
Chapter 4

Turbulence Energy
Equation Models

As computers have increased in power since the 1960's, turbulence mod-

els based upon the equation for the turbulence kinetic energy have be-

come the cornerstone of modern turbulence modeling research . This chap-

ter discusses two types of turbulence energy equation models, viz., One-

Equation Models and Two-Equation Models, with most of the empha-

sis on the latter . These models both retain the Boussinesq eddy-viscosity

approximation, but differ in one important respect. One-equation models

are incomplete as they relate the turbulence length scale to some typical

flow dimension. By contrast, two-equation models provide an equation for

the turbulence length scale or its equivalent and are thus complete.

The chapter begins with a derivation and discussion of the turbulence

energy equation . We proceed to a general discussion of one-equation models

including examples of how such models fare for several flows. Next, we in-

troduce two-equation models with specific details ofthe two most commonly

used models . Our first applications are to the same free shear flows consid-

ered in Chapter 3. Then, our attention focuses upon a very powerful tool,

singular perturbation theory, that we use to analyze model-predicted fea-

tures of the turbulent boundary layer . We apply the two-equation model to

attached wall-bounded flows and compare to corresponding algebraic-model
predictions. We discuss the issue of asymptotic consistency approaching a

solid boundary, and the ability of two-equation models to predict transi-

tion from laminar to turbulent flow . Our final applications are to separated

flows. The concluding section discusses the range of applicability of one-

and two-equation models .
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CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

4 .1

	

The Turbulence Energy Equation
Turbulence energy equation models have been developed to incorporate
nonlocal and flow history effects in the eddy viscosity. Prandtl (1945) pos-
tulated computing a characteristic velocity scale for the turbulence, v ..ix,
thus obviating the need for assuming that v �aix - f ix I aUlayl [c .f. Equa-
tion (3.15)] . He chose the kinetic energy (per unit mass) of the turbulent
fluctuations, k, as the basis of his velocity scale, i .e .,

k = 2u
;ui =

	

(u'2 + T2 -F zv'2 )

	

(4 .1)

Thus, in terms of the density, p, a turbulence length scale, C, and k, dimen-
sional arguments dictate that the eddy viscosity is given by

PT = constant - pk
i12t

	

(4.2)

Note that we drop subscript "mix" in this chapter for convenience, and to
avoid confusion with the mixing length used in algebraic models .

The question now arises as to how we determine k . The answer is
provided by taking the trace of the Reynolds stress tensor, which yields the
following .

following correlation .

Iii = -puiui = -2pk

	

(4 .3)
Thus, the trace of the Reynolds stress tensor is proportional to the kinetic
energy per unit volume of the turbulent fluctuations . The quantity k should
strictly be referred to as specific turbulence kinetic energy ("specific"
meaning "per unit mass"), but is often just called turbulence kinetic
energy .

In Chapter 2 we derived a differential equation describing the behavior
of the Reynolds stress tensor, 7ij, i .e ., Equation (2.34) . We can derive a
corresponding equation for k by taking the trace of the Reynolds stress
equation . Noting that the trace of the tensor II ij vanishes for incompress-
ible flow, contracting Equation (2.34) leads to the following transport
equation for the turbulence kinetic energy .

ak ak _aui	_a _ak _1
pat + PUi ax,

= 7ij axj - PE + a~j [p axj

	

pua utuI
- p ujJ

	

(4 .4)

The quantity c is the dissipation per unit mass and is defined by the

au;e = v--

	

(4.5)
axk axk

The various terms appearing in Equation (4.4) represent physical pro-
cesses occurring as the turbulence moves about in a given flow . The sum
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of the two terms on the left-hand side, i.e ., the unsteady term and the
convection, is the familiar Eulerian derivative of k that gives the rate of
change of k following a fluid particle . The first term on the right-hand side
is known as Production, and represents the rate at which kinetic energy
is transferred from the mean flow to the turbulence . Rewritten as rijSij,
this term is seen to be the rate at which work is done by the mean strain
rate against the turbulent stresses . Dissipation is the rate at which tur-
bulence kinetic energy is converted into thermal internal energy, equal to
the mean rate at which work is done by the fluctuating part of the strain
rate against the fluctuating viscous stresses . The term involving pak/8xj
is called Molecular Diffusion, and represents the diffusion of turbulence
energy caused by the fluid's natural molecular transport process. We re-
fer to the triple velocity correlation term as Turbulent Transport, and
regard it as the rate at which turbulence energy is transported through
the fluid by turbulent fluctuations . The last term on the right-hand side
of the equation is called Pressure Diffusion, another form of turbulent
transport resulting from correlation of pressure and velocity fluctuations .

The unsteady term, convection and molecular diffusion are exact while
production, dissipation, turbulent transport and pressure diffusion involve
unknown correlations . To close this equation, we must specify rij, dissipa-
tion, turbulent transport and pressure diffusion .

The conventional approach to closure of the k equation was initiated
by Prandtl,(1945) who established arguments for each term in the equa-
tion . This term-by-term modeling approach amounts to performing drastic
surgery on the exact equation, replacing unknown correlations with clo-
sure approximations . This process is by no means rigorous . The closure
approximations are no better than the turbulence data upon which they
are based. Our hope is that we can find universally valid closure approxi-
mations that make accurate solutions possible . We will discuss this point
in greater detail when we introduce two-equation models .

Reynolds-Stress Tensor: For the class of turbulence models con-
sidered in this chapter, we assume the Boussinesq approximation is valid.
Thus, we say that the Reynolds stress tensor is given by

Tij = 2PTSij - 3pkbij (4.6)

where Sij is the mean strain-rate tensor . Note that the second term on the
right-hand side of Equation (4.6) is needed to obtain the proper trace of rij .
That is, since Sii = 0 for incompressible flow, contracting Equation (4.6)
yields Tii = -2pk in accord with Equation (4.3) .
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Turbulent Transport and Pressure Diffusion: The standard ap-
proximation made to represent turbulent transport of scalar quantities in a
turbulent flow is that of gradient-diffusion . In analogy to molecular trans-
port processes, we say that -u'O' ti PTO'b/8xj . Unfortunately, there is no
corresponding straightforward analog for the pressure diffusion term . For
want of definitive experimental data, the pressure diffusion term has gen-
erally been grouped with the turbulent transport, and the sum assumed
to behave as a gradient-transport process . Fortunately, recent DNS results
[e .g ., Mansour, Kim and Moin (1988)] indicate that the term is quite small
for simple flows . Thus, we assume that

2 putu` j +p~uj

	

0-r 8x . (4.7)

where Qk is a closure coefficient. Note that Equation (4.7) simply defines 0-k .
As stressed by Bradshaw (1992), this statement applies to all turbulence
closure coefficients . At this point, no approximation has entered although,
of course, we hope the model is realistic enough that Uk can be chosen to
be constant .

Dissipation: The manner in which we determine the dissipation is
not unique amongst turbulence energy equation models . It suffices at this
point to note that we still have two unknown parameters, which are the
turbulence length scale, f, and the dissipation, c. If both properties are
assumed to be strictly functions of the turbulence independent of natural
fluid properties such as molecular viscosity, purely dimensional arguments
[Taylor (1935)] show that

(4.8)

Hence, we still need a prescription for the length scale of the turbulence in
order to close our system of equations . In the following sections, we will
explore the various methods that have been devised to determine the length
scale.

Combining Equations (4.4) and (4.7), we can write the modeled ver-
sion of the turbulence kinetic energy equation that is used in virtually all
turbulence energy equation models . The equation assumes the following
form,

8k Ok OUti 8

	

8kp
at
+ pub ate,

	

axe
- pe +

axe [(h + PTIO-k) axe

where rah is given by Equation (4.6) .

(4 .9)
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4.2

	

One-Equation Models

To complete closure of the turbulence kinetic energy equation, Prandtl
postulated that the dissipation assumes the form quoted in Equation (4.8) .
Introducing a closure coefficient that we will call CD, the dissipation is

E = CDk3/ z/f

	

(4.10)

and the turbulence length scale remains the only unspecified part of the
model. Given twenty years of experience with the mixing-length model,
Prandtl had sufficient confidence that he could generalize established pre-
scriptions for the turbulence length scale f. Of course, f oc f�,%x only
if the ratio of production to dissipation is constant . To see this, note
that in a thin shear layer, production balancing dissipation means we have
all/ay = (-uw7)1/2/t�,2x . Hence, we obtain (-uw j)3/2fmz CDksl2/P
so that t oc f,c., if -u'v'/k = constant . Thus, the first One-Equation
Model appears as follows:

3/2

pat
+pUj~ =TE~a~

a
-CDPk~ + aX, [(P+PTl17k)a~

	

(4.11)

where Tyj is given by Equation (4.6) and the eddy viscosity is

PT = pk1/2$ (4.12)

Note that at this point we make an implicit assumption regarding the
"constant" in Equation (4.2), which has been set equal to one. That is,
there is no a priori reason why PT should depend only upon k and f, i .e .,

no reason why "constant" should really be constant . In reality, PT is the
ratio of a turbulence quantity (e.g ., -pulv') to a mean flow quantity (e.g .,
0U/8y + OV/Ox) . Consequently, PT will not, in general, precisely follow
mean-flow scales such as Ue and S* or turbulence scales such as k and f.
Only in equilibrium flows for which production and dissipation balance
are mean-flow and turbulence scales proportional - and then either can
be used for PT. Otherwise, an unknown mix of scales is needed .

Emmons (1954) proposed essentially the same model in an independent
research effort . Before the model can be used in applications, the length
scale, f, and the closure coefficients ok and CD must be specified. Em-
mons (1954) and Glushko (1965) applied this model to several flows with
some degree of success using 0-k = 1 and CD ranging between 0.07 and
0.09. Their length scale distributions were similar to those used for the
mixing-length model. Wolfshtein (1967) found that by introducing damp-
ing factors in the dissipation and eddy viscosity similar to the Van Driest
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factor [Equation (3.105)], more satisfactory results can be obtained with
this model for low-Reynolds-number flows. More recently, Goldberg (1991)
has refined the model even further .

Although more complex than an algebraic model, the Prandtl-Emmons-
Glushko one-equation model is certainly straightforward and elegant. As
originally postulated it involves two closure coefficients and one closure
function (the length scale) . Even with Wolfshtein's low-Reynolds-number
corrections, the number of closure coefficients increases by only two so that
the model actually has fewer closure coefficients than the Baldwin-Lomax
and Johnson-King models . For attached flows, the Goldberg model has
five closure coefficients, two damping functions, and a closure function for
the length scale. Goldberg's number of closure coefficients and empirical
functions more than doubles for separated flows.

Bradshaw, Ferriss and Atwell (1967) formulated a one-equation model
that avoids introducing a gradient-diffusion approximation . Rather than
introduce the Boussinesq approximation, they argue that for a wide range
of flows, the ratio of the Reynolds shear stress, T--,y, to the turbulence kinetic
energy, k, is constant . Measurements [Townsend (1976)] indicate that for
boundary layers, wakes and mixing layers the ratio is very nearly the same
and given by

Try ~ 0 .3pk

	

(4.13)

Building upon this presumably universal result, Bradshaw, Ferriss and
Atwell formulated a one-equation model based on the turbulence kinetic
energy. A novel feature of their formulation is that the equations are hy-
perbolic for boundary layers rather than parabolic . This is a direct con-
sequence of introducing Equation (4.13) in modeling the k equation's tur-
bulent transport term rather than a gradient-diffusion approximation. The
resulting equations are thus solved using the method of characteristics .
Figure 4.1 compares computed and measured skin friction for Flow 3300
of the 1968 AFOSR-IFP-Stanford Conference on the Computation of Tur-
bulent Boundary Layers . As shown, the differences between theory and
experiment are much less than those obtained using the Cebeci-Smith and
Baldwin-Lomax models [see Figure 3.16] . Overall, the Bradshaw-Ferriss-
Atwell model's skin friction for boundary layers in adverse pressure gradient
was closest of the various models tested in the 1968 Conference to measured
values .

One-equation models have been formulated that are based on something
other than the turbulence energy equation . Nee and Kovasznay (1968), for
example, postulated a phenomenological transport equation for the kine-
matic eddy viscosity, PT = PTIp. The equation involves terms similar to
those appearing in Equation (4 .11) . The model has four closure coefficients
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requires prescription of the turbulence length scale

.
More

recently, Baldwin and Barth (1990) and Spalart and Allmaras

(1992)

have devised even more elaborate model equations for the eddy

viscosity.

The Baldwin-Barth model, for example, includes seven closure

coefficients,

two empirical damping functions and a function describing the

turbulence

length scale

.

The Baldwin-Barth model is as follows

.

Kinematic

Eddy Viscosity

Turbulence

Reynolds Number

a(vRT)

+ Uj	

(vRT)

= (CE2f2 - CEi)	

VRTP
t

aj

Closure

Coefficients

Auxiliary

Relations

vT

= CpvRTDjD2

a2(vRT)

	

l

av_T a(vRT)

+(v

+ IiTIQe)	

_
axkaxk

	

0E

axk	

axk

CEl

= 1

.2,

	

G2

= 2

.0,

	

C,,

= 0

.09,

	

Ao

= 26,	

AZ

= 10	

(4.16)

1-

_ (CEZ - CEi)14CM1tC2,	

K

=0

.41

	

(4.17)

_

	

[

(aUi	

_aUj

) _OUi _ 2_avk_Wk1

P

- VT	

axj

+ axi	

axj

	

3

axk axk

(4.14)

(4.15)

(4.18)
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CE1
C,2 Ky+CE')

1 l

DID2+

	

y+

	

~D+e -y+lA~ + D+e-y+lA2~]

	

(4.20)
D1 D2

	

Ao	A 2

The Spalart-Allmaras model is also written in terms of the eddy vis-
cosity . The model includes eight closure coefficients and three damping
functions . Its defining equations are as follows .

Kinematic Eddy Viscosity

Eddy Viscosity Equation

Closure Coefficients

Auxiliary Relations

D1 = 1 - e -y+/A o

	

and

	

D2 = 1 - 1-Y+
/A+

	

(4.19)

VT = v.fvl

av av

	

C

v) 2

at + U;
X=

cbiSv - Cwl .fw

	

d7
1 a

	

av

	

cb2 av av+-- [(v + ;,)-] + --
aX k	axk

	

a ax

K2 U

S ti~SS = S + K2d2 .fv2,

	

S =

	

i~

cbl = 0 .1355, cb2 = 0 .622, cvl = 7.1,

ew1 = cbl + (1 + cb2)

	

cwt = 0.3,

	

cw3 = 2,

3
.fvl =

	

3
X

	

3 ,

	

.f,2 = 1 -

	

X

	

.fw = g
X + wl

	

1 + X .fvl

X =
v,

	

g = r + cw2(r6 - r),

	

r

The tensor Slz j = 2 (OUi /ax; - 0Uj/axi) is the rotation tensor and d is
distance from the closest surface . Although not listed here, the model
even includes a transition correction that introduces four additional closure
coefficients and two more empirical functions .

(4.21)

(4.22)

Q = 2/3 (4.23)

K = 0 .41 (4.24)

[9
1 + c6 1/6

6 6
3

l
(4.25)

+ cw3

Sic 2d. 2 (4.26)

(4.27)
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Figure 4.2 : Comparison of computed and measured flat-plate boundary
layer skin friction at Mach 0.1 and Mach 2 .0 ; Baldwin-Barth model . [From
Baldwin and Barth (1990) .]

Figure 4.2 illustrates how well the Baldwin-Barth model reproduces
correlations of measured skin friction [see Hopkins and Inouye (1971)] for
constant-pressure boundary layers .

Figures 4.3 and 4.4 show how the Baldwin-Barth model fares for the
two key flows considered by Menter (1992b) . For both flows, the Baldwin-
Barth model skin friction deviates from measured values even more than the
Baldwin-Lomax model (see Figures 3 .15 and 3.17) . Although not shown,
the Spalart-Allmaras model yields cf for the Samuel-Joubert case that lies
about as far above the measurements as the Baldwin-Barth cf lies below
[see Spalart and Allmaras (1992)] .

In summary, only a modest advantage is gained in using a one-equation
model rather than a mixing-length model . While the recent developments
by Goldberg, Baldwin and Barth and Spalart and Allmaras show improved
predictive capability (relative to early one-equation models) for some flows,
their track record remains spotty. On the one hand, the Goldberg, Baldwin-
Barth and Spalart-Allmaras models have achieved closer agreement with
measurements for a limited number of separated flows than is possible with
algebraic models . On the other hand, the Baldwin-Lomax model appears to
be superior to the Baldwin-Barth model for the relatively simple Samuel-
Joubert flow and for Driver's separated flow . While these newer models
appear promising for separated flows, more research and testing is needed .

Given all of these facts, we clearly have not yet arrived at anything
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Figure 4.3 : Computed and measured skin friction for Samuel-Joubert's
adverse pressure gradient flow ;

	

Baldwin-Barth ; o Samuel-Joubert .

Figure 4.4 : Computed and measured flow properties for Driver's separated
flow ;

	

Baldwin-Barth ; o Driver .
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resembling a universal turbulence model . While there is a smaller need for
adjustment from flow to flow than with the mixing-length model, abrupt
changes from wall-bounded to free shear flows (e.g ., flow at a trailing edge
of an airfoil) cannot be easily accommodated . In general, one-equation
models share a few of the failures as well as most of the successes of the
mixing-length model . To reach a more-nearly universal model, especially
for separated flows, we must seek a model in which transport effects on the
turbulence length scale are also accounted for . The rest of this chapter is
devoted to investigating models that indeed include transport effects on the
turbulence length scale .

4.3

	

Two-Equation Models
Two-Equation Models of turbulence have served as the foundation for
much of the turbulence model research during the past two decades . For ex-
ample, almost all of the computations done for the 1980-81 AFOSR-HTTM-
Stanford Conference on Complex Turbulent Flows used two-equation turbu-
lence models . These models provide not only for computation of k, but also
for the turbulence length scale or equivalent . Consequently, two-equation
models are complete, i.e ., can be used to predict properties of a given
turbulent flow with no prior knowledge of the turbulence structure . They
are, in fact, the simplest complete model of turbulence .

The starting point for virtually all two-equation models is the Boussi-
nesq approximation, Equation (4.6), and the turbulence kinetic energy
equation in the form of Equation (4 .9) . As pointed out at the end of Sec-
tion 4.1, there is a non-uniqueness in the way we determine the dissipation,
c, or equivalently, the turbulence length scale, E .

Kolmogorov (1942), for example, pointed out that a second transport
equation is needed to compute the so-called specific dissipation rate, w .
This quantity has dimensions of (time)-1 . On dimensional grounds, the
eddy viscosity, turbulence length scale and dissipation can be determined
from

PT ^ " Pk1W,

	

I - k 1121W,

	

E- wk

	

(4.28)
Chou (1945) proposed modeling the exact equation for t . In terms of

this formulation, the eddy viscosity and turbulence length scale are

,aT ~ pk2/e,

	

f ~ k3/2/E

	

(4.29)

Rotta (1951) first suggested a transport equation for the turbulence
length scale and later (1968) proposed an equation for the product of k and
t . In either case,

hT -
pk1/2j,

	

E - k3/2/1

	

(4.30)
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More recently, Zeierman and Wolfshtein (1986) introduced a transport
equation for the product of k and a turbulence dissipation time, r,
which is essentially the reciprocal of Kolmogorov's w . Also, Speziale, Abid
and Anderson (1990) have postulated an equation for r. For these models,

PT - Pkr,

	

t ^ " k112,r,

	

e ^, klT

	

(4.31)

Regardless of the choice of the second variable in our two-equation
model, we see a recurring theme . Specifically, the dissipation, eddy vis-
cosity and length scale are all related on the basis of dimensional argu-
ments . Historically, dimensional analysis has been one of the most powerful
tools available for deducing and correlating properties of turbulent flows .
However, we should always be aware that while dimensional analysis is ex-
tremely useful, it unveils nothing about the physics underlying its implied
scaling relationships . The physics is in the choice of variables .

One of the key conclusions of the 1980-81 AFOSR-HTTM-Stanford Con-
ference on Complex Turbulent Flows was that the greatest amount of un-
certainty about two-equation models lies in the transport equation com-
plementing the equation for k . Further, it was even unclear about what
the most appropriate choice of the second dependent variable is . In the
decade following the Conference, interesting developments have occurred,
most notably with the k-w model that help clear up some, but not all, of
the uncertainty.

Before proceeding to details of two-equation models, it is worthwhile
to pause and note the following . As with one-equation models, there is
no fundamental reason that PT should depend only upon turbulence pa-
rameters such as k, f, c or w . In general, the ratio of individual Reynolds
stresses to mean strain rate components depends upon both mean-flow and
turbulence scales . Thus, two-equation turbulence models are no more likely
than one-equation models to apply universally to turbulent flows, and can
be expected to be inaccurate for many non-equilibrium turbulent flows .

4.3.1

	

The k-w Model

As noted above, Kolmogorov (1942) proposed the first two-equation model
of turbulence . Kolmogorov chose the kinetic energy of the turbulence as
one of his turbulence parameters and, like Prandtl (1945), modeled the
differential equation governing its behavior . His second parameter was the
dissipation per unit turbulence kinetic energy, w . In his k-w model, w sat-
isfies a differential equation similar to the equation for k . With no prior
knowledge of Kolmogorov's work, Saffman (1970) formulated a k-w model
that would prove superior to the Kolmogorov model. As part of the Imperial



4.3 . TWO-EQUATION MODELS

	

85

College efforts on two-equation models, Spalding [see Launder and Spalding
(1972)] offered an improved version of the Kolmogorov model that removed
some of its flaws. Shortly after formulation of Saffman's model and contin-
uing to the present time, Wilcox et al . [Wilcox and Alber (1972), Saffman
and Wilcox (1974), Wilcox and Traci (1976), Wilcox and Rubesin (1980),
and Wilcox (1988a)] have pursued further development and application of
k-w turbulence models in earnest. Coakley (1983) has developed a k112-w

model. In their critical review of two-equation turbulence models, Speziale,
Abid and Anderson (1990) also propose a k-w model.

In formulating his model, Kolmogorov referred to w as "the rate of
dissipation of energy in unit volume and time." To underscore its physical
relation to the "'external scale' of turbulence, E," he also called it "some
mean `frequency' determined by w = ck112/f, where c is a constant ." On
the one hand, the reciprocal of w is the time scale on which dissipation
of turbulence energy occurs. While the actual process of dissipation takes
place in the smallest eddies, the rate of dissipation is the rate of transfer
of turbulence kinetic energy to the smallest eddies . Hence, this rate is
set by the properties of the large eddies, and thus scales with k and f,
wherefore w is indirectly associated with dissipative processes. On the
other hand, in analogy to molecular viscosity, we expect the eddy viscosity
to be proportional to the product of length and velocity scales characteristic
of turbulent fluctuations, which is consistent with Kolmogorov's argument
that w - k i/2 /e . Of course, we should keep in mind that analogies between
molecular and turbulent processes are not trustworthy, and Kolmogorov's
argument is essentially an exercise in dimensional analysis, not fundamental
physics.

The development of the Kolmogorov model (1942) is quite brief and
doesn't even establish values for all of the closure coefficients . Since little
formal development of the equations is given, we can only speculate about
how this great turbulence researcher may have arrived at his model equa-
tions. Since he makes no specific reference to any exact equations, it seems
unlikely that he attempted to close the k equation or other moments of
the Navier Stokes equation term by term . Rather, as the great believer in
the power of dimensional analysis that he was, it is easy to imagine that
Kolmogorov's original reasoning may have gone something like this (note
that for the sake of clarity the arguments below are in terms of kinematic
eddy viscosity, VT = PT/P).

e Since k already appears in the postulated constitutive relation [Equa-
tion (4.6)], it is plausible that iT oc k .

e The dimensions of vT are (length) 2 /(time) while the dimensions of k
are (length) 2 /(time)1 .



86

	

CHAPTER 4 . TURBULENCE ENERGY EQUATION MODELS

" Consequently vT/k has dimensions (time) .

" Turbulence dissipation c has dimensions (length)'/(time)' .

" Consequently elk has dimensions 1/(time) .

" We can close Equations (4 .6) and (4 .9) by introducing a variable with
dimensions (time) or 1/(time) .

The next step is to postulate an equation for w . In doing so, the avenue
that Kolmogorov took was to recognize that there are a fairly small number
of physical processes commonly observed in the motion of a fluid . The
most common processes are unsteadiness, convection (often referred to as
advection), diffusion, dissipation, dispersion and production . Combining
physical reasoning with dimensional analysis, Kolmogorov postulated the
following equation for w .

P a
Ow

	

C9W

t +
PUS fix_

	

-OPw2
+ aa~

[MPT

	

]

	

(4.32)

We have taken some notational liberties in writing Equation (4.32), and
Q and o- are two new closure coefficients . This equation has three partic-
ularly noteworthy features . First, there is no analog to the k-equation's
turbulence production term. The absence of a production term is consis-
tent with Kolmogorov's notion that w is associated with the smallest scales
of the turbulence, and thus has no direct interaction with the mean mo-
tion . Note that his logic is flawed on this issue as the large-scale, energy-
bearing eddies are primarily responsible for determining the appropriate
time scale of the turbulence, and the rate of dissipation itself. Second, the
equation is written in terms of w rather than w' . As will be shown when
we analyze the defect layer in Subsection 4.6.2, Kolmogorov's decision to
write his equation in terms of w was a somewhat prophetic choice . Third,
there is no molecular diffusion term so that this equation applies strictly to
high-Reynolds-number flows and cannot be integrated through the viscous
sublayer as it stands .

In subsequent development efforts, the interpretation of w has behaved
a bit like the turbulent fluctuations it is intended to describe . Saffman
(1970) described w as "a frequency characteristic of the turbulence decay
process under its self-interaction." He stated further, "The rough idea is
that w' is the mean square vorticity of the `energy containing eddies' and
[k] is the kinetic energy of the motion induced by this vorticity." Spalding
[Launder and Spalding (1972)] and Wilcox and Alber (1972) identify w as
the RMS fluctuating vorticity, which is also known as enstrophy . Wilcox
and Rubesin (1980), Wilcox (1988a) and Speziale et al . (1990) regard w as
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the ratio of c to k, i .e ., the rate of dissipation per unit turbulence kinetic
energy .

The form of the equation for w has changed as the k-w model has evolved
over the past five decades. A production term has been added by all model
developers subsequent to Kolmogorov . Like Kolmogorov, Wilcox (1988a)
and Speziale et al . (1990) write the equation for w in terms of w . By
contrast, most other k-w models known to this author use an equation for
w 2 . Because it has been tested more extensively than any other k-w model,
we present the Wilcox (1988a) model as the state-of-the-art formulation.

4.3.2

	

The k-c Model

By far, the most popular two-equation model is the k-c model. The ear-
liest development efforts based on this model were those of Chou (1945),
Davidov (1961) and Harlow and Nakayama (1968) . The central paper how-
ever, is that by Jones and Launder (1972) that, in the turbulence modeling
community, has nearly reached the status of the Boussinesq and Reynolds
papers . That is, the model is so well known that it is often referred to as the
Standard k-c model and reference to the Jones-Launder paper is often
omitted . Actually, Launder and Sharma (1974) "retuned" the model's clo-
sure coefficients and most researchers use the form of the model presented
in the 1974 paper .

Eddy Viscosity
PT = pk/w (4.33)

Turbulence Kinetic Energy

* 8 * ak
P
_8k _8k _ _8Us

-- C8t + PUj 8x~
r,j

ax? a
pkw

+ axe (P + PT)
8x~

I
(4.34)

Specific Dissipation Rate

aw w 8w
P

_
5i- + PUj

_8w _ou;
-

_8
-8xj a k 'rte 8x~

aPw2
+ 8x~ (h + OrPT) axe

(4.35)

Closure Coefficients

a = 5/9, 3 = 3/40, ,3* = 9/100, or = 1/2, v* = 1/2 (4.36)

Auxiliary Relations

c = #*wk and f = k112/w (4.37)



88

	

CHAPTER 4 . TURBULENCE ENERGY EQUATION MODELS

Again, we begin with Equations (4 .6) and (4.9) . In formulating the k-c
model, the idea is to derive the exact equation for c and to find suitable
closure approximations for the exact equation governing its behavior . Re-
call that c is defined by Equation (4.5) . The exact equation for c is derived
by taking the following moment of the Navier-Stokes equation .

2v au'a [N(ui)] = 0

	

(4.38)
8x; 8x;

where N(ui) is the Navier-Stokes operator defined in Equation (2 .26) . After
a considerable amount of algebra, the following equation for c results.

19c

	

aac _

	

_

	

a2,
Pat + PUS ate; - -2p [7j'_0__j'_ + uk,8 uk,j ]

8Ui
8x; - 2p To-a' 8xk8x;

-2p ui~ ,kuz,,nu%,m - 2p v ui,kmUi,km

_r~ _cue
+ 8x; [f ax; -

	

2L72La,MZta,rra - 2v
p~Mui,m] (4 .39)

This equation is far more complicated than the turbulence kinetic energy
equation and involves several new unknown double and triple correlations
of fluctuating velocity, pressure and velocity gradients. The terms on the
three lines of the right-hand side of Equation (4.39) are generally regarded
as Production of Dissipation, Dissipation of Dissipation, and the
sum of Molecular Diffusion of Dissipation and Turbulent Transport
of Dissipation, respectively . These correlations are essentially impossible
to measure with any degree of accuracy so that there is presently little hope
of finding reliable guidance from experimentalists regarding suitable closure
approximations . Recent DNSstudies such as the work of Mansour, Kimand
Moin (1988) have helped gain some insight on the exact c transport equation
for low-Reynolds-number flows . However, the database for establishing
closure approximations similar to those used for the k equation remains
very sparse .

Many researchers have proceeded undaunted by the lack of a rational
basis for establishing closure approximations with a feeling of security that
using Equation (4 .39) as their foundation adds rigor to their approach . The
strongest claim that can actually be made is that the conventional closure
approximations used for Equation (4.39) are dimensionally correct . But
this is not very different from the Kolmogorov (1942) and Saffman (1970)
approaches that are guided almost exclusively by physical reasoning and
dimensional analysis . An important point we should keep in mind is to
avoid modeling the differential equations rather than the physics
of turbulence . That is not to say we should avoid any reference to the
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differential equations, for then we might formulate a model that violates
a fundamental physical feature of the Navier-Stokes equation . Rather, we
should avoid deluding ourselves into thinking that the drastic surgery
approach to something as complex as Equation (4.39) is any more rigorous
than dimensional-analysis arguments .

As a final comment, even if we had demonstrably accurate closure ap-
proximations for the exact c transport equation, there is a serious question
of their relevance to our basic closure problem . That is, the length or time
scale required is that of the energy-containing, Reynolds-stress-bearing ed-
dies rather than the dissipating eddies represented by the exact c equation .
So, we must ask whether the modeled c equation represents the dissipation
as such [as Equation (4.39) does], or whether it is actually an empirical
equation for the rate of energy transfer from the large eddies (equal, of
course, to the rate of dissipation in the small eddies) . The answer seems
clear since the closure approximations normally used parametrize the vari-
ous terms in the modeled c equation as functions of large-eddy scales (our
use of dimensional analysis does this implicitly) . As a consequence, the
relation between the modeled equation for c and the exact equation is so
tenuous as to not need serious consideration .

The Standard k-c model is as follows .

Eddy Viscosity

Turbulence Kinetic Energy

= PC,, k 2 /e

	

(4.40)
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+ PT Ilk) axe
(4.41)

Dissipation Rate

Of

	

ac

	

c (qua

	

e2 a r

	

Of

pat + pUj
axe

= C" k'raj axe - C62Pk + a, L(P + PT/UE) axe ]

	

(4 .42)

Closure Coefficients

CE1 = 1.44,

	

C,2 = 1 .92,

	

C,, = 0.09,

	

Uk = 1.0,

	

a, = 1.3

	

(4.43)

Auxiliary Relations

w = c/(CJ)

	

and

	

f = C,.k3/ 2/e ,,'

	

(4.44)
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4.3 .3

	

Other Two-Equation Models
Two-equation models based on the turbulence length scale, E, and the tur-
bulence time scale, T, have received less attention than the k-w and k-E
models . Generally speaking, the level of agreement between measurements
and predictions made with other models is comparable to k-w and k-E pre-
dictions for simple constant-pressure flows, but these models have not been
pursued to any great extent . This subsection presents a brief overview of
some of the length-scale and time-scale models . More details can be found
in the various papers referenced in the discussion .

The proposed foundation for Rotta's (1968) k-ki model is the two-
point velocity correlation tensor. The correlation functions we have
dealt with thus far are known as single-point correlations and involve
products of fluctuating properties at a single point in the flow, x . In a two-
point correlation, we consider two points in the flow, say x and x+r, and
do our time average . The two-point velocity correlation tensor is defined
as

Rij (x, t ; r) = ui (x, t) u3~ (x -{- r, t)

	

(4 .45)

The turbulence kinetic energy is simply one half the trace of R, .j with a
displacement r = 0 . Rotta's second variable is the product of k and the
integral scale, f, which is the integral of Ria over all displacements, r = Irl .
Thus Rotta's variables are given by

k =
2
Rtz(x, t ; 0)

	

(4.46)

ki = 16f & (x, t ; r) dr

	

(4.47)

As with attempts to model the exact dissipation equation, no particular
advantage has been gained by introducing the double velocity correlation
tensor . While an exact equation for kB can indeed be derived, Rotta (1968)
still must perform drastic surgery on the exact equation . For example,
using standard closure approximations based largely on the strength of
dimensional analysis, the following modeled version of the exact ki equation
results .

pit
(kf) + pUj ~Xj (ki) = CL1pfTij ~ E - CL2pk3/2

+ a

	

[, a
(ke) + (~Tl0_L1)f

ak + (wTI1ILZ)k
ae

	

(4.48)
c9xj axj

	

8xj

	

ox,
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For this model, k and PT are given by Equations (4.11) and (4.12) .
Rodi and Spalding (1970) and Ng and Spalding (1972) developed this model
further . More recently, Smith (1990) has pursued development of the k-ki
model . Ng and Spalding found that for wall-bounded flows, the closure
coefficient CL2 must vary with distance from the surface. They propose
the following set of closure coefficients .

CLl = 0 .98,

	

CL2 = 0 .059+702(P/y) s ,

	

CD = 0.09,

	

0-k = 011 = vL2 = 1
(4.49)

On a similar tack, Zeierman and Wolfshtein (1986) base their model
upon the autocorrelation tensor that involves the time average of fluc-
tuating quantities at the same point in space but at different times. Thus,
they work with the tensor

R;j (x, t ; t') = u;(x, t)uj' (x, t + t')

	

(4.50)

The turbulence kinetic energy is half the trace of R=i with t' = 0, while the
integral time scale is proportional to the integral ofR;s over all possible
values of t' . Thus,

k = 2Rii(x,t ;0) (4.51)

kr = 4 E. R;; (x, t ; t') dt' (4.52)

The Zeierman-Wolfshtein k-k7model is as follows .

Eddy Viscosity
PT = pCokT (4.53)

Turbulence Kinetic Energy

p
_ak _ak

_all;
_ak

-
_k _a

a + pUj pr + [(p + pTlCk)
] (4.54)

ax; axj axe axj

Integral Time Scale

`p
at

(kr) + pUja, (kr) = CT1 r 7'y j~ - CT2pk

+ axe L
(P+PT/17T)

aa~ (kT)J
(4.55)

Closure Coefficients

CT 1 = 0 .173, C72 = 0.225, C,, = 0.09, Qk = 1.46, o-T = 10.8 (4 .56)
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Auxiliary Relations

w = ll(CM T),

	

c =k1r

	

and

	

2 = C,,k1127	(4 .57)

Note that because the eddy viscosity is proportional to k-r, Equation (4.55)
can also be regarded as an equation for PT .

Speziale, Abid and Anderson (1990) have taken a different approach
in devising a k-r model . Specifically, they introduce the formal change of
dependent variables c = k/T and transform the Standard k-c model . The
resulting equation for r is as follows .

7T +
PUS

O , _ ( 1 - C,) kTia axa + (CE2 - 1)P

a r

	

Or
+O~ .

L
(P+f~T~~T2)ax .

7

	

7

+ (P+PTIO--rl)axkka~--(P+PTICr2)~k
OXk

(4 .58)

Speziale, Abid and Anderson use the following revised set of closure co-
efficient values for their k-r model that make it a bit different from the
Standard k-c model .

CE1 = 1 .44,

	

CE2 = 1 .83,

	

C,, = 0.09,

	

0-k = 0T1 = 0'T2 = 1.36

	

(4 .59)

In summary, the models listed above are representative of the various
two-equation models that have been devised since Kolmogorov's (1942) k-w
model . While other models have been created, the intent of this text is to
study models in a generic sense, as opposed to creating an encyclopedia of
turbulence models . In the following sections we investigate several aspects
of two-equation models including : (a) details on how the closure-coefficient
values are chosen ; (b) surface boundary conditions for wall-bounded flows ;
and, (c) applications to a variety of flows .

4.4

	

Closure Coefficients
All of the two-equation models have closure coefficients that have been
introduced in replacing unknown double and triple correlations with al-
gebraic expressions involving known turbulence and mean-flow properties .
The Wilcox k-w model, for example, has five, viz ., a, #, 3*, a and o-* . If
our theory were exact, we could set the values of these coefficients from
first principles much as we use the kinetic theory of gases to determine the
viscosity coefficient in Stokes' approximation for laminar flows . Unfortu-
nately, the theory is not exact, but rather a model developed mainly on the
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strength of dimensional analysis . Consequently, the best we can do is to
set the values of the closure coefficients to assure agreement with observed
properties of turbulence .

This section describes the manner in which the closure coefficients have
been determined for the Wilcox k-w model. There is no loss of generality
in doing this however, since these same general arguments have been
used in establishing the values of the closure coefficients in most
two-equation models. The Problems section at the end of the chap-
ter examines some of the (relatively minor) differences among the various
models .

We can establish the ratio of /0
* to ,Q by applying the model to decaying

homogeneous, isotropic turbulence . In this kind of turbulence, there are no
spatial gradients of any mean-flow properties wherefore Equations (4.34)
and (4.35) simplify to

Experimental observations [Townsend (1976)] indicate that k - t-' where
n = 1 .25 f 0 .06 for decaying homogeneous, isotropic turbulence. Choosing
0*/,P = 6/5 sets the ratio at the lower end of the range of accepted values .

Values for the coefficients a and f4* can be established by examining
the log layer. Recall from Section 3 .4 that the log layer is defined as
the portion of the boundary layer sufficiently distant from the surface that
molecular viscosity is negligible relative to eddy viscosity, yet close enough
for convective effects to be negligible . In the limiting case of an incom-
pressible constant-pressure boundary layer, defining vT = pTfp, the mean-
momentum equation and the equations for k and w simplify to

0

	

Oy ['IT7Y 1

O =
COU\2

- *wk

	

* O [1k]
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fl*wk

	

Oy
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ayy

_
(OU)2

2 _O _Ow]
0-a

Oy
-,Qw +0-

Y

	

VT ay
[

(4 .62)

We will justify the limiting form of these equations when we use pertur-
bation methods to analyze the log layer in Subsection 4 .6 .1 . We seek the

A 2= -/3*wk and
d

= -Ow (4 .60)

from which the asymptotic solution for k is readily found to be

k �, t -0 * 10 (4.61)
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conditions under which these simplified equations yield a solution consis-
tent with the law of the wall . As can be easily verified, Equations (4 .62)
possess such a solution, viz .,

z
U = !LT fny + constant,

	

k =

	

uT
,

	

w =

	

uT

	

(4.63)
Q* a*Ky

where uT is the conventional friction velocity and tc is Karman's constant .
There is one constraint imposed in the solution to Equations (4.62), namely,
a unique relation exists between the implied value of Karman's constant and
the various closure coefficients . Specifically, the following equation must
hold .

Additionally, according to our solution the Reynolds shear stress, T,y, is
constant and equal to puT . Inspection of Equations (4.63) shows that this
implies T.,y = V3*pk in the log layer . A variety of measurements [Townsend
(1976)] indicate the ratio of Txy to pk is about 3/10 in the log layer. This
is the same ratio Bradshaw, Ferriss and Atwell (1967) used in formulat-
ing their one-equation model [c .f. Equation (4 .13)] . Thus, the predicted
log-layer solution is consistent with experimental observations provided we
select /3* = 9/100 .

We must work a bit harder to determine the values of o, and o-* . As
we will see in Subsections 4 .6.2 and 4.6 .3, detailed analysis of the defect
layer and the sublayer indicates that the optimum choice is 0- = o-* = 1/2 .
Finally, Equation (4.64) shows that selecting a = 5/9 is consistent with
Coles' value for the Kirman constant of 0.41 .

Other arguments have been used to determine closure coefficients prior
to any applications or computer optimization . Saffman (1970), for example,
uses estimates based on vortex-stretching processes in simple shear and
pure extension to effectively establish bounds on a coefficient similar to a.
He also requires that the length scale, f, be discontinuous at a turbulent-
nonturbulent interface and finds that his model requires a = o-* = 1/2 to
guarantee such behavior .

Zeierman and Wolfshtein (1986) use the fact that very close to sep-
aration, measurements [Townsend (1976)] indicate the law of the wall is
replaced by

a = 0//3* - atc2/

	

Q*

_1
0.24

_y _dp
p dx

(4.64)

as

	

y -r 0

	

(4 .65)

They also observe from measurements of Laufer (1950) and Clark (1968)
that, for flow near the center of a channel, the turbulence kinetic energy
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and velocity are closely approximated by

k/ko

	

1 + 6.67(y/R)2
U/Uo

	

1 - 0.242(y/R) 2	as

	

y -* R

	

(4.66)
u,2r R~ 0 .048Uoko/2

In conclusion, the specific arguments selected for determination of the
closure coefficients are a free choice of the developer . For example, using
arguments based on homogeneous turbulence and boundary layers assumes
we have a degree of universality that may be grossly optimistic . That is,
we are implicitly assuming our model is valid for grid turbulence, boundary
layers, and many flows in between . Dropping this argument in favor of
another boundary-layer argument may yield a model optimized for bound-
ary layers but restricted to such flows. Ideally, we would find arguments
that isolate each closure coefficient. Often, more than one is involved [e .g .,
Equation (4.64)] . In any event, for the sake of clarity, the arguments should
be as simple as possible .

4.5

	

Application to Free Shear Flows
Our first applications will be for free shear flows. As with the mixing-
length model, we seek similarity solutions to determine far-field behavior
for the plane wake, mixing layer, plane jet and round jet . There are two
noteworthy changes in our approach to obtaining a solution for free shear
flows. First, for the mixing layer and the jets we can choose our similarity
variable to be 77 = y/x . That is, with no loss of generality, we can set all
scaling constants such as A in Equations (3 .70) and (3.71) equal to one. We
had to carry such scaling coefficients for the mixing-length model because,
by hypothesis, the mixing length is proportional to the width of the layer,
which is proportional to the coefficient A. With two-equation models, the
turbulence length scale is determined as part of the solution so that the way
in which we scale the similarity variable q is of no consequence . Second,
while the rest of the methodology is the same, the addition of two extra
differential equations complicates the problem somewhat . Because they
are the most widely used two-equation models, we confine our attention
to the k-w and k-c models . With the standard boundary-layer/shear-layer
approximations, the equations of motion become :

&U +
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[yj V1 = 0

	

(4.67)
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k-w Model:
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The similarity solution for the various free shear flows can be written in
the following compact form .

Far Wake:

U(x, y) = U' -

	

7 U(7l),

	

k(x, y) = PK(rl)

w(x, y) =
U-
W(q)

	

E(x, y) =
DU-

E(rl)

_

	

, [pU.
y-y V Dx

Mixing Layer:

U(x, y) = U U(71),

	

k(x, y) = UiK(y)

3
c.w(x, y) = xl W(r!),

	

E(x, y) = xl E(rl)

aU
Txy = PT

	

(4.69)ay

(4.70)

(4 .71)

(4.72)

(4.73)



Substituting these self-similar representations into the mean momentum
equation yields the following transformed equation .

where the function N(vl) is the transformed eddy viscosity, j = 1 for the
round jet, and j = 0 for the other three cases. The two terms on the
left-hand side of Equation (4 .75) are essentially vertical convection and
diffusion. The term on the right-hand side is a source term that originates
from the streamwise convection of momentum; Table 4.1 lists the coefficient
S� and the normal velocity-like function, V(q), for each of the free shear
flows considered . The transformed k, w and c equations are:

k-w Model:
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(4.75)
drl
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r? N

(4.76)

(4.77)
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Jet:

U(x,Y)
J 1/z J

= x(i+)lzU(y),
k(x,y) = x(j+i)

h (q)

J1/z J3/z
w(x, y)

_ _
- -x(j+3)lz W(rl), E(x, y) x(3j+5)1Z E(o)

(4.74)
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Table 4.1 : Free Shear Flow Parameters

The k, w and e equations contain convective terms, diffusion terms, and
additional source terms corresponding to streamwise convection, production
and dissipation . Table 4.1 lists the convective source term coefficients, Sk,
S,� and Se .

Boundary conditions on the velocity are the same as in Chapter 3 . We
must also specify boundary conditions for K, W and E. Solutions to all
two-equation model equations feature sharp turbulent-nonturbulent inter
faces for free shear flows, i .e ., interfaces at which derivatives of flow prop-
erties are discontinuous . Consequently, the most sensible boundary condi-
tions in the freestream are those corresponding to non-turbulent flow, i .e .,
K(,7), W(,7) and E(q) all vanish approaching the edge of the shear layer .
As it turns out, k-e model solutions are unaffected by finite values of K
and E in the freestream while k-w model solutions are very sensitive to
the freestream value of W . Subsection 7.2 .2 gives complete details on the
nature of two-equation model behavior near turbulent/nonturbulent inter-
faces . The boundary conditions that appear most appropriate for K, W
and E are as follows .

Wake and Jet :
K'(0) = W'(0) = E'(0) = 0

	

(4.78)
Wake, Jet and Mixing Layer:

K(,7) -> 0,

	

W(,I) - W.,

	

and

	

E(77) , 0

	

as

	

1771 -, oo (4.79)

Flow S" Sk S,� Se j V(7)

Far Wake ; 1 1 2 0 - 2 77

Mixing Layer 0 0 U U 0 - fo U(77') dq'

Plane Jet 2 U U aU 2 U 0 - 2 fo U(77') dj'

Round Jet U 2U 2U 4U 1 - foUd?7'
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Table 4 .2 : Free Shear Flow Spreading Rate

The conventional definition of spreading rate for the wake is the
value of 77 given in Equation (4.72) where the velocity defect is half its
maximum value . Similarly for the plane and round jet, the spreading
rate is the value of y/ .x, where the velocity is half its centerline value . For
the mixing layer, the spreading rate is usually defined as the difference
between the values of y/a; where (U - U2 )2 /(U1 - U2 )2 is 9/10 and 1/10 .
Table 4.2 compares computed and measured spreading rates for the k-w and
k-e models . A range of values is quoted for the k-w model corresponding to
values of W,,, ranging from 0 to 1 for the far wake and mixing layer, 0 to 10
for the plane jet, and 0 to 100 for the round jet . Using larger values of W,,,
for these flows causes numerical difficulties, so these values appear to cover
the permissible values for W,,,, . The largest spreading rate corresponds to
W"~ =0.

These results show that having a complete model guarantees nothing
regarding accuracy. Overall, the k.-e model behaves best from a compu-
tational point of view because of its insensitivity to freestream boundary
conditions . However, its predicted spreading rate is 30% lower than mea-
sured for the far wake, 15% lower than measured for the mixing layer, and
between 25% to 40% higher than measured for the round ,jet . Only for the
plane jet does its predicted spreading rate fall within the range of measured
values .

Using W,,. = 0, the k-w model consistently predicts spreading rates
larger than measured . Specifically, computed spreading rates exceed cor-
responding measurements by 37%, 23%, 24% and 291% for the far wake,
mixing layer, plane jet and round jet, respectively. There are values of W',"
that yield spreading rates much closer to the measured values . Specifically,
using W,,, = 0.4 for the far wake, W .. . = 0.5 for the mixing layer, W .. . = 5
for the plane jet, and W,, = 50 for the round jet yields spreading rates
of .358, .115, .101 and .095, respectively . Figures 4.5 through 4.8 compare
computed and measured velocity profiles obtained using these values for
W,,,, . However, since there is no obvious reason for the choice of W,,,, this

Flow k-w Model k-e Model Measured

Far Wake .301- .500 .256 .365
Mixing Layer .103- .141 .098 .115
Plane Jet .090- .136 .109 .100-.110
Round Jet .073- .371 .120 .086- .095
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Figure 4.5 : Comparison of computed and measured velocity profiles for the
far wake;

	

k-w model ; --- k-e model; o Fage and Falkner.

amounts to having an adjustable parameter in the model. Clearly, this is
not much of an improvement over the mixing-length model predictions of
Chapter 3. As a final comment, we can reasonably expect that the opti-
mum values of W,, used with the k-w model for the self-preserving cases
should give good results for non-self-preserving cases.

Menter (1992c) has developed ak-w model that has no sensitivity to the
freestream value of w . He accomplishes this by including a cross-diffusion
term in the w equation . That is, Menter writes the w equation as follows .

_aw

	

w _au; a _a

	

_aw
P at + PUj ax; - a k T`j ax; - '3P`'

	

+ ate; [(,U + 071T) ax;
P ak aw

+O"dw ax; ax;

	

(4.so)

The term proportional to 0-d in Equation (4.80) is Menter's cross-diffusion
term . The effect of this term is to replace the entrainment velocity, v, in
the w equation by (v - 0_dw_ lak/ay) . Since k decreases approaching the
shear layer edge (assuming Qd > 0), the net effect is to make the effective
entrainment velocity positive (or at least less negative). As a result, w
diffuses from the turbulent region into the nonturbulent region, which is
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Figure 4.6 : Comparison of computed and measured velocity profiles for the
mixing layer ;

	

k-w model; --- k-c model; o Liepmann and Laufer .

the opposite of what happens with the k-w model. Thus, the freestream
value of w has no effect on the solution .

Menter also introduces a "blending function" that makes Qd = 0 close to
solid boundaries, while 0-d -+ 2a away from such boundaries . Additionally,
his blending function causes all of the model's closure coefficients to assume
the values in Equation (4.36) near solid boundaries, and to asymptotically
approach values similar to those used with the k-c model otherwise . The
net result is a model that behaves very much like the Wilcox (1988a) k-w
model for wall-bounded flows, and that is nearly identical to the k-c model
for free shear flows.

The author has research in progress at the time of this writing that
indicates it may be sufficient to let :

(Td =

0,

	

Ok Ow < 0
ax; ax;
Ok Ow 0
ax; ax;

(4.81)

Additionally, the value of Q* must assume a value larger than 0 .5 . As we
will see in Subsection 4.6 .2, it is important to suppress this cross-diffusion
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Figure 4.7 : Comparison of computed and measured velocity profiles for the
plane jet ;

	

k-w model ; --- k-c model; o Wygnanski and Fiedler.

term close to solid boundaries for wall-bounded flows . Just as Menter's
blending function causes Ord to approach 0 near a solid boundary, so does
Equation (4.81) since k increases and w decreases in the viscous sublayer .
As with Menter's approach, this modification to the w equation eliminates
the model's sensitivity to the freestream value of w . However, while simpler
than Menter's blending function approach, this straightforward modifica-
tion yields shear layer spreading rates that are a bit farther from measure-
ments than those predicted by the k-c model. Other values of the k-w
model's closure coefficients exist that yield closer agreement with measured
spreading rates, but that also compromise the model's accuracy for wall-
bounded flows . Consequently, research continues in quest of an optimum
formulation.

Pope (1978) has proposed a modification to the c equation that resolves
the so-called round-jet/plane-jet anomaly. That is, while experimental
measurements indicate the spreading rate for the round jet is less than
that of the plane jet, two-equation turbulence models predict the opposite .
In Pope's modification, the Dissipation of Dissipation term in the c
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E2

	

E2
CE2f

__+
[Cf2 - CE3XJ

where X is a "nondimensional measure of vortex stretching" given by

X = wijwjk9ki

Sij = 2c(Ui,j + Uj,i)

wij = 2_

	

k
(Ui,j - Uj,i)

U/U(X, 0)

(4 .82)

(4.83)

Using CE3 = 0.79 reduces the k-e model's predicted spreading rate to
0.86, consistent with measurements . However, as pointed out by Rubel
(1985), the Pope correction has an adverse effect on model predictions for

the so-called radial jet, which we have not discussed here . This is the

case of two jets of equal strength colliding and spreading radially. Without

the Pope correction, the k-c model predicts a radial-jet spreading rate of

0 .095 which is close to the measured range of 0.096 to 0.110 [see Tanaka
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and Tanaka (1976) and Witze and Dwyer (1976)] . Using the Pope correc-
tion for the radial jet reduces the k-c model-predicted spreading rate to
0 .040 . Hence, as noted by Rubel, "the round jet/plane jet anomaly has
been exchanged for a round jet/radial jet anomaly ."

This concludes our analysis of free shear flows . In the following sec-
tions we turn our attention to wall-bounded flows . To demonstrate how
two-equation models fare for such flows, we are going to use a powerful
mathematical tool to analyze fine details of model-predicted structure of
the turbulent boundary layer . In particular, we will use perturbation
methods to analyze the various regions in the turbulent boundary layer .

4 .6

	

Perturbation Analysis of the Boundary
Layer

The differential equations for all but the simplest turbulence models are
sufficiently complicated for most flows that closed-form solutions do not
exist . This is especially true for boundary layers because of nonlinearity of
the convection terms and the turbulent diffusion terms attending introduc-
tion of the eddy viscosity. Our inability to obtain closed-form solutions is
unfortunate, because such solutions are invaluable in design studies and for
determining trends with a parameter such as Reynolds number, or more
generally, for establishing laws of similitude . Furthermore, without analyt-
ical solutions, our ability to check the accuracy of numerical solutions is
limited .

There is a powerful mathematical tool available to us to generate ap-
proximate solutions that are valid in special limiting cases, viz ., perturba-
tion analysis . The idea of perturbation analysis is to develop a solution
in the form of an asymptotic expansion in terms of a parameter, the
error being small for sufficiently small values of the parameter . Our desire
in developing such an expansion is for the first few terms of the expansion
to illustrate all the essential physics of the problem and to provide a close
approximation to the exact solution . Fortunately, this is usually the case
in fluid mechanics .

This section shows how perturbation analysis can be used to dissect
model-predicted structure of the turbulent boundary layer . Appendix B
introduces basic concepts of perturbation theory for the reader with no
prior background in the field .
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4.6 .1

	

The Log Layer
We direct our focus to the turbulent boundary layer . Experimental obser-
vations provide a strong argument for using perturbation analysis . Specif-
ically, Coles' description of the turbulent boundary layer as a "wake-like
structure constrained by a wall" (see Figure 3.8) suggests that different
scales and physical processes are dominant in the inner (near-wall) and
outer (main body) of the layer. These are clearly concepts upon which
perturbation analysis is based. Coles [see Coles and Hirst (1969)] makes an
explicit connection with perturbation theory when he remarks:

"The idea that there are two distinct scales in a turbulent bound-
ary layer is an old one, although quantitative expressions of this
idea have evolved very slowly . . . To the extent that the outer ve-
locity boundary condition for the inner (wall) profile is the same
as the inner velocity boundary condition for the outer (wake)
profile, the turbulent boundary layer is a singular perturbation
problem of classical type . In fact, we can claim to have discov-
ered the first two terms in a composite expansion, complete with
logarithmic behavior."

Often perturbation solutions are guided by dimensional considerations
and a knowledge of physical aspects of the problem. For the turbulent
boundary layer, we can draw from empirically established laws to aid us
in developing our perturbation solution . We observe that close to a solid
boundary, the law of the wall holds. We can write this symbolically as

U(x, y) = UT(x)f(u,y/v) ;

	

uT =

	

r.IP

	

(4 .84)

Similarly, the main body of the turbulent boundary layer behaves ac-
cording to Clauser's (1956) well-known defect law, viz .,

U(x, y) = U,(x) - ur(x)F[ylA(x)] ;

	

A(x) = UX/u,

	

(4.85)

The reader should keep in mind that Equation (4 .85) only applies to a
special class of boundary layers, i .e ., boundary layers that are self preserv-
ing. Thus, we seek solutions where F(y/0) is independent of x . As we will
see, the model equations predict existence of such solutions under precisely
the same conditions Clauser discovered experimentally .

We develop the leading terms in a perturbation solution for the tur-
bulent boundary layer in the following subsections. There are two small
parameters in our problem, the first being the reciprocal of the Reynolds
number . This is consistent with the standard boundary-layer approxima-
tions. The second small parameter is u,/U, . Clauser's defect law suggests



106

	

CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

this parameter since the velocity is expressed as a (presumably) small devi-
ation from the freestream velocity that is proportional to uT . The analysis
will lead to a relation between these two parameters .

The analysis in this section, which is patterned after the work of Bush
and Fendell (1972) and Fendell (1972), shows in Subsection 4.6 .3 that the
inner expansion is of the form quoted in Equation (4.84) and is valid in the
viscous sublayer (see Figure 3.7). We also show in Subsection 4 .6.2 that
the outer expansion is identical in form to Equation (4.85) and holds in the
defect layer. Formal matching of the sublayer and defect-layer solutions
occurs in an overlap region that is often described as the log layer. In fact,
the common part of the inner and outer expansions is precisely the law of
the wall . Thus, although it is not formally a separate layer, establishing
flow properties in the log layer permits independent analysis of the sublayer
and defect layer. It also forms the basis of surface boundary conditions for
many two-equation turbulence models . We discuss the log layer in this
subsection .

Before performing any analysis, we anticipate that we will be solving a
singular perturbation problem. We expect this, but not because of a
reduction in order of the differential equations . Rather, we have no hope
of satisfying the no-slip condition with our outer solution because of the
assumed form in the defect layer, i.e ., velocity being a small perturbation
from the freestream value . Likewise, the sublayer solution, if it is consis-
tent with measurements, predicts velocity increasing logarithmically with
distance from the surface as y --> oo so that we cannot satisfy the freestream
boundary condition with our inner solution . This is the irregular behav-
ior near boundaries alluded to in Appendix B where we define a singular
perturbation problem.

We begin our analysis with the incompressible boundary layer equations .
Conservation of mass and momentum are sufficient for establishing the form
of the expansions, so that we have no need to introduce the model equations
now. For two-dimensional flow, we have

au 8V
d+ ay -°

8U

	

(9U

	

1 dP

	

8 r

	

QUU
ax +V B pdx+a

/(v+VT)&
y P y

	

y

(4.86)

(4 .87)

The easiest way to arrive at the log-layer equations is to derive the
sublayer equations and then to determine the limiting form of the sublayer
equations for y+ --> oo . Consistent with the normal boundary-layer concept
that variations in the streamwise (x) direction are much less rapid than
those in the normal (y) direction, we scale x and y differently. Letting L
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denote a dimension characteristic of distances over which flow properties
change in the x direction, we scale x and y according to

~ = x1 L

	

and

	

y+ = u7y/v

	

(4.88)

The appropriate expansion for the streamfunction and kinematic eddy vis-
cosity are

Winner(X' y) `� v[.fo(S' y+) + 0l.fl(~, y+) +0(01)]

"'Tinner (x, y) - v[No(E, y+) + OiN1(~, y+) +o(01)]

(4.89)

(4.90)

where the asymptotic sequence {1, 01, 02 . . . . } is to be determined . Conse-
quently, the streamwise velocity becomes

af~.
U(x, y) - uT[uo(~, y +) + 0lul(~, y+ ) + 0(01)1 ;

	

a- _= ay+

Substituting into the momentum equation, we obtain

aa+ [(1+No) "+] +O(01)= Reb" [13T +O CL)~

(4.91)

(4.92)

where Rep is Reynolds number based on displacement thickness, and the
quantity OT is the so-called equilibrium parameter [see Coles and Hirst
(1969)] defined by

b* dP
OT =_ r,�, dx

(4 .93)

In general, we regard OT as being of order one . In fact, when we analyze
the defect layer this will be the key parameter quantifying the effect of
pressure gradient on our solution . Additionally, Re& >> 1 and 6* K L .
Hence, we conclude that

01 = 1/Re6 "

	

(4.94)

and

a+
[(1 + No)a++] = 0

	

(4.95)

To enhance physical understanding of what we have just proven, it is
worthwhile to return to dimensional variables . We have shown that, to
leading order, the convective terms and the pressure gradient are small
compared to the other terms in the sublayer so that the momentum equation
simplifies to

ay
I (v + vT) ay

I

	

0

	

(4.96)
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Integrating once tells us that the sum of the molecular and Reynolds shear
stress is constant in the sublayer, i .e .,

Equation (4.96) or (4 .97) is the equation for the leading order term in
the inner expansion for a turbulent boundary layer . As we will demonstrate
in greater detail in Subsection 4.6.3, we can satisfy the no-slip condition
(U = 0) at y = 0 while the solution as y+ __' oo asymptotes to the law of the
wall, i .e ., velocity increasing logarithmically with distance from the surface .
Another feature of the solution is that the eddy viscosity increases linearly
with y+ as y+ --> oo so that the eddy viscosity becomes very large compared
to the molecular viscosity. Consistent with this behavior, the molecular
viscosity can be neglected in Equation (4.96) or (4.97) for the limiting case
y+ __' oo . As noted above, we refer to the form of the differential equations
in this limit as the log-layer equations . Thus, we conclude that in the log
layer we can neglect convection, pressure gradient and molecular diffusion .
The momentum equation thus simplifies to the following equation .

To the same degree of approximation, in the log layer, the k-w model equa-
tions simplify to :

k-w Model:
2

0=VT

	

c9UI

	

wk+a-a LvTak
(

	

Jay l

	

ay	a y

0 = a

	

\ 2
_

	

2

+ m
_a

	

[,IT
ay

	

~w ay

	

vT ay
]

vT = k/w

aU
(P+PT) 8y =T, (4.97)

0

	

ay [VT
ay ]

	

(4.98)

(4.99)

As can be shown by direct substitution, the solution to Equations (4.98)
and (4 .99) is

a
U = U7 my + constant,

	

k =~,

	

w =

	

~
"~y

	

(4.100)

where the implied value of the Karman constant, K, is given by

K2

	

a)/O-

	

(4.101)_
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Note that the term proportional to Q* disappears because Ok/8y = 0 . For
the closure coefficient values specified by Wilcox [Equation (4.36)], we find
is = 0.408 . We discussed the log-layer solution in Section 4.4 to illustrate
how values for some of the closure coefficients have been selected . There
are additional features of the solution worthy of mention. For example, the
eddy viscosity varies linearly with distance from the surface and is given by

This variation is equivalent to the mixing-length variation, fmix = Ky . Also,
the ratio of the Reynolds shear stress to the turbulence energy is constant,
i.e .,

In a similar way, the k-e model equations simplify to the following:

k-e Model:

°_

	

' Cay) 2_e+ ay[~ ay

]

1

VT = KUTY

	

(4.102)

Txy =

	

,Q*pk

	

(4 .103)

(,U)2 2
0 CE1C,,k

c9y -C,2 k + 8y

	

a 9y,

vT = CNk2/e

The solution to Equations (4.98) and (4.104) is

(4.104)

2

	

3
U =

!T
any + constant,

	

k =

	

uy

	

(4.105)
u

where we again find an implied value for the Karmin constant, K, viz .,

_

	

c,.(CEZ - CEl)QE (4.106)

Using the closure coefficient values for the Standard k-E model [Equa-
tion (4.43)], the value of K is 0 .433 .

Keep in mind that the turbulent boundary layer consists of the sub-
layer and the defect layer. The sublayer is a thin near-wall region, while
the defect layer constitutes most of the boundary layer . In the spirit of
matched asymptotic expansions, the log layer is the overlap region which,
in practice, often appears to be much thicker than the sublayer (see Fig-
ure 3.7) . Part of our reason for focusing on this region of the boundary
layer is of historical origin . Aside from the k-w model, most two-equation
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models fail to agree satisfactorily with experiment in the viscous sublayer
unless the coefficients are made empirical functions of an appropriate tur-
bulence Reynolds number . Consequently, the log-layer solution has often
been used as a replacement for the no-slip boundary condition. Most k-e
model solutions, for example, are generated by enforcing the asymptotic
behavior given in Equation (4.105) . We must postpone further discussion
of surface boundary conditions pending detailed analysis of the sublayer .
Analysis of the log layer can also prove useful in determining leading-order
effects of complicating factors such as surface curvature, coordinate-system
rotation, and compressibility. As our most immediate goal, we have, in
effect, done our matching in advance. Thus, we are now in a position to
analyze the defect layer and the sublayer independent of one another . We
turn first to the defect layer.

4.6.2

	

The Defect Layer
In this subsection we use singular perturbation methods to analyze model-
predicted structure of the classical defect layer, including effects of pressure
gradient . Our analysis includes three turbulence models, viz. : the Wilcox
k-w model; the Standard k-E model ; and the Wilcox-Rubesin (1980) k-w 2
model. First, we generate the perturbation solution . Next, we compare
solutions for the three models in the absence of pressure gradient . Then,
effects of pressure gradient are studied for the three models . Finally, as
promised in Section 4.4, we justify the values chosen for o and v* in the
k-w model.

To study the defect layer, we continue to confine our analysis to in-
compressible flow so that we begin with Equations (4.86) and (4.87) . The
perturbation expansion for the defect layer proceeds in terms of the ra-
tio of friction velocity to the boundary-layer-edge velocity, u,/U,, and the
dimensionless coordinates, ~ and 77, defined by

~ = x/L and 71 = ylA(x) ; A = U,6'/u,

	

(4.107)

where S* is displacement thickness and L is a characteristic streamwise
length scale that is presumed to be very large compared to S* . As in our
approach to the log layer, we first establish the general form of the solution
for the mean momentum equation . We expand the streamfunction and
kinematic eddy viscosity as follows.

0..t-(X1 y) - U'A rl -

	

F, (~, TI) + o

	

[Ue

	

(

_uT

~~Ue

'louter(x1 y)
ti Uetl* [No(~,,q) + o(1)]

(4.108)

(4.109)
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Observe that, as is so often the case in perturbation analysis, we needn't
continue the expansions beyond the first one or two terms to capture most
of the important features of the solution . For the specified streamfunction,
the velocity becomes :

U(X, y) - Ue [I - U' U1 (C 77) +0 (Ue ~~ '

	

U, ,
art

	

(4.110)

Substituting Equations (4.107) - (4.110) into the mean conservation
equations [Equations (4.86) and (4.87)] yields the transformed momentum
equation, viz .,

2o,Tf~ 1 = (aT-2,3T-2wT)rl ~,1 +(OT-2wT)U1+d- [No
U1]

(4.111)

where the parameters aT, /3T, UT and WT are defined in terms of b*, uT
and skin friction, cf = 2(u, /U,)2, i .e .,

2 d8*

	

d* dP

	

b*

	

b* _du,
aT --_ __

cf dx

	

QT = rw dx_'

	

QT
_

cf x_'
WT
_

cf uT

	

dx

Equation (4.111) must be solved subject to two boundary conditions .
First, to satisfy the requirement that U --, Ue as y -+ oo, necessarily

U1 --> 0

	

as

	

y --+ oo

	

(4.113)

Also, we must asymptote to the log-layer solution as 77 --> 0 . One way to
insure this is to insist that

as

	

q --> 0

	

(4.114)

At this point, we have not greatly simplified our problem . Equation (4.111),
like the original momentum equation, is a partial differential equation . The
only simplification thus far is that molecular viscosity is negligible relative
to the eddy viscosity. However, even this is not necessarily advantageous
since the no-slip velocity boundary condition has been replaced by singular
behavior approaching the surface. And, of course, we are now working in
a transformed coordinate system (~, q) rather than the familiar Cartesian
coordinate system (x, y) . So why go to all this trouble? The answer is, we
have only just begun .

Reexamination of the steps we have taken thus far should reveal a fa-
miliar tack ; specifically, we appear to be developing a similarity solution .
Indeed this is intentional, and inspection of Clauser's defect law [Equa-
tion (4.85)] shows that there has been method in our madness . Comparison
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of Equation (4.85) with the assumed form of our perturbation expansion
for U given in Equation (4.110) shows that Ul must be a function only of
,q . Thus, we now pose the question as to what conditions must be satisfied
in order for a similarity solution to exist.

Clearly, the coefficients aT, QT and WT must be independent of x, for
then the coefficients of all terms on the right-hand side of Equation (4.111)
will be independent of x. The coefficient QT is of no consequence since, if
Ul is independent of x, the left-hand side of Equation (4.111) vanishes re-
gardless of the value of QT . The coefficient wT is also unimportant because,
to leading order, it is zero . This becomes obvious if we now perform the
formal matching of the defect-layer and sublayer solutions . As shown in
the preceding section,

1

	

1
U,nner(C y+ ) - uT [

	

11
-fny+ + B I

	

as

	

y+ '00

	

(4.115)

Assuming that a similarity solution exists so that Ul depends only upon
71, straightforward substitution into Equation (4.111) with a vanishing left-
hand side shows that

Ul	[-fnr7+uo - u,r7fnr7 + . . .]

	

as

	

yj- 0

	

(4.116)

where the constants uo, ul, . . .depend upon the complete solution which,
in turn, depends upon what turbulence model is used . We now do a for-
mal matching of the inner and outer expansions noting that y+ = r7Re6.
and U..,_(~, r7) - [Ue - u,Ul(17) + ] . To match through first order, we
require the following :

This is a useful result that enables us to compute the skin friction from
our defect-layer solution, a point we will return to later. For our present
purpose, Equation (4.118) provides us with an estimate of the orders of
magnitude of uT and ef , i .e .,

U11

	

1uT ti
PnRe6"

	

and

	

cf ^' 7n2Re6 .

	

as

	

Re6. -> oo

	

(4 .119)

11tny+ + B I - + 1Pnj7 -
uo

-~ 0 as y+ --.
IC

[Ue

uT IC IL J
oo, 71--+0

(4.117)
Hence, we conclude from matching that :

Ue = (B + uo) + 1fnRe6 " (4 .118)
ZI'T K IC
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As a consequence, estimating that db*/dx - b*/x, we expect to have

du, Ue _b* Ue

	

(4.120)dx

	

Reb.WReb. x

	

x fn2Reb*

Substituting Equations (4.119) and (4.120) into the definition of WT [see
Equation (4 .112)], we arrive at the important result

wT - -InReb. - o(1)

	

as

	

x -r oc

	

(4.121)
x

The validity of the final estimate follows from the fact that fnReb* is tran-
scendentally small compared to any power of Reb " , and S* « x as x , oo .

Thus, we can ignore the parameter LOT in solving for Ul, although it
will appear in the equation at some higher order . This leaves us with the
reduced requirement for existence of a similarity solution that only aT and
PT are independent of x . However, we can also show that aT and r#T
are uniquely related to leading order . To see this, we examine the classi-
cal momentum-integral equation that follows from integrating the mean-
momentum equation across the boundary layer [c .f., Schlichting (1979)],
viz .,

cf', - d8 -

	

0

	

dP
2:

	

dx

	

(2 + H)
PUe

dx (4 .122)

where 0 is momentum thickness and H = S*/0 is the shape factor . In terms
of aT and ,13T, the momentumintegral equation can be rewritten as

_d8 _ [

	

(2 + H)

	

J db*
aT

TX -

	

1 +

	

H

	

'QT

	

dx
(4.123)

If we evaluate the displacement and momentum thickness using our
perturbation expansion for the velocity profile we find two important facts .
First, evaluating the displacement thickness integral yields an integral con
straint on our solution for U, U2, etc . Second, we find to leading order
that S* and 0 are equal, i .e ., the shape factor approaches 1 as Reb. -> 00
and/or u,/U, -+ 0 . The proof of these facts is straightforward and thus
left for the Problems section ; the results are :

and

1
0
00 U, (q) d7l = 1

	

(4.124)

of Un(q) dq = 0,

	

n _> 2

	

(4.125)
0

H - 1 + O

	

U
T

	

as

	

Reb.

	

UT

	

0

	

(4.126)
Ue
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Note that the perturbation solution for Uj(rt) provides sufficient informa-
tion to determine the O(u,/U e ) term (see Problems section) . Hence, Equa-
tion (4.123) yields the following relationship between aT and #T .

Thus, the requirement for existence of a similarity solution to Equa-
tion (4 .111) for large Reynolds number is simply that the equilibrium
parameter, ,OT, be constant . This is a very satisfactory state of affairs be-
cause it is consistent with experimental observations at finite (laboratory-
scale) Reynolds numbers . That is, Clauser found that, above the viscous
sublayer, turbulent boundary layers assume a self-similar form when the
equilibrium parameter is constant . The problem we must solve to deter-
mine Ui(q) is :

_dUj 1
drt rcrt

aT = 1 + 30T

	

(4.127)

_d

	

dUj +(1+QT) ,gU1 +
drt

[N"
drt ]

	

drt
Ul = 0 (4.128)

as

	

q --> 0

	

and

	

U, (q) -+ 0

	

as

	

q --* oo

	

(4.129)

The integral constraint, Equation (4.124), must also be enforced . The di-
mensionless eddy viscosity, No(7l), depends upon the turbulence model se-
lected . For our purposes, we will consider three different turbulence mod-
els, viz . : the Wilcox k-w model [Equations (4.33)-(4 .36)] ; the Standard
k-c model [Equations (4.40)-(4.43)] ; and the WilcoxRubesin (1980) k-w2
model whose equations are as follows .

Eddy Viscosity
PT = pk/w (4.130)

Turbulence Kinetic Energy

* a
pat
_ak

+ pug
_ak

=
_aua

ax, Ta' axe -'d pkw +
ax, [(,U + 0' -0' - JUT)JUT) axe, (4.131)

Specific Dissipation Rate

at 3
P
_awe _awe

=
w_2 _auti _ _at

at + PU ax, a k T'j axe l3 + 2o,ax, axe
] Pw (4 .132)

a+ax (P + Ul~T), Ox
awe ]

(4 .133)'
j

Closure Coefficients

a = 10/9, 0 = 3/20, a* = 9/100, Q = 1/2, a* = 1/2 (4.134)



4.6. PERTURBATION ANALYSIS OF THE BOUNDARY LAYER 115

Auxiliary Relations

Making standard boundary-layer approximations for the model equa-
tions, we seek a perturbation solution for k, w and c of the following form .

All Models:

c = ,Q*wk

	

and

	

f = k112
/Lo

	

(4 .135)

k ^' ~[Ko(il) + o(l)l

w -

	

/3*0
[WOO) + °(l)]

c ^~ o[Eo(,q) + o(l)l

(4 .136)

Note that for the k-c model, 3* = C,, . For all three turbulence models,
the transformed equation for k can be written as

r

~* d~~ [No "oo
] + (1 +,3T)rl

d

Ko
+

	

l3*
L
No (L'-)

z
- Eo

	

=0 (4 .137)

where, for the k-c model, we note that o7* = 1/0-k . The second equation and
auxiliary equations are specific to each model. The transformed equations
are:

k-w Model:

~d~7 [Nod~o]
+(1+#T)7Id~o +(1+213T)Wo

z
+ ,

	

-
dry

No = Ko/Wo

	

and

	

Eo = KoWo

k-w' Model:

=0

z

	

z

'T dTl
[No

d

d~l
o

l
+(l+Or)7JdW

o +2(1+2,(3T)Wo

2

	

)2~
Wo+

	

4*aWo
(dU,

	

+2o-
(dLo

	

3

drl

	

dq
_

No = Ko/Wo,

	

Eo = KoWo,

l3* [a
dUl '6 TX72 1 } (4.138)

(4.139)
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k-e Model :

d

	

dEo
+(1+OT)77Eo +(1+2QT)Eodrl

[N.
dq ]

	

d7l

[ z
+

	

I CEIKo

	

z
- C~dd l )

	

Ez

	

oo ~ = 0

No = Ko/Eo

	

and

	

Eo = KoWo

We must specify boundary conditions on Ko, Wo and Eo both in the
freestream and approaching the surface . For non-turbulent flow in the
freestream, we require that the turbulence parameters all vanish as q , oo .
However, we also stipulate that these quantities approach zero in such a
way that No vanishes . Thus, the freestream boundary conditions are :

Ko(q) -' 0,

	

Wo(rl) -' 0,

	

Eo(rl) -* 0,

	

U,(q) -' 0 as q -; oo

	

(4.141)

As it turns out, we can also specify Wo =

	

j*(1 + 2*)/0 for the k-w
model and Wo = 2

	

,3*(1 + 2,3T)/O for the k-W 2 model . Regardless of the
choice of Wo, neither model displays the excessive sensitivity to freestream
values observed for the k-w model in free shear flows .

Approaching the surface, we must formally match to the law of the wall .
Matching is a bit different for each model but is nevertheless straightfor-
ward ; details of the algebra will thus be omitted in the interest of brevity.
The limiting forms used for q -j 0 follow .

Ko( ,l) - [1 + kl 7fni7 + . . .]

Eo(i7) ^'
1 [ 1 + elyfnrl +

	

. .~

W007) -
1
K77 [ 1 -+' wofn'q + . . .~

1
U1 0) ^' '"[-Pnq + uo - ui?7Pn?7 +

	

. .~

(4 .140)

(4.142)

The coefficients k l , ul, wl and el are as follows, where for notational con-
sistency, we define

a* V/C-
14

	

(4.143)

Also, we again write some of the results in terms of a* with the under-
standing that U* = 1/0-k for the k-e model .
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All Models:

k-w Model:

k-w' Model:

k-E Model:

k i =

	

* 2#T/~)
- 1

	

(4.144)

[fl l(af*)][0,
*K2

/(2a*)] ki
1 - ,3 (a,3-)

[~l

	

2/(2a * )] + QK2
2aa* [1 -,3/(a)3*)] + 20-102

aa* [o-* 1£2 /(2a* )] + uO
2aa* [1 - ,3/(ao*)] -f- 2aK2

(1 + Q* 10 2 /a*)C,2 - C,1

	

k
1

2(C,1 - CE2)

(1 + Q* K2/a* )Ce1 - Ce2

	

k
121

	

2(CE1 - G'e2)

k i
k i

t

(4 .145)

(4.146)

(4.147)

Additionally, the coefficient uo is determined from the integral con-
straint for mass conservation, which is guaranteed by the integral constraint
in Equation (4.124) . Table 4.3 summarizes the equations for the leading-
order terms in the defect-layer solution .

Before proceeding to discussion of the defect-layer similarity solution,
there are two quantities of interest that follow from the leading order so-
lution, viz ., the skin friction, ef, and Coles' wake-strength parameter,
ir . Recall that from matching defect-layer and sublayer velocity profiles, we
deduced Equation (4.118) . Noting that cf = 2(u,/U,)2, we conclude thatFf _ (B -f-

	

°) +

	

PnReb.

	

(4 .148)

The composite law of the wall, law of the wake profile according
to Coles' meticulous correlation of experimental data [see Coles and Hirst
(1969)] is given by

U+ = 1 fny+ -t- B +
2?r

sine (7Y)

	

(4.149)
rc

	

2 6
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Table 4 .3 : Summary of the Defect-Layer Equations

The sine function is purely a curve fit: several other functions have been
suggested, including forms that yield 8U/8y = 0 at y = 6 [which is not the
case for Equation (4 .149)] . Defect-layer solutions include sharp turbulent-
nonturbulent interfaces so that the edge of the defect-layer lies at a finite
value 17 = % . Thus, combining Equations (4 .118) and (4.149) leads to the
following expression for the wake-strength parameter.

Fr = 2(uo - fm/e)

	

(4 .150)

Figure 4.9(a) compares the defect-layer solution for the three models
with corresponding experimental data of Wieghardt as tabulated by Coles
and Hirst (1969) . The experimental data presented are those at the highest
Reynolds number for which data are reported . This is consistent with the
defect-layer solution that is formally valid for very large Reynolds number .
As shown, all three models predict velocity profiles that differ from mea-
sured values by no more than about three percent ofscale. Interestingly, the
k-w model shows the smallest differences from the Wieghardt data . Cor-
responding computed and measured skin friction values are summarized in
the insert on Figure 4.9(a) ; the largest difference is less than three percent.
Thus, based on analysis of the constant-pressure defect layer, there is little
difference amongst the three models .

Turning now to the effect of pressure gradient, we consider defect-layer
solutions for the equilibrium parameter, ,OT, ranging from -0.5 to +9 .0,
where positive /3T corresponds to an adverse pressure gradient . The choice
of this range of J3T has been dictated by the requirement of the perturbation
solution that QT be constant . This appears to be the maximum range over
which experimental data have been taken with /3T more-or-less constant .

Figure 4.9(b) compares computed velocity profiles with experimental
data of Clauser [see Coles and Hirst (1969)] for 3T = 8 .7 . As with the

Mass (Integral Constraint) Equation (4.124)
Momentum Equation 4.128)
Turbulence Kinetic Energy Equation (4.137)
Specific Dissipation k-w Model) Equation (4.138)
Specific Dissipation (k-w Model) Equation (4.139)
Dissipation (k-e Model) Equation (4.140)
Boundary Conditions for 77 --> oc Equation (4.141)
Boundary Conditions for 7 0 Equation (4.142)
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Figure 4.9 : Computed and measured defect-layer velocity profiles ;

	

k-w
model; --- k-w 2 model; - - - k-c model . [From Wilcox (1988a) - Copyright
© AIAA 1988 - Used with permission .]

constant pressure case, computed and measured skin friction are included
in the insert . As shown, the k-w model yields a velocity profile and skin
friction closest to measurements while the k-c model shows the greatest
differences . The k-w2 profile and skin friction lie about midway between
those of the other two models .

Figure 4 .10 compares computed wake strength, i, with values inferred
by Coles and Hirst (1969) from experimental data . Inspection of Figure 4.10
reveals provocative differences amongst the three models . Most notably,
the k-w model yields wake strengths closest to values inferred from data
over the complete range considered . Consistent with the velocity profile
discrepancies shown in Figure 4.9(b), the k-c model exhibits the largest
differences, with predicted wake strength 50%-100% lower than inferred
values when ,QT is as small as two!

The explanation of the k-e model's poor performance for adverse pres-
sure gradient can be developed from inspection of the asymptotic behavior
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5
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C

Figure 4.10 : Computed and measured wake-strength parameter ;

	

k-w
model ; --- k-w2 model; - - - k-c model . [From Wilcox (1988a) - Copyright
© AIAA 1988 - Used with permission .]

of solutions as r/ -> 0 . For the models analyzed, the velocity behaves as

Ue - U ^. - 1$nr7 + A - #TCrlfnr7 +

	

. .

	

as	77 -x 0

	

(4.151)
UT

where Table 4.4 summarizes the constants A and C. Note that, while the
coefficient A = uo /tc is determined as part of the solution (from the integral
constraint that mass be conserved), the coefficient C = ul/(OTIC) follows
directly from the limiting form of the solution as 77 -r 0 . As seen from
Table 4.4, C is largest for the k-e model and is smallest for the k-w model .
The presence of the rjinr7 term gives rise to an inflection in the velocity
profile as 17 - " 0 that is most pronounced for the k-c model . In terms of
turbulence properties, the turbulence length scale, f, behaves according to

t ^' (/3*) 174 tCy7[1 + #TLrltn?1 + . . .]

	

as

	

77 --+ 0

	

(4.152)

Table 4.4 also includes the coefficient L for each model . Again, we see that
the contribution of the r7Pnr7 term is largest for the k-c model and smallest
for the k-w model . Thus, in the presence of adverse pressure gradient,
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Table 4.4 : Coefficients A, C and L for O~T = 9

the k-c model's turbulence length scale tends to be too large in the near-
wall region . Note, of course, that this shortcoming is not evident in the
constant-pressure case, which has ,3T = 0 .

The manner in which the k-w model achieves smaller values of t than
does the k-c model can be seen by changing dependent variables . That is,
starting with the k-w formulation and defining c =,3*wk, we can deduce
the following incompressible equation for c implied by the k-w model .

C9 f

U ax +V
aE

-(1+a)kCayl2

	

(1+~ll3*)k

	

ay
[C2

	

a

	

C9

UVT BzJJy

2ovT 8k
a(c/k)

	

(4.153)
8y ay

All terms except the last on the right-hand side of Equation (4.153) are
identical in form to those of the Standard k-c model [see Equation (4.42)] .
This so-called cross-diffusion term is negligibly small as 71 ---+ 0 for
constant-pressure boundary layers because k --> constant as 71 --+ 0 . How-
ever, ak/ay is nonvanishing when ,QT ~4_ 0 and 8(c/k)/8y generally is quite
large as 77 --, 0. The net effect of this additional term is to suppress the
rate of increase of f close to the surface .

Unlike the three closure coefficients discussed in Section 4.4, simple
arguments have not been found to establish the values of o and o* for the
k-w model . In Subsection 4.6.3, we will find that using o = 1/2 yields an
excellent solution in the viscous sublayer, almost independent of the value
of o* . Equation (4.145) shows that the coefficient C is proportional to
o*, so that smaller values of o* should improve the model's predictions for
boundary layers with variable pressure . The computed variation of i with
/3T (Figure 4.10) closely matches experimental results when o* = 1/2, and
this is the value that has been chosen for the k-w model .

Model A C L
k-w 13 .1 2.90 -2.20
k-w 9 .8 6.39 -3.62
k-c 5 .4 13 .57 -6.50
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4.6.3

	

The Viscous Sublayer
In order to facilitate integration of the model equations through the viscous
sublayer, we must, at a minimum, have molecular diffusion terms in the
equations of motion . Potentially, we might also have to allow the various
closure coefficients to be functions of viscosity (i .e ., turbulence Reynolds
number) as well . This should come as no surprise since even the mixing-
length model requires the Van Driest damping factor and one-equation
models need similar viscous damping [Wolfshtein (1967)]. In this section, we
use perturbation methods to analyze viscous sublayer structure predicted
by several two-equation models . As we will see, with the exception of some
k-w models, virtually all two-equation models require Reynolds number
dependent corrections in order to yield a realistic sublayer solution .

We have already derived the sublayer solution in Subsection 4.6 .1 when
we discussed the log layer. Recapping the highlights of the expansion
procedure, the velocity is given by an expansion of the form

U(x, y) ^' uT[uo(y+ ) + Reb.lfii(~, y+) + o(Re6: )]

	

(4 .154)

To leading order, the convective terms and pressure gradient are negligible .
Thus, for example, the leading order equations for the k-w model expressed
in terms of dimensional quantities are given by

(v + VT) dyU
- uT

r

	

z
dy

L(
v +a*vT)d

y ] + vT
(
dU

dy - 'wk-0

z

dy
[(v + avT)

	

+a (
dy)~

	

_'3W2 - 0

k
VT - _

w

Because the Reynolds shear stress is constant, the viscous sublayer is
often referred to as the constant-stress layer. Five boundary conditions
are needed for this fifth-order system, two of which follow from matching
to the law of the wall as y+ -> oo, viz .,

and

	

w, uT
y

(4.155)

where y+ = UTylv. Two more boundary conditions follow from no slip at
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the surface, which implies that U and k vanish at y = 0 . Thus,

U = k = 0

	

at

	

y+ = 0

	

(4.157)

The final condition follows from examination ofthe differential equations
for k and w approaching the surface . The k-w model possesses two kinds of
solutions . The first type of solution has a finite value of w at the surface .
This fact was first observed by Saffman (1970) who speculated that the
constant in the law of the wall, B, would vary with the surface value of
w . This feature is unique to k-w and k-w2 models and will be explored in
detail in Section 4 .7 . The second type of solution is common to all two-
equation models and this is the one we will focus on now . Examination of
the differential equations approaching y = 0 shows that for all two-equation
models,

k _ yn

	

and

	

/3*yew/v - constant

	

as

	

y -> 0

	

(4.158)

Table 4.5 lists the values of n and the constant for several models .
As shown, none of the models predicts the exact theoretical value of 2
for both n and 3*y 2w/v . This can only be accomplished with additional
modification of the model equations .

Table 4.5 : Sublayer Behavior Without Viscous Damping

The exact values follow from expanding the fluctuating velocity in Tay-
lor series near a solid boundary . That is, we know that the fluctuating
velocity satisfies the no-slip boundary condition and also satisfies conserva-
tion of mass (see Section 2.3) . Consequently, the three velocity components
must behave as follows .

u' - A(x, z, t)y

	

+0(y2)
v/ - B(x, z, t)y 2 + 0(y3)

	

as

	

y ---~ 0

	

(4.159)
w' ^' C(X, z, t)y + O(y2)

Model Type B n ,(3*y2w/v
Wilcox-Rubesin (1980) k,-w 2 7.1 4.00 12.00
Saffman (1970) k-w 2 6 .0 3.7-4.0 12.00
Launder-Spalding (1972) k-w 2 5 .7 3.79 12 .00
Wilcox (1988a) k-w 5 .1 3.23 7.20
Kolmogorov (1942) k-w 3.1 3 .62 7.20
Launder-Sharma (1974) k,-e -2.2 1 .39 0 .53
Speziale (1990) k--r -2.2 1 . 39 0 .53
Exact/Measured 5.0 2 .00 2 .00
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Hence, the turbulence energy and dissipation are given by

k ^, 2
(A2-+ C2) y2 + O(y3)

	

and

	

c-v (A2 -F C2 ) + O(y)

Assuming that c = ,Q*wk, Equation (4.160) tells us that

(4 .160)

k - y 2

	

and

	

,Q*yew/v - 2

	

as

	

y ---~ 0

	

(4 .161)

Hence, using the asymptotic behavior of w for y -> 0 appropriate to
each model as the fifth boundary condition, we can solve the sublayer equa-
tions (see Subsection 7.2 .1 for an explanation of how to handle the singular
behavior of w numerically) . One of the most interesting features of the
solution is the constant in the law of the wall, B, that is evaluated from
the following limit.

B =

	

lim

	

[U+ - / 61fny+~

	

(4.162)
y+-moo

Table 4.5 also lists the computed value ofB for the various two-equation
models . As shown, the Spalding k-w2 and Wilcox k-w models are sufficiently
close to the standard value of 5.0 to be used with no additional viscous
modifications. The Standard k-c model and the Speziale et al . k-r model
are farthest from the generally accepted value for B .

Figure 4 .11 (a) compares k-w model velocity profiles with corresponding
measurements of Laufer (1952), Anderson, Kays and Moffat (1972), and
Wieghardt [as tabulated by Coles and Hirst (1969)] . As shown, computed
velocities generally fall within experimental data scatter. In Figure 4.11(b),
we compare computed turbulence production and dissipation terms with
Laufer's (1952) near-wall pipe-flow measurements . Again, predictions fall
well within experimental error bounds .

This concludes our perturbation analysis of the turbulent boundary
layer. As we have seen, using perturbation analysis, we have been able
to dissect model-predicted structure of the defect layer, log layer and sub-
layer, never having to solve more than an ordinary differential equation .
This is a great advantage in testing a turbulence model in light of the ease
and accuracy with which ordinary differential equations can be solved . The
equations are not trivial to solve however since we are dealing with two-
point boundary-value problems, and the resulting systems of equations are
of sixth order for the defect layer and fifth order for the sublayer . How-
ever, this is far easier to handle than the partial differential equations we
started with, and parametric studies (e .g ., varying the equilibrium param-
eter, QT) are much simpler in the context of the perturbation solution . As
a final comment, results obtained in this section should make the following
statement obvious.
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Figure 4.11 : Computed and measured sublayer properties ; k-ca model.
[From Wilcox (1988a) - Copyright © AIAA 1988 - Used with permis-
sion .]
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Given the demonstrated power and utility of perturbation
analysis in analyzing the turbulent boundary layer, this type of
analysis can, and should, be used in developing all turbulence
models .

4.7

	

Surface Boundary Conditions
In order to apply a two-equation turbulence model to wall-bounded flows,
we must specify boundary conditions appropriate to a solid boundary for
the velocity and the two turbulence parameters . As shown in the preceding
section, most two-equation models fail to predict a satisfactory value of the
constant B in the law of the wall (see Table 4.5) . Consequently, for most
two-equation turbulence models, applying the no-slip boundary condition
and integrating through the viscous sublayer yields unsatisfactory results.
One approach we can take to remove this deficiency is to introduce viscous
damping factors analogous to the Van Driest correction for the mixing-
length model. Since introduction of damping factors accomplishes much
more than allowing integration through the sublayer, we defer detailed dis-
cussion of such modifications to Section 4.9 . An alternative approach is
to circumvent the inability to predict a satisfactory log-layer solution by
simply matching to the law of the wall using a suitable value for B . This
is what we did in analyzing the defect layer, and the procedure is equally
valid for general wall-bounded flows.

4.7.1

	

Wall Functions

Historically, researchers implementing this matching procedure have re-
ferred to the functional forms used in the limit y -> 0 as wall functions .
This procedure uses the law of the wall as the constitutive relation between
velocity and surface shear stress . That is, in terms of the velocity at the
mesh point closest to the surface, we can regard the law of the wall, viz .,

U = uT I 1 En (uvy) + BI

	

(4.163)

as a transcendental equation for the friction velocity and, hence, the shear
stress . Once the friction velocity is known, we use Equations (4.100) for
the k-w model or Equations (4.105) for the k-c model to define the values
of k and w or c at the grid points closest to the surface. Because w and c
are odd functions of u,. and both quantities are positive definite, care must
be taken for separated flows. We can either use the absolute value of uT or
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combine the equations for k and w or k and c so that the wall functions
for k, w and e become :

_ u2

	

_ k1/2_ 2 _
k N/171

w W*)1/4Ky~

2
k - ~[1 + 1.16L-Y 0 + 0(02)1

w -

	

Q
"Ky

[1-0.32"0+O(02)y
J

/ ks/2
- (_

	

*)3 4

Ky

U-u,
1K
in(uvy)+ B-0.48 uVYO+0(02)]

(4.164)

The wall-function approach is not entirely satisfactory for_ several rea-
sons . Most importantly, numerical solutions generally are sensitive to the
point above the surface where the wall functions are used, i .e ., the point
where the matching occurs (see Subsection 7.2 .1 for an in-depth discussion
of this problem) . Furthermore, the law of the wall doesn't always hold for
flow near solid boundaries, most notably for separated flows .

There is a more subtle danger attending the use of wall functions.
Specifically, when poor results are obtained with a two-equation model,
researchers sometimes mistakenly blame their difficulties on the use of non-
optimum wall functions. This assessment is too often made when the wall
functions are not the real cause of the problem. For example, the k-E
model just doesn't perform well for boundary layers with adverse pressure
gradient . Many articles have appeared claiming that discrepancies between
k-c model predicted skin friction and corresponding measurements for such
flows are caused by the wall functions . This incorrectly assumes that the
surface shear is a localized force that depends only upon sublayer structure .
As shown in the defect-layer solution of the preceding section, no viscous
modification is likely to remove the curious inflection in the k-E model's
velocity profile unless viscous effects (unrealistically) penetrate far above
the viscous sublayer . We mustn't lose sight of the fact that the momentum
flux through a boundary layer affects the surface shear and vice versa [see
Equation (4 .122)] . Hence, inaccurate skin friction predictions go hand in
hand with inaccuracies in the velocity profile throughout the layer .

As a final comment on wall functions, Wilcox (1989) demonstrates that
pressure gradient must be included in order to achieve grid-independent
solutions for flows with pressure gradient . Retaining pressure gradient in
the log-layer equations (i .e ., retaining OT/Rep), then the asymptotic be-
havior for the k-w model approaching the surface is given by the following
equations:

(4 .165)
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where 0 is the dimensionless pressure gradient parameter defined by

The expansions in Equation (4.165) have been derived assuming 0 is a small
parameter .

4 .7.2

	

Surface Roughness

=
v dP

	

(4.166)Pdx

As noted in the preceding section, a key advantage of the k-w2 and k-w
formulations over the k-c formulation is the fact that w-oriented equations
possess solutions in which the value of w may be arbitrarily specified at the
surface . This is an advantage because it provides a natural way to incorpo-
rate effects of surface roughness through surface boundary conditions . This
feature of the equations was originally recognized by Saffman (1970) . If we
write the surface boundary condition on w as

2
w = u-'SR

	

at

	

y = 0

	

(4.167)
v

we can generate sublayer solutions for arbitrary SR, including the limiting
cases SR -j 0 and SR , oo . Figure 4.12 shows the computed value of
B for a wide range of values of SR . As shown, in the limit SR --+ oo, B
tends to 5.1 . In the limit SR -> 0, an excellent correlation of the numerical
predictions is given by

B -} 8.4 + 1in(SR/100)

	

as

	

SR ` 0

	

(4.168)

By experimental means, Nikuradse [see Schlichting (1979)] found that
for flow over very rough surfaces,

B - 8.5+ 1tn (1/k+R) ; k+R = u,kR/v

	

(4.169)

where kR is the average height of sand-grain roughness elements . (Note
that the computations use tc = 0.41 while Nikuradse used tc = 0.40 .) Thus,
if we make the correlation

SR = 100/k+R ;

	

kR+ » 1

	

(4 .170)

then Equations (4.168) and (4.169) are nearly identical . Figure 4.13 com-
pares computed velocity profiles with the analytical fit obtained by using
Equations (4.168) and (4.169) in the law of the wall, viz .,

U+ _

	

fn (ylkR) + 8.4

	

(4 .171)
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Figure 4.12: Variation of the constant in the law of the wall, B, with the
surface value of the specific dissipation rate . [From Wilcox (1988a) -
Copyright © AIAA 1988 - Used with permission .]

for three values of kR . The correlation is nearly exact . The most remarkable
fact about this correlation is that Equation (4 .171) is the form the law of
the wall assumes for flow over "completely-rough" surfaces, including the
value of the additive constant (8.4 and 8.5 differ by one percent) .

By making a qualitative argument based on flow over a wavy wall,
Wilcox and Chambers (1975) [see Problems section] show that for small
roughness heights, we should expect to have

SR ^, (1/k+)2

	

as

	

ka --r 0

	

(4.172)

Comparison with Nikuradse's data shows that the following correlation be-
tween SR and kR reproduces measured effects of sand-grain roughness for
values of kR up to about 400 .

(50/kR ) 2 ,

	

kR < 25
SR -

	

(4.173)
100/kR,

	

kR > 25
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Figure 4 .13 : Sublayer velocity profiles for "completely rough" surfaces ;
o Computed, kR+ = 400 ; o Computed, kR = 225 ; a Computed, k+ = 50 .
[From Wilcox (1988a) - Copyright © AIAA 1988 - Used with permis-
sion .]

As a final comment, the solution for kR -> 0 is identical to the sublayer
solution discussed in Subsection 4.6 .3 [see Equation (4 .158)] . The analysis
of this section shows that the singular case corresponds to the perfectly-
smooth surface. In practice, Equation (4.173) should be used rather than
Equation (4.158) even if a perfectly-smooth surface is desired. The advan-
tage in using Equation (4.173) is obvious for several reasons .

e Local geometry (e .g ., distance normal to the surface) does not appear
so it can be applied even in three-dimensional geometries .

kR need only be small enough to have a hydraulically smooth surface,
i .e ., u,kRly < 5 . Resulting surface values of w are rarely ever large
enough to cause numerical error provided a sensible finite-difference
grid is used (see Subsection 7.2 .1) .

Experience has shown Equation (4.173) works well for separated flows.



4.8 . APPLICATION TO WALL-BOUNDED FLOWS

	

131

4.7.3

	

Surface Mass Injection
For boundary layers with surface mass injection, the introduction of an ad-
ditional velocity scale (v �, = normal flow velocity at the surface) suggests
that the scaling for w at the surface may differ from Equation (4.167) . An-
dersen, Kays and Moffat (1972) provide further evidence that the specific-
dissipation-rate boundary condition must be revised when mass injection is
present by showing, from correlation of their experimental data, that both
K and B are functions of vw = V,,/u, . Because rough-surface computa-
tions show that the value of B is strongly affected by the surface value of
the specific dissipation rate, this suggests that the surface value of w will
depend in some manner upon v,, . Examination of the limiting form of the
model equations for y+ -, oo (i .e ., in the log layer) shows immediately that
the effective Karman "constant", rc� , varies with v�+, according to

where 8 is given by

(4.174)r', - 1 +
E_-V+

= 3.11 + 0.61iny+

	

(4.175)

The variation of rc� predicted in Equations (4.174) and (4 .175) is consis-
tent with the Andersen et al . data . Including appropriate convective terms
in Equations (4 .155), Wilcox (1988a) performed sublayer computations for
the cases experimentally documented by Andersen et al . In each case, the
surface value of w is given by

tions (4.176) and (4.177).

2
w = uT SB

	

at

	

y= 0

	

(4 .176)
v

Wilcox varied the value of SB to achieve optimum agreement between mea-
sured and computed velocities . The correlation between SB and vw is given
in analytical form as

_ 20

	

(4 .177)SB
v�+,(1+5vw)

Figure 4.14 compares measured velocities with values computed using Equa-

4 .8

	

Application to Wall-Bounded Flows

Using the surface boundary conditions devised in Section 4 .7, we can now
turn to application of two-equation turbulence models to wall-bounded
flows. Because of their relative simplicity, we consider pipe and channel
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Figure 4.14 : Sublayer velocity profiles for boundary layers with surface
mass injection ; k-w model ; o a " o o Andersen, et al . [From Wilcox
(1988a) - Copyright © AIAA 1988 - Used with permission .]

flow first using the k-w model . Then, we will consider several incompress-
ible boundary-layer applications . In these applications we exercise the k-w
model and the k-c model .

4.8.1

	

Channel and Pipe Flow

y+

aa

Figures 4.15 and 4.16 compare computed and measured channel and pipe
flow properties, respectively. Six different comparisons are shown in each
figure, including mean velocity, skin friction, Reynolds shear stress, turbu-
lence kinetic energy, turbulence energy production and dissipation rate .

Figure 4.15 compares k-w model channel flow predictions with the Di-
rect Numerical Simulation (DNS) computations performed by Mansour,
Kim and Moin (1988) . Reynolds number based on channel height and av
erage velocity is 13,750 . Velocity profiles and Reynolds shear stress profiles
differ by less than 3% . Computed skin friction differs from Halleen and
Johnston's (1967) correlation [Equation (3.137)] by less than about 2% ex-
cept at the lowest Reynolds number shown . Although the model fails to
predict the peak value of k near the channel wall, the computed k profile dif-
fers from the DNS profile by less than 5% over 80% of the channel . Despite
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the fact that the model is not asymptotically consistent (Subsection 4.9 .1)
approaching the surface, even the turbulence-energy production, Txy aU/0y,
and dissipation, e, nearly duplicate the DNS results except very close to the
surface . On balance, the k-w results are a bit closer to the DNS results than
either the Cebeci-Smith or Baldwin-Lomax models (Subsection 3.5 .1).

Figure 4.16 compares k-w model pipe flow results with Laufer's (1952)
measurements at a Reynolds number based on pipe diameter and aver-
age velocity of 40,000 . As shown, computed and measured velocity and
Reynolds shear stress profiles differ by less than 6%. As with channel flow,
computed and measured turbulence kinetic energy differ by about 4% ex-
cept close to the surface where the sharp peak occurs . Although computed
turbulence energy production and dissipation differ from measured values
by less than 5%, it is unclear whether this is a desirable result . That is,
some controversy exists about the accuracy of Laufer's dissipation mea-
surements, and the model may be reproducing erroneous results . Finally,
computed skin friction is within 4% of Prandtl's universal law of friction
[Equation (3.138)] . Overall, predictions are as close to measurements as
those obtained with the Cebeci-Smith and Baldwin-Lomax models .

It is interesting, and perhaps illuminating, that the most important
flow properties are accurately predicted even though the sharp peak in
turbulence energy is underestimated by 40% and 25%, respectively, for
channel and pipe flow . That is, for engineering applications, the most
important quantity is the skin friction . The next most important quantity
typically is the velocity profile . Only for specialized applications is a subtle
feature such as the peak value of k important . Thus, we see that even
though the k-w model fails to predict this subtle feature, it is apparently
of little consequence for most engineering applications .

4.8.2

	

Boundary Layers

We turn now to application of the k-w and k-c model equations to four
incompressible boundary layers . All of the k-w model results use the surface
boundary conditions described in Subsections 4.7 .2 and 4 .7 .3 . By contrast,
the k-e model computations were done using wall functions .

The first application is for the constant-pressure incompressible bound-
ary layer . The computation begins at a plate-length Reynolds number,
Re., = 1 - 106 and continues to Re., = 10.9 _ 10 6 . Figures 4 .17(a) and (b)
compare computed and measured [Coles and Hirst (1969)] skin friction and
velocity profiles . As shown, for the k-w model, computed cf virtually dupli-
cates measurements for the entire range of Reynolds numbers considered .
Differences between computed and measured k-w velocity profiles are no
more than 3% of scale for the three Reynolds numbers indicated .
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Figure 4.15 : Comparison of computed and measured channel-flow proper-
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Thus, as no great surprise, the k-w model is quite accurate for the flat-
plate boundary layer . Skin friction results [Chambers and Wilcox (1977)]
for the k-c model are included in Figure 4 .17(a) . Note that, as predicted
in the defect-layer analysis of Subsection 4.6.2, computed cf is about 3%
higher than measured .

The next two applications are for boundary layers with adverse pressure
gradient . The first case is for moderate adverse pressure gradient, the
experimental data being those of Bradshaw (1969) . The second case has
increasingly adverse pressure gradient, the experimental data being those
of Samuel and Joubert [see Kline et al . (1981) - Flow 0141] .

For the Bradshaw case, streamwise distance extends from x = 2.5 ft to
x = 7.0 ft, corresponding to Re,, increasing from about 2106 to about 4106 .
Figures 4.17(c) and (d) compare computed and measured skin friction and
a velocity profile . Inspection of both graphs shows that differences between
k-w model predictions and experiment nowhere exceed 5% for this flow .
The figure includes k-E results obtained by Chambers and Wilcox (1977) ;
computed cf exceeds measured values by as much as 20%. Because the
equilibrium parameter ,QT ~ 2 for this flow, the poor results for the k-E
model are unsurprising . Note also that the k-w model's skin friction is
much closer to measured values than either the Cebeci-Smith or Baldwin-
Lomax models (see Figure 3 .16) .

In the Samuel-Joubert case, we integrate from x = 1 m to x = 3.40 m,
corresponding to an Re, range of about 2 .106 to 4 . 10 6 . Figures 4 .17(e) and
(f) compare computed and measured skin friction and two velocity profiles
for this flow . For the k-w model, computed and measured skin friction
differ by less than 5% of scale . Also, velocity profiles at x = 2.87 m are
within 5% percent while those at x = 3.40 m differ by no more than 9% .
The figure also shows skin friction for the k-e model obtained by Rodi and
Scheuerer (1986) . Since NT exceeds 9 toward the end of the computation,
the poor performance of the k-c model (computed cf exceeds measured
values by as much as 35%) is again consistent with the defect-layer analysis
of Subsection 4.6 .3 .

As the final application of the models, we consider a boundary layer with
surface mass injection . The case considered was included in the 1980-81
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (Flow
0241) and data for the flow were taken by Andersen et al . (1972) . Surface
mass injection rate, vu� is .00375Ue , where Ue is the constant boundary-
layer-edge velocity, i .e ., the flow has constant pressure . Figures 4.17(g) and
(h) compare computed and measured skin friction and velocity profiles . As
shown, for the k-w model computed and measured skin friction differ by
less than 4% of scale while computed and measured velocity profiles are
within 3% of each other . Although this flow has zero pressure gradient,
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corresponding skin friction predicted by the k-c model [see Kline et al .
(1981)] is as much as 50% higher than measured .

4.9

	

Low-Reynolds-Number Effects
Thus far, the turbulence models we have considered are restricted to high-
Reynolds number applications . Even in the case of the k-w model, while we
have been able to integrate through the viscous sublayer, we have paid no
attention to low-Reynolds-number effects . For example, the model fails to
predict the sharp peak in turbulence kinetic energy close to the surface for
pipe and channel flow (see Figures 4.15 and 4.16) . Most importantly, most
two-equation models fail to predict a realistic value of the additive constant,
B, in the law of the wall . All such models require viscous damping in order
to achieve a realistic value for B . Finally, there are applications for which
viscous effects must be accurately represented, and this section will discuss
commonly used low-Reynolds-number corrections .

4.9.1

	

Asymptotic Consistency
In formulating viscous corrections for two-equation models, we can obtain
some guidance from looking at the limiting behavior of the fluctuating
velocities approaching a solid boundary. That is, we assume standard Tay-
lor series expansions for each of the fluctuating velocities and substitute
into the exact equations of motion, viz ., the instantaneous continuity and
Navier-Stokes equations . We did this in Subsection 4.6.3 when we were for-
mulating surface boundary conditions for the viscous sublayer perturbation
solution . Thus, we again begin by assuming

u' ^' A(x, z, t)y

	

+ O(y2)
v' ^' B(x, z, t)y2 + O(y3)

	

as

	

y --~ 0

	

(4.178)
w1 ^' C(x, z, t)y + O(y2)

where A(x, z, t), B(x, z, t) and C(x, z, t) must have zero time average and
satisfy the equations of motion . Note that the no-slip surface boundary
condition dictates the fact that u' must go to zero as y -* 0 . Since we
expect Navier-Stokes solutions to be analytic everywhere, we conclude that
the fluctuating velocity components u' and w' vary linearly with y . Also,
substituting Equations (4 .178) into the continuity equation shows that v'
varies quadratically with y. While we don't know the precise values of A,
B and C without solving the complete Navier-Stokes equation, we can still
use the exact asymptotic variations of u', v' and w' with y to deduce the
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limiting behavior of time-averaged properties approaching the surface . For
example, the turbulence kinetic energy and dissipation are

k -
2
(Az + C2)yz + O(y3)

	

and

	

c - v (Az + Cz) + O(y)

	

(4.179)

Also, the Reynolds shear stress is given by

TXY -
-ABy3

+ O(y4) (4 .180)

A model that duplicates the exact limiting forms of k, c and rxy given in
Equations (4.179) and (4.180) is said to be asymptotically consistent
with the near-wall behavior of the exact equations of motion .

Many researchers have attempted to devise viscous corrections for the
k-c model to permit its integration through the viscous sublayer . All have
achieved some degree of asymptotic consistency . Jones and Launder
(1972) were the first to propose viscous modifications for the k-e model .
Other proposals have been made by Launder and Sharma (1974), Hoffmann
(1975), Reynolds (1976), Hassid and Poreh (1978), Lam and Bremhorst
(1981), Dutoya and Michard (1981), Chien (1982), Myong and Kasagi
(1990), Speziale, Abid and Anderson (1990), Shih and Hsu (1991), Zhang,
So, Speziale and Lai (1992), Yang and Shih (1993), and Fan, Lakshmi-
narayana and Barnett (1993) . For steady, incompressible boundary layers,
all of these models can be written compactly as follows :

z
UT + V 8y = V Ca )

	

- c
+ Oy [(v + vT lak) a~JJ

	

(4.1$1)

8X ~~ c
('U)

	

Ez y

	

~yJU&
+V~ =CEifikvT a

	

- C,zfz-+E+- (v + VTl0-E)a
(4.182)

where the dissipation, c, is related to the quantity E by

c = ca -f- E

	

(4.183)

The quantity co is the value of c at y = 0, and is defined differently for each
model . The eddy viscosity is defined as

vT = C,, f,,kz/E	(4 .184)

Equations (4.181) - (4.184) contain five empirical damping functions,
fi, fz, fv, co and E. These functions depend upon one or more of the
following three dimensionless parameters .

ReT = z,

	

R, =-,

	

y+ = uTy

	

(4.185)
CV

	

v

	

v
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The models devised by Jones and Launder (1972), Launder and Sharma
(1974), Lam and Bremhorst (1981), and Chien (1982) exemplify most of
the features incorporated in k-e model viscous damping functions. The
damping functions and closure coefficients for these four models are as
follows.

Jones-Launder Model

fm =e-
2.5/(1+ReT/50)

f1=1
f2 = 1 - 0 .3e-R4

awl 2
Eo = 2v

(
as
y

E=2vvT
( ay
a2

2)
2

CE1 = 1 .45,

	

CE2 = 2.00,

	

C,, = 0 .09,

	

Ck = 1 .0,

Launder-Sharma Model

f~
= e-3.4/(1+ReT/50)2

f1=1
f2 = 1 - 0.3e-ReT

C
a~l

2
Eo = 2v

	

as
y
Ca2U~ 2

E = 2vvT

	

ay
2

CEl = 1 .44,

	

CE2 = 1.92,

	

C,, = 0 .09,

	

Qk = 1 .0,

Lam-Bremhorst Model

f,, = (1 - e-0.01s5R � )2 (1 + 20.5/Re,)
fl = 1 + (0.05/f,,)3
f2 = 1 - e-ReT
eo =0
E=0
CEl = 1 .44,

	

CE2 = 1.92,

	

C1, = 0 .09,

	

o-k = 1 .0,

	

o-E = 1 .3

(4.186)

(4.187)

(4.188)
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Chien Model

fl, = 1 - e-o.oiisy+

fi=1

f2 = 1 - 0 .22e-(ReT~6)2

zc,,=2v
y

c
E = -2v-e-y+/2y2
C,j = 1 .35,

	

C,2 = 1 .80,

	

C,, = 0 .09,

	

Qk = 1 .0,

(4.189)

By examining the limiting behavior of each of these models close to a

solid boundary where y = 0, it is easy to demonstrate that, consistent with
Equation (4.179), all four models guarantee

k - y2

	

and

	

c/k , 2vly2

	

as

	

y -> 0

	

(4.190)

Additionally, the Lam-Bremhorst model predicts Txy - y4 while the
other three models predict Txy - y3 . Thus, all except the Lam-Bremhorst
model are consistent with Equation (4.180) as well .

Surface boundary conditions for low-Reynolds-number k-c models are
not entirely straightforward. On the one hand, the no-slip boundary con-
dition tells us that k must vanish at a solid boundary. On the other hand,
the strongest thing we can say about the surface value of c is the second
of Equations (4.190). That is, we invariably must tie the surface value of c
to the second derivative of k at the surface. The Jones-Launder, Launder-
Sharma and Chien models build in the proper asymptotic behavior through
introduction of the function c,,. Consequently, the boundary conditions ap-
propriate at the surface are

k=E=0 at y=0

	

(4.191)

By contrast, Lam and Bremhorst deal directly with c and specify the surface
boundary condition on c by requiring

2
c=va22 at y=0

y

As an alternative, Lam and Bremhorst also propose using

(4 .192)

ac
ay

= 0

	

at

	

y = 0

	

(4.193)

While Equation (4.193) is easier to implement than Equation (4.192), there

is no a priori reason to expect that the next term in the Taylor series
expansion for c should vanish .



142

	

CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

In a review article, Patel, Rodi and Scheuerer (1985) compare seven
low-Reynolds-number variants of the k-c model and the Wilcox-Rubesin
(1980) k-w2 model. Figure 4.18 compares computed and measured veloc
ity and k+ = k/u 22 profiles for the flat-plate boundary layer. As shown,
the Dutoya-Michard, Hassid-Poreh and Hoffmann models fail to provide
accurate solutions for the incompressible flat-plate boundary layer. Fig-
ure 4.19(a) shows that for adverse pressure gradient, the Wilcox-Rubesin
model (which was not designed with low-Reynolds-number applications in
mind) most faithfully matches measured [Anderson et al . (1972)] skin fric-
tion . Figure 4.19(b) shows that none ofthe models reproduces the measured
skin friction for the low-Reynolds-number, favorable pressure gradient flow
of Simpson and Wallace (1975) . This further demonstrates that the only
thing low-Reynolds-number modifications do is fix the k-e model's problems
in predicting the constant B in the law of the wall .

There is a popular misconception that low-Reynolds-number modifi-
cations to the k-c model can remove its deficiencies for adverse pressure
gradient flows . This mistaken notion overlooks the volumes of data on and
physical understanding of turbulent boundary layers established during the
twentieth century, most notably by Clauser and Coles. Recall from Subsec-
tion 4.6 .1 that Coles describes the turbulent boundary layer as a "wake-like
structure constrained by a wall" and notes that different scales and physical
processes are dominant in the sublayer and defect layer . Since perturbation
analysis shows that the k-e model is inconsistent with observed defect-layer
structure, we cannot reasonably expect viscous corrections (which are neg-
ligible in the physical defect layer) to correct the inconsistency.

Figure 4.20 clearly illustrates this point. The figure compares computed
and measured skin friction for twelve incompressible boundary layers with
adverse pressure gradient . Results are presented for the Jones-Launder,
Launder-Sharma, Lam-Bremhorst, Chien, and Wilcox (1988a) k-w models .
Eleven of the cases are from the 1968 AFOSR-IFP-Stanford Conference,
and the flow numbers from the conference are included for each case . Flow
0141 is the Samuel-Joubert case from the 1980-81 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows.

As shown, for Bradshaw Flow C (Flow 3300) and the Samuel-Joubert
case (Flow 0141), skin friction is similar to results obtained with wall func-
tions [see Figure 4.17(e)] . As categorized by Coles and Hirst (1969), Flows
1100, 2100, 2500 and 4800 have "mild" adverse pressure gradient, Flows
2400, 2600, 3300 and 4500 have "moderate" adverse pressure gradient, and
Flows 0141, 1200, 4400 and 5300 have "strong" adverse pressure gradient .
Discrepancies between computed and measured cf increase dramatically for
all four k-c models as the strength of the pressure gradient increases . By
contrast, k-w results are remarkably close to measured values for all twelve
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Figure 4.18 : Flat-plate boundary layer properties . CH = Chien ; DM
= Dutoya-Michard ; 110 = HofFman ; HP = Hassid-Poreh ; LB = Lam-
Bremhorst with e = va'k/8y2 ; LB1 = Lam-Bremhorst with ac/8y = 0 ;
LS = Launder-Sharma ; WR = Wilcox-Rubesin . [From Patel, Rodi and
Scheuerer (1985) - Copyright © AlAA 1985 - Used with permission .]
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Figure 4.19 : Comparison of computed and measured skin friction for low-
Reynolds-number flows with pressure gradient . CH = Chien ; LB1 = Lam-
Bremhorst with Oc/ay = 0; LS = Launder-Sharma ; WR = Wilcox-Rubesin .
[From Patel, Rodi and Scheuerer (1985) - Copyright © AIAA 1985 -
Used with permission .]

cases, including the nearly separated Flow 5300 (the Chien model predicts
separation for this case) . In terms of the final values of cf, the average
difference between computation and measurement is 7% for the k-w model,
46% for the Launder-Sharma model, 46% for the Chien model, 58% for the
Lam-Bremhorst model, and 74% for the Jones-Launder model .

These results confirm the defect-layer perturbation solution presented
in Subsection 4 .6 .2, which shows that [see Equation (4.151)] :

Ue -U 1ti --fnr7 + A - 0TC77Pn?7 + O (r/ Z tnr?)

	

as

	

y -~ 0

	

(4.194)
UT

where the coefficient C is given in Table 4.4 . Combining Equation (4 .194)
with Equation (4.148), the effective law of the wall predicted by the k-c
model is

y+ --> 00

	

(4 .195)

Figure 4.21 compares the computed Launder-Sharma model near-wall ve-
locity profile with experimental data, the standard law of the wall and
Equation (4.195) . Examination of the numerical solution shows that the
implied constant in the law of the wall, B, is 5.5 . As shown, the asymptotic
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Figure 4.20: Computed and measured skin friction for boundary layers
with adverse pressure gradient ; CH = Chien; JL = Jones-Launder ; LB =
Lam-Bremhorst; LS = Launder-Sharma ; kw = k-w.
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Figure 4.21 : Computed and measured near-wall velocity profiles for Samuel
and Joubert's adverse pressure gradient flow, x = 3 .40 m. ; Launder-
Sharma model with K = .43 and B = 5.5 ; o Samuel-Joubert .

formula provides an excellent approximation to the numerical results in the
region between y+ = 20 and 100 . If we included the O(r12tnq) term or used
the exact defect-layer solution, the match would extend even farther above
the sublayer . The important point to note is the impact of the term in
Equation (4.195) proportional to the equilibrium parameter, NT . Its effect
is to distort the velocity profile throughout the defect layer, including its
asymptotic form approaching the sublayer from above .

As a final comment on low-Reynolds-number corrections for the k-e
model, using the dimensionless parameters Ry and y+ [Equation (4.185)]
is ill advised . Both depend upon distance normal to the surface, which
can cause difficulty in complex geometries such as a wing-fuselage junction .
Also, it is ironic that several additional closure coefficients and functions
are needed for the k-c model to behave properly in the near-wall region
of a turbulent boundary layer . Dissipation is, after all, a phenomenon
that occurs in the smallest eddies, and that is all we find in the near-
wall region . This further underscores the fact that there is virtually no
connection between the exact equation for e and its modeled counterpart .

4.9 .2 Transition

1

	

10

	

102 + 103
y

Turbulence model equations can be used to predict transition from laminar
to turbulent flow, although most models predict transition to turbulence
at Reynolds numbers that are at least an order of magnitude too low . To
understand why and how the k-w model predicts transition, consider the
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flat-plate boundary layer . For the k-w model, the incompressible, two-
dimensional boundary-layer form of the equations for k and w is as follows.

PU
a

+PV

	

y

	

y
U=

	

(v +VT) aUl

	

(4 .196)
I
(V

2

U 5x + V-=

VT

Cay

	

Q*wk +
ay

[(v + *vT) ay]J
(4 .197)

2

Uax
+V

ay
-a

k
IAT
(5

	

-~w2+ay [(v+0~T)ay] (4.198)

vT = a*k/w

	

(4 .199)

With one exception, all notation and closure coefficients are as defined
in Equations (4 .33) to (4.37) . The only difference is the appearance of
an additional closure coefficient a* in Equation (4 .199). This coefficient
is equal to one for the standard high-Reynolds-number version of the k-w
model. We can most clearly illustrate how the model equations predict
transition by rearranging terms in Equations (4.197) and (4.198) as follows.

U5_ +V
T

= Pkf3*wk +
ay

[(v+u*v,)
5Y1

	

(4.200)

U

OW

+ V
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= P̀,,13w2 + ay
I (v

-+-
0_ ,UT)

ayJ

	

(4.201)

The net production per unit dissipation for the two equations, Pk and
Pu� are defined by :

Pk
_ a*

C

aU1
ay\ 2

-1
)w

P~, _
_aa* C

13

	

8UI8y12 _ 1
w

(4.202)

(4.203)

There are two important observations worthy of mention at this point .
First, if the turbulence energy is zero, Equation (4.201) has a well-behaved
solution . That is, when k = 0, the eddy viscosity vanishes and the w
equation uncouples from the k equation . Consequently, the k-w model
has a nontrivial laminar-flow solution for w . Second, the signs of Pk and
Pu, determine whether k and w are amplified or reduced in magnitude.
However, it is not obvious by inspection of Equations (4 .202) and (4.203)
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how the signs of these terms vary with Reynolds number as we move from
the plate leading edge to points downstream . We can make the variation
obvious by rewriting Equations (4.202) and (4.203) in terms of the Blasius
transformation .

Before we introduce the Blasius transformation, we must determine the
appropriate scaling for w . To do this, we note that close to the surface of
a flat-plate boundary layer, the specific dissipation rate behaves according
to [see Equation (4 .158) and Table 4.5] :

where Uc,. is freestream velocity, the asymptotic behavior of w approaching
the surface is

w --~
Ux

	

077
2

	

as

	

71 -> 0

	

(4.206)

Consequently, we conclude that the appropriate scaling forw in the Blasius
boundary layer is given by

w =
U.W(x, 71)x

Pk =
a* Re.,

~
aU/atj

~

z
_ 1

W

_ aa__

	

au/8g1 2 _ 1Pw

	

0

	

e~
( WW

(4.207)

where W(x, ~) is a dimensionless function to be determined as part of the
solution . Hence, if we write the velocity in terms of dimensionless velocity,

u = U~U (x, Y)

	

(4.208)

the net production per unit dissipation terms become

(4.209)

(4.210)

Thus, both Pk and PW increase linearly with Reynolds number, Rep . From
the exact laminar solution for U(q) and W(~) [the x dependence vanishes
for the Blasius boundary layer], the maximum value of the ratio of all/8q
to W is given by

C

8U/8r~ 1

	

__l

	

(4.211)
W

	

J max
ti

300

6vw --r - "~yz as y 0 (4 .204)

In terms of the Blasius similarity variable, 21, defined by

y__ (4 .205)
vx/U.
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The precise value of this ratio is actually a weak function of the freestream
value of w, ranging between 0.0025 and 0 .0040 . The maximum occurs about
midway through the boundary layer (y/6 = 0.56), a point above which the
exact near-wall behavior of w [Equation (4.206)] does not hold . Hence,
a complete boundary-layer solution is needed to determine the maximum
ratio of 8U/8r/ to W.

As long as the eddy viscosity remains small compared to the molecular
viscosity, we can specify the precise points where Pk and P, change sign .
Using Equation (4.211), we conclude that the sign changes occur at the
following Reynolds numbers .

(Rex)k = 9 . 104
a*

	

(4.212)

(Re,,), = 9 . 104 aa*

	

(4.213)

With no viscous modifications, the closure coefficients a, a*, 0 and Q*

are 5/9, l, 3/40 and 9/100, respectively. Using these fully turbulent
values, we find (Re.,)k = 8, 100 and (Re.,),, = 12,150 .

	

Thus, starting
from laminar flow at the leading edge of a flat plate (see Figure 4.22), the
following sequence of events occurs .

1 . The computation staxts in a laminar region with k = 0 in the bound-
ary layer and a small freestream value of k.

2 . Initially, because Pk < 0 and P,,, < 0, dissipation of both k and w ex-
ceeds production . Turbulence energy is entrained from the freestream
and spreads through the boundary layer by molecular diffusion . Nei-
ther k nor w is amplified and the boundary layer remains laminar .

3 . At the critical Reynolds number, Re.,, = 8,100, production over-
takes dissipation in the k equation . Downstream of x,, production
exceeds dissipation in the k equation and turbulence energy is ampli-
fied . At some point in this process, the eddy viscosity grows rapidly
and this corresponds to the transition point .

4 . k continues to be amplified and, beyond Re., = 12,150 production
overtakes dissipation in the w equation . w is now amplified and con-
tinues growing until a balance between production and dissipation is
achieved in the k equation . When this balance is achieved, transition
from laminar to turbulent flow is complete .

Consistent with experimental measurements, the entire process is very
sensitive to the freestream value of k . There is also a sensitivity to the
freestream value of w, although the sensitivity is more difficult to quantify.
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cf _ .

(Re.,)k

	

(Re.,),,

	

Rep.

Figure 4.22 : Skin friction variation for a boundary layer undergoing tran-
sition from laminar to turbulent flow .

Three key points are immediately obvious . First, k begins growing at a
Reynolds number of 8,100 . By contrast, linear-stability theory tells us that
Tollmien-Schlichting waves begin forming in the Blasius boundary layer at
a Reynolds number of 90,000 . This is known as the minimum critical
Reynolds number . Correspondingly, we find that the model predicts
transition at much too low a Reynolds number . Second, inspection of
Equations (4.212) and (4 .213) shows that the width of the transition region
is controlled by the ratio of ,3 to as* . Third, transition will never occur if
P, reaches zero earlier than Pk . Thus, occurrence of transition requires

aa* < a*,3/,3*

	

as

	

ReT -> 0

	

(4.214)

This fact must be preserved in any viscous modification to the model . Our
goal is to devise viscous modifications that depend only upon ReT . As noted
in the preceding subsection, this quantity is independent of flow geometry
and thus preserves the universal nature of the model . We also proceed with
two key objectives in mind . The most important objective is to match the
minimum critical Reynolds number . Reference to Equation (4 .212)
shows that we must require

/3*/a* --+ 1

	

as

	

ReT ` 0

	

(4.215)

Our secondary objective is to achieve asymptotic consistency with
the exact behavior of k and dissipation, c = ,(3* kw, approaching a solid
boundary. That is, we would like to have k/y2 --> constant and E/k --> 2v/y2
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as y , 0 . Close to a solid boundary, the dissipation and molecular diffusion
terms balance in both the k and w equations . The very-near-wall solution
for w is given by Equation (4 .204) . The solution for k is of the form

where n is given by

k/yn -+ constant

	

as

	

y- 0

	

(4.216)

Noting that dissipation is related to k and w by

c = ,0*kw

we can achieve the desired asymptotic behavior of k provided

/3*/,0 --+ 1/3

	

as

	

ReT -+ 0

Requiring this limiting behavior as ReT -* 0 is sufficient to achieve the
desired asymptotic behavior as y -+ 0 since the eddy viscosity, and hence,
ReT vanishes at a solid boundary.

If we choose to have ,0 constant for all values of ReT, Equations (4.214),
(4 .215) and (4.219) are sufficient to determine the limiting values of a* and
,3* and an upper bound for aa* as turbulence Reynolds number becomes
vanishingly small . Specifically, we find

aa* < ,0
a*

	

--~

	

,0/3

	

as

	

ReT --+ 0
,0* -~ ,0/3

*
1 + 24L

	

(4.217)
01

(4.218)

(4 .219)

(4.220)

Wilcox and Rubesin (1980) make the equivalent of aa* and a* in their k-w2

model approach the same limiting value and obtain excellent agreement
with measured transition width for incompressible boundary layers . Nu-
merical experimentation with the k-w model indicates the optimum choice
for incompressible boundary layers is aa* --+ 0 .74/3, or

as* , 1/18

	

as

	

ReT -+ 0 (4.221)

Wilcox (1992a) postulates the following functional dependencies upon ReT
that guarantee the limiting values in Equations (4.220) and (4 .221), as well
as the original fully turbulent values for ReT -' oo .

a* - ao + ReT/Rk

	

(4.222)
1 + ReT/Rk
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three coefficients Rp, Rk and Rw control the rate at which the

closure

coefficients approach their fully-turbulent values

.

We can determine

their

values by using perturbation methods to analyze the viscous sublayer

.
Using

the procedure discussed in Subsection 4

.6.3,

we can solve for the

constant

in the law of the wall, B

.

For given values of Rp and Rk, there

is

a unique value of R,, that yields a constant in the law of the wall of

5.0 .

For small values of Rp the peak value of k near the surface is close

to

the value achieved without viscous corrections, viz

.,

u'/V/)-3-*

.

As Rp

increases,

the maximum value of k near the surface increases

.

Comparison

of

computed sublayer structure with Direct Numerical Simulation (DNS)

results

of Mansour, Kim and Moin (1988) indicates the optimum choice for

these

three coefficients is as indicated in Equation (4

.226) .
The

only flaw in the model's asymptotic consistency occurs in the

Reynolds

shear stress, Txy

..

While the exact asymptotic behavior is T,,y - y3,

the

model as formulated predicts T,,y - y4

.

This discrepancy could easily

be

removed with another viscous modification

.

However, as will be shown

later

in this subsection, this is of no significant consequence

.

It has no obvi-

ous

bearing on either the model's ability to predict transition or properties

of

interest in turbulent boundary layers

.

The additional complexity and

uncertainty

involved in achieving this subtle feature of the very-near-wall

behavior

of rxy does not appear to be justified

.
Given

the information developed above, it is a simple matter to explain

why

little progress has been made in predicting transition with the k-e

model .

The primary difficulties can be easily demonstrated by focusing

upon

incompressible boundary layers

.

If we use the standard form of the

k-c

model, Equations (4

.197)

- (4

.199)

are replaced by
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a
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=

(a*)_i

(4.223)9

1 + ReT/R,

*

5/18 +

_

_9 (RCT/Rp)4

(4.224)100

1 + (RCT/Rp)4

3/40,

a* = u = 1/2, a* =,3/3, ao = 1/10

(4.225)

Rp

= 8, Rk = 6, R,, = 27/10

(4 .226)

The

quantity ReT is turbulence Reynolds number defined by

ReT (4 .227)WV
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One critical difference from the k-w model is obvious by inspection of
Equations (4.228) - (4 .230) . Specifically, if the turbulence energy is zero,
c must also be zero . We cannot simply drop the eddy viscosity in the c
equation because of the presence of k in the denominator of the c equation's
dissipation term . The model does possess a laminar-flow solution for the
ratio of c to k . That is, if we make the formal change of variables

c = Cmkw

	

(4.231)

and assume vT « v, the following laminar-flow equation for w results .
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Equation (4 .232) is nearly identical to the limiting form of Equation (4.198)
for vT/v -> 0 . The only significant difference is the last term on the right-
hand side of Equation (4.232) . Except close to the surface where k must be
exactly zero, this term is unlikely to have a significant effect on the solution
for small nonzero values of k . However, in a numerical solution, products of
dependent-variable gradients are generally destabilizing, and the problem
can only be aggravated by having a coefficient inversely proportional to
k . This is not an insurmountable problem. However, establishing starting
conditions is clearly more difficult with the k-c model than with the k-w
model.

Given the diverse nature of viscous modifications that have been pro-
posed for the k-c model, it is impossible to make any universal statements
about why a specific model fails to predict realistic transition Reynolds
numbers . Perhaps the strongest statement that can be made is, no one
has approached the problem from the transition point of view .
Most researchers have sought only to achieve asymptotic consistency (Sub-
section 4.9 .1) and attempted transition predictions only as an afterthought .
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We can gain some insight by examining the net production per unit dissipa-
tion terms for the k and e equations that are analogous to Equations (4 .209)
and (4.210), viz .,

C

	

Ca

W~\ 2

Pk = f"' Re~

	

JJJ\
_ 1 (4 .233)

CEif,. Re.,
C
au/a~, l _ 1 (4 .234)PE

- CE2C,d

	

W
On the one hand, without viscous damping, if we assume Equa-

tion (4 .211) is valid, we find (Re.,)k = 8,100 and (Re.,), = 10,800 . Con-
sequently, as with the high-Reynolds-number version of the k-w model,
transition will occur at too low a Reynolds number . On the other hand,
because C,,, CE2 and sometimes CE 1 are multiplied by functions of dis-
tance from the surface and/or functions of ReT (c.f. f,s , f and f2 in Sub-
section 4 .9 .1) in low-Reynolds-number k-c models, we cannot simply use
Equation (4.211) . Furthermore, as discussed in the preceding subsection,
some modelers add terms to the k and c equations in addition to damping
the closure coefficients . Each set of values for the closure coefficients and
additional terms must be used in solving Equation (4.232) to determine
the laminar-flow solution for -Elk . While it is clearly impossible to make a
quantitative evaluation of all variants of the k-e model, we can nevertheless
make some general observations .

From the analysis of the k-w model, it is obvious that having

	

< 1
will tend to delay transition . Virtually all modelers implement an

	

that
will accomplish this end. However, the modifications of Jones and Launder
(1972), Chien (1982), and Lam and Bremhorst (1981), for example, damp
CE2 to the extent that (Re,), is smaller than (Rex )k . This is the opposite
of what is needed and will have an undesirable effect on both the onset of
and the extent of the transition region .

This discussion is not intended as an exhaustive survey of the numer-
ous low-Reynolds-number versions of the k-E model . Rather, it is intended
to illustrate how difficult it is to apply the model to the transition prob
lem. Given enough additional closure coefficients and damping functions,
the k-c model can probably be modified to permit satisfactory transition
predictions . However, even if this is done, establishing starting conditions
will ultimately require a solution to Equation (4.232) . That is, to initialize
the computation, we must effectively transform to the k-w model . Since
this is the natural starting point, it seems illogical to perform subsequent
computations in terms of k and E.

Figure 4.23 compares computed channel-flow skin friction, ef, with the
Halleen and Johnston (1967) correlation [see Equation (3.137)] for Reynolds
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number based on channel height, H, and average velocity ranging from 103
to 105 using the k-w model. As shown, computed cf differs from the corre-
lation by less than 3% except at the lowest Reynolds number shown where
the correlation probably is inaccurate . Velocity, Reynolds shear stress, and
turbulence kinetic energy profiles differ by less than 7%. Most notably,
the model predicts the peak value of k near the channel wall to within
4% of the DNS value. The low-Reynolds-number modifications have been
designed to capture this feature . Additionally, approaching the surface,
the turbulence-energy production, -r,,,,BU/ay, and dissipation, c, are within
10% of the DNS results except very close to the surface .

Figure 4.24 compares computed pipe flow of with Prandtl's universal
law of friction [see Equation (3.138)] . Reynolds number based on pipe
diameter, D, and average velocity varies from 103 to 105 . As with channel
flow, computed cf falls within 5% of the correlation except at the lowest
Reynolds number shown where the correlation is likely to be in error .

Computed and measured velocity and Reynolds shear stress profiles
differ by less than 8%. As with channel flow, computed and measured
turbulence kinetic energy differ by about 5% including close to the surface
where the sharp peak occurs . Note that, at this high a Reynolds number,
the k profile has a sharp spike near y = 0 and this feature is captured in
the computations . Except very close to the surface, computed turbulence
energy production and dissipation differ from measured values by less than
10%. This may actually be a desirable result . That is, some controversy
exists about the accuracy of Laufer's dissipation measurements close to the
surface.

Turning now to transition, Figure 4.25 compares computed and mea-
sured transition Reynolds number, Reel , for an incompressible flat-plate
boundary layer. We define the transition Reynolds number as the point
where the skin friction achieves its minimum value. Results are displayed
as a function of freestream turbulence intensity, T', defined by

T'=100 2_ _k e
3 Ue

(4.235)

where subscript e denotes the value at the boundary-layer edge . As shown,
consistent with the data compiled by Dryden (1959), Ree, increases as the
freestream intensity decreases . Because w can be thought of as an averaged
frequency of the freestream turbulence, it is reasonable to expect the pre-
dictions to be sensitive to the freestream value of w. To assess the effect, the
freestream value of the turbulence length scale f = k 1la /w has been varied
from .0016 to .100b where b is boundary-layer thickness. As shown, com-
puted Reet values bracket virtually all of the data . Unlike the situation for
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Figure 4.23 : Comparison of computed and measured channel-flow proper-
ties, RCH = 13,750 . Low-Reynolds-number k-w model ; o Mansour et
al . (DNS) ; o Halleen-Johnston correlation .
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Figure 4.24 : Comparison of computed and measured pipe-flow proper-
ties, ReD = 40,000 . Low-Reynolds-number k-ca model ; o Laufer ;
o Prandtl correlation .
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free shear flows, the k-w model's sensitivity to the freestream value of w is a
desirable feature for transition applications . Physical transition location
is not simply a function of T', but rather is frequency dependent . While it
is unclear how the freestream value of w should be specified, consistent with
measurements, the model is not confined to a single transition location for
a given T' regardless of the frequency of the disturbance.

Figure 4.26 compares computed width of the transition region with
measurements of Dhawan and Narasimha (1958), Schubauer and Skram-
stad (1948), and Fisher and Dougherty (1982) . We define transition width,
Oxt, as the distance between minimum and maximum skin-friction points .
The computed width, ReA,,, falls within experimental data scatter for
10 4 < Re, < 107 . Oxt is unaffected by the freestream value of w .

While these transition results are interesting, keep in mind that transi-
tion is a complicated phenomenon . Transition is triggered by a disturbance
in a boundary layer only if the frequency of the disturbance falls in a spe-
cific band . Reynolds averaging has masked all spectral effects, and all the
model can represent with k and w is the intensity of the disturbance and an
average frequency. Hence, it is possible for the turbulence model to predict
transition when it shouldn't occur. The model equations thus are sensible
in the transition context only if the triggering disturbance is broad band,
i.e ., contains all frequencies .

Additionally, we have only guaranteed that the point where k is first
amplified matches the minimum critical Reynolds number for the incom-
pressible, flat-plate boundary layer. To simulate transition with complicat-
ing effects such as pressure gradient, surface heat transfer, surface rough-
ness, compressibility, etc ., the values of ao and a,, must change [see Wilcox
(1977)]. Their values can be deduced from linear-stability theory results,
or perhaps from a correlation based on stability theory . Nevertheless, some
information must be provided regarding the minimum critical Reynolds
number for each new application.

Perhaps the most practical way to use the model for transitional flows is
in describing the transitional region . Of course, the question ofsensitivity to
spectral effects in the transition region must be raised . Using linear-stability
computations, Wilcox (1981a) shows that after the initial disturbance has
grown to a factor of e4 times its initial value, the turbulence model closure
coefficients lose all memory of spectral effects. Thus, we can conclude that
not far downstream of the minimum critical Reynolds number, Reynolds
averaging is sensible .

As a final comment regarding low-Reynolds-number corrections for two-
equation turbulence models, note that the complexity of the model increases
significantly . The Standard k-w model has just 5 closure coefficients . The
low-Reynolds-number version described in this subsection has 10 closure
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Figure 4.25 : Transition location for an incompressible flat-plate boundary
layer ; --- t/b = .001 ;

	

P/b = .010 ; - - - f/b = .100 ; o Dryden .

Figure 4.26 : Transition width for an incompressible flat-plate boundary
layer ; k-w model ; o Dhawan-Narasimha ; o Schubauer-Skramstad ;
o Fisher-Dougherty.
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coefficients and 3 empirical damping functions . The various low-Reynolds-
number models discussed in Subsection 4.9 .1 involve a similar increase in
the number of closure coefficients and damping functions . If viscous effects
are insignificant for a given application, it is advisable to use the simpler
high-Reynolds-number version of the model . In the case of the k-e model,
if you need to integrate through the viscous sublayer, you have no choice
but to use one of the low-Reynolds-number models, preferably one that
yields a satisfactory solution for simple flows such as the incompressible
flat-plate boundary layer . In the case of the k-w model, integration through
the sublayer can be done without introducing the viscous corrections, and
there is virtually no difference in model-predicted skin friction and velocity
profiles with and without viscous corrections for boundary layers .

4.10

	

Separated Flows
Turning to separated flows, we first consider the axisymmetric flow with
strong adverse pressure gradient that has been experimentally investigated
by Driver (1991) . Figure 4.27 compares Menter's (1992b) computed and
measured skin friction and surface pressure for the k-w model . As shown,
the k-w model yields results almost as close to measurements as those ob-
tained with the Johnson-King model [see Figure 3.19], although pressure
downstream of reattachment is somewhat higher than measured. Results
are clearly much closer to measurements than those obtained with the
Baldwin-Lomax and Baldwin-Barth models .
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Figure 4.27 : Computed and measured flow properties for Driver's separated
flow ;

	

k-w model ; o Driver .
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Figure 4.28 : Backward-facing step flow geometry and inlet conditions for
the Driver-Seegmiller (1985) experiments . [From Driver and Seegmiller
(1985) - Copyright © AIAA 1985 - Used with permission .]

The backward-facing step (Figure 4.28) is a popular test case for tur-
bulence models because the geometry is simple . Additionally, separation
occurs at the sharp corner so the flow is easier to predict than a flow for
which the separation point is unknown a priori . Figure 4.29 compares
computed and measured [Driver and Seegmiller (1985)] skin friction for
backstep flow with the upper channel wall inclined to the lower wall at 0°
and 6° . Computed results are shown for the Standard k-w model and for
the Standard k-c model with wall functions ; neither model includes viscous
corrections . As summarized in Table 4.6, the k-c model predicts reattach-
ment well upstream of the measured point for both cases, while the k-w
model is within 3% of the measured location for both cases .

Table 4 .6 : Backstep Reattachment Length

Model Reference a = 0° a=60
k-c Launder-Sharma (1974) 5.20 5.50
k-w Wilcox (1988a) 6.40 8.45
Measured Driver-Seegmiller (1985 6.20 8.10
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Figure 4.29 : Computed and measured skin friction for flow past a backward-
facing step ; k-w model; --- k-c model; 9 Driver-Seegmiller data .
[Partially taken with permission from Menter (1992c) .]

Many researchers have proposed modifications to the k-c model aimed
at improving its predictions for this flow . Driver and Seegmiller (1985),
for example, compare four different versions of the model with their ex
perimental data . We will discuss some of the proposed fixes for the k-c
model in Chapter 6. By contrast, the k-w model's solution for flow past
the backward-facing step is satisfactory with no special modifications.

Han (1989) has applied the k-E model with wall functions to flow past
a simplified three-dimensional bluff' body with a ground plane . The object
considered is known as Ahmed's body [Ahmed et al . (1984)] and serves as
a simplified automobile-like geometry. In his computations, Ha,n considers
a series of afterbody slant angles . Figure 4.30(a) illustrates the shape of
Ahmed's body with a 30° slant angle afterbody. Figure 4.30(b) compares
computed and measured surface pressure contours on the rear-end surface
for a 12.5° slant angle. As shown, computed pressure contours are sim-
ilar on the slanted surface, but quite different on the vertical base . For
slant angles up to 20°, the computed base pressures are significantly lower
than measured . Consequently, the computed drag coefficient is about 30%
higher than measured . Considering how poorly the k-c model performs for
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boundary layers in adverse pressure gradient and for the two-dimensional
backward-facing step, it is not surprising that the model would predict such
a large difference from the measured drag in this extremely complicated
three-dimensional, massively-separated flow .

This is a quintessential example of how important turbulence model-
ing is to Computational Fluid Dynamics . Recall that there are three key
elements to CFD, viz ., the numerical algorithm, the grid and the turbu-
lence model. Han uses an efficient numerical procedure and demonstrates
grid convergence of his solutions . Han's computational tools also include
state-of-the-art grid-generation procedures . Han's research efforts on this
problem are exemplary on both counts . However, using the k-c model un-
dermines the entire computation for the following reasons. Because the
model fails to respond in a physically realistic manner to the adverse pres-
sure gradient on the read-end surface, the predicted skin friction is too high .
This means the vorticity at the surface is too large, so that too much vortic-
ity diffuses from the surface . This vorticity is swept into the main flow and
too strong a vortex forms when the flow separates . This, of course, reduces
the base pressure . Thus, the k-c model's inability to accurately respond to
adverse pressure gradient distorts the entire flowfield.

4 .11

	

Range of Applicability
Turbulence-energy equation models include both incomplete one-equation
models and complete two-equation models . As discussed in Section 4.2,
only a modest advantage is gained in using a one-equation model rather
than an algebraic model. The primary difficulty is the need to specify the
length scale for each new application. There is no natural way to accom-
modate an abrupt change from a wall-bounded flow to a free shear flow
such as near an airfoil trailing edge or beyond the trunk lid of an automo-
bile . The only real advantage of using a one-equation model rather than
a two-equation model stems from the relative difficulty often encountered
in solving the model equations numerically. One-equation models tend to
be nearly as well behaved as algebraic models . By contrast, two-equation
models, especially the k-c model, are often very difficult to solve. However,
the user must establish his or her priorities on a key issue. Specifically,
the user must decide if it is more desirable to have an easy-to-implement,
inaccurate model, or a more-difficult-to-implement, accurate model. Those
preferring the latter should probably select a two-equation model.

Certainly the k-c model is the most widely used two-equation model.
It has been applied to many flows with varying degrees of success. Un-
fortunately, it is inaccurate for flows with adverse pressure gradient and
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(a) Body geometry and surface grid
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(b) Static-pressure contours

Figure 4.30 : Flow past Ahmed's body . [From Han (1989) - Copyright
© AIAA 1989 - Used with permission .]

I -0"1

-0 .4 _0.
w
U
<
W

~... -0 .2 WN

IR'
-r--0.15 W

z

f
11Y
i

i a

w
-0 .55 m

i~
a
U

a
w

-o .ls



4.11 . RANGE OF APPLICABILITY

	

165

that poses a serious limitation to its general utility . The model is also
extremely difficult to integrate through the viscous sublayer and requires
viscous corrections to simply reproduce the law of the wall for an incom-
pressible flat-plate boundary layer. No consensus has been achieved on the
optimum form of the viscous corrections as evidenced by the number of
researchers who have created low-Reynolds-number versions of the model
(see Subsection 4.9 .1) . While the model can be fine tuned for a given ap-
plication, it is not clear that this represents an improvement over algebraic
models . The primary shortcoming of algebraic models is their need of fine
tuning for each new application . While saying the k-c model always needs
such fine tuning would be a bit exaggerated, it still remains that such tuning
is too often needed .

The k-w model, although not as popular as the k-F model, enjoys sev-
eral advantages . Most importantly, the model is very accurate for two-
dimensional boundary layers with variable pressure gradient (both adverse
and favorable) . Also, without any special viscous corrections, the model
can be easily integrated through the viscous sublayer . Finally, for the lim-
ited cases tried to date, the model appears to match measured properties
of recirculating flows with no changes to the basic model and its closure
coefficients . With viscous corrections included, the k-w model accurately
reproduces subtle features of turbulence kinetic energy behavior close to
a solid boundary and even describes boundary-layer transition reasonably
well . The only weakness of the k-w model appears to be its sensitivity to
freestream boundary conditions for free shear flows. While the k-e model
does not share this sensitivity, its predicted spreading rate matches mea-
surements only for the plane jet .

Other two-equation models have been created, but they have had even
less use than the k-w model. Before such models can be taken seriously, they
should be tested for simple incompressible boundary layers with adverse
pressure gradient . How many interesting flows are there, after all, with
constant pressure?

While two-equation models, especially the k-w model, are far more gen-
eral than less complex models, they nevertheless fail in some applications .
In Chapter 5, we will see that these models are unreliable for boundary-layer
separation induced by interaction with a shock wave . In Chapter 6, we will
see that two-equation models are inaccurate for flows over curved surfaces .
Also, two-equation models as presented in this chapter cannot predict sec-
ondary motions in noncircular duct flow . In all three of these examples, the
difficulty can be traced to the Boussinesq eddy-viscosity approximation .
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Problems

4.1 Verify that the exact equation for the dissipation, e, is given by Equa-
tion (4 .39) . That is, derive the equation that follows from taking the fol-
lowing moment of the Navier-Stokes equation .

w2 = 2wawa

2vu'a [N(ul)l = 0Ox3 8xj
where N(uj) is the Navier-Stokes operator defined in Equation (2.26) .

4.2 Starting with Equations (4 .4) and (4.39), define e = ,3*wk and derive
an "exact" w equation .

4.3 Derive the exact equation for the enstrophy, w2 , defined by

where Wa = Ea7k0Uk10x7

That is, Wi is the fluctuating vorticity. HINT: First derive the equation
for the vorticity, multiply by ws, and time average.

4.4 We wish to create a new two-equation turbulence model. Our first
variable is turbulence kinetic energy, k, while our second variable is the
"eddy acceleration," a. Assuming a has dimensions (length)/(time)', use
dimensional arguments to deduce plausible algebraic dependencies of eddy
viscosity, vT, turbulence energy dissipation rate, c, and turbulence length
scale, f, upon k and a .

4.5 Beginning with the k-w model and with a = o-*, make the formal change
of variables c = #*wk and derive the implied k-E model. Express your final
results in standard k-E model notation and determine the implied values
for Cu , CE1, CE2, O'k and uE in terms of a, ,l3, ,l3*, o- and a* .

4.6 Beginning with the k-E model, make the formal change of variables
e = C~,wk and derive the implied k-w model. Express your final results in
standard k-w model notation and determine the implied values for a,
13*, o, and o-* in terms of C,� CEl , CE2, O'k and a. .

4.7 Simplify the k-E, k-kf, k-kr and k-T models for homogeneous, isotropic
turbulence . Determine the asymptotic decay rate for k as a function of
the closure coefficient values quoted in Equations (4.43), (4 .49), (4.56) and
(4.59) . Make a table of your results and include the decay rate of t-1 .2° for
the k-w model. (NOTE: You can ignore the (f/y)6 contribution to CL2
for the k-kf model.)
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4.8 Simplify the k-E, k-kf, k-kr and k-T models for the log layer . Determine
the value of Karman's constant, tc, implied by the closure coefficient values
quoted in Equations (4 .43), (4.49), (4 .56) and (4.59) . Make a table of
your results and include the value 0 .41 for the k-w model . NOTE: For all
models, assume a solution of the form dU/dy = uT /(Ky), k = uT/ C,~ and
VT = KU,y . Also, C. = CD for the k-ki model .

4.9 Beginning with Equations (4.73), derive the self-similar form of the k-w
model equations for the mixing layer between a fast stream moving with
velocity Ul and a slow stream with velocity U2 .

(a) Assuming a streamfunction of the form O(x, y) = U1xF(71), transform
the momentum equation, and verify that V is as given in Table 4.1 .

(b) Transform the equations for k and Lo .

(c) State the boundary conditions on 1.1 and K for 17/1 , oo and for V(0) .
Assume k --> 0 as jyj --> oo .

(d) Verify that if w i4 0 in the freestream, the only boundary conditions
consistent with the similarity solution are :

4.11 Derive Equation (4.118) .

_i yl -

Ui#U2

	

77 --,

	

o0

4.10 Exercise Programs WAKE, MIXER and JET (Appendix C) and verify
the results quoted in Table 4 .2 . Cover the following ranges of values for
WTIN:

4.12 Demonstrate the integral constraint on the defect-layer solution, Equa-
tion (4 .124) .

4.13 Determine, the shape factor to O(u,/Ue) according to the defect-layer
solution . Express your answer in terms of an integral involving Ui(7l) .

Far Wake 10-6 <_ WTIN <_ 1
Mixing Layer 10-6 <_ WTIN <_ 1
Plane Jet 10-s <_ WTIN <_ 10
Round Jet 10-6 < WTIN < 100
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4.14 For the k-w model, very close to the surface and deep within the
viscous sublayer, dissipation balances molecular diffusion in the w equation .
Assuming a solution of the form w = w�, /(1 + Ay)', solve this equation for
w = w �, at y = 0. Determine the limiting form of the solution as wt� -+ oo .

4.15 Consider a flow with freestream velocity U,,, past a wavy wall whose
shape is

1 27rx
y = 2kR sin

(NkR
where kR is the peak to valley amplitude and NkR is wavelength . The
linearized incompressible solution valid for N > 1 is U = U,,,, + u', V = v'
where

p (_
')sin()

2~y
u =Nex

	

Nk

	

NkR R

'

	

7rU

	

2,r

	

2,rv =Nexp ~- NkR)
cas

( NkR

Making an analogy between this linearized solution and the fluctuating
velocity field in a turbulent flow, compute the specific dissipation rate,
w = E/(,l3*k) . Ignore contributions from the other fluctuating velocity com-
ponent, w' .

4.16 Using Program SUBLAY (Appendix C), determine the variation ofthe
constant B in the law of the wall for the k-w model with the surface value of
w . Do your computations with (nvisc = 0) and without (nvisc = 1) viscous
modifications . Let ww assume the values 1, 3, 10, 30, 100, 300, 1000 and
oo. Be sure to use the appropriate value for input parameter iruf. Present
your results in tabular form .

4.17 Consider incompressible Couette flow with constant pressure, i .e ., flow
between two parallel plates separated by a distance H, the lower at rest
and the upper moving with constant velocity U�, .
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(a) Assuming the plates are infinite in extent, simplify the conservation
of mass and momentum equations and verify that

(v+VT)d = uT
y

(b) Now ignore molecular viscosity. What boundary condition on U is
appropriate at the lower plate?

(c) Introducing the mixing length given by

fmix = tcy(1 - y1H)

solve for the velocity across the channel. HINT : Using partial
fractions:

1

	

_ 1

	

1

y(I - y1H)

	

y + (H-y)

Don't forget to use the boundary condition stated in Part
(b) .

(d) Develop a relation between friction velocity, uT , and the average ve-
locity,

1 H
Uav9 = H f

	

U(y) dy

(e) Using the k-w model, simplify the equations for k and w with the
same assumptions made in Parts (a) and (b) .

(f) Deduce the equations for k and w that follow from changing indepen-
dent variables from y to U so that

_d d
VT dy

_
-

u
Z
T dU

(g) Assuming k = u2r/ (3*, simplify the equation for w. NOTE: You
might want to use the fact that (/~ - a,Q*) _

	

/3*K2 .
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4.18 For incompressible, laminar Couette flow, we know that the velocity
is given by

U=UW
H

where U�, is the velocity of the moving wall, y is distance form the stationary
wall, and H is the distance between the walls.

(a) What is the maximum Reynolds number,

ReH~ = U�,H/v

at which the flow remains laminar according to the high-Reynolds-
number version of the k-w model? To arrive at your answer, you may
assume that

6v

	

0 < y< H/22'
w =

	

Qy 6v
fl(H

- y)21

	

H/2

	

y <H

(b) Above what Reynolds number is w amplified?

4.19 This problem studies the effect of viscous-modification closure coeffi-
cients for the k-w model using Program SUBLAY (Appendix C) .

(a) Modify Subroutine START to permit inputting the values of Rk and
R.,, (program variables rk and rw) . Determine the value of RL,, that
yields a smooth-wall constant in the law of the wall, B, of 5.0 for
Rk = 4, 6, 8, 10 and 20 .

(b) Now make provision for inputting the value of Rp (program variable
rb). For Rk = 6, determine the value of R, that yields B = 5.0 when
Rp = 0, 4, 8, and 12 . Also, determine the maximum value of k+ for
each case .
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