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Author’s Preface to the Second
English Edition

In the second English edition, more space has been given to the investigation
of the smoothness of generalized solutions, and particularly, to the clarifica-
tion of the conditions under which these solutions become classical solutions.
In part, this is a concession to the tradition, of granting full rights only to
classical solutions, a tradition not completely overcome even in mathematical
circles. This tradition is exemplified in the first article in the recently published
volume of the Handbuch der Physik [119]. A significant paragraph of this
article presents results on nonstationary problems, emphasising classical
solutions, and particularly results on the possible points of onset of turbulence
and on bifurcation of the solutions in two-dimensional nonstationary
problems. Only a casual reference to papers in which ‘“‘various kinds of
generalized solutions’ are studied is made, among them [38], in which is
shown that the two-dimensional nonstationary problem has a unique
solution “in the large” and consequently in it there can be no onset of
turbulence and bifurcation of solutions at all. Apparently the author of this
highly systematic article is frightened by the term “generalized solution™, as
if it were synonymous to ‘‘unreal’’.

In fact, as soon as the theorems on existence and uniqueness are proved
for some class mz, to which the classical solution (if it exists) also belongs,
then the existence and uniqueness problem must be regarded as largely solved.
The solution found in s is the only one possible. The problem of obtaining
more detailed information concerning the solution although also interest-
ing and possibly difficult; nevertheless, will occupy a secondary position and
will not be involved in the questions of existence, uniqueness, and stability of
the solution. In regard to boundary-value problems considered in this book,
the determination of when the generalized solutions found are also classical
solutions follows comparatively easily from the methods and theorems already
given in detail in the first edition; this is shown in various paragraphs
appended to the appropriate sections.

I regret that this results in a certain complication of the exposition, thereby
losing a definite virtue—that of being short and directed only toward the
principal questions of solvability. This material has been added however,
since I have wished to answer questions which readers have referred to me,
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viii AUTHOR’S PREFACE TO THE SECOND ENGLISH EDITION

and to show the possibility of developing the ideas, methods, and results
given in the first edition of this book.

One of the main ideas of this book is that it is useful not to limit oneself
to some one ‘“‘class of solutions’ selected a priori (for example, the class of
classical solutions), but to use greater freedom in the choice of a class of
solutions. This is particularly important since the question of the unique
solvability in the large of the general three-dimensional nonstationary
problem is still open. This problem will be solved if we succeed in finding
some class » in which uniqueness holds, and a priori bounds simultaneously
exist for all solutions of the problem. This requires that we obtain new
a priori estimates valid for any interval of time, without smallness restrictions,
for given data. It is possible that the following argument might permit us to
by-pass these effective estimates. A nonstationary problem is stable for
arbitrary finite intervals of time in all those classes in which we have succeeded
in proving unique solvability. In view of this, it is sufficient to show unique
solvability ““in the large” only for some dense set of initial data and external
forces (for a more precise discussion on this point, see chapter 6, section 6).
To this latter end, good use might be made of a consideration of the entire set
of possible solution-trajectories in the spirit of the ergodic theory of dynamical
systems.

Up to the present time, essentially only two cases of unique solvability of
the general nonstationary problem have been proved: the first applies for
arbitrary intervals of time, but only for small Reynolds number at the initial
regime and for external forces f(x, ¢) derived from a potential (or for small
departure of f(x, ¢) from a potential force). The second applies for arbitrary
but not too bad initial regimes and external forces, but only for small
intervals of time. Depending on the function space m in which the
solution is to be found, the statements proved in these two cases have
various analytical formulations. In this book we present in detail a version
developed in [39]; for other versions, see references [12], [53], [68], [91-93],
[96], [127], [128] and also chapter 6, section 6.

In this edition, as well as in the first one, we restricted our considerations to
the study of those cases where the region filled with fluid does not change with
time, although the unique solvability of initial boundary-value problems is
now established for the regions with changing boundaries and the methods
we use to prove it are essentially the same as those described here.

In a supplement, I propose alternate fundamental equations for fluid
mechanics, whose mathematical character is advantageous relative to the
Navier-Stokes equations, and which appear to me to be potentially useful in
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describing viscous fluid flows. For these equations, the initial-boundary-
value problems are uniquely solvable in the large.

Finally, I should like to draw the reader’s attention to the following special
feature of the book. Each chapter gives a distinct method of solution for the
problem considered. This is done to acquaint the reader with as large a
number of different methods of solution of boundary-value problems as
possible, without significantly increasing the size of the book. However, each
method might also have been used successfully (if appropriately modified)
to solve the problems discussed in the other chapters.

In this edition, aside from additions, improvements, and corrections of
noticed misprints, we also make precise those statements which were subject
to misinterpretation (particularly in the translation), and eliminate various
errors and inaccuracies which crept into the first translation.

Leningrad, Autumn 1968. O.A. L.



Author’s Preface to the First
English Edition

In the three years since the Russian edition of this book was written, quite
a few papers devoted to a mathematically rigorous analysis of nonstationary
solutions of the Navier—Stokes equations have been published. These papers
either pursue the investigation of differential properties of the solutions whose
existence and uniqueness is proved in the present book, or else they give other
methods for obtaining such solutions. However, the basic problem of the
unique solvability ““in the large” of the boundary-value problem for the general
three-dimensional nonstationary Navier-Stokes equations (with no assump-
tions other than a certain smoothness of the initial field and of the external
forces) remains as open as ever.

The most delicate results on the differentiability properties of generalized
solutions are those due to K. K. Golovkin and V. A. Solonnikov, formulated
in chapter 6, section 4. As for stationary problems, we call attention to the
interesting papers by R. Finn, in which the behavior of solutions of the
problem of stationary flow past obstacles is studied as | x | — 0.

In the analysis of stationary problems given here, we have directed our
attention to problems involving flow past obstacles, or more exactly, problems
in which the total flow through the boundary of an arbitrary obstacle in the
flow is equal to zero. Of no less importance are problems involving sources,
where this condition is not satisfied. The possibility is not precluded that such
problems, unlike problems involving flow past objects, are not always
solvable for large Reynolds numbers. In fact, in the case of an unbounded
planar domain, the problem of flow with sources can have infinitely many
solutions (so that extra conditions must be imposed to single out a unique
solution). For example, the functions

c 1

r r
p= __02 +ci _20% V"c/v_*_ c1 Q2c/vy+2
2r? c (2c/v)+2 ’

where ¢ and ¢, are arbitrary constants, satisfy the equations of continuity and
xi
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the Navier-Stokes equations, written in polar coordinates r and ¢. For fixed
¢ < —2y, these functions give infinitely many solutions in the domain r > 1,
which tend to zero sufficiently rapidly as r — oo and satisfy the same boundary
conditions

u,.|,.=1=C, u¢|r=1=0
atr=1.
In the present edition of the book, all detected misprints have been

eliminated. Moreover, an extra section on effective estimates of solutions of
the nonlinear stationary problem (chapter 5, section 4) has been added.

Leningrad, January 7, 1963 O.A. L.



Author’s Preface to the Russian Edition

The aim of this book is to acquaint mathematicians and hydrodynamicists
with the success which has been achieved so far in investigating the existence,
uniqueness and solvability of boundary-value problems for both the
linearized and the general nonlinear Navier-Stokes equations. Many of the
fundamental results obtained are of such a simple and definitive form that it
has been possible to present them in this small monograph. The reader is not
required to know more than the elements of classical and functional analysis.

The author is grateful to her young colleagues V. A. Solonnikov and K. K.
Golovkin, and especially to A. P. Oskolkov and A. V. Ivanov, for their
assistance in preparing the manuscript of this book.

0. A. L.
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Translator’'s Preface to the First Edition

This book is a translation of O. A. Ladyzhenskaya’s Matematicheskiye
Voprosy Dinamiki Vyazkoi Neszhimayemoi Zhidkosti (literally, Mathematical
Problems of the Dynamics of a Viscous Incompressible Liquid), which appeared
in 1961 in the series Contemporary Problems of Mathematics, published under
the auspices of the editorial board of the journal Uspekhi Matematicheskikh
Nauk. The present edition has benefited greatly from the author’s continued
(and indefatigable) interest. Thus, it incorporates numerous corrections,
additional references, further comments, and even an extra section. This
“feed-back process” has been facilitated by Prof. Ladyzhenskaya’s examina-
tion of the translation in the galley proof stage.

The subject index is a somewhat modified version of one proposed by the
author. Of the various systems for transliterating the Cyrillic alphabet into
the Latin alphabet, I prefer and have used that due to Prof. E. J. Simmons.

I would like to take this opportunity to thank the author for her help, with
the hope that T have acted as her faithful amanuensis, insofar as permitted
by the divergence of stylistic and grammatical norms in our two languages.
I would also like to thank Prof. L. Nirenberg of New York University for
patiently assisting me in my quest for suitable terminological compromises.

R. A.S.
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Introduction

Theoretical hydrodynamics has long attracted the attention of scientists
working in a variety of specialized fields; the clear-cut nature of its experi-
ments, the relative simplicity of its basic equations, and the clear-cut state-
ment of its problems led to the hope of finding a complete quantitative
description of the dynamical phenomena which takes place in a liquid
medium. In reality, however, the seeming simplicity of these problems
turned out to be deceptive, and so far, the effort expended in trying to answer
the following two fundamental questions has not yet attained complete
success:

1. Do the equations of hydrodynamics, together with suitable boundary
and initial conditions, have a unique solution?

2. How satisfactory is the description of real flows given by the solutions
of these equations?

Apparently, as abundant as it is, accumulated hydrodynamical information,
both theoretical and experimental, is still not adequate for a rigorous mathe-
matical analysis of the phenomena occurring in fluids. Indeed, the numerous
paradoxes of hydrodynamics} serve as landmarks indicating the long and
thorny path traversed since the beginnings of the subject.

The first stage in the development of hydrodynamics, and one which ex-
tended over a long period of time, involved the study of so-called potential
flows of an ideal incompressible fluid. It was found that there is quite a large
class of such flows, and that the means for investigating them (by using the
theory of functions of a complex variable) are almost perfect. However, the
famous Euler-D’Alembert paradox, according to which the total force
acting on an object located in a potential flow is equal to zero, indicated that
the theory of ideal fluids was not perfect. All attempts to eliminate this and a
series of other paradoxes, within the framework of the theory of ideal fluids,
turned out to be futile. This led to the creation of the mathematical model of a
viscous fluid governed by the basic Navier—Stokes equations. This model had
to serve as a scapegoat, answering for all the accumulated absurdities of the

t A detailed analysis of these paradoxes is given in Birkhoff’s book [1].
1



2 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW

theory of ideal fluids, as well as accounting for the lifting force, the drag, the
turbulent wake, and many other things. For a while, this scapegoat was silent
and meek in face of the demands made on it; most of the time, it could neither
answer yes or no with complete assurance, since in the case of the Navier—
Stokes equations, it turned out to be impossible to solve the problem of flow
past an obstacle, for even the simplest obstacles of finite size. Unlike the case
of the ideal fluid, there are no potential flows satisfying the boundary con-
ditions at the surface of the obstacle. Moreover, very few exact solutions of the
Navier-Stokes equations were found, and almost all of these do not involve
the specifically nonlinear aspects of the problem, since the corresponding non-
linear terms in the Navier-Stokes equations vanish.

However, in conjunction with a large number of experiments and approxi-
mate calculations, even the meager information available on the Navier—
Stokes equations made it possible to reveal various discrepancies between
the mathematical model of a viscous fluid and actual phenomena occurring
in such a fluid. Thus, paradoxes involving a viscous fluid came to light, of
which only two will be discussed here.

The first paradox is the following: It is well known that for any Reynolds
number R, the only possible solutions of the Navier-Stokes equations in an
infinitely long pipe which are symmetric with respect to its axis (directed
along the x-axis, say) are given by

vy=a(c*—r?), v,=v,=0,

where c is the radius of the pipe, and a is a free numerical parameter. How-
ever, flows corresponding to these formulas (Poiseuille flows) are only
observed for values of R which do not exceed a certain critical value, and the
flows become turbulent when this critical value is exceeded.

The second paradox was first observed in Couette flow, i.e., stationary
flows between rotating coaxial cylinders which are invariant with respect to
rotations about the axis of the cylinders and translations along it. Solutions
possessing this same symmetry exist for all R, but in fact are observed only
for small values of R; for large values of R, the flows are replaced by flows
which are still laminar but no longer symmetric. This paradox leads to a
contradiction with the deeply rooted belief that symmetric causes must
produce symmetric effects. In both cases, it is not known whether the Navier—
Stokes equations have solutions for large R which correspond to the observed
flows; this would lead ipso facto to violation of the uniqueness theorem for
stationary solutions of the Navier-Stokes equations.

In connection with this second paradox, the following result proved by
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M. A. Goldshtik in [64] is of interest: In the problem of the interaction
between an infinite vortex filament and a plane, there is a unique solution
with the same symmetry as that of the problem itself, provided that R does
not exceed a certain number R, , but if R exceeds a certain number R, > R,
there are no such solutions.

Nevertheless, it might seem that this paradox and others involving viscous
fluids can be quite satisfactorily explained within the framework of the
mathematical model of a viscous fluid due to Stokes. Indeed, the Navier—
Stokes equations are nonlinear, and it is well known that for nonlinear
equations, a well-behaved solution of a nonstationary problem may not exist
on the entire interval ¢ = 0; in a finite time interval, the solution may either
““go to infinity” or else ““split up”, by losing its regularity, ceasing to satisfy
the equations, and beginning to form branches. Moreover, even if a solution
exists for all £ =0, it may not approach the solution of the stationary
problem as the boundary conditions and the external forces are stabilized.
In fact, depending on the values of the relevant parameters, a stationary
boundary-value problem can have a unique solution, several solutions, or
even no solutions at all (cf. the boundary-value problems for nonlinear
elliptic equations, and the related problems of geometry and mechanics).

Such comparisons of boundary-value problems for the Navier—Stokes
equations with previously studied boundary-value problems quite naturally
suggested the following conclusions: Because of the nonlinearity of the
Navier-Stokes equations, the stationary problem has a unique solution for
values of R less than a certain R, , several solutions for R, > R> R, and
no solution at all for R > R, .} The above-mentioned result of Goldshtik
might appear to confirm this point of view. (However, actually this result
only shows that a solution with the symmetry prescribed by the author,
starting from the corresponding symmetry of the data of the problem,
ceases to exist. It is not known whether the problem has an asymmetric
solution, but I suspect that it does.) On the other hand, even when the initial
regime and the external forces are smooth, the solutions of the nonstationary
problem may become progressively less regular as time increases, going
over to “irregular”, ‘“‘turbulent” regimes and forming branches, where the
particular branch which is actually “‘realized”” depends on extraneous factors
which are not taken into account by the Navier—Stokes equations.

However, the only way to verify what the Navier-Stokes equations really

1 The inadequacy of this explanation of the paradoxes cited above may be seen by noting
that the size of the critical value of R depends on the conditions of the experiment, and can
be considerably increased by performing the experiment very carefully.



4 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW

have to say about the motion of actual fluids is first of all to carry out a
rigorous mathematical analysis of the solution of boundary-value problems
for the Navier-Stokes equations, corresponding to actual hydrodynamical
situations. It turns out that incompressible fluids are the most suitable for
such an analysis; in fact, for incompressible fluids, a whole series of results
have been obtained which shed a great deal of light on the potentialities of
the Stokes theory. The present book is devoted to a presentation of these
results, and in it we have tried to touch upon everything of importance which
has been discovered so far in this field. Without going into a detailed de-
scription of the contents of the book, we shall now state in general terms the
main results proved here.

It is proved that stationary boundary-value problems have solutions v for
any Reynolds number if

J v-ndS=0
Sk

for the boundary S, of each obstacle. The boundaries of the obstacle past
which the flow occurs and the external forces can be non-smooth. For
bounded regions and small Reynolds numbers R the solutions are unique
and stable.

A nonstationary boundary-value problem for the Navier—Stokes equations
has a unique solution for all instants of time if the data of the problem are
independent of one of the Cartesian coordinates; the same is true fora problem
with axial symmetry. In the general three-dimensional case, it is proved
that the problem has a unique solution if the external forces can be derived
from a potential and if the number R is small at the initial instant of time.
In the general case, where these conditions are not satisfied, for all instants of
time there exists at least one “‘weak solution” v(x, t) which belongs to L,(x) for
allz =2 0, and hasv,, belonging to L,(x, t) and v,, Vi, Delonging to Ls ,4(x, t),
but its uniqueness cannot be asserted. If the initial conditions are not too bad
(from the standpoint of their smoothness) then there is unique smooth solu-
tion, at least during a certain time interval, whose size is determined by the
data of the problem.

As regards the stability of solutions of nonstationary problems for finite
and infinite time intervals, the following results are proved: If in the course
of time, the external forces die out, and if the boundary conditions corres-
pond to a state of rest (i.e. v | s = 0), then the motion also dies out, regard-
less of what the motion was at the initial instant of time. If as ¢ — + oo, the
values f(x,t) of the external forces approach stationary values f,(x), for
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which the corresponding boundary-value problem has a solution vy(x) with
Reynolds number R, small, then the solutions v(x, r) of the nonstationary
problem corresponding to arbitrary initial regimes v(x, 0) approach vy(x)
(and rather rapidly, at that) as 1 > + co. However, if the number R, is large,
then in general the solutions v(x, ¢) do not approach any definite limits as
t— 4+ 00.

For a finite time interval, the solutions v(x, t) depend continuously on the
initial values v(x, 0) and on the external forces f(x, ¢). (This interval is arbitrary
for plane-parallel flows, and small for arbitrary three-dimensional flows.) All
these results are presented in the last two chapters.

Before studying the nonlinear Navier-Stokes equations, we investigate
various linearized versions of the equation. These studies show that the
boundary-value problems for the linearized equations always have unique
solutions, and that properties of the operators corresponding to stationary
problems are very much like those of the Laplace operator, while the
properties of the operators corresponding to nonstationary problems
resemble those of the heat-conduction operator but have some distinctions.

We call the reader’s attention to the following three problems:

1. Whether there subsists unique solvability “in the large” for the general
three-dimensional initial-boundary-value problem in some class of generalised
solutions, if the smallness of given functions and regions where the problem
is investigated is not supposed.t

2. Whether there exist solutions of general stationary boundary-value
problems in multiply-connected regions if apart some smoothness conditions
the boundary regimes satisfy only the necessary condition

Jv'ndS= Y | vndS=0
S k=18

3. Whether the solution of the boundary-value problem for the non-
stationary Navier-Stokes equations approaches the solution of the boundary-
value problem for an ideal fluid as v — 0%

The results given in this book support the belief that it is reasonable to use
the Navier-Stokes equations to describe the motions of a viscous fluid in
the case of Reynolds numbers which do not exceed certain limits. They
partially refute the statements described above concerning the properties of
solutions of the Navier-Stokes equations, and they force us to find other

t Recently we have proved that the theorem of uniqueness of “weak solutions” described

on p. 4 generally is not true.
11 This is true for the solution of the Cauchy problem in the planar case.
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explanations for observed phenomena in real fluids, in particular, for the
familiar paradoxes involving viscous fluids. Apparently, in seeking these
explanations, one must not ignore the fact that if a large force f acts on the
fluid for an extended interval of time, then the quantities D™v, (where
v =(vy, v, v3) is the solution) can become so large that the assumption
that they are comparatively small, made in deriving the Navier-Stokes
equations from the statistical Maxwell-Boltzmann equations, will no longer
be satisfied, just as other assumptions of the Stokes theory, i.e. the assump-
tion that the kinematic viscosity and the thermal regime are constant, will
be far from valid. Because of this, it is hardly possible to explain the transition
from laminar to turbulent flows within the framework of the classical Navier—
Stokes theory.

The reader will find that the present book reflects the influence of Odqvist’s
work on linear stationary problems, Leray’s results on nonlinear stationary
problems, Hopf’s investigations on the nonstationary problem, and finally
investigations by the author and her colleagues and students A. A. Kiselev,
V. A. Solonnikov and K. K. Golovkin.

We have not dealt with the theory of nonstationary hydrodynamical
potentials, developed by Leray for two space variables, and by K. K. Golov-
kin and V. A. Solonnikov for three variables, partly because of its complexity
and partly because the results enumerated above concerning the solution of
the general nonlinear nonstationary problem were obtained by a different and
simpler method. In the text and in the Comments (starting on p. 203), we give
a more detailed description of what is done in various papers on the problems
discussed in this book. )

Finally, we warn the reader who is accustomed to the classical methods of
mathematical physics that the interpretations given here of what is under-
stood by the solution of a problem and what it means to solve a problem
differ from those with which he is familiar. To a large extent, a precise
analysis of these matters is responsible for the success of the investigations
reported here.



CHAPTER ]

Preliminaries

In this chapter, we present most of the auxiliary results from functional
analysis which are used in this book. Since many of these results are well
known, we only give proofs in cases where our proofs seem to be simpler than
those available elsewhere.

1. Some Function Spaces and Inequalities

1.1. Throughout the entire book, we shall consider various functions of a
point x = (x;, x,, x3)} of three-dimensional Euclidean space E,; these
functions may also depend on the time #, as well. The symbol Q will denote
a domain of the space E, (i.e. a connected open set), Q will denote the closure
of Q and S its boundary, so that Q = Q+S. All our functions will be assumed
to be real and locally summable in the sense of Lebesgue, while all derivatives
will be interpreted in the generalized sense [6, 16]. A variety of Hilbert
spaces will be used. For example, in the case of scalar functions, we shall
consider the spaces

Wi (@)  (1=0,1,2,.),

introduced and studied in detail by S. L. Sobolev [6, 16].1

The Hilbert space W4(Q) consists of all functions u(x) which are measur-
able on , have derivatives D*u with respect to x of all orders k </, and
are such that both the function #(x) and all these derivatives are square-
integrable over Q. The scalar product in W;(Q) is defined by the relation

(u,v), =j Y. D*uD*vdx,
Q

0sksl

and the norm is defined by

” u ”l = “ u ” warey = (U, u);
1 Numbers in brackets refer to items in the References, which begin on p. 215.
7
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The space W;(Q) is complete. For / = 0, the space W(Q) is usually denoted
by L,(Q), and then the scalar product and norm are denoted simply by (, )

The Hilbert space 21(Q) is the subspace of the space W, (Q) which has as
a dense subset the set of all infinitely differentiable functions which are of
compact support in Q. A function is said to be of compact support in Q if it
is nonzero only on a bounded subdomain Q' of the domain Q, where Q' lies
at a positive distance from S, the boundary of Q.

A whole series of integral inequalities and properties have been established
for functions in W;(Q); it is customary to refer to these results briefly as
imbedding theorems |6, 16]. We now prove several other inequalities which
imply as simple consequences most of the imbedding theorems used in this
book. The proofs given here are quite simple.

In most cases, we shall be concerned with functions in W,(Q). Every such
function can be regarded as a function of compact support defined on the
whole space, if we extend the function by setting it equal to zero outside Q.
Because of this fact, the inequalities given below will be proved only for
functions of compact support, although they can all be generalized to the
case of functions defined on a domain Q which are not of compact support,
provided only that the boundary of Q is subject to certain regularity con-
ditions [6, 16]. Moreover, since the smooth functions are dense in W,\(Q),
all the inequalities given below are automatically valid for any function in
W3 (Q), although they are proved only for smooth functions.

We begin by proving the following lemma:

LEMMA 1. For any smooth function u(x,, x,) of compact support in E,, the
inequality

jf utdx,dx, < ZJJ u?dx, dxzfj grad? u dx, dx, 6))

holds.
Proof: Because of the equality
u(x,,x,) =2 [ uu, dx, (k=1,2),
J-®
we have
max u?(x,,x,) £ 2 [~ |uuy, |dx,  (k=1,2). @3]
*k J—w
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Then, using Schwarz’ inequality, we obtain

JJ u*dx, dx, §j maxuzdx,J. max u?dx,
§4-[f |uu,2|dx1dx2jf | uu, | dx, dx,
§2fj udeldeJ.J‘ grad® udx, dx,,

which proves the lemma.
For the case of three space variables, we have the following generalization

of Lemma 1:

LEMMA 2. For any smooth function u(x,, x,, x3) of compact support in
E,, the inequality

‘”‘J‘ u*dx, dx, dx,
o + © 3
< 4<fjf u?dx, dx, dx3> (JJJ grad® udx, dx, dx3> (3)

holds.

Proof: To estimate the integral in the left-hand side, we use (1) and (2).
This gives

jjff u*dx, dx, dx,
< ZJ‘jo dx3|:J“[io u?dx, dxzjjf (u2, +u})dx, dxz:l
£2 maxJ‘J‘oO u?dx, dxz'”'joo grad® udx, dx,dx;
< 4J‘J\J~ |uu,, | dx, dx, dx3J.J\J~ grad? u dx, dx, dx,
< 4<JJJ: u?dx, dx, dx3> <J‘J‘J‘ grad® udx, dx, dx3>l,

which proves the inequality (3).
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We can derive certain consequences from the inequalities (1) and (3) by
using Young’s inequality

b<a,,+b,, <1 L s 1)
a — ~ D,
p P pp r

In fact, (1) implies the inequality

Qo 20 2 1 0 2
utdx,dx, < s<jf gradzudxldx2> +E<Jf uzdxldxz) , 4
JJ T -0 —

which is valid for any ¢ > 0, and (3) implies

™ oo 1 o0 2
J u*dx, dx,dx; < £3<‘U~Jv udx, dx, dx3>
@® 2
3a<fff grad®udx, dx, dx3> (5
for any & > 0.

By using a method of proof similar to those given above, we can convince
ourselves of the validity of the following lemma:

LEMMA 3. For any smooth function u(xy, x,, x;) of compact support, the
inequality

g © 3
J:[J u®dx, dx,dx; < 48 (J‘J‘J. grad? udx, dx, dx3> 6)

Proof: Tt is easy to see that we can assume u = 0 without loss of generality.
Then, setting dx = dx, dx, dx,, we have

J -_——fff u®dx =J dxlff uud dx, dx,
o f*oc sl
J deI: max u? deJ max u® dx2:|
< 9Jv dx, J‘J‘ |uu,,|dx, d&ﬁ[ | u?u,,|dx, dx{l
< 9f dx, J:[ utdx,dx, <Jf uxzdxzdx3) <JI ux3dx2dx3> ]

holds.

IIA
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Next, we bring the first factor in the brackets outside the integral

<«
dx...,
-

replace it by its maximum, and use Schwarz’ inequality to estimate the
product of the last two factors. The result is

0 e 1 (o +
J= 9maxJ‘J‘ u*dx, dx, <f f uZ, dx) <f j ul, dx>
0 * o Ex (* 0 %
< 36J‘j [utu,, | dx<Jf uZ, dx> (jf ul, dx)
B © 1 r =3} 3 r © 1
oxal - 1 e (1] o)

Dividing both sides of the inequality by \/.7 and replacing the geometric
mean by the arithmetic mean in the right-hand side, we obtain

© 3
JJI £ 36-3"%<JJJ gradzudx> ,
which implies (6).

A remarkable feature of all the inequalities derived above is that the
constants appearing in them do not depend on the size of the domain in
which the function u is of compact support. However, in general, most of
the inequalities appearing in the imbedding theorems do not have this
property.

Next, we exhibit a series of well-known inequalities which will be needed
later. For any function u(x) eW,(Q), we have

1

f uldx < —f grad? u dx. @)
Q “iJe

Here, the number p, is the smallest eigenvalue of the operator—A in the

domain Q with zero boundary conditions, i.e. the smallest number u such

that there exists a solution (which does not vanish identically) of the problem

—Av=p, v|g=0.

It is not hard to give an upper bound for 1/u;. Thus, for example,
1/u; < d?, where d is the width of an n-dimensional strip containing the
domain Q. As the domain Q is made larger, the constant 1/u; may increase
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without limit, so that for unbounded domains, the inequality (7) is in general
not valid (it may turn out that y; = 0). The inequality (7) with the constant
d? replacing 1/u, can easily be derived from the representation

X1

u(xl,...,x,,)=u(a,,...,x,,)+f U, dxy, 8)
by using Schwarz’ inequality. It follows from this same formula that if
u(x)e W3(Q), then

'[ u’ds = C(S)) | u ” %Vz‘(ﬂ) ’ ©)
S

for any smooth (n—1)-dimensional surface S, of finite size lying in Q. It is
also well known that the functions u(x) in W#Q) are continuous functions
of x if the dimension of the space of points x is no greater than 3; moreover,
the functions u(x) obey the inequality

ma()l( [u(x)| £ CQ) | u | w,2q)- (10

If we restrict ourselves to functions u(x,, x,, x;) of compact support, then
it is easy to derive (10) by starting from the representation
L[ Au(y)
u(x) = ——\| —=Zdy,
4” E;3 | x_yl
which is familiar from the theory of the Newtonian potential. This implies
the continuity of u(x) in the whole space, as well as the inequality

|u(x)|<i oy |Au|2dy%<C(Q)]|uH 2
Tdn\ Jalx—y|? Q = waia>

where Q denotes the domain in which u is of compact support, and the
constant C obviously depends on the size of the domain Q.

1.2. We now give some compactness criteria for families of functions in
W3(Q). In the first place, any bounded set in W/(Q) is weakly compact, -
since W3(Q) is a Hilbert space (see e.g. [16]). Moreover, if Q is a bounded
domain, then any bounded set {u,(x)} in W;(Q) is compact in L,(Q). This is
Rellich’s theorem (see [3]) and is most easily proved as follows: Extend each
u,(x) onto the whole space by setting it equal to zero outside Q, and then use
formula (8) and Schwarz’ inequality to see that the family of functions is
equicontinuous in the norm of L,(Q). However, as is well known, a uniformly
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bounded, equicontinuous family in L,(Q) is compact in L,(Q). Moreover,
this theorem and the inequality (3) imply the following lemma:

LEMMA 4. A weakly convergent sequence of functions in WX(Q) converges
strongly in the space Ly (Q).

In fact, by Rellich’s theorem such a sequence converges strongly in L,(Q)
so that by inequality (3) it will also converge strongly in the norm of L(Q).

To study the differentiability properties of the solutions to the linear
and nonlinear problems in which we shall be interested (these questions will
be dealt with in special sections in each chapter), it is necessary to use more
general imbedding theorems than those just stated. We give these without
proof.

Let L,(Q), m =1, denote the Banach space of functions u(x), xeQ,

with the norm
1/m
| 4llL 0 = <J~ [ul™ dx> .
Q

Wi(Q), m=1, is the Banach space consisting of the elements of L,(Q)
having generalized derivatives up to order / (inclusive) which belong to
L,(Q). In this space, the norm is defined as:

”””Wm'(ﬂ)=< Z Y| D®u | dx> "

k=0 (k)
LEMMA 5. Let u(x) be an integral **of potential type”, i.e

u(x):f ) _
a lx—y|

Let f())eL,(Q), p > 1, and let Q be a bounded domain in the n-dimensional

Euclidean space. Then for any bounded domain Q |, the function u(x) is continuous
for A < n(1—1/p) and

E1rrs —max|u(x)]+ ma '“(E)__;(l’i” < Clf N Ly (11)

x,x’ eﬂ l

where h = n(1—1/p)—A. For 2 =z n(1—1/p), the function u is summable with
any finite exponent
1

An—(1-1/p)’

[l Lyan < CIS| Lo - (12)
The constants C in (11) and (12) depend only onn, A, p, g, Q, and Q| and not on f.

q=

and
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LEMMA 6. Suppose that u(x)e WL(Q), m > 1, [ = 1, where Q is a bounded
domain in the n-dimensional Euclidean space, and S, is some r-dimensional
plane region contained in Q (in particular, we may have S, = Q). Then for
n2zml and r > n—ml, the function u(x) belongs to L(S,) for any finite
q < mr/(n—ml), and

Tl cuso = €1 ] warcay-
For n < ml, the function u(x) is continvous in Q and

-
”””h.ﬂ§C““”wmr(m, hémmn, h<l.

The constants C in these inequalities depend only onn, m, I, r, q, Q, and S., but
not on u(x).

Lemma 6 holds under the condition that the boundary of Q possesses
some regularity property (for example, when Q is the union of a finite
number of domains, each of which is star-shaped with respect to some
n-dimensional sphere contained in it). The reader may find the proofs of
Lemmas 5 and 6 in [6] and [16].

In the sections devoted to the differential properties of solutions, we also
use spaces Wyt (Qp),, C,,(Q) and C:I™'*"(Q.). We shall now give
the definitions of these spaces for the case when the boundary of Q is smooth.

We shall say that a function u(x), defined in Q, satisfies a Holder condition
with exponent A4, A€ (0, 1), and Holder constant [u’|(,,),ﬂ in the region Q if,

[u(x)—u(x")| _

max = |u|pyao <0

x,x'€eQ Ix_xllh
Co4(Q) is the Banach space whose elements are all the continuous
functions #(x) in Q having finite values of |u|y o. The norm in C, (@)
1s defined as
|4 lno=max|ul +|u|ga.
xeQ

A function u(x) belongs to C,,(Q) if it belongs to C,,(Q) for every
QcqQ.

C; 4(Q) is the Banach space of /-times continuously differentiable functions
with finite norm

1
lullina=% ¥ max|DPu(x)|+Y 1 DPux)| @
k=0 (k) xeQ 0
whered_ denotes summation over all possible derivatives of order k.

®
C,,.,(Q) is the set of functions belonging to C, ,(Q') for all @’ = Q.
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Ckthl*hy(G ), 0 < h; <1, 0 < h, <1, is the Banach space of functions
u(x, t), continuous in the cylinder @ = {xeQ, 1[0, T']}, having continuous
derivatives with respect to x up to order &, with respect to ¢ up to order /,
and possessing a finite norm

k !
Ju]cktmiemgyy= 3 Y max| D{Mu(x, 0|+ ¥ max|Dyux, 1]
xf m=0 (m) Qr m=0 Qr

| D®u(x, t) = DPu(x’, 1) |

+Y  max - R
®) (w00 eQr | x—x'|
+ max IiD}du(x,l)—Df u(x,t’)|
L ‘

(x,0),(x,t"ye Qr

Clthith2(0 1) is the set of functions belonging to Clim @) x [e, T—¢])
forall Y < Qand & > 0.

The Banach space Wy (Qq) consists of all the elements of L,(Qr),
which possess generalized derivatives with respect to x up to order &, and
with respect to ¢ up to order / (inclusive) in L,(Qr). The norm in this space
is defined as

k 1 N 1/m
||u||wz;,;,<em=[f (z z|D;»u|m+z|D;u,m)dxdt} |
” Q7 \i

i=0 (i) i=0

Finally, let us agree that the notation for the spaces C and W with
the different subscripts and superscripts introduced above will be used for
spaces of vector functions u = (u, , u,, u3), the components of which belong
to Cor W.

1.3. In investigating the differentiability properties of generalized solutions,
the averaging operation is used [6, 16]. Here, we define the averaging
operation and list only its basic properties. As an averaging kernel we take a
function which depends only on |x|. In fact, let w(¢) be a nonnegative,
infinitely differentiable function which is not identically zero, but vanishes
identically for & = 1. The function w(|x |/p) obviously vanishes for | x| = p,
and its integral over the whole space equals some constant y multiplied by

o ie.
fw(%) dx = yp".
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()

as the averaging kernel. For an arbitrary summable function f(x), the
averaging operation takes the form

Then we choose the function

wy(x) =

fp(x) =pr(|x_)’|)f(Y)dy,

where the integration is nominally over the whole space, but effectively over
the ball | x—yp| £ p. If f(») is specified only in the domain Q, then f,(y) is
defined in the smaller domain Q, = Q whose boundary lies at the distance
p from the boundary of Q.

We now enumerate some properties of the averaging operator:

1. The averaging operator commutes with the differentiation operator, i.e.,
o
fp( ) (a;;‘)p

2. Suppose that f(y)eL,(Q), p=1, and let f(») =0 outside Q. Then
/,(») is defined on the whole domain Q, is infinitely differentiable in Q, and
converges as p — 0 to f(y) in the L (Q) norm.

wherever Jf /0x, and f,(x) exist.

3. Suppose that fand geL,(Q), p = 1, and let f and g vanish outside Q.

Then, we have
J f,gdx =J fg,dx.
Q Q

1.4. We now derive some other inequalities which will be used in studying
stationary problems in unbounded domains. First we show that the inequality

B 2()y‘)lzdx < JZ u2_dx (13)

holds for any smooth function u(x) of compact support, where the integral
is carried out over the whole space E;, and y is an arbitrary point of E;.
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To prove this, consider the equality

I > uxk(X)u(X)l | - d
3 ou — W u?
= dx = —— dx,
Lzlaxklx | Jlx—yl2

obtained by making a single integration by parts. Using the Schwarz inequality
to estimate the left-hand side, we obtain

uz(x) \/ u? (xk .Vk) \/
[N FEr = N Y

which implies (13), since

2 (x— yk)2

—_ =1
k=1|x—Y]2

It is easy to see that inequalities of the type (13) are valid for functions of
compact support in any number of variables greater than 2, except that the
factor 4 in (13) is replaced by [2/(n—2)]*. For n = 2, instead of (13), certain
other relations hold, from which we choose the following result: Let u(x) be
an arbitrary smooth function of the variable x =(x;, x,), of compact
support in Q@ = {l < | x| < co}. Then, u(x) satisfies the inequality

2 2
f LGN 4-[ Y u?, dx. (14)

ez [ X202 x| T L2 WS

In fact, integration by parts gives

2 x 2 ou* x
2 wou gy L
j|x|gl kgl ]x|21n|x| Jlxlgl kglaxk|x|21n|xl

f u’(x) i
= _— x’
Ixiz1 | x]2In?|x]

and from this we obtain (14), just as before. A noteworthy and useful feature
of the inequalities (13) and (14) is that they involve constants which do not
depend on the size of the domain in which u(x) is of compact support. There
exist more complicated inequalities where the constants have the same
property, but they will not be discussed here.

Using (13) and (14), we now construct Hilbert spaces D(Q) for the case of
two and three space variables. In fact, let Q be any domain (bounded or
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unbounded) in one of these Euclidean spaces, and let D(Q) be the set of all
smooth functions of compact support in Q. We introduce the scalar product}

fu,v] =f Uy, Uy, dX (15)
Q

in D(Q) It is clear from the symmetry of (15) with respect to « and v, and
from the inequalities (13) and (14), that (15) actually defines a scalar product
in D(Q). The completion of D(Q) in the norm corresponding to this scalar
product gives just the Hilbert space which we denote by D(Q). It is not hard
to prove that D(Q) consists of all locally square-summable functions u(x)
which vanish on S, have square-summable first-order derivatives over all Q,
and obey the inequality (13) or (14), as the case may be. For n = 3, the
functions u(x) also satisfy the inequality (6).

When Q is unbounded, there is an important difference between D(Q) for
the cases of two and three space variables: When n =2, D(Q) contains
functions which do not go to zero as ‘x] — c0. It can be shown that if Q is
the exterior of any bounded domain, then the smooth function which equals
a constant for large |x] belongs to D(Q). However, this is impossible if
n =3, as is at once apparent from (6). Roughly speaking, the inequality (6)
implies that the functions in D(Q) “‘go to zero” as | x | - co.

1.5. Finally, we give some further inequalities, which are special cases of
inequalities we have derived for elliptic operators [2, 17].

If the domain Q is bounded and if its boundary S has bounded first and
second derivatives, then the inequality

lullwoe S CllAu o (16)
holds for any function u(x)e W2(Q) n W (Q). We now give a short derivation
of (16). As before, all the arguments can be carried out for sufficiently smooth

functions. Let u(x) be a function which is continuously differentiable three
times and vanishes on S. Integration by parts gives

0Au -
[ (Au)*dx = _J‘ N +f Aufff ds
Q Q 6)&',- (?XA s én

S*u  O%u ou  *u ou
= = "4 Au- -—— —— |ds. 17
L 0x;06x; 0, 0x; X+L< “on 0x,-0n6xi> ’ v

I Here and below, unless the contrary is explicitly stated, pairs of identical indices imply
summation from 1 to 3.
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Take any point £eS, and introduce local Cartesian coordinates y =
(y1.y2,yy) at & ie. let the y; and y, axes lie in the tangent plane to S at &,
and let y; be directed along the exterior normal to § at £. The expression

A ~2

cu 0°u Cu
Is=Au————

on

ox;0n0x;
is invariant with respect to rotations of the coordinate system, and hence
> (6% éu 62u u 2 (0% du  O*u du
- % (5 o)=L sea sy (9
=1 \0} 0}3 (/V C)’s() i 0yi 0ys 0y 0y30y;

The derivates cu/cy; (i=1,2) vanish, since u |s = 0. Moreover, the
derivatives &%u/éy? (i =1,2) can be expressed in terms of the derivative
cu/on. In fact, let y; = w (y,, ¥,) be the equation of the piece of the surface S
in the neighborhood of the point & = (0, 0, 0). Differentiating the identity

Wy, ¥, oy, y)) =0

twice with respect to y; and y,, we obtain

(')u cu 6w
oy, Oysly;
u ¢ty dw FPufdw\* ou o .
7—75—1—2 ot ol e =0 (i=1,2).
ayi  0y;0y30y; 0ys\0yi)  0ys0y;
At the point £, the last equality gives
u  udlw
oy? dysoyt’
since at &
‘w
~—=0 (i=1,2)
oYi

It follows that

and (17) can be written in the form

3 02u du\?
J;} (Au)? dx = J;) . Z <ox P > dx—fs<6n> K ds, 19)
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where

If the surface S is convex, it is not hard to see that K(S) < 0, and hence

3 62 2
J Z (ax ox ) dx _J (Au)* dx (20)

for such S. Moreover, in the case of an arbitrary surface S with bounded
first and second derivatives, we have the following estimate of the surface
integral, where ¢ is an arbitrary positive number:

‘ du ou\?
l | < e
j <a”> del CL<5”> &
3 0%u \? 1 ou
< - 21
- CII}J‘Q i.jz=1<axi5xj> dx+8fn i=Z1 (axi> dx] @D

To see this, it is sufficient to reduce the surface integral to a volume integral
by using Gauss’ formula (after first extending cos(n, x,) from S to all Q)
and then use the inequality

1
2ab < ea® +-b>.
¢

We now substitute (21) with ¢ =1/2C; into (19). After simply reducing
similar terms, we obtain

jﬂ ivji:1<6xazgA > dx £ Cf [(Au)2+grad2 u] dx. 22)

The term in grad®u can be eliminated from the right-hand side, since in
view of the inequality (7) we have

1
j grad?udx = —J Auudxggj uzdx+J‘ (Au)? dx
Q Q Q

< grad?udx+— f (Au)? dx
2.“1 Q

for any ¢ > 0. Setting ¢ = pu, , we see that

1
J grad?udx < -~ | (Au)*dx. 23
Q

HiJa
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Together with (7) and (22), this inequality gives (16), as required. It also
follows from this derivation of the inequality (16) that the estimate

a3z = 3w | oo + 1 A0 ) (24)

holds for any twice continuously differentiable function u(x) of compact
support in E,, and since the set of such functions is dense in W(E,), (24)
also holds for any u(x)e W(E).

The inequality (24) is also valid for any unbounded domain Q whose
boundary has bounded first and second derivatives, more precisely, for any

u(x)e W3(Q) nW;(Q),
we have

ull b < CLu | ey + [ Au | 2,0)- (25)

Moreover, the inequality

J ¥ u;_,jdx§cU Y ul dx+| Au ,{,(Q)il (26)
Q ij=1 Q k=1 )
also holds. Particularly simple estimates of the type (16) and (24) can be
established for the Newtonian potential

L[ f

W= oy &

In fact, first let /() be a twice continuously differentiable function of compact
support. Then, u(x) will be a function of x which is continuously differenti-
able three times and satisfies Poisson’s equation Au = f. As \xl — oo, the
functions u, u,, and u,,, tend to zero as |x|™', |x|7? and | x|, respec-
tively. Consider the equality

J‘ fzdx=J AuAu dx.
E3 Ej

Integration by parts transforms the right-hand side into

3
f (Au)? dx = Y uly,dx,
E; E; i,j=1
where all the surface integrals vanish because of the above-mentioned
behavior of u,, and u,,,, for large |x [ The last equality gives the desired
estimate of the second derivatives and shows that if £ is of compact support
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and belongs to L,(E;), then u has generalized second-order derivatives which
are square-summable over £5. Moverover, the estimates of u and u,, follow
from Lemma 5 on integrals *"of potential type. Thus, if f vanishes outside
a finite domain, the corresponding Newtonian potential

wa==i [ 2

4n Jo |x—y| "

satisfies the inequality

fu | ware = Q)1 Lan (27)

with a constant C which is finite for any bounded Q and Q, .

Inequalities (16) and (27) also hold in L, for arbitrary p > 1, i.e. when
W} norms are used in the left-hand side and L, norms in the right-hand side
of the inequalities (cf. [82], [85], [86]).

In addition to the Newtonian potential, we shall also encounter the volume
potential

1
o) = —87J( x| J0)dy. x = (6,

which is a solution of the nonhomogeneous biharmonic equation
Av =7

If fis a function of compact support which is square-summable over £, then
Lemma 5 enables us to assert that v has derivatives up to order 3, inclusively,
which are summable with exponents greater than 2 over any bounded
domain. Moreover, estimates of the fourth derivatives are obtained as
follows: Let f be of compact support and twice continuously differentiable.
Then v has continuous derivatives up to order 5 and satisfies A%p = £, while

3
f frdx =j A?vA?pdx = Y Ui dX (28)
E3 E; Es i,j,kli=1
The surface integrals vanish in this case too, since as | x| — oo, D and D*v
fall off like | x|~* and | x|, respectively. The equation (28), which remains
valid for any fe L,(E,), gives the desired estimate of D*v. Because of (28)
and Lemma 5, the inequality

|| v ” wase = C(Q, Q) ”fH L2(Qy) (29)

holds for the biharmonic volume potential v, when f vanishes outside a
bounded domain Q, ; here the constant C is finite for any bounded Q and Q, .
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Here, we have given estimates for the potentials  and v and their deriva-
tives in the L, norm. Estimates of these same quantities in the norms of the
spaces C, , are more familiar [18, 19, 82-84, 106, 107, etc.], i.c.

” u H 2,h =C ”f“ 0,k (30)

and .
lofan=ClS o (31)

If £ is a function of compact support in £;, which satisfies a Holder condition
with exponent 4 in Ej, then the norms || ||, and || ||4, in (30) and (31)
can be taken over any bounded domain. However, if the integrals u and v
do not extend over all of E;, but just over a bounded domain Q, then the
norms || ||zss || |Jas and || {[os in (30) and (31) can be taken over the
domain €, provided that its boundary is sufficiently smooth.

We shall say that the boundary S of the domain Q belongs to C , if it is a
Lyapunov surface of index 4 (see e.g. [18, 19]), i.e. if it can be decomposed
into a finite number of overlapping pieces each of which has an equation of
the form

xi,.:(b(xilv"'9xi,,_|) (i ?éij),

where ¢ e C, ;. Moreover, if ¢ C; ;,, we shall write Se Cy .

2. The Vector Space L,({2) and its Decomposition into
Orthogonal Subspaces

Let Q be a domain of E; (or E,), and let L,(Q) be the Hilbert space of
vector functions u(x) = (u;(x), u,(x), u3(x)), xeQ (or u=(u;,uy)) with
components %, in L,(Q). The scalar product in as L,(Q) is defined by
the relation

(u,v) :j u-vdx =J u, v dx,
Q Q

and the length of the vector u is denoted by
RN ENEENG
k

The basic problem studied in this section is the decomposition of the space
L,(Q) into two orthogonal subspaces G(Q) and J(Q). The first of these sub-
spaces contains the gradients of all functions which are single-valued in Q
(and only gradients of such functions). The second subspace contains the
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set of all smooth solenoidal vectors of compact support in Q as a dense
subset. To solve this problem (and for use in subsequent sections), we must
first consider the following auxiliary problem:

2.1. PrOBLEM.] Construct a solenoidal vector field a(x) in Q which takes
specified values a |s = a on the boundary S.

Since a(x) is solenoidal, i.e., since diva = 0, the field & must satisfy the
condition

fa-ndS=0, (32)
S

where n denotes the exterior (with respect to Q) normal to S, because

f divadx :f a-ndS.
Q S

Thus, suppose (32) holds. This problem has an infinite set of solutions.
Construct one of these solutions, which will be used in what follows. The
smoothness requirements on S and « will vary, depending on how smooth a
must be for various purposes.

First, we consider the more complicated case where the domain Q is
three-dimensional. We decompose « into normal and tangential components
with respect to S, i.e.

a=a,n+a,, o, =0 m,

and we use «, to construct a solenoidal vector field of the form b = grad ¢
with b, |S = o,,. This reduces to the Neumann problem

o¢
6rij5

= o, (33)

in the domain Q. It is well known that because of (32), this problem can be
solved to within an additive constant, which we fix by requiring that
d(xg) =0, xo€S. We now set
a(x) = b(x) +c(x).
Then, we have to find ¢(x) from the conditions
dive=0, ¢|s=(a=b)|s=8,
where (B'n)|s = 0.

1 In chapter 3, we give another method for solving this problem, which uses the theory of
hydrodynamic potentials.
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Next, we represent the function identically equal to 1 in Q as a sum of
sufficiently smooth functions of compact support in Ej, i.e.,

1= i {(x), xeQ
k=1

Moreover, we choose the {,(x) such that we can introduce smooth curvi-
linear coordinates (%, y%, ¥%) in terms of which the intersection S, of the
surface S with the domain where {,(x) £ 0 (if this domain has a nonempty
intersection with S) has the equation y% = 0 and such that the curvilinear
net (%, y%, %) is orthogonal on the surface S,. Writing B*=(\8, we
construct a vector @%(x) in © such that curld* = c*(x) is equal to g* on S.
Then

&k
2 ¢
k=1

gives us the desired vector ¢(x). We now show how to choose d“(x) on S so
as to satisfy the condition

curld(x)! 5 = B~ (34)

If the point M e S—S;, then g* = 0 at M, and we can take d* and d% to be
zero at M. If MeS,, then in a neighborhood of M, we introduce local
Cartesian coordinates (z, , z,, z3) such that all the z, vanish at M and such
that the axes are directed along the coordinate lines (%, v, ¥5). In the (2)
coordinate system, equation (34) takes the form

ody ody .

0z, 0z3 'V
odr ods

g
0zy 0z4

eds odf

g
0z, 0z,

We satisfy these equations at the point M by setting all the od¥|0z,, equal to
zero except for

0z5 Lt 0z,
We also set d¥ =0 (m =1, 2, 3) at the point M, and then return to the (x)
coordinates. The values d*(z) =0 and 0d*(z)/0z,, at the point M uniquely

B3
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determine d*(x) and ¢d*(x)/0x,, at M; since d* = 0, only g, and cos(x,, z,),
but not derivatives of cos (v, , z,,), appear in the expression for éd*(x)/dx,, .

It only remains to show that the values of ¢* and ¢d*/Cx,, calculated in this
way at every point Me S are compatible. The only condition relating these
quantities is the fact that the derivatives of d*(x) with respect to the tangent
directions to S must vanish (since d* = 0). But it is easy to see that this con-
dition is satisfied by our choice of dd*(z)/oz,, (im = 1, 2).

The smoothness of d(x) and of éd*/0x,, on S is guaranteed by the smooth-
ness of the system of (y) coordinates and of the fields ¥, which amounts to
the smoothness of S and of the field p. The vector d* vanishes everywhere on
S, and dd*(x)/dx,, vanishes everywhere on S—S,. From the values of these
quantities, we can construct the field d*(x) in Q. In so doing, we can assume
that d*(x) is very smooth inside Q and vanishes for points v at a fixed distance
from S. The sum

N
Y curld¥(x),
k=1

as already noted, gives the desired vector ¢(x), which in turn determines
a(x) = c(x)+grad o.

If §'is a Lyapunov surface and « is a continuous field on S, then the above
method allows us to construct a field a(x) which is continuous on Q and is
as smooth as we please inside Q. If S is a surface with bounded first and second
derivatives, and if a ge W3(S) [20, 21, 22], ie. if each component of a
can be continued inside S onto Q in such a way that the continuation belongs
to W3(Q), then the above construction gives a vector field a(x) in Wi(Q).
Moreover, this field can be represented in the form [17]

a(x) = grad ¢ +curld,
where
Ap =0, PpeWHQ) and de W2AQ).

If § and a are smoother, we can take a(x) to be smoother in Q.

Below, we shall be interested in the solution of the problem for a domain Q
with a surface S which has “‘edges”, specifically, for a tubular domain Q
whose ends are right cylinders with bases S, and S, . Thus, the whole surface
S will consist of three pieces, two planes S, and S,, and a third piece S,
which is the lateral surface of the tube. On §,, the vector « = 0, while on Sy
and S,, the vector a is smooth and vanishes on the intersections Z,, £, of
the bases S;, S, with S5 and near them. Then, concerning the solution ¢



SEC. 2.2 PRELIMINARIES 27

of the problem (33), we can say that it is continuous in Q—X, —%,, and its
first derivatives are continuous in Q—%, —X, and bounded in Q. Moreover,
the vector ¢(x) can be constructed to be continuous in Q—X, — %, , bounded
in Q, and infinitely differentiable inside Q, by using the construction given
above. Then the dd{/dx; will be bounded on S and continuous everywhere
on Sexcepton X, +%,.

In the case where the domain Q is planar, the solution of the problem is
very simple. In fact, if Q is a simply connected domain, the field a can be

found in the form
oy Y
= -, —o— | = curly.
a <0x2’ (7x1> curlyr

The condition a\s = a gives the values of ¢y/on and dy/ot on S. From the
values of dy/dt, we find ¢ on S (to within an arbitrary constant), where
is a single-valued continuous function, since

A
§ —owdr:J\ a'nd. =0.
s 0t s

Then, from the functions ]S and &y/én IS, we construct a smooth function
. If the domain Q is multiply connected, then we look for a(x) in the form
a = grad p +curly, where p is a solution of the problem (33), and ¥ is
defined just as before.

2.2. We now turn to the decomposition of the space L,(Q), discussed at
the beginning of this section. Let J(Q) denote the set of infinitely differentiable
solenoidal vectors of compact support in Q, and let J(Q) denote its closure
in the L,(Q) norm. The set of elements of L,(Q) which are orthogonal to
J(Q) form a subspace which we denote by G(Q), so that

Ly(Q) = G(Q) @ J(). (35)
We now prove the following theorem:

THEOREM 1. G(Q) consists of elements grad ¢, where ¢ is a single-valued
function on Q, which is locally square-summable and has first derivatives in
L,(Q).

Proof: Let ue G(Q), i.e. let

'[ u'vdx =0 (36)
Q
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for all veJ(Q). Choose curlw, as the vector v, where w is a smooth
vector of compact support in Q, and w, is its average:

W, (x) = fl w (| x=y|)w(y)dy. (37)
x—yl|=p

We chose the number p to be smaller than the distance from the domain '
where w £ 0 to the boundary S, so that w,(x) is defined over all Q and is of
compact support in €, if we set w equal to zero outside Q. Substituting curl w,

into (36) and bearing in mind that curl w, = (curl w), and that the functlons
w and w, vanish outside Q, we obtain

0=f u(x)f w (| x—y|)curtw(y)dy dx =f u,(y)-curlwdy.  (38)
Q Jx=y|=p Q

Here, the function u,(y) is infinitely differentiable and is given by formula (37)
in Q" < Q. Integrating (38) by parts, we obtain

J curlu,-wdy = 0.
Q

It follows from this identity that curlu, = 0, since w is sufficiently arbitrary.
The function u, is defined for all xeQ,, where Q, is the subdomain of Q at
the distance p from S, and curl u,=0inQ,.

Next, we make suitable cuts in Q, so that Q becomes simply connected, and
we construct the function

X

3
¢(x,p) = Zl Uy, dx

xo0 k=
in Q,, choosing a fixed point x,. Since curl u, = 0, the function ¢(x, p) is
defined by the given integral and u, = grad ¢(x, p). We now let p—0. It is
well known (see [6] or [16]) that for any fixed interior subdomain Q' of the
domain Q, u, will converge to u in L,(Q’), and then, as is easily verified,
¢(x, p) will converge to a function ¢(x) in WAQ') (if Q' is bounded), and
grad ¢ = u. Since Q' is an arbitrary subdomain of Q, the function P(x) is
defined on all Q and grad ¢ = u. If the domain Q is bounded, then ¢ eL,(Q).
However, the domain Q was just assumed to have cuts, and if we want to
remove these cuts, we have to verify that ¢ is continuous in Q without cuts,

or, more precisely, that ¢,d¢ = 0 for almost all closed paths in Q.

We now take a smooth tube 7'< Q and draw a transverse planar cross-
section S; in T. We choose the tube as in the preceding problem, except that
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in this case S, and S, coincide. On S| we specify an arbitrary smooth field
of vectors a, which have directions orthogonal to S, and equal zero near the
boundary S,. In T, we construct a solenoidal field a(x) which is smooth
inside T, vanishes on the lateral surface of 7, and equals « on S,, S,. The
field a(x) is bounded in 7 and continuous in the tube and on its boundary,
with the possible exception of the curve £, in which S, intersects the surface 7.
It was shown in studying the auxiliary problem (section 2.1) that such a
construction is possible.

We now extend a(x) onto all £ by setting a(x) = 0 outside 7, and we then
average a(x) by using a kernel wp(|x—y ), where p is smaller than the
distance from 7 to S. If we let

v=a,,

it is easy to see that veJ(Q). In fact, v is of compact support in Q, v is infi-
nitely differentiable, and

6
d. = = i — bl b
ivy ax,j x_ylépw,,(l x—y|)ay) dy

p
= —J o w (| x—y|aly)dy
|x-y|=p

k

J w,(|x=y|)divady =0.
Ix—ylsp

Here we have used

the fact that w,(| x — y|) vanishes for | x—y| 2 p, and the fact that integration
by parts is permissible for our a(x). We substitute this v into (36) and integrate
the resulting equality by parts, obtaining

0 =J grad ¢ vdx = —J ¢divvdx+-[ [¢]v.dS =f [¢]v.dS, (39)
Q Q $1 K

where S, is the planar cross-section of Q containing S, , and [¢] is the jump

of the function ¢ on this cross-section. We take the number p to be so small

that the domain T, outside which v vanishes, differs by very little from 7,

and the cross-section S, differs only slightly from S;. As p — 0, the field a,

remains uniformly bounded and approaches a uniformly in Q—X, .
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Therefore, we have
Un|§1:(ap)nl§1_’a|§1 (=0 on §,-5).

Taking the limit as p — 0 in (39), we obtain

f [d)] oy ds = 0,
Sy

from which, since « = o, n is arbitrary on S, it follows that [¢] =0, i.e,,
¢ is continuous as we pass through the cross-section S;. This proves the
theorem. Theorem 1 is also valid for planar domains.

REMARK. It is not hard to show that for wide classes of domains Q, the
inequality

J' ¢ dx < CIJ u’ dx, (40)
Q o

holds, where
d(x) = Zukdxk’ Xo, X€£,
xo k

if Q is bounded, and the inequality

:2
O (x)dx )
- T < -
J;z 14 |x’2 _CZJ‘QU dx. @

holds if Q is unbounded. The constants C,; and C, are determined by Q and
do not depend on u. The inequality (40) is certainly valid if Q is the sum of a
finite number of star-shaped domains. The inequality (41) is valid, for
example, for a domain Q which is the sum of a finite number of star-shaped
domains and the exterior of a sphere. The proofs of the inequalities (40) and
(41) will not be given here, but the inequalities themselves will be used later.

2.3. We now consider the set J(Q) of all sufficiently smooth solenoidal
vectors of compact support in Q, and in J(Q) we introduce the scalar product

{u,v] =j u, v, dx
Q

and the norm

laflu={u]ma =/[uu]
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The completion of J(Q) in the metric corresponding to this scalar product
leads us to a complete Hilbert space, which we denote by H(Q). What was
said about the elements of D(Q) in section 1.4. is certainly true for the
elements of H(Q).

Finally, we denote by J, (Q) the Hilbert space of vector functions, obtained
by completing J(Q) in the norm ||-||, corresponding to the scalar product

(w,v), = J (u-v+u, v, )dx.
Q

In the case where the domain Q is bounded, the spaces H(Q) and J, ,(Q)
coincide, and the corresponding norms are equivalent. However, if Q is the
exterior of a bounded domain (for example), then the norm in J, (Q) is
stronger than the norm in H(Q) and H(Q) is a larger set than J, ,(€Q).

3. Riesz’ Theorem and the Leray—Schauder Principle

We now state two theorems which will be used later to prove existence
theorems for stationary problems. The solution of linear problems will be
based on Riesz’ theorem (see e.g. [16]):

Riesz’ THEOREM. A linear functionali l(u) on a Hilbert space H can be
expressed as a scalar product of a fixed element aeH with the element
ue H, ie.

(1) = (a,u).

The element a is uniquely determined by the functional I.

As for the solution of nonlinear stationary problems, we shall use one of
the “fixed-point theorems”, i.e. the so-called Leray—Schauder principle [23].
We shall not need this principle in its full generality, and therefore here we
only state one of its implications. Suppose that we are given an equation

x = Ax (42)

in a separable Hilbert space, where 4 is a completely continuous and, in
general, nonlinear operator. We recall that an operator 4 is said to be
completely continuous in H if it maps any weakly convergent sequence
{x(, x5, ...} in H into a strongly convergent sequence {Axy, Ax,, ...} in H.
The existence of solutions for equation (42) is guaranteed by the following
result:

t In this book, all linear functionals are assumed to be bounded (and hence continuous).
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LERAY-SCHAUDER PRINCIPLE. If all possible solutions of the equations
x = AAx

Sfor Ae[0,1] lie within some ball |x| < p, then the equation (42) has at least
one solution inside this ball.

This principle is particularly remarkable in that it can even be used to
investigate problems for whose solution there is no uniqueness theorem.



CHAPTER 2

The Linearized Stationary
Problem

The basic problem investigated in this book is that of determining the
motion of a viscous incompressible fluid, when we know the volume forces
acting on the fluid, the boundary regime, and, in the case of nonstationary
flows, the initial velocity field. In all cases considered here, the only important
assumption is that a system of coordinates can be chosen in which the domain
Q filled by the fluid does not change. This assumption is satisfied in the
following important practical problems, and in many others:

1. The problem of the motion of a rigid body in an infinite flow, or
equivalently, the problem of an infinite flow past a rigid body immersed in
the flow;

2. The problem of the motion of a fluid acted upon by volume forces in a
vessel with rigid walls, whose spatial position is varied in a known way;

3. The problem of the motion of a fluid between two coaxial cylinders, or
two concentric spheres, rotating with different velocities.

In an inertial Cartesian coordinate system, the characteristics of the
motion of the fluid which can be determined, i.e. the velocity field v and the
pressure p, satisfy the system consisting of the Navier-Stokes equations and
the equation of incompressibility:

v,—vAv+uo v, = —grad p+f(x, 1) i
divv =0 '
Here, and henceforth, we set the density of the fluid equal to 1, and we
assume that the kinematic viscosity v is constant.

In any other Cartesian coordinate system which moves with respect to
the given inertial system, the second equation (1) has the same form, but new
linear terms in v and v,, can appear in the first equation. The methods pre-
sented here are such that if we include such terms in the Navier-Stokes

33
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equations, with coefficients which are not too bad, no basic technical diffi-
culties are introduced. Because of this, we can confine ourselves to the case of
Navier-Stokes equations in inertial systems, and to linearizations of the
Navier-Stokes equations in which all nonlinear terms are discarded. We
reiterate that the investigation of the problem in other, noninertial coordinate
systems and the investigation of other linearizations of the system (1) can be
carried out in an analogous fashion.

The system (1) has to be supplemented by boundary conditions. In the
case of rigid walls, we obtain the “adhesion condition”, according to which
the velocity v of the fluid at points next to the wall coincides with the velocity
of motion of the corresponding points of the wall. In the general case, this
condition takes the form

v | s =4, (2)
where a is a specified velocity field on S.
It follows from the equation divv = 0 that

Ja'nd5=0. 3)
s

Except for the case of exterior three-dimensional problems, it can be assumed
that a always satisfies this condition.

In the present chapter, we establish our first basic result, i.e. we shall
prove that when they are linearized, the above-mentioned stationary problems
have unique solutions. This fact is most easily established in the Hilbert
space L,(€Q) of vector functions, after we have made a certain well-defined
extension of the concept of a solution, to be described below. The comparative
simplicity of investigations in L,(Q) is largely explained by the fact that in
this space it is easy to separate the problem of finding v from that of finding p.
In fact, we can obtain a closed system of equations for v from which v can
be determined uniquely, and then p can be found either directly from the
Navier-Stokes equations or from a corresponding integral identity. Because
of this, in defining the “"generalized solution of the problem”, we shall discuss
only the function v, and not the pair v, p.

The considerations given in this chapter allow us to assert not only that
the problems in question have unique solutions but also that various approxi-
mation methods, e.g. Galerkin’s method, can be used to find these solutions.

The reader who is familiar with approximate methods for solving the
Dirichlet problem for the Laplace operator will see in reading sections 1 and 2
of this chapter that these methods carry over to hydrodynamical problems,
except that here the basic functions must satisfy the solenoidality condition.
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1. The Case of a Bounded Domain in £;

In this section, we consider the so-called Stokes problem, i.e. the problem
of determining v and p in a domain Q from the conditions

vAv = grad p—f,

. C))
divv =0,

Vs =a (4a)

Concerning a and S, we require that « can be extended inside Q as a solenoidal
field a(x) with a(x)e W(Q); sufficient conditions for this are given in
chapter 1, section 2. In this section, we assume that the domain Q is bounded.

By a generalized solution of the problem (4), (4a), we mean a function
v(x) which satisfies the identity

~

\'J\ ka’q)xkdXZJ f-®dx (5)
Q Q

for any ®e H(Q), such that v—ae H(Q). It is easy to see that the classical
solution of the problem is a generalized solution. In fact, if we multiply the
first of the equations (4) by ®ec H(Q), integrate over Q, and carry out
an integration by parts in the first term, we obtain (5) as a result. The term
containing p drops out, due to the orthogonality of gradpeG(Q) and
(Dej(_Q)_. Conversely, if it is known that a generalized solution v belongs to
W), where Q' is any interior subdomain of Q, and if fe L,(Q), then (5)
can be transformed into

J (vAV+{) @ dx = 0 (6)
o

for ® eJ(Q). Since J(Q') is dense in J(Q') (see chapter 1, section 2), since ®
is an arbitrary element of J(Q'), and since vAv+ /e L,(Q"), it follows from
(6) that vAv +fis the gradient of some function p(x). Since Q" < Q is arbitrary,
we find that

VAV+{ =gradp .

inside Q, i.e. v(x) actually satisfies the Navier-Stokes system.

This extended notion of a solution is also justified from another point of
view, i.e. the uniqueness theorem is preserved. Thus, if we find a generalized
solution, it will also bé¢ the classical solution, if the latter exists. However,
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with the weak restrictions on the data of the problem for which a generalized
solution can be found, there may not be a classical solution, whereas the
existence of a generalized solution follows from very general and very simple
considerations. All this shows how reasonable it is to go from classical
solutions to generalized solutions. The generalized solution of the problem
(4), (4a) and of the boundary-value problems to be considered below, can
be found for a large class of functions f describing the external forces. In fact,
the only restriction on f in this chapter and in chapter 5, unless the contrary
is explicitly stated, is that the integral

f f-ddx
o

should define a linear functional for ® in the space H(Q). This in turn will
be the case if and only if the inequality

Jnf-(bdxi

holds. The following are among a variety of conditions which imply the
validity of this inequality:

sCl@]a

1. If Q is an arbitrary domain and if fe L,,5(Q), then according to Holder’s
inequality and the inequality (6) of chapter 1, section 1,

U f-®dx §< Zlfile/sdx>5/6<J* Z|®ii6dx>l/6§cuq)“”

2. If Q is an arbitrary domain and if

[ Fx=r sl as

converges for some y, then

| ) %
ff-(l)dx§<Jﬂ|x—yllzif,~(x)|2dx>

Y(EE

because of the inequality (13) of chapter 1, section 1.
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3. Let f; have the form

g = V)

0x,

and let fi(x) e L,(Q) (see [24]). Then

J f ®dx —J Y [ Oy, dx
Q Q ik

for any ®eJ(Q). Since J(Q) is dense in H(Q), this inequality will hold for
any @ in H(Q). Here, the domain Q can be arbitrary.

S sCle]q

4. The vector f need not be a function in the usual sense. It can also be a
so-called ““generalized function™ (see [25, 26] and elsewhere), e.g. a Dirac
delta function 6(S;)e concentrated on some smooth surface S, lying in a
bounded region of Q. For such f, the integral jgf -® dx is interpreted as the
integral of ®-e over S, i.e.

fi'-@dx:f d-edS.
Q St

This integral actually defines a linear functional on H(Q), because of the
familiar inequality (9) of chapter 1, section 1, which is valid for any function
@ in Wi(Q), S, =€ Q <= Q. In the third case listed above, the f; can also be
generalized functions.

Of course, the cases just enumerated do not exhaust all possible situations
in which the integral [of-®dx defines a linear functional of ®eH(Q).
However, there is no need to explore all these possibilities, since in all the
theorems on the existence of a generalized solution, proved in chapters 2
and 5, we shall not use concrete properties of f, but only the fact that
faf-®dx defines a linear functional on H(Q).

THEOREM 1. There exists no more than one generalized solution of the
problem (4), (4a).

solutions, we would have ue H(Q) and
v[u,®]=0.

Setting @ = u and recalling that [, ] is the scalar product in H(Q), we find
that u = 0.
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THEOREM 2. The problem (4), (4a) has a generalized solution if for the
given f, the integral {of-®dx defines a linear functional of ®e H(Q) and
a(x)e Wi(Q),diva=0.

Proof: We rewrite the identity (5) in the form
v[v—a,®] = —v[a, @] +(f, @) (7)

and note that the right-hand side defines a linear functional of ® e H(Q).
According to Riesz’ theorem, this functional can be represented in the
form [u, @], where u is a well-defined element of H(Q) which is uniquely
specified by f, a and v. Obviously, the function v = a+u is the solution we
are looking for.

THEOREM 3. If fe L,(Q') and Q' = Q, then the generalized solution v found
in Theorem 2 belongs to WXQ'') for O < Q' and satisfies the system (4)
almost everywhere in Q'', with grad pe L,(Q").

Proof: Here Q" is any subdomain which lies strictly inside Q'. We choose a
fixed Q"'. Without loss of generality, we can regard the function a(x) in Q'
as being as smooth as we please. In (5), we choose ® of the form

® = curl[{Zcurly,],,

where the index p denotes averaging with the kernel a)p(| x—y|), and {(x) is
a twice continuously differentiable non-negative function of compact support
in ©', which equals 1 in Q" < ' and does not exceed 1 anywhere in Q. We
shall assume that the width of the boundary strip in " where { =0 is
greater than p. Then, we substitute our ® into (5) and carry out a series of
transformations, noting that the averaging operation commutes with the
differentiation operation. The result is

J f-®dx = vJ Ve @, dx = vf v, Leurl($Z curlv,)],,, dx
Q’ Q Q’

= v'[ Vo Leurl (P curly,))],, dx
o

Il

—vf Av, curl($% curlv,) dx. (8)
o

But
curl ({% curlv,) = {* curlcurl v, + grad £ x curly,

= —(?Av,+grad{® x curlv,,
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since
divy, = 0.
Therefore, from (8) we obtain
\'J‘ CZ(AVP)Z dx =J [f,,'curl(C2 curlv,)+vAv, - grad % x curd v,]dx.
Q Q

We estimate the right-hand side by using the inequality

i

2ab < ea?+ - b?

&

with arbitrary ¢ > 0. It is not hard to see that this leads to the inequality

C 3
vJ {HAv,)dx £ af vEHAV, Y dx + - IJ <f2+ Y vﬁxk> dx, 9
o ol ¢ Ja k=1

with a constant C; which depends only on the choice of the function {(x).
We choose & < 1 in (9) and use the fact that the estimate

3
f Y vi dx < const, (10)
Q k=1

holds for v, and hence for v, also, as follows easily from (5) if we set
®=v—a.
From (9) and (10), we see that the inequality

(Av))2dx < | (*Av,)*dx < const
o o !

holds for any p > 0, with one and the same constant. This in turn implies the
following estimate for the second-order derivatives of v, (see chapter 1,
section 1):

f (D}v,)? dx < const. (11)
o

Since the constant in (11) does not depend on p, the function v which is the
limit of v, as p—0 has second-order derivatives, which also obey the
inequality (11) (see [16]). Gathering together all the estimates for v, we
obtain

| v w,2a) < const. (12)
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We can now transform (5) into
f (VAv+f) - D dx =0,
Q

assuming that ®eJ(Q”). Since J(Q) is dense in J(Q”), and since
vAv+fel,(Q”), it follows that vAv+f is the gradient of a function
peW3(Q"), so that vAv+f = grad p and p is the pressure we are looking for.
This completes the proof of Theorem 3.

To investigate the behavior of v near S, as will be done in chapter 3,
section 5, more complicated calculations are needed. In all the above
theorems, the requirements on the smoothness of « and of the boundary
S reduce to just the fact that it should be possible to continue « inside the
domain as a solenoidal field a(x) with a;e W} (Q). If a = 0, then no smooth-
ness requirements at all are imposed on S.

By using the method of Theorem 3, we can show that if fe WJ(Q'), then
ve W H(Q') and pe WITH(Q").

2. The Exterior Three-Dimensional Problem

In this section, we consider linearized problems for unbounded domains Q.
If we have the homogeneous boundary conditions

vis=0, v*=0, (13)

both on S and at co, then the proof that the problem (4), (13) has a unique
solution is identical, word for word, with the proofs of Theorems 1 and 2
of the preceding section (here a(x) = « = 0). The boundary conditions are
satisfied in the sense that the solution v belongs to the space H(Q). Thus, we
have the following theorem:

THEOREM 4. If [of - ® dx defines a linear functional of ® e H(QY), then there
exists a unique generalized solution of the problem (4), (13), i.e. there exists a
Sunction v(x) belonging to H(Q) which satisfies the identity

v[v, ®] =f f-®dx (5)
Q

Jor any ®e H(Q). If, in addition, { is locally square-summable, then v has
locally square-summable second-order derivatives and satisfies the system (4)
almost everywhere, with a pressure p which has a locally square-summable
gradient. Finally, if Q contains a complete neighborhood of the point at infinity,
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i.e. a domain {I x[ = R} and if fe Lz{[ xl 2 R}, thenv,, ., and p, are square-
summable over the domain {| x| 2 R+¢}, £ > 0.

The last statement may be proved in just the same way as Theorem 3, if we
take into account the inequalities of chapter 1, section 1.5.

We now assume that the boundary conditions at co are nonhomogeneous.
In fact, suppose we have n immovable objects of finite size, bounded by
surfaces S;, ..., S,, past which there occurs a flow v that approaches a
given vector v* = const as ]xl — 0. The problem consists in determining v
and p from the equations (4) and the conditions

v =0,  V||yjou=V"" (14)

S= g Sk
k=1
We construct a smooth solenoidal field a(x), which equals zero on
S = Z Sk
K=1

and equals v* for large | x|. For example, we can take a(x) to be

a(x) = v —b(x),
where
b(x) = curl({(x)d(x)),  d(x) = (v3x3, v3%y,07X,),
and {(x) is a smooth “‘cutoff”” function, equal to 1 on S and near S, and equal
to 0 for large | x|.
We call the generalized solution of the problem (4), (14) the function v
such that vy—ae H(Q), which satisfies the integral identity (5) for all ® e H(Q?).

Then the proof of the following theorem is similar to the proofs of Theorems
1to4:

THEOREM 5. All the assertions of Theorem 4 are valid for the problem
(4), (14).

To prove that the problem (4), (14) has a solution, it is enough to verify
(see the proof of Theorem 2) that the expression

v-[ a, @, dx
Q

defines a linear functional of @ e H(Q). But this is certainly the case, since
a, =0 for large | x|, and hence

v.[ 2, @, dx SC|®] 4.
Q f
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The differentiability properties of the solution v, p are improved to the
extent that one improves the differentiability properties of f; in particular, if
f =0, then v and p are infinitely differentiable. The boundary conditions (14)
are understood “in the mean square” [6] on S, and in the sense that

2
| x=r]”
at infinity.

Using the fundamental singular solution for the Navier-Stokes equations,
it is easy to ascertain when the generalized solutions obtained above belong
to one or another Holder space, and at what rate they approach their limits
at co. The final results are the same as in the Dirichlet problem for the
Laplace operator. The dependence of the differentiability properties of the
generalized solutions on the differentiability properties of the problem data
described above is also valid for nonlinear equations; this will be shown in
chapter 4.

The case of boundary conditions which are nonhomogeneous both at oo
and on S may be studied in the same way as the case considered above.

3. Plane-Parallel Flows

For the case of two space variables, the problem (4), (4a) reduces by a
familiar argument to the first boundary-value problem for the biharmonic
equation. In fact, because of the equation

v )
;J,EB} 0,

0x; 0x,
there exist a “‘stream function™ ¥(x,, x,) defined by the equations

Y oy

P U= —2—.

0Xx, 0x4

Taking the curl of both sides of the Navier-Stokes system and replacing v,
and v, by their expressions in terms of ¥, we obtain the following equation
for s:

VAzlp = —'flxz +f2x1 .
As is easily seen, the boundary condition v]s a determines the values of

 and ¢y/én on S (the first to within a constant which can be chosen arbi-
trarily). Thus, for plane-parallel flows, the problem (4), (4a) actually reduces
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to the well-studied problem of determining . Here, we shall not give the
results pertaining to this problem, and we only remark that the methods of
the preceding section are of course applicable to the present special case. For
bounded domains, these methods lead to the same results as in three-
dimensional problems. The situation is otherwise for the problem of flow past
an object, i.e. for the problem (4), (14). In fact, in the case of two space
variables, it is impossible to satisfy the preassigned conditions (14) at infinity.
By analogy with the basic electrostatic problem, the problem of plane-
parallel flows past an object takes the following form: Find a solution of the
system (4) satisfying a boundary condition which for simplicity is taken to
be homogeneous

v]s=0, (4a)

and which is bounded at infinity. Moreover, it is natural to state the following
generalized formulation of this problem: Find a function v(x) belonging to
H(Q) which satisfies the identity (5) for all ® in H(Q). Theorem 4 guarantees
that this problem has a unique solution in H{Q) for any linear functional f
on H(Q). In particular, if f = 0, then the solution is v =0, despite the fact
that the condition v* = 0 is not assumed to hold at infinity. We note that
the fact that v belongs to H(Q) does not compel v to converge to zero as
lxl — oo (for example, v may be constant for large |x ), but it does exclude
the possibility that v grows logarithmically as |x|— co. Using the funda-
mental singular solution of the Navier-Stokes equation, one readily shows
that if f(x) tends to zero sufficiently rapidly at infinity, the generalized
solution ve H(Q) has a fully defined limit v, = const as |x| - 0.

In its classical formulation, the problem of plane flow past an object was
discussed by various authors in connection with an analysis of the familiar
“Stokes paradox’’. This paradox consisted in the fact that a solution of the
homogeneous system (4) which is equal to 0 on S and to a given v* at infinity
had not been found. It follows from what has been said above that such a
solution generally does not exist. In the paper by B. V. Rusanov [27], dealing
with the case where Q is the exterior of a circle, it is shown that the solution
v(x,1) of the nonstationary problem corresponding to a zero force f, a
homogeneous boundary condition on S and a nonhomogeneous boundary
condition v||x (= = (Cy, 0) at infinity, converges to zero as t — + o, for
any fixed x. The same is also true for the exterior of an arbitrary bounded
domain.

Another result pertaining to the Stokes paradox is due to Finn and
Noll [28], who proved that the homogeneous system (4) with a zero boundary
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condition on § has only a zero solution in the class of twice continuously
differentiable functions which are bounded at infinity.

4. The Spectrum of Linear Problems

Let Q be a bounded domain in the Euclidean space of points x =
(x4, X3, X3). To the linear problem (4),(4a) studied in this chapter corresponds
a linear operator in a Hilbert space whose properties we now intend to study.
We introduce the space J(Q) as the basic Hilbert space, and we introduce the
operator 4 in J(Q), which establishes a correspondence between the solutions
v(x) of the linear problems

vAv+grad p = ¢¥(x), )
[ (1)

divi=0, v|s=0

and the corresponding external force y(x), i.e. Av = y.
In section 1, we proved that to any y in J(Q), or even in L,(Q), there
corresponds a unique solution (v, p), where

Ve Wi (Q)nH(Q).

In order to justify introducing the operator A, we have to show that different
functions v satisfying (15) correspond to different ¥ in J(Q), or, equivalently,
that if the solution of the problem (15) is identically zero, then ¥ = 0 also.
But this is actually so, since for v = 0, from (5) it follows that (¥, ®) = 0 for
arbitrary @ e H(Q); but H(Q) is dense in J(Q) and y € J(Q), hence y = 0.

Let D(A) denote the set of all solutions of the problem (15), corresponding
to all elements ¢ € J(Q). The set D(A ) is the domain of definition of the
operator A4, and 4 establishes a one-to-one correspondence between D(A) and
J(Q). We note that the operator 4 can be regarded as an extension of the
operator vP;A, where P; is the operator projecting L,(Q) onto J(Q), defined
on W3(Q)n H(Q). Then we have the following theorem:

THEOREM 6. The operator A is self-adjoint and negative-definite on D(A).
Its inverse operator A~ is completely continuous.

Proof: Suppose that ve D(A) and Av = . Then, by the definition of A
the identity

vf Yy, @, dx = —f V- ®dx (16)
Q Q
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holds for any ® e H(Q). If we set ® = v, (16) implies the inequality

1 3K

Avli==[ wevaxsiulivisclv]iy]

and also the inequality
vl =clvl. (17)

because of the equivalence of the H and W3 norms.

We now show that A is closed on D(A). Let v"e D(A), v"=v and
V' =y"=y in J(Q) (i.e. in L,(Q)). By (17), v converges to v in the
H(Q) norm, and (16) holds for v". Letting n approach o in this identity, we
arrive at (16) for v and \{, so that v actually belongs to D(d) and Av = .

Next, we verify that 4 is symmetric on D(4). Let u and v belong to D(4)
(and, a fortiori, to H(Q)). Then (16) will hold for u, with any ® € H(Q), and
in particular, with ® =v, i.e.,

v[u,v] = —(du,v);
similarly, (16) holds for v, with ® =u, i.e.,
v[v,u] = —(dv,u).

Comparing these equalities, and recalling that we are considering only real
spaces, we find that 4 is symmetric on D(A) and negative-definite.

Thus, the operator A is closed and symmetric, and its range fills the entire
space J(Q). Therefore, 4 is self-adjoint (see e.g. [16]). The fact that A" is
completely continuous follows from the inequality (17) and the fact that a
set of functions which is bounded in W(Q) is compact in L,(Q) (see chapter 1,
section 1.2). This proves Theorem 6.

The properties just established for the operator 4 imply a whole series of
properties for the eigenfunctions and eigenvalues of 4 [3, 29], such as the
following: The spectrum A= 4,, 4,, ... is discrete, negative and of finite
multiplicity, 4, converges to — o0, the eigenfunctions are orthogonal and
complete in the metrics of L,(Q) and H(Q), etc.

We have the following theorem on the convergence of orthogonal series
expansions

3= 3 (@8 (18)

for arbitrary functions a(x), in terms of the eigenfunctions ¢, of the
operator 4.
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THEOREM 7. The series (18) converges in the norm W3"(Q), n=0,1,..., if
a(x) belongs to J(Q) N W2"(Q) and satisfies the boundary conditions
alg=...=4""alg=0, and SeC,,.
If a(x) belongs to J(Q)n W' (Q), n=0,1, ..., and satisfies the con-

ditions a|S =...=A"alg=0, and SeC,,,,, then the series (18) converges
in the norm of W3"*(Q).

The symbol A’ denotes the /-th iteration of the operator A. This theorem
will be proved on the basis of the properties of the operator A established
above and inequality (77), chapter 3, section 5, for & =0 and r = 2. The
proof is similar to that given in our book [2] (chapter 2) for expansions in
eigenfunctions of elliptic operators.

First note that the following relation holds for the coefficients of expansion
(18) under the conditions of the theorem

(a> ¢k) = ;Lk_n(a» Zn¢k) = )‘I:n(Zna’ ¢k) = ;"I:n(xk » (]9)

where Y o=
k=1
and correspondingly that
(a’¢k) — ;Lk—n—l(a’jn+l¢k) — —)L,:"_I[Z"a, ¢k] = ___Ak—n—lﬁk’ (20)

where
o0
_k; A bR = H 4" ”flm)‘

On the other hand, from inequality (77) of chapter 3, section 5, it follows
that the norm |a|,, = [|4"a H is equivalent to the norm || a ||,y ,2nq,, and the
norm |a|,,., = ||4"a||4 @, is equivalent to the norm Ha”wzuﬂ(m , for the
set of vector-functions a possessing the properties listed in the conditions
of Theorem 7. Thus

Z@mmmw é'i mmw‘ —Cc¥ 2=
I} Wa2n() k= k=1
1)
and
3 @ph0| S <c i (a ¢k)¢k(x>
K= ‘\ Warn+ Q) K= nt+1
- _ck; ApE=C |{ A" || Fa» (22)

i.e. the assertions of Theorem 7 are indeed true.
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The assertions of Theorem 7 are sharp in the limit, in the sense that if the
series (18) converges in the norm WiQ) (I = 2n and 2n+1), then its sum
possesses the properties stated in the conditions of the theorem. We recall
that from the convergence in the norm W3(Q) follows convergence in the
norm C,_, ,(Q) (cf. chapter 1, section 1.2).

For domains containing a complete neighborhood of the point at infinity,
the spectrum of the operator A is continuous and fills the entire negative
semi-axis. This is proved in approximately the same way as the analogous
fact for the Laplace operator [16, 30].

5. The Positivity of the Frescure

The system (4) determines the pressure p(x) to within an arbitrary additive
constant. If we knew that the function p(x) which is obtained had a bounded
absolute value, then by adding a sufficiently large, positive constant to p(x),
we could see to it that the pressure is positive. However, from Theorem 3 of
section 1, it is only known that gradp is summable with exponent 2 over
any interior subdomain Q' of the domain Q (if f eL,(Q)). Moreover, for
arbitrary feL,(Q), the function p(x)+const will in fact neither be bounded
in absolute value nor have constant sign. To see this, we can choose p(x) +const
to be any function in W3(Q), and we can choose v(x) to be any solenoidal
vector in W2(Q) which vanishes on §; then, the sum —Av+gradp gives the
value of the force f which corresponds to the chosen values of p and v.

Thus, it is reasonable to relinquish the requirement that p(x) (or, more
exactly, p(x)+const) be positive at every point; instead, we replace the
physical requirement that the pressure be non-negative by the requirement

that the integrals J | pldS be bounded over two-dimensional surfaces Z.
This weakened non-};legativity condition is more natural than the condition
that p(x)+const be non-negative for all x. Actually, the integrals f pdS
only have physical meaning for areas £ whose sizes are not less than a c;rtain
positive number (stipulated by the limits of accuracy of measurement and

by the discreteness of the liquid medium). If we know that these integrals do
not exceed a certain constant in absolute value, then we can add a constant

C to p(x) such that the integrals | (p+C)dS, giving the pressure on the
z

areas X, are non-negative. Moreover, the finiteness of f pdS and f | p | ds
I z

C
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for all planar bounded X and all £ obtained from such £ by making con-
tinuously differentiable transformations y = y(x) with bounded |0yk/6xm
| 0x,,/0y, | and

»

a(XJ,xz,x§)
(Y1, Y2, ¥3)

follows from the finiteness of J grad? pdx. Later, in chapter 3, section 5, we
Q

shall prove that the estimate

v lwaaa+] gradp || = C| L@

holds for the whole domain Q.



CHAPTER 3

The Theory of Hydrodynamical
Potentials

The linear stationary problem considered in the preceding chapter was
originally solved by the methods of potential theory. In fact, Odqvist and
Lichtenstein independently constructed hydrodynamical potentials, investi-
gated their properties, and used them to solve the problem (4), (4a). In the
present chapter, we present this classical method. The method has many
advantages over the functional method presented earlier. For example, it
allows us to study the differential properties of solutions in the “Holder
norms” C, , and in the L, norms, not only inside the domain, but also near its
boundary. The weakness of the method is its great complexity as compared
to the functional method, and the requirement that the boundary of the
domain be sufficiently smooth.

The present theory differs essentially from the widely known theory of
electrostatic potentials only in the concrete analytical form of its potentials.
However, the properties of these potentials, due to the polarity (singular
character) of the kernels, are completely analogous to the properties of electro-
static volume potentials and potentials of single and double layers. Therefore,
we shall not give a detailed analysis of the convergence of various improper
or singular integrals, and we shall also not give a careful derivation of the
integral equations which are satisfied by the hydrodynamical potentials of
single and double layers. Moreover, everything which is proved for hydro-
dynamical potentials in the same way as for ordinary potentials, and is
therefore familiar, will be given without proof.

Thus, we now present the formal theory of hydrodynamical potentials,
mainly for the case of three-dimensional space.

1. The Volume Potential

First of all, we have to determine the fundamental singular solution of
the linearized Navier-Stokes system, or, more exactly, the tensor made up

49
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of the solutions corresponding to concentrated forces directed along the
various coordinate axes. Thus, we consider the problem
VA“k(xs)’)—graqu(x,,V) = 5(x_)’)ek, (1)
divu* =0,

where k =1, 2, 3. Here, € is a unit vector directed along the kth coordinate
axis, and J(x~y) is the Dirac delta function. All differentiations are carried
out with respect to the variable x, and the point y plays the role of a parameter
(the applied force is concentrated at y). The system is supplemented by the
requlrement that u* and ¢* approach zero as | x| > co.

To find u* and ¢*, we use Fourier transforms, recalling that the familiar
relations

1 (= ;
f()—(z)f Jeemdo= o )sf S ()<= dady

and
1 [x—»]
= —0(x— AP = (x—
dn[x—y] (x—), & o(x—y)
imply that
1 * ia(x—y)
o(x—y)= PISE ¢ do, )
1 1 0 eia(x—y)
dnlx—y| (23)3j—w a? da, 3)
| x—y ' 1 © eirz(x—y)
T _(2n)3f_ Tt da, “
where}

3 3
=Y o, ax= Y ox.
k<1

k=1

Let &(x) denote the Fourier transform of the function v(x) then

v{x) = (—Z;IET}J‘_OO@ () e'** da.

1 All expressions written here are understood to be generalized functions. The reader can
acquaint himself with the theory of these functions in the books [25] and [26]. We shall use
such functions formally only fo find the concrete form of the basic tensor. After the tensor
has been found, we can immediately verify that it has all the required properties.
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Going over to Fourier transforms in equation (1), we obtain

—valik—io; g* = —— &% wik=0 (k,j=12,3),

where 6" is the Kronecker symbol. From this system we can uniquely deter-
mine #% and §*:

1 o0 io
~l€ = — —5" _J_!f s k = __L_ .
" v(2n)’a2|: it o? 1 (2n)*a?

The inverse Fourier transform and formulas (2), (3) and (4) give

o0

1 . i —
uk(x,y) = G J‘ (o) €79 du

R I IR Lol
T v 4n|x—y| ox;ox. 8n |

1 R 1 P 0 1
qk(x, y) — E‘_‘ela(x—y) do = —
(27.[)3 2

- ox dn|x—y|’
These representations also imply the Lorentz formulas

8 (=¥
k - _ J J J k
R [0 M i

)

X — Vk

k _e,—— e ———_—
Q(x:y)— 47'C|X—y|3.

It is clear from the formulas (5) and the equations (1) that in the argument y,

the functions u*(x, y) and ¢*(x, y) satisfy the adjoint system
vA, u*+grad, ¢* = 6(x — y) e,
div,u* = 0.

6

The solutions u* = (u%,u%, u%), ¢ allow us to construct the volume
potentials

U(x) = Lu"(x, ) () dy,

P(x) = L q*(x, N fi(») dy,
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which, because of (1), satisfy the nonhomogeneous Navier-Stokes system

vAU—grad P = f(x), }

divU =0. 7

The type of singularity of the kernels u% and ¢* is the same as that of the
basic singular solution l/4n]x—y| of Laplace’s equation and of its first
derivatives, respectively. This allows us to assert that if f satisfies a Holder
condition with exponent h, 0 < # < 1, and if Q is bounded, then U, P and
U, are continuous on the whole space, and U,,., and P, belong to C, (Q")
in any interior subdomain €' of the domain Q. Moreover, if the boundary
S of the domain Q is a Lyapunov surface of index 4 (i.e. if Se C,.,[18,19)),
then U and P have the above-mentioned properties in the whole domain Q.
These properties of U and P are proved in the same way as for the Newtonian
potential.

If f is square-summable over Q, and if Q is a bounded domain, then U and
P have generalized derivatives with respect to x, up to the second and the
first orders, respectively, which are square-summable over any bounded
domain Q,, and U and P obey the inequalities

| Ulwaay=Clf Hm%

“ p szl(nl) £C H f (7a)

L2 )

This follows from the representation given above of the kernels u* and ¢*
and from the relations (27) and (29) of chapter 1, section 1.

We now give another derivation of the formulas (5) for u* and ¢*, which is
shorter than the first derivation, and what is more important, represents u,
as the curl of another vector. This representation is useful, for example, in
investigating the differential properties of solutions of the Navier-Stokes
equations.

Thus, we shall look for u* in the form curl curl VX, Substituting u* =
curlcurl V¥ = —AV*+grad div V¥ into the first of the equations (1), and
separating the gradient part from the solenoidal part, we obtain

—VATV* = §(x— v)et
and
q* = vdivAV*,
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1t follows that
ek ¢ 1

k —— —— - —
v 4n‘¥—)| ka4rc‘x—)“'

—*—[V—}!e g* = div (5a)

It is easy to sec that these formulas coincide with the formulas (5).

2. Potentials of Single and Double Layers

Before giving a formal definition of the potentials of single and double
layers, we write the Green’s formulas corresponding to the Navier-Stokes
system. These formulas are obtained by integrating by parts, and are valid
for any smooth solenoidal vectors u, v and ¢, p. They are most simply verified
by using the identity

du, du\ /oy, v 8
[ (] = < “i ¢ ”k><°f- +ZL“>+<vAui—ﬁq>vi, (8)
dx,  0x;J\éx, 0Ox; 0x;

0
Tw) = akq+v<°“ +i“">
0x,

0x;

in which

is the so-called stress tensor corresponding to the flow u, ¢. Integrating (8)
over €, we obtain

¢ % ov:
vAui—vqf vidx = —| = cu +€f’fk i +LLk dx+| T,(wuv;n,dsS,
a Oox; Q2 0\'k Ox; J\Cx,  Cx; s
9)

where n = (n,, n,, n3) is the exterior (with respect to Q) normal to S. Inter-
changing u; and v;, and introducing together with g an arbitrary smooth
function p, we obtain from (9) the formula

f |:<vAv‘-——p> <vAu + = >:ld’<——j [Y‘ij(v)uinj_n;'(u)ui’1j] ds,
Q X 6‘xl N
(10)

where
e ’i“">. (11)
X, CX;

It is natural to call (9) and (10) the Green’s formulas corresponding to the
Stokes problem. By the customary method, using (10) and the fundamental

%)

joi)

Q)\ (o))

Ti(w) = &; ‘Z+V<
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singular solution, we obtain a representation for any solution v, p of the non-
homogeneous system (7) in terms of the free term f and the values of v and
Ty(v) on S. In fact, letting u, g in (10) be the fundamental singular solution
u*(x, ), ¢"(x,y), and recalling that as a function of ¥, the singular solution
satisfies the system (6), we obtain owing to uf=ul

u(x) = j up(x, iy dy+j T (w'(x,y)),v;n;dS —f ug(x, Y)T;(v)n; dS
Q S S
(12)

for any xeQ. The subscript y on T/;(u*(x, y)) shows that the differentiation
in T}; is carried out with respect to y. The pressure p corresponding to v is
most easily obtained from the system (7), if we use the expression just
derived for v and the identity

. . 0 0
Ax T‘ij(uk(x’ y))y = 5{Ax qk(x7 y)+V*— Ax u’;+vﬁ Ax u{'(
0y; 0y;

: 0 0
= 5{quk(x,y)—va—Axuf——v— A uk

X; ox; *
0? 02 02
- _ qk_ qk — _2 qk
0x; 0x; 0x;0x; 0x;0x;

(for x # y), which is obtained from (1). We find p(x) by using the system (7),
the representation (12) and the last formula:

k

0
p(x) =f q"(x, V) fi(y) dy —I q“(x, )T, (V)n;dS —2v j 5g ven;ds. (13)
Q s s0X;

J

Formulas (12) and (13) suggest that it is most convenient to introduce the
potentials of single and double layers. In fact, the surface integrals in (12)
and (13) give expressions for these potentials. We shall use Greek letters
&, n, ... to denote points on the surface S.

By the potential of a single layer with density ¥(n) we mean the integrals

V(x,¥) = —J uCe, () dS,,

N

(14)
00, ¥) = — f ) q*x, mYu(n) dS,,
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and by the potential of a double layer with density ¢(n), we mean the
integrals

Wi(x,9) = L Ti(u(x, 1)), $ilm)n (m) dS,,,

s (15)
H(x, @) = —2v—— q“(x,mn (e n) dS,.
x;)s
If we substitute the explicit expressions for u* and ¢* from (5) into these
formulas, they become

N

ok = 1) (X —
o= [ e,
(16
o(x,¥) = J - |3 Yi(n)ds,
and ’
3 ). —n)(x, — A
Wk(x, ¢) — ___‘17[ S(xt nl)l();]_:lj)s()ck nk) (15,(’1)'1,(?1) dS,,,
(17
H(x ¢) f Ix |3 ¢k(’7)n1(") dS,,

J

In writing these expressions, we have used the relation

3 (x Y%=y )X =)
|x=y?

which is easily calculated from the definitions (1), (5) and (11). Formula (12)

can now be written in the form

T (%, 1))e = — T;(u(x, ), =

, (18)

vy(x) = L wi(x, NI dy + Wilx, v+ V(x, Ty(V)n)), (19)

where
Tyv) = (T V), To1(v), T54¥)).
We now introduce a shorter notation, by writing

3 (x;— Ui)(xj - r’j)\xk — 1)

Kij(xs ’1) = _47t |x'—7) | 5 nk(")’
v o x, (19a)
. |
K_,(x, n= 7 ax | o ‘ 3 n(n). J
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Then the expressions (17) for W and II can be written in the form

Wi(x, ¢) =f Kifx,me(n)ds,,
S

M(x, ¢) =f K(x,m¢n)ds,.
S

All the functions V and Q, W and IT which we have introduced are analytic
functions outside .S, which satisfy the homogeneous Navier—Stokes system.
From the fact that the kernel of the potential in V(x,¥) has polarity 1/| x—n I,
it follows that V(x,y) is continuous on the whole space, including the
surface S, provided only that ¥(n) is not too badly behaved (we shall assume
that all densities are continuous). However, the corresponding pressure
O(x, ¥) is not continuous in passing through S; in fact, the pressure QO has
a discontinuity of the first kind on S. The same is true of W, as we now
show.

First, we consider W for a constant density ¢ =c¢ = const, and we show
that W satisfies the formulas

¢, xef),
W(x,¢) = < te, xe8, (20)
0, x¢Q.

These formulas follow from (10), if we set v(y) =¢, p =0, u = u(x, ),
4 = q*(x,y), and if we locate the parametric point x inside Q, on S or out-
side Q. The last formula follows immediately from (10). The first formula is
obtained from (12), if we bear in mind that u*, ¢* is a solution of the system
(1), or directly from (10) with v = c¢. The second formula can be verified as
follows: Cut the point xe S out of Q by using a piece of the ball K(x, ¢) with
center at x and radius ¢, and write formula (10), with the functions indicated
above, for Q,, the remaining piece of Q. This gives

0= f [Tifeuin; = T;(uw')e; n;] dS.
Sz +C;

Here S, is the piece of the surface S remaining after deleting K(x, ¢), and C,
is the piece of the surface C(x,e) of the ball K(x,e) bounding Q,. Since
T;(c) = 0, the last formula implies that

»

limJ T, (W)e;n; dS = W(x,c) = —lim f T; (), n; dS.
Se P

gy 4y
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If the integral of T,-'j(u")cinj = K, (x, n)c; were carried out over the whole
sphere C(x,¢), then as the first of the formulas (20) shows, it would equal
—c¢, (the minus sign appears because the normal n, which is an exterior
normal with respect to Q,, is an interior normal with respect to the ball
K(x,€)). Because of the form (19a) for K,;, it is not hard to calculate that
the integral of Kj(x,n)c; over half of the sphere C(x,¢) equals —3c,, while
as ¢ — 0, the integral over C, approaches the integral over the hemisphere,
provided only that the surface S has a tangent plane at the point x. Thus,
we see that W,(x,c) = ¢, if x& S, which completes the proof of the formulas
(20).

In a familiar fashion, these formulas allow us to determine the values of
the jumps of W(x, ¢) on S for any continuous density ¢. In fact, one first
proves that the functions

Wi(x, )~ qu(éO)J Kij(xa ) dS,,
S

are continuous at the point £,€S, provided only that for the surface §
we have]

J‘ | Kij(x,m|dS, < const]. @2n
S

for any position of the point x. Then, because of (20), one obtains the follow-
ing relations:

VVi(é)(z’) =3O+ W) = %‘ﬁ.(‘f)‘*‘J‘ Kij(éa 'I)¢j("l) dS,, >
s

(22)

Wi &)y = — 30+ W(&) = —%@(fHJ Ki{&,men)ds,.
s

Here, W(&);, and W(&),., denote the limiting values of Wi(x, ¢) on S, as §
is approached from inside and outside Q respectively, and W(¢) denotes
the directly defined value of W(x, ¢) on S. All these quantities exist and are
continuous functions of £ on S (we recall that ¢ is continuous, and that S is
a Lyapunov surface of index /). The kernel K (¢, 1) has the singularity

1
lé__n‘z—h'

4 By using the method of N. M. Gyunter [18], it can be shown that (21) is certainly true
if SeCy,n.
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We now consider the potential V(x, ¥) of a single layer for a continuous
density ¥, and with the same assumptions on S. It is easy to see that V(x, ¥) is
continuous everywhere. We form the corresponding stress tensor T, V),
which is easily seen to have the form

_ 3 (xi—'h)(xj_ﬂj)(xk—ﬂk)
Tij(V) = Z&fs | x—n | 3 l/lk(n) dS,,

because of (16). In addition to the first boundary-value problem for the
equations (1), where the field v is specified on S, we shall consider the adjoint
second boundary-value problem, where we know

Tij(")”jls =b (i=1,23) (23)

on S. Accordingly, we investigate the behavior of T;;(V)n; near S. Let ¢ be
any point on S, and let n(¢) be the exterior normal to S at £. As x approaches
the point ¢ along the normal to S either from the interior or the exterior of S,
the functions T ij(V(}c, ¥))n (&) have well-defined limiting values which we
denote by T,(V)yn; and T;/(V),,, n; respectively (these two limiting values
may be different). Moreover, the directly defined value 7; A{V)n; exists on S
at the point £, and all three values are connected by the relations

Tij(V)(i)nj = Wi(O)+ Tij(V)”j = %‘p;(é)—j; Kji(rls f)lﬂj(n) dS.,,
(24)
Tij(V)(e)nj = =3O+ Tij(V)nj = _%‘ﬁx(f)—j Kji(’% f)%(") dS,,-

The properties just enumerated are deduced by considering the functions

3 i— (X — 1) (X —
VGO i) = @) | ST 6 s,

x—n|*

i (xi"ﬂi)(xj—ﬂj)(xk—'?k)
4n | Ix—n|5

+ Yulmn;(m ds,

It is not hard to see that as functions of x, they are continuous at the point &
on S. The relations (24) follow from this fact and from already established
properties of the potential W(x, ). The integral equations (22) and (24) are
the adjoints of each other, and in the next section, we shall explain the
conditions under which they have solutions.
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3. Investigation of the Integral Equations

We shall consider two problems for the system

Av = grad p,
divy =0, } (25)
inside and outside S. In the first problem,
V|s=a (26)
is specified, and in the second problem,
T(n;|s=Db 27

is specified. The first problem is the one of interest to us, and we deal with
the second problem only insofar as it is the adjoint of the first. Let Q; and
Q, denote the interior and exterior domains, with respect to S (Q; was
previously denoted by Q). For simplicity, we assume that § lies in a finite
region of space and is connected. In the case of exterior problems, we supple-
ment the conditions (26) and (27) by the condition

v(x)andp(x) - 0 as |x|— oo, (82)

It follows from the very representation of the solutions of these problens
that v behaves like |x ‘ ~! for large }x |, its derivatives behave like the corres-
ponding derivatives of |x| ™!, and p(x) behaves like | x|~ 2. Therefore, in
order not to hamper our study of the uniqueness of solutions of exterior
problems, we assume from the outset that the solution v which we are looking
for converges to zero like | x| ™! as | x| - o, that its derivatives converge to
zero like |x|™2, and that p(x) converges to zero like |x| 2. With these
assumptions concerning v and p, formula (9) applied to u = v, gives

r 2% 60; avk avi avk
2\, e\, T, ) T TS 29
“Q‘2<axk+axi><axk+6xi> X L (Vo (29)
in the domain Q;, and
~ v 60,' 61},‘ avi avk
N oo T Nas T30 )dx=—| Tao
.Qez(axk+axi><axk+axi) X va ,k(v)vlnkds (30)

in the domain Q,. In both formulas, the normal n is taken to be the exterior
normal with respect to Q; = Q. The integral over a large sphere |x| =R
containing S vanishes as R — oo, since T;,(v)v; is of order R™> on this sphere.
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It is clear from formula (30) that the first and second boundary-value
problems for the exterior domain have no more than one solution. In fact,
it follows from (30) that if v corresponds to homogeneous boundary con-
ditions, then

ov; 0y, .

ox T ox, 0 (ik=1,2,3), 31
i.e. the vector v(x) gives the motion of the fluid as a rigid body. On the other
hand, the vector v vanishes at infinity, and hence it vanishes throughout Q, .
It follows from the system (25), and the fact that p >0 as | x| - co, that
p(x) vanishes. The system (31) has six linearly independent solutions, which
we take to be

¢k:(¢lk9¢2k9¢3k)=ek=(5§’5555§) (k=1,2,3), }
&4 =1(0,x3, —x3), &5 =(—x3,0,x;), ¢g=1(x;, —x;,0). (32

The origin of coordinates is regarded as being inside S. We shall look for a
solution of the first boundary-value problem in the form of the potential of a
double layer, and for a solution of the second boundary-value problem in
the form of the potential of a single layer. For the first boundary-value
problem, the field a cannot be arbitrary in Q;. This is clear from

O=J divvdx=j v-ndsS,
Q; s

so that a necessary condition for the problem (25), (26) to have a solution
in Q; is that

f a-ndS =0. (33)
S

In what follows, it will be shown that this condition is not only necessary, but
also sufficient. In fact, the aim of our subsequent considerations is to prove
the following theorem:

THEOREM 1. The first boundary-value problem for (25) in Q; has a unique
solution for a continuous field a on S, which satisfies the condition (33). More-
over, the problem has a unique solution in Q, for any continuous field a. The
solutions are analytic inside S and continuous up to the boundary S.
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Proof: We look for a solution of the interior problem in the form W(x, ).
For the definition of the density ¢, the first of the equations (22) gives

ai®) = %¢,~<f>+f K& n) dS, . (34)
Y

To prove that (34) has a solution, we have to investigate the corresponding
homogeneous adjoint equation

%lﬁ.-(i)w“f Ki(n, O (n) dS,, = 0. (35)
N

We verify that y(&) = n(¢) satisfies equation (35). Substituting the vector n
for ¥ in the left-hand side of (35), and using the representation (19a) for

K;;, we obtain

3 J (= &) — (M — G ny(&nn)ds
S

%nl(é)_ﬂ |€—']|5

= $n()— ”k(f)'[ Ku(&,mds,.
s

Because of the second of the formulas (20),
L Kij(&,me;dS, = ¢
for any ¢ = const, and therefore
(O — nk(f)L K(€,m) dS, = 4n(&)—n ()3, =0,

i.e. m is actually a solution of the equation (35).

Next, we prove that there are no other solutions of equation (35). Suppose
that W(&) is a solution of (35). Then we use ¥ to form the potential V(x, %)
of a single layer, and we write the corresponding formula (30). The right-
hand side vanishes, since the functions T, (V(x, %)), n; equal zero for our
potential, because of (35) and the second of the equations (24). Therefore, it
follows from (30) that V is a solution of (31), and since V vanishes at infinity,
we have V = 0. The potential V also vanishes in the domain Q;, since, being
continuous everywhere, it vanishes on S. The pressures Q;, and Q. corres-
ponding to V are constant, because of the equations (25). But in Q, the
pressure Q,,— 0 as | x| — oo, and hence Q,, = 0. The stress tensor in Q;
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is T, (V)i = — i Oy If we let VO denote the potential of a single layer
corresponding to ¥ = n, then the corresponding tensor is

Tkj( VO)(i) = 51{ .

This is easily calculated by using the explicit expression for T (V) given on
p. 58, and the equalities (20) given on p. 56.

We now consider the density y* =y —Qn and the corresponding
potential V*. For V*, the quantity T;;,(V(x, ¥*)) vanishes as x approaches
the surface S either from the interior or from the exterior, and therefore by
(24) the density ¥* =0, i.e., ¥ can be expressed linearly in terms of n by
the formula = @ ;n. Thus, we have shown that equation (35) has a unique
nontrivial solution ¥ = n, and therefore a necessary and sufficient condition
for (34) to have a solution is that [ga- ndS = 0. This proves the first part of
the theorem.

Next, we investigate the exterior problem. To do so, we show that the
homogeneous equation

—%¢i(€)+L K& mej(n)dS, =0, (36)

corresponding to the nonhomogeneous equation (34) for the exterior problem

a(§) = —%¢i(é)+j K& momdS,, (37
S

has the six linearly independent solutions ¢*(¢), k = 1,2,...,6, defined by
the formulas (32). Consider any of the vectors ¢*(¢), k =1,2,...,6, which,
together with p*(x) = 0, satisfies the homogeneous system (25). We write
formula (19) for ¢*(x), recalling that T;(¢*) = 0:

¢k(x) = W(X, ¢k)9 XE Qi .

Letting x approach £e S and using (22), we obtain
O =1 ?(f)+J K&, n)dl(n) ds,,
S

i.e. each ¢* is actually a solution of the system (36). We now show that any
other solution ¢ of the system (36) depends linearly on ¢*, k = 1,2,...,6. If
this were not the case, then the equation
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_%Wi(é)+J Ki(n, Oy (m dS, =0, (38)
N

which is adjoint to (36), would also have more than six linearly independent
solutions ¥*(¢), 1 £ k < kg, ko > 6. To each y*, there corresponds a single-
layer potential V¥ = V(x, ¥*) for which T,(V*);,n; = 0. But then, because of
(30), the V* satisfy the system (31), and hence no more than six of the v*
are linearly independent. The same holds for ¢, since if V(x, §) vanishes in
Q,, then V(x, y) vanishes in Q,, and hence the density ¥ vanishes. Thus, we
have proved that the systems (36) and (38) have precisely six linearly inde-
pendent solutions, which in the case of the system (36) are given by the
vectors (32).

Now we consider the nonhomogeneous system (37), which has a solution
only if

Ja-n/z"dS=0 (k=12,...,6). (39)
s

Therefore, a solution of the exterior problem (25), (26), (28) in the form of a
potential of a double layer exists only for boundary values a(¢) which satisfy
the conditions (39). In the general case, where a(¢) is arbitrary, we look for a
solution of the problem in the form

v(x) = W(x,¢)+ ; ¢n VX, ¥7),

where the Y™ are linearly independent solutions of the system (38). For ¢ we
obtain the system

6
a(d)— Z_:l e V&Y™ = —1 i(é)+f Ki(&memds, (i=1,23), (40)

analogous to (37). We choose the constants c,, in such a way that

J[a— f c,,,V(f,l//"')]u//"dS=0 (k=1,2,...,6). (41)
§ 1

m=

If this algebraic system is to have a unique solution, we must show that the
corresponding homogeneous system has only the null solution. Thus, let
a = 0. Multiplying (41) by ¢, and summing over k from 1 to 6, we obtain
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J V-ydS =0, (42)
S
where
6 [3)
¢ = Zl C"l .p'"’ V = V(x9 lﬁ) = Zl CI" v(x’ wm)'
If we examine V in Q,, then, because of (24), we obtain
Tik(v)(e) n, = _%W;(é)_f Kin, é)wj(r’)dsrp
S
so that according to (38), we can transform (42) into

0=2 Vi(i)[T:k( Vo) e +f K i(n, W (n) dS.,:I ds;
N N

=2 V,(i)[’r:k( V)(e) nk+%ll/i(£)] dS;
s

~

=2| ViTu(V)n,dS;.
s

It follows from this and from formula (30) that V satisfies the system (31),
and therefore V is identically zero. Then its density y =0, and all the
¢, = 0, because of the linear independence of the y*,

Thus, finally, we have shown that (40) has a unique solution for any a;,
which proves that the first boundary-value problem for the exterior domain
has a unique solution for any vector a. The differentiability properties of the
potentials V(x, ¥) and W(x, y), and the methods for studying them, resemble
those for electrostatic potentials.

4. Green’s Function

As is well-known, if we can solve the boundary-value problem for a homo-
geneous equation with nonhomogeneous boundary conditions, then we can
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construct the matrix Green’s function for the given problem. Thus, for
example, the matrix Green’s function G ;(x, y) for the interior Stokes problem
(4), (4a) of chapter 2, section 1 has the form

Gij(x9 Y) = ulj(x9 Y)_g.j(x’ y)&}
(43)

rj(xa ,V) = qj(x’ Y)"gj(x, )’),

where »/ and ¢’ are the fundamental solutions of the problem defined by the
formulas (5), and the functions g{(x, y) and g’(x, y) are defined as the solutions
of the Stokes problem:

1
|

. d .
Axg.’(x,y)=(7xg’(x,y), 1

J
ox;

glj(xsy)lxes = u{(X,J’),xes- J

For y lying inside S, the functions g! and g’ are analytic functions of x in
Q, which are continuous up to S. Their smoothness in the neighborhood of
S is determined by the smoothness of the surface S.

The solution of the nonhomogeneous system with zero boundary values
of v is given by the formulas

vi(x) = J;) Gij(x9 )’)fj(Y) dy,

(45)
p(x) = L rix, fiydy.

It can be shown that the matrix Green’s function and its derivatives can be
evaluated in terms of lx— y|'“ in approximately the same way as the com-
ponents of the corresponding fundamental solution. These estimates are
obvious when the point y is fixed in ©, and x varies in some subdomain
of the domain Q. However, to obtain estimates which are uniform for x
and y in Q requires a special investigation, i.e. a more careful study of the
solutions of the integral equations (22) and (24). The following results are
proved in this way:
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If S'is a Lyapunov surface of index #, 0 < # < 1, then

C
Gi'x9 é ;
’ J( y)l |x_y|
10G(x, )] c
{*‘axm /’ rj(x5y)’ é lx_ylz,
0Gif(x,y) 0G(x",y) '
l éxm - éx'," I’lrj(xs y)_rj(x sy)l r (46)
! Y | A
c[l" X[ [Infx=x]] Ix fl] for 0<h<l1,
< R R
S| [lx=x] [m]x=x| | [x=x'[In?|x—x| _
C[ 3 + R , for h—l.J

Moreover, if S belongs to Cy4, 0<h =1, then

azc;l.j(x,y)‘I ‘[6rj(x,y) < c N
0x,0x, 7| 0x, | T |x—y|?’

PGi(x,y) _*Gif(x',y)| [Ory(x,y) _orx',y)]

0x, 0x,, 0%, 0%, || 0%y 0x,,

-

C

R* R? R?
for 0<h<l1,
<l [ x—x'| |In|x—x’' x—x"|In?x—x"| Ix—=x'| |In®x—x'
[ CE TN
L for h=1.

[|x—x"| |In|x—x]| |x—x’|ln2|x—x’| [x—x’l":l
+ +

lIA

47)
Here, we have R = min(|x—y|, | x'—y|). The estimates (46) and (47) allow
us to prove that the differentiability properties of the solutions of the problems
under consideration depend on the data of the problem in the same way as
in the case of the solutions of the first boundary-value problem for the
Laplace operator. In particular, the results pertaining to volume potentials,
given at the end of section 1 of this chapter, are valid for solutions v, p
corresponding to zero boundary conditions.
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Finally, we give the fundamental singular solution of equation (1) for a
planar domain:

_ 1 1 (xi—y)(x;—y;)
vidx,y) = ;m—v[éijlnlx_yl‘*' lx_y|2 ’

i, 1
gj(X,J’) 2572;3?,-1“\?——}1[.

Using this solution, we can construct a potential theory just as in the case of
three-dimensional space, although there are certain differences (as in the
theory of the electrostatic potential).

5. Investigation of Solutions in W2(Q)
We now show that for solutions of the problem
Av = grad p+f,
divv =0, v|s:0} (48)

in a bounded domain Q, we have a result resembling a corresponding result
for operators of elliptic type, in particular, for the Laplace operator:

THEOREM 2. If € L,(Q), then the corresponding solution v belongs to W2(Q);
moreover pe W}(Q), and

| i = C||f] e - (49)

Here, it is assumed that the boundary S of the domain is twice continuously
differentiable.

To prove this theorem we use the following known facts:

(1) The inequality

waa S C | Au

” u I LoA(Q) s (50a)
valid for any function » in W2(Q) vanishing on the boundary;

(2) The inequality

j [u(®—u(&)]"
sls lf §|2+r}.

valid for any function u(¢) in W}(S);

dS;dS, < C|u|

W) s A<l (50b)



68 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW CHAP, 3

Lo(©) >
| (51)
[Lr€)

for the volume potentials U and P in terms of their density f;

(3) The estimates

|ul
| Pl

woa < C|f

|
wae S C|f

(4) A result concerning the behavior of the functions in W?2(Q) on the
boundary S formulated below as Lemma 1.

For r =2, the proof of inequality (50a) is given in chapter 1, section 1
(estimate (16)), while inequality (51) is given in section 1 of the present
chapter (estimate 7a)). The proofs for the general case, with arbitrary
r > 1, are found in [82], [85], [86].

The proof of inequality (50b) is readily given.

LeMMa 1. A necessary and sufficient condition for the function u(&) (£€S)
to be the boundary value of the function u(x) (xeQ) in WXQ), I = 1, is that the
integral

I-1
” u(€) [ mis) Ekzzo | DEu(®) | E 1)
|Dé"‘u(§)—Dér_1u(§')|2d
- S.ds..
*” RN T 2
be finite for u(&). If u(x)e W(Q), then
Nu(© [lw,1- sy £ € u(®) w100 - (52)

Moreover, if the function u(§) specified on S has finite norm | u(¢) | i- 1)),
then there exists at least one extension (x) of u(x) inside S, for which
i(x) |s = u(&), and

a4 [lw10) S C || 4l |w,1-1ms) - (53)

The surface S is assumed to be continuously differentiable | fimes, and the
constants C in (52) and (53) depend only on S.

The reader will find a proof of Lemma 1 in the papers [20-22] and [111].
It follows from this lemma and the inequality (50a) that the estimate
| () w20 < CLAu [0+ [ 4 [, 2- 105 (34)

holds for any function u(x)e WA(Q), with a constant C which depends only
on the domain Q. Here, the boundary S is assumed to be twice continuously
differentiable. In fact, using the values of u(x) on S, we form the function
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ii(x) indicated in the lemma, and we apply the inequality (50a) to the differ-
ence u(x)—ii(x):

[ u(x) = () | w, 2y £ C || Au—Ait ]| 0 g
From this, using (53), we obtain
fu() [lw,2) £ C || At | L)+ C | A Loy + | & w2

< CHAu

L+ Co [ u(@)|

We now turn to the proof of Theorem 2. The solution v, p can be represen-
ted in the form

wrz~ l/r(s) .

v(x) = Ux)+u(x),  p(x) = P(x)+4(x),

where U is the volume potential with density f, and P is the corresponding
pressure, i.e.

Uix) = L wi(x, AWy, Px) = L q“(x, ) fil») dy.

The functions u(x) and g(x) will be solutions of the problem

Au = grad g,
divu=0, uls=—Ujs. (33)

In section 2 of this chapter, it was shown that u can be represented as the
potential of a double layer, i.e.

ufx) = J Kij(-x, ’1)¢j('l) dS,, (56)
s

and

g(x) =f K(x,m¢n)dS,. (57)
s
The density ¢(n) is determined from the system of integral equations

lzd)i(f)‘f'f Ki(&,me(n)dS, = u(l) = —Ui(&). (58)
s

The condition

j U-ndS=0 (59)
s
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which is necessary for this system to have a solution, is satisfied. The estimate
(49), or equivalently (51), which we need for the functions U, P has already
teen proved. Since U;e WA(Q), then because of Lemma 1, the functions
Ui(&) belong to W~'"(S) i.e. they have finite norm | ||w,2-1»s . Using
this fact, we can show that the solution ¢(¢) of the system of integral equations
(58) will also belong to W,2~1/(S). In fact, we have the following lemma:

LemMA 2. If the external force —U(E) in the system of integral equations
(58) belongs to W2~1/"(S), then its solution also belongs to W?~1"(S) and

S 1

We shall give the proof of this lemma later. For the present, we show how
it can be used to obtain the estimate (49).

Thus, we suppose the inequality (60) has been proved. We estimate its
right-hand side in terms of ||f Lo DY using (52) and (51), so that

L@- (61)

(60)

W,.Z_ l/r(s) =

woa-rs) S C1 | U w2 < C2 [ £

i|wea-1rs) =

Now consider the representation (57) for g(x):

4(x) = LK,-(x,nwj(n)ds,, s fix (3R ds,.

The integral appearing in the right-hand side of this equation can be written
as follows:

2nax f \x ’7|3nk(’1)¢ {mds,

v 82

SR 1|nk(n>¢,<n)ds

2n6x,‘6xj Slx

v 0 0
~ 26 OXJJ;- én(n)lx n | ;@i ds
Thus, J is a sum of derivatives of double-layer potentials, i.e.
3.8
J=v —J;,
j; ox;

where

1 G, 1
10 = = f [ DS,
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Each of the J(x) is a harmonic function in Q, with boundary values belonging
to W2~1/7(S). In fact, because of familiar properties of the jump of a double-
layer potential, the limiting value of J; from inside S can be expressed in
terms of the density and the directly-defined value of J; on the surface:

J (& = 39D+ (&).

Just as in Lemma 2, it can be proved that J,();, must belong to W2~'7(S),
if its density ¢ ,(n) belongs to W,>~*/(S), and

19w |

woa-uns S C 90|

W’_2>1/r(s) . (62)

From (62) and (61), we obtain

17w |

wia-ms) S Cll A w,2-1ms) £ Co [ fice -

Because of this inequality and the estimate (54) for the harmonic functions
J(x), we have

Wrz—l/r(s) é Cl “f

15|

woaa@ < Cl I | Le@) -

For the function ¢(x), this gives

lat)]

v <CIE

L@ - (63)

We now estimate u from the Navier-Stokes equation Au = (1/v) gradg and
the boundary condition uls = —Ul|s. Knowing (54) and the estimate (63),
we obtain

!
Wi < C[

[ w0

o S Cllafwaa+ClUQD] L)
The inequality (49) follows from this inequality and the inequalities (51)
and (63). This completes the proof of Theorem 2.

We now prove Lemma 2. The kernels K;;(£, ) of the system of integral
equations (58) have the estimate

C
E—n|’

lKij(é’ "I)l = I (64)
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since the surface S is assumed to be twice continuously differentiable. More-
over, the inequalities

C
|K'J(C "]) Kui 71)| li é l’
|
Kyl _ € |
— , L 65
& | S| (65)
K (&m) _OKy(E )| _ClE~¢
oz, g =TRSO

"—n|), can immediately be verified. Here, the
differentiation is carried out with respect to the directions tangent to S.
The system (58) has an infinite set of solutions, since the corresponding

homogeneous problem has the nonzero solution .

%¢?(€)+f Ki{(&,m¢j(n)dS, = 0. (66)
N

It was shown in section 3 that the solution ¢° is unique to within an arbitrary
multiplicative constant. We fix the solution ¢ of the system (58), by imposing
the condition

f¢-¢°dS=O.
S

It follows from well-known results on integral equations whose kernels
have weak singularities that this solution will belong to the class L.(S) if
the right-hand side of the system (58) belongs to this class, and that

1) | L5y £ CIUE) |Lyis)- (67)

The potential U(x) is summable with power r together with its derivatives
up to the second order (inclusive) over any bounded domain in E;; more-
over, by (51) and Lemma 1, U;e W?~'"(S), and

3

woa-tre = C ” - (68)
Next, we shall show that
?:($)— i) .
[ ] e as,as. s el ©)
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for any A < 1. The integral on the left-hand side will be estimated using the
integral equations (58).
The inequalities (50b) and (68) give

J J OOV 5. dsy < e (10)
sJS lé“é |

We now estimate the integral

[y vl |
L . ds.dsS. =1.
J;J‘S ‘é_élizwz Sé ¢ i

where
wi(&) = L Ki{&,m(mds,.
We fix the number ¢, which satisfies the condition
O<e< min(i/, 1—;—/1>,

where r’ = r/(r—1). By Holder’s inequality,

1/r—e+1/r'+¢

|¥i(&) = i)

r< (f Kifem—Kif&om) 0 ‘ dsﬂ)
S|

éf | Kif&m =K (& om |1~ ¢, [" dS,
s

r—1
X <J‘ |Kij(€7r’)—Kij(élar’)lI+£r’dsn> .
N
We estimate the last factor on the right-hand side of this inequality. Let

o, be the part of the surface S contained inside the sphere with center at the
point ¢ and radius equal to 2| ¢—¢&|. By (64) and (65),

II Kij(é, ﬂ)—Kij(f', '7)| 1her dS,,

:J‘ |Kij(é,r’)_Kij(€(9 r’) | ther dS,"*‘J‘ ‘Kij(é’ n)_Kij(é,a ’7)' ther dSq
o S

—az

ds ds dsS
é C L ”7']*7'_{_ Rt o+ _ ozl 14er _'l_v?,>
(Iﬂglé_nll+sr ,[u§|él_'7‘1+" lé é | J\SH% 5_,”2*—2::

é Cllé—é(‘ l—er'.
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Consequently,

2GR 7SI T "l_s’f | Kif(&m=Ki(&m | | b | dS,
S

and

. K. (& 1—er
L=C, f |¢,0m]" ds, f f K& = KUE DL g5 s,
S SJS

ié__é/|3—r+er+lr

To estimate the Jast double integral, we use the estimate (65) for K;;, and
also the fact that for any arrangement of the points &, &, 7,

Lt
We have
Kl(é’n)_K‘(él,”) 1-er
JS,[S| J|é—§' 3—jr+£r+1|r dS{dSé,
1 { :
§C2 sts [6“7]|2(1—£r)+lf/_’1l2(1—sr) |f——é’|2_’7+1’+28rdsédsg'
ds ds,.
§C2< Slé_’,]ij(l—er) I;?—érlzf’*'l"*'lar

dS: dsé,
+
Ig'_nIZ(l—sr) |é_éll2—r+lr+25r

and consequently,

=G

r
Lr(S):

3 3
I 2C G _Z,IJ;' ¢j(’7)|rdsn =C;C; 21 “ ¢j

By (67), it follows from this that
L Clf|L@-

Since by (58), ¢, = 2y,—2U,, then from the last inequality and from (70),
(69) follows. The subsequent estimates will be carried out not for the entire
surface S at once, but for its different pieces S, , for which explicit equations
can be written in local coordinates referred to some point & on each piece.
We take one of these pieces S, and a point & on it. Let (&, , &, , &;) be local
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coordinates with origin at the point &, where the axes of ¢,, &, lie in the
tangent plane to S at the point &, and &, is directed along the exterior
normal to S. We shall regard all the functions ¢;, U, and the other functions
specified on S as functions of the coordinates £, and £,, and we shall con-
tinue to use the old notation to denote them. Let £, and &, vary in the
region D, : {(£, —&5)? + (£, —&5)? < d*}. We shall denote the derivative with
respect to either &, or &, by 9/d¢,.
Now, we write the system (58) in the form

‘i’;(ﬁ)‘*’f K& m[o;m—¢i(E)]dS, = —UL(), (71)
S
which can be done since
J~ Kij(é! 7]) dSr] = %5{
s

(see formula (20) of section 2 of this chapter). Assuming that £eS,, we
differentiate (71) with respect to &,. (It follows from the estimates given
below that this differentiation can be carried under the integral sign.) Using
(20) again, we obtain

10¢(S) [ 9Kii(&,m)
2 aéa S aéa

aU(%)
0t

[o(m—¢8)]dS, = —

(72)

For the second term, we have

f OK(&m)
s ©0&,

K;;|"
é( | 2e. |&~1

écf 5 18—, 0" 1o
s /5 |€ 12+rl n

because of (65). We integrate this inequality with respect to £€.S,, and use
the inequality (69), obtaining

|
L%

Kty
J

— (¢ —d,)]dS,

2r’/r+r’).dS">r—1J\ i |¢) )_¢J(€)lrds',

T n|z+r1

a| dS¢ 2 C|f|L -
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This holds for all the pieces S,(k =1,2,..., N). From this and from (72)
and (51), we obtain

dS 2 C |- (73)

To finish the proof of the theorem, we must still prove that

106:E) &) " o
US ?é sg | 16T dsdSy < C L@ (74

We shall prove this by assuming that the integration with respect to dS; and
dS,. is carried out only over one of the pieces S,. (This does not involve any
loss of generality, since the pieces S, can always be chosen to be overlapping,
and the estimate given below can be carried out only for ¢ and & which are
sufficiently close together. For ¢ and ¢ which are far apart, the estimate is
not needed, and we can use (73) instead.) Thus, let & ¢ €S, be such that
(&, ¢&,) and (&), &) are in D,. We draw a sphere of radius 2'{ & [ with
its center at the point &, assuming that |<§ & ] =< d/4. This sphere cuts off
from § a region which we denote by o.. Because of (72) and the estimate for
0U;/é¢, already available, it is sufficient to examine the second, integral term
in (72) instead of d¢,;/0&,, and establish the inequality (74) for it. To do this,
we first take

Kife'n)
&,

I =] J S {""”@) 60— 40~ 6,00~ )]} ds,|

and represent it in the form

0K
_J .é%éj) [¢,(m—&)]dS,

of (e ke
I 2,

() —¢,(£)]ds,

) [:(m—d,&)]ds,

(64— ,0)] f OK”“ Wys,!
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We estimate each of these integrals by using Schwarz’ inequality, recalling

that the radius of the ‘‘cutoff”” sphere equals 2| £ — ¢’ | and that the inequalities
(65) hold for K, (¢, ). The result is

1 r—1
Jr “’ N=sC dS P dsS
wosel], LIRS ) o
’ (RESEON
+ "ds T
J:n; jzll |é IZ+r/. n oo ér__n|2—r/\ n

+J il‘ﬁ(ﬂ) -¢,0|”

I 2+ra

-dS,

~oz j=1 ‘

o é_'lllr'/r+}.r’>r—l
x 2 ) as
<J~S—¢'§ |§_"13r !
1 r
o dS
é/_nlz 'I)}

{,5 s f ¢,(n> I&(’?' s,
o j=1

+|§_£/|MJ\ i I¢j('1) d)](c)l dS”

= lé |2+r}.
g J=

v 3 -0 |

S—-ag

3 .
+| é—é' | MJ‘S Z l d’](ﬂ) %Tf}. o dS'I

—gz j=1 |
3
+(n|E=&']y .Zl |¢,~(5')—¢j(€)l’}- (75)

Here, as before, A is any number less than 1.
To obtain the estimate (74), we still have to consider the integrals

- JEE)
Ik—J;k sklf—f l1+,c.35dsé
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To do this, we use (75):

= 2 |¢:m—d,O|" 1
Ik é Cjzl SJ\S{J‘ |: |é_’7l2+r}. I€_£/|1+r—rl

Lem-9,01" 1 ]ds
|«f' ‘2+r]. lf & |1+' rk
+|¢|g:)§qlb,w D 1| £ gl}dsédsg,.

Since 4 can be chosen to be larger than 1/r', it follows from this inequality
and the inequality (69) that

I~k é @ H f ”;‘r(n) 4

and this in turn proves the inequality (74). Thus, the proof of Lemma 2 is
complete, as is also the proof of Theorem 2.

By the use of the same ideas and methods, the following generalization of
Theorem 2 has been proved. This theorem, as well as Theorems 2 and 5,
were proved by V. A. Solonnikov (cf. [62], [107]):

THEOREM 3. If fe WYQ), r> 1, [ 20, a(S)e W!t2~11(S),

J‘a-ndS=O,
N

and Se Cy, ,, then the solution of the problem

Av = grad p+f,
divv =0, v|s=a,} (76)

has the properties that ve W!*2(Q), grad pe WXQ), and
| woa < C(| ] warzuns)  (77)

From Theorem 2 and the representations (12) and (13) we may obtain
the following theorem.

W,“’z(ﬂ) + ” grad p l W,

THEOREM 4. If f(x)eL(Q) N Co4(Q), r> 32, then the corresponding
solution of the problem (48) will be classical; more precisely,

Ve WrZ(Q) NCq,e 3/r(ﬁ) N C2,h(Q)a
and
grad pe L, ()N Cy 4(Q).
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In fact, by Theorem 2, grad pe L,(Q) and ve W2(Q), so that by Lemma 6 of
chapter 1, section 1, v is an element of Cy ,_3,(£). The smoothness of v
and p inside Q, as stated in the theorem, follows from equations (12) and (13)
and from the properties of the volume potential, which were listed previously.

Further information on v and p is provided by the following theorem.

THEOREM 5. If fe C, ,(Q), € Cy1, 4(S), SeCyy 54 120, and

f a-n=20,
S

then the solution to the problem (76) has the properties that ve C,, , (Q), and
grad pe C, ,(Q).

All these theorems are also true for unbounded domains €, provided
that f(x) tends to zero sufficiently rapidly as | x| - oo.



CHAPTER 4

The Linear Nonstationary Problem

In this chapter, we study the boundary-value problem for the non-
stationary linearized Navier—Stokes equations. As noted above, the methods
of investigation presented in this book can be applied equally well to systems
obtained by various kinds of linearization. Therefore, we choose one such
system, namely

v,—vAv = —grad p+f,
)

divv=0

and we use it to illustrate our method. For simplicity, we take the boundary
conditions to be homogeneous. The case of nonhomogeneous boundary
conditions reduces to the homogeneous case, in the way indicated in
chapter 2. The domain Q can be either bounded or unbounded, but in the
latter case, certain restrictions have to be imposed on the behavior of
v(x, 0) as | x| - co. In fact, we assume that v(x, 0)eL,(Q), or if ¥(x, 0)¢L,(Q),
that there can be found a function ¢(x) such that v(x, 0) — ¢(x) €L,(Q?) and
A¢ eL,(Q). The function f(x, 7) is assumed to be square-summable over
0r=Qx[0,T] ‘

The boundary-value problem for (1), i.e. the problem of determining v
and p from the system (1) and from the boundary and initial conditions

vlS':O’ v|t=0=a(x)’ (2)

can be solved in various ways. From the computational standpoint, it is
probably most reasonable to do this by using Galerkin’s method, or the
method of finite differences. From the theoretical standpoint, the functional
method is preferable; we have presented this method in {31, 32] as applied to
the solution of the Cauchy problem for functional equations of the form

d
‘7?+A(t)u =10, u©)=1u,, ©)

81
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in a Hilbert space, with an unbounded operator A(t). From the results
obtained in [32] concerning the problem (3), and from the results on the
stationary problem, it follows that the problem (1), (2) has a unique solution.
However, in order not to refer the reader to the papers [31, 32] concerning
the problem (3), we now present the relevant material, as applied to the
present case (this has also been done in A. A. Kiselev’s paper [33]). As to
Galerkin’s method we demonstrate it for the case of nonlinear nonstationary
problems in chapter 6; it could be used more in the linear case.

1. Statement of the Problem. Existence and Uniqueness
Theorems

First of all, just as in chapter 2, we modify the classical statement of the
problem (1), (2), and replace it by another statement, which is wider and in
many respects simpler. We shall begin with generalized solutions, which
possess those generalized derivatives which appear in the system. For the
time being, we shall assume that Q is bounded. Let a(x)e H(Q) and
f(x,1)eL,(Qr). We decompose the space L,(Q;) into two orthogonal
subspaces

LZ(QT) = G(Q) @ J(QT),

assuming that the elements of J(Q,) belong to the subspace J(Q) and the
elements of G(Qr) belong to the subspace G(Q) for almost all ¢ (see chapter 1,
section 2). Without loss of generality, we can assume that f in the system (1)
belongs to J(Q;), since its gradient part can be incorporated in —grad p.
We shall use the operator A corresponding to the stationary problem (4
was introduced in chapter 2, section 4), and we shall regard the problem (1),
(2) as the problem of determining a vector v(x, ) belonging to D(A ) for almost
all 7 and satisfying the relations

Lv=v,—Av =f,
4)

V|i=0 =a.

With the problem (4), we associate an operator 4 which assigns the pair
of functions Lu(x, t) and u(x,0) to each function u(x, ¢) in some set D(A):

Au = (Lu;u(x,0)).
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For the set D(A4), we take the set of all vectors u(x, t) of the form
¢0(X)+J ¢(x,7)dr
V]

for which ¢,(x), ¢(x, t) belong to D(A) for all ¢, and ¢, 4¢ depend continu-
ously on ¢ as elements of L,(€). It is not hard to see (cf. chapter 1, section 2)
that D(A) is dense in the space J(Q;). Moreover, the values of the operator A
are considered to be elements of the Hilbert space W of pairs of functions
(f(x,1); ¢(x)) with fe J(Q;), e H(Q) and with the scalar product

{(f1500),(F,:¢,)} = J (fi.£)dt+ ¢y, ¢,]
0

(see chapter 1, section 2). Just as in L,{(Qy), we denote the scalar product in
J(Q7) by

T
(fi. 1) = J (f,,f,) dt.
0

The domain of the operator A is in the space J(Q,) and its range is in W.
The object of the considerations which follow is to prove that the operator A
can be extended by closure to an operator A whose range fills all W. But this
means that the problem (4) will have a solution v for any feJ(Q,), a € H(Q),
and that this solution v will belong to D(A4).

First, we show that 4 has a closure 4, and we characterize the domain of
definition A. The first assertion is a consequence of the density of the domain
of definition of the operator which is the adjoint of A. Instead of verifying this
fact, we show directly that 4 can be extended by closure. Let the sequence
{u,(x, 1)} in D(A) be such that u, converges to u in J(Qy), while Au, converges
to (f; @) in W. If we show that u = 0 implies that (f; ¢) vanishes, then this
means that 4 can be closed and Au = (f; ¢). Thus, let u,= 0 in J(Q;), and
let Au, = ({,; ¢,) = (f; ¢) in W. We multiply Lu, = f, by an arbitrary smooth
vector ®(x, r)e D(A), which vanishes for 1 = T'; then we integrate the product
over O, and by integrating by parts we change all differentiations of u, to
differentiations of ®. The resuit is

an-(ndxdt= (u,,— Tu,)- @ dx dt
T Qr

=J u, (—®,— AD)dx dt—f ,(x) - ®(x,0) dx. )
or Q
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Now let n— 0. According to our assumptions,
f f-(Ddxdt:—J‘ ¢ - D(x,0)dx.
T Q

But, as is easily verified, the smooth functions ®(x, ¢) in D(4) which vanish
for t = T =0 form a dense set in J(Q;), and hence f(x, r) = 0. Since the values
of ®(x,0) from a dense set in H(Q), it follows that ¢ = 0 also. Thus, we have
proved that it is possible to close the operator 4 in J(Q;).

Next, we characterize the domain of definition of the closed operator A.
To do so, we consider the expression

f ' (Lu, Lu) dt
0

for u e D(A), and we transform it, by integrating by parts, into
t

J. J Lu- Ludxdt =J [vZ +(Au)> —2u,- Au] dx dt
oJa Q.

3
=J [ +(du)?] dxdt+vj 3 ul(x, t)dxliii,, 6)
e Q k=1
or equivalently

3
[0? +(uwy?] dx i+ v f S w2 (x, 1) d
Qc Q k=1

3
=| (Lwldxdt+v| Y ul(x,00dx. (7)
Qe 0 k=1

From this we see that if 4u, converges to Au in W, then du,/0t and Au, (and,
a fortiori, u,) converge in L,(Qp), and du,/dx, converges in L,(Q), uniformly
in ¢, Thus, the elements u of D(A) have first-order derivatives with respect
to t and AueL,(Qy), while for all te[0,T], the derivatives D,u belong to
L,(Q) and depend continuously on ¢ in the L,(Q) norm. The operator A
can be calculated in the same way as 4, i.e.

Au = (u,— Au;u(x,0)). 8)

The equality (7) also has the following consequence: If Au, converges in W,
then the u, themselves converge in J(Qy), and in an even stronger sense. This
means that R(4) = R(A) i.e. the range of the closure of A4 is the closure of
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the range of 4; (R(A) is a closed subspace in W), and the operator A4 has a
bounded inverse A~ ! defined on R(A).
Finally, we show that the equation

Av = (f;a)
has a unique solution for any (f; a)e W. To prove this, we must still show
that R(A) = W, or equivalently, that there is no element in W orthogonal to
R(A). [Essentially, this assertion is the uniqueness theorem for a generalized
solution in L,(Qr).] Assume the opposite, i.e. suppose that there exists an

element (f; a) in W which is orthogonal to all u in R(A4), or equivalently, to
all u in R(A). Thus, suppose that

0 = {(f;a), Au} = f-(u,— Au)dx dt+‘[ a,, -u,(x,0)dx 9

Qr Q

for all we D(4). From f, we construct the vector

yix,) =471 (Jﬂ f(x, 1) dr),
T

where the variable 7 is regarded as a parameter. Since

'[ t f(x, ) dr e J(Q),

T

it follows that ¥(x, #)e D(4) and

AY(x,1t) = Jt f(x,7)dz.

T
Thus, we have

J -
f(x’ t) = é}(A'/’(x’ t))
for almost all 1. We now set
t
u(x, 1) =f Y(x,7)dt
(1]

in (9), which is possible, since u belongs to D(4). Then, we obtain

0= (A“¢),-<¢—ft v dr)dx dt.
Qr

[
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Integrating by parts with respect to f, and bearing in mind that ¥ |,=T =0,
we find

o:f [—Jw-¢,+<5¢>2]dxdz—f T 1o d.
or [o}

Further integration by parts with respect to x, and ¢ gives

3 3
0=1| S yiutydx|'=I+| (A)idxdi+v| Y ¢i(x,0)dx
Q k=1

2 Q k=1 or

3
—| (Ay)ydx dz+"f Y ¥l (x,0)dx,
QT 2 Q k=1
from which it follows that Ay = 0, and hence f = 0 also.
We now return to the equality (9). According to what was just proved,
(9) becomes
0 = [a,u(x,0)]

for any ue D(A), and since for such u, the functions u(x,0) are dense in
H(Q), it follows that a = 0. This proves that R(A) and W coincide. Thus,
everything which has been said in this section leads to the following theorem:

THEOREM 1. The problem (1), (2) has a unique solution v, p for any feJ(Qr)
and ae H(Q). The solution ¥(x,t) has derivatives v, and Av in L,(Qy) while
Vi x, and p,, belong 1o Ly(Q) x [0,T], where Q' < Q.1 For any te[0,T], the
solution v(x,t) itself can be regarded as an element of H(Q), which depends
continuously on t. Equation (1) is satisfied almost everywhere. If the boundary S
is twice continuously differentiable, then v, . and p, belong to L,(Qr).

The only assertion in the theorem which requires verification is the asser-
tion concerning uniqueness. All the rest follows from the results that have
just been proved and the properties of the operator A established in chapters
2 and 3. However, the uniqueness of a solution in D(A4) is an easy consequence
of equation (7). In fact, if f=0 and a =0, while v is the corresponding
solution, then v, (x,7) = 0, and hence v = 0 also.

It is worth noting that, in proving Theorem 1, we have established a
stronger uniqueness theorem, namely, the uniqueness theorem for ‘““generalized
solutions of the problem (1), (2) in L,(Q+)”.

1 Here, as everywhere else in this book, the relation 2’ < {2 means that 2’ is a strictly
interior subdomain of the domain £2.
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We shall call a function v(x, 1) in J(Q;) a “‘generalized solution in L,(Qr)
of the problem (1), (2)” if it satisfies the identity

J v-((b,+5<b)dxdt+j

Q

a-®(x,0)dx = —f f-®dxd: (10)
or

for all ®(x, ) in D(A) that vanish at 1 = T.

The solution whose existence is insured by Theorem 1 is a generalized
solution in L,(Q7) of the problem (1), (2). Let us suppose that problem
(1), (2) has two solutions in L,(Q7); then their difference w will satisfy the
identity

j w: (®,+ Ab)dx dt =
In this identity, we replace ¢ by T = T—. This gives the identity
J w(—®,+AD)dxdt =0, (11)
Qr

which states the same thing as does identity (9) with u(x,0) = 0. Here and in
the case corresponding to (9), the sets of functions {®@} and {u}, as well as
the a priori properties of w and f, are the same, so that in view of what was
shown above, it follows from (11) that w = 0. Thus we have proved

THEOREM 2. The problem (1), (2) cannot have more than one solution in
Ly(Q1).

Such solutions may exist for very ‘““bad” f and a. We shall not now discuss
the precise conditions which must be imposed on f and a, but shall limit
ourselves to the following discussion of the existence of some ‘‘better”
solutions, namely, the ‘“‘generalized solutions with finite energy integrals”.

_Bya “generalized solution of the problem (1), (2), with finite energy integral’,
we mean a function v(x,t), which possesses derivatives v,, belongmg to
L,(Q,), equals zero on the lateral surface of Qr, is an element of J(Q),
depends continuously on t€[0,7] in the L,(Q) norm, and satisfies the
identity

f v(x,t)-Q(x,t)dx+J j (—v-(I),+vvxi‘<Dxl.)dxdt—J‘ a(x)  ®(x,0)dx
Q oJa Q

=jtj f-®dxdt (12)
oJQ



88 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW CHAP. 4

for all solenoidal vectors @, which have derivatives ®, and ®,, in L,(Q7)
and equal zero on the lateral surface of Q.

These solutions form a narrower class of solutions than the class of
generalized solutions in L,(Qyp).

From Theorems | and 2 we may deduce

THEOREM 3. Let a(x) € J(Q) and suppose either that f has norm

frl|f(x,t)||dt< w

or that
3 afk
f(x’ t) = A
k§1 0,

with f*eL,(Qy), k = 1, 2, 3, while

t
fff'@dxdt
oJa
t
—j j f‘'®,, dxdt.
oJa

Then there exists a unique generalized solution v to the problem (1), (2) with
finite energy integral.

in (12) is identified with

Uniqueness follows from Theorem 2. To prove existence for the first case
we observe that for the solution obtained in Theorem 1, the identity

1d 3
—— | vidx+v Y v,fkdx=j fv dx (13)
2dt)q Q k=1 Q

holds: this results if we take the scalar product of both sides of system (4)
with v, integrate over (Q, and in the second term on the left integrate by parts
once. It follows from (13) that

d 1
(MEAMEIH RN

3

so that either || v(x,?)|| = 0, or d||v(x,1)||/dt < ||f(x, 1) ||- But ||¥(x,1)[] is a
continuous function of ¢, so that

[0 < ¥ 0+ j [£] . (14)
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Now integrating (13) with respect to  from t to ¢ and using (14), we find

t 3 t 2
J v3(x, t)dx+2vj f Y vidxdt < ZJ vz(x,r)dx+3[j ] dt:| ,
Q tJO k=1 Q 4

o<t<t (15

We call this expression the ‘“‘energy inequality’.
Let us take the sequences of functions a,(x) and f(x,7), n=1,2,...,
which satisfy the conditions of Theorem 1 and converge to the given functions

T
a(x) and f(x,t) in the norms L,(Q) and J || || ¢, respectively. Suppose v,,
0

n=1,2,...are the corresponding solutions to the problem (1), (2). Because
of (15), we have, for the difference v"—v™:

f [v(x, H—v"(x, D] dx+2vJ\t i (Vi —vi)dxdt
Q V]

Q k=1
t 2
gzj (a»_aM)de+3U nf"_fmnzat] S0 (16
Q 1]

as n,m — oo. The limit of the sequence v, the function v, is the desired
generalized solution of the problem (1), (2) with finite energy integral. For
this function, the relation (13) and the estimate (15) both hold.

In the second case all considerations are the same with the only exception
that instead of (13) we have the relation

i1d

3
—— | ¥ dx+vf Y vidx = —j ftv, dx (13"
2dt Jq Q k Q

=1
and instead of (15) we have the inequality
t 3 1 t 3
f vz(x,t)dx+vj y v,fkdxdtéj vz(x,r)dx+—j j Y £ dx dr.
Q 1JQ k=1 Q Vitlda k=1

Theorem 3 is now proved.

2. Investigation of the Differentiability Properties of
Generalized Solutions

We draw some conclusions from Theorems 1-3.

COROLLARY 1. If the conditions for the first half of Theorem 1 are satisfied,
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T
and if, in addition, f possesses a generalized derivative f, with f H f, H dt < oo
0

while a(x) belongs to W3(Q), then the solution of the problem (1), (2), which
must exist by Theorem 1, will have derivatives v,,,_in L,(Qr), while the deriva-
tive v,(x,t) will be an element of J(Q) for all t in [0, 7] and will depend con-
tinuously on t in [0,T7] in the L,(Q) norm.

To prove Corollary 1, we shall show that the derivative dv/dt of the solution v
to the problem (1), (2), which must exist by Theorem 1, is a generalized
solution in L,(Q7) to the problem

w,—vAw = —gradq+f,;  divw =0; }

wls=0; W _o=Pjq[vAa(x)+f(x,0)]. (17)

Here ﬂj(ﬂl denotes the orthogonal projection of a vector from L,(Q) into
the space J(Q). We observe that by the hypotheses of Corollary 1 the vector
vAa(x)+f(x, 0) belongs to L,(Q).

The solution v satisfies the identity (10). For the function ®(x, ¢) in this
identity, we take ¢,(x,t), where ¢(x, 1) is an arbitrary solenoidal vector
vanishing on S, having ¢(x, T) = ¢(x, T) = 0 and A¢,, is continuous on ¢
as element of L,(€). We write the resulting identity as

—j v,-[¢,+A~¢]dxdt—f v-(<}5,+41~¢]‘),)§1 dx+f a-¢,(x,0)dx
T Q l1=0 Q

:j f,-¢dxdt+J f¢| dx
T Q ,t=0

By the hypotheses of Corollary 1, this can in turn be written as:

1=

f v, (¢, + Ap) dx (1t+f #(x,0)- [da+1(x,0)] dx :j f,-¢dxdr.  (18)
T Q T

But if we observe that the set of functions ¢ for which (18) has been verified
is dense in the space of admissible functions ® for (10) with the metric
|®| = [[(®*+® +(JD)*) dxdt]?, it follows from this identity that v, is a
generalized solution of (17) in the space L,(Qr). On the other hand, the
problem (17) has a generalized solution w with a finite energy integral.
By Theorem 2, it coincides with v,, since the latter is a generalized solution
of (17) in L,(Qr). Thus v,, which is equal to w, has the properties given in
Corollary 1. This completes the proof of Corollary 1.
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From Theorems 1 and 2, we have

COROLLARY 2. If the conditions of Theorem 1 are satisfied (so that
SeC,), and if £ has a derivative £, in Ly(Qr), while a(x)eW3(Q) and
Pl vAa+1(x,0)] € H(Q), then the solution to the problem (1), (2), which
exists by Theorem 1, has V., Vi, .,, gradp, in L,(Qr), while v,, v, and
grad p are elements of L,(Q) and depend continuously in the L,(Q2) norm on t in
[0, T

The proof of this statement follows the same lines as the proof of Corollary 1.
We note that the assumption 2j q,(vAa+1f(x,0))e H(Q) is necessary (just
as the other assumptions of Theorems 1-3 and Corollary 1 are), if we want to
have a solution with all the properties listed in Corollary 2. This assumption
expresses the necessary first-order compatibility in the initial and boundary
conditions.

If we assume for a(x) in Corollary 2 only as much as we have assumed in
Corollary 1, then it is possible to show for the solution v, in addition to the
properties stated in Corollary 1, that for any & > 0, the functions v,, Vi, «,,
grad p, are square summable over Q x [¢,T] and v,, v,,,, grad p are elements
of L,(Q) depending continuously on ¢ in [¢, 7). This can be shown employing
the same ideas and inequalities as used in Theorems 1-3.

Similarly, using Theorems 1-3 and Theorems 2, 3 of chapter 3, section 5,
a further improvement in the differentiability properties of the generalized
solutions of problem (1), (2) is observed to occur as we increase the smooth-
ness of the data and the extent to which the initial and boundary conditions
are compatible with the system itself. Thus, for example, it may be shown
that if f(x, ) possesses derivatives A'f and Dif, 0 < /< m in L,(Qy), while
a(x) belongs to W2m*1(Q) and satisfies the necessary compatibility conditions
between a(x) and f(x, 1) for {xeS, =0} up to order m, then v possesses
Dlv and A, 0</<m+1 in L,(Qy), and consequently, derivatives D3y,
0</<m+1, in Ly(Q x [0,T]), @ < Q. If furthermore Se C,,,, then
the derivatives D?'v, 0 < /< m+1, belong to L,(Qr). The smoothness of
the solution of problem (1), (2) also exhibits local dependence on a, f, and S.
However, it is somewhat different from the dependence characteristic of
stationary problems (cf. chapter 2, section 1) and of initial-boundary value
problems for parabolic equations. At the end of this section, we shall describe
the nature of this dependence, using the integral representation given below
for any solution of the system of Navier-Stokes equations. The same can be
achieved without using integral representations, by employing only those
arguments of chapter 2, section 1. But using the integral representations
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(which we shall need to study the classical properties of the generalized
solutions), one obtains more complete conclusions.
We note yet another result.

COROLLARY 3. If S€C,, then the solution v whose existence is guaranteed
by Corollary 1 is an element of the spaces C, 4(©Q) and W3(Q), and depends
continuously on te[0,T] in the norms of these spaces: moreover, ||v(x, 1) “0_%',,
+ Hv(x, t) ||sz(m does not exceed a constant M which is determined only by

T
the numbers v, T, || a szz(ﬂ),f (| £]|* +||£. |} dt and the boundary of the region S.
0

We shall show that this proposition is a consequence of Lemma 6 of
chapter 1, section 1, of Corollary 1, and of Theorem 2 of chapter 3, section 5.
The last establishes the fact that the solution of the stationary problem

vAu=gradg—é(x), divu=0, u|s=0, (19)

exists for any ¢ in L,(Q) and SeC,, and that for this solution gradg and
u,, ., belong to L,(Q); moreover

oo+ | 8radq [ L) S C[ 6 | oo - (20)

The constant C depends only on S. The solution v(x, 7) of the problem (1),
(2), which exists by virtue of Corollary 1, may be regarded for any ¢ in [0, T]
as the solution to the problem (19) with ¢(x) = f(x, 1) ~v,(x, ) eL,(Q). By
Theorem 2, chapter 3, section 5, this solution belongs to W2(Q) for each ¢ in
[0,T] and varies continuously with # in the norm of the space W3Q). The
latter statement follows from the fact that, by (20), the difference

u

v(x, t+At)—v(x, 1)
satisfies the inequality

[ ¥(x, t+ AD=¥(x,1) w20 < C

f(x, 1+ AD—1(x, 1) |
+C | vix, 1+ A —v,(x,1)

t+ At \ t+ At )
f f(x,0)d | < j I, ] d,
’ t

|
t+ At
f If.]dr  and  [vi(x t+AD—v(x,0) |
t

, (2D
in which

1f(x, 1+ A —f(x, ) || =

while

tend to zero as Ar — 0, by the hypothesis of Corollary 1. We make use of a
theorem (see Lemma 6 of chapter 1, section 1) on the embedding of the space
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W) in the space of C,.,(Q) functions which are Holder continuous on Q
with exponent 4 (we recall that Q is three-dimensional), and on the inequality

lu]ose = Clulw.a- (22)

which holds with a constant C depending only on Q. The proof of Corollary 3
follows from this theorem and inequalities (20) and (21).

For further investigation of the smoothness of the solutions of linear and
nonlinear initial-boundary value problems, we need some information on the
fundamental solution of the Cauchy problem. The solution of the Cauchy

problem
v,—v Av = —grad p+1f(x,1),
(23)

divy = 0, V|20 =0,

for t = 0 is given, as is easily seen, by the formulas
t
grad p(x,t) = fs(x, 1); v(x, 1) = J. J‘ IN'x—y,t—of,(y,7)dydr, (24)
0JE;

where f;(x) and f;(x) denote the projections of f(x) into the subspaces
G(E,) and J(E;) of the space L,(E,), and where

T(x,t) = (dvnt) "3 g x 12/4m

is the fundamental solution of the heat equation. We know (cf., for example,
[46]) that

Lz(Ea) = J(Es) @ G(Es),

where J(E;) and G(E;) are the subspaces of solenoidal and gradient vectors,
respectively. The components ¢ and ¢, of any vector ¢ in L,(E;) are given
by the formulas

bu0) = — g amadas [ FOB g g o9
n |x=y]

E;

With the help of (25), formula (24) may be written as

t
Uk(x’t)zj ‘[ uk(x“,";t_f)'r(y,f)dyd'f, k=1,2,3,
0B (26)

p(x,t) = ‘[ f Px—y, t=0)f(y,7)dydx,
0VvEs
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where f = (f,, f5, f3), and

1 G, T(x—2z,1t
u(x, 1) = I'(x, 1) e*+— grad — Tx—z1) dz,
4n ox Je, | 2|

) = = a0 *
X, 1) = —————0(1).
4 Ox, 4| x|
Here ¢* is the unit vector directed along the axis Ox,. Moreover, u* can be
represented as a curl vector, and thus

u* = curlcurl U¥ = — AU*+grad div U¥, (28)

, 1 T(x—z1) 1 | x|
K = | T ek T g T ek 29
v = g | T e ) @

where

and

P
0(p) =J e™" dn.
4]

The functions {u",p"}, k=1,2,3, form the Green’s tensor of the Cauchy
problem for the system (23). In the half-space {r >0}, the functions
{u*, p* =0}, considered for fixed k, satisfy the homogeneous system (23).
The functions u*(x,?), like the functions U*(x, r), have singularities only at
the point x =t = 0.

Formulae (27)—(29) are easily obtained by the following argument. The
functions u*(x, 1), p*(x, 1), considered for fixed k, are equal to zero for 1 < 0
and are solutions of the system

ut—v Auf = —grad pF+ 8(x) 6(1) e, (30a)
divu* =0, (30b)

for t 2 0.
Substituting functions u* of the form u* = curlcurlU* = —AU*+

grad div U* into (30a) and separating the potential part from the solenoidal
part, we find for the functions U* the system of equations

G,
(‘é;+vA>AU" —3(X)3(Ne, Ul =0, (31)

while p* satisfies the formula

o= —div (a%_ vA> U* = div(A)~'[5(x) 5(1) €4]. (32)
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Using the fundamental solutions for the Laplace operator and for
the heat equation operator, we arrive at formulae (27)-(29). From the
representations (25) and (27), it is obvious that

lim J u(x—y,e) ¢(y)dy = lim j [(x—y,e)X@)dy = ($)lx), (33)

e=>+0JE;3 e~ +0JE;3

where the convergence is uniform in x if ¢,(x) is a continuous function.
We now turn to the derivation of an integral representation for the solution

v(x, ) of the system (1). Let us first assume that v(x, t) is a classical solution

of the system. We write system (1) in the variables y and T, take the scalar

product with

ui(x, y, t, 7) = curl, curl, [U(x—p, t—1) {(y. )]
=y, Du(x—y, 1—1) + RE(x, y, £, T),

and integrate over yeE; and te[0,7—¢]. Here {(y, ) is an infinitely-
differentiable non-negative function in Q, and equals zero near the lateral
surface and lower base of this region; R¥ is the sum of the products of the
derivatives of { by U* and its derivatives. In the resulting identity

rt—c [

t— ¢
(v,—vA, V) ul(x, y,t,1)dydt = J j [—grad, p+f(y,7)] utdydr,
(4] E;

JO  JEs

we integrate by parts on both sides, obtaining

v-<—6r—vAy>(Cu"+ RY)dy dr+J v(y, t—g) ((uk+ R’g)ll dy

JO JE;3 E; lt=t—¢

t—e
:j jf-(;’u"+R’§)dydr. (34)
E3

0

0
(—&—MQ“=Q

(—? - vAy>(Cu"+ R = R,
oT

But

so that

where R is an expression of the same type as R%. We shall take the function
¢(y, ) to be equal to | in a subdomain Q; = Qr. In this subdomain {, and
¢, are both zero, so that the kernels Ri(x,y,,7) and R¥x,y,1,7) do not
have any singularities for (x,1)e Q., (¥, 7)€ 0, (these functions and all their
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derivatives are bounded for (x, t)e Q.. (¥, e Or). We now write the identity
(34) as

t—e f
f f ﬁ'g-vdydr+f u"-vg“! dy+f RY-v
0 E; E;3 | t=t—¢ E;

t—e¢
t—¢& t—¢
:f f v dy dr+ R: fdydr  (35)
0 Esz 0 E;

dy

7=

and pass to the limit ¢ — 0, using (33). The first and third terms on the left
side, and the second term of the right side, all converge uniformly for (x, 1)
in any strictly interior subdomain Q; of the domain Q.. The remaining two
integrals also will converge uniformly in Q7. The limit of the second term
can be written in the form
limf u* v dy = (v),(x,1) = VC-{—l gradj div(vo)
e+0JE; 4n

Es !x—_ﬂ

1 -grad
=v{+— gradJ~ Lg@jdy.
4n PR

dy

T=t—¢

The last term is an integral of the same type as the limit of the third term
of (35). We combine these two, and call the sumf ﬁ’g-v(y, f)dy. In this

E3
way we obtain the desired integral representation for v(x, t)in Q. in the limit:

vk(x,t)=f f F(x—y,t—r)(fC),k(y,r)dydt+LL (—RE-v+RE-fdyde
O0JE;3 3

—f RE-V(y, ) dy = I,(x, )+ Iy(x, 1)+ I5(x, 1), (36)
Ej

The integral 1, is an infinitely differentiable function in Q. for any v and f
in L;(Qr). The integral I, is infinitely differentiable with respect to x for
any v(x,2)in L,(Q). Tts smoothness with respect to ¢ depends on the smooth-
ness of v with respect to ¢: if v(x, t) depends continuously on ¢ in the L,(Q)
norm, then /3(x, t) and all its derivatives with respect to x are continuous in
t in the classical sense.

Now let us consider the first term 7,. As is well known, the integral
operator

F(x,t)=ff Tx—y,t=0)f(y,0dydr
0JE;3
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has the following properties: (1) If f(x, t) is a function in CZi*(E; x [0,T]),
0 < h <1, (i.e. f satisfies a Holder condition with exponent 2k in x and
h in 1), then F(x,t) together with its derivatives F, , F, . , F; all belong to
CHME, x [0,T]). (2) If f(x,1) is a function bounded in the strip0 =7 = T,
then F and F, belong to CX"(E,; x [0,T]), 0<h<}. (3) If f(x,1)
has compact support and belongs to L(E; x [0, T]), then F possesses
generalized derivatives F,, F,, , F, in the same space LAE; x [0, T}). 4 If
fhas compact support and

max | f(x,0) |y <o  for  r>3,
0=t=T

then F(x, t) is an element of CZ*(E; x [0, T]) with some 4 > O; if moreover
r > 3, then Fand F, belong to C*(E; x [0, T]) with some 4 > 0. In all the
cases (1)~(4), the norms of F and its derivatives are estimated in terms of the
norms of f in the corresponding spaces as indicated.

The proof of statement (1) is well known; the proof of statement (3)
follows in the same way as developed in chapter 4, section 6, for hydro-
dynamical volume potentials; the proof of statements (2) and (4) can be
carried out independently without difficulty (cf. [104, 83, 105, 108, etc.]).

The projection operators 2, and 2, defined by equations (25) possess
the properties listed below:

) [0, ] pe®) | < | 6|
so that since D, ¢; = (D, ¢); and D, ¢¢ = (D, ¢);, we have also

| D], | Didal = | Do |-

(2) If ¢(x) has compact support and belongs to C;,(E3), 0 <h <1, then
#, and ¢ also belong to C, ,(E;) and the norms of ¢, and ¢¢ in C, ,(E;) are
bounded by constants depending only on || ¢ |z, and the measure of the
support of the function ¢, i.e.

1, | b6 line, < €l [lines

(3) If ¢ has compact support and ¢ € L,(Es),r > 1,then ¢, and ¢ also belong
to L(E,), and ||, ||, | ¢¢ |L.ce,) may be estimated in terms of | #] L.sand
the measure of the support of ¢. Moreover, if ¢(x, t) depends on the para-
meter ¢ in such a way that ¢ is an element of L,(E,) continuously dependent
in the norm of this space on t€[0, T], then ¢, and ¢ will plainly possess
these same properties.

s

>
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Additionally, if ¢(x, 7) is a function with compact support belonging to the
space

Chi(Ey <0, T, 0<hy, h, <1,

then, as is easily shown, ¢, and ¢ will be elements of Ci"(E; x [0,T])
forany h < h,,and the norms | ¢, ||, | ¢¢ ”Chltth,(Eax[O' 7, Mmay be estimated

in terms of 1/(h,—h3), ]
of ¢.

These properties of the integral operator with kernel I' and of the projection
operator &, permit us to derive the various necessary properties of I, in
(36). In the preceeding, the representation (36) has been derived under the
assumption that v is a classical solution of the system (1). It remains to
derive the same representation for generalized solutions. To do this, let v
be a generalized solution of the system (1) belonging to the class L,(Qy),
and let fel(Q;), r>1.% Then v belongs to J(Q;) and satisfies the
identity (10) for all smooth solenoidal vectors @(x, ¢) with compact support in
Qr. The functions ®, obtained by averaging these ® over (x, ) possess the
same properties as @ for all sufficiently small p > 0 (cf. chapter 1, section 1.3).
We substitute these @, into (10), then interchange the averaging operation
with the differentiations acting on @, and then carry the averaging operation
over to the second factor v. Finally, we apply integration by parts to all the
derivatives. This gives

T T
f 'f (vp,—vap)'d)dxdt:f J f,- ©dxdt,
0 Ja 0Ja

from which it follows that v, is a classical solution of the system (1) with
external force f, in any subdomain Q, < @, which is at a distance p from
the boundary of Qr. By our earlier proof, v, satisfies formula (36). Using
the above assumptions concerning v and f we can let p — 0 in (36); then all
the terms converge almost everywhere in Q’, and their limits have the same
form as in (36). In this way, the representation is seen to maintain its validity
for generalized solutions vin L,(Q). From this, and in virtue of the properties
of the integrals I,(x,?), i=1,2,3, as listed above, the statement below
follows:

s

) Hcif{hZ(EJX[O’T])’ and the measure of the support

1 The case when v and f are generalized functions may be considered in similar fashion.
But we shall limit ourselves to usual functions of points.
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COROLLARY 4. Let v(x, t) be a generalized solution in L,(Qy) of the system (1).
If v(x, t) depends continuously on te [0, T in the norm of the space L,(Q), and if

max | f(x, 1)
0<I<T

Loy < 0,

then, if r > 3, it follows that the function v(x,t) depends continuously on (x, 1)
in Q, and is an element of C, ,, () (with some h, > 0) depending continuously
on t. Moreover, for r >3, the function v will possess derivatives 0[0x,
in Q, continuous with respect to (x,t), and these derivatives will be
elements of Cy,, (Q) depending continuously on 1. If fe CZ1"(Qr), 0 <h < 4,
then v will possess derivatives 0%|0x;0x; in Q continuous with respect to 1,
and these derivatives will be elements of Cy ,,(S,), depending continuously on 1.
If we assume in addition that v, exists and is an element of L,(Q) depending
continuously on t, then for f in C2*(Qy), the function v will possess a derivative
v, in Q continuous with respect to (x, t), and v, will be an element of C 0.20(E),
depending continuously on t.

From the representation (36) it is possible to deduce many other relations
between v and f. We shall, however, confine our account of these properties
to those stated in Corollary 4. Let us now note another characteristic feature
of formula (36). Information on the smoothness of v with respect to ¢ in the
classical sense may be extracted from this formula, provided we have
a priori knowledge of the smoothness of v with respect to ¢ in L,(€). How-
ever, such knowledge cannot be obtained from (36). This is a fundamental
difference between system (1) and the heat conduction equation, for which the
representation corresponding to (36) does not contain a term like J3(x, 1).

Corollaries 1-4 atlow us to deduce a criterion determining when the solution
of problem (1), (2) is classical, i.e. determining when v is continuous in Or
and the derivatives of v and p appearing in the system are continuous in Q7.
This criterion is stated in the following theorem.

THEOREM 4. Suppose that a(x)e WHQ)n H(Q), that SeC,, that
fe C2"(Q1), 0 < h < %, and that

f AE12+18 Dt < o0,
0

Then the solution v, p of the problem (1), (2) is classical. Moreover, v(x,t) and

v, are elements of W3(Q) and C, ,,(Q") correspondingly, depending contin-

uously on te [0, T] in the norms of these spaces, while v, . € C2M(Qp),H <h.
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In contrast to Theorem 4, Theorem 1 of the previous section and Corollaries
1 and 2 of this section give the exact dependence of the differentiability
properties of v and p on those of f and a in terms of the Hilbert space L,. A
similarly precise statement can also be found for the spaces L, and Ci*(Q).
This may be accomplished by using nonstationary hydrodynamic potentials.
More complete results have been established by V. A. Solonnikov ([88]-[90]).
From Solonnikov’s results we extract the following

THEOREM 5. Suppose that
f(x, e CZ "M Qy),

that
a(x)eCyyy 2,2h(§);
that
G(S, t) € Ci,l'+2+2h,l+ 1 +h(S X [0’ T]),
and that

Se€Caiva,am

where 1 >0, and h and 2h are nonintegers; moreover, suppose f€J(Q,), that
diva =0, and that o,(s,t1)=a'n ISX[O,T] =0, and let the necessary com-
patibility conditions for a, « and f be satisfied on the manifold {x€S, t = 0}

up to order 1+ 1 inclusive. Then the problem
v,—vAv= —grad p+f
divi=0, v|,_o=23, V|s=a G7)

possesses a unigue solution v, p, such that

ve C32c,lt+ 2+2hi+1 +h(QT)’ grad pe C.:’lt-i- 2h,l+h(QT)’

and the solution obeys the estimate
3
3 Qoilenrenomesongn | P fewtemsonn)
i
3
§ C Zl (”_fl ”Cx,:“”"-”"(é-r) + ” ai ”C21+2,2h(ﬁ) + " ai "va121+2+ 2hi+1 +h(S x [0’1‘]))-
is
(38)

THEOREM 6. Suppose that

f(x,DeW2i"(Qr),  a(x)eW " 27(Q),
that
G(S, t) eW’?::‘-FZ— 1/rom+1-— 1/2r(S X [O, T]),
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and that S€C,,4,, where r > 1, r # 3/2, and m is a non-negative integer,
moreover, let acJ(Q) and w,(s, t) Ea-ni sxro,r; = 0, and let the necessary
compatibility conditions be satisfied up to order [m+1—3/2r] inclusive if
m+1=3/2r > 0. Alternatively, let these conditions be satisfied in the weak
sense (namely [ a(x) - grad ®(x)dx = 0 for all smooth ®(x)) if m+ 1-3/2r<0
(i.e., when m =0 and r < 3/2). Then the problem (37) possesses a unique
solution v, p, such that

veWw2rrrmiiQn),  grad pe WM(Qr),
and the following estimate holds:

3
Z (” b; ”Wx 2m+2meigqy T ” Px, ”Wx 2mmQr))

3
<c 3l

.
Wre2mmQry T [ @ | w,2mv2-2000)

+ I[ o “" 2mt2=1/rmt1=1/20(Sx [0, T])) (39)

We shall not write down the compatibility conditions required in Theorems
5 and 6 explicitly. They are necessary conditions for v, p to belong to the
spaces indicated in the theorems and to be a solution of system (37). The
spaces WX(Q) with arbitrary />0, r > 1, have been defined in chapter 3,
section 5. The spaces W2LY(Q) occurring in Theorem 6 are to be defined

similarly; the index 2/ refers to x and the index / to ¢.

3. Unbounded Domains and Behavior of Solutions as t— + o

We proved Theorem 1 under the assumption that the domain Qis bounded.
If Q is unbounded, but if a(x)e J, ;(Q), f(x, eJ(Qy), then the assertions of
this theorem are still true. However, the proof given above must be changed;
this is only because of the fact that the operator 4 does not have a bounded
inverse on J(Q), since if the domain Q is unbounded, the point A =0is a
point of the continuous spectrum of A. But since the whole spectrum of the
operator A is nonpositive (see chapter 2, section 4), the operator A, =A-IE
has a bounded inverse for 1, > 0. Replacing the unknown function v by
u = ve~ % in (4), we obtain the equation

—Aju=fe

for u. Under the conditions (2), it can be proved that this equation has a
unique solution, in just the same way as for bounded Q.
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If the initial distribution of the velocities a(x) is such that a¢J, (), then
we first reduce the problem to determining the vector u(x, t) = v(x, t)— b(x),
where the solenoidal vector b(x) is chosen in such a way that

bls=0, AbeL,Q), a(x)—b(x)eJo ().

If such a b(x) can be chosen, for example, if a(x) has the form a = const # 0
for large |x ], then according to the considerations presented in this section,
the problem will have a unique solution u.

If, in particular, a(x)e H(Q) but ¢J, ,(Q), then the corresponding solution
can be found as the limit of solutions v(x, ) of the same problem corres-
ponding to initial data a®(x)eJ, ,(Q) of compact support approximating
a(x) in the H(Q) norm. In view of what has been said above, the solutions
v((x, ¢) exist, and they satisfy the relation (7). The difference v —y(™
is a solution of the homogeneous system (1) and hence also satisfies
(7). This implies that v converges to a function v for which v, and Av are
square-summable over Qr, while v, belongs to L,(Q) for all te[0, T].

Similar conclusions regarding the solvability of the problem (1), (2) for
unbounded domains Q also hold for other functional spaces; in particular,
Theorems 2-6 hold for an arbitrary region Q.

We now discuss the behavior of the solutions of the problem (1), (2) as
t = 0. We have the foliowing theorem.

THEOREM 7. If Q is a bounded domain, then ||v(x,t)||y converges to zero

as t — o if the integralj H f||? dt converges and if a(x)e H(Q); and |[v(x, 0]
0

converges to zero as t—> oo if the integral f || £]|dt converges and if
o
a()eJ(Q). If Q is an arbitrary domain, if a(x)eJ, (Q), and if

F(”fn 4 {[£][2dr < 0, then]|[¥(x, ) |[s = 0 as £ = oo.
0

Proof’. For all ¢ = 0, the two relations (7) and (15) hold for the solution

whose existence is assumed. If it is known that | ||f||df converges, then it
0

@0
follows from (15) that | [|v||Zdt also converges, and hence there exists a
0

subsequence #, — co for which ||v(x, )|z - 0. But for a bounded domain
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||¥(x,0)|| < C||¥(x,1)||u~ and hence || v(x, tJ)|| = 0 as 1, - oo. This, together
with the inequality .
ol e e[ 1ol

satisfied by v(x, 1) for t = 1, (see (14)), shows that ||v(x,1)|| >0 as 1 — co.
The first assertion of the theorem is proved similarly by using (7) and the
inequality Hv(x, t) ||,, =< CHA~v(x, t) ||

For an arbitrary domain Q, we are not justified in asserting that the
inequalities ||v(x,0)|| < C||v(x,)||u and ||[¥(x,0) || £ C|| 4v|| hold, and
therefore, we use both estimates (7) and (15) simultaneously. In fact, let

ae/y (Q) andj “(|[£]] + ||£]|)dr < 0. Then it follows from (15) that there
V]
exists a sequence 7, — oo for which || v(x, ) ||y — c0. Because of (7),

N Lt
ol < I it [ TP ez,
tr

and hence ||v(x,?)|| can actually be made arbitrarily small for sufficiently
large ¢. This completes the proof of Theorem 2.

From the relation (13), it is easily deduced (see chapter 6, section 5) that
for a bounded domain Q, ||v(x,?)|| tends to zero as the exponential e™
with some ¢ > 0, provided only that

fuf” e di < oo,

if the force f does not depend on ¢, or if it converges rapidly enough to a
function f,(x) (so that the integrals indicated in Theorem 7 converge for
f—f,), then the corresponding solution v(x,f) converges to the solution
vo(x) of the stationary problem corresponding to the force fo(x), provided
this solution exists. (Sufficient conditions for the existence of v, were given
in chapter 2.) The validity of this assertion is easily deduced from the
theorem just proved; in fact, it is sufficient to apply the theorem to the
function v(x, 1) — vo(x).

Finally, we consider another case, which, unlike those just considered,
has no analogy for plane-parallel flows (see the ““Stokes paradox”’, mentioned
above). Thus, let v(x, t) be the solution of the problem

v,—v Av = —grad p,
divv = 0, (40)

Vs =0, V|-o=a(x), V|=-x=a’=const (41)
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for a domain Q which is the exterior of a bounded domain. Let v°(x) denote
the solution of the stationary problem

vAY’ =gradg,  div®=0, v|3=0, v°|,_,=a°

in the same domain Q. It follows from the results of chapter 2 that v°(x)
exists. Moreover, the following theorem holds:

THEOREM 8. If a(x) — vO(x)eJy 1(Q), then ||V(x, 1) = v°(x) ||y > O as t » + 0.

This theorem is an immediate consequence of Theorem 7, as is obvious if
we apply Theorem 7 to the function v(x, 1) —v(x).

4. Expansion in Fourier Series

The solution of the nonstationary problem (1), (2) can also be found by
using the Fourier method. For the homogeneous system (1) the solution is
given by the sum of the series

Ve f) = f aye M, (x) @2)

where ¢, and 4, are the eigenfunctions and the corresponding eigenvalues
of the operator 4, and a, = (a(x), ¢,(x)). Convergence of the series (42) in
the norms of the W3(Q) spaces is established on the basis of the properties
of expansions in the functions ¢,, as described in chapter 2, section 4.
Indeed, we have the estimates

a0 a0
(MEE ”k; ae ¢y | i) < C k; age? | 4|, (43)
for the series (42) and
[ o)
1D [ = Cn; k; ages |y |1r3m, (44

for its derivatives with respect to 7. For ¢ > 0, these series converge for any
a(x) in J(Q) (since the 1, are negative and A, —> —o0 as k— 0); for
t = 0, the convergence of these series depends on the properties of a (cf.
(19)—(22), chapter 2, section 4).

The convergence of the orthogonal series representing the solutions of
inhomogeneous systems (1) is studied in a similar manner.



SEC. 5 THE LINEAR NONSTATIONARY PROBLEM 105

5. The Vanishing Viscosity

In this section, we show that as v — 0 the solution v'(x, t) of the problem
(1), (2) converges to the solution vO(x, t) of the following degenerate problem:

Vo= —grad po+1f(x,1), Veo=a(x), V'eJ@Q). (45)

Roughly speaking, the fact that v° belongs to J(Q) means that divv® =0
and (v°-n)|s = 0. The solution of the problem (45), as is easily seen, is
unique and can be found as follows: We represent the vector f as a sum
f, ®f, such that f; eJ(Q;) and f,eG(Qy). Then f, = grad p° and f, =v;
so that

t

vo(x, 1) = a(x)+f f,(x,7)dr.
0
We now prove a theorem in which Q is assumed to be bounded (for
example):

THEOREM 9. The solution v¥(x,t) of the problem (1), (2) converges as v —0
to the solution of the problem (45). Concerning f and a, it is assumed that
felL,(Qr) and ac H(Q).

Proof:: Obviously, the solution v*(x, ?) satisfies the integral identity

T T
j J f-(l>dxdt=J~ J (v D +w, D, )dxdt (46)
0JO 0JQ

for any continuously differentiable solenoidal vector @ equal to zero on S.
Moreover, v'(x, t) satisfies the inequality

T 3 T 3
J‘ J <v,”2+v Y v;i+v"2>dxdt§ C(J J fzdxdt+J‘ y aﬁkdx), 47
0Ja k=1 0 JQ Q k=1

which is an immediate consequence of the equality (7) and the inequality
(15). Because of (47), we can assert that there exists a sequence v, — 0 such
that v** and v)* converge weakly in L,(Qy) to some function v? and to its
derivative v, where v°|,_, = a(x). Since v** and v;* belong to J(Qy), v° and
v? also belong to J(Qp). If in the identity (46) we pass to the limit with
respect to the sequence v, , we obtain

T T
j f f-(l)dxdt=j j vO- @ dx dt, (48)
0 JQ 0J0
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since

T i
vf J v, @, dxdt
I Jo Je 5

T O3 T 3
g\,/v\/v‘[ Zv;fdxdt\/J Y @2 dxdt—0
0Je k=1 0 Ja k=1

as v— 0. The arbitrary functions ® appearing here form a dense set in
J(Qy), and hence (48) implies that

v = —grad p°+f,

which proves the theorem.
A somewhat more tedious argument is needed to pass to the limit v -0
in the case of the system

v,—VvAv+ by, = —grad p+f, }

divi=0, v[3=0, v|,_o=a(x),]

where b is a given vector in H(Q).

6. The Cauchy Problem

In this section, we shall show that if the external force f(x,f) in the
linearized Navier-Stokes equations is summable with respect to (x, t) with
exponent r > 1 in the strip 0 < ¢ < 7, then the corresponding solution v of
the Cauchy problem, equal to zero for ¢ = 0, has derivatives v, and v,, x, Which
are summable in the strip 0 < 7 £ T with the same exponent r. The case of
nonhomogeneous initial conditions reduces to the given case by the usual
method. The theorem given below is of interest not only in itself, but also
because of its application to the nonlinear problem, which will be discussed
in chapter 6, section 8. Thus, we now prove the following theorem:

THeOREM 10. Jf f(x,1)eL, (0 £t < T), r > 1, there exists a unique solution
v(x, 1), p(x,t) of the Cauchy problem for the linearized system (1) with zero
initial conditions. The vector v and derivatives v,,, v,, Viix;» Px; belong to
L (02T}

Proof: We shall give a proof which is based on the use of Fourier trans-
forms.

I In the case of nonhomogeneous initial conditions, we have to require that a(x) belongs
to Wi-2r,
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To solve the problem, we take Fourier transforms in x and ¢. Since we are
interested in the solution in a strip 0 < ¢ < T with some finite height T, we
set f=0 for £ <0 and 7> T. As for the solution v itself, we set it and p
equal to zero for ¢ < 0. Moreover, we replace the unknown functions v
and pbyu=ve 'and g =pe~". Then, for u and ¢, we obtain the system

u,—Au+u+gradg =F, )
divu =0, f (49)

where F = fe™ . For convenience, the coefficient v has been taken to be 1.
We now set

)

u(x,t) = (—271? | ii(a, ap) €T dardotgy
1 [ ~ fax + iagt
q(x, 1) = (*2;1:?0 G(a,og) e “dodag,
F(x,1) = - L ﬂﬁ(oz, ) €™ dy day
(2n)? )
where
o= {0y ,%,,0), da = do, da, doy, ax = i o X

k=1
a, and o, are real, and the integrals are evaluated between the limits
- <a, <, k=0,1,2,3. From (49), in a familiar way, we obtain the
algebraic system

(g +a® + iy + i § = Fy,
iog 1, =0, (30)
where
3
k=1
The solution of this system is
. ot —ma; . o, F;
iy = g=—i—5".
(lao"'a +1)0( (X
Therefore, we find the representations
i oo — o0
x,t J F lax+xa0td d , 51
uk( ) (Zn)zf(lao+a +1)a e o aO ( )

®;

1 ~ .
q(x’ t) (2 )2 J\ 7 glextiaot gy dao (52)
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for the desired solutions u and ¢. The convergence of these integrals can be
investigated by using the so-called Marcinkiewicz lemma (see [347]), which we
shall use in a form applied to Fourier integrals by S. G. Mikhlin (see [35]).
The content of the lemma is the following: Let ¢(x) be a function defined on
the whole n-dimensional space of points x = (x,,..., x,) and summable
over this space with exponent r > 1. Let @(«) denote the Fourier transform
of ¢(x), and use ¢(a) to construct the function

1 oo g iox
Ad = (ZT)"/(ZJ:.(a)qS(a)e da.
The lemma states that if the function Z(x) has all ““purely mixed” derivatives
up to order n with respect to a,, ..., a,, and if
_ 02()
@l w52
then the operator 4 is a bounded operator with domain and range in L (E,).
As is easily verified, this lemma enables us to assert that the formula (51),
as well as the formulas for
ouy, Ju, o%u, 0q

-~

ot’ ox;”  0x;0x;’ 0%,

0"=(a)
M,
ooy ... 00, | —

alaz ...an

obtained from (51) and (52) by formal differentiation, give us functions
which are summable over 0 < ¢t < T with exponent r. The fact that u and ¢
satisfy the system (21) can be verified directly, while the fact that u vanishes
for £ £ 0 is proved by a method which is familiar from operator calculus.
(Essentially, this follows from the fact that in formula (51) the real a, axis
can be shifted parallel to itself into the half-plane «, = £ —in, # > 0, since
the denominator iog+a’+1 = i€ +n+a?+1 does not vanish when this is
done. Moreover, F"'j(a, op) is analytic in o for # > 0, and for t = ¢, < 0, the
factor €' = &"'*" goes to zero as n — + c0.) From the imbedding theorem
of S. L. Sobolev [6] and S. M. Nikolski [36], it follows that u itself and also
the derivatives u,, are summable with respect to (x, r) with exponents larger
than r.

To complete the proof of the theorem, we still have to verify that the prob-
lem can have no more than one solution in the class of functions with the
same properties as the solution v = ue' which we have just found. To show
this, we consider the solution ®(x, r), Q(x, ?) of the adjoint problem

—®,—AD-—-gradQ =F, }

divd =0, ®(x,T)=0 (53)
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in the strip 0 < ¢ < T for all sufficiently smooth functions F(x, t) of compact
support. It is not hard to verify that for such F, the solution @, Q is given by
formulas of the form (51) and (52), where ® and Q will also be sufficiently
smooth functions. Moreover, ®, ®, and Q will fall off like |x|73, | x|™*
and | x| ™2, respectively, as | x| - o0.}

Let v, p be a solution of the homogeneous linear system of Navier—Stokes
equations such that v, v,, v, , v, . and p, are summable with exponent r
in the strip 0 £ ¢ < T. We take the scalar product of both sides of the Navier—
Stokes equations with @, and then integrate the result over the cylinder
QT,R={’XI SROSrsTH

ff (v,—Av—grad p) - ®dx dt =

By making some simple transformations and using the system (53), we
obtain

0 op
=” v~(—(l>,—Ad>)dxdt+'[ <——v-d>+v-—p<l)'n>d5dt
Qr,r St,R on on

0 oD
=Jf v-Fdxdt+J <—!'(I>+v'9~—p(b‘n+Qv-n>det, (54)
R Stor on on

where Sy ={|x| =R, 0=1<T}.

We now show that the integral over the surface Sy  converges to zero as R
goes to infinity along some infinite subsequence. To prove this, we first
observe that because of

J‘J‘ < |v|+z |v,x|>dxdt<oo,
O0St<T \i= iLj=1

there exists a subsequence R=R,, k=1, 2, ... for which
Ik—_—-Rkj < |v:] "+ Z | vi, | )det—»O as k- .
STRk i,j=1

Moreover, without loss of generality, we can assume that p(0, t) = 0, and
hence that

1 This can be seen most simply by using the representations (24)—(32) given above for the
matrix Green’s function.
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where the integration and differentiation with respect to p are taken along
the radius joining the point x and the point x = 0. Because of what has been
said about v and p, and because of the rates of decrease of ®, ®,, indicated
above, we have

ov o® | C 3
o, oo in)asas G (S 1ale ¥ lug) Jasa

C 1/r ,
g%{f <Z|M—+Z|%J>ﬁm}(MMW’
Rk ST,R; i,j=1
< C,R73FHT-Vrplir , q, k- o0,
since
2 1 3
—3+———=—-4+—-<0

always holds. Evaluating the integral involving p, we find that

b C
] p®-ndSdt ‘Ssj Ip[det J\f ‘dxdt
ST,R, i Rk St (Z'r)tzk

< 3<ff Z|pn|dxm> R 0,
R Qr,R, i=1

since —3+3/r’ < 0. Finally, we have

C 3 1/r ,
‘ Qv-ndSdt| < Y |v|"dSdt)  (4nRi'" -0
! ST,R, Rk S

TRy, i=1

since

3
—2——4—-= -3+ <0.
ror r

Thus, taking the limit in (54) along the subsequence R, selected above, we

obtain
Jf v-Fdxdt =0,
0st<T

from which it follows that v=0, since F is an arbitrary smooth vector
function of compact support. This proves the required uniqueness, thereby
completing the proof of Theorem 10.
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For subsequent purposes (chapter 6, section 8), it is useful to note that if
u is defined by the formula (51), the solution v = ue’ just found satisfies the
integral identity

” v-(-d),-m)dxdt=” f-®dxdt, (55)
0<I<T 0%t<T

where ® is any solution of the problem (53) (for sufficiently smooth F of
compact support.) To verify this, we need only show that the integral in the
right-hand side is finite. But this follows from Holder’s inequality

Ui[ f-®ddxdt
0stsT
3 1/r 3 1r
g(” » |f,-l’dxdt> <H » ](Dil"dxdt>
0T i=1 0=t<T i=1

and the fact that ® tends to zero as |x "3.




CHAPTER 5

The Nonlinear Stationary Problem

In this chapter, it is proved that stationary problems for the general non-
linear Navier-Stokes equations have at least one laminar solution for arbitrary
Reynolds numbers, even if the boundaries and external forces may not be
smooth. Moreover, the smoother the functions describing the external forces,
the boundary conditions, and the boundaries of objects in the flow, the better
behaved these solutions will be. For small Reynolds numbers and bounded
domains a uniqueness theorem is valid. All stated above implies the fulfilment
of the condition (15a) of p. 120, which expresses the fact that the total flow
across each separate surface S, is zero. For the general boundary-value
problem, when only the necessary condition that the sum of the flows
across all the S, constituting the boundary S be zero is satisfied, the solv-
ability of the problem “‘in the large” is not proved, nor is the possibility
excluded that it might be unsolvable. “In the small” (for small a and v,),
its unique solvability has been proved for bounded domains by Lichtenstein
and Odqyvist, and for unbounded domains by Leray [11] and Finn [75].

In this chapter, we limit our considerations to three-dimensional problems.
For plane flows, everything may be done in exactly the same way, and the
final results are the same as the theorems of sections 1-5. What must be
excluded from this claim is the proof in section 6 of the fact that the solution
found in section 3 approaches the prescribed value v, uniformly as | x| — o0;
this has not been proved for two-dimensional flows.

The proof of the solvability of the flow problems will be carried out by a
method which differs from the methods presented in the other chapters of
the book. This method is based on two theorems in functional analysis: the
Riesz theorem on the representation of linear functionals, and the Leray-
Schauder principle on the existence of fixed points in completely-continuous
transformations. The former theorem permits us to transform the principal
linear part of the equation and to reduce the problem to the solution of an
equation of the form v = (1/v) (4v+F), where Av is a nonlinear completely-

113
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continuous operator arising from all the nonlinear terms. The latter theorem
insures the solvability of this equation, once we have first obtained a priori
bounds for all its possible solutions.

Instead of this method, it is also possible to use the method of Galerkin.
The reader familiar with the analysis of the convergence of the method of
Galerkin for elliptic equations will observe that the methods developed here
will readily permit us to assert the applicability of Galerkin’s method to the
problems of this chapter (for bounded and unbounded regions). In fact, the
Galerkin’s approximation involves the solution of the same type of equations
v=(1/v)(4Av+F) as written above, except that it is carried out in some
finite-dimensional subspaces. The solvability of these finite systems of equa-
tions, as well as a uniform estimate for all the approximations (and by the
same token, the possibility of choosing a subsequence converging to the
solution), are consequences of the theorems of Brouwer (the extension of
which to infinite dimensional spaces is the Leray-Schauder theorem) and of
the same a priori estimates, which are derived in an identical manner for
exact and approximate solutions. The practical value of Galerkin’s method
in numerical calculation of the solution is decreased by the necessity, firstly
of having to solve a nonlinear system at each stage, and secondly, of having
to select a convergent subsequence from the sequence of approximate
solutions thereby obtained.

We note that the solvability of the flow problem may also be proved by
classical methods in which the principal linear parts are inverted by
Green’s functions and the entire problem is reduced to studying the solv-
ability of the nonlinear Fredholm integral equations of the second kind. This
path was taken in the 1930°s by Lichtenstein, Odqvist, and Leray, and
recently by Finn. The approach requires the deduction of some rather
difficult analytical estimates, but there is the hope ([75], [77], [100]-[103],
(123]), that it is this way that will lead to the rigorous justification of
asymptotic solutions of flow problems at large distances (including the
parabolic-shaped wake behind a body), and in that it permits the proof
of the existence of classical solutions of this problem in the two-dimensional
case. For the small data the first part was proved in [123].

Finally, we remark that for unbounded domains (section 3), we only
consider flows past stationary bodies. However, the method presented there,
just as in the case of bounded regions, is still applicable to problems with
arbitrary boundary regimes, provided that the total flow around each body
is zero (condition (15a)) or more generally is sufficiently small.

For the reader’s convenience, we first treat the case of homogeneous
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boundary conditions, for which the proof that the problem has a solution
is particularly simple, and only later do we treat the general case of non-
homogeneous boundary conditions.

For the most part, our considerations will be carried out in the Hilbert
space H(Q) (see chapter 1, section 2), which is the closure of the set J(Q) of
all solenoidal vectors with compact support in Q, in the norm corresponding
to the scalar product

[u,v] =J i u, v, dx. ¢}

In every case, we shall determine solutions of the system
—vAv+y v, = —grad p+f(x), @
divv=0

in a domain Q, with various conditions imposed in the boundary of Q.

1. The Case of Homogeneous Boundary Conditions
Let the homogeneous boundary condition

hold on the boundary S of the domain Q; if Q is unbounded, we assume that
the same condition is also met at infinity, i.e.

V| |x1=e =0. 4)

By a generalized solution of the problem (2)—(4), we mean a function v(x) in
H(Q) which satisfies the integral identity

j (vvxk-(l),(k—vkv-(bxk)dx=J‘ f-ddx (5)
Q

Q

for any ®eJ(Q). It is not hard to see that the nonlinear term in (5) can be

chosen in the form | vv,, - ®dx, since
Q

j UV, Pdx = —J v, v P, dx
Q Q

for ®eJ(Q) and ve H(Q).
We begin by proving the following theorem:
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THEOREM 1. The problem (2), (3) in a bounded domain Q has at least one

generalized solution for any f such that the integral J f- ® dx defines a linear
Q
Sunctional of ® € H(Q).

Proof: According to Riesz’ theorem, the linear functionalJ~ f- ®dx can
Q
be represented in the form

j - ®dx = [F, @], )
[¢]

where F is a uniquely determined element of H(Q). For fixed ve H(Q), the
integral | v,v- @, dx also defines a linear functional of ®e H(Q); in fact,

Q
its linearity in ® is obvious, while its boundedness follows from the estimate

| | ) 3 3 3 3 3 3
J vkv-(bxkdx‘ < \/3< Y v,‘(‘dx) < Y v?dx) <J y (D,.Zxkdx)
l o ‘ Q k=1 Qi=1 Q ik=1

~ 3 + ¢ t |
SC R N CIFENCII RN
Q k=

Here we have used Holder’s inequality and the inequalities (3) and (7) of
chapter 1, section 1. Again according to Riesz’ theorem, there exists an
element Av in H(Q) such that

f 5,v- @, dx = [Av, ®]. @)
Q
Because of (6) and (7), the identity (5) can be rewritten in the form

[yww—Av—F,®] =0,

and since ® is an arbitrary element of J(Q), the problem of determining the
generalized solution v reduces to solving the nonlinear equation

v—%(Av+F)=0 (8)

in the space H(Q).

We now show that the operator A is completely continuous in H(2) by
proving that A transforms any sequence {v"} which is weakly convergent in
H(Q) into a strongly convergent sequence {A4v™}. According to Lemma 4 of
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chapter 1, section 1, the v™ converge strongly in L,(Q) to their limit v.
Using (7), we calculate the quantity

[Av"— AV, @] = j WV —vgv)- @ dx
Q

:f (u;‘"—v:)v""d)xkdx-i-'[ (V" —v") - @, dx
Q o

To estimate the right-hand side, we apply Holder’s inequality and also (3)
and (7) of chapter 1, section 1; as before, the result is

|[Av"—Av, @] < € [ v = [eaa ([ V" [a+ [V ) [ @ [lw
whence, setting ® = Av" — Av" and recalling that ||v" || < const, we obtain
[ AV —Av' g S Co | V"=V L@~ 0 as m,n— co.

Thus we have shown that A is completely continuous, and hence the
operator A+F, which assigns the function Av+F to each function v, is
also completely continuous. Therefore, to investigate the solvability of the
equation (8), we can apply the Leray—Schauder principle. In fact, it follows
from the Leray-Schauder principle (see chapter 1, section 3) that to prove
the existence of at least one solution of the equation (8), it is sufficient to
know that the norms of all possible solutions v\*) of the equation

v—A(Av+F) =0, C))

where 1[0, 1/v], are uniformly bounded. To prove this, we take the scalar
product in H(Q) of (9) with v, and we write the result in the form

J‘ (VD v — Qv Py By dx = A[F,vP] = Aj f-vi®dx, (10)
Q

using (7). The nonlinear term vanishes, i.e.,

; (42
\ 4 o(vy
—AJ‘ vV v dx = —j (4) -dx =0,
Q 2)a

0y

since div v = 0 and v¥|g = 0. Therefore (10) implies the required a priori
estimate

[v® s < 4| F & = 2|f],
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where |f | is the norm of the linear functional defined by f. This completes
the proof of Theorem 1; for the solution of the problem (2), (3), we have the
estimate

i 1
[vie <1 Fla=-1 1] (1

Next we show that for small Reynolds numbers (understood in the
generalized sense given below), the problem (2), (3) can have no more than
one generalized solution. Suppose that on the contrary there were two
generalized solutions v and v'. Then the difference u =v—v’ would belong to
H(Q) and would satisfy the identity

j (o, ®, —uv® —vu® )dx=0. (12)
Q

Since Q is a bounded domain we can choose ® to be any element in H(Q).
If we set ® = u the identity (12) can be transformed into

0=v“u||fq—J~ (upv-u, +opu-u, )dx = v”u“,z,—f uv-u, dx.
Q Q

We use Holder’s inequality and the inequalities (3) and (7) of chapter 1,
section 1 to estimate the last term, obtaining

3 3 +
v[ulk= > ukviuixkdx§\/3"ully< Y u,‘fdx)
Q ki=1 -
3 3
(], otar) 52y

Qi=1

wlilv]a-
The estimate (11) is valid for the solution v, and hence
. 5 -1l
viwli =23t Jula] €] (13)
If v, f and the domain Q are such that
23ur 7 £ <1,

then (13) implies that u vanishes, i.e. that v and v’ coincide. Thus, we have
proved the following uniqueness theorem:

THEOREM 2. If v, T and Q satisfy the condition
23ufHv72 | ]| <1, (14)

then the problem (2), (3) has no more than one generalized solution.
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The condition (14) means that the generalized Reynolds number is not
large. Next, we consider the case where the domain Q is unbounded:

THEOREM 3. The problem (2)-(4) in an unbounded domain Q has at least

one generalized solution for any f such that the integral j f- ® dx defines a
Q

linear functional of ® € H(Q).

First, we recall that in chapter 2, section 1, criteria are given for f to define
a linear functional on H(Q). The proof given above is not immediately
applicable to the case of an unbounded domain Q. In fact, in the case of an
unbounded domain Q, the definition of the generalized solution of the problem
differs in a certain respect from its definition in the case of a bounded domain
Q, although above we gave a joint definition for both kinds of domain. The
point is that in this definition we required that the identity (5) hold for any
function ® in J(Q). For a bounded domain, this is equivalent to requiring
that (5) be true for any ® in H(Q), while for an unbounded domain Q, this
is not the case, i.e. (5) will not hold for an arbitrary ® in H(Q) (because of
the presence of the nonlinear term). ‘

We now turn to the proof of Theorem 3. Let Q,, n =1, 2, ..., be a mono-
tonically increasing sequence of domains which has the whole domain Q as
its limit. It is easy to see that if we extend each of the vectors v belonging to
H(Q,) over all Q by setting v equal to zero outside Q,, then v will belong to
H(Q) and ||¥||um = ||¥]|n@ - Therefore, f can be regarded as a linear
functional on any of the H(Q,), with

|€& )| =|f]] @ nean

for ® e H(Q,), where |f | is the norm of the linear functional f on H(Q). For
each of the domains Q,, the problem (2), (3) has at least one solution v,
and the estimate (11) holds for all the v\, with one and the same constant
I f | Therefore, the sequence of solutions {v\”} is weakly compact in H(Q).
We now show that any weak limit v of {v(} is a generalized solution of the
problem (2)-(4). To show this, it is sufficient to convince ourselves that v
satisfies the identity (5) for ® in J(Q) (but not in H(Q)!). Thus, take any ® in
J(Q). Since ® is of compact support, the identity (5) will hold with this @
and all v for all sufficiently large n. Passing to the limit in (5) along a
subsequence n, for which {v("} is weakly convergent in H(Q) to v (and hence
is strongly convergent in L, (l X | < const)), we see that v actually satisfies (5)
with the chosen ®. This proves Theorem 3. It should be noted that no smooth-
ness conditions whatsoever have been imposed on S.
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In section 4 of this chapter, it will be shown that each of the generalized
solutions which we have found will have increasingly better differentiability
properties as the external perturbation f and the boundary S of the domain Q
are made smoother. This dependence has a local character, i.e. the solution
becomes better in the part of the region Q in which f is improved and the
same is true of the boundary S. The final results (as concerns the smoothness
of solutions) are the same as in the case of boundary-value problems for the
Laplace operator. Theorems 1-3 are also valid for two-dimensional flows
(except that in (14) we must replace /3 by /2), and the proofs are the same
as in the three-dimensional case.

2. The Interior Problem with Nonhomogeneous Boundary
Conditions

We now look for a generalized solution of the system (2) in a bounded
domain Q whose boundary S (which may consist of separate surfaces, i.e.
S =38+ ... +8S,) satisfies the boundary condition

v|s=als. (15)

The assumptions which we make concerning the regularity of the boundary S
and of the field a reduce to just the following two conditions:

I. The field a[s can be extended inside the domain  in the form
a(x) = curl b(x), with b(x)e W3(Q) (see chapter 1, section 2).

II. There exists a set of twice continuously differentiable ‘‘cutoff”
functions {(x, 6), where 6€(0, §,], equal to 1 near S and to 0 at all points
of Q with distances from the boundary S exceeding &, which are such that

IEDIEL ! et

with the same constant C for all (0, 6,].
In addition to a certain smoothness of a and S, the first requirement
implies that the condition

J a-ndS=0 (k=1,...,n) (15a)
Sk
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is met. The second requirement involves only the properties of S, and it is
not hard to see that this requirement is satisfied by piecewise smooth boun-
daries with nonzero angles. We shall write

a(x, 8) = curl (b(x){(x, 9)).

Then it is obvious that a(x, 8)|s = a|s.

By a generalized solution of the problem (2), (15), we mean a function v(x)
which satisfies the integral identity (5) for any ®eJ(Q) and which is such that
u(x, 8) = v(x)—a(x, §) € H(Q). It is not hard to see that if u(x, 6) belongs to
H(Q) for any d€(0, 8, ], then it also belongs to H(Q) for any other 5 €(0, 4]
(since a(x, §")—a(x, 8" )e H(Q)).

The theorem which we now prove is also true for two-dimensional flows:

THEOREM 4. The problem (2), (15) has at least one generalized solution for
any f such that the integralf f- ® dx defines a linear functional of ® € H(Q),
Q
provided only that the conditions I and 11 are met.

Proof: To prove the theorem, we follow the same plan as used to prove
Theorem 1 of the preceding section. Choosing one of the a=a(x, J;), we
note that the identity (5)

J [V(u,, +3,) @, — (Ut a)(u+a) @y ]dx = (f, ®) (16)
Q

is equivalent to the operator equation
vu—A4;u—F=0 Y))

in the space H(Q). The nonlinear operator A4, in (17) is defined by the
relation

[Aju,®@] = J [—va, +(u+a)u+a)] @, dx.
Q

In the same way as before, we prove that A, is a completely continuous
operator in H(Q). Therefore, to prove that (17) has a solution, it suffices to
show that all possible solutions of the equation

u—i(4,u+F) =0 (18)
for Ae[0, 1/v] are uniformly bounded in H((Q).
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Thus, let u be any solution of (18). Then u satisfies the identity (16) with
v, - @, replaced by (I/Au,,- @,,. Setting ® = u in (16) (which is possible
since Q is finite), and using the fact that

ou?
(up+au-u, dx =% | (ue+a)—dx =0,
Q Q 0xy
we obtain

f [(u,, +Avay) u, —A(u,+a)a-u, ] dx = Af, u).
Q
This relation implies the inequality

Jula= iUnuka‘"xkdx +alilulu+iCsfaltfulati|f][u]a. 19

if we note that

[ v sfalifull,
@w]=|t]fula,

ff aa-u, dx gﬁq ia:dxfnunéc3||aufi|u||,,.

I
Suppose now that for solutions u(x, 2, é,) the norms |u|, are not uni-
formly bounded for all A€[0, 1/v]. Then there exists a sequence A = A1y
Az,... in [0, 1/v] which converges to some number 1,, such that the corres-
ponding solutions u” = u(x, 4,, d,) of the equation (18) have norms N, = Hu"”H
converging to oo. The inequality (19) holds for all the u” with the same con-
stant C;. Dividing both sides of (19) by N2, and writing the result as an in-
equality for the function w” = (1/N,)u", we find that

P lnc3 2 ]"l
kaa W dx “Safia

1<,

1
+17n”a||1+ [f]. (20)

The set of functions {w"} is uniformly bounded in H(Q) (in fact, || w" ||, = 1),
and hence is strongly compact in L,(Q). Without loss of generality, we can
assume that the whole sequence {w"} converges strongly in L,(Q) and
weakly in H(Q) to some function w, where the limit function w belongs to

H(Q). It is not hard to see that the integral f wia- wy, dx converges to
[
Wia W, dx.
Q
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We now let n — co in (20). In the limit, (20) goes into the inequality

Jﬂ wea w,, dx } (21)

We have obtained this inequality for one of the a = a(x, d,), which was
chosen at the very beginning of the argument. But the function

u(x, 4, 6) =u(x, 4, §,;)+a(x, 5,)—a(x, 6)
is a solution of the equation (18) with a = a(x, 8) and arbitrary 6 (0, 6,];
moreover, the norms || u(x, 4,, 8) |y — c whenn — co and

lim u(x, 4,,9) - u(x, 4,,0,)

—_ - =1 -
n-w “ u(x, )‘ns 5) “H n-=w “ u(x, ln’ 51) ”H
does not depend on §. Therefore the inequality (21) will be valid for this

limit function w(x), for all §&(0, §,]. We now show that this is impossible.
Because of the conditions I and II (see p. 120), the inequality

|a(x, )| <c4< + Z |bxk(x)|>

holds for a(x,d). (We recall that it follows we use for elements of W),
[ = 1,2, the formula (10) and the lemma 6 of chapter 1, section 1.) Therefore,
(21) implies

= w(x)

3
£Cih Z l Wi Wixkl

Qs ik=1

1<

f W, W, -a(x,8)dx
Qs

13 Caho /3 3 g
X <-+ Y be,l>dx§ M—(J‘ Y w,fdx)

o = o Qs k=1

3 % 3 %
x( Y wizxkdx> +C5<J Y w:dx>
Qs i,k=1 Qs k=1

3 + +
x ( Y wh. dx) <‘[ Z bf., dx> (22)
Qs k=1 Qs i,k=1

where Q, is a boundary strip of width J, and C,, C; are absolute constants,
determined only by the domain Q. Since we H(Q), it satisfies the inequality

+ 3 %
(j w? dx> < C65<J~ Y wf,kdx> , (23)
Qs Qs k=1
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as is easily deduced from the representation

*ow

d
8nn

W(X) = “,(,V)|,\YES'+Jv
y

by using Schwarz’ inequality, if we bear in mind that w ]s = 0 and that the

boundary is not too bad. Because of (23), it follows from (22) that

3
1< /10C7f Y wl dx
Qs k=1

with a constant C, which does not depend on §. But this inequality is
impossible, since

3

Y widx—>0

Qs k=1

as 6 — 0. This contradiction proves the uniform boundedness of ” u(x, 4,9,) ”,,
for Ae[0,1/v], and completes the proof of Theorem 4.

3. Flows in an Unbounded Domain

Suppose we have a system of # immovable bounded objects past which
there occurs a flow v(x) with a known value v =const at infinity. Let a(x)
denote any solenoidal, locally square-summable vector function, with
generalized first derivatives that are square-summable over Q, which vanishes
on S and equals v, for large | x| (| x| = R,). The formal definition of the
generalized solution v of the problem of flow past the system of objects is
just like that made for problem (2), (15) of the preceding section. As we know,
the requirement that v(x)—a(x) should belong to H(Q) guarantees that the
integral

V-

——=dx

o | x—=y l 2

converges, which in turn means that v(x) converges in a definite sense to
vV, as |x] — o0 (see chapter 1, section 1). Regarding f, we make the same
assumptions as in section 2; the restrictions on S just reduce to the
possibility of constructing *‘cutoff functions™ {(x, d), 6€(0, d,], i.e. functions
equal to 1 near S and to 0 at points of Q whose distance from S is greater
than 6, and which obey the inequalities
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Without loss of generality, we can assume that these functions are twice
continuously differentiable (this can always be achieved by extra averaging
of the {). If we define the vector b = (o, x5, %3 x, %y X,;), where a =v_,
it is obvious that the vector e(x, ) = curl{b(x){(x, d)) coincides with v
near S and equals 0 outside the boundary strip €. In defining the generalized
solution, we can take for the function a(x) any of the functions a(x, ) =
v, —e(x, 8), and this fact will be used subsequently.
The following theorem holds:

THEOREM 5. The problem of flow past a system of n objects, where the
velocity equals v, = a at infinity, always has at least one generalized solution

for any f such that the integralj f- ® dx defines a linear functional on H(Q),
Q
thus in particular, for f = 0.

Proof: A generalized solution can be found in just the same way as in
Theorem 2 of section 1, as follows: We construct a sequence of domains Q,
converging to Q, and in each Q, we take a solution v" of the system (2)
satisfying the boundary conditions

Vis=0,  ¥[r,=al]|r,,

where S+ T, is the boundary of Q,. Then we show that the norms of all the
u" =v"—a in H(Q,) are uniformly bounded (in n):

0" | = Cs- (24)

The estimate (24) allows us to choose a subsequence from {u"} converging
to a function u(x) € H(Q), which determines the desired generalized solution
v=u+a. The argument is the same, word for word, as that given in
section |, and hence we shall not repeat it here.

Thus, it only remains to show that (24) holds. This is done in essentially
the same way as we proved the uniform boundedness in 4 of ||¥(x,4){|, in
the preceding section. In fact, suppose that on the contrary,

N,=|u|pay— o as n-oo.

The identity (16) holds for each of the u”. In (16) and below, we take a(x) to
be the function a(x,d) =v_ —e(x, ). Then we set u =u", ® =u" in (16)
and estimate the right-hand side of the resulting equality in just the same
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way as before, noting only that since a(x, §) equals the constant vector v,
outside the boundary strip Q;, then

j aka-u';kdx}= f apa,,  uwdx| = f aa,, -u'dx
Qn ] Qn Qs

< Gyl alhian [ v #en

with the same constant Cy for all n and §€(0, 6;]. As a result, instead of
(19), we obtain

1
o &, < ;Uﬂ u? - auldx

1 |
+Cs [ a{#an | 0" |r@n +; ][ v [n@n- 25

+] w0 [l

We now extend each of the u"(x) onto all Q by setting u"(x) equal to zero
outside Q,, and we introduce the functions
n u"(x) n
w'(x) = N where N, =[u"|n@,-

n

The functions w"(x) can be regarded as elements of H(C2) which are uniformly
bounded in H(Q) and which satisfy (25), or equivalently

1
- wie-wy dx| +
viJa,

if we bear in mind that

J upa-uy dx = —J uge(x,8) u}, dx.
Q. Qs

11

1= ”a”Wzl(n.s)+ ha”Wz’(Qd)—*_ v|f|’

Then, repeating the argument of the preceding section word for word, we
arrive at a contradiction with our assumption that N, - co as n— oo. This
establishes (24), and thereby proves Theorem 5.

Of course, the method used here to prove that the problem of flow past a
system of objects has a solution is also applicable to the case where non-
homogeneous boundary conditions v|s, = als, are specified on the boun-
daries S; of the objects, provided only that

j a-ndS =0, (k=1,2,...,n).
Sk
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4. Effective Estimates of Solutions

We can also give an explicit estimate [[ u H He of the solutions of equation
(18), by constructing the cutoff function {(x) in a special way (see [79, 78, 77]).
This is done as follows: As before, suppose the field a [S can be extended to the
entire domain Q as an expression of the form curlb(x), with b(x)e W2(Q).
Let the boundary S of the domain Q be piecewise smooth with nonzero
angles. More precisely, we make the following assumptions about S

1. S and some neighborhood of S can be covered by a finite number of
balls K(r), i =1, ..., N, of small radius r, such that in each K(2r),f we can
introduce nondegenerate coordinates y' = »(x), with continuously differen-
tiable yi(x) and x' = x'(y), relative to which the equations of the piece of
boundary S n K;(2r) have the form

. o
ys = 0'(y1,)2),
where (%, y5) vary over a bounded domain D;, and o' is a continuous,

piecewise smooth function with derivatives )., ©j, bounded by some
number m;.

2. The region
(0, 1) £ ¥ £ 03,y +3:, V1, ¥2) €D,
where &, > 0, belongs to Q and contains K(2r) ~Q, but the region
{(W(y}, ¥ —8; < ¥y < 0'(31, ¥a)s (), ¥ e D nKi(21)

has no points in common with Q, and contains K (NN (E;—9).

We now choose non-negative, infinitely differentiable functions ¢ (x),
i=1,...,N, such that ¢(x) <1, ¢(x) equals zero outside K(r), and the
sum

HEre)

equals 1 in a two-sided neighborhood of S of width Cr, C > 0.
We consider the following function, where 0 < ¢ = 1:

H 1, —o <t<2pe YE=2R,
t
Vl(t,s,P) =<{~—¢ln—, 2RSS 2p,
2p
0, 26 £t <co.

1 K,(2r) is concentric with K(r).
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This function is piecewise smooth, and

(0, —o <t < 2R,
I
dn | &
= "= J 2RSt£2
a =TT T ==
0, 2p St <o,
so that
€
|[n'tte0)| <

holds everywhere.
Using #, we construct the following functions for p < lminé;, i=
1,..., N:
e p) = LMY= @032 e p]ix() i Kilr),
B 0 outside of K(r).

We denote these functions in the old coordinates x, by {/(x,¢,p) i.e. we
write

Ci(x’ &, p) = Ci(yi(x)9 &€, ,0)
The function

N
g(xs £, p) = Z Ci(xy &, ,0)
i=t

has the following properties:

1. It is continuous and has piecewise continuous derivatives, and its value
lies between 0 and N.

2. It equals 1 in a two-sided neighborhood of S, of width not less than
C, R, C, being some positive constant.

3. It vanishes outside some neighborhood of § of width C, p.

Lol £

— |G- +1

0x, | = 3<d(x) >

where d(x) is the distance from x to S, and the constant C;, as well as the
constants C, C,, C,, depend neither on & nor on p.

We average the function f(x, g, p) using some infinitely-differentiable non-
negative kernel (cf. chapter 1, section 1.3) of radius $C; R. The function

4. In addition,
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obtained from this averaging will be denoted by {(x, ¢, p). It is readily seen
that {(x, ¢, p) possesses the same four properties as does the function g,
except that the constants C, are changed, though they still do not depend on
¢ or p. The fact that { has properties 1-3 is obvious. The derivatives
0/0x; of the averaged function of , i.e. of {, equals the averaged function
of the derivatives 6C/0x,; using property 4 for the estimate of |ac 0xk| and
remembering that in a strip of width C; R 08/ox, equals zero, we see that
estimate 4 holds for d(/0x, outside a neighborhood § of width $C; R
while inside it 8{/0x, = 0; thus property 4 does holds for 0{/0x;.

Turning to estimate ||u ||y, we note that in the inequality (19), we
have only to estimate the first term

J ua-u, dxi,
Q

where a = curl (b{). Taking for { the function just constructed, we estimate
I for Ae[0,1/v] in the following manner:

“lale 3 [ etan
. . [einiy2i) +Cep ’7:
<Cs H“HHZ\/J dy‘ldy'zf w2a? dy,
kL D;

wi(yi’,y2f)

<C7Hu“H (\/LL s {(3 l)2+]}dy

wi+Cep R
\/J j ]gradb|2dy'>, where |gradb|= Z b,xk.
D;

wt ik=1

I=4

(26)
For any smooth function w equal to zero for = 0 we have,

. CLwi(yy, 2,1
J—jj f—‘izi—d yidy, dt

2ww w2(¥1,¥1,Cep)
JJ ~—~tdy1dy2dt——-[ *1—Cy2p—6de’1dY2
D; 6

< 2\/JJ" dy, dYZdtijwf dy,dy,dt,
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from which we obtain the familiar inequality

Cep
J §4f f wy dy, dy, dt, 27
DiJo

which, by closure, is also true for the components of the vector u, since
ue H(Q). Then in view of grad b e L,(Q)

wi(y},34) +Cep
f dy dy'zj ui | gradb| * dy}
D;

wi(yl,yh

= \/jfufdyi\/fflgradb| dy' < () | u ey %)

where C(p) — 0 as p — 0. From (26)-(28) and (23) it follows that
1< Cele+p+Cp)][uli.
If we select the numbers ¢ and p so small that
Cyle+p+Clp)] <%,

then for the corresponding a = curl(b{), (19) gives the desired estimate
C 1
o =2(Jaf+ Ll 111 )

We can also give an effective estimate of ||ul,q, for flows in an un-
bounded domain Q. In this case, we have to use a cutoff function {(x,¢, p)
of the same type as that just constructed for the case of a bounded domain.
Then the functions

a(x, g, p)=v,—e=v_ —curl(b(x){(x,¢,p))

equal v, in the whole region Q, except for a strip Qc,, of width Cop near S,
and in this strip a satisfy the estimate

la(x,e,p)| < c10<| b(x)|<£x)+1>+[grad b(x)|+1>,

where d(x) is the distance from x to S. This allows us to estimate the quantity

I,= j upa-ul dx = —f w) - curl(bupdx = — j u}, - curl (b))u; dx,
Q, o,

Qcyp
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i.e. the only integral in the right-hand side of (25) which has not yet been
estimated. In fact, we have an estimate

|1,| < Crole+p+CO] || 0" | o £ 3| 0" | Ean

by the way of reasoning like that for a bounded domain. Together with
(25), this gives an effective estimate of ||u”||yq,), in terms of known
quantities, which is independent of n. The estimate is also valid for the limit
function u(x) in the domain Q.

5. The Differentiability Properties of Generalized Solutions

We now show that the differentiability properties of generalized solutions
become better to the extent that the data of the problem become better,
and that this improvement is of a local character. For the case of plane
parallel flows, this can be done by familiar methods, since in this case, solving
the boundary-value problems under consideration is equivalent to solving
the first boundary-value problem for the function ¥(x,, x,) (see chapter 2,
section 3). In fact, the stream function y satisfies the equation

v AZ‘/J + l//xl waz - lpxz wal = _flxz +f2xl s

and we know the boundary values of { and dy/dn. In the case of three
space variables, it is not possible to make such a simple reduction of the
problems being considered to the case of problems which have already been
studied. However, we shall show that the following (typical) theorem holds:

THEOREM 6. If v(x) is a generalized solution of one of the problems considered
in this chapter, and if f(x) is square-summable over a finite part Q, of the
domain Q, then v(x) is Holder continuous with exponent 1/2 in Q, and has
second-order derivatives in Q,, which are square-summable over Q,, where
Q, is any interior subdomain of Q, . Moreover, if f satisfies a Hilder condition
in Q,, then v has second-order derivatives which satisfy a Holder condition
in Q, with the same exponent.

Proof: Let v(x) be a generalized solution of one of the problems considered
above. Then v(x) satisfies the identity

f Wy @, — 0,V @, ) dx = (f, D) &)
Q

and certainly belongs to W(Q,). If we could choose ®(x) in (5) to be the
basic singular solution u*(x,y) of the homogeneous linearized system, then



132 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW CHAP, §

for this @ the integral JQ w, @, dx gives the value of v, at the point

¥, and from (5) we obtain a representation of v,(y) in terms of volume
and surface integrals from which we easily obtain the required properties of
the solution v. However, in (5), ® must not only be solenoidal, but must also
vanish on S and be square-summable over Q, together with its first-order
derivatives, and u* does not have the last two properties. Thus, we “fix up”
u* in such a way that it becomes acceptable, i.e. belongs to H(Q). To do so,
we recall that u*(x, y) can be represented in the form

1
ui(x, y) = curl V(x,y),  V&x,y) = gy curl( |x—yle), (29

my

where e* = (5, , 62, 8;) (see chapter 3, section 1).

Now, let Q,, Q;, ... denote subdomains of the domain Q,, each con-
taining the next (i.e. Q, > Q, > Q3 >...), and such that the distance from
Q, to the boundary of Q,_, is positive. In (5), let ® equal

O(x) = curl [C*()VH(x, »)],, (30)

where {(x) is a non-negative continuously differentiable function equal to
1in Q3 and to 0 outside Q,. Moreover, let the symbol ¥, denote averaging
of Y “‘with radius p” (see chapter I, section 1). We take the radius p to be less
than the distance from Q, to the boundary of Q,, and we choose yeQ;,.
[t is clear that ®eH(Q) and even that ®e H(Q,). We substitute @ into
(5), and bear in mind that the averaging operation commutes with differentia-
tion and that

J‘ u(x)v,(x) dx = f u,(x)v(x) dx,

provided only that one of the functions is of compact support in Q and that
p is less than the distance from its support to S. This gives

(f, ®) = [

JQ

f,- curl, [{2V*(x, y)] dx

=J {v,y, - [eurl (LPVY],, — (v v), - curl (PV9), } dx.  (31)
Q
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Using the equation for u¥, we transform the first integral in the right-hand
side into

f W, - [eurl (L VH)],, dx
Q

=0
|x—ylze

= limf W, [eurl ((PV9)],, dx
Q

= limf —w, A({% curl, V¥4 grad { x V¥)dx
e—=0JQ,
|x—ylze

) )
—llmJ~ w, - -curl V¥dS
e 0Jr=|x—y|=¢ ar

= lim{—j v, [(? grad g* + 2v((?), b, + vu*A(L?)
=0 Q
fx—ylze

o k
+v A(grad {* x VY] dx}—limj‘ W, au ds
r=e r

e—0

= J {div(£?v,)g* —vv, - [4LL,, uk, +uA() + A(grad (% x V¥)]}dx
Q,

‘u X—y
—lim W, ——grv -~ }dS.

The last integral gives v,,(y) in the limit, because of the basic property of
the solution w*, g*, or equivalently, because of equation (1) of chapter 3.
We substitute the above into (31), bearing in mind that divv, = 0; the result is

J £, curl ({*V¥)dx = —v,q,(y)+f w, [(1/v)g* grad {* — 4L, ut,
Q

Q,
—u*A(L?) — A(grad % x V¥)]dx - j (v,v), curl (VY dx (32
Q

for yeQ,. If we introduce the notations

Lli(xa y) = —curlx((:zV"),

1
L5(x,y) = ;qk grad {2 —4((,, uf, —u*A((?) - Agrad {2 x V¥,
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then formula (32) can be written in the form

Vi,(¥) = Vf L4(x, ) v (x) dx +J L (%, 9) - (v;v), dx
Q

Q
+f Li(x, y)-f,(x) dx. (33)
Q

We now pass to the limit as p — 0 in (33). One cannot expect convergence for
arbitrary y, since all we know about v(y) is that it belongs to #}(Q) and hence
is summable over Q; with an exponent no greater than 6 (see chapter 1,
section 1). However, it does follow from this and from the property of the
averaging operator that v,( y) will converge to v( y) in the L(Q2,) norm.

Next, we consider the integrals in (33). For the kernels L’}(x, ¥), the
estimates

C C
iLIi(X,y)lé‘—, ‘L’;x,(-xuy)lé_—z, |L’2((x’y)|§~—"'——i
|x—y |x=y |x=y]

(34)

hold for any xeQ,, yeQ;. The densities f,, (v;v), and v, multiplying
these kernels are uniformly bounded for any p in the spaces L,(Q,), L1(Q,)
and Lg(Q,), respectively, and converge in these spaces to the limits f, v;v
and v as p— 0. The inequalities (11) and (12) of chapter 1, section 1,

together with the estimates (34), aliow us to assert that L';-vp dx and
Q

LY-vdx andj L% fdx uniformly in Qj,

Q4

f Li-f,dx converge toJ‘
Q3

Q

whilej LY, (v),dx converges to J‘ L%, .- v,vdx in the L(Q;) norm, for
Qy Q3
any g < o. Thus, taking the limit p — 0 in (33), we obtain the following for

almost all y:

vly) = VJ L5(x, y)-v(x) dx +f LY, (%, y) v,V dx+f Li(x, y)-f (x)dx.
Qq Q Q,
(35)
Since the right-hand side of this equality is summable over Q; with any
finite exponent, it follows that v(y)eL,(Q;) with any g < co. The domain Q;

is any interior subdomain of the domain Q,. Similarly, let Q, be any interior
subdomain of the domain Q5. Then, for yeQ, and x€Q;, a representation
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of the form (35), which we denote by (35), ; holds. In this representation,
the integration is carried out over Qj, and the same estimates (34) are valid
for the kernels L¥, but with another constant C. Using (34), we deduce
from (35),, that v(y) is a continuous function in Q, and even satisfies a
Holder condition in Q,. Thus, by successively making the domains €,
smaller, we prove that v(p) has derivatives of the first and second order
which are square-summable over any interior subdomain Q; ¢... cQ, ¢Q,.
If the representation (35) does not contain the term

J(y) =— L Li(x, y) - f(x) dx,

corresponding to the external force f, then we could convince ourselves step
by step that v(») has derivatives of higher and higher order, i.e., that v(y)
is infinitely differentiable. The term J imposes a limit on such animprovement.
We now consider the term J in more detail for the case where feL,(Q;)

J(y) = f f(x)- [(% curl, V¥(x, y) +grad {* x V¥(x,y) Jdx = J,(y)+J5()).
o

The integral

J,(y) = f f(x)- grad {* x V¥(x, y)dx
Q

is an infinitely differentiable function of y in the region where { = 1.
Since f{2 €L,(Q,), the integral

J(» =J f- (% curl, V¥dx =f f-Putdx
Q) @
1 fil? 1 o2 , 5

B 47th;,l|x—yldx-*_finv@xj@x,‘ﬁ)1 [ x=ylf;tdx
has derivatives up to order 2, inclusively, which are square-summable
over any bounded domain (see chapter 1, section 1). The domains €,
k=1,2,..., are only subject to the condition that each contains the next
(Q, o Q, o ...)and the condition that the distance between their boundaries
is positive. Therefore, we have proved that any generalized solution v has
generalized derivatives in Q, up to order 2, inclusively, which are square-
summable over any interior subdomain Q} of the domain Q,. This implies
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that v belongs to C, ,(Q,) (chapter 1, section 1). Moreover, it follows from
these considerations that v satisfies the estimate

1V [w2@ = €UV W @0+ 1] Laa,)- (36)

This estimate and the estimates given for H v HWZ.(Q yin the preceding sections
imply an estimate for ||v||y,2q,, in terms of nothing but the data of the
problem, i.e. of f and the boundary values of v.

If f satisfies a Holder condition in Q,, then J(y) and hence also v has
second-order derivatives which satisfy a Holder condition with the same
exponent in Q, < Q,. We omit the proof of this assertion, since it is carried
out in just the same way as for the Newtonian potential (see [19]). This
completes the proof of Theorem 6.

From the existence theorems for generalized solutions of boundary-value
problems in both the linear and nonlinear cases, as given in chapter 2,
section 1 (Theorem 2) and in chapter 5, and from Theorem 2 of chapter 3,
section 5, on the smoothness properties of the solutions to the linear problems,
we easily deduce the following theorem on the solvability of the nonlinear
problem (2), (3), in the classical sense

THEOREM 7. If f(x)eL(Q), r 2 ¢, S€ C,, then any generalized solution v, p
of the problem (2), (3) in the space H(Q) will have the properties ve WX (Q),
grad peL(Q), and the quantity ||V||y,2q0)+]| grad p||L ) will be bounded
by a constant determined only by fHLr(n)’ r, and the domain Q. If r > 3
and fe C, ,(Q) with some h > 0, then the solution is classical; more precisely,
veCo 2-3,(Q) and v,, ., and grad p belong to C, ,(Q).

The second statement of the theorem follows from the first and Theorem 6
if we observe that Cy 5 - 3,(Q) = WX(Q) for r > 3. To prove the first statement,
we use Lemma 6 of chapter I, section 1, on the imbedding of WX(Q) in L,(Q)
for g £3r/(3—1Ir). Suppose v is a generalized solution in H(Q) of the problem
(2), (3). We may consider it as the solution in H(Q) of the linear problem (48)
of chapter 3, section 5, with external force F= —f+up,v, . Since v
belongs to H(Q), and consequently to W}(Q), then by Lemma 6, chapter 1,
section 1, veLg(Q), so that v,v,, belongs to L,(Q), and

Ve 20 < €V [oavay S €y £ Ry < Co | f

If r < 3, then F e L (Q), and the correctness of the statement of Theorem 7 is
insured by Theorem 2, chapter 3, section 5. If r > 3, then FeL%(Q) and by
Theorem 2, chapter 3, section 5, v will be an element of W%(Q) But v in
W%(Q) is summable over Q to any finite power, while its derivatives v,, are
summable to any power g less than 3. Consequently v,v,, is summable

Lr(Q)
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over Q to any power g < 3. By virtue of Theorem 2, chapter 3, section 5,
this proves the statement of Theorem 7 for r < 3. If, however, r 2 3, then by
Theorem 2, chapter 3, section 5, v will be an element of WqZ(Q) for any
q < 3. But from the fact that v belongs to WqZ(Q) for any ¢ < 3, it follows
that v, v,, is summable over Q to any finite power; this, however, in view of
Theorem 2, chapter 3, section 5, insures that v belongs to W7(Q) and grad p
to L,(Q). In addition, at each step of the argument, stronger and stronger
norms of v will be estimated in terms of the norm of f in L,(Q); in this
manner, the norms ||v||y,2q and also ||gradp||.q, are reached. This
completes the proof of Theorem 7.

Comparing Theorems 6 and 7 with Theorem 3, chapter 2, section 1 and
Theorem 2, chapter 3, section 5, we see that the dependence of the differenti-
ability properties of the solutions of the nonlinear equations (2) on the
differentiability properties of f is the same as in the case of the linear equations.
Also, this dependence has the same local character as for Laplace’s operator.
Analogously to Theorem 7, we easily deduce from Theorems 3-5, chapter 3,
section 5, that these theorems also hold for the solutions of the problem (2),
(3), except that the estimates of the norms of v and p depend nonlinearly on
the norm of f. The smoothness of the generalized solutions of the problem (2),
(15) with inhomogeneous boundary condition v |s =a |s is studied in exactly
the same way. The properties of the solutions of the linear problem needed
for this study are insured by Theorems 3-5, chapter 3, section 5. However,
we note that the existence theorem was proved not for arbitrary boundary
regimes a, satisfying only the necessary condition

N
Y | (am)dS=0, (nisthe normal to S,) 37
k=14 Sk

where S, , ..., Sy are the separate contours forming the boundary S of the

region Q, but only for a satisfying the condition (15a). It is not clear whether
the nonlinear boundary value problem is solvable “in the large” (i.e., in
arbitrary Q for arbitrary v and a, with a satisfying only (37)). But, in any
case, it does follow from the above discussion that any of its generalized
solutions in W(Q) will lie in W2(Q), if only fe L(Q), Se C, , and ae W}~ 1/(S).
For unbounded domains, this statement is true for any arbitrary subdomain.

6. The Behavior of Solutions as | x |-+

Let v(x), p(x) be a generalized solution of the nonhomogeneous system
of the equations (2), with the nonhomogeneous condition (15) on S and
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the nonhomogeneous condition v —v_ = const at infinity. We assume that
the boundary S of the infinite domain Q is located in a finite region of space.
Let the external force f(x) be of compact support, i.e. let f = O for | x| 2Ry
Then, according to what was proved above, v(x) and p(x) will be infinitely
differentiable functions of x in the domain |x|> R,, and will satisfy the
homogeneous system (2). Moreover, we know that v—a belongs to H(Q),
so that

iv?xkdx+f Y- w,)ﬁdx+J ¥ =¥, | v°°| dx <w.  (38)

Q k=1 |x——

We now prove the following theorem:

THEOREM 8. The solution v(x) converges uniformly to v, = o = const as
| x| - 0.

Proof: To prove the theorem we use, in addition to the fundamental
solution

k — n —
uf(x, ) = __1_ i +(x,- V(i - Yo ’
8nv| |x—y]| [x—y]

1 x,—y
k = "k Tk
pi(x,y) = dnfx—y]|?

(see chapter 3, section 1), the following solution, constructed by Leray, of
the homogeneous linearized Navier—Stokes system (4) of chapter 2, section 1,
in the sphere [x—y| < R:
- L[ (X =y (%= yi)
af(x, y) = %[7{3(3R2—2|X—)’|2)+—R3h* )

Sxk Vi

~kg..
7(x,y) = i R

For fixed x, the sum

1 Instead, we might assume that f(x) satisfies a Holder condition and falls off sufficiently
rapidly as | x| - + oo.
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wh(x, y) = ui(x, y) +a5(x, ),
gt (x, y) = p(x, )+ p*(x, »)

of these two solutions satisfies the system

k .
v A, W, )+ a(;’y)=o‘?é<x—y) (k= 1,2,3),
8w’§_ (39)
GYi'— ’ J

and the boundary condition
W?(xsy)lye|x—y|=R=0‘ (40)

Next we apply Green’s formula (10) of chapter 3, section 2 to u(y) =
v(») —a, p(y), w* = (wh, wh, wh), and ¢* as functions of y in the region
| x—y| < p, assuming that | x| > Ry+1 and p < 1. This gives

0
u(x) =J wi(x, ) (vAu,-——E> dy +f T/j(w")u,- n;ds,,
|x=yl=Zp 6yl |x=y|=p

or the formula

u(x) = f wi(x, y)(uy+ o)y, dy +J Ti’j(wk)”i n;ds,, (41)
Ix=y[Zp

|x=yl=p

where

owk  owh
T (W) = 8lg* +v < ‘4 p )
y} Vi

because of the Navier-Stokes equations for v, p and the fact that f= 0 in
|x—-y| < p. It follows at once from the form of w* and ¢* that

-9 'qk(x’y)l“|x—y|=p§£2,
P

[ (42)
[x=y|=p P

| whtx, )| £ l

ow;‘(x,y) ]
0y;

HA

IJ

We now estimate the right-hand side of (41) by using the inequalities (42)
and Schwarz’ inequality:
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3
|le(x)l = CJ Z ‘M_‘gﬂef dy

Ix—ylsp =1 lx——y!

, ; . .
+%j > |uldsscC Y q |t dy>
Jg=1

Mo 2
p x-y|=p j=1 i Ix—yl§ﬂlx—yl

L C 3
X <J u,.zyedy> +—2J > |u,lds.
lx—y[sp P J1x=y1=p j=1

We integrate both sides of this inequality with respect to p from 4 to 1, and
bear in mind the fact that

2

j lu,+a,|2 dy < const,
Jx—y|s1 lx_yl

because of (38); the result is

3 4 3
)| < q( f » u,-%v,_,dy) rac f S 10| dy.

lx=ylg1 id=1 fx—yi<1 j=1

From this, applying Schwarz’ inequality again to the last term, we obtain

3 3 3 )
|ux)| < C1<j ' u,?‘,edy> +C2(J Zu?(’y)dy) . (43)
fx-ylst id=1 [x-yls1 j=1

The function u(x) satisfies the inequality (38), from which it immediately
follows that the right-hand side of (43) is less than an arbitrarily small ¢ >0,
provided only that | x|= R, > 1. This proves the theorem.



CHAPTER 6

The Nonlinear Nonstationary Problem

1. Statement of the Problem. The Uniqueness Theorem

In this chapter, we study the boundary-value problem for the general
system of Navier-Stokes equations

Lv=v,—vAv+u.v, = —grad p+f(x, t),}
(1

dive=0, v|g=0, v|,_o=a(x)

in the domain Qr =Q x [0,T]. The boundary conditions are taken to be
homogeneous only in order to simplify matters somewhat. Without loss of
generality, we assume that the force f belongs to J(Q), and we incorporate its
gradient part in —gradp. Then, the condition f=0 will mean that the
external forces can be derived from a potential. Concerning a{x), we assume
that ’

diva(x) =0, alg=0. (2)

The basic results concerning the solution of the problem (1) are the
following: If all the data of the problem are independent of one of the
coordinates x,, x,, x3 (i.e. if we are concerned with plane-parallel two-
dimensional flows), then the problem has a unique solution “‘in the large”,
i.e. at all instants of time, with no restrictions whatsoever on the smallness
of f, a or the domain [38]. The same is true in the three-dimensional problem
if there is axial symmetry and if the axis of symmetry does not belong to the
domain occupied by the fluid [38]. In the general three-dimensional case, it
has been shown that the problem has a unique solution for all # = 0 under the
condition that the forces f are derivable from a potential and that the
“generalized Reynolds number” is less than { at the initial instant of time.
However, if these conditions are not met, then it has been proved only that
the problem has a unique solution for a certain time interval te[0,T],
whose size can be estimated from below by starting from the data of the
problem [39].

141
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These results were preceded by results of Leray and Hopf (concerning
which see the Introduction and the Comments). In section 6, we present
Hopf’s results, i.e. we prove the existence for all = 0 of a ““weak solution™
of the general three-dimensional problem (1). But Hopf did not give the proof
of uniqueness of these solutions and thereby did not justify such extention of
the notion of solution.

In section 8, we use the example of the Cauchy problem to show that any
“weak solution” has derivatives v, and v, , which are summable with
respect to (X, X,, X3, t) with exponent 2, and that it satisfies the Navier—
Stokes system almost everywhere. A similar result is also true for the
boundary-value problem (see [ 54, 56, 89, 90]). However, even this supple-
mentary information on weak solutions in the general case does not enable us
to prove the uniqueness of such solutions. We think that this uniqueness is
not the case in the problem (1) (see the footnote on p. 174).

Before becoming involved with precise formulations, we call the reader’s
attention to the fact that the statement ‘it has been proved that the problem
has a unique solution™ can have very different meanings depending on the
function space in which one looks for the solution. The form in which the
requirements of the problem must be satisfied is different for different
spaces, and different extensions of the concept of a solution of a problem,
i.e. different “generalized solutions”, present themselves, In fact, for every
problem there are infinitely many ‘“‘generalized solutions’, but they coincide
with the classical solution, if the latter exists. In this book, we select from
this set the kind of solution introduced in the paper [39], for which it was
first proved that boundary-value problems have unique solutions in the large.
These solutions, together with some of their derivatives, will belong to the
Hilbert space L,(Qy). The comparative simplicity of the studies in this case
is explained by the fact that the Hilbert spaces are structurally related to the
variational forms of the hydrodynamic laws, and the basic law of energy
dissipation and some others express in the norms of these spaces (cf. Lemmas
1-6). In other words, the basic a priori estimates, on which all these investiga-
tions are based, are formulated in the norms of these spaces.

In section 4, we study the smoothness properties of the generalized solution
obtained in the earlier sections, and in particular, we show that the
generalizedsolution becomes a classical solution if we are given the addition-
al fact that the force f(x, ¢) is Holder continuous with respect to (x, ¢) inside
Or.

After the publication of [38] and [39], there appeared a series of papers
(see Comments), in which generalized solutions in other spaces were con-
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sidered. For these solutions, the principal results concerning the unique
solvability of the problem (1) are the same as in [38] and [39], i.e. “in the
large™ for two space dimensional problems, while for three space dimensional
problems, “for small 7> for arbitrarily large a and f, and “‘for all ¢ for
sufficiently small a and f. In the present book, we choose the generalized
solutions given in [39], since the basic results on the unique solvability of
the problem are most simply proved for these solutions, without recourse
to any special branches of functional analysis or to any complicated analytical
machinery, and in a way which is the same for the two-dimensional and
three-dimensional cases.

We remark once more that nonstationary problems with inhomogeneous
boundary conditions are treated in an entirely similar way to the problems
with homogeneous boundary conditions considered here; this differs from
the case of nonlinear stationary problems. We proceed by subtracting a
smooth solenoidal vector vy(x, ¢) having the same boundary values as v(x, r),
from v(x,t), and we obtain an initial-boundary-value problem of the type
of (1) for the difference u(x,¢) = v(x,t)—vy(x,?). This problem differs from
the problem (1) only in that additional terms, linear in u and u,, appear in
the Navier-Stokes system. These terms exert no influence on the final
results on solvability (at any rate, if v, is sufficiently smooth), and can be
handled by the methods presented here.

We now begin our study of the problem (1): We define a generalized
solution of the problem (1)} in the domain Q; = Q x [0,T] to be a vector
function v(x, t) for which the integrals

3
Y vp(x.tydx
Q k=1

are bounded for all te[0,7] by the same constant Cy, for which the
derivatives v,,, v, exist and are square-summable over Qr, and which
satisfies the conditions

divi=0, v[s=0, v|,o=ax) 3)
and the identity

T
J j (v @+, D, —v,v D, —fD)dxdt=0 ©))
0oJa

1 In the paper [39], in section 6 of this chapter, and in the Comments, we also give other
definitions of generalized solutions, and we prove uniqueness theorems for them.

F
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for all @ (x, t) in L,(Qy) with
®,eL,(Qr), divd=0, @|;=0.

The fact that the classical solution is a generalized solution in this sense is
easily proved. To do so, it is sufficient to carry out integration by parts in
the identity

T
f ~[‘(v,—vAH—v,‘v,(kJrgradp—f)-tl)dxdt=0
0JQ

while taking into account (3) and the fact that grad p and ® are orthogonal.
The identity obtained in this way coincides with (4). The converse is also
true. More precisely, if v(x, ¢) is a generalized solution and if, in addition, it
has derivatives v, _,, in L,(Q' x [0,T]), where Q' is any interior subdomain
of Q, then v(x, ¢) satisfies the system (1) almost everywhere. In fact, taking
@ to be 0 near the lateral surface of the cylinder Qr, we can use integration
by parts to reduce (4) to the identity

T
fJ(v,—vAv+ukvxk—f)-(Ddxdt=0.
0JQ

It then follows from Theorem 1 of chapter 1, section 2, that the expression
in parentheses is the gradient of some function, which, except for sign,
coincides with the pressure p.

The uniqueness theorem holds for classical solutions. We now show that
this theorem also holds for a wider class of functions, i.e. for the generalized
solutions just defined.

THEOREM 1. The problem (1) has no more than one generalized solution.

Proof: Let v and v’ be two generalized solutions of the problem (1), and
subtract from the identity (4) for v the same identity for v'. Then in the
equality so obtained, we set

v—v =u, 0tty,
m={ ]

0’ t1§t§T~

and as a result we have

ty

I J. [w, ut+va, -u, —(u, v +ou)u, ]dxde=0.
o Ja
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This equality can be transformed into

ty 3 1y
%[ju(x,t,)|12+vj ZHu,k”zdt—jJukv'-uxkdxdt=0, )
0 k=1 0Ja

if we bear in mind that divv =0. To estimate the last term, we use the
inequality (5) of chapter 1, section 1, and the fact that

3
f Y. (oi(x,0)*dx < Cr.
Q k=1
If we write

3
¢*(1) =f Y up(x,1)dx,
Q k=1

< \/3¢(t)<f i ug dx>%<f }3:‘ (op)* dx>%
Q k=1 Q k=1
< J/3CE (0 I:s¢(t)+Cz<J. u? dxﬂ
Q

< 2y3ct a0+ 2 u

then

J. u v u,, dx
Q i

This estimate allows us to derive the inequality

3]
3 u(x, ¢y) [{2+vf P*(dt = C f [2345 (t)+ || u HZJ
0
from (5), where C; = /3 C#.
If we set ¢ = v/2C,, then
)
s 5 € fufa
0
Writing
ty
[t =y,
0
we can transform the last inequality into

dy(t,)
dt,

< 2C, y(1y),
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or equivalently, into
d
dt,
The number ¢, is arbitrary in [0, 7], and hence, bearing in mind the fact that
¥(t;) is non-negative and that y(0) = 0, we conclude from (6) that y(¢) = 0,
i.e. that the solutions v and v’ coincide. This proves the theorem.
For the case of plane-parallel flows, there is a uniqueness theorem for the
“weak solution” (Hopf’s solution; see section 6).

(e y(1y)) £ 0. (6)

2. A Priori Estimates

Suppose that the solution of the system (1) has generalized derivatives of
the form v, . and of all lower orders (from which v,,, ,, can be obtained),
belonging to L,{(Qr). Then v satisfies the two equations

f Ld, 2 2 1l 12
v =51l +vk;1 ¥ | ™
and

3
Gov) =2 L1 24y Y v [P+ f ¥, Ve dx ®)
k=1 Q

1d
2dt |
which are derived from

f Lv-vdx=J‘ (—gradp+f)-vdx=j f-vdx,
Q Q Q

f (Lv), v, dx =J (—grad p,+1£,) v, dx =j f,-v,dx
Q Q

Q

by integrating by parts and bearing in mind that divy =0, v ,s = 0. We now
introduce the notation

3
PO = 3 [ vl
YA = | vx, 0 |2,
3
Fi= 3 [vax0[?
k=1

where || ||, as always, is the L,(Q) norm, i.e.

luGe, ] = < f W) dx>%.
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Then, for the function v, we obtain a series of estimates where instead of
assuming that v must be a solution of the problem (1), we only use the
following properties of v:

I. The functions ¢(¢), ¥(¢t), and F(¢) involving v exist for te[0, T], where
#(f) and () are absolutely continuous, and F*(t) and (d/df)y*(¢) are sum-
mable over [0,T].

II. The function v satisfies the relations (7) and (8), and v(x,0) =
a(x).

First, we have the following lemma, which somewhat generalizes the
familiar energy conservation law:

LemMma 1. If v satisifies relation (7) and v(x,0) = a(x), then v satisfies the
estimates

0] = a0 |+ [ 18659 ®

t t 2
e, 1) |2 425 f $)dr<2]a ilz+3<f 1] dt> = A().  (10)
0 (V]

Lemma 1 has been proved at the end of chapter 4, section 1; in fact,
relation (7) is the same as relation (13) of chapter 4, section 1, while inequali-
ties (9) and (10) are the same as inequalities (14) and (15) of chapter 4,
section 1.

To prove the lemmas which follow, we use the inequalities

1 3 +
<f u4dx> < CQ<J‘ Zuf‘kdx> ,  ulg=0 (1D
Q Q k=1
+ + 3 %
<J u“dx) < C5<J u? dx> +8< Zuidx) , (12)
Q Q Q k=1

(see (3), (5), (7) in chapter 1, section 1), valid for any functions ue WiQ)
and any ¢ > 0. In general, the constant C, appearing in the first inequality
grows without limit as the domain Q is made larger and larger. However,
the constant C, does not depend on the size of Q, but approaches infinity
as e~ 0.

Now let Q be such that the inequality (11) holds with C, < c0. Then we
have the following lemma:

and
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LEMMA 2. If v satisfies the conditions 1 and 11, if

g lla_ﬂ-l:_:ﬂﬂﬂw, 8= J3C2, (13)

and if (f,v) =, v,) = 0, then the estimates

1
20 = sl [0,
¢ (14)
[ vi(x, D) H2+2yf FXr)de < || v(x,0) |2
0

hold for all t € [0, T1].

Proof: To prove this lemma, we use the equalities (7) and (8). We estimate
the last term in (8) by using Holder’s inequality and the inequality (11):

3 k3
,Ji l J Ukt Vi ' Vi dx| < { z (Vx le)z dx}

Q ki=1

3 E3 ~ 3 3
{f Z lekdx} §¢3¢(t){ Y vf,dx}
I= QI=1

w

<8 z [ Viee |12 60 = BO(F ().

Then it follows from the relation (8) that

Zdt ” v 2+ (v =Bd(1))FX(1) < 0. (15)

On the other hand, the equality (7) gives

0= 151V = = [ e s o] Tuol

and
[vex.n] < a],
so that

(1) = JV\/ [a] Toden]. (16)
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Because of (13) and (16), we have

1 N,
v=pp©) 2 v=p 5 [a] [v(x.0) =y>0

at the initial instant of time. Since the function v— f¢(¢) is continuous for
t =2 0 and positive at the point ¢ =0, there are two possibilities: Either
v—PB@(t) is positive for all 1t < T, or else there exists a 7y <T such that
v—P¢(t) is positive for t < T, but vanishes for 1 = 7. We now show that
the second case is impossible. In fact, if

v—PB¢(t) >0
for te[0, T;), then it follows from (15) that (d/dt)|| v, ||* <0 for such ¢, i.e.

[vix, )| < || ve(x, 0.
But then from (16) we have

1 —_
¢(z)§7;J||a|| [v(x.0]. (17

Because of the continuity of ¢(¢), this inequality is also valid for t =T
and hence

g,
=P zv="7V [a] [x 0] =r>o0. (18)
But this contradicts our assumption that v—f¢(T,) =0, and thus the in-

equality v—fB¢(t) > 0 holds for all < T. In this case, the inequalities (17)
and (18) hold for all # £ T, and also

1d

(because of (15)). This implies
t
s [+ | Prde s o
0

and the lemma is proved.
If, for the domain Q, Cg < oo then the following lemma holds:
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LEMMA 3. If v satisfies the conditions 1 and 11, and if

A2=<”aH+L ;|fudt><omax Hf||+i!v,(x,0)]|+J Hf,”dt></‘):2, (19)

where f =V 3C&, then the following estimate holds Sfor te[0,T]:

t t 2
[ vi(x, 1) ||2+2(v—ﬁv'*A)J FA(1)dt £ 2] v(x,0) ii2+3<J 1] dt) < C,.
0 0
(20)

Proof: First of all, we take account of the fact that the relation (7) implies
the inequality (9) and the inequality

v () < (16,0 |+ vx. 0 ) [ vGx, 1
sdifenl+puso(jal+[ Iea). ey

On the other hand, the relation (8) and the estimate for J obtained above
imply that
=BoFO S & [ v] 5o 1v = Tw (161 - 1w
= t t 2dt t t t dt t b

) , (22)
where

t +
B() = v_%@ai( e [+ v, 9 | )%>< faf+ f ] dr) .

It follows from the condition (19) that B(0) > 0. The function B(¢) is con-
tinuous for ¢ = 0, and falls off monotonically as #increases.

We now estimate from below the interval 0 £ ¢ < T, for which the in-
equality B(z) = 0 is preserved. Let B(r) > 0 for 1[0, T, ], and let B(T,) = 0.
Then, for t [0, T, ], we have

from which, because of (21), we have

d |
BP0 = w50 (1850 -5 v

wer n 4
0 s, 01 (1560 [ vt )
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because of (22), which implies that

s =[x 0+ [ de (3

Therefore

t + t +
502 v=" (max 11+ 0+ [ 1a) (a1 [ irjar] 29
VVY\osgrst 0 0

for 1€[0,T,]. If now we take account of the condition (19), which can be
written in the form
v—Pv * 4 >0,

then from (24) we obtain
B(T)zv—pv"%4>0.

But this contradicts our assumption that B(T,) = 0. Thus, we have established
that

B Sv—pBv 4 >0
for ¢ [0, T']. Therefore, it follows from (23) and (22) that

t t
sint o[ Podes [ v
0 1]

< [ o e ) in )

for t€[0,T7], and Lemma 3 follows from these inequalities.

Next, we consider the general case where no restrictions whatsoever are
imposed on the magnitude of the initial perturbation and f. Then, we show
that the following lemma is valid:

LemMMA 4. If v satisfies the conditions 1 and 11, then there exists a positive
number T, £ T such that for 0 < t £ T, the estimates

T
f FXpdt<C, and |v(x,nD{|<Cs, (25)

0

hold, where the quantities T,, C, and Cs are determined by the data of the
T

problem, i.e. by v, $(0), || v(x.,0) || and J || ;|| ds. The domain Q can also be
0

unbounded.
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Proof: We take three positive numbers k, y, & such that
v—2v3e2[$(0)+k] = 1y > O, (26)
and we denote by T, the largest value of 7 for which
(1) < $p(0)+k  when <7 and¢ ()=¢(0)+k. (27)

Obviously, it is sufficient to consider only the case where such a T, exists and
T, <T. Next, we consider the equality (8), and we use (12) to estimate the
last nonlinear term in (8), where in (12) we fix ¢ in the way indicated in (26).
The resuit is

. I _ R
[J] = 3¢() \/ f . kzlv;‘, dx 2 2./3¢[C? || v, |* + 2 F*(1)].

Writing 2,/3C? = C¢ and substituting the resulting estimate into (8), we
obtain

W+ 0=203800)F 0 5 Coo) v 2+ 6] v

Because of the assumptions (26) and (27), it follows from this inequality that

AP+ 2P0 < Co@+R w2+ 6] v ] = ¢ v+ [ 6] [v]
(28)

il

for t < T,. From this, by a familiar method, we deduce estimates for || v, |
and F(¢); i.e. we first drop the non-negative term (y/2)F?(z) in the left-hand
side of (28), obtaining

[ vl-catnd] < 111w,

from which we easily conclude that

[v(x,n] = eC"[|| v(x,0) | + J e | £.0x,7) | dt] =D))< D(T)=C
(29)

We now return to the inequality (28). Integrating (28) with respect to ¢
from O to T, dropping the non-negative term | v,(x, T})|? in the left-hand
side of (28), and dividing the resulting inequality by y/2, we find that
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T, 1 . T
J FX(nydt < ;[“ vi(x,0) | 2 +2C, TDZ(T)+2D(T)f I, | at ] = C,.
0 0
On the other hand,
1d ,
53,4) (1) = ¢()P(1) = G(NF(1)

because of the definition of ¢ and F, and therefore

j p(dt] = | 60— (0| < j Fyde s \/ r j P,
0 i 0 0

From this and from the estimate obtained for F we have

d(0)+k=¢(Ty) = ¢(0)+\/ Tl‘[ lF"(f) dt < §(0)+VC, T,
0

and this inequality gives a lower bound for T}, i.e.
C, T, 2k*>0,

which concludes the proof of Lemma 4.
We now show that in the case of plane-parallel flow we can estimate

t 2
f J\ Z vtzxk(xl’XZat)dxl dxzdt
Q

0 k=1

for all ¢ = 0, without any restrictions whatsoever on the magnitude of the
initial perturbation. Thus, suppose that all the data of the problem are
independent of x;, and suppose that f; = v; = 0. Let Q denote the domain
of the space of points x = (x;, x,) in which the solution is being studied,
and let S denote the boundary of Q. In this case, the Navier-Stoke system
consists of three equations for v =(v,,v,) and p. We retain the same
notation | ||, ¢, ¥, F for the various integrals, and merely bear in mind that
the integration with respect to x is now over the two-dimensional domain Q.
Obviously, the estimates (9) and (10) in Lemma 1 are also valid in the present
case. Instead of the other lemmas, we now prove the following lemma:
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LeMMA 5. If the vector function v = (v((x, X,, t), v,(x, X, 1)) satisfies
the inequalities (9), (10) and the equality (8), if the integrals

U (f2+f,2)dx]%dt
w(t) < exp| =A@ | w | |16, (30)
v Jo

vL Fa(x)de < p(0)+2 [ f 0 14 dt] exp [% A(t)] [w(()) ; f O 15 dt:|

+ 2 aexp E”- A(t)] [w» ; f 16 dz] 3D

A() =2 [ax) HZH[(L: €] dt>T .

Proof: We estimate the nonlinear term

f [v*(x,0)+Vv2(x,0)]dx  and

are bounded and Q) arbitrary, then the estimates

hold for v, where

2
J() = Z Uke Ut Uy AX 1 dX
Q ki=1

in the equality (8) by using Holder’s inequality and the inequality (1) of
chapter 1, section 1, which is valid for any of the functions v,,:

2 §
[J(n] < ¢(1)[ P A dXJ = 200y (DF(1).

Q kl=1

Because of this, it follows from the equality (8) that
d
Elﬁz(t)+2vF 21 S 2|, | w(0) + ¢ (1)F (1)

4
<2 w(t)+;¢2(t)¢2(t)+vF2(t),

and therefore
d 4
7 YA +vFA() S 90 || £, | +;¢2(t)¢2(t)~ (32)

From this, in the usual way, we deduce the estimates (30) and (31). In fact,
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dropping the term vF(¢) in the left-hand side of (32) and multiplying both
sides of (32) by
2 t
exp [— - J ¢*(v) df],
Vio
we obtain

d t . 't
w(o) Jt[wmexp(—zj $2(0) dr)] <y ] exp<—3 $2(0) dr>. (33)
vJ]o v

4]

The function y(¢) depends continuously on ¢, and hence it follows from (33)

that
0] exp[—zf $*(x) dr]—w(m < f I eXp[—% ) dr] dr.
0 WO

vio

This inequality and (10) imply the inequality (30). Integrating (32) with
respect to ¢ and dropping y2(¢) on the left-hand side, we obtain (31). This
proves the lemma.

We now assume that Q is a domain in the space E5, and that Q is obtained
by rotation about the x;-axis of a planar domain D which lies in the half-
plane (x, =0, x, > 0), at a positive distance o from the x;-axis. For such
domains, the following lemma is valid:

LEMMA 6. If the cylindric components of v and f do not depend on the angle
of rotation about the x3-axis, if v | s = 0 and v satisfies the inequalities (9), (10)
and the equality (8), and if, finally, the integrals

t 3
j [v¥(x,0)+v/(x,0)]dx, dx,dx; and J‘ [j (f2+f,2)dx} dt
Q Q

0
are finite, then estimates of the type (30) and (31) hold for v.

Proof: The proof of this lemma is analogous to the proof of Lemma 5.
It is only necessary to convince ourselves that the inequality

3
J u*(x)dx £ CSJ u?(x) dxj Y u? dx (33a)

Q Q Q k=1
holds for any function u(x,, x,, x3) which vanishes on the boundary of
Q and has axial symmetry. To prove this, we introduce cylindrical co-
ordinates in the space of points (x;, x,, x;), and we rewrite (33a) in the form

f u*(r,z)rdrdz 2nCSJ
D

D

u’rdr dzf (w2 +urdradz.
D
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If we set ur* = w, then w satisfies the inequality (1) of chapter 1, section 1:

J wdrdz EJ. urdrdz < 2‘[ u’rt drdzj [(u, r* +3r %)+ r*u?] drdz.
D D D D

It is easy to see that this implies the required inequality (33a), since
r = d > 0 for the points of D.

3. Existence Theorems

We now prove that the problem (1) has a solution. To do so, we use
Galerkin’s method. Let {a*(x)} be a complete system of functions in Jo,1(Q)
which is orthonormal in L,(Q).] Since, by definition, the set Jo,1(Q) is
dense in J(Q), the linear combinations of the functions a*(x) are also dense
in J(Q). So the orthogonal complement of these linear combinations in L,(Q)
consists of the gradients of single-valued functions.

Let

a(x) = v(x,0) e Jo, ,(€),
and let

al(x) = a(x).

We shall look for approximate solutions v*(x, ) of the problem (1) which
have the form

Vix, 1) = Z en(Dal(x).

The functions ¢,,(t) will be found from the conditions
c,,,],=0=5’1 (I=1,2,...,n) (34)
and the conditions
(Vi+opvi, —fa)+wvi ,al)=0 (I=1,2,...,n),
or equivalently,
(vi—fa)—(fv",al )+ (v ,aL ) =0 (d=12,..,n). (3%5)
The relations (35) are obtained formally from the system (1) if we set
v =v", multiply by a' and integrate over Q. They can also be obtained from

the integral identity (4) if we set v =v" and ®(x,?) = a'(x)y(¢), where y(¢)
Is an arbitrary continuous function of . Because y(¢) is arbitrary in the

1 We assume that {a (x)} is orthonormal in L,(Q) only to mtroduce cerfain unessential
simplifications in the subsequent treatment.
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resulting relation, we can eliminate the integration with respect to f, thereby
obtaining (35). Essentially, the relations (35) express the fact that the approxi-
mate solution v" satisfies the identity (4) not for all @, but only for ® which
can be represented in the form

® = ,2 Vi(Dal(x),

where the y,(¢) are arbitrary continuous functions of ¢. All the other con-
ditions imposed on the generalized solution are satisfied by the v" exactly.

The relations (35) represent a system of ordinary differential equations
of the form

dc(l;t(t)— v i ag; cin(t) + i alip cin(t)cpn(t) =fl(t) (I = 1, 2, ey H)s (36)
i=1

ih,p=1

for the c,,(t), where the a;; and a;, are constants, and f, = (f, a’). We shall

assume that
t 3
J <J‘ lflzdx> dt
0 Q
is finite for any ¢ = 0.

The a priori estimate (9) allows us to conclude that the system (36) has a
unique solution for ¢ 2 0 under the conditions (34). In fact, since the system
(36) depends analytically on the ¢,, it is sufficient to verify that the | e(?) |
are bounded for any finite ¢ > 0. Because of the orthonormality of the a' in
L,(Q), we have

n

[vexo|? = X el
We now multiply each of the equations (35) by the corresponding c(t) and
sum the resulting expressions over / from 1 to n. Then, after some simple
transformations, we obtain

1d
S |V I =6 =0, (37
which implies (sec Lemma 1) the boundedness of the ||v"(x, )|, and hence
the boundedness of all the | ¢;,(1)| for any £ = 0.

Thus, the approximating solutions v'(x,t) are defined uniquely for all
1 = 0 by the relations (34) and (35). In proving this, the only fact about the



158 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW CHAP. 6

a¥(x) which was used is that they are elements of space J; 1(Q). We now
show that under certain conditions on a and f, the functions v* converge as
n— oo to a limit which is the desired solution of the problem (1). We
begin by considering the planar case:

THEOREM 2. In the case of a plane-parallel two-dimensional flow, the approxi-
mate solutions V'(x,t) converge to the generalized solution v(x,t) of the
problem (1) for all t Z 0, provided only that]

a(x) = v(x,0) e Wy (Q) nJ, (Q)

f U (f2+f,2)dx:rdt < o0
0 [9]

The domain Q can be either bounded or unbounded.

and

Proof: First of all, we note that v,(x,0) is determined by the vectors a(x)
and f(x, 0). In fact, from the Navier-Stokes system

vitegradp=f+vAv—yv,,

we see that the vector appearing in the right-hand side uniquely determines
the vectors v, and grad p, since they are orthogonal to each other. We now
show that the v" satisfy the assumptions of Lemma 5 of the preceding section,
i.e. that the estimate

[ vi(xe) 12+ ) | Vi 12 dt < e(1), (38)

and hence the estimate
2
[vi(x, 1) H2+kZ1 [ vi (e, D[ < eo), (39)

holds for all n = 1, 2, ... with the same monotonically increasing continuous
function (7). To see this, it is sufficient to verify that equations (7) and (8)
hold for v and v*, and that [v"(x,0)|, ||¥/(x,0)| are uniformly bounded.

1 We might weaken the condition of the theorem concerning v(x,0) by changing it to the
requirement that the integral

LZ [v3(x,0) +vZ(x,0]dx

be finite, since only this integral figures in the a priori estimates (30) ana (31) for the
solutions v. However, this weaker condition would require somewhat more delicate
arguments in proving the theorem, and hence we assume that the conditions given in the
statement of the theorem hold.
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The latter follows from our assumptions on a(x) and from the fact that
v'(x,0) = a(x). The equations (7) and (37) are the same, and (8) is obtained
from (35) by differentiating (35) with respect to ¢, multiplying the result by
dcy,/dt and summing over / from 1 to n. Thus, equations (7) and (8) actually
hold forv=v'(n=1,2,...).

Because of the estimates (38) and (39), which are uniform in n, we can
select a sequence {v"<} from {v"} such that v, vi, v, v and v}* v* converge
weakly in L,(Qr) (where T is arbitrary) to v, v, , v,, ¥, and v;v;, res-
pectively. Therefore, the limit function v will satisfy the inequalities (9),
(10) and (31). Moreover, v, is weakly continuous in L,(Q) for 1€[0,T] and
satisfies (30). This is shown in the same way as below in section 6 for
similar properties of the weak solution v. The function v will obviously
satisfy the conditions divy =0, v [s =0andv |,=0 = a in the sense prescribed
by the imbedding theorems.

We still have to verify that v satisfies the identity (4) for any ® obeying
the conditions ®, ®_ €L,(Q;), div® =0, ® IS = 0. Let us denote the class
of such functions ® by 11T. We now show that it is sufficient to verify that the
identity (4) is valid for functions @ of the form

D"(x, 1) = :Zl d(Da'(x). (40)

with arbitrary continuous d,(¢). The functions v,, v, , v,v and f appearing in
(4) are square-summable over Q. Therefore, if we show that the functions
@™ of the form (40) approximate an arbitrary function @ of the class Il in
such a way that ®™ and @} converge to ® and ®,_in the L,(Qy) norm,
then the validity of (4) for any ® of the form (40) will imply the validity of
(4) for any ® in 0. First of all, it is clear that any function ® in 1T can be
approximated in the way we need by functions ®@,, in N1 which are square-
summable over Q for any te[0,7] and which depend continuously on ¢ in
the J, (Q) norm. (This latter condition means that

H (I)m(x, t+At)—(Dm(x’ t) ” Jo,1(2) - 0

as At — 0.) To see this, we can (for example) replace @ by its average ®, with
respect to time and then let the “‘averaging radius’ converge to zero.

Thus, it is sufficient to prove that an arbitrary function of the type ®,
can be approximated in L,(Qr), together with @, , by functions of the
form (40). Let @ belong to 1M1, and let ® depend continuously on ¢ as an
element of Je,,(Q). We introduce another complete system {b'(x)} in
Jo,1(Q), which is orthonormal in J,, ;(Q) and which is related to the {a'} by
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a “‘triangular transformation’’.} Then we introduce the functions

O"(x,1) =Y e(Nbl(x), with e(t) = (D(x,1),b'(x)),
I=1

which converge to @ in the J, ,(Q) norm for any fixed t€[0, T']. Given any
preassigned small ¢ > 0, we select a finite number of points ¢, ..., ty in
[0, 7] such that for ¢" and 7"’ belonging to any of the intervals [, 1, ] the
quantity l[ (D(x,t’)—(l)(x,t”)! Jo.1y does not exceed &. Then we choose m
so large that for all the points 7,, the partial sums @™ of the Fourier series
of the function ® in the {b'} basis differ from ® by less than ¢ in the Jo, 1(Q)
norm. Then for any ¢ in [, ,, ], the remainder

R(1) = | ®(x,0)—®"(x,1) | ).,

will be small, since
Rm(t) é ” (D(x5 Ik)—(l)m(x, tk) ”Jo,l
+[ O, 1) = ®(x, 1) | 4, + [ ®"(x, 1)~ B"(x, 1) | ,.,
S 264 ] O"(x, 1) - D™(x, 1) | 5,.,

where the norm of the last term does not exceed ¢ since it is the partial sum
of a Fourier series in an orthonormal basis of the function ®(x, 1,)— ®(x, 1),
whose norm does not exceed &. This proves that the ®™ approximate ® in
the Jo, 1(2) norm, uniformly for r€[0, T]. But the functions
" = Z e b
1=1

can be represented as finite sums of the form (40), since the {b'} are related
to the {a'} by a triangular transformation.

Thus we have shown that any ® in 111 can be approximated by sums of
the form (40), in such a way that ®" and ®. converge to ® and ®,_, in the
L;(Qr) norm. Because of this it is sufficient to verify just that the limit
function v found above satisfies the identity (4) for ® of the form (40).
Take any ®™ of the form (40). The functions v", beginning with n = m,
satisfy the identities (35) for /=1,2,..., m. Multiplying each of the
equations (35) by its own d(r), summing the resulting equations over / from

1 This proof could be carried out somewhat differently without introducing an ortho-
normal system by using the Banach-Steinhaus theorem, as is done in the beginning of the
proof of Theorem 12.
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1 to m, and integrating with respect to ¢ from 0 to 7, we obtain

T
f J (Vi @™+ vy - @7 —0pv' - @F —f- ®")dxdt = 0. (41)
0oJQ
Then, letting n (n = m) approach o in (41) along the subsequence n* chosen
above, we see that (41) also holds for the limit function v. We have thereby
proved that the function v is actually a generalized solution of the problem (1).
Because of the uniqueness theorem for generalized solutions, the whole
sequence v" converges to the generalized solution v of the problem (1), and
the proof of Theorem 2 is complete.

We now turn to the general three-dimensional problem. In just the same
way as in Theorem 2, using the a priori estimates (9), (10), (14), (20) and (25),
we can prove the following theorems:

THEOREM 3. If the external forces can be derived from a potential (f = 0), if
a(x)e WHQ)nJ, 1(Q), and if the condition

3
19,0 | [ v(x, 00| < ;?— (42)

NE (o)
f=3 max =2 _ 7

o 3 ’
1
ueW2l() J S ul, dx
Q k=1

holds, where

then the problem (1) has a generalized solution for any t = 0.

THEOREM 4. If a(x)e WH(Q) N J, 4(Q) and

(”v(x,O)“—%—f |[f”dt><max ][f][+ﬂv,(x,0)|]+J ||f,iidt><%2, @3)
0 01T 0

then the problem (1) has a generalized solution, in the interval 0 St £ T.

The domain Q must be such that 8 < c. For bounded domains Q, this is
certainly the case. In Theorems 5 and 6 below, Q can be an arbitrary
domain, bounded or unbounded.

THEOREM 5. If a(x) e WH(Q) nJ,, 1(Q) and

T +
f [J (f2+f,2)dx:| dt < o,
0 Q
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then the problem (1) has a generalized solution, at least in the interval
0 < t £ T, whose length is determined by the indicated integral, by H a(x) || 2
and by the coefficient v.

The quantity 7; can be calculated by using Lemma 4 of section 2 of this
chapter.

Finally, we mention a special case of the three-dimensional problem
which is not without interest: Let Q be a domain obtained by rotation
about the x;-axis of a planar domain D lying in the half-plane (x, =0,
x, > 0), at a positive distance ¢ from the x;-axis. Suppose that the cylindric
components of f and a do not depend on the angle of rotation about the
x;-axis. In this case, the problem has a unique solution “in the large”,
similar to that derived in Theorem 2.

THEOREM 6. If the cylindric components of f and a and Q have rotational
symmetry with respect to the xs-axis, if the domain lies at a positive distance 6
Jfrom the x5-axis and if a(x)e W(Q) n J, () and

t +
j U (f2+f,2)dx] dt < + 0,
0 Q

then the problem (1) has a unique solution for all t = 0.

The proof of this theorem is analogous to the proof of Theorem 2; it is
only necessary to use the a priori estimates given by Lemma 6.

4. Differentiability Properties of Generalized Solutions

The results established in chapter 4, section 2 for the linear nonstationars
problem, and the results of the preceeding chapters for stationary problemy,
enable us to investigate in greater detail the differentiability properties of
the generalized solutions found in the preceeding section; in particular,
they permit us to determine when the generalized solutions are also classical
solutions. We shall carry out all the arguments for three space dimensions
and bounded domains . For the two-dimensional case, and the case of
unbounded domains Q these same arguments remain valid.

In the preceeding section we established the unique solvability of
problem (1) of this chapter under the following assumptions on the smooth-
ness of f and a:

T
Ay Ef ([ £+ D dr < oo, a(x) = v(x,0) e WZ(Q) nJ, 1(Q).
0
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The solution v obtained under these conditions possesses the following
properties: (1) It has derivatives v,,, in L,(Q7), and (2) the derivative v,(x, )
is an element of L,(Q) for any te[0,T], and it is weakly continuous in
L,(Q) with respect to 7€[0,7T]. From property (1) follows: (3) v, (x,?) is
continuously dependent on 7 in the norm of L,(Q), while v(x, ¢} is continuously
dependent on 7 in the norm of Lg(Q). v satisfies inequalities (30) and (31) of
chapter 6, section 2, which give estimates of

3

tr= max [0 | and Av=| T [ e |
0=t<T k=1

in terms of 4, and ||a||w 2@ - In addition, divy =0, v|s =0, v|,-o = a(x),

and v satisfies the identity (4). From this identity and the properties of v

just enumerated, the identity

(%%, 1), (%)) + V(¥ (%, 1), ¥ (3)) — (0ulx, DV(X, 1), Y (x)) = (f(x, 1), ¥(x))
(44

follows for all ¢ in [0, 7] and arbitrary functions y(x) in H(Q). In fact, (44)
follows from (4), if in the latter we take ®(x, ) to be of the form y(¢)y(x),
where x(1) is an arbitrary continuous function of ¢, and Y(x) is an arbitrary
vector in H(Q). The resulting expression has the form

T
Jl) [...]xdt =0,

in which the first factor is a continuous function of z. This factor is equated
to zero, and the expression is rewritten as (44). This last identity shows that
v(x, t), taken for ¢ fixed, is a solution in H(Q) of the nonlinear stationary
boundary-value problem with the external force ¢(x,t) = f(x, t)—v/(x, ).
By the solvability properties of the stationary problem (cf. chapter 5, section
5), we can state that for Se C, the solution v(x, ) belongs to W;(Q), and

Ay = max | V(x, 1) w20
05T

is estimated by

max | ¢(x, 0] .

0=t=sT
From the fact that 4, is finite, it follows that

max | f(x,?) |
0st<T
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is finite and that f(x, 7) is an element of L,(Q) depending continuously on ¢
(this has been mentioned before in the proof of Corollary 3 in chapter 4,
section 2). Consequently A4, is bounded by a number determined only by
Ay and 4, (there is also dependence on S, but we shall not emphasize it).
But then as a result of Lemma 6 of chapter 1, section 1, it follows that

max [|v(x,1)[o 40 < CA,.

0<t<T

In addition to assuming that 4, is finite, we shall also assume that
f(x, 1) belongs to CZy*(Qy) (i.e. is well behaved inside Q). We shall consider
v as a generalized solution, with finite energy integral, of the linear non-
stationary problem (1), (2) of chapter 4, the external force being

F(x, 1) =f(x, t)—v,v,,

The function F belongs to L,(Qr) and has the derivative F,; moreover

T
max |F(x,1)| = 45 <0, and f | .| dt = Ag < oo,
0

0<t<T
since

3
1RG0 ] < 8]+ o] S [E]4CAs T v < €Ay +4D),
k=1

[ ECe D) < I+ 20 Vi |+ 04 ¥i |

3 3 + 3
shet+ 2 ([ as) ([ Jvaltax) vca 3 vl
k=1 Q Q k=1
3 3 4+ 3
$100+C 2 ([ £ b)) vty 3 v
k=1 Qi=1 k=1

3
<|f)+C A4k; | Vi ||

In the estimate of || F, ||, we have used Cauchy’s inequality and the imbedding
theorem of the space W3(€Q) into the space L,(Q) (see Lemma 6, chapter 1,
section 1).

By Corollary 1, chapter 4, section 2, and Theorem 2, chapter 4, section 1,
the derivative v,(x, t) of the solution v(x, #) is an element of L,(Q) depending
continuously on ¢ in [0, T], while by Corollary 3, chapter 4, section 2, v(x, 1)
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is an element of C,,(Q), depending continuously on r€[0,7]. Thus we
have shown that the generalized solution of the problem (1) is a function
continuous in O, so that it assumes its boundary values and initial values
in the classical sense, i.e. as pointwise limits.

We shall now show that v(x, #) possesses continuous derivatives ¢/t and
62/6x,.6xj in the interior of Q. For this purpose, we take advantage of the
representation (36), chapter 4, section 2. If v is regarded as a solution of the
problem (1), (2), of chapter 4 with the external force F =f—uv, v, , formula
(36) holds with f replaced by F. As was shown in chapter 4, section 2, the
integral I,(x,t) for this v is an infinitely-differentiable function of (x,r)in
Q;, while in Q, the integral I5(x,t) possesses all derivatives of the form DY}
and D" D,, m=0,1,..., continuous with respect to (x,#). We write the
first term of (36), i.e.

Ii(x, ) = th F(x—y,t—1)(F{),dydr
0JE;

in the form
t t
1+ ’I’EJJ F(fC),dydr+JJ I'(—v.v,, (), dydr.
0JE;3 0JE;

The integral 1] possesses derivatives d/0t and 0%/dx;0x; in Q. Holder-
continuous in (x,t), so that it only remains to investigate I;’. We shall
divide this into two terms, using the identity

v, v

0
vy, Oy = < dy >J AT a_yk (e YOy — (0 ¥8y,)s
k

or

t

Iy =T, +1, = —j
0

a t
J. I“;(vka)dedr-i-J‘J\ I'(v,v¢,),;dydr
E; Oy 0JE;

a (" 2
= —— f (v, v0),dydt+1,.
0xJo JE,

We recall that the functions v, v{ are considered to be extended to zero in
the entire set E; x [0.T], while w, denotes the orthogonal projection of w
on J(E,).
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By the above proof, the vector v,v{,, has a finite maximum norm

max | v, vJ,, lo.s.05
0<tsT

so that this maximum is also finite for the projection (vkaYk) ,, this in turn

insures the Holder continuity in (x, ) of the integrals [, and 611 [6x,in Q.
The vector (,v {), also has the same maximum bound, so that I, is a function
Holder-continuous with respect to (x,¢) in Qr.

Summing up everything said, we have now arrived at the conclusion that
the solution v is Holder-continuous with respect to (x,?) in Q.. Next we
apply the same representation (36) for v in a cylinder Q;, which is at a
positive distance from the lower base and the lateral surface of Q.. The cut-
off function {(x, ) will be taken to have the value unity in Q; and the value
zero near the lower base and the lateral surface of Q.. For all the terms of
this expression, except /;’, we have already shown the necessary smoothness
with respect to x and . For this integral, we now know that 0, ¥{, v, v{,, , and
consequently also their projections on J(E,), are Hélder-continuous functions
with respect to (x 1)e Q.. This insures that l1 has derivatives d/d¢t and
0% 0x; ¢x;, that 1, has the derivatives 0/0x;, and moreover that all these
derivatives are Holder-continuous functions in (x, )€ O, . Thus, the function v
possesses derivatives v, in Q; which are Holder-continuous with respect
to (x,). But then (v, v,, (), is also H5lder-continuous with respect to (x, £) in
Q¢,if istaken to be an infinitely-differentiable function which vanishes
near the lower base and lateral surface of Q;. We choose such a function
{(x,1), which, moreover, has the value 1 in Q)< Q;, and we use it to
write the representation (36) for v. The expression

t
If = —ff I'(v, v, 0),dyde
O0JE;

may now be shown to possess derivatives 0/0t and 0%/dx; 0x; which are
Holder-continuous in (x,¢)e Q;. This fact, together with everything proved
above, also shows that v has derivatives /0t and 0%/dx; 0x;in @y, continuous
in (x,1).

Thus, we have proved the following theorem concerning conditions under
which the generalized solution of problem (1) is a classical solution

THEOREM 7. Suppose f(x, t)e C24"(Qy) for some h > 0, while

[Fansaha<e,  wew@ono,
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and S C, . Then the generalized solutions v of the problem (1), the existence
of which has been proved in theorems 26, are classical solutions; more pre-
cisely, they are continuous in Qr, the derivatives v, , and v, . are Holder-
continuous and the derivatives v, are continuous in Q1. Moreover, the pressure
p will have the continuous derivatives p,, in Qr; additionally, v, v, ., and
grad p are elements of L,(Q), while v are elements of W2(Q) (and thus also
of Co4(Q)) depending continuously on te[0,T].

We say a few words about the case of inhomogeneous boundary conditions
v | s = @(s,1). If the function ¢(s, 1) is extendable over the entire O in such a
way that the extended function ¢(x,?) is solenoidal (this imposes on ¢(s, )

the necessary restriction: | ¢ -nds =0), the entire problem (1) may be

N

transformed into a problem with the unknown function wu(x,?) = v(x,)—
¢(x, t). The function u satisfies, in addition to divu =0, a system of equa-
tions which differs from the Navier—Stokes system only in the occurrence of
linear terms of the form ¢, u,, and u, ¢, . If ¢(x, t) is a sufficiently smooth
function, these terms will play a subordinate role, and they will exert no
influence whatsoever, either on the methods of investigating the existence,
uniqueness, and smoothness of the solutions of problem (1), or on the final
results of these investigations. Similarly, neither the connectivity of the
domain Q nor its boundedness plays a role.

The method described and the theorems deduced here permit us to see
how the differentiability properties of a generalized solution of problem (1) will
be improved as we improve the smoothness of the problem data and as we
increase the order of compatibility between the initial and boundary con-
ditions. This method for investigating the differentiability properties of
generalized solutions of initial-boundary-value problems was developed by the
author in the early 1950’s in connection with linear hyperbolic and parabolic
equations (cf. [2], [32]). As we see, the method is also useful in studying
the solutions of nonlinear equations.

The smoothness properties of generalized solutions and the direct deter-
mination of smooth solutions have been investigated in many papers ([12,
13, 53, 71, 90, 91-96]). The sharpest connections between the smoothness
of the solutions and the data of the problem are found by using hydro-
dynamical potentials. We state two such results (from the works of K. K.
Golovkin and V. A. Solonnikov).

THEOREM 8 ([88]-[90]). Suppose that v, p, is a generalized solution of the
problem (1), such that veW2!(Qyp), grad peLd(Qq), ¢>3. If feL(Qy),
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acW?"2"(Q), rzq, SeC,, then veWZ.(Q;) and gradpeL/(Qy);
if furthermore £eC¥*Q,), a€ C,,,(Q), 0 <h <1, while the compatibility
conditions are satisfied up to and including the first order, then

veCir™™Qyr),  grad pe CIYM(Qy).
The necessary compatibility condition in this theorem has the form

als =0, vAa(x)—grad po(x)+f(x,0)— a(x)a,(x)|s = 0,

where py(x) is the solution to the Neumann problem

a i
Apo(x) = _akx,-(x)aixk(x); EPEO =vAa'n I .
s s

The generalized solutions whose existence is guaranteed by the results of
the preceding section satisfy the conditions of Theorem 3 if SeC,.

THEOREM 9 ([96]). If {(x, ) is bounded in Q;
fe C};:r’hz(QTL hl s h2 > 05 a(x) € Ch(ﬁ) f\J(Q), h > 0’

als =0, and Q is a convex, bounded, domain with a Lyapunov boundary
(SeC, ;), then problem (1) has a classical solution for t Z 0 and less than some
Ty in general, and for arbitrary t 2 0 if f(x, t) and the Reynolds number at
t = O are sufficiently small.

5. The Continuous Dependence of the Solutions on the Data of
the Problem, and Their Behavior as t > + ©

We now analyze in more detail the case of plane-parallel flows, since
more complete results can be obtained for such flows. The case of general
three-dimensional flows is studied in a similar way. Thus, suppose we have
a plane-parallel flow v(x,, x,,¢). Then v(x,, x,,t) obeys the following
theorem:

THEOREM 10. The solution ¥(x,, x,,t) of the problem (1), guaranteed by

@
Theorem 2, converges to zero ast— + o iff (”f” + Hf,H)dt < . More
0
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precisely, the integrals

2
vi(x,0)dx and j vi(x, t)dx
Q k=1 o,
converge to zero as t - +oo (where Q is any finite subdomain of Q). For a

bounded domain Q, the convergence of the integral I ||f ”dt implies that
0

|| ¥(x, 1) || converges to zero.

Proof: To prove the theorem, we note that v satisfies the inequalities (10)
and (31), which imply that the integrals

J'°°¢z(t)dt and waz(t)dt

0 0

are finite, where

2 2
o) = f Y. Vi 0dx, FX(1)= f Y v2,(x, D dx.
Q k=1 Q k=1
On the other hand,

4

dt =2

< 2F

2
Y Ve Vig dx
Q k=1

and therefore

Moreover, it follows from the fact that the integrals

J‘w ¢%()dt  and J‘w
0 0

are finite that ¢(¢) - 0 as t - + 0. Because of the inequality

d 2
2 52d
a? |

f V(x, )dx < Co, $3(0),
Q2

which holds for any bounded subdomain Q, of the domain Q (in the case
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where Q is bounded, we can take Q itself to be Q,), we see that J vi(x,t)dx
: o
also converges to zero as t — + 0. The last assertion of the theorem is proved
in just the same way as in the linear case (see chapter 4, section 3).
We now compare two flows v'(x,¢) and v’(x,t), and show that under

certain conditions they differ from each other only slightly for all # = 0.

THEOREM 11. Let v'(x,, x,,t) and v''(x,, x,,t) be two solutions of the
problem (1), corresponding to initial velocities a'(x), a''(x) and forces f'(x,1t)
f"(x,1). Then their difference u(x,t) =v'(x,t)—v"(x,t), satisfies the estimate

exp {% jt A1) dr}

t 2 t
+f |£(x,O—1"(x, 0| exp{;f éz(r)dr}dé, (45)
0 4

=1 Y [vix, 0] dx.

Q k=1

Juce 0 | <] a"-a" |

where

Proof: To prove the inequality (45) we form an integral identity obeyed
by u. This identity is obtained by taking the difference of the integral iden-
tities for v’ and v/, and can be written in the form

t
J J (- ®+va, O, +ou, Pty v, - O—f - ®)dxdt =0,
Q

0

where f = f'—f"". As shown above, this implies the identity
j (w, ®+wvu, @, +riu, O+uv, - O—f D)dx=0
Q

for almost all + = 0. If we set @ = u, then, after some elementary trans-
formations, we obtain

1d
S ”u'|2+v¢2(t)+f u vy cudx =j f-udx, (46)
2dt Q o]

where

(1) =J i uZ (x,1)dx.
Q k=1
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We now estimate the third term by using Schwarz’ inequality and the
inequality (1) of chapter 1, section 1:

| 2 1 2 +
iJ U vy udx §< Y (v{;k)zdx> ( Y u,fufdx) <2¢¢|u].
Q

Q ki=1 Qk,t=1
From this and (46) we obtain

1 d 2 T 1 ¥
S alr vt < 289 [ul+ o] [u] < 26%0+ 2 [P+ 1] e
Then, from this inequality, we derive the estimate (45) and the estimate

t t 4 t
vf P*(t)dr< | u(x,0) [|2+2f [£] ] ul dt+;Jv @ |u*d, (48)
0 4] 0

just as was done in Lemma 5, thereby completing the proof of Theorem 11.

We now assume that one of the solutions, say v, does not depend
on t. Let the “‘generalized Reynolds number” corresponding to v”, i.e. the
dimensionless quantity 2¢Cg/v be less than 1. Here, the constant Cg is
determined by the domain Q. It equals

f b%(x)dx
Co= max Q

b(x) e W21(R) 2
Y b2 (x)dx
tjvﬂ k=1 e

and is related by the formula C4 = 1 /\/ A, to the smallest eigenvalue 1, of the
problem —Au = Au, u [ s = 0in the domain Q (see (7) of chapter 1). Let v'(x, ¢)
be a solution of the nonstationary problem, corresponding to the same
force f'’(x) as v’ (x) and to any initial condition a’(x)e W%(Q)nJo,l(Q).
We now show that in a certain sense the difference u =v'— v’’ converges to
zero as f — + oo, i.e. we have the following theorem:

%

THEOREM 12. If v is a solution of the stationary problem corresponding to
the force f''(x) such that the corresponding generalized Reynolds number
20Ca)v is less than 1, and if v'(x, t) is a solution of the nonstationary
problem corresponding to the same force £'(x) and to any initial condition
a'(x)e Wi(Q)nJ, 1(Q), then the difference u(x, t) between these two solutions
satisfies the inequality

Juce, )< 6,0 | exp { ),
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ae 26CH
T CR? v )

Proof: The function u satisfies the inequality (47) or, more exactly, the
inequality

where

Sl 020 < 266 [ u]), (49)

since f = 0. However, because of our determination of C%, we have
2¢¢ [|u| < 2¢¢%CE,

and hence it follows from (49) that

e (1-23) g0 <o

But |u|| < C4 ¢, and therefore

gl (-2 g s o

and

e um =0,
which establishes Theorem 12.

We have proved a series of theorems concerning the behavior of solutions
of the two-dimensional nonstationary problem (1) as ¢t— +o00 when the
boundary data and the external forces are varied. Similar results hold for
the general case of the three-dimensional problem. For example, under the
conditions of Theorem 10, the solution of the problem (1) converges to zero
as t > +o0. However, we proved the fact that the problem has a unique
solution for all £ = 0 under the assumption that the Reynolds number is
small at the initial instant of time, and hence the entire result (concerning
existence and stability of solutions) is also obtained only when this assump-
tion is met. In the next section, we shall discuss the existence for all 1 =0
of a ““worse” generalized solution, where no restrictions are imposed on the
magnitude of the initial perturbation.
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6. Other Generalized Solutions of the Problem (1)

We again consider the case of the general three-dimensional nonstationary
problem (1), assuming first that the domain Q is bounded. In section 3, it
was proved that the Galerkin approximations v"(x, t) are uniquely defined for
all time intervals. To show this, we essentially used only the fact that

t
a(x) = v(x,0)eJ(Q) andJ‘ ||£]| df < co. In this section, we shall assume that
0

a and f satisfy only these conditions. The approximations v*(x, ) will be
constructed just as in section 3, but this time the coefficients ¢, for 1 =0
will be defined differently:

c0)=(a,a") (I=12,...,n). (50)

These approximate solutions v" satisfy (37) and the estimates (9) and (10),
i.e.
N

ool slve ]+ ol

[ vi(x. 1) |}2+2vft j i (ve,)? dx dt SCR
t JQ k=1

<2 v"(x,t1)”2+3<J.:l Il dt>2 )

for t = t; = 0. Using only these a priori estimates, we can select from the
sequence {v"},n =1, 2, ..., a subsequence {v*}, k=1, 2, ..., such that
v and v, i = 1,2, 3, converge weakly in L,(Qy) where T is an arbitrary
positive number. (This follows from the weak compactness of bounded sets
in the Hilbert space L,(Q7).) The limit function v has derivatives v, , where
v and v, are square-summable over Q. Moreover, v satisfies the relations
divv=0andv ls = 0. However, the question of the sense in which v satisfies
the Navier-Stokes equations and the initial condition requires further
investigation. In the paper [14] Hopf proves that the following results are
valid for sufficiently well-behaved basis functions (see below):

1. A subsequence {v*} can be chosen which converges strongly to v in

Ly(@1);
2. v(x, 1) belongs to L,(Q) for all t = 0;
3. || v(x, t)—a(x)|| > 0 as 1 » +0;
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4. v satisfies the integral identity
T
'[ J (v ®+vw AD+yv- O, +f-O)dxdt =0 (52)
0 JQ

for all sufficiently smooth solenoidal ®, which vanish on S and for t = 0,
t=T.

Such v also would have been cold generalized solutions of problem (1) if
the uniqueness theorem for them had been true. But to all appearances the
latter does not take place.

We now prove Hopf’s results, modifying somewhat his definition of a
generalized solution. By a weak solution of the problem (1), we mean a
solenoidal vector function v(x, t) which is square-summable over Q for all
t 20, with v, eL,(Qy), which vanishes on the lateral surface of S, and
which satisfies the identity

t
f f (v~d>,—vvxk-(l>xk—vkvxk~<I)+f-(I))dxdt—J‘ v(x,t) - ®(x,1)dx
oJa Q
+f a(x) - ®(x,0)dx =0, te[0,T] (53)
Q

for all smooth solenoidal ®(x, ¢) satisfying the condition
®|s=0.

Moreover, as an element of L,(Q), v(x, ) must depend continuously on ¢ in
the weak topology of L,(Q), and it must satisfy the inequalities (51) for all ¢
and almost all ¢, , including ¢, = 0.

T
THeorReM 13. If a(x)eJ(Q) and Hf Hdt < o0, then there exists at least
(4]

one weak solution of the problem (1).

1 We have constructed an example of nonuniqueness in this class of weak solutions to the
Navier-Stokes equations for the boundary conditions when on the boundary two com-
ponents of v and one component of curl v are fixed, (from the point of view of solvability
this initial-boundary-value problem has the same properties as problem (1)). Even more,
this example shows that the description of the class of uniqueness (in terms of the spaces
L, ,(Qr)) for such problems given in the theorem 15 is precise. We think that for the
problem (1) the situation remains the same. The example just mentioned will be published in
the January issue of Izvestia Acad. Sci. USSR (1969).
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Proof: Let {v'}, n=1,2, ..., be the approximate solutions calculated by
Galerkin’s method. We shall assume that the functions {a'(x)} satisfy the
same conditions as in section 3 and

max | a'(x)| < 0.
xeQ

The functions v* are defined by the relations (50) and (35), which can be
rewritten in the form

4 ) = 0%, )~ 0L ) (L) (= L2 m). (59

It is not hard to show that for fixed / and n =1/, y, (t) = (v'(x, 1), a'(x))
form a uniformly bounded and equicontinuous family of functions on
[0, T]. The uniform boundedness of the ¥, (t) follows from (51), while the
equicontinuity is obtained from (54). In fact, integrating (54) with respect
to t from ¢ to t+At, and estimating the right-hand side by using Schwarz’
inequality, we obtain

| lpn,l(t'FAt)— wn l(t) '
[ hetataeco [ e fac [ e

IIA

< Cy()) \/K}< f . v |? dt>%+ Cy(1)vArmax | vi(x, 1) |

t+At 3 t+ At
< ( J v ”wt) +Ci(0) J 6] dr.
t t

Because of the inequality (51), valid for all v*, the right-hand side of this
inequality converges to zero uniformly in n as At — 0. By the usual diagonal
process we select a subsequence , for which the functions y,, , are uniformly
convergent as k — oo for any fixed /. It follows that the v"(x, ) converge
weakly in L,(Q), uniformly for re[0,7]. In fact, the functions a' form a
basis in J(Q), and the norms ||v'(x,7)|| do not exceed a certain constant
which is the same for all n and te[0,T]. Therefore, for any ¥(x) ef(Q)
we have

V=S hat,  v=@a Y ei<ow
k=1 k=1
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and the quantity
| (V1) = v™(x, 1), (X)) |

R o N e
= L1l I<v"k—v"'"aa’>l+c( ) w)x

I=N+1

can be made arbitrarily small for sufficiently large indices n, and n,,. The
limit function v of the v belongs to L,(Q) for all re [0,T], and || v(x, ?) || <
C(T) (see (S1)).

We now show that the v"™ converge strongly in L,(Q7). To prove this,
we use two facts:

1. The uniform boundedness of the integrals

T
J fgradzv”kdxdt;
0 Ja

2. Friedrich’s lemma (see [3]), which asserts that for a fixed domain Q,
given any ¢ > 0, we can construct N, basis functions w(x) (/=1,2,..., N,)
such that the inequality

N. 2
f ¥ (x)dx £ Y (f uw,dx) +8J\ grad? u dx
Q =1 Q Q

holds for any function u(x) in W(Q).
We write the last inequality for u = vf*— v and integrate it with respect
to ¢ from O to T, obtaining

T Ng T 2
f J (v —vfm?dxdt < Y |: (v}"‘—v}"")w,dx] dt
0 Ja 1=1Jo LJa

T
+sf f grad? (v — o) dx dt.
0Ja

The last integral on the right-hand side of this inequality does not exceed a
fixed constant for any n, and n,,. Moreover, the first integral can be made
arbitrarily small for sufficiently large n, and n,, because of the uniform con-
vergence in t of (vf*, w;) as k —» co. Therefore, the right-hand side of the
inequality can be made arbitrarily small for sufficiently large », and n,,, and
hence the functions v"* converge strongly to v in L,(Qp).
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Thus we have proved that it is possible to select a subsequence v™(x, )
which converges to v strongly in L,(Q7) and weakly in L,(€Q), uniformly in ¢,
and such that ov™/dx,, converges weakly in L,(Q7). This guarantees that the
limit function v is an element of L,(Q) for all 1e[0,77], and that v depends
continuously on ¢ in the weak topology of L,(Q). Moreover, v is square-
summable over Qr and has generalized derivatives v, which are square-
summable over O, and for all ¢ and almost all ¢, in [0,¢] and ¢, =0, v
satisfies (51). From (51) we see that

im [0 5[ ¥x 0

On the other hand, by the weak continuity of v(x,?) in L,(Q), we have
[0 | tim [us, 0]

t=++0
Consequently

B

from which, using also the weak continuity of v, follows the strong continuity
of v with respect to 7 at the point t = 0 (cf. [16]), i.e. ||v(x,t)—a(x)|| > 0 as
t — +0. In a similar way, the strong continuity of v from above with respect
to ¢ for almost all ¢ in [0, T'] can be proved.

The function v(x, ¢) is a weak solution of the stated problem. In fact, it
obviously satisfies the conditions divv=0and v !s = (0. Moreover, the proof
that v satisfies the identity (53) is carried out in just the same way as in

section 3. The term
T
J J vV @ dx dt
0JQ

might cause some misgivings, but, because of the strong convergence of
v to v and the weak convergence of v to v,,, this term also has a limit,

which equals
T
J f vV,  @dxdt.
0JaQ

This completes the proof of Theorem 13.

We have now established the existence of at least one weak solution of
the problem (1) in a cylinder Q of arbitrary height 7. It has been shown
([54], [90]) that this solution has derivatives v, and v, . which are summable

lim [ v(x,0] = | v(x,0)
t>+0
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over Qr with exponent 3 (for two space variables, this exponent is $). In
section 8, we shall show this in the case of the Cauchy problem.}
The following auxiliary statement is true:

THEOREM 14. If for a weak solution v of problem (1)
T
f v[*dxdt<wo  and f 6] dt < o,
T 0

then v depends continuously on t in the strong topology of L,(Q) and for v the
equality (7) is true for almost all of t € [0, T).

In fact, the function v may be considered a generalized solution in L,(Qr)
of the problem (1), (2) of chapter 4 with external forces F = f— (v, v),, for
which

Jﬂ] fldt<oo  and JTj‘ 23: (v v)* dx dt < .
0

0JQ i,k=1

According to Theorems 2 and 3 of chapter 4, section 1, these solutions are
continuous on ¢ in the L,(Q) norm. The last statement of Theorem 14 can be
proved in the same manner as the equality (56) which will be proved below for
u. For the two-dimensional case any weak solution v belongs to L,(Q;), as
is readily seen from the inequality (1) of chapter 1, section 1; so v depends
continuously on 7 in the norm of L,(Q). Now we show that in this case the
uniqueness theorem does hold.

Let v'(x, t) and v''(x, 1), x = (x,, X,), be two weak solutions corresponding
T

to f(x, 1), a(x) and j | £] dt < oo. Since v and v satisfy (53), we find that
0

t
'[ j‘ (—u-(l),+vux._-(I>xi+ukv,’,k-<I)+v,"’uxk~(l>)dxdt
oJa

n f u(x, ) ®(x,)dx =0  (55)
Q

foru=v —v". We set

1 t+p
D(x,1) =u,(x,1) = 2—pf u(x, 1) dt
t=p

1 For a boundary-value problem this fact may be deduced from the theorem formulated
above. Namely we consider the weak solution v of problem (1) as a weak solution of the
linear problem with the external force F = f - v, Vx, - As will be shown in section 8, for each
weak solution ¥y Vy, is summable over Q. with exponent 5/4 i.e. FeLs,4(Q7). Then by
Theorem 2 of section | and Theorem 6 of section 2, chapter 4, the function v has derivatives
v, and v, . which belong to Ly,4(Q ).
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(assuming that u(x, t) = 0 for ¢ < 0), and then let p approach zero. It can be
shown that this leads to

t

lj‘ u?(x, t)dx+vft () dr = ——f j. U, vy, rudxdt, (56)
2 Q 0 0JQ

where
2
6 =| ¥ ul,dx.
Qi,j=1

It follows from the relation (56) and the inequality (1) of chapter 1,
section 1, for the case of two space variables, that u = 0. In fact, this in-
equality and the inequality 2ab < ea® + (b?/e) imply

J W v, udx| < \/2<§(t)<2f ufdx)ik
Q jJ

< V24 <2 Z J;l uldx J‘n grad?u; dx>*

< 3¢2(;)+3452(t)f u?dx; (57
2 v a

where
=\ YvZadx.
Q ik

Substituting this estimate in (56) gives

t t 2 t
Jf||u(x,z)||2+vf M:)drg%f ¢2(t)dz+—f $2(t) | u |2 dt.
0 0 VJo
This implies the inequality

4
RRIEH CCIT

t

from which it follows that u = 0, sincej @*(t)dt < 0.
4]

In the two- and three-dimensional cases, the following uniqueness theorems
also hold:
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THEOREM 15. A4 solution of problem (1) is unique within the class of weak
solutions with finite norm

T riq 1/r
” v ”q,r,QT = (Jo <J‘n l qu dx) dt> » X=(X1, ... X,),

in which q and r satisfy the conditions
1 + i < - ,

r o2q "2
Uniqueness also holds in the class of functions v having finite norm || v|,, 0.

with the same q andr, if S€ C,. The solution v in this class of functions satisfies
the Navier—Stokes system in the form

ge(n,©], ref[2,0) or g>n r=owo

T
f J [V(®,+vAD)+0v, v D, +fD] dx dt+f a(x)®(x,0)dx =0
oJe Q

where ® is any arbitrary smooth vector function vanishing on S and at t = T.

This theorem and improvements of solutions considered in it depending on
improvements of f and a we prove by methods of chapter 4, section 1 ([132];
see also [94]).

In proving Theorem 13, we assumed that the domain Q is bounded.
However, it is not hard to see that Theorem 13 remains true for unbounded
domains, in particular, for the Cauchy problem. It is only necessary to choose
® in the identity (53) to be a function of compact support in x, or which falls
off sufficiently rapidly so that all the integrals appearing in (53) converge.
It is not hard to verify the proof of our assertion by starting from Theorem 13.
In fact, consider a monotonically increasing sequence of cylinders
0, = {|x] =R, 0=Zt=<T}, and the corresponding weak solutions v,.
The sequence {v,} has a subsequence whose limit is the solution we are look-
ing for. All passages to the limit are accomplished as before, and it is only
necessary to take the function @ to be of compact support when verifying
that the identity (53) holds.

Next, we answer the following question concerning weak solutions:
Suppose there are many weak solutions of the problem (1), so that from the
sequence {v*(x,7)} one can in general select subsequences converging to
different functions. Suppose the problem (1) has one ‘“‘good” solution
¥(x, t), e.g., the generalized solution in the sense of our previous definition.
Then, can this solution v be found among the limit elements of the sequence
{v"}? As we now show, this will be the case if the basis functions a*(x) are
chosen in a special way.
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THEOREM 16. Let v(x, t) be the generalized solution of the problem (1), and
let the functions {a*(x)} form a basis in H(Q) and in L(Q), which is ortho-
normal in L,(Q). Then, the entire sequence of approximate solutions v'(x,t),
calculated by Galerkin’s method in the basis {a*}, converges 10 v(x,1).

Proof: Let P, denote the projection operator which associates with any
function ¢(x) the partial sum of its Fourier series with respect to the system

{a*(x)}:
P,g = ) (¢,a%a"(x).
k=1
It is easy to see that the P, are bounded operators in the spaces H(Q) and
L,4(Q). On the other hand, they converge strongly to the unit operator in

these spaces. Therefore, by the Banach-Steinhaus theorem, their norms in
both spaces are uniformly bounded, i.e.

|PalmeySC  and [P, [ £C.
For

vO(x, 1) = Y (¥(x,1),a%x))a(x) = Y qa(x),
k=1 k=1
this gives the estimates

[V, D (o = | Pa¥ |1y < € ¥, [
and
V@0 Ly = € [ V0x, D) | Lucey-
Since, for the generalized solution v(x, t), the integrals
3 T
Y vi(x,0)dx, te[0,T] and J‘ 1 ¥(x, 1) |3y 4t
Q k=1 0
are bounded, it follows from what has been said that the integrals
3
Y [v(x, 1]* dx, tef0,T]
Q k=1

are uniformly bounded, and that as n — oo, v")(x, ) converges to v(x, ) in
the H(Q) norm for almost all &[0, T'], while

T
.[ [ ¥" v | dt—o.
]
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The v" satisfy the relation (35), which can be written in the form
k(v a)+v(vy,ak) =(pvi,al)+(fah)  (I=12,..,n), (58)

and similar relations are satisfied by v for all /. Therefore, we have
(v‘"’ a)+v(v,al) = PV, 2l )+ )+ (ISn) (59)

where
I} = — (v, — v, a2l )+ (0, v—o{Pv™, al ).
We now write v'—v™ = R"(x, t). Subtracting (59) from (58), multiplying
the result by c,,(t) —c,(?), and summing over / from 1 to n, we obtain
1d
Ed_i(R"’ R")+v(R},, RL) = (fv" —o{"v®™, RL)+1I", (60)
where
I" = —y(v,— v, RE )+ (v, v—o{"v™, R%)

Next, we estimate the terms appearing in the right-hand side of (60) by
using Holder’s inequality, Minkowski’s inequality, and the inequality (3)
of chapter 1, section 1. We estimate the first term as

|@ev —ov, RL) | = | (o R, RL)+(RRv™, R} |

3 +
= |(RIv™, RZ)| < | R" Hn( 2 (Riof)? dx)

Q ik=1

<\/3“R"||H< J|v(")|4dx *< J‘n|R;|4dx>jL

s clR L ® ] Rl
s cp Rl 3o o),

where ¢ is any positive number. Choosing ¢ so that 3¢*C =1v, we have

[V —vv?, R | < v | R |5 +Co | R | R"||.
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For the second term in the right-hand side of (60), we have the estimate

3 3
|17 < V[ R [y =¥ [t | R nu( j (v vi-uwvg"wx)
1k=1 0

3 4 3 +
<V R [ ] v=v | R nu{s » j v::dx] [z j (u,.—u§">)4de
k=10 i=1,J0Q
3 i 3 1)+
+6[Zj CRM dx] I:ZJ‘ (v,—v{M)* dx] }
i=1,JQ k=1JQ

< | R v = .

Substituting these estimates in (60), we obtain

1d ,
LR ] R

y
<5 IR [&+C IR o || R +Co || R*[a [ v=v" | u
v v C? v C?
SR+ g IR Gt SR g R e 2
so that
1d
ik ||2< R llv v [

From this we find in a familiar way that |R"| >0 as n— oo, since
T
f || v=v®||% dt — 0 as n — co. This proves Theorem 16.
0
THeoReM 17. Let f(x, 1) e J(Qr), W(x, )e W1 (Qy), divy =0, and SeC,
Then the problem
V,—vAv+uy v, = —grad p+f, )

. 61
divy =0, v|,=0=\|l|,=o, V‘s=‘|’|s,j 1)

has a unique solution in W2'(Qr,), where T, is a positive number defined by
S5 " f Lo(or) nd

” L4 ”sz'l(QT) = [J‘ (‘I’z +“|’t + k; . lp;xkxx) dx dt]
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If | W(x, 0) ||w, 1 q is sufficiently small and f(x, £) = P(x, 1) |s=0then T, =

This statement can be proved by Galerkin’s method with the help of the
energy estimates and a a priori estimate derived from the relation

f (v, —vAvV+uy v, +grad p—) P A(v—{) dx = 0, (62)
Q

where 25 is the projector on the J(Q) (it is only necessary to take for the
fundamental system {a*(x)} the eigenvalue functions of chapter 2, section 4).
Using Lemma 6, chapter 1, section 1, and the inequality (49), chapter 3,
section 5 we get from (62) and (61) estimates for

max V(50w and [V [waeion

0ZIZT,
in terms of | ¥ [lw,210. | f | Loom and the C, norm of S. In particular,
when \|I|s=0 these norms do not exceed a number determined by S,
[ Wx, 0) | w10 and |[f]L,0. thus, for T, one can take an arbitrary
number which is less than

min{T,C[ i zpth(x,O)dx+f fzdxdt:r},

Q k=1

where C depends only on S'and v.
On the basis of similar considerations the following theorem can be proved:

THEOREM 18. If the problem (61) has the solution v° in W3 (Qy) corres-
ponding to £°e L,(Qr) and ¥°e WN(Qy), then it is uniquely solvable in
W2 Y(Qr) (with the same T) for all £ and v which differ slightly from £° and
VO in the norms of L,(Qy) and W21(Q,).

Similar theorems hold for the other solutions which we have considered.

7. Unbounded Domains and Vanishing Viscosity

Most of the theorems of this chapter are equally valid for both bounded
and unbounded domains Q. However, the requirement that a(x) be square-
summable over Q has excluded from consideration cases where a nonzero
velocity v,, is specified at infinity (| x| = o). In the preceding chapters we
showed that these more general cases can often be reduced to cases already
considered, or to cases close to those considered, by introducing instead of v
a new unknown function u(x, t) =v(x, ) —b(x). Thus, for example, if a(x)=
v(x,0) is such that

a, and a,, eL,(Q), mgx | a, a,k[ < const, diva = 0,
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then for b(x) we may take a(x) itself. For the function u(x, 1) =v(x, t) —a(x),
we have the system

u,—v Au+(u,+a)u, +a,) = —grad p+f+vAa, (63)
divu=0, u|g=0, u(x,00=0. (64)

The problem (63), (64) differs from the problem already studied only in
unessential terms (i.e., linear terms with bounded coefficients), and can be
treated similarly. In fact, existence theorems analogous to theorems of section
3 of this chapter are also valid for the system (63), (64). However, from such
constructions, we cannot draw any conclusions concerning the behavior of
v(x,t) as t = co.

There is much interest in the question of the behavior of the solution
v(x, 1, v) of nonstationary problems as the coefficient of viscosity v tends to
zero. Since, up to the present, the unique solvability of these problems “in
the large” has only been shown for two space dimensions, it is natural to try
to study this question for plane flows at first. It seems to us most probable
that in this case the solution v(x, 7, v) of problem (1) tends to the solution
v%(x, t) of the problem

Lv=v,+uyv, = —grad p+f(x,1),

divv=0,  vemls=0, V|oo=a(), } (65)
provided the data of problem (1) are highly compatible on the manifold
{xeS, t =0}. For plane flows, the problem (65) is uniquely solvable “‘in
the large”. Its solvability ““in the small” in the classical sense (under some
mild restrictions) was proved by N. M. Gyunter in the 1920’s [97], [98] (for
both two and three dimensions), while the same question “‘in the large” was
proved by Wolibner in 1933 [99]. (See also [109] and [110]).

It is not difficult to show that v(x,?, v) tends to v°(x,#) for the Cauchy
problem and for the initial-boundary-value problem, which in terms of the
stream function y(x, ¢, v) becomes

My = Ay, —v A2+, A, =AY, = F(x, 1), }
'//|s=A'//|s=0’ 'P|z=o = ¢(x).

We shall briefly indicate the proof of this latter fact, considering that for the
solution ¥°(x, 1) of the reduced problem

MOY° = AP+ 42, AYS, =3, AV, = F(x, 1), }
‘//0 Is =0, l//o I:=o = ¢(x),

(66)

(67)
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the second-order x,-derivatives are known to be bounded (for the classical
solution y°, as found in [99], this condition is satisfied). We subtract the
first equation of (67) from the first equation of (66), and we obtain an identity
of the form

Auy—v AP +§ 0 Au,, — Y2 Au,, + U, MY ~u, AY,, =0, (68)

where u(x,1,v) = y(x,1,v)—¥°x,t). The function Y(x,1,v) satisfies the
following three estimates:

T
onax f gradzl//dx+vf J (A dxdt < C,, (69)
- Q 0Ja
T
ooax J (Ag)? dx+vf f (grad AY)? dxdt < C,, (70)
- Q oJa
max | Ay | £ C,, (71)
Qor

where C,, C, and C, do not depend on v. The first of these corresponds to
the energy inequality (10), and it is obtained in a similar way as the energy
inequality from the relation

t

—J‘tj‘ Mlp-wdxdt:%f grad?® y dx =t+vj“f (AY)? dx dt
oJa Q t=0 oJa

= —fj F Y dxdt.
oJn

The second is deduced in the same way from the identity

t=t
t

t
+vf f (grad Ay)? dx dt
=0 0JQ

=J'J‘ FAy dx dt.
oJa

The third is a consequence of a well-known estimate of the solutions of the
first boundary-value problem for second-order parabolic equations. Namely,
the function w(x,t, v) = Ay(x,t, v) may be considered as a solution of the
problem

0

f'f My - Ay dxdt = %j (AY)? dx
[+] Q

(l),—VA(D‘l'!//xz(Dxl—d/n wxz = E

w's=0, w|t=0=A¢(x)!
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while the function &(x, , v) = w(x, t, v)e  may be considered as the solution
to the problem

B —VvAD+Y,, B, — Y, B, +D=Fe ™,
(72)

cb,s=0, @|,=0=A¢(x)-

At the location of the positive maximum of & in Q,, assuming that this
point does not lie on the base {r=0}, we have @ 20, —A& =0,

@,, = @,, = 0 (note that it cannot lie on the lateral surface of Q, because of
the condition @ |s = 0), and thus, by (72)

O L Fe™!

At the location of the negative minimum of & in Q,, if this point does not
lie on the base { =0}, & <0, —A® <0, &,, = &,, =0, and thus by (72)

@=Fe?!
Consequently, at all points of Q;

|@| < max {max | A¢(x)|; max|Fe™'|},
Q Qr

which proves inequality (71).
We multiply (68) by —u, integrate it over Q,, and transform it into the
following:

%j gradzu(x,t)dx—vf Allxxiuxidxdt+f W2 u, —yv2 u, )Audxdt = 0.

? * * (73)
The integral I = vf Ay u, dxdt tends to zero as v— 0, since by (69)
and (70) .

1| < v\/_[ (grad Ay)? dxdt\/f gradudxdt < CJv.  (74)
Qr or
The last integral in (73) is transformed using integration by parts as follows:

(lpgz uxl - lpgl uxz)(uxnn xzxz) dx dt
T

0 (1 oul, Ouyu,, 10ul
= Vol TS5
or 2 0x,4 0x,  20x,

10uZ, au u, 1ou?
LRSI ) ldxdt
"”‘*(2 o, T ox, 26x2>] X
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= wg,xz(“iz - u:zcl) + (‘/lglxx - 22xz)uxl uxZ] dx dt'
or
Using this, we deduce the following inequality from (73):
J grad®u(x,0)dx 2C Jv+| Y |y, | grad® u dx dt. (75)
Q

Q@ ik
If it is known that

max ZI lpggxk | é CZ ’ (76)

Qr ik

then it follows from (75) that

i’%’) <20 HCouD),  y(0)=0, (77)

where (1) :f grad? udx dt. Multiplying both sides of the inequality (77)
0o
by e~ ¥, we write the result in the form

d _
ar (y(ne ) <2C Jve ™,
from which we obtain

s 28 ey,

2

ie. y1b) =j grad® (Y —y°)dxdt - 0 as v > 0. Thus we have shown that

Q:
the solution y(x, ¢, v) of problem (66) tends to the solution of problem (67).
It is readily shown that the same conclusion holds even when less is known
about the solutions y and y°: namely, only the boundedness of Ay and
AY° is known. For the Cauchy problem, the proof is similar to the one
presented. However, for the initial-boundary-value problem (1), the question
is open even for plane flows.

8. The Cauchy Problem

In chapter 4, section 6, we proved that the solution v(x, ) of the Cauchy
problem for the linearized system of Navier-Stokes equations corresponding
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to zero initial conditions and to a force fe L (x,t) (r > 1) is summable in
(x, £) with the same exponent r, together with v,, v, , v, , and p, . We now
use this result to prove the following theorem:

THEOREM 18. For all times t =0, there exists at least one solutionv, p
of the Cauchy problem for the general nonlinear system of Navier-Stokes
equations where fe Ls,4(x,t) " Ly(x,t) and a = 0. This solution is such that

Ve € Lsja(x, )N Ly(x, 1) and v, V,, Vi . € Ls)a(X, 1), py€Ls,a(x,1). Moreover,
for all t=0, v(x,t)e L,(E") and the Navier-Stokes equations are satisfied
almost everywhere.

Proof: For brevity let us assume that we have zero initial conditions.
We take a strip 0 £ ¢ < T of arbitrary fixed height. Since by hypothesis
f(x, ) is square-summable over this strip, there exists at least one weak
solution v(x,t), p(x,t) of the problem corresponding to f (as proved in
section 6 of this chapter). This solution satisfies the identity

J:[v (—v-¢,+\'vxi-¢xi)dxdt=Jf (f—v,v,,) - ®dxdt (78)
0<tsT O0<t<T

The initial conditions for v are taken to be zero, while the function ® must
be smooth, solenoidal, and equal to zero for ¢t = T and large }xl We know
that for the solution v the integrals

Jf Yol dxdt <C(T) and jvz(x, 1dx £ C,
0

Zt£T i

are bounded, which shows that the functions v, v;, are summable with
exponent 3 over the strip 0 < ¢t < T. This implies that the identity (78) holds
not only for ®(x, t) of compact support, but also, for example, for ® which
together with their derivatives @, and ®,, tend to zero uniformly in x as
{xl 2, This remark will be useful later. To prove that the v, v, are really
summable with exponent £ over the strip 0 < ¢ £ T, we use Holder’s inequality
and the inequality (3) of chapter 1, section 1, obtaining

J:[ | 04 Vi, | dx dt
0T

5/8 3/8
_S_<jj v,.zxkdxdt> ([j vy 03 dxdt>
O0=<t=T 0=t

< C¥¥(T) J o233 dxdt>
0<t<T
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T 1/3 2/3 3/8
cernf ()" (o) 1o

0

T 1/3 3/8
= o[ [eves([izas)” [, 0:]a)

3/8
< C%(T) ﬁc{/“q f SR, dxdt> < C(T)¥/4C.
0Zt=T j

Thus, we actually have v,v,,, €Ls,,(x,¢) for all i, k.

We now regard the function y = f—uv,v, in the identity (78) as a free
term (it is summable with exponent § over the strip 0 < ¢ < T'), and we regard
the function v as the generalized solution of the Cauchy problem for the
linearized Navier-Stokes equations with the external force ¥(x, ) and zero
initial conditions. We choose ® in (78) to be an arbitrary solution of the
adjoint linearized problem (25) of chapter 4, section 5, corresponding to
any smooth vector F(x,t) of compact support and zero initial conditions
®(x,T) = 0.1 For such a ®, the identity (78) can be written in the form

J-J v-(—(D,—vA(I))dxdt:Jj Y- ®dxdt (79)
0=t=T 0Zt=sT

The equality
ff v, @, dxdt = —Jf v-ADdxdt
01T 0Zt<T

is a consequence of the fact that v, v, , @, and A® are square-summable
over the strip 0 < ¢ < 7. In fact, the integrals appearing in both sides of the
equality converge, and the integral

T
J=f f v-@dsdt
oJixj=r On

converges to zero as R — oo along any subsequence R, , since

T 6(1) 2
|J|§%f f [v2+<*> ]det
0J|x[=R on

} As noted above (chapter 4, section 5), o falls off sufficiently rapidly.
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and the integral

© T 3
f de f [v2+ Y <D,2,,.:|det < .
0 0J|x|=R i=1

Thus, the equality (79) is proved.

We now use the results of chapter 4, section 5. There it was proved that a
unique solution v'(x, ¢) of the linearized Cauchy problem with zero initial
conditions (v'(x,0) = 0) corresponds to any function ¥ eLs;(x,t). This
solution v’ satisfies the identity (79) with the same ® as for v, and V', v;,
Viis Veix; € Lisja(x, 1), p%,€ Lsja(x, ). Subtracting the identity (79) written for v/
from the identity (79) written for v, we obtain
(v—v) (= ®,—vA®)dxdt = 0. (80)

JJOSIET

The identity (80) is equivalent to the identity

e

(v—v))-(F+grad Q) dxdt = 0 (81)

JJOSI=T

since @ is a solution of the Cauchy problem (25) of chapter 4, section 5.
The integrals

J.‘[ v-grad Qdxdt and J:[ v’ -grad Qdx dt
0Lt<T 0<tsT

vanish (see chapter 4, section 5), and as a result, (81) reduces to

J‘J‘ (v—v')-Fdxdt=0.
0stsT

This implies that v and v’ coincide, since F(x,t) is an arbitrary smooth
vector function of compact support. We have thereby proved that the weak
solution v has derivatives v,, v,, ., which are summable, together with p.,,
with exponent $ over the strip 0 < ¢ < T. No restrictions concerning the
smallness of f were imposed. The assumption that v(x, 0) = 0 is not essential.
This completes the proof of Theorem 18.

The result just obtained also holds for boundary-value problems. How-
ever, we shall not give the proof here, since, on the one hand, the proof is
based on the use of the theory of nonstationary hydrodynamical potentials
and is quite lengthy, and on the other hand, it does not give a complete
solution of the whole problem.
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Finally, we note that the solution of the Cauchy problem has the following
stability in the infinite time interval: Suppose that for all £ = 0, a constant
velocity b = const is maintained at infinity (|x| = ), and suppose that
the initial conditions a(x) = v(x,0) are such that a(x)—be L,(E"). Then the
solution v(x, ¢) of the nonhomogeneous system (1) converges to b as t — o,

provided only that
0 +
J [sz(x, t) dx:l dt < .
0

In fact, the difference u(x, 1) = v(x, r)—b satisfies the system
u,—vAu+(u, +bu,, = —grad p+f,
diva = 0.

Therefore, the estimate

t
Juz(x, ) dx+2vj jz uZ, dxdt < const
0 k

holds for u, which shows that, in a certain sense, u converges to zero as
t — 0.



New Equations for the Description
of the Motion of Viscous
Incompressible Fluids

Many advantages suggest the use of one of the following systems to
describe the motion of viscous incompressible fluids:

Lv=v,—v(v,)Av+up,v, = —grad p+f(x,1), divv=0, )
or

0 .
Uir"a—‘ To(v;)+ v, 05 = — g +fis divv =0, @
Xk

or its special case
0 ~l2 .
Uir_g [(va+vs ‘ Ul Wl + 0t = — g, +Sis divy =0, 3
k
where the v, are positive constants characterizing the medium,

3
wW(v,) = v+, Y vi(x,t)dx
Q k=1

(€ is the domain containing the fluid) and

2 __ 2
vx - vkx;

IIM“‘

W

1
2
Z_lvik’ ‘1=P—%V2~

k
Uik = Vjxy+ Upy; s |5| =
ik
We shall suppose that the functions T (v;,) satisfy the following conditions:
(1) Ty = Ty; Tylv;) are continuous functionson vy, j, /=1, 2, 3and
| Tu @) | < cQ+[oM]0], p2i
() Tuvpve Z v|D|2(L+e|B]),  v.e>0;

(3) For arbitrary solenoidal vector functions v' and v’ belonging to
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Wi(Q)n W§+2”(Q) and which are equal to each other on the boundary S the
following inequality holds:

3
J' [T — T )i —~vi Ydx Z vs| Y. (vh—vi)* dx,  vs>0.
Q Q ik=1
Conditions (1)-(3) are satisfied, for instance, by the functions
T(v jl) = ﬂ(” b “ 2)“ik

if the “‘viscosity coefficient” f(z) is a positive monotonically increasing
function of t = 0 such that for large 1 the inequality

2P et with c1,¢, >0, u=3
is satisfied.
The motion of continuous media is described by the system

av
= div T+ pf @

and by the equation of continuity. In (4), p is the density of the medium and
T = (T;;) is the symmetric stress tensor. If Stokes’s postulates concerning the
form of the dependence of T on the tensor of deformation rates D = (v, ;) are
assumed then—as it is well known—for incompressible fluids 7" must have
the following form:

T= —pE+p(|?|*,det D)D+y(|

2 det D)D2. (5)

(See J. Serrin ““Mathematical Principles of Classical Fluid Mechanics’
Handbuck der Physik, vol. 8/1, Springer-Verlag, 1957.) The analysis of
Maxwell-Bolzman statistical equations yields further indications about the
form and properties of the T (v;) functions and corroborates that the con-
ditions (1)~(3) for many collision models are natural. We shall not dwell on
these considerations in any more detail, but restrict ourselves to indicate
some results concerning the solvability of the systems (1)—(3).

THEOREM 1. The initial-boundary-value problem for system (1), with the
conditions

Vs=0  ¥|_o=a(), ©)
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has a unique generalized solution v in Q, which has finite norm

T PR T
max | v(x,1) ||+[J <j v2 dx> dt:I ,
0<1<T o \Ja

is continuous in t in the norm L,(Q), and

R vx, 1+ B =V, ) |30, > 0

as h— 0 if only a(x)eJ(Q) and IT||f||dt < .

T
Ifa(x)e WiQ)nJy , (Q) andj~ (|£|| + | £ | dr < oo, then, for this solution
o

v, the quantity

i 4
max | v, ||+ max (J‘ vﬁxdx> +<J‘ vi,dxdt)
0=<t=T 0<t1<T Q’ QT

is finite for any interior subdomain Q' of the domain Q; moreover v, is con-
tinuous with respect to t in L,(Q) and

ht ” v,(x, t+ h)—v,(x, t) H%,QT—h -0

for h— 0. For SeC?, the derivatives Vix; are elements of L,(Q) depending
continuously on t in the norm of L,(Q), so that v itself is continuous in Qr. If,
in addition, f(x, t) is continuous in (x,t) in Qr in the Hdilder sense, and the
boundary S is twice continuously differentiable, then the solution v will be a
classical solution, i.e. will be continuous in Qp and possesses derivatives
continuous in Qr, which appear in system (1).

These solutions, considered in any finite interval of time, depend continu-
ously on a and f in the norms of the spaces to which they belong, as stipu-
lated in Theorem 1. Regarding the behavior of the generalized solutions,
whose existence is insured by the first statement of Theorem 1, as t — oo, we

PO
observe two facts: (1) if | ||f]|df < oo, then ||v(x,?)|| » 0 as t — c0. (2) Let
0
v’ and v"’ be two generalized solutions of the problem (1), (8), corresponding
to the forces f’ and f”, such thatJ ||f'—f"]| < co. If, starting from some
0

instant of time, we have

Vq 12 2 (J‘ 112 )é
vot+—| VS (x,)dx— 7= v (x,)dx ) Z2a>0, @)
¢ ZJ.n (1) t/lh 0
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where i, is taken from inequality 7, chapter 1, section 1, then
[V D-v(x,0)] >0 for t-co.
For problems (2), (6), and (3), (6), the following theorems hold:
THEOREM 2. If the T, satisfy the conditions (1)~(3) and a(x)eJJ(Q),
jTH f H dt < cothen the problem (2), (6) possesses unique solutions in the class
0

of the functions v, which have finite norm

1/(2+2p)
max 30+ lonr {13242 s
01T or
are continuous with respect to t in the norm of L,(Q) and have the property

h 1 ” v(x, t—h)—V(x, 1) “%,QT—!- -0

as h- 0.
The solutions v of problems (2), (6) and (3), (6) are stable for any finite
time interval with respect to perturbations in the initial conditions and in

the external forces. If fw ||f]|dr < co, then, as ¢ tends to infinity, || v(x,?)]|
0

tends to zero.
Let v’ and v” be two solutions of one of these problems, corresponding

to forces f' and f/, such that J ||f'—f"||dt < co. Then, if starting with
0

some instant of time,

2 2 *
vs —r—| | vJ(x, t)dx) 20>0 (®)
° t/lh <jn
holds, it follows that

[V (xD)~v'(x, )| >0 as t— co.

For the case of inhomogeneous boundary conditions, the results on the
solvability of initial-boundary-value problems for the systems (1)~(3)
are similar to these formulated in Theorems 1 and 2.

Stationary boundary-value problems, as considered in chapter 5 for the
Navier-Stokes equations, are also solvable “in the large” for systems (1)(3).
In addition, for systems (1)-(3), it is not necessary to assume that the flux
of the velocity vector v across each of the closed surfaces S, which form the
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boundary S of the domain Q, be zero. It is sufficient to require that only the
following necessary condition be satisfied: The total flux across the entire

surface S of the domain Q, is zero, i.e. |g(v: m)dS =0.

A more detailed analysis of the systems (1)~(3) as well as of the proofs of
Theorems 1, 2 and a number of other properties of systems of this type can be
found in the author’s reports given at the Mathematical Congress in Moscow
in August 1966, in the papers published in the Trudy Nat. Inst. Steklov,
Vol. 102, 1967, and in the Zapiski Scient. Sem. LOMI, vol. 11, 1968,
Leningrad.

We shall not present here the proofs of all the statements formulated
above. They largely repeat the arguments used in chapter 6. But there is
one essential difference in them which is connected with the nonlinear
principal parts. In order to indicate this, we shall give a short proof of one
of the statements of Theorem 1, namely, the proof of the existence of a
generalized solution v of the problem (1), (6) with finite norm

<J (V2 +v2+vE)dx dt> , 9)
Qr

T
under the assumptions of ae W}(Q)nJ, ,(Q) andj (|f|| + || £ | dr < o0.
0

To this end, we employ the method of Galerkin in the same form as in
chapter 6, section 3. The existence of the approximating solutions v", and
their convergence, are based on two inequalities which hold for all v = v":

l|v(x,t)|i2+2j [v0+v1¢>2(t)]¢2(z)dzg2||a|12+3<f ||f”dt> (10)

and

T
max ¢2(t)+J [1+¢%()] FA(ndt £ Cy, (11)

0<I<T 0

in which

Q

¢2(t)=j vilx,dx, YD) =f vix,ndx,  FX(1) =f Val(x, 1) dx,
Q Q

and the constant C, is determined by T,

. [ dlel + e 90 o
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and v . These inequalities are analogous to the inequalities (10) and (20) of
chapter 6, section 2, and are derived by considering the same identities

j Lv-vdx=j (—gradp+f)vdx=J. f-vdx
Q Q Q

and

f (Lv), v, dx =j f,-v,dx,
Q Q

as in (10), (20) in chapter 6, section 2. The difference lies in the fact that the
quantity 7 in inequality (11) is arbitrary, and need not be small as in (20) of
chapter 6, section 2. That this can be achieved is due to the fact that the
energy norm corresponding to system (1) and used in estimating in
inequality (10) is stronger than the energy norm corresponding to the Navier—
Stokes equations and used in estimating in inequality (10) of chapter 6,
section 2.

The derivation of (10), (11) differs only little from the derivation of (10)
and (20) in chapter 6, section 2, and we shall not carry it out; we shall only
remark that in proving (11), it is necessary to use inequality (3) of chapter 1,
section 1. On the basis of estimate (10), we conclude the existence of v in
the entire interval [0,77]. We now show that from the sequence v*, n = 1,
p,..., we can select a subsequence converging to the solution v of the
problem (1), (6). For the sake of conciseness, we shall speak of the con-
vergence of the entire sequence.

The functions v” satisfy the integral identity

[+ Vi) +AXV), T dx dt = J f-pdxdt, (12)

T

Qr
in which

Ak(vx) = (VO + VIJ‘ vs(ys t) dy) ka(x, t),
Q

and ¢(x, ) is an arbitrary function of the form,

é= z d(Da(x),

where di(f) are absolutely continuous functions of re[0, T] and possess
bounded first-order derivatives. Let us denote the totality of such ¢ by P”,
and try to pass to the limit n — oo in (12), considering ¢ as fixed. Because of
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the uniform estimates (10) and (11), the functions v, n =1, 2, ..., converge
in L,(Qr) to some function v; moreover, vy and v; converge weakly in
L,(Qp) to v, and v,, respectively. But then the integrals

v vy, P dxdt
L4 QT
have for their limit the integral

™

U Vs P dx dt,

LY QT
while the limit of

J v dx dt
is obviously

f v, dxdt.

The passage to the limit in the integral

j AW, dxdt

is carried out following the method of Minty-Browder. To this end, we
must establish the validity of the following inequality:

j r(u,v)dx = j [A¥(u,) ~ AY(v )] (u,, —V,) dx

> [vo+V2—1J‘n(u§+v§)dx:|jn(u—v)§ dx (13)

for any functions u and v of the class m, i.e. solenoidal vector functions
vanishing on S and possessing finite norm (9). In order to show this, we
represent the difference A*(u,)—A*(v,) in the form

Ak(ux) - Ak(vx) = VO(uxk Ve

+ 'v_IJ‘ (llf - V:) dy (uxk + vxk) + Ylj‘ (ui + V:) dy (uxk - vxk)’
2 Q 2 Q
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from which there follows

2
J‘ r(u,v)dx=J vo(u—v)f‘dx+y~l<J‘ (uf—vf)dx)
Q Q 2 Q

+v1f (uf—l—vﬁ)dyf (u—v)2dx
2 Q Q

and hence inequality (13).

The functions A%(v}) are uniformly bounded in L,(Q;) and thus converge
weakly in L,(Qr) to certain functions B*(x, t). In view of this, the limiting
relation for (12) is the identity

[(V+0v.,) ¢+ B, Jdx dt = f f¢ dx dt. (14)

T

Qr

This will agree with theidentity defining a generalized solution v of the problem
(1), (6), if we show that

f B*¢, dxdt = j AXv)e,, dx dt
Qr T
for all ¢ in

s

n=1

and therefore also for ¢ in m. To this end, we take inequality (13) withu = v"
and v =neP" integrate it with respect to ¢ from 0 to 7, and in it replace

f ARV, —11,,) dx dt
by the integral

—| W+, D" —n)dxdt
Qr

from the identity (12). After this, we pass to the limit # — co in the resulting
inequality, keeping # fixed. This leads us to the inequality

—| [tV —DV—m+ A @) (v — 1, )] dx dt 2 0 (15)
Qr
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This inequality has been proved for arbitrary # in P, n=1,2,..., but
therefore it holds for arbitrary # in m. We add this to the identity (14), in
which ¢ is taken equal to v—y. This gives the inequality

j [B*— A*(1,)] (Vs — 1, ) dx dt 2 0. (16)
or

In this we set § =v—¢¢@, where ¢ >0 and ¢em, and then cancel the ¢
and let ¢ tend to zero. As a result, we get

j [B*—AX(v,)] ., dxdt = 0. (17)
QT

Since this inequality is valid for any function ¢ in m, and m is a linear
manifold, the sign of equality must hold in it. Thus, we have shown that the
limiting function v does indeed satisfy an identity of the form (12) for all ¢
in m, that is, v is a generalized solution of problem (1), (6) in the class m.



Comments

Chapter 1

We arrived at inequalities of the type (1), (3), (4) and (5) by studying
the Navier-Stokes system. Inequalities (13) and (14) were proved by Poincaré
and Leray. At present, far-reaching generalizations of all these inequalities
are available in the works of V. P. Ilin, Gagliardo, Nirenberg, and K. K.
Golovkin. At our request, a proof of the inequality (6) was given by
Golovkin.

S. L. Sobolev proved the important theorem on integrals of the potential
type [6], which he used together with an integral representation of an
arbitrary function as the basis for proving the so-called Sobolev’s imbedding
theorems. Lemmas 5 and 6 are slightly strengthened versions of Sobolev’s and
Kondrashov’s theorems which are due to V. P. Ilin. The strengthening
concerns the imbedding of W;(Q) into C, ,(Q) instead of C(Q) (as it was in [6]).

The inequalities of section 1.5 involving the W3(Q) norms and their
generalizations for derivatives of any order and for second-order operators
of the elliptic type were proved by us for the case of the Laplace operator in
a paper written in 1950 [41], and for the general case in a paper written in
1951 [42]. Complete proofs of these results are given in the monograph [2].
For second-order derivatives, a similar result was obtained simultaneously
in 1950-51 by Caccioppoli [43]. The earliest result in this direction, as
came to light recently (see [44]), dates back to 1910. In fact, in the work of
S. N. Bernstein [45], an estimate of || D2u||;,q) in terms of || Lu||L,q) is
given for the solution u(x) of a second-order elliptic equation Lu = f with
two independent variables, for the case where Q is a circle (or any domain
with a sufficiently smooth boundary, which can be mapped conformally
into a circle).

The results of section 2 are not new, but our presentation of the material
may be of some interest. The beginnings of the study of decompositions of
vector fields L,(Q) into orthogonal subspaces can be found in the work of
Weyl [46]. Further investigations of these decompositions were carried out
by S. L. Sobolev, S. G. Krein, Friedrichs, by us, and by others. E. B.
Bykovski has obtained some interesting results, which are sharp in a
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certain respect, concerning the character of orthogonal subspaces of the
space L,(Q) and curl operators in them. These results, which partially overlap
results of Friedrichs [47] (they were obtained before the appearance of
Friedrichs’ paper) are collected in a review paper by E. B. Bykhovski and
N. V. Smirnov [48].

The spaces D(Q) and H(Q), which we introduce in sections 1.4 and 2.3,
have shown themselves to be very useful in studying the solution of boundary-
value problems in unbounded domains Q. In the case of bounded Q, their
metrics are equivalent to the W }(Q) metric, in which case D(Q) has long been
used, beginning with Friedrichs’ papers in the 1930’s.

Chapters 2 and 3

The linearized stationary problem (Stokes problem) for domains of
arbitrary form with boundaries of Liapunov type was first solved using the
methods of potential theory in the works of Lichtenstein [87] and Odqvist
[15] (simultaneously and, independently). They precede the investigations of
Lorentz, Korn, Krudeli and Plemelj (cf. pp. 262-76 of the survey [119] on
this). A condensed treatment of this work is given in Odqvist’s paper [15].
A note by S. G. Krein [49] gives results on investigations of this problem
from the point of view of the theory of semi-bounded operators.

At the beginning of chapter 2, we give a very simple proof of the solva-
bility of the Stokes problem in the space H(Q). (The basic idea of the proof
stems from a paper by Friedrichs [4] on elliptic operators.) Then we show
that the solution v which is found has those derivatives which appear in the
system, provided only that the forces f are square-summable functions. In
proving this fact (Theorem 3), we use the averaging operation, which was
used for the same purpose in [116] and [5] to prove the smoothness of any
generalized solution of the equation A'u = 0. Subsequently this idea was
used with different modifications and additions by various authors to
investigate the differential properties of generalized solutions. A particularly
interesting and complete development of this idea was given in the papers of
Friedrichs [50]. The reader who is familiar with all this work will recognize
a certain peculiarity in the proof of Theorem 2. A specific feature of our
problem is the fact that because of the supplementary requirement that all
the arbitrary functions must be solenoidal, we cannot use ““cutoff functions”,
as is done, for example, in the case of elliptic equations.

In Theorem 3 of chapter 2 we prove the square-summability of the
second-order derivatives of v in any strictly interior subdomain of the
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domain Q. However, the proof of the square-summability of v, . over all
requires other, stronger tools. This was done by V. A. Solonnikov [62],
using the theory of potentials, as presented in chapter 3, section 5. Theorems
3 and 5 of chapter 3 are also due to Solonnikov.

Chapter 4

In this chapter, as in chapter 2, the solvability of boundary value-problems
is proved in Hilbert spaces following the line of reasoning given in [2, 31, 32}.

The investigation of classical smoothness of generalized solutions is carried
out in the same way as in [129].

Much effort has been devoted to the study of the solvability of the linear
nonstationary problem. On the whole, efforts have been devoted towards
the construction of a theory of nonstationary hydrodynamical potentials.
In the paper [15], Odgqvist attempted to construct such a theory, but he did
not succeed in proving the solvability of the resulting system of singular
equations. This problem was first solved by Leray for the case of two inde-
pendent variables. In fact, in the paper [12], Leray constructed nonstationary
hydrodynamical potentials and used them to solve the problem (1), (2) for
plane-parallel flows in convex domains Q. To prove the solvability of the
resulting singular integral equations, Leray made essential use of the theory
of functions of a complex variable. It is only very recently that success has
been achieved in extending these results to the three-dimensional case. This
was done by K. K. Golovkin and V. A. Solonnikov [53, 56, 89, 90, 95].
Leray’s idea turns out to apply to both cases; i.e. to construct a potential
theory for a domain of arbitrary form, it is best not to use the fundamental
singular solution, but rather the solution of the boundary-value problem
for a half-space with a delta-function perturbation on the boundary. Non-
stationary potentials for a half-space were constructed and studied also by
O. V. Guseva [74].

To this direction pertain the works of Dolidze dealing with the linear and
nonlinear nonstarionary problems. But these works (as well as his book) are
essentially in error. The author takes it for granted that the operator corres-
ponding to the main linear part of the system has the same properties as the
heat-equation operator. Then, starting from this viewpoint he writes down
incorrect equations for the densities of hydrodynamical potentials and
presents an incorrect analysis of their solvability.

In [119] papers dealing with some special cases are listed. We mention also
the article [27]. In [15] the Fourier method for the problem (1) (2) is discussed.
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Chapter 5

The nonlinear stationary problem “in the small” was investigated by
Lichtenstein and Odgqvist. Leray in his article [11] proved a series of very
interesting a priori estimates for solutions of this problem. These estimates,
together with subsequent results obtained by Leray and Schauder [23] on
the solution of nonlinear equations with completely continuous operators,
essentially solved the problem of the existence of laminar solutions for any
Reynolds number, provided only that the external forces and the boundaries
of the objects past which the flow occurs are smooth. Unfortunately, Leray
himself did not state this explicitly in his later publications; only in [81]
was it remarked that the Leray-Schauder theorem on the solvability of
abstract nonlinear equations might be applied to study the problems of
hydrodynamics. As a result of this circumstance it was thought until very
recently [61] (at least in the USSR) that the problem of the existence of
laminar flows for any Reynolds number was still open. Moreover, many of
the hydrodynamicists and mathematicians concerned with this problem were
convinced that laminar flows did not exist for arbitrary Reynolds numbers.
This conviction was based on numerous experiments, which always showed
that the flow was turbulent for large Reynolds numbers. However, it follows
from the results of chapter 5 that the cause of this effect is not that the
solution does not exist, but rather that it is unstable, and possibly non-
unique. As shown in this chapter, the stationary problem always has a
*““good solution”, even when the objects past which the flow occurs have
corners and edges.

In chapter 5, we present the material in the paper [61], in which some of
Leray’s ideas on a priori estimates, stemming from [11], are used.

Theorem 7 of chapter 5 is a generalization to the case of a nonhomogeneous
flow at infinity of a result proved by Leray which states that the solution of
the stationary problem converges uniformly to zero as | x| - oo in the case
of a zero boundary condition at infinity (v,, = 0). (As Leray himself noted,
his proof is not valid for v,, # 0.) Theorem 7 was proved in M. D. Faddeyev’s
thesis (Physics Department, Leningrad University, 1959). Here we have
given a somewhat simpler proof of the theorem.

In the note of I. I. Vorovich and V. I. Yudovich [51], the possibility of
applying Galerkin’s method to solve the stationary problem is indicated, and
it is announced that there exists a generalized solution of the problem (1), (15)
for the case (a* n) |5, = 0. They also state a series of results on the dependence
of the differentiability properties of these solutions on the data of the problem.
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Chapter 6

In this chapter, we present, for the most part, results obtained in the
papers [38, 39], which were preceded by the investigations of Leray [12, 13]
and Hopf [14]. Leray proved the unique solvability ““in the small”” of the
boundary-value problem (1) for plane-parallel flows in convex domains.
For the same problem, he investigated the behavior of ‘‘turbulent solutions”
at the possible branch points for all values ¢ = 0 of the time. Moreover, he
proved the unique solvability “in the large” of the Cauchy problem for the
Navier-Stokes equations for the case of two spatial variables, and for a small
time interval in the three-dimensional case. All these results were obtained
by using nonstationary hydrodynamical potentials.

In Hopf’s paper [14] appearing in 1950-51, the existence of a weak
solution ‘““in the large” for the general boundary-value problem (1) is proved.
The novelty of Hopf’s approach to the solution of the nonstationary problem
should be noted, consisting in the transition from classical to generalized
solutions and in the elaboration of methods of obtaining these generalized
solutions directly. In studying hydrodynamical problems, we have started
from our papers of 1950-1951 (see [2]), which contain the same approach
to the solution of nonstationary boundary-value problems and in which,
unlike the paper [14], we justify the legitimacy of this approach, i.e., we
prove the corresponding uniqueness theorems for the generalized solutions
that are introduced. Certain classes of “‘generalized solutions” for some
problems were introduced in the works of N. Wiener [117], N. M. Gyunter
[80], S. L. Sobolev [6-10] and Friedrichs [4]. Concerning the paper [14], we
also remark that Hopf’s results on the convergence of Galerkin’s method can
easily be carried over to nonstationary problems for equations of various
types (also including differential equations in Hilbert spaces).

In section 4, we present a series of results of investigations of the differen-
tiability properties of generalized solutions of the problem (1), following our
methods and papers. As shown in the text, investigations inside Qr are not
very difficult. However, to investigate the behavior of v near the boundary S,
it has been necessary to make a detailed study of the operator (3/0t)—A in
various spaces. Such investigations have been carried out by K. K. Golovkin,
the author, and V. A. Solonnikov in the L, spaces, and by Solonnikov in the
Holder spaces [54, 56, 88-90, 95, 96]. For the case n = 2, these results were
preceded by the results of the paper [53]. In order to obtain limiting estimates
in all the indicated spaces, the nonstationary hydrodynamical potentials dis-
cussed in the remarks to chapter 4 have been used. The main results obtained
in this way are quoted at the end of section 4.

H
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In Theorem 16 of chapter 6, we have required that the set of vectors
{a*(x)} form a basis in L,(Q). It is useful to note that this requirement on
{a*(x)} can be removed if it is known that the integral

[ 1o e
0

involving the generalized solution, is finite.

In connection with §5, we remark that a large body of literature has been
devoted to the questions of stability and instability [120]. For publications
in the last period, see [121]-[126].

We now indicate some work done in recent years which is devoted to the
solvability of the problem (1). In the notes of M. A. Krasnoselski, S. G.
Krein and P. E. Sobolevski [55, 63], the problem (1) is regarded as a
special case of the Cauchy problem for an ordinary equation in Hilbert space
of the form

dv .
;1—t=Av+g(t,v,B1 v,...,B,v), v(0) = vy, (1)
where A is a linear, self-adjoint, negative operator, g is a smooth function of
its arguments, and the B, are linear operators subordinate to the operator
(— A)*. From the local (with respect to t) existence theorems proved by these
authors for the problem (i), they deduce the local solvability of the hydro-
dynamical problem in a certain space.

In Lion’s note [65], the a priori estimate

J‘ (1+]z|"

-0

12

dr < C(J+J),

f v(x,t)e'™ dt
4]

L2 ()

for the solution v(x, t) of the problem (1) is obtained, where

5= [ 10 B 43650

and 7y is any number in the interval (0, 1).

After this book was written, three more papers [66-68] devoted to the
investigation of solutions of the nonstationary problem (1) appeared,
in connection with our note [38]. In the joint paper by Lions and Prodi [66],
a uniqueness theorem is proved for Hopf’s weak solution for the case of two
spatial variables. In Prodi’s paper [67] a somewhat different proof of the
same theorem is given, and a whole series of uniqueness theorems for weak
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solutions in a three-dimensional space are also proved, with supplementary
conditions involving the boundedness of various integrals, cf. also §6.

In his note [68], P. E. Sobolevski continues his investigations (mentioned
above) of the problem (1) from the point of view of the nonlinear differential
equation (i) in Hilbert space. He proves a local existence theorem for the
case of three space variables and a nonlocal existence theorem for the case
of two space variables in function classes which differ from those used in
the work presented here and in his own previous work, and with somewhat
different assumptions concerning f and a. Moreover, he gives results on the
stability of solutions of the problem (1) in the infinite time interval which are
close to the results given in [38] and presented in chapter 6, section 5.

H2



Additional Comments

Several more papers devoted to the nonstationary boundary-value problem
appeared during 1960 while the first edition of this book was being edited for
publication. However, the situation concerning the basic problem, i.e. the
problem of the unique solvability “in the large” of the general nonstationary
problem, has not changed. As before, this problem remains open.

In Ohyama’s note [69], it is proved that the generalized solution v con-
structed in [39] of the equation (1) has continuous derivatives v, and v,,,,
inside Qr, if f satisfies a Holder condition in (x, t). However, this author’s
arguments involve a slight oversight concerning the continuity of the solution
in t. This point is corrected in the paper [94] of Serrin, which also investigates
the smoothness of generalized solutions in their domains of definition. The
author’s arguments are close to those we used to investigate the differential
properties of the stationary and nonstationary problems.

In V. I. Yudovich’s note [70], it is proved that the general Navier-Stokes
equations, with a force f which is periodic in ¢, have at least one solution
with the same period as f, and an approximate method is given for finding
the periodic solutions. Moreover, in the same paper, the properties of the
operator (8/01)—A in L(Qy) (r > 1) are enumerated, and it is asserted that
Hopf’s weak solution v has derivatives v, and v, . which are summable with
exponent 5 over Or. However, the author does not say how this is proved.
In connection with these results, see chapter 4, sections 2 and 6, and
chapter 6, section 4.

In P. E. Sobolevski’s note [71], further improvements are given of his
results concerning differentiability properties of generalized solutions of the
problem (1), regarded as a problem of the type (i). The strongest result in the
paper is the following: If the force f satisfies a Holder condition in (x, ¢) with
exponent y > 3, then in a small time interval there exists a solution v which is
classical for ¢ > 0. Here we shall not state the restrictions imposed on a by
the author, and we also omit his other results on the solvability of the prob-
lem (1) in various classes, because their formulation is quite lengthy; how-
ever we have just given the strongest result implied by them. There seems to
be some confusion in the proof of the first two theorems on the linear
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stationary problem, and the author makes essential use of these two theorems
in his investigation of the nonstationary problem. However, the theorems
themselves are true, and they and stronger limiting results were proved by
V. A.Solonnikov in [62] and are presented in chapter 3, section 5.

In 1960, two more relevant papers were published by Prodi [72] and by
Lions [73]. First of all, these papers contain an analysis of the properties
of Hopf’s solutions (in [72] for the case where the dimension 7 of the space
equals 2, and in [73] for the case n = 3). More precisely, these authors
define a weak solution v(x,) of the problem as a function for which the
integrals

rT P

f vi(x, t)dx and Y i dxdt
Q Qi

o 0 v
are bounded for n = 2, for which the integrals

AT
Yvix,)dx  and Y vidxdt
a7 Q'

JOJ

are bounded for n = 3, and which satisfies the identity
T
j j (—v'(D,+vvxi-(I)X‘.+vkvxk-®—f-(l))dxdt—f a-d(x,0)dx =0
0oJa o

for all sufficiently well-behaved solenoidal ®(x, t) equal to zero on S and
for ¢ = T. Regarding this solution, they prove that v depends continuously
on ¢ in the L,(Q2) norm and satisfies relation (7) of section 2 and an integral
identity of the form (53) of chapter 6, section 6.

Moreover, the papers [72, 73] contain a proof, for the two-dimensional
case, of the existence of at least one solution of the Navier-Stokes equations
which is periodic in ¢ when the force f is periodic. The proof is based on the
following two facts: (a) The L,(Q) norms of the possible solutions v of
the problem (1) for a fixed periodic force f do not exceed a certain number
R at any instant of time 72 0, if they do not exceed this number for
t=0 and if R is taken to be sufficiently large; i.e. the transformation
My {(x,0) - v(x,7)} maps the sphere Kp{||v||.,.q < R} into itself (this
fact is easily deduced from the basic energy relation (54). (b) The mapping
INT, is continuous in the weak topology of L,(Q) (the proof of this fact is not
easy).

In the paper [70] cited above, the existence of a periodic solution is
proved somewhat more simply, starting from the fact that the sphere is
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mapped into itself by all Galerkin approximations to v, (n =1,2,...) with
the same R. Because of the fact that the spaces to which the v, belong are
finite-dimensional, this implies that at each stage in Galerkin’s method,
there exists at least one periodic solution v . Because of the uniform energy
estimate for v (n=1,2,...), the v} have a limit function v, which is the
periodic solution we are looking for.

While reading the proof of this book, the author became acquainted with
the paper by Finn [75] and the paper by 1. I. Vorovich and V. I. Yudovich
[76] (the latter had just appeared). The first paper contains a proof of
Theorem 8 of chapter 5, section 5, and also seme results concerning the
asymptotic behavior of solutions of three-dimensional problems as | x| - oc.
The second paper is a new, corrected version of the paper originally sub-
mitted in September of 1960. This paper contains results concerning the
existence of generalized solutions in a bounded domain, similar to the results
of section 2 of the paper [61], and also results of investigations of the
differentiability properties of generalized solutions, similar to the results of
the paper [62]. The methods used to investigate differentiability properties
are different from the methods of [62], which are presented here in chapter
3, section 5.

The investigations of Vorovich on generalized solutions antedate the work
by Vorovich and Yudovich. In fact, it was proved (in 1957) by Vorovich
that the plain stationary problem in a bounded domain with homogeneous
boundary conditionscan be solved ““in the large”, in the way shown in chapter 5,
section 1. (This was demonstrated independently and simultaneously for
two- and three-dimensional domains by the author of this book.)

The English edition of this book has a new section (chapter 5, section 4)
in which effective a priori estimates of the norm ||u||y.q, for solutions of
stationary problems are given. Estimates of this type were found for the
first time by Leray and Hopf (see also Finn [77] and Fujita [78]). The
construction of a cut-off function { given above is apparently close to the
Hopf construction [79], with which it was unfortunately impossible for the
present author to become familiar.

In the second English edition we devote more attention to the question
of the dependence of the smoothness of the generalized solutions of stationary
and nonstationary boundary-value problems on the smoothness of known
functions in the problems, and in particular, to the question of when these
solutions become classical solutions. The results and methods developed in
the first edition permit us to give answers to these questions (granted, not
always with perfect sharpness). (See reference [129] in connection with this.)
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In the first edition we confined ourselves to general descriptions of the methods
to be used in these proofs. In the present edition these proofs are carried
out in greater detail. In connection with this, note the cited references [127,
91-93, 96], which appeared after the Russian edition of this book, and
in which the existence of generalized solutions of boundary-value problems
belonging to various function spaces (in particular, Holder spaces and the
spaces defined in Theorem 17, chapter 6, section 6) is established by various
methods (including the methods of this book).

The work of R. Finn [103] (see also his papers [75, 77, 100-102]), is to
be noted. In this paper, he proves the unique solvability of the nonlinear
stationary boundary-value problem in an unbounded domain. The new
aspects of this result, as compared to the results previously obtained and
presented in chapter 5, are, first, that the uniqueness theorem is proved for
unbounded domains, and second, that the solution is shown to lie in a class
of functions which insures the existence of “good” asymptotic for large x
(parabolic wake behind the body). To be sure, all these facts are established
only assuming sufficiently small vls and v, in contrast to the results of
chapter 5, which are independent of this assumption.

Let us attract the attention of the reader to the paper [115] where two
difference schemes for the general initial-boundary-value problem are
described and their convergence to the weak solution of the problem is
proved. They are valid for the stationary problem as well. The paper [115]
was preceded by a number of papers [112-114 and others] on the mesh
method for two-dimensional problems. The proof of convergence was given
onlyin [112].

In connection with chapter 6, section 7, we note that there is a rather large
body of literature on the transition to the limiting case of the viscosity v
tending to zero. Nevertheless, one does not find any rigorous mathematical
solution even for two-dimensional problems if boundaries are present. It seems
to us that the predictions given in the literature (see for example [119]) con-
cerning limiting regimes should be revised. The facts expounded in section 7
have been noted by us earlier (see, for example [130]). In [131], the uniform
convergence of v and v, for the two-dimensional Cauchy problem to the
solution of the Cauchy problem for the Euler equations is proved.
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of a single layer 49, 53-58, 60, 63
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Potential theory 205
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Riesz’ theorem 31, 38,116
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Stokes paradox 43, 103
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Stream function 42
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Turbulent solutions 207
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