
Chapter 3

Algebraic Models

The simplest of all turbulence models are known as algebraic models . These
models use the Boussinesq eddy-viscosity approximation to compute
the Reynolds stress tensor as the product of an eddy viscosity and the mean
strain-rate tensor . For computational simplicity, the eddy viscosity, in turn,
is often computed in terms of a mixing length that is analogous to the mean
free path in a gas. We will find that, in contrast to the molecular viscosity
that is an intrinsic property of the fluid, the eddy viscosity (and hence the
mixing length) depends upon the flow . Because the eddy viscosity and
mixing length depend upon the particular flow under consideration they
must be specified in advance. Thus, algebraic models are, by definition,
incomplete models of turbulence .

We begin this chapter by first discussing molecular transport of momen-
tum. Next we introduce Prandtl's mixing-length hypothesis and discuss its
physical implications and limitations . The mixing-length model is then ap-
plied to free shear flows for which self-similar solutions hold . We discuss two
modern algebraic turbulence models that are based on the mixing-length
hypothesis, including applications to attached and separated wall-bounded
flows. The latter applications illustrate the limit to the algebraic model's
range of applicability. An interesting separated-flow replacement for alge-
braic models, known as the Half-Equation Model, improves agreement
between computed and measured flow properties . The chapter concludes
with a discussion of the range of applicability of algebraic models .
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CHAPTER 3. ALGEBRAIC MODELS

3 .1

	

Molecular Transport of Momentum
To understand the motivation for the Boussinesq approximation, it is in-
structive to discuss momentum transport at the molecular level . However,
as a word of caution, molecules and turbulent eddies are funda-
mentally different . They are so different that we will ultimately find,
in Section 3.2, that the analogy between turbulent and molecular mixing
is questionable, to say the least! It is nevertheless fruitful to pursue the
analogy to illustrate how important it is to check the premises underlying
turbulence closure approximations . At first glance, mimicking the molecu-
lar mixing process appears to be a careful exercise in physics . As we will
see, the model just cannot stand up under close scrutiny.

We begin by considering a shear flow in which the velocity is given by
U = U(y) i

	

(3.1)
where i is a unit vector in the x direction . Figure 3.1 depicts such a flow .
We consider the flux of momentum across the plane y = 0, noting that
molecular motion is random in both magnitude and direction . Molecules
migrating across y = 0 are typical of where they come from . That is,
molecules moving up bring a momentum deficit and vice versa . This gives
rise to a shear stress t ., y .

U(y)

Figure 3 .1 : Shear flow schematic .

At the molecular level, we decompose the velocity according to

u=U+u"

	

(3.2)
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where U is the average velocity defined in Equation (3 .1) and u" repre-
sents the random molecular motion . The instantaneous flux of any prop-
erty across y = 0 is proportional to the velocity normal to the plane which,
for this flow, is simply v" . Thus, the instantaneous flux of x-directed mo-
mentum, dpxy, across a differential surface area dS is

dpxy = p(U + u")v" dS

	

(3 .3)

Performing an ensemble average over all molecules, we find

dP,y = p0v" dS

	

(3.4)

By definition, the stress acting on y = 0 is given by any = dP.,y/dS .
It is customary in fluid mechanics to set crij = pbij - tij, where tij is the
viscous stress tensor . Thus,

txy = -puiivii

	

(3 .5)

Equation (3 .5) bears a strong resemblance to the Reynolds-stress tensor .
This is not a coincidence. As pointed out by Tennekes and Lumley (1983),
a stress that is generated as a momentum flux can always be written in
this form . The only real difference is that, at the macroscopic level, the
turbulent fluctuations, u' and v', appear in place of the random molecular
fluctuations, u" and v" . This similarity is the basis of the Boussinesq
eddy-viscosity approximation.

Referring again to Figure 3.1, we can appeal to arguments from the
kinetic theory of gases [e .g ., Jeans (1962)] to determine txy in terms of U(y)
and the fluid viscosity, p. First, consider the average number of molecules
moving across unit area in the positive y direction . For a perfect gas,
molecular velocities follow the Maxwellian distribution so that all directions
are equally probable . The average molecular velocity is the thermal velocity,
vth, which is approximately 4/3 times the speed of sound in air . On average,
half of the molecules move in the positive y direction while the other half
move in the negative y direction . Also, the average vertical component of
the velocity is wi th cos 0 where 0 is the angle from the vertical . Integrating
over a hemispherical shell, the average vertical speed is wit h/2 . Thus, the
average number of molecules moving across unit area in the positive y
direction is nvth/4, where n is the number of molecules per unit volume .

Now consider the transfer of momentum that occurs when molecules
starting from point P cross the y = 0 plane. We assume molecules are typ-
ical of where they come from which, on the molecular scale, is one mean
free path away, the mean free path being the average distance a molecule
travels between collisions with other molecules . Each molecule starting from
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a point P below y = 0 brings a momentum deficit of m[U(0) - U(-f�.fp )],
where m is the molecular mass and f�.,fp is the mean free path . Hence, the
momentum flux from below is

wherefore

OP_ = IPvth[U(0) - U( -'mf,)] ^' 1Pvthfmfp4

	

4 dy

We have replaced U(-fmfp) by the first two terms of its Taylor-series
expansion in Equation (3 .6) and used the fact that p = mn . Similarly,
molecules moving from a point Q above y = 0 bring a momentum surplus
of m[U(fmfp) - U(0)], and the momentum flux from above is

OP+ = IPvth[U(fmfp) - U(0)] ^ 1Pvthfmfp4

	

4 dy

(3.6)

(3 .7)

Consequently, the net shearing stress is the sum of OP_ and OP+ ,

t 'y = OP_ + OP+ N 1
2PVMmfp

dU
dy

	

(3.8)

Hence, we conclude that the shear stress resulting from molecular trans-

ldU/dylL - ld2U/dy2l

The arguments leading to Equations (3 .9) and (3 .10) are approximate
and only roughly represent the true statistical nature of molecular mo-
tion . Interestingly, Jeans (1962) indicates that a precise analysis yields
P = 0A99vthfmfp , wherefore our approximate analysis is remarkably accu-
rate! However, we have made two implicit assumptions in our analysis that
require justification .

First, we have truncated the Taylor series appearing in Equations (3 .6)
and (3 .7) at the linear terms. For this approximation to be valid, we must
have f� ,fpld2U/dy2 l « ldU/dyl . The length scale L defined by

port of momentum in a perfect gas is given by

_dU
txy

_
- dy (3.9)

where p is the molecular viscosity defined by

fI = IPvthfmfp (3 .10)
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is a length scale characteristic of the mean flow . Thus, the linear relation
between stress and strain-rate implied by Equation (3.9) is valid provided
the Knudsen number, Kn, is very small, i .e .,

Kn = k�,fp/L« 1

	

(3.12)

For most practical flow conditions, the mean free path is several orders of
magnitude smaller than any characteristic length scale of the mean flow .
Thus, Equation (3.12) is satisfied for virtually all engineering problems .

Second, in computing the rate at which molecules cross y = 0, we
assumed that u" remained Maxwellian even in the presence of shear . This
will be true if molecules experience many collisions on the time scale of
the mean flow . Now, the average time between collisions is t+mfpwth . The
characteristic time scale for the mean flow is IdU/dyl-1 . Thus, we also
require that

with
f"'fp « JdU/dyj

Since with is of the same order of magnitude as the speed of sound, the right-
hand side of Equation (3 .13) defines yet another mean-flow length scale . As
above, the mean free path is several orders smaller than this length scale
for virtually all flows of engineering interest .

3.2

	

The Mixing-Length Hypothesis

(3.13)

Prandtl (1925) put forth the mixing-length hypothesis . He visualized a
simplified model for turbulent fluid motion in which fluid particles coalesce
into lumps that cling together and move as a unit . He further visualized
that in a shear flow such as that depicted in Figure 3.1, the lumps retain
their x-directed momentum for a distance in the y direction, $"'i, that he
called the mixing length . In analogy to the molecular momentum trans-
port process with Prandtl's lump of fluid replacing the molecule and $j.,
replacing i�,fp , we can say that similar to Equation (3 .8),

1 dU

	

3.14Txy = 2/wmix~mix
~y

	

()

The formulation is not yet complete because the mixing velocity, v,,,ix,
has not been specified . Prandtl further postulated that

'Umix = constant - irraix dU I

	

(3 .15)
y

which makes sense on dimensional grounds . Because frraix is not a physical
property of the fluid, we can always absorb the constant in Equation (3 .15)
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and the factor 1/2 in Equation (3 .14) in the mixing length . Thus, in analogy
to Equations (3.9) and (3.10), Prandtl's mixing-length hypothesis leads to

Our formulation still remains incomplete since we have replaced Boussi-
nesq's empirical eddy viscosity, WT, with Prandtl's empirical mixing length,
4.i. . Prandtl postulated further that for flows near solid boundaries the
mixing length is proportional to distance from the surface . This turns out
to be a reasonably good approximation over a limited portion of a tur-
bulent boundary layer . As we will see in Section 3 .3, for free shear flows
such as jets, wakes and mixing layers, the mixing length is proportional to
the width of the layer, 6 . However, each of these flows requires a different
coefficient of proportionality between mix and 6 . The point is, the mixing
length is different for each flow (its ratio to the flow width, for example)
and must be known in advance to obtain a solution .

Note that Equation (3 .17) can be deduced directly from dimensional
analysis . Assuming molecular transport of momentum is unimportant rel-
ative to turbulent transport, we expect molecular viscosity has no signif-
icance in a dimensional analysis . The only other dimensional parameters
available in a shear flow are the fluid density, p, our assumed mixing length,

and the velocity gradient, dU/dy. (The eddy viscosity cannot depend
upon U since that would violate Galilean invariance.) A straightforward
dimensional analysis yields Equation (3.17) .

Another interesting observation follows from replacing T,,y by its defini-
tion so that

- uv = f
dU 2

	

(3 .18)mi~dy
The mixing velocity, vmix, must be proportional to_an appropriate average
of v' such as the RMS value defined by vrma = (v'2 ) 1/2. Also, Townsend
(1976) states that in all turbulent shear flows, experimental measurements
indicate

I-u7I ~ 0.4urmsvrms

	

(3.19)
Consequently, if vrms - vmix, comparison of Equations (3.15) and (3.18)
shows that the mixing-length model implies vrms and urms are of the same
order of magnitude . This is generally true although urms is usually 25% to
75% larger than vrms .

dU
Txy = PT dU (3 .16)

where PT is the eddy viscosity given by

PT = Pf,2niXdy
~

_dU
(3.17)
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At this point, we need to examine the appropriateness of the mixing-
length hypothesis in representing turbulent transport of momentum . Be-
cause we have made a direct analogy to the molecular transport process, we
have implicitly made the same two basic assumptions we made for molec-
ular transport . Specifically, we have assumed that the Boussinesq approx-
imation holds and that the turbulence is unaltered by the mean shear .
Unfortunately, neither condition is rigorously satisfied in practice!

Concerning the Boussinesq approximation, its applicability de-
pends upon the Knudsen number being small . Close to a solid boundary,
for example, the mixing length is approximately linear with distance from
the surface, y . Specifically, measurements indicate that f,,ix ~ 0.41y . In
the same vicinity, the velocity follows the well-known law of the wall [see
Schlichting (1979)], and the velocity gradient varies inversely with y . Thus,
the length L defined in Equation (3.11) is equal to y. Consequently, the
Knudsen number is of order one, i .e .,

Kn = t,, i.,/L ~ 0.41

	

(3 .20)

Hence, the linear stress/strain-rate relation of Equation (3.16) is suspect .
Concerning the effect of the mean shear on the turbulence,

the assumed lifetime of Prandtl's lumps of fluid is

	

Reference to
Equation (3.15) shows that this time is proportional to IdU/dyl -1 . Hence,
the analog to Equation (3.13) is

VMix
f-ix ^, IdU/dyl (3.21)

Equation (3 .21) tells us that the lumps of fluid will undergo changes as
they travel from points P and Q toward y = 0 . This is indeed consistent
with the observed nature of turbulent shear flows . Tennekes and Lurnley
(1983) describe the situation by saying, "the general conclusion must be
that turbulence in a shear flow cannot possibly be in a state of equilib-
rium which is independent of the flow field involved . The turbulence is
continually trying to adjust to its environment, without ever succeeding."

Thus, the theoretical foundation of the mixing-length hypothesis is a bit
flimsy to say the least . On the one hand, this is a forewarning that a turbu-
lence model built on this foundation is unlikely to possess a very wide range
of applicability . On the other hand, as the entire formulation is empirical in
its essence, the usefulness of and justification for any of its approximations
ultimately lies in how well the model performs in applications, and we defer
to the applications of the following sections as its justification .

As a pleasant surprise, we will see that despite its theoretical shortcoin-
ings, the mixing-length model does an excellent job of reproducing experi-
mental measurements . It can be easily calibrated for a specific class of flows,
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and the model's predictions are consistent with measurements provided we
don't depart too far from the established data base used to calibrate the
mixing length . Eddy viscosity models based on the mixing length have
been fine tuned for many flows since 1925, most notably by Cebeci and
Smith (1974) . Strictly speaking, the term equilibrium is nonsensical in
the context of turbulent shear flows since, as noted above, turbulence is
continually attempting to adjust to its environment, without ever succeed-
ing . Nevertheless, most turbulence researchers describe certain flows as
equilibrium turbulent flows . What they actually mean is a relatively
simple flow with slowly varying properties . Most flows of this type can
be accurately described by a mixing-length computation . In this spirit, a
fitting definition of equilibrium turbulent flow might be a flow that can be
accurately described using a mixing-length model!

3 .3

	

Application to Free Shear Flows
Our first applications will be to incompressible free shear flows . A flow
is termed free if it is not bounded by solid surfaces . Figure 3.2 illustrates
three different types of free shear flows, viz ., the far wake, the mixing
layer, and the jet . A wake forms downstream of any object placed in a
stream of fluid ; we will consider only the two-dimensional wake . A mixing
layer occurs between two parallel . streams moving at different speeds ; for
the case shown in the figure, the lower stream is at rest . A jet occurs when
fluid is ejected from a nozzle or orifice . We will assume the jet issues into
a quiescent fluid, and we will analyze both the (two-dimensional) plane jet
and the (axisymmetric) round jet .

All three of these flows approach what is known as self similarity far
enough downstream that details of the geometry and flow conditions near
x = 0 become unimportant . The velocity component U(x, y), for example,
can be expressed in the form

U(x, y) = uo(x)F(y1a(x))

	

(3.22)

This amounts to saying that two velocity profiles located at different x sta-
tions have the same shape when plotted in the scaled form U(x, y)/uo(x)
versus ylb(x) . Flows with this property are also referred to as self pre-
serving .

Free shear flows are interesting building-block cases to test a turbulence
model on for several reasons . First, there are no solid boundaries so that
we avoid the complications boundaries add to the complexity of a turbulent
flow . Second, they are mathematically easy to calculate because similarity
solutions exist, where the Reynolds-averaged equations of motion can be
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U.

U1
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0

Figure 3.2 : Free shear flows : (a) far wake ; (b) mixing layer ; and, (c) jet .

reduced to ordinary differential equations . This greatly simplifies the task
of obtaining a solution . Third, there is a wealth of experimental data
available to test model predictions against .

The standard boundary-layer approximations hold for all three of the
shear flows considered in this Section . Additionally, molecular transport of
momentum is negligible compared to turbulent transport . Since all three
flows have constant pressure, the equations of motion are (with j = 0 for
two-dimensional flow and j = 1 for axisymmetric flow):

(3 .23)

_8U

	

_au
__1T'-

8
PU ax + PV a

	

(Y' T=)

	

(3 .24)

Of course, while the equations are the same for all three flows, boundary
conditions are different . The appropriate boundary conditions will be stated
when we discuss each flow .

As a historical note, in addition to the mixing-length model, Prandtl
also proposed a simpler eddy viscosity model specifically for free shear flows .

In this model,
PT = XP[Umax(x) - U,nin(x)1 b(x)

	

(3.25)

where U�bax and U�7 in are the maximum and minimum values of mean ve-
locity in the layer, S is the half width of the layer, and X is a dimensionless
empirical parameter . This model is very convenient for free shear flows
because it is a function only of x by construction, and excellent results
can be obtained if X is assumed to be constant across the layer . Conse-
quently, laminar flow solutions can be generalized for turbulent flow with,
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at most, minor notation changes . We leave application of this model to the
Problems section . All of the applications in this Section will be done using
Equations (3.16) and (3 .17) .

We begin by analyzing the far wake in Subsection 3 .3 .1 . Complete
details of the similarity solution method are given for the benefit of the
reader who has not had much experience with the method . The far wake
is especially attractive as our first application because a simple closed-form
solution can be obtained using the mixing-length model . Then, we proceed
to the mixing layer in Subsection 3 .3.2 . While an analytical solution is
possible for the mixing layer, numerical integration of the equations proves
to be far simpler . Finally, we study the plane jet and the round jet in
Subsection 3.3.3 .

3.3 .1

	

The Far Wake

Clearly the flow in the wake of the body indicated in Figure 3.2(a) is sym-
metric about the x axis . Thus, we solve for 0 <_ y < oo . The relevant
boundary conditions follow from symmetry on the axis and the require-
ment that the velocity approach its freestream value far from the body.
Hence, the boundary conditions are

U(x, y) ---~ .Uc,,,

	

as

	

y --> oo

	

(3 .26)

8U = 0

	

atay

	

y = 0

	

(3.27)

The classical approach to this problem is to linearize the momentum
equation, an approximation that is strictly valid only in the far wake
[Schlichting (1979)] . Thus, we say that

U(x, y) = UC'. i - fi

	

(3 .28)

where Ifil « U,,, . The linearized momentum equation and boundary con-
ditions become

of,

	

_ 0T~,y
P°°° ax = ay (3.29)

u(x, y) --> 0

	

as

	

y, oo

	

(3.30)

8fi =0 at y=0

	

(3 .31)
y
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There is also an integral constraint that must be satisfied by the solution .
If we consider a control volume surrounding the body and extending to
infinity, conservation of momentum leads to the following requirement [see
Schlichting (1979)],

where D is the drag of the body per unit width .
We use the mixing-length model to specify the Reynolds stress Txy, so

that
8u _Oft

Try = -Pf
z
mix I ay 18y

Finally, to close our set of equations, we assume the mixing length is
proportional to the half-width of the wake, b(x) [see Figure 3 .2(a)] . Thus,
we say that

1 . Assume the form of the solution .

2 . Transform the equations of motion .

f

	

pU(U~ - U) dy = 2
D

	

(3.32)
J0

(3.33)

I"ix = ab(x)

	

(3 .34)

where a is a constant that we refer to as a closure coefficient . Our
fondest hope would be that the same value of a works for all free shear
flows . Unfortunately, this is not the case so that the mixing-length model
must be recalibrated for each type of shear flow .

To obtain the similarity solution to Equations (3.29) through (3 .34), we
proceed in a series of interrelated steps . The sequence is as follows .

3 . Transform the boundary conditions and the integral constraint .

4 . Determine the conditions required for existence of the similarity so-
lution .

5 . Solve the resulting ordinary differential equation subject to the trans-
formed boundary conditions .

In addition to these 5 steps, we will also determine the value of the closure
coefficient a in Equation (3.34) by comparison with experimental data .

Step 1 . We begin by assuming the similarity solution can be written
in terms of an as yet unknown velocity scale function, uo(x), and the wake
half width, b(x) . Thus, we assume that the velocity can be written as

u(x, y) = uo(x)F(71)

	

(3 .35)
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where the similarity variable, Y7, is defined by

y = Y16(X)
Step 2. In order to transform Equation (3.29), we have to take account

of the fact that we are making a formal change of dependent variables .
We are transforming from (x, y) space to (x, ?7) space which means that
derivatives must be transformed according to the chain rule of calculus .
Thus, derivatives transform according to the following rules. Note that a
subscript means that differentiation is done holding the subscripted variable
constant .

C TX ) y

	

=

	

(TX)Y

	

TX

	

+

	

Ox)y C077

CX ~n + ~ax) y Can~~

~Tx ' n

	

6()

	

(T) x

CTY

	

TY

	

(-ox)17+ Oy~x Ca7)x

COy/

	

l x

W.,
A prime denotes ordinary differentiation so that b'(x) = dbldx in Equa-

tion (3 .37) . We now proceed to transform Equation (3 .29) . For example,
the derivatives of u are

Proceeding in this manner for all terms in Equation (3.29) and using the
mixing-length prescription for the Reynolds stress leads to the transformed
momentum equation .

U"buo

	

U-b' dF

	

2 d

	

_dF _dF
uo

	

L'( ,l) -

	

uo

	

dy = a do C~ dr1 (

	

9

(3.36)

(3 .37)

(3.38)

(3.41)

_8u , uob' dF_
--8x u°F(q) by

dy
(3.39)

Sic ua dFay-
b d77 (3.40)
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Step 3 . Clearly, y --> oo corresponds to 17 -* oo and y -* 0 corresponds
to y , 0 . Thus, the boundary conditions in Equations (3.30) and (3.31)
transform to

Step 4. In seeking a similarity solution, we are attempting to make
a separation of variables. The two terms on the left-hand side of Equa-
tion (3.41) have coefficients that in general vary with x. Also, the right-
hand side of Equation (3.44) is a function of x . The condition for exis-
tence of the similarity solution is that these three coefficients be
independent of x. Thus, we require the following three conditions .

U~ bu''

	

U"6'

	

D
= 1

	

(3.45)
u

	

= al,

	

uo

	

= _'&)
2pU,,,uob

The quantities al and a2 must, of course, be constant . Note that we
could have introduced a third constant in the integral constraint, but it is
unnecessary (we, in effect, absorb the third constant in b) . The solution to
these three simultaneous equations is simply

Step 5. Finally, we expect that F(y) will have its maximum value on
the axis, and then fall monotonically to zero approaching the freestream .
If this is true, then F'(rl) will be negative for all values of y and we can
replace its absolute value with -F'(TI) . Taking account of Equations (3.45)
through (3 .48), the momentum equation now simplifies to

a2dy ~(
F')2~ - a2(?IF'

+ F) = 0 (3.49)

F(y) , 0 as q --> oo (3.42)

dF
D

= 0 at y = 0 (3.43)
y

and the integral constraint becomes

~ F(y) dy D=
2pU.uab

(3.44)
o

ar2Dx
b(x)

- pU00
(3.46)

uo(x) 1 D= ~ (3.47)
2 a2px

al = -a2 (3.48)
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The second term is a perfect differential so that Equation (3.49) can be
rewritten as

d

	

[a2(F')2 - a2 r7F] = 0

	

(3.50)

Integrating once and imposing the symmetry condition at 71 = 0 [Equa-
tion (3.43)] yields

where we observe that F'(71) is everywhere less than zero . Integrating once
more, we find that the solution for F(q) is

where C is a constant of integration and 71e is given by

Therefore,

and

daF -- -

	

a271F

	

(3 .51)

F(??) = C2 [1 - (77/ 7703/21 2 (3.52)

= (3aC/

	

a2 )2/3

	

(3.53)

This solution has a peak value at q = 0 and decreases monotonically to
zero as 77 -* 71, . It then increases without limit for 71 > 77 e . The only way
we can satisfy the far field boundary condition [Equation (3.42)] is to use
Equation (3 .52) for 0 <_ 71 < 71, and to use the trivial solution, F(r7) = 0,
for values of 7! in excess of 7le .

With no loss of generality, we can set 77e = 1 . To understand this,
note that 77/ 71, = y/[77eb(x)] . Hence, by setting 7,e = 1 we simply rescale
the 71 coordinate so that b(x) is the wake half width as originally planned .
Therefore,

3aC =

	

a2	(3 .54)

Finally, imposing the integral constraint, Equation (3.44), yields an
equation for the constant C. Performing the integration, we have

1

C2
[1 - 71

3/2
]
2 dr7 =

9
C2 = 1

0

	

20
(3.55)

C =

	

20/3 = 1 .491

	

(3.56)

a =

	

x2/20

	

(3.57)

If the closure coefficient a were known, our solution would be com-
pletely determined at this point with Equation (3.57) specifying a2 . This
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Figure 3.3 : Comparison of computed and measured velocity profiles for the
far wake ;

	

Mixing length ; o Fage and Falkner .

is the nature of an incomplete turbulence model. The coefficient a is un-
known because the mixing length [Equation (3 .34)] is unknown a priori for
this flow . To complete the solution, we appeal to experimental data [c .f.
Schlichting (1979)], which show that the wake half width grows according
to

b(X)

	

0.805

	

D
2

	

(3.58)
PU.

Comparison of Equations (3.46) and (3.58) shows that the value of a2 is

U(x, y) = U~ - 1.38

a2 = 0.648

	

(3.59)

The value of the coefficient a then follows from Equation (3.57), i .e .,

a = 0 .18

	

(3 .60)

Collecting all of this, the final solution for the far wake, according to
the mixing-length model is

1 [1 - (Y/6)3/2
]2

(3.61)
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where 6(x) is given by Equation (3.58) . Figure 3.3 compares the theoretical
profile with experimental data of Fage and Falkner (1932) . As shown, the
mixing-length model, once calibrated, does an excellent job of reproduc-
ing measured values . As a final comment, this solution has an interesting
feature that we will see in many of our applications . Specifically, we have
found a sharp turbulent/nonturbulent interface . This manifests itself in the
nonanalytic behavior of the solution at y/S = 1, i .e ., all derivatives of U
above 92U/.9y2 are discontinuous at y/S = 1 . Measurements confirm exis-
tence of such interfaces in all turbulent flows . However, the time-averaged
interface is continuous to high order, being subjected to a near-Gaussian
jitter . Time averaging would thus smooth out the sharpness of the phys-
ical interface . Consistent with this smoothing, we should actually expect
analytical behavior approaching the freestream . Hence, the mixing-length
model is predicting a nonphysical feature .

3.3.2

	

The Mixing Layer
For the mixing layer, we consider two parallel streams with velocities Ul
and U2 . By convention, the stream with velocity Ul lies above y = 0 and
Ih > U2 . The boundary conditions are thus

U(x, y) - Ul

	

as

	

y - +oo

	

(3 .62)

U(x, y) -> U2

	

as

	

y --> -oo

	

(3 .63)

The most convenient way to solve this problem is to introduce the
streamfunction, 0 . The velocity components are given in terms of 0 as
follows .

U = 0y

	

and

	

V= -'9

	

(3.64)

Equation (3.23) is automatically satisfied and the momentum equation
becomes

_00 020 __(go _a20
= y [jmix

1,,2,b
I (3.65)

ay 8xgy 8X 19y2 ay

The boundary conditions on 0 are

aV)_- ,
8y

Ul as y -r +oo (3 .66)

00
U2 as y --r -oo (3 .67)

y
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Because the velocity is obtained from the streamfunction by differenti-
ation, 0 involves a constant of integration . For the sake of uniqueness, we
can specify an additional boundary condition on 0, although at this point
it is unclear where we should impose the extra boundary condition . The
choice will become obvious when we set up the similarity solution . As with
the far wake, we assume

O(x, y) = 0a(x)F(?l)

where the similarity variable, T/, is defined by

dF 1

Y = Y16(X)

(3.68)

(3.69)

As can be verified by substituting Equations (3 .68) and (3 .69) into Equa-
tion (3.65), a similarity solution exists provided we choose

0o(x) = AUix

	

(3.70)

6(x) = Ax

	

(3.71)

where A is a constant to be determined . Using Equation (3.34) to determine
the mixing length, Equation (3.65) transforms to

a2 d

	

[(F")2] + AFF" = 0

	

(3.72)

Note that we have removed the absolute value sign in Equation (3.65) by
noting that we expect a solution with 8U/Oy = 82V/Oy2 > 0 . As an imme-
diate consequence, we can simplify Equation (3 .72) . Specifically, expanding
the first term leads to the following linear equation for the transformed
streamfunction, F(r/) .

3

2a2 d3 + AF = 0

	

(3.73)

To determine the constant of integration in the streamfunction, note
that our assumed form for z/) (Equation (3.68)] is consistent with letting
F(rl) vanish at r/ = 0 . This is known as the dividing streamline . Thus, our
boundary conditions are

as

	

7/ -> +oo

	

(3.74)

dF
--> U2/U, as T/ -* -oo

	

(3.75)
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Figure 3 .4 : Comparison of computed and measured velocity profiles for a
mixing layer ;

	

Mixing length ; o Liepmann and Laufer .

F(0) = 0

	

(3 .76)

For simplicity, we consider the limiting case U2 = 0. This problem can
be solved in closed form using elementary methods . Unfortunately, the
solution is a bit complicated . Furthermore, as with the far-wake solution,
the mixing-length model predicts a sharp turbulent /nonturbulent interface
and it becomes a rather difficult chore to determine a straightforward rela-
tionship between the closure coefficient a and the constant A . The easier
way to proceed is to solve the equation numerically for various values of
aZ/A and compare with experimental measurements to infer the values of
a and A. Proceeding in this manner (see Program MIXER in Appendix
C), optimum agreement between computed and measured [Liepmann and
Laufer (1947)] velocity profiles occurs if we choose

A = 0 .247

	

and

	

a = 0.071

	

(Mixing Layer)

	

(3 .77)

This value of a is nearly identical to the value (0.070) quoted by Launder
and Spalding (1972) . Figure 3.4 compares computed and measured velocity
profiles . The traditional definition of spreading rate, Ca, for the mixing



3.3 . APPLICATION TO FREE SHEAR FLOWS

	

41

layer is the difference between the values of y/x where (U_U2)2/(Ul _ U2)2
is 9/10 and 1/10 . The values of A and a have been selected to match the
experimentally measured spreading rate, viz.,

While the computed velocity goes to zero more rapidly than measured
on the low speed side of the mixing layer, the overall agreement between
theory and experiment is remarkably good .

3.3 .3

	

The Jet
We now analyze the two-dimensional, or plane jet, and the axisymmetric,
or round jet. Referring to Figure 3 .2(c), we assume the jet issues into a
stagnant fluid. The jet entrains fluid from the surrounding fluid and grows
in width downstream of the origin . Equations (3.23) and (3.24) govern the
motion with j = 0 corresponding to the plane jet and j = 1 corresponding
to the round jet. As with the far wake, we take advantage of the symmetry
about the x axis and solve for 0 <_ y < oc . The boundary conditions for
both the plane and the round jet are

flux .

The momentum equation thus becomes

_; 00 020
y

	

ay axay

U(x, y) -* 0

	

as

	

y-oo

	

(3 .79)

account for the axisymmetry of the round jet, i.e .,

C6 = 0.115

	

(3.78)

au
= 0

	

at

	

y = 0

	

(3 .80)ay
To insure that the momentum in the jet is conserved, our solution must

satisfy the following integral constraint :

,,j
J

	

U2y~ dy= 2J

	

(3.81)
0

where J is the momentum flux per unit mass, or, specific momentum

To solve, we introduce the streamfunction, which can be generalized to

y
; U = aand

	

y'V = -ao

	

(3.82)
y

_

	

a0 a

	

_j a0
TX ay

	

y
(

	

ay

ay [y'tmtix I y
(Y-j

y~ I ay
(
y- ~ y)] (3 .83)
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Assuming a similarity solution of the form given in Equations (3 .68)
and (3.69), the appropriate forms for 0o(x) and 6(x) are

o(x) =

	

JAa+lxj+1
2~0

	

(3.84)

6(x) = Ax

	

(3.85)
where A is a constant that will be determined by comparison with exper-
imental data . For the jet, we expect to have 8U/ft < 0 . Using this fact
to replace the absolute value in Equation (3.83) with a minus sign, the fol-
lowing ordinary differential equation for the transformed streamfunction,
F(rl), results .

a2r'[('
'
)] 2

	

j 2 ' AF
(F)

	

(3.86)

This equation must be solved subject to the following conditions .

F(0) = 0 (3 .87)

1 dF
W dry

- 0

	

as

	

y --+ oo

	

(3.88)

_d [ 1 dF]
dq rj d7l

f
~ (F~)2

d~ = 1

	

(3.90)
0

Performing a numerical solution of Equation (3.86) subject to Equa-
tions (3.87) through (3.90), and comparing with experiment yields

A = 0.246

	

and

	

a = 0.098

	

(Plane Jet)

	

(3.91)

A = 0 .233

	

and

	

a = 0.080

	

(Round Jet)

	

(3.92)
The values for a are about 8% larger than corresponding values (0 .090

and 0.075) quoted by Launder and Spalding (1972) . The Launder-Spalding
results were obtained using numerical procedures of the 1960's and are
unlikely to be free of numerical error . By contrast, the values quoted in
Equations (3 .91) and (3.92) have been obtained using an accurate solver (see
Program JET in Appendix C) . Figures 3.5 and 3.6 compare computed and
measured [Wygnanski and Fiedler (1968), Bradbury (1965)] velocity profiles
for the plane and round jets . Somewhat larger discrepancies between theory
and experiment are present for the plane jet than for the round jet .
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Figure 3.5 : Comparison of computed and measured velocity profiles for the
plane jet ;
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Figure 3.6 : Comparison of computed and measured velocity profiles for the
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The traditional definition of spreading rate, Cb , for the jet is the value
of .ylx where the velocity is half its peak value . Experimental data indicate
Cb is between 0 .100 and 0.110 for the plane jet and between 0 .086 and
0 .095 for the round jet . The mixing-length computational results shown in
Figures 3 .5 and 3.6 correspond to

_

	

0.100

	

(Plane Jet)
Cb -

	

0.086

	

(Round Jet) (3.93)

This concludes our application of the mixing-length model to free shear
flows . A few final comments will help put this model into proper perspec-
tive . We postulated in Equation (3 .34) that the mixing length is propor-
tional to the width of the shear layer . Our theory thus has a single closure
coefficient, a, and we have found that it must be changed for each flow .
The following values are optimum for the four cases considered .

While fairly close agreement has been obtained between computed and
measured velocity profiles, we have not predicted the all important spread-
ing rate . In fact, we established the value of our closure coefficient by
forcing agreement with the measured spreading rate . If we are only inter-
ested in far-wake applications or round jets we might use this model with
the appropriate closure coefficient for a parametric study in which some flow
property might be varied . However, we must proceed with some degree of
trepidation knowing that our formulation lacks in universality .

3 .4

	

Modern Variants of the Mixing-Length
Model

For free shear flows, we have seen that the mixing length is constant across
the layer and proportional to the width of the layer . For flow near a solid
boundary, turbulence behaves differently and, not too surprisingly, we must
use a different prescription for the mixing length . Prandtl originally postu-
lated that for flows near solid boundaries the mixing length is proportional
to the distance from the surface . As we will demonstrate shortly, this pos-
tulate is consistent with the well-known law of the wall, which has been
observed for a wide range of wall-bounded flows .

Far Wake a = 0.180
Mixing Layer a = 0.071
Plane Jet a = 0.098
Round Jet a = 0.080
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Figure 3 .7 : Typical velocity profile for a turbulent boundary layer .

Figure 3 .7 shows a typical velocity profile for a turbulent boundary
layer . The quantity y+, which will be defined below [Equation (3.101], is
dimensionless distance from the surface . From an experimenter's point of
view, three distinct regions are discernible, viz ., the viscous sublayer, the
log layer and the defect layer . By definition, the log layer, sometimes
referred to as the "fully turbulent wall layer," is the portion of the boundary
layer sufficiently close to the surface that inertial terms can be neglected
yet sufficiently distant that the molecular, or viscous, stress is negligible
compared to the Reynolds stress . This region typically lies between y+ = 30
and y = 0.16, where the upper boundary is dependent upon Reynolds
number . Of particular interest to the present discussion, the law of the
wall holds in the log layer . The viscous sublayer is the region between
the surface and the log layer . Close to the surface, the velocity varies
approximately linearly with y+, and gradually asymptotes to the law of
the wall for large values of y+ . The defect layer lies between the log layer
and the edge of the boundary layer . The velocity asymptotes to the law of
the wall as y/6 --} 0, and makes a noticeable departure from the law of the
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wall approaching the freestream . Chapter 4 discusses these three layers in
great detail .

From amathematician's point of view, there are actually only two layers,
viz., the viscous sublayer and the defect layer . In the parlance of singular
perturbation theory (Appendix B), the defect layer is the region in which
the outer expansion is valid, while the viscous sublayer is the region where
the inner expansion holds. In performing the classical matching procedure,
we envision the existence of an overlap region, in which both the viscous
sublayer and defect-layer solutions are valid. In the present context, we
choose to call the overlap region the log layer . Strictly speaking, the log
layer is not a distinct layer, but rather the asymptotic limit ofthe inner and
outer layers . Nevertheless, we will find the log layer to be useful because of
the simplicity of the equations of motion in the layer .

Consider a constant-pressure boundary layer. The flow is governed by
the standard boundary-layer equations .

aU av
ax + ay =°

PU Ox +
Pva = a

19

	

Pa + Tx ly

	

y [

	

y

	

yJ
(3 .95)

Because the convective terms are negligible in the log layer, the sum of the
viscous and Reynolds shear stress must be constant . Hence, we can say

au aU
(l
~y

+ Txy ~ ft

	

ay

	

w
= Tw -Put	(3.96)

where subscript w denotes value at the wall and uT = V/77--/p is known as
the friction velocity . As noted above, the Reynolds stress is much larger
than the viscous stress in the log layer. Consequently, according to the
mixing-length model,

fmix

)z

~Tay
If we say that the mixing length is given by

(3 .94)

(3.97)

fmix = KY

	

(3.98)

where rc is a constant, Equation (3.97) can be integrated immediately to
yield

U ,. uT
fn y + constant

	

(3.99)
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This equation assumes a m6re familiar form when we introduce the
dimensionless velocity and normal distance defined by

Introducing Equations (3 .100) and (3.101) into Equation (3 .99) yields the
classical law of the wall, viz .,

The coefficient is is known as the KArmin constant, and B is a dimension-
less constant . Coles and Hirst (1969) found from correlation ofexperimental
data for a large number of attached, incompressible boundary layers with
and without pressure gradient that

Note that this is not intended as a derivation of the law of the wall .
Rather, it simply illustrates consistency of Equation (3 .98) with the law of
the wall .

Using Equation (3.98) all the way from y = 0 to y = b, the mixing-
length model fails to provide close agreement with measured skin friction
for boundary layers . Of course, not even Prandtl expected that L�yax = NY
throughout the boundary layer . Since the mixing length was first postu-
lated, considerable effort has been made aimed at finding a suitable pre-
scription for boundary-layer computations . Several key modifications to
Equation (3.98) have evolved, three of which deserve our immediate atten-
tion . See Schlichting (1979) or Hinze (1975) for a more-complete history of
the mixing-length model's evolution .

The first key modification was devised by Van Driest (1956) who
proposed that the mixing length should be multiplied by a damping func-
tion . Specifically, Van Driest proposed, with some theoretical support but
mainly as a good fit to data, that the mixing length should behave according
to

where the constant Ao is

U+ = U/u, .

	

(3.100)

y+ = UTy/v

	

(3.101)

U+

	

lin y+ + B

	

(3.102)

0.41

	

(3 .103)

B ~ 5.0

	

(3 .104)

imsx = NY [1 - e-y+/Ao I (3 .105)

Ao = 26

	

(3 .106)

Aside from the primary need to improve predictive accuracy, the Van
Driest modification improves our description of the Reynolds stress in the
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limit y -+ 0 . With f,r,tx given by EquationJ3 .98), the Reynolds shear stress
TXy
- y2 as y --+ 0 . However, the no-slip boundary condition tells us that

u' = 0 at y = 0. Since there is no a priori reason for 8u'/ay to vanish at the
surface, we conclude that u' - y as y --> 0. Since the fluctuating velocity
satisfies the continuity equation, we also conclude that v' _ y2 . Hence,
the Reynolds shear stress must go to zero as y3 . Results of DNS studies
(Chapter 8) indicate that indeed rxy ti y3 as y -> 0 . However, as noted by
Hinze (1975), the coefficient of the ys term in a Taylor series expansion for
T,y must be very small as measurements are as close to Txy - y4 as they
are to Txy

- y3 when y , 0. In the limit of small y the Van Driest mixing
length implies Txy goes to zero as y4 approaching the surface .

The second key modification was made by Clauser (1956) who ad-
dressed the proper form of the eddy viscosity in the defect layer. In analogy
to Prandtl's special form of the eddy viscosity for wake flows given in Equa-
tion (3.25), Clauser specifies that

PT. = apueb*

	

(3.107)

where uT. is the eddy viscosity in the outer part of the layer, b* is the
displacement thickness, Ue is the velocity at the edge of the layer, and a is
a closure coefficient .

In a similar vein, Escudier (1966) found that predictive accuracy is
improved by limiting the peak value of the mixing length according to

(imix)max = 0 .096 (3 .108)

where b is boundary-layer thickness . Escudier's modification is the same
approximation we used in analyzing free shear flows [Equation (3.34)], al-
though the value 0.09 is half the value we found for the far wake .

Using an eddy viscosity appropriate to wake flow in the outer portion of
the boundary layer also improves our physical description of the turbulent
boundary layer. Measurements indeed indicate that the turbulent boundary
layer exhibits wake-like characteristics in the defect layer. As pointed out by
Coles and Hirst (1969), "a typical boundary layer flow can be viewed
as a wake-like structure which is constrained by a wall." Figure 3.8
illustrates Coles' notion that the defect layer resembles a wake flow while
the wall constraint is felt primarily in the sublayer and log layer. Strictly
speaking, turbulence structure differs a lot between a boundary layer and
a wake . Hence, the terminology "wake component" is conceivably a bit
misleading from a conceptual point of view . Nevertheless, the mathematical
approximations that yield accurate predictions for a wake and for the outer
portion of a turbulent boundary layer are remarkably similar.
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Figure 3.8 : Coles' description of the turbulent boundary layer . [From Coles
and Hirst (1969) - Used with permission.]

The third key modification is due to Corrsin and Kistler (1954) and
Klebanoff (1956) as a corollary result of their experimental studies of in-
termittency . They found that approaching the freestream from within
the boundary layer, the flow is not always turbulent . Rather, it is some-
times laminar and sometimes turbulent, i .e ., it is intermittent . Their
measurements indicate that for smooth walls, the eddy viscosity should be
multiplied by

(3.109)

where 6 is the boundary-layer thickness . This provides a measure of the
effect of intermittency on the flow .

All of these modifications have evolved as a result of the great increase
in power and accuracy of computing equipment and experimental measure-
ment techniques since the 1940's . The next two subsections introduce the
two most noteworthy models in use today that are based on the mixing-
length concept . Both include variants of the Van Driest, Clauser, and
Klebanoff modifications . Although it is not used in these two models, the
Escudier modification has also enjoyed great popularity.

As a final comment, we have introduced two new closure coefficients,
Ao and a, and an empirical function, FKleb. As we continue in our journey
through this book, we will find that the number of such coefficients increases
as we attempt to describe more and more features of the turbulence .
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3 .4.1

	

Cebeci-Smith Model
The Cebeci-Smith model [Smith and Cebeci (1967)] is a two-layer model
with YT given by separate expressions in each layer . The eddy viscosity is

where y�, is the smallest value of y for which pT = pT, . The values of PT
in the inner layer, pT, and the outer layer, pT, are computed as follows .

Inner Layer:

Outer layer :

Closure Coefficients :

P-T = Pf2mix

AT,

	

Y C Vm
INT = AT, Y>2Jm

2 21 1,2
ay l + ~ay)

Qmix - 6y [1
- e_y+/A+l

PT = aPUebV*FKleb(Yi b)

= 0.40,

	

a = 0.0168,

	

A+=26

	

1+Y
dP

	

]

	

1~2
(3.114)

Pu 2T
The function FKteb is the Klebanoff intermittency function given by

Equation (3.109), Ue is boundary-layer edge velocity, and by is the velocity
thickness defined by

by = J all - U/U,) dy

	

(3.115)

Note that velocity thickness is identical to displacement thickness for in-
compressible flow . The coefficient A+ differs from Van Driest's value to im-
prove predictive accuracy for boundary layers with nonzero pressure gradi-
ent . The prescription for pT above is appropriate only for two-dimensional
flows ; for three-dimensional flows, it should be proportional to a quantity
such as the magnitude of the vorticity vector . There are many other subtle
modifications to this model for specialized applications including surface
mass transfer, streamline curvature, surface roughness, low Reynolds num-
ber, etc . Cebeci and Smith (1974) give complete details of their model with
all its variations .
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The Cebeci-Smith model is especially elegant and easy to implement .
Most of the computational effort, relative to a laminar case, goes into
computing the velocity thickness . This quantity is readily available in
boundary-layer computations so that a laminar flow program can usually be
converted to a turbulent flow program with just a few extra lines of instruc-
tions . Figure 3 .9 illustrates a typical eddy viscosity profile constructed by
using uT, between y = 0 and y = y,,,, and MT. for the rest of the layer . At
Reynolds numbers typical of fully-developed turbulence, matching between
the inner and outer layers will occur well into the log layer .

Figure 3.9 : Eddy viscosity for the Cebeci-Smith model .

We can estimate the value of y~ as follows . Since we expect the match-
ing point to lie well within the log layer, the exponential term in the Van
Driest damping function will be negligible . Also, the law of the wall [Equa-
tion (3.99)] tells us 8U/8y ~~ u,/(icy). Thus,

matching point will lie at y~ - 400 .

u
PTi ^ PK2y2T ^ P-Te = r-Py+

KY

Hence, equating PT ; and pT,, we find that

ym

Since the matching point also lies close enough to the surface that we can
say y/b « l, the Klebanoff intermittency function will be close to one so
that (with by = b*) :

PTo N apUeb* = ayReb "

	

(3.117)

y b ;~- aReb . :.. 0.04Reb*

	

(3.118)

Assuming a typical turbulent boundary layer for which Reb " _ 104 , the
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3.4.2

	

Baldwin-Lomax Model

The Baldwin-Lomax model [Baldwin and Lomax (1978)] was formulated
for use in computations where boundary-layer properties such as 6, by and
Ue are difficult to determine . This situation often arises in numerical sim-
ulation of separated flows, especially for flows with shock waves . Like the
Cebeci-Smith model, this is a two-layer model . The eddy viscosity is given
by Equation (3.110), and the inner and outer layer viscosities are as follows :

Inner Layer :

Outer Layer :

Closure Coefficients:

w

/,Ti = PQmix 1-1

Qmix = NY [1 -
P_y+

PT = PaCcPFwakeFKleb(y ; ymax/CKleb)

Fwake = min [ymaxFmax ; CwkymaxUdiflFmaxl

is = 0.40,

	

a = 0.0168,

	

Ao = 26

C,P = 1.6,

	

CKleb = 0.3,

	

Cwk = I

Ov
-
OU

	

2 + (OW - Ov ) 2 + (OU - Ow ) 2
1/2

Ox ay ) Oy Oz

	

Oz Ox

(3 .120)

(3 .122)

Fmax = I [myx(fmixlwl)]

	

(3 .123)

where ymax is the value of y at which fmix 1w I achieves its maximum value.

(3 .124)

The function FKleb is Klebanoff's intermittency function [Equation (3.109)]
with b replaced by ymaxlCKteb, and w is the magnitude of the vorticity
vector, i .e .,

(3 .125)

for fully three-dimensional flows. This simplifies to w = JOV/Ox - OU/Oyj
in a two-dimensional flow . If the boundary layer approximations are used
in a two-dimensional flow, then w = IOU/ayj .
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Udif is the maximum value of U for boundary layers . For free shear
layers, Udti f is the difference between the maximum velocity in the layer
and the value of U at y = y�aax.

The primary difference between the Baldwin-Lomax and Cebeci-Smith
models is in the outer layer, where the product CcpFwak, replaces U,Sv .
To avoid the need to locate the boundary-layer edge, the Baldwin-Lomax
model establishes the outer-layer length scale in terms of the vorticity in
the layer . On the one hand, using F�,ak, = YmaxFmax, we in effect replace
by by y,,,axwlUe . On the other hand, using F,,,ak, = CwkymaxUdgf/Fmax

effectively replaces the shear layer width, b, in Prandtl's eddy-viscosity
model [Equation (3 .25)] by Udif/lwl .

As a final comment, while Equation (3 .124) implies this model has six
closure coefficients, there are actually only five . The coefficient C~p appears
only in Equation (3.121) where it is multiplied by a, so aC~p can be treated
as a single constant .

3.5

	

Application to Wall-Bounded Flows
We turn our attention now to application of the Cebeci-Smith and Baldwin-
Lomax models to wall-bounded flows, i .e ., to flows with a solid boundary .
The no-slip boundary condition must be enforced for wall-bounded flows,
and we expect to find a viscous layer similar to that depicted in Figure 3 .7 .
This Section first examines two internal flows, viz ., channel flow and pipe
flow . Then, we consider external flows, i .e ., boundary layers growing in a
semi-infinite medium .

3.5 .1

	

Channel and Pipe Flow

Like the free shear flow applications of Section 3.3, constant-section channel
and pipe flow are excellent building-block cases for testing a turbulence
model . Although we have the added complication of a solid boundary, the
motion can be described with ordinary differential equations and is therefore
easy to analyze mathematically . Also, experimental data are abundant for
these flows .

The classical problems of flow in a channel, or duct, and a pipe are the
idealized case of an infinitely long channel or pipe (Figure 3.10) . This ap-
proximation is appropriate provided we are not too close to the inlet of the
channel/pipe so that the flow has become fully-developed. For turbulent
flow in a pipe, flow becomes fully developed approximately 50 pipe diame-
ters downstream of the inlet . Because, by definition, properties no longer
vary with distance along the channel/pipe, we conclude immediately that
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Figure 3.10 : Fully-developed flow in a channel or pipe .

_8U = 0

	

(3 .126)8x
Denoting distance from the center of the channel or pipe by r, conser-

vation of mass is

ax + r? ar
[ra V] = 0

	

(3.127)}

where j = 0 for channel flow and j = 1 for pipe flow . In light of Equa-
tion (3 .126), we see that V does not vary across the channel/pipe . Since V
must vanish at the channel/pipe walls, we conclude that V = 0 through-
out the fully-developed region . Hence, for both channel and pipe flow, the
inertial terms are exactly zero, so that the momentum equation simplifies
to

_

	

dP

	

1 d [rj (P_dU
0

	

dx + ri dr

	

dr +Txr

In fully-developed flow pressure gradient must be independent of x and if
V = 0 it is also exactly independent of y . Hence, we can integrate once to
obtain

dU

	

r dP
P dr +Txr

_
j+1 dx

(3 .128)

(3 .129)

Now, the Reynolds stress vanishes at the channel/pipe walls and this
establishes a direct relationship between the pressure gradient and the shear
stress at the walls . If we let R denote the half-height of the channel or the
radius of the pipe, applying Equation (3.129) at r = R tells us that

. R _dP
~ + 1 dx

	

(3.130)
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Hence, introducing the friction velocity, uT , the momentum equation for
channel/pipe flow simplifies to the following first-order, ordinary differential
equation .

dU

	

_

	

2 r
P dr + Txr _ _Pu'

R
Noting that both channel and pipe flow are symmetric about the cen-

terline, we can obtain the complete solution by solving Equation (3.131)
with r varying between 0 and R. It is more convenient however to define y
as the distance from the wall so that

we arrive at the following equation for the velocity .

y = R - r

	

(3 .132)

Hence, representing the Reynolds stress in terms of the eddy viscosity, PT,

(P + PT)y=Puz (1 - R)
(3 .133)

Finally, we introduce sublayer coordinates, U+ and y+ from Equa-
tions (3.100) and (3.101), as well as P7+, _ PT/p . This results in the dimen-
sionless form of the momentum equation for channel flow and pipe flow,
viz .,

where

Equation (3.134) must be solved subject to the no-slip boundary condition
at the channel/pipe wall . Thus, we require

U+(0) = 0

	

(3.136)

At first glance, this appears to be a standard initial value problem that
can, in principle, be solved using an integration scheme such as the Runge-
Kutta method . However, the problem is a bit more difficult, and we find
that for both the Cebeci-Smith and Baldwin-Lomax models, the problem
must be solved iteratively. That is, for the Cebeci-Smith model, we don't
know Ue and 6* a priori . Similarly, with the Baldwin-Lomax model we
don't know the values of Ud+1 and y�,ax until we have determined the entire
velocity profile. This is not aserious complication however, and the solution
can be obtained after just a few iterations .

The equations for channel and pipe flow can be conveniently solved using
a standard over-relaxation iterative procedure. Appendix C describes a

+ +
(1+hT)dy+ = 1-R+ (3.134)

R+ = ur RIP (3.135)
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program called PIPE that yields a numerical solution for several turbulence
models, including the Cebeci-Smith and Baldwin-Lomax models .

Figure 3 .11 compares computed two-dimensional channel-flow profiles
with direct numerical simulation (DNS) results of Mansour, Kim and Moin
(1988) for Reynolds number based on channel height and average velocity
of 13,750 . As shown, the Cebeci-Smith and Baldwin-Lomax velocity pro-
files are within 8% and 5%, respectively, of the DNS profiles . Computed
Reynolds shear stress profiles for both models differ from the DNS profiles
by no more than 2%. Computed skin friction for both models differs by
less than 2% from Halleen and Johnston's (1967) correlation of experimen-
tal data, viz .,

cf = 0 .0706ReH 1/4
	(3 .137)

where the skin friction and Reynolds number are based on the average
velocity across the channel and the channel height H, i .e ., ef = T~/(2PU"9)
and ReH = Ua �gH/v.

Figure 3 .12 compares model predicted pipe-flow properties with the ex-
perimental data of Laufer (1952) for a Reynolds number based on pipe
diameter and average velocity of 40,000 . Baldwin-Lomax velocity and
Reynolds shear stress differ from measured values by no more than 3%.
As with channel flow, the Cebeci-Smith velocity shows greater differences
(8%) from the data . Computed skin friction is within 7% and 1% for the
Cebeci-Smith and Baldwin-Lomax models, respectively, of Prandtl's uni-
versal law of friction for smooth pipes [see Schlichting (1979)] given by

1

cf = 41oglo (2ReD	c f ) - 1 .6

	

(3 .138)

where cf and ReD are based on average velocity across the pipe and pipe
diameter, D .

These computations illustrate that subtle differences in the Reynolds
shear stress can lead to much larger differences in velocity for pipe and
channel flow . This means we must determine the Reynolds shear stress very
accurately in order to obtain accurate velocity profiles . To some extent this
seems odd . The Reynolds stress is a higher-order correlation while velocity
is a simple time average . Our natural expectation is for the mean velocity
to be determined with great precision while higher-order quantities such
as Reynolds stress are determined with a bit less precision . The dilemma
appears to stem from the fact that we need the same precision in T,,y as in
W/8y . As we advance to more complicated turbulence models, we will see
this accuracy dilemma repeated, although generally with less severity . As
applications go, channel and pipe flow are not very forgiving .
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Figure 3.11 : Comparison of computed and measured channel-flow proper-
ties, ReH = 13,750 . Baldwin-Lomax ; --- Cebeci-Smith ; o Mansour
et al . (DNS); o Halleen-Johnston correlation .
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Figure 3.12 : Comparison of computed and measured pipe-flow proper-
ties, ReD = 40,000 . Baldwin-Lomax ; - - - Cebeci-Smith ; o Laufer ;
o Prandtl correlation .
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Interestingly, for the higher Reynolds number pipe flow, more accel-
eration is predicted with the Cebeci-Smith model than with the Baldwin-
Lomax model . The opposite is true for the lower Reynolds number channel-
flow case . Cebeci and Smith (1974) have devised low-Reynolds-number cor-
rections for their model which, presumably, would reduce the differences
from the DNS channel-flow results .

3.5.2

	

Boundary Layers

In general, for a typical boundary layer, we must account for pressure gra-
dient . Ignoring effects of normal Reynolds stresses and introducing the
eddy viscosity to determine the Reynolds shear stress, the two-dimensional
(j = 0) and axisymmetric (j = 1) boundary-layer equations are as follows .

ax -}- yi ay (y, V) = 0

	

(3 .139)

_8U

	

_8U _

	

_dP

	

_1 8

	

8U]
PU 8x + PV 8y

	

dx + y5 ay ~' (P + ~T)ay
(3.140)

The appropriate boundary conditions follow from the no slip condition
at the surface and from insisting that U -+ Ue as we approach the boundary-
layer edge. Consequently, we must solve Equations (3.139) and (3.140)
subject to

U(x, 0)

	

=

	

0
V(x, 0)

	

=

	

0

	

(3.141)
U(x, y)

	

->

	

U,(x)

	

as

	

y --> S(x)

where S(x) is the boundary-layer thickness .
The Cebeci-Smith model has been applied to a wide range of boundary-

layer flows and has enjoyed a great deal ofsuccess . Figure 3.13, for example,
compares computed skin friction, cf, and shape factor, H, for a constant-
pressure (flat-plate) boundary layer with Coles' [Coles and Hirst (1969)]
correlation of experimental data . Results are expressed as functions of
Reynolds number based on momentum thickness, Reg . As shown, model
predictions virtually duplicate correlated values .

The model remains reasonably accurate for favorable pressure gradient
and for mild adverse pressure gradient . Because the model has been fine
tuned for boundary-layer flows, differences between computed and mea-
sured velocity profiles generally are small . However, integral parameters
such as momentum thickness and shape factor often show 10% differences
from measured values .

Figure 3.14 compares computed and measured boundary layer prop-
erties for two of the flows considered in the 1968 AFOSR-IFP-Stanford
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1 .2 '
2 - 10 3	104	5 - 104 Reg

Figure 3.13 : Comparison of computed and correlated shape factor and
skin friction for flat-plate boundary layer flow ; o Coles ; Cebeci-Smith
model . [From Kline et al . (1969) - Used with permission .]

Conference on the Computation of Turbulent Boundary Layers (this con-
ference is often referred to colloquially as Stanford Olympics 1) . For both
cases, computed and measured velocity profiles are nearly identical . Flow
3100 is two dimensional with a mild favorable pressure gradient . Despite
the close agreement in velocity profiles overall, differences in shape fac-
tor are between 8% and 10% . Flow 3600 is axisymmetric with an adverse
pressure gradient . For this flow, shape factors differ by less than 5%.

The Baldwin-Lomax model also closely reproduces correlated values of
flat-plate boundary-layer properties . It performs reasonably well even for
adverse pressure gradient as evidenced in Figure 3.15 . The flow considered
is an incompressible boundary layer in an increasingly adverse pressure
gradient which has been studied experimentally by Samuel and Joubert [see
Kline et al . (1981)] . The close agreement between theory and experiment
for this flow is actually remarkable . This boundary layer was presumed
to be a "simple" flow for the 1980-81 AFOSR-HTTM-Stanford Conference
on Complex Turbulent Flows (known colloquially as Stanford Olympics II) .
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v
U~

X
FEET

- PRESENT METHOD
0 0 EXPERIMENTAL

CALCULATED

3.075 1 .447 1 .600
3.4 1 .440 1.578
4.125 1 .424

	

1.532
4.541 1 .412

	

1 .535

EXPERIMENTAL
H

3 .6

	

Separated Flows

u
Ue

0 0 EXPERIMENTAL

1 .282 1 .408 1 .476
1 .615 1 .403 1 .468
1.936 1.408 1 .446
2.261 1.448 1 .460

Flow 3100

	

Flow 3600

Figure 3.14 : Comparison of computed and measured boundary layer ve-
locity profiles and shape factor for flows with nonzero pressure gradient ;
Cebeci-Smith model . [From Kline et al . (1969) - Used with permission .]

However, as we will discuss further in Chapter 4, it proved to be the Achilles
heel of the best turbulence models of the day.

Figure 3 .16 compares computed and measured skin friction for Flow
3300 of the 1968 AFOSR-IFP-Stanford Conference on the Computation of
Turbulent Boundary Layers . This flow, also known as Bradshaw Flow C,
has a strongly adverse pressure gradient that is gradually relaxed and cor-
responds to an experiment performed by Bradshaw (1969) . It was generally
regarded as one of the most difficult to predict of all flows considered in
the Conference . As shown, both models predict skin friction significantly
higher than measured . The Cebeci-Smith value for c f at the final station
(x = 7 ft .) is 22% higher than the measured value . The Baldwin-Lomax
value exceeds the measured value at x = 7 ft . by 36% .

All of the applications in the preceding section are for attached boundary
layers . We turn now to flows having an adverse pressure gradient of suffi-
cient strength to cause the boundary layer to separate . Separation occurs
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Figure 3.15 : Computed and measured skin friction for Samuel-Joubert's
adverse pressure gradient flow ; Baldwin-Lomax model ; o Samuel-
Joubert .

Figure 3 .16 : Comparison of computed and measured skin friction for Brad-
shaw Flow C;

	

Cebeci-Smith ; --- Baldwin-Lomax ; o Bradshaw .
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in many practical applications including stalled airfoils, flow near the stern
of a ship, flow through a diffuser, etc . Engineering design would be greatly
enhanced if our turbulence model were a reliable analytical tool for pre-
dicting separation and its effect on surface pressure, skin friction and heat
transfer . Unfortunately, algebraic models are quite unreliable for separated
flows .

When a boundary layer separates, the streamlines are no longer nearly
parallel to the surface as they are for attached boundary layers . We must
solve the full Reynolds-averaged Navier-Stokes equation [Equation (2.24)],
which includes all components of the Reynolds-stress tensor . In analogy to
Stokes hypothesis for laminar flow, we set

where Sad is the mean strain-rate tensor defined by

Tyj = 2pTS2j

	

(3.142)

Sad = 2lui,a + UjA

	

(3.143)

Figure 3.17 is typical of separated flow results for an algebraic model.
Menter (1992b) applied the Baldwin-Lomax model to an axisymmetric flow
with a strong adverse pressure gradient . The experiment was conducted by
Driver (1991) . Inspection of the skin friction shows that the Baldwin-Lomax
model yields a separation bubble nearly twice as long as the experimentally
observed bubble . The corresponding rise in pressure over the separation
region is 15% to 20% higher than measured . As pointed out by Menter,
the Cebeci-Smith model yields similar results .

It is not surprising that a turbulence model devoid of any information
about flow history will perform poorly for separated flows . On the one
hand, the mean strain-rate tensor undergoes rapid changes in a separated
flow associated with the curved streamlines over and within the separation
bubble . On the other hand, the turbulence adjusts to changes in the flow on
atime scale unrelated to the mean rate of strain . Rotta (1962), for example,
concludes from analysis of experimental data that when a turbulent bound-
ary layer is perturbed from its equilibrium state, a new equilibrium state is
not attained for at least 10 boundary-layer thicknesses downstream of the
perturbation . In other words, separated flows are very much out of "equi-
librium." The Boussinesq approximation, along with all the "equilibrium"
approximations implicit in an algebraic model, can hardly be expected to
provide an accurate description for separated flows.

Attempts have been made to remedy the problem of poor separated
flow predictions with the Cebeci-Smith model . Shang and Hankey (1975)
introduced the notion of a relaxation length, L, to account for upstream
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Figure 3.17: Computed and measured flow properties for Driver's separated
flow ;

	

Baldwin-Lomax; o Driver .

turbulence history effects . They introduced what they called a relaxation
eddy viscosity model and determined the eddy viscosity as follows.

)e-(,-,I)IL (3.144)

The quantity /Tea denotes the equilibrium eddy viscosity given by Equa-
tions (3.110) through (3.113), while 11TI is the value of the eddy viscosity at
a reference point, x = xl, upstream of the separation region . Typically, the
relaxation length is about 551, where 61 is the boundary-layer thickness at
x = xl . The principal effect of Equation (3.144) is to reduce the Reynolds
stress from the "equilibrium" value predicted by the Cebeci-Smith model.
This mimics the experimental observation that the Reynolds stress remains
nearly frozen at its initial value while it is being convected along streamlines
in the separation region, and approaches a new equilibrium state exponen-
tially.

In a similar vein, Hung (1976) proposed a differential form of Equa-
tion (3 .144), viz .,

dhT = PTes - PT
dx L

	

(3.145)

Hung (1976) exercised these relaxation models in several supersonic shock-
separated flows . He was able to force close agreement between computed
and measured locations of the separation point and the surface pressure dis-
tribution . However, he found that these improvements came at the expense
of increased discrepancies between computed and measured skin friction,
heat transfer and reattachment-point location .
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3.7

	

The 1/2-Equation Model
Johnson and King (1985) [see also Johnson (1987) and Johnson and Coakley
(1990)] have devised a "non-equilibrium" version of the algebraic model.
Their starting point is a so-called "equilibrium" algebraic model in which
the eddy viscosity is

PT = PT, tanh(f1T;/PT.)

	

(3 .146)

Inner Layer :
The inner layer viscosity, PT;, is similar to the form used in the Cebeci-

Smith and Baldwin-Lomax models . However, the dependence on velocity
gradient has been replaced by explicit dependence on distance from the
surface, y, and two primary velocity scales, u T and u,,,, as follows :

/iTo = apUe b * FKle6(yi b)tT(x)

where subscript m denotes the value at the point, y = y�, , at which
the Reynolds shear stress, rxy, assumes its maximum value denoted by
T�,, = (Txy)m,,x . Additionally uT is the conventional friction velocity and
pv, is the density at the surface, y = 0 . In its original form, this model
used only the velocity scale um in Equation (3.147) . This scale proved to
provide better predictions of velocity profile shape for separated flows than
the velocity-gradient prescription of Prandtl [Equation (3 .15)] . Later, the
secondary velocity scales us and uD were added to improve predictions for
reattaching flows and for flows with nontrivial effects of compressibility.

Outer Layer:
The "non-equilibrium" feature of the model comes in through the ap-

pearance of a "nonequilibrium parameter," o-(x), so that :

(3.154)

z

FAT: =P [1-exp
(_

UA+v)J
Kuyy (3 .147)

us = P.IP U, (1 - ?'2) + Pm/P U.72 (3 .148)

72 = tanh(y/Le) (3 .149)

Le Pw UT= Lm (3.150)
Pw UT + Pm um

<
Lm Kym' ym/b C11K__ ~ (3.151)

Cl b, ym/b > C11K

Um = Tm/Pm (3 .152)

uD = max[u�� uT ] (3 .153)
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Comparison of this equation with Equation (3.113) shows that the outer
layer viscosity, pT., is equal to the prescription used in the Cebeci-Smith
model multiplied by a(x) . The Johnson-King model solves the following
ordinary differential equation for the maximum value of the Reynolds
shear stress :

Um
d

	

Tm	-
ai_

	

[(um)eg - um]

	

_Tn°

	

_
G,dif

(Tm/Pm)3/2 11 _
~i`2(x)Idx CPm

	

Lm	(CPm

	

[C2& - ym]
(3 .155)

where (Um)eq is the value of um according to the "equilibrium" algebraic
model [a(x) = 1] . The first term on the right-hand side of Equation (3 .155)
is reminiscent of Hung's relaxation model [Equation (3.145)] . The second
term is an estimate of the effect of turbulent diffusion on the Reynolds
shear stress . Equation (3 .155) is solved along with the Reynolds-averaged
equations to determine Tm . As the solution proceeds, the coefficient o-(x)
is determined so that the maximum Reynolds shear stress is given by

Tm
=
(~T)m

C aU + avay

	

ax )m
(3.156)

That is, the PT distribution is adjusted to agree with Tiny . In using this
model, computations must be done iteratively since o-(x) is unknown a
priori, wherefore the value from a previous iteration or an extrapolated
value must be used in solving Equation (3.155) for Tm .

Closure Coefficients :

rc = 0 .40,

	

a= 0.0168,

	

A+ = 17
al = 0 .25,

	

C1 = 0.09,

	

C2 = 0.70
Cd;f = 0.50

	

for a(x) > 1 ;

	

0 otherwise
(3.157)

The general idea of this model is that the Reynolds shear stress adjusts
to departures from "equilibrium" at a rate different from that predicted by
the algebraic model. The ordinary differential equation for Tiy is used to
account for the difference in rates. Because this equation is an ordinary,
as opposed to a partial, differential equation, the turbulence community
has chosen the curious terminology 1/2-Equation Model to describe this
model. It is unclear whether this means it has half the number of dimensions
(but then, it would have to be a 1/3-Equation Model for three-dimensional
applications) or if partial differential equations are twice as hard to solve
as ordinary differential equations.

Menter (1992b) has applied the Johnson-King model to the attached
boundary-layer flow of Samuel and Joubert [see Kline et al . (1981)] and



3.8. RANGE OF APPLICABILITY

	

67

Figure 3.18 : Computed and measured skin friction for Samuel-Joubert's
adverse pressure gradient flow ; - Johnson-King ; --- Baldwin-Lomax ;
o Samuel-Joubert .

to Driver's (1991) separated flow . Figures 3.18 and 3.19 compare com-
puted and measured values ; results for the Baldwin-Lomax model are also
included . As shown, the Johnson-King model predictions are somewhat
closer to measured values for the Samuel-Joubert flow . For the separated
case, Johnson-King predictions are much closer to measurements, most no-
tably in the size of the separation region .

3.8

	

Range of Applicability

Algebraic models are the simplest and easiest to implement of all turbulence
models . They are conceptually very simple and rarely cause unexpected nu-
merical difficulties . Because algebraic models are so easy to use, they should
be replaced only where demonstrably superior alternatives are available .

The user must always be aware of the issue of incompleteness . These
models will work well only for the flows for which they have been fine tuned .
There is very little hope of extrapolating beyond the established data base
for which an algebraic model is calibrated . We need only recall that for
the four free shear flows considered in Section 3.3, four different values for
the mixing length are needed-and none of these lengths is appropriate for
wall-bounded flows!

On balance, both the Cebeci-Smith and Baldwin-Lomax models faith-
fully reproduce skin friction and velocity profiles for incompressible tur-
bulent boundary layers provided the pressure gradient is not too strong .
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Figure 3.19: Computed and measured flow properties for Driver's separated
flow ;

	

Johnson-King ; - - - Baldwin-Lomax; o Driver .

Neither model is clearly superior to the other: the accuracy level is about
the same for both models . The chief virtue of the Baldwin-Lomax model
over the Cebeci-Smith model is its independence from properties such as
Sv that can be difficult to compute accurately in complex flows. Its other
differences from the Cebeci-Smith model are probably accidental . How-
ever, neither model is reliable for separated flows . Despite this well-known
limitation, many incautious researchers have applied these models to ex-
traordinarily complex flows where their only virtue is that they don't cause
the computations to blow up .

The Johnson-King model offers a promising modification that removes
much of the inadequacy of algebraic models for separated flows . However,
like algebraic models, the Johnson-King model provides no information
about the turbulence length scale and is thus incomplete . Consequently, it
shares many of the shortcomings of the underlying algebraic model . On the
negative side, the improved agreement between theory and experiment
has been gained at the expense of the elegance and simplicity of the Cebeci-
Smith model. The number of ad hoc closure coefficients has increased
from three to seven, and the model inherently requires an iterative solution
procedure . The model is also formulated specifically for wall-bounded flows
and is thus restricted to such flows, i.e ., the model is highly geometry
dependent . On the positive side, the Johnson-King model has been
applied to many transonic flows that tend to be particularly difficult to
predict with modern turbulence models . The model's track record has
been quite good with such flows . On balance, this model appears to be a
useful engineering design tool, within its verified range of applicability.
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Problems

3.1 For the far wake, verify that the solution to Equations (3.45) is given
by Equations (3.46) - (3 .48) .

3.2 For the mixing layer, beginning with Equation (3.65), introduce Equa-
tions (3.68) - (3.71) and derive Equation (3 .73) .

3.3 For the jet, begin with Equation (3 .83) and derive Equation (3.86) .

3.4 Using Equation (3.25) to represent the eddy viscosity, generate a sim-
ilarity solution for the far wake . Obtain the exact closed-form solution,
and determine the value of X by forcing agreement with the corresponding
uo(x) and 6(x) derived in this chapter . The following integral will be useful
when you apply the integral constraint .

C2 _e_S d~ -

	

21000

3.5 Using Equation (3.25) to represent the eddy viscosity, generate a simi-
larity solution for the plane jet . Obtain the exact closed-form solution, and
determine the value of X by forcing agreement with the corresponding uo(x)
and 6(x) derived in this chapter . The following integrals will be useful in
deriving the solution .

dx

	

_ 1 tanh-1 (-) + constant
xz c

	

c

~~ [1 - tanhz ~] z
d~

- 2
0

	

3

3.6 Show that using Equation (3 .98) for the mixing length in the viscous
sublayer yields a velocity that behaves according to :

as y+ -~ 0

3.7 Using a standard numerical integration scheme such as the Runge-
Kutta method, determine the constant, B, in the law of the wall implied
by the mixing-length model . That is, solve the following equation for U+ .
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Integrate from y+ = 0 to y+ = 500 and calculate the limiting value of B as
y+ , oo from examination of

B = U+ - 1fny+

	

at

	

y+ = 200, 300, 400 and 500

Do the computation with the mixing length given by :

(a) Equation (3.98)

(b) Equation (3.105)

NOTE: To avoid truncation error, verify the following limiting form of the
equation for dU+ldy+ .

Use this asymptotic form very close to y+ = 0 .

3.8 For a constant-pressure turbulent boundary layer, the skin friction and
displacement thickness are approximately

cf ,:: 0 .045Re61/4

	

and

	

b* r.. 8S

where Re6 = Ueb/v is Reynolds number based on S . Note also that, by
definition, cf - 2uT/Ue . Assuming the matching point always occurs in
the log layer so that 8U/8y = uT/(tcy), make a graph of y�+,/b and y,+�
versus Re6 for the Cebeci-Smith model. Let Re6 vary between 104 and
106 . You should first rewrite the equations for pT; and pT. in terms of
y/b and Re6 . Then, solve the resulting equation for y�,/b with an iterative
procedure such as Newton's method . Compare your numerical results with
Equation (3.118) .

3.9 Assume the velocity in a boundary layer for y+ > 1 is given by

U+ ~

	

any+ + 5 .0 -b I sin 2
(28

Also, assume that y�, ax » 26v/u, for the Baldwin-Lomax model . Compute
the quantities ymaxFmax and CwkymazUdif/Fmax for this boundary layer .
Then, noting that cf = 2u7/Ue , determine the largest value of ef for which
Fwake = ymaxFmax-
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where vv,

dU d

	

dU
vwd= dy 1(v + VT)dyy

is the (constant) vertical velocity at the surface .

(c) Verify that the solution to the simplified equation of Part (b) is

2
vw

	

1 + v�, U/u2, = -fny -}- constant

model with the mixing length in the inner and outer layers given by

f

	

= f KY 11
- e-Y+/261

max
Inner Layer

.09R

	

,

	

Outer Layer

fmix/R = 0.14 - 0 .08(1 - y/R)2 - 0 .06(1 - y/R)4

7 1

3.10 For a turbulent boundary layer with surface mass transfer, the mo-
mentum equation in the sublayer and log layer simplifies to :

Integrate once using the appropriate surface boundary conditions .
Introduce the friction velocity, u,-, in stating your integrated equation .

Focusing now upon the log layer where vT » v, what is the ap-
proximate form of the equation derived in Part (a) if we use the
Cebeci-Smith model?

3 .11 Generate a solution for channel and pipe flow using a mixing-length

where R is channel half-height or pipe radius . Use a numerical integration
scheme such as the Runge-Kutta method, or modify Program PIPE (Ap-
pendix C) . Compare computed skin friction with Equations (3.137) and
(3.138) . See NOTE below.

3.12 Generate a solution for pipe flow using a mixing-length model with
the mixing length given by Nikuradse's formula, i .e .,

where R is pipe radius . Use a numerical integration scheme such as the
Runge-Kutta method, or modify Program PIPE (Appendix C) . Compare
computed skin friction with Equation (3.138) . See NOTE below.

NOTE: To assist in presenting your results, verify that cf = 2/(Utg)2
and Rep = 2Ua9R+ where R+ = u,R/v and Ua � y is the average velocity
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across the channel/pipe . Also, to avoid truncation error, verify the following
limiting form of the equation for dU+/dy+ in the limit fli .x --+ 0 *

dy+ ^ (1 - R+) I 1 - (1 - R+) (fmax)2 + 2

	

1
- R+

	

z
(~Ma~)4

Use this asymptotic form very close to y+ = 0 .
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