:*

X' =x4 1 —1X'vv—- 1 vt
/ v? v A/ v?
,Vl——c—z 1—_c_é
1 XV (11.21)
t = 2(t— 2)
v 4
A/l——g

C

It should be noted that (11.21) represents a single Lorentz transformation
to a reference frame K’ moving with velocity v relative to the system K.
Successive Lorentz transformations do not in general commute. It is easy
to show that they commute only if the successive velocities are parallel.
Consequently three successive transformations corresponding to the com-
ponents of the velocity v in three mutually perpendicular directions yield
different results, depending on the order in which the transformations are
applied, and none agrees with (11.21). (See Problem 11.2.)

11.3 FitzGerald-Lorentz Contraction and Time Dilatation

As has already been mentioned, FitzGerald and Lorentz proposed the
contraction rule (11.10) for the dimensions of an object parallel to its

* The word “general” is not really applicable to transformation (11.21). The connota-
tion here is that the direction of the velocity v is arbitrary. But a more general trans-
formation would allow the axes in K’ to be rotated relative to those in K. Even this
Lorentz transformation is not the most general, since it is still komogeneous in the co-
ordinates. The general inhomogeneous Lorentz transformation allows transiation of the
origin in space-time as well. See Meller, Section 18.
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motion at velocity v through the ether; Lorentz was able to give the rule
an electrodynamic basis from the properties of Maxwell’s equations under
Lorentz transformations. We now show that the contraction of lengths
in the direction of motion is a more general phenomenon which applies to
all relative motion. Consider a rod of length L; at rest parallel to the 2’
axis in the system K’ of the previous section, as indicated schematically in
Fig. 11.6. By definition L, = z," — z;, wherez;" and 2z,’ are the coordinates
of the end points of the rod in K’. In the system K the length L of the rod is,
again by definition, L = 2z, — z;, where z, and z, are the instantaneous
coordinates of the end points of the rod, observed at the same time .
From (11.19) the length in K’ is

, Zg — 2y L

L0=22'—21= =
Ji-5 Ji-%
= s

which is just the FitzGerald-Lorentz result (11.10). Note that in the
system K the length is defined at equal times ¢. The fact that this is not at
equal times in the system K’ is not relevant for the definition of length in
the system K. This again illustrates that simultaneity is only a relative
concept.

Another consequence of the special theory of relativity is time dilatation.
A clock moving relative to an observer is found to run more slowly than
one at rest relative to him. The most fundamental “‘clocks”” which we
have available are the unstable elementary particles. Each type of particle
decays at rest with a well-defined lifetime (mean life) which is unaltered by
external fields, apart from nuclear or atomic force fields which cause
transformations that are well understood.* These particles can serve
therefore as “clocks” which can be examined at rest and in motion.
Suppose that we consider a meson of lifetime 7, at rest in the system X’

(11.22)

* For example, negative mu mesons can become bound in hydrogen-like orbits
around nuclei with binding energies that are not negligible compared to the energy
liberated in their decay. Since the rate of decay depends sensitively on the energy release
(closely as the fifth power of AE), tightly bound negative mu mesons exhibit a consider-
ably slower rate of decay than unbound ones.
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which is moving with uniform velocity v felative to the system K. We
assume that the meson is created at the origin of K’ attime ¢’ = 1 = 0. As
seen from the system K the position of the meson is given by z = vr. If it
lives a time 7, in K’, then at its instant of decay, we find

v
t——z
2 2
== =t |1 =L (11.23)
1} 1)2 CZ

/1‘:

The time ¢ is the meson’s lifetime 7 as observed in the system K. Con-

sequently
To

o

e
When viewed from K the moving meson lives longer than a meson at rest
in K. The “clock™ in motion is observed to run more slowly than an
identical one at rest.

Time dilatation has been observed in cosmic rays with high-energy mu
mesons. These mesons are produced as secondary particles at a height of
the order of 10 or 20 km, and a large fraction of them reach the earth’s
surface. Since the mean lifetime of a mu meson is 7, = 2.2 x 1076 sec,
it could travel no more than ¢7, = 0.66 km on the average before decaying
if no time dilatation occurred. Clearly dilatation factors of the order of
10 or more are involved, consistent with the high energies (velocities
approaching the velocity of light) of these particles.

A laboratory experiment exhibiting time dilatation with pi mesons is
not difficult to perform. Charged pi mesons have a mean lifetime 7, =
2.56 x 107%sec. An experiment studying the numbers of charged pi
mesons decaying in flight per unit length as a function of distance from the
point of production was done at Columbia University.* The mesons had
a velocity v ~ 0.75¢. The numbers of mesons decaying per unit distance
should follow an exponential law N(z) = Nye %* where 1 is the mean
frec path in the laboratory and z is the distance from the source (corrected
for finite solid angles, etc.). Figure 11.7 shows schematically the results of
the experiment. The mean free path is A = 8.5 + 0.6 meters. Since
% = v, the laboratory lifetime is 7 = 3.8 £ 0.3 x 10~*sec. Consequently

T 38203540

7o 2.56

* Durbin, Loar, and Havens, Phys. Rev., 88, 179 (1952). This experiment was per-
formed to measure the lifetime of the pi meson. The validity of time dilatation was
assumed. But with independent knowledge of the lifetime, the argument can be inverted
as we do here.

T =

(11.24)
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This value is to be compared with 1.51 calculated from (11.24) with
v = 0.75¢c. The laboratory experiment on time dilatation is not so
dramatic as the cosmic rays but has the great virtue of being performed
under controlled conditions in a comparatively small space.

11.4 Addition of Velocities: Aberration and the Fizeau Experiment;
Doppler Shift

The Lorentz transformation (11.19) can be used to obtain the addition
law for velocities. Suppose that there is a velocity vector w’ in the system
K’ which makes polar angles 0, ¢" with the 2’ axis as shown in Fig. 11.8.
The system K’ is moving relative to the system K with a velocity v in the z
direction. We want to know the components of velocity u as seen in the
system K. From (11.19), or rather the inverse transformation, the dif-
ferential expressions for dx, dy, dz, dt can be obtained:

dr = dx', dy = dy' 1

(11.25)

dz = —_—t (dz" + v dt), dt = ——1-———(dt' + L dz’)
Ji-s Ji-g e
-3 -3
This means that the components of velocity are
2 :
//l—v—zux/ ,/1—%”,”,
c - c

Up = ——————, Y - N
(r+%)
c - (11.26)

(1+4)
o2
U, = ————r
vu
_—
( + C2 J

u, +v
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The magnitude of u and the angles 6, ¢ of u in the system X are easily
found. Since u,'/u,’ = u,/u,, the azimuthal angles are equal, ¢ = ¢'.
Similarly

2 ror ' h
tan0=A/1—v—2—u sin 6
¢ u'cos® 4o

and

A/u'z + v* + 2u'v cos ' — [L’ sin BIT [ (11.27)

—_ c
(1 + u_2v cos 0’)
¢

The inverse results for (u', 6") in terms of (u, 0) can be obtained by inter-
changing u« ', 6> 6, and also changing the sign of v.

Study of (11.26) or (11.27) shows that for velocities #’ and v both small
compared to ¢ the addition law is just that of Galilean relativity, u = w’ +
v. But for either velocity approaching that of light, modifications appear.
It is impossible to obtain a velocity greater than that of light by adding
two velocities, even if each is very close to ¢. For the simple case of parallel
velocities the addition law is

J

u + v
u'v

1+ =
C2

U =

(11.28)

If 4’ = ¢, then (11.28) shows that u = c also. This is merely an explicit
statement of Einstein’s second postulate.

The laws of addition of velocities are in accord with both the aberration
of starlight and the Fizeau experiment. For the aberration, the velocity '

~

[

/
Lo

Fig. 11.8 Addition of velocities. x/x
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is that of light in the system K’, namely, 4’ = ¢, and v is the orbital velocity
of the earth. Then the angle 6 is related to 6’ by

tan § = Jl _ 0_2 sin 6 (11.29)
¢ cos ' + -

For starlight incident normally on the earth 6’ = =/2. Then

c v?
an 0 - 1 = (11.30)
The angle 6 is the complement of the angle o in (11.1). Thus
tan o« = —2S (11.31)

completely consistent with observation. (Since v/c ~ 104, the departure
of the radical from unity is far beyond the realm of observation.)

In the simplest version of the Fizeau experiment the liquid flows with
velocity v parallel or antiparallel to the path of light. If the liquid has an
index of refraction » we may assume that light propagates with a velocity
#’ = c/n relative to the liquid. From (11.28) the velocity of light observed
in the laboratory is

E:EU 1
w2 z—civ(l -—2) (11.32)
1:’:‘0— n n

nc

The latter expression is the expansion to lowest order of the exact resuit.
This is in agreement with the Fresnel formula (11.3). Actually there is an
added term in (11.32) if the index of refraction is a function of wavelength.
It comes about because of the Doppler shift in wavelength in the moving
liquid. The increase A4 in wavelength in the moving medium is

Al = 4in’ (11.33)
c A}

correct to lowest order in v/c for the parallel and antiparallel velocities,
respectively. Consequently the appropriate velocity of light in the liquid
is

c ¢ cdn

n(d + Al) n(l) n? di
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Then the corrected expression to replace (11.32) is

u=£;{;v(1——2——-) (11.34)

n

The correction due to dispersive effects has been observed.

The relativistic Doppler shift formulas can be obtained from the fact
that the phase of a light waveis an invariant quantity. Actually, the phase of
any plane wave is invariant under a Lorentz transformation, the reason
being that the phase can be associated with mere counting which is
independent of coordinate frame. Consider a plane wave of frequency w
and wave vector k in the reference frame K. An observer at the point P
with coordinate x is equipped to record the number of wave crests which
reach him in a certain time. If the wave crest passing the origin at ¢ = 0 is
the first one which he records (when it reaches him), then at time ¢ he will
have counted

1
—(k+:x — ot
277( )

wave crests. Now imagine another reference frame K’ which moves
relative to the frame K with a velocity v parallel to the z axis, and has its
origin coincident with that of K at ¢ = 0. An observer in K’ at the point
P’ with coordinate x’ is equipped similarly to the one in K. He begins
counting when the wave crest passing the origin reaches him, and con-
tinues counting until time ¢. If the point P’ is such that at the end of the
counting period it coincides with the point P, then both observers must have
counted the same number of wave crests. But the observer in K’ has
counted

1
— & X — 't
27 ( )
wave crests, where k" and w’ are the wave vector and frequency of the plane
wavein K'. Thus the phase of the wave is invariant. Consequently we

have
KX —ot'=k-x — wt (11.35)

Using the transformation formulas (11.19), we find

k), =k, k' =k,

b=k = L0), o=@ k)| (136)

Jl—f ¢ f1-Y
c? c*
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For light waves, |k| = w/c and |k'| = o’fc. Hence these results can be
expressed in the form:

w’=—w——(1 —Ecosﬁ)1

2 c
Ji-5
[4

= | (11.37)
A/l———;sin@

4

tan ' =

v
cosf — -
c

where 6 and 6’ are the angles of k and k' relative to the direction of v. This
last equation is just the inverse of (11.29).

It is sometimes useful to have the frequency w’ expressed in terms of the
angle 0 of the wave in the frame K'. From the inverse of the first equation
in (11.37), it is evident that the desired expression is

2
v
1l——=w
__“_/__f__.
(1+ycos0')
c

The first equation in (11.37) is the customary Doppler shift, modified
by the radical in the denominator. The presence of the square root shows
that there is a transverse Doppler shift, even when 6 = #/2. This relati-
vistic transverse Doppler shift has been observed spectroscopically with
atoms in motion (Ives-Stilwell experiment, 1938). It also has been observed
using a precise resonance-absorption technique, with a nuclear gamma-ray
source on the axis of a rapidly rotating cylinder and the absorber attached
to the circumference of the cylinder.

I3

w

(11.38)

11.5 Thomas Precession

In 1926, Uhlenbeck and Goudsmit introduced the idea of electron spin
and showed that, if the electron had a g factor of 2, the anomalous Zeeman
effect could be explained, as well as the existence of multiplet splittings.
There was a difficulty, however, in that the observed fine-structure intervals
were only one-half the theoretically expected values. If a g factor of unity
were chosen, the fine-structure intervals were given correctly, but the
Zeeman effect was then the normal one. The complete explanation of spin,
including correctly the g factor and the proper fine-structure interaction,
came only with the relativistic electron theory of Dirac. But within the
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framework of an empirical spin angular momentum and a g factor of 2,
Thomas showed that the origin of the discrepancy was a relativistic
kinematic effect which, when included properly, gave both the anomalous
Zeeman effect and the correct fine-structure splittings. The Thomas
precession, as it is called, also gives a qualitative explanation for a spin-
orbit interaction in atomic nuclei and shows why the doublets are
“inverted” in nuclei.

The Uhlenbeck-Goudsmit hypothesis was that an electron possessed a
spin angular momentum S (which could take on quantized values of 34/2
along any axis) and a magnetic moment . related to S by

p=-8 (11.39)
me
The customary relation between magnetic moment and angular momentum
is given by (5.64). Equation (11.39) shows that the electron has a g factor
of 2. Suppose that an electron moves with a velocity v in external fields E
and B. Then the equation of motion for its angular momentum in its rest
frame is
—=m xB 11.40
il (11.40)
where B’ is the magnetic induction in that frame. We will show in Section
11.10 that in a coordinate system moving with the electron the magnetic
induction is
B =~ (B -Ix E) (11.41)
[
where we have neglected terms of the order of (v3/c%). Then (11.40)
becomes
d—S=px(B—Y xE) (11.42)
dt c
Equation (11.42) is equivalent to an energy of interaction of the electron
spin:
U'=—p- (B—Y xE) (11.43)
c
In an atom the electric force eE can be approximated as the negative
gradient of a spherically symmetric average potential energy V(r). For one-
electron atoms this is, of course, exact. Thus
rdv

= ——— 11.44
rdr ( )
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Then the spin-interaction energy can be written

U’=——€—S-B+—1—2(S-L)1‘—i—1—/ (11.45)
me méc rdr

where L = m(r x v) is the electron’s orbital angular momentum. This
interaction energy gives the anomalous Zeeman effect correctly, but has a
spin-orbit interaction which is twice too large.

The error in (11.45) can be traced to the incorrectness of (11.40) as an
equation of motion for the electron spin. The left-hand side of (11.40)
gives the rate of change of spin in the rest frame of the electron. This is
equal to the applied torque (. x B’) only if the electron’s rest frame is not
a rotating coordinate system. If, as Thomas first pointed out, that co-
ordinate system rotates, then the time rate of change of any vector G in that
system is*

a6 _ (d_(_}) —wy X G (11.46)
dt dt / nonrot
where wo is the angular velocity of rotation found by Thomas. When
applied to the electron spin, (11.46) gives an equation of motion:

8 _sx (511 + wT) (11.47)
dt mec
The corresponding energy of interaction is
U=U -8 wy (11.48)

where U’ is the electromagnetic spin interaction (11.45).

The origin of the Thomas precessional frequency wy is the acceleration
experienced by the electron as it moves in its atomic orbit. Figure 11.9
shows the electron at position 1 at a time 7 with instantaneous velocity

* See, for example, Goldstein, p. 133.
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vector v, and at position 2 an infinitesimal time later (¢ 4 6f) with
velocity v + dv. The increment in velocity is related to the electron’s
acceleration a by év = a dz. At time ¢ the electron’s rest frame K’ and the
laboratory frame K are related by a Lorentz transformation with velocity
v. At time 7+ ot the electron’s rest frame has now changed to X”,
related to K by a Lorentz transformation with velocity v + dv. The
question now arises, “How are the coordinate frames K" and K’ related ?
That is, how do the axes in the electron’s rest frame behave in time ? As
viewed from the laboratory, in a time d¢ the electron undergoes an infini-
tesimal change in velocity dv. Consequently we might anticipate that K”
and K’ would be connected by a simple infinitesimal Lorentz transfor-
mation. If so, (11.45) would be correct as it stands. To see that the con-
nection is more than a mere Lorentz transformation we note that the
transformation from K’ to K" is equivalent to two successive Lorentz
transformations, one with velocity —v, and the other with velocity v + dv:

K’ —L—_v}—» K—|v+ Sv}> K” (11.49)
Now it is generally true that two successive Lorentz transformations are
equivalent to a single Lorentz transformation plus a rotation. Using the
general formula (11.21) twice, it is a straightforward matter to show that
the time variables in K” and K’ are related by

=t — X ! ov + ! 1 y-_&vv (11.50)

P T . 2
c v v? v
1-Z 1-Z
c ¢

correct to first order in dv. This shows that the direct transformation from
K’ to K” involves an infinitesimal Lorentz transformation with a velocity

Av = — | oy + 1 P\ (11.51)

¢ ¢
The corresponding transformation of the coordinates is
1 , (v x 0V
1 x

2 v
1-=
[

Comparison with x” = x" 4 x’ x AQ for a rotation of axes by an in-
finitesimal angle A2 shows that the coordinate axes in K" are rotated
relative to those in K’ by an angle

X!/ = xI +

) —Avy (1152

Aﬂ:(——l———l v x dv (11.53)

2
/ ) e v
! c?
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This shows that the coordinate axes in the electron’s rest frame precess
with an angular velocity

1 —1)Y~i‘fz3—v x a (11.54)

1-=

v C
c

where the result on the right is an approximation valid if v <c. We

emphasize the purely kinematic origin of the Thomas precession by noting

that nothing has been said about the cause of the acceleration. If a

component of acceleration exists perpendicular to v, then there is a Thomas

precession, independent of other effects such as precession of the magnetic

moment in a magnetic field.

For electrons in atoms the acceleration is caused by the screened
Coulomb field (11.44). Thus the Thomas angular velocity is

~LlrxvidVy 1 14V

Wy~ — -— = -—

2 m rdr  2m’c rdr

(11.55)

It is evident from (11.48) and (11.45) that the extra contribution to the
energy from the Thomas precession just reduces the spin-orbit coupling
by a factor of } (sometimes called the Thomas factor), yielding
1 - 1dV

U=-2S.B+

11.56
me 2m?c? rdr ( )

as the correct spin-orbit interaction energy for an atomic electron.

In atomic nuclei the nucleons experience strong accelerations due to the
specifically nuclear forces. The electromagnetic forces are comparatively
weak. In an approximate way one can treat the nucleons as moving
separately in a short-range, spherically symmetric, attractive, potential
well, Vy(r). Then each nucleon will experience in addition a spin-orbit
interaction given by (11.48) with the negligible electromagnetic contri-
bution U’ omitted:

Uy~ —S . wyp (11.57)

where the acceleration in w, is determined by Vy(r). The form of w, is
the same as (11.55) with ¥V replaced by V. Thus the nuclear spin-orbit
interaction is approximately

C g ldny
2M3c? rdr

In comparing (11.58) with atomic formula (11.56) we note that both V

and Vy are attractive (although ¥ is much larger), so that the signs of

the spin-orbit energies are opposite. This means that in nuclei the single
particle levels form “inverted” doublets. With a reasonable form for V',

Uy~ (11.58)
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(11.58) is in qualitative agreement with the observed spin-orbit splittings
in nuclei.

11.6 Proper Time and the Light Cone

In the previous sections we have explored some of the physical con-
sequences of the special theory of relativity and Lorentz transformations.
In the next two sections we want now to discuss some of the more formal
aspects and to introduce some notation and concepts which are very useful
in a systematic discussion of physical theories within the framework of
special relativity.

In Galilean relativity space and time coordinates are unconnected.
Consequently under Galilean transformations the infinitesimal elements
of distance and time are separately invariant. Thus

ds? = dr® + dy? + d2* = ds™?

(11.59)
dr = dr'?

For Lorentz transformations, on the other hand, the time and space
coordinates are interrelated. From (11.21) it is easy to show that the
invariant “length’” element is

ds® = dx® 4 dy? + dz* — 2 dr® (11.60)

This leads immediately to the concept of a Lorentz invariant proper time.
Consider a system, which for definiteness we will think of as a particle,
moving with an instantaneous velocity v(¢) relative to some coordinate
system K. In the coordinate system K’ where the particle is instantaneously
at rest the space-time increments are da’ = dy’ = dz’ = 0,dt’ = dr. Then
the invariant length (11.60) is

—2dr = dn® 4 df + di® — 2 dr? (11.61)

In terms of the particle velocity v(¢) this can be written

U2
dr=di,[1 - = (11.62)

Equation (11.62) shows the time-dilatation effect already discussed. But
much more important, by the manner of its derivation (11.62) shows that
the time 7, called the proper time of the particle, is a Lorentz invariant
quantity. This is of considerable importance later on when we wish to
discuss various quantities and their time derivatives. If a quantity behaves
in a certain way under Lorentz transformations, then its proper time
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Fig. 11.10 World line of a system and the

light cone. The unshaded interior of the cone

represents the past and the future, while the

shaded region outside the cone is called

“elsewhere.” A point inside (outside) the

light cone is said to have a time-Jike (space-
like) separation from the origin.

derivative will behave in the same way because of the invariance of dr.
But its ordinary time derivative will not have the same transformation
properties. From (11.62) we see that a certain proper time interval
(r3 — 71) will be seen in the system K as a time interval

(11.63)

f— ¢ _f"z dr
Uk TP
L

where £, and ¢, are the corresponding times in K.

Another fruitful concept in special relativity is the idea of the light cone
and “space-like” and “time-like” separations between two events. Con-
sider Fig. 11.10, in which the time axis (actually ct) is vertical and the space
axes are perpendicular to it, For simplicity only one space dimension is
shown. At = 0a physical system, say a particle, is at the origin. Because
the velocity of light is an upper bound on all velocities, the space-time
domain can be divided into three regions by a *‘cone,” called the /ight cone,
whose surface is specified by 22 + y% 4 22 = %2 Light signals emitted
at + = 0 from the origin would travel out the 45° lines in the figure. But
any material system has a velocity Iess than ¢. Consequently as time goes
on it would trace out a path, called its world line, inside the upper half-
cone, e.g., the curve OB. Since the path of the system lies inside the upper
half-cone for times ¢ > 0, that region is called the future. Similarly the
lower half-cone is called the past. The system may have reached O by a
path such as AQ lying inside the lower half-cone. The shaded region
outside the light cone is called elsewhere. A system at O can never reach
or come from a point in space-time in elsewhere.

The division of space-time into the past-future region and the elsewhere
region can be emphasized by considering the invariant separation between
two events Py(z;, ¥, 21, ;) and Py(xs, ¥s, 29, #5) in space-time:

S12 = (@ — 22 + (U — 92)® + (&g — %)% — Xt — 1,)* (11.64)
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For any two events P, and P, there are two possibilities: (1) s, > 0,
(2) 5122 < 0. If 55,2 > 0, the events are said to have a space-like separation,
because it is always possible to find a Lorentz transformation to a new
coordinate system K’ where (1, — ;') = 0 and

st =@ — P+ — P+ —%)>0 (1165

That is, the two events are at different space points at the same instant of
time. In terms of Fig. 11.10, one of the events is at the origin and the other
lies in elsewhere. If 5,2 < 0, the events are said to have a time-like separ-
ation. Then a Lorentz transformation can be found which will make x,’
=z, =¥y, 2 =2 ,and

St = —c¥t — 1, <0 (11.66)

In the coordinate system. K’ the two events are at the same space point,
but are separated in time. In Fig. 11.10, one point is at the origin and the
other is in the past or future.

The division of the separation of two events in space-time into two
classes—space-like separations or time-like separations—is a Lorentz
invariant one. Two events with a space-like separation in one coordinate
system have a space-like separation in all coordinate systems. This means
that two such events cannot be causally connected. Since physical inter-
actions propagate from one point to another with velocities no greater
than that of light, only events with time-like separations can be causally
related. An event at the origin in Fig. 11.10 can be influenced causally
only by the events which occur in the past region of the light cone.

11.7 Lorentz Transformations as Orthogonal Transformations in
Four Dimensions

The Lorentz transformation (11.19) and the more general form (11.21)
are linear relations between the space-time coordinates (x,y,z,t) and
(«',y', 2, t'), subject to the constraint,

W+ —t =2+ %+ 2% — ¥ (11.67)

This constraint is very reminiscent of the constraint involved in the
rotation of coordinate axes in three space dimensions. In fact, if we intro-
duce the four space-time coordinates,

B =2, By=Y, Zy=2, & =Iict (11.68)
then the constraint becomes

R =22 4 x,2 4 22 + 2,2 (11.69)
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is an invariant under Lorentz transformations. This is then exactly the
requirement that Lorentz transformations are rotations in a four-dimen-
sional Euclidean space or, more correctly, are orthogonal transformations
in four dimensions. The Lorentz transformation (11.21) can be written
in the general form:

LA
xﬂ =

M=
H

ant, u=1,2,34 (11.70)

where the coefficients a,, are constants characteristic of the particular
transformation. The invariance of R? (11.69) forces the transformation
coefficients a,, to satisfy the orthogonality condition:

4
> a,,a,, =0, (11.71)

u=1
With (11.71) it is easy to show that the inverse transformation is

4
x, =2 a, (11.72)
v=1
and that .
Z Ay = Oy (11.73)
p=1

Furthermore, if we solve the four equations (11.70) for z, in terms of z,’
and compare the solution to (11.72), we find that the determinant of the
coefficients has the value unity:
det [a,,| =1 (11.74)
In general the determinant can be =1, but the choice of the minus sign
implies an inversion followed by a rotation.
To give some substance to the above formalities we exhibit explicitly
the transformation coefficients @, for a Lorentz transformation from
system K to a system K’ moving with a velocity v parallel to the z axis

1 0 O 0
@) 0 1 0 0 (11.75)
a,,) = .
’ 00 y iy
0 0 —iyp y
We have introduced the convenient abbreviations:
v
p="
c
(11.76)

‘}}=

—_
-
|
n|e
ol T
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4
4
uF—-———- *—::1”
T i
At I
x4 [
1 3
. x3’
Fig. 11.11 Lorentz transformation as ! 3
rotation of axes. 0 xla 3

With definitions (11.68) and (11.70) it is elementary to show that (11.75)
yields exactly the Lorentz transformation (11.19).

The formal representation of transformation (11.75) as a rotation of axes
in the z3, z, plane (with 2, drawn as if it were real) can be accomplished
simply. Figure 11.11 shows a rotation of the axes through an angle . The
coordinates of the point P relative to the two sets of axes are related by

xy =cosyry+sinyz
? A ! (11.77)
x, = —sinyxy + cos Y x,

Comparison of the coefficients in (11.77) with the transformation coeffi-
cients in (11.75) shows that the angle % is a complex angle whose tangent
is

tany = iff (11.78)

This result can be obtained directly from (11.77) without reference to
(11.75) by noting that the origin ;" = 0 moves with a velocity v in the
system K. That the angle y is complex is emphasized by the fact that its
cosine is greater than unity (cos y = y = 1). Consequently the graphical
representation of a Lorentz transformation as a rotation is merely a formal
device.

In spite of the formal nature of the »;, 2, rotation diagram the pheno-
mena of FitzGerald-Lorentz contraction and time dilatation can be
displayed graphically. Figure 11.12 shows the length contraction on the
right and time dilatation on the left. The distance L, in the frame K’ is
observed in the frame K as L, represented by the horizontal line at constant
time in K. Because of the complex nature of the angle ¢, L appears on the
figure as larger than Ly, but mathematically the two lengths are related by

Leosyp = Ly |
Ly

=y

or (11.79)
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4’ 4
T To
T To
T To
T T L 3 Fig. 11.12 Time dilatation and Fitz-
0 Lo Gerald-Lorentz contraction in terms
v 3 of a rotation of space-time axes.

in agreement with (11.22). Similarly the time intervals 7} in the frame K’
are seen in the frame K as intervals T, where

T=T,cosy=yT, (11.80)
in accord with (11.24).

Sometimes a graphical display of Lorentz transformations is made
using a real time variable x, = ¢¢, rather than x,. This is called a
Minkowski diagram and has the virtue of dealing with real quantities. It
has the major disadvantage that the coordinate grids in the two frames K
and K" must be scaled according to a rectangular hyperboloid law, as can
be seen from (11.67). The interested reader may refer to Minkowski’s
paper in the collection, The Principle of Relativity, by Einstein ef al., for a
discussion of these diagrams.

11.8 4-Vectors and Tensors; Covariance of the Equations of Physics

The transformation law (11.70) for the coordinates x, defines the trans-
formation properties of vectors in the four-dimensional space-time (11.68).
Any set of four quantities 4, which transform in the same way as z,, is
called a 4-vector. Under the Lorentz transformation (a,,) 4,,is transformed
into 4,/, where
A =3 a,A, (11.81)

v=1

If a quantity ¢ is unchanged under a Lorentz transformation, it is called
a scalar or a Lorentz scalar. The four quantities formed by differentiation
of a Lorentz scalar with respect to x, transform as a 4-vector. This can be
shown as follows. Consider

9¢ =i 9¢ 9, (1182
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From (11.72) it is evident that
=gq (11.83)

Consequently \
0¢ 0¢
14 = -+ 11.84
ox,’ ;am ox, ( )

as required for the transformation of a 4-vector. By similar means it is
elementary to show that the 4-divergence of a 4-vector is Lorentz invariant:

o) o,

(11.85)
33‘ “:laxu

With 4, = 0¢/dx, in this expression, we find that the four-dimensional
Laplacian operator is a Lorentz invariant operator:

:2(]5 Z a2¢ a ¢ I:]Q‘ﬁ (1186)

If [J% operates on some other funct1on, such as a 4-vector 4, the resulting
quantity retains the transformation properties of the function operated
on. The scalar product of two 4-vectors 4, and B,, is readily proved to be
invariant:

4
(4 -B)=3 A,/B,/ = (A" B) (11.87)
p=1

Lorentz 4-vectors are tensors of the first rank in a four-dimensional
space. Higher-ranks tensors are defined in an analogous way. A second-
rank tensor T, is a set of sixteen quantities which transforms according
to the law:

4
Th=3 duayTi (11.88)
A,o=1

Higher-rank tensors are formed by the inclusion of more and more factors
a,,. A tensor of the nth rank is a set of 4” quantities which have a transfor-
mation law involving a product of » coefficients a,,, in obvious generali-
zation of (11.88). Just as the scalar product of two 4-vectors has rank one
less than the original quantities, so certain contracted quantities can be
formed from higher-rank tensors. For example, the scalar product of a
tensor of the second rank and a 4-vector transforms as a 4-vector:

4 4 1
=3 T,4, =lzlaﬂ( S TMAV) (11.89)
v=1 = v=1

This and similar relations can be proved using the orthogonality con-
ditions (11.71) and (11.73).
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The volume element in the four-dimensional space-time (11.68) will be
defined as the real quantity

diz = dx, dx, dx, dx, (11.90)

where dxy, = (1/i) dvy = d(ct). The transformation law of the volume
element is

dix' = a(xl » Xa s Ty s x4) diz (1191)
0y, 5, 23, T4)

But the Jacobian in (11.91) is just the determinant of the a,, (11.74).
Consequently the 4-volume element dx is a Lorentz invariant quantity.

The first principle of Einstein is that the laws of physics have the same
form in different Lorentz frames. This means that the equations which we
write down to describe the physical laws must be covariant in form. By
covariant we mean that the equation can be written so that both sides have
the same, well-defined, transformation properties under Lorentz transfor-
mations. Thus physical equations must be relations between 4-vectors, or
Lorentz scalars, or in general 4-tensors of the same rank. This is necessary
in order that a relation valid in one coordinate frame will also hold in the
same form in another. Consider, for example, the inhomogeneous pair of
Maxwell’s equations. It will be shown in the next section that these can be
written in the relativistic form

< OF,, 4

J
oz, c

u=1,2,3,4 (11.92)

73
v=1
where J, is a suitable current 4-vector, and F, is the field strength 4-tensor.
Since the 4-divergence of a 4-tensor is a 4-vector, (11.92) is a relation
between two 4-vectors. In another reference frame K', we expect the same

physical laws to take the same form,

4 ’ ;
4

Oy 47 (11.93)

’
~ Oz, c

Using transformation (11.81), we find that (11.93) can be expressed in
terms of quantities in the original coordinate frame as

24: ( OF —%J,,):O (11.94)

This shows that, if (1 1.92) holds in the original frame of reference, then it
holds in all equivalent Lorentz frames. If the two sides of (11.92) had not
had the same Lorentz transformation properties, this would obviously
not be true.
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To conclude these formal considerations we introduce some simplifying
notation. In what follows:

1. Greek indices will be summed from 1 to 4.

2. Roman indices will represent spatial directions and will be summed
from 1 to 3.

3. 4-vectors will be denoted by 4, with (4,, 4,, 43) the components of
a space vector A and A, = i4;. This correspondence will sometimes be
written

A, = (A, i4y) (11.95)
Sometimes the subscript on the 4-vector will be omitted, e.g. f(x) means
S, ).
4. Scalar products of 4-vectors will be denoted by
(4-By=A-B — 4,8, (11.96)

where A - B is the ordinary 3-space scalar product.

5. The summation convention will be used. That is, repeated indices
are understood to be summed over, even though the summation sign is not
written. If the repeated index is roman, the sum is from 1 to 3; if it is
Greek, the sum is from 1 to 4. Thus, for example, (11.85) will be written

4, _ o4,
oz, oz,

and (11.89) will be written
Tu,vAv’ = aui.T).vAv

11.9 Covariance of Electrodynamics

The invariance in form of the equations of electrodynamics under
Lorentz transformations was shown by Lorentz and Poincaré before
Einstein formulated the special theory of relativity. We will now discuss
this covariance and consider its conscquences. There are two points of
view possible. One is to take some experimentally proven fact such as the
invariance of electric charge and try to deduce that the equations must be
covariant. The other is to demand that the equations be covariant in form
and to show that the transformation properties of the various physical
quantities, such as field strengths and charge and current, can be satis-
factorily chosen to accomplish this. Although the first view is to some the
most satisfying, we will adopt the second course. Classical electrodynamics
is correct, and it can be cast in covariant form. For simplicity we will
consider the microscopic equations, without the derived quantities D
and H.
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We begin with the continuity equation for charge and current densities:

% _ _yg.3 (11.97)
ot

This can be cast in covariant form by introducing the charge-current 4-
vector J, defined by

J, = (J, icp) (11.98)
Then (11.97) takes on the obviously covariant form:
Y _ g (11.99)
oz,

That J, is a legitimate 4-vector can be established from the experimentally
known invariance of electric charge. This invariance implies that
{p dx; dx, dx;) is a Lorentz invariant. Since i d% = (dv, dx, dx, dz,) is a
Lorentz invariant, it follows that p transforms like the fourth component of
a 4-vector. The transformation properties of J follow similarly.

The wave equations for the vector potential A and the scalar potential
O are

VA —=—"Z =27
2 01 c
| 20 (11.100)
with the Lorentz condition
V-A+laa£t)=0 (11.101)
C

The differential operator on the left-hand sides of the wave equations can
be recognized as the Lorentz invariant four-dimensional Laplacian (11.86).
The right-hand sides of these equations are the components of a 4-vector.
Consequently, the requirement of covariance means that the vector and
scalar potentials are the space and time parts of a 4-vector potential 4,,:

A, = (A, iD) (11.102)
Then the wave equations can be written
DzAu = _47_7.'];” u = 1a27 3a4 (11.103)
C

while the Lorentz condition becomes
o4,
dx

"

=0 (11.104)
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We are now ready to consider the field strengths E and B. They are
defined in terms of the potentials by

10A
E=-V0—- E} (11.105)
B=V x A
By writing out the components explicitly, for example,
5, 4 _ 4y
ox, 0x
(11.106)

nele 2
%, O

it is evident that the electric field and the magnetic induction are elements
of the second-rank, antisymmetric, field-strength tensor F,,:

04 oA
F,=— =t 11.107
B dx ( )

Explicitly, the field-strength tensor is
0 B; —B, —iE,
—B, 0 B, —iE,
(Fin) = B, —B, 0 —iE,
iE, iE, iE, 0

u v

(11.108)

To complete the demonstration of the covariance of electrodynamics
we must consider Maxwell’s equations. The inhomogeneous pair are

V.E = 4mp 3
Vxp—loE_4m; (11.109)
c Ot C

Since the right-hand sides form the components of a 4-vector, so must the
left-hand sides. With definition (11.108) of the field-strength tensor it is
casy to show that the left-hand sides in (11.109) are the divergence of the
field-strength tensor. Thus (11.109) takes the covariant form

OFy _ 4 (11.110)
oz, ¢ * .
Similarly the two homogencous Maxwell’s equations,

V-B =0, VXE+1%}=0 (11.111)
c
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can be shown to reduce to the four equations:
oF 0F;, | OF,;

uv

oz, 0Oz, Oz

B

0 (11.112)

where 4, g, v are any three of the integers 1, 2, 3, 4. Each termin (11.112)
transforms like a 4-tensor of the third rank so that the equation is covariant
in form, as required.

11.10 Transformation of the Electromagnetic Fields

Since the fields E and B are elements of the field-strength tensor F,,,
their transformation properties can be found from

Fy, = a,a,.F;, (11.113)

With transformation (11.75) from a system K to K’ moving with velocity
v along the x; axis, (11.113) gives the transformed fields:

E\" = y(E, — BBy B, = y(B; + BE,)
E) = y(E; + fB) B, = y(B, — BE) (11.114)
Ea, == E3 le —_ B3

The inverse transformation can be obtained from (11.114) by the inter-
change of primed and unprimed quantities and § — —p. For a general
Lorentz transformation from K to a system K' moving with velocity v
relative to K, the transformation of the fields is evidently

En' = E, Bn' = B, WL
v v

El’='y(El+—xB) Bl’=y(BJ_——xE)J
c c

Here || and ) mean parallel and perpendicular to the velocity v. Transfor-
mation (11.115) shows that E and B have no independent existence. A
purely electric or magnetic field in one coordinate system will appear as a
mixture of electric and magnetic fields in another coordinate frame. Of
course certain restrictions apply (see Problem 11.10) so that, for example,
a purely electrostatic field in one coordinate system cannot be transformed
into a purely magnetostatic field in another. But the fields are completely
interrelated, and one should properly speak of the electromagnetic field
F,,, rather than E or B separately.

As an example of the transformation of the electromagnetic fields we
consider the fields seen by an observer in the system X when a point charge
g moves by in a straight-line path with a velocity v. The charge is at rest
in the system K’, and the transformation of the fields is given by the inverse

(11.115)
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x1

Xy
P
-
b
O v x3’
Fig. 1113 Particle of charge ¢ 0 7 %3

moving at constant velocity v
passes an observation point P
at impact parameter b. x2

xg’

of (11.114) or (11.115). We suppose that the charge moves in the positive
x, direction and that its closest distance of approach to the observer is &.
Figure 11.13 shows a suitably chosen set of axes. The observer is at the
point P. At¢ = ¢’ = 0 the origins of the two coordinate systems coincide
and the charge ¢ is at its closest distance to the observer. In the frame K’
the observer’s point P, where the fields are to be evaluated, has coordinates
x =b, z =0, & = —uvt’, and is a distance ' = Vb + (v1')? away
from g. We will need to express r’ in terms of the coordinates of K. The
only coordinate needing transformation is the time ¢ = y[t — (v/cH,;] =
yt, since z; = O for the point P in the frame K. In the rest frame K’ of the
charge the electric and magnetic fields are

L A
r r
B/ =0, By=0, BS=0

In terms of the coordinates of K the nonvanishing field components are

(11.116)

: gb : qyvt
E/ = . E, = — 11.117
1 (5 + yzvztz)% 3 (b + yzv2t2)% ( )
Then, using the inverse of (11.114), we find the transformed fields in the
system K:
' vgb
E, =yE/ = — 1
1 ! (bz + y202t2)4
, qyvt (11.118)
E = E = = e
3 3 (b2 + y2v2l2)/§
B, = ypE,' = BE,
with the other components vanishing.
Fields (11.118) exhibit interesting behavior when the velocity of the
charge approaches that of light. First of all there is observed a magnetic
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induction in the z, direction. This magnetic field becomes almost equal to
the transverse electric field Ey as § — 1. Even at nonrelativistic velocities
where y ~ 1, this magnetic induction is equivalent to
gqv xr
B~=
¢ r

(11.119)

which is just the Ampére-Biot-Savart expression for the magnetic field of
a moving charge. This can obviously be obtained directly from the
inverse of (11.115). At high speeds when y > 1 we see that the peak
transverse electric field E, (t = 0) becomes equal to y times its nonrelati-
vistic value. In the same limit, however, the duration of appreciable field
strengths at the point P is decreased. A measure of the time interval over
which the fields are appreciable is evidently

At ~2L (11.120)

v

As y increases, the peak fields increase in proportion, but their duration
goes in inverse proportion. The time integral of the fields times v is
independent of velocity. Figure 11.14 shows this behavior of the transverse
electric and magnetic fields and the longitudinal electric field. For §— 1
the observer at P sees nearly equal transverse and mutually perpendicular
electric and magnetic fields. These are indistinguishable from the fields
of a pulse of plane polarized radiation propagating in the z; direction.

Fig. 11.14 Fields due to a uniformly moving, charged particle as a function of time.
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The extra longitudinal electric field varies rapidly from positive to
negative and has zero time integral. If the observer’s detecting apparatus
has any significant inertia, it will not respond to this longitudinal field.
Consequently for practical purposes he will sce only the transverse fields.
This equivalence of the fields of a relativistic charged particle and those of
a pulse of electromagnetic radiation will be exploited later in Chapter 15.
That a plane electromagnetic wave in one coordinate frame X will also
appear as a plane wave in another coordinate frame K’ moving with
constant velocity relative to X follows from the invariant form of the wave
equation under Lorentz transformations. Thus in the frame K a plane

wave is represented by
Fo(X, 1) = f e x (11.121)

where f,,, are appropriate constant coefficients, and k and o are the wave
vector and frequency of the wave. In the coordinates system K’ the plane
will be

Fi(x, 1) = fre™ %" (11.122)

where the f,, are again constant coeflicients, and k' and w’ are the wave
vector and frequency as seen in K'. According to (11.113), the two sets of
fields are related by

T (11.123)

In order that (11.123) be true at all points in space-time the phase factors
on both sides must be equal:

kX' —o't=k«x — ot (11.129)

This invariance of the phase means that k and «» must form the space and
time parts of a 4-vector k,:
iw
k, = (k, —) (11.125)
c
Then the invariance of phase becomes the obvious invariance of a scalar

product (k * z) of two 4-vectors. The relativistic formulas for the Doppler
shift follow immediately from (11.125), as was shown in Section 11.4.

11.11 Covariance of the Force Equation and the Conservation Laws

In Section 11.9 the covariance of electrodynamics was discussed from
the point of view of charge and current densities and the resulting fields
and potentials. We know that the sources of charge and current are
ultimately charged particles which can move under the action of fields.
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Consequently to complete our discussion we must consider the covariant
formulation of the Lorentz force equation and the conservation laws of
momentum and energy.

The Lorentz force equation can be written as a force per unit volume
(representing the rate of change of mechanical momentum of the sources
per unit volume):

f=pE + lJ x B (11.126)
¢

where J and p are the current and charge densities. Writing out a single
component of f, we find

1 1
h=pE + ;(1233 — J3By) = ;(F12J2 + Figls + FiJy)  (11.127)

where we have used definitions (11.98) and (11.108). The other components
of f yield similar results, showing that (11.126) can be written as

fo=trFo,  k=1,23 (11.128)
C

The right-hand side of (11.128) is evidently the space components of a

4-vector. Hence f must be the space part of a 4-vector f, = (f, ié),
where: ¢

fi=tr, (11.129)
(4

To see the meaning of the fourth component of the force-density 4-vector
we write out

c 1
Jo= _if4 = _i(F41J1 + FipJy + Fygly) = E+J (11.130)

But (E - J) is just the rate at which the field does work on the sources per
unit volume, or the rate of change of mechanical energy of the sources per
unit volume. Thus we see that the covariant form (11.129) of the Lorentz
force equation gives the rate of change of mechanical momentum per unit
volume as its space part, and the rate of change of mechanical energy per
unit volume as its time part. Alternatively, it may be viewed as giving the
space and time derivatives of something of the dimensions of work per
unit volume.

The conservation laws for mechanical plus electromagnetic energy and
momentum derived in Chapter 6 can be presented in covariant form as
the space and time components of a single 4-vector equation. If the in-
homogeneous Maxwell’s equations (11.110) are used to eliminate J, in
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(11.129), the force density becomes
s oF,,

f/t = Ty

11.131
oz, ( )
The right-hand side of (11.131) can be written as the divergence of a tensor
of the second rank. We define the symmetric tensor T, called the
electromagnetic stress-energy-momentum tensor,

Tﬂv = —4‘.1—-|:FulFﬁ.v + %6qulaFla.J (11132)
i
It will be left to the problems (Problem 11.12) to show that by means of
the homogeneous Maxwell’s equations and (11.132) force equation (11.131)
can be written in the form:

Ol (11.133)
ox

The tensor T,, can be written out explicitly in terms of the fields using
(11.132):

Ju=

v

Ty T Tis —icgy
Ty Ty Ty —icg,

T,) = . 11.134
( ”) Ty Ty Ty —1Cgs ( )

—icgy —icg, —icgy u

where T, is the symmetric Maxwell’s stress tensor defined on page 194,
g is the electromagnetic momentum density,

1 1
=—ExB=—8
: 4nc c?

and u is the energy density, (11.135)
u= 1 (E* + BY
87 )
From definition (6.102) of the spatial parts of 7, [or from (11.132)], we
see that the stress-energy-momentum tensor has a vanishing trace:

ST, =0 (11.136)
u

The conservation laws of momentum and energy are merely the three-
dimensional integrals of the force equation (11.133). To see this we write
out a typical spatial-component equation:

_ Ty _ 0Ty | 0T _
fk-—ax“ax._*_ N

v 3

(V-T), — %ﬂ (11.137)

oz,
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If we identify the spatial integral of f, as the rate of change of the kth
component of mechanical momentum P,, then the integral of (11.137) can
be written

~

d — >
—(P+G)=fV-Td3x=§>n-Tda (11.138)
dt v S

where G, is the kth component of total electromagnetic momentum. This
is the momentum-conservation law already obtained in Chapter 6.
Similarly the fourth component of (11.133) can be written

¢ _¢0Ty  ¢T _
i Oz,

fo

I

=
I
o
|

—v.s- (11.139)
ot

With the volume integral of f identified as the rate of change of total
mechanical energy T, the conservation of energy law is

E(T+U)=-fV-Sd3x=—jgn-Sda (11.140)
dt 14 s

where U is the total electromagnetic energy in the volume V.
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PROBLEMS

11.1

11.2

11.3

A possible clock is shown in the figure. It consists of a flashtube F and a
photocell P shielded so that each views only the mirror M, located a
distance d away, and mounted rigidly with respect to the flashtube-photo-
cell assembly. The electronic innards of the bex are such that, when the
photocell responds to a light flash from the mirror, the flashtube is
triggered with a negligible delay and emits a short flash towards the
mirror. The clock thus “ticks™ once every (2d/c) seconds when at rest.

i

(@) Suppose that the clock moves with a uniform velocity v, perpen-
dicular to the line from PF to M, relative to an observer. Using the
second postulate of relativity, show by explicit geometrical or algebraic
construction that the observer sces the relativistic time dilatation as the
clock moves by.

(h) Suppose that the clock moves with a velocity v parallel to the line
from PF to M. Verify that here, too, the clock is observed to tick more
slowly, by the same time dilatation factor.

(a) Show explicitly that two successive Lorentz transformations in the
same direction commute and that they are equivalent to a single Lorentz
transformation with a velocity

vy + 0y

" =1 + (vy09/c?)

This is an alternative way to derive the parallel-velocity addition law.

(b) Show explicitly that two successive Lorentz transformations at right
angles (v; in the x direction, v, in the y direction) do not commute. Show
further that in whatever order they are applied the result is not the same
as a single transformation with v = iv; + jv,. Give one or more simple
reasons why this result is necessary within the framework of special
relativity.

(@) Find the form of the wave equation in system X if it has its standard
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11.4

11.5

11.6

11.7

Classical Electrodynamics

form in system K’ and the two coordinate systems are related by the
Galilean transformation @” =2 — vi, t' = ¢.

(b) Show explicitly that the form of the wave equation is the same in

system K as in K’ if the coordinates are related by the Lorentz trans-
formation z* = y(x — vt), ¢’ = [t — (vz/c?)].
A coordinate system K’ moves with a velocity v relative to another system
K. In K’ a particle has a velocity w and an acceleration a’. Find the
Lorentz transformation law for accelerations, and show that in the system
K the components of acceleration parallel and perpendicular to v are

2
(1_1)_
c? , LV oy
al=—-‘-:;,—5(81 +E§x(a xu))
(1+ )
C2

Assume that a rocket ship leaves the earth in the year 2000. One of a set
of twins born in 1980 remains on earth; the other rides in the rocket.
The rocket ship is so constructed that it has an acceleration g in its own
rest frame (this makes the occupants feel at home). It accelerates in a
straight-line path for 5 years (by its own clocks), decelerates at the same
rate for 5 more years, turns around, accelerates for 5 years, decelerates for
5 years, and lands on earth. The twin in the rocket is 40 years old.

(a) What year is it on earth?

(b) How far away from the earth did the rocket ship travel?

In the reference frame K two very evenly matched sprinters are lined up a
distance d apart on the y axis for a race parallel to the x axis. Two
starters, one beside each man, will fire their starting pistols at slightly
different times, giving a handicap to the better of the two runners. The
time difference in K'is T.

(a) For what range of time differences will there be a reference frame K*
in which there is no handicap, and for what range of time differences is
there a frame K’ in which there is a true (not apparent) handicap?

(b) Determine explicitly the Lorentz transformation to the frame K’
appropriate for each of the two possibilities in (a), finding the velocity of
K’ relative to K and the space-time positions of each sprinter in K’.

Using the four-dimensional form of Green’s theorem, solve the inhomo-
geneous wave equations
—4n
04, = ——J,

(a) Show that for a localized charge-current distribution the 4-vector

potential is
1 [J.(8)

A fx) = — |2 g4

@ =] R "

2
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11.8

119

11.10

11,11

where R? = (x —§&) - (z —&), ® means (2,, ©g, %3, %), and d*¢ = d&, dt, dt, d&,.
(b) From the definitions of the field strengths F,, show that

_ 2 {U xR,
Fur =2 _7F1ﬂ§

where (/ x R),, =J,R, —J,R,.

The three-dimensional formulation of the radiation problem leads to the
retarded solution

AA&ﬂ=%ﬁMEQ

r

a3
¥ =t—(rfe)

where r = [x — E[. Show the connection between this retarded solution
and the solution of Problem 11.7 by explicitly performing the integration
over d§,.

A classical point magnetic moment [ at rest has a vector potential

and no scalar potential. Show that, if the magnetic moment moves with a
velocity v(v < ¢), there is an electric dipole moment p associated with the
magnetic moment, where

\4
P=-xu
[

What can you say if v is not small in magnitude compared to ¢? Show
that the interaction energy between the moving dipole and fields E and B
is the same as would be obtained by calculating the magnetic field in the
rest frame of the magnetic moment.

(a) Show that (B* — E?) is an invariant quantity under Lorentz trans-
formations. What is its form in four-dimensional notation?
(b) The symbol ¢,,,,, is defined to have the properties

0 if any two indices are equal
€
Auvs 41 for an even (odd) permutation of indices

€100 1S @ completely antisymmetric unit tensor of the fourth rank (actually
a pseudotensor under spatial inversion). Prove that e;,,.F;,F,, (sum-
mation convention implied) is a Lorentz invariant, and find its form in
terms of E and B.

In a certain reference frame a static, uniform, electric field E, is parallel to
the x axis, and a static, uniform, magnetic induction By = 2E, lies in the
x-y plane, making an angle 6 with the x axis. Determine the relative
velocity of a reference frame in which the electric and magnetic fields are
parallel. What are the fields in that frame for 6 <1 and 8 — (=/2)?
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11.12 Show that the force equation f,, = (1/c)F,,.J, can be written as

oT,
= H
fu =2,

where

1
T,uv = E[F,uiFiv + % 6;4vFlch/la]

11.13 A pulse of electromagnetic radiation of finite spatial extent exists in charge-
and current-free space.
(a) By means of the divergence theorem in four dimensions, prove that
the roral electromagnetic momentum and energy transform like a 4-vector.
(b) Show that for a plane wave this 4-vector has zero “length,” but
that for other possible field configurations (e.g., spherically diverging wave)
this is not true.



12

Relativistic-Particle
Kinematics and Dynamics

In Chapter 11 the special theory of relativity was developed with
particular emphasis on the electromagnetic fields and the covariance of
the equations of electrodynamics. Only in Section 11.11 was there a
mention of the mechanical origin of the sources of charge and current
density. The emphasis on electromagnetic fields is fully justified in the
presentation of the first aspects of relativity, since it was the behavior of
light which provided the puzzling phenomena that were understood in
terms of the special theory of relativity. Furthermore, a large class of
problems can be handled without inquiry into the detailed mechanical
behavior of the sources of charge and current. Nevertheless, problems
which emphasize the fields rather than the sources form only a part of
electrodynamic phenomena. There is the converse type of problem in
which we are interested in the behavior of charged particles under the
action of applied electromagnetic fields. The particles represent charge
and current densities, of course, and so act as sources of new fields. But
for most applications these fields can be neglected or taken into account in
an approximate way. In the present chapter we wish to explore the motion
of relativistic particles, first their kinematics and then their dynamics in
external fields. Discussion of the difficult problem of charged particles
acting as the sources of fields and being acted on by those same fields will
be deferred to Chapter 17.

12.1 Momentum and Energy of a Particle
In nonrelativistic mechanics a particle of mass m and velocity v has a

momentum p = mv and a kinetic encrgy T = 3m®. Newton’s equation
39
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of motion relates the time rate of change of momentum to the applied
force. For a charged particle the force is the Lorentz force. Since we have
discussed the Lorentz transformation properties of the Lorentz force density
in Section 11.11, we can immediately deduce the behavior of a charged
particle’s momentum under Lorentz transformations. For neutral particles
with no detectable electromagnetic interactions it is clearly impossible to
obtain their relativistic transformation properties in this way, but there
is ample experimental evidence that all particles behave kinematically in
the same way, whether charged or neutral.

A charged particle can be thought of as a very localized distribution of
charge and mass. To find the force acting on such a particle we integrate
the Lorentz force density f, (11.129) over the volume of the charge. If the
total charge is e and the velocity of the particle is v, then the volume
integral of (11.129) is

f f, d% = ‘-; F,u, (12.1)

where v, = (v, ic), and F,, is interpreted as the average field acting on the
particle. The left-hand side of (12.1) is now to be equated to the time rate
of change of the momentum and energy of the particle, just as in Section
11.11. Thus

d

% = f £ d (12.2)
where we have written p, as the kth component of the particle’s momentum
and p, = iE[c as proportional to the particle’s energy. That p,, is indeed
a 4-vector follows immediately from (12.2). If we integrate both sides with
respect to time, then the left-hand side becomes the momentum or energy
of the particle while the right-hand side is the four-dimensional integral
of f,. Since d*x is a Lorentz invariant quantity, it follows that p, must
have the same transformation properties as f,. Therefore the momentum
p and the energy E of a particle form a 4-vector p,:

Pu= (p, fi—s) (12.3)

The transformation of momentum and energy from one Lorentz frame K
to another K’ moving with a velocity v parallel to the z axis is

pp=p'  P=py ‘
cygE) (12.4)
P =y\p +F— J '

E = y(E' + Bcpy’)
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where f=uvfc and y = (1 — 5~ %. The inverse transformation is
obtained by changing § — — f and interchanging the primed and unprimed
variables.

The length of the 4-vector p, is a Lorentz invariant quantity which is
characteristic of the particle:

p-p=0"r)=—- (12.5)

In the rest frame of the particle (p’ = 0) the scalar product (12.5) gives the
energy of the particle at rest:
E'=12 (12.6)

To determine A we consider the Lorentz transformation (12.4) of p, from
the rest frame of the particle to the frame K in which the particle is moving
in the z direction with a velocity v. Then the momentum and energy are

p= —%1 = 7’('}2)" 12.7)
E =y

From the nonrelativistic expression for momentum p = mv we find that
the invariant constant 2 = mc2. The nonrelativistic limit of the energy is

E = ymc*~ mc* + tmo? + . .. (12.8)

This shows that E is the total energy of the particle, consisting of two parts:
the rest energy (mc?) and the kinetic energy. Even for a relativistic particle
we can speak of the kinetic energy T, defined as the difference between the
total and the rest energies:

T = E — mc?® = (y — )mc? (12.9)

In summary, a free particle with mass m moving with a velocity v in a

reference frame K has a momentum and energy in that frame:
p = ymy
(12.10)
E = ymc?

From (12.5) it is evident that the energy E can be expressed in terms of the
momentum as
E = (c2p? + mch)t (12.11)

The velocity of the particle can likewise be expressed in terms of its
momentum and energy:

cp
V= — 12.12
E ( )
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In dealing with relativistic-particle kinematics it is convenient to adopt
a consistent, simple notation and set of units in which to express momenta
and energies. In the formulas above we see that the velocity of light appears
often. To suppress various powers of ¢ and so simplify the notation we
will adopt the convention that all momenta, energies, and masses will be
measured in energy units, while velocities are measured in units of the
velocity of light. All powers of ¢ will be suppressed. Consequently in
what follows, the symbols

P p
stand for E (12.13)
m mc?
v vfe

As energy units, the ev (electron volt), the Mev (million electron volt), and
the Bev (10° ev) are convenient. One electron volt is the energy gained by
a particle with electronic charge when it falls through a potential difference
of one volt (1 ev = 1.602 x 102 erg).

12.2 Kinematics of Decay Products of an Unstable Particle

As a first illustration of relativistic kinematics which follow immediately
from the 4-vector character of the momentum and energy of particles, we
consider the two-body decay of an unstable particle at rest. Such decay
processes are common among the unstable particles. Some examples are
the following.

1. Charged pi meson decays into a mu meson and a neutrino with a
lifetime r = 2.6 x 1078 sec:

T+

The pi-meson rest energy is M = 139.6 Mev, while that of the mu meson
is m, = 105.7 Mev. The neutrino has zero rest mass, m, = 0. There is,
therefore, an energy release of 33.9 Mev in pi-meson decay.

2. Charged K meson sometimes decays into two pi mesons with a
lifetime = = 1.2 x 10~%sec:

KE > ag* 4 70
The charged K meson has a rest energy M = 494 Mev, while the two pi

mesons have rest energies, m_, = 139.6 Mev, my; = 135.0 Mev. Thus the
energy release is 219 Mev.
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3. Lambda hyperon decays into a neutron or a proton and a pi meson
with a lifetime 7 = 2.9 x 10710 sec:
+ 7
AP

n - o

The rest energy of the lambda hyperon is M = 1115 Mev; that of the
proton m, = 938.5 Mev, and of the neutron m, = 939.8 Mev. With the
pi-meson masses given above, we find that the energy release in Jambda
decay is 37 Mev in the charged mode and 40 Mev in the neutral mode.
The transformation of a system of mass M at rest into two particles of
mass m; and m,
M —m + my (12.14)

can occur if the initial mass is greater than the sum of the final masses.
We define the mass excess AM:

AM = M — my — m, (12.15)

The sum of the kinetic energies of the two particles must be equal to AM.
Since the initial system had zero momentum, the two particles must have
equal and opposite momenta, p, = —p, = p. From (12.11) the conser-
vation of energy can be written

VPR mE VRt mE=M (12.16)

From this equation it is a straightforward matter to find the magnitude of
the momentum p and the individual particle energies, F, and E,.

Rather than solve (12.16) we wish to obtain our answers by illustrating
a useful technique which exploits the Lorentz invariance of the scalar
product of two 4-vectors. The conservation of energy and momentum in
the two-body decay can be written as a 4-vector equation:

where the 4-vector subscript 4 on each symbol has been suppressed. The
squares of the 4-vector momenta are the invariants:

(P-P) = —M? (prp) = —mp, (pa- pa) = —mg® (12.18)

In (12.18) we have written the squares of the 4-vectors as self-scalar
products in order to distinguish the square of a vectorial quantity as a
three-space self-scalar product (e.g., p2 = p-p). Using (12.17), we form
the square of the 4-vector p,:

P2 p) = (P —py) (P —py)

(12.19)
or —m?2 = —M?% — m?— 2P p)
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The scalar product (P - p;) is Lorentz invariant. In the frame in which the
system M is at rest its space part vanishes, and it has the value:

(P p) = —ME, (12.20)
Therefore the total energy of the particle with mass m, is
_ M?® 4+ m? — my?

E
! oM

(12.21)

Similarly .

M2+ mpt — m)?
2M

Often it is more convenient to have expressions for the kinetic energies
than for the total energies. Using (12.15), it is easy to show that

E,

(12.22)

7;=AM( L i=1,2 (12.23)
where AM is the mass excess. The term AM/2M is a relativistic correction
absent in the nonrelativistic result. Although it may not have obvious
relativistic origin, a moment’s thought shows that, if AM/2M is appreciable
compared to unity, then necessarily the outgoing particles must be treated
relativistically.

As a numerical illustration we consider the first example listed above,
the decay of the pi meson. The mass excess is 33.9 Mev, while M = 139.6
Mev, m, = 105.7 Mev, m, = 0. Consequently the mu-meson and neutrino
kinetic energies are

T, = 339(1 1057 339

139.6  2(139.6)
T, = 33.9 — T, = 29.8 Mev

The unique energy of 4.1 Mev for the mu meson was the characteristic of
pi-meson decay at rest which led to its discovery in 1947 by Powell and
coworkers from observations in photographic emulsions.

The lambda particle was first observed in flight by its charged decay
products (p + #~) in cloud chambers. The charged particle tracks appear
as shown in Fig. 12.1. The particles’ initial momenta and identities can
be inferred from their ranges and their curvatures in a magnetic field (or
by other techniques, such as grain counting, in emulsions). The opening
angle 6 between the tracks provides the other datum required to determine
the unseen particle’s mass. Consider the square of (12.17):

(P-Py=(p; + py) - (p1 + p») (12.24)
This becomes R
—M? = _’7’112 - m22 + 2(P1 'Pz) (1225)

) = 4.1 Mev
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Fig. 12.1 Decay of lambda particle in flight.

If the scalar product (p, - py) is evaluated in the laboratory frame, we find
M?=m? + my® + 2E,E, — 2p,p, cos 0 (12.26)

where p; and p, are the magnitudes of the three-dimensional momenta.

In a three- or more body decay process the particles do not have unique
momenta, but are distributed in energy in some way. These energy spectra
have definite upper end points which can be determined from the kine-
matics in ways similar to those used here (see Problem 12.2).

12.3 Center of Momentum Transformation and Reaction Thresholds

A common problem in nuclear or high-energy physics is the collision
of two particles. Particle 1 (the projectile), with mass m;, momentum
p; = P, and energy E,, is incident on particle 2 (the target) of mass m, at
rest in the laboratory. The collision may involve elastic scattering,

D+@—-0 + @) (12.27)

where the primes mean that the directions of the particles are in general
different. The collision may, on the other hand, be a reaction

D+@-@+@+- (12.28)

in which two or more particles are produced, at least one of which is
different from the incident particles. Elastic scattering is always possible,
but reactions may or may not be energetically possible, depending on the
differences in masses of the particles and the incident energy. To determine
the energetics involved and to see the processes in their simplest form
kinematically it is convenient to transform to a coordinate frame K’,
where the projectile and the target have equal and oppositely directed
momenta. This frame is called the center of momentum system (sometimes,
loosely, the center of mass system) and is denoted by CM system. The
scattered particles (or reaction products in a two-body reaction) have
equal and opposite momenta making an angle 6’ with the initial momenta.
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Figure 12.2 shows the momentum vectors involved in elastic scattering or
a two-body reaction. For elastic scattering, |[p’| = |q’|, but for a reaction
the magnitude of " must be determined from conservation of total energy
(including rest energies) in the CM system.

To relate the incident energy and momentum in the laboratory to the
CM variables we can either make a direct Lorentz transformation to K’,
determining the transformation velocity v,, from the requirement that

P/’ = p' = —p,’, or we can use the invariance of scalar products. Adopting
the latter procedure, we consider the invariant scalar product
(pr+po) (Pt po) = (1 +p) - (o + p) (12.29)

The left-hand side is to be evaluated in the laboratory, where p, = 0, and
the right-hand side in the CM system, where p," + p,’ = 0. Consequently
we obtain

PP — (Ey + mp)? = —(E + E))? (12.30)

Using E;® = p® + m,2, we find that the total energy in the CM system is
g P gy y

E'=E/ + E = (m?® + my* + 2E;my)* (12.31)

The separate energies E;,’ and E,” can be found by considering scalar
products like

o+ p)=p' (@ +ps) (12.32)
This gives
El, _ E12 + m12 _ m22
Simi 2E (12.33)
imilarly " . 5
E2'=E + m, —mlJ
2F'

We note the similarity of these expressions to (12.21) and (12.22). The
magnitude of the momentum p’ can be obtained from (12.33):

, _ Map
= 2% 12.34
F= ( )

Fig. 12.2 Momentum vectors in the center
of momentum frame for elastic scattering or
a two-body reaction.

—q'
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The Lorentz transformation parameters vey and yy can be found by
noting that p," = —yeaaVoy = —p' and Ey' = yoym,. This gives

_p _E+m (12.35)

Veyy = ,
oM E, + m, You E

For nonrelativistic motion the kinetic energy in the CM system reduces
to

My

T = E — (m; + my) =~ ( )%mlvl2 (12.36)

my 4+ my

Similarly the CM velocity and the momentum in the CM system are

my ) p ( hy Mg )
Vour = | ———— vy, = |——=—)v 12.37
oM ( ) ) 1 p ) . 1 ( )

We see that we can recover the familiar nonrelativistic results from our
completely relativistic expressions. In the extreme of ultrarelativistic
motion (£, > m, and m,) the various quantities take on the approximate

limiting values: .
HiEng E' ~ (2E,my)’t
m
Doy =~ 1 — =2 12.38
o E, (12.38)
pl :J %El

The energy available in the CM system is seen to increase only as the square
root of the incident energy. This means that it is very difficult to obtain
ultrahigh energies in the CM frame when bombarding stationary targets.
The highest-energy accelerators presently existing (at CERN, near Geneva,
Switzerland, and at Brookhaven, N.Y.) produce protons of approximately
30 Bev. If the target is a stationary nucleon, this means about 7 Bev total
CM energy. To have 30 Bev available in the CM frame it would be
necessary to bombard a stationary nucleon with protons of over 470 Bev!
Considerable effort is being put into designs for so-called colliding or
clashing beam accelerators so that no energy is wasted in CM motion.

In a reaction the initial particles of mass m,; and m, are transformed into
two or more particles with masses m; (i = 3,4,...). Let AM be the
difference between the sum of masses finally and the sum of masses

initially: AM = (mg + my + -+ -) — (my + m,) (12.39)

If AM is positive, the reaction will not occur below a certain incident
kinetic energy Ty, called the threshold for the reaction. The criterion for
the reaction just to occur is that there be enough energy available in the

* Note that this definition of AM is the negative of the one used in Section 12.2 for
decay processes.
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CM system that the particles can be created with no kinetic energy. This
means that
(ENgy = my + my + AM (12.40)

Using (12.31), it is easy to show that the incident kinetic energy of the
projectile at threshold is
Ty = am(1 4+ ™ 4 M)

(12.41)
my  2my

The first two terms in the parentheses are the nonrelativistic terms, while
the last is a relativistic contribution. To illustrate the reaction-threshold
formula we consider the calculation of the threshold energy for photo-
production of neutral pi mesons from protons:

r+p—op+n

Since the photon has no rest mass, the mass difference is AM = m_, =
135.0 Mev, while the target mass is my, = m, = 938.5 Mev. Then the
threshold energy is

Tin = 135.0{1 + 135.0

2(938.5)

]=1%DODD)=1M7NRV

As another example consider the production of a proton-antiproton pair
in proton-proton collisions:
prpopt+ptp+p
The mass difference is AM = 2m, = 1.877 Bev. From (12.41) we find
Ty, =2m (1 +1+4 1) =6m, =562Bev

In this example we find a factor-of-3 increase over the actual mass
difference, whereas in the photoproduction example the increase was only
7.2 per cent. Other threshold calculations are left to Problem 12.1.

12.4 Transformation of Scattering or Reaction Momenta and Energies
from CM to Laboratory System

In Fig. 12.2 the various CM momenta for a two-body collision are
shown. The initial momenta and energies (p;’ = — p,’ = p', E;’, Ey’) have
already been calculated, (12.33) and (12.34). The final CM momenta and
energies (p;’ = —ps = q’, E5, E{') can be calculated similarly. Since
energy and momentum are conserved, the 4-vector momenta satisfy

Pt e =ps +pd - (12.42)
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Then it is easy to show that the energies of the outgoing particles are

2 2 2
=E, +m3 - My

Es 2E'
0 0 9 (12.43)
. E* 4 my® — my
E)/ =
2E’

where E’ is given by (12.31). The obvious symmetry with (12.33) should
be noted. The CM momentum of the outgoing particles is

- (- (o5l e

An alternative form of this result is

’

q:

| B

14
. %[AEl(AEI + M)} (12.45)

My

where AE, is the incident projectile’s energy in the laboratory above the
threshold energy (12.41):
AE, =T, — T, (12.46)

For elastic scattering where mg = m,, m, = m,, (12.45) obviously reduces
to (12.34).

Since the scattering or reaction is actually observed in the laboratory, it
is necessary to transform back from the CM frame to the laboratory.
Figure 12.3 shows the initial momentum p and the final momenta p; and p,
in the laboratory. The CM momenta in Fig. 12.2 have been thrown
forward by the Lorentz transformation. We can express the laboratory
energy E;in terms of CM quantities by the Lorentz transformation vy,
using (12.35) and (12.4). If 6" is the CM angle of py’ with respect to the
incident direction, we find

E3 = yom(Es" + veng' cos 07) (12.47)
P3
03
m3
mi Ld emg _——
m4 01

Fig. 12.3 Momentum vectors
in laboratory for a two-body
“process.
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Then an explicit expression is

2 2
Ey = E + mz)(l + 'E—E—z—m—“‘)

- (g (g o cne

where E’is given by (12.31). To obtain E, we merely interchange m, and
m, and change & into = — 6’ (cos 8’ — —cos 8').
The relation between angles 6’ and 6, can be obtained from the expres-
sion e
tan 6, = 231 — q'sin 0 (12.49)
Pa You(q' cos 0" + vy Ey)
Therefore we find

E'sin 0’

tan 0, = (12.50)
(E; + my)cos 0 + )
where N 9
147 =M
_ UCME3’ _ p ) E12
R T e | =l
E’ . FE

(12.51)

We note that « is the ratio of the CM velocity to the velocity of particle 3
in the CM system. Just above threshold, « will be large compared to unity.
This means that, as 6’ ranges over all values from 0 — 7 in the CM system,
63 will be confined to some forward cone, 0 < 03 < 0,,.. Figure 12.4
shows the general behavior when o > 1. The laboratory angle 0, is double
valued if « > 1, with particles emitted forwards and backwards in the CM
system appearing at the same laboratory angle. The two types of particles
can be distinguished by their energies. From (12.48) it is evident that the
particles emitted forwards in the CM frame will be of higher energy than
those emitted backwards. For « << 1, it is evident that the denominator in
(12.50) can vanish for some 0’ >> (#/2), implying 0; = (7/2), and is
negative for large §'. This means that 0y varies over the full range
(0 < 6; < ) and is a single-valued function of ', Such a curve is shown
in Fig. 12.4. :

Although it is not difficult to relate 6’ and 6; through (12.50) and so
obtain E; as a function of 0, from (12.48), it is sometimes convenient to
have an explicit expression for this relationship. Using conservation of
energy and momentum in the laboratory,

Pt pPa=pst+ps (12.52)
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T |
63
sy - ]
2 a<l
fmax————— — ——— — =
a>l1
Fig. 12.4 Laboratory angle 0,
of particle 3 versus center of |
momentum angle 8 for « <1 % r P
and a > 1. o
it is a straightforward, although tedious, matter to obtain the result:
2 2 - 2
(E; + mz)(sz1 + + o -: et )
2 2 _
+pcosl, [(ngl + 0 + me 2 g m42)z — mgtmy® — p¥m,? sin? 03} 7
E. =
3 (E, + my)® — pEcos? B (12.53)

Only the values of (12.53) greater than mg have physical significance. Both
roots are allowed when « > 1in (12.50), but only one when a < 1, as can
be readily verified. To obtain E, we merely interchange m; and my and
replace 63 by 0,.

For elastic scattering with mz = my, m, = m,, the above relationships
simplify considerably. The scattering angle in the laboratory is given by
(12.50) with

(ﬁ E, + ml)
m

PR L LS W— (12.54)

my  (Ey + my)

In the nonrelativistic limit this reduces to the well-known result & = m,/m,.
The energy lost by the incident particle is AE = T, = E; — m,. From
(12.48) we can obtain AE in terms of the CM scattering angle:

AE = myp*(1 — cos 8")

= 12.55
2moE; + m? + my? ( )
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An alternative expression for AE in terms of the laboratory angle of recoil
6, can be found from (12.53):

_ 2mgp® cos?® 0,
2myE, + m® + my* + p?sin® 0,

(12.56)

For a head-on collision both expressions take on the maximum value

2
AEmax = 2msp (12.57)
2m,E; + m;® + my®
The nonrelativistic value of AE,,, is
4mym
AEmax =~ ——2— (dmv,® 12.58
max (ml + m2)2(u 11 ) ( )

showing that all the incident kinetic energy can be transferred in a head-on
collision if m; = m, (true relativistically as well).

An important example of energy transfer occurs in collisions between
incident charged particles and atomic electrons. These electrons can be
treated as essentially at rest. If the incident particle is not an electron,
m, > my. Then the maximum energy transfer can be written approxi-
mately as

2
AEma,x ~ 2m2 (i) = 2m2y2/32 (1259)
my
where y, f are characteristic of the incident particle. Equation (12.59) is
valid, provided the incident energy is not too large:

E, < (T—l) "y (12.60)
my/

For mu mesons this limit is 20 Bev; for protons it is nearly 2000 Bev. For

electron-electron collisions (m; = m, = m), the maximum energy transfer

is

AES . = (y — Dm (12.61)

12.5 Covariant Lorentz Force Equation; Lagrangian and Hamiltonian
for a Relativistic Charged Particle

In Section 12.1 we considered the Lorentz force equation as a method
of establishing the Lorentz transformation properties of the momentum
and energy of a particle, but we did not explicitly examine the equation as
a covariant equation of motion for a particle moving in external fields. We
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now want to establish that covariance and discuss the associated Lagran-
gian, canonical momenta, and Hamiltonian. From equations (12.2) and
and (11.129) we see that we can write the force equation in the form:
d 1
QPu _ 2 f F,J, d* (12.62)
dt ¢
where the volume integral is over the extent of the charge. If the particle’s
velocity is v and its total charge e, then

dp, e
—E = -F,u, 12.63
d ¢ " ¢ )
where v, = v, forv = k = 1, 2, 3 and vy, = ic. This is not yet a covariant
form for the equation, since v, is not a 4-vector, and dp /dt is not one
either. This deficiency can be remedied by writing a derivative with
respect to proper time 7 (11.62) rather than ¢. Since df = y dr, we obtain

pu _ ZF v, (12.64)

dr ¢
But now yv, = p,/m is a 4-vector (sometimes called the 4-velocity). Con-
sequently we arrive at the obviously covariant force equation for a particle:

—£ =—F,p, (12.65)

dr mc
This is the counterpart for a discrete particle of the Lorentz force-density
equation (11.129) for continuously distributed charge and current.
Having established its covariance, it is often simplest to revert to the
space-time forms:

dp _ e(E R B)

dt (12.66)
‘E =ev+E

dt

in any convenient reference frame. Equation (12.65) shows that, as long
as all the different quantities are transformed according to their separate
transformation laws, the noncovariant forms will be valid in any Lorentz
frame.

Although the force equation (12.65) or (12.66) is sufficient to describe
the general motion of a charged particle in external electromagnetic fields,
it is sometimes convenient to use the ideas and formalism of Lagrangian
and Hamiltonian mechanics. In order to see how to obtain an appropriate
Lagrangian for the Lorentz force equation, we start with a free, but
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relativistic, particle. Since the Lagrangian must be a function of velocities
and coordinates, we write the free-particle equation of motion as

4 (ymv) =90 (12.67)
dt

where y = [1 — (1¥/c?)] .. At the least sophisticated level we know that
the Lagrangian L must be chosen strategically so that the Euler-Lagrange
equations of motion,
( - = (12.68)
dt \9q,: qu
are the same as Newton’s equations of motion. Only a moment’s con-
sideration shows that a suitable Lagrangian for a free particle is

L o2\
L,= —mc (1 — C—z) (12.69)
Evidently this form yields (12.67) when substituted into (12.68).

To obtain the free-particle Lagrangian in a more elegant way we
consider Hamilton’s principle or the principle of least action. This
principle states that the motion of a mechanical system is such that in
going from one configuration g at time ¢, to another configuration b at
time #,, the action integral 4, defined as the time integral of the Lagrangian
along the path of the system,

b
A =f Ldt (12.70)

is an extremum (actually a minimum). By considering small variations of
the path taken and demanding 44 = 0, one obtains the Euler-Lagrange
equations of motion (12.68). We now appeal to the Lorentz invariance of
the action in order to determine the free-particle Lagrangian. That the
action is a Lorentz scalar follows the first postulate of relativity, since the
requirement that it be an extremum determines the mechanical equations
of motion. If we introduce the proper time through dt = y dr, the action
integral becomes:

A =fb(yL) dr (12.71)

Since proper time is Lorentz invariant, the condition that 4 be also
Lorentz invariant forces yL to be Lorentz invariant. This is a general
condition on the Lagrangian. For a free particle L, can be a function of
only the velocity of the particle (and perhaps its mass). The only Lorentz
invariant quantities involving the velocity are functions of the 4-vector
scalar product (1/m®)(p - p), where p,, is the 4-momentum of the particle.
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Since (p - p) = —m?®, we see that for a free particle yL, is a constant,
yL, = —4 (12.712)

Then the action is proportional to the integral of the proper time over the
path from the initial space-time point a to the final space-time point b.
This integral is Lorentz invariant, but depends on the path taken. For
purposes of calculation, consider a reference frame in which the particle
is initially at rest. From definition (11.62) of proper time it is clear that,
if the particle stays at rest in that frame, the integral over proper time will
be larger than if it moves with a nonzero velocity along its path. Con-
sequently we see that a straight world line joining the initial and final
points of the path gives the maximum integral over proper time, or, with
the negative sign in (12.72), a minimum for the action integral. Com-
parison with Newton’s equation for nonrelativistic motion shows that
A = mc?, yielding the free-particle Lagrangian (12.69).

The general requirement that yL be Lorentz invariant allows us to
determine the Lagrangian for a relativistic charged particle in external
clectromagnetic fields, provided we know something about the Lagrangian
(or equations of motion) for nonrelativistic motion in static fields. A
slowly moving charged particle is influenced predominantly by the electric
field which is derivable from the scalar potential ®. The potential energy
of interaction is ¥ = e®. Since the nonrelativistic Lagrangian is (T — V),
the interaction part L, of the relativistic Lagrangian must reduce in the
nonrelativistic limit to

Lint — Lint = —e® (12.73)

Our problem thus becomes that of finding a Lorentz invariant expression
for yL,,, which reduces to (12.73) for nonrelativistic velocities. Since @
is the fourth component of the 4-vector potential 4,, we anticipate that
yLs,, will involve the scalar product of A, with some 4-vector. The only
other 4-vectors available are the momentum and position vectors of the
particle. Since gamma times the Lagrangian must be translationally
invariant as well as Lorentz invariant, it cannot involve the coordinaies

explicitly. Hence the interaction Lagrangian must be*
L=~ (p-a) =22 _ o0 (12.74)

Yy me ¢

* Without appealing to the nonrelativistic limit this form of L; ., can be written down
by demanding that yL;,, be a Lorentz invariant which is (1) linear in the charge of the
particle, (2) linear in the electromagnetic potentials, (3) translationally invariant, and
(4) a function of no higher than the first time derivative of the particle coordinates. The

reader may consider the possiblity of an interaction Lagrangian satisfying these condi-
tions, but linear in the field strengths F,,, rather than the potentials 4,,.
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where the coefficient of the scalar product (p - A4) is chosen to yield (12.73)
in the limit v — 0.

The combination of (12.69) and (12.74) yields the complete relativistic
Lagrangian for a charged particle:

R

]—mczA/l_f—{—gv-A—e(D
c

L c?

(12.75)

where the upper (lower) linc gives L in 4-vector (explicit space-time) form.
Verification that (12.75) does indeed lead to the Lorentz force equation
will be left as an exercise for the reader. Use must be made of the con-
vective derivative [d/dt = (d/0t) + v . V] and the standard definitions of
the fields in terms of the potentials.

The canonical momentum P conjugate to the position coordinate x is
obtained by the definition,

P, = gl-‘ = ymo, + £ A; (12.76)
. C

1

Thus the conjugate momentum is

P=p+°A (12.77)
C N

~

where p = ymvis the momentum in the absence of fields. The Hamiltonian
H is a function of the coordinate x and its conjugate momentum P andisa
constant of the motion if the Lagrangian is not an explicit function of
time. The Hamiltonian is defined in terms of the Lagrangian as

H=P-v— L (12.78)

The velocity v must be eliminated from (12.78) in favor of P and x. From
(12.76) or (12.77) we find that

cP — eA
2 (12.79)
A/(P — 2) + m2c?
c

When this is substituted into (12.78) and into L (12.75), the Hamiltonian
takes on the form:

H =V(cP — eA? + m2ct 4+ e® (12.80)

Again the reader may verify that Hamilton’s equations of motion can be
combined to yield the Lorentz force equation. Equation (12.80) is an
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expression for the total energy W of the particle. It differs from the free-
particle energy by the addition of the potential energy e® and by the
replacement p — [P — (e/c)A]. These two modifications are actually only
one 4-vector change. This can be seen by transposing e® in (12.80) and
squaring both sides. Then

(cP — eA): — (W — D) = —(mc?)? (12.81)
This is just the 4-vector scalar product
¢ p) = —(moy (12.82)
where Py = (p, E) = |:(P — e;“), i (W — e(D)J (12.83)
¢ c/ ¢

We see that in some sense the total energy W is the fourth component of a
canonically conjugate 4-momentum of which (12.77) is the space part. An
alternative formulation with a relativistically invariant Lagrangian which
is a function of the 4-velocity u, = p,/m is discussed in Problem 12.5. There
the canonical 4-momentum arises naturally.

The Lagrangian and Hamiltonian formulation of the dynamics of a
charged particle has been outlined for several reasons. One is that the
concept of Lorentz invariance, coupled with other physical requirements,
was shown to be a powerful tool in the systematic construction of a
Lagrangian which yields dynamic equations of motion. Another is that
the Lagrangian is often a convenient starting point in discussing particle
dynamics. Finally, the concepts and ideas of conjugate variables, etc.,
are useful even when one proceeds to solve the force equation directly.

12,6 Lowest-Order Relativistic Corrections to the Lagrangian for
Interacting Charged Particles

In the previous section we discussed the general Lagrangian formalism
for a relativistic particle in external electromagnetic fields described by the
vector and scalar potentials, A and ®. The appropriate interaction
Lagrangian was given by (12.74). If we now consider the problem of a
Lagrangian description of the interaction of two or more charged particles
with each other, we see that it is possible only at nonrelativistic velocities.
The Lagrangian is supposed to be a function of the instantaneous velocities
and coordinates of all the particies. When the finite velocity of propa-
gation of electromagnetic fields is taken into account, this is no longer
possible, since the values of the potentials at one particle due to the other
particles depend on their state of motion at “retarded” times. Only when
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retardation effects can be neglected is a Lagrangian description of the
system of particles alone possible. In view of this one might think that a
Lagrangian could be formulated only in the static limit, i.e., to zeroth
order in (v/c). We will now show, however, that lowest-order relativistic
corrections can be included, giving an approximate Lagrangian for inter-
acting particles, correct to the order of (v/c)? inclusive.

It is sufficient to consider two interacting particles with charges ¢, and
45, masses m, and m,, and coordinates x, and x,. The relative separation
i8 r = x; — X,. The interaction Lagrangian in the static limit is just the
negative of the electrostatic potential energy,

L= _ 1o (12.84)
r

If attention is directed to the first particle, this can be viewed as the negative
of the product of ¢, and the scalar potential ®,, due to the second particle
at the position of the first. This is of the same form as (12.73). If we wish
to generalize beyond the static limit, we must, according to (12.74),
determine both @, and A,,, at least to some degree of approximation. In
general there will be relativistic corrections to both ®;, and A;,. But in
the Coulomb gauge, the scalar potential is given correctly to all orders in
v/c by the instantaneous Coulomb potential. Thus, if we calculate in that
gauge, the scalar-potential contribution ®y, is already known. All that
needs to be considered is the vector potential Aj,.

If only the lowest-order relativistic corrections are desired, retardation
effects can be neglected in computing A;,. The reason is that the vector
potential enters the Lagrangian (12.74) in the combination ¢,(v;/c) - Ass.
Since Ay, itself is of the order of v,/c, greater accuracy in calculating A,,
is unnecessary. Consequently, we have the magnetostatic expression,

1 3./
Ay~1L f J—t(—")d—fc (12.85)
c x; — x|

where J, is the transverse part of the current due to the second particle,
as discussed in Section 6.5. From equations (6.46)-(6.50) it is easy to see
that the transverse current is

J/(X') = gV, O(X' — Xp) — Z—2V’ (M) (12.86)
T

X" — X

When this is inserted in (12.85), the first term can be integrated immediately.
Thus

A=z G2 f 1 v(vz i fx — "32)) & (12.87)
cr dmcd |X' — x4 X" — Xl
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By changing variables to y = x" — x, and integrating by parts, the integral
can be put in the form,

A~ Gy f ey 1 s, (12.88)
cr  dmc v |y — 1|
The integral can now be done in a straightforward manner to yield
Ay~ q_z[vé — %vr(v2 : ')} (12.89)
cLr r
The differentiation of the second term leads to the final result
Ay~ q—z[vz + M} (12.90)
2¢cr r

With expression (12.90) for the vector potential due to the second
particle at the position of the first, the interaction Lagrangian for two
charged particles, including lowest-order relativistic effects, is

Lin, = 192 :__1 + -l_l:vl v, + ML_L)j“ (12.91)
r 2¢2 r’

This interaction form was first obtained by Darwin in 1920. It is of
importance in a quantum-mechanical discussion of relativistic corrections
in two-electron atoms. In the quantum-mechanical problem the velocity
vectors are replaced by their corresponding quantum-mechanical operators
(Dirac o’s). Then the interaction is known as the Breit interaction (1930).

12.7 Motion in a Uniform, Static, Magnetic Field

As a first important example of the dynamics of charged particles in
electromagnetic fields we consider the motion in a uniform, static,
magnetic induction B. The equations of motion (12.66) are

dE _

=0 12.92
5 (12.92)

-‘{2=gv x B,
dt ¢

Since the energy is constant in time, the magnitude of the velocity is
constant and 50 is y. Then the first equation can be written

¥ v xwy (12.93)

dt

where wy =B _«B (12.94)
ymce E
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is the gyration or precession frequency. The motion described by (12.93)
is a circular motion perpendicular to B and a uniform translation parallel
to B. The solution for the velocity is easily shown to be

(1) = v,€; + wgale, — ig)e "B (12.95)

where €; is a unit vector parallel to the field, € and €, are the other
orthogonal unit vectors, v, is the velocity component along the field, and
ais the gyration radius. The convention is that the real part of the equation
is to be taken. Then one can see that (12.95) represents a counterclockwise
rotation (for positive charge e) when viewed in the direction of B. Another
integration yields the displacement of the particle,

x(1) = Xo + vyte; + ia(e; — iex)e (12.96)

The path is a helix of radius a and pitch angle « = tan™* (v, /wga). The
magnitude of the gyration radius a depends on the magnetic induction B
and the transverse momentum p, of the particle. From (12.94) and (12.95)
it is evident that

cp, = eBa

This form is convenient for the determination of particle momenta. The
radius of curvature of the path of a charged particle in a known B allows
the determination of its momentum. For particles with charge the same
in magnitude as the electronic charge, the momentum can be written
numerically as

p, Mev/c) = 3.00 x 10~*Ba (gauss-cm) (12.97)

12.8 Motion in Combined, Uniform, Static Electric and Magnetic Fields

We now consider a charged particle moving in a combination of electric
and magnetic fields E and B, both uniform and static, but in general not
parallel. As an important special case, perpendicular fields will be treated
first. The force equation (12.66) shows that the particle’s energy is not
constant in time. Consequently we cannot obtain a simple equation for
the velocity, as was done for a static magnetic field. But an appropriate
Lorentz transformation simplifies the equations of motion. Consider a
Lorentz transformation to a coordinate frame K’ moving with a velocity
u with respect to the original frame. Then the Lorentz force equation for
the particle in X' is

dp’
ar'

v x B’)
c

= e(E’ -+
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where the primed variables are referred to the system K'. The fields E’
and B’ are given by relations (11.115) with v replaced by u, where jj and ¢
refer to the direction of u. Let us first suppose that |E| < |B]. If v is
now chosen perpendicular to the orthogonal vectors E and B,
ExB
u=c (_B2 ) (12.98)
we find the fields in K’ to be

E, =0, El’=y(E+l—le) =0 1[
C
> (12.99)

B, =0, BL/__“EB:(
4

In the frame K’ the only field acting is a static magnetic field B’ which
points in the same direction as B, but is weaker than B by a factor y~%.
Thus the motion in K’ is the same as that considered in the previous
section, namely a spiraling around the lines of force. As viewed from the
original coordinate system, this gyration is accompanied by a uniform
“drift” u perpendicular to E and B given by (12.98). This drift is sometimes
called the £ X B drift. It has already been considered for a conducting
fluid in another context in Section 10.3. The drift can be understood
qualitatively by noting that a particle which starts gyrating around B is
accelerated by the electric field, gains energy, and so moves in a path with
a larger radius for roughly half of its cycle. On the other half, the electric
field decelerates it, causing it to lose energy and so move in a tighter arc.
The combination of arcs produces a translation perpendicular to E and B
as shown in Fig. 12.5. The direction of drift is independent of the sign of
the charge of the particle.

The drift velocity u (12.98) has physical meaning only if it is less than
the velocity of light, i.e., only if |E| < |B|. If |E| > |B|, the electric field

Fig. 125 E X B drift of charged
particles in crossed fields. B
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is so strong that the particle is continually accelerated in the direction of E
and its average energy continues to increase with time. To see this we
consider a Lorentz transformation from the original frame to a system K”
moving with a velocity

, ExB
u =c LEZ—) (12.100)
relative to the first. In this frame the electric and magnetic fields are
2 p2\4
E”II — 0’ El” — i E s (E . B ) E
Y EF

(12.101)

B”/I — 0, B‘L” e /(B — u x E) —_ 0
¢

Thus in the system K” the particle is acted on by a purely electrostatic
field which causes hyperbolic motion with ever-increasing velocity (see
Problem 12.7).

The fact that a particle can move through crossed E and B fields with
the uniform velocity # = cE/B provides the possibility of selecting charged
particles according to velocity. If a beam of particles having a spread in
velocities is normally incident on a region containing uniform crossed
electric and magnetic fields, only those particles with velocities equal to
cE/B will travel without deflection. Suitable entrance and exit slits will
then allow only a very narrow band of velocities around cE/B to be
transmitted, the resolution depending on the geometry, the velocities
desired, and the field strengths. When combined with momentum
selectors, such as a deflecting magnet, these E X B velocity selectors can
separate a very pure and monoenergetic beam of particles of a definite
mass from a mixed beam of particles with different masses and momenta.
Large-scale devices of this sort are commonly used to provide experimental
beams of particles produced in very high-energy accelerators.

If E has a component parallel to B, the behavior of the particle cannot
be understood in such simple terms as above. The scalar product E- Bis a
Lorentz invariant quantity (see Problem 11.10), as is (B* — E?). When the
fields were perpendicular (E - B = 0), it was possible to find a Lorentz
frame where E = 0if |B| > |E|, or B = 0if |E| > [B|. In those coordinate
frames the motion was relatively simple. IfE - B £ 0, electric and magnetic
fields will exist simultaneously in all Lorentz frames, the angle between the
fields remaining acute or obtuse depending on its value in the original
coordinate frame. Consequently motion in combined fields must be
considered. When the fields are static and uniform, it is a straightforward
matter to obtain a solution for the motion in cartesian components. This
will be left for Problem 12.10.
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12.9 Particle Drifts in Nonuniform, Static Magnetic Fields

In astrophysical and thermonuclear applications it is of considerable
interest to know how particles behave in magnetic fields which vary in
space. Often the variations are gentle enough that a perturbation solution
to the motion, first given by Alfvén, is an adequate approximation.
“Gentle enough” generally means that the distance over which B changes
appreciably in magnitude or direction is large compared to the gyration
radius a of the particle. Then the lowest-order approximation to the
motion is a spiraling around the lines of force at a frequency given by the
local value of the magnetic induction. In the next approximaticn, slow
changes occur in the orbit which can be described as a drifting of the
guiding center.

The first type of spatial variation of the field to be considered is a
gradient perpendicular to the direction of B. Let the gradient at the point
of interest be in the direction of the unit vector n, with n- B = 0. Then,
to first order, the gyration frequency can be written

wi(x) = —B(x) ~ wo[l + 1 (83) n- x} (12.102)
ymc 0&
In (12.102) & is the coordinate in the direction n, and the expansion is
about the origin of coordinates where w;; = w,. Since the direction of Bis
unchanged, the motion parallel to B remains a uniform translation.
Consequently we consider only modifications in the transverse motion.
Writing v, = v, + v,, where v, is the uniform-field transverse velocity and
v, i5 a small correction term, we can substitute (12.102) into the force
equation
dv,

—L =v, xwpyx) (12.103)
dt

and, keeping only first-order terms, obtain the approximate result,
dv, [ 1 (aB) }
— ~ |v; + vy(n-x,) — X W 12.104
G e (52) [ (2104

From (12.95) and (12.96) it is easy to see that for a uniform field the
transverse velocity v, and coordinate x, are related by

Vo = —wy X (X) — X) ‘!
r (12.105)

0 — X) = — (00, % %)
[43)

0
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where X is the center of gyration of the unperturbed circular motion
(X = 0 here). If (w, x v,) is eliminated in (12.104) in favor of x,, we
obtain

d 1 (0B
d_th ~ [vl — _B_O(a_é)o w, % xo(n-xe):] X W, (12.106)

This shows that, apart from oscillatory terms, v, has a non zero average
value,

Vo= )= — (a—"‘f) @y X ((Xp),(n - X)) (12.107)
B, \0§/,

To determine the average value of (x,),(m - x,), it is necessary only to

observe that the rectangular components of (xo), oscillate sinusoidally

with peak amplitude @ and a phase difference of 90°. Hence only the

component of (x,), parallel to n contributes to the average, and

2
((Xg)y(m - %)) = ‘—;—n (12.108)

Thus the gradient drift velocity is given by

2

a®1 9B
2

1
B, 0&

Vg = (wy, xm) (12.109)

An alternative form, independent of coordinates, is

Yo a

wpa 2B?

(B x V,B) (12.110)

From (12.110) it is evident that, if the gradient of the field is such that a

vE Fig. 12.6 Drift of charged par-

ticles due to transverse gradient
B of magnetic field.
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Fig. 12.7 (@) Particle moving in helical path along lines of uniform, constant magnetic
induction. (46) Curvature of lines of magnetic induction will cause drift perpendicular
to the (», %) plane.

|VB/B| < 1, the drift velocity is small compared to the orbital velocity
(wga). The particle spirals rapidly while its center of rotation moves slowly
perpendicular to both B and VB. The sense of the drift for positive
particles is given by (12.110). For negatively charged particles the sign of
the drift velocity is opposite; the sign change comes from the definition
of wg. The gradient drift can be understood qualitatively from considera-
tion of the variation of gyration radius as the particle moves in and out of
regions of larger than average and smaller than average field strength.
Figure 12.6 shows this qualitative behavior for both signs of charge.

Another type of field variation which causes a drifting of the particle’s
guiding center is curvature of the lines of force. Consider the two-
dimensional field shown in Fig. 12.7. It is locally independent of z. On
the left-hand side of the figure is a constant, uniform magnetic induction
B,, parallel to the z axis. A particle spirals around the field lines with a
gyration radius ¢ and a velocity o za, while moving with a uniform velocity
v, along the lines of force. We wish to treat that motion as a zero-order
approximation to the motion of the particle in the field shown on the right-
hand side of the figure, where the lines of force are curved with a local
radius of curvature R which is large compared to a.

The first-order motion can be understood as follows. The particle tends
to spiral around a field line, but the field line curves off to the side. As far
as the motion of the guiding center is concerned, this is equivalent to a
centrifugal acceleration of magnitude » 2/R. This acceleration can be
viewed as arising from an effective electric field,

ym R

Eeff == —é— I-{—é Uy (12111)
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in addition to the magnetic induction B;,. From (12.98) we see that the
combined effective electric field and the magnetic induction cause a
curvature drift velocity,

Vo=~ c—v 12.112
It R2302 ( )
With the definition of wy = eB,y/ymc, the curvature drift can be written
2
vo:ﬂ_(M) (12.113)
(/()BR RBO

The direction of drift is specified by the vector product, in which R is the
radius vector from the effective center of curvature to the position of the
charge. The sign in (12.113) is appropriate for positive charges and is
independent of the sign of v. For negative particles the opposite sign
arises from wy.

A more straightforward, although pedestrian, derivation of (12.113) can
be given by solving the Lorentz force equation directly. If we use cylin-
drical coordinates (p, ¢, z) appropriate to Fig. 12,7b with origin at the center
of curvature, the magnetic induction has only a ¢ component, B; = B,.
Then the force equation can be easily shown to give the three equations,

p= P¢.2 = —wpgt
pdh + 264 =0 (12.114)
£ = wpp

If the zero-order trajectory is a helix with radius a small compared to the
radius of curvature R, then, to lowest order, ¢ ~ v, /R, while p ~ R. Thus
the first equation of (12.114) yields an approximate result for 2:

2
Ui

5~ —— 12.115
? wpR ( )
This is just the curvature drift given by (12.113).
For regions of space in which there are no currents the gradient drift
v (12.110) and the curvature drift v (12.113) can be combined into one
simple form. This follows from the fact that V x B = 0 implies

V,B R
—_—=—— 12.116
B 2 ( )
Evidently then the sum of v; and v is a general drift velocity,
| PP (R X B)
Vp = v v 12.117
D (UBR ( 1 + 2¥ 1 ) RB ( )
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where v, = wpais the transverse velocity of gyration. For singly charged
nonrelativistic particles in thermal equilibrium, the magnitude of the drift
velocity is

172 T(°K)

—_ (12.118)
R(m) B(gauss)

vplcm/sec) =

The particle drifts implied by (12.117) are troublesome in certain types
of thermonuclear machines designed to contain hot plasma. A possible
configuration is a toroidal tube with a strong axial field supplied by
solenoidal windings around the torus. With typical parameters of R =1
meter, B = 10° gauss, particles in a I-ev plasma (7' ~ 10*°K)) will have
drift velocities v, ~ 1.8 x 10% cm/sec. This means that they will drift out
to the walls in a small fraction of a second. For hotler plasmas the drift
rate is correspondingly greater. One way to prevent this first-order drift
in toroidal geometries is to twist the torus into a figure eight. Since the
particles generally make many circuits around the closed path before
drifting across the tube, they feel no net curvature or gradient of the field.
Consequently they experience no net drift, at least to first order in 1/R.
This method of eliminating drifts due to spatial variations of the magnetic
field is used in the Stellarator type of thermonuclear machine, in which
containment is attempted with a strong, externally produced, axial
magnetic field, rather than a pinch (see Sections 10.5-10.7).

12.10 Adiabatic Invariance of Flux through Orbit of Particle

The various motions discussed in the previous sections have been
perpendicular to the lines of magnetic force. These motions, caused by
electric fields or by the gradient or curvature of the magnetic field, arise
because of, the peculiarities of the magnetic-force term in the Lorentz force
equation. To complete our general survey of particle motion in magnetic
fields we must consider motion parallel to the lines of force. It turns out
that for slowly varying fields a powerful tool is the concept of adiabatic
invariants. In celestial mechanics and in the old quantum theory adiabatic
invariants were useful in discussing perturbations on the one hand, and in
deciding what quantities were to be quantized on the other. Our discussion
will resemble most closely the celestial mechanical problem, since we are
interested in the behavior of a charged particle in slowly varying fields
which can be viewed as small departures from the simple, uniform, static
field considered in Section 12.7.

The concept of adiabatic invariance is introduced by considering the
action integrals of a mechanical system. If g, and p; are the generalized
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canonical coordinates and momenta, then, for each coordinate which is
periodic, the action integral J, is defined by

Ji = § p; dg; (12.119)

The integration is over a complete cycle of the coordinate g,. For a given
mechanical system with specified initial conditions the action integrals J,
are constants. If now the properties of the system are changed in some way
(e.g., a change in spring constant or mass of some particle), the question
arises as to how the action integrals change. It can be proved* that, if
the change in property is slow compared to the relevant periods of motion
and is not related to the periods (such a change is called an adiabaric
change), the action integrals are invariant. This means that, if we have a
certain mechanical system in some state of motion and we make an
adiabatic change in some property so that after a long time we end up with
a different mechanical system, the final motion of that different system will
be such that the action integrals have the same values as in the initial
system. Clearly this provides a powerful tool in examining the effects of
small changes in properties.

For a charged particle in a uniform, static, magnetic induction B the
transverse motion is periodic. The action integral for this transverse
motion is

J = § P, -dl, (12.120)

where P is the transverse component of the canonical momentum (12.77)
and dl is a directed line element along the circular path of the particle.
From (12.77) we find that

J= 3€ ymy, - dl + £ §; A-dl (12.121)
c
Since v, is parallel to dl, we find
J = é; ymoga® do + & 45 A.dl (12.122)
¢

Applying Stokes’s theorem to the second integral and integrating over 6
in the first integral, we obtain

J = 2nymwga® + < f B-nda (12.123)
cJs

* See, for example, M. Born, The Mecharnics of the Atom, Bell, London (1927).
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Since the line element dlin (12.120) is in a counterclockwise sense relative
to B, the unit vector n is antiparallel to B. Hence the integral over the
circular orbit subtracts from the first term. This gives

J = ymwgra® = < (Bra?) (12.124)
4

making use of w; = eB[ymc. The quantity Bra®is the flux through the
particle’s orbit.

If the particle moves through regions where the magnetic field strength
varies slowly in space or time, the adiabatic invariance of J means that the
flux linked by the particle’s orbit remains constant. If B increases, the
radius a will decrease so that Bwa® remains unchanged. This constancy of
flux linked can be phrased in several ways involving the particle’s orbit
radius, its transverse momentum, its magnetic moment. These different
statements take the forms:

Ba®
p.*B are adiabatic invariants (12.125)

YH

where u = (ewpa®/2c) is the magnetic moment of the current loop of the
particle in orbit. If there are only static magnetic fields present, the speed
of the particle is constant and its total energy does not change. Then the
magnetic moment y is itself an adiabatic invariant. In time-varying fields
or with static electric fields, g is an adiabatic invariant only in the
nonrelativistic limit.

Let us now consider a simple situation in which a static magnetic field
B acts mainly in the z direction, but has a small positive gradient in that
direction. Figure 12.8 shows the general behavior of the lines of force. In
addition to the z component of field there is a small radial component due
to the curvature of the lines of force. For simplicity we assume cylindrical
symmetry. Suppose that a particle is spiraling around the z axis in an

Fig. 12.8
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orbit of small radius with a transverse velocity v, and a component of
velocity v, parallel to B at z = 0, where the axial field strength is B,. The
speed of the particle is constant so that at any position along the z axis

o2+ 0,2 = v’ (12.126)

where vy® = v,,® 4 v,,,% is the square of the speed at z = 0. If we assume
that the flux linked is a constant of the motion, then (12.125) allows us to

write 9

2
S (12.127)
B B,
where B is the axial magnetic induction. Then we find the parallel velocity
at any position along the z axis given by

vyl = v — vy,? Be) (12.128)
B,
Equation (12.128) for the velocity of the particle in the z direction is
equivalent to the first integral of Newton’s equation of motion for a
particle in a one-dimensional potential*

2
V() = dm = B(z)

B,
If B(2) increases enough, eventually the right-hand side of (12.128) will
vanish at some point z = z,. This means that the particle spirals in an
ever-tighter orbit along the lines of force, converting more and more
translational energy into energy of rotation, until its axial velocity vanishes.
Then it turns around, still spiraling in the same sense, and moves back in
the negative z direction. The particle is reflected by the magnetic field, as

is shown schematically in Fig. 12.9.

Equation (12.128) is a consequence of the assumption that p /B is
invariant. To show that at least to first order this invariance follows
directly from the Lorentz force equation, we consider an explicit solution
of the equations of motion. If the magnetic induction along the axis is
B(z), there will be a radial component of the field near the axis given by
the divergence equation as

By(p,?) = —ip Q%iz—) (12.129)
where p is the radius out from the axis. The z component of the force
equation is

2= = (—php) = —S i 2O

(12.130)
yme 29/

* Note, however, that our discussion is fully relativistic. The analogy with one-
dimensional nonrelativistic mechanics is only a formal one.
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Fig. 12.9 Reflection of charged
particle out of region of high field ] z=2p
strength.

where ¢ is the angular velocity around the z axis. This can be written,
correct to first order in the small variation of B(z), as

2
p e — U 9@ (12.131)
2B, 0=
where we have used p¢$ ~ —(a®wg)y = —(v,,%/wpe). Equation(12.131) has

as its first integral equation (12.128), showing that to first order in small
quantities the constancy of flux linking the orbit follows directly from the
equations of motion.

The adiabatic invariance of the flux linking an orbit is useful in discussing
particle motions in all types of spatially varying magnetic fields. The
simple example described above illustrates the principle of the “magnetic
mirror”: charged particles are reflected by regions of strong magnetic
field. This mirror property formed the basis of a theory of Fermi for the
acceleration of cosmic-ray particles to very high energies in interstellar
space by collisions with moving magnetic clouds. The mirror principle
can be applied to the containment of a hot plasma for thermonuclear
energy production. A magnetic bottle can be constructed with an axial
field produced by solenoidal windings over some region of space, and
additional coils at each end to provide a much higher field towards the
ends. The lines of force might appear as shown in Fig. 12.10. Particles
created or injected into the field in the central region will spiral along the
axis, but will be reflected by the magnetic mirrors at each end. If the
ratio of maximum field B,, in the mirror to the field Bin the central region
is very large, only particles with a very large component of velocity parallel
to the axis can penetrate through the ends. From (12.128) is it evident that
the criterion for trapping is

Dyjo

%
< (% — 1) (12.132)

U)o
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Fig, 12.10 Schematic diagram
of “mirror” machine for the
B, B B, containment of a hot plasma.

If the particles are injected into the apparatus, it is easy to satisfy require-
ment (12.132). Then the escape of particles is governed by the rate at
which they are scattered by residual gas atoms, etc., in such a way that
their velocity components violate (12.132).

Another area of application of these principles is to terrestrial and
stellar magnetic fields. The motion of charged particles in the magnetic
dipole fields of the sun or earth can be understood in terms of the adiabatic
invariant discussed here and the drift velocities of Section 12.9. Some
aspects of this topic are left to Problems 12.11 and 12.12 on the trapped
particles around the earth (the Van Allen belts).
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Another important application of relativistic charged-particle dynamics is to high-
energy accelerators. An introduction to the physics problems of this field will be found
in
Corben and Stehle, Chapter 17,
Livingston.

For a more complete and technical discussion, with references, consult
E. D. Courant and H. S. Snyder, Anrn. Phys., 3, 1 (1958).

PROBLEMS

12.1 Use the transformation to center of momentum coordinates to determine
the threshold kinetic encrgies in Mev for the following processes:

(a) pi-meson production in nucleon-nucleon collisions (m,/M == 0.15),

(b) pi-meson production in pi meson-nucleon collisions,

(¢) pi-meson pair production in nucleon-nucleon collisions,

(d) nucleon-pair production in electron-electron collisions.

12.2 If a system of mass M decays or transforms at rest into a number of
particles, the sum of whose masses is less than M by an amount AM,

(a) show that the maximum kinetic energy of the ith particle (mass m;) is

m;, AM
(TDmax = AMcz( - ]T; - m)

(b) determine the maximum kinetic energies in Mev and also the ratios
to AMc? of each of the particles in the following decays or transformations
of particles at rest:

uw-—>e+v+i
Kt >t + 7~ 4 ot
Kt et + 2% +»
KE —»ux +49 v
p+p—o2rt 42 +a°
p+p—>Kt4+K 43

12.3 A pi meson (mc? = 140 Mev) collides with a proton (m,c® = 938 Mev)
at rest to create a K meson (myc® = 494 Mev) and a lambda hyperon
(myc® = 1115 Mev). Use conservation of energy and momentum, plus
relativistic kinematics, to find

(@) the kinetic energy in Mev of the incident pi meson at threshold for
production of K mesons, and compare this with the @ value of the
reaction;

(b) the kinetic energy of the pi meson in Mev in order to create K
mesons at 90° in the laboratory;

(c) the kinetic energy of K mesons emerging at 0° in the laboratory
when the kinetic energy of the pi meson is 20 per cent greater than in (b);

(d) the kinetic energy of K mesons at 90° in the laboratory when the
incident pi meson has a kinetic energy of 1500 Mev.

12.4 1t is a well-established fact that Newton’s equation of motion

ma’ = eE’
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12.5

12.6

12.7

12.8

Classical Electrodynamics

holds for a small charged body of mass m and charge ¢ in a coordinate
system K’ where the body is momentarily at rest. Show that the Lorentz

force equation
dp v
Z=elE+-%xB
dt e( ¢ )

follows directly from the Lorentz transformation properties of accelera-
tions and electromagnetic fields.

An alternative approach to the Lagrangian formalism for a relativistic
charged particle is to treat the 4-vector of position z, and the 4-velocity
u, = (yv, iyc) as Lagrangian coordinates. Then the Euler-Lagrange
equations have the obviously covariant form,

d(aL)__a£=0

where L is a Lorentz invariant Lagrangian and r is the proper time.

(a) Show that

1 q
L = 5 Mty + P u,A,

gives the correct relativistic equations of motion for a particle interacting
with an external field described by the 4-vector potential A4,.

(b) Define the canonical momenta and write out the Hamiltonian in
both covariant and space-time form. The Hamiltonian is a Lorentz
invariant. What is its value?

(a) Show from Hamilton’s principle that Lagrangians which differ only
by a total time derivative of some function of the coordinates and time are
equivalent in the sense that they yield the same Euler-Lagrange equations
of motion.

(b) Show explicitly that the gauge transformation 4, — A, + (9A[0x,)
of the potentials in the charged-particle Lagrangian (12.75) merely
generates another equivalent Lagrangian.

A particle with mass m and charge e moves in a uniform, static, electric
field E,.

(@) Solve for the velocity and position of the particle as explicit functions
of time, assuming that the initial velocity v, was perpendicular to the
electric field.

(b) Eliminate the time to obtain the trajectory of the particle in space.

Discuss the shape of the path for short and long times (define “short”
and “‘long” times).
It is desired to make an E X B velocity selector with uniform, static,
crossed, electric and magnetic fields over a length L. If the entrance and
exit slit widths are Az, discuss the interval Au of velocities around the
mean value u = cE/B, which is transmitted by the device as a function of
the mass, the momentumn or energy of the incident particles, the field
strengths, the length of the selector, and any other relevant variables.
Neglect fringing effects at the ends. Base your discussion on the practical
facts that L ~ few meters, Epax ~ 3 x 104 volts/cm, Ax ~10~1t0 10~%cm,
u ~ 0.5 to 0.995c.
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12.9

12.10

12.11

12.12

A particle of mass # and charge ¢ moves in the laboratory in crossed,
static, uniform, electric and magnetic fields. E is parallel to the = axis;
B is parallel to the y axis.

(a) For |E| < |B| make the necessary Lorentz transformation described
in Section 12.8 to obtain explicitly parametric equations for the particle’s
trajectory.

(b) Repeat the calculation of (a) for |E| > [B|.

Static, uniform electric and magnetic fields, E and B, make an angle of ¢
with respect to each other.

(a) By a suitable choice of axes, solve the force equation for the motion
of a particle of charge ¢ and mass m in rectangular coordinates.

(b)) For E and B parallel, show that with appropriate constants of
integration, etc., the parametric solution can be written

x = ARsin ¢, y = ARcos ¢, z=1j V1 + A2 cosh (p)
P
R —
ct = > V1 + A2 sinh (p)

where R = (mc*[eB), p = (E[B), A is an arbitrary constant, and ¢ is the
parameter [actually ¢/R times the proper time].

The magnetic field of the earth can be represented approximately by a
magnetic dipole of magnetic moment M = 8.1 x 10% gauss-cm3. Con-
sider the motion of energetic electrons in the neighborhood of the earth
under the action of this dipole field (Van Allen electron belts).

(a) Show that the equation for a line of magnetic force is r = rysin 6,
where @ is the usual polar angle (colatitude) measured from the axis of the
dipole, and find an expression to the magnitude of B along any line of
force as a function of 6.

(b) A positively charged particle spirals around a line of force in the
equatorial plane with a gyration radius a and a mean radius R (a < R).
Show that the particle’s azimuthal position (longitude) changes approxi-
mately linearly in time according to

2
$(1) =y + g(%) @ 4t = 1)

where w is the frequency of gyration at radius R.
(¢) If, in addition to its circular motion of (b), the particle has a small
component of velocity parallel to the lines of force, show that it undergoes

small oscillations in 6 around 8 = #/2 with a frequency Q = (3/V2)(a/R)w 5.
Find the change in longitude per cycle of oscillation in latitude.

(d) For an electron of 10 Mev at a mean radius R = 3 x 10° ¢m, find
wpg and a, and so determine how long it takes to drift once around the
earth and how long it takes to execute one cycle-of oscillation in Jatitude.
Calculate these same quantities for an electron of 10 Kev at the same
radius.

A charged particle finds itself instantaneously in the equatorial plane of
the earth’s magnetic field (assumed to be a dipole field) at a distance R
from the center of the earth. Its velocity vector at that instant makes an
angle o with the equatorial plane (v,fv, = tana). Assuming that the
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particle spirals along the lines of force with a gyration radius a < R, and
that the flux linked by the orbit is a constant of the motion, find an
equation for the maximum magnetic latitude 2 reached by the particle as
a function of the angle «. Plot a graph (not a sketch) of 4 versus «. Mark
parametrically along the curve the values of « for which a particle at
radius R in the equatorial plane will hit the earth (radius R,) for
R/Ry =15,20,25,3,4,6,8, 10.
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Collisions between
Charged Particles,
Energy Loss,

and Scattering

In this chapter collisions between swiftly moving, charged particles
are considered, with special emphasis on the exchange of energy between
collision partners and on the accompanying deflections from the incident
direction. A fast charged particle incident on matter makes collisions with
the atomic electrons and nuclei. If the particle is heavier than an electron
(mu or pi meson, K meson, proton, etc.), the collisions with electrons and
with nuclei have different consequences. The light electrons can take up
appreciable amounts of energy from the incident particle without causing
significant deflections, whereas the massive nuclei absorb very little energy
but because of their greater charge cause scattering of the incident particle.
Thus loss of energy by the incident particle occurs almost entirely in
collisions with electrons. The deflection of the particle from its incident
direction results, on the other hand, from essentially elastic collisions with
the atomic nuclei. The scattering is confined to rather small angles, so that
a heavy particle keeps a more or less straight-line path while losing energy
until it nears the end of its range. For incident electrons both energy loss
and scattering occur in collisions with the atomic electrons. Consequently
the path is much less straight. After a short distance, electrons tend to
diffuse into the material, rather than go in a rectilinear path.

The subject of energy loss and scattering is an important one and is

discussed in several books* where numerical tables and graphs are
* See references at the end of the chapter.
429
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presented. Consequently our discussion will emphasize the physical ideas
involved, rather than the exact numerical formulas. Indeed, a full
quantum-mechanical treatment is needed to obtain exact results, even
though all the essential features are classical or semiclassical in origin.
The order of magnitude of the quantum effects are all easily derivable
from the uncertainty principle, as will be seen in what follows.

We will begin by considering the simple problem of energy transfer to a
free electron by a fast heavy particle. Then the effects of a binding force on
the electron are explored, and the classical Bohr formula for energy loss is
obtained. Quantum modifications and the effect of the polarization of
the medium are described, followed by a discussion of energy loss in an
electronic plasma. Then the elastic scattering of incident particles by
nuclei and multiple scattering are presented. Finally, a discussion is given
of the electrical resistivity of a plasma caused by screened Coulomb
collisions.

13.1 Energy Transfer in a Coulomb Collision

A swift particle of charge ze and mass M collides with an electron in an
atom. If the particle moves rapidly compared to the characteristic velocity
of the electron in its orbit, during the collision the electron can be treated
as free and initially at rest. As further approximations we will assume that
the momentum transfer Ap is sufficiently small that the incident particle
is essentially undeflected from its straight-line path, and that the recoiling
electron does not move appreciably during the collision. Then to find the
energy transfer during the collision we need only calculate the momentum
impulse caused by the electric ficld of the incident particle at the position
of the electron. The particle’s magnetic field is of negligible importance if
the electron is essentially at rest.

Figure 13.1 shows the geometry of the collision. The incident particle
has a velocity v and an energy E = yMc2. It passes the electron of charge e
and mass m < M at an impact parameter b. At the position of the elec-
tron the fields of the incident particle are given by (11.118) with g = ze.
Only the transverse electric field E, has a nonvanishing time integral.

ze, M v

ove m

Fig. 13.1
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Consequently the momentum impulse Ap is in the transverse direction and
has the magnitude
Ap _f oEy(1) dt = Z& (13.1)
by
It should be noted that Ap is independent of y, as discussed in Section
11.10 below Eq. (11.119). The energy transferred to the electron is

AE(b) = (‘351) e (;2) (13.2)

The angular deflection of the incident particle is given by 6 ~ Ap/p,
provided Ap < p. Thus, for small deflections,

2
6~ Z€ (13.3)

pvb
This result can be compared with the well-known exact expression for the
Rutherford scattering of a nonrelativistic particle of charge ze by a
Coulomb force field of charge z’e:

222'e?

2 tan o = (13.4)

puvb

We see that for small angles the two expressions agree.*

The energy transfer AE(b) given by (13.2) has several interesting features.
It depends only on the charge and velocity of the incident particle, not on
its mass. It varies inversely as the square of the impact parameter so that
close collisions involve very large energy transfers. There is, of course, an
upper limit on the energy transfer, corresponding to a head-on collision.
Our method of calculation is really valid only for large values of 5. We
can obtain a lower limit b, on the impact parameter for which our
approximate calculation is valid by equating (13.2) to the maximum
allowable energy transfer (12.59):

AE(b AE,

max

= 2my?? (13.5)

min) =

This yields the lower bound,

buin = 5 (13.6)
ymuv

* Actually there is a question of reference frames in comparing (13.3) and (13.4).
Since (13.4) holds for a fixed center of force (or the CM system), we should compare it
with the result for the deflection of the light electron in the frame where the heavy
incident particle is at rest. Then (13.3) holds with p ~ ymw as the electron momentum
in that frame. The reader may verify that (13.3) and (13.4) are also consistent in the
frame in which the electron is at rest by using (12.50) and (12.54) to transform angles

from the CM system to the laboratory.
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below which our approximate result (13.2) must be replaced by a more
exact expression which tends to (13.5) as # — 0. It can be shown (Problem
13.1) that a proper treatment gives the more accurate result,

AE(b) ~ el Pra—— (13.7)
Equation (13.7) exhibits the proper limiting behavior as b — 0 and reduces
to (13.2) for b > byyn.

The lower limit on b can be obtained by another argument. Equation
(13.2) was derived under the assumption that the electron did not move
appreciably during the collision. As long as the distance 4 it actually
moves is small compared to b, we may expect that (13.2) will be correct.
An estimate of d can be obtained by saying that Ap/2m is an average
velocity of the electron during the collision, and that the time of collision
is given by (11.120). Hence the distance traveled during the collision is of
the order of 2e?

d~é£xAt=

2m ymv
As long as b > d, (13.2) should hold. This is exactly the condition
implied by (13.7).

At the other extreme of very distant collisions the approximate result
(13.2) for AE(b) is in error because of the binding of the atomic electrons.
We assumed that the electrons were free, whereas they are actually bound
in atoms. As long as the collision time (11.120) is short compared to the
orbital period of motion, it may be expected that the collision will be sudden
enough that the electron may be treated as free. If, on the other hand, the
collision time (11.120) is very long compared to the orbital period, the
electron will make many cycles of motion as the incident particle passes
slowly by and will be influenced adiabatically by the fields with no net
transfer of energy. The dividing point comes at impact parameter b,,,,,
where the collision time (11.120) and the orbital period are comparable. If
o is a characteristic atomic frequency of motion, this condition is

- = boin (13.8)

At(bmax) ~ =
w

or (13.9)
v

bmax =

For impact parameters greater than by, it can be expected that the energy
transfer falls below (13.2), going rapidiy to zero for b > b ,.

The general behavior of AE(b) as a function of 4 is shown in Fig. 13.2.
The dotted curve represents the approximate form (13.2), while the solid
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log AE (b)—>

Fig. 13.2 Energy transfer as a
function of impact parameter.

curve is a representation of the correct result. In the interval bmin < b <
bmax the energy transfer is given approximately by (13.2). But for impact
parameters outside that interval, the energy transfer is considerably less.

A fast particle passing through matter “sees’ electrons at various
distances from its path. If there are N atoms per unit volume with Z
electrons per atom, the number of electrons located at impact parameters
between b and (b + db) in a thickness dx of matter is

dn = NZ 2mb db dx (13.10)

To find the energy lost per unit distance by the incident particle we multiply
(13.10) by the energy transfer AE(d) and integrate over all impact para-
meters. Thus the energy loss is

‘;_E = 27NZ f AE(b)b db (13.11)
X

In view of the behavior of AE(b) shown in Fig. 13.2 we may use approxi-
mation (13.2) and integrate between bmin and bmax. Then we find the result

2 4 bmax
9 4unz 28 | ™ L ap (13.12)

dr mv? Jops, b?
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or
2.4
9 4NZZ n B (13.13)
dx mv?
where
2 3
B = Dmex _ y7mo (13.14)
Bmin ze*w

This approximate expression for the energy loss exhibits all the essential
features of the classical result due to Bohr (1915). The method of handling
the lower limit of integration in (13.12) is completely equivalent to using
(13.7) for AE(b). The cutoff at b = bmax is only approximate. Con-
sequently B is uncertain by a factor of the order of unity. Because B
appears in the logarithm, this factor is of negligible importance numeri-
cally. In any event, a proper treatment of binding effects is given in the
next section. Discussion of (13.13) as a function of energy and its com-
parison with experiment will be deferred until Section 13.3.

13.2 Energy Transfer to a Harmonically Bound Charge

In order to justify the plausible value bmax (13.9) of the impact parameter
which divides the Coulomb collisions for b < bmax With the free-energy
transfer (13.2) and essentially adiabatic collisions for b > bmax Wwith
negligible energy transfer, we consider the problem of the energy lost by a
massive charged particle with charge ze and velocity v passing a harmoni-
cally bound charge of mass m and charge e. This will serve as a simplified
model for energy loss of particles passing through matter. As before, we
will assume that the massive particle is deflected only slightly in the
encounter so that its path can be approximated by a straight line. It passes
by the bound particle at an impact parameter b, measured from the origin
O of the binding force, as shown in Fig. 13.3. Since we are primarily
interested in large impact parameters where binding effects are important,

.ze, M v

>e,m
X
O

Fig. 13.3
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we may assume that the energy transfer is not large, that the motion of the
bound particle is nonrelativistic throughout the collision, and that its
initial and final amplitudes of oscillation about the origin O are small
compared to b. Then only the electric field of the incident particle need
be included in the force equation. Furthermore, its variation over the
position of the bound particle may be neglected, and its effective value can
be taken as that at the origin O. This is sometimes called the dipole approxi-
mation, by analogy with the corresponding problem of absorption of
radiation.

With these approximations the force equation for the harmonically
bound charge can be written as

% + Mk 4+ wlx = S E@) (13.15)
m

where E(?) is the electric field at O due to the charge ze, its components
being given by (11.118), w, is the characteristic frequency of the binding,
and I' is a small damping constant. The damping factor is not essential,
but it is present to at least some degree in actual physical systems and serves
to remove certain ambiguities which would arise in its absence. To solve
(13.15) we Fourier-analyze both E(r) and x(¢):

x(t) = —]2=ﬂ f_": x(@)e™ ™t deo (13.16)

E(t) = f E(w)e ' dw (13.17)
NG
Since both x(#) and E(¢) are real, the positive and negative frequency parts
of their transforms are related by
x(—w) = x*(w
(~a) @) (13.18)
E(—w) = EX(w)

When the Fourier integral forms are substituted into the force equation,
we find

x(w) = £ E(w)

m w? — il — o (13.19)

With the known form of E(f) the Fourier amplitude E(w) can be deter-
mined. Then x(¢) can be found from (13.16), using (13.19). The problem
is solved, provided one can do the integrals.

The quantity of immediate interest is not the detailed motion of the
bound particle, but the energy transfer in the collision. This can be found
by considering the work done by the incident particle on the bound one.
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The rate of doing work is given by

% =fE - J dB (13.20)

Thus the total work done by the particle passing by is

AE =f dtfd?’:c’ E.J (13.21)

The current density is J = ev §[x" — x(¢)] for the bound charge. Con-
sequently

AE = ef v-Edt (13.22)
where v = X, and in the dipole approximation E is the field of the incident
particle at the origin O. Using the Fourier representations (13.16) and
(13.17), as well as that for a delta function (2.52), and the reality con-
ditions (13.18), the energy transfer can be written

AE = 2¢ Re f —iox(w) - E*(w) dw (13.23)
[}]
If now the result (13.19) for x(w) is inserted, this becomes
2 0 2w2I‘|
AE=E f E(o)[? d 13.24
)y B e do (13.24)

For small I' the integrand peaks sharply around « = wg in an approxi-
mately Lorentzian line shape. Consequently the factor involving the
electric field can be approximated by its value at w = w,. Then (13.24)
becomes

2 s 2
AE = 2% [B(wy)2 J = dv (13.25)
m

2 2
Wy 2 2
o[ﬁ‘*x}”

The integral has the value =/2, independent of wy/I'. Thus the energy
transfer is

2
AE = % |E(wo)? (13.26)

Equation (13.26) is a very general result for energy transfer to a non-
-relativistic oscillator by an external electromagnetic field. In the present
application the field is produced by a passing charged particle. But a
pulse of radiation or any combination of external fields will serve as well.

For a particle with charge ze passing by the origin O at an impact
parameter b with a velocity v, the electromagnetic fields at the origin are
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given by (11.118) with ¢ = ze. To illustrate the determination of the
Fourier transform (13.17) we consider E,(7). Its transform Ej(w) is defined
to be

zeby f"" et dt
E(w) = 22X 13.27
1(@) V27 V- (b2 + PR (13.27)

By changing integration variable to x = yvt/b, (13.27) can be written as
ze @ eiwbm/y'v

E(w) = — f dx 13.28

() J2mbvJ - (1 + x?)” ( )

From a table of Fourier transforms* we find that the integral is propor-
tional to a modified Bessel function of the order of unity [see (3.101)].

Thus
14
Ew) = 3(3) [‘”_b K, (-“f)} (13.29)
bo\n/ Lyv Yo
Similarly E4(z) given by (11.118) has the Fourier transform:
Y4
Eg(w) = —iz—e(g) [‘—“—b K, (“’—bﬂ (13.30)
yvb\mw/ Lyv YU

The energy transfer (13.26) to the harmonically bound charge can now
be evaluated explicitly. Using (13.29) and (13.30), we find

24
AE(b) = % (#) [521(12(5) + ylz SzKoz(E)} (13.31)
where
£ = Qb (13.32)
'}/U

The factor multiplying the square bracket is just the approximate result
(13.2). For small and large &, the limiting forms (3.103) and (3.104) show
that the square bracket in (13.31) has the limiting values:

Jr 1, forf <1
= (13.33)
L {(1+—1-2-)7—T5e—2§ for & > 1

=/ 2

Since & = b/bmax, we see that for b < bmax the energy transfer is essentially
the approximate resuit (13.2), while for b > bmax it falls off exponentially
to zero. This justifies the qualitative arguments of the previous section on
the upper limit bmax.

* See, for example, Magnus and Oberhettinger, Chapter VIII, or Bateman Manuscript
Project, Tables of Integral Transforms, Vol. 1, Chapters I-IIL
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13.3 Classical and Quantum-Mechanical Energy-Loss Formulas

The energy transfer (13.31) to a harmonically bound charge can be used to
calculate a classical energy loss per unit length for a fast, heavy particle
passing through matter. We suppose that there are N atoms per unit
volume with Z electrons per atom. The Z electrons can be divided into
groups specified by the index j, with f; electrons having the same harmonic
binding frequency w,. The number f; is called the oscillator strength of
the jth oscillator. The oscillator strengths satisfy the obvious sum rule,
> f;=2Z. By a trivial extension of the arguments leading to (13.11)

7
and (13.12) we find the energy loss to be

= 27N Z /i AE,-(b)b db (13.34)
bmin
where AE(b) is given by (13.31) with & = w;b/yv, and a lower limit of
bmin is specified, consistent with (13.7). No upper limit is necessary, since
(13.31) falls rapidly to zero for large . The integral over the modified
Bessel functions can be done in closed form, leading to the result,

dE 47TN2 e
dz mv

Zf,[fmmKl(Emm)Ko(fmm)— o émin(K;*(émin) — Ko (Emm)):|

(13.35)

where &min = @bminfyv. In general, &yin<€1. This means that the
limiting forms (3.103) may be used to simplify (13.35). This final expression
for classical energy loss is

2 4 2
dE. [1 B, “} (13.36)

dr muv? T2

where the argument of the logarithm is
_ 1123pv _ 1.123y*m0’
(w)bmm ze*{w)

The average frequency (w) appearing in B, is a geometric mean defined
by

(13.37)

4

Zln (w) = ij In o, (13.38)

The result (13.36)-(13.38) is that obtained by Bohr in his classic paper on
energy loss (1915). Our approximate expression (13.13) is in agreement
with (13.36) in all its essentials, since the added —v?/2¢? is a small cor-
rection even at high velocities.
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Bohr’s formula (13.36) gives a reasonable description of the energy loss
of relatively slow alpha particles and heavier nuclei. But for electrons,
mesons, protons, and even fast alphas, it overestimates the energy loss
considerably. The reason is that for the lighter particles quantum-
mechanical modifications cause a breakdown of the classical result. The
important quantum effects are (1) discreteness of the possible energy
transfers, and (2) limitations due to the wave nature of the particles and
the uncertainty principle.

The problem of the discrete nature of the energy transfer can be illus-
trated by calculating the classical energy transfer (13.2) at b ~ bpqax. This
is roughly the smallest energy transfer that is of importance in the energy-
loss process. Assuming only one binding frequency w, for simplicity, we
find

Vo

4
Y v

where v, = ¢/137 is the orbital velocity of an electron in the ground state
of hydrogen. Since /iw, is of the order of the ionization potential of the
atom, we see that for a fast particle (v > v,) the classical energy transfer
(13.39) is very small compared to the ionization potential, or even to the
smallest excitation energy in the atom. But we know that energy must be
transferred in definite quantum jumps. A tinyamount of energy like (13.39)
simply cannot be absorbed by the atom. We conclude that cur classical
calculation fails in this domain. We might argue that only if our classical
formula (13.2) gives an energy transfer /arge compared to typical atomic
excitation energies would we expect it to be correct. This would set quite
a different upper limit on the impact parameters. Fortunately the classical
result can be applied in a statistical sense if we reinterpret its meaning.
Quantum considerations show that the classical result of the transfer of a
small amount of energy in every collision is incorrect. But if we consider
a large number of collisions, we find that on the average a small amount
of energy is transferred. It is not transferred in every collision, however.
In most collisions no energy is transferred. But in a few collisions an
appreciable excitation occurs, yielding a small average value over many
collisions. In this statistical sense the quantum mechanism for discrete
energy transfers and the classical process with a continuum of possible
energy transfers can be reconciled. The detailed numerical agreement
stems from the quantum-mechanical definitions of the oscillator strengths
/i and resonant frequencies w;.

The other important quantum modification arises from the wave nature
of the particles. The uncertainty principle sets certain limits on the range
of validity of classical orbit considerations. If we try to construct wave
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packets to give approximate meaning to a classical trajectory, we know
that the path can be defined only to within an uncertainty Az > %/p. For
impact parameters b less than this uncertainty, classical concepts fail.
Since the wave nature of the particles implies a smearing out in some sense
over distances of the order of Az, we anticipate that the correct quantum-
mechanical energy loss will correspond to much smaller energy transfers
than given by (13.2) for b < Az. Thus Ax ~ A/p is a quantum analog of
the minimum impact parameter (13.6). In the collision of two particles
each one has a wave nature. For a given relative velocity the limiting
uncertainty will come from the lighter of the two. For a heavy incident
particle colliding with an electron, the momentum of the electron in the
coordinate frame where the incident particle is at rest (almost the CM
frame) is p’ = ymv, where m is the mass of the electron. Therefore the
quantum-mechanical minimum impact parameter is

(q) h
o= — (13.40)
ymu
For electrons incident on electrons we must take more care and consider
the CM momentum (12.34) for equal masses. Then for electrons we obtain
the minimum impact parameter,

I )
[br(gi)n]electrons = —— (1341)
meNy—1

In a given situation the larger of the two minimum impact parameters
(13.6) and (13.40) must be used to define argument B (13.14) of the
logarithm in dE/dx. The ratio of the classical to quantum value of &y,;, is

2
n== (13.42)

hv
If 4 > 1, the classical Bohr formula must be used. We see that this occurs
for slow, highly charged, incident particles, in accord with observation.
If » <1, the quantum minimum impact parameter is larger than the
classical one. Then quantum modifications appear in the energy-loss

formula. The argument of the logarithm in (13.13) becomes

2
bma,x ym vz

= =7nB =
T %
Equation (13.13) with the quantum-mechanical B, (13.43) in the logarithm
is a good approximation to a quantum-theoretical result of Bethe (1930).
Bethe’s formula, including the effects of close collisions, is

2.4 2 2 2
9Eq _ 4onz 2 [In (2” my ) — ”—} (13.44)
dz mv® Flw) c?

B (13.43)
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Apart from the small correction term —v%/c? and a factor of 2 in the
argument of the logarithm, this is just our approximate expression.

For electrons the quantum effects embodied in (13.41) lead to a modified
quantum-mechanical argument for the logarithm:

3

1 mc? mc?
By ~ —1N/9’—+———»1’—; 13.45
=0 =D S e 2 ) (13.45)

where the last expression is valid at high energies. Even though there are
other quantum effects for electrons, such as spin and exchange effects, the
dominant modifications are included in (13.45).

The general behavior of both the classical and quantum-mechanical
energy-loss formulas is shown in Fig. 13.4. At low energies, the main
energy variation is as v™2, since the logarithm changes slowly. But at high
energies where v — ¢ the variation is upwards again, going as Iny for
y > 1. Bethe’s formula is in good agreement with experiment for all fast
particles with # << 1, provided the energy is not too high (see the next
section).

It is worth while to note the physical origins of the two powers of y
which appear in B, (13.43). One power of y comes from the increase of
the maximum energy (13.5) which can be transferred in a head-on collision.
The other power comes from the relativistic change in shape of the electro-
magnetic fields (11.118) of a fast particle with the consequent shortening
of the collision time (11.120) and increase of bpax (13.9). The fields are
effective in transferring energy at larger distances for a relativistic particle
than for a nonrelativistic one.

Sometimes it is of interest to know the energy loss per unit distance due
to collisions in which less than some definite amount ¢ of energy is trans-
ferred per collision. In photographic emulsions, for example, ejected

Fig. 13.4 Energy loss as a
function of kinetic energy.
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electrons of more than about 10 Kev energy have a range greater than the
average linear dimensions of the silver bromide grains. Consequently the
energy dissipated in blackening of the grains corresponds to collisions
where the energy transfer is less than about 10 Kev. Classically, the
desired energy-loss formula can be obtained from the Bohr formula (13.35)
with a minimum impact parameter by,;,(€) chosen so that (13.2) is equal

to . Thus
¢ 2z¢?

v(2me)’t

This leads to a formula of the form of (13.36), but with an argument in
the logarithm,

brmin(e) = (13.46)

1.123y0%(2me)™*

2ze2(w)
Since quantum-mechanical energy-loss formulas are obtained from clas-
sical ones by the replacement [see (13.43)],

ze*
B,=nB,=-—B, (13.48)
kv

B,(e) = (13.47)

we expect that the quantum-mechanical formula for energy-loss per unit
distance due to collisions with energy transfer less than  will be

2 4 2
L () = 4nNz ZE [m B,(e) — —"-2-} (13.49)
dx my? 2¢
where 1
B(e) = }.7%)— (13.50)

The constant 4 is a numerical factor of the order of unity that cannot be
determined without detailed quantum-mechanical calculations. Bethe’s
calculations (1930) give the value A = 1. The quantum-mechanical B(e)
can be written as

bmax
Bfe) = —— 13.51
( ) blfrtlli)n (E) ( )
where bmax is given by (13.9), and the minimum impact parameter is
A h

bi(e) = EI; = @mo”
The implication of this formula is that the classical trajectory must be ill
defined by an amount at least as great as (13.52) in order that the uncertainty
in transverse momentum Ap be less than the momentum transfer in the
collision. Otherwise we would be unable to be certain that an energy
transfer of less than ¢ had actually occurred. Hence (13.52) forms a
natural quantum-mechanical lower limit on the classical orbit picture in
this case.

(13.52)
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13.4 Density Effect in Collision Energy Loss

For particles which are not too relativistic the observed energy loss is
given accurately by (13.44) [or by (13.36) if > 1] for all kinds of particles
in all types of media. For ultrarelativistic particles, however, the observed
energy loss is less than predicted by (13.44), especially for dense substances.
In terms of Fig. 13.4 of (dE/dx), the observed energy loss increases beyond
the minimum with a slope of roughly one-half that of the theoretical curve,
corresponding to only one power of y in the argument of the logarithm
in (13.44) instead of two. In photographic emulsions the energy loss, as
measured from grain densities, barely increases above the minimum to a
plateau extending to the highest known energies. This again corresponds
to a reduction of one power of y, this time in B,(¢) (13.50).

This reduction in energy loss, known as the density effect, was first
treated theoretically by Fermi (1940). In our discussion so far we have
tacitly made one assumption that is not valid in dense substances. We
have assumed that it is legitimate to calculate the effect of the incident
particle’s fields on one electron in one atom at a time, and then sum up
incoherently the energy transfers to all the electrons in all the atoms with
bmin < b < byax. NOW bnax is very,large compared to atomic dimensions,
especially for large y. Consequently in dense media there are many atoms
lying between the incident particle’s trajectory and the typical atom in
question if 4 is comparable to bmax. These atoms, influenced themselves
by the fast particle’s fields, will produce perturbing fields at the chosen
atom’s position, modifying its response to the fields of the fast particle.
Said in another way, in dense media the dielectric polarization of the
material alters the particle’s fields from their free-space values to those
characteristic of macroscopic fields in a dielectric. This modification of
the fields due to polarization of the medium must be taken into account
in calculating the energy transferred in distant collisions. For close
collisions the incident particle interacts with only one atom at a time. Then
the free-particle calculation without polarization effects will apply. The
dividing impact parameter between close and distant collisions is of the
order of atomic dimensions. Since the joining of two logarithms is involved
in calculating the sum, the dividing value of b need not be specified with
great precision,

We will determine the energy loss in distant collisions (b > a), assuming
that the fields in the medium can be calculated in the continuum approxi-
mation of a macroscopic dielectric constant e(w). If a is of the order of
atomic dimensions, this approximation will not be good for the closest of
the distant collisions, but will be valid for the great bulk of the collisions.
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The problem of finding the electric field in the medium due to the incident
fast particle moving with constant velocity can be solved most readily by
Fourier transforms. If the potentials 4,(x) and source density J (z) are
transformed in space and time according to the general rule,

F(x, 1) = (er ; f dk f dw F(K, w)e'™* (13.53)

then the transformed wave equations become
2 1
[k2 — w—; e((u):|(1)(k, w) = A ek, w)
c e(w)
w? 4 (13.54)
[k2 - e(cu)JA(k, w) = — J(k, )
c c

The dielectric constant (w) appears characteristically in positions dictated
by the presence of D in Maxwell’s equations. The Fourier transforms of

(x, 1) = zed(x — vi)
and P (13.55)
J(x, 1) = vp(x, 1)
are readily found to be
k, 0) =2 &w —k-v)
P 2 (13.56)

J(k, w) = vp(k, w)
From (13.54) we see that the Fourier transforms of the potentials are
2ze dw—k-v) |

e(w)

Ok, w) =

2
k2 — ‘;iz ()

and |> (13.57)

Ak, w) = €(w) M Dk, o)

¢ )
From the definitions of the electromagnetic fields in terms of the potentials
we obtain their Fourier transforms:

:

Ek, ) = i(-‘ﬂi“’-)f _ k)(I)(k, ) L

e (13.58)

B(k, w) = ie(w) k x ~ Ok, w) J
4

In calculating the energy loss it is apparent from (13.23) that we want
the Fourier transform in time of the electromagnetic fields at a perpen-
dicular distance b from the path of the particle moving along the z axis.
Thus the required electric field is

E(w) = (271

fd% E(k, o) et (13.59)

%
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where the observation point has coordinates (b, 0, 0). To illustrate the
determination of E(w) we consider the calculation of E4(w), the component
of E parallel to v. Inserting the explicit forms from (13.57) and (13.58), we
obtain

2ize 3, vk, | 0E(@)V _ Mw — vkg)
Ey@) = e(w) (277') Fhee ( c? k3) K2 — _2€(w) (1360

c2

The integral over dk; can be done immediately. Then

2izew ( 2) Jm - fw dk,
Ey(0) = - dkpe | —— T
(@) = = o () ? ) ek kgt 4

(13.61)

where

) = (1 o) (13.62)

The integral over dk, has the value 7/(A* + k%)%, so that Ey(w) can be
written

izew (1 * ek
Eg(w =—--;—(——— Z)f ———-dk 13.63

3() 27 02 \e(w) 7)) . (A2 4 kYt (13.63)
The remaining integral is of the same general structure as (13.28). The
result is

Ey(o) = — 280 (E)A( 1)_ 52)1(0(%) (13.64)

¥ \w/ \e(w
where the square root of (13.62) is chosen so that A lies in the fourth
quadrant. A similar calculation yields the other fields:

ze [2V¢ 2
Eiw) == (;) (@) Kl(lb)} (13.65)

By(w) = e(w)BE(w)
In the limit e(w) — 1 it is easily seen that fields (13.64) and (13.65) reduce
to the earlier results (13.30) and (13.29).
To find the energy transferred to the atom at impact parameter b we
merely write down the generalization of (13.23):

AE(b) = 2ez ijefoo —iox,(w) - E¥(w) do (13.66)

where x,(w) is the amplitude of the jth type of electron in the atom.
Rather than use (13.19) for x,(w) we express the sum of dipole moments
in terms of the molecular polarizability and so the dielectric constant:

e > fx, @) = T (efw) = DE() (13.67)



446 Classical Eledrodynamics

where N is the number of atoms per wit volume. Then the energy transfer
can be written

AE(b) = L Ref -io e(w) [E(w)® do (13.68)
2aN 0
The energy loss per unit distance in collisions with impact parameter
b > ais evidently

(d—E) = ZﬂNf AE(b)b db (13.69)
dx/v>a @

If fields (13.64) and (13.65) are insertd into (13.68) and (13.69), we find,
after some calculation, the expressiondue to Fermi,

% =]
(d—E) _ 2 (e Ref i M*aK,(*a)K o Ad) (—1— _ 52) do  (13.70)
dzlb>a o ? 0 e(w)

where 1 is given by (13.62). This result can be obtained more elegantly by
calculating the electromagnetic eneny radiated through a cylinder of
radius a around the path of the inddent particle. By conservation of
energy this is the energy lost per unittime by the incident particle. Thus

(‘—”—3) _LdE _ < |7 2m4B,E, d: (13.71)
dx/e>a v dt by J -

The integral over 4z at one instant of time is equivalent to an integral at
one point on the cylinder over all time. Using dz = v dt, we have

dE ca J‘ *
—] = — = ByHE4 v dt 13.72
(G2h..= =5 oo @
In the standard way this can be conwvirted into a frequency integral,
(‘—@) = —ca Ref By¥(w)Eg{w) dw (13.73)
dx b>a 0

With fields (13.64) and (13.65) this gives the Fermi result (13.70).

The Fermi expression (13.70) bear little resemblance to our previous
results for energy loss, such as (1335). But under conditions where
polarization effects are unimportant it yields the same results as before.
For example, for nonrelativistic particles (f < 1) it is clear from (13.62)
that A ~ w/v, independent of e(w). Then in (13.70) the modified Bessel
functions are real. Only the imaginary part of 1/e(w) contributes to the
integral. If we neglect the Lorentz polarization correction (4.67) to the
internal field at an atom, the dielectric constant can be written

47 Né? 1,
~1+ 2 13.74
() m Zwﬂ — ¥ — ol ( )
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where we have used the dipole moment expression (13.19). Assuming
that the second term is small, the imaginary part of 1/e(w) can be readily
calculated and substituted into (13.70). Then the integral over dw can be
performed in the same approximation as used in (13.24)—(13.26) to yield
the nonrelativistic form of (13.35). If the departure of A from w/yv is
neglected, but no other approximations are made, then (13.70) yields
precisely the Bohr result (13.35).

The density effect evidently comes from the presence of complex
arguments in the modified Bessel functions, corresponding to taking into
account e(w) in (13.62). Since e(w) there is multiplied by 2, it is clear that
the density effect can be really important only at high energies. The
detailed calculations for all energies with some explicit expression such as
(13.74) for e(w) are quite complicated and not particularly informative.
We will content ourselves with the extreme relativistic limit (8 ~ 1).
Furthermore, since the important frequencies in the integral over dw are
optical frequencies and the radius a is of the order of atomic dimensions,
[Aa| ~ (wafc) < 1. Consequently we can approximate the Bessel functions
by their small argument limits (3.103). Then in the relativistic limit the
Fermi expression (13.70) is

() =269 ge ["iof-L 1)
dx b>a T C2 0 E(CU)

X [m (“23"’) — %m (1 — e(w))] do  (13.75)

wa

It is worth while right here to point out that the argument of the second
logarithm is actually [1 — f%e(w)]. In the limit € = 1, this log term gives
a factor y in the combined logarithm, corresponding to the old result
(13.36). Provided e(w) 7% 1, we can write this factor as [1 — e(w)],
thereby removing one power of y from the logarithm, in agreement with
experiment.

The integral in (13.75) with «(w) given by (13.74) can be performed most
easily by using Cauchy’s theorem to change the integral over positive real
w to one over positive imaginary w, minus one over a quarter circle at
infinity. The integral along the imaginary axis gives no contribution. Pro-
vided the T'; in (13.74) are assumed constant, the result of the integration
over the quarter circle can be written in the simple form:

2 02
(@) _ (z) o 1y (1.123c) (13.76)
dx/b>a c® aw,
where w,, is the electronic plasma frequency
2
02 = 4mNZe (13.77)

m
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The corresponding relativistic expression without the density effect is,

from (13.36),
(@) _ (ze)22wp2 [ln (1.123yC) _ l] (13.78)

dz/b>a c alw) 2

We see that the density effect produces a simplification in that the
asymptotic energy loss no longer depends on the details of atomic
structure through (w) (13.38), but only on the number of electrons per unit
volume through w,. Two substances having very different atomic struc-
tures will produce the same energy loss for ultrarelativistic particles pro-
vided their densities are such that the density of electrons is the same in each.

Since there are numerous calculated curves of energy loss based on
Bethe’s formula (13.44), it is often convenient to tabulate the decrease in
energy loss due to the density effect. This is just the difference between
(13.78) and (13.76):

g 2 2
limA(d—h:) _ (o), [m (Za’—) - 1} (13.79)
f~1  \dx c? ) 2

For photographic emulsions, the relevant energy loss is given by (13.49)
and (13.50) with e ~ 10 Kev. With the density correction applied, this
becomes constant at high energies with the value,

dE(e) _ (z0)'w,” n (2mcze) (13.80)

dx 2c* Rw?

For silver bromide, 4w, ~ 48 ev. Then for singly charged particles (13.80),
divided by the density, has the value of approximately 1.02 Mev-cm?/gm.
This energy loss is in good agreement with experiment, and corresponds
to an increase above the minimum value of Jess than 10 per cent. Figure
13.5 shows total energy loss and loss from transfers of less than 10 Kev
for a typical substance. The dotted curve is the Bethe curve for total
energy loss without correction for density effect.

There is an interesting connection between the Fermi expression (13.70)
for energy loss and the emission of Cherenkov radiation. Equation (13.70)
represents energy transferred to the medium at distances greater than a.
If we let a— oo we can find out whether any of the energy escapes to
infinity. Such energy would be properly described as radiation. For
a — o, the asymptotic forms (3.104) of the K functions can be used. Then
(13.70) takes the form:

2 @ *\V4 .
lim (iif) =(z‘? Ref ia)(—l— ﬂ2)(i) e~ AN g4y (13.81)
0

a—w \ dx/o>a v? e(w) B A
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Fig. 13.5 Energy loss, including the density effect. The dotted curve is the total energy

loss without density correction. The solid curves have the density effect incorporated,

the upper one being the total energy loss and the lower one the energy loss due to
individual energy transfers of less than 10 Kev.

If A has a real part, the exponential factor causes the energy loss to go
rapidly to zero at large distances. From (13.62) it is evident that this will
always occur if the medium is absorbent, since then e(w) has a positive
imaginary part. But if e(w) is real, A can be pure imaginary for certain w.
This occurs whenever 82 > 1/e(w), i.e., whenever the velocity of the part-
icle is greater than the phase velocity of light in the medium. This is the
criterion for Cherenkov radiation. For such frequencies, 2 = —i |4|.
Then the exponential equals unity, and we find

2
- (d_E) _ (o) f w(l— 1 )dm (13.82)
a—o \dx/b>a e Jewy> s Be(w)

Since this expression is independent of the cylinder radius a, it represents
true radiation. Itis just the Frank-Tamm (1937) result for the total energy
per unit distance emitted as Cherenkov radiation. A more detailed
discussion of Cherenkov radiation as a radiative process will be given in
Section 14.9.

For media in which the density effect is an important feature of the
energy-loss process the absorption is almost always sufficiently great that
the incipient Cherenkov radiation is absorbed very close to the path of the
particle.
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13.5 Energy Loss in an Electronic Plasma

The loss of energy by a nonrelativistic particle passing through a plasma
can be treated in a manner similar to the density effect for a relativistic
particle. As was discussed in Section 10.10, the length scale in a plasma is
divided into two regions. For dimensions large compared to the Debye
screening distance k5, (10.106), the plasma acts as a continuous medium
in which the charged particles participate in collective behavior such as
plasma oscillations. For dimensions small compared to k;, individual-
particle behavior dominates and the particles interact by the two-body
screened potential (10.113). This means that in calculating energy loss the
Debye screening distance plays the same role here as the atomic dimension
a played in the density-effect calculation. For close collisions collective
effects can be ignored, and the two-body screened potential can be used to
evaluate this contribution to the energy loss. This is left as an exercise for
the reader (Problem 13.3). For the distant collisions at impact parameters
bkp > 1 the collective effects can be calculated by utilizing Fermi’s
formula (13.70) with an appropriate dielectric constant for a plasma. The
loss in distant collisions corresponds to the excitation of plasma oscillations
in the medium.

For a nonrelativistic particle (13.70) yields the following expression for
the energy loss to distances b > k,™1:

9 © .,
(.‘LE_) ~ 2z Re f ...’ﬂ[._‘_"__ K1<_C_"_)K0(_w_)] do (13.83)
da/epp>1 m 02 o e(w)Lkpv k pv kv

Since the important frequencies in the integral turn out to be w ~ w,, the
relevant argument of the Bessel functions is

bS]
©p W7 (13.84)
kpv v

For particles incident with velocities v less than thermal velocities this
argument is large compared to unity. Because of the exponential fall-off
of the Bessel functions for large argument, the energy loss in exciting
plasma oscillations by such particles is negligible. Whatever energy is lost
is in close binary collisions. If the velocity is comparable with or greater
than thermal speeds, then the particle can lose appreciable amounts of
energy in exciting collective oscillations. It is evident that this energy of
oscillation is deposited in the neighborhood of the path of the particle,
out to distances of the order of (v]W2)*) k1.
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For a particle moving rapidly compared to thermal speeds we may use
the familiar small argument forms for the modified Bessel functions. Then
(13.83) becomes

2 [ .
(-d—@) :g@f Re ( fo )1n(1'123va)dw (13.85)
de/ipp>1 @ ¥ Jo e(w) w

We shall take the simple dielectric constant (7.93), augmented by some
damping:

2
Wy

=1 -
() o?* + iwl

(13.86)

The damping constant I" will be assumed small compared to w,. The
necessary combination,

. ZF
Re(‘“’)=w2 ° 13.87

e(w) ? (@? = w,)? + TP (13.87)
has the standard resonant character seen in (13.24), for example. In the
limit I' € w, the integral in (13.85) leads to the simple result,

2
(d—E) ~C (——1'123"1)”) (13.88)
kpb>1

dx 7 w

This can be combined with the results of Problem 13.3 to give an expression
for the total energy loss of a particle passing through a plasma. The
presence of w, in the logarithm implies that the energy losses occur in
quantum jumps of /4w, in the same way as the mean frequency (w) in
(13.44) is indicative of the typical quantum jumps in atoms. Electrons
passing through thin metal foils show this discreteness in their energy loss.
The phenomenon can be used to determine the effective plasma frequency
in metals.

»

13.6 Elastic Scattering of Fast Particles by Atoms

In the preceding sections we have been concerned with the energy loss
of particles passing through matter. Inthese considerations it was assumed
that the trajectory of the particle was a straight line. Actually this
approximation is not rigorously true. As was discussed in Section 13.1,
any momentum transfer between collision partners leads to a deflection in
angle. In the introductory remarks at the beginning of the chapter it was
pointed out that collisions with electrons determine the energy loss,
whereas collisions with atoms determine the scattering. If the screening of
the nuclear Coulomb field by the atomic electrons is neglected, a fast
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particle of momentum p = yMv and charge ze, passing a heavy nucleus of
charge Ze at impact parameter b, will suffer an angular deflection,

2
6 ~ 2Z¢ (13.89)

pvb

according to (13.3).
The differential scattering cross section do/d(2 (with dimensions of area
per unit solid angle per atom) is defined by the relation,

nbdbdé =n % sin 6 db d¢é (13.90)

where 7 is the number of particles incident on the atom per unit area per
unit time. The left-hand side of (13.90) is the number of particles per unit
time incident at azimuthal angles between ¢ and (¢ + d¢) and impact
parameters between b and (b + db). The right-hand side is the number of
scattered particles per unit time emerging at polar angles (6, ) in the
element of solid angle dQ = sin 6 46 d. Equation (13.90) is merely a
statement of conservation of particles, since b and 6 are functionally
related. The classical differential scattering cross section can therefore be
written.

db (13.91)

do

do b

dQ sinf

The absolute value sign is put on, since db and d6 can in general have
opposite signs, but the cross section is by definition positive definite. If b
1s a multiple-valued function of 6, then the different contributions must be
added in (13.91).

With relation (13.89) between b and 6 we find the small-angle nuclear
Rutherford scattering cross section per atom,

do _, (2z2e2)2 1
aQ  \ pv / 6
We note that the Z electrons in each atom give a contribution Z! times
the nuclear one. Hence the electrons can be ignored, except for their
screening action. The small-angle Rutherford law (13.92) for nuclear
scattering is found to be true quantum mechanically, independent of the

spin nature of the incident particles. At wide angles spin effects enter, but
for nonrelativistic particles the classical Rutherford formula,

2\2
% = (;—fj—z) cosec“g (13.93)
v

which follows from (13.4), holds quantum mechanically as well.

(13.92)
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Since most of the scattering occurs for § < 1, and even at 6 = /2 the
small-angle result (13.92) is within 30 per cent of the Rutherford expression,
it is sufficiently accurate to employ (13.92) at all angles for which the
unscreened point Coulomb-field description is valid.

Departures from the point Coulomb-field approximation come at large
and small angles, corresponding to small and large impact parameters. At
large b the screening effects of the atomic electrons cause the potential to
fall off more rapidly than (1/r). On the Fermi-Thomas model the potential
can be approximated roughly by the form:

V(r) = 2Ze exp (—rfa) (13.94)
r

where the atomic radius a is
a~ 14aq,77 '3 (13.95)

Thelength a, = A%/me? is the hydrogenic Bohr radius. For impact param-
eters of the order of, or greater than, a the rapid decrease of the potential
(13.94) will cause the scattering angle to vanish much more rapidly with
increasing b than is given by (13.89). This implies that the scattering cross
section will flatten off at small angles to a finite value at 6 = 0, rather than
increasing as 6. A simple calculation with a cutoff Coulomb potential
shows that the cross section has the general form:

do (2zZe2)2 1

daQ  \ pv /(02 + 0%n)?
where 6, is a cutoff angle. The minimum angle Omin below which the
cross section departs appreciably from the simple result (13.92) can be
determined either classically or quantum mechanically. As with dmin in
the energy-loss calculations, the larger of the two angles is the correct one
to employ. Classically Omin can be estimated by putting » = a in (13.89).
This gives

(13.96)

2
Ol ~ 2 (13.97)

pva
Quantum mechanically, the finite size of the scatterer implies that the
approximately classical trajectory must be localized to within Az < a;
the incident particle must have a minimum uncertainty in transverse
momentum Ap > ki/a. For collisions in which the momentum transfer
(13.1) is large compared to //a the classical Rutherford formula will apply.
But for smaller momentum transfers we expect the quantum-mechanical
smearing out to flatten off the cross section. This leads to a quantum
mechanical Omin: 5
09, ~ — (13.98)
pa
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We note that the ratio of the classical to quantum-mechanical angles
Omin is Zze?[hv in agreement with the ratio (13.42) of the classical and
quantum values of bmin. For fast particles in all but the highest Z sub-
stances (Zze?/hv) is less than unity. Then the quantum value (13.98) will
be used for 6 ;,. With value (13.95) for the screening radius a, (13.98)
becomes

(q). ~ Z% (ﬂg) )

fmin ~ 192\ | (13.99)
where p is the incident momentum (p = yMv), and m is the electronic
mass.

At comparatively large angles the cross section departs from (13.92)
because of the finite size of the nucleus. For electrons and mu mesons the
influence of nuclear size is a purely electromagnetic effect, but for pi mesons
protons, etc., there are specific effects of a nuclear-force nature as well.
Since the gross overall effect is to lower the cross section below that
predicted by (13.92) for whatever reason, we will consider only the
electromagnetic aspect. The charge distribution of the atomic nucleus can
be crudely approximated by a uniform volume distribution inside a sphere
of radius R, falling rapidly to zero outside R. This means that the electro-
static potential inside the nucleus is not 1/r, but rather parabolic in shape
with a finite value at r = 0:

g@(l_r_z)’ forr <R
2 R 3R?
V(r) = (13.100)
2Z et

r

s forr > R

It is a peculiarity of the point-charge Coulomb field that the quantum-
mechanical cross section is the classical Rutherford formula, Thus for a
point nucleus there is no need to consider a division of the angular region
into angles corresponding to impact parameters less than, or greater than,
the quantum-mechanical impact parameter 52 (13.40). For a nucleus
of finite size, however, the de Broglie wavelength of the incident particle
does enter. When we consider wave packets incident on the relatively
constant (inside r = R) potential (13.100), there will be appreciable
departures from the simple formula (13.92). The situation is quite
analogous to the diffraction of waves by a spherical object, considered in
Chapter 9. The scattering is all confined to angles less than ~(/R), where
7 is the wavelength (divided by 27) of the waves involved. For wider
angles the wavelets from different parts of the scatterer interfere, causing
a rapid decrease in the scattering or perhaps subsidiary maxima and
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Fig. 13.6 Atomic scattering,
including effects of electronic
screening at small angles and
finite nuclear size at large angles. min

|
| 11 |
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minima. Since the particle wavelength is 2 = £/p, the maximum scattering
angle, beyond which the scattering cross section falls significantly below the
64 law, is

h
Omax ~ — 13.101
m R ( )
Using the simple estimate R ~ } (e?/mc?) A*% = 1.44"% x 1071 cm, this
has the numerical value, 074
me
Omax =~ A_% (?) (13.102)

We note that, for all values of Z and A, Omax > Omin. If the incident
momentum is so small that Omax > 1, the nuclear size has no appreciable
effect on the scattering. For an aluminum target Omax = 1 when p ~ 50
Mev/c, corresponding to ~50 Mev, 12 Mev, and 1.3 Mev kinetic energies
for electrons, mu mesons, and protons, respectively. Only at higher
energies than these are nuclear-size effects important in the scattering. At
this momentum value 62 ~ 10~ radian.

The general behavior of the cross section is shown in Fig. 13.6. The
dotted curve is the small-angle Rutherford approximation (13.92), while
the solid curve shows the qualitative behavior of the cross section, includ-
ing screening and finite nuclear size. The total scattering cross section can
be obtained by integrating (13.96) over all solid angle:

2\2 ("0
o = |9 sin 6. d9 dp ~ 277(2229 )f b df (13.103)
dQ pv [ do (0% + 6%)?
This yields 22 "
o~ ﬂ(zzze ) 21 = naz(zzze )z (13.104)
pv / Okin hv
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where the final form is obtained by using 6, (13.98). It shows that at
high velocities the total cross section can be far smaller than the classical
value of geometrical area ma?.

13.7 Mean Square Angle of Scattering and the Angular Distribution of
Multiple Scattering

Rutherford scattering is confined to very small angles even for a point
Coulomb field, and for fast particles Omax is small compared to unity. Thus
there is a very large probability for small-angle scattering. A particle
traversing a finite thickness of matter will undergo very many small-angle
deflections and will generally emerge at a small angle which is the cumu-
lative statistical superposition of a large number of deflections. Only
rarely will the particle be deflected through a large angle; since these
events are infrequent, such a particle will have made only one such
collision. This circumstance allows us to divide the angular range into
two regions—one region at comparatively large angles which contains only
the single scatterings, and one region at very small angles which contains
the multiple or compound scatterings. The complete distribution in angle
can be approximated by considering the two regions separately. The
intermediate region of so-called plural scattering must allow a smooth
transition from small to large angles.

The important quantity in the multiple-scattering region, where there
is a large succession of small-angle deflections symmetrically distributed
about the incident direction, is the mean square angle for a single scattering.
This is defined by

do

6% — dS2
(0% = L_d2 (13.105)
do dQ
19)
With the approximations of Section 13.6 we obtain
6% = 262, In (9’%) (13.106)
min

If the quantum value (13.99) of Omin is used along with Omax (13.102), then
(13.106) has the numerical form:

(62) ~ 462 In (210Z ) (13.107)

min
If nuclear size is unimportant (generally only of interest for electrons, and
perhaps other particles at very low energies), fmax should be put equal to
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unity in (13.106). Then the argument of the logarithm in (13.107) becomes

192 p V£
(E’Z 75?) , instead of (210Z %),

It is often desirable to use the projected angle of scattering §’, the
projection being made on some convenient plane such as the plane of a
photographic emulsion or a bubble chamber, as shown in Fig. 13.7. For
small angles it is easy to show that

(6?) = $(6?) (13.108)

In each collision the angular deflections obey the Rutherford formula
(13.92) suitably cut off at 6, and Omax, with average value zero (when
viewed relative to the forward direction, or as a projected angle) and mean
square angle (6%) given by (13.106). Since the successive collisions are
independent events, the central-limit theorem of statistics can be used to
show that for a large number 7 of such collisions the distribution in angle
will be approximately Gaussian around the forward direction with a mean
square angle (®%) = n (6%). The number of collisions occurring as the
particle traverses a thickness ¢ of material containing N atoms per unit

volume is 2 7% ¢
n = Nat:er( z e) . (13.109)
pv Gmin
This means that the mean square angle of the Gaussian is
2\2
(O ~ 27TN(2ZZ6) In (0—“‘—*‘—) t (13.110)
pv min
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Or, using (13.107) for (62),
2
(02 = 4aN (ZzZe
pv

The mean square angle increases linearly with the thickness ¢. But for

reasonable thicknesses such that the particle does not lose appreciable
energy, the Gaussian will still be peaked at very small forward angles.

The multiple-scattering distribution for the projected angle of scattering

2
) In (2102~ ") ¢ (13.111)

is

1 62

Py (6') do" = exp (— ——) do’ (13.112)
" NETCD (@)

where both positive and negative values of 6" are considered. The small-

angle Rutherford formula (13.92) can be expressed in terms of the pro-

jected angle as

2\2
4o _ 7 (ZzZe ) L (13.113)
! do’ 2\ pv / 03
This gives a single-scattering distribution for the projected angle:
do w o (2222 dO’
P60’ d0’=Nt——d0’=—Nt( ) — 13.114
5(0') Y 5 P T ( )

The single-scattering distribution is valid only for angles large compared
to (@)%, and contributes a tail to the Gaussian distribution.
If we express angles in terms of the relative projected angle,
6/

the multiple- and single-scattering distributions can be written

P (@) do. = -~1-= e~ du
™

. i (13.116)

8 In (2102~ %) o?

where (13.111) has been used for (®2%). 'We note that the relative amounts
of multiple and single scatterings are independent of thickness in these
units, and depend only on Z. Even this Z dependence is not marked. The
factor 8 In (210Z ~*) has the value 36.0 for Z = 13 (aluminum) and the
value 31.0 for Z = 82 (lead). Figure 13.8 shows the general behavior of the
scattering distributions as a function of «. The transition from multiple
to single scattering occurs in the neighborhood of & ~ 2.5. Atthis point the
Gaussian has a value of 1/600 times its peak value. Thus the single-scatter-
ing distribution gives only a very small tail on the multiple-scattering curve.

There are two things which cause departures from the simple behavior
shown in Fig. 13.8. The Gaussian shape is the limiting form of the

Py(e) da =
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Fig. 13.8 Multiple and single scattering distributions of projected angle. In the region

of plural scattering (¢« ~.2-3) the dotted curve indicates the smooth transition from the

small-angle multiple scattering (approximately Gaussian in shape) to the wide-angle
single scattering (proportional to «~3).

angular distribution for very large n. If the thickness ¢ is such that n
(13.109) is not very large (i.e., # < 100), the distribution follows the single-
scattering curve to smaller angles than « ~ 2.5, and is somewhat more
sharply peaked at zero angle than a Gaussian. On the other hand, if the
thickness is great enough, the mean square angle (®2%) becomes comparable
with the angle Omax (13.102) which limits the angular width of the single-
scattering distribution. For greater thicknesses the multiple-scattering
curve extends in angle beyond the single-scattering region, so that there is
no single-scattering tail on the distribution (see Problem 13.5).

13.8 [Electrical Conductivity of a Plasma

The considerations of multiple scattering can be applied rather directly
to the seemingly different problem of the electrical conductivity of a
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plasma. For simplicity we will consider the so-called Lorentz gas, which
consists of  fixed ions of charge Ze per unit volume and NZ free electrons
per unit volume. Furthermore electron-electron interactions will be
ignored. The approximation of fixed ions is a reasonable one, at least for
plasmas with electrons and ions at roughly the same kinetic temperatures.
The effects of electron-electron collisions will be mentioned later.

The simple Drude theory of electrical conductivity, described briefly in
Section 7.8, is based on the single electron equation,

mﬂ=eE—mvv (13.117)
dt
where v is the collision frequency. The low-frequency electrical con-
ductivity o due to electron motion is
NZée*

mvy

o= (13.118)
The problem of calculating the proper collision frequency can be ap-
proached by noting that the term mvv in (13.117) really represents the rate
of decrease of forward momentum because of Coulomb collisions with the
ions as the electron moves under the action of the applied electric field. If
the scattering angle in a single elastic collision is 0, as indicated in Fig. 13.9,
the forward momentum lost by a particle of momentum p is p(1 — cos 0).
The average value of this quantity multiplied by the number of collisions
per unit distance is the loss in forward momentum per unit distance,
namely, mv. Thus

my = Nap (1 — cos 8) (13.119)

where o here is the total cross section (13.104). Since all the Coulomb
scattering is at very small angles, (1 — cos 6) ~ 4 (62). Then the forward-
momentum loss per unit distance is

2
my ~ INop6? = 4n N(Ze) In ( "‘“) (13.120)
mu min

Equation (13.106) has been used for (6%). When (13.120) is inserted in
(13.118), we obtain a conductivity,

o(v) ~

mo®

477(262) In (Bmax/emin)

This result holds for electrons of velocity v.

We now want to average over a thermal distribution. The variation
with v in (13.121) comes mainly from the factor v3. The argument of the
logarithm can be evaluated at the mean velocity without introducing
appreciable error. At energies appropriate to even the hottest plasmas
nuclear-size effects are negligible. Consequently we put Omax = 1. The
value of Omin requires some discussion. For the screened atomic potential

(13.121)
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the result (13.97) or (13.98) was appropriate, with the atomic radius a
given by (13.95). For electron-ion collisions in a plasma the interaction
is the Debye-Hiickel screened potential (10.113). Consequently the Debye
length k™! plays the role of the atomic radius  in the formulas for Omin.
Either (13.97) or (13.98) is used, depending on which is larger. With these
substitutions the argument of the logarithm in (13.121) can be written

127N

emax kD3
A= = (13.122)
Omin [ Ze® 127N
3R kp®
where kj, is given by (10.106) or (10.112), and (u*)** = kT/m. The upper
(lower) value of A is to be used when the mean electron energy 3kT is less
(greater) than 13.6Z2 electron volts.
The average value of the nth power of the magnitude of velocity for a
Maxwellian distribution is

1"(" + 3)
" = (2kT)"’2 2 (13.123)
m I'G)

Consequently the value of the conductivity (13.121), averaged over a
Maxwellian velocity distribution, is
m ( 2 kT)%
o~ ——— |- —
ZilnA
This approximate result, obtained in a rather simple-minded way with the
elementary Drude theory, is within a factor of 2 of the correct value found
from an application of the Boltzmann equation. The physical mechanism
is the same in both calculations, but the more rigorous treatment involves
an averaging over 1® rather than »3.* Thus the two results differ by a
factor (¥3)/(t?)(®) = 2.

* The added power of »? can be understood as follows. In the presence of the electric
field the formerly spherically symmetric velocity distribution tends to become distorted
in velocity directions parallel to the field. The amount of distortion determines the
current and, through Ohm’s law, the conductivity. The distorted distribution results
from a balancing of the anisotropic electric force and the tendency towards isotropy
produced by the collisions. Since the scattering cross section varies as v~2, the aniso-
tropic part of the distribution has more high-velocity components than normal by a
factor o2,

(13.124)

T m
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When electron-electron collisions are included, the forward-momentum
loss is increased and so the conductivity is decreased from its value of
twice (13.124). The relative decrease depends on Z roughly as Z/(1 + Z),
ranging from 0.58 for Z =1 to 1.0 for Z— co. Consequently (13.124)
as it stands can be used as a good approximation to the conductivity for a
hydrogen or deuterium plasma, including effects of electron-electron
collisions. If the classical (low-energy) value of A (13.122) is used, (13.124)
can be written in the instructive form:

3%
o~ ;-, (737) m_A_A o, (13.125)

Since A is of the order of 10* for a typical hydrogen plasma (n, ~ 10
cm 3, T~ 10°K), ¢ is ~200w,~ 4 x 10" sec™t. This is not quite as
large as metaliic conductivities (~10'¢ sec™), but is sufficiently large that
the infinite conductivity approximation used in Chapter 10 is quite
adequate in discussing the penetration of fields into a plasma.
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PROBLEMS

13.1 A heavy particle of charge ze, mass M, and nonrelativistic velocity v
collides with a free electron of charge e and mass m initially at rest. With
no approximations, other than that of nonrelativistic motion and M > m,
show that the energy transferred to the electron in this Coulomb collision,
as a function of the impact parameter b, is

2(ze)? 1

AB(®) = m® b + (ze®/mu?)?
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13.2

13.3

13.4

13.5

(@) Taking#w) = 12Z evin thequantum-mechanicalenergy-loss formula,
calculate the rate of energy loss (in Mev/cm) in air at NTP, aluminum,
copper, lead for a proton and a mu meson, each with kinetic energies of
10, 100, 1000 Mev.

(b) Convert your results to energy loss in units of Mev-cm?/gm and

compare the values obtained in different materials. Explain why all the
energy losses in Mev-cm?/gm are within a factor of 2 of each other, whereas
the values in Mev/cm differ greatly.
Consider the energy loss by close collisions of a fast, but nonrelativistic,
heavy particle of charge ze passing through an electronic plasma. Assume
that the screened Coulomb interaction (10.113) acts between the electrons
and the incident particle.

(@) Show that the energy transfer in a collision at impact parameter b is
given approximately by
2(ze%)?
AE(b) ~

mo?

kp*K*(k pb)

where m is the electron mass, v is the velocity of the incident particle, and
kp is the Debye wave number (10.112).

(b) Determine the energy loss per unit distance traveled for collisions
with impact parameter greater than by;,. Assuming kpby, <1, write
down your result with both the classical and quantum-mechanical values
of bn.

With the same approximations as were used to discuss multiple scattering,
show that the projected transverse displacement y (see Fig. 13.7) of an
incident particle is described approximately by a Gaussian distribution,

a2
Py)dy = Aex [..L] dy
P 2(y*
where the mean square displacement is (y*) = (22/6)(®%), x being the
thickness of the material traversed and (®2) the mean square angle of
scattering.

If the finite size of the nucleus is taken into account in the “single-scattering”
tail of the multiple-scattering distribution, there is a critical thickness z,
beyond which the single-scattering tail is absent.

(a) Define z, in a reasonable way and calculate its value (in cm) for
aluminum and lead, assuming that the incident particle is relativistic.

(b) For these thicknesses calculate the number of collisions which occur
and determine whether the Gaussian approximation is valid.
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Radiation by Moving Charges

It is well known that accelerated charges emit electromagnetic
radiation. In Chapter 9 we discussed examples of radiation by macroscopic
time-varying charge and current densities, which are fundamentally charges
in motion. We will return to such problems in Chapter 16 where multipole
radiation is treated in a systematic way. But there is a class of radiation
phenomena where the source is a moving point charge or a small number
of such charges. In these problems it is useful to develop the formalism in
such a way that the radiation intensity and polarization are related
directly to properties of the charge’s trajectory and motion. Of particular
interest are the total radiation emitted, the angular distribution of radiation,
and its frequency spectrum. For nonrelativistic motion the radiation is
described by the well-known Larmor result (see Section 14.2). But for
relativistic particles a number of unusual and interesting effects appear.
It is these relativistic aspects which we wish to emphasize. In the present
chapter a number of general results are derived and applied to examples of
charges undergoing prescribed motions, especially in external force fields.
Chapter 15 deals with radiation emitted in atomic or nuclear collisions.

14.1 Liénard-Wiechert Potentials and Fields for a Point Charge

In Chapter 6 it was shown that for localized charge and current distri-
butions without boundary surfaces the scalar and vector potentials can be

written as
Ax, 1) =1 f f X, 1) 5(1" +R_ t) B dr (14.0)
c R c

where R = (x — Xx’), and the delta function provides the retarded behavior
464
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demanded by causality. For a point charge e with velocity ¢@(7) at the
point r(#) the charge-current density is

Ju(x, 1) = ecf, o[x — r(1)] (14.2)

where 8, = (8, /). With this source density the spatial integration in (14.1)
can be done immediately, yielding

Afx, 1) =ce —ﬂi(t—) 6[1’ + R _ t:| dt’ (14.3)
R(¢t) c

where now R(¢') = |x — r(¢')]. Although (14.3) is a convenient form to

utilize in calculating the fields, the integral over dt’ can be performed,

provided we recall from Section 1.2 that when the argument of the delta

function is a function of the variable of integration the standard results are

modified as follows:

_ _ 8@
fg(z) o[ f(x) — o] dx l:df/dx} rrme (14.4)
The function f(¢') = " + [R(¢")/c] has a derivative
o _ 1R
=k=1+"0=1-np (14.5)

where ¢@ is the instantaneous velocity of the particle, and n = R/R is a
unit vector directed from the position of the charge to the observation
point. With (14.5) in (14.4) and (14.3) the potentials of the point charge,
called the Liénard-Wiechert potentials, are

) 1]
(. y=e [;}i:Let

A= B

The square bracket with subscript ret means that the quantity in brackets
is to be evaluated at the retarded time, ' = ¢t — [R(t")/c]. We note that,
for nonrelativistic motion, « — 1. Then the potentials (14.6) reduce to the
well-known nonrelativistic results.

To determine the fields E and B from the potentials 4, it is possible to
perform the specified differential operations directly on (14.6). But this is
a more tedious procedure than working with the form (14.3). We note that
in (14.3) the only dependence on the spatial coordinates x of the observa-
tion point is through R. Hence the gradient operation is equivalent to

0 d

V>VR-Z=nZ (14.7)
R oR

(14.6)
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Consequently the electric and magnetic fields can be written as

E(x,t)=ef [-I%é(z'+§~ z) +;1R([3—n)6’(t’+£:-— :)}d:'

) (" +£-) 1 R

———c—¥+—6’(t'+——t) dt’
R? cR ¢

The primes on the delta functions mean differentiation with respect to

their arguments. If the variable of integration is changed to f(¢') = ¢’ +

[R(t")/c], we can integrate by parts on the derivative of the delta function.
Then we find readily

s = 2+ L5 050 |

1 d (Bxn
- (L2 )
(x, 1) =e «R? +CK dt' \ kR ret

(14.8)
B(x,t) = ef(n X B)[—

(14.9)

It is convenient to perform first the differentiation of the unit vector n.
It is evident from Fig. 14.1 that the rate of change of n with time is the
negative of the ratio of the perpendicular component of v to R. Thus

ﬂ=nx(nxﬁ)

14.10
edt’ R ( )

When we perform the differentiation of n wherever it appears explicitly,
we obtain

d {1 B 1d (B
- e 22 B L2 0]
(1) =e K2R2+CK dt' \«kR K?R?  ck dt’ \kR/ Jret

oo (et (), oo

We observe at this point that the magnetic induction is related simply to

v(t’)

Fig. 14.1
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the electric field by the relation,
B=nxE (14.12)

where the equation is understood to be in terms of the retarded quantities
in square brackets.
The remaining derivatives needed in (14.11) are

d .
—B=8
di 1 (14.13)

1d Ry = —B.n—Fn.p
c R =F—fn cﬂﬁj

Then the electric field can be written

- (n—ﬁ)(l—ﬂz)} E[L _ ]
Ex, 1) = e|: SR ret+ "R x {(n—B) x B} » (14.14)
while the magnetic induction is given by (14.12). Fields (14.12) and (14.14)
divide themselves naturally into “‘velocity fields,” which are independent
of acceleration, and “acceleration fields,” which depend linearly on .
The velocity fields are essentially static fields falling off as R-2, whereas
the acceleration fields are typical radiation fields, both E and B being
transverse to the radius vector and varying as R~

For a particle in uniform motion the velocity fields must be the same as
those obtained in Section 11.10 by means of a Lorentz transformation on
the static Coulomb field. For example, the transverse electric field E, at a
point a perpendicular distance b from the straight line path of the charge
was found to be
_ eyb

(b + yzvztz)%
The origin of the time 7 is chosen so that the charge is closest to the
observation point at 7 = 0. The electric field E;(¢) given by (14.15) bears
little resemblance to the velocity field in (14.14). The reason for this
apparent difference is that field (14.15) is expressed in terms of the present
position of the charge rather than its retarded position. To show the
equivalence of the two expressions we consider the geometrical configura-
tion shown in Fig. 14.2. Here O is the observation point, and the points P
and P’ are the present and apparent or retarded positions of the charge at
time ¢, The distance P'Q is SR cos § = (n- B)R. Therefore the distance
0Q is xR. But from triangles OPQ and PP'Q we find

(«R)?2 = r? — (PQ)? = r® — ¥R sin )2
Then from triangle OMP’ we have R sin f = b, so that

E\() (14.15)

(kR)? = b® + o — f2b° = y-lz(tﬁ + yie) (14.16)
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Fig. 142 Present and retarded positions of a charge in uniform motion.

The transverse component of the velocity field in (14.14) is

b
E(®)=e|—— 14.17
0=e[ 2] (14.17)
With substitution (14.16) for «R in terms of the charge’s present position,
we find that (14.17) is equal to (14.15). The other components of E and B
come out similarly.

14.2 Total Power Radiated by an Accelerated Charge—Larmor’s
Formula and Its Relativistic Generalization

If a charge is accelerated but is observed in a reference frame where its
velocity is small compared to that of light, then in that coordinate frame
the acceleration field in (14.14) reduces to

E=°¢ [El(_“x_ﬂ)] (14.18)
“ ¢ R ret ’
The instantaneous energy flux is given by the Poynting’s vector,
S=SExB=|E/n (14.19)
4 4
This means that the power radiated per unit solid angle is*
dP _ ¢ e :
~—=-—-|RE,|>=— |nx (n x 2 14.20
0= F=! (n x 3)] (14.20)

* In writing angular distributions of radiation we will always exhibit the polariza-
tion explicitly by writing the absolute square of a vector which is proportional to the
electric field.



[Sect. 14.2] Radiation by Moving Charges 469

If © is the angle between the acceleration v and n, as shown in Fig. 14.3,
then the power radiated can be written

2
4P _ € pgnze (14.21)
dQ  4nc®
This exhibits the characteristic sin? ® angular dependence which is a well-
known result. We note from (14.18) that the radiation is polarized in the
plane containing v and n. The total instantaneous power radiated is
obtained by integrating (14.21) over all solid angle. Thus
22

c3

P = (14.22)

(VSR ]

This is the familiar Larmor result for a nonrelativistic, accelerated charge.

Larmor’s formula (14.22) can be generalized by arguments about
covariance under Lorentz transformations to yield a result which is valid
for arbitrary velocities of the charge. Radiated electromagnetic energy
behaves under Lorentz transformation like the fourth component of a
4-vector (see Problem 11.13). Since dE,; = P dt, this means that the
power P is a Lorentz invariant quantity. If we can find a Lorentz invariant
which reduces to the Larmor formula (14.22) for § < [, then we have the
desired generalization. There are, of course, many Lorentz invariants
which reduce to the desired form when f— 0. But from (14.14) it is
evident that the general result must involve only @ and B. With this
restriction on the order of derivatives which can appear the result is unique.
To find the appropriate generalization we write Larmor’s formula in the

suggestive form:
2 & (dp dp)
P==—|—.-—4 14.23
Imi3 \dt di ( )

Fig. 14.3
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where m is the mass of the charge, and p its momentum. The Lorentz
invariant generalization is clearly

2
p=2¢_ (d”“ d”ﬂ) (14.24)
3mi® \dr dr

where d= = dt/y is the proper time element, and p,, is the charged particle’s
momentum-energy 4-vector.* To check that (14.24) reduces properly to
(14.23) as -+ 0 we evaluate the 4-vector scalar product,

b (4] L0 (O] o

If (14.24) is expressed in terms of the velocity and acceleration by means
of E = ymc® and p = ymv, we obtain the Liénard result (1898):

P=:- ?/6[((5)2 — (B xp)] (14.26)

One area of application of the relativistic expression for radiated power
is that of charged-particle accelerators. Radiation losses are sometimes
the limiting factor in the maximum practical energy attainable. For a
given applied force (i.e., a given rate of change of momentum) the radiated
power (14.24) depends inversely on the square of the mass of the particle
involved. Consequently these radiative effects are largest for electrons.
We will restrict our discussion to them.

In a linear accelerator the motion is one dimensional. From (14.25) it
is evident that in that case the radiated power is

2 & (dp\

The rate of change of momentum is equal to the change in energy of the
particle per unit distance. Consequently

2 ¢ (dEV? :
T 3m (E;) (14.28)

showing that for linear motion the power radiated depends only on the
external forces which determine the rate of change of particle energy with
distance, not on the actual energy or momentum of the particle. The ratio

* That (14.24) is unique can be seen by noting that a Lorentz invariant is formed by
taking scalar products of 4-vectors or higher-rank tensors. The available 4-vectors are
Pu and dp #/ dr. Only form (14.24) reduces to the Larmor formula for § — 0. Contraction
of higher-rank tensors such as p,(dp,/dr) can be shown to vanish, or to give results
proportional to (14.24) or m?,
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of power radiated to power supplied by the external sources is

(14.29)

P _2 & 1dE 2(medE
(dE/dt) 3mPcovdx 3 met dx

where the last form holds for relativistic particles (—1). Equation (14.29)
shows that the radiation loss will be unimportant unless the gain in
energy is of the order of mc? = 0.511 Mev in a distance of e?/mc? =
2.82 x 1073 cm, or of the order of 2 x 10" Mev/meter! Typical energy
gains are less than 10 Mev/meter. Radiation losses are completely
negligible in linear accelerators.

Circumstances change drastically in circular accelerators like the
synchrotron or betatron. In such machines the momentum p changes
rapidly in direction as the particle rotates, but the change in energy per
revolution is small. This means that

dp
dr

1dE
= yo [p| > e (14.30)

Then the radiated power (14.24) can be written approximately

2 2 e
P = = zwz 2 - o=
3w Ipl 3,

Byt (14.31)

where we have used w = (cfi/p), p being the orbit radius. This result was
first obtained by Liénard in 1898. The radiative-energy loss per revolution
is

Byt (14.32)

For high-energy electrons (f ~ 1) this has the numerical value,

2 [E (Bev)]*

O0E (Mev) = 8.85 x 10~
p (meters)

(14.33)
For a typical low-energy synchroton, p~ 1 meter, E_, ~ 0.3 Bev.
Hence, 6E,,, ~ 1 Kev per revolution. This is less than, but not negligible
compared to, the energy gain of a few kilovolts per turn. In the largest
electron synchrotrons, the orbit radius is of the order of 10 meters and the
maximum energy is 5 Bev. Then the radiative loss is ~35.5 Mev per revolu-
tion. Since it is extremely difficult to generate radiofrequency power at
levels high enough to produce energy increments much greater than this
amount per revolution, it appears that 5-10 Bev is an upper limit on the
maximum energy of circular electron accelerators.
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The power radiated in circular accelerators can be expressed numericalty
as

6
10° 8E (Mev) I(a

14.34
27 p (meters) mp) ( )

P (watts) =

where J is the circulating beam current. This equation is valid if the
emission of radiation from the different electrons in the circulating beam
is incoherent. In the largest electron synchrotrons the radiated power
amounts to 0.1 watt per microampere of beam. Although this power
dissipation is very small the radiated energy is readily detected and has
some interesting properties which will be discussed in Section 14.6.

14.3 Angular Distribution of Radiation Emitted by an
Accelerated Charge

For an accelerated charge in nonrelativistic motion the angular distri-
bution shows a simple sin® ® behavior, as given by (14.21), where © is
measured relative to the direction of acceleration. For relativistic motion
the acceleration fields depend on the velocity as well as the acceleration.
Consequently the angular distribution is more complicated. From (14.14)
the radial component of Poynting’s vector can be calculated to be

[l = o s x [0 =) x 1] (1439

6 R2
It is evident that there are two types of relativistic effect present. One is
the effect of the specific spatial relationship between B and B, which will
determine the detailed angular distribution. The other is a general, relati-
vistic effect arising from the transformation from the rest frame of the
particle to the observer’s frame and manifesting itself by the presence of
the factors « (14.5) in the denominator of (14.35). For ultrarelativistic
particles the latter effect dominates the whole angular distribution.

In (14.35) S - n is the energy per unit area per unit time detected at an
observation point at time ¢ due to radiation emitted by the charge at time
t' =1t — R(t')/c. If we wanted to calculate the energy radiated during a
finite period of acceleration, say from ¢’ = T to ' = T,, we would write

t= T2+[R(T2)/0] t'=T
W= f . n]ret dt f (S n) e dt (14.36)
T1+[R(T1)/C] =T

Thus we see that the useful and meaningful quantity is (S - n) (dt/dt’), the
power radiated per unit area in terms of the charge’s own time. We
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Fig. 14.4 Radiation pattern for

charge accelerated in its direction

of motion. The two patterns are

not to scale, the relativistic one

(appropriate for y ~2) having

been reduced by a factor ~10?
for the same acceleration.

Bmax

therefore define the power radiated per unit solid angle to be

ar(r)

dt
= R¥S-n) — = «R*S . 14.3
T = RE-m-- = «RS-n (14.37)

If we imagine the charge to be accelerated only for a short time during
which B and f are essentially constant in direction and magnitude, and we
observe the radiation far enough away from the charge that n and R
change negligibly during the acceleration interval, then (14.37) is pro-
portional to the angular distribution of the energy radiated. With (14.35)
for the Poynting’s vector, the angular distribution is

dP(t) _ & Inx {(n—Pp) x B}

dQ  4mc (1—n-By

(14.38)

The simplest example of (14.38) is linear motion in which @ and @ are
parallel. If 6 is the angle of observation measured from the common
direction of 8 and B, then (14.38) reduces to

dP(1) _ %" sin 6
dQ 47c® (1 — B cos 6)°

(14.39)

For B < 1, this is the Larmor result (14.21). But as #— 1, the angular
distribution is tipped forward more and more and increases in magnitude,
as indicated schematically in Fig. 14.4. The angle fiyax for which the
intensity is a maximum is

= -1 i 2 _ :I — i
Omax = COS [36 1+ 1582 — 1) » (14.40)

where the last form is the limiting value for f — 1. In this same limit the
peak intensity is proportional to 3%, Even for g = 0.5, corresponding to
electrons of ~80 Kev kinetic energy, Omax = 38.2°. For relativistic
particles, Omax is very small, being of the order of the ratio of the rest
energy of the particle to its total energy. Thus the angular distribution is
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confined to a very narrow cone in the direction of motion. For such small
angles the angular distribution (14.39) can be written approximately

s (v

(1 + %65
The natural angular unit is evidently y~1. The angular distribution is
shown in Fig. 14.5 with angles measured in these units. The peak occurs

at yf = 1, and the half-power points at 96 = 0.23 and y0 = 0.91. The
root mean square angle of emission of radiation in the relativistic limit is

dr(t) 8 &
_7T

14.41
dQ ( )

—

mc?

- (14.42)

<02>‘/2 = - =
4
This is typical of the relativistic radiation patterns, regardless of the
vectorial relation between @ and @. The total power radiated can be
obtained by integrating (14.39) over all angles. Thus

2
P(r) = % Z g2y (14.43)
C

in agreement with (14.26) and (14.27).

Another example of angular distribution of radiation is that for a charge
in instantaneously circular motion with its acceleration 8 perpendicular
to its velocity 8. We choose a coordinate system such that instantaneously
B is in the z direction and @ is in the « direction. With the customary polar
angles 0, ¢ defining the direction of observation, as shown in Fig. 14.6, the
general formula (14.38) reduces to

dP(t) &% 1 [1 __sin®fcos® ¢
daQ 4mc® (1 — B cos 0)3 y2 (1 — B cos B)
We note that, although the detailed angular distribution is different from

the linear acceleration case, the same characteristic relativistic peaking at
forward angles is present. In the relativistic limit (y > 1), the angular

J (14.44)

| I Fig. 14.5 Angular distribution of

| |
| i
I |
| :
-1.0 [i] 1.0 radiation for relativistic particle.
¥0 —>
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distribution can be written approximately

13 2,12 202 2
dP(t) _2e 5 1 [1 _ 49 cos ﬂ (14.45)
aQ 7 &7 (14 y%%3 (1 + 9%0%)?
The root mean square angle of emission in this approximation is given by
(14.42), just as for one-dimensional motion. The total power radiated can
be found by integrating (14.44) over all angles or from (14.26):
2 %P

P(t)==—1*

() 387
It is instructive to compare the power radiated for acceleration parallel
to the velocity (14.43) or (14.27) with the power radiated for acceleration
perpendicular to the velocity (14.46) for the same magnitude of applied
force. For circular motion, the magnitude of the rate of change of
momentum (which is equal to the applied force) is ymv. Consequently,
(14.46) can be written

(14.46)

N2 & Lfdp)
Peircutar (¢ ) = Sr—n;Zé Y (d_t (14.47)
When this is compared to the corresponding result (14.27) for rectilinear
motion, we find that for a given magnitude of applied force the radiation
emitted with a transverse acceleration is a factor of y2 larger than with a
parallel acceleration.

14.4 Radiation Emitted by a Charge in Arbitrary, Extreme Relativistic
Motion

For a charged particle undergoing arbitrary, extreme relativistic motion
the radiation emitted at any instant can be thought of as a coherent super-
position of contributions coming from the components of acceleration
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parallel to and perpendicular to the velocity. But we have just seen that for
comparable parallel and perpendicular forces the radiation from the parallel
component is negligible (of order 1/y%) compared to that from the perpen-
dicular component. Consequently we may neglect the parallel component
of acceleration and approximate the radiation intensity by that due to the
perpendicular component alone. In other words, the radiation emitted by
a charged particle in arbitrary, extreme relativistic motion is approxi-
mately the same as that emitted by a particle moving instantaneously along
the arc of a circular path whose radius of curvature p is given by
02
pP=""="
by U
where §, is the perpendicular component of acceleration. The form of the
angular distribution of radiation is (14.44) or (14.45). It corresponds to a
narrow cone or searchlight beam of radiation directed along the instanta-
neous velocity vector of the charge.

For an observer with a frequency-sensitive detector the confinement of
the radiation to a narrow pencil parallel to the velocity has important
consequences. The radiation will be visible only when the particle’s
velocity is directed towards the observer. For a particle in arbitrary
motion the observer will detect a pulse or burst of radiation of very short
time duration (or a succession of such bursts if the particle is in periodic
motion), as sketched in Fig. 14.7. Since the angular width of the beam is of
the order of ¥, the particle will illuminate the observer only for a time
interval

62
~

(14.48)

Ar ~E
cy
in terms of its own time, where p is the radius of curvature (14.48). The
observer sees, however, a time interval,

At ~ <ﬂ> At’
dt’

where (di/dt’) = (k) ~ (1/y?). Consequently the duration of the burst of
radiation at the detector is
At ~ —13; £ . (14.49)
P2 e
A pulse of this duration will contain, according to general arguments about
Fourier integrals (see Section 7.3), appreciable frequency components up to
a critical frequency, o,, of the order of

1 (c) 3
e~ r~ |- 14.50
17) Al p Y ( )

For circular motion ¢/p is the angular frequency of rotation w,, and even



[Sect. 14.5] Radiation by Moving Charges 477

=es XN

—
——l
3
l
e

P(t) I(w)

At

t—> W >

Fig. 14.7 Radiating particle illuminates the detector at O only for a time Az. The
frequency spectrum thus contains frequencies up to a maximum w, ~ (Af)~".

for arbitrary motion it plays the role of a fundamental frequency of motion.
Equation (14.50) shows that a relativistic particle emits a broad spectrum
of frequencies if £ > mc?% up to y? times the fundamental frequency. In
a 200-Mev synchrotron, ymax ~ 400. Therefore w,~ 6 X 107w,. Since
the rotation frequency is w,~ 3 x 10%sec™?, the frequency spectrum
of emitted radiation extends up to ~2 X 10 sec™. This represents a
wavelength of 1000 angstroms. Hence the spectrum extends beyond the
visible, even though the fundamental frequency is in the 100-Mc range.
In Section 14.6 we will discuss in detail the angular distribution of the
different frequency components, as well as the total energy radiated as a
function of frequency.

14.5 Distribution in Frequency and Angle of Energy Radiated by
Accelerated Charges

The qualitative arguments of the previous section show that for relati-
vistic motion the radiated energy is spread over a wide range of frequencies.
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The range of the frequency spectrum was estimated by appealing to
properties of Fourier integrals. The argument can be made precise and
quantitative by the use of Parseval’s theorem of Fourier analysis,

The general form of the power radiated per unit solid angle is

dp() _
o - A (14.51)
where
23
A = (4177) [RE]ret (14.52)

E being the electric field (14.14). In (14.51) the instantaneous power is
expressed in the observer’s time (contrary to the definition in Section 14.3),
since we wish to consider a frequency spectrum in terms of the observer’s
frequencies. For definiteness we think of the acceleration occurring for
some finite interval of time, or at least falling off for remote past and
future times, so that the total energy radiated is finite. Furthermore, the
observation point is considered far enough away from the charge that the
spatial region spanned by the charge while accelerated subtends a small
solid angle element at the observation point.
The total energy radiated per unit solid angle is the time integral of
(14.51): o
aw 2
0 _wlA(t)I dt (14.53)
This can be expressed alternatively as an integral over a frequency

spectrum by use of Fourier transforms. We introduce the Fourier transform
A(w) of A(2),

1 f * . )
A = —— A(He*t dt 14.54
() Nz (D)e (14.54)
and its inverse,
A = Qli_; _A@e do (14.55)

Then (14.53) can be written

a_ 1 dtf dcof do’ A*(w') « A(w)e" @ ™" (14.56)
dQ  2mJ-wo Jow Jow
Interchanging the orders of time and frequency integration, we see that the
time integral is just a Fourier representation of the delta function
d(w’ — w). Consequently the energy radiated per unit solid angle becomes

j—g = f_:\A(w)iz dow (14.57)
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The equality of (14.57) and (14.53), with suitable mathematical restrictions
on the function A(#), is a special case of Parseval’s theorem. Itis customary
to integrate only over positive frequencies, since the sign of the frequency
has no physical meaning. Then the relation,

aw _ [ di()
dQ o dQ

defines a quantity dl(w)/dQ which is the energy radiated per unit solid
angle per unit frequency interval:

dw (14.58)

1
AO) _ | A@) + |A(-w)? (14.59)
dQ
If A(¥) is real, from (14.55) it is evident that A(—w) = A*(w). Then
di(w) 2
—— =2 |Al 14.60
) |A(w)] (14.60)

This result relates in a quantitative way the behavior of the power radiated
as a function of time to the frequency spectrum of the energy radiated.

By using (14.14) for the electric field of an accelerated charge we can
obtain a general expression for the energy radiated per unit solid angle
per unit frequency interval in terms of an integral over the trajectory of
the particle. We must calculate the Fourier transform (14.54) of A(7) given
by (14.52). Using (14.14), we find

2 \1¢ oo _ 2

Alw) = ( e ) f eim[“ x[n—P) x B]} dt (14.61)
8%/ J-w P ret

where ret means evaluated at t" + [R(¢')/c] = t. We change the variable

of integration from ¢ to ¢, thereby obtaining the result:

15 oo 5
A(w) = (gez—z) f gty DX L@ =B XBY ) (g4 )
7T C

- I(2

Since the observation point is assumed to be far away from the region of

space where the acceleration occurs, the unit vector n is sensibly constant

in time. Furthermore the distance R(#') can be approximated as
R()y==z—n-x(t) (14.63)

where 2 is the distance from an origin O to the observation point P, and
r(¢') is the position of the particle relative to O, as shown in Fig. 14.8. Then,
apart from an overall phase factor, (14.62) becomes

2 \\4 foo . . ¢
Aw) = (Lz) f gt 2 [0 = B) X B 4 44
8w - K

The primes on the time variable have been omitted for brevity. The
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Fig. 14.8

energy radiated per unit solid angle per unit frequency interval (14.60) is
accordingly

dI((,U) — 62 J‘w n X [(n — ﬂ) X B] eiw(l—[n'ﬂt)/cl) dt2 (14.65)
dQ  4n%|/)-w (1 —PB-n)?

For a specified motion x(#) is known, @(f) and (1) can be computed, and the
integral can be evaluated as a function of w and the direction of n. If
accelerated motion of more than one charge is involved, a coherent sum
of amplitudes A (w), one for each charge, must replace the single amplitude
in (14.65) (see Problems 14.11, 15.2, and 15.3).

Even though (14.65) has the virtue that the time interval of integration
is explicitly shown to be confined to times for which the acceleration is
different from zero, a simpler expression for some purposes can be
obtained by an integration by parts in (14.64). It is easy to demonstrate
that the integrand in (14.64), excluding the exponential, is a perfect
differential :

nx[(n—zmxm:g[nx(nxa)} (14.66)
K dt K
Then an integration by parts leads to the intensity distribution:
dl(w) _ eo? f "0 x (n x @) BT gy : (14.67)
dQ 4772(7 -

It should be observed that in (14.67) and (14.65) the polarization of the
emitted radiation is specified by the direction of the vector integral in each.
The intensity of radiation of a certain fixed polarization can be obtained
by taking the scalar product of the appropriate unit polarization vector
with the vector integral before forming the absolute square.

For a number of charges e, in accelerated motion the integrand in (14.67)
involves the replacement,

T

e i@lon T _, i e,B,e (olOm O (14.68)
A :

i=1
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In the limit of a continuous distribution of charge in motion the sum over
j becomes an integral over the current density J(x, £):

e @omro _, 1 fd"x J(x, eI (14.69)
c
Then the intensity distribution becomes
dl(w w? folt —(aex)el]
% e f d’f dzm % [n x J(x, )™ @0 (1470)

a result which can be obtained from the direct solution of the inhomo-
geneous wave equation for the vector potential (14.1).

Of some interest is the radiation associated with a moving magnetic
moment. This can be most easily expressed by recalling from Chapter 5
that a magnetization density (X, t) is equivalent to a current,

Jy=cV x A (14.71)

Then substitution into (14.70) yields
d’;g“’) - 4%:03 f dt f P xM(x, )@ (1472)
If the magnetization is a point magnetic moment w(f) at the point r(),
then M, 1) = p(r) 8[x — 1(1)] (14.73)

and the energy radiated per unit solid angle per unit frequency interval is
di(w) _ w?
dQ 4rm?c®
We note that there is a characteristic difference of a factor w? between the
radiated intensity from a magnetic dipole and an accelerated charge, apart
from the frequency dependence of the integrals.

The general formulas developed in this section, especially (14.65) and
(14.67), will be applied in this chapter and subsequent ones to various
problems involving the emission of radiation. The magnetic-moment
formula (14.74) will be applied to the problem of radiation emitted in
orbital-electron capture by nuclei in Chapter 15.

2

fdl n x p.(t)e'iw(t‘—n-l‘(l)/c) (1474)

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic Charged
Particle in Instantaneously Circular Motion

In Section 14.4 we saw that the radiation emitted by an extremely
relativistic particle subject to arbitrary accelerations is equivalent to that
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Fig. 14.9

emitted by a particle moving instantaneously at constant speed on an
appropriate circular path, The radiation is beamed in a narrow cone in
the direction of the velocity vector, and is seen by the observer as a short
pulse of radiation as the searchlight beam sweeps across the observation
point.

To find the distribution of energy in frequency and angle it is necessary
to calculate the integral in (14.67). Because the duration of the pulse
At" ~ (p[cy) is very short, it is necessary to know the velocity § and
position r(#) over only a small arc of the trajectory whose tangent points
in the general direction of the observation point. Figure 14.9 shows an
appropriate coordinate system. The segment of trajectory l