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Chapter I.
INTRODUCTION AND HISTORICAL BACKGROUND
The primary purpose of this monograph is to give a detailed presentation

of a theory that had been developed to describe the transport of gases through
porous media. This theory is often known as the "dusty-gas model,” because

the porous medium is treated as one component of the gas mixture, consisting
of giant molecules held fixed in space, and the highly developed kinetic
theory of gases is applied to this supermixture. The physical picture
involved is both simple and appealing — so much so that the model has been
invented independently at least four times, starting with James Clerk Maxwell
in 1860 [M25]. However, it is only in recent years that the consequences and
ramifications of the model have been worked out in sufficient detail to
constitute a comprehensive and consistent body of theory. This theory is now
mature and developed enough to be a useful tool for engineers. It has, in
fact, already been used to some extent for modeling chemical reactions in
porous catalysts, as has been reviewed in a monograph by Jackson Lééi;; : —
Nevertheless, the theory does not seem to be widely known among engineers,
probably because much of it has been published in journals primarily devoted
to physics or physical chemistry. Furthermore, the language of kinetic theory
used in the basic papers is not always familiar to engineers.

That diffusion can be an important limitation of reactivity in porous cat-
\alysts has been recognized for a long time [s1, s8, S19, T3, W4], so that one
area of application of the dusty-gas model to engineering problems is fairly
obvious. It is less obvious that the model has a much wider scope than just
gas transport in porous media. Two examples may be mentioned at this point.
First, if the forces holding the giant molecules (“dust™) fixed in space are
removed, so that these giant molecules are free to move in the gas, the result
is an_aerosol system, Thus a small change in the dusty-gas equations converts
them from a description o§ gas transport in a porous medium to a &escription
of aerosol motion in nonuniform gas mixtures. Put another way, in one case we

rest on the particles and account for the motion of the gas, and in the other

case, we sit out in the gas and account for the motion of the particles. It



]

is thus not so surprising that the two cases can be described by similar sets
of equations.
As a second example, the model can be applied to transport in membraanes by

regarding the gas mixture as a solution, and the porous medium as a membrane.
The model then serves as a test and a diagnostic probe of supposedly very
general phenomenological theories of transport in membranes. Any difficulties
or deficiencies identified in this way are usually easily remedied, either by
modifying the original phenomenological equatioms, or by replacing specifi-
cally gas-like terms of the dusty-gas equations with terms appropriate for
arbitrary fluids (e.g., partial pressures are replaced by activities).
Ultimately, one may hope to learn enough about the crucial points of the
problem to construct a general statistical-mechanical theory that is valid for
general fluids and not just perfect gases.

The scope of this monograph is limited to a description of the dusty-gas
model, with emphasis on its application to gas transport in porous media. In
addition, a brief discussion of its applications in other fields is presented,
and some indication of specific applications in chemical engineering is given.
However, we do not try to give a complete survey of the subject of gas
transport in porous media and its applications in chemical engineering; but a
number of books and review articles are already available for the reader who

seeks such a survey [B2,B3, Cl, D12, H7, Jl, S1, Yl].

In the remainder of this chapter, we present a brief review of the

historical background of the dusty-gas model. The model has had an unusually
long history, and its origins are intertwined with the origins of the kinetic
theory of gases itself. Many cruclial points, both experimental and theoreti-
cal, have been elucidated, then forgotten or misunderstood, and later rediscov-
ered independently. In Chapter II, a systematic critical account of the theory
behind the model is given, beginning with simple momentum-transfer arguments,
and then proceeding to the full machinery of modern gas kinetic theory. The
chapter is concluded with a summary of the final transport equations developed
from the model. Chapter III is devoted to a selection of experimental tests

of the model as applied to gas transport, whereas in Chapter IV it is shown
how the fundamental ideas behind the model can be used to develop extensions
and generalizations of the results for porous media; four examples are given —
-§J52a3§@:§fﬁfg phepomgggﬂgxhibited by gases over solid surfaces, radiometer_
effects, aerosol motion, and membrane transport. Finally, some specific
applications to chemical engineering are mentioned in Chapter V.




In retrospect, the history of gas transport in porous media can be
somewhat artificially arranged into an apparently logical sequence, and can
even be divided into two parts, an experimental part and a theoretical part.

On the experimental side, serious study of gas transport of any kind can
reasonably be said to date from the first work of Thomas Graham, who, in 1829,
studied the diffusion of various gases from a closed vessel through a small
tube into the surrounding air [G2]. No diffusion coefficient values were
obtained from those measurements at the time, for such coefficients were not
to be defined until 26 years later, when Adolf Fick [F4] formulated his mathe-
matical statement of the law of diffusion by analogy with Fourier's law of
heat conduction. After his first work, Graham's interest in gaseous diffusion
took a rather different turn, prompted by some observations by Doebereiner of

the escape of hxgggggE_Egsgggg_g_g;ighx_cxack_1n_a_iax_immq:sed in_a poeumatic.

~::SQ§2: The water in the trough rose into the jar, showing that hydrogen
‘eséhpe& }aster through the crack than the air could enter. This observation
prompted Graham to devise an experiment which utilized a calibrated glass tube
with a porous plate at one end and with the other end immersed in a vessel of
water (or mercury). The gas to be investigated was added to the tube by the
displacement of water, and its volume noted. As the gas diffused out, and the
air diffused in, through the porous plate, the water level tended to rise or
fall in the tube, depending on whether the gas was lighter or heavier than
air. Since a change in the water level would have caused a pressure dif-
ference across the porous plate, Graham kept the pressure uniform by flowing
water into or out of the outer vessel to keep the water level the same as the
level inside the tube. After some time, all of the gas had diffused out and
had been replaced by the air that had diffused into the tube. Graham noticed
that the ratio of the volume of gas that diffused out of the tube fo the
volume of air that diffused into it was equal to the ratio of the square root
of the density (or molecular weight) of air to that of the gas. These
investigations were reported in a paper read before the Royal Society of
Edinburgh in 1831, and later published in three sections [G3]. It should be
noted that these experiments were not carried out in the free-molecule regime;
the free-molecule result is called effusion, which was also discovered by
Graham, but not until about 13 years later [G4]. The statement of these dif-
fusion results has been enshrined for many years in textbooks as "Graham's Law
of Diffusion,” which has been sadly misunderstood [M1l, M16]. If Graham's dif-
fusion, work had been correctly remembered and understood, much effort and con-

fusion over diffusion in porous media in recent years might have been avoided.



The reason that Graham's law of diffusion was misunderstood was that later
workers lost sight of the crucial importance of keeping the pressure strictly
constant during the course of the experiment. Almost all diffusion experi-
ments were later performed in a closed container, so that a pressure difference
developed within the container until the amounts of gas moving in the opposing
directions became equal, to avoid a continual increase in pressure on one
side of the container. This type of experiment was popularized by Loschmidt
in 1870 [L7, L8], using an apparatus based on an earlier design by
Graham [G6]. The pressure gradient in such an apparatus is almost immeasurably
small, except in capillary tubes, but its consequences are significant.
Loschmidt and subsequent workers assumed that Graham's law of diffusion was
applicable to such closed-vessel experiments, and mistakenly concluded that
the amounts of gases transferred in a true uniform-pressure Graham experiment
should be in the ratio of the diffusion coefficients as measured in Loschmidt-
type experiments. Such a result holds only within deviations of about 20%,
whereas the true diffusion law holds within 1 or 2X. Graham's diffusion law
thus became relegated to the scrapheap of results that are of historical
interest but which are only crude approximations. Even the noted chemistry
historian J. R. Partington fell Y}gg;m to this misconception [P1].

In contrast, Graham's law of effusion [G4, G6] has been remembered very
well, probably because its explanation is simple, and the conditions for its
validity are obvious, namely, that the mean free paths of the gas molecules
must be much larger than the diameter of the hole or pore through which the
gas moves. In this case, it is clear that the rate of transport of the gas is
proportional to the mean molecular speed, and therefore inversely proportional
to the square root of the molecular mass. The diffusion law gives the same
final result, but for a different and more subtle reason — here the rate of
transport is inversely proportional to the mean molecular absolute momentum.
It 18 ironic that the experiments Graham performed in establishing his effusion
law probaby did not fulfill the conditions for free-molecule flow. A study of
the original papers [G4, G6] by Jackson [J1] indicated that Graham probably
operated in the continuum or hydrodynamic regime. Of course, Graham had no
reliable way of estimating the magnitude of a mean free path, and such an
estimate did not appear until 1866 [L6], several years after Graham's work was
completed. A real experimental test of the effusion law did not occur until
the work of Knudgen, over 40 years later [K5]. The reason for Graham's obser-
vation of a square-root dependence on mass is a purely mechanical one, not

directly related to molecular behavior at all. Under suitable conditions, a



unit volume of fluid discharged from an orifice will have its potential energy,
due to the pressure difference, converted almost completely into kinetic energy
of flow, QI(Z)pVZ; since the rate of flow is proportional to the flow speed V,
it will be inversely proportional to the square root of the density p or molec-
ular weight for a fixed pressure difference. This hydrodynamic result is the
basis of a device for the determination of gas densities, known as a Bunsen
effusiometer [M20]. However, the potential energy can be distributed in other
ways, particularly among molecular internal degrees of freedom, and the results
therefore will depend also on the specific heat and other quantities.
Effusiometers are therefore no longer considered to be very reliable [N1].

The effusion results change markedly if the orifice is replaced by a long
tube. Graham called the resulting gas flow phenomenon,gggnspixgnigﬁf]GSj, but
it is now known as laminar viscous flow. Since the vis:;;;:;—;gig_;;s does not
depend in any simple way on its molecular weight or density, Graham was not
able to draw any simple conclusions about transpiration. A detailed kinetic
theory, such as Maxwell worked out, was required to explain this kind of phe-
nomenon. Graham did, however, make two experimental observatiops of great
interest, although one of them was not recognized until much later [M12]. His
observations showed that gas viscosity was independent of pressure, a result
that went unnoticed at the time. He also observed that the addition of a
moderate amount of a light gas to a heavy viscous gas increased, rather than
decreased, the viscosity. Both of these results are readily accounted for by ’
kinetic theory. In retrospect, they should have provided more impressive
evidence for the correctness of the theory than they actually did [M12].

Although experiments on gas flow and diffusion through porous media con-
tinued at a fairly steady pace through the first half of the twentieth century
[B2, C1, W5, W7, W8, W10], no particularly striking advances occurred until
1953, when Hoogschagen carried out some uniform-pressure experiments in a flow
system, and measured both diffusion flows separately [H12, H13]. This sort of
experiment had been done before, but it was apparently assumed erroneously
that the molar flow rates would be equal and opposite, as they are in a
closed-vessel experiment. Hoogschagen of course immediately rediscovered
Graham's law of diffusion, but was puzzled because the correct diffusion law
had been forgotten and only the effusion law remembered. Thus it seemed that
the square~root-—law would only be found in the free-molecule region, and
Hoogschagen g;s certain that his experiments were far from this regime. He
proposed a simple momentum—transfer argument to rationmalize his results,

esgentially along the lines of the discussion in Section A of Chapter 1I.



There was a short lull of a few years, and then the square-root law was
independently rediscovered by a number of experimenters at about the same
time [E4, R5, S5, W9]. The square-root law in the continuum regime was still
considered puzzling, especially since a simple argument based on fluid dynamics
indicated that the flow rate ratio in free space should vary inversely as the
first power of the mass ratio, rather than as the square root [D13, ES5, M29].

A flurry of theoretical work was thus initiated [D13, E5, E6, H8, M21, S6, S7,
W9], and a reasonable consensus seemed eventually to be reached on a suitable
set of flow equations [G8, M22]. Still, no one had recognized Graham's law of
diffusion! This recognition occurred only after the problem was essentially
solved, and by then was mainly of historical interest [M1l, M16]. Earlier
recognition might have saved a lot of conftérn and effort.

The importance of Graham's law of diffusion is not in what it says about
diffusion coefficients (it says nothing), but in its bearing on the coupling
between diffusion and flow, as will be elaborated in the next chapter. If the
phenomena are divided, as Graham did, into uniform-pressure diffusion, effu-
sion, and transpiration, they have a simple additive behavior to an excellent
approximation [M15]. However, division by some other scheme (e.g.,

Loschmidt's equal countercurrent diffusion) spoils the simple additivity, and
the problem of describing general simultaneous diffusion and flow becomes very
complicated in the transition region between free-molecule and continuum be-
havior. Although Graham obtained no diffusion coefficients, his diffusion-tube
experiment at uniform pressure can be used to determine the effective diffusion
coefficient of a gas pair in a porous system, by observation of the rate of
rise or fall of the water level. This is a very simple and convenient way of
obtaining information concerning the internal geometries of porous media [E3].

On the theoretical side, we note that the dusty-gas model was apparently
first invented by Maxwell in 1860, in connection with a discussion of Graham's
law of diffusion [M25]. He obtained no definite result with this model, and
its discussion occupies only a short space in a much longer paper in which
Maxwell developed a theory of transport phenomena in gases by momentum-transfer
and mean-free-path methods. The momentum-transfer method was independently
applied to diffusion phenomena by Stefan in 187172 [S16, S17], with substantial
success, but Maxwell was apparently not too happy with the method, "...which
led me into great confusion, especially in treating of the diffusion of
gases” [M27]. He preferred a more rigorous mathematical approach based on his

equations of transfer [M26], which led eventually to the = og gas



kinetic-theary {[C6, C7, M26]. This approach, although rigorous and ultimately
immensely fruitful, unfortunately completely abandoned porous media.

Maxwell's suspicion of simple arguments in kinetic theory was in fact well
founded. Such arguments, although they can supply vivid physical descriptions
of the processes involved, can be quite tricky and can lead to erroneous
results, sometimes of a very subtle and well-concealed nature. The history of
kinetic theory has so many examples of this type that most workers would prob-
ably agree with the remark of H. A. Kramers [K6] about "...those unimprovable
speculations of which the kinetic theory of gases affords such ghastly
examples.”

The momentum-transfer approach was neglected for many years, and then
apparently rediscovered by Frankel [F5] and by Present and deBethune [P4],
among others. It was used quite extensively during World War II in developing
the theory of isotope separation by the gaseous diffusion process [P3] @
Incidentally, Craham devised this same method for separating gas mixture
(obviously not isotopes, which were then unknown) by diffusion through a
porous barrier. He called the method "atmolysis” [G6], but this had probably
been forgotten by World War II.

Following Maxwell's brief use of the dusty—gas model, it was completely
forgotten for nearly a century. It was independently re-invented in 1957 by
Deriagin (also spelled Derjaguin and Deryagin) and Bakanov [D8, D9], who used
it to calculate the flow of a single gas through a porous medium near the
free-molecule region. No application to diffusion was made, and their treat-
ment made no provision for viscous flow, so that it was valid only for very
porous solids at very low pressures. Their calculations were quite compli-
cated because of their detailed treatment of the gas—dust collisions, but they
nevertheless succeeded in giving a good theoretical rationale for a minimum
which is often observed in the permeability coefficient as a function of gas
pressure. The wmodel was shortly thereafter independently re-invented once
more by Evans, Watson, and Mason [E5], who avoided the complicated part of the
problem, namely the explicit calculation of parameters depending on the struc-
flow equations. By formal variation of the mole fractI;; of t;;-;;;sc" parti-
cles, the whole pressure range from the free-molecule to the continuum region
could be covered in a unified way. Again, no provision was made for viscous
flow, but it was possible to give a quantitative account of diffusion at uni-

form pressure. Some of these ideas were soon adapted for a treatment of

_transport in charged membranes [All], as well as for the more elaborate kinetic
=




theory treatment [B12, W12] of gas flow and diffusion along the lines indicate
by Deriagin and Bakanov [D8, D9]. The most recent independent reinvention of

the model seems to have occurred in 1971, as a kinetic theory model for ion.

‘movement_through biologieal membranes . [M2].
{ggsifgsggégg;gggazuse_grQd&ggxqren~d££fdlivulwas handled by adding a term

involving the pressure gradient to the dusty-gas transport equations [E6].

The coefficient of this term had to be treated empirically, because the dusty-
gas model contained no provision for a viscous flow mechanism. Although this
procedure gave good agreement with experiments on diffusion in porous graphite
it was apparent that something was not quite right, because the full set of
transport equations was not completely symmetric with respect to the
interchange of the subscripts representing the species [E6]. The generaliza-
tion to multicomponent mixtures was also not clear. However, a consistent
account of thermal transpiration was obtained [M21], where the symmetry
problem did not appear because only a single gas in a temperature gradient was
involved. A consistent way to include viscous flow was not developed until
recourse to fundamental kinetic theory was made [M22], motivated by the desire
to include the effects of molecular internal degrees of freedom and the
effects of higher kinetic theory approximations. This formulation, with some
clarification and elaboration, is the one described in this monograph.

The development of the dusty-gas model as described here did not occur as
straightforwardly as the foregoing account might suggest. The original
approach to the problem by at least one of the participants was from the point
of view of an analogy with the 5Ef55222&&:555555:59=§9$£§§' which is a net
drift of inert markers placed near a diffusion interface. A similar effect
exists in gases [M29, M33]. This had led to the erroneous view, already men-
tioned, that the diffusion flow ratio at uniform pressure should involve the
first power of the mass ratio [M29]. A chance meeting between G. M. Watson
and E. A, Mason at a conference in Oak Ridge in 1960 led to a spirited exchange
of views, and an arrangement to resolve some of the problems which were iden-
tified. It soon became clear from the experimental data [E4, H12, H13] that
the square-root law was correct, but the reason was unclear. The conventional
explanation for effusion was obviously inapplicable, and Hoogschagen's
momentum-transfer argument was regarded with suspicion, for reasons related to
the comment of Kramers already quoted. The argument did contain an obvious
approximation, in which the average of a product of two quantities was taken
as the product of the averages. The idea of the dusty-gas model occurred on

noticing a lot of terms imvolving square roots of molecular masses in the



expressions for the force on small particles suspended in a non-uniform gas.
This aerosol problem was being considered by the methods of Chapman-Cowling
kinetic theory, a problem suggested by Sydney Chapman [M14] after reading a
paper by Ludwig Waldmann [W1]. The earlier inventions of the model by Maxwell
and by Deriagin and Bakanov were unknown. The latter was pointed out during a
visit to the University of Maryland in 1961 by P. C. Carman, who recalled a
presentation of the Russian work at a Faraday Society Discussion [Bl]. The
original work of Maxwell was uncovered in 1969 independently by P. G. Wright
and E. A, Mason, who were preparing to attend a Thomas Graham Memorial
Symposiup at the University of Strathclyde in Glasgow (the centenary of
Graham's death). The connection between the Kirkendall effect in gases and
the phenomenon of diffusive slip was pointed out in 1961 by J. Kistemaker [K7],
after a routine exchange of reprints with E. A. Mason. The marker motion in
the Kirkendall effect is, it turns out, completely analogous to the rise or
fall of the water level in Graham's uniform-pressure diffusion experiments.
The connection of all this activity with Graham's original work was
unsuspected by everyone concerned until 1966, when a pedagogical paper [R6] on
Graham came to light during a literature survey undertaken in connection with
a critical review of gaseous diffusion coefficients [M8]. Although the author
of this paper appears to have been just as confused as everyone else as to the
meaning of Graham's results, a table of some of Graham's experimental measure-
ments Was included in the paper. One look at the accuracy of the square-root
lav was enough to convince one that the current explanation in terms of
Loschmidt diffusion coefficients had to be wrong. There was no recourse but
to go back to Graham's original papers, where everything was of course quite
clear. (Scientists and engineers are curiously indifferent to the histories
of their subjects, and this indifference is sometimes costly.)

Regardless of the convoluted path by which the dusty-gas model was
developed, its results now seem sufficiently reliable to be worthy of the

attention of engineers.
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Chapter II

THEORY

Although this monograph features the dusty-gas model, the essential aspects
of the model can be exhibited in a simple way without the necessity of first
discussing all the mathematical complexities of the kinetic theory of
gases [M15, M18]. The first section of this chapter is therefore devoted to
an elementary discussion of gas transport in porous media that sets out these
essential features. This elementary discussion may also serve to suggest why
many of the results of the dusty-gas model hold in considerable generality,
and are not model-specific. In the second section of this chapter, the same
major results are obtained, but with a better theoretical pedigree, by means
of the dusty-gas model, plus a number of more minor but interesting features
that require some of the complexities of kinetic theory for their elucidation.
The third section concerns a discussion of the influence of the geometrical
structure of the medium on the gas transport; it can be treated as a separate
problem in the present methodology. The fourth section summarizes the mathe-
matical relationships that are developed in the previous sections of this

chapter.

A. ELEMENTARY ARGUMENTS

This section is divided into four parts: the first is an outline of the
procedure and a qualitative statement of the results; the second is a phen-—
momenological description of the modes of gas transport, in mathematical form;
then follows a discussion of the way these individual descriptions are coupled
together to describe simultaneous transport by more than one mode or

mechanism; finally, the generalization to multicomponent mixtures is

_d}qpussed.‘v

1. General Procedure

The most important aspect of the theory is the statement that gas traansport
through porous media (or tubes) can be divided into three independent modes or

mechanisms, as follows:
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<§£? Free-molecule or Knudsen flow, in which the gas density is so low that
collisions between molecules can be ignored compared to collisions of molecules
with the walls of the porous medium or tube.

2, Viscous flow, in which the gas acts as a continuum fluid driven by a
pressﬁre gradient, and molecule-molecule collisions dominate over molecule-
wall collisions. This is sometimes called convective or bulk flow.

(3/ Continuum diffusion, in which the different species of a mixture move
relative to each other under the influence of concentration gradients
(°°?ff:ffffig§_gi££3§£3“)’ temperature gradients (thermal diffusion), or
external forces (forced diffusion). Here molecule-molecule collisions again
dominate over molecule-wall collisions.

This classification obviously neglects one mode of transport that is some-
tﬁmef important in practice, namely

V) K\Sﬁ) Surface flow or diffusion, in which molecules move along a solid sur-~
face in an adsorbed layer. This motion will be assumed to be independent of
the preceding three modes of motion. We shall not be primarily concerned with
this mechanism, but will later indicate how it can be incorporated into the
computational scheme.

Justifications for the validity of the above classification scheme, espe-
cially the independence of the modes of transport, will be discussed later.

At this stage we can regard it as an empirical assumption based on a number of
experimental studies going back to Thomas Graham [G3 — G6]. 3 %~

Transport coefficients correspond to each of the above transport
mechanisms: the Knudsen diffusion coefficient Dix (for species i), the vis-
cosity coefficient n, the ordinary diffusion coefficient_zij for continuum
concentration diffusion and forced diffusion (for a binary mixture of species
i and j), an analogous thermal diffusion factor a4 for continuum thermal dif-
fusion, and a surface diffusion coefficient DiS' These transport modes can
occur in all sorts of combinations, and the problem for theory is to discover
how to combine the individual mathematical descriptions in a unified way. For
example, the combination of viscous flow and free-molecule flow leads to the
phenomenon ofv@g;ﬁ;iigg, involving the slipping of a gas over a solid surface.
Another combination is that between continuum concentration diffusion and
viscous flow, which gives rise to another surface slip phenomenon known as

(Eiff§3f35$§iiﬁ} Many other combinationms give rise to well-known phenomena
such as the diffusiop barceffect, thermal transpiration, thermal creep, and so

on. In this section of the chapter, we will give simple arguments for the
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method of combining the different transport mechanisms; later on we will pre-
sent more elaborate kinetic-theory justifications for the method. But at this
point we just state the results in the form of a simple electrical analogy.

The electrical analogy [M15] for combined modes of transport, which should
be regarded as only a mnemonic device and not a basis for physical interpreta-
tion of transport coefficients, is shown in Fig. l. Diffusive flows are com-
bined like resistors in series, where voltage drops are additive, and the
resultant total diffusive flow is then combined with the viscous flow and the
surface flow like resistors in parallel, where currents are additive. This
recipe appliés locally around each point or small region in the system, and
ylelds a general set of differential equations for the transport of all the
species in the mixture in terms of the gradients of pressure, concentration,
and temperature. In real applications it is usually necessary to integrate
these differential equations, which means that boundary conditions must be
specified. It is at this point that the question of the geometrical structure
of the medium in which the transport is occurring first arises. It is
remarkable that this question arises so late in the problem, and in fact one of
the chief virtues of the present approach is that it avoids the geometrical-
structural question until nearly the end, when it can be handled separately.
A straightforward approach to combined convective flow and diffusion in porous
media along classical lines would appear to involve the structure of the
medium from the beginning, as will be discussed later, and would probably be
impossibly complex.

In the present formulation, the structure of the medium is absorbed into

Lhe values of the transport coefficients or into simple constanks of propor-
tionality. Corresponding to the three main transport mechanisms are three

parameters characteristic of the medium: the Knudsen flow paramgter<E;\ the
“viscous flow parameter(§;> and the porosity-tortuosity factor{é?;:for con-
tinuum diffusion. These parameters are all simply related for a medium of

simple geometry, such as a long circular capillary of radius r,
K, =r/2, B, =r2%/8, e/qg=1. ¢V}

But for an actual porous medium the relationships are complicated and usually
unknown, and the three parameters are most often found from experiment rather
than by calculation from some assumed geometry. Similarly, the surface dif-

fusion coefficients D1s are usually determined experimentally.



Ji total

| 2 3
FREE-MOLECULE
Ji qitt Ji visc Ji surt
CONTINUUM
Ji totol

I: DIFFUSIVE- FLOW BRANCH
2: VISCOUS - FLOW BRANCH
3: SURFACE-FLOW BRANCH

Fig. 1. Electrical analogue circuit as a mnemonic device for combining dif-
ferent transport mechanisms. Diffusive fluxes combine in series (analogue
of voltage drops), and the total diffusive flux then combines in parallel
with the viscous flux and surface flux (analogue of currents). This
applies locally around each point in the system.

If the medium is homoporous, the coefficients in the differential equations

describing the transport do not vary with position (except for their universal
depegﬁence on pressure, temperature, and c;;sggizion). Integration of the
differential equatfons is then a relatively straightforward problem, although
sometimes a complicated one. If, however, the medium is heteroporous, the
coefficients in the differential equations are different in different regions
of space because the medium is, and the integration problem becomes more dif-

ficult., One straightforward approach is to divide the medium into homoporous
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segments, integrate the differential equations in each segment, and then match
solutions at the segment boundaries. This approach can lead to very compli-
cated mathematical manipulations, but it is sometimes necessary (e.g., if the
pore size distribution is strongly bimodal). What is surprising, however, is
how successful it often is to treat a heteroporous medium as an equivalent
homoporous one with average values of\Eb,”Bo, and €/q. This simple approxima-
tion was the one adopted for most of the original work on the dusty-gas model.
An_Sectiop C we will present some results on model calculations for hetero-
porous media that account for the success of the equivalent homoporous medium
approximation. It is also possible to establish some bounds for the errors
involved in this approximation.

A point we wish to emphasize here is that‘ghg.dns:x:gas«nodel-&sfggg
—xestricted to the use of the equivalent homoporous. medium approximation, even
though this approximation has been used for most of the illustrative examples.
In the dusty-gas model, the geometrical-structural problem is an independent
one, and can be made as simple or as complicated as necessary. In much of the
engineering literature there has been a tendency to regard the homoporous
approximation as an inherent characteristic of the dusty-gas model; this is an

unnecessary restriction,

2. Modes of Gas Transport
a. Free-Molecule or Knudsen Flow. The original studies of free-molecule

flow were limited to small holes in very thin plates. This assured that the
molecules made no collisions with each other during their passage through the
hole, which we now know is the important criterion. When this criterion is
met, molecules of different species move entirely 1ndependent1y of each other,
and there is no fundamental distinction between flow and diffusion, as there
is in the continuum regime. Moreover, the flux (i.e., the rate of flow per
unit area normal to the flow) of molecules of any species through any kind of
hole is equal to the number of molecules of that species passing into the
entrance of the hole per unit area per unit time multiplied by the probability
that a molecule that enters the hole will eventually get all the way through
and not bounce back out the entrance. This probability depends only on the
geometry of the hole and the law of reflection for molecules hitting the inner
walls of the hole. Such free-molecule flow was studied in considerable detail
around 190708 by Knudsen [K5], and is now often called Knudsen flow.

If there is a gas with a molecular density of p molecules/cm3 at one end of

the hole and a vacuum at the other, the free-molecule or Knudsen flux Jg is
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JK - wm’i ’ (2)

where J, has units of molecules/cm?-sec, w is a dimensionless probability
K

factor, and v is the mean molecular speed,
= (Bkpl/am) /2, (3

kg being Boltzmann's constant, T the absg}ute temperature, and m the molecu-
lar mass. For an infinitesimally thin orifice, w = 1/4, and for a long

straight circular tube of radius r and length L (L >> r), from whose surface
the molecules rebound diffusely, the>value of w is (2/3)€§LL)- If there is
a gas mixture instead of a single gas, each s;;éies ;ézgiindependently, and

the total flow is a sum of terms like Eq. (2),
Jg = L wynv, (4)
i

where i denotes the particular gas species.

For gas on both sides of the hole, the net flux is proportional to the
difference in gas number densities at the two ends. It is customary to write
this relation i;_aiffetehtial fb;; and thereby define a Knudsen diffusion
coefficient D;jy having units of cn? /see,

Jix = =~ Dyg Vny (5

for species i. The minus sign is a convention adopted so that the gas moves
"down" the gradient when D;y is positive. Comparing Eq. (5) with Eq. (2),
we see that Dyk is proportional to the mean molecular speed v. It is
customary to make this proportionality explicit by defining a Knudsen flow

parameter or pe bility coefficient K, by

D = (4/3) K ¥y . 6)

The value of@depends only on the geometry of the hole and the gas-surface
scattering laWw. It can be calculated for a porous medium if the geometry

and scattering law are known, but this is usually a formidable mathematical
task, For a long, straight, circular tube of radius r with diffuse scatter-

ing, the value of L is r/2. It is usually much easier to measure Ko
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experimentally than to calculate it from the geometry (which in fact is
seldom known with any precision). From Eq. (6) it is evident that DiK is
\ipdquggggg_gﬁﬂpgessure.and-increases with temperature as Tl/z. Note also
tﬂ;c Dyjg has units of cm? /sec and K, has units of cm.
The case of two different gases at the same pressure on the two sides of

the hole 18 an interesting simple case. From Eqs. (5) and (6) we find

~J1x/d2x = Pe/Dax = F1/¥y = (myfapt/E M

provided that K, is the same for both gases (same surface scattering law).

This is Graham's law of effusion.

For a multicomponent mixture we can combine Eq. (5) for all the components

to give one equation involving the gradient of the total density.

2(31K/01k> - 'Zn ’ (8)

i

n= Zni . (9)
i

If the total presure is uniform, Vn = 0, and if K, is the same for all species,

Eq. (8) reduces t6
fa /2 3 =0, (10)

which i3 the multicomponent generalization of Graham's law of effusion.
The foregoing results are exact, provided that the molecules act indepen-

dently of each other,

b. Viscous Flow. By viscous flow we mean that portion of the gas flow in
the continuum region that is caused by a pressure gradient. We are ignoring
the inertial terms in the equation of motion for the fluid, and turbulence is
obviously not included in the present treatment; strictly speaking, we treat
only so-called "greeping flow,” The behavior of the gas is thus described by
the coefficient of viscosity, which for“ggses is 1ndepend¢nt of pressure.
Moreover, a mixture behaves the same as a single gas, because such bulk flow

has no tendency to cause a mixture to separate into its components.
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The computation of the viscous flux for gases is carried out exactly as in
the case of liquids to obtain Poiseuille's law, but remembering that a gas is
compressible. The basic idea of the calculation is simple: if the gas is not
accelerating, the net force on any element of it must be zero, so that the
viscous-drag force just balances the force due to the pressure difference

across the element. The result has the plausible form

Jyise = Flow/Area = —(nBy/n) Up ., (1)
where J ;.. is the viscous flux in molecules/cm?-sec; n is the total number
density; B,, the viscous flow parameter, is a constant characteristic of the

()
hole geometry having units of cmz; n is the coefficient of viscosity of the

gas in g/cm-sec; and p is the pressure in dyne/cm?. The boundary condition
for continuum flow is that the gas velocity is zero at the side.walls. Any
"slip flow" at the walls is to be regarded as a free-molecule component of
the flow. The compressibility enters through the equation of state,
n = p/kgT, making the coefficient of Vp in Eq. (11) dependent upon position
through its dependence on p.

The value of B, is r2/8 for a long, straigﬁt; gi}culat capillary of radius
r, and Eq. (11) leads to Poiseuille's law on integration. For a porous medium
or a bed of packed particles it is usually ﬁuch easier to determine B,
experimentally than to calculate it from geometrical considerations, just as
was the case for K,, and to regard Eq. (11) as an empirical result like
Darcy's law.

For mixtures, the viscous flux of species i is proportional to its mole

fraction x; in the mixture, since the flow 1s nonseparative,

Ji vise = *1 Jvise *

(12)

A simple and remarkable result of even elementary kinetic theory is that
the viscosity coefficient n is independent of gas pressure at constant temper-
ature [C9]. The physical reason is simple. According to the kinetic picture
of gas behavior, viscosity is caused by the exchange of momentum between planes
moving at different speeds. This momentum is carried by the molecules them-
selves, and so the transport is directly proportional to the number density.
However, the momentum transport is.;gggggg_by collisions, and the number of
molecules impeding transport by "being in"the way™ is also proportional to

aumber density. The two effects exactly cancel, and n is independent of p.
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This elementary argument gives essentially an exact result because only the
counting of collisions is involved, and not the nature of the collisions. The
sole condition is that only binary molecular collisions are important; the
viscosity becomes density dependent when the density becomes large enough for
ternary and ‘higher collisions to matter. This result obviously also holds for

mixtures, as long as the relative composition remains fixed.

c. Continuum, or Ordinary, Diffusion. Diffusion is the most difficult of

the three main transport mechanisms to define satisfactorily. To keep the
discussion simple at this point, we ignore temperature gradients and external
forces; even so, a difficulty still remains. It is most convenient to define
a diffusion coefficient for a mixture in which the net flux is zero, and in
which there is no pressure gradient so that there is no viscous flow and no

pressure diffusion. In this case the purely diffusive fluxes/jzs andfjﬁ\\of a

o
binary mixture are v

Jip = =212 ¥y (13a)
Jop = =231 Iy (13b)

where the ordinary diffusion coefficients(gzg)andlzz are in cm?/sec. It

is easy to see that 3, = 2,5, because ng + fZD = iD = 0 for no net flux,
and Z(nl + n2) = Zn = (0 for no pressure gradient. Unfortunately, such a
situation is very difficult to produce experimentally, because a small
pressure gradient is necessary to keep iD = 0. This can be understood in

a simple physical way as follows., Suppose we put two different gases at the
same tempéfature and pressure into communication through a small tube (or a
porous plate), as indicated in Fig. 2. The faster; light molecules tend to
get through the tube more quickly than the slower, heavy ones, so that the
pressure rises on the side of the heavy gas until the viscous flow induced
back through the tube is just sufficient to make the net flux zero. The
resulting steady-state pressure difference is very small if the tube has a
large diameter, but can be appreciable for small capillaries or fine porous
media. Thus, Eqs. (13) can be used only for equal countercurrent diffusion in

large tubes.
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Fig. 2. Binary diffusion. If the piston 1is held stationary, a pressure dif-
ference develops that is just sufficlent to keep the net flux zero through the
diffusion tube. If the pressure is kept uniform, the piston must be moved as
indicated, and there is a net flow of gas through the diffusion tube.

To keep the pressure uniform during the diffusion, an arrangement like a
gide tube with an impermeable, frictionless piston would be necessary, as
indicated in Fig. 2. Since the piston must be moved to keep the pressure
uniform, the net flux of gas is clearly not zero. We can still describe
this diffusion by the same diffusion coefficients,é?i}-andgii}, provided we

the net flux contribution to each species,

oJww = " 22 * x> (14a)

©Jyp = =221 72 * %2Jp o (14b)

where fD = 310 + 320 and x; = ni/n is the mole fraction. All the fluxes
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are diffusive in this case, because there is no pressure gradient. Another

way of considering Eqs. (14) is to stipulate that 312 and 2,; are defined
in a coordinate system moving with a velocity corresponding to the average
velocity given by fDI“’ It is easy to show that ?12 =221» by adding these
two equations and noting that Vn = O.

Equations (14) thus define ;ure diffusive transport in the continuum
region; the key point is that the pressure is uniform, so EEEEMFDQWY19°°°5
transport is zero. To determine the flux when the pressure is nonuniform{'
v;~;h;£ determine the viscous flux due to the pressure gradient, and then>ﬂ
find out how to combine it with the diffusive flux. It turns out that the
two fluxes atg_gigp;x_gggL;iye,to«e~high degree -of _approximation, as was
indicated in Fig. 1. Because of this simple additivity, diffusion at uni-
form pressure can be regarded as a more fundamental process than equal
countercurrent diffusibn. We must also determine how to combine free-
molecule and continuum diffusion, in order to cover the whole pressure "~
range of interest. Before considering these questions, however, it is con-
venient to discuss the pressure dependence of 3,

The argument concerning the pressure dependéhce of!ﬁi}!proceeds exactly
as did the argument for the pressure dependence of{ig‘ﬁﬁz the final results.
are somewhat different. The diffusive flux is a flux of number or mass,
whereas the viscosity was caused by the flux of momentum, buﬁ the same
arguments apply — the number of carriers and the number of interferers are
both proportional to and the two effects exactly cancel as long as 7

\g_gy_)_i_ e_important. However, 2, is inversely propor-
tional to n or p, not independent like n. The reason for this apparently
odd behavior 1ies in the definition of zlz in Eqs. (13) or (1&)’ the gra-
dient term in these equations is chosen to be’ an, which 1is directly

proportional to p, instead of le, which is independerit of p. The kinetic-
theory argument gives ng independent of n or p, so obviously 212 must be
inversely proportional to n or p to cancel the dependence in an. Thus, the
different pressure dependence of of n and zlz is the result of an arbitrary

choice made fot the 3tadient ternms.

The relation bei&een the two fluxes in Eqs. (l4a) and (l4b) is interesting;
it was discovered experimentally [G3] that

-1/ 320 = (mpfapt?, (15)
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provided that the pressure is kept uniform. This is Graham's law of dif-
fusion; it looks like the effusion law of Eq. (7), but it is quite different.
Its range of validity does not depend on any special relation between the mean
free path and the pore size or tube diameter, so that it holds at all
pressures, whereas the effusion law holds only in the free-molecule region. A
simple physical explanation for Eq. (15) can be based on a calculation of the
momentum transferred to the walls by the diffusing molecules. We briefly
repeat the argument here, since the same type.of argument can be used to show
how continuum diffusion and free-molecule diffusion combine in the traunsition
region, and how to extend Eqs. (14) to multicomponent mixtures. We argue that
the net force on the walls must be zero {f there is no pressure gradient in
the gas, and hence that the total momentum transferred to the walls by all the
molecular collisions is zero. We can approximately calcul§pe the average
momentum transferred to the wall per unit time by species’g;as the product of
two factors: thg.ayerage momentum transferred per molecular impact, which is
proportional to’min, and the excess of molecular impacts in one direction
over those in the opposite direction, which is proportional to{éiB/ The sum

over both gpecies must be zero,

JipmVy *+ Japma¥2 = 0, (16)
or

= Jyp/dgp = mpVp/mpvy = (my/mp /2, an

on substitution for v from Eq. (3). The generalization to any number of

compouents is obviously

! djpm¥ =0, (18)
i

or

. ~

which is the multicomponent generalization of Graham's law of diffusion.
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The similarity and contrast between the effusion law of Egqs. (7) and
(10) and the diffusion law of Egs. (17) and (19) are remarkable. Both
yield the same final result, but the effusion law does so because fiK is
directly proportional to the speed ;i' whereas the diffusion law does so
because fiD is inversely proportional to the momentum‘?161. The accuracies
and ranges of validity of the two laws are also quite different. The effusion
law is exact provided that the mean free path is much larger than the diametér
of the aperture or tube. Ihe_difgusionAlaw_is,ffromugpg"abqu_de;iya;;on,

—only approximate, but its rrange of validity does not depend. .on_any;.c@.dj.‘ti,on;

regarding the mean free path. The approximation arises from calculating the
average of a product as the product of two averages; this happens to be quite
accurate in this case, as is demonstrated later with the dusty-gas model.'

The same line of argument, that momentum transfers are additive, suffices
to give the equations for combined transport and for multicomponent diffusioﬂ;

One final detail remains. The foregoing discussion of continuum diffusion
is based on the implicit assumption that the geometry of the hole or tube‘
through which diffusion occurs is well known, which is seldom the case for
porous media. It is nevertheless found experimentally that diffusion in a
porous medium can be described by transport equations of the same form as
Eqs. (14), provided 3,, is. replaced by an effective diffusion coefficient?@i})
whose value depends on the geometry of the medium. The relation is usually

written in the form
Djp = (e/A))p s (20)
I Y

where the constant €/q is called the porosity-tortuosity factor. This name
comes from a simple model in which a porous medium is visualized as a number
of tortuous holes through a solid. The free space for diffusion is then only
a fractionig)of the total apparent volume of the-solid, and each hole is on
the average longer by some factor than a straight hole through the solid.
Usually(iquis determined by experiment rather than calculation, just as are
K, and B;; The approximations embodied in Eq. (20) are appareqtly satisfac-
tory as long as the porous medium is not too heteroporous (e.g., an extremely
bimodal pore-size distribution). Effects of heteroporosity will be considered
in Section C of this chapter.

d. Surface Flow or Diffusion. In general, transport of matter in an

adsorbed layer can be quite as complicated as transport through the gas
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phase., But because surface transport is not our main concern, we shall here
indicate only the simplest treatment [F1]. We assume that each species
transported along the surface behaves independently of the other species, so
that its flux can be taken to be proportional only to its own surface concen-
tration gradient. We also assume that the adsorbed layer does not interact with
the gas phase, except to maintain a rapid local adsorption equilibrium for each
species. The surface concentration of species i will then be proportional to

its gas-phase concentration, and we can write an equation for surface flux as
Jig = Dy Vny (21)

where Jis is the surface flux referred to apparent unit cross-sectional area
of the~mgdium, and D; g is a surface diffusion coefficient having units of
cm?/sec. This equation is analogous to Eq. (5) for free-molecule diffusion,
as it shouid be because of our assumption of independent species transport.
However, 318 and giK combine differently with the continuum diffusive flux
fiD' as indicated in Fig. 1 and discussed in more detail below.

All the complexities of porous medium geometry, surface structure, adsorp-
tion equilibrium, etc., are contained in the surface diffusion coefficients,
ﬁig. At best, Eq. (21) would be expected to be useful only at low surface

coverages.

3. Combined Transport

Let us consider first how free-molecule and continuum diffusive flows com—

bine, by an extension of the momentum-transfer argument presented earlier.
According to Newton's second law of motion, if species i is not accelerated on
the average, then the average momentum transferred to it by collisions with
the walls and with other species must be balanced by some force. If no exter-
nal forces like gravity or electrical fields are present, the effective force
can be ascribed to the gradient of the partial pressure of the species, Zpi.
This force can be considered to be made up of separate contributions, each
just sufficient to balance the momentum transfer by wall collisions and by
collisions with each of the other species in the mixture. With this picture
in mind, we rewrite Eqs. (14) and (5) for species 1 as

'(Zpl)molecule - (kBT/DIZ)(ilD - xlfD) ’ (22)
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.

=(%p1)ya11 = RpT/Dy) Jik » Tea (23)

Ceudgpoe
where we have used Eq. (20) for Dy and als((p1 = nik T, Thus it is the same
individual Vp1 terms that add; moreover, J1D and JlK are really the same, just
as the current through two resistors in series is the same. Combining
Eqs. (22) and (23) in this way, we obtain '

= pp = (kgT/Dy) fm + (kgT/D)5)(J)p — xJp) (24)
[

with a similar equation for species 2. This equation describes the diffusion
of one component of a binary mixture (not of a multicomponent mixture) at uni-
form total pressure throughout the entire pressure range between the free-
molecule limit and the continuum limit.

If a gradient of total pressure exists, the viscous fluxes must be added
to the diffusive flux. The reason for this simple additivity follows from
kinetic-theory in that there are no viscous terms in the diffusion equationms,
and no_diffugion _terms in the visg_m_:s_—»f low equations; the two are entirely
independent in the sense that there are no direct coupling terms in these
equations. This independence is really quite general, and holds for any
isotropic system, not just for _gases. It depends only on the fact that the
various flows are ptoportiénal to gradients (linear lavsz, and that quantities
of different tensorial character do not couple in the linear approximacionlin
isotropic systems [M22]. This result is sometimes known asféﬁ;iejsﬁphqugg,)

Similarly, as shown in Fig. 1, the surface flux must also be added to the
diffusive flux. Jﬁxif\ﬁf?ﬁgﬁlﬁ’J“§£}§!,£hl§,12§§1§,£h§2~tbe\§ddi£i!itx_g£/-
the viscous-flow; it _is basically more of an ad hoc.physical assumption than
\the result of any more gemeral principle.

Whatever the justifications, we now write

Iy = Jip * Jivise * J1s = Ji *F*rlvise ¥ Iis » (25a)
J2 = Jap * Jovise * J2s = T2 * %2lvise * J2s s (25b)
and the total flux is

J = J + JZ = JD + Jvisc + JS . (26)
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The viscous flux Jvisc is given in terms of Vp by Eq. (l1). These results
are to be combined with Eq. (24); the easiest way to do this is to solve fo
J1p from Eq. (25a) and JD from Eq. (26), and substitute the results into

Eq. (24) to yield

-1 1
it 1T oy

~

¢ 1 1 X 3 27
N Dig ~ Dp2” <18 "Dy 1S C
e/
Substituting for Jvisc from Eq. (11) and for J,; from Eq. (21) and

rearranging, we can obtain the following neat form:

/ 5 - Dls N (DIS - DZS) ) /3\
s~ J - - —_— Xy — Vn, + x ¥
x) ’
- "171(—) Vp +— ( %) w : (28)
-~ kgT Dy, ol e
where —
’ 1
P D_l_ = (29)
D, Dig Dy
0. Dk 30
1 Dz Dig+ Dy
Dy Y] Lo 1)
'Y - e—— . - el °
17D D ¥y 1
A similar equation holds for J,,
Dys (Dyg - Dyg)
I, =-D, 1+-D—+x2—-——D——— Va, + %58,
12
nB Xy D s
- X372 (-—-) W TG (32)
kpT Dy, = —
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with corresponding definitions of DZ’ 62, and Yy .

A complete phenomenological description of isothermal diffusion and flow
in a binary mixture over the whole pressure range is furnished by Eqs. ﬂ28)
and (32). The nice thing about the form of these equations is that they
clearly exhibit different behaviors as different transport mechanisms domi-
nate, as well as the behavior in the transition region. For one thing, the
relevance of surface diffusion is explicitly exhibited as the ratio qf Sur;
face diffusion coefficients to other diffusion coefficients. Apart from
surface diffusion, which we henceforth_igndfqi the behavior in various
regions is manifested through the pressure dependence of€§;§<§z; andf}i;
These dependences are listed in Table I and follow from the facts that

TABLE 1

High and low pressure limits of diffusion parameters?®

Limit Dl. 61 Yl nYl
p+0,n~+0 Dix 0 1 0
P*+*® N+ Dlz 1 0 “DLZ/DIK

8Note that nD), and D,, are independent of pressure.

D1K is independent of pressure, D), is inversely proportional to pressure,

and n is independent of pressure. Thus at very low pressures,P1 = ELK’

i§1 = 0, and ny; = 0, so that Eq. (5) for free-molecule diffusion is

recovered. At high pressures ,m and@but ny, =

“DIZ/DIK = constant), so that Eqs. (14) for continuum diffusion are reco-

vered if the pressure gradient is zero. The interplay of the various terms

in Eq. (28) or Eq. (32) at different pressures leads to quite interesting

behavior, especially in the transition region. For example, the explicit.
e, e

viscous flqw-ie,{@,\!(gﬁo‘{&)y:{:s ;}p_po_t;tfn_t _only in the transition region. q

l&hvagigpes in the free-molecule region, and in the conE}ngum region is b/‘

dominated- by -the -term involving J (El, E2, M22].

The behavior and predictions of these flux equations will be discussed
in more detail in connection with experimental tests of the theory. Other

forms of the flux equations can be obtained by mathematical manipulation,



28

and there is often a real advantage in using one form in preference to
another, depending on the experimental situation. There are also some
additional sﬁb{1e¥ies in the coefficients that do not appear in this pheno-
menological treatment, but that are revealed by the dusty—-gas model — for
instance, DiK exhibits a small pressure dependence at pressures just above
the free-molecule regime. We postpone these matters here, and turn now to

the multicomponent generalization of the present elementary treatment.

4. Multicomponent Mixtures

The key to the description of multicomponent mixtures lies with con-
tinuum diffusion —.in Knudsen diffusion, the_species act_completely inde-

~peadeatly, and dp viseous flow, they are completely coupled together. To

use the previous momentum-transfer argument, we must first isolate the

expression for the momentum transferred to species 1 by collisions with
species 2 (or vice versa), in a form which suggests a generalization to
include momentum transferred to species 1 by collisions with a number of
other species. To this end we rewrite Eq. (22) by substituting fD = ng +
fZD into it, obtaining

(% Jmorecure = (kpT/Py2)(xpd p = %1 J2p) - (33

We now define an average diffusion velocity V;; for species 1 as
X:I.D = giblni . (34)

This is much different from the mean molecular speed 31, in a diffusing gas
mixture viD is usually of the order of magnitude of 1 cm/sec, and decreases
to zero as the mixture finally becomes uniform, whereas’ vi is of the order
of magnitude of 10 cm/sec at ordinary temperatures. Then Eq. (33) can be

written as

(% Duolecule = kpT(mn2/00y2)(Vyp = Vap) - (335)

A similar equation exists for (sz)molecule’ but it is the same as Eq. (35)
with reversed signs. Equation (35) can be interpreted in the following way:
the momentum transferred to species 1 by species 2 acts like a frictional dra
proportional to the difference in their mean diffusion velocities, and this
drag is balanced by a gradient in the partial pressure of species 1. With
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this interpretation, the extension to multicomponent mixtures is plausible:
for each new species there is another momentum-transfer term on the right-han

side of the equation, plus another momentum-transfer equation,

= (1/%gD (VP porecute = (1na/nP ) (Y = Vop)

+ (nny/nD ) (Vp - 239) + oo,

- (/D))o ecute = (Bg81/0Dy) (Vyp = Vip)
+ (“2“3/'1"23)(;21) SVt
etc. (36)

For a mixture of v species, there are v such equations, of which only v - 1
are independent (any one equation is equal to the sum of the other v - 1
equations, as should be the. case if all the forces are to balance). This
set of equations is valid for continuum diffusion at constant total
pressure. ‘

Adding in the free-molecule and viscous contributions as before (and
ignoring the surface transport for simplicity, although it is straight-

forward to include), we obtain the general result,

1 nB 1
- Vo) =— |J +x; ) |+ — (xd] - x7,)
~ Dig [~ no- Dy, "~ ~

1 1
+D— (x3;11’- xl£3) +T (x,‘;ll - xlié) + ...,
13 14

1 nBo 1
sVt (T v ) R o Oxgdy —oxpdy)
2K 21 _

1 1
+— (x3dy = xpd3) +— (x4d5 = xpJ0) + ene s
923 n ~ Dy, ~ ~

etc. 37
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For binary mixtures, these equations are equivalent to Eqs. (28) and (32).
The arguments leading to Eqs. (37) are based largely on plausibility rather
than on detailed theory, and the results at this stage must be regarded as
phenomenological [M15]. 1In particular, there is no assurance that the Dij in
Eqs. (37) are the same as the ones in the corresponding binary mixture
equations, For dilute gases, in which at most only binary encounters are
important, it seems reasonable that this should be so. Detailed kinetic-
theory calculations show that this is the case to a very good approximation,
but the result is not exact. Put another way, the identification of the Dij
in Eqs. (37) with those for binary mixtures tacitly assumes that the Dij are
independent of mixture composition. ThisTs nearly, but not quite, true for
gases, and is an important simplification in the treatment of multicomponent
gaseous diffusion. The same form of equations might be expected to apply to
dense gases and liquids, but the Dij would then depend on all the components
in the mixture, not just on i and j.

The dusty-gas model described in the next part of this chapter gives much
the same results, plus more details, but involves much more mathematical
complexity than the simple arguments used above., We think {t is remarkable
that such simple arguments lead to such significant results with very little
mathematical manipulation; this will be illustrated in a more striking way in
connection with comparisons with experiment in the transition region between

the free-molecule and continuum regimes.
B. DUSTY-GAS MODEL

The physical ideas behind the dusty-gas model are really quite similar to
those used in the preceding elementary arguments of Section A. In particular,
the additivity of the diffusive and viscous fluxes is the same in both proce-
dures, and the reasons are the same. However, the treatment of diffusion by
¢QFngsty-gas model is much more elaborate than the simple momentum—-transfer
_arguments_used _in Section A.2. In place of these simple arguments for combin-
4ng free-molecule.and continuum diffusion, and for describing multicomponent
«diffusion, a full Chapman-Enskog kjinetic-theory treatment is given for a gas
‘mixture_in which the porous medium is considered as one component of the mix-
_ture. Pressure ya lon is then formally equivalent to variation of the mole
jxag;;gg_g;_Ehg_:ggggi,ggqggggg;. Al though these two procedures appear at
first sight to be fundamentally different, we wish to emphasize that they are
in fact quite close in both spirit and technique. Specifically, in the lowest
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order of approximation, the dusty-gas model gives the same results as do the
simple momentum-transfer arguments; it is only in the higher approximations
that new results appear. Moreover, attempts to refine the momentum-transfer
theory of diffusion lead to a mathematically elaborate result known as
hiaéAChapman—Ens;;E_EH;;ry [P3],

What then are the advantages of the dusty-gas model? The main advantage is
.that it provides a point of view which allows the treatment of a number of
different_aspects of flow_and diffusion from a single standpoint having a sound _
theoretical basis. It enables all the elaborate results of modern kinetic ———
theory [C7, F3, H10] to be used without having to repeat the Chapman-Enskog
solutions all over again in a somewhat different context. Thus thermal dif-
fusion, pressure diffusion, and forced diffusion are all easily included, and
many useful details about the behavior of the diffusion coefficients with
pressure and composition fall readily from the theory. In addition, not being
bogged down in previously worked-out mathematics, one can often see relations
between apparently different phenomena that would be completely obscured by a
riéorous mathematical approach from first principles. Examples are the £353:~
tion of the Knudsen permeability minimum to the thermal trq&gﬁ{iﬁf}3§a§5§iﬂ39$
and the relation of the height of this maximum to inelastic molecular colli-
sions in the gas phase.

Another way of viewing the situation is as follows: For many simple
transport problems, the correct results are known empirically, and it is
possible to concoct various sorts of theoretical or heuristic arguments to
justify or "derive™ them. This can lead to a dangerous situation, because
there are many wrong ways of “deriving” an already known answer, and maybe
only one or two correct ways. The danger comes when a new situation arises —
application of one of the wrong ways may now lead to a wrong result, because
the right answer is not known in a&vance. The history of kinetic theory con-
tains a number of ghastly examples of this sort, such as the prediction of the
composition dependence of the_BigaEymdﬁffusiop coefficient by a simple mean

ﬂffgg_gg&h_g;gggqu,mand various a;tempts to explain the radiometer effect.
The point is that it is important to have the fundamentals clear, and to have
one systematic procedure that can be applied consistently to complicated as
well as simple situations.

In this section we first give a more detailed critique of the assumptions
underlying the dusty-gas model than has previously appeared in the literature,

and then proceed to the formulation of the transport equations and the passage
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to the dusty-gas limit. Development of the relationships for special cases

and comparison with experimental tests are reserved for Chapter III.

1. Description of the Model and Critique of Assumptions

The physical picture behind the model is that of a dusty gas, in which the
dust particles constitute the porous medium. The array of dust particles is
treated as one component of the gas mixture, consisting of giant, heavy mole-~
cules that are motionless and uniformly distributed in space. If there are
any pressure gradients in the gas, an external force must be exerted on the
dust particles to keep them motionless. The precise origin of this external
force does not matter in the mathematical treatment; in practice it would
usually arise from whatever clamping device holds the porous body stationary.
The particular arrangement of the dust particles in space does not matter
either, since such geometric characteristics are absorbed into the transport
coefficients as constants likeggg)and EZ;} Thus it is unimportant how one
chooses to visualize the dust — literally as a random array of large spheres
somehow stuck in space, as irregular blops on the surface of a tortuous
capillary, as indicated in Fig. 3, or 1gtsome other fashion. Pictures like
Fig. 3 may be helpful as mmnemonic devices, but should not be taken any more
literally than the electrical circuit of Fig. 1.

By treating the dust particles as giant "molecules,” we can take over the
results of the Chapman-Enskog kinetic theory [C7, F3, H10] virtually intact.
This theory has two independent parts, at least in the approximation in which
only first-order deviations from the equilibrium Maxwellian velocity distribu-
tion are considered: a @ifgigi;;;;;iz)_ggg;;s;igg_ofzp se;\oﬁ;StefanfMaxyeki
diffusion equations, and>@:‘ﬂ<§ﬁu§':ﬁo‘aa _consist }gw
motion for the gasmixture—as-a whole,. These two parés are independent in the
senge that there are no diffusion terms in the equation of motion, and no term
corresponding to the viscous transfer of momentum in the diffusion equations.
This independence is the justification for assuming simple additivity of dif-
fusive and viscous fluxes. Writing down these two parts from kinetic theory
and taking them as additive is the essential heart of the whole treatment —
all the rest consists of manipulations of largely mathematical character. The
final result is a set of differential equations describing the gas transport.
In actual problems, these must of course be integrated, subject to a few
macroscopic boundary conditions. 7)_

Two .observatiqns may be made at this point. The first concerns the inde-

pendence of the diffusion and viscous-flow equations, in the sense that
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Fig. 3. Schematic ways of visualizing the dusty-gas model for gas
transport.

coupling terms are absent, This does not mean that viscous flow and diffusion
\gg_not interact in a very real ;;;;; but only that they interact through
boundary condit{ggg“and the behavior of the transport coefficients, not
through JI;;z;);oupli;;~;;;ms_I;M;£eIuuuations. In most real problems the two
sets of equations cannot be solved independently, but must be solved together
in order to satisfy boundary conditions. For instance, we must know the
viscosity in order to solve the viscous-flow equations, but the viscosity of a
mixture depends on its composition, which is obtained by solution of the dif-
fusion equation. However, the solution of the diffusion equation depends on
knowledge of the flow occurring, since flow distorts the composition gradients

taem
in the mixture, and this is obtained by solution of the flow equation., Thus
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we come full circle, and find that the equations are coupled in a very real
way when solutions to particular problems are sought.

The second observation is that the structure of the medium is isolated as a
completely independent problem. It appears only in numerical coefficients in
the differential equations describing the transport, and perhaps in a few of
the macroscopic boundary conditions. One of the virtues of the dusty-gas
model is that it is possible to obtain the general solution of the diffusion
and viscous-flow aspects of the problem without having to say anything speci-
fic about the structure of the medium. The unknown coefficients can then be
found either by direct experiment, or by calculation from the structure of the
medium (if it is in fact known in sufficient detail), whichever is more con-~
venient. This isolation of the geometrical-structural part of the problem is
extremely important in a practical sense. To see this, imagine trying to
solve a coupled flow and diffusion problem straightforwardly from first prin-
ciples. If we are safely in the continuum region, as we may assume for
simplicity, then the full formulation of the problem consists of the Stefan-
Maxwell diffusion equations and the equation of motion, as applied to each
element of the fluid mixture within the porous medium, plus the boundary con-
ditions throughout the medium. These boundary conditions are given by the
structure of the medium. Now the differential equations must be integrated
sub ject to these boundary conditions, to obtain the flow and diffusion fields
throughout the medium. This is a hideously difficult problem for a structure
of any complexity, but if it could be solved, we would have not only the
overall fluxes through the medium, but also explicit results for the effective
transport coefficients within the porous medium in terms of the structure. We
would also have a wealth of detailed information on secondary flows, etc., in
which we were not really interested. But of course it is virtually impossible
to carry such a program through because the boundary-value problems involved
are too difficult. Thus the structural part of the problem can prevent any
progress at all toward the solution, just because of its complexity. It is
thus essential that the geometrical-structural question somehow be isolated or
bypassed, and all attacks on the problem of transport in porous media do so in
one way or another, sometimes directly, by simply regarding the medium as a
bundle of parallel capillaries, or indirectly, by assuming that the transport
coefficients can be modified empirically to account for geometrical aspects.

Two fundamental questions or criticisms may now be raised regarding the
dusty-gas model. (Minor questions will be dealt with as they arise in connec-

tion with the derivation given later on.) They can be formulated as follows:
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é&lz Chapman-Enskog theory is based on the Boltzmann equation, in which it
is assumed that only binary collisions are important. This implies that the
mean free path of the gas molecules must be larger than the diameter of the
dust particles, to avoid multiple collisions in which several gas molecules
collide with a dust particle at about the same time. This in turn suggests
that the results of the dusty-gas model can only be applicable in the
near—-Knudsen region. How then is it justifiable to use the results in the
continuum region?

(2) Is the simple additivity of diffusive and viscous fluxes really
correct? Two arguments can be advanced against it. The first is that
coupling terms do appear in the equations when deviations from the Maxwellian
distribution are followed to the second order of small quantities. This is
independent of any special considerations about interactions with solid sur-
faces or boundary conditions. The second argument has to do with gas;surface
collisions, and can be formulated by consideration of the drag of a flowing
gas on a fixed sphere. In the free-molecule region, the drag is determined by
individual molecular impacts and is proportional to the pressure. As the
pfessure is increased, molecules may collide with the sphere, then collide
with another molecule, and finally recollide with the sphere. Such correlated
collisions lead to terms in the drag involving the logarithm of the pressure
or Knudsen number (the ratio of the molecular mean free path to the sphere
diameter) [D10, D11]. Simple additivity of diffusive and viscous fluxes cannot
lead to logarithmic terms, and so cannot be correct.

Regarding the first question, a more careful examination of the Boltzmann )
equation shows that what is required are uncorrelated collisions, not :
necessarily binary collisions. Binary collisions are sufficient, but not /
necessary, for the applicability of the Boltzmann equation. In the present l
case it is the mass of the dust particles that assures uncorrelated collisions,\
not the size; the collision of one gas molecule with a dust particle is not ‘
influenced by the fact that another gas molecule happens to hit another part i
of the dust particle at about the same time, because the dust particle recoils
negligibly from a molecular collision.

The second question is more serious. The first argument can be handled
fairly easily, since second-order deviations from the Maxwellian distribution
have been studied extensively in kinetic theory. It turns out that almost all
the new terms that arise in second order can be shown to be unnecessary, either
because they are small compared to the first-order terms in all cases of

experimental interest, or because retaining them involves incousistency in the



use of asymptotic series. Only one higher-order term survives this scrutiny
[23], and it has been shown explicitly not to alter any of the results from
the dusty-gas model [M22].

The second argument of the second question is less easily disposed of, and
involves matters of current research activity on the kinetic theory of gases.
In the drag problem in which the argument is formulated, the dusty-gas model
describes the situation in terms of uncorrelated collisions (Chapman-Enskog)
plus highly correlated collisions (viscous flow), and ignores the partial
correlations in between. Clearly this is an approximation that cannot
generate logarithmic terms in an expansion in terms of the mean free path, and
it is ultimately up to experiment to decige how good or how bad the approxima-
tion is. However, attempts to find experimental evidence for the existence of
such logarithmic terms have not succeeded — presumably their contribution is
small and is masked by the other power-law terms. As will be seen sub-
sequently, comparisons with experimental data indicate tha;“this\approx;ma:;on

_of the dusty-gas model is quite_accurate. There are also some recent indica-
tions of a basis for a better theoretical justification of the approximation.
This arises from recent theoretical work on the drag of a flowing gas on a
sphere, in which the problem is handled in a completely fundamental way by
incorporating the gas-sphere interaction into the Boltzmann equation from the
beginning [D11], rather than grafting it on later as a boundary condition. It
appears that the dusty-gas result gives a Padé approximant expression for the
transition region, and as such is likely to have good accuracy. This special
problem is discussed in more detail in Chapter IV.

There have been other attempts to give better theoretical treatments of
problems that the dusty-gas model handles by taking diffusive and viscous
fluxes as additive, or that the model handles by absorbing the difficulties
into parameters like Kb and e/q. These valuable studies [B10 — Bl2, C2 — C5,
L1, L2, L9 — L20, Wll, W12, Z2] naturally tend to involve complicated kinetic
theory formulations, and often require numerical integration in order to
obtain final answers. As such they are mot as directly useful for engineering
purposes as a more approximate but mathematically tractable approach like the
dusty-gas model, but they can serve to show the range of validity of such a
model, and to deepen the understanding of its successes and failures. Since
we are still far from such an understanding, for the purposes of this
monograph we shall adopt the more pragmatic view that the model is to be
judged by direct comparison with experimental data, as is done in Chapter III.



37

The foregoing considerations may serve as a reminder that we are neglecting
adsorption, surface diffusion, and other surface effects. This suggests that
the dusty-gas results may fail to hold when the size of the_hofis in the
porous medium becomes comparable to the molecular diameter. No clear
understanding exists at present of the nature of failure in such a regime, and
the problem of tranmsport through very fine pores remains an active research
area.

One final comment on the dusty-gas model can be made. Classical gas-kinetic
theory deals only with elastic collisions, so that the internal degrees of
freedom of polyatomic molecules are not taken into account. When the theory
is extended to include molecular internal degrees of freedom, it is found that
the external forms of the transport equations are identical, in first-order
approximation, with the corresponding equations for monatomic gases. The dif-
ferences show up only in the expressions for the transport coefficients, which
are more complex and contain inelastic collision terms [Al, M37, M39, M40].
Thus the general results obtained from the dusty-gas model will be applicable
to polyatomic as well as monatomic gases, although the explicit formulas for
ihe transport coefficients must be altered accordingly.

We now turn to the formulation of the transport equations.

2. Diffusion Equations
As might be expected from the momentum-transfer arguments of Section A of

this Chapter, the diffusion equations for a multicomponent mixture appear
simplest when written, not as a flux of species 1 being proportional to gra—
dients_of all species, but_as the._gradient-of-species i -beingpropoxtional to
fluxes of all species (Stefan-Maxwell form). In this form the equations for a

mixture of v species are [A1,<337, M39]

v
4 = 121 (x335p — x335p)/ (2 345) (38)
where the gradient term dy is Jooes o
Ao P e ‘
u"r T .
- v m - -i X mi v
Si - in\\-t-,vxi ('T-) Z In p - N (n{i —T;— jzl nj{j)

\d et
*121 xyxjagy V1o T, (39)
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in which

v
m = jzl x4m3 (40)
is the mean molecular mass of the mixture, and Ei is the external force on
species i. The four terms on the right-hand side of Eq. (39) represent concen-
tration diffusion, pressure diffusion, forced diffusion, and thermal diffusion,
respectively. Note that Eq. (38) is the ith of a set of v equations, of which
only v-1 are independent (any one of the set is equal to the sum of the
remaining v-1 equations).

The form of the above transport equations, Eqs. (38) and (39), could have
been deduced from simple momentum-transfer arguments, but the explicit
expressions for the coefficients zij and °ij require more elaborate theoreti-
cal methods. It is at this point that the Chapman-Enskog procedure makes its
special contribution. In this procedure the transport coefficients are
obtained in a series of approximations, usually rapidly convergent. The first
approximation for.zij, denoted as [lijll’ is

g1, =2 (2,12 : » (1)
3’1 g 2“1_1 ‘"“’fj ﬂ:{;'l)* ’

where uyy = mimj/(mi+mj) is the reduced mass of the ij pair, 94 is an
arbitrary distance parameter that is usually chosen for convenience to be
of the order of magnitude of the mutual collision diameter of the molecular
pair, and ﬂﬁ;’l)* is a dimensionless transport collision integral (or
average cross section) normalized to be unity for collisions between rigid
elastic spheres of mutual diameter Og5- The detailed definition of
Qf;’l)* is rather standard in kinetic theory qug;, and need not be
repeated here; it will only concern us in connection with gas-dust colli-
sions, because for gas-gas collisions we will simply regard 31j as an
experimental quantity. The form of Eq. (41) is unchanged when polyatomic
gases are concerned, but the expression for ni;’l)* is more complicated
than for monatomic gases [M40].

Notice that Ezij]l depends only on the species i and j in the mixture, and
is independent of all the other species; it is thus the same as the binary
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diffusion coefficient of species i and j in this approximation. This is not

true in higher approximations, which may be written as
211 b [Bij]l/(l - Aij) . (42)

Although Aij is usually small compared with unity, it contains all the depen-
dence of the binary 31j on the composition, and all the dependence of cheﬁbij
on the other species in a multicomponent mixture [M4l]. Again, this does not
concern us except for gas—dust collisions. ——
The quantity Ggy = %4y is a generalized thermal diffusion factor that, in

a sense, describes the relative separation of i and j in a temperature gra-
dient, though it too is dependent upon all of the species in the mixture.

This dependence appears in the formulas in an essential way, not just through
a small correction term like . Problems involving temperature gradients
thus tend to be algebraically messy, although still straightforward in prin-
ciplg,\ The multicomponent a4 can be written, to the same approximation as
\the.;ijfi“ Eq. (42), as the sum of the contribution from the translational
motion of the species and from their internal motion [Al, M39],

agy = (agglep + (%j);'jtiﬂma\byw
- b

I i
tugth  aEddh
The internal contribution (°1j)1nt vanishes if the angular scattering pattern

(43)

A~ o

for ij collisions is independent of the internal energy states of i and j.
Even 1if (“1j)1nt does not vanish, it is almost always negligible compared to
(°ij)tr’ unless the latter happens to be almost zero because of some special
combination of factors such as molecular masses and sizes (e.g., if 1 is
ortho-Hz and j 1is para—HZ, or 1 is HT and j is DZ) [M39]. In any event, we
will henceforth neglect (aij)int' The translational contribution is given by
[Al, M39]

\

(gder =5 1 v s el B

—_—_ (44)
5 “Izﬁj]l B

where C:j represents a dimensionless ratio of collision integrals whose value
is near unity [H10], and (Ai)tr is a partial contribution of the translational
motion of species i in the mixture to the total translational thermal conduc-

tivity of the mixture,
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v
121 Opder = Agr - (45)

Equations (44) and (45) are valid for both monatomic and polyatomic gases,
but the explicit expressions for F:j’ Jz;iii, and thexgxiztg are more
complicated for polyatomic gases. This need not be a cause for concern,
because most of the extra complications can be absorbed into experimental
quantities for the gas—-gas interactions and into adjustable parameters for
the gas—dust interactions, as is shown in detail in subsequent sections.

The expressions for the (Ai)tr are rather complicated for multicomponent
mixtures, even for monatomic gases. For polyatomic gases, the expressions
contain many complicated extra bits which are needed to describe the in-
elastic collisions. Fortunately, a considerable simplification is usually
possible. It has been found that the explicit inelastic-collision terms do
not have much effect on the form of the dependence of Agp on composition,
but mainly translate A., to lesser values than those for corresponding mon-
atomic gases. Thus a good approximation can be obtained by using the full
polyatomic-gas formulas only for the pure-component end points, and using the
monatomic-gas formulas for the mixtures as interpolation formulas for the com-
position dependence only [M38]. That is, the translational thermal conduc-

tivity for pure species i is calculated as

: 5 3kg
Qy1der =7 M1(7 A ) (46)

S—

where ngy is the experimentally known viscosity of pure i, and A: is a

correction for inelastic collisions,

- 2@ 40 [5 mygdine
- —— - — | x
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In Eq. (47), (Ek)int is the internal specific heat per gram, Cii is the number
of collisions required on the average for interchange of internal and transla-
tional energy, and (jki)int is the diffusion coefficient for internal energy,
usually but not always nearly equal to the self-diffusion coefficient Qii‘of
species i. The important point is that all the quantities in Eq. (47) can be
measured or estimated independently. In Chapter III we will show that the

' converse procedure is also possible, and that values of z;; can be found via
Eq. (47) from experimental measurements of thermal transpiration. Once all
the (Xii)tr are known, the values of the partial (1), in a mixture can be
calculated from the monatomic-gas formulas, which are still fairly complicated

determinant expressioms [C7, F3, HIO] ,

v lA'ki
Oer =% L= T (48)
ku
in which |A] is a determinant with elements Q£§; and |A|,; is the cofactor of
the element A ; of the determinant. The elements are

"12 A
Aii = + x
Oqpder  25%g K21 (nymp)? 03y,
15 55 6
1o, 22 b 2 *
[2 mg "+ (75 Byy) m *‘mimk‘\ik] , (49)
4 B®  *1*k 55 * *
A (1#k) = - (— - 3B}, - 4T , (50)

2
25ky (mgtm)” 0, 4

where A;k and B;k, like C:k, are dimensionless ratios of collision integrals
whose values are usually near unity [H10]. Equations (49) and (50) are only
theoretical first approximations, but are quite accurate if experimental
values are used for the (Aj;)., and the Dj,.

This completes our specification of the Chapman-Enskog multicomponent dif-
fusion equations. We turn now to the viscous-flow equations, and then con-

sider the dusty-gas limits of both sets of equations.
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3. Viscous-Flow Equations

The Chapman-Enskog treatment adds nothing essential to the more elementary
computation of the viscous flux in Section A, except for an explicit formula
for the viscosity of a gas or gas mixture in terms of molecular quantities.
That is, the Chapman-Enskog expression for the pressure tensor still leads to

the same result for creeping flow,

Jvisc

J = - (nBy/n)%p , (51)
wherqu;is a geometric constant., Partial viscosities ny of species i in a
mixture can be calculated, but are not important in the present problem
because the viscous component of the flow is nonseparative. At most we may
need the formula for the viscosity of a multicomponent mixture, which is
similar to that for the translational thermal conductivity [C7, F3, HI10],

v v | 1) Ki

n= ]

X ——— 52
151 &y e T )

where |H| is a determinant whose elements are given by

2
H = + E 1 a+ 30 AL) (53)
MMl ) sm T
K#i
2%y %) 3
Hip (1K) = = ————— (1 - =2 4, ) (54)
1 (my 4y )0y 5

These expressions, like those for the thermal conductivity, are only
theoretical first approximations, but are very accurate if experimental
values are used for the ng; and the 34, . They hold for polyatomic as well
as monatomic mixtures, the only difference being a slightly changed result
for the dimensionless ratio A;k [M40].

4. Dusty-Gas Limit
Thus far we have merely given the kinetic-theory background. To pass to

the dusty-gas limit we apply six special conditions, as follows [M22]:



(1) As in the elementary discussion, we letji:3be a geometric constant
of the porous medium, to be determined by experizg;t or separate calcula-
tion. Similarly, we define effective diffusion coefficients as Dij =
(e/q)}ij, and let the porosity-tortuosity factor e/q also be a geometric
constant of the medium. Two comments should be made. First, B, and e/q
are only locally constant parameters; they can have different values in
different portions of the porous medium. Second, 2ij is replaced by
Dij only in Eq. (38) for the fluxes, and not in any of the equations
relating 31j to some other transport coefficient, specifically Eqs. (44),
(47), (49), (50), (53), and (54).

(2) The dust particles are motionless and uniformly distributed.
Therefore, fd = 0 and !“d = 0 in Eqs. (38) and (39), where the subscript d
denotes the dust compoument.

(3) Since the dust is stationary, it does not contribute directly to 3'
or n in any of the mixture formulas.

(4) The quantities n and p appearing in the various parts of the dif-
fusion equations are not the actual gas density and pressure, but include
the dust particles in the counting. To avoid confusion, we use primes on
quantities when the dust particles are counted as molecules and drop the

primes when only the actual gas molecules are counted; thus we write
n' =n+ng, p' =p+ngkgT, vi=v+d. (55)
It is a result of kinetic theory that

n'Djy = nby; , (56)

but the analogous result for a5 is more complicated and gives rise to
interesting pressure dependences in thermal transpiration and thermal dif-
fusion.

(5) The dust particles are held motionless by an external force which
balances any pressure gradients in the gas.

(6) Explicit kinetic-theory expressions can be written for nDid and
'uid in terms of gas and dust properties.

" Only the last two conditions require elaboration. Regarding condition

' (5), we can calculate the external clamping force on the dust by a simple



44

force-balance argument. Suppose for simplicity that no other external forces,
such as gravity or electrical forces, act on either the gas molecules or the
dust particles. Now consider a solid slab of material of thickness dz and
cross-sectional area A, with fluid on one side at pressure p, and on the other
side at pressure p + dp. The net force on the slab is Adp. Then imagine a
hole of cross-sectional area a drilled in the slab, through which fluid flows.
The direct force on the slab is now reduced to (A-a)dp, but there is an addi-
tional force due to the drag of the fluid on the sides of the hole as the
fluid flows through the hole under the action of the pressure difference dp.
If the fluid is not accelerated as it flows through the hole, then the drag
force must equal the force pushing the fluid through, which is adp. The total

force on the slab is therefore
(A-a)dp + adp = Adp .

In other words, the force on the slab is the same whether or not the slab has
holes in it. This result is independent of the size and shape of the holes,
and does not depend on the nature of the mechanism whereby the fluid exerts a
drag on the walls of the hole. All that is required is that some such mecha-
nism exists, and that the fluid not be accelerated. If now the slab is so

riddled with holes that it appears as a collection of dust particles, the net

ey

force is still Adp, where A is the apparent area of the slab before being
riddled. This must be balanced by an external clamping force on the slab to
hold it motionless. If a force Fd acts on each particle, and there are ny
particles per unit volume, then the total clamping force on the riddled slab
is n4F4Adz, and the force-balance equation is

‘. El_dFdAdZ -,..A‘d‘p"

or, more generally,

ngfq = 7P - (57
Note that p here is the actual gas pressure.

If other external forces act, a similar force-balance argument leads to the

expression
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v
ngfg * 1) niFy = P (58)

where the sum includes only gaseous species, and the F's refer to all external
forces, including the clamping force. The only addit;onal assumption involved
in Eq. (58) is overall electrical neutrality within the porous medium; that
is, any charge on the dust particles must be balanced by the total charge on
the gas molecules. This result is of little importance for gases in porous
media, but it does become important in the extension to general membrane
transport given in Chapter IV, since charged membranes and charged electrolyte
species are commonly encountered. The viscous-flow equation must also be

modified in such cases; in place of Eq. (51) we obtain

Y
= - (@B /n)(%p - [ nyFp) (59)

gvisc -
i=1

éuéject to the same conditions as Eq. (58).

_.Before proceeding to the explicit formulas for”;D;d‘andJQ;d, we can now
write down the complete set of transport equations. Applying the dusty-gas
conditions to Eqs. (38) and (39), we obtain, after some algebra, the result
(for 1, j # d),

ng v nj(l-Aid) [Jm :"JDJ 1-814

b e
Jip
nlDyply

n j=1 nlDijli ny nj

ﬂi ni n ni v n
= TE) w llery Boog |l Gl t

n

d
+u—<aid>n] Vi T , (60
where the summations now exclude the dust. The Knudsen diffusion coefficient

[D“(]1 is defined as
[Dikll = (n/nd)[Did]1 . (61)

Most of the complicated pressure- and forced—-diffusion terms have cancelled

out because of Eq. (58). Before adding in the viscous flow, we make the
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following useful app"'°xim£n:i.on. Since Aij in a binary mixture is usually
fairly small, it seems Teasonable to take the multicomponent Aij in Eq. (60)
as also small and 8PProximately equal to Ajy- Thus we write

whete@ is the m diffusion coefficient., It will also be useful to

ke an anal bi v
make an analogous Nary-mixture approximation for the YD which will be seen
to contain some small but interesting pressure effects. We now put the

viscous flow into Eq. (60) and obtain equations for the total fluxes,

Mo
ni ﬂj

j=1 Py

= -9 1n (ng4/n)

—_— e —

= Vinp+ Fi/kBT

v
- y=-1 A '
(n') [jzl nj(?_i_.j\)!;_r + nd(ﬁid)tr] Z In T , i,j #d . (63)

The last term on the leg,

~hand side of Eq. (63) is a correction for the net
drift due to viscous flOW, in which J is given by Eq. (59). The first

visc
~hand side correspond to concentration diffusion,

~

three terms on the righy

pressure diffusion, anq forced diffusion, respectively. The terms

involving (ajy)ry BiVe rige ¢4 thermal diffusion, as modified by the presence
of the dust, and the tery, involving (a}4),, gives rise to thermal transpira-
tion (or thermomoleculay Pressure difference), as modified by thermal dif-
fusion among the true ggag. . o components. All v of these equations are

independent, since the @quation for the dust particles has been explicitly

eliminated.
We need finally to have expressions for the quantities [Dil(ll' 84>
(aij der> @0d (@fgders  The Knudsen diffusion coefficient is related by
Eq. (61) to the gas—dust diffusion coefficient [Did]l’ which in turn is given

by Eq. (41), with one Component being the dust particles. We thereby obtain
the expression,
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(Dyly = (a/na) Igqly =11 20 s. g(LD*’
1 nd d 14

where Sd is a geometric constant characteristic of the dust particles, and
the dimensionless collision integral alL,D* depends on the nature of the
scattering of the gas molecules from tte dust particle. For spherical par-
ticles of radiua’?, sd is equal to sz, the cross—sectional target area for
collision. Very little is known about’a(l’l)* for real systems as opposed
to simplified models, but fortunately ﬁost of the results of interest will
be nearly independent of this quantity. For elastic specular scattering,
the value ofln(l'l)*;is unity. 1If a fraction f of the molecules are
scattered elastically but diffusely (cosine-law distribution), and the
remainder are scattered elastically and specularly, the value is

(L, )* _ 4 65
84 1+35f. (65)

If the diffusely scattered fraction is accommodated to the temperature of the

dust particle on collision, the scattering is inelastic and the value is

*
nﬁ’l) = 1+-; £ . (66)

These values of nfé'l)* assume no interaction between the dust particle and
a gas molecule until the two are in contact. A weak interaction can be
included by the Sutherland approximation, whereby Q(}él)* is increased by
the factor [14(s/T)], where the Sutherland constant s depends on the
strength of the long-range interaction. Fortunately, most of this does not
matter, because the geometry of the porous medium is usually so poorly
known that [D;, ], must be determined experimentally; the important part of
Eq. (64) is then just the ('l‘/mi)ll2 dependence. Thus Eq. (64) can be
rewritten for practical purposes as

(67)

lbikll » constant ('l‘/mi)l/2 .
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in agreement with the results of the elementary arguments leading to
Eqs. (6)—(7).

The correction term Aid is quite complicated for a multicomponent mix-
ture because its value may depend on all the components of the mixture, not
just on species i and d. Although Aid can be found in principle, its
expression is fairly simple only for a binary mixture (i.e, one gas plus
dust). Since the term is small, a simplifying approximation seems
justified, and we shall use an expression for Algq corresponding to a
pseudo-binary mixture [M21, M22]},

1 l 1
biq =5 Ex(ng/n")(agq|Dey > (68)

where &; is a numerical constant of order unity, whose value depends on the
scattering pattern. This expression is correct for a binary mixture, but

is only an approximation for multicomponent mixtures. We take the recipro-
cal of (|a:ld|)tr to be linear in the mole fraction, which is c&rrect for a
binary mixture but is only an approximation otherwise, and write [M21, M22]

ng +n n

—_-.[l...__, (69)
UojaDer o or

where a;; and agp are the limiting values of (laidl)tr at low (n <K nd)

and high (n > nd) pressures, respectively. The subscripts L and R repre-
sent "Lorentz” and “Rayleigh”, in recognition of H. A. Lorentz and Lord
Rayleigh, who first studied (in other connections, to be sure) these spe-
cial models — the Lorentz gas consists of a light particle moving through a
bed of fixed scatterers, whereas the Rayleigh gas consists of a heavy par-—
ticle moving through a swarm of much lighter particles. It is not at all
obvious that Eq. (69) follows from Eq. (44), even for a binary mixture, but
is nevertheless correct. For a multicomponent mixture, iR depends in
general on the gas composition, but a;y does not, because in the Lorentz
limit the light particles interact only with the dust particles, not with
each other. All of these complications are of little consequence in prac-
tical cases, where it is usually necessary to absorb the quantities n,, Ei’
LR and 4R into empirical conmstants. In particular, it is only the small
term Aid that is at issue here, and Eqs. (68) and (69) can be combined to

yield



49

1 1+ (ﬂi/P)
= , (70)

| L
l—Aid 1+ (1’1/p)
1]
where Ty and LI have the dimensions of pressure and are defined as

Cogg/agy) ngkgT , (71)

"

i

Ty

1
7 (1 -3 Eqagp) . (72)

Since the total variation with pressure given by the right-hand side of

Eq. (70) is only of the order of 10%, and the effect of LY vanishes at
both very low and very high pressures, the composition dependence of ajr is
not expected to matter much.

The thermal diffusion factors (“{j)tt and (aid)tt that occur directly in
Eq. (63), rather than in a small term like Alg» require more careful treat-
ment. It is necessary to use the full complexity of Eq. (44), inserting
expressions for the gas-dust interaction terms where they occur. (No dust-
dust interactions occur because of assumption (3) that was made in passing
to the dusty-gas limit, viz., that the dust is stationary.) This is
carried out in connection with specific cases in Chapter III, and there are
no simplifications to be made at this point. However, it {s worthwhile to
note the values of ay; and a;; for binary mixtures (dust plus a single
gas), since they are needed in the treatment of thermal tramspiration. For
elastic gas—dust collisions without long—raﬂge interactions, these limiting
values are [M21, M22])

L= V2, 3

o o1 Oypderlkp

s Ayl

(74)

L

The expression for ' “ik follows directly from Eq. (44), and is, like it,
only a kinetic—theory first approximation; the error is, however, probably
less than 2%, The expression for ay;, on the other hand, is an exact
result, and is used because Eq. (44) is least accurate in the Lorentz

limit.
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This completes the kinetic-theory part of the problem; it only remains to
perform straightforward mathematical manipulations to obtain explicit
results corresponding to particular special cases. This is done in Chapter
III. In the remainder of this chapter we consider the separate problem of

the geometrical structure of the porous medium.

C. STRUCTURE OF THE POROUS MEDIUM

There are three major parameters characterizing the porous medium,
according to both the elementary arguments and the dusty-gas model — the
Knudsen permeability coefficientfiZ}[which is related to the Knudsen dif-
fusion coefficient by Eq. (6)], tké’viscous-flow parametercgé, and the
porosity-tortuosity factor . There are also additional minor parameters,
like n; and nl in Eq. (70), which depend on details of the gas-surface
collisions, and which give rise to subsidiary phenomena like the Knudsen per-
meability minimum. (For the present discussion we ignore surface diffusion.)
Much effort has been devoted to the problem of predicting values of K,» By,
and €/q, given some sort of information about the geometrical structure of the
porous medium, or some idealized mathematical model of the structure. Many
such models have been proposed, including bundles of parallel capillaries,
beds of randomly packed spheres, and so on [Cl].

From a practical point of view, it is undoubtedly best to determine these
parameters directly by experiment. Such experiments are usually easier to
conduct than are the measurements that are required to determine the structure
of the porous medium, which are otherwise needed for any theoretical calcula-
tion. Direct measurements are certainly more reliable than are calculations
based on some model chosen at least partly for reasons of mathematical trac-
tability. Where models are perhaps most valuable is in the prediction of
transport parameters When only meager experimental information is available.
For instance, the parameters l<.o and Bo can be determined by permeability
measurements conducted with a single gas whose molecular weight and viscosity
are known. As will be seen in Chapter III, B, is found from the slope and K,
from_the intercept of a plot of the permeability coefficient vs. average
pressure, so that as few as iwo.permeability measurements may be sufficient.
The determination of €/q requires at least one diffusion measurement; since
this may be more troublesome than permeability measurements, it would be con-
venient if €/q could be calculated from values of K, and Bo rather than having
to be measured directly. In the first part of this section we show how a
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structural model can indeed be used to get by with fewer than the minimum
number of measurements required to determine all of the parameters experimen-
tally.

However, a tacit assumption is often made about the effect of the structure
of the porous medium on gas transport, which conceals a deeper and more
serious problem than that of calculating parameters from structural models.
Buried in almost all of the discussion thus far is the assumption of effective
homoporosity of the medium — that is, the assumption that a porous medium can
be characterized by only three major parameters. Even when heteroporosity is
explicitly recognized, it is usually assumed that taking suitable average
values of the parameters over the pore-size distribution suffices to describe
the transport; in other words, the heteroporosity is assumed to be equivalent
to an effective homoporosity [C8]. This is true as long as the fluxes are
linear in the overall concentration or pressure differences, but not other-
wise. In combined flow and diffusion, the species fluxes are nonlinear func-
tions of the total flow or pressure difference, and this assumption fails.
There have been surprisingly few general attempts to deal with this problem.
The usual approach is to assume specific structural models and investigate the
effects of heteroporosity by direct computation [Fl, F2]. The formulas
obtained tend to be fearsomely complicated in appearance, and resort to a com-
. puter follows. What is surprising is that complicated formulas for hetero-
porous media may have rather simple lower and upper bounds, at least for a
large class of structural models, and the homoporous formula is the lower
bound. These results do not seem to be widely known, and are discussed in the
second part of this section. They at least make plausible the apparently
unreasonably good results often obtained with the assumption of effective
homoporosity.

Finally, we should mention that one additional fundamental assumption is
almost always made, and which we shall also make. This assumption is that
the transport inside the porous medium can be treated as one-dimensional,
at least in some locally-averaged sense. Thus, gradient terms 11ke<§;} or
Zp can be replaced by 3n;/3z or 3p/dz. o

1. Transport Parameters from Structural Models

Suppose for simplicity that the porous medium consists of a number of non-

interconnected circular capillaries of radius r, having lengths L,c¢ as indi-

2
cated in the lower part of Fig. 3. Further suppose that each pore of area n=r
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is contained in superficial area A of the material. Then a block of material

of superficial volume AL actually has a void volume of ﬂrzLeff, so the poro-

sity € is
2
€ = nr L ee/AL . (75)

The tortuosity q will obviously be related in some way to the ratio thf/L.

To find the relation, let us calculate the value of B,, which for ome
capillary is equal to r2/8. The flux of the viscous-flow component is given
by Eq. (11) or (51); per unit area of superficial surface the relation becomes

nrz n r2 p
Jvise = - T RE) 35 o (76)

where z,¢¢ 18 measured along the path of the pore. Converting Zogg Lo 2z,
measured straight through the medium, by multiplying by L/Leff, we obtain

2 2
mr n_r

L ap
Jyise * - K (ﬁ‘)('g—)(]:f—f) 3z ° 77)

Substituting for ¢ from Eq. (75), we find the effective value of B, to be

2 2

B om () == ()
° (Leff/]") 5 LR

(78)

2
Notice that q = (Lgg¢/L)”, and that the square arises because Lo¢g/L appears

twice, once in connection with the gradient and once in connection with the

void volume.
A similar calculation for Knudsen flow yields

K, = (e/q)(x/2) , 79
and for diffusive transport yields
(80)

Dlz - (E/q)zlz .

Combination of Eqs. (78) and (79) gives an expression for €/q,
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elq = Kt,z/mo , (81)

so that €/q can be calculated from permeability measurements alone.
Relations like Eq. (81) can be very useful when maximum accuracy is not
required. Although they often give reasonable results (i.e., within a fac-
tor of 2 or better), their accuracy cannot be relied upon; deviations up to
a factor of 5 have been reported.

Several modifications of Eq. (81) have been made to improve accuracy, or
at least to explain observed inaccuracies, as follows: modification of
K, for the Knudsen permeability minimum, correction for noncircular cross
section and for bends in the pore, and correction for a distribution of
pore sizes. Let us consider these modifications in order. The value of
K, = r/2 holds for a straight circular capillary only in the limit of per-
fect free-molecule flow with diffuse gas-surface scattering. Extrapolation
of the permeability measured at higher pressures to the zero-pressure
intercept yields a lower value, [Ko]l’ that corresponds to the first
approximation for the Knudsen diffusion coefficient rather than the exact

value. It is customary to write
(Kol = Ky & (82)

where the factor § is related to the "slip correction” for flow in the
transition region. The value of § is 3n/16 = 0.59 according to Maxwell's
theory of slip, about 0.81 according to Knudsen's experimental results, and

according to Eqs. (70)—(72) of the dusty-gas model is
' 1
§ = '1/"1 =1 -~; Ef agy ~ 0.9, (83)

for all diffuse scattering. If only a fraction f of the gas molecules are
scattered diffusely, the value of § is multiplied by a factor (2-f)/f.
Since it is [Koll rather than Kb that is usually measured, Eq. (81) should
be rewritten to recognize that fact.

Deviations from circular cross section change the numerical factor of 2
in the denominator of Eq. (81); bends along the length of the pore presu-
mably have a similar effect. Thus the factor of 2 can be replaced by a
numerical constant k., a “shape factor,” to allow for variations in

‘geometrical shape. A value of ko = 2.5 has been widely used in practice.



Finally, a distribution of pore sizes affects K, and Bj differently.
The total viscous flow through a capillary is proportional to ru; for a
distribution of capillary sizes the flow is therefore proportional to (r“),
where the angular brackets signify an average over the pore-size distribu-
tion. The open area is proportional to <r2>, so that the flow per unit
area, and hence B_, is proportional to <r“>/<rz>. Similarly, K, is propor-
tional to (t3>/<r >, so that

N

<r3>2

o

1
—— =—<1, (84)
o aixet> O

w

where o is a measure of the spread in pore size, and is necessarily
greater than unity (equal to unity for the homoporous case). Notice that
we have made the assumption of effective homoporosity here, which is legi-
timate because the permeability equation is linear (i.e., the total flux is
proportional to the pressure difference even for large pressure
differences).

Combining these modifications, we obtain {H15]

2
€ o, [K.]
_.r__gz_l_ s (85)
4 kB8

a useful result, but one which should still not be trusted too far. For
example, with o =1 and f = ], the right-hand side of Eq. (85) is often
much larger than the directly measured value of e/;l Although o > 1, it
would still be necessary to believe that f is appreciably less than unity to
obtain agreement, which conflicts with much experimental knowledge on gas-
surface interactions. Presumably the model leading to Eq. (85) is defi-
cient. In this connection, it is worth noting that €/q is not necessarily
much trouble to measure directly; diffusion measurements of useful accuracy
can often be made for porous media by minor modification of Graham's origi-

nal method [E3].

2. Effect of Heteroporosity on Flux Equations

We have already mentioned that heteroporosity causes no difficulties as
long as the flux equations remain linear after integration (all the flux

equations are of course linear in their differential form). The only



effect is that the parameters Kb’ By, and €/q are replaced by averages over
the pore-size distribution — the form of the equations themselves does not
change. In particular, free-molecule flow and viscous flow are not
affected. The main difficulty arises with coupled flow and diffusion,
which is not linear when the total flux is large. To illustrate the
problem, consider a binary mixture at constant temperature undergoing
simultaneous flow and diffusion in the continuum region, where Knudsen
effects are negligible. The flux equation for species 1 becomes

fl =-Djy an + xli . (86)

which, for pressure gradients that are not too large, can be written (in

one dimension) as

ax;
Jl = - nDlz T + le . (87)

At the steady state, Jy and J are constant along the length of the pore,
“DIZ is constant except for a weak composition dependence, and thus Eq.
(87) can be integrated over the length of a single pore to yield

3y = 0 e Sl (88)
= Jx - ,
Lo exp(aL/ay,) - 1

L are the mole fractions at the entrance and exit. Clearly

where xlo and x)
Jl is not linear in J, so the addition of the fluxes through a collection
of pores to find a total flux leads to an equation of apparently radically
different form than Eq. (88), namely a sum of terms each with a different
exponential in the denominator. —-
The question is thus how much error is likely to be involved in applying
the assumption of effective homoporosity to such a heteroporous situation —
that is, in replacing the sum of terms by a single "effective” term. To
investigate this question, we will consider steady-state isothermal binary
diffusion in the continuum region. Although this is not the most general
case, it is probably one of the worst cases possible, since free-molecule
’Qnd viscous flows are linear even for large flows. (At any rate, it seems

to contain all the essential difficulties.) Somewhat surprisingly, it
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turns out that the maximum relative deviations from homoporous behavior
result only from rather bizarre pore-size distributions, and are only
moderately large; most distributions introduce only small errors [W6].

We begin with the simple model of a parallel array of uniform pores, and
then build up more complicated geometries by series-parallel combinations of
pore segments of various lengths and cross-sectional areas. Finally, we
allow internal cross—connections among pores, so that the model hopefully
embodies sufficient geometric complexity to mimic structures of real porous

media.

a. Parallel Pores. We consider a parallel array of separate pores, each
with its own length, and with its own cross-sectional geometry (or e/q) along
its entire length. To try to keep the notation unambiguous, we use lower-
case j's for fluxes in individual pores, and capital J's for overall fluxes
across the whole porous medium. The flux of species 1 through a pore of any

particular type i, jl(i), is given by Eq. (88), which we rewrite as

3@ =g - —— . (89)
exp (j /Pi) -1

where j(i) is the total flux through the pore, and Py = nDlz(i)/L1 is a dif-
fusive permeability coefficient. The measured flux of species 1 across unit

area of the whole porous medium, Jl’ is related to jl(i) by

) va3, , (90)

where v; is the number of pores of type i per unit area of the septum, and

a; is the area of a pore of type i. Combining Eqs. (89) and (90) we obtain

(1)
0 V1843
3= x 1 vag s - a3 ™ . (1)
i i exp(3*7//Py) - 1

Since the total flux J is given by

J = 2 Viaij(i) > (92)
i
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the first term on the right-hand side of Eq. (91) could be replaced by the
measurable quantity on. But the second term cannot be simply expressed,
nor can it be evaluated without knowledge of Vys 84, Py, and j(i). It thus
appears that we cannot write a simple integrated flux equation for a
heteroporous medium without considerable information about the structure.
However, the summation of the second term can usually be replaced by a
single term to a good approximation, and definite bounds can be placed on
the resulting error [W6].

To demonstrate this result, consider first the special case of a homo-
porous membrane, for which Eq. (91) does reduce to the simple form of Eq. (88
The j(i) are then all equal, as are the Pi’ which can be written in terms of

an overall permeability coefficient,

p=z) viaPy . (93)
i

Then Eq. (91) reduces to

ax;J
JI(O) = Jxlo - (9[‘)
exp(J/P) - 1

where the superscript O designates the homoporous result. The question
is now as follows: how good (or how bad) is Jl(o) as an approximation to
the true J; of Eq. (91)? The overall coefficient P for a heteroporous
membrane would of course be determined experimentally by measurement of

J, in the pure diffusion limit, where all j(i) are zero, for which Eq. (91)

becomes, on expanding the exponential,

Jy = - 8% ] vjaP, = - AxP . (95)
i

We shall show that Jp? Jl(o) at any given values of xlo, le, and J; that

is, the curve of Jl(o) vs. J is a lower bound for all possible curves of

0

Jy vs. J obtained by varying the pore-size distribution at fixed x and

le.
To prove this result, it is convenient to use dimensionless variables

defined as follows:
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o = 3Wpy (96)

s: = va;P /P, (97)

Y =90k, (98)
1

We may consider a; as a statistical variable and the g° as weight factors,

and define a as an average of a; with these weight factors,

a=<a> =] Blay = J/P. (99)
1

Note that )ZB?L = 1. Similarly, if we define a function ¢(a1) as

A)(l (!i
$lay) 2y ~g | ——| > (100)
1

x exp a; - 1

[
then we see from Eq. (91) that Y is the average of ¢(ui) with the By as
weight factors,

‘t\xl ° ay
Y '12 8oy - T % 8 | e =T
=1 81’0(«1) = <olay)> . (101)
i

From Eq. (94) we see that (0 is

0) 0 Axl a
Y =J P=aqa- —_— (102)
l/xl ¢ ;(-?_ exp a ~ 1
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where a is given by Eq. (99). That is, Y(o) is a function of a = <“i> with

the same functional form as ¢ ,
1 =y (<ap . (103)

In other words, in comparing Y with Y(O) we are comparing the average of a
function of ay with the function of the average of aj. These two averages
are related through a mathematical theorem known as Jensen's inequality.
In its simplest form, Jensen's inequality states that the average of a
function of a set of variables ay is always greater than or equal to the

function of the average of a;, provided only that the function of a; is

50
everywhere concave upward (positive second derivative). The set of oy may
be continuous or discrete, and any set of non-negative weighting factors
may be chosen to define the averages. The function o(ai) considered here
is everywhere concave upward provided that ax; = x% - x? 5)0 (which can
always be arranged by proper choice of the direction of the z-axis); this
can easily be proved analytically and is illustrated in~Fig. 4. Thus

Jensen's inequality applies, and we find

<b(ag)> > ¢ (Kapd) , (104)
or
> YO g5 50 (105)

That is, the homoporous result is a lower bound to the exact but imprac-
tical result given by Eq. (91). If we can also find an upper bound for Y,
then we can establish the maximum error possible when Y(O) or Jl(o) is used
as a flux equation for heteroporous media.

An upper bound in the region a > O can be determined by consideration of
the behavior of Y for a + 0 and for a + », and by noting that Y is always
concave upward because it is a sum of everywhere concave-upward functions
Q(qi) multiplied by positive numbers 8:. First we consider the case where
all the a; become large. Then the summation containing the exponential in
Eq. (101) becomes negligible and Y + a; thus the slope of the curve of Y
vs. a approaches unity for large a. Next we consider the other end of the
curve, where all “i.’ 0. Here the exponential terms in Eq. (101) can be

expanded to show that Y becomes linear in a,
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UPPER BOUND

LOWER BOUND
(HOMOPOROUS)
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-2 -1 )
a=<a;>-Jsp

n

Fig. 4. Species flux versus total flux (in dimensionless form) for coupled
flow and diffusion, showing bounds for heteroporosity. The curve for a
heteroporous medium of any pore~size distribution must lie within the
indicated regions. The concentration difference i1llustrated is for
8x,/x,% = -0.5.

Y _LB(X1° +xa- Axl] fora + 0 . (106)
X
1

This is the equation of a straight line whose intercept is -Axl/xlo and
whose slope is (xlo + le)/le° , which is less than unity because xlo >
le . Thus the curve of Y vs. a must start at Y = -Axllxlo and a = 0 with
a positive slope less than unity, and must eventually reach a constant

slope of unity while always remaining concave upward, irrespective of the
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values of B: and hence independent of the nature of the pore-size distribu-
tion. We conclude from these statements that Y vs. a must always lie below
a straight line passing through Y = Axllxlo at a = 0 and having a slope of
unity. That is, the upper bound on Y is the straight line,

Y =a-ax/x0 for a0 . 107)

This bound is illustrated in Fig. 4. It is now easy to find the maximum
possible error involved in using Y(O) to approximate Y for a > 0; it is
just the maximum of the function (Y - Y(o))/Y with respect to a at a given
Axllxlo, where Y is given by Eq. (107) for the upper bound. This maximiza-
tion is easily carried out numerically, and the corresponding maximum rela-
tive errors are given in Table 2 for several values of Axllxlo. The
largest possible relative error that can occur if the homoporous flux
equation is used for a heteroporous medium {s seen to be 23%, which occurs
at a = 1.793 for —Axllxlo =1 (i.e., for le = 0). At smaller values of

—Axl/xl0 the maximum relative error is less.

TABLE 2. Maximum possible relative errors from the use of the
homoporous flux equation for a heteroporous medium
(isothermal, continuum, binary diffusion)

8%, /%,° Max. a = J/P Max. (3,-3,®?)/3,
0 0 0
0.2 0.935 0.070
0.4 1.251 0.121
0.6 1.472 0.163
0.8 1.647 0.195
1.0 1.793 0.230

For negative values of a, i.e., when the net flow J is directed against
the concentration gradient, the lower bound for Y is still Y(o) but now the

upper bound is the straight line
Y = (le/xlo)a - Ax1/x1° = (1 + Axllxlo)u - Axllxlo , fora <0, (108)

as shown in Fig. 4. Here le/xlo =1+ Axllxlo is the limiting slope
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obtained from Eq. (101) when all the ay are large but negative. The dif-

ference between the upper and lower bounds is now

Ax ae®
Y-y - -0 , fora <O , (109)
xlo e%-1

but a relative error calculation is not reasonable because both the upper
bound and lower-bound curves cross the a-axis, and the relative error would
become infinite. However, the maximum absolute error as given by Eq. (109)
is still -Axllxlo, the same as it was when a was positive.

An example of a pore-size distribution giving a flux approximately the
same as the upper bound is one consisting of a few large pores and a large
number of small pores. In such a case most of the open area is associated
with the small pores, but most of the volume flow is through the large
pores. For a numerical example, suppose 95% of the open area is associated
with small pores, but that the radii of the two sets of pores are such
that, at any given pressure difference, one large pore carries 1000 times
as much volume flow as one small pore. Then direct numerical computation
with Eq. (91) or (101) shows that the true Y(a) or Jl(J) curve is never
more than about 52 below the upper-bound straight line. That is, the flux
N for a medium with a few relatively large pores will quickly deviate from
the homoporous approximation and approach xloJ. A practical example would
be a porous medium having a few large cracks or holes.

Although the above example shows that the upper bound can be approached,
the pore-gsize distribution involved is rather special. A more interesting
case 1s one with a very broad, but unimodal, distribution of pore sizes.

As an extreme example of such a distribution, we choose a flat distribution
such that each pore size represents the same total open area as any other
pore size (i.e., viay = constant). For this example we also assume that
the pore area increases linearly with index number i, a;*i up to some maxi-
mum size at 1 = 1 .., and that all diffusive permeability coefficients

P; are the same. We further suppose that the volume flow through any pore
type follows Poiseuille’'s law, so that j(i) = a;, and that the distribution
i1s smooth enough to replace summations by integrations. On applying these
assumptions to Eq. (101) and carrying out some straightforward mathematical
manipulations, we obtain an integral corresponding to ome of the Debye

functions. Direct numerical computation then shows that the result is
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never more than 4% above the lower bound. Thus the homoporous approxima-
tion should be quite accurate for many types of heteroporous media.

b. Pores in Series. We consider now the integrated flux equation for a
pathway consisting of v pores in series, as shown in Fig. 5. Each pore
segment i has its particular values of jl(i), j(i). and Pi' For boundary
conditions, we assume that the concentration of each species is continuous;
that is, that the concentration at the end of one pore segment is the same
as just inside the entrance of the next pore segment. This is probably not
a very restrictive assumption for gases in porous media, but is a more
serious matter for membranes, where solute rejection (sieving) at a pore
entrance is a common phenomenon (See Chapter IV). To condense the notation
a bit, we let ¢ be a mole fraction of species 1, x), at the entrance to
pore segment i (and at the exit of segment i-1, by assumption). Then c =
xlo, the mole fraction at the entrance of the first pore segment, and
Cy4l = le, the mole fraction at the end of the last pore segment. We also
let total flow rates be denoted by Q's, and reserve j's and J's for fluxes
(flow rate per unit area). We shall show that the flux equation for such a
series-pore model i8 exactly the same as for a single uniform pore [D7, W6].

At steady state, the flow rate of species 1, Ql’ and the total flow rate,

Q, must be constant throughout all the pore segments,

o._
_ X =¢
I
- e
2
Q,,Q
3
e il P
etc.
- - o = - —_——cy
n
R -
X =Cys

“ Fig. 5. Pore segments in series, with no discontinuities of concentration.
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Ql = 8131(1) = azjl(z) = ... a\)jl(v) . (110)
Q = alj(l) - azj(z) = ... avj(V) . 11

The flow rate of species 1 through any pore segment i is obtained from
Eq. (89) as

. Wegqy = )
Q i exp(Q/aiPi) -1 (112)

which can be solved for cy,; to yield

! %3
ci4p =g - (e T - 1)(Q/Q , (113)

where a; = j(i)/Pi - Q/aiPi, as previously defined in Eq. (96). We wish to
eliminate algebraically all the intermediate concentrations Cys leaving
only the concentrations at the ends, c = xlo and ¢4y = le. From Eq.
(113) we obtain

%1 o |

c, mee - (e - 1(Q/Q ,
a

c3 = cye 2 (em2 - 1)(Q1/Q)

a,ta a,+a
=cet 2-(q/Qet 2+ (/) ,

whence, by induction, it is easy to prove that
v v

co1 = C €xp( I @) - (Q)/Q) exp( § @) + (Qy/Q) - (114)
i=1 i=1

This can be rewritten, with c¢; = xlo and ¢4y = le, as

0

Q(XIL - xlo)
Ql-Qxl - —

. (115)
exp(tai) -1

This has the same mathematical form as the corresponding expression for a
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single uniform pore; all that is needed to prove complete identity of the
two expressions is a suitable identification of Eui.

Since tai contains the P;, it represents the effect of diffusion in
Eq. (115), and it is logical to identify it with measurable quantities by
passing to the pure diffusion limit, Q + O, whereby Eq. (115) becomes

Q) = -Qx;/(Zay) = - Ax;/[E(1/aPy)] - (116)

Let the "measured” area of the pathway be A; the observed diffusive per-
meability P would then be defined by

Q; = — APAX . (117)

Comparing Eqs. (116) and (117) we find

1/AP = T (1/a;Py) , (118)
or
Tay; = QI (1/a;Py) = Q/AP = J/P . (119)

Thus the flux equation for a pathway consisting of pores in series is iden—

tical with that for a single uniform pore.

c. Interconnections of Pores. Very complicated structures can be built

up by cross-connecting a series-parallel array of pore segments of various
lengths and cross sections. A mathematical analysis of such structures
would at first sight seem impossible, but we can show that the same bounds
hold for them as hold for the simpler structures considered thus far, pro-
vided of course that no discontinuities of concentration occur and that a
one~-dimensional treatment can be used in each pore segment [w6].

Because pores in series obey the same equations as a single uniform
pore, every nonbranching segment in the structure can be replaced by an
equivalent uniform pore segment. This first step in the analysis removes
from consideration all nonuniformities of cross section between internal
junction points. Unequal pore segment lengths between junctions are

.absorbed into the individual Pi'
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because of the choice of permeability coefficients. But as J is increased
into the non-linear regime, J; tends to increase more for a heteroporous
slab than for a homoporous one, with the result that the overall J1 for the
heteroporous array can only be greater than that for the homoporous array.
The fact that the intermediate concentrations c; between the slabs become
different at higher J for the two arrays does not affect the sign of this
inequality. Thus the homoporous array gives a lower bound for the flux
through the heteroporous array, and we have the same lower bound as before.,
We can also show that the same upper bound holds as before, namely Egs.
(107) and (108). We note that Jl > xloJ as J » o for the heteroporous
array, and then the argument proceeds exactly as for a single slab.

We now construct a general proof by showing that any interconnected pore
structure can be reduced, in an appropriate sense, to the above special
case of a series array of porous slabs. We give first an explicit
demonstration of this for the simple case of two parallel pores connected
by one internal shunt, as shown in Fig. 7a; the extension of the proof to
more elaborate structures is then straightforward. In Fig. 7b the pore
structure is redrawn to emphasize the junction points. This structure
apparently differs in a fundamental way from the previous one shown in Fig.
6a, for two of the junction points are each connected to three other junc-
tion points. However, a simple construction shows that the two structures

are in a sense equivalent. Suppose the concentration at the upstream

—_— -

- - -—C3

- ---c3

———eMf———C,

(a) (b) (c)

Fig. 7. Schematic diagram of a pore structure whose internal connections
are more complex than those of Fig. 6. This structure is equivalent, in a
sense discussed in the text, to a peculiar kind of series array of slabs.
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internal junction point is cy; there is then some point in the parallel
pore that also has the concentration cy and we pass a hypothetical plane
through these two points as shown in Figs. 7a and 7b. Similarly, we pass
another hypothetical plane through the points of concentration ey, the con-
centration at the downstream internal junction point. These two planes
divide the structure into three slabs as shown in Fig. 7c. It should be
recognized that this is not entirely the same as the special case of Fig. 6.
The pressures at the points of equal concentration are not necessarily equal,
and we could not connect these points physically without altering the overall
flow pattern. In other words, the structures in Figs. 6 and 7 really are
fundamentally different, in that their concentration and pressure distribu-
tions cannot in general both be made similar, although one or the other can
" be. But we are not concerned about pressure distribution here, we are con-
cerned only with species flux and total flux, and Eq. (89) shows that
pressure difference does not explicitly enter the expression for species flux
in a given pore segment. Thus we are entitled to compare the upper “"slab,”
between concentration surfaces ¢y and ¢, in Fig. 7, with a hypothetical
homoporous slab having the same total flux, since the mathematical expression
for species flux depends only on the variable j and not on the pressure
distribution. This comparison shows that the species flux in the upper slab
is equal to or greater than that in the hypothetical homoporous slab, by
exactly the same reasoning used earlier to prove the lower bound for pores in
parallel.
Continuing tﬁis line of reasoning for the rest of the “"slabs" in
Fig. 7, we conclude that the same lower bound on species flux holds for a
porous medium with internal interconnections as holds for one without
interconnections. A similar conclusion is reached for the upper bound, by
the same method. That is, we note that the division of the interconnected
porous medium into an array of slabs establishes that the curve of Jl vs. J
must be everywhere concave upward, and that J; + xloJ as J » =». The
remainder of the argument then proceeds as before.
The extension of the simple case shown in Fig. 7 to more elaborate
structures should now be apparent. A more complex structure is divided
into effective slabs as follows: Proceeding downstream from the surface at
cy = xlo, we find the internal junction point with the highest species 1
concentration; we call this concentration Cy, and pass a hypothetical sur-
face through all the points in the structure where the concentration is c,.
This splits off the first slab. We then find the junction point downstream
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that has the next highest concentration, which we call c3, pass a hypothe-
tical surface through all the points having concentration Cq, and thereby
split off the second slab. Continuing through the membrane in this
fashion, we eventually divide it into as many slabs as there are internal
junction points having different species 1 concentrations, plus one more
slab at the end, as shown in Fig. 7 for a structure with only two internal
junction points. Once this subdivision is made, the rest of the argument
proceeds exactly as for the structure of Fig. 7.

Thus the bounds on species flux as a function of total flux hold for
porous media with internal connections. In this discussion we did not have
to be concerned with matters such as dead-end pore segments, because we
dealt only with steady-state operation. The arguments used obviously do
not hold for transients, or for various other kinds of time-dependent
operation. Such cases are much more complicated to analyze in detail,
although a successful analysis would presumably yield structural infor-

mation not available from analysis of just the steady state.

3. Remarks

The considerations in this discussion of the effects of internal struc-
ture on gas transport through a porous medium are independent of the main
aim of the dusty-gas model, which is to write down the correct local
(differential) equations for gas transport. The geometrical-structural
part of the overall transport problem nevertheless has to be considered in
any real application, and cannot be completely ignored. However, we
believe that much past work on the structure of the medium has overempha-
sized the wrong part of the problem, namely, prediction of transport from a
knowledge of the geometry, and has given scant attention to the more
limited question of trying to establish bounds for reasonable cases. The
foregoing discussion attempts to redress the balance somewhat, although it
is clear that much remains to be done. Behavior in the transition region
has not been touched upon, nor has anything more complicated than a binary
mixture been considered.

We now return to the main theme of this monograph, and make use of the
general transport equations for comparison with experiment. The

appropriate equations are first summirized in the following section.

D. SUMMARY OF EQUATIONS
At this point, we summarize the transport equations as developed in the

preceding discussions. Combining Eqs. (59) and (63), we can write the



70

transport equation for species i as follows:

vong 35 -4 [ 95 B,
) = - J+ Z— +— (Vp - 0F)| =
4=1 %055 \ny 03/ [Dgly Loy n o~ o~

= - V1n(ny/n) - V1o p + F /kgT

v
- (n')—l[ 21 “j(“ij)tr + nd(ai'-d)trIZ InT, 1,j #d, (120)
j-
where
v
oF = ] o4 F (121)
S R

is the total force on the gas mixture per unit volume. Equations (37),
obtained by momentum-transfer arguments, are a special case of this result,
corresponding to isothermal conditions with no external forces, and with
the coefficients @and @considered as purely phenomenological. There
are v equations like Eq. (120), one for each species (other than the
“dust”), and they are all independent. This is the complete set of
equations for steady-state or quasi-steady-state mass transport, and does
not need to be supplemented by any additional equations of motion — the
relevant equation of motion can be obtained by multiplying Eq. (120) by
“1/“ and summing ovér all species 1. If this is done, the terms involving
DiJ sum to zerc: by symmetry, and the terms involving (“;.j)tr vanish because
(“ij)tr - - (aji)tr’ as is obvious by inspection of Eq. (44). The result

is, after a little rearrangement,

v Ji 1 PB \2) x4
Xﬁ_.-ﬂ(Vp-nF) 1 +— _—
1=1 1K B® ~ ~ noja) Dyg

v
- ("dln')[izl ni(aid)té] Yl T, (122)
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where

DiK = [Dil(] 1/(1-Aid) . "(123)

This is the forced-flow nonisothermal generalization of Graham's law of
diffusion for multicomponent mixtures. The expressions for the coef-
ficients appearing in the foregoing equations are given by Eqs. (64)—(74).

Equation (120) is a set of Stefan-Maxwell diffusion equations augmented
by viscous-flow and thermal-diffusion terms. It is possible, by purely
algebraic manipulation, to absorb the viscous-flow terms into the coef-
ficients of the diffusion terms, giving a set of Stefan-Maxwell equations
with "augmented" diffusion coefficients. In other words, the transport
equations for coupled flow and diffusion can be made to appear like the
transport equations for diffusion alone [M31, W15, W16). The procedure is
to solve Eq. (122) for (Vp - nF) and substitute back into Eq. (120); some
algebraic manipulation t;en yiglds the result,

T - ) 4— > =-Vln(n/n) - V1np +F/iyT
jsl nEij ni nj Eil( ni ~ ~ ~

v
.(n')_1 2 nj(a;j)tr + “deid Z In T , (124)
jn

where the “"augmented” coefficients are defined by the equations

pB, v
Ep = D 1+——32:k—, (125) = f
1k = P\ ML Ty
1 1 pBo
—_— et —, (126) —,
Esy "Kbij "E; k3K P
' O ' 27
014 = (4ader ~WEZ L, %(oader - az7n

iK k=]
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'
Note that only the thermal diffusion factors (aij)tr are not affected by
this transformation.

Other mathematical transformations of Eq. (120) are of course possible,

and sometimes yield useful forms (e.g., Nernst-Planck equations) [M31], bu
we do not pursue this aspect here.
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Chapter III

EXPERIMENTAL TESTS OF THE THEORY

Many experiments have been conducted on the motion of gases in various
porous media, and it is not our intention to attempt a comprehensive survey
of all such experimental studies. Instead, in this chapter we discuss only
a small selection of measurements that actually serve to test the dusty-gas
model, and do not attempt to give a complete review of even this small sub—
set. (We apologize in advance to those workers whose results have been
bypassed in our somewhat parochial selection of data.)

To test a theory whose mathematical formulation involves the use of
adjustable parameters, we must have more measurements than the minimumx
necessary just to determine the parameters. This requires a comprehensive
set of measurements on a single sample of a porous medium. Although man&
experimental determimations have been made, it is rare that a variety of
measurements have been made on the same porous medium. Thus real tests of
the theory (as opposed to mere exercises in curve-fitting) are comparatively
rare. It is also difficult to keep separate two fundamentally different
aspects of the theory, namely, the gas—transport part of the theory as
opposed to the geometrical-structural part that refers to the porous
medium. In many cases reported in the literature, it is not clear whether
it is the transport equations themselves that are being tested, whether it
is the approximation of effective homoporosity for the porous medium that
is being tested (i.e., single values of{E;}(?;} and(EZE), or whether it is
some combination of the two. In the test and illustrations given in this
chapter, we have tried to keep these two aspects as separate as possiblg.

We begin by giving some consideration to the form of the equations used
to represent experimental measurements. Although perhaps trivial from a
mathematical point of view, the form is often not trivial from a practical
.standpoint. Direct comparisons with experiment then follow; these are
divided into isothermal and nonisothermal measurements. (We use molar

units consistently for flux quantities, rather than molecular or mass

units.)
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A. REPRESENTATION OF DATA

Since there is a set of linear equations which relate fluxes and gra-
dients, many mathematically equivalent forms, connected by linear transfor-
mations, are possible. Such forms are often not equivalent in a practical
sense, for two main reasons. The first reason is that the coefficients in
one form may have a much simpler dependence on variables (such as pressure,
temperature, and composition) than the_poefficients in another form. For
example, the diffusion coefficientsf?ij; which appear when each gradient is
written as a linear combination of all the fluxes, as in Eqs. (60) and
(63), are virtually independent of mixture composition and hence are nearly
the same as the corresponding coefficients in binary mixtures. However, if
these equations are inverted, so that each flux is written as a linear com-
bination of all the gradients, the resulting multicomponent diffusion coef-
ficients have a rather strong and complicated composition dependence, and
are related to the binary diffusion coefficients in a complicated way;} The
second reason is that some forms of the transport equations, when written
in finite-difference form rather than differential form, are linear over
much larger ranges than are other forms. Such near-linearity in finite-
difference form is often quite helpful in the data analysis.

The second point can perhaps best be illustrated by numerical examples
for a few special cases, since the complete results can be rather compli-
cated. We select a system for which the coefficients in Eq. (120) have
been measured (as discussed later in this chapter), namely, the gases
helium and argon in a low-permeability graphite system of 11X open porosity
and 0.447 cm thickness. The quantities needed for the present illustra-
tions are as follows (at 25°C) [E7, E8, M22]: )

B, = 2.13x 107 ca”

pDy2 = 1.06 x 107" atm-cn’/s ,
Dyeg = 393 x 107" /s ,
Dy = 1.26 x 107" ea®/s ,

Nge = 198 wP ,

Nar = 226 WP . (128)
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For this system, the viscosity is only weakly dependent on composition over
most of its range, so that a constant mean value of N = 228 uP can be used.
This simplifies the numerical work in integrating Eqs. (120), (122), and/or
(124), but makes no real difference in principle. The following resuits
all refer to a constant arithmetic-mean pressure of:ﬁ_-"f,atm, at séveral
different composition differences and pressure differences across the sep-
tum, but with a fixed arithmetic-mean composition of Xy, = iAr - 6.,5, l%or
the porous septum and flow conditions under consideration, it turns out
that the transport occurs in the transition region between Knudsen\and con-
tinuum diffusion, where neither mechanism dominates. Furthermore, it is
assumed in the calculations that the gases are swept across the faces of
the septum in such a manner that boundary layers at the surfaces can be
ignored in the steady state, and that there are no discontinuities in the
concentrations at the surfaces.

The point we wish to illustrate is that different ways of plotting
results give curves of widely varying ranges of linearity, so that the
interpretation of experimental data can be helped by an appropriate choice
of plot.

We begin with the total flux, which we expect has a mathematical form
consisting of a pressure=driven contribution plus a contribution due to
diffusion drift. Equation (120) can be manipulated into such a form, which
can then be written as the finite-difference equation

K Ap - An
Ja-—d2 g, 1, (129)
ROT Az Az

where R, 1s the ideal gas constant, Klz is a mean flow permeability coef-
ficient and R12 is a mean relative diffusive permeability coefficient.

The latter two quantities are given by

Koo = X10) * %50y + 2 (130)
12 XY * Xy, W
- D, - D
1~ 9%
Rp, = , (131)

XYy + X7
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where, as defined by Eqs. (29) and (31),

1 1 1
—_—E—t—, (1323)
Dy Dy Dy,

Yy = Dy/Dyy - (132b)

Results are shown in Fig. 8 for total flux as a function of pressure dif-
ference for several fixed composition differences. The relation is linear
when the composition difference is zero (that is, when a uniform gas mix-
ture is forced through the porous medium by a pressure difference), but
distinct curvature is present when diffusion occurs simultaneously. Note
that the. diffusion term in Eq. (129) contributes to J even when the mixture
has uniform composition, since An; = n Ax; + x;4n # 0 even 1if Axl = 0. ’
(5@§§E§f:g§§§£§zzgii is to write the flux of one component as a diffusion

term plus a get drift term. It is easiest to start with Eq. (1;4) to
obtain this result, which can then be written in finite-difference form as

- bny
J, = - B, — + X,€,J , (133)
1 1 2z 11 —]
where
1 1 1 .
= E= + » (134)
Ey Ex Ep
ey = E(/E|, . (135)

The parameter €; = 1 for continuum diffusion and e¢; = 0 for free-molecule
diffusion. Results are shown in Fig. 9 for Jy, as a function of J for
several fixed composition differences. (For this example, €He = O'BSQLL
The relation is linear when the composition difference is zero, as in the
previous example, but otherwise the curvature is quite pronounced. Note
that the diffusion term contributes to J; even for a mixture of uniform
composition, as before.

A third possibility is suggested by the treatment of membrane transport
according to the principles of irreversible thermodynamics, where a rela-
tive diffusive flux is defined as
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Fig. 8. Calculated total flux as a function of pressure difference for
simultaneous flow and diffusion of He + Ar through a porous graphite
septum. The arithmetic-mean composition is held fixed at mole fraction
0.5 for all three mole fraction differences shown. The dashed tangent
straight lines are the linear approximations of Eq. (129).
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s)

Jne (1078 mol/em2-

J (10"% mol /cmz;s)

Fig. 9. Calculated component flux as a function of total flux for the same
system as in Fig. 8. The dashed tangent straight lines are the linear

approximations of Eq. (133).

Jtel = (Jl/ﬂl) - (32/02) . (136)

Note that this is the same sort of term that occurs in the Stefan-Maxwell
equations. From Eq. (120) we obtain the finite difference linear form

r

J, J - 8o, (R, 8p
:l" :g == P12 —1 ‘\té; ) (137)
x; Xy Az RoT Az

where
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- Y1Y2 Dy Dy

Py, =[— - — + = (138)
122 \%v + Bovp J\Rvy Fpvy )

and the coefficient Rj5 is the same as the one occurring in Eq. (129) for

J, by virtue of the Onsager reciprocal relations. Results are shown in

Fig. 10, from which it is clear that the curvature problem is very serious
[M24].

[(Ine/Fpe)-(JTa, /Rp,)] (107 %mol/zcm?-s)

Ax=0
| N | [ R A N R NN S
-0.5 0 0.5 1.0

Ap(atm)

Fig. 10. Calculated relative diffusive flux, [Uge/®ye) = Up /X001,
for the same system as in Figs. 8 and 9. The dashed straight lines are the
linear approximations of Eq. (137).



The final possibility we examine is similar in spirit to the first one
considered, Eq. (129), but the diffusive drift term is expressed dif-
ferently. It is supposed that "pure diffusion” occurs when Vp = 0, where

Graham's law gives
J;/3y = =Dy /Dy = ~(my/m) /2 (139)
1/v2 1K/ “2K 2/ ’

which can be written as

with
Bl =1 -(DZK/DU() » 82 =1 -(DIK/DZK)' (141)

It is further supposed that the same ratios hold among the "diffusive
components” of the fluxes even when Vp # 0. The "diffusive component” of J
is therefore written as @iJi and a ;ressure~driven contribution is added
on. We can manipulate E&T*(IZA) into a result of this type, the finite-
difference forms being [E6, M22]

J=8J P P (142a)

i ot W a
ROT Az

and
Ell(Ap

J = 82J2 -R_T' Az . (142b)
o

This transformation finally overcomes the curvature difficulties encountered in
Figs. 8-10. A plot of (J-B8,J;) vs. Ap 1s linear over a large range, and is
independent of Aii. as shoﬁh in Fig. 1ll. Curves for total J are also indicated
in Fig. 11, for ;omparison with Fig. 8.

The conclusion to be drawn from the foregoing examples is that an excellent

way to analyze data on simultaneous flow and diffusion is to plot (J-BiJi)
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Fig. 11. Calculated fluxes as a function of pressure difference for the
same system as in Figs. 8-10, showing that a plot of (J—BiJi) ig linear
over a wide range of pressure differences and is independent of
composition difference, as predicted by Eq. (142). The total flux J is
also shown, the dashed straight lines representing the linear
approximation of Eq. (129). Note that J depends on the composition
difference, and is nonlinear in the pressure difference.

vs. Ap. The slopes of such plots determine the coefficients EiK' If measure-
ments are carried out at a series of arithmetic-mean pressures, then plots of
EiK VSe ; give straight lines whose intercepts determine DiK and whose slopes
determine Boln, as shown by Eq. (125). The augmented diffusion coefficient
Ejp can then be extracted readily from data at J = 0, according to Eq. (133),
and Dj, obtained from the definition of E;o by Eq. (126). Measurements
at different values of p give an internal consistency check on 212 and
Dyy-

It should be noted that all of the foregoing equations — (129), (133),

(137), and (142) — reduce to the same result for the degenerate case of a



82

single pure gas. The result is usually expressed in finite-difference

form as
K o
T TRT R (143)

where the mean flow permeability coefficient for single gas i is

- 530
K.l - DiK +ﬁi—{ . (144)

It is found experimentally that plots of Jj vs. Ap give essentially
straight lines whose intercepts determine DiK and whose slopes determine
Bo/nyge

One complication has been ignored in all of the preceding discussion.
The Knudsen diffusion coefficients Dik have a weak pressure dependence
through the quantities Aid as shown by Eqs. (70) and (123). This
pressure dependence manifests itself only at low pressures, however, and
can often be ignored for practical purposes. To give some feeling for
its magnitude [M21, M22], we show in Fig. 12 a calculated curve for,_lzHe vs.
P at low pressures for the same septum as used in the previous examgies.
The parameters wy, and e needed for the calculation were obtained from
Eqs. (71)«(74), with the value of the parameter Ehe chosen to be 2.0, a
typical experimental value. The deviation of the curve in Fig. 12 from
its linear high-pressure extrapolation is due eantirely to the pressure
dependence of Dy . We shall usually ignore this pressure dependence in
subsequent discussions.

Finally, we show in Fig. 13 the pressure dependence of the principal
transport coefficients, namely Dk DIZ' E;x» and EIZ’ in the form of the
ratios EiK/D1K and E12/D12 [M31]. It has already been pointed out that
D,, varies inversely with pressure, and that the DiK are (virtually)
independent of pressure. From Fig. 13 we see that the ratio EiK/DiK is
linear in the pressure and is the same for all species in the mixture, as
is indicated explicitly in Eq. (125). We also see that EIZ/DIZ is
almost, but not quite, independent of pressure, and approaches unity at

high pressures. (We have not shown the behavior of the coefficients Ky9»
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Fig. 12. Calculated He permeability coefficient as a function of mean
pressure for the same graphite septum as in Figs. 8-11, showing the
effect of the weak pressure dependence of DHeK at low pressures.

-EIZ' ;lé’ Ei' and €4, since Figs. 8-10 demonstrate that these coeffi-
cients do not furnish the best descriptions of simultaneous flow and
diffusion in gases.)

Having found appropriate forms of the theoretical equations for repre-
senting experimental data, we now turn to a comparison of theory and
experiment. We divide the experiments into isothermal and nonisothermal
measurements for convenience, to isolate the more unusual phenomena that

can occur in the presence of a temperature gradient.

B. ISOTHERMAL MEASUREMENTS

We proceed by way of a series of special cases, since the general
results are too complicated to be easily surveyable. Most of the data
come from the work of Evans, Watson, and Truitt [E7, E8] on helium and
argon in a low-permeability graphite septum. The parameters of Eqs. (128)
used in the preceding examples in fact were obtained from this work.
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Fig. 13. Pressure dependence of the "augmented” diffusion coefficients
Eix and E,,, for the same system as in Figs. &-10.

1. Single Gases
Here the only experiment possible is to force gas through the porous

medium by a pressure difference. C§E§:§§§:5E§§§§§§§ occur in what would
at first seem to be a simple experiment — viscous slig and the Knudsen_
ermeability minimum. Both of these are accounted for by the dusty-gas
model, through Eq. (144) for the permeability coefficient-ii. The
claggsical theory of viscous flow predicts that a plot of K1 vs. P should
be a straight line through the origin, whose slope is inversely propor-
tional to the gas viscosity. Many years ago it was found that such a .
plot did not go through the origin; that is, the gas appeared to "slip”
over the solid surface. Viscous slip was in fact demonstrated experimen-
tally over 100 years ago by Kundt and Warburg [K8]. Equation (144) gives
this result directly, the intercept, representing slip, being Dyy (really



[Dikll' which is the apparent intercept from extrapolation of high-
pressure data, as illustrated in Fig. 12). This is the basis for the»
determination of gas viscosity by capillary flow, or the determinatién of
the parameters Bo and K, for a porous medium by permeability measurements
with a known gas.

In his pioneering work on low—-pressure gases, Knudsen found that a
plot of Ei vs. p was curved at very low pressures and might even exhibit
a small minfmum [K5, L5, W3]. We have already shown in Fig. 12 that Eq.
(144) reproduces this feature through the weak pressure dependence of
Dig- To fit his experimental data, Knudsen originally proposed the

empirical relation

_ 1+ cyp
K=ap+bl—mm ), (145)
1 + cyp

where a, b, c1, and cy are constants. An excellent semiempirical
equation developed by Weber [W3] has the same mathematical form.
Equation (144), together with Eq. (70) for Ald, has exactly this form,
with

a= BO/'\“_ » (1[063)
¢y = UUny , (146¢)
cp = 1/} . (146d)

Knudsen found that a single empirical value of 0.81 for the ratio
c1/c2 fitted a large number of cases involving flow through capillaries.
From BEq. (72), this corresponds to a value of Ei“iL = 0.95. For elastic
gas-dust (or gas—wall) collisions, we have ay = 1/2 from Eq. (73), and
hence £, = 1.9. This can be compared with a theoretical value for
isotropic scattering (as from rigid spheres) of Ei = 1.17, which is
somewhat smaller but not ridiculously so.

It is useful to pick out the location and depth of the permeability
minimum (1f there 1s one), for comparison with the location and height of
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the thermal transpiration maximum to be discussed in Section C of this
chapter. To shorten the notation a little, we define a pressure scale

factor as
LY “11[D1K]1/Bo R (147)

which has the dimensions of pressure and is a constant for a given
system. The scale factor LI of Eq. (71) can also be expressed in terms

of measurable quantities through Eq. (74) for aiRs

my = (agp/agy)ngkgT ~ (e/QTOyy)e, /(Sayy[Dygly) - (148)

We can now drop the species subscript i, and designate w; as n,, because

g)
only a single gas is present. The expression for the permeability coef-

ficient i of Eq. (144) then becomes

K +7 P

[DK]I p+rn' L ’

which has a minimum at a pressure p_;., given by

Pmin = [(ﬂg - l')!n]l/z -n' . (150)

The value of K at the minimum is

% _ L\ 1/2 '
xmin =1+ 2(”8_._" ) _L . (151)

[DK]l L L

The depth of the minimum can be taken as K(0) - ;min' which is

K(0) - K40 mg - m\Y2 (n\1/2] 2
- ( . ) -(—) ’ (152)
[DKll n 'Nn

where, by Eq. (149), l_((O)/[DK]1 = ng/n'. For the example shown in

Fig. 12, helium in a fine-pore graphite, the value of p ; is 0.16 atm,
and the reduced depth of the minimum as given by Eq. (152) is 0.014.



2. Binary Mixtures

Many more possibilities exist for binary mixtures than for single
gases. We first show a test of the conclusions reached in Section A
about an effective way to plot experimental results, and the behavior og
the augmented diffusion coefficients(gig for mixtures as compared to the
permeability coefficientfor single cases. We then consider the spe-

cial cases of ymlform—pressure diffusigp (Craham's law of diffusion),
equal_couptercyrreat diffusion (zero net molar flux), the diffusion

pressure E:SSCS (diffusion baroeffect, diffusive slip), and finally we
examine various fluxes as a function of pressure difference.

—

Eik Ki
a. Augmented Diffusion and Permeability Coefficients. A sample of

the extensive data of Evans, Watson, and Truitt (E7, E8] on the coupled
flow and diffusion of helium and argon in a low-permeability graphite at
25°C is shown in Fig. 14, Here the fluxes (J'BﬂeJHe) and (J—BArJAr) are
shown as a function of pressure difference. As expected from the
calculations shown previously in Fig. 11, the data fall nearly on
straight lines, whose slopes determine the augmented Knudsen diffusion
coefficients Ey,, and E, .. The total flux J is also shown in Fig. 14,
and is seen to be also nearly linear over the range shown. The data in
Fig. 14 refer to a mean pressure of(%f-_}.éﬁ atm, and were taken with
nearly pure helium on one side of the septum (xue = 0.9917) and nearly
pure argon on the other side (xAr = 0.9711).

The values of the augmented diffusion coefficients Ey,. and
E,rx obtained from experiments at different wean pressures are shown as a
function of P in Fig. 15, together with the permeability coefficients
Ky and Kay obtained from separate experiments with the same graphite
specimen. As might be anticipated from the previous discussion, the
resulté are linear in p within experimental error. (The measurements are
not accurate enough at very low pressures for small Knudsen minima to be
‘noticed, 1f indeed they are present for these systems.) The data
displayed in Fig. 15 can be summarized by eight empirical numbers — four
intercepts and four slopes — but according to theory, there are only two
independent parameters, B, and K, (or B, and any one of the Knudsen dif-
fusion coefficlents D;p). If these two are known, the other six can be
predicted from a knowledge of viscosities and molecular weights. Thus a
good test of the theory is to fit ome straight line to the data to deter-

mine the two independent parameters, and from this fit predict the other
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Fig. 1l4. Coupled flow and diffusion for a He + Ar mixture in a porous
graphite septum at 25°C and 1.49 atm. The terms ByeJge and BArJAr are
the contributions of diffusion to the total flux. This form of plot
gives linear relations over a wide range of Ap. The slopes of the
solid lines give the augmented diffusion coefficients EHeK and Eaex Of
Eqs. (125) and (142).

three lines and see how well they agree with the experimental data.
Accordingly, we fitted the Kpr data by least squares, obtaining the
values for D, y and B, already given in Eqs. (128). Since Eq. (67) pre-

dicts that the Dyy vary as n1-1/2

, we predict the value of Dyeg 8iven in
Eqs. (128). This value, together with the values of B and ng., deter-
mines the line for Ky, . The lines for E, .. and Egeg are then calculated
from the values of B, Dyrxo and DHeK according to Eq. (125), using a
mean value for the viscosity of the gas mixture. As can be seen in Fig.
15, the agreement between theory and experiment is quite good.

It should be noted that there was no restriction in the foregoing
discussion regarding the relative importance of Knudsen and continuum
diffusion. The method of treating the data should hold over the entire
range, from the Knudsen regime to the continuum regime. As will be
apparent from subsequent comparisons of theory'and experiment, most of

the measurements shown in Fig. 15 fall in the transition region.
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Fig. 15. Augmented diffusion and permeability coefficients as a function
of mean pressure for He, Ar, and a He + Ar mixture, obtained from data
such as shown in Fig. l4. Only the solid line for KAr is drawn to fit
the data. The dashed lines are then determined from the KAr line
according to theory.

It is also worth noting that the parameters B and K are reasonably

insensitive to temperature, at least for some types of ‘porous media [H15].

b. UniformPressure Diffusion. In this type of experiment, first

carried out by Thomas Graham [G3], the total pressure is kept uniform,
although there are gradients of the partial pressures of the two species.

We wish to comment on three tests of the theory involved in such
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experiments. First, how well is Graham's law of diffusion,

JI/JZ = —(mzlnl)l/z, followed? Second, since values of D,, are often
obtained from such experiments, how well is the relation D12 = (s/q)212
followed, where 2;, is measured in free space? In other words, is €/q

a parameter characteristic of the porous medium only? Third, how do the
individual fluxes J; and Jy vary as the total pressure is varied in a
series of experiments?

There have been a large number of tests of Graham's law of diffusion
since the subject was reopened by Hoogschagen in 1953 [H12, H13]. Rather
than list the various gas pairs and porous media examined experimentally,
we will try to summarize the situation {: a few sentences. The consensus
of opinion now seems to be that Graham's law is obeyed within a few per-
cent, except in those cases where gas—surface interactions might reaso-
nably be expected to be prominent. Such cases include adsorbable gases,
and porous media containing pores of very small radii, less than about
50 A [01]. 1Indeed, deviations from Graham's law are frequently regarded
ag prime evidence of surface effects. However, it is only fair to men-
tion that some theoretical solutions of the Boltzmann equation suggest
deviations from Graham's law that depend on tpe molecular interac-
tions [B10O]. -

\fzgig_bf the constancy of\ilq.have been less extensive than tests of
Graham's law, but the constancy appears to hold within a few percent.
Moreover, €/q is nearly temperature independent Probably the most
extensive measurements have been carried out by H;;fin, Dawson, and
Roberts [H4] on three types of porous graphite, using the gas mixtures
He + Hy, He + Ar, and CO, + CH, over the range from 20 to 600°C.

Thue both Graham's law of diffusion and the constancy of €/q appear to
be satisfactorily established for porous media.

Finally, it is interesting to examine how the flux varies in uniform-
pressure diffusion as the total pressure is varied. In the continuum
region we expect the flux to be independent of pressure, and in the free-
molecule region we expect it to be directly proportional to pressure. We
can obtain a suitable expression from Eq. (120) by setting Vp = 0 and
using Graham's law in the form given by Eqs. (140)—(141). En order to
exhibit the pressure dependence explicitly, it is convenient to define

flux and pressure scale factors,

¢ = nDIZ/Az > (153a)



i ZPDp/Dyy » 4= 1,2 (153b)

These quantities are constants for a given system. The flux equation, in

finite—-difference form, can then be written as

3_1 - (P/"Dl) Axl , (154)

® 1+ (1 - Xlﬂl)(P/"DI)

with a similar expression for species 2. Thus the pressure dependence of
the flux is initially linear, and reaches a constant value at high
pressure. The pressure dependence is the same as that of a Langmuir
adsorption isotherm.

If the finite—difference form is not accurate enough, the differential
equation can be readily integrated for steady-state conditions to yield
[E5, M18]

o1 1+ (1-8%,%%) (p/np))
— ="l ) . (155)
[ ] By 1+ (1-8yx;7) (P/‘"Dl)

8Z are the mole fractions on the two sides of the

where xlo and X
septum.

Notice that the viscosity does not appear in any of the above
equations, indicating that there is no viscous flow even though the total
flux J is not zero.

A plot of Eq. (155) for He + Ar diffusion is compared with the
measurements of Evans, Watson, and Truitt in Fig. 16. The fluxes of both
components were measured independently; the results conform both with
Graham's law of diffusion and with the predicted pressure dependence.

The only adjustable parameter in the calculation is Dys; the value given
in Eqs. (128) was in fact obtained by fitting the data shown in Fig. 16.
Notice that diffusion is still in the transition region between free-
molecule and continuum behavior even at pressures of several atmospheres.
This is characterized by the pressure parameter mpys the diffusion is

free-molecular when p << Tpi» and is continuum when p >> Tpi- Numerical

prup—— L
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Fig. 16. Calculated and observed diffusion fluxes as a function of
pressure in uniform-pressure (Graham) experiments for the same system as
in Figs. 14 and 15. The curves are from Eq. (155). Note that the
results conform to Graham's law of diffusion.

values for the system shown in Fig. 16 are "DHe ™ 0.27 atm and Toar =
0.85 atm. For comparison, the same gaseous system diffusing in a
capillary tube of 0.1 cm diameter would have np, =3 x 107~ atm, repre-—
senting a scale change of about 103.

A similar study of He + N, diffusion was carried out in capillaries by
Remick and Geankoplis [Rl]. They covered a pressure range of over a fac-
tor of 675 to 1 and achieved better accuracy. Agreement both with
Grgham's law and with the predicted pressure dependence of the fluxes was
excellent. (The value of €/q is unity for capillaries.)

c¢. Equal Countercurrent Diffusion. In order to keep the net molar

flux zero, a small pressure difference develops automatically if dif-
fusion occurs in a closed volume. Here we wish to examine how the spe-

cies flux varies with pressure in such an experiment. Again, we expect



the flux to be constant in the continuum region and directly proportional
to pressure in the free-molecule region. We can obtain a suitable
expression by writing Eq. (120) for each of the two components, setting
fl = —32 and le = —sz, and eliminating Zp between the two equations.

The resulting flux equation can be written in finite-difference form as

Iy (p/7py) 8%,
R , (156)

o 1- x8,(1-8)7F + (p/mp)

where the scale factorsfaiand;;nllare as defined in Eq. (153). This
equation shows the same generai‘ﬁehavior with pressure as does Eq. (154)
for the uniformpressure case.

If the finite-difference form is inadequate, the differential equation
can be integrated under steady-state conditions to yield [M18]

A
3 (PP )\ B1"10z + -8y [ +e/rpdl | asn
¢ 81 “Dl lel + (1-81) [1+ (P/"DI)]

Notice that the viscosity does not appear in these equations, even

though we now expect viscous back-flow to be occurring in order to keep
Jy =-J;- This is a peculiarity of the J = 0 equal countercurrent con-
dition. Regardless of what value the viscosity has, the pressure dif-
ference adjusts itself to keep J = 0. Thus the viscosity affects thg
steady-state pressure difference, as will be shown explicitly below, but
not the flux. The viscosity appears explicitly in the flux equations,
however, unless either J = 0 or Vp = O. ’

A plot of Eq. (157) is shown in Fig. 17 for the same system as in Fig.
16 for the uniform-pressure case.. The agreement with experiment is quite
good. No adjustable constants are involved here, the value of D12 haiing
been obtained from the independent measurements at uniform pressure shown
in Fig. 16.

d. Diffusion Pressure Effect (Diffusive Slip). The pressure dif-

ference that results from diffusion in a closed system was first investi-

gated by Kramers and Kistemaker [K7]. They recognized that this pressure
difference was related to the fact that the mass-average velocity of the
gas was not zero at the wall, or that there was a nonzero momentum flow,

or slip, in the gas adjacent to the wall. The phenomenon was later
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Fig. 17. Calculated and observed diffusion flux as a function of mean
pressure in equal countercurrent diffusion experiments for the same
system as in Figs. 14-16. The curve is from Eq. (157) and involves no
adjustable parameters.

rediscovered independently and discussed as an analogue of the Kirkendall
effect in solids [M29, M33]. It is also very closely related to the so-
called "reflection coefficient” used in discussions of membrane transport
{p1].

To find an expression for the pressure differencé, we proceed as for
equal countercurrent diffusion, but algebraically eliminate J1 instead of
Vp. The result can be written in finite-difference form as follows, in a
form that exhibits the pressure dependence of the effect:

P(Dyx Do) A%y

Ap» ———— (158)
where the coefficients are
Ag = xDig + XDz » (159a)
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Ay = [(x)Dyg + XyD1)/pDy5] (B,/n) , (159¢)

in which n is the viscosity of the mixture. Thus the steady-state
pressure difference increases from zero linearly with p at low preésures,

reaches a maximum value of

(Dyg-Dyg)8%) (160>
A -
Paax T a) + 2(agap 2

at a pressure of

Poax = (A /A2, (161)
and finally falls back to zero at high pressures as 1/p. Equation (158)
1nvo;ves the viscosity, unlike Eqs. (154) and (156). The weak pressure
dependences of the D;y are negligible compared to the strong dependence
given explicitly in Eq. (158).

The differential equation corresponding to Eq. (158) cannot be
integrated analytically because of the composition dependences of @, @,
and(gz. Fortunately, the finite-difference approximation of Eq. (158) is
usually adequate, as illustrated in Fig. 18 for the same system as was
shown in Figs. 16 and 17, with mean values for x,, n, and p. Only the
measurement at the lowest pressure has much experimental uncertainty, as
indicated in the figure, and the agreement between theory and experiment
is, on the whole, rather good. No adjustable constants are involved in
this comparison; the values of the necessary parameters were obtained
from the analysis involved in Figs. 15 and 16.

A number of investigators in recent years have taken up the study of
the diffusion pressure effect or diffusive slip, both experimentally
[M18] and theoretically [B10, Bll, L15]. Almost all of them have confined
their attention to capillary tubes. Although the dusty-gas model usually
gives an adequate overall description of the phenomenon, a number of ano—~
malies have been observed, especially when the masses of the two dif-
fusing species are nearly equal, so that the main effect predicted by Eq.
(158) 1is smgll. For instance, a sign reversal in Ap vs. p for Ar-C0,
diffusion has been observed [W2]. It is not always clear whether these
anomalies are caused by gas-surface interactions, or by higher-order

kinetic theory effects that depend on detalls of molecular collisions.
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Fig. 18. Calculated and observed steady-state pressure difference at
J = 0 (diffusive slip) as a function of mean pressure for the same
system as in Figs. 14-17. The curve is from Eq. (158) and involves
no adjustable parameters.

e. Effect of Pregsure Gradients ou Fluxes. Finally, we wish to exa-

mine the influence of the pressure gradient on diffusive fluxes, the mole
fraction difference being held constant, and compare the calculations of
the dusty-gas model with experimental results. We showi?;:,(ﬁ;;, and J
as a function of Ap in Pig. 19 for p = 1.96 atm, a pressd?éyaE‘thch the
measurements of Evang, Watson, and Truitt [E7, E8] were particularly
extensive. The curves shown were calculated by numerical iteration of
the dusty-gas equations, since a linear finite-difference approximation
is clearly inadequate because of the curvature. The numerical procedure
is straightforward but somewhat complicated, and has been described
elsewhere [M22].

The agreement shown in Fig. 19 is quite good, especially in view of

the fact that no parameters have been adjusted to produce a good fit.
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Fig. 19. Calculated and observed fluxes as a function of pressure
difference at p = 1.96 atm for the same system as in Figs. 14—18. The
curves are from numerical integration of the dusty-gas equations, and
involve no adjustable parameters.

The parameters used were obtained from entirely independent measurements:
Dprk and DHeK from permeability measurements with pure argon (the line
labelled K,, in Fig. 15), and D12 from uniformpressure diffusion

measurements (Fig. 16).

3. Multicomponent Mixtures

There have been only a few experimental tests of any transport theory

for multicomponent mixtures. Hesse and Kdder [H6] studied the pressure
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dependence of the interdiffusion of ortho- and para-l,, in the presence
of either He or Ar, through a fritted glass disk. The flux equations to
be tested were those obtained by momentum-transfer arguments, but the
form of the equations is the same for the dusty-gas model, as we have
seen in Chapter 1I. Plots of measured diffusion resistances (reciprocal
effective diffusion coefficients) were linear at high pressures, as pre-
dicted, but showed minima at low pressures that were similar to Knudsen
permeability minima (Fig. 12). Since Knudsen diffusion coefficients
appear in the expression for the diffusion resistance, the minima could
well have a common source, namely, the pressure dependence of the

DiK through the correction term Aid' Unfortunately, some (but not all) of
the minima observed by Hesse and Kder had magnitudes that seem too large
to be attributed to the A}, as given by the dusty-gas model, so that a
puzzle remains.

Some limited ternary diffusion measurements for He + Ne + Ar mixtures
in capillaries were carried out by Remick and Geankoplis [R2] over a
large pressure range. They verified Graham's law for ternary mixtures,
Emillz J1 = 0, and compared measured and calculated fluxes as a function
of pressure for uniform total pressure. The agreement obtained was good.

Rather more extensive investigations on ternary diffusion in porous
media over a range of both pressure and temperature were carried out in a
number of porous pellets by Feng et al. [F2], using the He + Ne + CH,
mixtures, and by Patel and Butt [P2], using He + Ar + N, mixtures.

Both investigations did not really test the flux equations alone
(although Patel and Butt did check Graham's law), but instead were pri-
marily concerned with the problem of characterizing the structure of the
porous medium with a limited number of parameters. In other words, the
problems of heteroporogity and/or effective homoporosity were in the
forefront. Although obviously important, those problems are not our main
concern in this monograph.

At first glance, there appears to be nothing special in multicomponent
diffusion that was not already present in binary diffusion, except
possibly a bit more mathematical complexity. No new coefficlents appear
in the multicomponent equations — the DiK are essentially the same, the
D1j are virtually the same in a multicomponent mixture as in a binary
mixture of species i and j, and even the formula for the mixture visco-
sity contains only binary-interaction terms, as shown explicitly by Eqs.
(52)—(54). Somewhat surprisingly, however, the addition of only one more



component to a binary mixture can open the door to a host of new effects.
Many of these are now fairly well known in the case of gases, such as the
diffusion of a species against its concentration gradient, and are
discussed in a monograph by Cussler [C10]. However, the fact that den-—
sity inversions and convective flow can be caused by diffusion involving
three or more species is less well known [M34]. Such convection will not
develop unless the characteristic size of the convection cells is less
than the geometrical size of the container, so there is probably little
danger unless the pore size is large and the gas pressure is high.
Nevertheless, it is wise to keep the possibility of diffusive convection
in mind and to make at least a rough calculation to be sure it will be
absent in any doubtful case. Interestiugly enough, diffusion-driven con-
vection is a well-known phenomenon in other fields, where it goes by a
variety of names, such as double-diffusive convection [T4]. 1In
oceanography, it gives rise to "salt fingers,” in which one of the dif-
fusing "species” is heat [M9].

C. NONISOTHERMAL MEASUREMENTS

Temperature gradients give rise to two phenomena. In single gases,

only the phenomenon of _thermal transpiration, or the %
w exists. In mixtures there is, in addition, a relative
motion of the gaseous species which gives rise to the phenomenon that is
called thermal diffusion. Of course, from the standpoint of the dusty-
gas model, only the phenomenon of thermal diffusion exists, and thermal
transpiration is merely the manifestation of thermal diffusion between
gas and dust. We expect the model to describe the pressure depepdence of
thermal tramspiration in both single gases and mixtures, as well as the
composition dependence in mixtures. We also expect it to account for the
pressure dependence of the thermal diffusion factor in mixtures., In this
section we discuss only single gases and binary mixtures. Multicomponent
mixtures are straightforward in principle according to the dusty-gas
model, but the mathematical manipulations become very complicated.

The temperature-gradient terms in the flux equations are frequently
ignored in practical applications because they complicate an already dif-
ficult analysis. The few exploratory calculations that have been carried
out suggest that these terms are usually of secondary importance; that
is, they are not negligible, but they are not dominant, either [W13, Wl14].
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Nevertheless, there has been a continuing interest in thermal transpira-
tion, especially in capillary tubes. It has long been known that it can
be an important source of error in pressure measurements when the mano-
meter is not at the same temperature as the rest of the apparatus, a
situation that occurs in adsorption studies and gas thermometry. More
recently, thermal transpiration measurements have been used to study
molecular relaxation times in gases, an unexpected connection that was
first uncovered by the dusty-gas model. Our comparisons with experimen-
tal measurements are thus forced to rely mainly on data involving
capillaries rather than porous media. Indeed, there were no suitable
thermal transpiration measurements in por6us media, other than the origi-
nal 1879 work of Osborne Reynolds [R3], until the 1960's, when studies
were made specifically to test the predictions of the dusty-gas model
[H1, H14].

1. Single Gases

The general equation for thermal transpiration (also called thermo-
osmosis) is most easily obtained from Eq. (122), the forced-flow non-~
isothermal generalization of Graham's law of diffusion. The summations
have only one term in them, and the result for pure gas i can be written

Eix nyny
] -T Dil((“:l'.d)tr Z In T . . (162)

&
()
]
1
'

This equation is seldom used directly, because most experiments are
carried out at steady state (fi = (0), and a measurement is made of the
pressure difference across the porous septum or capillary tube. We can
obtain a differential equation for this thermomolecular pressure dif-
ference by setting 31 = 0 in Eq. (162), using Eq. (69) for (“id)tr and
making a one-dimensional approximation. In order to exhibit the pressure
dependence of the equation in explicit form, it is convenient to use the

pressure scale factors ny and i of Eqs. (147) and (148); the result is

d Inp . LAY

d1aT (o )(ptn) (163)
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Two comments should be made about this equation. First, the scale factor
L really should contain Dy from Eq. (162), and not just [D1K]1' as
defined in Eq. (147). Thus Tl should show a weak pressure dependence at
low pressures. For most purposes this dependence is negligible in com-
parison with the much greater pressure dependence given explicitly in Eq.
(163). Second, a factor of (l-Ap) should multiply the right-hand side of
this equation, where Ap is a small pressure—dependent quantity resulting
from molecular inelastic collisions in the gas phase [Al0]. It arises
from a small correction term that was ignored in writing Eq. (69) for
(u;d)tr; since it is zero for monatomic gases and seemingly unimportant
even for polyatomic gases, it has always been ignored in the analysis of
experimental data [A5, M6, T1, T2], and we shall henceforth ignore it as
well.

The problem now is to integrate Eq. (163). A straightforward finite-
difference approximation to the differential terms is not entirely satis-
factory because AT/T is often not small, although Ap/p is. A complete
integration leads to rather complicated results, because of the tem-—
perature dependence of w; and L through [D1K]1 and ny, [M6, M21, M30].
Fortunately, a semiempirical modification of the finite-difference
approximation is usually satisfactory. This modification proceeds by
making an exact integration for the free-molecule (p + 0) limit,
arranging a finite-difference form of Eq. (163) to pass to this limit,
and using an empirical definition of average temperature in 7; and it
To shorten the notation, we drop the species subscript 1 (only a single

gas is involved), designate %y as 7, and use subscripts 1 and 2 to refer

g
to the pressures and temperatures on the two sides of the septum or
capillary. In the free-molecule region, we must have “1;1 - nzvz

according to Eq. (2), so that

Pllpz - (TI/T2)1/2 » (164a)
or
tp = py - by = (1= (T /12, , (164b)

in which we conventionally pick Ty > T;. The same result follows from
Eq. (163) on passing to the limit p + 0 and choosing o = 1/2. 1In
Eq. (163) we therefore make the substitutions [M3, M21],
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d 1n p + Ap/p , (165a)

d 1n T~ 201-(1) /1Y), (165b)

whereby we obtain the result,

2agmg Ty 1-(T/THY 2
Ap = . (166)
(p + nn)(p + ug) .

The average temperature at which g and ", are evaluated is [M3]

- 1 i
Tt Tt (167)

Notice that the expression for ; is not symmetric in 'I‘l and Tz, and that
T,y > T,- This result is essentially empirical.

Equations (166) and (167) are the working equations for thermal
transpiration of a single gas. It is usual to treat a; as an ad justable
parameter. For capillaries, ap, is the only adjustable parameter, but for
porous media the parameters e/q, By and K, are also adjustable.
Comparison between theory and experiment for porous media has been done
only three times, with generally satisfactory agreement [H1, H14, M21].
Data for capillaries usually follow the pressure dependence predicted by
Eq. (166), especially if a;, "o and , are all treated as adjustable
parameters. An example is shown in Fig. 20 for Ne, Ar, Kr, and Xe in a
capillary of internal diameter 0.02 cm [M6]). (The use of p; instead of a
mean pressure in this figure causes only trivial changes.) The agreement
is excellent. The maximum in Ap occurs, according to Eq. (166), at a

pressure p,. .., given by
- 1/2
Pmax = (Tg"n) (168)

and the height of the maximum is

- - -2
BPpay = 20 [1=(T /T 2) (n "2 4 5 12y 70 (169)
Besides predicting the pressure dependence of Ap accurately, Eq. (166)
predicts a number of other relations that depend on the forms of the

parameters w_ and LI and that can be tested experimentally [M10, M21]. We

8
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Fig. 20. Pressure dependence of the thermal transpiration effect for

noble gases in 0.02 cm capillaries, with T; = 335.6 K, T, = 569.8 K.
The solid curves are calculated from Eq. (166) with the parameters ap,

n_ and L treated as adjustable.

g

shall briefly discuss three of these, namely:
(1) Scaling rules for thermal transpiration.
(2) Relation of the thermal transpiration maximum to the Knudsen

permeability minimum.
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(3) Determination of thermal conductivities and molecular relaxation
times from thermal transpiration measurements.
To demonstrate the scaling rules, we define dimensionless pressure

quantities as follows:

- 1/2
p* = p/(my WV, (170)
27 (e/q)B° .
nk = wg/nn * 1780 [G—Ll(—-z——]ftt , (171)
0
where
2
foo = ;’(mktr/an) , (172)

and rewrite Eq. (166) as

Ap* p*

- 173
ZGL[I_(TIITZ)I/II [p* + ("*)1/Z][p* + ("*)"1[21 ( )

Except for ftt’ the so-called translational Eucken factor, the quantity
n* 18 essentially a constant for a given porous medium. The value of

f,, 18 nearly equal to 5/2 for all gases; according to Eq. (46),
deviations from the value 5/2 are caused entirely by inelastic colli-
sions, and in practice such deviations amount to apout 10% of the monato-~
mic gas value., Moreover, we expect that the quantity [(e/q)BO/aLKozl in
w* 18 only weakly dependent on the structure of the porous medium,
according to the discussion in Section C.l1 of this chapter (it is equal
to unity for circular capillaries that reflect molecules elastically).
Thus %* is nearly a universal constant, and a plot of
l\p*‘*{2::1_'[1-(’1'1/'1‘2)1/2]}-1 v8. p* will be nearly a universal curve
according to Eq. (173). In practice it will be a close one~parameter
family of curves, the single parameter n* being characteristic primarily
of the porous medium. From such a family of curves we can therefore pre-
dict how thermal transpiration (really the thermomolecular pressure
difference) will vary if we change either the gas, the porous medium, or
both.
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The physical meaning of the scaling rules can be made clearer by con-
sideration of the special case of capillary tubes. If we recall that the

viscosity of a gas is approximately

1
r\-'i'nm\-r!., (174)

where £ is the mean free path, then it is readily shown that p* is pro-
portional to r/t, the inverse Knudsen number. Thus the scaling rules are
equivalent to the statement that, for fixed values of T; and T,, the
quantity Ap/p is a universal function of the Knudsen number. This result
has been known since at least 1910 [K5]; it is really just a result of
dimensional analysis. A modern special case is the rule [L3] that for a
given gas in a series of capillaries, a plot of rAp vs. rp is a universal
curve. The dusty-gas model can thus be viewed as a quantitative genera-
lization of these older capillary results, and moreover a generalization
that gives explicit expressions for the universal curves involved.

There have been no explicit tests of these scaling rules using modern
measurements on porous media, as far as we know, but the rules are known
to hold for capillaries.

Turning now to the relation between the thermal transpiration maximum
and the Knudsen permeability minimum, we see from Eq. (166) that the
thermal transpiration curve of Ap vs. p is characterized by the three

parameters ™ n? and a;, and from Eq. (149) that the normalized per-

g "
meability curve of K/[Dgl, vs. p is characterized by the parameters e

n Since both curves involve the two parameters T and LW it

is not surprising that they should be somehow related. Moreover, w' is

n', and n

rather close to n from Eq. (72) we have

g’
1
w1 =T E A 175)

Thus only the parameter £ occurs in the expression for E/[DK]I but not in
that for Ap. If a value of £ is chosen, say by educated guesswork based
on various past measurements, the permeability curve can be predicted
from a measured thermal transpiration curve, or vice versa. Such a test
has apparently been carried out only once, by Hanley, with fairly satis-
factory results [H1].
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It is worth remarking that the foregoing relation is rather obvious in
terms of the dusty-gas model, because of the common occurrence of wg and
LY but that such a relation should exist is not nearly so obvious on a
purely empirical basis, because of the different numerical magnitudes
involved. To illustrate this point, we can compare the pressures at
which the permeability minimum and the thermal transpiration maximum
occur. From Eqs. (150) and (168) we obtain

1 1
Poin/Poax = G5 EmL)”2 - (n*)”z(x—; Eap) . (176)

If we take £ay = 0.95 from Knudsen's capillary data, and w* = 277/512
from Eq. (171) for capillaries, the ratio is pmin/pmax = 0.11. The two
pressure extrema thus occur at pressures that differ by an order of
magnitude, which certainly does not suggest a close connection between
the two.

The third relation, involving molecular relaxation times, exploits the
fact that n* is not quite a structural parameter, but depends also on the
gas involved; in other words, deviations from for = 5/2 are exploited.

To extract this somewhat minor deviation from experimental measurements
requires some care, but it can be done. First, the most sensitive part
of the thermal tramspiration curve is used, which is usually regarded as
Appax+ Second, the apparatus (usually a bundle of capillaries in
parallel to reduce equilibration times) is calibrated with a gas having
an accurately known value of f, ; the calibration gas is frequently
argon, which has f = 5/2 because it is monatomic. Third, the fact that
L contains Dy and not [DK]1 is taken into account. From Eq. (169) we

then obtain

2
Baax e (= \VF[Lt a2 a7
8P (AT)  (5/2) \ m,, 1+ (xx)1/2 ’

from which A (or ftr) can be calculated. Thus measurements of pressure
differences give the translational part of the thermal conductivity, from
which the total thermal conductivity can be obtained, or the inelastic
collision number can be calculated by Eqs. (46)—(47) from the deviation
of for from the value 5/2. This is an attractive prospect, since
pressure measurements are much easier to make than are direct measure-

ments of thermal conductivity, or the measurements of sound absorption or
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shock-front thicknesses that are the usual sources of knowledge about
inelastic collisions. This has been the motivation for much of the
recent revival of interest in thermal transpiration [A5, B15, D2, Gl, HS5,
M3, M6, M30, Tl, T2]. On the whole, the results obtained are fairly good.
Thermal conductivities obtained from thermal transpiration data have an
accuracy comparable to that of most direct measurements. Inelastic
collision members are not obtained with high accuracy from thermal
transpiration data, because they are extracted from the measurement of a
deviation from ftr = 5/2, but high accuracy is not obtainable from the
more traditional techniques, either. Some typical results are shown in

Table 3.

Table 3. Translational Eucken factors f, and rotational collision
numbers [ determined from thermal transpiration data at a mean
temperature of 475 K. The calibration gas was argon.

Gas £, 4
Ar (2,50) (=)
Xe 2.48 -
0, 2.33 5.6
N, 2.34 6.0
co 2.20 2.3
Co, 2,20 2,8

Data from Annis and Malinauskas [A5].

As an aside, it is worth noting that there have been substantial
efforts, especially by Loyalka, Storvick, and their coworkers [L18, S18],
to achieve a better theoretical understanding of thermal transpirationm,
especially its relation to fundamental quantities like translational
thermal conductivity and molecular relaxation time. Their procedure is
to avoid the approximations inherent in the dusty-gas model by carrying
out an essentially exact numerical solution of the problem for well-
defined simple geometries. Unfortunately, the appropriate Boltzmann
integrodifferential equation is too difficult to solve in the transition
region of interest, so model equations are used in which the Boltzmann
collision integral operator is replaced by a simple relaxation term. In
other words, the real problem is still modelled, but the model is of a
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vastly different character than that of the dusty-gas model. It is
therefore gratifying that the results turn out to be mutually consistent,
especially the fact that thermal transpiration is a function of ftr’ It
is interesting that this relation, which emerges so straightforwardly
from the dusty-gas model, is not at all obvious in the more rigorous
theoretical treatment of Loyalka and coworkers, although it can be

extracted if one knows beforehand what to look for [S18].
As a final aside, thermal transpiration was for many years discussed

within the framework of the thermodynamics of irreversible processes
{H2]. In fact, thermal transpiration was used as a standard example in
irreversible thermodynamics for purposes of illustration, although it
could be calculated from standard kinetic theory only in the Knudsen and
continuup limits. The dusty-gas model gives results over the entire
pressure range. The thermodynamic results are often expressed in terms
of a heat of tranmsport, Q*, interpreted as the amount of heat that flows
from the surroundings to the gas on one side of the septum (or capillary)
when one mole of gas is transferred isothermally through the septum
(capillary). It is related to the steady-state thermomolecular pressure

difference by an expression similar to the Clapeyron equation,

d
_P_._&:’ (178)
dT v

where 6 is the molar volume of the gas. Comparison of this expression
with Eq. (163) gives the dusty-gas expression for Q*, which has been
discussed by Malinauskas and Mason [M4].

2. Binary Mixtures
The main complication met in dealing with mixtures is the composition

dependence of the (a;_d)tr and the (a;j)tr. The difficulties, in other

words, are not those of principle, but only of complex and messy algebra.

a. Pressure and Composition Dependence of Thermal Transpiration. As

for single gases, it is easiest to obtain the general equation for ther-
mal transpiration or thermo-osmosis of a binary mixture directly from Eq.
(122), the generalization of Graham's law of diffusion. If no external

forces act, the result is
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NI 1+ Po |22 e (nyCayy).. +n,(ans), ] V 1n T, (179)
= 4 = - —_— = — [n,(a n,(a n
1'"1d7tr 2V 2d7tr 4
DlK DZK n<DK> kBT n' ~
where

_lox X

(180)

-

As before, we are primarily interested in the pressure difference at
steady state; setting J1 = J2 = 0 and making the usual one—dimensiongl

approximation, we obtain

dp _ _ (ng/n")kgTln;(ajy)ey + nplahy)e,]

(181)
d1lnT 1+ (p/<n>) ’
where
<mp> = nDO/B, - (182)

It should be remembered that n is the viscosity of the mixture, and that
(ﬂn> really contains the D;y and not just the EDiKll' The messy part is
now to extract explicit expressions for the (“id)tr‘ starting with Eq.
(44) and using Eqs. (48)—(50). Only straightforward (but tedious)
algebra is required, and we find [J3, M4]

d1
S (S )
dlar R

2xyayny [(agpayp)et2n,] + 2xpayw,((a ) -ay Ipton ]
- > . (183)
(ayp+2m ) (ayp+2my) = ajsayp

where ayy and m4 are properties of the porous medium and of species i
only, with n; given by Eq. (148) for the single species 1. The ayy are

matrix elements that occur in the expressions for the continuum values of
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the thermal conductivity and thermal diffusion factor for binary mixtures
of species 1 and 2. They can be expressed in terms of the Aij of Egs.

(48)—(50) as follows:

ay; = @/ Dep Ay o (184a)
azp = (2/x)(Apper Az » (184b)
ayp = (2/x)O2ec Ay » (184c)
ay; = (/%) (A1) My - (184d)

All the ajy are linear in mole fraction. For a pure species (e.g.,
x; = 1, x; = 0), there is cancellation between numerator and denominator
of Eq. (183), which then reduces to Eq. (163) for a single gas, as it
should,

It is possible to put Eq. (183) into a finite-difference form in
exactly the same way as was done for a single gas in the preceding sec-
tion. The result is, using Ty and Tc for the hot and cold temperatures

to avoid confusion with the species subscripts,

Ap

pl1-(T/ T /21

2xy0 7 L (ap57819)P + 2npl42xp0y 7yl (3 mag  Jp¥an ]
= . (185)
[(a)p+2n ) (agop*2ny) = aj8,5 192 1114(p/<x )]

The composition dependence of Ap has the form of a quadratic in mole
fraction divided by another quadratic in mole fraction. The pressure
dependence of Ap is more interesting — it has the form of a quadratic in
p divided by a cubic in p, whereas Eq. (166) for a single gas has the
form of a linear term in p divided by a quadratic in p. This raises the
hope that the Ap vs. p curve for a mixture has a different shape than the
curves for its pure components. This would have the practical advantage
that the parameters of Eq. (185) could be found by fitting the measured

pressure dependence of Ap at one or more compositions, and then the free



space diffusion coefficient 312 for the two species could be extracted.
The constants B, and K can be found from permeability measurements with
a single gas, the viscosities of the pure components can be measured
independently, and the collision integral ratios A:z and B:z can be
calculated with sufficient accuracy from a reasonable intermolecular
potential model. The only remaining unknown quantity is then 212
occurring in the aij and the mixture n. It would be a tempting method
for measuring diffusion coefficients by measuring pressures.
Unfortunately, this cannot be realized in practice, as is illustrated
in Fig. 21, where experimental data on neon-argon mixtures are presented
[M5]. The curves for mixtures have essentially the same shape as those
for single gases, as shown by the fact that the mixture measurements can
be fitted quite accurately by the formula for a single gas, namely Eq.
(166). The parameters needed for such a fit unfortunately do not seem to
have any physical significance, however. Thus, mixtures look like single
gases as far as thermal transpiration is concerned, and 312 cannot be
obtained by easy pressure measurements. Nevertheless, something useful
should be salvageable from this disappointing situation: since the shape
of the Ap vs. p curve is not sensitive to composition, it should be
possible to predict ﬁixture curves from the curves for the pure com-

ponents. This useful possibility has not yet been examined in detail.

b. Pressure Dependence of Thermal Diffusion. In this case we are

interested in the relative separation between species 1 and 2 that is
produced by the temperature gradient. We define an effective thermal
diffusion factor, “12(°ff)- by analogy with the steady-state continuum
result [G7, M23],

¥ In(x/xp) = - ajp(eff) L 1n T . (186)

In the continuum region, alz(eff) 1s independent of pressure, although
it depends on both composition and temperature. It is semnsitive to the
nature of the collisions between molecules of species 1 and 2, and has
been much studied as an experimental probe of forces between unlike mole-
cules (G7, M23]. In the free-molecule region, however, alz(eff) should
be zero, since each component of the mixture behaves independently and
there is no relative separation of the components even though thermal

transpiration occurs. The dusty-gas model is well-suited to describe the
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Fig. 21. Pressure dependence of the thermal transpiration effect in

Ne + Ar mixtures for the same conditions as in Fig. 20. (The curves
without points are the Ne and Ar curves of Fig. 20.) The mixtures are:
O x4 = 0.2900, Ax, = 0.5350, O x,, = 0.7605. The solid curves were
constructed using the formula for the pressure dependence of a single
gas.

pressure dependence of “12(eff) in the transition region, and in fact is
the only theory presently available to describe this region. Simple
momentum—transfer theories are notoriously bad for the description of
thermal diffusion [M23, M36), and the proper solution of the Boltzmann
equation, or even of its simpler relaxation models, is forbiddingly
complex in this situation.

If we write Eq. (120) twice, for 1 = 1, and again for i = 2, and
subtract the two equations [remembering that (a;l)tr = - (°;2)trl’ we

obtain



L /3 I 9 ) 1 1\ B,
—_— | =-= ]+ - +|\—-—— ] — (Vp - nF) =
Dijp \mp M n)Djg  mpDyg Dig D/ n -~ ~

- - Vln(nllnz) + (Fl-Fz)kBT
= )7 nlagp)ep + 0oy ey - nglaggde,] ¥ 1n T . (187)

To find the relative separation at steady state, we set Jp=Jy = 0, drop
the external force terms, and solve for Zln(nl/nz). TheﬁteSUZting
expression contains a term in Vln T, which represents the direct thermal
separation, and another term 1; Vp, which represents the effect of the
thermomolecular pressure differe;ce on the separation, Making the one-
dimensional approximation and substituting for Vp from Eq. (181), we
obtain an equation that looks like Eq. (186), with

ajp(eff) = (a/n")ajpd, + (ng/m")[ag)e Py = (ag9)erPny) » (188)
where

_1(p/mg)

P:5—m—.
M ks (189)

At high pressures, the continuum limit of a,,(eff) is

by(apya)y) + by(a; -ay,)
Glz(“') = » (190)
211322 T 212%2)

where the a;y are given by (184), and

2 * m2 (xll)tr
bl. - -(6612‘5) — (1916)
5 mtmy/ 212
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z B\ (2)er
by = +(6C],~5) | —— |]—— . (191b)
5 mtmy ) 2,

Substitution of the expressions for (a'lz)tr and (dj'_d)tr back into
Eq. (188) yields the final result [J3],

Glz(eff) =

015(®)(a) 1357359, )p% + 2(x B, + 7,8,)p + 2mmy(Py1=Ppa)
- ., (192)
(allp + 2nl)(a22p + 212) - 312a21p2

where
By = 2oy +(ay) - ek, (193a)

For simplicity, we have set a;; = 1/2 in the above expression.

It is easy to see from Eq. (192) that alz(eff) approaches zero at very
low pressures, and has the constant value a),(=) at high pressures.
However, the pressure dependence in the transition region can be quite
complex, for the By and Pni are also pressure-dependent. Neglect of the
thermomolecular pressure difference is equivalent to setting Pni =1 [J3,
M17].

Unfortunately, there are essentially no reliable experimental data
with which to compare these results. Sample calculations [J3] for He and
Ar mixtures are shown in Fig. 22 for a temperature of 356 K, where the
pressure dependence is fairly simple. The corresponding results with
neglect of the thermomolecular pressure difference are also shown. There
does not seem to be an obvious physical explanation for the enhanced

separation due to the pressure difference.

D. REMARKS
In this chapter we have tried to relate the theoretical results of
Chapter II and the experimental results, first by considering the best
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Fig. 22. Calculated thermal diffusion of He + Ar mixtures as a function
of pressure and composition at 356 K. The solid curves represent

Eq. (192), and the dashed curves are the calculated results with neglect
of the thermomolecular pressure difference. The abscissa is given as the
inverse Knudsen number for a capillary of radius r, with Lhe being the
mean free path for He - He collisions only.

way to represent the experimental data, and then by a series of special
examples for which data existed or might reasonably be expected to be
obtained. These examples were chosen to give some feeling for the degree
of confidence one might be willing to place in the dusty-gas model. As
such, they correspond to "clean" laboratory cases, and not to the compli-
cated cases usually met in engineering practice. The ideal purpose, of
course, is to establish the reliability of the dusty-gas model so that it
can be regarded as one of the known factors when trying to unravel the
complexities of practical problems.

We believe the results in this chapter establish the reliability of
the dusty-gas model for the description of gas-phase transport. Although



116

it {s not perfect on many small details, it seems to be satisfactory for
all the major phenomena so far encountered. We wish to emphasize the

phrase, “gas-phase transport”; we make no claims regarding problems con-

nected with the structure of porous media, or with adsorption and surface
transport. These are important problems, but all we wish to suggest is
that the dusty-gas model is a solution to only one important problem, the

description of gas-phase transport.
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Chapter 1V
EXTENSIONS AND GENERALIZATIONS OF THE THEORY

In this chapter we discuss the application of the ideas behind the dusty-
gas model to four phenomena other than gas transport in porous media. Some of
these phenomena have been known for a long time and have a voluminous litera-
ture, both theoretical and experimental. We do not attempt to review this
mass of material in any depth, but restrict ourselves to two modest aims
only — to give examples of the wide scope of the dusty-gas model approach, and

to provide an entry to the literature.

A. SLIP AND CBEEP PHENOMENA IN RAREFIED GASES

At pressures somewhat less than those for which a gas behaves entirely as a
continuum, the finite mean free path manifests itself as corrections to the
boundary conditions at solid surfaces. These corrections take the form of
various apparent discontinuities in the values of macroscopic variables (such
as velocity and temperature) at the solid boundaries. In the cases we discuss
here, these discontinuities (of velocity) appear as slipping or creeping
motions of the gas in a thin layer adjacent to the surface. The names asso-
ciated with these phenomena and the gradients that give rise to them are as
follows:

(1) Viscous slip, caused by a pressure gradient parallel to the surface,
which in turn gives rise to a macroscopic velocity gradient perpendicular to
the surface.

(2) Thermal creep, caused by a temperature gradient parallel to the sur-
face.

(3) Diffusive slip, caused by a composition gradient parallel to the sur-
face.

The dusty-gas model is well-suited to treat these phenomena through the
conceptual trick of regarding the solid boundary as one component of a gas
mixture, such as already indicated in the lower part of Fig. 3. In fact,
these phenomena are really only limiting cases at high pressures of the more

general treatments given in Chapter III. The main reason for considering this
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limit as a separate case is that the mathematical manipulations become par-
ticularly simple when the gas pressure is high (that is, the mean free path i
much smaller than any geometric dimension of the system). Thus, it is fairly
easy to include inelastic effects for polyatomic molecules, and sometimes to
obtain generalizations to multicomponent mixtures, results which involve very
complicated algebra in the general case of arbitrary pressures. For ease of
reference, we give the connections of the slip and creep phenomena with the
results of Chapter III below:

(1) Viscous slip — Section B.l (viscous slip and the Knudsen per-
meability minimum).

(2) Thermal creep — Section C.2a (thermal transpiration or thermo-
molecular pressure difference).

(3) Diffusive slip — Section B,2d (diffusion pressure effect).

The historical background is briefly as follows. In 1879 Maxwell
[M28] gave an extensive analysis of stresses arising in a moving, heated
single gas consisting of structureless molecules, and discussed the phe-
nomena of viscous slip and thermal creep. Except for some simplifica-
tions in the reasoning, no substantial changes have been made in this
approach [K4, L5]. The analogous phenomenon of diffusive slip was not
noticed until much later, when Kramers and Kistemaker gave an elementary
theoretical discussion and demonstrated the effect experimentally in 1943
[K7]. Starting about 1957, there was a great increase in theoretical
efforts to understand and calculate slip and creep phenomena, plus some
experimental work. We do not attempt to survey this mass of material;
the interested reader is referred to articles by Annis [A4], Cercignani
[c2, €3], loyalka and coworkers (L1, L2, L9, Ll1, Ll12, L14 — L17, L19, L20],
Mason and Marrero [M18], and Zhdanov [Z1, Z2), where further referénces to th
literature can also be found.

The application of the dusty-gas model to slip and creep phenomena
seems to give the major features correctly, although some of the details
may be missing or oversimplified, especially those connected with details
of gas-surface scattering. Results for polyatomic gas mixtures have been
derived by Annis and Mason [A6], who started with the dusty-gas results
given by Eq. (120), and formed the mass-average velocity of the gas mix-

ture,
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v v
v, = 121 miii/izl ngmy . (194)

~

After passing to the high-pressure limit by letting nd/n = 0, it was
possible, after some algebra, to identify the different slip and creep
terms by inspection of Vo, That is, V, could be divided into several
terms, and the velocity~at a wall par;11e1 to the z-direction could be
written for a binary mixture as

(3T/3z)

v (3p/3z) + o

oz | y=0 ™ %visc ther

+ 0q5££[(3%,/32) + x;x,a,,(321nT/32)] , (195)

where the y-axis is perpendicular to the wall., We can now examine each term
separately.

The simplest term is the viscous slip term. As might be expected, the
continuum viscosity part of the dusty-gas equations (the part containing
Bo/n) makes no contribution to slip. All the contributions to viscous
slip come from the Dy, on the left-hand side of Eq. (120) and the V &n p
on the right-hand side. If we neglect the small corrections Aid' ;he

viscous slip coefficient o can be written as

visc

(4K, /3)(8kgT/n)1/2

Ovisc ~ ,
P(xlmll/z + x2m21/2)

(196)

where K, is the Knudsen flow parameter defined in Eq. (6), assumed for
simplicity to be the same for all species. It is more common to see the
viscous slip term written in terms of the velocity gradient at the wall
instead of in terms of the pressure gradient,

\J
Voz | y=0 = %visc (av,/dy) . (197)

However, in any application of the slip boundary conditions, the velocity
gradient is usually eliminated in favor of a pressure gradient through
the use of a momentum-balance relation. The dusty-gas model essentially

.. of Eq. (197) is [21]

does this at the outset. The slip coefficient %uise
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: n(rky1/2)1/2
Ivisc = , (198)
p(xlull]'/2 + xzmzl/z)

where n is the viscosity of the mixture; this result is equivalent to
Eq. (196).

Except for the neglected small terms 8j,, the molecular internal degrees of
freedom make no explicit contribution to the viscous slip. Similarly, the
additlon of further components to the mixture does not appreciably complicate
the formulas. The viscosity n of Eq. (198) absorbs most of the polyatomic and
multicomponent effects; the only explicit change required in Eqs. (196) and

(198) is the replacement of the denominator,

v

/12 + x2m21/2 > 121 ximill2 . (199)

1
xlm1

and a' diminish with increasing pressure as

Notice that both ¢ vise

p L

The thermal creep term arises from the gas-dust thermal diffusion

visc

terms, (u;d)tr, of Eq. (120). The resulting mass flow may thus be
regarded as a thermal-diffusive separation between the gas and dust.
Referring to Eq. (44) for the general expression for these thermal dif-
fusion factors, we find a dependence upon the partial translational ther-
mal conductivities, (Ai)tr' The expressions for these quantities are not
altered by the presence of the dust in the high-pressure limit, and, so we
can combine most of these to form the total translational thermal conduc-
tivity of the mixture, according to Eq. (45). This manipulation requires
that the gas—dust collisions be the same for all species, so that the
factors (6C1d—5) will all have the same values. (For simplicity, these
may be taken to be unity [A6]).) A few terms involving the (A )¢y are
left over; since partial thermal conductivities are not experimentally
observable, it is advantageous to combine these into the thermal dif-
fusion factor for the gas pair, which is observable. Thus, the

expregssion for the thermal creep coefficient o can be divided into

ther
two parts,

, -
%her ™ %ther ¥ Pther * (200)



where

, /2>
a =
ther
201
<m}/2><m> Sp ’ ( )

(my + (M2 - w M2 xxy(apy) 3,
otner = , (202)
cher <!/ 2>¢m>(6C],-5) T

and
<@ = xm" + xm" . (203)
The advantage of this arrangement of terms is that “Eher is analogous to

the corresponding result for a single gas, and can be easily generalized
to a multicomponent mixture. It is only necessary to take Atr as the
total translational conductivity of the mixture, and to generalize the

average <m™ as

v
<™ = 121 ximin . (204)

ther
generalization of o

The term o occurs only for mixtures, because of the factor X X5+ The

ther
complicated, and involves a term like Eq. (202) for each gas pair in the

for multicomponent mixtures is somewhat more

mixture [A6].
Notice that both o;p. . and of, . diminish with increasing pressurelas

1 and (012)tr are independent of p, and 312 varies as p .

p , since A .
Notice also that it is the free-space diffusion coefficient 212 that
occurs, and not Dy,, since the concern in this instance is with the gas
space external to a solid boundary.

Only the diffusive slip term remains to be discussed. It arises from
the gas-gas concentration and thermal diffusion parts of Eq. (120),
namely the terms Z n (ni/n) and (°ij)tr' However, it is neither
necessary nor advantageous to have ignored the contribution of

(@39)4ne to a5, as was done in deriving Eq. (120), and Eq. (195) thus
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contains the total a3y and not just (alz)tr in its last term. The
expression for the diffusive slip coefficient is

(ayg) 12 (0, /2o, 112
(205)

9a1ff = 25 -

<ot/ 25¢m>

The extension of this expression to mulcicompénent mixtures is complicated,
and has not been carried through thus far. (However, see the results on
multicomponent diffusiophoresis in Sectiostr C of this chapter.)

Notice again the appearance of 212, not Dy, and the fact that O4iff
varies with pressure as p_l. Indeed, all of the slip and creep coefficients
show this pressure dependence.

In summary, polyatomlc effects (inelastic collisions) on slip and creep
coefficients are readily calculated by the dusty-gas model. There are no
special effects for viscous and diffusive slip; the main effect occurs for
thermal creep, which depends only on the translational parts of the gas
thermal conductivity and thermal diffusion. The generalization to multi-
component mixtures is straightforward for viscous slip and thermal creep,
but is more complicated for diffusive slip, which involves a description
of multicomponent diffusion. Surface effects are purposely avoided by
the dusty-gas model, but the appearance of gas-dust collision integrals
suggests where some of the details of gas-surface collisions should be
included. Annis and Mason [A6] have shown how some of the slip and creep
formulas can be modified in this way, and the reéults are in genera&

agreement with more elaborate kinetic-theory calculations [Z1, Z2].

B. RADIOMETER EFFECTS

A radiometer is usually seen in the form of a four-vaned device spinning
in the display window of a novelty shop. It was originally thought to be
driven by light radiation (hence the name), but its operation depends on
the gas inside the glass envelope. Temperature gradients set up in the
gas by unequal heating of the vanes supply the driving force on the vanes.
The effect has been studied for over a century; some of the historical
background can be found in the books of Kennard and Loeb [K4, L5].
Quantitative work is usually carried out by measuring the torque required
to hold the vane motionless Iin the presence of a fixed temperature gradient

that is produced by an adjacent stationary plate which is heated electrically
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Radiometer forces can be calculated using the dusty-gas model by regardin
the radiometer vane as an array of "giant molecules™ linked together, and
treating these giant molecules as one component of the gas mixture.
Obviously, this viewpoint is very close to that adopted for the discussion
of gas transport in porous media; the entire previous treatment of thermal
transpiration or the thermomolecular pressure difference (Chapter III) can
be taken over almost intact, except for two small modifications, as follows:

(1) The viscous—flow component now corresponds not to Poiseuille's
law of flow, but to Stokes' law for drag. In place of Eq. (51) for

Jvisc’ we therefore write

~

Vuise = ‘,{v:lsc/n =" Ed/RG" s (206)

where Fd is the force on one of the giant molecules (dust particles), Rﬁ
is a g;ometric constant, and n is the gas viscosity. For flow over
spheres of radius r, R) = 6nr.

(2) Since we are now interested in the force on the vane, we should
use the relation of Eq. (57), namely “dFd - Zp, to eliminate Zp from the
transport equations in favor of F;, instead of vice versa, as was done
for thermal transpirationm. h

The calculations have been performed for single gases by Mason and
Block [M13], and for binary mixtures by Jenkins and Mason [J3]. By
mathematically eliminating pressure and temperature gradients, we obtain

the following flux equation for a binary mixture:

-1 + f 1+ ° ndzd
Dix = Dy n<D>ugRy | kgT
—Eln(a') + n,(ajy)e,] 7V 20 T (207)
nq 1 ld tr 2 Zd tr ~ »

where the D;, are the usual Knudsen diffusion coefficients which are

defined in terms of the gas—dust diffusion coefficients by Eq. (61). The
results for a single gas are obtained simply by dropping one of the com-
ponents from this equation. This equation is of exactly the same form as

Eq. (179) for thermal transpiration, with the replacements,
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Vp > ngFq » By > lng R . ‘ (208)

All the results for thermal transpiration therefore hold for radiometer
effects, with only a small change of notation.
In particular, it is convenient to define the total force on the

radiometer vane per unit temperature gradient as

T EngF/Y in T, (209)

which has the dimensions of torque per unft volume. Then in place of
(d 2n p/d %n T) for the thermomolecular pressure difference, we write t/p
and make the substitutions given by Eq. (208). The radiometer force is
then given by Eq. (163) for a single gas and Eq. (183) for a binary mix-
ture. It is not worthwhile to essentially repeat the whole discussion
already given for thermal transpiration, especially since no measurements
of the radiometer effect in mixtures have been reported, as far as we are
aware. We therefore limit our remarks to two points about the radiometer
effect in single gases: comparison with experimental data through a suc-
cessful semiempirical formula, and the determination of A . and rota-
tional collision numbers from such data.

Very simple arguments suffice to establish the pressure dependence of
T at the two extremes of low and high pressures; namely, T is directly
proportional to p at low pressures, and inversely proportional to p at
high pressures. Briuche and Littwin [B14, D14] proposed that these two
limiting forms might be combined in the form .

T = [(a'/p) + (p/B)]7Y, (210)

where a' and b' are constants. (This is analogous to treating T as com—
posed of resistances in parallel, as in branches 1 and 2 of Fig. 1.) It
was observed that this expression gave a rather good fit of experimental
results, but that the experimental T vs. p curve was a little flatter and
wider than predicted by Eq. (210). If the dusty-gas model result, as
given through Eq. (163), is put in this form, we find that a' = 1/aL and
b' = qL'g'n’ but that an additive constant term also appears, c' =

("§+"n)/“L"g"n’ which is the extra small feature needed to improve the
fit.



The value of Tpax €an be used to find the values of ft and hence of

X r
the rotational collision number, just as was done for thermal transpira-

tion. Some results are given in Table 4 [MI3]. The accuracy is not

Table 4. Translational Eucken factors ftr and rotational
collision numbers g determined from radiometer data.?
The calibration gases were neon and argon.

Gas £. 4
tr

Ne (2.50) (=)
Ar (2.50) (=)
02 2.2, 3
N, ,CO 2.3, 4
C0,,N70 2.13 2
CH, 2.1, 2

8pata from Briiche and Littwin [B1l4] via Mason and Block [M13].

great because the experimental values had to be determined from a graphi-
cal presentation of the data, but the agreement with similar values from
thermal transpiration, given in Table 3, is not unreasonable.

By working at a more modest level of accuracy, and ignoring the
effects of inelastic collisions, one can use radiometer measurements to
determine molecular collision diameters. 1In terms of the present theory,

one proceeds from T, to the mean free path £ through n by Eq. (174),

max
and thence to the collision diameter. Miller and Bernstein [M32] used

basically this procedure to study a large number of halomethanes, but had
to use an older theory based on a rigid-sphere model for the gas molecu-

les, since the present theory was not available at the time.

C. AEROSOL MOTION

The motion of small suspended particles (dust, smoke, aerosols, etc.)
in a gas or gas mixture containing gradients of temperature, pressure, or
composition is a subject that enters into the discussion of a great
variety of phenomena of interest not only in engineering, but also in
such diverse fields as environmental science, atmospheric physics,

colloid chemistry, and astrophysics. The subject goes back at least to
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1870, when Tyndall [T5] noticed a dust-free region in the gas space about
a hot body ("Tyndall dark space”), showing that a temperature gradient has
an effect on the motion of dust particles in a gas. Not surprisingly,
there is a large body of literature connected with the subject, much of
it reviewed in the book of Hidy and Brock [H9].

In the aerosol problem, we are concerned literally with a “"dusty gas".
The dusty-gas model for gas transport in porous media grew out of this
problem, as was pointed out in Chapter I. In a sense, we are presenting
the subject in a reverse logical order (which is the way it actually
developed). As might be expected, there are many analogies between phe-
nomena in porous media and aerosol phenomena, the latter of which are
usually termed some sort of “phoresis™. Table 5 lists the main analo-
gles, as an aid to understanding the technical jargon of both fields.

The calculations for aerosol motion involve features from both the
slip and creep calculations of Section A of this chapter and the
radiometer calculations of Section B. To some extent we are merely
repeating the radiometer calculations, inasmuch as the radiometer vane
was visualized as a collection of comnected aerosol particles. We thus
use the same replacements for Zp and Bo as given by Eq. (208). In addi-
tion, we assume that the aerosol dispersion is dilute enough to neglect
interactions between aerosol particles, so that agglomeration is ignored.
This means that we can use the limiting result nd/n + 0, as in the slip

and creep calculations.

1. General Formulation

Since both the particles and the gas may be moving with respect to a
laboratory or other external frame of reference, it is easiest to begin
by calculating the relative velocity of gas and particles. This is just
the mass-average velocity of the gas in a reference frame in which the
particles are stationary, which is the case already worked out for gas
transport in porous media. We use the mass-—average velocity, because it
is momentum that is related to force, by Newton's second law of motion.

That is, we calculate

v v
VeasVa = Yo = 121 "ifilizl 0484 » (211)
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Table 5. Analogies between phenomena assoclated with gas
transport through porous media and aerosol phenomena.

Physical Conditions Némes of Phenomena

Porous Media Aerosols

Flowing isothermal gas Permeability Drag or mobility
or uniform gas mixture

Viscous slip Cataphoresis

(Poiseuille-Darcy; (Stokes; Millikan)

Knudsen)
Simultaneous flow and VUniform—pressure Diffusiophoresis
diffusion of an iso— diffusion (Graham)

thermal gas mixture
Diffusion pressure effect

Diffusive slip (Kramers-

Kistemaker)
Temperature gradieant Thermal transpiration Thermophoresis
in a single gas (Tyndall dark space)
Thermomolecular pressure
difference

. Thermal creep
(Irradiation) (Radiometer effect) (Photophoresis)

Temperature gradient Thermal transpiration Thermodiffusiophoresis

in a gas mixture
Pressure dependence of

thermal diffusion

where V, is the local mass-average velocity of the gas in the labora-

gas
tory frame, as determined by the boundary conditions in the gas mixture,
and Vg4 is the aerosol velocity in the laboratory frame. It may not be a

trivial problem to calculate V , especially for a multicomponent mix-

~

gas’ =
ture, but this is done independently of the phoresis part of the problem

and is thus not of primary concern here. The condition of nd/n + 0 makes
the right-hand side of Eq. (211) comparatively easy to evaluate for
multicomponent mixtures, and this generalization has been developed by
Viehland and Mason [V1]. We give first the general multicomponent for-
mulas, and then present special cases of interest.

The result of evaluating the expression in Eq. (211) can be written as

Vg = Vgag + ZFg + V0, (212)
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where Fd is the external force on the aerosol particles, Z is the mobil-
ity of the particles in a uniform gas mixture having the same com-
position, pressure, and temperature as the actual nonuniform mixture at

0 is the velocity that the particles

the location of the particle, and 2
would have in the absence of external forces in a gas mixture of the same
local composition, pressure, and temperature whose boundary conditions

0

were arranged so that V as = 0. It is convenient to write Vd as the sum

~8
of three terms,

Vdo = Vdo(diff) + Vdo(ther) + Vdo(coupl) . (213)

~ ~

The first term is a diffusiophoresis term, the second a thermophoresis
term, and the third a coupling term in the sense that it vanishes unless
both a mixture and a temperature gradient are present. In terms of the
slip and creep results in Sectiom A, Vdo(diff) corresponds to O4iffr
Vdo(ther) to Olner® Vd (coupl) to °th;r' and Z to gyy..-

The expression for Vdo(diff) is rather complicated for a multicom-

ponent gas mixture,

v=l v=-1
va0atee) = - T [a0 DY o1CTxy + L Regey T D (214)

The °ij are the usual multicomponent thermal diffusion factors of the gas
gpecies, and the D(é% are effective multicomponent diffusion coefficients
which have dimensions of mass as well as diffusion coefficient (e.g.,
g-cm2/sec), and are given by the ratio of two vxv determiﬁants, the denomin

ator being
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1 1 1 1 1
214 224 239 2(y-1)d Dvg
§ s I o e o o
3=1 214 22 23 R STCS S 21v
#1
X2 i’ ot I X2 e S 1
212 F12y4 273 y(v-1) 22y
2
Xv-2 *v-2 -2 . X-2 -2
21 (v-2) Bav-2)  23(v-2) B(v-2)(v-1) D(v-2)v
*y-1 %y-] Y U S T Y W I G
31 (v-1) Da(v-1)  D3(v-1) $=1 2(v-1)3 D(v-1)v
Fv-1

The numerator for Degz)is obtained from this determinant by replacing the
(i+1) row by {"1' My, ey Wy, m)}. Although it may appear from
Eqs. (214) and (215) that the vth species in the gas mixture is being
discriminated against, the results are the same no matter which species
is designated as v. The apparent discrimination arises because the v
Stefan-Maxwell diffusion equations for the gas mixture are not
independent; any one equation is equal to the sum of the other (v-1)
equations. The 213 are the regular gaseous diffusion coefficients, taken
to be experimentally known quantities, as are the ag4°

The 344 appearing in Eq. (215) are the gas—dust diffusion coeffi-
clents, given in first approximation by Eq. (64) and in higher approxi-
mation by Eqs. (62) and (70). At this point it is convenient to
introduce a change of notation to accommodate the fact that the pressure
dependences of phoresis phenomena are customarily expressed through a

particle Knudsen number, %£/r, where £ is the mean free path of the gas
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molecules and r is the radius of the particle (assumed spherical). We

'‘first define an effective radius as

r = Rs/6w , (216)

where R} is the wodified Stokes radius of Eq. (206). In a mixture, more than
one mean free path exists, and all the free paths depend on composition; we
therefore define the quantities (not to be confused with the A;; and Agy for
the thermal conductivity of gas mixtures),

Ay = (/) (riegT/2m )2 (217)

These have the dimensions of pressure (analogous to the L] used in Chapters IIL
and III, but not identical). For a single gas, the ratio A/p becomes equal to
£/T. The 34 can then be written as

ajhy
Dy -, 218
"4 T Garn(ioagg) 218)
I+ (Ay/P)
1= - — 219
ELETTTWS (219
where the dimensionless parameters a/, bi, and c{ are defined as
' = 9/4glla 1% 4 2
a / » (220)
by = (ngr/m)agg/agy) (2agiegT/mt/2 (221)
" = v 1
c1 = bi(l --; 51°1L) - (222)

Similarly, the gas-particle thermal diffusion factors ajq4 can be written as

(6C14 - 5) 6nrn (M),

44 = - ) > (223)
aini Skg x5
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where (xi)tt is, as before, the partial translational thermal conductivity of
species i in the gas mixture.
The remaining phoresis quantities can then be written in terms of the

above-defined quantities as follows:

v x3(1-444)
z =14+ ] — 4
(6mrn) 121 TS (224)

0 \Y Xi( 1-Aid)
Vg (ther) = = |Sp<a> J ———— —
~ 1=1 aj(A;/p)

v %W v *
4 al(A,/p) sby (CamDOpee| T (225)

v.OCcouply = - | Sp<a> E x1(1-444)
~a teoup 121 aj(A/p)

v v 1 1
X 6C 4-5) (A - VT . (226
oy T jzl (66347 Apder aj(A/p)  aj(a/m)| [ (226)

These equations are the complete theoretical expressions for the
motion of aerosol particles in multicomponent gas mixtures with gradients
of both composition and temperature. They are quite general, covering
the full range from the free-molecule to the continuum regime (relative
to the particle radius). Some simplifying approximations may often be
possible, such as setting all the (GCId-S) equal to unity, as was done
for slip and creep phenomena, or even ignoring the correction terms 4,,-

Before illustrating the general results by giving some simple special
cases, we make three remarks:

First, we have ignored some correction terms that appear in higher-

order kinetic-theory calculations, just as these terms were ignored in
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the discussion of gas transport in porous media. Some of the corrections
have been calculated explicitly in the aerosol case by Annis [A3].

Second, we have implicitly assumed that the aerosol particles do not
perturb the composition and temperature gradients in the gas. We there-
fore cannot cousider particles with large thermal conductivities [HI],
and we completely miss some thermal stress mechanisms of thermophoresis
such as have been described by Sone [S10]. (We will demonstrate that the
thermal conductivity effect is not as serious as might at first be
expected.)

Third, we have assumed that the boundaries necessary to set up gra-
dients in the gas are very widely spaced compared to the mean free path.
When this is not the case, a new Knudsen number, corresponding to boun-
dary spacing, must be introduced. 1Its effects can be taken into account
by introducing additional pressure dependences of the gas transport coef-
ficients themselves, as was shown by Annis and Mason [A7]. (An illustra-
tion, for the case of thermophoresis in a single gas, is given later in

this chapter.)

2. Drag on a Particle

Perhaps the best-known formula for the drag of a gas on a spherical
particle is that used by Millikan [M35] in connection with his famous
oil-drop experiments for determining the charge of the electron, which

can be written in terms of the mobility Z as
2(6xn) = 1 + (L/r)(A + Be CT/%y | (227)

where A, B and c are constants. The exponential term in parentheses has
no particular theoretical foundation, but furnishes an accurate inter-
polation over the entire range of £/r from the free-molecule to the con-
tinuum region. For small £/r, this formula reduces to Stokes' law,

including a known first-order correction for slip,
zZ(6nm) = 1 + A(L/x) + 00 (228)

When t/r is large, the drag is due entirely to isolated molecular impacts
and must be proportionmal to wrz, the cross—sectional area presented by
the sphere. In this case Eq. (227) reduces, after using Eq. (174) for

n, to



Z = (A+B) [3nmv(ar?)]”! (229)

which again is of the correct form.

Annis, Malinauskas, and Mason [A8] have compared Eq. (224) for 2 with
Millikan's formula and with his measurements on oil droplets, adjusting
the parameters ai, b;, cl of Eq. (224) to match Millikan's empirical
values of A, B, ¢ at small and large %/r. The results are shown in Fig.
23, and cover nearly four orders of magnitude in &/r. The deviation is
systematic, but is small, being about the same as the experimental error

of the measurements (2%).
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Fig. 23. Reciprocal slip factor, (6wan)'l, for oil droplets as a func-
tion of Knudsen number, £/r. The circles are data for watchmaker's oil

in air. The dashed curve is Millikan's formula, Eq. (227), and the solid
curve is the present formula, Eq. (224), adjusted to Millikan's empirical

parameters.
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A more rigorous theoretical treatment of the drag problem, also
spanning the entire range of %£/r, has been given by Cercignani and
coworkers [C3 - C5], who solved the simplified Bhatnagar-Gross=-Krook (BGK)
model of the Boltzmann equation. The results were sufficiently compli-
cated to require high-speed computation, and are given in Table 6 for the
case of molecules which are thermally accommodated and diffusely scat-
tered from the droplet surface. Also shown in the table are values from
Millikan's formula, Eq. (227), with parameters determined from fitting
oil-droplet data, and from the dusty-gas formula, Eq. (224), adjusted to
Millikan's parameters (as in Fig. 23). The present results are very
close to the BGK results, and both are sIightly lower than the Millikan
values, the maximum deviation being 2.4%Z over the range 0.5 to 0.9 in
2/r.

We can conclude that Eq. (224) reproduces the Millikan equation almost
within experimental error, and is within about 1% of the accurate numeri-
cal results of the BGK model. Further comparisons for single gases can
be found in the paper of Annis, Malinauskas, and Mason [A8].
Unfortunately, we know of no data suitable for testing Eq. (224) for mix-
tures, and the most that has been done is to see how much error might be
incurred by treating air as a single gas rather than as a mixture in the
analysis of Millikan's oil-drop experiments. The effect is small — the
mixture value of Z is at most about 0.2% larger than the value obtained
on the assumption that air is a single gas [A9].

Although data on drag in mixtures for testing Eq. (224) are lacking,
it is worth pointing out what the predicted composition dependence of Z
igs. The composition dependence as given by Eq. (224) has a superficially
simple appearance that is deceptive. It must be remembered that the
viscosity n can have a fairly complicated composition dependence, and
that n enters Eq. (224) not only as an explicit factor, but is also hid-
den in the A; according to Eq. (217), and in bi and c{ according to Eqs.
(221) and (222). However, the composition dependence contained in n can
be explicitly factored out of Eq. (224). We first notice that n cancels
out of the products b{Ai and c{Ai. so that Aid is independent of com-
position. Secondly, we notice that 6wrn = l/Z“, where Z_ is the high-
pressure limit of Z at the same composition. Then Eq. (224) can be

arranged into the form



Table 6. Comparisom of different results for sphere drag
as a function of Knudsen number.

L2 . Z(free-molecule)/Z
2 L r BGK model Millikan Dusty-gas
0.050 17.7 0.978 0.978 0.978
0.075 11.8 0.965 0.968 0.967
0.10 8.86 0.953 0.957 0.956
0.25 3.54 0.886 0.896 0.892
0.50 1.77 0.790 0.804 0.794
0.75 1.18 0.709 0.724 0.711
1.00 0.886 0.640 0.655 0.641
1.25 0.709 0.582 0.596 0.582
1.50 0.591 0.533 0.546 0.533
1.75 0.506 0.491 0.502 0.490
2.0 0.443 0.455 0.464 0.454
2.5 0.354 0.395 0.403 0.395
3 0.295 0.349 0.355 0.349
4 0.222 0.282 0.286 0.283
5 0.177 0.236 0.240 0.237
6 0.148 0.203 0.206 0.204
7 0.127 0.178 0.180 0.179
8 0.111 0.158 0.161 0.160
9 0.098 0.143 0.145 0.144
10 0.089 0.130 0.132 0.131
nZ, v
;i'pihxﬁﬁw. (230)
1-444(P)
c;(p) = (231)

aj(Ay/m)
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That is, the quantity nZ,/(2Z-Z_) varies linearly with mole fraction at
fixed total pressure, and is nearly directly proportional to pressure at
fixed composition (the pressure dependence of Ajq being only of the order
of 10Z, and n being independent of pressure).

3. Diffusiophoresis

Because of the complexity of the formulas for multicomponent mixtures,

we limit ourselves to the example of binary mixtures, and consider the

calculation of both V,0(diff) and Vgag- From Eqs. (214) and (215) ve

obtain

n2, ¥ [‘i“lln ‘i“'zl/z]

0
vV, (diff) = -
Ya (a1ee) (1-839)  (1-8py)

[ K1X2

-1
aj aj}

+

Three things are worth noting. First, except for the weak composition
dependence of 212, the dependence of Vdo(diff) on composition is rather
gimple — the quantity [pvdo(diff)] 13 varies linearly with mole fraction,
and of course p itself also varies linearly with mole fraction. Second,
the main variation of vdo(diff) with pressure is as p'l (from the
pressure dependence ofﬁhiz); the pressure variation caused by the A;; is
small. Third, if the scattering patterns of both molecular species from
the particle are the same, then Vdo(diff) is proportional to
(m 1/2 1/2) This dependence is responsible for the ml/2 dependence of
fluxes in uniform-pressure diffusion (Graham's law of diffusion),
according to the dusty-gas model; this observation is historically
responsible for the current formulation of the model.

As an example, we show in Fig. 24 a calculated plot of
Xdo(diff)/h&Zle for a diffusing He + Ar mixture as a function of
pressure (as measured by Knudsen number). The mean composition of the
mixture is equimolar, and the scattering patterns are assumed to be the
same for both species. It is seen that the predicted diffusiophoresis is

the same in the free-molecule region as in the continuum region, but that
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Fig. 24, Calculated diffusiophoretic velocity in a diffusing equimolar
He + Ar mixture at 25°C, showing the weak minimum in the pressure depen-
dence. The pressure is measured by the Knudsen number I,Ar/r, where Lpr
is the mean free path in pure Ar at that pressure.

the weak pressure dependence of the A;4 produces a minimum in the tran-

sition region. The maximum effect in this case is only a few percent,

and would usually be further obscured by a large value of Vg as? which

is considered next.
In a diffusing binary gas mixture, the boundary conditions establish

the relation between Vgas and X The diffusion fluxes are first found

by solution of Fick's law,

Iy = =i X + 1) (233)
and then Xgas is calculated as the mass average,
Ygas = (‘“1‘11 + ﬂzfz)/" ’ (234)

where p is the mass density.
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Although a wide variety of boundary conditions may be possible in prin-
ciple, only three special cases are usually encountered, as follows:

(1) Equal countercurrent diffusion (ECD). The boundary conditions are

arranged so that .J1 == J,. From Eqs. (233) and (234) we then find

Vgas = ~ (n315/p)(m;—my)Vx; . (235)

(2) Uniform pressure diffusion (UPD). In this case a net flux
J = J, + J, must exist in order to keep the pressure uniform. The indi-

vidual fluxes must be related to each other according to Graham's law of
diffusion

- 52/:{1 - (ml/mz)llz )

from which Eqs. (233) and (234) yield

/2 _ _ 1/2
J1/2 o m)
xlllll 1/2 + xzﬂzllz

212 ;
o 122

Vx) . (236)

~

Vgas

(3) One component stagnant (SD). In SD the moving component of the

mixture is usually an evaporating vapor, and the stagnant component is

the surrounding atmosphere. If we choose Jp = 0, then Eqs. (233) and

(234) yield

Vgas " '(T) = | ™1 - (231

As an example, for the case considered in Fig. 24, the calculated
values of vgaslilzvxl are -1.64 for ECD, -0.60 for UPD, and -3.64 for SD,
compared to the values of about +0.59 for Xo(diff)/)lzle shown in
Fig. 24.

Further examples and comparisons of various theoretical formulas for

diffusiophoresis are given by Annis, Malinauskas, and Mason [A9].



4. Thermophoresis

Here we consider only single gases. Some discussion of thermophoresis
in gas mixtures has been given by Annis and Mason [A7], but virtually no
experimental data exist. The numerical calculations show that the
coupling term in Eq. (213), which represents the nonadditivity of dif-
fusiophoresis and thermophoresis, is usually less than the thermophoresis
term, but may be comparable to it in some cases.

We discuss two points in connection with thermophoresis in a single
gas: first, the effect of the thermal conductivity of the particle
itself, and second, the effect of finite boundary spacings.

Results on thermophoresis are commonly expressed in terms of the thermo-
phoretic force, which is the force necessary to keep the particle station-
ary in a (non-flowing) gas having a temperature gradient. From Eq. (212),
this force is seen to be given by

Fy(ther) = - v O(ther)/z , (238)

which is readily evaluated by substitution from Eqs. (224) and (225).
Other formulas for Fd(ther) do not cover the complete pressure range, and
Hidy and Brock [H9]~recommend separate formulas for the transition regime
and the near-continuum regime. These formulas include the effect of the
thermal conductivity of the aerosol particle, which perturbs the tem—
perature distribution in the gas and hence alters the thermophoretic
force. Results are compared in Fig. 25 for two extreme values of par-

ticle thermal conductivity: /\q = 0, corresponding to a highly con-

Agas

ducting particle, and A /Xd = 1, corresponding to an insulating

s
particle. It can be se:: that the effect of particle thermal conduc-
tivity is not enormous, although it is certainly non-negligible, and that
the agreement with Eq. (238) is reasonable.

Equation (238) is compared with some experimental results in Fig. 26,
including particles of high thermal conductivity (NaCl) as well as of low
thermal conductivity (silicone oil and tricresyl phosphate). It should
be emphasized that there are no adjustable parameters in the theoretical
curve [A7]. The agreement is reasonable except for small &/r, where the
discrepancies are perhaps caused partly by neglect of the particle ther-
mal conductivity (see Fig. 25), and partly by the casual treatment of

surface accommodation effects in the dusty-gas model.
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Fig. 25. Comparison of dusty-gas results (solid line) on the thermo-—
phoretic force with previous theoretical expressions for the transition
region of %2/r > 0.2 [B13], and for the near-continuum region of %/r < 0.2
[J2]), which include the effect of particle thermal conductivity (dashed
lines). A conducting particle corresponds to A as/xd = 0. The plot is
normalized by dividing by the free-molecule value of the thermophoretic
force.

When the boundary spacing L 18 not much larger than the mean free
path in a gas, three new effects occur: a pressure gradient may be set
up, the mass-average velocity of the gas may be changed, and the gas
transport coefficients A, n!&j, and “ij may become pressure dependent.
The question now is how these effects might influence the motion of aero-
sol particles suspended in the gas.

The pressure-gradient effect need not be considered, because it has
already been taken into account in the original derivation by being
incorporated into Ed' The second effect would have to be considered for
a gas mixture, but here we are considering only a single gas. Thus the
effect of boundary spacing comes in only through its intluence on Aepe
For conduction between parallel plates, the pressure dependence of Aer is

approximately given by [K4]
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Fig. 26. Comparison of dusty-gas results on the thermophoretic force
with some experimental results: O NaCl in air [S2], A NaCl in Ar [J2],
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where A:r is the high-pressure limiting value of xtr, and B is a
congtant, approximately equal to 15/4 for perfect thermal accommodation
of the gas molecules on collision with the plates.

The effect of this pressure dependence of ), . on the thermophoretic
force is shown in Fig. 27, where the pressure dependence of the force is
shown for the three plate spacings of L/r = «, 100 and 10. The thermo-
phoretic force rises as pressure is decreased, and reaches a limiting
plateau value for L/r = @, but for finite L/r the force reaches a maximum
and eventually declines again to zero. This ultimate decline is to be
expected, since for finite L only a negligible amount of gas eventually
remains between the plates, and so cannot exert any force on the par-

ticles.
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Fig. 27. Thermophoretic force as a function of the particle Knudsen
number £/r, for different values of the boundary spacing L.

D. MEMBRANE TRANSPORT

Membrane separation processes have come to be rather widely used in a
number of engineering processes, such as desalination of water and the
cleanup of waste streams. They are also important in a large number of
bioengineering contexts. A minimum requirement for sensible engineering
analysis and design would seem to be a knowledge of the fundamental
equations that describe membrane transport — that is, the analogues of
Fick's law of diffusion, Darcy's law of flow, and Ohm's law of electrical
conduction (if charged particles and membranes are involved). The form
that these equations should take is not at all obvious, especially when
multicomponent systems are involved. Indeed, the fact that there was no
general agreement on the problem for the presumably much simpler case of
gases in porous media, even as recently as twenty years ago, attests to
the difficulties involved. In truth, it was the work on the gas problem
and the development of the dusty-gas model that finally gave enough
insight to solve the more difficult membrane problem by general

statistical-mechanical methods.
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The many attempts to formulate transport equations for membranes can
be classified into a few simple categories. Because details of membrane
structure are often known only poorly, if at all, we might mention first
the approaches in which the membrane is regarded as a "black box", and
only very general principles are invoked. A well-known example of this
approach is Kedem and Katchalsky's treatment of membrane transport
according to irreversible thermodynamics [Kl, K2], in which linear rela-
tions between fluxes and gradients (or finite differences) are assumed
and the Onsager reciprocal relations are applied. In a second category,
the membrane is represented by some simple but supposedly general model
that can be characterized by only a few parameters. A familiar example
is the use of generalized "frictional coefficients” by Spiegler, Kedem,
and Katchalsky [Kl, S12, S13] to represent membrane permeabilities. A
variant on this example is the use of the Stefan—Maxwell diffusion
equations for membrane transport with "effective™ diffusion coefficients,
the membrane being taken as a special component that is fixed in space
[L4], just as in the dusty-gas model. A less familiar example in this
category represents the membrane as an energy barrier, or series of
barriers, that must be surmounted by a permeating substance [D3, D7, Hll,
M7, 83, Z4]. A third category takes quite an opposite approach with
models — a very simple special problem is solved in great detail. The
hope is to gain enough insight to ferret out essential difficulties or to
be able to generalize the results by analogy or heuristic arguments. An
example of this approach 1s the use of hydrodynamic models, in which the
meuwbrane is represented as a plate with parallel cylindrical pores, and
the solution is a dilute suspension of rigid spheres in a continuum
Newtonian fluid [A2, B4, B9]. Another example is the use of gas models in
which the membrane is visualized as a collection of dust or aerosol par-
ticles held fixed in space [D1, D6, M24, M31]. This, of course, is just
the dusty-gas model translated into membrane terminology, and is the
approach we wish to emphasize here. Finally, there is the category in
which an attempt is made to derive transport equations from some
underlying fundamental principles, usually those of statistical mechanics
[B5, B6, D5, D6, S9].

It was not always clear what the relationships among these various

formulations were, nor even whether they were mutually consistent.
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We first indicate how the dusty-gas transport equations can be genera-
lized to apply to arbitrary solutions and membranes. The heuristic argu-
ments for this generalization, while plausible, are basically empirical.
We next describe how the results can be derived more rigorously from
basic principles of statistical mechanics, using the physical insight
obtained from the gas calculations. We then show how the different phe-
nomenological theories are related, and how the dusty-gas theory has been
used as a diagnostic probe to find hidden assumptions and omitted terms
in these theories. Finally, we indicate briefly how the results can be

extended to semipermeable membranes.

1. Generalization of the Dusty-Gas Theory

Generalizations of ideal-solution diffusion equations are usually per-
formed by replacing gradients of concentrations or mole fractioms by gra-
dients of chemical potentials, so that the equations will reduce to the
correct equilibrium limits in the case of nonideal solutions. Some addi-
tional care with concentration and pressure variables is necessary when
starting from gas equations, because the absolute concentrations of the
components in a gas mixture can be changed by application of pressure,
without changing their relative concentrations. This variation is
usually unimportant for liquid solutions, which are virtually
incompressible. We start with Eq. (120) for the dusty-gas model, and
identify the latent chemical potential term by noting that, at constant

temperature,
duy = RoT d £n Py = ROT d tn xq + RoT d np, (240)

where u; is the chemical potential of species i, Py is its partial
pressure, and Xy its mole fraction. Altogether, we make four types of
changes in Eq. (120), as follows [Dl, M31j:

(1) The two terms V fn (niln) and V fn p are replaced by ZTui‘ which
is the chemical potential gradient of species i in an isothermal system
with the same local state variables and concentration and pressure gra-
dients as the real system.

(2) Molecular units are changed to molar units.

(3) The diffusion coefficients are interpreted as phenomenological

coefficients within the membrane. In particular, Dij is no longer



assumed to be simply proportional to the free-space diffusion coef-
ficient, as in the relation Dij = (e/q)}ij- In addition, the Knudsen
diffusion coefficients DiK are replaced by membrane coefficients DiM to
avoid the connotation of long mean free paths. The thermal diffusion
factors aij are also rewritten in terms of multicomponent thermal dif-
fusion coefficients Dij; this step is just conventional, and has no par-
ticular physical significance.

(4) Finally, it 18 convenient, but not strictly necessary, to drop
the fluid-membrane thermal diffusion coefficients DIM (which correspond
to the gas-dust thermal diffusion factors “id)’ These terms give rise
to thermal transpiration effects, which are usually already negligible
for gases at ordinary densities, and are almost surely negligible for
liquids.

Applying the above changes to Eq. (120), we obtain the generalized

equations for membrane transport,

E cj i{_é + gi +_B°_(v —CF)-
= ey ¢y cDyy Dy P T

1 v Cj T
=- - — (v -F;) - Dy, V4&4n T, 241
RoT (ATui ~1) jzl Cnij 137 n ( )

where cy is the molar concentration of component j, ¢ = £cj is the total
molar concentration, and the other symbols have the meanings previously

given. For nonideal solutions, the chemical potential gradient would be

written as

Yqug = R,T Vp tnag +V; ¥p, (242)

where ay is the activity of species i, V1 is its partial molar volume

(not to be confused with a mean diffusion velocity), and Vp refers to the
total hydrostatic pressure. The reference state for the ;ctivity should
be mole fraction rather than some other composition measure, in order to

preserve the symmetry of Eq. (241) with respect to components.
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2. Statistical-Mechanical Derivation

The set of relations given by Eqs. (241) affords a complete descrip-
tion of transport across a membrane that does not completely prohibit the
passage of any of the species. The more empirical parts of the deriva-
tion can be eliminated by starting with the statistical-mechanical
Liouville equation for a general system rather than with the Boltzmann
equation for a dilute gas. The derivation can be divided into two parts:
first, the passage from the Liouville equation to the equations of fluid
dynamics for a flowing, diffusing, multicomponent system; second, the
passage from the equations of fluid dynamics to the equations of membrane
transport. The first part was accomplished by Bearman and
Kirkwood [B5, B6] and by Snell, Aranow, and Spangler [S9]. Three essen—
tial assumptions are involved:

(1) The fluid can be described in terms of a local state.

(2) The local state deviates only slightly from a local equilibrium
state, so that a first-order expansion of the distribution function about
this local equilibrium state is valid. The first-order expansion leads
to linear tramsport equations. The choice of the reference equilibrium
gtate is not unique, but it turns out not to be important in the applica-
tion to membranes.

(3) A quasicontinuum averaging is carried out over macroscopically
small, but microscopically large, volume elements of the fluid.

The second part of the derivation was carried out by Mason and
Viehland [M19], and generalized somewhat by del Castillo and Mason [D5].
It involves four additional assumptions pertaining sﬁecifically to
membranes, which are quite similar to the assumptions of the dusty-gas
model, as follows:

(4) The membrane is taken as one component of the multicomponent mix—
ture, constrained to be stationary in space, and making no contribution
to the mixture viscosity.

(5) A local averaging or coarse-graining is carried out over the open
volume of the membrane (e.g., over the cross-sectional area in the case
of a cylindrical pore).

(6) In the coarse-grained equations, the terms representing inertial
effects are dropped, and those representing viscous effects are agsumed
to be nonseparative.

(7) The diffusion and thermal diffusion coefficients in the coarse-

grained equations are taken to represent diffusion and thermal diffusion

within the membrane.



It is interesting to note that extensions of transport equations to
dense fluid media, similar in spirit to what has been described above,
have been independently carried out for the drying of microporous
materials [M1] and for the transport of water through unsaturated soil
[S14, S15]. At any rate, application of the above-outlined statistical-
mechanical approach leads directly to Eq. (241).

3. Comparison with Phenomenological Equations

A number of phenomenological transport equations for membranes have
been proposed at various times; sometimes these have had rather different
appearances. Here we briefly compare some of these equations with the
results as given by Eq. (241).

a. Onsager (Kedem-Katchalsky) Linear Laws. A set of very general

transport equations can be obtained by assuming a linear relation among

f luxes fi and “"forces” fj'

I =LK, (243)
3

where the Lij are Onsager phenomenological coefficients. Onsager showed

that, 1if the J1 and fj are chosen properly, then

Lij = Ljg » (244)
now known as the Onsager reciprocal relations [D4]. We wish to show that
Eq. (241) has this symmetry property. The demonstration is simple, and
depends only on the fact that Dij = Dji' We define

Ei El (ZTui - Ei) - (BOROT/"Dj.M) (ZP - CE) . (245)

There should be another “force" corresponding to the V &n T term in Eq.
(241), and another flux corresponding to heat flow, b;t we ignore these
here because we are interested only in mass transfer across membranes, not
heat transfer. Inclusion of these additional quantities would lead to
the result, through the Onsager reciprocal relations, that the coef-
ficients describing thermal diffusion in the mass-transfer equations were

the same as the coefficients describing the diffusion thermoeffect in the
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heat-transfer equation. Dropping the V &n T term then, we can rearrange

Eq. (241) into the form

o f Rl (246)

where

Ryy = RyT/cDyy = Ry; i#3, (247a)
-1 -1

Ry = (Ro?/ci)(DiH + E cyDys) - (247b)

Clearly Rij is symmetric because Dij is. If we invert Eq. (246) we
obtain Eq. (243), and the resulting matrix of coefficients Lij is sym—
metric because it is the inverse of the symmetric matrix Rij’ Thus Eq.
(241) obeys the Onsager reciprocal relations, and no symmetry-destroying
blunders have been made in the derivation of Eq. (241).

Of more specific interest is the comparison of Eq. (241) with the
treatment of membrane transport by the methods of irreversible thermo-—
dynamics, as developed by Kedem and Katchalsky [K1, K2]. Their treatment
is limited to two-component systems at constant temperature, and a one-
dimensional finite-difference approximation is used. The entropy produc-

tion per unit volume in the membrane, o, is taken to be

To = -J;(8u;/8z) - Jy(bu,y/b2) . (248)
If the solution is considered to be dilute and ideal, Eq. (248) can be
transformed to the more convenient variables of pressure and concentra-
tion,

Tg = - Jv(Ap/Az) - JDROT (Acs/Az) . (249)

where the new fluxes are defined to be

(250)



Ip = (/8 = (Jle,) - : (251)

The subscript s stands for the dilute component (“"solute”), and the
subscript w for the solvent (“water”). The ;s and ;Q are partial molar
volumes. Notice that an average concentration Es appears in the defini-
tion of Jp» but no average is needed for the Cy because the solvent is
present in large excess. The particular kind of average to be used for
Es is determined by integrating the differential form of the entropy-
production equation across the membrane thickness, and requiring that the

overall entropy production be given by Eq. (249); thus

Az p" <5
T odz = - Jvdp - ROT [(Js/cs) - (lecw)ldcs . (252)
0 p' c;

This leads to the result

Cg = (eg-cp)/an(eg/cy) (253)

where cé and c; are the concentrations on the two sides of the membrane.

The pair of transport equations corresponding to the transformed
Eq. (249) is

Jy = - Ly(8p/b2) - L R T(Acy/Az) , (254)

Jp =~ LDP(Ap/Az) - LR T(Acg/az) , (255)
and the corresponding Onsager reciprocal relation is

Three questions now present themselves:
(1) How do Eqs. (254) and (255) compare with the statistical-
mechanical (or generalized dusty-gas) Eq. (241)?
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(2) 1s the expression for Es given by Eq. (253) the correct omne to
use in the transport equation? (It is obviously the correct average for
the entropy-production equation.)

(3) What is the range of validity of the reciprocal relation, Eq.
(256), when Acg and Ap are not vanishingly small?

Regarding the first question, we can see an immediate difficulty —
Eq. (241) includes viscous terms, but no viscous dissipation term was
included in Eq. (248) for the entropy production. A term like —Jv(Ap/Az)
should have been included in Eq. (248). However, this was fortuitously
compensated by transforming the gradients of chemical potentials to gra-
dients of p and Cos whereby the empirical coefficient ip then became
available to absorb the viscous flow contribution. This can be seen in
detail by transforming Eq. (241) to look like Eqs. (254)-(255) and iden-
tifying cofficients; the result is, for very small Ap and Acg [M19, M24],

L, = (By/n) + (D /cR,T) (257)
-1 -1 -1
Lp = (Dgy + Dgp)  /egR T (258)

(259)

where ¢; << ¢, =~ c. As expected, Lb contains two separate contributions,
one corresponding to viscous flow (the Bo/“ term), and the other to dif-
fusive flow caused by a pressure gradient, giving rise to a gradient of
chemical potential. For liquid solutions, where total pressure is not an
important variable, the neglect of viscous flow in the irreversible ther-
modynamics formulation causes no obvious troubles. But for gases, the
two terms in Lp have different pressure dependences (c is proportional to
p, and the other factors are independent of p), with the result that the
neglect of viscous flow leads to grossly erroneous predictions. This has
been documented both experimentally and theoretically [D1], although in
the equivalent language of the frictional model, which will be discussed
later.

The second question, regarding Es' is more subtle. If the aim is to
give an accurate approximate integration of the transport equations, then

another average is suggested by the following argument. When Jy = 0, the
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concentration profile across the membrane is linear, so that Es in the

transport equation should be approximated by

g, = ;1- (el + e - (260)
This linear average agrees with the logarithmic average of Eq. (253) onmnly
in the limit c;/cé" 1. Comparison with results for the dusty—-gas model
shows that the linear average is much better than the logarithmic average
[M24]). The nature of the difference can best be understood by reference
to Fig. 9, where component flux is plotted as a function of total flux
for the He + Ar system through a graphite system. For the greatest com—
position difference (Ax = 1), the linear average gives the dashed
straight line tangent to the correct curve, as shown. The logarithmic
average, however, gives a horizontal straight line (not shown) rather
than a tangent line [M24]. Another difficulty with the logarithmic
average is that it also sacrifices additivity of concentrations, for the
sake of keeping the overall entropy production correct, in the case that
the solution is not infinitely dilute. That is, ¢; + ¢, # c when Eq.
(253) 1s used for both ¢y, unless cj/cj + 1 for both components.

In retrospect, it is possible to see what is wrong with the argument
leading to the logarithmic average for the concentration. Recall first
that irreversible thermodynamics claims to be correct only in the dif-
ferential formulation (i.e., locally), and the use of a finite-difference
expression is an approximation to a correct integration of the differen—
tial equations across the membrane thickness. Next, recall that the
second law of thermodynamics makes its appearance in the (differential)
expression for the entropy production; this expression is used as an aid
in writing the transport equations in such a form that the Onsager
reciprocal relations will hold true. That is, once the tranmsport
equations are written down in differential form, the second law has made
1ts full contribution to the physics of the problem. The question of
integrating the transport equations is now a purely mathematical
boundary-value problem. The choice of Es is concerned only with this
mathematical problem, and the second law has nothing to contribute to

this. Thus, choosing ¢_ to give the correct overall entropy production

s
is equivalent to invoking the second law of thermodynamics to carry out
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the purely mathematical task of integrating a differential equation,
which is obviously inappropriate.

The third question, regarding the range of validity of Eq. (256),
i.e., the overall Onsager reciprocal relation, must be referred to
experiment or to a detailed kinetic theory like the dusty-gas model.

Both experimental and theoretical tests have been carried out [M24], and
the results can be most readily understood by reference to Figs. 8 and
10, which represent essentially Eqs. (254) and (255), namely, plots of
Jy and Jp vs. Ap at fixed Acg. According to the Onsager relation of Eq.
(256), the intercept of the Jy vs. Ap curve (Fig. 8) should be propor-
tional to the slope of the J, vs. Ap curve (Fig. 10). This is indeed the
case for the dashed tangent lines shown in the figures, but the nonli-
nearity of the curves, especially the Jp vs. 8p curve, is so severe that
the Onsager relation breaks down over most of the range shown. For
instance, for Ap > 0.5 atm, the apparent value of iDp from the slope of
the highest curve in Fig. 10 does not even agree in sign with the
corresponding value of ZPD from Fig. 8. Thus the overall Onsager
reciprocal relation has only a very restricted domain of validity in this
test case.

b. Frictional Model. The frictional model is based on the idea that,

at steady state, the "forces” X1 driving the transport are balanced by
frictional interactions betveé; the various species in the systenm,
including the membrane as one species. The frictional interaction be-
tween any two species is taken to be proportional to the difference in
their average velocities. With neglect of temperature gradients as
before, and with the choice of forces suggested by the Kedem-Katchalsky
expression for the entropy production as given by Eq. (248), the
resulting transport equations are [K1l, K3, S12, S13]

J v J J
- pe § b S |
==y =F) =fy -+ 1 £5 -5, /) (261)
where the average velocities are given by Jilci' The fij are the so—
called frictional coefficients, and fm ig the frictional coefficient
between species 1 and the membrane. The membrane velocity has been set
equal to zero in Eq. (261). Comparison with the Onsager Eq. (243) shows

that the reciprocal relations require that the fij be related according to
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cifij‘- cjfj1 . (262)
Comparison with the statistical-mechanical (generalized dusty-gas)
Eq. (241) indicates that the viscous terms are entirely missing from the

frictional-model equations, so that the frictional coefficients are iden-

tified as
iy = choT/cbij . (263a)
fiM = RoT/DiM . (263b)

This lack of the viscous terms leads to erroneous predictions, as has
been shown by detailed comparisons with the results for gases [D1].

There are a number of reasonable ways to repair the frictional-model
equations for their omission of the viscous terms [Dl1]. The simplest is
probably to include them with the original driving forces; that is, to
use the expression of Eq. (245) for the fi instead of just -(ZTui-Ei), as
was done in Eq. (261). Another way, which is less obvious, is to absorb
the viscous terms imto the frictional coefficients themselves, just as we
converted diffusion coefficients into "augmented” coefficients in Chapter
II, Section D. We demonstrate this in more detail below, since much the
same problem arises with the so—called diffusion model of membrane
traansport.

c. Diffusion Model. The equations for the diffusion model are for-
mally the same as those for the frictional model, but the interpretation
is somewhat different. The basic idea is to take the generalized
Stefan—Maxwell equations for multicomponent diffusion in free space, and
convert them for membrane diffusion by taking the membrane as a special
component that is fixed in gpace. The result, of course, is just like
Eq. (241) with the viscous terms missing, or is like Eq. (261) for the
frictional model with frictional coefficients replaced by reciprocal dif-
fusion coefficients [L4]. The difference arises in the interpretation of
these diffusion coefficients. It is conceded that viscous effects can
play a role in membrane transport, but it is proposed to allow for these
by interpreting the diffusion coefficients as "effective” coefficients
containing contributions from viscosity. At first sight this appears to

be an inconsistent procedure, since it seems difficult to account for
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momentum transfer by adjusting the coefficients of mass—transfer
equations. Surprisingly, the procedure turns out to be exact, and
follows the same sort of arguments as used in Chapter II, Section D, as
is briefly indicated below [M19].

We multiply Eq. (241) by c1/c and sum over all species i. The terms
involving D1j sum to zero by symmetry, and the thermal diffusion terms
sum to zero because D{j = - Dgi. After using the Gibbs-Duhem relation,

v
121 ey Yy = Vo, (264)

we can arrange the results into the form

v Ji
§ — L vp - ®) (265)
Eqy | RT P T CF),
i=1 iM o
where
BR,T o Y
Egq = Dyy (1 +—22 ) . (266)
N k=1 Dy

Equation (265) is the analogue for membranes of the forced-flow generali-
zation of Graham's law of diffusion for gases, Eq..(122). Substituting
for (Vp—cF) back into Eq. (241), we obtain, after some algebra, the

expression

v c J J J
Z j (i-?—l)-ﬁ ~1 -
3=1 By3 \ ¢4 ¢ ¢1Fin

\V c
---—I-(V.lu-F)-I—JDTVlnT, (267)
Rt ~T1~17 0 1 epy, 13

where
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. (268)

This result looks like Eq. (241) without the viscous terms, but with the
"augmented” diffusion coefficients Eij and E;y. Thus Eq. (267) has the
same form as the Stefan-Maxwell diffusion equations, but some of the
coefficients are altered. It also has the same form as the frictional-
model Eq. (261), except for the addition of the thermal diffusion terms.
The frictional model can therefore be interpreted as giving correct

results, provided that the frictional coefficients are re-identified as

fij - CjRoT/cEij = (cj/ci)fji N (2695)
Further comparisons, including the transport equations for hydrodyna-

mic models and the Nernst-Planck equations, are discussed by Mason and

Viehland [M19].

4. Semipermeable Membranes
Semipermeable membranes prevent the passage of at least one species in

the mixture, and are associated with the phenomenon of osmotic pressure.
Although equilibrium osmotic pressure has been understood for many years,
the transport aspects of the corresponding nonequilibrium case had never
been treated quantitatively, except for the nearly trivial case of very
dilute solutions, until sufficient insight was obtained from the dusty-
gas model to point to a solution to the problem [D6). Two fundamental
conceptual difficulties arise with transport through semipermeable
membranes; both are connected with the notion of osmotic pressure. The
first difficulty occurs already with binary solutions, and has to do with
the role of the pressure gradient in moving solvent across the membrane.
Briefly put, there are two mechanisms for solvent transport, namely dif-
fusion and viscous flow, and the problem is to decide how the presence of
an impermeant solute affects each one.

The second difficulty is more subtle, and arises only when there are
three or more components in the solution, of which at least two can pass
through the membrane. The difficulty now occurs in the meaning of osmo-

tic pressure. The osmotic pressure Il is usually thought of as the
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pressure that must be applied to a solution to raise the chemical poten-—
tial of the solvent to equal that of pure solvent on the other side of a
semipermeable membrane. This idea is fine for binary solutions, but can
be deceiving if the solvent is a mixture of two or more components. Then
the application of pressure will change the chemical potentials of the
solvent components by different amounts, unless they fortuitously have
the same partial molar volumes. No osmotic equilibrium can be attained
in general by the simple application of pressure — some redistribution of
the solvent components must also occur.

In order to clarify the physical difficulties involved, we turn to the
dusty-gas model and consider the simple case of a mixture of perfect
gases, some of which cannot penetrate a membrane represented by a porous
barrier. This gas model clarifies the first difficulty mentioned above,
but is less clear on the second difficulty because all perfect gases have
equal partial molar volumes. However, enough insight is obtained to
guide a general statistical-mechanical derivation, along the lines indi-
cated in Section D.2 of this chapter for an open membrane.

We begin by referring to the relevant transport equations for an open
membrane — Eq. (120) for gases, or its generalization for membranes, Eq.
(241). The important thing to notice is the nature of the driving terms
for the transport, which are, for Eq. (241), the terms proportional to
(Zp—cz), (21"1—21)’ and Z 2n T. Only the term proportional to (Zp-cz),
which drives the viscous flow, refers to the mixture as a whole. The
other terms drive specific components. Suppose we now add to the gas
mixture some gas k that cannot pass the membrane, keeping the total
volume constant. Clearly this added component has no effect on the
driving terms (Vpu;-F,) and Z 2n T, nor on the total force term cF,
which is given ;y th: sum Ecigi. The added component does add toﬁthe
total pressure term, Vp, however. A pressure gauge placed across the
membrane gives a rea&lng that is influenced by the added gas k. But it
is not this pressure-gauge reading that gives the value of Vp which is
driving the viscous flow, it i{s the sum of the partial pres;ures of the
permeant gases, 2791, since the added gas k does not interact with the
other gases. An :asy way to appreclate this conclusion is to imagine the
system at equilibrium. Then the partial pressures of all the permeant
gases will be equal on both sides of the membrane, but the external

pressure gauge still gives a reading, equal to ka‘ This equilibrium
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pressure difference corresponds to the osmotic pressure difference in
the case of solutions.

In other words, the term Vp in Eq. (120) for gases and Eq. (241) for
general solutions must be mé&ified if an impermeant component is added.
For gases, it should be reduced by Zpk, and for solutions by ZH, which
can be expressed in terms of chemical potential by the Gibbs-Duhem
equation, which yields, for a single impermeant species k,

Zpk + VI = cszuk . (270)

That is, only the viscous flow term is affected by the presence of an

impermeable solute, and the only change needed is
Vp-cF+Vp -Vl -cF . (271)

Although this generalization seems plausible, it is essentially an
empirical guess. It is nevertheless sufficlent to guide a more rigorous
statistical-mechanical derivation.

The statistical-mechanical derivation [D6] proceeds along the lines of
Section D.2 of this chapter, and models impermeability by applying exter—
nal forces to the impermeant species to hold them stationary. Although
some care is necessary in formulating a suitable definition of osmotic
pressure, the results are quite simple. If we add T impermeant com—
ponents to the vV permeable components already present, then Eq. (241) is
replaced by

v ¢ J, J J
J ~12) ~1 By
= = )+ + -2 - - -
) (°1 ) (Zp Vreq cl’)

3=1 Dyy €3/ ©1Piy  ™Dyy
1 v
- _.L
- w7 ToeFp 21 o, "1 DiyVinT, (272)
where
V41
Tpeq = L o Vpup - (273)

k=v+l
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The term Zpeq is equal to the conventional osmotic pressure term ZH only
for a binary mixture. For multicomponent mixtures, the relation is more
complex [D6].

The viscous-flow term can also be absorbed into the diffusion coef-
ficients, as was shown for open membranes in Section D.3 of this chapter.
In place of Eq. (272) we then obtain

M I - - AR

I=L gy \ ey ¢y cEin

l T ~—
- - (ZT“i - Ei DiJ Z g¢n T , (274)

v C-l
R.T »- 1w
0 j= 3

where the augmented diffusion coefficients are defined as

BRT Y ¢
Egn = Dyy l+—°7‘9_321b31§ s (275)
1 1 cB R T
—=—+—20 (276)

Eyy  Diy  MEgMDym

The characteristic indicator of osmotic flow, namely the term Zpeq’ has
now disappeared. The only clue that Eq. (274) refers to a semipermeable
membrane and that the corresponding Eq. (267) refers to an open membrane
is that the summations in Eq. (274) run over only the permeant components
and omit the impermeant ones, whereas the summations in Eq. (267) run
over all components.

In summary, the use of the dusty-gas model has enabled the general

problem of membrane transport to be handled in a uniform way.
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Chapter V
CONCLUDING REMARKS

The purpose of this monograph has been to present the fundamental theory
underlying the dusty-gas model, and to show how its scope can be extended
beyond the original problem of gas transport in porous media. Such apparently
diverse topics as aerosol motion and solution transport through membranes fit
naturally into the general theory that has developed from the dusty-gas model.

Experimental results have been discussed only insofar as they provide tests
and illustrations of the theory. Similarly, we have only alluded to the many
applications to engineering problems, since a review of -engineering applica-
tions in any depth would be at least as lengthy as this presentation of fuunda-
mentals. In our opinion, it would also be somewhat premature, without there
first being a critical exposition of the basic theory, which the present work
provides. In short, we anticipate that the present work will serve as a firm
base for the systematic application of the theory to a number of engineering
problems. Some of the general areas of application are as follows: catalysis
and heterogeneous kinetics; separations processes ranging from isotope separa-
tion by gaseous diffusion to purification of feed streams by ultrafiltration
and reverse osmosis; rarefied gas dynamics, particularly problems involving
mean free path effects on boundary conditions; aerosol motion, ranging from
pollution and entrainment problems to erosion of turbine blades and other
parts of rotating machinery; and bioengineering, especially problems involving
membranes and aerosols.

It is obvious that this monograph addresses only part of the problems
involved in the above-mentioned applications, and certainly does not in itself
provide the complete solution to any engineering problem. That is, the
transport equations are only part of the equipment needed to solve real
problems; one also needs conservation equations, equations of motion, and some
knowledge of boundary conditions and of the structure of the medium, among
other things. The transport equations are nevertheless an essential part.

The great virtue of the dusty-gas model, and its generalizations and exten-
sions, is that it manages to separate the transport problem from the problem

of the structure of the porous medium (or membrane). Although the results
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have considerable generality, there are various restrictions and limitations
on them. These have been detailed throughout the text, but it is worthwhile
to mention them here again. The following list of restrictions is given in
increasing order of seriousness:

(1) Low-velocity flow, in particular small Mach number. This restriction
is almost never serious.

(2) For rarefied gases, logarithmic terms in the Knudsen number do not
appear., Although fundamental kinetic theory indicates that such terms should
appear, there is no experimental evidence that they are significant. This
theoretical defect in the model is thus largely only cosmetic.

(3) Molecular diameters much smaller than pore sizes. This restriction
can be removed fairly easily by just making all the diffusion coefficients
purely phenomenological parameters [D5]. However, the result is that the
coefficients are then no longer related to one another, as through Dij =
(e/q)mlj, aqd more experiments are needed to characterize the system.

(4) Inertial terms must be negligible in the flow, and turbulence must be
absent — in other words, only flows at very low Reynolds numbers can be
treated. This restriction is more serious because its removal would require
rather drastic modifications, which probably would require recoupling the
structure of the medium with the transport equations.

(5) A one-dimensional approximation is used in most applications. This
provides great simplification, and usually seems to work amazingly well, but
is a potential source of error. There is no great difficulty of principle
involved in removing this approximation, but the practical mathematical dif-
ficulties may increase enormously,

(6) Details of gas-surface interactions are treated only cursorily. In
particular, we have indicated (Chapter II) how to treat surface diffusion only
in the limiting case of (a) low surface coverage (i.e., the adsorbed species
act independently), and (b) no interaction with other transport mechanisms.
The work of L. F. Brown et al, strongly indicates that there are cases where
such interactions are important [B7, B8, Sll]. In particular, the adsorbed
layer may change the boundary conditions for transport in the gas phase. Much
further work will be required before surface transport is satisfactorily
incorporated into the present transport theory.

In view of the capability of the model to treat diverse phenomena in a
unified manner, these limitations are not a serious deficiency; the dusty-gas
model is now sufficiently mature and useful to be incorporated into engineer-

ing practice,
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LIST OF SYMBOLS

Special notes: The subscripts i and j usually denote species being
transported through a porous medium or membrane, whereas the
subscript d denotes “dust.” For membrane transport, the subscript
M denotes membrane, and the subscripts s and w denote solute and

solvent (“water™), respectively.

A - cross sectional area

Ao - mixture Knudsen coefficient, Eq. (159a)

A - mixture transport coefficient, Eq. (159b)

Az - mixture transport coefficient, Eq. (159c)

A:j ~ dimensionless ratio of collision integrals

a - numerical constant, Eq. (l46a)

ay - activity of species i, Eq. (242)

a4 - matrix element, Eqs. (184)

a' - radiometer force constant, Eq. (210)

aj - dimensionless parameter, Eq. (220)

By - viscous flow parameter, Eq. (1l1)

By - thermal diffusion factor parameter, Eq. (193)
B;j - dimensionless ratio of collision integrals

b - numerical constant, Eq. (146b)

b1 - thermal diffusion factor parameter, Eq. (191)
b' - radiometer force constant, Eq. (210)

by - dimensionless parawmeter, Eq. (221)

Cy — parameter defined by Eq. (231)

CIj = dimensionless ratio of collision integrals, Eq. (44)
c - total molar concentration

cy ~ molar concentration of component i

< -~ numerical constant, Eq. (l46c)

ey - numerical constant, Eq. (146d)

c' - radiometer force constant

e - dimensionless parameter, Eq. (222)



c - average molar concentration of solute

('c'i)1nt - internal specific heat per gram, Eq. (47)

Dy - effective diffusion coefficient, Eq. (29)

D1j - concentration diffusion coefficient for tramsport in a
porous medium, Eq. (20)

Dijx - Knudsen diffusion coefficient, Eq. (5) and Eq. (61)

Dy - membrane diffusion coefficient

Dyg ~ surface diffusion coefficient, Eq. (21)

D}i - multicomponent thermal diffusion coefficient

Déf% - effective multicomponent diffqg}on coefficient, Eq. (214)

<Dg> - average Knudsen diffusion coefficient for a mixture, Eq. (180)
2ij - concentration diffusion coefficient in free space, Eqs. (13)
uzij]l - first approximation for 2ij‘ Eq. (41)

(zii)int' diffusion coefficient for internal energy, Eq. (47)

dy -~ gradient term, Eq. (39)

Ei - effective augmented diffusion coefficient, Eq. (134)
E1j - augmented diffusion coefficient, Eq. (126)

Eix - augmented Knudsen diffusion coefficient, Eq. (125)

Fy - external force on species i

Fd(ther)- thermophoretic force, Eq. (238)

£ - fraction of gas molecules scattered elastically and
diffusely from a surface, Eq. (65)
fij - frictional coefficient, Eq. (261)
ftr - translational Eucken factor, Eq. (172)
Hyp - determinant element for calculation of the viscosity coefficient

Eqs. (53) and (54)

J - total flux

Jg - free molecule or Knudsen flux, Eq. (2)

Jy - volume flux, Eq. (250)

JD - average relative diffusive flux, Eq. (251)

diffusive flux of species i, Eqs. (13)
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surface flux, Eq. (21)
relative diffusive flux, Eq. (136)
viscous flux, Eq. (11)

flux of species i in a single capillary of type k, Eq. (89)

Knudsen flow parameter or permeability coefficient, Eq. (6)
mean permeability coefficient of a pure gas, Eq. (144)
mean permeability coefficient of a binary gas mixture,

Eq. (129)

Knudsen permeability minimum, Eq. (151)
first approximation to K,, Eq. (82)
shape factor

Boltzmann's constant

length parameter

Onsager phenomenological coefficient
effective length

mean free path, Eq. (174)

molecular mass
mean molecular mass, Eq. (40)

average n-th power of the mass, Eq. (204)
molecular density, Eq. (2)

diffusive permeability coefficient, Eq. (89)
dimensionless viscous flow factor, Eq. (189)

mean mixed diffusion coefficient, Eq. (138)

total pressure

partial pressure of species i

pressure at Knudsen permeability minimum, Eq. (150)
pressure at maximum Ap

dimensionless pressure, Eq. (170)

average pressure

flow rate of species k through a porous medium, Eq. (110)

heat of tramsport, Eq. (178)
tortuosity
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R - dust particle radius °
R, - ideal gas constant
Rij - inverse Onsager coefficients of mass transport, Eq. (247)
Rg - modified Stokes radius, Eq. (206)
Rlz - mean relative diffusive permeability coefficient, Eq. (131)
r - capillary radius or particle radius
Sd - geometric contant characteristic of dust particles, Eq. (64)
5 - Sutherland constant
T - absolute temperature
\'/ - flow speed
v - mass average velocity of a gas mixture, Eq. (194)
V4 - aerosol velocity, Eq. (211)
gas - local mass-average velocity of a gas, Eq. (211)
Voz - z—directional component of the mass average velocity
Vdo - aerosol velocity in a stationary gas, Eq. (212)
v - molar volume
Vi - partial molar volume, Eq. (242)
Y0 - average diffusion velocity, Eq. (34)

Vd°(coup1) - coupled phoresis velocity, Eq. (213)
Vd°(d1ff) - diffusiophoresis velocity, Eq. (213)
Vd°(ther) - thermodiffusiophoresis velocity, Eq. (213)

v - mean molecular speed, Eq. (3)
w - probability factor, Eq. (2)
xj - generalized driving force

xq - mole fraction

Y - reduced flux, Eq. (98)

- particle mobility, Eq. (212)
- high pressure limiting value of 2

4 - distance parameter
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Greek Symbols

dimensionless flux variable, Eq. (96)

thermal diffusion factor

thermal diffusion factor of a Lorentz gas, Eqs. (69) and (73)
thermal diffusion factor of a Rayleigh gas, Eqs. (69) and (74)
effective thermal diffusion factor, Eq. (186)

continuum limit of alz(eff), Eq. (190)

- translational component of %45 Eq. (43)

internal component of %5 Eq. (43)

numerical constant, Eq. (239)

diffusive drift factor, Eq. (141)

dimensionless permeability coefficient, Eq. (97)

relative transport coefficient, Eq. (31)

factor characteristic of higher approximations for 211’ Eq. (42)
correction to (xii)tr due to inelastic collisions, Eq. (47)

correction to [K,];, Eq. (82)
relative transport coefficient, Eq. (30)

porosity, Eq. (75)
relative transport coefficient, Eq. (135)

porosity-tortuosity factor, Eq. (20)

collision number for an interchange of internal and translational

‘energy, Eq. (47)

vigscosity coefficient of gas mixture
partial viscosity
vigscosity coefficient of pure gas, Eq. (46)

augmented thermal diffusion factor, Eq. (127)



Xl:l'.'

(xi)tr
Qieder

uij

Yk

pressure scale factor, Eq. (217)
determinant element for the calculation of the translational

component of thermal conductivity, Eqs. (49) and (50)

translational component of the thermal conductivity of a
gas mixture, Eq. (45)
high pressure limiting value of Atr

- partial contribution to Xtr by species i, Eqs. (45) and (48)

translational thermal conductivity of pure gas i, Eq. (46)

chemical potential of species i, Eq. (240)
reduced mass, Eq. (41)

number of species in a gas mixture

number of pores of type k per unit area, Eq. (90)
gas-surface scattering parameter, Eq. (68)

osmotic pressure

pressure scale factor for gas—-dust thermal diffusion in a pure
gas, Eq. (71)

pressure scale factor for species i in a gas mixture, Eq. (71)
pressure scale factor, Eq. (153b)

pressure scale factor, Eq. (147)

pressure gscale factor similar to "y, Eq. (72)

reduced pressure scale factor, Eq. (171)

pseudo pure gas pressure scale factor, Eq. (182)
mass density

entropy production per unit volume, Eq. (248)
pore size distribution parameter, Eq. (84)
molecular distance parameter, Eq. (41)
diffusive slip coefficient, Eq. (195)

thermal creep coefficient, Eq. (195)

viscous slip coefficient, Eq. (195)
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%¢ther
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QS?; n)*

modified thermal creep coefficient, Eq. (201)
modified viscous slip coefficient, Eq. (197)
modified thermal creep coefficient, Eq. (202)

reduced radiometer torque, Eq. (209)

flux scale factor, Eq. (153a)
dimensionless flux function, Eq. (100)

transport collision integral, Eq. (41)
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