
Chapter 2

The Closure Problem

Because turbulence consists of random fluctuations of the various flow prop-
erties, we use a statistical approach . Our purposes are best served by using
the procedure introduced by Reynolds (1895) in which all quantities are
expressed as the sum of mean and fluctuating parts. We then form the
time average of the continuity and Navier-Stokes equations . As we will see
in this chapter, the nonlinearity of the Navier-Stokes equation leads to the
appearance of momentum fluxes that act as apparent stresses throughout
the flow . These momentum fluxes are unknown a priori . We then derive
equations for these stresses and the resulting equations include additional
unknown quantities . This illustrates the issue of closure, i.e ., establishing
a sufficient number of equations for all of the unknowns .

2.1

	

Reynolds Averaging
We begin with the averaging concepts introduced by Reynolds (1895) . In
general, Reynolds averaging assumes a variety of forms involving either an
integral or a summation . The three forms most pertinent in turbulence-
model research are the time average, the spatial average and the en-
semble average.

Time averaging is appropriate for stationary turbulence, i.e ., a
turbulent flow that, on the average, does not vary with time . For such a
flow, we express an instantaneous flow variable as f(x, t) . Its time average,
FT(x), is defined by

1FT (x) = lim
T-oo T

f(x,t)dt



12

	

CHAPTER 2. THE CLOSURE PROBLEM

Spatial averaging is appropriate for homogeneous turbulence, which
is a turbulent flow that, on the average, is uniform in all directions . We
average over all spatial coordinates by doing a volume integral . Calling the
average Fv, we have

Fv (t )	lim

	

V ,~~~ f(x ' t) dV

	

(22)

Ensemble averaging is the most general type of averaging . As an
idealized example, in terms of measurements from N identical experiments
where f(x, t) = f�, (x, t) in the nth experiment, the average is FE, where

FE(x, t)

	

zv 1_,

	

N L, fn(x, t)

	

(2.3)
n-1

For turbulence that is both stationary and homogeneous, we may as-
sume that these three averages are all equal . This assumption is known as
the ergodic hypothesis .

Because virtually all engineering problems involve inhomogeneous
turbulence, time averaging is the most appropriate form of Reynolds aver-
aging. The time-averaging process is most clearly explained for stationary
turbulence . For such a flow, we express the instantaneous velocity, ui(x,t),
as the sum of a mean, Ui(x), and a fluctuating part, u1 (x, t), so that

ui (x t) = Ui (x) + ui(x, t)

	

(2 .4)

As in Equation (2.1), the quantity Ui (x) is the time-averaged, or mean,
velocity defined by

1
Uj(x) = lim -

T- oo T

N

ui(x,t) dt

	

(2.5)

The time average of the mean velocity is again the same time-averaged
value, i.e .,

1 t+T
Ui (x) =

	

lim -

	

Ui(x) dt = Ui (x)

	

(2 .6)
T-" c. T t

where an overbar is shorthand for time average. The time average of the
fluctuating part of the velocity is zero . That is, using Equation (2 .6),

_ 1_

	

t+T

	

_
ui - Tim T ,~

	

fui(x't) - Ui(x)] dt = Ui(x) - Ui(x) = fl

	

(2.7)

While Equation (2 .5) is mathematically well defined, we can never truly
realize infinite T in any physical flow . This is not a serious problem in
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practice however . In forming our time average, we just select a time T that
is very long relative to the maximum period of the velocity fluctuations,
Tl . In other words, rather than formally taking the limit T -> oo, we do
the indicated integration in Equation (2.5) with T » Ti . As an example,
for flow at 10 m/sec in a 5 cm diameter pipe, an integration time of 20
seconds would probably be adequate . In this time the flow moves 4,000
pipe diameters .

There are some flows for which the mean flow contains very slow vari-
ations with time that are not turbulent in nature . For instance, we might
impose a slowly varying periodic pressure gradient in a duct or we might
wish to compute flow over a helicopter blade . Clearly, Equations (2 .4) and
(2 .5) must be modified to accommodate such applications . The simplest,
but a bit more arbitrary, method is to replace Equations (2.4) and (2.5)
with

and

Ui(x,t) = Ui(x,t) + ui(x,t)

	

(2.8)

1 FT
T t

Ui(X, t) =

	

v-i(X, t) at,

	

Tl « T « T2	(2 .9)

where T2 is the time scale characteristic of the slow variations in the flow
that we do not wish to regard as belonging to the turbulence . Figure 2.1
illustrates these concepts .

Figure 2.1 : Time averaging for nonstationary turbulence .

t

A word of caution is in order regarding Equation (2.9) . We are im-
plicitly assuming that time scales Tl and T2 exist that differ by several
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orders of magnitude . Very few unsteady flows of engineering interest are
guaranteed to satisfy this condition . We cannot use Equations (2.8) and
(2.9) for such flows because there is no distinct boundary between our im-
posed unsteadiness and turbulent fluctuations . For such flows, the mean
and fluctuating components are correlated, i .e ., the time average of their
product is non-vanishing . In meteorology, for example, this is known as the
spectral gap problem. If the flow is periodic, Phase Averaging (see
Problems) can be used ; otherwise, ensemble averaging is necessary. For a
rigorous approach, an alternative method such as Large Eddy Simulation
(Chapter 8) will be required .

Clearly our time averaging process, involving integrals over time, com-
mutes with spatial differentiation . Thus, for any scalar p and vector us,

p,i = Pi	and

	

u;~ - U;j

	

(2 .10)

Because we are dealing with definite integrals, time averaging is a linear
operation . Thus if cl and c2 are constants while a and b denote any two
flow properties, then

cla -F c2b = c1A + c2B

	

(2.11)
The time average of an unsteady term like OuE/Ot is obviously zero for
stationary turbulence . For nonstationary turbulence, we must look a little
closer . We know that

1

	

,.t+T _O

	

,

	

U;(x,t+T)-U;(x,t)

	

u;(x,t+T)-u;(x,t)
TJt Ot(Ux+uB)dt= T + T

(2 .12)
The second term on the right-hand side of Equation (2.12) vanishes because
T effectively approaches oo on the time scale of the turbulent fluctuations .
By contrast, T is very small relative to the time scale of the mean flow,
so that the first term is the value corresponding to the limit T --> 0, i .e .,
OUi /Ot . Hence,

Ou; OU;

	

(2 .13)at - at
Although it may seem a bit unusual to be taking the limit T -* oo

and T --r 0 in the same equation, the process can be fully justified using
the two-timing method from perturbation theory [see Kevorkian and Cole
(1981)] . The notion is simply that we have a slow time scale and a fast
time scale, similar to the case of small damping on a linear oscillator . In
a perturbation analysis of such a problem, dependent variables become
functions of two independent time variables (essentially t/T1 and t/T2) . In
the normal spirit of perturbation theory, the limit t/T1 -+ oo corresponds
to the limit t/T2 ` 0.
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2 .2 Correlations

Thus far we have considered time averages of linear quantities . When we
time average the product of two properties, say 0 and 0, we have the
following :

71-=(ID+0')(1`+0')= 'Y+~Do'+*0'+0',0'=4P*+0'0' (2 .14)

where we take advantage of the fact that the product of a mean quantity
and a fluctuating quantity has zero mean . There is no a priori reason for the
time average of the product of two fluctuating quantities to vanish . Thus,
Equation (2 .14) tells us the mean value of a product, ¢o, differs from the
product of the_mean values, 4D* . The quantities ¢' and 0' are said to be
correlated if 0'7P' 0 0 . They are uncorrelated if

	

0.
Similarly, for a triple product, we find

0'0~='P*E`+0'VE+O'H'O+0'~'*+0'0'x'

Again, terms linear in 0', 0' or ~' have zero mean . As with terms quadratic
in fluctuating quantities, there is no a priori reason for the cubic term,
01 tb'~', to vanish .

2.3

	

Reynolds-Averaged Equations

For simplicity we confine our attention to incompressible flow . Effects of
compressibility will be addressed in Chapter 5 . The equations for conser-
vation of mass and momentum are

841y
8x8

(2 .15)

_0u ;

	

_8u; _ __8p

	

_atji

	

()
p 8t + puj 8xj

	

8x8 + 8xj

	

2.17

The vectors ui and x8 are velocity and position, t is time, p is pressure, p
is density and tij is the viscous stress tensor defined by

t%j = 2hsij (2.18)

where p is molecular viscosity and sij is the strain-rate tensor,

s$~
_ _l _8u8

+
_8uj (2.19)

2 Oxj axe
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To simplify the time-averaging process, we rewrite the convective term
in conservation form, i.e .,

aui __ _a

	

_au , __ _a
uj axj

	

axj
(uju2)

- ua
axj

	

axj (uju$)

	

(2 .20)

where we take advantage of Equation (2 .16) in order to drop uaauj/axj .
Combining Equations (2 .17) through (2.20) yields the Navier-Stokes equa-
tion in conservation form .

aui
+

	

a

	

ap

	

a

	

)
Pat

	

Paxj (ujua) _
-axa

+axj (2f~sja (2.21)

Time averaging Equations (2.16) and (2.21) yields the Reynolds av-
eraged equations of motion in conservation form, viz .,

The time-averaged conservation of mass, Equation (2.22), is identical to
the instantaneous Equation (2 .16) with the mean velocity replacing the
instantaneous velocity. Subtracting Equation (2.22) from Equation (2.16)
shows that the fluctuating velocity, u;, also has zero divergence . Aside from
replacement of instantaneous variables by mean values, the only difference
between the time-averaged and instantaneous momentum equations is the
appearance of the correlation uiu~ .

Herein lies the fundamental problem of turbulence for the en-
gineer. In order to compute all mean-flow properties of the turbulent flow
under consideration, we need a prescription for computing ubu~ .

Equation (2 .23) can be written in its most recognizable form by using
Equation (2.20) in reverse . There follows

_aua

	

_aua _ -
axa + axj (2juSj° - Pujua)

	

(2.24)

Equation (2.24) is usually referred to as the Reynolds-averaged Navier-
Stokes equation . The quantity -puV is known as the Reynolds-stress
tensor and we denote it by Taj . Thus,

Tij = -Puau~

	

(2.25)

By inspection, 7-%j = Tja so that this is a symmetric tensor, and thus has
six independent components . Hence, we have produced six unknown quan-
tities as a result of Reynolds averaging. Unfortunately, we have gained no

=
axa
_axi

0 (2.22)

au; a Op a
P at +PBxj (UjUa -u~ui) -_

-ax,
+ axj (2pSja ) (2.23)
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additional equations . So, for general three-dimensional flows, we have four
unknown mean-flow properties, viz ., pressure and the three velocity com-
ponents . Along with the six Reynolds-stress components, we thus have ten
unknowns . Our equations are mass conservation [Equation (2 .22)] and the
three components of Equation (2.24) for a grand total of four . This means
our system is not yet closed . To close the system, we must find enough
equations to solve for our unknowns.

2.4

	

The Reynolds-Stress Equation

In quest of additional equations, we can take moments of the Navier-Stokes
equation . That is, we multiply the Navier-Stokes equation by a fluctuating
property and time average the product . Using this procedure, we can derive
a differential equation for the Reynolds-stress tensor . To illustrate the
process, we introduce some special notation . Let N(ui) denote the Navier-
Stokes operator, viz .,

aui _au i _ap a2ui
N(u`) = P at_ + Puk axk + axi - P axkaxk

(2.26)

The viscous term has been simplified by noting from mass conservation (for
incompressible flow) that ski,k = ui,kk . Thus, the Navier-Stokes equation
can be written symbolically as

N(ui) = 0

	

(2.27)

In order to derive an equation for the Reynolds stress tensor, we form the
following time average .

U'N(Uj) + U~N(ui) -- 0

	

(2.28)

Note that, consistent with the symmetry of the Reynolds stress tensor,
the resulting equation is also symmetric in i and j . For the sake of clarity, we
proceed term by term . Also, for economy of space, we use tensor notation
for derivatives throughout the time averaging process . First, we consider
the unsteady term .

'u; (Puj ),t + ui (Pui ),t = Pua(Uj + ui ),t + P'u~ (Ui + u%),t
= PulUj,t + Put'aj,t + Pui Ui,t + Pui u, ,t

= Pugui,t + Puj ua,t
= (PuZ~ui)'t

_ aTij- (2 .29)
at



18

	

CHAPTER 2 . THE CLOSURE PROBLEM

Turning to the convective term, we have

PuaUkUj,k +

Finally, the viscous term yields

PNuj,kk +ujui,kk)

Puj ukUi,k

In order to arrive at the final line of Equation (2 .30), we use the fact that
auk/axk = 0 . The pressure gradient term is straightforward.

Uap,j +ujP,i

	

=

	

u;(P+p'),j +uj(P+p

=

	

uip/ . + ujPIi

__ u_af
+
u_a/

a ax j

	

3 axi

=

	

PUa(Uj +u~),kk +Puj(Ui +u;),kk

-

	

Pu i uj,kk + Puj ui,kk

PN Uj,k) , k + P(uj ui,k),k - 2pui,k7l'j,k

=

	

P(uiuj),kk - 2Pus,kuj,k

(2.31)

a2 Tij	auiauj

-

	

-Uaxkaxk - 2P axk axk

	

(2.32)

Collecting terms, we arrive at the equation for the Reynolds stress tensor .

aTij + Uk aTij

	

=

	

-Tik
av,

- Tjk
aUa +

2P
au; auj

+ u' ap'
+ u~ ap'at

	

ax k	ax k	axk	ax k axk

	

a axj

	

1 axi

a [V27ij
+Pu',ujuk

xk axk
(2 .33)

P'Ui(Uk +Uk)(Uj + Uj),k

+ Puj (Uk + uk)(Ui + ui),k

Puts Uk nj,k + Pu ?uk(Uj +Uj),k

+ Puj UkU'j,k + Puj uk (Ui +UD,k

Uk(PU i uj),k +PuiukUj,k

+ Puj
.uk Ui,k + Puk(ui uj ),k

-Uk
aTij

aUj aui- -axk Tik
axk

T k ax k
+ aak (Pusujuk) (2.30)
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We have gained six new equations, one for each independent compo-
nent of the Reynolds-stress tensor . However, we have also generated 22
new unknowns! Specifically, accounting for all symmetries, we have the
following .

where

With a little rearrangement of terms, we can cast the Reynolds-stress
equation in its most recognizable form, viz .,

at'
+Uk

axk

	

-Tik axk -Tik auk
+eij - IIij+ a1k [V2

a
7-ij
Xk
+

Cijk]

	

(2.34)

fjij =
paUL +

au;
-

axj axi

_aui _au,
Etj

__
2p

axk axk

(2.35)

(2.36)

Cijk = pu%uI~ uk +p,uibjk +p~u~sik

	

(2.37)

This exercise illustrates the closure problem of turbulence. Because of
the nonlinearity of the Navier-Stokes equation, as we take higher and higher
moments, we generate additional unknowns at each level . At no point
will this procedure balance our unknowns/equations ledger . On physical
grounds, this is not a particularly surprising situation . After all, such op-
erations are strictly mathematical in nature, and introduce no additional
physical principles . The function of turbulence modeling is to devise ap-
proximations for the unknown correlations in terms of flow properties that
are known so that a sufficient number of equations exists . In making such
approximations, we close the system .

pusuj~uk --> 10 unknowns

2
~aXk
au' auk

OXk
6 unknowns

u' OP ap
t axj

-+- u'
axi

--> 6 unknowns
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Problems

2.1 Suppose we have a velocity field that consists of: (i) a slowly varying
component U(t) = Uoe- 'I' where Uo and r are constants and (ii) a rapidly
varying component u' = aUo cos (2rt/c 2T) where a and e are constants with
c « 1. We want to show that by choosing T = er, the limiting process in
Equation (2.9) makes sense .

(a) Compute the exact time average of u = U + u' .

(b) Replace T by er in the slowly varying part of the time average of u
and let tf = e2 7- in the fluctuating part of u to show that

U + u' = U(t) + O(e)

where O(c) denotes a quantity that goes to zero linearly with c as
c--~ 0 .

(c) Repeat Parts (a) and (b) for du/dt .

2.2 For an imposed periodic mean flow, a standard way of decomposing
flow properties is to write

u(x, t) = U(x) + fi(x, t) + u'(x, t)

where U(x) is the mean-value, fi(x, t) is the organized response component
due to the imposed organized unsteadiness, and u'(x, t) is the turbulent
fluctuation . U(x) is defined as in Equation (2.5) . We also use the Phase
Average defined by

1 N-1

< u(x, t) > -
N

lmo
N

	

u(x, t + nr)
n-o

where r is the period of the imposed excitation . Then, by definition,

< u(x, t) > = U(x) + u(x, t),

	

< u(x, t) > = U(x),

	

< u(x, t) >= u(x, t)

Verify the following .

(a) <U> = U

	

(d) < u'> = 0

	

(g) < uv'> = 0
(b) v. = 0

	

(e)_

	

~Tv' = 0

	

(h) < Uv > = U < v >
(c) u' = 0

	

(f) < vv > = u < v >
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2.3 For an incompressible flow, we have an imposed freestream velocity
given by

u(x, t) = Uo(1 - ax) -1- Uoax sin 27rft

where a is a constant of dimension 1/length, Uo is a constant reference
velocity, and f is frequency . Integrating over one period, compute the
average pressure gradient, dP/dx, for f = 0 and f :~ 0 in the freestream
where the inviscid Euler equation holds, i .e .,

_8u

	

_au _ _ 8p
P at +

Pu
ax

	

a
_
x

2.4 Compute the difference between the Reynolds average of a quadruple
product 00~v and the product of the means, 4DVEET .

2.5 Consider the Reynolds stress equation as stated in Equation (2.34) .

(a) Show how Equation (2.34) follows from Equation (2 .33) .

(b) Contract Equation (2.34), i .e ., set i = j and perform the indicated
summation, to derive a differential equation for the kinetic energy of
the turbulence per unit mass defined by k = luaus .
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