
Chapter 5

Effects of Compressibility

For flows in which compressibility effects are important, we must intro-
duce an equation for conservation of energy and an equation of state . Just
as Reynolds averaging gives rise to the Reynolds-stress tensor, so we ex-
pect that similar averaging will lead to a turbulent heat-flux vector . We
should also expect that new compressibility related correlations will appear
throughout the equations of motion . These are important issues that must
be addressed in constructing a turbulence model suitable for application to
compressible flows . This chapter focuses upon these issues .

We begin with a brief discussion of common observations pertaining to
compressible turbulence . Then, we introduce the Favre mass-averaging pro-
cedure and derive the mass-averaged equations of motion . Next, we demon
strate an elegant development in turbulence modeling for the compressible
mixing layer. We follow this analysis with an application of perturbation
methods to the compressible log layer. We then apply several models to
attached compressible boundary layers, including effects of pressure gra-
dient, surface cooling and surface roughness. The chapter concludes with
application of various turbulence models to shock-separated flows.

5 .1

	

Physical Considerations

By definition, a compressible flow is one in which significant density changes
occur, even when pressure changes are small. Generally speaking, compress-
ibility has a relatively small effect on turbulent eddies in wall-bounded flows .
This appears to be true for Mach numbers up to about 5 (and perhaps as
high as 8), provided the flow doesn't experience large pressure changes over
a short distance such as we might have across a shock wave . At subsonic
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speeds, compressibility effects on eddies are usually unimportant for bound-
ary layers provided T~,/T, < 6. Based on these observations, Morkovin
(1962) hypothesized that the effect of density fluctuations on the turbu-
lence are small provided they remain small relative to the mean density.
This is a major simplification for the turbulence modeler because it means
that, in practice, he need only account for the nonuniform mean density in
computing compressible, shock-free, non-hypersonic turbulent flows .

There are limitations to the applicability of Morkovin's hypothesis
even at non-hypersonic Mach numbers. For example, because p'/p is typ-
ically not small, it applies neither to flows with significant heat transfer
nor to flows with combustion. Also, because density fluctuations generally
are much larger in free shear flows, models based on Morkovin's hypothe-
sis fail to predict the measured reduction in spreading rate with increasing
freestream Mach number for the compressible mixing layer [Papamoschou
and Roshko (1988)] . As we will see in Section 5.5, the level of p'/p for
a boundary layer at Mach 5 is comparable to the level found in a mixing
layer at Mach 1 . For Mach numbers in excess of 1, the spreading rate for
a mixing layer decreases . This is consistent with Mach 5 representing the
hypersonic limit for the boundary layer.

As a final observation, note that the difficulty in predicting properties
of the compressible mixing layer is reminiscent of our experience with free
shear flows in Chapters 3 and 4 . That is, we find again that the seemingly
simple free shear flow case is more difficult to model than the wall-bounded
case .

5.2

	

Favre Averaging

In addition to velocity and pressure fluctuations, we must also account for
density and temperature fluctuations when the medium is a compressible
fluid . If we use the standard time-averaging procedure introduced in Chap-
ter 2, the mean conservation equations contain additional terms that have
no analogs in the laminar equations. To illustrate this, consider conserva-
tion of mass . We write the instantaneous density p as the sum of mean, p,
and fluctuating, p', parts, i.e .,

P=p+P
Expressing the instantaneous velocity in the usual way [Equation (2.4)],
substituting into the continuity equation yields

8t (P+P)+ 8~ . (PU$+p'Ui+puts+P'uts)= 0
8

(5.2)
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After time averaging Equation (5.2), we arrive at the Reynolds-averaged
continuity equation for compressible flow, viz.,

aP
+ ax~ (pUi + p'u') = 0

	

(5 .3)

Some authors refer to this as the primitive-variable form of the con-
tinuity equation . Note that in order to achieve closure, an approxima-
tion for the correlation between p' and ui is needed . The problem is even
more complicated for the momentum equation where the Reynolds-stress
tensor originates from time averaging the product puiuj that appears in
the convective acceleration . Clearly, a triple correlation involving p', u'i,
and u~ appears, thus increasing the complexity of establishing suitable clo-
sure approximations . The problem of establishing the appropriate form of
the time-averaged equations can be simplified dramatically by using the
density-weighted averaging procedure suggested by Favre (1965) . That is,
we introduce the mass-averaged velocity, iii, defined by

t+T
1

	

lim

	

p(x, -r)ui(x, -r) d-r

	

(5 .4)
p T-oo it

where p is the conventional Reynolds-averaged density . Thus, in terms of
conventional Reynolds averaging, we can say that

piii = Pui

	

(5.5)

where an overbar denotes conventional Reynolds average . The value of this
averaging process, known as Favre averaging, becomes obvious when we
expand the right-hand side of Equation (5.5) . Performing the indicated
Reynolds-averaging process, there follows

pv, i = pUi + p'ua

	

(5.6)

Inspection of Equation (5.3) shows that conservation of mass can be rewrit-
ten as

ap
+
a

(piii) = 0

	

(5.7)at ax i,
This is a remarkable simplification as Equation (5.7) looks just like the
laminar mass-conservation equation . What we have done is treat the mo-
mentum per unit volume, pui, as the dependent variable rather than the
velocity . This is a sensible thing to do from a physical point of view, es-
pecially when we focus upon the momentum equation in the next section .
That is, the rate of change of momentum per unit volume, not velocity, is
equal to the sum of the imposed forces per unit volume in a flow .
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When we use Favre averaging, it is customary to decompose the instan-
taneous velocity into the mass-averaged part, iii, and a fluctuating part,
uts', wherefore

ut = ii i +
u"

	

(5.8)

Now, to form the Favre average, we simply multiply through by p and
do a time average in the manner established in Chapter 2. Hence, from
Equation (5 .8) we find

	

_
Put = put -}- puts'

	

(5.9)

But, from the definition ofthe Favre average given in Equation (5.5), we see
immediately that, as expected, the Favre average of the fluctuating velocity,
0, vanishes, i .e .,

5 .3

	

Favre-Averaged Equations

pua' = 0

	

(5.10)

By contrast, the conventional Reynolds average of u° is not zero . To see
this, note that

uts' -- US. - iii

	

(5.11)

Hence, using Equation (5 .6) to eliminate iii,

'u'
uts' = ut-U,-P t

	

(5.12)
P

Therefore, performing the conventional Reynolds average, we find

-pu' :A 0

	

(5.13)
P

As a final comment, do not lose sight of the fact that while Favre aver-
aging eliminates density fluctuations from the averaged equations, it does
not remove the effect the density fluctuations have on the turbulence . Con-
sequently, Favre averaging is a mathematical simplification, not a
physical one.

For motion in a compressible medium, we must solve the equations gov-
erning conservation of mass, momentum and energy . The instantaneous
equations are as follows:

aP
+
at

(Put) = 0

_a

	

_a

	

__ap

	

_at;t
at (Pu$) + 8X; (Puj ub) =

	

axt + ax;

(5 .14)

(5 .15)
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at [p (e+ 2,Eui)] +aj
[pug (h+

2uiui)]

	

a (ubtij)

	

aqj (5.16)

where e is specific internal energy and h = e +- p/p is specific enthalpy.
For compressible flow, the viscous stress tensor, tij, involves the second
viscosity, C, as well as the conventional molecular viscosity, u . Although it
is not necessary for our immediate purposes, we eventually must specify an
equation of state . For gases, we use the perfect gas law so that pressure,
density and temperature are related by

p = pRT

	

(5.17)

where R is the perfect gas constant . The constitutive relation between
stress and strain rate for a Newtonian fluid is

auk
ti j = 2/ .ls sj + (

ask bij

	

(5.18)

where sij is the instantaneous strain-rate tensor (Equation (2.19)] and Sij
is the Kronecker delta . The heat-flux vector, qj, is usually obtained from
Fourier's law so that

aT
qj = -K-

0X4

where K is thermal conductivity . We can simplify our analysis somewhat
by introducing two commonly used assumptions . First, we relate second
viscosity to p by assuming

This assumption is correct for a monatomic gas, and is generally used for
all gases in standard CFD applications . Assuming Equation (5.20) holds in
general guarantees tii = 0 so that viscous stresses do not contribute to the
pressure, even when siy = aui/axi ~4- 0 . This is tidy, even if not necessarily
true . Second, we assume the fluid is calorically perfect so that its specific
heat coefficients are constant, and thus

e = C,T

	

and

	

h =CpT

	

(5 .21)

where C, and Cp are the specific heat coefficients for constant volume and
pressure processes, respectively. Then, we can say that

aT

	

p ahqj = -K__ ----
axj

	

PrL aXj

where PrL is the laminar Prandtl number defined by

(5.19)

(5 .22)

PrL = CPP

	

(5.23)
K
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In order to mass average the conservation equations, we now decompose
the various flow properties as follows .

Note that we decompose p, p and q; in terms of conventional mean and
fluctuating parts. Substituting Equations (5.24) into Equations (5 .14) -
(5.17) and performing the mass-averaging operations, we arrive at what are
generally referred to as the Favre (mass) averaged mean conservation
equations.

aP fl+ ax1 (Pu1) =

a a

	

OP a
at

	

ax;

	

ax1 ax; C

_a

	

4Ly211

	

p,~bi,u81 a

	

21 ; 411

	

p,aii,~Ei

at I P (e +2) +

	

2

	

I + axe I P'di
Ch
+2) + u~

	

2

ax;

	

-qL' - Pug h

	

+
tj a ua - pug z u ` u g

(5.25)

(5.26)

+8'; [us (t°j - pu1~uj)1 (5.27)

P = fiRT

	

(5.28)

Equations (5.25), (5 .26) and (5 .28) differ from their laminar counter-
parts only by the appearance of the Favre-averaged Reynolds-stress tensor,
viz .,

T1; = -p00

	

(5 .29)

As in the incompressible case, the Favre-averaged 7-g; is a symmetric tensor .
The Favre-averaged mean energy equation for total energy, i.e ., the sum

of internal energy, mean-flow kinetic energy and turbulence kinetic energy
has numerous additional terms, each of which represents an identifiable
physical process or property . Consider first the double correlation between

u$ u1 + 21/1

P P+P,
P P+P'
h h + h1l (5.24)
e e -t- e l/
T T +T11
qs qL ; + qa
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0 and itself that appears in each of the two terms on the left-hand side of
Equation (5.27) . This is the kinetic energy per unit volume of the turbulent
fluctuations, so that it makes sense to define

pk = _1p0ua'

	

(5.30)

Next, the correlation between u~ and h" is the turbulent transport of
heat . In analogy to the notation selected for the molecular transport of
heat, we define

4Tj = Pu
h"

	

(5.31)

The two terms tji0 and pui 2u;'u ;' on the right-hand side of Equa-
tion (5 .27) correspond to molecular diffusion and turbulent transport of
turbulence kinetic energy, respectively. These terms arise because the mass-
averaged total enthalpy appearing in the convective term of Equation (5.27)
is the sum of mass-averaged enthalpy, mean kinetic energy and turbulence
kinetic energy . They represent transfers between mean energy and turbu-
lence kinetic energy, that naturally arise when we derive the Favre-averaged
turbulence kinetic energy equation . The simplest way to derive the equa-
tion for k is to multiply the primitive-variable form of the instantaneous
momentum equation by 0 and time average .

~i oui

	

"

	

t9ui

	

ii (9p

	

// Ctji
pui- + pui uj- = -ui - + uiat axj axi a~j

(5.32)

As in Chapter 2, the most illuminating way to carry out the indicated
time-averaging operations is to proceed term by term, and to use tensor
notation for all derivatives . Proceeding from left to right, we first consider
the unsteady term.

p0u = P0(iii + 468'),1

= puf'ui,t + puyU; t

_- P('a00 ) ,t

a_ (pk) - -ug'ub'a (5.33)
19t 2 at
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Turning now to the convective term, we have the following .

Puiluj ui,j

	

=

	

Puil[(uj + u )ui,j + uj ui',j]

=

	

Pui u; ui,; + Pua u; u+ Pujui ui,j

- Tij ui,j + Puj ('0,uil),j

-Tijui,j + (Puj 2Uilui'),j - 2Uilu%/(Puj ),j
i

	

11

	

11

	

ui

	

u

	

,l

	

i

	

u
n

	

11
-Tij iii j + (Puj 2ui ui + Pu; 2ui ua ),j - 2ui

	

i (Puj ),j

_au i	_a

	

l, i � �	14U2� a
-Tip

ax; + ax; (Pug k ~- Pu; 2ui ui ) -

	

ax; (Puj )

The pressure gradient term simplifies immediately as follows .

Finally, the viscous term is simply rewritten as

ull aP

	

+

	

P
aui/

a a. i	ax i

Pressure Work

	

Pressure Dilatation

(5.34)

_ _

	

11
2.6a'p,i -

,ui
lp,i + ,ui'Pii - 0 aXi

OP
+ a;i (Fu

l
l) - ax i

p,
aua

	

(5.35)

a ( )

	

a0"
4l'iltji,j =

	

t;i'U/

	

-tji$axi

	

(5.36)

Thus, substituting Equations (5.33) through (5 .36) into Equation (5.32),
we arrive at the Favre-averaged turbulence kinetic energy equation .
In arriving at the final result, we make use of the fact that the sum of the
last terms on the right-hand sides of Equations (5 .33) and (5 .34) vanish
since their sum is proportional to the two terms appearing in the instanta-
neous continuity equation . Additionally, to facilitate comparison with the
incompressible turbulence kinetic energy equation [Equation (4.4)], we use
the Favre-averaged continuity equation to rewrite the unsteady and con-
vective terms in non-conservation form . The exact equation is as follows .

ak ak aui au" aa

	

11

	

11 i

	

11

	

11

	

/I
P-+Puj- = Tij --t;i-+-19	tjiui-Puj2uiui -plUj
at a~; a~; a~; Xj

(5.37)

Comparing the mean energy Equation (5.27) with the turbulence ki-
netic energy Equation (5.37), we see that indeed the two terms tjfui

, and
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pub2u'. u'. on the right-hand side of the mean-energy equation are Molec-2

	

2
ular Diffusion and Turbulent Transport of turbulence kinetic energy.
Inspection of the turbulence kinetic energy equation also indicates that the
Favre-averaged dissipation rate is given by

Comparison of Equation (5.37) with the incompressible equation for k
[Equation (4.4)] shows that all except the last two terms, i .e ., the Pressure
Work and Pressure-Dilatation terms, have analogs in the incompressible
equation . Both of these terms vanish in the limit of incompressible flow with
zero density fluctuations . The Pressure Work vanishes because the time
average of u,' is zero when density fluctuations are zero . The Pressure-
Dilatation term vanishes because the fluctuating field has zero divergence
for incompressible flow . Hence, Equation (5.37) simplifies to Equation (4 .4)
for incompressible flow with zero density fluctuations .

Note that the turbulence kinetic energy production, rijaui/axj, and
pressure correlation terms represent a transfer from mean kinetic energy
to turbulence kinetic energy . Also, dissipation is a transfer from turbu
lence kinetic energy to internal energy. Thus, since these transfers simply
redistribute energy, they must cancel in the overall energy conservation
equation . Consequently, only the two terms involving spatial transport of
turbulence kinetic energy appear in Equation (5 .27) .

Using a similar derivation (we omit the details here for the sake of
brevity), the Favre-averaged Reynolds-stress equation assumes the
following form.

where

aua'

	

(5.38)FJE = tji-axj

arij a auj aili
- -at + axk

(itkrij ) -rik axk rj k axk +
Ea7 ~a7

a+ axk
[-(tkj0 +tkiuj) + CijkJ

OP ah
+

;, j, (5.39)
axj axi

au"
Hi

au~~z 7j = p,
axj

+
axi

(5.40)

Eij
auk

= tkj
aui'
axk

+ tkiaxk (5.41)

Cij n � � , nk = Put ,,.,,i uj u k +t' u i bjk +p 2lj bik (5.42)
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Taking advantage of the definitions given in Equations (5.29), (5.30),
(5.31) and (5 .38), we can summarize the Favre-averaged mean equations
and turbulence kinetic energy equation in conservation form .

a (pk) + as . (Pu; k)

	

-
7

aP a
at + ax$ (put) = 0

a
(Piii) +

	

(Pu; ui) _ - aP +

	

8
axi

	

axt;i + Tjil

	

(5.44)at ax;

at (PE) + as (pii7 H)
a

	

[-qL; - qT, - I- t~ i u$' - puzua

(5.43)

+

	

asj [ii (ti; +Tip )]

	

(5.45)

a

	

�: � �	, �- PC +
ax7

[t~iui - pub 2ui ui - p ub

_OP +

	

au"
u"

Z axi

	

p axi (5.46)

P = PRT

	

(5.47)

The quantities E and H are the total energy and total enthalpy, and
include the kinetic energy of the fluctuating turbulent field, viz .,

E = e + iiji ui + k

	

and

	

H = h + 2ui ui + k

	

(5 .48)

5 .4

	

Compressible-Flow Closure Approxima-
tions

As discussed in the preceding section, in addition to having variable mean
density P, Equations (5.39) through (5.48) reflect effects of compressibility
through various correlations that are affected by fluctuating density . For
all but second-order closure models, closure approximations must be pos-
tulated for the mass-averaged Reynolds-stress tensor and heat-flux vector .
Depending on the type of turbulence model used, additional closure ap-
proximations may be needed to close the system of equations defining the
model .
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This section briefly reviews some of the most commonly used closure
approximations for compressible flows. Because of the paucity of measure-
ments compared to the incompressible case, and the additional complexities
attending compressible flows, far less is available to guide development of
closure approximations suitable for a wide range of applications . As a re-
sult, modeling of compressibility effects is in a continuing state of flux as
we approach the end of the twentieth century. The closure approximations
discussed in this, and following, sections are those that have stood the test
of time .

Before focusing upon specific closure approximations, it is worthwhile to
cite important guidelines that should be followed in devising compressible-
flow closure approximations . Adhering to the following items will lead to
the simplest and most elegant models .

1 . All closure approximations should approach the proper limiting value
for Mach number and density fluctuations tending to zero .

2 . All closure terms should be written in proper tensor form, e.g ., not
dependent upon a specific geometrical configuration .

3. All closure approximations should be dimensionally consistent and
invariant under a Galilean transformation .

It should be obvious that Items 2 and 3 apply for incompressible flows
as well . In practice, Galilean invariance seems to be ignored more often
than any other item listed, especially for compressible flows . Such models
should be rejected as they violate a fundamental feature of the Navier-
Stokes equation, and are thus physically unsound .

Reynolds-stress Tensor: For zero-, one- and two-equation models,
nearly all researchers use the Boussinesq approximation with suitable gen-
eralization for compressible flows. Specifically, denoting the eddy viscosity
by PT, the following form is generally assumed.

'r`j _ -PuE/uj

	

2YT (Sty

	

3 8xk
blj )

	

3Pkbij (5 .49)

The most important consideration in postulating Equation (5.49) is guar-
anteeing that the trace of -rah is -2pk . Note that this means the "second
eddy viscosity" must be -3PT [recall Equation (5.20)] .

Turbulent Heat-Flux Vector: The most commonly used closure ap-
proximation for the turbulent heat-flux vector, qT;, follows from appealing
to the classical analogy [Reynolds (1874)] between momentum and heat
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transfer . It is thus assumed to be proportional to the mean temperature
gradient, so that

qT -
T-�--h� _ _ ~TC, _aT = _ JUT _Oh

' - p

	

PrT 8xj

	

PrT axj
(5.50)

where PrT is the turbulent Prandtl number . A constant value for
PrT is often used and this is usually satisfactory for shock-free flows up
to low supersonic speeds, provided the heat transfer rate is not too high .
The most common values assumed for PrT are 0.89 or 0.90, in the case
of a boundary layer. Heat-transfer predictions can usually be improved
somewhat by letting PrT vary through the boundary layer . For free shear
layers, values of the order of 0.5 are more appropriate for PrT .

Molecular Diffusion and Turbulent Transport: If a zero-equation
model is used, the spk6ij contribution in Equation (5.49) is ignored as are
the molecular diffusion, tji0, and turbulent transport, pu1uu, terms
appearing in the mean-energy equation . Some researchers ignore these
terms for higher-order models as well . This is usually a good approxi-
mation for flows with Mach numbers up to the supersonic range, which
follows from the fact that pk « P (and hence k « h) in most flows of
engineering interest . However, at hypersonic speeds, it is entirely possible
to achieve conditions under which pk is a significant fraction of P. To en-
sure exact conservation of total energy (which includes turbulence kinetic
energy), additional closure approximations are needed . The most straight-
forward procedure for one-equation, two-equation and second-order closure
models is to generalize the low-speed closure approximations for the molec-
ular diffusion and turbulent transport terms. The most commonly used
approximation is :

tjiui -puj zui Ui =

	

y+
0x ) 49Xj

(5.51)

Pressure Diffusion and Pressure-Dilatation Term: Section 4 .1
discusses the lack of information regarding diffusion by pressure fluctua-
tions in incompressible flows. So little is known that it is simply ignored.
Even less is known for compressible flows . However, given the fundamen-
tally different role that pressure plays in a compressible medium relative
to its essentially passive role at low speeds, ignoring pressure diffusion and
pressure dilatation ultimately must lead to significant error. Purely em-
pirical proposals, especially for the pressure-dilatation mean product, have
been made by many authors, but none has received general acceptance .
The best prospect for immediate progress at the present time may be to
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use Direct Numerical Simulations (DNS). Such work is in progress [e .g .,
Sarkar et al . (1991) and Zeman (1991)], and preliminary proposals have
been made. No generally accepted approximation has emerged at the time
of this writing however .

Pressure Work : The pressure work term, ua'Pi (or 0Pj + u!P,a for
second-order closure models), arises because the time average of IL'does
not vanish . It is proportional to the density/velocity correlation p'u;, and
illustrates how Favre averaging does not completely eliminate the need
to know how these fluctuating properties are correlated . Wilcox and Al-
ber (1972) postulate an empirical model for this term that improves two-
equation model predictions for hypersonic base flows . Oh (1974) proposes
a closure approximation postulating existence of "eddy shocks" and accu-
rately simulates compressible mixing layers with a one-equation turbulence
model. Neither model is entirely satisfactory however as they both in-
volve the mean velocity in a manner that violates Galilean invariance of
the Navier-Stokes equation . As with pressure diffusion and pressure dilata-
tion, the best hope for progress in the short term is probably through use
of DNS .

5.5

	

Dilatation Dissipation

Using a program such as MIXER (see Appendix C), it is a simple matter to
verify that both the k-w model and k-c model fail to predict the observed
decrease in spreading rate with increasing Mach number for the compress-
ible mixing layer [Kline et al . (1981) and Papamoschou and Roshko (1988)] .
Focusing upon the k-c model, Sarkar et al . (1989) and Zeman (1990) have
devised particularly elegant models for the k equation that correct the defi-
ciency for the compressible mixing layer. Building upon the Sarkar/Zeman
formulations, Wilcox (1992b) has postulated a similar model that enjoys
an important advantage for wall-bounded flows . This section shows how a
straightforward and elegant modification can dramatically improve a tur-
bulence model's predictive accuracy.

To understand the Sarkar/Zeman innovation, we must examine the tur-
bulence energy dissipation rate more closely. Recall from Equation (5.38)
that

a0pe - tjti
8x

	

(5.52)
1

Hence, in terms of the instantaneous strain-rate tensor, stij, we have

PC= P [2sjgs%~ - 3
2
uk

kUg'aJ

	

(5 .53)
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Assuming that the correlation between velocity-gradient fluctuations and
kinematic viscosity fluctuations is negligible, we can rewrite this equation
as

l
PC

	

2
= v ~2ps~%s2i -

3
puk k~2 '

i1

	

(5 .54)

In terms of the fluctuating vorticity, w2', there follows

E = v

	

w"w"

	

2P0 . ui'_

	

2

	

u" 2t"p

	

p

	

i

	

i

	

+

	

d, J ,i

	

3p a, a

	

c,s

	

(5.55)

Finally, we can say u2',.,u' i ~ (0,i)2, which is exactly true for homogeneous
turbulence, and is a very good approximation for high-Reynolds-number,
inhomogeneous turbulence [see, for example, Tennekes and Lumley (1983)] .
Hence, we conclude that the dissipation can be written as

where

PC = PC, + PQ (5 .56)

pE, = v pw2'W2~'

	

and

	

PEd = 3v PUE'iu2'i

	

(5 .57)

Thus, we have shown that the compressible turbulence dissipation rate
can logically be written in terms of the fluctuating vorticity and the di-
vergence of the fluctuating velocity. Equivalently, we could have writ-
ten the fluctuating velocity as the sum of a divergence free and a curl
free component . At high Reynolds number, these components presum-
ably are uncorrelated (again, an exact result for homogeneous turbulence),
and Equation (5.55) would follow directly. The quantity E$ is known as the
solenoidal dissipation, while Ed is known as the dilatation dissipation .
Clearly, the latter contribution is present only for compressible flows .

Sarkar and Zeman postulate that the dilatation dissipation should be a
function of turbulence Mach number, Mt , defined by

where CEZ is a closure coefficient . Only the dissipation terms are shown
explicitly in Equations (5.59) and (5.60) since no changes occur in any

Mt - 2k/a2

where a is the speed of sound . They argue that
should be replaced by

(5.58)

the k and E equations

dk
Pdt = -P(E3 + Ed) + . . . (5.59)

pA_dE8 _
-CEzpC81k+

. . . (5 .60)
dt
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other terms. Particularly noteworthy, both Sarkar and Zeman postulate
that the equation for c, is unaffected by compressibility. The dilatation
dissipation is further assumed to be proportional to c, so that we say

Sarkar's Model

Ed = ~*F(Mt) c,

where ~* is a closure coefficient and F(Mt) is a prescribed function of Mt .
The Sarkar, Zeman and Wilcox formulations differ in the value of ~* and
the functional form of F(Mt ) .

Interestingly, while both Sarkar and Zeman arrive at similar formu-
lations, their basic postulates are fundamentally different . Sarkar et al .
postulate that ed "varies on a fast compressibility time scale relative to E, ."

As a consequence, they conclude that dilatation dissipation increases with
Mt in a monotone manner . By contrast, Zeman postulates the existence
of eddy shocklets that augment only the dilatation dissipation, so that a
threshold exists below which dilatation dissipation is zero.

To implement the Sarkar or Zeman modification in the k-w model, we
begin by making the formal change of variables given by E, = Xwk. This
tells us immediately that

_dw _ _p

	

_d(,

	

_e, _dk
P dt

	

~*k I dt

	

k dt

(5.61)

(5.62)

Consequently, a compressibility term must appear in the w equation as well
as in the k equation . Note that if we identify w as the RMS fluctuating
vorticity, a case could be made that the w equation should be unaffected by
dilatation dissipation rather than the c equation . While this may be true, it
would obscure direct comparisons between effects of dilatation dissipation
on the two types of models if we depart from the Sarkar/Zeman conventions .

Inspection of Equations (4.34) and (4.35) shows that the Sarkar/Zeman
compressibility modifications correspond to letting closure coefficients ,Q
and 0* in the k-w model vary with Mt . In terms of ~* and the compress-
ibility function F(Mt), Q and ,Q* are :

/3* = Qo [1 + 1;*F(Mt)]

	

(5.63)

,Q #off*F(Mt)

	

(5 .64)

where /3o and Qo are the corresponding incompressible values of Q* and ,~ .
The values of l * and F(Mt) for the Sarkar, Zeman and Wilcox models are
as follows :

~* = 1,

	

F(Mt) = Mt

	

(5 .65)
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Zeman's Model

~* - 3/4,

	

F(Mt) = [1 _ e-z(7+i)(Mt-Mea)z/n2] H(M, - Mto)

Wilcox's Model

~* = 3/2,

	

Mto = 1/4,

	

F(Mt ) = [Mt - Mo] 7-l(Mt - Mt.)

	

(5.67)

where y is specific heat ratio and 7-1(x) is the Heaviside step function . Ze-
man recommends using A = 0 .60 and Mt. =0.10V/2--/(y+ 1) for free
shear flows . For boundary layers, their values must increase to A = 0 .66
and Mt . =0.25V/2--/(y+ 1) . Zeman uses a different set of closure coeffi-
cients for boundary layers because he postulates that they depend upon the
kurtosis, u'4/(~'2)2 . The kurtosis is presumed to be different for free shear
flows as compared to boundary layers . While this is most likely true, it is
not much help for two-equation or second-order closure models since such
models only compute double correlations and make closure approximations
for triple correlations . Quadruple correlations such as u'4 are beyond the
scope of these models .

To illustrate how well these models perform, we consider mixing of a
supersonic stream and a quiescent fluid with constant total temperature.
For simplicity, we present results only for the k-w model as k-c results are
nearly identical . The equations of motion have been transformed to simi-
larity form for the far field and integrated using Program MIXER, which
is described in Appendix C . Figure 5.1 compares computed and measured
[see Kline et al . (1981)] spreading rate, Cb . As in the incompressible case,
spreading rate is defined as the difference between the values of y/x where
(U - U2 ) 2/(Ul - U2)2 is 9/10 and 1/10 . The quantity Cbo denotes the
incompressible spreading rate and M, is convective Mach number, viz.,

M, = U1 - U2

al + a2

Since U2 = 0, Equation (5.68) simplifies to

M1M, =

	

i/z
1+ [1+ (720M121

(5.66)

(5.68)

(5 .69)

As shown, the unmodified k-w model fails to predict a significant de-
crease in spreading rate as Mach number increases . By contrast, the Sarkar,
Zeman and Wilcox modifications yield much closer agreement between com-
puted and measured spreading rate .



5.5. DILATATION DISSIPATION

	

187

1 .0

Ca/Caa

0.8

0 .6

0.4

0.2

0 .0
0 .0 0 .4 0.8 1.2 1.6 2.0

M,

Figure 5.1 : Comparison of computed and measured spreading rate for a
compressible mixing layer ; - - Unmodified k-w model; Wilcox,
~* = 3/2 ; - - - Sarkar, ~* = l ; - - Zeman, ~* = 3/4 ; o Langley
curve [Kline et al . (1981)] .

We turn now to the adiabatic-wall flat-plate boundary layer . The equa-
tions of motion for the k-w model have been solved with Program EDDYBL
(see Appendix D) . Figure 5 .2 compares computed skin friction, cf, with a
correlation of measured values for freestream Mach number between 0 and
5 . As shown, the unmodified model virtually duplicates measured skin fric-
tion . By contrast, the Sarkar compressibility modification yields a value
for cf at Mach 5 that is 18% lower than the value computed with ~* = 0.
Using the Wilcox dilatation-dissipation model yields very little difference
in skin friction .

Using A = 0.60 and Mt. =0.10V/2--/(y+ 1) in Zeman's model, com-
puted cf at Mach 5 is 15% smaller than the value obtained with the un-
modified model. Increasing A and Mt. to 0.66 and 0 .25V2-1-(-y+ 1), respec-
tively, eliminates this discrepancy . However, using this large a value for

Mt. for the mixing layer results in discrepancies in excess of 100% between
computed and measured spreading rate for M, in excess of 1 .

These results make it clear that neither the Sarkar nor the Zeman com-
pressibility term is completely satisfactory for both the mixing layer and
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Figure 5 .2 : Comparison of computed and measured skin friction for a com-
pressible flat-plate boundary layer ;

	

k-w with ~* = 0 and ~* = 3/2 ;
--- Sarkar, 4* = 1 ; - - - Zeman,

	

* = 3/4; o Van Driest correlation .

boundary layers . The Wilcox dilatation-dissipation model was formulated
to resolve this dilemma. Decomposing the dissipation into solenoidal and
dilatation components is an important innovation, and is not the root cause
of the problem . Rather, the postulated form of the function F(Mt ) is the
weak link . The Wilcox model provides a satisfactory alternative .

Inspection of the magnitude of turbulence Mach number in mixing lay-
ers and boundary layers shows that all is needed is an alternative to the
Sarkar and Zeman functional dependencies of Q upon Mt . Table 5.1 shows
why the Sarkar term improves predictions for the mixing layer . The un-
modified k-w model predicts peak values of Mt in the mixing layer that are
more than twice the values in the boundary layer for the same freestream
Mach number . Using the Sarkar compressibility term reduces (Mt)max by
about one third for the mixing layer when M,,. > 2. Even with this much
reduction, (Mt)�zax for the mixing layer remains higher than the largest
value of (Mt),ax in the boundary layer all the way up to Mach 5 .

For Mach 1, the Sarkar term reduces mixing-layer spreading rate below
measured values (Figure 5.1) . Zeman's term predicts a somewhat larger
spreading rate at Mach 1, mainly because of the Mach number threshold in
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Table 5.1 : Maximum Turbulence Mach Number, (Mt)max

Zeman's model . That, is, Zeman postulates that the compressibility effect is
absent for Mt < Mt. . Zeman's Mach number threshold also yields smaller
differences between computed and measured boundary-layer skin friction
at lower Mach numbers (see Figure 5.2) . These observations show that
an improved compressibility term can be devised by extending Zeman's
threshold Mach number to a larger value of Mt . The Wilcox model simply
combines the relative simplicity of Sarkar's functional form for F(Mt ) with
Zeman's Mach number threshold to accomplish this end .

5 .6

	

Compressible Law of the Wall
In this section, we use perturbation methods to examine k-w and k-E model
predicted, compressible log-layer structure . The results are particularly
illuminating and clearly demonstrate why the Sarkar and Zeman compress-
ibility terms adversely affect boundary-layer predictions .

Recall from Section 4.6 .1 that the log layer is the region sufficiently
close to the solid boundary for neglect of convective terms and far enough
distant for molecular diffusion terms to be dropped. In the log layer, the
equations of motion based on the k-w model simplify to the following .

di- 2

	

(5 .70)hT dy = Pw uT

d I CPT

	

1 -2
l~T-

	

-1- _u

	

+,,'k ( - -4.77-dy PrT 2
(5.71)

moo

Boundary Layer
~*=0 ~*=1

Mixing
*=0

Layer
~*=1

0 0 0 0 0
1 .061 .061 .180 .159
2 .114 .107 .309 .227
3 .149 .135 .384 .245
4 .174 .154 .424 .254
5 .191 .171 .453 .266
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J ~

	

dJJ

	

(

dJ) 2
~ d N~T

	

?

	

+hT

	

d,

	

-~-F~wk = 0

	

(5.72)

0'I~T
dy

	

dy]
+ cxp

(dii

dy)2
dw

	

- /3pw 2 = 0

PP = pz»T�,

d

	

du d

	

2 d
PTdy = I~T dy du = Pw uT d1,

AV

	

2

	

j~ ) 2

T

	

2 uT

	

u3 UT

	

u2

(5.73)

(5.74)

The quantity uT is friction velocity defined as

	

r�,/p�, where Tti is
surface shear stress and pw is density at the surface . Also, T�, is surface
temperature, q, � is surface heat flux and Cr is specific heat at constant
pressure . Finally, y is distance from the surface .

Following Saffman and Wilcox (1974), we change independent variables
from y to u . Consequently, derivatives transform according to

(5 .75)

With this change of variables, we replace Equations (5 .71)-(5 .73) by the
following .

lntegrating Equation (5 .76) yields the temperature, and hence the den-
sity, as a function of velocity and Mach number based on friction velocity,
MT =uT/a,U

(5 .79)
Next, we assume a solution of the form:

pk = Tpz �u7

	

(5.80)

dii I PrT + 2
u2

+
c* k

1 p

9

7112
(5.76)

?*

d2k

+ 1
,Q
*p2k2

_ 0 (5.77)
di,2 A211 714

~d2w
a
w ~fi 2kw- -

_ +0 (5.78)due k p21,,4
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where r is a constant to be determined . Substituting Equations (5 .79) and
(5.80) into Equation (5 .77), and noting that M, = 2rm,, leads to the
following quartic equation for r .

As can easily be verified, when MT « 1, the asymptotic solution for I' is

Finally, in terms of r, Equation (5.78) simplifies to

Combining Equations (5.79) and (5.80) yields the density as a function of
velocity and r.

Equation (5.84) assumes a more compact form if we introduce the
freestream velocity, Uoo . A bit more algebra yields

where

/30 [1 + 2~*M.,2lr] [1 + (y - 1)PrTo-*M,j r] r2 = 1

	

(5 .81)

+ 7~o
2 PrT

*~
r=

	

MT+ . . .

d2w

	

*

	

*

	

2

	

2

	

Pw
a due + { a - [13o - 2aaC MT r] r } Pw,~2 r = 0

T

_Pw _
1_ (7 2 ) PrTM_

	

~(uT)
2+

P (u )

P

	

1 + (y - 1)PrTO-*rMT

v = qua

A2

_P�, _

	

1+Bv -A2v2

P

	

1 + (y - 1)PrTu*rm,2

i1PrT Moo (T.1Tw )

B = -PrTg.Uoo1(CptwT.)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

Using Equations (5.82), (5 .85) and (5.86), and retaining terms up to O(MT),
Equation (5.83) assumes the following form,

_d2w -

	

KW(U.IVT)2

	

w - 0

	

(5 .87)
dv2

	

11 + By - A2V2

where the constant K, is defined by

KZ = tC 2 -
[(2 + a + No~No)b * + (7 - 1)PrT(3a -

	

o)~*

	

M2+ . . .
2~

	

T

(5 .88)
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and K is Karman's constant . Because Uc,,,/u, » 1, we can use the WKB
method [see Kevorkian and Cole (1981)] to solve Equation (5 .87) . Noting
that w decreases as iii/U~ increases, the asymptotic solution for w is

Combining Equations (5.70), (5 .80) and (5.89), we can relate velocity
and distance from the surface .

[1 + By - A2v2] -1/4 exp [K�,u * /u,] dv - rvy

	

(5.91)

We integrate by parts to generate the asymptotic expansion of the integral
in Equation (5.91) as U,./u, --+ oo . Hence,

Finally, we set the constant of integration C = rUT/(Kw v.) . Taking the
natural log of Equation (5.92), we conclude that

u*

	

T.-
1_

	

( UTy ) +BW	(5 .93)uT vw

The quantity B, is the effective "constant" in the law of the wall defined
by

1/4

B,,, = B +
Kw

fn
(Pw

	

(5 .94)

where B is a true constant .
Most of the analysis above holds for the k-c model . The only significant

difference is in the c equation which is as follows .

-1
d [ dc

	

dii
dy

	

dy]

	

k
(dy)2

	

k2
016

	

- 14T- +CMCElp

	

- CE2- = 0

	

(5 .95)

Equations (5.80), (5 .82) and (5 .85) are still valid for the turbulence ki-
netic energy and density, provided o-* is replaced by ok1 . The transformed
equation for c is

_d2e -

	

K2(U. /UT)2
e = 0

	

(5.96)dv2	1+By - A2v2

w 1/4
- C [1 + Bv - A2v2] exp [-K,,,u*/u,] (5.89)

where C is a constant of integration and u* is defined by

u 1 2A v-B_
sin-1 (B2 (5.90)

U~
A

+ 4A2
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where the constant KE is defined by

K2 = tC2 -
[(C'i + CE2)a,~* + (-y - 1)P1'T

(3C
E1 - CE2)0'E ]

k
(5.97)

In arriving at Equation (5.97), recall from Equation (4.106) that the k-c
model's closure coefficients are related by

The asymptotic solution for c is

where B E is given by

and

K2 =

	

CA(CE2 - CE1)0_E

	

(5.98)

e - C [1 + By - A2v2]
114 exp [-K Eu*/u,]

	

(5.99)

Velocity and distance from the surface are related by

f [1 + By - A2v2]3/4 exp [KEu*/ur] dv -Coy

	

(5.100)

where Co is a constant of integration . Consequently, Equation (5.92) is
replaced by

[1 + By - A2v2]
514 exp [KEu*/u,] - C1 y

	

(5.101)

where C1 is another constant of integration . Finally, the law of the wall for
the k-c model is

ut
..,

KE
in

	

vw

	

+B E(~2

	

(5 .102)

5/4
B E -_ B + KEfri

CPw
(5 .103)

Equations (5.93) and (5 .102) are very similar to the compressible law of
the wall deduced by Van Driest (1951) . There are two ways in which these
equations differ from the Van Driest law.

The first difference is the effective Karman constants, Ku, and KE , which
vary with MT according to Equation (5 .88) for the k-w model and Equa-
tion (5.97) for the k-c model. In terms of each model's closure coefficients,
& and KE are given by (for MT « 1) :

K,2,, *- K2 [1 - (40.29 + 0.87)MT + ] (5.104)

KE ~2 [1 *- (23.92 + 3.07)MT + ] (5 .105)



194

	

CHAPTER 5. EFFECTS OF COMPRESSIBILITY

Table 5 .2 : Effective Karman Constant

Table 5.2 summarizes results obtained in the boundary-layer computa-
tions of Section 5.5 for the unmodified k-w model (~* = 0) and for the k-w
model with the Sarkar compressibility term (~* = 1) . The value of KW for
the unmodified model deviates from the Karman constant, tc = 0.41, by less
than 0.12% for freestream Mach numbers between 0 and 5. By contrast,
when ~* = 1, the deviation is as much as 5.10% . This large a deviation in
the effective Karman constant is consistent with the observed differences
between computed and measured skin friction . Similarly, with MT = .05,
KE differs from tc by 0 .5% and 3.5% for ~* = 0 and 1, respectively. Thus
the Sarkar compressibility term has a somewhat smaller effect on tc for the
k-c model relative to the effect on tc for the k-w model.

To see why a small perturbation in is corresponds to a larger perturba-
tion in ef, differentiate the law of the wall with respect to rc . Noting that
cf = 2u2/U,,2., a little algebra shows that

dcf N 2c
dtc

	

K f (5 .106)

Thus, we should expect Ocf/cf to be double the value of OK/rc. The
numerical results indicate somewhat larger differences in cf, but the trend
is clear.

The second way Equations (5.93) and (5.102) differ from the Van Driest
compressible law of the wall is in the effective variation of the "constant"
terms Bu, and BE with

	

Because the exponent is only 1/4, the effect
is minor for the k-w model. By contrast, the exponent is 5/4 for the k-e
model . This large an exponent has a much stronger effect on predicted
boundary layer properties . Figure 5.3 compares computed and measured
[Fernholz and Finlay (1981)] velocity profiles for adiabatic-wall boundary
layers at Mach numbers 4.5 and 10.3 . The computed results are for the
Wilcox (1988a) k-w model and for Chien's (1982) low-Reynolds-number

M. MT JE "=o Kw MT jE'=i Ku,

0 0 .410 0 .410
1 .032 .410 .031 .402
2 .048 .410 .046 .392
3 .052 .410 .049 .389
4 .050 .410 .046 .392
5 .048 .410 .043 .394



5 . 7. COMPRESSIBLE BOUNDARY LAYERS

	

195

k-c model . Equations (5.93) and (5.102) are also shown (with B = 5.0)
to underscore the importance of the models' variable "constant" in the
compressible law of the wall .

These results are consistent with the analysis of Huang, Bradshaw and
Coakley (1992) that shows how poorly the k-E model performs for com-
pressible boundary layers . Since p/p �, > 1 for all but strongly cooled walls,
its effect is to increase the "constant" in the law of the wall with a corre-
sponding decrease in cf . The Sarkar and Zeman terms will thus amplify
this inherent deficiency of the k-c model.

To put these results in proper perspective, we must not lose sight of
the fact that the k-c model requires the use of either wall functions or
viscous damping functions in order to calculate wall-bounded flows. If
these functions have an effect that persists well into the log layer, it may
be possible to suppress the k-c model's inherent flaws at low Reynolds
numbers . However, the perturbation analysis shows that such a model will
not be asymptotically consistent with the compressible law of the wall in
the limit of infinite Reynolds number . In effect, such a model would have
compensating errors that may fortuitously yield reasonably close agreement
with the law of the wall at low Reynolds numbers .

As a final comment, if we had used pe as the dependent variable in
Equation (5.95) in place of c, the exponent 5/4 in Equation (5 .103) would
be reduced to 1/4 . Presumably, this change would improve k-e model pre-
dictions for compressible boundary layers . The effect of this rescaling on
the mixing layer is unclear .

5 .7

	

Compressible Boundary Layers
Most turbulence models are capable of providing reasonably accurate pre-
dictions for constant-pressure, adiabatic-wall boundary layers provided the
Mach number does not exceed about 5 . Similar to the incompressible situa-
tion, adverse pressure gradients continue to be anathema to the k-e model,
while presenting no major problem for the k-w model . When surface heat
transfer is present, model predictions often show nontrivial discrepancies
from measured values for most turbulence models .

Algebraic models such as the Cebeci-Smith and Baldwin-Lomax models
(see Subsections 3.4.1 and 3.4.2) require no special compressibility correc-
tions . For the sake of clarity, recall that the Cebeci-Smith model uses the
velocity thickness, Sv , defined in Equation (3.115) for both compressible and
incompressible flow . The velocity thickness differs from the displacement



196

	

CHAPTER. 5 . EFFECTS OF COMPRESSIBILITY

U+

U+

24

16

8

0

24

16

8

0

1

	

10

	

102 + 103
y

(a) Mach 4.5

1

	

10

	

102 + 103
J

(b) Mach 10.3

Figure 5.3 : Comparison of computed and measured velocity profiles for
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thickness, b*, which is defined for compressible flows by

b* = 10, (1

	

PoeUe)
dy

	

(5.107)

The primary reason algebraic models should fare well for compressible
boundary layers without special compressibility modifications is illustrated
by Maise and McDonald (1967) . Using the best experimental data of the
time for compressible boundary layers, they inferred the mixing length vari-
ation . Their analysis shows that for Mach numbers up to 5 :

Velocity profiles for adiabatic walls correlate with the incompressible
profile when the Van Driest (1951) scaling is used, i .e .,

u*

	

_ 1

	

_sin 1

	

A
u

	

AZ = (7 2 1)M2 (tooITw)

	

(5.108)
U~

	

A

	

( U~ )

* The Van Driest scaling fails to correlate compressible velocity profiles
when surface heat transfer is present .

9 The classical mixing length is independent of Mach number .

Using singular perturbation methods, Barnwell (1992) shows that alge-
braic models are consistent with the Maise-McDonald observations . Many
researchers have applied the Cebeci-Smith model to compressible boundary
layers, showing excellent agreement with measurements for adiabatic walls
and somewhat larger differences when surface heat transfer is present . The
Baldwin-Lomax model yields similar predictions .

Because the length scale employed in most one-equation models is pat-
terned after the mixing length, they should also be expected to apply to
compressible flows without ad hoc compressibility modifications . This is
indeed the case, especially for newer models, which have been designed
for compressible-flow applications . Figure 4.2, for example, shows how the
Baldwin-Barth (1990) model performs for a Mach 2 flat-plate boundary
layer .

As we have seen in the last subsection, the issue is more complicated for
two-equation models . The log-layer solution indicates that the length scale
for the k-w and k-c models varies linearly with distance from the surface,
independent of Mach number . The models even predict the Van Driest
velocity scaling . Thus, two-equation models are consistent with two of the
most important observations made by Maise and McDonald, at least in
the log layer . However, we have also seen that the c equation includes a
nonphysical density effect that distorts the model's log-layer structure, and
precludes a satisfactory solution . By contrast, the w equation is entirely
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consistent with the Maise-McDonald observations . As shown in Figures 5.2
and 5.3, the k-w model provides excellent quantitative agreement with mea-
surements for Mach numbers up to about 5 .

Turning to effects of pressure gradient, Figures 5 .4 and 5 .5 compare
computed and measured skin friction and velocity profiles for two com-
pressible boundary layers with adverse pressure gradient . Figure 5.4 cor
responds to a Mach 4, adiabatic-wall experiment conducted by Zwarts [see
Kline et al . (1981) - Flow 8411] . Computed results are shown for the
Wilcox k-w model without viscous corrections and for the Chien (1982)
k-c model. Although the effect is small for this flow, neither computation
includes a dilatation-dissipation correction . As shown, k-w model predic-
tions fall within the scatter of the experimental data . By contrast, the k-e
model skin friction is about 8% lower than measured at the beginning of the
computation where the Mach number is 4 . This is consistent with results
shown in Figure 5 .3(a) . Because the flow is decelerating, the Mach number
decreases with distance, and falls to 3 by the end of the run . As a result,
&/p, is only half its upstream value, and the corresponding distortion of
the k-c model's log-layer velocity profile is greatly reduced . Consequently,
the k-c model's velocity profile is fortuitously in close agreement with the
measured profile .

Figure 5.5 presents a similar comparison for a Mach 2.65 boundary layer
with adverse pressure gradient and mild surface heating . The ratio of wall
temperature to the adiabatic-wall temperature, T�,/Ta�� varies between
1 .07 and 1 .13 for the flow . Again, because the Mach number is in the low
supersonic range, the density term in the k-c model's law of the wall is
small . The value of KE lin(p/pw)5/4 ranges between 0.50 at y+ = 100 to
1 .45 at y+ = 5000 . By comparison, the distortion in the k-w model's law
of the wall is just a fifth of these values .

While the k-c model solutions for both of these adverse pressure gradi-
ent cases are nearly as close to measurements as the k-ca model solutions,
similar results should not be expected for higher Mach numbers . Many
compressible-flow experiments have been conducted for Mach numbers of 3
and less . Far fewer experiments have been done at higher Mach numbers .
Hence these results show how a model calibrated for the best data available
may not apply at higher Mach numbers .

The k-c model's near-wall behavior has a significant impact on model
predictions, and Chien's model happens to be optimum for these two flows .
The Jones-Launder (1972) and Launder-Sharma (1974) models, for exam
ple, predict skin friction values more than twice measured values for these
two flows . Zhang et al. (1992) have developed a low-Reynolds-number k-c
model that yields close agreement with constant-pressure boundary layer
data for Mach numbers up to 10 . Interestingly, they note from the work
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Figure 5.4 : Computed and measured skin friction and velocity profile (at
x = 1 .18 m .) for a Mach 4, adiabatic-wall boundary layer with an adverse
pressure gradient ;

	

k-w model ; - - - Chien k-E model; o Zwarts .
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Figure 5.5 : Computed and measured flow properties for a Mach 2.65,
heated-wall boundary layer with an adverse pressure gradient ; k-w
model ; --- Chien k-c model ; o Fernando and Smits.
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of Coleman and Mansour (1991) that the exact Favre-averaged equation
for solenoidal dissipation, e� includes a term proportional to the rate of
change of the kinematic viscosity, v, as follows :

which can be rewritten as

_dc,_
pcs dv

P -T

	

v

	

dt +

d Ls_
dt Cvl

(5 .109)

This corresponds to an effective change of dependent variable in the e s
equation . Assuming a power-law viscosity law, i .e ., p oc Tn, the effec-
tive rescaled dependent variable would be p(i+n)e, . Correspondingly, the
exponent 5/4 in Equation (5 .103) would become (n + 1/4) . For a typical
value n = 7/10, the new coefficient would be 0.95 . Hence this term should
yield only a slight improvement for the model's distorted law of the wall .
Actually, through a series of closure approximations, Zhang et al. combine
this term with other terms and arrive at a rescaling that effectively leads
to using p-o.6ies . This would correspond to replacing the exponent 5/4
by 1 .86 which would yield even more distortion . It is unclear how Zhang
et al . have circumvented the inherent flaw in the k-e model for compress-
ible flows . Since virtually all of their applications to date have been for
low-Reynolds-number flows, it is possible that their low-Reynolds-number
damping functions penetrate far enough above the sublayer to offset the
behavior indicated in Equation (5.103) .

Turning to effects of surface heat transfer, Figure 5.6 compares com-
puted skin friction with a correlation of measured values [see Kline, et al .
(1981) - Flow 8201] . As shown, the k-w model virtually duplicates the
Van Driest correlation, although noticeable differences appear when wall
temperature is reduced to one fifth of the adiabatic-wall temperature . The
k-e model predictions of Zhang et al . (1992) show a similar trend .

As the final application, consider compressible flow over roughened flat
plates . Note that this provides a, test of the k-w model rough-surface bound-
ary condition on flows for which it has not been calibrated . Figure 5 .7 com-
pares computed skin friction with the data summarized by Reda, Ketter
and Fan (1974) . Computations have been done for Mach numbers of 0, 1
and 5 and dimensionless roughness height, kR, ranging from 0 to 100 . For
each Mach number, the reference smooth-wall skin friction coefficient, cf � ,
corresponds to a momentum-thickness Reynolds number, Ree, of 10,000 .
As shown, computed skin friction falls well within experimental data scat-
ter .
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Figure 5 .6 : Computed and measured effects of surface cooling on skin fric-
tion for a Mach 5 flat-plate boundary layer ; k-w model ; --- Zhang et
al . k-c model; o Van Driest correlation .
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Figure 5.7 : Computed and measured effects of surface roughness on skin
friction for compressible flat-plate boundary layers ; k-w model ; o Reda,
Ketter and Fan .
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The computations also demonstrate consistency with the observation
originally made by Goddard (1959) that "the effect of surface roughness on
skin-friction drag is localized deep within the boundary layer at the surface
itself and is independent of the external flow, i.e ., Mach number, per se,
is eliminated as a variable." Consistent with Goddard's observation, Mach
number has little effect on predicted cf/cf. . Additionally, consistent with
Reda's findings, computed skin friction departs noticeably from the smooth-
wall value for kR values near 4 to 5 as opposed to Goddard's correlation
which indicates no effect for kR less than 10 .

5 .8

	

Shock-Induced Boundary-Layer Separa-
tion

One of the most interesting and challenging CFD problems is the interaction
of a turbulent boundary layer with a shock wave . Many researchers have
analyzed this problem since the 1960'x, with varying degrees of success .
The earliest efforts were confined to algebraic models, largely because of
the long computing times required to solve the full Favre-averaged Navier-
Stokes equation . The fastest computer of the late 1960's and early 1970's
was the CDC 7600, a machine comparable in speed to a 50 MHz 80486
based microcomputer . Additionally, the best compressible-flow numerical
algorithms of that era were explicit time-marching methods that required
tens of thousands of timesteps to achieve a solution .

Wilcox (1974) did the first solutions to the Favre-averaged Navier-Stokes
equation, using an advanced turbulence model, for shock-induced separa-
tion of a turbulent boundary layer. This early CFD study included six
computations, three for reflection of an oblique shock from a flat plate and
three for flow into a compression corner . Results of the study indicate that,
using a two-equation turbulence model, a reasonably accurate description
of the flowfield can be obtained for reflection of an oblique shock from a flat
plate. However, the numerical flowfields for the compression corner cases
differ significantly from the experimentally observed flowfields, even though
Mach and Reynolds numbers and shock strength are identical to those of
the flat-plate cases . Thus, a seemingly simple change in flow geometry
causes a major difference in predictive accuracy . To put these computa-
tions in proper perspective, note that the turbulence model used was the
Saffman-Wilcox (1974) k-w2 model with surface boundary conditions given
by matching to the law of the wall . The numerical algorithm used was a
first-order accurate explicit time-marching procedure .

Since that time, computational methods have improved dramatically
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thanks to the innovative work of many researchers such as Beam and Warm-
ing (1976), Steger and Warming (1979), Roe (1981), Van Leer (1982), Mac-
Cormack (1985), and Roache and Salari (1990), to name just a few . As a
result of their innovations, converged solutions for separated flows can often
be obtained in less than 200 timesteps . A two-equation turbulence model
computation now takes about two hours of 80486-based microcomputer
CPU time for a shock-separated flow .

While great advances have been made in developing accurate and effi-
cient finite difference algorithms, far less improvement has been made with
turbulence models for such flows. The work of Viegas and Horstman (1979),
Viegas, Rubesin and Horstman (1985), Champney (1989) and Horstman
(1992) provides clear substantiation of this claim. They have applied many
turbulence models to shock-separated flows with almost universal results,
viz . :

1 . too little upstream influence as shown by pressure starting to rise well
downstream of the measured beginning of adverse pressure gradient ;

2. surface pressure in excess of measured values in the region directly
above the separation bubble ;

3. skin friction and heat transfer higher than measured downstream of
reattachment ;

4. velocity profiles downstream of reattachment that indicate flow de-
celeration in excess of corresponding measurements .

On the one hand, by using wall functions and the k-e model, Viegas,
Horstman and Rubesin (1985) are able to remove Item 3 from this list .
On the other hand, they achieve only modest improvements in the other
items. This lack of success on the compression-corner problem, which has
persisted for more than a decade, is excellent testimony to the oft quoted
statement that turbulence modeling is the pacing item in CFD.

Most modern shock-separated computations are done without introduc-
ing wall functions . There is no evidence that the law of the wall holds on
separated regions, and its use via wall functions is a questionable approx
imation . The primary motivation for using wall functions in large scale
computations that require substantial computer resources is in reducing
CPU time . Viegas, Horstman and Rubesin (1985), in effect, create a two-
layer turbulence model where their wall functions apply in the sublayer,
and the Standard k-e model applies above the sublayer . While their proce-
dure yields significant reduction in computing time, numerical results are
sensitive to the location of the grid point closest to the surface, yz . In fact,
there is no obvious convergence to a well defined limiting value as ya -' 0.
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Consequently, the value of y2 is effectively an adjustable parameter in their
model equations, to be selected by the user . In practice, it is typical for
the user to fix y2 at each location, rather than modify it locally as the
solution develops, which would be required to achieve a constant value of
y2 . Thus, in practice, ya actually varies throughout the flow in a manner
that cannot. be determined a priori, so that the sensitivity to its value is a
computational liability.

The sensitivity can be removed by using perturbation methods to de-
vise suitable wall functions . Wilcox (1989), for example, has deduced the
following compressible-flow wall functions for the k-w model :

u* -uT ~ l fn
If
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where 0 is the dimensionless pressure gradient parameter defined by

_ v�, _dP
pu3 dx

As with the incompressible wall functions deduced for the incompressible
k-w model (see Subsection 4 .7 .1), the expansions in Equation (5.111) have
been derived assuming 0 is a small parameter . Using these wall functions,
numerical solutions show very little sensitivity to placement of the grid
point closest to the surface .

Figure 5.8 compares computed and measured surface pressure for Mach
3 flow into a 24° compression corner using algebraic models, a one-equation
model, several two-equation models, and a second-order closure model . As
shown, none of the algebraic, one-equation or two-equation models provides
a satisfactory solution . Figure 5.9 illustrates a critical problem regarding
prediction of surface heating rates . Results are shown for three k-e models,
viz ., the Jones-Launder (1972) model, the same model with compressibility
corrections devised by Rubesin (1990), and a two-layer k-c model developed
by Rodi (1991) that uses a one-equation model rather than wall functions .
As shown, the Jones-Launder model surface heat transfer, qw, is off scale
and is roughly triple the measured value . While the modified models predict
peak heating rates closer to measured values, differences between computed
and measured heat transfer are in excess of 25% throughout the flow .
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Figure 5.8 : Comparison of computed and measured surface pressure for
Mach 3 flow into a 24° compression corner for several turbulence models .
[From Marshall and Dolling (1992) - Copyright © AIAA 1992 - Used
with permission .]
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Figure 5.9 : Comparison of computed and measured surface pressure and
heat transfer for Mach 9.2 flow past a 40° cylinder flare. [From Horstman
(1992) - Copyright © AIAA 1992 - Used with permission .]

There has been substantial progress in the capability for prediction of
three-dimensional shock wave, turbulent boundary layer interactions . A
recent review by Knight (1993) describes the status of research for five ba-
sic geometries . Figure 5.10(a) illustrates the three-dimensional single fin,
arguably the most extensively studied such interaction . The deflection of
the fin surface by an angle a generates an oblique shock that interacts with
the boundary layer on the flat plate . This interaction is of some practical
interest, as it represents a geometric abstraction of a fin-body juncture for
a high-speed aircraft . Figure 5.10(b) compares computed and measured
surface pressure for M,,, = 2.9, a = 20°, and Reb_ = 9 - 105, where Sc'. is
boundary-layer thickness upstream of the interaction . The comparison has
been made at a spanwise distance, z = 6 .85c, from the plane of symmetry.
Computations using the Baldwin-Lomax (1978) model (labeled "Knight")
and Rodi's (1991) k-c model (labeled "Horstman") are in close agreement
with measurements . Similar close agreement has been obtained with exper-
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imental data for pitot pressure and yaw angle [Knight, et al . (1987)] . These
results imply that the flowfield is predominantly rotational and inviscid,
except within a thin region adjacent to the solid boundaries . This result is
similar to the triple-deck theory developed for interacting boundary layers
[e .g ., Stewartson (1981)] and extended to non-separated three-dimensional
shock wave, turbulent boundary layer interactions by Inger (1986) . Con-
sequently, the choice of turbulence model is unimportant for comparison
with all but the inner (lower deck) provided the upstream boundary layer
is correct. However, predicted skin friction and surface heat transfer are
very sensitive to the turbulence model chosen, and can exhibit significant
disagreement with experiment [Knight (1993)] .

P/P.

O

	

EXPERIMENT- GOODWIN

-----THEORY -HORSTMAN /e
---THEORY-KNIGHT d66'.

-18 -10

.a'

X - Xshock (cm)

10

(a) Flow Geometry

	

(b) Surface pressure, z = 6 .85

is

Figure 5 .10 : Single-fin shock wave, boundary layer interaction ; Mach 2.9 .
[Figure provided by D. D . Knight .]

Figure 5.11(a) shows the double-fin geometry . This geometry is of prac-
tical interest as it represents a geometric simplification of a hypersonic inlet
using sidewall compression, or a sidewall interaction for a supersonic mixed
compression inlet . The two fins generate opposing shocks that intersect
on the centerline, and interact with the boundary layers on the flat plate
and fin . Figure 5.11(b) compares computed [Narayanswanii, Horstman and
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Knight (1993)] and measured peak surface pressure (on the centerline) for
M,,,, = 8 .3, a = 15°, and Rea� = 1 .7 . 105 . The turbulence models are the
Baldwin-Lomax (1978) model and the Rodi (1991) version of the k-e model .
The predictions are reasonably close except at the peak near x/b". = 10 .
Baldwin-Lomax predictions are within about 20% of measurements, while
k-e predictions differ by as much as 45% . It is interesting to note that the
peak pressure is approximately half the theoretical inviscid level because of
the viscous-inviscid interaction . Reasonable agreement is obtained between
computed and measured pitot pressure and yaw-angle profiles . Compari-
son of computed eddy viscosity shows significant differences, however . As a
result, Knight concludes that, similar to the single-fin case, the flow is dom-
inantly rotational and inviscid, except within a thin region near the surface .
The turbulence model has a very significant effect on computed heat trans-
fer, and neither model yields acceptable results (Figure 5 .12) . Although
the k-w model has not been applied to these flows, we can reasonably con-
clude that further research is needed in the development and application of
turbulence models for three-dimensional shock wave, turbulent boundary
layer interactions .

Inviscid

(a) Flow Geometry

	

(b) Peak surface pressure

Figure 5.11 : Double-fin shock wave, boundary layer interaction ; Mach 8 .3 .
Experiment ;

	

Baldwin-Lomax ; --- Rodi ; [Figure provided by D. D.
Knight.]
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z/b"'

z/b"

Figure 5.12 : Transverse profiles of flat plate surface heat transfer at stream-
wise locations of (a) x/b,,, = 5 .08, (b) 6.40 and (c) 7.78 for a double-fin
shock wave, boundary layer interaction ; Mach 8.3 . [Figure provided by D.
D . Knight .]
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Problems

5.1 Derive the Reynolds-averaged momentum-conservation equation for
compressible flow .

5.2 Derive the Favre-averaged Reynolds-stress equation [Equation (5.39)] .

5.3 Verify that Equations (5 .54) and (5.55) are equivalent .

5.4 The classical Crocco temperature-velocity relationship for an adiabatic-
wall boundary layer is

integral .

we assume a solution of the form

z=1-A z
T.

	

(U" )

where A is a constant . Use this approximation to evaluate the following

u
u* _

	

du
o Pw

Compare your result with Equation (5 .108) .

5.5 To use the WKB method in solving an equation such as

dzW_ - Az
f(v)W = 0,dvz

(a) Verify that So(v) and Sl(v) are given by

A,oo

w(v) ..' exp
L
a~ S,,(v)A - ' I , .' exp [ASo(v) + S1(v) + O(.1-1)]
,n=o

So(v) = f j

	

f(v)dv + constant

S1 (v) = in If(v)1-t/4 + constant

(b) Use the result of Part (a) to show that the leading-order solution to
Equation (5.87) is given by Equations (5.89) and (5 .90) .

(c) Now, complete the derivation of Equation (5 .92) .
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5.6 Derive the compressible law of the wall implied by the Cebeci-Smith
model .

5.7 Using the compressible log-layer solution, show that the turbulence
length scale for the k-w model defined by f = k 1 12/w varies linearly with
distance from the surface in the compressible log layer.

5.8 Using the compressible log-layer solution, show that the turbulence
length scale for the k-c model defined by f = k3/2/c varies linearly with
distance from the surface in the compressible log layer.
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