Chapter 8

New Horizons

The focus of the previous chapters has been on approximate models for use
in general engineering applications. Throughout this text, we have stressed
the virtue of using the minimum amount of complexity while capturing the
essence of the relevant physics. This is the same notion that G. I. Taylor
described as the “simple model/simple experiment” approach. Neverthe-
less, no pretense has been made that any of the models devised in this
spirit applies universally to all turbulent flows. We must always proceed
with some degree of caution since there is no guarantee that such models
are accurate beyond their established data base. Thus, while simplicity has
its virtues for many practical engineering applications, there is a danger
that must not be overlooked. Specifically, as quipped by H. L. Mencken,
“to every difficult question there is a simple answer — which is wrong.”

This chapter discusses modern efforts that more directly address the
physics of turbulence without introducing Reynolds closure approximations.
We begin by discussing Direct Numerical Simulation (DNS) in which the
exact Navier-Stokes and continuity equations are solved, albeit at reiatively
low Reynolds numbers. Next, we turn to Large Eddy Simulation (LES) in
which the largest eddies are computed exactly and the smallest eddies are
modeled, hopefully with a non-critical impact on the simulation. Finally,
we discuss current efforts in chaos studies, and their possible relevance to
turbulence.

8.1 Background Information

Before plunging into these topics, it is worthwhile to pause and discuss cer-
tain aspects of turbulence that we haven’t explicitly addressed in preceding
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chapters. The first important point we must consider is that of the smallest
scales of turbulence. Qur primary focus in devising closure approximations
has been on the dynamics of the largest eddies, which account for most
of the transport of properties in a turbulent flow. Our use of dimensional
analysis, in which molecular viscosity has been ignored, guarantees that the
closure approximations involve length scales typical of the energy-bearing
eddies whose Reynolds number — however defined — is much larger than
one except close to a solid surface, i.e., in the viscous wall region, yt <3,
say. (This is the reason that viscous damping functions are often needed
close to a solid boundary where the dissipating eddies dominate, and even
the energy-bearing eddies have Reynolds numbers of order one.) To achieve
a more complete description of turbulence, we must determine what the
smallest length scale in a turbulent flow is.

Interestingly, we can estimate the magnitude of the smallest scales by
again appealing to dimensional analysis. Of course, to establish the relevant
dimensional parameters, we must first consider the physics of turbulence
at very small length scales. We begin by recalling that the cascading pro-
cess present in all turbulent flows involves a transfer of kinetic energy from
larger eddies to smaller eddies. Dissipation of kinetic energy to heat through
the action of molecular viscosity occurs at the scale of the smallest eddies.
Because small-scale motion tends to occur on a short time scale, we can
reasonably assume that such motion is independent of the relatively slow
dynamics of the large eddies and of the mean flow. Hence, the smaller ed-
dies should be in a state where the rate of receiving energy from the larger
eddies is very nearly equal to the rate at which the smallest eddies dissipate
the energy to heat. This is known as Kolmogorov’s (1941) universal equi-
librium theory, a corollary of which is his hypothesis of local isotropy
that we appealed to in developing some of the closure approximations in
Chapter 6. Hence, the motion at the smallest scales should depend only
upon: (a) the rate at which the larger eddies supply energy, ¢, and (b) the
kinematic viscosity, v.

Having established ¢ and v as the appropriate dimensional parameters,
it is a simple matter to form the following length (7), time (7) and velocity
(v) scales.

n= (l/3/€)1/4 , T= (1//6)1/2 , U= (ue)l/4 (8.1)

These are the Kolmogorov scales of length, time and velocity. To ap-
preciate how small the Kolmogorov length scale is for example, recall that
the length scale appropriate to the energy-bearing eddies, ¢, (often referred
to as the integral scale in statistical turbulence theory) is related to € by



8.1. BACKGROUND INFORMATION 315

Equation (4.8), so that
% ~ Re;?l* (8.2)

where Rer = k'/24/v is the usual turbulence Reynolds number. Since
values of Rer in excess of 10* are typical of fully-developed turbulent
boundary layers and £ ~ 0.16 where § is boundary-layer thickness, the
Kolmogorov length scale, 7, outside the viscous wall region is less than one
ten-thousandth times the thickness of the boundary layer.

Another turbulence length scale often referred to in the statistical theory
of turbulence is the Taylor microscale, A [c.f., Tennekes and Lumley
(1983) or Hinze (1975)]. For isotropic turbulence, it is defined by

Y\ 2 )
€= 15u<%—‘;) = 15:/';—2 (8.3)

Again, using Equation (4.8), and assuming k ~ w2, we conclude that

% ~ Re;ll2 or A~ (£n?)1/3 (8.4)

Thus, in general we can say that for high-Reynolds-number turbulence there
is a distinct separation of these scales, i.e.,

nLAKY (8.5)

Results of numerical simulations are often characterized in terms of the
microscale Reynolds number, Re), defined by

Rey = kY2 /v (8.6)

Finally, the eddy turnover time, Tiyrnover, is simply the ratio of the
macroscales for length, ¢, and velocity, k'/2, and is given by

Tiurnover ™~ e/kI/Z (87)

The eddy turnover time is a measure of the time it takes an eddy to interact
with its surroundings. It is also the reciprocal of the specific dissipation
rate, w.

A second important consideration is the spectral representation of tur-
bulence properties. That is, since turbulence contains a continuous spec-
trum of scales, it is often convenient to cast our analysis in terms of the
spectral distribution of energy. If £ denotes wavenumber and F(k)dx is
the turbulence kinetic energy contained between wavenumbers & and k+dk,
we can say

l_ [o0)
k= Euﬁu: = / E(k)dk (8.8)
0
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Recall that k is half the trace of the autocorrelation tensor, R;;, defined
in Equation (4.50). Correspondingly, the energy spectral density or
energy spectrum function, E(k), is the Fourier transform of half the
trace of R;;. In general, we regard a spectral representation as a decom-
position into wavenumbers (k) or, equivalently, wavelengths (27/k). See
Tennekes and Lumley (1983) for a detailed discussion of energy spectra. In
the present context, we think of the reciprocal of £ as the eddy size.

In general, E(x) is a function of v, ¢, £, k and the mean strain rate,
S. We needn’t consider k as it can be expressed in terms of ¢ and £.
As part of his universal equilibrium theory, Kolmogorov also made the
hypothesis that for very large Reynolds number, there is a range of eddy
sizes between the largest and smallest for which the cascade process is
independent of the statistics of the energy-containing eddies (so that S
and £ can be ignored) and of the direct effects of molecular viscosity (so
that v can be ignored). The idea is that a range of wavenumbers exists in
which the energy transferred by inertial effects dominates, wherefore E(x)
depends only upon ¢ and k. On dimensional grounds, he thus concluded
that

1 1
E(K.) = CK52/3K;_5/3’ 7 LK K ;I- (89)

where Ck is the Kolmogorov constant. Because inertial transfer of energy
dominates, Kolmogorov identified this range of wavenumbers as the iner-
tial subrange. The existence of the inertial subrange has been verified by
many experiments and numerical simulations, although many years passed
before definitive data were available to confirm its existence. Figure 8.1
shows a typical energy spectrum for a turbulent flow.

The Kolmogorov -5/3 law is so well established that, as noted by Rogallo
and Moin (1984), theoretical or numerical predictions are regarded with
skepticism if they fail to reproduce it. Its standing is as important as the
law of the wall. With these preliminary remarks in hand, we are now in a
posttion to discuss DNS and LES in the next two sections.

8.2 Direct Numerical Simulation

A direct numerical simulation, or DNS for short, means a complete time-
dependent solution of the Navier-Stokes and continuity equations. The
value of such simulations is obvious. From a practical standpoint, computed
statistics can be used to test proposed closure approximations in engineer-
ing models. At the most fundamental level, they can be used to obtain
understanding of turbulence structure and processes that can be of value in
developing turbulence control methods (e.g., drag reduction) or prediction
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Figure 8.1: Energy spectrum for a turbulent flow — log-log scales.

methods. They can also be viewed as an additional source of experimental
data that have been taken with unobtrusive measuring techniques. This is
especially desirable in obtaining information about essentially unmeasur-
able properties like pressure fluctuations.

All of these comments assume the DNS is free of significant numeri-
cal, and other, forms of error. This is a nontrivial consideration, and the
primary concerns in DNS are related to numerical accuracy, specification
of boundary and initial conditions, and making optimum use of available
computer resources. This section will discuss these issues briefly. For more
detail at an introductory level, see the excellent (although a bit dated)
review article by Rogallo and Moin (1984).

Estimating the number of grid points and timesteps needed to perform
an accurate DNS reveals the complexity of the problem from a computa-
tional point of view. As an example, consider incompressible turbulent flow
in a channel of height H. The computational domain must be of sufficient
extent to accommodate the largest turbulence scales. In channel flow, ed-
dies are elongated in the direction parallel to the channel walls, and their
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length A is known to be about 2H. Also, in principle, the grid must be
fine enough to resolve the smallest eddies whose size is of the order of the
Kolmogorov length scale, 7. Assuming that at least 4 grid points in each
direction are needed to resolve an eddy (since we need adequate resolution
of derivatives), we estimate that the total number of grid points for uniform
spacing, Nuniform, 18

AT? e /43
Nuniform % [4;] = [SH (V—3) ] (8.10)

Now, in channel flow, the average dissipation is ¢ ~ 2u2U,,/H where U,
is the average velocity across the channel, and Uy, /u, = 20. Substituting
these estimates into Equation (8.10), we arrive at

uH/f2
v

Nuniform % (110Re;)*’* | Re, = (8.11)

In practice, it is wasteful to use uniformly spaced grid points since there
are regions where ¢ is small and the Kolmogorov length scale is much larger
than it is near the surface where ¢ is largest. By using stretched grids to
concentrate points where the smallest eddies reside, experience [Moser and
Moin (1984}, Kim, Moin and Moser (1987)] shows that the factor of 110 in
Equation (8.11) can be replaced by about 3. Thus, the actual number of
grid points typically used in a DNS of channel flow, Npyg, is

Npws = (3Re,)*/* (8.12)

Similarly, the timestep in the computation, At, should be of the same
order as the Kolmogorov time scale, 7 = (v/¢)!/2. Based on the results of
Kim, et al. (1987), the timestep must be

003 H
Vv Re, ur

To appreciate how prohibitive these constraints are, consider the chan-
nel flow experiments done by Laufer (1951) at Reynolds numbers of 12,300,
30,800 and 61,600 and the experiment of Comte-Bellot (1963) at a Reynolds
number of 230,000. Table 8.1 lists the number of grid points and timesteps
required to perform a DNS, assuming the time required to reach a sta-
tistically steady state is 100H/U,, ~ 5H/u,. Clearly, computer memory
limitations make all but the lowest Reynolds number considered by Laufer
impractical with computers of the early 1990’s. However, it is very impres-
sive indeed that a simulation is feasible for at least one of Laufer’s cases.

At ~

(8.13)
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Table 8.1: Grid point and timestep requirements for channel-flow DNS

[ Ren Re; Npns__ Timesteps |
12,300 360 6.7-10° 32,000
30,800 800 4.0-107 47,000
61,600 1,450 1.5.-108 63,000

230,000 4,650 2.1-10° 114,000

The computations of Kim, et al. (1987) provide an example of the com-
puter resources required for DNS of channel flow. To demonstrate grid
convergence of their methods, they compute channel flow with Re, = 180,
corresponding to Rey ~ 6,000 using grids with 2 - 10° and 4 - 10® points.
For the finer grid, the CPU time on a Cray X/MP was 40 seconds per
timestep, was run for a total time 5H/u., and required 250 CPU hours.

Both second-order accurate and fourth-order accurate numerical algo-
rithms have been used in DNS research to advance the solution in time.
There are two primary concerns regarding numerical treatment of the spa-
tial directions. The first is achieving accurate representations of derivatives,
especially at the smallest scales (or, equivalently, the highest wavenum-
bers). Spectral methods — Fourier series in the spatial directions — are
used to insure accurate computation of derivatives. If derivatives are inac-
curate at the smallest scales, excessive energy accumulates in the smallest
finite-difference cells, resulting in excessive dissipation. Consequently, the
primary issue in demonstrating grid convergence of a DNS is to verify that
the energy spectrum, F(k), displays a rapid decay, often referred to as the
rolloff, near the Kolmogorov length scale, . While spectral methods are
more accurate for computing derivatives at the smallest scales, they are
not amenable to arbitrary grid-point spacing. The second issue is to avoid
a phenomenon known as aliasing. This occurs when nonlinear interac-
tions among the resolved wavenumbers produce waves with wavenumbers
greater than K,,4z, which can be misinterpreted numerically. If special pre-
cautions are not taken, this can result in a spurious transfer of energy to
small wavenumbers [Ferziger (1976)].

In their grid-convergence study, Kim, et al. (1987) show that their en-
ergy spectra display the characteristic rolloff approaching the Kolmogorov
length scale. This is true even though their computations actually resolve
the flow down to about 27, rather than to . This means the actual dissi-
pation results from a combination of the true viscosity and some amount of
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numerical viscosity. Although the smallest eddies are not resolved in regions
such as the viscous superlayer near the edge of a turbulent/nonturbulent
interface, the resolution is fine enough to insure that the rate of dissipation
is correctly predicted. Most importantly, the peak dissipation near the sur-
face occurs between 67 and 107, which is well resolved in the simulation. As
in physical turbulence, the smallest eddies in the DNS apparently achieve
an equilibrium state in which they dissipate the kinetic energy cascaded
from the larger eddies.

As an example of the type of numerical algorithm used in DNS re-
search to advance the solution in time, Kim, et al. (1987), use a procedure
very similar to that used in Program EDDYBL (Section 7.3 and Appendix
(), viz., Crank-Nicolson differencing for the viscous terms, and the three-
point forward difference formulation (Adams-Bashforth) for the convective
terms. To improve numerical accuracy for the smaliest eddies, the equations
are Fourier transformed in the streamwise and spanwise directions. This
also permits use of the Fast Fourier Transform (FFT) [Cooley and Tukey
(1965)], which is extremely efficient on a computer. Fourier transforms are
suitable as the flow can be treated as though it is periodic in these direc-
tions. This cannot be done in the direction normal to the surface because of
the no-slip boundary condition. Rather, a Chebychev polynomial expansion
is used, which yields similar gains in numerical accuracy and computational
efficiency. Using Fourier, Chebychev and other eigenfunction expansions, is
known as the spectral method in its most precise form. A more-efficient
approximation exists known as the pseudo-spectral method. Spectral
and pseudo-spectral methods were pioneered by Orszag, et al. [Patterson
and Orszag (1971), Orszag (1972), and Gottlieb and Orszag (1977)].

The primary difficulty with boundary conditions in a DNS is at open
boundaries. Because of the elliptic nature of the problem, the flow at
such boundaries depends on the unknown flow outside the computational
domain. This problem is circumvented by imposing periodic boundary con-
ditions for directions in which the flow is statistically homogeneous (e.g.,
the streamwise and spanwise directions in channel flow). Flows that grow
in the streamwise direction in a nearly self-similar manner (e.g., equilib-
rium boundary layers) can be reduced to approximate homogeneity by a
coordinate transformation [Spalart (1986), Spalart (1988), Spalart (1989)).
Most simulations done to date are homogeneous or periodic in at least two
spatial directions. Boundary conditions at a solid boundary pose no special
problems where the no-slip velocity boundary condition applies.

Initial conditions are often obtained from results of a previous simulation
if available. If no such results are available, a random fluctuating velocity
field can be added to a prescribed mean-velocity field. After a few eddy
turnover times, the correct statistics ultimately evolve. Interestingly, the
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work done to date shows a feature of turbulence that illustrates one of its
mysteries. Suppose we have generated a solution from some given set of
initial conditions. Suppose further that we make a small perturbation in
the initial conditions and repeat the computation. We find that, after a few
eddy-turnover times, the second solution, or realization, is very different
from the first. However, in terms of all statistical measures, the two flows
are identical!

This is the classical problem of predictability discussed, for example,
by Sandham and Kleiser (1992). As a simple example, two strangers in a
crowd tend to drift apart. If one steps on another’s foot twice, the stepee
thinks the stepor does it on purpose, although the cause and effect are com-
pletely random. Thus, while somewhat disconcerting to the mathematician,
this phenomenon should come as no great surprise to the engineer,

DNS matured rapidly during the 1980’s and continues to develop as
more and more powerful computers appear. As an example, DNS data
are currently available for the following flows, and the list of applications
continues to grow.

e Curved channel flow

e Channel flow, with and without heat transfer — values of Rey as
high as 13,750 have been achieved

e Two-dimensional boundary layers in various pressure gradients —
values of Rey as high as 1,410 have been achieved

e Three-dimensional flows including flow over a swept wing
e Two-dimensional separating and reattaching flows

(a) shallow separation bubble on a flat surface
(b) flow over a backward-facing step

e Two-dimensional time- and spatially-developing mixing layers
o Three-dimensional Ekman layer

o Two-dimensional buoyant flows

e Two-dimensional homogeneously-strained flows

e Two-dimensional homogeneous flows with constant-density chemical
reactions

e Compressible homogeneous flows with bulk compression in one, two
or three directions

Transitional compressible flows
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8.3 Large Eddy Simulation

A Large Eddy Simulation, or LES for short, is a computation in which
the large eddies are computed and the smallest eddies are modeled. The
underlying premise is that the largest eddies are directly affected by the
boundary conditions and must be computed. By contrast, the small-scale
turbulence is more nearly isotropic and has universal characteristics; it is
thus more amenable to modeling.

Because LES involves modeling the smallest eddies, the smallest finite-
difference cells can be much larger than the Kolmogorov length, and much
larger timesteps can be taken than are possible in a DNS. Hence, for a given
computing cost, it is possible to achieve much higher Reynolds numbers
with LES than with DNS. Based on a combination of estimates given by
Rogallo and Moin (1984) and recent channel-flow LES results of Yang and
Ferziger (1993), the number of grid points required for channel flow, Npgs

should be 04
NLES ~ (—-) NDNS (8.14)
Rey4

Table 8.2 compares grid point requirements based on this estimate. Cred-
ible channel-flow results have been obtained with fewer grid points by us-
ing the law of the wall to obviate integration through the viscous sub-
layer. Deardorff (1970), for example has done a LES of Laufer’s (1951)
Rey = 61,600 channel-flow experiment using just 6,720 mesh points. Schu-
mann (1975) has computed channel flow with Rey > 10* using 65,536
points, and the computations even include temperature fluctuations and
heat transfer. Grotzbach (1979) has done a LES for buoyancy-driven mix-
ing in a nuclear reactor with 1621628 = 2,048 grid points. In all cases,
sensible statistics have been obtained for the largest eddies, although mean-
flow properties such as velocity sometimes differ from measurements by as
much as 15%. While using the law of the wall as a boundary condition
is attractive from a computing-cost point of view, this approach has been
abandoned in most recent LES work. No viable scheme has been developed
to establish the fluctuating quantities in the log layer, which are needed
along with the overall statistics to achieve a suitable boundary condition.
As a final comment, although LES is more economical than DNS (typically
requiring 5 to 10% of the CPU time needed for DNS), the method still
requires large computer resources.

Aside from the issue of the need to resolve the smallest eddies, the com-
ments regarding DNS numerics, boundary and initial conditions in the pre-
vious section hold for LES as well. The primary issue in accuracy remains
that of computing derivatives at the smallest scales (highest wavenumbers)
resolved. The ultimate test of grid convergence is again the requirement
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Table 8.2: Grid point requirements for channel-flow DNS and LES

[ Ren Re, Npns Npes |
12,300 360 6.7-10° 6.1-10°
30,800 800 4.0-107 3.0-10°
61,600 1,450 15-10° 1.0-107

230,000 4,650 2.1.10° 1.0-10%

that excessive energy must not accumulate in the smallest scales. The
primary requirement is to get the dissipation rate right; details of the dissi-
pating eddies are unimportant in LES. (By contrast, DNS requires accurate
simulation of the dissipating eddies.) If spectral or pseudo-spectral meth-
ods are used, the same boundary-condition difficulties hold in both DNS
and LES.

To understand the primary difference between DNS and LES, we must
introduce the concept of filtering. To understand this concept, note first
that the values of flow properties at discrete points in a numerical simula-
tion represent averaged values. To see this explicitly, consider the central-
difference approximation for the first derivative of a continuous variable,
u(z), in a grid with points spaced a distance h apart. We can write this as

follows. .
w@+h)—ul@—h) d[1 [°F
- - [-27 G ds] (8.15)

This shows that the central-difference approximation can be thought of
as an operator that filters out scales smaller than the mesh size.
Furthermore, the approximation yields the derivative of an averaged value
of u(z).

There are many kinds of filters that can be used. The simplest type of
filter is the volume-average box filter used by Deardorff (1970), one of
the earliest LES researchers. The filter is:

1 e+iAz py+iAy prtiAz
weh=gm [ [ [ wendeani s10)
rz—%az Jy z— %Az

—%Ay

The quantity u; denotes the resolvable-scale filtered velocity. The
subgrid scale (SGS) velocity, u}, and the filter width, A are given by

Wi=ui—T and A =(AzAyAz)'/? (8.17)
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Leonard (1974) defines a generalized filter as a convolution integral, viz.,

T(x,t) = //] G(x — & A)w;(€,t) d3¢ (8.18)

The filter function, G, is normalized by requiring that

// Gx—-&A)de=1 (8.19)

In terms of the filter function, the volume-average box filter as defined in
Equation (8.16) is:

. _ l/Aa, I:L','—E,’I<AI,'/2
Clx=¢&4)= { 0, otherwise (8.20)
The Fourier transform of Equation (8.18) is U;(k,t) = G(k)Ui(k,t) where
U; and G represent the Fourier transforms of u; and G. Fourier spectral
methods implicitly filter with

G(k;A)=0 for |&|> Kmaz = 27/A (8.21)

As an example, Orszag et al. [see Ferziger (1976)] use

3 . e
G(x—&A) = 11—31:[1 E%g(:”’_e—g/)ié (8.22)

The Gaussian filter [Ferziger (1976)] is popular in LES research, and is
defined by

3/2 _el2
G(x-&;A) = (r%) exp (-—6 E‘Tﬂ) (8.23)

Many other filters have been proposed and used, some of which are nei-
ther isotropic nor homogeneous. In all cases however, the filter introduces
a scale A that represents the smallest turbulence scale allowed by the filter.

The filter provides a formal definition of the averaging process and sep-
arates the resolvable scales from the subgrid scales. We use filtering
to derive the resolvable-scale equations. For incompressible flow, the
continuity and Navier-Stokes equations assume the following form.

61:,'
Ju; 0 18p 0%;

5t t a5, T = 50 Y a0

=0 (8.24)

(8.25)
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Now, the convective flux is given by
ity = U + Lij + Cij + Rj (8.26)
where .
Lij = TW, — a;;
Cij = m-i— W (8.27)
Rij =
Note that filtering differs from standard averaging in one important respect:

U # U (8.28)

i.e., a second averaging yields a different result from the first averaging. The
tensors L;;, Cj; and R;; are known as the Leonard stress, cross-term
stress and the SGS Reynolds stress, respectively.

Leonard (1974) shows that the Leonard stress term removes significant
energy from the resolvable scales. It can be computed directly and needn’t
be modeled. This is sometimes inconvenient however, depending on the nu-
merical method used. Leonard also demonstrates that since @; is a smooth
function, L;; can be computed in terms of its Taylor series expansion, the
first term of which is

Ly~ BV @w), w= [[[lerc@ e (8.29)

Clark, et al. (1979) verify that this representation is very accurate at low
Reynolds number by comparing with DNS results. However, as shown
by Shaanan, Ferziger and Reynolds (1975), the Leonard stresses are of
the same order as the truncation error when a finite-difference scheme of
second-order accuracy is used, and are thus implicitly represented.

The cross-term stress tensor, C;;, also drains significant energy from the
resolvable scales. An expansion similar to Equation (8.29) can be made for
C;j. However, most current efforts model the sum of Cj; and R;;. Clearly,
the accuracy of a LES depends critically upon the model used for these
terms.

We can now rearrange Equation (8.25) into a more conventional form,
ie.,

o; o ,_._ . _ 1opP o ow; |
3t + 5‘;; U,UJ) = _-pa.'t, 517]- [llazj + P ] (830)
where o
";i = — (Qi; — 2Qkxbij)
P =P+ 5pQuibi; (8.31)

Qij = Rij + G
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At this point, the fundamental problem of Large Eddy Simulation
is evident. Specifically, we must establish a satisfactory model for the SGS
stresses as represented by the tensor Q;;. To emphasize the importance of
achieving an accurate SGS stress model, consider the following. In simulat-
ing the decay of homogeneous isotropic turbulence with 163 = 4,096 and
323 = 32,768 grid points, Ferziger (1976) reports that the SGS turbulence
energy is 29% and 20%, respectively, of the total. Thus, the subgrid scales
constitute a significant portion of the turbulence spectrum. The various
attempts at developing a satisfactory SGS stress model during the past
four decades resemble the research efforts on engineering models discussed
in Chapters 3 - 6. That is, models have been postulated that range from
a simple gradient-diffusion model [Smagorinsky (1963)], to a one-equation
model [Lilly (1966)], to the analog of a second-order closure model [Dear-
dorff (1973)]. Nonlinear stress-strain rate relationships have even been pos-
tulated [Bardina, Ferziger and Reynolds (1983)]. Only the analog of the
two-equation model appears to have been overlooked, most likely because
the filter width serves as a readily available length scale.

Smagorinsky (1963) was the first to postulate a model for the SGS
stresses. The model assumes the SGS stresses follow a gradient-diffusion
process, similar to molecular motion. Consequently, Ti; is given by

1 /0uw; O0u,
Tij = 2urSij,  Sij = 2 (O_Ti + 6—;) (8.32)
3 z;

where the Smagorinsky eddy viscosity is

nr = p(CsA)?\/Si;Sy (8.33)

and Cg is the Smagorinsky coefficient.

For all of the reasons discussed in Chapter 3, the approximation that
the smallest eddies behave like molecules is just not true. They are con-
stantly interacting in a much more complicated manner than the infrequent
collisions of molecules. Nevertheless, just as the mixing-length model can
be readily calibrated for a given class of flows, so can the Smagorinsky
coefficient, Cs. As with the mixing-length model, the value of Cg is not
universal. Its value varies from flow to flow, and various applications have
been done with [Rogallo and Moin (1984)]:

010< Cg < 0.24 (8.34)

There are two key reasons why the Smagorinsky model has enjoyed some
degree of success. First, the model yields sufficient diffusion and dissipation
to stabilize the numerical computations. Second, low-order statistics of the
larger eddies are usually insensitive to the SGS motions.
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In an attempt to incorporate some representation of the dynamics of
the subgrid scales and to account for backscatter (reverse cascading of
energy from smaller to larger eddies), Lilly (1966) postulates that

pr = pCrA g (8.35)

where ¢2 is the SGS kinetic energy, and Cy, is a closure coefficient. An
equation for g% can be derived from a moment of the Navier-Stokes equation,
which involves several terms that must be modeled. This model is very
similar to Prandtl’s one-equation model {Section 4.2), both in spirit and
in results obtained. As pointed out by Schumann (1975) who used the
model in his LES research, it is difficult to conclude that any significant
improvement over the Smagorinsky model can be obtained with such a
model.

The most complicated SGS model has been created by Deardorff (1973)
for application to the atmospheric boundary layer. The model consists
of 10 partial differential equations and bears a strong resemblance to a
second-order closure model. While the model leads to improved predictions,
its complexity has discouraged many researchers. This is similar to the
situation with the second-order closure models discussed in Chapter 6.

Germano, et al. (1990) [see also Ghosal et al. (1992)], have devised an
interesting new concept that they describe as a Dynamic SGS Model.
Their formulation begins with the Smagorinsky eddy-viscosity approxima-
tion. However, rather than fixing the value of Cg a priori, they permit
it to be computed as the LES proceeds. This is accomplished by using
two filters. Yang and Ferziger (1993) present compelling evidence that this
approach has great potential in their recent computations of flow over a
rectangular obstacle in a channel.

Erlebacher, et al. (1987) have pushed the frontiers of LES research into
compressible flows. They have formulated a compressible flow SGS model
and exercised it in computation of compressible isotropic turbulence. Re-
sults obtained are in excellent agreement with DNS results.

In conclusion, LES holds promise as a future design tool, especially as
computers continue to increase in speed and memory. Intense efforts are
currently focused on devising a satisfactory SGS stress model, which is the
primary deficiency of the method at this time. Even if LES is too expensive
for modern design efforts, results of LES research can certainly be used to
help improve engineering models of turbulence. The future of LES research
appears very bright.
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8.4 Chaos

Our final topic is chaos, a mathematical theory that has attracted consid-
erable attention in recent years. At the present time, no quantitative pre-
dictions for properties such as the reattachment length behind a backward-
facing step or even the skin friction on a flat plate have been made. Hence,
its relevance to turbulence modeling thus far has not been as a compet-
ing predictive tool. Rather, the theory’s value is in developing qualitative
understanding of turbulent flow phenomena.

Chaos abounds with colorful terminology including fractals, folded
towel diffeomorphisms, smooth noodle maps, homeomorphisms,
Hopf bifurcation and the all important strange attractor. Chaos the-
ory stretches our imagination to think of noninteger dimensional space,
and abounds with marvelous geometrical patterns with which the name
Mandelbrot is intimately connected.

In the context of turbulence, the primary focus in chaos is upon nonlin-
ear dynamical systems, i.e., a coupled system of nonlinear ordinary dif-
ferential equations. Mathematicians have discovered that certain dynamical
systems with a very small number of equations (degrees of freedom) possess
extremely complicated (chaotic) solutions. Very simple models have been
created that simulate observed physical behavior for nontrivial problems.
For example, consider an initially motionless fluid between two horizon-
tal heat-conducting plates in a gravitational field. Now suppose the lower
plate is heated slightly. For small temperature difference, viscous forces are
sufficient to suppress any mass motion. As the temperature is increased,
a threshold is reached where fluid motion begins. A series of convective
rolls forms that becomes more and more complicated as the temperature
increases, and the flow ultimately becomes turbulent. This is known as
Rayleigh-Bénard instability or Rayleigh-Bénard convection.

One of the famous successes of chaos theory is in describing this phe-
nomenon with the following three coupled ordinary differential equations.

dx
E—:(Y——X)/PT‘L

‘il_)t/ - - XZ4rX-Y (8.36)
dz

=XV ~bz

The quantity Pry is the Prandtl number, b and r are constants, and X,
Y and Z are related to the streamfunction and temperature. The precise
details of the model are given by Bergé, Pomeau and Vidal (1984), and
are not important for the present discussion. What is important is the
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following. This innocent looking set of equations yields a qualitative analog
to the Rayleigh-Bénard convection problem, including the geometry of the
convection rolls and a solution that resembles turbulent flow.

The central feature of these equations is that they describe what is
known as a strange attractor. This particular attractor was the first to be
discovered and is more specifically referred to as the Lorenz attractor.
For the general case, in some suitably defined phase space in which each
point characterizes the velocity field within a three-dimensional volume (X,
Y and Z for the Lorenz attractor), the dynamical system sweeps out a curve
that we call the attractor. The concept of a phase space is an extension of
classical phase-plane analysis of ordinary differential equations [c.f. Bender
and Orszag (1978)]. In phase-plane analysis, for example, linear equations
have critical points such as the focus, the node and the saddle point. For
a dynamical system, if the flow is steady, the curve is a single point, as
the velocity is independent of time. If the flow is periodic the curve is
closed and we have the familiar limit cycle. The interesting case in chaos is
the unsteady, aperiodic case in which the curve asymptotically approaches
the strange attractor. If the dynamical system is dissipative, as the Lorenz
equations are, the solution trajectories always converge toward an attractor.
Additionally, a slight change in the initial conditions for X, Y and Z causes
large changes in the solution.

Chaos theory puts great emphasis on the strange attractor, and one
of the primary goals of chaos research is to find a set of equations that
correspond to the turbulence attractor. A dynamical regime is chaotic
if two key conditions are satisfied:

1. Its power spectrum contains a continuous part, i.e., a broad band,
regardless of the possible presence of peaks.

2. The autocorrelation function goes to zero in finite time.

Of course, both of these conditions are characteristic of turbulence. The
latter condition means there is ultimately a loss of memory of the signal with
respect to itself. This feature of chaos accounts for the strange attractor’s
sensitive dependence on initial conditions. That is, on a strange
attractor, two neighboring trajectories always diverge, regardless of their
initial proximity, so that the trajectory actually followed by the system is
very sensitive to initial conditions. In chaos, this is known as the butterfly
effect — the notion that a butterfly flapping its wings in Beijing today can
change storm systems in New York next month. It is also precisely what has
been observed about the sensitivity of DNS and LES to initial conditions.

While all of these observations indicate there may be promise in using
chaos to tackle the turbulence problem, there are some sobering realities
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that must be faced. The broad spectrum of wavelengths in the turbulence
spectrum, ranging from the Kolmogorov length scale to the dimension of
the flow, is far greater than that of the dynamical systems that have been
studied. Hence, as deduced by Keefe (1990) from analysis of DNS data, the
dimension of the turbulence attractor (in essence, the number of equations
needed to describe the attractor) must be several hundreds for Reynolds
numbers barely large enough for turbulence to exist. As noted by Bradshaw
(1992), “the most ambitious efforts require an amount of computing time
which is not much less than that of a large-eddy simulation.”

The layman oriented book by Gleick (1988) provides an excellent intro-
duction to this fascinating theory in general. As a more focused reference,
Deissler (1989) presents a review of chaos studies in fluid mechanics.
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