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PREFACE

Over the last three decades the various topics making up the subject of
engineering science have tended to become ever more scientific and sophisti-
cated. In effect the emphasis has been increasingly on the ‘science’ aspect of
the subject, and the study of turbulence has been no exception.

Up until about the end of the 1950s, most work on turbulence involved the
application of ad hoc methods to difficult practical problems. That is to say,
turbulence was essentially a branch of hydraulics, and hence was treated by
the methods of ‘handbook engineering’. There was only a relatively small
amount of fundamental research and this was described in a rather complete
way by the well-known monographs due to Batchelor, Hinze, and Townsend
(for references, see Chapter 1), all of which were first published in the period
1953-1959.

However, since 1960 the study of turbulence has seen a great increase in
activity of a more scientific kind. The invention of laser anemometry, the
development of powerful computers, new methods of digital data processing
and signal analysis, and the introduction of exotic (at least, in engineering
terms) theoretical methods from quantum physics have all played a part.

It is perhaps not altogether surprising that over this time there have been
some important developments in the subject. As examples, one may note the
spectacular phenomenon of drag reduction by additives, the recognition of
the importance of coherent structures, the direct numerical simulation of
turbulence on the computer, and the derivation of closures of the Navier—
Stokes hierarchy using renormalized perturbation theory.

As engineering has tended to become more scientific, there has been (pleas-
ingly to one’s sense of symmetry!) a comparable trend in physics in the reverse
direction. The stunning success of modern physics (i.e. Einsteinian relativity
and, more particularly, quantum mechanics) in solving many fundamental
problems has led, by way of the search for new worlds to conquer, to a strong
applied physics discipline. In turn, mutual interest has resulted in the forma-
tion of many interfaces between engineering science and applied physics,
especially in the areas of electronics, physical optics, and materials science.

It is at this point that the study of turbulence does prove to be an exception:
the applied physics involvement is almost completely absent. In view of the
extraordinary practical importance of turbulence (not to mention its intense
study by other disciplines in the context of applications), this is at first sight
quite astonishing. Yet the reason for such apparent neglect is easily found.
Quite simply the fundamental problems of turbulence are still unsolved. That
is, the ‘turbulence problem’ is still a matter of pure physics. Indeed, turbulence
is often referred to as the ‘unsolved problem of classical physics’.
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Considered as a problem in pure physics, turbulence has not been altogether
neglected. But, when compared with topics like condensed matter physics or
high energy physics, it has been very much a minority cult. It is therefore
particularly encouraging to note that over the past decade or so there have
been convincing signs of an exponential growth in the study of turbulence as
a branch of physics. This is, of course, a predictable trend. As fewer and fewer
linear problems are left to solve, there is inevitably a growing pursuit of
non-linear problems,” and turbulence is the archetypal non-linear non-
equilibrium problem of statistical physics.

In this book our aim is to deal with certain topics which form a subset of
both engineering science and physics. In doing so, we hope to assist two broad
classes of reader. First there are those who are new to the subject (although
not necessarily new to research), and secondly there are those who are
already familiar with one or more of the traditional branches of the study of
turbulence, but whose background and experience does not prepare them for
the usages of quantum physics. (In passing, one notes that theoretical physicists
who write papers on turbulence often appear to make little or no effort to
present their work in a way which would be accessible to the more theoreti-
cally inclined members of the turbulence community.)

In order to cater for, in particular, the first of these groups, we have aimed
at a reasonable degree of completeness. The first two chapters set out to give
a concise summary of the theory and practice of turbulence up to about 1960.
This material is based upon lectures, which I have given to final-year under-
graduates, originally in mechanical engineering but now, in more recent years,
in physics. Chapter 3 then serves two purposes. First, it tries to give the reader
a broad picture of what the rest of the book is about. Thus certain topics in
this category can be regarded as overviews of their more detailed treatment
later in the book. The second purpose of this chapter is to cover topics which
would not easily fit into the main part of the book, yet are important. Section
3.1 on anemometry and data processing is an example of such a topic.

Chapters 4—10 constitute the main part of the book and deal with modern
(post-1960) turbulence theory. Chapter 4 begins by presenting some back-
ground material on the statistical mechanics of the classical N-body system.
This introduces useful concepts and terminology, and provides a context for
the subsequent rigorous formulation of the turbulence problem as an example
of a non-equilibrium statistical system with strong coupling. Chapter 5 aims
to ‘de-mystify’ the application of renormalized perturbation theory (RPT) to
turbulence. RPT is introduced for some simpler problems by considering (a)
the virial cluster expansion in dilute N-body systems and (b) the Debye-
Hiickel screened potential for the classical plasma as an example of long-range

* An interesting and authoritative discussion of this situation was given by R. Kubo in his opening
address to the Oji Seminar on Non-linear, Non-equilibrium Statistical Mechanics (1978: Suppl.
Progr. Theor. Phys. 64, 1).
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interactions. Then, a general treatment of the perturbation expansion of the
Navier—Stokes equation (based on a modified version of Wyld’s analysis)
follows, and the chapter closes with a consideration of Kraichnan’s direct-
interaction approximation as an example of a second-order truncation of the
renormalized expansion. It should be noted that at this point (and at various
others) we do not always keep to the strict chronological order in which the
different pieces of work were carried out.

Chapter 6 deals with those RPTs which do not yield the Kolmogorov
spectrum as a solution and Chapter 7 deals with those that do.

Chapter 8 attempts to provide a critical assessment of RPTs. The main
emphasis is on the comparison of numerical solutions of the spectral and
response equations with the results of laboratory and computer experiments.
The chapter closes with an appraisal of RPTs in the light of various published
critiques, and their relationship with other fields of physics.

In Chapter 9 we introduce the newer method of renormalizing the transport
coefficients in turbulence: the renormalization group (RG). Both this and RPT
methods crop up again in Chapter 10, where we discuss the numerical simula-
tion of turbulence. This is entirely appropriate, for the general area of large-
eddy simulation (which resembles other hybrid areas of physics, such as lattice
gauge calculations) provides for the first time an arena where engineers and
physicists can meet on equal terms and find much of mutual interest.

The final part of the book, consisting of Chapters 11-14, can be seen as
offering some sort of counterpoise to the exclusively theoretical (and often
esoteric) nature of most of the preceding chapters. My intention here is to deal
with some of the more practical aspects of the subject, while at the same time
illustrating the amazing richness of physical phenomena which has emerged
from experimental studies of turbulence over the last few years. What is now
needed is much more interest from physicists, especially on the experimental
side which has for the most part been left to the engineers. If the material
contained in Chapters 11-14 does not inspire the requisite interest, then I
believe that nothing will!

I took my own first steps in turbulence theory under the guidance of Sam
Edwards and David Leslie. In their different ways they taught me much. It is
a pleasure to acknowledge my debt to them here. Also, in the course of writing
this book, I have received a great deal of help from friends and colleagues. 1
would like to thank Francis Barnes, Phil Hutchinson, V. Shanmugasundaram,
and Alex Watt for reading the manuscript (in various drafts!) and pointing
out errors and making suggestions for improvement. Finally, I would like to
thank Denis Jones of Dantec Electronics for his help and advice concerning
the section on anemometry.

Edinburgh W. D. McC.
June 1989
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NOTATION

1 General remarks

Vectors, matrices, and tensors are represented by the standard Cartesian
notation, i.e. 4,, B4, C,4,, and so on. In all cases we use Greek letters o, §, 7,
8, ... for the tensor subscripts; each subscript can take the value 1, 2, or 3. In
certain cases, vectors are shown in bold face type. This is usually the case
where the vector concerned is the independent variable, i.e. U,(x,t) or even
F[U(x, )]. In the latter example, the square brackets are used to indicate that
F is a functional or ‘function of a function’.

We shall usually, but not always, employ the summation convention, in
which repeated tensor indices are taken to be summed without the summation
symbol being needed. For example, the scalar product of two vectors X and
Y can be written as

X'Y=Y X7,
a=1
or as
XY=X,Y,

All averages are denoted by Dirac brackets ), although an overscore is
sometimes used for single variables. Thus the mean velocity can be written as
U = (U)>. A local (or partial) average is introduced in Chapter 9, and this is
denoted by { >,.

Position vectors are written as x, x, x”, . .. for different positions, while times
of different events are usually written as ¢, ¢',t", ....

Inconsistently, distinct wavevectors are normally written as k, j, I, ..., or
k. k,, ks, ....

2 Italic symbols

a semi-width of a plane channel, radius of spherical particles

A, cross-sectional area of added particles

Cs friction (or drag) coefficient for external flow round a solid body

C,C, empirical constants in ‘two equation’ turbulence models

Cp, Cy, G,

C,-C, constants specifying the trial spectra, as used in Chapter 8

d " diameter of pipe, diameter of diffusing particle, width of a plane
jet

Dy, Dy  structure functions

D diffusivity due to molecular motion

Dy eddy diffusivity for fluid points
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eddy diffusivity for added particles

diffusivity associated with a macroscopic random walk
total kinetic energy of fluid motion

kinetic energy of fluctuating motion per unit mass of fluid
energy spectrum -
flatness factor of a probability distribution

friction factor for pipe or channel flow

wavevector (or position coordinate in k-space)
Kolmogorov dissipation wavenumber

thermal conductivity, as used in Chapter 13

integral length scale

scalar concentration field

mean scalar concentration field

fluctuating scalar concentration field

reference level for scalar concentration field

* instantaneous pressure field

mean value of the pressure field

fluctuating pressure field

spectral density

stationary spectral density

relative coordinate, r = (x — x)

Reynolds number for pipe flow, centroid coordinate R =
(x + x')/2

Reynolds number for boundary layer flow
microscale-based Reynolds number (or Taylor-Reynolds
number)

correlation coefficient

Eulerian time-correlation

Lagrangian time-correlation

deviatoric stress tensor

skewness factor of a probability distribution
Eulerian integral time-scale

Lagrangian integral time-scale

Lagrangian integral time-scale for diffusing particles
inertial transfer spectrum

bulk mean velocity in pipe or channel flow

free stream velocity in external flows

centre-line velocity in pipe or channel flow
instantaneous velocity field

mean value of the velocity field

fluctuating velocity field

Fourier transform of the velocity field

Fourier transform of the fluctuating velocity field



u; (k, 1)
u, (k, t)}
u, (K, t)}
uf(k,1)
ul,u

I
S

V(1)
V(1)
W (k)

NOTATION XXxiil

Fourier components of the velocity field

restricted to a band of wavenumbers 0 < k < k.(say)

Fourier components of the velocity field

restricted to a band of wavenumbers k, < k < o (say)

root mean square value of the fluctuating velocity

scalar component of the velocity field in isotropic turbulence
friction velocity

velocity scale associated with the Kolmogorov length scale
and time-scale

Lagrangian velocity of a fluid particle

Lagrangian velocity of an added particle

rate of doing work by Gaussian stirring forces, with delta func-
tion autocorrelations in time, per unit mass of fluid and per
unit volume of k-space

w(k; t —t’) autocorrelation of external stirring forces

Xy X
X(1)

X, (1)

position coordinate in configuration space
Lagrangian position coordinate for fluid particles
Lagrangian position coordinate for added particles

3 Greek symbols

constant of proportionality in the Kolmogorov spectrum

ratio of Lagrangian to Eulerian time-scales, Obukhov—Corrsin
constant

intermittency factor

Kronecker delta

Dirac delta function

boundary-layer thickness

dissipation rate

expansion parameter (Chapters 9 and 13)

Kolmogorov dissipation length scale

thermal diffusivity of the fluid

Taylor microscale, bookkeeping parameter in the perturbation
expansion of the Navier—Stokes equation, Debye—Hiickel length
dynamic viscosity of the fluid

alternative notations for the kinematic molecular viscosity of the
fluid

effective (turbulent) viscosity

density of the fluid”

material density of added particles

empirical constants in two-equation turbulence models

total stress tensor in a turbulent fluid

shear stress at the wall in duct flows
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TE Eulerian microscale

T momentum relaxation time

X variance of scalar concentration field
Y stream function

4 TImportant formulae

R = Ud/v: Reynolds number for pipe flow

Pr = v/k: Prandtl number

Sc = v/D: Schmidt number

E =1Y,<u?y: kinetic energy of fluctuations per unit mass of fluid

u, = (1,,/p). friction velocity

f=21,/pU? friction factor

Qup(x, X5 1,1) = {u,(x,)ug(x',2')>: two-point, two-time correlation of two
velocities

Qugy -+ (XXX, 11,17, = (X, Hug(X, 1 )uy (X7, t")...>

M,z (k) = (2i)" {/kp.Day(k) + kyDaﬂ(k).}: inertial transfer operator occurring in
the solenoidal Navier—Stokes equation

D,4(k) = 6,5 — k,kg/|k|*: projection operator

Cug(k, ug(k',t')) = (2r/L)*8 410, 0Qap(k; 1,t'): defines the spectral density
tensor for finite system volume

Cuy(k, Dug(k', 1)) = 6(k + kK')Q,p(k; t,t'): defines the spectral density tensor
for infinite system volume

Q. 5k;t,t') = D,y(k)Q(k;t,t'): isotropic spectrum tensor

Q(k;t,t) = Q(k, t). single-time spectral density function

Q(k; 0) = q(k): stationary single-time spectral density

E(k,t) = 4nkQ(k, t): the energy spectrum

E(k) = 4nk?q(k): the stationary energy spectrum

Sk, D fp(—k, 1)) = Dp()wik;t,t'): defines autocorrelation of the stirring
forces in isotropic turbulence

wik;t — t') = W(k)é(t — t'): defines the correlation function W(k) for stirring
forces with delta function autocorrelations

ky = (g/v*)"*: Kolmogorov dissipation wavenumber
v = (ev)*: Kolmogorov dissipation-range velocity scale
ks = (¢/vD?)Y*; Batchelor wavenumber

ke = (¢/D*)Y*: diffusion cut-off wavenumber
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THE SEMI-EMPIRICAL PICTURE OF
TURBULENT SHEAR FLOW

Turbulence, a phenomenon which is complicated in itself, can be encountered
in a wide variety of more or less complicated situations, both in the natural
environment and in many industrial processes. Thus, when engineers attempt
to predict the behaviour of turbulent systems, they have more to reckon with
than the intrinsic difficulty of the turbulence problem. In order to carry out
design calculations, they must also tackle the problems inherent in describ-
ing fluid flow through complicated physical systems such as turbine rotors,
chemical reaction vessels, or tube bundies in heat exchangers.

Nevertheless, as computational methods improve and computers grow in
power, there is continuous progress in treating the merely complicated aspects
of problems. Therefore, in many engineering applications nowadays, the
major problem faced is the irreducible one of the turbulence itself.

It hardly comes as a surprise, therefore, that a survey of the literature of
turbulence reveals the classical symptoms of a subject that is of immense
practical importance, yet is at the same time poorly understood. That is to
say, there is much activity but relatively little consensus. Also, there is a strong
tendency to form separate subject schools, each related to a particular industry
or type of phenomenon, but with relatively little communication between
them. Above all, there is a great variety of predictive methods, ranging from
simple empirical correlations, through rigorous (but limited) deductions from
the Navier—Stokes equations, to elaborate statistical models which are based
on dubious analogies between the chaotic behaviour of turbulence and the
molecular chaos of dilute gases.

In this book we are interested only in the physics of the turbulence itself,
and not in engineering complications. For this reason we shall restrict our
attention to flows with a rather simple geometrical configuration, such as free
jets and wakes, the boundary layer next to a flat plate, and flows through pipes
and plane channels. These are the classical flows upon which the general
subject of fluid dynamics has very largely been based. Each of them has the
virtue of allowing a general formulation of the equations of motion to be
greatly simplified. They therefore form an important special case, and we shall
refer to them generically as ‘two-dimensional mean flows’.

(As an aside, we should perhaps emphasize that only the mean velocity is
two dimensional in such flows; the turbulent fluctuating velocities are fully
three dimensional.)

An additional simplification can come about if the flow configuration is
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narrow (in comparison with its length in the flow direction), and the cross-
stream component of velocity is small compared with the streamwise com-
ponent. This allows a further approximate reduction of the equations of
motion, in what is known as the ‘thin shear layer’ or ‘boundary-layer’ ap-
proximation. The first of these terms is undoubtedly the more generally
correct, but the second is much more commonly employed. We shall follow
custom in this matter.

Our aim in this chapter is to present a concise summary of the formulation
of the turbulence problem from the point of view of engineering applications.
We begin with the equations of fluid motion and take averages in order to
form an equation for the mean velocity. At this stage correlations are restricted
to values taken at a single point in space and time, as opposed to the
multipoint many-time correlations of the fundamental approach in Chapter
2. We immediately encounter the fundamental closure problem of turbulence,
in that the mean velocity can only be calculated if the two-velocity correlation
is also known, and consider some of the traditional engineering models used
to overcome the problem in the context of the special case of two-dimensional
mean flows. Although the statistical equations presented are not soluble, we
show how they can be used to analyse and interpret experimental results. Not
least, we show that simple empirical correlations can be used, not just as the
only really reliable predictive methods, but also in order to indicate the
presence of universal behaviour.

1.1 'The equations of fluid motion

Throughout this book we shall only consider fluid motion which can be
regarded as incompressible. For a general discussion of the conditions under
which this will be true, reference can be made to Batchelor (1967). For our
present purposes, it amounts to a requirement that the fluid density p always
remains constant, and the equation of continuity (which expresses conserva-
tion of mass) takes the form

OUg(x,1) _

o 0 (1.1)

where Uj(x, t) is the fluid velocity at position x and time . Note that we shall
almost invariably use Cartesian tensor notation, and that Greek indices such
as «, f3, or y take values of 1, 2, or 3. We shall also employ the summation
convention in which, as in eqn (1.1), repeated indices are summed.

For an incompressible fluid, the equation expressing conservation of
momentum is

au, au,

1P 13s,
_+_,,7

e _ 2% 1.2
ot B@xﬂ pox, pdx, (12)



1.1 THE EQUATIONS OF FLUID MOTION 3

where s, is the deviatoric stress tensor. For a Newtonian fluid, s, is given by

oy,
sal,=pv< # +6Uﬂ> (1.3)

Oxg  0x,

where v is the kinematic viscosity of the fluid.

As a specific example, let us consider steady shearing flow between infinite
plates which lie parallel to the (x; x;) plane. The flow is taken to be solely in
the direction of x,, and the velocity field reduces to U,(x,?) = {U,(x,),0,0}.
Under these circumstances, the non-linear term in (1.2) becomes

a{Ul(xz)U1(xz)} —
0x,

0,

and the conservation of momentum equation takes the form

P _ sz
ox, 0x,

(1.2a)

Note that the vanishing of the non-linear term is a general property of
unidirectional laminar flows (Batchelor 1967), and that in this particular
situation the momentum equation describes a balance between the streamwise
pressure gradient and the resistive viscous stresses. For this flow, the viscous
stress tensor can be obtained from eqn (1.3) as

du
Sy2 = pV L (1.3a)
dx,

a result which is usually known as Newton’s law. This law provides both a
definition for and a method of measuring the dynamic viscosity y = pv. Phy-
sically, the effect of viscosity can be interpreted as an irreversible flux of
streamwise momentum in the direction of x,.

With the substitution of s, from (1.3) and the use of (1.1), the resulting

equation of motion is known as the Navier—Stokes equation:
oU, + 0Us U = _Lop + v, (1.4)
ot 0xg p 0x,
where V? = %/0x,0x,.

These equations can be derived using the methods of continuum mechanics
(e.g. Landau and Lifshitz 1959; Batchelor 1967) or, more restrictively, from
kinetic theory (e.g. see Reichl 1980). They describe the motion of many
common fluids, such as water, alcohol, glycerine, air, and most gases, provided
only that the density remains constant. Many other fluids (e.g. particulate
suspensions, polymer solutions) require a more complicated constitutive rela-
tionship between stress and rate of strain than the linear form given by eqn
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(1.3). The subject of non-Newtonian fluids will be considered later in Chapter
14 which deals with turbulent drag reduction by additives

1.2 A brief statement of the problem

The scientific study of turbulence is generally taken as having begun with the
work of Osborne Reynolds (1883). The problem which Reynolds studied was .
the classic one of fiow through long straight pipes of constant diameter and
circular cross-section. Using his ‘method of colour bands’, he was the first
person to show that, for a given fluid and pipe, the flow would be orderly
(laminar) for velocities below a certain critical speed. At the critical speed, the
flow abruptly became turbulent at some distance from the pipe entrance.
Above the critical speed, turbulence was found to be the normal state of the
flow, although laminar flow could be maintained as a metastable state by
carefully eliminating all disturbances or perturbations.

Reynolds found that the criterion for the transition from laminar to turbu-
lent flow could be expressed in general (universal) form in terms of the value
taken by dimensionless group

R = Ud)y (1.5)

where R is what we now call the Reynolds number. Here d and U are
representative length and velocity scales, in this case the diameter and the
(bulk) mean velocity. The latter quantity is obtained by measuring the volu-
metric flow rate and dividing by the cross-sectional area of the pipe. With this
definition, the experiments of Reynolds indicated that the minimum value of
R for which turbulence could occur in a tube was about 2000. However,
laminar flow in a pipe can be metastable at much larger values of the Reynolds
number than this. A fuller, although still concise, discussion of transition to
turbulence will be found in Goldstein (1938, pp. 69-74).

If we choose pipe flow as a specific problem on which to focus our attention,
then we shall find it helpful to subdivide the basic theoretical problem into
two parts:

(1) we would like to solve the Navier—Stokes equation for the critical
value of the Reynolds number at which the transition from laminar to
turbulent flow occurs;

(2) we would also like to solve the Navier—Stokes equation for the mean
values of quantities like the velocity and the pressure, for Reynolds
numbers larger than the critical value.

This subdivision may be seen as quite pragmatic. At this point it would be
premature to try to offer any more fundamental justification. However, it does
reflect the way in which the subject is organized. The two problems are
. normally treated in the literature as quite separate topics.
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Fig. 1.1. Comparison of laminar and turbulent mean velocity distributions in pipe flow
at the same Reynolds number (R = 5 x 103).

Of the two, the second is overwhelmingly the more important in practical
terms. Again, this shows up in the literature, although the subject of transition
has received much more attention in recent years, mainly because of its
relationship to other critical phenomena and its relevance to deterministic
chaos. We make some brief comments on these developments in Chapter 11,
Section 11.5.3. However, that section apart, we shall concentrate throughout
on the second problem: the need to obtain a statistical description of fully
developed turbulence.

Let us now consider flow through a pipe when the Reynolds number is well
above the critical value. In Fig. 1.1 we show the distribution of the mean
velocity with radial position in the pipe. The mean flow is taken to be in the
x, direction and x, is the transverse or radial coordinate. For purposes of
comparison, we have also plotted the equivalent laminar velocity profile for
the same Réynolds number. This s, of course, the well-known parabolic profile
which can be calculated directly from the Navier-Stokes equation. A not
unreasonable goal for a turbulence theory would be to perform the analogous
task for the mean turbulent velocity profile.

For the present we shall take mean values to be given by time averages and,
for the particular case of the mean velocity, we shall show this by an overbar.
In general, the operation of taking averages (however defined) will be repre-
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sented by angular brackets { >, and these brackets will be used to indicate
higher-order moments. Thus, for the mean velocity, we have

T
Uy (x5, 1) = Uy (x5, 0)) = ZLT j_ Ui(xy,t + t')dt, (1.6)

where 27T is the averaging time which must be long enough to smooth out the
turbulent fluctuations but short enough not to average out any imposed time
dependence. However, for the most part, we shall only consider flows in which
the mean velocity is constant in time.

We can now take a preliminary look at the task of solving the Navier—
Stokes equation for the mean velocity profile for steady (mean) flow through
a pipe. As we have already seen for the laminar case, eqn (1.2) reduces to the
particularly simple form of (1.2a) for steady flow. Similar considerations apply
to the equation for the mean velocity in turbulent flow; however, as the
fluctuations in velocity are not unidirectional, the mean value of the non-linear
term 1s not zero (the appropriate generalization of eqn (1.2a) to turbulent flow
will be found in Section 1.4.5). This average contribution from the turbulent
fluctuations gives rise to an additional resistance to flow. It also raises the
central problem of the statistical theory of turbulence, as encountered by
Reynolds (1895).

We can give a general (if rather simplified) explanation of this as follows.
Let us rearrange eqn (1.4) to obtain

: oU, . 10P
Z_ U = — -
(61: v ) * 0xg Us p 0x,’

which can then be written in the following highly symbolic fashion:
L, U=L,UU + L,P

where L, L, and L, stand for the respective differential operators, and we
have temporarily suppressed the tensor indices for simplicity.
Now average each term to obtain an equation for the mean velocity:

LoKU> = L,{UU> + L,{P>.

At this stage we should note that P is related to U through the continuity
equation: we shall discuss the implications of this in Chapter 2. For the present
it implies that a solution for (U depends (in principle) only on the second-
order moment (U U .

An equation for {UU) is readily obtained by multiplying each term of (1.4)
by U and then averaging:

Lo(UU> = L,{UUU) + L,{UP>.

Multiplying in turn by UU, UUU, ..., before averaging then generates the
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hierarchy of moment equations
L,KUUUY = LiKUUUU) + L,KUUP>
L,(UUUU) =L, {UUUUU) + L,KUUUP)

and so on.

That is, we now have an open set of n equations for n + 1 moments. The
problem of closing the moment hierarchy is usually referred to as the ‘closure
problem’ and is the underlying problem of turbulence theory. We shall meet
it at many points—and in various guises—throughout the rest of this book.

1.3 The statistical formulation

In this section we follow the procedure devised by Reynolds (1895) and write
the instantaneous velocity as the sum of the mean U, and the fluctuation U,
from the mean:

Uy(x,t) = Uy(x, t) + uy(x,t). (1.7)

Similarly, the instantaneous pressure can be written as
P(x,t) = P(x,t) + p(x,1) (1.8)

where P(x, t) is the mean and p(x, t) is the fluctuating pressure.

It follows from these definitions that the fluctuations have zero mean, that
is

u(x,0> =0 {(p(x,1)) =0. (1.9)

Physically, this result has the simple interpretation that, on average, the
fluctuations are as often positive as they are negative. Correspondingly, the
average of the square of a fluctuation will not vanish and we can introduce
the root mean square (r.m.s) value u, as follows:

(X, 1) = ug(x, )12, (1.10)

In practice u, is often used as a convenient measure of fluctuation intensity.
We should remind ourselves that the time dependence exhibited by the
above mean quantities refers to slow external variations and is only retained
here (and at other points) for generality. When we actually come to specific
examples of real flows, we shall restrict our attention to the stationary case.

1.3.1 Equations for the mean velocity

Let us first consider the continuity equation, as given by (1.1). If we substitute

(1.7) for the mean velocity, and average according to (1.6) and (1.9), we obtain
oUy(x,t

5(X, 1) -0

1.11
., (1.11)
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Subtracting this result from (1.1) yields a similar equation for u, and so the
mean and fluctuating velocities separately satisfy the continuity equation. This
is, of course, a trivial consequence of the linearity of eqn (1.1).

In order to treat the equation of motion the same way, we substitute (1.7)
and (1.8) into (1.4) and average term by term. It is easily shown that the
operation of time averaging commutes with the operation of differentiating
with respect to time.

This time we have the non-linear term to deal with, and so, noting that
(Ou) = Ulu) = 0, we find that

oy, aU P .
: . 112
5t ax, <“ 2 e A (1.12)

Comparison with (1.4) shows that the equation for the mean velocity is just
the Navier—Stokes equation written in terms of the mean variables, but with
the addition of the term involving {u,u;>. Thus, the equations of mean
motion—in this case (1.11) and (1.12)—involve three independent unknowns
U, P, and {u, uy. This is perhaps the best-known version of the closure
problem referred to in the previous section.

Equation (1.12) is the Reynolds equation and the term {u,ug) is the (kine-
matic) Reynolds stress. This term represents the transport of momentum due
to turbulent fluctuations. It was noted by Reynolds that it effectively aug-
mented the viscous stresses due to random molecular motions. The hypothesis
that an analogy can be drawn between these two processes, with the implica-
tion that {u,u,> could be expressed as a linear relationship in terms of the
mean rate of strain and an effective (or apparent) coefficient of viscosity, has
been one of the dominant themes of research in turbulence.

A detailed derivation of the stress tensor of apparent turbulent friction will
be found in Schlichting (1968, p. 527). Here, we shall find it convenient to
introduce a total shear stress tensor by means of the relation

Taﬂ = Saﬂ - p<uauﬁ> (113)

where the viscous stress tensor is given by (1.3).
The equation of motion for the fluctuating velocity is obtained by subtract-
ing (1.12) from (1.4):

ou, 30, U,
o Tax, T ok ,,{“ attp = ikt )}
_"lop (1.14)
p 0x,

Clearly, each term in this equation vanishes when averaged. But if we multiply
through by u,(x,t) and then average, we have the basis for studying the
single-point single-time moment hierarchy as used in engineering approaches.
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Or, if we multiply through by u,(x’,t") before averaging, we generate the
two-point two-time moment hierarchy which underlies the fundamental ap-
proach. We shall defer the latter case to Chapter 2 and concentrate on the
single-point form here. In particular, we shall consider the energy balance for
the fluctuations.

1.3.2  The energy balance equation for fluctuations

We can learn quite a lot about the physics of turbulence by simply considering
the ways in which energy is transported from one place to another, or from
one range of eddy sizes to another. It should be noted that by ‘energy’ we shall
invariably mean the kinetic energy of macroscopic fluid motions.

For the general case of a fluid occupying a volume V¥ bounded by a surface
S, the total kinetic energy of fluid motion E; can be expressed in terms of the
instantaneous velocity field U,(x, ) as

ZET:ZI pUZdV. (1.15)
a 14
It should be noted that, as here, we shall sometimes use a summation sign
rather than write U? = U, U,

In Appendix A we show that an equation for E; can be derived from the
Navier—Stokes equation in the form

dE;

JpradV jpadV (1.16)
dr 14 v

where f,(x, t) is an externally applied force (per unit mass of fluid) and ¢ is the
energy dissipation per unit time and per unit mass of fluid. It is given (see
Appendix A) by

=vy )y { (1.17)

a
Equation (1.16) tells us that the rate of change of energy is equal to the rate
at which the external forces do work on the fluid less the rate at which viscous
effects convert kinetic energy into heat. Referring to the derivation of (1.16)
as given in Appendix A, we should note two points.

First, the non-linear terms in the Navier—Stokes equation do not contribute
to (1.16). That is, these terms do no net work on the system. (This remark also
applies to the pressure; as we shall see later, the pressure is in effect a non-linear
term.) Mathematically, this is because any term which appears as a divergence
in the local energy equation vanishes when we integrate over the system
volume in order to obtain the global equation (see Appendix A).

Second, the viscous term can be divided into two parts, of which one is

oU, , U2
0xg 6xa '
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diffusive in character and vanishes when integrated, and the other is dissipa-
tive and is given by eqn (1.17).

In the turbulent case eqn (1.15) for the total kinetic energy is readily
generalized to the form

2ET=ZJ pUade+zJ pLut>dv (1.18)
a Vv a 4
where, again, we have used the relationship (Uu) = 0.

Normally we shall only be interested in the energy associated with the
velocity fluctuations u,(x, t). We can derive the appropriate balance equation,
via an equation for the Reynolds stress tensor, as follows.

Consider the equation for the fluctuating component u,(x,t) as given by
(1.14). Rewrite this as an equation for u,(x,t), keeping all other indices and
variables the same, and give it the notional equation number (1.14a). Now
multiply (1.14) through by u,(x,t) and average, then multiply (1.14a) through
by u,(x, 1) and average, and, making repeated use of the rule for differentiating
a product, add the resulting equations together to obtain

¢ _ 0 oU
a(umup + U,,a;xﬂ<uauy> + <u,uﬂ>gtj +

oU, @
+ <uyuﬂ>a + TXﬂ(uauﬂuy}

-1 dp ap
_7{<u”‘67,> + <uy 6x,>} +v{u,V2u,> + w,Viu,y}.  (1.19)

14

The viscous terms can be simplified (see the comparable procedure in Appen-
dix A) and the rest of the equation rearranged a little to give

0 — 0
a(uauQ + Uﬂ@<uauy>

oU ou, 0
= —<uauﬂ>§: - <uyuﬂ>a - &<uauﬂuy> -

1 op op o (0 du, Ou
— —— — -2 .
p {<ua 5x~/> " <uy 5xa>} L 0xp (axﬁ <uau0> ’ <@xﬂ axﬂ>
(1.20)

The left-hand side gives the total rate of change with time (ie. local plus
convective time derivatives) of the kinematic Reynolds stress tensor {u,u, ).
On the right-hand side the presence of the term involving <u,ugu, ) serves to
remind us that the moment closure problem is still with us.

If we set o = 7 in the above equation then we obtain the equation for the
mean square excitation for each component of the fluctuating velocity as
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follows:
A
PN R P 2
E<ua> + Uﬂa<ua> = 5x,, {<“a“p> + 0 {ugp>
B C D
& . * ., Ou, \?
—2<uauﬂ>aUa+ va—x§<u,> —2V<<axﬂ> >

(1.21)

Furthermore, if we sum over «, then (1.21) gives us the balance equation for
the turbulent kinetic energy E per unit fluid mass, which is defined by

2E =Y u?). (1.22)

Clearly, the only manipulation required is to divide across by 2 and replace
{u?> on the left-hand side (Lh.s.) by E.

In words then, eqn (1.21) tells us that the total rate of change of turbulent
energy with time is given by the net effect of the terms on the right-hand side
(r.h.s)). To interpret these we note that the first and third terms (A and C) can
each be written as a divergence and accordingly do not contribute to the global
energy balance (see the analogous step in Appendix A on going from eqn (A.10)
to(A.12)). Thus their physical effect is the diffusion of turbulent energy through
space by non-linear and viscous actions respectively.

The difficulty with the second term B is that apparently it cannot be written
as a divergence. However, the reader may find it instructive to form an
energy-balance equation for the mean velocity, where he will find a corre-
sponding term. The two terms, taken together, can be integrated and shown
to conserve energy jointly. Thus the term B on the r.h.s. of (1.21) can be
interpreted as a flow of energy from the mean field to the fluctuating velocity
field. It is often referred to as the ‘production term’ (see Hinze (1975) for a
fuller discussion).

Obviously the last term D on the r.h.s. represents the irreversible dissipation
of kinetic energy into heat. A more detailed discussion of this, and the other
terms described above, will be found in Appendix A.

Finally, we should note that (1.21) cannot be solved: the moment closure
problem rules that out. However, the individual terms can be measured
experimentally and the energy balance studied in this way. We shall return to
this subject in Section 1.6.2.

1.4 Two-dimensional mean flow as a special case

Our general problem is to solve the equations of mean motion for turbulent
flows. However, if we consider very simple flows, we can reduce the number
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of variables involved. We can do this by means of symmetries (a rigorous
method) and by ‘order-of-magnitude’ arguments (an approximate method). In
this way the overall size of the problem can be reduced, although its intrinsic
difficulty is unaffected.

As mentioned earlier, we shall consider two-dimensional mean flows, and
historically the most important example of these is the boundary layer. This
concept was introduced by Prandtl in 1904 (e.g. see Schlichting 1968), and
takes its simplest form when a fluid flows at zero incidence over a flat plate.

To be specific, we shall take x, to be the direction of flow (this will be our
convention throughout this book) and the plate to lie in the (x, x;) plane. The
plate is also supposed to be of infinite extent in the x; direction and the
incident stream has velocity U,,, which is constant in time and uniform in
space. With these restrictions the free stream is said to be an irrotational flow.
That is, its vorticity (curl U) is everywhere zero.

However, when the fluid encounters the plate, the ‘no-slip’ boundary condi-
tion ensures that vorticity is generated where the fluid is in contact with the
surface. As the fluid moves downstream, this vorticity diffuses outwards (at
right angles to the plate) with its rate of diffusion controlled by the viscosity
of the fluid. In this way we obtain a physical interpretation of the idea of a
boundary layer; that is, the distance travelled by vorticity away from the plate
in the x, direction is a measure of the boundary-layer thickness.

If we take the leading edge of the plate to lie along the x; axis, then x, is
distance measured along the plate and x, is distance measured perpendicular
to it. We restrict our attention to one side of the plate (x, > 0) and consider
the evolution of the boundary layer for x; > 0. It is known from experiment
that the boundary layer is (in the absence of disturbances) laminar for small
values of x, but, as downstream distance increases, it passes through a short
transition length and thereafter is fully turbulent. It is conventional to define
the Reynolds number (based on distance along the plate) as Rx; = U, x, /v.
With this form of Reynoids number, transition to turbulence normally occurs
when Rx, = 3.2 x 10°. (As an aside, it may be of interest to note that, if the
Reynolds number for the boundary layer is based on the thickness of the layer,
then the value at transition is much closer to that for pipe flow based on
diameter.)

The great simplification introduced by this concept is that the Navier—
Stokes equations need only be solved inside the boundary layer where ap-
proximations can be made. In the laminar case, this means that we only have
to solve for U, and U,, as functions of x, and x,, on theinterval 0 < x, < 6(x,)
where the boundary-layer thickness is arbitrarily defined by the relationship

x, = 0(x;) when U,(x,,x,)=099U,. (1.23)

From symmetry considerations, it follows that U; = 0 and that variations
of mean quantities with x; can be neglected. The problem is then further
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reduced by order-of-magnitude arguments based on the smallness of é(x,) in
comparison with the length of the plate in the streamwise direction. For
instance U, « U,, and variations with x, are much larger than those with x,.
Finally, the existence of similarity solutions of the form

Ui(x1, ;) = Uy f(x2/0), (1.24)

where f is a universal function, reduces the dimensionality stili further.

These ideas can be extended to the turbulent part of the boundary layer by
applying the same arguments to the mean velocity U,(x) = (U,, U,,0). Of
course the fluctuating field u,(x,?) is fully three-dimensional, but even here
derivatives of mean quantities with respect to x; vanish, as do off-diagonal
elements of the Reynolds stress tensor {u,u,)» in which « = 3 or § = 3. The
latter point also follows from symmetry (see Appendix C).

1.4.1 The boundary-layer equations of motion

In this section we shall briefly summarize a few central aspects of boundary-
layer theory. We shall restrict our attention to steady flow over a flat plate
and invoke the various simplifying assumptions made in the discussion above.
It is then easily shown that eqn (1.11) for continuity reduces to

= (. 1.25
0x, 0x, 0 (1.25)

Similarly, eqn (1.12) becomes

00, ;0 _ _LoP 2T,
0x4

2ox, pox, ! ox3
for conservation of mean momentum in the x; direction.

The latter equation is approximate, but a further approximation can be
made. Experimental results suggest that the streamwise variation of (u$ ) can
be neglected, provided that the pressure gradient is not too large.

The momentum equation for the x, direction reduces to the condition that
the pressure variation between the boundary and the free stream is of the
second order of small quantities. Hence the streamwise pressure gradient in
the boundary layer can be found approximately from the Bernoulli equation
applied to the irrotational flow outside the boundary layer:

U,

0 G, 2
- - 1.
%, Cuguy» ox, {ui) (1.26)

P + pU2/2 = a constant along a streamline,
or
dpP du
il § Shatd: 2
dx, PP dx,
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It follows that the pressure gradient in (1.26) can be put equal to zero for
the case where the free stream is parallel to the plate, U, is constant, and there
is no externally applied pressure gradient.

1.4.2  The turbulent boundary layer: length and velocity scales

In Fig. 1.2 we show a schematic view of a turbulent boundary layer in a plane
normal to the flow. The first point to be noticed is the irregularity of the outer
edge. This means that we must work with the average value of the boundary-
layer thickness, and so this is what we shall mean when we refer to d(x,), or
indeed to any of its various subdivisions, which we shall now consider.

First of all, it is usual to divide the turbulent boundary layer into an inner
layer for (approximately) the range 0 < x, < 0.2, and an outer layer bounded
by 0.2 < x, < &. This is based on the experimental observation that the total
shear stress 7., is nearly constant over the inner layer and is approximately
equal to t,,, its value at the surface (or wall).

The inner (or constant stress) layer can be further subdivided according to
the relative magnitude of the viscous and turbulent parts of the total shear
stress. In the present case, eqn (1.13) takes the simple form

T12 = P"ii — pluguy) (1.27)
X2

where the viscous part is given by Newton’s law applied to the mean rate of

Mean edge

Instantaneous
edge

| Outer
X3 region

l Inner
............................................................ l region

|
Viscous sublayer

Fig. 1.2. Schematic view of a turbulent boundary layer (not to scale; flow direction
normal to the page).
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strain and the turbulent contribution is just the appropriate component of the
Reynolds stress tensor.

Near the wall, the boundary conditions on the velocities, u;, u, =0 as
x, — 0,imply that the product u, u, vanishes rapidly as the wall is approached.
Hence the stress at the wall is entirely due to viscous shear and can be
expressed as

T, = PV l:a?z]xzzo. (1.28)

We can now define the viscous sublayer as the region next to the wall where
the first term on the r.h.s. of (1.27) is dominant. For larger values of x,, the
second term on the r.h.s. of (1.27) will ultimately become dominant, and this
region is usually referred to as the fully turbulent constant-stress layer.
Evidently there will be an intermediate region where the two stresses will be
of equal magnitude, and this is called the transition sublayer (or, often, the
buffer layer).

The physical extent of each of these sublayers is most conveniently ex-
pressed in terms of the so-called ‘inner layer variables’, which can introduced
as follows.

Dimensional analysis (confirmed by experiment) indicates that the relevant
velocity scale for the inner region is given by

u, = (t./p)"?, (1.29)
which then allows the relevant length scale to be written as
‘inner layer’ length scale = v/u, (1.30)

where u, is called the ‘friction velocity’. The rather odd name can make this a
puzzling concept for, at first sight, it seems to have little to do with any physical
velocity. However, it is hallowed by tradition and, as we shall see, it is of the
same order of magnitude as the r.m.s. value of the velocity fluctuations..
With (1.29) and (1.30), it is usual to define scaled variables for the inner
region as
xp =2t gy =t (1.31)
v u,
This amounts to measuring distance from the wall in units of v/u, and, for
small v (i.e. large Reynolds number), it has the effect of expanding the wall
region.
The experimental results (to be discussed in more detail in Section 1.6) then
suggest the following classification:

inner layer 0 < x, < 0.29

outer layer 0.26 < x, < 1.00.
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The inner layer is subdivided as follows:
viscous sublayer 0 < x; < 5
transition sublayer 5 < x; < 30
turbulent constant stress layer 30 < x; .

It should be noted that the values chosen above for x, or x; to classify the
various layers will vary from one source to another in the literature. This, of
course, reflects the difficulty in establishing precise criteria for the boundary
between any two sublayers.

1.4.3  Universal mean velocity distribution near a solid surface

Phenomenological theories for the mean velocity have been much helped by
experimental observations of scaling behaviour in the sort of simple situation
that we are considering here. For instance, in the inner region of the boundary
layer, measurements of mean velocities can be reduced to the universal form

Ut = f(x3), (1.32)

which is known as the ‘law of the wall’.

(We are working on the assumption that the wall has a smooth surface. If
the height (however defined) of any roughness elements on the wall is less than
the thickness of the viscous sublayer, the surface is said to be ‘hydraulically
smooth’, and eqn (1.32) holds. If the roughness height is greater than the
sublayer thickness, then it is the roughness height which determines the
inner-region length scale.)

However, for the outer region, experimental resuits take the self-preserving
form

Us — Ul = g(x,/0), (1.33)

which is known as the ‘velocity defect law’.

The functions f and g can be determined (at least for much of the boundary
layer) by requiring there to be a region where the two forms (or, rather, their
first derivatives) are continuous. A detailed treatment is given by Hinze (1975).
The result is that f and g must be logarithms, and that eqn (1.32) becomes

Uf = Aln(x}) + B, (1.34)

where 4 and B are constants which have to be determined from a comparison
of (1.34) with experimental results.

This logarithmic mean velocity distribution is strongly supported by ex-
periment, to such an extent that it is virtually accorded the status of a law of
nature by fluid dynamicists. Yet, as we shall see, it breaks down both near the
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wall and in the outer parts of the boundary layer. (It is of course evident that
eqn (1.34) cannot satisfy the boundary condition U; =0 at x, = 0)
However, we can establish the limiting form of the mean velocity at the wall
by considering eqn (1.27) for the total shear stress when restricted to the
viscous sublayer. Recalling that the total stress is constant in this region
(t,, = t,,) and that the Reynolds stress tends to zero, we obtain the result
Ty dU,

L=y for x} < 5. (1.35)
p dx,

Then, integrating with respect to x,, and using (1.29), we find

2
g, = &% (1.36)
v
or, in scaled variables,
Uf =x3 (1.37)

where the constant of integration has been set equal to zero in order to satisfy
the boundary condition. This linear law only applies to the viscous sub-
layer and, as we shall see in Section 1.6, has received ample experimental
confirmation.

1.44 A simple way of calculating the friction drag due to a boundary layer

The simplest possible practical calculation method is to follow the approach
taken with laminar boundary layers and use the equation of motion to derive
an integral relation based on a similarity solution of the type

Uy (x1, %) = Uy h(x,/0) (1.38)

where h is chosen to satisfy the boundary conditions.

Setting the gradients of P and <u}) to zero, and integrating each term of
eqn (1.26) with respect to x,, then yields (e.g. see Goldstein 1938) the von
Karman momentum-integral equation

ongdd {r(l - h)hdxz}. (1.39)

In the analogous laminar case, we would fit k by a low-order polynomial, solve
(1.39) simultaneously with (1.28) for the viscous shear stress to obtain J, and
hence obtain the wall shear stress as a function of x;.

This is not possible in the turbulent case, mainly because the shape of the
mean velocity profile is not easily represented by a polynomial. For this
reason, we are forced to take two rather arbitrary steps.
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First, we introduce an empirical formula for the shear stress at the wall.
This is due to Blasius (Goldstein 1938, p. 340) and takes the form

v 1/4
=0.023pU2{ ) . 1.40
The r.h.s. of this expression can be equated to the r.h.s. of (1.39) in order to
solve for the boundary-layer thickness. The second step is to use the empirical
mean velocity profile given by

h = (x,/8)". (1.41)

The value of n depends on the Reynolds number and, for example, for mod-
erate Reynolds numbers (Rx; ~ 107) we can take n = 7.

If it is assumed, for simplicity, that the boundary layer is fully turbulent
from x; = 0, the above procedure yields the result

U 1/5
5(x,) = 0.38 (_:1> x5, (1.42)

and the drag force can be obtained by integrating the r.h.s. of either (1.39) or
(1.40) over the surface of the plate. Alternatively, the result of the calculation
is often expressed in terms of the friction (or drag) coefficient, as defined by
the relationship

_ n,
CpUE

o (1.43)

Thus even the simplest practical calculation of a turbulent flow depends on
some prior input from experiments. It has to be said that, at the time of writing,
this is true of all practical methods used in engineering calculations.

1.4.5 Empirical relationships for resistance to flow through ducts

In the preceding sections we have been concerned with developing flow, where
mean quantities vary (however weakly) with the streamwise coordinate x;.
We shall devote this section to a brief consideration of well-developed flows,
in which mean quantities are independent of x, . In particular, we shall discuss
the two-dimensional (mean) channel flow obtained by considering a second
plate in the (x; x;) plane which is placed at x, = 2a, above our original plate
at x, = 0. Then, sufficiently far downstream (i.e. for large values of x, ), where
the upper and lower boundary layers have merged, the turbulent flow will be
well developed.

The approximations used in deriving eqn (1.26) remain valid, but we can
now simplify this equation further by putting the gradients of U, and (u?)
with respect to x, equal to zero. Also, from (1.25) we deduce that U, is constant
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and hence, from the boundary conditions, equal to zero. Thus, with some
rearrangement, eqn (1.26) reduces to

d*U, d<luu,y 1dP

v - = ——

, 1.44
dx3 dx, p dx; (144

which is a well-known form of the Reynolds equation. Integration of each
term with respect to x, then yields
U,

o (x, — a)dP
dx,

dx,

— plug, )y = =15, (1.45)
where the last step follows from (1.27) and we have used the condition
dU, /dx, = 0, (uyu,y = 0 at x, = a (the channel centre).

For x, not too near the wall, we can neglect the viscous stress and write the
Reynolds stress as

dP
Py = —(x2 — )3 (146)
X1
However, at the wall (e.g. for x, = 2a) we have the important result
dP
1, =4d—, (1.47)
dx,

which offers a simple method of determining the shear stress at the wall in
terms of two quantities which are readily measured.

Also, we can adapt the definition of the friction coefficient (see eqn (1.43))
to duct flows if we replace the free-stream velocity by the bulk mean velocity
U. In this case the friction coefficient is renamed the friction factor f and
eqn (1.43) becomes

f=21,/pU (1.48)

In fact, we should mention that many of the deductions in preceding
sections about the boundary layer at zero incidence—especially the mean
velocity distributions—apply equally to flow in ducts. We can extend these
results to pipe and channel flows by replacing the outer-region variables U,
and 6 by the bulk mean velocity U and by the radius (circular pipes) or the
semi-width (rectangular channels).

Lastly, for completeness, we should note that, for flow through ducts, there
is an alternative to the Blasius formula as given by eqn (1.40). This is the
logarithmic (or Prandtl-Karman)law for the resistance to flow through ducts.
It takes the form (Goldstein 1938, p. 338)

/12 = 40log, o(Rf 2) — 0.40 (1.49)

where f is the friction factor as given by eqn (1.48).
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1.5 Semi-empirical theoretical methods

Since the early days of research into turbulence, there have been many at-
tempts to reconcile the basic ideas that underlie the kinetic theory of gases
with the continuum concepts (especially vorticity and vortex motion in gen-
eral) encountered in macroscopic fluid motion. The result has been many
theories of turbulence based on analogies between the chaotic motion of
eddies and the random motion of molecules in dilute gases. The mixing-length
model of Prandtl (e.g. see Schlichting 1968; Hinze 1975) is perhaps the best
known, and provides us with a representative example to discuss here. We
begin by considering the associated concept of an effective turbulent viscosity.

1.5.1 The eddy-viscosity hypothesis

The notion that the collective interaction of eddies can be represented by an
increased coefficient of viscosity is an attractive one. Traditionally it is intro-
duced by analogy with the result from kinetic theory (e.g. as in eqn (1.3a)):

. dU,

mean viscous shear stress = pv-—-=.
dx,

It is then tempting to guess that the turbulent shear stress can be written in
the analogous form
dU,

— 1.5
ax, (1.50)

—puguy )y = pvr(x,)
where v;(x,) is the kinematic eddy viscosity.
Despite the fact that the apparent unsoundness of such analogies was clear
even to the earliest workers in turbulence, this hypothesis still receives much
critical attention. At a later stage we shall be considering the support given
to the idea of eddy viscosity by recent developments in the theory of renor-
malization, albeit with some restriction. At this stage, we merely note the
pragmatic criticism that, in flows where dU, /dx, and {u,u, » do not have their
zeros at the same point, the eddy viscosity (as defined by (1.50)) may be either
zero or infinite at certain points in the flow (e.g. Bradshaw 1972). Evidently—if
we were to pursue an analogy with the subject of continuum mechanics, rather
than kinetic theory—the ‘constitutive relationship’ for turbulence must in
general be more complicated than the purely ‘Newtonian’ one implied by eqn
(1.50).

1.5.2 The Prandt! mixing-length model for flow near a solid boundary

The mixing-length model is a more ambitious attempt to build on analogies
with kinetic theory. We start from the recognition that the Reynolds shear
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stress p{u,u,) represents a flux of x,-momentum in the direction of x,.
Prandtl assumed that this momentum was transported by discrete ‘lumps’ of
fluid, which moved in the x, direction over a distance ! without interaction
(i.e. momentum is assumed to be conserved over distance /) and then mixed
with existing fluid at the new location. Clearly [, which is called the mixing
length, is supposed to play the part of a mean free path in this process.

The essentials of the analysis are then as follows. A fluid element dV is
carried from x, to x, + [ by a velocity fluctuation u,. It carries net x,-
momentum to its new location, owing to the difference between U, (x,) and
U,(x, + I). The result is a fluctuation in x,-momentum and hence in x;-
velocity u;.

This can be expressed as

puydV = p[U,(x,) — Uy(x; + D1dV

_ [ dUl]dV (151
dx,
to first order in [, and hence
dU1
= . 1.52
Uy de ( )

We note that U, is an increasing function of x,, and so a fluid Tump’ moving
in the direction of positive x, (i.e. one which corresponds to a positive
fluctuation u,) causes a negative fluctuation in u,. Thus the Reynolds stress
will be negative, and the correlation can be written in terms of the r.m.s.
velocity components as

{uguy ) = —Ryyuiu)
. = —Clu?) (1.53)
where R, is the correlation coefficient. The second step follows from the
experimental observation that uj is of the same order of magnitude as ] in

the constant-stress layer. Also, R, , has been absorbed into the constant of
proportionality C. Hence, from (1.52),

du,
pluuy) = —p12<dx ) (1.54)
2

where now the constant C has been absorbed into [.
At this stage we need three further assumptions:

(a) in the constant stress layer we can put t,, = 1,,;
(b) for x3 > 5, we can neglect the viscous term in the shear stress;
(c) I = kx,, where k is known as the von Karman constant.

Then, using (1.27) and (1.29), eqn (1.53) becomes
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— /

Ty dU,\?

~= U,y =12 (Tl) , (1.55)

p X2

and hence
r7 \2
k2x2 <3%> =ul. (1.56)

2

Finally, taking the square root of both sides and integrating with respect to
X,, we obtain the logarithmic profile in the form

7, :%lnxz +D (1.57)

where D is a constant of integration. This result can be matched to the linear
profile (see eqn (1.37)) by making an appropriate choice of the constant D. The
result is that the logarithmic profile given by eqn (1.57) can be seen to satisfy
the ‘law of the wall’ form, as shown in eqn (1.34). In Section 1.6.1 we shall
see that there is substantial experimental support for the logarithmic mean
velocity distribution.

1.5.3  The mixing-length model applied to a free jet

Jets, wakes, and mixing layers are other flows in which the criteria for a thin
shear layer are often satisfied. Thus we can employ the boundary-layer ap-
proximation, despite the fact that the absence of rigid boundaries may make
the name seem something of a misnomer. Also, we shall use the mixing-length
model again, as it will be instructive to apply this theory to a free shear flow.

The boundary-layer equations for the mean velocity, as given by (1.25) and
(1.26), can again be applied:

40, d0,

=0 1.25
dx, | dx, (1.25)

while (1.26) reduces to

_dU, - dU, 0luuy )
U—4+0T I e S 7
1 dx, + U, )

1.58
dx, 0x, (1.58)

where we have followed the usual practice (established on experimental

grounds) of neglecting the streamwise variation of the pressure and the

Reynolds stress. For the same reasons, we have also neglected the viscous term
on the r.h.s. in comparison with the term involving the Reynolds stress.

If we wished to study wake flows, then it would be convenient to express

(1.58) in terms of the velocity defect, that is, the amount by which the velocity

- in the wake is reduced below that of the free stream. However, here we shall
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take the case of the plane turbulent jet as an example, and (1.58) can be used
as it stands.

Let us consider a jet emerging from a thin slot into a still fluid. As always,
we take the mean velocity to be in the x, direction and the jet spreads out in
the x, direction. We assume similarity in different sections sufficiently far
downstream (an assumption borne out in practice) and look for a general
solution of the form

= @1// ~ _%

0, =5 U, = T, (1.59)
and

b= x?f(i—%) = X" 1), (1.60)

where the introduction of the sfream function  ensures that the continuity
equation is automatically satisfied (see Batchelor (1967) for a general discus-
sion of the use of stream functions) and the similarity variable # is given by

n = Xx,/x7. (1.61)

We need a ‘closure’ for eqn (1.58), and we shall take the mixing-length form
as given by (1.54). Then (1.58) becomes
_dU, - dy; A{12(0U, /0x,)*}
U—+4+Uy-—=——"—"—""". 1.62
Ydx, T dx, 0x, (1.62)
The next step is to fix values for the exponents n and m in (1.60). The first
condition for this is that eqn (1.62) should be self-consistent when we substitute
(1.59) and (1.60) for U, and U,. This requirement gives m = 1. Our second
condition is obtained by integrating (1.62) with respect to x, from —oo to
+c0, which yields the condition of constant momentum flux at different
streamwise positions along the jet:

d{[*, U, dx,} _

0. 1.63
dx, (1.63)

Satisfying this condition then gives us n = 1/2.

In the previous section, it was assumed that the mixing length was linearly
proportional to the distance from the wall. In free-shear flows it is usual to
assume that [ is proportional to the width of the layer. In the present case,
with m = 1 and n = 1/2, we have

I =ax, N = Xy/% Y= xi/zf(’?)’ (1.64)

and eqn (1.62) can be shown to reduce to

[+ =4a"f" (1.65)



24 THE SEMI-EMPIRICAL PICTURE OF TURBULERNT SHEAR FLOW

where the primes denote differentiation with respect to # and (1.65) has to be
solved subject to the conditions of symmetry and of zero mean velocity at the
edge of the jet.

A first integral of (1.65) is easily obtained, but thereafter it has to be solved
numerically. Tolmien (1926; see Goldstein 1938, p. 593) found that conditions
for the edge of the jet must be satisfied at

N = x,/x, = 3.04a%3, (1.66)

and comparison with experiment gave a value for the mixing-length constant
of a = 0.0165. In Fig. 1.8 (Section 1.6.3) we make a comparison of Tolmien’s
calculation with some recent results for the mean axial velocity distribution
in a plane jet, and it can be seen that the agreement is quite good. The same
analysis can also be carried out for the round free jet, in which case n = 1 and
m=1.

Full discussions of the various mixing-length types of theory will be found
in Goldstein (1938), along with good discussions of their application to various
flows. From our present point of view, an interesting feature of the application
discussed above is that the mixing-length model is used quite explicitly as a
closure of the statistical equations of motion. This was less apparent in the
previous section, where we relied quite heavily on the idea of the constant-
stress layer.

1.6 Some experimental results for shear flows

There is an enormous amount of data on turbulent flows, much of it amassed
a long time ago. Indeed, the interested reader can obtain quite a good his-
torical impression of the subject by consulting the book Modern developments
in fluid dynamics (Goldstein 1938, two volumes).

In the hope of presenting an uncluttered picture, we shall discuss only a
very few investigations. We shall also mainly restrict our attention to duct
flows, although we shall also give some results for the free jet.

In order to give a representative picture of flow through ducts, we have
drawn on the investigations of Nikuradse (1932; see Goldstein 1938), Laufer
(1954), and Lawn (1971), all of which deal with flow through a pipe of circular
cross-section. Results for the other main duct configuration—plane channel
flow—are not very different from those for pipe flow. But, for completeness,
we should mention the investigations into channel flow by Laufer (1951),
Hussain and Reynolds (1975), and Kreplin and Eckelmann (1979).

There is also no shortage of results for free jets, but we would mention in
particular the papers by Wygnanski and Fiedler (1969) on the axisymmetric
jet, and by Bradbury (1965) and Ramaprian and Chandrasekhara (1985) on
the plane jet. The latter reference is especially interesting, as it involves the use
of a frequency-shifted laser-Doppler anemometer. The importance of this
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measuring device is that it determines the direction, as well as the magnitude,
of the fluid velocity and hence (unlike the traditional pitot tube and hot-wire
devices) can take proper account of the effect of the flow reversals which occur
at the edge of a jet where it entrains ambient fluid. A discussion of anemometry
will be found in Chapter 3.

Lastly, before turning to a discussion of the actual experimental results, we
should define our coordinate systems for the different geometries of flow. For
duct flows, x, is the axial (streamwise) coordinate, x, is the distance from the
wall in the radial direction, and x is the circumferential (spanwise) coordinate.
In jets, x, is again the flow direction, but now x, is the distance from the centre
line in the radial or transverse direction.

1.6.1 Mean and root mean square velocity distributions in duct flow

In Fig. 1.3 we show mean velocity distributions in pipe flow for three widely
separated Reynolds numbers. The results have been selected from those
published by Nikuradse (1932; see Goldstein 1938) and are quite characteristic
of turbulence, with a steep rise near the wall and a flatter profile in the core
region. Clearly, this behaviour becomes more marked as the Reynolds number
increases.

0.2 B

1 | ] [l 1 ] 1 1 1

0 0.2 0.4 0.6 0.8 1.0
x,la

Fig. 1.3. Mean velocity distributions in pipe flow at various Reynolds numbers: e,
R = 4000; m, R = 110000; a, R = 3200000 (Nikuradse 1932; see Goldstein 1938).
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Fig. 1.4. Logarithmic mean velocity distributions in pipe flow: universal form in law
of the wall coordinates (symbols for experimental data are the same as those in Fig. 1.3).

These results of Nikuradse can be replotted (along with those of other
workers (Goldstein 1938)) to verify the ‘velocity defect law’ as given by eqn
(1.33), but we shall not pursue that here.

The reduction to the universal ‘law of the wall’ form is demonstrated in Fig.
1.4, using the same three sets of results. As the abscissa is the log (i.e. logarithm
to base 10) of x7, the straight line indicates a satisfactory logarithmic depen-
dence for most of the data.

This result has been confirmed by many investigators (e.g. see Goldstein
1938; Hinze 1975), which means that the velocity distribution given by eqn
(1.34) is in good agreement with experimental data, except close to the wall.
However, there is less than complete agreement in the literature on the values
of the constants 4 and B. In Fig. 1.4, the straight line represents the equation

U = 575logo(x3) + 3.5,

and, converting to natural logarithms, this implies that A = 2.50 and hence
the von Karman constant k is 0.40. But, even with the restricted data presented
here, it is clear that experimental scatter would permit some variation in the
values of A and B.

A specific indication of the extent of disagreement on this point can be
obtained from the discussion in Hinze (1975), where it is stated that taking
A =244 and B = 4.9 represents ‘a good average’ of various investigations.
Yet Hinze (1975, p. 626) also suggests that many workers in the field are now
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inclined to prefer the values A = 2.5 and 5.2 < B < 5.5, with a slight bias in
favour of B = 5.5. In other words, these values are very much in line with the
above equation, which represents the original conclusion based on Niku-
radse’s results.

Given the central position of the ‘log law’ in the phenomenology of turbu-
lence, it is really rather surprising that there should be so little unanimity on
the experimental value of the universal constant A. Indeed, as recently as the
early 1970s it was suggested that, for low Reynolds numbers, 4 actually
depended on the Reynolds number, although this seems to have been some-
thing of a false alarm (Huffman and Bradshaw 1972; Purtell, Klebanoff, and
Buckley 1981).

In contrast, the linear part of the mean velocity profile in the viscous
sublayer is a rigorous result. In addition, although we do not show any
experimental points in this region of Fig. 1.4, the linear law of the wall has
also been verified experimentally (for a fairly recent reference, see Bakewell
and Lumley (1967)).

For turbulence quantities the classic measurements were those of Laufer
(1954), who used a hot-wire anemometer to obtain values of the three com-
ponents of fluctuating velocity in air flow through a pipe. In Fig. 1.5, we show
a sketch of the r.m.s. velocities u3, u53, and u3, each divided by the friction
velocity u,, plotted against x,/a. Evidently each r.m.s. component is roughly
of the same order as the friction velocity.

2.8[—
24+
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Fig. 1.5. Sketch showing the radial variation of the three components of the r.m.s.
velocity in turbulent flow through a round pipe of diameter 2a (note that x, = 0
corresponds to the position of the wally: ———, u} /u; ———, uj/u; ————, uj/u,).
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Fig. 1.6. Sketch showing the radial variation of the Reynolds shear stress and its
associated correlation coefficient in turbulent flow through a pipe: , {uyuy D,
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Other points we might note include the disparity between the three compo-
nents, their increasing trend towards the wall, and their tendency to the same
value at the centre of the pipe. A discussion of these aspects will be deferred
until we consider the production and transport of turbulence in the next section.

Figure 1.6 shows the distribution across the pipe of {u,u, »/uZ and {u,u, >/
u}u5. The first of these is the ratio of Reynolds stress to wall shear stress, and
bears out the linear relationship predicted in eqn (1.46). The second quantity
is the correlation coefficient, and we note that this takes a value of about 0.4
almost irrespective of position. The near constancy of this correlation is
noteworthy in itself, given the distinct non-uniformity of most mean quantities
in shear flow.

1.6.2  The turbulent energy balance

In Section 1.3.2 we derived the energy balance for fluctuating velocities (eqn
1.21). We have called the third term on the r.h.s. of this equation the produc-
tion term because it represents the transfer of kinetic energy from the mean
field to the fluctuating field and is therefore interpreted as the rate of genera-
tion of turbulence. Let us now consider this term for the particular case of
steady well-developed duct flow. Recalling that these restrictions imply that
derivatives with respect to ¢, x,, and x; vanish, as do off-diagonal correlations
involving u5, we can reduce the general form of the production term in (1.21)
to

production term = —2<{u; u, ) Z% (1.67)

2
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We are now in a position to understand some of the qualitative features
of the results for the r.m.s. velocities in the preceding section. From a
consideration of eqns (1.21) and (1.58) we can make the following points.

(a) Only the streamwise turbulent excitation {u?) is produced by direct
conversion of kinetic energy of mean motion, and so it is not really
surprising that u} is larger than either u; or uj.

(b) The radial and circumferential excitations <u3)» and {u?) are gene-
rated by inertial transfer from (u}) through the triple correlation and,
more specifically, through the term involving the pressure fluctuations.
(c) The rate of generation of {(u?» will be very much peaked near the
wall, where both the Reynolds stress and the mean velocity gradient are
large, and will fall off rapidly away from it. Thus the role of the triple
correlations is to transport energy in the radial direction (tendency to
homogeneity), and to transfer energy from (u?) to {uZ) and (u3) (ten-
dency to isotropy). This is borne out by Fig. 1.5, which indicates that the
three r.m.s. components are approximately equal and relatively uniform
near the centre of the pipe where the production term is zero.

We can consider the energy balance by summing each term in eqn (1.21)
over « and making the appropriate simplifications for well-developed duct
flow to obtain

du, d {1 1
”‘<“1“2>d— {5 Z {utuy) + —<u2p>}

XZ_E « p

du, \?\
=v§<@w>>—& (1.68)

Here we have neglected the viscous diffusion on the experimental grounds
that it is small, and only of appreciable importance very close to the wall.
Lawn has measured the individual terms in this equation (see Lawn (1971),
eqn (2.1) for the same equation in cylindrical coordinates) and his results are
reproduced in Fig. 1.7. Measurement of the production is quite straight-
forward, but the dissipation rate presents some formidable difficulties, in-
volving as it does the measurement of the nine separate components of the
fluctuating rate-of-strain tensor. In Fig. 1.7 the dissipation curve has been
obtained by taking the difference between the production and the inertial
transfer (or diffusion). Unfortunately, this procedure suffers from the snag that
the contribution from the fluctuating pressure to the diffusion cannot be
measured directly and has to be estimated, with consequent loss of precision.
Lawn also obtained values for the dissipation rate by two other methods,
both relying on an assumption of local isotropy in the small scales which are
largely responsible for the dissipation. We shall not pursue these methods here,
as they involve topics which we will deal with in the next chapter. However,
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Fig. 1.7. Turbulent energy balance in the core region of pipe flow (after Lawn 1971).

it is clear from Fig. 1.7 that the three methods of obtaining the rate of
dissipation agree well enough for us to find this figure a convincing picture of
the turbulent energy balance in pipe flow.

The production term in (1.68) is always positive; this follows from the
arguments of Section 1.5.2, where we deduced that the Reynolds stress is
negative when the mean velocity gradient is positive. As a closing topic, we
briefly consider the case where the mean velocity gradient dU, /dx, in the
streamwise direction is not zero (e.g. flow in a converging or diverging duct).

Under these circumstances, the production term in eqn (1.21) becomes

du, dU
production = —u u, >~ ax —<u > L (1.69)

If it is assumed that dU, /dx; is not large enough to produce inflections in
dU, /dx,, the first term remains positive. But, as {u?) is always positive, the
sign of the second term depends on the sign of dU,/dx,. Thus,ifd U,/dx, >0,
production due to this term is negative and the turbulence decreases. In turn,
this can lead to relaminarization.
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Striking examples of this effect have been demonstrated, with the help of
flow visualization, in boundary-layer flows with strong pressure gradients (e.g.
Van Dyke 1982, Plate 164). -

1.6.3 Mean and root mean square velocity distributions in a plane jet

We have already referred to Fig. 1.8, where we compare the mixing-length
calculation of Tolmien with the experimental results of Ramaprian and Chan-
drasekhara (1985). These authors found that their mean axial velocity profiles
exhibited self-similarity for downstream distances (as measured from the jet
exit) greater than 10D, where D is the width of the jet at its exit. These
self-similar profiles took a Gaussian form:

[_]1 ()
U, (0)

where 7 is the similarity variable, as given by eqn (1.64), and the experimental
value of the constant is C = In(0.5). The measured velocities differed signi-
ficantly from the Gaussian profile at the jet edges, where the authors noted
that the mean velocities were slightly negative. As we pointed out earlier,
traditional measuring techniques would be insensitive to the sign of the
velocity.

As the jet spreads out, there must also be a lateral component of the mean
velocity, and we sketch a typical result for the profile of this quantity in Fig.

= exp{—Cn?}

1.2 l 1 T

1.0 -

0.6 4

040, (0)
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Fig. 1.8. Distribution of axial mean velocity in a plane jet. Comparison of the mixing-
length theory with some representative results: , Mixing-length theory, as
calculated by Tollmien (1926; see Goldstein 1938, p. 593); X, representative experimen-
tal value of Ramaprian and Chandrasekhara (1985). Note that the mean velocity is
divided by its own value at the centre line and plotted against transverse distance
divided by Y. Here Y is the value of x, where U, (x,) = 0.5U,(0).
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Fig. 1.9. Sketch showing the distribution of the transverse mean velocity in a free jet.
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Fig. 1.10. Sketch of the variation of the Reynolds stresses across a free jet: .
normal stress (u?>/T2(0); ———, shear stress (u,u,»/U}(0).

1.9. This result can actually be calculated from the continuity equation (1.25)
and the experimental result for the axial mean velocity, as presented in Fig. 1.8.

In Fig. 1.10 we show a sketch of typical results for the turbulent normal
and shear stresses in a jet. Comparison with the corresponding results for pipe
flow in Figs. 1.5 and 1.6 reveals a general qualitative similarity. However, the
quantitative differences are worth noting as they underline the essential dis-
tinctions which must be drawn between confined and free turbulent flows. In
particular, it should be noted that the peaks of the Reynolds stress profiles in
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duct flow are rather sharp and close to the wall. This reflects the intense
localized nature of the turbulent production near the wall. In contrast, the
peaks of the turbulent stress profiles in the jet are much more spread out and
much closer to the symmetry axis of the flow. This can be seen as reflecting
the more diffuse nature of the production process in a free shear flow which
involves the entrainment of the surrounding fluid into the jet.

Finally, in view of the reliance on the conservation of momentum flux in
Section 1.5.3, we should note the growing speculation that momentum flux is
not conserved in jets (e.g. Kotsovinos 1978). Ramaprian and Chandrasekhara
(1985) found that the axial momentum flux actually increased with down-
stream distance, reaching an asymptotic value at x,/D = 30 of about 50 per
cent greater than the value at the jet exit. However, this violation of the
conservation law for axial momentum flux did not apparently affect the
general form of the classical jet scaling law as given in eqn (1.64).

1.7 Further reading

The purpose of this chapter has been to cover just enough of the traditional
semi-empirical approach to turbulence to provide a background for the more
fundamental work which will be the subject of most of the rest of this book.
We believe that we have at least touched on the most important central points,
but otherwise we make no claims to completeness. In a subject which is (in
some ways) as much art as science, each new variant on the standard problem
(e.g. fluid compressibility, wall curvature, complicated geometries, wall rough-
ness, two or more phases, heat and mass transfer, and many more) brings its
own particular remedies. We do not pretend to have even scratched the surface
of this vast field, nor would it be appropriate for us to try.

To sum up, our main theme has been to formulate the statistical problem
in a general way, using correlations which are worked out at a single point in
space and time. Then we have shown how the size of the problem can be
reduced by specializing these general equations to various two-dimensional
mean flows.

This approach should be distinguished from that to be adopted in Chapter
2. There we repeat the statistical formulation, but with greater emphasis on
generality. In particular, we are concerned with the hierarchy of many-point
and many-time moments. Then we reduce the size of the fundamental problem
by specializing our general moment equations to the idealized case of homo-
geneous isotropic turbulence.

The reader who wishes to learn more about boundary layers, or the aero-
dynamic aspects, will find the books by Schlichting (1968) and Thwaites (1960)
helpful, while those interested in the general phenomenology of turbulence
could refer to the standard works by Hinze (1975) and Townsend (1976). The
first of these is very comprehensive; the second, although shorter, is inclined



34 THE SEMI-EMPIRICAL PICTURE OF TURBULENT SHEAR FLOW

to concentrate more on the underlying structure of turbulence. Those readers
who have become tired of relentless experimental detail may find some relief
in the readable discussions of the physics of the subject by Bradshaw (1971).

Lastly, any newcomer to the subject is strongly recommended to glance
through the many beautiful photographs in An album of fluid motion (Van
Dyke 1982). Turbulence can be a difficult subject, and it may be useful to
remind oneself that the phenomenon is not without its aesthetic side.

Note

1. We require to show that the operations of differentiation and taking an average

commute, that is
()t
ot ot ’
We begin with the Lh.s.:

0A 1 [T /04
—— )= — |dt
ot 2T}, \ 0t

1

= {4l + 1) — A = T)}.

We now rteed the formula for an integral differentiated with respect to its upper limit:

~

aij g(x)dx = ag(ay).
YJo

It follows from this that we can write the r.h.s. of our first expression as

5 a 1 t+T

A =—\= Ad

ar<> 6t<2Tj,_T t>
o[ 1 [T 1 [T
([T av- g [ aw)

—lAtT At —T
—ﬁ{(+ ) — A{t — T)},

which is equal to the final expression above for the Lh.s.
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2
THE FUNDAMENTAL APPROACH

Superficially the background material presented in this chapter may seem
very similar to the topics covered in Chapter 1. That is, we begin with
the Navier—Stokes equations and use the Reynolds averaging procedure
to formulate the statistical approach. Then (just as in Chapter 1) we are
concerned with the mean square excitation of fluctuations, with energy bal-
ances, and with the moment closure problem. We shall also consider the use
of both dimensional methods and approximate models, and conclude by
considering some representative experimental resuits.

However, there will be two important differences of emphasis. First of all,
our main interest will be in the underlying structure of the turbulence. That
is, we shall consider the correlation of velocities at two or more points (and
times). The foundations of this approach were laid by Taylor (1935) in a paper
which also introduced the concepts of statistical homogeneity and isotropy:
a step which took turbulence theory into the realm of physics, rather than
engineering. In a subsequent paper (Taylor 1938a) the introduction of the
energy spectrum in wavenumber (i.e. the Fourier transform of the two-point
correlation in space) virtually completed this process, and, as we shall see, the
calculation of this spectrum provides a major goal for fundamental turbulence
theory.

Secondly, we shall also give some attention to the establishment of certain
general results and procedures which will provide the basis for the symbolic
manipulations needed in the later theoretical work. As an example, we begin
by eliminating the pressure from the equations of motion. The procedure to
be followed is based on the work of Chou (1945), and the resulting divergence-
less form of the Navier—Stokes equation provides the starting point for all
modern theories of turbulence.

2.1 The Navier—Stokes equation in solenoidal form

Consider an incompressible fluid of density p and Newtonian viscosity v
occupying a volume ¥ which is bounded by a surface S. Parts of the boundary
surface may be at infinity (e.g. flow through long pipes or a jet emerging into
a large reservoir), and we take the boundary condition on the velocity field to
be

Uf(x,) =0  (x onS). @.1)

As we saw in the previous chapter, the velocity U, and the pressure P are
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determined by eqns (1.1) and (1.4). The pressure term in (1.4) can be eliminated
by using the continuity equation as follows.
We begin by rearranging (1.4) with the linear terms on the Lh.s.:

oU, R 1 0P 0
— WU, = —
ot

— - —U,U,. 2.2
pox, Oxz ° # @2
Now take the divergence of each term in (2.2). From (1.1) we see that the linear
terms vanish and we are left with an equation for the pressure:

1 02

VP = ———7—UU,, 23

0 0x,0x5 ° # @3)
which is a form of Poisson’s equation (just as encountered in electrostatics
for example).

The boundary condition on the pressure can be obtained by taking (2.2) on

S and using (2.1) to obtain

1op @

— = U
p 0x, Y Ox50xg

. (x on S). (2.4)

Alternatively, we can express this in terms of the normal derivatives
0 0 d 0* o2
—=ny— and — =mn,—0r,
on Pox, on> P ox,0x,

where n,(x) is the unit inward normal at x on S, to obtain

10P 9*

;a—n = Vnﬂa—nz' Uli' (25)

Equation (2.5) has the advantage of being in standard (Neumann) form.
Also, it relies only on the normal component of U,(x, ) vanishing on S. This
allows us to extend the formalism to include the case where parts of the
boundary surface may be in motion, which would be the situation in (for
instance) Couette flow.

We can solve (2.3) for the pressure, subject to the boundary condition (2.5),
in terms of Green’s function G(x, x') which satisfies Laplace’s equation in the
form

V2G(x,x') = d(x — x') (2.6)
subject to the condition
0G(x, X’
96X) 5 (xonS) 2.7)
on

Discussions of Green’s function methods can be found in the book by Roach
(1970). The formal solution of (2.3) can be written down immediately as
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U (X)) UAX',1)}
0xp0x,

S2UL(X, ¢ :
pvJ d2x'G(x, x')nﬂw. (2.8)
s on

The first term on the r.h.s can be modified in two ways which will later
prove helpful. First, we note that the index « is now repeated and hence is to
be summed. Accordingly we rename this dummy index 7 in order to avoid
confusion with the labelling index « in eqn (2.2). Second, we carry out a partial
integration (twice), and use the boundary conditions and the symmetry of
G(x,x’) under interchange of x and x’ to take the differentials outside the
integration. Our final expression for the pressure then takes the form

P(x,1) = ——pf d3x'G(x,X)
v

2

Px,t)= — J dx'G(x, X"V Uy(x, ) U,(X', 1) +

p

0x50x, Jy
D?Uy(x', t

+ pv J d?x'G(x, x’)nﬂ—ﬂ(z—). 2.9
s on

Clearly, our next step will be to use (2.9) to express the pressure gradient in

(2.2)in terms of the velocity field. This will take the form of a non-linear tensor

expression involving tensor indices a, f§, and y. We can partly. anticipate this

process by rewriting (2.2) as
oU, 0 16P

= —0,=— U U —— 22
Ot * Tox, 'V pox, (2.22)

where the Kronecker delta ,, acts as a substitutional symbol. Then, with (2.9)
for the pressure, (2.2a) becomes
oU, ) 0
o VU= — 5 DL 0U (0] = Lyy(V) [Up(x, 0], (2.10)
Xp
where the operators D, (V) and L,,(V) can be defined in terms of their effect
on an arbitrary function f(x):

2

Day(V) [f(x)] = 6azyf(x) - Ox

f d*x’'G(x,x') f(x) (2.11)
Ox v

a ¥

and

szx’G(xx)nﬁ(x) I 2.12)

0

L4V =v
WML = v -
Two final steps are now needed. First, we can put the non-linear term on
the r.h.s. of (2.10) in a more symmetric form. Noting that the interchange of
the dummy indices § and y must leave this term unchanged, we introduce the
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symmetric operator M., (V) such that

1{ 0 0
M, (V)= —=<{=—D, (V) + — D (V) ;. 2.13
aﬁy( ) 2 {axﬂ ay( ) + axy aﬂ( )} ( )
Second, we can extend this formulation to include flows driven by a constant
externally imposed pressure gradient. In this case the external pressure P,
would be such that

VP,

ext

= constant
and hence would satisfy Laplace’s equation

V2P, =0. (2.14)

ext

Thus P,,, can be added on to P(x,1), as given by (2.9), without affecting the
solution of Poisson’s equation.
With thiese points in mind, we can now write (2.10) as

0
a Ua - VVZUa - Maﬂy(v)[Uﬂ(xa t) Uy(xa t)] -
1 0P,
— L,(V)[Ug(x,0)] — ; aT;, (2.15)

which is the Navier—Stokes equation in divergenceless form.

This may seem to be a rather cumbersome procedure, and, although we
have eliminated the pressure from the problem, we do seem to have paid the
price of additional complication in the equation of motion. Fortunately, this
disadvantage is more apparent than real. In most of the fundamental work to
be considered in this book, we shall be able to neglect the surface integral in
(2.15). Also, as we shall see, for most purposes the non-linear term in (2.15) is
really no more complicated than the original non-linearity in eqn (2.2).

2.2 The general statistical formulation

In eqn (1.6) we have previously introduced the time average as the basis
of a statistical approach. This is the method of averging normally used by
experimenters, but from now on we shall base all our theoretical work on the
ensemble average. It is usual to assume that the two methods of taking
averages are equivalent: this property is known as ergodicity.

We shall defer a discussion of ergodic theory, along with a consideration of
what constitutes a turbulent ensemble, until Chapter 4. For the moment let
us consider how we would obtain an ensemble average for some specific
experiment. We can imagine carrying out N simultaneous independent ident-
ical versions of our experiment and then wishing to know the mean value
of some quantity f(x,) for particular values of x and t. If we associate a
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superscript n with each version (or realization) of our experiment, then we can
write the ensemble average as

{f(x, )y = lim i Y f®(x,1) (2.16)
N-ow Nn=0

for any given values of x and t. Evidently this definition satisfies a necessary
condition for an average:

LY=L (2.17)

The essential feature of (2.16) is its linearity, and various important results
follow from this. For example, it is now obvious that the operations of
differentiation and taking averages commute; that is,

o\ _KpH o\ _ KO
<5{>_ ot <5§>_ ox (218)

and of course this result can readily be extended to any independent variable.
Also, if A is a constant, it is easy to show that

CAf) = AL (2.19)

and hence

K39 =<9 (2.20)

where g(x, t) is another random variable in the domain. Finally, the linearity
of (2.16) implies that

S+ =<+ (221

even when f and g are not statistically independent.

Of course, in our study of turbulence we shall normally be concerned with
variables which are not statistically independent or which may only become
independent of each other under certain restricted circumstances. In order to
quantify the degree of statistical dependence of two or more variables, we
make use of the correlation, of which {fg) is an example. This concept will
be developed further in the next section. Also, a brief general introduction to
some relevant aspects of probability and statistics will be found in Appendix B.

2.2.1 Statistical equations and the closure problem

We now follow the Reynolds averaging procedure again. But this time we use
eqn (1.7) to set up the formal many-point many-time moment hierarchy based
on the solenoidal form of the Navier—Stokes equation.

Recalling that the velocity can be decomposed into mean and fluctuating
parts (eqn (1.7))

Ud (x’ t) = ﬁu(x’ t) + ua(x’ t)9
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where
U,(x,7) = CU(x, 1)) (222
and
{u (x,8)> =0, (2.23)
we can set up the infinite sequence of velocity field moments as follows:
Qs X5 1,17) = (uy(x, Hug(x',t)) (2.24)
Qup, (X, X, X5 1,1, 8") = (uy(X, uug(X', 1)1, (X",1") ) (2.25)
and, to any order,
Qupys--- (X, X, X", X", 5ttt )

= (g%, ug(X', 1 )u, (X", 1" Jus(x", 1) ).

Two quite general points can be made about each of these moments. First,
their value cannot be affected by the order in which we take the measuring
points or times. Second, the constituent velocities each satisfy the continuity
condition so that the moments must also satisfy eqn (1.1). Taking the second-
order moment as an example, we can express these two conditions in turn as

Qup(x, X'51,8") = Qpa(X', X5 ',) (2.26)

;}E;Qaﬂ(x, X;tt') = E%Q“ﬁ(x’ x';t,t'y=0. (2.27)

We now wish to derive a more general form of the Reynolds equations
which we obtained in Chapter 1. Essentially we follow the same procedure
and substitute (1.7) for the velocity field into the Navier—Stokes equation,
although this time we use the solenoidal form as given by (2.15). Averaging
then yields the equation for the mean velocity:

0 _ 1 6P, _ _
(5 - vVZ) Ux,t) = o + M, (M [Us(x, 0 U, (x, 1) +
+ Qp, (%, %3 1,8)] — Log(V) Up(x, 1). (2.28)

The equation for the fluctuating velocity u,(x,t) is obtained (as in the
preceding chapter) by subtracting (2.28) for the mean velocity from (2.15) for
the total velocity. It is easy to show that this takes the form

<§; - vV2> U,(x,t) = 2Maﬂy(v)[Uﬂ(X, fu,(x,8)] +

+ Maﬂy(v) [uﬁ(xa t)uy(xa t) -
— 05, (%, x;8,8)] — Lop(V) [up(x,0)]  (2.29)
where we have used the property Mz, = M,
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Equation (2.29) can be used to obtain an equation for a moment of any
order. We shall illustrate this process by forming the governing equation for
the vitally important second-order moment.

Multiply each term in (2.29) by u,(x',t) and average throughout. The result
is

0
(5 — vV2> Q,.(x,x';t,t")

= 2Maﬂy(v) [Uﬁ(x’ t)an(xv xl; L t’)] +
+ Maﬂy(v) [Qﬂya(x’ X, X/; Lt t,)] -
— Lp(V)[Qpo (X, X5 1,1} ]. (2.30)

Of course, in order to solve this for the second-order moment we first have to
solve a similar equation for the third-order moment which in turn requires
the fourth-order moment, and so on. We have previously referred to this as
the closure problem, and this is its most general form.

2.2.2  Two-point correlations

The second-order two-point correlations (or moments) play a leading part in
turbulence theory. Indeed, much of the rest of this book will be concerned in
one way or another with these correlations or (more usually) their Fourier
transforms. Accordingly we shall spend a little time (in this section and in
Section 2.3) in considering the relationship between the two-point (fundamen-
tal) and the single-point (engineering) approaches to the turbulence problem.
In particular, as the multipoint theory is the more general, we should be
interested in knowing under what circumstances it can be expected to reduce
to the single-point form.

Let us begin by considering how we would actually measure the correlation
of velocities at two points in, say, a pipe flow. We can assume that we
have an anemometer which will measure all three scalar components of the
fluctuating velocity at a single point x. (The subject of anemometry will be
discussed in the next chapter.) If we have a second such anemometer at the
point x’, then in principle all we have to do is multiply each pair of signals
together and average the resultant product in order to obtain the nine scalar
components of Q.

Each component of the correlation tensor is itself a function of eight scalar
variables. Therefore before we start generating a mountain of data, we should
carefully consider how we can approach this task in the most systematic
fashion.

In general terms, the velocity correlations can be expected to depend on
two things. First, as we move the measuring points apart, we would expect



22 THE GENERAL STATISTICAL FORMULATION 43

Fig. 2.1. Centroid (R) and relative (r) coordinate system for two-point correlations.

the correlation to die away. Thus correlations will depend on the distance
between the measuring points. Second, the magnitude of the correlations
must (at fixed separation) depend on the absolute values of the constituent
velocities. If we refer to the experimental results given in the previous chapter
(e.g. Fig. 1.5), then clearly the value of the correlation at a given separation
can be expected to depend on absolute radial position in the pipe.

In practice, quite a good way of tackling this task would be to mount the
two anemometers rigidly on a traversing system which would allow the
distance between them to be varied in a controlled way. Then this system
could itself be attached to a second traversing mechanism which would move
it bodily to various different locations in the pipe, with the effect of variable
separation being investigated independently at each such location.

Formally this procedure corresponds to a change of variables, as illustrated
schematically in Fig. 2.1. That is, we express the two-point correlations in
terms of

R =(x + x')/2 (2.31)
r=(x—x’), (2.32)

where R is the centroid (or absolute) coordinate and r is the difference (or
relative) coordinate. ’

A similar transformation can be carried out for the basic time variabies ¢
and ', and in general we have

Qaﬂ(x’ X/; tat/) = Qaﬂ(r9 R’ 7, T) (233)
where

T=(t+1)2 (2.34)
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and

T=t—t. (2.35)

Clearly if we put x = x’ in (2.33) we recover the type of single-point correla-
tion which was of interest to us in the previous chapter, where we met it as
the Reynolds stress. In this case its dependence on absolute position was the
important feature.

However, if we wish to achieve a fundamental understanding of turbulence,
then we should concentrate on how the correlations depend on the relative
coordinate. Let us try to see why this is so.

For example, consider two variables A4 and B, each a random function of
time and each with zero mean. In simple terms, the mean of A vanishes because
A is as often negative as it is positive and so its integral over all time is zero.
The same is true of B. However, the mean squares of 4 and B do not vanish
because the integrands are always positive. What then is the implication for
{AB)»?

The answer to this question obviously depends on the extent to which there
is some connection between the random variables 4 and B. If the two variables
are closely related in some way, then at one extreme we have A and B always
going negative together, so that their product is always positive. (Or, of course,
the two variables might be out of phase, in which case their product would
always be negative. But (4B) would still exist.) At the other extreme, there
might be no connection at ali between A and B, in which case the product AB
would be as often positive as negative, and hence (AB) = 0.

In turbulence the answer is normally somewhere in between the above
extremes. We have already seen in the previous chapter that the single-point
correlation coefficient R, is about 0.4 in pipe flow (see Fig. 1.6). If we now
consider the case where A = B = u,, say, then it is obvious that the associated
single-point correlation coefficient will be unity. What we would like to know
in this case is: over what distance (or time) will the correlation fall to zero as
we move the measuring points apart in space (or time)? In order to provide a
quantitative answer we introduce the integral length scale and time-scale.
Essentially, we wish to establish where turbulence fits in the range between
the purely deterministic process (e.g. laminar flow) and the completely random
process (€.g. tossing a coin, throwing a die).

Formally, we can introduce the general correlation coefficient R,, through
the relationship

Q.p(x,X'51,1') = Ryg(x, X5 8,1 (X, Jug(x', 1), (2.36)

where the primes on the velocities again denote r.m.s. values and the repeated
indices are not summed. From the above discussion, it is clear that R,; must
satisfy the condition
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max|R,g(x, X; 4, 1) = 1, 237

and intuitively we would expect that the correlation coefficient would also
satisfy

R0 for |x — x'| »
and/or |t — t'| = c0. (2.38)

Ifwesetx = X' andt =t = 0, then with o = 1 and § = 2 the above definition
of R,; reduces to the form given by eqn (1.39).

The work of this section can be completed by giving general definitions of
the integral scales. Let R be any component of the correlation tensor, and for
convenience choose x = x’' = 0and T = (¢t + t')/2 = 0; then the integral time
scale T is defined by

o0
Tp = J R(z)dr. (2.39)
0

The subscript E stands for ‘Eulerian’, meaning that the correlation has been
measured in the Eulerian (or laboratory) frame of reference. Later in the book
we shall we interested in the diffusion of fiuid particles, which will require a
Langrangian (or material coordinate) frame of reference, and so it will be
necessary to draw a distinction between the two.

In a similar way we can define the integral length scales, now choosing
t =t =0and R = (x + x')/2 = 0 for convenience, to write

Lyy®) = J R ,(r)dr (2.40)
0<|rl<a

where f is the unit vector in the direction of r.

For a specific example, we might wish to know the integral correlation for
the streamwise velocity u; in channel flow, when the measuring points are
separated in the cross-stream (x,) direction. Then from (2.40) we wouid use
the definition

L, (h) = L Ry (ry)dr,. (2.41)

Roughly speaking, a value for L,, would tell us how far we would have
to go in the cross-stream direction for the streamwise velocity to become
uncorrelated with itself.

2.3 Reduction of the statistical equations to the form for channel flow as an
example

In Section 1.4.5 we considered the case of pressure-driven two-dimensional
mean flow between infinite parallel planes. In this section we shall make a
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temporary digression from the fundamental approach to show how our
general formulation can be applied specifically to that problem. In particular,
we shall consider eqn (2.28) for the mean velocity, and show that it reduces to
the Reynolds equation as given by (1.44).

Referring to Section 1.4.5 for the details of the flow, we begin by noting that
for steady mean flow in the x; direction, the mean velocity becomes

U,(x,t) = Uy (x,) (2.42)
and hence the Lh.s. of (2.28) reduces to
d2U
Lhs. of 2.28) = —v——-. (243)
dx;

Now let us consider the r.h.s. of (2.28) with « = 1 throughout. Both terms
involving the mean velocity are zero. Take the quadratic term first. From (2.42)
we have =y =1, and hence M;,;(V), containing only differentials with
respect to x,, acts on a function of x, only to give zero. The linear term can
be eliminated by means of similar arguments.

The term containing the correlation Q,4(X, X; t,t) requires a more general
treatment based on the symmetries of the problem, and this provides us with
a first look at the type of argument that will be an essential feature of the
fundamental approach in subsequent sections. For this reason we shall discuss
it as a special case of the general two-point two-time form as given by (2.33).

First we deal with the time variables by noting that the act of putting t = ¢’
eliminates dependence on 7 and the condition that the flow is steady eliminates
dependence on T. Thus there is no time dependence at all, and incidentally
this conclusion applies to moments of all orders.

The spatial variables are a little more complicated. We begin by noting that
the flow domain extends to + oo in the x, and x; directions. As a result,
mean quantities do not depend on absolute position in these directions, and
hence the correlation is a function of r, = x; — x| and ry = x; — x3. In the
x, direction all moments are a function of absolute position (e.g. see the
experimental results for channel flow in Section 1.5) because of the no-slip
boundary conditions. Thus the correlation tensor also dependson R, = (x, +
x4)/2, as well as on r, = x, — x5, and the general two-point form for steady
channel flow becomes

Cug(X, ug(x', 1)) = Qup(r, Ry) (2.44)

Now we use the fact that the mean properties of the flow must be unaffected
by reflections of the velocity vectors in any one of the three coordinate planes.
Details can be found in Appendix C, where it is shown that

Q0,3 = —Q5, = constant =0

0,3 = — (5, = constant = 0 (2.43)
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but
0,, = —Q,, = an antisymmetric function of x,. (2.46)
Thus, with (2.44), (2.45), (2.46), « = 1, and x = x/, the r.h.s. of (2.28) reduces to
__1_ dPext dQl 2

r.hsof 2.28) = (2.46)

p dx, dx,
It is readily seen that (2.43) and (2.46) taken together are equivalent to eqn
(1.52) with

Q1,0x;) = {uquy).

We conclude this section by noting that the above results and arguments
can be used to reduce eqn (2.30)—the general equation of motion for the
two-point correlation tensor—to the single-point energy balance equation for
channel flow. However, it should also be noted that this form will not be
identical with that previously given in eqn (1.68), as we have now eliminated
the pressure as a dependent variable.

2.4 Homogeneous isotropic turbulence

In the previous section we saw how the statistical equations obtained by
averaging the Navier—Stokes equation could be very much simplified by
specializing them to the case of channel flow. In order to study the physics of
turbulence we need to concentrate on the simplest non-trivial problems,
and it has long been widely agreed that homogeneous isotropic turbulence
presents the very simplest such problem. We shall begin by briefly discussing
the two concepts in turn. It should be noted that we shall not need the time
variables in this section, and accordingly we can make the algebra more
compact by not showing them explicitly.

Homogeneity is really a contraction of ‘spatial homogeneity’ and indicates
that mean properties do not vary with absolute position in a particular
direction. Thus the channel flow considered previously was assumed to be
homogeneous in the x; and x; directions. However, the unqualified term
‘homogeneous’ is normally applied to fields which are translationally invari-
ant in all three mutually perpendicular coordinate directions, and this is the
case which will concern us here.

The most important implication of this restriction is that (2.24) for the
correlation can be written as a function of telative position only:

Cuy(Xug(x')) = Qup(x — X') = Qgl1), (2.47)

with analogous results for higher-order moments. Also, the correlation must
be unaffected by the interchange of x and x’, and hence will be a symmetric
function of r with
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Qup(r) = Qup(—T). (2.48)

The additional restriction to isotropy implies independence of direction as
well as independence of position in the fluid. Formally, this means that
all velocity moments are invariant under rotations of the coordinate frame
and under reflections in coordinate planes. The principal implication is the
additional symmetry requirement

Qup(r) = Qo). (2.49)

We can begin to explore the further implications of isotropy by first
considering single-point forms. It can be shown (see Appendix C) that all
off-diagonal elements of the single-point correlation tensor vanish, that is,

Cuguy) = {uguzy = {usuyy =0, (2.50)
and that the diagonal elements are all equal, that is,
ui) = Cui) = <u3) = u?), (2.51)

where {u?) is the mean square of the fluctuating velocity in any arbitrary
direction. It follows from eqn (1.22) that the single-point isotropic correlation
tensor can be written as

2E
Qaﬂ(Q) = _j—éalh (252)

where E is the kinetic energy of turbulent fluctuations per unit mass of fluid
and J,, is the Kronecker delta symbol.

Thus the single-point correlation tensor has been expressed in terms of only
one scalar constant. As we shall see shortly, the two-point correlation tensor
can also be reduced to a single scalar, which is in this case not a constant but
a function of the distance between the points x and x'.

Now let us consider the question of how realizable is isotropic turbulence?
Referring back to the results for pipe flow as a typical example, we see from
Fig. 1.5 that the three r.m.s. velocity components are quite different from each
other, and hence (2.51) is not satisfied. Likewise, Fig. 1.6 shows that {u,u,)
is not zero, except at the axis of symmetry, and hence (2.50) is not satisfied
either. Clearly, pipe flow is in fact highly anisotropic, and this will generally
be true of most flows as the presence of rigid boundaries and externally
imposed pressure gradients inevitably implies a preferred direction.

All of this would tend to suggest that we should look for isotropic turbu-
lence in flows that are of large physical extent where appreciable regions can
be found that are remote from the boundaries. Obviously examples are the
large-scale geophysical flows such as occur in the atmosphere or the ocean.

Alternatively, in laboratory-scale shear flows, we might take the opposite
approach and concentrate on a range of very small eddy sizes in the hope that
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they would be relatively unaffected by the rigid boundaries. This could be
achieved by keeping the distances between measuring points small compared
with length scales over which there was appreciable inhomogeneity; this
concept is known as ‘local isotropy’.

As we shall see later, when we consider some experimental results, both
approaches can lead to quite good approximations to isotropic turbulence.
However, the development of the subject has been greatly helped by the
contrivance of a rather artificial kind of turbulence. This is grid-generated
turbulence. For brevity, we normally just refer to it as ‘grid turbulence’. It can
be produced in the laboratory in the following way.

Suppose that the air flowing through a wind tunnel is made to pass through
a mesh or grid. The physical situation we should envisage is one where the
boundary layers on the tunnel walls are thin, so that much of the flow
constitutes a potential core (in other words, the flow in a wind tunnel corres-
ponds to the entrance region in a pipe flow). Under these circumstances, a
vortex street is generated by each bar (or rod) which makes up the grid and,
provided that ail the grid parameters have been sensibly chosen, the many
vortex streets coalesce downstream to form a turbulent field. Experiments
have shown that such fields are approximately isotropic (see Goldstein 1938,
pp. 228-9).

Unfortunately grid turbulence cannot be fully homogeneous as it decays
in the direction of flow. However, by changing to a coordinate system which
is moving with the free-stream velocity U,,, we can make it mathematically
equivalent to the problem of homogeneous isotropic turbulence which is freely
decaying with time. If the flow is taken to be in the x; direction, then the
correspondence is made through the relation

t=x,/U, (2.53)

where ¢ is the decay time.

In practice it is found that the early stages of the decay can depend quite
strongly on the design of the grid which is producing the turbulence. This is
not very surprising, but we would expect that, sufficiently far downstream of
the grid, the turbulence would become independent of the way in which it was
formed and assume a universal character controlled only by the equation of
motion. As we shall see, experimental results suggest that this is indeed the
case.

2.4.1 Isotropic form of the two-point correlation tensor

Returning to the two-point correlation, we have already said that we can
reduce the nine scalar functions, which (in principle) are needed to describe
this, to only one. The general method of doing this was invented by Robertson
(1940) and is based on the idea that an isotropic tensor can be expressed in
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terms of the invariants of the rotation group. A full discussion can be found
in the original paper by Robertson (1940) or in the books by Batchelor
(1971) and Hinze (1975). Here we shall just give some of the more interesting
points.

Robertson showed that the isotropic two-point correlation could be written
as ‘

Qup(r) = A(r)ryrg + B(r)dy (2.54)

where A and B are even functions of ¥ = |r|. We should note that this result
reduces to the appropriate single-point form, as given by (2.52), when we set
r=0.

Although (2.45) satisfies all the requisite symmetries, we can further invoke
the continuity condition in order to relate 4 to B. First, however, it is usual
to express the coefficients A and B in terms of the transverse and longitudinal
correlation coefficients. These can be defined by reference to Fig. 2.2. Once
we introduce two measuring points, we also introduce a preferred direction,
that is, the direction of the vector joining the two points. Thus although
the three possible correlation coefficients are all the same when referred to
the Cartesian coordinate system, two different types are possible when the
coordinate system is based on the configuration of the measuring points. That
1s, the correlation can be based on the longitudinal velocity component u
parallel to r or on the transverse component u; which is normail to r, with two
(identical) correlations possible in the latter case.

The longitudinal and transverse correlation coefficients, f and g respectively,
can be introduced through the relationships

uy
. ur

Fig. 2.2. Definition of the longitudinal (L) and transverse (T) components of the
fluctuating velocity in an isotropic turbulent field.
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U f(r) = Cu (Xpur(x')) (2.55)
and
U g(r) = Cur(x)ur(x’)), (2.56)
where f and g are even differentiable functions of r and satisfy f (O)’ =g0)=1
as well as f'(0) = g'(0) = 0. We should also recall that x = x" + 1.
We can relate f and g to the coefficients A and B in (2.54) by considering

the special case where we take r to lie along the x; axis. That is, we put x = 0
and r = (r,,0,0). Then, putting « = § = 1 in (2.54), we obtain

Q,,(r)=A4r* + B=<u*)f 2.57)

where the last step follows from (2.55). Similarly, we can put o« = = 2in(2.54)
to obtain

Q,,(r) = B =u?)g. (2.58)

Evidently (2.58) gives us B in terms of g, and if we substitute this result into
(2.57) we readily find 4 in terms of f and g. Then eqn (2.54) can be written as

Tulg

Qus(®) = P> (f — 9)-55~ + {u? > gdyy. (2.59)

r2

Our last step is to eliminate g in terms of f. We do that by differentiating
(2.59) with respect to r, and invoking the continuity relation in the form of
eqn (2.27). With some straightforward algebra and a little rearrangement we
readily find that the two-point isotropic correlation can be expressed in terms
of a single scalar function f as

1
Qup(r) = u?>f 0,5 + §<u2 orf ’<51p - r%) (2.60)

where the prime denotes differentiation with respect to r. For the particular
case r = 0, we note that

Z Qaa(o) = <u2 >f(0)tr 5aﬂ = 3<u2>
= 2E, (2.61)

where tr stands for ‘trace’, that is, the sum of the diagonal elements of a matrix.

242 Length scales for isotropic turbulence

Two important length scales can be formed from the longitudinal correlation
coefficient f(r). The first of these is the Taylor microscale 4. This is a differential
length scale and is obtained in the following way. Suppose that we expand
f(r) about r = 0. Then, recalling that f must be a symmetric function of r
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Fig. 2.3. Sketch of the longitudinal correlation coefficient (note that the integral scale
is based on the erroneous assumption that the correlation coefficient can be approxi-
mated by an exponential function, and is intended to be illustrative only).

and hence f’(0) = 0, we can write
2

fn=1- ;7 +0(r) 2.62)

where

1
= f7(0). (2.63)
That is, we define the microscale by fitting a parabola to the correlation
function for small values of r. This is shown schematically in Fig. 2.3.

The physical importance of the Taylor microscale is indicated by the
relationship connecting it to the rate of dissipation of energy in isotropic
turbulence, which is (e.g. Batchelor 1971) -

15v<u?>
We shall discuss this further in Section 2.8.

The longitudinal integral scale L is just another particular case of the

general integral length scale as defined by eqn (2.40). It is given by

L= fw fr)dr. (2.65)
0

We can illustrate the physical meaning of L (although not altogether rigor-
ously) by fitting an exponential form to the correlation function. (In practice
this can be quite a good approximation, although clearly it is invalid at r = 0,
where we require /' = 0, from symmetry.)
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Purely for this purpose, therefore, let us take f = exp(—br), where b is a
parameter with dimensions of inverse length. Substituting this form into (2.65),
we readily find that L = 1/b. Or, in other words, if the correlation were
exponential in form then the integral length scale would be the distance over
which the correlation coefficient declined from f(0) = 1 to f = 1/e. Again, we
show this schematically in Fig. 2.3.

2.5 Stationary turbulence

Turbulence is intrinsically a time-dependent phenomenon. Nevertheless we
can distinguish between those situations where mean velocities are dependent
on time and those where they are not. For instance, an everyday example is
when we use a hose pipe connected to a water tap. Now suppose that we turn
the tap up or down. While we are doing this, the mean velocity of the water
through the pipe will vary with time. But if we allow external factors (such as
tap setting, nozzle adjustment, or ambient conditions) to remain constant,
then normally the mean velocity of the water will also remain constant, a
condition we referred to as ‘steady mean flow’ in Chapter 1.

The extension of this idea from single-time means to many-time moments
brings us to the concept of stationarity. Formally, we say that u,(x,?) is a
stationary random variable if the associated many-time probability distribu-
tion depends only on the differences between measuring times and not on their
absolute values.

As an example let us consider the two-time correlation. Temporarily sup-
pressing space variables and tensor indices as irrelevant to the work of this
section, we have from eqns (2.24) and (2.33)

Cuu(t’)y = Q(z, T) (2.66)

where 7 and T are the relative (or difference) and absolute times respectively.
Then if u(t) is a stationary random function, (2.66) becomes

u@u’)) = Q) = Qt —t') (2.67)
such that

ot —t)= 0@ —1). (2.68)

Thus stationarity is, in effect, homogeneity in time.

We have already defined an integal time-scale in eqn (2.39). For stationary
fields we can also define a microscale in the same way as the Taylor microscale
was introduced for homogeneous turbulence in the previous section. If Rg(t)
is any Eulerian correlation function (e.g. f(r, ?) in isotropic turbulence, Ry, in
channel flow, etc), then for small values of T = ¢ — t', we can write

1,'2

RE(T) =1- 21_}2;

+ 0(x*) (2.69)
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where the microscale 7y is given by
1
— = —Rg(0) (2.70)
3

and the primes denote differentiation with respect to 7.

In order to carry out time averages, we require the turbulence to be
stationary, or at least approximately so, on time-scales which are long com-
pared with, say, the integral time-scale. It is often argued that small eddies
may evolve so rapidly, compared with large eddies, that they can be regarded
as being in a quasi-stationary state, rather like the idea of local isotropy
which we discussed previously. In this context reference is often made to an
‘equilibrium range’ of eddy sizes. However, it seems to the present writer that
this usage invites confusion with the idea of thermal equilibrium. Therefore
we shall only use the word equilibrium in the latter sense and not as a synonym
for ‘steady state’.

2.6 Fourier analysis of the turbulent velocity field

The introduction of Fourier analysis leads to three main benefits. It converts
differential operators into multipliers, it gives us a relatively simple picture of
the physics of turbulence, and it allows us to define the degrees of freedom of
the turbulent system. This last aspect will turn out to be particularly important
both for discussion of turbulence from the point of view of statistical mechanics
and for our consideration of the problems of the numerical solution of the
equations of motion.

We begin by considering the turbulent fluid to be occupying a cubic box of
side L. The velocity field (or any of the other dynamical variables) can be
expanded in a Fourier series as follows:

u(x,1) = Y u,(k, t)exp{ik-x} 2.71)
K
where the wavevector k is given by
2

k = fn{nl,nz,m} 2.72)

and n,, n,, and nj are integers, each of which is summed over the range from
— o0 to + 0.

It should be noted that we use the same notation for fields, irrespective of
whether we are referring to the actual velocity or its Fourier component. This,
although contrary to the normal usage to be found in mathematical textbooks,
is quite usual in this sort of work. In practice there should be no confusion,
and indeed we shall find it helpful to think of u,(k,t) as the velocity field in
wavenumber space.
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For completeness, we present a brief summary of Fourier methods in
Appendix D, with emphasis being given to those results which are most
relevant to the theory of turbulence. However, we shall not consider the more
profound questions concerning the validity of the Fourier representation of
stationary random functions, and the interested reader who wishes to pursue
such questions should refer to the books by Batchelor (1971) or Monin and
Yaglom (1975).

Nevertheless, one particular point should perhaps be mentioned here. In
order to have rigorous isotropy, we must allow the box size to go to infinity.
This means that Fourier sums become Fourier integrals in the usual way.
However, the random nature of the velocity field causes difficulties for the
implementation of the limiting process inherent in the transition from a
summation to Riemannian integration.

In our view, the simplest way of dealing with this is to defer taking the
infinite system limit until after we have taken averages. Then the problem
simply does not arise. This also seems quite an appropriate procedure for the
additional reason that homogeneity (a necessary precondition for isotropy) is
purely a statistical property of the velocity field.

2.6.1 The solenoidal Navier—Stokes equations

We begin by transforming the continuity equation, as this provides us with a
relatively easy start. As we are restricting our attention to isotropic fields with
zero mean, eqn (1.7) now becomes

U,(x, t) = u,(x,1).

Then substituting (2.71) into (1.1) and carrying out the differentiation, we
obtain

Y (ik,)uy(k, yexp {ik-x} = 0 (2.73)
k

which must hold for arbitrary exp{ik-x}. Thus the continuity relation be-
comes

kyug(k, ) = 0. (2.74)

Or, u(k) and k are mutually orthogonal.

The general solenoidal equation of motion is given by (2.15). We wish to
apply this to a system where the boundary is at infinity and there are no mean
velocities or externally applied pressure gradients. If we then invoke the
boundary condition that u,(x, ) goes to zero as x goes to infinity, eqn (2.15)
reduces to

<% B VVZ) U,,(X, t) = Mallv(v) [uﬂ(x’ l)uy(x’ t)] (2'75)
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The technicalities of Fourier transforming this equation are discussed in
Appendix D. However we can do it straightaway if we bear in mind just two
points:

(a) as we saw in the process of deriving (2.74), when we substitute (2.71)
into (2.75) the net effect will be to replace each differential operator by
its analogous wavenumber expression;

(b) the non-linear term involves the product of two velocities in x-space
and hence, by the Convolution Theorem, will give rise to the convolution
of their respective Fourier transformer in k-space.

Thus, by inspection, we can write down the result obtained by substituting
(2.71) into (2.75) and carrying out the appropriate differentiations:

<g * v"2> (K, 1) = Mg, (K) 3 10y s (k — s 0), (2.76)
i
where
Magy (k) = (20)7 {kpDey() + b, Dy )] 2.77)
and
k k
Dyy(k) = 8,5 — lk|2ﬂ' (2.78)

Clearly, M,;,(k) and D,4(k) are just the Fourier transforms of M,;,(V) and
D,4(V), as defined by eqns (2.13) and (2.11) respectively.

Itis easy to verify that solutions of (2.76) also satisfy the continuity condition
as given by (2.74). If we multiply each side by k,, the vanishing of the Lh.s.
follows trivially from (2.74). The r.h.s. of (2.76) also vanishes, and this follows
from an important property of D,4(k), namely that

kyD,g(k) = 0. (2.79)

2.6.2 Homogeneity and the velocity-field moments

In order to develop a formalism based on eqn (2.76), we need to know
something about the general properties of the moment hierarchy in wave-
number space. We begin by considering the implications of homogeneity,
meaning that moments are translationally invariant in configuration (x) space.

Temporarily dropping the time arguments, we can write the expression for
the Fourier coefficients in (2.71) as

u (k) = <—)3 Jd3x u (x)exp{ —ik-x}, (2.80)

from which it follows that the two-point correlation in k-space can be related
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to the corresponding form in x-space by

Cup(R)ug(k')) = <%)6 jj(ﬁx d3x' Cug(X)up(x)) x

x exp{—ik x — ik’ -x'}

= (%)6 ffd%c Eru(Xugx —r)) x

x exp{—i(k + k') x}exp{ik’-r}. (2.81)
We now invoke the property of invariance under translation. That is,
<ua(x)up(x - l')> = <ua(0)uﬂ(r) >a
and (2.81) becomes

Cug(K)up(K')) = (%)6 desx dru,(0)uy(r)> X
x exp{—i(k + k') x}exp{ik'-r}. (2.82)

At this stage we can perform the integration with respect to x, noting (e.g. see
Appendix D) that

1 3
<Z> jd3xexp{—i(k + k') X} = dyx,05

so that the correlation in wavenumber space takes the form

1 3
<ua(k)uﬁ(k')>=5k+k.o(z> fd%Qaﬂ(r)exp{ik-r} (2.83)

Thus, in general terms, if we correlate velocity fields corresponding to two
different modes k and k', we only obtain a non-vanishing contribution when
k+k =0

Similarly, it can be shown for the third-order moment that

Cuy(K)ug(jlu()> =0, unlessk +j+1=0, (2.84)

and, in general, the homogeneity property for a moment of any order can be
written as

Cug(Kyug(iu,(M...us(p)> =0, unlessk +j+1+--+p=0 (285

That is, the n-order homogeneous moment, involving the set of n distinct
wavevectors {k,j,1,...,p}, is zero unless all n wavevectors sum to zero.

It should be noted that all these results apply to denumerable k, j, 1, ..., p.
In the next section, we shall consider the transition to continuous wavevector
variables.
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2.6.3 Limit of infinite system volume

The Fourier decomposition of the velocity field into harmonic components is
given by eqn (2.71), with (2.80) as the inverse relationship which specifies the
Fourier coefficients. It should be noted that the integral in the latter equation
is over the volume L. What we now wish to obtain is the corresponding pair
of relationships connecting the two-point correlations, as a preliminary to
taking the limit as L — co.

In the previous section we found that the fact that the two-point correlation
(u,(x)uy(x')) depended on only one space variable was enough to ensure that
(u,(k)uy(k’)) in turn depended on only one wavenumber variable. Thus, by
direct substitution from (2.71) and then averaging, it is readily shown that the
analogue of (2.71) for the correlation is

Qup(r) = % Cuy(K)ug(—k)yexp{ik -1}, (2.86)
where we should bear in mind that r = x — x'. The equivalent result for the
Fourier coefficients can be obtained from (2.83) by setting k = —k':

1 3
Cuy(kyug(—k)) = <Z> Jd3r Q. s(nexp{—ik-r}. (2.87)

It should be noted that (2.87) is analogous to eqn (2.80) for the Fourier
coefficients in the expansion of the velocity field.

Formally, we now make the transition from (2.86) and (2.87) to the Fourier
integral representation in the usual way (e.g. see Appendix D) by defining the
(continuous) spectral density tensor Q,4(k) as follows:

3
00 = (52 ) <im0 289

Then, taking the limit as L — oo, we can introduce the Fourier transform pair
Q.4(r) and Q,,(k) through the relationships

0,s(F) = fd3k 0,s(k)exp{ik-r} (2.89)

and 1

3
Q.5(k) = <2n> Jd3r Qup(rexp{—ik-r}. (2.90)
This procedure can be extended to all higher-order moments. Choosing the

constituent wavevectors to be such that they satisfy the general homogeneity
property (2.85), we can write down the higher-order analogues of (2.88) as

L 6
Qupy (k,J) = (E) Cug(K)ug(u,(—k —j)> (2.91)

and
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9
Qupys(ksp ) = (%) Cua(Rug(jhu,Mus(—k —j — D). (2.92)

Clearly, the moment of any order can then be found inductively.
Now that we have made the transition to the infinite system, sums over
wavevectors can be replaced by integrals according to

27\3
Iim [ — = | d3k.
i (7) 2=

Lastly, a generalization of eqn (2.88) to the case of distinct wavevectors k
and k' can be obtained by combining eqns (2.83) and (2.90), with the results

! 7 2TE 3 7
gk, up(K', 1)) = <f> Ok, 0Qap(ks 1, 1) (2.93a)

where, for complete generality, we have restored the time arguments. Then, if
we take the limit L — oo, it follows that

Cug(k, ug(k', ) = 6(k + K')Qp(k;t,t"), (2.93b)

which is a form that will prove useful later on.

2.6.4 The isotropic spectrum tensor

In Section 2.4.1 we gave a short account of the application of Robertson’s
(1940) theory of invariants to the isotropic correlation tensor in configuration
space. The same methods can be applied to the isotropic spectrum tensor (e.g.
see Batchelor 1971), and indeed are much easier to use in wavenumber space.

Employing the same arguments as before, we obtain the analogous result
to equation (2.54):

Q.p(k) = B(k)d,5 + A(K)k, kg, (2.94)
which satisfies all the appropriate symmetry requirements. The scalars 4 and
B are even functions of k, but otherwise arbitrary.

Again, we invoke the continuity condition in order to eliminate one of the

two scalars. Multiplying both sides of (2.94) by k, and summing repeated
indices as usual, it follows from (2.74) that

ks Qup(k) = 0 = B(k)k, + A(k)kk,.
As this must hold for arbitrary k,, the required relationship is
B(k) = —k2A(K). ' (2.95)
In order to conform with later notation, we shall rename B as g, that is,
q(k) = B(k) = —k*A(k), (2.96)
and, substituting from (2.96) for A and B, we obtain (2.94) in the form
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» Qup(k) = q(K)J,5 — (Hk D,s(k)q(k) (2.97a)

akz =
where D,4(k) is given by eqn (2.78). Or, restoring the time arguments, we can
make the generalization

0.k t,t") = Dyy(k)Q(k; 2, 1). (2.97b)
Then we make connection with the time-independent forms by writing
0k;t,1) = Q(k; 1)
Q(k;0) = g(k).

It follows from (2.79) that the above form of the isotropic spectrum tensor
satisfies the continuity condition kzQ,,(k) = O for arbitrary g(k). This pro-
cedure can be extended to higher moments, but, as our interest will be in
closures in terms of the second-order moment, we shall not pursue this here.
Purely for completeness we should mention that Orszag (1969) has considered
the general problem of representing the isotropic moment of any order by
scalar functions.

Now let us consider the physical interpretation of g(k), and hence justify
our reference to Q,4(k) as the spectral tensor.

First we take the trace of Q,4(k), as given by (2.97). That is,

tr Qup(k) = tr D, (W)(k) = 2q(k). (2.99)

Now we can also relate tr Q,4(k) to the energy E per unit mass of fluid, as
follows. From (2.61) we have

2E = 3<u2> =1r Qaﬂ(r)|r=0 ={r J~d3k Qaﬂ(k)

=tr r q(k)k? dk fpa,,(k) doy,, (2.99)

0

where the second step follows from (2.89) with r = 0, the third step relies on
eqn (2.97), and dQ, stands for the elementary solid angle in wavenumber space.

The angular integration in (2.99) is readily carried out (e.g. see Leslie 1973,
p. 20), with the result that

E= 3tr6aﬂ J q(k)k? dk
f 4nk3q(k)d

j E(k)dk, (2.100)



26 FOURIER ANALYSIS OF THE TURBULENT VELOCITY FIELD 61

where E(k) is the contribution to the total energy from harmonic components
with wavevectors lying within the spherical shell between k and k + dk, and
is given by

E(k) = 4nk?q(k). (2.101)

Usually E(k) is referred to as the ‘wavenumber spectrum’. More formally, it
is the distribution of energy with wavenumber (or angular spatial frequency)
and, in view of eqn (2.101), we should interpret g(k) as the density of contribu-
tions in wavenumber space to the total energy. Therefore we shall refer to q(k)
as the spectral density.

2.6.5 The Taylor hypothesis and the one-dimensional spectrum

We have been discussing the three-dimensional energy spectrum, which is one
of the key concepts in turbulence theory. However, in practice experimenta-
lists find it most convenient to measure the spectrum of the single fluctuating
velocity in the streamwise direction. The reasons for this are discussed in
Chapter 3, along with the subject of anemometry. In the meantime, we have
to face the fact that the vast majority of measured spectra are of this type, and
so we must consider the problem of relating the measured spectrum to the
theoretical one.

As usual we take the flow to be in the x; direction and imagine an
anemometer to be positioned at a fixed point and measuring the fluctuating
velocity u,. If the anemometer signal is passed through a spectrum analyser,
then the velocity fluctuations can be decomposed into their harmonic com-
ponents with respect to the (angular) frequency w. Then, if the output of the
spectrum analyser is squared and averaged, the resulting frequency spectrum
E, (w) must have the property

Wy = J " B, (o) do, (2.102)
[0}

The physical significance of this spectrum can be seen more clearly as
follows. Let us assume that the signal representing u, is being fed to a filter of
centre frequency w and bandwidth Aw. After squaring and averaging, the filter
output can be represented (in a compressed notation) by {Au?(w)). Then, if
we vary w over the entire range of frequencies, we can construct a histogram
showing how {Au?(w)) is distributed among the various frequency bands.

A continuous spectrum can be obtained by taking the limit where the filter
bandwidth shrinks to zero:

E, (@) = lim Aur(@))

A®—0 Aw .

(2.103)

Clearly, this form satisfies the condition specified by (2.102).
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The possibility of a relationship between frequency and wavenumber spectra
rests entirely on the validity of the hypothesis of ‘frozen convection’ (Taylor
1938a). Taylor argued that the changes in u; with time at the fixed measuring
point could be assumed to be due to the passage of a frozen pattern of
turbulent motion past the point, provided that the mean (or free-stream)
velocity carrying the turbulent eddies was much larger than the turbulent
velocity fluctuations. That is to say, the velocity field at different instants could
be related by the transformation

u(x,t) = u(x — U, t,0),

and hence the local time derivative at a point could be replaced by the
convective derivative

0 _ 0

5= Ui ifu' « O, (2.104)

The Taylor hypothesis is widely regarded as having been validated in
practice, and is extensively used in experimental work on turbulence. How-
ever, at best it is still an approximation and hence, as experimental techniques
improve, it is still subject to critical scrutiny; see for example the recent papers
by Zaman and Hussain (1981) and Brown, Antonia, and Rajagopalan (1983).

In the context of our present interest, eqn (2.104) is equivalent to

k, = w/U,, (2.105)
or for grid turbulence we could use U, instead of U,. Correspondingly, we
can define

Eqy(ky) = U1E11((D)a (2.106)
and it follows from (2.105), (2.106), and (2.102) that

r E, (w)dw = r Enk)do jw E, (k) dk, = (u2). (2.107)

0 0 1 0
Thus the frequency spectrum can be related to one component of the spectrum
tensor in wavenumber space, albeit as a function of one scalar variable

k, only. The extension to three dimensions is straightforward: we simply
integrate out the dependence of Q,(k) on k, and k; to find

E11(k1) = J J Q11(k1,k27k3)dk2 dks

= Ln on ud> f(ry)cos(kyry)dry, (2.108)

where the second line follows from (2.90) and (2.57), and the cosine Fourier
transform is employed because f is an even function of r;.
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From (2.108) it can be shown further that E,,(k,) is related to the three-
dimensional spectrum for isotropic turbulence by

@ K2\ E(k
En(kl):L {<I—F>El(()}dk, (2.109)

with the inverse relation

K3 d[k~ dE,, (k)/dk]

Etl) = dk

(2.110)

Derivations of these results can be found in the book by Batchelor (1971) or,
in more algebraic detail, in that by Hinze (1975, pp. 208-9).

2.6.6 Statistical equations in wavenumber space: many-time moments

We shall complete the work of this section by using eqn (2.76) as a basis

for the formulation of the closure problem for isotropic turbulence in wave-

number space. We begin by considering an equation for the mean velocity.
If we average both sides of (2.76), the result is

ot
Now, from (2.83) we see that

0
( + Vk2> <ua(k5 t)> = M«zﬂy(k) Z <u[i(j9 t)uy(k - j» t)>
]

Cupg(§, u(k —J,1)> =0 unlessj+k —j=0,

and hence the r.h.s. of the equation for {u,(k,t) is zero as M,;,(0) = 0. This
result is, of course, consistent with our earlier claim that we could only have
homogeneous isotropic turbulence if the mean velocity was zero or, at worst,
constant over space. )

The equation for the two-time correlation can be formed by multiplying
each term of (2.76) by u,(—k,t') and averaging:

G 2 :
<6t + vk ><ua(k, Hu,(—k,t'))

= My, (k) 3. Cuplf, hu,(k — j, hu,(—k, 1)) (2.111)
)

Essentially this is just eqn (2.30), specialized to homogeneous turbulence
and then Fourier transformed. Further, we can express this in terms of the
correlation tensors. Invoking (2.88) and (2.91), and taking the infinite system
limit, we obtain

0 . I
<§ + Vk2> Qaa(k; L, t/) = Maﬂy_(k) Jd3j Qﬂya(.'a k — ¥ Lt ) (21 12)
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Our overall goal is to obtain a closed form of eqn (2.112) solely in terms of
0,.(k;1,t"), and this is something which we shall consider in great detail later
on. Therefore, although it is an easy matter to derive the next and higher-order
equations in the hierarchy, we shall not pursue this here. However, we can
complete this section by writing down the form of (2.112) which is appropriate
to isotropic turbulence. Invoking eqn (2.97b) for the isotropic correlation
tensor, setting ¢ = «, and summing over « leads to

0
(E + vkz) Q(k;t,t') = P(k;1,t') (2.113a)
P(ky ts t/) = %Maﬂy(k) Jd3j Qﬂya(j’k - j, ta tl)’ (21 13b)

where we have used the property tr D,z(k) = 2.

2.6.7 Statistical equations in wavenumber space: single-time moments

When we consider single-time moments, the situation is rather different. To
begin with, the derivation is slightly less straightforward than in the two-time
case. Also, at several later stages in the book we shall need higher numbers of
the single-point hierarchy in explicit form. Accordingly, at this stage we shall
derive the equivalent of (2.112) and the next-highest equation in the sequence.

Once again our starting point is eqn (2.76) for u,(k,t). We multiply each
term in this by u,(—k, 1), but, before we average, we form a second equation
from (2.76) for u,(—k, t), multiply through by u,(k, t), and add the two resulting
equations together. The important step is that we can now write

d i) d
<ua(k’ t)é‘t‘ ua(— k’ t)> + <ua(_ k’ t)a ua(ks t)> = E <ua(k’ t)ua( _ka [)>’

and the equation for the single-time correlation-is readily found as

(3 N 2ka> Cuall, Dty (— K, 1)
ot
= aﬂy(k) Z <uﬂ(j’ t)uy(k - js t)ua(_ka t)> +
]
F Mo (- Y Gl 0~k — k0> (2114
}

or, taking the infinite system limit,

0
(E + ZVk2> Qaa(k’ t)

= M,,(K) fdsz/m(i,k -+ ko ~kaeoo)  (2119)
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where the second term on the right is generated from the first by interchanging
k with —k, and « with o.

Similarly we can obtain the equation for the triple moment by first genera-
ting three equations from (2.76) for u,(k, t), u,(l,t), and u,(p,?). Then each of
these equations is multiplied through by the other pair of velocities. When all
three equations are added together and averaged, the result is easily found to
be

@ ol 4 vp2> CupK)i, (), (0)>

= Moy, (k) ). Cup(§)u,(k = Hu,Duy(p)> +
’ ]

+{kelboopl + {(keopaool, (2.116)

where the time arguments have been drbpped in the interests of conciseness.
Further equations in this sequence will be found in the paper by Orszag
and Kruskal (1968).

2.7 The energy cascade in isotropic turbulence

In this section we shall again (as in Section 1.3.2) be concerned with the energy
equation for turbulent fluctuations. However, it is probably as well to remind
ourselves that we are now dealing with a situation where the turbulent
energy is constant throughout space. Thus when we consider the transport of
turbulent energy, this will be in wavenumber, rather than configuration, space.
Alternatively, we can envisage a transfer from one range of eddy sizes to
another; this process is known as the energy cascade.

2.7.1 The energy balance equation

Our starting point is eqn (2.115) for the single-time correlation. We specialize
the Lh.s. to the isotropic case by using (2.97b) to reduce the spectral tensor to
its isotropic form

d
<a + 2vk2> D,,(k)Q(k,t)

= mﬂy(k) Jd3.1 Qﬂya‘(L k — js _k’ t) -

- G‘ﬂy(k) Jdal Qﬂya(ja -k - j, k; t)’ (21 17)

where we have also used the property M,z (—k) = —M,;,(k). It should also
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be noted that we have added the third vector argument to the triple correla-
tion. Normally we only give the two arguments, as the third one can be
deduced from the homogeneity requirement that all the vector arguments add
up to zero. However, in this section it will be helpful to be reminded which
vector corresponds to which tensor suffix.

Now we can form the equation for the energy spectrum E(k,t), as defined
by (2.101), but now generalized to the time-dependent case. If we set a = «,
sum over o and (remembering that tr D,4(k) = 2) multiply each term of (2.117)
by 2rk?, we obtain ‘

d
(& + 2vk2> E(k,t) = T(k,t) (2.118)
where the non-linear term T(k, t) is given by
T(k’ t) = 2nk2Maﬂy(k) J‘d3j{Qﬂya(jak - ja _ka t) -

— Qi —k =ik 1)} (2.119)

When we discussed the turbulent energy balance in Section 1.3.2, we saw
that the non-linear terms conserved energy: a global result proved in Appendix
A. The implication of this is that T(k,t) can only redistribute energy in
wavenumber space, and so if we integrate each term in (2.119) over k, it follows
from (2.100) that we must have

E e o)
C:i_t + J 2vk*E(k,t)dk = 0. (2.120)
0

The rate of decay of the total kinetic energy of fluctuations (per unit mass of
fluid) is just the dissipation rate (see Appendix A). Hence (2.120) provides us
with a simple result for the dissipation rate ¢ for isotropic turbulence:

dE ®
—=—= —J‘ 2vk2E(k, 1) dk. (2.121)
dt o
It is quite easily checked that (2.121) can also be obtained by Fourier trans-
forming the result given at the end of Appendix A.

It is of some interest to verify that the integral of T'(k, t) does indeed vanish

when integrated over all wavenumbers. We can do this in the following way.
From the definition of D,4(k), as given by (2.78), it can be shown that

D, 5(K)ug(k) = u,(k), (2.122)
and thus
DaB(k)Qﬁya(L l’ —k) - Qﬂyﬂ(j’ l’ _k)> (2123)

where we have temporarily introduced the new dummy variable I = k — j.
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Then, from (2.119), (2.123), and (2.77), we can put the integral of T(k,t) in
the form

J " 2Tk, 1) dk = Jd3k jd3j(2i)‘1{kyQﬂyﬂ(j, L—k) -
0

— k05,5031 — 2k, K)}, (2.124)

where dummy variables have been interchanged and dummy tensor indices
renamed as appropriate. At this point we again invoke the continuity condi-
tion in the form

and hence
lyQBvﬂ(j’ L-k)=0

Clearly this allows us to replace k, in the first term on the right of (2.124) by
k,— 1, = j,, and so find

r T(k,t)dk=fd3kjd3 (20)7{j, Q5,501 k) —

0
— k, Q0] — 2k, k). (2.125)

As each triple moment is symmetric under interchange of k and j, it follows
that the above integrand is antisymmetric under interchange of k and j
- and therefore vanishes when integrated over all space with respect to these
variables, from which we conclude that

j T(k,t)dk = 0. (2.126)
0

It will be seen later that this an important result, and also the form of the
proof will be found to be very helpful in later sections of the book.

2.7.2  Spectral picture: the Kolmogorov hypotheses

The usual 1nterpretat10n of eqn (2.118) is that the energy in the system at
small k (large scales) is transferred by the non-linear term T(k,t) to large k
(srnall scales), where it is dissipated (ie. turned into heat) by the viscous
term. Evidently the non-linear term, which represents the collective action of
all the other modes on one particular mode k, is intrinsically complicated.
However, despite this, its overall effect is the energy cascade and this makes
an appealingly simple picture.

In this section we shall find it helpful to rewrite eqn (2.118) as ;

E 9]
d é’; 0 _ f S(k.j, |k — jl)dj — 2vK2Ek, 1) (2.127)
0
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where the definition of S can be inferred from (2.119). It follows from (2.125)
and (2.126) that S has the property

Jdk jdjS(k,j,lk—j|)=0 ) (2.128)

for k; < k,j < k,, where k; and k, are arbitrary.
It is instructive to begin by considering (2.127) with the non-linearity set
equal to zero. Then the solution of (2.127) takes the form

E(k,t) = E(k,to)exp{ —2vk*(t — t,)} (2.129)

for an arbitrary starting time t,. Thus each mode k (or, more strictly, the
amount of energy in mode k) decays individually with inverse time 2vk?2.

It is clear that the higher the value of k the faster the decay. Thisis equivalent
to the situation in shear flows, which we discussed in Chapter 1. There we
argued that, as the molecular viscosity is a small parameter, viscous effects
would only become important when the velocity gradients were appreciable.
Thus the effect of the non-linearity could be deduced as transferring energy
from where there was net production (e.g. near a solid boundary) to where
there was net dissipation (at the centre). Similarly, when we consider the full
form of (2.127), we can expect the non-linearity to transfer energy from where
it enters the system (typically at small values of k, where 2vk? will be small)
up to large values of k, where the viscous damping will be very rapid. Hence
the effect of the non-linear inertial transfer should be to concentrate the
dissipation process in those regions of wavenumber space where it will be most
efficient. .

Before discussing the process of inertial transfer, we shall first consider the
range of wavenumbers involved. In the case of the lower bound this is quite
straightforward. The largest possible eddy will be bounded by the size of the
system, and so the smallest possible wavenumber k_;, will be given by

koo = 27/L, (2.130)

where L is the largest relevant linear dimension of the turbulent system.

We can expect the upper cut-off in wavenumber to be determined by the
viscous dissipation. The only relevant physical parameters available to us are
the kinematic viscosity v and the dissipation rate ¢; therefore on dimensional
grounds we introduce a characteristic length scale

n =% (2.131)
and (for later convenience) an associated velocity scale
v = (ve)l¥4, (2.132)

The inverse of (2.131) is normally taken as an approximate measure of the
maximum possible wavenumber. We shall call this k4 and accordingly we have
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ky = 1/n = (g/v3) (2.133)

It is interesting to note that if we define a local (in wavenumber) Reynolds
number based on the above scales, then we obtain

R(kg) =vn/v=1, (2.134)

thus indicating that viscous (rather than inertial) processes are dominant for
k ~ k.

The important point to note at this stage is that the smallest wavenumbers
are determined by the nature and size of the particular turbulent system
under consideration, whereas the largest ones are determined by the general
properties v and & Thus the ratio of k, to ky;, can be made as large as we
please and, in the limit (of infinite Reynolds number), infinitely large.

Now, it has long been known from experiment (Taylor 1938a) that the
energy is determined (i.e. through eqn (2.100)) by the lowest wavenumbers,
while the dissipation rate is determined (through (2.121)) by the highest
wavenumbers, and that the two ranges do not overlap even at quite modest
values of the Reynolds number. Thus it follows that the inertial term (which
is the link between the two ranges) can be made to dominate over as large a
range of wavenumbers as we like simply by increasing the Reynolds number
and hence (through (2.133)) the dissipation wavenumber. The consequences
of this fact are crucial for the physics of turbulence, for it follows us to consider
the inertial transfer of energy without worrying about the details of input (at
low k) or output (at high k).

As a first step in our discussion of the non-linear inertial transfer term we
return briefly to eqn (2.76), which is the Navier-Stokes equation for the
Fourier components of the velocity field. Here the non-linear term is readily
interpreted in the following way. Two velocity coefficients with different
frequencies j and | = k — j are coupled together to make a contribution to the
Fourier coefficient with frequency k. The total contribution from the non-
linearity is then given by the sum over all such interactions. This coupling of
wavevectors in triads is usually referred to as the ‘triangle condition’, and is
an example of a phenomenon familiar in other fields (e.g. electronics) as
non-linear mixing.

The collective nature of the non-linearity is inescapable. In principle each
Fourier mode of the velocity field is coupled to every other mode and therefore
we are faced with a very difficult physical problem.

In such circumstances it is natural to look for some simplifying assumption,
and clearly it would be helpful if the sum over modes were limited by an
inherent localness or ‘peakiness’ in the non-linearity. That is, we would like
to argue that distant wavevectors are only weakly coupled, and that any
particular mode k would only effectively interact with modes j and I such that
k, j, and 1 were of the same order of magnitude. In other words, to take an



70 THE FUNDAMENTAL APPROACH

analogy with (say) spins on a lattice, we would like to be able to restrict the
sum over modes to nearest neighbours.

The physical basis for such an assumption can be seen by considering the
effect of the non-linearity in configuration space. The interaction of two eddies
can be decomposed into (a) the convection of one by the other and (b) the
shearing of one by. the other. As we shall see later, the first of these effects
results only in a phase change of the associated Fourier coefficient and is not
dynamically significarit. The second effect results in the internal distortion of
the eddies with the transfer of energy to a smaller size of disturbance. If the
interacting eddies differ greatly in size, then it is physically plausible to argue
that the dynamically irrelevant phase change is the main effect. From there it
is only a step to argue that we can assume that the non-linear coupling of
modes is to some degree local in wavenumber space.

If we now return to the energy equation, we can interpret the non-linear
term in terms of energy flows between the modes, with each such mode
coupling being the average effect of many eddy—eddy interactions of the kind
discussed above. The combination of some degree of localness in the basic
interaction with the effect of averaging leads to the important idea that, after
a number of steps, the energy cascade may become independent of the way in
which the turbulence was created. Therefore the energy spectrum at high
wavenumbers may take a universal form.

These ideas were first formalized by Kolmogorov in two famous hypotheses
(Kolmogorov 1941a, b). The Kolmogorov hypotheses are essentially similar-
ity principles for the energy spectrum and can be expressed in the following
way. First we argue that, at sufficiently high wavenumbers, the spectrum can
only depend on the fluid viscosity, the dissipation rate, and the wavenumber
itself. Then, on dimensional grounds, the energy spectrum can be written

E(k) = v?nf(kn) = v¥*e'"f (kn), (2.135)

where the second line follows from (2.131) and (2.133), f is an unknown
function of universal form, and the dissipation length scale # is given by eqn
(2.131).

The second similarity principle is that E(k) should become independent of
the viscosity as the Reynolds number tends to infinity. It is easily seen that
this amounts to a requirement that the unknown function in (2.135) must take
the form

Slkn) = alln)™ 5 = av™FeH12g 50 (2.136)

where « is a constant. Hence, with the substitution of (2.136) for f(ky), eqn
(2.135) becomes

E(k) = ag2?k~ 53 (2.137)

in the limit of infinite Reynolds number.
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In theoretical approaches we often work with the spectral density function
g(k), rather than E(k). Thus for later convenience we use (2.101) to write down
the equivalent of (2.137) for g(k), which is

k) = = g2RK118, (2.138)
47

For large, but finite, Reynolds numbers we can adapt the above arguments

as follows. If the Reynolds number is sufficiently large, we can postulate the
existence of an inertial subrange of wavenumbers such that

2n/L < k « kg,

for which the spectrum, as given by (2.135), is independent of the viscosity.
Then we can modify (2.136) to take the form

) _
flhken) = akn)™PF (17) (2.139)

d
where F is another universal function which satisfies the condition
F(0) = 1, " (2.140)

and, as a result, eqn (2.135) becomes

E(k) = ag?Pk™53F (;) (2.141)

d

for k » 2m/L, and tends asymptotically to the form given by eqn (2.137) in the
inertial subrange of wavenumbers.

There is no agreed theoretical form for F, but, as we shall see later, experi-
mental results suggest that some from of exponential law might be appropriate.

Discussions of the Kolmogorov hypotheses often refer to the universal
range of wavenumbers (in which (2.135) is supposed to be valid) as the
‘equilibrium range of wavenumbers’. This terminology is based on the argu-
ment that the small eddies will evolve much more rapidly than the large eddies
which contain most of the energy. Thus eddies in the universal range can
adjust so quickly to changes in external conditions that they can be assumed
to be always in a state of ‘local equilibrium’. In fact this seems to be a rather
confusing way of referring to a process which is, in the thermodynamic sense,
very far from equilibrium. Possibly a better term would be ‘quasi-stationary’.

Of course in practice many real flows are stationary, and this is therefore
an important class of flows. We can consider the stationary state even within
the concept of isotropic turbulence by means of an artifice. Let us introduce
an input term W (k) to the energy equation. This is an arbitrary step which we
shall discuss in more detail in Chapter 4. For the moment we merely specify
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»

the input by
J W(k)dk = e. (2.142)

0
Clearly, once a stationary state has been reached under the influence of our
arbitrary stirring forces, the rate of doing work will be equal to the rate of
dissipation.
Under these circumstances, eqn (2.127) can be written as

J dj S(k,j, |k — j|) + W(k) — 2vk*E(k) = 0. (2.143)
0

Now, in order to have a well-posed problem with well-separated input and
dissipation ranges of wavenumbers, we choose a wavenumber k' such that

k' «©
J W(k)dk ~ ¢ ~ — f 2vk2E (k) dk. (2.144)
0 K

This means that we require the input term to be peaked near k = 0, and that
the Reynolds number should not be too low.

With all this in mind, we can obtain two energy-balance equations by first
integrating each term of (2.143) from zero up to k', and then integrating each
term from infinity down to k’. The result can be written as

k' o k’
J dkj dk S(k,j, [k — jl) +J w(k)dk = 0 (2.145)
20 k' 0

0 k ©
j dk j dj S(k,j, Ik — j|) — J 2vk2E(k)dk = 0, (2.146)
k' 0 k’

where we have used (2.128) to eliminate contributions from the double integral
for 0 < k,j < k' in the first case, and for k’ < k, j < co in the second.

The first of these equations tells us that energy supplied directly by the
production term to modes k < k' is transferred by the non-linearity to modes
Jj > k’. Thus, in this range of wavenumbers, T(k) behaves like a dissipation
and absorbs energy.

Similarly, from eqn (2.146), we see that the non-linearity transfers energy
from modes j < k' to modes k > k'. Therefore in this range of wavenumbers
T(k) behaves like a source of energy, and this input is dissipated by the viscous
term.

A consideration of these energy-balance equations, taken in conjunction
with (2.144), allows us to put another interpretation on ¢ as the rate at which
the inertial forces transfer energy from low to high wavenumbers, assuming
that the turbulence is stationary.

Lastly, we should note that the various arguments and hypotheses pre-
sented in this section are not limited to the mathematical idealization of



27 THE ENERGY CASCADE IN ISOTROPIC TURBULENCE 73

isotropic turbulence. Indeed it is usual to argue that, as the cascade proceeds
to ever smaller eddy sizes, the conversion of velocity fluctuations to scalar
pressure fluctuations (and vice versa) will lead to the ironing out of directional
preferences. Thus, provided that the eddies concerned are small compared
with any spatial inhomogeneity of the flow, we can think of a state of ‘local
isotropy’. Under these circumstances (which, again, amount to the require-
ment that the Reynolds number be large enough), the Kolmogorov spectrum
can be expected to apply to shear flows as well.

2.7.3 Interpretation in terms of vortex stretching

High levels of fluctuating vorticity are characteristic of all turbulent flows.
This fact (which is obvious from a glance at any of the well-known photo-
graphs showing turbulent flow visualization) taken in conjunction with the
historical development of fluid dynamics as a subject very much concerned
(through classical hydrodynamics) with vortex motions, made it natural to
interpret turbulence in terms of vortex stretching (e.g. Taylor 1938b).

Nowadays the vortex-stretching interpretation of turbulence may seem a
rather underdeveloped branch of the subject compared with, for instance, the
statistical theory based on the velocity field. Yet it is a topic which is rapidly
growing in importance, particularly in the study of the so-called coherent
structures. We shall be returning to this, and other applications of vortex
models, in later chapters. Here we will consider only some of the basic ideas.

Let us return to configuration space. Reminding ourselves that the vorticity
w is just the curl of the velocity field, we take the curl of each term of (2.2) to
obtain (Batchelor 1967)

Dw, ou,
Dt

+ wWo,, (2.147)
0xg

where D/Dt stands for the total time derivative and contains the convective
derivative u;0/0x, which acts on w,. This is the equation of motion for the
vorticity. It tells us that the rate of change of vorticity is controlled by the
interaction of the vorticity with the velocity gradients and by direct viscous
dissipation.

It will help us to understand the effect of the interaction term on the r.h.s.
of (2.147) if we consider a vortex tube in the direction of x,. We can envisage
this structure as a long thin cylinder of fluid, rotating about its own axis, which
lies parallel to x,. This means that we take § = 1in (2.147) and examine what
happens physically when o = 1, 2, or 3.

In what follows, viscous effects will be neglected on the grounds that inertial
processes will be much faster, provided that the scales involved are appreciably
larger than those of the dissipation range. This allows us to invoke Kelvin’s
theorem (Batchelor 1967), which states that the circulation (in effect, the
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N

vorticity) moves with the (inviscid) fluid. Thus we can argue that the action
of the velocity gradients on the vorticity is (to a good approximation) much
the same as that on the fluid.

Now consider the cases « =2 or a = 3. In either case the gradient is
shearing, and will tend to rotate a fluid element. Clearly, the effect on our
hypothetical vortex tube will be to tilt its axis towards the x, or x; axes
respectively. Thus the effect of this kind of interaction is to exchange vorticity
between the three scalar components of .

The remaining case corresponds to a« = 1, and here the gradient is exten-
sional. If we assume that du, /0x, is positive then it will cause the vortex tube
to be streched out in the x, direction, with a consequent decrease in its
cross-sectional area. Conservation of angular momentum (per unit fluid mass)
can then be expressed in the form

w?r = constant

where r is the radius of the vortex tube. Therefore, as r decreases under the
influence of the extensional gradient, the angular velocity (proportional to w,)
will increase, and accordingly the energy (w,r)? associated with scale r will
also increase. Hence energy is transferred to the small scales.

Of course, in this picture of turbulence the velocity gradients in the above
discussion should be regarded as belonging to some other vortex tube. Thus
we can interpret the interaction term in (2.147) as really being a vorticity—
vorticity interaction. Bradshaw (1971) has presented an ingenious ‘family tree’
to illustrate how a series of such interactions on decreasing scales can lead to
an energy cascade.

An important question hanging over the above discussion is: what is the
overall effect of negative values of du, /0x, ? Clearly, any individual interaction
involving negative strain rate would have the opposite effect to those discussed
above, with the vortex tube being compressed rather than stretched.

Discussions of this aspect often resort to the argument that it is a general
property of random walks that (on average) the distance between any two
marked points will increase with time. Or, alternatively, we could rely on the
proof that infinitesimal line elements are on average stretched in isotropic
turbulence (Batchelor 1952; Cocke 1969; Orszag 1970a; Corrsin 1972; Dhar
1976), although the proof cannot be rigorously extended to vorticity or to
finite line lengths. However, as only a statistical answer has any meaning for
us, it seems more logical to pose the question in a more formal way by
considering the equation for the mean square vorticity.

We can do this by multiplying eqn (2.147) through by 2w, and averaging

to obtain
D<w? 0
Do) _ 5 00, ‘9”“> - 2v< Du aw“>, (2.148)
0xg 0xp Oxg
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where the first term on the r.h.s. represents the mean rate of production of
vorticity from the fluctuating velocity ficld. It was shown by Taylor (1938b)
that this production term was always positive, thus leading to an increase in
mean square vorticity limited only by the viscous effects represented by the
second term on the r.h.s. of (2.148).

It was also shown by Taylor (1938b) that the above vorticity budget
would hold for the more general case of turbulent shear flows, provided that
the Reynolds number was large enough. That is, terms involving the mean
velocity can be neglected and the vorticity is predominantly generated by the
fluctuating velocity field. As the only possible mechanism for the energy
cascade is some form of vortex stretching, this result reinforces the concept of
universal behaviour in the small scales for all flows.

Although the assumption that the turbulent cascade consists of a tangle of
vortex tubes, interacting through induced velocity fields, seems very natural,
other geometric forms have also been proposed. For example, Townsend
(1951) has used both vortex sheets and vortex lines to model energy transfer
processes in the far dissipation region. The basic hypothesis is that of a balance
between straining processes tending to concentrate vorticity and the tendency
of viscous effects to diffuse it. The result is a prediction for the energy spectrum
at very large wavenumbers, and certainly a plot of k1 £, (k,) against wave-
number agrees rather well with experimental results, with the model based on
vortex sheets performing better than the one based on vortex lines.

In fact we have no firm reason for choosing one geometrical form rather
than another. However, it is interesting to note that Kuo and Corrsin (1972)
analysed experimental data from grid-generated turbulence in terms of various
hypotheses about vortex shape (i.e. ‘blobs’, ‘rods’, and ‘slabs’). They concluded
that fine-structure regions in the decaying turbulence were more ‘rod like’ than
like either of the other two shapes.

2.8 Closure approximations

There have been many attempts to derive a closed form of the equation for
the energy spectrum. The situation is in fact very much like that described in
Chapter 1, in connection with single-point equations, with a similar variety
of ad hoc methods being employed. As in that case, the concept of a turbulent
or effective viscosity has proved helpful. We shall discuss the effective viscosity
method of Heisenberg (1948a, b) as a representative example.

In this section we shall also consider the quasi-normality hypothesis. Unlike
the Heisenberg model, this was not even a particularly successful theory. But
it is of historical importance as the first truly general analytical theory of
turbulence. In other words, it operates by an appeal to a general principle
rather than by making very specific assumptions. The distinction that we
are making should become clearer as we discuss the two theories. Also, an
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important—if pragmatic—reason for treating the quasi-normality hypothesis
in detail at the present stage is that in the process we derive the main algebraic
results which are then needed for nearly all the turbulence theories to be
discussed in the main part of the book.

2.8.1 The Heisenberg effective viscosity theory

We begin by writing eqn (2.118) for the energy spectrum in the form

dE(k,t)

= T(k,t) — 2vk*E(k
ar (k,t) — 2vk“E(k, 1)

@«

0

where the second line is the same as the r.h.s. of eqn (2.127). The detailed
structure of S(k,j, |k — j|) can be inferred from (2.119), although at this point
we shall only need to know that it is antisymmetric under interchange of k
and j.

The simplest way of closing the above equation is just to assume that T is
proportional to E. We can find some physical justification for such a step as
follows. Integrate each term of the spectrum equation up to some arbitrary
wavenumber k’:

k’ dE k' © k'
J {—} dk = J dk j dj S(k,j, |k —jl) — j 2k2E(k,t)dk (2.149)
o (dt 0 K

0

where the integral of S over the range 0 < k, j < k' vanishes (e.g. see eqn
(2.128)).

Now, as we have already seen in connection with eqn (2.145) for stationary
turbulence, the effect of the non-linear term in the above equation can be
interpreted as a drain of energy from modes k < k’ due to inertial transfer to
wavenumbers k < k’. Accordingly, if we wish to model this energy drain as
analogous to viscous dissipation, we can introduce an effective turbulent
viscosity through the hypothesis that the inertial transfer term can be written
as
k

Jk' T(k,t)dk = —2v(K',t) J | E(k, t)k? dk, (2.150)

0 V]
where v(k’,?) is the kinematic eddy viscosity and represents the effect of an
integral over wavenumbers from k" up to infinity.
This suggests that we look for an expression for the eddy viscosity which
involves such an integral. Hence, if we write
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v(k', 1) = J fLJ,E(j:1)]dj, (2.151)
y

then the unknown function f[ j, E(j,t})] can be determined on dimensional
grounds:

ST, E(j,)] = AP [E(j,0)]" (2.152)

where A is a constant.
Collecting together (2.150), (2.151), and (2.152), we can now express eqn
{2.149) for the energy spectrum as

j ) {d_E} dk = — 20 + (k1)) f Ekokedk,  (2153)

o (dt 0

and the Heisenberg-type eddy viscosity is given by

a0

v(k',t) = Af JTPLE, 012 d). (2.154)

' k’

These equations have been solved for the stationary case (e.g. see Batchelor
1971). We shall only note here that the resulting spectrum reduces to the
Kolmogorov — 5/3 law in the inertial range of wavenumbers, but behaves like
k=7 in the dissipation range. This latter form of behaviour is known to be
incorrect, as experimental results show that the energy spectrum at large
wavenumbers falls off exponentially (i.e. faster than any power).

2.8.2 The quasi-normality hypothesis

Once again we take eqn (2.118) as our starting point, that is,

d
{a + 2Vk2} E(k, t) = T(k5 t))

but this time we are interested in the detailed structure of T(k,t) and indeed
in the moment hierarchy that (in principle) determines T'(k, t).

Noting that the r.h.s. of (2.119) must be homogeneous and hence unaffected
by changing the sign of k, we can rewrite the equation for T(k,t) as

T(k,1) = 47k* M,y (k) jdﬁ' Qupr(— ki k — i), (2.155)

where Q,;, can be obtained from (2.116).
We can do this explicitly, renaming dummy variables to avoid confusion
and invoking (2.91) in order to introduce the triple correlation function:
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d . oy (21 Cp
{-d't + V(k2 +]2 + Ik _]|2)} <f> Qaﬂy(_kaj,k e t)

= M,,5(—K) 'Zn: Cup(myus(—k — mpuy(jlu,(k —j)> +
+ Mﬂp&(j); Cup(muy(j — mu,(—kju,(k — ) +

+ M,k —j) ; Cup(m)uyk — j — mug(u,(—k), (2.156)

As before, we suppress time arguments in the interests of conciseness. Then,
making the helpful abbreviation

2 6
r.h.s. of (2.156) = <£> Hy (ki k — §;0), (2.157)

we can formally write down the solution of (2.156) as

t

Qaﬂy(_k’j’k _j’ t) = J dSCXP{—V(kZ +]2 + lk —j|2)(t — S)} X
0
X Haﬂy(_k,jak —j’ S)' (2158)

At this stage we introduce the quasi-normality hypothesis (Proudman and
Reid 1954; Tatsumi 1957), which is essentially to the effect that all even-order
moments are assumed to be related as if for a normal distribution. It should
be noted that this is a much weaker step than assuming that the distribution
of turbulent velocities is normal. That would be unphysical, if 6nly because it
would be inconsistent with the existence of the triple correlation, which, as
we have seen, is responsible for turbulent energy transfer. In constrast, the
limited assumption of quasi-normality is quite well supported by experimental
measurements (Frenkiel and Klebanoff 1967; Van Atta and Chen 1969; Van
Atta and Yeh 1970; Frenkiel and Klebanoff 1973), with even-order correla-
tions apparently being related in this way, except perhaps at small separations
of the measuring points.

The quasi-normality hypothesis is used to close the moment hierarchy by
expressing the quadruple moments on the r.h.s. of (2.156) in terms of products
of second moments. If we denote the quadruple correlation symbolically by
(1,2, 3,4, then for a normal distribution we have (e.g. see Birnbaum 1964)

(1,2,3,4> = <1,2>(3,4> + {1,35(2,4> + {1,4><{2,3).

Then application of this relationship to each of the three fourth-order
moments on the r.hs. of (2.156) generates nine such products of second-
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order moments—a degree of algebraic complexity which may seem rather
formidable.

However, in practice this will turn out not to be as bad as it seems at first
sight. We shall see that three of these terms are identically zero, and, of the
six remaining, two terms can be combined into one, as can (ultimately) the
other four, leaving only two separate and distinct terms at the end of the
calculation. We can begin by taking the first term on the r.h.s. of (2.156) as an
example:

Map,s(—k); {<u,(myus(—k —m)) up(ju,(k —j)> +

+ Cup(myug(§) ) Cup(—k — mu,(k —j))> +
+ Cupmu,(k — j)> us(—k — muy(j)) }.

We now invoke the homogeneity condition for second-order moments (see
eqn (2.83)) in order to deal with each of the above products as follows:

First product: homogeneity impliesm — k — m = 0 and so k = 0, but as
M,;,(k) = 0 for k = 0, this term is zero.

Second product: homogeneity impliesm + j = 0.

Third product: homogeneity impliesm + k — j = 0.

Hence, summing over m (i.e. replacing m by —j in the second product and by
—k + jin the third), using (2.88) to introduce the pair-correlation tensors, and
exploiting the symmetry

Mazp&( _k) = Mauip( _k)

under interchange of p and &, we reduce the above expression for the first term
on the r.h.s. of (2.156) to

2 6
2({) Mo (=K (D)@, (K — .

By applying the same methods to the other two quadruple moments, we
obtain for H,;,(—k,j, k — j; ) as defined by (2.157)

Hag (=Ko jok = 1) = 2Mps(—K)Qpp (05 (k — ) +
+ 2Mﬂp5(j)Qpa(k)Qév(k - ]) +
+ 2M}’p5(k - j)Qpa(k)Qaﬂ(j) (2]59)

Nw we can combine (2.159), (2.158), and (2.155} to give the inertial transfer
term as
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T(k, 1) = 4nk> M, (k) x
t
X fdﬁf dsexp{—v(k* + j* + [k — j|*)(t — 5)}
0

X [2Map6( - k)Qpﬂ(j’ S)Qéy(k - j’ S) +
+ 2Mﬂp6(j)Qpa(k’ S)Q&y(k - j5 S) +
+ 2M7p6(k - j)Qpaz(k7 S)Qéﬂ(ja S)] (2160)

At this stage we take the following two steps. First, we restrict the formulation
to the isotropic case. That is, we use eqn (2.97b) to express the spectral tensor
Q,4(k,t) in terms of the projection operator D,4(k) and the scalar spectral
density function Q(k,t). Second, we note that inside the integration with
respect to j, the variable k — j can be treated on an equal footing with j as a
dummy variable. Thus. in the last term of (2.160) we can interchange k — j
with j.

The algebraic details can be found in Appendix E, where it is shown that
(2.160) reduces to the comparatively simple form

1
T(k,t) = 4nk? Jdﬁf dsexp{—v(k*> + % + |k — j|I*)(t — 9)} x
0

x 2Lk, )O(k — jl,9)[Q(),s) — Q(k,s)], (2.161)
where
Lik,j) = — M5, (K)M,,5(—Kk)D,4(j) D5, (k — j)
= 2M,4,(K)M,,5(3) D5, (k — )

k* + j2) — ki(1 + 2p*)]1(1 — uP)kj
_ L ])khz(jz—zllij;);]( o)k (2.162)

and p is the cosine of the angle between the vectors k and j.

Formally (2.161) gives us a closed equation for the energy spectrum when
we substitute for T(k, t)in (2.118). However, in order to be consistent, we have
the choice of either using (2.101) to convert all the spectral density functions
in (2.161) to spectra or of expressing the Lh.s. of (2.118) in terms of the spectral
density function Q(k, t).

The latter course seems easier, and also fits in better with the sort of
theoretical work we shall be considering later on in the book. Accordingly,
we substitute (2.161) into (2.118), divide both sides by 4nk?, and, using (2.101)
to introduce the spectral density function on the Lh.s., obtain the closure
approximation based on the hypothesis of quasi-normality:
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d 2
{a + 2vk }Q(k, f)

t
=2 Jdﬁj dsexp{—v(k? +j* + |k —jl>)(t — 5)} x
0

x Lk, j)O(k — jl,s)[Q(), s) — Q(k,s)]. (2.163)

If we prescribe Q(k,t) at ¢ = 0, then (2.163) can be integrated forward in
time for the case of freely decaying turbulence. Unfortunately, despite the
apparently reasonable nature of the basic assumption, when (2.163) was solved
numerically (O’Brien and Francis 1962; Ogura 1963; for a more modern
critical account, see Orszag 1970b) it was found that Q(k, t) became negative
for certain values of the wavenumber k. This unphysical result had a profound
effect on theorists, which persists to the present day as a slightly excessive
concern with the ‘physical realizability’ of theories. As Orszag points out, there
is no reason why an approximate theory should not violate realizability to
some small extent. The problem with quasi-normality is that the negative
spectra do not constitute a smali effect.

Our treatment of quasi-normality is justified by more than its historical
interest. As we shall see later, there is much to be learned about the physics
of turbulence from a consideration of why quasi-normality failed (and indeed
from the methods that can be used to patch it up; currently this is a very active
field of research and is discussed further in Section 7.5). But, not least, in
deriving eqn (2.163) we have already covered the algebra which many people
find quite intimidating when encountered in conjunction with modern closure
approximations. Thus the results of this section are worth mastering, as they
will be extremely useful later on.

2.9 Some representative experimental results for spectra

At various later points in the book, we shall look at experimental measure-
ments of correlations and spectra in detail. In this section we shall confine our
attention to some very general results about spectra. In particular, we shall
be interested in the Kolmogorov hypotheses and the question of how universal
they are. We shall also take a preliminary look at the experimental picture of
the energy transfer processes in wavenumber, and, lastly, a neat method
of using the Kolmogorov spectrum to obtain a measurement of the local
dissipation rate at a point in pipe flows.

2.9.1 One-dimensional energy spectra

In Section 2.6.5 we introduced the one-dimensional spectrum E | (k, ), which
is defined on the interval — oo < k; < oo and which is related to the mean
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Fig. 2.4. Measured one-dimensional spectra for a wide range of Reynolds numbers
and physical situations (note that both spectra and wavenumbers have been scaled by
the appropriate Kolmogorov variables): v, Stewart and Townsend (1951); m, Uberoi
and Freymuth (1969); a, Comte-Bellot and Corrsin (1971); «, Champagne, Harris, and
Corrsin 1970; » Laufer (1954); ¢, Uberoi and Freymuth (1969); e, Coantic and Favre
(1974); o, Grant et al. 1962).

square velocity through (2.107). In practice experimentalists often use ¢(k,),
which is defined on the interval 0 < k; < oo and satisfies

j dk,)dk, = (u. (2.164)
0

Clearly ¢(k,) is just twice our E,(k,), but for simplicity we shall follow the
experimentalists’ practice when presenting results.

In Fig. 2.4 we present experimental data for ¢(k,) obtained from many
diverse experimental situations, ranging from measurements in laboratory
wind-tunnels to the classic sea-borne investigation of Grant, Stewart, and
Moilliet (1962) in a tidal channel. As the physical sources of the data are so
diverse (and we are really only interested in small-scale structures), we follow
the usual practice and characterize each data set by a Reynolds number R;
based on the Taylor microscale, that is,

R; = Aufv (2.165)

where u is the r.m.s. velocity, v is the kinematic viscosity of the fluid, and the
Taylor microscale 4 is given by (2.63).
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It can be seen that the spectra have been made dimensionless in terms of
the Kolmogorov variables, as given by (2.132) and (2.133), and plotted against
the dimensionless ratio k/k,. Clearly, the spectra at the higher wavenumbers
collapse to a universal form, thus supporting Kolmogorov’s first similarity
hypothesis as summarized in eqn (2.135).

As the Reynolds number increases, it is also clear that the spectra show
longer ranges (in wavenumber) of universal behaviour, with a tendency to de-
part asymptotically from the k> law (as predicted by the second Kolmogorov
similarity hypothesis; see (2.137)) at low wavenumbers.

Incidentally, it should be noted that the constant asymptote of each spec-
trum at low wavenumbers is purely an artefact, resulting from the fact that
the one-dimensional spectrum is merely a ‘slice’ through the three-dimensional
spectrum. In physical terms this means that the low wavenumber part of p(ky)
is strongly affected by ‘aliasing’ from higher wavenumbers moving at an angle
to the x, axis (e.g. see Tennekes and Lumley 1972, p. 249). Referring to eqn
(2.108), it is easy to show that E,,(k,) is finite at k = 0 and depends on the
mean square level of the turbulence and on the integral length scale.

29.2 The Kolmogorov constant

The constant of proportionality « in the Kolmogorov spectrum has long been
a target for theoretical predictions and accordingly its experimental value is
amatter of some importance. To begin with, if we substitute (2.137) into (2.109)
we find

9
Eyylky) = cue™hi ™, (2.166)

and (recalling that ¢(k,) is twice E,,(k,)) it follows that an experimental
measurement of

Plk,) = a, Pk 3P (2.167)
implies that the spectral constant in (2.137) is given by
55
azﬁal. (2.168)

The results of Grant et al. (1962), which would be regarded by many
as among the most reliable, suggest that o, = 0.47 + 0.02 and hence, from
(2.168), a = 1.44 + 0.06. Other investigations have given slightly different
results, but there appears to be wide agreement among workers in the field
that the Kolmogorov constant is about 1.5.

However, this agreement is not entirely unanimous. Kraichnan (1966) has
commented that the estimate made of the spectral constant will depend to
some extent on where the boundary between the inertial and dissipation
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ranges is chosen. Normally this is taken to be about k = 0.1k, but, as reference
to Fig. 2.4 will show, it must be difficult to be at all precise about this. Evidently
we could do with an analytical form which could be fitted to both ranges of
wavenumbers.

Various models and correlations have been proposed for this purpose.
Probably the best known is that due to Pao (1965). Essentially, Pao’s argu-
ment was that the rate at which energy is transferred through wavenumber
space has the same dependence on viscosity as the energy spectrum. Thus the
ratio of these two quantities is independent of viscosity: this is true in the
inertial range (on the Kolmogorov picture) and hence the —5/3 spectrum is
recovered there. If this hypothesis is extended to the dissipation range as well,
the resuit is that (2.141) becomes

E(k) = ag?3k™ B exp {— (%) <k£>4/3} (2.169)
d

which, as Fig. 2.4 shows, agrees quite well with experiment.

The basic assumption in Pao’s work appears to be quite imponderable and
itis not presented here as a spectral theory (although attempts have been made
to refine it (Pao 1968; Tennekes 1968; Lin 1972) or extend it to lower
wavenumbers (Driscoll and Kennedy 1983)). Essentially it seems to be a good
way of analysing experimental results. From our point of view, perhaps the
most noteworthy feature of this analysis is the way in which it draws attention
to the fact that values of o as large as 2.2 (or possibly larger) are not incompat-
ible with the data.

29.3 Energy transfer in wavenumber space

The turbulent energy balance for wavenumber k during free decay is given by
eqn (2.118). Hence the energy transfer spectrum T(k), which determines the
rate at which energy is transferred from large to small eddies, can be obtained
experimentally for grid turbulence by measuring the rate of decay dE/dt and
the dissipation spectrum D(k, t) = 2vk?E(k, t), and taking the difference of the
two using (2.118). This was first done by Uberoi (1963).

Later Van Atta and Chen (1969) pioneered the use of fast Fourier trans-
forms to calculate the transfer spectrum directly from measured third-order
correlation functions. This method has the virtue that it can also be applied
to steady shear flows, and this has permitted a comparison of spectral energy
budgets between non-isotropic turbulence (in a free jet) and (nearly) isotropic
grid turbulence (Helland, Van Atta, and Stegen 1977).

In Fig. 2.5 we show the three terms which make up the spectral energy
balance as given by eqn (2.118). Each term has been multiplied by a factor
(k/k,v)? in order to make it dimensionless and also to spread it out in k-space.
These particular results were obtained by computing a version of the local
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energy transfer (LET) theory (see Chapter 7). At this stage we are only
interested in a qualitative picture, and so it is instructive to draw an analogy
with Fig. 1.7 which shows the turbulent energy balance in x-space for pipe
flow. In that case, we saw that the role of the non-linear term was to transfer
energy from the neighbourhood of the pipe wall (where production is greater
than viscous dissipation) to the core region where the reverse is the case. In
other words, the inertial transfer is from source to sink. Similarly we can see
from Fig. 2.5 that T(k,t) absorbs energy at small wavenumbers {where dE/d¢
or the production spectrum can be assumed to be large) and re-emits it at
higher wavenumbers where it is ‘absorbed’ by the dissipation spectrum.

However, in drawing this analogy we should bear in mind that the energy
cascade is actually from one eddy size to another, and in (for example) pipe
flow such a cascade would be going on at every point in the flow.

For our last topic in this chapter we again hark back to our discussion in
Section 1.6.2 of the turbulent energy balance in pipe flow. There we discussed
the experiments of Lawn (1971) with pipe flows, and noted that he used two
methods of checking his dissfpation curve, both based on assumptions of
isotropy.

The first of these was to measure the Taylor microscales and use a general-
ization of eqn (2.64) in order to relate the dissipation rate to the mean square
turbulence level and the microscales; for further details the interested reader

should refer to Lawn’s paper. The corresponding results are denoted by
crosses in Fig. 1.7.
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The second method relied on the fact that measured spectra were found to
have the Kolmogorov — 5/3 dependence for a limited range of wavenumbers.
There is, of course, no reason why the Kolmogorov hypotheses should not
apply to pipe flows. We merely require local isotropy, and Bradshaw (1967)
has shown that the conditions for that to hold in shear flows are less restrictive
than had originally been supposed. He also proposed that this fact could be
made the basis of a measurement of the dissipation rate.

Thus, by fitting the region of his spectrum which had a —5/3 slope to the
theoretical one-dimensional spectrum (see eqn (2.167) in the present work),
and taking a specific value for the spectral constant (x; = 0.55), Lawn was
able to estimate the dissipation rate. Full circles denote these particular results
in Fig. 1.7, and clearly all three methods are in reasonable agreement.

2.10 Further reading

The monograph by Batchelor (1971) is widely regarded as a classic. For the
newcomer it provides a lucid introduction to the subject of homogeneous
1sotropic turbulence, although the Fourier—Stieltjes notation failed to catch
on and now looks rather dated. This work would be admirably complemented
by the encyclopaedic book by Monin and Yaglom (1975), which also employs
the same notation for the Fourier integral.

Other more general books on turbulent shear flows (e.g. Hinze 1975;
Townsend 1976) have sections on isotropic turbulence which can be helpful,
if only to give another viewpoint. The first of these references is particularly
good at giving rather full mathematical details of the various derivations.

Lastly, for those who find the generally abstract treatment of the subject
rather daunting, the book by Tennekes and Lumley (1972) may be helpful.
These authors make a point of working out many specific examples in detail,
especially in order to illustrate new or difficult concepts.
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3

SOME RECENT DEVELOPMENTS IN
THE STUDY OF TURBULENCE

This chapter is somewhat miscellaneous in character and is intended to serve
two purposes. The first of these is to cover certain topics which would not
easily fit into the main part of the book, yet which are important. The sections
on anemometry, data processing, and engineering models are the main topics
in this category.

The second purpose is to try to give the reader a broad picture of what the
rest of the book is about. That is, certain sections of this chapter should act
as both an introduction to and an overview of more detailed and advanced
treatments later in the book. For example, the section on renormalized per-
turbation methods is mainly descriptive, using only rather simple mathematics
to explain the general method.

3.1 Measurement techniques and data analysis

The subject of flow measurement is vast, but here we are only concerned with
the quantitative measurement of the fluid velocity at a point. Our main
objective will be to discuss the new developments of laser anemometry and
digital data processing, which together are in the process of revolutionizing
the experimental study of turbulence. We begin by considering the older
methods of making local measurements of fluid velocity in order to provide
a background for the newer material.

3.1.1  Anemometry

Historically, methods of continuously monitoring fluid velocities have de-
pended on restricting the flow in some way, and using the Bernoulli equation
to relate the flow through the restriction to the pressure difference across it.
Discussions of such methods can be found in almost any elementary text on
fluid mechanics. From our present point of view, the only one of these methods
to qualify as measuring local velocities is the pitot tube. Essentially this is just
a thin tube placed with its open end facing the oncoming flow and its other
end connected to a manometer in order to measure the total stagnation
pressure. The other side of the manometer is then connected to a pressure
tapping which is positioned such that it registers the free-stream pressure.
The accuracy of the pitot tube can be established by comparing its value
for the bulk mean velocity in (say) pipe flow with the result obtained by
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measuring the volumetric flow rate and dividing by the cross-section area.
Surprisingly, even for turbulent flows, the pitot tube turns out to be quite an
accurate measuring device. The only proviso is that we must restrict its use
to mean velocities, as the inertia of the system is such that it cannot respond
rapidly to turbulent fluctuations.

However, for anything other than the simplest of practical applications, it
is precisely the fluctuations that we are interested in. Thus virtually the whole
quantitative treatment of turbulence during most of this century has depended
on the hot-wire anemometer, which has been developed to the point where it
can handle the fastest turbulent fluctuations with ease.

In its simplest form, this consists of a short fine metal wire which is heated
by the passage of an electric current through it. If the wire is cooled by a
flowing fluid, its electrical resistance is reduced and (all other parameters being
constant) this reduction in resistance can be related to the fluid velocity.
Typically wires for this purpose are made of platinum or tungsten and have
a diameter of a few microns.

The operating principle is readily understood as follows. We assume that
the wire is initially at the same temperature T; as the fluid and has electrical
resistance R;. If we then heat up the wire to some temperature T, the resulting
resistance R, will be given by the well-known formula

R, = R{l + o(T, — T))} (3.1)

where ¢ is the temperature coefficient of resistance.
If a current I flows in the wire, then heat is generated at a rate given by

Joule heating rate = I°R,,.
This heat is then transferred from the wire to the fluid at a rate given by
rate of cooling = hS(T,, — T;)

where h is the heat transfer coefficient and S is the surface area of the wire.
For thermal equilibrium, these two rates can be equated:

hS(R, — Ry)

IR, = hS(T,, — T)) =
oR;

(3.2)
where the last step follows upon substitution from (3.1) for the temperature
difference.

Evaluation of the heat transfer coefficient k is a rather specialized matter
and we shall not go into the details here. However, provided that free convec-
tion can be neglected and the cooling process is entirely due to the fluid
velocity Uy perpendicular to the wire, a reasonably general result is

IR,

=A+ B/U 33
R =A+BUs (33)

w
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where 4 and B are assumed to be independent of the fluid velocity. This
formula is often referred to as ‘King’s law’, although strictly that term should
be applied to the case of a cylindrical wire, where (3.3) can be obtained from
first principles (King 1914).

In practice it is always best to treat eqn (3.3) only as a guide and to
calibrate the hot-wire anemometer against a pitot tube in laminar flow. Then

the resulting I? can be plotted against \/UN in order to obtain values for A
and B. This calibration can be extended to low intensity turbulance, but it
is best to use an electronic linearizer such that the output of the anemometer
becomes proportional to Uy.

The usual method of measuring the change of resistance in the hot wire is
to incorporate the device in one arm of a Wheatstone bridge. Then the use of
a power supply with a high internal resistance ensures that changes in bridge
resistance do not affect the current and the voltage differences across the
bridge can be detected. This is known as the constant-current mode of opera-
tion. It is limited to low turbulent intensities by its poor response at high
frequencies.

Nowadays the intrinsic sluggishness of thermal devices can be overcome by
using electronic feedback to keep the temperature (and hence the resistance)
of the wire constant. In this way the upper frequency limit can be increased
from about 500 Hz to about 1.2 MHz, which is adequate for almost any
turbulent flow.

The operating circuit of the constant temperature anemometer is shown
schematically in Fig. 3.1. The mode of operation can be summarized as follows:

(a) The bridge is initially in balance: no error voltage.

(b) Flow changes, probe resistance changes: hence an error voltage is
generated.

(¢) The error voltage is fed to the servo amplifier.

Bridge top
Servo

C amplifier

Bridge
voltage

L

Fig. 3.1. Circuit diagram for a constant-temperature hot-wire anemometer.
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(d) The servo amplifier increases or decreases the operating voltage at the
bridge top in order to restore the balance.
(¢) The velocity change appears as a change in the bridge voltage.

1t shared be noted that the higher the gain of the amplifier, and the faster its
response, the lower is the error voltage needed to compensate a temperature
change in the sensor. This is the basis of the fast frequency response, despite
the slow thermal response of the wire.

Hot wires (and hot films) can be used in all sorts of configurations, some of
them very complicated, depending on the precise purpose of the anemometer.
The interested reader will find much further information in the relevant
chapter in Hinze (1975), in the review article by Comte-Bellot (1976), and in
the specialist texts by Perry (1982) and Lomas (1986). We shall conclude this
section with a discussion of the simplest, and most important, application.

Let us consider a single hot wire in a turbulent flow with mean velocity U, .
Although the mean flow is unidirectional, we know that the fluctuating
velocity has three scalar components, which we denote by (uy, u,,u;). Our
problem now is to distinguish between these three components, but this turns
out to be a lot simpler than it might appear.

We align the wire with the x, axis. The physical situation is illustrated
schematically in Fig. 3.2. This means that the u; component does not (at least
to a good approximation) contribute to the cooling of the wire. That is, we are
assuming that the rate of cooling is entirely determined by the velocity normal
to the major axis of the wire, which is given by the vector sum of U; + u, and
Uy, Or

B 2 2 2\ 112
=U1<1+%+“1+—“2> . (3.4)

el ) |

Plan view

U
i

U,+u, Side view

: L
X

Fig. 3.2. Hot-wire configuration to measure the streamwise turbulent fluctuation in a
unidirectional mean flow.
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Then, provided that the turbulent intensities (i.e. u, /U, or u,/U,) are small,
we can usefully approximate this result by

2
— — Uy uy
A { U, <Uf>} e
Thus, to the first order of small quantities,
Us~r U, +u, (3.6)

or, in other words, the effective cooling velocity is approximately equal to the
instantaneous streamwise velocity, provided that the velocity fluctuations are
small compared with the mean.

3.1.2 The laser anemometer

The invention of the laser anemometer is usually attributed to Yeh and
Cummins (1964), who showed that steady fluid velocities could be measured
by observing the Doppler shift in the frequency of laser light scattered by small
particles moving with the fluid. Over the following decade the method was
extended, refined, analysed, and generally improved to the point where it
is now routinely used in research in fluid dynamics and (in particular) in
turbulence. (Plate I)

Many of the pioneering workers were content to interpret the basic operat-
ing principle in terms of the Doppler shift of scattered light, and this fact has
left us with the legacy that the method is normally referred to as ‘laser-Doppler
anemometry’ (LDA) or (sometimes) as ‘laser-Doppler velocimetry’ (LDV).
However it is now widely accepted that the operation of the laser anemometer
can be more easily understood in terms of conventional optical concepts like
interference and diffraction. Thus, although we are stuck with the above
acronyms, in this chapter we shall introduce laser anemometry without relying
on the Doppler effect. However, in the fuller discussion of the background to
the subject given in Appendix F we shall find it helpful to make use of the
general analysis in terms of the Doppler shift of the scattered light.

The laser anemometer can be set up in many different optical configura-
tions. In Fig. 3.3 we show an optical arrangement which is probably the most
widely used and is certainly the easiest to understand. The incident beam of
laser light is split into two separate beams by a suitable beam splitter. There
are, of course, many ways of doing this, and the precise form of device is not
critical. However, it is generally advantageous if the resulting beams are of
about equal intensity and symmetrically disposed about the incident beam.

A convex lens is used to focus the two beams to a point where they form a
pattern of interference fringes. This is the measuring point and, for con-
venience, we take it as the origin of coordinates. The angle of intersection is
20 and this is simply related to the beam separation and the focal length of



Plate I. A laser-Doppler anemometer being used to measure the velocity of a fluid.
This device measures the fluid velocity at the point where the light beams intersect.
( Courtesy of Dantec Electronics Ltd)
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He—Ne laser Beam  Lens Lens  Photo multiplier

splitter \ ] X5
% r 26 ]

Side view Nozzle

Fig. 3.3. The laser anemometer: a typical optical arrangement.
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Fig. 3.4. Schematic view of a particle with velocity vector u crossing the interference
fringes.

“the lens. The set-up is completed by a second lens which focuses scattered light
onto a photodetector, which in turn outputs a voltage proportional to the
incident light intensity.

In order to have a definite example, we show the anemometer set up to
measure the axial component of velocity u, in a free jet from a nozzle. The
incident beams lie in the x,x, plane. In Fig. 3.4 we show a cross-section
through the fringe pattern in the x,x; plane (of course, the fringe pattern
consists of an ellipsoidal volume of small but finite extent; this is often referred
to as the probe volume and it is only on the overall scale of the flow that we
can regard it as a point). When a particle in the jet moves through the fringe
pattern with velocity u, it scatters light from each bright fringe. This light is
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Fig. 3.5. Oscilloscope trace showing the photomultiplier output voltage correspond-
ing to the light scattered by one particle crossing the fringe pattern.

collected and focused onto the photodetector, which produces an output
current proportional to the scattered light intensity.

Figure 3.5 shows a typical laser anemometer signal in the form of an
oscillograph. This is for one particle crossing the fringes and reflects the
sinusoidal intensity variation (modified by the laser beam’s own Gaussian
profile) in the fringe pattern. We should also note that the alternating signal
is on a pedestal or d.c. level. Details of these optical technicalities can be found
in Appendix F; here we shall concentrate on the relationship between the static
fringe pattern and the time-dependent signal on the oscilloscope.

As the particle crosses the fringes, clearly only the u, component of its
velocity can contribute to the oscilloscope signal; the u, and 1, components
do not cause fringe crossings. If the distance between the fringes is d, then the
time between fringes at a speed u, is d/u,. Hence it follows at once that the
frequency observed on the oscilloscope is

fo=u/d 3.7
where the subscript D stands for Doppler. It is shown in Appendix F that the
fringe spacing is given by

!
d= 2sin 0

where / is the wavelength of the laser light (typical value 633 nm for a He—Ne
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laser). Thus, eqn (3.7) can be written as

Joi

¥ = 2sin 0’

(3.8)

This is a special case of the general result of an analysis in terms of light
scattering and the Doppler effect. In that context, this particular optical
arrangement is known as the ‘differential Doppler mode’.

Equation (3.8) is the operating relationship for the laser anemometer, and
two points stand out at once. First, unlike the relationship for a hot-wire
anemometer, it is a linear expression. Second, the constant of proportionality
in the relationship between the measured Doppler frequency and the particle
velocity depends only on the wavelength of the laser light and the angle of
intersection of the beams, both of which can be established in advance. Hence
the instrument does not require any calibration and can be regarded as a
primary standard.

These points, taken in conjunction with the obvious fact that the laser
anemometer does not perturb the flow in any way, make this a formidable
instrument for research in turbulence. However, on the debit side, the fluid
must be transparent, there may be some uncertainty about how well the
scattering particle is representative of the actual fluid motion, and the signal-
to-noise ratio is not usually as good as for the best hot-wire anemometers (e.g.
see Melinand and Charnay 1978; Lau, Whiffen, Fisher, and Smith 1981).

Normally when a laser anemometer is being used, there will be several
particles in the probe volume at any one time, and the effect on the output
signal can be seen from Fig. 3.6. It should be noted that the trace in Fig. 3.6(a)
is just that of Fig. 3.5 after high-pass filtering to remove the d.c. pedestal level.
In Fig. 3.6(b), the effect of scattering from several particles is seen to reduce the
signal-to-noise ratio, but, by way of compensation, the signal takes a more or
less continnous form which can be helpful when it comes to signal processing.
Some ways in which the continuously varying Doppler frequency (due to the
continuously varying fluid velocity) output can be turned into a voltage are
discussed in Appendix F.

We conclude this section by considering the important technique of fre-
quency shifting. It is helpful to introduce this concept through a consideration
of the signal spectrum.

If we denote the output current of the photodetector by i(t), then we can
obtain the corresponding spectrum i(f) in the usual way by Fourier trans-
formation. Let us begin by considering the single particle signal as exemplified
by Fig. 3.5. If this signal were just a cosine wave and a d.c. pedestal level, then
the Fourier transform would consist of a spike at zero frequency and another
at the Doppler frequency. In fact there is also a finite-size effect, which in this
case shows up as the Gaussian modulation due to the intensity profile of the
laser beams. As a Gaussian is self-reciprocal under Fourier transformation,
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(b)

Fig. 3.6. High-pass-filtered photomultiplier signals for (a) one particle and (b) several
particles crossing the fringe pattern.
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Fig. 3.7. Sketch showing the frequency spectrum of the output photocurrent for a given
mean velocity: the broken line shows the effect of a frequency shift f.

this means that i( f) for a single-particle signal consists of Gaussian peaks at
f=0andf=fp.

In practice the photocurrent i( ) will be due to a number of particles (as in
Fig. 3.6) and this leads to additional sources of spectral broadening such as
the random arrival rate of particles, variations in particle speed, velocity
gradients across the probe volume, and (not least) turbulent fluctuations. A
typical result is sketched in Fig. 3.7, where we also show the effect of a
frequency offset f.. Clearly such an offset improves the signal by making it
easier to discriminate between the d.c. and a.c. peaks. However, it has a greater
importance than that, as we can see by considering how such a frequency shift
is obtained.

Let us return to the basic optical configuration, as in Fig. 3.3. Normally the
incident laser beam is split into two parts by some arrangement of mirrors
and/or prisms. However, suppose that we were to use a diffraction grating,
with all but, say, the two first-order beams masked off. Then the fringe pattern
could be interpreted as an image of the lines on the grating. Hence, if the
grating were to move, the fringes would also move, and the apparent velocity
of a particle would now depend on whether it was travelling in the same or
the opposite direction to the fringes. In this way the sign of the particle velocity
can be detected, as well as its magnitude.

A practical method of achieving a frequency shift is to use a radial grating
which is rotated by a small electric motor. However, the usual way nowadays
is to use the method illustrated in Fig. 3.8. A travelling-phase grating is created
by passing a sound wave through an acousto-optic (Bragg) cell. The principle
is the same, but there is a definite advantage in not having any moving parts.

Apart from the material presented in Appendix F, the subject can be
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Fig. 3.8. Optical arrangement to impose a frequency shift on the laser anemometer
output signal.

explored further in the review by Buchave, George, and Lumley (1979), and
in the books by Durst, Melling, and Whitelaw (1976), Durrani and Greated
(1977), Watrasiewicz and Rudd (1977), and Drain (1980). A more general look
at what can be done with lasers in flow measurement can be found in the
review by Lauterborn and Vogel (1984).

3.1.3 Time series analysis and computer data processing

Traditionally the output voltage of an anemometer would be processed by a
variety of specialized analogue instruments. That is, the mean velocity would
be obtained from a digital voltmeter, the r.m.s. velocity from an r.m.s. volt-
meter, correlations from a correlator, energy spectra from a spectrum analyser,
and so on. Nowadays there is a growing tend to convert the anemometer
output into digital form (indeed in a modern system it is probably already in
such a form and is only converted back into an analogue output signal
to keep old-fashioned customers happy!), and then all the familiar signal-
processing operations can be replaced by their mathematical equivalent on
the computer. Given the power (and ubiquity) of the modern microcomputer,
it is now possible to have on-line data processing of unprecedented versatility.
Accordingly, we complete this section with some brief notes on this subject.

In order to have a specific example, we assume that we are concerned with
one scalar component of the turbulent velocity field at a fixed point in the
flow. We represent this by u(z), which we take to be a continuous random
variable defined everywhere on the interval —oo <t < c0. We obtain a dis-
crete representation u, of this continuous function by sampling it at regular
intervals At such that

. = u(n At). (3.9

Then the sampling theorem (e.g. Otnes and Enochson 1972) essentially states
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that the infinite sequence of numbers {u,} can be used to reconstruct u(z),
provided that the sampling rate 1/At is more than twice as large as the
maximum frequency in the energy spectrum of u(f). If this condition is
not satisfied, then the reconstructed function u(t) will be subject to aliasing
errors.
Now let us restrict our attention to stationary processes such that time
average of eqn (1.6) can be written as
=

1 T
m —— . 10
}lm 5T J_T u(t) de (3.10)

Evidently the equivalent result obtained from the digitized data will take the
form
. 1 N-1
u 1\1{111; N n;) Uy (3.1

Of course, in practice u(t) is normally defined on some finite interval and
normally the limit in (3.10) is satisfied for values of T which are not incon-
veniently large. Clearly it is important to obtain an adequate number of
samples in the time series {u,} in order to ensure that & as defined by (3.11)
is a good estimate of i as defined by (3.10).

These results can be extended in obvious ways to obtain estimates for the
mean square and the autocorrelation of u(t) (Otnes and Enochson 1972). In
practice the minimization of errors is a pragmatic matter of choosing a
sufficiently long record length. However, in the case of spectra, the situation
is a little more complicated and we shall touch on this briefly here.

There are various ways of calculating spectra from the digitized record {u, }.
Formerly, the favoured method was to Fourier transform the correlation
function (Blackman and Tukey 1958), but nowadays the use of the fast Fourier
transform (FFT) algorithm (Cooley and Tukey 1965) seems to be universal.
However, irrespective of the method, there are two technical difficulties which
have to be taken into account.

The first of these arises from the finite record length, which means that the
time series has effectively been pre-filtered. The Fourier transform of this filter
is therefore convolved with the estimate of the spectrum and tends to distort
it. In practice it is usual to impose an artificial pre-filter in order to minimize
the effects on the spectrum. The second problem arises from the statistical
variability of the spectrum and boils down to the fact that the error in the
spectral estimate cannot be reduced by increasing the record length. Again,
this requires some preliminary processing of the digital data, and the interested
reader should refer to one of the specialist texts such as the book by Otnes
and Enochson (1972).
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3.2 Intermittency and the turbulent bursting process

Anyone who has carried out the classical Reynolds pipe-flow experiment (and
this is often done as part of an undergraduate course in fluid dyamics) will
have encountered a very strange effect. The usual way to do this experiment
is to set the pump to give some particular rate of flow, which is then noted,
as is the accompanying pressure drop along the pipe. The latter can be
measured on a manometer connected to pressure tappings in the wall of the
pipe. Then the pump speed is increased and the new flow rate and pressure
drop noted, and so on.

Eventually a speed is reached where the manometer levels begin to oscillate
wildly. This behaviour continues over a range of speeds, but ultimately a speed
is reached where the manometer reading steadies again and thereafter remains
steady (however much the speed is increased). This wild oscillation of the
manometer is the ‘strange effect’ referred to above. It can be explained by the
fact that the transition from laminar flow to turbulence is not an abrupt
phenomenon, occurring at a particular Reynolds number, but takes the form
of an alternation between the two states. That is, for a range of values of the
Reynolds number (known as the ‘transition range’), patches of turbulence are
interspersed with patches of laminar flow. Hence, if an anemometer were to
be set up in the flow it would register a turbulent signal alternating with a
steady signal. This is an example of what we mean by intermittency.

Another example can be found in the boundary layer, as discussed in
Chapter 1. Referring to Fig. 1.1, it is apparent that if we were to position an
anemometer at the mean edge of the boundary layer then it would only spend
part of its time in the turbulent fluid. The rest of the time the anemometer
would be in the irrotational free stream. Again, the output signal representing
the velocity would have a binary character, alternating between periods of
random variation on the one hand and the steady levels indicative of irrota-
tional flow on the other. The relative amount of time spent in each phase
would of course itself be a random variable.

In recent years it has been discovered that intermittencies of these kinds are
associated with various types of regular or quasi-deterministic behaviour. The
generic term is ‘coherent structures’, and a particularly important one is the
bursting phenomenon which appears to be the way in which turbulence is
generated in the neighbourhood of a solid surface. We shall discuss the subject
of coherent structures in some detail later on: it is nowadays regarded as a
crucial aspect of shear flow turbulence. But for the moment we shall turn our
attention to what is probably a more fundamental kind of intermittency (in
the sense that it is intrinsic to the turbulent cascade), that is, ‘fine-structure’
intermittency.

This was first reported by Batchelor and Townsend (1949), who used a
hot-wire anemometer to study turbulence behind a grid. They obtained oscil-
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lograms corresponding to the velocity field and (by differentiating the output
signal of the anemometer) its derivatives, which they claimed showed that the
energy associated with small wavenumbers was not distributed uniformly
throughout space. Instead, there appeared to be regions which were ac-
tive and those which were (relatively) quiescent, this tendency becoming
more marked with increasing order of the derivative. As the viscous dissipa-
tion of turbulent kinetic energy is mainly associated with regions where the
velocity gradients are large, this fine-structure intermittency also implied
that the dissipation may be distributed through the fluid in a rather spotty
way.

On a vortex-stretching picture of the turbulent cascade, this behaviour is
not too difficult to understand. Irrespective of the precise details of the vortex
structures involved, it is clear that there must be some drawing out of (say)
vortex tubes such that, not only is energy concentrated in the small scales, but
also, concomitantly, in small regions of space. However, the most interesting
question (which has aroused a great deal of interest in recent years) is what
effect this has on the Kolmogorov predictions about the energy spectrum in
the inertial range of wavenumbers. We shall consider this question in the next
two subsections, and again at various points later in the book.

3.2.1 Fine-structure intermittency

In discussing intermittency it is helpful to work with structure functions, rather
than the correlations which we have used in the preceding chapters. In fact
structure functions are just correlations of two-point velocity differences, and
we shall define them formally after first introducing the concepts of local
homogeneity and local isotropy as follows.

Let us take new field variables to be the differences between field values at
pairs of points, such as

Au = u(x,r) — u(x) (3.12)

for the pair of points x + r and x. Then, if the probability distribution of the
difference variable Auis invariant under translations, reflections, and rotations
of the pairs of points, it follows that Au is a homogeneous isotropic field. We
then say that u is locally homogeneous and isotropic.

For convenience let us take u to be the streamwise component of the
turbulent fluctuating velocity and r to be the separation of measuring points
in the direction of flow. This conforms to the normal experimental practice
which allows time and space variations to be related by the Taylor hypothesis
of frozen convention, as discussed in Section 2.6.5. If we also let «’ be the field
value at x, + r and u corresponds to the point x, (where x, is the direction
of flow), then the moments of the difference field are the structure functions
of the velocity field
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Dy, (r) = (' — u)*), (3.13a)
Dy (r) = (' — w?), (3.13b)
Dyipn(r) = (' —w*), (3.13c)

and so on. Note that the subscript L stands for longitudinal, as these are
longitudinal correlations in the sense of Section 2.4.1. Note also that the
connection between these structure functions and the correlations which we
have used hitherto is readily established by expanding the products and
averaging. For example, we can easily show in this way that the second-order
structure function Dy ; (r) can be expressed in terms of the longitudinal correla-
tion f(r), as defined by eqn (2.55), and of course can be further related to the
energy spectrum through eqns (2.59), (2.90), and (2.101).

The real interest in the study of fine-structure intermittency is its implica-
tions for the physics of the energy cascade and, in particular, the Kolmogorov
theory. In 2.7.2 we gave the Kolmogorov similarity principles in terms of
the wavenumber spectrum. However, in his original papers, Kolmogorov
(1941a, b) worked with the structure functions and obtained the general result

' —uyy = C,e"3m3, (3.14)

where the C, are constants and n takes integer values.
The constant C, can be evaluated using the energy-balance equation (see
Hinze 1975) and the first three structure functions written explicitly as

Dy (r) = C,e*Pr?? (3.15a)

4
DLLL(T) = 381‘ (3.15b)
Dyyy1(r) = Cue®PrP. (3.15¢)

As we shall see presently, the phenomenon of intermittency becomes ap-
parent in the time derivatives of the velocity field, and its effects increase with
the order of the derivative. As usual we remind ourselves that the time
derivative is equivalent to the spatial derivative in the streamwise direction
(in the present context, the longitudinal direction) when we invoke the Taylor
hypothesis of frozen convection.

The most sensitive statistical measures of intermittency in a random vari-
able are the skewness (S) and flatness (F) factors of its probability distribution.
For the specific case of the longitudinal velocity difference these are given by
(Batchelor 1971)

(W —u?>

= = ST (3.16)

and
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_ -t
= upyT

Then, substituting from eqns (3.13a)—(3.13c) and (3.15a)—(3.15c¢), it follows that
S and F are constants provided that the separation variable r is in the inertial
range of length scales.

Returning to the pioneering paper by Batchelor and Townsend (1949), we
can now be more specific about their results. These authors measured the
longitudinal velocity and its derivatives up to third order in grid turbulence
and a wake flow. In the case of the velocity field u they found flatness factors
of about 3, in agreement with the well-known result that the distribution of
turbulent velocities at a point is approximately Gaussian or normal. However,
the values found for the flatness factors of the velocity derivatives were always
significantly greater than 3, and increased with both the order of the derivative
and the Reynolds number up to a value of about 7.

The existence of fine-structure intermittency received further confirmation
from the investigations of Sandborn (1959) on boundary layers and Kennedy
and Corrsin (1961) on free-shear layers. In both cases measurements were
made in the fully turbulent part of the layer, and in both cases their results
agreed quite well with those of Batchelor and Townsend (1949). However,
Wyngaard and Tennekes (1970) found very much larger values of flatness (up
to F & 40) in an atmospheric boundary layer.

Kuo and Corrsin (1971) carried out additonal work on grid turbulence and
analysed the results of eight different investigations. By plotting the various
results in the form of flatness against Reynolds number, they showed that most
of the investigations were in fairly good agreement for values ranging over
10 < R; <2 x 10° with 4 < F < 40. They also remind the reader of the
danger of relying on the flatness factor alone as an indication of intermittency,
and advocate direct measurement of the intermittency factor . This was first
introduced by Townsend (1948) in the context of free-surface intermittency,
and is defined by

y = factor of time the detection probe sees the variable in its higher
amplitude state.

F (3.17)

The effect of intermittency on the measured flatness factor can be illustrated
using a simple example. Let us consider a field u(x,t) which has a normal
probability distribution in its active state, and is intermittent between this and
a completely inactive state when u and all its derivatives are zero. If we denote
the global average by { > and the local average over the statistically active
state by { ], then it is clear that, with the conditions imposed, the moments
of u will satisfy

ut) = y[u"],

irrespective of the order of the moment involved. It then follows at once from
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(3.17) that the globally averaged flatness factor is given by
F =3/,

and evidently this would result in increased apparent flatness factors in our
simplified example.

Now our main interest in this topic lies in its relevance to the physics of the
energy cascade. Therefore at this point we shall consider the effect of intermit-
tency on the major feature of the cascade: the energy dissipation rate ¢. From
eqn (2.121), it is clear that we have been using the concept of a mean dissipation
rate and that our treatment of the Kolmogorov picture of the cascade, for
example, was based on such a concept. There is nothing particularly unusual
in our slurring over the distinction between a global and a mean quantity;
after all, no one ever refers to ‘mean boundary-layer thickness’, although that
is of course just what it is.

However, when we return to our basic definition of the dissipation rate and
generalize (1.17) for the instantaneous field to a fluctuating field with zero
mean

Ou, Oug\*
2e(x,t) = v azt:? <6xﬁ + 6xa> , (3.18)
it follows from the nature of u,(x,t) that &(x,1) is also a random variable. It
also follows that, as ¢ depends on the velocity gradients, the dissipation rate
will itself be intermittent with a rather spotty spatial distribution.

This poses a problem of principle for the derivation of the Kolmogorov
spectrum, as given in Section 2.7.2, where the dissipation rate is treated as if
it were a constant. Evidently the distribution of the dissipation rate must be
taken into account, and there is the possibility that this may depend on the
nature of the flow and its external length scales.

Apparently these points were first made by Landau shortly after the Kol-
mogorov theory was published (e.g. see Kolmogorov (1962), or the footnote
on p. 126 of the book by Landau and Liftshitz (1959)), although Grant,
Stewart, and Moilliet (1962) also came to this conclusion on the basis of their
experimental observation that ¢ varied widely in oceanic flows. Using a simple
model for the distribution of ¢, these latter authors concluded that the effects
of intermittency on the energy spectrum would be on the intensity level rather
than on the power law, and even then would be small. We shall examine these
topics further in the next section.

3.2.2 Intermittency and the energy cascade

Theories of the effect of fine-scale intermittency on the non-linear transfer of
energy to the small scales can be divided into two broad classes: vortex-
stretching theories and scale-similarity theories.
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In Section 2.7.3 we have already touched on the use of mechanistic models
based on assumptions about the shape of the vortex structures making up the
turbulent vorticity field. In order to model fine-scale intermittency, Corrsin
(1962) assumed that the fine structure was made up of vortex sheets of
thickness comparable with the dissipation length scale, and with a mean
separation equal to the integral length scale. Tennekes (1968) refined this
model by taking the basic structures to be vortex tubes, and Saffman (1968)
produced an even more complicated model using an assembly of vortex sheets
and tubes. As we mentioned in the previous chapter, this approach is be-
devilled by lack of a priori knowledge of the geometry of the vortex field (or
indeed whether the continuous field really can be represented by such discrete
structures), although Kuo and Corrsin (1972) reported that the geometry of
the fine structure was more filament like than anything else, a result supported
by Kerr’s numerical simulation.

The scale-similarity theories (like the vortex models) have their origins in
remarks made in the pioneering paper by Batchelor and Townsend (1949).
These authors suggested that the simplest possible model of turbulent inter-
mittency was to imagine that space is divided into a number of regions, each
with its own value of the energy dissipation rate and in each of which the
energy spectrum takes the universal Kolmogorov form (2.135). Thus varia-
tions in E(k) from one region to another are merely variations of excitation
level and are proportional to the local dissipation rate.

More specifically, Batchelor and Townsend (1949) discussed a stepwise
process in which the dissipation associated with increasing wavenumber
becomes increasingly concentrated in smaller regions of space. Later analy-
tical theories have put a simple geometric interpretation on this picture.
Consider the fluid to occupy a volume with characteristic length /,. In order
to have a specific example, we shall take this to be a cube. Now divide this
cube up into an arbitrary large number of smaller cubes of side I, (/; < I;). The
simplest picture of intermittency is where the dissipation is not uniformly
distributed over all the cubes, but is only found in some of them. Similarly,
further subdivision into smaller cubes with side /, < I; would show that the
dissipation is only contained in some small number of these smaller cubes,
and so on.

The first attempts to modify the Kolmogorov similarity hypotheses to take
account of the dissipation rate fluctuations were due to Koimogorov (1962)
and Obukhov (1962), who proposed that the logarithm of the dissipation
rate was normally distributed. In particular, if the dissipation rate is averaged
over a sphere of radius r to give a mean rate ¢,, then ¢, is assumed to have a
log-normal distribution with variance given by

L
o, = A(X,) + pln <r> (3.19)
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where A may depend on the large-scale motion, u is a universal constant,
and L is the external length scale. Kolmogorov (1962) argued that the log-
normality of the locally averaged dissipation rate (along with (3.19)) amounted
to a third similarity principle and rederived the expression for the n-order
structure function, so that (3.14) was replaced by

un(n—3)/18
(' —uy = C,(x, )e"r" (If) ; (3.20)

where the C,(x, t) are no longer constants and may depend on the large-scale
details of the flow. Fourier transformation shows that there is a corresponding
effect for spectra (we shall discuss this shortly), while the modified skewness
and flatness factors become

S(r) = —%C;” G)m (3.21)

and

Fr) = C,C;? <174>4“/9, (322)

Although Gurvich and Yaglom (1967) have presented a derivation of the
log-normal distribution of the dissipation, it is not free from assumption, and
indeed this is really the overall status of the log-normality hypothesis. Never-
theless it has attracted a good deal of attention over a period of about two
decades, particularly from experimentalists with a considerable outpouring of
papers on the subject.

We shall not attempt a comprehensive summary: the interested reader can
consult Monin and Yaglom (1975). Here we shall just give a representative
sample, beginning with the measurements of Wyngaard and Tennekes (1970,
mixing layer), Gibson, Stegen, and McConnell (1970, atmospheric boundary
layer over the ocean), Van Atta and Chen (1970, atmospheric boundary layer
over the ocean), and Sheih, Tennekes, and Lumley (1971, air-borne measure-
ments in the atmosphere), where each experimental environment is given in
parentheses with the date of the investigation. In each case these reports
supported the log-normality hypothesis. In particular, Van Atta and Chen
(1970) noted that second- and third-order structure functions were consistent
with the original Kolmogorov theory, especially at large separations. How-
ever, the fourth-order structure function gave better agreement with the
refined (log-normal) theory.

The case against (so to speak) comes from Gibson and Masiello (1972,
atmospheric boundary layer over the ocean), who found departures from
log-normality, and Frenkiel and Klebanoff (1975, grid turbulence, boundary
on a {lat plate), who found that their measurements bore out log-normality
provided that the constant p in Kolmogorov’s third hypothesis was not in fact
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constant. Moreover, from a survey of many experimental investigations, Van
Atta and Yeh (1973) remark that, in general, probability distributions have
not been found to be log-normal, although they qualify this by pointing out
that log-normality is often a good approximation in certain restricted ranges
and that it may also depend on the way in which averages are taken. Further,
from an analysis of Wyngaard’s data, they conclude that there is a lack of
support for scale-similarity theories, such as that of Gurvich and Yaglom
(1967). However, more recently, Van Atta and Antonia (1980) have made a
more refined analysis of earlier data, and have concluded that the predictions
of the modified similarity hypotheses fit the experimental results rather well,
provided that the constant u is taken to be about 0.25, rather than about 0.50
as the earlier investigators had suggested.

The refined Kolmogorov—Obukhov theory often appears to be regarded
in the literature as if the third (i.e. log-normal) hypothesis had the same
physical plausibility as the other two. Yet log-normality is not a necessary
ingredient in a scale-similar theory of intermittency (e.g. Novikov and Stewart
1964; Mandelbrot 1972, 1974; Frisch, Sulem, and Nelkin 1978). As an example,
we shall briefly discuss the latter theory.

Frisch et al. (1978) begin by adopting the Kolmogorov (1941a, b) picture.
In turbulence, energy is injected into eddies of size /, and cascaded down
through intermediate scales I, to the dissipation scale /;. They assume that
this process can be represented by the discrete series of length scales

L,=2", n=012,... (3.23)

with the corresponding discrete wavenumbers k, = 1/1,. The argument is then
conducted in terms of magnitudes, with numerical factors being dropped
except when they would accumulate multiplicatively. Thus, if the energy (i.e.
kinetic energy of turbulent fluctuations per unit mass of fluid) in scales
approximately equal to I, is E,, we can define the r.m.s. velocity difference
across a distance /, by v,, where

E, ~ v2. (3.24)

(We should note that, with this definition, the correlations of the v, will be
closely related to the structure functions, as defined by (3.13).) The eddy
turnover time can also be defined as

t,~ 1/, (3.25)

Frisch et al. then make the fundamental assumption that a sizeable fraction
of the energy in scales /, is transferred to scales /,,, in time ¢. Hence the energy
transfer rate (for the n-order eddies) is given by

e~ E Jt, ~ 03/, (3.26)

For stationary turbulence, conservation of energy then implies that
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g, =<  ly>1,>1, (3.27)

where (&) is the mean dissipation rate.

At this point, Frisch et al. remind us that (&) can be interpreted equally
well as a rate of energy injection or as a rate of energy transfer, and that the
latter is the dynamically relevant quantity for the inertial range. In this respect,
they go some way to meeting Kraichnan’s (1974) critique of the refined
Kolmogorov (1962) theories in which he argues that a central role for the
dissipation is arbitrary since conservation of energy alone provides no link
between the local dissipation rate and the local rate of energy transfer.

From (3.26) and (3.27) we have

v, & {eDPIIB, (3.28)
and from (3.24)
E, ~ {e)IZR, (3.29)

which, after Fourier transformation, yields the familiar Kolmogorov spectrum
as in, for instance, eqn (2.137).

The f model is introduced in terms of the rather arbitrary assumption that
the average number of offspring of any eddy is N (i.c. an eddy of scale [, is
assumed to give rise to N eddies of scale /., irrespective of the value of n).
Then the fractional reduction in volume from one generation to the next is
given by

g NBu N

5 =3 <1, (3.30)
where the second step follows from eqn (3.23). If it is further assumed that the
largest eddies fill all the space available to them, then in the nth generation
only a fraction

B, = B" (3.31)

of the space will be occupied by eddies of scale I,

Now we repeat our previous arguments, but restrict them to the active
volume of fluid for each generation n. That is, eqn (3.28) still holds locally for
v, in an active region. But the relationship between the globally averaged
energy density and the locally averaged v, is postulated to be

E, = B,v? (3.32)
and, using (3.28), (3.30), and (3.31), this becomes
N nf3
E, ~ (g3 (2—3-> . (3.33)

With the further assumption
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N=2? (3.34)
and the use of (3.23) to eliminate n, eqn (3.33) can be written as
l B
E, ~ (ey¥3|23 <I—> , (3.35)
4]
where
B=(D—-3)/3 (3.36)

and D is identified as the (non-integer) fractal dimension (Mandelbrot 1974);
hence the exponent can also be identified as B = u/3.

The  model has attracted quite a lot of attention, if only because it is easily
followed and was presented in a more than usually readable paper. It has
inspired theoretical attempts to find a value of g, and, for example, Fujisaka
and Mori (1979) have used a maximum entropy principle to calculate u = 1/3.
Experimental attempts to distinguish between the f model and log-normality
(e.g. Press 1981; Antonia, Satyaprakash, and Hussain 1982) seem to favour
the former, but are certainly not conclusive. A particular point of interest
about the last reference is that these authors conclude that u should have a
value of about 0.2, and criticize some of the criteria used in early work that
led to a generally accepted value of u = 0.5. More recently, Anselmet, Gagne,
Hopfinger, and Antonia (1984) have found u = 0.20 + 0.05 and power-law
behaviour of moments which is incompatible with either the f model or
log-normality.

3.2.3 Intermittent generation of turbulence: the bursting process

In recent years it has become increasingly evident that turbulent flows are not
just random or chaotic but can contain more deterministic features, now
known as ‘coherent structures’. This term is difficult to define in a succinct
way, although it is universally employed and (presumably) universally under-
stood. If we were to attempt a general definition, then we would say that,
essentially, coherent structures are recognizable by most people when some
appropriate method of flow visualization is employed. That is, we are talking
about some discernible pattern in the flow, which may have many random
features but nevertheless occurs with sufficient regularity, in space or time, to
be recognizable as quasi-periodic or near-deterministic.

A specific example should help to make this clearer. Consider the mixing
layer formed when two streams of different velocity run parallel to each other,
as shown schematically in Fig. 3.9. It was found by Brown and Roshko (1974)
that shadowgraphs of such mixing layers revealed the presence of vortex-like
structures which, in general appearance, resembled breaking waves. A typical
shadowgraph of this kind is sketched in Fig. 3.10.
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Fig. 3.9. Definition sketch of a plane mixing layer between two parallel streams with
different velocities U, and U,,.
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Fig. 3.10. Sketch of a typical shadowgraph showing a regular wave-like structure in
the plane mixing layer.

Results like this have been one of the factors in stimulating a renewed
interest in vortex interactions. And, indeed, the dynamics of the interface have
been analysed in terms of both vortex pairing (Winant and Browand 1974)
and vortex tearing (Moore and Saffman 1975).

Although the mixing layer shows the most strikingly regular behaviour,
quasi-deterministic structures are found in other flows such as wakes, free jets,
boundary layers, and duct flows. We shall discuss these in some detail in a
later chapter; here we shall concentrate on the particular coherent structure
which is found in turbulent flows bounded by a solid wall. This is the ‘bursting
process’. In visual terms, this is one of the least spectacular of the coherent
structures, yet in many ways it is the most interesting of these phenomena.

Our account of this subject must begin with the paper by Kline, Reynolds,
Schraub, and Rundstadler (1967) who studied the turbulent boundary layer
(in water) by placing a hydrogen-bubble wire parallel to, and at various
distances above, the wall. They found that, even when the wire was as close
to the wall as x3 = 2.7 (which is well within the viscous sublayer), the bubbles
did not move in straight lines along the plate but had a tendency to move
sideways to some extent, such that they accumulated in a series of elongated
regions known as ‘streaks’. Various other measurements showed that the
streaks are regions where the streamwise velocity is relatively low, and so they
are often referred to as ‘low speed streaks’.

The pictures obtained by Kline et al. (1967) may seem rather disappointing
compared with, say, the roll vortices of the mixing-layer. Nevertheless, it
should be appreciated that there must be some coherent motion in the span-
wise (i.e. cross-stream) direction in order to organize the bubbles into streaks.
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Fig. 3.11. Schematic view of turbulent boundary-layer structure near the wall: (a) top
view of low speed streaks; (b) side view of the sequence of events leading to the break-up
of a streak.

This is something which we shall discuss in some detail in a later chapter. Here
we shall now consider the sequence of events when a streak is viewed from
the side.

Kline et al. observed that the streaks interacted with the outer parts of the
flow through the following sequence of events: lift up, oscillation, and break-
up. They called this sequence a ‘burst’, and we have illustrated it schematically
in Fig. 3.11. They also found that a negative pressure gradient (i.c. where
pressure falls in the flow direction) tended to reduce the rate of bursting, with
the reverse being the case with a positive gradient.

Noting that the first of these cases (i.e. dp/dx; < 0) corresponds to dU,/
dx, > 0, and recalling the discussion in Section 1.6.2 of the production term
(1.69) in the energy balance, we see that the rate of bursting decreases in
circumstances where the rate of production of turbulent kinetic energy also
decreases. Hence it was natural for Kline et al. to conjecture that the bursting
process plays a dominant role in the production of turbulent kinetic energy
in the boundary layer. They also speculated that the subsequent ejection of
the fluid from the burst into the outer parts of the boundary layer was the
main mechanism for transferring energy (and other turbulent quantities) to
these outer regions.
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It should be emphasized that the bursting process just described is not an
artefact of the free-surface intermittency of the turbulent boundary layer.
Shortly after the paper by Kline et al. (1967), an independent investigation by
Corino and Brodkey (1969) reported the existence of an ‘gjection-sweep’ cycle
in pipe flow, which was clearly equivalent to the bursting process of Kline et
al. Since then many investigations have confirmed the importance of the
bursting process for the production of turbulence in the presence of solid
boundaries. We shall discuss these in some detail in Chapter 11. For the
moment it is perhaps not too fanciful to observe that our traditional picture
of a once and for all catastrophic breakdown from laminar flow to turbulence
has to be replaced by a picture where at any point in, say, a pipe flow, the
laminar—turbulent transition is taking place in a rather regular way several
times a second.

3.3 Numerical computation of turbulent flows

The problem of calculating turbulence can be seen as part (albeit, a very large
one) of the more general field of computational fluid dynamics (CFD). As a
glance at any good general text on the subject (e.g. Roache 1982, Peyret and
Taylor 1983) will show, CFD is extensively concerned with the numerical
representation and computation of the partial differential equations which
govern the motion of real fluids.

The subject tends to divide into two areas: the development of numerical
methods, and the creation of algorithms to implement these methods. At the
same time, progress in CFD must necessarily depend on developments in
computing (in all its aspects—hardware, software, languages, and operating
systems). In particular, we should perhaps mention the growing use of con-
current computer architectures, which offer large increases in memory and
speed.

There seems to be a consensus among writers in the field, that progress in
all these topics has been very rapid over the last decade or two, so that the
main obstacle to many practical applications of CFD is the turbulence aspect
of the problem. That is to say, if the theoretical approach to any given task is
based on the time-averaged Navier—Stokes equations, then the question of
how to specify the Reynolds stresses normally turns out to be the crucial
problem for CFD.

We shall presently give a brief review of current methods of closing the
Navier—Stokes moment hierarchy in the context of engineering applications.
But, first, it is interesting to consider whether we can evade this problem
altogether, by looking for numerical solutions to the (unaveraged) Navier—
Stokes equations. Of course such solutions can be expected to vary randomly
with time and position. The question then is: would the extra work of repre-
senting random functions, and then forming averages numerically, outweigh
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the fundamental difficulties implicit in the moment closure problem? We shall
consider this question in the next two subsections.

3.3.1 Direct numerical simulation (DNS)

If we were carrying out a numerical simulation of the behaviour of molecules
in an ideal gas, for instance, we would first want to decide how large our system
was to be and how many molecules it would contain. Obviously we would
have to keep the size of our computer in mind when we made these decisions.
The question of how similar decisions are made for turbulence was considered
by Landau and Lifshitz (1959, p. 123) who estimated the number of degrees
of freedom in turbulence as a function of the Reynolds number.

We consider isotropic turbulence and, as before, take it to be occupying a
cubical box of side L. We associate with this length scale a velocity scale Au,
which is the variation of the velocity over a distance L. We can argue with
some plausibility that over small distances (< L) the velocity differences will
also be small (< Au). Thus Au can be taken as the external velocity scale, just
as L is the external length scale. It can also be argued that, although the
dissipation is ultimately determined by the action of viscosity on the smallest
eddies, in the first place it is determined by the input from the largest eddies.
Thus, on dimensional grounds, we can estimate the dissipation rate as

(Auw)®
~ . 3.37
. (337)
We can also introduce the Reynolds number R for the system as
LA
R="°% (3.38)

v

Landau and Liftshitz (1959) estimated the number of degrees of freedom
per unit volume of fluid on dimensional grounds. Denoting this by n, they

found
e\¥* 1 ’
nx <?> = ’1—3, (3.39)

where the last step follows from eqn (2.131) and 7 is of course the dissipation
length scale. Then it follows that the total number of degrees of freedom of
the whole system N is given by

L3
N=x—.

n

Intuitively, this seems quite a natural result. In a numerical simulation, 7 is
the smallest scale that we would have to resolve. Thus in one direction we

(3.40)
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would have to do this L/g times, and clearly (3.40) follows for all three
directions. We now need a relationship between  and L. This can be obtained
by combining equation (2.131) for # with eqns (3.37) and (3.38):

n=RL, (3.41)
and hence, from (3.40),
N =~ R%%, (3.42)

It should be appreciated that the number of degrees of freedom becomes zero
for R < R, where R_,;, is the value of the Reynolds number for which the
flow becomes turbulent. Landau and Liftshitz (1959) suggested that R should
be replaced in (3.42) by its ratio to the critical value. However, we shall not
pursue that here. Equation (3.42), as it stands, allows us to assess the effect of
increasing Reynolds number.

If we now return to the analogy with the ideal gas— N non-interacting
particles of mass m in a box—then the N degrees of freedom are the N kinetic
energies of translation, which contribute additively to the total energy of the
system E:
mo?

iy (3.43)

E =
2

-

i

Correspondingly, for turbulence, we can expect the N degrees of freedom to
be the independently excited Fourier modes which also satisfy an additive law
for kinetic energies,

N

{uip

E = , (3.44)

i}

M=
)

k=0

ky \? L\3
N z( d > ~ <;> (3.45)
kmin ’7
and hence by eqn (3.42).

As a specific example, we shall now consider a method of simulating
isotropic turbulence and obtaining the energy spectrum by numerical means.
Our treatment of the subject is loosely based on the pioneering work of Orszag
(1971), but is very much simplified in order to let the main ideas stand out.
The reader who wishes to learn more about the detailed aspects of the subject
should consult the original papers cited. The review papers by Orszag and
Israeli (1974) and by Gottlieb, Hussaini, and Orszag (1984) may also prove
helpful.

We begin by writing the Navier—Stokes equation, as given by (2.76), in the
form

where N is given by
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(% + vk2> u (k1) = W,(k,1) (3:40)
and
Wk, 0) = lzk M, (K)ug(i, £)u, (1, 1), (3.47)
jtl=

where M,;,(K) is given by (2.77) and the notation indicates that the right-hand
side of (3.47) is summed over all pairs (j,1) which are such that j + 1 = k.

We now move to a discrete representation in time and wavenumber. The
former can be treated by putting t =0, 1, 2, ..., in arbitrary units, and we
concentrate here on the latter, which must be related to the computational
box. First the discrete wavenumbers are introduced through the definition

2n

k,=—n

3.
=T (348)

where
n=0+1,+2,...+(K—-1) (3.49)

and K is an integer.

Thus the computation is to be carried out on the cubical mesh specified in
this way. For isotropic turbulence we can go further and restrict wavenumbers
to the sphere centred on k = 0 and bounded by the condition

2
ko, s L] < an. (3.50)

This condition can be generalized to any intermediate wavenumber and hence
the isotropic case can be calculated in a series of spherical shells.

A method of taking averages will be needed—even just to set the initial
conditions—but we can exploit the isotropy of the turbulence to economize
on computer time by averaging over spherical shells in wavenumber space. If
we take the general shell to have a mean wavenumber k,, and thickness 2Ak,
then the shell-averaged energy spectrum is defined by

_ Uk, hu,(—k, 1)
E(k,,t) = AR % {Hz } (3.51)

such that
k, — Ak < |k| < k, + Ak.

The general procedure now is to set up some arbitrary initial velocity and
integrate eqn (3.46) forward in time. At each time step the shell averages can
be worked out for each statistical quantity of interest and the calculation
carried on until some appropriate criterion has been satisfied. For instance,
the simulation might be terminated when the spectrum had achieved a self-
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preserving form: we shall discuss such details in Chapter 8 in connection
with the evaluation of turbulence theories.

The initial conditions are specified by using a standard random number
generator to provide three numbers for each mesh point and hence set up a
random vector field f,(k). Then we can introduce the random velocity field at
t = 0 by writing

uy(k, 0) = D, 5(k)fy(K), (3.52)

where the projection operator D,,(k) is given by eqn (2.78). Recalling eqns
(2.78) and (2.97), along with the discussion in Section 2.6.4, we see that this
manoeuvre ensures that the initial velocity satisfies the continuity equation.

In order to ensure also that the initial velocity field is physically reasonable,
we can set values for the mean and variance of the random numbers generated,
such that the initial spectrum E(k, 0), as obtained from (3.51) and the initial
velocity field, takes some prescribed form. The choice of initial spectral forms
is another aspect which will be discussed in more detail in Chapter 8.

With u,(k, 0) prescribed, eqn (3.46) can be stepped forward in time to ¢ = 1
(in arbitrary units). Clearly the evaluation of W,(k,0), by means of the con-
volution sum (3.47), will require a large calculation. This operation can be
very much reduced by using a pseudospectral method (Orszag 1971), which
relies on the fact that the convolution in k-space is the Fourier transform of
a local product in x-space.

The method can be explained as follows. Rewrite (3.47) for W,(k, ) as

Wk, t) = M5, (k)Ag,(k, 1) (3.53)

where Ag,(k,t) is just the convolution of u,; with u,. By the convolution
theorem (see Appendix D), its Fourier transform is

Ag,y(x, 1) = ug(x, thu, (X, 1). (3.54)
Now we proceed as follows.

(a) Fourier transform u,(k, t) to obtain u,(x,t). This is, of course, done
numerically and requires a reciprocal lattice upon which x takes discrete
values.

{b) Work out the product specified by (3.54) to obtain a value for A4, (x, t)
for every point on the reciprocal lattice.

(c) Fourier transform Ay, (x, ) to obtain 4, (k,t) and work out W,(k, 1),
using (3.53), for each point on the lattice in wavenumber space.

(d) Use a suitable finite-difference method to calculate u (k,t = 1) from
(3.46).

The whole process is then repeated to calculate u,(k,t = 2) and so on. In
practice, the fast Fourier transform algorithm can be used to speed up steps
(a) and (c).
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The advantage of the pseudospectral method is that it reduces the number
of arithmetic operations compared with the direct evaluation of the convolu-
tion sums. In the former case the number of operations is proportional to
(2K — 1)%, whereas it goes as 2K * log, (2K) if the convolution sums are worked
out directly.

The snag with the method (there has, of course, to be one!) has to do with
aliasing errors, due to the truncation of the Fourier sums, as specified by (3.50).
A good discussion of this problem has been given by Rogallo (1981, p. 46), so
we merely note here that it arises in cases where j and !/ add up to give values
of |k| > (2n/L)K. If we were evaluating the convolution sums directly, then
we could simply set such invalid contributions equal to zero. But with the
pseudospectral approach, the difficulty is in identifying these contributions.
Orszag avoided this by performing the whole process on two grids, one of
which is suitably shifted relative to the other, in order to break the symmetry.
Then taking the two values of W,(k, t), as calculated on the two different grids,
and averaging, eliminates the aliasing errors.

These methods were used by Orszag and Patterson (1972) to simulate
decaying isotropic turbulence at a Taylor—Reynolds number R; = 42 with
323 grid points, and (incidentally) taking 1.5 hours of central processing unit
(CPU) time on a CDC 6600 computer. Their shell-averaged statistical results
agreed well with the results of laboratory experiments and with the predictions
of analytic turbulence theories, and this work has come to be regarded as the
pioneering turbulent simulation on a computer.

If we attempt to assess the significance of the Orszag—Patterson simulation
in the context of practical problems, then we must begin by observing that
isotropic turbulence is rather remote from the sort of turbulent flows that
are typically involved in engineering applications. Moreover, the Reynolds
number is quite low when converted to the form (1.5) appropriate to pipe flow.
We may see this by taking (2.165) for R; and combining it with (2.64) for 4 to
obtain

3.87u?

LT (ve)'

(3.55)

where u is the r.m.s. fluctuating velocity (assumed isotropic).

Now it is usual to estimate the dissipation rate in the centre of a pipe by
the formula (e.g. see Pond, Stewart, and Burling 1963; also compare eqn (3.37)
of the present work)

/ 2.5u3
6= a“’, (3.56)

where a is the radius of the pipe and u, is the friction velocity as defined by
(1.29). The fluctuating velocity can be estimated by putting u = u, (see Fig. 1.5)
and the friction velocity related to the bulk mean velocity U through (1.48) in
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terms of the friction factor f. Then, invoking the well-known empirical rela-
tionship for f (Goldstein 1938, p. 339),

U —1/4
£ =0067 (“) ,

v
we can combine all these steps with (3.55) to obtain the relationship
R, = 095R"S (3.57)

where R is in terms of the bulk mean velocity and the pipe diameter, as given
by (1.5).

From (3.57), it is readily found that the Taylor—Reynolds number R; = 42
of Orszag and Patterson (1972) is equivalent to about R = 5 x 10? for pipe
flow. This can be put in perspective by noting that the critical Reynolds
number for transition is R = 2 x 10°. More recently Kerr (1985) used essen-
tially the same algorithm to simulate isotropic turbulence at R, = 83, with
1283 grid points and using 250 hours of CPU time on a CRAY 1S. In pipe
flow terms this corresponds to R = 2.5 x 10%,

Of course this does not mean that Kerr’s simulation is equivalent to repro-
ducing pipe flow at this value of R, but merely that such a pipe flow would
have a similar value of R, at its centre. A pipe or channel flow has the
additional problems of inhomogeneity and anisotropy with which to contend.
That is, instead of one scalar function E(Kk, ), dependent on the three scalar
components of the wavevector k, we now have to calculate E |, E,,, E;5, and
E,,, each of which additionally depends on the distance from the pipe or
channel wall. At the time of writing, the most advanced full numerical simula-
tion of a shear flow is that of Kim, Moin, and Moser (1987), who used 4 x 10°
grid points to achieve a Reynolds number (based on channel semi-width and
maximum mean velocity) of 3300. In our terms, this means R = 5280, on the
usual assumption that U = 0.8U.

In fact there is not all that much difference between these two simulations
in terms of computer requirements, although Kim et al. would need to increase
their Reynolds number by a factor of 10 to have the same Taylor—Reynolds
number as in the isotropic simulation of Kerr. But the inexorable logic of eqn
(3.42) is that the Reynolds number goes up more slowly than the square root
of the number of grid points. Hence increases in computer power, although
important, are not likely to make any great impact on the problem of simulat-
ing real turbulent flows in complicated geometries. Therefore we have to
consider ways of reducing the number of degrees of freedom and this will be
the subject of the rest of this section.

3.3.2 Large-eddy simulation (LES)

The basic idea of LES can be explained most simply in the context of the
spectral simulations that we have just been considering. Suppose that we do
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Fig. 3.12. The energy spectrum divided up into resolved scales (k < k) and subgrid
scales (k > k), for the purposes of large-eddy simulation.

not attempt to simulate all the wavenumber modes up to the viscous cutoff
(> ky). Instead, we only simulate modes for which k < k¢, where the arbitrarily
chosen cutoff wavenumber k. satisfies the condition k¢ « k4. The situation we
are envisaging is illustrated schematically in Fig. 3.12.

This means that we are simulating the Fourier-transformed Navier—Stokes
equation with its wavenumber representation arbitrarily truncated to the
interval 0 < k < k¢. Referring to (2.76), we can readily appreciate the con-
sequences of this. We note that the non-linear term on the r.h.s. couples all
wavenumbers together, and that the overall effect is the net transfer of energy
from any one wavenumber to higher wavenumbers. Hence, if we truncate
atk = k¢, we are removing the mechanism by which energy is transferred from
wavenumbers below k¢ to those above. In practice, such a simulation would
fail because energy would be cascaded down to k = k. and would pile up at
the cut-off.

In fact this problem is essentially just the one considered by Heisenberg (see
Section 2.8.1). Thus, if we introduce a Heisenberg-type effective viscosity
v(klkc) to represent the effect of transfers to k > k¢, then eqn (2.76) can be
replaced by its truncated form

{% + vok? + v(klkc)kz}ua(k, ) = My, (K) Y 4y, O, (k — 1), (3.58a)
J

where the wavevectors satisfy the condition
0<ikjk—jl <kc (3.58b)

and v, denotes the molecular kinematic viscosity, where the subscript zero
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anticipates a later usage. From now on we shall use v or v, interchangeably,
according to context, to represent the kinematic viscosity of the fluid.

This procedure is therefore an example of LES. That is, we simulate the
eddies of size larger than 1/k. by explicit numerical integration of the Navier—
Stokes equation and account for the transfer of energy from the large scales
(or eddies) to the small scales by the introduction of an effective viscosity which
augments the molecular viscosity of the fluid.

We shall discuss the fundamental problems of obtaining a form for the
effective viscosity for spectral simulations in a later chapter. Here we turn to
the more general application of the LES technique to shear flows. We also
return to configuration (X} space.

The original idea was due to Smagorinsky (1963), who calculated the
general circulation of the atmosphere on a finite-difference grid and repre-
sented the drain of energy to turbulent scales smaller than the grid spacing h
(the *subgrid scales’) by a subgrid model based on a Heisenberg-type effective
Viscosity.

Other meteorological simulations followed, but the first engineering LES
was Deardorff’s (1970) simulation of plane channel flow. Deardorff used
Reynolds (spatial) averaging, applied to a unit cell of the finite-difference mesh,
to define the large (or resolved) scales, and introduced the terminology ‘filtered
variables’. Although only 6720 grid points were used, the comparison with the
laboratory experiments of Laufer (1954) was sufficiently favourable for the
feasibility of the method to have been established.

Leonard (1974) was apparently the first to use the term ‘large-eddy simula-
tion’. He also introduced the idea of filtering as a formal convolution operation
on the velocity field and gave the first general formulation of the method. We
shall base our own discussion on Leonard’s approach.

From (1.1) and (1.4), we have the continuity equation

oUp(x,1)
0xg B

0,

and the Navier—Stokes equation

U, oUU, 0P
1 T v 3.59
a T ax, | ox, 0V T (3-59)

where we have introduced kinematic units for the pressure, so that the density
can be eliminated from (1.4).
We define the large scales by the general filtering operation
U,(x) = jG(x — x)U,(x')d*x/, (3.60)

where G is some arbitrarily chosen filter function and the tilde denotes the
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large-scale (or resolved) part of the velocity field. For convenience, this opera-
tion can be written in the contracted form

0, = G*U,. (3.60a)

Also, we decompose the instantaneous velocity field into resolved and subgrid
scales:

U =0, +u (3.61)

where u, is the subgrid part of the velocity field.

The continuity equation provides a relatively simple starting point in for-
mulating the LES equations. Operating with G, according to (3.60a), on the
Lh.s. of (1.1), we find

@_6{G*Uﬁ}

G*
0xg 0xy

) (3.62)

This result can be proved by integration by parts, with respect to x', provided
only that U, vanishes on the boundaries. It then follows at once from (1.1),
(3.60a), and (3.62) that the resolved scales satisfy the continuity equation in
the form

oU,(x, 1)
0xg

=0. (3.63)

The linear terms of the Navier—Stokes equation are readily treated in the
same way but, as usual, the non-linearity requires some thought. If we denote
the effect of the filter on the non-linear term by A,;, temporarily, then the
operation of (3.60a) on (3.59) yields

o0, 04, 0P

-
64
= o oVl (3.64)

where the filtered non-linear term is given by
Ay = G*{U, Uy}
= G*{0, 0, + u,U; + O,up + ujuy}, (3.65)

with the last step following from the substitution of (3.61).
The terms in (3.65) which involve u’ can all be lumped together:

Tp = G*{u,U; + Uup + ujuy}. (3.66)

As the simulation only calculates explicit values for the large scales, T,; (which
controls the subgrid drain of energy) must be modelled in some way. We shall
return to this shortly.

The first term on the r.h.s. of (3.65) is in quite a different category, as it
involves only the explicit scales and the filter function. Its computation might
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present some practical difficulties, but clearly there is no fundamental closure
problem. Leonard (1974) wrote this term as

G*{0,0,} = 0,0, + L, (3.67)
where
L, =G*{0,0,} - 0,0, (3.68)

and is usually referred to as the ‘Leonard stress’.
In all then, we can now write eqn (3.64) for the filtered variables as
e, N o(0,Ty) 0P 0L, 0Ty,

+ v, V20, (3.69)

ot 0x, 0x, Oxz; Oxg

where L, is given by (3.68) and T, by (3.66).

It is of interest to compare the filtered equations of motion with the
equations of mean motion (see Section 1.3.1). Clearly (3.63) is formally iden-
tical with (1.11) for continuity, if we replace U, by U,. There are also some
similarities between the Reynolds-averaged and Leonard-filtered Navier—
Stokes equations, as given by (1.12) and (3.69) respectively. The differences
lie in the presence in (3.69) of the terms involving T, (the subgrid stress) and
L, (the Leonard stress). Clearly, if we were to turn the filtering operation,
as defined by (3.60), into a spatial average over the entire system volume, then
the Leonard stress should vanish and the subgrid stress should reduce to the
Reynolds stress. We will next consider how to deal with these two stress terms
in a practical simulation.

The subgrid stress has to be modelled in some way and the original Smago-
rinsky model (Smagorinsky 1963) makes a good starting point. Smagorinsky
employed the traditional analogy between turbulence effects and molecular
propertics. Thus, by analogy with eqn (1.3), the (kinematic) subgrid
stress tensor is supposed to be expressible in terms of explicit scales by the

relationship
o0, o0,
Tp= — : g 3.70
b s <6x,, + ﬁxa)’ (3.70)

where, on dimensional grounds, the subgrid effective viscosity takes the form
vg = c2h281? (3.71)

where ¢ is a constant, h is a measure of the filter width or the mesh spacing,
and S is given by

- o0, /00, o0
§="2-= £y, 3.72
0xg <6xﬂ + 6xa> (372

Lilly (1967) showed that this form was consistent with the existence of the
Kolmogorov energy spectrum (2.137) for k ~ 1/h, provided that the constant
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¢ was given by
¢ =023, (3.73)

where « is the constant of proportionality in the Kolmogorov spectrum.

Deardorff (1971) has quoted various values of ¢ based on Lilly’s estimates.
The exact value chosen depends on various factors (not least, on the value
assumed for the Kolmogorov constant), but they are generally of the order of
¢ = 0.2. However, from a comparison with experimental results, Deardorff
concluded that, if there was a mean rate of shear present, the constant in the
Smagorinsky effective viscosity should be smaller than this, and a value of
about ¢ = 0.10 was found to be the best single value to apply right across a
flow.

The Leonard stress depends only on the filter function chosen, and we
follow Leonard (1974) in illustrating some typical filters (see Fig. 3.13). An
important point to note is that L,, can vanish identically if G is chosen
appropriately. From (3.68), we see that this requires

G*{0,0,) = 0,0,

G
(a)
1/h
—hi2 hi2  r=x—x'
G
(b)
r
G
(c)
TN, i

Y2 Y

Fig. 3.13. Examples of filter functions used to define the resolved scales in configura-
tion space: (a) top-hat or boxcar function; (b) Gaussian filter G = (6/hn)"? exp(— 6r%/
h?); () ‘sinc’ function G = 2(nr)~! sin(nr/h).
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or, in terms of an arbitrary test function F, we require the filter G to have the
property
G*F = G*{G*F} = F. (3.74)

In order to find suitable forms of G, we Fourier transform G into g(k) and F
into f(k). Then, from the convolution theorem, (3.74) becomes

af = g*f = f; (3.75)

hence we require G to be such that g> =g =0 or 1.

This condition can be satisfied in one of two ways. First, we can take G to
be as shown in Fig. 3.13(a), and let h tend to infinity. Then g becomes a Dirac
delta function and (3.75) holds. This is not really surprising as, under these
circumstances, (3.60) just becomes a spatial average. The more interesting case
of the two is when we choose G to be the filter shown in Fig. 3.13(c). The
Fourier transform of this function is the unit top-hat function (like Fig. 3.13(a),
only in k-space rather than x-space) and satisfies the condition g(k) = 1 or 0.
In this case, g is often referred to as the ‘spectrally sharp filter’ and is the one
normally used in spectral simulations.

In practice, the Leonard term can be swamped by the numerical errors
inherent in the finite-difference representation and, on these grounds, it is often
neglected. For the sake of completeness we should also mention that Leonard
has given an approximate procedure, for estimating such errors, which is
based on an expansion of the velocity fields in a Taylor series about x = x":
details can be found in the reference cited.

There is a rapidly growing literature on the subject of LES, and the in-
terested reader will find that the review articles by Voke and Collins (1983)
and Rogallo and Moin (1984) make a good starting point. Here we shall only
mention that the pioneering simulation of channel flow by Deardorff (1970)
was followed by the more advanced simulations of Schumann (1975) and
Moin and Kim (1982).

The latter reference provides a striking instance of the virtues of LES as
opposed to full simulation. Moin and Kim achieved a Reynolds number
(based on centre-line velocity and channel half-width) of 1.4 x 10* with 0.52 x
108 grid points and 92 hours of CPU time on a ILLIAC-IV. The result was
not only in quite good agreement with laboratory experiment, as far as
velocity profiles and the like were concerned, but also in the successful repro-
duction of the coherent streaks of the wall region. In contrast, the full simula-
tion of the same problem by Kim et al. (1987) only reached a Reynolds number
of 3.3 x 103, despite using eight times as many grid points (roughly) and 250
hours of CPU time on a CRAY-XMP, a much more powerful machine than
an ILLIAC-IV.
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3.3.3 The use of the Reynolds-averaged Navier-Stokes equations for
practical applications

We should also bear in mind that the Reynolds averaging procedure is in itself
a way of reducing the number of degrees of freedom in the problem. Equation
(1.12) for the mean velocity is formally identical to the original Navier—Stokes
equation, provided that we absorb the Reynolds stress p{u,u,> into some
more general stress tensor, as in (1.13). Then, deferring for the moment the
question of a turbulent constitutive relationship, we observe that the mean
velocity can be expected to be a fairly smooth function of time and position,
and hence the problem of computing eqn (1.12) should be very much reduced,
when compared with the primitive Navier—Stokes equation, which for turbu-
lence has solutions which depend randomly on space and time.

Further (continuing to defer the turbulent closure problem), we have to
consider how to solve partial differential equations numerically for a particu-
lar geometric configuration and specified boundary conditions. And, although
the Reynolds equations can sometimes be reduced to parabolic form, in
general we are going to be faced with elliptical equations, which will mean an
iterative method as the upstream solution will depend on downstream values.

First, of course, there is the question of the numerical representation:
whether one should use finite differences, finite elements, or spectral methods,
each of which has its adherents. However, in practice anyone wishing to make
a turbulent flow calculation would be well advised to use the finite-difference
method, which has been absolutely dominant in the development of the
subject.

The second major question to be faced is that of which numerical procedure
or algorithm should be used? It is at this stage that we are forced to the
conclusion that CFD as a subject is as much art as science. By this I mean
that, in practice, there are likely to be many problems to do with the stability,
convergence or efficiency of numerical solutions and one’s best approach is
often to allow oneself to be guided by the past experience of others, even when
the only justification for following a particular procedure or adopting a certain
value for a parameter is that it has been found to work in the past! A
noteworthy development was the SIMPLE algorithm (Patankar and Spalding
1972), which is an implicit method of handling elliptical problems. This
algorithm has been widely used for engineering calculations (e.g. see the recent
review by Ferziger 1987) and now exists in several refined versions (Van
Doormaal and Raithby 1984).

We have previously touched on the fact that many engineering applications
involve geometrical configurations which are very complicated. For com-
pleteness we should just mention that, as well as the traditional method of
using coordinate transformations to map a difficult shape into a simple one
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(e.g. Carr and Forsey 1982), there is also a growing interest in the technique
of adaptive gridding. That is, the finite-difference representation of the mean
flow equation is formed on an orthogonal curvilinear grid, which is also
constructed numerically, and is continually adjusted as the calculation pro-
ceeds (Dwyer 1984, Luchini 1987). This method can also be used in situations
where there are free boundaries whose position will not usually be known in
advance (e.g. Ryskin and Leal 1984).

As we pointed out initially, progress in all these areas—together with
developments in computers—has been so rapid that the pressure is on for
better turbulence models. This is a topic which we can defer no longer.

For engineering applications the general problem can be stated in the
following way. We wish to solve eqn (1.12) for the mean velocity distribution
U,(x, t) in some specified physical location, with prescribed initial and bound-
ary conditions. And, in order to do this, we need to know the Reynolds stress
puglg).

The simplest prescription for the Reynolds stress is obtained from the
mixing-length model which, as we saw in Section 1.5.2, relies on an analogy
between the randomizing effects of turbulent eddies on the mean motion and
the corresponding processes due to molecular motion in a gas. Thus eqn (1.54)
for the Reynolds stress is obtained by applying the methods of gas kinetic
theory to the macroscopic motions of the fluid continuum. This is the lowest
level of turbulence model, and in fact it works quite well. Its snags are mainly
that (apart from possessing the defects of the eddy-viscosity type of hypothesis)
it lacks universality (i.e. the prescription of the mixing length varies from one
type of flow to another), and in complicated flows it may be impossible to
specify any form for the mixing length.

Above the mixing-length model there is a hierarchy of turbulent models
based on transport equations for the fluctuating field. Such equations are
derived—often heuristically rather than rigorously—from eqn (1.13) for the
velocity fluctuation u,(x, t).

The next order of difficulty is the one-equation model, where the reference
is to the single transport equation which has to be solved for the fluctuating
field. Here we use (1.13) to derive an equation for the turbulent kinetic energy
E (usually referred to as k in the CFD literature). From (1.20) for {u,u,>, and
using (1.21) and (1.22), we obtain the energy equation in the form

) U,  0{<u?
a_E + Uﬂfa = —<uauﬁ>aUa + (Cuzup /2 + <uﬂp>/p} + VW2E —
ot Oxy 0xy 0x,
(production) (diffusion)

v /[ 0u,\?
@D

(dissipation)
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It should be noted that the last term on the r.h.s. of (3.76) is not strictly the
dissipation, unless the turbulence is homogeneous. However, it is usual to
argue that the small scales responsible for the dissipation are homogeneous
and hence this is probably quite a good approximation, except possibly near
a solid surface.

The diffusion term (see Section 1.6.2 for a discussion in the context of
experimental results) involves (essentially) triple moments and a viscous diffu-
sion effect which is negligible, except near the wall. The entire term is normally
modelled as if non-linear inertial transfer were a gradient process proportional
to the gradient of the kinetic energy E. It is important to realize that an
assumption of this sort is a form of closure approximation, irrespective of any
other assumptions still to be made.

With both these points in mind, eqn (3.76) can be written as

0E - OE oU,  d{(vy/og)OE/0x,
—_— —_— = — — _— — — ¢ 77
o + Uy 5%, Cugug o, + 5%, g, (3.77)

where v; is the turbulent eddy viscosity and o, is an empirical constant. The
effective viscosity is still modelled by analogy with gas kinetic theory and
accordingly we can write an expression for it as follows:

v = CLEML, (3.78)

where C,, is an empirical constant and L is an integral length scale. This is
analogous to the relationship in kinetic theory between the viscosity, the
particle energy, and the mean free path, and is often referred to as the
Kolmogorov—Prandtl relationship (e.g. Rodi 1982). The dissipation rate can
be modelled by

E3/2

which can be compared with equation (3.37) and where Cp, is an empirical
constant.

In practice this type of model is little advance on the mixing-length theory,
because the length scale L still has to be fixed by simple empirical arguments.
We have included it here because it illustrates the basis of the whole approach.
The next level of complication is the introduction of a second transport
equation, from which the length scale can be calculated. Models at this level
are accordingly known as two-equation models and there are many of them.
A critical examination of two-equation models was carried out by Chambers
and Wilcox (1976), who concluded that there was little to choose between the
various models. However, over the last decade, the k-¢ model of Jones and
Launder (1972) has been predominant in the literature and we shall discuss
this model in some more detail in the next section.
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Although the k-¢ model has proved very successful in practice, it still
suffers (as we shall see) from a reliance on the eddy-viscosity hypothesis. Thus
it must inevitably break down where the concept of the eddy viscosity itself
is invalid, and for such flows one must resort to turbulent stress modelling.
This is the most general of all the single-point closures of the Navier—Stokes
equation, and is based on the full equation for the Reynolds stress tensor (1.20).
Again, individual terms in the equation have to be modelled in order to make
the technique work. The best-known version of this kind of closure is given
in the paper by Launder, Reece, and Rodi (1975).

Finally we have the proposal by Rodi (1976) that the various differential
equations should be simplified in such a way that they reduce to purely
algebraic expressions, while retaining most of their important features. These
equations—known as algebraic stress models—can be applied to many of the
flows which require turbulent stress models, but are much easier to compute.

General accounts of all these models, and of their performance when
compared with experimental results, can be found in the book by Rodi (1980)
and in the reviews by Markatos (1986) and Nallasamy (1987). Very detailed
and comprehensive listings of equations and coefficients for various models
are given in the reviews by Mellor and Herring (1973) and by Patel, Rodi, and
Scheuerer (1984).

3.3.4 An example of a two-equation turbulence model

In his recent review, Nallasamy (1987) comments that the k-¢ model has
been used in a majority of all the two-dimensional (presumably, turbulent)
calculations reported in the literature. Thus, at worst, we are certainly justified
in choosing it for more detailed discussion as a representative example of a
two-equation model.

We begin with the eddy-viscosity hypothesis in what is often known as the
‘Boussinesq form’ (Hinze 1975):

2
<“aup> = §E5aﬂ - VT(

oU, 6(7,,) (3.80)

%, | ox,
where J, is the Kronecker delta. It is readily demonstrated that this reduces
to (1.50) for a thin shear layer in which U, = {U,(x,),0,0}. It should be noted
that (3.80) is an isotropic model for the (kinematic) Reynolds stress and
assumes that the normal stresses are all equal: a discussion of this limitation
and an attempt to improve upon it will be found in the paper by Speziale
(1987).

The next stage in setting up the model is to combine equations (3.78) and

(3.79) to obtain the relationship
C,E?

=" (3.81)
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where C, = C,Cp is a new empirical constant. The kinetic energy can be
calculated from its transport equation (3.77), and so a specification is needed
for the dissipation rate &. In principle, a rigorous equation can be derived from
(1.13) for the fluctuating velocity, but in practice many empirical steps are
needed to make it tractable. Hence, the simplest procedure is just to derive
an equation for the dissipation rate by anaiogy with (3.77) for the kinetic
energy:
de - Oe € oU,

E -+ Uﬂa = _ClE <uau3>axﬂ +

o{(vr/0,)0¢/oxs}  C,&°
0xy B

(3.82)

where C; and C, are additional empirical constants.

The constants are determined by reference to the resuits of various labora-
tory experiments. For instance, if the model—comprising eqns (3.77), (3.80),
(3.81), and (3.82)—is applied to the decay of turbulence behind a grid, then
the production and dissipation terms vanish and the only unknown constant
is C,. From measurements of the decay of E behind a grid, it was found that

C, =192,

The constant C, can be found by combining (3.81) with (3.77) and applying
the result to a local-equilibrium shear layer, where the dissipation and pro-
duction terms are approximately equal. This results in the relationship

C, = (MY — 0.09
E

u

where the numerical value comes from experimental measurements.

In the region near the wall, where the log profile applies, experimental
results indicate that the convection of the dissipation is negligible, where the
production and dissipation are in approximate local equilibrium. Application
of the transport equation for the dissipation rate to these circumstances leads
to

I _GAC,—C)

o, K? ’

&

where K is the von Karman constant and takes the value K = 0.4. This
relationship can be used to fix C, if o and g, are taken to be unity. Then,
computer optimization of various flow calculations is used to obtain the values

C,=144 0,=10 o, =13

These parameters are constant in the sense that they remain the same
throughout any particular calculation. However, different physical situations
may require values which are different from those given above. To be specific,
the constants given will serve well for plane shear layers. However, axisym-
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metric flows would require modified values of C, and C, (Markatos 1986;
although see the earlier paper by Pope 1978).

The many specific assumptions made in their derivation, and their con-
sequent lack of universality, together rob models like k-¢ of true fundamental
status. However, anyone who has to carry out a practical flow calculation will
have reason to be glad of their existence.

Lastly, we should mention the subject of ‘wall functions’. These are em-
pirical rules, based on the logarithmic ‘law of the wall’, which allow the
calculation to be carried out with the last grid point on the edge of the viscous
sublayer, rather than on the wall itself (Launder and Spalding 1974). In effect,
they amount to a synthetic boundary condition and may be needed in order
to save on computer time and storage or because a particular model is not
valid in the region near the wall, where the effects of the viscosity are dominant.
With developments in computer power, their use in conjunction with en-
gineering models may no longer be necessary (Launder 1984).

3.4 Turbulent drag reduction by additives

The idea that the frictional drag exerted on a solid body by a flowing fluid
can in some way be reduced is very widely held and is often associated in
peoples’ minds with the notion of a ‘dolphin skin effect’. As a general subject,
this area of investigation is rather fraught, and has quite a lot in common with
studies of alleged paranormal phenomena, such as precognition, telepathy,
ghosts, messages from the spirit world, and so on. In other words investigators
feel that there is something in it, but tend to have difficulties in reproducing
their positive results.

However, if we restrict our attention to one particular subclass of such
(drag-reduction) phenomena—the reduction of turbulent drag obtained by
dissolving small quantities of a chemical additive in a liquid—then we are
(if we may run the risk of mixing our metaphors) on much more solid
ground. The resulting effects are often dramatic and, for that matter, eminently
repeatable.

In order to highlight the unambiguous nature of the phenomenon, we shall
consider the very simple experiment which is illustrated schematically in Fig.
3.14. Here water flows from a constant-head tank through a long straight pipe.
The pressure drop along the tube can be measured between two pressure
tappings in the pipe wall, using a liquid-in-glass manometer. The rate of
outflow in a given time can be readily obtained, thus yielding the volumetric
flow rate and hence the bulk mean velocity U. Now suppose that we dissolve
a synthetic resin called polyethyleneoxide (PEO) in the water and repeat
the experiment. It turns out that the pressure drop needed to maintain the
same volumetric flow rate is normally very much reduced by the polymer
additive.
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Fig. 3.14. Definition sketch for a typical drag-reduction experiment.

The amount by which the pressure drop will be reduced will depend to some
extent on the Reynolds number. However, we can give a specific example,
assuming that the Reynolds number is large enough for the flow to be
turbulent. If the PEO is present in a concentration of about 10 wt ppm, then
the pressure drop can be reduced by the order of 70-80 per cent, compared
with that required for water alone. This remarkable result is made all the more
remarkable by the fact that the laminar flow behaviour of such dilute solutions
is very little different from that of the water on its own. That is, the density
and viscosity of the polymer solutions are not very different from those for
water.

Drag reduction by additives is not confined to aqueous solutions. For this
reason, we give the formal definition of the amount of drag reduction DR, as
a percentage, in terms of a general solvent. Let AP be the pressure drop
required to produce a mean velocity U in the solvent alone, and AP, the
pressure drop required to produce the same value of mean velocity when the
additive is present. Then the drag reduction DR, as a percentage, is defined
through the relationship

DR = <A—Ps_ﬂ> x 100 per cent (3.83)
AP

It was pointed out by Lumley (1969) that one must be careful to define drag

reduction as the reduction of skin friction in turbulent flow, by means of

additives, below the corresponding value which would be obtained with the

solvent alone. This can avoid confusion with other effects where, for example,

an additive increases the Reynolds number at which transition occurs (‘de-
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layed transition’). Such an effect would apparently reduce the drag because
the flow would then be laminar rather turbulent. However, in practice, once
the Reynolds number is increased to the point where transition now takes
place, the resulting drag can be larger than in the solvent alone (Lumley
1969).

In the remainder of this section we shall give a brief account of the history
of drag reduction, and then go on to discuss some of the experimental findings.
We shall find it convenient to deal separately with the topics of polymer
solutions and fibre suspensions.

However, before doing this, it may be helpful if we make a remark about
the term ‘drag’. Essentially it refers to the total force exerted by a fluid on a
solid body. This total can be made up from several different kinds of force.
For example, if you place your hand in the path of a jet from a hose pipe, then
the force on your hand will be mainly due to its getting in the way of the
momentum flux in the streamwise direction. Or, in the general case of flow
around a bluff body, the main force may be due to the fact that the pressure
at the upstream stagnation point is larger than the lower one—this is known
as ‘form drag’.

In the case of drag reduction by additives, we are concerned only with skin
friction, which is due to the fluid shear stress at the solid surface. For this
reason, we shall concentrate our attention mostly on simple pipe flows, where
the drag is almost entirely due to skin friction alone. More general discussions
fluid drag forces can be found in the book by Goldstein (1938).

3.4.1 Historical background

The discovery that chemical additives could reduce flow resistance has usually
been credited to Toms (1948), who was actually interested in investigating the
mechanical degradation of dissolved polymers. His results for polymethyl-
methacrylate dissolved in monochlorobenzene were presented at an interna-
tional conference on rheology (Toms 1948), in conjunction with a paper by
Oldroyd (1948) who offered an explanation of the friction reduction in terms
of an ‘apparent slip’ at the wall. Later on, Toms (1974), in an inaugural address
to another international conference—this time on drag reduction—gave a
personal account of the background to his accidental discovery and conveyed
his surprise at the way in which—although initially ignored for ten years—it
had led to the development of such a large and active research field. It is worth
noting that, at the time he was speaking, research into drag reduction was at
its peak, with a publication rate in excess of a hundred papers per year.

At one time there was a tendency to speak of the “Toms effect’, but it now
seems to be generally preferred to refer to ‘drag reduction by additives’, in
recognition of the great diversity of the subject and the complexity of its
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origins. For instance, in his review of the topic, Lumley (1969) has noted that
Mysels, working under wartime security restrictions, may have been the first
to observe drag reduction by additives. Apparently the first open publication
of his work was a US patent concerning the flow of petrol which had been
thickened by the addition of an aluminium soap (Mysels 1949). Later, short
accounts of this research were given in the literature (Agoston et al. 1954) and
at a conference on drag reduction (Mysels 1971).

In fact, as the subject has developed, it has become ever clearer that friction
reduction due to additives is not really a new phenomenon at all. Hoyt (1972a)
has pointed out that increased flow rates in silt-laden rivers were known as
far back as the 1880s. He cites references for observations on the Mississippi
in the 1880s and on the Nile in 1921.

The phenomenon of drag reduction by additives has also been invoked in
order to explain inconsistent results—going back over many years—in tests
of standard ship models in towing tanks. Fluctuations in measured drag are
now believed to be due to long-chain polysaccharides in slimes produced by
naturally occurring algae (Hawkridge and Gadd 1971).

Drag reduction which occurs naturally is one thing, but it was pointed out
by Arunachalam and Fulford (1971, see also Rao 1970) that the first recorded
case of the deliberate use of a drag-reducing additive was the injection of bile
into water flows (Hele-Shaw 1897) in the hope of reproducing the effect of fish
slimes. The results seem to have been inconclusive, but certainly fish slimes
have since been shown to be effective drag-reducing additives (Kobets, Mat-
jukhov, and Migrenko 1974).

Possibly the most influential development was the accidental discovery, by
the oil industry, that the use of Guar gum as a lubricant during drilling
operations also resulted in reductions in fluid friction. According to Hoyt
(1972b), this led to the arousal of military interest and, in turn, to two very
significant discoveries.

First, there was the discovery of the spectacular drag-reducing properties
of PEO in water (Fabula, Hoyt, and Crawford 1963). Today PEO is still the
single most effective additive (a concentration of 0.5 wt ppm can reduce
turbulent drag in water by up to 40 per cent). It is almost certainly the most
studied of all drag-reducing polymers.

Second, Ellis (1970) found that macroscopic asbestos fibres could, when in
aqueous suspension, produce reductions in turbulent friction comparable with
those of the best polymers. Prior to that, drag reduction in fibre suspensions
was known to be a much less spectacular effect than that in polymer solutions,
requiring much larger concentrations of the additive to give rather meagre
reductions in drag. The difference was that Ellis’s fibres were very long, thin,
and flexible, with an enormous aspect ratio (i.e. length-to-diameter ratio) of
about 10°.
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3.42 Polymer properties

From the numerous experimental studies it can be concluded that, in order
to reduce turbulent drag, polymers should be (a) of very long chain structure,
with little branching (correspondingly the molecular weight should be large,
typically about 10°), (b) flexible, and (c) well dissolved. It should perhaps be
emphasized that the large molecular weight should be due to the molecule’s
possessing a large number of monomer units, rather than the individual
monomers’ being relatively massive.

Many polymer-spolvent combinations which fit these requirements can be
found in the litérature, but the most effective in aqueous solution are un-
doubtedly the PEOs and the polyacrylamides. The commercial forms most
frequently encountered are Polyox WSR 301, a PEO manufactured by Union
Carbide, and Separan AP30, which is a polyacrylamide and is manufactured
by the Dow Chemical Company. Most polymers as supplied are polydisperse
(i.e. contain a range of molecular weights), but it is usual to take the mean
molecular weight of Polyox WSR301 as 5.05 x 10°, and that of Separan AP30
as 3.0 x 108,

An indication of how these synthetic polymers compare with natural drag
reducers can be gained from a comparison of the concentrations needed to
give DR = 67 per cent, at a Reynolds number of R = 1.4 x 10*, in pipe flow.
According to Hoyt (1972b, Table 3), this requires 400 wt ppm of Guar gum
compared with only 10 wt ppm of Polyox WSR301.

The drag-reducing properties of Polyox WSR301 and Separan AP30 have
been extensively investigated. In Fig. 3.15 we compare the amounts by which
each of them reduces drag in pipe flow for various additive concentrations.
These particular results were obtained by injecting concentrated polymer
solutions into water flowing through a pipe (McComb and Rabie 1982) and
allowing the polymers to spread out until evenly mixed. They agree well with
results obtained in pre-mixed dilute polymer solutions, and it is clear that
Polyox WSR301 is slightly more effective than Separan AP30. However, by
way of compensation, Separan AP30 has been found to be the more resistant
of the two to degradation. This is the process whereby the polymer solutions
progressively lose their ability to reduce drag, due (presumably) to the scission
of the individual molecules under shear. Degradation is irreversible, except
possibly in the case of certain soaps and association colioids (Little et al.
1975).

At this stage we should consider what is to be our criterion for deciding
whether a polymer solution is concentrated or dilute. In practice it is usual to
introduce a critical concentration Cyin the following way. Let us characterize
the random-coiling molecules in solution by their mean radius of gyration Gy,.
Then, if we imagine each molecule to be replaced by a sphere with radius equal
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Fig. 3.15. Variation of drag reduction with polymer concentration in pipe flow at
R = 4.5 x 10* (McComb and Rabie 1982): m, Separan AP30; e, Polyox WSR301.

to Gy, we define Cg to be the concentration at which the imagined spheres
would just touch (that is, when they would be close-packed).

The critical concentration supplies the necessary basis for our criterion.
Suppose we have C > C, then it follows that molecules will tend to interact
directly with each other, and we shall call such a solution concentrated.
However, if C < Cg then molecules will tend to interact indirectly, using the
solvent as an intermediary, and naturally we refer to such solutions as being
dijute (Merrill, Smith, Shin, and Mickley 1966).

Drag reduction can be obtained when the polymer concentration (by
weight) is very much smaller than the critical value. However, Lumley (1973)
has suggested that this can be somewhat misleading. If, instead of using
weight-based concentrations, we work out the volume fraction occupied by
the polymers—using the imaginary spheres with radius G, referred to above
—then this can take a much larger value.

A second misleading aspect of these dilute polymer solutions is the observa-
tion that they are almost indistinguishable from the pure solvent in terms of
the values of physical properties like density and viscosity. In fact, these
quantities are normally measured in simple shearing flows. If instead the flow
is extensional (i.e. tending to stretch, rather than rotate, the fluid), then the
associated (extensional) viscosity can be many orders of magnitude larger than
the shear viscosity. This anomalous behaviour can be deduced in a qualitative
way by dipping a finger into such a solution and noting that, as you withdraw
your finger, the fluid tends to form strings. More qualitatively, Metzner and
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Metzner (1970) have measured the response to extensional stress of polyacryl-
amide solutions at a concentration of 100 wt ppm, and found an extensional
viscosity several times larger than the steady state shearing viscosity.

It would seem reasonable to associate the anomalous extensional viscosity
of polymer solutions with their other form of anomalous behaviour, i.e. drag
reduction. Indeed, such a notion forms the basis of the only convincing
mechanism proposed for drag reduction by long-chain polymers. This is the
idea—put forward in one form or another—that the bursting process which
is responsible for turbulence production supposedly involves extensional
motions which are resisted (or damped) by the very large extensional viscosity
due to the dissolved polymers.

3.4.3 The threshold effect

The occurrence of drag reduction in a system shows up most clearly when we
plot the friction factor f against the Reynolds number R. Referring back to
eqns (1.47) and (1.48), it is clear that eqn (3.83) for the drag reduction in terms
of the reduction in pressure drop can be written as

DR = ( S fA) x 100 per cent, (3.84)
s
where f; is the friction factor as measured in the solvent and f, is the friction
factor measured at the same flow rate when the additive is present.

In Fig. 3.16 we show some characteristic results, as a graph of friction factor
against Reynolds number, for two different pipe diameters. Apart from the
reduction in the friction factor, two other effects are clearly evident. First, the
drag reduction is larger in the narrower of the two tubes. This is usually known
as the ‘diameter effect’. Second, the deviation from Newtonian behaviour
begins at a different value of the Reynolds number in each of the two tubes.
This is a form of what is known as the ‘onset effect’.

The dependence on the diameter is readily explained if the basic mechanism
of drag reduction is some sort of ‘wall effect’. Clearly, the smaller the pipe
diameter the greater the proportionate effect of the wall. However, this is
probably not a very important aspect of the phenomenon, as it has been shown
(e.g. Whitsitt, Harrington, and Crawford 1959; Paterson and Abernathy 1970)
that the dependence on pipe diameter can be eliminated by plotting DR
against the friction velocity, or, in other words, by making comparisons at
constant wall shear stress.

This still leaves us with the onset effect, which can be regarded as a threshold
value of the Reynolds number at which drag reduction will occur. Figure 3.17
illustrates this for Polyox WSR301 dissolved in water. Here the pipe diameter
is now a constant, but the polymer concentration varies, and with it the value
of the Reynolds number at onset.
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Fig. 3.16. Drag-reduction data of Toms (1948), as replotted by Savins (1961), showing

the effect of different pipe diameters: o, pipe diameter = 0.404 cm; a, pipe diameter =
0.129 cm.
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Fig. 3.17. Friction factors for aqueous solutions of Polyox WSR301 in pipe flow,
showing the variation of onset with Reynolds number (Paterson and Abernathy 1970).
m, 1 wt ppm; 4, 5 wt ppm; e, 10 wt ppm; ¢, 50 wt ppm).

As we saw in the preceding chapter, as the Reynolds number is increased,
smaller and smaller length and time scales are excited. Thus it is natural to
seek an explanation of the onset effect in terms of some characteristic scale of
the turbulence becoming small enough for the smallest eddies to interact
strongly with the individual macromolecules.
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Virk, Merrill, Mickley, Smith, and Mollo-Christensen (1967) put forward
the suggestion that drag reduction occurred at a well-defined value of the wall
shear stress, corresponding to the smallest turbulent length scale (the Kol-
mogorov scale) bearing a constant relationship to the mean diameter of the
random-coiling polymers. Taking the former to be represented by the inner
layer length scale (see (1.30) for a definition; it can be shown that this is of the
same order as the Kolmogorov scale), and the latter to be equal to twice the
radius of gyration, Virk et al. (1967) proposed that the onset criterion should
be given by

2Gyu¥
v

=C, (3.85)

where the asterisk denotes the value at onset (and the onset shear stress is
readily calculated from the onset friction velocity) and C’ is the so-called onset
constant. From an analysis of many experimental results, Virk et al. (1967)
concluded that (3.85) held, with the onset constant given by

C’ =0.015 £+ 0.005. (3.86)

From (3.85) and (3.86) it can be seen that the onset of drag reduction is
assumed to occur when the smallest turbulent length is about fifty times larger
than the mean diameter of the polymer, which must raise some doubts about
there being any physical connection between the two length scales.

In fact, Fabula, Lumley, and Taylor (1965) had produced a more physically
plausible criterion based on time-scales. The trouble was that all the evidence
seemed to favour the hypothesis based on the relative length scales. For
instance, Paterson and Abernathy (1970) concluded from an extensive series
of tests that Virk’s onset criterion was confirmed, although they attributed a
greater variation in their values of the onset constant C’ to the polydispersity
of their samples.

To digress briefly, we should note that polydispersity of molecular weights
is just one of several factors which can raise uncertainties about the micro-
scopic nature of the polymer solutions being studied. The presence or other-
wise of supermolecular aggregates, along with the sensitivity of these solutions
to preparation methods and solution history, can all cause imponderable
variations between one set of experiments and another.

For this reason, it is all the more surprising that the ingenious experiments
of Berman and George (1974) were able to pronounce so decisively on the
length versus time-scales controversy. These authors observed the onset of
drag reduction produced by PEO in water alone, and with two different
concentrations (25 per cent and 53 per cent) of glycerine. The glycerine
changed the solvent viscosity dramatically but left the mean radius of the
polymers virtually unchanged. Despite this, in the three experiments onset
occurred at three very different values of the turbulent viscous length scale
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(i.e. u,/v = 940, 671 and 181). In complete contrast, the turbulent time-scale
at onset was constant to well within experimental error.

344 Maximum drag reduction

The existence of viscosity implies a lower bound on the rate of energy dissipa-
tion in a flowing fluid. From this fact we can infer an absolute upper bound
on the amount by which skin friction can be reduced. That is, if we could
eliminate all the turbulent motions, then the skin friction could be reduced
to that for laminar flow at the same Reynolds number. Or, in other words,
the specifically turbulent contribution to the fluid drag would have been
eliminated.

According to Hoyt (1972b), at an early stage in the development of the
subject it was appreciated that there appeared to be an upper bound on the
amount of drag reduction which could be obtained. This upper limit was
found to be independent of polymer type—different polymers simply required
to be used in different concentrations—but it did depend on the Reynolds
number. Studies carried out with many different kinds of polymer (Pruitt and
Crawford 1965, cited as ref. 38 in Hoyt 1972b) showed that the maximum
amount of the drag reduction that could be obtained was about 80 per
cent of the theoretical maximum equivalent to suppressing the turbulence
altogether.

Virk et al. (1967) concluded that an upper limit on drag reduction was a
universal phenomenon, and introduced the concept of the ultimate drag
reduction asymptote. Later, Virk, Mickley, and Smith (1970) produced an
analytical representation of the ultimate drag reduction asymptote in the form
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Fig. 3.18. Friction factors for aqueous solutions of Polyox WSR301 in pipe flow,
showing the trend to the maximum drag reduction asymptote (Paterson and Aber-
nathy 1970): v, 0.1 wt ppm; m, 1 wt ppm; a, 5 wt ppm; e, 10 wt ppm; e, 50 wt ppm).
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f—lﬁ = 19.0log, o(Rf ') — 32.4 (3.87)
which can be seen to be a modification of the logarithmic resistance law for
turbulent flow in pipes, as given by eqn (1.49).

In Fig. 3.18 we show how the results of Paterson and Abernathy (1970) are
bounded from above by eqn (1.49), for the turbulent flow of water, and from
below by the Virk maximum drag reduction asymptote, as given by (3.87).

3.4.5 Drag reduction in fibre suspensions

We have already briefly referred to the natural occurrence of drag reduction
in solid—fluid systems. It takes only a moment’s reflection to realize that this
is likely to prove a very large field of study. As well as the obvious environ-
mental (and, for that matter, physiological) flows, there are many industrial
flow processes which involve droplet—gas or particle-gas or particle-liquid
combinations.

The field is also rather confusing, partly because the effects are normally
very much smaller than in the polymer case, and partly because investigations
in this area are often undertaken as an adjunct of some industrial process and
any possible drag reduction is a secondary consideration. Thus there has often
been controversy over attempts (often long after the investigation was carried
out, and often by others than the original researchers) to decide whether or
not a particular flow showed any evidence of drag reduction.

The reader who wishes to pursue this general subject further will find the
paper by Radin, Zakin, and Patterson (1975) helpful. These authors have
provided a very extensive and analytical review of existing results in solid—
fluid systems. They have also reported an extremely comprehensive investiga-
tion of their own. Their primary conclusion is that fibrous additives with a
length-to-diameter I/d ratio greater than about 25 to 35 would always cause
drag reduction provided that the concentration was high enough. Our interest
here will be restricted to those fibre suspensions which are comparable in
drag-reducing effectiveness to the best polymer solutions.

As we noted earlier, the scientific interest of this phenomenon was greatly
enhanced by the discovery (Ellis 1970) that certain asbestos fibres (prepared
by Turner Brothers Asbestos Company Ltd) could give high drag reductions
at low additive concentrations. Typical figures are 40 per cent drag reduction
at a fibre concentration in water of 100 wt ppm. Thus these fibres are quite
comparable in effectiveness with the best polymers, a result which has been
conformed by subsequent more extensive investigations (Hoyt 1972b; Radin
et al. 1975).

If we summarize the desirable properties of fibres (much as we did for
polymers at the beginning of Section 3.4.2), then experimental results suggest



35 RENORMALIZATION METHODS AND CLOSURE PROBLEM 141

that fibres should be (a) very long and thin, (b) flexible, and (c) well dispersed
(a surfactant may be necessary). Evidently there is a superficial resemblance
between this list and the one for polymers. This might suggest that they are
two aspects of the same phenomenon, that is, that they reduce drag by the
same mechanism. In fact there is evidence that this is not the case and we shall
return to this in Chapter 14.

An additional feature of considerable interest is the result of combining both
macroscopic fibres and drag-reducing polymers in one suspension. Lee, Vase-
leski, and Metzner (1974) found that when both types of additive were used
together they reduced drag by amounts greater than the sum of the two
independent effects. In particular, drag reductions greater than 95 per cent
were obtained in suspensions containing TBA asbestos fibres and Separan
AP30. They also found that these mixed suspensions were much less sus-
ceptible to degradation under shear. These results have been confirmed by
Sharma, Seshadri, and Malhotra (1979), who reported similar behaviour when
a TBA asbestos fibre suspension was injected into pipe flow of drag-reducing
polymer solution, and by McComb and Chan (1985), who used laser-Doppler
anemometry to measure turbulent structure in fibre suspensions.

3.5 Renormalization methods and the closure problem

The term renormalization belongs to quantum physics. It arises when the
discrete formulation for particles is extended to include the case of continuous
fields. Initially this is done by formulating the theory on a lattice (say a cube
of side L, divided into a mesh with links of length [). When the continuum
limit is taken, it is found that certain terms diverge. Renormalization is a
standard method of removing the resulting singularities.

Tt is usual to refer to divergences as L — oo as ‘infra-red’, and naturally
divergences as | — 0 are spoken of as being ‘ultraviolet’. If singularities of either
kind can be eliminated, then a particular theory is referred to as being
‘renormalizable’. Specialist discussions of this subject can be found in Amit
(1984) and Collins (1984). The former reference also considers the extension
of these ideas, through the renormalization group, to critical phenomena.

In this section, we shall first give a brief discussion of other relevant areas
of statistical physics, and consider the precedents for borrowing the term
renormalization in order to describe a systematic way of taking interactions
into account through a quasi-particle approach. We shall then consider the
formulation of the turbulence problem as a branch of statistical physics, and
show how it can be tackled using field-theoretical methods.

However, first we should sound a cautionary note. The analogy between
incompressible fluid turbulence and quantum field theory should not be
pushed too far. There are no intrinsic singularities in the Navier—Stokes
equation, in either its x-space or its k-space forms. The so-called infrared
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divergence of turbulence theory arises (in a very artificial situation) when we
try the Kolmogorov spectrum (2.137) as a solution (for all k) in certain theories
of turbulence.

We shall discuss this problem in some detail in the following chapters, but
for the moment we emphasize that there is only one, rather artificial, infrared
singularity in turbulence, and there are no ultraviolet singularities at all! For
this reason, we would argue that to use ‘renormalizable’ as a description of a
theory is a specific technicality of quantum field theory and (unlike renor-
malization) is not appropriate to turbulence. We note some support for
this view, in that Moiseev, Sagdeev, Tur, and Yanovskii (1984) state
that the divergence associated with the Kolmogorov distribution is ‘non-
renormalizable’, from the field-theoretical point of view.

3.5.1 Renormalization methods in statistical physics

Historically, the subject of statistical mechanics has been successful in treating
the case of the perfect gas, where the constitutent particles do not interact with
each other. The Hamiltonian H for such a system can be written as the sum
over the degrees of freedom of single-particle Hamiltonians:

p2
H= i (3.88)
Z.: 2m,
where p, and m, are the momentum and mass respectively of the ath particle.
The index o is summed up to N, for a system of N non-interacting particles.
In an interacting system, the total Hamiltonian can be expected to take a
more complicated form:

H=Zm+§mm (3.89)

where H, is the single-particle Hamiltonian, as in (3.88), and H,; may involve
(for example) a potential which depends on the coordinates of several particles.
A standard method of approach to many-body problems is to try to replace
the interaction term by the average effect of all the other particles on the ath
particle. The result can be a first approximation to (3.89) in the form

H=Y H, (3.90)

where H, is the effective Hamiltonian for the ath quasi-particle. Each of the
N particles is therefore replaced by a quasi-particle, and each of these has a
portion of the interaction energy added on to their single-particle form.

The immediate benefit of this method is that we can treat the system as a
perfect gas of quasi-particles, with total Hamiltonian given approximately by
(3.90). Thus statistical mechanics can be used to obtain the macroscopic
properties of the system. :
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Of course, turbulence is dissipative, which means that some of specific
points made about other, conservative, physical systems will not be directly
applicable. Nevertheless, it may be instructive to consider possible analogies
with other problems which involve interactions and, before returning to
turbulence, we shall consider two examples of the successful use of the quasi-
particle method.

Our first example is the motion of conduction electrons through a metal.
Here it is possible to neglect the interaction between the electron and the
periodic (lattice) potential by replacing each electron, of mass m, by a quasi-
particle of effective mass m’. In general, m’ will not be the same as the electron
mass, and may even be negative. Ter Haar (1958) refers to m’ as a renormalized
mass.

As a second, and in some ways, more relevant example, let us consider an
electron in either a plasma or an electrolyte. It was found by Debye and Hiickel
(as long ago as 1923) that the cloud of charge surrounding a single electron
screens the Coulomb potential, so that the effective potential at a point be-
comes (in appropriate units)

V(r) = qeff/ra (391)
where the effective charge is given by
’
Gerr = 4 €XP ( _Z> (3.92)

Here ¢ is the ‘bare’ electron charge and A is the Debye—Hiickel length, which
depends on the number density of electrons and on the temperature. Thus the
introduction of an effective charge allows the interaction potential to be
replaced by a quasi-single-particle potential.

The Debye-Hiickel result was obtained as a rather phenomenological
theory. Nowadays this problem is treated systematically through perturbation
theory, and the Debye—Hiickel screened potential can be recovered as a first
approximation of the more general method. We shall treat these matters in a
little more detail in Chapter 5, but it is of interest to observe here that Balescu
(1975) refers to the partial summation of the perturbation series that leads to
the screened potential as a renormalization process, and remarks that the
name stems from a loose analogy with the renormalization process of quan-
tum field theory. A more extensive discussion of the same point has been given
by Prigogine (1968).

This is the way in which we shall use the terminology in this book. We shall
refer to any systematic procedure which replaces a bare quantity plus inter-
actions by a ‘dressed’ quantity without interactions as a renormalization
process. The dressed quantity will accordingly be regarded as the renor-
malized version of the bare quantity. At its simplest, in the context of turbu-
lence, this will mean that the molecular viscosity of the fluid will be the bare
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quantity, and the effect of turbulent interactions will be taken into account
through a renormalized viscosity. But, as we shall see, more general inter-
pretations will be possible.

3.5.2 Renormalized perturbation theory

The application of renormalized perturbation methods to turbulence was
begun by Kraichnan in a series of papers during the late 1950s, cuiminating
in the direct interaction approximation (DIA) (Kraichnan 1959). At the time,
the main claim of the DIA was that it did not suffer from the flaws of the
quasi-normality hypothesis (see Section 2.8.2)—in particular, it did not pre-
dict negative spectra—and accordingly it was seen as a great advance.

We shall return to a detailed discussion of DIA, and other subsequent
theories, in the next few chapters. Here we shall only give a rather simple
introduction to the subject, and we shall base this, very loosely, on the
formalism of Wyld (1961).

Let us first take a simple-minded look at the failure of quasi-normality. As
we have seen, the essential hypothesis is that the third-order moment can be
calculated on the assumption that the even-order moments are related as if
the velocity had a Gaussian probability distribution. Yet, strictly, the existence
of a non-zero third (or any odd-order) moment would be incompatible with
such a distribution. On that basis, the failure of quasi-normality seems only
to be expected (but, see the less simplistic discussion of this point in Section
2.8.1).

In a sense, this illustrates our underlying dilemma. We can only work out
the general relationships between moments for a Gaussian distribution, yet
the very essence of turbulence is its non-Gaussianity. The particular way in
which this problem is resolved lies at the heart of any modern turbulence
theory. In what follows, we shall consider one fairly general way of doing this.

We shall formulate our approach as a ‘thought experiment’, which we shall
set up in the following way. We imagine a fluid stirred up into turbulence by
some arbitrary forces. Initially the non-linear terms are to be thought of as
‘switched off’. Then at some later time we switch them on and observe what
happens.

First we have to specify our arbitrary stirring force. We represent its Fourier
components by f,(k,t) and take it to satisfy the continuity condition in the
form of eqn (2.74):

k.f.k,t)=0. (3.93)

We shall also take f,(k,t) to have a Gaussian probability distribution, with
autocorrelation w(k, t) given by

3
(%) Sk, ) fp(—k, 1)) = Dyg(K)w(k, ¢ — ). (3.94)
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It should be noted that we are also taking the random stirring forces to be
both stationary and isotropic.

Now we consider the Navier—Stokes equation with the random force added
on as an external driving force. That is, we write eqn (2.76) as

2
7 vk2> u,(k, )
<5t (3.95)
= fulk, 1) + AM,5,(k) 3. ug(h, Dy (k — 5, )
H

where 1 is a bookkeeping parameter and is put equal to unity at the end of
the calculation.

First, however, we examine the effect of putting 4 = 0. Without the non-
linear term, the response of the fluid is determined solely by the molecular
viscosity (and of course by the continuity condition). Thus the stirring force
could be expected to induce a velocity field ul”(k, t) given by

ulOk,t) = Jdt’ exp{ —vk*(t — t")} fu(k, 1) (3.96)

where the superscript zero indicates that (3.96) is the solution of (3.95) with
A=0.

Now for what follows, we shall use a very symbolic notation. We shall drop
all labels, except those that are absolutely necessary. Thus (3.96) becomes

u® = GOy, (3.97)

where G stands for the Green function of eqn (3.95) with 4 = 0, and it should
be clear that the wavenumber label is the same for each of the three functions.
Where we have combinatorial expressions involving many wavenumbers we
shall just use integers to distinguish one from another. An example of this
arises straightaway. It follows from (3.97) that the u‘® are also normally
distributed and therefore we have the rigorous result (see Section 2.8.2)

WO u®Q2)...u9n)) = 0,if nis odd, (3.98)

and, combining the homogeneity requirement (in the form of eqn (2.83)) with
the factorization properties of even-order moments, we also have

WU Q) = 6,,0°(1) (3.99)
<u‘°’(1)u‘°’(2)u‘°’(3)u‘°)(4)) — 512534Q(0)(1)Q(0)(3) +
+ 513524Q(0)(1)Q(0)(2) +
+ 6,40,300(1)0V(2), (3.100)

where the numbers 1, 2...nimply wavenumbers k, k,, ..., k,, and analogous
formulae hold for all higher even-order moments.
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Our thought experiment is completed by switching on the non-linear terms.
The effect of this is to couple modes together. If we do this at t = —oo, then
any mode u©(k, ) will first be coupled to modes u'?(k,) and u‘®(k;), and then
to uO(k,), u'®(k,), and u'®(k,), and so on. Ultimately the exact velocity field
u(k) will be generated and, because of the mode coupling, u(k) will be perturbed
away from a Gaussian distribution.

We can summarize this by writing down the perturbation series

u(k) = u@k) + u (k) + u@k) + ... (3.101)

Here the fields u‘”(k) and u(k) have a clear physical interpretation. In contrast,
the higher-order terms on the r.h.s. of eqn (3.101) are merely combinations of
the u” field at various wavenumbers, representing ever higher orders of mode
couplings. We obtain uV, u®, ... by an iterative process, and this can be done
as follows.

The operator on the Lh.s. of eqn (3.95) can be inverted in terms of the Green
function, and the full equation of motion written in our present highly sym-
bolic form as

u(k) = u k) + GOk)M(k)u(j)uk — j), (3.102)

where the repeated variable j is, of course, summed. The expansion (3.101) is
now substituted into both sides of eqn (3.102), and coefficients of the same
order (i.e. power of 1) equated, with the resulit

uD = GOMY©,© (3.103a)
U = 2GOMy© ), (3.103b)
u® = 2GOMyPy©® 4 GOMy Dy, (3.103¢)

and so on.
The coefficient u'!) is already in terms of u‘® only, and each higher-order
coefficient can be similarly expressed by means of successive substitutions:

uh = GOMu Oy, (3.104a)
U® = 2GOMu‘OGOMu Oy ), (3.104b)
u?® = 4GOMuUOGOMuOGOMY©L© 4

+ GOMGOMuOuOGOMu Oy, (3.104¢)

and so on. Clearly our symbolic notation is glossing over many complexities
of wavenumber and other labels. We shall return to a properly detailed
account of these methods in Chapter 5. Here we wish only to give a rather
simple and rather schematic treatment, which will, we hope, allow the main
ideas to stand out.

Now we use eqns (3.101) and (3.104) to obtain a perturbation series for the
spectral density. We have (still in our symbolic notation)
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Q(k) = <u(kyu(—k)> (3.105)
and, substituting from (3.101),
Q(k) — <u(0)u(0)> + <u(0)u(2)> + <u(1)u(1)> + <u(2)u(0)> +
+ 0(2%). (3.106)

In order to keep things simple, we have terminated the expansion at second
order. We can readily deduce from eqns (3.98) and (3.104) that all odd orders
in (3.106) vanish under the averaging process.

If we now substitute from (3.104) for u™, u® and invoke (3.99) and (3.100),
in order to work out the averages, then it should be clear, in a general way,
that we shall end up with an equation for the spectral density in terms of
zero-order quantities only. This will take the symbolic form

(k) = 09 + GOMMQOQ® + 0(2*), (3.107)

where the second term on the r.h.s. will take a variety of forms according to
how wavenumber (and other) labels are permuted.

Now, if A were a small parameter, then we would have a conventional
perturbation theory for Q(k), and the expansion in (3.107) could be terminated
at any given order, with an error that could be made as small as we wish.
Unfortunately this is not the case here, and ultimately we will have to put
A=1

In the absence of a small parameter, Wyld’s (1961) approach was to study
the properties of the perturbation globally in terms of diagrams. We shall go
into more detail in Chapter 5, but essentially Wyld found that diagrams
representing the various terms of the perturbation series could be divided into
two classes, according to their topology. One of these classes could be summed
exactly, and the other could be partially summed in terms of irreducible
diagrams, in which 0 and G'® had been replaced by the exact forms G and Q.

This then is the process of renormalization as we shall understand it here.
The primitive perturbation series, which is wildly divergent, has been replaced
by a renormalized perturbation series or RPT.

The RPT has, in general, unknown properties, but, even if it did not
converge, it might be some improvement on the primitive series. For example,
it might take the form of an asymptotic expansion. This is something which
will require investigation for each new theory, although, as we shall see, the
difficulties of doing this are generally formidable, and normally one has to be
content with a rather limited comparison with experimental results.

It may seem unsatisfactory that we have to rely on what may be regarded
as matters of pure mathematics in order to obtain a theory of turbulence.
However, it is worth remarking that turbulence is not alone in this, and in
other problems of this type it is not unusual for workers in the field to rely on
the topology of their diagrammatic representations.
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At the same time, the renormalization procedures are not devoid of physical
significance, a matter which we shall discuss in due course. For the moment
it may be noted that eqn (3.106) can be interpreted as an expansion for the
exact energy spectral density in powers of the Reynolds number. In order that
turbulence can exist in the first place, the Reynolds number must be large.
However, a process in which the molecular viscosity is replaced by an effective
turbulent viscosity could result in a renormalized Reynolds number, with (as
we have suggested above) the possibility that the renormalized series is either
convergent or, failing that, asymptotic.

3.5.3 Renormalization group (RG) methods

This technique has recently had some success when applied to problems in
critical phenomena. Such phenomena are characterized by fluctuations on all
length scales, ranging from the molecular to the macroscopic. As the physical
system moves towards a phase transition, it becomes increasingly dominated
by the large-scale fluctuations. At the critical point, the length scale of the
fluctuations is infinite, and accordingly the system becomes insensitive to
changes of scale.

RG involves the progressive scaling away of the shortest wavelengths,
whose effect on the larger wavelengths can be retained in an average form as
a contribution to a transport coefficient. When the system becomes invariant
under these scaling transformations, it is said to have reached a fixed point.
The fixed point corresponds to a critical point.

Of course this method cannot be taken over from critical phenomena and
applied in some prescriptive fashion to turbulence. As Wilson (1975) has
pointed out, the difficulties faced initially in applying RG to a new problem
may seem as formidable as those involved in applying any other technique.
Thus, although various attempts have been made to adapt the method to the
case of turbulence, there are many problems still to be overcome. This field
of activity will be the subject of a later chapter. Here we shall only give a brief
discussion of the general concept of RG applied to fluid turbulence.

We start with a notational change: that is, we replace the symbol v for
molecular viscosity by v,. This is in recognition of the fact that the molecular
viscosity of the fluid is, in the context of turbulent interactions, the bare
quantity which is to be renormalized. We now consider in outline how the
Navier—Stokes equation can be used for this purpose.

Consider the velocity field as represented by the discrete set of components
u,(k, t) on the interval 0 < k < k,, where k,, is the largest wavenumber present
and can be defined through the dissipation integral

© ko
€ =J 2vok2E(kydk =J 2vok?*E(k) dk, (3.108)

0 0

where ¢ is the dissipation rate and E(k) is the energy spectrum.
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We now choose a wavenumber cut-off k, such that k; < k. In practice, we
would have both k, and k, of the same order of magnitude as the dissipation
wavenumber RY, where the superscript indicates that the dissipation wave-
number is based on the bare viscosity. Thus we have

ky ~ ko = k{? (3.109)

where the dissipation wavenumber is given by eqn (2.133) with v replaced
by vy
In principle, RG then involves two stages.

(@) Solve the Navier—Stokes equation on the interval k; < k < k. Sub-
stitute that solution for the mean effect of the high k modes into the
Navier—Stokes equation on 0 < k < k,. This results in an increment to
the viscosity: vo — v; = vy + 0v,.

(b) Rescale the basic variables so that the Navier—Stokes equation
on 0<k <k, looks like the original Navier—Stokes equation on
0 <k <k,

This procedure is then repeated for a wavenumber cut-off k, < k; < ko, and
$O on.

The underlying physics of RG can be summarized as follows. In the viscous
range of wavenumbers, it is reasonable to suppose that the turbulence is
critically damped. That is, any more k in the band k; < k < k, is driven by
energy transfer from modes k < k,, and the injected energy is dissipated
locally by the effects of the molecular viscosity. This offers the hope that
the Navier—Stokes equation can be linearized, and solved, within the band
k, < k < kg, although inevitably this solution is coupled to modes k < k;.

As a result of this procedure, the new Navier—Stokes equation has an
increased effective viscosity in the reduced range of wavenumbers 0 < k < k;.
If we then define an effective dissipation wavenumber k{* for the new Navier—

Stokes equation
¢ \ 14 e \ 14
K = <_3> <k = <_3> , (3.110)
V1 vO

we can repeat the whole procedure for k, &~ k§" and we can again linearize
the suitably scaled Navier—Stokes equation on the interval k, < k < k;.

We shall discuss all these points in more detail later on, but it should not
escape our attention that, from the computational point of view, the RG
procedure is a systematic way of reducing the number of degrees of freedom
in the problem.
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4

STATISTICAL FORMULATION OF
THE GENERAL PROBLEM

We have seen that fluid turbulence can be regarded as a problem involving a
random field u,(x, t). Or, as we also saw in Section 3.3.1, Fourier transforma-
tion can provide us with a formulation in terms of many degrees of freedom:
that is, the Fourier components u,(k, t). Naturally, this latter interpretation
leads us to view the turbulence problem from the point of view of the subject
of statistical mechanics. This will be the dominant theme of this chapter,
although we shall not entirely neglect the ‘field’ interpretation (still valid in
k-space, especially if we take the limit L — o).

In the first part of the chapter, we shall attempt to assess the turbulence
problem in the context of statistical mechanics. This will be done against the
background of a summary treatment of the classical N-body problem. Then
we shall give the functional formalism for turbulence, followed by a discussion
of the criteria to be satisfied by a theory of isotropic turbulence.

4.1 Turbulence in the context of classical statistical mechanics

Let us begin with some rather general ideas about the formulation of the
statistical theory of turbulence. We shall want to introduce the concept of
phase space, and so, paradoxically, we must work with the continuous field
u,(x, t)—although we are free, if we wish, to discretize the x-coordinate on a
lattice.

The idea of a phase is familiar from the subject of vibrations and waves. A
simple harmonic oscillation takes the form x = A cos(wt + ¢), where (wt + ¢)
is the phase. Clearly one can specify the position of the particle executing
simple harmonic motion by specifying the phase of its motion. In this sense
the phase can be regarded as a coordinate. The idea can be extended to a space
spanned by the velocity and position vectors of a particle, and for N particles
free to move in all three directions we have a space of 6N coordinates. This
is what is meant by phase space.

The time evolution of a dynamical system can be represented by the motion
of its representative point in phase space. To take some specific examples, a
free particle would have an orbit which was a straight line parallel to the x-axis
and which extended to infinity in both directions. A simple pendulum would
have a closed elliptical orbit in a two-dimensional space, and an ideal gas of
N particles would be represented by a single point in a 6 N-dimensional space.
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This representative point would have equal a priori probability of being found
at any position in phase space.

If we refer to the N molecules of ideal gas in their container as a system,
then we can generalize the concept of phase space to accommodate the idea
of an ensemble. That is, we suppose that we have many such systems (the
ensemble), each identical with, but completely independent of, the other. Then
the ensemble can be pictured as a cloud of representative system points in a
phase space of 6N dimensions.

We can use the ensemble to obtain (for example) the most probable of
all the system distributions. To take a specific instance, for the case of the
ideal gas in thermal equilibrium this would be the Maxwell-Boltzmann
distribution. However, before turning to the generalities of classical statistical
mechanics, we shall first consider how some of the relevant concepts can be
taken over into the turbulent case.

The general idea of the ensemble is not too difficult in itself. If we take the
case of isotropic turbulence in a cubical box of side L, then this forms our
basic system and clearly an ensemble can be defined as consisting of many
such (identical) boxes. Now let us consider the question: what is the probability
that at a particular point x, and time ¢, the velocity field u(x, t) takes a value
which lies between v, and v, + dv,?

(As an aside, we note that this is a formally correct statement, but that we
shall in future often just refer to the probability that the velocity takes a
particular value v,. This should always be understood to be an abbreviation
of the full statement, which amounts to the requirement that the velocity lies
between two particular values, separated by an infinitesimal amount.)

The answer to the question can be given in terms of the one-point distribu-
tion function p,(x,,v,,t). That is, the probability that u(x,, t) lies between v,
and vq + dv, is

p1(xy,vy; ) dv = (Ou(xy, ) — vy ). (4.1

Here the delta function can be thought of as the distribution for any one
system, whereas p, is the mean distribution which is obtained by averaging
over all members of the ensemble.

Similarly, the two-point distribution can be written as

P2(X1, V1, X5, V55 8) = (S(u(xy, 1) — vi)o(u(x,, 1) — v, ) 4.2)

and so on, to any order. It follows at once from the definitions above, that we
can write down the following relationships:

fpl(ul)dul =1, (4.3)

fpz(“1,“2)duz = p;(uy), 4.4)
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and, in general,

pS(u19 Uz,..., uS) = Jd“s“ e Jdunpn(ul’u27 s U lUgyg . un) (45)

where we have suppressed all x variables for conciseness.

Lastly, if we wish to study the continuous field u(x, t), then we must consider
the limit n — oo, where the discrete set of points {X,,X,, ..., X,} is replaced by
the continuous variable x. Then we define the functional (i.e. function of a
function) probability distribution of the velocity field as

Plu(x,t)] = lim p,(u,,u,,...u,). (4.6)
n-*o0
This will be our standard notation for functionals. We shall return to the
problem of obtaining the functional probability distribution for turbulence
after a short digression in order to summarize some of the main results of
classical statistical mechanics as applied to systems of particles.

4.1.1 Statistical mechanics of the classical N-particle system

The subject of statistical mechanics is normally restricted to those systems
whose microscopic components obey Hamilton’s equations. Naturally this
also restricts the strict relevance of the subject to the study of fluid turbulence.
Nevertheless, we shall find it helpful to review this background material, as
a number of analogies can be drawn and it provides a frame of reference,
so to speak, within which the statistical dynamics of turbulence can be
analysed.

Let us consider a closed system containing N particles. The state of the
system at any time can be specified in terms of the N-particle distribution
function Fy. This can be regarded as a generalization of the distribution
functions described above, where now we are interested in the probability that
at time ¢, particle 1 is at the position x, and has the velocity u,, and so on for
all N particles. We can write this in abbreviated notation as

FN(x17x2,"'xn; ul’u2""un; t) = FN(X,U; t) (47)

The traditional way of obtaining the governing equation for Fy is to argue
that the number of systems in the ensemble is conserved and that Fy should
satisfy the equation of continuity in phase space (compare the equivalent resuit
for fluid continuity in real space, leading to (1.1)). Then (Woods 1975) we have

OF,

a—tN + V- (FyV) =0, (4.8)
where the velocity in phase space takes the generalized form V = (x,@). This
can be written more compactly as
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dF,
N0

T , 4.9)

where the total derivative denotes the time rate of change as one follows
a representative group of points through phase space. This is Liouville’s
equation and it is the central equation of statistical mechanics.

The same result can be reached by considering the time evolution of the
microscopic constituents of the system, each evolving according to Hamilton’s
equations (see Goldstein 1953). First we make the change to generalized
coordinates q,, p,, which are the canonically conjugate position and mo-
mentum coordinates of the nth particle. Then, introducing the abbreviated
notation

(91,925 -Qu; P15 P25 - Ps) = (@, D), (4.10)

we can write the time dependence of the system (Balescu 1975) in terms of the
Hamiltonian H, which i$ the sum of all the single-particle contributions (see
eqn (3.88):

Fy(q,p; 1) = Fy(q, p; 0) exp(H). (4.11)

We note that the Hamiltonian H is usually (but not always) the total energy
of the system.

Liouville’s equation can be expressed in terms of the Hamiltonian either by
transforming variables in eqn (4.8) (see Woods 1975, p. 112) or by direct

differentiation of (4.11) with respect to time (see Balescu 1975) to obtain
OFy _ & (0HOFy J0H 0Fy
ot - n=1 aqn apn apn aqn

= [H(q, p), Fx(g. P)]; (4.12)

where Hamilton’s equations have been invoked in order to eliminate the
partial derivatives with respect to time on the r.h.s,, and the compact repre-
sentation of the r.h.s. using square brackets is known as a Poisson bracket.
Formally, the r.h.s. of eqn (4.12) can be written in terms of the Liouvillian L,
which is defined by the relationship

LFy =[H, Fy], (4.13)

and the time evolution of the system can now be written with equal formality
as

Fy(q, p; t) = Fy(q, p) exp(Lt). (4.14)

For Hamiltonian systems, eqns (4.14) and (4.11) are equivalent. However,
Balescu (1975) has pointed out that the Liouvillian is a good basis for generali-
zations, even for systems where the Hamiltonian does not exist. This is a point
to which we shall return later, but for the moment we shall briefly consider
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the question of generalization to the case where the system is Hamiltonian
but interactions are present (i.e. between individual molecules owing to long-
range potentials).

We have already touched on interacting systems in Section 3.5. We shall
use a slightly different notation here, but there should be no confusion as we
are only interested in general formulations at this stage and not in renormali-
zation or the quasi-particle picture.

In the interests of conciseness, we shall write the canonical position co-
ordinates and momenta of the nth particle as

Xy = (qn, Pr)- (4.15)

As in Section 3.2, we represent the Hamiltonian of the system as the sum of
single-particle Hamiltonians plus an interaction term which we take to be a
two-particle form. That is, the total Hamiltonian is assumed to be

N N
H(xp,...,xy) =Y H(x,)+ Y H(XpXp) (4.16)
n=1 n<m=1
We could also include the case of an external field, but, from our present
point of view, that would be an unnecessary complication and we shall not
pursue it here.
It follows, by inspection of eqns (4.12), (4.13), and (4.16) that we can general-
ize the Liouvillian to the case of N interacting particles:

N N

L(xy,...,x,)=Y L,+ Y L,, 4.17)
n=1 n<m=1

where the functional dependence on the canonical variables is now indicated

by subscripts. The corresponding generalization of Liouville’s equation fol-

lows at once from (4.12) as

oFy, X N
——=> LFy+ Y L,.Fx (4.18)
6t n=1 n<m=1

Now Fy(x,,...,xy) contains all the information that in principle one could
ever possess about the system. That is, one would literally know the position
and momentum of every particle at all times. So, as in all statistical problems,
we want to reduce a great mass of indigestible information to a more tractable
(and more interesting) form. We shall close this section with a few remarks on
the use of reduced distribution functions as an organized way of providing a
more coarse-grained description of the system.

In the preceding section, we have already met the hierarchy of one-point,
two-point, and, in general, S-point distribution functions for the turbulent
velocity field. For the case of the N-body problem which we are discussing
here, we know (unlike the turbulent case) that F, provides all possible informa-
tion about the system. Accordingly, all lower-order distributions can be
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obtained by integrating Fy over a particular set of the dependent variables
{x1,...,xy}. Thus the S-point distribution function becomes (as a generaliza-
tion of (4.5) for the turbulent case)

Fo(XgsnnsXg) = fdxsﬂ...jdeFN(xl,...,xN). (4.19)

As all the f; (for all S) are obtained by reduction of Fy, they are (in this context)
called reduced distribution functions.

Thus the state of the system can be specified by the set of reduced distribu-
tion functions

f= {fo’f1(x1)’fz(x1axz)~~~fN(x1,~-wa)}a (4.20)

where f is known as the distribution vector of the system and fy = Fy.

As Fy satisfies the Liouville equation, we can readily derive an evolution
equation for the reduced S-point distribution function. From (4.19) and (4.18),
we can show that

afS S S S
A, Z Lnfs + z Lywfs + nzl dxgii Ly si1fset- (4.21)

ot n=1 n<m=1

The sting here is, appropriately enough, in the tail. The last term on the r.h.s.
contains fg.,. Thus, as with correlations in the Navier—Stokes case (see
Sections 1.2 and 2.2.1), we are faced with an open hierarchy, and indeed one
which can also be formulated in terms of correlations (Balescu 1975), although
we shall not pursue that here.

This open set of equations is known as the Bogoliubov—Born—-Green—
Kirkwood-Yvon (BBGKY) hierarchy. It can be closed by making assump-
tions about the way in which distribution functions can be factorized, with
obvious analogies to be drawn with the quasi-normality procedure in turbu-
lence (see Section 2.8.2). However, from our present point of view, we shall be
more interested in an alternative strategy: the development of kinetic equa-
tions. This will be the subject of the next section. We close this section with
two observations, which we shall include in the interests of completeness.

First, we should note that Lundgren (1967) has given a BBGKY-type
treatment of turbulence in which the multipoint distribution hierarchy is
derived from the Navier—Stokes equation. A comparison with the molecular
case suggests that the turbulence can be intepreted in terms of ‘particles’ which
interact through non-central velocity-dependent force potentials. This is an
interesting interpretation which might merit more attention.

Second, from time to time there is sporadic interest in the question of
whether one should bypass the Navier—Stokes equation altogether, and for-
mulate the turbulence problem directly from the molecular level. To most
people, the fact that the smallest turbulence length scale is enormous when
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compared with molecular scales would seem to render this kind of approach
rather academic. This is the view taken here, although we shali feel obliged to
re-examine the question later on, when we discuss the possible application of
lattice gas models to the numerical simulation of turbulence. In the meantime,
we cite the work of Lewis (1975, 1977) and Montgomery (1976) as representa-
tive examples, purely for completeness.

412 Kinetic equations in statistical mechanics

If we consider the case of the classical gas of point particles in equilibrium,
then the theoretical problems become rather trivial. For example, the single-
particle distribution is independent of position coordinates and its depen-
dence on momenta is given by the well-known Maxwellian distribution (i.e.
exp(—p?/2mkT)), where m is the mass of the particie, k is the Boltzmann
constant, and T is the absolute temperature. The N-particle distribution
function Fy is just the product of N single-particle distributions, from which
it follows that all reduced distribution functions factorize into products of
single-particle functions.

The next level of difficulty is the non-equilibrium case (followed by the
inclusion of long-range interactions, which will be treated in Chapter 5), where
we are interested in the time dependence of the system. Nowadays, the whole
subject of the time evolution of statistical systems is a very active field of
research (Prigogine 1968) but we shall restrict our attention to the traditional
ad hoc kinetic equations, such as the Boltzmann and Fokker—Planck equa-
tions. This is not because these equations are immediately applicable to the
turbulence problem. Rather, it is because they suggest analogous approaches
to turbulence, and (perhaps more than anything) we shall find it helpful to
know the relevant terminology when we come to consider the actual turbu-
lence theories.

We shall begin with the Boltzmann equation, and so we now consider the
ideal gas away from equilibrium. We assume that particles interact through
a repulsive potential which is effective at short range. In other words, particles
interact through collisions.

Let f(q,v; t) be the number of particles with position coordinate between q
and q + dq and with velocities in the range [v — dv/2,v + dv/2]. Evidently f
is simply related to the single-particle distribution function f;(q, p; t). From
eqn (4.19), with S = 1, we have a defining relation for f:

filgp 8) = m*f(g,v; 1), (4.22)

where we make the change from momentum to velocity (hence the factor m3),
as independent variable, in order to conform with convention. The evolution
equation for f can be deduced from (4.21) and (4.22).
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Firstly, where there are no interactions, it is trivial to show that f satisfies

6f=

— =1 423
or in full, showing the convective derivative,
0
a—{ +v-Vf(q,v; 1) = 0. (4.24)

In the absence of long-range interactions, we consider the effect of point
collisions. We can argue that two kinds of collision are of interest to us. First,
those particles which already have velocity v may collide with other particles,
with the result that their velocity changes. We would regard these collisions
as being responsible for a ‘loss’ of particles from the set of particles of velocity
v. Conversely, particles whose velocity is not v may acquire that particular
velocity through collisions. Hence, such collisions would cause a ‘gain’ of
particles to the set with velocity v.

In all therefore, one can generalize eqn (4.24) to include the effect of
collisions:

of . .

m + v-Vf(q,v; t) = rate of (gain — loss) due to collisions. (4.24a)
The r.h.s. can be calculated from a mechanistic analysis of hard-sphere colli-
sions, with some probabilistic assumptions thrown in. For instance, on
grounds of relative probability, one can neglect three-body (and higher) orders
of collision, in comparison with the two-body, or binary, collision.

Full details can be found in Woods (1975) or Balescu (1975); here we shall
summarize only the main results of the calculation. Consider the probability
that a particle with velocity v collides with a particle which has velocity v,
such that after the collision there are two particles with velocities v’ and
v, and denote the associated density by p(v,v,|v, V), where p must be sym-
metric under interchange of initial and final states. Further simplify matters
by imposing a restriction to spatial homogeneity, with the implication that
the dependence of f on q drops out, as does the convective term. Then the
Boltzmann equation can be written as

?L(v’ ) = Jdvl deP(V,Vl V', ¥1) %

ot
x {f(V)f V) — fWfv)} (4.25)

where we have suppressed the explicit dependence on ¢ on the r.hs. in the
interests of conciseness and the angular integration (with respect to w) is over
all possible scattering angles.

An important probabilistic argument is that the two-particle distribution
function can be factored as
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fa= f1f1’ (4.26)

which can only be the case if correlations between the motions of the two
particles are zero. In general this cannot always be true. However, the postu-
late that it is true led to a significant advance in the subject of non-equilibrium
statistical mechanics, and is known as Boltzmann’s stossahlansatz, or assump-
tion of molecular chaos.

Our next topic is the more general one, where the time evolution is governed
by a Markov process, that is, a stochastic process where memory effects are
not important. We can then obtain the master equation, which can be solved
(at least in principle) for the single-point probability distribution and which
has many applications in chemistry, biophysics, and population dynamics, as
well as physics. Here we shall find the specific application to Brownian motion
particularly helpfui to our later discussions of turbulence.

Let us return to our multipoint joint probability distribution function, as
in (4.5) or (4.18). We are now interested in the generalization to the probability
that a continuous variable X takes on specific values x, at time t = ¢,, x, at
time t = t,, and, in general, x, at time ¢t = t,, which we write as

.f;l(xl’ tl’ x29 tZa e xn’ tn)

We shall introduce the conditional probability density (see Appendix B)

p(xy,t11x2,t5),

which is the probability density that X = x, when t = t,, given that X had
the value x, at time ¢, < t,, and is defined by the identity

S Dp(x g, 8 X0, 1) = fH(x, 85 X, 85). (4.27)

Then, from the reduction property of the multipoint distributions (see (4.19))
and from (4.27) we can obtain a general relationship between the probabilities
at different times as

Jilxa,tp) = fp(xutﬂxzatz)f1(x1,t1)dx1- (4.28)

Now we introduce the idea of a Markov process. We define such a process
formally in terms of the conditional probabilities. If :

p(xl s tl; X2, t2; v Xp-15 tn—l |xm tn) = p(xn—l > tn—l |xm tn)’ (429)

then the current step only depends on the immediately preceding step and not
on any preceding ones, and the process can be said to be Markovian.

It follows that the entire hierarchy of probability distributions can be
constructed from the single-point form f)(x,,t,) and the conditional prob-
ability distribution p(x,,t,|x,,t,). This latter quantity is also known as
the transitional probability. It can be shown to satisfy the Chapman-—
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Kolmogorov equation:
p(xy,Lylx3,83) = fp(xl,tl|x2,tz)p(xz,t2|x3,t3)dx2. (4.30)

We note that this equation tells us that the probability of two successive steps
is just the product of the separate probabilities for each of the two steps. In
other words, the two successive steps are statistically independent.

For a chain which has small steps between events, the integral relation of
(4.30) can be turned into a differential equation known as the master equation.
This is obtained (Reichl 1980) by expanding time dependences to first order
in Taylor series, with the result

) [, (Wess )i = Wl )], @3
where W(x,, x,) is the rate (per unit time) at which transitions from state x,
to state x, take place.

If, as in the turbulent cases which we shall be considering later, X is a
continuous variable, then we can further derive the Fokker—Planck equation.
That is, for the continuous case, eqn (4.31) reduces to

ofilet) _ 0{AM)fi(x, 0} n 0% {B(x)f,(x,0)}
o dx Ox2 :

(4.32)

If we ignore the first term on the r.h.s., then (4.32) has the form of a diffusion
equation with diffusion coefficient (or diffusivity) B, which would seem to
suggest an underlying random walk process. Then the first term on the r.h.s.
could be plausibly interpreted as a damping or friction effect, as normally
encountered in dynamical systems. We can pursue these aspects—along with
some other useful ideas— by briefly considering the application of the above
formalism to the problem of Brownian motion. This is the irregular movement
seen when small particles are suspended in a fluid and is due to the molecular
agitation of the fluid.

On the microscopic scale, the effect of the molecular collisions on a
Brownian particle can be represented by a random force # (t), which we shall
take to have known statistics. On the macroscopic scale, the net effect of the
surrounding fluid will be the viscous resistance to flow, which we assume to
be linearly proportional to the velocity of the particle. Thus Newton’s second
law yields for the motion of a Brownian particle
6—0 = —bv+ F(1), (4.33)
ot
where v is the velocity and b is the friction coefficient. Equation (4.33)is known
as the Langevin equation, and will turn up again, at a later stage, when we
consider renormalization group approaches to turbulence.
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Now we specify the random force % (t) in terms of its statistics. We begin
by taking it to have zero mean when averaged over the ensemble of all the
Brownian particles:

(F())=0. 4.34)

Hence, if we average each term of (4.33), it follows from (4.34) that the
macroscopic resistance law holds in the mean. ’

Second, we assume that % (t) has a Gaussian probability distribution and
is, moreover, highly uncorrelated. That is, collisions at different times are
statistically independent.

We express these properties in a rather extreme way by taking the auto-
correlation of # (t) to be given by a Dirac delta function

(FOF ) = hd(t —t'), (4.35)

where h is defined more generally by the relationship

h= f(ﬁ”(t)) de. 4.36)

We now solve (4.33) as an initial value problem with given conditions
v="V at t=0,

with the result that v at any time is given by

t
v(t) = Vexp(—bt) + exp(—bt) J dt’ exp(bt")F (t). 4.37)
4]
Then, squaring each side of (4.37) and averaging term by term, we obtain the
variance of the random velocity as

(v?y = VZexp(—2bt) + 2—hb{1 — exp(—2bt)}, (4.38)

where the use of eqn (4.34) ensures that terms linear in the random force vanish.
We note that the dispersion of the Brownian particles is determined by their
initial velocity at short times, but at longer times the variance of the velocity
approaches the asymptotic value h/2b, which is entirely determined by the
properties of the molecular collisions.

Application of the Fokker—Planck equation to the same problem allows us
to identify the coefficients as

A@) = —bv (4.39)
and
B(v) = h, (4.40)

where we have replaced x by v. The friction coefficient b can be obtained from
macroscopic flow experiments, and we can use the fact the time evolution is
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towards thermal equilibrium to fix 4 in terms of the Boltzmann constant and
the absolute temperature (Balescu 1975).

Obviously this expedient is not open to us in turbulence. However, as we
shall see later, we can to some extent replace the concept of thermal equi-
librium by statistical stationarity. Then the rate of doing work on the system
(the analogue of /) can be equated to the energy dissipation rate.

413 The difficulties involved in generalizing statistical mechanics to
include turbulence

So far we have discussed the classically successful areas of statistical mechan-
ics, where systems are either in, or near, thermal equilibrium. In such cases
the total energy of the system is constant, and we are interested in the way in
which it is shared out among the many degrees of freedom. The fact that the
sharing-out process may change with time (slightly non-equilibrium systems)
need not cause any problems, as generally one can find a small parameter
upon which to base a perturbation expansion. Usually an approximate treat-
ment of this kind will depend on the existence of widely separated and distinct
length scales or time-scales (Woods 1975). For example, in the dilute gas with
weak interactions, the duration of an intermolecular collision is much shorter
than the time between collisions, and the ratio of one to the other provides
the necessary small expansion parameter.

In complete contrast with the above picture, fluid turbulence is highly
dissipative and characteristically involves a flow of energy through the degrees
of freedom. All length scales (or time-scales) can be seen as being of equal
importance, and, for the case of high Reynolds number, there are very many
such scales. In this respect, at least, the problem of well-developed turbulence
would seem to have much in common with critical phenomena, and this is
a topic which we shall pursue later in connection with the application of
renormalization group methods.

In all, therefore, we can see that turbulence is very far from thermal equilib-
rium, which rules out treatments based on small departures from equilibrium
such as fluctuation—dissipation theorems (e.g. Reichl 1980). It is clearly also
the case that turbulence is unlikely to respond to weak perturbation methods
of the kind used in slightly non-equilibrium situations. Indeed, in view of its
strong non-linearity —which is of the very essence of the phenomenon—this
can be seen as hardly surprising.

Another consequence of non-linearity is the non-Gaussian nature of the
probability distributions. While it is true that the distribution of a single
variable at a single point is approximately Gaussian, it is well known that
experimentally measured joint probability distributions are of a more general
type (Frenkiel and Klebanoff 1967, 1971, 1973; Van Atta and Chen 1968). As,
broadly, the only functionals amenable to any general kind of manipulation
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are the Gaussian forms, it follows that the problems in the way of finding (and
making use of) the general probability functional, as in eqn (4.6), are unlikely
to be trivial.

One way of evading some of these difficultics is to consider the case
of a fluid in which the viscosity is zero. In other words, we take the equa-
tion expressing conservation of momentum to be Euler’s equation (e.g. see
Batchelor 1967) rather than the Navier—Stokes equation. It was shown by Lee
(1952) that one could then derive the Liouville equation.

In the absence of dissipation, other results of classical statistical mechanics
are applicable to the macroscopic random velocity field of the inviscid fluid.
For example, the system will be in thermal equilibrium and there will be energy
equipartition. That is to say, the energy spectral density g(k)—as defined by
eqn (2.97a)—will be constant, independent of wavenumber, and naturally the
energy spectrum E(k)—as defined by (2.101)—will be proportional to the
square of the wavenumber. Also, for small fluctuations about equilibrium, a
classical fluctuation—dissipation theorem can be derived (Kraichnan 1959).

The concept of inviscid equilibrium ensembles must be purely hypothetical,
as far as the macroscopic motion of real fluids is concerned. For instance, the
mere fact of choosing the viscosity to be zero raises the difficulty that the
viscous length scale (see eqn (2.131) also becomes zero, and we are faced with
the problem of an infinite number of degrees of freedom. (It also follows that
we must have an infinite amount of energy in the system.) In practice, we can
easily circumvent this problem by truncating the Fourier representation of
the velocity field at some upper cut-off wavenumber; Lee (1952) has suggested
the inverse of atomic dimensions. The disadvantage is that this is only an
expedient at best and, by its arbitrariness, is just as unphysical is the unmodi-
field system.

(As an aside, we note that the presence of an infinite amount of energy in
the system, as the upper cut-off wavenumber goes to infinity, is not an
ultraviolet catastrophe. Rather, it is a natural consequence of a hypothetical
case where there is an infinite number of degrees of freedom. An ultraviolet
catastrophe would be an infinite amount of energy contained in a finite
number of degrees of freedom.)

Nevertheless, despite its apparent artificiality, Kraichnan (1964) has argued
that the concept of the absolute equilibrium ensemble is important because it
provides a basis from statistical mechanics for the energy cascade in real fluid
turbulence. This is because the presence of viscous dissipation can be seen as
frustrating the endeavours of the non-linear terms to achieve energy equiparti-
tion. More specifically, the local rate of dissipation increases with wavenum-
ber, so that dissipation is (potentially) greatest in those wavenumbers which
invariably have the weakest initial excitation. Thus high wavenumbers must
behave as a sink, so that the non-linear interaction, in attempting to produce
energy equipartition, will instead produce the energy cascade.

The study of inviscid fluid dynamics is a historic part of the subject, and
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many of the results are well known. From our present point of view, the topic
is not worth pursuing very much further here. In the interests of completeness,
we shall just mention a few modern uses of the Euler equation: Kraichnan
(1964) regards the inviscid fluid as providing a special case which acts as a test
of a general theory of the Navier—Stokes equations; Betchov and Larsen
(1981) have shown, by integrating a truncated form of the Euler equation
forward in time, that non-Gaussian probability distributions can develop,
even in the absence of viscosity; Lee (1982) has shown, also by integrating the
truncated Euler equation forward in time, that the inherent unpredictability
of the non-linearity implies the development of mixing, and hence ergodicity.

Before turning to the general functional formalism of the next section, we
should briefly mention one point. The idea of setting the viscosity equal to
zero in order to produce an idealized fluid is not the same as taking the limit
of infinite Reynolds number in a real fluid. This is a topic to which we shall
return again in Section 6.2.7.

4.2 Functional formalisms for the turbulence problem

Ineqn (4.6) we have the formal definition of the functional probability distribu-
tion Plu(x, )] of a turbulent system. In principle, this particular functional
contains all the information one could ever possibly know about the system.
Evidently the major objective of a statistical theory of turbulence can now be
restated as the need to reduce this vast number of information to a tractable
form. (An equivalent restatement would be need to eliminate many of the
degrees of freedom.)

We have seen that the analogous problem in statistical mechanics is tackled
by first obtaining the governing equation for the most general case (the
Liouville equation) and then seeking approximation procedures which lead
to a description of the system in terms of a vastly reduced number of degrees
of freedom. For equilibrium systems one has the canonical distributions,
whereas in the non-equilibrium case one has to resort to kinetic equations.
The latter are only valid for slight departures from equilibrium, and so it
must be appreciated that these particular equations are not directly applicable
to turbulence. Our purpose in discussing them, however briefly, is that the
procedures of classical statistical mechanics may offer us some general guid-
ance, even if only by a rather loose analogy.

In this section we shall take the first steps along this route, in that we shall
give the general formulation of the turbulence problem.

The first functional formulation of the turbulence problem was given by
Hopf(1952), who considered the distribution P[u(x), ] and derived its govern-
ing equation from the Navier—Stokes equation. Later, Lewis and Kraichnan
(1962) obtained the equation for the evolution in time of the more general
functional P[u(x, t)].Paradoxically, their more general treatment is easier to
follow, and so we shall ignore history and deal with the two pieces of work in
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the reverse of chronological order. First, however, we shall make a few remarks
about the characteristic functionals upon which the theoretical approaches
are based.

In Appendix B we deal with the characteristic function m(k) of a distribution
p(x), and note its use as a generating function for the moments of p(x). We
can generalize the definition given there to the case of a distribution dependent
on a vector argument:

m(k) = fp(x) exp{ik-x} dx

= {exp{ik-x}). 4.41)

The scalar product of three-dimensional vectors in the exponent can be
extended to n dimensions. Let f and g be two vectors in an n-dimensional
space. We can write each of them as an ordered set of real numbers in the form

fz{fl’fZ""’fn} g={gl9gz""’gn}a

and the extended scalar (or inner) product of the vectors f and g follows at
once as

(Fgl=figi + 292+ + fudn- (4.42)

If we then take the case where n tends to infinity, such that the vectors take a
limiting form as continuous functions of a variable x, then we can replace f
and g by f(x) and g(x), and the summation in (4.42) by an integration, to obtain
a general form of inner product

[f-gl= J J(x)g(x)dx. (4.43)

In order-to deal with the functionals in the turbulence problem, we must
further make the obvious extension of (4.43) to the case of vector arguments.
In order to do this, we introduce a vector field Z(x, t} which has dimensions
of inverse velocity and which satisfies the condition Z — 0O as |x| — oo. Clearly,
the straightforward extension of (4.43) to vector functions with vector argu-
ments is just

[Z-u] = J Z,(x, tu,(x, t)dx dt, (4.44)

from which it is clear that the characteristic functional can be introduced by
analogy with the definition of the characteristic function given in eqn (4.41).
This takes the form

MI[Z(x,t)] = JP[u(x, 0] exp{itZ~u]} du(x, 1)

= {exp{i[Z u]}> (4.45)
where M[Z(x, t)] is the characteristic functional of the distribution P[u(x, t)].
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The first r.hs. of eqn (4.45) is equivalent to saying that the characteristic
functional M is the functional Fourier transform of P. If we persist in this
interpretation, then we shall have to reckon with the intricacies of functional
integration. However interesting that might be, it would really lead us too far
astray from the problem of fluid turbulence. A better alternative is to interpret
M as the expectation value of the imaginary exponential exp{i[Z-u]}. Then
the functional integration becomes a purely formal operation and the expan-
sion of the exponential in the second r.h.s. of eqn (4.45) generates the moments
of the distribution P[u(x, t)] (see also Appendix B).

This brings us to the reason for working with M rather than P. Quite simply,
it allows us to forget (broadly speaking) the niceties of functional calculus. As
far as integration is concerned, we never have to do anything more than
formally interpret an integration against P as an expectation value (and it can
be shown that this is always well behaved, provided that P is properly
normalized). Differentiation only requires us to remember that a functional
(in the present context, at least) is just a function of a function. The general
operation is simply illustrated by the formula for the nth-order derivative of
the characteristic functional:

"M
5Z(X1 ’ t1)5Z(X2, t2)' . 5Z(xna tn)

= in<u(x1’ tl)u(x27 t2)' . (xm tn) eXp{l[Z ’ u] }>
(4.46)
where 8/6Z stands for the functional differentiation.

The general n-point n-time correlation is obtained by evaluating both sides
of eqn (4.46) at Z = 0. The result is

iT"o"M
5Z(x1’ t1)6Z(X2, t2)' b 5Z(xn’ tn) Z=0 .
(4.47)

<u(x1a tl)u(xb tZ) e ll(Xn, tn)> =

Thus, if we can derive a governing equation for M[Z(x, )], eqn (4.47) can be
used to reformulate the basic turbulence problem back into terms of the
moment hierarchy.

42.1 The space—time functional formalism

We shall base this section on the work of Lewis and Kraichnan (1962). We
should begin by making a clear distinction between their approach and that
of Hopf (1952). Lewis and Kraichnan start from the probability P[u(x, )] that
the velocity has the value u(x,?). In contrast, Hopf’s theory involves the
probability P[u(x), t] that the velocity field is u(x) at time ¢. The former allows
us to obtain correlations at many times (see eqn (4.47) above), whereas the
latter— which we shall discuss in Section 4.2.3—restricts us to correlations of
many space points evaluated at a single time.
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We are interested in the characteristic functional M[Z(x, t)], as defined by
(4.45). We wish to obtain the equation for the evolution in time for this
quantity, and it should be clear that such an equation must be based on the
Navier—Stokes equations. These equations govern the behaviour of the vel-
ocity field u(x,t); and hence, through eqn (4.46), that of the characteristic
functional.

Let us take the incompressibility condition as an easy introductory exam-
ple. This must be satisfied by the velocity field in the form shown by eqn (1.1).
What is the corresponding condition on M[Z(x,t)]?

If we put n =1 in eqn (4.46), then we obtain the first-order functional
derivative of M as

oM
O0Z,(x,1)

Now, from (4.44), [Z - u] is a constant, and so differentiating both sides of (4.48)
with respect to x leads to

= iuy(x, tyexp{i[Z u]}). (4.48)

d{OM/SZy(x, 1)}

=0 4.49
5%, X (4.49)

where we have used eqn (1.1) to eliminate the divergence of the r.h.s. of (4.48).

Equation (4.49) provides a constraint on the characteristic functional. In
order to obtain the evolution equation we employ exactly the same approach
to the Navier—Stokes equation. Writing (1.6) in terms of the fluctuating fields
with zero mean, u,(x, t) and p(x, t), and rearranging, we have

du, O{uug}  0Op N %u,
=——=F 4y )
ot 0xg 0x, 0xg0x,

(4.50)

Now, we derive the time evolution equation for the characteristic functional
by differentiating both sides of (4.48) with respect to the time:

010M/S3Z(x,t)} ./ (du, o
= 1<<6t >exp{1{Z u]}>

2
— 1 _M —_ @_ + Y] a ua X
0xy 0x, 0x530x;4

X exp{i[Z-u]}>, 4.51)

where we have borne in mind that [Z - u] is constant and eqn (4.50) has been
used to substitute for du,/0t.

As we have seen in Section 2.1, the pressure term can be eliminated, along
with the continuity equation. Thus we need to obtain the two velocity terms
on the r.h.s. of (4.51) in terms of the characteristic functional.
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The non-linearity is dealt with by differentiating M[Z(x, t)] twice. That is,
we set n = 2 in eqn (4.46) to obtain
02M

sz oz, (Mt expHIZ ul . 452)

Then, differentiating both sides with respect to x,, and rearranging, we have
for the non-linear term on the r.h.s. of (4.51),

<8{ua ”}exp{l[z u]}> 8{62M/5Z, a(i 08Z(x,0)} @s3)
Xg B

Note that at this stage we are transforming the problem from one that is
non-linear in u to one that is linear in M [u].

The viscous term is easily found. Differentiate both sides of (4.48) twice with
respect to x4, and we have the explicit form

<< *u, >exp{1[z u]}> *{SM/SZ,(x, r)}’ 454)

0x40x 0x,0x,

which just leaves the pressure term in (4.51). As we know this can be eliminated,
we can just leave this in its implicit form and, for compactness, write

T = {ip(x, t)exp{i[Z - u]}. (4.55)
Then, with (4.53), (4.54), and (4.55), eqn (4.51) becomes

00M/OZ,x,0} _ i0{°M/OZ,(x. 0021}  v0*(OM/6Z,(x,0)} _ 0TI
ot 0x4 0x,40x, ox,
(4.56)

The pressure could have been eliminated previously by using continuity,
along with the Navier-Stokes equation, just as we did in Chapter 2. Indeed,
this is what we shall do in the next section, in connection with the spectral
version of the formalism. But here we shall follow Lewis and Kraichnan (1962)
and introduce a testing field Y,(x,t), which satisfies the continuity equation,
such that

0Yy(x, 1)

=0 4.57
0%, : (@.57)

and Y, (x,t) = 0 as |x| - co. Then, using the formula for integrating by parts,

we have
11
Y, 8_ dx = [Y,IT}*, — oY, IMdx
0x, 0x,

=0, (4.58)
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where the last step follows from (4.57) and the boundary condition on ¥, at
infinity.

The elimination of the pressure term can now be accomplished if we form
the inner product of Y,(x, ) with each term of (4.56) and invoke (4.58) to end
up with

J Y00 [6{6M/f;tza(x, D} i@{ézM/ézg(;(, 08Zy(x, 1)}
B

vO*{OM[OZ,(x,1)}
0xp0x,

de dt =0. 4.59)

This is the general functional differential equation for the characteristic func-
tional M[Z], and must be satisfied for all testing fields ¥, which satisfy (4.57).
The most important thing about it is that it is linear, a property which it shares
with the analogous Liouville equation of classical statistical mechanics.

422 The k-space—time functional formalism

In view of the emphasis on spectral methods in many parts of the present
book, it would seem appropriate to discuss the functional formalism in k-space
and time. Although Lewis and Kraichnan (1962) have given the appropriate
generalization in their paper, we shall adopt a different approach here. In
particular, we shall present an approach which allows us to draw freely on
the earlier discussion, and avoids undue repetition. We shall also eliminate the
pressure term at an earlier stage by working with the solenoidal form of the
Navier—Stokes equation.
We begin by introducing the Fourier transformations

Z,(k,t) = JZa(x, t)exp{ik-x} dx (4.60)

and

3
Z(x,1) = <%> JZa(k, t)exp{ —ik x} dk. 4.61)
Note that this Fourier pair bears an inverse relation to our previous defini-
tions for the velocity field. This is apparent from a comparison with either
eqns (2.89) and (2.90) or eqns (D.21) and (D.22).

Defining the Fourier transformation of the Z field as in eqns (4.60) and
(4.61) may seem quite a natural choice when one considers that Z is Fourier
conjugate to u. However, a compelling reason for choosing the arbitrary
normalizations and signs of phases to be as in (4.60) and (4.61) is that it leads
to the important simplification that the functional inner product [Z - u] is form
invariant under Fourier transformation.
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Substituting (4.61) for Z,(x, t) and (D.21) for the Fourier transformation of
the velocity field u,(x, t) into the r.h.s. of eqn (4.44), we find

[Z-u] = <%>3 fdt dx dk dk'Z, (K, t)u,(k, t)exp{i(k — k') x}. 4.62)

Now we have the general result (e.g. see Appendix D)

<%)3 J exp{i(k — k')-x}dx = 5(k — k'), (4.63)

and so, integrating over x and k', we obtain
{Z-u] = J Z,(k, t)u,(k, t)dt dk, (4.64)

which may be seen to be identical with the original definition (4.44), with x
replaced by k.

This is an important result, as it allows us to take over much of the
formalism of the preceding section, merely changing x to k, as appropriate.
For instance, the definition of the characteristic functional embodied in eqn
(4.45) can be extended to the case of Z(k,t) as

M[Z(k,1)] = {exp{i[Z-ul}}, (4.65)

where the functional inner product [Z-u] is now understood to be given by
(4.64) rather than (4.44). Then we can take over the general moment-generating
property of eqn (4.46), differentiating with respect to Z(k, ), to generate the
moment hierarchy in k-space:

"M
0Z(k,,1,)0Z(Ky,1,). .. 0Z(K,, 1,)
= i"Cu(ky, t;)u(ky, t). . ulk,, £,) exp{i[Z - u]}D. (4.66)

As before, we use the flow equations to obtain the governing equations
for the characteristic functional. Again, as an easy example, we obtain the
continuity condition first. We begin by setting n = 1 on both sides ofeqn (4.66),
with the result

oM

5—Z,(T,t) = i u,(k,t)exp{i[Z-u]}), 4.67)

where we have also put k; =k and ¢; =t without loss of generality. The
equation of continuity for the velocity field in k-space is given by (2.74). It
follows that, if we scalar multiply both sides of (4.67) by k, the r.h.s of eqn
(4.67) vanishes and we have
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oM
ky—>"—=0 4.68
P52k, 1) (4.68)
as the required condition on the characteristic functional.
The Navier—Stokes equation in k-space is given by (2.76). We note that
the pressure term has already been eliminated, and rewrite this equation
slightly as

Ju,(k,t - .
ua(;t ) _ —vk2uy(k, 1) + Moy, (k) Y wy(j, uy(k — j o). (4.69)
i
We can derive the time evolution for M[Z(k, )] by using the same general

procedure as in the preceding section. That is, we differentiate both sides of
(4.67) with respect to ¢, and substitute for du,(k, ¢)/dt from eqn (4.69) to obtain

gl [ i)

=i <exp{i[Z ‘] }{ —vk?u,k, 1) +

]

+ My (k)Y g,y (k — i t)}>. (4.70)

We now need to express the r.h.s. of (4.70) solely in terms of the characteristic
functional. For the linear term this is trivial and we simply substitute from
(4.67). The appropriate substitution for the non-linear term is found by setting
n = 2 on both sides of eqn (4.66), along with k, = j, k, =k —j,andt, =, =
t. In this way eqn (4.70) can be reduced to the form

3 M M
et Y MLk 71
{ar v }6Za(k, o= Mg ),Zézﬂ(j, 00Z,(k — 1)’ @.71)

which is the required equation for the characteristic functional in k-space.

423 The Hopf equation for the characteristic functional

The functional formalism for turbulence was originated by Hopf (1952), who
considered the probability distribution P[u(x),t] and the characteristic func-
tional M[Z(x), t]. The relationship between the two is given in the usual way
by

M[Z(x),{] = J Plu(x), ] exp{i[Z - u]} du(x), (4.72)

where this time the functional inner product is
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[Z-u] = JZﬂ(x)uﬂ(x) dx. 4.73)

The problem now is that u,(x) does not depend on the time. This effectively
rules out our previous procedure, where we would have differentiated both
sides of (4.72) with respect to Z,(x), and then differentiated with respect to
time. In dealing with this difficulty, we have to rely on the identity (Hopf 1952)

JP[u(x), tlexp{i[Z u]}du(x) = jP[u(x, 0),0]exp{i[Z-u(t)]} du(x,0),
(4.74)

where the functional inner product, as defined by eqn (4.73), is slightly gen-
eralized to include the case

[Z-u@)] = f Zy(X)uy(x, 1) dx. (4.75)

Thus, from (4.72) and (4.74), we can write the requisite characteristic func-
tional as

MIZ(x),t] = {exp{i[Z-u(t)]}). (4.76)

It should be noted that we can use M[Z(x),t] as a moment-generating
functional, just as we did with M[Z(x,1)] in Section 4.2.1. The only proviso
is that we must now differentiate with respect to Z(x), rather than Z(x, t), and
with this modification eqn (4.46) can be taken over into the present case. As
an example of this process, we note that the continuity condition still applies
to M[Z(x),t] and eqn (4.49), appropriately modified, now becomes

oOMPZ)} _ (4.77)
0xg

With these preliminaries out of the way, the derivation of the time evolution
equation is now quite straightforward. We note that the phase on the r.h.s. of
eqn (4.76) is time dependent and accordingly we can differentiate straightaway
with respect to time. (This can be contrasted with the space—time case, where
we had first to perform the functional differentiation with respect to Z.) The
result is a genuine first-order time evolution equation for M:

oM ) du .
= <,Z - <5;> exp{i[Z- u(t)]}>

= <iZ : <_[;u% — Vp + vVauyexp{i[Z-u(®)]} (4.78)
B

where, as before, we have substituted from the Navier—Stokes equation, in the
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form of eqn (4.50), for du/ot. Again, as before, we obtain expressions for the
linear and non-linear velocity terms in (4.78) by functional differentiation of
M, but this time with respect to Z(x). The final result is

M _, f dxZ,(x) [a{ézM/ 02,X)0Z,0)}

ot Oxg
2
N vO*{OM/OZ(x)} B 6_H]’ 479)
0xp0xg 0x,

where IT is as defined by eqn (4.55) and the functional inner product has been
written out in full.

We conclude by noting that the pressure term can be eliminated by a
permissible arbitrary generalization of Z (Hopf 1952) or by using the sole-
noidal Navier—Stokes equation, in the form of eqn (2.15), and the procedures
of Section 4.2.2.

424 General remarks on functional formalisms

The functional approaches to turbulence can be seen as elegant and rigorous
formulations of the general problem. In this respect, comparisons can be made
with the functional formalism of quantum field theory, in the hope that useful
analogies may be drawn (Monin and Yaglom 1975, p. 757). Unfortunately,
the field-theoretical approach seems to have proved rather barren in the case
of turbulence (see Beran 1968; Monin and Yaglom 1975), although purely
deductive approaches may serve to remind us that the functional and moment
formulations are fully equivalent (Rosen 1967)!

Another view of the functional formalisms is that they may present the
general problem in a different light, so that one may be led to general approxi-
mation schemes which would not be apparent in the moment formulation
(Lewis and Kraichnan 1962). This is close to our point of view in the present
chapter; we hope to follow (by analogy) the route taken in statistical mechan-
ics, in which one starts with a rigorous differential equation (the Liouville
equation) and makes approximations on physical grounds in order to derive
an equation which is approximate, but solvable (¢.g. the Boltzmann equation
or the Fokker—Planck equation). We shall return to these points in Chapter 5.

4.3 Test prdblems in isotropic turbulence

Theorists study isotropic turbulence for the good reason that it appears to be
the simplest non-trivial version of the turbulence problem. From this point of
view, considerations of its ‘relevance’ to practical situations are, in themselves,
irrelevant. Likewise, questions to the effect (often encountered in review arti-
cles), ‘does isotropic turbulence really exist?, are missing the point.
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We would suggest that there are only two general questions about which
we need worry. First, can we formulate the problem (or, perhaps, problems)?
Second, can we make some empirical check of our theoretical calculations?
The purpose of this section is to suggest that the answer to both these
questions is reasonably reassuring.

However, having stated our general position, we should then freely concede
that the concept of isotropic turbulence is rather artificial in that it requires
a property, which is naturally present to some extent in all turbulent flows, to
be the dominant or characteristic property of at least some turbulence fields.
As a consequence, one price we pay for the relative analytical simplicity of
isotropic turbulence is a certain amount of difficulty in checking our results.

Before turning to the formulation of specific test problems in isotropic
turbulence, let us first consider the more typical everyday situation, which is
represented by flow through a pipe. In principle, we would want to solve a
closed form of the Reynolds equation for the mean velocity, subject to the
boundary condition that the velocity vanishes at the wall of the pipe.

The fact that the flow occurs at all is due to an imposed pressure gradient,
and so naturally we must specify this gradient. For simplicity, we might take
it to be steady, so that the flow itself would be independent of time, and of
course this is quite easily realizable in practice. Also, for a really thorough
approach, we might prescribe the mean velocity distribution at the entrance
to the pipe. A simple assumption would be to take the velocity to be zero
everywhere in a cross-section at the entrance to the pipe. This is also physically
realizable, at least to a good approximation, if we allow the pipe to protrude
from the side of a very large reservoir, although a simpler and more usual
method would be to ignore an ‘entrance length’ and begin the calculation at
some downstream distance where the mean velocity distribution would be
independent of the initial conditions (i.e. universal in form).

The point of all this is that the classical problem of unidirectional flow in
a pipe can be formulated in a very simple and direct way. Also, the prediction
of any theory, i.e. the mean velocity distribution for a given pressure gradient,
can be tested experimentally in a fairly uncontroversial and rigorous way. This
is also true of most practical fluid flow configurations, but it is not true of
isotropic turbulence, where the lowest-order statistical quantity is the energy
spectrum which is much more difficult to measure and interpret than the mean
velocity distribution.

4.3.1 Freedecay of turbulence

Consider the energy balance for isotropic turbulence, as given by eqn (2.118):

d ) _
{& + 2vk }E(k, t) = T(k,1),
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where the inertial transfer term T'(k,t) is related to the non-linearity of the
Navier—Stokes equation through (2.119) and (2.91). Formally, the turbulence
closure problem can be seen in this context as the need to obtain an expression
relating T'(k, ) to the energy spectrum E(k, 1).

Assuming that in fact we have such an expression, we note that (2.118) is
first order in time, and so we are faced with an initial value problem. That is,
we wish to integrate (2.118) forward in time, given the initial energy spectrum

E(k,0) = e(k) (4.80)

where e(k) is some function which determines the initial values of the total
energy and the rate of energy dissipation. Note that both quantities are
referred to unit mass of fluid; this will be our convention throughout, but we
shall issue the occasional reminder.

However, these considerations aside, the important feature of e(k) is that it
is completely arbitrary. It is in this respect that the isotropic problem differs
from pipe flow, as discussed above. Thus we are forced to rely on the possibility
of universal behaviour developing as time goes on. In other words, we envisage
the turbulence as having been generated in some arbitrary way at t = 0, but
having forgotten about its conditions of formation as time passes, to the point
where the current generation of eddies has come entirely from non-linear
interactions. These interactions are, of course, common to all situations, as
they are a property of the equations of motion only, and so can be expected
to have some universal effect.

In practice, this turns out to be the case: self-similar behaviour in time (also
known as self-preserving behaviour) has been verified experimentally. We
shall not go into detail here, but good discussions of these points will be found
in Batchelor (1971), Hinze (1975) and Monin and Yaglom (1975), particularly
for the case of grid-generated turbulence (see also Section 2.4).

However, from our present point of view, the really important thing is not
just that grid-generated turbulence is (to a good approximation) isotropic, but
also that it embodies the above characteristics to the extent that it can be
generated in an arbitrary fashion (i.e. anyone can design their own grid and
make their own choice of grid parameters) but decays to a form which is
reasonably independent of those arbitrary choices. As we pointed out in
Chapter 2, the free decay of grid turbulence with downstream distance can be
converted into a free decay with time by the simple expedient of transforming
to a frame of reference moving with the free-stream velocity.

Historically, the study of isotropic turbulence was crucially dependent on
grid-generated turbulence. However, nowadays the existence of computer
simulations gives us a powerful new method of assessing analytical theories.
An especially valuable aspect of these computer experiments is the ability to
choose the initial spectrum to match that of the theoretical calculation. We
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shall return to this and other points in Chapter 8, when we shall consider the
assessment of various analytical theories in some detail.

4.3.2 Stationary isotropic turbulence

We have already pointed out that it is quite easy to formulate the problem
of stationary turbulence for the case of flow through a pipe. Moreover,
experimental achievement of stationary flow is a trivial task and this is true
of most practical flow situations.

It is not, however, true of isotropic turbulence, except as a local approxima-
tion in flows of large physical extent, such as in the atmosphere or the oceans.
One may hope that the computer simulations mentioned at the end of the
previous section may put this right in time. But, at the moment, the assessment
of stationary theories of turbulence is not without its difficuities. We shall
touch on these presently, but first we consider the formulation of the theoreti-
cal problem.

The formation of a stationary isotropic turbulence field requires some input
of energy to compensate for the losses due to viscous dissipation. It is cus-
tomary to introduce the concept of stirring forces, which are random in nature
and which produce a random velocity field by their direct action on the fluid.
This is actually a step with some profound implications—as we shall see in
Chapter 6, the prescription of the stirring forces essentially amounts to a
specification of the turbulent ensemble. But, for our present purposes, it will
suffice to note that we must choose the stirring forces with some care, so that
we end up with a turbulent field which is characteristic of the Navier—Stokes
equations and not just of the arbitrarily chosen input.

Let us consider the equation of motion generalized by the addition of a
random force with Fourier components f,(k, t). Equation (2.76) can be written
as

0 . .

{a + sz} ua(k, t) = Ma/}y(k) Z uﬂ(]’ t)uy(k i t) + j:z(k’ t) (481)
i

where, in order to maintain the incompressibility of the velocity field, the

stirring forces should satisfy a generalization of eqn (2.74):

kafy(k, 8) = 0. (4.82)

Note also that the stirring forces (like all the other terms of (4.81)) must
actually be forces per unit mass, and therefore have the dimensions of accelera-
tion. Nevertheless, we shall conform to convention and continue to refer to
them as forces.

We now use (4.81) to derive the energy-balance equation, just as in Chapter
2. That is, we multiply each term by u,(—k, ¢) and average. Then we sum over
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a, multiply through by 2nk?, and use (2.101) for the energy spectrum to obtain
d
{a + 2vk2} E(k,t) = T(k,t) + 2nk? {f,(k, )u,(—k, 1)), (4.83)

which differs from (2.118) only by the presence of the input term on the r.h.s..
In order to find an explicit form for this, we now have to specify the nature of
the random stirring forces.

We can approach this task rather as we did in the problem of Brownian
motion in Section 4.1.2. We take the probability distribution of the forces to
be normal (or Gaussian) and we choose their autocorrelation to be given by

Saulk, 1) fp(—k,')> = Dpk)w(k,t —t'), (4.84)

where D,,(k) is given by (2.78) and w(k,t — t') remains to be specified. Note
that the form of the r.h.s. of (4.84) has been chosen to give a force correlation
which is homogeneous, isotropic, and stationary; the reader may find it
instructive to make a comparison with the corresponding results for the
velocity, as shown in eqns (2.93) and (2.97).

We may be guided further by the case of Brownian motion and choose the
random stirring forces to be highly uncorrelated in time. This means that the
function w(k,t — t') should be very much peaked near t = ¢/, and we again
approximate such behaviour by a delta function:

wik; t — t') = W(k)(t — ¢'). (4.85)

This assumption has the virtue that if there are no initial time correlations,
then any subsequent correlations will be due to the non-linear coupling of the
Navier—Stokes equation.

In order to specify W(k), we have to evaluate the last term on the r.h.s. of
eqn (4.83). We shall give a rather simple treatment of this here, although more
general discussions are given elsewhere in the book.' Assume that the sys-
tem response, for small time intervals |t — ¢'|, is given by a Green function
g(k,t —t), such that

u,(k,t) = Jg(k,t —t")f(k,t")dr, (4.86)

where g is statistically sharp, so that {g)> = g, and has the properties

0 fort <t’
1 fort=1t"

gkt —1t)= { (4.87)
The first of the two conditions (4.87) indicates that the effect cannot precede
the cause, and the second reflects the fact that at zero time separation the
velocity is just given by the time integral of the acceleration. These are in fact

the only properties of g that we shall need, and so, substituting (4.86) for
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u,(—Kk, t), we can write the input term of (4.83) as

2k [k, u,(—k, 1)) = 2mk? Jg(k,t — )Lk, (k1))
= 4nk?W(k), (4.88)

where we have substituted from (4.84) for the force autocorrelation and used
tr Dy(k) = 2.
With (4.88), eqn (4.83) for the energy balance becomes

{a(-i; + 2ka} E(k,t) = T(k, 1) + 4nk*W (k). (4.89)
The stationary state is achieved when the input term (which represents the
rate at which the random stirring forces do work on the fluid) is exactly the
same as the rate of energy dissipation by viscosity. Under these circumstances,
the time derivative vanishes, and it is of interest to integrate each remaining
term over all values of wavenumber k. Recalling, from eqn (2.126), that the
integral of T(k,t) over all k is zero—reflecting the fact that the non-linear
terms are conservative and do no net work on the system—we obtain

f Wk2E(k) dk = j ank>w (k) dk

0 0

=, (4.90)

where the last step follows from eqn (2.121). Thus, under steady state condi-
tions, the autocorrelation of the random forces can be expressed in terms of
the energy dissipation rate.

Ideally we would complete the specification of a test problem by stating the
required solution, or, at least, by saying how it could be checked. Unfortu-
nately, this takes us into a rather controversial area. For some years it was
generally accepted that, for high enough Reynolds numbers, the inertial-range
solution of equation (4.89) was the famous Kolmogorov 5/3 law. And, indeed,
for the case of infinite Reynolds number, the Kolmogorov spectrum—as given
by eqn (2.137)—would be valid for all wavenumbers.

However, as we saw in Section 3.2.2, it has been widely conjectured that
intermittency effects might change the exponent in the Kolmogorov power
law (even if only very slightly). For this reason, many theorists have become
sceptical about the use of the Kolmogorov spectrum as a test for turbulence
theories. We shall postpone a detailed discussion of this point to Chapter 8,
where we consider the general assessment of theories. For the moment, we
can fall back on the pragmatic view that any deviation from (2.137) seems to
be too small to detect experimentally.
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4.4 Further reading

This chapter does not purport to offer a course in statistical mechanics. Our
(restricted) interest in the subject has been twofold. First, we wanted to put
the statistical theory of turbulence in some sort of perspective within statistical
physics. Second, many of the theories of turbulence have been influenced by
analogies drawn between turbulent problems and problems such as Brownian
motion. For instance, we have just made use of such an analogy when we were
formulating the problem of stationary isotropic turbulence.

In order to achieve our objectives, all we needed was a survey of some
relevant highlights of the subject. The interested reader, who would like to fill
in some of the details, should be able to find a wide choice of classic texts in
any good science library. The books which we found helpful in preparing this
chapter (and the next as well) were Woods (1975; conservation laws and the
utility of distinct time-scales as a basis for expansions), Balescu (1975; many-
body systems), and Reichl (1980; despite the apparent quantum bias, good on
stochastic theory and classical dynamical systems). In each case, the aspect of
the book found particularly helpful is mentioned in the parentheses. ‘

We have also treated functional calculus rather cavalierly. More general
discussions of functional differentiation and integration will be found in Beran
(1968), while discussions of the relationship to functional integration in quan-
tum field theory have been treated by Gel'fand and Yaglom (1960) and Monin
and Yaglom (1975).

Note

1. Equation (4.88) for the cross-correlation of the stirring force with the resulting
velocity field is valid for stirring forces with autocorrelations which are delta
functions in time. The more general formulations of this term in Sections 5.5.4, 6.1.3,
6.2.4, and Appendix H all reduce to eqn (4.88) when the stirring forces are specialized
to have delta function autocorrelations.
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5

RENORMALIZED PERTURBATION
THEORY AND THE TURBULENCE
CLOSURE PROBLEM

The application of renormalization methods to the problem of closing the
turbulent moment hierarchy was begun by Kraichnan (1959). He was soon
followed by other pioneers (Wyld 1961; Edwards 1964; Herring 1965), and
since then there have been many similar approaches. It is this body of work
which forms the principal topic of the present book, and we shall refer to any
theoretical approach of this general type as a ‘renormalized perturbation
theory’ (RPT). This gives us a convenient generic term and, at the same time,
allows us to distinguish between the subject of the next few chapters and the
renormalization greup (RG), which will be discussed later in Chapter 9.
Introductory discussions of these topics can be found in Section 3.5.

In Chapters 6 and 7, we shall divide the various RPTs into two classes,
which are (respectively) those which do not yield the Kolmogorov spectrum
as a solution, and those which do, and discuss particular theories in some
detail. In this chapter our aim is to expose the basic ideas behind RPTs in
general. We shall try to achieve this by introducing RPT in other many-body
problems (particularly in certain situations where we can be confident about
the soundness of this method), and then by considering its application to
turbulence through the Wyld (1961) formulation.

We begin by discussing some background problems and, in the process,
defining some of the terminology, which we shall need later on.

5.1 Time evolution and propagators

We have briefly mentioned the time dependence of the many-particle system
in the previous chapter (see eqns (4.11) and (4.14)). Here we shall consider how
that kind of evolution equation arises. We begin with a simple dynamical
system, characterized by a variable X (t), which satisfies Hamilton’s equation

dx
P [X, H], (5.1
where the Poisson bracket [ ]is defined ineqn (4.12)and H is the Hamiltonian
of the system. For instance, we might be considering a one-dimensional
oscillator, where X is the displacement from equilibrium at any time and H
is the sum of the kinetic and potential energies.
Now, in general we would like to be able to use (5.1) to find X (¢), given X (0).
Assuming that derivatives of X exist to all orders, we can write X (¢) in terms
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of X and its derivatives at t = 0 by means of the Taylor series

2

X(t) = X(0) + tX(0) + %X(O) b (5.2)

where we now use a dot to represent differentiation with respect to time. The
derivatives of X, to any order, can be obtained from eqn (5.1). Let us denote
the operation of taking a Poisson bracket by

[H]1X =[X,H]. (5.3

It then follows that the derivatives of X can be written as
X =[X,H] =[H]X, (5.4a)
X =[X,H]=[[X,H],H] = [H*]X, (5.4b)

and so on, to any order n.
With the appropriate substitutions from (5.4a), (5.4b), and so on, eqn (5.2)
can readily be obtained in the form

= G(H) X (0). (5.5)

t" [H"]X( )

The function G(¢) is known as a propagator, and is given by
G(t) = exp{[H]t}. (5.6)

For stationary systems, which depend only on the differences between times
and not on their absolute value, egn (5.5) has the immediate generalization

X(t) = Gt — t)X(t'). (5.7)

The term propagator comes from quantum field theory (March, Young, and
Sampanthar 1967; Mattuck 1976), where it has the technical significance that
a particular probability amplitude corresponds to the propagation of a par-
ticle. We do not need to worry about this in any great detail, as the intuitive
significance of the term seems clear enough in the context of an equation like
(5.7). Evidently we can think of a propagator as an evolution in time or, for
that matter, in space.

Formally, in quantum mechanics, one deals in probability amplitudes. That
is, the propagator can be defined as

g(x,x';t,t') = probability amplitude that, if at time ¢’ we add a
particle at X’ to a system in its ground state, the particle
will be found at x for some time ¢ > t', with the system
still in its ground state

=0, ift<t. (5.8)
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The associated probability density P(x,X’;t,t’) is given by
P(x,x';t,t") = g(x, x'; t,t")g*(x, X’; t, 1), (5.9

which is the usual relationship in quantum mechanics, where ¢ is a solution
of the Schrodinger equation and g* is its complex conjugate. In fact, to be
more specific, g is actually the Green function of the Schrddinger equation,
and this equivalence of the Green function and the propagator will be of
interest to us later on.

In order to take the idea over into the classical many-body problem, we
interpret the propagator directly in terms of a probability density. Thus,
denoting the classical propagator by G(x,x';t,t'), we have the appropriate
definition

G(x,x';t,t'y = probability density that if a particle is at rest at a
point x’ at time ¢’ then at a later time ¢ it will be
found at the point x

=0, ift<t. (5.10)

If there are no interactions with the existing particles of the many-body system,
then the test particle moves from x’ at time ¢’ to x at time ¢ in a purely
deterministic way, and we put G = G,, the free propagator.

5.2 Perturbation methods using Feynman-type diagrams

In this section we aim to provide a very simple introduction to the methods
used in many-body theory in order to generalize the traditional perturbation
series to the case of strong interactions. Formal treatments of this subject,
along with the introduction of diagrammatic representations of the mathe-
matical terms in the perturbation expansions, can be found in March et al.
(1967) and (from the point of view of statistical mechanics) in Balescu (1975).
A distinctly informal treatment of the subject has been given by Mattuck
(1976), and this is recommended to the reader who has little or no background
in quantum theory.

Let us consider a specific classical (i.e. non-quantum) problem. A test
particle at point x’ at time ¢’ moves through a medium containing other
particles or scattering centres. What is the probability that the test particle
will reach the point x at time ¢? In order to simplify things as much as possible,
we take the scattering centres to be fixed in space and the scattering forces to
be short range. We also drop the time arguments.

Suppose that the scattering centres are labelled by the set of letters {A, B, C,
...}, that they are located at spatial positions {X,,Xg, Xc,...}, and that they
have (respectively) the probability of scattering the test particle { P(A), P(B),
P(C),...}. Then the total probability of the test particle going from x’ to x is
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found by adding up all the probabilities of all possible paths through the
system. We can expect this overall probability (i.e. the propagator) to be in
the form of an expansion, with the order of each term being governed by the
number of interactions with scattering centres. Thus, in all we would expect
a form like

G(x,X') = Go(x,X') + G{(x,X') + G,(x,X') ..., (5.11)

where G, (x, x’) is the free propagator corresponding to the case where the test
particle travels from x’ to x without being scattered by any of the system
particles.

The first-order term is due to processes where the test particle is scattered
once only, while travelling from x’ to x. If we take scattering centre A as an
example, then we have the probability that the particle goes from x’ to x,, (i.e.
Go(X',x,)), the probability that the particle is scattered by A (i.e. P(A)), and
the subsequent probability that the scattered particle goes from x, to x (i.e.
G, (x,x,)). The resulting probability for the process is the product of the three
separate probabilities just enumerated, and, with similar results for the other
scattering centres, we have the first-order contribution to the r.h.s. ofeqn (5.11)

G (X, X') = Gy(x,x,) P(A)Gy(x 4, X') + Go(X,X5) P(B)Gy(xg,X') + . (5.12)

The second order is more complicated because we now have the possibility
of two types of interaction. First, the test particle can be scattered twice from
any given centre. Second, the test particle can be scattered from one centre
and then from any other. Thus, the second-order term on the r.h.s. of (5.11)
can be written as

Gy (%, X') = Go(X, X)) P(A) Go(Xa, Xa) P(A) Go(Xs, X') +
+ Go(X, X2 ) P(A)Go (X4, Xg) P(B)Go(xp, X') + -+, (3.13)

where the series can be completed by writing down all the possible pairs from
{A,B,C,...}, including repetitions.

In this way, we can obtain terms in the expansion of G(x,x’) to all orders,
with each order itself being given by a sum over all scattering centres. Two
points are fairly obvious. First, if we take a simple view of things, then the
expansion for G is essentially just a power series in the free propagator G,.
Second, the combinatorial structure of each order means that the complexity
of the expansion increases rapidly with order. We can make the former
(simpler} view prevail by adopting a diagrammatic representation for the
expansion. That is, we replace the mathematical symbols by pictures which
are topologically equivalent, but which allow one to comprehend the overall
structure of the mathematics rather more readily.

We can introduce the diagram technique by noting that, once we substitute
from (5.12) and (5.13), the expansion in eqn (5.11) is built up from terms which
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Mathematical symbol Diagram part
I X
]
1
i
Gy(x,x") :
AN\
]
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G(x,x") /H\
I
1
]
1
o,
[RED ¢
P(A) ®

Fig. 5.1. Equivalence of mathematical symbols and diagram parts for the perturbation
expansion, as defined by eqns (5.11), (5.12), and (5.13).

are combinations of the free propagator G, and the scattering probability P,
each having labels selected from the set {A, B,C,...}. In Fig. 5.1, we replace
each of these basic symbols by a pictorial representation, which we call a
diagram part. Thus, with combinations of these diagram parts, we can build
up more elaborate pictorial representations, eventually depicting the pertur-
bation series as shown in Fig. 5.2.

The diagrammatic representation centainly makes the perturbation series
look very much simpler. This is part of its value, but the main reason for
making the change is that one can classify terms more easily by their topologi-
cal properties. We shall make use of this facility at appropriate points later
on to carry out partial summations, and it will be seen that this is the basis
of our renormalization programme. Here we shall confine ourselves to a few
preliminary remarks.

The probabilities G, and P all take values somewhere between zero and
unity. Suppose that all the free propagators are about unity in magnitude.
Then, if all the P factors are very much smaller than unity, the perturbation
series will converge very rapidly and we can obtain rational approximations,
truncating at first, or higher, order to obtain any desired accuracy. This is, of
course, the classical application of perturbation theory.

However, suppose that instead of all the scattering probabilities being small,



52 PERTURBATION METHODS: FEYNMAN-TYPE DIAGRAMS 189

”
w

e

=
I,
>_..

+

S
+
- T SRR
+
N
e e
+

R

[

X

’

X

Fig. 5.2. The perturbation expansion in diagrams: eqns (5.11), (5.12), and (5.13) have
been rewritten by changing symbols into diagrams, according to the prescription given
in Fig. 5.1.

we were faced with the case where one scattering probability, P(A) say, had
associated factors which were very much larger than unity. Then P(A) would
be dominant, and the perturbation expansion could be approximated as
shown in Fig. 5.3. In general we could expect this series to converge only
slowly, or even to diverge. This is the general problem of strong interactions.
But, despite the lack of convergence, all is not lost. From the simple regularity
of the expansion in Fig. 5.3, it is clear that it can be expressed in terms of a
geometric progression. Or, rewriting it in analytic form, we can decompose
and factorize the r.h.s. to obtain

G(x,X') = Go(x,X') + Go(%,%X,)P(A)Gy (X, X') X
x {1 4+ P(A)Go(xs,Xa) + [P(A)Gy(Xa,X4)]* + -} (5.14)
and, summing the geometric series,

1

G(x,x') = Go(x,X') + Gy(x, x,,\)P(A)Go(xA,}ni’)1 T PA G XX

(5.15)

This technique is known as ‘partial summation’, and, as we have previously
remarked, it will be the basis of our renormalization programme. However,
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Fig. 5.3. Perturbation series for the case where P(A)is large, and all the other scattering
probabilities are negligible in comparison.

it is worth noting that even the simple example given here as a demonstration
of the method is by no means trivial. For instance, very similar expansions
occur in modern treatments of Brownian motion (Van Beijeren and Dorfman
1979).

Lastly, it should perhaps be pointed out that the method of diagrams, and
partial summation, constitutes a general mathematical method. For instance,
it can be used in the iterative solution of integral equations (Mathews and
Walker 1965, p. 288). Or, as we shall see in the next section, it can be applied
to statistical mechanical problems where there are long-range interactions.

5.3 Equilibrium system with weak interactions: an introduction to
renormalized perturbation theory

In this section we shall consider the N-particle system again, but this time we
shall be interested in the effect of interactions. Basically, we shall take our
N-particle system to be an 1deal gas (non-interacting hard spheres) with some
rather weak interactions added on. We shall examine, first, short-range inter-
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actions, as found in a gas of neutral molecules, and then, in Section 5.4,
long-range interactions, as found in an electron gas or high temperature
classical plasma.

However, we should first underline that the present discussion has little
direct application to turbulence. In the N-particle problem, all N particles
have identical properties and are collectively in thermal equilibrium. We also
impose the restriction to weak interactions. In contrast, the turbulent Fourier
modes have different levels of excitation (i.e. the turbulent spectrum does not
correspond to equipartition), and the dominant dynamical feature is the flow
(unidirectional, on average) of energy through the modes. Also, the inter-
actions in turbulence (essentially measured by the Reynolds number) are far
from weak.

Accordingly, our purpose is to introduce the RPT technique in the context
of a problem which is simpler than that of fluid turbulence. This approach has
two advantages. First, the greater conceptua) simplicity allows the main points
of the method to stand out more clearly. Second, the fact that the RPT method
can be seen to work and indeed to have a clear physical interpretation must
surely be an advantage when later we turn to the turbulence problem.

5.3.1 Interactions in dilute systems and the connection with macroscopic
thermodynamics

For N hard spheres, interacting weakly through two-body potentials, we can
adapt equation (4.16) for the total Hamiltonian to

N N
H=2HMH%,2HMAJ (5.16)
i= i<j=
where, for particles of mass m,
p?
Hw=7, (5.17)
m

and the parameter 4 is inserted in front of H' as a bookkeeping parameter in
order to remind us that H' is a small quantity. We shall therefore treat A itself
as a small quantity.

The interaction Hamiltonian depends only on the intermolecular potentials,
and, representing these by W, we can write

H'(q;,q;) = W(9q5,q)). (5.18)

In general, we can expect the potentials to depend only on the distance
between any pair of molecules and not on either absolute position or orienta-
tion. Thus the pair potential can be simplified to

W(g;,q;) = W(lq; — q;l) = W(ry), (5.19)
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where the relative coordinate is

i = g — ‘Ij|- (5.20)
In the interests of conciseness, we shall often use the abbreviated notation
W; = W(r;). (5.21)

At this stage we should consider the form of the intermolecular potentials.
A general discussion of this whole subject will be found in Hirschfelder,
Curtiss, and Bird (1954). For our present purposes it will be sufficient to have
forms which possess the general features of interest to us here. To begin with,
we have assumed the molecules to be hard spheres, which implies that they
do not penetrate each other. If the molecular radius is b then the hard-sphere
repulsive potential can be specified by

s ifr<2b

0 ifr>2b (.22

W'(r) = {
where r is the radial distance between any pair of molecules.
For molecules which are electrically neutral, a realistic potential which
combines a steep repulsion at very short range, with a weak attraction at
slightly longer ranges, is given by the Lennard-Jones form

Wir) = 4E|:<é>12 — <é>6], (5.23)
r r

where E has the units of energy and b is a measure of the molecular radius.

In Section 5.4, we shall need the intermolecular potential for the case where
‘the gas is ionized. A reasonable model is obtained by combining the hard-
sphere potential, as given by (5.22), with the Coulomb potential:

e2
W= Wyt (5:29
where e is the electronic charge. This model is completed by regarding eqn
(5.24) as giving the potential between any two electrons in a medium in which
the positive charges are supposed to be smeared out in order to provide a
uniform background positive charge, thus ensuring the overall electrical neu-
trality of the system.

Having now set up some of the microscopic concepts, we conclude with a
brief consideration of the way in which we can use these to obtain values for
macroscopic variables such as the system pressure. In fact the crucial quantity
for making the connection between microscopic statistical mechanics and
macroscopic thermodynamics is the partition function Z. With some over-
simplification this can be defined as the normalization of the probability
density distribution of the system:
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Z = Jdp dqexp(—fH), (5.25)
where f is given by
1

and kj is the Boltzmann constant and T is the absolute temperature.
Technical problems over the definition of the partition function need not
concern us here as, noting that eqn (5.16) indicates that H can be written as
the sum of a part depending on p only and a part depending on q only, it is
clear that the integration over p can be factored out (e.g. see Balescu 1975,
p. 186). Thus it follows that the full partition function can ifself be factored as

Z=12,0, (5.27)

where Z, is the partition function for the ideal gas and @ is known as the
configuration integral. It is given by

Q=vV" Jd”qexp%—ﬂi ZNZ W,-j}. (5.28)

i<j=

Here V is the volume of the system and its presence is due to the way in which
Z, is defined.

Clearly the evaluation of the configuration integral Q is the essence of the
problem where interactions are involved. Correspondingly, we note that as
the free energy of the system is given by the natural logarithm of the partition
function, we can introduce the configurational free energy A through the

relationship
A= —p1InQ. (5.29)

Our problem now is to use perturbation theory to obtain approximate solu-
tions for Q and A.

5.3.2  Primitive perturbation expansion for the configuration integral

Using the series representation of the exponential function, the expansion of
the configuration integral can be written down directly from (5.28) as

0 N
Q=v" Jd”q ZO (n!)‘l(—ﬁ/l)"(};g‘i Wl-j>. (5.30)

As this amounts to a power series in a small quantity (4), we might expect to
need to retain only a few orders to achieve any desired accuracy. However,
this depends on the integrals being well-behaved. We can therefore anticipate
later discussions, to some extent, by noting that we are likely to encounter
problems with the hard-sphere repulsive potentials, which may cause diver-
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gences at r = 0. Likewise, in the case of the electron gas, we can expect the
long-range Coulomb potential to cause divergences as r goes to infinity.

The complications of dealing with eqn (5.30) increase rapidly with order n.
We shall find it convenient to proceed inductively, considering increasing
orders in turn. We begin by rewriting (5.30) as

0= 3 () (=pire. (5:31)

and then we consider Qq, Q,, @,, and so on.
Zero order is trivial, and we just have

Qo=V7"¥ fd”q = 1.

The case of n = 1 is a lot more interesting, with Q, given by

0, = V‘NJ‘qu( NZ VVU>

=V JdNQ(Wu + Wi+ Woa+ Wig+ Wy +00)

=V {qu1 dq, Wy, + Jd‘h dq; W5 + } (5.32)

We have expanded out the double sum in order to make it easy to see that
0, is made up from many identical terms, each of which is a double spatial
integral over the potential interaction between a pair of particles. Evidently
we can work out the value of @, merely by evaluating the first integral (say)
on the r.h.s. of eqn (5.32), and multiplying by the number of pairs which can
be selected from N particles (i.e. N(N — 1)/2), with the result

NN -1
0= — 1, (5.33)
where the integral I, is given by
L=V fdru W,. (5.34)

Note that in I, we have made the change of variables from q,, q, to q, 7,5,
where r,, is as defined by eqn (5.20). This leaves a free integration with respect
to q, over the system volume, which just gives a factor V.

For n = 2, we can carry out the same procedure to obtain

Q,=V"" JdeQ{lez + W+ Wi+ + 2W Wi +

+2W o Wos + 0+ 2W, Wy + 2W 0, Was + 0, (5.35)
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where we show explicitly just a few of the terms that arise when we write out
the double sum and square the resuit. The resulting products have been set
out on three lines in order to draw attention to the fact that there are three
types of product. These are as follows:

(a) products with two indices in common, ¢.g. Wa;
(b) products with one index in common, e.g. Wy, W,3;
(c) products with no indices in common, e.g. W, Ws,.

The differences between these three types will turn out to be very important
indeed.

As a first step, we note that we can apply the techniques just used for Q;,
but we must do it separately for each of the three classes of term making up
Q,. That is, we divide up Q as follows:

Q, = AL, + Bl,, + Cl,,, (5.36)

where A4, B, and C are the numbers (respectively) of type A, type B and type
C terms. The integrals I,,, I,,, and I, are defined analogously to I,, and we
now consider each of these in turn.

We begin with type A. Taking the first term on the first line of the r.h.s. of
eqn (5.35), we have

r

I, = V=~ |d%q W122

~

=V~?|dq, dq, Wi

~

=Vt {dr, W3, (5.37)

where we have made the change of variables to q, r,,, and performed the free
integration to eliminate one factor V.
Type B is quite straightforward:

Ly=2v~?3 qul dq, dq; W,, Wi,

=2V? Jdrudrm Wi, Wi

| oo

=212, (5.38)
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Type C is also straightforward:

L= 214 fdQ1 dq, dq;dq, W, Wi,

:2V72 Jdrlzdr34 W12W34=2112. (5.39)

Clearly, therefore, one very important distinction between the three types of
term occurring at second order is the ability of types B and C to be factored.

In order to complete our calculation of Q,, by substituting from (5.37),
(5.38), and (5.39) into eqn (5.36), we would need to know values for A4, B, and
C. The first of these is easy, as A is just the number of pairs which can be
selected from N particles. Hence A is given by N(N — 1)/2, as in the first-order
case. The values for B and C are rather more difficult, and a consideration of
these matters would take us into more detail than would be appropriate to
our purposes. The interested reader will find general discussions of technical
points of this kind, along with a treatment of the nth-order term, in Balescu
(1975). From our present point of view, we have now gone far enough with
the perturbation expansion to provide a basis for the introduction to the
graphical method.

Let us consider the first-order contribution to the configuration integral.
Essentially we require a graphical representation of I,. We represent the
particles by large dots (usually referred to as ‘vertices’, because they normally
occur in diagrams where lines intersect) and the potential with respect to the
coordinate joining the particles by a line (bond). The result is as shown in Fig.
5.4.

At second order, the type A interaction is a straightforward extension of
the first-order case. We still have two particles but now we have the product
of two potentials. We take account of the second potential by means of a
second line joining the two vertices. Again, the result is shown in Fig. 5.4.

Type B interactions must have the physical interpretation that three parti-
cles are involved, which implies three vertices in a diagram. Similarly, type C
interactions imply four vertices in the corresponding diagram. Then the
restriction to two bonds dictates the only two remaining possibilities, which
are as shown in Fig. 5.4.

At order n, we can expect all possible diagrams which are topologically
distinct, and which possess n bonds and a number of vertices which can range
from a minimum of 2 to a maximum of 2n. A procedure for generating
diagrams of order »n from those of order n — 1 can be stated in terms of the
various ways on can add an extra line to the lower-order graphs.

(1) The extra bond is connected by both its ends to all possible pairs of
vertices in the lower-order graph.

(2) The extra bond is connected by one of its ends to every vertex in the
lower-order graph. Its other end is terminated by a new vertex.
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n=1 T————-—E «> [ =V~ {dr,W),

n=2 O «> Izuzvmzfdflldqzwlzz

1 2

2
: > Lp=2V " {[drpW}

=27

3
-0 s
l 2 > 1y, =2V " {[dr oW {dryWa)
——————o :211
3 4 !

Fig. 5.4. First and second orders of the perturbation expansion for the configuration
integral, showing the constituent integrations and their graphical equivalents.

(3) The extra bond is terminated at both ends by new vertices and added
without connection to the lower-order graph.

It can readily be verified that the second-order diagrams of Fig. 5.4 are
generated from the first-order diagram by applying the above rules in the
order given.

We now require a graphical technique which is the equivalent of evaluating
Q,, Q,, and so on. As before, we start with first order. We know that I,, as
defined by eqn (5.34), is one of many similar integrals, each differing from the
other merely by the differences in the labelling of the potentials. As all these
integrals have the same numerical value, Q, can be obtained by multiplying
1, by the total number of integrals.

The graphical equivalent is to remove the labels (1,2) from the first-order
graph and call the result an unlabelled graph. Then we take the unlabelled
graph and proceed to label its vertices with all integers (i, ), such that i <
and j < N. This process is illustrated in Fig. 5.5. The value of Q, is plainly
just equal to the value of the unlabelled graph multiplied by the number of
labelled graphs which can generated from it.

Of course this is rather trivial. But even at second order, complications
accrue, and as the order increases, so do the complications (e.g. see Balescu
1975). Therefore the value of the method emerges at the higher orders. How-
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—o > o——o — o —— o
1 2 1 3 1 4
— e o—o ——e
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3 4 3 5 3 6

Fig. 5.5. Some of the many (in this case N(N — 1)/2) ways of labelling an unlabelled
graph.

ever, we shall not go into further detail about higher orders and shall merely
state the general principles by which the graphical method can be used to
obtain the configuration integral. These can be summarized as follows:

(1) Use the rules above to draw the unlabelled graphs for each order
of the expansion. These graphs must be topologically distinct (i.e. no
duplicates).

(2) Perform the integrations necessary to obtain a numerical value for
each unlabelled graph.

(3) Label each graph in all possible ways, as illustrated in Fig. 5.5.

(4) Multiply the result of (3) by that of (2), and add up over all topologically
distinct graphs for a particular order.

(Readers who consult one of the more specialized works on this subject may
find it helpful to note that we have included the multinomial coefficient in our
definition of the I,.)

We conclude this section by setting out the rules for making a general
topological classification of the perturbation diagrams into one of three types.
This classification is based on the three types of diagram which appear at
second order (see Fig. 5.4). We shall take types A, B, and C of Fig. 54 in
reverse order, as we generalize their properties to diagrams of any order.

Disconnected graphs: these have two or more bonds with no particle in
common. Type C of Fig. 5.4 is an example.

Reducibly connected graphs: these have two or more bonds with only one
particle in common, so that cutting the diagram at the vertex corre-
sponding to the common particle results in two or more disconnected
diagrams. Type B of Fig. 5.4 is an example.

Irreducibly connected graphs: all bonds have two particles in common and
hence cannot be reduced to disconnected diagrams with only one cut.
Type A of Fig. 5.4 is an example, as is the sole diagram at first order.

Diagrams in the last category are often referred to more simply as irreducible
graphs. As we shall see in the next section, this type of classification is crucial
to a successful reduction of the perturbation series.
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5.3.3 Renormalized expansion for the free energy

The critical test for theories in statistical mechanics is their behaviour in the
thermodynamic limit, when we let N and V become indefinitely large such
that N/V tends to a finite constant limit p—the density. In fact the expansion
for the configuration integral Q fails this test, as its terms of a given order in 4
have a variety of different dependences on the density. In other words, the
expansion is inhomogeneous.

Somewhat analogous problems arise in turbulence, and an important lesson
to be learned at the outset is that we should regard the primitive perturbation
series as so much raw material. That is, we can use it as the basis of a fairly
general and systematic approach to the fundamental problems of the subject.
But we should not look on it as any kind of answer in itself.

Reverting now to the statistical mechanical problem, the inhomogeneity of
the expansion does not present any serious problems: we can get round it by
using the free energy A, as this is the quantity with physical meaning. We can
do this rather easily, by means of a trick, as follows. If we think of the potentials
W,; as random variables, then we can interpret the configuration integral Q as
a characteristic function. This is discussed in Appendix B, where it is shown
that the characteristic function m(k) of a distribution p(x) is used to generate
the moments of the distribution. We can make the connection by identifying
x with the potentials and putting k = — 4. Then the expansion (5.31) defines
the moments Q,.

We can also introduce the cumulant generating function In{m(k)}: its
expansion generates cumulants K, as defined in Appendix B where we also
give equations expressing the cumulants in terms of the moments. Clearly, if
the configuration integral is a moment-generating function, it follows from
(5.29) that the free energy A is a cumulant-generating function. Hence, with
some rearrangement, eqn (5.29) takes the form

—pA =1nQ = In{m(—pA)}
= 3 () = pArK, (5.40)

Thus, as we now know the moments to any order, the cumulants to any order
follow from the well-known relationships connecting the two quantities.

We shall not go into detail, but we quote the first two such relationships in
order to explain a most important point. We have (see Appendix B) the
equations

K, =0, and K,=0Q,— 03

Now, the first of these is trivial but the second is quite crucial. It can be shown
that, if we substitute for Q, and Q,, the contributions from the integrals (5.38)
and (5.39) are cancelled by the counter-term Q7. This leaves only the contribu-
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tion from (5.37) at second order. In other words, only the irreducible diagram
contributes and this turns out to be true for all orders. In Fig. 5.6 the
irreducible diagrams contributing to the free energy are shown up to fifth
order.

In Section 5.2, we discussed the technique of infinite partial summation. An
interesting example of this arises in the case of the free energy. As we mentioned
earlier, we can expect problems with the convergence of the perturbation
expansion owing to the divergence of integrals over the potentials as r goes
to zero. We can avoid this situation by considering dilute systems, which
means that a power series in the density p = N/V can be truncated at low
order.

In practice this amounts to a rearrangement of the perturbation series such
that one finds an infinite series of diagrams associated with p, p2, p?, etc. Each
of these infinite series must be summed to give a coefficient in our new
expansion in powers of the density.

We shall indicate the general form of this approach at the first order in the
density only. Select all diagrams, which have only two vertices, from the
irreducible graphs shown in Fig. 5.6; such graphs are of order V! and hence
of order p. Using (5.34), (5.37), and (5.40), with the n-order term (in 4) following
by induction, we can write the first order in the density expansion in the form

_'BA:V_IJ‘dr1z|:—ﬁiW12+%+"'+
_4_(_!;/’1"/I/12)'l+...:|+0(1/v2). (541)

At this stage, we introduce the Mayer function f;, which is named after Mayer
(1937) who introduced the method of graphs to statistical mechanics.® Mayer

functions are defined by
fi = exp(— iAW) — L. (5.42)

They have the useful property that, as r — 0, and W; —» oo, f;; > —1. They also
allow the expansion on the r.h.s. of (5.41) to be summed:

AV fdruf12 + OV (5.43)

This procedure can be carried out for higher powers of the density, although
the algebra becomes very complicated. At each order of p, the infinite series
in powers of A can be summed using Mayer functions. The general procedure
is to take the lowest-order diagram in the series for a particular power of the
density and replace the potential term (— fAW,,) by f,,. This can be shown
pictorially by replacing each single bond by double lines in order to denote
partial summation or renormalization.
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n=1

Fig. 5.6. Irreducible diagrams in the expansion for the free energy up to fifth order.

5.4 The electron gas: an example with long-range forces

By now it should be clear that, even when the basic (primitive) expansion is
divergent, the situation for perturbation theory is by no means hopeless. We
have seen that the primitive series can be rearranged and partially summed
in various ways, or that terms in the expansion can be classified according to
their topological properties. Then, if certain classes of terms can be neglected,
the problem can be much reduced.

Of course, the difficulty in tackling any new physical situation is to know
just how to achieve these simplifications. As an illustration of how a successful
phenomenological theory has provided the necessary guidance for the imple-
mentation of many-body theory, we consider the case where the particles of
the system are charged. In this case, the classical phenomenological theory
was first developed for electrolytes (Debye and Hiickel 1923), but can also be
applied to the classical plasma or to conduction electrons in a metal.
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The basic model is set up by assuming that all N particles are, say, negatively
charged. Then the requirement of electrical neutrality demands that we have
an equal number of positive charges. However, we can avoid dealing with the
dynamics of these positive charges by regarding them as being smeared out
uniformly over the volume of the system, thus creating a continuous medium
or background charge density.

5.4.1 Phenomenological theory: the screened potential

Of the N particles we shall consider just one pair in isolation. We take them
to be separated by distance r, , and to interact through the Coulomb potential

_ 2
Wi, = e*/ris,

or,
W(r) = e¥/r, (5.44)

where the subscripts can be dropped without confusion, as we shall only
consider this one pair specifically.

In thermal equilibrium the probability density of finding particle 2 a distance
r from particle 1 is just

p(r) = pexp{—pW(r)}, (5.45)

where p is the (number) density of charged particles. Now suppose that we
can switch on the effect of all the other charged particles. The long-range
nature of the interactions ensures that they will all affect the potential W(r),
changing it to, say, W'(r). Thus eqn (5.45) would be modified to

p'(r) = pexp{—pW'(r)}, (5.46)

where we shall find it convenient to express the collective potential energy in
terms of a collective electrostatic potential ¢(r):

W'(r) = ed(r). (5.47)

The potential ¢(r) is due to all N electrons, and Debye and Hiickel (1923)
proposed that it should be determined by the Poisson equation, just as if the
distribution of N charges could be regarded as a continuous medium, with
the charge density determined self-consistently by the probability p’(r) as given
by eqn (5.46). In the terminology of modern many-body theory, this proposal
amounts to the method of the self-consistent field.

We can put this into practice by writing the Poisson equation as

V24 = —dn[ep'(r) — ep]
= ~‘}n[epexp{—/3W’(r)} —ep]
= —dmeplexp{—pW'(r) — 1], (5.48)
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where eqn (5.46) has been used to calculate the charge density due to the
electrons and the second term in the square bracket represents the background
(positive) charge density, which is constant over the system.

We restrict our attention to the case of weak interactions, for which W’ «
kg T and hence W’ « 1. Under these circumstances, the exponential on the
r.hs. of eqn (5.48) can be expanded to first order. Cancelling the constant
terms, we have the simplified equation

V2¢ = dnepBW' = 4ne’pPo, (5.49)

which has the spherically symmetric solution
¢ = Eem(—r), (5.50)

r Ib

where I, is the Debye length and is given by
Ip = [4ne?pB] 2. (5.51)

For completeness, we note that the self-consistent potential energy is given
by

2
W'(r) = ‘iexp<—r>. (5.52)
r Ib

We should note that the effect of including the collective interactions is to
cut off the long ‘1/r’ tail in the Coulomb potential so that its effective range
is reduced to, roughly, the Debye length. This is why it is often referred to as
a screened potential. Physically, we can interpret the situation as a cloud of
electrons in the immediate neighbourhood of one electron screening it from
the effect of all the other electrons in the system. Then it follows that the Debye
length can be interpreted as the approximate radius of the screening cloud
about any one electron.

It is also the case that we can interpret the calculation which led to eqns
(5.50) and (5.51) as a process of charge renormalization, in which the ‘bare’
charge has been replaced by an effective charge which depends not only on
particle density and system temperature, but also on the spatial position
coordinate.

Lastly, the continuum approximation which underlies the introduction of
the Poisson equation can be expected to be valid provided that the distance
between particles is much smaller than the Debye length. That is, we would
require Ip > p~ '3 or I3 » p~'. With the substitution of (5.51) for I, this
criterion can be written as

§n¥2e3pl2BIB « 1, (5.53)

giving us a characteristic small parameter for the plasma problem.
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5.4.2 Perturbation calculation of the free energy

We assume that the two-body interaction potential is given by the combination
of the hard-sphere and Coulomb potentials, as shown in eqn (5.24).

Renormalization of the hard-sphere part of W is readily carried out using
the Mayer functions, as in Section 5.3.3, and will not be repeated here.
However, when we try to carry out the same programme for the Coulomb
part of W, we run straight into the problems associated with long-range forces.

The expansion which is summed in terms of the Mayer functions is given
by eqn (5.41). With the substitution of the Coulomb potential, the integrals at
first and second order become respectively

0

I, = J 4nr? W ,(r)dr

= 4re? J rdr, (5.54)

0

where we can drop the subscripts on r without loss of generality, and

I, = 47te“Jv dr. (5.55)
0

Clearly these integrals are divergent, the problem being that the Coulomb

potential does not fall off fast enough as r tends to infinity.

In practice, problems associated with the divergent integrals are easily
circumvented. To begin with, the first-order integral is cancelled by the back-
ground and therefore presents only a trivial problem. Higher orders are dealt
with by cutting off each integral at some arbitrary value of r, and then
summing to all orders in the interaction parameter (in this case 4 = e?). This
was first done by Mayer (1950), who modified the potentials to the Debye—
Hiickel form, as given by eqn (5.52), and let I, tend to infinity at the end of the
calculation. However, the use of a straightforward cut-off in the integration
works just as well. That is, we evaluate all the integrals over the range
0 < r < R, add up all the individual terms, and then let R tend to infinity in
the final sum.

The problem of identifying the appropriate class of diagrams to sum can
be solved—for this particular problem—by making a guess about which
particular first-order approximation would lead to the Debye-Hiickel screened
potential. The appropriate diagrams (in the irreducible set; see Fig. 5.6) turn
out to be those with no internal bonds. There is only one such diagram in
each order and we show these, up to sixth order, in Fig. 5.7. (Note that the
first-order diagram is not included, as it is cancelled out by the positive
background charge.)

Mayer (1950) referred to these as ‘cycle’ graphs, but more recently, and in
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n=>5 n=6

Fig. 5.7. Ring diagrams (up to sixth order) which contribute to the perturbation
calculation of the Debye—Hiickel screened potential.

other contexts, they have come to be known as ‘ring’ graphs (March et al.
1967, Balescu 1975, Mattuck 1976, Reichl 1980). From our present point of
view, an interesting development was the reinterpretation of Mayer’s methods
by Salpeter (1958), who argued that the complicated combinatorial arguments
could be short-circuited by topological methods.

Lastly, although we shall not consider the effect of including higher-order
terms in the renormalized perturbation series, it should be noted that the
perturbation method can, unlike the phenomenological theory, be carried on
to higher orders of accuracy.

5.5 Perturbation expansion of the Navier—Stokes equation

We now wish to examine the properties of the Navier--Stokes equation in the
same spirit as we approached the other many-body problems in the preceding
sections of this chapter. Our first step in doing so is to recognize the position
of the turbulence problem in the hierarchy of statistical problems. That is to
say, it can be stated as a problem of many bodies (the Fourier modes) making
up a non-equilibrium system with strong interactions.

It should be clear that each of the two properties just stated amounts to a
barrier in the way of any straightforward extension of the existing many-body
theories to the case of fluid turbulence. Let us consider them in turn.

First, we must understand that the absolutely characteristic feature of
turbulence is the flow of energy through the modes, as exemplified by the
energy cascade. Thus we are not faced with the slight departure from equi-
librium seen in Section 4.1.2, where we discussed kinetic equations. Instead
we have to consider a situation which is far from energy equilibrium. This
automatically rules out the methods of equilibrium thermodynamics, along
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with perturbation theory based on small departures from the equilibrium
state.

Second, there is no way of evading the problem of strong interactions. We
can express this formally by rescaling the Navier—Stokes equation into dimen-
sioniess variables, in which case the Reynolds number R will appear as a
measure of the ratio of the non-linear term to the viscous (linear) term. Even
if we choose length and velocity scales which are such that R takes a small
numerical value, the actual non-linear term would then be numerically larger
than the viscous term. Of course the mere fact that we have a turbulent flow
at all tells us that the non-linear term in the Navier—Stokes equation is much
larger than the viscous term (and in principle this ratio could be varied up to
infinity). Thus we inevitably have the problem of a wildly divergent primitive
perturbation series when we expand the Navier—Stokes equation.

In this section we shall see how the techniques of rearrangement and partial
summation (as discussed in the preceding sections) can be applied, in a general
way, to the primitive perturbation expansion of the Navier—Stokes equaton.
This was first done by Wyld (1961), who overcame technical difficulties in-
volving the double counting of diagrams by using methods which were only
valid for a simplified scalar analogue of the full Navier—Stokes equation.
Later, Lee (1965) extended Wyld’s analysis to include hydromagnetic turbu-
lence, and introduced a new way of overcoming the double-counting problem
which was valid for the Navier—Stokes equation. We shall base our present
treatment very largely on the work reported in these two references.

However, before we begin, it will be as well to emphasize that the procedure
due to Wyld is not itself a theory (any more than the analogous Dyson
equations in quantum field theory (March et al. 1967; Reichl 1980)). Our
purpose in treating it here is really to emphasize its kinship (as it were) with
many-body theories known to be successful in other areas. In this sense it
should be regarded as being (like the other material in this chapter) merely
prefatory to the actual turbulence theories to be presented in the following
two chapters. Indeed, we shall close the work of this section by showing how
the pioneering direct-interaction approximation (Kraichnan 1959) can be
recovered from the general diagrammatic analysis of the primitive expansion.

5.5.1 The zero-order isotropic propagators

Our starting point is the solenoidal Navier—Stokes equation in wavenumber
space, with the addition of a stirring force. We write eqn (4.81) in the slightly
modified form as

(% + vk2> u(k, 1) = AM, 5, (K) D ug(j, u,(k — j, 1) + Dyp(k) fp(k,2), (5.56)

]

where we have added / as a bookkeeping parameter in front of the non-linear
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term. The factor D,4(k), as defined by eqn (2.78), ensures that the stirring forces
satisfy the continuity condition (2.74) for abitrary f(k, t). The stirring forces
(per unit mass of fluid f(k, ¢) are taken to be random and to have a Gaussian
distribution with zero mean (see Section 4.3.2, for a discussion).

If we switch the non-linear term off, we can introduce the linear response
function G, (k; ¢, t’) for isotropic fields. This is essentially a Green function (see
Appendix D), and can be introduced through the zero-order Green tensor
which satisfies the linearized Navier—Stokes equation:

(g + vk2> GY(k;1,t') = D,,(k)d(t — '), (5.57)

where the D,,(k) ensures the correct solenoidal structure for G{(k;,¢') such
that
GP(k;t,1') = Dp(K)Gol(k; 1, 1'). (5.58)

(Comparison with eqn (2.97) for the energy spectrum tensor shows that (5.58)
is the correct form for an isotropic solenoidal tensor.)
With the substitution of (5.58), eqn (5.57) takes the simpler form

(% + vk2> Golk;t,t') = 8(t — t'), (5.59)

which, for future use, we can also write in the more symbolic fashion
LyGylk;t,t')y=0(t —t'). (5.60)

It then foliows that the solution of eqn (5.56), with the non-linear term put
equal to zero and hence the response of the fluid system determined solely by
viscous effects, is

uP(k, 1) = f dt'GQ(k; 1,t') fp(k, 1)

= D,y(k) fdt’Go(k; t,t') fp(k,t'). (5.61)

We can also use this function to relate the velocity field, associated with
mode Kk, to itself at two different times, provided that such variations are due
to the action of the fluid viscosity. We do this by setting 4 = 0 and f(k) = 0 in
equation (5.56), and solving for u,(k, ), given u,(k,t') for t > ¢, to obtain

Uk, 1) = Go(k; t,t")u,(k,t")
= exp{ —vk2(t — t')}u,(k, t'). (5.62)

Evidently this relationship justifies us referring to G,(k; t,t') as the zero-order
or ‘viscous’ propagator.
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Lastly, we can also extend the Fourier transform from the wavenumber-
time domain (see eqn (2.71)) to the wavenumber—frequency domain by using

u(x,0) =Y Y u,(k,w)exp{ik-x + it} (5.63)
k @

where w is the angular frequency. If we substitute (5.63), instead of (2.71), for
u,(x, t) into eqn (2.75), then the Navier—Stokes equation becomes

(iw + vk?)u,(k, w) = AM,;,(k) Z Y uglj, 0 u,(k —j,0 — ') +
j o

+ Da[](k)fﬂ(k’ (1)), (564)

where f;(k, ) is the Fourier transform of fy(k,t), with respect to ¢, and is
defined by a straightforward extension of (5.63). Clearly, if we carry out the
same procedure for eqn (5.59), while remembering that the Fourier transform
of the delta function is unity, we can easily see that the Fourier transform of
the zero-order propagator is given by

1

Golk, ) =2 "=

(5.65)

What we are now interested in is the renormalization of G, (k, w) to the exact
form G(k, ), which takes into account the collective interactions among the
modes of the system when the non-linear term is switched on. This will be the
subject of the next three subsections.

5.5.2  The primitive perturbation expansion

The underlying physics of the perturbation expansion of the Navier—Stokes
equation, when subject to a random force, has been discussed in Section 3.5.2.
Accordingly, we shall concentrate here on treating the mathematical for-
malities. We begin by considering the specification of the stirring force auto-
correlation for non-stationary forces. The appropriate generalization of eqn
(3.94) can readily be seen to be

<%> Salk, 0fp(=k, 1)) = Dyp(k)wik; 2, t'). (5.66)

The Fourier transformation from (k, t)- to (k, w)-space can then be accom-
plished by a suitable extension of eqn (5.63), yielding for (5.66)

L\N*/T , ,
(Z) <§;{> {fulk, @) f(—k, ")) = Dyp(k)w(k; , ). (5.67)
Note that T is the time period for Fourier series, and tends to infinity in order

to allow us to make the transition to Fourier transforms. As we shall only use
this representation for analytical convenience, and will ultimately change back
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to the (k, t) representation, we do not need to worry too much about nor-
malizing factors and from now on we shall take the factor T/2n to be unity.
At the same time, we should note that we cannot be so cavalier about the
space dependence, as we will remain in k-space and will wish to make compari-
sons between theoretical and experimental results for wavenumber spectra.
Also, using the same Fourier transformation and recalling the convolution
theorem, we can write eqn (5.61) for the zero-order velocity field in the form

uQ(k, w) = D,p(k) Gy (k, w) f3(k, ), (5.68)
which then provides the zero-order term in the perturbation expansion
u (k, 0) = uO(k, w) + APk, o) + LuPk,ow) + -+
+ AUk, w) + - (5.69)

As we have seen in Section 3.5.2, we can solve the Navier—Stokes equation
iteratively to express the various higher-order coefficients on the r.h.s. of (5.69)
in terms of u¥’(k, w). In practice, we shall treat the problem statistically, and
therefore we will be interested in equivalent problem of expressing the exact
correlation Q,4(k; , ') in terms of the zero-order result given (after substitu-
tion from (5.68)) by

<u210)(ka w)ufﬁ())( - k’ wl)>
= D,,(K)Dyo(—k)Go(k, 0)Go( —k, ') { f,(k, w) fo(—k, @) >

= Dy (k) Dy, (K) D, (K) Go (k, @) Go (k, @) <2L—n>3 wik; w, ')

27\3 ) ,
= <f> Daﬂ(k)Go(k, W) Go(k, 0 Yw(k; @, '), (5.70)

where we have used the invariance of D,4(k) and G,(k, ®) under interchange
of k and —Kk, along with the contraction property

Day(k)Dyﬁ(k) = Daﬂ(k)

The zero-order spectral density function Q, can be defined by analogy with
eqns (2.88) and (2.97) for the exact spectral density Q for homogeneous
isotropic turbulence:

( % >3 Uk, w)u(—k, w’?) = D,y(k)Qolk; 0, 0'). (5.71)

Combining this definition with eqn (5.70), we obtain the following simple
relationship between the spectral density function of the zero-order velocity
and the corresponding spectral function for the random stirring forces:

Qolk; w,0') = Gylk, w)Gylk, 0" )w(k; w, @'). (5.72)
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Our next step is to set up the perturbation expansion which will relate the
exact Q to the zero-order form as given by eqn (5.72). We do this by taking
eqns (2.88) and (2.97), making the obvious extension to (k,w) space, and
substituting eqn (5.69) for the velocity field to obtain

I3 27-[ > ’
Dy(k)Q(k; 0, ') = <f> Cua(k, w)ug(—k, ')

= <2Ln> {CuQk, 0)u(—k, ') +

+ A2[UOUD Y + UMDY + UPuP] + 0(14)
= Dayk)Qolks 0, ) + (2—;) (R LuPu> +

+ uPudy + uPuP >+ 0(2%)}, (5.73)

where some frequency variables have been suppressed in the interests of
conciseness and, for the same reason, we only give explicit results for second
order. Note that it follows from eqn (5.68) that the u'® are (like the stirring
forces) normally distributed with zero mean. Hence, terms like <u@u®>
vanish, as they are odd functionals in the u'® (see eqns (3.103a)—(3.103c)).

Now we need the relationships between the various coefficients of the
perturbation expansion. As reference to Section 3.5.2 will show, we obtain
these by substituting the perturbation expansion into the equation of motion
and equating coefficients at each order.

We shall now consider this procedure in detail (up to second order) as
follows. First, we take eqn (5.64) and invert the linear operator on the Lh.s. by
using (5.65). Then, substituting from (5.68) for the zero-order velocity field, we
can write

uy(k, @) = uP(k, ) + AGo(k, )M, (k) 3. Y up(j, 0 Yu,(k — jo — o)
7
(5.74)

as the equation of motion.
We now substitute the perturbation expansion, as given by (5.69), for the
exact velocity field on each side of eqn (5.74) to obtain

uP(k, ) + APk, 0) + A2uP (ko) + -
= uO(K, ) + AGo(k, ) M,y (k) x
X ZZ {uP(j, 0Ok — j, 0 — ') +

+ /l[u(o)( o Pk —jo — o) +
+ ui(j, 0Pk — j 0 — o')] + 0(A%)}. (5.75)
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Then, equating coefficients at each order of 4, we find

uV(k, ) = Gylk, ) M,4,(K) Z Z U (j, 0Pk — j,0 — '), (5.76a)
uP(k, w) = 2Gy(k, 0)M,4,(K) Z Z uP (G, 0Pk — j0 — o), (5.76b)
j ’

and so on. It should be noted that the factor of 2 in (5.76b) arises from the fact
that the terms #@u* and uVu® on the r.h.s. of eqn (5.75) can be added
together and their sum put equal to 2uVu'?, with variables being renamed as
appropriate. This step relies on the fact that both j and k — j are dummy
variables. Note that, if this is not immediately obvious, then k — j can be
replaced by |, along with the condition that j + I = k.

The coefficient ¥® can be expressed in terms of u®, through equation
(5.76a). An intermediate stage is to rewrite the expression for u‘") as

(1)(.,’(0 ) - GO(]aw )Mﬁpa' Z Z u(O) u(O)(J - l W —w ) (577)

followed by substitution into (5.76b) with the result
u((IZ)(k, (D) = 2(‘;0(1(’0J aﬁy(k) Z Z GO J’ MBpa(J) X

X g Y u Lo ”)uf,"’(J — Lo — 0Ok —jo— ). (578)

Similar procedures can be used for all higher orders, although here we shall
restrict ourselves to second order in the expansion parameter A.

Using eqns (5.76a) and (5.78), the perturbation expansion (5.73) for the exact
correlation Q(k, w) can be worked out explicitly in terms of the zero-order
correlation Qq(k, w). Details are given in Appendix G, but the general ideas
behind the derivation can be followed quite readily here.

First, we should note that the only non-trivial operation is to evaluate the
second-order terms on the r.h.s. of (5.73) as fourth-order correlations of the
zero-order velocity field. Unlike the quasi-normality hypothesis discussed in
Section 2.8.2, this is a completely rigorous procedure. The random stirring
forces are specified to have a Gaussian distribution and, as we have pointed
out previously, it follows from eqn (5.68) that the zero-order velocity field must
also be normally distributed. So, just as in Section 2.8.2, each (u®u®u’u°) can
be factored into three products of pair correlations {u®u®) (u°u®), one of
which contributes zero. The other two can be written as 2{u%u®> (u®u®), with
appropriate renaming of dummy variables.

The other main points to watch out for are as follows.

(a) The homogeneity property will lead (as in eqn (2.93) applied to the
zero-order field) to a delta function, which can then be eliminated, along
with one of the summations, from the r.h.s. of (5.73).
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(b) The formation of the product Q,Q, will result (see eqn (5.71)) in the
introduction of two factors of (2/L)? on the r.h.s. of (5.73). One of these
factors will cancel with the corresponding factor on the Lh.s. The other
will be absorbed, along with the remaining summation, into an integration
when we take the infinite system limit.

With all these considerations in mind (or in detail from Appendix G), the
expansion for the exact correlation function in terms of zero-order correlation
functions can be written down, to second order, as

Daﬂ(k)Q(ka w, C(),)
= D, (K)Qo(k; w, ) +

+ 12 |:4G0(k,a)’)Mﬂay(—k) J d3j f do” j dw” Go(j, ") x

X M&pa( ) rzp(k)DW(k + ]) X
X Qolk; 0,0")Qo(lk + jl; 0" ~ 0", 0" — ") +

+ 2Go(k, ) M,s,(k) | 4% | do” | dew” Gk, ') x
Y

X Mﬁpa(_k)Déa(j)Dyp(k - j) X
x Qollk = il — 0, ") Qo( ;"0 — ") +

+ 4Go(k, 0) M, (k) f d3j f do” J dw” Go(j, ") x

X M,5(J) Dy, (k) D, (k — ) x
x Qolk; @, 0")Qo(k — j 0 — 000" — " ] N

+ 0(2%). (5.79)

Two general points should be noted about this equation. First, it is still
formally an expansion for the correlation tensor Q,,(k; w, '), albeit for the
isotropic case. However, it is easy to convert it to an expression for the
correlation function (or spectral density function) Q(k; w, '), merely by put-
ting o = f§, summing over the repeated subscript, and dividing both sides of
eqn (5.79) by tr D,4(k) = 2. Thus we can regard it as also being an equation
for the correlation function.

Second, we have changed from summations to integrations over the angular
frequency w. This is a purely formal step, and has been taken in the interests
of consistency with the way in which wavenumbers are treated. It has no real
significance as, when we deal with the application of theories in later chapters,
we shall invariably transform back into the time domain.
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5.5.3 Graphical representation of the perturbation series

Equation (5.79) represents the lowest non-trivial order of the perturbation
expansion for the exact pair correlation of fluctuating velocities. Clearly we
can carry on the procedures given, so that we can obtain terms of any order.
Thus the exact correlation Q(k; w, w’) can be rigorously specified in terms of
the zero-order (or ‘viscous’) propagator Go(k,w) and the zero-order pair
correlation Q,(k; w, ), albeit by means of a divergent series.

Our purpose now is to consider ways in which we can extract some useful
information from this divergent series, and we begin by introducing diagrams,
as in the preceding sections on many-body problems. We do this by repre-
senting the three main constituents of the expansion, u'?, G,, and M., (K) as
follows:

full line -y

broken line < G,

point (vertex) — M.

These basic representations will be referred to as ‘elements’.

We now draw diagrams which will represent the terms of the perturbation
series, as given by eqn (5.69), to all orders. The result is shown (to third order)
in Fig. 5.8.

Beginning with u'"), we can usefully compare the diagram, as shown in Fig.
5.8, with its equivalent algebraic form, as given by eqn (5.76a). This is, in fact,
the prototype non-linear term of the Navier—Stokes equation, as expressed in
zero-order quantities. Note the general characteristic that three elements join
up at a vertex, and that these three elements always show wavenumber
conservation. That is, the wavenumber of the element to the left of the vertex
is equal to the sum of the two wavenumbers of the elements on the right. In
this particular case, we have k, j, and k — j.

Equation (5.78) reveals that u'® contains two M factors and hence the
corresponding diagram in Fig. 5.8 has two point vertices. The factor of 2 is
also shown explicitly. The three elements at each vertex show wavenumber
conservation, the first being (k, j,k — j) and the second being (j,1,j — 1). Note
that G,(j,»') is the linking element between the two vertices.

Superficially, the order of each term in the expansion is the same as the
number of M factors, which is the same as the number of vertices in the
corresponding diagram. Thus, although we only have algebraic results to
second order, it would be quite easy to devise general rules for drawing the
diagrams of any order. For instance, at third order there are three vertices
and clearly there are two ways in which we might connect them up (ie. in
series or in parallel; see Fig. 5.8).

Factors of 2 arise firstly because of the expansion of the original quadratic
terms of any order to the zero-order velocity field. The general rule is that we
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k) = —— Wy = —=----

Fig. 5.8. Diagrams corresponding to terms in the perturbation series (5.69) for the
velocity field.

multiply a diagram by 2 for (a) each vertex which has only one element u®
connected to it and (b) each asymmetric branching of the diagram. Note that
the first third-order diagram of Fig. 5.8 has two such vertices but the second
diagram has none. Also, the branching in the second third-order diagram is
symmetrical.

Our next step is to use these diagram elements to set up a graphical
representation for the primitive perturbation expansion of the correlation
function. Just as the series for u is made up from u'®, G,, and M, the series for
Q will be made up from Q,, G,, and M. Clearly what we need is the graphical
equivalent of the way in which we factored a fourth-order moment into two
non-vanishing products of pair-correlations in order to derive eqn (5.79).

The general procedure is obtained by taking any pair of diagrams and
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(a)
()Y (—k)) =

(b)
W0 (k) = (=== e S

|
N

>

i

~ —

Fig. 5.9. Examples of the averaging process on the zero-order field, leading to diagrams
in the expansion for Q,;(k; w, @").

placing them with their branches facing each other. Then we join up the
emergent full lines (i.e. the u¥) in all possible ways. This is the same as selecting
all n possible pairs of velocities from the set making up the moment of order
2n, and we indicate that two velocities are correlated by placing a cross at
their junction point. The numerical factors are obtained by multiplying each
diagram by the number of different ways in which the full lines can be joined
up to make duplicate diagrams.

In order to illustrate this process, we first consider the trivial example of
the diagram for Q,, which is shown in Fig. 5.9(a). Evidently, we replace the
angular brackets, which denote the operation of taking an average, by the
cross at the junction point, indicating that an average has been taken and that
the velocities are now correlated. It should also be noted that each emergent
line (full or broken) is labelled by Kk, if to the left of the diagram, and by —Kk,
if to the right.

At second order, we show two illustrative examples in Fig. 5.9. The first of
these (Fig. 5.9(b)) is the graphical representation of the middle second-order
term on the r.h.s. of eqn (5.79). Therefore we can see that it stands for (in a
very symbolic notation)
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Quplk; 0,0)=

Fig. 5.10. Diagrams in the primitive perturbation expansion for Q,4(k; v, ") showing
four of the 29 fourth-order diagrams.

2G, (k)M (K)Qo(/)Qo(lk — §)M (= K)Go(| k).

Similarly, Fig. 5.9(c) stands for the last second-order term on the r.h.s. of eqn
(5.79), and can be written symbolically as

4Go (k)M (K)Qo(Ik — j) Go( /)M ()Qo(l —k]),

where again we suppress the integral signs along with the variables and indices
(with the exception of the wavenumber arguments).

The third of the second-order diagrams is simply a mirror image of Fig.
5.9(c), and is shown in Fig. 5.10 where we write down the series for the exact
correlation function to fourth order. It should be noted that we only include
a few of the fourth-order diagrams. We do this so that we can present the very
simple ideas involved in renormalizing the perturbation series without being
distracted by complications. Any reader who wishes to check the detailed
bookkeeping will find full sets of diagrams, up to sixth order, in Lee (1965).

We now face the problem of summing the perturbation series for Q,4(k; w,
') to all orders. As in previous sections, this will involve techniques of partial
summation and, as before, we shall find it convenient to introduce new
diagram elements:

thick full line > u (exact velocity field)
thick broken line < G (renormalized propagator)
open circle <> (renormalized vertex).

It follows that when two thick full lines are joined by a cross, the resulting
element stands for the exact pair-correlation of the fluctuating velocity field.
The latter two elements will be explained as they arise.
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Lastly, we shall find it helpful to divide the problem into two parts. That
is, we shall write the correlation tensor as

Qupks0,0') = Qup(k; 0, 0')5 + Qyp(k; @, 0)p, (5.80)

where Q,,(k; w, '), is the sum of certain diagrams which we shall call class
A, and Q,4(k; w, ®') is the sum of all the other diagrams. We shall introduce
class A diagrams in the next subsection.

5.5.4 Class A diagrams: the renormalized propagator

We follow Wyld (1961) in defining class A diagrams as those diagrams which
can be split into two pieces by cutting a single Q, line. In Fig. 5.10, they consist
of Q, itself, the second and third diagrams of the second order, and the second
and third diagrams of the fourth order. There are, of course, many more
fourth-order diagrams which we have not shown.

In order to see why this classification is significant, we first examine the
zero-order case. From egn (5.72), we see that @, can be expressed in terms of
two zero-order propagators acting on the spectrum of the stirring forces
w(k; w, w'). We show this graphically in Fig. 5.11(a).

Next take the second-order class A diagrams. The first of these can have
the Q, line emerging to the right factored into G,G,w, and, for the second, we
can do the same thing to the emergent Q, line on the left. The result for both
diagrams is shown in Fig. 5.11(b).

Now, let us summarize what we have done so far. At zero order, we obtain
w with a G, on each side. At second order, w has a G, on one side and a
diagram which connects like a G, on the other. We can carry this procedure
on to fourth and higher orders. The result is that we can write the total
contribution from class A diagrams to the correlation function as a generaliza-
tion of eqn (5.72):

e e B O e
(@
----- o = e e
x —(f}——-—- = —---e- Wo=——m- <X> —————
(b)

Fig. 5.11. Decomposition of class A diagrams into ‘propagator-like’ parts acting on
the stirring force spectrum h(k): (a) zero order; (b) second order.
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Oup (hi0,0) = =mmmm (k) =

(a)

(b)

Fig. 5.12. Summation of class A diagrams: (a) sum of contributions from class A
diagrams to Q,,(k; w, ") in terms of the exact propagator G(k, w}; (b) expansion of the
exact propagator G(k, w) showing two of the nine fourth-order diagrams.

Qlk; w,0")s = Gk, w)G(k, " YW(k; 0, 0), (5.81)

where G(k, w) is the renormalized propagator. This is shown graphically in
Fig. 5.12(a), with the first few terms of the infinite series for G being given in
Fig. 5.12(b).

In other words, substitute from Fig. 5.12(b) for the thick broken lines in
Fig. 5.12(a), and all the class A diagrams are generated. That is, replacing G,
by G amounts to a partial summation of the diagrams.

We should note that eqn (5.81) not only gives the direct contribution of the
stirring forces to the correlation of velocities, but also (in effect) defines the
exact propagator G. The same result was first obtained by Kraichnan as part
of the direct-interaction approximation, which is based a on definition of the
propagator (or response function) in terms of the relationship between the
velocity field and the stirring forces. A discussion of Kraichnan’s theory will
be found in Chapter 6, where the basic ansatz is given as eqn (6.3) and the
equivalent of eqn (5.81) is eqn (6.32).

5.5.5 Class B diagrams: renormalized perturbation series

Referring to Fig. 5.10, the class B diagrams are those which cannot be divided
into two parts merely by cutting a single Q, line, that is, the first second-order
diagram, the first, and fourth (and many other) fourth-order diagrams, and so
on to higher orders.



55 EXPANSION OF THE NAVIER-STOKES EQUATION 219

Here we extend the ideas used to tackle the class A diagrams. There we saw
that certain diagram parts were ‘propagator like’, that is, they connected like
G,. From purely topological considerations, if we can renormalize G, by
adding up all diagrams which connect like G,), it follows that the ‘bare’ vertex
can also be renormalized by adding up all diagrams which connect like a
vertex.

As an example, let us consider the fourth of the fourth-order diagrams
shown in Fig. 5.10:

The part

~
\\
e
-
P
P

4

|-

connects just like a point vertex. That is, we can connect three lines to it. If
we replaced this part by a point vertex?, then this particular fourth-order
diagram would be reduced to the first second-order diagram in Fig. 5.10.

An alternative way of putting this is to define an expansion for the modified
(renormalized) vertex as follows:

Then, (as an example) suppose that we replace one vertex of the class B
second-order diagram by the renormalized vertex and substitute the above
expansion, the result is that many of the higher-order diagrams would be
generated this way:
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Fig. 5.13. Diagrams corresponding to an integral equation for Q(k; w, o).

Therefore the key. to the class B diagrams is as follows.

(1) Find those diagrams which cannot be reduced to a lower order by
replacing diagram parts.

(2) Call these the irreducible diagrams.

(3) Replace all elements in the irreducible diagrams by their exact or
renormalized forms.

(4) Write down all these modified diagrams in order, thus generating a
‘renormalized’ perturbation expansion.

The result for Q(k; w, ®') is shown in Fig. 5.13, where we have also included
the sum of class A diagrams, as given by eqn (5.81) or, graphically by Fig. 5.12.

The same procedure is used for obtaining the renormalized vertex and
propagator expansions. That is, we take the ‘bare’ series for each quantity and
replace zero-order elements by renormalized elements, thus generating a
renormalized expansion. The results for the renormalized vertex are shown in
Fig. 5.14, and those for the renormalized propagator in Fig. 5.15.

We should draw attention to one peculiarity of the diagrams for the re-
normalized propagator in Fig. 5.15; that is, the propagator emerging to the left
of the diagram is unrenormalized. This is a modification, which was introduced
by Lee (1965), and is designed to overcome a problem involving the double
counting of bare diagrams in the primitive perturbation series (Wyld 1961). It
may seem a rather arbitrary modification of the general techniques that we
have just been discussing, but this is not really so. If we consider the equation
of motion in the (rather symbolic) form

Lou(k) = AM(kju( ju(k — j),

where the linear operator L, = {0/dt + vk?}, then we could carry out all the
above procedures on the r.h.s. This would mean that the r.h.s. could be
represented by a renormalized perturbation series like that given in Fig. 5.15,
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Fig. 5.15. Diagrams corresponding to an integral equation for the renormalized pro-
pagator G(k,w).

but with no emergent propagator to the Lhs. of the diagrams. However,
subsequent inversion of L, would result in a zero-order propagator on the
Lh.s. of each diagram, hence giving Lee’s result.

It should, perhaps, be emphasized that this particular problem need not
have arisen in the first place. In Kraichnan’s approach, he dealt with the
governing equation for the correlation tensor rather than with the correlation
tensor itself (see eqn (6.22)). Evidently the Lh.s. is exact in unrenormalized
form, and the perturbation series is only used to expand the triple moment
on the r.hs.

5.5.6 Second-order closures

Figures 5.13-5.15, when compared with the bare perturbation series, show a
substantial reduction in the number of diagrams needed to describe turbulence
(all the more impressive when one consults Wyld (1961) or Lee (1965), where
all diagrams are given to fourth and sixth order respectively). The general
neatness and self-consistency of the method are certainly very appealing.
However, at the same time we must reiterate that this method is not in itself
a theory. We have merely replaced a series which is widely divergent, in any
case of interest, by one of unknown properties. Naturally we hope that the
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renormalized series has some advantageous properties—it might be conver-
gent or, failing that, asymptotic. But the essential point is that we simply do
not know. Indeed, in the present state of knowledge, it seems that the only
reasonable approach is to truncate the renormalized series at some order
where the complications are still tolerable, and then attempt to compute the
correlation (or spectrum) and make a comparison with experimental results.
We finish this chapter with two examples of this approach, applied to the
Wyld formulation, in which well-known theories can be recovered (Wyld
1961). First we truncate the renormalized perturbation series, as follows.

Figure 5.13: truncate at second order (in number of vertices).
Figure 5.14: truncate at first order (unrenormalized vertex).
Figure 5.15: truncate at zero order (G — G, unrenormalized propagator).

This procedure leads to Chandrasekhar’s (1955) theory, which is essentially
much the same as quasi-normality (see Section 2.8.2) but as applied to two-
time (rather than single-time) correlations.

A higher order of approximation is gained by also renormalizing the propa-
gator to second order. That is, we truncate expansions, as follows.

Figure 5.13: truncate at second order.
Figure 5.14: truncate at first order.
Figure 5.15: truncate at second order.

The result is the pioneering direct-interaction approximation (DIA) (Kraichnan
1959) and the relevant diagrams are shown in Fig. 5.16.

We shall discuss the DIA (and various other renormalized perturbation
theories) in the following chapters. We conclude here by noting that the DIA
is technically (in terms of the Wyld formalism) a second-order closure with
line renormalization. There is no vertex renormalization.

Fig. 5.16. Diagrams corresponding to a second-order closure of the statistical hier-
archy, the DIA (Kraichnan 1959).
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In contrast, Chandrasekhar’s theory has no renormalization at all: the
retention of renormalized lines for the correlations in Fig. 5.13 is meaningless
in the absence of any partial summations.

Notes

1. In the literature, this reference (Mayer 1937) is normally cited for the introduction
of graphs. In fact, they were introduced in the second part of that work (Mayer and
Ackermann 1937). A quick look through that paper would miss the graphs alto-
gether, as they are very small and were completely incorporated into the text. It is
only in Mayer and Mayer (1940) that something like the familiar modern form of
diagram emerges.

2. Intuitively, this step seems arbitrary, if one gives any credence to topological
considerations. In fact, as well as vertex parts containing combinations of G,, G,,
and Q,, one might also expect vertex parts with both combinations of G,, Q,, and
Q.. along with the vertex based on Q,0,0,. The need for three kinds of vertex
function was first pointed out by Kraichnan (1972), who noted that the line-
renormalized expansion for the non-linear term conserved energy. That is, if we
substitute the line-renormalized expansion for T(k,t) on the r.h.s. of eqn (2.126),
then this equation would hold, irrespective of the order at which we truncated the
expansion. However, according to Kraichnan, the vertex-renormalized expansions
of Wyld and Lee do not satisfy this consistency requirement.

As a result, a more general procedure is needed in which one expands both the
correlation and response equations (i.. eqns (6.22) and {(6.21)). Apparently the full
analysis has still not been published, but Martin, Siggia, and Rose (1973) have
independently noted the need for additional vertex functions.
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6

RENORMALIZED PERTURBATION
THEORIES OF THE FIRST KIND

In discussing renormalized perturbation theories (RPTs), we shall divide them
into two categories. We shall then devote a separate chapter to each of these
categories. Firstly, in this chapter we will concentrate on those theories which
are not compatible with the Kolmogorov inertial-range spectrum. These can
be thought of as the older theories although, in point of strict chronological
order, this is not true of every case. Secondly, in Chapter 7, after first turning
our attention to the problems involved in finding an analytical theory which
does have the Kolmogorov spectrum as its solution, we then consider those
theories which can claim to have achieved that result. Questions concerning
the significance of one or other category will be deferred until Chapter 8, where
we shall attempt to make an overall assessment of the various theories.

The theories which we are just about to discuss in the present chapter can
again be subdivided, but this time on the basis of the general approach to the
problem. That is, there are those theories which are based on a direct manipula-
tion of the equations of motion and there are those which work with the prob-
ability distribution of the fluctuating velocities. Loosely speaking, we could
refer to the first as a ‘Chapter 5’ type of theory, and the second as a ‘Chapter 4
type of theory. We shall discuss the work of Kraichnan (1959), as representing
the first type, and the work of Edwards (1964), as representing the second.

Another theory which qualifies as an RPT of the first kind, and which has
some particularly interesting features, is the self-consistent field theory (SCF)
of Herring (1965, 1966). We discuss this theory in some detail and then
conclude the chapter with a brief account of other self-consistent theories
(Phythian 1969; Balescu and Senatorski 1970).

6.1 The direct-interaction approximation (DIA)

The original statement of DIA is normally taken to be that of Kraichnan
(1959), although details of some derivations can be found in Kraichnan (1958).
Our presentation here will differ somewhat from that given originally by
Kraichnan as, for pedagogical reasons, we will base our approach on the
preliminary discussions of the preceding chapter.

At this stage, it may be helpful if we restate the problem. That is to say, we
wish to solve the Fourier-transformed solenoidal Navier—Stokes equation
(2.76) for the statistical (mean) properties of a given turbulence field. In fact
all our procedures will be sufficiently general to apply to any solenoidal field,
but we can reduce the algebraic. complexity by restricting our attention to
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homogeneous isotropic fields. This we shall continue to do, and the solution
of the test problems discussed in Section 4.3 remains our immediate objective:
we want to solve for the correlation function Q(k; t,¢) in terms of prescribed
initial conditions or inputs.

It may also be helpful to anticipate the coming discussion and state that
the DIA consists of two simultaneous equations for the correlation function
and a new quantity, the response function G(k; t,¢'). The latter quantity is, in
the language of Chapter 5, a renormalized propagator. But it was introduced
from quite a different point of view, and represented a major step forward for
turbulence theory. We begin our treatment of DIA by discussing the introduc-
tion of the associated response tensor.

6.1.1  The infinitesimal response tensor

We begin with the Navier—Stokes equation in the form (5.56), where we have
added solenoidal stirring forces to the r.h.s. We also recall that the ordering
parameter 4 is equal to unity. Now consider the effect of a small change in the
stirring forces:

Tk, 1) = f(k, 1) + (k. ). (6.1)
In turn, this can be expected to produce a small change in the velocity field:
u (k. ) > u (k, 1) + ou,(k,1). (6.2)

Kraichnan introduced the relationship between these two infinitesimal changes

as
t

ou,(k, t) = f Gp(k; 1, t')ofy(k,t)de’, (6.3)
where Gaﬁ (k; t,t')is the infinitesimal response tensor. We shall usually abbrevi-
ate this to be ‘response tensor’. Note also that we not using the notation of
Kraichnan (1958, 1959), where this concept was introduced, but rather the
later notation used by Kraichnan when reworking the DIA in a Lagrangian-
history form: this will be one of the subjects of the next chapter.

The importance of the infinitesimal change in the stirring force is that we
can linearize the Navier—Stokes equation in order to calculate the response
(i.e. the corresponding infinitesimal change in the velocity field). Let us make
the substitutions (6.1) and (6.2) in eqn (5.56) to obtain

(; + vk2> {u,(k, 1) + du,(k, 1)}
= iMaﬂy(l() Z {uﬂ(j, Hu,(k — 1) + (), t)éuy(k —j,t) +
i

+ Sup(j, D,k — j, 1) + Suy(j)ou,(k — j)} +
+ Doy(K) { fy(k, 0) + 85k, )} (6.4)
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Then the equation for du,(k, t) is obtained by subtracting eqn (5.56) from (6.4),
interchanging the dummy variables j and k — j, and using the invariance
M,;,(k) = M,,4(k) to obtain

d . .
<5 + vk2> ou,(k,t) — 2AM,4,(k) 2]: ug(j, t)ou,(k —j, 1)

= D,4(k)o/5(k, 1) + O(du)?, (6.5)

where we have neglected terms which are quadratic in the infinitesimal velo-
city perturbation.

Formally, eqn (6.5) is linear in du,(k, ), which means that its solution can
be written in terms of a Green function. And, of course, the relevant solution
is none other than eqn (6.3), where Gaﬂ(k; t,t') can now be interpreted as the
Green tensor which satisfies

a ~ . A . ’
(5 + vk2> Goolks 1,17) — 24M,p,(K) %‘, ug(j, 1)G,o(k —J; £,1')

=D, (k)S(t — t'). (6.6)

The presence of the term involving the random velocity field u,(k, 1) suggests
that G,,ﬁ(k t,t') may well fluctuate from one realization to another. As we shall
see shortly, this can be taken care of by working in terms of the ensemble-
averaged response function denoted by

Guplks t,1) = (Gpylk; £,1')). (6.7)

6.1.2 Perturbation expansion of the velocity field

Our immediate aim now is to use (6.6) and (5.56) in order to obtain governing
equations for the correlation tensor Q,,(k; ¢,¢’) and the mean response tensor

G,4(k; 1,¢'). We follow the procedures discussed in the previous chapter, and
expand u,(k,t)and Gaﬂ(k t,t’) as perturbation series in the ordering parameter
4. We shall only need to do this to first order:

u,(k, t) = uP(k, t) + Ak, 1) + O(4%) (6.8)

Gupk; t,t) = GQ(k; 1,t') + AGP(k; t,1') + O(22). (6.9)

It should be noted that (6.8) is just the same expansion as that given in eqn
(5.69); the only difference is that this time we are working in (k, t)-space rather
than (k, w)-space. As before, the zero-order term u{”(k, t) is the solution of the

Navier—-Stokes equation (5.56), with 4 = 0, and is given by (5.61). Similarly,
we can make the identification

GPk; 1,t') = GP(k; 1,1), (6.10)

where G9(k; ¢, t') satisfies eqn (6.4), with A = 0, or, what is the same thing, is the
solution of eqn (5.57). At the same time, we should also note that GPk; t,t")
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is statistically sharp (i.e. it is invariant under averaging) and from now on we
shali simply drop the circumflex symbol, as far as the zero-order Green tensor
is concerned.

Now substitute from (6.8) and (6.9) into the Navier—Stokes equation (5.56),
and equate coefficients of powers of 4. We have already identified the zero-
order term above and, in addition to this, we shall only need the first-order
term, which is readily shown to be given by

)
<5+vk2)ui.“(k,r) M0 TP G0uPk —j, (61D

or, inverting the operator on the Lh.s., in terms of the zero-order Green tensor
as defined by eqn (5.57),

t
u(k, 1) =J ds GP(k; ¢, S)Maﬂy(k)zu(m(]’ ik —j,s).  (6.12)

-

Similarly, by substituting (6.8) and (6.9) into eqn (6.6) and equating coeffi-
cients at each order, we find the equation for the first-order term in the
expansion for the response tensor to be

<% + vk2> Gio(k; 1,1') = 2M 5, ( Z UG, 069K — j; 1,t), (6.13)

or, inverting the operator on the r.h.s., as we did for eqn (6.11), we can write
the first-order Green tensor as

Gk t,t') =2 f ds GO(k; t,5)M ,5,(K) Z u(j, )Gk — j; s, 1)

t
=2 f ds GO'(k; ¢, )M . (K) Z u“”(] )Gk —j; s,t'), (6.14)
' J

where the lower limit on the integral with respect to time has been changed
to take account of the fact that GQ'(k — j;s,t") = 0fors < ¢'.

6.1.3  Perturbation series for the mean-response and correlation tensors

Formally, we obtain an equation for the mean-response tensor—as defined
by (6.7)—by averaging each term of (6.6):

0 A
(_é{ + Vk2> Gaa(k; tat ) 2’1Maﬂy k); <uy(k - j’ t)Gﬂo'(j; t’ tl)>

= D, (k)o(t — t'), (6.15)

where the dummy variables j and k — j have been interchanged to fit in with
a usage which we shall meet later on.
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In order to evaluate the average (uG), we substitute the perturbation series
(6.8) and (6.9) for the velocity field and the response tensor respectively to
obtain

<£ + vk2> G,k t,t') —
— 2AM,5,(K) Y. { <Ok — j, )G (s 1, 1)) +
i

+ APk — j, 0GR 1)) +
+ AUk — §, GV 1)) + 0(A%)}
= aur(k)(s(t - tl)5 (616)

where we recall from eqn (6.10) that the zero-order response function is
statistically sharp.

Now consider the terms under the summation sign. The first of these is
(symbolically) (u9G'?y = (u®yG® = 0, as the u'® are prescribed to have
zero mean, and G'? is of course statistically sharp and hence invariant under
the averaging process. The second term also vanishes, but this is a little more
difficult to see. Evidently we have (u'"G?> = (u>G'9. It turns out that the
average of the first-order velocity coefficient vanishes. We can see that this is
50, as follows. From eqn (6.12) we have

Cu Pk, 1)) = f ds Gio(k; t, 5) Mg, (K) Z Cuf(j, uP(k — i, 5)>

= J ds GP(k; £, )M, 5, (K) Z 0)(5 5,5)0(j + k — J)
=0, (6.17)

as 6(k)M, 4, (k) = M,;,(0) = 0, which follows from eqn (2.77). Note that the
homogeneity requirement, as embodied in eqn (2.93), also applies to the
zero-order velocity field and so can be used (as above) when taking the step
UOu®y = QO

This then leaves us with the third term within the curly brackets and we
deal with it by substituting from (6.14) for G'. We obtain the appropriate
expression from eqn (6.14) by changing the labels k, a to j, f. Less obvious
perhaps is the need to change dummy variables in order to avoid confusion
when we substitute back into (6.16). Thus in (6.14) we also rename the dummy
variables j, B, y as 1, J, e. The result is

GG t,t)=2 J ds G(js t, )M 5, ])Zu(o) )G — L s,t’), (6.1R)
t
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which we immediately substitute into (6.16) to obtain
0
(6 + vk2> Go(k; 1,t") — 427 M, (K) ZJ ds GP)(j; t,8)M,,5,(3) %

Z GO(j— L s, ¢") Pk — j, 0)uX(1,8)) + O(4%)

=D, (k)S(t — t'). (6.19)

The next step is to evaluate the pair correlation of the zero-order fluctuating
velocities. Combining eqns (2.83) and (2.93), we have

Pk — j, ug(l, 5)) = ( >35k—j+l,oQ(y%)(k—j; t,s).  (6.20)

Inserting this result into eqn (6.19), we can eliminate the summation over 1
along with the Kronecker delta. The other summation can be converted to an
integral with respect to j, as we take the infinite system limit

3
lim (2—”> y - fd3',
L= L j

and (6.19) for the response tensor becomes

0 .
<6‘t * ”"2>Gm<k; L) — 472My (K) — f‘“ J ds GR2(i; £, 9) Myu(i) %

X Gég)(k, S,t,)Q.M( J,t S) + 0 13
=D, (K)3(t — t'). (6.21)

The corresponding equation for the correlation tensor is obtained from the
Navier—Stokes equation in the form of (5.56). The stirring forces are as
prescribed in Section 3.5.2, with the autocorrelation of the forces given by
(3.64). We multiply each term of eqn (5.56) by u,(—k,t’) and average. Then,
invoking eqn (2.88), we obtain

0 LY’ . . ,
(E + Vk2> Qaa(k; L t,) - iMaﬁy(k) <ﬁ> Z <uﬁ(.|’ t)uy(k B t)ua(_kat )>
i
=1I.(k;tt), (6.22)
where the input term [, is given by
L 3
Lok t,t') = <ﬂ> Dp(k) < fy(k, Jus(—k, ') (6.23)

Note that the correlation between the stirring force and the velocity field has
already been treated in Section 4.3.2. We shall leave the input in the above
non-specific form for the present. In the next section we shall specialize the
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equations to isotropic turbulence, and state the explicit form for I,,, which is
obtained as an exact result of the DIA theory. This result—see eqn (6.32)—is
more general than, and reduces to, eqn (4.88).

The triple correlation in (6.22) can be expanded out using the perturbation
series (6.8) for the velocity field. In an abbreviated notation we have

Cu(juk — ju(—k) = uGuk — ju@(—k)> +

+ A{<u@Gu@k — Hu(—k)> +

+ Ok~ Ju(=k)) +

+ P (HuOk — Pu@(—k)> + 0(4?). (6.24)
Now it follows at once from the fact that the zero-order velocity field is
normally distributed (in itself a consequence of our prescription of the arbi-
trary stirring forces) that the zero-order term on the r.h.s. of (6.24) vanishes
when we carry out the average. Next, we note that, of the first-order terms,

the second and third are identical. This follows from the interchange of the
dummy variables j and k — j, along with the property

Maﬂy(k) = Mzzyﬂ(k)'

Thus we can simplify matters by replacing the second and third first-order
terms by twice the third term, and eqn (6.22) can be written as

(% + vkl) 0.k £,6') —

3
— 1My, 1) (ﬁ) Y. (<P 00k — , 0u(—k, ) +

+ 2¢ug(j, DuP(k — §, uP(—k, 1))} + 0(2%)
= L,(k; t,1). (6.25)
Now we substitute from (6.12) for u'®), First we rename the dummy variables
in (6.12) in order to avoid confusion with the names of the existing dummy
variables in (6.25). That is, the variables j, g, §, and y are renamed 1, p, 4, and

¢. In addition, for u{!’(—k, ') we change labels as appropriate, and it follows
that
v
ub(—k,t') = J dsGO(—k; t', )M ,5.(—k) Zl: O, 5)u?(—k —L,s),
6.12)

and similarly for u§"(j, ) we obtain

ug(j, 1) = J_ ds Gf,'(§; t,S)M,,ac(J')ZI:ufso)(l,S)uﬁo’(j—LS)- (6.12b)
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Once we substitute from (6.12a) and (6.12b) into (6.25), we then have to
factor the two fourth-order moments into pairs of second-order moments
using the relationships appropriate to a normai distribution. We have already
carried out this procedure in Section 2.8.2, and reference should be made there,
or to Appendix E, for the details. As before, we use the rules given by egns
(2.83) and (2.90) for homogeneous moments. Also as before, we eliminate one
summation, along with the Kronecker delta which results from the homo-
geneity condition, and turn the other summation over j into an integration,
as we take the infinite system limit. In all, the result is that eqn (6.25) becomes

J 2 . ’
<é; + vk )Qaa‘(k’ Lt )

.
— A*M,;,(K) Jdﬁ{j dsG(—k; t',s)M,,5,(—k) x

—C

X 2Qég)(j9 L S)Qg(;)(k - .ia [ S) +

t
N j ds GR(j; , )M, (i) X

% 400K — j 1,)09(—k: t’,s)} + 003
— I, t,t). (6.26)

Equations (6.21) and (6.26) are shown arbitrarily truncated at second order
in the bookkeeping parameter 4, but of course they are actually dependent on
an infinite number of terms of increasing order in Q' and G. The two
equations are analogous to the graphical representations of Figs 5.13 and 5.15
respectively, and would be brought into an exact correspondence if we were
to invert the Lh.s. of (6.21) and (6.26) in terms of G'*), One consequence of the
present way of doing things is that we can see how natural it is to leave the
left-hand propagator unrenormalized (see the last paragraph of Section 5.5.5).

6.1.4 Second-order equations for the isotropic response and
correlation functions

The perturbation expansion which underlies eqns (6.21) and (6.26) can be
renormalized by simultaneously replacing each @ and G'© by the exact Q
and G. We have seen in Chapter 5 that this is really equivalent to a partial
summation of the terms of the primitive perturbation series. Also, in terms of
the diagrams given in Chapter 5, this is a process of line renormalization; there
is no vertex renormalization.

It can be seen that the lowest non-trivial term (of order A?) involves the
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interaction of the three wavenumbers (k, j,k — j) which characterize the exact
non-linearity of the Navier—Stokes equation. This is the direct interaction. In
contrast, terms of higher order in the perturbation series (either primitive or
renormalized) involve interactions via intermediate wavenumbers, with these
mode couplings becoming ever more complicated as the order (i.e. the power
of A) increases. These are the indirect interactions.

The recipe for Kraichnan’s (1958, 1959) DIA can now be stated as follows:

(a) replace 0 and G’ by Q and G in eqns (6.21) and (6.26);

(b) truncate the perturbation series at second order (i.e. at the direct-
interaction terms).

(c) put the bookkeeping parameter A equal to unity.

While doing this, we shall also take the opportunity to make the simplifying
restriction to isotropic turbulence. We use the general result for a second-order
isotropic tensor (2.97), with trivial extensions to time dependence and to
tensors other than the correlation tensor, to write

Qupk; t,1') = Dop(k)Q(k; 1, 17) (6.27a)
Gyp(k; t,t") = Dyp(k)G(k; t,t") (6.27b)
Lg(k; t,t') = D,p(K)I(k; t, 1), (6.27¢)

where Q(k; t,t') is the correlation function, G(k;t,t’) is the response function,
and I(k; t,t') is the input term, which is only of temporary significance, as we
shall shortly express it in terms of the forcing spectrum. Note that Q(k; t,t")
satisfies

O(k;t,1) = q(k,1),

as defined by eqn (2.163).
Following the above procedures, and substituting as appropriate from
(6.27a) and (6.27b), we can write eqn (6.21) as

(% + vk2> D, (k) G(k; t,t') —

- 4Maﬂy(k) J\da.] J’ dS Dﬂp(j)G(]’ L, S)Mpde(j) X
X Dyo(K)G(k; 5,8')Dy5(k — )Q(Ik — jl 2, 5)
=D, (k)s(t — t'). (6.28)

This may seem even more complicated than the previous form, but this is
illusory. A dramatic simplification is now possible. Set « = g, sum over «, and
then cancel the factor ) , D,,(k) = 2 across. The result is
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<% + vk2> G(k;t,t') +

+ Jd3j Jt ds L(k,j)G(J; t,5)G(k; s, t")Q(Ik — jl; ¢, 5)

=t —1), (6.29)

as the equation governing the response function G(k;t,t'). The coefficient
L(k, j) has previously been encounted in connection with the quasi-normality
theory in Section 2.8.2. From comparison of eqns (6.28) and (6.29) it is

L(k,j) = —2M,5,(K)M,5.(}) Dy, () D,o(k) D, 5(k — j)
- 2Msﬂy(k)Mﬂés(j)Dy&(k - j)a (630)

where the last line is the same as the form given previously in eqn (2.162) and
follows from the contraction properties

D,.(k)D,,(k) = D,, (k)
Daa(k)Meﬁy(k) = Maﬂv(k)
which, in turn, are easily deduced from eqns (2.77) and (2.78).

The equation for the correlation function can be obtained, using exactly the
same procedures, from (6.26). The only additional feature is the substitution
of (6.27¢) for the input term:

a ’
(E + vk2> Qk; t,t) —

- Jd3j L(k,j) {f ds Gk; ', 5)0(j; £, 9)Q([k — jl; t,s) —

-

- f dsG(j; t,5)Q(1k — jl; t,5)Q(k; t, S)}

= I(k; t,t'), (6.31)

where the coefficient L(k,j) takes the same form as given in eqn (2.162);
additional details can be found in Appendix E.

The input term I(k; t,t’), as defined by (6.27¢) and (6.23), can be regarded
as a cross-correlation of the random stirring force with the velocity field. It
can be shown, by a generalization of the treatment for stationary turbulence
in Kraichnan (1958), that the input term can be expressed in terms of the
stirring spectrum w(k; t,t'):

Ik;t,t')y = f G(k; t',s)w(k; t,s)ds (6.32)

— 0

where w(k; t,t") is defined by eqn (3.94).
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Equations (6.28), (6.31), and (6.32) comprise the original direct-interaction
approximation (Kraichnan 1958, 1959). In the next section, we shall briefly
consider the implications of DIA for energy transfer and the spectrum in the
inertial range of wavenumbers. This treatment will merely be a prelude to a
much more comprehensive investigation of the properties of the DIA (includ-
ing its generalization to Lagrangian-history formulations) in Chapters 7 and 8.

6.1.5 Spectral transport of energy: the inertial range

In this section we shall consider some of the properties of the DIA, especially
in the inertiai range of wavenumbers. We shall begin by rewriting the relevant
equations, so that they take on a somewhat simpler appearance. Thus, starting
with (6.31) for the correlation function, we now write this as

<§t + vk2> Q(k; t,t') = P(k; t,t') + I(k; t,t"), (6.33)

where the inertial transfer term is given by

Plk;1,1') = fd3jL(k,j)H1' dsG(k; ', 5)Q(j; t,5)Q(lk — jl; t.s) —

—

—J dsG(j; t,5)0(k; t',5)Q(k — ji; t,S)}. (6.34)
On the time diagonal, where ¢t = t’, we have the special form

0

(E + 2vk2> O(k;t,t) = 2P(k;t, 1) + 21(k;t, 1), (6.35)

where the factors of 2 arise when one multiplies du,(k, t)/0t in the Navier—
Stokes equation by u,(k, t) before averaging (see the derivation of eqn (2.115)
for the single-time correlation).

The energy spectrum E(k,t) can be introduced by generalizing eqn (2.101)
to the time-dependent case:

E(k,t) = 4nk?*Q(k, 1),
where
Qk,t) = Otk; t,1)
and, for consistency with earlier notation,
Q(k, 0) = g(k).

Then, muitiplying each term of (6.35) by 4nk?, we obtain the DIA equation
for the energy spectrum:

<:iit + 2vk2> E(k,t) = T(k, ) + 4nk2w(k, 1), (6.36)
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where the transfer spectrum T'(k, t) is defined by
T(k,t) = 8nk?P(k; t,1) (6.37)

and P(k; t,t) is given by (6.34) witht =1'. .

In Section 2.7.1 we discussed the general energy-balance equation and the
requirement that the non-linear terms should conserve energy. In practice this
means that the transfer spectrum T(k, t) must vanish when integrated over all
wavenumbers (see eqn (2.126)). It is easily shown that the DIA form of Tk, t)
passes this test. Let us write the transfer spectrum as

T(k,t) = j d3j Ak, j), (6.38)

where it can readily be deduced from eqns (6.34) and (6.37) that A(k,j) is
given by
t

A(k,j) = 8nk2L(k,J')f ds{G(k; t,5)Q(j; t,)Q(|k — jl; t,5) —

— G(j; £,5)Q(k; 1,9)Q(lk — j; £,5)}. (6.39)

Now it is clear that, if we interchange k and j on the r.h.s. of (6.39), we merely
change the second term into the first term and vice versa. Thus we see that

A(j, k) = — A(k,j), (6.40)

meaning that A(k,j) is antisymmetric under the interchange of k and j. Hence
it follows that

f T(k,t)dk = Jd3k ~[dﬁ'A(k,j) =0, (6.41)
0
as required.

Kraichnan (1959) also introduced the transport power II(k,¢), which is
defined to be the rate at which energy is transferred from modes k' < k to
modes k' > k. The formal expression (actually, in the later form to be found
in Kraichnan (1964a)) is

© k
Ik, 1) = J T(k',t)dk’ = —j T(k',t)dk’ (6.42)
k V]
where the second equality follows from eqn (6.41).

In Section 2.7.1 the antisymmetry of the integrand involving the triple
moment was established as a general result. It is interesting to note how this
property has been achieved in the DIA. Clearly, from (6.39), the antisymmetry
arises because there are two separate terms, one of the opposite sign to the
other. The physical significance of these two terms can be explained most
clearly by writing the energy-balance equation out in words.
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First we rearrange equation (6.36) as

dE(k,t)
dt
This can be restated in words as follows:

= dnkw(k,t) — 2vk2E(k, t) + T(k, ).

(rate of change of energy in mode k) equals (rate at which stirring forces do
work on mode k) less (rate at which viscous dissipation turns energy in mode
k into heat) plus {(rate at which energy is transferred into mode k from modes
k' < k) — (rate at which energy is transferred out of mode k to modes k' > k)}.

Note that the second term making up T(k,f) is the one proportional to
Q(k; t,s). This can be seen to be physically reasonable, as follows. Suppose
that the turbulence is in a steady state under the combined effects of stirring
forces and viscous dissipation. Now suppose that we inject some additional
energy directly into mode k. According to the above, the output term of A(k, )
would increase in magnitude owing to the presence of Q(k), whereas the input
term containing Q(j)Q(|k — j|) would initially be unaffected. Hence we could
expect the original steady state to be restored by such a process.

The precise effect of the transfer spectrum T(k, t) depends on the physical
situation and the value of the wavenumber being considered. An interesting
case arises when we satisfy the conditions for the existence of an inertial range,
as discussed in Section 2.7.2. Essentially we require the Reynolds number to
be large, so that we can have a range of wavenumbers which is independent
of the viscosity. Also, the turbulence should be at least approximately steady.
Then, with these restrictions and integrating the various terms of (6.36) from
some value k up to infinity (compare eqns (2.145) and (2.156)), we find the
condition for an inertial range

(k) =&, (6.43)

where ¢ is the constant rate at which the inertial forces transfer energy from
low to high wavenumbers. It is, of course, numerically equal to the viscous
dissipation rate (see Section 2.7.2)

6.1.6 The DIA energy spectrum in the inertial range

It was shown by Kraichnan (1959) that the DIA predicted a —3/2 power law
for the energy spectrum in the inertial range. At the time, the experimental
accuracy so far achieved was not sufficient to distinguish between this result
and the Kolmogorov —5/3 power law. Nowadays we know that the Kolmo-
gorov spectrum is the more nearly correct, yet the analysis leading to the DIA
—3/2 law is of considerable interest.

Following Kraichnan (1959), we begin with the equation for the response
function. Now, restricting our attention to stationary turbulence, we rewrite
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equation (6.29) as

0
kz et ¢!
<_6t+v )G(k,t t')

t
- —fd3jf dt" Lk, k — j) x
.
X G(lk —jl;t —t")G(k; t" — t)Q(js t — t7), (6.44)

where we have interchanged the dummy variables j and k — j, and L(k,k — j)
is easily obtained by making the same interchange in eqn (6.30) for L(k,j). It
is given by (see Appendix E)

L (kk —j) = (k* — 2k%jp + ki) (1 — p?) [k —jI72, (6.45)

where p is the cosine of the angle between the vectors k and j. For the case
j « k, it becomes

:2
Lk k —j) = k(1 — u2) + o<i—z>, (6.46)
and this is the case which will concern us here.

It should also be noted that we have dropped the delta function, which is
on the r.hs. of (6.29), as this only represents the discontinuity in the first
derivative of G(k; t,t') at t = t". It can be avoided by keeping t — ¢t' > 0.

Now make the substitutions

T=t—t s=t"—t,
and (6.44) takes the form
Gk, 7) + vk*G(k, 1)

- —fd3j f dsL(k,k — )G(Ik — jl, 7 — 5)G(k, )Q(j, T — s)
’ (6.47)

where the dot denotes differentiation with respect to 7. This equation can be
simplified to the point where analytical solution is possible, if we consider the
case where k is very much larger than some k, defined by

ke @ 2 ‘
j E(j)djzj E(j)dj=3%° (6.48)

0 [0}
where v, is the r.m.s. velocity of the turbulence. Hence k, effectively marks the
top of the energy-containing range of wavenumbers. Under these circum-
stances, we can argue that the presence of 47j2Q(j,t — s) = E(j,t — s) ensures

that the integration on the r.h.s. of (6.47) is dominated by wavenumbers
J <k, « k. Hence the triangle condition leads to |k — j| >~ k. Therefore putting
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G(lk —jl,7 — s) = G(k,7 ~ 3),

invoking eqn (6.46), and performing the integration over j, we obtain the
simplified version of (6.47) as

G(k,7) + vk2G(k,7) = —v3k? J Gk, T — s)G(ic, s)ds. (6.49)

0
This can be solved subject to the boundary condition
Gk,O+)=1,

which follows from the definition of G. The result is (Kraichnan 1959)

_exp(—vk®1)J; (2uokt)
B vokT

Gk, 7) (6.50)
where J; is a first-order Bessel function of the first kind.

Various points about this solution are noteworthy. For instance, the oscil-
latory behaviour of the Bessel function is unlikely to be correct: a monotonic
decline with increasing time separation t seems more likely. We shall return
to this sort of consideration in Chapter -8, when we make a quantitative
assessment of the RPTs. For the moment we are more interested in the
qualitative features of (6.50). Of these, the most striking is the presence of the
viscous time-scale (vk?)™! and the energy-containing range time-scale (vyk)™?,
but not the inertial range time-scale. In fact it is obvious, with the assumptions
made above, that the viscous time-scale will be very large (i.e. viscous processes
are slow for wavenumbers in the inertial range) and the exponential factor
approximately equal to unity.

Thus we have surprising result that the response function in the inertial
range of wavenumbers scales on the time-scale associated with the energy-
containing range of wavenumbers. As (v k)™* is the characteristic time one
would associate with uniform convection of a periodic pattern with spatial
frequency k past a fixed point with velocity v, it is often referred to as the
convective or sweeping time-scale.

According to Kraichnan (1959), it can be concluded from a similar analysis
that the two-time correlation function Q(k, t — t') also scales on the convective
time of the large eddies.

Lastly, the above results for the response and time-correlation functions
lead to the inertial range spectrum

E(k) = f(0)(evo) k™32, 6.51)

where f(0) is a numerical constant. The details can be found in Kraichnan
{1959). Here we shall merely note that (6.51) follows from the condition (6.43)
for the existence of an inertial range, along with the imposition of the require-
ment that the transport power I1(k) is determined locally by wavenumbers k',
jand |k — j|, all in the neighbourhood of k.
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6.1.7 Alternative derivation of DI A by the method of reversion of power series

Another method of deriving renormalized perturbation series has been given
by Kraichnan (1977). The real significance of the new method seems to be
that it provides a more powerful and systematic technique for deriving new
theories—in particular, Lagrangian renormalized expansions, a topic which
we shall discuss in the next chapter. Nevertheless, there seems to be some
tendency to regard it as, in some way, improving the status of DIA, even in
its Eulerian version. For this reason, and also for completeness, we shall briefly
consider the topic here.

The method of reversion (or, sometimes, inversion) of power series has been
used in other comparable problems in theoretical physics. For example, the
renormalization of the expansion for the free energy, which we discussed in
Section 5.3.3, can be treated in this way. To be precise, the expansion of the
configuration integral in terms of cluster functions can be reverted into a
power series in the Mayer functions (Reichl 1980, p. 357).

The general method can readily be explained, as follows. Consider a pair
of real variables x and y, which are connected by the power series

y=ax + bx* + cx® + dx* + -+ (6.52)

We now wish to invert this relationship and express x in terms of y. We begin
by supposing that x is small enough for us to neglect its square. Then we have
the immediate result

y=ax or x = y/a.

Evidently this is the lowest-order approximation to the general result which
we are seeking. It can be made the basis of an iteration. We anticipate the
required result by writing

x = Ay + By? + Cy> + Dy* + ---, (6.53)
where it follows immediately that the first unknown coefficient is given by
A=1/a. (6.54)

The second coefficient is found by going to second order. That is, we assume
that x is not quite so small and that we need to include its square; thus

Y= ax + bx* = a(Ay + By?*) + b(Ay + By?)*
= ady + (aB + A%b)y*® + 0(»®)
=y + (aB + A%b)y? + 0(y?), (6.55)

where we have substituted from (6.53) for x and, in the first term on the r.h.s.,
from (6.54) for A. Consistency then requires that the term of order y? on the
r.h.s. of (6.55) vanishes and hence



62 THE EDWARDS-FOKKER-PLANCK THEORY 241

B = —bja>. (6.56)

Clearly this iteration can be carried on to any order but we shall not
pursue that here. The method can also be extended to functional power series
(Kraichnan 1977, Appendix) and specifically to the present renormalization
problem as follows.

(a) We begin with the primitive power series for Q and G in terms of Q,
and G,.

(b) We revert these primitive expansions to obtain Q, and G, as power
series in Q@ and G.

(c) Then substitute these new expansions for each Q, and G, factor in
the primitive expansions for the triple moments.

(d) Lastly, multiply out and collect terms of each order.

The result of all this is line renormalization of the primitive perturbation
series, which we have just obtained from other methods, in the process of
deriving eqns (6.29) and (6.31). According to Kraichnan (1977), it is also
possible to carry out a further reversion which leads to vertex renormalization.
We shall return to some additional consideration of these points in the next
chapter, in connection with Lagrangian-history theories.

6.1.8 Concluding remarks

We have presented the DIA theory of turbulence very much in the context of
other renormalization procedures, in other areas of physics, and also very
much without frills. Our hope is that the general basis of the whole approach
can be made rather clearer in this way. However, DIA was put forward
originally as a complete theory, buttressed by physical hypotheses of ‘maximal
randomness’ and ‘weak dependence’. We are not ignoring these concepts, but
are merely deferring them to Chapter 8, where we shall make an overall
assessment of the various theories.

An important claim made for DIA is that its physical realizability is guar-
anteed by the fact that when applied to certain model dynamical equations it
gives exact solutions. In view of the fact that the failure of the quasi-normality
hypothesis occurred in the form of unphysical negative energy spectra (see
Section 2.8.2), this was seen as a major strength of the theory. We shall not
go into details here, but a full account can be found in Kraichnan (1961). This
topic has been taken further by Frisch and Bourret (1970).

6.2 The Edwards-Fokker—Planck theory

The theory derived by Edwards (1964, 1965) can be seen as drawing on certain
analogies with the development of kinetic equations in statistical mechanics.
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We have discussed this subject in a rather concise way in Chapter 4, and the
work of Edwards essentially follows a similar route, beginning with the
derivation of the Liouville equation governing the turbulent velocity field. At
this point the theory is equivalent to the Hopf formalism, but Edwards broke
away from sterile formalism by approximating his Liouville equation into the
Fokker—Planck form. This aliows a solution to be obtained for the probability
distribution of the fluctuating velocity field, and hence a closed equation for
the energy spectrum.

6.2.1 The derivation of the Liouville equation

We begin by considering the turbulent fluid to be in a box, such that the
Fourier modes u(k) are denumerable. Later, we shall take the limit as the
system size goes to infinity, although we shall not draw any distinction
between the two cases in the notation used. The probability F that the velocity
field u(k, t) takes the particular set of values u(k) at time ¢ is given by

F =[] 6[u(k,¢) — u(k)]. (6.57)
k

We have previously discussed this kind of distribution in Section 4.1. An
equation for the evolution of F with time can then be derived as follows.
Differentiating both sides of (6.57) and using the chain rule for differentiating
products, we find

; a au(k t){ﬂé[u (3i1) u(j)]}
ou

— (k,t) ¢ . .
T {r,l oLu(i.0) — “(J)]}

B o oulk,t) . .

B ; ouk) ot {I]_I o[u(j, 1) — “(J)]}, (6.58)

where the second line uses the relation

ofx—y _ dflx—y)

Ox dy

and the third line relies on the fact that du(k, t)/0t is not a function of u(k).
Next we substitute for du(k, 1)/t in (6.58) from the Navier—Stokes equation
(4.81) to obtain

oF o
o —§ ou, (k)

x {l_[ ofu(j, 1) — u(j)]}- (6.59)
]

{_ szuaz(ka t) + Maﬂy(k) z uﬂ(j, t)uv(k - ja t) + ﬁz(ka t)} X
i
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Now we wish to obtain the probability distribution and, following the example
discussed in the sequence of eqns (4.1)-(4.6), we introduce the ensemble-
averaged distribution function

Plu(k),t] = (F) (6.60)

where P becomes a functional as the box size tends to infinity and u(k) becomes
a continuous function of k.

The ensemble can be specified by the introduction of the stirring forces.
These have already been discussed in Sections 3.5.2 and 4.3.2, but now we
follow Edwards (1964) and formally specify their probability distribution:

JIEk,8)] = Nexp{—z f dr J dt’ f(k, yw (k,t — t’)f(—k,t’)}, (6.61)
k

where N is an appropriate normalization such that integration of J over the
space of the functions f(k,t) gives unity and w™'(k,t — ¢') is the functional
inverse of the force autocorrelation, i.e.

wlk,t —t")yw ik, t" — 'ydt” = 6(t — t'). (6.62)

The force autocorrelation w(k,t — t') is given by eqn (3.94) which we shall
repeat here for completeness:

L 3
<E> Sallk, ) fp(—K, ) = Dyp(K)wik,t — t').
Also, for the reasons we discussed in Chapter 4 in connection with Brownian

motion, we shall specialize the autocorrelation to a delta function in time, and
again, for completeness, we reproduce the relevant result (eqn (4.85)) here:

wlk,t — t') = WK)S(t — t').

Having specified our turbulent ensemble in terms of eqns (6.61), (6.62), (3.94),
and (4.85), we can usefully rewrite (6.60) for the distribution of fluctuating
velocities in a more specific form as

Plu(k),t] = JFJ [f]of. (6.63)
Then we can obtain the evolution equation for P by multiplying each term of

(6.59) by J[f] and integrating over the variabies f(k, z. We can write out the
intermediate stage explicitly as

oF 8
J [EJ Jf]10f = J; el {vkzua(k, £) —

— Mg, (k) Y. up(3, hu(k — . 1) + fu(k, t)} x
i

X {H S[u(j, 1) — u(j)]}J[f](Sf. (6.592)
i
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We shall now work out an explicit form for each term individually, begin-
ning with the Lh.s. The time derivative is unaffected by the functional integra-
tion and we readily obtain

oF 8 oP
JEJ[f]5f=aJFJ[f]5f:5?. (6.64)

The first term on the r.h.s. is just

15 5 ) .
J; Gl Uk 0} {FJI S[u(j, 1) — w(i1}JF1f

15
% 0u, (k)

0
% Ou, (K)

Il

{vk2u,(k)} f FITE(K)]5€

Il

{vk?u,(k)P}, (6.65)

and the non-linear term follows similarly.

A problem arises when we consider the last term on the r.h.s. of eqn (6.59a).
This contains the stirring force f(k, t) explicitly, and of course f(k,?) is the
independent variable when we carry out the functional integration. We have
already solved an analogous problem when we obtained eqn (4.88) for the
cross-correlation { f,(k, t)uyz(—Kk, t}>. The corresponding term in the equation
for P is very much more complicated and was first derived by Edwards, who
drew on an analogy with the theory of Brownian motion. The details are
complicated and the reader who wishes to pursue this further should consult
the original paper (Edwards 1964). Alternatively, it can be obtained from the
later functional formalism of Novikov (see Appendix H). The result is

0 ) .
J; Ou,(k) {[]I olu(3n — “(J)]} { £k, t)J [£16F)}

1
= 27

8
{W(k) m} P. (6.66)

Formally then, we start with eqn (6.59) for F, multiply each term by J[f],
and integrate according to eqn (6.63):
oP 0 5 0
—=— - k K)u(u,k —j) — —
i (k){ () + Mg, 0tttk = §) = W(k) aua(_k)} P,
\ (6.67)

where we have also used equations (6.64), (6.65), and (6.66). This is the required
equation for the probability distribution functional of the turbulent velocities
u(k) at time ¢. For the special case of random stirring forces with Gaussian
(multivariate normal) statistics and autocorrelations which are delta functions
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in time, it is an exact equation. In succeeding sections we shall consider how
it can be solved as an approximation.

6.2.2 The Edwards—Fokker—Planck equation

We are considering a formulation with prescribed stirring forces, and hence
we can expect the system to attain a steady state in which the rate at which
the stirring forces do work is exactly balanced by the rate at which the viscous
forces dissipate turbulent kinetic into heat. We can simplify matters some-
what by anticipating this eventuality and just assume that the turbulence is
statistically stationary. Thus the time derivative in eqn (6.67) can be equal to
zero and, with some rearrangement, the equation for P becomes

d p .
%M{W(k) Pu(—K) + vk ua(k)}P -
. . 0P
—;;Aummwmwm—naaﬂ_a (6.68)

Note that in the last term, the differential only acts on one of the u(j) or u(k — j)
if k = j or k = k — j. In either case, the triangle condition ensures that the
other wavevector is zero and hence the whole term vanishes because of the
boundary condition on the velocities, which is

uk)=0 fork=0. (6.69)

We also note that a velocity mode with k = 0 would correspond to a uniform

translation of the whole system and so would have no dynamical significance.
We now introduce a very symbolic notation (rather like that of Herring

(1965), but there are some important differences). We write eqn (6.68) as

LP - VP =0, 6.70)
where the operators L and V are defined by

0 0
L = zk: aua(k) {vkzua(k) + W(k)m} (671)

and

V=%;MW®%U( AT

0
;; Mg Wty —k =) 7y 6.72)

where we have replaced k by —k and used the relation M,;,(K) = — M,;,(—k).
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Now we look for a solution of (6.70) as an expansion in terms of a book-
keeping parameter A. This is the same approach as before, and again A is
assumed to be superficially of the same order as M,;, (k). The essential differ-
ence this time is that, instead of expanding the velocity field, we are expanding

the probability distribution P as follows:
P=Py+ AP, + A*P, + - (6.73)

where the zero-order coefficient satisfies
L,P, =0, (6.74)

for some operator L, the form of which remains to be determined.

For this method to work, clearly we have to find a form for L, such that
P, ~ P. Then we can simultaneously add and subtract L,P from eqn (6.70)
to obtain

LoP — VP — (L, — L)P = 0. (6.75)

Further, we can associate the first order in 4 with VP, as this essentially
represents the non-linearity of the Navier—Stokes equation, and the second
order in A with the term (L, — L)P, which represents the correction to our
perturbation procedure (i.e. it vanishes when P = P,). Thus we can base our
perturbation expansion on (6.75), rewritten as

LoP — AVP — A*(L, — L)P = 0. (6.75a)

At a later stage we shall show that these assignments of a particular order of
A to each term are in fact self-consistent.

Now we substitute (6.73) for P in eqn (6.75a), and equate coefficients of
powers of A. The result for zero order is just eqn (6.74), while at first order we
have

LyP, = VP, (6.76)

and at second order
LoP, = VP, + (L, — L)P,, (6.77)

or, using eqn (6.73),
LyP, = VP, — LP,. (6.78)

This process can, of course, be carried on to any order, but the second order
will be sufficient for our purposes.

Our next step is to obtain a form for L. As this is intended to approximate
the operator L, we begin by considering this quantity. There are two things
which we should note about it. First, it is the sum over k of single-mode
operators. Second, each of the single-mode operators is of the Fokker—Planck
form. This can be seen by comparison with the stationary case of (4.32). We
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replace the displacement x of Brownian motion with the velocity u for turbu-
lence, and set the variable ¢ equal to zero, for stationarity.

Neither of these two properties is particularly surprising. The operator L
only involves linear effects, and the turbulence problem has indeed been
formuiated by us in terms of a close analogy with Brownian motion. However,
once the non-linearity comes into play, we know that mode-coupling effects
will dominate the dynamics and so we really ought not to expect that a
renormalized version of L will retain the single-mode form.

Nevertheless, we have previously seen that many-body theories tend to rely
on mean-field approaches, in which the interaction picture can be replaced by
an effective field or a renormalized single-particle picture. In particular, we
have seen how a renormalization programme is carried out in the DIA by
replacing zero-order quantities by exact quantities, while retaining the general
form of the equations unchanged. The Edwards—Fokker—Planck (EFP) the-
ory (which is very different from DIA) effectively makes this kind of assump-
tion at an earlier stage (and then proceeds to a quite different post hoc
justification). Edwards assumed that the force spectrum W (k) and the modal
decay rate due to viscosity vk? could be replaced by more general forms d(k)
and w(k):

d(k) = W(K) + s(k) (6.79)
w(k) = vk? + r(k) (6.80)

where r(k) and s(k) represent the effects of the non-linearity. As we shall see
shortly, these two quantities are not independent of each other.

In physical terms, it can be argued that any mode k will experience an input
of energy from the stirring forces plus a contribution from non-linear transfer
from modes less than k. Similarly, the energy loss from mode k will be partially
due to non-linear transfer to modes greater than k, along with some direct
viscous dissipation of energy in mode k. Hence, in this way, we have a very
straightforward interpretation of d(k) and w(k).

Equations (6.79) and (6.80) represent, in effect, the simultaneous renormali-
zation of the stirring forces and the viscosity. Correspondingly, the renormal-
ized version of L is readily obtained when one adds on terms containing s(k)
and r(k) to obtain

0

0
Lo=Y 6ua(k){w(k)u"( )+ ()5 k)} (681)

and the correction operator L, — L, where we subtract terms containing s(k)
and r(k), takes the form

Lo—-L=Y
k

0 0
k) {r(k) u,(k) + s(k)a = k)} (6.82)



248 RPT OF THE FIRST KIND

With L, still made up of single-mode operators, each of Fokker—Planck
form, it is natural to interpret w(k) as a dynamical friction and d(k) as an eddy
diffusivity (see Section 4.1.2). It is easily seen that the solution of (6.74) is now
given by

(6.83)

P() — Nexp {_Z ua(k)ua(_k)}

voqlk)

where N is, as usual, an appropriate normalization, and the dynamical friction
and the diffusion coefficient must satisfy the condition

2w(k)q(k) = d(k), (6.84)

where the second moment of the velocity field is given by
2m\3
7 | Ualk)ug(=k)> = | Po[ulk)]u,(k)us(—~k)du(k)

= D,4(k)q(k). (6.85)

Note that this is equivalent to requiring that the homogeneous isotropic
second-order moment (see eqns (2.88) and (2.97)) is given by an expectation
value evaluated against the zero-order probability distribution P,. This re-
quirement is the major hypothesis of the EFP theory.

6.2.3  Evaluation of the coefficients in the expansion for the probability
distribution of velocities

In order to solve eqns (6.76) and (6.78), we have to invert the operator L.
Now, it is well known that most inhomogeneous differential equations in
mathematical physics can be solved by eigenfunction expansion, provided that
the associated differential operator is linear. For instance, let us consider the
inhomogeneous equation

Hy(x) = p(x),

where p(x) is a given function and y(x) satisfies some prescribed boundary
conditions. The eigenfunctions of the operator H satisfy the equation

Hf,(x) = e, fu(x),

where the e, are the eigenvalues and the eigenfunctions { f,, f1,...f,,...} are
assumed to form a complete orthonormal set. Note that the index n is not
summed in the above equation. The solution to the inhomogeneous equation
is then found by expanding both y(x) and p(x) in terms of the eigenfunctions
of H, with the result

yx)=> {J‘f,.(x')p(x’)dx’}f"(—x).

n en
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Details of this procedure can be found in any book on mathematical methods.
(e.g. Mathews and Walker 1965); from our point of view the important fact
is that the inversion of the operator can be accomplished by the purely
arithmetic inversion of the eigenvalues.

We now follow Edwards (1964) and introduce the eigenfunctions of L, First
we write L, as the sum of its constituent single-mode operators Lo (k):

Ly= ; Ly(k). (6.86)
Then we introduce the eigenfunctions of Ly(k) in the usual way:
Lo(k)f,[u(k)] = e,(k)f,[u(k)], (6.87)
where the eigenfunctions are given by
Julu(k)] = H,[u(k)]P;[u(k)] (6.88)
and the eigenvalues are given by
e,(k) = nw(k). (6.89)

Here, the H, are Hermite polynomials. These are special cases of the confluent
hypergeometric function, and there are recursion relations or generating
functions which allow one to find the Hermite polynomial of any order n
(e.g. see Matthews and Walker 1965). We shall only need the first three
polynomials, which are

Hol[u(k)] =1,
u(k)
Hl k = T A12
W1 = Gy
_ u(k) u(k) — q(k)
H,[u(k)] = gl (6.90)
Now, inverting L, on the Lh.s., we can write eqn (6.76) as
P = L(;l {VPO}
_ . 0P
= _Lo {Z Z ﬁy(k)uﬂ ( -1 aua(—ok)
_ oy K ug(iu, (k — ju, (k)P
=L;! ChASdel At LAl AN 6.91
{;; q(k) } (63D

where the last line follows from the operation of the functional derivative upon
P, as given be (6.83).

Comparison of the r.hs. of (6.91) with eqn (6.90) for the Hermite poly-
nomials shows that P, contains the three first-order functions H, (j), H, (k — j),
and H, (k). Thus Ly can be represented in terms of the first-order eigenvalues
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and, with some rearrangement, P, becomes
P = ; > My, (Kyu (K)ug(iu,(k — j) x
]

X Po
a0 {w® + o(j) + ok =i}’

We should note two points here. First, P, is of the form of an operator acting
on P,. This is true of ail P,. Second, the operator V acting on P, is first order
in the eigenfunction expansion which is consistent with our assignment of the
bookkeeping parameter A in equation (6.75a).

The second-order coefficient P, is given by eqn (6.78), and we write this
equation more explicitly by substituting from (6.72) and (6.92) to obtain the
first term on the r.h.s., and from (6.71) and (6.83) to obtain the second:

(6.92)

LOPZ = _Zl: ; %‘, z M&pe(])Maﬂy(k)up(p)us(l - p) X
]

 2fuauy(u, k — )} Py -
Ous(~1 40 (k) + w(j) + ok — )}

_ » W) {gk) — u(k)-u(k)} P,
;{v" q(k)} 2 :

We shall not formally carry out the inversion of the L, on the Lh.s., and so
we merely note from the last term on the r.h.s. that P, contains the second-
order Hermite function, which is consistent with our putting the last term on
the r.h.s. of eqn (6.75) as order A2

A general procedure for writing down terms of any order is given in
Edwards (1964), but we shall only work to second order here.

(
)

(6.93)

6.2.4 The energy-balance equation

In eqn (6.85) we have the requirement that the velocity field correlation should
be given by an expectation average evaluated against P, rather than P. This
implies a constraint on the higher terms in the expansion for P:

f Uy (K (—K) {P, + Py + Ps - - }ou(k)= 0. (6.94)

Note that terms P, P;, and so on contain odd powers of the velocity and
hence vanish automatically when integrated over all function space of the
velocities. Hence, if we satisfy this requirement to second order, we have the
relation

Jua(k)ua( —Kk)P; [u(k)Jou(k) = 0, (6.95)
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and it turns out that this gives us the required energy-balance equation for
q(k), and hence, through (2.101), the energy spectrum E(k).

The task of working this out in detail is very much simplified by the
observation, due to Leslie (1973), that we do not need to solve (6.93) explicitly
for P,. Instead we can use the fact that (6.95) is equivalent to

f 1, (K)u,(—k) Lo P, [u(k)]ou(k) = 0. (6.96)

Hence, multiplying through eqn (6.78) for P,[u(k)] by u,(—k), and integrating
with respect to u(k), we obtain

J U (K)u,(—k)LP,ou = fua(k)ua(—k) VP, du. (6.97)

Now, substituting from (6.71) for L, we can write the 1.h.s. of (6.97) as

f — );{ EE )}{VJ u(J) + W(j)7 e )}Poéu

0 2 o W(Dug(j)
= Ku(—-k) Y — {yj? PRV p s
fua( Juq( )Ej 6u,,(j){vj ug(J) 0) }Po u

-y fé(k — Doua(—K) {vﬂuﬂ(n W“() )"(’)} Pyu
j

= —2vk?q(k) + W(k), (6.98)

where the penultimate line is obtained by integrating by parts and using the
boundary condition that P, becomes exponentially small as u tends to infinity.
The last line is obtained straightforwardly with the use of (6.85).

With this result, eqn (6.97) can now be written as

W(k) — 2vk*q(k) = f ZZZZMM(I M, g, (m)u, (k)u,(—k) x

0
X u,(p)u,(l — p) {m} Uy (mjug(ju,(m — j) x

1
* 40m) {w(m) + ©(j) + o(lm —j|}

Py[u]du, (6.99)

where the Lh.s. was obtained by substitution of (6.72) for V and (6.92) for P,.
The functional derivative can be eliminated using partial integration, just as
in the manipulation leading to eqn (6.98). Then the wavenumber summation
over I can be carried out to eliminate the delta function é(k — 1), and, replacing
the functional integration against Py[u] by the Dirac brackets { >, we have
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W(k) — 2vk*q(k) = ;Z 2 M, (k) M, p,(m) x
m j

Xt (K)1t, (), (1 — D)t ()11, (G, (m — )
1
* gom){a(m) + o(j) + o(m — )}

The correlation of six velocities can be evaluated in the same way as we have
done previously for four velocities. That is we make the factorization

{123456) = (125> {34)> (56> + all combinations.

(6.100)

Note that although this will give us three q factors in the numerator of (6.100),
the factor g in the denominator will give cancellations. Details will be found
in Appendix E, and we merely quote the result here. In the limit of infinite
system volume, eqn (6.100) becomes

Wi(k) — 2vk*q(k) = —2 stjL(k,j)q(lk —iD{a(j) — g0} x

1
* {0tk + o)) + ok — i}

which is the required equation for g(k). We can confirm its physical interpreta-
tion as an energy-balance equation by working out the expectation value of
the triple moment against the probability distribution functional P[u(k)]. To
second order, this can be written as

(6.101)

(Mg, (k) 3 gy (k — ju,(—Kk)> = J M, (k) 3. ug(Du,(k — ju,(—k)P;ou.
’ : (6.102)

It is simple to show, and is therefore left as an exercise for the reader, that
substituting (6.92) for P, reduces (6.102) to the r.h.s. of eqn (6.99).

6.2.5 The response equation

At this stage we have three unknown functions q(k), d(k) and w(k), to be
determined from eqns (6.101) and (6.84). Or, equivalently, from eqns (6.79) and
(6.80), we can replace d(k) and w(k) by s(k) and r(k) respectively as the functions
to be determined. However, either way, it is evident that another condition is
needed to provide the requisite third equation.

Edwards (1964) argued (in effect) that d(k) came about as a renormalization
of the random stirring forces f(k, ¢} to take account of the non-linear term in
the Navier—Stokes equation. Hence, one could think of d(k) as being made
up from the spectrum of the stirring forces W(k) plus the spectrum of the
random forces due to the non-linear term which could be interpreted as s(k).
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That is to say, we are assuming that the effect of the non-linear term on the
velocity field in mode k can be represented by a random force 1.(k, t) which
is given by

Sk, ) = Z M, g, (K)uy(j, Hu,(k —J,0). (6.103)
i

This is, of course, rigorously true. However, to go further and assume that
f is, like the stirring forces, Gaussian and uncorrelated with u(k) seems rather
imponderable. Nevertheless, such an assumption leads to quite reasonable
answers. If we define s(k) by analogy with (3.94) and (4.85) for W(k), then it
can be shown (Edwards 1964) that the assumption

s(k) = j ok, 1) fu( =k, 1)) dt (6.104)

leads to the relationship
d3. k . k s .
s(k) = 2[ i Lk g(lk —ila())
w(k) + o(j) + o[k —ji)

Now we can use (6.84) to obtain a relationship for the dynamical friction.
From eqns (6.79) and (6.80) we rewrite (6.84) as

2{vk? + r(k)}qtk) = W(k) + s(k).

Then, we rearrange the energy-balance equation (6.101) to take the above
form, using (6.105) for s(k):

) d% L(k,jq(lk — ji) }
k k
4} +fmm+wuank—m a)

(6.105)

d’j Lk, j)q(k — jhq(j)
= W(k) + 2 : IS 6.106
“ jMM+Mﬂ+MW—m (6100
from which it follows that we can identify w(k) as
3. k - _ .
(k) = vk + d”j Lk, jq(lk — ji) (6.107)

w(k) + w(j) + ok —jl)’

As we shall see in the next section, when we make a comparison with DIA,
eqn (6.107) can be interpreted as the response equation of the EFP theory.

6.2.6 Comparison with the DIA

The final form of the EFP theory consists of eqns (6.101) and (6.107) for q(k)
and w(k) respectively. Clearly the most obvious difference between EFP and
DIA is that the former is independent of the time, aithough a consideration
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of the Green function (propagator) of the Liouvillian suggests (Edwards 1964)
that the time-dependent case could be handled by the relationship

Qlk,t — t') = q(k)exp{ —w(k)|t — t']}. (6.108)

In order to make a detailed comparison of the two theories, we first rewrite
the DIA energy balance equation (6.36) as

(% + 2vk2> O(k,t) = 2P(k, 1) + w(k, 1), (6.109)

where we have divided both sides by 4nk? and P(k, t) is given by (6.34).
For the response equation, we take (6.44) and interchange the dummy
variables j and |k — j| to obtain

d 2 ,
(a-kvk )G(k,t—t)

t
= —Jdi‘jf dt” Lk, )G(j,t — t")G(k,t' —t")Q(k —jl,t — t").
v
(6.110)

Now, in order to deal with the time-dependences in (6.109) and (6.110), we
follow Kraichnan (1964b) and arbitrarily introduce exponential time depen-
dences. That is, we assume that the two-time correlation is given by (6.108),
even though this cannot be true for small values of t — ¢’ for the requirement
that there should be invariance under interchange of ¢ and ¢" implies that the
time derivative of Q must vanish at ¢t = ¢/, a condition not satisfied by the
exponential form.

Similarly, a characteristic time can be associated with the response function:

L r G(k,1)dt, (6.111)

0
with the corresponding exponential form

exp{—n(k)(t — t')} fort>1t'

6.112
0 fort <t'. ( )

Gkt —1t') = {

Kraichnan showed that substituting (6.108) and (6.112) into the energy-

balance equation (6.109), and performing integrations over intermediate times,

led to the EFP energy equation, as given by (6.101), provided that we take

the additional step of putting n(k) = w(k). A similar procedure applied to the
response equation (6.110) led to the following equation:

d% Lk, ))q([k — jI)
o(j) + ok —jl)

w(k) = vk? + f (6.113)
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which differs from the EFP form (6.107) only by the presence of two eigen-
values, rather than three, in the denominator.

6.2.7 The limit of infinite Reynolds number

We have previously seen that conservation of energy requires the non-linear
transfer term to vanish when integrated over all k-space (see eqn (2.125). We
have also seen that the DIA energy equation achieves this result by virtue of
two cancelling terms (see eqn (6.42)). Similar considerations can be seen to
apply to the EFP theory.

Consider the energy-balance equation (6.101) rewritten as

2r(k)g(k) — s(k) = W(k) — 2vk2q(k), (6.114)

where we have taken the non-linear term over to the Lh.s. (and vice versa) and
substituted from eqns (6.105) and (6.107) for s(k) and r(k). In this particular
form, the division of the non-linear term into input (i.e. s(k)) and output (i.e.
2r(k)q(k)) parts is rather clear. We have already discussed the physical signifi-
cance of this division into two terms for the DIA energy equation in Section
6.1.5. It should be noted that that discussion also applies to the EFP theory,
but not to the time-independent form of DIA, as represented by (6.113) for
the response equation. The problem is that the response integral has only two
eigenvalues in the denominator, and therefore cannot be written as part of the
energy integral which has three such eigenvalues in its denominator.

However, conservation of energy can be formally shown for EFP by inte-
grating each individual term of (6.114) to obtain

JZr(k)q(k)d3k — Js(k)d3k =g—¢=0, (6.115)

where the r.h.s. vanishes because the two integrals are identical and the Lh.s.
vanishes because the two terms are each equal to the dissipation rate (see eqn
(4.90)).

Edwards (1965) has shown that the conservation property of the energy
integral leads to some rather interesting results in the limit of infinite Reynolds
number. Let us suppose that we allow the viscosity to shrink to zero in such
a way that the dissipation rate remains constant. It should be noted that this
is not the same thing as assuming that the fluid is ideal (i.e. inviscid and hence
governed by the Euler equation), which corresponds to an artificial case of
zero dissipation. We may indeed think of it as a ‘thought experiment’ in
Finstein’s sense; that is, one which may be physically impossible to carry out
yet which does not violate any known physical principle. Then it is reasonable
to conclude that the dissipation becomes concentrated into ever higher wave-
numbers (see eqn (2.133) for the dissipation wavenumber), and, in the limit,
occurs only at infinite wavenumbers.



256 RPT OF THE FIRST KIND

That is, we take the limit of zero viscosity

lim 87nvk2q(k) = ed(k — oo), (6.116)

v—=0

which clearly has the necessary property

g Jw 5k — o)dk =¢. - (6.117)

0

The input W (k) is, of course, arbitrary but should be chosen to be peaked near
the origin in order that we can obtain universal behaviour of the energy
spectrum at higher wavenumbers. As we decrease the viscosity, it is easier to
excite low wavenumbers, and it is arguable that we can excite the system at
k = 0 in the limit of vanishing viscosity. Thus we take for the input
lim 4nk?W(k) = ed(k). (6.118)
v—=0
Under these circumstances, the entire k-space should satisfy the conditions
for an inertial range, and eqn (2.141) for the Kolmogorov spectrum should
take the form

E(k) = ag®Pk™38 (6.119)
for all k. The corresponding form for the spectral density function g(k) is
q(k) = (i)g%k-“ﬂ, (6.120)
4n

which again holds for all k.

If we substitute (6.120) into the energy-balance equation (6.101), then di-
mensional considerations indicate that the modal decay rate w(k) must take
the form

w(k) = ePk?? (6.121)

where S, like a, is a constant.
Formally we can write eqn (6.101), in the limit of infinite Reynolds number,
as
) ‘
T 0® + o) + ok — i}

= &d(k) — e6(k — 0), (6.122)

8mk? deJ'L(k,j)q(lk —i{atk) -

where we have multiplied both sides by 4nk? and invoked eqns (6.116) and
(6.118) for the particular case of the infinite Reynolds number limit. Then, if
we substitute (6.120) and (6.121), we find
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—11/3 _ :-11/3

2
2 &\ o1 | 43; S s-1173 J
8nk (47‘() B J‘dJL(ka.])lk Jl K23 +j2/3 T |k_j|2/3
= o(k) — é(k — o0). (6.123)

It may seem surprising that the integral actually gives delta functions at the
origin and at infinity. In fact this reflects a form of non-uniform convergence,
which is due to the integral’s being made up of two terms which are individ-
ually divergent but which cancel sufficiently rapidly for their difference to be
integrable. A discussion is given in Edwards (1965) in terms of a simple
one-dimensional model.

Let us consider the integral of both sides of (6.122) over k. If we integrate
up to k = K, where K is not equal to zero or infinity but is otherwise arbitrary,
then the integration over j will cancel by symmetry for the range 0 < j < K.
Hence the value of the integral with respect to k will be independent of its
upper limit, a characteristic of a delta function. The integral has been evaluated
for the arbitrary choice K = 1. That is, if we write

- 1 o P ) (o113 k—11/3 _j—11/3
20 on dk L dj k%j*L{k,j)ik — jl 1 =1
(6.124)
as
2
% =1, (6.125)

then numerical integration (Edwards 1965) gives C = 0.19.

It should be noted that we still need a second equation in order to solve
simultaneously with (6.125) for the Kolmogorov constants of proportionality.
The obvious candidate would seem to be the response equation (6.107).
Unfortunately the above procedures do not go through in this case and the
response integral turns out to be divergent. This is the reason why EFP theory
does not give the Kolmogorov spectrum, despite the behaviour of the energy
equation. We shall return to this point again, when making an overall assess-
ment of RPT theories.

6.3 Self-consistent field theory

The method of the self-consistent field has long been used in the quantum
many-body problem. An exposition can be found in almost any text on
quantum mechanics, and so we shall only give a very brief description here.
Suppose that we wish to calculate the wavefunction for an electron in a
hydrogen atom. In principle, at least, there is no problem. The electron moves
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in the Coulomb potential of the nucleus and one simply solves the Schrédinger
equation for its wavefunction. However, if we extend the problem to multi-
electron atoms, then the interaction with the repulsive potential of all the other
electrons must be considered.

Consider helium as an example. We take one electron to move in a potential
V which is due partly to the nucleus and partly to the other electron treated
as a distribution of charge density proportional to its wavefunction. A method
of successive approximations is then used. Assume the wavefunction for the
electron, calculate the effective potential V from Poisson’s equation, and
use V in the Schrodinger equation to calculate the new waveform. Self-
consistency then demands that the initial and final wavefunctions should be
the same.

The method is admirably pragmatic and easily understood in principle. Its
introduction to turbulence theory was due to Herring (1965), who took as his
starting point the Liouville equation derived by Edwards. In order to discuss
the self-consistent field (SCF) theory, we shall change our notation to that of
Herring and rewrite eqn (6.70) as

L°P — VP =0, (6.126)

where the change from L to L, is significant and reflects the fact that we shall
be looking at a formal renormalization programme in which L, is the bare or
viscous operator. In this sense, SCF will be seen to resemble DIA rather than
EFP, although there are in fact many procedural similarities between the
theories of Herring and Edwards.

Herring began by assuming that the basis operator for his expansion
method was the sum of single-mode operators. The effect of mode coupling
was then taken into account through an expansion in single-mode interac-
tions. In this respect, SCF can be seen as less phenomenological than EFP,
in which the renormalized single-mode (i.e. quasi-particle) form is assumed
from the outset.

We begin with some definitions relating to single-mode forms. First, we can
generalize the concept of reduced distributions (e.g. see (4.19)) in particle
statistical mechanics to single-mode distributions in the turbulent case. Let
us write (4.6) in k-space as

Pluk)] = lim P,[u(k,),uk,),...,uk,)], (6.127)
where the limit of infinite system volume (corresponding to n — oo0) will not
be taken until the end of the calculation. Here the notation k, is shorthand
for the Lh.s. of (2.72), which is our definition of a wavevector in a finite system.
A particular value of n then corresponds to a particular set {n,,n,,n,}.

In order to obtain a single-mode distribution, we integrate out all variables
except (say) u(k,); thus
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P[ukk,)] = J Plu(k)] du(k,)du(k,)...du(k,_,)du(k,.,)..., (6.128)

which defines the single-mode distribution P,[u(k,)].
Now define the single-mode projection of an operator A by

CA> =Y { Ay, (6.129)

where
(A, = JA H Plu(k,)]du(k,)du(k,)...duk,_,)duk,,;).... (6.130)
m#n

Note that the notation { > can be used here for this specialized purpose, as
in this section there should be no confusion with its more usual meaning of
ensemble average.

Then a single-mode operator can be defined as one which is invariant under
the above averaging process, or one which satisfies the relation

(A> = A. (6.131)

Now consider eqn (6.126). If ¥V = 0, then it is clear that there will be no
non-linear mixing and the solution P will be a product of single-mode distribu-
tions. However, if V is not zero, then non-linear mixing must result in some
mode coupling and we should write the general solution as

P=T]P,+R, (6.132)

where the P, are the exact single-mode distributions and R is a remainder term
to take account of the mode couplings induced by V. It follows that R must

satisfy the condition
(R, =0, (6.133)

where the operation { ), is defined by eqn (6.130), and the general perturba-
tion method then consists of expanding R about V= 0.

In order to do this, it is convenient to introduce a new operator L, which
should satisfy two requirements. First it should be of single-mode form, or

(Ly=) L,=L, (6.134)
and second, in order to conserve probability, it should satisfy
jL,,F[u(k,,)] dutk,) =0 (6.135)

for any well-behaved test function F[u(k,)]. We also introduce the associated
function P’ which is the solution of
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LP =0 (6.136)
such that
P =]]~F. (6.137)
In other words, P’ is the product of single-mode operators. Lastly, as V tends
to zero, consistency requires that L — L, and P’ —» P.

We now add the operator L to both sides of eqn (6.126), thereby leaving it
unchanged, to obtain

LP=(L—Ly+ V)P (6.138)
The formal solution of this equation can be written as
P=P +R, (6.139)

and we then must solve (6.138) perturbatively for R’ in terms of L, L,, V, and
P,. Our aim is now to find an operator L which (a) satisfies eqns (6.134)—(6.136)
and (b) is such that P, = P,: this is the self-consistency criterion.

Our procedure is as follows. Noting (6.136), we rewrite eqn (6.138) as

LP=LP +(A+ V)P, (6.140)
where
A=L-L, (6.141)
Then, inverting the operator on the Lh.s., we obtain
P=P + L YA+ V)P. (6.142)

At this stage there are two points worth mentioning. First there is a technical
point here which we are glossing over, in that we should invert the non-
singular part of L; see Herring (1965) for a discussion. Second, comparison of
eqns (6.142) and (6.139) indicates that

R =L"YA+ V)P.
Our next step is to solve (6.142) iteratively, with the result!
P=P +L7'TP, (6.143)
where T is given by
T=(L-Ly+V)+(L—Lo+ V)L™'T. (6.144)
Now, the probability distribution given by (6.143) is in the following form:
guessed probability + corrections. For self-consistency we require that the

effect of corrections will vanish, such that P, = P,. This implies—along with
equation (6.132)—that we must have
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Py =<[]P> + <R, =P (6.145)

where we have used (6.131) and (6.133). Also, from (6.131) and (6.137), we note
that

Py =T1 P (6.146)

Hence, if we operate on both sides of (6.143) with the single-mode expectation
value, we have

[1B =T P +<L'TP>,
and, from the self-consistency condition,
(L7YTPD,=0
or
(L'TH,P =0 (6.147)

as P’ is the product of single-mode distributions and therefore is unaffected
by the operation { ,.
This result can also be written as

[L,— Lo, + {VL'T)]P' =0, (6.147a)
where we have used eqn (6.144) and L, , is defined by
Lo=Y Lo, (6.148)

Herring has shown that the self-consistency condition can be satisfied, along
with (6.132) and (6.135), by choosing L, such that

L,=Ly,—<VL'T), (6.149)

and eqn (6.136) is retained as a separate constraint;
L,P,=0 (6.150)
where we have put P, = P, in (6.136), in accordance with our self-consistency

requirement.
We can obtain the perturbation expansion for A = L — L, by substituting
for T from (6.144) into (6.149) and then iterating about A = 0. The result is

L =Ly~ (VLV) + O(V*). (6.151)

Similarly, we can obtain the perturbation expansion for P by substituting
(6.151) into (6.143) and expanding T

P=P + L 'WP + L'[VL'V—-<(VL'VY]P' + - (6.152)
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It should be noted that truncation of the perturbation series at any order
actually retains infinite powers of V. This is because of the non-linearity of
(6.140). It is at this point that we see the underlying resemblance to the
renormalized perturbation theory of the DIA,

On the other hand, Herring uses the same eigenfunction expansion as
Edwards in order to invert the basis operator, and certainly (6,142) is very
similar (notational changes apart) to the EFP form (6.73) when one substitutes,
as appropriate, from (6.76) and (6.78). The differences essentially liec in the
requirement in SCF that a particular operator should vanish:

{Ln - L;O) + <VL_1T>n} = 0;

where EFP would require that the product of the same operator with the P,
should vanish. Also, SCF involves a weaker assumption that the basis opera-
tor should be the product of single-mode operators, without specifying the
form these operators should take. In contrast, EFP imposes the additional
requirement that the basis operator should have the Fokker—Planck form. It
should be noted that the basis operator in SCF is found not to be of this form.

Herring’s SCF leads to coupled equations for g(k) and w(k). The energy
equation is identical with the EFP equation (6.101), which is itself the same
as the DIA equation, when exponential time dependences are substituted. The
equation for w(k) is the same as the time-independent DIA response equation,
as given by (6.113),

We shall deal briefly with the time-dependent SCF in the next section.

6.3.1 Time-dependent SCF

The first step in extending SCF to non-stationary turbulence (Herring 1966)
is to restore the time dependence to the Liouville equation. That is, we rewrite
(6.126) as

oP

— + L,P=VP, (6.153)

ot
where L, is still given by (6.71)—although we must bear in mind our change
of notation from L to Ly,—and V is given by (6.72). Then we generalize (6.144)
to the form

(Z—I:+J L(t,t’)P(t’)dt’=f Q(¢, t")yP(e')dr’, (6.154)
(3] 0

where
Qt,t'y=L(t,t')— ot —t")Y(V— L,) (6.155)
such that
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L(t,t')=0 fort' > t. (6.156)

It should be noted that this is all fully analogous to the procedure, which led
to eqn (6.138) for the stationary case and was based on the introduction of
the operator L, as defined by (6.134).

Now, in order to obtain an iterative solution of (6.154), Herring introduced
a new operator U(k; t,t’). The interested reader will find the details of these
procedures in the original papers (Herring 1965, 1966); we shall only quote
the defining relationship here for completeness, as we shall need it in order to
write down the final governing equations. Accordingly, we have

t [e0]
1— J ds J ds’ L(s,s")U(k; s',t") fort >t
Uk, t,t')= v 0 (6.157)

0 fort<t'.

Then the equation for the single-time correlation Q(k, t) is found to be

d
<dt + 2vk2> Ok, 1)

=2 Jdﬁ'L(k,j) {ft glks t,s)M(j; t,s)M(1k — j|; £,5)ds —

0o

- f g(j; t, s )M(k; t, )M (|k — j|; t,s)ds}, (6.158)
0

where g(k; t,t') can be interpreted as the response function for mode k, and
M(k; t,t) plays the part of a two-time velocity covariance function. The two
quantities arise, in fact, as non-trivial functional integrals, and can be written
in a rather stylized notation in the form

oP[u(k,t’)]

Au(k.) (6.159)

gk;t,t") = —f&u(k, Hakk, ) U(k; t,t')
and
Mk;t,t')= Jéu(k, Hu(k, ) U(k; t,t")u(k, ) Pu(k, 1}], {6.160)

and satisfy the conditidns
glk; 1) =1 (6.161)
M(k; t,1) = Q(k, 1) (6.162)

Herring found governing equations for g(k; t,t") and M(k; t,t’) which took
the following forms:
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d 2 cp g
<a+vk >g(k, t,t')

1
= —stj L(k,j) j dsg(j; t,s)M(k — j|; t,s)g(k; s,t") (6.163)
.
i%— K2 YM(k;t,t)
a ' 7

t
= —Jdﬁ'L(k,j)J dsg(j; t,s)M(lk — jl; t, s)M(k; s,), (6.164)
.

where, as in eqn (6.158), the coefficient L(k,j) is as defined by (6.30). Its
analytical form is given by equation (2.162), and further details can be found
in Appendix E.

It can be deduced by inspection of eqns (6.163) and (6.164) that the following
relationship holds:

M(k; t,t') = g(k; t,t")Q(k, t"). (6.165)

This allows us to make contact with the DIA equations for G(k; ¢,t') and
Q(k; t,t'), and Q(k; t,t) = Q(k,t). It is readily verified that, if we replace the
DIA equation (6.31) for the two-time correlations Q(k; t,t') by (6.165), then
eqns (6.29) and (6.35) for G(k; t,t') and Q(k, t) become identical with the SCF
equations (6.163) and (6.158) for g(k; t,t') and Q(k, t).

Lastly, it is interesting to note that the time-independent SCF equations for
g(k) and w(k) can be recovered from eqns (6.158) and (6.163) by making an
exponential approximation for g(k; t,t") of the kind shown in eqn (6.112).

6.3.2 Other self-consistent methods

The Liouvilie equation has also been taken as a starting point by Balescu and
Senatorski (1970), who attempt to combine methods applied to two different
fields of non-equilibrium statistical mechanics (i.e. statistical electrodynamics
and Heisenberg spins on a lattice), arguing that in this way they can take
account of the main features of the turbulence problem, i.e. an infinite number
of degrees of freedom and strong coupling. The equations of motion are
transformed by the introduction of action-angle variables and the basic statis-
tical problem is reformulated in terms of a master equation. This is treated
perturbatively and the summation of certain classes of diagrams leads to the
recovery of Herring’s SCF theory.

Self-consistent methods have also been applied directly to the equation of
motion (rather than the Liouville equation) by Phythian (1969). Strictly speak-
ing, Phythian works with the one-dimensional Burgers model equation, but
the analysis also goes through for the Navier—Stokes equation. Although the
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methods used rather resemble those of Edwards and Herring, Phythian does
formally introduce an infinitesimal response function which is identical in its
basic definition with the corresponding DIA quantity as defined by eqn (6.3).
It is perhaps not altogether surprising, therefore, that Phythian ends up with
the DIA equations.

However, the importance of this work has turned out to be more than just
another way of deriving the DIA theory. Kraichnan has found that Phythian’s
theory leads to a new model representation for the DIA equations and this in
turn leads on to the development of ‘almost Markovian’ theories. This is a
subject which we shall discuss in the next chapter.

Note

1. Equation (6.142) has to be solved by iteration. We write it in the form
P=P +XP
where X = L™ Y(A + V). Then we proceed as follows:
zero-order approximation P, =P + XP/,
first-order approximation P, = P' + XP,
=P +X(P +XP)
=P + XP + X°P,
second-order approximation P, =P + XP’
=P + X(P' + XP + X*P)
=P + XP + X*P + X?P,
and so on.
The exact distribution P is given by
P=P +X(1+X+X>+-)P

1
=P 4+ X|—|P
()

provided that {1/(1 — X)} P’ is non-singular. Then, substituting for X, we find
P=P + L7'TP,
which is just eqn (6.143), and the operator T is given by
A+7V)
1-L YA+ V)

which can be shown to reduce to (6.144).

T=
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7

RENORMALIZED PERTURBATION
THEORIES OF THE SECOND KIND

In the preceding chapter, we discussed the pioneering theories of turbulence,
in which systematic renormalization methods were introduced to the subject
for the first time, but we did not dwell to any extent on the virtues (or
otherwise) of these theories. We shall continue to defer such considerations,
for the most part, to Chapter 8, where the overall assessment of RPTs will be
considered in some detail. However, before turning our attention to those
theories which do yield the Kolmogorov spectrum as a solution, we shall make
arather limited analysis of certain unsatisfactory features of the older theories.

Our reason for doing this at the present stage, is that it provides a perspective
into which we can fit the development of the newer theories. Inevitably this
means that the discussion is conducted in terms of failures to achieve the
Kolmogorov form of the energy spectrum. Nevertheless, this should not be
taken to mean that we are asserting that the Kolmogorov distribution pro-
vides a crucial test for analytic turbulence theories. That, in itself, is a po-
tentially controversial topic and will receive separate treatment in Chapter 8.

7.1 The low-wavenumber catastrophe

Our terminology in this section is borrowed from quantum field theory, where
unphysical divergences at low frequency or at high frequency are referred to
(respectively) as ‘infra-red’ and ‘ultraviolet’ divergences. Historically, the first
example of this kind of effect was probably the well-known failure (at the end
of the nineteenth century) of classical physics to predict the spectral distribu-
tion of cavity radiation. The Rayleigh—Jeans distribution predicted a diver-
gence in the energy as the wavelength tended to zero—an unphysical result
which is usually known as the ‘ultraviolet catastrophe’. However, we are
concerned here with the other end of the spectrum, so to speak. We shall in
fact consider the behaviour of certain RPTs at low frequencies, or (what is the
same thing) at low wavenumbers.

7.1.1  The infra-red divergence

Let us return to the Edwards’s ‘thought experiment’, which we discussed in
Section 6.2.7. We concluded that the EFP energy equation (6.101) was com-
patible with the Kolmogorov inertial-range energy spectrum, which, in the
limit of infinite Reynolds number, must apply at all wavenumbers (it should
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be noted that this conclusion also applies—by implication—to the DIA and
SCF forms as well).

However, we pointed out that a second equation was needed in order to
determine values for the two constants of proportionality « and B, in (6.120)
and (6.121) for the Kolmogorov forms for the spectrum and the modal decay
rate. It is here that the problem arises.

The obvious second equation in the EFP theory is eqn (6.107), which is the
analogue of the response equation in DIA. We rewrite this by interchanging
dummy variables j and k - j to obtain

mm=f dY Lk k — )q())

o) + o) + ok —3)° )

The coefficient L(k,k — j) is derived in Appendix E. Its analytical form has

been given previously in eqn (6.45), and for convenience we repeat this here,
1

Lk, k —j) = (k* + 2k3%ju — ki*wy(1 — p?) 55—

( ) ="+ 2k7ju — kj>u)( ”)k2~2kju+j2

Now we can obtain the form of (7.1) which is appropriate for the limit of
infinite Reynolds number merely by substituting (6.120) and (6.121) for g(k)
and w(k), just as we did in the case of the energy equation (6.101). The result is

1
k2/3 +j2/3 + |k _j12/3'

1/31,2/3 a£1/3 3. -—11/3
Be'k T d* Lk k —jjY
7T

(7.2)

Then we cancel ¢'? across, divide both sides by 8, and make the change of
variable

i=1klJ
to obtain (7.2) as

1
[ERRNECINT N [EEK

o

anp? (7.3)

kP = k2/3< ) f d*JL,1 - IR

where 1 is a vector of unit magnitude in the direction of k. If we further cancel
k*? on both sides and rearrange, we have the required second equation:

aD
5 =1, (7.4)

where D is given by the integral

1
1+ 7B 1= 3

1
D= - Jd3JL(1,|1 — J)J1n (1.5)

Equation (7.4) can be solved simultaneously with (6.125) for the two inertial-
range constants. The result for the Kolmogorov spectral constant is easily
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found to be

13 13
a=2 = D (16)
C# (01923
where we have previously noted in Section 6.2.7 that the numerical value of
C is known to be 0.19.

If we now consider the problem of evaluating the constant D, it is easily
seen from (7.5) that the integral is well behaved as J tends to infinity, and in
fact the contribution from the upper limit is zero. However, the situation in
the neighbourhood of J = 0 is quite different. Let us perform the integration
from J = Z, where Z is a small quantity which we ultimately set equal to zero,
up to infinity. At the lower limit the leading contribution is readily obtained
by expanding in powers of J:

8]
Do J J™%RdJ x integration over angular factors
VA

oc Z~%® x integration over angular factors. (7.7

Clearly this diverges as Z — 0, and therefore it follows from (7.6) that the EFP
prediction is that the Kolmogorov constant is infinite.

7.1.2  Spurious convection effects

It is clear from the similarity between the EFP response equation (6.107) and
the time-independent DIA equivalent, in the form of (6.113), that the infra-red
divergence affects the latter theory too. In fact this really only amounts to
independent confirmation of the failure of the DIA to give the Kolmogorov
spectrum as its solution at large Reynolds number. As we have already seen
in eqn (6.51), the DIA prediction of the inertial-range spectrum is quite
different from the Kolmogorov law. However, the experimental results of
Grant, Stewart, and Moilliet (1962) were sufficiently clear cut to rule out the
DIA solution, as given by eqn (6.51), and to offer considerable support to
the Kolmogorov spectrum. As a result, Kraichnan (1964) was motivated to
analyse the reasons for the differences between the Kolmogorov and DIA
theories. We shall follow the arguments of this paper closely in this and
subsequent sections. We begin with a brief summary statement of the difference
between the two theories and then go on to a more quantitative analysis based
on an idealized convection problem.

The Kolmogorov analysis proceeds from assumptions which are equivalent
to a postulate that energy transfers in wavenumber are local: in other words,
there is an energy cascade which takes place in a large number of small steps.
This means, for instance, that the energy transfer process at large wavenumbers
is not affected by details of the energy-containing range of wavenumbers.
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In contrast, DIA—although apparently yielding a local cascade of energy
(Kraichnan 1959)—predicts that the rate of energy transfer in the inertial
range depends on the amount of energy contained in the low wavenumbers
through the r.m.s. velocity v,. This is because the processes which relax
response and correlation functions (i.e. non-linear mixing) are—on the DIA
picture—dominated by the time-scale of the energy-containing range of wave-
numbers (see eqn (6.50)).

Following Kraichnan, our procedure now is to set up an idealized convec-
tion problem which is simple enough for us to be able to deduce the form
of correlation functions (and even the infinitesimal response function), and
against which we can assess the performance of the DIA.

Let us consider a velocity field

U(x,t) = u(x,t) + v, (7.8)

where v is constant in space and time in any one realization, but fluctuates
from one realization to another in a way which is governed by a Gaussian
distribution. We shall take u to be very small compared with the uniform
convection velocity. Thus viscous-range time-scales will be too long to be
dynamically relevant and we therefore negiect viscous effects. Hence, from the
Navier—Stokes equation (1.4)—now written in vector form with the viscous
term neglected—we have, upon substitution of (7.8),

Ju

a +u+v)Vu= —VP. (7.9)
Now, for u « v, we can neglect terms which are quadratic in u. Also, from eqn
(2.8), we should note that this means neglecting the pressure term as well, and
(7.9) takes a linearized form where the only convective effect is due to the
constant v; thus

0
u) e Viu o), (7.10)
ot
Then we transform back into wavenumber space, using eqn (2.71), to obtain
ou(k,t
“gt’ - (7.11)

and, for prescribed u(k, 0), this is readily solved to give the time evolution of
u(k, t) due to uniform convection by v. The result is

u(k, t) = a(k,0)exp{ —i(k - v)t}. (7.12)
Now, in order to obtain correlation functions we must first consider the

averaging processes. We shall also take u to have a Gaussian probability
distribution, but only at ¢ = 0, when we impose the requirement that the u
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and v fields are statistically independent of each other—something which is
not true at subsequent times (Kraichnan 1964).

We shall denote the average over the distribution of the u field by ¢ ) and
that over the ensemble specified by the distribution of the v field by  3,. Joint
averages can be represented by ({ > ),. Then, substituting from (7.12), we find
the covariance of the u field as

Kulk,Du(=k, 1)} 5, = {exp{ —i(k-V)(t — t')}},<u(k,0)u(—k,0)), (7.13)

where we have invoked the initial condition of statistical independence of u
and v. This result allows us to evaluate the correlation function R(k;t,t")
defined by

1
R(k;t,t") = (< u(k, t)u(—k,t’))),,{<|u(k’ O QU k)5 (7.14)
which is readily shown to be
R(k;1, 1) = <exp{—i(k-v)(t — ')},
= exp {Lét—t')j}, (7.15)

where the second line follows upon expanding out the exponential, averaging
term by term (recalling the rules for factoring out Gaussian even-order mo-
ments of any order in terms of second-order moments), and re-summing. The
r.m.s. value of v is defined by

vg = v, (7.16)

Thus the two-point two-time correlation dies away over a correlation time
determined by the uniform convection v and of order (vok) .

We also need the third-order moment, as this characterizes the non-linear
energy transfer. Unfortunately, the existence of a third-order moment att = 0
is incompatible with our assumption of an initially Gaussian distribution for
the u field. Kraichnan gets round this difficulty by means of an ingenious
artifice. He introduces a fluctuation in mode k at t = 0 which is due to the

coupling of two other modes; thus
Au,(k,0) = ik, D, (k)u,(—j, 0)u,(—1,0), (7.17)
and the wavevectors j and I satisfy the relation
k+j+1=0.

The inclusion of D,(k) ensures that the fluctuation satisfies the incom-
pressibility condition, in the form

k,D,.(k) = 0.
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The triple moment can then be set up in terms of the fluctuation in mode
k, and is defined as

S gL, ¢',7) = { attylis Y1ty ) Aty k, ), X
1
X koG, 0)u, (0, 0)Au, (k. 0))
= (exp{—ik- vt +j-vt' +1-vt")}>,

21kt +jt’ + It”|?
=exp{—00| il '}, (7.18)

2

where the last two lines follow from the same steps used in the derivation of
eqn (7.15).

The important thing to note for later reference is that if we are on the time
diagonal ¢t = t’ = t”, then the time dependence of S vanishes owing to the
condition k + j + 1 = 0. Clearly, away from the time diagonal, there is a time
dependence induced by uniform convection.

It is possible to generalize the model to the case of a convection velocity v
which is not uniform in space, thus increasing the resemblance of the idealized
problem to that of turbulence. If v is only slowly varying in space, then eqn
(7.11) becomes

ouk, ) = Y k-v(k)u(k — K’;2). (7.19)
ot k

That is, the v field and the u field are now coupled together through the
non-linear term.

The results given in eqns (7.15) and (7.18) for R and S still apply (Kraichnan
1964) when (7.19) replaced (7.11) as equation of motion, provided that the
following conditions hold:

(1) <|u(k,0)|?>> is a smooth function of k.
(2) Equation (7.17) for Au,(k,0) is replaced by

Aua(k’ 0) = ika Z/ Zl Daa(k)ua( _.i’ O)Mo-( - 15 0)’ (720)
j 1

where k is a wavevector within some finite volume V(k) of wavevector
space and the primes on the double summation indicate that | and j are
confined to finite volumes V(j) and V(I) respectively, where there is no
intersection between any pair of the three volumes V(k), V(j), and V(}).
(3) Wavevectors excited in the v field must be very small compared with
k, j, or 1, or compared with the width of any of the volumes V(k), V(j),
and V().

(4) Times larger than (v k)" are not considered.
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Condition (1) is a technicality, in that we require smooth initial conditions in
order to apply an ergodic theorem. Condition (2) excludes the non-linear
interactions which would couple distinct wavenumbers, and this exclusion
allows us to impose condition (3) which ensures that the shear associated with
the v field produces negligible distortion of the u field in x space. Condition
(4) provides an upper bound on the time over which the system can evolve
and conditions (1)—(3) still hold.

Now let us return to the original idealized convection problem, with eqn
(7.11) as the equation of motion. We wish to test the DIA theory and we begin
by adding a stirring force f(k, t) to the r.h.s. of (7.11):

Ju(k, 1)
ot

Then, following the same derivation as in the full turbulence problem, which
leads from eqn (6.1) to eqn (6.6), we obtain

5 ey X
aG—”(étt—t) +i(k-v)Gylk;t,t)) = 8(t — t') (7.22)

+itk-v)uck, 1) = f(k, 1). (7.21)

where G is as defined by eqn (6.3). The ensemble-averaged infinitesimal re-
sponse tensor is then obtained by

Gaﬂ(k; t’tl) = <Gaﬂ(k;ts t,)>
= {exp{—ik-V)(t — 1)},
= R(k;t,t") fort>t, (7.23)

where R(k;t,t') is given by eqn (7.15).
The application of DIA to the idealized convection problem results in an
infinitesimal response function of the form

Qwok(t — t')
vok(t — ) |

Note that this is just eqn (6.50), with the kinematic viscosity set equal to zero.
Under these circumstances, we also have the DIA prediction that the correla-
tion function is equal to the response function.

Comparison with eqns (7.15) and (7.23) shows that the DIA solution is
qualitatively incorrect, as the Bessel function of (7.24) has some damped
oscillations, unlike the monotonically damped behaviour of the Gaussian
curve of (7.15). On the other hand, near the central peak of the Bessel function,
the qualitative agreement between the DIA form and the ‘exact solution’ is
quite good, and both results scale on the convective time-scale (vg k)™t

The trouble really starts when we examine the DIA prediction for the triple
moment. This is (Kraichnan 1964)

Gk;t,t')) = J, [ (7.24)
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S(k,j, l;t,t',t") = G(k, ) R(j, t')R(, t"). (7.25)

Our next step is clear. We substitute (7.24) for G and each of the two R. It
therefore follows that the DIA prediction for the triple moment possesses a
serious fault. Even on the time diagonal t = ¢’ = t”, eqn (7.25) indicates that
the triple moment is time dependent. This is in complete contrast with the
exact result as given by eqn (7.18). As we saw, this is independent of time when
t=t'=1t".

This erroneous behaviour can be illustrated by substituting the exact forms
of G and R into the DIA triple moment, rather than the Bessel function of
eqn (7.24). The reason for this particular manoeuvre is that the squared
exponentials are easier to manipulate than the Bessel functions. Accordingly,
substituting (7.15) for both G and R, we can write eqn (7.25) as

(K22 + j22 + 12:"2)}

(1.26)

S(k,j, L t,t',t") = exp{— 3

which can be compared with eqn (7.18) for the exact result. As indicated above,
the important thing to note about our (approximate) DIA prediction is that
it is still time dependent, even when on the time diagonal and withk +j + 1=
0. It was this behaviour which Kraichnan concluded was at the root of the
failure of DIA to yield inertial-range dynamics which were independent of the
energy-containing range of wavenumbers.

7.1.3  Postulate of random Galilean invariance

When we added a uniform convective velocity to the general turbulent velocity
field (see eqn (7.8)), we were, in effect, making a Galilean transformation of
the velocity field. We shall now consider the work of the preceding section
from this new point of view (see also Appendix C). Let us refer to our usual
frame of reference as S. Then we wish to consider some other frame of reference
§’, which is moving with velocity —v relative to S. It is a cardinal principle of
physics that the description of any dynamical process should be the same in
both systems. This is known as ‘Galilean invariance’ and is the classical form
(i.e. when |v| « speed of light) of Lorentz invariance. A transformation from
one system to the other is known as a ‘Galilean transformation’, and is
represented mathematically by

X' =x+W
w(x,t) =u(x,1) +v, (7.27)
where primed quantities refer to variables measured in S’; this form of notation

is a purely temporary measure, which we shall use in this section only. Also,
without loss of generality, we assume that S and S’ were in coincidence att = 0.
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We obtain the corresponding transformation for the Fourier components
of the velocity field by invoking the general formula, as given by eqn (D.22),
and substituting from (7.27).

wik,t) = <%>3 fd3x’ v (x,t)exp(—ik-x’)

= vé(k) + u(k, yexp{ —i(k-v)t}, (7.28)

where the delta function follows from the generalization of eqn (D.11) to three
dimensions. It should be noted that, as far as the Fourier components are
concerned, the main effect of the Galilean transformation is a phase change
identical with the one obtained previously in eqn (7.12).

The implication of this result for single-time moments of any order follows
quite readily. We have

d'(k, ' (j,Hu' (L 1)... > = <u(k, Hu(j, Hul,¢)... >, (7.29)

provided only that k + j+ 1+ --- = 0, as required by spatial homogeneity;
the phase factors cancel out. Thus the single-time moments, of any order, are
unaffected by the Galilean transformation. That is, they are Galilean invariant.

However, this is not the case for the non-simultaneous moments; as we saw
in connection with eqn (7.15) (first line on the r.h.s.), such moments exhibit a
time dependence which depends on v.

The physical interpretation of this latter effect in x-space is quite straight-
forward. In the reference frame S, we have, let us say, a two-point two-time
correlation

o, T)=<ux,hu(x + r,t + T)),

which depends only on r and T, for homogeneous stationary fields. Then in
S’ the distance between the measuring points would be increased from r to
r + vT, and hence, for (as is usual) Q a monotonically declining function of
the separation distance between the measuring points, we have Q' < Q.

If we now take v to be a random variable, with statistics as specified in
Section 7.1.2, it is clear that single-time moments will still be invariant under
each individual transformation making up the ensemble. Hence single-time
moments must therefore be unaffected by the entire ensemble of random
Galilean transformations. In Kraichnan’s phrase, single-time moments of any
order exhibit ‘random Galilean invariance’.

However, let us consider the case of Q(r, T) as an example of a non-
simultaneous correlation. Then the situation under random Galilean trans-
formations is quite different. Evidently Q' is now to be seen as a random
variable, with a different value for each realization of v. Sometimes we will
have Q' > Q and sometimes we will have Q' < Q, with the ensemble-averaged
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value of Q' depending on the difference time T. Thus the effect of repeated
Galilean transformations will be to tend to smear out the correlation. Qualita-
tively, therefore, the effect of averaging two-time correlations with respect to
the distribution of v, as given by eqn (7.15), can be seen to be quite reasonable,
although that particular quantitative result is an approximation.

Now we can sum up the analysis of the difficulties with DIA, as treated in
Section 7.1.2, from our new point of view. Single-time correlations should be
invariant under Galilean transformation, both random and deterministic.
Thus the equation for R(k;z,t), which contains a triple moment evaluated at
t =t = t”", should itself be invariant under Galilean transformation. But in
the DIA formulation the triple moment is expressed in terms of two-time
correlation and response functions, which transform (at least to an approxi-
mation) according to eqn (7.12). Hence the DIA triple moment violates the
requirement of random Galilean invariance and exhibits a spurious time
decay, even on the time diagonal t = ¢ = t".

7.1.4 Response integrals with an arbitrary cut-off in wavenumber

In the preceding two sections, we have discussed the failure of DIA in terms
of spurious convection effects of low wavenumbers on high wavenumbers.
Having made this diagnosis, Kraichnan also provided further support for
it by demonstrating that the removal of such convection effects from the
Navier—Stokes equation in turn removed the difference between the DIA and
Kolmogorov theories. We shall complete this section by giving a brief account
of this work.

Let us consider the Navier—Stokes equation in x-space. From eqn (2.2) we
have

Ju, + O(uqg) _ _a_p + W,
ot 0xg 0x,
The straightforward interpretation of the non-linear term is that it represents
the convection of u, by uz0/0x,, where the latter term is the convective
derivative.
If we now go into k-space, then (7.30) becomes

6”5?() +iky Y uy(k — jug(j) = —ik,p(k) — vk?u,(k) (7.30)
]
(e.g. see eqn (D.32)), and we have not shown the time dependence explicitly.
From a comparison of (7.30) and (2.2), we see that the convective term is
kgu,(j). Evidently, the equivalent of eliminating the convection of small eddies
by large eddies is to eliminate values of u,(j) for whichj < kor j < |k — j|. In
fact Kraichnan (1964) imposes the conditions
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(131)

and shows that these result in the separate conservation of energy by wave-
number triads which are excluded, as well as by those which are included in
the convolution sum in eqn (7.30).

Numerical computation of the DIA, when applied to eqns (7.30) and (7.31),
was found (Kraichnan 1964) to yield the Kolmogorov spectrum. This im-
provement was attributed to a change in the behaviour of the response and
correlation functions. The elimination of low-wavenumber convection effects
results in R(k; ¢,t') and G(k; t,t') having decay times which depend on the local
(in wavenumber) intensity level, rather than on the energy range value v,.

As we saw in Section 7.1.1, the energy equation has internal cancellations
which make it well behaved at the infra-red divergence. Accordingly, it might
be expected that the energy equation would be fairly insensitive to the removal
of low wavenumber modes from the Navier—Stokes equation, in which case
the above procedure would be equivalent to cutting off the wavenumber
integral in the response equation. In order to mimic the cancellation behaviour,
the low wavenumber cut-off must be proportional to k. That is, the EFP
response equation (6.107) or the time-independent DIA response equation
(6.113) should be integrated over the range mk < j < oo, where m is an arbi-
trary cut-off ratio. Such procedures have been tried (e.g. Nakano 1972; Leslie
1973, p. 106), and certainly—as was the case with Kraichnan’s similar pro-
cedure on the Navier—Stokes equation—plausible choices of the cut-off ratio
lead to reasonable values of the Kolmogorov constant. Nevertheless, as one
can see from egns (7.6) and (7.7), the value obtained in this way for the
Kolmogorov constant must in turn depend on the value chosen for the cut-off
ratio. This latter choice is, of course, arbitrary. In the rest of this chapter we
shall be concerned with less arbitrary ways of obtaining improved renormalized
perturbation theories of turbulence.

7.2 Lagrangian-history direct-interaction theories

Up until now we have relied on the Eulerian or field description of fluid motion.
That is, our principle dependent variable has been the velocity field u(x, ),
which tells us the value of the fluid velocity at any space—time point (X, t).
However, we can also describe the motion of a fluid in Lagrangian coordinates,
in which we follow the motion of a particular point which moves as part of
the fluid. In fact we shall refer to such a point as a ‘fluid particle’, but it should
always be remembered that this term stands for a mathematical abstraction.
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The basic Lagrangian coordinates can be set up as follows. Imagine that
we have tagged some particular fluid particle. We draw a vector X(¢) from the
origin of (Eulerian) coordinates to the particle. Then the information that the
fluid particle is at point x at time ¢ can be expressed as

X(1) = x, (7.32)
while its velocity is given by
oX(t)
= —, 7.
Vi =5 (7.33)

We can identify the specific particle tagged by stating that the velocity is that
of the particle which was at, say, the point x, at the time t,. That is, we can
write the Lagrangian velocity as V(x,, t).

The physical connection between the two systems can be established quite
readily. At any fixed point x in space, u(x, t) represents a time history of the
individual fluid particles passing through x at successive instants and making
up the continuous variation of fluid properties at x with time. Clearly, when
any particular particle is known to be at a specific space-time point, its
Lagrangian velocity must be equal to the Eulerian field value at that space—
time point. It follows that the connection between the Eulerian and Lagrangian
velocities is given by

V() = u[X(1), ], (7.34)

where the assignment x = X(r) samples the Eulerian velocity field at all points
along the particle trajectory.

It should perhaps be emphasized that, in order to use (7.34) to transform
from one system to another, we need to obtain a form for X(¢). This is, in fact,
anunsolved problem. We shall discuss this particular topic further in Chapters
12 and 13, where we shall consider the diffusive properties of turbulence.

In diagnosing the difficulties with DIA, Kraichnan (1964) noted that the
elimination of spurious convection effects by wavenumber cut-offs—see the
preceding section—was equivalent to representing the Navier—Stokes equation
in quasi-Lagrangian coordinates. He went on to propose a mixed Lagrangian-
Eulerian coordinate system (Kraichnan 1964), and was later able to rework
the DIA in the new coordinates, thus producing a theory which was in
agreement with the Kolmogorov picture (Kraichnan 1965).

7.2.1 The Lagrangian-history formulation

The key step is the introduction of the generalized velocity u(x, t|s), which is
defined as the velocity measured at time s of a fluid particle which was at the
position x at time ¢. The two distinct times are known as
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t = labelling time and § = measuring time.

It follows at once from this definition that the generalized velocity satisfies
two limiting conditions:

u(x, t|t) = u(x,t) (7.35)
u(Xg, tyls) = V(Xg, s). (7.36)

In other words, the dependence on ¢ is a Eulerian characteristic, whereas the
dependence on s is a Lagrangian characteristic.

When t = s, the generalized velocity is just the Eulerian field and hence
satisfies the Navier—Stokes equation. However, when ¢t is not equal to s, we
need to derive a special equation. This is quite easily done. Consider a particle
at point x at time t. At time ¢ + dt the particle will have moved to x + dx.
Thus we can write

u(x + dx, ¢ + dt|s) = u(x, t|s). (7.37)

Note that both sides of this equation give the velocity of the particle at time
s, and hence they have the same value. Now expand the Lh.s. out in Taylor
series in dt and dx, and subtract the r.h.s. from it. In the limit of dr - 0, we
then have

l:é(?t + u(x, t)'Vil u(x,t[s) =0 (7.38)
as the required equation of motion for the generalized velocity. It should be
noted that—once we have (7.37)—the derivation of (7.38) is just the standard
Eulerian form and will be found in any elementary textbook on fluid dynamics.

Equation (7.34) relates the Lagrangian velocity to the Eulerian field at any
time. We can write down an analogous relationship for the generalized velocity
by introducing a displacement function X(x, t|s), which is defined to be the
displacement of the fluid particle during the time interval s — t. The relation-
ship between the generalized velocity and the Eulerian field is readily seen to
be

u(x, ts) = u[x + X(x,t|s),s]. (7.39)

It should be appreciated that the generalized velocity does not have to
satisfy the incompressibility condition. That is, unless ¢t = s, when of course it
is just the same as the Fulerian velocity field and must satisfy eqn (1.1). This
can raise problems with the definition of the infinitesimal response tensor, and
we shall anticipate our discussion of these quantities in the next section by
following Kraichnan and introducing a division of the generalized velocity
into a solenoidal part u* and a curl-free part u®. It is a standard theorem that
any arbitrary vector can be written as the sum of a solenoidal vector and a
curl-free vector; thus the generalized velocity becomes
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u(x, ts) = w(x, t|s) + u(x, t|s), (7.40)
where the solenoidal (or divergenceless) part satisfies
V-u(x,t]s) =0 (7.41)
and the curl-free part satisfies (naturally) the equation
V x ué(x,t]s) = 0. (7.42)

We have previously seen in Section 2.1 how the equations of motion can
be put in solenoidal form, with the introduction of the projection operator
D,4(V), as defined by eqn (2.11). We can use this approach to relate u’(x, ¢|s)
to the generalized velocity:

uy(x, £15) = D,g(V)ug(x,t]s). (7.43)
It is easily verified that a corresponding result for the curl-free part is
uz(X, 1]s) = s (V)uy(x, ]5), (7.44)

where the operator I1,4(V) is introduced by writing the projection operator
in the form

Dazﬁ(V) = Oy — Haﬂ(v) (745)

and comparing this equation with (2.11).

We now wish to consider how the equations of motion should be modified
to take account of the decomposition of the generalized velocity according to
(7.40). For the case where s # ¢, this is easily done. We simply rewrite eqn
(7.38) as

[;t + us(x,tlt)~V} u(x, t[s) = 0, (7.46)
where we have just replaced the Eulerian field in the convective derivative by
the solenoidal part of the generalized velocity at t = s.

For the case where t = s, the generalized velocity just becomes the Eulerian
velocity field and hence satisfies the Navier—Stokes equation. This is given in
soleroidal form by eqn (2.15). As we are restricting our attention to isotropic
turbulence occupying either a finite box with cyclic boundary conditions or
an infinite system with all variables vanishing sufficiently rapidly at infinity,
we neglect the surface term and the external pressure gradient alike, and write
(2.15) as

d
l:a — sz]ua(x, 1) = M, (V) [up(x, tyu,(x,0)] (7.47)
where the inertial transfer operator M,;,(V) is given by eqn (2.13).

Now we substitute from eqn (7.40), with ¢t = s, for u(x, ) in (7.47). We note
that, as (7.47) is in solenoidal form, it follqws at once that u}(x, t|t) satisfies it
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as it stands; thus

0
[5 - vvz] U3(X, £]1) = Mg, (V) [ (x, 1|5, £10)], (7.48)
and hence u° satisfies
0
[5 - sz] us(x,t|t) = 0. (7.49)

Lastly, it should be noted that u® is a fictitious velocity which does not affect
the dynamics of w’(x, 7]¢). It is clear from (7.49) that if u® is zero initially, then
it remains zero.

7.2.2  The statistical formulation

The statistical formulation in terms of the Lagrangian-history coordinates of
displacement X(x, t|s) and velocity u(x, t|s) is a straightforward generalization
of the Eulerian version which we have been using hitherto. We begin by
defining the generalized covariance

Qup(X, tls; X, t'[s") = uy(x, tls)ug(X, t']s7) ), (7.50)

which is an obvious extension of the Eulerian form (2.24). Clearly higher-order
moments—as in (2.25)—can be extended to Lagrangian-history coordinates
in an equally obvious way.

A new feature of the present formulation arises owing to the decomposition
of the generalized velocity, as given by (7.40). That is, we can define

Qo = Sugug); Qg = uzti)

and so on, where the superscript refers to the tensor index immediately
beneath it. In all, Q,; can be decomposed into the following tensors:

Qiﬂ’ Zﬂ’ Q:[b Q:ﬂﬁ QZ‘/:D ;73’ :zstb Q;[c}

Note that any one of the above can be related to Q,; by substituting from
equations (7.43) and (7.44) as appropriate. For instance,

(X, s X, 1]s") = Qug(x, tls)up(x', '] s) )
= D, (V) {u, (X, t]shuy(x', t'[s") )
= D,,(V)Q,5(x,t|s;x',t'[s"), (7.51)
and all the others can be obtained in a similar fashion.
For the case of homogeneous turbulence, the two-point correlations depend
only on x — x'. So, just as in the Eulerian case, we shall find it convenient to
resort to Fourier transformation into k-space. With the addition of reflectional

symmetry—a requirement for isotropy—the covariances must be invariant
under the interchange of x and x’. This means that Q35 = Qg = 0 (see Ap-
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pendix C for examples of this kind of argument). It is not difficult to show
that, in homogeneous isotropic turbulence, the decomposition of Q(k; f|s; ¢, s")
is fully specified by

Ospktls;t'[s") = D,,(K)Q,4(k; tls;£']s") (7.52)
Qsp(k;ts;t']s") = I, (K)Q,p(k; tfs; t']s"), (7.53)

where '
IT,5(k) = 8,5 — D,p(k) = kak,,lkl‘2 (7.54)

and D, (k) is defined by eqn (2.78). It should be noted that the relevant Fourier
transformations will be found in Appendix D.

7.2.3 DIA adapted to Lagrangian-history coordinates

In Section 6.1 we saw that the starting point for the derivation of DIA was
the introduction of the infinitesimal response tensor through eqn (6.3). In
x-space this can be written
- ou,(x,1t)
Ga (xa t, x/y t/) = %
g (X, 1') (7.55)

Gux,:x,t)=0 <t

where the latter condition indicates (as usual) that the effect cannot precede
the cause.

The straightforward generalization of (7.55) to the case of Lagrangian-
history coordinates is then just

. ouy(x,t|s)
Gu(x t|s; X, t'|8") = ————~
4 ACRATE) (7.56)

Gw(x,tls;x’,t’ls’) =0 5§ <s.

However, there are other aspects which we must consider. In the Eulerian
case, the incompressibility condition requires the velocity field to be sole-
noidal. We can ensure that this is so by simply choosing the stirring force to
be always solenoidal, which in turn ensures that any induced fluctuations in
the velocity must also be solenoidal. In this way, eqn (1.1) is satisfied at all
times.

Of course this constraint still applies to the present formulation, when we
set t = s in the generalized velocity. The problem arises in the general case,
where t # s and there is no requirement on the velocity u(x,t|s) to be sole-
noidal. Hence an arbitrary stirring force may induce unphysical disturbances
in the generalized velocity. Clearly, we need to ensure that any fluctuations in
u(x, t}s) which propagate to the time diagonal (¢t = s) are solenoidal. In prac-
tice, the necessary discrimination can be achieved by the decomposition of
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u(x, t[s)into u® and u®, as in eqn (7.40), and indeed this was Kraichnan’s original
reason for introducing this step.

The governing equations for the response tensors can be obtained by adding
a force term to the r.h.s. of (7.46), if t # s, and to the r.h.s. of eqns (7.48) and
(7.49) combined, if ¢t = s. Then we follow the procedures given in Section 6.1,
in order to carry out the functional differentiations. The results are

6Gaﬂ(x,t|s;x’,t/|s/) GGaﬂ(x,t]s; x', t'|s")

= —uj(x,1]s)

ot ox,
~ Ou,(x,t
_ Gjﬂ(x,tlt;x’,t’|s’)M (7.57)
ox,
and
g_ wW2 |G (x, tlt; X, t]s")
&t aﬂ ) > 3
= 2M,, (V) [u(x, t|t) Ajﬁ(x, tt;x',t'[s")], (7.58)
where the solenoidal Green tensor is given by
Giﬂ(x, tls;x', t'|s") = Day(V)Gyﬂ(x, t)s;x’, t'|s’). (7.59)

It should be noted that the operator V acts on x and not on x". Kraichnan’s
method also requires equations in which derivatives are taken with respect to
x’ and t'. Details of these complementary equations of motion can be found
in the original paper (Kraichnan 1965, Appendix B) or in the book by Leslie
(1973, Section 9.2).

We can complete the basic formulation by introducing the ensemble-
averaged response tensor

Gp(x, tls;x, t'|s) = <Gw(x,t]s;x’,t’|s’)>, (7.60)

which is an obvious extension of eqn (6.7) in the Eulerian case. However, in
the Lagrangian case, G4 (or Ga,,) can take a superscript s or ¢, but only above
the first tensor index. Apart from that minor restriction, all the general
conditions on Q,, in the previous section also apply to G,;.

Our objective at this point is to derive closed equations for the covariance
tensor Q,4(k; t]s;¢'|s’) and the response tensor G,4(k; t|s;t'|s’), where the latter
quantity is the Fourier transform of the Lh.s. of eqn (7.60). Kraichnan’s
approach to this problem involved two stages. First, he extended the re-
normalized perturbation theory to the case of Lagrangian-history coordinates
and checked that the DIA still possessed the same conservation and invariance
properties in the new representation. Second, he altered the new DIA equa-
tions in order to produce invariance under random Galilean transformations.
The resulting equations constitute the Lagrangian-history direct interaction
(LHDI) theory. We shall only give a very brief outline of their derivation here,
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and, in the interests of conciseness, this will be based on our account of the
derivation of Eulerian DIA.

In Section 6.1, we showed how the perturbation expansions (6.8) and (6.9)
for the Eulerian velocity field and response tensor were applied to the Navier—
Stokes equation (5.56) and to eqn (6.6) for the infinitesimal response tensor.
In the present case, we make analogous expansions of the generalized velocity
and the response tensor in order to obtain iterative solutions of (7.46)—(7.48)—
these equations replace the Navier—Stokes equation in the Eulerian problem—
and to eqns (7.56)—(7.58), which replace eqn (6.6) in the Eulerian problem.

In the Eulerian case, we obtain (6.21) for the response tensor and (6.26) for
the covariance tensor. In both these equations, renormalization is achieved
by setting the bookkeeping parameter equal to unity, replacing the zero-order
quantities G°, Q° by exact quantities G and Q, and truncating at second order.

The equivalent statistical equations for the Lagrangian-history case are, in
exact form, as follows:

(55; + vk2> 0k t]51'15") = S,pk; £]5¢)s") (7.61)
<§t + vk2> Gylk;t|t;t']s') = Hykstls;t'ls') 125 (7.62a)
<£~ - vk2> Gylk;tls;t'|t'y = Hy(kst]s;t'lt') s>t (7.62b)
M%‘éﬂ = Mk tls:]s") (7.63)
W = Nylkstls;tls)  s>s  (164a)
M@.M = N(k;t]s;t'|s") s=s’.  (7.64b)

The terms on the right-hand sides are given by the Fourier transforms, with
respect to x — X/, of the following quantities:

285,5(%, £]1;X', 1'[8") = Mo, o(V) Cug (X, 05 (x, | )ug(x', £'s7) - (7.65)
Hp(%, 165X, 1'[5") = 2Mo(V) St (%, t1) Gig(x, €] 15X, 2]5) > (7.66)

0 t
2Ma,,(x,t|s;x’,t’|s’) = —<u§(x,t|t)uﬂ(x/,t’|s’)%>, (7.67)
Y
0G 4(x, t|s; X, t'|s’
Naﬂ(x,tls;x’,t'ls')=—<u3(x,t|t) Zlll 'S)>—
Ox,
~ ou,(x,t
- <G§ﬁ(x,t|t;x',t’|s’)—w>. (7.68)
Y
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The right-hand sides of (7.62b) and (7.64b)—H,; and N,;—are the adjoint
forms of H,; and N4, and can be obtained by interchanging (x, £) with (x', ')
in (7.66) and (7.68).

The DIAs for the terms given by eqns (7.65)—(7.68) are constructed in exactly
the same way as for (6.21) and (6.26) in the pure Eulerian case. Just as in that
case, the resulting equations contain space—time integrals which take account
of the memory and relaxation effects of the turbulence. But these integrals
turn out to have the form of purely Eulerian time histories.

Kraichnan coped with this by altering these integrals to take on a purely
Lagrangian character, while at the same time preserving the conservation and
invariance properties of the purely Eulerian approximation. Apparently the
only casualty of this process was the loss of the model representation which
was held to guarantee the realizability of DIA. In the altered approximation,
the space—time integrals are changed to be over Lagrangian histories or
fluid-point space—time trajectories, with the desirable result that the final
equations are invariant under random Galilean transformations.

We shall not go into great detail about these derivations, but for complete-
ness we state the alteration principle as follows: change each intermediate
(dummy) labelling time to ¢ if it arises from the expansion of a factor with
labelling time t. An identical process is carried out for the expansion of those
factors with labelling time ¢'.

We shall not state the final equations here. This is partly because they are
very complicated and partly because we shall be considering an abridged form
of the theory in the next section. The interested reader will find the LHDI
approximations for §,5, H,z, M,;, and N,; elsewhere (Kraichnan 1965, eqns
(8.9)—(8.12)). We shall confine ourselves here to the related topics of random
Galilean invariance and the Kolmogorov distribution.

The demonstration of random Galilean invariance relies on the ensemble
discussed in Sections 7.1.2 and 7.1.3, where the transforming velocity v is a
random variable, which is constant in space and time, and which has the r.m.s.
value v,. Following Kraichnan, we use the notation [ ], to denote a mean
quantity which takes account of the distribution of v.

The Galilean transformations are given by equation (7.27), and the corre-
sponding effect on the Fourier components of the velocity field by (7.28). If we
accept eqn (7.15)—and it must be borne in mind that this result is hedged
about with many restrictions upon its validity—then we can use this, along
with eqns (7.27) and (7.28), to express the effect of random Galilean trans-
formation upon the velocity covariance and response tensor by the following
forms:

[0k tls;s7|s) ],
v3kA(t —t')?

3 }Qiﬂ(k;ﬂs; t'ls)  (7.69)

= 0,50(k)vd + exp{—
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[Gap(k; 2]s;t"[s") ],

{ v3k2(t — t')?
=expy ————

5 }Ga,,(k; t|s;t'|s’). (7.70)

As we saw in Section 7.1.3, we should require the theory to exhibit Galilean
invariance on the time diagonal when t = t'. Clearly the approximate forms
given by eqns (7.69) and (7.70) satisfy this requirement, as the exponential
factor becomes unity when t = ¢’. Kraichnan (1965) has shown that, with the
substitution of (7.69) and (7.70), the LHDI approximations for S,4, H,5, M4,
and N,; are all invariant under random Galilean transformation for the case
t = t’. It has also been shown (Kraichnan 1965) that these LHDI equations
are compatible with the Kolmogorov inertial-range spectrum.

7.2.4 Abridged LHDI theory

We now consider the LHDI equations in what appears to be their simplest
form. First, we make our usual simplification, in which we take the turbulence
to be isotropic. Then we can eliminate tensors in favour of scalar functions,
and the appropriate reduction for Lagrangian-history coordinates is

Quplk; t[s;t']s") = Dop(K)Q(k; ] 538']s") + TLp(K)Q (ks t]s; t'|s”)  (7.71)
Gop(ks t]s;1']s") = Dyg(K)G (ks tls; t'[s") + g (k)G (ks t]s; t'[s), (7.72)

which is just a straightforward generalization of the usual Eulerian forms with
I1,,(k) given by (7.54) and D,4(k) by (2.78).

This reduction to isotropic forms would still leave us with a very compli-
cated set of equations. However, Kraichnan (1965) has made an abridgement
of the theory which leads to a set of equations which is very little more
complicated than Eulerian DIA. The procedure is conveniently explained in
two steps.

(1) Generate a subset of the LHDI equations (7.61)—(7.64) which is purely
Lagrangian in character. This is done by setting ¢ = t’, and results in the
turbulence being described in terms of the functions Q,,(k;t|z;t|s) and
Gp(k; t[t; t]s).

(2) An examination of the LHDI approximations for §,; etc. shows
convolution integrals involving time arguments of the form (¢|s’; t|s”) (see
Kraichnan 1965, eqns (8.9)-(8.12)). The abridgement is completed by
approximating all such quantities as follows:

Qupk;t]s';2]s") = Q,p(k; s[s";8"[s") s'>s"
= Qup(—k;s"|s";s"]s) s <" (1.73)
Gup(k; t[s';t]s”) = G,g(k; s'[s"; 8] s"). (7.74)
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This step is exact for the particular case where k = 0, but Kraichnan has
offered no justification for its extension to all values of k.

In addition to reducing the number of variables, the abridgement brings a
bonus: the curl-free or compressive part of the generalized velocity does not
have to be included in the equations. This follows from (7.49), (7.35), and the
requirement that the Eulerian velocity field should be solenoidal. Thus we
have u®(k; t[t) = 0, and hence Q°(k;t|t;¢t|r) = O.

With all these points in mind, we can introduce a simpler notation:

Q(k;tls) = Q°(kst[t;tls) (7.75)
G(k;tis) = G°(k; t|t;t]s). (7.76)

Then the abridged forms of equations (7.61)—(7.64) can be written for the case
of isotropic turbulence as

B
(5 + 2vk2> O(k; t]6)

=2 JdﬁL(k,j)J Q(k —jl;t[r) x
4]
x [G(k;t|nQ(j;tlr) — G(j; tInQ(k; ejr) ] dr (.77)

<i + vk2> O(k;tls)

ot
2k? ‘
_ ‘<T> 0tk tls) Jd3j L Q(lk — jftlr)dr +

t

+ fd3jN(k,j)Q(j;t|S) J Q(k —jl;tirydr +

; j & f EL Gk QU 1) —

— NGRIGU: QMK L1/ 1Q(K — jf el dr —
- J & f LK, )G i) Qeks lr) —

— NG 1DQU: NIk — jls 1) dr —
- J & L [L(k.j) — NGk x

x G(j;tIr)Q(k; tinQ(Ik — jl; s|r)dr (7.78)
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d
(5 + vk2> G(k;t|s)
= _<%> G(k;tlS)fdsj j O(lk — jl;tlr)dr +

+ Jdﬁ'N(k,j)G(j;tIS)j Q(k — jltlr)dr +
+ jd3j[N(k,j) — L(k,j)] x

x G(j;t15)Q(k —jltls) f Gk;r|s)dr —

N

- Jdﬁ'j (L, )G(j;tIr)Glk;rls) —

— Nk, j)G(k; 1[G (j;rl9)]1Q(Ik — jl; t[r)dr (7.79)
G(k;s|s)y = 1. (7.80)

The coefficient L(k,j) is given by eqn (2.162), while N(k, j) can be written as
N(k,j) = L(k,j) + A(k,)), (7.81)

where A(k,j) can be expressed in terms of p, which, as before, is the cosine of
the angle between the vectors k and j, and #, which is the cosine of the angle
between the vectors k and k — j:

2

k
Ak j) = -2~(u2 — ). (7.82)

It is of interest to compare these abridged LHDI (ALHDI) equations with
those of the Eulerian DIA as derived in Chapter 6. If first we consider the
covariance equation on the time diagonal, then the Eulerian result is given by
eqn (6.35). Note that the arbitrary input term should be set equal to zero in
order to facilitate the comparison. Evidently this is identical with the ALHDI
equivalent, as given by eqn (7.77), provided that we simply replace time
arguments like (¢, t) by (¢{¢)!

However, eqns (7.78) and (7.79) clearly involve a few more terms than their
Eulerian counterparts—eqns (6.29) and (6.31)—although it is fair to say that
their intrinsic level of complication is no greater.

7.2.5 Other Lagrangian theories

In the preceding sections, we have discussed the original derivation (Kraichnan
1965) of the ALHDI equations. To recapitulate, there were essentially three
stages.
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(1) Modify the derivation of DIA by replacing the Eulerian coordinates
by the generalized Lagrangian-history coordinates.

(2) Alter the time arguments to generate a purely Lagrangian formula-
tion which is invariant under random Galilean transformations. The
result is the LHDI theory.

(3) Alter the time arguments to produce a further abridged set of equa-
tions. This is an imponderable approximation and results in the ALHDI
equations.

Kraichnan (1977) later used the method of reversion of power series (see
Section 6.1.7 for a brief discussion) to develop systematic renormalized pertur-
bation expansions, in which each order is invariant under random Galilean
transformations. When the new expansions are truncated at the lowest order,
the LHDI and ALHDI approximations are recovered.

From our present point of view, the most important practical consequence
of this work was the development of a new Lagrangian-history theory
(Kraichnan and Herring 1978). While we do not want to become involved in
the quantitative aspects here—that topic will be the subject of the next
chapter—we should just mention that the motivation for the new theory was
an awareness that the quantitative performance of ALHDI was, despite its
qualitative success, less than satisfactory. In particular, we can pick on the
tendency of ALHDI to overestimate the rate of inertial transfer of energy to
higher wavenumbers. This is of interest because the opposite tendency has
been associated with the failure of Eulerian DIA.

The general approach is based on the use of the straining field (or rate-of-
strain tensor) b,(x, t), instead of the velocity field, as the basic variable of the
primitive perturbation series. The straining field is defined in terms of the
Eulerian velocity as

buy(x,1) = Ouy(x,t) + Oug(x, t)'

7.83
0xy 0x, (7.83)
By analogy with the introduction of the generalized velocity u(x, t|s), with
properties as defined by (7.35) and (7.36), a generalized straining field is
introduced and defined by

dbyy(%, t]9)

— u(0): Vhyy(5,15) = 0

bp(x, s|s) = b,g(X, 5), (7.84)

which can be compared with eqn (7.38) for the generalized velocity. It is
important to note that the definition of b,4(x, t), as given by (7.83), cannot be
generalized by replacing u(x, t} by u(x, t|s), except for the trivial case where
t=s.

Kraichnan and Herring (1978) have shown that the reversion procedures
used previously with the velocity field also work with the straining field, and
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are able to derive SBLHDI and SBALHDI approximations, where SB stands
for ‘strain-based’. We shall return to the subject of the quantitative performance
of these theories in the next chapter.

Lastly, for completeness, we should mention the non-Eulerian renormalized
expansion method of Horner and Lipowsky (1979), in which the formalism of
Martin, Siggia, and Rose (1973) (see Chapter 5) is used to construct Galilean-
invariant expansions, and the Lagrangian method of Kaneda (1981), who
produced a variant of Kraichnan’s Lagrangian-history formulation by working
with measuring-time derivatives rather than labelling-time derivatives.

~

7.3 Modified EFP theories

In Section 6.2.5, we discussed the EFP ‘second equation’ in the form of (6.107)
for w(k), and from a comparison with DIA in Section 6.2.6, its interpretation
as a response equation. In Sections 6.2.7 and 7.1.1, we saw that the energy-
balance equation (6.101) is compatible with the Kolmogorov distribution, and
that the failure of the EFP theory can be traced quite specifically to an
infra-red divergence in eqn (6.107). Hence, in view of both the arbitrariness
and the incorrectness of eqn (6.107), the need for an appropriate second
equation—the energy equation (6.101) is, of course, the “first equation’—is
manifest.

In this section we shall present two contrasting approaches to this problem.
In the first (Edwards and McComb 1969) it is argued that one needs an
additional principle in order to derive an equation for the response of the
system. In the second, it is claimed (McComb 1974, 1976) that the response
equation can be determined on purely physical grounds from the unmodified
EFP theory, although it is not suggested that such a prescription is unique.

7.3.1 Maximal entropy principle

We have argued previously that, although the methods of near-equilibrium
statistical mechanics are inapplicable to turbulence, we can to some extent be
guided by analogies with the classical methods and may even borrow some
of the general strategies. In this section we shall discuss a particularly bold
example of such borrowing.

It is well known that the progress of an isolated system towards equilibrium
is encapsulated in Boltzmann’s H-theorem. That is, the entropy (H, in
Boltzmann’s terminology) of the system increases until it reaches a maximum,
at which time all parts of the phase space are occupied with equal weight.

Clearly this is not the case for turbulence, which is always far from equi-
librium. Yet it is nevertheless possible that some modified version of the
H-theorem may be applicable. For instance, Kraichnan has put forward the
view that turbulence is in a state of maximal randomness. This picture of
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turbulence—that it is in the most chaotic state permitted by the (deterministic)
equation of motion—has considerable appeal, and raises the possibility that
any specific measure of the randomness (such as the entropy!) might also be
described as maximal.

It is in this spirit that Edwards and McComb (1969) argued that entropy,
when interpreted as (negative) information, is available as a concept for any
system, without reference to thermal equilibrium. Thus, if the general form
(Shannon and Weaver 1949) is given by

S=—x JPlnP, (7.85)

where « is the Boltzmann constant, and the integration is over all the variables
of the system, then the straightforward generalization to turbulence is just

S = —fP[u(k)] In Plu(k)] [] du(k), (7.86)
K

where we have put k = 1, as the value of k does not enter into the subsequent
calculation.

If we now maximize S, as given by (7.86) with (6.73) for P, it is arguable that
this is equivalent to choosing P such that it contains the least information. Of
course, the resultant extremum will not be an absolute, such as one would
have in thermal equilibrium, but will depend on our choice of variables.
However, against this one might argue that it has been adopted as a principle
of wide application—see Shore and Johnson (1980) for a recent paper which
contains many other references—that one should choose as the most probable
of many system states the one with the largest entropy. In this sense, even for
a dissipative system like turbulence, it seems not too unreasonable to choose
the probability distribution such that the system has the largest entropy
possible. In other words, one is presumably ennunciating a principle of maxi-
mal entropy.

Therefore, taking this pragmatic view, we can argue that, through eqns (7.86)
and (6.73), we have the relationship S = S[g(k), w(k)], and that we already
have an equation for q(k) in the form of (6.10]), so that we should obtain an
equation for w(k) through the condition

oS
——=0. 7.87
dw(k) (7.87)
However, S is a function of both g(k) and w(k), two quantities which in turn
are connected through the energy equation (6.101). Thus the variation in (7.87)
is not free, but is in fact subject to the constraint of the energy balance. Hence
we should write (7.87) as

oS oS oq(j)
—_— — | —==0 7.88
5ol T [541(1')] T (788)
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where the coefficient in the second term on the r.h.s. can be obtained from eqn
(6.84):

99(j) _ d(k) L L 0d0)

dok)  2w*(k)dk —j)  2w(j)dw(k)’ (7.89)

A problem now arises, in that the second term on the r.h.s. of (7.89) must
be calculated iteratively by using eqn (6.84) to put d(k) = 2q(k)w(k) in the
non-linear term of the energy equation. Edwards and McComb (1969) simply
drop this term altogether. The computation needed to keep it would be
tremendous, and its neglect does not affect the question of whether or not a
solution exists. Therefore, with this approximation, eqn (7.88) becomes

BN dik) 6S
dwk)  2w2(k) 5q(k)

=0, (7.90)

where the summation over j has been eliminated along with the delta function.

Now, from eqn (7.86), and with the probability distribution P given by the
expansion (6.73), we can calculate the turbulent entropy to second order in
the non-linearity as

n

S=—|(Py+ AP, + A*P,)In(P, + AP, + A*P,)éu

»

= — | (Py + AP, + A2P,)In[Py(1 + APG'P, + A2P;1P,)]ou

r

= — | P,InPyou — A2 J P, Py1P,du + o(J*), (7.91)

where terms of order A and A3 vanish as they involve the integration of an odd
function of u over all values of u, and terms of order A? involving P, vanish
because of the conditions imposed on the expansion for P[u(k)] through eqns
(6.84), (6.85), and (6.94).

Then, upon substitution of (6.83) for P, and (6.92) for P,, it can be shown
that the entropy takes the form

27 \? 1
s=(2) 5 -3 maw -
2 9
_ (g) LY ILGobDa()a) — L} Wa(k)a()] x
]

1
* aW Lol + o(j) + o0

where the bookkeeping parameter A has now been put equal to unity.

(7.92)
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A full derivation of this result has been given elsewhere, and so we shall
only make a few points here. First, we note that the first term on the r.h.s. is
essentially just the number of degrees of freedom of the system. As it is a
constant, it does not contribute when we perform the differentiation according
to eqn (7.90). The second term arises from the normalization in (6.83) which is

N = l:[ {at} 2.

The third term involves a manipulation of the kind which should be familiar
by now (e.g. see Appendix E). Note that L(k,]j, 1) is a generalized form of the
familiar L(k,j)—which is given by eqn (2.163)—and which contains a delta
function such that

fd3l L(k,j,Df(k,j,1) = L(k,j)f(k.3, k - j), (7.93)

where f(k, J, 1) stands for any kernel which occurs in turbulence theory.
Finally, if S given by eqn (7.92) is varied with respect to some particular
w(A), then it can be shown (McComb 1967) that (7.90) becomes

1
- f J 31k [L (K, A, Dq(A)q(l) —
1
— Lk, A)g(k)g(4 N
1
— | | d% a3k L(k,j, A)g(A)q(
JJ Jak L5 (AU o o + o) + o @

1
o(A)g(A)[w(4) + o(j) + o()]*

+de3jd31L(A,j,l)q(j)4(l)

— 4{de3k d*I[L(k, A, Dq(A)q()) — L({L, A, k)q(A)q(k)] x

1
X 40 [0®k) + o) + o]’

2 JJd3jd3l[L(A,J',l)q(j)q(l) — L1, A,j)q(A)q())] x

1
* A o) + o)) + w(l)P}
=0, (7.94)

where we have taken the limit of infinite system volume.
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This looks rather formidable, but in the limit of large Reynolds numbers
we can follow the procedures discussed in Sections 6.2.7 and 7.1.1, with ¢(k)
and w(k) being given by the Kolmogorov forms (6.120) and (6.121) respectively.
Equation (7.94) can be used to replace the original EFP response equation
(6.107), and, following the procedures used in deriving equation (7.4), we can
show (McComb 1967) that (7.94) reduces to

aD’

o L. (7.95)

The important point about this result is that the integrals which determine
the value of D’ all exist owing to cancellations at the various singularities
(McComb 1967). Thus the maximal entropy method does eliminate the infra-
red divergence which was found with (6.107).
Equation (7.95) can be solved simultaneously with (6.125), so that the
Kolmogorov spectral constant becomes (compare eqn (7.6))
(D)

Edwards and McComb (1969) report a value D" = 2.0, and hence « = 3.8,
which is roughly twice as large as the accepted experimental value.

Overall, the maximal entropy method is qualitatively successful in elimi-
nating the infra-red divergence, but in view of the neglect of the second term
on the r.h.s. of egn (7.89), no conclusions can be drawn about its quantitative
performance.

Lastly, we should note that an alternative variational method has been
proposed by Quian (1983), but this treats the variation as if w(k) and g(k) are
independent. In effect, this is the same as if the second term on the r.h.s. of our
eqn (7.88) had been neglected. Hence, it follows that Quian’s method is
mathematically incorrect.

7.3.2  The response function determined by a local energy balunce

In the original EF P theory, we saw that the response equation for the system
is identified through the decomposition of the energy equation (6.101) into the
form (6.106). This particular decomposition was guided by a physical model.
in which the non-linear term is interpreted as a random force which is
uncorrelated with the velocity field (see Section 6.2.5 and the arguments
leading to eqn (6.105) for s(k)).

Once made, this particular division of the non-linearity into input and
output terms looks physically very reasonable, with 2r(k)q(k) representing the
loss of energy from mode k owing to inertial transfer. Notc also the relevant
discussion of the DIA energy equation, as given in Section 6.1.5.
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However, the decomposition of (6.101) into (6.106) is arbitrary, and
McComb (1974,1976) has proposed a variant on this procedure. This later
method of dividing up the energy equation leads to some interesting results.

Let us begin by multiplying each term in (6.101) by 4nk? and rewriting the
equation as
4{ dj B(k,j) = 4nk?*W (k) — 2vk?E(k), (7.97)

0

where the energy spectrum E(k) is defined by eqn (2.101) and B(k, j) is given by

-1

1
Blk.j) = 16n2k2jzj du L(k.j)q(Ik = jDLg(j) — q(k)] x

1
X e —. 7.98
w(k) + w(j) + ok —jI) (7.9%)
Here 1t is the cosine of the angle between the vectors k and j, and L(k, j) depends
on u through the relationship (2.162). It should be noted that B(k, ) can be
expressed in terms of the transfer spectrum T(k), as defined by egn (2.118),
through

0

T(k) = f dj B(k, j). (7.99)

It should also be noted that one cannot obtain (7.99) from the DIA form
merely by putting ¢ = 0 in (6.37) for T(k,?). The correct procedure is to be
found in Section 6.2.6.

It is a simple matter to show that this form for T(k) satisfies the fundamental
requirecment of (2.126):

Jx T(k) dk = J ko 4 Bik.j) = 0, (7.100)
0 0 0

or in other words the inertial term conserves energy. As before, this result
relies on the antisymmetry of B(k,j) under interchange of k and j,

B(k,j) = — B(j.k). (7.101)

Now let us replace the original EFP postulates, as given by eqns (6.79) and
(6.80), by
d(ky = W(k) + H(k) (7.102)
w(k) = vk? + v(k)k?, (7.103)
where v(k) is the effective turbulent viscosity. The idea that the molecular
viscosity is augmented (or renormalized) by non-linear interactions has been
implicit in all the theories discussed so far. Now we are simply making this
hypothesis explicit.
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The implication of these steps is that we are replacing the EFP decomposi-
tion of (6.101), which implies that the inertial transfer term can be written

T(k) = 4nk?[s(k) — 2r(k)q(k)], (7.104)
by the new form

T(k) = 4nk’[H (k) — 2v(k)k*q(k)]. (7.105)

But, of course, one has to find new ways of defining H(k) and v(k) in order to
give substance to this.

Let ys now consider the steady state energy balance, as discussed in general
terms in Section 4.3.2 and in the context of the inertial range in Section 6.1.5.
For a wavevector k in the inertial range, we have from Kraichnan’s definition
of the transport power [1(k) the general condition

k) = e, (6.38)

which can in itself be regarded as defining the inertial range. It follows from
eqns (7.100) and (7.101) that we can obtain this condition in one of two ways.
Either we can integrate both sides of (7.97) from zero up to k, or we can
integrate from k up to infinity. This will be true irrespective of the value of k,
provided only that it is in the inertial range of wavenumbers. In both cases
we assume that eqn (4.90) can be approximated by

k o
J dnk*Wkydk = J 2vk?E(k)dk’ = . (7.106)
0] k

Hence, from the integration of (7.97), the two forms of (6.38) can be written
as

k x
J{4nk/2W(k’)+J ij(k’,j)}dk’zO (7.107)
( k

)

o k
j {J dj B(k'.j) — 2vk’2E(k’)}dk’ =0, (7.108)
k 0

where, in both cases, the limits on the integration with respect to j follow from

the antisymmetry of B(k,j) under interchange of k and j (see eqn (7.101)).
Equations (7.107) and (7.108) together represent the steady state energy

balance. From the definitions implied by (7.102) and (7.103), it seems natural

to rewrite the steady state energy balances as

k
J Ak >W(k') — 2v(k')k’2E(k’)}dk’

0

Il

k

J (W(k') — 2v(k' )k 2q(k')} 4nk ' dk’
0

0

(7.109)
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J (Ank H(K') — 2vk2E(k')} dk’

k

=f (H(K') — 2vk'2q(k') }4nk'? dk’

k
=0 (7.110)
respectively. Hence we can make the identifications
Ak 2 diB(k.))}
2q(k)

v(k) =

=k J d?j Lk, ja(lk — jDLa(k) — q(j)] x

1
N i 7.111
X R Tok) T w() + ok — ji] (-

1 k
H(k) = <4nk2> L dj B(k. j)

zzjdﬁUkDﬂm—HMﬂﬂ—qwﬂx

1
ok + o() + ok —j)

(7.112)

We can treat eqn (7.111) in the same way as we did previously with (7.1) or
(7.94). For the case of infinite Reynolds numbers, we have

w(k) = k2v(k)

= J d3j Lk, jg([k — jD) [alk) — ()] x
jzk

1
x . — (7.113)
gk)[wk) + o(j) + ok —j)]
Substituting the Kolmogorov forms (6.120) and (6.121) for ¢(k) and w(k), we
can reduce (7.113) to

* o, (7.114)

which can be solved simultaneously with (6.125) for the Kolmogorov spectral
constant-——this can be compared with the similar procedures which lead to
eqns (7.95) and (7.96). McComb (1976) has reported the value D” = 0.573 and
hence o = 2.5, which is only marginally outside the most probable experi-
mental range.!



298 RPT OF THE SECOND KIND

Equation (7.113) is very much simpler than (7.94), and so in this case it is
casy to sce that the integral for D" exists and that there is no infra-red
divergence. The essential point is that a potential divergence at [k —j| =0 is
climinated by a cancellation in the integrand, whereas the potential divergence
at j = 0 is excluded by the lower limit at j = k.

7.3.3  Local eneryy-transfer equations

The Fourier transformed Navier—Stokes equations indicate that turbulence
is, in principle. a non-local phenomenon in wavenumber space. All modes —
however far apart in k-space —are coupled together. However, there is a
widespread belief that, in practice, turbulent incrtial transfers are dominated
by (as it were) nearest-neighbour interactions between modes in k-space, or,
in other words, these energy transfers are predominantly local. Such ideas are,
after all. fundamental to the Kolmogorov hypotheses, and indced to the very
cascade picture of turbulence.

Yet, despite this prevalent belief in the localness of energy transfers, there
have been surprisingly few attempts to describe spectral processes by means
of differential equations. We regard this as surprising because the use of Taylor
series to produce governing equations in differential form is a basic tool of
other subjects ranging from statistical mechanics through continuum me-
chanics to engineering models of turbulence. Of the few attempts known to
us. McComb (1969) and Edwards and McComb (1971, 1972) have expanded
the kernel of the energy equation (6.101) about an assumed Kolmogorov
distribution in order to produce simpler formulations which can then be
applied to more complex problems such as shear flows. Nakano (1972) made
expansions in wavenumber of the non-lincarity in the unaveraged Navier—
Stokes equation, and used the resulting equations as the basis of his RPT,
whereas McComb (1974) took a renormalized perturbation theory as a
starting point and made similar expansions of eqns (7.112) and (7.113}in order
to obtain differential equations for the energy spectrum and modal lifetime.
We shall give a very brief account of only the last reference here.

We begin by rewriting eqns (7.112) and (7.113) with k — j replacing j. The
resulting equations are readily obtained in the form

H(k) =2 J d¥ Lk k — jg(j)[a(k = jI) = q(k)] x
J=k

1
,,,,, - 7.115
X w(k) + w(j) + o(k -l ( !

k2v(k) = J d* Lk.k — jg( /) [q(k) — g1k —jD] x
ik

1
_— 7.116
X BTk + o) + ok —jh] 7110
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where L(k.k — j)is given by eqn (6.46). The reader may find it helplul to recall
that we did this to the DIA response equation previously when we replaced
(6.29) by (6.44). 1t should also be recalled that it is permissible to interchange
jand k — j in this way because they are both dummy variables.

Our next step is to set up the problem formally. We do this by using eqns
(7.97), (7.99). (7.102), (7.103), and (7.105) to write the energy cquation as

dnk? H(k) + 4nk* W (k) — 2w(k)k2E(k) = 0. (7.117)

Then the problem is to obtain approximate forms {or H(k) and (k) which
are local in wavenumber space.

We start with the former quantity. From eqn (7.115) we see that we always
have j/k < 1, and so we can expand L(k.k — j), g(|k — j|). and o(lk — j]), all
in powers of j/k. After some detailed algebra (McComb 1974), we find

N A N (L e 1]
H(A)—<€k+k>{Az(A) B } A, (k) Fra (7.118)

where terms of order (j/k)® have been discarded, and the coefficients A4, (k)
and A,(k) are given by

1\,2 x ) s ) )
Ay (k) = I50(k) L otk — j)i“E()Hdj (7.119)
A k2 T oap 9
Ay(k) = ISo(k) L JEE(j)d). (7.120)

Then, multiplying H(k), as given by (7.118), by 4nk? and substituting into
(7.117) leads us to the required form for the energy equation:

Lk AL (k)G LE(K) K2/ ck] CLE(K)K? )
= — t
ck ck
+ 4nk2 Wk} — 2w(k)k2E(k)
=0. (7.121)

— k24, (k)

We now need a corresponding equation for w(k) and we start with (7.116)
for the effective viscosity. This time we expand in powers of k;j and again
retain second-order terms. The result 1s

(k) = {v + v(k)} k?

2k? J" diE(HLL + {jdo())} col (]] s
k

=vk* +
i 15 ol j)

Equations (7.121) and (7.122) have been solved simultaneously, in the
inertial range of wavenumbers, and the result i1s a value for the Kolmogorov
constant which is x = 1.5 (McComb 1974). This actually compares quite well
with experimental results, but the real attraction of this work lies in the relative
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simplicity of the final equations for E(k) and w(k). Quite similar results have
been obtained. using different methods, by Nakano (1972), but unfortunately
his equations contain a term which cannot be expressed in terms of the main
statistical variables. A detailed comparison of the two sets of equations has
been given eisewhere (McComb 1974).

7.4 Local energy-transfer theory of non-stationary turbulence (LET)

The idea that the turbulent response function can be determined from an
energy balance, which is local in wavenumber space, has been extended to the
more general case of time-dependent turbulence (McComb 1978). The re-
sulting time-dependent local energy-transfer (LET) theory is the subject of this
section. :

LET belongs to that class of theories (such as DIA or Wyld’s analysis) which
relies on a direct renormalization of the primitive expansion of the turbulent
velocity field. This method has been discussed in a general way in Sections
3.5.2 and 5.5, and, with particular reference to DIA, in Section 6.1. Naturally
this means that there are similarities between LET and (Eulerian) DIA.
However, at this stage, our principal interest lies in how LET differs from DIA,
and this really boils down to the choice of ansatz (or basic hypothesis).

In the case of DIA, this is the introduction of the infinitesimal response
function which relates fluctuations in the stirring forces to the resulting
fluctuations in the velocity field through eqn (6.3). The corresponding step in
the LET theory is a hypothesis that the turbulent response can be represented
by the introduction of an exact propagator which connects the velocity field,
associated with mode k, to itself at a later time.

7.4.1  The velocity-field propagator

We have previously met the zero-order propagator in Section 5.5.1, where we

formulated the general perturbative approach to the Navier -Stokes equation.

We saw that it could be regarded as the (zero-order) response to a forcing

term, as in eqn (5.61), or as the relationship between u(k, t) and u(k,?’), as in

eqn (5.62). It is the latter interpretation which is of interest to us here. We .

begin by summarizing some of the properties of the zero-order propagator.
First, we rewrite (5.57) as

¢ . .
|:é[ + \'kz} HQ(kit, 1) = Dyy(k)o(t — 1), (7.123)
where G'© has been renamed H® for later convenience. As always, in this (and

the preceding) chapter, we restrict our attention to isotropic turbulence; hence
it follows that the zero-order propagator takes the form



74 LET THEORY OF NON-STATIONARY TURBULENCE 301

D,g(k)exp{—vk*(t — ')} >t

7.124
0 r<t. ( )

HP k1) = {

As usual, our starting point is the Navier—Stokes equation. This time we
take this to be in the form given by (5.56), with a bookkeeping parameter 4 in
front of the non-linear term, but with the stirring forces set equal to zero:

[:t + vk{l (k. 1) = AM, 5. (k) S ug(G, ),k — j ). (7.125)
/ i

Evidently eqn (7.125) is just the inhomogeneous version of (7.123). Hence H'”!
is the appropriate Green function, and the solution of (7.125), for the velocity
field at any time, is given by

ua(k7 t) = Hig)(kv t’ IO)ua(k’ IO) +
+ 4 f ds HD (ki t,5) Y Mg, (K)ug(y, shu,(k — j,s)  (7.126)
to )

where the velocity field is prescribed at t = ¢,.
Thus the role of H'® as a zero-order propagator is clear: it has the property

ulO(k, 1) = HO(k; 1, s)ul”(k, s), (7.127)

which is the solution of (7.125) when we set A = 0. It is also easily seen that it
satisfies the conditions

HOK: 1, ) HO(k:5,t') = H (K 1,1)
HO%k:t,1) = 1. (7.128)

Let us now consider eqn (7.126) for the velocity field at any time. For
simplicity, we assume the initial condition to be that u(k,r) = 0 att = 0 and
we also put the bookkeeping parameter A = 1, and (7.126) reduces to

u,(k,t) = J ds HO'(k; 1, ) Z Mc,,i Jug(j, sk —j,5).  (7.129)
0

This is, of course, the exact solution of the Navier-Stokes equation, but in
its present form it is of very little use. The basic assumption of the LET theory
is that we can postulate the existence of a rernormalized version of (7.127),
and hence that the exact solution (7.129) can be approximated by

u (k,t) = H,,(k; 2, s)u,(k, s). (7.130)

where H,,(k;1,s) is the renormalized velocity-field propagator and, like the
zero-order form, satisfies the conditions

H  (k;t,s)H,g(k;s,t') = Hyg(k;t,t')
Hk;t, 1) = 1. (7.131)
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It should perhaps be emphasized that Wyld’s analysis (see Section 5.5)
tells us that a renormalized propagator exists in the form of an infinite
serics. Specific turbulence theories then correspond to specific choices about
ways of truncating, and otherwise approximating, this series. If we consider
the EFP theory, for example, then what we are saying (in effect) is that the
accuracy of the energy-balance equation (6.101) depends on our choice of
w(k).

This can be understood in the following way. If we were to follow simple
perturbation theory, then the denominator on the r.hss. of (6.101) would
contain only modal decay parameters of the form vk?. That is, the response
times would be governed by the kinematic viscosity of the fluid. Renormaliza-
tion replaces the bare viscosity by the renormalized form, vk? — {v + v(k) } k* =
w(k), and the accuracy of our calculation of ¢(k) is vastly improved (we shall
return to this specific point when we discuss almost Markovian models in
Section 7.5). It is then arguable that there are infinitely many ways of choosing
w(k), and in general the accuracy of eqn (6.101) for ¢(k) will depend on our
choice. Thus the original choice of Edwards (see Section 6.2.5) and the later
choice of McComb (see Section 7.3.2) are both quite arbitrary. Indeed, the
very fact that they are both so reasonable in physical terms rather underlines
their arbitrariness. It is in this context that Edwards and McComb (1969)
argued that a most probable (but not unique) choice of w(k) could be made
by maximizing the entropy.

It can be seen that, as a corollary of the above discussion, the concept of a
renormalized propagator is necessarily statistical. That is, the renormalized
propagator can only depend on the velocity field through its moments. As far
as any one realization is concerned, the renormalized propagator must be
statistically independent of the velocity field and satisfy

(Hy(kit,1')> = H, (k;1,1"). (7.132)

It also follows that the propagator should be determined by some statistical
principle. We introduce the statistical form of the LET theory’s basic hy-
pothesis as follows. Multiplying both sides of (7.129) by u,(—k, ") and aver-
aging, we obtain

Qza(k;t»t/) = Jr dSH(O)(k N S <2L> ZMﬂli (k
0

x i u,(k — j, D=k, 1), (7.133)

where eqn (2.88) has been used to introduce the covariance tensor Q,, (ki ¢, t).
Exactly the same procedures applied to eqn (7.130) then yield

Q. (kit,t") = H,,(k;1,5)Q,.(k;s,t'), (7.134)

where we have invoked (7.132) in order to carry out the averaging.
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The LET theory then requires the equivalence of eqns (7.133) and (7.134).
This postulate is the basis for the calculation of H,,(k; t,t'), and is the statistical
version of the previous requirement that the propagator be defined through
the postulated equivalence of eqns (7.129) and (7.130).

7.42 The generalized covariance equation

The renormalized perturbation theory is implemented as before. We take the
zero-order velocity field to have a Gaussian distribution with zero mean. The
perturbation series in the velocity is just eqn (6.8), which we repeat here for
convenience:

uy(k, 1) = uP(k, 1) + APk, 1) + O(2%).

In practice we shall only work to second order in A, and this means that the
only higher coefficient we shall need in the expansion for u(k, r) will be uV(k, ¢).
This is given by (6.12) and we rewrite it here in terms of H rather than G'©
as follows:

t
ulk, 1) = J ds HO(k; t, )M 5, (k) z ud(j, )Pk —j,5).  (7.135)
0 i

In addition, we expand the propagator out as
H(k;t,5) = HP(k;1,5) + A2HZ (ks 1,5) + O(A*). (7.136)

It should be noted that this is (effectively) an expansion in terms of the
moments of the zero-order velocity field, and hence only even-order terms
occur,

The LET theory is based on the derivation of a generalized equation for
the covariance Q,4(k;t,t). We begin by using eqn (7.130) for the exact propa-
gator, in order to rewrite (7.125) in the form

<% + vk2> H,,(k; 1, 5)u, (K, 5) = AM,5,(k) Y (G, yu,(k —j, ). (7.137)
i

The generalized covariance equation is obtained if we first multiply both sides
of (7.137) by u,(—k, t') and then average:

0
<a + Vk2> Haa‘(k; L S) <ua'(k, S)ue( - k’ t/)>
=1 Z Maﬂy(k) <uﬂ(j’ t)uy(k - j, l)ue(_ ka t/)>’ (7138)
i
where we note eqn (7.132) when carrying out the averaging.

The r.h.s. of (7.138) can be expanded out using (6.8) for the velocity field to
yield
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<% + vk? > H,,(k;t, 5) (g (k, shu(—k, 1))

=4 Y. My, () [ u” (k — j, yue(—k, 1)) +
i

+ AU, Uk — §, DuV(—k, ) +
+ 22U DUk — §,DuO(—k, 1)) + 0(3*)]).  (7.139)

It should be noted that the factor of 2 in the last term on the r.h.s. arises because
we have combined two terms, with an appropriate renaming of dummy
variables. We have previously taken just this step in going from (6.24) to (6.25),
while in the process of deriving the DIA equations. If we then substitute for
u'¥ from (7.135), and note that odd-order moments of the u® field vanish, we
obtain the generalized covariance equation in the form

(% + vk2> H,,(k;t,5)Q,(K; s, ')

t

dt"H,,(k;t',t") x

=YY My {M,,.,a(—lo j
.

0

x (G, ul” (k — §, )uD(p, ¢yl (k — p ")) +
t
+ 2M,,,4(i) j dr’ Hp, (i t,1") x
x u®(p, t UG — p,t )Pk — § u(—k, 1) +
+ 0(/1“)}- (7.140)

Now we follow much the same general procedure which was used to derive
the DIA. In particular, we shall take the same steps as we did in going from
eqn (6.25) to eqn (6.31). Of course, our present starting point is eqn (7.139) and
we are seeking the equivalent of (6.131) for the LET theory. We can summarize
the various steps as follows.

(1) Evaluate the moments of the zero-order velocity field in terms of oY,
(2) Truncate the expansion at second order, put the bookkeeping pa-
rameter A equal to unity, and make the replacements 09— Q, and
H® o H.

(3) Specialize to the case of isotropic turbulence, replacing Qupk;t,t") by
the correlation function, according to eqn (2.97), and introducing the
propagator function H{k;t,t') in an analogous way:

Quplk; 1, 1) = Dop(K)Q(K; 1, )
H,(k;t,t') = Dyp(k)H(k; £,t). (7.141)
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When all these steps are taken and tensor indices are summed over « = &,
eqn (7.140) becomes

(g N vk2> Hks 1,590(Kk:s,1)
_ j deL(k,j){ f de” Hil ¢, ")QUjs 1.7 QU1K — jl; £, 7) —
0

t
— j dt” H(j;t,t)Q(k;t",t)YQ(k —jii 1, t”)} (7.142)
0

which is the required generalized covariance equation for isotropic turbulence.
It is quite easily shown that the coefficient L(k,j) is given by eqn (2.162).

7.4.3 Equations for the correlation and propagator functions

The equation for the correlation function Q(k;t,t’) is readily obtained from
(7.142). We first reduce (7.134) to isotropic form by invoking equation (7.141),
so that

Q(k;t,t') = H(k;t,8)Q(k;s,t") t>s>t, (7.143)

and use the resulting relationship to contract time arguments on the Lh.s. of
(7.142) to obtain

5 2 . ’
<§+ vk )Q(k,t,t)

= Jd3jL(k,j){f dt” H(k;t',t")Q(j; 1, t)Q(Ik — jl;£,t") —
0

— Jt dt” H(j;6,t")Q(k;t",t)Q(k — jl; t,t”)}. (7.144)
0

The equation for the propagator function is a little more tricky. Essentially
we are carrying out the same approach as for the identification of the effective
viscosity in Section 7.3.2. There we interpreted the stationary energy-balance
equation (7.107) in terms of the renormalized viscosity, through eqn (7.109),
thus leading to (7.111) for v(k).

In the present case the problem is complicated by the equations being
non-stationary and by the plethora of time arguments involved. Nevertheless,
our procedure is really very much the same: we wish to equate coefficients of
Q(k; 1, 1) in order to obtain the response equation. When doing this, we should
bear in mind that the labelling wavenumber k is what matters here, and not
the time arguments.
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Thus, setting s = t' on the Lh.s. of eqn (7.142), we can write the general
covariance equation as

(% + vk2> H(k;1,t)Q(k; 1',t')

= Jdﬁ'L(k,i){j dt" H(k;¢',¢")Q(j;t,t")Q(Ik — jl;2,t") —

0
— jt de” Q(k,t",tVH(j; ¢, t" YOk —jl; 1, t”)}, (7.145)
]

and this is the LET response equation.

7.4.4 Comparison with DIA

The DIA equation for the correlation function is given by (6.31). If we set the
arbitrary input term equal to zero, and take the non-linear term to the r.hs,,
then it is clear that (6.31) is identical with the LET equation (7.144) for the
correlation function.

This result is hardly surprising—we have seen that second-order RPTs all
lead to the same energy equation. In fact the difference between the LET and
DIA theories lies in the differing forms of their response equations. We can
see this as follows. Divide the integral over 0 < t” < t on the r.h.s. ofeqn (7.145)
into two ranges 0 < t” < t"and t' < t” < t, use (7.143) to write

O(k;t',t") = Q(k;t",t'y = H(k;t",t")Q(k;t', 1),

and rearrange to obtain
5
— + vk? |H(k;t,t'
[at +v ] (k;t,t) +

+ Jd:’jL(k,i)J dt"H(k;t", 1) H(j;t',t")Q(1k — jl;2,¢")
-

t

1 :
=T d3J'L(k,J')f dt” Q(lk — jl;z,2") x
Q(k;t,t)j 0

x {H(k;t',t)Q(j;1,t") — H(j; 1,t")Qk; 2',2")}. (7.146)

The comparable equation in DIA is eqn (6.29) for the response function
G(k;t,t"), which is analogous to H(k;t,t') in the LET theory. Comparison
shows that the two left-hand sides are the same, but that eqn (7.146) has
additional non-linear terms on the r.h.s.

As we saw in Section 7.1.1, the DIA response integral is divergent when the
limit of infinite Reynolds number is taken. (In fact this was actually shown for
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the EFP response equation, but in this context there is no significant difference
between the two.) The form of the integrand studied in Section 7.1.1 was
divergent at j = 0, whereas the integrand of (6.29) would diverge atk — j = 0.
It is quite easily shown that the additional term on the r.hs. of the LET
response equation (7.146) will cancel this divergence as we take the limitk — J-

We conclude by noting that the LET theory was originally derived for the
stationary case (McComb 1978) and later generalized in an ad hoc fashion in
order to permit numerical calculation of freely decaying (i.e. non-stationary)
turbulence; we discuss such calculations in the next chapter. However, the
more general derivation given here is much simpler than the original, and also
eliminates some minor errors. It is also of interest that Nakano (1988) has
apparently arrived at the LET response equation by considering the DIA in
a wave-packet representation in which k-space is divided up into shells of
finite thickness.

7.5 Near-Markovian model closures

In this section we shall briefly discuss a class of turbulence models which has
proved rather popular in recent years. As before, we use the term ‘model’ to
mean a theory which relies on some quite specific assumption, resulting in a
free parameter which is not determined by the theory and is normally adjusted
to make the theoretical predictions agree with experiment.

The models to be discussed rely on an analogy being drawn between
turbulence processes and Markov processes, such as Brownian motion for
example. We have previously discussed Markov processes in Section 4.1.2 in
connection with the derivation of the Chapman—Kolmogorov equation. The
basic idea is one of a random walk in which the current step depends only on
the preceding step, but not on any step before that. Thus turbulence is not
strictly Markovian, but, as we shall see, in certain circumstances it 1s natural
to argue that it is almost Markovian, when turbulent time-scales are compared
with those determined solely by the kinematic viscosity of the fluid.

7.5.1  Quasi-normal Markovian approximations

We have discussed the quasi-normality hypothesis and the failure of the
resulting spectral equation (2.163) in Section 2.8.2. The reasons for this failure
have been analysed in some detail by Orszag (1970), who also suggested a
remedy. It is the latter aspect which will interest us here.

Orszag pointed out that the memory integral in the quasi-normal spectral
equation—see the r.h.s. of eqn (2.163)—was ultimately limited by time-scales
determined by the kinematic viscosity of the fluid. That is, the exponential
factor in the integrand cuts off the integration on time-scales T(k) such that
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T(k) ~ (w(k)) ™,
where the modal decay rate w(k) is purely viscous; thus
w(k) = vk>.

As the effect of turbulence is to destroy correlations, it is arguable that (2.163)
should be replaced by

<% + 2vk2> Ok, t) = Jd3jL(k,i) X

X j dsexp[{w(k) + w(j) + ok —j))}( — )] x

x Q(lk — jl,9){Q(j,s) — Q(k.9)}, (7.147)

where the modal decay rate should take some account of the ‘de-correlating’
effects of the turbulent dynamics.

If we are specifically interested in the inertial range, then we have, on
dimensional grounds, the result for the modal decay rate already given as eqn
(6.120):

w(k) = PelPk??, (6.120)

It follows from the discussion of the EFP theory in Section 6.2.7, that (7.147)
and (6.121) together lead to the Kolmogorov inertial-range spectrum.

Some justification for replacing (2.163) by eqn (7.147) can be found in a
consideration of the DIA energy equation. The eddy-damped quasi-normal
spectral equation—that is, eqn (7.147)—can be obtained from (6.35) by making
the approximations

G(k;t,t') = exp{—w(k)(t — t')} t>t
Ok;1,1') = Q(k, t')exp{ —w(k)(t — t')}. (7.148)

In a sense, this way of ‘fixing up’ the quasi-normality hypothesis rather
underlines what was wrong with it in the first place. In renormalized perturba-
tion theories, the primitive velocity field has Gaussian statistics, and so the
factoring of fourth-order (or higher) moments into products of second-order
moments is rigorously correct. The next step—the replacement of Q@ by
Q—is always accompanied by a procedure which changes G to G—the
renormalization process! In quasi-normality, only the step Q> — Q has been
taken, and so Orszag’s proposal really amounts to making the change G* - G
afterwards.

Orszag also proposed that the theory should be modified to take on
a Markovian character, with memory effects being eliminated. This was
achieved by updating the time integrais on the r.h.s. of eqn (7.147) to time ¢
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<% + 2vk2> Q1) = jd3jL(k,j)D(k,j, |k —jl1) x
x Q(k — jl.0{Q(0 — Qk.n},  (7.149)

where D(k, j, |k — j|;¢) is a memory time which depends on the modal decay
(or decorrelation) rate w(k,t). In an almost-Markovian approximation, the
memory time satisfies

f%:l—wﬂﬁ+wun+mm—ﬂmD (7.150)

with initial condition
D(k,j, |k — ji;0) = 0. (7.151)

If the turbulence is stationary, then w(k, t) = w(k), and (7.150) becomes

D(k,j, 1k —jl) (7.152)

o(k) + w(j) + ok —jl)

We note that eqns (7.149) (with t = 0)and (7.152) together are identical with
the original form of the EFP theory (see eqns (6.101) and (6.107)). This has
prompted the suggestion (Kraichnan 1971) that eqns (7.149) and (7.152) con-
stitute an extension of the EFP theory to nonstationary turbulence.

The precise form of the Markovian modification may seem less intuitively
appealing than the introduction of the eddy viscosity. Nevertheless, despite
these strictures, eqns (7.149) and (7.150) form an easy set of equations for
numerical computation. Thus it is not really surprising that variants of this
model have proved helpful in tackling problems ranging from the generation
of magnetic fields in conducting fluids to sub-grid-scale modelling. We shall
refer again to some of these aspects when we consider the numerical simulation
of turbulence in Chapter 10.

7.5.2 The test-field model

The above work led to further formulations of the DIA, based on a generalized
Langevin equation which provided a new model representation of the velocity
field (Kraichnan 1970; Leith 1971), a development which, as we mentioned in
Section 6.3.2, was also influenced by the work of Phythian (Kraichnan 1970).

Kraichnan (1971) further extended this approach to (a) almost-Markovian
approximations and (b) approximations which were modified to be invariant
under random Galilean transformations. This latter method is also known as
the test-field model.

The modification of the almost-Markovian model to give random Galilean
invariance involves the introduction of a test field which can be decomposed
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into solenoidal and compressive parts (just as in the Lagrangian-history case;
see Section 7.2). We shall not go into further detail here; the interested reader
should consult Kraichnan (1971), or there is a good summary of the test-field
model in the paper by Leith and Kraichnan (1972).

Note

1. This value of D" may be too large. In a different context, Kraichnan (see Section
10.3.2) has reported a result equivalent to D” = 0.44. Substitution of the smaller
value of D” into eqn (7.114) would lead to a theoretical prediction of a Kolmogorov
constant o = 2.30, in much better agreement with experiment.
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8

AN ASSESSMENT OF
RENORMALIZED PERTURBATION
THEORIES

Our principal source of information on the performance of RPT, is a handful
of numerical investigations into the application of RPT to the problem of
freely decaying isotropic turbulence. Accordingly, this will be our main topic
in the present chapter, although we shall also revive the question of whether
such theories should be compatible with the Kolmogorov spectrum at high
Reynolds numbers. We shall also examine the problems involved in applying
RPTs to inhomogeneous flows—along with a glance in passing at some
other approaches to shear flows—before attempting to come to some overall
conclusion about the various theories.

8.1 Free decay of isotropic turbulence as a test problem

Our account of this subject is based on the following investigations: Kraichnan
(1964a, 1965), Herring and Kraichnan (1972, 1979), and McComb and Shan-
mugasundaram (1984). For reasons of convenience, most of the figures in this
chapter have been taken from the last reference.

An introduction to the problem of free turbulent decay has already been
given in Section 4.3.1, and so accordingly we proceed directly to a considera-
tion of initial spectra. In all cases these were of the form

E(k,0) = ¢, k2 exp{ —c;k%}, (8.1)

with an appropriate choice of constants ¢, —c,, subject to the constraint

j E(k,0)dk = 3/2. 8.2)
0
That is, the mean-square level of the turbulence at t = 0 is taken to be unity.
We shall classify the calculations to be described into one of two categories,
according to the value of the Reynolds number. That is, calculations will be
categorized as ‘low Reynolds number’ or ‘high Reynolds number’, according
to whether or not the Reynolds number is large enough for there to be an
inertial range of wavenumbers in the energy spectrum. The two cases will be
considered separately in Sections 8.2 and 8.3, but first we shall discuss the
choice of trial spectra here, along with a summary of useful formulae plus some
remarks on the nature of free decay as a test problem.
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Fig. 8.1. Initial wavenumber spectra.
TABLE 8.1 Values of the constants in eqn (8.1)
Spectrum
number ¢y c,y Cy Cy
1 0.0052 4 0.0884 2
11 0.0663 | 0.0221 2
II1 0.0663 1 0.2102 1
v 0.4000 1 0.5000 1

We shall be interested in four particular trial spectra for calculations at low
Reynolds numbers. These are shown in Fig. 8.1, and the corresponding values
of the constants ¢, —c, are given in Table 8.1.

Of these initial spectra. spectrum I was introduced by Ogura (1963) as part
of his numerical study of the quasi-normality approximation. Spectra II and
I are just Kraichnan’s spectra C and D. Noteworthy points are that spectrum
I1 is self-preserving under purely viscous decay, while spectrum III rapidly
becomes self-preserving under the combined actions of inertial transfer and
viscous decay (Kraichnan 1964a). All three spectra peak at the same wave-
number which is
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k.. = 4 x 21 = 475683 arbitrary units.

max

Spectrum IV is a modified form of spectrum IIL It was chosen as a test
spectrum by McComb and Shanmugasundaram (1984) in the light of some
comments made by Van Atta and Chen (1969), who found that their measured
dissipation spectra peaked at lower wavenumbers than did calculated spectra
(Kraichnan 1964a). Accordingly spectrum I'V has been chosen to have a much
lower peak wavenumber at k., = 2 arbitrary units.

For calculations at high wavenumbers, the constants c,—c, have usually
been set to give E(k, 0) as a simple power law. We shall discuss this further in
Section 8.3.

At this point it is convenient to collect together relationships defining the
various parameters which are to be calculated for each theory. To begin with,
from the energy spectrum we can obtain the energy E(t) per unit mass of fluid,
the r.m.s. value of any velocity component u(t), and the rate of dissipation of
energy &(f) per unit mass of fluid as follows:

E(t) = Jw E(k,t)ydk = (3/2){u(?)}? (8.3)

0

g(t) = 2v J k2E(k,t)dk. (8.4)
0
The transfer spectrum T(k, t), as defined by (2.119), has been discussed in
connection with the DIA, and written as eqn (6.37) in terms of P(k;¢,t). For
the case of the DIA, P(k;t,t') is given by (6.34), and for completeness we repeat
(6.37) here

T(k,t) = 8nk?P(k;t,t)
along with (6.42) which defines the transport power

[od) k
I(k,1) ={ Tk, )dk' = —j T(k',t)dk’.
k 0
The dissipation spectrum is 2vk?E(k, ), and is sometimes given its own
symbol and referred to as D(k, t). Also, comparison with experiment is helped
by the introduction of the one-dimensional energy spectrum. We rewrite

(2.109) as
O O TR

with ¢, (k, t) replacing E,, (k, t). Either notation is acceptable, but the former
seems to be more commonly employed by experimentalists.

The integral scale L(z) and the Taylor microscale A(f) can be expressed in
terms of the energy spectrum by (Batchelor 1971)
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%’3 J k'E(k, ) dk -

HO= ) E(t) (8.6)
_{ SE@ "
= {W} ’ (8.7)
along with their associated Reynolds numbers
R.(H) = L(t)u(t) 8)
R,(t) = ’l(t)vu(t). )

As we shall see, the skewness of the longitudinal derivative (or, more simply,
the skewness factor) S(¢) may be the most sensitive indicator of differences
between the various theories. It can be written in the form (Batchelor 1971)

2 (A3 [~
S(t) = —{—= k*T(k,t)dk. 8.10
0= 20 [ w10
Also, following Kraichnan (1964a), we introduce the modal time-correlation
kit,t'
R(k;t,t") = ok r.t') 8.11)

- {Qk;1,0)Q(k; ¢ty } 12

along with characteristic velocity and wavenumber scales

R}. —-1/3
b = <151/2> u(t) (8.12)
ks = (15R,)¥3 AL, (8.13)

Kraichnan found that, for low R;, scaling with vy and kg produced a better
collapse of data than did the Kolmogorov scales v and k, (as defined by our
equations (2.132) and (2.133)). It should be noted that our present use of
subscripts on the wavenumber scales is exactly opposite to Kraichnan’s usage,
but conforms better to current conventions.

Our last general point, before turning to specific investigations, concerns
the relevance of the free decay calculation to stationary turbulence at large
Reynolds numbers. The Kolmogorov hypotheses essentially demand not only
local isotropy, but also quasi-stationarity in the inertial range of wave-
numbers. In order to see how this can be achieved in decay calculations, let
us consider the definition of the inertial range as embodied in eqn (6.43). We
require the rate at which energy is transferred locally through wavenumber &
to be equal to the global dissipation rate. Wavenumbers k, for which this
condition is satisfied, belong to the inertial range.
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Fig. 8.2. Variation of the dissipation rate ¢ and the maximum value of the transport
power TI(¢) with time as calculated by the LET theory for R,(t;) = 16.8. The condition
for the existence of an inertial range (T1(¢) = &) is not satisfied at this low value of the
Reynolds number.

Suppose that we now consider the case where the above condition is
satisfied for only one wavenumber (i.e. this case would also constitute a lower
bound on values of the Reynolds number for which an inertial range could
occur). Then the critical wavenumber would correspond to a maximum value
of the transport power. We shall denote this maximum value by

maximum value of I1(k,t) = I1(). (8.14)

Clearly an extended inertial range would imply that the maximum value of
the transport power would take the form of a plateau, in which the condition
(8.14) held for the entire inertial range of wavenumbers. In addition, eqn (6.43)
would also have to be satisfied by I1(t).

In Figs. 8.2 and 8.3 we plot II(t)—as calculated by the LET theory—
against time for two different values of the Reynolds number. In both cases,
it can be seen that the dissipation rate falls off from the value prescribed
initially as the decay proceeds. In contrast, I1(f)—initially zero, as triple
correlations are zero by prescription at t = 0—first increases and then starts
to decay away. However, for R, = 16.8, the ratio I(t)/e in never greater than
0.3, whereas for R, = 392 the ratio becomes unity—indicating the presence
of an inertial range. In this latter case, once the ratio of transport power to
dissipation rate becomes unity, it should be noted that each of the two
quantities becomes slowly varying with time, thus demonstrating the requisite
quasi-stationarity.

It should also be noted that in both cases the time variable has been scaled
by the initial large eddy turnover time L(0)/u(0).
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Fig. 8.3. Variation of the dissipation rate ¢ and the maximum value of the transport
power T1(z) with time, as calculated by the LET theory for R,(t;) = 392. Evidently the
criterion for the existence of an inertial range is satisfied in this case, and this is
confirmed by the energy spectrum which shows a region of 5/3 power law.

8.2 Calculations of decaying turbulence at low Reynolds numbers

In this section, we shall discuss the basic numerical methods as part of our
account of Kraichnan’s (1964a) investigation of the DIA in 8.2.1. Figures
illustrating Kraichnan’s results are deferred to Section 8.2.3, where they are
taken from McComb and Shanmugasundaram (1984), who used virtually
the same methods in calculating the LET theory and comparing its resuits to
those of DIA.

8.2.1 The direct-interaction approximation (DI A)

Kraichnan (1964a) investigated the Eulerian form of the DIA using four
different initial spectra. His spectrum A was a rectangular pulse, while his
spectra B, C, and D were the same as our Spectra I, II, and III. Initial values
of the Taylor—Reynolds number up to R,(0) = 42 were considered.

Equations (6.29) and (6.31) for the response function G(k;t,t') and the
correlation function were discretized in all variables and numerically inte-
grated forward in time. We shall only give very brief details of this procedure
here, and the interested reader should consult the original reference.

As treated by Kraichnan, the calculation of Q(k;t,¢’) involves the double
sum over the wavevector magnitudes j and [ (where [ = |k — j|, in our nota-
tion). All elements in the summation must satisfy the condition that k, j, ! can
form a triangle. The three wavenumbers were then truncated to the finite range
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(Koots kiop) and divided up into (in general, non-uniform) intervals. A feature of
this scheme is the necessity to apply a correcting factor in order to eliminate
additional errors which occur when logarithmic steps are used and conditions
like k > j are encountered.

Time integrations were carried out for the interval (0, ¢;) using an implicit
integration scheme which was based on a first-order predictor—corrector
method.

The main dynamical feature of all the calculations involving finite values
of fluid viscosity, was found to be a transfer of energy from low to high
wavenumbers, along with a consequent moving apart of the maxima of the
energy and dissipation spectra. An interesting feature was the early transfer
of energy in the reverse direction to lower wavenumbers which were presum-
ably insufficiently excited by the arbitrary initial spectrum—thus echoing the
trend to equipartition previously found with inviscid equilibrium ensembles.

Most of the integral parameters were found to decay with time, but the
skewness S(t) and the transport power T1(t) increased initially from zero, and
passed through a maximum. Thereafter, I1(z) behaved like other parameters
and decayed with time, but S(z) showed a tendency to take on an asymptotic
constant value. An overshoot of S(¢) at short times above its asymptotic value
turned out to be more pronounced when the initial spectrum was more
concentrated about the peak wavenumber.

The evolved DIA spectra showed some degree of universal behaviour.
At high wavenumbers there was a tendency to independence of the initial
spectrum shape. Also, there was strong tendency to self-preservation, especi-
ally at the higher wavenumbers, although a comparison with experimental
results obtained in grid turbulence was quite favourable at low wavenumbers
as well.

All in all, the general behaviour of DIA, when integrated forward in time
at low Reynolds numbers, was found to be quite good in physical terms. The
only jarring note was an unphysical oscillation with time in the case of the
response function.

We shall return to the subject of DIA in Section 8.2.3, where we present the
results of similar calculations by McComb and Shanmugasundaram (1984).

8.2.2 Comparison of various theories: Herring and Kraichnan

Kraichnan’s (1964a) calculations were later extended by Herring and Krai-
chnan (1972) to make a comparison of five different theories. These were as
follows: DIA (see Section 6.1), SCF (see Section 6.3), a non-stationary form of
EFP (see Section 6.2 and eqns (7.149) and (7.152); this theory was referred to
as EDW), and two variants of the test-field model (TFM) (see Section 7.5.2).
The two variants of TFM arose from the fact that this theory contains an
adjustable scaling parameter g. Originally the value g = 1.064 was chosen so
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that TFM would give the same results as DIA for the relaxation of small
departures from absolute equilibrium. This value of g = 1.064 resulted in a
Kolmogorov constant of o = 1.40. Herring and Kraichnan also considered a
TFM with g = 1.5, because this led to a Kolmogorov constant of o = 1.76,
which is virtually the same as the value of « = 1.77 predicted by ALHDI (see
Section 7.2). This variant of TFM was denoted by TFM'".

The various theories were compared with each other, with laboratory and
field experiments, and—a significant step forward—with the results of a
numerical simulation (i.e. a computer experiment) which had the same pre-
scribed initial conditions (Orszag and Patterson 1972). The overall qualitative
conclusion was that the various theories performed in a rather similar way,
and gave a physically reasonable picture of the energy transfer processes
involved in the free decay of isotropic turbulence.

However, there were significant quantitative differences between theories,
and these are illustrated by the evolved dissipation spectra shown in Fig. 8.4.
In these calculations the initial conditions were determined by spectrum I. It
can be seen that the results for SCF and DIA are quite close to each other. In
fact, for other choices of initial spectrum, these two theories gave virtually
identical results. Herring and Kraichnan seem inclined to put this down to (in
effect) coincidence.

In Fig. 8.5 the corresponding theoretical predictions for the skewness factor
are plotted as a function of time, and compared with the results of the

10 T T T

2K F (k1)
n
T

Fig. 8.4. Evolved dissipation spectra for various renormalized perturbation theories
(after Herring and Kraichnan 1972). Spectrum I: —— EDW, — — SCF; — - — TFM’;
————TFM; - DIA.
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Fig. 8.5. Comparison of the skewness factor for various theories with some data points
from two computer simulations (after Herring and Kraichnan 1972). Spectrum I
,EDW; ———, SCF; ——, TFM’; ----, TFM; - - .-, DIA.

computer simulation by Orszag and Patterson (1972). It is noticeable that
only the theories which are compatible with the Kolmogorov spectrum at
high Reynolds numbers (ie. TFM and TFM') agree at all well with the
computer simulation at low Reynolds numbers.

The skewness factor can also be seen as a measure of the efficiency of the
various theories at transferring energy through wavenumber space. Calcula-
tions of transfer spectra and transport power revealed that EDW transferred
energy at the lowest rate, DIA and SCF were intermediate, and TFM and
TFM' were the most efficient. This ranking shows up quite clearly in the
asymptotic values of S(t) in Fig. 8.5.

Lastly, it is interesting to see that all the theories exhibit an overshoot in
the skewness at short evolution times, and that this also happens with the
computer simulation. Presumably this is a consequence of the particular
(arbitrary) choice of initial spectrum.

8.2.3 The LET theory

The application of the LET theory to the decay of isotropic turbulence was
studied by McComb and Shanmugasundaram (1984). The methods used
closely followed those of Kraichnan (1964a), with essentially only two minor
variations. First, there was the introduction of spectrum IV. Second, wave-
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number integrations were carried out with k, j, and u, where p is the cosine of
the angle between the vectors k and j. Mathematically, there is no difference
between this procedure and using (as Kraichnan did) the scalar magnitudes
k, j, and L In the one case, we take | = |k — j|, while in the other, k, j, and [
must always be able to form a triangle. However, in practice, the rectangular
field of integration, as defined by ky, <j <k, and —1 < p < 1, presents
fewer numerical problems than the case of the (j, /) integration.

Some of the results of this investigation are summarized in Figs. 8.6-8.12.
In most cases, results are presented for both LET and DIA. The calculations
of DIA were found to agree quite well with those of Kraichnan (1964a). To
take a specific example, the skewness factor—which seems to be particularly
sensitive to differences between theories or calculations—the value calculated
by McComb and Shanmugasundaram was less than 5 per cent larger than
Kraichnan’s equivalent value (see Fig. 8.12).

The variation of integral parameters, as presented in Fig. 8.6, shows that
LET behaved very much like DIA, and indeed very much like all the theories
discussed in Section 8.2.2. However, in quantitative terms there are some
significant differences between LET and DIA. For instance, the LET value for
S(z) was some 16 per cent larger than the corresponding DIA value. This is
interesting, in view of the surmise by Herring and Kraichnan (1972), that the
underestimation of S(¢) by DIA was a real physical effect, associated with lack
of random Galilean invariance.
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Fig. 8.6. Variation of integral parameters for LET and DIA theories (after McComb
and Shanmugasundaram 1984). Spectrum I: LET; ——- DIA.




82 DECAYING TURBULENCE AT LOW REYNOLDS NUMBERS 321

0.8 T T T

0.7

0.6

0.5

0.4+

03r

E(k, )] {@(0)}* L(0)

0.2¢

0.1

12 14

kL (0)

Fig. 8.7. Evolution of the energy spectrum for LET and DIA theories (after McComb
and Shanmugasundaram 1984). Spectrum I: LET; ——- DIA. Curve 1, tu(0)/
L(0) = 0; curve 2, tu(0)/L(0) = 0.5; curve 3, tu(0)/L(0) = 1.0; curve 4, tu(0)/L(0) = 1.6.

Resuits for energy spectra, dissipation spectra, and transfer spectra are
shown in Figs 8.7-8.9 respectively. An obvious qualitative difference between
the two approximations is the development of kinks in the evolving LET
spectrum but not in the corresponding DIA spectrum. This behaviour did not
occur with either spectrum IT or spectrum III, and is presumably attributable
to the more efficient energy transfer mechanism of LET attempting to cope
with an initial spectrum (i.e. spectrum I) which was highly peaked. This feature
may well not be an artefact of the LET theory, for similar kinks have been
found experimentally by Stewart and Townsend (1951).

Like DIA, the LET theory gave spectra which tended to become indepen-
dent of the initial spectrum shape at high wavenumbers, and also which
rapidly became self-preserving. The former behaviour is illustrated for LET
only in Fig. 8.10, where the dissipation spectra corresponding to spectra I, 11
and III are plotted.

Dissipation spectra are also shown—this time in one-dimensional form—
in Fig. 8.11, where LET and DIA results are compared with some representa-
tive experimental values. Clearly both approximations agree quite well with
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Fig. 8.8. Evolution of the dissipation spectrum for LET and DIA theories (after
McComb and Shanmugasundaram 1984). Spectrum I: LET; ——- DIA. Curve
1, tu(0)/L(0) = 0; curve 2, tu(0)/L(0) = 0.5; curve 3, tu(0)/L(0) = 1.0; curve 4, tu(0)/
L(0) = 1.6.
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Fig. 8.9. Evolution of the transfer spectrum for the LET and DIA theories (after
McComb and Shanmugasundaram 1984). Spectrum I: LET; -—- DIA. Curve
1, tu(0)/L(0) = 0; curve 2, tu(0)/L(0) = 0.5; curve 3, tu(0)/L(0) = 1.0; curve 4, tu(0)/
L) = 16.
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Fig. 8.10. Effect of initial spectrum shape on the evolved LET dissipation spectrum
(after McComb and Shanmugasundaram 1984).
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Fig. 8.11. Evolved one-dimensional spectra for the LET and DIA theories after
McComb and Shanmugasundaram 1984). Spectrum IV: LET; —-—— DIA.
Experimental results: v, R, = 39.4 (Stewart and Townsend 1951); 0, R; = 49.0 and e,
R, = 35.0(Chen 1968); 4, R, = 38.1 and a, R; = 36.6 (Comte-Bellot and Corrsin 1971);
v, R, = 45.2 (Frenkiel and Klebanoff 1971).
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Fig. 8.12. Evolution of the skewness factor for the LET and DIA theories (after

McComb and Shanmugasundaram 1984). Spectrum I: LET;——-DIA; 0,0, a,
direct numerical simulation (Orszag and Patterson 1972).

experiment. But it should be noted that the initial spectrum in this case was
spectrum IV, which was specifically chosen to improve the basis of this sort
of comparison.

In Fig. 8.12, both LET and DIA predictions of the skewness are plotted
against time, along with values obtained from the numerical simulation of
Orszag and Patterson (1972). It is of some interest to compare this figure with
Fig. 8.5, but at the same time it should be borne in mind that the calculation
of the DIA value of §(t) by McComb and Shanmugasundaram is about 4 per
cent higher than the corresponding value obtained by Herring and Kraichnan
(1972).

In Section 8.2.1, we mentioned the unphysical oscillations in time of the
DIA response function. This behaviour violates the realizability requirement
that G(k;t,t') should be non-negative. Similar behaviour was found by
McComb and Shanmugasundaram for both LET and DIA. In addition, the
LET propagator exhibited a small overshoot at short evolution times, and
hence violated the other realizability condition G(k;t,t') < 1.1

8.3 Calculations of decaying turbulence at high Reynolds numbers

In this section we shall be concerned with isotropic turbulence where the
Reynolds numbers are large enough to ensure the existence of an inertial
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range. Also, the various theories to be discussed ail have some a priori reason
for us to expect that they should have the Kolmogorov 5/3 power law as their
inertial-range solution. That is to say, the Lagrangian-history theories were
constructed to be invariant under random Galilean transformations in the
hope of remedying the deficiencies of DIA, whereas in the case of the LET
theory the response equation was known to be free of the infra-red divergence.

We begin with the work of Kraichnan (1966), who investigated the ALHDI
approximation for the free decay of isotropic turbulence by using the same
methods as for the Eulerian case (Kraichnan 1964a). This time the initial
spectrum was taken as

E(k,0) = 2nk™5?, (8.15)

the kinematic viscosity as v = 0.008, and the evolved value of the Taylor—-
Reynolds number was R;(t;) = 440.

When the ALHDI approximation—summarized here in eqns (7.77)—(7.80)—
had been integrated forward in time, the evolved spectra were compared with
the experimental results of Grant, Stewart, and Moilliet (1962). Comparison
with the experimental spectra, as taken from tidal-channel data at R; = 2000,
indicated a satisfactory degree of agreement between the ALHDI theory and
the experimental energy and dissipation spectra.

In view of this, it may seem surprising that the ALHDI prediction of the
Kolmogorov constant o = 1.77 does not agree with the stated experimental
value of « = 1.44 of Grant et al. However, this discrepancy probably reflects
the difficulties inherent in making a determination of « from the experimental
data (see the discussion of this point in Section 2.9.2).

An interesting result of this investigation was the elimination of the spurious
oscillations in the response function. Such oscillations with time arose in the
Eulerian case—see Section 8.2.1—and it is a definite point in favour of
ALHDI that the change of coordinate system suppressed this particular
unphysical behaviour.

Naturally the success of the ALHDI approximation at high Reynolds
numbers raises the question of how it will perform at low Reynolds numbers.
To some extent this question was answered by Herring and Kraichnan (1972)
who made a calculation of free decay with ALHDI at an initial Taylor—
Reynolds number of R;(0) = 19. The resulting prediction of the dissipation
spectrum was not significantly different from theories like DIA (the Eulerian
version) or EDW. But the calculation of the skewness factor resulted in an
asymptotic value of around S(t) = 0.63, which is very much larger than the
value from the numerical simulations (i.e. $ = 0.48) and indicates a poorer
agreement with experiment than the other theories considered by Herring and
Kraichnan (1972).

Deficiencies of this kind naturally provided a motivation to develop a better
Lagrangian-history theory and, as we have noted in Section 7.2.5, Kraichnan
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and Herring later produced the strain-based ALHDI or SBALHDI. This
was followed (Herring and Kraichnan 1979) by a numerical comparison of
the Eulerian DIA, ALHDI, and SBALHDI with initial conditions R; = 42
(spectrum I) and R; = 19.7 (spectrum III).

The first of these runs was compared with the numerical simulation of
Orszag and Patterson (1972), with the clear result that ALHDI greatly over-
estimates the spectral transfer of energy. The opposite failing has, of course,
been associated with the lack of random Galilean invariance of the Eulerian
DIA.

In contrast, SBALHDI was found to behave very much like DIA, but with
a slightly higher level of energy transfer—as indicated by the evolved skewness
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Fig. 8.13. Evolved one-dimensional spectrum at high Reynolds number: comparison
of theory with experiment. Theory: LET (McComb and Shanmugasundaram
1984); ——— ALHDI; ———— SBALHDI (Herring and Kraichnan 1979).
Experiment: o, e, 4, &, R; = 2000 (Grant et al. 1962); m, R, = 538 (Kistler and
Vrebalovich 1966); v, R, = 308 (Uberoi and Freymuth 1969); o, R, = 850 (Coantic
and Favre 1974).
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factor, which agrees rather well with the value obtained from the numerical
simulation.

At high Reynolds numbers, the calculation was limited to the Lagrangian-
history theories, with initial conditions as given by eqn (8.15). In this case, a
repetition of Kraichnan’s earlier (1966) comparison of ALHDI with the data
of Grant et al. (1962) indicated that both theories were in good agreement
with the experimental results, although SBALHDI gave a Kolmogorov con-
stant of about a = 2.0 compared with the value « = 1.77 of ALHDL

More recently, McComb and Shanmugasundarm (1984) investigated the
LET theory (as summarized here by eqns (7.144) and (7.145)) using similar
initial conditions to those discussed above. Again, good agreement was found
with experimental data, and the overall conclusion was that the LET theory
behaved very much like the Lagrangian-history theories at these high Reynolds
numbers. This is illustrated in Fig. 8.13, where we show the one-dimensional
spectrum, plotted as k¥3¢,(k), so that the Kolmogorov 5/3 inertial range
appears as a plateau. Theoretical results are presented for LET, ALHDI, and
SBALHDI, along with data from several experimental investigations. Clearly
the scatter in experimental data is such that one can only conclude that the
three theories agree equally well with experiment, although it is marginally
the case that LET and SBALHDI seem to be closer together than any other
possible pairing.

This behaviour seems to hold for low Reynolds numbers as well. In Fig.
8.14 we show the three-dimensional dissipation spectrum, with LET, DIA,
ALHDI, and SBALHDI all computed from Spectrum III, with R, = 16.7.
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Fig. 8.14. Evolved three-dimensional dissipation spectrum at low Reynolds number.
Comparison of various theoretical predictions, with initial spectrum given by Spec-
trum III: LET (McComb and Shanmugasundaram 1984); ——— DIA; ———
ALHDI; — ——— SBALHDI (Herring and Kraichnan 1979).
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Again, marginally perhaps, LET and SBALHDI seem to be closer together
than any other possible pair of theories.

8.4 The Kolmogorov spectrum as a test problem

In Section 3.2.2 we discussed the possible effects of fine-structure intermittency
on the inertial-range form of the structure functions of arbitrary order. Here
we shall be specifically concerned with the second-order structure function
and its Fourier transform: the energy spectrum.

We begin by reminding ourselves that structure functions are based on two
space points, x + r and x, and that we restrict our attention to components
of the velocity field u’ (at x + r) and u (at x) in the direction of the vector r.
Then from the general Kolmogorov theory of the structure functions, as
embodied in eqn (3.14), we have for the case n = 2

L' —u)?)y = Cpe?3ris, (8.16)
which Fourier transforms to the well-known spectral form
E(k) = og?3k™53, 8.17)

Then we saw that, on the basis of a particular hypothesis (‘log-normality’
in this case, but there are others), the effects of intermittency would lead to
eqn (3.14) being replaced by eqn (3.20), which for the particular case n = 2
reduces to

W — w2 = G232 <%>ng (8.18)

and Fourier transformation of this result leads to the intermittency-corrected
spectrum

E(k) = o/e?Pk ™R (kL)*", (8.19)

which is supposed to replace the well-known 5/3 law of eqn (8.17). Here L is
an external length scale, which is a measure of the size of the largest eddies,
and u is a constant in the assumed (log-normal) distribution of the dissipation
&(x, t).

The rapid growth of attention to the question of exponent modification in
the light of intermittency effects led during the 1970s to a widespread feeling
that the Kolmogorov 5/3 inertial-range spectrum could no longer be regarded
as a crucial test of an analytical turbulence theory. It is therefore surprising
that this aspect of the topic has not received any significant attention in the
literature. Indeed, to the present writer's knowledge, there are only two
cases of this view actually appearing in print (Martin and De Dominicis
1978; Frisch, Lesieur, and Schertzer 1980). Nevertheless, while there is any
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uncertainty about whether (8.17) or (8.19) applies, there is an obvious need for
caution and clearly it is a very proper view to take.

In the remainder of this section we shall take a properly cautious approach
to this tricky but extremely important subject. We shall do this in two
parts. First, we examine the question of whether intermittency corrections
are large enough to affect our perception of the various RPTs. Second, we
consider some of the most recent developments which tend to suggest that the
pendulum may already be swinging back to the point where we are inclined
to regard the 5/3 law as something which a good RPT should predict.

8.4.1 Do intermittency corrections have any bearing on our assessment of
RPTs?

Qur aim now is to consider how large a difference there is between the 5/3
and the 5/3 + u laws, solely in terms of the implications for renormalized
perturbation theories. This imposes a narrow perspective on the subject, but
it is one which is by no means without interest.

We begin with the investigation by Champagne (1978) of the validity of the
Kolmogorov (1941) similarity hypotheses. This was based on a consideration
of the experimental evidence from many different flows. Among the interesting
features of this work, were the conclusions that the Kolmogorov normalized
spectral shapes were universal for flows with the same value of Taylor—
Reynolds number, and that corrections for deviations from Taylor’s hypothesis
of frozen convection could have a non-trivial effect on the high-frequency
spectrum.

However, from our present point of view, the particularly interesting con-
clusion was to the effect that it would be difficult, if not impossible, to
distinguish between the two forms of spectrum, as given here by eqns (8.17)
and (8.19). In arriving at this conclusion, Champagne took a value of the
intermittency constant u = 0.5 which nowadays would be regarded as rather
large.

In Section 3.2.2 we mentioned that an analysis of earlier data by Van
Atta and Chen (1967) implied p = 0.25, if the data were to agree with the
predictions of the scale-similarity theories. More recently, Antonia, Phan-
Thien, and Satyaprakash (1981), Antonia, Satyaprakash, and Hussain (1982),
and Anselmet, Gagne, Hopfinger, and Antonia (1984) all suggested p = 0.2.
It should perhaps be mentioned in passing that these values of u were deter-
mined from measured higher-order structure functions (e.g. n = 6 in the last
case). Thus the difficulty in distinguishing between exponents of —5/3 and
—5/3 + p would be even greater than Champagne supposed.

The difference between these two possible exponents can be put into context
by comparing it with the difference between the Eulerian DIA 3/2 law and the
5/3 law. Taking the intermittency correction to be u = 0.2, we can write each
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of the three exponents to two places of decimals as follows:
—-5/34+02/9=—1.65
—5/3 = —-1.67
—3/2 = —1.50.

Clearly, therefore, the existence of an intermittency correction of this magni-
tude would not modify the conclusion that Eulerian DIA does not agree with
experiment at high Reynolds numbers.

Equally clearly, the change from —5/3 to —5/3 + u would not cure the
infra-red divergence discussed in Section 7.1.1. From eqn (7.7) it may be seen
that this would require /9 > 2/3 or u > 6!

8.4.2 Isthe Kolmogorov 5/3 law correct after all?

We begin by reminding ourselves that intermittency corrections of the kind
we have just been discussing are essentially rather arbitrary. That is, models
like ‘log-normality’ and the f-model are based on hypotheses which may or
may not be true. For instance, if other—equally valid—hypotheses are made
about the way in which the dissipation is distributed, then it is possible to
arrive at the conclusion that the exponent in the spectral law is unaffected,
although the constant of proportionality and the extent of the inertial range
of wavenumbers may both be changed by intermittency (Grant et al. 1962;
Wyngaard and Tennekes 1970).

This point of view has recently received some theoretical attention. Mjols-
ness (1980) has proposed that the Kolmogorov similarity hypotheses can be
replaced by two weaker forms, which essentially do not require the condition
of local isotropy. One consequence of this approach is that the Kolmogorov
constant is replaced by a function which is only constant for a particular kind
of flow, and can be expected to vary from one flow to another.

Of course the Kolmogorov theory itself is purely phenomenological and—
apart from its greater intuitive appeal—has no better fundamental status than
its successors. For this reason the recent work of Foias, Manley, and Temam
(1987) is particularly interesting. These authors claim to have derived the 5/3
law rigorously direct from the Navier—Stokes equation, something which has
not previously been done. We shall not go into details here, but note only that
the theory relies on the dimensional homogeneity of the statistical solutions
of the Navier—Stokes equation (as obtained from the properties of the Hopf
equation). The theory may still be regarded as somewhat heuristic, as the
authors assume (and cannot prove) the existence of a family of homogeneous
statistical solutions of the Navier—Stokes equation, and then demonstrate that
invariance under a time-dependent two-parameter group of transformations
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implies that the second-order velocity correlation takes the Kolmogorov form
(i.e as in eqn (8.16)).

The question must then arise: if the second-order structure function has
the K41 form, how do we reconcile this with the very definite effects of
intermittency on the higher-order structure functions? After all, it is the
existence of the latter effect which permits the experimentalist to measure the
constant p. In fact two recent pieces of work can be seen as (in effect) addressing
that point. Nakano (1986) has produced a new model of the scale-similar
type, which is different from both the log-normal model and f-model. This
model is claimed to exhibit a crossover from intermittent scaling to Kol-
mogorov scaling. That is, higher-order structure functions show intermittent
scaling, whereas low-order structure functions (such as n=2 or n=3,
although a critical value does not appear to have been determined) show K41
scaling.

On the other hand, Chorin (1988) considers only the second-order moment
and argues that the K41 result is compatible with the existence of intermit-
tency. Unfortunately only brief details of his argument are given and these do
not seem altogether convincing.?

8.5 Application to non-isotropic turbulence

The renormalized perturbation theories which we have been discussing are
not limited to the special case of isotropic (or indeed homogeneous) turbulence.
By this we mean that those aspects of the theory which are imponderable—
essentially the second-order truncations of line-renormalized perturbation
expansions—are no more or less probable when applied to general inhomo-
geneous turbulence. Yet, despite this intrinsic generality, there have been (to
our knowledge) only two attempts to provide RPT formulations of turbulent
shear flow. These were an extension of the EFP theory (Allen 1963) and
an application of DIA (Kraichnan 1964b). We shall discuss the second of
these theories. Not only is it simpler, but the original source is more readily
available.

8.5.1 Application of DIA to inhomogeneous turbulence

The general statistical formulation for inhomogeneous velocity fields is dis-
cussed in Sections 2.1 and 2.2. In the first of these sections we derive the
solenoidal form of the Navier—Stokes equation, and in the second we intro-
duce the moment hierarchy. Working now in terms of the kinematic pressure
(i.e. we shall set the density equal to unity) and making some minor rearrange-
ments, we shall restate the principal equations here for completeness. Thus
eqn (2.28) for the mean velocity becomes
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0 ) _
[a_t —W ]Ua(x, )= — T Ly Ty(x,1) +

+ M,,M(V)[U,,(x, DU, (x,1) + 05, (x,x;t,1)], (8.20)

where the operators L,4(V) and M, (V) are given by eqns (2.12) and (2.13)
respectively.

We note that this equation for the mean velocity contains the unknown
single-point moment Q. (x,x;t,t). This can be obtained in principle from
the solution of eqn (2.30) for the general two-point two-time correlation
Qp,(x,X’; t,t'). With some slight rearrangements, this equation can be written
as

|:;% - VVZjI Qaa’(xs X,; t, t/) = _Laﬂ(V)Qﬂa(X, X,; t, t/) +

+ 2Maﬁy(v) [Uﬂ(x’ t)an(X’ X/; t’ tl)] +

+ M5, (V)Qp,6(x, %, X5 1,8, 1"), (8.21)

where the moments Q,,,(x, X'; ¢,t') and Qg,,(x, X', X"; £, ¢/, t")are defined by eqns
(2.24) and (2.25).

A closure approximation is now required to express the triple moment Q 8ye
in terms of the other dependent variables, namely Q,, and U,. The DIA can
be used for this purpose (cf. Section 6.1.1) by introducing the infinitesimal

response tensor G,p(x,x’;t,t'):
Ou,(x,t
Ouls.t) >t

Gp(X, X5 1, 1) = <0f,s(x’,t’)

0 t<t

(8.22)

where, as usual, { > denotes ensemble average and f(x,t) is an arbitrary
stirring force. The equation of motion for G,4(x,x';t,t') can be obtained by
the functional differentiation of the solenoidal Navier-Stokes equation (i.e.
eqn (2.15)) after the term f(x, t) has been added to the r.h.s. The result is

0

l:@t - VV2:| Gato(x5 xl; [ t,) + LaB(V)Gﬂa’(x9 x,; [ t/) -
— 2M, 5, (V) LU, (x, )Gy, (x, X5 1,£)] —

- Maﬂy(V)Hﬂya(x5 X, X’; Lt t,)

= 8,,0(x — X)3(t — '), (8.23)

where

Oug(x,t
Hyo 6, X, X5 1,0,7) = <uy(x',r')ﬁ,,t3)>. (8.24)
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The solution of (8.23) and (8.24) for G,,(x, X’;t,t’) is subject to the conditions
implied by eqn (8.22), and must also satisfy the boundary conditions on the
velocity field.

The general renormalized perturbation theory, as discussed in Section 6.1
for k-space, also goes through for x-space, and Kraichnan (1964b) has given
the DIA expressions for Qg,, and Hy,, as

Qﬂ)’a(x$ Xl& X”; t, tla t”)
t
=2 jdi“y U Gp,(X,Y; £, )M 5, (V) X
4]

X {Q5(X, ¥ 1',5)Qpe(X", y; £, 8)} ds +
+ : G,,(x,y;t', )M ,;5(V) x

x {Qps(X, Y3 1,5)Q,e(X", y5 1", 5)} ds +
+ " G, (X", y; 1", 5) M ,5,(V) x

JO

X {Qps(%, Y3 1,8)Q,(X, ¥; 1, 5)} ds] (8.25)
and

t
Gﬂp(x5 y, ts S) X

t

Hp, (x, X, x";t,t',t") = 2 fd3y J

X Ms(VI{Qys(X', y;t',5)Geol(y, X3 5,17) ). (8.26)

It may be helpful if we mention that eqns (8.25) and (8.26) can be reduced
to their isotropic homogeneous equivalents, as discussed in Section 6.1.4. The
appropriate procedure is to set the surface terms (i.e those involving L), terms
involving the mean velocity, and the external pressure gradient all equal to
zero. Then, taking statistical quantities to be homogeneous in the space
variables, Fourier transformation into k-space, followed by the use of the
isotropic forms of Section 2.6.4, leads to the required result.

8.5.2 The computational problems

Equation (8.20) is essentially just the most general form of the Reynolds
equation for the mean velocity in inhomogeneous turbulent flow. In order to
solve it, we need the Reynolds stress tensor, and this can be obtained by
putting x = x’ in the general covariance tensor Q,4(x,x’;¢,t'), which in turn
requires the solution of eqns (8.21)—(8.26). Thus, to second order in renormal-
ized perturbation theory, eqns (8.20)—(8.26) offer a complete prescription
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for calculating the statistical parameters of interest for any general (but
incompressible) turbulent flow.

In principle, the solution of these equations by numerical means is no more
difficult than for the case of homogeneous isotropic turbulence, as discussed
in Sections 8.2 and 8.3. However, in practice, the difficulty we face is one of
size. Even for the simplest non-trivial example of a shear flow, an enormous
number of arithmetic operations will be required in order to solve the above
set of equations.

We can enlarge on this point by considering the specific case of two-
dimensional (mean) flow through a plane channel. The general specification
of this flow configuration has already been given in Section 1.4.5, and the
application of the general statistical formulation to channel flow has been
discussed in Section 2.3. From our present point of view, the main result is
contained in (2.44) for the two-point covariance tensor. We repeat that result
here for the sake of convenience:

Cua(X, g (X, 1)) = Qup(r, Ry51,1),

where r = x — x’ is the relative coordinate and R is the centroid (absolute)
coordinate.

Let us now make a comparison with the calculation of freely decaying
turbulence. In this case homogeneity eliminates the dependence of Q,; on
R. Then isotropy further reduces the spatial dependence from three scalar
variables (r|,r,,73) to one (|r|), and the nine scalar components of Q,; can be
replaced by a single scalar function. Thus, after Fourier transformation with
respect to r, we have g(k;t,t') to calculate, along with a similarly reduced
response function.

In contrast, for plane channel flow, we have four components of Q ; (i.€. the
diagonal elements and Q,, = Q,,), each of which is a function of six scalar
variables: r,, r,, r3, R,, t, and ¢'. In addition, we have (8.20) for the mean
velocity as an additional equation which must be solved simultaneously with
the equations for the covariance and the response tensor. Also, everything
that we have said about Q,, also applies to G,;. Hence it is clear that the
simplest shear flow presents a very much larger computational problem for
the DIA than that of freely decaying turbulence.

When the theory was originally published (1964), its computational needs
were too great for the existing computers. This is probably still the case today.
As far as the present writer knows, DIA has not been applied directly to
inhomogeneous turbulence. The most demanding application to date seems
to be the next problem after isotropic turbulence in the hierarchy of difficulty:
axisymmetric homogeneous turbulence (see Batchelor 1946). Herring (1974)
used DIA to study the return of initially axisymmetric turbulence to isotropy.
Later, Schumann and Herring (1976) compared the DIA calculation with the
results of a direct numerical simulation.
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Further approximations are made in the process of carrying out the above
calculations so that the results (although physically reasonable) are not really
conclusive. However, two points made by Schumann and Herring seem partic-
ularly relevant to our discussion here. First, they note that the numerical
solution of the DIA equations is not trivial and that the computing time is
actually comparable with that required for a single realization of the numerical
simulation of the Navier—Stokes equation.

Second, they argue that it would be necessary to improve the numerical
analysis of the DIA before practical flow problems, such as plane channel flow,
could be tackled.

They also speculate that simplified turbulence theories—and particularly
the TFM (see Kraichnan (1972) for the generalization of TFM to the case of
inhomogeneous turbulence)—would be needed for high Reynolds numbers.
However, almost-Markovian models do not offer the full generality of the
renormalized perturbation theories. And, despite the fact that they are much
easier to integrate numerically than the RPTs, the most demanding applica-
tion which appears to have been tackled so far is non-isotropic turbulence
(Cambon, Jeandel, and Mathieu 1981).

In fact, it is difficult to imagine that the physics of turbulence can be
satisfactorily captured by any theory which is very much simpler than the
DIA. As we have seen in preceding chapters, all RPTs seem to lead to similar
forms and virtually the same energy equation. If one accepts this view, then
there seem to be two possibilities. First, as computers advance in power and
speed, it may be possible to develop hybrid methods in which the RPT can
be applied in a limited way to only part of the problem, while the direct
numerical simulation takes care of the rest. This topic is discussed further in
Chapter 10, where we consider numerical simulation of turbulence.

Secondly, there is the possibility that RPTs can be simplified by means of
physical and mathematical approximations which are based on our know-
ledge of turbulence. The ultimate aim of this approach might be a set of
differential equations, comparable in computational difficultly with, say, the
engineering models which we discussed in Sections 3.3.3 and 3.3.4.

Some efforts have been made in this direction by Leslie (1970, 1973) and by
Edwards and McComb (1971, 1972). Both investigations are based on a
consideration of plane channel flow, and have a number of assumptions in
common. For instance, both approaches involve the introduction of a spectral
density for channel flow by Fourier transforming eqn (2.44) with respect to r
to obtain

3
Ok, y;t,t") = (%) fdz’r Q.4(r, y; 1,1 yexp{ —ik 1}, 8.27)

where we have invoked eqn (2.90) and we have also put R, = y in order to
simplify the notation. Then, for y measured from the centre of the channel,
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symmetry implies that the turbulence at y = 0 is isotropic. This means that
we can expand the inhomogeneous spectral tensor (and indeed all other
statistical quantities) in powers of y about y = 0, where the general formula-
tion can be reduced to the isotropic case.

As an illustration of the algebra involved, we cite an example from Edwards

and McComb (1972) who expanded the inhomogeneous spectral tensor as
1 d?
Quplk3) = | DasWDp(K) + 5,5 DD (K) g —

1
—W{(éml Og1 + 0,30,3)D,p(k) +

2

d
+ (919,10 + 5ﬂ35p3)Daa(k)}d—y2 +

+0 (dﬁ:ﬂ 4k, Y), (8.28)
dy

where time dependences are not shown explicitly. This expansion is accom-
panied by an approximation in which g(k, y)—a kinetic energy function equal
to one-third of the sum of the diagonal elements of Q,,(k, y)—is introduced.
The off-diagonal elements (Q,, = Q,,) are represented by a function g (k, y).
Then the modified spectral tensor q,,(k, y) can be defined jointly by eqn (8.28)
and

qap(k: Y) = 5apq(ks y) + (6015;72 + 5025p1)qR(k’ Y) (829)

Other functions (and operators) can be treated in this way, and angular
dependences on the vector k can be integrated out.

At this stage, the two approaches diverge. Leslie adopted a kind of similarity
solution in which he assumed that the spectral part of (8.27) has a ‘constant
shape’. He also expanded the anisotropy out in spherical harmonics—a
technique which subsequently proved helpful in the axisymmetric problem
which we discussed earlier—and ended up with a single-point formulation
which bears some resemblances to the Reynolds stress closure of Hanjalic and
Launder (1972).

In contrast, Edwards and McComb followed a more classical route in
statistical physics, deriving local (differential) transport equations from the
integral equations of the EFP (or DIA) closure. These equations were solved
for the mean and r.ms. velocity profiles, which agreed quite well with the
experimental shapes, at least for the core region, where the expansion in the
centroid coordinate would be valid. It is perhaps worth observing that these
results—whatever their shortcomings—can claim to be the first calculations
of such turbulence parameters entirely from a general renormalized perturba-
tion theory.
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Since the above research was carried out, this type of approach seems to
have been very much neglected—although there has been some recent work
by Ortiz and Ruiz de Elvira (1984). In a field noted both for its difficulty and
for the paucity of original ideas, this neglect of a potentially very fruitful way
of tackling real turbulent flows seems rather surprising.

8.5.3 Other applications

In considering the application of RPTs to other problems, we have to bear in
mind the shaky status of these theories. Thus any such application must be
seen as being as much a check on the theory as a way of studying another
problem.

For the sake of completeness, we therefore list the following applications
of RPTs without further comment; DIA has been used to study the problem
of a non-linear oscillator with random forcing (Morton and Corrsin 1970);
TFM was used to study atmosphere predictability (Leith 1971); EFP has
been used to investigate qualitative changes in energy spectra due to non-
Newtonian effects (McComb 1974, 1976); the eddy-damped quasi-normal
Markovian model has been applied to magnetohydrodynamic turbulence
(Pouquet, Frisch, and Leorat 1976) and the DIA applied to one-dimensional
plasma turbulence (Pesme and duBois 1982); lastly, the LET theory has been
used to calculate the total energy decay in three-dimensional turbulence
{(Hosokawa and Yamamoto 1986).

This list does not attempt to be exhaustive, and some specific applications
(e.g. passive scalar transport, subgrid modelling) will be dealt with in other
chapters.

8.6 Appraisal of the theories

In this section we shall try to come to some tentative conclusions about the
current status of renormalized perturbation theories, as applied to turbulence.
We should, however, stress that none of the theories discussed so far can claim
to be a rational approximation to the Navier—Stokes equation. Accordingly,
it would be quite inappropriate to try to establish which of the various theories
is ‘best’, or to attempt to rank them into some sort of pecking order, as it were.
Our point of view is that our ignorance about the correct way to formulate
turbulence theories remains profound, and that one of the few possible ways
of remedying this is to study the existing theories in an impartial and open-
minded fashion. That does not mean that we should suspend the critical
process, but merely that we should not allow ourselves to be hypnotized by
the engineer’s goal of a successful turbulence theory. That would indeed be
premature. It should be borne in mind that physics as a subject has had
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many successes by not being unduly concerned by the ultimate practical
applications!

8.6.1 Critigue of DIA: the wider justification of RPT approaches

In his original formulation of DIA, Kraichnan (1959) put forward three
postulates as the foundations of his theory. These were (a) maximal random-
ness condition, (b) weak dependence principle, and (c) direct-interaction
approximation, and they were held to justify various detailed steps in the
derivation of closed equations for the correlation and response functions.

Subsequently this formulation of Kraichnan’s theory was subject to very
detailed criticism by Proudman (1962) and later by Saffman (1968). The
interested reader may wish to consult these references, as we do not intend to
go into further detail here. Our purpose in raising the matter is to make a
more general point. We wish to suggest that this kind of detailed criticism and
the detailed justification which inspired it in the first place are both equally
irrelevant.

If we consider the above hypotheses, then the first of them does not really
touch on the closure problem at all but is relevant to the evaluation of the
correlation between the velocity field and the stirring forces (see eqn (6.32),
along with eqns (6.23) and (6.27¢)). That leaves us with (b) and (c), and we shall
discuss each of these in turn.

The hypothesis of weak dependence is to the effect that the coupling
between any few Fourier modes (i.e. distinct wavenumbers) is very weak when
the system size is large. That is, as the system size increases, the modes are
more densely packed and a finite interaction strength has to be shared out
among more of them. Hence any specific triad of wavenumbers must have an
individually small effect. Ignoring the likelihood (or otherwise) of such an
effect’s being dynamically significant, we would wish to make just one point.
There is no way of knowing whether the hypothesis survives the subsequent
global renormalization, which is a complicated mathematical operation of
unknown properties.

The term ‘direct interaction’ refers to the interaction between the three
modes (k, j, 1) of the Navier—Stokes equation, as opposed to higher-order terms
in the perturbation series in which the interaction is mediated indirectly by
other modes. Again we would argue that the question of whether this is correct
or not for the primitive perturbation series is irrelevant, as once renormaliza-
tion is carried out the coupling strengths in the new expansion are affected by
the replacement of G, by G. Hence, the DIA is effectively just a decision to
truncate the renormalized perturbation series at second order—much like all
other renormalized perturbation theories!

Our general view therefore is that renormalized perturbation theory—as
introduced in the present book by the discussion in Chapter 5-—is a general
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method of approach to problems involving collective strong interactions and
has had its successes in other fields of physics. In the case of Kraichnan’s DIA
theory, the feature which gives it its own identity (i.e. which distinguishes it
from all other RPTs) is surely the introduction of the infinitesimal response
function. Thus the Wyld diagrammatic formulation (as discussed in Section
5.5) tells us that once we identify the need to renormalize the viscous response
to the arbitrary stirring forces, then Kraichnan’s DIA follows from purely
formal (indeed, topological) procedures. We would argue that that is sufficient
a priori justification, and that it is pointless to be unduly concerned about
physical arguments which, if they are not imponderable to begin with, cer-
tainly are after renormalization.

If we adopt this point of view (and basically the only virtue we would claim
for it would be its pragmatism) then we are forced to consider the theories
solely in terms of the properties of the renormalized expansions. That is to
say, we accept that the primitive perturbation expansion is essentially a power
series in the interaction strength (i.e. the Reynolds number) and is therefore
widely divergent in all cases of practical interest. Then, also accepting that the
global renormalization is too complicated a procedure to be other than
imponderable in nature, we must consider the renormalized perturbation
series on its own merits. Are its properties better than those of the primitive
expansion?

Kraichnan (1975) has given a rather pessimistic answer to this question. He
points out that the removal of reducible diagrams by renormalization (i.e
partial summation; see Section 5.5) does not stop the rapid growth of terms
with order of expansion. Thus, judged by the number of terms in each order,
the renormalized series is nearly as bad as the primitive series.

But this does not seem to the present writer to be a valid criterion for
divergence or otherwise. What we are surely concerned with is the total
quantitative effect of each order. There would seem to be at least three possible
ways in which the renormalized series could be better than the primitive one.

(a) The RP series might be convergent.

(b) There might be cancellations at higher orders, which would justify
the retention of second-order terms only.

(c) The RP series might be asymptotic, that is, divergent, but with the
lowest non-trivial order approximately equal to the sum of the series.

In fact very little is known about the analytical properties of the renormalized
perturbation series based on the Navier—Stokes equation. The only attempt
to treat this question at all quantitatively appears to be a remark by Edwards
(1965) that a derivation of the energy equation by primitive perturbation
theory would result in purely viscous time-scales appearing in the denomina-
tor of the non-linear term. As it is, the renormalized form is the EFP energy
equation (see eqn (6.101)), with the viscous time-scale {vk + vj> + vI*}7!
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replaced by the renormalized time scale {w(k) + w(j) + w(l)}'. Bearing in
mind that this non-linear term is only the second-order term of an expansion
which is a power series in (roughly speaking; see Edwards (1964) for the
precise result) g(k)/w(k), then the possible relevance to the convergence of the
underlying RP expansion is clear.

However, the bedrock difficulty in the way of any quantitative assessment
of this important point is the numerical problem of calculating even the second
order of the renormalized perturbation expansions. We saw this in Sections
8.2 and 8.3, where we were in fact concerned with the calculation of just this
order. Thus relatively little is known about the convergence properties of these
series, and we are thrown back on the need to compute the theories and judge
them by results.

8.6.2 Some comments on random Galilean invariance

It may seem surprising that the straightforward application of renormalized
perturbation theory can give good results at low Reynolds numbers, but
fail (if only slightly) at high Reynolds numbers. Given the generality of the
approach, it is by no means clear why there should be this apparent depen-
dence on Reynolds number.

As a result of his analysis of the failure of DIA to give the Kolmogorov
spectrum, Kraichnan has been led to the rather extreme conclusion that there
is nothing intrinsically wrong with DIA, but that the Eulerian coordinate
system is unsuited to distinguishing between the two possible effects which
large eddies can have on smaller eddies. These are uniform convection (which
does not affect energy transfer) and distortion (which does affect energy trans-
fer). This failure is associated with a failure to maintain Galilean invariance
when simultaneous moments are calculated in terms of non-simultaneous
moments.

To put it another way, Kraichnan seems to be asserting that theories
involving non-simultaneous moments cannot successfully describe turbulence
in the laboratory coordinate frame. When put like that, this seems every bit
as surprising as the failure of DIA, EFP, and SCF at large values of the
Reynolds number. Although we have given a detailed account of that work
in Sections 7.1.2-7.1.4, we think it may be interesting if we take a slightly more
sceptical look at it here. In particular, it may be helpful if we first make some
succinct statements about the requirement that a theory sould possess the
property of random Galilean invariance (RGI).

Let us list the requirements as follows:

(1) The Navier—Stokes equation must be invariant under Galilean trans-
formation by constant velocity v.
(1a) The Navier—Stokes equation must be invariant under every Galilean
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transformation which makes up the ensemble {v}, and hence must be
invariant under random Galilean transformation.

(2) Correlations of velocities at two or more space points are invariant
under Galilean transformation by constant velocity v, provided that the
correlations are simultaneous.

(2a) Correlations of velocities at two or more space points are invariant
under every Galilean transformation which makes up the set {v}, and
hence must be invariant under random Galilean transformation, pro-
vided that the correlations are simultaneous.

(3) Non-simultaneous correlations at two or more space points are not
invariant under Galilean transformation by constant velocity v because
the distance between the measuring points changes according to v and
the difference between the measuring times.

(3a) Non-simultaneous correlations at two or more space points are
not invariant under any member of the set {v} of random Galilean
transformations, and hence are not invariant under random Galilean
transformation.

If follows, therefore, that RGI is indeed a rigorous property of both the
Navier—Stokes equation and the single-time multipoint correlations (or mo-
ments). It is equally clear that, if any RPT constructs the triple moment from
two-time moments, there is at least a possibility that the single-time form of
the resulting triple moment will not possess the requisite RGIL. And, of course,
failure in this must be seen as failure of the theory.

In all of this we agree with Kraichnan. Where we would wish to exercise a
little more caution is in the way that these ideas can be used in rigorously
testing theories for RGI. Essentially, Kraichnan bases the possibility of doing
this on eqn (7.15), with the formal extension of that result being (7.69) and
(7.70), as the test for RGL But (7.15) is an approximation and is hedged about
with many restrictions. This in itself rules it out as a rigorous test for RPTs.

We should also note that the diagnosis of the failure of DIA would not be
the same if it were tested for deterministic Galilean invariance. Referring back
to the model problem in Section 7.1.2, we see that if we took the correlation
function in (7.15) for one v (ie. we do not average) then the DIA triple
moment—as given by eqn (7.26)—would have the same phase factor as the
exact form prior to averaging, as given by the penultimate line of eqn (7.18).
Thus this interpretation of the failure of the DIA depends to at least some
extent on the nature of the approximation for the turbulent correlation
function when further averaged over the random Galilean ensemble.

This is not a severe criticism of the work which ultimately led to the
Lagrangian-history theories. Rather, it is just an attempt to sound a note of
caution about the general applicability of these ideas to other theories. The
nature of the test for RGI is such that it depends heavily on the actual
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correlation and response or propagator functions behaving as if they scale
on large-eddy convection times (uk)™', where u is the r.m.s. velocity of the
turbulence. In theories other than DIA, that may not be the case, and hence
our argument is that there are other possible diagnoses for the failure of RPTs
and other possible tests to satisfy than a test for RGI which is based on an
approximation. In short, we think that a conclusion that RPTs cannot work
in an Eulerian coordinate frame may be unduly pessimistic (see also the recent
results discussed in Section 8.8).

8.7 General remarks

We have argued that the strength of renormalized perturbation theories lies
in their generality and in the absence of ad hoc assumptions or disposable
constants. Yet one would not need to be unduly cynical to argue that RPTs
(without exception) are cut off from true fundamental status, on the one hand,
by their inability to predict their own errors, and from engineering utility, on
the other, by their enormous complexity when formulated for inhomogeneous
turbulence.

There seems to be a growing belief that the answer to the first of these
problems lies with the renormalization group. An introduction to this topic
is to be found in Section 3.5.3, and a fuller discussion occupies Chapter 9.
However, as we saw in Sections 8.2 and 8.3, the RPTs have had their successes
and should not be underestimated.

The second problem—the analytical complexity of RPTs—is really, as we
saw in Section 8.5, a matter of dimensionality. Without the simplifications of
homogeneity and isotropy, the calculations described in preceding sections
would be much too large for present-day computers. What is needed is an
attack on the problem of analytical reduction of the second-order equations
for shear flows, with the aim of reducing their complexity to the level of, say,
the equations computed for the case of freely decaying isotropic turbulence.
In view of the fact that most RPTs give good results at low Reynolds numbers,
there is some reason to feel optimistic about their potential application to
other problems with low Reynolds numbers. As we pointed out in Section
8.5.2, it is surprising that such a potentially fruitful research topic has been so
comprehensively neglected.

8.8 Postscript: some current work

The calculations described in Sections 8.2.3 and 8.3 have been carried on and
extended to Taylor—Reynolds numbers over the range 0.5 < R;(t;) < 1009,
where ¢, is the final time of computation (McComb, Shanmugasundaram, and
Hutchinson 1989). It was found that, for R,(t;) < 5, the calculations for LET
and DIA were almost indistinguishable, with any difference between the two
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theories tending to disappear as the Taylor—Reynolds number tended to zero.
Somewhat more surprisingly, the two theories were again found to behave in
a very similar way as the Reynolds number became large, and on the basis of
these calculations it seemed clear that the calculated energy spectrum was
closer to the Kolmogorov 5/3 law than to the analytical prediction of a 3/2
law (see Section 6.1.6), even for DIA.

An even more surprising (and certainly more controversial) finding was that
two-time correlation and propagator (or response) functions were found to
scale on the Kolmogorov time-scale rather than on the convective sweeping
time-scale, which is associated with the energy-containing range of wave-
numbers. It has been argued (McComb et al. 1989) that this result raises
questions about the diagnosis of the failure of DIA (see Sections 7.1.2 and
7.1.3), and the relevance of the postulate of random Galilean invariance has
been questioned.

More recently, McComb and Shanmugasundaram (1989) have carried out
similar calculations, but this time using the more general (and corrected) form
of LET theory, as represented by eqns (7.144) and (7.145), for Q(k;t,t') and
H(k;t,t"). The results are virtually the same as before (i.e. using an ad hoc
generalization of the stationary form as given by McComb (1978)), but the
computations are now much faster and the unphysical overshoots no longer
occur in the calculated propagator.

Notes

1. These remarks are based on an ad hoc generalization of the original LET theory to
non-stationary turbulence. When the correct non-stationary form of LET theory
(as derived in Section 7.4) is used, these unphysical overshoots do not occur (see
Section §.8).

2. This note should be read in conjunction with Section 3.2.1 and, in particular with
the derivation of eqn (3.29). Chorin (1988) argues that a paradox arises if one
attempts to derive (3.29) by a different method. This is summarized as follows.

We begin by making the same assumption that all the energy on scales [, is
transferred to scales [, ,. Hence, Chorin argues, the average energy in eddies of size
I, is Eqt,/T, where T is the characteristic decay time of the vortical structures (sic),
t, = 1,/v, and E, is the total available energy.

This result seems to imply a much more extreme assumption than that which
underlies the shell model leading to eqn (3.29). Although the present writer is unclear
about the definition of the time-scale T and the physical significance of the ratio
t,/T, it seems as if Chorin is saying:

amount of energy on scales [, = total amount of energy put into the system in unit
time Eq x (time taken to cascade to 1,)/(time taken for E, to be fully dissipated as
heat).

If this interpretation is correct, then Chorin’s argument rests on the assumption
that the decay process is linear and that ¢, is the time taken for the energy to reach
scales /,.
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Chorin’s second assumption is that v, = E¥?, where E is a constant but is
otherwise undefined. Hence, with this substitution, E, ~ [, and there is a disagree-
ment with (3.29) which can only be resolved by invoking intermittency. However,
this also seems unconvincing. In fact we really have v, = E}2, and substitution of
this leads back to v2 x 12, in agreement with (3.29).

Evidently, Chorin’s arguments need some clarification.
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9

RENORMALIZATION GROUP
THEORIES

In Section 3.5.3 we introduced the basic idea of renormalization group (RG)
methods, and illustrated the general method by discussing how it might be
applied in principle to fluid turbulence. The key phrase here is ‘in principle’,
for in practice there are quite formidable problems in the way. Some of the
attempts to overcome these problems will form the subject of this chapter.

However, before turning to this—the main topic—a few remarks about the
background to the subject may not be out of place. To begin with, RG was a
procedure for eliminating divergences in field theory, and later became famous
when it was successfully applied to critical phenomena in the early 1970s (e.g.
see Wilson and Kogut 1974; Wilson 1975). More recently there has been an
interplay between field-theoretical and renormalization group methods (Amit
(1984) emphasizes this aspect), and this tends to be reflected in papers describ-
ing attempts to apply RG to turbulence.

One unfortunate consequence of this is that papers which are of interest to
us here are often couched in esoteric jargon, with apparently little attempt
being made to communicate the basic ideas to turbulence researchers. Instead
the authors often seem content to conduct a dialogue between aficionados,
in which there is much allusive reference back and forward between various
schools of field theory and statistical mechanics. In this activity, macroscopic
Navier—Stokes turbulence appears only to be an excuse to relabel the vari-
ables in a quest for novelty, if not originality!

The overall effect to the outsider is off-putting, and even bizarre. This is a
pity, for the basic ideas are really very simple and pragmatic.

In an attempt to counteract this impression, we shall preface our discussion
of RG applied to turbulence, with an outline account of its implementation
in the case of the Ising model of a ferromagnet, along with a very brief
explanation of the meaning of a perturbation method based on the use of
non-integral space dimension.

9.1 Background: RG applied to critical phenomena

The subject of critical phenomena deals with matter in the neighbourhood of
a phase transition. Familiar examples are a liquid—gas system near the critical
point (the upper limit on temperature and pressure at which a liquid and its
vapour can coexist) or a ferromagnet at the Curie point (the highest tempera-
ture at which there can be a finite overall magnetism, assuming that there is
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no externally imposed magnetic field). We shall discuss the ferromagnet as an
example of the application of RG.

9.1.1 Ferromagnetism and the Ising model

Magnetism arises because spins at lattice sites become aligned with each other.
The tendency for spins to align is opposed by thermal effects, which of course
tend to make the spin vectors take up all possible orientations at random.
Thus alignments occur as random fluctuations, with length scales ranging
from the lattice spacing (L, say) up to some correlation length . The correla-
tion length is a function of temperature and, as the temperature is reduced to
Curie point, ¢ —» co. Thus, at the critical point, fluctuations occur on all
wavelengths from L, (about 1 4) up to infinity, and therefore a net overall
magnetism can appear.

Fluctuations of this kind are characteristic of certain phase transitions, and
are not just a feature of magnetic systems. For instance, there is the phenome-
non of critical opalescence in liquids. This is due to density fluctuations
scattering light, and indicates the presence of correlations on scales of the
order of microns, as compared with the lower limit of the order of angstroms.

The theoretical objective is to calculate the Hamiltonian (and hence—via
the partition function—the thermodynamic properties) of the system; see the
relevant discussions in Sections 3.5.1, 4.1.1, and 5.3. But this simple aim is not
easily achieved. The Hamiltonian H is dominated by a collective term, which
is the sum (over configurations) of all spin interactions. This leads to formid-
able problems, and in practice the exact form has to be modelled, the classic
approach being ‘mean field theories’, in which any one spin is supposed to
experience a mean field due to the collective effect of all the others. In passing
we should note that mean field theories do not agree with experiment, but
that they are not wildly out either.

Another simplifying concept which has proved fruitful is the Ising model.
This imposes a Boolean characteristic on the lattice, spins being either positive
or negative with intermediate states not permitted. The concept is perhaps
easiest to envisage in one dimension (i.e. space dimension d = 1), where we
can imagine a long horizontal line of spins, each of which is either up or down.
The model can be constructed for any arbitrary (integral) number of dimen-
sions, and the case d = 2 was solved exactly by Onsager (1944). In view of our
comments above, it is worth noting that the mean field theory for the two-
dimensional Ising model differs quite appreciably from the exact solution.

9.1.2 Block spins and RG

The application of RG to magnetism is often interpreted as giving a quan-
titative meaning to the concept of block spins. This latter idea was due to
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Kadanoff (1966) and was proposed in order to explain the observed self-
similarity of certain thermodynamic relationships under scaling transforma-
tions. Essentially Kadanoff suggested that a group of aligned spins (the ‘block’)
would behave like a single large spin if viewed from some larger scale still.
Then a number of these ‘blocks’ could be amalgamated to form an even larger
block, and so on, leading to a self-similar structure.

The corresponding RG method is to start with an interaction Hamiltonian
H,, which is associated with two spins separated by a distance L, (i.e. the
lattice spacing). Then one calculates an effective Hamiltonian H,, associated
with regions of size 2L, (the factor of 2 is arbitrary), which means averaging
out the effects of scales L,. Next one calculates H,, associated with a region
of size 4L, with the effects of scales less than or equal to 2L, averaged out.
Thereafter, the general operation can be denoted by the calculation of the
Hamiltonian H,, with associated region of size 2"L,, and the elimination of
scales less than or equal to 2"'L,.

The above process can be expressed as a transformation T which is applied
repeatedly

T(Hy)=H,, TH)=H, T(H,)=H,.... 9.1)
At each stage, the length scales are changed
Lo—2L,, 2Ly —4L,...,

and, in order to compensate, the spin variables are also scaled in an appro-
priate fashion such that the Hamiltonian always looks the same in scaled
coordinates. It is this rescaling which leads to renormalization and the trans-
formations (9.1) define a simple group.

If iterating the transformation leads to the result

Hn+1 = Hn: (92)

where H,,, = T(H,), then H, = Hy, say, is a fixed point which corresponds
to the critical point. Intuitively this can be understood in terms of the fact that
the fluctuations of infinite wavelength (which occur at the critical point) will
be invariant under scaling transformations.

If we think of the physical system being represented by a point in a
multidimensional space, the coordinates of which are the interaction forces,
then scaling moves the representative point. Thus the action of RG is to move
the system along a trajectory, with the sequence of scaling operations playing
the part of time. The resulting fixed point is determined by the solution of the
equation

T(Hy) = Hy, (9.3)

and is a property of the transformation T rather than the initial interaction
H,. This is associated with the idea of universality of critical behaviour. In
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the case of turbulence, the corresponding property would be that the renor-
malized effective viscosity v would not depend on the molecular viscosity v,.

9.1.3 Space dimension and the epsilon expansion

If we repeat the above discussion in terms of wavenumber, the Fourier
transform of the spin variables (strictly of the spin field) is introduced and this
operation brings with it the space dimension d as an explicit part of the
analysis.

We now talk about forming H, from H, by integrating out modes k >
2n/L,. Thereafter, modes are ecliminated in bands n/L, < k < 2n/L,,
7/2Ly < k < 7/Ly...,as we form H,, H;, ... . It is found that there two fixed
points. For d > 4, the fixed point corresponds to classical mean field theory.
For d < 4 there are non-trivial corrections to the classical results.

In the language of the subject, one refers to the upper critical dimension d,
(for technical reasons one should differentiate between this and the ‘lower
critical dimension’, but this need not concern us here). Thus the Ising model
of a ferromagnet has d, = 4.

Put in very simple terms, what we are saying is that RG works rather well
for the Ising model for a lattice with d > d,, with the results being equivalent
to those of mean field theory. However, what we would really like is a theory
for the case of d = 3, but here it seems that correction terms arise which are
difficult to evaluate.

The answer to this problem appears to be to perform a perturbation
expansion in € = d, — d. In the present case this means € = 4 — d, where the
perturbation expansion is justified in terms of small €. Then € is set equal to
unity and excellent agreement with experiment is obtained for d = 3.

The idea that dimension may be treated as a variable is a commonplace to
the practitioners of field theory!, where a theory constructed for one value of
d can be extended to another by the process of analytical continuation. Also,
those readers who are not familiar with field theory may well have encountered
the notion that the dimension may be non-integral as part of the study of the
phenomenology of fractal curves (although it should be emphasized that the
fractal dimension applies to the curve, not the space). However, the concept
of non-integral dimension in the epsilon expansion can be seen as purely
pragmatic. One is faced with the situation that RG is exact in d > 4, and
subject to only small logarithmic corrections in d = 4. The expansion about
d = 4 turns out to be asymptotic, so that the first term is approximately equal
to the sum of the series irrespective of the value of the expansion parameter €.

Physically this amounts to an expansion about mean field theory in order
to include the effect of fluctuations. In this case, one is relying on the equiv-
alence of RG and mean field theory for d > 4. This is a property of a
particular class of critical phenomena, of which the ferromagnetic transition
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on the Ising lattice is one. But the RG method is (as stated in Section 3.5.3)
more general than this, and the epsilon expansion should really be seen as
only one method of implementing RG for one particular class of problems.

9.2 Application of RG to turbulence

For our present purposes, we can classify attempts to apply RG to turbulence
into three broad groups, according to the nature of the problem studied. These
are as follows: (a) the laminar—turbulent transition; (b) calculation of scaling
laws for asymptotic turbulent energy spectra, with specified noise inputs;
(c) reduction of the number of degrees of freedom of well-developed turbu-
lence, in conjuction with numerical simulation of the motion on a computer.
The first of these topics involves a transition from quasi-periodic behaviour
to chaos, under the influence of external noise inputs. This is beyond our
present scope, and so we shall only consider the other two topics here.

9.2.1 Determination of scaling laws

We begin by giving a slightly more formal definition of RG than that of Section
3.5.3. To do this, we shall adapt the form given by Ma and Mazenko (1975)
for dynamical critical phenomena (i.e. where the conserved variables of a
system are allowed to vary slowly with time), to the case of the Navier—Stokes
equation for the velocity field u,(k, ). The system will be taken to be subject
to random stirring forces f,(k,t) which, as before, have prescribed statistics
and noise spectrum.
The RG procedure involves two stages:

1. The Fourier decomposition of the velocity is taken to be cut off for
k < A (often referred to as an ultraviolet cut off). Divide the velocity field
up as follows:

u; (k,t) for0 < k <bA

94
u, (k, 1) for bA < k < A, C4

u,k, 1) = {
where the scaling parameter b satisfies 0 < b < 1. Now ecliminate the
high-k modes by solving the equation of motion for u; (k,¢) and sub-
stituting the solution into the equation for u; (k,t). Note, because the
non-linear mixing term induces a sum over modes, that the solution for
u” will contain u*. Average over /'~ (k,1).

2. Rescalek, t,u=, and f = so that the new equation looks like the original
Navier—Stokes equation. This last step involves the introduction of re-
normalized transport coefficients.

The above scheme has been implemented by low-order perturbation theory.
The pioneers were Forster, Nelson, and Stephen (1976, 1977; to be referred to
as FNS), who chose the ultraviolet cut off A to be low enough to exclude
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cascade effects. With this limitation, they posed a rather artificial problem
which is amenable to Wilson-type theory, complete with upper critical dimen-
sion and epsilon expansion.

The exclusion of the cascade means that the FNS theory does not strictly
deal with turbulence at all. Nevertheless, their theory is an impressively
rigorous approach to statistical hydrodynamics, with renormalization of the
viscosity, the stirring forces, and the coupling constants. Under RG iteration,
the Navier—Stokes equation is reduced to a (linear) Langevin equation, valid
in the limit k — 0.

FNS theory has been followed by other asymptotic theories for scaling
behaviour in the infra-red. For example, Fournier and Frisch (1978), who
investigated the relationship between FNS and closures of the eddy-damped
quasi-normality type, and DeDominicis and Martin (1979), who used field-
theoretical methods. Both these investigations concluded that the FNS theory
might be valid away from the crossover dimension, and this is a point to which
we shall return in Section 9.3, where we discuss FNS theory in detail.

Scaling behaviour has also been studied in the ultraviolet, where k — o
(e.g. Grossman and Schnedler 1977; Levich 1980; Yakhot 1981; Levich and
Tsinober 1984). A particular motivation was to overcome a specific problem
encountered in the FNS approach, which is the restriction to low wave-
numbers as the effective coupling constant increases with increasing wave-
number. In these studies, the usual RG procedure is reversed, and it is the low
wavenumbers which are progressively eliminated. In all cases the theories
yield corrections to the Koimogorov spectrum. An interesting side issue is
that Levich and Tsinober (1984) stesss that their non-integral dimension is the
fractal dimension D (Mandelbrot 1977), and not the non-integer dimension
used for analytical continuation in Wilson-type theory (i.e. the epsilon
expansion).

It is difficult to know how to assess these theories. On the one hand, they
seem to be very limited in their abilities. As Kraichnan (1982) has pointed out,
they only lead to scaling exponents (at best) and do not fix the constants of
proportionality. Moreover, they are only asymptotically valid for situations
remote from the local-in-wavenumber energy tranfer which is such a charac-
teristic feature of turbulence. Yet, on the other hand, they bring a welcome
rigour into turbulence theory.

We shall return to these points in Section 9.3, where we examine the FNS
theory in some detail.

9.2.2  Subgrid-scale modelling

It is well known that turbulent flows of any practical significance lie far beyond
the scope of full numerical simulation. The number of degrees of freedom is
simply too large for present-day computers. For this reason, much attention
has recently been given to the idea of large-eddy simulation (LES). In general
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terms this technique presents two problems. First there is what one might call
the ‘software aspect’, i.e. the problem of developing the numerical and com-
putational methods needed to simulate the large eddies on a grid. This topic
will not concern us here. Second, there is the problem of modelling the ‘subgrid
drain’ or transfer of energy from the explicit scales to the unresolved subgrid
scales.

This general topic is discussed in Sections 3.3.2 and 10.2. We shall confine
ourselves here to noting that the very idea of LES sounds like a crude version
of the RG. Therefore, it would seem that the subgrid modelling problem is an
ideal candidate for an RG approach.

This was first recognized by Rose (1977), who applied RG methods to the
subgrid modelling of passive scalar convection. He was able to obtain a
renormalized (eddy) diffusivity, which had a weak dependence on the explicit
wavenumbers and represented the mean effect of the velocity-field subgrid
scales on the scalar-field explict scales. He also found two additional terms
which (a) represented the noise injected from the subgrid scales and (b)
represented the coupling between the large eddies and the eddies just below
the resolution of the grid. We shall refer again to these results presently.

The more general approach of iterative averaging was later introduced by
McComb (1982) as a way of reformulating the statistical equations for in-
homogenous turbulence. Initially this work was motivated by a feeling that
Reynolds averaging was too inflexible to allow consideration of intermittent
effects (such as the bursting process) or even slow external time variations.
Statistical equations (analogous to the Reynolds equation) were derived by
progressively averaging the Navier-Stokes equation over a series of increas-
ing time periods.

Averaging over the shortest period smooths out that part of the field which
corresponds to the highest-frequency fluctuations. The mean effect of these
fluctuations was calculated from the time-averaged equation of motion and
so eliminated from the equation for the rest of the velocity field (that is, the
unaveraged part). This procedure was repeated for a longer time period and
in this way an iteration led to equations for the mean and covariance of the
fluctuating field.

The properties of this general statistical reformulation have not been
explored to any great extent. But a simpler situation can be obtained if we
restrict our attention to fluid motions which are remote from solid boundaries,
so that we can assume homogeneity and isotropy. Connection with RG can
then be made (McComb 1982) by (1) Fourier transforming with into (k, w)-
space and (2) involing the Taylor hypothesis of frozen convection. Then,
iterative averaging is found to lead to an effective viscosity which is a fixed
point of the Navier—Stokes equations.

With these changes, iterative averaging becomes much closer to Rose’s
method. The two theories have been compared (McComb and Shanmu-
gasundaram 1983) by applying Rose’s method to the velocity field rather than
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the scalar field. It was found to differ from iterative averaging by the appear-
ance of a triple moment involving only explicit scales. It was later argued
(McComb 1985) that this term is an artefact of Rose’s procedure, and that it
is the spurious presence of this triple moment which leads the occurrence of
terms (a) and (b), as mentioned in the discussion above.

The procedure of iterative averaging has been subject to various develop-
ments over the last few years. In particular, there was the change to conditional
ensemble averaging in k-space (McComb and Shanmugasundaram 1984). In
the most recent account (McComb 1986), an outline of a more general treat-
ment has been given and the prospect of a subgrid model based on rational
approximations held out. This will be the basis of our account of iterative
averaging in Section 9.4.

9.3 The Forster—Nelson—Stephen (FNS) theory

In Section 5.5 we introduced the primitive perturbation expansion of the
Navier—Stokes equation and showed how it could be renormalized by sum-
ming terms to all orders. Subsequently, in Chapters 6 and 7, we have seen that
renormalized perturbation theories (which consist of truncations of the line-
renormalized perturbation series at second order) give very good results when
applied to the prediction of isotropic turbulence, despite the fact that the
mathematical properties of the renormalized expansions are very largely
unknown.

In this section, we shall consider a different method of renormalizing the
perturbation series, where the reverse situation obtains. That is, the mathe-
matical rigour of the methods is good but the resulting restrictions rule out
even the simplest of turbulence calculations! The essential trick is to perform
the perturbation theory in a narrow band of wavenumbers, which allows us
to retain only low orders in the primitive expansion. Then the low-order
expansion is renormalized by iteration to successively lower wavenumber
bands.

Our first task is to generalize and adapt the definitions and resuits of Section
5.5 to suit our present purposes. It will also be noted that we conform to the
modern practice (in this particular topic) of using the Fourier integral notation
directly for the velocity field, without resorting to either limiting procedures
or the Fourier—Stieltjes measure. This is the only section of the book where
we do this, but there is no practical reason for not doing it everywhere else.
It is probably very largely a matter of personal prejudice.

9.3.1 Formulation of the problem

We begin by imposing a maximum wavenumber A, where A (the uitraviolet
cut-off) is very much smaller than the dissipation wavenumber. This means
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that the Fourier decomposition of the velocity field in the wavenumber—
frequency domain, as given by eqn (5.63), should not be written as

1 d+1
Uy(x,1) = <ﬂ> J d‘k j do u,(k, w)exp(ik - x + iwt), 9.5)
k<A

where d is the number of space dimensions. We shall only be interested in the
cased = 3.

Similarly, the equation of motion, as given by eqn (5.64), should be modified
to

(i + vok?)u,(k, ) = D,4(k)fp(k, ) +

+ Ao Moy, (K) f d’j JdQ up(j, Qu,(k — j, — Q),
J€A
(9.6)

where v, is the unrenormalized viscosity and 4,(=1) is the unrenormalized
expansion parameter.

As usual, the stirring forces are specified by their autocorrelation. With the
appropriate restrictions to homogeneity, isotropy, and stationarity, we modify
eqn (5.67) to

alk, 0)fy(kK', ')y = 2W(k)(2r)** ' D,y (k)o(k + k)0 + o),  (9.7)

where W(k) is a measure of the rate at which the stirring force does work on
the fluid.
If we assume a power law form for W(k),

Wk) = Wk, (9.8)

then y = —2 gives us Model A of FNS, corresponding to thermal equilibrium,
and y = 0 gives us their Model B, which corresponds to the case of macro-
scopic stirring of the fluid. It is the latter case which will interest us here, but
we shall leave y unspecified for the present, as this will allow us to examine
certain later conjectures about the FNS theory.

We complete our specification of the RG approach by dividing up the
velocities and forces into low-frequency and high-frequency parts as follows:

u, (k,w) 0<k<Aexp(—I)

ok ) = {u: (ko)  Aexp(=I) <k <A, )
ko) 0 <k<Aexp(—1)
Jalks @) = {f: (k,w) Aexp(—I) <k < A, ©-10

where [ is chosen such that 0 < exp(—1) < 1.
The corresponding decomposition of the Navier—Stokes equation can be
obtained by substituting (9.9) and (9.10) into (9.6):
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(iw + vok?)us (k, )

= fo- (k, ) + Ao Mg, (k) J d’j JdQ{uE(j,Q)u; k—jo—Q+
i<A
+2u; (j, Qu; (k—j, 0 —Q)+uz (3, Du; (k—j, w—Q)}
©.11)
(i + vok*)u; (k, ®)

= 1 (k,w) + A, M,(k) f d3j JdQ{u;(j, Qu; (k—jo—Y+
i€A
+2u§(j,§2)uy>(k—j,w—Q)+u;(j,Q)uj(k—j,w—Q)},
9.12)
where the superscript on M,;,(k) has the obvious interpretation.
The aim now is to eliminate the u” from (9.11) by solving equation (9.12)
for u” in terms of u<. It is fairly obvious that this can only be done ap-
proximately, and in the next section we consider the use of perturbation theory

for this purpose.

9.3.2 The perturbation series

Formally, the perturbation theory is developed, as in Section 5.5, about eqn
(5.68) as the zero-order solution. At this stage we shall temporarily adopt a
compact notation in which wavevector, frequency, and tensor index are all
combined into one symbol. With these changes, a subscript is now reserved
to indicate the order of a term in either the perturbation expansion or the RG
iteration. Thus eqn (5.68) can be translated into our new notation as

u; (k) = Go(k)f (k), 9.13)
and the associated perturbation expansion can be written as
w (K) = ug (k) + Aoul (0) + 2205 (B)--- + Aju (k). (9.14)

Note that while either of these expressions can be applied to both the low-
frequency and the high-frequency parts of the velocity field, we are only
interested in a perturbation solution for u” in order to eliminate the effect of
the small scales from the equation for u™.

The coefficients u}, u3, ..., can all be expressed in terms of ug in the usual
way. That is, we substitute (9.14) for u” into both sides of (9.12) and equate
coefficients at each order in the expansion parameter 4,. The result, up to
second order, is

n=0  ul(k)y=Gyk)f>(k (9.15a)
n=1 ui)=GooM (B {u= (k- J) +

+25(Dugk = )+ ug (g k= J)}  (9.15b)
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n=2  ui(k) = GokyM> (k) Z 2us(jyu; k- j) +

+ 2ug (])ul - ])} (9-15¢)

In addition, we can substitute (9.15b) for u7 into eqn (9.15c), so that u; can
be expressed entirely in terms of ug, but we shall not pursue that here.

Our next step is to replace u”, whenever it occurs on the r.h.s. of eqn (9.11)
for u™, by inserting the perturbation series given by eqn (9.14):

u= (k) = Go(k)f = (k) + 4o Go(kyM=(k) zu (Nu(k—j)+
+ Ao GolkyM < (k Z{Zu ])uié N+

+ 2h0u”(j)uj (k —1)+2xou Nz k~ )+
+ Ao Golk)M = (k) z {ug (Nug (k — ) + 2houy (J)u3 (k — f) +

+xéu1()u1(k—1)+ziou2 Nug k= )} + 0(23). (9.16)

Then we average out the effect of the high frequencies according to the
following rules.

(1) The low-frequency components are statistically independent of the
high-frequency components and are invariant under the averaging pro-
cess: {f*>=f“and {u"> =u

(2) Averages involving ug can be evaluated using (9.13) and the statistics
of the f~, as G, is statistically sharp.

(3) The stlrnng forces are statlstlcally homogeneous (see eqn (9.7)), and
thus M= (k) <ug (j)ug (k — j)) = 0,as M<(0) =

(4) The stirring forces have zero mean; hence <u0> =0,as {(f7)>=0.
(5) The probability distribution of the stirring forces is Gaussian. There-
fore {f” f> f7> =0, and hence it follows that {u” u”u”> = 0.

With all these points in mind, eqn (9.16) may be written as

u(k) = Golk)f () + 40 Go(k) M~ (k) % us(jyu<tk = j) +
+ 243Go(k) M<(k)ZZGo(ﬁ — )M (k= (= (P~ (k—j~ p) +
+ {sxéco(lé)Mw%) Y. Golk — )M (k — )| Go(N)I” x
x Dm(zn)'”lwm} “(k) + 0(23), 9.17)

where dummy variables j and p have been renamed as appropriate. Note also,
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that in evaluating the second moment we invoked eqn (9.7) and eliminated
the sum over p along with the delta function 8(k — p).

9.3.3 The effective viscosity

At this point, eqn (9.17) may seem to be very little improvement on (9.11).
Nevertheless, only two steps are needed to show that it is. First, we multiply
across by the factor (iw + vok?), in order to eliminate GO(IE) from the r.hs.
Then, with some rearrangement, (9.17) can be written in terms of an increased
viscosity vo + Avg(k):

{iw + vok? + Avy(k)k? iy (k. )

= [k, w) + 4g :ﬂy(k),[- d3jdeu;(j,Q)uj(k—j,a)—Q)ﬁ-

JsA
+2%wmmmfdﬁdeMaxé—ﬂGak—ﬁx

x u=(k — Hus(pyusk —j— p). (9.18)

Note that the full notation has been restored in all terms except the last
one on the r.h.s. The reason for this will quickly become apparent. Note
also that a specific form of Avy(k)—the increment to the viscosity—can be
established from a comparison of eqns (9.18) and (9.17), and we shall return
to this shortly. But, before doing that, we shall consider our second main
simplification.

This is to the effect that it can be shown (Forster, Nelson, and Stephen) that
the last term on the r.h.s. of (9.18) is an irrelevant variable. In other words, as
the iteration proceeds to the fixed point, this term vanishes. The proof of this
is subject to certain restrictions, and we shall consider this aspect in more
detail later on. But, for the moment, we should note that the principal restric-
tion amounts to the requirement that k — 0 for us to be able to neglect the
triple product of the u<. It is the existence of this restriction which means that
we cannot regard the analysis which follows as a theory of turbulence. Strictly
speaking, it is (as FNS claimed) a theory of the long-wavelength properties of
a randomly stirred fluid.

However, if we drop the last term on the r.h.s. of (9.18), it follows that we
have the basis of an iteration. That is, if we replace u* by w and f= by f, the
resulting equation will look like the original Navier—Stokes equation, but now
defined on the interval 0 < k < Aexp(— 1), and with an increased viscosity
v, = Vo + Avy(k).

Formally, therefore, we now drop the term in W u~u~, and write eqn (9.18)
as the Navier—Stokes equation in its intermediate form:
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{iow + vok? + Avp(k)k* }uy (k, w)
= fo (k,o) + Ao M, (K) d3j JdQ up (3 Quy (k —jo — Q), (9.19)
j<A

where comparison of eqn (9.18) with eqn (9.17) allows us to deduce the
equation for the effective viscosity as

Avg(k) = 823k‘2M;ﬂy(k)f d3j JdQ Go(lk — jl, 0 — Q) x

X [Go(J; Q> My, (k — Dy ()W), (9.20)

yop

where [, denotes an integration over the band of wavenumbers being elimi-
nated and we have made the replacement

M,z (K)u; (k, w) = M, (K)u; (k, w).

This step just anticipates the result that the angular integration associated
with the vector j leads to a Kronecker delta which picks out the « component
of the velocity u, . Note that, although we are only really interested in the case
d = 3, we shall continue to keep the treatment general for the present, in order
to see the significance of arbitrary space dimension d for the renormalized
viscosity.

An explicit form can be obtained for the viscosity increment by substituting
from (9.8) for the spectrum of the stirring forces W(k) into (9.20). Then Av,(k)
can be evaluated as follows:

(a) Substitute for each G, (k, ) using (5.65) rewritten as

1

o) = ok

and perform the convolution integral over frequency.

(b) Make the change of variable in the wavenumber integral j — j + k/2,
and take the limit w - 0, k — 0.

(c) Perform the integral over angles in wavenumber space, using the
standard identities?

S,
f Jada @ = 8y J jhdj (9:21)
PO d: Sd d+3 .
Ja.]ﬂ]y]éd J= d(d—_'_z_)(éaﬂéyd + 511)15[‘16 + 5(165)'/3) J d.]’ (922)
where §, is the area of the unit sphere in d dimensions and is given by
2n?
Si ==+, 9.23
“= TR (9.23)

with I, as usual, being the gamma function.
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The overall result of this procedure is readily found to be

K(d)i3W, explel} — 1

Avy(0) = TA¢ : , (9.24)
where
e=4+y—d (9.25)
and
A(d)S,
K(d) = (;n))dd (9.26)
d*—d—¢
A(d) = ST (9.27)

Thus the total viscosity v, after the elimination of the modes in the band
Aexp(—1) < k < A, is given by

vi = Vo + Ay (0)
"2 _
— {1 N K(d)/i2W, expel} 1)}

vZA® €

— v, {1 + K(@)72 @i} (9.28)

where the modified strength parameter A, is given by

- j.o W01/2

o VS/ZAe/Z .

9.29)

This last step highlights the fact that this is a different way of performing
perturbation theory. In renormalized perturbation theory—as discussed in
Chapter 5—A merely plays the part of a bookkeeping parameter. The proce-
dure there was to sum certain classes of terms to all orders and then put 4 = 1
at the end of the calculation. Here, however, the strength parameter becomes
renormalized as a consequence of the viscosity’s being renormalized, and the
process leading to this is the combination of iteration with rescaling.

Lastly, for completeness, we note that the propagator becomes modified to

1

Gilko) =, e

(9.30)

9.3.4 Recursion relations

Our aim now is to make (9.19) look as much as possible like the original
Navier—Stokes equation. We do this by scaling both the independent and the
dependent variables of the problem. For instance, in (9.19) the wavenumber



360 RENORMALIZATION GROUP THEORIES

k is now defined on the interval 0 < k < Aexp(—1{). If we divide k by the
scaling factor exp(— 1), then we obtain a new variable which is defined on the
original interval. Thus we introduce

k = kexp(l), (9.31)

where k is defined on 0 < k < A.
Also, we shall obviously want the coefficient of the term iwu; (k,w) to
remain equal to unity. Accordingly, we introduce the more general scaling

& = wexp{a(l)}
aa(ie’ (I)) = u; (k’ CU) exp{ - C(l)}

where a(l) and ¢(l) are to be determined.

With these considerations in mind, eqn (9.19), with the replacement v, =
v + Avy, can now be written in terms of the new variables. Substituting from
(9.31) and (9.32), we have

(i + v(Dk? Vi (k, @) = f,(k, @) + LM

(9.32)

(k) x

afy
j J dQii, (3, i,k — j,o — Q). (9.33)

The scaled stirring force, viscosity, and strength parameter must then satisfy,
respectively, the following relationships:

fuk,®) = £.5(k, w)exp(a — c) (9.34)
v(l) = v, exp(a — 2I) (9.35)
Ml) = Agexp{c — (d + I} (9.36)

Note that we temporarily put the general dimensionality d (instead of the
specific value d = 3)in eqn (9.36). Also note that eqns (9.34)—(9.36) stem purely
from the homogeneity requirement that the factor exp(c — a), which arises
from the scaling of the term iwu; (k, ®) in eqn (9.19), should appear in each of
the other terms of (9.33), and hence can be eliminated by cancellation.

Although the stirring forces are rescaled, the rate at which they do work on
the system must be unaffected by this procedure. This requirement gives us a
constraint on the scaling factors, which can be used to relate ¢(I) and a(l). We
do this in the following way. From eqns (9.7) and (9.8) we have the correlation
of the stirring forces as

fulk, 0)f(K, @)y = 2Q2m)" 7 Wy Dy (k)k™ x
x 8k + k)d(w + ). 9.37)

Now apply the transformation (9.34) to the Lh.s., and the transformations
(9.31) and (9.32) to the r.h.s., with the result
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fulk, @)fp(k', @)y = 22m)"* Wy D, ()™
x ok + k')o(d + @), (9.38)
provided that the homogeneity requirement
2¢=3a+(y+d)l (9.39)

is satisfied.

Forster et al. (1977) carried out their iteration using infinitesimal wave-
number bands at each step. This means that the recursion relations can be
turned into differential equations with / as a continuous independent variable.
The general procedure is discussed by Reichl (1980), and here we shall only
quote the final results. From eqns (9.28), (9.29), (9.35), and (9.36) we obtain

% —v(){z — 2 + K(d)7?)} (9.40)
<=0 (9.41)
dA 3z d—y
b il T 4 :
a4l /1(1)<2 3 > (9.42)
where z is defined by
da
== 4
z di (9.43)

Also, by an obvious analogy with eqn (9.29), the modified strength parameter
A is defined by
-, AW,
=522 9.44
vIAS (©.44)

The recursion relation for A can be obtained from eqns (9.40)—(9.42), and
takes.the form
a7 .
4~ 2le K@ (9:45)

9.3.5 Behaviour near the fixed point

In earlier chapters, we have often had to keep in mind the fact that turbulence
is a problem of strong interactions. From this point of view, eqn (9.45) is
perhaps the single most interesting feature of the preceding analysis. Here one
is actually controlling the effective interaction strength (insofar as it affects
perturbation theory) by deciding systematically just how the coupling param-
eter A(/) will be renormalized. Of course, as we remarked previously, the
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resulting theory has only limited validity in the limit k¥ — 0 and hence does
not qualify as a theory of turbulence. Nevertheless, the technique is of con-
siderable academic interest, and is worth pursuing here.

Clearly the nature of solutions to eqn (9.45) depends on the value of €, with
a crossover from one form of behaviour to another at € = 0. Thus we can
distinguish three cases as follows:

€ < 0: A(l) tends exponentially to zero as | — .

e = 0: A(l) tends to zero as 1/, and there are logarithmic corrections to v(/)
(see FNS, eqn (3.78)).

€ >0: 1 tends to the fixed point A*.

The latter case is the interesting one, and the solution for 4 at the fixed point
is given by

. e )2
A¥ = {3A(d)} (9.46)

as | - oo, It is readily seen from the substitution of this result into (9.40) that
the renormalized viscosity becomes independent of [ at the fixed point, pro-
vided only that

z=2—¢/3, (947)

which fixes our one remaining free parameter a(l) through eqn (9.43).

The above dependence on a crossover value of € recalls the role of the ‘upper
critical dimension’ in the theory of phase transitions. However, in the present
case the arbitrary choice of the correlation of stirring forces plays a major
part. Suppose, for instance, that we concentrate on the case of practical interest
and put d = 3. Then the above criterion for the existence of a non-trivial fixed
point becomes

y> -1, (9.48)

which is a lower bound on the arbitrarily chosen exponent in eqn (9.8).

We can derive an upper bound on y by considering the condition for the
neglected triple product u*u~u~ to be an irrelevant variable. This term was
simply dropped in going from (9.17) to (9.18). However, suppose that we
associated with it a coupling parameter g, and retained it in our derivation
of the rescaled Navier—Stokes equation, then it would appear in (9.33) with

the modified coupling parameter

g(l) = goexp{—(d — y)}, (9.49)

a result which follows from the scaling arguments in the same way as did eqns
(9.34)-(9.36).

It is clear, therefore, that contributions from the triple product vanish
exponentially as | —» oo provided that
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y<d. 9.50)
Hence the power-law exponent in (9.8) is bounded by
—1l<y<3 (9.51)

in space dimension d = 3.

Lastly, the scaling behaviour of the spectrum can be deduced from the fact
that, for k < A exp(—1), the correlation function of the fluctuating velocities
can be computed from both the original and the reduced set of equations.
FNS (see their eqn 3.9)) show that this leads to a homogeneity relationship,
which in turn yields the spectrum

E(k) ~ k~93+26-95, 9.52)

as rewritten in terms of our present notation.
If we put y = 0, then we recover their model B, with

E(k) ~ k'R (9.53)
in space dimension d = 3.

9.3.6 Some later conjectures about FNS theory

The FNS theory was later generalized by DeDominicis and Martin (1979,
hereafter referred to as DDM), who applied field-theoretical methods to the
problem. Their overall conclusion was that the FNS results were valid to all
orders in the anomalous dimension (¢), although this conclusion depended on
an assumption (said to be ‘plausible’) that neglected operators remained
irrelevant. Even so, for this to be true, one must have € < 4, corresponding to
the upper bound given in eqn (9.51) for the particular case of d = 3.

An interesting feature of this work was the remark that a choice of forcing
exponent y = d causes the energy spectrum to take the Kolmogorov form.
This is easily seen if we substitute y = d in the r.h.s. of equation (9.52).

It is also easily seen, from eqn (9.49), that this choice of y corresponds to
the boundary separating regions where variables treated as irrelevant decay
from regions where such variables grow as [ — co. This particular point was
also made by DDM.,

In assessing the practical significance of this result, we must first consider
the applicability of the FNS theory to macroscopic hydrodynamic turbulence.
After doing that, we shall then make some pertinent remarks about DDM’s
proposal.

We have already seen that the FNS procedure is only valid in the limit
k — 0. The converse statement is that the renormalized expansion parameter
increases as k increases, thus invalidating low-order perturbation theory. It
was for this reason that FNS only claimed to have studied the small-k
properties of the correlations of a randomly stirred fluid.
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However, even this modest claim may not be justified. FNS truncate the
Navier—Stokes equation on the interval 0 < k < A, where A is chosen to be
much smaller than any dissipation wavenumber. Yet, if a real fluid is stirred
in this wavenumber band, it is an inevitable consequence of non-linearity that
energy must be transferred to wavenumbers greater than A. The resulting
dissipation wavenumber—as defined by eqn (2.133)—is then determined only
by that rate of energy transfer and the fluid viscosity. It does not automatically
follow, therefore, that the condition A « k4 will be satisfied in practice. And,
moreover, given the non-local (in wavenumber) structure of the inertial terms,
it would be unsafe to assume that the shape of the spectrum at small k would
be unaffected by energy transfers to k > A.

These comments do not affect the FNS theory as such, for it can be assessed
purely as a model on its own terms. However, the significance of the Kolmo-
gorov distribution is that it appears to be a property of real turbulence and
accordingly we must at least consider the applicability of the background
theory as a preliminary to assessing the proposal made by DDM.

Now let us turn to the idea that a force correlation of k™3 (in d = 3) leads
to an energy spectrum E(k) =~ k~>?. Our first point is the general observation
that the Kolmogorov theory is based on the assumption of universal be-
haviour, in which the cascade at high enough k becomes independent of
conditions at small k, including stirring forces! Thus W(k) ~ k™3 seems less
meritorious than the assumption of W(k) ~ 4(k) in the Edwards ‘thought
experiment’ (see Section 6.2.7), which has the same dimensions but produces
the Kolmogorov spectrum without forcing the result at high wavenumbers.

Our second point is a corollary of our first. The choice of forcing spectrum
W (k) = Wyk ™3 does not lead to a well-posed problem. For a steady state, we
must have the dissipation rate equal to the rate of doing work on the system.
Or,

Kmax
g=4n J Wk 3k*dk

Kmin
= 4nW, In k[jm, (9.54)

which is log divergent as ky,, — 0. Thus the DDM 5/3 spectrum cannot be
extended beyond the ultraviolet cut-off A, which in turn must satisfy the
condition A « k.

Overall, the DDM proposal is not without its intrinsic interest, but in the
present state of knowledge, the above considerations would seem to rule out
any practical application of the idea (although this has not prevented some
extravagant claims being made, in just this connection?).

9.4 Application of RG by iterative averaging

In this section we are interested in the potential of RG as a method of assisting
the numerical computation of turbulence by reducing the number of degrees
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of freedom which have to be computed. As usual, we interpret the degrees of
freedom as being the independently excited Fourier modes. Then we envisage
asituation where modes {k} such that k < k., are to be simulated numerically,
while the non-linear transfer of energy to modes k > k_ is to be represented
analytically by an effective viscosity v(k|k ). In the present approach, v(k|k.)
is to be calculated from the Navier—Stokes equations by progressively elimi-
nating the mean effects of modes at high wavenumbers. It should be noted
that, from our point of view, the cut-off wavenumber k_ is to be chosen
arbitrarily, but in an actual calculation it is fairly obvious that any such choice
would be influenced by quite practical considerations to do with the size and
speed of the computer available.

9.4.1 General formulation

Consider the velocity field to be represented by the Fourier series

u(x,t) = Y u,k t)exp{ik-x} (9.55)
<ko
where k, is, in some sense, the largest wavenumber present. Evidently this just
involves a straightforward modification to our original Fourier series repre-
sentation, as given by eqn (2.71), and the correspondingly trivial modification
to the Navier—Stokes equation in the form eqn (2.76) is

<i + v0k2> u(k, 1) = Mo, (K) > ug(j, hu,(k — j, 1), (9.56)
ot i<ke

and clearly the inertial transfer and projection operators remain the same as
defined by eqns (2.77) and (2.78).

As any real flow system is of finite physical extent, we shall regard the
Fourier components of the velocity field as a denumerable finite set. Then a
general statement of the problem is to the effect that we wish to solve eqn
(9.56) for each member of this set, subject to the boundary conditions

u,k,t)=0, fork=0

9.57)
u,(k, 1) to be prescribed for t = 0.

Of course, when we take averages, the resulting functions will be assumed to
be smoothly varying functions of the continuous variable k, and all the results
of Section 2.6 will be taken to apply just as if we had rigorously taken the
limit L. — co.

The maximum wavenumber k, is defined approximately through the dis-
sipation integral:

© ko
£ = J 2v, k2 E(k) dk ~ J 2vok?* E(k)dk. (9.58)

0 0
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That is, in general terms k, is such that, say, 99.9 per cent of dissipation takes
place at wavenumbers k < kqo. Clearly k, should be of the same order of
magnitude as the Kolmogorov dissipation wavenumber k.

At this stage it may be helpful if we summarize the general approach by
adapting our earlier general outline of the RG procedure (see Section 9.2.1)
to the present case.

We choose a cut-off wavenumber k, such that k; < k,, but where k; ~
ko ~ k,. The two stages of the RG procedure then become the following.

(a) Solve eqn (9.56) on k; < k < k. Substitute the solution for the mean
effect of the high-k modes into eqn (9.56) now on the interval 0 < k < k;.
This results in an increment to the viscosity: vy — v = vo + Av,.

(b) Rescale the basic variables so that the Navier-Stokes equation
on 0 < k < k, looks like the original Navier—Stokes equation on the
original interval 0 < k < k.

This procedure is then repeated for k, < k < k;, and so on.

The aim is to find a fixed point at which the molecular viscosity can be
replaced by a renormalized viscosity of universal form. The physics underlying
this process can be understood in the following way. In the viscous range of
wavenumbers, the dominant physical process is (by definition) the viscous
dissipation of turbulent kinetic energy. Indeed, it is reasonable to think of
modes in this range as being critically damped. That is, any mode in the band
k, < k < kq is driven by energy transfer from modes k < k;, and this energy
is dissipated locally by being turned into heat.

In principle, therefore, one can expect to solve the Navier—Stokes equation
for u,(k, t)in the band k, < k < kg in terms of the bilinear energy transfer from
k < k, into the band, while the quadratic nonlinearity-—which involves trans-
fers through the band—is neglected (although, as we shall see later, this term
can be treated systematically to all orders).

As a result of all this, the new Navier—Stokes equation has an increased
effective viscosity v, in the range of wavenumbers 0 < k < k;. Let us there-
fore define an effective dissipation wavenumber for the new Navier—Stokes

equation:
e 1/4
kP = <$> K 9.59)

1

Then, for v; > vy, it follows that

e\ 114
kP < k9 = <—3> . (9.60)
Yo
Thus the above arguments may all go through again for some k, ~ k{", and
(if so) one can again solve the (suitably scaled) Navier—Stokes equation in the
band k, < k < k.
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As this procedure is carried on, the existence of a fixed point can be
associated with the onset of scaling behaviour in the inertial range of wave-
numbers. This will be seen later when we consider the full mathematical
treatment.

9.4.2 Partial averaging of the small scales

Our first step is to decompose the velocity field into two sets of Fourier
components, i.c. those which are in the band k, < k < k,, and those which
are not. Or

ug (k,t) forO0 <k <k,

61
uf(k,t)  fork, <k <ke. .61)

u,k,t) = {

Using this decomposition, we can introduce the operation of partial aver-

aging over fluctuations in the band of wavenumbers k, < k < ky. We denote

this operation by { »,, where the subscript serves to distinguish it from the

general (global) average, denoted by { >. We define it through its properties,
which we list as follows:

u, (k1) forO<k <k,

Cugk,t) Do = {0 for k, < k <k,

9.62)
Cuy (K, 1) >0 = uy (K, 1)
Cug (k,)>o=0
and
Mg, (k) g (3, )y (k — j, 1) 30 = 0. (9.63)

The first set of properties, as listed in eqn (9.62), would be satisfied by a simple
filter. That is, the operation of partial averaging need only consist of multiply-
ing the Fourier components of the velocity field by a unit step function which
is zero for k > k.

However, the property stated in eqn (9.63) would only be true to some level
of approximation for a filtering operation, and clearly requires some method
of taking the phase into account. Therefore we must think of partial averaging
as either a combined filter and ensemble average, or as a conditional average
in which u~ is held constant while u* is averaged.

This procedure can be seen as a generalization of Reynolds averaging, as
discussed in Section 1.3. If we temporarily return to x-space, then the decom-
position given in eqn (9.61) becomes

Uy(X, 1) = U (X, 1) + u (x,1), (9.64)

where the low-frequency and high-frequency parts of the velocity field are
defined by
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u; (x,8) =Y u (k,t)exp(ik-x)
k

= &, vtk nexplk ) 9.65)

uf (x,t) =Y, uj (k,t)exp(ik - x)
;

k,szk:<k0 u,(k, t)exp(ik - x), 9.66)
Clearly, if we let k; — 0, then u, (x,) tends to the mean value u,(x,t) =
{ug(x,1)>, and u; (x,t) tends to the fluctuating velocity u,(x, t) — {u,(X,)>o.

An important point to note is that u; (x,) and u; (x,t) are uncorrelated
parts of the velocity field (see Monin and Yaglom 1975, pp. 18-19). In this
connection, we should aiso note that the Navier—Stokes equation induces
coupling—but not correlation—between different Fourier modes.

It follows therefore that, under global averaging, eqn (9.63) would just be a
particular example of the general result

Maﬂy(k) <uﬂ(j’ t)uy(k - j’ t)) = Maﬂy(k)é(k)Qﬁy(k - j’ L t)
-0, (9.67)

where we have invoked eqn (2.93) along with the linear dependence of M4, (k)
on k. Nevertheless, we should emphasize that eqn (9.63) applies only for partial
averaging and indeed should be regarded as part of the definition of that
process.

We can complete this part of the work by pursuing the analogy with
Reynolds averaging and deriving equations for u™ and u* in much the same
way as we previously obtained eqns (1.12) and (1.14) for the mean and
fluctuating velocities. Thus, substituting from (9.61) into (9.56) and partially
averaging both sides according to (9.62), we obtain an equation for u, (k,?) in
the form

(% + vok2> u, (k,1) = M4, (k) j; Cug(j, yu,(k — j, 1) Yo (9.68)
Note from eqn (9.67) that the r.h.s. of (9.68) would vanish if this were a
global averaging. Also note that each term in (9.68) fluctuates on the interval
0<k<k,.

The equation for fluctuations on the interval k, < k < k, is obtained by
subtracting (9.68) from (9.56):

0
<6t + vokz) uy (k, 1) = M, (k) ;k {up(j, hu,(k — 1) —

~ <ug(§, Oy, (k — J,1) )0 }- (9.69)
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These two equations form the basis of a modified version of the usual
turbulent moment hierarchy, in which we only need consider moments of
velocities fluctuating in the band k, < k < k.

9.4.3 The statistical equations of motion

We now wish to derive explicit forms for the right-hand sides of eqns (9.68)
and (9.69) in terms of the u~ and u* variables. We begin with (9.68) for the
explicit scales. Substituting (9.61) for each of the velocity vectors in the
non-linear term and partially averaging according to eqns (9.62) and (9.63),
we obtain

0
<E + Vok2> Uy (K, 1) — My, (K) Y Cup (3, )y (k — §, 1) o
J

= M,,(K) Y ug (3, huy (k — j 1). (9.70)
i

We also need to obtain a governing equation for {uz (j, H)u; (k —j, 1)),
which represents the explicit coupling in (9.70) to the wavenumber band
k, < k < ko.In order to do this, we first derive an explicit equation for u; (k, t)
by substituting (9.61) for velocities on the r.hs., and partially averaging
according to (9.62) and (9.63). Thus

0
<a + v0k2> u: (ks t) = Maﬁy(k) Z 2”; (j7 t)u; (k - j9 t) +
i

+ Mo, 0) Y {uf (3Bt} (& — o) —
]

= <ug (3, )uy (k — ;) o - 6.71)

It should be noted that the term {uj (j, t)u; (k — j, 1) >, gives zero if we multiply
through by u} (k’, t) and carry out the partial average. Then, with this in mind,
we can form an equation for (ug (j, t)u; (k — j, 1)), by taking the following
steps.

(a) Generalize (9.71) to form an equation for uj (j, t). This involves re-
labelling k — j, & — B, the dummy wavevector j is renamed p, and so on.
Then multiply through by u (k — j,#) and average { ).

(b) Generalize (9.71) to form an equation for u; (k — j, ¢), multiply through
by u; (j, 1), and average { ).

(c) Add the two resulting equations together and rename dummy vari-
ables as appropriate to obtain
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0 . . .
<at + 0% + volk — le> Sy (3 Dy (k= J, 1) >0

= 2Mgap(j)g (2<ug (p,ug (i — p.uy (k —§,0)0 +

+ Cug (p,yuy (j— P uy (k — §: )0 }- ©.72)

Formally, this equation can be solved in terms of the zero-order (or viscous)
Green function. But this leads us into a new version of the turbulent moment
hierarchy and hence a new form of the closure problem, which we shall discuss
in the following section.

9.4.4 Moment hierarchy from partial averaging

The hierarchy which results from partial averaging is more complicated than
that associated with global averaging, if only because there are now two
different types of moment. This means that the algebra can become rather
complicated. However, it turns out that the only information needed explicitly
is the following:

(1) the number of u factors in a product;
(2) whether any givenuisu” oru*;
(3} the nature of the average: { >q or { .

Accordingly, we can temporarily drop all wavevector and coordinate labels,
provided only that we retain an indication of how many wavevector argu-
ments are associated with any particular Green function:
1 1
= T 2> GOZ = 2 2
i + vok 10 + vok* + vy j

GOI

and so on. Then the solution to (9.72) can be written schematically as
ututyo =2Gg, Y. 2Mu utut Yo + Goy Y, MuTutu o, (9.73)

Now we can see the complication, as mentioned above, when we compare the
present procedure with the usual turbulence hierarchy. Evidently we can
distinguish moments which contain one factor u~ from those which do not.

From our earlier discussions, we can guess that the term (u”u*u™ ), is the
important one, as it represents energy transfer into the band k, < k < k,,
whereas the term (u*u*u™ >, must represent energy transfers through the
band. (The underlying argument was based on the wavenumber band’s being
in the viscous range, but it may still go through elsewhere if the band is, in
some sense, thin.)

Hence, we can guess that {u*u*u" ), can be treated as a small correction
term, which we seek to calculate by forming an equation for it, just as we did
for (u™u™ »,. This is readily done, and we show the result schematically, as
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follows:
wtutut Yo = Goy Y 2Mu ututut Do + Goz Y Mutututu" Ho. (9.74)

Then we can go through the same arguments all over again in order to derive
an equation for (u*u*u*u* >, and so on, to all orders.

This process can be accompanied by repeated substitution back into (9.73),
thus yielding the moment expansion

ututyo =2Gg, Y 2Mu utut do +

+2Goy Y. MGoy Y 2Mu"u utu™ Do +

+2Go, Y MGoy Y MGo, Y 2Mu™utu™utu™ o +

+2Go, Y MGy Y MGy Y Mutu™uu™u™ ). (9.75)
and so on. Thus the term {uj (j, H)u; (k — j, 1), can be written as the sum of
a moment expansion, where (to all orders) every moment contains a single
factoru™.

It follows that we can conclude that {uj (j, H)u; (k — j, 2}, is a linear func-

tional of u™ and, in principle therefore, eqn (9.70)—when taken in conjuction
with (9.75)—can be regarded as a closed equation for u™.

9.4.5 A mean field approximation

Let us now turn our attention to the relationship between the operation of
partial averaging, on the one hand, and conventional (or global) averaging,
on the other. If, for instance, we average the product u,(j, t)u,(k — j, ) in the
usual way, then for stationary homogeneous turbulence we obtain

Cug(h Y, (L,8)> = Qg ()0 + 1), (9.76)

where Q,4(j) is constant with respect to time. Further, if we consider the
product uj (j, t)u; (1, 1), then the obvious extension of (9.76) is

Cug (B huy 16> = Qp()SG + 1), ©.77)
and here Q7 is related to Q by a simple filtering operation:
05, () = Qg (i)~ forky < j <ko. (9.78)

However, if we take the partial average of the last product, then we are
forced to write something like

G 05 _{P,,T(j%—l,t) for0<|j+1 <k,
s (B 0u, 1) )0 =

9.79
0 fork, <|j+1| <kg, ©.79)

where P;,* fluctuates randomly for 0 < [j + 1] < k,, whereas the superscripts
indicate that k, < j, [ < k,. Naturally, in these circumstances, neither homo-
geneity nor stationarity can come to our aid.
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The generalization to moments of any order is readily made. For global
averages, we have the usual result

<uﬁ(j7 t)uy(l’ t)“-ua(p, t)>
ZQBV"'U(j’l’~”,“j_l...) forj+l++p=0,
=0 forj+l+-+p#0, (9.80)

while for partial averages the corresponding result is easily seen to be
CutpG 0ty 1) (2. 1) Do
=P ,(01+ " +p0) forO<|j+ 1+ +pl <k,
=0 for k, <|j+1+ -+ p| <k,. (9.81)

Note that a plus or minus superscript can be added to P, above the appropriate
tensor subscript, as required.

Now from the moment expansion on the r.h.s. of eqn (9.75), it is clear that
we need only consider moments which contain a single factor u™. Our aim
must be to factor out the low-k dependence, and to do this we make the
following proposal:

Cug (j, tyuy (L yuy (5,8)...u; (p,1) Do
= ug (j, 1) Cuy (I, )y, (r, ... ul(p,t)>
=15 (, 00, ot ., —1— 1)
ifl+r++p=0
=0 otherwise. (9.82)

Clearly this is a plausible way of factoring out the low-k dependence, in the
sense that the two conditions on the constituent wavenumbers ensure that j
must satisfy the condition 0 < j < k,. Thus the fluctuation in the explicit
scales is being represented by a term of the form: constant x u™. Nevertheless,
apart from its obvious utility, this step is rather less than transparent.

However, it can be argued that (9.82) can be interpreted as a mean field
approximation. This interpretation can be understood most easily in the
context of a specific case. Consider the first term on the r.h.s. of (9.75). This
will turn out to be our leading approximation, and so it is worth treating in
detail. Its explicit form can be deduced from eqn (9.72):

4Mpop(j); Cug (p, uy (35— P, DJuy (K — 5,60
= 4M,,(j) Z,,: ug (p,1)<uy (i — p. )y (k — . 1))
= 4Mj,,(J) ; uy (p,)0(k — p)Qy,([k —jI)

= 4M;,,()D,,(k — DO (k — jl)u; (k,2), (9.83)
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where the summation over p and the delta function have been eliminated
together. We have also made the assumption (for later convenience) that the
fluctuations in the band k; < k < k, are isotropic.

Reverting temporarily to the more symbolic notation, we can interpret
(9.83) in the following way. Write the product ™ u™ in terms of its mean value:

utut = Qtut) + utut — wtut)]
=ututy + C*.

Now let us neglect the correction term C* for the moment, ie. we are
approximating the u*u* field by its mean value. This allows us to evaluate
the mixed triple moment as

uutut o = Cum utut D
=u DUt u’)
=u {utu*)

because (u* u™ ) is a constant and is therefore invariant under partial (or any
other) averaging.

Of course this is an approximation, but there are various ways in which the
effects of the correction term C* could be taken into account. At the time of
writing this has not yet been done.

Lastly, it should be noted that (9.63)—which is one of the properties
defining the partial average—is consistent with (9.82). This is easily verified
and will be left as an exercise for the reader.

9.4.6 The RG equations

In this section we shall give a brief general discussion of the RG method as a
preliminary to the detailed calculation to be given in the following section. As
before, we resort to a highly symbolic notation, the better to let the general
ideas stand out. We begin by recapitulating the overall position.

In general terms, we wish to solve eqn (9.70), which, for the sake of con-
venience, we shall rewrite here in symbolic notation as

0
(&4 ol () = 3 MO Gk
]

=Y M&u~ (u~ (k — j), (9.84)
]

where the coupling to the band k; < k < k, is given by the non-linear term
on the Lh.s. This term can be expressed as a linear functional of u™ by the
moment expansion in (9.75). Further, the ‘partially averaged” moments can be
evaluated in terms of the conventional moments, using (9.82) as a general
(mean field) approximation and eqn (9.83) as a specific guide. We note that
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the selection rules for wavenumbers on the r.h.s. of (9.75) are always such that
u~ appears with the argument k. It can therefore be shown that the non-linear
coupling in (9.84) takes the general form

5 M)t (ut (k =)o
i
=2MGy, Y 205u"(K) + 2M Gy, Y MY Goy Y 2MQFu™ (k) +
+2MGy, Y MY Goz Y MGy, Y 2M Quu™ (k) + -+
= Svo(k)k?u~ (k), (9.85)
where 03 = utu® ), 0F = ututut), ete.
We note that this expansion is linear in u~ (k) at every order, and hence can

be written as an increment to the viscosity. Making the appropriate substitu-
tion back into eqn (9.84), we then have

[jt i 5vo(k)}k2] R =Y MRuk—j) (986
1

as the ‘new’ Navier—Stokes equation, defined on the interval 0 < k < k,. Of
course the fluid viscosity has apparently increased to v, where

v (k) = vo + vo(k),
and correspondingly the Green function is changed:
GO(ka (,0) = Gl (k5 CU)

Then we put u~ (k) = u(k), in eqn (9.86), and carry out the whole procedure
again for k, < k < k;.

As there are no stirring forces and the interaction strength is not renor-
malized, it is sufficient to scale the viscosity from one iteration cycle to another.
Carrying this on for successive bands

k, <k, <-k,<k <k,
results in a fixed point, where
Gn+1(k’ (l)) = Gn(ks CU) = G*(k’ U))

when G, (k, ®) is scaled to the same wavenumber interval as G,(k, w).

9.4.7 Second-order calculation of the effective viscosity

In order to make a specific calculation, we shall truncate the moment expan-
sion on the r.h.s. of eqn (9.85), retaining only the first term (which is second
order in u*). The detailed form of this term is readily obtained from eqn (9.72),
with the second term on the r.h.s. neglected. We have previously justified this
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approximation on physical grounds and we shall later consider, more quanti-
tatively, the conditions under which it can be expected to be valid.

The required solution is found by two steps. First, we make what is often
called a ‘Markovian’ approximation. That is, we assume that the u™ evolve
much more rapidly than the ™, and that we can therefore neglect the differen-
tiation with respect to time on the Lh.s. of eqn (9.71). The Green function then
takes a particularly simple form. Second, we evaluate the ‘mixed’ partial
average by means of the general mean field approximation (see eqn (9.82))
which has been carried out explicitly for this particular case in eqn (9.83). The
result is

. . 2n\? . .
<u; (.L t)u; (k il t)>0 = {4 (f) Mﬂap(.')Dpv(k - J) X

Q" (k —jl
(Vo j* + Volk — jt?)
Then the non-linear coupling term on the Lh.s. of eqn (9.70) can be written as

- aBy(k) Z <u; (j, t)u;- (k - ja t)>0
i
Lk, Q" (k —jI) } _
=<{214d?3 - ~ou; (k1)
{ f Th0 7 + volk =3

= dvy(k)k?uy (K, 1), (9.88)

}u; k0.  (9.87)

where we have taken the limit L — oo in converting the sum over j into an
integral. The coefficient L(k, j) is the usual form met previously in second-order
turbulence theories (see eqn (6.30), or Appendix E). Note that the second line
on the r.h.s. of (9.88) is equivalent to (9.85), to second order in u*.

It follows from eqn (9.88) that we should write the increment to the vis-
cosity—which represents the non-linear transfer of energy to the eliminated
modes—as

2 [ Lk )OT(k )
Ovolk) = k? J‘d / V0j2 + volk _j|2

for0 <k <kik, <jlk—ijl <ko. (9.89)

It should perhaps be noted that the increment to the viscosity is positive

because the inertial transfer operators are pure imaginary and M2 = —|M?|.
In order to repeat this process, we choose wavenumber bands by putting
k, = h"k, O0<h<l1 (9.90)

where the scaling parameter h is chosen arbitrarily, within the limits given.
Then, following the procedure outlined in the preceding section, we obtain
the recursion relation
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Var1(K) = vu(k) + Ov,(k), 9.91)
where
2
ov,(k) = = fdst(k,i)QJ’(lk =i x

1
x . 3 .
vn(j)jz + vn(lk —JI)Ik —.||2
0 <k<hyihy <jlk—j <k, (992)

Also, eqn (9.70) for the explicit scales can now be written as

ot
= Mo, (0) Y w5 (G )y (k — 1)
]
for0 <k, j, |k —jl <k,, (993)

where v, (k) is given by eqns (9.91) and (9.92).

We can form an energy equation for the explicit scales by multiplying each
term in (9.93) by u, (—Kk, t) and averaging. If we then integrate both sides of
the resulting equation with respect to k over the range 0 < k < k,, |, the result
is the renormalized dissipation equation

(ﬁ + vn+1(k)k2> U, (k1)

kn+1
j 29,1 (K2 E(k)dk = e, 9.94)
0
which can be compared with eqn (9.58), which is the conventional dissipation
integral.
If we now assume a power-law form for the energy spectrum

E(k) = ag"k® 9.95)
and make the scaling transformation
k=k,k', (9.96)

it follows from eqns (9.91) and (9.92) that the effective viscosity can be written
as

vk k') = al2gr2 =125 (k') (9.97)

where a is the constant of proportionality in the assumed spectrum.
Substitution of (9.97) into (9.94) then fixes the exponents as

r=2/3 s = —5/3,
the well-known Kolmogorov spectrum. With these results, eqns (9.97), (9.91),
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and (9.92) become
Vvalk,k') = a2 Pk AR5 (k') (9.98)
Vot (k') = h*3{5,(hk’) + 6%,(hk’)} (9.99)

5Vn(k') — (znkIZ)—l jdi‘lL(k/’j/)lk/ _j,|_11/3 %

1
X T ~ 7 . 1 L7
(V,,(_] )] 2 + vn(lk - |)|k - |2>
0<k' <11 <j, |k —jl<h™ (9.100)

Iteration of eqns (9.99) and (9.100) reaches a fixed point, with ¥,,, = ¥, = v*
(see McComb 1986; earlier references are based on a slightly different form of
the viscosity increment and this leads to some difference in earlier numerical
calculations). Some quantitative results of this work are given in Chapter 10
in connection with the problem of subgrid modelling.

9.4.8 The effect of higher-order moments

The one approximation which is amenable to systematic treatment is the
truncation of the moment expansion on the r.h.s. of eqn (9.85). The various
moments of the u* may be related to each other, as if u* had a Gaussian
distribution. This means that all odd-order moments vanish, while all even-
order moments can be factored into products of second-order moments.

It should perhaps be emphasized that such a procedure is not equivalent
to the quasi-normality hypothesis, as discussed in Section 2.8.2. The reason is
that the u; (k, t) are band-filtered projections of the non-Gaussian velocity field
u,(k,t). It seems to be the case that such band-filtered variables tend to a
Gaussian distribution, as the filter bandwidth becomes small (Lumley and
Takeuchi 1976).

It has been conjectured (McComb 1986) that the moment expansion in
(9.85) is bounded from above by a power series in dv,/v,. At the fixed point it
is found that dv*/v* = 1 at h = 0.55, and that ov*/v* tends rapidly to zero as
h tends to unity (i.e. corresponding to the bandwidth shrinking to zero).
Accordingly, for h somewhere in the range 0.55 < h < 1, a second-order
calculation can be established as a rational approximation.

9.5 Concluding remarks

At the present stage, we seem to be faced with the choice of rigour (but not
applicability), on the one hand, or applicability (but not rigour), on the other.
In view of the obvious intuitive appeal of RG as a method of tackling
turbulence, it is difficult to believe that this situation will not improve.
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Perhaps the most interesting comparison to make is with the successful
RPT theories, as discussed in Chapters 6—8. Such theories (as we have seen)
lead to very comprehensive predictions about virtually any statistical param-
eter characterizing turbulence. In contrast, the RG method only seems to yield
power laws for scaling behaviour, although the iterative averaging method
can also yield the excitation level (see the discussion in Chapter 10).

However, although it can be argued that both types of theory begin by
chopping up the dynamics, in order to make the non-linearity tractable
(Kraichnan 1982), they really have very little more in common than that. RPTs
formulate the problem in a perturbation series which is wildly divergent. They
then renormalize this series in a global operation of unknown properties, thus
producing a renormalized perturbation series, also with unknown properties.

In contrast, RG begins by tackling a tractable situation (in iterative averag-
ing this is the viscous range, which is characterized by a low Reynolds number).
Then the renormalization is carried out systematically in a series of steps
which allows one to keep everything under control. The very existence of a
fixed point, therefore, is some evidence that one has succeeded in this aim.
Certainly there is no comparable claim to be made for RPTs and it seems that
in this respect the advantage lies with RG.

Notes

1. This idea may also be familiar to those who are acquainted with perturbation theory
in classical aerodynamics. Garabedian (1956) employed an expansion in €/(2 + €),
where 2 + € is the number of space dimensions, to solve for axially symmetric flows
with free boundaries. The case € = 1 is the physically interesting situation where
the flow is genuinely axisymmetric in three-dimensional space.

2. Readers who are uncomfortable with general manipulations in d dimensions may
find it helpful to begin by considering the case d = 3. For instance, the basic volume
integral in wavenumber space is just (in spherical polar coordinates) given by

2n n
sz":J d¢j sinGdijzdj
0 0

=35, Jj““ di ford=3.

Clearly S = 4r is the area of a sphere of unit radius. The concept can be generalized
to d dimensions, with

S, = qu) J sin 0, do, Jsinz 0,do, ... jsindz 0,-,d0, 5,

and it can be shown (e.g. Ramond 1981, pp. 387-8) that this takes the form given
by eqn (9.23).

Then, eqn (9.21) follows quite straightforwardly. The angular integration vanishes
by symmetry, unless « = f§. Hence we write the integrand as

jzéaﬂ =j25aﬂ
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and, using the result given above for the volume integral, we obtain eqn (9.21).
Similar methods lead to eqn (9.22), and this derivation is left as an exercise for the
reader.

3. Yakhot and Orszag (1986; henceforth referred to as YO) have applied the FNS
theory to practical turbulence problems, simply by deciding to take the ultra-violet
cut-off A to be larger than the dissipation wavenumber, irrespective of whether or
not this gives a valid extension of the FNS theory. They argue that, in some sense,
the numerics of strongly stirred turbulence and inertially cascading turbulence will
be equivalent, provided that the stirring forces are chosen correctly. Their ultimate
justification for this assertion is that it leads to some good theoretical values for
representative numbers, ranging from the Kolmogorov spectral constant to the von
Karman constant for shear flows.

This work has been the subject of some comment at a fairly technical level (Ronis
1987; Bhattacharjee 1988), but here we shall be concerned only with rather practical
considerations. We have two points to make.

First, YO follow DDM in choosing the stirring forces such that y = d (we use the
notation of Section 9.3 here), thus encountering the problem that this energy input
is divergent (see eqn (9.54)). They circumvent this in an ingenious way by adopting
a relationship from RPT. They argue that their results for the effective viscosity and
the energy spectrum are equivalent to v(k) = Be®k~*3 and E(k) = xe™*k ™7, where
{from RPT) the constants of proportionality must satisfy (see eqn (6.125)) «>*C/B = 1
where numerical integration (Edwards 1965) gives C =.0.19. By incorporating this
relationship into their theory, YO are able to relate W, to a finite dissipation rate;
thus W, = 11.12¢, which implies (via conservation of energy) that their stirring forces
are restricted to a band such that k., /k,.., = 1.007! This in itself would seem to
pose a serious problem for their ‘principle of equivalence’, but (at the very least) the
dependence on another class of theory (with unknown convergence properties)
raises doubts about whether the work of YO can be properly described as an RG
theory.

Our second point concerns an arithmetical inconsistency. The authors evaluate
the Kolmogorov constant using € = 0 and € = 4 at different points in the same
calculation. Their resultisa = 1.617. However, if they were to use € = 4 consistently,
their result would become a = 1.113, which is outside the normally accepted range
of 1.2 < a < 2.2. The claims made for the numerical success of this theory would
appear to be unfounded.

References

Amit, D.J. (1984). Field theory, the renormalisation group, and critical phenomena
(2nd edn). World Scientific.

BHATTACHARJEE, J. K. (1988) J. Phys. A 21, L551.

DeDominicrs, C. and MARTIN, P. C. (1979). Phys. Rev. A 19, 419.

EpwaRDs, S.F. (1965). Proc. Int. Conf. on Plasma Physics, Trieste, p. 595. IAEA,
Vienna.

FORSTER, D., NELSON, D. R., and STEPHEN, M. J. (1976). Phys. Rev. Lett. 36, 867.

——,——, and —— (1977). Phys. Rev. A 16, 732.

FOURNIER, J.-D. and FriscH, U. (1978). Phys. Rev. A 17, 747.

GARABEDIAN, P.R. (1956). Pacific J. Math. 6,611.

GROSSMANN, S. and SCHNEDLER, E. (1977). Z. Phys. B 26, 307.

KADANOFF, L. P. (1966). Physics 2, 263.

KRraICHNAN, R. H. (1982). Phys. Rev. A 25, 3281.

LevicH, E. (1980). Phys. Lett. T9A, 171.



380 RENORMALIZATION GROUP THEORIES

— and TSINOBER, A. (1984). Phys. Lett. 101A, 265.

LuMLEY, J. L. and TakeucHl, K. (1976). J. fluid Mech. 74, 433.

Ma, S. K. and Mazenko, G.F. (1975). Phys. Rev. B 11, 4077.

McComs, W.D. (1982). Phys. Rev. A 26, 1078.

—— (1985). In Theoretical approaches to turbulence (eds D.L. Dwoyer, M. Y.
HussaIN, and R. G. VOIGT). Applied mathematical sciences, Vol. 58. Springer, Berlin.

——(1986). In Direct and large eddy simulation of turbulence {eds U. SCHUMANN and
R. FRIEDRICH). Notes on numerical fluid mechanics, Vol. 15. Vieweg, Braunschweig).

— and SHANMUGASUNDARAM, V. (1983). Phys. Rev. A 28, 2588.

— and —— (1984). J. Phys. A 18, 2191.

MANDELBROT, B. (1977). The fractal geometry of nature. Freeman, San Francisco, CA.

MONIN, A. S. and YAGLOM, A. M. (1975). Statistical fluid mechanics, Vol. 2, Mechanics
of turbulence. MIT Press, Cambridge, Ma.

ONSAGER, L. (1944). Phys. Rev. 65, 117.

RAMOND, P. (1981). Field theory: a modern primer. Benjamin/Cummings.

REICHL, L. E. (1980). A modern course in statistical physics. Edward Arnold, London.

Ronis, D. (1987). Phys. Rev. A 36, 3322

Rosg, H. A. (1977). J. fluid Mech. 81, 719.

WiLsoN, K. G. (1975). Adv. Math. 16, 170.

—— and KoGur, I. (1974). Phys. Rep. 12C, 75.

YAKHOT, V. (1981). Phys. Rev. A 23, 1486.

— and ORSZAG, S. A. (1986). Phys. Rev. Lett. 57, 1722.



10

NUMERICAL SIMULATION OF
TURBULENCE

In recent times, the rapid growth in both size and speed of digital computers
has tended to change our perception of the turbulence problem. Twenty or
so years ago, the clear aim—shared by engineers and theorists alike—was to
derive transport equations by averaging the Navier—Stokes equation.

Nowadays, the possibility of computers becoming powerful enough to
simulate some flows of engineering interest leads us to consider a simplified
form of the turbulence problem: in broad terms, can we use fundamental
approaches to reduce the number of degrees of freedom? That is, can we reduce
the size of the task for numerical simulation?

It is because we must now consider questions of this kind that we include
here a short treatment of numerical simulation (in itself, a large and important
subject) as a coda to our treatment of the statistical theory of turbulence. In
doing this, we shall have three broad purposes in mind.

The first of these purposes is to establish just what can actualily be achieved,
by way of numerical simulation of turbulence, at the present time. In doing
this, we shall consider both full simulation (all scales resolved) and large-eddy
simulation (LES) (only the large scales are resolved). As a supplement to the
latter topic, we shall also consider current practice and achievements in
subgrid modelling. It should be noted that Section 3.3 can be regarded as an
introduction to this part of the current chapter.

Then we turn our attention to our second purpose, which is to consider
how renormalization methods can be applied to the problem. Specifically, we
formulate the LES equations for isotropic turbulence, and discuss the applica-
tion of renormalization methods to the subgrid modelling problem (in the
context of spectra).

Our third, and last, purpose is to give a brief account of ‘other’ methods of
simulating turbulence on a computer. By this, we mean methods which either
do not depend directly on the Navier—Stokes equation, or which have some
other novel or original feature.

10.1 Full simulations

In Section 3.3.1, we have already considered how to estimate the size of the
numerical problem involved in performing a full turbulent simulation. To do
this, we interpreted the Fourier modes as the degrees of freedom of the system,
and related the number N of such degrees of freedom to the value of the
Reynolds number R for the case of isotropic turbulence.
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Now, in practice, what we would really like to know is how large a value
of the Reynolds number we could achieve in a turbulence simulation on a
given computer. If we take N to be the number of mesh points (in k-space),
then this is simply related to the storage capacity of the machine. Thus we can
obtain the desired estimate by rearranging eqn (3.42), and, combining this with
eqn (3.57) in order to express the result in terms of the Taylor—Reynolds
number, we find

R, ~ N36, (10.1)

Equivalently, if we wish to increase the Taylor—Reynolds number of a tur-
bulence simulation by a factor of 2, then we must increase the available
computer storage by a factor of about 64!

This depressing conclusion has been borne out in practice. In the decade
following the pioneering simulation of Orszag and Patterson (a decade, in-
cidentally, which included the development of parallel processors) the Taylor—
Reynolds number achieved in isotropic simulations was only increased by a
factor of 2 (Kerr 1985)!

The interest to the theorist of such isotropic simulations lies in their utility
as computer experiments in which the initial conditions can be very precisely
controlled. In particular, we wish to obtain very high Reynolds numbers in
order to obtain universal behaviour. This provides a motivation to exploit
available computer power in order to obtain the largest possible Reynolds
number in an isotropic simulation. However, the impetus towards more
realistic situations (for engineering applications) suggests an equally valid
strategy: that one should accept a modest Reynolds number and use incre-
ments in computer power to explore the difficulties inherent in treating
inhomogeneity and anisotropy. This latter strategy also has considerable
fundamental interest, and so we shall discuss the topic from both these points
of view.

10.1.1 Isotropic turbulence

The spectral methods pioneered by Orszag and Patterson (1972) have been
discussed in Section 3.3.1, and so we shall concentrate on their results here.
Their calculation of decaying isotropic turbulence was carried out with a grid
of 323 points in k-space (a ‘32-cubed grid’, in the jargon of the subject). The
highest Tayior—Reynolds number for which all scales would be satisfactorily
resolved was R; = 45, but the authors presented data taken from runs
with R; = 35. Evidently, these particular results could be regarded as being
especially reliable (although note the comments made later in connection with
Kerr’s (1985) comparison of 32-cubed and 64-cubed simulations).

Results were presented for dissipation and transfer spectra, along with the
time evolution of the dissipation rate and the skewness, and were compared
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with comparable results obtained from a calculation of the direct-interaction
approximation (DIA) made with the same initial conditions. For the first three
quantities, agreement between the simulation and DIA is very close indeed,
underlying alike the value of this type of computer experiment to the theorist,
and the remarkable success of DIA as a ‘first-principles’ turbulence theory at
low Reynolds numbers. However, the simulation gives evolved skewness
factors which are significantly larger than the value calculated from DIA.
Orszag and Patterson put this down to the theory’s underestimating the
magnitude of vortex stretching by turbulence and hence the transfer of energy
to higher wavenumbers. This feature is of course associated with the failure
of DIA to give the Kolmogorov spectrum at higher Reynolds numbers (see
Section 7.1).

A last point worth noting about these results is that the authors concluded
that the small-scale structure, which determines the skewness factor, is inde-
pendent of the Reynolds number, although their evolved skewness was about
S = 0.47, which is quite a bit larger than typical values from wind-tunnel data.
The authors attribute part of this numerical discrepancy to the very peaked
nature of their initial spectrum. We shall return to the Reynolds number
independence of the skewness factor when we discuss the corresponding part
of Kerr’s work later in this section.

Various other applications of these spectral methods have been reported.
A particularly interesting example is the use of the Orszag—Patterson Super-
box code to make a numerical study of pressure fluctuations in isotropic
turbulence (Schumann and Patterson 1978a). It is very difficult to measure
pressure fluctuations in laboratory experiments, with the result that such
measurements are rare. Evidently computer experiments have a potentially
important role in providing experimental values for quantities (such as pres-
sure or vorticity) which are not easily measured. For completeness, we men-
tion that these authors have used the same technique to study pressure
fluctuations when the turbulence is initially subject to an axisymmetric distor-
tion (Schumann and Patterson 1978b).

The Superbox code was also used by Siggia and Patterson (1978) to inves-
tigate fine-structure intermittency. They attempted to get round the limita-
tions of a 32-cubed simulation by employing a combination of forcing at low
wavenumbers and enhanced viscosity at high wavenumbers. Associated free
parameters were adjusted to produce a stationary field with a Kolmogorov
—5/3 spectrum over the restricted range of wavenumbers resolved.

This is undoubtedly an ingenious way to obtain a Kolmogorov spectrum,
but (in the jargon of the field) it is not an ‘honest’ simulation. However, we
would be inclined to take the view that it is the enhanced viscosity to which
one should take exception. In effect, this step turns the method into an LES.
In contrast, the forcing of the low wavenumbers seems an entirely reasonable
and physical way of obtaining a stationary field, aithough one would wish to
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make two provisos: (1) the fluid viscosity should be used in the simulation; (2)
the existence of universal behaviour, independent of the nature of the forcing
must be properly and convincingly demonstrated. This work has been carried
on (Siggia 1981), with the code being adapted to run a 64-cubed simulation
On a Vector processor.

The modified Superbox code has also been run on a vector processor by
Herring and Kerr (1982), who simulated passive scalar convection, and by
Kerr (1985), who studied derivative correlations and their relationship to
small-scale structure. We shall not pursue the topic of passive scalar convec-
tion in the present chapter, but the simulation by Herring and Kerr also
obtained some results for the velocity field, which were then compared with
the predictions of the DIA and test-field model (TFM) theories. In a 32-cubed
simulation of decaying isotropic turbulence, they obtained values for the
skewness factor over a range of Taylor—Reynolds numbers up to about 30. A
comparison with the theoretical curves for § against R, showed that DIA
agreed well with the simulation at low R, but diverged from it as R increased
above about 8. This, of course, was consistent with the results of Orszag and
Patterson. However, the results from TFM did not agree well with either the
simulation or DIA for any appreciable range of wavenumbers.

This investigation was later extended by Kerr (1985), who used a method
of forcing the lowest wavenumber shell in order to obtain stationary turbu-
lence on 32-cubed, 64-cubed, and 128-cubed grids wavenumber space. Three-
dimensional energy spectra were obtained for R; ranging from 9 to 83. When
these spectra were scaled using the Kolmogorov variables, all (except for the
lowest value of the Reynolds number) collapsed to universal form in the
dissipation region. At the highest Reynolds number, the simulated spectrum
had a short range of — 5/3 spectrum at the lowest wavenumbers.

Although these results are open to some criticism—for instance, the pre-
dicted Kolmogorov constant is rather high at « = 2.45, and turn-ups in the
spectra at high wavenumbers indicate that the smallest scales are not fully
resolved—this investigation seems to be a significant step forward in the
numerical simulation of turbulence.

Two other features of Kerr’s investigation are worthy of special mention.
First, he has assessed the effect of aliasing errors by comparing simulations
(initially identical) carried out on 32-cubed and 64-cubed grids. On the basis
of the flatness factors, he concluded that R, = 29 was slightly too high for a
32-cubed grid. This is perhaps rather a sensitive criterion, but clearly such a
result must affect our confidence in the results presented by Orszag and
Patterson for R, = 35 and higher.

However, the second feature of interest, from our present point of view,
supports the conclusion of Orszag and Patterson that the skewness is inde-
pendent of Reynolds number. This result would appear to have considerable
implications for the study of fine-scale intermittency (see Section 3.2).
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10.1.2  Shear flows

If we try to get away from isotropic homogeneous fields towards more realistic
flows, the next step up in difficulty is what is often referred to as ‘slab geometry’.
This is where there is a mean rate of flow in one particular direction, say x;,
mean quantities vary in the x, direction owing to boundary conditions at
x, = 0 and x, = 24, and the fluid extends to infinity in the x; direction. Thus
the velocity field is statistically homogeneous in two directions, but not in the
third (x,) direction. In practice the only flow which rigorously satisfies these
conditions is well-developed flow through a plane channel, as described in
Section 1.4.5. But the plane wake, the plane jet, the mixing layer, and the
boundary layer on a flat plate can all be approximated by a slab geometry,
providing only that in each case mean quantities vary slowly in the streamwise
direction.

The spectral methods (and in this we include pseudo-spectral methods; see
Section 3.3.1) discussed in the previous section are usually extended to slab
geometry by using the conventional Fourier series expansion in the two
homogeneous directions (x, and x;) and invoking periodic boundary condi-
tions. In the direction (x,) in which mean quantities vary, some other
expansion technique is needed for use in conjunction with no-slip boundary
conditions. The usual method is to expand in Chebyshev polynomials (see
Orszag 1971), which has the advantage of giving (in effect) a non-uniform grid
in x-space, resulting in good resolution near boundaries. This is, of course,
likely to be of particular benefit near solid boundaries, where mean quantities
tend to be rapidly varying (compare the experimental results given for channel
flow and jet flow in Chapter 1).

The isotropic 32-cubed simulation of Orszag and Patterson (1972) was first
extended to turbulent shear flows by Orszag and Pao (1974), who simulated
the momentumless wake (due to a self-propelled body) on a grid of 16 x
16 x 32 points in k-space. Their results for radial and axial variation of
turbulent intensities were in fair agreement with laboratory measurements,
but the authors emphasize the difficulty in taking spatial averages when
compared with the earlier simulation of isotropic turbulence. They note the
need to use either time or ensemble averages to improve their statistics
(although it is not clear whether or not they did this).

However, the point is worth making more generally. When one considers
the problems involved in numerically simulating the Navier—Stokes equa-
tions, there is really no essential difference between isotropic turbulence and
(for example) pipe flow. These are, by their very nature, statistical concepts,
and as far as the raw velocity field is concerned, the computational box is the
same in both cases. The difference arises when we want to form averages.
In the isotropic homogeneous case, symmetries in mean quantities can be
exploited in order to allow the use of shell averages. If we consider slab
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geometry, then for well-developed flow, the best we can hope for is to be able
to average over grid points in planes parallel to the (x, x;) plane. (It may be
noted that we have ignored the effect of differences in boundary conditions
on the raw simulation, but such differences have their main effect on the
statistical quantities.)

Further work on these lines has been carried out by Metcalfe and Riley
(1981), who made simulations of (1) the axisymmetric wake of a towed body
and (2) a plane mixing layer. They used both the pseudo-spectral 32-cubed
code of Orszag and Pao, and a spectral 64-cubed code of Rogallo (cited by
Orszag and Pao 1974). The main problem encountered was the setting up of
initial conditions, but the various mean values obtained seem to agree fairly
well with laboratory data and to collapse quite well onto self-similar forms.
Particular features of the work include the development of intermittency at
the free edge of the wake and some indication of Brown—Roshko roll vortices
in the mixing layer.

Well-developed turbulent flow in a plane channel has recently been simu-
lated by Kim, Moin, and Moser (1987) at a Reynolds number (based on the
mean velocity at the centre line and the semiwidth of the channel) of 3300.
Their simulation involved 192 x 129 x 160 grid points in x,, x,, X5, and is
claimed to resolve all scales. Results for correlations and spectra bear out this
claim. Mean velocities and turbulent intensities were found to agree weli with
laboratory results, once the latter had been rescaled to eliminate inconsis-
tencies between sets of results taken on different occasions with the same
apparatus. Also, the ability of the simulation to provide statistical correlations
not available from laboratory experiments was demonstrated. However, de-
tailed comparisons in the wall region indicated some systematic discrepancies
between the numerical and laboratory experiments. The authors discuss these
at some length, and essentially attribute them to difficulties in using hot-film
probes near the wall and to the failure of the actual laboratory experiment to
achieve the idealization of two-dimensional mean flow. In some ways a
significant result of this simulation is to underline the unsatisfactory state of
laboratory data for simple classic flows.

Lastly, we note the large simulation (438 x 80 x 320 grid points in x, x,,
x3) by Spalart (1988) of a turbulent boundary layer on a flat plate. The
Reynolds number quoted (1410) is apparently based on the momentum thick-
ness and the free-stream velocity. Unfortunately no value is given for the
Taylor—Reynolds number, so that we cannot say just how comparable the
results should be with those of Kerr (1985) (see the previous section). Another
imponderable in such a comparison arises because Spalart used an ap-
proximate analytic method to take account of slow streamwise variations,
which allowed him to use periodic boundary conditions in the x, direction.

Nevertheless, the most interesting result of Spalart’s simulation was the
finding of a distinct inertial range in the one-dimensional streamwise energy
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spectrum. This extended over half a decade in wavenumber, and was sufficient
to allow the theoretical determination of the Kolmogorov constant as « =
1.68, in good agreement with experiment. Certainly the spectra presented
would indicate that all scales were satisfactorily resolved, with only the span-
wise spectrum showing a slight trace of a turn-up at high wavenumbers.

10.2 Large-eddy simulations

In Section 3.3.2, we discussed the general formulation of large-eddy simula-
tions (LESs), and mentioned some of the pioneering simulations which were
carried out during the 1960s and 1970s. In recent years there has been a steady
growth of interest in this subject, with isotropic LES becoming of great interest
to fundamental theorists. We shall defer this topic to the next section, where
we will consider it in the context of renormalization methods. Here we shall
briefly review work done on other flow configurations.

Progress in this field has taken place in various directions. On the one hand,
the pioneering work of Schumann, on finite-difference simulations of flow
through channels and annuli, has been extended (Schumann, Grotzbach, and
Kleiser 1980) by improvements to the subgrid model, in which the Smago-
rinsky form has been supplemented by a procedure to solve partial differential
equations for the subgrid correlation terms. On the other hand, the method
can be extended to new problems. For example, Eidson (1985) has used
finite-difference methods to carry out an LES of turbulence which is generated
by thermal convection (i.e. Rayleigh—Benard convection). In this work the
Smagorinsky model was supplemented by the addition of buoyancy terms.

However, just as in the case of full simulations, slab geometry offers the
most rewarding class of fairly realistic problems. Fourier series can be used in
the two homogeneous directions, in conjunction with periodic boundary con-
ditions. But in LESs finite-difference methods are favoured for the cross-
stream direction. The LES of plane channel flow by Moin and Kim (1982), as
briefly discussed in Section 3.3.2, is an example of this approach, as is the
application to a shear-free boundary layer (Biringen and Reynolds 1981) and
to a planetary boundary layer (Moeng 1984). The first two relied on the
Smagorinsky model, whereas Moeng followed the example of Deardorff (cited
by Moeng 1984) and used a form of turbulence model to predict the subgrid
stresses (also see the reference to Schumann et al. (1980)).

The successful LES of a classic flow by Moin and Kim is undoubtedly
a major achievement. They used a grid of 64 x 63 x 128 points in the
(x,,x,, x5) directions, with the points in the cross-stream (x,) direction being
distributed non-uniformly (see their eqn (4.1) for details). They also used a
variable filter width (see Section 3.3.2) in the cross-stream direction in order
to take account of the variation of turbulence length scales (remember that
the flow is inhomogeneous in this direction).
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As we have already mentioned, a Smagorinsky subgrid model was em-
ployed, but the length scale in the direction normal to the walls was modified
by the introduction of the ad hoc exponential damping factor due to Van
Driest (cited by Moin and Kim 1982). Averages were first carried out over
planes parallel to the (x, x;) plane, and then improved by means of a rolling
average with respect to time. The flow was computed from an arbitrary initial
configuration until a steady state was reached.

The numerical results for the mean velocity were found to be in excellent
agreement with the accepted experimental results and with the classic ‘law of
the wall’ profile. Computations of turbulence quantities agreed with experi-
ment, at least as well as three representative experiments agreed with each
other! However, as well as the mean velocity profile, the other significant
achievement was qualitative, in that the simulation revealed coherent struc-
tures in the form of alternating low- and high-speed streaks in the region of
the wall. This ability to shed light on coherent structures has since been
exploited in a number of papers and we shall return to this point in Chapter 11.

10.2.1  Assessment of subgrid models

The various LESs which have been carried out are, in effect, tests for subgrid
models. But variations from one simulation to another, in terms of choice of
filter, filter width, grid resolution, and other numerical factors, can easily
obscure differences between subgrid models. In this section we shall discuss
investigations which are aimed specifically at testing subgrid models.

Perhaps the most satisfactory aporoach to this whole question is to simulate
a flow, with all scales fully resolved, and then to attempt an LES of the same
flow using a coarser grid and a subgrid model, but otherwise keeping all the
numerical methods the same. This was done by Clark, Ferziger, and Reynolds
(1979), who used finite-difference methods to make a 64-cubed simulation of
decaying isotropic turbulence. They carried out an LES of the same field on
a relatively coarse mesh of §-cubed points, and, by comparing the two, they
were able to predict a value of the Smagorinski constant C (see eqn (3.71))
without having recourse to laboratory experiments. Their overall conclusion
was that the agreement between the modelled subgrid stress and the actual
subgrid stress was adequate rather than good. However, they were unable to
find any model more accurate than the standard Smagorinski form.

A similar—but independent—investigation by McMillan and Ferziger
(1979) used an identical filter but employed a pseudo-spectral simulation on
the 64-cubed grid. At 32-cubed, their LES simulation was much more finely
resolved than that of Clark et al.,, but broadly speaking their overall conclu-
sions were much the same.

These investigations were both at Taylor—Reynolds numbers in the region
of 35-40, and were for the rather unrealistic case of decaying isotropic tur-
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bulence. As we have seen, full simulation of channel flow has only been
achieved recently, and that at a very low Reynolds number. The problem of
extending these validation processes to more realistic situations is clearly not
trivial, and has drawn a variety of responses.

For instance, Love (1980) has carried out the same procedure for the
Burgers equation (i.e. a one-dimensional analogue of the Navier—Stokes equa-
tion, with some properties in common). The fact that the simulation is one-
dimensional eases the computational requirements dramatically. Thus Love
was able to compare full and large-eddy simulations at (in effect) high values
of the Reynolds number. His conclusion was that the Smagorinski model was
satisfactory and that the various modifications to it have little net effect on
the actual LES.

Kaneda and Leslie (1983), noting the impossibility of carrying out a full
simulation of channel flow, proposed that the problem could be tackled by
using a low-dimensionality model in the wall region to provide the ‘exact’
velocity field. From the usual comparison between the modelled and ‘exact’
subgrid scales, they concluded that the subgrid models which had been used
in some of the major simulations were seriously in error. However, on the
other hand, they also suggested that their method of generating an exact
velocity field may itself be deficient! In other words, their investigation must
really be regarded as quite inconclusive. Nevertheless, their paper contains a
useful detailed analysis of the various subgrid modelling procedures.

The interaction between the choice of mesh length and the Smagorinski
contant was investigated by Mason and Callen (1986). They found that the
ratio of the Smagorinski length scale to the channel semi-width is the main
parameter determining the Reynolds number of the resolved scales. This led
them to an interpretation of the Smagorinski constant as a measure of the
numerical resolution of the simulation.

Lastly, we note that Speziale (1985) has drawn attention to the need to chose
subgrid models such that the equation of motion for the large eddies is (like
the original Navier—Stokes equation) invariant under Galilean transforma-
tions. Satisfying this simple requirement may lead to improved subgrid models
(Speziale 1985, Germano 1986).

10.3 Application of renormalization methods to the subgrid modelling
problem

In this section, we return (as always) to isotropic turbulence and k-space when
we want to study the fundamental approaches to the problem. We begin with
some of the formalities of setting up an LES in k-space for the case of isotropic
turbulence. This material may be regarded as an extension of the opening
paragraphs of Section 3.3.2. Then we discuss the application of renormalized
perturbation theory to the calculation of the effective subgrid viscosity.
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After that, we consider how the concept of LES arises naturally from the
renormalization group approach and obtain the subgrid viscosity from the
iterative averaging method.

10.3.1 Formulation of spectral LES

The LES equations are usually formulated in k-space by dividing up the
velocity field at k = k, into explicit and subgrid scales:

&n_{@m@ k <k,

wy ko) k> k,. (102)

Substitution of this decomposition into the Navier—Stokes equation—in the
form of (2.76)—yields an immediate separation into low and high wave-
numbers on the Lh.s. However, on the r.h.s. all the modes are coupled, and
we have to apply a filter (cut-off at k = k) to the entire non-linear term. In
this way, with an obvious extension of the notation, eqn (2.76) can be resolved
into its low-k and high-k forms:

0
<8 +vok2>u (k, t)—Z (& ugy (J, Dus (k — 1) +
+ Z aﬂy k)uﬂ(.lﬁ ) ( - ja t)

(jand/or [k — j| > k,) (10.3)

0
<a * Vo"2>“i k.1) Z a®uz (i uy (k —j,0) +
+ Z Maﬂ}' k)uﬂ(j, t)uy(k - j5 t)
]

(jandjor [k — j| > k,). (10.4)

We can use these equations as a basis for the derivation of statistical
equations for the explicit and subgrid scales. The procedure is just the same
as in the global case. Again, we make an obvious extension of the notation
and generalize eqn (2.113a) to yield

0
(5 + v0k2>Q<(k; t,t') =P (kt,t') + P<>(k;t,t") (10.5)

0
<5 + vok2> 07 (kt,t)= P (kt,t') + P~ <(k;t,t") (10.6)

where P=7 represents the inertial coupling to modes k < k_ from sums over
J»with jand/or |k — j| > k., and P~ = stands for the inertial coupling to modes
k > k. from sums over j with j and/or |k — j| < k.. Each of P<, P>, P<>, and
P~ = is defined by eqn (2.113b), with appropriate notational changes.
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The standard method of modelling the subgrid-scale energy transfer on the
r.h.s. of eqn (10.3) is to assume that it can be represented in terms of an eddy
viscosity v(k|k.). Thus eqn (10.3) can be written in the form

1,
{a + v(klkc)kz} u: (k’ l) = Z M:ﬂy(k)u; (js t)u; (k - js t)s (107)
i

where the superscripts indicate the restrictions on the range of the various
wavevector variables. Note that this equation differs from (3.58b}) in that we
have absorbed the molecular viscosity v, into the effective subgrid viscosity
v(k|k,).

We now form the energy equation for the explicit scales by multiplying each
term in eqn (10.7) by u;(—k,t') and averaging. Then, setting « = o' and
summing over a, we obtain

{%.+ v(klkc)kz}Q<(k; t,t')y=P(kt,t'), (10.8)
where (as above) P(k;t,t’) can be taken to be defined by eqn (2.113b) with
appropriate notational changes,ie. M - M~ and u - u~.

Obviously we can obtain a statistical foundation for the subgrid eddy
viscosity by imposing the requirement that eqn (10.8) and (10.5) should be
identical. This pragmatic approach will be the subject of the next section.

10.3.2 Renormalized perturbation theory

Kraichnan (1976) proposed that the effective eddy viscosity in eqn (10.8)
should be defined statistically by the relation

T(klke;t) = —2v(k|k )k>E=(k, 1), (10.9)
where E=(k, t) is the energy spectrum of the explicit scales, i.e.,
E=(k,t) = 4nk*Q<(k,1), (10.10)
and T(k|k.;t) is defined (see eqn (6.37)) by
T(k|k.;t) = 8nk?P<~ (k;t, 1). (10.11)

The prescription of the subgrid eddy viscosity is then completed by the
proposal that T(klk,) can be obtained from a two-point closure—in
Kraichnan’s analysis, the test-field model.

Of course, this interpretation of two-point closures in terms of an effective
viscosity was not, in itself, new. The fact that a second-order closure for the
inertial transfer of energy could be resolved into separate input and output
terms was originally recognized by Kraichnan (1959) for the case of DIA, and
by Edwards (1964) for EFP; in the latter case, the additional interpretation in
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terms of an effective turbulent viscosity was also made. A discussion of these
aspects will be found in Chapter 6. Later, Kraichnan (1966) showed that the
LHDI expression for the energy transfer could be reduced to an eddy viscosity
form, provided that the dummy wavevector j (see eqn (7.77) of the present
work) was much larger than the labelling wavevector k.

However, eqn (10.11) differs fundamentally from these earlier interpreta-
tions in that it recognizes the need to define an eddy viscosity in terms of the
net drain of energy from mode k. This was anticipated by McComb (1974),
who introduced essentially the same definition as an ansatz for a modified
form of EFP theory (see Section 7.3.2).

Equation (10.9) can be used—with an appropriate closure approximation
for T(klk.)—to compute v(k|k,) directly by numerical means. However,
Kraichnan has shown that some physical insights can be gained by treating
the limiting cases analytically, and we shall follow this example here, although
we shall present a rather different analysis. This is partially because we wish
to maintain the consistency of our own notation and partially because a more
general treatment allows us to incorporate results obtained by later workers
{(Leslie and Quarini 1979, Chollet and Lesieur 1981) into the discussion.

We begin by specializing eqn (7.111) for the effective viscosity to the subgrid
case. This step involves only the replacement of the general lower bound in
the integration by the specific lower bound j > k,:

viklk,) =k j 4% Lk, a(lk — jD {qk) — q(j)} x

JjZzk,k<k,
y 1
q(k){wk) + o(j) + ok — jD}

Notational differences aside, this is exactly the same form as studied by
Kraichnan. Also note that, like Kraichnan, we simplify matters by dropping
the time dependences.

We are interested in two limiting cases—k — 0 and k — k.—but we should
first say something about the form of the spectrum. We shall take this to be

k* 0<k<k
E(k) ~ {k—5/3 kp <k< ;O,

where k, marks the boundary between the energy-containing and inertial
ranges. This allows us to consider both realistic spectra (n > 0) and the
idealized case of n = —5/3, as considered by Kraichnan.

The corresponding form for the modal decay rate w(k)—see eqn (6.121)—
can safely be assumed to apply to all wavenumbers, as it is well behaved
everywhere. For similar reasons, it will soon be apparent that we do not have
to worry about viscous range forms, provided only that the spectrum in this
range falls off faster than 1/k.

(10.12)

(10.13)
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From the outset, it is important to recognize that the r.h.s. of (10.12) is made
up from ‘output’ and ‘input’ terms (i.e. when considered from the point of view
of an energy balance for mode k), and that the relative magnitude of these two
terms is the governing factor in our interpretation of v(k|k,) as an (apparent)
coefficient of viscosity. Accordingly, we emphasize this aspect by rewriting
equation (10.12) as

4z

v(klk,) = k"2 A(klk,) — E—(EB(kUcc), (10.14)

where the coefficients A(k|k.) and B(k|k.) are given by

1
klko) = 4% Lk, jg(k — j .
A(klkc) ch j Lk, j)a(|k ”)w(k)+w(j)+w(|k—j|)’ (10.15)
1
B(k|k,) = d* Lk, jg(1k — jI)q(j . (10.16
(klkc) sze J Lk, 3)q(] Jl)q(J)w(k)+w(j)+w(|k_j|) (10.16)

We should note that A(k|k_ ) represents the loss of energy from mode k to all
other modes, whereas B(k|k,) represents the gain to mode k from all other
modes.

We are now interested in the situation where k — O for fixed k.. Under these
circumstances the dissipating motions and the eddies upon which they act are
widely separated in k-space. If this separation were to be wide enough, we
could expect that an analogy between turbulent dissipation (albeit restricted
in this way) and molecular dissipation might hold quite well. In the molecular
case, the scales of the dissipating motions (i.e. essentially of the order of the
mean free path) are separated by many orders of magnitude from the hydro-
dynamic scales, where their average effect can be expressed in terms of a
constant coefficient of viscosity. For the general turbulent case—without a
spectral gap—this analogy (however popular) must necessarily be rather
weak.

Let us begin by examining equation (10.14) in a rather qualitative way. It
is immediately clear from the nature of the r.h.s. that v(k|k.) is not positive
definite. If the second term should ever be larger than the first, then the effective
viscosity would be negative. In fact this would not be the disaster that it would
be in the molecular case. There the processes are irreversible and thermo-
dynamics demands that v, is always positive. Here we are modelling the
conservative—and hence reversible—inertial energy transfer in the Navier—
Stokes equation, and a negative coefficient merely implies that the analogy
with molecular processes has become a little strained.

We may reach a somewhat more quantitative conclusion if we make the
reasonably obvious inference that, as k — 0, the two coefficients A(k|k.) and
B(k|k.) tend to the same dependence on k. (They will, of course, have different
dependences on the fixed cut-off wavenumber k). Then the relative mag-



394 NUMERICAL SIMULATION OF TURBULENCE

nitudes of the input and output terms will be determined, as k — 0, by the
form of E(k) at small k. That is, from eqn (10.13), if n < 2 the output term will
dominate as k — 0 and v(0|k.) > 0. However, if n > 2 the input term will
ultimately dominate as k — 0 and v(0k,) < 0.

This rough analysis tends to suggest that it may be worth our while to
discuss various cases according to the value chosen for n (recall that the form
of the spectrum is essentially arbitrary in isotropic turbulence). Also, depend-
ing on the value of n, we should note that the relative values of k, and k, may
be significant. Accordingly, we shall discuss three specific cases i.e. n =
—5/3, n=1, and n = 4, as these were the choices made in three different
investigations.

Case I: n= —5/3 (or, equivalently, k, = 0). This was the case considered by
Kraichnan (1976). For k — 0, he derived the general form

L . Jdq()) 1 )
v(ktkc)—lsL 12{74(1)+ 3 }w(ij(ij(k)dj, (10.17)

by (in effect) expanding out k=2 A(k|k ) in powers of (j — |k — j|).

The reasons for neglecting the term involving B(k|k.) are not given in detail.
As we have just seen, such a step is only valid once we have made the additional
assumption that n < 2. In fact, the general case (as k — 0) requires a more
general equation than (10.17), with an asymptotic contribution from the input
term as well®.

However, after that Kraichnan assumed that the Kolmogorov power laws

E(k) = a3k~ (2.137)
w(k) = BBk, (6.121)

where « and B are constants, could be applied to all wavenumbers. Then it
follows that B(k|k.) vanishes as k — 0, eqn (10.17) becomes valid, and indeed
reduces to the simpler form

v(klke) = k™2 A(klk,)

10.1
= Lemk;‘”3 k<« k.. (1018

128

We should note the important feature of this asymptotic subgrid viscosity: it
is independent of k.

At the other extreme, we have k = k.. Now, not only can the input term no
longer be neglected, but its presence turns out to be vital in order to cancel a
singularity in the output. We can see this as foliows. Taking the full form for
v(k|k,), as given by eqn (10.12), and substituting (2.137) and (6.121) for the
spectra and modal decay rates, we obtain
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'\, 3; . (—11/3
viklk;) = k d’j L(k, j)k — j| x
4np izk,
k1B i

X k2/3 + j2/3 + |k _j|2/3'

(10.19)

The singularity arises when k = j = k_, such that |k — j| = 0. However, it can
be shown that the factor k™*%* — j7'173 cancels rapidly enough to make the
singularity integrable, as |k — j| = 0. Accordingly, the integral over j exists,
and can be evaluated by making the change of variables

i= kch
so that, for k = k., eqn (10.19) becomes
ag'P
vk |k.) =B <T> k43, (10.20)
where B is given by (see also eqns (7.113) and (7.114); note that B = D")
1 1
B=— d3 L, D1 —J)7HB31 —g1B )
4an21 JLAL D)L = I SRS PRI

(1021)

It follows from eqn (10.18) that we can also write (10.20) in terms of the
asymptotic eddy viscosity as

vk |k,) = 12Bv(0]k,). (10.22)
Kraichnan has given this as
v(k.|k.) = 5.24v(0|k,), (10.23)

which implies the value B = 0.44 for the integral.
The constant f§ can be eliminated by invoking the energy integral—see eqn
(6.125)—with the result that (10.18) becomes

v(0lk,) = <0‘44>81/3k;4/3 k <« k.. (10.24)
o

The full numerical calculation of v(k|k,) is presented in Fig. 10.1 (broken
curve), with the value of the Kolmogorov constant chosen to be « = 1.5. It
can be seen that, as k — 0, the effective viscosity quickly reaches its asymptotic
value v(0lk,) = 0.29¢'3k_ %3, and, for k — k_, it rises to a cusp where v(k |k,) =
5.24v(0]k,).

Case 2: n =1, k, < k.. Leslie and Quarini (1979) considered the effect of
what they called a ‘production spectrum’, which was supposed to be typical
of real shear flows. The form chosen reduced to E(k) ~ k at small values of k,
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Fig. 10.1. Comparison of subgrid eddy viscosities for isotropic turbulence, based on
RPT and RG theory: ———— RPT value, as calculated from equation (10.12) for & = 1.5,

RG (iterative averaging) value, as calculated from equation (10.26) for
h =038

and to the Kolmogorov form for large k. In both cases ‘small’ and ‘large’ are
relative to k,. Then eqn (10.12) was used to compute v(k|k.) for various values
of the ratio k /k,.

For large values of this ratio, the computed subgrid eddy viscosity was
virtually identical with Kraichnan’s result, as indeed one would expect. How-
ever, as k./k, was reduced in steps, from 16 down to 2, the cusp at k = k,
softened and reduced while the low-k asymptote was more or less unaffected.

This behaviour confirms Kraichnan’s remark that the form of the cusp at
k = k. is not universal. It can also be readily understood in terms of the
preceding analysis of Case 1. As k, tends to zero, the integrand on the r.hs.
of eqn (10.21) can approach the integrable singularity at |k — j| = 0, with the
resulting development of the cusp.

Case 3: n=4, k, < k.. Chollet and Lesieur (1981) carried out an analysis,
similar to that of Kraichnan, but based on the Eddy-damped quasi-normal
Markovian closure. Their expression for v(k|k,) as k — 0 (their eqn (2.5)) is
slightly different from Kraichnan’s result, as quoted here in the form of eqn
(10.17), but Chollet and Lesieur seem to imply that they are the same.

From our present point of view, the most interesting result from this work
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is that Chollet and Lesieur found that their eddy viscosities became negative
as k, became small relative to k. This behaviour accompanied a choice of
initial spectrum which varied as k* for small k, and was most marked as
k, — k.. They also found a reduction of the cusp at k = k., and their resuits
in this instance were similar to those of Leslic and Quarini.

Recently, Domaradzki, Metcalfe, Rogallo, and Riley (1987) used a similar
initial spectrum when they obtained eddy viscosities for isotropic turbulence
directly from 64-cubed and 128-cubed numerical simulations. Qualitatively,
their results are quite like those of Chollet and Lesieur, with a reduced cusp
at k = k. and negative viscosities for k < k.. However, at a more detailed
level, there appears to be very little quantitative agreement between the two
investigations.

We should also note that Domaradzki et al. cite the form of eddy viscosity
(for small k) which is due to Chollet and Lesieur, but erroneously attribute it
to Kraichnan (1976). There are, as we have pointed out earlier, small differ-
ences in the coefficients between the two forms. Further, Domaradzki et al.
have incorrectly concluded from this relationship that there will be a cross-
over to negative eddy viscosities when the spectrum behaves as k", which
n < —5, for k < k.. However, this is attempting to explain the existence of a
cross-over from the properties of the output term alone. As we saw previously,
such an explanation must take the input term into account as well, with the
result that one predicts a cross-over at n = 2.

10.3.3 Renormalization group

In Section 9.4, we saw how we could progressively eliminate degrees of
freedom by averaging over a series of shells in wavenumber space, and how
this led to a reduced form of Navier-Stokes equation defined on the residual
interval in k-space. The non-linear coupling of the residual modes to the
eliminated modes was represented by a renormalized eddy viscosity. This, in
turn, was determined by an iteration which reached a fixed point associated
with the onset of Kolmogorov scaling behaviour.

While discussing this process, we noted the close resemblance to the ideas
associated with the LES technique. In this section we shall consider this point
a little more formally, so that the renormalized viscosity will be interpreted
as a subgrid viscosity, and this will provide a basis for a comparison with the
results from RPT.

In RG, the existence of a fixed point is taken as an indication that universal
behaviour has been reached. In the present case, we can interpret this as
meaning that we have iterated for a sufficient number of cycles for a universal
form of the effective viscosity to have been established. If we denote the
number of iteration cycles to the fixed point by n = N, for any particular value
of h, then, from eqn (9.90), it follows that we have eliminated modes in k-space
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down from kq to ky, where ky, is given by
ky = h"Vk, (10.25)

and the scaling parameter lies in the range 0 < h < 1.

Now we can make the connection with the LES formulation quite simply
by choosing the cut-off wavenumber to be the wavenumber at the fixed point,
1e.

k, = ky.

Then the equation of motion for the explicit scales is given by (9.93), with all
wavevectors satisfying the condition 0 < k, j, |k — j| < k. The renormalized
viscosity is given by eqn (9.98), and we can rewrite this as

k
vik) = 7 (k—> al/2g 13 403, (10.26)
N

where we have dropped the subscripts on eddy viscosities at the fixed point.

Numerical values of 7#(k/ky) have been reported (McComb and Shanmu-
gasundaram 1985; McComb 1986), and in Fig. 10.1 we show a typical result
for h = 0.8, which can be compared with the result from RPT. It can be seen
that both forms asymptote to constant values as k' tends to zero, and that

3.0 " T T T T T T T

2.0k -

1.0t -

0 1 | ' 1 L 1 "
0.6 0.7 0.8 0.9 1.0

h

Fig. 10.2. The Kolmogorov constant «, as calculated by iterative averaging from eqn
(10.27): variation with the shell thickness parameter h.
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their magnitudes are quite comparable. However, at the cut-off &’ = 1,the RG
form demonstrates its local (in wavenumber) character, as it does not give the
cusp due to the unphysical behaviour of the Kolmogorov spectrum at low
wavenumbers.

Some idea of the quantitative performance of the iterative method can be
gained by calculating the Kolmogorov spectral constant o« (McComb 1986).
This can be done as follows. Substitute from eqn (9.98) for the renormalized
viscosity into the dissipation relation for the explicit scales, as given by (9.94).
Then, with some rearrangement, we obtain

1 -2/3

o= {ZJ Pk k13 dk’} , (10.27)
0

where we again drop the subscript on ¥(k'}) at the fixed point.

Equation (10.27) can be evaluated numerically, and the results are plotted
in Fig. 10.2 for a range of values of the scaling parameter h. It may be noted
that, for these values of h (the range for which the expansion in higher-order
moments would converge; see Section 9.4.8), the values of « shown lie com-
fortably within the most probable experimental range. However, this depen-
dence on the thickness of the eliminated shells is an aspect of the iterative
averaging method which still has to be elucidated.

104 Miscellaneous simulation methods

From our discussions of the numerical simulation of turbulence, it has become
quite clear that there is no fundamental difficulty in soiving the Navier—Stokes
equation in this way. The techniques are well established and in practice the
only limitation is one of computer size. Another aspect of our discussion has,
of course, been the ways in which we could reduce the size of a given turbulent
computation, so that we can fit it on to an existing computer. In this area
we have covered both phenomenological and renormalization methods of
modelling subgrid modes, in order to carry out an LES of the Navier—Stokes
equation.

In this section, we shall give a brief discussion of some other methods of
reducing the computational problem involved in representing turbulence
numerically on the computer. These particular methods can be divided
roughly into two categories: those which simplify the computation of the
Navier—Stokes equation but do not conveniently fit into the mainstream
category discussed above, and those which bypass the Navier—Stokes equa-
tion altogether. In addition, we shall confine ourselves to methods where some
actual computation has taken place and has been reported in the literature.
This, for the present, rules out those novel approaches which have not yet got
beyond the stage of theoretical speculation.
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10.4.1 Methods based on the Navier—Stokes equation

We have seen that, for a fixed number of grid points stored on a computer,
there has to be a tradeoff between the value of the Reynolds number that we
can achieve on the one hand, and the complexity of the flow that we wish to
study on the other. This is, of course, just a matter of symmetry. The more
symmetric the flow, the higher is the Reynolds number which can be obtained.
Thus we rank flows in order of difficulty: isotropic turbulence, followed by
flows in slab geometry (themselves ranked according to boundary and initial
conditions), and so on.

Now, these symmetries are applicable to the mean behaviour of turbulent
flows and hence (despite their geometric nature) are in this context purely
statistical concepts. In other words, the problem of representing the raw
velocity field, obtained by solving the discretized Navier—Stokes equation on
amesh in a box, is much the same whether the field is isotropic or corresponds
to plane Poiseuille flow for example. The differences really only arise when
one starts to work out averages (this is an oversimplification, as we are
ignoring the practical consequences of different boundary conditions). Thus
the question may be asked: can one find even simpler computational problems
in which symmetry constraints can be used to reduce the number of points at
which one must calculate the unaveraged velocity field?

For quite a long time there has been speculation that the Taylor-Green
vortex (Taylor and Green 1937) could provide such a problem. This is a
three-dimensional vortex structure with an initial velocity field which is two-
dimensional. As time goes on, a three-dimensional velocity field develops, and
vortex stretching produces a form of turbulence. The essential computational
feature is that symmetries applied to the initial deterministic velocity field
are taken to apply for all subsequent times including, ultimately, the re-
sulting turbulent field. In a well-known simulation, Brachet et al. (1983)
observed a turbulent inertial range with power-law exponent of the order
1.6-2.2 (note that 5/3 = 1.67) at a Taylor—Reynolds number of R, = 110. The
authors state that their TG code with 256-cubed resolution is equivalent
to a 64-cubed general spectral code in terms of computational work and
storage.

More recently, Kida and Murakami (1987) have identified an even more
symmetric field which is essentially just a pragmatic modification of the usual
concept of isotropic turbulence in a box. By imposing additional symmetries
upon the unaveraged velocity field, these authors state that the value of a
single component of the velocity field (as opposed to three such components)
at each point of a sub-box, of volume equal to 1/64 of the volume of the original
box, is sufficient to represent the whole velocity field. In this way, they were
able to make an 85-cubed simulation resolve 3 x 340-cubed effective modes,
thus enabling them to achieve Taylor—Reynolds numbers up to R, = 100 and
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a decade of Kolmogorov inertial-range spectrum. These results can be com-
pared with those obtained in the 128-cubed conventional simulation of Kerr
(R, = 82.9 and a short range of — 5/3 spectrum) as discussed in Section 10.1.1.

It is clear that the application of deterministic symmetry criteria to a
random velocity field begs a good many questions. Clearly, in the language
of the subject, these cannot be regarded as ‘honest simulations’. This point
seems to be recognized by Brachet et al., who really only claim to be studying
the small-scale structure of the TG vortex, and who (noting that their values
of skewness are much larger than for wind-tunnel turbulence) concluded that
their TG simulation may be reproducing certain features of geophysical
turbulence at much higher Reynolds numbers. However, the results of this
approach are interesting, and clearly it merits further (and more critical)
attention.

Another possible way of reducing the number of degrees of freedom is to
take a representative sample of the Fourier modes. A standard method is to
use random sampling, as in Monte Carlo methods. But, in a spectral simula-
tion of turbulence, this raises technical problems to do with satisfying
the various invariance properties. Hosokawa and Yamamoto (1987) have
demonstrated that such problems can be overcome, in connection with a
numerical simulation of the Hopf characteristic functional. Using a 32-cubed
spectral code, they carried out simulations at R, = 57.7, 115, 231, and 577.
Their energy spectra demonstrated Kolmogorov scaling and they found the
constant of proportionality to be « = 1.4. A comparison of their result for the
one-dimensional spectrum with the LET theory for R; = 533 (McComb and
Shanmugasundaram 1984; see Section 8.2.3) indicated good agreement be-
tween the simulation and the analytical theory.

10.4.2  Aliternatives to the Navier—Stokes equation

In fluid mechanics the study of vortex dynamics has long been regarded as a
valid alternative to a direct attack on the equations of motion. The general
method is to assume a form of vortex (i.e. to specify the localized velocity
distribution) and then to consider an assembly of such vortices. Interactions
between the constituent vortices are inductive and can be taken to be de-
scribed by the Biot—Savart law. In particular cases (e.g. a long vortex filament)
there can be a self-inductive effect, with the vortex filament moving in its own
induced velocity field.

A classical problem is to represent a vortex sheet by an array of point
vortices. In practice, as the sheet rolls up, the individual vortices tend to behave
in a chaotic way and destroy the representation of the vortex sheet. This can
make it difficult to use ideal flow methods in aerodynamic situations (e.g. see
Saffman and Baker 1979), but, in the present context, the possible relevance
to the breakdown of shear layers to turbulence is of interest, and additional



402 NUMERICAL SIMULATION OF TURBULENCE

point is given to that interest by the vortical character of turbulent shear
layers.

Simulations of turbulent shear layers have proceeded from a few hundred
to many thousand vortices (Kadomtsev and Kostomarov 1972; Ashurst 1979;
Aref and Siggia 1980), and have generally managed to reproduce some of the
features observed in laboratory experiments on such flows. Other vortex
simulations include the turbulent spot (Leonard 1980) and the axisymmetric
turbulent jet (Edwards and Morfey 1981). Again, the quantitative aspects are
realistic, and—as in the simulations of the shear layer—the results are really
more of interest to the study of coherent structures than in the context of
quantitative turbulent simulations. Accordingly, we shall not pursue the sub-
ject any further here, and the interested reader is referred to the review by
Leonard (1984).

From a fundamental point of view, the limiting feature of vortex methods
is that they represent continuous distributions of vorticity in a fluid by
discontinuous vortices. Nevertheless, they preserve the macroscopic con-
tinuum picture of the fluid, and one might enquire whether there is anything
to be gained by introducing a discrete representation at some more micro-
scopic level.

On the face of it, the idea of first simulating the Navier—Stokes equation
from the molecular level and then simulating turbulence on top of that (at
enormously greater length and time scales!) seems a rather clumsy approach
to the problem. Certainly simulations of macroscopic behaviour, obtained by
using a computer to solve Newton’s second law for intermolecular collisions
in a gas, were being performed for two decades before the first numerical
simulation of turbulence. And in recent years, these methods have been
extended to simple non-equilibrium flows (for a review, see Evans and Hoover
1986). But, taking the most advanced simulation of macroscopic fluid flow to
date (Rapaport 1987), the prospects for a turbulent simulation do not look
good. Rapaport used a molecular dynamics simulation to reproduce the flow
of a two-dimensional fluid around a circular obstacle. Known phenomena
such as periodic vortex shedding and the formation of a vortex street have
been successfully reproduced. However, the author observes that the increase
in computer power needed to extend even this simple situation to three
dimensions would require the next generation of computers.

It seems, therefore, that one would be justified in totally dismissing the idea
of turbulence simulation from microscopic levels. Yet, the recent development
of lattice gas models seems to hold out a possibility that such a verdict may
be a little premature.

In this approach, the gas is modelled by the movement of particles (all of
which have the same constant speed) along the links of a lattice. The rules
which decide whether a particle will move along one lattice link rather than
another (or remain stationary or collide with another particle) are determinis-
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tic and locally determined. Such a set of rules constitutes what is known as a
cellular automation (Wolfram 1983). Macroscopic behaviour is then obtained
in the usual way by averaging over many ‘particles’ to obtain the drift
velocities.

In two dimensions, it has been shown (Rivet and Frisch 1986) that the lattice
gas model reduces to the two-dimensional Navier—Stokes equations, and
plane Poiseuille flow has been successfully simulated (d’Humieres and
Lallemand 1986). The success of this method depends on the correct choice
of lattice type and also the collision rules. In two dimensions, the hexagonal
lattice gives the required isotropic macroscopic behaviour, but apparently
there is no corresponding lattice in three dimensions. Recently d’'Humieres,
Lallemand, and Frisch (1986) reported the derivation of the three-dimensional
Navier—Stokes equations from two lattice gas models, i.e. a multi-speed model
on a three-dimensional cubic lattice and the three-dimensional projection of
the four-dimensional Navier—Stokes equations modelled on a face-centred
hypercubic lattice.

Much about this technique remains mysterious, but at least there appears
to be a possibility of quasi-microscopic simulations with much smaller num-
bers of particles than in molecular dynamics simulations. Nevertheless,
Orszag and Yakhot (1986) have concluded that the computational require-
ments for the lattice gas models are likely to be much more severe than for
the Navier—Stokes equations. Intuitively this is obvious, and is always likely
to be the case. Perhaps these models may turn out to be useful in cases where
the continuum equations are either unknown or particularly difficult to solve.
One thinks of non-Newtonian and two-phase flows, flows with chemical
reactions, and flows involving combustion. Certainly this subject is developing
so rapidly that any conclusion or firm prediction is likely to be falsified by
experience rather quickly.

Note

1. The need for this was pointed out to the present writer by J. K. McKee (personal
communication, 1987). In an unpublished analysis, McKee derived the general
expression (i.e. including the input term) for the effective viscosity, in the limit k£ — 0,
as

0

viklk.) = % L t(j, j. k) {74(1') + Eg—;ﬁ}jz dj —
14n
- 15q(k)
where t(k, j,!) is the correlation time for triple moments and is given by
tk, j,1) = [wlk) + o(j) + @D)].

This expression should be compared with eqn (10.17), where only the output term
(i.e. the first term on the r.h.s. above) is included.

J t(j, J, k)g*(j)i* dj,
k.
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11
COHERENT STRUCTURES

Organizing a logical account of a fashionable and fast-growing subject, like
the study of coherent structures (or recognizable ‘deterministic’ patterns) in
turbulent flows, is not without its difficulties. To begin with, quite a variety of
such structures has now been identified, and, although different structures can
appear to be very different phenomena, clearly they must all be facets of the
same basic phenomenon, if only at the level that they are all solutions of the
Navier—Stokes equation!

At the present time, the safest way of tackling the problem of taxonomyj, it
seems to us, is to make a subdivision of the subject into very broad generic
classes. For instance, a division into flows without solid boundaries— where
coherent structure emerges rather easily as an organized vortex pattern—and
flows with solid boundaries—where the coherent structure is not so easily
seen, and requires a good deal of careful elucidation—seems likely to prove
helpful, if only because such a division has tended to reflect different schools
of activity. ‘

We shall also make a further division of wall-bounded flows into those flows
where the Reynolds number is intermediate between the values associated
with laminar and turbulent flows, and flows where the turbulence is well
developed. We should note in passing that, although we shall thereby consider
the transition from laminar to turbulent flows, we shall not deal with the
subject of hydrodynamic stability, which is an important subject in its own
right (see our suggestions for further reading at the end of this chapter).

Then there is the question of historical priority. The current interest in
coherent structures stems from certain specific investigations in the late 1960s/
early 1970s. Yet, even from its earliest days, turbulence research has always
included—if only as a minority interest—some consideration of deterministic
structures such as waves or vortices. Thus, inevitably perhaps, certain of the
later results were to some extent rediscoveries, and their value may lie in
having made the relevant phenomena more apparent or better known.

However, from our present point of view, our problem is one of deciding
whether to discuss the various investigations in chronological order or to
adopt (essentially) the flashback method. In the event, we have taken no
definite decision on this, but have used whichever method seems best suited
to clarity of exposition in a given topic.

Lastly, we should make a few general remarks about vortices and vorticity.
Although it is natural to refer to the eddying motions which occur in real fluid
flows as ‘vortices’, it should at least be borne in mind that the term has a
precise meaning in classical hydrodynamics. In an ideal fluid there can be a
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mathematically sharp boundary between rotational and irrotational regions
of the flow, so that the concept of a vortex is well defined. In a viscous fluid
the concept becomes blurred —literally—as the effect of viscosity is to sustain
a velocity gradient and hence to smear out the boundary between rotating
and non-rotating fluid. Nevertheless, some investigators feel that the methods
of classical hydrodynamics can usefully be extended (with suitable modifica-
tions) to real fluids and, of course, this is a particularly attractive approach in
the case of coherent structures.

The concept of vorticity is equally available to both real and ideal fluids,
being merely the curl of the velocity field. It may be helpful to think of vorticity
as a propensity on the part of the fluid to rotate. The direction of the associated
spin vector is—by definition—at right angles to the fluid velocity. The reader
who is not used to thinking in terms of vorticity should be careful to bear this
in mind, and (for instance) recall that the term ‘streamwise vorticity’ means
that component of the spin vector which points in the direction of flow. Thus,
with our usual conventions, we would be talking about w,, which would (from
the definition ® = curl u) involve velocity components u, and u;. Some
general references on the subject of vortex methods are given at the end of this
chapter.

11.1 Coherent structures in free turbulent flows

11.1.1  Plane mixing layers

Possibly the most striking of all the coherent structures in turbulent flow
is the Brown—Roshko vortex, as found in the plane mixing layer at high
Reynolds numbers (Brown and Roshko 1974). The physical situation is illus-
trated in Fig. 3.9, where the mixing layer (or free shear layer) is formed at the
boundary of two flows which are moving at different speeds, and the roll
vortices, as observed by means of spark shadowgraphs, are sketched in Fig.
3.10. As we shall see, the remarkably regular ‘two-dimensional’ quality of these
vortices may be uncharacteristic (and even perhaps somewhat fortuitous).
Nevertheless, they have played a major part in stimulating interest in the
whole subject of coherent structures.

The experiments of Brown and Roshko were carried out with gases of
different densities, the most extreme case being nitrogen in one stream and
helium in the other, thus giving a density ratio of 7: 1 across the mixing layer.
The Reynolds number—based (as in boundary layers) on the downstream
distance—took values up to 10°, quite adequate to ensure well-developed
turbulence.

If one disregards the smali-scale structure due to the turbulence, then the
shadowgraphs of the mixing layer look for all the world like a classical vortex
street. But the vortex street is, of course, a phenomenon also encountered at low
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Reynolds numbers, where the turbulence is not appreciable. It is this fact
which made these results so interesting and surprising, and indeed Brown and
Roshko pointed out the resemblance between their structures and the vortices
found by Freymuth (1966) who studied the laminar instability of the [ree shear
layer.

However, they also noted an important difference between the laminar and
turbulent cases. In the former, the spacing of the eddies was constant and
related to the wavelength of the perturbation which initiated them, whereas,
in the turbulent case, the diameter of eddies and the spacing between them
both increased with downstream distance. This behaviour was attributed to
the amalgamation of neighbouring eddies as they proceeded downstream.

It was soon established that the roll vortices were not just a property of the
mixing layer between gas flows of different densities. It was shown by Winant
and Browand (1974) that the effect could be found in water at small Reynolds
numbers, and by Dimotakis and Brown (1976) that the roll vortices were
present at values of the Reynolds number (based as before on the downstream
distance) up to 3 x 10°. Both investigations relied on flow visualization, but
the latter authors also use a laser anemometer to measure the velocity field.
In particular, they measured the autocorrelation of streamwise velocities at a
fixed point but with a variable time lag .

The basic definition of the autocorrelation can be obtained by specializing
eqn (2.36). As usual, we take x; to be the direction of flow. Then, putting
a=f=1x=x"=x,,and t' =t + 1, we have the streamwise autocorrela-
tion defined as

Q11(x1’x1§t’t+T)=R11(T)<u%>s (11.1)

where the general correlation tensor Q,, is, in turn, defined by eqn (2.24). It
should be noted in passing that Dimotakis and Brown actually take the
autocorrelation coefficient to be (in effect) Q divided by (AU/2)?, where AU =
U, — U,, and U, and U, are the upper and lower stream velocities as shown
in Fig. 3.9.

The autocorrelation coefficients obtained were found to reflect the results
of the flow visualization in that they showed a clear oscillatory dependence
on the lag time. Naturally one would attribute this to a periodic structure
being swept past the measuring point in the direction of tlow (i.e. x,) with
some mean convention velocity. A plausible choice of convection velocity
would be the mean of the upper and lower streams, i.

U=ttt b

11.2
e R (11.2)

with the convection time scale 7, following as

1. = x,/U.. (11.3)
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If we denote the time taken for the autocorrelation coefficient to reach its
first minimum by 7,/2, then it turns out that this period scales quite well on
the convection time, as given by eqn (11.3). Dimotakis and Brown found that,
for a fixed value of the velocity ratio U,/U,, and a wide range of values of x,
and U,, the scaled periodic time was approximately constant, satisfying the
condition

0.40 < 7o/, < 0.50.

It was pointed out by Bradshaw (1975) that the shadowgraph method of
flow visualization (at least, in the configuration used by Brown and Roshko)
tends to average out any spanwise variations, and hence will emphasize the
two-dimensional structure of the large-scale eddies. Certainly this raises the
question of what the flow actually looks like in plan view (the side elevation
view is the one shown in Fig. 3.10).

In considering this point, let us begin by noting that ‘two-dimensional’ in
the present context merely means that there is no variation of mean properties
in the spanwise direction. If this is the case, the roll vortices sketched in Fig.
3.10 can be interpreted as cross-sections of cylinders of rotating fluid (or,
perhaps, vortex tubes), with the ‘diameter’ of the cylinder being independent
of the spanwise coordinate.

In practice, of course, the spanwise extent of the flow must be finite, and so
there must be edge effects, with various forms of instability (e.g. kinking) of
the vortex tubes being possible. This was found to be the case by Chandrsuda,
Mehta, Weir, and Bradshaw (1978) , who made a flow visualization of the
plane mixing layer and concluded that the Brown-Roshko vortices were
associated with transitional behaiour at low ambient turbulence levels.
They also concluded that the Brown—Roshko vortices were rare in practice,
with the characteristic structure being fully three-dimensional and hence
less obviously ordered. Later investigations of spanwise structure broadly
support these conclusions (Browand and Troutt 1980; Jimenez 1983). They
also underline just how complicated this simple flow configuration can be,
with many factors (including initial conditions) having to be taken into
account.

We conclude this section with an interesting investigation by Tavoularis
and Corrsin (1987), who sought to eliminate purely systematic (e.g. geometr-
ical) effects by constructing their shear layer from a non-uniform array of
turbulent jets and wakes, and surrounding this by the approximately isotropic
turbulence generated by a grid. The resulting shear layer was found to be
without detectable periodicity, yet weak periodic vortices grew up as the flow
moved downstream. The particularly interesting feature of these vortices was
that their scale and frequency matched those generated in shear layers which
began with strong vortices. This must tend to suggest that the Brown—Roshko
vortices may indeed be a universal property of the flow configuration.
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11.1.2  Other free shear flows

Coherent structures have been found in other free shear flows but are not
as striking or as dramatic as the Brown-Roshko roll vortices. In general,
their presence has to be established by careful eduction methods, usually
based on quantitative measurements rather than on flow visualization alone.
Nevertheless, the early work by Grant (1958) was quite specific on the subject.
He described the large-eddy structure of turbulent flow as being ‘more ordered
than has usually been supposed’. Indeed, his photographs of the wake behind
a cylinder being towed through still water show evidence of a regular vortex
motion which modulates the fine-scale turbulence. Despite the blurring effect
of the turbulence, it is quite possible to discern an ordered structure which
resembles the vortex street which one would expect at Reynolds numbers too
low for turbulence to appear.

The presence of these regular eddies was confirmed by detailed measure-
ment of velocity correlations using hot-wire anemometry (incidentally also
confirming the still earlier measurements and speculation of Townsend (1956)).

Further research in this area has mainly concentrated on quantitative
methods of elucidating the large vortex structures of the plane wake. Recent
accounts (including many references to work carried out in the interim) can
be found in Mumford (1983) and Hussain and Hayakawa (1987). Both these
investigations used arrays of hot-wire anemometers to map out the coherent
structures, but Mumford detected the velocity signal whereas Hussain and
Hayakawa made the instantaneous vorticity field the basis of their detection
scheme.

The other classical free-shear flows have also yielded their own coherent
structures. For instance. Crow and Champagne (1971) found vortex ‘puffs’ in
the transitional region of the round free jet. We shall not go into further detail
here, but in the interests of completeness we shall list some representative
investigations into coherent structures in various free shear flows as follows:
three-dimensional wake behind bluff bodies (Perry and Watmuff 1981, Perry
and Steiner 1987, Steiner and Perry 1987); round jets (Bruun 1977, Yule 1977,
Sreenivasan, Antonia, and Britz 1979); plane jets (Rajagopalan and Antonia
1981, Mumford 1982, Moum, Kawall, and Keffer 1983).

11.2  Conditional sampling, intermittency and the turbulent—non-turbulent
interface

In Section 11.1.1, we noted how the strikingly clear Brown—Roshko vortices
could easily be demonstrated by traditional methods: by both flow visualiza-
tion and correlation of anemometer signals. Not surprisingly, the less clear
coherent structures encountered in other free-shear flows require more elabo-
rate techniques, such as pattern-recognition methods, for their elucidation.
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A discussion of the technicalities of this subject would take us too far afield,
but there are certain aspects which have a general application to the study of
turbulence, and hence merit some attention here. To be specific, we shall
discuss the topic of conditional sampling.

As an example, let us consider the intermittency which arises at the outer
edge of a boundary layer or a jet. As we saw previously in Section 3.2, we can
distinguish quite sharply between turbulent and non-turbulent fluid. The fact
that the position of the interface between the two regions is a random function
of time means that a suitably sited anemometer will experience an intermittent
signal. Thus, if we were to take an average of the whole velocity record, we
would be including periods when there was no turbulent signal at all.

In one sense, of course, this would be a perfectly reasonable thing to do,
and would give an average velocity at the measuring point. However, for other
purposes, we might see a more meaningful average as being one in which only
the turbulent portions of the signal were included.

Now the idea of conditional sampling is really quite general. It simply means
that we sample a data set according to some predetermined criterion. In our
present example, an obvious form of conditional sampling would be to accept
portions of the velocity record into the averaging if, and only if, they were
known to be turbulent.

Alternatively, we could generalize this procedure to situations where there
were two anemometers at the same streamwise location, but with one in the
intermittent zone and the other deep in the boundary layer. Then we could
accept data from inner anemometer, conditional upon there being turbulence
at the outer anemometer. (We do not assert that this would be dynamically
significant, merely that it would be an example of conditional sampling.)
Clearly there are many such possibilities.

In turbulence, the pioneering work in this area is due to Kovasznay, Kibens,
and Blackwelder (1970), who introduced an intermittency function I(x, t) such
that

(11.4)

1) = 1 for turbulent flow
) for non-turbulent flow.

With this definition, the intermittency function I(¢) at a particular value of x
consists of a series of positive-going unit pulses of random interval and
duration. It may be related to Townsend’s intermittency factor y (see Section
3.2.1) by time averaging:

- 1 t+T

y(x,t) = I(x,t) = lim ff I(x,t)dt". (11.5)
T—-w T t

Then, using the terminology of Kovasznay et al., we can introduce new

conditional averages, such as ‘zone averages’, which we shall define as follows.

Consider some arbitrarily chosen property of the turbulence, which we shall
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call (). That is, f could be, for example, the pressure or a scalar component
of the velocity field at a given point. Evidently it will be a fluctuating quantity,
and its time average is given by

f = lim ~J f@ydr'. (11.6)

T—’oo

Now, if we perform this time average only during those intervals when I(t) = 1,

we obtain
f=<1y—f> J fe)I(e)dt'. (11.7)

Kovasnay et al. called this quantity a ‘turbulent zone average’.
Conversely, a ‘non-turbulent zone average’ can be obtained by averaging
only during the intervals when I = 0, or

= L(=Dhf
/= 1-1
) 1 t+T , , .
=T11£IJOWJ; {1 -1} f@)dr. (11.8)

It readily follows from (11.6), (11.7), and (11.8) that the conventional time
average is just the weighted mean of the two zone averages:

f=9 +1=ypf. (11.9)

Clearly we could extend this approach to define conditional averages in
many different ways. For instance. Kovasznay et al. go on to introduce ‘point
averaging’, a procedure which relies on detecting the instants at which the
turbulent —non-turbulent interface passes the detector probe.

However, we mention this only to illustrate the potential of the method, as
we shall not pursue any more specific cases here. Instead, we shall concentrate
on the most important general point. That is, how do we specify the intermit-
tency function 1(¢)?

The underlying problem, of course, is how do we answer the question: is
there turbulence at a point or not? Indeed, which quantity do we measure in
the first place in order to determine I(¢): the velocity? its first derivative? the
vorticity? Clearly there are many options open.

This problem has been studied by various workers. A good discussion of
the problem (along with a summary of other work) will be found in Hedley
and Keffer (1974). Other specific approaches (not based upon the velocity field
and its derivatives) include use of fluid temperature (in the flow past a heated
cylinder) as a criterion upon which to base decisions about intermittency
(LaRue and Libby 1976), and the use of simulated pseudo-turbulent signals
to study the problems of intermittency detection (Antonia and Atkinson 1974).
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Attempts to reduce the arbitrariness of decisions about the turbulent-non-
turbulent interface, by working from the equation of motion in order to
obtain a conservation equation for the intermittency function (Libby 1976) or
conditionally averaged transport equations (Dopazo 1977), are undoubtedly
the right way forward. While at present this subject is in its infancy, in the
future we can expect to see it develop as an important aspect of the usual
turbulence closure problem.

Lastly, we should note that the long tradition of pragmaticism in experi-
mental fluid mechanics is upheld by the frequent practical use of conditional
sampling, without apparently worrying unduly about the finer points of the
underlying theory. In this connection, an interesting work is that of Fiedler
(1975), who compares familiar mean quantities (for example, the radial varia-
tion of the three turbulent intensities in a plane jet) with their turbulent-zone-
averaged equivalents. As one would expect, there is no difference between the
two methods of taking means in the core region of the jet. But, in the
intermittent outer region, the conditional average gives (again, as one would
expect) higher values.

Evidently, this type of correction could have its implications for turbulent
energy balances, as discussed in Section 1.6.2. Such balances involve non-local
transfers and may be affected by intermittency if terms which dominate the
outer region are not corrected by zone averaging.

11.3 Transitional structures in boundary layers and pipes

In Section 3.2 we noted that the transition from laminar to turbulent flow in a
pipe was an intermittent process, involving patches of turbulence alternating
with intervals of laminar flow. Indeed, this phenomenon was first observed
towards the end of the nineteenth century by Reynolds, who invented the
idea of an injected dye line as a means of flow visualization (see Section
1.2 for references) and hence was able to see what he referred to as ‘flashes
of turbulence’. However, the notion that transitional flows might possess
interesting structures is due to the much more recent investigation of Emmons
(1951), who observed that the transition to turbulence in a boundary layer
over a flat plate was also intermittent, with isolated patches of turbulence
forming at random, and growing in number and in size as they moved
downstream. These patches of turbulence were referred to by Emmons as
‘spots’, and the term now seems to be universally employed.

Later on, Elder (1960) obtained the first really clear photograph of a
turbulent spot in a laminar boundary layer, revealing a shape which has now
been shown, by many subsequent investigations, to be quite characteristic.
In Plate II we show a photograph of a typical turbulent spot, which in
plan view is shaped rather like a diamond with its major axis in the direction
of the flow. This structure can further be resolved into two parts. The front
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part is very disordered and turbulent, with an envelope which is shaped like
an arrowhead whereas the rear part (i.e. the rest of the ‘diamond’) has a much
more ordered ‘streaky’ structures.

Elder’s results also supported the conjecture by Emmons that a turbulent
boundary layer is simply the aggregation of a number of turbulent spots.
Other views of the turbulent spot, as obtained by flow visualization, also
support this conjecture. For instance, Perry, Lim, and Teh (1981) found that
a spanwise cross-section (i.e. the end view) of a turbulent spot resembled the
corresponding (instantaneous) cross-section of the turbulent boundary layer
on a flat plate (as sketched, for example, in Fig. 1.2 of the present work).
Longitudinal cross-sections (side views) have been found to have a similar
appearance (Gad-el-hak, Blackwelder, and Riley 1981).

It has also been found (Wygnanski, Sokolov, and Friedman 1976) that the
locus of points of maximum height of the turbulent spot, as it moves down-
stream, is approximately equal to the thickness of a hypothetical turbulent
boundary layer, which is supposed to have originated at the position where
the turbulent spot was generated, and which was initially of the thickness of
the laminar boundary layer at that point.

Observations of this kind lend considerable support to the idea that the
turbulent spots are, so to speak, the basic building blocks of the turbulent
boundary layer. But what about other flows which are bounded by rigid walls?
In fact, turbulent spots have been observed, at the transitional range of
Reynolds numbers in plane channel flow (Carlson, Widnall, and Peeters 1982),
and turn out to look very much like those found in the boundary layer on a
flat plate. However, there was one striking difference: in the channel flow,
each individual spot not only grew laterally as it moved downstream, but
also ultimately split into two separate spots. This latter behaviour has not
apparently been seen in boundary layers.

In the case of pipes of round cross-section, one would expect things to be
different. Merely as a consequence of the geometry, it is not surprising that
the coherent precursors of full turbulence are not isolated structures in the
spanwise (i.e. circumferential) direction but appear to occupy the entire cross-
section of the pipe. Thus, in practice, one would expect to characterize them
by their length in the direction of flow. However, Wygnanski and Champagne
(1973), who made a very full investigation of transition in a pipe, found it
helpful to distinguish between two different types of coherent structure, which
they termed ‘turbulent slugs’ and ‘turbulent puffs’.

These categorizations arose because these investigators (like so many before
them, going back to the pioneering work of Reynolds) found that transition
depended upon the degree of disturbance at the inlet of the pipe. For the sake
of clarity, we shall summarize their initial findings as follows.

(a) Turbulent slugs. For the case of a smooth inlet and (at worst) slight
disturbances, transition occurred naturally, owing to boundary-layer
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instabilities at the inlet, for R > 5 x 10*. The turbulent patches occupied
the entire cross-section of the pipe, they had sharply defined leading and
trailing edges, and their length was of the same order of magnitude as
the length of the pipe. These particular turbulent patches were called
‘slugs’.

(b) Turbulent puffs. For the case of a large disturbance at the inlet and
values of the Reynolds number given by 2000 < R < 2700, patches of
turbulence were convected downstream from the inlet. These patches
were less clearly defined than those which occurred naturally, and were
called ‘puffs’.

Qualitatively, there were some resemblances between the slugs and puffs. For
instance, their frequencies of occurrence increased with increasing Reynolds
number, passed through a maximum, and then declined. Similarly, their
associated intermittency factor y reached an asymptotic value of unity as the
Reynolds number increased. Naturally, in view of the above definitions of the
two types of phenomena, the ranges of values of Reynolds number in which
these qualitatively similar kinds of behaviour took place were quite different
in the two cases.

However, detailed studies using hot-wire anemometry showed that the
turbulent structure in the slugs was identical with that in the fully developed
pipe flow, whereas later measurements (Wygnanski, Sokolov, and Friedman
1975) indicated that the turbulent activity in puffs is higher in the centre rather
than at the walls, as it would be in pipe flow.

11.3.1  Anatomy of the turbulent spot

The problems involved in making detailed measurements of the velocity field
inside a turbulent spot are very far from trivial. Firstly, the spot is of limited
extent and is moving and, secondly, as the spot moves it changes its shape to
some extent. The best approach might be to mount one’s anemometer on a
carriage moving in the streamwise direction at the same speed as the spot, or
perhaps even to employ a global method of instantaneously measuring the
entire velocity field in the spot, such as laser speckle holography. However,
the first technique is not without its difficulties, and the second is very new.
So, not surprisingly, at the present time we have only stationary anemometer
measurements to call upon.

In practice, this means that an anemometer is placed at a fixed position and
the velocity record obtained as a function of the time. Then one obtains
velocity records of this kind for a large number of turbulent spots, and
obviously this procedure can be repeated for various streamwise and spanwise
positions until an adequate statistical picture can be built up for the ent