
Appendix B

Rudiments of

Perturbation Methods

When we work with perturbation methods, we are constantly dealing with
the concept of order of magnitude. There are three conventional order
symbols that provide a mathematical measure of the order of magnitude
of a given quantity, viz ., Big O, Little o, and ~ . They are defined as
follows.

Big O : f(b) = O[g(b)] as b --~ b o if a neighborhood of ba exists and a
constant M exists such that If I G MIg1, i .e ., f(6)/g(b) is bounded as
6 'b".

Little o :

	

f(b) = o[g(b)] as 6 --+ b o if, given any e > 0, there exists a
neighborhood of 6, such that If 1 < e191, i.e ., f(6)fg(6) -; 0 as b --> bo .

^'

	

: f(b) - g(b) as 6 , 6, if f(b)lg( 6 ) -' I as 6 -. 60 .

For example, the Taylor series for the exponential function is

e-~-_1-x+6x2_ 1x3+. . . .

	

(13 .1)

where ". - ." is conventional shorthand for the rest of the Taylor series, i .e .,

E
(-1)nxn

n-4 n!

In terms of the ordering symbols, we can replace ". . " as follows.

(B .2)

e-x - 1- x + 2 x2 - 6x3 -f O(x4) = 1 - x + 2x2 - 6x3 + o(x3)

	

(B.3)
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We define an asymptotic sequence offunctions as asequence
n = 1, 2, 3, . . . satisfying the condition

We say that g(b) is transcendentally small if g(b) is o[0n(b)] for all
n . For example,

An asymptotic expansion is the sum of the first N terms in an
asymptotic sequence . It is the asymptotic expansion of a function F(b) as
b -+ bo provided

Thefollowing are a few useful asymptotic expansions generated from simple
Taylor series expansions, all of which are convergent as 6 --+ 0.

(1 + b)n

fn(1 + b)

e -1/ a = o(bn)

	

for all n

	

(B.6)

N
F(b) = E anOn(6) + o[ON(b)]

n=1

N
1 + nb + n 2 1 b 2 + 0(b3)

b - 2b2 + sb3 + 0(64)

(B .7)

(B.8)

Not all asymptotic expansions are developed as a Taylor series, nor
are they necessarily convergent . For example, consider the complementary
error function, erfc(x), i .e .,

erfc(x) = 2- jc* e -t' dt

	

(B .9)

We can generate an asymptotic expansion using a succession of integration -
by parts operations . (To start the process, for example, multiply and divide

(1-0 -1 1 + b + 62 + O(b3)

cos b 1 -
262

+ 24 64 + 0(66)
Sin b 6 663 + 120 65 + 0(67)
tan b N b + 363 + 1565 + 0(b7)

Examples of

On+1(6) = o[On(b)] as b -'

asymptotic sequences are :

ba (B .4)

0n(6) = 1, (b -- bo ), (b - 60) 2 , (b bo)3, . . . b , ba

0n(6) = 1,61/2,6,63/2 . . . . b -. 0
(B .5)

0n(b) = 1,b,b2fnb,62 . . . . 6 , 0

W.(x) = x -1 , x -2 , x-3, x-4 . . . . x 00



erfe(x)

	

~e
-xa ~(-1)

00

	

n ( 1 )(2)+lX22
+1

1)

	

as

	

x -~ o0

(b) difficulties arise in behavior near boundaries .
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the integrand by t so that texp(-t2 ) becomes integrable in closed form .)
The expansion is :

1 -3

77e
-xa f2- x4 + O(x-5 )

	

(B.10)

A simple ratio test shows that this series is divergent for all values of x.
However, if we define the remainder after the first N terms of the series as
RN(x), there axe two limits we can consider, viz.,

xlim
00 IRN(x)IFixed N = 0

	

and

	

J1m IRN(x)IFixed x = 00

	

(B .11)

Thus this divergent series gives a good approximation to erfc(x) provided
we don't keep too many terms! This is often the case for an asymptotic
series .

Part of our task in developing a perturbation solution is to determine
the appropriate asymptotic sequence . It is usually obvious, but not always .
Also, more than one set of 0,, (b) may be suitable, i .e ., we are not guaranteed
uniqueness in perturbation solutions . These problems, although annoying
from a theoretical viewpoint, by no means diminish the utility of pertur-
bation methods . Usually, we have physical intuition to help guide us in
developing our solution . This type of mathematical approach is, after all,
standard operating procedure for the engineer . We are, in essence, using
the methods Prandtl and von Karman used before perturbation analysis
was given a name .

A singular perturbation problem is one in which no single asymp-
totic expansion is uniformly valid throughout the field of interest . For
example, while b/x 1 12 = O(b) as S - 0, the singularity as x --> 0 means
this expression is not uniformly valid . Similarly, binx = O(b) as b -+ 0 and
is not uniformly valid as x -r 0 and as x - oo . The two most common
situations that lead to a singular perturbation problem are:

(a) the coefficient of the highest derivative in a differential equation is
very small;

Case (b) typically arises in analyzing the turbulent boundary layer where
logarithmic behavior of the solution occurs close to a solid boundary . The
following second-order ordinary differential equation illustrates Case (a) .

b d2F + dF +F=O 0<s<1

	

(B.12)ds2 ds

	

- -
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We want to solve this equation subject to the following boundary condi-
tions .

F(0) = 0

	

and

	

F(1) = 1

	

(13.13)

We also assume that 6 is very small compared to 1, i.e .,

This equation is a simplified analog of the Navier-Stokes equation . The
second-derivative term has a small coefficient just as the second-derivative
term in the Navier-Stokes equation, in nondimensional form, has the recip-
rocal of the Reynolds number as its coefficient . An immediate consequence
is that only one boundary condition can be satisfied if we set 6 = 0 . This
is similar to setting viscosity to zero in the Navier-Stokes equation, which
yields Euler's equation, and the attendant consequence that only the nor-
mal velocity surface boundary condition can be satisfied . That is, we cannot
enforce the no-slip boundary condition for Euler-equation solutions.

The exact solution to this equation is

el-s - el-316
F(s; 6) _ 1 - e1-116

which clearly satisfies both boundary conditions . If we set
tion (13.12), we have the following first-order equation :

and the solution, F(s; 0), is

ds -t- F = 0

F(s; 0) = el-'

6 = 0 in Equa-

where we use the boundary condition at s = 1 . However, the solution fails to
satisfy the boundary condition at s = 0 because F(0; 0) = e = 2 .71828 - - - .
Figure 13 .1 illustrates the solution to our simplified equation for several
values of 6.

As shown, the smaller the value of 6, the more closely F(s; 0) represents
the solution throughout the region 0 < s _< 1 . Only in the immediate
vicinity of s = 0 is the solution inaccurate . The thin layer where F(s; 0)
departs from the exact solution is called a boundary layer, in direct analogy
to its fluid-mechanical equivalent .

To solve this problem using perturbation methods, we seek a solution
that consists of two separate asymptotic expansions, one known as the



Clearly, if we select

1 s

Figure 13 .1 : Solutions to the model equation for several values of b .

outer expansion and the other as the inner expansion. For the outer
expansion, we assume a solution of the form

N
~'outer(si b) ^' 1: F.

	

(6)
n-0

where the asymptotic sequence functions, On(b), will be determined as part
of the solution . Substituting Equation (13 .18) into Equation (13.12) yields
the following.

n-0 dsn b~n(b) + dan On(S) + Fn On (b)} = 0

	

(B.19)

0n(b) = 6-

34 1

(13.20)

we, in effect, have a power-series expansion. Equating like powers of b,
the leading-order (n = 0) problem is Equation (13.16), while the second-
derivative term makes its first appearance in the first-order (n = 1) prob-
lem. Our perturbation solution yields the following series of problems for
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the outer expansion .

d so + Fod

ds + Fi

dds2 + F2

0

d2Fo
ds2
d2 Fl
ds2

Provided we solve the equations in sequence starting at the lowest or-
der (n = 0) equation, the right-hand side of each equation is known from
the preceding solution and serves simply to make each equation for n >_ 1
non-homogeneous . Consequently, to all orders, the equation for F�(s) is of
first order . Hence, no matter how many terms we include in our expansion,
we can satisfy only one of the two boundary conditions . As in the intro-
ductory remarks, we elect to satisfy F(1) = l . In terms of our expansion
[Equations (13 .18) and (13 .20)], the boundary conditions for the F� are

Fo(1) = 1

	

and

	

Fn,(1) = 0

	

for

	

n > 1

	

(13 .22)

The solution to Equations (13 .21) subject to the boundary conditions
specified in Equation (13 .22) is as follows .

In general, for singular perturbation problems, we have no guarantee
that continuing to an infinite number of terms in the outer expansion yields
a solution that satisfies both boundary conditions . That is, our expansion
may or may not be convergent . Hence, we try a different approach to
resolve the region near s = 0 . We now generate an inner expansion in
which we stretch the s coordinate . That is, we define a new independent
variable o- as follows .

IT=
S

w(b)

	

(13.25)

Fo(s) ei-J

F1 (s) (1 - s)e l- ' } (13 .23)

Hence, our outer expansion assumes the following form .

Fouter(s ; b) ^' el-3 [1 + (1 - $)b + O(b2)] (13 .24)



We assume an inner expansion in terms of a new set of asymptotic-sequence
functions, i .e .,

N
Finn,,-(0'; b) '" 1: fn(0)Y'n( 6)

n-o

To best illustrate how we determine the appropriate stretching function,
p(b), consider the leading-order terms in the original differential equation,
viz.,

duo (~'p-o )

	

d~ (~
?o

)

	

(b
2i

~i+ -

	

+ fo~o = o

	

,

	

, V),

	

(8.27)

First of all, we must consider the three possibilities for the order of mag-
nitude of p(b), viz ., p » 1, p - 1 and p « 1 . If p » 1, inspection of
Equation (13.27) shows that fo = 0 which is not a useful solution . If p - 1,
we have the outer expansion . Thus, we conclude that p « 1 .

We are now faced with three additional possibilities : 6V o/p2 » 001p ;
bOo/p 2 - Oo/p ; and boo /p 2 « 0olp . Using the boundary condition at
s = 0, assuming 6V)o/p 2 » 0o/,u yields fo = AQ where A is a constant of
integration . While this solution might be useful, we have learned nothing
about the stretching function, p(b) . At the other extreme, bV o/p2 « Oo/p,
we obtain the trivial solution, fo = 0, which doesn't help us in our quest
for a solution . The final possibility, 6 ,001p' - 0o/p, is known as the dis-
tinguished limit, and this is the case we choose . Thus,

Again, the most appropriate choice for the V),#) is

The following sequence of equations and boundary conditions define the
inner expansion .

p(b) = 6

0, (6) = bn

343

(13 .26)

(13 .28)

(13 .29)

d2fo _dfo
doe + =do 0

d2fi
+

_dfi -fodal dQ (13.30)
d2f2 _df2
dQ2 + do-

fn(0) = 0 for all n > 0 (13.31)
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Solving the leading, or zeroth, order problem (n = 0) and the first
order problem (n = 1), we find

where AD and Al are constants of integration . These integration constants
arise because each of Equations (13 .30) is of second order and we have used
only one boundary condition .

To complete the solution, we perform an operation known as match-
ing . To motivate the matching procedure, note that on the one hand, the
boundary s = 1 is located at rr = 1/b --r oo as S -> 0 . Hence, we need a
boundary condition for Fi��er(Q ; b) valid as a -a oo . On the other hand,
the independent variable in the outer expansion is related to a by s = b0' .
Thus, for any finite value of v, the inner expansion lies very close to s = 0 .
We match these two asymptotic expansions by requiring that

The general notion is that on the scale of the outer expansion, the inner
expansion is valid in an infinitesimally thin layer . Similarly, on the scale
of the inner expansion, the outer expansion is valid for a region infinitely
distant from s = 0 . For the problem at hand,

Thus, we conclude that

fo(o-)

	

=

	

Ao(1 - e-')

fi(er)

	

=

	

(A1 - Aoo-) - (Ai + Aotr)e -°

	

}

	

(13.32)

1moo Finner(o,; b) = 1~ Fouter(S ; b) (13 .33)

lim fo(Q) = AD
0 00

Equivalently, we can visualize the existence of an overlap region be-
tween the inner and outer solutions . In the overlap region, we stretch the
s coordinate according to

Using this method, we can match to as high an order as we wish . For
example, matching to nti" order, we perform the following limit operation .

l
6-0
im

1

Finner- Fouter

I

_ 0n (13 .38)

S*
s

= ; b K « 1v(b)
v(b) (13.36)

In terms of this intermediate variable, for any finite value of s*,

s 0 and o- -> oo as v(b) -> 0 (13.37)

and lim Fo (s) = e (13.34)
s-.o

AD = e (13 .35)



34 .5

For the problem at hand, the independent variables s and a become

s = v(b)s*

	

and

	

a = v(~)s*

	

(13.39)

Hence, replacing e -"(6)' * by its Taylor series expansion, we find

Pouter - e {1 - v(b)s* + b + O[bv(b)]}

	

(B .40)

Similarly, noting that e-"(6)s*I6 is transcendentally small as b -> 0, we have

Thus, holdings* constant,

F'inner - Ao - Aov(b)s* + Alb +0(62)

	

(13.41)

lim
1

Finner
b

(''outer

	

N (Ao - e)(1 - v(b)s*) + (Al - e)b + o(b)

	

(B.42)
6-0

	

6

Clearly, matching to zeroth and first orders can be achieved only if

Ao = A1 = e

	

(13.43)

In summary, the inner and outer expansions are given by

Fouter(s ; b) - el- ' [1 + (1 - s)b + O(b2)]

F'inner(a ; b) - e {(1- e_°) + [(1- o-) - (I + o,)e^°lb + O(b2)}

(13 .44)

Finally, we can generate a single expansion, known as a composite
expansion, that can be used throughout the region 0 <_ s <_ 1 . Recall that
in the matching operations above, we envisioned an overlap region . In
constructing a composite expansion, we note that the inner expansion is
valid in the inner region, the outer expansion is valid in the outer region,
and both are valid in the overlap region . Hence, we define

F'composite = r'inner + Pouter - r'cp (13 .45)

where Fcp is the common part, i.e ., the part of the expansions that cancel
in the matching process. Again, for the case at hand, comparison of Equa-
tions (13.40) and (13 .41) with Ao and A1 given by Equation (13.43) shows

that
F'p _ e [1 + (1 - 0-)b + O(b2)]

	

(B.46)
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where we use the fact that v(b)s* = ba. Hence, the composite expansion
is

Fcomposite - [el-3 -
el-s/a] + [(1 - s)e l-' - (1 + s/b)el-s/b] b + O(b2)

(B.47)
Retaining just the zeroth order term of the composite expansion yields

an approximation to the exact solution that is accurate to better than 3%
for b as large as 0 .2! This is actually a bit fortuitous since the leading term
in Equation (B .47) and the exact solution differ by a transcendentally small
term . What we have done is combine two non-uniformly valid expansions
to achieve a uniformly valid approximation to the exact solution .

For the obvious reason, perturbation analysis is often referred to as
the theory of matched asymptotic expansions . The discussion here,
although sufficient for our needs, is brief and covers only the bare essentials
of the theory . For additional information, see the excellent books by Van
Dyke (1964), Bender and Orszag (1978) or Kevorkian and Cole (1981) on
this powerful mathematical theory .



Problems

B.1 Consider the polynomial

x3_ x2 +6=0

(a) For nonzero S < 4/27 this equation has three real and unequal roots .
Why is this a singular perturbation problem in the limit b -> 0?

(b) Use perturbation methods to solve for the first two terms in the ex-
pansions for the roots.

B.2 The following is an example of a perturbation problem that is singular
because of nonuniformity near a boundary . Consider the following first-
order equation in the limit e -> 0.

d _xs_dx - Eye'

	

y( 1 ) = 1

The solution is known to be finite on the closed interval 0 < x < 1.

(a) Solve for the first two terms in the outer expansion and show that the
solution has a singularity as x -> 0.

(b) Show that there is a boundary layer near x = 0 whose thickness is of
order c1 /2 .

(c) Solve for the first two terms of the inner expansion . Note that the al-
gebra simplifies if you do the zeroth-order matching before attempting
to solve for the next term in the expansion.

B.3 Generate the first two terms of the inner and outer expansions for the
following boundary-value problem. Also, construct a composite expansion .

6d2+d -xy=0;

	

b«1

y(0) = 0

	

and

	

y(1) = e112

34(
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13.4 Generate the first two terms of the inner and outer expansions for the
following boundary-value problem. Also, construct a composite expansion.

where

x2 +

	

__
dx

	

2
x2

d

	

'

y(0) = 1 and

S«1

B.5 This problem demonstrates that the overlap region is not a layer in
the same sense as the boundary layer . Rather, its thickness depends upon
how many terms we retain in the matching process . Suppose we have solved
a boundary-layer problem and the first three terms of the inner and outer
expansions valid as E , 0 are:

youter(xi E)
'� 1 + EC`a + E2e-2xa '+'

O(E3)

yanner(x ; E) ^' A(1 - e-~) + EB(1 - e-~) -i- (2C(1 - S2) + O(E3)

Determine the coefficients A, B and C. Explain why the thickness of the
overlap region, v(E), must lie in the range

E1/2 « v(E) « E1/4

as opposed to the normally assumed range E1 / 2 « v(E) « 1 .
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