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Notation

This section includes the most commonly used notation in this book . In
order to avoid departing too much from conventions normally used in liter-
ature on turbulence modeling and general fluid mechanics, a few symbols
denote more than one quantity.

English Symbols

Symbol Definition
a

	

Speed of sound
aijkl

	

Rapid pressure-strain tensor
A� , B, C,a ,D� Coefficients in tridiagonal matrix equation
Ao

	

Van Driest damping constant
Aid

	

Slow pressure-strain tensor
bid

	

Dimensionless Reynolds-stress anisotropy tensor
B

	

Additive constant in the law of the wall
cb l , cb2

	

Closure coefficients
cf

	

Skin friction based on edge velocity, r�,/(2pU')
cf�

	

Skin friction based on freestream velocity, rw/(2PU.)
cwi, cwt, cw3

	

Closure coefficients
Cl, C2

	

Closure coefficients
CP , Cw k

	

Closure coefficients
CD , CE

	

Closure coefficients
Cdif, CK1,b

	

Closure coefficients
CK

	

Kolmogorov constant
CM, CL2

	

Closure coefficients
CP

	

Specific heat at constant pressure ; pressure coefficient
C� CE

	

Closure coefficients
CS

	

Smagorinsky constant
Cv

	

Specific heat at constant volume
C

	

Shear-layer spreading rate



xii
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CE1, CE2, CE3

	

Closure coefficients
CTl, CT2

	

Closure coefficients
C,,

	

Closure coefficient
Cij

	

LES cross-term stress tensor
Cijk

	

Turbulent transport tensor
D

	

Drag per unit body width
Dij

	

Production tensor, rjm8Um/0xj +TjmBUm/8xi
e

	

Specific internal energy ; small-eddy energy
E

	

Total energy ; viscous damping function
E(K)

	

Energy spectral density
E(77)

	

Dimensionless self-similar dissipation rate
Eh

	

Discretization error
fl, fi, f2, fs

	

Viscous damping functions
f, f�

	

Turbulence flux vectors
F(77)

	

Dimensionless self-similar streamfunction
FKleb(y; b)

	

Klebanoff intermittency function
F, F�

	

Mean-flow flux vectors
G

	

Amplitude factor in von Neumann stability analysis
G(x -

	

)

	

LES filter
h

	

Specific enthalpy
H

	

Total enthalpy ; channel height ; shape factor, b"/0
H(x)

	

Heaviside step function
i, j, k

	

Unit vectors in x, y, x directions
Unit (identity) matrix

II, III

	

Stress tensor invariants
j

	

Two-dimensional (j - 0), axisymmetric (j - 1) index
J

	

Specific momentum flux (flux per unit mass)
k

	

Kinetic energy of turbulent fluctuations per unit mass
k 9

	

Geometric progression ratio
kR

	

Surface roughness height
K

	

Distortion parameter
K(r7)

	

Dimensionless self-similar turbulence kinetic energy
KE , K,

	

Effective Karman constant for compressible flows
Kn

	

Knudsen number
Turbulence length scale; characteristic eddy size

P�,fP	Meanfree path
tmix

	

Mixing length
L

	

Characteristic length scale
Lij

	

Leonard stress tensor
M

	

Mach number
Mijki

	

Rapid pressure-strain tensor
M~

	

Convective Mach number



NOTATION x111

Mt Turbulence Mach number, 2k/a
All Closure coefficient
N(q) Dimensionless self-similar eddy viscosity
NCFL CFL number
NW Constant in near-wall solution for w
N(ui) Navier-Stokes operator
p Instantaneous static pressure
pij Instantaneous momentum-flux tensor
P Mean static pressure
pij Production tensor, Ti�,BUj/8x�, +Tjr�8Ui/8x�,
Pk, Pu� P, Net production per unit dissipation of k, w, E

PrL, PrT Laminar, turbulent Prandtl number
qj Heat-flux vector
qw Surface heat flux
qLj , qTj Laminar, turbulent mean heat-flux vector
Qij LES stress tensor, Cij + Rij
Q Dependent variable vector
r, 8, x Cylindrical polar coordinates
R Pipe radius ; channel half height ; perfect gas constant
Rij SGS Reynolds stress tensor
Rij (x,t ;r) Two-point velocity correlation tensor
R Radius of curvature
Rij (x, t; t') Autocorrelation tensor
R+ Sublayer scaled radius or half height, u,R/v
Rp, Rk, Ru, Closure coefficients in viscous damping functions
ReL Reynolds number based on length L
ReT Turbulence Reynolds number, k'l't/v
Re, Sublayer scaled radius or half height, R+
RiT Turbulence Richardson number
Ry Near-wall turbulence Reynolds number, k 1 / 2y/v
sij Instantaneous strain-rate tensor
s, S Source-term vectors
S Source term - production minus dissipation
Sij Mean strain-rate tensor
Sij Oldroyd derivative of Sij
Se , Sk, S� , Sw Source terms in a similarity solution
SB Dimensionless surface mass injection function
SR Dimensionless surface roughness function
t Time
tij Instantaneous viscous stress tensor
T Temperature; characteristic time scale



Greek Symbols

Symbol Definition
a, a*

	

Closure coefficients
&, ,13, y

	

Closure coefficients
ao , ao

	

Closure coefficients in viscous damping functions

xiv NOTATION

T' Freestream turbulence intensity
u, v, w Instantaneous velocity components in x, y, z directions
Ui Instantaneous velocity in tensor notation
u Instantaneous velocity in vector notation
u', v', w' Fluctuating velocity components in x, y, z directions
u; Fluctuating velocity in tensor notation
u` Fluctuating velocity in vector notation
ii, v"", tv- Favre-averaged velocity components in x, y, z directions
iii Favre-averaged velocity in tensor notation
u Favre-averaged velocity in vector notation
u", v", w" Favre fluctuating velocity components in x, y, z directions
u;' Favre fluctuating velocity in tensor notation
u" Favre fluctuating velocity ; fluctuating molecular velocity
Urms , vrms RMS fluctuating velocity components in x, y directions
u;u? Temporal average of fluctuating velocities
U, Friction velocity, T-w/pw
u Velocity perturbation vector
U, V, W Mean velocity components in x, y, z directions
Ui Mean velocity in tensor notation
U Mean velocity in vector notation
U+ Dimensionless, sublayer-scaled, velocity, U/u,
U�, Maximum or centerline velocity
U(rl) Dimensionless self-similar streamwise velocity
vmix Mixing velocity
with Thermal velocity
v�, Surface injection velocity
V(,q) Dimensionless self-similar normal velocity
W(77) Dimensionless self-similar specific dissipation rate
x, y, x Rectangular Cartesian coordinates
xi Position vector in tensor notation
x Position vector in vector notation
y+ Dimensionless, sublayer-scaled, distance, uT y/v
y2 y+ at first grid point above surface
y�, Inner/outer layer matching point
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aT , vT, WT

	

Defect-layer similarity parameters
a, A*

	

Closure coefficients
,QT

	

Equilibrium parameter, (b*/r,,)dP/dx
y

	

Specific heat ratio, CPI,
b

	

Boundary layer or shear layer thickness
6*

	

Displacement thickness, fo (1 - PU) dy

6*

	

Velocity thickness, fo (1 - v) dy
bx

	

Finite-difference matrix operator
6;j	Kronecker delta
0

	

LES filter width
0(x)

	

Clauser thickness, U,6*/u,
OQ, Ox, Ay

	

Incremental change in Q, x, y
At Timestep
e

	

Dissipation per unit mass
Ed

	

Dilatation dissipation
e,

	

Solenoidal dissipation
e ;j

	

Dissipation tensor
Etjk

	

Permutation tensor
Second viscosity coefficient

71

	

Kolmogorov length scale ; similarity variable
B

	

Momentum thickness, L PU (1 - U) dy
rc

	

Karman constant ; thermal conductivity ; wavenumber
kti

	

Effective Karman constant for flows with mass injection
a

	

Taylor microscale
Amax

	

Largest eigenvalue
p

	

Molecular viscosity
/-IT

	

Eddy viscosity
PT;

	

Inner-layer eddy viscosity
PT.

	

Outer-layer eddy viscosity
v

	

Kinematic molecular viscosity, p/p
VT

	

Kinematic eddy viscosity, FAT/p

Dimensionless streamwise distance
*,

	

Closure coefficients
Coles' wake-strength parameter

n+a

	

Pressure-strain correlation tensor
p

	

Mass density
a, tT*

	

Closure coefficients
ok, Q E

	

Closure coefficients
011, O"L2

	

Closure coefficients
0"T, Q ,rl, oT2

	

Closure coefficients

xv
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rr(x)

	

Nonequilibrium parameter

0'ij

	

Instantaneous total stress tensor
T

	

Kolmogorov time scale; turbulence dissipation time
Tij

	

Reynolds stress tensor
Tturnover

	

Eddy turnover time
TXy

	

Reynolds shear stress
Txx , Tyy , Tzz

	

Normal Reynolds stresses
Tw

	

Surface shear stress
v

	

Kolmogorov velocity scale; closure coefficient
Dimensionless parameter, (vw/pu3)dP/dx

X

	

Free shear layer closure coefficient
Streamfunction

Ok, 0e, Ow

	

Parabolic marching scheme coefficients
w

	

Specific dissipation rate ; vorticity vector magnitude

Other

Symbol Definition
&f/(9q

	

Turbulence flux-Jacobian matrix
OF/OQ

	

Mean-flow flux-Jacobian matrix
Os/Oq

	

Source-Jacobian matrix

Subscripts

Symbol Definition
DNS

	

Direct Numerical Simulation
e

	

Boundary-layer-edge value
eq

	

Equilibrium value
LES

	

Large Eddy Simulation
0

	

Centerline value
v Viscous
w

	

Wall (surface) value
00

	

Freestream value

Superscripts

Symbol Definition
+

	

Sublayer-scaled value



Preface

This book has been developed from the author's lecture notes used in pre-
senting a post-graduate course on turbulence modeling at the University of
Southern California . While several computational fluid dynamics (CFD)
texts include some information about turbulence modeling, very few texts
dealing exclusively with turbulence modeling have been written . As a con-
sequence, turbulence modeling is regarded by many CFD researchers as
"black magic," lacking in rigor and physical foundation . This book has
been written to show that turbulence modeling can be done in a systematic
and physically sound manner . This is not to say all turbulence modeling
has been done in such a manner, for indeed many ill-conceived and ill-fated
turbulence models have appeared in engineering journals . Even this au-
thor, early in his career, devised a turbulence model that violated Galilean
invariance of the time-averaged Navier-Stokes equations! However, with
judicious use of relatively simple mathematical tools, systematic construc-
tion of a well-founded turbulence model is not only possible but can be an
exciting and challenging research project .

Thus, the primary goal of this book is to provide a systematic approach
to developing a set of constitutive equations suitable for computation of
turbulent flows . The engineer who feels no existing turbulence model is
suitable for his or her needs and wishes to modify an existing model or to
devise a new model will benefit from this feature of the text . A methodology
is presented in Chapters 3 and 4 for devising and testing such equations .
The methodology is illustrated in great detail for two-equation turbulence
models . However, it is by no means limited to such models and is used
again in Chapter 6 for a full Reynolds-stress model, but with less detail .
A secondary goal of this book is to provide a rational way for deciding

how complex a model is needed for a given problem . The engineer who
wishes to select an existing model that is sufficient for his or her needs
will benefit most from this feature of the text . Chapter 3 begins with the
simplest turbulence models and subsequent chapters chart a course leading
to some of the most complex models that have been applied to a nontrivial
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turbulent flow problem . Two things are done at each level of complexity.
First, the range of applicability of the model is estimated . Second, many of
the applications are repeated for all of the models to illustrate how accuracy
changes with complexity .

The methodology makes extensive use of tensor analysis, similarity so-
lutions, singular perturbation methods, and numerical procedures . The
text assumes the user has limited prior knowledge of these mathemati-
cal concepts and provides what is needed both in the main text and in
the Appendices . For example, Appendix A introduces rudiments of tensor
analysis to facilitate manipulation of the Navier-Stokes equation, which is
done extensively in Chapter 2 . Chapter 3 shows, in detail, the way a sim-
ilarity solution is generated . Similarity solutions are then obtained for the
turbulent mixing layer, jet and far wake . Appendix B presents elements
of singular perturbation theory. Chapters 4, 5 and 6 use the methods to
dissect model-predicted features of the turbulent boundary layer .

No book on turbulence-model equations is complete without a discus-
sion of numerical solution methods . Anyone who has ever tried to obtain a
numerical solution to a set of turbulence transport equations can attest to
this . Often, standard numerical procedures just won't work and alternative
methods must be found to obtain accurate converged solutions . Chapter 7
focuses on numerical methods and elucidates some of the commonly encoun-
tered problems such as stiffness, sharp turbulent-nonturbulent interfaces,
and difficulties attending turbulence related time scales .

The concluding chapter presents a brief overview of new horizons in-
cluding direct numerical simulation (DNS), large-eddy simulation (LES)
and the interesting mathematical theory of chaos .

Because turbulence modeling is a key ingredient in CFD work, the text
would be incomplete without companion software implementing numerical
solutions to standard turbulence model equations . Appendices C and D
describe several computer programs that are included on the floppy disk
accompanying the book . The programs all have a similar structure and can
be easily modified to include new turbulence models .

The material presented in this book is appropriate for a one-semester,
first or second year graduate course, or as a reference text for a CFD course .
Successful study of this material requires an understanding of viscous-flow
and boundary-layer theory. Some degree of proficiency in solving partial
differential equations is also needed . A knowledge of computer program-
ming, preferably in FORTRAN, will help the reader gain maximum benefit
from the companion software described in the Appendices .

I extend my thanks to Dr . L . G . Redekopp of USC for encouraging and
supporting development of the course for which this book is intended . A
friend of many years, Dr . P . Bradshaw, reviewed the entire manuscript as I



wrote it, and taught me a lot through numerous discussions, comments and
suggestions that greatly improved the final draft. Another long time friend,
Dr . D. D . Knight, helped me understand why I had to write this book,
reviewed the manuscript from cover to cover and offered a great deal of
physical and computational insight in the process . My favorite mathematics
teacher, Dr . D. S . Cohen, made sure I omitted the dot over every t and
crossed every z in Appendix B. Drs. F. R. Menter and C. C. Horstman were
kind enough to provide results of several of their computations in digital
form . Thanks are also due for the support and help of several friends and
colleagues, most notably Drs. P. J . Roache, C . G. Speziale and R. M. C.
So .

I thank the nine students who were the first to take the course that this
book was written for . Their patience was especially noteworthy, partic-
ularly in regard to typographical errors in the homework problems! That
outstanding group of young engineers is D. Foley, R. T . Holbrook, N . Kale,
T.-S . Leu, H . Lin, T. Magee, S. Tadepalli, P. Taniguchi and D. Wallace.

Finally, I owe a lifelong debt to my loving wife Barbara for tolerating
the hectic pace first in college and then in the business world. Without her,
this book would not have been possible .

David C. Wilcoz
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