
Chapter 7

Numerical Considerations

Modern turbulence model equations pose special numerical difficulties that
must be understood in order to obtain reliable numerical solutions, even for
boundary-layer flows where the equations are parabolic . For one-equation,
two-equation and second-order closure models, these difficulties include
stiffness caused by the presence of an additional time scale, singular be-
havior near solid boundaries, and non-analytical behavior at sharp turbu-
lent/nonturbulent interfaces . This chapter focuses on these difficulties and
on the solution methods for turbulence-model equations that have evolved.

7 .1

	

Multiple Time Scales and Stiffness
One key issue that must be addressed in developing a numerical algorithm
for fluid-flow problems is that of the physically relevant time scales . Taking
proper account of these time scales is a necessary condition for numerical
accuracy. For example, when we deal with non-chemically-reacting laminar
flow, there are two distinct time scales corresponding to different physical
processes . If L and U denote characteristic length and velocity for the
flowfield, a is sound speed and v is kinematic viscosity, the time scales are:

0 Wave propagation, twave - L/JU f al

9 Molecular diffusion, td;ff - L2/v

When we use turbulence transport equations, we have yet another time
scale corresponding to the rate of decay of turbulence properties . In terms
of the specific dissipation rate, w - elk, this time scale is :

e Dissipation, tdi,, - 1/w - k/c
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Any numerical algorithm designed for use with turbulence transport equa-
tions should reflect all three of these time scales .

In terms of the Reynolds number, RCL = UL/v, and the Mach number,
M

	

=

	

U/a, the ratio of tdiff to wwave is given by

tdiff N IM f IJRCL

wwave M

Clearly, for high Reynolds number flows the diffusion time scale is much
longer than the wave propagation time scale regardless of Mach number .
Diffusion will generally be important over very short distances such as the
thickness of a boundary layer, b, i.e ., when L - S. For specified freestream
Mach and Reynolds numbers, the relative magnitudes of the diffusion and
wave propagation time scales are more-or-less confined to a limited range.
This is not the case for the dissipation time scale .

The specific dissipation rate can vary by many orders of magnitude
across a turbulent boundary layer. Consequently, in the same flow, tdiss can
range from values much smaller than the other time scales to much larger .
This is a crude reflection of the physical nature ofturbulence, which consists
of a wide range of frequencies . Thus, regardless of the flow speed, we
should expect the dissipation time to have a nontrivial impact on numerical
algorithms .

Because of the multiplicity of time scales attending use of turbulence
transport equations, especially two-equation models and second-order clo-
sure models, we must contend with an unpleasant feature known as stiff-
ness . An equation, or system of equations, is said to be stiff when there
are two or more very different scales of the independent variable on which
the dependent variables are changing . For example, consider the equation

z
dt2 =

100y

	

(7.2)

The general solution to this equation is

y(t) = Ae-iot + Belot

	

(7.3)

If we impose the initial conditions

y(0) = 1

	

and

	

y(0) = -10

	

(7 .4)

the exact solution becomes

-lot
yesact(t) = e

	

(7 .5)
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Unfortunately, any roundoff or truncation error in a numerical solution
can excite the e'°' factor, viz ., we can inadvertently wind up with

7.2

	

Numerical Accuracy Near Boundaries

7.2.1

	

Solid Surfaces

ynumerical(t) = e-lot + Eeiot

	

Icl « 1 (7.6)

No matter how small c is, the second term will eventually dominate the
solution . The equivalent situation for a system of equations is to have
eigenvalues of the characteristic equation of very different magnitudes .

It is easy to see that most turbulence transport equations hold poten-
tial for being stiff. The k-c model is notoriously stiff when some of the
commonly used viscous damping functions are introduced . Second-order
closure models that use the c equation are often so stiff as to almost pre-
clude stable numerical solution . Some of the difficulty with the e equation
occurs because the dissipation time scale is a function of both k and c.
Transient solution errors in both parameters can yield large variations in
k/c, so that the dissipation time scale can assume an unrealistic range of
values . By contrast, near-wall solutions to models based on the w equation
have well-defined algebraic solutions approaching a solid boundary, and are
thus much easier to integrate .

Proper treatment of boundary conditions is necessary for all numerical so-
lutions, regardless of the equations being solved . Because of the special
nature of turbulence transport equations, there are two types of bound-
ary behavior that require careful treatment. Specifically, quantities such
as dissipation rate, c, and specific dissipation rate, w, grow so rapidly ap-
proaching a solid boundary that they appear to be singular . In fact, w is
singular for a perfectly-smooth wall . Also, at interfaces between turbulent
and nonturbulent regions, velocity and other properties have nearly dis-
continuous slopes approaching the interface . Because wall-bounded flows
typically involve both types of boundaries, accurate numerical solutions
must account for the special problems presented by this unusual solution
behavior .

We know that for a perfectly-smooth wall, the specific dissipation rate varies
in the sublayer as y-2 approaching the surface (see Subsection 4.6 .3) . Even
if we choose to use wall functions to obviate integration through the viscous
sublayer, analysis of the log layer (see Subsection 4.6 .1) shows that both c
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and w are inversely proportional to distance from the surface . In either case,
care must be taken to accurately compute derivatives of such functions .

To illustrate the difficulty imposed by singular behavior approaching a
solid boundary, consider the function 0 defined by

The exact first and second derivatives are

and

dO

	

n

	

and

	

-= n(n + 1)

	

(7.8)dy -

	

yn+1

	

dye

	

yn+2

Using central differences on a uniform grid with yj = joy, a straight-
forward calculation shows that

(LO_
4'j+1 - W9-1

dy~~ 2Ay

_ -;

	

n = 1 or 2

	

(7.7)yn

[j2

j2

1I

n

(dy

	

exact

,~
d2 O ,_

	

`Y9+1 - 2
,~
4'A + 0j-1 N

[

	

j2

	

,2,
dy)e j

ti

	

(Ay)2

	

j2 -1J

n

	dye

	

exact

where subscript j denotes the value at y = yj . Table 7.1 lists the errors
attending use of central differences as a function of Dy/yj for n = 1 and
n=2 .

Table 7.1 : Central Difference Errors for 0 = y-n

(7.9)

(7.10)

Clearly, significant numerical errors are introduced if the ratio Dy/yj is
not small. If wall functions are used (corresponding to n = 1), regardless of
how close the grid point nearest the surface lies, nontrivial numerical errors
in derivatives result for j < 5 . Consequently, simply using wall functions
as effective boundary conditions applied at the first grid point above the

j Ay/y? (% Error)�=1 (% Error)n=2 I

2 .50 33 78
3 .33 13 27
5 .20 4 9
7 .14 2 4
10 .10 1 2
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surface is unsatisfactory. Rather, the value for w or c should be specified
for all points below j = 4 (at a minimum) to insure numerical accuracy.
This is undoubtedly the primary reason why most researchers find their
numerical solutions to be sensitive to near-wall grid-point spacing when
they use wall functions . As an alternative, a relatively large cell can be
used next to the surface, so that for example, yi = 0, y2 = AY, y3 = 1 .2Ay,
etc. As a result of using the Rubel-Melnik (1984) transformation, Program
DEFECT (Appendix C) automatically generates such a grid .

When the k-w or multiscale model is integrated through the viscous
sublayer for a perfectly-smooth surface (corresponding to n = 2), there is
no practical way to avoid having Ay/y2 - 1. The exact solution to the w
equation in the viscous sublayer is

where

where

N,yww~ +2 , y<2.5

	

(7.11)
y

_

	

6/0,

	

without viscous corrections

	

(7.12)N"

	

2/0*,

	

with viscous corrections
If we simply use the value of w according to Equation (7.11) at the first grid
point above the surface, Table 7.1 shows that the molecular diffusion term
will be in error by 78%. This, in turn, will increase values of w at larger
values of y. Recall that the surface value of w has a strong effect on the
additive constant, B, in the law of the wall (see Subsection 4.7.2). Thus,
computing too large a value of w near the surface will distort the velocity
profile throughout the sublayer and into the log layer. That is, numerically
inaccurate near-wall cv values can distort the entire boundary-layer solution .

The remedy that has proven very effective for eliminating this numerical
error is to use Equation (7 .11) for the first 7 to 10 grid points above the
surface . Of course, these grid points must lie below y+ = 2.5 since Equa-
tion (7.11) is not valid above this point. This procedure has been used
in Programs PIPE and SUBLAY (Appendix C) and Program EDDYBL
(Appendix D) .

An alternative procedure for accurately computing near-surface behav-
ior of w is to use the rough-wall boundary condition . As shown in Subsec-
tion 4.7 .2 for the k-w model and Subsection 6 .6 .1 for the multiscale model,

2
w= !T SR at y=0

	

(7.13)vw

SR = (50/kR+) 2 ,

	

kR+ < 25

	

(7.14)
The quantity kR+ = u,kR/vw is the scaled surface roughness height .



278

	

CHAPTER 7 . NUMERICAL CONSIDERATIONS

In order to simulate a smooth surface, we simply require that kR+ be
smaller than 5 . Then, combining Equations (7.13) and (7.14), we arrive at
the slightly-rough-surface boundary condition on w, viz .,

2500v.
w =

	

k2

	

at

	

y= 0

	

(7.15)
R

It is important to select a small enough value of kR to insure that k+R < 5 .
If too large a value is selected, the skin friction values will be larger than
smooth-wall values .

As a final comment, the near-wall solution to the w equation for a rough
wall is given by

y+ < 2.5

	

(7.16)

where w �, is the surface value of w and N, is given in Equation (7.12) .
An important test for numerical accuracy of any finite-difference program
implementing the w equation is to verify that solutions match either Equa-
tion (7 .11) or (7.16) . If the program fails to accurately reproduce the near-
wall w variation, the program is unlikely to yield accurate results .

Rapid variation of the dependent variable is not the only potential
source of numerical error near solid boundaries . Another serious consid-
eration is roundoff error resulting from the relatively small difference be-
tween two numbers of comparable magnitude. This problem is frequently
encountered with low-Reynolds-number k-c models. For example, damping
functions such as

f2 =1 - e-ReT

	

and

	

f,, = 1 - e 0.0115y+

appear in the Lam-Bremhorst (1981) and Chien (1982) models . Approach-
ing the surface, desired asymptotic behavior depends upon accurate values
of these damping functions . If single-precision accuracy is used, it is advis-
able to use Taylor series expansions for the damping functions close to the
surface . For example, Chien's fm can be computed according to

1-e-o.oiisy+

	

y+ > 0.01
0 .0115y+,

	

y+ < 0.01

(7.17)

(7.18)

This procedure is used in Program EDDYBL (Appendix D) to insure nu-
merically accurate solutions .
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7.2.2

	

Turbulent/Nonturbulent Interfaces
More often than not, turbulence model equations that are in general usage
appear to predict sharp interfaces between turbulent and nonturbulent re-
gions, i.e ., interfaces where discontinuities in derivatives of flow properties
occur at the edge of the shear layer. As noted in earlier chapters, these in-
terfaces bear no relation to the physical turbulent/nonturbulent interfaces
that actually fluctuate in time and have smooth Reynolds-averaged proper-
ties . The mixing-length model, for example, exhibits a sharp interface for
the far wake (see Subsection 3.3 .1). That is, the predicted velocity profile
is

U(x, y) _
~

U°° - 1.38

	

D [1 - (y/6)3/212,

	

y < S

y>b
(7.19)

where U,,, is freestream velocity, D is drag per unit width, p is density, y is
distance from the centerline and S is the half-width of the wake . Clearly, all
derivatives of U above 82U/8y2 are discontinuous at y = b. Such a solution
is called a weak solution to the differential equation .

By definition [see Courant and Hilbert (1966)], a weak solution to a
partial differential equation

a

	

19
L[u] = ax P(x, y, u) + a-Q(x, y, u) + S(x, y, u) = 0

	

(7 .20)

satisfies the following conditions .

1 . u(x, y) is piecewise continuous and has piecewise continuous first
derivatives in two adjacent domains, Rl and R2 .

2. .C[u] = 0 in Rl and R2-

3. For any test function O(x, y) that is differentiable to all orders and
that is identically zero outside of Rl and R2, the following integral
over the combined region R= Rl U R2 must be satisfied .

f

	

[P 8x + Q 9y - `5c¢~ dxdy = 0

	

(7 .21)
R

A similar result holds for a system of equations . Clearly, Equation (7 .21)
can be rewritten as

ff ['Ox

	

19Y+'] dxdy-fIR 0 ['P
ax + aQ + S] dxdy -_ 0 (7 .22)

The second integral vanishes since P, Q and S satisfy the differential equa-
tion in both Rl and R2 . Then, using Gauss' theorem, if 1' is the curve of



280

	

CHAPTER 7. NUMERICAL CONSIDERATIONS

discontinuity that divides Rl and R2 and n = (n.,, n,,) is the unit normal
to F, there follows :

f 0 ([P]n. + [Q]ny ) ds = 0

	

(7 .23)

The symbols [P] and [Q] denote the jumps in P and Q across F . Since the
function 0 is arbitrary, we can thus conclude that the jump condition
across the surface of discontinuity is given by

[P]n .,,, + [Q]ny = 0

	

(7.24)

For example, in the case of the far-wake solution given by the mixing
length model, we have P = U,,.U, Q = -(ab,9U18y)2 and S = 0 . In-
spection of Equation (7.19) shows that the jumps in P and Q are both
zero, corresponding to the fact that the discontinuity appears in the second
derivative rather than the first .

The occurrence of weak solutions causes problems on at least two counts .
First, the jump condition is not unique . For example, if Q can be written
as a function of P, we can always multiply Equation (7.20) by an arbitrary
function O(P), and rearrange as follows :

In other words, we can have any jump condition we want (and don't want!) .
This means we have no guarantee that our solution is unique .

The second difficulty posed by the presence of weak solutions is an
adverse effect on accuracy and convergence of numerical solution meth-
ods . For example, a central-difference approximation for a first derivative
is second-order accurate provided the function of interest is twice differen-
tiable . However, if the function has discontinuous first or second derivative,
the accuracy of the central-difference approximation becomes indetermi-
nate . Maintaining second-order accuracy is then possible only if we know
the location of the curve of discontinuity in advance . For a hyperbolic
equation, this curve is a characteristic curve so that the method of charac-
teristics, for example, can provide a high degree of accuracy in the vicinity

OF 8G =
Ox

+
ay+ S0 0 (7.25)

where
F = I O(P) dP and G = f O(P)Q'(P) dP (7.26)

The jump condition then becomes

[F]nx + [G]ny = 0 (7.27)
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of such discontinuities . Since we don't know the location of the characteris-
tics a priori in standard finite-difference computations, accuracy is suspect
when the equations have weak solutions .

Turbulence energy equation models have problems similar to the mixing
length model near turbulent/nonturbulent interfaces . Spalart and Allmaras
(1992), for example, demonstrate existence of weak solutions to their one
equation model at such interfaces . Saffman (1970) was the first to illustrate
weak solutions for a two-equation model . He discusses the nature of solu-
tions to his k-w2 model approaching a turbulent/nonturbulent interface . In
fact, he builds in weak-solution behavior by choosing his closure coefficients
to insure that approaching the interface from within the turbulent region,
the streamwise velocity and turbulence length scale vary as

Ue - U oc (b - y)

	

and

	

t = k1j2 /w oc constant

	

as

	

y -4 b (7.28)

where the interface lies at y = S . Vollmers and Rotta (1977) discuss solution
behavior near a turbulent /nonturbulent interface for their k-k2 model, while
Rubel and Melnik (1984) perform a similar analysis for the k-e model .
Cazalbou, Spalart and Bradshaw (1994) confirm existence of weak solutions
for most k-e, k-ki and k-w models . Finally, inspection of the k-w and k-e
model free shear flow velocity profiles [Figures 4 .5 - 4 .8] illustrates the
nonanalytic behavior at the edge of the shear layer .

Rubel and Melnik (1984) offer an interesting solution for thin shear layer
flows that effectively maps the turbulent/nonturbulent interface to infinity
and implicitly clusters grid points near the interface . Their transformation
consists of introducing a new independent variable, ~, defined in terms of
the normal distance, y, by

V
dU _ d

(VT
dU- - -

dy dy dy

d d

d~ -
vT

dy
(7.29)

where VT is kinematic eddy viscosity . The Rubel-Melnik transformation,
which is useful primarily for self-similar flows, improves numerical accuracy
because the edge of the shear layer that occurs at a finite value of y moves
to infinity in terms of the transformed independent variable ~ (provided
VT = 0 in the freestream) . Since VT -j 0, the transformation produces
fine resolution near the interface . For example, if the freestream velocity,
Ue , is constant, close to the shear-layer edge, convection balances turbulent
diffusion in the streamwise momentum equation . Hence,

(7.30)

where V is the entrainment velocity, which must also be constant in order to
satisfy continuity . Since shear layers grow in thickness, necessarily V < 0 .
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Multiplying both sides of Equation (7.30) by vT and using Equation (7.29),
we arrive at

2

v4 = d 2

	

(7.31)

for which the solution is

where U is a constant of integration .
Using the Rubel-Melnik transformation, it is a straightforward matter to

determine the nature of solutions to turbulence model equations approach-
ing a turbulent/nonturbulent interface . Applying the transformation to the
k-c model, for example, we find

C

z

v< -

	

<~ -C"k2

	

z

2+ k <
z

	

2

V
d~

= CE1

	

( d

	

- C`ZC"kE
+

	

c d~2

	

(7.34)

Provided the closure coefficients Qk and o- E are both less than 2, the produc-
tion and dissipation terms are negligible in both equations . The solution
approaching the interface is

k _ ICe°k
v c,

	

e - Fe°E
V£

	

(0-k < 2, a E < 2)

	

(7.35)

where IC and E are integration constants . Thus, the eddy viscosity is

VT �. C
"

ICZ_ e(2ok-o,,)VC

E
Finally, substituting Equation (7.36) into Equation (7.29) and integrating
yields

ev6 a ( 1 _ y/b)(2o), -o,)-'

wherefore the solution to the k-e model equations approaching a turbu-
lent/nonturbulent interface from the turbulent side behaves according to

Ue _ U

	

� ,

	

U(1 -
plb)(2v

.-o~)-1

k

	

-

	

IC(1 - Jl
b)ok(l°k-Oe)-1

U = Ue - Ue'C

	

(7.32)

(7.33)

(7.36)

(7.37)

as

	

y -j b

	

(7.38)

E

	

^,

	

E(1 _ y/b)O,(2Ok-1E)-'

	

)

Using the standard values Qk = 1.0 and o- E = 1 .3, the k-e model predicts

Ue _ U

	

,�

	

IA(1 _ 1J/6)10/7

k

	

^'

	

IC(1 - y/b)10/7

	

as

	

y -+ b

	

(7.39)

E

	

'�

	

E(1 - y/b)1317
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The solution for the k-w model is a bit more complicated when Q and a*
are both equal to 1/2 . As a result, only the dissipation terms are negligible,
and the production term in the transformed k equation yields a secular
term, which complicates the solution . That is, the approximate transformed
equations for k and w are as follows .

dz2 - 2V
<

= 2aV21d2k e2Vg

	

(7.41)

The solution for k and w is

k _ U2 V~ e2V £,

	

w

	

W _a

	

(7 .42)

where W is an integration constant . Computing the eddy viscosity and
substituting into Equation (7.29), we arrive at

Then, Equation (7 .44) simplifies to

2

	

2 2 2V~
dk - 2V d

	

= 2V U e

	

(7.40)

y

	

S +
U2V

	

~C1+ae2VEd~
WS~

Integrating by parts, we can approximate the limiting form of the integral
for ~ --> oo as follows .

b _ y ,� 2 1+ae2Vf

	

(7 .44)

Now, we must solve this equation for ~ as a function of 6 - y. To do
this, let

This equation can be solved for ~ as a function of y by assuming

0(rl) ^' _(1 + a)'n ( 2Vlnq )

(7.43)

(7.45)

(7.46)

2V~ - my + 0(11)

	

(7 .47)

where 0(rj) is a function to be determined . In the limit ~ --> oo, which
corresponds to 71 -r 0, the approximate solution for O(q) is

(7.48)
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With a bit more algebra, there follows

Thus, the behavior of solutions to the k-w model approaching a turbu-
lent/nonturbulent interface from within the turbulent region is

Ue -U
k, - -1CYnA

w

	

-

	

W(-PnA) - x̀

(1 - y/b)

eVf a 771/2

	

2V ) (1+a)/2

Gny

as y b

(7.49)

(7.50)

Clearly, w approaches zero very slowly from the turbulent side as compared
to the variation of e/k - (h - y)3/7 predicted by the k-e model .

Usually it is more convenient to assign small nonzero values to k and
other turbulence parameters in the freestream, especially when the param-
eter appears in the denominator of the eddy viscosity. Cazalbou, Spalart
and Bradshaw (1994) show that when this is done in boundary-layer com-
putations with the k-e model, the weak solution prevails below the interface .
Small gradients in k and e appear above the interface that yield an asymp-
totic approach to the prescribed freestream values . There is "no significant
influence on the predicted flow."

By contrast, Menter (1992a) shows that for the far wake, in which the
entrainment velocity increases in magnitude linearly with distance from
the centerline, the k-w model predicts that k and w decay exponentially
with distance squared . However, they decay at the same rate so that the
eddy viscosity remains constant . As a consequence, consistent with results
presented in Section 4.5, the freestream value of w has a nontrivial effect on
the solution . Menter indicates a smaller effect on boundary layers, primarily
because of the large values of w prevailing near the surface . The behavior
of w in Equation (7.50) is consistent with Menter's observation that the k-w
model solutions appear to have discontinuous derivatives at the shear layer
edge . However, the discontinuity in dw/dy would probably be difficult to
detect .

In principle, solutions with discontinuous derivatives will not occur if
molecular viscosity is included in the diffusion terms of the equations of
motion . As shown by Saffman (1970), there is a thin viscous-interface
layer of thickness

6,/IVI

	

(7.51)
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in which the discontinuities are resolved . This is a singular perturbation
problem in the limit I V18/v - oo, and the weak solution discussed above is
the outer solution . The inner solution holds in the viscous-interface layer .
For example, in the interface layer, Saffman's equations simplify to

and

These equations must be solved subject the following conditions that cor-
respond to formal matching to the solutions on each side of the turbu-
lent/nonturbulent interface:

UQ-U-*U(b-y), k--+ K(b-y)2 , W , II (s-y)

	

as

	

IV
1 (v-y) -~00

U,-U,O, k--~O, W--+0 as

As can be easily verified, for o, = o-* = 1/2, the solution is given by
v -oo (7.54)

(7.53)

In practice, finite difference grids are never sufficiently fine to resolve
the viscous-interface layer . Generally, grid points are packed close to the
surface to permit accurate resolution of the sublayer . Hence, even when
molecular viscosity is included in a typical finite-difference computation,
turbulent /nonturbulent interfaces are not sufficiently resolved . As a conse-
quence, the interfaces are sharp, and the weak solutions generally prevail.
However, truncation error, numerical diffusion and dissipation will gener-
ally yield diffused solutions close to the interfaces . The most significant
numerical problem typically encountered is the appearance of nonphysical

Ue-U
_ l.! 1

2

Is

( 22K v 1+V W/1Cv

k =
V22W

K

y-8 IVIW 2v
2WK + TV-1

en
CVKv )

VdU

L(v + W) dyldy d
Vdk [(v+u*wk) (7.52)
dy dy dyJ

V
dw2

dy

2

dy

[(v+
QW/ d

]
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negative values of k and/or other normally positive turbulence parameters
such as w, E and t .

For self-similar flows such as the far wake, mixing layer, jet and defect
layer, the Rubel-Melnik transformation cures the problem by mapping the
interface to oo . Programs WAKE, MIXER, JET and DEFECT described
in Appendix C all use this transformation . In addition to eliminating diffi-
culties associated with the turbulent/nonturbulent interface, the transfor-
mation linearizes the first and second derivative terms in the equations .
This linearization tends to improve the rate of convergence of most numer-
ical methods . The only shortcoming of the method is its sensitivity to the
location of oo . Using too large or too small a value of (the far-field
value of ~) sometimes impedes convergence of the numerical solution .

In general finite-difference computations, the correct jump condition will
be obtained provided the diffusion terms in all equations are differenced in a
conservative manner . For the same reasons, we use conservative differencing
for the Navier-Stokes equation to guarantee that the exact shock relations
are satisfied across a shock wave in a finite-difference computation . Program
EDDYBL (Appendix D), for example, uses conservative differencing for
diffusion terms and rarely ever encounters numerical difficulties attending
the presence of sharp turbulent/nonturbulent interfaces .

For nonzero freestream values of k, etc ., some researchers prefer zero-
gradient boundary conditions at a boundary-layer edge . While such condi-
tions are clean from a theoretical point of view, they are undesirable from
a numerical point of view . That is, specified values at the edge are of
the Neumann type while zero-gradient conditions are of the Dirichlet type .
Almost universally, convergence of iterative schemes is much slower with
Dirichlet conditions than with Neumann conditions .

In order to resolve this apparent dilemma, we can appeal directly to the
equations of motion . Beyond the boundary-layer edge, we expect to have
vanishing normal gradients so that the equations for k and w simplify to
the following :

Ue dxe

	

-,3*weke

	

(7.56)

dwe
U

	

_ _#W2e dx

	

we (7.57)

where subscript e denotes the value at the boundary-layer edge . The solu-
tion to Equations (7.56) and (7.57) can be obtained by simple quadrature,
independent of integrating the equations of motion through the boundary
layer . Once ke and we are determined from Equations (7.56) and (7.57), it
is then possible to specify Neumann-type boundary conditions that guaran-
tee zero normal gradients . Clearly, the same procedure can be used for any
turbulence model . Program EDDYBL (Appendix D) uses this procedure .
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7.3

	

Parabolic Marching Methods

In general, numerical methods for solving parabolic systems of equations
such as the boundary-layer equations are unconditionally stable . A second-
order accurate scheme like the Blottner (1974) variable-grid method, for
example, involves inversion of a tridiagonal matrix . If the matrix is diag-
onally dominant, the scheme will run stably with arbitrarily large stream-
wise stepsize, Ox. Turbulent boundary layer computations using algebraic
models often run with Ax/b between 1 and 10, where S is boundary layer
thickness . By contrast, early experience with two-equation models indi-
cated that much smaller steps must be taken . Rastogi and Rodi (1978)
found that their three-dimensional boundary-layer program based on the
Jones-Launder (1972) k-c model required initial steps of about b/100, and
that ultimately Ox could not exceed b/2. Similar results hold for models
based on the w equation .

Wilcox (1981b) found that the problem stems from a loss of diagonal
dominance caused by the production terms in the turbulence model equa-
tions. To illustrate the essence of the problem, consider the k-w model's
turbulence energy equation for an incompressible two-dimensional bound-
ary layer, viz .,

U
a-
+ V

ay
- [(OU/ay)2 _

O*w]
k +

ay
[(v + 0'` VT) ay]

	

(7.58)

The following analysis is based on the Blottner variable-grid method,
which is the scheme implemented in Program EDDYBL (Appendix D) . This
algorithm uses a three-point forward difference formula [Adams-Bashforth
- see Roache (1976)] in the streamwise direction, central differencing for
the normal convection term, and conservative differencing for the diffusion
terms. Hence, discretization approximations for all except the source terms
are as follows:

Uax

	

_Ax (3k�,+l,n - 4k�,,n + k+n-l,n)

	

(7.59)

V(9y

	

2Ay (km+l,n+l - krra+l,n-1) (7.60)

_a [(U + ~*~) ~k] = y+(km+l,n+1 - krra+l,n) - v (km+l,n - km+l,n-1)

8y ay

	

(Ay)2
(7.61)

where k,,,n denotes the value of k at x = x� , and y = yn, and Ay denotes
the vertical distance between grid points . Unsubscripted quantities are
assumed known during the typically iterative solution procedure . Also, the
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quantity v- denotes the value of (v+Q*vT) midway between yn_1 and yn,
while v+ denotes the value midway between yn and yr,+1 . For simplicity,
we assume points are equally spaced in both the x and y directions, so that
the grid consists of rectangular cells . Figure 7 .1 shows the finite-difference
molecule .

n

AY

Figure 7.1 : Finite-difference molecule for Blottner's variable-grid method .

Turning to the source terms, the simplest second-order accurate dis-
cretization approximation is

r (aU/ay)2 -,3*"] k - [(,9U/,9y)2 -
a*wI

km+l,n

Substituting Equations (7.59)-(7 .62) into Equation (7.58) and regrouping
terms leads to a tridiagonal matrix system as follows :

(7.62)

Ankm+l,n-1 + Bnkm+l,n '}' Cnkm+l,n+l = Dn (7.63)

where An , Bn , Cn and Dn are defined by

An
V v-= -
2Ay (Ay)2 (7.64)

Bn
_ __
30x

+ v(Qy)2+ (aUlay) 2 +*w (7.65)

C
V v+_

n
- [2Ay

l
(7.66)

(oy)2 1

Dn = Ox [4k.,n - km-l,n] (7.67)
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Now, in order to have a diagonally dominant system, the condition

B� >- -(A. + Cn )

	

(7 .68)

must be satisfied . Substituting Equations (7.64)-(7 .66) into Equation (7 .68)
yields the following condition .

	

-

3- - (BU~ay)
2
+ ,Q*w > 0

	

(7 .69)

When dissipation exceeds production, so that ,l3*w > (8Ulay) 2 /w, Equa-
tion (7.69) is satisfied so long as we march in the direction of flow (i .e ., so
long as U and Ox are of the same sign) . The system is then said to be
unconditionally stable . However, when production exceeds dissipation,
we have the following limit on stepsize .

UOx < (OX)theory - (
_

8U/8

	

2 -

	

*w2

Hence, the scheme is conditionally stable, the condition being that of
Equation (7.70) .

To demonstrate the validity of Equation (7.70), Wilcox (1981b) presents
computed results for an incompressible flat-plate boundary layer using the
Wilcox-Rubesin (1980) k-w2 model . At a plate-length Reynolds number,
Re.,, of 1 .2 - 106 , stable computation is found empirically to be possible
provided Re,,, < 2 .2 - 104 , which corresponds to Ox/6 = 1 .15 . Figure 7.2
shows Reox as predicted by Equation (7.70) throughout the boundary layer .
As shown, the minimum value of Reox according to Equation (7.70) is
1 .9 - 10 4 and occurs at y/6 = 0 .012 . This close agreement verifies that the
source of instability is lack of diagonal dominance in the tridiagonal matrix
system defined in Equations (7.63)-(7 .67) .

To remedy this situation, note first that because of nonlinearity, Equa-
tion (7.63) always requires an iterative solution . Letting superscript i de-
note iteration number, we replace B� and D� by the following revised
discretization approximations :

Bn = 3ox +
v(Ay) 2+

- (aUlay)
2
+ (1 +Ok)a*w

D,z = Ox [4km,*~ - km_i,n) + 0k#*wk~+l,n

(7 .70)

(7.71)

(7.72)

where Ok will be defined below . Then, Equation(7.63) is replaced by

Ankm+1, �_1 + Bmkm+l,n +C,km+l n+i = D�

	

(7.73)
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Reox 10 7

10 6

10 5

10 4

(O-)theory

Empirically-Determined
Stepsize Threshold

i

	

I

	

I
.01 .10 1 .0

y/S

Figure 7.2 : Theoretical and empirically determined stepsize threshold for
a flat-plate boundary layer . [From Wilcox (1981b) - Copyright © AIAA
1981 - Used with permission .]

Inspection of Equations (7 .71)-(7 .73) shows that when convergence has
been achieved (i .e ., when k;andk;,-+l � differ by a negligible amount),
terms on the right- and left-hand sides of Equation (7.73) proportional to
Vk cancel identically . Hence, km+l,,, satisfies the correct equation . The ad-
vantage of this procedure becomes obvious upon inspection of the stability
condition, which now becomes

3U- (aU/
,gy)

z
+ (1 +

	

k ) Q*w > 0AX W (7.74)

Clearly, Ok can be chosen to insure that this inequality is always satisfied,
regardless of the value of Ax . This corresponds to unconditional stability .

Numerical experimentation shows that the best results are obtained
when (1 + Ok)Q *w exceeds (aU/(9y) z/w by about 30%, a condition that is
insured by defining Ok as follows .

f

	

3

	

(aU/ay) 2 < aTo

	

*w'
'

(0U/ay)' 7
*wz

	

_ to

	

(8Ulay)z > a*wz
(7.75)

A similar factor, 0,� must be introduced for the w equation, and experience
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has shown that selecting
0. = Ok

	

(7 .76)

is satisfactory to achieve both unconditional stability and rapid conver-
gence .

The prescription for Ok and -0u, given in Equations (7.75) and (7.76)
permits stepsizes comparable to those used with algebraic models . While
the numerical procedure is unconditionally stable for other values of Ok,
using these values for Ok and 0,,, optimizes k-w2 and k-w model computa-
tions with respect to the number of iterations required for the solution to
converge . Interestingly, if Ok is too large, say Ok = 2, stable integration is
inhibited . The value of 0, cannot be too large either, although the upper
bound appears to be dependent upon details of the specific model.

The same analysis applies to the k-c model . For the k equation, writing
Equation (7.75) in terms of the model's variables leads to the following
entirely equivalent form .

VT(OUlay) 2 < c
10 ,
VT(OUlay)2

- 7,

	

VT(avlay) 2 > c

By contrast, the value of the corresponding factor for the c equation, 0E,
is very much dependent upon details of the model . Low-Reynolds-number
viscous damping functions have a pronounced effect on the most appro-
priate value . Table 7.2 lists the values of 0E used in Program EDDYBL
(Appendix D) for six different low-Reynolds-number k-c models. The val-
ues listed have been found empirically to yield optimum convergence rates
for incompressible boundary layers .

Table 7.2 : Values of 0E for low-Reynolds-number k-c models

Model
Jones-Launder (1972)
Launder-Sharma (1974)
Lam-Bremhorst (1981)
Chien (1982)
Yang-Shih (1993)
Fan-Lakshminarayana-Barnett (1993)

0.50
0.50
0.50
-0.25
-0.25
-0 .25

(7 .77)



292

	

CHAPTER 7. NUMERICAL CONSIDERATIONS

7.4

	

Elementary Time-Marching Methods

One of the most effective procedures for solving complex flowfields is the
use of time-marching methods. If the desired solution is unsteady, time-
marching solutions yield a true time history. Time-marching methods can
also be used for steady-flow problems by letting the solution evolve in time
until temporal variations become negligibly small. That is, we begin with
an initial approximation and update the solution at each timestep until
the solution differs between timesteps by less than a prescribed tolerance
level. Prior to discussing the impact of turbulence-model source terms on
explicit and implicit methods, this section presents a brief overview of these
methods. For more complete details see a general text on Computational
Fluid Dynamics such as Roache (1976), Peyret andTaylor (1983), Anderson
et al . (1984) or Minkowycz et al . (1988) .

The simplest time-marching schemes are explicit methods, such as the
DuFort-Frankel (1953), Godunov (1959), Lax-Wendroff (1960) and Mac-
Cormack (1969) methods. Most explicit schemes were developed prior to
1970 . In an explicit scheme, the solution at time t"+ 1 depends only on
the past history, i .e ., the solution at time t" . For example, consider the
one-dimensional wave equation :

-Ft + UOx - 0,

	

U > 0

	

(7.78)

where k is a flow property, U is velocity, t is time and x is streamwise direc-
tion . Letting kj" denote k(xj,t"), we approximate OklOt with a forward-
difference approximation so that

Ok

	

kn+1 - k"
j

	

At

	

+O(At)

where At - t'+1 -t" . For simplicity, consider simple upwind differencing
in which we approximate Ok/Ox according to

TX_

Ok_ kn - k

~

'°_

Ox

	

1 +O(Ox)

Using these discretization approximations, we arrive at the following first-
order accurate difference equation that approximates Equation (7.78) .

(7.79)

(7.80)

k~ +1 - k~ - Axt (k~ - k~_1)~

	

(7.81)

This is not a particularly accurate method, but nevertheless illustrates
the general nature of explicit schemes. Note that all termson the right-hand
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side of Equation (7.81) are known from time t" . Hence, ,n+1 is obtained
from simple algebraic operations . Because only algebraic operations are
needed (as opposed to inversion of a large matrix), explicit methods are
easy to implement .

The primary shortcoming of explicit schemes is a limit on the timestep
that can be used . For too large a timestep, solution errors will grow with
increasing iterations and the computation becomes unstable . The most
commonly used method for determining the stability properties of a time-
marching finite-difference scheme is von Neumann stability analysis [see
Roache (1976) or Anderson et al . (1984)] . In this method, we introduce a
discrete Fourier series solution to the finite-difference equation under study,
and determine the growth rate of each mode . If all Fourier modes decay
as we march in time, the scheme is stable . However, if even a single mode
grows, the scheme is unstable . We write each Fourier component as

V = Gnei(jrAr) (7.82)

where G is called the amplitude factor, i = V~_- l and is is wavenumber .
The stability of a scheme is determined as follows :

IGI < 1,

	

Stable
IGI = 1,

	

Neutrally Stable

	

(7 .83)
IGI > 1,

	

Unstable

In general, G is complex, and the notation Gn means G raised to the power
n . The amplitude factor for Equation (7 .81) is

Thus,

G = I -
UQOt

(1- e -") ,

	

where

	

9 = tcAx

	

(7.84)

IG12 = 1 + 2(1 - cos 8) -USX"-t
(
0x
UOt -

1

	

(7.85)

In order to have a stable scheme, IGI must be less than or equal to 1 for all
possible values of B . Clearly, for the upwind-difference scheme, errors will
not grow provided the condition

Ot <

	

X

	

or

	

NCFL =
Oxt

< 1

	

(7.86)

is satisfied . This is the famous Courant-Friedrichs-Lewy (1967), or CFL
condition, which means a wave cannot propagate a distance exceeding Ax
in a single timestep . NCFL is known as the CFL Number .
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Explicit methods are of interest in modern CFD applications mainly for
time-dependent flows . There has been renewed interest in these methods
because of their suitability for massively-parallel computers . In summary,
their algebraic simplicity makes them especially easy to implement on any
computer . Their primary drawback is their conditional stability, and thou-
sands of timesteps are often needed to achieve steady-flow conditions .

Implicit methods date back to 1947 when the Crank-Nicolson (1947)
method first appeared . Other methods such as the Euler [Lilley (1965)]
and Alternating Direction Implicit (ADI) schemes [Peaceman and Rachford
(1955)] are implicit . The solution at time t'+ i and location xj in this
type of scheme depends not only upon the solution at the earlier timestep,
but upon the solution at other spatial locations at time t'"+ 1 as well . For
example, the Crank-Nicolson method uses

_8k _. _1 ( ka+l - kj_1 + kj+i - kj +1

	

+ O

	

Ox8x 2 2Ax

	

2Ax (7.87)

Thus, Equation (7.78) is approximated by the following second-order accu-
rate difference equation :

where

- ak~+i + kn+1 + Ak~+i - k? - A (k~+i - kj-i)

	

(7.88)

Hence, as with the Blottner method discussed in the preceding section,
a tridiagonal matrix system of equations must be solved . Although invert-
ing any matrix is more time consuming than solving a simple algebraic
equation, the increased complexity is attended by a significant increase in
the maximum perinissible timestep . That is, stability analysis shows that
the scheme defined in Equation (7.88) is unconditionally stable .

Implicit schemes have proven to be especially useful for steady-flow com-
putations where the CFL limit can be exceeded by factors as large as 5 .
While these schemes will run at a larger CFL number, using larger val-
ues of At sometimes introduces significant truncation errors if convective
effects have a significant effect on the physics of the flow . The number
of timesteps required, relative to explicit methods, to achieve steady-flow
conditions typically is reduced, although the factor is Nj;L where n < l .

Recall from Section 7 .1 that there are three physically relevant time
scales when turbulence model equations are used . If we use an explicit
finite-difference scheme to approximate the Favre-averaged Navier-Stokes
equation, stability analysis shows that the wave speed is Iuj + a, where u
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is mass averaged velocity and a is sound speed . If v denotes kinematic
viscosity, the wave-propagation and diffusion timestep limitations are as
follows .

At < IAA+a

	

and

	

At < (Av)
2

	

(7.90)

We might also anticipate that including source terms in the stability anal-
ysis would lead to an additional timestep constraint such as At <_ Idias-

This is indeed the case, and this timestep limitation is sometimes more
restrictive than either condition in Equation (7.90) .

To illustrate the problem, we add a source term, Sk, to Equation (7.78),
wherefore

8t +U_ - Sk

	

(7.91)

The condition S > 0 corresponds to production exceeding dissipation, and
vice versa for S < 0 . To cast this equation in discretized form, we use
Crank-Nicolson differencing and we approximate the source term as follows:

Sk -- S [Ok; + (1 - 0)k+1 )] +O [(0 - 2)Ot, (At)2]

	

(7.92)

where V lies between 0 and l . Hence, our finite-difference approximation
to Equation (7.91) is

k7+1 -k'~ -A(k~+1 +k7+l -kn+1 -kj~'_ 1 )+SOt[Okjn +(1-0)k7+1)]
(7.93)

The complex amplification factor for this scheme is

When S < 0, we find

G

	

1 +OSOt - 2iA sin 0
1-(1-O)SOI+2iAsin0

Hence, in order for this scheme to be stable, we must require

2 __

	

[1 + 0SOt] 2 +4A2 sine 8

[1 - (1- O)SOt] 2 + 4A2 sine B C
1

After a little algebra, the stability condition simplifies to

SOt [1 + (

	

- 2)SOt] < 0

At <- (,
-2)ISI'

	

0>L, S<0

Unconditionally Stable ;

	

V < a, S < 0

(7.94)

(7.95)

(7.96)

(7 .97)



296

	

CHAPTER 7 . NUMERICAL CONSIDERATIONS

When S > 0, upon first inspection, von Neumann stability analysis
indicates this scheme is unstable when 0 > 2 and that At must have a
lower bound (as opposed to an upper bound) to insure stable computation
when V) < 2 . However, these results are irrelevant . This is true because
the exact solution to Equation (7.91) is proportional to e", and is thus
unbounded as t --> oo . When this occurs, even if the error is a small
fraction of the exact solution, it will also be unbounded . The requirement
IGI < 1 is thus too stringent for an unbounded function . According to von
Neumann, the condition for stability when the exact solution is unbounded
is :

factor proportional to sine 0 serves only to increase the denomi-Since the
nator, we can omit it and say that

JG) < 1 + O(At)

With a little rearrangement of terms, Equation (7.95) can be written as

12 = 1 +

	

2[ 1 + (~ - a)SOt]IG

	

5'Ot
( [1 - (1 - V )SOt] 2 + 4A2 sine B )

2

	

2[1 + (~ - 2)SOt]

	

SAt

Clearly, the function in parentheses is bounded as At --+ 0 as long as the
denominator doesn't vanish, so that Equation (7.98) is satisfied provided :

At <- (1 l )S ,

	

S>0

(7.98)

(7.99)

(7.100)

Although this analysis has been done for implicit Crank-Nicolson differ-
encing of the convective term, the same result holds for explicit methods .
While Equation (7.92) involves k~+1 , the terms in an explicit scheme can
be rearranged to preserve its explicit nature . For example, if we use up-
wind differencing for the convective term in Equation (7.91), the discretized
equation becomes

kn+1 -_ [1 + OSOt - Q°t] k? + riatkj_l

	

(7.102)
1-(1-O)SAt

We now have sufficient information to discuss the most suitable dis-
cretization approximations for source terms in both explicit and implicit
methods . If second-order accuracy is required, as it would be for numerical
simulation of an unsteady flow, 0 must be 1/2 . On the other hand, if only
steady-state solutions are needed, we can take advantage of the fact that
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using 0 = 0 when S < 0 and 0 = 1 when S > 0 yields an uncondition-
ally stable (albeit first-order accurate in time) scheme . In summary, the
following has proven satisfactory for turbulence model equations .

Second-Order Time Accuracy - Conditional Stability

Sk = 2S(kj- + k~+1) ,

	

At < 2

	

(7.103)

First-Order Time Accuracy - Unconditional Stability

Sk?+1

	

for

	

S< 0
Sk =

	

(7.104)
Ski

	

for

	

S> 0

All of the programs in Appendix C use Equation (7 .104).

7.5 Block-Implicit Methods
The most efficient numerical methods currently available for complex flow-
fields are block-implicit methods. They differ from elementary implicit
methods in one very important respect . Specifically, when an elementary
implicit scheme is applied to a coupled set of equations, each equation
is solved in sequence . In the context of a system of equations, this is
usually referred to as a sequentially-implicit method . By contrast, a
block-implicit scheme solves all of the equations simultaneously at each
grid point . The block-implicit formulation, generally requiring inversion
of block-tridiagonal matrices, entails more computational effort than a
sequentially-implicit method . The additional computation at each grid
point and timestep is usually compensated for by a dramatically improved
convergence rate . Block-implicit solvers can achieve CFL numbers in ex-
cess of 100, and often converge in 100 to 200 timesteps for flows including
boundary-layer separation . For example, using a block-implicit method,
a supersonic two-dimensional shock-separated turbulent flow can be sim-
ulated on an 80486-based microcomputer in about 3 hours of CPU time
[Wilcox (1991)] . On the same computer, a similar computation would take
about 25 hours using a sequentially-implicit method [Wilcox (1990)] and
75 hours using an explicit method [Wilcox (1974)].

As in the preceding section, we begin with a brief overview of block-
implicit methods . For simplicity, we focus on a one-dimensional system .
The primary concern in this section is, of course, upon how turbulence
model source terms impact such methods .
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Consider the one-dimensional conservation equations for flow of a vis-
cous, perfect gas, written in vector form, viz .,

where

aQ
+ a (F - F1,) = 0

	

(7.105)

p

	

pu

	

0
Q =

	

pu

	

,

	

F =

	

pii2 + P

	

,

	

F � =

	

T~~

	

(7.106)
PE

	

(PE + P)u

	

4x

where

	

and 9x denote total stress and heat flux, respectively. Also, the
total energy for one-dimensional flow is E = e + 2 ii2 and the pressure is
given by P = (y - 1)0e-

The first step often taken in establishing a block-implicit scheme for
this system of equations is to introduce a first-order backward-difference
(implicit backward-Euler) scheme, which can be written symbolically as
follows .

Qn+1 - Qn

	

a

	

l n+1

At

	

+ ~ a~ (F - Fv)
J	= °

	

(7.107)

Now, we expand the flux vectors F and F, in a Taylor series about time
level n, wherefore

Fn+1 - Fn + aFAt + O [(At)2 ]

and similarly for F � . Then, using the chain rule of calculus, we have

OF

	

OF aQ
at = aQ at

	

(7.109)

where aF/aQ is the inviscid-flux Jacobian matrix . The incremental
change in the dependent-variable vector, AQ, is defined by

AQ = Qn+1 - Qn

Since we approximate the unsteady term according to aQ/at = AQ/At,
we can rewrite Equation (7.108) as

Fn+1 - Fn + OF AQ + O [(At) 2 ]

(7.108)

Because of the prominent role played by AQ, this approach is usually re-
ferred to as the delta formulation .
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Finally, we must introduce a discretization approximation for the spatial
derivatives of the vectors F and F, . In general, this means forming a matrix
that multiplies (F - F,,), and yields a desired degree of accuracy. Details
of this matrix are unimportant for our discussion, and it is sufficient to
introduce symbolic notation with the understanding that an approximation
to spatial differentiation is implied. Thus, we introduce a finite-difference
matrix operator, S, so that

Ia~ (F - F,)] n+1 - bx (Fn - Fv) + s, A
-
aQ

) oQ

[ At +
bx

	

aQ

	

aQ
)
] OQ

_

	

=-6 (Fn
-
Fn))

3. Make provision for handling source terms.

where 8F �/aQ is the viscous-flux Jacobian matrix . Collecting all of
this, we arrive at the symbolic form of a typical block-implicit method :

where I is the unit (identity) matrix . The matrix multiplying AQ in Equa-
tion (7.113) is of block-tridiagonal form . In the present example, the blocks
are 3 by 3, corresponding to the three equations being solved simultaneously
at each mesh point .

Now, suppose we choose to use a two-equation turbulence model to
determine the Reynolds stress . The following three points that must be
considered in modifying a block-implicit solution scheme .

l. Decide whether to solve all equations simultaneously or to solve the
model equations and mean-flow equations sequentially.

2 . If the preferred option is to solve all equations simultaneously, deter-
mine the changes to the flux-Jacobian matrices .

In principle, solving all equations simultaneously will yield the most
rapidly convergent scheme in the number of iterations, but not necessarily in
CPU time . However, the coupling between the turbulence-model equations
and the mean-flow equations appears to be relatively weak . The primary
coupling is through the diffusion terms, and the eddy viscosity is usually
treated as a constant in forming the viscous-flux Jacobian matrix . Limited
experience to date seems to indicate there is little advantage to solving all
equations simultaneously as opposed to solving the model equations and
mean-flow equations sequentially.

If all equations are solved simultaneously, the basic system of equations
for the k-w model would be as follows:

57
'9Q

	

9(F-F �)=S

	

(7.114)57
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where the dependent-variable and inviscid-flux vectors are

The viscous-flux and source-term vectors are given b

0

OF
aQ

4 8u
4 J ax + Tyy

~( jLUs"ax +Tyx)-4X
GL+?` ILT) as
(U+UPT) a2

pu t + P
F = {

	

(pE + P
piLk
picw

S

where H is the total enthalpy defined by

Pu

Tyy8u - ,3*pax wk
w

	

2
(k) T.X au

ax - ~pw

There are two places where the turbulence kinetic energy appears that
has an impact on the flux-Jacobian matrices . Specifically, the total energy,
E, should be written as

Hence, since the vector Q contains pk as one of its elements, the inviscid-
and viscous-flux Jacobian matrices must be evaluated from scratch . Some
of the original 9 elements appropriate for laminar flow or an algebraic model
will be affected by the appearance of k in E and Txx . For this system, the
inviscid-flux Jacobian matrix assumes the following form :

0

	

1

	

0

	

0 0
~L3

) u2

	

(3 - -y) u

	

('Y - 1)

	

-('Y - 1)

	

0
- [H -

72 121 u

	

[H - (?' - 1 ) u2 ]	- ('Y - 1)u

	

0
-uk

	

k

	

0

	

0
-uw

	

w 0 0 u
(7.119)

H = h. +
2
u2 + k

	

(7.120)

As shown in Equation (7.119), the first two components on row 3 involve
H, and are thus affected by k . In modifying an existing computer program

)u } (7.115)

y

0
0
0 (7.116)

E=e".+2u2 +k (7.117)

and the Reynolds stress tensor is

4 8u 2_
Tyy = 3AT8~ - 3 pk (7.118)
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based on this block-implicit scheme, all that would be required to modify
the inviscid-flux Jacobian matrix components would be to have H appear
as indicated, and to include k in the computation of H.

By contrast, if we choose to solve the mean-flow and turbulence model
equations sequentially, we retain the original conservation equations [Equa-
tion (7.105)] . All of the flux-Jacobian matrices and, in fact, the entire al
gorithm remain the same . To determine k and w, we then consider the
following vector equation :

where

with the block-implicit approach, we linearize the flux and
source vectors according to

where 8s/8q is the source-Jacobian matrix . The flux-Jacobian matri-
ces are generally much simpler than their counterparts in the mean-flow
equations. For example, the inviscid-flux Jacobian matrix is

'If = I

	

0 l
aqo

u

~J

This brings us to the all important question of how to handle the source-
term vector s . Several prescriptions are possible, and the primary consider-
ations are to : maintain numerical stability ; achieve rapid convergence rate ;
and guarantee that k and w are positive definite . Wilcox (1991) has found
the following linearization of the source terms to be quite satisfactory for the
k-w model, within the framework of MacCormack's (1985) block-implicit
method . Specifically, the source-term vector is rearranged as follows.

__

	

Txxor -~* ~k) ' L
S

	

_v ~ (7.127)
a w T au -

k

	

xx ax

	

P

~9+T-(f-f�)-s (7.121)

q
= Pk_ Pick (p+o'l1_

'
f
- __

' f°
_ f )fix (7.122 )

Pw Puw (1A+ahT)W_,

au
- 3+ wk

s Txx=ax p-
a(°' auau_)T L -#P

w2 (7.123)
k xx ax

_ (f _ fv)m
+ ~_~ - _~° ~ Oq

coq 8q
(7.124)

s
s = s" + Oq (7.125)

q
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Then, treating 7,,.,8i/8x and w/k as constant in computing the source-
Jacobian matrix, we arrive at

8u *-
s"
_

	

..a ax - ,~ pcak
w

	

8u -
CY

	

k Txx3.

	

aPw

In this treatment of the source-term vector the production terms are
evaluated explicitly (i .e ., computed at time level n), and the dissipation
terms are treated implicitly (computed at time level n + 1) . The block-
tridiagonal scheme for the turbulence model equations becomes

[Ot + b_
(aq

- "q) -
a91

Oq = -bx (fn - fn) + sn

	

(7.129)

Since c9s/aq is a diagonal matrix and its diagonal elements are always
negative, its contribution is guaranteed to enhance diagonal dominance of
the matrix multiplying Oq. Additionally, Spalart and Allmaras (1992)
show that this form guarantees that k and w (or e for a k-e model) will
always be positive .

However, Spalart and Allmaras also point out that in regions where
production and dissipation are both large and dominate the overall bal-
ance of terms in the equation, this form can result in slow convergence.
This appears to be a more serious problem for the k-c model than it is for
the k-w model . Wilcox (1991), for example, has shown that the scheme
described above yields very rapid convergence in flows with attached equi-
librium boundary layers and in flows with large regions of separation . The
procedure recommended by Spalart and Allmaras is similar to the proce-
dure recommended for elementary implicit methods in Equation (7.104) .
That is, they recommend linearizing the source term according to

where the function neg(x) is defined as

neg(x) _

	

x'
0,

8s -2,3*w 0
aq - 1

	

0

	

-2,3w I

	

(7.128)

s - sn + neg
~ as

	

Oq

	

(7.130)
q

x<0
x>0

The production terms are then included in computing the source-Jacobian
matrix . The neg operator is understood to apply to each element of the re-
sulting (diagonal) matrix . Thus, as long as dissipation exceeds production,
both production and dissipation are treated implicitly, and explicitly when
production exceeds dissipation . Huang and Coakley (1992) have success-
fully applied a linearization similar to that recommended by Spalart and
Allmaras .
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7.6 Solution Convergence and Grid Sensi-
tivity

Regardless of the application, there is a need for control of numerical accu-
racy in CFD [Roache (1990)] . This need is just as critical in CFD work as it
is in experiments where the experimenter is expected to provide estimates
for the accuracy of his or her measurements . All CFD texts of any value
stress this need .

One key issue determining numerical accuracy is iteration conver-
gence. Most numerical methods used in CFD applications require many
iterations to converge . The iteration convergence error is defined as the
difference between the current iterate and the exact solution to the differ-
ence equations . Often, the difference between successive iterates is used
as a measure of the error in the converged solution, although this in itself
is inadequate . A small relaxation factor can always give a false indica-
tion of convergence [Anderson et al . (1984)] . Whatever the algorithm is,
you should always be careful to check that a converged solution has been
obtained . This can be done by trying a stricter than usual convergence
criterion, and demonstrating that there is a negligible effect on the solu-
tion . Most reputable engineering journals require demonstration of iter-
ation convergence as a condition for publication. This is not specific to
turbulence-model applications - all of the usual criteria for standard CFD
applications apply.

Specific to turbulence-model computations, the approach to iteration
convergence often is more erratic, and typically much slower, than for
laminar-flow computations . A variety of factors including stiffness and non
linearity of the equations, as well as the severely stretched finite-difference
grids needed to resolve thin viscous layers, yield less rapid and less mono-
tone convergence. Ferziger (1989) explains the slow convergence often ob-
served in terms of the eigenvalues of the matrix system corresponding to
the discretized equations . He notes that any iteration scheme for a linear
system can be written as

,fin+1 = Aon + S
where on is the solution after the nth iteration, A is a matrix, and S is a
source term . He then shows that the actual solution error is given by

exact -
y n

^,
on+1 - on

1 - Amax

(7.132)

(7 .133)

where wexact denotes the exact solution to the discretized equations
and A�aax is the largest eigenvalue of the matrix A. Of course, all eigen-
values of A must be less than 1 for the solution to converge . This result
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shows that the solution error is larger than the difference between iterates .
Furthermore, the closer A�,ax is to 1, the larger the ratio of solution error
to the difference between iterates . In other words, the slower the rate of
convergence of the method, the smaller the difference between iterates must
be to guarantee iteration convergence.

A second key issue is grid convergence or grid insensitivity. Be-
cause of the finite size of finite-difference cells, discretization errors exist
that represent the difference between the solution to the difference equa-
tions and the exact (continuum) solution to the differential equa-
tions. It is important to know the magnitude of these discretization errors
and to insure that a fine enough grid has been used to reduce the error to
an acceptable level.

As with iteration convergence, all CFD work should demonstrate grid
convergence, regardless of what equations are being solved . In most engi-
neering journals, it is no longer sufficient to publish results performed on a
single fixed grid . While grid sensitivity studies should be done for all CFD
work, they are even more crucial for turbulence-model computations be-
cause of the need to separate numerical error from turbulence-model error.
This issue came into sharp focus at the 1980-81 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows [see Kline, Cantwell, and Lilley
(1981)] . Clearly, no objective evaluation of the merits of different turbu-
lence models can be made unless the discretization error of the numerical
algorithm is known.

The most common way to demonstrate grid convergence is to repeat a
computation on a grid with twice as many grid points, and compare the
two solutions. If computer resources are unavailable to facilitate a grid
doubling, a grid halving is also appropriate, although the error bounds will
not be as sharp . Using results for two different grids, techniques such as
Richardson extrapolation [see Roache (1976] can be used to determine
discretization error. This method is very simple to implement, and should
be used whenever possible . For asecond-order accurate method with central
differences, Richardson extrapolation assumes the error, Eh - Oexact - Oh i
where Oh denotes the solution when the grid-point spacing is h, can be
expanded as a Taylor series in h, wherefore

Eh = e2h2 + e4h4 + . e s hs + . . .

	

(7.134)

Note that for three-point upwind differences the leading term is still e2h2,
but the next term is e3h2 , and Richardson extrapolation is only O(h3)
rather than O(h4). By hypothesis, the e ; are, at worst, functions of the
coordinates, but are nevertheless independent of h . Now, if we halve the
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number of grid points so that h is doubled, the error is given by

discretization error is given by

E2h = 4e2 h2 + 16e4h4 + 64esh6 + . . .

	

(7 .135)

For small values of h, we can drop all but the leading terms, whence the

Eh ^ 3(Oh - 02h)

	

(7.'136)

As a final comment, Richardson extrapolation has limitations . First, if it is
applied to primitive variables such as velocity and internal energy, its impli-
cations regarding momentum and energy conservation may be inaccurate .
Second, the method implicitly assumes the solution has continuous deriva-
tives to all orders . Hence, its results are not meaningful near shock waves or
turbulent /nonturbulent interfaces of the type discussed in Subsection 7.2.2 .

There is another grid-related factor affecting solution accuracy. In order
to resolve thin viscous layers, for example, highly stretched grids are nor-
mally used . Conventional central-difference approximations are only first
order accurate on such a grid, and care must be taken to account for this .
Also, the location of the grid point nearest the surface has a nontrivial effect
on the accuracy of skin friction and surface heat flux . Wilcox (1989), for
example, has found that grid-insensitive computations using wall functions
that account for pressure gradient [e .g ., Equation (5.111)] can be obtained
with block-implicit methods provided :

10 < ya < 100,

	

(wall functions)

	

(7.137)

where y2 is the sublayer-scaled value of the first grid point above the
surface . This range appears to hold for boundary-layer computations as
well [Chambers and Wilcox (1977)], again provided pressure gradient is
accounted for . When turbulence-model equations are integrated through
the viscous sublayer, many researchers have shown that it is imperative to
require :

y2 < 1,

	

(integration through the sublayer)

	

(7.138)
When these limits are not adhered to, consistent with the discussion in
Subsection 7 .2 .1, solution errors throughout the boundary layer generally
are large .
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Problems

7.1 For a Mach 3 turbulent flat-plate boundary layer, it is a fact that
McfReL ti Reb. .

(a) In the viscous sublayer, the appropriate scaling for the specific dissi-
pation rate is w - uT/v . Noting that uT Pe U cf, express the ratio
of tdiss to twave as a function of Reb. in the sublayer .

(b) In the defect layer, the appropriate scaling for the specific dissipation
rate is w - u, /A where A = U&*/u, . Express the ratio of tdiaa to

twave as a function of Reb. in the defect layer.

(c) Comment on the implications of your estimates in Parts (a) and (b) .

7.2 Determine whether or not the following systems of equations
with regard to the specified initial conditions .

are stiff

7.3 Consider the high-Reynolds-number k-w model's near-wall variation of
specific dissipation rate, w, for a rough wall, i.e .,

where

_ Low

	

_~ww
w

	

[1 +
Ay]2'

	

A
- 6vw

Assuming equally spaced grid points, show that the central-difference
approximation to dew/dye at the first grid point above the surface
(i .e ., at y = Ay) is given by

_dew _

	

_dew

dy2

)

2 N
~(~y)

( dy2 ) exact

_ [1 + ADy]2 [1 + 2ADy +_

	

3(ADy)2]
~(Dy)

	

[1 +2ADy]2

d f x -1 4 ] I x I , ~ ~(O) -5 ~ 1(0)

d I i ~ = [ -3 1 ] ~ 1 1 , f i(0) X(0)
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(b) Assuming a slightly-rough wall so that
2500v�,

Ww =

	

k2
R

where

and that ,0 = 3/40, show that

5~Ay+
AAy =2 k+

R

(c) Determine the percentage error introduced by the central-difference
approximation in computing dew/dye when we assume a hydraulically
smooth wall so that kR = 5, and set Ay+ = 1/v'5- -_ 0.447 .

7.4 This problem shows that while trapezoidal-rule integration is second-
order accurate for a piecewise continuous function with a discontinuous
first derivative, the truncation error depends upon placement of the nodes .
Using the trapezoidal rule, the integral of a function f(x) is

b

	

N

f(x) dx Pz~ 1: f(xk)AX + 12 [f(a) - f(b))Ax
k= 1

xk = kAx

	

and

	

Ax =
b
N
a

Consider the following piecewise continuous function f(x):

f(x)-~
x2 , 0<x<1
1, 1<x<2

Note that a node lies at x = 1 only for even values of N.
(a) Verify that the exact integral of f(x) for x ranging from 0 to 2 is

2
I - f f(x) dx =

3

(b) Assuming N is odd show that the trapezoidal rule yields

I

	

3 [1
-

16
(Ax)2]

J
(c) Assuming N is even show that the trapezoidal rule yields

3 (1 +
8

( Ax )2

M

HINT : Use the fact that 1: k2 = 6M(M+ 1)(2M + 1) .
k=1
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7.5 Consider the mixing-length model with

	

aS, where a is a constant
and S is shear layer thickness.

(a) Assuming that dU/dy > 0, verify that according to the Rubel-Melnik
transformation,

(b) For flow near a turbulent/nonturbulent interface with constant en-
trainment velocity, V < 0, determine the velocity difference, Ue - U,
as y --, S . Express your answer as a function of IVI, a and y/S .

7.6 The object of this problem is to verify that Equation (7.55) is the
solution to Equations (7.52) - (7.54) .

(a) Integrate Equations (7.52) once and impose the freestream boundary
condition [Equation (7 .54)] .

(b) Observing that a = o-* = 1/2 for Saffman's model, combine the k and
w z equations to show that

VT = mix

dk k
_w z

_
- Wz

Solve this equation subject to the boundary conditions .

Introduce the dimensionless variables

_dU

y = IV I (v- y)

	

and

	

w=

	

z

1Cv

and substitute the solution for k into the equation for w . Set any
arbitrary constant of integration equal to zero, and verify the solution
for y - b .

(d) Letting U = U/ I V(, rewrite the momentum equation . Using the di-
mensionless equation for w derived in Part (c), verify that

2+w dw w

and verify the solution for Ue - U.
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7.7 This problem illustrates how nonlinear terms affect numerical stability-
for parabolic marching methods . Consider the following limiting form of
the k-w model .

Ow CaU\2
U- = a

	

) -Rw2
Ox Oy

We wish to analyze the stability of the solution to this equation under the
following discretization approximations .

U
Ow

=

	

U

	

[3w'+1 - 4cw�,, + wm-1~Ox AX

_aU
2

a(OU/ay) 2 ia - i,-1 wm,+1
ay wm+1

2

	

,,~ q -1 i

	

i-1 2~w = (1 + V~m)N
wi,
M+lwm+1 -

	

w~(wm+1)

(a) Assuming that w' ,, +1 is the sum of the exact solution to the discretized
equation, cwm,+l, and an error term, 6w', viz .,

wi,,,,+1 = w�,+l + Swi

linearize the discretized equation for w and verify that

6w2

	

__

	

(V,w - 1 )Ow2,+1 -01 (OU/ay)2
6wi-1

	

3Uw,,+1/Ox, - a(OU/ay) 2 + (~bw + 1),3w2M+l

(b) Using the fact that wrn+l satisfies the exact discretized equation, sim-
plify the denominator and show that

1) - a(OU/ay)2/(Qw2M+1)

6wZ-1

	

V)w + U(4wm - wm,-1)/(LoM,+IAX )-1)/(LoM,+IAX)

(c) Assuming the term proportional to U is negligible, determine the
condition that 0, must satisfy in order to insure that jSwz/6w z-1 I < 1 .
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7.8 Using von Neumann stability analysis, determine G and any condition
required for stability of the following finite-difference schemes . Assume
U>0,v>0andS<0 .

(a) Euler's method :

(b) Richardson's method :

(c) Crank and Nicolson's method :

Q1
Q2
Q3
Q4
Q5

kn+1 - kn _
UOt

	

kn+1 - kn+1
2Ax j+1 -1)

n+1 -_

	

-1

	

2vAt ( n

	

n

	

0'k7n

	

+ (0x)2 \k9+1 - 2kj + j1)

UA1 (k
~+l + kj+l -kj±1 - kj

	

1) + 1SAt (k~+1 + kj.)
4Ax

	

2

7.9 Consider the following one-dimensional wave equation with source and
diffusion terms .

ak

	

ak,

	

a2 k,
at, + Uax - Sk, + "axe

where U > 0, v > 0 and S can be either positive or negative .

(a) Cast this equation in finite-difference form using Crank-Nicolson dif-
ferencing and the following approximation for the source term .

Sk = S [V k~ + (1 - V')k~+1 )] ,

	

0 < V) < 1

(b) Using von Neumann stability analysis, determine G and any condition
required for stability of this finite-difference scheme . How do your
results compare to the analysis of Equation (7.91) in Section 7.4?

7.10 Verify that the dependent-variable and inviscid-flux vectors in Equa-
tion (7.115) can be written as

Q2
( 3--, )Q2/Q1 +

	

1)Q3 - (`Y - 1)Q4
?"Q2Q3/Q1 - (2)Q2/Q 2 - (7 - 1)Q2Q4/Q1

Q2Q4/Q1
Q2Q5/Q1

and show that the flux-Jacobian matrix is given by Equation (7.119) .
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7.11 The following table represents partial results for a one-dimensional
finite-difference computation using a second-order accurate, time-marching
method . The computation was done on grids with 50, 100 and 200 points .
Use Richardson extrapolation to estimate the discretization error at each
point for the two finest grids . Based on your results, make a table of the
results below and add a column with your best estimate of the continuum
solution (grid-point spacing , 0) to the differential equation .

? 050 ,7 0100 i O200

1 .5592 1 .5628 1 .5607
2 .5700 3 .5740 5 .5726
3 .5737 5 .5748 9 .5745
4 .5615 7 .5557 13 .5573
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