
Chapter 1

Introduction

1.1

	

Definition of an Ideal Turbulence Model
Turbulence modeling is one of three key elements in Computational Fluid
Dynamics (CFD) . Very precise mathematical theories have evolved for the
other two key elements, viz ., grid generation and algorithm development .
By its nature - in creating a mathematical model that approximates the
physical behavior of turbulent flows - far less precision has been achieved
in turbulence modeling . This is not really a surprising event since our
objective has been to approximate an extremely complicated phenomenon .

The field is, to some extent, a throwback to the days of Prandtl, Taylor,
von Karman and all the many other clever engineers who spent a good
portion of their time devising engineering approximations and models de
scribing complicated physical flows . Simplicity combined with physical in-
sight seems to have been a common denominator of the work of these great
men. Using their work as a gauge, an ideal model should introduce
the minimum amount of complexity while capturing the essence
of the relevant physics. This description of an ideal model serves as the
main keystone of this text .

1.2

	

How Complex Does a Turbulence Model
Have to Be?

Aside from any physical considerations, turbulence is inherently three di-
mensional and time dependent . Thus, an enormous amount of information
is required to completely describe a turbulent flow . Fortunately, we usually
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require something less than a complete time history over all spatial coordi-
nates for every flow property . Thus, for a given turbulent-flow application,
we must pose the following question . Given a set of initial and/or boundary
conditions, how do we predict the physically meaningful properties of the
flow? What properties of a given flow are meaningful is generally dictated
by the application . For the simplest applications, we may require only
the skin friction and heat-transfer coefficients . More esoteric applications
may require detailed knowledge of energy spectra, turbulence fluctuation
magnitudes and scales .

Certainly, we should expect the complexity of the mathematics needed
for a given application to increase as the amount of required flowfield detail
increases . On the one hand, if all we require is skin friction for an attached
flow, a simple mixing-length model (Chapter 3) may suffice . Such mod-
els are well developed and can be implemented with very little specialized
knowledge . On the other hand, if we desire a complete time history of
every aspect of a turbulent flow, only a solution to the complete Navier-
Stokes equation will suffice . Such a solution requires an extremely accurate
numerical solver and may require use of subtle transform techniques, not
to mention vast computer resources . Most engineering problems fall some-
where between these two extremes .

Thus, once the question of how much detail we need is an-
swered, the level of complexity of the model follows, qualitatively
speaking. In the spirit of Prandtl, Taylor and von Karman, the consci
entious engineer will strive to use as conceptually simple an approach as
possible to achieve his ends . Overkill is often accompanied by unexpected
difficulties that, in CFI) applications, almost always manifest themselves
as numerical difficulties!

1 .3

	

Comments on the Physics of Turbulence

Before plunging into the mathematics of turbulence, it is worthwhile to
first discuss physical aspects of the phenomenon . The following discussion
is not intended as a complete description of this complex topic . Rather,
we focus upon a few features of interest in engineering applications, and in
construction of a mathematical model . For a more-complete introduction,
refer to a basic text on the physics of turbulence such as those by Tennekes
and Lurnley (1983) or Landahl and Mollo-Christensen (1992) .

In 1937, Taylor and von Karman [see Goldstein (1938)] proposed the
following definition of turbulence : "Turbulence is an irregular motion which
in general makes its appearance in fluids, gaseous or liquid, when they flow
past solid surfaces or even when neighboring streams of the same fluid flow
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past or over one another." It is characterized by the presence of a large
range of excited length and time scales . The irregular nature of turbulence
stands in contrast to laminar motion, so called historically, because the fluid
was imagined to flow in smooth laminae, or layers . Virtually all flows of
practical engineering interest are turbulent. Turbulent flows always occur
when the Reynolds number is large . For slightly viscous fluids such as water
and air, large Reynolds number corresponds to anything stronger than a
small swirl or a puff of wind . Careful analysis of solutions to the Navier-
Stokes equation, or more typically to its boundary-layer form, show that
turbulence develops as an instability of laminar flow .

To analyze the stability of laminar flows, virtually all methods begin by
linearizing the equations of motion . Although some degree of success can be
achieved in predicting the onset of instabilities that ultimately lead to tur-
bulence with linear theories, the inherent nonlinearity of the Navier-Stokes
equation precludes a complete analytical description of the actual transi-
tion process, let alone the fully-turbulent state . For a real (i .e ., viscous)
fluid, the instabilities result from interaction between the Navier-Stokes
equation's nonlinear inertial terms and viscous terms. The interaction is
very complex because it is rotational, fully three dimensional and time de-
pendent.

The strongly rotational nature of turbulence goes hand-in-hand with
its three dimensionality. Vigorous stretching of vortex lines is required to
maintain the ever-present fluctuating vorticity in a turbulent flow . Vortex
stretching is absent in two-dimensional flows so that turbulence must be
three dimensional. This inherent three dimensionality means there are no
satisfactory two-dimensional approximations and this is one of the reasons
turbulence remains the most noteworthy unsolved scientific problem of the
twentieth century.

The time-dependent nature of turbulence also contributes to its in-
tractability. The additional complexity goes beyond the introduction of
an additional dimension . Turbulence is characterized by random fluctua-
tions thus obviating a deterministic approach to the problem. Rather, we
must use statistical methods. On the one hand, this aspect is not really a
problem from the engineer's view . Even if we had a complete time history
of a turbulent flow, we would usually integrate the flow properties of inter-
est over time to extract time-averages . On the other hand, time averaging
operations lead to statistical correlations in the equations of motion that
cannot be determined a priori . This is the classical closure problem, which
is the primary focus of this text .

In principle, the time-dependent, three-dimensional Navier-Stokes equa-
tion contains all of the physics of a given turbulent flow . That this is true
follows from the fact that turbulence is a continuum phenomenon . As noted
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by Tennekes and Lumley (1983), "Even the smallest scales occurring in a
turbulent flow are ordinarily far larger than any molecular length scale ."
Nevertheless, the smallest scales of turbulence are still extremely small.
They are generally many orders of magnitude smaller than the largest scales
of turbulence, the latter being of the same order of magnitude as the di-
mension of the object about which the fluid is flowing . Furthermore, the
ratio of smallest to largest scales decreases rapidly as the Reynolds number
increases . To make an accurate numerical simulation (i .e ., a full time-
dependent three-dimensional solution) of a turbulent flow, all physically
relevant scales must be resolved . While more and more progress is being
made with such simulations, computers of the early 1990's have insufficient
memory and speed to solve any turbulent flow problem of practical inter-
est . To underscore the magnitude of the problem, Speziale (1985) notes
that a numerical simulation of turbulent pipe flow at a Reynolds number
of 500,000 would require a computer 10 million times faster than a Cray
Y/MP. However, the results are very useful in developing and testing tur-
bulence models in the limit of low Reynolds number .

Turbulence consists of a continuous spectrum of scales ranging from
largest to smallest, as opposed to a discrete set of scales . In order to visu-
alize a turbulent flow with a spectrum of scales we often refer to turbulent
eddies . A turbulent eddy can be thought of as a local swirling motion whose
characteristic dimension is the local turbulence scale (Figure 1.1) . Eddies
overlap in space, large ones carrying smaller ones . Turbulence features
a cascading process whereby, as the turbulence decays, its kinetic energy
transfers from larger eddies to smaller eddies . Ultimately, the smallest ed-
dies dissipate into heat through the action of molecular viscosity . Thus, we
observe that turbulent flows are always dissipative .

Perhaps the most important feature of turbulence from an engineer-
ing point of view is its enhanced diffusivity. Turbulent diffusion greatly
enhances the transfer of mass, momentum and energy . Apparent stresses
often develop in turbulent flows that are several orders of magnitude larger
than in corresponding laminar flows .

The nonlinearity of the Navier-Stokes equation leads to interactions be-
tween fluctuations of differing wavelengths and directions . As discussed
above, the wavelengths of the motion usually extend all the way from a
maximum comparable to the width of the flow to a minimum fixed by vis-
cous dissipation of energy . The main physical process that spreads the mo-
tion over a wide range of wavelengths is vortex stretching . The turbulence
gains energy if the vortex elements are primarily oriented in a direction
in which the mean velocity gradients can stretch them . Most importantly,
wavelengths that are not too small compared to the mean-flow width in-
teract most strongly with the mean flow . Consequently, the larger-scale
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Figure 1.1 : Large eddies in a turbulent boundary layer . The flow above
the boundary layer has a steady velocity U ; the eddies move at randomly-
fluctuating velocities of the order of a tenth of U . The largest eddy size (E)
is comparable to the boundary-layer thickness (b) . The interface and the
flow above the boundary is quite sharp [Corrsin and Kistler (1954)] .

turbulent motion carries most of the energy and is mainly responsible for
the enhanced diffusivity and attending stresses . In turn, the larger eddies
randomly stretch the vortex elements that comprise the smaller eddies,
cascading energy to them.

An especially striking feature of a turbulent shear flow is the way large
bodies of fluid migrate across the flow, carrying smaller-scale disturbances
with them . The arrival of these large eddies near the interface between
the turbulent region and nonturbulent fluid distorts the interface into a
highly convoluted shape (Figure 1 .1) . In addition to migrating across the
flow, they have a lifetime so long that they persist for distances as much
as 30 times the width of the flow [Bradshaw (1972)] . Hence, the turbulent
stresses at a given position depend upon upstream history and cannot be
uniquely specified in terms of the local strain-rate tensor as in laminar flow .

As we progress through the following chapters, we will introduce more
specific details of turbulence properties for common flows on an as-needed
basis .

1.4

	

ABrief History of Turbulence Modeling
The primary emphasis in this book is upon the time-averaged Navier-Stokes
equation . The origin of this approach dates back to the end of the nine-
teenth century when Reynolds (1895) published results of his research on
turbulence . His pioneering work proved to have such profound importance
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for all future developments that we refer to the standard time-averaging
process as one type of Reynolds averaging.

The earliest attempts at developing a mathematical description of tur-
bulent stresses sought to mimic the molecular gradient-diffusion process . In
this spirit, Boussinesq (1877) introduced the concept of an eddy viscosity .
As with Reynolds, Boussinesq has been immortalized in turbulence liter-
ature. The Boussinesq eddy-viscosity approximation is so widely known
that few authors find a need to reference his original paper .

Neither Reynolds nor Boussinesq attempted solution of the Reynolds-
averaged Navier-Stokes equation in any systematic manner . Much of the
physics of viscous flows was amystery in the nineteenth century, and further
progress awaited Prandtl's discovery of the boundary layer in 1904 . Focus-
ing upon turbulent flows, Prandtl (1925) introduced the mixing length (an
analog of the mean-free path of a gas) and a straightforward prescription for
computing the eddy viscosity in terms of the mixing length . The mixing-
length hypothesis, closely related to the eddy-viscosity concept, formed
the basis of virtually all turbulence-modeling research for the next twenty
years. Important early contributions were made by several researchers,
most notably by von Karma.n (1930) . In modern terminology, we refer to a
mixing-length model as an algebraic model or a zero-equation model
of turbulence . By definition, an n-equation model signifies a model
that requires solution of n additional differential transport equations in
addition to those expressing conservation of mass, momentum and energy.

To improve the ability to predict properties of turbulent flows and to
develop a more realistic mathematical description of the turbulent stresses,
Prandtl (1945) postulated a model in which the eddy viscosity depends
upon the kinetic energy of the turbulent fluctuations, k . He proposed a
modeled differential equation approximating the exact equation for k . This
improvement, on a conceptual level, takes account of the fact that the eddy
viscosity is affected by where the flow has been, i.e ., upon flow history.
Thus was born the concept of the so-called one-equation model of tur-
bulence .

While having an eddy viscosity that depends upon flow history provides
a more physically realistic model, the need to specify a turbulence length
scale remains . Since the length scale can be thought of as a characteristic
eddy size and since such scales are different for each flow, turbulence models
that do not provide a length scale are incomplete . That is, we must
know something about the flow, other than initial and boundary conditions,
in advance in order to obtain a solution . Such models are not without
merit and, in fact, have proven to be of great value in many engineering
applications .

To elaborate a bit further, an incomplete model generally defines` a
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turbulence length in a prescribed manner from the mean flow, e.g . the
displacement thickness, b*, for an attached boundary layer . However, a
different length in this example would be needed when the boundary layer
separates since b* may be negative . Yet another length might be needed for
free shear flows, etc . In essence, incomplete models usually define quantities
that may vary more simply or more slowly than the Reynolds stresses (e.g .
eddy viscosity and mixing length) . Presumably such quantities are easier
to correlate than the actual stresses .

A particularly desirable type of turbulence model would be one that can
be applied to a given turbulent flow by prescribing at most the appropriate
boundary and/or initial conditions . Ideally, no advance knowledge of any
property of the turbulence should be required to obtain a solution . We
define such a model as being complete . Note that our definition implies
nothing regarding the accuracy or universality of the model, only that it
can be used to determine a flow with no prior knowledge of any flow details .

Kolmogorov (1942) introduced the first complete model of turbulence .
In addition to having a modeled equation for k, he introduced a second
parameter w that he referred to as "the rate of dissipation of energy in unit
volume and time ." The reciprocal of w serves as a turbulence time scale,
while kll2/w serves as the analog of the mixing length . In this model,
known as a k-w model, w satisfies a differential equation similar to the
equation for k . The model is thus termed a two-equation model of
turbulence . While this model offered great promise, it went with virtually
no applications for the next quarter century because of the unavailability
of computers to solve its nonlinear differential equations .

Rotta (1951) laid the foundation for turbulence models that obviate use
of the Boussinesq approximation . He devised a plausible model for the
differential equation governing evolution of the tensor that represents the
turbulent stresses, i .e ., the Reynolds-stress tensor . This approach is called
second-order or second-moment closure . The primary conceptual ad-
vantage of second-order closure is the natural manner in which nonlocal
and history effects are incorporated . Such models automatically accommo-
date complicating effects such as streamline curvature, rigid-body rotation,
and body forces . This stands in contrast to eddy-viscosity models that
fail to properly account for these effects . For a three-dimensional flow, a
second-order closure model introduces seven equations, one for the turbu-
lence scale and six for the components of the Reynolds-stress tensor . As
with Kolmogorov's k-w model, second-order closure models awaited ade-
quate computer resources .

Thus, by the early 1950's, four main categories of turbulence models
had evolved, viz .,
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1 . Algebraic (Zero-Equation) Models

2 . One-Equation Models

3 . Two-Equation Models

4 . Second-Order Closure Models

With the coming of the age of computers since the 1960's, further devel-
opment of all four classes of turbulence models has occurred . The following
overview lists a few of the most important modern developments for each
of the four classes .

Algebraic Models . Van Driest (1956) devised a viscous damping cor-
rection for the mixing-length model that is included in virtually all alge-
braic models in use today. Cebeci and Smith (1974) refined the eddy-
viscosity/mixing-length model to a point that it can be used with great
confidence for most attached boundary layers . To remove some of the diffi-
culties in defining the turbulence length scale from the shear-layer thickness,
Baldwin and Lomax (1978) have proposed an alternative algebraic model
that enjoys widespread use .

One-Equation Models . Of the four types of turbulence models de-
scribed above, the one-equation model has enjoyed the least popularity and
success . Perhaps the most successful model of this type was formulated by
Bradsha,w, Ferriss and Atwell (1967) . In the 1968 Stanford Conference on
Computation of Turbulent Boundary Layers [Coles and Hirst (1969)] the
best turbulence models of the day were tested against the best experimen-
tal data of the day . In this author's opinion, of all the models used, the
Bradshaw-Ferriss-Atwell model most faithfully reproduced measured flow
properties . There has been some renewed interest in one-equation models
[c .f. Baldwin and Barth (1990), Goldberg (1991) and Spalart and Allmaras
(1992)], motivated primarily by the ease with which such model equations
can be solved numerically, relative to two-equation models and second-order
closure models .

Two-Equation Models. While Kolmogorov's k-w model was the first
of this type, it remained in obscurity until the coming of the computer .
By far, the most extensive work on two-equation models has been done by
Launder and Spalding (1972) and a continuing succession of students and
colleagues . Launder's k-c model, where c is proportional to the product of k
and w, is as well known as the mixing-length model and is the most widely
used two-equation model . Even the model's demonstrable inadequacy for
flows with adverse pressure gradient [c .f. Rodi and Scheuerer (1986) and
Wilcox (1988a)] has done little to discourage its widespread use . With no
prior knowledge of Kolmogorov's work, Saffman (1970) formulated a k-w
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model that enjoys advantages over the k-c model, especially for integrating

through the viscous sublayer and for predicting effects of adverse pressure

gradient . Wilcox and Alber (1972), Saffman and Wilcox (1974), Wilcox

and Traci (1976), Wilcox and Rubesin (1980), and Wilcox (1988a), for

example, have pursued further development and application of k-w models .

As pointed out by Lakshminarayana (1986), k-w models are the second

most widely used type of two-equation turbulence model.
Second-Order Closure Models. By the 1970's, sufficient computer

resources became available to permit serious development of this class of
model. The most noteworthy efforts were those of Donaldson [Donald-
son and Rosenbaum (1968)], Daly and Harlow (1970) and Launder, Reece
and Rodi (1975) . The latter has become the baseline second-order clo-

sure model: more recent contributions by Lumley (1978), Speziale (1985,

1987a) and Reynolds (1987) have added mathematical rigor to the closure
process . However, because of the large number of equations and complexity
involved in second-order closure models, they have thus far found their way
into a relatively small number of applications compared to algebraic and

two-equation models .
This book investigates all four classes of turbulence models . The pri-

mary emphasis is upon examining the underlying physical foundation and
upon developing the mathematical tools for analyzing and testing the mod-
els. The text is not intended to be a catalog of all turbulence
models. Rather, we approach each class of models in a generic sense. De-

tailed information is provided for models that have stood the test of time ;

additionally, references are given for most models .
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