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What is the use of chaos?

M. Conrad

Depariments of Computer Science and Biological Sciences, -
‘Wayne State University, Detroit, Michigan 48202, USA

1.1 A functional question I
T~

PR LNCRRET

Raossler’s rotating taffy puller provides a beautiful image for appreciating
the origin of chaos in one of its simplest forms [16]. Streiching plus folding
lead to mixing by distancing neighbouring points and bringing distant points
into close proximity. The addition of rotation causes the point to follow a
highly irregular path, which Réssler aptly calls’a ‘disciplined tangle’. The
tangle will be different for each different choice of initial conditions;
nevertheless the overall impression given by any two different tangles is
basically the same.

Deterministic dynamical systems of three or more . dimensions can exhibit
behaviours of the type generated by the rotating taffy machine. Despite
their determinism, the behaviours gencrated lock extremely random. This
is what it means to say that such systems are effective mixing devices. The
discovery of chaos suggests that the question of whether a given random
appearing behaviour is at base probabilistic or deterministic may be
undecidable.

It is by now probably fair to say that many plausnble dynamical models
for complex biological systems become chaotic for some choice of the
parameters. Chaotic solutions have been found for equations similar to
chemical kinetic equations [15], equations governing neurone dynamics [1,
9, 10}, and popuiation dynamics equations [13]. The question I have been
asked to address is what the function, if any, of such chaotic dynamics might
be. Such questions have a teleological ring. Nevertheless it is useful and
justified to look at living systems from the functional point of view. This
due to the enormous asymmetry between existence and nonexistence. Some
biological systems are so organised that they remain in the game of life.
Others go out of existence. The asymmetry is simply that it is the existing
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systems which are of interest to us. It is legitimate 1o ask what it is about the
organisation of these systems that allows them to persist. As soon as we do
s0, we are adopting a functional point of view. :

Complex biologicai systems, such as neurones and the immune system,
are the end result of the long process of evolution by variation and natural
selection. Physiological mechanisms which control the population dynamics
are also subject to variation and selection. The equations suitable for
describing, say, the neurone need not be the same for all organisms, and
probably are not. In biology the equations are as much the product of
evolution as traits such as eye colour, if biological dynamics could be
recorded in the fossil record, it would undoubtedly show evolutionary
changes as dramatic as those exhibited by bones and other biological
structures. The dynamics and parameter values could be selected to exhibit
chaos; or they could be selected to preclude chaos.

However justified and even necessary the functional question is from the
biological point of view, it is replete with dangers. What is the function of
Réssler’s rotating taffy puller? To make taffy, to advertise taffy, to provide
employment, to earn a profit, to inspire Otto Rossler? Or, in an emergency,
to serve as a lever or as a weapon? All biological entities and machines are
multifunctional. How they have contributed to staying in the game of life
cannot be specified completely, and how they might contribute in the future
is an open question. It is dangerous to suppose that natural selection wants
this or that. What is selected changes in the course of evolution and not ail
the phenomena of tife are controlled by selection.

This caveat applies to the functional interpretation of chaos. However, in
one respect, chaos is simpler to analyse functionaily than most biological
structures or processes. This results from the fact that it is so difficult to
distinguish-deterministic chaos from highly random behaviour. In so far as
chaos contributes to the variability of biological matter, any analysis of the
functional significance of variability a fortiori applies to the phenomenon of

gr{nasos. Fortunately, a systematic theory of biological variability is availabie.

This is adaptability theory.

1.2 Overview of adaptability theory

A thorough review of adaptability theory can be found in my book on this
subject [7], and more limited reviews in a number of earlier papers {3,4,5].
It would be duplicative to re-present the theory here. It should be sufficient
to state the central idea verbally and to indicate the connection to dynamical

8 theory.
m;m the ability of a system to continue to function.in

the face of an uncertain or unknown environment. The system of interest is
usually a ﬁMem. say an organism, a population, or even a whole
community. vironment is everything that influences this systen.’It
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may include other bivlogical systems as well as the physical environment,
and may in part be influcnced by the activities of the system of interest. For
simplicity I will call the system of interest the biological system and its
surroundings the environment.

In adaptability theory the biological system is treated as a system with
a set of states and a transition scheme, () governing the state-to-state
transitionsThe transition scheme is unknown' but notationally consists of a
set of probabilities for the state of the biological system at time ¢ + 1 given
the state of both the biological system and environment at time 4. For
simplicity it is assumed that the state set is discrete and finite. The
environment. is. also treated as a system with a set of states with a
probabilistic, generally unknown,-transition scheme, denoted by(w®)In
general, transition schemes have a deterministic aspect (for example,
connected with the life cycle of the organizm or the cycle of the year) andan
indeterminate aspect (for example, connected with mutation or unpredict-.
able weather patterns). _

The fundamental quantities in adaptability theory are measures of
behavioural uncertainty such as the following.

(1) H(w*) = behavioural uncertainty of the environment.

(2) H(&) = potential behavioural uncertainty of the biological system (& is
the transition 'scheme of the biological system in the most uncertain
tolerable environment).

(3) H{&l®*) = potential behavioural uncertainty of the biological system
given the behaviour of the environment. This increases as the ability to
anticipate the environment increases or as the uncertainty which the
biological system internally generates increases. .

(4) H(®*id) = potential behavioural tincertainty of the environment given
the behaviour of the biological system. This increases as the indifference
to the environment increases, for example as the organism lives in a
smaller region of space.

‘The main question of adaptability theory is: what is the relation between
the statistical properties of the biological system and the statistical pro-
perties of the environment? Ignoring for the time being the all-important
question of detailed statistical structure, it is possibie to summarise the
situation by the foliowing simple formula

(1.1) H(6)- H{@w*) + H($*16) —» H(w*)

The left-hand side represents the.adaptability of the biological system. The
right-hand side represents the actual uncertainty of the environment, The
arrow represents a plausible evolutionary tendency of adaptability. All
forms of adaptability are costly. Adaptabilities which are never used tend to
disappear in the course of evolution, so the magnitude of the left-hand side
tends to drop in the direction of the actual uncertainty of the environment.
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The magnitude of the terms in eqn (1.1) could be individuaily high, yet
the adaptability low. In this case there would be a great deal of biological
variability, but not much of it would appear as adaptability. These reserves
of variability can be converted to adaptability in the event of a crisis. Some
of the variability which contributes to the magnitudes of the entropies serves
to increase reliability or to enhance the cvolutionary transformability of the
system.

The transition-scheme description is connected 1o descriptions in terms of
biological variables by utilising the fact of hierarchy. Ecosystems consist of
compariments such as communities, populations, organisms, cells and
genes. These are associated with variables such as locations and numbers of
organisms, physiological states of cells, and base sequence in DNA., Let the
symbol w; represent the transition scheme of compartment i at level § in
terms of its subcompartments at the next lower level. The uncertainty of the
whole biological system being considered can be expressed in terms of a sum
of effective entropies of each compartment:

(12) H(o)= ; H, (dby)

Each effective entropy is 4 sum of conditional and unconditional entropies
(1.3) H, (&) = fH(d,) + conditional terms

where f is a normalising coefficient. The unconditional part is the
behavioural uncertainty of the compartment considered in isolation, and the
conditional parts express the corrclation between this uncertainty and the
modifiabilities of other compartments. The uncertainty taken in isolation
will be called the modifiability and the conditional terms will be the
independence terms.

The adaptability is not the sum of the modifiabilities. If a system is more

.decentralised (that is, if the parts are more independent), the adaptability is
greater for given observable modifiabilitics of the parts. If constraints are
added to the system which decrease the conditional entropies, the
adaptability must decrease or be compensated by enhanced anticipation,
increased - indifference, or development of new subsystems with high
behavioural uncertainty (such as the central nervous system or the immune
systeme no such compensation occurs, the niche must narrow or the
community must absorb disturbances at the level of population fluctustions.
This is an acceptable mode of adaptability for micro-organisms since these
are fast growing.

~ Adaptability cannot always decrease. This would be incompatible with
the tenure of life on Earth. Many factors control the rise and fall of
adaptability in the course of evolution. When an evolutionary system loses
. too much adaptability, or when the uncertainty of its environment
increases, it is likely to go into a crisis.'The crisis instigates a series of
changes which result in the renewal of the adaptability structure.
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1.3 Adaptability, dynamics and the place of chaos

Many dynamical models in biology are of a continuous dynamical nature.
The transition schemes of adaptability theory are discrete and probabilistic.
It is possible to cross-correlate the two approaches by using the idea of a
tolerance, that is of a relation on the states which is symmetric, reflexive,
but not transitive [8). State A is similar to state B, which is similar to state C,
But A is not necessarily similar to C. In this way an aspect of continuity can
be conferred on discrete transition schemes. Analogues of concepts such as
neutral stability, asymptotic stability and structural stability can be defined.
The question can then be asked: what is the relation between the
components of adaptability theory and these different dynamical concepts
of stability?

Without going into details, the general situation can be pictured thus.
The modifiability terms correlate to instabilities of dynamical models. This
is because the alternative structures and modes of behaviour which
contribute to modifiability can correspond to alternative weakly or strongly
stable states. In this casc disturbances are absorbed by instabilitics. The
modifiability terms can also correlate to asymptotic orbital stability. This
occurs when the disturbance is dissipated by direct return 10 a strongly
stable state. In this case the modifiability consists in a variation around the
strongly stable state which in time is dissipated into the heat bath. The
independence terms correlate cither to structural stability or to weakening
of the interaction of two systems. The correlation here is somewhat subtle
and depends on whether one is near to the bifurcation points or far from
them. If a system is structurally stable, it can underge a variation in
response to disturbance, which, however, does not qualitatively alter its
structure or behaviour. In this cage the behaviour of the system is less
dependent on parametric compartments (see [7] for full details).

The problem of adaptability theory is to ascertain how the different forms
of adaptability will be allocated to different parts of a system given the
constraints which are present (such as morphological constraints). If one
compartment is to be maintained in a very certain state, this must be at the
expense of some other compartment being in an uncertain state. The
uncertainty serves to absorb*the disturbance. Corresponding to this
economics of adaptability components there is an economics of stability and
instability in biological systems. This is due 1o the fact that adaptability
components correlate to forms of stability and instability in dynamical
descriptions. If the dynamics of one level of organisation, say the population
level, is to be very stable, it is necessary for disturbances to be absorbed by
instabilities at some other level. For example, neurobehavioural instabilities
or genetic variability may ptotect the population dynamics from disturbance
and therefore allow it to appear highly stable. Alternatively, the stability of
the state of internal fluids in the vertebrate may be obtained at the expense
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of intricate dynamical instabilitics in the nervous and immune systems.

To fit chaos into this framework it is necessary to remember that the
transition schemes are generally probabilistic. Not all modifiability is
connected with intrinsically random processes. For example, a compart-
ment might be able to absorb disturbances by functioning in one of several
dynamical regimes. In the absence of any information about the environ-
ment, switching from one regime to another may appear virtually random.
In reality the situation is completely deterministic. However, it is also
possible to consider situations in which the modifiability of a compartment
is due to completely intrinsic factors. This is the case in genetic variability,
in variability of immunoglobin molecules in the immune system, and in
exploratory processes in the nervous system: This intrinsic modifiability also
makes it possible to absorb disturbances and protect other compartments.
The intrinsic variability of genes is the major form of adaptability in nature.

It allows organisms 1o protect their essential dynamical propertics in the
face of environmental changes by varying less essential dynamical
propertics. |

This intrinsic modifiability could be due to Brownian motion or it could
be due to chaotic dynamics. As previously stated, distinguishing these two
possibilities may be effectively undecidable. For the purpose of analysing
the functional significance of chaos it is not necessary to make this distinction.
if the dynamics appears chaotic, and this is not due to external forcing, it will
make the same contribution to adaptability whatever the mechanism.
However, there may be a significant advantage in structuring the systemin a
manner which fulfils the stretching, folding and rotatjng conditions required
for dynamical chaos. Brownian motion is always present, but it is damped
out in some dynamical systems and magnified in others. If a biological
system obeys chaotic dynamics, this will ensure that its behaviour is chaotic.
If the system obeys dynamics which are not sensitive to initial conditions, it
is possible that the effects of the Brownian motion will be too negligible to
make a significant contribution to adaptability.

1.4 Chaotic mechanisms of adapﬁbility

Table 1.1 classifies chaotic mechanisms of adaptability. All the mechanisms
involve the diversity generation in which chaotic dynamics could conceiv-
ably play a role. ‘
The first category includes search processes in which an ensemble of
possibilities is generated and tested. The most fundamental level of diversity
generation is that of mutation, crossing over, recombination, and related
genetic operations. These create a combinatorial explosion of possible
.genotypes on which natural selection acts. Conceivably some of the
chemical dynamics underlying mutation are chaotic in nature or depend on
intrinsic noise processes complemented by chaotic mechanisms. At the
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Table 1.1 Possible functional roles of chaos.

(1) Search (diversity generation):
genetic
behavioural

(2) Defence (diversity preservation):
immunological
behavioural
populational

(3) Maintenance (disentrainment processes):
_neural and other cellular networks
age structure of populations

{4) Cross-level effects:
interaction between population dynamics and gene structure

(5) Dissipation of disturbance (qualitative insensitivity to initial conditions)

present time, however, there is no evidence that dynamical chaos acts
directly at the genetic level. Later we will argue that some indirect effects
occur due to cross-level interactions with chaotic population dynamics.
Another possible place of chaos in genetic diversity generation is in the
origin of life. Nicolis er a/ [ 14] have recently presented a model for the origin
of prebiological polymers in which the generation of sequence diversity is
driven by chaotic reaction dynamics. -

A second category of search pracesses is behavioural, For very simple
organisms, such as micro-organisms, the behavioural mode is not as
important as the genetic mode. This is due to the fact that the morphological
simplicity of micro-organisms allows for a high degree of viable genetic
diversity as well as for a short generation time. The use of genetic
mechanisms of adaptation is restricted in higher plants by the longer
generation time. However, the morphology is still relatively simple. there-
fore compatible with a large variety of viable genetic and morphological

. forms. The variety of morphological forms develops primarily as a growth

response to light and moisture, though it is possible that some intrinsic
diversity generation plays a role as well. Vertebrates have a much more
intricate and sensitive morphology. The variety of genetic and morpho-
logical forms is severely restricted. The development of the immune system
and the central nervous system provides for alternative mechanisms of
diversity generation which compensate for these restrictions.

It is now known that physiologically plausible dynamic models of
ncurones can exhibit chaotic solutions. Chay {1] has shown that equations
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for membrane excitability can exhibit such behaviour in the absence of any
forcing. It is also known that, in some central nervous system neurones,
second messengers — especially cyclic AMP — control membrane electrical
activity. The second-messenger system involves an elaborate set of
biochemical reactions whose complexity allows for a rich set of dynamical
behaviours [11]. Some evidence indicates that the dynamics of the cyto-
skeleton may be involved [12]. We have modelled this system and have
found that chaotic-appearing solutions octur. The key to chaos in these
models is delicate threshold behaviour. Cyclic AMP builds up, either
endogenously or due to presynaptic input. The internal state of the cell
changes. How it responds to a given input pattern therefore changes.
Rather complex endogenous rhythms can also be produced. ‘

One can contemplate at least three roles for thesc chaotic regimes. First
they can serve to. generate diverse behaviour. Such behavioural diversity
serves the same function as genetic diversity, and indeed compensates for
restrictions on genetic diversity. The function here is to enhance exploratory
behaviour, _

The second function is defence. Rather than using the diversity of
behaviour to explore, it can be used to avoid predators. An organism t!lat
moves in an unpredictable fashion is more difficult to catch than one which
moves about in a highly determinate minner. The flitty behaviour of a
butterfly makes it difficult to catch, and may have its basis in a chaotic
neural mechanism [17].

A third possible role of neural chaos is the prevention of entrainment. It
is conceivabie that, in the absence of chaos, either very dull pacemaker
activity would develop or highly explosive global neural firing patterns
would emerge. Chaotic mechanisms would serve to maintain the functional
independence of different parts of the nervous system. As already stated, a
system whose parts vary in a more independent manner is more adaptable.

The immune system provides another example. ke the neuromuscular
system the immune system compensates constraints on genetic, dcvelt‘)p-
mental and populational modes of adaptability in the veriebrates, Il.lgh
diversity of the immunoglobin molecules makes it possible for the organism
to deal with the diversity of the microbial world. In addition the diversity of
cell surface markers provides a means of privacy and defence. If the
structures and dynamics of organisms were sufficiently regular to be
predictable in detail, invasion by micro-organisms would become much
casier. Whether or not the molecular and dynamic diversity of the immune
system is a consequence of dynamical mechanisms of chaos is not known.
At the level of control processes in the immune system, especially in so far
as these processes involve dynamics of the endocrine system, there are
ample possibilities for chaotic solutions which could serve to enhance the
integrity of the organism by conferring a protective unpredictability on it.

Population dynamics provides a somewhat different example. The
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difference lies in the fact that neuromuscular, immunological and hormonal
dynamics are a consequence of selection acting on individual organisms.
Population dynamics is a more indirect consequence of selection acting on
individuals, and to some extent a consequence of the logical requirement
that the dynamics of a whole ecosystem be self-consistent. If the dynamics
of the whole ecosystem fail in this respect, changes will inevitably occur,
until finally self-consistency is achidved.

Many population dynamics models are known to exhibit chaos. These are
probably the best-known examples of chaotic dynamics in biology.
Admitting that function becomes a vague concept at the population level, it
is nevertheless possible to look at population dynamics from a functional
point of view to the extent that these dynamics must satisfy self-consistency.
One role of chaos is again to pgeclude entrainment. If a population becomes
highly entrained, its diversity is greatly reduced. For example, the age
structure could become very narrow. Such reduction of diversity is adapt-
ability reducing. Chaotic mechanisms would therefore serve to maintain the
adaptability of populations.

Chaotic mechanisms could also serve to make a population less predict-
able to a predator. If the population oscillated in a very regular pattern, it

. would be easy for a predator or a disease vector to track it. The population

dynamics of the predator could be co-ordinated to that of the host
population in an anticipatory way. As in the immune system, chaotic
mechanisms of population dynamics confer a defence-enhancing unpredict-
ability.

Chaotic population dynamics has a surprising cross-level effect which has
enormous significance for genetic structure and evolution. The effect was
discovered in computational models of ecosystém dynamics in which
modelled organisms feed and reproduce in a modelled environment [2.6].
Each organism consists of a set of genes (described at the nucleotide level)
and a sct of phenotypic traits determined by these genes. The population
dynamics emerges from the interactions among the individual organisms,

- Since mutation and recombination are possiblc, and since space and energy

are limited, organisms evolve by the Darwinian mechanism of variation and
selection.

In some of our models the population dynamics is highly chaotic. The
number of organisms increases and decreases in a highly irregular manner.
In part this is due to the fact that the physiological states of the organisms
are time dependent. An organism that has previously fed well may succeed
in reproducing even in an environment in which food is scarce. On the other
hand, organisms that have not already collected a lot of food may fail to
reproduce even when a great deal of food becomes available. The avail-
ability of food is determined by the internal dynamics of the system. When
organisms die, the matter they have accumulated is returned to the
environment. The size of the population varies in an extremely chaotic
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manner, with the amplitude of the oscillations increasing as the time
required to cycle matter between organisms and environment increases.

When the population size reaches a peak, few organisms succeed in
reproducing. The advantage of being efficient and of having a ‘streamlined’
genome is slight. When the population size bottoms out, any organism
whose traits fall into an accepted range will collect a full guota of food. The
chance of reproducing is high even if the organism is not very efficient.
Organisms that carry ‘genetic junk’ have a good chance of being injected
into the population. In the intermediatc zone between a population boom
and a population bust, this superfluous genetic material is pruned out. As a
consequence there is a continual injection of extraneous genetic material
into the population when the population is small, and a flushing out of this
material when it is of intermediate size. A certain amount of parasitic DNA
will inevitably be present. The more violent the oscillations the greater the
amounit of parasitic genetic material. ‘ '

This so-called parasitic genetic material turns out to serve a useful
evolutionary function. If the genotypes could be maintained in a perfectly
streamlined condition, the population would sit on top of an adaptive peak.
The chance of discovering another adaptive peak by crossing over an
adaptive valley would be negligibly small. The continuous injection of less
than optimally fit organisms into the population means that many organisms
will occupy positions well below the top of the peak. Technically these
organisms can be described as carrying a genetic load, that is, a load of less
than optimally fit genes. Since the load brings the organism closer to the
valley between peaks, it increases the chance that some member of the
population will make the transition to the unoccupied peak.

It is probably true that this effect is a consequence of population
oscillations rather than chaos per se. But in fact in our artificial €cosystem
models the oscillations were in all respects chaotic. Chaos at the level of
population dynamics induced chaos at the level of gene structure. Chaos at
the level of gene structure, as a form of genctic diversity, increased
evolutionary adaptability and therefore facilitated the evolutionary process.

. All the chaotic processes considered serve as a dynamic heat bath for
dissipating disturbances. Disturbances from which biological systems are
not physically isolated must either be absorbed by them in permanent
changes or dissipated into a heat bath. Asymptotic orbital stability provides
one route of dissipation. The biological system is initially modified, but in
time the effect of the disturbance is completely*absorbed in the random
thermal activity of the environment. A chaotic system with a strange

attractor can actually dissipate disturbance much more rapidly. Such -

- systems are highly initial-condition sensitive, so it, might seem that they
cannot dissipate disturbance at all. But if the system possesses a strange
attractor which makes all the trajectories acceptable from the functional
point of view, the initial-condition sensitivity provides the most effective
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mechanism for dissipating disturbance.

1.5 Chaos and self-consistency

The possibility of interpreting biedogical chaos in functional terms is based
on the fact that biological systems, to be interesting, must manage to stay in
the game of life. To stay in the game of life it is necessary for the dynamics
of the parts to be consistent with the dynamics of the whole, and for the
dynamics of the whole to be consistent with that of the parts. The most
important mechanism for achieving such self-consistency is natural
sclection. If the dynamics of individual organisms is inconsistent with the
stability of the ecosystem as"{ whole, it is inevitable that natural selection
will eliminate these organisms. Indirectly a dynamics for the whole eco-
system is selected. If these dynamics are still inconsistent with the persis-
tence of organisms, the characteristics of organisms will change through the
mechanism of variation and selection until an acceptable giobai dynamics is
achieved. ‘

Can self-consistency considerations of this sort play any role in the
abiological world? Ordinarily physicists do not think in functional terms.
The so-called laws of nature are regarded as inexorable givens. In fact,
however, history plays a role in inorganic nature. Geology, for example, is
an historical subject. Whenever history enters into the picture, it is valid to
ask why some structures and processes come to be and others do not. In
history-dependent phenomena, such as those of geology and astronomy, it

 is valid to ask questions about stability. In order for these phenomena to

have the ‘right to persist’, they must be stable. It is conceivable that
turbulent and chaotic dynamics in such abiological systems could in some
instances be interpreted as mechanisms for dissipating disturbance, and
therefore as an essential contributor to the stability of the whole.

Whether the fundamental equations of physics are timeless ‘or the
product of a historical development is not known. Many physicists have
seriously considered the possibility that, like the universe as a whole, the
laws of physics are the product of an evolution. The consistency of
microscopic laws with the macroscopic boundary conditions of the universe
would then become as legitimate an object of inquiry as the consistency of
organism dynamics with the macroscopic organisation of an ecosystem.

- Imagine, for example, a universe in which the migroscopic dynamics were

incapable of supporting an H-theorem. Macroscopic domains of the
universe would never fall into a state of equilibrium. Continuous macro-
scopic change would occur. If this macroscopic change altered the micro-
scopic laws, these laws would eventually reach a form capable of supporting
an H-theorem. The reason is simply that as soon as mechanisms of
microphysical chaos are discovered, the universe as a whole will proceed
much more rapidly to an equilibrium or at least to a slowly changing state,
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therefore to a state which allows the microphysical laws to retain a constant
form.
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A graphical zoo of strange and peculiar
attractors

A.V. Holden and M.A. Muhamad*

Department of Physiology,
The University, Leeds LS29NQ, UK

2.1 Trajectories and attractors

A large part of the interest in nonlinear dynamics arises from its applica-
tions: there is a strong belief that an understanding of the patterns of
bifurcations in dynamical systems provides a means of understanding
natural phenomena. If a variable measured in the course of an experiment
settles down with time, to a constant, or a maintained oscillation, it seems
reasonable to assume that it is approaching some stable, maintained course
that corresponds to an cquilibrium or periodic solution x(xq,f), that is
obtained as +— », of some appropriate dynamical system. :

2.1) dx(e)/dt = F(x(1))

x is a vector in R", with each of the n components representing a variable.

A system of equations that provides an accurate and physically satis-
factory representation of an experimental system can be cumbersome, and
even complicated and of high order, so solutions may often only be
obtained as numerical approximations to solutions. Thus the numerical
solutions themselves may be considered to be approaching an equilibrium
or periodic solution. . :

The equations that represent physical systems that have an ‘internal
friction’ are dissipative: the flow 1—x(¢) on average contracts volumes in
phase space, and so s

i=m]

- Y aF(x)lex; <0

*Present address: Jabatan Fisiologi, Universiti Malaya, Kuala Lumpur 22-11,
Malaysia.
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Continued shrinking of volume in phasc space means that stable, persis-
tent motion in an a-dimensional dissipative system ust be on a structure
that has a dimension less than #: this structure is an attractor and occupies a
subset X of phase space. Motions starting in some volume of phase space
(the basin of attraction of the attractor) can follow complicated transients
but, as >, they finally approach the attractor. The attractor X has the
properties that it is invariant under the flow and cannot be decomposed
into nonoverlapping invariant pieces: any motion on the attractor is
. confined to the attractor, and not just part of the attractor. There is no

SEANELY : g@ ¥ QK “‘i translcmsma‘}%i : lgma;g
1 the basin of attraction of an attractor on"fhe'apf)*o ; r'aﬁ’ér,

and are not on attractors.

Virtually all possible initial states of a dissipative system are in the basin
of an attractor, and so.if the motion of a system is followed for long
enough, it will end up on an attractor. Thus, just as an attractor may be
imagined as the subset of phase space on which a motion starting in its
basin of attraction is confined as +—x, the attractor may be visualised by
following a maintained trajectory after a time that is long enough for all
transients to have decayed. ' :

For a one-dimensional flow, the only possible attractor is a stable fixed
point or sink. The bifurcations of fixed points are illustrated in Figs 3.1-3.
A sink would appear as an equilibrium, or resting, state.

For a two-dimensional flow, there is also the possibility of a periodic
solution or limit cycle, where the attractor is a simple closed curve.
Trajectories leading to a sink and a limit cycle are illustrated in Fig. 2.1. If
these trajectories were viewed only aficr they had reached the attractor,
they would illustrate the attractors: the sink as a point in phase space, and
the limit cycle attractor as a single closed loop in phase space. To construct

la) {b)

D

Fig. 2.1 Trajectories leading to (a) a sink. and (b) a limit cycle. (a) de/di-= -y, dy/dt
= x - y, with x-axis from -600 to 600, y-axis from —800 to 800; (b) the van der Pol
oscillator dy/dt = -y, dy/dr = x + yp (1 —x%), wjth x-axis and y-axis from 410 4.
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such a picture of the attractor, the values of the two variables x(s) and y(r)
arc required, when 1 is sufficiently large to be tuken as if t~»co, Experi-
mental measurements from an n-dimensional system are often only of one
variable: however, it is possible 10 reconstruct an attractor from the values

" of a single variable, as in Figs 2.2-4 [13, 21, 33). If a variable x(¢) is

T MK ms. - T:01ms , 02ms

T03ms ' TOims . T-08ms

100 ) .

E \ C
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59 L ‘ \\ i
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Vit) /mv

Fig. 2.2 Periodic attractor for the Hodgkin-Huxley [12] cquations representing the
membrane of the squid giant axon. This four-variable differential system responds
10 a constant membrane current density of 20 A cm 2 by large-amplitude periodic
solutions. A projection of this periodic attractor on to a plane may be constructed
by plotting one variable, the experigentally observable membrane potential V,
against itseif delayed by a lag T. As 7T is changed from 0.04 to 0.8 ms, the shape
of the reconstructed attractor changes; its topological properties do not change.

plotted against itsclf delayed by an appropriate time lag 7, then x(1)
plotted against x(¢+ T) will give a point for a sink, and a single closed loop
for a limit cycle. : o

In a three-dimensional nomtinear system, or a periodically forced two-
dimensional nonlinear system, there is also the possibility of changing
motion that is not periodic, associated with a more complicated kind of
attractor. If a dissipative system has only one attractor, its behaviour as
f—® might not seem to depend very much on its initial conditions,
Whatever the initial conditions, all trajectories will cventually arrive on
the attractor. However, although phase space volume on average contracts
in a dissipative system, so that trajectories passing through a large volume
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vitl /7 mv

Fig. 2.3 Reconstruction, from values of membrane potential V only, of (a) two-
and (b) three-dimensional projections of a strange attractor for the Hodgkin~
Huxley equations driven by a sinusoidal forcing current density of 15(1 + 0.75 cos
(22325 1)). The attractor is locally a flat, banded sheet that is twisted in a four-
dimensional state space. Experimental and numerical constructions of this attractor
are seen in Figs 12.5 and 12.6.

Fig. 2.4 A two-dimensional view of the same attractor, at increased (a) and further

increased (b) magnifications: the bands arc composed of sub-bands, which are

. themselves composed of yet further sub-sub-bands. . .. Such a self-similar structure,
which has a patterning that is independent of scale, has a fractal dimension.

of phase space end up passing through a smaller volume, this does not
mean that distance (or separation) is also contracting. If closely neigh-

bouring points on an attractor give trajectories that, although confined to

the attractor, rapidly separate, then motion on the attractor shows a

sensitivity to initial conditions. This sensitivity to initial conditions

underlies chaos and can be produced by repeated stretching and folding
_ within the attractor. A measure of this sensitivity to initial conditions, the
* maximal Lyapunov exponent, is discusscd in Chapter 13.
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An attractor that has a positive maximal Lyapunov exponent, and so
has a high sensitivity to initial conditions, often has. a very complicated
structure, in that it may have a noninteger, fractal dimension, and have
some of the properties of a Cantor set. The behaviour of tra jectories on an
attractor that exhibits sensitivity to initial conditions is strange and
unexpected, and the geometry of such an attractor is often strange and
complicated. Here we will use the term ‘strange attractor’ to refer to
attractors that show sensitivity 1o initial conditions [4, 6, 14, 20, 27, 28,
29]. Such chaotic attractors need not have a fractal structure, and attrac-

- tors with a fractal structure need gt be chaotic [10).

This chapter illustrates some attractors: these static illustrations are a
poor substitute for watching the trajectories approach and then wind
around the atteactor, and for following the sequence of bifurcations
{changes in type of attractor) as u paramcter is changed. All the figures in
this chapter were produced using FORTRAN and GHOST-80 [7] or
GINO-F [8] on the University of Leeds Amdahl 470/V7, but they may alt
be computed and displayed ¥and the bifurcation patterns foliowed, on a
microcomputer. .

2.2 Three-dimensional systems
2.2.1 The Lorenz system
The Lorenz system:

dy/dr = —ox + ay
(2.2) dy/dt= ~xz + rx —y
dzfde = xy — bz

with o, r and b positive parameters, was derived as a truncation of a
partial differential equation for fluid convection {19, 32|. A flat fluid layer
is heated from below and cooled from above: this represents the Earth's
atmosphere heated by the ground’s absorption of sunlight and losing heat
into space. In the resultant convective motion, x represents the convective
motion, y the horizontal temperature variation, and z the vertical
temperature variation. The parameters o, r and b are proportional to the
Prandtl number, the Rayleigh number, and the size of the region whose
behaviour is being approximated by the ordinary differential system (2.2):
these parameters arc positive. This system is considered in detail in
Chapter 6, and is also formally equivalent to the equations for a single-
mode, homogeneously broadened laser, treated in section 7.3. They may
also be used to describe the behaviour of a variety of other physical
systems. _ : ' .
Numerical approximations to solutions of thg; Lorenz equations are
complicated for wide ranges of the parameters o, b and r. Two-and
three-dimensional views of a trajectory, when the integration time is
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sufficiently large for all transients to have decayed, are shown in Figs 2.5

and 2.6.

Fig. 2.5 Different faces of the Lorenz attractor. Projections of the attractor in the
(a) 2x~the mask, (b) yx, and () yz plane. (v = 10,r = 60, b = 83))

(ol .J i tbl fr__l - -.7

: Fig. 2.6 “Three-dimensional views of the Lorenz attractor of Fig. 2.5. The attractor .

is within the coordinate cube, which is tilted forward and then rotated around the
y-axis by (a) 45°,{b) 135°, (c) -135°, and (d) —45°. .

2.2.2 Reversals of the Earth’s magnetic field

Throughout geological time there have been irregular changes and
reversals of the Earth’s magnetic field [1, 2]. If this behaviour is modelled
by a modified disc dynamo (3], the appropriate magnetohydrodynamic
~ partial differential equations may be truncated to give the simple system:

dr/dt = a(y — x)
2.3) dy/dr=zx — y
dz/idt=b -xy - cz
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where a, b and ¢ are positive parameters, and b> ac(a + ¢ + Ia -1
—c). The variables x and y relate to poloidal potentials and a toroidal
magnetic field component, and z is related to the moment of angular
momentum. The similarity of this system to the Lorenz equations is
reflected in the shape of its strange attractor, shown in Figs2.7and 2.8.

Fig. 2.7 Projections of the strange attractor of (2.3) into the (a) xy, (b) yz, and ()
xz planes, fora = 14.625, b = 1.0 and ¢ = 5.0. The axes are all from -2 10 +12.

2.2.3 The Rossler attractor b

The Lorenz system (sce eqn (2.2) and Chapter 6) has a complicated
attractor, with trajectories spiralling around, and jumping between, two
loops. In 1976 Réssler (23] introduced a simpler three-dimensional system
that has only a single nonlinear cross-term, zx:

dv/de = —(y + 2)
2.49) - dy/dt = x + ay
dzfdt=b + z{x - ¢)

where 4, b and ¢ are constants. This system may be considered to model
the flow around one of the loops of the Lorenz attractor, and so is a model
of a model. Here a = b = 1/5, and c is treated as a bifurcation parameter.

- With ¢ =.5.7 the flow is. chaotic: the. flow forms a single. spiral.
embedded in a disc, with trajectories from the outer part of the spiral
twisted, and folded back into the inner part of the spiral, forming a
Mobius band. The construction of the attractor is shown in Fig. 2.9. Thisis
similar to the experimental attractor seen in Fig. 8.6. A return map of a
section through the attractor looks like a single-humped, thickened,
one-dimensional map. Three-dimensional views of the attractor are shown
in Fig. 2.10.

As c is increased from 2 to 4.2, there is a sequence of period-doubling
bifurcations from a simple, period-one oscillation (Fig. 2.11). Chaos
develops at the accumulation point of the period-doubling sequence, just
above ¢ = 4.20, with families of similar orbits confined 10 thin bands that
grow from cach of the period 2n, n —» ®, orbits. These attractor bands
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Fig. 2.8 Three-dimensional views of the strange attractor of Fig. 2.7. with the
coordinate cube tilted forward and rotated about the y-axis by (a) 45°, (b} 135°,
{c)—135°, and {d) —45°. The axes are all from —15 to + 15,

(o) (bi

Fig. 2.9 Construction of the classical Réssler attractor. witha = b = 0.2, and ¢ =
3.7 Trajectories diverge within the band ('streiching’) and are folded back as they
loop out and back in the z-direction. (a) Projection on v -v plane; (b) x and y axes
from ~14 to 14, z axis from 0 to 28.

are apparently separated by empty, repelicr bands: a trajectory starting
between the bands is rapidly drawn into one of the attractor bands. However,
the attractor bands really form one, looped, attractor. Pairs of the attractor
bands join in a sequence of reverse bifurcations until the bands in the
strange attractor meet [23, 31]. '

Fig. 2.10 Three-dimensional views of the attractor, witha = b = 0.2, and ¢ = 5.7.
The x-axis is from -14 to 14, the y-axis from 14 to 14, and the z-axis from 0 to 28.
The axes form a cube, which has been rotated around the y-axis by (a) 45°, (b) 135°,
{c)-45°, and (d) ~135°.

{a) {b} @ (c)

id)

Fig. 2.11 Development of the classical Rossler attractor through a sequence of
period doubling, and then reverse bifurcations. Projections in the x—y plane of the
attractor for periodic and chactic flows for the Réssler system with a = b = 0.2, and
the bifurcation parameter ¢ having the value of (a) 2.4, (b) 3.5, (¢) 4.0, (d) 4.23, (¢)
4.3,{(D5.0.
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A further increase in the parameter ¢ gives a change in the shape of the
attractor, which develops into a Réssler funnel as it expands with
increasing c. The development and structure of the Réssler funnel are
illustrated in Figs 2.12 and 2.13.

{a) ib)

Fig. 2.12 Development of a Rassler funnel by a further increase in ¢, with
amb=0,and{a)c =12, (b)c=25

Fig. 2.13 Three-dimensional views of a Rossler funnel, with @ = 0.343, b = 1.82
andc =975,
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224 A bstract chemical kinetics

All the systems considered above contain a cross-term, in which the rate of
change of one variable is directly decreased by a term that is the product
of two other variables. Such cross-terms cannot occur in a systern that
directly represents a chemical reaction, and the variabies represent concen-
trations: the concentration of one chemical species cannot be directly
decreased by a process in which that chemical does not take part {36].
Real chemical systems do show chaotic activity [5), but this could be due
to spatial, hydrodynamic irregularities rather than true chemical chaos,

An abstract reaction mechanism, where the chemical reactions are at
most second order and give a detailed mass balance when the system is
closed, can be reduced to the system [40]:

' - dxldl=x(a| —k.x—z—y)+k2y1+a3
2.5) dy/dt = y(x — kay — as) + ay, p
dz/dt = z(ay — x —ksz) + a,

The q, are concentrations of reactants that are held constant, giving an

Fig. 2.14 Two-dimensional views of the trajectories at large times for eq (2.5) in the
(a) xy, (b) yz, and (c) zx planes, with k, = 0.25, k; = 0.001, ks = 0.5, 2, = 30,
a;=ay=10.01,a,=16.5, and as = 10.

open system, and the X; are rate constants: thus the a; and the &, are

_ positive. Numerical integrations of eqn (2.5) show irregular, apparently

chaotic, activity (Figs 2.14 and 2.15).
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Fig. 2.15 Three-dimensional views of the strange attractor of Fig. 2.14, with the
axes z from (to 50, and x and y from 0 1o 100.

2.3 Four-dimensional systems

In the three-dimensional systems treated in section 2.2, the strange
attractors are locally planar: a small displacement perpendicular to this
sheet will decay, as the trajectory returns to the attractor; a small
displacement along the sheet will remain, as a trajectory is effectively
pushed forward in time; and a small lateral displacement will grow in time.
‘This sensitivity to initial conditions (or instability for small lateral displace-
ments) is reflected by the single positive Lyapunov exponent of a strange
attractor of a three-dimensional system. A strange attractor of a four-
dimensional system can have two positive Lyapunov exponents, and so can
- have solutions that are more irregular than chaos.

A simple system introduced by Réssler [24-26] that exhibits such
hyperchaos is: '

de/dt = -y — 2
dy/dr=x+0.25y + w
26) dzfdr =3 + xz

dwidt = ~0.5z + 0.05w

Two-dimensional views of the strange attractor arc shown in Fig. 2.16: the
Xy plane view is reminiscent of the Réssler funnel. The system (2.6) has
been obtained from a system similar to (2.4) by adding a linear variable,
" w. The variable z is activated whenever a threshold value of x is exceeded,
and the activation of z leads to a reinjection of the trajectory to a new
region in xyw space. The motion in xyz space is similar to that of {2.4):
compare Fig. 2.17 with Fig. 2.9b. Three-dimensional outline views of the
strange attractor in xyz, xyw, zyw and zxw space are shown in Fig. 2.18.
Although this is a very simple four-dimensionat nonlinear system, it is
difficult to visualise its attractor. One method of representing motion in

4-space on a plane is by representing a point in 4-space by a line on the

plane, where each end of the line represents a pair of coordinates [17]: this
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Fig. 2.16 Two-dimensional views of the irregular motion of (2.6) in (a) the xy,
(b) 2w, (c) xz, (d) yz, (¢} yw and (I} wx planes. The axcs are: x from -110 1o 40,
y from —60 to 60, z from O to 280, and w from G 10 170.

Fig. 2.17 Three-dimensional views of the attractor of 2.16 in xyz space. The attractor
is within the coordinate cube, which is tilted forward and then rotated around the y
axis by (a) 45°, (b) 135°, (c) -135°, and (d) -45°. Same axis range as in Fig. 2.16.
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is used in Fig. 2.19 to illustrate the strange attractor of Fig. 2.16.

2.4 Forced nonlinear oscillators

2.4.1 The forced Duffing's equation ;
Ueda [37, 38] has presented an extensive gallery of periodic and chaotic
motions of a forced oscillator with a cubic term:

2.7 - dde? + adxidt + xP = b cos{{)

where the parameters @ and b are positive and @ <1 and b <25. There is a
rich variety of 2m-periodic (harmonic and higher harmonic) and subhar-
monic solutions that map out periodic attractors: a few periodic attractors
are illustrated in Fig. 2.20, where the system is rewritten as '

de/dt =y

2.8) dy/dt = —ay —x* + b cos(1)

and the solutions (after a long integration time, so all transients have
decayed) are plotted in the xy plane. For some combinations of ¢ and b
there is more than one possible stable solution: two different periodic
solutions, obtained with the same g and b, but different initial conditions,
are seen in Figs. 2.20d and e. Each stable solution is associated with a
different attractor, with its own basin of attraction. :
Since, for a given pair of parameters (a, b), there can be more than one
~ attractor, a small change in the initial condition or one of the parameters
can switch the solution between attractors. :
A few of the changes from periodic to chaotic, and between periodic,
attractors produced by small increases in b are shown in Fig. 2.21. The

bifurcation patterns in the (g, b) parameter space have been plotted for -

0,<b5<250 [30], and as b is increased the same pattern of bifurcations into
non-2n-periodic solutions (period doubling, chaos) is repcatedly seen. For
small values of a, as b is increased, a periodic solution bifurcates into a
pair of symmetric solutions, which then undergo a period-doubling cascade
into a chaotic solution. A further increase in b gives a return to a
symmetric pair of periodic solutions that undergo period doubling into
chaos, which then leads into a new periodic solution. This process is then
repeated. At large values of @, the chaotic solation returns directly to a
single periodic solution, which then splits into a symmetric pair of solu-
tions that undergo a period-doubling cascade back into chaos.
A related system is:

(2.9) d&*x/dP + ade/dt +ax + & = b cos({)

When a, is positive, this can represent the behaviour of a charged particle
in a periodic field [16], and when 4, is negative, a buckied beam
undergoing forced lateral vibrations [15].
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Fig. 2.18 Three-dimensional views of the attractor of Figure 2.16 in (a) xyz (b) xyw
(c) zyw and (d) zxw space. Same axis range as in Figure 2.16.

T
L ¥ L

" Fig. 2.19 Different views of attractor in 4-space: each line represents a point, joining
t\:zgo pairs of coordinates. The axes ranges have been normalised, so that the motion
is within a square representing a"fypelfcube.
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2.4.2 Forced negative resistance oscillator
The system

dr/dr =

(2.10) dy/dt = ﬁu =)y — x> + beos(ft)

was derived by Ueda and Akamatsu in 1981 {39] from the differential
equation representing a sinusoidally forced nonlinear electronic oscillator.
Unlike the Duffing system, this system is oscillatory in the absence of any
forcing. When b>0 the oscillations may be entrained by the driving
sinusoid, with a periodic pattern of m oscillations.occurring every n cycles
of the driving sinusoid, where m and n are simple integers.

-‘t ) -.‘L_~ . -
ke gy T g 5 .
a

Wp + v o e e
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Fig. 2.20 Periodic solutions of eqn (2.8) with (a) ¢ = 0.3, b = 20,(b)a = 0.2,
bw50,(ca=02 b= 16.5,(d)a = 0.2, b= 215, and (c) and (f) a = 0.10,
b = 3.5, but with different initial conditions. These figures are plotted after r = 200
to allow ail transients to decay, .

Some combinations of b and f fail to entruin the system; the response is

cither quasi-periodic, or is irregular and chaotic. Quasi-periodic oscilla-

tions may be produced for all f when b is sufficiently small. For some pairs
-of b and f the motion is irregular and chaotic. Figure 2.22 shows periodic,
quasi-periodic and chaotic motions in the y-1 plane: the motion is trapped
on.the periodic, quasi-periodic and strange attractors. Ueda and Akamatsu
present a different view of the attractors by using stroboscopic portsaits:

the trajectory is sampled at a fixed phase of each driving cycle. In such a
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stroboscopic portrait a periodic attractor appears as a small number of
points, a quasi-periodic attractor appears as a closed curve, and a strange
attractor appears as an intricate structure.

2.4.3 The forced Brusselator
The Brusselator is a formal set of chemical reactions:

A—-X
B+X-+Y+D
2X+Y—-3X

X E

0
LT :
0 o .
i .
; .
10 -0 -
| = t_., U -
L] 0 w0 -9 0 0

Fig. 2.21 Chaotic and periodic solutions, with x, = 0.3, y, = 0.5, a=03andb =
(a) 30.75, (b) 31.0, (c) 31.0, (d) 32, (&) 33, () 34.0.

in a spatially homogeneous system, where the inverse reactions are
ignored and the initial and final reactant concentrations A,. B, D and E are
maintained at set values. This system was introduced by Prigogine and
Lefever in 1968 [22] as an abstract model of an autocalalytinf. note-
quilibrium system: the trimolecular mechanism is an i!npla_msnble but
convenient way of introducing nonlinearity. When all the kinetic constants
are equal to one, the chemical kinetic equations are:

dedt=A+xy-Bx—x
2.11) dy/dt = Bx — x%y
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o

»
M

2 0

Fig. 2.22 Attractors for the forced, negative-resistance oscillator. (a) A simple
periodic attractor: b = 0, f = 1.617; (b) a quasi-periodic attractor: b = 1.0, f = 4.0;
‘andr(c) a strange attractor, associated with chaotic motion: b = {7, F=40.

which has a single steady-state solution that is unstable when B>AZ? + 1,
when there is a stable limit cycle. Thus this system may be considered to
represent a formal chemical oscillator, with x and ¥ representing the
concentrations of X and Y {18]. _

Tomita and Kai [35] added a sinusoidal forcing term of amplitude a and
frequency f: -
@.12) dy/dt = A + X’y — Bx — x + acos{ft)
: dy/dt = Bx ~ x°y .

“I'a) [t}

4

Fig. 2.23 Periodicand chaotic attractors for the sinusoidally f i

3 y forced Brusellator, with
A=04,B=12anda =005 A sequence of period doublings with f = (a) 0?6.
~ (b)0.8,(c) 0.83, (d) 0.84; (¢) a chaotic attractor, with f = 0,95,
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to give the possibility of quasi-periodic and chaotic solutions. Quasi-
periodic solutions were found at sufficiently small a, and chaotic solutions
developed after a sequence of period doublings as f is increased when
a = 0.05 (see Fig. 2.23).

2.4.4 The glycolytic oscillator

Oscillations can occur in all the metabolites of the glycolytic pathway, in
which the oxidation of one molgeule of glucose leads to the production of
two molecules of ATP, by a complicated sequence of enzyme-catalysed
reactions. Although a realistic model is quite complicated [9], a simple
model of the form:

213 dxidt = — xy?
(2.13) Cdyldt=xy* -y

reproduces many of the features of the glycolytic oscillations [11].
The addition of a sinusoidal forcing term f{¢) = a + b cos (w¥), 10 give

dr/dt = f{1) — xy?
(2.14) dyidt=xy’ — y

gives, with forcing (2 < 1 but close to 1, here a = 0.999, b = 0.42),
periodic, quasi-periodic and chaotic solutions as the frequency w is
changed [34]—see Fig. 2.24.

| |

15| la (c) s[ (o]
N
o R T
4
2
o

05 to, 15 0 1 2

Fig. 2.24 Quasiperiodicity (a,b), period-doubling (¢,d), and chaos {¢) in cqns (2.14)
for the frequency w of the forcing function (a) 4.5, (b) 3.5, (c) 2.0, (d) 1.8, and {(e) 1.75.
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3.1 Introduction

in this chapter a survey is given of the main properties of one-dimensional
maps. My approach is that of an applied mathematician and 1 have
adopted a somewhat informal style. I have tried to give the reader a better
understanding of the sometimes very complicated regular and irregular
behaviour of discrete dynamical systems, not by stating and proving
theorems in endless succession, but by illustrating the fundamental ideas
using simple worked-out cases. In the next chapter two-dimensional
systems are constdered in a similar way. Both chapters share a common
bibliography of selected books and papers. Our models are mainiy drawn
from population dynamics. Much attention is given to one-dimensional
and two-dimensional quadratic mappings, as they exhibit almost all the
interesting properties a map can have. The most important papers with a
similar approach are those by Hénon [24-26] and May [44-46]. A good
survey with an emphasis on theoretical aspects was given recently by
Whitley [55). The book by Gumowski and Mira [22} is mainly concerned
with area-preserving two-dimensional maps and contains a wealth of
experimental results. The book by looss {27 is more directed to the
theoretical and technical aspects of the bifurcation of . two-dimensional
maps. The monograph of Collet and Eckmann {11] offers a variety of
interesting details, theoretical as well as experimental. Perhaps the best
source is the proceedings of the Les Houches Summer School edited by
looss et al. and published in 1983 [28).

I consider iterations of the one-dimensional map

(3.1) T:x—_-f(.t)
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sometimes written as
x' = flx)
or in an iterative way as

Xn+l = .ﬂxn)

Unless stated otherwise, f{x) is considered sufficiently smooth and it is .

assumed that the range of f{x) is contained in its domain. The m-fold
iterate of f{x) is denoted by f"(x) to be distinguished from the mth power

(Ax))™.
A point £ for which T¢ = ¢, i.e

(3.2) fE) =&

is called a ﬁxed point of T. From any starting point x, we may form a

(forward) orbit by taking the sequence {x,} of its iterates X, =Ty

The orbit of a fixed point consists of just this single point. The next
possibility is a cycle or a periodic orbit formed by periodic points. A
periodic point £ of order m is a fixed point of f™(x) if m is the lowest
natural number for which this is true. Then T¢ , T2 ¢ ,.. ., P! £ are
similar periodic points of order m. '

The local behaviour in a neighbourhood of a fixed point £ is deter-
mined by its multiplier:
(3.3) A=f(§)
where f' is the derivative of f. This gives the following possibilities:

A} <1 attracting or stable
A =0 superstable

[A| > 1 repelling or unstable
{A| = 1 neutral

For a periodic orbit we have a similar classification. Let Xa Xy yeeey Xt
be the members of an m-cycle. Then all those points are fixed points of
J™(x} and with respect to that map they have the same multiplier

G4 A= F (xolf (x0)f (x2)- - -f (Xpm-1)

It is important to note that a periodic orbit which contains a critical point,
'~ i.e. a point x, for which Df(x,) = 0, is superstable.

For the orbit of a starting point x, we have the fol lowing possibilities:

(a) xois a fixed point.

(b) xois a periodic point.

(¢) xq, is an eventually periodic point. This mcans that x, is a pre-image

of some order of a periodic point, or in other words that, for some
integer m, T™x, is a periodic point,
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(d) xq is an asymprotically periodic point. This means that the orbit
‘contains a subsequence converging to a stable periodic point.

() xo is an aperiodic point if it is not of the previous types. The orbit is
called aperiodic, stochastic or chaotic. .

3.2 The elementary bifurcations

We often consider a family of maps:

(3.5) T:x— f(p, x)

where p is a real parameter. Then we can study how the properties of T
change when p varies. When we fix our attention to a particular fixed
point £(p), its nature may change from stable to unstable and this may
happen in two ways according to the sign of its multipticr A(u). Further
fixed points may suddenly appear or disappear when p. passes a certain
value. This gives three types of bifurestion, which will be described below.
Each type is illustrated by a representative example.

3.2.1 Transcritical bifurcation
(36) Xpy) = (l +-"')xn + 1,2'

* The fixed point of interest is alyays x = 0. The multiplier A = 1 + p is

close to one, so . is considered a small bifurcation parameter. For p. > 0
the fixed point is unstabie, for p < 0 (of course u > -2) it is stable.
There is a second fixed point, x = — p. [ts multiplier is A = 1 ~ . It is
unstable for u < 0 and stable for p > 0 (with p < 2). This can be
pictured in the so-called bifurcation diagram of Fig. 3.1.

stable \, unstabie

_____ -

Fig. 3.1 Transcritical bifurcation.

3.2.2 Flip bifurcation :
kN Xnor= = (1 + p)x, + x5

The trivial fixed point x = 0 loses stability at p = (. There are two other
fixed points but since they are not close 10 x = 0 they are of no concern to
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us. However, thére is the 2-cycle + Vi which comes into existence for

k>0, Its multiplier is A = f(Vp)f'(-Vp) = (1.~ 2u)*,  which
!ne;ns ;t;bl]lty if  is sufficiently small. The bifurcation diagram is shown
inFig. 3.2,

x]

T - g

I
]
t
!
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1
1
t
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]
|
|
L

T

L T 3

Fig. 3.2 Flip bifurcation.

3.2.3 Fold bifurcation

(3.3 Xnat = o+ x, 12

For p <.0 there is no fixed point at all. For 1 > 0 we have the two
fixed points + V. The corresponding multipliers are | 2V This
;:,el:i:s that wht:::d K passes ;hc bifurcation point u = 0, a pair of fixed
8 are created, one sta : i i

Gingram fy grven s Pupty le and the other unstable. The bifurcation

Thf: three examples itlustrating the various types of bifurcation are
generic and can be considered as normal forms with only the lowest
nonlinear term being present. Any map showing flip bifurcation for x = 0
and p. = O can be written as

Xpry = —(1 + P-)X,,"f" 2 ﬂkx,f

k=2

According to the'theory of normal forms, there exists a coordinate
tnnsforma_n_on which removes all even powers. The odd powers are in
resonance with A = - 1 and cannot be removed
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Fig. 3.3 Fold bifurcation.

3.3 The logistic map

In 1976, R. M. May wrote an exciting review article [44] in which he
showed that the simplest possible nonlinear iterative process

(3.9) Xnei; = ax(l~x,) ,0<a<4

already has a very complicated dynamical behaviour. Many mathemati-
cians were inspired by this, and since then a continuous stream of

* interesting papers on iterative maps is flooding the mathematical world. If

(3.9) is considered as a model in population dynamics where x, measures
the relative number of individuals of the ath generation, « should be
restricted to the real interval (0,4). But pure mathematicians prefer with -
good reason the generalisation of (3.9) to the complex domain: see section
4.5. A very good recent survey is given in Blanchard [9}.

The elementary bifurcation behaviour of (3.9) has been illustruted in
Fig. 3.4. The fixed points and their multipliers are x = 0, A\ = g and
X=1-1a, A=2-a At a=1 we observe transcritical bifurcation
with exchange of stability. At a =3 the stable branch loses stability
according to flip bifurcation. A 2-cycle p.q is born for which

q=ap(l-p),p=aq(l -q)
An elementary calculation shows that

p+q=(a+1)a,pqg=(a+)Va
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80 that p and q are the roots of
@ -a@a+ Hx+ @+ 1) =0
Their mutltiplier follows from (3.4)as
A= (1-2p)(1-2g) =-a® + 2a+4

1
X

Fig. 3.4 Bifurcation diagram of logistic map up to period doubling.

We note that A = 1 fora = 3and A = - I fora =1 + V6 = 3.449490,
This again means flip bifurcation of both the p-branch and the g-branch.
The 2-cycle loses stability and a stable 4-cycle is created. This is merely the
beginning of an infinite sequence of flip bifurcations and period doublings.
The first few values a, where a 2*-cycle is born are collected in the
following table: '

a 3 as  3.568759
a4y 3.449499 g, 3.569692
as  3.544090 a;  3.569891
dy  3.564407 a;  3.569934

These values appear to converge to a limit a, in a geometric progression
as: ‘

(3.10) ay ~a, - Cgvk
We have
d. = 3.569946. ..
¢ = 263127...
. 2 = 4.669202...

Feigenbaum noted in 1975 that this pattern of period doubling is a quite
universal phenomenon and — what is most important — that for a very
large class of maps the constant % has the same value. This constant js
now named the Feigenbaum constant. For practical purposes it gives us the
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possibility of making a prediction of . us soon as the first fow period-
doubling values are known. This holds for any map with a single parameter
a. For the present map it works as foliows. Take @, = 3.4495 and as =
3.5541 as bifurcation values found by using a pocket calculator. Then,
using (3.10), we have

%a; ~ a, _ ’
L Ly

which is correct to four decimals. : ,

The interval (4.,4) contains an infinite number of small windows of
a-values for which there exists a stable m-cycle. The first such cycles to
appear beyond a., are of even period. Next, odd cycles appear in descend-
ing order. The period 3-cycle first appears for a = 3.828427 and stays
stable up to a = 3.841499. These values can easily be obtained by means
of a pocket calculator by using the property that the multiplier of the
3-cycle runs from + 1 to - 1 in the corresponding a-window. At the end of
the 3-window we have flip bifurcation, i.e. the beginning of a stable 6-cycle
and of further period doublings. The same is true of course for all other
stable cycles of odd order..

Outside the windows there are no stable periodic orbits although there
is an infinite number of unstable cycles. The dynamic behaviour of the
map is then called chaotic. The most chaotic case, a = 4, deserves special
attention since in that case the iterative map can be parametrised by an
elementary function..

If .
(3.11) Xney = dx,(1 - x,)
we may write -
x, = sin®> (2" B w)
where 0 < B < 1. Itis helpful to write g in 2-adic form as
B=0-bbbsb, ...
Then at each iteration step the foremost binary digit is lost. If x, is an
arbitrary starting point, then as a rule B is an irrational number with an
infinite string of zeros and ones like the tossing of a coin. This means that

as a rule the orbits are aperiodic. Periodic orbits, always unstabie, are
produced by rational B. The first fﬁ:v intcresting cases are

p=1i fixed point §
B=1t 2cycle (5 £ V5)/8

- B=} 3-cycle 0.188, 0.611,0.950
B=i 3-cycle0.117,0.413,0.970
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These special cases make clear in an almost dramatic way what we may
expect from computer experiments. Let us assume that we are working
with a personal computer where fractions are given with a precision of 40
binary digits; then, after 40 iteration steps, all memary of the start has
been lost completely. Much depends on the way the computer is instructed
to fill in vacant binary positions! Although in theory aperiodic behaviour is
the rule, in practice all orbits are eventually periodic. By way of illustra-
tion we consider the discrete version of (3.11) as produced by a computer
with an accuracy of d decimals with round-off :

Xnsy = W04 IP(4 . 10¥x,(1 - x,) + 0.5)

or _
(3.12) Vus1 = IP(dy,(1 - 107%,) + 0.5)
where y, is an integer and IP mecans the integer part of a number. A

simple computer experiment with d = 3 shows that 709 orbits end up in -

the fixed point y = 0, that 216 orbits converge to the 2-cycle 250 «— 750,
and that the remaining 76 orbits have a common 13-cycle! Yet the
computer can be extremely helpful in analysing the dynamic behaviour of
an iterative map. One of the first things onc should do is to make a global
bifurcation map as shown in Fig. 3.5 for the logistic map (3.9). The
interval 2.9 < a < 3.9 has been divided in 220 equally spaced intervals,
and for each g-value an approximation of the limit set of the orbit of
Xo = }is given by plotting the iterates of order 250 up to 400 (cf. [11]).

1

X
0
3 a5
Q
~ Fig. 3.5 Bifurcation diagram of logistic map for 2.9 <a <3.9

3.4 Parametrisation

Let

(3.13) Xy = flx,)

be an iterative map with a repelling fixed point at x = 0. If fx) is an
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analytic function which is holomorphic at x l'f, then the orbit can be
parametrised by

(3.14) X, = Fla"c)

where F(z) is an analytic function of its complex argument z and where a
is the multiplier of the fixed point. The constant ¢ is determined by the
start x,. The existence of such a parametrising function is guaranteed by
the following theorem that goes back to Poincaré and has been redis-
covered many times thereafter.

Theorem
The functional equation

(3.15) F(az) = f(f(z))

where f(z) is holomorphic at z = 0 with f{0) = 0, F® =a, |a >1,
has a solution F(z) holomorphic at z = 0 with F(0) = 0. With the
additional condition F'(0) = 1, the solution is unique. If {z) is an entire
function, then F(z) also is entire.

The equation (3.15) is called the Poincaré functiona! equation, and the
unique solution of (3.15) with F'(0) = 1 is called the Poincaré Sfunction.
Only in some very special cases is F(z) an elementary function. We list a
few cases.

X —ax F2)y=z X, = d'c
x—4x(1 -x) Fz)=sin*Vz x, = sin?(2"¢)
x->2l —x) Fz)=(e¥ =12 x, = (exp(2"c) - 1)2

x— ~2(1 = x) Flz) =4 - cos(§ +’3TJ X =4 — cos(3+(—2)"%)
5 _ fa—1)z _ f{a—la"
* 1+x F(Z)—a—l-b-z WS T EC
e -1
- Flz)= S o8 °_ = "
X 2 {2) N x, = tanh(2")

What can be said in the general situation will be discussed by considering
the logistic map with 2 < a < 4. Then the Poincaré function satisfies the
equation

(3.16) Flaz)*& aF(z) (1 - A2))

It is not difficult to determine the power-series expansion

(3.17) Fz) =z —c2? + 22> — ¢z + ...
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Substitution gives
_ 1 - 2 _ a+$
T @ e - ) YT G @)@ o))

In practice F(z) can be calculated for quite large values of z by a clever
combination of (3.16) and a few terms of the power-series expansion
(3.17). H the power series is sufficicntly accurate, say up to |z} =1,
then for determining #(z) with {z[ = I with cqual accuracy, we first
compute F(z/a™) where m = log |z|/a, and we take m iterations of
(3.16). In this case F(z) is an entire function which means that its
power-sericy expunision converges o nll o On the positive teal s,
where we write 2 = x, Ma) can be interpreted as the infinitely iterated
function F”(x) of the original map f{x) = ax(l — x). As x increases, F(x)
takes all values of f(x) and its iterates in progressive order. Meanwhile x
runs to infinity whereas the domain of f"(x) is still the unit interval. The
projection of F(x) on the F-axis can be visualised as a rope of infinite
length with an infinite number of folds with turning points at the extrema
of F(x). The dynamic behaviour of the one-dimensional map is translated
into an expanding similarity map x — ax along the rope. The resulting
regular or chaotic behaviour of the original map is then caused by the
interplay of the similarity map along the rope and the pattern of the folds.
The special case a = 4 discussced before has shown that the two patterns
can be in resonance for a countable set of ‘rational’ orbits, the unstable
periodic points of all orders. If a is slightly less than 4, we are still in the
chaotic regime of the logistic map and the overall situation will be not
much different. However, F(x) is no longer periodic but almost periodic
with a not very regular pattern of critical points. in order to give an idea of
what F(x) looks like, we give two illustrations, In Fig. 3.6 the regular case
@ = 3.56 is shown, where there is a stable 8-cycle. In Fig. 3.7 the chaotic
casea = 3.9isillustrated. '

1

y

Fig. 3.6 F{AT) for 0 <T <10, with A = 3.56, This gives an S-cycle.

Lauwerier 49

¢

Fig. 3.7 F{A") for0 <T <7, with A = 3.9. This gives chaos.

The attracting domain of a stable fixed point with a nonvanishing

"multiplier can also be parametrised by the Poincaré function which

satisfies (3.15). In that case the theorem has to’be applied to the inverse
map. However, there are complications since the inverse map is generally
non-unique so that F(x) may exist only in some neighbourhood of x = 0.
The attracting domain of a superstable fixed point, say f{0) = f'(0) = 0
and f7(0) # 0, can be parametrised by a so-called Boettcher equation
satisfying the following functional equation
(3.18) H(z%) = flH(2))
with H(0} = 0. Again H(z) is holomorphic at z = 0. The proof of (3.18)
is based on the property that

@) " - Gy

where G(x) is analytic. A simple observation shows that G(x) satisfies the
functional equation

(3.19) G(f(2)) = G(2)

The inverse of G(z) is the Boettcher function satisfying-(3.18). Using H(x)
we obtain a parametrisation of the orbits converging to the superstable
fixed pointx = Qas -

(3.20) x, = H(c™)

Example

For the map x— x¥(1 ~ 2r%) the Boettcher function is H(z) =
2i(1 + 22).

3.5 Period doubling

Period doubling is a quite common phenomenon in one-dimensional and
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more-dimensional iterative maps. What has been observed for the logistic
map is almost true for any othcr similar map. Feigenbaum [16-18]
discovered the astonishing fact that maps of a very large class show the
same pattern of period doubling with the same constants of scaling, I is
hoped that the following qualitative description will give a better under-
standing of the universality of the period doubling. It is based on the
original papers of Feigenbaum, and contributions by Helleman and May.

We consider an arbitrary map x — f(i , x) where the fixed point
x = 0 is subjected to flip bifurcation for p = 0. If all terms of the third
and higher orders are omitted, we may writc the map as (cf. 3.7):

(3.21) Xoor = = (1 + puhx, + xa
The existence of a 2-cycle p, ¢ requires that ¢ = — (1 + w)p + p2,
p=~{1+p)g+q. A simple calculation shows that p + q=p,

pq = — p ,sothat _

(322)  Zp=p+ VFI,g=p- Vit

The multiplier of p is '

(3.23) Cr-1-w)Q2g-1-p)=1—-4dp-4?
The iteratéd map is explicitly

(324) Xy = (1 + pPxy + (0 + pBxF = 200 + pixd + 13

For this map x = p is an ordinary fixed point. The idea is to shift the
origin to x = p and to ‘renormalise’ the resulting map into the form
'(3.21). The substitution x,, = p + y, gives

Yarr = (1 — 4p ~ Ay, + Cyi+ ...
with
C=4p+p? - 3V +dp

Using C as a rescaling factor, we bring this map in the form (3.21) as

Xnsr = ~(1 4 Wpuidx, + X2 ...
with x = Cy and
(3.25) Pt = g + 4p, — 2
If the higher-order terms are omitted, the same argument can be repeated

ad infinitum. _
Each time, u is stepped up a little according to the map (3.25). The
limit value is '

n. =4 -3+ V) = 0.56
Its multiplier is 2u, +4 or 1 + VI7 = 5.12, which is an analytic
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approximation to Feigenbaum's constant, 4.67. If this value is substituted
in the expression of C, we find

1+ V17 1 i+ V17

2 ) 2
as an approximation to Feigenbaum'’s universal scaling factor « = ~ 2.50,
The mechanism of period doubling can also be made clear in a graphical
way by starting from the map T:x— fln , x) for which x = 0 is a
superstable periodic point of order 2 as shown in Fig. 3.8a for the
bifurcation value p = p,. Geometrically this means that OABC is a
square. The next illustration shows the iteraté 7. If u is increased a bit,

= -2.24

{a) B (b} (e)

AV/ Y.

Fig. 3.8 Three stages of period doubling and renormalisation.

it can be imagined that the graph of 7° is shifted downwards, and slightiy
deformed, until the negative part of 72 is similar to the positive part of Tin
Fig. 3.8a. We assume that, for the value p = i, after a flip bifurcation,
x = 0 is again superstable and of period 2. With a scaling factor a, the
latter map is ‘renormalised’ into the shape of Fig. 3.8a:

aT?(u: . Xa) =~ T(w, , x)

Repetition of the argument gives a sequence of p-values for which x = 0
is a superstable fixed point of order 2" at p = w,. The limit value
B =g, is again approached in a geometric progression with the
Feigenbaum ratio of ¥ = 4.66920... , and the universal scaling factor
a =~ 2.50291... . At the limit T( . x) has become a sclf-similar map
satisfying aT%(x/a) = T{x), without any change in u. This relation can
be written as )

(3.26) 8(x) = ag(g(x/a)) . g(0) = 1

a quite remarkable functional equation discovered by Feigenbaum. It has
been the object of extensive studigs in the last few years.
This relation shows that g{x) may be considered as a fixed point in
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function space. Feigenbaum’s constant appears to be an eigenvalue of its
local linearisation, which gives an independent way of determining its
numerical value. It enabled Feigenbaum to obtain the following approxi-
mations (in November, 1975)

F = 4.669 201 609 102 990 9.
a = — 2,502 907 875 509 589 284. ..

It turns out that (3.26) has the following analytical solution
(B-27) g(2) =1+ 122 + 2% + 32° + caz* + cs2'0 + g2 4 ..
with ‘

€ = — 1.527 633...
€= 0.14 815...
a= 0.026 706. ..
€= —0.003527...
= 0.000 025...

This approximation is easy to find with the aid of a computer. It gives
« = 1/g(1) correct to 4 decimals after the decimal point.

3.6 Stochastic properties

When the iterative map T : x — fix) has no stable periodic orbits, at least
not in the relevant domain, the dynamic behaviour is loosely called
chaotic. Chaotic motion can be characterised in many, sometimes very
subtle, ways. In practical situations the invariant distribution P(x) and the
Lyapunov exponent o are the most useful concepts. In order 1o simplify
the discussion we consider the case of a unimodal map with 0 < x < 1 as
shown in Fig. 3.9. Then for x there are at most two pre-images, y and z. The
invariant distribution P(x) can be interpreted as the probability P(x)dx of
finding a value f{x) in the interval X, x + dx. Invariance means that

(28 P(x) = P(T"'x)
with
JP(ydx = 1

The probability of finding x in x, x + dx equals the sum of the probabili-
ties of finding the pre-images y and z in corresponding intervals as shown
in Fig. 3.9. Thus we have

P(x)dx = P(y)dy + P(z)dz
with
x=fly} = fz)
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gfmemmer e

Fig. 3.9 The construction of the invariant distribution.

This gives a functional equation, sometimes called the Perron-Frobenius
equation:

POY_ . P
FoN G

This equation can rarely be solved analytically. However, in praf:licc_n can
be solved numerically in an iterative way by using an approximation of
P(x) on the right-hand side. This should then lead to a better approxima-
tion. The invariant distribution is not always a classical ft_mcuon bl.lt it can
be a generalised function or a ‘Superposition of a classical function an_d
Dirac functions. According to a theorem by Lasota and \forkc. P(x} is
absolutely continuous if f(x) is everywhere expanding, i.e. |P'(x}| >

(3.29) P(x) =

a > 1 with a few exceptions. The simplest case is the so-called tent map

of Fig. 3.10. :
_ 2 O=xxi
(3-30) fay= {2-—2x i<x=<]
The functional equation (3.29) is here
2P(x) = P(x/2) + P(1—x/2)

its solution is simply the usual Lebesgue measure: {’(.r) = 1. _ '
The apparent regularity of the dynamic behawo_ur of the tent map is

also observed when one tries to determine the pre-images of an arbitrary

point, x=0-bbby..., in binary notation. If 6, =1~ b,, the
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Fig. 3.10 The tent map with a stochastic orbit.

complementary binary digit, the two pre-images are

-1, 0- ()b|h3h‘...
T * { 0- |5|[‘1';g...

and next

0-00b 0.0,

0-01h,hsb, ..
G- 10b,5sh; ...
0 N 1!615263

am.i so on. Clearly the 2" pre-images T-"x arc distributed uniformly on the
unit interval in a very regular way,
The next simple case is the logistic map with ¢ = 4:

T 2x

Xaet = 4x,(1 — x,)
The functional equation (3.29) becomes

Py = PR3 P VT

This equation already shows some aspects of what can be expected in
the general case. The right-hand side becomes infinite at x — 1 so
that P(x) ~c(1 —x)% close 10 x=1. In view of the symmetry
X ¢ 1 - x, we also have P(x) = cx} close to x = 0. However, we
n.eed. not worry since there is a better way of finding the invariant
distribution. The transformation x = sin%(n#/2) relates the logistic map
to the tent map (3.30) with § written for x. Thus we have

- P(x)dx = P()d§ = de
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Plx) =j§’¢' T sifl €
or
33y P& = =,

An attempt to determine numerically the invariant distribution of the
general logistic map x,,, = ax,(1 — x,) in the chaotic regime of a runs
into difficulties since P(x) may have Dirac-function components. However,
if we are satisfied with a low precision, a good approximation can readily
be obtained in a Monte Carlo way by dividing the unit intervai in, say, a
hundred equal subintervals and counting the number of times the elements
of a few random orbits fall into a specific subinterval. The Perron-
Frobenius equation can be used in an iterative way to determine the
cumutative distribution function. Figure 3.11 shows the result for a = 3.7
after 20 iterations.

Fit)

Fig. 3.11 The invariant distribution of the logistic map for ¢ = 3.7,

Let T : x — f{x) be a given map. In order to facilitate the discussion,
we assume that T transforms the unit interval into itself and that normalty
the orbits are aperiodic. Then for a given ¢(x) we may define the time
mean

n-1
(3.32) (#()) =lim & 3. F(Tx)

and the space mean

(3.33) (e(x) ), = JRx)dn
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where )
(3.34) dp = P(x)dx

is the invariant measure. . .

For so-called ergodic systems the spacc mean almost always equals the
time mean. In principle the time mean depends on the special choice of
the starting point and is an invariant function for which

(@(Tx)) = (p(x))

Ergodicity means that the general orbit of T is aperiodic and gives a dense
covering of the basic interval. '

Perhaps the most important application is the time mean of the loga-
rithmic slope, i.e. of

e) = df
®x) = log | |
the so-called Lyapunov exponent, o:

n-l
(3.35) o= Iim% 2 log I:I—L{[

neem k=it

Except for a set of measure zero, o is independent of the initial vaiue.
For o> 0 we have a chaotic orbit; for ¢ < 0 we have an eventuaily
periodic orbit. Assuming ergodicity, the Lyapunov exponent can also be
found from _
(3.36) o = flog | dfidx | dp,
if the invariant measure du = P(x)dx is known. As an illustration we
consider again the logistic map
Xp+1 = 4x,(1 — x,)

for which the invariant measure is given by (3.31).

Using (3.36) we find :
o=L rlogl(i - 20

LRV~ s

= filog (4 cos(nt/2))dt = log 2
. Figure 3.12 gives an idea of the Lyapunov cicpbnent as a function of 2 in

the interval (3.6,4). However, due to the restricted degree of accuracy, the
fine details seen in Figure 13.2, such as the presence of small parameter

windows with a stable period of low order, are missed. The most striking

feature is the dip at a = 3.83 for which there is astable 3-cycle.
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Fig. 3.12 Graph of the Lyapunov exponents for the logistic map x — ax (1 -x)..
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4.1 Introduction

m:;:pter i_s;la bcﬁontin:ation of the previous one. The same notations and
¢ ns wi used, with obvious generalisations. Al |
Interesting features here are itlustrated b ic maps, Most examol
\ featu; ¥ quadratic maps. Most exampl
considered in this chapter have their origin ; ion ¢ ch
red ; 810 in population dynamics
the It?gn‘:;lc.-dclay equation, a predator—prey model and n):odels ots'ul:::s?—s
aaor;:::;}u r::::;amazz :am;::lar attention is given to the phenomena of
) on mold tongues. The calculus of i
presented here in a way leading to itati has the s o
h . quantitative resuits such as the si
the Hopf circle (ellipse) and the positi e coce
€ position of the Arnold tongue in the case
::e ‘::.-ke mn::xo'l‘!;e 5thelory is given in sections 4.3 and 4.4, Applications
. N 4.5. In section 4.6 we give a brief surve of
- - - One-
du:lenens::n;l maps in the complex plane. This piece of classical a):mlysis of
and%,reJu“mm:h §choo| heafied by Poincaré, Picard, Montel and Fatou
an tl:; a [30] is undergoing a revival. What are now called Julia sets,
privks Aprototypes of the sirange attractors. Only a brief discussion is
&) Thc n'zgoodxt se::‘:ir::’; l<:ontanmng many ncw results is given by Blanchard
9. . area-preserving maps is also kept short. Th; i
;’o exm.nnvely frea-ted within the framework of Hamiltcf;ian syst?r:: t%hplg
Gmﬂowmgh?u:::a%m ?23233 be r::jcomeended: Berry [6, 7], Hénon [24’ 26]

. ra » and’ Lichtenberg and Lieberman [38]. The
;:lealyu; of sta_bl_e and unstable manifolds in a mapping is of grcm'va};m?;
. un: t;:staqdn_ng of its po.r._sibl.e chaotic behaviour. In section 4.2 we

iscuss possible parametrisation of the unstable marifold of a saddle.
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indication of chaotic aspects. This subject is considered in the last section.
Rather than giving definitions and theorems we have preferred to explain
the basic notions by simple examples. A strange attsaclor can be considered
as the limit set of an unstable manifold which is a curve of infinite length
with an infinite number of loops without self-intersection and with a
Cantor set as a cross-section. This is illustrated by a simple geometrical
construction, the essence of which goes back to the founder of modern

topology, L. E. J. Brouwer.

4.2 Fixed points and invariant manifolds
The basic notations are as for one-dimensional maps with obvious exten-
sions. More explicitly we may write

Xp+1 =f(xn-yn)
r {yn-i-l = g(xp.¥n)

The local behaviour of the map at a fixed point P is governed by its local
linearisation for which

4.2) J (f‘ fy)
g &
taken at P is the corresponding matrix. The eigenvalues Ay and X; of J

are called the multipliers of the fixed point. Orbits PoP\P; . . . in the
neighbourhood of the fixed point can generally be described by

P, C\7 + CA\3

(4.1)

which implies a classification of fixed points according to the positions of

the fixed points in the complex plane.
If [\l <1 and [Ay} < 1, then all orbits are locally attracted by

P and the fixed point is described as steble. If at least one eigenvalue is

outside the unit circle, the fixed point is unstable.
If A, and A\, are real, then coordinates can be chosen such that

locally:
4.3) X' =hx L,y = Ay
(a) If 0. < A < 1, 0 < A; < T successive .points of an attracting
orbit are situated on an invariant curve ' :

—IE&E!— _ togly] = constant
log A} log Rz )
which looks like a parabolic arc. The fixed point is called a node

(Fig. 4.1). e
(b) If A; >1, Az >1, we have a similar situation for orbits in backward

sense. The fixed point is a repelling node.
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{a} (b)

/.
/A

(d)

Fig. 4.1 (a) Stable node; invariant curves (b) Saddle: invari :
I . H . . invariant c . :
invaniant curve. (d) Centre; periodic orbit on invariant curve. urves. {€) Focus:

(©) lf.O <A; < 1and A; > 1, the invariant curves are hyperbolic arcs
\\-'uh the exception of the coordinate axes. Along the x-axis on both
sides of !he origin the orbits are attracted by the fixed point. Along
tl_\c y-axis t'he orbits are repelied by the fixed point. In a more
general setting the x-axis would be called the stable manifold of the
fixed point. The y-axis is then called the unstable manifold. The
fixed point is calied a saddle. .

(d) If at least one multiplier is negative, the situation is as for the
lqunr'ed map 7%, Successive points of an orbit on un invariant curve
now lie alternately on two distinct branches, '

(e) If A, and .Az are conjugate complex, we sometimes write A = A
Az = )\ w.1th A = a exp(ia) 0 <a<mn. The locally linearised ma[;
can be written after a suitable affine transformation of coordinates
;ery oonveniegtly i.l'l polar coordinates as r,,, = ar,, B,,., =
aj, : c;)::nszlI:tc Invanant curves are described by r exp (-0/a log

i ‘.a*‘ 1, the invariant curves are logarithmic spirats. The fixed
point is called a focus. For a <1 it is stable and attracting. For a>1
it 1s unstable and repelling. '

(8) Ifa = 1, the invariant curves are ellipses. The fixed point is called
a centre. If o/m is rational and if the map is linear, all orbits are

pe!'lOd.IC. If a/w is irrational, then almost all orbits on the same
ellipse are covering it densely.
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There are a few degencrate cases. We mention only the so-called
star-node which is described by (4.3) with A = A,

If the multipliers of a fixed point are aot on the unit circle the Jocul
linearisation at the fixed point gives a reliable picture of what to expect
there for the nonlinear map. In many cases the original map (4.1) contains
a bifurcation parameter p such that for u<0 the multipliers are inside
the unit circle, and that for p = 0 one or both muitipliers are 1.in
absolute value. Let us imagine that for p<0 both nlmgipiiers are real and
in the interval (—1, 1), and that A, = 1 for p = 0 whereas ); stays
inside (—1, 1). The behaviour of the map close to the bifurcation point
p = 0 is essentially that of the one-dimensional map for the single
variable corresponding to the multiplier A,. Thus we may expect transcritical
bifurcation as described in Chapter 3. In a similar way we may expect flip
bifurcation if A, crosses the unit circle at -1 whereas X; is somewhere
between —1 and 1. If A\; and A; are both complex and inside the unit
circle for u<0, and if they cross the unit circle at the points exp * ia,
we have a Hopf bifurcation, a phenomenon which has no counterpart in
one-dimensional maps.

For a linear map the unstable manifold of a saddle is a straight line. For
a nonlinear map it is generally a curved line tangent to the eigenvector at
the saddle for the largest multiplier. Further away from the saddle the
unstable manifold can be a highly complicated curve with an infinity of
loops and self-intersections. -

Example
Xpal = zxmyn-i-l = .anz + 7.1':‘:

The origin is a saddle with multipliers 2 and {. The stable manifold is the
y-axis. The unstable manifold is the parabola y = 2x2. The invariant curves
arey = 2x* + Cix ' :

in many cases the unstable manifold can be determined analytically. We
consider the map (4.1) in the form
(44) : Xot1 = Ynr¥nrr = g(xmyn)
where the origin is a saddle with a multiplier a>1. Sometimes we are
starting from a two-step recurrent relation
(4.5) Xpney) = S(In-h-’-)

and then (4.5} is the corresponding two--dimcnsional‘ map. H the map
originally is of the form (3.1), it suffices to take flx, y) as a new
y-coordinate. The parametrisation of the unstable manifold is postulated
as

46) x=Fi),y= Far

where F{1) is supposed to be a solution of the functional equation
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(4.7) Hd*z) =g[F(2) . Flaz)]
where F(z) has power-series expansion
(4.8) F2)=3 ¢z ¢, =1
k=0

This equation is the two-dimensional #nalo i
| on i : siong alogue of the Poincaré equati
_ (3.!5). Again, if g(x, ) is anaiytic F(z) is also analytic, and if g(‘.i' y;“i:
enz;;;, c.;g.] a polynomial, F(z) is an entire function. '
technique will be illustrated by the logistic-dela ati i
s y equation considered
by Pounder and Rogers {53] and by Aronson er af. [3] The model is !

("9) Xt t Z=VnrYu+1 = a}'»“ _-r.n)

The fixed point (0, 0) is stable for O<a<1 and
A : =1 and becomes a saddle for a>1.
E?;;; fli?f‘z t:!e fixed point (I-1/a, 1-1/a) is stable buf js subjected to
iiurcation at a = 2. For g¢>1 the saddie : igi
muttiplirs 0 ancl s ¢ saddle at the origin has the
The x-axis is, in a trivial way, its stable manif
3 . lifold. The unstable i
can be parametrised by an entire function F(z) satisfying manifold

F(d’z) = aF(az) (1 - F(z))
Substitution of the expansion (4.8) gives

&
a*(d* ~ Degsr = -’IEl“""':"k+f—1'

fork=123. .. i . icicnts i
ok = 2.3 ffém which the coefficicnts can be dctcrmmed. The first

Using the power-series expansion in combination wi i g
cquation, a considerable length of the unstable manifnk;“::mt::':atiomfizlr:
the origin can be_ determined quite accurately. An attempt to dctegrminc
the unstable manifold in the form y = (x) would give only a small initial
segment since ¢(x) is bound to diverge at the first maximum of Fo. If

is sufficiently small, we find, by elimination of s, o

y=ar—x+ 01 g o0
az(a-*l)dr «

ih‘lhgwmg that the unstable l_nanifold leaves the origin as a parabolic arc. In

s caic the un§table manifold can be expected to end at the fixed p(;int
x =y = 1-Va if 1<a<2. If a>2, the unstable manifold converges to a
Hopf curve or perhaps to a strange attractor. In Fig. 4.2a an illustration is
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given of the case 2 = 2.27 where the unstable manifold is tangent to the
stable manifoid. In Fig. 4.2b a blow-up of the folded part at the origin is

given.

tal Il . (b}

- . y
K /7 W .
./ i

Fig. 4.2 The unstable manifold of the origin in the logistic-delay model close to
homoclinic tangency. @ = 2.27. (a) Horizontal axis from -0.3 to 1.3, vertical axis
from -0.1 to 1.1. (b) Horizontal axis from -0.03 to 0.13, vertical axis from -0.01

tol.tl.

4.3 Normal form

We consider a map

(4.10) Xn o 0= f(Xn ¥n) s ¥n + 1 = 8(Xn . Yn)

for which the origin is a fixed point with multipliers A , A close to
the unit circle. We write

4.1 _ A= (1 + p)expia,i<a<nw

and consider p as a bifurcation parameter and o as a constant. [f
o/ is rational, we write

(4‘12) a = Zwllm

where m is the lowest possible integer.

If p<0, the origin is a locally stable fix¢d point, but as p
increases to positive values, all kinds of bifurcations are possible. If
o/n is irrational, or if o/m is rational with m&5, we have
Hopf bifurcation. However, if m = 3 or m = 4, the situation is much
more complicated. The appropriate technique to study the bifurcation
behaviour is to reduce the map to its normal form. Since we are interested
in explicit formulae which can be used in actual cases, we bring the

original map in the form

{xn+l=y'l

{4.13) y"+|=AXn+B)'n+28Mx!{yﬁ‘j+k;2
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by ta_king fx . ¥) as a new y-variable. The constants A,B follow from the
multipliers as

(4.14) A=~M,B=x+1i

The next step is the introduction of conjugate complex coordinates z, 7 by
means of '

(4.15) z=ixk—iy,Z = —ixh + iy
Locat!y they have the meaning of eigenvector coordinates at the origin.
Substitution gives

(4.16) Zao 1= Az, + S auzi k=2

and a sumhr cxptmon in conjugate complex form. The coefficients
dyu can casily be dcfm:d from the cocfficients g,. We need them
oguly in the approximation of lowest order with respect ta .,

Since

(4.17) 7 2sina~z + 2 dysing = et I

we have

(4.18) Aay sin‘a=g,, + g neosa + gy,

4 ag sin‘a=g,, + g o + gue

The map written in the form (4.16) will be calted the. pre-normal form

According to Arnold [1] it is possible to definc new complex coordinate@':

- W, W such that most nonlinear terms in (4. 16) can be removed. The terms
t!m cannot be removed without the coordinate transformation becomin

:lrn.gn:la‘rv at p.‘= 0 are called resonating terms. The terms 277, 352 *
ays in resonance. is irrati '

resonating terms. o If a/n is _irrational they are the only

(4'19) : R A 1= Az, + QZ,EZ_,, + O(zfsl)

isthe corresponding normal form,

’"I_f !al'n- 15 rational, there are more resonating terms starting with
. If m>S$, cases of .so-called weak resonance, we have the same

normal form (4.17) but with O(z%) for m = S. The cases m = 3.4 give a

so-called strong resonance. The corresponding normal forms are

(4.20) Zy o 1 = A2y + Q222 + R3 + 0(z%)
for resonance 1: 4, and

{4" ax Sinza”&’zu + gne” + gpele

4.21) C Zms1=Azy+ P22+ 0235, + oY
for resonance 1: 3. '
The first probiem is to obtain an explicit expression for Q in the general
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case (4.19). The coordihate transformation which brings {4.16) into the
normal form (4.19) is written as '

(4.22) W=2z+puz®+puzi+pp+...
where w is the new coordinate. Substitution in (4.19) gives

Zue 1+ P02 v 1 F PuZn s 13 e 1 PREE L
=A(Z,,+p202£+p“2nin+pmf£+ - .)
+ Q222+ .. .. .

Substitution of (4.16) on the left-hand side turns this into an identity.
Equating coefficients of z2, zZ and 2* we find

a0 + AP = Ap2o

an + Apy = Apyy

an; + Apoz = \poy
Since we have excluded the cases of strong resonance, it is possible to
determine cocfficients pzg, P11, pug, Which guarantee the vanishing of the

quadratic termn in (4.16).
Again in the lowest-order approximation to p = () we obtuin

ay Ay

@20 Poz = -
A2 P A_1»02 A"‘hz

A_

(4.23) Px =

with A = exp (i a).
Equating the coefficients of z2£ we find from the ame identity
(4.24) Q = 2\aypn + (Myy + Aag)pyy + M + ax

If the values of psg, p11, Poz found above are substituted, we obtain the
following useful expression .

la”fz 2|"02|2 -1 ;
= = = a +
(4.25) Q=~—57+37x M1 = a) 1ot an

with h = exp (i ).

The technique of the calculation of the intrinsic parameter Q will be
demonstrated for the logistic delay map (4.9). Translation of the coordinates
to the fixed point (1 — 1/, 1 — i/a) gives, in shifted coordinates,

Xn+1 = Va )
Yrer = ~ (@~ 1}x, + yo — GXaYn

The eigenvalue equation is A2 — A + (a—1) = 0, which gives o« = n/3 ,

. 'm = ~1 4+ ¥ g—-1The transformation (4.17) gives the pre-normal form

(4.16) with 3ay, = 2 i exp(in/3),3a,, = 2i, 3ap; = 2i exp(—in/3). Finally,
(4.25) gives @ = § (1 - iV3).
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In the case of resonance 1:4, the normal form {(4.20) requires the
calculation of two intrinsic parameters. Starting from the pre-normal form
(4.16) we find as before

(4.26) Q = (1 - Dlay,P - (1 + Mag]* + 121 + 3ayay + ay
(4.27) R = ~14(] - iNa,, + 2idsp)ayy + an

By way of illustration we consider the following variant of the logistic
delay map '

Xn v 1= Yn
) { yn+l=ayn(l~l/lrn—%)’n)
The fixed point x =y = 1 — 1/g bifurcates for a = 3. The cigenvalue
equation Is 20 - (3 -~ g 4+ (v 1) = 0, giving a = w2 |
r =~ 1+ Va-T)3. For the cocfficicnts at k = 0 of the pre-normal form
we find 82y = 3(-1-/), 4ay; = 3i,8ap = 3(—1 + i). The parameters of
the normal form are then: 320 = 9(2-i),32R = -9i,

4.4 Hopf biforcation and Arnoid tongues

We consider a two-dimensional map with two parameters for which the _

origin is a bifurcating fixed point. Its multipliers are a complex conjugate
pair A, A with )

(4.28) A= (1 + )i \

The parameter p. is the small bifurcation paramcter and o is a free
constant in (0, w). For u<0 the origin is stable, but if T
increases and becomes positive, we may have a Hopf bifurcation. This
means that orbits close to the origin which acts as a repeller are attracted
either by an elliptical invariant curve or by a periodic cycle. We shall give
no proofs but show how in actual cases the nature of the Hopf bifurcation
can be determined in a very explicit way.
As in the previous section our starting point is the map

R OGS
The linear transformation

(4.30) z=itk—iy. 2= —ivh + iy
brings this in the pre-normal form

(4.31) : Bnoo 1Ay D upleh

It is important to note that the nonlinear cocfficients 4, can be taken at
the bifurcation point p = 0.
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Postponing the cases of strong resonance we may reduce (4.31) to its
normal form
{4.32) Zns1=(1+p)e*z, + Qz37, + ...
where (0 is given by (4.25).‘

Introducing polar coerdinates
(4.33) z=re
we obtain

e =r )1+ W+ Q72+

or with

(4.34) Q= -qe"

in the lowest-order approximation ‘

(4.35) rae1 = (1 + 2p) ra-2qcos(a-vy) 73

This can be interpreted as a one-dimensional map with a possible non
trivial fixed point r = Ry, satisfying .
N
2 ok
(439 = oo @)
is gi ircle which is an attracting
If cos(a — y)>0, this gives a Hopf circle wh ;
invaria(m curve for pu>0. Of course. in the original x, y-coordinates,
it would be an invariant cllipse. If cos((_x-—?)<‘(), we  have ;
similar invariant curve for p<0 but this time it is unstable an
repelling. The bifurcation diagram is given in Figs 4.3a and b. The value

Ry will be cailed the Hopf radius.

{b} ) r

-

lal

——

Fig. 4.3 (a) Backward Hopf bifurcation. (b) Forward: Hopf bifurcation, {¢) A
singular form of Hopf bifurcation called a crater bifurcation.

Using the expremsion (4.25) we huve

Q-Navan o5,
(437) gz = leul + leal-Re S5 o
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In the original coordinates of (4.29) the Hopf circle 22 = R2 s transformed
into the elilipse '

(4.38) -2xycosa + ¥ = R},

If cosfa - y) = 0, then the description of the bifurcation
behaviour needs a further term of the normal form. Instead of (4.35) we
obtain the approximation

{4.39) rZoy=(1+ 2u)rl-2Ar + 2B
where A = ¢ cos(a - ). Forr,,, = r, we have
(4.40) n=Ar-B/

For A > 0, B > 0, for example, the corresponding bifurcation
diagram is shown in Fig. 4.3c.
For p. > 0 we obtain a pair of Hopf circles. The radii are given by

(4.41) 2BR, = A+ VATZ4,B
' 2BR_=A-VAT_Z.B

The inner Hopf circle |z = R. turns out to be stable. The outer
Hopf circle |z| = R, is unstable. The two circles coalesce for
B = A%(4B), a point of fold bifurcation. For b < 0 a single
unstable Hopf curve remains.

If A>0, B<0 the situation is very much like the ordinary Hopf
bifurcation. If A<0 the bifurcation behaviour is as for A>0 but with
B = u.

Next we consider the weak resonance when o/m is a rational
number. Assuming the existence of a stabie Hopf circle we have two
possibilities. Either the Hopf circle is densely covered by aperiodic orbits
Or it contains an attracting cycle of order m when o is given by (4.12).
Starting from the normal form o

(“1.9) 2 =R+ QZF, 4 . tesmiy
we take
(4.43) A= (1+ pe*)e, a = 2nlim

which means that the neighbourhood of exp(ia) is described by local
polar coordinates p. and . This gives for the Hopf radius :

(4.44) qRicos(a~vy) = - peose

&8 2 little extension of (4.36).
‘The action of (4.42) on the Hopf circle is described by

0.+I=0.+a+arg(l+p.e”+c"'QRz+ R L S Tau SN
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where 0 = arg z and c, is a constant. Substitution of (4.44) and a little
trigonometry gives

“s sin(g + a—y)

i (2N 0 L))
B,,+1=0,.+a+arg(1+mm—+..‘ e

+

. where ¢, is a constant.

The existence of a periodic m-cycle implics the existence of a 8-value
such that, in a first-order approximation,

sin{p + a—y) . (232 lm(czew) -0
cos(a — v}

Such a value of 8 can be found if there exists the inequiality
()2

(4.46) Isin (¢ + a -~ YI=Cp

where the constant C depends on the coefficient of 2™’ in (4.42). The
region determined by (4.46) has the shape of two horns ina sgmmctrllc
position. However, since we have assumed fqrward Hopf blfurcat]ljon, :; ‘3:
the part outside the unit circle has a meaning. A typical case :s i
illustrated in Fig. 4.4a for ¥y = a = n/3. Then the boundary o

(4.46) consists of two circular arcs.

{a) {b} -

.7 Q:d

NZ. 1

Fig. 4.4 (a) A case of 1:6 resonance with an Arnold tongue. (b) A onc-parumeter
route through Amold tongues.

i i i - . a/m we may expect the
At each point with a rational value of
cuspal begimﬁg of such a socalled Arnold tongue or A}rnold horn. Close
to the unit circle they are symmetric with respect to the line

(4.47) ¢ =y —a(modm)

lled the axis of the Amold tongue. _
ca:s a rule, for higher rational values of a/w, the tongues have

sharper cusps and are narrower. If cos (a~-vy) =~ 0 the analysis
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breaks down. In such a case the Arnold tongues are almost tangent 1o the
unit circle and they may give the impression of combed hair.

The theory of normal forms is local by nature. However, as a rule, the
Arnold tongues may extend much further in the unstable region of the
A-parameter plane, and Arold tongues from different resonances may
overlap. )

In practical cases one often has an iterative map containing a single
perameter, a. If, for some critical value, the map shows Hopf bifurcation,
its behaviour can be understood by embedding the map in some two-
parameter map. Then the two-parameter map may exhibit the whole show
of weak resonances and Arnold tongues. Its restriction to the original map
means that in the A\-parameter plane for increasing values of a we
follow a single curve as sketched in Fig. 4.4b. This curve may cross various
Arnold tongues in a more or less systematic way, Aronson ef af, [3] have
studied such behaviour in detail.

In the case of strong resonance 1:4, the bifurcation behaviour is rather
complicated. The appropriate normal form is (4.20), but in view of scaling
the only intrinsic parameter is Q/IR2. The various possibilities can
be summarised as follows. :

¥ JQ!_( ?}4 'I- : '7 .

Lauwerier 1
with a>0 and O<b<]. For b=1 it is the model studied by
Pounder and Rogers [52] and by Aronson ef al [3]. We write {4.49) in the
form of a two-dimensional map -

Xpn+) = Vn

Yne1 = ‘:')"n(l "'bxn_(l _b)yn)

The trivial fixed point (0,0) is stable for a<1 but becomes a saddie for
a>1. Its stable manifold is the line y = (). The unslal_)le maplfold can be
parametrised by entire analytic functions as shown in section 4:2. The
nontrivial fixed point x = y = 1 - Va is stable in the
interval 1<sa<a, where

(4.50)

_3-2
=12

forb=4

and

a=1+1lbforb=}
The transition at a = 1 is an exam;le of transcritical bifurcati.on. At the
line @ = (3-2b)/(1 - 2b) with b<¥%, we have flip bifurcz_mon and at
Jhe inp a5 1.+ Jih : !

l( "-g‘nnf f?al
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For some values of a and b the triangle is not mapped inside itself and so
there may be an €scape region such that orbits starting there leave the
triangle after a number of iterations. For increasing values of a, chaotic
phenomena predominate gradually. The Hopf circle may deform into a
complicated attractor with an infinity of foids with a Cantor-like Cross-
section, a strange attractor, The escape region may take up almost all the
area of the triangle, leaving perhaps a two-dimensional Cantor-like pattern
of bounded aperiodic orbits.

Xn+l = Y, .

4.52) {y,,.,, = ay,(1-x,/2-y,/2), 1 <a<4

This is a very interesting special case of the map (4.50). The nontrivial
fixed point x = y =1_1/5 is stable up to @ = 3. At this point we have a
case of Hopf bifurcation with resonance 1:4, Two 4-cycles are born. The
unstable cycle foliows the pattern o) — 2a — ¢, — 2a, with
0y +0y=1-la, o, 0, = 45> The stable cycle stays stable up to
a3 = 3.627630, which is the beginning of a period-doubling sequence with
a3 = 3.666598, a, = 3.672522 and ending with ax = 3.673990. |t follows
the well-known Feigenbaum pattern with the Feigenbaum constant 4.6692.
For such large values of a it appears to be very difficult to find bounded
orbits when doing computer experiments. In Fig. 4.5 a plot is given of a
few escape regions of low order, sets of initial points of orbits leaving the
triangular domain x >0,y >0, x + y <2 after a few iterations, The
boundaries of these escape regions are the successive pre-images of the
line y = 0. However, the numerical determination of boundaries of
higher order very soon runs into technical difficultics requiring the plotter

mechanism to act with the speed of light. It is not difficult 10 determine the

behaviour on a line intersecting the escape regions transversally. In Fig.

4.6 a plot is given of the escape numbers of 100 points distributed

uniformly on the line x = 0,0 <y <2. Such plots can easily be obtained

on a personal computer. Theoretically there is an infinitc number of points

with the structure of a Cantor set for which the orbits are bounded

forever. Numerically they may be hard to find (cf. [33]). '
4.5.2 Maps of the kind :

Kn+1 = Yy
(4.53) {yn'l'l = A_x" + By" Cx.s + DI,.)’:- +Ef'l

may serve to demonstrate all sorts of bifurcation phenomena with respect
to the fixed point x = ¥ =0.1f C =0 the map is also invertible. Even
with this restriction there are still many possibilities. Of course

(4.54) A'—‘-Alkz,B:At"‘hz

where )\, and A, are the multipliers. If C = 0, the remaining coefficients
count as a single degree of freedom in view of a possible scaling.

Lauwerier 3

Fig. 4.5 Some escape regions fora = 3.5.

Fig. 4.6 Escape numbersalongx = 0,0 <y<2fora = 3.7.

==2. i 1:4. The
ThecascC=0,D=3,E—--Z,lsacnscc.)fresonance .
parameters of the normal form are 16Q =19-3i, 16R = -5 fh27;. l:
Fig. 4.7 we have plotted the case p = 0.[!);. ¢ = 4u/9, with \,
(1 + pe™®)i. More details can be found in Lauwerier [33].
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1
i}

L |

Fig. 4.7 A rounded square as a timit cycle in a 1:4 resonance class.

4.5.3 The following map belongs to the class of predator—-prey models

X =ax,(l-x,-yv,) 2<a=
(4.55) {y"“r = bxny" 2<h-~4q
The nontrivial fixed point, x = /b,y = 1~ 1/a — 1/b, becomes unstable for
b >2a/(a -1). At the line b = 2a/(a — 1) we have Hopf bifurcation with cos
o = (5-a)/4. In particular, for a=3, b = 3. we have a case of 16 resonance.
The parameter of the normal form is Q = - 3/V3. This gives the Hopf
radius and the position of the Arnold horn as p/R;2 = 972, ¢ = 30°,

with p = -1+ Va(b-2)/5.

axn(l =Xy~ _Vu)
GxXnyny

l Xn+i
4.5
( 6) {yn-H

/|

This is a very interesting special case of the previous map with a very rich

cation. behaviour, Starting from a = 0, the trivial fixed point (0, 0) is,

’%:ﬁ% up to 4 =1, wheré we have transcritical bifurcation. Stability is
taken over by the fixed point x =1—-1/a, y = 0. At a = 2 we have again
transcritical bifurcation. The nontrivial equilibrium x = la, y = 1= 2/a is
then stable up to @ = 3, where we get Hopf bifurcation in the form of a
stable 6-cycle, a clear case of 1:6 resonance. The multiplicrs are the roots
of N>~ X\ + (a~2) =0, so that Re A = '4. This means that for @ >3
the multiplier leaves the unit circle along the line ¢ = 3, i.e. along the
axis of the 1: 6 Arnold hom. The periudic points of the 6-cycle follow the
pattern (p,q) - (p.r) — (r.p) > (g.p) = (q.r) — (r.q), where
p+q=1-lYa,pg=Vda’, r=1lla. At a= (11 + V&6 =337 the
Cycle is subjected to a secondary Hopf bifurcation. The relevant angle is
1209’ so that the behaviour is very close to 1:3 resonance. Each
periodic point gives birth to three other periodic points and we obtain a
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stable 18-cycle as a prelude to a sequence of period doublings. Experimen-
tally for @ = 3.4 a stable 72-cycle is found. The bifurcation diagram is
sketched in Fig. 4.8. In Fig. 4.9 we have illustrated the map in the case
a = 3.43 at the transition to chaos. The reticular pattern apparently has to
do with the unstable manifolds of the 6-cycle each having three branches.

Fig. 4.8 Bifurcation diagram of a onc-parameter predator-prey map.

4.5.4 Maps of the kind

Xurs = arpg(ys)

with x >0, y >0, a >1 and where ¢(v) is decreasing monotonously from
@(0) =1 to g(w) =0, are models of parasitoid-host interaction. The
origin is always a saddle with multipliers () and a. There exists a nontrivial
fixed point '

(4.58) (c/{la -t).c) with @(c) = l/u

As a rule @(y) contains a second parameter b so that the bifurcation
behaviour can be studied in the a,b-parameter plane. Generally there are
regions of stability and instability with Hopf bifurcation at the line

(4.59) arcg'(c) +a=1
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Fig. 4.9 A predator-prey map with a strange attractor. @ = 3.43,

The corresponding angle « is given by 2 cos « = 1 1/¢ This means that
60° <a <90°. The interesting conclusion is that a possible stable periodic
cycle has 7 as its lowest order. We list the following three subcases.

() o) = A1 + y)

The nontrivial fixed point is stable for » <1. However, at the Hopf line
b =1, we have cos(a-+v) =0 for all «. Thus there is no Hopf

bifurcation.

(2) #(y) = aexp(~")

This model is due to Hassell and Varley. The nontrivial fixed point i
stable for e blog a <a - 1. The radius of the Hopf circle is given by

(4.60) B _(@~1P~-alog’a
RE 4a’ log’ a
which is positive for all values of a.
©) 0) = exp -V’f“?“

a model suggested by J.A.J. Metz. The nontrivial fixed point is stable for
a 1

2a - 1)—aloga_loga
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The model requires that a <4.9216. The radius of the Hopf circle is given
by
(4.61) B _2c+ 1Yo b(2e + 3)

R, 16b(c + 1)?

However, the numerator changes sign at @ = 1.6304 corresponding to
a = 36°23. This means forward Hopf bifurcation for 1.6304 <g
<4.9216. Close to the lower value we have the kind of Hopf bifurcation
as described by Fig. 4.3c. Metz and his co-workers have obtained a wealth
of experimental computer results which will be made available in reports
and preprints jointly with this author.

A typical case is shown in Fig. 4.10. There is a stable inner Hopf cycle
and an outer unstable one. b

Fig. 4.10 A parasitoid-host map showing singular Hopf bifurcation, a = 4.2,
b = 10. Horizontal axis from 0 to 400, vertical axis from 0 o 1 2(K).

4.6 Rational complex maps

We consider a map of the kind
(4.62) T:z— F(z2)
in the complex plane with z = ¢ + iy where F(z) is a holomorphic
function. The most important properties of such maps were described by
Gaston Julia in a large prize essay {30] continuing earlier work by Fatou.
Interest in the subject remained dormant for half a century. Recently there
has been a reawakening of interest following the availability of computers.
The study of such complex maps is very rewarding. It offers the pure
mathematician a subject of great intrinsic beauty and the numerical analyst
a better understanding of Newton’s algorithm in the complex plane. It
yields a number of strange attractors and repellers, some of which have
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already gained some popularity, such as Mandelbrot's San Marco attractor
or Douady's rabbit. A good recent survey is given by Blanchard [9]. A
modern version of Julia’s work containing many new results is given by
Thurston [54]. 1llustration of nice fractals can be found in Mandelbrot [42]
and Peitgen er al. [52].

In this section we restrict ourselves to a few salient points. It is assumed
that F(z) is a rational function. Then there are periodic points of all
periods. The most important notion in the theory is that of the so-cailed
Julia set J(F), which is defined as the closure of the set of all unstable
periodic points.

Julia proved the following properties.

(1) Itis a perfect set.

(2) Itisinvariant with respect to T and its inverses.

(3} Itis an astractor of the inverse mapping.

(4) Itis densely covered by the pre-images of one of its points.

There are only three kinds of Julia set. J(F) can be totally disconnected
as a Cantor set. J{(F) can be linearly connccted. Then it is a continuous
Jordan curve that, as a rule, is nonsmooth, with a fractal dimension. J{(F)
can be all of C, but this is a rather rare casc.

Most features of the theory are illustrated by the complex version of the
logistic map
(4.63) z—uz(l-z)
where a can be any complex number. Since all quadratic maps are
equivalent, sometimes the version
(4.64) 2o +c
is used, where ¢ = (2a-a?)/4. For @ = 4 the map can be parametrised as z,,
= s§in?(2™y). This shows that all orbits starting outside the closed unit
interval / on the real axis are attracted by z = =. Orbits on [ arc almost
always aperiodic. Obviously [ is the Julia set in this casc.

For a = 2 the map (4.64) will be used with ¢ = 0. In this case the orbits
are either attracted by z = 0 or by z = =, with the exception of those
starting on the unit circle, which is the Julia sct. Agatn on this circle the
dynamic behaviour is chaotic. These cases are very exceptional in the
sense that their Julia sets are smooth curves. If. for example, @ is real and
2 < a < 4, the Julia sct is a fractal curve. A typical case is iHustrated in
Fig. 4.11 for a = 3, the so-cailed San Marco atttractor. Such an illustration
can be obtained from the inverse of (4.64)

(4.65) Zyeymar, Vi, A

where (o) is a random sequence of x 1. Starting from 2z, = 3/2, 4 known
point of J(F), all further points give a dense covering of the Julia curve.
However, J(F) appears to be covered in a nonuniform way. Some parts of
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it appear to be visited very rarely. Yet this method is very cfficient on a
personal computer for obtaining 4 first impression of the possible shape of
the Julia set. However, more accurate plots require special computer
techniques. The Julia set of (4.63) can also be derived froim the Boettcher
function which describes the attracting domain of z = = {cf.). [36]). With
a slight adaption the Boettcher equation of (4.64) is H(z') = H(z) + c.
where zH(z) is holomorphic for |24 < 1. Explicitly,

HG) =S hy 22!
k=0
with hy = 1, by = —¢/2 | hy = c{c-2)/8.... The unit circle 1z = 1 is the
natural boundary of H(z). The Julia set is obtained as its imige, i.e. all
complex values of the Fourier serics

> hyexp((2k-1) 2w8i)
A =0
In Fig. 4.12 a picture is given of Douady’s rabbit, the Julia set of (4.64)
with ¢ = -0.1226 + i0.7449, a value for which the origin is an element of
a superstable 3-cycle. Again the Julia set is connected. It is a continuous
curve with a densc covering of multiple points. [t separates the plane in an
infinite number of simply connected domains.

In Fig. 4.13 we illustrate a totally disconnected Julia set for (4.64) with ¢
=().5.

Fig. 4.11 The San Marco atteactor,

4.7 Area-preserving maps

Mast arca-preserving maps in actual applications result from Hamiltonian
systems in three or more dimensioas. Let us consider such 1 Hamiltoniun
system as a sct of three differential eguations in an x,p,z-space. As a rule
an orbit is a continuous closed or nonclosed curve that is uniquely
determined by an initial condition. The limit set can be a fixed point, a
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Fig. 4.12 Approximation of Douady's rabbit obtained as a seven times iterated won-
formal map of a circle.
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Fig. 4.13 A disjoint Julia set as the unstable invariant set of z — 22 + 1/2.
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limit cycle or something more complicated. The intersection of the orbits
with a surface, say the x,y-plane, defines a two-dimensional diffeomorphic
map called a Poincaré map. This inherits all kinds of properties from the
spatial behaviour. A limit cycle gives a periodic point, an invariant surface
in space, ¢.g. a torus, gives an invariant curve, etc. The most important
property is that the Poincaré map of a Hamiltonian system is area-
preserving. If the Hamiltonian system is integrable, the dynamic behaviour
is that of regular motion characterised by invariant tori in phase space.
The corresponding Poincaré’map can be modelled in polar coordinates
r.9 as the so-called mwist map

rn+l =ry
‘466) { 9n"—l = en + 2“‘P(rn)

where 9(r) is the r-dependent rotation number. The circles r = constant
are invariant curves corresponding to tori in space. On a circle where ¢(r)
is irrational an orbit is filled densely for any initial condition. If o(r) is
rational, all orbits are periodic with the same period. If the Hamiltonian
system is nonintegrable we have irregular motion. If the system is very
close to an integrable one, we have the celebrated KAM theorem. A very
ciear and elementary description is given in Hénon [26).

Briefly the KAM theorem, the combined work of Kolmogorov, Arnold
and Moser, says that in a slightly perturbed integrable system most
invariant tori of the unperturbed system remain invariant. Such invariant
tori are characterised by a rotation number that is sufficiently far from all
rational values. This mcans ¢ must satisfy the inequality

lo—plgl > eq **?

for all rationals p/g with the sume small constunt «. The conneyuences of
the KAM theorem can be observed in the following so-called standard
map, a perturbed twist map studied by Chirikov and Taylor (cf. [38]).

{r,,H =r, + asin @,

(467) 0r|+l = en + Trnst

and in many other maps. : Lo

In x, y-coordinates an area-preserving map is described by

Xns1 = f(Xn¥n)
(4.68) { L Kty
where
(4.69) e o % _,

ax dy  dy ox
for all x, y. As a consequence the multipliers A, and X, of a fixed point
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satisfy the condition A{A; = 1. This means that the fixed point is cither
a centre or a saddle. The behaviour of an area-preserving map in the
neighbourhood of a centre. also culled an effipric fixed point, can be
studicd by considering the following quadratic map

{4.70)

T Xyl = X, COS -y, 5in @ + x2 sin @
Vel = X, SIN & + ¥, COS @ + X3 COS &

Fig. 4.14 (a) A few orbits of Henon's quadratic map. cos « = {.4. Horizontal axis
from —1.6 to 1.6, vertical axis from -1.2 to 1.2. (b) Blow-up of the previous map at
the saddle 0.5696, 0.1622. Horizontal axis from .50 to 0.64, vertical axis from 0.10
to 0.20.

as did Hénon [24]. In Fig. 4.14 a number of orbits are given for cos
a = 0.4. Close to the origin there are a number of closed invariant
curves, the idealisation perhaps of cycles with a high period. This is in
perfect agreement with the predictions of thc KAM theorem. Further
away we see that an invariant curve of the unperturbed (i.e. lincar) system
with a low rotation number has been broken up into a cycle of centres and
saddles of higher periodicity in alternating order. Each secondary centre is
an ordinary fixed point of some power of T and we may repeat the whole
argument. Thus each secondary centre is surrounded by secondary
invariant curves or rings of centres and saddles of higher order. The

conspicuous island structure caused by a broken invariant curve has _

already been described in great detail by Poincaré and Birkhoff, but their
beauty and intricacy have been revealed by modern computers. For there
is still more. Each saddle or hyperbolic fixed point is surrounded by a
chaotic region, and chaotic regions belonging to different hyperbolic
periodic points may coalesce. However. a chaotic orbit cannot pass an
invariant curve. This means that a map such as the one shown in
Fig. 4.14 is always a composition of elliptic and hyperbolic fixed points of
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any order, invariant curves and stochastic rings. Each island is a
microcosm with the same features as the whole map. Such an area-
preserving map can be said to be self-similar. In Fig. 4.14b a few orbits are
sketched in the neighbourhood of a hyperbolic point in Hénon's map of
Fig. 4.14a. We notice sccondary island structures but the aperiodic orbit
with its cloudlike structure is the most conspicuous phenomenon. It is very
instructive to watch the forming of such a stochastic orbit on the screen of
a personal computer. Each time, the orbit leaves the plotting area but
returns after a few iteration steps. We may imagine that the orbit is leaving
along a branch of the unstable manifold and retuming along a branch of
the stable manifold. In fact the analysis of the structure of these two
invariant curves gives considerable insight into what is going on. As a rule
there exists at least one homoclinic point, an intersection of the stable and
the unstable manifold. However, all its images and preimages are also
homoclinic points. This, combined with the area-preserving property,
means that the overall structure is of an almost unbelievable complexity.
More about this will be said in the next section. In Fig. 4.15 we reproduce
a sketch by Birkhoff illustrating the generic behaviour of a perturbed twist
map with the formation of istand chains.

Fig. 4.15 Birkhoff's illustration of the formation of self-similar island structures.

[lustrations of such situations can be found in the book by Gumowski
and Mira [22] and in Hénon [26]. Gumowski and Mira gave a detailed
study of maps like :

(4'71) Xnaei = Y y::l = =Xy + ZF(yn)
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where
4.72) Fy) = oy + 21-c)y* /(1 + y?)

The parameter ¢ measures the nonlinear perturbation. For ¢ close to 1 we
may expect the phenomena predicied by Birkhoff and the KAM theorem.
As ¢ decreases, more and more KAM curves are destroyed, which gives
more space to stochastic behaviour, A typical plot is given in Fig. 4.16 for
the case ¢ = 0.25. Shown is a single aperiodic orbit of 4000 points starting
fromx = y = (.2

MacKay [39,40] has given an interesting and very detailed analysis of the
effects of an increasing amount of nonlinear perturbation. According to his
findings the KAM curve with the golden ratio as its rotation number is the
last one to disappear before full chaos sets in. This has to do with the
fact that (~1+ V5)22 has the ‘simpiest possible’ continued fraction
(1,1,1,1, ...). MacKay and many others have considered area-preserving
maps on a toroidal surface. This is cquivalent to a periodic map on a
square grid. The following map due to Arnold and Avez [2] is one of the
simplest examples

{xtH-l = Xp +.yn

4.73) Yo+t = X, + 2y, mod 1

Arnold showed the action of this map by the distortions of a cat’s
face after a few iterations. The map is now nicknamed Arnold's cat map.
It can be analysed in an explicit way. The origin is a saddle with
multipliers @ = (3 + V5)/2 and 1/a. The unstable manifold is given by

Fig. 4.16 A stochastic orbit of an area-preserving map as a model of the interaction
of clementary particles. Horizontal axis from - |2 to 12, vertical axis from -9 t0 9,
¢ =025,
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y=(1+ V5)x, mod 1. The stable manifold is 2y = (1 - V3,
mod 1. Each invariant line gives a uniform covering of the unit square
(or the torus) which is accordingly densely covered by homoclinic points.
Further analysis shows that the map is also ergodic and mixing, meaning as
chaotic as possible.

4.8 Stochastic aspects, strange attractors

As for one-dimensional maps, an invariant measure dp or an invariant
distribution P(x,y) can be defined. We write

(4.74) dp = P(x,y)dxdy

In practical applications one may try to determine P(x,y) for a
stochastic region by means of a Monte Carlo technique.

Example

The map T : x—y, y—4x(1-x), is chaotic in the square 0 < x, y < 1.
I can be parametrised by x,, = sin®(2a), xz . = sin%(2*B). The
square map T° degenerates into two one-dimensional chaotic maps,
x— 4x(1 - x), y - 4y(1 - y). The'mvariant distribution is:

1
2
T nyii—xiil—yi

This example is a rare case of a two-dimensional map for which the
invariant distribution can be found in the form of a simple explicit
formula. An approximation ofthe invariant distribution can aiso be found
when one tries to solve the so-called Perron-Frobenius equation

(4.75) P(x.y) = E,i;%n—';’;

summed over all inverses (£,m) of (x,y) and where J is the Jacobt
determinant of DT(£,m). A trial solution on the right-hand side of (4.75)
may then lead to a better approximation on the left-hand side.

In actual applications it is convenient to have a bounded mapping.
Of course this can always be arranged if necessary by introducing
new coordinates by means of an inversion: x - x/(] + £ + ¥,
Y=yl +x2+yY, or something similar. For area-preserving maps P
is a constant in agreement with (4.75). In fact an arca-preserving map
has a single inverse and J = 1 at all points. Thus (4.75) is trivially solved
by P = 1. If the map has a simple attractor, a set of periodic points or a
one-dimensional curve, then P(x,y) is a generalised function with delta-
function components. If P(x,y) exists in some region as a classical
nonvanishing function, then this means that the map has a stochastic
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of chwnw behavious in that repon A thorough dicussion of such
behaviour would imply an amount of ergodic theory for which there is no
place here. There are a number of books and survey papers in which the
interested reader may find the necessary details (e.g. [2.8,32]). For an
ergodic dynamical system, time averages and spice averages are equal.
This means that for almost all measurable functions ¢(x,y) :

N--]
(4.76) tim & 3 o(ri 30 = J o(x . y)d
=0

It is, however, very difficult in practice to decide whether a given map is
ergodic or not. Usually the relation (4.76) is accepted as being valid.
Perhaps the most important application of (4.76) is the calculation of the
Lyapunov exponents. They are the generalisation of the corresponding
“concept for one-dimensional map (cf. (3.35), ( 3.36)).

Let (xo, yo) be the starting point of an aperiodic orbit (*x, ¥i). then we
define the geometrical means of the Jacobiun matrix after n steps by

(4.77) {DT(X,,_: W Y. ]) . DT(.\',. LI DAY I)T(.l'“ R y")} Hn

Its eigenvalues are written as Ai(n) and Ax(n). Then the Lyapunov
exponents o; and o, are defined as :

(4.78) a; = lim log |A(n)]
Example
In Arnold’s cat map (4.77)

Xpnst = Xg +,V,.
{yn+l =Xy +2}'n , mod 1

we always have

’1 1
12!

w{i)tl’(;(:; =3+ V3E)2,x = (3-VF5)2 This gives o, = 0.962 , Oy =
The Lyapunov exponents measure the mean distortion of an jnfi-
nitesimal circle. Such a circle will be transformed on the average into an
ellipse with the principal deformation ratios exp o and exp o.
The matrix product in (4.77) is not commutative. However, by taking
the determinant value, we obtain the following result

DT(x,y)=

(4.79) o +0,= linl% logi/(x,, . y,)|

wh'cre J(xn, y») is the determinant value of the Jacobian matrix at the nth
point of an aperiodic orbit. In particular, for an area-preserving map we
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have o, + o = (0 as in the example above. Assuming the validity of
(4.76) the relation (4.79) can be replaced by

(4.80) a, + o, = [ logJ(x, y)idp

M both Lyapunov exponents are negative, afl areas are contracting, which
i the indication of the existence of a simple attractor. If the Lyspunov
exponents differ in sign, we may have a strange attractor. Such a
behaviour may occur in a map where the dynamics can be described in
terms of a stable and an unstable manifold of the same saddle.

Many maps combine regular and stochastic aspects. It is hardly possible
to give a systematic account of all kinds of behaviour. We restrict our-
selves here to some highlights. A basic concept is that of a Cantor ser or a
Cantor discontinuum. The traditional example is that of the ‘middle
thirds'. Starting from the closed unit interval [0, 1] we delete the open

-middle third (1/3, 2/3). From the remaining two closed intervals we also

delete the open middle third (19, 29) and (79, 89) and so on ad
infinitum. The remainder, the classical Cantor set, is a totally disconnected
perfect set, Itis uncountable and self-similar and it is of zero measure, The
clements of this Cantor set can be represented as real numbers x between
O and 1 in a base-3 expansion

x=ad) +a@dl+. . Fa,®" .

where a, is 0, 1 or 2. The removal of the middle thirds is equivalent to
delcting all fractions x which have a | in their exparsion. Thus the Cantor

(a} (b)
D C
IA
3 (\
2
1 3
1
0 1] L
A 8
| L]

Fig. 4.17 A horseshoe mapping.



88 Two-dimensional iterative maps

set is simply the collection of all numbers written in ternary expansion with
Os and 2s. There are many variations and generalisations, all called Cantor
sets. For example, all numbers x between 0 and 1 in a base-5 expansion
with only 15 and 3s form such a Cantor set. Its geometrical construction is
obvious. At the first step from the unit interval the three open intervals (0,
1/5) (2/5, 3/5) and (4/5, 1) are removed, ctc.

The next important concept is Smale’s horseshoe. It can be introduced in
the following way (cf. Fig. 4.17). The unit square 0<x, y=<(1 is shortened
in the x-direction by the factor 5 and stretched in the y-direction by the
same factor. The resulting vertical strip is then curved as a horseshoe and
placed upon the original square as shown in Fig. 4.17b. The points in the
horizontal strips labelled 1 and 3 are then mapped inside the square but
the points in the strips numbered 0, 2, 4 fall outside the square. After a
great many iterations most orbits will leave the square. However, all orbits
which stay forever form a so-called horseshoe. If the coordinates of a point
of the square are written in a base-5 expansion as '

X=0'x|xzx3x4...
{}’=0')’|y2}’;y4...

then the mapping can be described as follows. If y; = 0, 2, 4, the image is
outside the unit square, butif y, = 1, 3, we have the image

x'=0-y,xxx...
Y =0 y:y3y5ps...

All points for which the x; and y, arc cither 1 and 3 belong to orbits
staying permanently in the squarc. Thus they are the. elements of the
horseshoe. The projection on either axis forms a Cantor set of the type
described above. Therefore the horseshoe appecars to be the Cartesian
product of two Cantor sets. The dynamics of the horseshoc can be
described as a shift of the double-infinite sequence formed by the
expansions of x and y, . . - YaYaya¥ (X1 XaX3Xy . ... Aniteration step is then
translated into a single shift to the right. In abstract language a horseshoe
is a two-symbol shift. This construction also shows that there exists a
countable set of periodic orbits and an uncountable set of aperiodic orbits.

The horseshoe as described above can be generalised in a variety of
ways but all horseshoes share the same characteristics. The occurrence of a
horseshoe in a map is an indication of chaos, According to a theorem of
Smale and Birkhoff, a horseshoe is generated when the unstable manifold
and the stable manifold of a hyperbolic fixed point intersect transversally.
Such an intersection is called a homociinic point, Thus we have the
pattern: homoclinic point — horseshoe — chaos.

The next topic is the so-called strange anractor. There is no generally
accepted mathematical definition. However, as a rule, a strange attractor

is a nontrivial subset of a line of infinite length with an infinite number of
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loops with a Cantor set as a cross-section. The basic idea is given in
Fig. 4.18, which is almost seif-explanatory. Starting from the unit square, a
middle-third rectangular region is deleted, its boundary staying away from
the previous boundary at a distance 1/3 in horizontal or vertical direction.
From the remaining area a region is deleted, the boundary of which stays
away at a distance 1/9 from the previous boundary, etc.

When, in this way, an infinite number of open, simply connected
regions have been deleted, the remainder is a continuous polygon of
infinite length. The cross-section, say at y = 4, is the classical Cantor set.
The initial part of this polygon can easily be followed in Fig. 4.18. Points
of the polygon can be parametrised by their Euclidean distance s to the
origin taken along the polygon. The polygon can be interpreted as the
unstable manifold of the origin. The action of the two-dimensional
mapping on this invariant line may be described as s — as, a > 1. In this
way orbits can be constructed both geometrically and numerically. Along
the polygon the one-dimensional dynamic behaviour is uninteresting.
Howcver, the combined action of this most simple one-dimensional map
and the infinite number of loops inside the square produces a complicated
strange attractor as the two-dimensional limit set of the orbits along the
polygon. This model could be analysed further in a quantitative way. We
confine ourselves, however, to remarking that the nature of the limit set
may be dependent on . It could happen that, due to some resonance

B % S : % &

Fig. 4.18 A gcometrical construction of a strange atiractor.
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cffect, the limit set reduces to a few attracting points. a periodic cycle. It
could also happen that some parts of the polvgon are densely covered by
the limit set. The model described here is based upon a similar model
invented by L.E.J. Brouwer. the founder of modern topology, as an
illustration of a common boundary of three neighhouring countries. So we
propose to call it the ‘Brouwer attractor’.

A simple example of a strange aitractor was given in 1976 by Hénon
[25], who studied quadratic maps, in the standard representation

(4.81) G e vy
yn+l = bxn + Y= ¥Yn
\.’3"--._
s
--\:..‘_\‘-‘
s _:\,;'ft';'..,
'\_"\., "
. .
\ R Y
i \
/- )
. Y
’_’:" /
-
- L
- g
- e
‘__,-.-— . “p-'
-‘-—-"'.'"
"
—

Fig. 4.19. The Hénon attractor. Horizontal axis from —1.5 to 1.5, vertical axis from
~0.45100.45.

'

For a = 3.1678, b = 0.3, he discovered the strange attractor shown in
Fig. 4.19. This attractor shows all the features attributed to a strange
attractor. In particular the numerical experiments revealed a self-similarity
and a Cantor-like cross-section. The strange attractor can be considered as
the limit set of the invariant unstable manifold of the saddle at the origin,
For the given values of a and b its multiplicrs are —).0920 and 3.2598. The
small value of the first multiplier suggests a strong Fateral attraction.
Indeed, numerical experiments show that, apart from an initiai arc, the
unstable manifold is almost indistinguishable from the strange attractor,
We recall from section 4.2 the parametrisation of the unstable manifold
emanating from the origin

(4.82) x=F(i),y = F(An)
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where A is the largest multiplier and where F(z) is an entire analytic
function satisfying we

(4.83) F(\’z) = bF(z) + aF(rhz) - F(A2)

withF(2) =z + 22 + e32® + ...

As a final example of a strange attractor we present the following
model, details of which can be found in ref. [37].

Xn+| = ixn(l-zyn) + ¥,

(‘84) {yn+l = 4yn(l_yn)
The unit square 0 <x, y=<1 is mapped like a pinched horseshoe into itself,
of. Fig. 4.20. There are two fixed points on both saddles. The saddle (0, 0)
has multipliers 1/3, 4. The saddle (9/14, 3/4) has multipliers ~1/6, -2. The
horizontal lines y =0 and y = 3/4 arc the corresponding stable
manifolds. Both unstable manifolds can be parametrised in a very explicit
way. The unstable manifold of the origin is determined by

x= !—* f} 30

{4.85)
y=4(1-coss)
where
= S0 el os L cos L
e l1) = Fan 2757 €08 5 COS o7 ... €08 o
7 6 5 8
4
8 4
1 2 3 123 567

Fig. 4.20 A pinched horseshoe map.

According to (4.85) it is like a sine curve folded up an infinite number of
times so that it fits inside the unit square. It appears that in this case rhe
strange attractor consists of this unstable manifold together with its
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Fig. 4.21 Anorbit on the unstable manifold of the origin. Horizontal axis from 0.1
to 1.1, vertical axis from-0.1to0 1.1

Fig. 4.22 The first few loops of the unstable manifold of the origin. Horizontal axis
from-90.1to 1.1, vertical axis from -0.1 ta 1.1.

closure. Again cross-sections with horizontal lines are Cantor sets. Of
particular interest is the cross-section at y = 3/4, the stable manifoid of
the second fixed point. These points of intersection are the so-called
heteroclinic points. They are obtained from (4.85) by all parameter values
t= 227/3 + 2mw where m is an integer. The homoclinic points are
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given by all parameter values 1 = 2™x. At those points the two manifoids
are tangent in a multiple way. At each point of such homeoclinic tangency
an infinitc number of folds come together. The unstable manifold of the
second fixed point can be parametrised in a similar way. However, the
dosures of both unstable manifolds are identical. In Figs 4.21 and 4.22 a
point plot and a corresponding line plot of the unstable manifold (4.85) are
ven. :
¢ A strange attractor has a fractal dimension as a rule. Lack of space
prevents us from discussing this interesting topic. A good survey is given
by Farmer et al. [15}, and methods for estimating the dimension of
smtractors associated with experimental data are reviewed in Chapters 13

and 14.
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Chaos in feedback systems

A. Mees
Department of Mathematics, University of Western Australia,
Nedlands, W.A. 6009, Australia

5.1 Summary

Nonlinear systems theory is of great importance to anyonc interested in
feedback systems. It is also true that the theory of feedback systems has
made important contributions to nonlinear systems theory. This chapter
discusses some chaotic feedback systems, drawn from electronic circuit
theory and elsewhere, and shows how they may be analysed. So far, most
of the techniques required have been taken djrectly from the usual
differential and difference equation theory, but some results with a more
control system-theoretic flavour are now available.

5.2 Feedback systems may be chaotic

Any dynamical system described, for example, by difference or differential
equations may be regarded as a feedback system. Conversely, any finite
dimensional feedback system may be described by difference or differential
equations, which we shall call a state-space description, but many physical
and biological systems lend themselves most naturally to a description
which highlights feedback rather than state [22}.

We think of a system as a causal connection between a sct of time
functions v called inputs and a set of functions y called ontpuis:

(5.1) y=sv

The notation used is not to be construed as suggesting lincarity or even
finite dimensionality! Even in the simplest cases, y depends on the whole
past of v. We may connect systems together by making somce or all of the
outputs of one system inputs 1o another, and we can represent the
connections by a directed graph. A feedback system is then a set of
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interconaected systems for which the graph contains a cyvele. More simply
put, a feedback system has its inputs affected by its outputs.

We can write y; = s,v, for svstems s, -+ $o. Each input v, may
depend on outputs ;- If there is a chain such that some v ultimately
depends on its own y,, we have a feedback system. The simplest feedback
system will be

Yooy
Y2 = s
vV, = y2 + u
Va =y

Here we regard u as an input from ‘the environment’ and y, or y, or both as
the output. Assuming y, is what we are interested in, we can write

52) Yo =5
(5.3) Vi =55 + i

where we regard (5.2) as describing the ‘readout map’ which shows the
environment what the system is doing. and (5.3) as being the system
equations. Notice that (5.3) is a fixed point problem: find v, to satisfy the
equation for given s, 5, and u. For detailed discussions of the definition of
a system, the meaning of feedback, and other Issues we have glossed
over, consult the control-theory literature [3.22].

Feedback systems are common in both the natural world and the works
of man. It is reasonable to model predator-prey systems as feedback
systems, for example. Here s, might be the prey population system and s,
the predator population system, with v, being the entire history of the prey
population. The external input « would probably be zero, but might
represent colonisation from another part of the environment. One can also
use more abstract feedback models cven for a stngle species in which, say,
vi is a population birthrate over time, $1 outputs the survival rate to
maturity, and s, outputs the birthrate for a given mature population, The
point here is that the number of births affects future generations of
breeding adults, and the size of the breeding population affects the
number of births.

At the simplest model level there is little to choose between represent-
ation as a feedback system as against representation as a difference or
differential equation, but it is well known that for larger system models
there are both conceptual and technical advantages to the feedback system
representation wherever it is a natural one. Since it is widely felt that large
systems may be likely to have chaotic modes of behaviour, it is a liule
surprising that there has been so little fuss about chaos in the feedback
systems literature [23), If anything, it would seem more likely that chaos
would have first come to notice in feedback systems, yet the reverse is
true: in thinking about feedback systems onc tends to imagine globally
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stable equilibria, limit cycles, and precious little else. Why is this?

The main reason appears to be that feedback systems have .been studif:d
mainly by engineers (especially control engineers) who are interested in
synthesis more than in analysis. Artificial systems are u?;ually carefully
constructed to have regular, predictable, ‘simple’ behaviour, and most
research cffort has been directed to this end rather than to discovery and
understanding of exotic dynamical behaviour. For the same reason, thc
tools of the control theorist, ranging from the most mathematically esoteric
to the most pragmatically useful, do not often seem to be what one needs
to understand chaotic phenomena. . ‘

Yet chaos is certainly possible in feedback systems. Even ignoring
standard results about converting between feedback and state form}zlatlons
{22], we can easily regard the prototype chaotit; difference equation as a
feedback system. Let x, be the breeding populatiap of blowflies (20, 21] at

ime f and let y, = g(x,) be the number of eggs producefl. Let 2= h{y)
be the number of eggs which produce mature adults one time unit latf;r, 0
x+1 = z,. Then we have a feedback system consisting of- lh‘.:'funcnon g
followed by the function h fed back via a time delay to the input of the

function g:
Xour = h(glx))

If the composition of g and A has certain properties, we can, of course, get
chaos [16, 20, 21, 26). For exampie, when f(x) = h(g(x)) describes a
humped map, then, if the hump is peaked enough, we may get chaos. As
this is one of the most extensively studied problems in dynamical systems,
we refer the reader to the literature [16, 20, 21, 26, 31]. _

There are also examples of continuous-time feedback systems with
chaotic behaviour, as we shall see. Indeed, once ene turns from engineer-
ing to biology, there seem (o be many examples of fee(.iback systems which
could be chaotic under the right conditions. Most of this cljmptc_r is d{‘:voted
to presenting examples of chaotic feedback systems, with dlvscussl'on of
how they may be analysed, but I shall return at the end to a discussion of
the general relationship between feedback and chaos.

3.3 Discrete time feedback systems

It is common to model feedback systems as having a linear dynamical_ part
(a linear difference or differential equation) fullowgd by a nonlinear
instantaneous part (a vector function) whose output is the input of the
linear part. Thus, in the case of discrete time systems,

Xee1 = AX, + Bu,

5.4 . ye=Cx,
G4 u, = f(v)

where A, B and C are matrices and fis a nonlinear function. Although this
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may not be the most natural model, it is generally applicable and we shall
use it for definiteness. If B has a single column and C has u single row,
then both y, and , are scalar-valued and the system is called a single-loop
feedback system, because there is only one ‘feedback loop’ consisting of
the signals u and y which are scalar valucd.

Writing (5.4) as

(5.5) Xps1 = Ax, = Bf(Cx,)

we obtain a special difference cquation. In the cxtreme case where X, i
scalar valued. we have a one-dimensional difference equation to which the
standard. results can be applied [16. 26, 31}, and 1f'y is vector-valued, we
may use results such as Marotwo’s snap-back repelier theorem {18] or s
generalisation by Kloeden [15]. To illustrate Marotto’s approach, lct us
look at an example given by Baillieul e al. [1]. We will then indicate how
the same problem may be studied from a more control-theoretic view-
point, as Baillieul er al. originally did. _

A standard model of part of a power conversion network is a first-order
pulse-width modulated feedback system [1]. This corresponds to (5.5) with
X, scalar, A and B scalar, C = 1, and a piecewise smooth monotone form
for f. With the choice of f adopted by Baillicul er af. (5.5) becomes

(5.6) Xy = Flr,)

where

mx+b x=vy
{5.7) Flx) = px+ by y<x<$
mx ¥ =3

for certain constants v, 8, m, - b, » by (see Fig, 5.1). We assume y> 0.

For there to be a nontrivial solution, the 45° line in Fig. 5.1 must
intersect the graph of F. Except for an obvious degenerate case, when m
= 1, there can only be one such solution at, say. £. The interesting case is
where y<2<3 and p< —1, so that £ is a repeller. Notice that there are
two points 2, and z; in Fig. 5.1, which are pre-images of &, i.e. F(z,) = &
and F(z;) = £. If there is some point y close to £ which iterates out to ong
of the points z,, i.e. if xo = Yy and, say, x, = z, for some integer r, then the
trajectory starting from r works its wity out 1o zy after which it snaps back
to £, where it remains. In such a case. & is catled a snap-back repeller and
Marotto [18] showed that the existence of a snap-back repeller is sufficient
for chaos, in the usual sense of there being infinitely many periodic
trajectories and infinitely many trajectories which are not asymptotically
periodic.

In the present case we can casily write down explicit conditions for £ 1o
be a snap-back repeller. They are (besides y< £<8 and p <—1) that a
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fix)

z, X
Fig. 5.1 The pulse-width modulated feedback system contains a snap-back repel-

fer. %, when zq or z; is in the basin of repulsion of £ Here 2z, and =, are the two
pre-images of £,

pre-image of z, or of z, should lie in (v, 8), since any _poinl in (v, & has
pre-images arbitrarily close to £, We therefore need to find y such that py
= b, = z; where mz; = & = by/(1-p). If y € (v, 8) then 2 is a snap-back
repeller. Now

_ b_'! bz .
Y mp(-p) T p
s0 % is a snap-back repeller if -
by-b, _ b ( 1 | ) b
< _
(3-8) m-p P m(l-p) m-p

since ¥ = (b — b))/(m - p) and & = by/(m - p). There h ano!her
acceptable inequality corresponding to using z, instead of z;. With a little
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work, it is possible to see that (5.8} and its alternative are equivalent (o the
conditions for chaos in [1].

Actually, Marotto’s theorem (18] requires that F be smooth and also
requires that a certain nondegeneracy condition be satisfied. However, 2
later paper by Kloeden [15] proved that F need only be continuous, as well
as introducing other generalisations. The nondegeneracy conditions are
trivially satisfied here. .

Although we started with a feedback system, we studied it by reducing
it to a difference equation. Even if we end up with a difference equation
on R", the snap-back repeller theorem and its generalisations still hold,
though it may not be easy to check that the conditions are satisfied.
Nevertheless, it seems worth asking whether the feedback structure can
tell us more about the system or about related systems. Could we have
perhaps avoided the transformation to state space and used theorems
about feedback systems?

One of feedback system theory's favourite tricks is to show that a given
system is, in a suitable functional-analytic sense, close to a system whose
behaviour is well understood. The circle criterion for stability {3, 22] is a
good example, where conditions arc given for i nonlincar system to be
stable if a linear comparison system is stable. This is not at all the same
thing as conventional small-parameter theory: it is often possible to allow
discontinuous and even multivalued systems in the feedback loop. The key
is usually to choose appropriate function spaces and show that the input
and output belong to them [22]. Baillicul er al. [1] examined discrete-time
feedback systems in this spirit, and produced some useful results.

To state their results in full here would require too much background,
but it is possible to understand the general ideas. Suppose we have a
single-loop feedback system, so J in (5.5) is scalar though «x, may be
vector-valued. Suppose there is a system with scalar x, of the form (5.6),
and with a piecewise linear F, which can be shown to be chaotic. If fis
close to F (possibly after origin shift and lincar transformation) while the
linear system corresponding to (A, B, C) after the effects of the transform-
ations is close to a simple time delay, then (5.5) is also chaotic. That is, we
verify chaotic behaviour by finding a simpler comparison system which is
‘close’ to the one being studied, and showing the comparison system is
chaotic. Closeness is measured by a condition involving the difference
between f and F in the Lipschitz norm, together with the i, norm of the
difference between the linear system and a simple delay.

In the context of the pulse-width modulation example, this means that
the linear part of the system can be high order (i.¢. be more complex than
a simple delay) and the nontinear part can diverge from the form in Fig.
3.1, as long as a suitable condition on these variations is satisfied.
(Actually, the theorem given in [1] requires F to have a simpler form than
we have allowed, but the principle is unchanged. )
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Obviously, one could: find many more chaotic discrlc!c_timc feedback
systems with little effort, by transforming known chaotic dlffefcnce equa-
tions to feedback form, but the puise-width modulated system is a rethsnc
example where the parameter values required for chaos are physically

possible.

5.4 Continuous time feedback systems

Once we start to think about continuous time feedback systems, th.cre are
many examples available but, ironically, it is much harder to get rigorous
results. The first example known to the author of an explicitly rgcogmsed
chaotic feedback system (in either discrete or contin_uous time) was
Sparrow’s [32]. He replaced the delay in the one-hump difference map by
a suitable high-order continuous-time linear system apd showed that 'the
resulting system still appeared to be chaotic on the evidence of numerical
simulation.

In a later paper [33], Sparrow displayed chaos.in a much. lower order
tinear system in a feedback loop with a piccewise-linear !'uncm.m. Becuuse
his feedback system becomcs, in state-space form, a pair of Ilpcar vector
ficlds in R, joined continuously along a plane, he was able to give a rather
detailed analysis to supplement the numerical evidence. Later, Brockett
[2] obtained similar results independently. l(.should also be n'oted that
several of Rossler’s chaotic differential equations [29] are equivalent to
single-loop feedback systems. o o

Figure 5.2 shows a trajectory in Sparrow’s plechI§c-I|ncar syitgm.
which is equivalent to a linear system with transfer function 1/(s+1)* in a
single negative feedback loop with .

8.4z ~3.35 z=<37
JEY= ) garz+ 025+ 36rz2 37

and r = 19. The parameter values are not particularly critical but were
chosen to agree with suggestions by Rassler ef al. [29].} To analyse this
system, Sparrow converts it to a differential equation in R®, namely

X =~f{z)-x
y=x-y
i=y-z

and considers return maps to the plane z = 3/7. By apprt_)ximating cenain
features by a one-dimensional map of the usual kind, he is able to explain
the features seen in numerical simulations. This system has aiso been

studied more recently [6]. ‘
Holmes and Moon [9] considered a feedback-controlied mechanical
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J.3d | i
. . ,

0.2 J.4 0.6

Fig. 5.2 A chaotic trajectory from Sparrow’s piccewise-linear-feedback system
described in section 5.4. To emphasise chaotic behaviour, the distance 2-(3/7) has
been muitiplied by 10 whenever z > (3/7).

positioning device described by

E+8x + K(x)x=-z+ F(1
Z+az={(x-x,())aCG

where F(¢) is an external force and x,(r} is the desired position. The
- nonlinear spring constant is such that there are multiple equilibria; for
example,

1, \
K(x) z“E—z'(.\' -1){(x" - B)

where B > 1, which has (when F(f) = 0 and G = 0) five equilibria, three
of which are stable. In this case, numerical simulation with certain
‘parameter values produces chaotic solutions with a peaked spectrum,
indicating an underlying approximate periodicity. The spectrum of the
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piecewise linear system discussed above would also be peaked: both kinds
of system seem to have chaotic solutions that are rather like periodic
solutions with quasi-random perturbations.

A somewhat similar system to the above has been modelled by a
lagged-feedback Van de Pol oscillator [35] and has been found to produce
apparently chaotic output in simulations.

Certain electronic systems may be equally comfortably described by
feedback systems or by differential equations; we mention here only
Josephson junctions [12, 25], a varactor diode oscillator [19]. a synchron-
isation system [34] and a certain operational amplificr feedback loop (Y.S.
Tang, pers. comm. ). .

Among the many models of biotogical feedback systems that may
display chaos, we only mention Rapp’s epilepsy model [27}. Giass and
Mackey’s two-pacemaker-site heart model [S} and the dopamine dynamics
model of King er al. [13]. The last of these, which appears to have some
relevance to schizophrenia and to Parkinsonism, deals with interactions
between neuronal feedback and neurotransmitter kinetics in a two-feed-
back loop model. Chaotic solutions of the model are claimed to correlate
well with medical observations.

All the continuous time systems mentioned so far have been studied by
conversion to differential equations. Certain feedback system oriented
mcthods may be useful, for example in proving that solutions remain
bounded [22], but function-space and Fourier-transform approaches have
so far been relatively unhelpful. It is interesting to note that the describing
function method (also called the method of harmonic balance [22]) may be
helpful in cases like the two we have discussed: it seems to be very good at
picking out the underlying periodic component of systems with peaked
spectrum [23). .

- Because of the widespread use of transform calculus in control theory,
techniques for studying the spectra of feedback systems would seem
promising for chaotic solutions. A few ycars ago, there was a good deal of
interest in spectral analysis [10-12] and it turned out that the situation
mentioned above, with sharp peaks in a broadband noise-like background,
was fairly common. This is discussed in a little more detail in the review
paper by Mees and Sparrow [23]. Interest seems now to have moved away
from the spectrum on the grounds that it discards too much information
and is in any case not well defined unless the system is ergodic. (The
Fourier transform of one trajectory, even over a very long time, is not
necessarily representative of transforms of other trajectories.) Neverthe-
less, more recent attempts to calculate Lyapunov exponents and fractal
dimensions {4, 8] scem to be no more useful, and it is possible that spectral
methods will become fashionable again. Indeed, a form of correlation
integral (though not the familiar cross-correlation with its spectral rep-
resentation) has recently been claimed to have great potential in studying
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chaos and even in distinguishing it from noise {7].

5.5 The relevance of chaos in feedback loops

For the engineer designing a feedback system. it would appear that chaos
is always to be avoided: ‘noisy’ oscillations with littie information content,
or sudden unpredictable excursions of physical variables, are seldom likely
to be desirable. Feedback tends to be used to stabilise systems, not to
randomise them. Similarly, natural systems would probably evolve to
avoid chaos; as May [20] pointed out, the dramatic population crashes in
his ecosystem models would probably lead to extinction. Indeed, successful
self-adapting systems of any kind would probably be resistant to chaotic o
otherwise irregular inputs from their environments.

The author and colleagues have argued clsewhere [28] that frequency-
regulated control systems may be immunc to chaos in the same way as
they are immune to noise. This will be so in the ‘noisy limit cycle’ version
of chaos where the spectrum is peaked sharply, if control information js
transferred via frequency rather than via amplitude. This seems to be the
case in part of the regulatory loop of the salivary gland of Calliphora
erythrocephalla.

Curiously, an (at first sight) almost diametrically opposed argument
may be advanced without contradicting the above. Chaos may actually be
helpful in certain circumstances. Imagine a dynamical system with multiple
locally stable equilibria (or limit cycles). If this is perturbed by ‘noise’,
which may in fact be chaotic output from a system interconnected with the
first, then the state of the system will tend to migrate between the basins
of the different equilibria, spending amounts of time in the various basins
which depend on basin size and depth, and on noise amplitude. If one
particular equilibrium is desirable, this will ensure that it is actually
reached, even though it will also ensure that the system does not remain
there all the time.

This type of dynamical system, with noise input replacing chaotic input,
has been used successfully to model the slow cooling involved in chemical
annealing [24] and has recently been applied to problems of global
optimisation of difficult problems with many local optima [14,17]. It scems
a good candidate for many problems in neurological computation, in part
because it fits naturally with models of parailel processing. Sejonwski and
Hinton (30] have applied these ideas to models of visual computation for
image recognition. These authors specifically consider thie visual cortex as
a noisy environment and have had some success, in preliminary studies, in
showing that the noise may help to achieve a giobal optimum correspond-
ing to correct recognition. In the context of the above remarks about
chaos, we can imagine that some kinds of chaotic input would be just as
useful as noise. It is also possible to conceive of a single model in which
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the chaos or noise is intrinsic rather than externally generated, a fairly
realistic model would probably have to aliow for intrinsic and extrinsic
noise and chaos, and it is not possible a priori 10 say which is the most
important. '

In all. it seems that feedback systems are ripe for study as chaos
generators. We have seen that they ¢an behave chaotically but we have
scen that, so far, most work has been solely in terms of state descriptions.
Much remains to be done.

References

['] Baillieul, J., Brockett, R. W. and Washburn. R. B. Chaotic motion in
nonlinear feedback systems. JEEE Trans, CAS-27 990-7, (1980).

{2] Brockett, R. W. On conditions leading to chaos in feedback systems. Preprint.
Division of Applied Sciences, Harvard University'(1982). '

{3] Desoer, C. A. and Vidyasagar, M. Feedback Systerns:  Input-Output
Properties. Academic Press, New York (1979).

[4] Frederickson, P., Kaplan, J. L., Yorke, E. D. and Yorke, J. A. The
Lyapunov dimension of strange attractors. J. Diff. Egns 49, 185-207 (1983).

[5] Glass, L. and Mackey, M. C. Pathological conditions resulting from instabili-
ties in physiological control systems. Ann. NY Acad. Sci. 316, 214-15 (1979).

l6] Glendinning, P. and Sparrow, C. T. Local and global behaviour near homo-
clinic orbits. J. Star. Phys. 35, 645-97 (1984). '

{7] Grassberger, P. and Procaccia, I. Measuring the strangeness of strange
attractors. Physica 9-D, 189-208 (1983). .

[8] Greenside, H. S., Wolf, A., Swift, J. and Pignataro, T. Impracticability of a
box-counting algorithm for calculating the dimensionality of strange attractors.
Phys. Rev. A28 3453-6 (1982). :

[9] Holmes, P. and Moon, F. C. Strange attractors and chaos in nonlinear
mechanics. J. Appl. Mech. December (1983).

[10] Huberman, B. A. and Rudnick, J. Scaling behaviour of chaotic flows, Phys.
Rev. Lett. 45, 154-6 (1980),

(11) Huberman, B. A. and Zisook, A. B. Power spectra of strange attractors,
Phys. Rev. Let1. 46, 6268 (1981).

{12] Huberman, B. A, Crutchfield, J. P. and Packard, N. W. Noise phenomena in
Josephson junctions. Appl. Phys. Ler. 37, T50-2 (1980).

(13| King, R.. Barchas, J. D. and Huberman, B. A. Chaotic behaviour in
dopamine neurodynamics. Preprint, Stanford University School of Medicine
(1984).

[14] Kitkpatrick, S., Gelatt, C. D. and Vecchi, M. P. Optimization by simulated

annealing. Research Report R.C. 9355, iBM, Yorktown Heights (1982).

[15} Kioeden, P. E. Chaotic difference equations in R”. /. Austral. Math. Soc.

(Series A} 31, 217-25 (1981).

[16] Li, T. and Yorke, J. A. Period three implies chaos. Amer. Math. Monthly,

82,985 (1975).

{17} Lundy, M. and Mees, A. 1. Convergence of the annealing algorithm. Math.

Programming in press (1985).

[18] Marotto, F. R. Snap-back repellers imply chaos in R". J. Math. Anal, Appl.

63, 199-223(1978).



110 Chaoy in feedback svstems

{19] Matsumoto, T.. Chua, L. O. and Tanaka. S. The simplest chaotic non-
autonomous circuit. E.R.L. memorandum M4 28, University of California
at Berkcley (1984), ‘ _ ]

{20] May, R. M. Deterministic models with chaotic dvnamics. Nature, Lond. 256,
165-6 (1975). S

[21] May, R. M. and Oster. G Bifurcations and dynamic complexity in simple
ecological models. Amer. Narur. 110, 57399 (1976).

[22] Mees, A. 1. Dynamics of Feedback Sysiems. Wiley, New York (1981).

[23] Mees, A. 1. and Sparrow, C. T. Chaos. [EEE Proc. 128(Dj, 201-5 (1981).

[24] Metropolis, N., Rosenbluth, A. W__ Rosenbluth, M. N. and Teller, A. H.
Equation of state calculation by fast computing machines J. Chem. Phys. 21,
IRT-92 (1953).

(25] Odyniec, M. and Chua, L. O. Joscphson-junction circunt analysis via integral
manifolds. JEEE Trans. CAS-30, 308-20. (1983).

[26]} Preston, C. J. Analysis of the itcrates of a anc-hump function. Preprint, Dept.
Mathematics, Cambridge University (1975).

[27] Rapp, P. E. Preprint, Dept of Physiology, Medical College of Pennsylvania,
Philadelphia (1984).

(28] Rapp, P. E., Mees, A. L. and Sparrow. C. T. Frequency dependent bio-
chemical regulation is more accurate than amplitude-dependent control. J.
Theor. Biol. 90, 531-44 (1980). )

[29] Réssler, R., Gotz, F. and Réssler. O. E. Chaos in endocrinology. Biophys. J.

- 28,216 (1979).

{30] Sejonwski, T. J. and Hinton, G. E. Parallel stochastic search in early vision.

Vision, Brain and Cooperative Computation. eds. M. Arbib and A. R. Hanson
1984).

[31] gharkovskii, A. N. Coexistence of cycles of a continuous map of a line into
itself. Ukr. Math. Z. 16, 61-71 (1964).

[32] Sparrow, C. T. Bifurcation and chaotic behaviour in simple feedback systems.
J. Theor. Biol. 83, 93-105 (198(}).

[33] Spasrow, C. T. Chaotic behaviour in a 3-dimensional feedback system. J.
Math. Anal. and Applics 83, 275-91 (1981).

[34] Tang, Y. 5., Mees, A. I. and Chua. L. O, Synchronization and chaos. IEEE
Trans. CAS-30, 620-6 (1983).

[35] Ueda, Y., Doumoto, H. and Nobumoto, K. An example of random oscilla-
tions in three-order self-restoring system. Proc. EEC Joint Meeting at Kansai,
Japan (1978).

6
The Lorenz equations

C. Sparrow

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB. UK

6.1 Introduction

The Lorenz equations, named after Ed Lorenz who first introduced them as
a model of a two-dimensional convection [21], have been important for a
number of different reasons at various times in the past 20 years or so.
Initially they were remarkable just because they are a simple three-
dimensional nonlinear system of autenomous ordinary differential equa-
tions showing chaotic behaviour; though many such systems are now known
(as described elsewhere in this volume), in 1963 such systems were almost
unheard of. So much so, in fact, that, despite the veauty of Lorenz's
original paper, and the remarkable progress he made in understanding the
behaviour of his system, the paper (and the ideas) were largely ignored for
nearly ten years. Also, of course, the equations were of importance
because of their connection with the problem from which they were
derived: here was the hope that turbulent phenomena could be modeiled
by simple finite-dimensional systems, but this aspect too was largely
ignored. |

In the 1970s, with the burgeoning interest in dynamical systems (and the
wider acceptance of the notion of chaotic behaviour), the Lorenz equations
featured in many papers. In several cases, important types of behaviour
were first investigated in the Lorenz equations although these behaviours
have since been recognised as “Bypical of many ‘systems. For instance
Manneville and Pomeau’s work on intermittence {24} and the Hénon map
[18] both appeared in papers on the Lorenz system. At the same time, a
specific geometric model of the equations in a small range of parameter
values was developed. This work was led by Williams {38, 39} and
Guckenheimer (14, 17), though the range of parameter values in guestion
was actually that studied by J.orenz in his original paper. This geometric
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model (a geometrically constructed system which seems to have the same
properties as the Lorenz equations though the connection depends on
several glohal properties of the flow which have not yet been proved) has an
attracting set, for u range of partimeter vatues, which s a strange attractor,
but which is a slightly different strange attractor at every parameter value in
the range (see below). This attracting sct. then, is not structurally stable,
though it only just fails to satisfy Smaie's axiom A [34]. This discovery
probably had an important effect on the scarch for extensions to axiomn A
and the notion of structural stability; it seems to have more or less stopped
it. One is actually led to wonder what effect a knowledge of the Lorenz
system, at an earlier stage, would have had on Smale’s development of
these important ideas. .

For the present, the equations are still almost the only candidate for a
system having a well-understood (topologically and dyvnamically) strange
attractor in a range of parameter values. Their importance as a model of
convection has diminished, it being almost universally accepted that they
are a suitable model for the original problem only at relatively uninterest-
ing parameter values, and their claim to physical relevance now rests mainly
on their connection with the Maxwell-Bloch equations for lasers, and on
convection problems in specially shaped (usually toroidal) regions. On the
other hand, with the increasing recognition that the study of homoclinic and
heteroclinic bifurcations is central to the understanding of chaotic
behaviour, the Lorenz equations are again generating a lot of interest; this

is partly due to the very great number and variety of such bifurcations-

occurring in the system, and partly because many of these can be precisely
analysed in terms of their effects on the periodic orbits and other invariant
trajectories in the system. It is mainly this aspect of the equations which
will be discussed below. More detail and many older referénces can be
found in Sparrow [35]. ‘

Finally, and even as I write, new and dceper understandings of the
Lorenz system are in the offing [12]. Though excessive concentration on
these equations can be criticised (since they are not, in many ways, typical
of chaotic systems), it remains true that examples of nearly all the types of
chaotic behaviour seen in other three-dimensional dissipative systems of
differential equations can be found, for some parameter values, in the
Lorenz system. The immense amount of detailed experimental and theo-

retical work done on the equations often allows these new developments |

to be seen in a fuller context than is possible with newer and less well
understood systems. '

6.2 The equations
The Lorenz equations are:

a a{y-x)
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where t, x, ¥, z, 0, r, b, ER, and o, r, and b are three paramecters which
arc normally taken, because of their physical origins, to be positive. The
equations are often studied for different values of rin 0 < r < = with o
and b held constant; Lorenz’s original paper [21] took o = 10 and b = &/3.

When r < 1, the origin (0, 0, 0) is globally attraéting (all trajectorics
tend towards it), but for r > 1 there are three stationary or equilibrium points.
These are the origin, which is unstable, and two points C* =
{£bVr-1, 2bVr-1, r-1}. There is an rvalue, ry = [o(o + b +
) (o-b-1) at which a Hopf bifurcation occurs at C*. If o-b-1 < 0,
the Hopf bifurcation does not occur for any positive r, and €' are stable
for all r > 1; otherwise C* are stable in | < r < ry and unstable in
r > ry.

Notice that C* and C are images of each other under the natural-
symmetry (x, y, 2} — (-x, -y, z) of the equations, and that they therefore
undergo bifurcations simultancously. Also, the z-axis is invariant under
the flow, so any periodic orbits in the system can be partially described by
an integer n specifying the number of times that they wind around the
z-axis. Such orbits will either be symmetric (i.e. be their own image under
the symmetry) or will occur in symmetric pairs, each of which is taken to
the other by the symmetry.

It can also be shown that there is a bounded set £ C RY, which depends
on the parameters, which all trajectories eventually enter and thereafter
remain within [21, 35]. This, together with the fact that the fiow has a
negative divergence, —o—b~1, implies that all trajectories eventually tend
towards some bounded set A with zero volume. The set A also depends on
the parameters, and those parameter values at which the topology of A
changes are, by definition, the parameter values at which bifurcations oceur
in the system. If we can understand the topology and stability of the various
components of A, then we will know the long-term behaviour of all
trajectories. This, in the absence of closed-form solutions to the equations,
is our aim.

6.3 Homoclinic orbits

The only bifurcations occurring in the equations which are accessibie to
simple classical analysis have already been mentioned. These are the
bifurcationatr = 1, when the origin loses stability and the stationary points
C" appear, and the Hopf hifurcation™at r = r,, when C* lose stability by
absorbing, as r incrcascs, (wu umstabve porsodic ortile [25). Si cuidag 1o
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discover more about bifurcations in the system, it is necessary to resort to
computer simulation of the equations.

It transpires that the most important bifurcations occurring in the
equations are associated with the possibility that there may be homoclinic
orbits 1o the origin for some parameter vildues, A homaoclinic orbit is o
trajectory which tends, in both forwards and backwards time, towards an
unstable (saddle) stationary point. Three examples are shown, schematic-
‘ally, in Fig. 6.1. All these three types of homoclinic orbit actually occur in
the Lorenz equations, and the symmetry of the equations ensures that in
all three cases there are two homoclinic orbits as shown in Fig. 6.1a rather
than the one shown, for clarity, in Figs 6.1b and c. :

(a) (b) e}

-

0 0]

Fig. 6.1 Three homoclinic orbits to the origin which occur in the Lorenz equa-
tions. In all threc cases the symmetry ensures that both branches of the unstable
manifold of O are homoclinic simultaneously (as in (2)); in (b} and () only one
branch is shown for clarity. '

Recent and extensive numerical computations by Alfsen and Freyland
[1])iliustrate the amazing wealth of homoclinic orbits in the equations. They
produce a picture showing some of the r and b parameter values (with o
fixed at o = 10) for which homoclinic orbits to the origin can be seen. A
schematic version of their diagram is shown in Fig. 6.2; every point on one
of the solid lines on this figure represents a pair of r- and b-values for
which bomoclinic orbits occur.

The point X marked on Fig. 6.2 (at parameter values r = 3(0.475,
b = 2.6123) ties at the centre of a logarithmic spiral of 7-, b-values at which
there are homoclinic orbits to the origin [11]. At X itself there are
heteroclinic orbits (orbits which tend towards one stationary point in
forward time and to another in backward time) linking all three stationary
points. The situation at X is shown in Fig. 6.3a. The homoclinic orbits to the
origin that lie close to X spiral a great number of times around C' or C
before returning to the origin; as you work away from X along the spiral
the number of turns around C* or C” decreases. Figure 6.3b shows yet
another type of homoclinic orbit; this one involves only the stationary

. points C* and C". (Strictly speaking these orbits are heteroclinic but it
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Fig. 6.2 r.b parameter space for o = 10. Solid lines indicate homoclinic orbits to
the origin. Infinitely many such lines accumulate on the parameter line marked r,,
and there is a logarithmic spiral with infinitely many turns spiraliing into the point
marked X (r = 300,475, b = 2.623, cf. Fig. 6.3b). The dashed line marks paraméter
values for which there is a symmetric homoclinic orbit between C* and € (cf. Fig.
6.3b). (After Alfsen and Frayland [1]).

makes sense, because of the symmetry, to idemtify C* with C and to
think of this situation as a symmetric version of a homoclinic orbit to a
single stationary point.) Homoclinic orbits such as this one oceur along the
dotted line in Fig. 6.2. .

Before looking at the implications of this plethora of orbits, it remains
to state that only a few of the homoclinic orbits known to occur in the
Lorenz equations are displayed in Fig. 6.2. The ones shown are only the
simplest; each winds only once around the z-axis when projected on to the
x-y plane. There are, in fact, infinitely many other families of homoclinic
orbits winding any number of times around the z-axis. Some idea of the
complexity involved can be gained by considering that there is an infinite
sequence of X-like points accumulating on the point X in Fig. 6.2. These
are points in r, b parameter space where the three stationary points are
connected together by heteroclinic orbits of a more complicated kind than
those shown in Fig. 6.3a. Each such paint has its own logarithmic spiral of
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{a)

{b)

Fig. 6.3 (a) Heteroclinic connections between O and (" at the point X from Fig.
6.2. Symmetric connections occur hetween O und C* but are not shown. (b) Homo-
clinic orbits for C*,

homoclinic orbits to the origin around it, and a dotted line of homoclinic
orbits to the stationary points C* coming out of it. Each of thesc points
then has another sequence of points accumulating on it where yet more
complicated heteroclinic orbits connect the three stationary points, and so
on, ad infinitum. Of course, the various fumilies of homoclinic orbits to the
origin cannot cross (at any point in parameter space the two trajectories
which tend in backward time to the origin arc unique and can be part of at
most one homoclinic orbit) and the dotted lines representing homoclinic
orbits to the points C* also cannot cross (for similar reasons). None the
less, the full picture in just this two-dimensional parameter space is almost
beyond imagining. Further details can be found in [11].

6.4 Blfumﬁom assoclated with homoclinic orbits

In order to understand why it is that homoclinic orbits are such important

features of the Lorenz equations, we will examine the change of behaviour
of the system as r passes through a value at which a homoclinic orbit like
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that shown in Fig. 6.1a occurs. The results depend crucially on the
symmetry and on the relative sizes of the eigenvalues of the linearised flow
near the origin.

We examine a small region of phase space consisting of a small box, B,
around the origin and two thin tubes, § and T, around part of the two

.c S .c*
|. E’ T
E 3
g~
A0
D D Z n
B

g

Fig. 6.4 The smaill region analysed for r-values clase to r* at which a homoclinic
orbit occurs. D and D' are discs on the sides of box B where B mects the wubes T
and §, respectively. E and E' are similar discs on the top face of B.

branches of the unstable manifold of the origin (sce Fig. 6.4). We assume
that at some critical r-value, r*, there is a homoclinic orbit like that shown
in Fig. 6.1a, and consider, for r-values close to r*, whether or not there are
any trajectories which remain forever within the regions BU S U T.
Providing that we choose B, S and T to be small encugh, with r close
cnough to r*, and that we are only concerned with the topology of
trajectories, it is permissible to regard the flow within B as linear, and to
think of the map which takes points in the discs D and £’ to points in the
discs £ and E’ as a linear transformation. .

In other words, if we choose coordinates €, n and z in B so that the
linearised flow near the origin takes the form

£=NE
(6.2) 'I'i= _A;_T] A > My >)\\>(l
= "AjZ g
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we can use these equations to work out the point {(£¢, o', 2} on the side
of B where a trajectory emerges from B if it starts at a point (£, v°, ¢)
on the top face of B. (We assume that the box # is u cube with faces which
are part of the planes |£]=¢, {n]=¢ and {z]|=¢c.) Then.
for a trajectory starting at a point (+¢, n. 2) on the side of B, providing
nund z are small (within /) or 1), sav), we con write

( i ‘ 4y 1 ‘ 'lI !

(6.} |fl.-l”!,,j*/\\_|.§
for the point (£°, w7, c) at which this trajectory next strikes the 10p fuce
of B. Here a and b are constants (which may depend on 7) and A is a
2 X 2 matrix. This procedure can be rigorously justified, but roughly
speaking the linear flow in B is justified for B small enough, and the affine
transformation is justified because the time taken by trajectories to
traverse the tubes 7 or S is small compared with the time they spend
within B. It is also permissible, for r closé to r*, 10 assume that the
eigenvalues \; and the matrix A are constants which do not depend on r,
whereas a and b depend linearly on (r - #*). .

Let us, then, carry out this program. For a point (£, 1", ¢) on the
top of B (£" > 0) we obtain a point (c, n'. z) on the side £ = ¢ of B
given by

1 ol o
(6.4) o= S s

T A ‘( | AvA
|

with a similar formula, given by the symmetry, for £ < 0. Since £ is
small compared with ¢ (for thin-enough tubes) the first coordinate is much
smaller than the second (A/A, > 1 and AyA; < 1). Figure 6.5a shows
the thin pointed region through which trajectories leave B if they start
inside the rectangle ABCD on the top face of B. Combining eqn (6.4) with
(6.3) we obtain

| A -_J?\ I_ N

©3) o] atr oa ke
‘ P

R S L 3

where (0, n*) is the point on the top face of B where the unstable
manifold of the origin returns to the stable manifold of the origin when
r = r*. We can determine the sign of a and n* experimentally; for the
case usually studied (¢ =10, b = 83, and r* = 13.926), both are
negative. Also, for the same case, we determine the sign of the elements
of A which multiply the larger of the two coordinates from eqn (6.4). This
leads to a series of return maps, for r-valuesr, < r*.r = r*andr, > r* like
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(a)

() (i) {ai)
Fig. 6.5 (a) Flow within the box B is linear. Trajectories started within ABCD
emcerge from B through the longer and thinner shaded region. (b) Return maps on
the top face of B for (i) ry <r*; (i} r = r*; (iii) r, >r* The points B', O’ E' F
are the first returns of points B, C, E and F respectively. R and L are the points
where the right- and left-hand branches of the unstable manifold of the origin first
strike the top of B. Trajectories started at points within ABCD or ADEF return
to points within the shaded regions RB'C” and LE'F, respectively.

those shown in Fig. 6.5b. This figure shows the top face of the box 8;
trajectories started within ABCD return to the fower shaded region,
RB'C’, and trajectories started within ADEF return to the upper shaded
region LE'F'. The closer to AD (which lies on the stable manifold
of the origin} a trajectory starts, the closer to onae of the points R or L
it witl return; R 18 the point where the right-hund branch of the unstuble
manifold of the origin first strikes the top face of B, and L is the equivalent
point for the left-hand branch.

The most important feature of these maps is that stretching occurs in
the &-direction and that there is contraction in the wm-direction. The
existence of expanding and contracting directions is an essential pre-
requisite for chaotic behaviour in dissipative systems of this sort. However,
tooking more closely at Fig. 6.5b, we see that in the cases ry < r and
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r = r*® there is no chance that there are any trajectories which remain

forever within the region of interest except for the homoclinic orbit itsclf

at r =r*; for all other trajectories the modulus of the §-coordinate
increases on each pass through the top of B and so all trajectories
eventually wander out of the region of validity of our analysis (and, in fact,
spiral into C, or C3). The case r, > r* is more interesting. The expansion
and contraction imply the existence of four regions, shown schematically in
Fig. 6.6a, which are mapped by the flow into the four shaded regions of

(0) 1 ) A 3

¥(1)
~—¥{2)

¥(3)
¥1{4)

r Ny
(b)

terminate
in
origin

Fig. 6.6 Schematic representation of the behaviour of the return ﬁ:ap for ry >r*
(Fig. 6.5b). {a) Regions 1, 2, 3, 4 arc mapped into longer and thinner regions
marked $(1), ¥(2), ¥(3) and ¥ (4) respectively. (b) Trajectories can be found which

follow, in both forwards and backwards time. any route between regions allowed
by the arrows.
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Fig. 6.6a. Each of the shaded regions is much longer in the §-direction
snd much narrower in the w-direction than the original regions from
which they came.

Figure 6.6b shows us the possible routes for trajectories to pass through
the four shaded areas. For instance, if we want a trajectory that goes
1-3—4-2—... then we start in region 1; to get to region 3 we must be in the
nght-hand third’ of region 1; if we are going to go on from region 3 to
region 4, we must be in the right-hand “third' of that "third’; and, to go on
to region 2, in the left ‘third” of that ‘third’, etc. For any infinite sequence
of symbols 1, 2, 3 and 4 allowed by Fig. 6.6b we can find a vertical line of
points (arrived at by taking away ‘two-thirds’ of an interval an infinite
aumber of times) from which trajectories pass through the four shaded
arcas in the prescribed sequence. In addition, there will be vertical lines of
points that generate finite sequences which represent trajectories that
eventually strike the top face of B on the line £ = U (and thereafter tend
towards the origin and never strike the top face of 8 again). All these
vertical lines, from which trajectories remain within 8 U S U 7 for all
future time, form a Cantor set, and trajectories that start between lines
eventually leave our small region of interest.

If we now consider where trajectories came from, we can divide the
four shaded arcas into horizontal bands, cach of which corresponds to
somne finite history. For example, if we are in region 1 (Fig. 6.6a} and
came from region 2, we know we are in the lower horizontal band, which
is the intersection of rcgion | and Y(2). We can repeat this process
indefinitely, arriving at a Cantor set of horizontal lines which represent the
possible histories (allowed by Fig. 6.6b) of trajectories that remained
within our small region of interest for all past time. The points that lie on
the intersections of the horizontal.and vertical Cantor sets will be points
through which trajectories pass that do not leave our small region of
interest in either forwards or backwards time. Trajectories passing through
any other points leave the region of interest, or haye come from outside it,
or both. v

Each point lying on an intersection will have a unique symbolic repre-
sentation (which is infinite to the left, but which may terminate on the
right) in terms of symbols i, 2, 3 and 4. Conversely, each sequence of
symbols, infinite on the left, will correspond to one point, providing that

‘the sequence can be generated by following the arrows in Fig. 6.6b. This

last proviso actually tells us that we only need twa symbols, T and §, to
describe points. If we write T for 3 or 4, and § for ! or 2, then any infinite
sequence of Ts and Ss has one and only one representation in 1s, 2s, 3s
and 4s which obeys the Fig. 6.6 rules. For example, STTTSST... must be
1344213... . Thus, the points that lie in our ‘invariant set’ (the set of all
points lying on intersections of the vertical and horizontal lines), each of
which is taken by the return map to another such point, correspond one to
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according to some sequence of s and S, make the same sequence of
passes through the tubes, Tand S. -

~We can tell how trajectories look by examining their corresponding
sequence. Periodic trajectories (a countable infinity) will have repeating
S€quences; trajectories that terminate in the origin (an uncountable
infinity) will have terminating sequences; trajectories that are asymplotic-
fally _periodic (in either forwards or backwards time — an uncountahle
infinity) will‘ have aperiodic sequences. Notice that there will not be quite
0 many (ra;lectorics as points on the top face of B since trajectorics will
In general, intersect this plane in a large (passibly infinitc) number o(
points. When considering points, we have some central mark in the
sequence to tell-'us where we are, and with trajectories we do not. For
points, each application of the return map moves the central mark one place
to t‘he right. As an example. consider the symmetric ‘period 2 periodic
orbit represented by the doubly infinite sequence ... TSTSTSTS....
Th.erc 18 only one such orbit. This orbit intersects the top face of the box
B In two points, one of which lies to the left of the stable manifold of the
origin and which is represented by the doubly infinite sequence (with
mari_c) ... ISTSTSTS... , the other of which lies to the right of the stable
ma.mfold of the origin and is represented by the doubly infinite sequence
(with mark) ... TSTSTS TS... . Each application of the return map moves
the mark one place to the right. Hence, as we follow the orbit around, we
osciilate between one point and the other. o

We call the collection of trajectories that remains within. B U § U T
forever a ‘strange invariant set’. It is invariant because the flow takes it
into (and on to) itself. The set is created in the bifurcation that occurs as s
passes through r*, and we can now mention some of the interestin
properties that lead us to call it ‘strange. ¢

(1) No single trajectory, nor any subset of the strange invariant set. is
_stab!e; we can find trajectories, as close as we like to any trajcct(;ry
In the strange invariant set, which leave B USUT in both
forwards and backwards time. :

2) _E.vcn‘if we restrict our attention to those trajectories in our strange
invariant set, we can see that almost all pairs of trajectories started
at points close together on the top face of the box 8 will not remain
close together as we follow them around, This is called “sensitive
dependence on initial conditions’, a phenomenon which persists
even when the strange invariant set becomes attracting (see below)
and w!xich gives the typical ‘chaotic’, ‘turbulent’ or ‘pseudo-random’
behaviour which we associate with a ‘strange attractor’, We can see
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why this phenomenon should occur. Two points on the top face of
B are close together if the parts of their symbolic descriptions near
the central mark are the same, As we follow trajectorics starting at
two close-together points, we move to points with the same
symbolic descriptions but with the central mark moved further and
further to the right. Eventually we can expect the central mark
{which tells us which region we are in at the moment) to have
moved to parts of the two sequences which are quite different. This
argument will only fail to apply to two close-together points on the
same vertical line (€ = constant); such points will have converging
futures (but distinct pasts).

(3) There is a very real sense in which the strange invariant set is a
single object and not just the sum of its paris. It contains an
uncountable infinity of dense trajectories; these are trajectories
which pass as close as we like to all trajectories in the strange
invaniant set. (We can construct doubly infinite sequences of Ts and
Ss which contain every possible finite sequence of Ts and 5s; the
trajectories corresponding to these sequences pass as close as we
like to any other trajectory in the invariant set.)

{4) Periodic orbits are dense in the strange invariant set. Since periodic
orbits can contain any finite number of symbols which repeat, it is
clear that we can find a periodic orbit which passes arbitrarily close
to any other trajectory in the strange invariant set.

The strange invariant set that we have been discussing is very similar to
Smale’s horseshoe example, introduced in his seminal (1967) paper. Our
use of ‘symbolic dynamics® to describe the set also follows Smale.

It seems, then, that associated with the existence of a homoclinic orbit
in the flow, there is a bifurcation which produces a remarkable collection
of periodic orbits and other trajectories. Notice in particular that we have
not used, anywhere in our analysis, the ‘shape’ of the tubes Tand S, sowe
can expect a similar analysis to hold for all homoclinic orbits to the origin
which occur in the Lorenz equations. Returning to Fig. 6.2 for a moment,
whenever the parameters are altered so that one of the solid lines
(representing homoclinic orbits to the origin) is crossed, there will be a
bifurcation similar to that described above.

It is also possible to analyse, in a very similar way. the behaviour close
to homoclinic orbits involving the stationary points C' and C [10), and,
indeed, the behaviour close to the special point X on Fig. 6.2, which
represents parameter values at which all threc stationary points are
connected by heteroclinic orbits [11]. In the former case, the fact that the
linearised flow near C' and € has a complex pair of eigenvalues alters
the results considerably. On the one hand the behaviour is more com-
plicated very close to the critical parameter value. with infinitely many
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periodic orbits in existence on both sides of the bifurcation, some of which
may be stable [10, 15, 31, 32]. On the other hand, it is argued in [10] that,
if we look orly at parameter values reasonably far from the critical value,
it will usually be the case that the cumulative effect of the whole sequence
of complicated bifurcations occurring near the critical parameter value is
just to add a single symmetric periodic orbit to the system. The analysis for
parameter values near point X is much harder, involving elements of all
the other analyses mentioned so far. but it is at least possible to confirm
hat Fig 6.2 gualnarvels ciorrans 1170

6.5 Strange attractors

F.or parameter values o = 10, b = 8/3, and r increasing from 1.,,numerica]
simulations of the Lorenz equations show the following behaviour:

(1) For 1 < r < 13.926, ait numerically computed trajectories spiral
into the stable stationary points C*. The right-hand branch of the
unstable manifold of the origin spirals into C* and the left-hand
branch into C”.

(2) At r = 13.926 there is a homoclinic orbit like that shown in Fig

6.1z and for r > 13.926 the right-hand branch of the unstable
manifold of the origin spirals into € and vice versa,

(3) 13.926 < r < 24.06. All numerically computed trajectories eventu.
ally spiral intoc C* or C” but some spend a considerable time
wandering near the strange invariant set (which was produced in
the bifurcation that occurred as r passed through its homoclinic
value) before doing so. The time spent wandering increases rapidly
as r approaches 24.06,

{4) r > 24.06, Some trajectories wander forever near the strange
invariant set which has become a strange attractor. For r < 24.74 it
is still possible to ﬁnq some trajectories which spiral into C*, b,
atr = ry = 24.74, C” lose stability and in r > 24.74 all numeric-

~ally computed trajectories wander forever near the strange
attractor.

It is clear from our analysis in the previous section that we do not
expect the strange invariant set produced at r = 13.926 to be stable and
we do not expect it to show up in numcrical simulations: the behaviour
described in (2) and (3) above (r > 13.926) cannot be predicted from the
purely local analysis. However, we can understand it in similar terms if we
numerically (as opposed to analyticaily) compute return maps on a suitable
plane. A suitable plane at these parameter values turns out to be the plane
_ z = r—}, which includes C* , and the return map obtained, for r-values
Just less than and just greater than r ~ 24.06, is shown schematically in
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Fig. 6.7 Schematic versions of return mifips calculated numerically on the planc
2 = r - 1. The labelling scheme is the same as for Fig. 6.5b. (a) Trajectories spisal
into C* only after falling into one of the two doubly hatched regions which lie
ncar R and L outside BCEF. These decrease in size as s increases. (b) All
trajectories started with BCEF remain near the strange attractor forever.

Fig. 6.7. For r < 24.06 (Fig. 6.7a) the return map looks simil.ur to Fig.
6.5b for r; > r*. Providing we astume that there is still contraction in one
direction and expansion in the other (which we can no longer prove but
which appears to be true) the same analysis will hold. As r increases
towards r = 24.06 the strange invariant sct scems to spread out so that the
doubly hatched regions on Fig. 6.7a decrease in size. Trajectories whic!l
start within BCEF continug to wander near the strange invariant set until
they eventually fall into one of these doubly hatched regions outside
BCEF (from whence they spiral into C' or €' ); so, as r ap_pruw.{hcs 2406,
trajectories wander for longer and longer. Of course, trajectories started
very near the origin, which first strike the return plane clos_»c toRor L,
spiral at once into C*; this is how one determines cxpcnmgntally the
precise parameter value at which the strange set becomes attracting.

For r > 24.06, return maps, for suitable choices of initial rectangle
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_BCEF, look like thgt shown in Fig. 6.7b. The doubly hatched regions are
abs:en_! and any trajectory started within BCEF returns to a point within
BCEF and S0 continucs to wander near the strange set forever. Figure 6.8
shows a typical trajectory forr = 2%.0).

40

] 30
ool
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Fig. 6.8 A aumerically calculated trajectory for 5 = 2H.'(l, b =83, 0=10 Th
trajectory is projected on to the x, z plane and does not close up.

The supposed expansion in directions perpendicular to AD still ensures
that there can be no stable periodic orbits, but an analysis similar to thatin
the Previcnm section does not have Guite the same result, This is because
t!lc images RB'C" and LE'F of ABCD and ADEF no longer stretch
right across the original rectangles, so we cannot guarantee the existence
ofz? traje.ctory corresponding to every sequence allowed in Fig. 6.6b. Som
trajectories have been lost from our strange invariant set. o |

The no::mal method of analysing this strange attractor is to construct a
model which has the properties we like to think (and do think} that the
ac_:tual _Lorenz system has, and then to reduce this model to a one-
d!men-smnal mapping of an interval by ‘factoring out’ the contractin
direction (17, 27, 35). Such an analysis leads to the conclusion that in eve ;
neighbourhood of every r-value we can find uncountably many diffcrc?lr
Loyenz attractors, each containing slightly different periodic orbits and
trajectories. We will not attempt this analysis here but instead will offer an
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mituitive (and practical) argument for why this should be so.

Once the invariant set is attracting, there is the possibility that the
unstable manifold of the origin, which first strikes the return plane at R or
L. and which then wanders chaotically around the strange attructor forever,
may cventually strike AD and then tend back towards the origin. In other
words, homoclinic orbits are possible. The chaotic nature of the motion

suggests that in any neighbourhood of any r-value there will be many

(countably many) r-values for which this occurs, though the different
homoclinic orbits involved will happen only after the unstable manifold
bas made very different sequences of passes through the return plane.
Each such homoclinic orbit can be analysed locally in the same way as
outlined in section 6.4. This time some of the constants have a different
sign and the analysis suggests that each such homeclinic orbit will remove
a strange invariant set of periodic orbits and trajectories from the system.
The analysis still only concerns a small region contained within thin tubes
around the homoclinic orbit. The fact that trajectories which wander out
of the region may later return (after wandering chaotically near the strange
attractor) is of no concern; we ar¢. concerned only with trajectories that
remain forever within the small region, and a strange collection of these is
removed.

This argument, though less precise, cannot replace the usual arguments
which are needed to justify our assumption that there will be countably
many homaoclinic orbits in any r-interval. Howevet, if does have one great
advantage. Even if it eventually transpires that the Lorenz equations do
not satisfy the conditions necessary to justify the rigorous analysis (but see
{33]). it is none the less true that a great many (infinitely many) homoclinic
orbits do occur in the system though perhaps not distributed densely
through all r-intervals. Our intuitive arguments will still apply to these
homoclinic orbits and give some understanding of the way in which the
structure of the attractor changes.

Before moving on, it is sensible to relate the contents of the last two
sections to Fig. 6.2. The homoclinic orbit marked r* in that figure is the
one at which the strange invariant set is first created as described in section
6.4. The parameter value 4, which is the accumulation point of an infinite
sequence of homoclinic orbits occurring as r decreases, is the parameter
value at which the strange set becomes an attractor. When & = 8/3, the
remarks of this section apply for r-values 24.06< r < 28 but cease to
apply when the spiral of homoclinic orbits about X in Fig. 6.2 is crossed.

6.6 Other parameter values

We have only looked, in this chapter, at a small subset of the parameter
values that have been examined by rescarchers in recent yeurs. As o
consequence, it has only been possible to describe a few of the phenomena

which have been observed.
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From a purely phenomenological point of view. the most obvious
omission is a description of the various stable periodic orbits observed,
together with the period-doubling windows which normally accompany
them (7, 22, 35). For example, as r is increased above an r-value near ¥
(o =10, b, = 8/3), the chaotic behaviour is interrupted by parameter
intervals in which stable periodic orbits are seen. See, for example,
Fig. 6.9. For large-enough r-values {r > 312) there is a stable symmetric
periodic orbit which winds just once around the Z-axis and which then
persists for all larger r-values (Fig. 6.9¢). This behaviour (alternating
windows of stable and chaotic behaviour) is typical of most chaotic systems
of ordinary differential equations, and raises the usual questions. In the
context of the Lorenz equations and the previous sections of this chapler,
there are two related ways to explain this onset of stability. First, the
changeover from the strange-attraclor regime to the stable periodic orbit
regime is associated with passing through the top of the spiral of homo-
clinic orbits in Fig. 6.2; the usual parameter value b = 8/3 lies just above
the point X of Fig. 6.2. Secondly, if we took at return Maps, as r passes
through the critical region they start to change so that they resemble Fig,
6.10. The folds in the return maps prevent the relatively simple analysis of
the strange attractor from remaining true, since points which are separated
by the expansion in one direction can, if they are later on the opposite
sides of the fold in the map, be forced back together again by the
contraction in the other direction. Hence stable orbits are possible. The
first point definitely implies the second, but it must be said that other
mechanisms exist in the equations for introducing folds into the return
maps, 5o that a similar transition is observed cven for b-values which doy
not mean that increasing r involves passing through the spiral of Fig. 6.2.

We have also not mentioned the many different styles of analysis which
have been developed for special parameter ranges. These include:

(1) The study of one-dimensional maps derived from the system. These
may be useful as heuristic guides (but not rigorous ones) in some
parameter ranges, e.g. larger b (o = 10) [29] or the limit o =~ r,
r— o [5, 6], or as the basis of the rigorous treatment of the
strange-attractor parsmeter range [17, 27, 35].

(2) The method of averaging applicd in the limit r — (4, 28, 35].
This theory enables one to predict that for reasonably large
b-values (including b = 8/3) there will be a single stable symmetric
orbit for large enough r. but that for smaller b (b < 2 7) there will
be, in addition, an infinite sequence of homoclinic orbits to the
origin (and other complicated behaviour) which never terminates as
r —o[4, 35],

(3) The theory of knottedness of orbits in the equations [3].

(4) Various pieces of analysis designed to approximate, in some
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Fig. 6.9 Stable periodic orbits for various values of the parameter r (o = 10,
b = 8/3). (a)r = 126.52; (b) r = 132.5; (c)} r = 350.0.

analytic fashion or other, the strange attractor rc;gime “3.‘ 26}. .
{5) Various statistical studies of the equations in chaotic regimes,
inciuding the determination of fracta?l dlmcnsmps [19, 23, f?l)]. .
(6) As mentioned above, various studies of schlaI propertics of tlc
system for particular parameter intervals in the chaotic/stable
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pcr'!odi_c' regimes. Thew inolude intermittency [24] and oy
periodicity [22], both of which occur widely in other systems. '

R e 8-
Ci'
E D C

Fig. 6.10 Return maps in the parameter ran

I _ § in Id ange r >30 (o = 1), b= 83). A
increases, the points R, L’ (the first returns of R and L) cross AD (r ~ 51.6 .:m.;
causing a hompcl:mc orbit) and eventually the fold also crosses AD so that all
trajectories oscillate regularly back and forth. from side to side of AP, forever,

4

Wh'at we have done is to concentrate on two particular themes. One of
these is the study of the Strange attractor regime and the creation of the
attractor through a homoclinic bifurcation. This deserves special mention
begat_lsc, on the assumption that various conditions which appear to be
satisfied by the return maps arc actually satisfied, this attractor is probably
the unly well understood strange attrictor known in a system of *natural’
three-dimensional differential cquations; we  have strong reasons to
suppose that there can be no stable orhits in o relatively large par;m;clcr
range, as opposed to the normal “chaotic attractors' where one merel
;:::mot observe them but has no arguments to sugpest they cannot cxis):
o fa)::tl:::\ny:e ;;I;c[;ljt;:lnc!y_lugh peviod on awve very complicated basiny of

_Our pther theme, the more general study of homoclinic orbits and
blfm:catlons, is perhaps of even Breater importance because it can be
applied to other systems of equations as well {2, 9, 10, 20]. We have onl
really lpgked .clo'sely at the local analysis of one particular kind 03;
homm.:llmc orbit (in section 6.4); such logal analyses are interesting in their
ownlnght. but are relatively well known [37]. The real usefulness of these
studies comes, though, when the global implications are considered. These
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global considerations do rely on numerical computation to a large extent,
arc nonrigorous, and do not provide predictions of actual behaviour at
actual parameter values. But consider:

(1} It is possible to follow periodic orbits numerically with changing
parameter (even if they are unstable); every orbit so far examined
in the Lorenz equations can be traced, at least in onc direction, to a
homoclinic bifurcation. This scems to be generally true in most
other systems of chaotic equations as well.

(2) It is frequently possible to determine how many periodic orbits of
what topological type are created or destroyed in each such bifur-
cation. This may either be done precisely (as with our homoclinic
orbits to the origin) or more loosely, as explained in section 6.4 (for
other types of homoctinic orbit).

{3) It is frequently possible that if one homoclinic orbit occurs at one
parameter value, and another occurs at another parameter value,
then certain general propertics of an intermediate sequence of
homoclinic orbits can be determined. This theme is developed in
detail, for the Lorenz equations, in [35], and for a very different
system of equations in [10].

(4) It happens that many systems of equations, particularly those of
some physical relevance, have simpie behaviour for extreme values
of a parameter. In the case of the Lorenz equations we know the
behaviourin r < 1 and for r large.

(5) Putting all of the above four points together, it is possible to

" develop a type of book-keeping for periodic orbits. Such an exercise
can span huge parameter ranges in which quite different behaviours
are observed (but all of which are intimately tied up with the
existence of periodic orbits: even the strange attractor is densely
packed with unstable orbits). If this book-keeping adds up — all
orbits which are created must either be destroyed or persist for all
parameter values — all is well and good. If not, new bifurcations
must be searched for. In the case of the Lorenz ¢quations, several
new phenomens have heen located in this way [10, 35f, and the
technique is showing promise in other systems | 1],

(6) Finally, and importantly, the study of homoclinic orbits can be
undertaken relatively easily and cheaply on a computer,

We have, then, arrived at the beginning rather than at the end of a
story. It is probably fair to say that continued detailed study of the Lorenz
equations wiill go on throwing out new ideas of general applicability,
despite their rather special properties {e.g. symmetry). Regardless of the
physical relevance (or otherwise!) of some of these studics, this process
will be worth while as long as the study of chaotic ordinary differential
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equations remains the Pandoras box it is today. And in the Lorenz
equations, it is easier to make connections between apparently unrelated
things than in less well known, less well studied and less well understood

systems.
It only remains to guide the intercsted reader to some other. more
PRI AL TP AT SIS s e, gt e i e Fyr cadaemas o =

thin chapter . Guekenheimer ans Hoorns dergiop the theon of the strange

attractor in a very thorough and comprehensible way in their book {16],

and reference [36) is probably also worth while for a slightly differem
emphasis.
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Instabilities and chaos in lasers and
optical resonators
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7.1 Introduction

Turbulence in lasers and other optical systems is a newly recognised rather
than new phenomenon. What is especially interesting about such systems
is the possibility that experiments can be constructed which are sufficiently
simple and close to theoretical models that routes to chaos can be studied
in detail. That is an as yet unfulfilled hope, but the recent pace of
experimental progress has been so great that there is every reason for
optimism, :

This chapter aims to introduce the reader to the most important
concepts and systems in the field of optical chaos. It is necessarily selective
and undoubtedly subjective in choice of material, and the author apolo-
gises where appropriate. The cited works, in the reference lists, will
introduce the interested reader to the wider literature. A broad selection
of papers on chaos in passive resonators is available in Optical Bistability 2
[8]. and the January 1985 issuc of the Journal of the Optical Society of
America, Series B, devoted 1o instabilities i lasers, will be o very useful
source in that field.

The chapter opens with an introduction to the semiclassical theory of
light-atom interactions and optical resonators. The remainder of the
chapter selects three topics which are, in the author's view. the most
important and/or mature in the field: homogeneously broadened single-
mode lasers, passive resonators, and inhomogenéously broadened lasers.
The treatment trics to concentrate on the physical ideas and interactions
involved, rather than on detailed mathematical analysis and computer
results, which are available in the original sources as well as clsewhere in
this book: most calculations lead to one or more of the so-called *universal®
routes to chaos. Where possible, the status of experiments is described:
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only for inhomogeneously broadened lasers arc the experiments, thanks
largely to the efforts of Lee Casperson and Neal Abraham, as well

developed as the theory. :

7.2 Semi-classical two-level system theory [4]

All the results in this section can be derived in the semi-classical approxi-
mation, in which the atoms are treated quantum mechanically, but the
optical fields @ entirely classica!l Thers as ~een coasiderable interest,
and some work, in fully quanium-optical treatments of these probiems. bt
‘quantum-optical chaos’ is essentially a topic for future reference.
We therefore write the system Hamiltonian as

H=H,+H

where
H, =X bw, n.in
is the unperturbed (dark) atomic Hamiltonian, expressed in its own basis
set [ n), with corresponding cnergy E, = hw,. The radiation field i
treated as a perturbation, with the form (in the dipole approximation)
. H = V(1) = er - E(1)
where E(¢) is the radiation field and er the electron dipole operator. In the
basis set | n) H* has matrix elements
H' = (m|er|n) - E(t)

= Womn E(1}

where we have neglected as an incssential complication effects due to the

vector nature of E. .
Next we restrict ourselves to harmonic (optical) fields E(¢), with angular

frequency w:

E(t) = Ee™ + E*e™
Assuming, for definiteness, that the atom is initially in state | 1}, and
expressing its subsequent evolution as

WD) = 2 e() [ n) - ,(0) = B,
then standard application of time-dependent perturbation theory gives, to
lowest order

Cl(f) =1
i iunE*

A(wmwrw)  Flapwta) T ]

ca(t) =

Clearly the largest excitation will occur in cases where fiw is resonant
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with an atomic energy spacing {fw, — Aw,). We assume, for sim-
plicity, that only for n equal to 2 is there such a resonance (i.e. the atom is
free from degeneracies). This allows us to drop all other energy levels
from the analysis, and consider only a two-fevel atom. For consistency, we
must also neglect the second term above, which is anti-resonant: this is
termed the rotating-wave approximation. We can thus, finally. set p;,e/4
equal to {1 (the Rabi frequency). and obtain the simplified Hamiltonian

H = hay , 292, + Ade™ Ini o+ Rid*e~ In

. where wy = (w; — ;) and we have arbitrarily set w, = 0.

This simplified single-atom Hamiltonian can be explicitly solved, of

‘ooursc: the solution consists of an oscillation of |¢; | and | ;| at
frequency ) — so-called Rabi-flopping. We are interested, rather, in
-gmsembles of atoms, at different space-points and, in many cases, with
/ifferent thermal velocities, Further, these atoms interact with each other
aad their environment in unknown ways. These complexities are best
* handled by the density-matrix formalism. The density matrix is defined as

Ul) Pmn = 2 W(l) clni(‘:l |m>(n|

alrma

The density matrix is a weighted average over atomic variables over which
we have no knowledge or control. For our purposes, the averaging leaves
p as a function of position (with some coarse-graining on the optical
wavclength scale) and velocity component, v, parallel to the optical
propagation direction (z-direction). The dcﬁnitio;? of p is such that the
averaged expectation value of any quantum operator O is given by

(0) = TH{Op)

As a quantum-mechanical operator, p obeys the Heisenberg equation
of motion

=1 '

A major advantage of the density-matrix formulation is that it is easy to
augment this equation by terms representing the interactions not ac-
counted for in H. In the cases of interest, these can be represented by
simple excitation and decay terms. ' '

The diagonal elements of p (here simply p,, and p..) are, by definition,
the mean populations of states | 1) and | 2). Their dynamics can be
described by

Pi = é[H"P]ﬁ +Pi-yp,.i=12

P, describes incoherent pumping processes and v, decay processes: if
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is zero, then the commutator vanishes. and we obtain the steady-state
solution for the *dark’ populations:

In a laser, the pumping processes (clectrical. chemical, etc., as well as
collisional) must be such as to maintain a population inversion. i.c.
PP

The decay processes cominhutinz ©o = represent &) otimional and

other processes which destroy . mcluding spontaneous emission.
The off-diagonal element p,, (= pfs) is described by

P = ;;W-I'I.’: -~ P
= iwypyy + }ll”'-l'fzi — I'py

Physically, p;; represents a coherence between | 1) and [ 2), since it
vanishes in the sum (7.1) unless there is correlation between the ampli-
tudes ¢, and c;. By hypothesis. such a correlation is induced by H
(Rabi-flopping), but by no other means. The decay constant ' includes
any process that destroys ¢, ¢; or their correlation. The latter class include
phase-changing collisions, in which the interatomic forces in a collision
temporarily change wg without inducing a transition.

Physically, a non-zero value of p,, implies a polarisation of the atomic
medium, since '

{P) = Tr(pp) = wpzpy + 2P = 2Repap;

The atomic polarisation acts as a source term in the Maxwell equation:

CJE=#

We thus have, within the limits of the approximations made, a complete,
self-consistent set of equations for the evolution of the field-atom system,
subject to appropriate boundary conditions. One further simplifying appro-
ximation is often made: recognising that all rates of change are commonly
slow compared with the optical cycle time 2m/w (and the wavelength
A = 2nlk = 2wc/w), one can reduce the Maxwell equation to firs
order (slowly varying amplitude approximation), and aiso take out the
rapidiy varying part of p,,, Seting pyy = £y expl —iwf).

This leads to the Maxwell-Bioch cquirtions, which are the basis for the
subsequent treatment:

(a) E%+ii-nw=cwym>
(7.2) (b) z () =Pi-vpx - $im ey,
(c) Puu =P~y py +4ImQry
(d) P =HA=¢-~kv}ry ~Try + (py( - pa) Q2"
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where the Rabi frequency has been written explicitly in polar form, G is a
coupling constant and () allows for a velocity average over the Max-
wellian distribution of longitudinal velocities of the atoms. In (7.2d) A
equals (w — wy), the ¢ term recognises that a changing phase of the
ficld is equivalent to a frequency shift, and kv expresses the Doppler shift
of the field frequency on transformation into the atomic rest frame.

The presence of the continuous parameter v and the space derivative
o/dz clearly endows the Maxwell-Bloch system with a phase space amply
large enough for chaotic behaviour: our first priority is to constrain the
phase space by examining various idealised limits. In particular, we
can climinate the space derivative by placing the system in an optical
resonator: indeed most experimental evidence of optical chaos involves
resonator systems. We proceed, therefore, 1o a brief survey of the relevant
aspects of resonator theory {24, 34].

The simplest optical resonator — at least from a theoretical standpoint
— is the unidirectional ring cavity (Fig. 7.1), comprising four 45° tilted

INPUT R

R QUTPUT

.
- ok = o

N "(-L-‘ -7

Fig. 7.1 Schematic of ring resonator containing a medium with nonlinear optical
propertics. . '

mirrors, two perfectly reflecting, and two of transmittivity 7 (amplitude
transmittivity V'7), and reflectivity R (respectively -VR). The cavity
contains a two-level medium of length L, and the total optical path is ¥,
The boundary conditions at the entrance and exit from the medium are.,
respectively:

E(00) = VTE, + Re "E(L,1 - A1)
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and
Ex(ty = VTE(L, 1)

The latter relation simply implies a unique relationship between the
transmitted field amplitude Er and the internal field. The former enshrines
the major cavity properties: E; is the incident field amplitude (normally
zero in a laser); Az is the time for light to propagate from the cell output
around to the input, equal to (¥ ~ L)/c; 8 is the cavity mistuning, whose
physical significance is best examined for the empty cavity, in steady state,
whence

E(Lt—~ AN = E0DN=E
and thus
E=VT E/ /(1 = Re™)

The cavity field thus has resonances spaced at intervals of 27 in 0, which
are very sharp if R is closc to unity (high-fincsse resonator). These
resonances correspond to constructive interference of the circulating ficld
with the incident field, and 8 thus sweeps through 27 as the total cavity
length £ is fine-tuned over an optical wavelength A. A laser (without
injected signal) necessarily operatcs at a frequency such that the fotal
mistuning (8 plus any phase shift due to the medium) is equal to zero
(modulo 2m). Each such frequency is termed a longitudinal mode fre-
quency of the cavity, and their frequency separation ~ ¢/¥ is termed the
free spectral range. Instabilities, both in lasers and passive resonators
(Ey +# 0, lossy cavity), are termed single mode or multimode according to
whether the resulting frequency spectrum for E(0, 1) is or is not narrow
compared to the free spectral range.

Single-mode instabilities in high-fincsse resonators are particularly
simple because the propagation and time-delay effects can be reduced,
using a first-order Taylor expansion, to a simple first-order differential
equation for the mode amplitude. as will be described in the next section.

Note that the cavity feedback involves a finite fime delay, of order
tg = Flc: in certain circumstances this enables the Maxwell-Bloch equa-

tions (required to relate E(L. ¢ + Lic) to E0, 1)) plus cavity boundary

conditions, to be expressed as a discrete mapping in steps of tg — this has
been extensively studied in the contexi of passive resonators, and will be
e¢laborated below.

Practical resonators share most of the properties of this ideal unidirec-
tional ring resonator, but with complicating features. One of these is the
fransverse mode structure. The ideal resonator, with plane, and necessarily
finite, mirrors, actually supports an infinity of transverse mode structures,
of varying complexity in amplitude and phase, transverse to the resonator
axis. This introduces undesirable extra degrees of freedom into the system,
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which can, however, often be suppressed by an appropriate choice of
mirror curvature and aperture, assisted in some cases by wave-guiding
properties of the medium itseif.

A ring laser has a further degeneracy: each longitudinal mode frequency
supports a pair of counterpropagating modes, which will ordinarily have
the same threshold, and thus both be excited. To suppress one of these,
and produce a unidirectional laser, it is necessary (o employ a non-
reciprocal element — usually based on the Faraday effect — which makes
the cavity more lossy for one of these modes than the other.

This last degeneracy does not occur in a Fabry—Perot resonator, in
which the light bounces between parallel mirrors. This is by far the
commonest cavity for lasers in general, but has major drawbacks from a
theoretical standpoint: the standing-wave pattern greatly complicates the
atomic response and can also lead to multimode operation, and time and
space are much more intimately mixed in the feedback process. None the
less, Fabry-Perot experiments seem to give rise to broadly the same sorts
of instability as those predicted from ring cavity analyses.

1.3 Single-mode homogeneously broadened laser

The first laser, operated in 1960 by Maiman at Hughes Research Labora-
tory, was based on flashlamp-excited ruby. This laser provided an early
impetus for studies of instabilities by tending to produce noisy, spiked
output even under quasi-steady excitation. In these early years, equations
similar to the Lorenz system (Chapter 6) [35] were written down, both for
lasers and masers, but failure to find a practical system in either spectral
region which was adequately described by these equations, plus of course
the abundance of other avenues opened up by the development of lasers,
led to a rather quiescent phase lasting till the resurgence of interest in the
late 1970s.

The basic equations for a single-mode (unidirectional) homogeneously
broadened laser in a high-finesse cavity, tuned to resonance so that
A = 6 = 0, may be written as the real system

(a) X = -y (x+2p)
(7.3) (b) p=-Tp-xD) .
() D=-y(D+xp-1)

Here x is a scaled electric field (or Rabi frequency), and (7.3a) arises in
the single-mode limit of the Maxwell equation (7.2a): vy, equal to
o(1 -~ VR)/¥, describes the decay of the cavity field due to mirror
transmission, and C, the cooperativity parameter, is defined as agLo/2T,
where o is the small-signal absorption coefficient and —o the population
inversion per atom due to the pumping processes (in the dark). C is thus
necgative for a laser: its definition arises from the field of optical bistability
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(sec below) where the medium is lossy and thus C is positive. -D and p are
scaled atomic population differences (py: - pyy) :mq polansanun (p1)
respectively: scaling is such that in the small sig,nu! limit D = .I.. p=x,
and then, for consistency in (7.34), 2C = - 1: this last cnn.dmon thus
defines the laser threshold: for | 2C | < 1, the only solyuon of the
laser eqﬁations is the trivial one x = p = 0. ) = 1. which is stable. For
| 2C| > 1, this solution still exists. but becomes unstable, whereas

the nontrivial solution

L==-20-1:D=-12C;:p=xD

is stable — at least for small enough | O], since the system (7.3) is
formally equivalent to the Lorenz system [35.|. thuugh !his.facl was nm
recognised until 1975 [17]. Motivated by practical considerations, analysis
had tended to concentrate on the rate-equation limit of the “bf""f system
(and more complicated systems describing real lasers). Thls involves
adiabatic elimination of the polarisation (I' — =), and replacing x by the
‘intensity” 7, equal to x°, vielding the system

—yD+ID -1

(a) D
—~ 2y (1 +2CD)

which has only damped oscillatory solutions (relaxation oscillations),
Turning to the full three equations, the instability condition becomes

Y=y + T

This condition, derived in 1964 by Korobkin and others [l(m. 25] is termed
~ the *bad cavity’ requirement, since it demands that cavity !oss' damp the
ficld more strongly than the damping of cither thc. polaqgat;on or the
population. These same authors also derived the instability threshold

condition, here expressible as:
| (4 y + 30 + v)
Fiv.-I'-v

20> 14

Consideration of the effect on the above cxpression of varying ll}c
various decay rates shows that the right side of the .ahnvc incquality \ylli
always be greater than nine, which implics o pumping nite at least nine
times above the laser threshold. This is the mijor stumbling hlucklln
experimental realisation of the Lorens svstem in lasers, One can pet high
gain by lengthening the laser, but then the free .\|‘N.‘L'l‘l'il| range 'illl‘.‘&. and the
taser will go multimode except close to threshold. To prevent t!us. a shor{
laser is necessary. which means a high density of atoms, which increases |
and v, which demands an increase in vy,: which_rmses the threshold
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(actual pump rate at threshold is proportional to v,) which demands still
higher density, ete. — a vicious circle. Interestingly, in masers, the first
clectromagnetic wave devices for which cquations of the Lorenz type were
developed, the problem was that v, in the then best-iavailuble cavitics was
so large compared 10 y and 1" that | 2¢C | {which is ~ y/I" in this
limit) was again impossibly high. Subscquent development of supercon-
ducting microwave cavitics may have changed the situation, but j)r:rhnps of
more interest is the very recent suggestion [36] to operate lasers in the
intermediate regime — the far infrared. In far-infrared lasers. y and T
arc in the megaHertz range. which readily allows optimisation of vy, so as
to. minimise the threshold vatue of 1. Undamped relaxation oscillations
had already been seen in such fasers. and at the time of writing. there is the
exciting prospect that the Lorenz system of cquations may soon develop
an experimental significance in laser physics (0 mateh their theoreticul
impact. In the interim. however, ¥ number of schemes have been devised
in which instabilities and chuaos have been predicted in cxperimentaily
realisable systems. Undoubtedly the most significant of these in the
context of fasers has been that of inhomogencous broadening, to which we
will return. '

First. we discuss the laser with injected signal. which has been predicted
[27] 10 exhibit a number of jastabilitics and chaos. Physically, we then
have two types of laser response. There is the spontancous’ laser action,
cavity resonant, and, we will assume, resonant also with the atomic
transition on which the population inversion exists. The seeond FUSPONSe is
a regenerative amplification of the injected signal, which is detuned from
resonance. For a linear driven oscillator. these responses correspond to the
complementary function (here a growing exponential because of the gain)
and the particular solution, respectively. In the luser the nonlinearity leads
to competition between these two types of behaviour, and BEVCS rise to
unstable behaviour as the injected signal is increased from zero (stable
seif-excited laser, as discussed above) to a value high enough to slive the
kaser to the injected signal frequency. where the response is again stable.
We will deal only with self-excited instabilities. but predictions of chaos
also exist for the more complex case where the injected signal, or the

pumping rate, arc modulated. Generally speaking, instability thresholds

are lower than in the quasi-Lorenz system, and: the restrictions on decay
rites less severe. There is not yet, however, any experimental evidence for
these phenomena: injection of a low-power contintous signal is routinely
used to induce single-longitudinal mode operation in, for vxample, high-
power CQ, fasers, but this application correspomds oaly to the small-
injected signal limit of the system under discussion.

We gencralise the quasi-Lorenz system by introducing an injected
amplitude y with the same scaling as x. but assumed real and positive,
while x and p are now complex, in general, because of the detuning A and
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the mistuning 8 (which we scale to I'). The resulting set of equations is

(a) X =—v.((1 +i0)x —y +2Cp)
(1.5) (b) p =-T(1+i)p -xD)
(c) D=—-v(D+ Rexp* - 1)
For finite y, the above system has the steady-state solution
2C 2 . 206\
= Il2 - e~ -
(7.6) yt=l [(1 Tirais lx!z) * (8 1+ A2+ lxiz)_\:

Examination of this solution reveals that it is stable if y exceeds a

certain minimum value, yy,. sufficient to quench the spontaneous lasing.
En route from y = 0 to this stable ‘injection locking’, Lugiato er al. find,
Yor wmall y, & pubatiem of frequency cotresprmeding U the detuning and of
amphtade ~ Y. mpned on the L = valme 2C -1 ' of 1 Foe
O parameters ¢ = - Sf- L =9z o - = he ixaoe
Yo et wvepwan Yor s -- 0w TUET Tmattal /= DN ther inowe e
inverse period-doubling cascade to regular oscillation at y = 300. Further
increase of y leads to a ‘breathing’ behaviour: a slow modulation of the
oscillation, which develops into an output consisting of ‘spikes’ followed by
quiescent intervals. The latter increase in duration until they evolve into
the stable solution at Y, which is close to 312 for these parameters.

For other parameters, including the experimentally accessible C =
~ 20, similar behaviour is sen, except that the breathing and spiking
secm 1o be absent,

It should be emphasised that these phcnomena are distinet from the
Lorenz instability: in fact this domain (y. =T = vy) is absolutely stable
for y = 0, the Lorenz limit. Injection into an already unstable tascr
stabilises it at high enough y-values: at low values of ¥ the behaviour is,
unsurprisingly, irregular. In fact Lugiato e/ al. find empirically that
Yc = I' is necessary for chaos: y can be much smaller than I° without
hindrance.

To conclude this section, we can, at last, refer to an experiment. As
noted, the rate equations (7.4) are stable, but the standard technique of
modulating one of the parameters, for example vy, extends the phase
space sufficiently to allow chaotic behaviour. This has been achieved in a
CO; laser [5). Bistability — the coexistence of stable oscillations at cither
one-third or one-quarter of the modulation frequency — was observed.
Increasing the modulation depth, the two attractors become strange. A
particularly interesting feature of the results was the appearance of a
low-frequency divergence of the spectrum when the two attractors become
strange. The authors attributed this to low-frequency jumping between the
two attractors, and suggested that such behaviour may lie at the root of the
puzzling low-frequency noise spectra displayed in many nonlinear physical
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systems — systems as diverse as electrical resistors, biological membranes
and automobile traffic flow. .
~ With the honourable exception of this last case, the homogeneously
broadened laser has so far proved a fertile field for instability and chaos
only for the theorist. In contrast, when the laser is inhomogeneously
broadened, the experiments were for long in advance of the theory, as we
shall se¢ below. : _
First, however, we examine passive resonators, which are perhaps the

~ simplest of all optical systems,ind indeed, in one limit, reduce to a

one-dimensional noninvertible map, and thus possess a period-doubling
route to chaos. :

_ 7.4 Instabilities in passive nonlinear resonators

Passive nonlinear resonator theory, described by cquations (7.5) with C > 0
and thus y # 0, was originally"developed in the context of aptical bistability

- (OB): | x [ in the state equation (7.6) can clearly be a multivalued function of

y. which corresponds to an optical device that can have two or more
wansmission states for a single-input field, and can thus act as an optical

memory device (Fig. 7.2).

)

I —
“..M :

~.d

|

Y,

Fig. 7.2 Opticat bistability: output |x} from nonlinear resonator may be muitiple-
valued function of the input y.

Equations such as (7.5) are built on the seminal work of Bonifacio and
Lugiato [6] in 1978. For simplicity, these authors treated the high-finesse
case in which the dominaat dynamic instabilities arise due to excitation of
adjacent longitudinal modes, which are also cavity-resonam. When Ikeda

_ in 1979 performed a stability analysis starting from'the full Maxwell-Bloch

equations, with propagation effects included [22), he discovered an
spparently distinct family of instabilities, and indeed chaotic behaviour,
which will be the dominant topic of the remainder of this section (as Lugiato
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[26] has pointed out, these phenomena are not actually distinct from the

Bonifacio-Lugiato instabilitics. and can be analysed by similar methods).

The simplest approach to the Ikeda instability makes the limitI' — = g -
the Maxwell-Bloch equations (7.2). It is then possible {at least in the rag

resonator) to integrate the full equation along the characteristic, z = ¢7 +

constant, to obtain an explicit relationship  between E(0. 1) and .

E(L, t + L/c). Further simplification ensues if we now let ¥ = © and take
the dispersive or Kerr limit A — %, ayl. — %, Aloy,L. finite. This reduces the
system (7.2) and the cavity boundary condition to a mapping, of the form

(1.7 E(t+1)=A+ Bevrnl - g

Note that the amplitude E(f) is complex, so that we have 2 two
dimensional mapping, which is. in fact, invertible:

E@)=E e % B = (Bt +13) - A) + B

We thus have a minimal system for chaos.

The scaled parameters A (transmitted input ficld}, B (amplitude feed-
back fraction) and 8 (cavity mistuning) can all be assumed real,

The fixed points S of (7.7) give rise to an FS 17 vs A% typical of optical
histability (Fig. 7.2). Their stability is governed by the Javobian mutrix

M |20+ s 2 pee

(HZES™ Z(-AS8T)] T 8 = Al(1-2)
which gives rise to the characteristic equation:
(7.8) - AN —2MReZ—|S2ImZ)+ B =0

Since B < 1 in a passive resonator, the only possible instabilities are A =
% 1. The plus sign can be seen to correspond to the vertical-slope points of
the characteristic of Fig. 7.2 (further analysis shows that the intervening
negative slope branches are unstable). The negative sign involves a pertur-
bation to § which reverses each 1y, and thus gives rise 10 an oscillation with
period 2ty. This oscillation s, in many cases, the beginning of a period-
doubling cascade to chaos obeying the Feigenbaum scaling relations {i3),
but the author is not aware of any proof that the map has this property.
Any of A, B, and 0 can be considered as control parameters, but from a
physical point of view it is interesting to usc 8 (which can be varied through
its full range by translation of one mirror over one wavelength) to minimise
the threshold value of A. This can be done analytically, based on (7.8), and
Fig. 7.3 shows A”B vs B for A = | (bistability) and A = ~ 1 (2tg o1 P2)
instabilities. The choice of ordinate arises from the empirical observation
that A2B ~ 1 s required for chaos. It will be obscrved that, whereas OB
and P2 instabilities have comparabic thresholds in low-finesse cavities
- {small B), in high-finesse cavities (8 — 1) optical bistability is much easicr

Firth 147

"

08 10

Pg. 7.3 Instability thresholds for the mapping (7.7): lower curve. optical bistability
(OB): upper curve lkeda instability (P2).

to achieve than lkeda instability. This fact, and the decay-rate restrictions
discussed below, lie behind the paucity of experimental evidence on lkeda
instabilities: only in two all-optical systems (both pulsed rather than
continuous-wave ) has 2t oscillation and chaos been observed to date,

The basic £2 instability can be given an attractive physical interpretation
in terms of standard nonlinear optics [14]. The materiul nonlincarity
responsible for nonlinear refriction, and thus bistability, cun also generite
sidcbands on the pump frequency. Physically, two photons with frequency w
are scattered to form a pair of photons at w + Aw, so the process is termed
four-wave mixing. An additional input signal, the probe, detuned from the
pump by Aw, will thus experience gain or loss according to the combined
effect of the nonlinearity and the mode structure of the cavity. Clearly, it is
most advantageous if both w + Aw and w — Aw are ¢avity resonant, i.e. if
2w is a multiple of the cavity'’s free spectral range. An even muitiple
(including zero) means that the pump is itself resonant, and this double
resonance lies behind optical bistability and the sideband instabilities
analysed by Lugiato and co-workers. An odd muliiple, on the other hand,
means that the pump is off-resonance, lying cxactly halfwiy between two
modes: the beat note between the pump and the resonant sidebands, which
will be self-excited if the nonlinearity is strong enough. has period
2ty identifying this as the Ikeda instability. ) .

The nice thing about this system is that the above double resonance can
be guaranteed: the refractive-index change induced by the strong pump
beam actually moves the comb of longitudinal modes with respect to the
pump frequency (it is strictly the product of length and refractive index
that determines the mode frequencies). This “transphasing’ of the mode
spectrum will alternately give rise to bistable and Ikeda-type double
resonances as the pump parameter A is increased: 8 determines the starting
position of the comb relative to the pump frequency.
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The entire period-doubling cascade can be given a similar interpretation.
As each new period 2"t bursts into oscillation, the effective free spectral
range of the cavity is halved, because the generalised condition for
resonance must be constructive interference after 2 round trips, since only
after 2"tg do the cavity's optical properties repeat themselves. At the 2"ty
threshold, these small signal modes are degenerite with the oscillating
frequcncy spectrum, but as A is increased, they transphase in frequency
until halfway between the oscillating frequencies. If the gain there is large
enou‘gh, these new modes burst into oscillation: if not, transphasing
continues to a renewed coincidence with the oscillating frequencies, al
which point an inverse period-doubling cascade ensues, leading eventually
to a steady-state response. Figurc 7.4 illustrates this process, showing the
small-signal gain spectrum as A4 is increased through the P2 threshold, and
the ensuing doubling of the spectrum, followed by transphasing to the
verge of 41z oscillation. It should be noted that the noise spectrum of the
system should be very similar to Fig. 7.4, because of the filtering action of
the cavity on any broadband noise source. :

These considerations constitute a useful base against which to consider

‘ X
Fig. 7.4 Probe gain spectrum for the mapping (7.7) as the input intensity A*
:;f:‘ncrlt:lnse(:d Gal(rillpc;ks (dressed modes) double their multiplicity at the P2
rcation (dotted line), then transphase through half their se ti d
the P4 bifurcation is approached. P ) parstion andgrow as
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the complications caused by transverse spatial effects and by fimite-medium
response time v ': there is clearly no reason why the basic gain and trans-
phasing mechanism should not survive the introduction of these compli-
cations,

Dealing first with finite time constant, perturbation theory readily leads
(o the conclusion that the gain spectrum of four-wave mixing becomes
Lorenzian, with halfwidth ~ vy, and the associated dispersion means that
the free spectral range becomes a function of frequency. The former is
usually the more important: clearly if y/g < 1, then there will be no
significant gain in the Ikeda situation, where the modes straddle the pump
frequency: this is the physical origin of the requirement y™' > £ usually
quoted for Ikeda instability. There is no corresponding requirement for
bistability, which occurs for Aw = 0, and thus actually benefits from a
long time constant, since the gain is ~ y™' for Aw = 0: hence materials
such as semiconductors and liquid crystals with small vty are ideal for
bistability but useless for Ikeda instability,

Another effect of finite y is to raise the degeneracy by which all
symmetrically placed pairs of sideband modes reach threshold simul-
tancously. On the one hand, the raising of the A = + 1 degeneracy permits
self-pulsing at period f, as described by Bonifacio and Lugiato [7),
whereas the lkeda degeneracy splits to yield pulsing at 2tx/3, 21x/5, etc.
The latter phenomena have been extensively analysed in the. limit B — 0,
in which the Tkeda mapping becomes one-dimensional and can be realised
in a so-called hybrid system in which the feedback is electronic rather than
optical. In the limit B —» 0, the complex map can be approximated by the

real noninvertible map
lyo, = A* + 24Bcos (I, + 0)

where / = E2. Introduction of a finite value for v augments the left side
of the above by a term y™' /, and the index n gives over to continuous
time 1. As stated, this raises the degeneracy caused by the cosine function,
and this system is observed [21] to give a variety of waveforms of period
2T/(2m + 1), coexisting in complex ways with cach other and with subhar-
monics and chaos. ' :

The 2tx/3 oscillation has also been seen. however, in an ail-optical
system based on ammonia gas [ 18). .

There is one interesting situation in which the yr, > 1 rule is broken,
which can also be interpreted along the above lines. As y decreases, the
four-wave gain increases as its bandwidth decreases. This gain is accom-
panied by dispersion, just as in a laser, which is such as to reduce the
frequency interval between two modes lying either side of the pump
frequency (mode-pulling). These modes can thus give rise to an lkeda
instability (which will now have a period ~v ', rather than 21y) provided
these modes are resolved into two gain peaks: a high-finesse resonator
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(v=7) is thus required for this version of the Ikeda instability, which gives
rise to chaos via a period-doubling cascade in parameter. regions corres-
ponding to the upper branch of optical bistability [23]. Though not so far
observed, this version of the Ikeda instability is of interest because it can
be derived by mear: field methods, which otherwise preclude chaos.

Abraham and Firth |1, 2] have undertaken an analysis of folded
(Fabry-Perot) resonators for the case yrg~1. They find, in particular. 2
Feigenbaum period-doubling routc to chaos. and are able to show, by as
extrapolation technique, that the scaling parametcr 8 lies within 1% of the
Feigenbaum value 4.669. .. for any of three control parameters A, yig, ¢
{Tabie 7.1).

Table 7.1 Universal sequence as the control parameter A approaches the lima
pOil'll A = (an—kn“kn-f l)/(Au + i—AnJ))' ’

Control
parameter A Ay : P4— P8 A, By 814 832
A 4.476 4.463 3.902 4768 4612
8 0.09046 0 4.411 a.601 4.658
(yte)-! 1.826 1.78636 4506 . 4643 4.6I%

Transverse effects have been examined in a few instances. The most
complete of these is due to Moloncy er o/. [31], who find (Fig. 7.5) that the
transverse degrees of freedom lead to a Ruelle-Tukens route to chaos, via
frequency locking of two incommensurate frequencies. A significant recent
advance was the demonstration [28] that the basic ‘plane-wave’ Ikeda map
is unphysical, because the 2y instability has a lower threshold for finite
wave vector perturbations than for zero wave vector (plane-wave), with
the result that a uniformly excited medium develops an Ikeda oscillation in
which neighbouring regions oscillate out of phase. Thus only in cases
where the cavity forces a specific transverse profile are transverse effects
trivial.

Very considerable theoretical cffort has been directed at instabilities in
passive resonator systems, of which the above is only a partial, necessarily
distorted, summary (9]. Sadly, the experimental situation is much more
patchy. The hybrid experiments have been mentioned. Next came an
all-optical experiment using an optical fibre as nonlincar medium {32).
demonstrating P2 and chaos. U nfortunately, the nonresonant nature of the
nonlinearity in this experiment meant that it had to compete with other
nonlinear processes. In particular, stimulated Brillouin scattering actually
had a lower threshold, but was ingeniously eliminated by use of a puise
train, rather than continuous pumping. This complicates the analysis and
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Fig. 7.5 Ikeda instability with transverse effects; the original P27is destabilised as
the input intensity is increased: The *quasi-period-2° orbits show points of accumu-
lation and then lock to a P6 response, which then bifurcates to £12 en route to
chaos. (Courtesy J. V. Moloney.)
b

reduces the utility of the experiment. Most recently to date ha'vc bgcn
experiments on ammonia gas resonantly pumped by CO, lasers, in wl_nch
good 2y, 4rg and 2,/3 modulation, and chaos, have been observed in a
system which comes close to Ikeda's original proposal |18, 19]. These
experiments are, however, still pulsed, and it wouid be extremcly valuable
if a true continuous wave all-gptical passive resonator system could be
developed, to give the sort of experimental impetus that the xenon and
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helium-xenon lasers have given to laser instabilities.

7.5 Chaos in inhomogeneously broadened lasers

In contrast to the Lorenz model of a homogencously broadened laser
discussed earlier, the situation in high-gain gas lasers with inhomogeneous
broadening has been one where the experiments have actually been leading
the theoretical development. As far back as 1969, Casperson discovered
that the high-gain xenon laser (wavelength 3.51 um) could, even with
steady excitation, produce its output as an infinite train of pulses [11].
Moreover, these pulses could, depending on the conditions, repeat regu-
larly, alternate in height or be aperiodic. Casperson pursued two main
avenues of approach to a theoretical understanding of these phenomena,
viz. coherence effects (finite I') and inhomogeneous broadening. He did
not, at that stage, incorporate both effects, because ‘the mathematics
would be more complicated’. Only in 1978 did it become apparent that
both effects are necessary, but also sufficient. to produce the observed
phenomena. More recently Abraham and co-workers have extended this
work to the helium-xenon system, where the helium partial pressure
allows the degree of inhomogeneous broadening to be varied as a control
parameter, with beautiful results {3], and Mandet [29] had demonstrated
theoretically that the Lorenz-model instability evolves continuously into
the Casperson instability as the degree of inhomogeneous broadening is
varied.

Why is inhomogeneous broadening so crucial? The answer lies in the
saturation behaviour. A homogeneously broadened system saturates uni-
formly in frequency, so that the oscillation frequency, which clearly has
maximum gain at threshold, retains its primacy as the laser saturates,
preventing other frequencies from recaching threshold (providing it is
spatially uniform: in actual lasers higher-order transverse and adjacent
longitudinal modes appear because they have different spatial structures
from the dominant mode).

The situation in an inhomogencously broadened medium is quite
different. The dominant mode saturates cffectively only those atoms whose
(Doppler-shifted) resonance frequency lies within about T' of the mode
frequency: other atoms are unsaturated, so that the gain actually increases
with frequency detuning from the dominant mode: the excited mode burns
a hole in the gain spectrum. Careful design is thus necessary to restrict laser
action to a single mode. Even then, however, an instability can arise due
to ‘mode-splitting’. As well as the spectral hole burned in the gain, the
refractive index contribution of the resonant atoms is also saturated, again
over a spectral width ~I". As a result, the dispersion relation close to the
operating frequency develops 2 ‘wiggle’, which, for strong enough satura-
tion, may turn into an S-shape. When this happens, we have rhree
frequencies which all share the same wave vector, and are thus resonant
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with the cavity. Since the spectral hole ensures that the two new sideband
frequencies actually have higher gain than the central {originating)
frequency, they will grow: self-pulsing develops. This phenomenon was
termed ‘mode-splitting’ by Casperson and Yariv [12]. The pulsation period
will be of order T, but clearly parameter dependent.

Of course, as the sidebands build up, they burn their own holes in the
gain and refractive-index spectra, and it is not difficult to cnvisage the
development of pulse shapes as complex as those of Fig. 7.6, or, indeed,
period-doubling and chaos in the pulse train: compare the discussion on
passive resonators. Deep modulation at frequencies ~I" is clearly only
possible if y.>T, so we still require a ‘bad cavity', and we may note that the
spectral holes form and refill on a time scale v, which thus plays an impor-
tant role in the phenomenon: it has been claimed [20] that ‘population
pulsations’ are the primary source of the instability.

Experimental evidence for chaos based on the mode-splitting instability
was first obtained by Casperson in 1978 [10): the route to chaos was not
studied in detail, except that period-two was observed. In recent years
Abraham and co-workers have performed detailed studies of routes to
chaos in helium-xenon lasers [15] and have observed. as the laser cavity
length is fine-tuned, interspersed bands of chaotic output reached, in
certain conditions, by period doybling. By varying the discharge current
(and hence gain) at fixed cavity length, the Ruelle-Takens route to chaos
was observed: two initially incommensurate frequencies (at 0.67 mA) lock
toa4 : 3ratio (at 0.89 mA) leading to chaos (at 1.6 mA). The intermittency
route to chaos was also inferred, with pure xenon in the laser tube, from a
scquence in which a single frequency (with its harmonics) progressively
broadened on increasing the discharge current, just as one would expect
for increasingly frequent bursts of. noise against a background of steady
oscillation. The chaos itself displays a variety of signatures: Fig. 7.6 displays
a ‘z00’ of time sequences with corresponding spectra, this time in a
ring laser. o

From a theoretical standpoint, Minden and Casperson [30] have been
able to model the xenon-laser data very well, but found it necessary to
include such effects as velocity-changing collisions, and population transfer
from upper to lower laser level by spontaneous emission, as well as
standing-wave effects. In contrast, most theoretical work has been based,
like eqns (7.3), on a single-mode, unidirectional ring laser, with only the
simplest decay terms. Mandet{29] has been able to obtain a number of
useful analytic results for such a system, usually assuming y=1{" and a
Lorenzian, rather than Gaussian, velocity distribution function. Recent
numerical work by Shih er al. [33] has demonstrated that when the known
parameters for the helium—xenon system are inserted into eqns (7.2), then
all three classic routes to chaos can be obtained by careful scans over
realistic ranges of the control parameters.
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ln_ summary, single-mode mhomogeneously-broadened lasers have
provided a rich corpus of both experimental and theoretical work: detailed
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éwtilative comparison of the two is becoming possible with the develop-
of unidirectional single-mode helium-xenon lasers by the Abraham

Historically, one of the earliest frequency-locking phenomena to be

w in laser physics was the locking of three or more longitudinal modes.
“When many modes are involved, this phenomenon results in very short

t—!wically picoseconds—which hive grabbed most of the attention
cause of their many applications. Recently, however, there have been
ewreful studies of the transition from free-running to mode-locked opera-
don of three-mode lasers. First phase-locking occurs, which causes the
sppearance of low-frequency ‘beat-beat’ notes in the spectrum (recall that
e cavity-mode spectrum is distorted by the atomic dispersion, so that at
@reshold the modes will not be quite equally spaced). This ‘beat-beat’
gpectrum may show bands of periodic and chaotic response before the
modes lock, giving a quiet low-frequency spectrum [3].

An interesting set of experiments {37], probably related to the above,
bave shown the three classic routes to chaos in the "beat-beat’ spectrum of

~# high-gain 3.39 pm helium-neon laser, the control parameter in this case

being a slight tilt of one laser mirror, which itseif causes the initially single-
-mode laser to oscillate on threc modes.

Three-mode lasers, especially in folded resonators, are probably more
complicated than theorists would wish, but the class of lasers in which chaos
of this type may be observed is probably very large, and such experiments
may well prove useful in testing the universality of the *universal’ routes to

¢thaos.

7.6 Summary

This brief survey has been intended to convey the flavour of the work on
chaos in lasers and other all-optical systems which has exploded into the
Mterature in the last five years or so. The theme underlying much of this
work is that broadly satisfactory, and reasonably simple, models exist for
the huge variety of nonlinear optica! processes which have been discovered
since the advent of the laser: there is optimism that nonlinear optics can
similarly provide simple systems showing the full range of chaotic
behaviour. As we have seen, this optimism is already justified on the
theoretical side, and this is providing a fruitful stimulus to the experimen-
talists. .

Nonlinear optics is perhaps unigue among systems shdwing chaos in that
a fully quantum mechanical description of the phenomena is conceivable:
there is the interesting and exciting prospect that the next few years may
reveal what, if anything, is meant by ‘quantum turbulence’, and all-optical
systems such as those described or proposed above are likely to be in the
forefront of experimental tests of such concepts.
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8.1 Introduction

;"hns chapter‘:s cpncerned with the motion of populations, including human
lscz;‘ses‘, which is to say their ups and downs, Motion, whether in biology
Or pnysics, can take many forms. In recem years, the beginnings of a

taxonomy have emerged. We begin by listing some of the species in this -

dynamical bestiary:

(1) Point attractors. In the absence of perturbations, the  system

approunches a stable point. An ceologival example would be coms .

{):t;li)ll;;))f:tween two species for o common set of limiting resources
(2) Limir.cycles. The attractor is a closed curve, topologically equivalent
to a.mrclc. Limit cycles, including relaxation oscillations, arise natur-

ally in two-species predator-prey models {e.g. [39]) o l'

(3) Toroidal flow. The orbit is on the sueface of a mrusl. In this case, ther

are two possibilities. | I

(a) The mqtion is periodic—after an integer number of axial rotations
the orbit comes back on itself exactly,

(b) "T'hc. motion is quasi-periodic—i.¢. the winding number is
rrrational. Hence the orbit never repeats itself and, in fact is
dense on the torus. One way of generating quasi-pcri;)dicity is‘ to
force a system which. in the absence of forcing, exhibits limit
cycles (F.g.[32]). An ecological example would be a predator-pre
system in a seasonal environment [30] PreY

(4) Strange attractors. Recently, there has been intense interest (e.g. [10

29, 48)) In attractors which are neither periodic nor quasi-peri;odic

Mathematically, strange attractors can be characterised by lhr;
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presence of horseshoes {e.g. see [27]). As a result, there will be at
least one dimension in which, on the average. nearby trajectories
diverge exponentially. Small differences in initial conditions are thus
amplified with the consequence that the long-term behaviour of the
system may be indistinguishabie from a random process. For some
strange attractors, the orbit is on an almost two-dimensional surface,
i.e. the fractal dimension [¥7, 36] is close to two. Then the short-term
behaviour of the system can be predicted by taking a Poincaré section
(i.e. slicing the orbit with a planc) and asscmbling a one-dimensional
return map (e.g.) [55]. Strange attractors have been found in models
of various physical phenomena, for example the onset of turbulence in
convective flow [34]. In what follows, we describe an ecological
model—one predator, two prey species—with such an attractor.

(5) Turbulence. Beyond low-dimensional strange attractors is fully
developed turbulence. Here the motion is highly erratic: imagine, for
example, water brought to a rolling boil. In this case, predicting the
motion of the individual particles is impossible. Instead, one may
speak of a distribution of positions and velocities to which the mole-
cules in aggregate converge.

The foregoing classification is incomplete. For example, not all
dynamical systems have attractors. None the less, we hope that it wiil put

“the reader in the proper frame of mind: motion is all about us and, for the

most part, poorly understood. What the dynamicist can provide is a set of
possibilitics. Whether or not these mathematical constructs are realised in
asture is an altogether different question subject to empirical deter-
mination. Recently, convincing evidence has been reparted for the reality
of strange attractors in physical situations, most notably the Belousov-
Zhabotinskii reaction (e.g. [46,57}. In the present chapter, we focus on
ecological systems. Do the often erratic fluctuations of natural popu-
lations, including outbreaks of human diseases, reflect the workings of
strange attractors, or is noise the prime mover of ecological processes?

The remainder of the present chapter is organised as follows, Section
8.2 considers the properties of model systems in'w hich chaotic or complex
periodic behaviour is known to occur. Section 8.3 gives some real-world
examples. We conclude (section 8.4) by contrasting the effects of adding
noise, an inevitability in ecology, to simple and chaotic systems.

8.2 Model systems with complex solutions

8.2.1 One-dimensional maps

In the ecological literature, the most widely discussed (e.g. [40, 41, 43])
model admitting to chaotic dynamics is the logistic equation

8.1 Xinr = sX{(1-Xy

Traditionally, eqn (8.1) and its congeners are viewed as literal descriptions
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of single-species systems with discrete, non-overlapping generations, for
example insects with one generation per year. Then s is closely related to
the maximum per capita rate of increase, i.e. births minus deaths per
individual. For ecologists, this raises a scrious problem. Most estimates of
s for natural populations are substantially smalier than those required for
chaos. Attempts to fit real-world data to more realistic models with two or
more parameters [28] point to the same conclusion. Accordingly, ecolo-
gists have tended to dismiss the potential for complex dynamics in one-
d.imensional maps as a mathematical curiosity. Note the ensuing difficulty:
since most populations in nature are anything but steady (e.g. see {31]). it
would appear to foliow that chance plays a major role.

An alternative approach is to imagine equations such as (8.1} as arising
from chaotic flows that are essentially two-dimensional [55]. In this case,
the X; are points on a Poincaré section, and the parameters reflect the
biology of the entire system. The distinction, whether one regards the map
as a literal description of a single-species system or what ecologists would
call an ‘emergent property’ of a higher order continuous system, thus turns
out to be crucial. When eqn (8.1) is viewed from the latter perspective,
there is no reason to exclude vatues of s in the chaotic region,

8.2.2 Delay-differential equations

Re_laled to the logistic are single-species models, in which the current rate
of increase depends on the population’s density at some time in the past.
Of these, the simplest is the delay logistic

(8.2) dX7de=rX(n{1 - X(t-T)) |

The time lag, 7, may be interpreted as arising from the fact that the
population’s resources are not instantancously renewed.

Equation (8.2) admits only to stable equilibria or stable cycles. How-
ever, related models exhibit chaotic solutions. One such model, studied by
May [42], was devised to model the population dynamics of baleen whales,
In this case, one writes

(8.3) dX/dr=-DX(1) + BX(1-T)[1- XZ(:-T)]

Here, X(1) is the number of whales that have achieved reproductive
maturity, and D is the current death rate. B, the per capita birth rate, is
lagged to reflect the prolonged period preceding reproduction. The con-
stant z reflects the intensity of density dependence. For z <2[(B/D)-1],
eqn (8.3) always (i.e for all values of T) has a stable equilibrium point. For
D=1, T=2 and B=2, increasing z yields a series of period-doubling
bifurcations reminiscent of those observed in the case of the Rossler
attractor [12]. For larger values of z, May obscrved an apparently chaotic
orbit, which, for stilt larger z values, cotlapses back to a (relatively) simple
cycle. (May was unable to determine whether or not this collapse entails
reverse bifurcations of the type discussed by Lorenz {35] and observed far

Schafferand Kot 161

the Rassler system.) Unfortunately, the parameter values estimated for
baleen whales correspond to the region of a stable fixed point. In other
words, like the logistic map, May's equation, when viewed as a literal
description of a single species system, is unlikely to account for irregular
fluctuations in the densities of real populations.

The qualitative behaviour of egn (8.3) resembles that of the model of
blood production due to Mackey and Glass [37]; also see [44]. Using the
above notation, we have
(8.4) dX/de=—-DX(1) + BX(1-T)/{1+ X*(1-T})]

The analysis of delay-differential equations in ecology has not, of
course, been limited to single-species models. Of relevance to the present
chapter is work by Shibata and Saito [56]. These authors consider a
two-species generalisation of eqn (8.2) exhibiting period doubling and
what Rasster [45] has called ‘torus-type’ chaos. For some parameter
values. Shibata and Saito observed coexisting chaotic solutions; for others,
a limit cycle coexists with an apparently chaotic band. As in the case of
Gilpin's model (three ordinary differential equations) discussed below, one
can extract an essentially one-dimensional mapping from the strange
attractor by slicing the orbit with a plane and considering the sequence of
the resulting intersections.

8.2.3 Systems of ordinary differential equations

The delay-differential equations described above correspond, of course, to
infinite dimensional systems. Thus there is no d p#iori reason to expect a
limit on the dimensions of their attractors, and the observation of low
dimensional behaviour is encouraging. By contrast, systems of ordinary
differential equations, such as those studied by Lorenz [34] and Rassler
[45] are finite dimensional. One such system which has been studied in an
ccological context uses ( Lotka—Volterra) equations of the form

(8.5) (VX ()] dXJdt = r+ 2, a,,X,(1)
i

to model the dynamics of a single predator and two prey species. Gilpin
[20] was the first to point out that eqn (8.5) can give rise to chaotic
trajectories. Figure 8.1 shows part of the time series gencrated for the
predators and the power spectrum. The latter lacks distinguishable peaks
for high frequencies and exhibits and the log linear behaviour observed for
other strange attractors [15, 25]. The route to chaos in Gilpin's equations
is via period-doubling bifurcations. In Fig. 8.2 a—d we show the results of
tuning one of the parameters, in this case the efficiency with which the
predator harvests the preferred prey species. Note that the essential
dynamics of the strange attractor can be captured by a one-dimensional
non-invertible map of the form
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Fig. 8.1 Chaotic dynamics in a three-species (one predator, two prey) model. (a)
Numbers of predators vs. time. (b} Power spectrum.

(8.6) T: X, =X,

i.e. by an equation similar to the logistic map. Such a map can be
constructed either by taking a Poincaré section (Fig. 8.2¢) and assembling
a return map, or more simply by plotting successive maxima in one of the
variables (Fig. 8.2f) in the manner of Lorenz [34]; see also [S5, 58]. A
similar relation exists between the magnitude of the current maximum and
the time until the next outbreak [49{. Thus, were the predator or its
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victims of economic importance, one could predict the timing and severity

of the next eruption. . . .
Further tuning of the parameter reveais that the chactic region contains
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Fig. 8.3 The chaotic region for Gilpin's equations contains periodic orbits which
can be identified with those of I-D maps such as the logistic. (a) A 4-cycle. (b) The
4-cycle plus transient. (c) Peak-to-peak map for predators; circles give the
asymptotic dynamics; dots, the transient, (¢) Time 10 next maximum vs, magnitude
of current maximum for the 4-cycle. (e) A 3-cycle. (f) Map for the 3-cycle.

periodic windows of the sort observed in 1-D maps (e.g. see [11]}. Figure
8.3a shows a 4-cycle. The sequence (RLL) of points on the associated 1-D
(Fig. 8.3c) map identifies this cycle with the 4-cycle that occurs in the
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chaotic region for 1-D maps [11]. Note first that the transient is extremely
long and that it fills in both the attractor (Fig. 8.3b) and the 1-D maps
(Figs. 8.3c.d). Thus, in the real world, with noise, one would expect to see
something resembling the chaotic trajectory for nearby parameter values.
(For a discussion of the effects of additive noise on 1-D maps, see [13] and
{38)).

The ability to encapsulate the dynamics of an n-variable, continuous
system with a one-dimensional map indicates that the flow is effectively
single-sheeted, even though, as discussed by Lorenz [44] and subsequent
authors [55, 60], this *sheet’ in fact consists of an infinite number of closely
spaced ‘leaves’. As we continue to tune Gilpin's equations. what we shall
call single-sheeted chaos gives way to more complex trajectories, at which
point a one-dimensional representation becomes untenable (Fig. 8.4).
Similar behaviour has been observed in Rossler's equations |15}, where it
is associated with the reinjection of trajectories into the neighbourhood of
an unstable fixed point [ 18, 21].

8.2.4 Forced systems

It is well known that periodic forcing of nonlinear systems can result in
periodic, quasi-periodic, and chaotic flows [32]. An interesting example
arises in the theory of infectious diseases. Here, there is seasonal variation
in transmission rates, especially in childhood diseases, where contact rates
among school-age children are higher during the winter [33, 63]. In
addition, temperature and humidity may affect dispersal and survival of
the infectious agents. The simplest models, called SEIR models [2, 5, 14],
for the spread of human diseases consist of coupled differential equations
in which the number of individuals in the population are categorised as
follows: (1) susceptible; (2) exposgd, but not yet infectious; (3} infectious;
(4) recovered. Accordingly, one writes

dS()/dr = u[1- S(1)] - bI(:) S()
dE(D)/dr = bS(DI(t) - (v + a)E(D
di(eydr = aE(r) — (u + g)i{1)
dR(f)ide = gl(t) — uR(1)

(8.7)

Here (1/u) 1s the average life expectancy of individuals in the population;
(1/a) the average latency period; and (1/g) the average infectious period.
The parameter b is the transmission coefficient. '

As given above, eqns (8.7) exhibit weakly damped oscillations about a
stable fixed point. This property is at variance with the observation of
recurrent epidemics, for example, in measles at intervals of two to five
years [7]. One factor which may account for the discrepancy is the
aforementioned variation in transmission rates. Thus, several authors (S,
14, 26] have investigated the effects of replacing the parameter & with
functions of the sort
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0
k0

Fig. 8.4 Beyond the region of ‘single-shected’ chaos in Gilpin's equations, one
observes more compiex behaviour. Each pair of figures gives the orbit (left} and
peak-to-peak map for the predators (right}.

{8.8) b(f) = by |1 + by cos (2m1)]

For certain parameter values. this substitution produces resonance.
whereby sustained oscillations with periods of an integer number of vears
result. (Interestingly, the intervai between major outbreaks for a number
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of diseases is in rough accord with the period of the damped oscillations
[2].) This observation finds apparent confirmation in the European data
where traditional methods of time series analysis suggest prominent period-
icities [3].

Numerical studies of eqgns (X.7) and (8.8} indicate two additional
findings of interest [S, 54]. The first is that the period of solutions arising
out of the yearly cycle increases by period doubling. Sccondly, for certain
parumeter values, one observes coexisting solutions of large and small
amplitudes. Schwartz’s studies [54] further suggest apparently fractal basin
boundaries when solutions coexist.

Similar but more explicit results of this sort have been given for a
two-species predator-prey system in which the prey's per capiia rate of
increase is subject to seasonal forcing [30). These authors observed co-
existing routes to chaos. Thus, on increasing the frequency of forcing, a
toroidal scenario is observed, i.e. entrained limit cycle — toroidal flow
{quasi-periodicity) — phase locking (resonance) — chaos. Within the
regions of phase locking, the sequence of rotation numbers follows a Farey
sequence. That is, if, for forcing frequencies wy and w,, there exist distinet
locking states for which the rotation numbers r, = gi/pe and ry = gqilp,,
then there exists a locking state with =g + @) (p + pa) at wy,
where o) < w3 < w;. On plotting rotation number vs. w, this pro-
duces a so-catled ‘devil's staircase’.

However, on decreasing the forcing frequency through the same para-
meter range, one sees period doubling, Taken together, the findings for
both the seasonal SEIR model and the fércéd predator—prey system
suggest that the flows cun be viewed as suspensions of 4 mupping of the
planc in which the cigenvalues pass in and out of overlapping resonance
structures called Arnold's tongues [4, 6]. An important problem for
ecologists is to determine the behaviour of such systems under noise in
which the system can shuttle back and forth between basins of attraction.

8.3 Real-world examples
8.3.1 The embedding problem

The most convincing way to demonstrate the presence of chaotic motion is
to construct a phase portrait, or a slice of it. wherein one plots the values
of the several states through time. We grant that there exist quantities such
as Lyapunov exponents, entropy, etc., by which one can quantify the
degree of chaos. Nevertheless, the fundamental propertics of a strange
attractor are geometric [24]. As always, a single picture is worth a
thousand computations. Unfortunately, ecologists and epidemiologists are
rarcly able to measure all of the relevant quantities. Henee viewing the
motion wouid seem an impossibility,

How to proceed? The problem turns out to arise in other disciplines,
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and recently an ingenious solution has been proposed by Takens [59]. The
basic idea is as follows. Consider an n-dimensional system for which there
are available numerous determinations of the magnitude, x(f), of one of
the state variables. Then, for almost cvery time lag T, the m-dimensional
portrait constructed by plotting x{¢} vs. x(t +7) vs. x(t + 2T) vs. . . . vs,
x[t + (m - 1)T] will have the same dynamical properties as the portrait
constructed from the n original variubles. By ‘same dynamical properties’
we mean the same set of Lyapunov exponents [61], fractal dimension (22,
23], etc. Takens showed that m necd be no larger than 2n + 1. However,
this is only a sufficiency condition. Often, a smaller number of dimensions
will suffice. In particular, an essentially two-dimensional orbit can be
embedded in three dimensions, i.¢. by sctting mm equal to three.

As noted above, reconstructing the phase portrait is important since it
can help one distinguish chaos, a deterministic phenomenon, from the
output of a random process. More precisely, the orbits of chaotic systems
have certain fieldmarks, the most important of which is stretching and
folding. Application of Takens’ reconsiruction scheme allows one to
determine whether or not an apparently noisy time series possesses these
attributes.

8.3.2 Data for childhood diseases

Takens’ method has been applied with considerable success to physical
systems, e.g. the Belousov-Zhabotinskii reaction {46, 57|, and Taylor-
Couette flow [9] (for a review, see [1]). Is this technique also applicable to
ecological systems which are inhcrently far noisier? We believe that the
answer is sometimes yes. In support of this contention, we present data for
three childhood diseases: measles, mumps and chickenpox. Two of these
exhibit nothing more interesting than a yearly cycle with noise super-
imposed. In the case of measles epidemics, however, data sets from two
North American cities strongly suggest a strange attractor.

Figures 8.5-7 summanise the situation for measles in New York City
and Baltimore. Prior to the introduction of the vaccine which led to the
disease’s effective eradication, major outbreaks occurred every second or
third year in New York and at less frequent intervals in Baltimore. For
both cities, the data (monthly physicians' reports for the years 1928-63)
reveal a strong seasonal component with maximum case rates occurring
during the winter. Superimposed on the annual cycle is tremendous
between-year variation in incidence. Thus, for New York, the yearly totals
ranged from a low of about 2000 cases reported in 1945 to a high of over
79 000 in 1941. For Baltimore, the corresponding figures are about 100
and 18 500. (London and Yorke [33] suggest that the number of cases
reported in 1941 may be exaggerated. Specifically, a series of newspaper
articles may have stirred unusual public interest and increased the report-
ing rate beyond the customary one in five to seven cases. The year with
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the next highest number of cases reported, 41000 (about which there
appears to be no question), was 1954.)

(a) - (b

15000 \W 092

0 -257
{c) (d},,
8000 r \1
0 ~2 b

Fig. 8.5 Epidemics of measles in New York City and Baltimore. 1928-63. (a) The
numbers of cases reported monthly in New York and smoothed with a three-point
running average. (b) Power spectrum computed from the logarithms of the New
York data; the principal peak occurs at a frequency corresponding to a period of
approximaltely one year. {c) Smoothed data for Baltimore. (d) Power spectrum for
the Baltimore data.

Figure 8.5 gives the two time serics——the numbers of cases reported
monthly subject to three-point smoothing—and the power spectra {log
power plotted against frequency). Spectra were computed for the
logar.ithms of the smoothed data using a Sande-Tukey Radix-2 Fast
Fourier Transform (8] with the total power normalised to 1. The power
spectra have discernible peaks at a frequency corresponding to a period of
11.9 months, i.e. the yearly cycle. Additionally, for New York, one sees
what appear to be higher harmonics. Beyond this, little can be said except
that the spectra are quite noisy. In particular, subharmonic peaks at
frcquencies corresponding to two years are not observed. Thus, there is
little evidence for the biennial outbreaks predicted by the models of Dietz
{14], Aron and Schwartz [5] and others.

Three-dimensional phase portraits, constructed using Takens’ method
with the lag set equai 1o three months, are shown in Figs 8.6 and 8.7. For
both cities, most of the trajectory lies on the surface of a cone with its
vertex near the origin. It therefore appears that we are dealing with
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Fig. 8.6 Trajectory reconstructed from the New York data {smaothed and inter-
polated with cubic splines) using a tug of three months. The motion suggest a
Rassler-like attractor in the presence of noise. (a—d) The data embedded in three
dimensions and viewed from different perspectives. (¢) The orbit viewed from
above and sliced with a plane (vertical linc) normal to the paper; Poincaré sections
are shown in the small box at the upper left. (f) One of the Poincaré sections
magnified (left} and the 1-D return map computed therelrom (right). The latter
suggests a ummodal curve.

essentially two-dimensional flows that can he embedded in three space.
(For the New York data, we calculate o lower bound on the fractal or
Hausdorf dimension of 2.55 using the method of Grassberger and
Procaccia 22, 23]).

Figures 8.6e and 8.7¢ confirm the approximately two-dimensional
nature of the flows. Here the orbits arc viewed from above (main part of
the photographs} and sliced with a plane (vertical line) normal to the
paper. Poincaré sections are shown in the small boxes at the upper left.
Although the sections have noticeable thickness, they are none the less
thin in proportion to their length. Note (that cach box contains two sections
which, together, form a rough ‘vee'. Tlin s ol conse what ane expects on
slicing a hollow cone.

For each city, one of the sections is magnified in Figs 8.6f and 8.7f
(left). At the right, we plot the 1-D return map., i.e. successive points on
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Fig. 8.7 Reconstructed trajectory for the Baltimore data. The 1-ID map is highly
compressed. Order of photographs as in Fig. 7.

the Poincaré section against each other. The resulting collection of points
suggests unimodal, noninvertible maps of the sort associated with the
period-doubling route to chaos. For New York, the section and map are
especially clean. In passing, we note that the data for 1941 and 1942 (the
points at the upper left and lower right of the map) are consistent with
unimodality. This is important since the 1941 data may represent an
overestimate [33]. For Baltimore, there is more scatter about the section,
and the map is extremely compressed at the left. The clustening of points
near the origin nevertheless indicates a one-humped curve.

8.4 Effects of noise on systems with simple and cdmplex motion

Examination of the orbits and maps for measles strongly suggests that one
is seeing a strange attractor in the presence of noise. In particular, it is
possible 1o demonstrate the presence of the stretching and tolding of
nearby trajectories that produce the apparent stochusticity inherent in
chaotic systems [52]. Other possible examples of low-dimensional chaotic
motion in ecology include the lynx cycle of Canada [S0], and outbreaks of
Thrips imaginis {52], an insect pest.
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Of course, not all ecological systems admit to such a description. In the

case of childhood diseases, for example, the data for chickenpox (Fig. 8.8)

(e}

Fig. 8.8 Epidemics of chickenpax in New York City. 1928-63. Despite the fact
that the Poincaré section is no thicker than for measles, there is no hint of »
unimodal map, (a) The time scrics. (b) Spectrum, (¢-f) Reconstructed orbit, {g.h)
Poincaré section and map. The situation fur mumps outbreaks is simitar [53).

and mumps suggest a simple annual cycle with noise superimposed. In
particular, there is no hint of a 1-D map, which is to say that one cannot
come up with a one-dimensional rule relating the magnitudes of subse-
quent outbreaks. This finding raises the question as to the effects of adding
noise to systems with simple and complex dynamics. To address this
question for 1-D maps, we iterated the mapping

(8.9) X o (1 +2) X expir(1- X)]

where z is drawn from a Gaussian distribution with mean 0 and variance &,
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Note that noise has been added multiplicatively, which is sensible, since
the parameters in ecological processes refer to per capita rates of birth and
mortality. Figure 8.9 shows the results of our investigation. Essentially,

* N
N

Fig. 8.9 lterating a I-D map in the presence of noise. Each of the parts (top to
bottom} shows eqn (8.9) iterated for noise levels equal to 0.05, 0.10 and 0.20.
From left to right the deterministic dynamics correspond to a stable fixed point, &
-cycle, 4-cycle and chaos. For the* fixed point and cycles, the parameter was
chosen to place the map at the superstable point.

1

e — ———

one sees that for maps with a stable fixed point, adding noise results in an
uninformative cloud of points. However, as one moves {in parameter
space) past the bifurcation to a 2-cycle and towards the chaotic region, the
addition of noise causes the system to explore the map with increasing
fidelity. Thus, an empiricist studying the dynamics of a system with two
point cycles or more complex behaviour would protrably infer the nature
of the underlying dynamics. The same empiricist would probably be at a
loss 10 understand the dynamics of a system with a stable fixed point. In
effect, he wouid see only the noise.

Viewed from the preceding perspective, onc might expect (for fixed
noise levels) that fractal dimension [17} declines as the deterministic
component of the motion becomes more complex. To test this presump-
tion, we iterated eqn (8.9) 5000 times and embedded the resuiting time
series in successively higher dimensions. For each embedding, we calcu-
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lated a lower bound, D,, on the fractal dimension t}sing an algorithm
devised by Grassberger and Procaccia [22, 23]. Specifically, we compute

the quantity
(8.10) C(g) = lim {{Un(n- 1)] 2 8(g - | X, ~ X;)}
where 9(-) is the Heaviside function,
6(-)=0, g< X,- X,
8()=1, g>Xi-X,

t

Fig. 8.10 The correlation dimension, D, for dif_ferent embedding dimensnons. D,.
for a one-dimensional map, eqn (8.9}, iterated in the presence of noise, s = 0.05.
For maps with a stable fixed point (r = 1.0), D increases continuously with and is
approximately equal to D,. For maps in the chaotic region (r = 3.0, 3.5), D, levels
off at values close to 1. Two point cycles {r = 2.256) ){lgld_ a correiation of zero
corresponding to the fact that the time series consists of disjoint subsets.

For attractors that are dense on some subinterval, Grassberger and
Procaccia [22, 23] argue that for small g
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(8.11) Clg) = g

»
and that n is a lower bound on the fractal or Hausdorf dimension, D. The
difference arises because Hausdorf dimension is a purely gecometric con-
struct, whereas D, depends on the frequency with which different points
on the attractor are actually visited. If this distribution, sometimes called
the natural measure of the atiractor, is uniform, D_ = D, Figure 8.10
summarises our results for 5 = 0.05. Here, we plot D, = n against D,,
the embedding dimension for several values of r. For r — 1.0 (superstabie
fixed point), the dimension of the time series essentially equals D,. This is
what one expects for a Gaussian process for which the dimension is
infinite. For r = 2.256 (superstable 2-cycle), a dimension of zero obtains,
corresponding to the fact that the points are concentrated into two subsets
of the interval (Fig. 8.9). Finally, for maps in the chaotic region (r = 3.0

“and 3.5), D, appears to approach an asymptote of about 1.0. Thus, for

maps in the chaotic region, it is possible to infer correctly the one-
dimensional nature of the process underlying the time series, even in the
presence of substantial amounts of noise. For maps with stable fixed
points, such an infercnce does not appear possible. Work in progress [54)
suggests analogous results for flows.
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Oscillations and chaos in cellular
metabolism and physiological systems

P.E. Rapp

Department of Physiology and Biochemistry,
The Medical College of Pennsylvania, 3300 Henry Ave., Philadelphia, PA
19129, USA

9.1 The dynamical behaviour of biochemical and physiologica! systems: an
overview :

It was once common wisdom that biochemical reactions incvitably con-
verged rapidly to a thermodynamic steady state and that this steady state
was unique. Similarly, at the systemic level, a restrictive view of the
concept of homeostasis dominated physiological thinking, and it was
supposed that physiological control functioned exclusively to restore
transiently disturbed systems to a steady state. It is now recognised that
this is not the case. Complex dynamical behaviour is an aspect of bio-
logical regulation. Two such behaviours, sustained oscillations and chaos,
are considered here. .

Two periodic biochemical systems will be described in section 9.2, the
glycolytic oscillator, and-oscillations in intracellular calcium—cyclic AMP
control systems. They offer contrasts both in the dynamical basis of
rhythmicity and in the analytical methods that have been used to ¢xamine
them. The mathematical models of the glycolytic pathway take the form of
ordinary nonlinear differential equations. Because of the low dimension of
these models, it has been possible to establish a fairly complete character-
isation of the equations’ solutions using techniques from the qualitative
theory of differential equations. As will be reported in the next section,
these investigations have established to a high degree of confidence that
oscillations in the glycolytic pathway are the consequence of allosteric
activation of an enzyme by its product. The intracellular calcium-cyclic
AMP system is the second example considered in section 9.2. It has been
less completely characterised than the glycolytic system. In part this is
because it is un inherently more complex system. Adenylate cyclase, the
central enzyme in the network, is membrane bound, and the system is
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muiticompartmental since extracellular and internally sequestered calcium
are important elements. As in the case of glycolysis, the mathematical
description is a system of nonlinear ordinary differential equations, but
because of the high dimension of the system, analysis by the methods that
succeeded with glycolytic models has not been as successful, and the level
of detailed information obtained in glycolytic models has not been attained
for calclum—cyclic AMP systems. However, control theory methods, which
are ultimately derived from the theory of differential equations, have
offered some indication of the dynamical structure of the network. In
contrast with glycolysis, allosteric inhibition of an enzyme rather than
activation appears to be the crucial process. Though analysis by control
theory does not always produce detailed conclusions in large dimensional
systems, the results are expressed in a form that encourages qualitative
generalisations which assist in constructing an intuitive understanding of
what types of metabolic system can oscillate.

The enginecring analysis of calcium—cyclic AMP control loops suggested
that the introduction of nonmonotonic nonlinearities into these systems
could result in a network that can enter a domain of chaotic behaviour. In
section 9.3 of this chapter, the implications of this result are considered.
Calcium-dependent activation of adenylate cyclase by calmodulin can
result in a nonmonotonic dependence of adenylate cyclase activity on
calcium. This suggests that the intracellular second-messenger system
could become chaotic. Since this biphasic form of activation is observed in
neural tissue, this analysis supports other theoretical arguments indicating
that chaotic neural behaviour is possible at the cellular level and at the
level of small neural networks. These theoretical discussions are consistent

with recent experimental results that are also summarised in section 9.3,

The fractal dimensions. of attractors governing the spontaneous activity of
neurones in the somatosensory cortex of the squirrel monkey have been
calculated and in some cases the results are consistent with low-
dimensional chaotic behaviour.

The incomplete nature of these results, both experimental and theoreti-
cal, makes construction of a link between compiex dynamical behaviour at
the cellular level and clinically observed failures of neural regulation a
process more of speculation than deduction. For this reason, these possi-
bilities are given only a brief examination at the end of the chapter. Three
neurological disorders are considered: tremor, dyskinesias and epilepsy.

On the basis of the preceding discussion of dynamical systems theory, it

will be suggested that an epileptic seizure could be an automatic corrective
mechanism that re-cstablishes neural co-ordination that may have been
lost as the result of an antecedent dynamical transition to disordered
behaviour. Thus, in an abstract sense, the seizure is a restorative
phenomenon and not a defect. : :

‘been the glycolytic oscillator. Originally observed in cell-free exfia
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9.2 Perlodic behaviour in biochemical systems

Osg:]latory behaviour is commonly encountered in biological systems
Periods range from fractions of a second, in the case of mammalian oentrai
NErvous system neurones, to the annual rhythms of plants [120]. The
analysis reported here has been motivated by investigations of .high-
frequency cellular oscillators with periods of the order of minutes or less
However, many o't' the general conclusions from these studies are appl.ic-.
able to systems with longer periods. Even given this restricted frequency

domain, the experimental literature is enorm
presentid m parm ous [90]. Some examples are
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Since its discovery in 1964 [34], the archetypal biochemical oscillator b
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yeast, oscillations in glycolytic intermediates have since been observed in.
preparations derived from cardiac and skeletal muscle, cultured fibroblasty’
and Ehrlich ascites tumour cells. (An extensive bibliography is given in]
[90].) The features of the glycolytic pathway important in analysing’
oscillations are shown in Fig. 9.2.
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Fig. 9.2 Control structure of the glycolytic pathway. Solid lines denote material
transport or chemical reactions. Dashed lines denote allosteric controt relation-
ships. PFK = phosphofructokinase, PGK = phosphoglycerate kinase, PK =
pyruvate kinase, G6P = glucose 6-phosphate, GIP = giucose 1-phosphate,
F6P = fructose 6-phosphate, FDP = fructose diphosphate, GAP = glyceralde-
hydephosphate, 2-PGA, 3-PGA and 1,3-PGA = the phosphoglyceraldehydes,
PEP = phosphoenolpyruvate (from [4]).

Phosphofructokinase is the crucial contro! enzyme. An early model of
the oscillation was constructed using the feedback activation of this
enzyme by its product as the crucial control feature (7, 39]. The model
takes the form of a two-dimension ordinary differential equation

) da/dt=0o 1 —GM'I’
©.1) | dylds = au® - key

ae(l +ae) (1 +v)* + Léace’ (1 +ace’)
L1+ ace')+ (1 +v)P (1 +ae)?

where a is the normalised concentration of glucose, vy is the normalised
concentration of ADP, and o, is the rate at which substrate is introduced.
into the system. o, is strictly positive. Thus, the system is thermo-

open and an essential condition for sustained oscillations has
been met. This differential equation reproduces much of the experi-

o=
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mentally observed behaviour. A more systematic mathematical analysis of
is model and its extensions 10 a more detailed representation of the
iglycolytic pathway has been given by Plesser [85].
r In the Goldbeter-Lefever modet [39] of the glycolytic oscillator, feed-
“back activation is essential to the destabilisation of the thermodynamic
Mady state and the resulting oscillation. However, allosteric positive
back is not sufficient to produce sustained oscillations. It can be shown
t simple positive feedback systems fail to display oscillations [91}. Nor is
‘positive feedback necessary for oscillatory behaviour. Negative feedback
can be periodic. An example of a negative feedback system which
y be capable of rhythmic output is the Intracellular calcium-cyclic AMP
“system (Fig. 9.3). In this system calcium inhibits adenylate cyclase, the
ﬁyme that synthesises cyclic AMP, and cyclic AMP produces an increase
#in intracellular calcium by promoting the desequestration of calcium,
‘possibly via a sequence of intermediates {93, 94].
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Fig. 9.3 A simplified intracellular second-messenger network. Stimulating
.hormone, H, has two actions on the network. It activates adenylate cyclase, AC,
which results in an increase in intracellular cyclic AMP, C;. In some preparations
the hormone causes a transient increase in membrane permeability to calcium,
which results in an increase in intracellular calcium, Ca;, This increase is augmented
by desequestration stimulated by cyclic AMP. The feedback loop is closed by
cakcium inhibition of adenylatc cyclase (modified from {94])

A detailed mathematical implementation of this system for a specific
celi type is given elsewhere [83). However, some qualitative sense of the
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behaviour of the system can be obtained by examining & highly idealised
phenomenological model {89] of the form

x= GQ)f(x)

where x is the normalised concentratidn of intracellular calcium, and f(x)is
the calcium dependence of adenylate cyclase in normalised coordinates:

fx) = 1/(1 + x°)

p is a positive integer that determines the degree of sigmoidicity in the
inhibition function. G(s), where s is the Laplace transform variable,
attempts to depict the sequence of intermediate chemicai steps betwees
the synthesis of cyclic AMP and the genesis of the feedback signal:

G(s) = {(by + s)(by +3) ... (b, + )}

Parameters b, j = 1, . . . n are positive constants. In the biological
literature this system is sometimes termed thé Goodwin equations aftes;
their use in an early model of the control of protein synthesis [40]. -

The object of the analysis is to determine the range of parameter values
(b's, p and n) which resuits in periodic solutions. It can be shown that
questions about the existence of periodic solutians turn on the stability of
the steady state, denoted x*, which in turn is most expeditiously examined
by application of the Nyquist stability theorem [54]. Let G(iw) denote the
Nyquist locus. It is conventionaly plotted for w increasing from zero i
infinity (Fig. 9.4).

_lmis)

Fig. 9.4 The

by = 1, Atrows ist locus for positive w corresponding to Gis) when n = 1§,

icate the direction of increasing w (from [89]).

For any given value of n there are m intersections of G(iw) and the
megative real axis for =0, where m is the smaliest non-negative integer
such that ém=n-2. Let w; . . . w,, be the frequencies at these inter-
sections. Define the family of m functions W,(p, b, . . . b,) by

W(p.by, . . . by) = |f'(x*)||Giw)|

Theorem. The following theorem has been demonstrated [79]. Given
the system x=G(s) f(x) with-G(s) and W; as defined above, then

ka) the singularity x* is a local attractor if and only if W, <1;

{b) if W;>1>W,,,, there are exactly j pairs of eigenvalues with positive
real part; if W,,>1, there are m pairs with positive real part;

() if W; = 1, there is one pair of eigenvalues with A = + w; and f-1
pairs with positive real part.

These results on the local stability of the steady state can be related
directly to the existence of periodic solutions. Application of the Hopf
bifurcation theorem shows that a periodic solution appears at the W, = 1
‘bifurcation [79). Calculation of the curvature of the centre manifold shows
ithat this periodic solution is an attractor. This result carries the limitations
lof any result obtained by the Hopf bifurcation theorem, namely it is valid
En’l\y for parameters in a neighbourhood of the bifurcation. A theorem
constructed on the contraction mapping theoseni shows that there is a

riodic solution whenever W >1. The condition that the parameter

or be near bifurcation is no longer necessary [46]. However, this result

ics limitations of contraction-mapping theorem ‘constructions. It
onstrates the existence of a periodic solution, but does not show that it
unique and does not offer any information about its stability properties.
ENone the less, these two results.and the substantial body of empirical
mputational evidence strongly argue that the system has a unique
obally attracting steady state if W;<1, and a unique attracting periodic

ution if W,>1.

Though this mathematical description is a crude characterisation of the
{chemical reality of caicium—cyclic AMP control systems, it does offer some
Hualitative lessons of possibly wider applicability. These resuits suggest
ghat the tightness of control stability tradeoff long recognised in techno-
Jogical control systems is reflected in biochemical networks. This is seen by
examining the function W, which, according to the arguments given
igbove, predicts the presence of oscillations. W; contains two multiplicative
factors, |f'(x*)], the vaiue of the derivative of the feedback function

t the steady state, and {G(iw,)|, the magnitude of the Nyquist locus at its
ifirst intersection with the negative real axis. Factors that increase their
Inagnitude will promote the appearance of oscillations. The function f(x)
ives, in normalised coordinates, the rate of synthesis of cyclic AMP as a

ction of the concentration of the feedback variable, intracellular
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calcium. The function for three values of p is shown in Fig. 9.5. Asp
incrcases, the transition from high synthesis rate to low synthesis rate
becomes sharper and thus the magnitude of the derivative increases.
Therefore increasing p, which produces sharp transition functions, the
chemical analogue of tight control, can result in the appearance of
oscillations. In fact, a value of p>1 is essential for periodic behaviour {1},
Chemically, p can correspond to the number of monomers-that form the
functional allosteric enzyme. Thus, this result is consistent with
Goldbeter’s in concluding that allostery is an important, possibly crucial
determinant of periodic mewhnhc activity. This point has been made
independently by Hess [48].

Jix)

Fig. 9.5 The effect of increasing p on the nonlinearity f(x) = 1/(1 + x°).
{a)p = 1;(b) p = 2;(c} p = 3 (from [91]).

The second factor in W, is |G(iw;)|. An increase in this factor can

also lead to oscillations. Two related mechanisms can do this. The first is .

to increase n, the number of intermediate steps in the feedback loop. The
second dynamically equivalent mechanism is to introduce delays into the

loop that correspond to synthesis and transport delays. In these systems

G(s) becomes
G(s) = &2 {(by +5)...(by+3)}

The Nyquist loci corresponding to increasing values of delay are shown in
Fig.  9.6. Since |G(iw,)| is monotone increasing in the total delay,
another engineering result is thus obtained for biochemical systems;
increasing the delay between a process, in this instance the synthesis of
cyclic AMP, and its feedback response can destabilise a network and result
in oscillations.
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Fig. 9.6 The effect of increasing delay on the Nyquist locus for the case n = 1,
= 1 (from [91)).

On summarising this cursory examination of high-frequency biological
oscillators, it can be concluded that a large experimental literature demon-
strates that oscillations of this type are frequently encountered, and that in
some cases the techniques of nonlinear control system analysis can be
helpful in investigations of these networks. It will be shown in the next
section that the study of biochemical oscillators by these methods has
established a set of results and a form of analysis that can be extended to
the examination of chaotic metabolic systems.

9.3 Chaotic behaviour in biochemical and physiological systems

The most intensively investigated example of chaotic chemical behaviour
has not been in a biochemical system but rather in the inorganic Belousov-

‘Zhabotinskii reaction. Early theoretical analyses of chaotic behaviour

[112, 114] were anticipated by empirical studies by Hudson and co-workers
[99] and Rassler ef af [97]. In the Rssler experiments, electrochemical
potential was measured in a continuously stirred, isothermal system that
received a continuous injection of manganese sulphate, sulphuric acid,
malic acid and potassium bromate. Thus, the system was thermo-
dynamicatly open, but autonomous in the sense that it did not receive
time-dependent input. In addition to periodic potential signals, seemingly
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chaotic potential variation was observed. In subsequently performed
systematic investigations it has been found that flow rate through the
reaction chamber can be used as a parameter to tune reproducibly
between periodic and chaotic dynamical regimes. Many of the analysis
techniques outlined elsewhere in this volume, such as the graphical
construction of the associated attractor, have found application in this
chemical system [98]. Periodic doubling bifurcations and chaotic one-
dimensional return maps have been observed [102], as has the parameter-
dependent appearance of a broad-band component of the Fourier
spectrum [116).

Although it is possible to show that even comparatively simple models
of metabolic control circuits can display chaos [25, 38}, experimental
investigations of chaos in biochemical systems have not yet reached the
level of detail attained with the Belousov-Zhabotinskii reaction. In part
this may reflect a consistency with Goldbeter's theoretical conclusion that
chaos is comparatively rare when compared with periodicity [25]. It has
been reported that chaos was observed in the oxidation of NADH
catalysed by horseradish peroxidase [26]. Using enzyme concentration as
the bifurcation parameter it was possible to induce reversible transitions
between periodic and chaotic behaviour. An associated mathematical
model [81] can reproduce the periodic but not the chaotic regime.

Periodic input in both numerical models of the glycolytic pathway and
in an experimental preparation derived from Saccharomyces cerevisiae
results in a rich variety of behaviours including chaos [75]. The math-
ematical model of chaos incorporated phosphofructokinase and pyruvate
kinase as the principal enzymes of the glycolytic pathway and examined
the effect of periodic variation in fructose 6-phosphate. As the resuit of
varying input frequency, integer entrainment ratios of 2, 1, 3, 5, 7 and 11
-were observed, as were period-doubling bifurcations and chaos. In the
experimental system, the NADH fluorescence was observed in response t¢
constant glucose input (the system is autonomously periodic: see Fig. 9.7,
and periodic glucose input. By varying input frequency, entrainment ratio:
of 1, 2, 3, 5 and 7 or chaotic fluorescence could result. A stroboscopic
transfer function was constructed by plotting the value of a local maximum
in NADH fluorescence against the previous maximum, thus approximating

a first-return map. The transfer function obtained by this procedure admits -

a period-3 solution which is consistent with chaos [61]. Using input
amplitude as an additional bifurcation parameter, further complex
behaviours appear in the mathematical model of glycolysis including
transitions between oscillatory modes and intermittency [74]. No examples
of chaotic behaviour in autonomous glycolytic systems (theoretical or
exporimental) have been reportied.

In commonly encountered motabolic kysteni the uctivity of an allosterie
snzyme ls & monotonic function (increasing or decreasing) of its allosterie
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effectors. In the previous sections of this chapter it was argued ‘that
oscillations may occur in metabolic feedback systems in which the actnrity
of a crucial control enzyme is uniformly decreasing with the concentration

- of the feedback effector. It can be shown that in a network with a similar

structure in which the feedback activator metabolite is an allosteric
activator, switching behaviour can result [91]. This summary motivates the
following three questions.

(a) Does enzyme activity inevitably vary monotonically with effector
concentration? : ‘

(b) If nonmoenotonic effector—activity relationships are possibie in meta-
bolic feedback systems, what might the dynamical consequences be at
the level of cellular metabolism? :

(c) What might the dynamical consequences be at the level of systemic
physiological regulation?

Fig. 9.7 Measured NADH fluorescence (upper trace) for different glucose input
functions (lower trace). All ordinate units are arbitrary. (a) Oscillations at constant
iaput flow; (b) chaos; {c) 1 : 5 entrainment; (d) 1 : 3 entrainment (from 17sh-

This chapter will conclude with an examination of these questions. It
will be shown that the effector-activity relationship is not invariably
monotonic; a specific example, the effect of intracellular calcium on the
activity of udenylate cyclase, will be considered. The dynamical conse-

uences at the cellular level of thess feedback relationships are not yet
zzlly characterised. However, results now avallable suggest that chaotle
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variation in intracellular concentrations of calcium and cyclic AMP could
result. The ensuing assessment of the consequences of chaotic second-
messenger networks is frankly speculative, but when combined with other
theoretical and experimental evidence these results suggest that chaotic
neural activity may be possible. This in turn may result in clinically
observed pathologies of neural regulation.

As indicated previously, intracellular calcium is usually an mhlbuur of
adenylate cyclase, but this is not invariably the case. In some tissues the
action of calcium on adenylate cyclase is mediated by the calcium binding
protein calmodulin [19]. Calmodulin is now conventionally described as
ubiquitous. It is found in plants {118}, in invertebrates (examples include
twelve species belonging to eight phyla that include the sea anemone,
clam, snail, starfish and earthworm [117]), and in all mammalian tissues
examined [19, 118]. Calcium combines stoichiometrically with calmodulin
in all tissues, and in some tissues the resulting calcium-calmodulin com-
plex activates adenylate cyclase. Thus, at low concentrations, calcium is an
activator of the enzyme. However, at high concentrations of intracellular
calcium, all calmodulin binding sites are occupied. Excess calcium, acting
directly on the enzyme, is inhibitory. A nonmonotomc biphasic
activation—inhibition curve results. (It should be noted that blphaSIC effects
of calcium on adenylate cyclase had previously been reported in hormone-
activated preparations. On reviewing adipocyte data, Bradham and
Cheung [8] concluded that calcium was required for the binding of some
hormones to receptors, and that calcium in excess of that required for
successful binding of agonist to receptor is inhibitory. The consequence of
these relationships in in vitro preparations is a biphasic adenylate cyclase
versus calcium function when hormone is present. When hormone is
absent, calcium acts as an inhibitor at all concentrations. Examples are.not
limited to adipocytes, but also include the ACTH-sensitive adenylate
cyclase in the bovine adrenal gland {3] and the oxytocin-sensitive enzyme
. of frog bladder epithelial cells [6]. In in vitro preparations of partially
purified enzymes, the functional distinction between intracellular and
extracellular calcium is lost. It seems possible that hormone-dependent
biphasic systems do not constitute a true, cxample of a biphasic effect of
intracellular calcium on adenylate cyclase.) Calmodulin-dependent caicium

activation of adenylate cyclase resulting in a biphasic calcium dependence

has been observed in bovine brain [20]. porcine brain [11], rat cerebral
cortex [10], rat corpus striatum {37], rat glial tumour [12], guinea pig brain
[86], and a human neurobiastoma [21]. It is quite possible that these cells
contain more than one form of adenylate cyclase. These results would
indicate only that at least one, but not neccssarily all forms, is calmodulin
sensitive.

-« Though ail of the many mammalian lissues tested contain calmodulin,
.the adenylate cyclase in these cell types is not necessarily calcium-
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calmodulin sensitive. Indeed this sensi\‘ivity and its consequent biphasic
activity seem to be exceptional. For éxample, rat heart, rabbit heart,

porcine renal medulla and frog erythracytes all contain calmodulin, but
adenylate cyclase is insensitive to the cal¢ium—calmodulin compiex in these
cells. Calcium is a monotonic inhibitor ok the enzyme in these tissues [21].

The pattern of sensitivity across cell types has encouraged some to
speculate that caleium—calmodulin activation of adenylate cyclase is limited
to neural and neurally derived tissue [11‘4] However, this generalisation is
evidently unwarranted since activation has been reported in rat pancreatic
isiet cells {101,115].

“The form of the biphasic enzyme activity versus calcium function should
be considered since it is important to subsequent dynamical arguments. In
the rat cerebral cortex in the absence of calmodulin, calcium has a
negligible effect at low concentrations. At.concentrations greater than 1.5
x 10~*M, it was found to be inhibitory. In the presence of calmodulin a

biphasic response was observed with a peak at 1.5 x 107*M calcium

[10,13]. (A general observation should be made concerning cited values of
calcium concentration. In some cases, particularly in the earlier literature,
high nonphysiological concentrations of calcium were employed, inevitably
resulting in the inhibition of the emzyme, even in preparations where
calmodulin-dependent activation was subscquently demonstrated. Also,
the concentration of ionic calcium, free of chelator and available to act on
the enzyme, can be imperfectly calcufated. Examples include the failure to
calculate the competition of magnesium and calcium for the same EDTA
and EGTA ligands. The reaction mixture also contains ATP, which is a
calcium chelator [82]. Given the availability of these ligands, the concen-
tration of ionic calcium may be less than the cited value. Computer
programs to perform these calculations have been published {31].) A more
complex regulatory mechanism was discovered in this preparation when
the role of GTP was considered [14]. If calmodulin is absent and GTP is
present, a slightly biphasic function with a peak at 1.5 x 10~*M calcium is
observed. If calmodulin is present and GTP absent, a more markedly
biphasic response is obtained. When both calmodulin and GTP are
present, a strongly biphasic curve is produced with a peak activity at 1.1 x
107*M. The function is much more nonlinear than that obtained in the pre-
ceding cases [14]. Thus, as the conditions of the experimental preparation
more closely approach in vivo conditions, a more sharply defined enzyme
response is obtained. Very nonlinear responses have been obtained with
adenylate cyclase isolated from guinea pig brain ([86], Fig. 9.8).

What might be the effect of this biphasic response on the stability of
intraceltular calcium-cyclic AMP loops? It has already been argued that to
a first approximation these systems can be modelled by a highly idecalised
control loop of the form x = G{s)f(x), where x is the concentration of
intracellular calcium, s is the Laplace transform variable, and G is &
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Fig. 9.8 Calcium dependence of guinea pig brain adenylate cyclase and phospho-

diesterase. Calcium activation of adenylate cyclase is shown in the curve CaM

(marked by circles in the diagram). The calmodulin content of the preparation was
1.57 ug mg™! protein. The role of calmodulin in the calcium-dependent activation

is demonstrated in a subsequent experiment in which the preparation was washed

with chelators to produce an EGTA-membrane system (labelled EGM, marked by
triangles). This process results in dissociating calmodulin bound to the enzyme end
abolishes activation of the enzyme. The calcium dependence of soluble calmodulin-
dependent phosphodiesterase is shown in the curve marked with squares. Note
that the horizontal axis is decreasing in units of pCa. (From [86].)

large-dimensional, low-pass, lincar filier. The function f{x) characterises
the effect of intracellular calcium on adenylate cyclase. In previous cases
where f{x) was monotone decreasing oscillations could resuit. What can
the dynamical consequences be if a nonmonotonic function were intro-
duced? Specifically, can chaotic behaviour result in a single-loop feedback
system with a nonmonotonic nonlinearity? The answer is now known to be
yes. Rossler er al. [97] produced a three-dimensional system, G(s) =
(s+1)™, where f(x) is a highly noniinear function. Sparrow [104] con-
structed an example that employs a well-behaved biphasic nonlinearity
that had been previously studied by May in chaotic difference schemes,
fix) = rxe~* (Fig. 9.9).
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Fig. 9.9 The function rxe™* for r = 20 (from [104]).

If 0<r<1, there is a unique globally attracting non-negative equilibrium at
x=0. If r>1, there are two non-negative equilibria, x = 0, which is
nonattracting, and x* = Inr. For 1<r<8.197, x* is an attractor. At r =
8.197 the system undergoes a Hopf bifurcation and an attracting periodic
solution results. Subsequent period-doubling bifurcations appear as r is
increased, resulting in increasingly complex periodic solutions. For r
slightly greater than 21.0, a periodic orbit was not detected in the
numerical results. Empirical copputational evidence suggests that the
system entered a chaotic regime. As r is increased further, the system
appears to undergo a series of reverse bifurcations, compressed in a
comparatively narrow range of r values, resulting in a return to a stable
periodic orbit. The Sparrow system has very large dimensional, linear
filter, G(s) = (1+s/n)™". The numerical values cited here are for the case n
= 50. It might be supposed that this value of » is far larger than the
typical dimension of biochemical feedback systems. Indeed, at this value
of n, the system behaves similarly to the finite. difference scheme G(s) =

- ¢~ obtained in the limit as n approaches infinity. However, this large

value of r may not be as objectionable as it at first scems. If a discrete
time delay is incorporated in the system, as is freqiently done in biological
models {64, 72, 73], the value of n resulting in chaos can be reset to lower
values if the delay is sufficiently large. Further, G(s) as it appears in
Sparrow’s system is an exceptionally well behaved element. The intro-
duction of numerator dynamics would further reduce the value of n
needed to produce dynamical behaviour. This is a single-loop system. A
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more realistic representation would incorporate additional loops. It can be
shown that single-loop models of biochemical networks that have a
globally attracting singular point can losc stability when additional loops,
even negative feedback loops, are introduced into the system [79]. Finally,
it should be noted that even at large values of » the nonlinearity in this
network is a smooth biphasic function. It does not have the abrupt on—off
characteristic of the experimentally determined calcium enzyme activity
function (Fig. 9.8). A comparison of the Sparrow system and the Rdssler
system provides a useful example of the trade-off between the nonlinearity
J(x) of the system and the dimension needed in G(s) for the appearance of
complex dynamics. In the Rossler system an iil-behaved f{x) produces
chaos if n = 3. In the Sparrow system f(x) is weli behaved and large
dimer;sions are required. The limited body of mathematical results
describing chaotic control networks makes generalisation difficult. How-
cv_er, the results seem to suggest that the chaotic behaviour observed in
this simple model will not necessarily be lost when complications that
result in a more faithful depiction of biological systems are introduced.

Combining these mathematical results with the biochemical evidence :

concerning calmodulin-dependent adenylate cyclase, it is possible to draw
some provisional conclusions. Specifically, the elements required for a
chaotic feedback system, including a nonmonotonic nonlinearity, are
present in intracellular second-messenger networks. It is possible to specu-
late t.hl.t this system might enter a rcgion of chaotic behaviour in vivo. The
- heuristic nature of this argument is explicitly recognised, but its dynamical
- consequences are of interest. Both intracellular calcium and adenylato
- cyclase are coupled to processes at the cell membrane that are reflected in
_ membrane potential [4, 113]. Thus, if the second-messenger network were
1o enter a domain of chaotic behaviour. chaotic variation in membrane
pt{tential would result. The biphasic feedback function that is essential to
this argument has been identified in neural tissue. Therefore, this line of
reasoning leads to the speculation that neurones can be chaotic. '
Thi.s is not the only theoretical argument suggesting that chaotic neural
behavu_mr is possible. Carpenter |16] analysed generalisations of the
Hodgkin-Huxley equations and found highly nonlinear cases to be chaotic.
Chay [17] constructed a model of a single neurone using Eyring multi-
. barrier rate theory and subsequently demonstratéd [18] that apparently
chaotic numerical solutions could be obtained with appropriately selected
m values. However, in the Chay study the distinction between
chaotic solutions and complex periodic solutions with long periods and
substantial higher harmonic content was made by qualitative visual assess-
ment. Quantitative measures of chaotic behaviour, such as the dimension
of the attractor, Lyapunov-exponents or Kelmogorov entropy, were not
provided. Chay observed that some model calculations resemble the
- recondings of Aplysia neurone R3 in response to flurazepam [53]. Interest-
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ingly, flurazepam,ja benzodiazepine-derived hypnotic, includes ataxia
among its adverse reactions. Theoretical arguments also indicate that
multicellular neural systems can enter domains of chaotic behaviour.
Mackey and an der Heiden [70] analysed a system modelling recurrent
inhibition in hippocampal CA3 pyramidal cells in response to penicillin.
They found evidence for chagtic behaviour. These results are of particular
interest since, at excessively high serum levels, the neurotoxic action of
penicillin can result in convulsions. Experimentally, a penicillin focus is
created in animals by applying penicillin in very high concentrations
directly to the cortex. The resulting seizures are commonly regarded as a
successful experimental approximation of focal epilepsy. A large-scale
brain behaviour, the centrat dopaminergic system, has been modelled by
King et al [60]. Changes in the cfficacy of dopamine at the post-synaptic
membrane can result in seemingly chaotic solutions. They have suggested
possible clinical connection with labile behaviour in schizophrenia and

~ disordered motor activity in Parkinsonian patients. :

As is frequently the case, the rich diversity and vivid imagination of the
theoretical literature is correlated with, and quite possibly a consequence
of, a paucity of experimental evidence. However, some suggestive experi-
mental evidence is now available. In both experimental and mathematical
systems, chaotic behaviour can result when an autonomous oscillator is
subjected to periodic stimulation of appropriate amplitude and frequency.
Behaviour that appears to be chaotic has been observed in periodically
stimulated neurones. Examples include the molluscs Lymnaea stagnalis
{81} and Onchidium verruculatum [47], and the squid Dorytenthis bieskeri
[77). Since this is a common behaviour of nonlinear oscillators, it is tho most
readily observed form of chaos. Because the stimulating input in these
experiments has a comparatively high amplitude, the degree to which this
is a physiologically realistic stimulation is open to question. For these
reasons the functional significance of these observations is difficult to
assess. Chaos in periodically forced nonlinear oscillators, including bio-
logical systems, is considered in detail in Part 1V of this volume. Experi-
mental literature that explicitly suggests that chaotic behaviour has been
observed in neural systems not subject to periodic stimulation is more
kimited. Holden and his colleagues [52] treated the neuronc R.Pe.D.1 of
the mollusc Lymnaea stagnalis with high concentrations (10 mM) of
aminopyridine for prolonged periods of time. Irregular-amplitude modu-
lations, which the authors suggest may be chaotic, were seen only after the
preparation was returned to normal saline and the drug was washed away.
Care must be exercised in the interpretation of these results since the
effect was observed only after prolonged exposure at high conoentrations.
Also, characterisation of the signal as chaotic was a qualitative, subjective
assessment; the dimension of the attractor or the flow’s Lyapunov
exponents were not calculated. However, the Holden results are very
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suggestive. 4-Aminopyridine depresses a transient potassium current
during depolarisation. This results in prolonging the' action potential and
thus increases calcium influx into the cell. This increased intracellular
calcium is probably responsible for the drug’s capacity to increase neuro-
transmitter release [36, 111]. The drug can counteract the depressant
effects of opiates in some systems [22] and, most importantly from the
point of view of this analysis, 4-aminopyridine acts as a convulsant in the
mammalian central nervous system [109]. Recently, single-unit recordings
of the spontaneous activity of neurones in the precentral and postcentral
gyri of the squirrel monkey were obtained and the dimensions of the
corresponding attractors were calculated. In this preliminary study a small
sumber of units were examined. In so far as it is possible to draw
conclusions from such a small sample size, it was observed that two distinct
populations of neurones were identified. One group of rapidly firing
neurones (the peak of the interspike interval histogram was 1 or 2 ms)
obeyed large-dimension dynamics. The procedure used to calculate the
dimension, essentially that of Grassberger and Procaccia [41, 42, failed to
find a finite dimension up to the last tested embedding dimension, which
was ¢ither =20 or n=40, The other population of neurones was slower;
the peak of the interspike interval histogram was greater than 15 ms. The
dimension was low, less than 3.5, and noninteger.

The third element in the list of motivating questions concerned the
pooslble consequences of complex dynamics at the level of systemic
phynologlcal regulation. It has been proposed that parameter-dependent
transitions in dynamical behaviour (fixed-point attractor to periodic
attractor, or periodic attractor to strange attractor) may resuit in clinically
observed defects in control. These processes have been termed ‘dynamical
diseases’ [71]. The following discussion will centre on neurophysiological
examples. However, this form of analysis is not limited to neurology, and
anumber of other examples deserve a brief consideration.
~ Mackey and Glass {35, 71] have proposed that respiratory disorders
such as Cheyne-Stokes respiration and Biot breathing occur when the
fixed-point attractor governing respiratory feedback control bifurcates to

- becoine a periodic attractor. The rate of formation of formed elements of
the blood (haematopoiesis) is known to be under feedback control. In a
tamber of clinical disorders the cell count is subject to periodic or highly
il'l'e_gula.r variation. Examples include cyclic neutropenia (an irregular
mll.mon in circulating neutrophil count), periodic chronic myelogenous
Jeukaemia (leukocyte and thrombocyte numbers oscillate), cyclic thrombo-
g hia (rhythmic variation in platelets and megakaryocyte numbers)

d-periodic autoimmune haemolytic anaemia (oscillations in erythrocytye
). "All of these oscillations are irrcgular. On the basis of a math-
| analysis of haematopoietic control systems {66-69, 71] it has been

that in some cases the feedback system governing haematopo-
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iesis enters a domain of either chaotic or periodic motion. The most
systematically studied example of complex behaviour in a biophysical
system has been the study of chaotic cardiac dynamics. It has been
suggested that some cardiac arrhythmias may occur as a consequence of a
chaotic transition [44, 45, 58, 59, 103].

The possible role of dynamical transitions in the aetiology of three
neurological disorders will now be considered. They are tremor, dyskinesiz
and epilepsy. Tremor, involuntary trembling or quivering in an approxi-
mately periodic manner, can be roughly classified into two groups {27].
Resting tremors (typically at frequencies of 3-7 Hz) are present at rest but
subside or are absent when the affected limb is moved. Intention tremor

g (typically at frequencies of 7-12 Hz) arises or is intensificd when a

voluntary movement is attempted. Many investigations of tremor centre
on establishing if the control defect is in peripheral neuromuscuiar feed-
back systems or in the central nervous system. The paradigm fixed-point
attractor to periodic attractor to strange attractor has equal potential
applicability in the analysis of cither peripheral or central control pathol-
ogies. Typicaily hypothesised peripheral mechanisms propose multiceliular
systems [108]. A central origin hypothesis is particularly attractive from
the point of view of the preceding analysis since it suggests that an
investigation of single-neurone transition behaviour could offer useful
insights into the origin of the defect.

It might be supposed that tremor was the consequence of a fixed-point
attractor to periodic attractor transition of central nervous system
neurones. This anticipation is unwarrantably simplistic for two reasons.
First, a central origin model can be multicellular and does not necessarily
require autonomous oscillatory behaviour in a single neurone. For
example, it has been proposed that harmaline-induced tremor may be the
consequence of irregular rthythmic discharges of olivo-cerebeliar neurones
(specifically inferior olivary cells [28]). These authors proposed a multi-
cellular origin for the oscillation due to electrotonic coupling and recurrent
inhibition in these cells. If this is so, then an understanding of single-
neurone transition behaviour would have limited value in elucidating the
actiology of this particular type of trgmor. A second argument against the
proposition that tremor invariably follows from a fixed-point attractor to
periodic attractor transition is recognised when it is noted that olivary
neurones show a normal tendency to fire rhythmically. Harmaline only
serves to enhance this behaviour [28]. This observation follows a pattern
frequently encountered in research in this area. Periodic neural activity is a
normal behaviour. The controt defects are associated with rhythmic dis-
charges that are somehow abndtmal. This qualitative distinction has been
expressed by DeLong ([27], page 2172): ‘Unfortunately, the data do not
allow definitive conclusions about the precise neural mechanisms respon-
sible for the rhythmic firing of thalamic and olivary neurones in these
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animal models, but one possibility is that this abnormal activity might
‘result from unrestrained intrinsic pacemaker discharge, rather than from
oscillation of an internal feedback loop.’ DeLong’s statement presents two
concepts: (a) an understanding of single pacemaker neurones rather than
multicellular feedback systems may offer un explanation of the observed
pathology; and (b) the defect lies not in rhythmic discharge but in
sbnormal ‘unrestrained’ rhythmic output.

" ‘The recognition that erratic but near-periodic discharge governed by a
mmge attractor is a distinct form of dynamical behaviour may provide a
quantitative basis for distinguishing between the ‘normal’ and ‘abnormal’
rhythms frequently described qualitatively in the neurological literature.
The loss of coherent temporal organisation following a periodic attractor-
strange attractor transition might have the clinically observed conse.
quences. This is a testable hypothesis since it is sometimes possible to
distinguish experimentally between periodic attractors and strange
attractors. In the specific case of olivary neurones, harmaline concen-
tration may be a bifurcation parameter that leads to transitions in attractor
tpology.

* Dyskinesias are the class of movement disorders charactensed by
ivoluntary movements that are distinguishable from tremor by the
abllence of a regular period. Specific examples of dyskinesias include
chorea (a ceaseless occurrence of ﬁpld highly complex, involuntary
movements), athetosis (mobile spasm), dystonia (involuntary contortions
of muscles) and gait disorders. The complementary defects, akinesias (the

* absence or profound reduction of movement) are not the result of muscu-
lar weakness. It has been proposed that akinesias follow as the conse-
quence of the loss of motor programmes that co-ordinate the many
individual components of a voluntary movement. Conversely, it has been
argued that dyskinesias are the consequence of the inappropriate release
of motor programmes [27].

'The most completely understood motor programmes are the rhythmic
ceatral pattern generators that control locomotion [43]. Gait disorders

from defects in these control systems. Analysis of normal and
abbormal function of central pattern generators probably has a more
géteral significance. Roberts [95] has argued that both learned and innate
behavioural sequences are released to function by the disinhibition of

pacemaker neurones. Thus, it has been suggestcd [27] that defects
iff*pacemaker control may be a causative factor in a larger class of
dyskincsias in addition to gait disorders.

~ *Theories of how locomotor control rhythms are generated have been
sutamarised by DeLong [27]. In the first class of model, the rhythm is
.“nﬁed by a network of interconnected neurones. In the second, the

m s generated by pacemaker neurones. Neural network models fall
lllbcltegories half-centre models and ring models. The half-
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centre model is the classical model of gait locomotion [15). Periodic
alternating activation of flexors and extensors is achieved by reciprocal

- inhibition mediated by inhibitory collateral neurones. Ring models consist

of a closed circuit of interneurones, some connected 16 flexors and some to
extensors. Periodicity is the consequence of activity propagating through
the closed loop. Elaborated ring models have been used to explain
movement in both vertebrates and invertebrates {33). Detailed application
of these structures has been made in the analysis of the leech swimming
mechanism [32, 107]. Models in which the motor programme is generated
by pacemaker neurones include Pearson’s {84) identification of pacemaker
neurones in the cockroach locomotor system.

The strict division of models into multicellular and single-cell classes is
probably more a logical convenience than an accurate reflection of the
underlying physiology of these systems. It is probable that individual
neurones are able, given the appropriate extracellular environment, to
discharge rhythmically. Similarly, networks of interconnected, normally
nonoscillatory, neurones can generate rhythmic output. However, the
observed behaviour probably results from the collective interaction of
individual oscillatory units. If this view is correct, the rigid distinction
between single-cell and network models is artificial. This observation also
applies to investigations of tremor and, as will be seen presently, seizure
disorders. Transitions of dynamical behaviour in either pacemaker
neurones or neural networks considered in the discussion of neurological
tremor might also be applied to the examination of dyskinesias. Similar

experimental protocols would be applicable.

In the examination of .tremors and dyskinesias two questions were
considered. Does the defect occur at the peripheral or central nervous
system level? If the pathology originates in the central nervous system, is it
predominantly the consequence of aberrant behaviour that can occur in
individual neurones or is it a collective behaviour that can occur only in
multineurone networks? In the case of the epilepsies the first question has
& definite answer; the seizure is the consequence of disordered behaviour
in the central nervous system. The answer to the second question, how-
ever, is the object of intense discussion. (Again, we reiterate an earlier
observation that a strict division into multicellular and cellular aetiologies
may not be realistic. Experimental exidence suppbrting this view will be
cited at the end of this section). The epilepsies encompass a wide range of
neurological events. An understanding of the cellular mechanisms involved
is limited to smali subclasses of these disorders, and it should be recog-
nised that even in these limited cases present understanding is fragmen-
tary. Before considering the possible applications of the dynamical tran-
sition paradigm, it is necessary to clearly delineate this restricted domain
of application. Only a broad offtline is considered here. The present
discussion follows that of Martin [76].
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- Partial or focal epileptic seizures begin in a localised region of the brain.

" ‘The clinical manifestations will reflect the location of the epileptogenic
focus. Typically, the patient remains conscious if the disturbance is con-
fined to one hemisphere. Complex partial seizures (psychomotor epilepsy)
result when a focal disturbance spreads to the other hemisphere. Con-
sciousness is lost. Generalised (nonfocal) epilepsy involves large parts of
the brain and may be bilateral at initiation. The two principal sub-
categories are petit mal (transient loss of consciousness) and grand mal
(alternating muscular contraction and relaxation in rapid succession and
abrupt loss of oonsciousness) Seizures analogous to focal epilepsy can be
readily induced in animals by direct application of a convulsant (for
mmple penicillin, bicuculline or aluminium hydroxide) to localised
regions of the cortex. The characteristics of the resulting EEG are seem-

ingly identical to those recorded during focal seizures. Also, these drugs -

can be added to the medium of in vitro neural preparations. The intra-
cellular electrical records parallel the seizure behaviour of cortical
neurones. Thus, there are both in vivo and in vitre experimental models of
focal epilepsy. The subsequent discussion will be restricted to a con-
sideration of the results from these systems.

‘The first intracellular electrical response to a convulsant agent is a
marked depolarisation of the membrane potential that results in a rapid
volley of action potentials. This depolanisation is referred to as the
paroxysmal depolarisation shift. Since this is the first event in the genesis

* of a seizure, research has concentrated on elucidating its mechanism [87}.

The most commonly held explanation of the paroxysmal depolarisation
shift proposes that it is a network phenomenon [2]. The effects of
convulsants on chemical synapses provide a membrane-level mechanism
that would account for drug-altered network transmission properties that

cause an increase in the gain of cortical feedback circuits, generating the .

depolarisation. In this model the termination of the depolarisation is
caused by network-generated reciprocal inhibition. Much of the evidence
supporting network-level models of paroxysmal depolarisation shifts has
" ‘been obtained from studies with primates and other mammals. However,
evidence obtained from the primitive nervous system in a mollusc (Aplysia
eahfomica). in which specific neurones can be identified, has indicated
that, in addition to the previously established effects on chemical synapses,
epileptogenic agents can enhance transmission at an identified electrical
synapse. This could result in a network instability of the type proposed for
focal epilepsy. The simplicity of the Aplysia nervous system permits a level
-of analysis that is impossible in mammals, and subsequent studies with this
p'eparauon could lead to further support for network-gencrated paroxys-
depolarisation shift models.

Tho alternative view of epileptogenesis attaches greater significance 10
intrinsic to individual neurones. It has been proposed that
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chronic foci contain ‘pacemaker epileptic’ neurones, which are responsible
for the gencration of paroxysmal depolarisation shifts [100, 121]. In
support of this hypothesis, it was observed that the proportion of pace-
maker epileptic neurones in a given chronic focus is logarithmically
correlated with seizure frequency. Results obtained in response to varying
the ionic composition of the external medium of in vitro preparations
suggest that calcium-dependent dendritic action potentials anaiogous to
those observed in reptilian [63, 80} and avian [62] neurones may play an
important role in establishing epileptic behaviour at the neurone levei [87].

A probable resotution of the network/single neurone dichotomy lies in
recognising that convulsants affect both network interactions and intrinsic
neurone properties. At a network level, bicuculline [23, 55] and penicillin
[24, 65] antagonise GABA-mediated synaptic inhibition, which increases
network excitability. At the cellular level both of these drugs prolong
calcium-dependent action potentials of mouse dorsal root ganglion and
spinal cord neurones in cell culture [50]. The clinical state may well be the
consequence of the activity of intrinsically aberrant neurones acting collec-
tively in a network with aberrant transmission properties.

The prospects for experimental tests of the dynamical transition
paradigm seem particularly promising in the case of focal epilepsy. In vitro
slice preparations [29] and cell culture systems are accessible for con-
tinuous microelectrode recordings in a controlled environment. Tunable
parameters known to effect abnormal behaviour (ionic composition and
convulsant concentration in the external medium) can be experimentally

controlled. Anticonvulsant drugs may also prowde a family of bifurcation
parameters. Elcctroencephalograp’ﬁ‘:c in vivo tests of the hypothesis are
also feasible. The possible role for a transition to chaotic behaviour in
epileptogenesis should be specified with care. It is not suggested that the
seizure itself is a chaotic event. Indeed, this seems unlikely since a seizure
is frequently characterised electroencephalographically by uniform eiectri-
cal activity over a large part of the brain. However, a seizure may be an
automatic corrective responseto an carlier transition to chaos. When
viewed in this fashion, the convulsion is seen to be the cortical analogue of
defibrillation, the cure rather than the disease. It can be hypothesised that
a transition from stable behaviour in a local neural network leads to a loss
of co-ordinated electrical activity. The massive, rhythmic depolarisations
of a seizure could entrain subsystems and re-establish effective communi-
cation. Given the emerging mathematical technology that can be used to
characterise the complexity of a time series (Lyapunov exponents,
Hausdorff dimension and Kolmogorov entropy). this also becomes a
testable hypothesis. Activation procedures [5, 110} are methods used to
induce a seizure during an EEG recording session. It should be possibie to
determine if activation results reproducibly in an increase in the disorder
of the electroencephalographic signal, particularly in the region of the
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epileptogenic focus in the case of focal disorders, prior to the appearance
of the seizure itself.

To date, the applications of dynamical systems theory to biology have
generated more questions than answers, but it is now clear that the
dynamical transition paradigm constructed on the concept of parameter-
dependent transitions of attractor topology offers a rich language for the
phenomenological description of behaviour in complex systems. The
associated measures of disorder provide the basis for construction of
empirical correlations between dynamical behaviour and physiological
function. It is now possible to look forward to the fusion of phenomen-
ological descriptions of processes and empirical correlations that will lead
to the development of nove! therapeutic protocols of increasing specificity

and efficacy.
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10.1 Introduction

It is now widely recognised that chaos is a basic mode of motion underly-
ing almost all natural phenomena, and it is neither exceptional nor
peripheral as had been conjectured until quite recently. However, there
are a variety of situations under which chaos emerges, and chaos becomes
increasingly complex as the dimension of the reference space is increased.
Jo distinguish chaos from a mere kinematical complexity, we have been
intérested in examining a model of the lowest possible dimensions that
leads to definite chaos. A forced nonlinear oscillator clearly suits this
purpose in the sense that it provides the simplest nontrivial example
exhibiting the full variety of behaviour including chaos. Specific examples
may not illustrate all mathematical aspects of chaos in their full generality;
however, conceptual clarity and physical insight are to be expected from
cases with the lowest dimension. '

This means, incidentally, that field theory that involves an infinite
number of dimensions is avoided. However, even in this case, tractability
may usually be secured after a truncation of modes in the Fourier-
transformed space, leaving again only a few degrees of freedom.

Let us now start with a linear dissipative system which is familiar in the
-neighbourhood of thermodynamic equilibrium. In the simplest case the
system has 4 unique fixed poiat, which turns out to be a stable node. The
possibility of a focus is eliminated through the postulate of microscopic
reversibility for thermodynamic equilibrium due to L. Onsager. It follows
that a macroscopic clock cannot be expected in thermal equilibrium. Point
‘stability may not be assured in a pathological situation, i.e. in a phase
transition when the possibility 8F a second fixed point appears. In gencral
the stability of one mode is given up for that of another through a phase
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transition. When there exists an intermediate range, however small, in
control parameter space, in which both are stable, the transition is called
the first order. When such range is vanishing, the transition is called the
second order, in which simple exchange of stability occurs at the critical
point. The state represented by a stable node, i.c. equilibrium phase,
stands in general for a spatial pattern, which is the only variety expected in
thermal equilibrium.

When nonlinearity is introduced into the dynamics, there appear ad-
ditional new situations. A common feature of the new variety is a large
repetitive excursion of the representative point without damping, i.e. an
active oscillatory behaviour. In two dimensions it has been proved by
Poincaré and by Bendixon [1,16] that the orbit of oscillation asymptotically
forms a closed curve, which is often called a limir cycle. In this case, point
stability is taken over by orbital stability. This self-sustained oscillation has
its own natural amplitude, in contrast to the vanishing amplitude of the
linear case without external forcing. The transition from a fixed pointto a
limit cycle, through the change in control parameter, is called a Hopf
bifurcation. In contrast to the exchange of stability between two fixed
_ points, it is sometimes called overstability, with overshooting of the
- restoring motion.

For dimensions higher than two, it is known that a limit cycle is not a

unique alternative for a fixed point. In the new variety of motion, the

representative point also comes repeatedly back very close to some of is
past locus; however, its orbit is never closed in an accurate manner. In the
new variety a sensible definition of the neighbourhood of an orbit is
impossible and the orbital stability is lost accordingly. It is, then, as-
sociated with a stochastic-like feature such as sensitive dependence on
initial conditions, and the prediction of future behaviour becomes im-
- possible in practice. The overall situation, therefore,'is often described by
the word chaos, and the asymptotic orbit is called a strange attractor.

It should, however, be remembered that historically the first example of
chaos was not the result of a general theory, but came from the practical

_analysis of a forced nonlinear oscillator, i.c. of the van der Pol type, by
Cartwright and Littlewood 40 years ago [2,7]. Levinson took up the

non and succeeded in a clear-cut description of the sporadic
behaviour [12]. Some 20 years later, his results gave Smale the incentive to
produce a simple intuitive model, which is now called Smale’s horseshoe
[18]. Following Smale’s work there finally appeared a general theory [17],
which specifies the lowest dimension beyond which the appearance of a
strange attractor becomes generic.

According to the result of the general theory, the lowest dimension
required for chaotic behaviour to be observed is three. This implies that a
forced oecillation of a simple two-dimensional limit cycle is the simplest
possible example exhibiting most of the features expected above. Let us
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therefore proceed to discuss the behaviour of typical limit cycles under
externat periodic excitation.

The classical results found for a forced van der Pol oscillator are
summarised in section 10.2. If"section 10.3 a mathematical interpretation
of the classical results, which was elaborated by Mark Levi, is briefly
described. This provides us with a certain insight into the general back-
ground of chaotic response, typically an embedded Smale’s horseshoe
structure. In section 10.4, changing the viewpoint slightly, various quann-
ties useful in the physncal description of chaos are discussed using an
example of the forced Brusselator model. It is pointed out that the global
bifurcation structurc may be related to the general mechanism. The
chapter closes with section 10.5, a dlscusszon that relates in particular to
biological applications.

10.2 Forced nonlinear oscillators

10.2.1 Nonlinear resonance

Let us start with the noted historic example of the forced van der Pol
oscitlator [2,7]. It is associated with an electric circuit involving a triode, as
shown in Fig. 10.1.

N~/
source

——— e e e e e st oot

.-

Fig. 10.1 Electrical circuit corresponding to the forced van der Pol oscillator.

According to Kirchhoff’s rule, the following differential equation can be
written;
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(10.1) L%:"‘*’ Ri + Ug — M%ZP()Sipmlf
and

du,
(102) | ca=

Assuming that the plate current i, is controlled by the grid voltage u,
through the relation

. ug’
(10-3) Ia=Sug(1_3_l(-f)'

and introducing scaled variables by
' MS-RC 1 MS
IC " '731LcC

B=P,/K and w} = 1/LC, the original equations may be written in the
form:

(10.4) v=u /K, a=

d*

(10.5) Fr3 +(~a +3y?) %':- + wiv = Bojsinwy!

Setting the solution in the form

(10.6) v(t) = b,(1) sin wt + ba(1) cos wyt

and neglecting higher-order terms in b(1) and by(t) as small, and intro-
ducing new quantitics by

(10.7) a} = di(}y), b* = b} + b3, and A = 2(wg— w,)

oneisledto :

2
2b, + bA-ab; (1 - -’3;) =0
(10.8) a0

sz—b,A—-abz{l—%)z—Bwu
0

Rescaling various quantities by x = b,/a,, y = bylag, p’ =x* +y*, o = Aa
F = - Bug/aya and 1 = ta/2, one is finally left with

%{— =—ay + a(l1-r7)

dy

(109)
) E=o‘x+y(l—r2)+F

Based on this approximate differential equation it is possible to delineate a

nonlinear resonance profile and discuss the stability. In Fig. 10.2 the’

" resonance profile is shown as a function of the impressed frequency w,.
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stable node

N .

A

- —
-

Fig. 10.2 Response profile of the van der Pol oscillator.

Let us discuss the resonance profile of an active nonlinear oscillator in
contrast to the more familiar case of a linear oscillator. In the latter case
there may appear the cffect of inducéd nonlinearity, ¢.g. resonance

- saturation; however, new essentially different features may be pointed out

in the former case, which are due to intrinsic nonlinearity. They are
associated with new instabilities, described in what follows.

Hard-mode instability (Hopf bifurcation)
In the profile of ordinary linear resonance the wing extends indefinitely off
the exact resonance, though the response becomes smaller. This means
that a linear oscillator is essentially passive in yiclding a response. In the
present case (cf. Fig. 10.2), however, the entrainment. is restricted in a
finite frequency range around the exact resonance.

In other words, complete entrainment is observed only above the
horizontal line p = 1/2. The expected wing is bound to become lower
than this line, but below the line p = 172 the motion observed is doubly

periodic, having frequencies roughly corresponding to the natural fre-

quency wyp and the impressed frequency ;. On the Poincaré section, in

. which the entrainment is reduced to a fixed peint, a limit cycle now
_ appears instead (Hopf bifurcasion). This is an indication of the active, or
self-sustained, nature of the free oscillation. The tendency that the natural

mode presents itself competes with the tendency that the impressed mode
entrains the natural mode.
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Out in the wing of the response, therefore, the former effect cannot be
suppressed, and both w, and w, appear on the stage, leading to quasi-
periodicity.

Soft-mode instability {coexistence)

In the case of ordinary resonance it is known that the profile is a unique

continuous function of the applied frequency w,. In the case of nonlinear
resonance, however, the profile may not be unique as a function of the
applied frequency w,. This corresponds to the fact that in the absence of
external excitation there are two distinct modes,i.e. active self-sustained

oillation with finite amplitude and an inactive fixed point, as are

indicated in Fig. 10.2 by the points (c =0, p=1) and (o =0,
p = 0), respectively. '
External excitation tends to mix these two modes, and in fact they are
mixed when the amplitude (F) of the impressed excitation is large enough,
However, when the amplitude is smaller than a critical value, it fails to mix

the two modes, and the critical situation is characterised by the first .

appearance of a vertical tangent in the response curve.

It is true that the lower branch, which leads to the inactive fixed pdinl '

of the free system, is mostly unstable owing to the hard-mode instability
for p < 172; however, in an intermediate narrow range, i.e, for 1/4 <
F® < 827, there actually appear two distinct modes depending on the
initial condition and the hysteresis phenomenon is observed. The stability
limit for each mode is indicated by the ellipse passing (o =0, p = L.0)
and (o = 0.5, p = 0.5), on which a resonance curve has a vertical
;ngent. and an exchange of stability (i.e. soft-mode instability) takes
ace.

10.2.2 Irregular response

The.re isyeta .third peculiar aspect in the behaviour of a forced van der Pol
oscillator, which was first observed by Cartwright and Littlewood 2.7
some 40 years agp. This is associated with the situation in which two
mﬁergnt ques are coexisting; however, as it involves apparently random
behaviour, it cannot be represented in the form of a simple resonance
profile, : '

To facilitate the discussion, let us introduce a sim i

A . ' ple rescaled version

the original equation [11], i.e. “
(10.10) e + p(x)x + ex = bp(r)

where p(f) is a periodic function with period T, and b and T are considered

as control parameters. As is the case in the original equati i
I : quation, the dam
o(x)is assumed symmetric around the origin, and satisfies P

- (10.11) o(x) 20 for |x| =1
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For small values of (> 0) and b #* 0, it was found that the response
has a much longer period than the forcing term, i.c. a larger integer
(~ 100) multiple of the forcing period T. In addition, on changing the
parameter b (with fixed T), it was seen that two kinds of interval, i.e. type
A and type B, alternate. Here type A is associated with a single such
mode, and type B is associated with two modes different in period. It was
in the interval of type B that an irregular behaviour of the response was
observed. The two types of interval are separated by small gaps labelled by
&: in which a complicated series of bifurcation seems to appear. The
alternating structure is shown schematically in Fig.in.l

I

A B A B

— bt +—+ — b
b g % 92 b,
Fig. 10.3 The global structure of aiternating two phases, A, and B,, shown
schematicaily as a function of control parameter b.

The following are the established behaviours of the solution in different
lypes of interval.

(1) Interval A,: when b € A;, eqn (10.10) has a pair of periodic
solutions with period (2n + 1)T, i.e. a stable node and a saddie,
where n = n (k) ~ ¢! and k specifies the interval A;.

(2) Interval B,: in addition to the pair of solutions having period
(2r + 1)T, there appears a second pair having period (2n - 1)T.
Moreover, there exists a class of solution which behaves irregularly,
as shown in Fig. 10.4.

The solution approaches x = * 1 in a forced oscillatory fashion, jumps
over the interval - 1 < x < 1 to reach x = ¥ 3, and then repeats similar
behaviours. Let us specify the instant for the consecutive downward
crossings with the level x = 0 by f, then the quantity 7, = 4., -4,
corresponding to the overall period, fluctuates according to the formula
(10.12) 5= harmty= (Qnte) =
mwhere o, may take the value + 1or- 1. _

A question arises, then, as to just what kinds of complexity are allowed
0 appear in the sequence o = (...0; 0p 0)...). Unexpectedly it
turned out that one cannot restrict or specify the sequence in any way, i.c.
o8 behave as if they are statistically independent of each other. In other
words, any irregular sequence corresponds to a possible solution of the
original equation. In this sense randomness, or unpredictability, may be
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associated with solutions of a deterministic equation, which is certainly

remarkable. As a corollary one may expect an infinite number of periodic
solutions existing in this case.

[ x(t)

Fig. 10.4 Temporal variation of a forced van der Pol oscillator in region B,
_.(schematic).

. Along with the irregular sporadic behaviour in temporal domain, there
" appears a strange behaviour in spatial domain. This is the character of the
asymptotic invariant manifold in the reference variable space. Owing to
the existence of dissipation, the maps on the Poincaré section are generally
contracting and the asymptotic invariant manifolds are described as a-
tractors. In the more familiar case of a fixed point or a limit cycle, aa
attractor usually has its own basin of finite size, inside which there is no
dependence on initial conditions. In contrast, in the present case of
Jirregular sequences there is nothing like a basin of attraction associated
'with an orbit, although the maps are contracting on the Poincaré section.
An aggregate of such isolated orbits packed into a small space is called a
strange attractor, because no orbital stability is expected and the future
'Behlviom' has a sensitive dependence on initial conditions.

& One should, however, be aware that the appearance of a strange
Mmor is not due to a pathology, for it cannot be destroyed by a small

Pﬂll‘blhon of the dynamics (structural stability).
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Having described empirical facts, it is natural that the theoretical
background is sought for the irregular response. Recent attempts along
this line are described in the next section.

.10.3 Mathematical interpretation

In this section 2 mathematical analysis and interpretation are attempted of
the empirical results on the forced oscillator sketched in the previous
section. It should be admitted at the outset, however, that mathematical
understanding is not yet complete, and one must be content with a
plausible insight. As an insight, however, the horseshoe model proposed
by Smale, for instance, is very enlightening and convincing. The only
difficulty lies in the connection between the actual system and the premises
required for the model.

10.3.1 Forced Van de Pol oscillator

For the particular case of the forced van der Pol oscitlator, Levi [11] and
Guckenheimer [5] attempted to bridge the gap in a plausible way.

It is known that a nonlinear map in a one-dimensional interval may
easily become noninvertible, which leads to mixing or stochastic-like
behaviour [14,15]. On the other hand, the forced van der Pol oscillator, of
which the original dimension is three, may be reduced to a map in two -
dimensions by taking a stroboscopic representation. Is it possible to
associate the resulting two-dimensional map with any one-dimensional
map, through any deformation or contraction? It may not always be
possible; however, in the present example onc can do pretty well in
making a bridge between the two, and it will be a good heip in under-
standing deterministic chaos.

To start with, let us rewrite the original equation (10.10) in the
foliowing form {11]:

S
(10.13) k=—(y-®x)
y=-ex+bp(1)

where @ (x) = je(£)dE. T ‘
In order to simplify the argument, henceforth e is assumed to be fairly
small and figures are drawn aimost as {'{11]
@~ gosgn (x* - 1)

(10.14) p— posgn (sin 2;—’)

In Fig. 10.5 y = &(x) is shown by a thick line. Horizontal arrows attract-
ing the flow towards the outside,indicate the fast manifold in the phase_
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plane, but the motion along y = ®¥(x) is much slower; hence it is called
the slow manifold. Without the external excitation the solution is a simple
relaxation oscillation around the parallclepiped A5B—A-B—4—,..,
and the stroboscopic phase portrait at natural period is simply a fixed point.

(0) -, Yi
A _ B
O\ _
F/AEn —A
. RN A
AYLL
* «_-_ . Y
» A,_

b)

. _'Aik

Fig. 10.5 Stroboscopic phase portrait and the conjugate annulus map (schematic).
‘The vertical strip, having width A, is mapped into the quasi-horizontal folded string.

On applying a periodic external excitation the period of the strobo-
#eopic portrait is chosen to equal the forcing period T, which defines map F,
and the phase portrait starts to drift along the parallelepiped ABAB
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in a circulating manner {dots in Fig. 10.5a). For example, in the range A,,
described in the previous section, it takes (2n + 1) steps to come back to
the starting point, which is a fixed point with respect to (2n + 1)-fold
mapping F**Y, On the other hand, in the range B,, the map does not
exactly come back to the starting point after one circulation around
ABAB, thus leading to an irregular behaviour which one now wishes to
analyse. In order to proceed further a contracted map is introduced with
reference to the slow and fast manifolds, Namely, one wishes to contract
the integral multiple of period T steps along slow manifolds and concen-
trate on the way in which the positive domain of x is mapped on to the
negative domain, and vice versa, along the fast manifolds.

To do this, let us skip all the stroboscopic image points along slow
manifold BA(BA) except the last two, i.e. A_ and A,; then they define
a narrow two-dimensional strip A_, A, (A_, A,), for the result of
global circulation in fact does not coincide each time. On identifying the
A, (A,) end of the strip with the A_ (A_) end, one finally obtains an

_annulus A(A), located around the minimum (maximum) point of $(x).

Let us suppose that A and A are mapped on to each other through a
contracted map N. Finally a map of A on toitself is definedby M = N:N.

The gist of this annulus mapping M lies in that the central narrow strip
A(-, +) of annulus A is elongated along the annulus direction a great
deal, because A bridges two different sides of the watershed of ®(x),
which flows fast in directions opposite to each other. As the circumference .
of the annulus is- constant, however, a certain angular range is muitiply
covered by the elongated (and squeezed transversally at the same time)
image of original A. The image of the strip A is schematically shown in
Fig. 10.5b,

Considering the transverse contraction, one is finally led to a close
paralielism between the two-dimensional annulus map M and a simpie
one-dimensional map f with a modulus shift in the middle, as is indicated
in Fig. 10.6.

10.3.2 Levi's theorem

After the foregoing preparatory considerations on the parallelism between
annulus map M and a one-dimgpsional map f with shift, one may now
state the mechanism for the appearance of irregularity in the form of a
general theorem according to Mark Levi [11]. A short illustration of the
theorem in physical terms will be given here.

The premises for the thedrem are stated in two ways, one in terms of
annulus map M(—'A’} and the other in terms of a one-dimensional
projection f(—*B’) of the annulus map.
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A

(a)

One-dimensional

map fon an interval.
(b)
1
\:\\\ Kneading map M on
\‘\‘w annulus {A}.
"--____q

fig. 10.6 An annulus map related to an interval map f. Thin line corresponds ®
segion A4, and thick line corresponds to region 8,. ;.

‘A’: Kneading character of annulus map M

Suppose a vertical narrow strip V; in the annulus domain covers the:
watershed region, it will be mapped into a long horizontal strip H; with:
folding by M, i.e.

(10.15)

# shown in Fig. 10.5.

.. In addition, it is assumed that through forward mappings the horizontal
.Brip H, is contracted vertically and nested in itself on each step, and
. $hrough backward mappings the vertical strip V; is contracted horizontally
o gd nested in itself on each step. Namely,

dM (H:) C H,
j“’ dM-L (V) TV,

M(V,) = H,
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*B*: Stretching and folding in circular map f

As shown in Fig. 10.6 the circular map fis thought to be obtained from the
annulus map M through projection. Corresponding to the overriding on
watershed, f should have a steep slope in a narrow range A. A is
stretched to a length satisfying ¢ < f{(A) <2c, where c is the circumference
of the circular domain. In the remaining range f should be moderately
contracting. The overall length of the image is definitely longer than the
circumference, and inevitably there appears folding. On changing the
control parameter (here the amplitude of the forcing osciilation), the

_image is simply rotated clockwise. In other words, the map f is shifted
" upwards with little change in shape, which is structurally stable.

Under the assumptions ‘A’ and ‘B’, the main results of the theorem are
stated as follows. Namely, for small enough A and deviation between M
and f, there exists a certain interval [b,,b;] which consists of alternating two
types of intervals A, and B,, separated by short gaps g, or g™

U 4y

(10.17) [b1.b:] = A, g, B gt" VA, s, B,

and the behaviour in each interval is expected as follows,

(1) The case b€ A,. The mup M has exactly onc pair of fixed points, a
sink and a saddle, and M is an ordinary diffeomorphism (Morse-
Smale). This situation corresponds to Fig. 10.5 and to the thin curve
in Fig. 10.6 '

(2) The case b€ B,. In this case the map M possesses two pairs of
fixed points and an invariant Cantor set § covering the neighbour-
hood of two saddles, as shown by thick curves i Figure 10.6. The
behaviour of map M on S is homeomorphic to that of lef shift 8 on
a sequence % of numbers specifying different strips corresponding
to different saddles, and the former can be described in terms of the
latter. As the choice of the sequence is arbitrary, except for the
selection rule imposed by the model, the behaviour on the Cantor
set S is stochastic-like, as it is considered an embedded Smale’s
horseshoe map. Finally, the measure of § is expected to-be zero.

(3) The case bEg, or g;. In every gap g, there exists a point b Eg,
for which the map M has a homoclinic tangency. If this tangency is
nondegenerate, there are uncountably many values of bEg,, for
each of which M has infinitely many sinks corresponding to periodic
motions. The boundary between A, and g, cotresponds to a
homoclinic tangency, but that between g, and By is not understood
very well. The total length of the gaps '

n-1

2 (g + &b
k=i
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is of the order ¢ and the details in the gaps are hard to see whene
is small.

For the detailed proof and justification of the premises A and B in the
‘case of the forced van der Pol osciliator, the reader should refer to the
original paper by Levi [11]. :

The behaviour of the forced van der Pol oscillator described in the
previous section has acquired a mathematical interpretation in a general
form. It is now clear that the stochastic-like delocalisation in region By is
due to Smale’s horseshoe structure. Owing to the monotonic contraction
of strips, both towards the past and the future (assumption A), S forms a
Cantor set with vanishing measure, i.e. at most a countably infinite variety
of complexities are involved. However, for physical preparations of the
initial condition, this is dense enough and the stochastic-like motions are
inevitably observed. '

10.4 Physical description of chaos

Up to the previous section our discussion was centred around a single
historic example, i.e. the forced van der Pol oscillator in which the
existence of irregular motion (chaos) was first discovered. This does not
mean, however, that this system is the most convenient system to study. In

fact, to the writer’s knowledge, there seems to exist no exhaustive phase .

diagram on this system, including chaotic phases.

In this section, therefore, a number of methods or quantities are
introduced, which are of help in physical description and application of
chaos, even if the mathematical background is yet to be clarified.

10.4.1 Phase diagram

Although the behaviours of individual bifurcations should receive careful
study, no less important in physical understanding and applications is the
global bird’s-eye view of the whole bifurcation structure in the control
parameter space, i.¢. the phase diagram. ,

In Fig. 10.8 an example of a phase diagram is shown with the forced
Brussels model which was investigated by us [19,22): The model is based
on the flow chart given in Fig. 10.7, and is described by the differential
oquation

ad—i=x2y—Bx+A—x

b - By-
i Bx - x%y

(10.18)
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Fig. 10.7 Formal scheme for the Brussels model.

Fig. 10.8 Phase diagram (the forced Brussels model). The number indicates the
harmonic periods appearing in the respective regions in the unit of forced periods.
A limit cycle of nonintegral period appears in the shaded region Q. and a chaotic
response is found in the region x.
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By changing
(10.19) A—A+acoswt

the forced oscillation was investigated by limulntién. and the result is
shown as a world map in thic a—w plane in Fig. 10.8, where the forced
frequency is scaled by the natural period under the condition A = 0.4 and
B=12 o : ' -

All the modes of motion described in 10.1 appear in Fig. 10.8.

(8) Entrainment. In the stroboscopic representation with the forcing
© period 7, the fundamental entrainment corresponds to a fixed point

which is indicated by number 1 in Fig. 10.8. Similarly, in the region

' marked with the number k, k = 1,2, ..., there appears k point
periodicity. In fact, however, in the region touching the abscissa at
w = kwo/l, there appears entrainment by frequency lw/k, /=12, ....
(b} Quasi-periodic oscillation. This corresponds to the shaded region with
label Q. Quasi-periodic oscillation appears as a result of a Hopf
bifurcation in the stroboscopic representation. _ o
() Period-doubling cascade. This is the layer-like region indicated by
2%(n = 2,3, ...) which does not touch the abscissa and is surrounded
‘by a crust-like iayer of subharmonic resonance of the order 1/2. Also it
does not include the central core indicated by x. Although it is not
possible 10 ‘indicate separately, there appear successive regions 27,
whers integer » increases without bound, each being nested in the
region one step earlier. The corresponding region of stability converges
to a certain limit in a geometrical way, thus leaving the space for .
As a result of period doubling (without bounds), an oscillation with an
arbitrarily long period is expected in the limit, being in touch with the
- region x. An analogous period-doubling sequence appears in the case
of a one- dimensional map, which was treated by Feigenbaum [3,4] by
- the renormalisation technique. A similar theory seems to apply to the
present case, and the observed shrinking ratio of the consecutive
. parameter range is consistent with Feigenbaum’s ratio 4.669. . ..
(d) Chaos—aperiodic recurrence. This appears in the core region labelled

by x. An example of the phase portrait is shown in Fig. 10.9a, and its -
fine detail is magnified in Fig. 10.9b. In the latter figure, the strobo- °

scopic portrait is also shown, It bears a basic four-point periodicity;
however, the result of iteration emerges as four islands, i.e. (D, @,

.® and (@, instead of four points, indicating the chaotic divergence in -
rpcurrence. In fact in four steps indicated by ) =@ =@ - @, |
_ the island is stretched and twisted roughly by (@ — @), folded

. (@~ @), twisted by w again (@ —@), and finally squeezed into
+ the original island (@ — (D). This indicates clearly the process of
kneading, supposed in foregoing sections.

Tomita

35 (o}

25

lsu 95' } xl ] 3 i 5 x

Fig. 10.9 Phase portrait of a chaos (a = 0.05, @ = 0.80). () Orbital profile of a
ch's:otic response. (b) Extraction of the strobescopic representation. (Four isiands
indicated by thick curves correspond to the asymptotic invanant manifolds in the
stroboscopic representation. Thin curves visiting these islands in the order of
attached numbers indicate the behaviour of the system between the stroboscopic

illup:ination.)
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Fig. 10.10 Stroboscopic phase portrait of a chaos (g = 0.05, @ = 0.80), which
corresponds to the thick curve in Fig. 10.9b.
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tw'I:l:je strot?oscoplc p}'aase_ portrait is separately shown in Fig. 10.10. Asa
0 :m.ensmnal section it is remarkably thin, and looks like an inter-
rupted single curve, as a result of the big contrast in rate between the fast
a!:d thc? slou.f manifolds. This result suggests strongly the use of a on
dimensional interval map in place of a two-dimensional mapping. -

10.4.2 Use of one-dimensional terminology
(a) Transfer function [19,22)

bCh{')o.smg the island @), which almost resembles a straight line, as the
asic interval, one may define a one-dimensional map of this interval on to

1
5 A s e
_f. 4 & ‘e
- . \
&1 )
b3 7 *
35 N
) ¢
‘ .
!
.\
\
!
30
30 35 xy{x01)

Fig. 10.11 The transfer function {x) which i i i
particular plot is obtain for a chao£ (w= ().8(%;V6rns the mapping ofisland @. This

ltself.p(lA?mslxllly the ?rﬁjection on to the x-axis was used.) In Fig. 10.11 an
example is shown of the transfer function i whic

*ﬁc following foatares f(x), thus obtained, which has
; Fin:;l, the shape of f(:r) is.surprisingly simple, and almost quadratic in x
Secon tlJ;,a the supporting interval is well defined (x,, <x <Xp). This;
lneans. t the interval [x,,, x),] is repeatedly mapped on to itself, being.

Tomita 229

stretched and folded each time. Thirdly, the shape of flx) is almost
structurally invariant, including purely periodic' phases alternating with
chaotic ones. Based on one-dimensional transfer function f(x), several
useful concepts or quantities may be introduced in what follows.

(b) Rate of expansion \ (x) {19,22]
An obvious point of concern is the rate of local deformation which is
defined by

(10.20) )\(x)-l%]

A (x) >1 corresponds to expansion, and A (x) <1 to contraction. If one
chooses x at the position of a fixed point, it is clear that A(x) >1
corresponds to instability and A(x) <1 to stability of the fixed point.

For a k-fold map f‘*’ one may define A'*), which is related to A

(= A\ V) by the chain rule:
df |
dy/ y=f"(x)

The stability of a k-periodic point x;) is assured only in the range

d k-1
102 a=|3 e |= 00

{10.22) +1=A (k)(x‘(k)) =>-1

The left-hand equality corresponds to the condition for a rangen:
bifurcation, where a pair of periodic points come into existence, one stable
and the other unstable. The right-hdnd equality corresponds to a pitchfor.
bifurcation or a period doubling, where the periodic point loses its stability
without losing its existence. When the chain rule is applied to this
particular situation, one finds

(10.23) AR ({00 = (kW (14N} = 1

therefore a mode having a double period emerges through a tangent
bifurcation at this point, and the number of periodic points is doubled,
hence the term pitchfork bifurcation. It is then not very difficult to imagine
that the period doubling occurs repeatedly when the control parameter is
changed in a definite direction. Feigenbaum [3,4} found that the range for
the stability is shortened in a geometrical way with a universal ratio, i.c.
1/4.669. ... The stability range for a basic frequency plus a period-doubling
cascade, derived from it, was called a window by May {14,15] wha
observed many windows and also the convergence limits of doubling.
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(¢) Lyapunov number and invariant measure {10,19,22]

The rate A (x) of expansion may lead to another convenient concept, the
Lyapunov number, which is defined by a time average of A (x), i.e.

A (xg) = lim ;1; log A (xq)
(10.24) - -l
o1
=lim > log A (x=x,)
Ll k=t
where x,=f* (x,).
When the motion in the long run is ergodic, then it is expected that the

average A (xp) does not depend on the initial point x;, and a constant A

characterises the invariant manifold as a whole. For the case in which
a = 0.05 and w = 0.81 (chaos), the Lyapunov number is computed to be
A = 0.536.

Under the same situation a measure supported by the interval may be
defined by

Al

(10.25) uh(x)=gm % Z B [x—"x)].
0.10¢
0.05¢
0 .
3 .35 X

Fig. 10.12 Invariant measure based on histogram construction (a = 0.05,
« = (.81). ‘
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When this quantity is independent of xy, it is called an invariant measure,
which is associated with every locality of the invariant manifold. An
example of invariant measure is shown in Fig. 10.12 which corresponds to
the above Lyapunov number.

(d) Entropy (Koimogorov-Sinai) and variation principle {10]

The invariant measure p (x), found empirically in the previous section,
may alternatively be obtained by a variation principie. Let us, for this
purpose, introduce the entropy associated with a partition. Suppose a map
f with a maximum is given (cf. Fig. 10.11): one may introduce a partition
which divides the interval with reference to the position of the maximum.
Iterating the map f many times, then, the partition a = {4}
(i =1,2,...n(a)) becomes increasingiy fine grained. Associated with the
partition & one may introduce an associated entropy H by

r{o)

(10.26) Hfa)=- % u(A)logn(A)

1=l

where p(A,) is the invariant measure associated with interval A,. One may
further introduce an nth refinement o‘™ of the pattitic.a a, i.e.

n-1
(10.27) a™= 2 fNa)

1=()

and define an entropy per unit step of refinement by

1
(10.28) h“(f,a)= I,ﬂ‘., n Hp(a‘ 0}

when A/ includes at most one fixed point. If the size of every lap tends
to zero with increasing n, it is shown that

(10.29) h(f)=h() "

In a number of typical cases it may be shown that the invariant measure
p(x) may be found as a result of a vartation principle. Namely, choose the
variational function as :

(10.30) ¥, = 4 (f) - fo(dx)log A (x)

{Kolmogorov-Sinai)

and maximise ¥ with respect tov(x).

As a result, then, one finds v(x) — u(x), and the corresponding
maximum value of ¥ is zero. The last statement indicates that the
Kolmogorov-Sinai entropy of the invariant measure is closely related to
the Lyapunov number of the dynamics.
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Fig. 10.13 Power spectral density ¢@(lw) (@ = 0.05) (a) w = 0.787 73
(period = 27); (b) @ = 0.800 00 (chaos).

(c)#CorrcIatian spectrum [9)]

As an independent quantity useful in identifying chaos the time correlation

d its Fourier transform, i.e. spectrum, arc often invoked. The spectrum
erally defined by

(wﬁ) o) = | () |= |2 Py e |
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Examples in the case of the forced Brusselator model are shown in Fig.
10.13. In contrast to the collection of line spectra (a) which are associated
with periodic motions, chaos is characterised by the existence of a con-
tinuous spectrum (b), even if several separate peaks are recognised at the
same time.

10.4.3 Global window struciure

In the previous section, i.e. in subsection 10.4.2(b), a single window based
on a certain periodicity was described in terms of A(x{*’). In fact a
window is embedded in a wall, which corresponds to the region for chaos.

Coming now back to the phase diagram (Fig. 10.8) of the forced
Brusselator model, the region x assigned to chaos is not a single con-
tinuum and a systematic window structure was found in it as shown in
Fig. 10.14[10}.

FalX,) ,
07 7 71110

— . -
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|
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79 80 81 82 83 w

Fig. 10.14 The global window structure. Characteristic multiplier i.c. the rate of
expansion, (F' (X ) is plotted against the input frequency (a control parameter).
The window specified by k corresponds to a region of stability for a series of
harmonic bifurcations based on the k-point periodicity with respect to a mapping
of island (3 on to itself. The arrow points to its conjugate winduw having the
same basic periodicity. (k-point periodicity appears in a parenthetic pair in the
present case).

Examining the structure of Fig. 10.14, one becomes aware that the appear-
ance of alternating periodic and chaotic regions resembles closely the
structure of Fig. 10.3, which was found for the forced van der Pol oscillator
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in section 10.2.2. The only difference lies in the fact that in Fig. 10.3 the
forced amplitude is swept, keeping the frequency constant, whereas in
Fig. 16.12 the forced frequency is swept. keeping the amplitude constant.
This resemblance in structure strongly suggests that the underlying mech-
anisms are rather similar, namely, that the mathematical interpretation in
section 1.3 may also apply to the present example.

Alternating periodic and chaotic structure in the phase diagram is
known to appear also in the case of autonomous systems, e.g. in the
Lorenz system, the Zhabotinskii rcaction, ete. Recalling the fact that a
nonautonomous system can mathematically be transformed into an auton-
omous system with increased dimension, it is natural to expect that the
theoretical considerations, given in the foregoing sections, may also apply
to the case of autonomous systems.

10.5 Discussion

Although theorists have long avoided a thorough study, nonlinegar oscil-
lations have many examples at various levels of nature. Stellar rotations
and orbital revolutions are the oldest cxamples, in the investigation of
which Poincaré invented various concepts and tools in dynamical system
theory. At the other extreme, the characteristic stability of living organ-
isms is often associated with an underlying biorhythm, which is another
example of a sclf-sustained oscillation. When a small oscillator (e.g. a
living organism) is placed under the influence of a large oscillator (e.g. the
Earth’s rotation), the coupling between the two oscillators is duly approxi-
mated by a forced oscillation, provided the change induced in the motion
of the large oscillator is neglected. This implies that there are numerous
cases in our surroundings to which the foregoing theoretical considerations
apply. A few examples of recent topics might be mentioned. In the field of
biochemistry, chaotic behaviour in yeast glycolysis{13] has been observed
under periodic substrate input flux. In the field of medicine the generation
of cardiac dysrhythmias[6] was related to a chaos in a forced oscillator
model. The phase resetting in insect population dynamics[8,23] seems also
to belong to the same category, and irregular behaviours may well be
related to chaos.

In view of the contents of other chapters of this section of the book, in
this chapter I have tried to, concentrate on the theoretical understanding
and the way of describing irregular response, or chaos, in a rather abstract
way, though I am much interested in the implications of chaos in practical
contexts. Having practical applications in mind, a few comments are due
here.

First, 2 conceptual proposal[20]: it seems a good idea to discriminate
‘chaos’ from ‘randomness’ in the following sense. Kolmogorov gave an
unambiguous definition to ‘randomness’, which belongs to a completely
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tractable range with respect to a certain processor. In contrast, it is
proposed here that the concept ‘chaos’ should be reserved as belonging
strictly to the unprocessible range of a given processor, The reader will
find that this discrimination will be a great help in avoiding the confusion
hitherto existing. 1t should be noted that in this way ‘randomness’ and
‘chaos’ are both defined with respect to a given processor, but they belong
to different ranges which are never overlapping.

Secondly, a question [21]: is chaos an exceptional or pathological
phenomenon in nature? Traditionally chaos has been considered a rather
peripheral phenomenon from the point of view of exact science. In fact,
however, it is neither a special nor pathological phenomenon, and forms a
matrix for all the regularities found in nature hitherto. In practice,
irregularity is often treated as noise, or disease, which should be avoided
or suppressed as much as possible. The exis}ence of such cases are
admitted; however, along the previously stated fine of thought, chaos is
not just a pathological phenomenon but can be equally or more important
in physiology. The characteristic flexibility in response of living organisms
to external excitation will never be fully understood without invoking
chaos as a fundamental mode of motion.
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The term chaotic heart action should be reserved to denote irregular
heart action caused by frequent premature systoles of multiple points
of origin, occurring singly or in short paroxysms, and especially when
the ectopic foci are not confined to the ventricles and auricles alone,
but come from both chambers or, in addition from the A-V node. The
significance of this condition lies in its always being taken as a prelude

to sudden death.
L.N. Karz[36]

11.1 Introduction

*Chaos’ is a term that is used to denote dynamics in deterministic mathem-
atical equations in which the temporal evolution is aperiodic in time and
sensitive to the initial conditions. But, as the above quotation iltustrates, in
electrocardiography ‘chaotic’ dynamics have been recognised for a much
longer period of time than the recent surge of interest among mathemati-
cians and physicists. Of course, the use of the term ‘chaotic’ by cardiologists
is purely descriptive, and does not reflect a detailed theoretical analysis of
the underlying mechanisms. In this chapter we describe cxperimental
studies on the effects of periodic clectrical stimulation of spontancousty
beating cells from embryonic chick heart. The irregular dynamics observed
in this experimental system are interpreted using theoretical results from
the theory of bifurcations of finite difference equations. The close corres-
pondence between many of the rhythms observed in the experimental
system, and abnormal rhythms observed clinically in electrocardiography,
leads us to speculate that clinically observed ‘chaotic’ rhythms may indeed
be associated with deterministic ‘chaos’ in mathematical models of the
intact human heart.

In the normal heart the cardiac rhythm consisty of a regular periodic
contraction of the atria (auricles) followed a short time (0.08-0.12s) later
by contraction of the ventricles. The normal cardiac rhythm (frequency at
rest of 60-100 min™') is sct by a pacemaking site in the right atrium in a
small region of specialised tissue called the sinoatrial (SA) node. From the
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SA node the cardiac activity spreads sequentially through the atrial
musculature, the atrioventricular (AV) node separating the atria and

ventricles, and then through specialised conduction tissue to the ventricles.
The electrochemical events associated with the heartbeat can be monitored
noninvasively on the electrocardiogram (ECG), which is a record of -

potential differeaces between differcnt points on the surface of the body.
On the ECG well-characterised deflections or waves are associated with
the excitation of the atria and the ventricles. The morphology and timing
of these waves reflect the location of the sites of initiation of the atrial and
ventricular excitation and the conduction pathways of the electrical activity

;of the heart. In a great many pathological conditions, abnormal cardiac .
rhythms (called either arrhythmias or dysrhythmias) are observed and

¢classified from an analysis of alterations in the timing and morphology of
waves on the ECG (8).

The arrhythmia described above as ‘chaotic heart action’ is believed to -

arise as a consequence of multiple pacemaking foci (called ectopic foci)
located in different regions of the heart. The interactions of spreading
-electrical activity originating from such foci lead to frequent premature
_systoles (ventricular contractions). The appearance of the ECG in such
‘circumstances is extremely complex and irrcgular. Contemporary workers
still sometimes use the term ‘chaotic heart rhythm’ to designate multifocal
atrial and ventricular rhythms {8,49]. The grave prognosis for patients
who display these complex rhythms is amply supported by clinical data.
Recordings of the ECG in which ventricular arrhythmias display muitiform
extrasystoles (which may arise from multiple foci) are frequently observed
prior to sudden death [46]. A theoretical model of the postulated mechan-
ism for ‘chaotic heart action’ would neccssarily assume several independent
pacemakers (the ectopic foci) in an excitable medium (the cardiac muscle)

of complex geometry. The temporal evolution of such a system could then .
be analysed. At the current time we do not attempt to analyse this difficult

problem.

We study a greatly oversimplified model system consisting of an
electronic stimulator coupled unidirectionally to an independent cardiac
oscillator, In section 11.2 we sketch out the main ideas of the theory. In
section 11.3 we describe the experimental system and present experimental
evidence for chaotic dynamics. The results are discussed in section 11.4.

f

11.2 Theory

11.2.1 Periodic forcing and the bifurcations of circle maps

In an carly paper, van der Pol and van der Mark [55] proposed that the
cardiac thythm could be modelied by coupled nonlinear oscillators. By
changing relative frequencies of the oscillators it was possible to reproduce
many different cardiac arrhythmias. It is, however, extremely difficult to
analyse mathematically the original equations proposed by van der Pol and
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van der Mark, and subsequent workers have carried out computer simu-
lations to determine the dynamics [35,52]. Indeed, theoretical analysis of
the sinusoidally forced van der Pol equation is a difficult problem which
lies at the heart of much current research in nonlinear mathematics {40].
The difficulties inherent in the analysis of sinusoidal forcing have led us to
consider the effects of brief, pulsatile stimuli delivered periodically to the
spontaneous cardiac oscillator. Under certain well-defined approximations,
which we outline below, the dynamics in these situations can be analysed
by consideration of circle maps.

Assume that the dynamics of a cardiac pacemaker can be represented
by an ordinary differential equation dy/dt = f{y} where y € R", and f
represents nonlinear functions describing evolution iu time (e.g. the
McAllister er al equations {41]), The cardiac oscillation is given by n stable
limit cycle oscillation with period Ty Let y(0) be a point on the cycle
(typically taken as the depolarisation or upstroke of the action potential)
and define the phase, ¢, (0=¢<1) of any point y{f) on the cycle to be
t/Ty (mod 1). The locus of all points which asymptotically approach the
limit cycle in the limit +— is called the basin of attraction of the limit
cycle. Let the trajectories of two points in the basin of attraction of the
limit cycle be given by y(¢), y'(£). Then if lim dfy(¢), y'(t)] = 0, where d
is the Euclidean distance, y(0) and y'(0) have the same eventual phase.
A locus of points with the same eventual phase is called an isochron
(18,19,20,37,56].

The effect of a stimulus delivéfed at some phase ¢ is o shift the
oscillator to a new point in phase space with eventual phase ¢';

(11 ¢ =)
where g is called the phase transjtion curve (PTC). The PTC can be
experimentally measured. A stimulus is delivered to the system at phase
&, resulting in a perturbed cycle of iength 7. Then, provided the return to

the limit cycle is very rapid,

(11.2) gd)=1+¢-T/T,

In situations in which the return to the limit cycle is not rapid or the

oscillator is switched out of its basin of attraction, egn (11.2) does not

apply [18,37]. ) o _
Now consider the effect of a periodic train of stimuli with an inter-

stimulus interval f,. Assume that following each stimulus there is a rapid

relaxation back to the limit cycle, and that the stimuli do not changc the

intrinsic properties of the system. Then if ¢, is the phase of the oscillator

before the ith stimulus

{11.3) . $iv1 = flbs) = g(d)+7

where 1 = #/T,. Equation (11.3) determines a circle map often called the
first return or Poincaré map.
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.. Equations (11.2) and (11.3) are the basic equations for theoretical
* studies. These equations were first derived by Perkel et al. {48] and have
been used subsequently by many workers [2,17,19,24,25,29,30,44,53,
$9,60], but notation differs between different groups. The PTC can be
experimentally determined from eqn (11.2), and then the Poincaré map of
eqn (11.3) can be numerically iterated to compute expected dynamics.
The stable fixed points of eqn (11.3) correspond to stable phase-iocked
dynamics in which there is a stable repeating pattern consisting of N
stimuli and M cycles of the cardiac osciilator (N: M phase locking}. Since
the PTC is a function which maps the unit circle into itself, analysis of the
bifurcations of eqn (11.3) requires a knowledge of the bifurcations of
two-parameter circle maps. One parameter, 7, corresponds physically to
the period of the periodic stimulus, and the sccond parameter reflects the
strength of the perturbing current passed through the microelectrode
(implicit in the PTC). There has been recent interest in the bifurcations of
two-parameter circle maps [3,5-7,13,15,17,33.34,47]. We summarise
some of the main findings of this work with particular emphasis on points
related to the experimental observation of ‘chaotic’ dynamics.
-Consider the map given in eqn (11.3). Defining

(11.4) Ad; = g(d)+1-b,
then the rotation number pisgiven by
@19 o= limsup 340,

«éﬂeﬂrly. p is rational for cycles of the finite difference equation, and
hence is rational for stable phase locking. The topological degree of the
PTC counts the number of times g winds around the unit circle as ¢ winds
around the unit circle once. Winfree [56] has given examples to show that
the PTC is generally of degree 1 for low-amplitude stimuli and is of degree
0 for higher stimulus amplitude. For monotonic degree 1 circle maps,
quasi-periodic dynamics arise for irrational p. If a critical point of the
Poincaré map is a point on a cycle, the cycle will be stable and is called a

nq,entable cycle.

To make matters concrete, we display theoretically computed phase-

ing zones using a PTC which was fit to cxpenmental data [20]. The
“, hmw 2 "

v ' o 0" +4"
Where

C=0.125+0.0254, o, =0.34+0.12x2°%
By P=004x27, 9=034+048x27
; n=1875%x2% $=09
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The parameter A is given by A =-50A, where A (in arbitrary units) is
related to the amplitude of the current pulse stimulus. The PTC is of
topological degree 1, monotonic for A <0.039 and nonmonotonic with a
single maximum and minimum outside of this range. Figure 11.1 displays

Fig. 11.1 (A) Principal phase-locking regions (enclosed by solid lines) and
associated superstable cycles (dashed lines) numercially computed from eq. (11.6).
For values of A between 0 and 0.02, dpu,, o7, & and n were held at their value
for A = 0.02, and C and § were lincarly interpolated between O and the values
of these parameters at A = 0.02. (B) Enlargement of a portion of (A) to show
period-doubling and higher-order bifurcations with rotation number p = 1. Note
the 1:1, 2:2, and 3:3 phase locking zones associated with period -1, -2 and -3
superstable cycles. From ref. {20] with permission.

boundaries of theoretically computed phase-locking zones with the dashed
lines giving the superstable cycles. Figure 11.2 gives the superstable cycles
up to period 4 over a still narrower region of parameter space. Many of
the features in Figs 11.1 and 11.2 are.well understood and can be expected
to arise in the bifurcations of any circle map of degree 1 as there is a
change from monotonicity to nonmonotonicity.

In the monotonic region, the Poincaré map is a one-to-one invertible

_ map of the circle. For this case for A and T fixed, p is independent of the

initial condition. For fixed A as 1 varies, the rotaﬁod number is a Cantor
function piecewise constant on the rationals. The zones of stable phase
locking are nonoverlapping cusp-shaped regions (called Amold tongues)

. extending to A = 0. Arnold tongues exist for all rational rotation

numbers. Such zones form an open dense set in parameter space (i.e. they
are structurally stable), but the irrational rotation numbers exist on a set of
positive Lebesgue measure. All of the above properties wili be found in
general for two-parameter invertible maps of the circle [3).

For the region in which the PTC is nonmonotonic, the structure of the
phase-locking zones is much more complex and not as well understood. In
the nonmonotonic region it is known that, for A fixed, as ¢ varies one -
must find at least two distinct values of 7 at which there exist two
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Fig. 11.2 Superstable cycles with rotation number p = 1. From ref. [20] with
. permission.

superstable cycles for each rational rotation number (see the dashed lines
in Fig. 11.1) [17]. Consequently, the Arnold tongues must extend into the
region in which the PTC is nonmonctonic. For A and 7 fixed in the
ponmonotonic region, the rotation number may depend on the initial

condition. Such a situation arises, for example, at the point of intersection -

‘of the superstable cycles associated with 1:1 and 3:4 phase locking in Fig.
11.1. At this point the maximum of the PTC is on a cycle of period 1
(p = 1) and the minimum is on a cycle of period 3 (p = 4/3). In general, if
‘the maximum is attracted to a cycle with rotation number p, and the
minimum is attracted to a cycle with rotation number p’, then some
tnitial condition can be found for which the rotation number is any value in
the closed interval [p’, p] {22,45]. There can also be two different
‘uable cycles both having the same rotation number. This situation arises
example at the upper intersection point of the 2:2 superstable cycles
Mty = 1.09, A = 0.08) or at the intersection points of the period 2 with
period-4 and period-3 superstable cycles in Fig. 11.2. Another prom-
Inent feature is the complex sequence of bifurcations found in the two-
' r space in some of the Arnold tongues (Fig. 11.2). A topologically
oquwa!ent bifurcation structure has been found in other maps of the circle
nd interval in which there are two parameters and two extrema [5,6,14,
17]. Thus, we have conjectured that the bifurcations represent a ‘universal’
structure, that is, a generalisation of the U-sequence found in one-
imensional maps with one parameter and one extremum [42]. We believe
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that the reason this complex structure does not arise in all the Amold
tongues in this map reflects the slow growth of the extrema of the PTC in
the parameter range considered. In other situations in which extrema grow
linearly with parameter increase, this structure is apparently found in all
the Amold tongues [6,7.17)].

11.2.2 Routes to chaos in circle maps

One of the main interests of current theoretical research in nonlinear
dynamics is in characterising the nature of the transition from regular
periodic dynamics to irregular, turbulent or chaotic dynamics [12]. Several
characteristic types of transition have been observed mathematically and in
physical and biological systems as parameters are changed. Many of these
main ‘routes to chaos’ can be observed in different regions of the frequency
—amplitude parameter space of Fig. 11.1. We briefly describe three routes
to chaos, intermittency, period-doubling bifurcations, and quasi-periodicity
(overlapping of resonances) and show that all three routes can be found in
the two-parameter space of circle maps.

(8) Intermitiency arises as a result of tangent bifurcations (when
8f"/adl,. = 1, where 4* is a point of period n). In the region in
which the PTC is monotonic, the only bifurcations that are found are
tangent bifurcations. The boundanies of all of the Arnoid tongues are
associated with tangent bifurcation in this monotonic region [34). As
well, tangent bifurcations are present throughout the region in which
the circle map is nonmonotonic.

(b) Period doubling arises as a consequence of the nonmonotonicity of the
PTC (when df"/odl,. = -1 where ¢* is a point of period n). In
Fig. 11.2 as A increases for T = 1.065 or + = 1.115, one observes
superstable orbits of period 2, 4, 3, These are the periods arising in the
U-sequence for one-dimensional, ‘one-parameter interval maps with
one extremum [42]. Finer examination of the sequence of periodic
orbits reveals the other orbits of the U-sequence, including the period-
doubling cascades. In addition to these sequences in the region en-
closed in the square in Fig. 11.2, there is a complex pattern of
overlapping of stable orbits of different periodicities displaying period-
doubling and tangent bifurcatiens and showing a self-similar structure
[5.6]. The extensions of the outer boundaries of the Arnold tongues
are still associated with tangent bifurcations whereas the inner bound-
aries are associated with period-doubling bifurcations. Since the Arold
tongues overlap, as a single parameter changes it is possible to observe
a cascade of period-doubling bifurcations associated with one ex-
tremum of the PTC and a tangent bifurcation associated with the other
extremum.

(c) Quasi-periodicity (overlapping of resonances). Quasi-periodi¢ dynamics
are associated with irrational rotation numbers in the region in which
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- the PTC is monotonic. In this situation, the locus of points associated
with any given irrational rotation number is a curve extending from
A=0 to A=0.39. For the region in which the PTC is nonmonotonic,
there is a wedge-shaped region in which some initial condition can be
found associated with any given irrational rotation number. This wedge-
shaped region arises as a direct consequence of the overlapping of
Amold tongues (leading to bistability) and of the observation that the
rotation number covers an interval in nonmonotonic circle maps [7,
19,33,47]). The existence of aperiodic orbits in such circumstances has

" been carefully described by Levi [40] and was anticipated by the

seminal paper of Levinson in 1949 (which described aperiodic orbits in
~ a situation with bistability but did not explicitly deal with circle maps).
Full descriptions of topological properties of aperiodic orbits in the
- fonmonotonic region have not yet been given. It is also of some
interest to determine whether the set of initial conditions associated
with irrational rotation numbers has non-zero measure for the case in
which there are two stable periodic orbits with different rotation
number; to our knowledge this is not now known.

In summary, in the region in which the Poincaré map is monotonic, the
phase-locking zones have a comparatively simple structure which is well
understood, On the other hand, in the region in which the Poincaré map is
nonmonotonic, the phase-locking zones overlap, and in the internal region
of each phase-locking zone there are complex bifurcation sequences.
Consequently, although one can identify some regions of parameter space
in which simple routes to chaos can be isolated in the nonmonotonic
region, in general, as one parameter is changed, extremely complex
sequences of bifurcations will be observed. The resulting dynamics will be
difficult to interpret unless the underlying two-dimensional bifurcation
‘structure in Figs. 11.1 and 11.2 is understood. A similar observation has
been made by Holmes [28] in a related context.

.11.3 Experimental observations

Experiments were performed on a preparation of spontaneously beating
aggregates of embryonic chick heart ceils (100-200 um in diameter) which
were electrically stimulated by passing a brief current pulse through an
intracellular microelectrode, a preparation initially developed by De Haan
T10,11]. ‘The results of the experiments arc reported in detail in ref. {23
‘with partial results in refs. [19, 20 and 24a). Here we present a summary of
‘the results with emphasis on the experimental observation of chaos. In a
3 aggregate, single pulses of current were delivered at various phases
of the spontancous cycle to determine the PTC using egn (11.2). Then, at

he same current amplitude, periodic stimuli were delivered over a range
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of stimulation frequencies with interstimulus period, ¢, mainly in the range
To /3<1,<2T, where T, is the intrinsic time interval between beats in the
absence of stimulation (generally T, is between 0.5 and 1.0 s}. The
interstimulus interval was first changed in comparatively coarse steps of
about 50 ms, and then, in regions in which the dynamics were more
sensitive to stimulation frequency, ¢, was varied in 10 ms steps (the finest
resolution possible in most of our experiments). The dynamics at any given
stimulation frequency were recorded for a minimum of about 20 s, when
the dynamics were regular, and for as long as several minutes when the
dynamics were irregular. Between each stimulation trial, the stimulator
was turned off for at least 30 s.

There are several difficuities in performing and interpreting these
experiments, which reflect the complex biological nature of the prepar-

~ ation. One of the main difficultics is to maintain the intracellular impale-
" ment of the microelectrode over extended periods of time. In practice, the

longest it has been possible to maintain an impalement in a single aggre-
gate is about 5 h. Since the diameters and intrinsic periods of beating of
the aggregates differ, comparison of results from two different aggregates
requires a normalisation procedure [20]. Also, there are fluctuations in the
intrinsic frequency of any one aggregate (coefficient of variation about
2%). We take these fluctuations as a reflection of intrinsic biological
‘noise’ [9]. Therefore, in comparison with physical systems and numerical
simulations of deterministic mathematical models, the experimental system
is ‘noisy’ and there is uncontrollable variability between experiments done
in different preparations.

For a fixed current amplitude, as the stimulation frequency is decreased,
periodic rhythms are observed at some frequencies and aperiodic dynamics
at other frequencies. The periodic rhythms covering the largest areas in
parameter space, the 2:1, 1:1 and 2:3 rhythms (Fig. 11.3), are readily

" observed in all preparations and can be maintained indefinitely. Phase-

Jocked dynamics in a number of other patterns can be observed, but the
number of different patterns that can be obtained depends on the parti-
cular preparation and the stimulation strength. Guevara [23] has observed
phase-locked patterns, stably maintained for at least several cycles in the
ratios 5:1,4:1,7:2,3:1,8:3,5:2,7:3,2:1,7:4, 5:3,8:5,3:2,7:5,4:3,
5:4,1:1,4:5,3:4,5:7,2:3,5:8,3:5,4:7, 1:2, where the order from left
to right corresponds to decreasing stimulation frequency. Not all of these
different thythms have been observed in a single preparation, and these
rhythms are not all observed at cach stimulation strength. The sequence of
observed phase-locking patterns follows the Farey sequence as expected,
and shows a monotonic increase of rotation numbers [16,26]. In general,
the higher the periodicity of the orbit the more difficult the orbit is to

observe experimentally. _ _
if one observes two different stable rhythms at different stimulation
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Fig. 11.3 Recordings of transmembrane potential showing regular dynamics. The
average interbeat interval f,, is computed from the five spontancous interbeat
intervals immediately preceding the start of each stimulation run. Aggregate
sumber 1, diameter = 114 um. (A) Control unperturbed activity; (B) A = 0.10,
by = 469ms, ¢, = 150ms, r = 0.32. 2:1 phase locking; (C) A = 0.10,
Ly = 437ms, t, = 400ms, v = (.91. 1.1 phase locking; (D) A = 0.10,
Ly = 471ms, 4, = 600ms, 1 = 1.27, 2:3 phase locking. Vertical scale represents
S mV; horizontal scale represents 1s. Adapted from ref. [20] with permission,

frequencies keeping stimulation strength fixed, then, by probing with inter-
mediate stimulation frequencies, it is often possible to obtain dynamics
which are aperiodic. The range of parameters over which aperiodic
dynamics are observed varies with stimulation frequency and amplitude.
However, over large ranges of parameter space, for example with stimu-
lation parameters in the range 0.06<A<0.1, 1.05<1<1.4, it is difficult
to maintain stable entrainment for extended periods of time.

. We now offer an interpretation of the irreguiar rhythms observed
-experimentally, based on the preceding discussion of chaotic dynamics in
circle maps. In particular, we have obtained evidence that the three routes
to chaosdcscnbed above can be experimentaliy observed.

‘(a) Intermittency. The high-frequency boundary of the 1:1 zone in Fig.
*~-11,1 corresponds to a tangent bifurcation. By increasing the stimulation
“frequency starting at the 1:1 zonc. u situation cventualy arises in which
there are occasional dropped beats. These dropped beats occur at
approximately equal time intervals, but the pattern is irregular (Fig.
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Fig. 11.4 Nonperiodic Wenckebach cycles, n + 1:n, with n = 6 or 7. Numbers
beiow the recordings represent the number of action potentials during each series.
Aggregate number 1, 4 = 0.06, 1,, = 470ms, 1, = 350ms, v = 0.75. Vertical

scale represents 50 mV; horizontal scale represents | s. :

11.4). This intermittent dropping of beats is expected theoretically near
the tangent bifurcation in a noisy system.

(b) Period doubling. Provided thesstimulation strength is sufficiently large
(but not too large), period-doubling bifurcations are expected as the
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Fig. 11.5 Period-doubling bifurcations and irregular dynamics. (A) 1:1 phase
locking spontaneously changing to 2:2 phase locking. Note that during 2:2 phase
locking there are two distinct phases of the cycle at which the stimuli fall.
Aggregate number 2, diameter = 181um, A = (.10, 1,, = 519ms, ¢, = 550ms,
T = 1.06. (B) 4:4 phase locking. There are four distinct phases of the cycle at
which the stimuli fall. Aggregate number 1, A = 010, ,, = 470ms,
f, = 490ms, v = 1.04, (C) Irregular dynamics. Aggregate number 1, A = 0.10,
Iy = 471ms, 1, = 500ms, v = 1,06. Vertical scale represents S0mV; horizontal
scale represents 1s. Adopted from [24a] with permission (part (C) has been
changed).
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stimulation frequency is decreased, starting from within the 1:1 zone.
In Fig. 11.5, 2:2, 4:4, and irregular dynamics are displayed. In Fig.
11.6, we display ¢;,1 vs ¢; as measured using experimental data

10

Biey 05t

0 0 05 0

i |
Fig. 11.6 (A) ¢y, vs &; from the experimental data shown in Fig. 11.5C. (B) The
i map, calculated from eqn (11.6) superimposed on the experimentsl

0 05

points.

Al |

| INS— |

Fig. 11.7 (A) ‘Quasi-periodic’ dynamics demonstrating the Wenckebuel

. The arrows indicate blocked stimuli. Aggregate number 3, diamewr
= O5um, £, = 540ms, f, = 500ms, T = 0.92. A is very weak (<000,
{BY: time scaie for a portion of (A). Vertical calibration re s
OmV; tal calibration represents 1s.
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from which the sequence shown in Fig. 11.5¢ was extracted, Super-
imposed on these data is the plot of ¢,,; vs ¢; based on the PTC
curve from eqn 11.2. The nonmonotonic curve with the unstable
period-1 fixed point in the nonmonotonic region is typical of finite
difference equations in the period-doubling route to chaos. The close
correspondence between the experimental data derived from periodic
stimulation (points), and the curves based on single pulse perturbation
experiments (solid curve) give strong support for the theory described
in section 11.2.

{c) Quasi-periodicity. At low stimulation intensities, the zones of entrain-
ment are narrow and stable phase locking is difficult to obtain. A
typical tracing of the resulting quasi-periodic dynamics is shown in Fig.
11.7. The piot of the experimentally measured &;,; vs ¢; (Fig. 11.8)
is 2 monotonic circle map, almost parallel to the 45° line. The periodic
electrical stimulation in this case barely perturbs the ongoing spon-

taneous rhythm.
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Mg 11.8 &, vs. &, from the experimental data shown in Fig. 11.7.

At intermediate stimulation strengths, the dynamics should be described
by a nonmonotonic circle map of degree 1. In Fig. 11.9 we show irregular
dynamics and in Fig. 11.10 we show ¢,,; vs ¢; experimentaily measured
Sor this situation along with the superimposed curve based on the PTC,

n 11.2. The dynamics for this situation are not appreciably (at least from
?coam qualitative perspective) different from the dynamics that are
#xperimentally observed at a lower stimulation strength but the same
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Fig. 11.9 Irregular dynamics with apparently rundomly inserted extra or escape
beats. Aggregate number 1, A = 4.06, 1,, = 484ms, £, = T00ms, 7 = L4,
Vertical calibration represents 50mV,; horizontal calibration represents ls
Adopted from ref. [20] with permission.

stimulation frequency. Indeed, there are no striking qualitative differences
between the experimentally observed dynamics just beneath or just above
the critical intensity at which the circle map becomes nonmonotonic. We
hypothesise that the inability to experimentally observe such differences is

Fig. 11.10 {A) &y vs. &; from the experimental data shown in Fig. 11.9.
(B} The Poincaré map, calculated from eqn (11.6), superimposed on the
experimental points. Adopted from ref. [20] with permission.

due to small amounts of noise which destroy the higher-order resonances
that overlap near the transition from monotonicity to nonmonotonicity.
At higher stimulation intensities. as lower-order resonances overlap, the
effects on the dynamics are expected to be more striking. In Fig. 11.11 wé
. show three traces taken at a single stimulation frequency in a smghy
peeparation. Figure 11.11A contains a sequence of 1:1 locking; Fg
11.11B contains a sequence of 3:4 locking: and Fig. 11.11C contains &
irregular sequence combining elements of both of the other patterns. THE
dynamics arises near the neighbourhood in which there is an overlappisg
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Fig. 11.11 Compiex dynamics and bistability. The three panels in this figure
represent dynamics observed during a given train of pulses during which stimulus
frequency and intensity were being held constant. (A) 1:1 phase-locking dynamics;
{B) 3:4 phase locking; and (C) irregular sequences combining clements of (A) and
{B). Integers below the recordings represent the number of 1:1 events during each
series of action potentials between couplets. Each couplet consists of an escape
beat followed by a stimulated beat. Aggregate number 1, A = 0.10, ¢,, = 4701ms,
{, = S60ms, * = 1.19. Vertical calibration represents 50mYV; horizontal
calibration represents 1s.

of 1:1 and 3:4 zones. We believe that the complex dynamics in Fig. 11.11
is a manifestation of the bistability arising as a consequence of overlapping
of the resonances in a noisy systern. The plot of ¢,,; vs &;, and the
fitted PTC (Fig. 11.12) provides cvidence in support of this hypothesis. In
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Fig. 11.12 (A) &1 vs. &, from the experimental data shown in Fig. 11.11.
(B) The Poincaré map, calculated from eqn (11.6), superimposed on the
experimental points. The staircase method for graphically iterating the map shows
astable cycle corresponding to s 3: 4 phase locking.
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Fig. 11.12B we show the period-3 orbit corresponding to 3:4 entrainment.
The local minimum at about &; = ¢, = 0.37 is associated with the
intermittent 1:1 sequences. Thus both 1:1 and 3:4 sequences can be found
along with more irregular sequences due to the effects of ‘noise’ in mixing
the basins of attraction. A definitive demonstration of the bistability such
as finding one or another stable rhythm by initiating stimulation at
different phases in the cardiac cycle has not been performed (and may be
impossible in this noisy system).

11.4 Discussion

The periodic stimulation of periodically beating cells from chick heart
gives rise to a wide range of different regular and irregular dynamics. By
theoreticaily analysing this experiment, the results can be understood
based on the analysis of one-dimensional circle maps. Such a model system
can be used to interpret a number of regular and irregular cardiac rhythms
which may be due to the periodic forcing, by an impulse originating at the
SA node or a secondary focus, either in the AV node [24,35,52,55] ot
ventricular tissue [2,29,32,44,59]. Indeed practically ali of the great variety
of experimentally observed rhythms have counterparts in clinically ob-
served arrhythmias [23). .

in the intact human heart, more complex situations can also arise. For
example, there can be interactions between two beating foci, so that
activity from each focus acts to reset the other. Theoretical analysis of the
dynamics in such situations shows the possibility for a wide range of
regular and irregular dynamics [29,30,31,58]. The existence of ‘chaotic’
dynamics arising from the periodic stimulation of an excitable but not
spontaneously oscillating medium has also been discussed [38].

In contrast to rhythms that are belicved to be due to interactions
between multiple discrete foci is fibrillation. During fibrillation there are
low-voltage comparatively rapid fluctuations on the ECG. These are
-believed to be due to disorganised re-entrant wave propagation throughout
the cardiac tissue, without independent pacemaker sites [1, 8]. Although
fibrillation is sometimes described as ‘chaotic’, frequency analysis of
fibrillation has shown strongly peaked amplitudes over comparatively
parrow frequency ranges {4, 21, 27|, and the use of the adjective ‘chaotic’
to describe such rhythms has been questioned {21]. It has been shown that
“fibrillatory’ activity can arise in spatially distributed systems with variable
refractory times [39, 43, 51, 54]. Recent studies using computer simulation
bave shown that period-multupling can be found during periodic stimus
lation at high frequencies prior to the onset of fibrillatory activity in a spati
Ally distributed system with variable refractory times [51, 54]. Howevet,
ghis dynamics may at least partially reflect the details of the spatigh
discretisation of the network of excitable cells and the finite differencs
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approximation used in the simulation [51}. The observation of alternans
during electrical stimulation of cardiac tissue at high-stimulation frequency
[25, 50) may be due to a period-doubling bifurcation which is not partof a
cascade of period-doubling bifurcations [25]. Thus it is not clear if fibriila-
tion in continuous systems is associated with cascades of period-multupling
bifurcations displayed in the discrete models of fibrillation. A different
theoretical model for the initiation of fibrillatory activity in a network of
spatially distributed self-oscillatory elements based on analysis of phased
resetting due to a single shock has been proposed by Winfree [57]. Finally,
we reiterate our earlier observation that ‘chaotic’ heart rhythms, perhaps
due to the interaction of multiple pacemaking foci, are often observed
prior to fibrillation and sudden death.

To summarise, a theoretical analysis of cardiac arrhythmias can be
developed based on the following observations:

(1) Cardiac arrhythmias are normally classified on the basis of qualitative
properties of the dynamics.

(2) Simpte biological and theoretical models for the intact heart display
extremely rich dynamics as parameters in the model representing
stimulation frequency and amplitude are varied.

(3) There is a correspondence between many of the rhythms observed in
the model systems and rhythms 6bserved clinically. Thus, a theoretical
understanding of the mechanisms underlying cardiac arrhythmias, and
particularly ‘chaotic’ cardiac rhythms, may be possible.
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12.1 Nonlinear dynamics in nerve membranes

The fundamental functions of neurones, such as the generation and
propagation of action potentials, arc supported by nonlinear dynamics
peculiar to the nerve membranes. The nonlinear neural dynamics produces
different attractors and bifurcations in far from equilibrium conditions. For
example, stable limit cycles with Hopf bifurcations and multiple equilibrium
points with saddle-node bifurcations have been analysed both experiment-
ally and theoretically {1,2,11,14,15,17,19,20,24,33].

Self-sustained oscillations, or the spontaneous repetitive firing of action
potentials in squid giant axons, can be understood in terms of a dissipative
structure that has spatio-temporal order and behaves as a nonlinear neural
oscillator [1,24,26]. In this chapter, we study experimentally and numeric-
ally the various responses of the neural oscillator of squid giant axons to
periodic forcing by a sinusoidal current [3-6,25,27].

12.2 Experimental approaches to squid giant axons

Intact giant axons of squid (Doryfeuthis bleekeri} were used in the electro-
physiological experiments. A mixture of natural sea water and 550mM
NaCl was used as the external medium to induce the seif-sustained
oscillations in the squid giant axonal membrane [1,24]. The membrane
potential was recorded through a pair of glass pipette Ag-AgCl electrodes
filled with 550mM KCl.

A sinusoidal current A sin 2nfg that provided the periodic forcing was
applied to the axons that were in the state of self-sustained oscillation
through an internal curreng glectrode with the conducting length of S5Smm,
where A and fs are the amplitude and the frequency of the stimulating
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sinusoidal current. The membrane potential of the axon was spatially
clamped over the conducting portion of the current electrode. This space-
clamping condition makes it possible to describe the forced oscillations by
‘ordinary’ differential equations as described in section 12.3.

We analysed the oscillating membranc potentials by stroboscopic plots
[29,34,36]. Namely, the membrane potential V(#) and its time-differential
dV(¢)/dt were observed at a fixed phase of the stimulating sinusoidal
current and plotted successively on the V-dV/dr plane {27]).

12.3 The Hodgkin-Huxley osciliator

It is weli known that the Hodgkin-Huxley equations {13) can describe
phenomenologically the various phenomena of nerve excitation in squid
giant axons, We used the Hodgkin-Huxley ordinary differential equations
that have four variables (the membrane potential, V, the sodium activa-
tion, m, the sodium inactivation, %, and the potassium activation, n) for
numerical analyses of the periodically forced oscillations in squid giant
axons surrounded by a mixture of natural sea water and 550mM NaCl.
(See [1,5,26] for the detailed procedures taking the variation of the external
ionic concentrations into the Hodgkin-H uxiey equations. )

The self-sustained oscillations start through a backward (or subcritical)
Hopf bifurcation as the mixing ratio of 550mM NaCl to natural sea water
is increased [1]. We analysed the responses of a Hodgkin-Huxley oscillator
in the soft-oscillation mode to the forcing sinusoidal current A sin 2ufy.
The natural frequency fy, the peak-to-peak amplitude of the action
potentials, and the membrane potential of the unstable resting state in the
Hodgkin~Huxley oscillator are 174.6 Hz, 126.9 mV and -60.0 mV,
respectively, and approximate to the corresponding values of squid giant
axons [5]. The forced oscillations were analysed by stroboscopic plots on
the two-dimensional planes V-m, V-, V-n, V-m®h (the normalised
sodium conductance). The Hodgkin-H uxley equations were numerically
solved on a HITAC-M280H computer at the University of Tokyo
Computer Center.

-12.4 Forced oscillations in squid giant axons

The periodically forced oscillations in both squid giant axons and the
Hodgkin-Huxley equations are classified into (1) synchronised oscillations,
(2) quasi-periodic oscillations, and (3) chaotic oscillations.

12.4.1 Synchronised oscillations

When fs (the stimulating frequency) is close to n/m (a simple rational
number) times fy (the natural frequency), f+ (the fundamental frequency
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of the forced oscillation) is entrained to fgn and the stroboscopic plot is
composed of n points. Examples of the synchronised oscillations are shown
in Fig. 12.1 (squid giant axons) and Fig. 12.2 (the Hodgkin-Huxley
equations).

The rotation number, or the ratio of the number of action potentials to
thc.nurnber of the cycles of the stimulating sinusoidal current [10] in the
oscﬂlqtion synchronised to fg of nfa/m is min in the Hodgkin-Huxley
equations and m/n or (m-1)/n in squid giant axons. The term ‘the
m/n-synchronised oscillation’ in Figs. 12.1 and 2 means that the rotation
npmber, or the average firing rate, is m/n and that fr is fs/n. The
distribution of the rotation numbers corresponds 1o a portion of the Farey
series [5, 35, 38].

12.4.2 Quasi-periodic oscillations

Coexistence of two incommensurable rhythms, i.e. the natural fréquency
f~ and the forcing frequency fs, generates quasi-periodic oscillations such
as pulse-amplitude-modulation and pulse-phase-modulation [S). The
quasi-periodic oscillations can easily be identificd by an invariant closed
curve that emerges asymptotically in the stroboscopic plot. Examples of
the quasi-periodic oscillations are shown in Fig. 12.3 (squid giant axons)
and Fig. 12.4 (the Hodgkin—Huxley equations).
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add A
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Fig. 12.3 A quasi-periodic oscillation in squid giant axons (fy = 187Hz, f; =
800 Hz and A= 21A). {a) The wave forms of the membrane potential (abd‘ve)
and the stimulating current (below). The length of the bar corresponds to 60mV,
12 A and 15 ms. (b) The stroboscopic plot on the V-dVids plane.
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Fig. 12.4 A quasi-periodic oscillation in the Hodgkin—Huxley equations {fy =
174.6 Hz, fs = 800.0Hz and A = 50.0uA cm™2). (a) The projection of the trajec-
tory on to the V-m plane. (b) The stroboscopic plot on the V-mt plane.

12.4.3 Chaotic oscillations

Chaotic oscillations have been found in the forced Hodgkin-Huxley oscil-
lators for some values of A and £ [3, 4, 5, 16, 21]. The stroboscopic plots of
the chaotic oscillations depict thesso-called strange attactors. Examples of
the chaotic oscillations are shown in Fig. 12.5 (squid giant axons) and in Fig.
12.6 (the Hodgkin—-Huxley equations). The strange attractors in the chaotic
oscillations are evidently different from the points of the synchronised
oscillation and from the closed curve of the quasi-periodic oscillation.

Figure 12.7 shows another example of the strange attractors, which is
obtained before full development of the strange attractor in the Hodgkin-
Huxiey equations. The strange attractor in Fig. 12.7 is composed of four
islands, A, B, C and D, and has four-periodicity. Namely, the four islands
are transferred one after another by the stroboscopic mapping such that
A—-B—C—D—A. Figure 12.8 is a magnification of the islands in Fig.
12.7. Figure 12.9 shows a one-dimensional transfer function which maps
successively the membrane potential of a point on the island A to that of
the next visiting point on the same island. The transforming dynamics of
Fig. 12.8 such as folding (A—B) and pressing (D—A) and the
approximately smooth curve of Fig, 12.9 are quite similar to the dynamics
of the foroed Brusselator reviewed by Tomna [34]
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Fig. 12.5 A chaotic oscillation in squid giant axons (fy = 179 Hz, fg = 270 Hz, and
A= 2.37unA). (a) The wave forms of the membrane potential {above) and the
stimulating current (below). The length of the bar corresponds to 120mV, 12 p A
and 30 ms. (b) The stroboscopic plot on the V—-dV/d¢ plane.
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Fig. 12.6 A chaotic oscillation in the Hodgkin—Huxley equations (fy =
174.6 Hz, fg = 100.0Hz and A = 40.5p.A cm ?}. (a} The projection of the trajec-
tory on to the V—m plane. (b) The stroboscopic plot on the V-m plane.
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Fig. 12.9 A transfer function on the island A in Fig. 12.7.

12.5 Routes to the chaotic oscillations

The routes or the bifurcations to the strange attractors of the chaotic
oscillations so far observed in squid giant axons and the Hodgkin-Huxley
equations are (1) period-doubling bifurcations, (2) intermittency, and (3)
coltapse of quasi-periodicity [4-6).

12.5.1 Period-doubling bifurcations

A route to the chaotic oscillation through the period-doubling bifurcations
(e.8. [7, 28]) was observed in squid giant axons. Figure 12.10 shows an
example of the route, where Figs. 12.10a, b and ¢ correspond to the
S/1-synchronised oscillation, the 10/14-synchronised oscillation, and the
chaotic oscillation, respectively. .

There also exist successive period-doubling bifurcations into the chaotic
oscillation In the Hodgkin-Huxley oscillator [5]. For example, when A is
changed from 70.0 pA cm™ to 40.0 KA cm? with the fixed fs of
100.9 Hz, the foilowing sequence of the period of the forced oscillation is
obtained: 7(= 10.0 ms)—-2T—»4T—->ST—+16T-—>chaos—~>12T—>24T—>chaos.

12,5.2 Intermittency

Figure 12.11 sh.ows intermittent chaos (c. 8. sce [23]) in squid giant axons
zho neural oscillator fails to generate the action potentials intermittently
tlm case. Another example of intermittent chaos was also observed in
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Fig. 12.11 An intermittent chaos in squid giant axons (fy =228Hz, fs = 303 Hz
and A = 2 p A). The length of the bar corresponds to 60mV, 12 p A and 30 ms.
squid giant axons where the chaotic oscillation occurred intermittently
between almost synchronised oscillations. Though this may result from
unsteadiness of the real membranes, the existence of the same type of
intermittent chaos in the Hodgkin-Huxley equations [5] implies that the
intermittency is produced deterministically.

12.5.3 Collapse of quasi-periodicity

In recent years the route from a quasi-periodic state to a chaotic state has
been studied extensively [8, 30, 31]. Usually this route is observed as
collapse of a two-dimensional torus via frequency lockings [22, 32, 37].
The collapse of a torus in the Hodgkin—Huxlcy oscillator is demonstrated
in Fig. 12.12. It is a further probiem to trace this route in squid giant
axons, adjusting two bifurcation parameters of A and fs.

12.6 Discussion

The periodically forced oscillations in both squid giant axons and the
Hodgkin—-Huxley equations have been analysed by the approximate w-
limiting set of the stroboscopic mapping, or the stroboscopic plot. A
synchronised oscillation, a quasi-periodic oscillation and a chaotic oscilla-
tion have been identified by points, a closed curve and a strange attractor
in the stroboscopic plot, respectively. The chaotic oscillations in the
Hodgkin-Huxley equations are also confirmed by the existence of a
positive one-dimensional Lyzpunov number.

-Two rhythms, i.e. the natural frequency and the forcing frequency,
create abundant temporal patterns of action potentials in the chaotic
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Fig. 12.12 Collapse of quasi-periodicity in thc Hodgkin~Huxley equations (fy =
174.6 Hz, fg = 500.0Hz and A = 99 uAcm ?). (a) The stroboscopic plot on the
V-h plane. (b} The stroboscopic plot on the V~n plane.

oscillations. Similar chaotic oscillations have been found in many biologi-
cal membranes [9, 10, 12, 18]. It is a future problem to clarify whether the
chaotic oscillations relate to physiological functions or not.
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Measuring chaos



13
Quantifying chaos with Lyapunov
exponents

A. Wolf

The Cooper Union, School of Engineering,
Cooper Square, New York NY 10003, USA

13.1 Chaos, orbital divergence and the loss of predictability

Chaos has been discovered both in the laboratory and in the mathematical
models that describe a wide variety of systems {1, 3]. In common usage
chaos is taken to mean a state in which chance prevails. To the nonlinear
dynamicist the word chaos has a more precise and rather different mean-
ing. A chaotic system is one.in which long-term prediction of the system’s
state is impossible because the omnipresent uncertainty in determining its
initial state grows exponentially fast irr time. The rapid loss of predictive
power is due to the property that orbits (trajectories) that arise from
nearby initial conditions diverge exponentially fast on the average. Nearby
orbits correspond to almost identically prepared systems, so that systems
whose differences we may not be able to resolve initially soon behave
quite differently. In non-chaotic systems, nearby orbits either converge
exponentially fast, or at worst exhibit a slower than exponential diverg-
ence: long-term prediction is at least theoretically possible.

Rates of orbital divergence or convergence, called Lyapunov exponents
[2, 9, 13, 16], are clearly of fundamental importance in studying chaos.
Positive Lyapunov exponents indicate orbital divergence and chaos, and
set the time scale on which state prediction is possible. Negative Lyapunov
exponents set the time scale on which transients or perturbations of the
system’s state will decay. In this chapter we define the spectrum of
Lyapunov exponents, describe the well-known technique for computing a
system’s spectrum from its defining equations of motion, and outline a new
technique for estimating non-negative exponents from experimental data.
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13.2 Quantifying chaos in a ene-dimensional map

The simplest chaos machine, the one-dimensional (1-D) map, is useful for
illustrating the properties of Lyapunov exponents. One such map is the
logistic equation, x(n+1} = rex{n)+{1-x{n}}, discussed in Chapter 3 [11}.
x(0) is an initial condition chosen in the interval {0,1), and r is a tunable
parameter in [0, 4]. At r = 4 the trajectory (the sequence of map iterates
x(f),1 =0, .. .,2)is known to be chaotic. In Fig. 13.1 the trajectories
from two nearby initial conditions are seen to be diverging after only three
iterations. If the two initial conditions are viewed as defining the error bar
of some single experimentally determined initial condition, one’s ability to
pinpoint the system’s state is clearly impaired after a few iterations. The
reason for the growth of uncertainty is easily determined from the figure;
the average slope of the map, as sampled by the trajectory, must be larger
than one. An equivalent viewpoint is to consider the propagation of error
through the map with a linear stabifity analysis. The error in specifying
x(n) is defined to be dx(n), whereby
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Fig. 13.1 A pair of nearby points is iterated through the logistic map, x(n + 1)
= 4*x(n)*(1-x(n)). The resulting orbits diverge exponentially fast on the average.
Map iteration consists of passing between the map and the line x(r + 1) = x(n).
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(13.1) x(n + D +dx(n + 1) = flx(n) + dx(n)]
~ flx(n)] + dx(n)sf'{x(n}]
dx(n + 1) = dx(n)ef [x(n)] = dx(n)sr|l- 2x(n)]

or, in terms of the initial uncertainty,

-1 n-1

(132)  ldx(m)] =(ax(©)]« [T 1fx@ni = 1dx(@)] « T Ir(1-2x(@p)
i=0 1=
For any value of r uncertainty tends to grow in time where the long-term
product of the local stretching factors, {r(1-2ex§i))|. is greater than one.
If the uncertainty is to grow exponentially fast, eqn (13.2) must be
consistent with

(13.3) dx(n) = dx(0)+2*

where \ is defined as the Lyapunov exponent. This requires that {13]

(13.4) A = lim % 2 loga| £ (x(i))].

Ak red

The limit of large n is necessary if we are to obtain a quantity that both
describes long-term behaviour and is independent of initial condition. The
limit effectively averages over all initial conditions, except perhaps for a
negligible set of points (e.g. all of the points that eventually arrive at the
unstable fixed point at the origin in the logistic equation). The probability
density of the map is simply the normalised collection of deita functions
that mark the locations x(#) visited by a trajectory

(13.5) p(x) = lim =3, 8(x-x(i)).

AT 1=0
When combined with egn (13.4) we obtain
(13.6) A = [p(x)slog; | f(x)|dx

where the integral is taken over the domain of the thap. The Lyapunov
exponent is most easily understood in this form: local stretching, deter-
mined by the logarithm of the magnitude of-the slope, is weighted by the
probability of encountering that amount of stretching.

In Fig. 13.2 the Lyapunov exponent for the logistic equation is shown for
rin (3.4, 4.0). As r is increased from 0 to approximately 3.57, the system
exhibits a period-doubling sequence. At each r, the iterates x(/) converge
to a repeating sequence of period 2% n increasing by one at bifurcation
points such as r = 3.45. Stable periodic orbits are characterised by
negative Lyapunov exponents; bifurcation points correspond to orbits of
marginal stability and therefore have zero exponents. For any specified
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Fig. 13.2 The Lyapunov exponent for the logistic map is shown as a function of
the parameter r. The curve for r < 3.4, which exhibits only the first period-doubling
bifurcation, is not shown. The units of k are bits of information lost per map
iteration.

period there is a value of r where convergence is faster than exponential,
and A takes the value negative infinity. Only a few such superstable
points, such as r = 3.50, can be resolved in Fig. 13.2. As r grows from
3.57 t0 4.0, a trend towards increasingly chaotic behaviour and therefore a
growing positive exponent is interrupted by an infinite number of
‘windows’ of periodic behaviour. Figure 13.2 concisely summarises the
dynamics of the logistic equation as a function of its tunable parameter,
though certain properties, such as the period of the periodic states, cannot
be determined from the graph alone.

The units of A are bits of information per map iteration. (The reader is
cautioned that some authors define A with log, rather than log, and then
incorrectly use the units of (binary) bits per iteration.) For any r, and any
specified precision of the initial condition, the value of A read from the
~ graph quantifies the average rate of loss of predictive power. For example,
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at r=4, A =1.0 bits per iteration. If an initial condition can be
specified to 16 bits of precision, only 8§ bits of state information remain
after 8 iterations, 4 bits after 12 iterations, and predictive power is
compietely lost after 16 iterations. {The qualification that A defines the
average rate of loss of predictive power is an important one because the
uncertainty interval may occasionally shrink for a few iterates if the siope
of the map is not everywhere larger than one.) Knowledge of the system’s
state may be thought of as residing in a 16-bit shift register. At r=4, each
map iterate has the effect of shifting one bit to the left, past the decimal
point and into the void. Bits that come in from the right end to take their
place are ‘garbage’ bits that depend only on the manner in which the
iterate is determined. The Lyapunov exponent for a 1-D map is thus the
rate at which bits are shifted through the ‘state knowledge register * [15].
The analogy of a shift register is not an idle one; with a suitable coordinate
transformation, the logistic equation for r = 4 becomes the ‘bit shift’ map
x(n + 1) = 2+x(n) (modulus 1).

For the 1-D map, exponential separation is incompatible with motion
confined to the unit interval unless a ‘folding’ process merges widely
separated points. In the logistic equation, folding occurs when a pair of
simuitaneously iterated points fall on opposite sides of x = /2. These
points may be thrown very close together at which time orbital divergence
loses (and then regains!) its exponential character. Ip the repeated stretch-
ing and folding that produces chaos, it is a local property of the flow, the
stretching, that determines A, and a larger scale property, the folding,
that should never directly appear in exponent calculation. Avoiding the
fold proves to be an important consideration in estimating Lyapunov
exponents from finite quantities of experimental data. The existence of a
fold suggests a modification of our earligr statement on orbital divergence;
in chaotic systems, nearby orbits diverge exponentially fast on the average,
so long as their separation remains infinitesimal. When analysing experi-
mental data, the word ‘infinitestimal’ must be replaced with ‘small com-
pared to the range of dynamical motion’.

Given the functional form of a 1-D map or a long sequence of
experimentally obtained map iterates, eqns (13.4) and (13.6) provide a
means of estimating A. This calculation is performed with experimental
data for a chaotic chemical reaction governed by a 1-D map in Wolf and
Swift {18], where the problems with this approach to estimating A are
discussed.

13.3 Defining the Lyapunoy spectrum

For systems whose dimensionality is larger than one, there is a set or
spectrum of Lyapunov exponents, each one characterising orbital
divergence in a particular direction. The spectrum of exponents is first
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described for the equations that arise from Lorenz's simple model of fluid
convection [8].

dx
pria 16.0 (y-x)
d
{13.7) < 45.92x—xz-~y
ds
e _
ar T

In the three-dimensional ‘phase space’ defined by coordinates (x(f),
¥(£}, 2(1)), post-transient behaviour of almost all trajectories takes place on
an ‘attractor’ whose appearance is locally nearly planar. In Figs. 13.3a—<
the solution to these equations is shown for about 15 orbits as a dotted
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Fig. 13.3 The short-term evolution of the separation vector between three pairs of
nearby points is shown for the Lorenz attractar. The true magnitude of the evolving
vector appears to the right of each figure. (a) An expanding direction (A, >0). (b)
A slower than exponential direction (A, = 0). (c) A contracting direction (A; <@).

line. The Lorenz attractor is a ‘strange’ attractor as it is a chaotic system,
possessing a positive Lyapunov exponent. In these figures three kinds of
phase-space behaviour are displayed. In Fig. 13.3a an exponential divergence
of two nearby points on different orbits in the attractor is shown. (It is
possible to consider two points in the single long orbit defining the
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attractor as being on different orbits, provided that their temporal separa-
tion is greater than a mean orbital period.) This chaotic motion is
characterised by a positive Lyapunov exponent, ;. In Fig. 13.3b the
behaviour of nearby points on the same orbit in the attractor is shown. The
separation of these points neither grows nor shrinks exponentiaily fast so
the associated Lyapunov exponent, X, is zero. Finally, in Fig. 13.3¢, the
decay of a transient or perturbation to the attractor is illustrated. A point
displaced off the attractor approaches a (carefully chosen!) point on the
attractor, exponentially fast on the average. The associated exponent, A3,
is negative. Lyapunov exponents involve long time averag:s, so the short
segments of Fig. 13.3 will not accurately characterisc the exponents;
nevertheless, the qualitative behaviour is already visible. The complete
spectrum of exponents for the Lorenz attractor is approximately (2.16,0.0,
—32.4) bits per second.

The three-dimensional phase space of the Lorenz attractor has three
Lyapunov exponents, each describing the behaviour of one class of pairs of
nearby orbits. In the general case, there are as many exponents as
phase-space dimensions, though a particular Lyapunov exponent is not
associated with a anique direction in phase space, such as a coordinate
axis. For example, A; describes orbital decay to the Lorenz attractor,
motion orthogonal to the locally nearly planar attractor. However, the
attractor is neither globally flat, nor exactly two-dimensional, so this
direction varies in a complicated way over the attractor. A, involves a
long time average of the contracting nature of phase space over these
directions.

The information theory interpretation of the Lyapunov exponents in the
Lorenz attractor is a simple extension of the discussion for the 1-D map. If
an initial condition is specified to 16 bits in each coordinate, the positive
exponent of 2.16 bits per second means that all knowledge of the system’s
state (except that it still lies within the attractor) is lost after about 8 s, or
about 16 mean orbital periods. If a perturbation appears in the next to
least significant bit, the negative exponent of —32.4 bits per sccond means
that the orbit will return to the attractor (to our resolution-of 16 bits) in
about one-sixteenth of an second, or about one-cighth of a mean orbital
period.

All strange attractors in a three-dimensional phase space have the same
spectral type, (+,0,~): a positive exponent indicating chaos within the
attractor, a zero exponent for the slower than exponential motion along an
orbit (ref. [5] contains a general proof of the existence of a zero exponent
in continuous systems with strange attractors), and a negative exponent 50
that the phase space contains an attractor.

Even if the magnitudes of the Lyapunov exponents are not known, the
spectral type provides a qualitative picture of a system’s dynamics, as we
have aiready seen for the logistic equation and the Lorenz attractor. A 1-D
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map has a single exponent which is positive, negative or zero for chaotic,
periodic, and marginally stable behaviour, respectively. In a three-
dimensional continuous dissipative system, the only possible spectral
types, and the attractors they describe, are: (+.,0,~), a strange attractor;
(0,0,~), a two-torus; (0,-,-), a limit cycle; and {-,~,-), a fixed point. In
four dimensions there are three distinct types of strange attractor with
spectral types: (+,+,0,-), (+,0.-~), and (+,0,0,-).

The spectrum of Lyapunov exponents is now defined in a manner that is
particularly useful for the algorithms later presented. Given a continuous
dissipative dynamical system in an n-dimensional phase space, the long-
term evolution of an infinitesimal n-sphere of initial conditions is
monitored. Because of the deforming nature of the flow, the sphere will
evolve into an n-ellipsoid. It is assumed that the centre of the sphere is on
the attractor at ¢ = 0, and that the principal axes of the ellipsoid have
been ordered from most rapidly to least rapidly growing. The ith Lyapunov
exponent is then defined in terms of the growth rate of the ith principal
axis, p, (1)

WACH
Copi(0)

Notice that the linear extent of the ellipsoid grows as 2**, the area defined
by the first two principal axes grows as 2 * *_ the volume defined by
the first three axes grows as 2% ***™ and so on. This property
provides an alternate definition of the spectrum of exponents: the sum of
the first / exponents is given by the long-term exponential growth rate of
the j-volume defined by the first j principal axes. This alternative definition
will prove to be quite useful in spectral calculations. Whichever definition
is employed, it is only necessary to follow the motion of as many points on
the sphere as there are principal axcs, although it may be easier to
visualise phase-space behaviour if we consider the evolution of all poeints
on the sphere’s surface.

The existence of the limit in eqn (13.8) is not guaranteed for most of
the model dynamical systems one is likely to encounter [2,9,13,16), and
the situation for experimental data is cven murkier. Calculations of orbital
divergence rates necessarily characterisc the properties of the given data
set, and not necessarily the underlying dynamical system. We hope for
some correspondence between these two sets of ‘Lyapunov exponents’,
but in general it is not possible to independently confirm exponents
determined from experimental data (however, see ref. [3]).

The behaviour of the evolving sphere of states is now examined. The
centre of the sphere moves along the trajectory of some particular initial
condition, while points on the surface of the sphere move along neighbour-
ing trajectories. The sphere can therefore be expected to rotate and
deform as it moves through phase space. Individual axes may grow or

L1
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shrink exponentially fast, or may show siower than exponential behaviour.
The volume of the sphere decreases exponentiafly fast (as the sum of all of
the Lyapunov exponents), but its linear extent grows exponentially fast (as
A1). These two processes imply that the sphere becomes skewed exponen-
tially fast, Should the sphere initially be finite in extent, each pfiss‘thrmfgh
the mandatory folding structure in the attractor would result in its being
folded over on itself, ultimately evolving into an infinitely sheeted structure
—an object with fractional dimension. Kaplan and Yo_rke [7} have estab-
lished a method for estimating the fractional dimension of an attractor
from a subset of the spectrum of Lyapunov exponents. thn apphcd. to
the Lorenz attractor, a fractional dimension of 2.07 is obt:fm_ed.. qonﬁrm:qg
its not quite planar nature. If the initial sphere qf states is mf:mtcmmal_ in
extent, the probability of encountering the fold is zero and the coilection
of states remains ellipsoidal for all time.

We now outline a proof that the sum of a system’s Lyapunov exponents
is the time-averaged divergence of its phase space, a quantity that 1s
negative for the dissipative systems considered in this chapter. If a small
volume element in a d-dimensionat phase space. AV{f), grows exponen-
tially fast with an exponent equal to the sum of all of the Lyapunov

exponents, then
d = d AV(0)2™ ) = AV(h) A,
(13.9) d-avin=4.avo) (0[=A]

L
where a factor of log, 2 is ignored. The change in volume of the element is
also given by
d dar(r) 1 day() )

(13.10) o (Ax(98y(n)..) = Ax(NAy(1)...( 50 & By &

= Ax(DAy(D... (Ak/Ax + y/Ay +...)

= AV() (V-v)
Comparing eqns [13.9] and [13.10] and noting that the former already
involves a long time average, we obtain

(13.11) S A =)

i=l

where the long time average may be taken over a single trajectory. We
note that conservative systems may be chaotic, but cannot possess phase-

space attractors.

13.4 Computing the Lyapunov spectrum from equations of motion

The calculation of the Lyapunov spectrum from the evolution of an
infinitesimal state sphere may not be directly impl_emcmed on a computer,
as computers cannot represent infinitesimat quantities. In a.chaotlc system,
if the state sphere is initially finite, the exponentially rapid growth of its
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linear extent means that the fold will be encountered long before the
spectrum has converged: we fail to probe only the local structure of th
attractor. An additional problem is the exponentially fast growth of th:
skewr_wss of Fhe sphere: principal axis vectors all collapse to the direction
?SS(?Cl'ated. with the largest Lyapunov exponent, their directions becomin
1nd15t1ngun§hable whatever the precision of one’s computer. In Fi ]3§
thc evolu.non of a pair of initially orthogonal principal axis .vectorsg .(the-'
size relative to the attractor greatly exaggerated} is shown in the Hé a
strange attractor[6], which is generated by the two-dimensional mappinlgmn

5‘;55‘:;:(11;01: :::ic]’-?éd the Jacczl‘l)i)zm on an initially orthonormal pair of vectors is
i non map: initial vectors. (2) first iterate, and (3

( : _ s, S , seco
iterate. By the second iteration the divergences in extent and oriematim(n gre quir:‘:

pp nt. Th g l tions ¥ 14
€ two vect
a arent ¢ angular onientatic 0! tl] ciors ma be nun!e,mau lesoived

(13.12) x(n +1) = 1 + y(n) -1.4ex(n)?
y(n +1) = 0.3«x(n)
After only two iterates the linear extent and the skewn
gci):lect_mn of states defined by the principal axis vectors are :::nofotgz
erging. A solution to these problems was discovered independently b
Ben_netm et al.[2] and Shimada and Nagashima [16] in 1979. The resultyis Z
straightforward technique for computing & complete Lyapunov spectrum

to any desujed prcr_:ision for systems whose equations of motion are
available. This technique is now described in detail.
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The solution to the divergent axis behaviour lies in the use of a
technique from linear algebra, the Gram-Schmidt reorthonormalisation
procedure, henceforth referred to as GSR [12]. Given a set of linearly
independent vectors, GSR provides a new set of vectors that are ortho-
normal and preserve the orientation of various subspaces of the original
set: the first vector in each set is identical in direction, the first two vectors
in each set define the same plane, the first three vectors in each set define
the same three-volume, and so on. These properties allow us 1o periodic-
ally replace the evolving cllipsoid with a new ellipsoid that is smaller (no
problem of diverging extent) and whose principal axes have their orienta-
tion ‘preserved’ (we keep track of each phase-space direction) though the
new axis vectors are all orthogonai {no orientation collapse).

We now review the Gram-Schmidt procedure. The first replacement
vector is simply the first old vector, normalised. The second replacement
vector is the second oid vector with its component along the first new
vector removed. then normalised. The third new vecti. is the third old
vector with its components along the first two new vectors removed, then
normalised, and so on. The reader can easily confirm the orientation
preserving property of the replacement vector set from this description.

The importance of the orientation-preserving property of GSR is seen
from the alternate definition of the spectrum of Lyapunov exponents,
where the rate of length growth determines Ay, the rate of area growth
determines A, + Ao, and so on. Successive principal axis vectors define
volume elements of all dimensions from one to that of the phase space,
whose evolution may be simultaneously monitored. GSR allows the state
sphere to be evolved for the long times required for exponent convergence
because, though changing the directions of all but the first principal axis
vector each time it is invoked, it'flever changes the orientation of any of
the volume elements spanned by suctessive principal axis vectors. When
GSR is used the initial and final volumes of the clements of each
dimension (L(t). L'(t;+1): Al A'(tje1)s ... ) are recorded and
used to update running exponential growth rates. If m replacement
elements spanning a time ¢ have been used, the exponential growth rate of
the first principal axis is . '

1 & L'(t+1) ]
(13.13) (A)m="T 2 logz [ L(t) l
it - -
which is identical to the growth rate
1 [L'()
(13.14) M=7 log !L L(t)

that would have obtained from the evolution of a single length element
had we been able to follow it for time 1. Similarly,
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13 CA ()]
(13.15) A+ M) =7 }gj log, ‘;{(—,J‘J

which is identical to the exponential growth rate of the area clement
defined by the first two principal axis vectors had we been able to follow it
for a long time . The expressions for the remaining exponents follow
similarly.

To summarise the use of the Gram-Schmidt procedure, Lyapunov
exponents will be computed from the long-term growth rates of volume
elements of various dimensions. Elements may be replaced with smaller
elements whose defining vectors are orthogonal, so long as the new
elements have the same phase-space oricntation as the ones they replace.

The technique described thus far requires that the nonlinear equations
of motion be solved once for the centre of the sphege, and once for the
end point of each principal axis vector, GSR being invoked when neces-
sary. In a numerical implementation, GSR corresponds to integrating the
differential equations for a2 new set of initial conditions that define the end
points of the replacement vectors. The remaining practical difficulty is
ensuring that GSR is performed frequently enough that only the local
structure of the attractor is being probed.

The problem is avoided if we solve the nonlinear equations for the
centre of the sphere, and simultaneously solve the linearised equations of
motion about that point for each axis vector [2,16]. The linear system can
only sample infinitesimal perturbations from the ‘fiducial’ trajectory of the
centre point. This ensures that nearby orbits remain (relatively} near by
for long times.

The use of the linear system appears to eliminate the need for GSR, at
least for the divergence in the extent of the state ellipsoid. However, the
linear equations diverge whenever there exists a positive Lyapunov expo-
nent, just as the nonlinear equations do. The advantage of the linear
system is that its solutions continue to represent infinitesimal deviations
from the fiducial trajectory, even as they grow numerically large. The
divergence in the linear system is simply a problem of exceeding the word
size of one’s computer: the solution remains small relative to the attractor.
The role of GSR in the linear system is to prevent the orientation
divergence, and simply to keep numbers manageable in size. Mote details
about this calculation, as well as FORTRAN code for its implementation,
may be found in ref. {19].

Although this calculation has been described for a set of ordinary
differential equations, it is essentially unchanged if the system is defined
by a diserete mapping such as the Hénon map. A linear stability analysis
provides us with the linearised equations of motion: the Jacobi matrix for
the map, whose evaluation requires iterating the nonlinear equations for
the fiducial trajectory. The evolution of nearby orbits is determined by the
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action of the Jacobian on principal axis vectors. Figure 13.4 shows the
action of the Jacobian on a pair of principal axis vectors — not the
evolution of three nearby initial conditions by the nonlinear mapping as
was previously stated. The evolution of either principal axis vector in a
single iteration is given by

(dx (n+1)) _ dx(n)‘; (C2.8ex(n) 1.0]  [dx(n})
1316 |gymin) = Iy =03 0yl
so that
ax(m)y _ ;| )
(13.17) [dy(n)} = J,._l t'n_z. [dy(l}l J
or, by regrouping the terms,
IO 1 [dx(n

In egn (13.17) the latest Jacobi matrix acts on the current axis vector, that
vector reflecting the action of all previous Jacobi matrices on the initial
axis vector. When divergences aris¢ in the current vector pair, the pair is
replaced. This is the same interpretation of the procedure of “evolution
and replacement” as was presented for the continuous system. In eqn
(13.18) the action is contained in the product Jacobian which acts on the
initial pair of axis vectors. Here divergences appear in the product
Jacobian, either when its elements diverge, or its columas ail converge to
large multiples of the eigenvector for the largest eigenvaluc (orientation
collapse), resulting in a zero determinant. In this case GSR corresponds to
a set of operations on the product Jacobiam; removing large scalar multi-
pliers of the matrix and performing rdw reduction with pivoting. In the
first interpretation, A, is determined from the exponential growth rate of
the first vector and A, + A from the growth rate of the area defined by
both vectors. In the second interpretation the Lyapunov exponents are
determined from the cigenvalues of the long time product Jacobian. For
the Hénon map the spectrum of Lyapunov exponents is approximately
(0.4, ~1.6) bits per iteration for the parameter values of eqn (13.12).

13.5 Estimating the Lyapunov spectrum for experimental data

The spectral calculation of the last section appears useless for the problem
of determining Lyapunov spectra from experimental data as it requires the
equations of motion defining the system. As mentioned in section 13.2. in
continuous systems governed by a discrete 1-D map, the extraction of
discrete map data allows the cstimation of the largest exponent by some
conceptually simple, if numericaily unstable algorithms [18]. There have
also been attempts to estimate the dominant (smallest magnitude) negative
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exponent from experimental data by measuring the mean rate of decay of
induced perturbations.

Substantial progress has recently been made in the general problem of
spectral estimation from experimental data [19]. Utilising the alternative
definition of the Lyapunov spectrum, all of the non-negative Lyapunov
exponents may be estimated for any system in which samples of a single
dynamical observable are available. This algorithm has been used success-
fully on model systems with known spectra, and early calculations on
experimental data obtained from chemical and hydrodynamic strange
attractors are promising. The algorithm is now bnefly described.

The well known technique of phase-space reconstruction with delay
coordinates [14,17] makes it possible to obtain an attractor whose
Lyapunov spectrum is identical to that of the original attractor, from
discrete-time samples of almost any dynamical observable. Given the time
series x(1;), the new attractor is defined by the trajectory (x(t,), x(1,+ 1),
x{t;+27),..., x(t+(n-1)T)). For sufficiently large #, and almost il time
delays T, an embedding of the ornginal attractor is obtained. In what
follows we assume that an attractor has been successfully reconstructed in
this manner.

The long-term exponential growth rate of a j-volume element in an
attractor is governed by the sum of the first j Lyapunov exponents,
provided that the volume of the element is small enough that the linear
approximation applies. In computing spectra from sets of differential
equations it was convenient to use the linearised system, the tangent space
of the centre of the sphere, to satisfy this constraint. We saw, however,
that the evolution of volume elements and GSR might be performed in
phase space, a space that is accessible with experimental data. GSR is not
exactly applicable to experimental data, as data points will not be found at
the precise locations of the replacement vector set. Thus, with experi-
mental data it is possible to define initially small volume elements of any
desired dimension, follow their evolution for short times, and even replace
them when necessary, but it seems that their orientation must be lost upon
replacement.

In ref. {19] we show that the errors involved in using almost orientation-
preserving replacement elements decay exponentially fast in time, and , if
certain requirements are met, do not accumulate from one replacement to
the next. For example, the relative ervor in estimating A; is approxi-
mately Bm?/\ t, after many replacement and evolution steps, where Oy
is the maximum error in a single replacement and 1, is the time between
replacements (the expression is only valid for rather large t,). If it is
possible to perform replacements infrequently, Lyapunov exponents may
be accurately estimated from experimental data. The decay of orientation
errors, that is, the approach of errant volume elements to the appropriate
phase-space orientations, is guaranteed in a chaotic system, and the more
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chaotic the system, the faster the decay. In the Lorenz attractor, a 20°
orientation error in the replacement of each length element will result in a
10% error in Ay, providing that replacements neéd not be performed
more frequently than once per orbit.

We now discuss the particular case of estimating the sum of the first two
Lyapunov exponents, which should illustrate the procedure for any number
of exponents. Given an attractor reconstructed in n-dimensions, an arca
element is defined by three nearby points; the first delay coordinate point
and its two nearest neighbours in n-space. If the three points were
separated by at least one mean orbital period in the original time series,
we may consider the points to have started from distinct initial conditions.
The evolution of this element is monitored by simply looking ahead in the
time series to find the future location of each of its defining points. When
the triple begins to grow too large, or becomes 5o skewed that we expect
to make a large error in computing its area {(a problem that arises if
external noise is present), we record the initial and final area of the
current element, and then look for a replacement element. The search for
replacements is somewhat involved, as it requires minimising both the size
of the two replacement vectors, and the angular separation between the
normals to the original and replacement elements. The initial area of the
jth element is denoted by A(f;) and the element is replaced at time £,
when its area is A'(#,.,} (see Fig. 13.5b). After m replacements spanning
along time ¢ we estimate

1 m A (t + )ﬂu
(13.19) M HA2)m = 7 2, logs | A(’r)] ]
=

This is identical to eqn (13.15) except that we”are working in a recon-
structed phase space with replacement elements that are always finite and
only approximately orientation-preserving. In the limit of an infinite
amount of noise-free data spanning an infinite number of orbits, this
quantity is exactly the sum of A; and A,. In practice, experimental data
are noisy and span a finite number of orbits, so the accuracy of the
estimate depends on the quality and quantity of experimental data. In Fig.
13.5a the algorithm for estimating A, is presented schematically.

Despite the similarity of our algorithm to the calculation for model
systems, it may not be used in genétal to determine negative exponents
from experimental data. In systems such as the nearly planar Lorenz
attractor, there is little or no reselvable fractal structure: thus we cannot
define volume elements whose dimension is larger than that of the planar
surface. Even in a system with resolvable fractal structure, such as the
1.26-dimensional Hénon attractor, areas decay much faster than lengths
grow, so that area elements must, be replaced with great frequency. Since
post-transient attractor data are not effective for sampling contracting
phase-space directions, it scems reasonable that the decay of induced
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b

Fig. 13.5 A schematic representation of the procedure used to estimate Lyapunov
exponents from experimental data. ()} The Targest Lyupunov exponent A, is com-
puted from the growth of length eicments, When the vector between the two data
points han become large, & new poitt 1 clioen near the fiducial trajectory, mini.
mising the replacement length 1. and the onientation creor 0, (b) A similar pro-
cedure is followed to calculate Ay + A, from the growth of area elements. When an
area becomes too large or too skewed, two new points are chosen near the fiducial
trajectory, minimising the replacement area A and the difference between the
phase-space orientation of the original and replacement areas.

perturbations might provide a means of estimating negative exponents.
This approach has several problems to contend with, of which the most
important may be verifying that perturbations change only the state of the
system (the current values of phase space variables) and not the system
itself.

Our algorithm has been tested on many systems including the Hénon,
Lorenz, and hyperchaos attractors (the last is a 3.005-dimensional attractor
in a four-dimensional phase space with two positive Lyapunov exponents).
The defining equations of motion were used solely to generate an
observable sample of a one-dimensional coordinate projection. For these
systems, the non-negative exponents were determined to within a few per
cent of their known values, In ref. [3] we presented results for X, for
experimental data obtained from the Taylor-Couette hydrodynaric system
as a function of the relative Reynolds number R/R,. A transition to chaos
from motion on a two-torus at R/R.. = 12.2 had already been suggested
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by other dynamical diagnostics (phase portraits, Poincaré sections, power
spectra, fractional dimension) but was first uscfully quantified by the
calculation of A, (R/R,).

A fundamental problem with the computation of Lyapunov exponents
from experimental data is that the exponents are not rigorously defined in
the presence of external noise. (See, for example, ref. [10].) Our calcula-
tions are based on the assumption that behaviour on (relatively noise-frec)
intermediate length scales is close to that on the smallest experimentally
accessible (noise-dominated) length scales, which is assumed to be close to
that on infinitesimal length scales in the (identically noise-free) underlying
system. We have found that low-pass filtering of experimental data before
exponent estimation has often reduced the effects of moderate amounts of
external noise. .

We conclude with the results of ref. [19] concerning data requirements.
In each of the systems studied, 6 or 7 bits of data resolution sufficed for
accurate exponent estimation. The number of data points required to
estimate all of the non-negative exponents in a system of fractional
dimension 4 is on the order of 10 to 307, spanning between 104 and
1004" orbits, where the value within these ranges depends on the
complexity of the underlying 1-D map (if such a map exists). Exponent
estimation appears to be prohibitively expensivk for attractors of dimen-
sion greater than 3 or 4. The problem is the same one that arises in all of
the currently popular techniques for estimating fractional dimension. To
‘dingnose’ a high-dimensional attractor, the attractor must be defined
(filicd out) with a number of points that depends exponentially on its
dimension [4}. This problem appears insurmountable, but as the theory of
dynamical diagnostics is incomplete, we are hesitant to proclaim such
caiculattons impossible. .
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Estimating the fractal dimensions
and entropies of strange attractors
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14.} Information flow and dimension

Physical systems typically involve a huge number ofdegrees of freedom
(= 10%, say). Since it is impossible to treat all of them explicitly, one
performs some kind of ‘coarse graining’. After this is done, one deals
explicitly with few variables only, but in general these variables evolve
nondeterministically with time. This was widely considered to be the only
source of randomness in naturc until the ‘chaos revolution’ of recent years
spread the concept of deterministic chaos.

Deterministic chaos is- also related to coarse graining, but of an
essentially different kind. It results from the fact that we ot only cannot
deal with too many variables, but we also cannot deal with infinitely
precise numbers. If we accept that space-time is continuous, this means
that we must cut off the digital expansions for all coordinates somewhere.

In the textbook examples of classical mechanics, this cutoff has no
effect. But there exist formally deterministic systems—and cven very
simple ones, with only few variables—where trajectories emerging from
nearby initial conditions diverge cxponentially. Due to this ‘sensitive
dependence on initial conditions’, any ignorance about seemingly inaig-
nificant (and thus cut-off) digits spreads with time towards the significant
digits, leading to an essentially unpredictable and *chaotic’ behaviour.

In this chapter, I shall concentrate on dissipative cliaotic systems. The
sets of points in state space towards which nearly all trajectories are
converging are called strange attractors in that case.

Let me stress again that chaotic motion is fundamt;{ntally different from
ordered motion. The unpredictability cannot be 4voided by just making
more precise measurements of the initial conditions. Assume that we want
to measure the initial conditions very precisely, say with some error *¢
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in each variable of state space. Then we have first to build a suitable
measuring device. But this same device can be used later to measure the
state again with the same precision, whereas the equations of motion are
unable to predict it with the same accuracy.

If the distance between nearby trajectorics increases exponentially—and
this is expected by scale invariance, as long as this distance is much smailer
than all typical length scales in the problem—the lack of information is
independent of € and proportional to the elapsed time.

Consider now a piece of trajectory between times , and f;. Assume that ;;
is sufficiently large that transients have already died out, and that the
system is on its attractor with some time-invariant probability distribution.
The information S needed to specify this trajectory to an error e
during the whole interval [t, ;] consists then of two parts:

(a) the information S, needed to specify it at time ¢;;
(b) the information needed to fix up the ignorance leaking in at a constant
rate due to the ignorance about originally insignificant digits.

Thus, we expect
(14.1) S, [t =5, + (1) - K
for g — 0 and t—t; — =.

The constant K is called the Kolmogorov-Sinai or ‘metric’ entropy [6,
32, 51]. It is essentially the information flow rate in the limit of nearly
error-free measurements {10, 49].

For predictable systems, one would have K = 0. For the other extreme
of Brownian motion (or, rather, its mathematical idealisation as a Wiener
process) one has K = %: even perfect knowledge of the state at some
instant would not be sufficient to predict it in the near future.

Let us now look at the dependence of 5, on the error €. If we want to
specify a point x on a fixed interval with accuracy * e, the needed
information (i.e. the number of significant bits) behaves for ¢ — ( like
log (1/e). In the following, we shall always use natura logs instead of log;,

lmp]ymg that we measure information in ‘nats’ and not in ‘bits’. Fora

point in D-dimensional space, the information is D times as big. Thus, we
expect that

(14.2) S,~ D -log(1e)fore =0

where D is called the information dimension of the attractor [4, 11-13]

We have to be somewhat more precise. The estimate log(1/g) for the
information stored in a point on an interval is true only if we know a prion
that the point is indeed on the interval, and nothing more. Analogously,

eqn (14.2) assumes a priori that the state is on the known attractor (i.c. -

any transients have died out), and is distributed according to some
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invariant ‘measure’ (= distribution), which is also assumed to be known
from previous observations.

The typical case, assumed throughout the following, is that the system is
ergodic and mixing. In that case, nearly all initial conditions within some
suitable basin of attraction l¢ad to the same invariant distribution, called
the ‘natural measure’ {7]. But in all chaotic systems there also exist other
invariant distributions, reached from initial conditions of measure zero.
Quantities like D and K actually*refer to one particular distribution. If
nothing else is said, it will be the natural measure.

The most striking feature of strange attractors is that D is in general
noninteger. Since D is closely related to the Hausdorff dimension (sce
section 14.3), the attractor is a ‘fractal’ in the sense of Mandelbrot [40].
The observation of noninteger D in Couette-Taylor flow [8] (see Fig. 14.1)
and in other hydrodynamic systems [39] is indeed a beautiful proof that
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Fig: 14.1 Information dimension for Taylor-Couette flow, as a function of
Reynolds number. (Adapted from [8).)

strange attractors occur in real physical systems. Studying D and ways to
measure it will thus be a main concern of this chapter.

As we have already stressed, the motion on a sfrange attractor is
unpredictable due to the divergence of nearby trajectories. This diver-
gence is measured by the Lyapunov exponents [13, 41]. In order to define
them, consider an infinitesimally small sphere in state space around some
point x with radius . After a time r>>0, this sphere is transformed into
an ellipsoid with semi-axes

(14.3) elt) ~ ee™

(i= 1:2,.‘ 5 f = number of degrees of freedom) for nearly all x. In the
following, we shall always assume that the \; are ordered by magnitude,
Ay = Ay = ... = A Since the system is dissipative by assumption, their
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sum is < 0. But since it is also chaotic, at least A; > 0. The distance
between two arbitrary nearby points will then increase as:

b Ax(f) | ~ eM".

At nearly every point in the basin of attraction, the semi-axes A,
define the axes of a local coordinate system, up to signs. Those directions
with A; > 0 are called unstable, and those with A\; <0 are called
stable. In addition, one can have ‘central’ directions with A, = 0. In
particular, the direction of the velocity vector in continuous-time systems
has N = 0.

In the next section, we shall see that we can attribute a ‘partial
dimension’ D; to each of the stable, unstable, and central directions. Just
as D measures how the information depends on an uncertainty common to
all state variables, D; measures its dependence on the uncertainty of the
ith local coordinate only. Thus it is clear that

(14.4) D=3 D,

Stated differently, D, is the density of information per bit of the ith
coordinate, Since the Lyapunov cxponent X; is just the speed of the
information flow aleng that coordinate, the rate of information flowing
from the ‘insignificant digits’ of x, into the system is D; x A. The
Kolmogorov entropy, being the total rate of information fiow, will then be
given by [19, 24, 35, 43]

(14.5) K=S'D, \

where the sum extends over positive A; only.

The natural measure is characterised by maximal information density
along the unstable directions: along these directions, each incoming bit is
unpredictable, leading to D; = 1. The resulting relation

K=EA,'
i

has been proposed by Ruelle [47]. Mcasures with D; # 1 along unstable
directions arise, e.g. in the flow on repellers leading to transient chaos [18,
29, 45).

If the motion is invertible (which it always is for continuous time
systemns), information is leaving the system by convergence of points along
the stable directions. The rate is again given by egn (14.4) but this time the
sum exiends over all negative A, Conservation of information (the
average knowledge about the system stays constant with time) leads then
to the simple relation

(14.6) XD n=0
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A formula for D proposed by Kaplan and Yorke {14, 30} follows immedi-
ately if we assume that D is the maximum allowed by eqns (14.4) and
(14.6), taking also into account that 0 = D, = [. In section 14.2 we shall
discuss the technical details of the above concepts and relations.

In addition to Kolmogorov entropy and information dimension, often-
studied quantities are the topological entropy {1] and the fractal {or
Hausdorff) dimension of the attractor. We shall see in section 14.3 how
these (and similar quantities [16, 24]) are related to Renyi entropies {46]
on the one hand, and to fluctuations in the local expansion rates {i.e. to
deviations from g; {f) ~ exp(Ag), on the other.

Practical algorithms for evaluating these generalised dimensions and
information flow rates will be discussed in section 14.4.

14.2 Formal developments

Technically, the information S, is defined via a partitioning of the attrac-
tor into (hyper-) cubes of size ¢ (see Fig. 14.2). Let us call p, the
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Fig: 14.2 Partitioning of spacc (Hénon map). Bk

probability that an arbitrary point x(s) fulls into cube /. That is, p, is the
‘mass’ of cube i with respect to the natural measure p:

(14.7) pi= WL du )



296 Estimating the fractal dimensions and entropies of strange attractors
Then, S, is defined as

N

(14.8) S.=-2pilogp;

Analogously, we can define S, [t1.t;] by partitioning not space but
space-time (see Fig. 14.3). Assume that the interval [#;,4,] has been divided

i

space
_—

time
Fig: 14.3 Partitioning of space—time.

into n bins of length 7 each. Let p;, ,, be the joint probability that x(t,
+ 7} € cube i, x(f; + 27) € cube i;...x{>) € cube i,. Then

(14.9) Se[tuta] =~ E Pu 108Dy
{

The information dimension is [4,13]

3,
(14.10) b= ]slinu log 1/e
and the metric entropy is [10.49)
(14.11) K=lim lim rz—l—ﬁs,[rl,tz]

=+l Py

The equation defining S, can be interpreted as follows: S, is the
average, weighted according to the natural measure, of the quantity

(14.12) ~logp; = —log f du(x)

where the integral goes over a cube of size € in a fixed mesh. But this
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should be the same, within a constant of order 1, as the average over a
cube or ball of size £ not in a fixed mesh, but with its centre distributed
randomly according to u.:

(14.13) S, ~— f du(x) - log M.(x) = ~ <log M,>
with
(14.14) M,(x) = b{mdu(y)

Equation (14.10) states then that the mass in a ball of size £ increases, in
geometric average, like ¢,
A completely analogous argument shows that

(14.15) St 6] = - <log M,[t,, t2]>

where M,(x, [t,, &2]) is the mass of that domain around x(r,), the trajectories
emerging from which stay within a distance e from x{¢) forall 1, <t < f
(see Fig. 14.4).

(14.16) M. (x, [t 5]) = n(B.(x))
with -
(14.17) B,(x) = {y(t;) : {y(t) ~ x(n){<eforallt[r,, 2]}

As we noted in section 14.1, the stable and unstabie directions define at
(nearly) any point a foliation. We can thus generalise the above and
consider, instead of balls, ellipsoids with axes ¢y, €;... along the thereby
induced directions. The definitions of §,, S,, M,, M, and B, are
generalised in an obvious wayto 8, , |, etc.

During time evolution, each ellipsoid will rotate (which is irrelevant for
us), and the semi-axes will change as

(14.18) g;— g; - eMiEn
The exact behaviour of the dilatation factors A, is also irrelevant for the
moment, but their averages are by definition the Lyapunov exponents:

(14.19) n=1 L de A

Let us now consider the domain B, ,, ... (x}. It will be an ellipsoid with
semi-axes

g; .»  along the stable directions
(14.18a) = { g; e along the unstable directions
if Sm, ... [t;, 1] is to increase linearly with t—f,, with rate K, the mass of an

ellipsoid should then scale like a power in each g, at least for the
unstable directions. But scale invariance anyhow suggests that it scales

with each g;,
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d time i(t)

space

Fig: 14.4 The domain B,(x) (shaded region) consists of those points, the trajec-
tories emerging of which stay in an e-sausage around x(¢).

(14.20) (ogM,,...) ~ 3 D;loge:
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from which one obtains, using eqns (14.11) and (14.15), (14.19 - 20),
(14.21) K=3"D:\

Here, the sum extends over all directions with positive g, only.
The constants D, are the (information) dimensions along the ith (un-)
stable manifold. They clearly satisfy

(14.22) 0=D;=1
and
(14.23) D= ED‘-

Equation (14.20) shows that the attractor factorises essentially in a
direct product of continua (corresponding to D; = 1), discrete points
(D; = 0), and Cantor sets (D; ¥ 0, ¥ 1), with orientation according to
the (un-) stable directions. As an example, we show in Fig 14.5 the Hénon
[28] attractor with b = 0.3 and @ = 1.4, in which case D, = 1 and Dy ~
0.25[24]. For a different example, see [37]. Y

Fig: 14.5 Attractor of the Hénon map (x,y) — {1+ y - ax®, bx) with a = 1.4,
b = 0.3. The arrows indicate the stablie and unstable directions.
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As pointed out in section 14.1, we can apply the same argument to the
time-reversed motion if it is also deterministic, and obtain eqn. (14.6).
This equation, together with eqn (14.21), was first conjectured in ref. [24],
and proven rigorously in ref. [35]. An upper bound on D compatible with
that relation is obtained if D; = 1 foralli <j, D, = Oforalli > jand 0
= D; < 1. Here, the integer / is uniquely determined by eqn {14.6). The
bound is [34]

}
5

T
!)\f*-ll

It was conjectured by Kaplan and Yorke [14, 30] that indeed D = D,
in all typical cases. If true, this represents by far the easiest way of
computing D in analytically defined models. (In experimental situations, it
is much less useful.) In two-dimensional maps, D, = 1 for the natural
measure, and thus the conjecture is correct {56]. In higher dimensions, one
knows several examples [2, 23,50] where D < D, but ail are ‘untypical’
(i.e. correspond to a set of measure zero in some control parameter). For
non-natural measures, the Kaplan-Yorke conjecture does not apply in
general, but eqns (14.6), (14.21) and {14.24) are still correct [18, 29, 35].

For a heuristic explanation of why a typical attractor should fill mostly
the directions of least contraction. as required by the Kaplan-Yorke
conjecture, consider a 3-dimensional map with A; > 0 and -A; >)\; > A,.
The stable and unstable manifolds of a typical point X are shown schem-
atically in Fig. 14.6. A trajectory coming close to X will follow closely the
heavy line passing through the points Y, Y;,... It is obvious from Fig 14.6
that in a typical case this line is tangent to the least stable direction
(direction ‘2"). Thus, the attractor also will typically be extended in that
direction rather than in direction ‘3. The open question is simply whether
‘typical’ here means the same as in ref. [14], and whether this explanation
still holds in higher dimensions,

(14.24) DsD,,, =

14.3 Generalised entropies and dimensions

Shannon’s definition of information is not the only one possible. It fulfils a
number of important conditions (the Khinchin axioms [31, 46], but if one
relaxes these conditions somewhat, a number of other information-like
quantities can be defined. :

The most important of these generalised entropies are the order-a
Renyi informations, defined as [46]

1
14.25 S = — | g
(14.25) (=1 log Zp

Here, o is any positive real number + 1, and the p;s are the same
probabilities as in the preceding section. By de I'Hopital’s rule one finds
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Fig: 14.6 Stable and unstable manifolds of a typical point X on an attractor of 2
3-dimensional map. A trajectory coming close to X has to approach it along the
heavy line, explaining why the atiractords extended ajong the less stable direction
*2" instead of the more stable direction 3’

{14.26) S, = Iiml S,=
i
and the derivative with respect to « can be written as

as,®
Jo

(14.27) =z (1) 2 logf,%

with z, = p3/2p?. Since

22i=]

we can interpret the right-hand sum in eqn (14.27) as a Kuliback informa-
tion gain [33,46], which is well known to be non-negative. Thus, the 5,
are indeed generalisations of the Shannon information, and they provide
upper bounds (for a < 1) and lower bounds (fora > 1) for it. ‘

The same construction can be made for the spatio-temporal informations
S, [r1, &2}, and order-a dimensions D® and information flow rates K*’ can
be defined [16, 24] again by eqns (14.10) and (14.11). Due to the monotoni-
city of §,, both D and K™ are also monotonicaily decreasing with a,
and D = lim D®and K = liTIK“".
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Of particular interest is the limit a—(). In this limit, §* becomes the
lqgarithm of the number of non-empty cubes; thus D' is just the fractal
dimension [40] of the attractor, and K™ is the topological entropy [1, 6, 9]
of the flow on the attractor. (In most discussions of topological em‘m;)y
the flow in the whole basin of attraction is discussed. If this basin has fractai
boundaries, the topological entropy receives a finite contribution from the
flow near the boundarics.)

Finally, all D and K™ are invariant under a smooth coordinate
change [16], i.¢. they do not depend on the particular choice of coordinates.
Th_ls is very important, as the choice of suitable coordjnates is in general not
unique (see section 14.4).

Like the Shannon information, the Renyi information can be approxi-
mately related to the mass of e-balls. The difference is that now one
has to use a different kind of averaging,

1
(14.28) 5= log <M, '>
1«

instead of the geometrical average, and consequently

(14.29) <M’“’I> —~ Ehl 1fH=)

r ol)
and, similarly,
(14.30) <Mt t]* > ~ glohP gl K@)
(U

trf—x

Eguations (14.29) and {14.30) have two important applications. First,
consider the case a=2. In this case, eqn (14.29) simplifies to

(14.31) [ du(x) dp(y) © (e-[x-y]) ~ ¢**
The left-hand side is nothing but the integral over the two-point

T 7 T T T T
Hdnon maop

T T -
Loranr model

fa 1 ™

1 3 13 T
o 19gr

Fig. 14.7 Correlation integral, estimated from 15 (00 iterations, for the Hénon
map (left) and the Lorenz model. (From [23].)
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carrelation function. It measures the probability that two random points x
and y (random, but distributed according to the measure i) are within a
distance £. Because of that, D'” was called a ‘correlation exponent’ in
refs {22] and [23]. Its measurement proceeds by taking a long time senes
(x(£),x(t+7),x(t+27),...] and counting the number of pairs [x(t+n7),
x(t+k7)] with distance less than &. This number, should scale like e
For the Hénon map and the Lorenz model [36], this scaling is shown in
Fig. 14.7; for other systems it holds cqually well [23].

The order-2 entropy K can be obtained in exactly the same way by
starting from eqn. (14.30) [24,53]. We just have to count the number of
pairs [x(¢+ n7), x(r + kT)] with the property that

Ix(1+nt) - x(2+kv) | <e
Ix(t+(n+1)7)-x(r+(k+ )i <e
[14.32]

x(t+(n+d) 'r)-.x(r+(k+d) T <E

This number should decrease ~exp (-drK*), tests of which can be found
in[24].

[M(Edifications of these algorithms, needed if the state space has very
high dimension, and similar algorithms for estimating D and K directly, will
be given in the next section.

For the second application of eqns (14.29) and (14.30), cousider first
their generalisations from e-balis to ellipsoids. In complete analogy to
eqn (14.20}, and as suggested by scale invariance, we assume that

(14.33) <M=l > ~ nﬁi:uvlw,(«l ‘
i i
Here again )
0= D,[“) < l
(14.34) D =S D

and D/ can be considered as the order-a dimension of the measure
along the ith direction. Direct numerical checks of eqn. (14.33) are not
easy. The only nontrivial system for which it has been checked numerically
[21] is the Mackey-Glass delay equation [38]. .
We want now to derive the analogue of the information flow equation
(14.21) and of the information comservation law (14.6). But there i.s a
subtie problem. As we have said, the Renyi informations do not satisfy
one of the Khinchin axioms, namely postulate IV on page 548 of ref. [46].
This postulate says roughly that the information in a joint distribution is
the sum of the informations corresponding 10 the single distributions. The
Renyi informations satisfy it if and only if the single distributions are
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independent, i.e. if the joint distribution factorises. In our case, this means
that we can expect something like conservation of Renyi entropies only if
the flow is sufficiently mixing (which should be the case for natural
measures).

For a mixing flow, the expansion coefficients A,(x, ) should become
for t — « like the sum of ¢ independent random variabies:

(14.35a) <Ai(X.0)> ~ 1N

(14.35b) <A M) (Ae—R ) > ~1- Oy, ... ete.
In terms of the generating function, this means

(14.36) <elid ~ gwinni )

with -

(14.37) glzy =2z + 42 525 Que + ...

Equation (14.35a) is just the definition of Lyapunov exponents, but eqn
(1'4..35b) and the analogous equations for the higher moments are non-
tmnal_. They have been tested in ref. [24], where very precise values of the
covariance matrix Q were obtained for several attractors. For some
models, even third-order correlation matrices could be computed, with
eqn. (14.36) always satisfied. ,

The time invariance of the measure, the ansatz (14.33) for the mass of

an ellipsoid, and eqn. (14.37) can now be taken together to obtain the very
simple relation :

(14.38) g((1-a)D™) =0

or, equivalently,
(1439) zDi(u’)\i = -(!—27—1— E D‘Iu) Dk(“l Q‘.k * ...
i 1A

This is obviously the generalisation of eqn (14.24). In ord .
analog of (14.21), 4 .24). In order to obtain the

(14140) K‘ln)_ EFD‘I‘MM“ u:' ‘\-:r ‘r,flai n‘lul Qu 1.,

/ ¥ |

one has to start from eqn (14.30), generalised first to ellipsoids.

Both eqn (14.39) and eqn (14.40) have been tested numerically in
several examples in refs [18], [24] and [29]. Although they were always
.fulfill.cd for natural measures on attractors, they were not obeyed for other
invariant measures. Whether that means that these latter measures are
nonmixing in the technical sense [6] is not clear.
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14.4 Measuring information flow and dimension

The most straightforward way to measure K and D would be 1o use the
definitions based on box counting. For systems with low-dimensional state
space (i.e. with few variables), this is indeed feasible {12, 17, 18, 25}, but
for = four variables the storage requirements become prohibitive, in-
dependently of the dimension of the attractor.

In that case, all practical methods are based on estimating the mass
M. (x) of typical e-balls (for estimating D} respectively of typical domains
B, (x) (see egn. (14.17) and Fig. 14.4) for estimating K.

In order to estimate M, (x), on& counts the number of points y, in a time
series [y, =y(8), y2=y(i+71), yy=y (f+{(N-1)r)] which satisfy Iy,~xi<e.
For the distance, one can use here either the Euclidean norm or the norm
given by the largest difference in any coordinate. In the latter case, one
counts these y, for which all ly, ,—x,| <e for all k. The point x should
be arbitrarily placed on the attractor. In order to obtain the information
dimension, taking one single,point x is enough in principle [13,26], but
then the time series has to be excessively long. Thus, in practice, one will
average over several reference points xy, ... Xm.

When determining D (and any D' with a # 2), one shouid take first
the limit N — = (estimating thus M, (x,) for fixed x;), and afterwards
M— =, The errors in M, (x,) due to the finiteness of N cause systematic
errors — because of the nonlincar averaging — for smail €, where the
scaling laws (14.20) and (14.29) should be most precise. Thus, these scaling
laws can only be tested down to that & for which the ball around every x,
contains » 1 points.

This problem is absent only for =2, in which case one averages the
M, (x;) linearly, and in which case the role of y, and x; is completely
symmetric (see eqn. (14.31)). In that case, scaling can be tested further
down to values of e such that the sum of all balls around all x,s contains
» 1 points. For that reason, the correlation exponent D) is the easiest
generalised dimension to estimate, even if it is not the most interesting.
Attractors with dimension D = 7 have been successfully analysed in this
way, from time serics of ~10* points [23]. Efficient algorithms (ref.[23],
appendix) are essential in keeping computer time low.

In the case a=2 it in natural to take for [x,] and [y,] the same time
scrics. ‘This is particularly uscful in cases where u long time scries is not
easy to obtain (as in most observations of natural phenomena), and one
therefore wants to make maximal use of observed data. The numerical
effort then increases quadratically with the number N of observations.
For o #2, it seems optimal to take N» M>» 1. If one took N=M,
the scaling region would be rather small (some x, would be in such
lowly populated regions that only very large balls would contain many

¥iS).
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At the other extreme it has been proposed [26,27] to use only one
reference point x, since then the numerical effort is only proportional to
N, and the information obtained from different reference points is not
completely independent anyhow. But for the interesting small-distance
limit, this information is nearly independent, and the reduction in com-
puter time by taking only one reference point is usually marginal as com-
pared with the effort involved in obtaining the time series.

All the above remarks also apply to the computation of generalised
entropies. In this case one has to count the number of sequences {¥,,¥n+i-
.--¥n+a)} in the time series for which

Eyn'xkl <E
(14.41) (Ynet—Xeai| <€

|¥nra—Xuval <€

Here, we have assumed that the x, are also obtained from a time series
(eventually x, = y,) with the same delay T between successive measure-
ments. The mean number of such sequences should decrease (for finite but
small e and d — «) like exp (-d7K'*’), where o depends on the way of
averaging. The cases a=1 (geometric averaging} and a=2 have been
studied in refs. 54} and [24], respectively.

A variant of the above methods of measuring D' and K™ consists of
the following. One measures the radii R;(x;) of the smallest tubes around
{Xk, --. Xe 4} cOntaining exactly j sequences {y,, ... ¥,44}. Their logarithmic
* average (averaged over all x;) should behave like [3, 8, 26, 27]

. .
14.42 <logR;> ~—(iog <~
{ ) ogR, D(Iog N + dtK).

The averages of powers of R, should scale like [3,20)

(14.43) <Rf>~( _f_em.n)) q/D
N

with a given by

{14.44) g=(1-a)D"

_ For this method, the range of distances over which one can test scaling
is bet.wccn the two ranges discussed above. For small distances (corres-
ponding to j~1), one again has systematic devintions from eqns (14.42)
anq (14.43), but this time the deviations can be computed exuctly [20]. The
main drawback of the method is that onc has to order the points
according to their distances from x,. This has to be done for each k, whicl'll
enhance§ computation time and storage requirements considerably. Never-
theless, it seems that this method is quite efficient for computing informa-
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tion dimension (8} and other generalised dimensions [55] (notice. however,
that in the latter paper some of the errors seem grossly underestimated
(20).

In the above discussion, we have assumed that we have determined all
dynamical vadables (i.e. all components of x) in the time series, In
practical cases, this is rather unrealistic. The way out of this dilemma was
pointed out by Takens [52] and Packard ez al. {42].

First, one notices that a D-dimensional attractor should be represent-
able faithfully in any R? with dimension d> D. Actually this is not quite
true, since information dimension is a purely measure-theoretic concept,
and the smallest R? in which a D-dimensional attractor is embeddable
might have much higher dimension. But, in practice, such pathological cases
do not seem to occur.

Secondly, a R useful for that purpose (called mock state space in the
following) is spanned by d successive measurements of a (generic) time
sequence of any single observable. Since D,# and K' are invariants, they
will be independent of the choice of observable and of the time sequence,
except in singular cases.

Here some comments are in order about optimal choices for 4 and 7.
In principle, even if one is only“interested in the dimension and not in K,
one should test several values of d, including values which are definitely
much larger than D. One reason was discussed in ref. [23]: often a
D-dimensional object just looks smoother if embedded in higher dimen-
sional space then when represented in some D-dimensional space. A
simple example is the surface of a sphere with constant mass density. When
projected on to a plane, the density becomes singular at r=R. But too big
values of d have the drawback that statistics get very bad (there simply are
no pieces of the time series which, run parallel for a very long time}.
Optimal compromises have thus to be found in each case.

The value of the time delay 7 should not be chosen too big. One would
otherwise run into the same problems of low statistics. Also, if the system
is inherently noisy, different coordinates in the mock state space would no
longer be deterministically refated, resulting in a spuriously large value of
D. On the other hand, a too small value of 1 would mean that all
coordinates in the mock state space are roughly equal, leading to a
cigar-shaped and quasi-one-dimensional attractor. Experience has shown
that optimal results are obtained if 1 is somewhat smaller than the typical
turnover time. (An exception is the estimate of partial dimensions in ref.
[21], where 7~ 1/6 of the turnover time was optimal.)

Successful estimates of different D™s for various systems, both real and
simulated ones, have been performed in this way in refs [8], [23]. [24], {39]
and [55]. In general, it was found there that the embedding dimension d
had to be considerably bigger than D'®), otherwise the latter was systemati-

cally underestimated.
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Fig. 14.8 Correlation integral of the Hénon map wi

p with added rand i i
levels are [x,| = 0 (curve 1), |bx,| 0.5 x 10 (curve 2), and IOST T(:s;leot;s‘e’
(curve 3). (From [5].) ’ a

As a last remark, let us consider the influence o - i
othcljwise deterministic attractor. Assume that thil?n‘;isl:v;! :rcl;listz O:i:;
;l’npht!ldc qf order 8. Unless the system amplifies this noise excess'ively

€ noise will not be felt on a length scale » 5. On length scales < 3 or;
the other hapd, any deterministic structure is washed out compietel ’and
the system_ is not confined to the D-dimensional attractor. Thuz’ the
effcctwg dlrpenslon (i.e. the slope in a doubly logarithmic piot o{’ the
o?nelapon integral versus €) will be D for e»8, but will be the full
dimension of state space for <8, This was indeed found (5] for th
Hénon and Mackey- Glass equations (see Fig 14.8). i

14.5 Conclusions

We hgve dlgcussed the information flow leading to the unpredictability of
chaotic motion. We have seen that it is a fundamental problem, renderin
ob§oiete Laplace’s ‘superior intelligence’ which can predict the 'fatc of thf
:rn;:eerse frlom its initial conditions. Indeed, Lorenz's famous paper [36]
e mos:::t;; :nfzc;:iwc:ju;y;r-lablmy to predict even the weather of our Earth
' Thl.S information flow rate was found to be a sum over all unstable
directions of the product of the divergence rates for nearby trajectories
gllhc Lyapuno_v exponents) times the partial dimensions of the attractor
ong tt‘lesc directions. The information-balance equation led then to a
mmm between dimension and Lyapunov exponents (a weakened
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form of the Kaplan-Yorke conjecture), which—uniike the Kaplan-Yorke
conjecture— is true in all cases. Practical algorithms for computing dimen-
sions and information flow rates were discussed.

In most of the discussions, we used only that the motion is stationary in
the mean, i.e. that the considered distribution is invariant under time
translations. [t was not necessary to consider the fact that it is attractive.
Accordingly, we obtain the same results also for repellers or other
invariant distributions leading sometimes to metastable chaos.

A remark about Hamiltonian Systems is in order here. All the above
arguments apply to them as well, but, according to the conventional
folklore, most of them are trivial there. This folkiore claims that single
chaotic orbits fill regions of finite volume on the energy shell. (In this case.
all D, are equal to 1 for a chaotic orbit, and eqns (14.6) and (14.39) are
equivalent to Liouville’s theorem.) For systems with a three-dimensional
energy shell, this is indeed true. For higher-dimensional systems, the sum
of all chaotic orbits fill a finite volume, and one assumes that all chaotic
regions are connected by Arnold diffusion. But the latter need not be true
[15], and numerical simulations [44] indeed suggest that typical chaotic
trajectories fill fractal regions, with fractal dimension much less than the
dimension of the energy shell. If this proves to be correct, the above
considerations should apply nontrivially also to Hamiltonian systems.

Throughout the present chapter, we have assumed that some coarse
graining is done, and have looked at the behaviour when this coarse
graining is made finer and finer. Indeed, without coarse graining, it seems
impossible to define information or entropy. Without considering the limit
of infinitely fine coarse graining, it seems hard to distinguish rigorously
between deterministic chaos and stochastic processes. There are also, of
course, other indications of deterministic chaos, like Feigenbaum
sequences, or flows which resemble Lorenz attractors. But the most
clear-cut sign of determinism is that effective Kolmogorov entropy flow
rates, and effective dimensions stay finite in the limit of fine coarse
graining.

Whether existing or future observations are precise encugh to see this
behaviour is an open question which definitely dcscrlvcz further study.
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How chaotic is the universe?

O. E. Rassler
Institut fiir Physikalische und Theoretische Chemie,
Universitit Tubingen,

D-7400 Tubingen, Federal Republic of Germany

The title of the chapter is better than anvthing can possibly follow it.
‘Originally 1 planned to write something nice and grandiose about
Anaxagoras’ invention of chaos as an explanation of the universe, and his
ideas about transfinite iteration apd the subtlety of the single ‘immiscible’
substance, the mind. Diesel automobile ¢cngines, the geyser Old Faithful,
X-ray bursters in the sky, and autonomous nerve equations (inciuding a
3-variable FitzHugh equation whose chaotic analogue computer solutions
were shown to me by its inventor in late 1976) were then to follow suit—to
illustrate the ubiquity of trajectorial mixing in simple differential systems
populating the cosmos. _

Yet, even though it would be tempting to (re-)consider thesc topics
(cf.{13]) in detail, and perhaps to add a disclaimer about the validity of
discrete computational models as an exhaustive description of nature
(cf.[3]), something less pretentious will be done in the following. *A return
to the mothers’ of concrete three-dimensional visualisation is to be pro-
posed once more.

Look at a gas at equilibrium — a chaotic "gas’ (an artificial word that
means ‘chaos’) of equal billiard balls. And feel the exhilaration of riding
on such a ball like a Baron Munchhausen (or inside it — it makes for a
perfect bumping cart). Or even better: lean against the perfect walls of the
container of the gas (in a safe little niche) and watch and listen.

It is fike waiching snowflakes fall. It takes a little while to get in tune
and see the laws behind the whirling: that | am moving upwards with the
ground, al constant speed. for example. I the moving spheres are big
enough and slow enough (uand you are smail enough in your niche to feel
awed), you may suddenly ‘se¢’ — even if this should turn out faise on later
analysis — that every ball owns a territory: one Nth of the volume of the
whole container is assigned to it. And you ‘realise’ that each ball is busy
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carrying out a duty: to contribute to the general pounding on the walls
with the same vigour as all the others, on avcrage. {Even if its mass were
widely different from those of the others, the mean force contributed
would be the same.) When all the particle masses are equal as assumed,
this job is even audible (although, strictly speaking, there are no sound
waves permitted): there is a fixed mean rate of collisions with the wall per
unit area; it ‘snows’ at a constant rate.

in other words, there is not only a unit volume (and hence unit length}
present, and a unit pressure (and hence unit energy), but also a unit time
(per squared unit length). All of this is, of course, well known since the
time of Waterston [20}, the first billiards fan in physics.

Still, it is possible to step back a little more after this daydream, and
remember that what we were looking at — these huge, floating spheres
gliding by slowly and colliding silently and gracefully, all the while
maintaining a fixed density in space-time — was thaos. More precisely it
was hyperchaos with 3N-1 positive Lyapunov characteristic exponents
(that is, directions of repetitive stretching and folding-over in state-space
(14]) present. This process of an unfathomable complexity (sec [18] for
some of the mathematical details for up to five balls) produces a perfect
mixture in the sense of Anaxagoras (to mention his ‘Fragment Number 12’
again [14]).

Even if only a very artificial set of initial conditions had been chosen
with infinite accuracy — so that ail the bails were running on orthogonal
tracks as it were in-between the collisions, and the whole system was
therefore equivalent to a discrete system (a cellular automaton of the
reversible type [6]) — one could already be sure that the motion per-
formed by the system was in general of the maximum computational
complexity possible and therefore beyond predictability in principle {6].
The above chaos contains these special solutions as unstable periodic ones
{even if the period is infinite), embedded into the larger measure ‘non-
periodic’ ones (cf. [8]). _

Now the question to be looked at: suppose you were in the possession
of a Hamiltonian system of the above type, impiemented in a desk-top
computer of that Laplacian type that is still not available on the market.
Or, even better, suppose vourself implemented by a real-time machine of
this kind. (This is not totally impossible — if one agrees to being gaseous,
a 'gaseous vertebrate’, say — since complicated dissipative structures
containing potential observers are, in principle, realisable on the basis of
the idealised Hamiltonian assumptions made; cf. [12].) And then ask
yourself the question again: how chaotic is the universe?

This time it is a question not only of being, but also of appearing. If |
were the only chaotic system in the universe, would not the whole universe
appear chaotic to me? In other words, there are two senses in which the
universe can be (or appear) chaotic. The less obvious second alternative is
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the one to be locked at in the following.

It could turn out, for example, that a universe that is chaotic itself
ceases to be chaotic as soon as it is observed by an observer who is chaotic
himself. This possibility would lose some of its implausibility if it could be
shown that observer-internal chaos is the source of quantum mechanics,

In the following, a tiny little step in this latter direction will be
attempted. In this attempt, only results already obtained above are to be
used. There is, as we saw, both a characteristic unit energy and a
characteristic unit time to every chaotic Hamiltonian system of the above
type. In other words, there is a unit action to certain chaotic observers.

This is not 100 surprising a statement. It is implicit in the Gibbs entropy
formula [7] and indeed follows from the Gibbs paradox. Take a volume of
gas (of the above type) and place it beside another identical such volume
that iikewise is at equilibrium, but do not connect the two. Then you obtain
an entropy for the composite system that is twice that of the original
gas volume. (The equilibrium entropy per volume is the same if you look
at two volumes instead of one. This is self-evident.} If you now remove
the barrier between the two volumes so that each billiard ball can roam
about twice its former space, the tofal entropy (and the entropy per
volume) is still the same. This is what should be called the Gibbs paradox.
For, if entropy has something to do with disorder and mixing, an increase
should have occurred. Usually, the paradox is rather seen in the following
fact. Suppose the two different gas volumes had actually contained two
different kinds of billiard bali, but as much alike as you wish. In this case
the new entropy per volume after the mixing is indeed much larger than
before the removal of the barrier (by N times In 2 times k larger). The
phenomenon thus has something to do with the indistinguishability of
particle types. .

In the present context, this is of no concern since we had assumed just
one type of billiard ball to be present. Under this assumption, it is easy to
continue, however. Suppose we had been given just onc of the two gas
specimens above, but still wanted to insert a barrier into its middle. What
would be the entropy per volume, in this case? You guess the trend.
However much we continue to insert (or remove) barriers, the entropy per
volume always is the same. In this way, we can even calculate the whole
entropy. It is simply that of N volumes of gas of the present density, each
containing just one particle. We thus only need to know the entropy of a
single particle in that unit volume, V/N, and we are finished. Gibbs [7]
thought that inserting phase-space volume might do — and indeed every-
thing came out fine. Specifically, one obtains S;/k = 3IN-Ind|, where @
is the phase-space volume of a single degree of freedom per particle,
@1 =p-q-3.33 where p is the mean momentum of each particle, q is the
side length of a cube of volume V/N, and the constant factor has to do
with the ratio of the surface to the volume of an N-sphere and is an
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algebraic expression that involves « and e (cf. [1] for a lucid exposition}.
The point is that @1, the unit phase-space volume, is a unit action. This
unit action is identical (except for a factor of order unity) to the one found in
the above ‘floating spheres’ picture.

This dramatic coincidence between an empirically correct formuia (it is
valid at high temperatures in absolute terms if the last remaining constant

— a unit action by which @ has to be divided in order to become a

dimensionless quantity — is put cqual to Planck’s constant [16]) on the one
hand, and a casually obtained statistical property of the same chaotic
system (a fixed density in space-time) on the other, could be entirely
accidental. Entropy may be a very atypical macroscopic quantity. A
second objection: the equilibrium entropy 8¢ is not applicable to chaotic
observers (who by definition must be open systems).

Interestingly, the author who first obtained the above-mentioned
experimental result [16] and thereby (with Tetrode [19]) rediscovered
Planck’s constant in a formally ordinary differential equation (‘ODE’)
(rather than partial differential equation — radiation) context, made an
attempt to understand this finding in a statistical-mechanical (ODE)
context [17]. Sackur, who does not quotc Gibbs, thereby rediscovered the
Gibbs unit cell (V/N) and stressed the theoretical significance of the mean
cell passage time (®,/kT) that goes with it. This picture is independent of
openness or closedness conditions. Sackur, who died in 1914, was later
criticised by Ehrenfest and Trkal [4] for his attempt to attribute reality to
these cells. This leads back to the first objection above. Is entropy atypical
in its observing the Sackur cell?

This is an open question. It could well be that macroscopic properties
other than entropy are not subject to the Gibbs dividing principle.
However, when it comes to homogencous isothermal observers with just
one particle class (considered here), it appears natural to guess otherwise.
Formally, the problem even can be *defined away® by requiring all ‘macro-
scopic’ observables to observe the Sackur cell. So far, ao rigorous definition
of macroscopicity seems to be in the literature (cf. [9]). Something of the
microscopic teality has to be forgotten, as averaged-out (macroscopic)
quantities are all that is left eventually as larger and larger particle numbers
are admitted. To postulate specifically that it is the distinguishability of
internal Sackur cells that is lost is admissible since this is much more
fine-grained an assumption than is usually deemed necessary. Of course,
this definition does not solve the problem. [t only provides a hypothesis that
is specific encugh to be faisifiable.

Recently, an attempt was made to prove that, for homogeneous
isothermal single-particle type observers, the Sackur cell constitutes a limit
in principle to internal self-observation [15]. The argument was similar to
one used by Popper [11] to show that physical observers can never
completely observe themselves. It is presently unclear, nevertheless,
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whether indeed an argument on so general a levei is needed to establish
Gibbs’ indistinguishability, as well as the above definition of macro-
scopicity, in a classical framework. Maybe an intuitive argument that uses
only the fact that the observer in question is chaotic can be found instead.

What would be the main implication if macroscopic observers (based on
hyperchaos of the Sinai type) were indeed subject to the Gibbs ceilularity?
The consequence would be the same one which always follows when ‘the
state of information of an observer about his own state’ is limited:
‘indeterminacy’ [10]. Von Neumann, who introduced this hypothetical
explanation of uncertainty, immediately dismissed it because of its being
incompatible with the quantum mechanical formalism. In the present more
general (or more limited) context, this counter argument is of no concern.

Several implications beyond mere ‘indeterminacy’ follow if the above
principle of free permutability of Sackur cells (every unit time interval} is
used to specify macroscopic observers [15]. There exists a weli-defined
equivalence class of (from the point of vicw of the observer) equiprobable
versions of himself. This new ensemble, in turn, permits definition of an
ensemble of equiprobable measurement situations, to every single con-
crete measurement situation. ‘lrrcducibly'stalislical' observations therefore
exist. Their properties too can be specified in principle. It seems that the
internal unit action of the observer can get imposed on the external world
as an observational uncertainty of action.

All of this hinges on the reality of the Sackur cell, however. It is quite
possible that this particular attempt to ‘read an invariant into hyperchaos’
did not hit the right target. The question of how an internally chaotic
observer sees the universe has yet to yield definitive answers.

Two general possibilities open themselves up) which it may be worth
while to discuss finally. The first is that indeed a finite ‘something’ will be
found which causes observations to be lawfully indeterminate, but that this
classical indeterminacy will pale before quantum mechanics, becoming
completely absorbed into it eventually so that no trace remains. This
would be in accordance with von Neumann's carly (1932) view alrcady
mentioned. The other nontrivial possibility is that everything will lose
shape so to speak. There would be quantum mechanics and its nonlocality
[2]. but there would also be other equally nontrivial and nonlocal
phenomena. (Note that a ciassical observational uncertainty of action
necessarily generates ‘telescoping’ effects concerning the duration of an
observed event, so that locality in time at least woeuld be violated.) The
interplay could become very tangled. Therefore, a ‘monistic’ interpretation
would have to be sought seriously once more in this case, but this time
with quantum mechanics not in the dominating position.

Chaos as an object of study is interesting enough already. Why should
one turn everything around and let chaos become an active participator in
the very process of studying things? Is there indeed a need for an analogue
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to psychoanalysis in physics? I would say that if chaos became instrumental
in bringing about a general shift of paradigm — from the usual detached,
‘exophysical’ way of looking at one’s model worlds to an understanding,
‘endophysical’ one [5], this would only be another manifestation of the
surprising vigour of this new concept.
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population dynamics 3, [0, 39, 58, 71,
234
Poincaire
equation 47, 62
function 47, 49
map 81, 239, 240, 244
section 162, 170, 215, 218, 289
Prandtl number 19
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predator-prey model 58, 74, 100, 158.
159, 161, 167

probability density 275

pulse-width modulation 162, 104

quadratic mappings
see also logistic map
one dimensional 39
two dimensional 39, 58
quantum
operator 137
turbulence 155

quasi-periodicity 158, 165, 167, 215, 216.

226, 240, 243, 249, 260, 264, 266

Rabi frequency 137, 139, 141
random 3, 4
Rayleigh number 19
relaxation oscillation 220
renormalisation 51, 226
Renyi informations 300, 302, 303
repeller
snap-back 102
resonance 64, 66, 70,71, 166, 167,213,
214
resonator (optical)
Fabry-Perot 141
passive 135
unidirectional ring cavity 139, 140
Reynotd's number 288
Rossler
3.D system 21-4, 103, 160, 161, 165
hyperchaos 26, 288
- rotation number 82, 84,240, 241, 242,
245, 260
round-off 46
routes to chaos 243, 244
Ruelle-Takens route 150, 153

saddle: see fixed point
sejzure 199, 201

index

self-similar 83, 87,90
sensitivity to initial conditions 18, 122,
159,212, 218, 237, 273, 291
Shannon information 302
Smale’s
axiom A 112
horseshoe 88, 123, 159, 212, 213, 219,
223,224
spectral analysis 107
standard map 81
strange
attractor: see attractor
invariant set 122, 124
stretching 275
stretching and folding 3, 18, 119, 125,
168, 171, 223,277, 316
stroboscopic
portrait 30, 219, 220, 258
transfer function 188, 288-9
structural stability 7, 13, 218
superstable cycle 240, 241, 243, 276
symbolic dynamics 121, 123

Taylor-Couctte flow 168, 288, 293
tent map 53

transition scheme 5,7, 8

tremot 197,199

two-level atom 137

two-symbol shift 88

twist map 81

uncertainty 5,7
universality 50, 150, 155, 229, 242, 243

van der Pol oscillator 107, 212, 213, 216,
238,239
variability
genetic 8.9

window 45, 164, 229, 233, 276



