Appendix A

Cartesian Tensor
Analysis

The central point of view of tensor analysis is to provide a systematic way
for transforming quantities such as vectors and matrices from one coordi-
nate system to another. Tensor analysis is a very powerful tool for making
such transformations, although the analysis generally is very involved. For
our purposes, working with Cartesian coordinates is sufficient so that we
only need to focus on issues of notation, nomenclature and some special
tensors. This appendix presents rudiments of Cartesian tensor analysis.

We begin by addressing the question of notation. In Cartesian tensor
analysis we make extensive use of subscripts. For consistency with general
tensor analysis nomenclature we will use the terms subscript and index
interchangeably. The components of an n-dimensional vector x are denoted
as &1, L2, ..., Tn. For example, in three-dimensional space, we rewrite
the coordinate vector x = (x, y, z) as x = (z1,z2,23). Now consider an
equation describing a plane in three-dimensional space, viz.,

a1xy + asxe + azrs = ¢ (A1)

where a; and ¢ are constants. This equation can be written as

3
Za,-:ci =c (A2)
i=1

In tensor analysis, we introduce the Einstein summation convention and
rewrite Equation (A.2) in the shorthand form

@z = ¢ (A.3)
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The Einstein summation convention is as follows:

Repetition of an index in a term denotes summation
with respect to that index over its range.

The range of an index i is the set of n integer values 1 to n. An index
that is summed over is called a dummy index; one that is not summed is
called a free index.

Since a dummy index simply indicates summation, it is immaterial what
symbol is used. Thus, a;z; may be replaced by a;x;, which is obvious if we

simply note that
3

Za,-zi = Za]’m]‘ (A4)

i=1 j=1

As an example of an equation with a free index, consider a unit normal
vector n in three-dimensional space. If the unit normals in the «,, , and
23 directions are i, io and iz, then the direction cosines a;, a2 and a3 for
the vector n are given by

ap = I - ik (A5)

There is no implied summation in Equation (A.5). Rather, it is a shorthand
for the three equations defining the direction cosines. Because the length of
a unit vector is one, we can take the dot product of (a;, as, as) with itself
and say that

;0 = 1 (A6)

As another example, consider the total differential of a function of three
variables, p(z1, 3, z3). We have

6—pd$€1 + 6—pd22 + —8—1)-4-’83 (A7)

dp = 816'1 01‘2 823

In tensor notation, this is replaced by

dp = %dz; (A.8)

Equation (A.8) can be thought of as the dot product of the gradient of p,
namely Vp, and the differential vector dx = (dzy, dzy,dxs). Thus, we can
also say that the ¢ component of Vp, which we denote as (Vp);, is given by

(Vp)i = ggf =p; (A.9)
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where a comma followed by an index is tensor notation for differentiation
with respect to ;. Similarly, the divergence of a vector u is given by
Ou;
ox;

V-ou=

= U (AIO)

where we again denote differentiation with respect to x; by .

Thus far, we have dealt with scalars and vectors. The question naturally
arises about how we might handle a matrix. The answer is we denote a
matrix by using two subscripts, or indices. The first index corresponds to
row number while the second corresponds to column number. For example,
consider the 3 = 3 matrix [A] defined by

Al A A
[A] = | Ag; Aoy Aos (A.ll)
Az A3z Ass

In tensor notation, we represent the matrix [A] as A;;. If we post-multiply
an m z n matrix B;; by an n ¢ 1 column vector x4, their product is an
m z 1 column vector y;. Using the summation convention, we write

Yi = Bijz; (A.12)

Equation (A.12) contains both a free index (i) and a dummy index (7).
The product of a square matrix A;; and its inverse is the unit matrix, i.e.,

1
[All4]™ = | 0
0

o = O

0
0 (A.13)
1

Equation (A.13) is rewritten in tensor notation as follows:
AiR(A™ g = 655 (A.14)

where 6;; is the Kronecker delta defined by

1, =g
6U—{ 0 it (A.15)

We can use the Kronecker delta to rewrite Equation (A.6) as
aiéijaj =1 (AIG)

This corresponds to pre-multiplying the 3 3 matrix 8;; by the row vector
(a1, a2, a3) and then post-multiplying their product by the column vector
(a1, az,a3)T, where superscript T' denotes transpose.
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The determinant of a 3 £ 3 matrix A;; is

A A A

All A12 A13 _ ApApAaz+ AnAzAis + Az1A12A23 (A.17)
21 22 28 | T Ay AspAgz — AjaAg Asz — Aj3AgaAa )

A31 A32 A33

Tensor analysis provides a shorthand for this operation as well. Specifically,
we replace Equation (A.17) by

det(Aij) = 'Aijl = €rst Ar1AsaAsa (A.18)
where ¢€,,; is the permutation tensor defined by

€123 = €231 = €312 = 1
€213 = €321 = €132 = —1 (A.19)
€111 = €222 — €333 = €112 = €113 = €221 = €223 = €331 = €332 = 0

In other words, €;;; vanishes whenever the values of any two indices are the
same; €;jx = 1 when the indices are a permutation of 1,2, 3; and ¢;;; = —1
otherwise.

As can be easily verified, the cross product of two vectors a and b can
be expressed as follows.

(axb)i = €ijrajbr (A.20)
In particular, the curl of a vector u is

. Buk
(V X u),' = €jka— = €ijkUk,; (A.?l)
(9:cj
The Kronecker delta and permutation tensor are very important quanti-
ties that appear throughout this book. They are related by the ¢-6 identity,
which is the following.

€ijk€ist = 03Okt — 0510ks (A.22)

All that remains to complete our brief introduction to tensor analysis
is to define a tensor. Tensors are classified in terms of their rank. To
determine the rank of a tensor, we simply count the number of indices.

The lowest rank tensor is rank zero which corresponds to a scalar, i.e.,
a quantity that has magnitude only. Thermodynamic properties such as
pressure and density are scalar quantities. Vectors such as velocity, vorticity
and pressure gradient are tensors of rank one. They have both magnitude
and direction. Matrices are rank two tensors. The stress tensor is a good
example for illustrating physical interpretation of a second rank tensor.
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It defines a force per unit area that has a magnitude and two associated
directions, the direction of the force and the direction of the normal to the
plane on which the force acts. For a normal stress, these two directions are
the same; for a shear stress, they are (by convention) normal to each other.

As we move to tensors of rank three and beyond, the physical interpre-
tation becomes more difficult to ascertain. This is rarely an issue of great
concern since virtually all physically relevant tensors are of rank 2 or less.
The permutation tensor is of rank 3, for example, and is simply defined by
Equation (A.19).

A tensor a;; is symmetric if a;; = aj;. Many important tensors in
mathematical physics are symmetric, e.g., stress, strain and strain-rate
tensors, moment of inertia tensor, virtual-mass tensor. A tensor is skew
symmetric if a;; = —a;;. The rotation tensor, Q;; = %(u,-,j — u; ;) is skew
symmetric.

As a final comment, in performing tensor analysis operations with ten-
sors that are not differential operators, we rarely have to worry about pre-
serving the order of terms as we did in Equation (A.16). There is no
confusion in writing 6;;c;0; in place of a;6;;c;. This is only an issue when
the indicated summations actually have to be done. However, care should
be exercised when differentiation occurs. As an example, V - u = du;/8z;
1s a scalar number while u-V = u;0/0z; is a scalar differential operator.
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Problems
A.1 Use the €-6 identity to verify the well known vector identity
Ax(BxC)=(A-C)B-(A -B)C
A.2 Show that, when ¢, j, k range over 1, 2, 3
(a) 8ij8ji =3
(b) €ijrejri =6
(c) €ijeAjAr =0
(d) 66k = bix

A.3 Verify that 25;;; = V2u; for incompressible flow, where S;; is the
strain-rate tensor, i.e., Sj; = %(u,-,j + uj ).

A.4 Show that the scalar product S;;j€;; vanishes identically if S;; s a
symmetric tensor and €2;; is skew symmetric.

A.5 If u; is a vector, show that the tensor w;; = €3 u; is skew symmetric.

A.6 Show that if Aj; is a skew-symmetric tensor, the unique solution of
the equation w; = %e,:jkAjk 18 Amn = €mniWi-

A.7 The incompressible Navier-Stokes equation in a coordinate system ro-
tating with constant angular velocity 2 and with position vector x = Tl
is

%;—+u‘Vu+2ﬂxu=—V (%) —2x N xx+vVia

(2) Rewrite this equation in tensor notation.

(b) Using tensor analysis, show that for £ = Qk (k is a unit vector
aligned with £2), the centrifugal force per unit mass is given by

—N2XNxx= V(%szk:ck) ~[k- V(%Q%kxk)]k

A.8 Using tensor analysis, prove the vector identity

u~Vu:V(j}2—u-u)—ux(qu)
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