Chapter 6

Beyond the Boussinesq
Approximation

The Boussinesq eddy-viscosity approximation assumes the principal axes
of the Reynolds-stress tensor, 7;;, are coincident with those of the mean
strain-rate tensor, Sj;, at all points in a turbulent flow. This is the analog of
- Stokes’ approximation for laminar flows. The coefficient of proportionality
between 7;; and S;; is the eddy viscosity, ur. Unlike the molecular viscos-
ity which is a property of the fluid, the eddy viscosity depends upon many
details of the flow under consideration. It is affected by the shape and na-
ture (e.g., roughness height) of any solid boundaries, freestream turbulence
intensity, and, perhaps most significantly, flow history effects. Experimen-
tal evidence indicates that flow history effects on 7;; often persist for long
distances in a turbulent flow, thus casting doubt on the validity of a simple
linear relationship between 7;; and S;;. In this chapter, we examine several
flows for which the Boussinesq approximation yields a completely unsatis-
factory description. We then examine some of the remedies that have been
proposed to provide more accurate predictions for such flows. Although
our excursion into the realm beyond the Boussinesq approximation is brief,
we will see how useful the analytical tools developed in preceding chapters
are for even the most complicated turbulence models.

6.1 Boussinesq-Approximation Deficiencies
While models based on the Boussinesq eddy-viscosity approximation pro-

vide excellent predictions for many flows of engineering interest, there are
some applications for which predicted flow properties differ greatly from
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214 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION

corresponding measurements. Generally speaking, such models are inaccu-
rate for flows with sudden changes in mean strain rate and for flows with
what Bradshaw (1973a) refers to as extra rates of strain. It is unsur-
prising that flows with sudden changes in mean strain rate pose a problem.
The Reynolds stresses adjust to such changes at a rate unrelated to mean
flow processes and time scales, so that the Boussinesq approximation must
fail. Similarly, when a flow experiences extra rates of strain caused by rapid
dilatation, out of plane straining, or significant streamline curvature, all of
which give rise to unequal normal Reynolds stresses, the approximation
again becomes suspect. Some of the most noteworthy types of applications
for which models based on the Boussinesq approximation fail are:

1. flows with sudden changes in mean strain rate;
flow over curved surfaces;

flow in ducts with secondary motions;

. flow in rotating and stratified fluids;

. three-dimensional flows;

o ot A W

. flows with boundary-layer separation.

As an example of a flow with a sudden change in strain rate, consider the
experiment of Tucker and Reynolds (1968). In this experiment, a nearly
isotropic turbulent flow is subjected to uniform mean normal strain rate
attending the following mean velocity field:

U = constant, V = —ay, W =az (6.1)

The coefficient a is the constant strain rate. The strain rate is maintained
for a finite distance in the z direction in the experiment and then removed.
The turbulence becomes anisotropic as a result of the uniform straining, and
gradually approaches isotropy downstream of the point where the straining
ceases. Wilcox and Rubesin (1980) have applied their k-w? model to this
flow to demonstrate the deficiency of the Boussinesq approximation for
flows in which mean strain rate abruptly changes. Figure 6.1 compares the
computed and measured distortion parameter, K, defined by
72 7z
K= "2 (6.2)
v'2 + w2
As shown, when the strain rate is suddenly removed at r ~ 2.3 m, the
model predicts an instantaneous return to isotropy, i.e., all normal Reynolds
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Figure 6.1: Computed and measured distortion parameter for the Tucker-
Reynolds plane-strain flow; k-w? model; o ® A Tucker-Reynolds. [From
Wilcox and Rubesin (1980).]

stresses become equal. By contrast, the turbulence approaches isotropy at
a finite rate. Note also that the model predicts a discontinuous jump in K
when the straining begins at z = 0 m. Interestingly, if the computation
is extended downstream of z = 2.3 m without removing the strain rate,
the model predicted asymptotic value of K matches the measured value at
z = 2.3 m, but approaches this value at a slower than measured rate.

As an example of a flow with significant streamline curvature, consider
flow over a curved surface. Meroney and Bradshaw (1975) find that for
both convex and concave walls, when the radius of curvature, R, is 100
times the local boundary-layer thickness, 6, skin friction differs from its
corresponding plane-wall value by as much as 10%. By contrast, laminar
skin friction changes by about 1% for §/R = .01. Similar results have been
obtained by Thomann (1968) for supersonic boundary layers; for constant-
pressure flow over surfaces with §/R ~ .02, heat transfer changes by nearly
20%. Clearly, many practical aerodynamic surfaces are sufficiently curved
to produce significant curvature effects. For such flows, a reliable turbulence
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Figure 6.2: Computed and measured skin friction for flow over a convex
surface with constant pressure; - - - k-w model without curvature correction;
k-w model with curvature correction; o So and Mellor.

model must be capable of predicting effects of curvature on the turbulence.

Figure 6.2 compares computed and measured skin friction for flow over
a convex wall. The flow, experimentally investigated by So and Mellor
(1972), has nearly constant pressure. The wall is planar up to z = 4.375
ft and has §/R ~ .075 beyond that location. As shown, computed skin
friction is generally 30% to 40% higher than measured.

Wilcox and Chambers (1977) propose a curvature correction to the tur-
bulence energy equation that provides an accurate prediction for flow over
curved surfaces. Appealing to the classical stability arguments for flow
over a curved wall advanced by von Kirman (1934), they postulate that
the equation for k should more appropriately be thought of as the equation
for v'2. Consequently, Wilcox and Chambers add a term originating from
the centrifugal acceleration in the exact v equation. For the Standard
k-w model, the boundary layer form of the equations for flow over a curved
surface with radius of curvature, R, are as follows.

oUu oU 1dP 0 ou U k
U—a—"+v6y——';'d—z—+a [( + vr )(7—5)], VT—; (63)

ok 6k 9 UOOU ou U
UoetVayta TR oy =7 (ay B R) okt g [“’*" "5, ]
(6.4)
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The last term on the left-hand side of Equation wg6.4) is the Wilcox-
Chambers curvature-correction term. As shown in Figure 6.2, including
the curvature term brings model predictions into much closer agreement
with measurements. A perturbation analysis of Equations (6.3) to (6.5) for
the log layer (see Problems) shows that the model predicts a modified law
of the wall given by

[1 - ﬁRi] v = -1—€n, (uTy) + constant (6.6)
Rlur & v

with Br ~ 8.8. This is very similar to the modified law of the wall de-

duced by Meroney and Bradshaw (1975), who conclude from correlation of

measurements that 8g =~ 12.0.

Other curvature corrections have been proposed for two-equation mod-
els, and Lakshminarayana (1986) presents a comprehensive overview. Of-
ten, in the context of the k-e¢ model, a correction term is added to the e
equation. Launder, Priddin and Sharma (1977), for example, replace the
coefficient C¢y [see Equation (4.42)] by

Ces — Ce2 (1 — 0.2RiT) (6.7)

where Rir is the turbulence Richardson number defined by

2U

Rip = ——
‘T~ RaU /oy

(6.8)

This type of correction yvields improved accuracy comparable to that ob-
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flow is compressible. Such models also fail to predict secondary motions
that commonly occur in ducts, and in the absence of ad hoc corrections,
fail to predict salient features of rotating and stratified flows. While these
are more subtle and specialized applications, each failure underscores the
fact that models based on the Boussinesq approximation are not universal.
The following sections explore some of the proposals made to remove many
of these deficiencies in a less ad hoc fashion.

6.2 Nonlinear Constitutive Relations

One approach to achieving a more appropriate description of the Reynolds-
stress tensor without introducing any additional differential equations is to
assume the Boussinesq approximation is simply the leading term in a series
expansion of functionals. Proceeding with this premise, Lumley (1970)
and Saffman (1976) show that for incompressible flow the expansion must
proceed through second order according to

2

3
k k k

—DL% (SikQu; + i) — F%anﬁnmé,;j - G%Qikak,. (6.9)

pk

k
pkbi; + 2upS;; — Bg—zsmnsnméij - Cw'-z'Sz'kSkj

T,'j:-—

where B, C, D, F and G are closure coefficients, and k/w? may be equiv-
alently written as k®/¢?. Also, Si; and Q;; are the mean strain-rate and
rotation tensors, viz.,

1 /0U; OU; 1 /0U; OU;
N I A Sl kR
S,] - 2 (81']' 81‘,‘) and Q” - 2 (63:]' 3:(:,') (6’10)

In order to guarantee that the trace of 7;; is —2pk, we must have
B = —C/3 and F = —G/3. Equation (6.9) can be simplified by requir-
ing it to conform with certain fundamental experimental observations. In
the experiment of Tucker and Reynolds (1968), for example, the normal
Reynolds stresses are related approximately by

1
Tep RS -2-(Tyy + 722) (6.11)

Substituting Equations (6.1) and (6.11) into Equation (6.9) shows that
necessarily C = 0. In addition, Ibbetson and Tritton (1975) show that
homogeneous turbulence in rigid body rotation decays without developing
anisotropy. This observation requires G = 0. Finally, if Equation (6.9) with
C = G = 0 is applied to a classical shear layer where the only significant
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velocity gradient is 0U/dy, Equation (6.11) again applies with 7., and
T,, interchanged, independent of the value of D. Thus, Saffman’s general
expansion simplifies to:

2 k
Tij = —gpké,'j -+ 2/LTS,~]~ - D%Q- (S,:kﬂkj + Sijki) (6.12)

In analogy to this result, Wilcox and Rubesin (1980) propose the fol-
lowing simplified nonlinear constitutive relation for their k-w? model.

10Uy 5 8 pk(Sik S + SjkSi
30z, 9 (B*w?+2SmnSnm)
The primary usefulness of this prescription for the Reynolds-stress tensor

is in predicting the normal stresses. The coefficient 8/9 is selected to guar-
antee

) (6.13)

2

w?:v? w?=4:2:3 (6.14)

for the flat-plate boundary layer. Equation (6.14) is a good approximation
throughout the log layer and much of the defect layer. The model faithfully
predicts the ratio of the normal Reynolds stresses for boundary layers with
adverse pressure gradient where the ratios are quite different from those
given in Equation (6.14). Bardina, Ferziger and Reynolds (1983) have used
an analog of this stress/strain-rate relationship in their Large Eddy Simu-
lation studies. However, the model provides no improvement for flows over
curved surfaces.

Speziale (1987b) proposes a nonlinear constitutive relation for the k-¢
model as follows (for incompressible flow):

2 5 k3 1
Tij = —gpk&'j + 2ur S + 4CDC,,€_2 SikSkj — gsmnsnméij
pk‘3 0 1 o
+403036—2 (Sij —3 Smm 5ij> (6.15)

where §,~,~ is the frame-indifferent Oldroyd derivative of S;; defined by

0“_ BS,'J' 65,»,» an ) 6Uj )
Sz]— 3t +Uk 6,’ck al'k kj 6szkl (616)

The closure coefficients Cp and Cg are given by
Cp=Cg=168 (6.17)

In addition to its elegance and simplicity, this model satisfies three key
criteria that assure consistency with properties of the exact Navier-Stokes
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equation. First, like the Saffman and Wilcox-Rubesin models, it satisfies
general coordinate and dimensional invariance. Second, it satisfies a lim-
ited form of the Lumley (1978) realizability constraints (i.e., positiveness
of k= —%r;g). Third, it satisfies material frame indifference in the limit of
two-dimensional turbulence. The latter consideration leads to introduction
of the Oldroyd derivative of S;;.

The appearance of the rate of change of S;; in the constitutive relation
is appropriate for a viscoelastic-like medium. While, to some degree, the
Speziale constitutive relation includes rate effects, it still fails to describe
the gradual adjustment of the Reynolds stresses following a sudden change
in strain rate. For example, consider the Tucker-Reynolds flow discussed
above. The Oldroyd derivative of S;; is given by

0 0 0
Syy=S:,= —2(12; all other Si;=0 (618)

Clearly, when the strain rate is abruptly removed, the Speziale model pre-
dicts that the normal Reynolds stresses instantaneously return to isotropy.
Hence, the model is no more accurate than the Wilcox-Rubesin model for
such flows.

For flow over a curved surface, the contribution of the nonlinear terms
in the Speziale model to the shear stress is negligible. Consequently, this
model, like the Wilcox-Rubesin model, offers no improvement over the
Boussinesq approximation for curved-wall flows.

While the model fails to improve model predictions for flows with sudden
changes in strain rate and flows with curved streamlines, it does make a
dramatic difference for flow through a rectangular duct [see Figure 6.3(a)].
For such a flow, the difference between 7,, and 7, according to Speziale’s
relation is, to leading order,

pk3 | (0UN?  [oU\?
Tzz—Tyy:CDCl%—fz— l(-gz—) ~\oy (6.19)

while, to the same order, the shear stresses are

v o L LABOU AU
Try = MUT ay, Tez = HT a7’ Tyz = CDC# 7 6’y E) (620)

Having a difference between 7,, and 7y, is critical in accurately simu-
lating secondary motions. Using his model, Speziale (1987b) has computed
flow through a rectangular duct. Figure 6.3(b) shows computed secondary
flow streamlines, which clearly illustrates that there is an eight-vortex sec-
ondary flow structure as seen in experiments. Using the Boussinesq approx-
imation, no secondary flow develops, so that the Speziale model obviously
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(a) Flow geometry (b) Secondary flow streamlines

Figure 6.3: Fully developed turbulent flow in a rectangular duct. [From
Speziale (1991) — Published with permission of author.]

does a better job of capturing this missing feature. Although Speziale
presents no comparison of computed and measured results, the net effect
of the nonlinear terms is very dramatic.

Speziale’s nonlinear constitutive relation also improves k-¢ model pre-
dictions for the backward-facing step. Focusing on the experiment of Kim,
Kline and Johnston (1980), Thangam and Speziale (1992) have shown that
using the nonlinear model with a low-Reynolds-number k-¢ model increases
predicted reattachment length for this flow from 6.3 step heights to 6.9 step
heights. The measured length is 7.0 step heights.

Rodi (1976) deduces a nonlinear constitutive equation by working with
a model for the full Reynolds-stress equation [Equation (2.34)]. Rodi begins
by approximating the difference between convective and turbulent transport
terms for incompressible flow as:

0Tij 07ij 15 0Tij -
ot + Uk Oz " Ozx [Vacck + Ciji

T [0k Ok 0 [ 0k | Cik
~ k {Bt +Uk61‘k ail:k Val‘k + 2p (6.21)

This approximation yields a nonlinear algebraic equation that can be used
to determine the Reynolds-stress tensor, viz.,

nf, WUm N __ 0U _ OUi o g
ok {‘rm" 7z, pf}—- leawk T]kaxk+€” 1;; (6.22)
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With suitable closure approximations for the dissipation tensor, €, and
the pressure-strain correlation tensor, II;;, Equation (6.22) defines a non-
linear constitutive relation. More precisely, Gatski and Speziale (1992)
regard such models as strain-dependent generalizations of nonlinear consti-
tutive relations. That is, these models can be written in a form similar to
Saffman’s expansion [Equation (6.9)]. The various closure coefficients then
become functions of certain Reynolds-stress tensor invariants. The com-
plexity of the constitutive relation depends on the closure approximations,
and alternative approximations have been tried by many researchers [see
Lakshminarayana (1986)]. A model derived in this manner is known as an
Algebraic Stress Model or, in abbreviated form, as an ASM.

When an ASM is used for a flow with zero mean strain rate, Equa-
tion (6.22) simplifies to

k
7ij = = (Ilij — €;5) (6.23)

As we will discuss in Subsection 6.3.1, in the limit of vanishing mean strain
rate, the most common closure approximations for €;; and II;; simplify to

€ 2 2
L; = Ciy (Tij + gpkéij) and  €;j — pedi (6.24)

where C is a closure coefficient. Hence, when the mean strain rate vanishes,
the algebraic stress model simplifies to

2
3

This shows that the ASM predicts an instantaneous return to isotropy in
the Tucker-Reynolds flow discussed above. Hence, like the Wilcox-Rubesin
and Speziale nonlinear constitutive relations, the ASM fails to properly
account for sudden changes in the mean strain rate. The ASM does provide
significant improvement for flows with streamline curvature however. So
and Mellor (1978), for example, show that excellent agreement between
computed and measured flow properties is possible using an ASM with the
k-¢ model for boundary layers on curved surfaces. The model predicts most
qualitative features and provides fair quantitative agreement for flows with
secondary motions as shown, for example, by Demuren (1991).

In summary, the primary advantage of nonlinear constitutive relations
appears to be in predicting the anisotropy of the normal Reynolds stresses.
The most important application for which this is of interest is for flow in
ducts with secondary motions. In the case of algebraic stress models, greatly
improved predictions can be obtained for flows with nontrivial streamline
curvature. It is doubtful that the nonlinear stress models discussed in this

pks;; (6.25)

Tij = —
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section yield any significant improvement for separating and reattaching
flows. While the k-¢ model’s predicted reattachment length is closer to
the measured length when the nonlinear model is used, it is not clear that
a better description of the physics of this flow has been provided. The
excellent solutions obtained with the Standard k-w model [see Section 4.10]
strongly suggest that the k-¢ model’s inaccuracy for such flows has nothing
to do with the basic eddy-viscosity assumption. While the improvements
attending use of a nonlinear constitutive relation with two-equation models
are nontrivial, the models still retain many of their deficiencies.

6.3 Second-Order Closure Models

Although it poses a more formidable task with regard to establishing suit-
able closure approximations, there are potential gains in universality that
can be realized by devising a second-order closure model. As we will
see, such models naturally include effects of streamline curvature, sudden
changes in strain rate, secondary motions, etc. We will also see that there
is a significant price to be paid in complexity and computational difficulty
for these gains.

Virtually all researchers use the same starting point for developing such
a model, viz., the exact differential equation describing the behavior of

the Reynolds-stress tensor, 7;; = —pufuj. As shown in Chapter 2, the
incompressible form of the exact equation is
87’3‘;’ _8_7'1 _ 0Uj oU; d aT,'j
5t +Uk 9z, % Bz, *Ba, +€”_H”+32k Y e + Cijk| (6.26)
where
ou’ o’
HiA — g | =L 3 .
i=P (6:15]- + 6x;> (6.27)
du} 3“}
€5 = 2#5;@ (628)
and L L
Cijk = pujujuy + p'uibjr + p'ujbik (6.29)

Inspection of Equation (6.26) shows why we can expect a second-order
closure model to correct some of the Boussinesq approximation’s shortcom-
ings. First, since the equation automatically accounts for the convection
and diffusion of 7;;, a second-order closure model will include effects of flow
history. The presence of dissipation and turbulent-transport terms indicates
the presence of time scales unrelated to mean-flow time scales, so history
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effects should be more realistically represented than with a two-equation
model. Second, Equation (6.26) contains convection, production and (op-
tionally) body-force terms that respond automatically to effects such as
streamline curvature, system rotation and stratification, at least qualita-
tively. Thus, there is potential for naturally representing such effects with
a well-formulated second-order closure model. Third, Equation (6.26) gives
no a priori reason for the normal stresses to be equal even when the mean
strain rate vanishes. Rather, their values will depend upon initial condi-
tions and other flow processes, so that the model should behave properly
for flows with sudden changes in strain rate.

Rotta (1951) was the first to accomplish closure of the Reynolds-stress
equation, although he did not carry out numerical computations. Many
researchers have made important contributions since the pioneering efforts
of Rotta. Two of the most important conceptual contributions have been
made by Donaldson and Lumley. Donaldson [c.f. Donaldson and Rosen-
baum (1968)] was the first to advocate the concept of invariant modeling,
i.e., establishing closure approximations that rigorously satisfy coordinate
invariance. Lumley (1978) has developed a systematic procedure for repre-
senting closure approximations that guarantees realizability, i.e., that all
physically positive-definite turbulence properties be computationally posi-
tive definite and that all computed correlation coefficients lie between £1.
The next subsection discusses these, and other, concepts and their impact
on closure approximations.

6.3.1 Closure Approximations

To close Equation (6.26), we must model the dissipation tensor, ¢;;, the
turbulent-transport tensor, Cj;x, and the pressure-strain correlation tensor,
II;;. Because each of these terms is a tensor, the approximations required
for closure can assume much more elaborate forms compared to approxi-
mations used for the simpler scalar and vector terms in the k equation. In
this subsection, we will discuss some of the most commonly used closure
approximations.

Dissipation: Because dissipation occurs at the smallest scales, most
modelers use the Kolmogorov (1941) hypothesis of local isotropy, which
implies

2
€5 = gpeé,-j (6.30)

where
7 [
. Ou; Ou;

=V B (6.31)
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The scalar quantity ¢ is exactly the dissipation rate appearing in the turbu-
lence kinetic energy equation. Contracting Equation (6.26) shows that this
must be the case. As with simpler models, we must establish a procedure
for determining ¢. In most of his work, for example, Donaldson has specified
¢ algebraically, similar to what is done with a one-equation model. Most
researchers use the € equation as formulated for the k-¢ model. Wilcox and
Rubesin (1980) and Wilcox (1988b) compute ¢ by using an equation for the
specific dissipation rate.

Since the dissipation is in reality anisotropic, particularly close to solid
boundaries, some efforts have been made to model this effect. Generalizing
a low-Reynolds-number proposal of Rotta (1951), Hanjali¢ and Launder
(1976), for example, postulate that

2
€ij = -3-/)66,;_7‘ + 2f, pebs; (6.32)

where b;; is the dimensionless Reynolds-stress anisotropy tensor, viz.,

wi + 2pkb;;
by = — <_____” *’2;]5’ ’) (6.33)

and f, is a low-Reynolds-number damping function, which they choose
empirically to vary with turbulence Reynolds number, Rer = k%/(ev),
according to

-1
fo= (1 + lReT) (6.34)
10

Turbulent Transport: As with the turbulence energy equation, pres-
sure fluctuations, as well as triple products of velocity fluctuations, appear
in the tensor Cjjx. Definitive experimental data are unavailable to provide
any guidance for modeling the pressure-correlation terms, and they are ef-
fectively ignored. The most common approach used in modeling Cjji is
to assume a gradient transport process. Donaldson (1972), for example,
argues that the simplest tensor of rank three that can be obtained from
the second-order correlation 7;; is 87 /Ox;. Since Cjji is symmetric in all
three of its indices, he concludes that

Otk Omj
—_— — 4 — 6.35

6:6,7 (9.’!;']' 0.?;; ( )
This tensor has the proper symmetry, but is not dimensionally correct. We
require a factor whose dimensions are length? /time — a gradient diffusivity
— and the ratio of k2/¢ has been employed by Mellor and Herring (1973)
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and Launder, Reece and Rodi (1975). Using the notation of Launder et al.,
the final form of the closure approximation is

(6.36)

Cijr = CsT [aT]k + Ori + 8nj]

Ox; Ox;  Owmy

where C,; ~ 0.11 is a scalar closure coefficient.

Launder, Reece and Rodi also postulate a more general form based on
analysis of the transport equation for Cjj;. Through a series of heuristic
arguments, they infer the following alternative closure approximation:

k
Cijk = —C;E [Tim_ (6.37)

where C) ~ 0.25 is also a scalar closure coefficient.

Pressure-Strain Correlation: The tensor II;;, which is often referred
to as the pressure-strain redistribution term, has received the greatest
amount of attention from turbulence modelers. The reason for this interest
is twofold. First, being of the same order as production, the term plays
a critical role in most flows of engineering interest. Second, because it
involves essentially unmeasurable correlations, a great degree of cleverness
and ingenuity is required to establish a rational closure approximation.

To determine pressure fluctuations in an incompressible flow we must,
in principle, solve the following Poisson equation for p'.

Lory = o004 & (.
PR o Fell v vy CURE ) (6:38)

This equation follows from taking the divergence of the Navier-Stokes equa-
tion and subtracting the time-averaged equation from the instantaneous
equation. The classical approach to solving this equation is to write p’ as
the sum of two contributions, viz.,

pl = plslow + p:'apid (6.39)

By construction, the slow and rapid pressure fluctuations satisfy the fol-
lowing equations.
62

Phow =~ 5o (i — W) (6.40)

dU; Ou;
Vzprapzd 2—8?51?_ (641)
J i
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The general notion implied by the nomenclature is changes in the mean
strain rate contribute most rapidly to p; apid because the mean velocity
gradient appears explicitly in Equation (6.41). By contrast, such effects
are implicitly represented in Equation (6.40). The terminology slow and
rapid should not be taken too literally, however, since the mean strain rate
does not necessarily change more rapidly than ] u]
For homogeneous turbulence, these equations can be solved in terms of
appropriate Green’s functions, and the resulting form of II;; is

Uy

Hz] - Az] + Mz]kl oz .

(6.42)

where 4;; is the slow pressure strain and the tensor M;;z0U /0 is
the rapid pressure strain. The tensors A;; and M;;j; are given by the

following.
9? (uk”r) dsy
6.43
/,/./ (376] Bw.) dyrdy |x—y| (6.43)

u oup &y
vgn =g [[] (axJ ax,)5y7|x—y| (644)

The integration range for Equations (6.43) and (6.44) is the entire flow-
field. Additionally, for inhomogeneous turbulence, the second term in Equa-
tion (6.42) becomes an integral with the mean velocity gradient inside the
integrand. This emphasizes a shortcoming of single-point closure schemes
that has not been as obvious in any of the closure approximations we have
discussed thus far. That is, we are postulating that we can accomplish
closure based on correlations of fluctuating quantities at the same physi-
cal location. The pressure-strain correlation very clearly is not a localized
process, but rather, involves contributions from every point in the flow.
This would suggest that two-point correlations, i.e., products of fluctuating
properties at two separate physical locations, are more appropriate. Nev-
ertheless, we expect contributions from more than one or two large eddy
sizes away to be negligible, and this would effectively define what is usually
referred to as the locally homogeneous approximation. Virtually all
modelers assume that turbulent flows behave as though they are locally
homogeneous, and use Equation (6.42).

The forms of the tensors A;; and M;jz; must adhere to a variety of
constraints resulting from the symmetry of indices, mass conservation and
other kinematic constraints. We know, for example, that the trace of IL;;
must vanish and this is true for the slow and rapid parts individually. Rotta
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(1951) postulates that the slow pressure-strain term, often referred to
as the return-to-isotropy term, is given by

2
Ay = C'l% (Tij + gpk&,-j) (6.45)

where C] is a closure coeflicient whose value can be inferred from measure-
ments [Uberoi (1956)] to lie in the range

14<C; <18 (6.46)

Turning now to the rapid pressure strain, early research efforts of
Donaldson [Donaldson and Rosenbaum (1968)], Daly and Harlow (1970),
and Lumley (1972) assumed that the rapid pressure strain is negligible
compared to the slow pressure strain. However, Crow (1968) and Reynolds
(1970) provide simple examples of turbulent flows for which the effect of
the rapid pressure strain far outweighs the slow pressure strain.

Launder, Reece and Rodi (1975) have devised a particularly elegant
closure approximation based almost entirely on kinematical considerations.
Building upon preliminary analysis of Rotta (1951), they write M;jx in
terms of a tensor a;;1; as follows.

Mijki = ajr + aji (6.47)

This relation is strictly valid only for homogeneous turbulence. Rotta
demonstrates that the tensor a;jz; must satisfy the following constraints:

Aijkl = Qujki = Qriji (6.48)

and
aiirg =0, a0 = =21y (6.49)

Launder et al. propose that the fourth-rank tensor a;jz; can be expressed
as a linear function of the Reynolds-stress tensor. The most general tensor,
linear in 7;;, satisfying the symmetry constraints of Equation (6.48) is

aijkt = —abpim; — B(bieTi; + 61Tk + G5k + i5i)
—Cobiimij + [nbibr; + v(bbsj + 6156 )] pk (6.50)

where a, §, Cy, n and v are closure coefficients. Invoking the conditions
of Equation (6.49), all of the coeflicients can be expressed in terms of Cy,
viz.,

_4C2t10 . 3C+2 _ 50Ca+d 00546

T 11 7’ 55 55

(6.51)
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Finally, combining Equations (6.47) through (6.51), we arrive at the well-
known LRR model for the rapid pressure strain.

LRR Rapid Pressure-Strain Model:

ou . 1 - 1 .
Mijpim— = =& | Pij — =Purbij ) — B | Dij — 3 Dribij | — 1pkSij (6.52)
B:cl 3 3

oU; av; au, U,

Pj = Timgt+ himg— and  Dij = Timgz—';‘ +7im g, (6.53)

8+ Cy "__802—‘2 A_6002-—4

1 YT 7T T
Note that for compressible flows, the mean strain-rate tensor, S;;, is usually
replaced by Sij — 3Ski6i; in Equation (6.52).

One of the most remarkable features of this closure approximation is
the presence of just one undetermined closure coefficient, namely, C3. The
value of C, has been established by comparison of model predictions with
measured properties of homogeneous turbulent flows. Launder, Reece and
Rodi (1975) suggested using Cz = 0.40. Morris (1984) revised its value up-
ward to Cy = 0.50, while Launder (1992) currently recommends Cy = 0.60.
Section 6.4 discusses the kind of flows used to calibrate this model.

Bradshaw (1973b) has shown that there is an additional contribution
to Equations (6.43) and (6.44) that has a nontrivial effect close to a solid
boundary. It is attributed to a surface integral that appears in the Green’s
function for Equation (6.38). This has come to be known as the pressure-
echo effect or wall-reflection effect. Launder, Reece and Rodi (1975)
propose a near-wall correction to their model for Il;; that explicitly in-
volves distance from the surface. Gibson and Launder (1978) and Craft and
Launder (1992) propose alternative models to account for the pressure-echo

effect. For example, the LRR wall-reflection term, HE}U), is

0.4 < Cy <0.6 (6.54)

a=

2

k3/2
3pk6,'j) - 0015(}),] - Di]‘) 7 (655)

€
ny) = [0.1252(@ +
where n is distance normal to the surface.

More recent efforts at devising a suitable closure approximation for Il;;
have focused on developing a nonlinear expansion in terms of the anisotropy
tensor, b;;, defined in Equation (6.33). Lumley (1978) has systemati-
cally developed a general representation for II;; based on Equations (6.38)
through (6.44). In addition to insisting upon coordinate invariance and
other required symmetries, Lumley insists upon realizability. As noted
earlier, this means that all quantities known to be strictly positive must be
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guaranteed to be positive by the closure model. Additionally, all computed
correlation coefficients must lie between 41. This limits the possible form
of the functional expansion for II;;. Lumley argues that the most general
form of the complete tensor II;; for incompressible flow is as follows.

Lumley Pressure-Strain Model:

1
5116,:,’) + azka,-j

+pk (azbriSix + asbiibim Smr) bi;

1
+pk (asbriSik + asbribim Smi) (bikbkj - 3‘11653')

IL;; = aopeb;; + a1 pe <bikbjk -

2
+arpk (biksjk + bxSik — ‘gbklslkéij>

2
+agpk (bikbklsjl + bjebriSi — gbklblmsmk‘sij)
+aopk (bixx + bjkr) + ar0pk (bixbeij1 + bjrbriQir) (6.56)

The eleven closure coefficients are assumed to be functions of the tensor
invariants I7 and II], ie.,

a; = a,-(II,III), 1] = b,’jbij, II1] = bikbklbli (6.57)

The tensor ;; is the mean rotation tensor. The LRR model can be shown
to follow from Lumley’s general expression when nonlinear terms in b;; are
neglected, i.e., when all coefficients except ag, as, a7 and ag are zero.

A similar, but simpler, nonlinear model has been postulated by Speziale,
Sarkar and Gatski (1991). For incompressible flows, this model, known as
the SSG model, is as follows.

SSG Pressure-Strain Model:

" U 1
m;; = — (Clpf + C{Tmn -5.’8_) bi; + Cype <b,‘kbkj - g’bmnbnméij)
n

2
+ (Ca - C3V U) pkSi; + Capk (biksjk + bjrSik — §bmn5mn5ij)
+C5pk(bih9jk + bijik) (658)

Ci=34, C;=18, Cy=42, (C3=038
C;=13, Cs=1.25 Cs5=04

Interestingly, the SSG model does not appear to require a correction for

the pressure-echo effect in order to obtain a satisfactory log-layer solution.

(6.59)
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Finally, combining Equations (6.47) through (6.51), we arrive at the well-
known LRR model for the rapid pressure strain.

LRR Rapid Pressure-Strain Model:

oU . 1 - 1 .
Mk L= -a P — =Prrbij | — B | Dij — =Dirbij | — ¥pkS;; (6.52)
81'1 3 3

ou, oU; U, OUnm
H] = Tim 817"1 + T]ma—xr: and D” = Tim 6,’1}] -+ T]m ami (653)

8+ Cy 5 80y —2 . 60C, —4

1 T 7T T e
Note that for compressible flows, the mean strain-rate tensor, S;;, is usually
replaced by Sij — $Skk6;; in Equation (6.52).

One of the most remarkable features of this closure approximation is
the presence of just one undetermined closure coefficient, namely, C,. The
value of Cy has been established by comparison of model predictions with
measured properties of homogeneous turbulent flows. Launder, Reece and
Rodi (1975) suggested using Cy = 0.40. Morris (1984) revised its value up-
ward to Cs = 0.50, while Launder (1992) currently recommends Cy = 0.60.
Section 6.4 discusses the kind of flows used to calibrate this model.

Bradshaw (1973b) has shown that there is an additional contribution
to Equations (6.43) and (6.44) that has a nontrivial effect close to a solid
boundary. It is attributed to a surface integral that appears in the Green’s
function for Equation (6.38). This has come to be known as the pressure-
echo effect or wall-reflection effect. Launder, Reece and Rodi (1975)
propose a near-wall correction to their model for II;; that explicitly in-
volves distance from the surface. Gibson and Launder (1978) and Craft and
Launder (1992) propose alternative models to account for the pressure-echo

effect. For example, the LRR wall-reflection term, IIS}U), is

04<Cy <06 (6.54)

a =

(w) € 2 k3/2
Hij = [01252(7-” + gpké,,) - 0015(P,J - Dij) _C-T-l— (655)

where n is distance normal to the surface.

More recent efforts at devising a suitable closure approximation for Il;;
have focused on developing a nonlinear expansion in terms of the anisotropy
tensor, b;;, defined in Equation (6.33). Lumley (1978) has systemati-
cally developed a general representation for II;; based on Equations (6.38)
through (6.44). In addition to insisting upon coordinate invariance and
other required symmetries, Lumley insists upon realizability. As noted
earlier, this means that all quantities known to be strictly positive must be
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guaranteed to be positive by the closure model. Additionally, alli computed
correlation coefficients must lie between 1. This limits the possible form
of the functional expansion for II;;. Lumley argues that the most general
form of the complete tensor II;; for incompressible flow is as follows.

Lumley Pressure-Strain Model:

1
H,’j = aopcb,-]- -+ a1 p€ (b,’kbjk - 5116,']') + a2pk5’,~j
+pk (azbriSix + asbribim Smk) bij

1
+pk (asbrpiSik + aebribim Smi) (bikbkj - 51151'1')
2
+azpk (biijk + b5 Six — gbklslkéij>

2
+agpk <bikkaSjI + b bri S — §bklblmsmk6ij)
+agpk (bix Qi + bjkQir) + ar0pk (bik bkt + bjrbriir) (6.56)

The eleven closure coefficients are assumed to be functions of the tensor
invariants I/ and I]1], i.e.,

a; = ai(II,III), = b,’jb,’j, Il = bikbkzbu (6.57)

The tensor Q;; is the mean rotation tensor. The LRR model can be shown
to follow from Lumley’s general expression when nonlinear terms in b;; are
neglected, i.e., when all coefficients except ag, az, a7 and ag are zero.

A similar, but simpler, nonlinear model has been postulated by Speziale,
Sarkar and Gatski (1991). For incompressible flows, this model, known as
the SSG model, is as follows.

SSG Pressure-Strain Model:

" oU, 1
My = - (Clpf + Cl Tmn M_m) bij + Cape (bikbkj - gbmnbnm‘sij)
n

2
+ (Ca - C3V U) pkSi; + Capk (biksjk + bz Sik — '3-bmn5mn5ij)
+Cspk(bikﬂjk + bijik) (658)
Cl - 34, CI = 18, Cz = 42, Ca =0.8
C; = 13, C4 - 125, C5 =04

Interestingly, the SSG model does not appear to require a correction for
the pressure-echo effect in order to obtain a satisfactory log-layer solution.

(6.59)
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Many other proposals have been made for closing the Reynolds-stress
equation, with most of the attention on II;;. Weinstock (1981), Shih and
Lumley (1985), Haworth and Pope (1986), Reynolds (1987), Shih, Man-
sour and Chen (1987), Fu, Launder and Tselepidakis (1987) and Craft et
al. (1989) have formulated nonlinear pressure-strain correlation models. As
with the k-¢ model, low-Reynolds-number damping functions are needed
to integrate through the sublayer when the e equation is used. Damping
functions appear in the pressure-strain correlation tensor as well as in the
dissipation. So et al. (1991) give an excellent review of second-order clo-
sure models including low-Reynolds-number corrections. Compressibility,
of course, introduces an extra complication, and a variety of new proposals
are being developed.

While the discussion in this subsection is by design brief, it illustrates
the nature of the closure problem for second-order closure models. Al-
though dimensional analysis combined with physical insight still plays a
role, there is a greater dependence upon the formalism of tensor calculus.
To some extent, this approach focuses more on the differential equations
than on the physics of turbulence. This appears to be necessary because
the increased complexity mandated by having to model second and higher
rank tensors makes it difficult to intuit the proper forms solely on the
strength of physical reasoning. Fortunately, the arguments developed dur-
ing the past decade have a stronger degree of rigor than the drastic surgery
approach to modeling terms in the dissipation-rate equation discussed in
Subsection 4.3.2.

6.3.2 Launder-Reece-Rodi Model

The model devised by Launder, Reece and Rodi (1975) is the most well
known and most thoroughly tested second-order closure model based on
the € equation. Most newer second-order closure models are based on the
LRR model and differ primarily in the closure approximation chosen for
I1;;. Combining the closure approximations discussed in the preceding sub-
section, we have the following high-Reynolds-number form of the model.

Reynolds-Stress Tensor

0Tij 0 2
7;‘ Fy (Ukrij) = = Pij + 3pebij — iy -

k j i ij
—c, 2 [—( OTik | 1 OTik +TkmaTJ>} (6.60)

s~ T’Lm—_ T'm—"‘
oz | € 0Tm I DT m 0Tm
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Dissipation Rate

de Je e OU; €2 a [k Oe
Ve * PUigz; = Cagragg: = Carg = Cogr [z’kmaT

Pressure-Strain Correlation

€ 2 . 2
I;; = Cl'lz (Tij + gpkéij) —a (Pt] - §P637>

P 2 . 1
-p (Dij - §P5ij> — ok (Sij - '?;Skkéij>

m

| o

€ 2 k3/2
+ [0.1257‘;(7}7 + gpkéij) — 0015(13,3 - Dij)] -6_17,- (662)
Auxiliary Relations
(7Uj oU; _ U, U, _ 1
Pz]—nmaxm'}‘T]ma_z;;a Du—TBm (91,‘]’ +T;tm 6l‘,’ ) P—2Pkk

(6.63)
Closure Coefficients [Launder (1992)]

&= (84 C)/11, B=(8Cy—2)/11, % = (60C, —4)/55
C, =18, Cy = 0.60, C, =0.11 (6.64)
Ce = 0.18, Cey = 1.44, Cer = 1.92

Note that Equation (6.61) differs from the € equation used with the
Standard k-¢ model [Equation (4.42)] in the form of the diffusion term.
Rather than introduce the eddy viscosity, Launder, Reece and Rodi opt
to use the analog of the turbulent transport term, Cj;j. The values of
the closure coefficients in Equation (6.64) are specific to the LRR model
of course, and their values are influenced by the specific form assumed for
IT;;. In their original paper, Launder, Reece and Rodi recommend C; = 1.5,
Cy=04,C, =011, C. = 0.15, Ce; = 1.44 and Cy = 1.90. The values
quoted in Equation (6.64) are those currently recommended by Launder
(1992).

6.3.3 Wilcox Multiscale Model

Not all second-order closure models use the € equation to compute ¢. Wilcox
and Rubesin (1980) postulate a second-order closure model based on their
w? equation and the LRR model for II;;. Although the model showed some
promise for flows over curved surfaces and for swirling flows, its applications
were very limited. By contrast, Wilcox (1988b) proposes a second-order
closure model that has had a wide range of applications.
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The model, known as the multiscale model, has some novel features that
are worthy of mention. The model was intended to serve as an improved
algebraic stress model. The intended improvement was to include real time
dependent convective terms rather than using Rodi’s Equation (6.22).

To accomplish this end, the model idealizes turbulent flows as consisting
of two distinct types of eddies. The first type are large, or upper partition,
eddies that contain most of the turbulence energy and primarily transport
the Reynolds stresses. The second are small, or lower partition, eddies that
are isotropic and primarily dissipative. The kinetic energy of the small
eddies is e so that the kinetic energy of the large eddies is £ — e. This
notion is used in Large Eddy Simulation work (see Chapter 8) where small
eddies (corresponding to the lower partition of the spectrum) are modeled
and large eddies (corresponding to the upper partition of the spectrum) are
numerically simulated. Both types of eddies are modeled in the multiscale
model.

The model consists of a tensor equation governing the development of
the small and large eddies, including an energy exchange process that gov-
erns their interaction. Because of the assumed form of the equations, the
exchange tensor is essentially the pressure-strain correlation tensor, II;;.
The model uses the LRR pressure-strain model, although the formulation
is sufficiently general to permit the use of any plausible pressure-strain
formulation.

Using a series of physical arguments, Wilcox arrives at a closed set of
equations that can be combined to yield an equation for the Reynolds-stress
tensor. Although the formulation differs in spirit from the conventional
term-by-term closure approach, the model effectively uses the Kolmogorov
(1941) hypothesis of local isotropy for the lower partition, while the effective
closure approximation for Cj;i is given by

67—,:]- 2 " ok
Cije + V(?:ck R -3 (p+ o pr) . 8ij (6.65)

This equation is the approximation that replaces Rodi’s ASM approxima-
tion. The most important consequence is that the turbulent transport of the
shear stresses is neglected. This is consistent with the idealized notion that
the large eddies move in an inviscid manner. Computationally, most no-
tably in boundary-layer computations, the multiscale model often behaves
very much like an ASM. Using standard notation, the Wilcox multiscale
model is as follows.
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Reynolds-Stress Tensor

0745 0 2
5 T 2r (Ukij) = —Pij + §ﬁ*p‘4)k6ij —IL;

2 0 Ok
- UT) —— .
o [ o) 2] (6.66)

Specific Dissipation Rate

0 0 ;
pa—:+pUjaw —awr ——ﬂpw [w-i—{\/Zan ]
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kY oz
0 Oow
— _— .67
+6zk [(,u +opr) 6xk] (6.67)
Upper Partition Energy
dk—e) a(k —e) . s e\3/2
U; =(1-4- )P— x k(l——) .
R (1-a-B)P—prowr(1-7)" (6.68)
Pressure-Strain Correlation
* 2 . 2
ILij = B*Crw | 735 + gpk‘&'j —al| Py — gP&ij
n 2 N 1
=B Dij = 3Pbij | = Ak | Sij — 3 Skxbis (6.69)
Auxiliary Relations
pr = pk/w (6.70)
oU; oU; U, ou. 1
Pij = TimaT;l ijaTma DU = Tim o: ;n +ij8_1:;:n, P = §Pkk
(6.71)

Closure Coefficients

(1:4/5, ﬁ:3/40, 5*:9/1007 0—:1/2’ 0*=1/2
a =42/55, pB=16/55 &=1/4, E=1 (6.72)
C1=1+4(1—e/k)3/?

The term proportional to ¢ in Equation (6.67) is the only formal differ-
ence from the k-w model’s Equation (4.35). Because of this term, the value
of o must increase from 5/9 to 4/5. All other closure coefficients shared by
the k-w and multiscale models have the same values. The term proportional
to £ follows from the LES work of Bardina, Ferziger and Reynolds (1983).
In the context of homogeneous turbulence, it is required to accurately sim-
ulate effects of system rotation. The term also introduces subtle differences
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between model-predicted effects of plane strain and uniform shear on ho-
mogeneous turbulence.

Note that the values chosen for & and § are those used in the original
Launder, Reece and Rodi (1975) model. However, a modified value of 1/4
rather than the LRR value of 4/11 has been selected for 4 to optimize
model predictions for homogeneous turbulence. Also, in a the log layer of a
flat-plate boundary layer, the model predicts e/k = 0.75 so that the value
of Cy is 1.5. This matches the value used in the original LRR model.

6.4 Application to Homogeneous Turbulent
Flows

Homogeneous turbulent flows are useful for establishing the new closure
coefficients introduced in modeling the pressure-strain correlation tensor,
IT;;. This is the primary type of flow normally used to calibrate a second-
order closure model. Recall that homogeneous turbulence is defined as
a turbulent flow that, on the average, is uniform in all directions. This
means the diffusion terms in all of the equations of motion are identically
zero, as is the pressure-echo correction. Hence, the primary remaining
difference between the LRR and Wilcox multiscale models when applied
to homogeneous turbulent flows is in the scale-determining equation. That
is, both models use the LRR pressure-strain model and the Kolmogorov
isotropy hypothesis, so that the equations for the Reynolds stresses are
nearly identical. The only differences are: (a) the LRR model uses the
¢ equation while the multiscale model uses the w equation; and, (b) the
closure coefficient C; is constant for the LRR model while it varies with
large-eddy energy, (k — e), for the multiscale model.

Additionally, since the diffusion terms vanish, the equations simplify to
first-order, ordinary differential equations, which can sometimes be solved
in closed form. At worst, a simple Runge-Kutta integration is required.
Such flows are ideal for helping establish values of closure coefficients such
as C1 and C5 in the LRR model, provided of course that we believe the
same values apply to all turbulent flows.

The simplest of all homogeneous flows is the decay of isotropic turbu-
lence. We discussed homogeneous isotropic turbulence in Section 4.4, and
established the ratio of 8* to 8 for the k-w model. The multiscale model
equations for k and w simplify to

ﬁ:—,@*wk and %:—

3,2
- = —fw (6.73)
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For large time, the asymptotic solution for k is given by
k~t=P 18 (6.74)
Similarly, for the LRR model, k varies with ¢ according to
k~t~1/(Ca1) (6.75)

Experimental observations summarized by Townsend (1976) indicate that
k ~ t™ where n = 1.25 4 0.06 for decaying homogeneous, isotropic
turbulence. Hence, we can conclude that our closure coefficients must lie
in the following ranges.

119< f*/B< 131, 1.76<Cep < 1.84 (6.76)

Figures 6.4(a) and (b) compare computed and measured k for decaying
homogeneous, isotropic turbulence as predicted by the Wilcox multiscale
model. The experimental data in (a) and (b) are those of Comte-Bellot and
Corrsin (1971) and Wigeland and Nagib (1978), respectively.

The second type of homogeneous turbulent flow that is useful for estab-
lishing the value of pressure-strain correlation closure coefficients is decay-
ing anisotropic turbulence. Assuming dissipation follows the Kolmogorov
(1941) isotropy hypothesis [Equation (6.30)], and using Rotta’s (1951) slow
pressure-strain term [Equation (6.45)], the Reynolds-stress equation is

dri 2 € 2
-é;_j = -3-p€tsij - Cl; (Tij + gpkéﬁj) (6.77)

The solution is readily shown to be

2 2 ke \ ©/(Ce=1)
Tij + §pk6,‘j = (Tij + Epkéij)o (k—f;) (678)
where subscript o denotes initial value. The experimental data of Uberoi
(1956) indicate that the coefficient C} lies in the range

14<Cy <18 (6.79)

Figures 6.4(e), (f), (g) and (h) compare computed k and normal Reynolds
stresses with Uberoi’s measurements for decaying homogeneous, anisotropic
turbulence as predicted by the Wilcox multiscale model.

Note that C; is not a constant in the multiscale model, but instead
varies with e¢/k. The range of values for C; in Equation (6.79) correspond
to e/k lying in the range 0.66 < e/k < 0.78. This is inconsistent with
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Figure 6.4: Computed and measured turbulence energy and Reynolds

stresses for homogeneous turbulent flows; —— Wilcox multiscale model;
o e 0 A v measured. [From Wilcox (1988b) — Copyright © AIAA 1988 —
Used with permission.]
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Figure 6.5: Computed and measured distortion parameter for the Tucker-
Reynolds plane-strain flow; - - - Wilcox-Rubesin k-w? model; Wilcox-
Rubesin second-order closure model; o @ A Tucker-Reynolds. [From Wilcox
and Rubesin (1980).]

Kolmogorov’s notion that the large eddies contain most of the energy, and
represents a conceptual flaw in the multiscale model. However, virtually all
multiscale applications have been done using values of e/k that correspond
to C, lying in the range quoted in Equation (6.79). The model’s predic-
tions are not strongly affected by simply using a constant value of C; and
dropping Equation (6.68).

To illustrate how much of an improvement second-order closure mod-
els make for flows with sudden changes in mean strain rate, Figure 6.5
compares measured distortion parameter, K, for the Tucker-Reynolds ex-
periment with computed results obtained using the Wilcox-Rubesin (1980)
k-w? and second-order closure models. As shown, the second-order closure
model predicts a gradual approach to isotropy and the computed K more
closely matches the experimental data.

Figure 6.6 compares computed and measured normal components of
the Reynolds-stress anisotropy tensor, b;;, for the experiment conducted by
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Choi and Lumley (1984). This experiment is similar to the Tucker-Reynolds
experiment, with turbulence initially subjected to plain strain and then
returning to isotropy after the strain is removed. This computation has
been done with the original LRR model using C; = 1.5.

0.20
bij
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coo0fr
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-0.10F o °_ -~
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—-0.15

_020 1 1 1 1
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Figure 6.6: Comparison of computed and measured anisotropy tensor for
decaying homogeneous, anisotropic turbulence; - - - LRR model; o Choi and
Lumley. [From Speziale (1991) — Published with permission of author.]

While discrepancies between computed and measured stresses are sat-
isfactory, even closer agreement between theory and experiment can be
obtained with a nonlinear model for the slow pressure-strain model. Sarkar
and Speziale (1990), for example, propose a simple quadratic model for the
slow pressure-strain given by

1
Ai; = —Cypeby; + Cype (bikbkj - gbmnbnméij) (6.80)

where C; = 3.4 and Cy = 4.2 [see Equation (6.58)]. Figure 6.7 compares
the so-called phase-space portrait of the return-to-isotropy problem. The
figure shows the variation of the second tensor invariant I] = bijbj; as a
function of the third tensor invariant, 111 = b;;b;;8;;. The nonlinear model
clearly falls within the scatter of the experimental data, while the LRR
model prediction provides a less satisfactory description.



240 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION

III/Z

0.15}F

0.05¢

OOO 1 A A 't 4
0.00 0.02 0.04 0.06 0.08 0.10

I11/3

Figure 6.7: Phase-space portrait for decaying homogeneous, anisotropic tur-
bulence; - - - LRR model; Sarkar-Speziale model; o Choi and Lumley.
[From Speziale (1991) — Published with permission of author.]

Homogeneous turbulence experiments have also been performed that
include irrotational plane strain [Townsend (1956) and Tucker and Reynolds
(1968)] and uniform shear (Champagne, Harris and Corrsin (1970), Harris,
Graham and Corrsin (1977), Tavoularis and Corrsin (1981), and Tavoularis
and Karnik (1989)]. These flows can be used to establish closure coefficients
such as C; in the LRR pressure-strain model. The velocity gradient tensor

for these flows is:
o S o
i _ [o “a o] (6.81)

81:]'_0 0 a

where a is the constant strain rate and S is the constant rate of mean shear.

While closed form solutions generally do not exist when mean strain rate
and/or shear are present, analytical progress can be made for the asymp-
totic forms in the limit ¢ — oc. In general, the specific dissipation rate,
w ~ €/k, approaches a constant limiting value while k and the Reynolds
stresses grow exponentially. Assuming solutions of this form yields closed-
form expressions for the Reynolds stresses.
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Using such analysis for uniform shear (a = 0, S # 0), Abid and Speziale
{1992) have analyzed the LRR and SSG pressure-strain models and two
new nonlinear pressure-strain models developed by Shih and Lumley (1985)
[SL model] and by Fu, Launder and Tselepidakis (1987) [FLT model]. Ta-
ble 6.1 summarizes their results, along with results for the multiscale model
(MS) and asymptotic values determined experimentally by Tavoularis and
Karnik (1989). As shown, the SSG model most faithfully reproduces mea-
sured asymptotic values of the Reynolds stresses. Note that the multiscale
model’s modified value for % in the LRR rapid pressure-strain model yields
a closer match to the measured b, than the original LRR model, while MS
and LRR normal components are nearly identical.

Table 6.1: Anisotropy-Tensor Limiting Values for Uniform Shear

| Property MS LRR SL  FLT SSG Measured |

boe 56 152 1200 196 218 210
bzy -154 -186 -.121 -.151 -.164 -.160
byy -122 -119 -122 -136 -.145 -.140
b,, -034 -033 .002 -.060 -.073 -.070
Sk /e 4.965 4.830 7.440 5.950 5.500 5.000

Figure 6.4(k) compares multiscale model Reynolds stresses with corre-
sponding measured values for the Champagne, Harris and Corrsin (1970)
uniform-shear experiment with S = 12.9 sec™!. Figure 6.4(1) makes a
similar comparison with the measurements of Harris, Graham and Corrsin
(1977) for which S = 48.0 sec™!. For both flows, the asymptotic value of
e/k is 4/5. Both computations use (e/k), = 4/5.

Turning to flows with irrotational strain rate (¢ # 0,8 = 0), Fig-
ure 6.4(i) and (j) compare multiscale model and measured [Townsend (1956)
and Tucker and Reynolds (1968), respectively] k& and Reynolds stresses.
The strain rate for the Townsend case is a = 9.44 sec™!, while the Tucker-
Reynolds case has a = 4.45 sec™!. Launder, Reece and Rodi (1975) report
very similar results for the Tucker-Reynolds case. The multiscale model
results are mildly sensitive to the initial value of ¢/k. Both cases have been
done using (e/k), = 3/4, which turns out to be the long-time asymptotic
value predicted by the model for uniform strain rate. Varying the initial
ratio between 1/2 and 9/10 produces less than a 15% change overall in the
Reynolds stresses. Figure 6.4(j) shows the results obtained for the Tucker-
Reynolds case using initial e/k ratios of 3/4 (solid curves) and 9/10 (dashed
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curves). As shown, the primary difference appears in w’?. Using the larger
value produces closer agreement between theory and experiment.

Rotating homogeneous turbulent flow is of some interest as it includes
Coriolis and centrifugal accelerations. The experiments of Wigeland and
Nagib (1978), for example, involve decaying axisymmetric homogeneous
turbulence that is subjected to constant angular rotation rate, . Fig-
ures 6.4(b), (c) and (d) compare computed and measured k for rotation
rates of 0, 20 sec™! and 80 sec™!, respectively. These computations have
been used to establish the value of é in the Wilcox multiscale model. As
noted earlier, this term was borrowed from the LES work of Bardina,
Ferziger and Reynolds (1983). Speziale (1991) indicates that the nonlinear
SSG pressure-strain model precludes the need for such rotation dependent
terms in the € or w equation.

6.5 Application to Free Shear Flows

While second-order closure models eliminate many of the shortcomings of
the Boussinesq eddy-viscosity approximation, they do not appear to solve
the free shear flow problem. Table 6.2 summarizes computed and measured
spreading rates for the Wilcox multiscale model and the LRR model. As
shown in the table, while the multiscale model displays much less sensitivity
to the freestream value of w than the k-w model (see Table 4.2), its spreading
rate is somewhat smaller than measured for the far wake. The LRR model’s
spreading rates are roughly 10% larger than those of the Standard k-¢
model. As noted by Launder and Morse (1979), because the predicted
round-jet spreading rate exceeds the predicted plane-jet spreading rate, the
LRR model fails to resolve the round-jet/plane-jet anomaly.

Table 6.2: Free Shear Flow Spreading Rate

IT]ow Multiscale Model LRR Model Measured_]
Far Wake .248-.292 — .365
Mixing Layer .102-.115 104 115
Plane Jet — 123 .100-.110
Round Jet — 135 .086-.095

Figure 6.8 compares computed and measured width of a curved mixing
layer. The computation was done using the LRR model [Rodi (1981)], and
the measurements correspond to an experiment of Castro and Bradshaw
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(1976) with stabilizing curvature. As shown, the LRR model predicts a
greater reduction in width than the Standard k-¢ model. However, the
LRR model’s predicted width lies as far below the measured width as the
k-¢ model’s prediction lies above. Although not shown in the figure, Rodi’s
(1976) Algebraic Stress Model predicts a width about midway between, and
thus in close agreement with measured values.

6 (cm)

12

10

= curved region —!

L Il L 1 i J L. 1 b

6 10 20 30 40 50 60 70 80 90 100
s (ecm)

Figure 6.8: Comparison of computed and measured width for a curved
mixing layer; —— LRR model; - - - Standard k-¢ model; o Castro and
Bradshaw. [From Rodi (1981) — Copyright © AIAA 1981 — Used with
permission.]

As a final comment, with all of the additional new closure coefficients
attending nonlinear pressure-strain models, it is very likely that such mod-
els can be fine tuned to correct the round-jet/plane-jet anomaly. However,
we should keep in mind that the anomaly underscores a deficiency in our
physical description and understanding of jets. Be aware that such fine tun-
ng reveals nothing regarding the nature of these flows, and thus amounts
to little more than a curve-fitting exercise.

6.6 Application to Wall-Bounded Flows

This section focuses upon wall-bounded flows, including channel and pipe
flow, and boundary layers with a variety of complicating effects. Before
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addressing such flows, however, we discuss surface boundary conditions.
As with two-equation models, we have the option of using wall functions or
integrating through the viscous sublayer.

6.6.1 Surface Boundary Conditions

Wall-bounded flows require boundary conditions appropriate to a solid
boundary for the mean velocity and the scale-determining parameter, e.g.,
¢ or w. Additionally, surface boundary conditions are needed for each com-
ponent of the Reynolds-stress tensor (implying a boundary condition for k).
The exact surface boundary conditions follow from the no-slip condition:

;=0 at y=0 (6.82)

Second-order closure models, like two-equation models, may or may not
predict a satisfactory value of the constant B in the law of the wall when
the equations are integrated through the viscous sublayer. If the model fails
to predict a satisfactory value for B, we have the choice of either introduc-
ing viscous damping factors or using wall functions to obviate integration
through the sublayer. The near-wall behavior of second-order closure mod-
els is strongly influenced by the scale-determining equation. Models based
on the ¢ equation fail to predict an acceptable value of B and are very dif-
ficult to integrate through the sublayer. By contrast, models based on the
w equation often predict an acceptable value of B and are generally quite
easy to integrate through the sublayer.

The most rational procedure for devising wall functions is to analyze the
log layer with perturbation methods. As with the k-¢ model, the velocity,
k and either € or w are given by

_ 1 ury
U=u, [Kﬁn (—V )+ B] (6.83)
u? k12 k3/?
k=—le w=————, e=(8")¥4— 6.84
VB (8*) /%Ky R (6:84)

Similar relations are needed for the Reynolds stresses, and the precise forms
depend upon the approximations used to close the Reynolds-stress equa-
tion. The Problems section examines log-layer structure for the LRR and
Wilcox multiscale models. Regardless of the model, the general form of the
Reynolds-stress tensor is

1ij = Cijpk  as y—0 (6.85)

where C;; is a constant tensor whose components depend upon the model’s
closure coefficients.



6.6. APPLICATION TO WALL-BOUNDED FLOWS 245

So, Lai, Zhang, and Hwang (1991) review low-Reynolds-number cor-
rections for second-order closure models based on the ¢ equation. The
damping functions generally introduced are similar to those proposed for
the k-¢ model (see Section 4.9). As with the k-¢ model, many authors have
postulated low-Reynolds-number.damping functions, and the topic remains
in a continuing state of development.

As with the k-w model, the surface value of specific dissipation rate,
wy, determines the value of the constant B in the law of the wall for the
multiscale model. Perturbation analysis of the sublayer shows that the
limit w,, — oo corresponds to a perfectly-smooth wall and, without low-
Reynolds-number corrections, the asymptotic behavior of w approaching
the surface for both the k-w and multiscale models is

6Vw
—

By?

Using Program SUBLAY (Appendix C), the multiscale model’s sublayer
behavior can be readily determined. Most importantly, the constant, B, in
the law of the wall is

y — 0 (Smooth Wall) (6.86)

w

B=52 (6.87)

Thus, the multiscale model can be integrated through the viscous sub-
layer without the aid of viscous damping functions. Figure 6.9(a) compares
multiscale model smooth-wall velocity profiles with corresponding measure-
ments of Laufer (1952), Andersen, Kays and Moffat (1972), and Wieghardt
[as tabulated by Coles and Hirst (1969)]. Figure 6.9(b) compares computed
turbulence production and dissipation terms with Laufer’s (1952) near-wall
pipe-flow measurements. In all cases, predictions are within experimental
error bounds.

The multiscale model also has the property that the constant B varies
with the surface value of w. We can thus correlate w,, with surface rough-
ness height, kg, and surface mass-injection velocity, v,. The resulting
correlations are a little different from those appropriate for the k-w model.
The surface boundary conditions based on these correlations are as follows.

For rough surfaces:

2¢
w="R 4 420 (Rough Wall (6.88)

Vy

where the dimensionless coefficient Sg is defined in terms of k}' = urkg/ve
by
(50/k}%)?,  kf <25
Sp = (6.89)
500/(k5)%% k% > 25
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Figure 6.9: Computed and measured sublayer properties; multiscale model.
[From Wilcox (1988b) — Copyright © AIAA 1988 — Used with permis-
sion.]
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For surfaces with mass injection:

2
- usSB at y=0 (Mass Injection) (6.90)

Vy

where the dimensionless coefficient Sp is defined in terms of v} = vy /ur
by
16

Spg = ——— 6.91
B v$(1+4v$) ( )

As a final comment, while the multiscale model does not require viscous
damping functions to achieve a satisfactory sublayer solution, introducing
low-Reynolds-number corrections can improve model predictions for a va-
riety of flows. Most importantly, with straightforward viscous damping
functions very similar to those introduced for the k-w model (see Subsec-
tion 4.9.2), the model’s ability to predict transition can be greatly improved.
As with the k-w model, we let

pr = a*i—k (6.92)

and the closure coefficients in Equations (6.72) are replaced by the following.

. _ 0y + Rep/Ry \
T 14 Rer/Ry

:1_ a, + Rer /R,

5 1+ Rer/Rw

« 9 5/18+(R€T/Rp)4
=100 1+ (Rep/Rp)*

. _ 1 Yo+ Rer /Ry

Y= 4 1¥ Rer/Rs )

B=3/40, o*=0=1/2, 4=42/55, B=6/55, £=1
(6.94)

a =

(6.93)

ot =B/3, a,=1/10, 7, =9/500
Rg=8, Rr=6, R,=3/4, Ci=1+4(1—e¢/k)*?

Note that, unlike the k-w model, the factor (a*)~! is not required in the
equation for a [see Equation (4.223) for comparison]. With these vis-
cous corrections, the multiscale model reproduces all of the low-Reynolds-
number k-w model transition-predictions discussed in Subsection 4.9.2, and
other subtle features such as asymptotic consistency. The values chosen for

Rp, Re and R,, yield B = 5.0.
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6.6.2 Channel and Pipe Flow

Figure 6.10 compares computed and measured velocity and Reynolds-stress
profiles for the original Launder-Reece-Rodi model. The computation has
been done using wall functions. Velocity profile data shown are those of
Laufer (1951) and Hanjali¢ (1970), while the Reynolds-stress data are those
of Comte-Bellot (1965). As shown, with the exception of u2, computed and
measured profiles differ by less than 5%. The computed and measured u'?
profiles differ by no more than 20%. Although not shown, even closer agree-
ment between computed and measured Reynolds stresses can be obtained
with low-Reynolds-number versions of the LRR model [see So et al. (1991)].

One of the most controversial features of the LRR model solution for
channel flow is the importance of the pressure-echo term throughout the
flow. The pressure-echo contribution on the centerline is approximately 15%
of its peak value. It is unclear that a supposed near-wall effect should have
this large an impact at the channel centerline. However, some researchers
argue that the echo effect scales with maximum eddy size which, for channel
flow, would be about half the channel height.

y/(H/2) y/(H[2)
1.0 o 10

0.8 F 0.8 |-

0.6 - 0.6 -

04 04 |-
0.2+ 0.2 -

0.0 L ) '

00 02 04 06 08 1.0 00 05 10 15 20 25
U/Unm \/;‘?/“r

(a) Mean Velocity (b) Reynolds stresses

Figure 6.10: Computed and measured flow properties for channel flow;
LRR model; (a) a Laufer, ® Hanjali¢; (b) 0 o # Comte-Bellot.

Figures 6.11 and 6.12 compare computed and measured channel-flow
and pipe-flow properties for the multiscale model with and without viscous
corrections. As shown, computed skin friction is generally within 3% of the
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Halleen and Johnston (1967) correlation [see Equation (3.137)] for channel
flow. Similarly, computed c; differs from Prandtl’s universal law of fric-
tion [see Equation (3.138)] by less than 3% except at the lowest Reynolds
numbers. For both channel and pipe flow, the velocity, Reynolds shear
stress, and turbulence kinetic energy profiles differ by less than 6%. Most
notably, the low-Reynolds-number model predicts the peak value of k near
the wall to within 10% of the DNS value for channel flow and 4% of the
measured value for pipe flow. For both cases, the turbulence-energy pro-
duction, 7,4,0U/dy, and dissipation, ¢, are within 10% of the DNS and
measured results except very close to the surface.

Capturing subtle details such as the sharp peak in k near the sur-
face has been done at the expense of 10% differences between computed
and measured velocity profiles for y* between 10 and 100, although the
law of the wall is accurately predicted above yt = 100. This type of
compromise is very typical of low-Reynolds-number versions of the LRR
model as well. Unlike the multiscale model however, many low-Reynolds-
number variants of the LRR model provide accurate descriptions of near-
wall Reynolds stresses and dissipation while simultaneously giving nontriv-
ial discrepancies between computed and measured skin friction. By con-
trast, the low-Reynolds-number corrections have virtually no effect on the
multiscale model’s predicted skin friction.

Interestingly, the multiscale model implements the LRR pressure-strain
model for II;; without the pressure-echo correction. Hence, the strong
effect this term has on LRR-model predictions may, to some extent, reflect
shortcomings of the € equation’s near-wall behavior.

Rotating channel flow is an interesting application of second-order clo-
sure models. As with flow over a curved surface, two-equation models
require ad hoc corrections for rotating channel flow in order to make realis-
tic predictions [e.g., Launder, Priddin and Sharma (1977) and Wilcox and
Chambers (1977)]. To understand the problem, note that in a rotating co-
ordinate frame, the Coriolis acceleration yields additional inertial terms in
the Reynolds-stress equation. Specifically, in a coordinate system rotating
with angular velocity, §2, the Reynolds-stress equation is

0Tij 0y
WJ' + Uy 5— + 2(€]kathm + fnkakT]m)
oU; oU; 0ty
= —Tik az: ]ka +eij — I + +— Oz [ 4 Cijk] (6.95)

where €, 18 the permutation tensor. Note that if the rotation tensor,
2, appears in any of the closure approximations for €;;, II;; or Cj;k, it
must be replaced by €; + €. Contracting Equation (6.95) yields the
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turbulence kinetic energy equation. Because the trace of the Coriolis term
is zero, there is no explicit effect of rotation appearing in the equation for
k. Since rotation has a strong effect on turbulence, this shows why ad hoc
modifications are needed for a two-equation model.

Figure 6.13 compares a computed and measured velocity profile for a
channel with a constant angular velocity about the spanwise (z) direction.
The computations have been done using the Gibson-Launder (1978) second-
order closure model and the Standard k-¢ model. The experimental data
are those of Johnston et al. (1972), and correspond to an inverse Rossby
number, QH/U,, = 0.21, where H is the height of the channel and U, is
the average velocity. As shown, the k-¢ model predicts a velocity profile
that is symmetric about the center line. Consistent with measurements,
the Gibson-Launder model predicts an asymmetric profile. However, as
clearly shown in the figure, only qualitative agreement with measurements
has been achieved.
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Figure 6.13: Computed and measured velocity profiles for rotating channel
flow with QH/U,, = 0.21;, —— Gibson-Launder model; - - - k-¢ model;

o Johnston et al. [From Speziale (1991) — Published with permission of
author.]
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6.6.3 Boundary Layers

Figure 6.14 compares computed and measured skin friction and velocity
profiles for three incompressible boundary layers. The cases include the
constant-pressure case [Coles and Hirst (1969) - Flow 1400], Bradshaw’s
adverse gradient case [Coles and Hirst (1969) - Flow 3300], and the Samuel-
Joubert flow with increasingly adverse pressure gradient [Kline et al. (1981)
- Flow 0141]. Computations have been done with the Wilcox (1988b) mul-
tiscale model for all three cases and with the Hanjali¢-Launder (1980) low-
Reynolds-number second-order closure model for Samuel-Joubert case.

Figures 6.14(a) and 6.14(b) compare computed and measured flat-plate
boundary layer skin friction and velocity profiles for the multiscale model.
As expected, differences between theory and experiment are almost in-
significant, with the largest differences being less than 3%. Although not
shown, most variants of the LRR model are as close to measurements as
the multiscale model.

For the Bradshaw case, Figures 6.14(c) and 6.14(d) compare computed
and measured skin friction and a velocity profile at the final station. Dif-
ferences between theory and experiment are almost undetectable. For the
Samuel-Joubert case, Figures 6.14(e) through 6.14(g) compare computed
and measured flow properties. As shown, multiscale model skin friction
differs from measured values by less than 3%, while the Hanjali¢-Launder
model’s skin friction shows increasing differences approaching the final sta-
tion. For both models, velocity profiles are nearly identical, and Reynolds
shear stress profiles differ by less than 7% and 15% for the multiscale and
Hanjali¢-Launder models, respectively.

Centrifugal and Coriolis accelerations attending flow over curved sur-
faces have a significant effect upon structural features of the turbulent
boundary layer. As discussed in Section 6.1, in the absence of ad hoc mod-
ifications, such effects cannot be accurately predicted with a two-equation
model as curvature has a trivial effect on the turbulence kinetic energy
equation. In principle, second-order closure models should display none of
these shortcomings. Thus, computing curved-wall boundary layers poses
an interesting test of second-order closure models.

Figure 6.15 presents results of two computations done with the Wilcox
multiscale model for flow over a convex surface. The two cases are the
constant-pressure and adverse-pressure-gradient flows that So and Mellor
(1972) have investigated experimentally. To insure accurate starting con-
ditions, the measured momentum and displacement thickness at z = 2 ft.
have been matched to within 1% for both cases, a point well upstream of
the beginning of the curved-wall portion of the flow at # = 4.375 ft. For
both computations, computed and measured flow properties differ by less
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than 6%. The LRR model also offers important improvement in predictive
accuracy relative to the k-¢ model for flows with curved streamlines. Lai
et al. (1991), for example, have successfully applied three variants of the
LRR model with wall functions to flow in a curved pipe. Consistent with
measurements, their computations predict existence of secondary flows.
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Figure 6.15: Comparison of computed and measured skin friction for flow
over a convex wall.

Turning to effects of compressibility, a second-order closure model’s per-
formance is intimately tied to the scale-determining equation. Models based
on the € equation will share the k-¢ model’s incorrect density scaling (see
Section 5.6). By contrast, models based on the w equation should share
the k-w model’s ability to accurately predict the compressible law of the
wall. Figure 6.16 confirms this point for the Wilcox multiscale model. The
figure compares computed effects of Mach number and surface cooling on
flat-plate boundary layer skin friction. Figure 6.16(a) compares computed
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ratio of skin friction to the incompressible value, ¢;_, as a function of Mach
number with the Van Driest correlation. Differences between computed
ratios and correlated values are trivial. Figure 6.16(b) focuses upon effects
of surface temperature on flat-plate skin friction at Mach 5. Differences
between predicted values and correlated values nowhere exceed 4%.
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Figure 6.16: Comparison of computed and measured effect of freestream
Mach number and surface cooling on flat-plate boundary-layer skin friction;
—— Wilcox multiscale model; o Van Driest correlation. [From Wilcox
(1988b) — Copyright © AIAA 1988 — Used with permission.]

Second-order closure models hold promise of more accurate predictions
for flows in which the surface shear force is not parallel to the freestream
velocity. Figure 6.17 compares computed and measured skin friction for
such a flow, a boundary layer on a segmented cylinder, part of which rotates
about its axis. The experiment was performed by Higuchi and Rubesin
(1978). As shown, the Wilcox-Rubesin (1980) second-order closure model
most accurately describes both the axial (c;,) and transverse (cy,) skin
friction components in the relaxation zone, i.e., the region downstream of
the spinning segment. The Cebeci-Smith algebraic model and the Wilcox-
Rubesin (1980) two-equation model yield skin friction components that
differ from measured values by as much as 20% and 10%, respectively.

The final round of applications is for incompressible, unsteady turbu-
lent boundary layers. These flows pose a difficult challenge to a turbulence
model because many complicated frequency-dependent phenomena are gen-
erally present, including periodic separation and reattachment.
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Figure 6.17: Skin friction on a segmented spinning cylinder; —— Cebeci-
Smith model; — — Wilcox-Rubesin k-w? model; - - - Wilcox-Rubesin
second-order closure model; oo Higuchi and Rubesin. [From Rubesin (1989)
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Wilcox (1988b) has simulated the experiments performed by Jayaraman,
Parikh and Reynolds (1982). In these experiments, a well developed steady
turbulent boundary layer enters a test section which has been designed to
have freestream velocity that varies according to:

Ue=U, {1l —az'[l —cos(2rft)]}, 2'=(x—xo)/(®1—20) (6.96)

The quantity z’ is fractional distance through the test section where ¢ and
z are the values of streamwise distance, z, at the beginning and end of
the test section, respectively. Thus, an initially steady turbulent boundary
layer is subjected to a sinusoidally varying adverse pressure gradient. The
experiments were performed for low- and high-amplitude unsteadiness char-
acterized by having a ~ 0.05 and 0.25, respectively. For both amplitudes,
experiments were conducted for five frequencies, f, ranging from 0.1 Hz
to 2.0 Hz. Wilcox simulates nine of the experiments, including all of the
low-amplitude cases and all four of the high-amplitude cases.
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In order to compare computed and measured flow properties, we must
decompose any flow property y(x,t) in terms of three components, viz.,

y(x,1) = y(x) + 4(x,1) + ¥/ (x,1) (6.97)

where g(x) is the long-time averaged value of y(x,t), §(x,) is the organized
response component due to the imposed unsteadiness, and y'(x,1) is the
turbulent fluctuation. Using an unsteady boundary layer program, Wilcox
computes the phase averaged component, < y(x,t) >, defined by

< y(x,t) >=g(x) + §(x,1) (6.98)

Jayaraman et al. expand < y(x,?) > in a Fourier series according to

<y(x,t) >=g(x)+ E An y(x) cos [2n7 ft + ¢y, y(x)] (6.99)

n=1

Velocity profile data, for example, are presented by Jayaraman et al. in
terms of u(x), A1 4(x) and ¢1 ,(x). These quantities can be extracted from
the boundary-layer solution by the normal Fourier decomposition, viz., by
computing the following integrals.

1f
a(x) = f/ < u(x,t) > di (6.100)
0
1/f
Apu(x)cos gy, = f/ < u(x,t) > cos(2r ft) dt (6.101)
0
/4
Ay u(x)sing; , = —f/ < u(x,t) > sin (27 ft) dt (6.102)
0

Figure 6.18 compares the computed and measured velocity profiles at
¢’ = 0.88 for the five low-amplitude cases. As shown, computed mean
velocity profiles differ from corresponding measured profiles by no more
than 5% of scale. Comparison of computed and measured A1,y profiles
shows that, consistent with measurements, unsteady effects are confined
to the near-wall Stokes layer at the higher frequencies (f > .5 Hz). By
contrast, at the two lowest frequencies, the entire boundary layer is affected
with significant amplification of the organized component occurring away
from the surface. Differences between the numerical and experimental At
profiles are less than 10%. Computed and measured phase, ¢ 4, profiles
are very similar with differences nowhere exceeding 5°.
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Figure 6.19 compares the computed and measured velocity profiles at
' =0.94 for the high-amplitude cases. As for low amplitude, computed
and measured @(x) profiles lie within 5% of scale of each other. Similarly,
computed A; ,, and ¢y ,, profiles differ from corresponding measurements by
less than 10%. To provide a measure of how accurately temporal variations
have been predicted, Figure 6.20 compares computed and measured shape
factor through a complete cycle for all four frequencies. Differences between
computed and measured shape factors are less than 5%.

The four high-amplitude cases have also been computed using the Stan-
dard k-w model. Results are included in Figure 6.20, which shows that k-w
and multiscale-model predictions differ by only a few percent. Although it
is possible the test cases are not as difficult as might be expected, this seems
unlikely in view of the wide Strouhal number range and the fact that peri-
odic separation and reattachment are present. More likely, the k-w model
fares well because all of the cases have attached boundary layers through
most of each cycle and in the mean.

As a closing comment, many recent turbulence modeling efforts focusing
on unsteady boundary layers mistakenly credit their success (or lack of it)
to achieving asymptotic consistency with the k-¢ model or with second-
order closure models based on the ¢ equation. The computations described
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above were done using the high-Reynolds-number versions of the k-w and
multiscale models, neither of which is asymptotically consistent. All that
appears to be necessary is to achieve a satisfactory value for the constant,
B, in the law of the wall. This makes sense physically as the dissipation
time scale is so short in the sublayer that the sublayer responds to changes
in the mean flow almost instantaneously and thus behaves as a quasi-steady
region. Consequently, achieving asymptotically consistent behavior in the
sublayer is neither more nor less important for unsteady flows than it is for
steady flows.

6.7 Application to Separated Flows

As we have seen in preceding chapters, turbulence models that use the
Boussinesq approximation generally are unreliable for separated flows, es-
pecially shock-induced separation. Figure 5.8, for example, illustrates how
poorly such models perform for Mach 3 flow into a compression corner. The
figure also shows the surface pressure computed with the Wilcox (1988b)
multiscale model, and it lies much closer to measured values than any of
the algebraic and two-equation models. In this section, we will take a close
look at how well second-order closure models perform for several separated
flows.

Because second-order closure models require more computer resources
than algebraic and two-equation models, applications to such flows have
not been made until recently. Consequently, only preliminary conclusions
can be drawn from the limited work that has been done at present. Incom-
pressible applications have generally been limited to the backward-facing
step, while compressible-flow applications have been done for compression
corners for a limited range of Mach numbers.

Focusing first on the backward-facing step, So et al. (1988) have done an
interesting study using a variety of closure approximations. Their compu-
tations use Chien’s (1982) low-Reynolds number version of the e equation.
Most importantly, they have used three different models for the pressure-
strain correlation, viz., the models of Rotta (1951) [Model A1], Launder,
Reece and Rodi (1975) [Model A2], and Gibson and Younis (1986) [Model
Ad4]. Using the Rotta model, computations have been done with wall func-
tions as well [Model H-A1]. For reference, their computations also include
the Chien (1982) low-Reynolds-number k-¢ model [Model Lk-¢|. These
models differ mainly in their representation of the fast pressure-strain term,
with the Rotta model ignoring it altogether. The computations simulate
the experiments of Eaton and Johnston (1980), for which the measured
reattachment length is 8 step heights.
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Figure 6.21: Computed and measured skin friction for flow past a backward-
facing step; Al=Rotta model; A2=LRR model; A4=Gibson-Younis model;
H-Al=Rotta model with wall functions; Lk-e=Chien k-¢ model; e=Eaton
and Johnston. [From So et al. (1988) — Published with permission.]

As shown in Figure 6.21, computed reattachment length for all of their
computations lies between 5 and 6 step heights, so that their result closest
to measurements differs from the measured value by 25%. All of the mod-
els show large discrepancies between computed and measured wall pressure,
while peak skin friction values are as much as 3 times measured values down-
stream of reattachment for the low-Reynolds-number models. In general,
the second-order closure model skin friction results are as far from mea-
surements as those of the low-Reynolds-number k-¢ model. Only when wall
functions are used with the second-order closure model does the computed
skin friction lie reasonably close to measured values. So et al. note that
the smallest discrepancies between computed and measured flow properties
are obtained with the Rotta pressure-strain model, which omits the rapid
pressure-strain correlation. That is, the LRR and Gibson-Younis models
for the rapid pressure strain appear to yield larger discrepancies between
computed and measured values.

Recalling how close to measurements k-w model predictions are for flow
past a backward-facing step (Section 4.10), the So et al. computations
strongly suggest that their poor predictions are caused by use of the ¢ equa-
tion. On the one hand, comparison of Figures 4.29 and 6.21 show that for
second-order closure model H-Al, ¢; is very similar to k-¢ model ¢y when
wall functions are used. Although the flows are a little different, in both
cases the reattachment length is 25% smaller than measured. On the other
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hand, using the same low-Reynolds-number € equation, ¢y for second-order
closure model A1 is very similar to the low-Reynolds-number k-e model cf,
except in the reverse flow region. Despite the latter difference, the reat-
tachment length is the same in this case also. Thus, as with two-equation
models, a second-order closure model’s performance for the backward-facing
step is intimately linked to the scale-determining equation. This strongly
suggests that much closer agreement between computed and measured flow
properties would be obtained with a second-order closure model based on
the w equation, such as the Wilcox multiscale model. Unfortunately, the
multiscale model has not been applied to the backward-facing step, so this
must remain a point of conjecture until such a computation is done.

Turning to compressible flows, Wilcox (1990) has done a numerical
study that provides a definitive measure of differences attending use of the
multiscale model compared to the k-w model. The study includes results of
three shock-separated turbulent boundary-layer computations using both
the multiscale and k-w models. The flows considered include two planar
compression-corner flows and an axisymmetric compression-corner flow.

The first of the three applications is for Mach 2.79 flow into a 20° com-
pression corner. This flow has been experimentally investigated by Settles,
Vas and Bogdonoff (1976) and includes a small region over which separation
of the incident turbulent boundary layer occurs. Figure 6.22(a) compares
computed and measured surface pressure, py /poo, and skin friction, cy.
The multiscale model predicts more upstream influence, a lower pressure
plateau at separation, and a more gradual increase in skin friction down-
stream of reattachment relative to the k-w results. All of these features
represent significant improvement in predictive accuracy. Using the k-¢
model and specially devised wall functions, Viegas, Rubesin and Horstman
(1985) are able to achieve similar accuracy for this flow.

The second of the three applications is for Mach 2.84 flow into a 24°
compression corner. This flow has also been experimentally investigated by
Settles, Vas and Bogdonoff (1976) and includes a larger region over which
separation of the incident turbulent boundary layer occurs than in the 20°
case of the preceding section. Figure 6.22(b) compares computed and mea-
sured surface pressure and skin friction. As in the 20° compression-corner
computation, the multiscale model predicts much more upstream influence.
Interestingly, the k-w predicted pressure plateau at separation is very close
to the measured level, and there is little difference between k-w and multi-
scale predicted increase in skin friction downstream of reattachment. Note
that, for this flow, Viegas, Rubesin and Horstman (1985) predict pres-
sure plateau values about 20% higher than measured, and are unable to
simultaneously make accurate predictions for skin friction downstream of
reattachment and the initial rise in surface pressure. That is, their solutions
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can match either skin friction or surface pressure, but not both.

The third application is for Mach 2.85 flow into a 30° axisymmetric com-
pression corner. This flow has been experimentally investigated by Brown
(1986) and includes a separation bubble of length comparable to the 24°
planar compression corner. Figure 6.22(c) compares computed and mea-
sured surface pressure. Computed skin friction is also shown. Once again
the multiscale model predicts much more upstream influence. For both
models, the predicted pressure plateau at separation is about 10% higher
the measured level, and there is little difference between k-w and multiscale
predicted increase in skin friction downstream of reattachment. The overall
pressure rise is predicted by both models to be 4.7, while the measurements
indicate a value of 4.0. The inviscid pressure rise for a 30° axisymmetric
compression corner is 4.4, so that neither theory nor experiment appears
to be completely consistent with the physics of this flow.

Clearly, for the three compression-corner cases considered, the multi-
scale model provides a flowfield more consistent with experimental obser-
vations than does the k-w model. The primary reason for the difference in
the two models’ predictions can be found by examining predicted behav-
1or of the Reynolds shear stress near the separation point. Figure 6.22(d)
shows the maximum Reynolds shear stress, 7,,4,, throughout the interac-
tion region for the three compression-corner computations. As shown, the
k-w model predicts a more abrupt increase in 7,,,, at separation and a
much larger peak value than predicted by the multiscale model. For the
axisymmetric case, the figure includes experimental data for points ahead of
the measured separation point. As shown, the multiscale-model predicted
Tmaz falls within experimental data scatter.

The physical implication of the pronounced difference in the rate of
amplification of the Reynolds shear stress is clear. Using the Boussinesq
approximation, the k-w model makes a far more rapid adjustment to the
rotation of the mean strain rate tensor’s principal axes than the multiscale
model. Consequently, the predicted separation point and initial pressure
rise lie closer to the corner with the k-w model than measured. Predicting
more physically realistic growth of the Reynolds stresses, the multiscale
model predicts overall flow properties which are in much closer agreement
with measurements.

It is interesting to note that for the multiscale model, although the pres-
sure 1s in such close agreement with measurements, the numerical separation
points are further upstream than indicated by oil flow measurements for all
three compression corner cases. Marshall and Dolling (1992) indicate that
these flows include a low-frequency oscillation of the separation shock. The
time-mean pressure distribution upstream of the corner is affected by these
oscillations whose frequency content includes substantial energy at time
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scales of the mean motion. This unsteadiness is responsible for the appar-
ent mismatch between the beginning of the pressure rise and the separation
point. Since computations with the multiscale model and the k-w model
fail to display any low-frequency oscillation of the shock, more research is
needed to arrive at a completely satisfactory solution.

6.8 Range of Applicability

The two primary approaches to removing the limitations of the Boussinesq
approximation are to use either a nonlinear constitutive relation or
a second-order closure model. As discussed in Section 6.2, nonlinear
constitutive relations offer some advantage over the Boussinesq approxima-
tion, most notably for flows in which anisotropy of the normal Reynolds
stresses is important. Algebraic Stress Models provide a straightforward
method for accurately predicting effects of streamline curvature and system
rotation, although ad hoc corrections to standard two-equation models are
Just as effective. However, nonlinear constitutive relations offer no improve-
ment over the Boussinesq approximation for flows with sudden changes in
mean strain rate.

Despite their complexity, second-order closure models have great poten-
tial for removing shortcomings of the Boussinesq approximation in a natu-
ral way. Without ad hoc corrections, second-order closure models provide
physically realistic predictions for flows with curved streamlines, system
rotation, stratification, sudden changes in mean strain rate, secondary mo-
tions, and anisotropic shear. While more research is needed for separated
flows, these models may also improve predictions for shock-separated flows.
However, to be completely objective in our assessment, we must also note
that in many such applications only qualitative agreement between theory
and experiment has been obtained.

Just as one-equation turbulence models share the shortcomings and suc-
cesses of the mixing-length model, second-order closure models reflect the
strengths and weaknesses of the scale-determining equation used with the
model. There is an increasing pool of evidence that many of the shortcom-
ings of second-order closure models are caused by the scale-determining
equation. Results obtained for the Samuel-Joubert boundary layer (Sub-
section 6.6.3) and the backward-facing step (Section 6.7) strongly suggest
that predictions of standard second-order closure models can be improved
by using the w equation in place of the ¢ equation.

From a numerical point of view, second-order closure models are at least
as difficult to solve as the corresponding two-equation model. Models based
on the ¢ equation fail to predict a satisfactory law of the wall and require
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complicated viscous damping functions. Correspondingly, such models are
generally very difficult to integrate. By contrast, models based on the w
equation require no special viscous corrections, and are much easier to in-
tegrate. In particular, the Wilcox multiscale model usually requires about
25% to 40% more computing time relative to corresponding two-equation
models. Hence, the scale-determining equation may be even more impor-
tant for second-order closure models than for two-equation models.
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Problems
6.1 The objective of this problem is to derive the modified law of the wall
for flow over a curved wall according to the k-w model.

(a) Verify that the dimensionless form of Equations (6.3) to (6.5) in the
log layer is [with ¢ = v/(u,R)}:

yt
0 ok* ouT
* o+ + * (T2 _ +\277+

ow™ wt
+ + — grtt
UVT0y+ [IJT 8y+] = Bk

(b) Assume a solution of the form

du+ 1 , 4 2
@—+Nw—+[1+6ay Eny +O(€ )}

1
kY~ —=[1 + ebyteny™ + 0(62)]

/,6*
1
s + gyt 2
w T [1 +ecyTlny™ 4+ O(e )]
with € < 1. Substitute into the equations for k™ and w* and verify
that the coefficients b and ¢ are given by
9/2 a
———————= and c¢=——+5b
2 —o*k2/\/B* a—(/B*
NOTE: Use the fact that the k-w model closure coefficients are re-
lated by 0x? = (8/8* —a)y/B* and ignore terms proportional to y*
relative to terms proportional to yTeny™T.

b=

(c) Substitute into the momentum equation and verify that

a+b—c=1

(d) Using @ = 5/9, 8 = 3/40, 8* = 9/100, 0 = 1/2 and o* = 1/2,
determine the numerical values of @, b and ¢, and show that the
modified law of the wall is of the form

1-ang) £ Lo (22) -

where B ~ 8.8.
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6.2 For incompressible flow, we wish to use Speziale’s non-linear constitu-
tive relation with the k-w model. In terms of k-w model parameters, the
relation can be written as

2 k 1
Tij = —gﬂkéij + 2u7S;; + CDE% (Sikskj - §Smn5nm5ij)

pk (o 1o
+CE'B:;‘§‘ (Sij —3 Smm 5ij)
where Cp and Cg are closure coefficients whose values are to be determined.

(a) Verify for incompressible boundary layers that

6oy = 5, = 12U

yo = 5—6—!/—, all other S;; ~ 0

2
;%x:l:: - (6—[]) 5 all other S,’j% 0
oy

(b) Express the Reynolds-stress components 7y, Tz, 7yy and 7, in terms
of p, k, pr, f*, w and U /Oy for incompressible boundary layers.

(c) Using the stresses derived in part (b), write the log-layer form of the
mean-momentum, k¥ and w equations.

(d) Assuming a solution of the form dU/dy = u, /(xy) and k = constant,
verify that

(e) Verify that
u/k = (8 — Cp + 8Cg)/12

v2/k = (8 — Cp — 4Cg)/12
w/k = (8 + 2Cp — 4Cg)/12

(f) Determine the values of Cp and Cg that are consistent with the
normal Reynolds stresses standing in the ratio

w2 v? i w?2=4:2:3
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6.3 Verify that in the log layer of an incompressible flat-plate boundary
layer, the Wilcox-Rubesin nonlinear constitutive relation [Equation (6.13)]
predicts that the normal Reynolds stresses stand in the ratio

wWZiv?2:w?=4:2:3
HINT: Recall that in the log layer, U /0y = /B* w.

6.4 For incompressible flow in a rectangular duct, the strain rate and rota-
tion tensors are approximately

0 lau Lov o 10 Ao
2 9y 2 8z 3%y 305
Sij = [ %*‘2; 0 0 ] and Q= { _%_gg o o }
3% 0 0 A

Determine 7oy, 7z, Ty, and (7., — Tyy) according to the Wilcox-Rubesin
nonlinear constitutive relation [Equation (6.13)].

6.5 Derive the Poisson equation [Equation(6.38)] for the fluctuating pres-
sure.

6.6 Consider the Launder-Reece-Rodi (LRR) rapid pressure strain closure
approximation, Equation (6.50).

(a) Verify that a;;;; satisfies the symmetry constraints in Equation (6.48).

(b) Invoke the constraints of Equation (6.49) and verify that «, 3, n and
v are given by Equation (6.51).

(c¢) Form the tensor product

oUy OU},
Mz]kl Bz (az]kl + agxkl)

and verify Equations (6.52) through (6.54).

6.7 Consider Lumley’s general representation for II;; in Equation (6.56).
Show that the LRR pressure-strain model [including A;; as defined in Equa-
tion (6.45)] is the limiting case where all coefficients other than ag, as, a7
and ag equal to zero. Also, assuming C; = 1.8, determine the values of ag,
az2, a7 and ag that correspond to Cy = 0.4, 0.5 and 0.6. Assumne the flow is
incompressible.
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6.8 Consider the Launder, Reece and Rodi second-order closure model,
Equations (6.60) - (6.64). This problem analyzes the model’s predicted
asymptotic solution for homogeneous plane shear, in which

05 0
% =0 0o
*i 0 0 0
(a) Assuming that ¢/k — constant as t — oo, verify that
P Cgo-1
pe Cel -1
where P = Sty

(b) Neglecting the pressure-echo effect, verify that

2874y STyy STy, 0 STes 0
Pij = STyy 0 0 ’ Dl] = STZ‘Z‘ 257’,;31 STJ;z
STyZ 0 0 0 STes 0

(¢) Assuming a solution of the form 7;; = Cj;e** where Cj; is independent
of time and X is a constant, verify that if 7, and Ty, are initially zero,

they are always zero, provided B(l —a)>0.

(d) Determine ¢/k and P/(pk) as functions of C,y, C,, and A under the
assumption that 7;; = CjjeM.

(e) Using results of Parts (a) - (d), determine w2/k, v2/k and w'%/k
as algebraic functions of the closure coefficients. HINT: You can
simplify your computations somewhat by first writing the equation
for 7;; as an equation for 7;; + %pkéij.

(f) Using the following two sets of closure coefficient values, compute the
numerical values of u2/k, v'2/k and w'?/k.

1. Original LRR: Cy = 1.5, C2 = 0.4, C¢; = 1.44, C3 = 1.90
2. Revised LRR: C; = 1.8, Cy = 0.6, Cy = 1.44, Cey = 1.92

6.9 Consider the Launder, Reece and Rodi second-order closure model,
Equations (6.60) - (6.64).

(a) State the limiting form of the equations for the incompressible, two-
dimensional log layer.



272 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION

(b) Assuming a solution of the form

2 3
dUu  u, uz u

— —_—y k ~ N Env ——

dy Ky VCu Ky
determine &, —uw'v'/k, w2 /k, v"2/k and w2 /k as algebraic functions
of the closure coefficients. HINTS: All are constant. Also, the ¢
equation yields x as a function of the closure coefficients and v/?/k.
You needn’t simplify further.

(¢) Using the closure coefficient values in Equation (6.64), verify that

k039, —wv'/k ~ 036, and u? : v? : w? ~ 4:22:32 HINT:
Combining the simplified ¢ and 7,y equations yields a cubic equation
for k. It can be solved in closed form by assuming « = 0.4(1 + 6),
linearizing and solving for 4.

6.10 Consider the Wilcox multiscale model, Equations (6.66) - (6.72).

(a) State the limiting form of the equations for the incompressible, two-
dimensional log layer.

(b) Assuming a solution of the form

daU  u, k u? w Uy
VB ry

dy &y’ N/
determine k, —wv'/k, w2/k, v2/k, w2 /k and e/k as algebraic func-

tions of the closure coefficients. HINT: All are constant.

(c) Using the closure coefficient values in Equation (6.72), verify that
Kk~ 041, —uv' [k~ 030, w?: 02 w2 ~4:2:26, and e/k ~ 0.75.

6.11 Suppose we have flow in a coordinate frame rotating with angular
velocity 2 = Qk, where k is a unit vector in the z direction. The incom-
pressible Navier-Stokes equation is

du

dt
where x is position vector and d/dt is the Eulerian derivative. Verify that
the Reynolds-stress equation’s inertial terms in a two-dimensional flow are
as follows:

d Tze Try 0 —497'1-!/ 2Q(Txx — Tyy) 0
7| Ty Tw 0 |+ | 2Q7es — 7yy) 4071,y 0|l =-..
T2z 0 0 0

+202 x u=—=Vp—p? x 2 x x4+ pVu
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