
Appendix A

Cartesian Tensor
Analysis

The central point of view of tensor analysis is to provide a systematic way
for transforming quantities such as vectors and matrices from one coordi-
nate system to another . Tensor analysis is a very powerful tool for making
such transformations, although the analysis generally is very involved . For
our purposes, working with Cartesian coordinates is sufficient so that we
only need to focus on issues of notation, nomenclature and some special
tensors . This appendix presents rudiments of Cartesian tensor analysis .

We begin by addressing the question of notation . In Cartesian tensor
analysis we make extensive use of subscripts . For consistency with general
tensor analysis nomenclature we will use the terms subscript and index
interchangeably . The components of an n-dimensional vector x are denoted
as X1, X2, . . . , xn .

	

For example, in three-dimensional space, we rewrite
the coordinate vector x = (x, y, z) as x = (X1, X2, x3 ) .

	

Now consider an
equation describing a plane in three-dimensional space, viz.,

a l x l + a2X2 + a3X3 = c

	

(A. l)
where a8 and c are constants . This equation can be written as

(A .2)

In tensor analysis, we introduce the Einstein summation convention and
rewrite Equation (A .2) in the shorthand form

aixi = c

	

(A.3)
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The Einstein summation convention is as follows:

Repetition of an index in a term denotes summation
with respect to that index over its range.

The range of an index i is the set of n integer values 1 to n . An index
that is summed over is called a dummy index ; one that is not summed is
called a free index .

Since a dummy index simply indicates summation, it is immaterial what
symbol is used . Thus, aixi may be replaced by ajxj, which is obvious if we
simply note that

3

	

3
ai xi = 1: a,j xj

	

(A.4)
i-i j-i

As an example of an equation with a free index, consider a unit normal
vector n in three-dimensional space . If the unit normals in the xl, x2 and
x3 directions are il, i2 and 6 then the direction cosines al, a2 and a3 for
the vector n are given by

ak = n . ik

	

(A.5)

There is no implied summation in Equation (A.5) . Rather, it is a shorthand
for the three equations defining the direction cosines . Because the length of
a unit vector is one, we can take the dot product of (al, a2, a3) with itself
and say that

aiai = 1

As another example, consider the total differential of a function of three
variables, p(xi, x2, x3) . We have

dp =
Ox,

dx i +
1x2 dx2 + Ox3

dx3

In tensor notation, this is replaced by

(A .6)

(A .7)

dp = 8p dxi

	

(A .8)
8xi

Equation (A.8) can be thought of as the dot product of the gradient of p,
namely Vp, and the differential vector dx = (dx1, dx2 , dx3) . Thus, we can
also say that the i component of Vp, which we denote as (Op)i, is given by

(VA = ~

	

= pi

	

(A.9)



where a comma followed by an index is tensor notation for differentiation
with respect to xi . Similarly, the divergence of a vector u is given by

au iD . u=-=u i , iaxi
where we again denote differentiation with respect to xi by ", i" .

Thus far, we have dealt with scalars and vectors . The question naturally
arises about how we might handle a matrix . The answer is we denote a
matrix by using two subscripts, or indices . The first index corresponds to
row number while the second corresponds to column number . For example,
consider the 3 x 3 matrix [A] defined by

All A12 A13
[A] =

	

A21	A22

	

A23

	

(A.11)
A31 A32 A33

In tensor notation, we represent the matrix [A] as Aij . If we post-multiply
an 7n x n matrix Bij by an n x 1 column vector xj, their product is an
-m x 1 column vector yi . Using the summation convention, we write

?li = Bijxj

Equation (A.12) contains both a free index (i) and a dummy index (j) .
The product of a square matrix Aij and its inverse is the unit matrix, i .e .,
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(A.10)

(A.12)

This corresponds to pre-multiplying the 3 x 3 matrix bij by the row vector
(cal, a2, a3) and then post-multiplying their product by the column vector
(a1> a2, a3 )T , where superscript T denotes transpose .

Equation (A.13) is rewritten in tensor notation as follows :

Aik(A_1)kj = bij (A .14)

where Bij is the Kronecker delta defined by

=
big

1, i j-
0, i0j

(A.15)

We can use the Kronecker delta to rewrite Equation (A.6) as

aibijaj = 1 (A .16)
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The determinant of a 3 x 3 matrix Aij is

All

	

A12

	

A13

	

-
Al1A22A33 + A21A32A13 + A31A12A23

A21

	

A22

	

A23

	

_

	

A11A32A23 - A12A21A33 - A13A22A31
(A,17)

A31 A32 A33

Tensor analysis provides a shorthand for this operation as well . Specifically,
we replace Equation (A .17) by

where c,,t is the permutation tensor defined by

C123

	

C231 - E312 - 1
E213 = E321 = E132 = -1

	

(A.19)
E111 = (222 = E333 = E112 = E113 = E221 = E223 = (331 = (332 = 0

In other words, fijk vanishes whenever the values of any two indices are the
same ; fijk = 1 when the indices are a permutation of 1, 2, 3 ; and fijk = -1
otherwise .

As can be easily verified, the cross product of two vectors a and b can
be expressed as follows .

(a x b)i = Cjkajbk

In particular, the curl of a vector u is

det(Aij) = jAij I = c,,tA,jA,2At3

	

(A.18)

OUk

	

(A.21)(~ x u)i = Eijk ax

	

- EijkUkj
j

Eijkfist = 6j,bkt - 6jt6k.,

(A.20)

The Kronecker delta and permutation tensor are very important quanti-
ties that appear throughout this book . They are related by the (-S identity,
which is the following .

(A .22)

All that remains to complete our brief introduction to tensor analysis
is to define a tensor . Tensors are classified in terms of their rank . To
determine the rank of a tensor, we simply count the number of indices .

The lowest rank tensor is rank zero which corresponds to a scalar, i .e .,
a quantity that has magnitude only. Thermodynamic properties such as
pressure and density are scalar quantities . Vectors such as velocity, vorticity
and pressure gradient are tensors of rank one . They have both magnitude
and direction . Matrices are rank two tensors . The stress tensor is a good
example for illustrating physical interpretation of a second rank tensor .
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It defines a force per unit area that has a magnitude and two associated
directions, the direction of the force and the direction of the normal to the
plane on which the force acts . For a normal stress, these two directions are
the same ; for a shear stress, they are (by convention) normal to each other.

As we move to tensors of rank three and beyond, the physical interpre-
tation becomes more difficult to ascertain . This is rarely an issue of great
concern since virtually all physically relevant tensors are of rank 2 or less .
The permutation tensor is of rank 3, for example, and is simply defined by
Equation (A .19) .
A tensor aij is symmetric if ail = aji. Many important tensors in

mathematical physics are symmetric, e.g ., stress, strain and strain-rate
tensors, moment of inertia tensor, virtual-mass tensor . A tensor is skew
symmetric if aij = -aji . The rotation tensor, Qij = 2(ui,7 - zip, ;) is skew
symmetric .

As a final comment, in performing tensor analysis operations with ten-
sors that are not differential operators, we rarely have to worry about pre-
serving the order of terms as we did in Equation (A.16) . There is no
confusion in writing bij aiaj in place of a8bi9 aj . This is only an issue when
the indicated summations actually have to be done . However, care should
be exercised when differentiation occurs . As an example, 0 - u = auilaxi
is a scalar number while u-V = uialaxi is a scalar differential operator .
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Problems

A.1 Use the c-b identity to verify the well known vector identity

A x (B x C) = (A - C)B - (A - B)C

A.2 Show that, when i, j, k range over 1, 2, 3

(a) bijbji = 3

(b) EijkCjki = 6

(c) EijkAjAk = 0

(d) bijbik = bik

A.3 Verify that 2Sij,j = V2
Ui for incompressible flow, where Sij is the

strain-rate tensor, i.e ., Sij = z(ui,j + ui,i) .

A.4 Show that the scalar product SijQji vanishes identically if Sij is a
symmetric tensor and Qij is skew symmetric .

A.5 If uj is a vector, show that the tensor wik = cijkuj is skew symmetric .

A.6 Show that if Ajk is a skew-symmetric tensor, the unique solution of
the equation wi = 2EijkAjk is Amn = cmniwi .

A.7 The incompressible Navier-Stokes equation in a coordinate system ro-
tating with constant angular velocity 0 and with position vector x = xkik
is

9 +u-Vu+Wxu=-oflx,flxx+VV2u
P

(a) Rewrite this equation in tensor notation .

(b) Using tensor analysis, show that for ,fl = Qk (k is a unit vector
aligned with ,fl), the centrifugal force per unit mass is given by

-,fl x !l x x = V(2Q 22kXk) - [k' 0(21Q2xkxk)]k

A.8 Using tensor analysis, prove the vector identity

u-Du=%u . u)-ux(Vxu)
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