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Foreword

The idea of devoting a complete book to this topic was born at one of the
Workshops on Nonlinear and Turbulent Processes in Physics taking place reg-
ularly in Kiev. With the exception of E.D. Siggia and N. Ercolani, all authors
of this volume were participants at the third of these workshops. All of them
were acquainted with each other and with each other’s work. Yet it seemed to
be somewhat of a discovery that all of them were and are trying to understand
the same problem — the problem of integrability of dynamical systems, primarily
Hamiltonian ones with an infinite number of degrees of freedom. No doubt that
they (or to be more exact, we) were led to this by the logical process of scientific
evolution which often leads to independent, almost simultaneous discoveries.

Integrable, or, more accurately, exactly solvable equations are essential to -
theoretical and mathematical physics. One could say that they constitute the
“mathematical nucleus” of theoretical physics whose goal is to describe real clas-
sical or quantum systems. For example, the kinetic gas theory may be considered
to be a theory of a system which is trivially integrable: the system of classical
noninteracting particles. One of the main tasks of quantum electrodynamics is
the development of a theory of an integrable perturbed quantum system, namely,
noninteracting electromagnetic and electron-positron fields. Another well-known
example is that in solid-state physics where linear equations describe a system
of free oscillators representing atoms connected to each other by linear elastic
forces. On the other hand, nonlinear forces yield nonlinear equations for this
system.

Nonlinear integrable systems were discovered as early as the 18th century.
At that time only a few were known and with no real understanding of their char-
acteristics and solutions. Now, however, it is correct to state that it is impossible
to overestimate their importance in the development of all areas of science.

Among their applications is the integrable problem arising for the motion
of a particle in a central field, associated with atomic and nuclear physics. The
problem of a particle moving in the fields of two Coulomb centers is fundamental
to celestial mechanics and molecular physics. Also in molecular and nuclear
physics the integrability of the Euler problem for the motion of a heavy rigid body
is used. The development of the theory of gyroscopes would have been impossible
without the Lagrange solution of a symmetric top in a gravitational field. Only one
of the classical nonlinear integrable systems, namely, the Kovalewsky top, has
not yet found direct physical applications. But within mathematics this problem
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is of great importance and led to the discovery of a method later developed by
Painlevé, which is one of the basic subjects of this volume.

During most of the 19th century mathematicians tried to find new nonlinear
integrable systems, but mostly in vain. The works of A. Poincaré put an end to
these efforts: he showed that among dynamical systems, integrable ones are the
exception. Already a small perturbation usually prevents integrability. Poincaré’s
results, obtained in the 1880s, dramatically reduced interest in the search for new
integrable systems. This remained the case for more than the first half of this
century.

The situation changed dramatically in the last two decades. 1987 marked the
20th anniversary of the publication of the well-known paper by C.S. Gardner,
J.M. Green, M. D. Kruskal, and R. M. Miura, introducing a new, very powerful
method, the inverse scattering transform (IST). In this paper the IST was applied
to the famous Korteveg—de Vries equation (KdV). Before long it was shown that
the inverse scattering method is applicable to a number of important nonlinear
partial differential equations which had been known for a long time. The first of
these are the nonlinear Schrédinger and sine-Gordon equations. All these equa-
tions were recognized to be Hamiltonian with an infinite number of conservation
laws. In the course of developing the IST it could be shown that all of them
are, at least in the rapidly decreasing or periodic cases, completely integrable
systems in the classical sense. This led to the foundation of “soliton factories”
at the beginning of the seventies.

The three equations mentioned above were the first examples of nonlinear in-
tegrable field-theoretical systems with an infinite number of degrees of freedom.
At present more than several dozen such equations are known and their number
is rising continuously. Among them there are the particularly important Weil
equations describing an axially symmetric stationary gravitational field and the
duality equations of the Yang—Mills theory. The evolution of the theory of quan-
tum nonlinear systems with a large number of degrees of freedom is intimately
connected with that of the classical inverse scattering method.

The tremendous significance of such equations and of the associated concepts
to physics and mathematics led to the need to comprehend the notion of integra-
bility at a more precise level and to understand the role of integrable systems in
mathematical physics. This book attempts to make a step in this direction.

The book begins with a paper by F. Calogero which is, loosely speaking,
devoted to “the origin” of integrable systems. A multiscale expansion method
is described for a rather wide class of essentially nonlinear partial differential
equations. As a result, a number of models with a high degree of universality
arises, based on equations that are, as a rule, integrable. Their integration may
be accomplished in different ways: either by a simple change of variables (C-
integrability) or via the IST technique (S-integrability). But the conclusion is
the same, i.e., the integrability of a dynamical system is related to its universal-
ity. This conclusion is undoubtedly of heuristic value. It is worth emphasizing
here that not only partial differential equations but also more general pseudo-
differential ones could be used as a starting point for analysis. After applying
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the multiscale expansion method, the results, as derived for chosen models, are
found to be true on a more general level. This can be shown easily if the original
system possesses a Hamiltonian structure.

Several examples of this type may be found in the paper by V.E. Zakharov
and E.I. Schulman which is primarily devoted to a quite different question: how
can we determine whether a given system is integrable or not? This problem has
recently become more and more urgent, and is therefore thoroughly addressed
in this volume. There are essentially three approaches to solving it, all discussed
here. They originate from classical work initiated in the previous century. The
approach used in the paper by E. D. Siggia and N. Ercolani and in the contribution
by H. Flaschka, A.C. Newell and M. Tabor is essentially based on the classic
paper by S. Kovalewskaya discussing the integrability of a top in a gravitational
field.

Kovalewskaya observed that the majority of known integrable systems is in-
tegrated in terms of elliptic and, consequently, meromorphic functions and thus
cannot have any movable critical points. This particular condition of the nonex-
istence of movable critical points led subsequently to the integrable equation for
the Kovalewsky top. Kovalewskaya’s idea was pursued further by Painlevé. This
method of verifying the integrability of equations through an analysis of the ar-
rangement of critical points of their solutions in the complex plane is called the
Painlevé test. In the contribution by Flaschka, Newell, and Tabor the Painlevé
test is used on partial differential equations and is proved to be a powerful tool.
It allows not only to verify the integrability of systems but also, in the case of a
positive answer, it helps to find their Lax representation as a compatibility con-
dition (imposed on an overdetermined linear system), symmetries, and Hirota’s
bilinear form.

One of the highlights of the third workshop in Kiev was the demonstration
(by A.C. Newell) of the power of the Painlevé test as applied to the integrable
system found by A. V. Mikhailov and A. B. Shabat. It is worth noting that in spite
of all the advances of the Painlevé test there is no reliable assurance for systems
not satisfying this test to be definitely nonintegrable. It should also be added
that further research is required to provide an even more solid mathematical
foundation for this quite useful and successful method.

The next paper in the volume is from A.V. Mikhailov, V. V. Sokolov, and
A.B. Shabat. They develop a symmetry approach originating from the famous
Sophus Lie. The question posed is under which conditions does a class of partial
differential equations admit a nontrivial group of local symmetry transformations
(depending on a finite number of derivatives). In the cases under consideration the
authors succeed in constructing a complete classification of systems possessing
symmetries. They also prove that when a few symmetries exist it follows that
there are actually an infinite number of them. It should be noted that in this paper
not only Hamiltonian but also dissipative systems are considered which cannot
be integrable in the classical sense but may be C-integrable, i.c., they may be
reduced to linear systems by changing variables.
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The paper by V. E. Zakharov and E. I. Schulman is based on Poincaré’s works.
Rather than choosing some differential equations and transforming them to their
Fourier representation where differential and pseudo-differential operators differ
only in coefficient functions, a2 Hamiltonian translationally invariant system is
taken as the starting point. The question posed is whether at least one additional
invariant motion for this system exists. It is shown that the existence of such an
integral implies rather important conclusions, discussed thoroughly in the paper.
They are formulated as restrictions on the perturbation series in the vicinity of
linearized (and trivially integrable) systems. In particular, the existence of an
additional invariant of motion implies the existence of an infinite number of
invariants. This result agrees with the paper by Mikhailov, Sokolov, and Shabat.
An extremely important result of this report is to make clear that the existence
of an infinite set of invariants of motion does not always mean integrability in
Liouville’s sense. The set of integrals may be incomplete. Effective criteria for
identifying such cases are presented.

The contribution by A. P. Veselov is devoted to systems with discrete time and
thus has significant applications in physics. In this paper the particular concept
of integrability of systems of this type is defined. The contribution by V.A.
Marchenko devoted to the solution of the Cauchy problem of the KdV equation
(with nondecaying boundary conditions at infinity) lies to some degree outside the
general scope of this volume. It has been incorporated here, however, because
it seems to me that the inclusion of a classic paper of modern mathematical

physics can only increase the value and beauty of any presentation of associated
problems.

Moscow, August 1990 V.E. Zakharov
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Why Are Certain Nonlinear PDEs Both Widely
Applicable and Integrable?

F. Calogero

Summary

Certain “universal” nonlinear evolution PDEs can be obtained, by a limiting pro-
cedure involving rescalings and an asymptotic expansion, from very large classes
of nonlinear evolution equations. Because this limiting procedure is the correct
one to evince weakly nonlinear effects, these universal model equations show
up in many applicative contexts. Because this limiting procedure generally pre-
serves integrability, these universal model equations are likely to be integrable,
since for this to happen it is sufficient that the very large class from which they
are obtainable contain just one integrable equation. The relevance and useful:
ness of this approach, to understand the integrability of known equations, to
test the integrability of new equations and to obtain novel integrable equations
likely to be applicable, is tersely discussed. In this context, the heuristic dis-
tinction is mentioned among “C-integrable” and “S-integrable” nonlinear PDEs,
namely, equations that are linearizable by an appropriate Change of variables,
and equations that are integrable via the Spectral transform technique; and several
interesting C-integrable equations are reported.

Introduction

It is moot whether the question put by the title of this paper may be justifiably
asked, and appropriately answered, in a scientific context. Maybe the only ap-
propriate response to it is to reiterate the statement beautifully formulated, more
than three centuries ago, by Galileo: “Questo grandissimo libro che continua-
mente ci sta aperto innanzi agli occhi (io dico 1’universo) ... & scritto in lingua
matematica” [“this great book that stands always open before our eyes (I mean
the universe)... is written in mathematical language”] [1]. Yet in this paper,
that is largely based on joint work with Eckhaus [2-4], we try and suggest a
less metaphysical explanation. As it has been known for some time and as we
show below, certain “universal” nonlinear evolution PDEs can be obtained, by a
limiting procedure involving rescalings and an asymptotic expansion, from very
large classes of nonlinear evolution equations; for instance, from the class of
autonomous nonlinear evolution equations whose linear part is dispersive but
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otherwise arbitrary, and whose nonlinear part depends in an analytic but other-
wise arbitrary manner on the dependent variable and its derivatives. Because this
limiting procedure is the correct one to evince nonlinear effects, the universal
mode] equations obtained in this manner (of which the nonlinear Schrédinger
equation in 1 + 1 dimensions is the prototype) show up in many disparate, ap-
plicative contexts: they are widely applicable. Because this limiting procedure
generally preserves integrability, these universal model equations are likely to
be integrable, since in order for this to happen it is sufficient that the very large
class from which they are obtainable contain just one integrable equation; in-
deed, while the fact that an arbitrarily given equation turns out to be integrable
may be scen as an exceptionable event, the fact that a very large class of equa-
tions contain at least one integrable equation may be considered normal, i.e., not
exceptional; hence a universal model equation that is obtainable by a limiting
procedure from (all!) the equations of a large class is likely to be integrable,
provided the limiting procedure preserves integrability. And note that this argu-
ment may also be run backwards; if a universal model equation, obtainable via
a limiting procedure that preserves integrability from all the equations of a large
class, turns out not to be integrable, then none of the equations contained in the
large class is integrable; hence this approach also yields necessary conditions for
integrability of wide applicability, as we explain in more detail below [4].
As indicated in the following section in a specific context, the argument
outlined above is based in part on solid results and in part on heuristic consider-
" ations. In particular, the unfolding of the limiting procedure relevant to describe
the dynamics in the regime of weak nonlinearity, and the identification of the
corresponding model equations, is based on a precise and reliable algorithm;
these results are mathematically correct, although more work than has been done
until now would be required to back them with rigorous estimates and to turn
them into rigorous statements relating solutions of the original equations (be-
longing to the large class) to solutions of the model equations (obtained via the
limiting procedure from the large class and being relevant to describe the be-
havior in the regime of weak nonlinearity). The assertion about the preservation
of the property of integrability through the limiting procedure is instead based
on plausible arguments, which appear quite convincing and are supported by
many examples, but could not be characterized as rigorous theorems; indeed,
they could not be formulated as such (let alone proved), as long as no precise
definition of “integrability” is available for nonlinear evolution PDEs. Indeed, at
this stage we must be satisfied with the hewristic notions of “C-integrability” and
“S-integrability”; the former corresponds to the possibility of linearization via an
appropriate Change of variables (whose precise nature is left vague at this stage;
we generally have in mind an explicit redefinition of the dependent variable;
although in some case the independent variables might also be transformed, see
below); the latter denotes solvability via the Spectral transform technique (or,
equivalently, the inverse Scattering method, see, for instance, [5,6]). As a rule of
thumb, the property of C-intcgrability is more stringent than S-integrability; in
some sense, C-integrability implies S-integrability, but not vice versa (however,
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if the definition of S-integrability is made precise by requiring the existence of
an infinity of local conservation laws, then there are C-integrable equations, lin-
earizable by a nonlocal change of dependent variable, that are not S-integrable;
see below for an interesting example).

The approach outlined above and described in more detail below provides
an answer, which we deem convincing if lacking in mathematical rigor, to the
question posed in the title of this paper; thereby explaining “what had hitherto
appeared to us a puzzling miracle, namely, the fact that certain nonlinear PDEs
appear in many applications and are integrable” [2]. It provides moreover a
powerful, if heuristic, methodology, to understand the integrability of known
equations, to test the integrability of new equations, and to obtain novel integrable
equations likely to be applicable.

Surely the ideas outlined above and described in more detail below are not
quite new; for instance, the basic fact that, in 1 + 1 dimensions, the nonlinear
Schridinger equation is generally the appropriate tool to describe any situation
characterized by dispersion and weak nonlinearity has been known for decades.
Perhaps the first to formulate this kind of result in general form has been Taniuti
(see, for instance, the papers by him and by his collaborators and colleagues in
[7]). More recently Eckhaus [8] has substantially clarified and streamlined the
derivation of model equations appropriate to describe the asymptotic regime of
weak nonlinearity, by showing how they can be obtained just by introducing via
appropriate rescaling “slow” independent variables, together with an asymptotic
expansion of the dependent variable (see below). Moreover, the synergism of
this approach with the question of integrability has been already exploited by
Zakharov and Kuznetsov [9] to relate several known integrable nonlinear PDEs;
these authors also mentioned the possibility to use this approach in order to obtain
novel integrable equations, but they did not push the methodology far enough to
actually produce such results.

This paper is organized as follows. Section 1 contains an outline of the main
ideas, in a specific context suitable to their presentation; it is based on joint
work with Eckhaus (sce, in particular, [3,4]). Section 2 displays several model
equations, in 1+ 1 and 2 + 1 dimensions, that have emerged from this kind
of approach; it is based on joint work with Eckhaus [2,3] and Maccari [10].
Section 3 reports several C-integrable equations, that are in some way related to
some of the equations of Sect.2. Section 4 contains some concluding remarks.
Throughout the paper the emphasis is on the presentation of results, rather than
on their derivation, for which the interested reader is referred in each case to the
relevant literature,
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1. The Main Ideas in an Illustrative Context

Consider the class of nonlinear evolution PDEs characterized by the following
(rather general) structure:

Du(z,t) = Flu, uz,ty, Uz, Uzt, Use, ++.] . (L.1)

Here u(z,t) is the dependent variable; we restrict attention to real variables and
real equations.

The left-hand side of (1.1) is the linear part of this equation; we assume the
linear differential operator D to have the form

D_fi+2( 1y b,aazzj (12)

The quantities b; are real constants. We assume moreover that, at least for some
value of the real constant k¥ {on which our attention will be focused), the quantity

J
wHk) =) bk¥ (13)
J=0

i$ positive, so that its square root, w(k), is real (the determination of the sign of
w(k) is optional). We moreover assume that w(k) is not linear in k, namely that
the group velocity

oy = LB E: ;

k2j—-l

(14

w(k)

is not constant (k-independent), i.e., we exclude the case b; = b 6;1.
These conditions are sufficient to guarantee that the linear part of (1.1) will

be dispersive, so that the equation

Du(z,t)=0 (1.5)
admits as a (real) solution the (real) traveling wave

u(z,t) = Aexp{ilkz — w(k)t]} +cc., (1.6a)

u(z,t) = 2|A|cos[kz — w(k)t +a] , (1.6b)

and, more generally, the “wave packet” solution,
u(z,t) = / dk' A(k") exp{ilk'z — w(k)]} +c.c. . (1.7
Let us recall that the solution (1.7), if it is initially localized both in z-space

and in k-space (namely, if both u(z,0) is concentrated around a position xo
and its Fourier transform #(k’',0) = A(k') is concentrated around a value k),
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generally evolves, at least at large time, as a wave packet whose envelope travels
with the constant group velocity v(k), see (1.4), and gets slowly dispersed (i.e.,
delocalized; its peak amplitude decreases proportionally to t~1/2),

The form (1.2) is not the only one that gives rise to dispersive waves; for
instance another possibility is the “odd™ operator

541
D-£+E( 1y a,a2 (1.8)

Oz2itl ?

with the a; being real constants. We restrict our consideration in this section to
the “even” operator (1.2), following closely the treatment of {3]. The case of a
linear operator of type (1.8) has been treated in [2]; the results are analogous,
albeit somewhat more complicated, than those discussed in this section, and they
are included among those reported in the following section.

Note that the amplitude A of the dispersive wave solution (1.6) of the linear
equation (1.5) is constant. The question we are going to discuss below is what
happens if the time evolution is determined by the nonlinear equation (1.1) rather
than the linear equation (1.5), under the assumption of “weak nonlinearity” (see
below); in which case a solution such as (1.6) may still (approximately) hold, but
with the amplitude A being a slowly varying function of space and time. Indeed,
our interest will be focused just on the equations governing that kind of wave
modulation. Such equations are of course relevant only on a “slow” time scale
and over a large, hence “coarse-grained”, space scale, whence their “universal”
character, namely their structural independence from the specific features of the
nonlinear evolution equation (1.1), be they the parameters that characterize the
linear operator D (namely, the values of J and of the constants b;; see (1.2)), or
the detailed nature of the right-hand side of (1.1), that constitutes the nonlinear
part of this equation and to whose description we now turn.

We assume that F is an analytic nonlinear real function of the dependent
variable u and of its derivatives, namely we assume that it admits, for small e,
the expansion

Fleu,eu,,euy,cuyy,...] = Ze"‘F("')[u,u,,ut,uu, L1+ oeM) , (1.9

m=2

for any M > 2 (actually, for the resulis given below it is sufficient that this
expansion hold up to some small value of M, say M =3 or M =5, as the case
may be; see below). Here the functions FX™ are homogeneous polynomials of
degree m in u and its derivatives:
O
F™iu, .. 1= Z‘*‘O“ Z Z >
=0 ja=1 Fmey=fm—pet

% C,(;',n;),(“); w0 Ume) (1.10)

Here and below we use the synthetic notation
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0 = ﬂ
urEas. (1.11)

In writing the expression (1.10), we have assumed that no higher fime-
derivatives than the first appear in the rhs of (1.1). This assumption is introduced
here merely to simplify the notation (which is already sufficiently complicated as
itis; see below). Note that (1.10) identifies uniquely the real constants cj'l",?’(fi)J.m_“;
of course, in any actual application, only a subset of these constants does not
vanish. To elucidate this notation, let us display in explicit detail the structure of
(1.10) for m=2 and m = 3:

FOlu, ..} =@y

&M @xn

+cy uut c§2x‘)u¢u, +0 7 Ut ..
+ q%xo)uz + c(()21)(0)uu£ + cho)uu,, + ...

+ ngl)(o)ui + c%xo)u,u,, + ...

+02 & .., (1.12a)

FG)[u, )= c(3)(3)u::

+ cg)(z)ufu + c?x”ufu, + cg)a)u%u,, +...

+ ct(,":,)(l)um2 + chl)uguu, + q(,sle)uguu" + ...

+ O axn

ugui+cn u;u,u"+ veo

0; 2
+ c(()31>l( )““z + Cgl)éo)“u:“zz + Cg)éo)uuz“u + ...

(3X0), 3 @BX0), 2 2
+epyy U toya uzuu+cg)§°)uzu,"+ .e

(3X0) 2 0)
+Ciyp UglUy, + c?z),( )u,uuu", + ...

O+ DO .12

For instance, the sine-Gordon equation,
Uge — Ugg +cSin(yu) =0, (1.13)
corresponds to (1.1,9, 10) with

m+1
moy, b=1, &mDO_ mo1 ™
b=cy, h y  €00..00 =D Cm+ 1’ (1.14)
m=1,23, ...

and all other b and c constants vanishing.

Note that the sum in the right-hand side of (1.9) starts from m = 2; this
corresponds to the separation of (1.1) into a linear left-hand side and a nonlinear
right-hand side. To investigate the regime of weak nonlinearity, it is expedient
to replace in (1.1) the dependent variable u by cu, and to treat ¢ as a small
parameter, thereby replacing (1.1), via (1.9), by
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M
Du= Es’""F("‘)[u, 1, (1.15)

m=2

with M chosen sufficiently large to guarantee that all relevant contributions are
taken into account (see below).

Of course, for ¢ = 0, this nonlinear evolution equation goes over into the
linear equation (1.5), that admits as a solution the traveling wave (1.6). As
already indicated above, our main interest is to investigate solutions of (1.1)
that are close, for small ¢, to this traveling wave. To this end it is convenient to
introduce the formal Fourier/asymptotic expansion

+00

u(z,t)= Y exp{inlks — w(k)tl}e™ $nl€, ) (1.16)

n=—00

into (1.15), and to determine the evolution of the coefficients (¢, 7) of the
various Fourier modes, in particular the evolution of the amplitude

¥, 7) =9, 7) (1.17)

describing the modulation of the dominant mode [that coincides of course with
the traveling wave (1.6); compare (1.16) with (1.6), and note that y; =y = 0,
and v, > 0 for n # 1, ~1; sec below]. But let us first pause to justify and explain
the ansatz (1.16).

First of all we record the conditions

Yo =T=n, ¥al&,T)=91,.(7) (1.18)

that correspond to the reality of u(z,?).

Next, to motivate the introduction of this ansatz, we suggest to imagine for a
moment to solve (1.15) by iteration, starting from the traveling wave (1.6). The
iteration would clearly produce higher harmonics of the basic dispersive wave
(1.6), due to the nonlincar character of the rhs of (1.15); as well as the zeroth order
harmonic, due to the interference of the basic dispersive wave expli(kz — wt)]
with its complex conjugate. These are precisely the terms that appear in the
ansatz (1.16).

The exponents 7, account for the fact that whenever nonlinear effects come
into play, they carry an element of smallness, associated with positive powers
of ¢. It turns out (see below) that in most cases a consistent choice for these
exponents is

m=n-1 for n=1,2,3,.... (1.19)
Note that for the moment we keep open the determination of the exponent
=T (1.20)

whose value shall depend mainly on the structure of the linear operator D (see
below).
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Finally, some comments on the amplitudes 1,(£,7) of the various modes.
First of all let us emphasize that, in writing the expansion (1.16), we do not
imply that these functions, ¥,(¢, 7), are independent of ¢, but merely that they
remain finite in the limit ¢ — O (this will be accounted for by a proper choice
of the exponents vy, see above). Second, and most importantly, we define the
“slow” variables £ and 7 as

E=eP(z —vt), 121

T=e%. (1.22)

Here the positive parameters p and g set the scale, in space and time, over which
the nonlinear effects become relevant. Note that, in principle, the values of p and
¢ could be set arbitrarily, as one can always rescale the independent variables at
one’s whim. But the choice of too large values for p or ¢ would yield equations
that contain divergences in the ¢ — 0 limit; while the choice of too small values
for p or ¢ would yield uninteresting results in the ¢ — 0 limit, corresponding
essentially to the linear equation (1.5), and signifying that such scales are not
slow enough to allow for the nonlinear effects to build up and become relevant,
Note moreover that the definition of ¢, see (1.21), implies looking at the system
in a reference frame that moves with the group velocity, see (1.4), appropriate to
the specific traveling wave that constitutes the basic approximation; again, one
might make a different choice, but only the choice (1.21) leads to interesting
results, for reasons analogous to those we have just mentioned (by following
the carrier wave with its group velocity one can evince the effects produce by a
weak nonlinearity; namely the effects which remain significant even in the ¢ — 0
limit).

Note that the ansatz (1.16) with (1.17-20) implies the asymptotic relation

u(z, t) = Y(¢, r)expli(kz — wr)} + c.c. + e Yo(€, 7)

+e{ha(€, ) expl2i(kz — wr)] +c.c.} + O(e?) . (1.23)

As already mentioned, our main interest is the determination of the evolution
equation satisfied, in the ¢ — 0 limit, by the function (¢, 7), accounting for the
modulation of the amplitude of the dominant mode expli(kz — wt)] (the carrier
wave), due to (weak) nonlinear effects.

Let us now outline the procedure to obtain this result; except for the choice
of the three parameters r, p, and ¢, this computation is purely algorithmic, so that
it could be performed by computer, using an algebraic manipulation program.

Firstly, let us insert the ansatz (1.16) in the left-hand side of (1.15) (namely,
in the linear part of this equation). This is easy:

+oo

Du= Y~ explin(kz — whle™ Dopulé, 1), (1.24)

n=—o00

3. OV, & 3\
=1{1 —_ Py 9 . —1Vh. {1 pP___
D, (mw € va£+e 61') +Z( 1)'b; (1nk+e ae) , (1.25)

=0
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D,=A, + iw,.s"—aa—£ + Bnez"% — 2inw€'56-7—_
+ e’qu— 2wt 2 O(*?) + O(¥) , (1.26)
ar? d€ or
Ap=b; A1=0;
J . 127
A, = Zb,-kzj(nz’ —n?) = W nk) - koK), n>2,
=0
J
Bo=vt—b—) j@j- Db (kn)20~Y | (1.28)
=2
wp=w; =0;
(1.29)

J
wo =2n Y jbik¥7(1 = n?97D) = 2nw(R)v(k) — wnk)u(nk)] .
j=2
Note that, for the basic mode n = 1, both A, and w; vanish, hence the dominant
contributions, see (1.26), are of order £2? (assuming B; does not vanish) and €°.
Hence a preferred choice that shall often be the appropriate one sets

g=2p. : (1.30)
With this choice we get:
Do=h+ Bm»:’"g%2 +0(e?) (1.31a)
2 .. 0 )
Dy =% (B,EF - 2195) +0(e) (1.31b)
D, =A,.+iw,.efa%+0(eﬂ), n>2. (1.31c)

Note that the above results correspond to the “rule of thumb” substitution of
the space derivative 8/0z by ink + ¢P §/0¢, and of the time derivative 0/0t by
—inw — veP 3/ 3¢+ §/ 1. Hence, in the ¢ — 0 limit, derivatives get replaced
by constants.

Let us then turn to the discussion of the right-hand side of (1.15). Clearly, by
inserting the ansatz (1.16) into the polynomials FX™[u, ...] and by rearranging
the Fourier series, one obtains the expressions

+00
Fru,..1= Y exp{inlks — w(k)]} f™ . (1.32)

Hence, via (2.24), the evolution equation (1.15) yields the sequence of equations

€ Dapu§,7) = fa, n=0,1,2,..., (1.33)
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where of course,

M
fa= Y emlfm, (1.34)

mu=2

Note that the evaluation of the expressions f(™ is purely algorithmic (although
it may turn out to be rather cumbersome, especially for larger values of m and
n; but in general only the quantities fO™ with small values of m and n play
a role, see below). It is casily seen that the first few f(™ have the following
explicit form [3];

F& = g1, =Dl [* +¢? [ (1, 1"y == 3&' +g(1', ~yp_y 36";‘]
+€2g(0,0)95 + 292, Dy + ... , (1.352)
£ =2Re{g(1, 1, -2)fp_z} +€"g(1,0, = 1) |y oo
+€79(0,0,0)93 + %" 9(2,0, ~2) |92 >0
+2e°Re{g(2,1, -)i1thatp_3}

+2€“‘PRe{g(ll -ty Wl+g(l,1 2,)¢28¢_2}

-27a7. aE 1 aE y
(1.35b)

£ = g(1,1, =1, =Dy |* +6%9(1,0,0, —1)|th: Pop3

+62{g(2,1,—1, =2)|hs Pl [* + 2Relg(1, 1,1, =3)y31p_s]}

+2¢""Re{g(1,1,0, 2y 1poy_z}

+2¢PRe {g(l 1, =1, =)t |29 la:/?} (1.35¢)
f = 0(e, e (1.35d)
£ = e g(1,001900 + £9(2, = Dp_195; + 3903, —2)9p_a3

+emr [y(l (IR ‘é" +g(1', 0o 3‘?

+ P! [g(z' —Dy a“;’+g<z, 'm"ﬁg ] (1.363)
2= g(1, 1, =D)|tn [P +€¥g(1,0,0)41 2

+eM79(2,0, - o192 + €2[g(2, 1, ~ 2 |2 ?

+9(3, -1, —1)¢2,45]

ver o, -0 PR+ 00,1, -0 2t 4 e
£ = elg(1,1,1, - 2)pa + g(z, 1,~1, =Dt Prb_19b2]

+e"g(1,1,0, =Dt Pehrepo + ... , (1.36¢)

= g(1,1,1, =1, =D [*r + ... ; (1.36d)
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£ = g(1, 192 + *7g(2, 0)9huts + €29(3, ~1)yp_193

+ePg(1,1")y a‘/;‘ (1.37a)
£ = eg2,1, =Dy Pv2 + €791, 1,098¢0 + ... , (1.37b)
9= g1, 1,1, =D P + ..., (1.37¢)
£ =0G,en; (1.37d)
£ =g, Vit + ..., (1.382)
=g, 1,083+ ..., (1.38b)
AP =066, | (138¢)
=00, (1.38d)

The terms omitted (denoted by the dots) are, in each formula, of lower order than
those displayed. The coefficients g are constants; their determination in terms of
the constants ¢ that characterize the right-hand side of (1.15) (see (1.10)) is an
algorithmic task that is described in some detail in the Appendix A of [3]. We
report here the explicit expressions of some of these constants:

90,00 = F9, (1.39)
9(1,0) = —wc@® + 220 4 (lk)’ YA (1.39b)
()
=1
9(1,1) = —w?@@ iy (kY PO
=0
o0 oo , .
+Y Y R 0) (1.39%)
J1=0 ja=jy

oo
g(1,=1) = 22 — 24, Y (1) K Y

=0
oo o0
+30 3 Ry PO -1y + (-1, (1.39d)
5170 ja=j;
92, —1) = 42D _ i, z(ik)fcg?x”[—zf +2(—=1)7]

j=0

+ 33 Ry PDRI (1Y + 200 (- 1)1 (13%)

J170 ja=j1
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g(1,1,—1) = =30’ &

+w? Z(ik)f R~ (-1y7)

+iw E Z (k)i g)ﬂ) — (=)t = (=1)72]
J1=0 ja=j
o0 o0 o0

+ E 2 Z (ik)Jr+ia+i®d ﬁ)f?rs[( 1 4 (=1)2 + (~1)7]
51=0 ja=j1 ja=j2
(1.391)

Note that the values of these coefficients depend generally on k [except for
g(0,0); see (1.39a)], and that at least some of them are generally complex (for
a more detailed discussion of the reality properties of these coefficients see Ap-
pendix A of [3]).

We are now in the position to proceed with the derivation of the equation
satisfied, in the ¢ — 0 limit, by ¥(£, 1) (see (1.17)).

For the reasons outlined above, we assume that the relation ¢ = 2p holds (see
(1.30)). We can then use the formulae (1.31). Inserting them into (1.33), with
n=0,1,2, and using (1.34,35a, b, 36a,b, 37a, b, 18-20), we get:

e [bo + 52PB°6i£2 +0(€2")] o = eg(1, = DI +OCe) (1.40)

%[ Bypge — 2iwtp,] + O(e)
= €"7g(1,0)pibo + €292, —1)*vhy + €2g(1, 1, = )| [*1p + O(e?, e!*7)
(1.41)

€ [Az + ie”wzai6 + O(e’)] 2 =eg(1, Dy? +O(e) . (1.42)

If A; # 0 and g(1,1) # O, in the limit ¢ — O the last of these equations
yields

_g(lal) 2
%—_Az ¥, (1.43)

since p is positive.
If b = Ao #0 and g(1,-1) #0, (1.40) suggests setting

ret, (1.44)
and in the € — 0 limit it yields

1
A CRD IS (1.45)

We may now insert these determinations of 3, r, and 1 into (1.41). It is
then clear that the appropriate determination of p is
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p=1 (1.46)
and in the £ — O limit one gets for y the nonlinear Schrodinger equation (NLS)

—2iwy, + Bivpge = nlp*y (1.47)
with

2 93,-1¢(1,0) g2, —-1))g(,1)
bo Az

Note that the coefficient n is generally a function of the wave number k, since the
coefficients g (see (1.39) and (1.3)) as well as A3 (see (1.27)) depend on k. Also
note that n need not be real. Indeed, while the coefficients by and A; are real, the
cocfficients ¢ may be complex. But there are subclasses of nonlinear evolution
equations for which 5 is automatically real. For instance, the “even” class of
evolution equations, whose right-hand side contains only terms having overall
an even number of differentiations, namcly the class such that the coefficients
rXe).  _, vanishif the integer (u+3 1" "* j,) is odd (see (1.1,9, 10, 15)), yields
coefficients g(1,0), ¢(1, 1), g(2,—1) and ¢(1, 1, —1) that are all real (note that the
coefficient g(1,~1) in (1.39) is always real). Of course, this “even” class may
also be identified by its invariance under the wransformation z — —z, ¢t — —t.
Note incidentally that if 1, is real and none of the three real constants w, By,
and n vanishes, then by appropriate “cosmetic” rescalings of the independent and
dependent variables the NLS equation can be recast into the canonical form

i)+ ee + s|yPy =0, (1.49)
with

+9(1,1,-1). (1.48)

= —signﬂ% . (1.50)

Let us emphasize the universal character of (1.47): This NLS equation de-
termines, in the regime of weak nonlinearity, for any equation of the class (1.1),
the (slow) modulation of the amplitude of the dominant mode for any solution
of (1.1) “close” to a traveling wave solution of the linear part of (1.1). The uni-
versal character of this result is underscored by the vastness of the class (1.1) of
nonlinear evolution equations. But in fact this result is even more general, since
the NLS equation would also emerge from other classes of nonlinear evolution
equations (including integrodifferential equations and finite-difference equations);
roughly speaking, NLS emerges from all evolution equations characterized by
a linear part which is “dispersive” and a nonlinear part which is “analytic”. In-
deed, this fact has been known for a long time, although the degree of precision
with which this result has been formulated has improved over time (and there
certainly remains room for additional improvement, as mentioned above).

It should also be noted, however, that the emergence of the NLS equation
has required some conditions, in particular the validity of certain inequalities,
such as w #0, By #0, b #0 and A, # 0 (see above); and it is moreover clear
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that, whenever ny vanishes, one is left with the linear Schrédinger equation rather
than the nonlinear Schridinger equation. Hence the cases when the derivation of
the NLS equation breaks down are, in some sense, not generic; they emerge only
if some quantity vanishes. Yet, as we shall sce, their study is quite important;
indeed the identification of their relevance has been a major recent development
{24].

But for the moment let us still elaborate on the present finding.

The universal character of the NLS equation that has just been emphasized
accounts, of course, for its wide applicability, this is a consequence of the fact
that in many, disparate, applicative contexts, the governing equations are indeed
characterized by a linear part that is dispersive and a nonlinear part that is
analytic, and moreover, the situation of applicative interest corresponds to a
regime of ‘'weak nonlinearity with a dispersive wave of given wave number k
playing the dominant role; then the interest is naturally focused on the modulation
of the amplitude of the carrier wave, due to the (weak) nonlinear effects which,
as we have just seen, is generally governed by the NLS equation.

Of course, in these applicative contexts the validity of the approximation that
yields the NLS equation (when ¢ is small but not quite vanishing) may also
be at issue, as well as questions of stability; in this context a relevant role is
generally played by those special values (if any) of the wave number k at which
the approximation breaks down because one of the conditions under which the
NLS equation has been derived ceases to hold (for instance, By, A3, or 1, vanish).

Our main interest in the present context is instead focused on the interplay
of these findings with the issue of integrability. To illustrate this point, imagine
taking, as a starting point of the analysis, an equation belonging to the class
(1.1) that is itself “integrable” (without specifying for the moment the precise
significance of this term). Then the model equation that is produced by the
analysis (namely, in the present context, the NLS equation; but the argument is
valid more generally, see below) must also be “integrable” (in the same sense),
since its solution may be obtained, by taking an appropriate asymptotic limit,
from solutions (appropriately chosen, so that they represent a weakly perturbed
traveling wave) of the original equation.

This argument, of course, lacks precision, if not cogency. But in fact, in
every specific case we have investigated (see below), it can be turned into a
fully reliable proof of integrability, by analyzing the procedure that underlies
the “integrability” of the original equation, by inserting into it the ansatz (1.16),
by investigating the asymptotic limit ¢ — 0, and by thereby evincing an analo-
gous technique, applicable to the model equation, that demonstrates explicitly its
integrability and indeed provides generally a constructive technique to solve it.

For instance, by taking as a starting point of the analysis the sine-Gordon
equation (1.13), that is of course known to be S-integrable (i.c., integrable by the
Spectral transform technique [5, 6]), one immediately obtains the NLS equation
(1.47), with

w=(cy+kH/?, (1.51a)

SR U G
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-1
B1=—(1+k2> == (1.51b)

n=}er, (1.51¢)

[since (1.14) implies g(1,0) = g(1,1) = g(1,-1) = ¢(2,-1) =0, g(1,1,-1) =
c73/2]. Hence, it may be concluded that the NLS equa.tion (1.47) (with w, By
and 7 real constants) must itself be S-integrable; which is of course well-known
to be the case [5, 6]. o

Note incidentally that this well-known conclusion applies to (1.49) with either
determination of s; since (1.50,51a,b), together with the assumed positivity Qf
w?, imply s = sign(+?); this may be positive or negative, depending whether - is
real or imaginary, these being precisely the two cases in which the sine-Gordon
equation (1.13) is itself S-integrable; provided, of course, that ¢ is correspond-
ingly real or imaginary so as to preserve the reality of the equation (to be sure,
if 4 and ¢ are imaginary, sine-Gordon is replaced by sinh-Gordon).

Moreover, it is actually possible, by following the technique mentioned above
(first introduced by Zakharov and Kuznetsov [9]), to derive, from the Lax pair
that underlines the S-integrability of the sine-Gordon equation (1.13), the Lax
pair that demonstrates the S-integrability of the NLS equation (1.47) or (1.49).

Let us now proceed and discuss an apparent paradox that has sparked much
recent research. Imagine applying this method taking as a starting point of .the
analysis an equation that is C-integrable, namely linearizable by an appropriate
change of variables; for instance, the nonlinear evolution PDE [11]

U — Uzgr = 3ez(u“u2 + 3u2,u) + 354u,u4 (1.52)

that is linearized by the following change of dependent variable [12]

v(z,t) = u(z, t) exp {52 / da:'[u(::',t)]z} , (1.53)
yielding
vy~ V22 =0. ' (1.54)

(To be sure, the nonlinear evolution PDE (1.52) does not belong to tht‘j class
(1.1,2), since the differential operator that characterizes its linear part is odd
rather than even; but it does belong to the general class of real nonlinear evolu-
tion PDEs whose linear part is dispersive and whose nonlinear part is analytic, to
which the technique described above is generally applicable. The applicability of
such an approach to a class of nonlinear evolution PDEs that includes (1.52) has
been indeed demonstrated in [2]. Our motivation for focusing here on this ex-
ample is its “historical” relevance [2, 11]. Several other instances of C-integrable
nonlinear evolution PDEs are exhibited below.)

Since the NLS equation is obtained generally as final outcome of the ap-
plication of this method, one should expect that it would also emerge from the
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C-integrable equation (1.52). But then (for reasons that have been outlined above,
and that will be further illustrated below) one should conclude that the NLS equa-
tion itself is C-integrable, rather than being merely S-integrable; namely, there
should exist an appropriate change of dependent variable, perhaps analogous to
(1.53) (and indeed obtainable by introducing in (1.53) the appropriate asymp-
totic ansatzen for u(z,t) and v(z,t); see (1.16)), that would linearize the NLS
equation. Yet there are strong reasons to believe that this is not the case, namely,
that the NLS equation, although S-integrable, is not C-integrable.

The way out of this paradox is provided by the following circumstance:
by applying to (1.52) the limiting procedure “one seems to get the nonlinear
Schrodinger equation, but with a vanishing numerical coefficient in front of the
nonlinear term!” {11].

This finding provided an escape from the paradox: when the nonlinear term in
the NLS equation is missing, this equation becomes just the (linear!) Schrédinger
equation; hence the expectation that in this case it should be C-integrable (having
being obtained from a C-integrable equation) is indeed realized (of course the
linear Schridinger equation, being itself linear, is a fortiori C-integrable!). But
this finding also opened a new perspective, thanks to an observation of Eckhaus
{2). The idea goes as follows: the vanishing of the nonlinear contribution in
the NLS equation indicates that, in this case, due to a cancellation, nonlinear
effects are not sufficiently strong to play a significant role on the time and space
.sc:.iles corresponding to the ansarz (1.16-23,30) with p = 1 [see (1.46)]; hence
it is appropriate to try the same ansarz with a larger value of the parameter p,
flamcly, by using more coarse-grained and slower space and time variables. And
indeed, by making the choice p = 2, Eckhaus obtained from (1.52), instead of
the NLS equation, the equation

ity + Yz + [2(19 ) + 9“1 =0. (1.55)

We have written this equation (now appropriately called “the Eckhaus equa-
tion” [13]) in the standard form that is obtained after an appropriate “cosmetic”
rescaling of the (independent and dependent) variables.

On the basis of the reasoning outlined above, the Eckhaus equation should be

_C-imegrablc. In fact the following change of dependent variable [2, 13] linearizes
it

@z, t) = Y(z,t) exp {/dm'lw(z',t)lz} , (1.56)

ipe+@=0. (1.57)

Note the similarity of the transformations (1.53, 56). Indeed it is casy to derive
(1.56) from (1.53) via the asymptotic ansatz (1.16-23,30) with p = 2, and an

an:(llce)gous ansatz for v(z, ) (this is left as an instructive exercise for the diligent
reader).
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As noted in [2], the Eckhaus equation (1.55), although originally obtained
from the specific C-integrable equation (1.52), has, in analogy with the NLS
equation, a certain universal character, since it describes the leading behavior
under appropriate circumstances of a whole class of nonlinear evolution PDEs
(see the following section). Moreover, it turns out to offer a most interesting “the-
oretical laboratory” to investigate the properties of nonlinear evolution equations
[13-15]. Let us note incidentally, in this connection, that the Eckhaus equation is
not S-integrable, if one makes precise the definition of S-integrability by identi-
fying it with the existence of an infinity of local conservation laws; indeed, while
the C-integrability of the Eckhaus equation implies of course the existence of
an infinity of conservation laws, the nonlocal character of the linearizing trans-
formation (1.56) (as well as its inverse [2, 13]) causes these conservation laws
to have a nonlocal character. On the other hand, the solutions of the Eckhaus
equation display a very rich solitonic phenomenology, including features that are
characteristic of S-integrable equations, such as the elastic nature of solitonic
collisions (which turns out to be, in the context of the Cauchy problem, a generic
characteristic of soliton-bearing solutions of the Eckhaus equation) [13].

These findings suggest a more systematic investigation of the cases in which
the derivation of the NLS equation, as outlined above, breaks down because some
of the inequalities (say, n # 0, or b # 0, or A2 # 0) which were instrumental
to obtain it, are invalid. This generally requires looking at larger, or smaller,
space and time scales than those characterizing the emergence of the NLS equa-
tion, Such an analysis may be performed within two different, if interlocking,
frameworks:

(@@ It can be done in the context of the general class of nonlinear evolution
PDEs (1.1) (or of other general classes to which this methodology is applicable),
to obtain model equations that are presumably worth investigating, since they
are likely to be applicable and integrable. This kind of study is particularly
appealing inasmuch as it identifics a relatively small number of model equations
as worthy of investigation, out of the boundless universe of nonlinear evolution
equations. Let us emphasize in this connection that the vastness of the class of
nonlinear evolution equations has always been a fundamental difficulty, making
the study of nonlinearity unappealing due to the apparent need to chose between
two alternatives: cither undertake a general treatment that could not hope to
gain much understanding about the specific behavior of solutions, or investigate
special equations whose solutions could be analyzed in detail, but that might be
(and were considered for a long time to be) just flukes. Hence, the importance
of these findings, that indicate a possibility to identify, through a systematic
analysis (which can be done easily, also in n + 1 dimensions with n > 1), a
limited number of nonlinear evolution PDEs having a universal character likely
to make them important both in applicative contexts and from a theoretical point
of view.

(i) The analysis can on the other hand be done in order to obtain integrable
cquations: S-integrable, or C-integrable, as the case may be. Here the procedure
is, to start from an equation known to be integrable, and to apply to it the
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asymptotic expansion technique outlined above, perhaps focusing attention on
special cases identified by the vanishing of key parameters, thereby obtained
new equations, which of course are then, generally, also integrable (and indeed
whose integrability can generally be explicitly demonstrated). An advantage of
this approach is that it generally produces integrable model equations that are
relatively simple and possess a universal character that makes them likely to
be of applicative relevance. In this connection it should be recalled that there
exist several techniques to manufacture integrable equations (both S-integrable
and C-integrable); but the outcome of such an exercise may be unwieldy and
therefore rather uninteresting. Hence, a technique of asymptotic expansion such
as that described above that generally distills from a complicated equation a
simpler, and in some sense universal, model equation, preserving in the process
the integrability properties, is often fruitful. Let us note in this connection that
the reason why the model equations yielded by these kinds of procedures are
generally simpler and possess a certain universal character originates from the
use of coarse-grained and slow variables that cause many detailed features of the
original equation to be smoothed away (indeed the technique tends to replace
derivatives with multiplication by constants; see the remark after (1.31)). On the
other hand, the nontrivial nature of the procedure should also be emphasized, in
particular, the fact that it involves a correct asymptotic limit (rather than just an
arbitrary truncation); this accounts for the inheritance of integrability properties
(from the flarent equation, that serves as starting point of the analysis, to the
model equation, that is gencrated by it). Note, however, that the nature of the
model equation, although generally simpler than that of the parent equation, may
differ from it quite substantially; it might even involve higher nonlinearities or
it might have the form of a system of coupled PDEs even though the starting
point of the treatment was a single equation for a single dependent variable (see
examples below).

In the following section we briefly survey the results that have been obtained
from both points of view, referring to the literature for more details on their
derivation 2,3, 10]; and in Sect.3 we report several C-integrable equations. A
more detailed study of the solutions of some of these equations will be published
elsewhere [16], as well as an analysis of the results that are obtained by applying
to them techniques of asymptotic expansion such as those described above [17].

But before ending this section we would also like to emphasize that the
technique described above “may allow one to conclude that a given nonlinear
evolution equation is not integrable, thereby providing a general and easily ap-
plicable necessary condition for integrability” [4). This is a consequence of the
inheritance of integrability properties through the limit procedure, implying that
if the model equation yielded by this procedure is not integrable (and, more
specifically, not S-integrable or not C-integrable, as the case may be), then the
parent equation from which it has been obtained is itself not integrable (and,
more specifically, not S-integrable or not C-integrable, as the case may be).

Let us illustrate this conclusion just on the specific example treated above,
referring to [4] for its applicability in more general contexts. Consider a nonlin-
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ear evolution equation of the class (1.1) with (1.2) and (1.9, 10), and define the
quantity n(k) via (1.2,27, 39, 48). (Note that these equations provide an explicit
definition of n(k) in terms of the parameters that characterize the original equa-
tion.) It may then be concluded that the nonlinear evolution equation in question
is not C-integrable if n(k) does not vanish, and that it is not S-integrable if n(k) is
not real [note that the conclusion of nonintegrability is obtained provided (k) is
not vanishing, or not real, for some real value of k; provided that for that value
of k, w3(k) is positive and B, (k) does not vanish; see (1.3,28)]. This conclusion
is of course implied by the notion that the NLS equation (1.47) (with By and
w real and nonvanishing) is not C-integrable if i # 0, and is not S-integrable if
n#n".

The ease of applicability of this kind of necessary conditions for integra-
bility should be emphasized; and note that they only involve the constants that
characterize the quadratic and cubic terms in the rhs of (1.9).

2. Survey of Model Equations

In this section we report, with a minimum of detail and no proofs, the main results
of [2,3,10]. The general approach is of course that described in the preceding
section (possibly with some minor adaptation); in particular, the value of the
parameter p sets the space and time scale appropriate for each model equation,
as implied by (1.21,22, 30). All the quantities that appear as coefficients in the
model equations written below are defined by explicit formulae, given in the cited
papers. They depend generally on the wave number % and on the coefficients
that define the quantities that provide the starting point of the analysis.
Consider first the class of evolution equations [2]

J : i aZjHu _ m—lF(m)
uet) (e =3 e , @.1)
=0

m=2

where u = u(z, ) is of course the (real) dependent variable, the coefficients a;
are real parameters (that characterize the linear part of the equation; note that
the operator characterizing this part of the equation is odd, namely, it contains
only derivatives of odd order), and F™ is a (real) homogencous polynomial of
degree m in u and its derivatives.

Then the first relevant scale to display a nonlinear effect (in the ¢ — 0
limit; according to the approach described, in a slightly different context, in the
preceding section) corresponds to p = 2/3; the corresponding model equation
reads as follows:

—ityy + Bipge = a9, (2.2a)
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pe = ﬂ|¢>I2 : (2.2b)

Here (and beIOW) ¥ =9, 1), p =9, 1)

Of course this model equation is applicable only if the (real) constant wp
does not vanish. If instead wo = 0, a circumstance that may occur only for some
special value of k, if at all [2], then the appropriate value of p is §, and the
corresponding model equation reads

—iy + By ¢€( =a1p¥, (2.3a)

¢r = a0l + a2¢® . (2.3b)

If, instead, ap = O (so that (2.2b) implies that ¢ is £-independent, and (2.2a)
becomes a linear equation for i), a more appropriate scale is characterized by
p =1, and the corresponding model equation reads

—ith, + Bithge = (,Bl + ﬂ) [YPY + oy, (2.42)
0!3¢‘¢¢ }
wy

e = 2Re {

[Re{ }] (|'/’|2)e+2[lm{ }] Im{¥*de} @4v)

Here we are of course assuming again that wy does not vanish. Note that, if
either one of the two conditions a; = 0 or a3 = aj holds, then (2.4) becomes
the NLS equation

—ith, + Bitpee = |9y, : 2.5)
asag 0’103 26)
n=pHh+——— ™ v (

If instead both ag and wy vanish, ag = wg = 0, then the appropriate scale is
characterized by p = % and the model equation reads

—igp, + Biibge = g , 2.78)

@r = a2y + Re{ sy} . ' (2.7b)

If neither ap nor wp vanish but a; = 0, then the appropriate choice for p is
p =1 and the model equation reads

~ithy + Bripee = m |29 + me?y + asptfe (2.82)
e = —|¢|’ 22, (2.8b)

Note that thls again xeproduccs the NLS equation if both n; and a9 vanish.

Let us return to the (standard) case with ap =0, a1 # 0, a3 = a3, wo #0,
Az # 0 (a situation that is obtained “structurally” for a large subclass of (2.1)
[2]), yielding the NLS equation (2.5) with (2.6); but assume now that = 0, due
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to a cancellation (which might be “accidental” and occur only for some special
value of k, or it might be “structural”, hold for all values of k and, possibly,
reflect the C-integrable nature of the original equation). Then the appropriate scale
corresponds to the assignment p = 4/3, and the corresponding model equation
reads

=i, +hge = a1y, (2.92)

we =0ly|*. (2.9b)

If, moreover, 6 = 0 (a situation that again prevails, as it were “structurally”, for a
large subclass of (2.1) [2]), then the appropriate scale is characterized by p = 2,
and the model equation reads

—ir Biipee = a1y + ool % + a1 + c2lvo e (2.10a)
g = [oolp[* + o1(|pP)e +202Im {9t } ]
+ 03[P + oull® + 205 PIm {7} + oslype . (2.10b)

Moreover, if a1 = 0, or if the quantities o; satisfy the three conditions o4+0g03 +
0103 /2 = gs+0203 = 0¢ = 0 (again, these conditions hold “structurally” for large
classes of nonlinear PDEs of type (2.1)), then this equation may be recast in the
simpler form

—ity, + Biypee = Holy ' + Hi([Y ey + Haly Py . (2.11)

Whenever the cocfficient Hy is real and does not vanish, ie., Hy = Hy #0
and the real coefficient B; does not vanish, this model equation can be cast, via

a “cosmetic” rescaling of dependent and independent variables, in the canonical
form

ithr + Pge + s|P|* +iL1 (1Y Pe +iLal e = 0, (2.12)
with
. H; B i .
s = —sign(B) Hp) , L'—IEL ol ji=12. (2.13)

Let us note that (2.12) is S-integrable if L; and L, (are real and) satisfy the
relation [2]

Li=Ly, Ly=L;, L1 —-L)=4s. (2.14)

Equation (2.12) is C-integrable if s = +, L, vanishes and L, is a complex number
whose modulus equals two [13]:

s=+, |[L|=2, L;=0. (2.15)

Indeed, it appears that these conditions are not only sufficient for integrability, but
also necessary [18,19]. Note that the Eckhaus equation (1.55) is the special case
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of (2.12) with s = +, Ly = —2i and L, = 0; hence it satisfies the conditions (2.15)
(and in fact it is C-integrable), but it does not satisfy the conditions required for
S-integrability [18]. Indeed, in this case L is not real, and moreover, the third
condition (2.14) is not satisfied (although only due to a sign).

Let us proceed next to report the results relevant for the class of evolution
equations with “even” linear part, already introduced in the preceding section, see
(1.1) with (1.2,9) [3]. Some results have already been reported there, in particular,
the standard result that is obtained with the scale characterized by p = 1 and yiclds
the NLS cquation (1.47). Let us recall that this result is obtained provided the
quantity 5 in (1.48) exists (for which it is clearly required that neither by nor A;
vanish, by #0, A2 #0), and it is relevant provided n does not vanish.

If instead 5 does vanish, then the appropriate scale is characterized by p =2,
and the model equation that is obtained is essentially (2.11) [3].

If instead 5 does not exist because Az = 0 [see (1.27)] while bo # 0, then the
relevant scale is characterized by p = }, and the corresponding model equation
reads

—itpy + By d)ee = aw,b‘ y (2.16a)

ipe = By . (2.16b)

This case may be characterized as being caused by a “resonance” affecting the
first harmonic of the dominant mode [this corresponds to the condition A; =0,
see (1.26)). If instead, with by # O and Az # O [so that n does exist, see (1.48)],
a resonance occurs in the second harmonic [namely, A; = 0; see (1.26,27)], then
the “standard” result is unaffected: namely, the appropriate scale is characterized
by p = 1 and the relevant model equations is the NLS equation (1.47). If however,
with by # 0, A2 #0, and A3 # O, the quantity n vanishes, then the appropriate
scale is characterized by p = 4/3 (rather than p = 2, which is instead appropriate
if n =0 but A3 #0), and the corresponding model equation reads

~ith, + Bipge = ap(°)? (2.17a)

ipe = py° . (2.17b)

All these cases are obtained provided that 8y # O [see (1.2)]; note that this
condition is necessary and sufficient to exclude that the frequencies w(k) yielded
by the lincarized dispersion relation, see (1.3), vanish at k = 0, w(0) # 0. If
instead by = 0, implying w(0) = 0, then the first scale of interest is characterized
by p=}, and the corresponding model equation reads

—ity + Bipge = o) , (2.18a)

pee = Bil* + Bap’ . ' (2.18b)
If, in addition, the two quantitics §; and 8, vanish (a circumstance that occurs
“structurally” for a large subclass of (1.1) [3]), then the appropriate scale is
characterized by p = §, and the model equation coincides (up to trivial rescalings)
with (2.2).
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In the next stage, which becomes relevant if in addition one of the coefficients
of the nonlinear terms on the right-hand sides of (2.2) vanishes, and which is
then characterized by p = 1, the NLS equation would once more reappear. That
this is the case has been shown in [3], rather than by a direct computation,
by taking an altogether different approach: namely, by studying solutions of
the original equation that are close to long traveling waves (rather than being
close to a dispersive wave). The nonlinear evolution equations (1.1) (with (1.2)
and by = 0) may then be treated as a perturbed wave equation, by using a
limit procedure appropriate to this situation. This leads, in many cases, just to
the class of nonlinear evolution equations with odd linear part discussed above
(in this section), and in [2]. Hence the NLS equation reappears merely via the
application of the results reported above, and, moreover, an important link is
established between the two classes of nonlinear evolution equations having odd
linear part {see (2.1)] and having even linear part [see (1.1,2)] with by = 0, which
both feature a linearized dispersion relation such that the frequency w(k) vanishes
atk=0.

The results surveyed so far have originated from the first of the two points
of view mentioned in the preceding section: namely, the identification of the
“universal” model equations that are produced by the limit procedure under
different circumstances, and that are therefore likely to become relevant in some
applicative contexts corresponding to weakly nonlinear circumstances. Clearly a
more systematic study than that reported here is still missing; it should, of course,
also deal with nonlinear PDES in more than 1 + 1 dimensions (the extension
necessary to treat such cases is straightforward; see below). Let us, however,
note that if one is interested in applying the limiting procedure to a specific
equation, it may well be more convenient to rederive the appropriate results by
going through the asymptotic expansion than to use the general formulas valid
for a whole class of nonlinear PDEs; for instance, it is casier to derive the
Eckhaus equation (1.55) from (1.52) by working directly through the procedure
of asymptotic expansion than by specializing to the special case of (1.52) the
explicit, but cumbersome, formulas given in [2] for the entire class of evolution
equations (2.1) [which clearly contains (1.52) as a special case].

For the reasons indicated in the preceding sections, the model equations
identified in this manner (of which a partial list has just been reported) are also
likely to be integrable. This provides, of course, an additional motivation to single
them out as worthy of study. Note that each of these model equations should be
seen as the limiting case of an entire class of nonlinear PDEs. This suggests an
obvious methodology to demonstrate their integrability: to find just one integrable
equation within the class of their “parent” equations. Moreover, this also implies
that if they turn out not to be integrable (S-integrable or C-integrable, as the case
may be), then the same negative conclusion applies to the entire class of their
parent equations (see the discussion at the end of the preceding section).

Let us now proceed and report (from [2] and [10]) results that fit the second
of the points of view mentioned in the preceding section; namely, to take as a
starting point of the analysis an equation known to be integrable, and to derive
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from it, via the procedure of asymptotic expansion, another equation, generally
“of nonlinear Schridinger type”, that is, therefore, also integrable; indeed, whose
integrability can be generally demonstrated explicitly by applying the technique
of asymptotic expansion not only to the evolution equation itself, but also to
the mathematical structure that underlies its integrability (be it a Lax pair and a
linear Spectral problem, in the case of S-integrability; or a linearizing Change
of variable, in the case of C-integrability). Let us again recall in this connection
the pioneering work of Zakharov and Kuznetsov {9}, who indeed mentioned the
possibility to discover, in this manner, novel integrable equations (although, in
their paper, they focused mainly on the relations among nonlinear evolution PDEs
already known to be integrable). Note that, in order to achieve such a goal, it is
generally essential to push the approach beyond its more standard application;
namely, to focus on the special cases characterized by the vanishing of some
key parameter, as exemplified by the instances discussed in this section and by
(some of) the examples reported below (in this section).
The nonlinear evolution equation

Up ~ QlUgze + QUzrrer = — Oa16UU,
+10az(eunuz 5 + 26U 1., — 3e2utu,)  (2.19)
is S-integrable [S]; it clearly belongs to the class (2.1). From this equation, by

the standard technique of asymptotic expansion described above (with p = 1 and
g =2p=2; see (1.21,22) and (1.30)) (2}, one obtains the NLS equation

—ithr + Biyge = nly e, (2.20)
with
By = —k(3a; + 10a2k?) , (221a)
2B
n= _k—il ) (2:21b)

But suppose now that the values of the three (a priori arbitrary) constants a;,
az, and k? are so tuned as to produce a vanishing result for B, and hence n as
well, see (2.21b); this of course requires that a; and a3 have opposite signs, see
(2.21a); or rather, let us assume that the values of the three constants a;, az and
k imply [see (2.21a)]

By =¢cv+o(e), (2.22)

(so that B; vanishes in the ¢ — 0 Limit). It is then possible to apply the procedure
with the same assignment for the space scale but a slower assignment for the
time scale, namely, p =1 and ¢ = 3 [see (1.21,22)], obtaining thereby the model
equation [2]

—ith, + U(thee — N2|PIPY) — ip(heee — 3N3|Y1P¥e) =0, (2.23)

where we have set for notational convenience
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p= 241 , (2.248)
2z 2002 (2.24b)
3q;

Note that the three real parameters u, v, and A my be arbitrarily modified by
rescaling v, &, and .

Since the model equation (2.23) has been obtained from the S-integrable
equation (2.19), one expects it to be S-integrable as well. Indeed, this equation
coincides (up to trivial transformations) with the Hirota equation which is known
to be S-integrable (see, ¢. g., (1.8-20) of [5)).

As noted in [2], this result is actually more general since it may be obtained
by starting from the more general S-integrable equation [5]

J
ue+ Y (~1Ya;Liu, =0, (2.25)
=l

where L is the integrodifferential operator

-1
L=-6—a:—2-—2€ [2u+u, (a—az-) ] . (2.26)

[Note that, for J = 2, (2.25) reduces to (2.19).] The standard procedure (with
p=1, ¢ =2p=2) would then reproduce the NLS equation (2.20) with

J

Bi=-) j@j+Dak¥", (2.272)
=1

n= 2_31_ _ (3.27b)

Note that in this case n is again proportional to B;; indeed, (2.27b) is identical

to (2.21b)! If the J real constants a; and the parameter k are so fine-tuned as to

imply

By = v +o0le) (2.28)

so that as ¢ vanishes B, and 7 vanish as well, then the procedure can be applied
with the assignment p = 1, ¢ = 3 and, after a rather tedious computation, one
again obtains the Hirota equation (2.23) with

J
1 . . i
n=—3 > 25+ 1)2j - Dajkg? Y, (2.292)
j=1
2

2——
A "B

(2.29b)
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Here ko is the value of the parameter k that implies the vanishing of B, see
(2.27a), in the limit ¢ = 0. For instance, if J = 2, then k = —3a;/10a3, so that
(2.29b) reproduces (2.24b).

Note that the procedure might be iterated again. If the parameters v and u
were themselves of order ¢, one might apply the procedure with p=1 and ¢ = 4,
thereby obtaining another Schrdinger-like equation that might be considered
the next one of a hierarchy of S-integrable equations of which the NLS equation
(2.20) and the Hirota equation (2.23) are, respectively, the first and second mem-
bers; just as the class (2.25) constitutes a hierarchy of S-integrable equations of
which the Korteweg—de Vries equation u; — aj(uzz, — 6cuu) = 0 is the first
member (J = 1) and (2.19) the second (J =2).

Let us proceed and consider another example [2]. The evolution equation

Ug — Ugge = €Auu + €2 Bugu? (2.30)

is S-integrable for arbitrary values of A and B. Note that for B = 0 it reduces
to the Korteweg-de Vries equation, and for A = 0 to the modified Korteweg-
de Vries equation. By applying to it the standard procedure [with p = 1 and
g = 2p = 2; note that (2.30) belongs to the class (2.1)], one obtains the NLS
equation (2.20) with

By = -3k, (2.31a)

A2
6k

But supposc now that the constants A, B, and k are so adjusted as to yield a
vanishing value for 5, or rather a value of order &2, say

n=Bk- (2.310)

k=k+0(D), (2.32a)

ko = A(6B)™'/% - (2.32b)
so that

n=ea. (2.33)

It is then justified to apply the procedure with p 2 and ¢ = 2p = 4, thereby
obtaining the model equation

) 14 .

itpr + Bige +aly 'y + 7T 1I'p +iXE =0, (2.34)
where we have set for notational convenience

B =3ko , (2.35a)

2
3= W% _ (2.35b)

i A s <
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This equation can be transformed into the canonical form (2.12) with s = +,
= L, = /2. (This is achieved by performing the following transformation
from the unprimed to the primed variables,

¢I(€I )= 2-—1/4E¢(£ r)exp( Q_e_j\'a_@) (2.36a)

¢ = ﬂ(&zaﬂr), = pfr, (2.36b)

and then dropping all primes for notational simplicity.) Note that these values of
s, L1, and L, satisfy the condition (2.14), thereby confirming the S-integrability
of (2.34). This is as expected, since this equation has been obtained from the
S-integrable equation (2.30).

Let us now proceed and report some examples from [10].

The Boussinesq equation

Ugt — Ugg — Ugzzz + 3(u2):z =0 2.37)

is S-integrable [5]. This equation belongs to the class (1.1), but with b = O [see
(1.2)]. The standard treatment with p=1and ¢g=2p=2and r = 1 [see (1.16-
22)] yields the standard nonlinear Schrodinger equation with the coefficient of the
nonlinear term proportional to (2k? — 3)/(4k? — 3). Hence, for the special values
k = +(3/4)!/2, a different assignment is required, which turns out to be p = 2/3,
g = 4/3, r = 1/3. After an appropriate “cosmetic” rescaling of dependent and
independent variables this leads to the model equation

i, + g = 09, ' (2.382)

= +(|9[)e . (2.38b)

As expected, this equation is S-integrable and of applicative interest [20].
Next, let us consider the “standard”, “cylindrical” resp. “spherical” K4V
equations, namely,

Ug — Ugzy +ouft =6u u, (2.39)

with ¢ =0, ¢ =1/2 resp. ¢ = 1. Let us recall that the cylindrical KdV (c = 1/2)
is S-integrable (as well, of course, as the ordinary KdV with ¢ = 0).

This equation is not ‘autonomous; nevertheless the same procedure as de-
scribed above can be easily applied, yielding (after an appropriate “cosmetic”
rescaling) the “standard”, “cylindrical” resp. “spherical” NLS equations, namely

iy, +tpee +ic /T = Y[y, (2.40)

with ¢ = 0, ¢ = 1/2 resp. ¢ = 1. Hence one should expect (2.40) to be S-integrable
for ¢ = 1/2 (“cylindrical” case), as well as, of course, for ¢ = 0; and this is indeed
the case [21].
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3(uv); , (2.45a3)
(2.45b)

re easily obtains a model equation in 2 + 1 dimensions, which is
in the most natural form, obtained after a “cosmetic” rescaling

=y, (2.46a)

2Pe s (2.46b)

.sign, s? = 1. The S-integrability and applicability of this equation
own [20]. An explicit proof of S-integrability is actually provided
,this section.

iext the following S-integrable equation in (2 + 1) dimensions [25]:

+3ugyy =6uu, + 3 (v — o)

+uy (0 +0®) + 200 + o)) (2.47a)

V=uy. (2.47b)
re obtains {10]):

s+xy =0, (2.482)

sLy|pf?, (2.48b)
& &

+ -a—ai + ZA——aE arl , (2.48¢c)

o
T (2.48d)

parameter that can be chosen freely. In [10), the Lax pair for this
«plicitly obtained from that of (2.47), thereby demonstrating the S-
_of (2.48). This finding, however, is hardly new, since by a suitable
spatial variables it can be shown that this equation belongs to the
arov class, whose integrability has been demonstrated in {20] (see

+xy =0, (2.49a)
2Ly Y, (2.49b)

: ?22 +2(b— a)a% + (B — 2ba — a’)z)‘%z3 , (2.49¢)
fn 2(2b + 1)a5§% +b(b+ 1)6% , (2.49d)
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where b and a are arbitrary real constants and o is an arbitrary complex constant,
The standard DS equation corresponds to e =b=1/2and a =1 or a = i.
Next consider the S-integrable “sinh-Gordon™ equation [27]

{exp(—g)lexp(gXgz¢ +sinh ¢)). }

= £{[exp(—q)u,lye — (1/2)exp(—29)u3],.} , (2.50a)
exp(g) =1+u, . (2.50b)
From this there obtains [10] the model equation
iYp+Lip+xy =0, (2.51a)
Lax = 2Ly, (2.51b)
with
& L F P
L= aa—cz' + b%ﬂ- + c-a—ni , (2.51¢)
NN ..
Lz—a—sz'ﬁBm'*'C?a? , (2.51d)

where q, b, ¢, B, and C are given by simple formulas in terms of a single free
real parameter [10]. The S-integrability of (2.51) is explicitly demonstrated in
[10] by exhibiting the corresponding Lax pair, obtained from that of (2.50) [27];
but this finding is not a novelty, since (2.51) can be reduced, by an appropriate
rotation of the space variables, once again to the Zakharov class (2.49).

typeNext consider the following equation in 2 + 1 dimensions of integrated KdV

Up — Uzgr — Uyyy = I(wu), , (2.52a)
Wry = Ugy +tyy . (2.52b)
From this one gets (after an appropriate “cosmetic” rescaling)

i+ Lip+op =0, (2.53a)
Lyp =2L1J$f, (2.53b)
L=sl 62

1=8 e +325;]5 , (2.53¢c)

it

Lz = 2.9182?677 ) (2.53d)

where s; and s; are arbitrary signs, i.., s? = s2 = 1. Both (2.52, 53) are kn
to be S-integrable [28]. P (3:5%:53) sre known

Finally, consider the matrix KP equation
Ui+ Usee — 3W, = 3(UD), +3i[U, W], (2.54a)
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U, =Ws. (2.54b)

Here U = U(z, y,t) and W = W(z,y, ) are square matrices of order N. Here
and below we use the notation [A, B] = AB — BA, {A,B} = AB+ BA. The
following matrix DS equation is then obtained:

i@, + LW = (&, 21+ &, P + {$,8) — {¥2,9°}, (2.55a)

&, =102, (2.55b)

Lo® — 2y = {§,9%}; + [, 9,1+ [9°,0,] — M[&*, ¥] + [, %1}, (2.55¢)
with

& F &
=a+0 L 2
Li=(+¥)gm - Vgt 5 (2.550)
20 .8
La=(1= Mg + Vg, (2.55¢)

)\ being a real constant that can be chosen freely.

Let us end this section by mentioning a possible generalization of the basic
approach [10]. If the original equation that serves as starting point for the analysis
has a lincar part that is not too simple, it may well happen that two or more
Fourier modes have the same group velocity. In such a case it may be of interest
to focus on a solution that in the linear limit (¢ = 0) is a superposition of these
modes. Then the weak nonlinear effects induce a modulation of the amplitudes
of these modes, that accounts also for the possibility that they interact with each
other.

We limit our discussion of this possibility to two examples [10], one of
which leads to no new results, while the other yields a nontrivial (S-integrable)
generalization of (2.46).

The first example, in 1+ 1 dimensions, takes as starting point the S-integrable
equation (2.19); but it leads (contrary to what is implied in [10]) merely to two
uncoupled NLS equations.

The second example takes as a starting point the S-integrable equation in
2 + 1 dimensions (2.45), and yields the following generalization of (2.46):

nbs-l) + ¢g£) = ¢¢(l) , (2.56a)
ul)g) + "1’&) = 9"/’(2) , (256b)
o = 2t + 52l ® g , (2.560)

where the parameters s; are signs (namely, 33 = 1; of course additional constants
may be reintroduced by trivial rescalings). The S-integrability of this model
equation is demonstrated by exhibiting the corresponding “Lax—Manakov triad”,
namely, the following three matrix differential operators L, A, and B such that
the compatibility condition of the two linear equations for the (column) vector
&,
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L$=0, (2.57a)
. +AP=0, (2.57b)
namely
L.=LA-BL, (2.58)
correspond to (2.56):
ia%, -8 t,bm _32¢(2)
L=| —s;p0" —ig 5% 0 , (2.59a)
'k"—82¢(2). 0 _i‘sz&i(

—ifr+ip 0 0

A= | pr 8% - ¢g. 0 0], (2.59b)
@2 _
¥ k5 v 00
—ifg+ip YOL 200 DL +29@
B= 0 0 0 ) (2.59¢c)
0 0 0

Except for a minor generalization, that is, the introduction of the sign s; and
some minor notational changes (including the correction of a misprint; the first
term in the right-hand side of eq. (2.6) of Ref. [10] should read —iD, 8%/0¢?
rather than iDy 8%/8¢2), these results coincide with those of [10].

An obvious generalization of these findings is the model equation

i+ =™, n=12,..., N, (2.60a2)
N
Pq =2 (Z aul¢‘"’I2) , (2.60b)
n=1 ¢ .

}vhose S-integrability is explicitly demonstrated by noticing that it may be put
in the *“Lax~Manakov” matrix form (2.58c) with the square matrices L, A4, and
B, of order N + 1, defined as follows:

.0
Ly = 'E} v Lon=—s,9™, Ly=L§ , Ly= —is,.i (2.61a)

o€’
. az . » a -
Aw = —ige +ip, Aw=y® % ™, (2.61b)
9
Bow = Aw, Bon= ¢""5Z +25{. (2.61c)

Here of course the matrix indices run from O to N, the index n runs from 1 to
N, and all the matrix elements that are not explicitly defined vanish. The cases
(2.46) resp. (2.56) correspond to N =1 resp. N =2.
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3. C-Integrable Equations

In this section we briefly discuss a number of C-integrable equations. In contrast
to the findings reported in the preceding sections, these results have not yet been
published, nor submitted for publication elsewhere, as this chapter is being com-
pleted, in December 1987; although undoubtedly some of the equations reported
below have already appeared in the literature. Most of these C-integrable equa-
tions are suited to serve as starting points for the application of the asymptotic
limiting procedure discussed above. This line of rescarch is now being pursued
in collaboration with Maccari and Levi {17]. Some of these equations are also
worthy of direct study; the Eckhaus equation has indeed shown that even C-
integrable equations may exhibit quite an interesting phenomenology [13-15].
This is being pursued in collaboration with De Lillo [16].

A class of C-integrable equations is obtained via the change of dependent
variable

z

v(z,1t) = u(z,t)exp {/

dz' Flu(z',1)] } 3.D
®

which provides a convenient technique to associate a nonlinear evolution PDE
for u(z,t) to a linear evolution PDE satisfied by v(z,t). Here F(u) is a given
function that may be chosen in an arbitrary manner. Of course, more general
transformations than (3.1) can be easily invented, but the equations yielded by
(3.1) (see below) are sufficiently interesting, in our opinion, to deserve some
study.

Before displaying the nonlinear equations for u(z, t) induced by various lin-
ear equations for v(z,?), let us discuss the transformation (3.1). It implies the
relations

ula(t), t] = v[a(®),t} (3.2)
and

ux{z,1) _ vug(z,?)

m + F[U.(.’Z, t)] = ———v(z, t) . (33)

Note that, once a(t) and F(u) are given, the formula (3.1) is the appropriate
one to compute v(z,t) from u(z,t) by a quadrature, while (3.3), with (3.2), is
the appropriate equation to calculate u(z,t) from v(z,t), which requires solving
the nonlinear nonautonomous first-order ODE (3.3) for u(z, t) with the boundary
condition (3.2). Note that here the variable ¢ plays merely the role of a parameter.

There are two choices of the function F(u) for which (3.3) can be solved,
thereby also reducing the calculation of u(z, t) from a given v(z,t) merely to a
quadrature. The first of these choices sets

F(u) = Au*, 34
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yielding*
z -1/
u(z,t) = v(z, ) { 1424 / dx'[v(:',t)]‘\} . (3.5)
a(t)
The second choice sets
F(u) = Aln(u), (3.6)
yielding

z

u(z,t) = v(z, t)exp {-A exp(—Axz) /da:' exp(Az") Infv(z’, t)]} . @D
a(t)

On the other hand, in the special case in which the z-dependence of v(z, t)
is purely exponential, v(z, t) = vo(t) exp[p(t)z], so that
Vz

% .y, - (38)
the evaluation of u(z,t) can be performed by a quadrature, followed by an
inversion, for any choice of F(u), since (3.3) with (3.8) clearly imply

u(z,t)

du'{v'lp- Fuh)} ' =z - £@1). (3.9)

Note that this case, with p a constant, generally yields a function u(z,t) whose
z-profile remains unchanged (in shape) over time, although it may move.
' Let us now discuss a few instances of nonlinear evolution equations that
obtain, via the transformation (3.1), from linear PDEs satisfied by v(z, t); hence,
all these equations are, by construction, C-integrable.
Let v(z, t) satisfy the (“heat”) equation

Ve — vz, =0, (3.10)
Then u(z, t) satisfies the (“generalized Burgers”) equation

Uy — Uz + fu=2u F(u), , (3.11a)

fetuF'(u)f = -2 F"(u). (3.11b)

Here of course u = u(z,t), f = f(z,t) and the primes denote differentiation with
respect to the argument, i.e., F'(u) = dF(u)/du, etc.

The consistency of (3.1, 10) with (3.11) requires, moreover, that a(t) satisfy
the ODE

{Fa@)+ F2+ F'ug + f}|maty =0 (3.12a)
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or, equivalently [see (3.2,3)]
{Fa@)+ F? + F'(v; — Fo) + f}sma(n = 0. (3.12b)

Here, of course, the dot indicates time differentiation; and note that the variable
z is evaluated at = = a(?) so that, for instance, F' stands for F{u[a(t),t]} =
F{v[a(?),1]} [see (3.2)].

If the special choice (3.4) for F' is made, then (3.11a, b) read

U — Uz + fu= 24uu (3.13a)
fo+ AU f = M1 = NAudur2, (3.13b)
This equation admits the “soliton”(kink-like) solution
_ £ 1/X
u(z, t) = ( A) , (3.14a)
o2 1=\ _E_
feo=¢ w0+ (153)| 75 (3.14)
with
E = exp{~Aplz — W)}, (3.14c)
£)=—p+itg(t). (3.14d)

Here g(t) is an arbitrary function of ¢. Note that if A and p are positive, for this
solution

w(—00,8) =0, u(+oo,t)= (%)m , (3.14¢)

f(=o0,t) = p*g(t), f(+oco,8)=0. (3.146)

Of course, this solution is real, for all positive values of ), only if A is positive. If
instead A is negative, then the solution is still real provided p is also negative, in
which case the behaviors of u(z,t) as z tends to negative or positive infinity are
exchanged, and likewise for f. Note that, if the nonvanishing asymptotic value
of f is set to a constant value, say (for p > 0) f(—o0,t) = ¢ [see (3.14f)], then
the z-profiles of « and f move with the constant speed ¢/p — p [see (3.14c,d)].
If instead one were to set a constant value for f at a given point, say

f0,9=0 (3.15a)
implying [see (3.14b)]
. G-D
o) = {1 +exp[Apt®]} (3.15b)

then, by integrating (3.14d), one would obtain a more complicated behavior for
£(t) (except for A = 1, of course) whose investigation is left as an amusing
exercise for the diligent reader.
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Another avatar of (3.13) obtains by setting

w(z,t) = Alu(z,)]* = Flu(z,?)] . (3.16)
It reads
wy — Wer — fz =2w,w, (3.17a)
_a-nul
fetdwf =t (3.17b)

The special case with A = 1 deserves special attention, due to its simplicity
and close resemblance to the usual Burgers equation. It reads

Up — Ugy + fu=24u u, (3.18a)

fe+uf=0. (3.18b)

For the special class of solutions with f(z,t) = 0, this reduces to the standard
Burgers equation. In the general case it may be rewritten as a single equation
via the position

z:(z,t) = Au(z, 1) . (3.19)
Then the equation for 2(z,t) reads
2t — 225 = 22 + Ri(8) exp(—2) + ha(t) , (3.20)

with hi(f) and h(t) two arbitrary functions. Note that if Aj(t) = O, this is
essentially again the standard Burgers equation [for w(z,t) = z.(z, t)]. Also note
that (3.20) admits the “soliton” solution

z(z,t) = {(t) + In(1 + exp{p[z — £B]}) , (3:21a)
t ]
(@)= {exp(co) + / dt'hy(t) exp [ / dt"hz(t"')] } , (3.21b)
0 1
t
E)=& ~pt+p™ [C(t) -(o— / dt'hz(t')] . (3.21¢c)
0

This solution contains only the three arbitrary constants p, &, and (. If p is
positive, it has the following asymptotic properties:

2(—o0,t) = ((?) , (3.21d)
Jim {z(z,t) — plz - £@DI} = (@) . (3.21¢)

If p is negative, the two limiting behaviors are exchanged.
Let us now return to the general equation (3.11), to insert into it the choice
(3.6). Then the equation takes the form
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g+t + fu=2Au.Inu, (3.22a)

f+Af=4A (%)2 : (3.22b)

This equation possesses the following property of “Galilei” invariance: if the
pair u(z,t), f(z,t) is a solution of (3.22), then the pair

iz, t) = exp (-2"-2) u(z — ct,t) (;.23a)
fz,ty= fz —ot,0), (3.23b)

is also a solution.
The “soliton” solution of (3.22) reads

u(z,t) = exp(— exp{—Alz — £(B)]}) , (3.243)

f(z,t) = At@t)exp{—Alz - £(1)]} — A>exp{—2A[z — ED}, (3.24b)

with £(t) an arbitrary function. If A is positive, this solution has the following
asymptotic properties:

u(—oo,t) =0, f(—o00,t)=—00, (3.253)

u(+oo,t) =1, f(+o00,)=0. (3.25b)

If A is negative, the two limits are exchanged. Note that this solution, as all
others, can be “boosted” by using the property of Galilei invariance (3.23).

But this case is not very interesting since it can be reduced to the standard
Burgers equation

Wy — Wy = 2w, w (3.26)
by introducing the new dependent variable

w(z,t) = Aln[u(z, )] + :(2,9) = (A + _Q_) In[u(z, )] . (3.27a)
u(z,t) oz

Let us now proceed and report the class of nonlinear evolution equations for
u(z, t) that correspond, via (3.1), to the following linear PDE for v(z,t):

Vg = QUzp — Pz =0, (3.27b)
This might be considered as the next equation of a hierarchy of “generalized
higher Burgers equations’:

Ut — QUzz — PUzer + fu=QaF +38F%u, +36Fu,,
+3B(F + uF" /2)u3 | (3.28a)

fotuF'f=— [a +38 (F - ig—)] F'i + gF'"ui . (3.28b)
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The consistency of this equation with (3.27) via (3.1), requires, moreover,
that the lower limit of integration a(t) in the right-hand side of (3.1) satisfy the
ODE

[aF + f +(aug + fuz ) F' + aF? + BF> — }F"ul]|pua(n =0 . (3.29)

Let us also display the form that this equation takes when the choice (3.4) is
made for F:
Up — QUzy — PUzer + fu= AQa +3ﬁAuA)u*u, + 3ﬁAuAu,,
+BB/DAN + D1l (3.30a)

fo+ AP f =21 = M)A [a +3p (1 - %) Au‘\] u 2y

+A(1 =) (1 - %) A3 (3.30b)

For A = 1, this simplifies as follows:
Us — Qg — Puges + fu = Alau? + BAY), + 3 BAGWD),. , © (3.31a)
fe+Auf=0. (3.31b)

A subclass of solutions of this equation is characterized by an identically van-
ishing f (f = 0) and by a u(z,t) that satisfies the usual Burgers equation if 3
vanishes and the next equation of the usual Burgers hierarchy if § # 0 [i.e.,
(3.31a) with f =0].

Another interesting subclass of (3.30) obtains for A = 2 and « = 0 (for
notational simplicity, we also set A= g8 =1):

Uy — tgpy + fu=3utu, + 3uPu,, +9unl | (3.322)

fe+2utf=0. (3.32b)
A subclass of solutions of this equation is characterized by an identically vanish-

ing f (f =0) and by a u(z, t) that satisfies the nonlinear PDE studied in some -

detail in [11].

Let us now proceed to the class of nonlinear evolution equations satisfied
by u(z,t) when v(z,t), related to it by (3.1), evolves according to the linear
equation

Vg~V +av=0, (3.33)
The corresponding equation for u(z,t) reads

Uge — Ugz + QU = =29 — ugy — ug® +2u F +uu F' +uF? | (3.34a)

gz =uF' =F, . (3.34b)

Here, of course, u = u(z, t), g = g(z,t), F = Flu(z,t)}, and F' = dF/du. The
consistency of (3.33) with (3.34) requires that the lower limit of integration in
the right-hand side of (3.1) be time independent,
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a(ty=a, a®)=0, (3.35)
and moreover that the function g(z, ) satisfy the boundary condition

9(a,t) =0, (3.36a)
implying [see (3.34b)]

g(z,t) = /dz'F'[u(a:',t)]u,(z’,t) = %/dz'F[u(z',t)] . (3.36b)

If the special choice (3.4) for F is made, then (3.34a, b) read
Ugr — Ugs + QU = —2ug — ugy — ug® + (A +2) Augu® + A2y , (3.37a)
9z = Muur!, (3.37b)

Finally, let us display the equation implied for u(z,t), via (3.1), by the
following linear equation for v(z, t):

vy —yv =0, (3.38)
It reads

Ugt —yu=—(uF +u;)g; — (F + F'u)u, , (3.39a)

g.=F, (3.39b)

with the boundary condition
g[a(t)y t] =0 ’ (3408)
so that [see (3.39b))
9(z,t) = / dz' Flu(z', 1)} . (3.40b)
a(t)

Note that in this case there is no restriction on a(t). Of course, in (3.39) u =
u(z,t), g = ¢(z,t), F = Flu(z,t)], and F' = dF/du.
If the special choice (3.4) for F is made, then (3.39a,b) read

Upt = 74 = —(ug + Autg — A+ DAty (3.41a)
g: = Au*. (3.41b)

This may be rewritten as a single equation for g(z, ):

A-1 gzzgz
gest = Mgz = (T) T = geage = O+ Dgaga — Algr . (342)

Here we have set A = 1 for notational simplicity.
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Note that, for 4 = 0, this equation has the general solution
z
gz, t)=2""In { () + / dz'[ha(t) + hs(z’)]"} , (3.43)
containing the three arbitrary functions hy, hz, and ha. In particular, for A =1
(in which case the right-hand side of (3.42) is polynomial), this formula yields

9(z,t) = In[h1(t) + zha(t) + H(2)] , (3449
while for A = 2 it gives

g(z, 1) = % In {h,(t) + z[ha(D)? + 2H(z)ha(t) + / dz’[H’(z’)]z} . (345

Here hy, hy, and H are three arbitrary functions.

Let us note that the equation for u(x,t) can also be recast in a form different
from (3.39), which should presumably be more convenient to treat the Cauchy
problem. It reads as follows:

Ugy — YU = —f(uz + Fu) — [F + F'u — (u; + Fu)hu, , (3.46a)

fo+ fh(uz + Fu)=vuh, (3.46b)

hy = —h%u, + (1 — hu)(hF — F"), (3.46c)
with the additional conditions

fla(®,}=0, (3.46d)

[aF — hug)|gma(ey =0 . (3.46¢)

These equations may be simplified by considering the special solution k =1/,
that clearly satisfies (3.46c). Then the equations take the simpler form

to - fou= (25 - Fu)u, (3.47a)
fomny— (3‘;- + F) f, (3.47b)
fla(®),t1=0 (3.47¢)

(&F - '—;1) =0 (3.47d)

An even simpler form obtains via the position

- ut(zy t)
f@z,t)=q(z,t) + —_u(:c,t) ,

namely,

Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable? 4]

Uzt — Y4 = —q(uz + Fu) — (F + F'u)u , (3.48a)
gz = Flug (3.48b)
t),t
qla@®),t] = —'—;—‘[L:-((t—))-’t—]] ) (3.48¢)
a(t)Flu(a(t), )] + qla(?),t]1 =0 . (3.48d)
This becomes particularly simple when Fi(u) = A/u:
Uzt — YU = —q(ug + 4), (3.49a)
w_pqlt (A
gz =—A— (u )‘ , (3.49b)
qlatt), 1] = —%‘[E;L((:))—’g , (3.49)
Aa(t) = ug[a(®), 1] . (3.49d)

Let us now turn to a class of nonlinear evolution equations for a complex
function 1(z, t), that are natural generalizations of the Eckhaus equation (1.55).
They are closely related to those discussed above, since they are generated by
the transformation

w(z,t) = P(z,t)exp {% /dm'F(W(I',t)IZ)} ) (3.50)
a(t)

where we assume F to be a real, but otherwise a priori arbitrary, function. Note
that this relation implies that  and ¢ have the same phase, while their squared
moduli, say |(z, t)}? = v(z,t) and |¢(z, t)|? = u(z, t), are related by (3.1). Hence
the discussion about the explicit invertibility of this transformation, as given at
the beginning of this section, remains applicable in the present case.

Assume now that (z, ) satisfies the linear Schrédinger equation

ipr+pee =0, (3.5

The corresponding evolution equation for ¥(z,t) then reads
. . F?
ithe + pos +ifp = — [(lzbl’),F' + T] $H(YPF - Fp.,  (52)

fot [WPF'f = Im{g. 0" YW ) F" +2([PF' ~ F)}. (3.52b)

Here, of course, ¥ = y(z,t) is complex, while f = f(z,t) and F = F(jy[?) are
real. The compatibility of (3.51, 52) via (3.50) requires, moreover, that the lower
limit of the integral in the right-hand side of (3.50) satisfy the ODE

[Fa+2f - 2Im{¢z¢‘}F,”z-a(t) =0. (3.53)
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The evolution equation (3.52) possesses the following property (Galilei in-
variance): if the pair y(z,t), f(z,t) is a solution of (3.52), then the pair

. J;(a:,t) =exp [(-;—) c (z - %t-)] vz —ct,t), (3.54a)
F@, 0 = fz — ct, ) + Iz — ct, )P F'(|(z — et, 1))
- F(jy(z - ct, ") (3.54b)

is also a solution.
If the special choice of (3.4) for F is made, then (3.52a, b) read

2
ithe + oz +iftp == [AA(MP),M"*“” + (%) le‘*} ¢

+(A = DAY [Py, (3.553)
fe + MW f = O = DAIMm{.9* A9 P[22 + 219 **] . (3.55b)
In the special case that A = 1 this simplifies considerably to
ithe + ¥z +if + [¥[* + 20y, 1w =0, (3.56a)

fe+2lp2f =0, (3.56b)

where we have set A = 2 for convenience. A subclass of the solutions of this
equation is characterized by an f(z, t) that vanishes identically and a u(z, t) that
obeys the Eckhaus equation (1.55).

Another avatar of (3.52) that is worth recording obtains from the position

P(z,t) = [o(z, 1)) 2 explif(z, )], |¥(z,t)} = o(z, 1), (357
with ¢ and @ real, and reads

0t +20,0,+200,, =—-2fc+200,(cf — F), (3.58a)
2

406, — 20,, + "7 +406% = oF2 +20,(cF' + F), (3.58b)

fe+20f=00,[0, F" +2cF' - F)], (3.58¢)

where, of course, F' = F(0). In view of the possible application of the technique
of asymptotic expansion, the following position may prove useful: ¢ = 1 + ¢,
0 =cv, f=ep, F(o)=cH(l +¢p), yielding
P+ 20, = — 25{(/“’:):
+(l+epo+ (N +e)H — (A +e)H' v}, (3.59a)

2
4vy — 2., =¢ {—4;11/‘ -a Z’;#) —-4(1+ E[I)V:

+H1+ ep)H? +2u,[H +(1 +ep)H'} (3.59b)
0z +20+ 20, (H —~ H') = {2up+ (u H" +4uH' —2uH)v,} . (3.59c)
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Let us moreover note that a nontrivial extension of the transformation (3.50)
reads as follows

/ do' Fll$(e", ]
a(t)

1
plz,t) =y(z,t)exp {5

+i/dz'G[l¢(z',t)|2]} ) (3.60)
O

with F' and G two real functions that may be freely chosen. Note that this
leads to the same relation as (3.50) among the moduli of ¢ and 1, so that the
previous analysis of the invertibility of the transformation remains applicable.
The nonlinear evolution equation for 1 that corresponds via (3.60) to the linear
Schrédinger equation (3.51) for  reads as follows:

iy + e +ifth + g = — [U +iV + (F' +2iG"o,]Y

‘ — (M +iN)Y, , (3.61a)
fotoF' f=oVF —Im{¢,p}(MF — F's,), (3.61b) .
gz —20G'f = =26V G +2Im {3 "} MG’ - G"a,), (3.61c)

with f = f(z,t), g = g(z,t) both real and
o(z,t) = |¥(z, D, (3.61d)

U = Ulo(z, )] = [F(0)/2)* — *[G'(0))? + 4 / do'd'[G'(e"]*, (3.6le)

oy

V =Vlo(z,t)] = F(o)G(0)

_ / do' F{(o"G(e") + o' G'(o") — 0?G"(0")] , 3.616)
M = Mio(z, 8] = F(o) - o F'(0), 3.61g)
N = 2[C(0) - 0G'()] . (3.61h)

Here o, and o, are two (arbitrary) real constants. The compatibility of (3.61)
with (3.51) via (3.60) requires, moreover, that a(t) and b(¢) satisfy the following
ODE:s:

[Fa+2f+Q —2Im{$ 9"} F]|zma = 0, (3.62a)
[Gh+g+R+2Im{$:9*}G"l|zmatey =0, (3.62b)
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Q = Qlo(z, ] = -2 / do' F(o)G(0") + o' C'(0") — 67G"(0] , (3.62¢)

R = Rlo(z, )] =[G(a)? - d*[G'(0)* +4 / do'a'[G'(0")] . (3.62d)

These formulas become rather simple if "

F(o) = 240>, (3.63a)

G(o) = Bo* (3.63b)
in which case (we have also set for simplicity o1 = o3 = 0),

U(o) = A%0® + p(2 — p)B* o | (3.64a)

V(o) =2ABu(1 — 22+ M)A + p)~lo e | (3.64b)

M(o) =2A01 - N)o*, (3.64¢)

N(o)=2B(1 — p)o* . (3.64d)
In particular, if A = u =1 (3.61) becomes

ithe + oz +ifY + gy + [|9|* + 2explia)(|¢P) 1 =0, (3.653)

fe +2cos()|y*f =0, (3.65b)

g: — 2sin(a)[y[2f =0, (3.65¢)

where we have set for notational simplicity A = cos a, B = sin a. The integrabil-
ity of this equation, in the special case of f(z,t) = g(z,t) = 0, has already been
noted [13]. The special solution with g(z, ) = — tan(a) f(z, t) is also notable. In
this case the system takes the reduced form

ithe + ze +iexpliadhep + [[]* + 2explia)|pD). 1 =0, (3.65d)

hz +2cos(a)|p[*h =0, (3.65¢)

where we have set f(z,t) = cos(a)h(z, t).

The examples of C-integrable equations considered so far are all related to
the changes of dependent variable (3.1) or (3.50) [or (3.60)], and they refer to
equations in 1+ 1 dimensions. Let us merely mention here that via the same
changes of dependent variable it is also possible to generate C-integrable nonlin-
ear evolution equations in n + 1 dimensions with n > 1 (whose interest remains
to be investigated). Let us limit our presentation here to two examples.

Let

v(z,y,1) = u(z,y, t) explg(z, y, )] (3.66)
with
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P
o= [ de'Flue' v, 0) 367
a(y,t)
and with F(u) a given function (whose choice remains our privilege). It is then
easily seen that to the linear equation for v,
@330V + @y + a11Vze + 203200y +2a31v¢, + 2a219y:
+ ayvy + axvy + av; +aev =0, (3.68)

there formally corresponds the equation for u
apuy + agtyy + antzz + 2032Uy + 20310z + 20218y,
+ asouy + azu, + ajots + agou = ~[az3(gu + 67) + az(gyy + 92)
+an F2 + 2a3(gey + 919y) + 2031(gez + Fge) + 2a21(gyz + Fgy)
+ asgy + azngy + a10Flu — 2(assgs + anngy + a3 Fuy
— 2azgy + ang: + a2Fu,

— [anQF + F'u) + 2a139, + 2angyJu. , (3.69a)
g:=F. (3.69b)

Of course the last equation must be supplemented with the “boundary condition”
gla(y,t),y,t1=0 (3.69c)

[see (3.67)]. Note, however, that the choice of a(y,t) remains unconstrained.
An analogous treatment may be based on the change of variable

plz,y,t) = P(z,y,t)explg(z,y, )], (3.70)
with
sent=g [ ol uoP, 311

a(y, 0

where again F is a function that may be chosen arbitrarily. Then, for instance,
the linear Schridinger equation in 2 + 1 dimensions for ¢,

i +pee tpyy =0 (3.72)
yields for ¢ the following nonlinear evolution equation:
2 ) F F2
i‘bt""‘/’zz""/’yy:_ igt+gvv+gy+(|¢| )z?"'_‘{ 1
~ Py, — 29,9, , (3.73a)

(3.73b)

0|y

gz =
supplemented of course by the “boundary condition” [see (3.71)]

¥
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gla(y,t),y,t] =0, (3.74)

with the choice of a(y, t) unconstrained.

So far we have only discussed C-integrable equations that can be linearized by
a change of dependent variable (and even within this class, we have looked only
at certain special changes of dependent variable). A much richer phenomenology
obtains if changes of variables arc considered that involve both dependent and
independent variables. Here we limit our treatment to the exhibition of a few
examples, merely to illustrate the potential usefulness of this approach.

Suppose that u(z, t) satisfies the Liouville equation

Uy = aexp(u) , (3.75)

whose general solution is given by the explicit formula

z . t
u(z,t) = f(z)+g(t)—2In {g / dz' exp[ f(z")] + g / dt' explg(t')] } (3.76)
Zo to

in terms of the two arbitrary functions f(z) and g(t) and the three constants p,
zo and to. Now set

wz,1m = v+, 3778

ue(@,y7) = exp (g) . (3.77b)
It is then easily seen that v(¢, ) satisfies the generalized Liouville equation

ver = aexp(v) + blexp(v)] ¢, . (3.78a)
with

b=—ar?. (3.78b)

Note incidentally that the two constants a and b in the right-hand side of (3.78a)
can be multiplied by arbitrary factors via a trivial rescaling of the independent
variables (and the addition of a constant to the dependent variable); but this does
not permit us to set b = 0, indeed it is seen from (3.77, 78b) that the limit b — 0
is nontrivial.

Let us emphasize that given u(z,¢), the transformation (3.77) yields v(¢, 1)
merely by inverting the function u, [to obtain z as a function of ¢ and T,
use (3.77b); then insert this expression of z into (3.77a)]. If on the other hand
v({, 7) is given, then to obtain u(z, t) one quadrature is required, in addition to
algebraic operations (indeed, first one must solve (3.77a) to get £ as a function
of u, and then one must solve the autonomous first order ODE for u that results
from (3.77b) when ¢ is expressed in terms of u). Note that only the space
variables z and ¢, as well as the dependent variables u and v, are involved in
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the transformation (3.77a); the time variable plays instead a merely parametric
role (except for a “cosmetic” rescaling).

Let us now proceed with a few other C-integrable equations obtainable via a
change of variables analogous to (3.77), that we choose to write in the following
canonical form:

u(za t) = U(E) t) ’ (3.793)
u (z,t) = €(z,t) . (3.79b)
It is then easily seen that the nonlinear evolution equation for u(z,t)
up = L 4 F2) | o) + heuy) (3.80)
Uze Uze

gets transformed into the following linear equation for v(£,1):

Ve = avgge — [3?“ + f(ﬁ)] vee
. [-35 2f2 - sg(e)] o

+[g(§) ~ £€g"(Olv + h(€) — ER'(E) . (3.81)

Here a is an arbitrary constant, and f(¢£), g(¢) and h(£) are arbitrary functions (all
these quantitics might, moreover, depend on ¢). The C-integrability of (3.80) was
already announced in [11]. The special case f(£) = —3a/¢, g(£) = b€, h(€) = c¢
is worth noting. Then (3.80) reads

ui, UslUyry

u=a (-“”—”£ - 3 ) +buzu+cu, (3.82)

and (3.81) becomes simply
ve = avgge — b€ ve . (3.83)

Another special case worth noting obtains for f(£) = —b, g(€) = h(£) = 0. Then,
via the additional change of variable r(z,t) = [u..(z, )]}, (3.80) becomes

re= a(r3r," + 3r2r,r,,) + brzr" , (3.84a)
re=a(rry,), +brirg, (3.84b)
re=r? [20Daee +bras| (3.84c)
s =— [g(ﬁ), +bs"']n , (3.84d)
Pt = ap**pezz + 20 2P, (3.84¢)

Of course, in the last two equations, s(z,t) = [r(z,t)]™! = u..(z,t), p(z,t) =
[r(z,))? = [s(z, )] 7% = [uzz(z,)] 2. The C-integrability of (3.84) with b =0
was already announced in [11].
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Yet another special case of (3.80) worth noting obtains for f(¢) = b¢, h(¢) =0,
g() =c:
Urzs

3 +buu,, (3.85a)

zz

U =a

a _ b
e = =5z ) + 507, (3.85b)
or equivalently, via the position u(z,t) = w.(z,?),

b
wy = _g(w:zz)_z + ’i(w:)z +c. (3.85¢)

* Itis also easily seen that the change of variable (3.79) transforms the nonlinear
equation for u(z,t)

. Fuz)uzzs
Ugt = =g

+ [ugus) + h(us)luzs + m(u,) (3.86)

zz

into the linear equation for v(¢, t)
ver = F(Eveee + [f'(f) -2f8- m(f)] vee

[l -2 E -m© ‘9‘5’] ve — £9'(E) — ER'CE)

3.87)

The C-integrability of (3.86) was already announced in [11].
There are also several special cases of (3.86) that are worth noting. The first
obtains for f(£) = 0 and g(£) = a and reads

Ugs = Uz fau + h(u;)] + m(u,) . (3.88)

Note that this equation has the following property (Galilei invariance): if u(z,t)
is a solution of (3.88), then ii(z,t) = u(z — ct,t) — ¢/a is also a solution. Note,
morcover, that the corresponding equation for v(¢, ) becomes the following first
order linear PDE for w(¢, ) = v(€,1):

w + m(§w = T% —-m'(€) + af] w—ER'(E) . (3.89)

Another special case of (3.86) worth noting obtains for f(¢) = —a, g(¢) =
G'(€), h(€) = H'(£), and m(¢) = £G(¢): “ o€

U = a(urs) ™ + uGlu.) + H,) . (3.902)

If, moreover, G(¢) = b and H(¢) = c¢, then via the positions u..(z,t) = s(z,t)
and [u..(z, )] ™! = r(z, ), (3.90a) becomes simply

se=a(s™"),; +bs+cs, (3.90b)
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= —ar?rg, —br+crs . (3.90¢)

The transformation (3.79) also proves expedient to transform a linear equation
for u(z,t) into a nonlinear equation for v(¢,t). For instance, to the equation

uy = Au+ Buy + Cugz + Dugys (3.91)

there corresponds the equation

2
2
ve= A(v ~ fvg) + Cf_”{_{ +D (%) (Evevege — 3{v§€ +3vevee) . (3.92)
3

v
This equation becomes autonomous (and somewhat neater) via the transformation
y=In¢ (3.93a)
ve(€, 1) = [w(y, 0]~ (3.93b)
which yields
wy = —Awy + Cul(wy +wyy)
+ D[w Quy + wyyy) + 3wk + wwy, +wyw,,)] (3.94a)

or equivalently (but in a form, obtained by setting w(y,t) = 1 + ez(y,t) and
= —3D + ¢4 D, that is more suitable to apply the expansion technique)
z¢+ (A + D)zy — Dzyyy = eD{(2y + 2)[y — (3 — e7)2]
+(22, 432,y + 2,5.)2(3,3c2 + €%27)
+3(22 + 22y )(1 +£2)) . (3.94b)

Another change of variables that is also suitable to identify interesting C-
integrable equations is the following one:

u(z,t) = &(z,1) , (3.95a)
uz(z,t) = v(¢, 1) . (3.95b)

Note that in this case, as in the previous one, if u(z, t) is given, v(¢,t) may be ob-
tained by purely algebraic manipulations, while if v(¢, ) is given, the evaluation
of u(z,t) requires one quadrature [to solve the first order ODE

uz = v(u,t) (3.95¢)

implied by (3.95a,b)]. Note that also in this case, as in the previous one, the
change of variables involves only the “spatial” independent variables x and ¢
(in addition to the dependent variables u and v), while the time variable ¢ plays
a purely parametric role (but of course, the different significance of the time
differentiation in u, and v, should be emphasized; in the case of u, the subscripted
t indicates partial ¢-differentiation at z fixed, in the case of v it indicates partial
t-differentiation at ¢ fixed).
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The transformation (3.95) may be used to relate a nonlinear PDE satisfied
by u to a linear PDE satisfied by v (or by some other function related to v), or
vice versa.

A few examples of the former approach read as follows:

The nonlinear evolution PDE satisfied by u(z, t)

up = £z (")"“ + g(uyu, + h(x) (3.96)

becomes, via (3.95),
2
vy = f(6) (vee - 2-;)‘) +[f'() — hOloe + 'O v + K'(E) v, (397

which is then linearized by the substitution
v(€, 1) = [w(§, D], (3.98)
yielding
= fQuwee + [f'(©) — h(©)lwg — M (Ow —g'(€) . - 3.99)

The C-integrability of (3.96) was already announced in [11].
The nonlinear evolution PDE satisfied by u(z, t)

2
u u
u = fw) -—‘2—3( )
3 f [ “i “i
becomes, via (3.95) followed by (3.98), the linear cquation

wy = [f(wee + g(E)we — h(©w) . (3.101)

The C-integrability of (3.100) was also already announced in [11]. The special
case of (3.100) corresponding to f(u) = —3a, g(u) = b, h(u) = 0 is worth noting;
it reproduces (3.84a, b, ¢) via the position r(z,t) = [u(z, )]

The nonlinear evolution PDE satisfied by u(z, t)

(3.100)

ue= fw) [“u— -3 ("L)z] 3/ + (3.102)
becomes, via (3.95) followed by the substitution

v, 1) =[2(€, ]2,
the linear equation

2= f()zeee + 3 £ (Ozge + 1) — MONze — 1" (©)z . (3.103)
The C-integrability of (3.102) was already announced in [11].
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As an example of the second approach [namely, to relate via (3.95) a linear
equation for u(z,t) to a nonlinear equation for v(£, )], we report the following
example:

= Au+ Bu, + Cu,, + Du,,, , (3.104)

= A(v ~ €vg) + Cvlvge + Dv*[Buguge + vugeel (3.105a)
D, _

wy = —A(¢w)g — Clw™")ge — 7w Y ece - (3.105b)

{Equation (3.105b) is related to (3.105a) by the simple change of variable
w(£,t) = [v(£,1)}); note that for A = 0, and up to trivial notational changes,
(3.105a) coincides with (3.84a), and (3.105b) with (3.84d).]

Of course the transformation (3.95) [or (3.79)] may be used to relate two
nonlinear equations to each other. For instance via (3.95) the nonlinear equation

= f(Wuzsr + g(W)uzs + R(u)uz + M(u) (3.106)
yields
= 3106+ 0 + )+ L2 (3.107)
[
while
= f(uz)Uzes + glugduss + H(uz) + m(ugu (3.108)
yields
v [ 2 F e + glowe + T2 4 5";‘"’] . (3.109)
€
Hence, for instance, the equation [see (2.30)]
Us = Uggz + Auug + Bulu, (3.110)
yields
ve = v vgee + 3vvguge + (A + 2BOV? . (3.111)

Therefore this last equation, for any arbitrary value of the two constants A and
B (note that, if B # 0, it is not autonomous), should be considered S-integrable
[being related to the S-integrable equation (3.110) by the change of variables
(3.95)); and it is of course C-integrable if A = B =0 [indeed, it is then a special
case of the C-integrable equation (3.84)].

Let us also report an example where the transformation (3.95) produces a
neat (C-integrable) evolution equation, after being applied to a nonlinear (C-
integrable) PDE itself obtained, via a change of variable involving only the
dependent variable, from a linear PDE. Indeed let w(z, t) satisfy the linear PDE
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we = aw + bwyzs (3.112)

and via the change of dependent variable

ug(z,) = [w(z, O, (3.113)
obtain for u(z, t) the nonlinear C-integrable PDE
2
up=2au+b (u - 31‘-2) . (3.114)
4 yu,

Now apply the transformation (3.95), thereby obtaining for v(¢, t) the neat equa-
tion

vy=2(v — fve) + b(v3ve“ + %vzvev“) . (3.115)

Note the factor 3/2 in the right-hand side of (3.115), in contrast to the factor 3
in the right-hand side of (3.105a).

These examples should have convinced the reader of the potential useful-
ness of these approaches to generate potentially interesting nonlinear evolution
equations. Of course, many more results than have been reported here obtain
by repeated application of changes of variables of the kind considered above,
or by more general and systematic analogous approaches. Here we have merely
surveyed a few simple transformations that are expedient to identify C-integrable
equations. Our presentation has mainly focused on the exhibition of examples.
In this same vein, we now show in compact (user-friendly!) form, a list of very
simple C- and S-integrable equations, for a single real dependent variable, fol-
lowed by a synthetic key to their integrability. An asterisk affixed to the equation
number indicates that the equation is S-integrable (although it may of course also
be C-integrable for some special value of the arbitrary constants it features). All
the equations listed below without an asterisk are C-integrable (for arbitrary val-
ues of the constants and arbitrary choices of the functions that appear in them,
which might also arbitrarily depend on the time variable, without spoiling the
property of integrability).

Up = Ugy + UUL , (3.116)

Uy =u"+u2+acxp(u)+b, (3.117)

Uy = uzu" +au, (3.118)

Uy = WPz, + atu, = u(uy, +au;), (3.119)

ug = WUz, +alu — zu,) = u? [u" +a (%) ] , (3.120)

Uy = (l) +au , (3.121)
u Tz

u¢=(%) +a(;1‘-) , (3.122)

+ h(us) + ug(u,) ,

uze = aexp(u) + blexp(u)],. ,

Uzy = U uy + (aui + buu,.)exp(—u),

Uy = Uggy + 2auu, +3bulu, = (ugg + ar® + by, s

U = Ugzp + Jutu, +9uui + 3u2u,, ,

Ut = Ugee + aui + bui 3

U = AUz + 2uu,) + blug,, + 3(uu, + ui +uug,)]
= a(u, +u?), + Wug, +u® + Juu,), ,

up = alu,, + ui) +b(ug, + ui +3u u,,),

Uy = usuzzz y

uzu,u,, +alu — zu,)

=2 [ - (%

_ a3 2
Uy =W tge, + 3u U Uy, +(a+ bo)u? = uz[%(uz),u +a+bzr],

3
Uy = Wlgpy + 3u2u,u" + auzu" + Hu — zu,)
= 02 1 2 z
-2[(3) e s a4 (3) |
xz
3

+3ul(u + ug)u,,
+u?Qu + 3u,)u,
+au(u, +u,,)

3 3
Ut T U Ugppy + =

=0 (ugpe +a+ bz) ,

us = 6 [uze, + a(u!/?),, + bzu=1/?),]
U= ulug,, + %ui +b(3u — 2zu,),
ue=uu, + %U”su:uu +(5u — 4zu,)

=y’ [uu,, - }ui + szu"‘/s]
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(3.123)
(3.124)
(3.125)

(3.126)
(3.127)
(3.128)

(3.129)*
(3.130)
(3.131)*

(3.132)
(3.133)
(3.134)*

(3.135)
(3.136)*

(3.137)

(3.138)
(3.139)*
(3.140)
(3.141)

(3.142)
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ue =), (3.143)*
ue =W )z +atba, (3.144)*
ur = (W) p0e + a(u™)g, + Hzu); (3.145)
e = (W Dgee + 3 Dzz + 2w +al(u™ e + (w7, (3.146)
ue = (U u,e — 3u”Tud + czud), (3.147)
e = [(u) e (3.148)*
uy = [(ue)?)eg +a+ bz +ca?, (3.149)*
ug = ((u2) " az + al(us) ') + b2, (3.150)
e = [(ue) Hae + 3(w2) "2 +2(u.) 2 + a{l(ua) ') + (we) 7'}, (B.ISD)
e = uT0Upes — 3ul Ul +czul (3.152)
e = [(uz) s, : (3.153)*
Uy = [(Ue2) "2, + a0+ a1z + @z + a3z’ (3.154)*
e = (e e + 222 4 hu) +ugls) (3.155)
ue = [(ug2) 2 + av?], (3.156)
e = (ugen) 2, (3.157)*
e = (tpze) 2+ bo+ bz + byz? + byz® + bzt (3.158)*
e = (Ugzz) 2 +aul (3.159)

Key to integrability:

(3.116) “Burgers”; (3.18) with f =0

(3.117) see (3.20)

(3.118) see (3.90¢)

(3.119) sce (3.94) with A = D =0, rescaled y

(3.120) see (3.105a) with D =0

[The C-integrability of (3.118), (3.119) and (3.120) was already announced in
[11]; but unfortunately these 3 equations were misprinted there; the correct form
to ensure C-integrability is that given here.]

(3.121-123)  see (3.118-120) with u replaced by 1/u

(3.124,125)  see (3.122,123) with u replaced by u, and integrating over x
(3.126) see (3.80) witha=0

(3.127) see (3.78a)

(3.128) see (3.88) with A(¢) = 0, m(¢) = c2, and u replaced by exp(—u)
(3.129) “KdV” + “MKdV”, see (2.30)

(3.130) see (3.32) with f(u) =0, and [11]

(3.131) see (3.129) with u replaced by u. and integrating over z
(3.132) “Burgers” + “higher Burgers”; see (3.31) with f(u) =0

(3.133) see (3.132) with u replaced by u. and integrating over z (or,
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more directly, u replaced by In u)

(3.134) “Harry Dym”, see [5]
(3.135) see (3.115)

(3.136) see (3.111)

(3.137) see (3.105a)

(3.138) see (3.94)

(3.139, 140) see (3.136, 137) with u replaced by ul/?
(3.141,142)  see (3.135) with u replaced by u?/? and u*/*

(3.143) see (3.134) with u replaced by u—1/2
(3.144-146)  see (3.136-138) with u replaced by 1/u
(3.147) see (3.142) with u replaced by u=3/2

(3.148-152)  see (3.143-147) with u replaced by u, and integrating over z
(3.153,154)  see (3.148, 149) with u replaced by u, and integrating over r
(3.155) see (3.80)

(3.156) see (3.85b)
(3.157-159)  see (3.153,154,156) with u replaced by u, and integrating
over z

Let us end this section by reporting just one more example of application of
the transformation (3.95), but now in a (2 + 1)-dimensional context:

u(z,y,t) ={(z,y,1) , (3.160a)

uz(z,y,t) =v({,y,1) . (3.160b)

Note that this transformation involves again only the independent variables z
and ¢ and, of course, the dependent variables u and v. Hence, as in the previous
case, not only can the evaluation of v from a given u be performed by purely
algebraic operations, but also the evaluation of u from a given v requires merely
one quadrature. This would not be, generally, the case for transformations in-
volving simultaneously more independent variables (in which case, incidentally,
a more appropriate transformation to use would seem to be (3.79), which clearly
has a natural generalization to deal simultancously with several spatial variables;
but, let us reiterate, at the cost of making the computation of u from a given
v unwieldy). Of course, transformations that involve, more than parametrically,
several dependent variables, but still retain the desirable feature of being in-
vertible by quadratures, may be realized by sequential applications of several
transformations, each dealing with one old and one new independent variable.

The change of variables (3.160) transforms the following linear evolution
equation for u(z,y,?),

Uy = agou + aroU; + anty + aur; +anusy +anly,
+a30Ucrs A2 Uy + G12Uzyy + Q03 Uy, , (3.161)

into the following nonlinear evolution equation for v(¢, y, t),
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ve = ago(v — £vg) + ao1vy + aznviuge + anviweg + an(vwey + vwwee)
+ ago(v3v¢“ + 302v€v55)
+ a21(2uvy vgg + v2vggy + VUg e + Ivwrguee + viwvgee)
+ (112[(11)55112 + wevev), + (w“v2 + wevev)ew
— (weyv + wevy + WweevW + Vewew)ve]
+ am[(wey v + wevy + weevw + wevew)y
+ (W, v + Wevy + Wee VW + WeVew)ew

— (wyy + 2wgyw + wew, + w“wz + "’%w)"il , (3.162a)
we =220 (3.162b)
v

Note that this equation is autonomous iff agy = 0 (and all the other quantities a are
constant; although, to derive (3.162) from (3.161) via (3.160), it is only required
that the a variables be z-independent, hence also £-independent). This equation
may be recast in a form suitable to application of the technique of asymptotic
expansion, via the formal substitution v — 1 +&ev, w — ecw, apw — cag,
a0 — €429, 11 —* £411, A2 — £ag.

4. Envoi

The results reported in this paper outline a research strategy to identify nonlinear
evolution equations that are presumably worthy of study and to actually investi-
gate them. The possibility to discover in this manner integrable equations that are
also likely to be applicable is particularly appealing. This methodology is also
useful to study equations generated in some applicative context, by providing
straightforward and reliable techniques to test their integrability and to reduce
them to simpler forms that might retain applicative relevance (in a regime of
weak nonlinearity), while being susceptible to deeper and more revealing study
from an analytical point of view (for instance, they might themselves be, in
some sense, “integrable”, even though the original equations did not posses this
property). Finally (last but not least), this methodology, by providing various pos-
sibilities to uncover nontrivial relations among integrable equations, contributes
to our understanding of this field of research; it supports the hunch that all inte-
grable equations are somehow related to each other, all being manifestations of
a single underlying mathematical structure.

Our presentation here has focused on the exhibition of explicit examples
rather than a systematic treatment (the best test of a pie comes from the eating).
Clearly, much remains to be done, especially in the context of multidimensional
problems; hence the character of this presentation is essentially a report on work
in progress; as it is indeed appropriate for a chapter with an interrogative title of
a book with an interrogative title.
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Addendum

In the time that elapsed since my contribution for this book was written, some
interesting developments, closely related to the results reported above, have oc-
curred. This addendum outlines concisely these findings and provides some rel-
evant references.

The main point of departure, to obtain the results of Sects. 2 and 3, is to take
a nonlinear evolution PDE whose linear part is dispersive, to focus attention on
the solution of the linear part of the equation that represents a single dispersive
wave, and then to investigate how such a solution gets modified due to the
nonlinear part of the equation. The main finding is that, in a regime of weak
nonlinearity, the main effect is accounted (exactly — in an asymptotic sense) by
a slow modulation of the amplitude of the dispersive wave; a modulation that,
in appropriate (“slow” and “coarse-grained”) variables, is generally governed
by universal nonlinear PDEs (of which the nonlinear Schridinger equation is
a prototype). These universal nonlinear PDEs are important, because their very
origin implies that they are likely to be both widely applicable and integrable.

An analogous analysis can be performed, taking as point of departure a
superposition of several dispersive waves (as solution of the linear part of the
original nonlinear PDE), rather than a single dispersive wave. In this manner one
arrives at a coupled system of nonlinear (generally first-order) PDEs, that describe
the slow modulation of several, weakly nonlinearly interacting, dispersive waves.
This phenomenon is again governed by universal equations, which are quite
interesting, because they are again likely to be both applicable and integrable.
The derivation of such equations, by a technique closely analogous to that of
Sect.2 above, is given in [29]. And a particular coupled system of nonlinear
evolution PDEs of this type, that turn out to be (nontrivially) C-integrable, and
that gives rise to a novel solitonic phenomenology, is treated in [30].

A definition of C-integrability somewhat more precise than that given in
Sect. 1 reads as follows: “A nonlinear PDE is C-integrable if its solution can
be obtained by solving: (i) a finite system of nondifferential (possibly nonlinear,
i.., algebraic or transcendental) equations; and (ii) a finite system of linear
PDEs (including ODEs and quadratures)”. The corresponding definition of S-
integrability would be closely analogous, except for the replacement (extension)
of (i) as follows: “(ii) a finite system of linear PDEs (including ODEs and
quadratures), as well as linear integral equations (Fredholm, Volterra)”.

A nontrivial aspect of this definition has to do with the precise meaning of the
term “solving”. We mean, as a heuristic definition of this term, “the capability to
manufacture a large class of solutions (perhaps all solutions)”; note however that
this need not coincide with the capability to solve (if applicable) the initial value
(“Cauchy’) problem (sce below for an additional discussion of this important
point).

A technique to manufacture C-integrable nonlinear PDEs, that is closely re-
lated to some of the results of Sect. 4, works as follows. Let
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Duw(z,t)=0 (A
be a linear PDE that implies the “conservation law”

ht(z’ t) = gz(z, t) ] (AZ)

where h and g are homogeneous functions of degree p in w, w, and w,. Then
set

u(z, t) = w(z, )[Fz, ] "/* , (A.3)
with

Fy(z,t) = h(z, 1) , (A.42)

Fi(z,t) = g(z,1) . (A.4b)

Note that these two equations are compatible thanks to (A.2).
Logarithmic differentiation of (A.3) yields for

wz( ,t)
#a )= T2 (A.53)
w(z,t)
Xz, t) = w'(Txt) : (A.5b)
the following expressions [via (A.4)]:
¢="Z+Hw, b)), (A6w)
x == +Glu,4,%) , (A.6b)
where
h P
B0 = (5) : (AT9)
g (uy
Gue0=2 (L) (A.Tb)

Note that the fact that H and G are functions of u, ¢ and y is implied, via the def-
initions (A.3, 4), by the above hypothesis stipulating h and g to be homogeneous
functions of degree p in w, w, and w,.

Solving (A.6) for ¢ and x, one can express these quantities in terms of u,
Uy and Ui,

On the other hand, by applying the linear differential operator D to (A.3),
by using (A.1, 3,4, 5), and by taking again advantage of the fact that  and g are
?omogeneous functions of degree p, one generally obtains for u a PDE of the
orm

Du=M, (A8)

R W St

et TSI
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where M is a function of u, ¢, x and the derivatives of these three functions. But
since, as we just saw, ¢ and x can themselves be considered functions of u, u.,
and u,, the quantity M in the right-hand side of (A.6) can finally be considered
a (nonlinear) function of u and its derivatives. Hence (A.6) is a nonlinear PDE
satisfied by u. And this PDE is C-integrable, since it can be transformed into
the linear PDE (A.1) via (A.3); or, more precisely, since a very large class of
solutions of this equation can be manufactured inserting solutions of the linear
PDE (A.1) into the formula

z _I/P
u(z, t) = w(z,t) [C(t)+ / dz'h(z',t)] (A.93)
W)
with
Ci(t) = y:(A[y(t), t] + gly(D), 1] , (A.9b)

which is clearly implied by (A.3,4). Note that (A.9b) can be solved by quadra-
tures, since only one of the two functions C(t), y(t) has to be determined (in
terms of the other, which can be assigned at one’s convenience). Note, on the
other hand, that the possibility to solve the Cauchy problem for the nonlinear
PDE (A.8) hinges on the possibility to invert the transformation (A.3), namely
to be also able to express w in terms of u; this might be possible by quadratures,
or might require solving a nonlinear ODE, depending on the structure of h.

A class of C-integrable nonlinear PDEs can be generated in this manner
taking for D the odd differential operator

. J 62j+1
D=-a—t+zaja—zi3jq , (A.10)
=0
and for h the quadratic expression
h = aw? + fw? (A.11)

with o and S arbitrary constants, since a corresponding quadratic expression for
g can then be always found. Some examples generated by this technique will be
reported elsewhere (note, incidentally, that in this case the function x need not
be introduced at all).

Here we report explicitly only two simple examples; the first of which, in-
cidentally, is likely to pose a difficult challenge for whoever hopes that the
“Painlevé approach” may provide a general method to identify integrable equa-
tions.

First example. Let (A.1) read

wre =0, (A.12)

and set
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Mz, t) = a(2)[w.(z, )]? , (A.133)

9(z, 1) = B)we(z, D17, (A.13b)

with a(z) and S(t) arbitrary functions and p.an arbitrary (nonvanishing) number.
One then obtains for v = u~P the nonlincar PDE (written below in two
equivalent forms; see (A.15a,b)):

vge = —plxvr + dve+ (p — Dxév] , (A.14a)
ver = —plag®x + B4 — (o + Dol (A.140)
where ¢ and x are related to v, v, and v, by the (nondifferential) equations
ad? —ppv —v, =0, (A.150)
Bx? —pxv—ve=0. (A.15b)

Note that these equations can be explicitly solved for ¢ and y if p takes one of
the following values:1, 2, 3, 1/2, 1/3. As implied by its derivation, the nonlinear
PDE (A.14) is C-integrable; indeed, its general solution is given by the explicit
formula

’ 1/p ’ 1/p) 7P
v(r,t)=[f1(z)+.fz(t)]{ -{g(%’] + %((:)1] } , (A.16)

where fi(z) and fa2(¢) are arbitrary functions.
Second example. Let (A.1) read

wee(z,t) — a(z, ) w(z,t) =0, (A.17)
where a(z,t) satisfies the restriction

[a(z) alz, 1)), = [A(t) alz, 1), (A.18)
with a(z) and §(f) a priori arbitrary (except for this restriction; which, inci-

dentally, is identically satisfied if a, 3 and a are three arbitrary constants); and
set

h=oaw? +afuw?, (A.19a)
g= ﬁwf +aaw? . (A.19b)
There obtains then for u(z, t) the C-integrable nonlinear PDE
Uzt — au = — 3u’[(aa),
+(ad +Bx)3a+ ¢x) (A.20)
- %uz(mﬁz +af)(fx? + aa)]

with
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_1-s[l- au(afu’® +2u))!/?

) G ’ (A21a)
_1-sfl - ﬁtg:;::u:" +2u,)]'/? ’ (A.21b)

and s% = s% =1,
An apparently simpler avatar of this equation is obtained setting v = u™2, so
that (A.20) is replaced by

vze =(aa); — 2v(a — 3dx)

1 (A.22)
3(aé + fx)3a +44x) ,
and (A.21) by
) 12
L [v? - :(aﬂ - v,] , (A.232)
_v—9 [vz ~ Blaa — vt)]l/z (A.23b)

B

again with s? = s3 = 1. Of course (A.22,23) coincide with (A.14,15) if p =2
and a =0.

Extensions of the technique outlined above, which also yield interesting re-
sults, include the possibility to take as point of departure, rather than the linear
PDE (A.1), a nonlinear PDE (itself C-integrable, or S-integrable), and/or to con-
sider nonhomogeneous conservation laws. Another possible extension is to let k
and g depend also on higher derivatives of w than the first. Examples of inte-
grable nonlinear PDEs manufactured in this manner will be reported elsewhere.
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Painlevé Property and Integrability

N. Ercolani and E. D. Siggia

1. Background

A brief account of this work has appeared in [1] and an expanded version in [2].
This discussion is merely intended to illustrate, in the simplest possible terms,
our approach to the Painlevé problem. Precise statements of theorems, in the few
instances where we have them, as well as nontrivial examples are all reserved

for [2].
We will consider only polynomial systems of equations (- = d/dt)
#; = fil{z;}) 4,7=1,...n, (1.1

so that the right-hand side of (1.1) does not introduce any singularities into the
time flows. In fact, the differential equations define the continuation of ()
from real to complex times. All variables will henceforth be understood as being
complex. The Painlevé conjecture then asserts that if the singularities of z(t)
are no worse than poles for all ¢, (i.e., no branch points, logarithms, essential
singularities, etc.) then (1.1) is integrable. We define “integrable” below. In other
terms, a system whose solutions are globally meromorphic is said to possess the
Painlevé property.

1.1 Motivation

There are several reasons for pursuing this subject that go beyond a specific
interest in integrable systems. However integrability is defined, it is clearly a
global property of the flows in phase space. Integrals are smooth functions that are
defined globally. Any analytic system of equations, however, is locally integrable
but the local patches of level sets do not in general fit together.

Singularity analysis is also purely local. Polynomial equations only have sin-
gularities when some variable blows up. The leading singularity can be guessed
by assuming a form, e.g., bt~*, and calculating a and 5. When the leading sin-
gularity is a pole, it is fairly simple to continue the series. Logarithms may then
appear, which means the system is not Painlevé. If it is, on the other hand, then
formal Laurent series are obtained. With additional labor their convergence may
be established. This is all local analysis, and can be made very explicit.

The problem, then, is to understand why local analysis should have global,
geometric consequences.
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A second general context into which the Painlevé conjecture falls is that of
singularities in nonlinear systems. Poles are a particularly mild singularity, and
for Painlevé systems their occurrence is merely an indication that one is working
on too small a phase space. Most of this chapter will be devoted to constructing
an augmented phase space on which the flows are analytic at all times. Other
types of singularities may not admit such an interpretation, but it is interesting
to understand the Painlevé case first, which is not altogether trivial.

A third intriguing aspect of the Painlevé conjecture is that it might be made
into a tool for computing integrals. Currently, to prove a system integrable means
displaying the integrals or solving the initial value problem. This requires inge-
nuity and insight. Any constructive algorithm would be useful. Partial results
along these lines comprise the last section.

Lastly, a thorough understanding of the relationship between singularities and
integrability could lead to an alternative to the KAM notion of being “near” to
integrable.

1.2 History

Kowalevskaya was the first to use singularity analysis to screen Hamiltonian
systems for integrability. Her reasoning was that all other integrable systems
known at that time had meromorphic solutions. It was relatively simple to find a
previously unknown set of parameter values for which the equations for a top in
a gravitational field had only poles. She then explicitly solved the initial value
problem in terms of hyperelliptic functions, thereby demonstrating integrability
{31
Some forty years later Painlevé considered all equations of the form

&= f@t,z,%)

which are analytic in ¢ and rational in z and #, and for which the only move-
able singularities (those whose location depends on initial data) are poles. In
addition to the known transcendental functions, six new ones were found, the
so-called Painlevé transcendents [4]. Success in integrating several of these by
inverse scattering methods lead Ablowitz et al to suspect a connection between

the Painlevé property and integrability [5]. Many examples have been worked
out since then [6].

2. Integrability

There is no single definition of integrability that seems appropriate in all circum-
stances. We mention two common ones (for autonomous systems).
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Liouville integrability follows for an n-degree of freedom Hamilton system
if there are n-independent integrals K(g, p) in involution [7]. If the intersection
of their level sets is compact, then it is topologically a complex n-torus.

For the system (1.1), we define ODE integrability to be existence of n — 1
independent analytic integrals. We note several pecularities of these definitions.

An integrable Hamiltonian system is generally not ODE integrable. If we
insist on functional independence of the (real) integrals at infinity formed from
the real and imaginary parts of 7{, then M = p* —¢* —1 is not Liouville integrable
(i.e., the level surface is of genus 2, not a torus, and any vector field on it must
vanish somewhere). Thus, although a solution exists locally for real and finite
(q, p), this example is not Liouville integrable over the complexes. The converse
pathology occurs for any repulsive and short ranged potential between pairs of
particles in an n-particle system on the real line. These examples are always
integrable since the momenta at ¢ = +co are constant and probably analytic in
the initial data.

3. Riccati Example

The Riccati equation [4], though ancient, and not Hamiltonian, is an exceedingly
instructive illustration of how the singularities serve to augment the original
phase space in such a way that on the augmented manifold the flow is analytic.
The equation reads

i = ap(t) + a1 ()z + ay(D)z? 3.1

where a;(t) are entire in t. Clearly z(t) is analytic whenever it is defined (i.e.,
finite). The only singularities are poles, near which & ~ azz? or x ~ cst/(t —1o).
Consider the substitution, # = 1/, under which (3.1) becomes

—F=aFttaiFtaz. (32)

Clearly (3.2) is also an analytic equation, and Z(t) is analytic whenever it exists,
particularly around # = 0, where % vanishes as ~ (t — tg). Therefore, we have
proven that the Laurent series for z, which could be found by formally expanding
(3.1) actually converges.

Define an augmented phase space as the set

M={zeCluU{Z=0}. 33)
Cover £ =0 with the open set (patch) {Z € C} and identify this path with the

other one, {z € C}, by the transition function % = ¢! for z and # # 0. This
makes M into a manifold.
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In this example M is compact, and is just the Riemann sphere. Consider the
finite time map . It takes M 1:1 and onto itself and is biholomorphic since
(3.1,2) are analytic. Hence, it must be fractional linear, ie.,

_oylto)+8
Ty(to) + 6’

where a, 3, v and § are entire functions of ¢ and to. [Proof: Assume ¢, maps
y(to) = A to infinity, write a Laurent series y(¢) = Y an(y(to)— A)", then an>o =
0 since otherwise infinity would also map to infinity. Furthermore, an<—2 = 0,
since the map is uniquely invertibie.]

One could imagine a multivariable generalization of (3.4) for which there
would be no invariant integrals even though one has an explicit formula for the
dependence on initial data. Such a system should surely be called solvable though
it is not integrable in the technical sense defined above.

The main body of this chapter will be devoted to illustrating how the steps
which were required to construct M apply to an arbitrary Hamiltonian and
Painlevé system.

y(t) 34

4, Balances

The information that one can obtain through a singularity analysis of the equations
of motion for a polynomial Hamiltonian will now be considered. Solutions of
entire analytic differential equations will only fail to be locally analytic in time
and initial data when they blow up. A balance is defined to be the leading term
in a formal asymptotic expansion about such a singularity. We say “formal” since
the convergence of the series is not obvious. All balances for a Painlevé system
must in fact be the first term in a Laurent expansion. Testing for the Painlevé
property usually means showing that all formal solutions around any singular
point are Laurent.

A principal balance will be a formal Laurent (or equivalently pole) series
with the maximum number of free constants allowed by the dimension of the
phase space. Lower balances can be ordered by the number of free constants.
For instance, for

H=4@ +P) + o +24 @.1)

one finds a principal balance
a=at™ + Sat+af - Sdt - latt — jaats +of) .
p=—t2sids Lt il nd 4, 8 4.2
TG+ gat +yaat” +at’” +ot) .

In addition to ¢, ¢z, and c3, a fourth constant #g has been hidden in ¢ = time
—to.
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For any balance we define a resonance o to be the lowest power of ¢ at which
a new constant enters the series measured from the leading one, i.c., ¢; = ¢t
(cst + ... t®). Thus in (4.2) the resonances occur for ¢ = 0,3,6, and —1 for %.
Equation (4.1) also has two lower balances

@ =46it72 1+ .., @=-3t"1+..)

with resonances o = —1,6, 8.

The principal balance series can be used as a formal variable change from
{g,p} to to and the constants. Thus we find that the value of }{ may be expressed
as

E=14c+ 5.
The 2-form w® can be rewritten and, of course, must be ¢ independent;
w® = "dp; Adgi=dto AdE+3dcz Ader . 4.3)

Note that (4.3) establishes a conjugate pairing between the constants and leads
to relations among the associated o [2].

S. Elliptic Example

We now consider how the construction of a manifold on which the flows exist,
analytically, for all times may be extended to a Hamiltonian system. The general
argument plus nontrivial examples are given in [2]. Consider as an example

2H(g,p)=p* ~4¢" —2q.
The principal, and only, balance reads
g=(@t—1t)"21+..), p=-20t—-to)*(1+...).

We will solve the Hamilton-Jacobi equation perturbatively around infinity for
a canonical variable change analogous to Z = z~! in the Riccati example. Thus

H(qg, 8S/0¢) = E (5.1)
has the approximate solution
5(g,v) = 4/5¢" + ¢'/* ~vg™'/2 (5:2)

which satisfies (5.1) to O(g~!). We have replaced E by v in (5.2) since we

want to use v as a variable in the coordinate patch at infinity. Since S is only

approximate, v will not be constant and it would be misleading to call it E.
Define a variable change by
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u=985/0v, p=085/dq,
which implies
-2
g=u
53
p=—2u“3—%u—%vu3. ¢3)

Since the variable change is canonical, the equation of motion in (u, v) variables
is derived from a Hamiltonian,

H(u, v)—v+%u +}vu +% 28 .
In particular, for small u (i.e., p, ¢ near infinity)
4=1+0@", v=0@).

Hence v is approximately constant and u ~ (¢ — ¢p). This could be seen equally
well by comparing the transition functions (5.3) with the time series. Since
H(u,v) is polynomial, the flows are analytic around infinity.

Define an augmented manifold by

M={q,peC*}U{u=0,veC}.

Note that we have resolved the singularity, and “infinity” is nothing but u = 0,
and v is an arbitrary complex number

If we were to take this curve and integrate “backwards” by —t we would
obtain another analytic curve consisting of all initial data that hits infinity in a
time ¢. Finally, to make M into a manifold we have to cover infinity by a patch
consisting of a tube around u = 0 which is narrow enough so that the transition
functions are uniquely invertible for u, v(q, p).

Note that M is not compact. It ignores points such as p = infinity, ¢ = finite
which are never reached by the flow.

6. Augmented Manifold

In [2] a general algorithm is presented for constructing an augmented manifold
M for any polynomial Hamiltonian system with the properties:

1. {p,q} € C** is a dense subset of M,

2. M — C?" is a finite union of analytic hypersurfaces,

3. the time flows extend to M, exist for all times, and are analytic, and
4. the transition functions between the patches of M are canonical.

The principal balance(s) in local coordinates always cormrespond to u = 0,
{vecC,i=1,2,...,2n — 1}; that is they are codimension one. If one initial
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point {p, ¢} blows up in a time o then an open set of neighboring points blow
up in a time near to ?o (i.c. integrate the u equation backward from u = 0). The
lower balances add points to the boundary of the principal balance (i.e., certain v;
infinite). In appropriate local coordinates, the added sets are just given by u; =0
with the number of variables u; equalling the codimension. The codimension 2
lower balances may be realized as a singularity in the principal balance equations
in which certain v; approach infinity as u — 0. (Clearly any singularity in these
equations for u # 0 is due to bad coordinates and disappears when transferred
back to ¢, p variables.)

The Hamiltonian in local variables is always analytic and there is a coordinate
patch for each balance, implying conditions 2, 3. Lastly, all computations are
done with the Hamilton-Jacobi equation, guaranteeing that M is symplectic.

7. Argument for Integrability

Given a manifold M with the properties just described, there is a heuristic argu-
ment as to why the flow is simple. The assertion is not that it is integrable in the
technical sense but rather that either the finite-time map is birational as in the
Riccati example or a level surface exists in the form of a time dependent entire
function F'(t,q,p) whose total time derivative is zero.

The argument, which is no better than intuitive exploits the characterization of
“entire” functions on a manifold by rate of growth. The simplest example of this
reasoning is Liouville’s theorem which says that if the maximum modulus of an
entire function grows algebraically then it is a polynomial. There is an extension
to several variables which leads with some reasoning to (3.4) which applies when
M is either compact, or the rate of growth of the finite time map ¢, is algebraic
as its arguments tend towards the omitted regions (i.e., p — oo, ¢ finite, for
the elliptic example). In the latter case, M admits a formal compactification.
Bianalytic maps such as ¢, between compact spaces can all be given explicit
functional forms, as in the Riccati example. We consider all such examples to
be solved.

Hence the only problematic case is when ¢, behaves essentially as its argu-
ments tend toward the points required to compactify. Consider a trivial example,

= 3(pg)*

=poe_P°q°‘ , Q= qoeroqoi .

The map ¢, is clearly essential but the exponent depends only on an invariant
Pige = pogo. We believe something like this must happen if composition is not
to result in an explosion of essentialness as in exp(exp(...)). Thus, we would
like to claim that an invariant surface results from the group property of ¢, plus
essential growth.
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The basic argument may be repeated if the first level set does not result in a
compactifiable submanifold.

We also mention in this section a refinement of the Painlevé test which
permits one to detect ODE integrability.

Conjecture, If there are no lower balances, then a Painlevé system is ODE
integrable.
The converse is clearly trivial.

To argue in the direction stated, consider the set of all complex t poles for
given initial conditions. If there is one pole, there must be an infinite number by
Picard’s Theorem. The assumption of no lower balances implies that these poles
cannot coalesce or disappear as initial conditions are changed. Consider any two
and use them to define a map from the data at infinity to itself by integrating
from one to the other. This generates a bi-entire map from C2"~! to C?"~!, We
would like 1o assert that integral invariants exist.

8. Separability

We first illustrate how to solve an integrable system by separating variables in the
Hamilton-Jacobi equation. There are separable (and hence integrable) equations
which are not Painlevé but this occurs in the known examples because one is
working in too small a phase space. If a system is separable in a technical sense
yet to be defined, then the local analysis embodied in the Painlevé test yields a
good deal of information about how to perform the separation and the form of
the other integrals in involution. First, as an example, we separate (4.1).
Let

q =ik, @=}g+8). (8.1)

Re-express 85/8g interms of 8S/0¢; = »; in the equation

and one finds a hyperelliptic curve +:
n=—3& +2mE +hy 8.2)

The action is

&

S"‘zj:/'h‘d&-
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The numbers h; are the values of the two integrals in involution. Equation (8.2)
written for § = 1,2 can be simultaneously inverted to find h;(£,n) or Hi(q,p).
The “times” conjugate to h; are given by t; = 85/0h;. If we differentiate this
pair of equations we find an expression for the flows £;(2;) on the level surfaces:

oo+ (aas) (&)

Definition. For a hyperelliptically separable system there is
a. a good variable change g; = ¢;(¢;) where g; is a symmetric function of {¢;},
b. under which the Hamilton-Jacobi equation separates into n copies of a hy-
perelliptic curve v with the equation,

772=Ed+

8.3
d>2n+1, (83)

c. the integrals h; occur as the coefficients of £/ with o; +1 — d/2 < 0,
d. the set {t; =3S5/0h;, i =1,2,... n} modulo the periods of v is a torus.

The fourth condition guarantees that the Hamiltonian in question is Painlevé.
When d = 2n + 1, condition (d) is automatic and for larger d some symmetry is
required of 4. Otherwise the period lattice would be of rank > 2n. The above
example is hyperelliptically separable.

The following facts then follow:

a. The principal balance corresponds to & ~ t~! or t=2 (depending on whether
d is even or odd) and £;>; ~ cst. The leading exponents f;, g; for ¢ ~ ¢t~ /%,
p ~ t~9 are the same for all the n-flows in involution:

b. H;(q,p) is polynomial in g, p;

. there is a lowest balance with just n free constants, the h;, plus fp;

d. from an expansion of the Hamilton-Jacobi equation at a principal balance,
there follows the degree d of v+ and bounds on the weighted degrees of
H(q, p). Here, each ¢, p is given the weight f;, g; defined in (a).

(2]

By comparing the series (4.2) with the separating variable change (8.1) it
will be observed that property (a) reduces the calculation of (8.1) to checking
only a few possibilities. In (d), the degree of n?(¢) follows from expanding
S~ f G md¢é and comparing with the first (largest) term in S(g(t), v). The
degrees of H; basically reflect the order of their occurrence, «;, in 72, but their
calculation from the Hamilton-Jacobi expansion is laborious [2].

We believe similar results can be formulated when + is replaced by a rational
function in ¢ or something higher order in 7.
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Integrability

H. Flaschka, A.C. Newell and M. Tabor

1. Integrability

A comprehensive definition of the term “integrable” is proving to be elusive.
Rather, use of this term invokes a variety of intuitive notions (and not infre-
quently, some lively debate) corresponding to a belief that integrable systems
are in some sense “exactly soluble” and exhibit globally (i.e., for all initial con-
ditions) “regular” solutions. In contrast, the term “nonintegrable” is, generally,
taken to imply that a system cannot be “solved exactly” and that its solutions
can behave in an “irregular” fashion. Here the notion of irregular behavior corre-
sponds to dynamics that are very sensitive to initial conditions, with neighboring
trajectories in the phase space locally diverging on the average at an exponential
rate. This characteristic is measured by Lyapunov exponents. A system with at
least one positive exponent will display irregular motion. In contrast, regular
motion is associated with no positive exponents. Unfortunately, the definition
of the Lyapunov exponents involves long time averages, their existence is only
guaranteed for a limited set of situations and their values are difficult to com-
pute both analytically and numerically. It is unlikely, therefore, that an algorithm
which tests a given system for Lyapunov exponents will be a successful test for
integrability.

To justify our own ideas on “integrability”, we discuss a variety of concepts
for both finite and infinite dimensional systems that illustrate how difficult it is
to make a “universal” definition. To begin, consider the range of possibilities
for finite systems of ordinary differential equations. A traditional point of view
is/was to talk about “integration by quadratures”. Loosely speaking, this means
that for an nth order system the identification of a sufficient number of analytic
first integrals of motion reduces the system (by one order for each integral) to a
form that can be explicitly integrated. For second order systems, such as elliptic
differential equations, the identification of one integral reduces the solution to a
single quadrature. For example, for

i=az+bet+c’, (1.1)

the integral is just

and the resulting quadrature is
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dz

t—ty= ,
° / V2 +az?/2 + 623 )3 + ezt [4)

(1.2)

and the inversion of this formula is achieved in terms of Jacobi elliptic functions.
As is well known, a quadrature type definition of integrability is far too
restrictive. For example, the simple first order equation

i=z+t (1.3)

cannot be separated and therefore integrated by quadratures. However, such an
equation is still “exactly soluble” in the sense that the direct linearization obtained
by the substitution z = —g/y enables one to express the solution in terms of Airy
functions. In a similar vein, the second order equation

i=tr+z+y, (14

namely the second Painlevé Equation PII, cannot be integrated by quadratures.
Neither is there any direct linearization. Nonetheless, this equation, and the other
five equations for the Painlevé transcendents I, III, IV, V, VI, are certainly not
nonintegrable. A more sophisticated indirect linearization known as the Inverse
Monodromy Transform [1,2] (a relative of the Inverse Scattering Transform used
for certain classes of PDEs) can be used to find the general solution.

For Hamiltonian systems the notion of integrability seems to be clear. Here,
due to the special symplectic structure of Hamiltonian phase space, the identifi-
cation of just N integrals of motion (for a 2 N-dimensional phase space) enables
one to reduce the solution to a set of trivial integrations. Global existence of
solutions of all commuting flows guarantees that the intersection E of the N
level surfaces representing the motion constants is topologically equivalent to
a product of circles and lines (Amol’d-Liouville Theorem). If in addition E is
compact, from which global existence automatically follows, it is an N-torus,
namely a product of circles. In that case, the typical E can be coordinatized by
action-angle variables and in those coordinates the flow is simply a straight line
flow with constant velocity. Certainly in these cases, the Lyapunov exponents
exist. They are clearly zero and the flow is regular. The Painlevé equations I
through VI can also be cast in the form of Hamiltonian systems with two de-
grees of freedom and a second transcendental constant of motion can be found
which is in involution with the Hamiltonian and which is an analytic function of
the original coordinates as long as they remain finite. However, it is not so easy
to prove that the dynamics in each of these cases are regular. In general, solutions
blow up in finite time (the phase space is divided into regions of global existence
and finite-time blow-up) and therefore one cannot expect Amol’d-Liouville in-
tegrability to hold. Because the structure of the E is not well understood, and
because we do not know how to coordinatize this surface, we cannot definitely
say whether the motion is regular or irregular. Although it is likely that the
flow is regular and in some sense integrable, there might be some complicated
behavior of the kind illustrated by the following examples.
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Let H(q, p) be a real polynomial of ¢ and p and set ¢ = 21 +iy, p=y1 +iza.
Then F = Re{H} and G =Im{H} are in involution with respect to the Poisson
bracket {F,G} = S°2,(8F/0y:)(0Gz:) — (0F [82:)8G/dy:) on R'. The
level surface E, the intersection of F = c1, G = ¢, can be thought of as a
complex one-dimensional manifold H(q = z1 + iyy, p =y +iz2) = ¢ +ica.
Thus E is a Riemann surface with the points at infinity missing. If, for example,
H = p?* — Py(q) where P is a polynomial of degree eight in g, then E can be
pictured as a real two-dimensional surface with three holes and two tubes going
off to infinity. Solutions of the Hamiltonian equations generated on E by F or
G blow up in finite time. Orbits can wind around the holes in some, possibly
complicated, way before shooting off to infinity along one of the tubes. Sensitivity
is introduced by the number of times an orbit can wind around the holes before
escaping off to infinity. From this picture, one might guess that nearby orbits
separate at algebraic rather than exponential rates and that therefore these flows
belong in the regular category. These kinds of subtleties, arising in situations
which would appear to be widespread, are rarely addressed and suggest that a
general definition of integrability may be difficult.

Notions of integrability are not restricted to volume preserving flows and
can also apply to dissipative systems in which the phase volume contracts. For
these systems one can sometimes find what are oxymoronically termed “time
dependent integrals”. For example, for the system

-’t=%(y—z)y
y=—-zz—Y, (1.5)
t=zy -2z,

a special case of the Lorenz equations, one can identify the two quantities

L = (% - 2)et,

(1.6)

L= +2e",
which enable one to reduce the third order system to a first order system which
can be explicitly integrated in terms of elliptic functions.

From the discussion so far we see that there are various ways in which
we can consider a system to be exactly soluble, e.g., integration by quadratures,
direct linearization, Amol’d-Liouville integrability, but we have also encountered
many subtleties. In an analogous fashion, the same range of possibilities exists
for systems with infinite degrees of freedom, e.g., partial differential equations,
and any algorithm which we might suggest for testing integrability should also
be able to handle these situations.

One of the earliest indications that certain nonlinear partial differential equa-
tions of evolution type might have special properties arose with the discovery of
an infinite set of conservation laws for the Korteweg—de Vries (KdV) equation.
These conservation laws implied that the flow was constrained by an infinite set
of symmetries to be on a restricted manifold in the phase space. The existence
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of the infinite set of conservation laws persuaded Gardner, Greene, Kruskal, and
Miura (3] to look for a simple way of generating the conserved quantities. This
in turn led to the Miura-Gardner one parameter family of Bicklund transforma-
tions between the solutions of KdV and of the modified KdV equation. From this
the Lax pair was found, the inverse scattering transform for directly linearizing
the equation was developed and the rest, as they say, is history. It even turned
out that the KAV equation could be written in Hamiltonian form [4, 5] and that
the inverse scattering transform was a canonical transformation to action-angle
variables [4]. In a very real sense, the integration of the KdV equation by IST
was the infinite dimensional analogue of Arnol’d-Liouville integrability. While
the existence of the infinite set of conservation laws was an important link in
the chain of discoveries (the fact that there might be hidden symmetries in this
equation was suggested by the discovery of Kruskal and Zabusky [6] of the re-
markable soliton interaction properties), it was the discovery of the Bicklund
transformation which was the key step because it suggested the possibility of an
algorithmic approach to check a given equation for symmetries. '

Indeed, the nonexistence of an infinite number of conservation laws does not
preclude integrability. There are equations which only have a finite number of
conservation laws, which are not Hamiltonian, which are in fact dissipative, and
which also can be directly integrated. The most notable of these is the Burgers
equation which has only one conservation law, although an infinite number of
symmetries. It can be integrated by directly transforming it to the linear heat
equation. Again the transformation can be considered to be a one parameter
family of Bicklund transformation between solutions of the heat and Burgers
equations.

Our philosophy then is that one parameter Biicklund transformations are the
main step to uncovering a given equation’s integrability properties. These trans-
formations occur between solutions of different equations or between solutions
of the same equation. In the latter cases one appends the adjective auto. They can
also be used to build multiparameter general solutions from simple ones. Each
application of the transformation enriches the solution by adding new structure
and one new parameter. This ladder process is the superposition principle of
nonlinear equations and it suggests a definition of integrability which is entirely
local. An infinite dimensional system (a PDE) is integrable if one can build an
n-phase solution with n undetermined constants. A new constant is added on
each application of the transformation. We emphasize for PDEs that a definition
of integrability which is purely local in the independent variables is most impor-
tant. It is simply not possible to decide in general whether evolution equations,
posed as initial-boundary value problems (e.g., initial value in ¢, boundary value
in z) are integrable, because the boundary conditions place such constraints,
that a general solution constructed using a superposition principle may not be
possible. For example, on the infinite line with the dependent variable ¢(z,t)
belonging to the class of function [(1 + z2)|g(z)| dz < co, the KAV equation is
an exactly integrable Hamiltonian system. But how about the half line problem
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or the problems on finite intervals? Even though well posed, the dynamics may
prove to be irregular in a “deterministic chaos™ sense.

What ingredients should a successful algorithm for testing have? It should
be compatible with the intuitive notions of regular and irregular flow discussed
above. It should also be able to place in the integrable class all those systems
whose general solutions exhibit regularity. In addition, we would like the method
to make contact with exactly solvable models which arise in other areas of physics
(e.g., the two-dimensional Ising model) but which are not evolution equations
at all. The purpose of this paper is to suggest that the Painlevé algorithm is one
of the most powerful for identifying integrable systems, although we emphasize
that there is no proof that all these goals are achieved. Nevertheless, despite a
few failures, mostly of pathological type, it has had some spectacular successes
and has identified and provided the means to solve several systems about which
nothing was previously known. (One of its successful applications, reproduced
in Sect. 4, displayed, in a period of ten minutes during a lecture by Mikhailov,
the Lax pair for a system that the Mikhailov—Shabat method had deemed should
be integrable.)

The Painlevé method can be applied to systems of ordinary and partial dif-
ferential equations alike. We will describe its application in detail in the follow-
ing sections. Here we will simply point out the salient features, ask how this
method makes contact with the other schemes (Zakharov-Schulman, Wahlquist—
Estabrook, Mikhailov—Shabat: see other chapters in this volume for descriptions)
for uncovering the integrable character of equations, conjecture about the prop-
erties of solutions of exactly solvable systems which are not evolution equations,
and finally, point out how the Painlevé method can be used to understand some-
thing about the behavior of nonintegrable systems of a certain type.

The basic idea is to expand each dependent variable in the system of equations
as a Laurent series about a pole manifold. If the equations are a set of ODEs
then this simply means that one looks for solutions as Laurent series in the
complex time variables ¢ — #p. In order that the equations for the coefficients
of the various powers of (¢ — to) in the Laurent expansion have self-consistent
solutions, certain conditions on the structure of the given system of equations are
required, If the system satisfies these conditions and the number of undetermined
constants appearing in the Laurent series together with &, is equal to the order of
the system of equations, then we say that the solution has the Painlevé property.
A slight extension of these ideas and definitions, which will be described shortly,
is needed when one is dealing with sets of partial differential equations with at
least two independent variables.

The point is that in order for the general solution of a given equation to
have a Laurent expansion about some pole in the space of complex independent
variables, the equation has to have special properties. Indeed, most of the sys-
tems which are known to be integrable in the Arnol’d-Liouville sense have the
Painlevé property and, in fact, Kovalevskaya [7) used this idea to construct the
third exactly integrable model of rigid-body motion, for the top with the particu-
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lar ratios of moments of inertia which now bears her name. A more appropriate
name for the method would be, therefore, the Kovalevskaya method. Painlevé’s
name is attached because, a little later, he asked a related question; What is the
set of second order equations y" = R(y, y',t) with R rational in y, g[ and analytic
in ¢ which has the property that the location of any algebraic, logarithmic, or es-
sential singularities is independent of the initial conditions? This property means
that only the location of the poles (to) can depend on the arbitrary constants
of integration. The set of equations which possess this property was reducible
either to a set of known equations which were linear, or could be integrated by
quadratures, or to a sextet of new equations, the so-called Painlevé equations I,
11, I, IV, V, VI, the solutions of which are known as Painlevé transcendents.

Let us now list some of the advantages of the method. The first is that when
a system has the Painlevé property, one is led naturally to a Bicklund transfor-
mation, the Lax Pair and the Hirota bilinear formulation. A second advantage is
that the ideas make contact with exactly solvable models in other branches of
physics. A discovery of the past ten years has been that there is a connection
between exactly solvable models in statistical mechanics and exactly integrable
PDEs. The earliest example of this connection is that the n-point correlation
functions of the two-dimensional Ising model in the scaling limit satisfy partial
differential equations which are exactly integrable in the local sense described
above. Other exactly solvable models in one-dimensional quantum field theory
also have this property. Because of this link, one is tempted to ask whether there
is a distinction between solvable and unsolvable models in statistical mechanics,
other than nobody smart enough has yet managed to write down closed form
solutions. In other words, is there an analogue in statistical mechanics and quan-
tum field theory to the intrinsically nature of solutions of perturbed integrable
systems? If there is, what constitutes an irregular flow in the statistical mechanics
context? One possible answer and point of contact with differential equations is
that the calculated solutions, the free energy and the correlation functions, may
have extremely complicated singularity structures in the complexified space of
the independent variables, namely the separation vectors describing the relative
geometry of the points involved in the correlation and the Boltzmann weights.
The Boltzmann weights are the parameters which weight the various site-site
interactions in the original Hamiltonian. If these singularity structures are close
to the real axes, then one might find that the calculated functions are very com-
plicated functions of the arguments. In order to test some of these ideas, it would
be a valuable exercise to see whether the Yang—Baxter or Star-Triangle relations,
which guarantee that there exists a one parameter family of commuting transfer
matrices for a given model, can be related to the Painlevé conditions that the
differential equations describing the correlation functions must satisfy.

A third advantage of the method is that it can reveal some of the geometric
and algebraic structure that underlies many integrable equations. For example,
factorization in Lie groups is now understood to provide a uniform approach to
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many soliton equations, and in some test cases the Painlev€ analysis has identified
both the Lie group and aspects of the geometric setting for factorization problems.

A fourth advantage of the method is that it can uncover information about
nonintegrable systems. The movable singularities of these systems are, typically, -
complicated branch points. These appear to cluster recursively, leading to an
overall singularity distribution of pathological complexity. Despite this complex-
ity, a “rescaling” technique can sometimes be used to map the problem onto an
“underlying” integrable part. This enables one to obtain an accurate picture of
the singularity pattern and even, in certain cases, identify integrals of motion that
may still exist.

It should be clear to the reader at this stage that a comprehensive definition of
an algorithm for testing integrability is still an open challenge. In this article we
focus attention on the Painlevé method whose advantages we have mentioned.
However, we also emphasize that other methods are available. Each has had its
successes and its failures. What is remarkable is that, on the surface, each of these
methods looks so different. The Wahlquist-Estabrook method is based on the
notion that in order to be integrable the given system should be the compatibility
equation for a one (nontrivial) parameter system of linear equations (the Lax
pair). This idea reminds one of the ideas of Baxter that in order to find solvable
systems in statistical mechanics, one should construct a one parameter family
of commuting transfer matrices. The Zakharov—Schulman method appears to be
very different indeed. They rewrite the PDE of interest in Fourier coordinates as
if they consider the system to have weak nonlinear couplings. The existence of
an infinite set of motion invariants is then related to properties of the coefficients
multiplying products of the Fourier amplitudes in the integrand of the convolution
integrals which are the transforms of the nonlinear terms in the equations. These
coefficients should have the property that the effects of small denominators,
which arise in a Birkhoff expansion due to wave-wave resonances, are canceled.

It is clear that a better understanding of integrability will come not simply
by understanding any one of these methods individually, but by understanding
their interrelation as well. The Painlevé method appears to be able to reconstruct
global properties of the given equation by revealing the behavior of its solutions
near infinity. The Zakharov—-Schulman method, on the other hand, looks in the
neighborhood of the origin. The fact that two different regions in the phase
space can supply global information is, presumably, due to the fact that local
information about analytic constants of motion continues analytically to give
global structure.

The organization of the paper is as follows. In Sect.2, we introduce the
method. In Sects.3 and 4, we introduce two nzw results, the Lax pairs for an
integrable Hénon-Heiles Hamiltonian and for an example of Mikhailov and Sha-
bat. In Sect.5, we summarize some of the results on the KdV hierarchy, the
details of which can be found in [8]. In Sect. 6, we discuss how the Painlevé
analysis can help uncover some of the algebraic structure of the equation system.
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Finally in Sect. 7, we show how Painlevé analysis can be used to “integrate the
nonintegrable”.

2. Introduction to the Method

Weiss, Tabor, and Carnevale (henceforth referred to as WTC) [9] have con-
structed a powerful generalization of the Painlevé test for ordinary differential
equations that is capable of uncovering both the integrable properties of many
nonlinear systems and special classes of solutions of nonintegrable systems. Al-
though originally designed to treat partial differential equations, their method
has turned out to be capable of handling both nonlinear ordinary and partial dif-
ferential equations in a highly unified way. The method involves expanding the
dependent variable in a Laurent series about a singular manifold — the pole man-
ifold — and gives rise to a suggestive and provocative formalism from which one
may deduce Lax pairs and Bicklund transformations. A variety of applications
and extensions of the WTC method have been made in the impressive sequence
of papers by Weiss [10~13], by Tabor and coworkers [14-16] and others. These
papers have clearly demonstrated the effectiveness of the method even if, on
occasion, various transformations and tricks are involved that are motivated by
an a priori knowledge of the answer. Lacking, however, has been a more serious
attempt to gain a deeper insight into how and why the method actually works.
In this paper we report on our efforts in this direction and the relation of the
WTC method to other work on algebraically integrable systems. The ultimate
goal is to show that the generalized Laurent expansions can not only show that
a system is integrable but that the expansions can also be used to provide an
algorithm which successfully captures all its properties; namely, the Lax pairs,
the Bickiund transformations, the Hirota equations, the motion invariants, sym-
metries and commuting flows, the geometrical structure of the phase space and,
finally, the algebraic properties (symmetries) which make the system’s exact
integrability transparent and inevitable.

The novel feature of the WTC approach is the flexibility contained in the
singular manifold function. It is this flexibility that allows the Laurent expansions
to be collapsed into Bicklund transformations which give rise to the Lax pairs —
the heart of a system’s integrability. The Hirota formulation of the equation under
study is also a straightforward consequence. In contrast to this approach, but in
parallel with its goals, there have recently been several valuable investigations,
notably by Adler and van Moerbeke [17, 18], Haine [19], Ercolani and Siggia [20]
which address in depth how the traditional Laurent expansions (i.e., the standard
ODE type) relate to and give information on algebraically completely integrable
systems of ordinary differential equations. In particular, Ercolani and Siggia have
shown for hyperelliptically separable, finite dimensional, Hamiltonian systems
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how the “lowest balance” leads to an algorithm that will, in principle, produce
all the constants of motion.

2.1 The WTC Method for Partial Differential Equations

Let ¢(z, t) satisfy the nonlinear evolution equation

qt=klg,q- ... Q.n
and let
#(z,1)=0 2.2

be the manifold (the “singular” or “pole” manifold) on which ¢(z, ) is singular.
At this stage, ¢ is simply a new coordinate and one wishes to construct a Laurent
expansion for a solution of (2.1) in the neighborhood of its level surfaces, and in
particular ¢ = 0. The basic ideas of the WTC method is to ask that the expansion

0@t = o 3wy, D @3)
2

be single valued. This requires that (i) « is an integer, (ii) ¢ is analytic in z and ¢
and (iii) the equations for the coefficients u; have self-consistent solutions. If all
these conditions are satisfied, (2.3) can be considered to be a Laurent expansion
of the solution in the neighborhood of the singular manifold. We shall say that an
equation whose solutions have this property has the Laurent property. In order
that the solution can be constructed in the neighborhood of (2.2) it is necessary to
stipulate that neither ¢, nor ¢, vanish on ¢(z,t) = 0. This important requirement
corresponds to the demand that the zeros are simple when we use the Implicit
Function Theorem on (2.2) to express z as a function of ¢ [i.e., ¢(z,t) = z — a(t)
on ¢ = 0 such that ¢(a(t),t) = 0]. This condition is satisfied by most, but not
all, points on the pole manifold (2.2). We will discuss later what happens at a
confluence of poles; at this point we simply remark that the WTC method is
also capable of capturing the most singular pole behavior of the system under
investigation.
A specific illustration of the method is provided by the KdV equation

9t +6qq: + 2 =0; (2.4)

direct substitution of the ansatz (2.3) into (2.4) quickly shows that the leading
order is o = 2 and that up = —2¢>§. At this point we remark that for equations
with stronger nonlinearities, such as higher members of the KdV hierarchy, one
may find a number of different leading orders — which we term branches (or
balances) — and each will lead to a separate Laurent expansion which must be
tested for single-valuedness. Continuing the analysis for (2.4) we find a set of
recursion relations for the u; of the form
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G+1G -G —6)u;j = Fi(ds, bz, ..., uis k< 35) . @3

We note that the left-hand side of (2.5) vanishes at j = —1, 4 and 6. These values
- of j are called resonances. At each such resonance, consistency demands that
the right-hand side of (2.5) vanish, thereby ensuring the indeterminacy of the
corresponding u ;. (The resonance at j = —1 corresponds to the arbitrariness of
 itself.) What does it mean for u; to be indeterminate? If we were dealing with
a system of ODE and ¢ were simply z — zo, then the undetermined functions
would be constants. If, in a PDE, ¢ were z — a(t), then the u; could also be
t-dependent but would not depend on z — a(t). Similarly, for a general ¢, the
undetermined functions are independent of ¢.

If the equations for the “resonant” u; are not consistent, we have to introduce
terms of the type ¢/ log ¢ into the series (2.3) thereby rendering it a multival-
ued psi-series. In general the number of positive resonances depends on both
the shape of k[q,q., ...} and the branch. The branch with most positive reso-
nances is termed the “principal” branch and corresponds to the general solution
of (2.1) if it has, in keeping with the Cauchy—Kovalevskaya theorem, as many
undetermined functions as the order of the system. The other, “lower” branches
are sometimes referred to as the singular branches. If all branches of the Laurent
expansion are single valued for arbitrary ¢ and the principal branch has its full
complement of undetermined functions, then we say that (2.1) has the Painlevé
property. Sometimes, if we loosely refer to a particular branch as having the
Painlevé property, we simply mean it is single valued and has the appropriate
number of undetermined functions (e.g., the principal expansion will have the
full complement).

Referring to the specifics of (2.4) we find that at

§=0: u =242, (2.53)
j=1: uy=2¢,,, (2.5b)
§=2: udi+ 496200 — 365, +643u2 =0, @3c)
J=3: Got+6zauz+ Grree —205u3 =0, (2.5d)
5245 FeBert breee ¥ 6rts ~ 2809) =0, 2.5¢)

which demonstrates that u4 is indeed arbitrary. Further analysis also shows ug
to be arbitrary. Thus the expansion

& o=
9(z,1) = 25— log § + > ujgi=? (2.6)
=2
possesses the Painlevé property as defined by WTC thereby identifying the KdV
equation as integrable. Furthermore, WTC introduced the additional ideas of a

truncated expansion by observing that the expansion (2.6) can be consistently
truncated at O(¢°) by

Integrability 83

(i) setting the arbitrary functions u4 and ug equal to zero,
(ii) requiring that us = 0.

This results in the following system of equations:

gz, t) = 23—2 logé+uz, (2.72)
oz?

By — 342, +4628.0: +6uzgt =0, (2.7b)

bzt + Prrze +6up =0, 2.7¢)

gy + Guguips + Uzpze =0 . .7d)

Because u; satisfies the KdV equation, (2.7a) is an auto-Bécklund transformation.
The remaining three equations (2.7b-d) are an overdetermined system for the two
variables ¢(z,t) and uz(z,t). However, this system is entirely self-consistent,
with (2.7d) being the solvability condition for (2.7b) and (2.7¢), which are found,
after a certain transformation, to be precisely the Lax pair for the KdV equation
(2.7d). Thus the truncated expansion (2.7a) is an auto-Bicklund transformation
for the solutions of (2.4). The key to the success of the WTC procedure, therefore,
is that the flexibility in ¢ allows one to collapse an infinite Laurent series in
z — a(t), or some other 5 with the same zero manifold as ¢, to a Bicklund
transformation.
To demonstrate this explicitly, consider

z - _ 2
gt +6qqz + qrzz = { (%) + (6¢%, — 86r0zz — 12uds,)
t

¢ ¢
+———-—-————(2¢”” ;12u¢”) }I +ug+6uuy + Uz, (2.8)
where we have set us = u. On making the substitution
¢ =9*, 29)

(2.8) becomes

&

2 x
g+ 694z + Gzss = {—‘-‘fz— / Wb+ s + 60t + ) do +

X [(¢, +44)p 00 + 6u, +3u,y) - 3¢ (% + u> ] }
+u + Uty + Uzzg o
from which one deduces the Lax pair
Yoz + (A +ulz, )¢ =0, (2.10a)
e+ 4thpes +6upz +3uzyp =0 (2.10b)
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2.2 The WTC Method for Ordinary Differential Equations

Now consider the stationary version of (2.4), namely the ordinary differential
equation

gzz +3¢° =0 2.11)

which can be integrated in terms of Weierstrass elliptic functions. Equation (2.11)
is easily shown to have the Painlevé property for ODEs and possesses the Laurent
expansion (about some movable pole at z = z¢)

IR SRR PR '
Q(m)_(m—zo)zgq’(z ;o) , (2.12)

with resonances at -1 and 6 (i.e., g¢ and zg are the arbitrary constants). We now
generalize the above Laurent series to an expansion in terms of some singular
manifold function ¢(z), namely,

1= S u @.13)
j=0

where the uj(z) are certain functions analytic in the neighborhood of the singular
manifold ¢(z) = O which are nonzero on ¢ = 0. It is assumed that ¢, # 0 on
the manifold. Clearly the choice ¢(z) = z — z¢ enables us to reclaim the original
Laurent series (2.12).

Substitution of the ansatz (2.13) into (2.11) leads to an analysis that is, bar
the t-dependent terms, identical to that just carried out for the KdV equation.
Working with the truncated expansion

o2
q =26—;2 log ¢ + u2 (2.14)
and the squared eigenfunction relation ¢, = 1? leads to
i W T

9rz + 3q = "'7 1!"[41/’::: + 6“2"!’2 + 3“2:¢] dr

P 2 e+ Suave 4 3uac) -39 (B2 4n)

¢ 14 z
+uggp +3ub . (2.15)

However, as it stands, the system of equations that one would obtain by setting
each order of ¢ to zero, i.e.,

Yoz twap = Ay, (2.16a)
Mpyze +6uph + 3uz, =0, (2.16b)
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where
g +3ui=0 (2.16¢)

although self-consistent, is not sufficiently general to supply the ingredients
through which (2.16c) can be integrated.

The crucial point is that the original WTC prescription of setting each order
of ¢ equal to zero is too restrictive. Rather, one should think of each order of ¢
being zero modulo some function of ¢ which tends to zero as ¢ does. In this way
the addition and subtraction of judiciously chosen quantities at various orders
of ¢ can considerably strengthen the power of the method. For example, the
correct Lax pair for (2.16¢) requires the addition of the term yy on the right-
hand side of (2.16b). The presence of such a term is not surprising because if
we think of uz(z) in (2.16¢) as the t-dependent limit of the u; in (2.7c) and
(2.10), then we can also argue that the corresponding y(z, t; A) can be separated
as ¥ (z; A) exp(yt). In order to add this second free parameter y into the Lax pair
of the stationary equation, we observe that we can

(i) add an amount 4¢, ¢y at =2 and
(ii) subtract the identical amount 4¢,y at order ¢,

Since ¢ = [* *dz, this modifies (2.15) to

i W] T _
Gzz + 3q = ¢2 ¢(4'¢':xz + 6u2¢z + 3”21¢ y¢') dz

s i} {(4«/),,, + 6uzps + uzatp — y) — 3y (%}— N uz) }
Fupg, +3ud . (2.17)

Equating the coefficients of powers of ¢ to zero yields the correct Lax pair
Yz HUh = AP, (2.18a)

dipog + 6uztps +3uz. 9 = yY. (2.18b)

In the next two subsections, we treat an integrable version of the Hénon-Heiles
Hamiltonian and all the stationary equations for the KdV hierarchy using the
same ideas. The Hénon—Heiles example is noteworthy because, before being
treated by the WTC method, the Lax pair was not known.

In all these examples our modification of the WTC method has involved the
incorporation of the extra free parameter which enables us to obtain Lax pairs
and auto-Bécklund transformations. In [21] we give a more detailed investigation
of our modified procedure for ODEs and show, among other things, that it can
also be used to obtain Bicklund transformations between different equations and
consequently as a technique for finding a variety of nontrivial special solutions.
In [21], we treat the Painlevé second and fourth equations in some detail.
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The results obtained by means of the WTC procedure, both for PDEs (pre-
vious subsection) and ODEs (this subsection) naturally give rise to a number of
questions, including:

(i) What is the nature of the function ¢ associated with the “truncated expan-
sion” and what is its relation to the eigenfunction of the Lax pair, its role in
Biicklund transformations and in helping to uncover the Hirota formulation
for the given equation?

(ii) What is the relation between the truncated and nontruncated expansions?

(iii) What information do the Painlevé expansions for the other balances contain?
(iv) How general is the WTC procedure and how might it be used in noninte-
grable situations?

A summary of comments on these questions and an outline of the rest of the
paper is now given in Sects.2.3-5.

2.3 The Nature of ¢

We begin by considering the nature of the WTC function ¢(z,t). As mentioned
briefly, the ¢(z,t) that appears in the infinite Laurent series (2.3, 6) is simply a
new coordinate [one might think of it as ¢ — a(t)] in the space of independent
variables and the expansions (2.3,6) are Laurent series in the new variable.
Provided they converge in some neighborhood of ¢ = 0 and satisfy the Painlevé
property defined in the paragraph before (2.5), any choice of this function will
lead to a solution of the PDE with as many free parameters as there are resonances
— just as (2.12) is a Laurent expansion for an exact solution of the ODE (2.11).
On the other hand, the ¢ associated with the truncated expansion, namely, the ¢
appearing in (2.7a) which satisfies the overdetermined system of (2.7b—d) is not
arbitrary at all but a very special function indeed. For the following discussion,
let us designate this as . It will have the same zero manifold as the arbitrary
¢ which appears in (2.3,6); ¢ will be zero on ¢ = 0 and will have the same
properties on its derivatives, i.e., ¢, ¢; are nonzero on ¢ = 0. It is this ¢ which
we now discuss.
A valuable context for this discussion is the KdV hierarchy,

0 v
Qtgnp = "a':ZL q, 2.19)

where

1 & 1 f
L= 3pa vy [dee,

for which (2.4) with ¢3 = 4t is the first nontrivial member. In Sect.3 of [8] we
see that the truncated expansion (2.7a) is an auto-Bicklund transformation for
any member of this hierarchy and furthermore prove (and not simply assume)
that the principal Painlevé expansion can indeed be self-consistently truncated
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in this manner for each member of the family (2.19). Since all the flows of this
family commute, we can think of g, uz, and ¢ in (2.7a) as functions of all the
flow times &1 = z,%3,15, ..., t2ns1, . -. . NOW, it is well-known [22-24] that all
solutions of the KdV hierarchy can be characterized in terms of a single function,
the Hirota r-function, which is related to a solution gz, t21) as follows:

o
q(z, 13, .oy t2nel, -0 ) = ZEL‘-Z- InT(z, ..., tansl, -+ 1) (2.20)

Indeed, it can be shown that

Ltq=2 Inr(z, ..., tan+t, -+ 0) - 2.21)

Ox at2n+l

The conservation laws for the t3,41 flow are conveniently written as

o #lnr 0 Flnr

_— e 2.22)
Otans1 Ot18taj Ot Ot20n0t2jm

(with ¢; = ), thus identifying the conserved densities and fluxes of the (2n+1)st
flow as

o
12l =2———1n 223
Cajs1znn =2 Bt:10t2,01 T, ( )

&

Bjngnn =20—=—
7 Otans10t2511

j=1,2, ..., respectively [24]. It is shown in [23] that C2j41 2041 aDA F2j41 2041
can be written as local expressions in ¢ and its z derivatives. In short, every
property of a common solution of every member of the KdV hierarchy can be
deduced from a single 7 function.

With these preliminary remarks, we now come to the main points. Denoting
the = function of the solutions ¢ and u as 7, and 7, respectively, we see that
candidates for the pole function ¢(z,t3, ..., t2a41, ...) in a truncated Painlevé
expansion are simply the ratios of two 7 functions, i.e.,

Int, (2.24)

)= Tq(x, veoy t2net, )

Bz, ..., tansl, -20) = 225

¢(z, 1 2y Tu(z’ ey t2n+la .. ) ’ ( )
with the additional property that the zero manifold

Mz, ..., tanst, ..)=0 (2.26)
is a manifold on which.g(z, ..., tan41, . ..) has pole singularities and u(z, ...,

tans1, - -) does not. Equivalently, it is the manifold on which 7, has zeros but
on which 7, does not vanish. Note that whereas & is a special function, it can
have many degrees of freedom. All it must be is a ratio of two legitimate 7
functions. We have scen already that it is related to the squared eigenfunctions
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with arbitrary X of the scattering problem (2.10a) associated with the KdV family
and will shortly explain that this connection is general.

The idea of thinking of the § function as a ratio of = functions is very
useful. We know that the 7 function is the building block from which the most
general solutions of the family of integrable equations is obtained. One begins,
in general, with the simplest 7, namely, = 1, and by applying a sequence of
group operations from a certain infinite-dimensional symmetry group, one can
build arbitrarily complicated solutions. Some group elements are exponentials
of an operator X, called the vertex operator, which depends on z,ts3, ... and
arbitrary parameters A;,j = 1,2, ... [for the KdV hierarchy there is only one;
for the Kadomtsev—Petviashvili (KP) hierarchy, there are two] such that

Thew = chold . 227

Equation (2.27) is an auto-Bécklund transformation in the r-function framework.
The new 7 function may be richer than the old one and contains new zeros
which the old one does not. We might ask: can we factor 7w algebraically,
into a product ¢ times 7,4 SO that 5 contains all the information about this new
zero of 7w? We have seen that this is indeed possible. Not only is ¢ a ratio
of legitimate T functions but one now can also interpret @(z,t3,ts, ...; A) as
a characteristic value of the exponential of the vertex operator X(z,?3, ...; A)
acting on the space of r functions.

Further, we see that if 7qq = 1, then q_S is the new 7 function and as such
will satisfy the Hirota equations. Therefore, if one simply truncates the principal
Painlevé series at the level of ¢~! instead of the level ¢°, @ will satisfy the
Hirota equations. Thus the Hirota equations are a natural consequence of the
WTC formalism.

The connection of the ¢ function with the r-function formulation of the
integrable family carries over to those situations where the 7 functions also
depends on a discrete parameter. In the AKNS system, three functions r(¢, —1),
r(t,. Q), and 7(¢,1) are particularly important. The function r(¢,0) is $ and the
auxiliary ones are the leading coefficients in the truncation principal Painlevé
expansions for the dependent variables.

Finally, we turn to the squared eigenfunction substitution (2.9). It turns out
that this choice is entirely natural and not a fluke peculiar to the KdV equation.
Observe that in the truncated expansion the coefficient u; of ¢~ will satisfy the
linearized equation, which, when linearized about the solution u(z, t), is

ue = kyur (2.28)

where k, is the variational derivative of the functional k[u, u, ...] with respect
to u. Therefore, u; embodies the symmetries of (2.4) and we know from previ-
ous work [24] how these symmetries relate to the “squared eigenfunctions” of
tlfc associated linear Lax equations. In particular the symmetries for the KdV
hierarchy are generated by the x derivatives of the squared eigenfunctions, i.e.,
u; « ($?),. But u; = 24,, (for all members of the hierarchy) and hence we
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can make the identification ¢, = 2. Therefore we expect that in every exactly
integrable situation, the coefficients of #~! in the expansions for the dependent
variables will be related to new functions, which are the “square” (in general
they are appropriate quadratic combinations) of the functions which satisfy the
Lax equations. We have shown explicitly [8] that this is indeed the case for not
only the KAV hierarchy but also for the AKNS hierarchy and the Hénon-Heiles
system. In fact it is true for all the other equations (Kadomtsev—Petviashvili,
Boussinesq, sine-Gordon, etc.) which were tested in the original WTC paper [91.

In this subsection we have used the notation ¢ to distinguish explicitly the
singular manifold function in the truncated expansions from the ¢ used in the
infinite Laurent series. In subsequent sections, however, the overbar is omitted
since this distinction should now be self-evident.

2.4 Truncated Versus Non-truncated Expansions

Given that a series has the Laurent property, let us enumerate the various sce-
narios which can occur.

() The system has the Painlevé property and the truncated expansion yields
a self-consistent overdetermined system of equations for which there is a
one parameter family of ¢(z,?; A), ie., (2.7a) is a general auto-Bicklund
transformation. The KdV and AKNS hierarchies are obvious examples of
this case.

(ii) The system has the Painlevé property but the truncated expansion does not
appear to yield a one parameter family of auto-Bécklund transformations
(c.g., the modified KdV and sine-Gordon equations [9D. This can indicate
that the equation of interest is a reduction of some “larger” integrable system
(e.g., the MKdV or sine-Gordon equations can be written as a system in the
AKNS hierarchy) and whereas it is possible to introduce the free parameter,
in general it will require some ingenuity. However, in some cases, e.g., the
first Painlevé transcendent, although the equation has the Painlevé property,
truncation at O(¢°) does not yield any form of Bicklund transformation
because it is clear from the form of the equation that truncation at this level
is inappropriate. Whether there exists a self-consistent truncation at a higher
level has yet to be determined.

(iii) The system does not have the Painlevé property and does not even have
the Laurent property for arbitrary ¢. However, for certain choices of ¢,
the Laurent property can be restored. Weiss has called this the “conditional
Painlevé property” [25]. In these cases we could have also attempted to find
a self-consistent system of equations by truncating the Laurent expansion
at O(¢°) without regard to whether the system actually has the Laurent
property. It turns out that solutions ¢ (to the truncated system) will be a
subset of those ¢’s which guarantee the conditional Painlevé property of
the full expansion. Using such techniques one can find interesting solutions
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to nonintegrable equations (e.g., double sine-Gordon [25] and Ginzburg-
Landau equations [26]).

(iv) The incorrigibles. The system never satisfies the Painlevé or conditional
Painlevé property for any choice of nontrivial ¢. Even in these cases, how-
ever, analysis of the associated psi-series can still yield valuable insights
[27].

Therefore, although we will only be discussing the WTC method in the
context of classes (i) and (iv) in this paper, it is worth emphasizing that the
power of the method goes well beyond integrable systems.

3. The Integrable Hénon-Heiles System: A New Result

The generalized Hénon—Heiles Hamiltonian
H =3} + 7} + Agl + Bg)) + Daigs + Cqi

has been shown to pass the Painlevé test for ODEs for four special sets of
parameters (A4, B, C, D) [28]. One may again enquire as to whether the WTC
approach can yield further information about the solutions of these systems. This
has already been investigated by Weiss [29] who has derived certain specialized
Biicklund transformations for these cases (as well as an interesting formulation
in terms of Schwarzian derivatives). For one of these integrable cases we are
now able to show, using the ideas described in the introduction, how to derive
the associated Lax pair, integrals of motion, and algebraic curve.

3.1 The Lax Pair

The system considered here is governed by the integrable Hamiltonian

H=ip+p+iag+d 3.1)
with the canonical symplectic form Ef,, dp; A dg;. (The quadratic potential en-
ergy terms of the general Hamiltonian may be dropped without loss of generality.)
The equations of motion for ¢q; and ¢, are

Qe = -3¢} - 14}, (32

Qi = —Q192 . 3.3
Expanding both ¢; and ¢, about the same singular manifold ¢(t) =0, i.e.,

l oo . o0 .
n0=5 08, a0=2> v, (34)
0 ¢ =
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it is easy to show that there are two possible balances. They are:

@: a=-2, B=-1,

Up = —2¢%a

vo = undetermined at leading order, with resonances at —1, 1, 4, 6;
): a=-2, B=-2,

uo = —6¢%, v = £12i47,

with resonances at —3,~-1,6,8.

Although much valuable information can be extracted from the singular
branch, i.e., case (ii) (see the discussion in Ercolani and Siggia [20]), we shall
work with the principal branch in order to obtain the Lax pair.

The truncated expansions

q1=ﬂ+ﬂ+uz, q2=v7(;+v] (3.5)

$* ¢
are substituted into the equations of motion (3.2, 3) yielding an over-determined
system of equations for the five functions w1, uz, vo, v1, ¢. We will now demon-
strate that this system is self-consistent. The equations are

¢~ : 204} +uoro =0, (3.6)
u = 2¢u y (3-7)

¢_2 1 = 2¢v0e + Puvo = 20 ¢% s (3.8)
— B Bare + 6% — 120267 + 3v) = dydy 3.9

67" ¢ vy + voug +2¢4v1 =0, (3.10)
20410t + 12updee + vive = —4y ¢y, 3.11

¢ uz = —3ul — 3ot (3.12)
Vi = —V1U2 . (3.13)

Note that in keeping with the ideas introduced earlier, we have added in a term
—4y¢g, to the coefficient at $~2 and subtracted —4y¢, in the coefficient at
¢~! which gives an extra free parameter y. The first equation in the sequence
is automatically satisfied. Dividing (3.9) by —¢, differentiating and subtracting
(3.11) gives

¢ttt ’ 1 ¢%t )
6(—-———+2u =0 (3.14)
b 28 )
or
bue 1Ok o _
¢¢ —2¢% +2us 2\ .
This equation can be linearized by setting
¢ =97, (3.15)
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whence

Y+ (uz+ NP =0. (3.16)
Differentiating (3.15) three times, substituting into (3.11) gives

2htpese + 6ethes + 6uzthee + Jvov + 2y =0 317
which, using (3.16), can be rewritten as

Apihyee + 6uaphy + 3P uze + Juomy +y9p? = 0. (3.18)

But, integrating (3.8) and using (3.15), gives

t
vo=—¢/v1¢dt,

and therefore we find

t

1
b =~ = Guaty = Buaep + g [t (3.19)

The integrability condition for (3.16, 19) is simply the equation set (3.12,13).
The Hirota equations for (3.2,3) follow immediately by truncating the Laurent
series at ¢_y. Setting q1 = 2d2Ing/dt?, ¢ = —p/¢ (remember [yudt is a
constant when v = 0 ) we obtain

D:d’ <O =Pt — 4P1brre + 3y = ,lg'¢‘2 and D%¢ =0, (3.20)

In summary then, vy and u; are given by (3.19) and (3.7), and the three
remaining functions uz, vy, and 3 (or ¢) satisfy the four mutually consistent
equations (3.12, 13, 16, 20), the first two of which contain the arbitrary parameters
A and y, respectively. The reader should check that the solvability for (3.16, 20)
is the equation pair (3.12, 13). The operator appearing in (3.20), which takes the
form (with u3 = u, v; = v)

L=-4D% -3(uD+Du)+ vD v,
appears to be associated with the loop algebra of A§2). It would be interesting to
determine which family of partial differential equations contains (3.12,13) as a
stationary equation.
3.2 The Algebraic Curve and Integration of the Equations of Motion

Having identified the Bicklund transformation

q,=2g51n¢+u, =——%/z[;vdt+v (321)
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(where we have set u = up and v = v1) which relates solutions (3.2,3) and
(3.12, 13) and having identified the Lax pair for these equations, we now turn 1o
their explicit integration. It is convenient to rewrite (3.16, 19) in system form as

W,=PW, y\W=0QW, (3.22)
with
” 0 1
w=(s): 2=(Llu o)
v ¢ (323)

_ Aug + %vv, 402 —2)\u — %vz
Q= —4)3 ~ 202y - Mu? + %vz) + %v% —Aug — %vv, ’

The solvability condition of (3.22) is
Q:=[P,Q], (3.24)

which, when written in component form, gives (3.12, 13). Further, if W is a fun-
damental solution matrix of (3.22), then the solution of (3.24) can be conveniently
written as

Q=WQw™", 325

with Qo independent of ¢. As a consequence of (3.25), the characteristic polyno-
mial of @:

det(@ —yAD =0, (3.26)

which is the condition that (3.22) has a nontrivial solution, is independent of ¢.
In terms of y, A, v and u, (3.26) is the algebraic curve

Ayt = 1605 +2HA + G, ' (3.27)
where
H=1@t+vd)+ Juv?+o? (3.28)

is the Hamiltonian (3.1) written in the canonically conjugate coordinate pairs u,
U=u;and v, V = v, and

G =1+ 1)+ VU - uV). (3.29)

Because (3.27) is independent of time, we can identify G as the second constant
of the motion for the flow (3.12, 13) generated by the Hamiltonian H. G and H
are in involution under the canonical Poisson bracket
909G  0GOH _9GOH _ 3G oH
8V dv OU du Bv 3V BudU’
The choice of auxiliary variables which leads to the identification of the angle
variables corresponding to the actions H and G is most conveniently made by

(G, H} = (3.30)
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using the matrix from the Lax equation (3.24). The new variables are py, u»
given by

ptm=3u, mp=—-f?, (3.31)
the zeros of the (1,2) element e = 43 — 2)\u — v*/4 in Q [24]. The reason this
choice separates the equations of motion can be seen by computing p;¢, 2 = 1,2
from the (1,2) element e; = —2h in (3.24) where h = Au; + vv, /4. Estimating
this equation at A = pu gives

A — p2) = —2hO) = py) = —24/— det Qan) -

Hence
e 21 3.32
VEu) 2m-—pm’ G-32)
RO\ =—16)5+2H)X* + G, (3.33)
and similarly
i 11
VR  2m—pe’ (3:34)

The reader can also verify that the choice of variables up,uz separates the
Hamilton-Jacobi equation and gives (3.32, 34). We recommend strongly that the
reader consult the work of Ercolani and Siggia [20] on these ideas. We can also
directly calculate the equations for y),, uz, where 7 is the time parameter of
the flow generated by taking G as Hamiltonian. Concretely, by writing down the
equation of motion, we find by using (3.30) that

V= 4 1
= ;(l‘lr +uyr), U= _m(ﬂlrﬂl + papi2e) .

Slszstituting 1;, 11,2 U and V into H and G and calculating R(u;) — R(uz) gives
pie(n — papy® = 13 (1 — o) uy® which separates to give

Blr M2
VR -’ (3.35)
H2r H1 '
VR - (3.36)
Hence

pdp | padp

1
=—dr and —— = —dt
VER(@)  VR(w) W) VR 27
equations which can be directly integrated to give

H#1 Ha

1=/ dji +/ dpz = —7 +const (3.37
A vﬁimi A \/Rz#25 ’ 378)

<
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[233 B2
pdp podpa 1
= [ et = —t +const , (3.37b)
¢ ;[\/Rimi J VER(2) 2 :

The first equality sign in (3.37) provides a map &, called the Abel map, from
the old coordinates to ¢y, ¢2, which live on its Jacobi variety. The map & takes
C?/P; (P, is the permutation group on two symbols; p) and p, are complex
but it is only symmetric functions which count) onto C?/A where A is the
lattice in C? spanned by the vectors corresponding to the integration of the
holomorphic differentials du//R(p) and pdpu/+/R(1) about the independent
cycles associated with a Riemann surface of genus two. Namely, given py, 2, the
point ¢;, ¢, is only determined up to its position within a lattice parallelogram.
From the second half of the equations (3.37), we note that ¢; and ¢, are linear
functions of the flow times ¢ and 7 of the two commuting flows generated by
H and G, respectively. In [8], we have carried out the integration in detail
and express the solutions in terms of the Riemann theta function. At this point,
we want to address another matter, the form of the principal polar part of the
Painlevé expansions for u(¢, 7) and v(t, 7). Since we will be discussing poles of
the solutions g1, g Or u, v, we will be interested in points on the Riemann surface
(3.33) where either 1, 2, or both, take on infinite values. Fixing one of the p’s
at infinity corresponds to a surface (here a curve) of dimension one (genus minus
one) on the Jacobi variety. Such a surface is called a theta divisor. On this divisor
there may be a point at which two u’s, u1 and p, become infinite. As we will see,
near these multiple poles, the principal Painlevé expansion must be re-expanded
because it will turn out that on the pole manifold ¢(t,7) = 0, ¢, is also zero and
therefore the expansion is invalid. This re-expansion of the principal expansion in
the neighborhood of a pole coalescence leads to the singular branch. Because the
expansions correspond to a situation in which two of the u’s are fixed, we expect
the resulting singular Painlevé expansion to have one less arbitrary constant.

3.3 The Role of the Rational Solutions in the Painlevé Expansions

We have already noted that the Painlevé expansions (3.4) for (3.2, 3) has two
branches with leading order (¢~2) behaviors

¢
q1=—2(—ﬁ3+.‘., @=0+..., (3.38a)
2 12i4?

q1=—6§s—;—+..., @g==x + ... (3.38b)

In each case, we assume that we are expanding about a ¢ with the property

that ¢, is nonzero on the pole manifold ¢(t,7) = 0. It may also be verified that
solutions of (3.2,3) rational in ¢ are (up to translation in t)

*
a1 =255l0g¢, 18 =que -3¢, (339)
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wits {3) ¢ =t and (b) ¢ = t> + 67. Specifically, in these cases,

2
==, =0, (4.40a)
_ 6t —127) o M2
" rery 0 BT Rer (400

Each of these rational solutions also satisfies the commuting flow generated by
G. "Y'= have also learned that (3.2, 3) are separated by the transformation (3.31).

CEAmt ), G =—16pp, | (3.40c)

ans .= equations for the u’s are given in (3.37). Let us study these two cases. In
el r rase wé need to know how to expand the integrals in (3.37) about gy = oco.
£ ‘itz calculation shows that

o n—-3/2
patde 1w 341
. VR T Hn 32 @41
Fre {3.37b), we find that
1
B~ =, (3.42)

where we have incorporated into ¢ (by translation) the constant term in (3.37b)
find Fhe integral from oo to ¢, the value y; attains as ¢ tends to zero and yy to
infinity. The corresponding principal polar parts of ¢;, g, are

24
=

Observe that the leading order behavior is the rational solution (3.39) with ¢ = ¢.

Now let us mrn to the second case where y; and uy both tend to infinity
at the same point (%o, 7p) in (¢, 7) space (equivalently at the same point on the
theta divisor in the Jacobi variety). Repeating the former calculation, we find that
(3.37) gives

n=-7 (3.43)

i i i i

S t=m=6(r-1), —=+——7m=t—1p. (3.44)
32 3/2 ’ 0 .
1/ F‘z/ #}/2 #;/2

Calculation shows that the corresponding principal polar parts of ¢; and ¢; are
(we translate ¢, T by to, 70)

6t(t3 — 127) 12it

BETEwreE 0 T R

(3.45)
Now in (3.45) we cannot simply re-expand ¢; and ¢; about each of the simple
poles t = (67)!/3 exp[(2s + 1)7i/3], s = 0,1,2 because both t and 7 tend to
zero as p; and yp approach infinity. If we did, we would simply regain. the
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principal polar expansion. However as 7 tends to zero, the three poles [or zeros
of ¢(t,) = t3 +67] coalesce, and at 7 =0 the principal polar parts of ¢ and ¢,
are

6 12i
a=-g, a=fq (3.46)

which is precisely the leading order behavior of the second (and, in this case,
only) singular branch of the Painlevé expansion.

We learn from this illustration that the lower Painlevé branches (in this case
branch) are simply a re-expansion of the principal branch about a location on the
pole manifold ¢ = O (in this case ¢ = 3+67) at which ¢, is zero. What happens at
these points is that the principal branch must be re-expanded in terms of another
candidate for ¢ (in this case ¢ = t) and this re-expansion gives rise to the singular
branches. It turns out that the set of ¢’s which capture in a uniformly valid way
the principal polar parts of the various Painlevé expansions are simply multiples
of the rational solutions, the multiplying functions being analytic functions of
the times which are nonzero on surfaces where the rational solutions have zeros.

4. A Mikhailov and Shabat Example

In the conference at Kiev some years ago, Mikhailov and Shabat challenged the
audience to find the Lax (L, B) pair for the following system of partial differential
equations:

Yo = Tap + (r ¥ 8)er — L(r+8)° (4.1)

st=—Sp +(r+ v+ Lr+s), (42)
or, withr+s=p,r—as=gq,

Pt = gzz ¥ PPz s 4.3)

qt=Pez—Pg: — P /3. (4.4)

These equations belong to the class for which Mikhailov and Shabat knew there
existed an infinite number of conservation laws but for which they were unable
to find the (L, B) pair. The Painlevé method immediately provides the answer.
Let

p=24y, g=2+u, 45)
@ ®

substitute into (4.3,4) and find that up = —6¢,, vg = B, f2 = —12 and

@1 = 3Bpzs +vpz +pp, (4.6)
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4Bprer + 12005, — Blu, + vz)‘Pz +6v,0: = —6pp; . @n

The free parameter p is added as follows. Add —6uy. /¢ +6up /P to (4.4)
and add —pBy. /p+uBp-p/e* to (4.3) after (4.5) is substituted. (See discussion
in Sect. 2.2.) Defining

L=48D*+12vD* - B(uz +v¥)D +6v.D , (4.8)
BD? ]
B=5-+uD, D=5, 4.9)

whence (4.6,7) read

pe=Bo+up, Lp=—6up,, 4.10)
respectively. It is easy to show from (4.10) that

L;={B, L] “4.11)
and that (4.11) gives equations (4.3,4) with p replaced by v and ¢ by wu.

5. Some Comments on the KdV Hierarchy

In [8], we discuss the KdV and AKNS hierarchies. The principal results on the
former are:

(1) A general formula for enumerating all the resonances in the Painlevé expan-
sions is derived.

(2) Itis proven that the principal Painlevé expansion for both the time-dependent
and stationary general member of the KAV hierarchy can be consistently
truncated to give the Lax pair and Bécklund transformation.

(3) The appearance of the various branches of the Painlevé expansion is shown
to be due to a confluence of poles. This leads to a situation in which the
WTC ¢ function has a multiple zero, which necessitates a reordering of the
principal expansion in which ¢, is nonzero when ¢ = 0. Different numbers
of coalescing poles will lead to different expansions. One of the key results
is that near a confluence of m(m+1)/2 poles, the uniformly valid expression
for the principal polar part of ¢ is 2% In R, (z,t3, ..., t2m-1)/0z* where
R is the mth member of the rational solution hierarchy. The re-expansion
of g in terms of ¢ = R; = z about a point in 2,13, ..., tz,—1 Space where
R,,, as function of z, has an m(m+ 1)/2-fold zero, leads to the mth branch
of the Painlevé expansion for the nth stationary equation in the KdV hier-
archy. At these points, exactly m of the intermediate angle variables (called
B1, ..., pn and analogous to the y’s introduced in Sect. 3) also have poles.

(4) In the sense described in (3), the mth rational solution unfolds the singularity
near the coalescence of m(m + 1)/2 poles.
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(5) The precise connection between the fluxes and the arbitrary coefficients of
the most singular branches of the stationary flows is obtained.

Similar results are obtained for the AKNS hierarchy.

6. Connection with Symmetries and Algebraic Structure

As we have seen, the Painlevé property imposes algebraic structure on a system
of differential equations. If there are parameters in the equations, the requirement
that all singular solutions be Laurent series (or, more generally, series in ¢
restricts those parameters to just a few values. This is only understood on an
“operational”level. It should be possible to relate those special parameter values
to symmetry groups: one is reminded of the integrality conditions that permeate
the theory of semi-simple Lie algebras, and indeed there are examples admitting
just such an interpretation which we discuss below. There is also a geometric
aspect to Painlevé analysis; one expects the various integers (resonances, for
example) to reflect discreteness of topological invariants of the complex orbits '
of the system. After all, in most Painlevé examples that have been analyzed,
the solutions live naturally on a compact subvariety of some complex projective
space.

This idea is still quite vague, and at present the only sensible thing to do is to
collect experimental evidence. We therefore study examples whose connections
to symmetry groups and projective spaces are already understood, or at least lie
near the surface, and we pretend to discover these features anew, starting from
the Painlevé analysis.

The most obliging example in this respect is the Toda lattice [30]. The phys-
ical model of masses connected by springs with exponential restoring force is
reduced by a change of variables to a polynomial system,

i l
a; =a ZN.'jbj , b= ZNjiaj . 6.1

=1 =1

For Toda’s original lattice, the N;; are certain fixed numbers, but let them be
arbitrary for the moment, assume that det(V;;) # O, and ask: when does (6.1)
have the Painlevé property? According to [31,32], the necessary and sufficient
condition is that the rows of (;;) be the simple roots of a crystallographic
root system. In this one example, at least, one can follow the algebraic structure
as it is created. When one solves recursively for the (vector) coefficients in
the Laurent expansion a(t) = t=2(a® + a™t + ...), integral resonances arise
only when a certain matrix has integral eigenvalues. This translates into the
requirement that for any two distinct rows n;, n; of N;;, the number 2n; -
n;/n; - n; be a nonpositive integer. Fortunately, the classification of sets of
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vectors ny, ..., n; with that property is exactly the concem of the theory of root
systems, reflection groups, and semi-simple Lie algebras: if the system (6.1) has
the Painlevé property, the Painlevé method identifies a semi-simple Lie algebra
G whose structure determines the behavior of the solutions of that Toda system.
As an aside, we should mention the pioneering work of Bogoyavlenskii [33]. He
was the first to identify the integrable cases of (6.1) by establishing an entirely
different and physically more concrete connection with reflection groups; the
relation between Painlevé analysis and Bogoyavlenskii's compactification of the
phase space of (6.1) is still under investigation.

The success of Painlevé methods in identifying integrable generalized Toda
systems (6.1) suggest the following, so far open, problem: Starting with a system
of PDEs

O Kty ooy u), i=1,.,10

ot

(of suitably restricted form), use the WTC analysis to rediscover Drinfel’d and
Sokolov’s generalized KdV equations associated with affine Lie algebras. For
the practical person, this would only be the 17th method of identifying a known
class of equations, but one might still learn a bit more about the WTC method,
and understand how it imposes algebraic constraints.

Let us return now to (6.1). Painlevé implies that the rows n;, i =1, .../, of
(IV;;) are the simple roots of a semi-simple complex Lie algebra §. We fix G, and
correspondingly, & matrix N;; (there is a lot of freedom in the choice of basis).
Painlevé analysis provides more data than we may want: to deduce that the rows
n; must form a root system, one need only ask that there exist Laurent solutions
with 2/ — 1 free parameters allowing any chosen a;, b; to have a pole. These
are the principal balances. There are still all the lower balances, however, and,
as in the KdV example summarized above, they present a bewildering variety of
arithmetic information. The complete list of balances and resonances has been
computed by Flaschka and Zeng [34]; the calculation draws on general properties
of roots, weights, and exponents of semi-simple lie algebras, and even provides
new identities for root systems.

In most of the examples that have been worked out in some detail, the
balances and resonances have not been related to any familiar mathematical
structure. Toda lattices are different; all conceivable symmetries are built in at
the start and make themselves known at the slightest provocation. The balances
of (6.1) are indexed by subsets @ C {1,...,!}. The Laurent series solution
corresponding to @ has the form

ai®) = a®t 2 4ot 4

with o #0 & i € O, and there are 21 — |@] arbitrary constants in this series.
The collection of subsets {n;,, ... n;, } of a root system is a geometric object
called a Coxeter complex and one finds that the balances of an integrable Toda
lattice are indexed by such a Coxeter complex; moreover, they merge into each
other according to inclusion relations among subsets of {1, ..., I}.

\
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It is now time to switch from algebraic considerations to phase-space geome-
try. A “balance” is, after all, just a collection of points at infinity in phase space;
one of the dependent variables, at least, is infinite and the parameters in the
Laurent series coordinatize those singular points. Again, the Toda lattice serves
as a useful illustration.

Pick an ip € {1, ..., I}. There exist Laurent series solutions
0

a®)=t"2¢ | 1 | +0(?) (6.2)
0

with 2/—1 arbitrary constants. We think of each of those series as defining a point
at infinity, attached to the phase space = {(ay, ..., a;, b1, ..., b;)}. There are sets
Di,,t0=1,..., 1, to0 be added to C*: in D;,, the component a;, alone becomes
infinite, and there are 2/ — 1 parameters to describe exactly how this happens.
The closures of the ideal sets D;; will intersect. For [ = 2, for example, we add
2 three-dimensional manifolds at infinity which in a two-dimensional drawing
might be viewed as a straight line which touches a parabola, the intersection of
these two sets (the point of contact in a drawing) is a two-dimensional object. It
represents singular solutions

a(t) =12 { (;) + O(t2)}

in which both a; and a; blow up; there are only 2 parameters (rather than 3)
in the Laurent series. This is a lower balance (in fact, the lowest balance in this
example).

For the general semi-simple Toda lattice, one adds ! noncompact manifolds
Dy, ..., D;of dimension 2/—1 at infinity; those represent the principal balances.
At their boundaries, there are the manifolds D;; of dimension 2! — 2, where the
closures of D; and D; intersect. Then come D;ND;n Dy of dimension 2/—3 and
so forth, down to the lowest balance Dy ... N D, of dimension I. The geometric
problem of Painlevé analysis is to piece together those additional phase-space
parts at infinity in order to create a partial compactification of the original finite
phase space C'. One wants to produce a complex manifold on which all solutions
exist for all time.

For the Toda systems where the balances are indexed by subsets @ C
{1, ..., 1}, onc augments the phase space by adding manifolds Dg of dimen-
sion 2! — |@|. The closures Dg, Do intersect along Dgne-, and the manner of
intersection (transverse, tangent, higher-order ...) is determined by the Dynkin
diagram of the associated Lie algebra. The geometric relations that arise here
are a special case of the geometry of the flag manifolds and Schubert (or, more
precisely, Birkhoff) cells. (For more details see [35].)
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Of course, “adding points at infinity” is not accomplished just by listing the
extra points. One must define coordinate patches with transition functions, so
that everything fits together into a complex manifold M containing the original
phase space as dense open subset.

Example: The si(2) Toda equations are
a=ab, b=a

the function @ — b2/2 is a constant of motion. Set

u=a—%b2, v=%‘. 6.3)
Then
u=0, o=-w?-1. (6.4)

The partial compactification of the phase space C? is the complex manifold
M defined by two coordinate patches: Uy = {(a,b) € C?}, Uz = {(u,v) € C?);
the intersection is Uy N U, = {(a,b) € C?|b # 0} = {(u,v) € C*|v # 0} and the
coordinate change is given by (6.3).

One may picture this particular M as C x CP!. To each point ¢ € C, attach
the compactification of the level set {(a,b)|a — 4*/2 = ¢}; this is the Riemann
sphere or, equivalently, the one-dimensional complex projective space CP!. A
better description can be gotten if one knows that CP! x CP! is a conic in three-
dimensional projective space CP2. The manifold M = C x CP! is that conic with
{co} x CP! removed, i.e., a conic less one (projective) line. M is not compact;
the missing piece is the set a — b?/2 = oo of infinite energy phase points.

While other examples of this type have been worked out, the only algo-
rithm of any generality is due to Ercolani and Siggia [20). For each balance of
a system generated by a polynomial Hamiltonian H(q, ..., ¢n,p1, ..., Pn) =
H(g, p), they find an asymptotic solution of the Hamiltonian-Jacobi equation
H(05/84,9) = E and use the first few terms of that solution to define a sym-
plectic coordinate change from C?" to a neighborhood of points at infinity. This
produces what they call a minimal augmentation of phase space, i.c., the smallest
complex manifold M on which solutions of the Hamiltonian system exist for all
time.

For § = 642, for example, the augmentation M is obtained by adding one point
to each energy level curve p? —4¢® — ¢ =0, thus producing a family of elliptic
curves indexed by ¢ € C; M is a dense open subset of an elliptic surface. In most
cases, however, M can only be described implicitly, by coordinate charts, and
in order to arrive at a general understanding one must continue to study various
nontrivial examples.

For systems that have principal and lower balances, such as stationary KdV,
AKNS, the Toda lattice, etc., the augmentation of phase space has a characteristic
feature: the original phase space is some Euclidean space C", and the balances
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to be added at infinity, being coordinatized by the parameters in Laurent series,
are lower-dimensional affine varieties. Sometimes, as in the Toda lattice, they are
Euclidean spaces of lower dimensions. They are then called cells in topology,
and the augmented phase space M comes with a natural cell decomposition. This
would give powerful geometric information if M were known to be a compact
projective variety; Painlevé analysis, unfortunately, overlooks the infinite-energy
points, which may change the topology. Too few examples have been worked
out. One can see, however, in some of the most familiar systems, that the cell
decomposition of M arises from classical properties of Grassmannians. This is
hoped to be a guide to a more comprehensive theory. We conclude this section
with a sketch of the KdV geometry, which reinforces some of the general points.

First, recall that the solution to the KdV hierarchy is determined by a single
tau function, 7(¢;,3,1s, ...),

u(ty, ts,...) = 2% log r(ty,t3, ...) .
1

The solution acquires a pole whenever r = 0. According to Saro [36] and Segal
and Wilson [37], the tau function and its zero-set are governed by the geometry
of an infinite-dimensional Grassmann manifold. It would take too much space to
explain the setup, but a short description of a finite-dimensional analogue might
be useful. The relevance to the KdV equation will be outlined later.

The Grassmannian G(k,n) is the set of all k-dimensional subspaces of C™.
Every such subspace is obtained as a linear transformation of the reference k-
plane Iy spanned by

0
1 0
0 1 0
n= 0], »nl|0 yeoosUp=| 1 | — kthentry .
: : 0
0 0 :
0

So, if g is any invertible complex n x n mauwix, i.e., an element in the group
GL(n,C), the k-plane I, spanned by guy, ..., guy is another point of G(k, n).
All of G(k,n) is obtained that way. The representation is not unique, however,
II, =11, if g{lgl leaves IIp fixed. The subgroup Py of GL(n,(C) fixing ITy
consists of all matrices of the form

ety o)

o
k n—k

and G(k, n) may be identified with the quotient space GL(n,C)/P;. It is useful
to describe each 1T € G(k,n) by listing a basis determined according to some
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algorithm. The model GL(n,C)/P; suggests such an algorithm. Try to write
each g € GL(n,C) in a unique way as a product g = bp, where p € P, the
distinguished basis for IT, will then be bvy, ..., bvi. The matrix b should be
lower-triangular and have a special form.

Example: If n =3 and & = 2, one looks for a factorization

100 u v ow
g=(0 1 O> (:c y z)=bp. (6.5)
r s 1 0 0 ¢

Since p must be invertible, the minor : Z cannot vanish. Thus, only g¢’s

with nonzero principal 2 x 2 minor determinant can be factored in this way.
When that minor determinant vanishes, one needs a different factorization. If

u v w
a f 7

and |% Y| =0, then si . ible. ei u v z y
z since ¢ is invertible, eight o B #0or o B # 0.
Suppose that Z Z # 0. The matrix g has the form

u v w
(hu hv z)
a B
and can be factored
1 00 1 00 u v ow
(h 1 0) (0 0 1) (a B 7). (6.6)
0 01 010 0 0 ¢
_fu v

B

0 0 w
-(239).
a B ~

and this has the factorization

1 00 0 01 T Yy z
01 0) (l 0 0) (a B 7) . 6.7
0 01 N0 1 0 0 0 w

Therefore, the two-planes in C? can be assigned coordinates as follows:

, but

z Z, # 0, then u = v = 0. In that case,

(i) most of them are parametrized by a pair (r, s) € C? as in (6.5);
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(i) a smaller set is parametrized by h € C as in (6.6);
(iii) one exceptional plane is given by (6.7).

These are the Birkhoff cells mentioned earlier. We have exhibited G(2,3) as
a disjoint union

ctuctuct, (6.8)

which is the same as the cell decomposition of the two-dimensional projective
plane: C? is the finite part, C2 is the line at infinity, and the last point C° is the
point at infinity of the line at infinity. The relevance of all this to integrable
systems is as follows. We define a function 7(J1,) on G(2,3) to be the principal
2 x 2 minor determinant of g. (Actually, 7 is not uniquely defined, but its zero
set is determined.) On the big cell C?, T #0. On the next-largest cell C! (6.6), T
has — roughly speaking — a single zero, and on the smallest cell C% (6.7), 7 has
— again, roughly speaking — a double zero.

Of course, there is no integrable system in sight — that is an extra structure
which makes the situation more complicated. For the standard two-particle Toda
lattice (6.1), there are two tau functions (one for each particle) and the balances
in which the position coordinate of the second particle blows up have precisely
the cell structure (6.8). This is explained in {35].

In each cell (6.5-7), there is a distinguished point, corresponding, respec-
tively, to r =s =0, h = 0, and to the smallest cell C° which is already a single
point (6.7). We call these points the centers of the cells, and they are represented
by the permutation matrices

() 0o )

in (6.5-7). In the Toda system, they turn out to characterize certain rational
solutions, and subgroup of the permutation matrices may be identified with the
group of Bicklund transformations that send a given rational solution to any
other rational solution.

Now, this very same picture, when extended to infinite dimensions, provides
the setting for the KdV tau function. Instead of C*, we have the Hilbert space
H = L*(S?,C) of square-integrable functions on the unit circle. The Grassmann
manifold G(k, n) is replaced by a certain collection Gr® of infinite-dimensional
subspaces, obtained from the reference subspace

H*=spanof 1, ™9, ¢'me |
by linear transformations from a big group G. The KdV tau function is a de-
terminant: if it vanishes, a certain factorization cannot be performed. There is
a cell decomposition of the infinite-dimensional Grassmannian Gr®, and the
centers of the cells correspond to the rational solutions of KdV, whose role in
the Painlevé analysis was described in [8] and summarized in Sect. 5 above.
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The details may be found in [36,37] and the application to the Painlevé
analysis of KdV will be published elsewhere. For present purposes, the impor-
tant point is this: of all the “algorithmic” procedures that test integrability and
produce Lax pairs, Hirota equations and the like, only the Painlevé analysis
manages to identify the geometric structure of the (possible infinite-dimensional)
phase space. The “balances™ are the “cells” — that much is obvious. Where the
geometric theory is already understood, as it is with the Toda lattice or the KdV
equation, one can easily reconstruct the Grassmannians. The major open problem
is to find the analogous geometric setting for all the other Hamiltonian systems
that have the Painlevé property: Hénon-Heiles, various spinning-top equations,
geodesic flows on Lie groups, and so forth, Since the other characteristic fea-
tures of integrable systems fit naturally into the Grassmannian framework (Hirota
equations are Pliicker relations, Lax pairs are reductions of linear equations on
the cotangent space of the group that acts on the Grassmannian, special Bicklund
transformations permute the centers of the cells) one expects to find most of these
other properties as consequences of a geometric Painlevé analysis.

7. Integrating the Nonintegrable

In the preceding sections we have examined the ways in which the local, singu-
lar manifold expansions can be used to integrate — in the sense of finding Lax
pairs and Béicklund transformations — integrable differential equations. We now
turn to an investigation of the information contained in the local expansion of
nonintegrable systems for which the movable singularities are no longer simple
poles. That nonintegrable systems exhibit pathological distributions of movable
singularities was demonstrated by Chang et al [38] in a study of the Hénon-
Heiles system. Here the singularities were found to cluster recursively to form
self-similar natural boundaries. Subsequent analysis by Chang et al [39] was
able to provide an accurate analytical description of this structure and, indeed, to
demonstrate that such structures are typical for systems whose movable singu-
larities have complex order. Here we will concentrate on systems with movable
logarithms, branch points such as the Duffing oscillators and Lorenz equations.
These singularities must be locally represented by logarithmic psi-series. Re-
markably, a renormalization type procedure can be used to resum these series in
such a way as to provide explicitly analytical representations of the solution in
the neighborhood of a singularity. In addition, these series can then be used to
identify and construct integrals of motion that may still exist in nonintegrable
parameter regimes. It is this collection of ideas that suggests the notion of “in-
tegrating the nonintegrable”.
We first consider the Duffing oscillator

E+pi+1a® = eF(Y) a.n
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which for nonzero damping and periodic driving can exhibit chaotic behavior and
even a strange attractor. (Nondissipative chaos is also possible for zero damping,
provided that the driving force is sufficiently strong.) We note that in the limit
of u=¢ =0 (7.1) reduces to the integrable Hamiltonian system

F+3’ =0 (12)

whose solution can be represented in terms of the Lemniscate elliptic function,
which exhibits a square lattice of poles in the complex ¢-plane. This “underlying”
integrable part of (7.1) will play an important role in our subsequent analysis.

It is an easy matter to show that about an arbitrary movable singularity ¢, in
the complex t-plane, the solution to (7.2) may be locally represented as a simple
Laurent series of the form

o0
2(t) =) a;t —to) ", (13)
j=0
Direct substitution of (7.3) into the equations of motion leads to the recursion
relations for the q;

GG+DG - N ==Y > aj_raa;, (714)
L |

where ap = 2¢, a1 = a2 = a3 = 0, a4 = arbitrary coefficient, etc. The arbitrary
pole position ¢ and coefficient a4 constitute the two pieces of arbitrary data
consistent with a local representation of the general solution to the second order
equation (7.2). The first integral of (7.2) is, of course, the quantity

%iz + %z‘ =1 . ; (7.5)

By Liouville’s Theorem the left-hand side of (7.5) must be an entire function.
Thus if the Laurent series for z(t) and Z(¢) are substituted into (7.5) the singular
parts must cancel identically. In this way one can find the relationship between
the arbitrary coefficient a4 and the value of the integral I, namely, a4 =il /5.
This cancellation of singular terms will also play an important role in our analysis.

Introduction of dissipation or driving into (7.2) leads to the break down of the
Laurent series (7.3) since it becomes no longer possible to introduce an arbitrary
coefficient at j = 4. It is a standard matter to rectify this problem by adding
logarithmic terms to the expansion thereby obtaining the psi-series

oo O

()= ) D ajut — tol T(E ~ to)* In(t — to)]* . (7.6)

70 k=0

Computation of the recursion relations for the a i is tedious but straightforward
and is described in Fourier et al [40]. Following the technique developed in [41]
we now look for a closed set of recursion relations among the a;;. These are the
set agx, k¥ =0,1,2, ... which satisfy
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4k(k — 1aok + kaok + Saok = —§ > a0, k-400,s—00q - .7
i L] q

Introduction of the generating function
(>
O(z)=Y a2, (7.8)
k=0

where z is some yet unspecified independent variable, the following differential
equation for ©(z) is obtained:

16220"(z) +420'(2) +20(2) + 1 6*(2) =0, 19

where prime denotes differentiation with respect to z.

The differential equation (7.9) may be obtained via a different, more direct,
route by using the procedure described in Chang et al {38]. In the limit ¢ — to
we concentrate on the terms in the psi-series (7.6) involving powers of t*Int
and therefore make the substitution

2(t) = ——60(2) (7.10)
t—1o
where
z=(t — to)* In(t — to) , (7.11)

into (7.1). In the limit ¢ — #p it is easy to show formally that Op(z) again
satisfies (7.9), provided that there is an ordering in which |t — tp| < |z|. Due
to the infinite multivaluedness of the logarithm this is indeed perfectly possible
for large (absolute) value of the argument of (¢ — #p). We point out that this
approach cart be thought of as a type of “renormalization” in that the differential
equation (7.9) can be regarded as the original equation of motion “rescaled” in
the neighborhood of a given singularity. However, this equation is now found to
have the Painlevé property and, furthermore, by making the substitution

Oo(z) = 2\ /4§ (z'/“) , 1.12)
the equation transforms to
ffo+3fiy =0, ' (7.13)

where prime denotes differentiation with respect to the variable y = 2!/4 =
(t — to)(In(t — tp))'/%. In keeping with the ideas of renormalization we again
stress that through the two-step transformation (7.10,12) the general Duffing
equation (7.1) has been locally mapped onto the integrable case (7.2).

From these results the following picture of singularity clustering emerges.
To each singularity #p in the complex ¢-domain one can “attach” an associated
y-plane. The lattice of singularities exhibited by (7.13) in the y-plane is then
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mapped back into the ¢-space according to the multivalued transformation z =
t4Int which results in a t-plane pattern of four-armed “stars” of singularities.
An immensely complicated, multisheeted structure in the ¢-space results with the
degree of clustering (about a given #p) determined by both the degree of “scaling”
and “rotating” of the lattice in the y-plane and the intricacies of the mapping
z — t. Furthermore, any one of these singularities in the ¢-plane can have its
own clustered, i.e., four-armed star, substructure. The recursive nature of this
clustering can clearly lead to a singularity structure of pathological complexity.
Numerical results, which strikingly confirm this picture, are described in [40].
Despite this complexity there is a rather remarkable feature of the above analysis.
Combining equations (7.10, 12, 13) leads to an explicit local expression for z(t)
which accurately predicts the location and nature of neighboring singularities.
Coupled with the higher order terms, described below, this therefore provides,
if effect, an integration of motion traditionally regarded as “nonintegrable” and,
for some parameter values, even known to exhibit chaos.

The substitution (7.10) can be thought of as just the first term in a more
general expansion of the form

z(t) = Z Or()t* 1, (7.14)
k=0

where 2 = t*Int and for notational convenience we have set to = 0. Substitution
of (7.14) into (7.1) and taking the limit t+ — O leads to a hierarchy of coupled
differential equations for the @, of the general form

16220 + 42k + 1)20y + [(k — 1)(k - 2) + 36210,
=Ri(@;:75<k). (7.15)

All the differential equations for @, k& > 1, are linear inhomogeneous equations.
The general homogeneous counterpart is just

16220 + 42k + 120, +[305 + (k — 1)k - 210, =0, k>1. (7.16)
Remarkably, this equation can be solved by making the substitution

Ox(2) = ! Fyp (1Y), k>0, (1.17)
which, with a little manipﬁlation, reduces (7.16) to
i+ 393 =0. (7.18)

The function )y is (to within a scaling) the lemniscate elliptic function solution
of (7.13). Thus, (7.18) is readily identified as a form of the Lamé equation.
Thus, in principle, the solutions to all the inhomogeneous equations (7.15) may
be obtained explicitly.

A significant way of regarding the expansion (7.14) is to compare it directly
with the psi-series expansion (7.6) and recognize that each ©; is the generating
function for the set of coefficients ajy, ic.,
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[+ <]
0;(2)= aps, (1.19)
k=0

where z = t4Int. For the case j = 0, the recursion relations for the ao; are closed

whereas for all other cases they are coupled to preceding coefficients. From this

point of view we may regard (7.14) as a resummation of the psi-series (7.6).
These ideas can be used to good effect in studying the Lorenz equations

X=0(Y -X); (7.20a)
Y=-XZ+RX-Y, (7.20b)
Z=XY-BZ, (7.20c)

where o, B, and R are the adjustable system parameters. It is a straightforward
matter to show that the system has the Painlevé property for three special pa-
rameter sets (0 = 4, B=1, R=0o=1,B=2,R=}ando=4} B=1,
R arbitrary) [42,43]. In each of these cases two time dependent integrals can
be identified and the solution expressed in terms of standard functions. More
interestingly, Segur [42] noticed that there are two cases, namely

(i) B=1, R=0, o arbitrary and
(ii) B =20, R arbitrary

for which the system has just one time dependent integral but does not posses
the Painlevé property. For example, for case (ii) the integral is the quantity

I=(z* -202)e*" . (7.21)

A subsequent investigation by Kus [44] revealed several other such cases, namely

(iii) o =1, B =1, R arbitrary,
(iv) ¢ =1, B =4, R arbitrary,
(v) B=60-2, R=20—1.

Since these single integrals must still be entire functions, the singular parts
of the local expansions of the associated dependent variables must cancel at
any movable singularity position. However, since the singularities are no longer
simple poles — in fact, they are logarithmic branch points — this cancellation is
much more delicate than before.

Typically, the variables must be expanded as psi-series of the form

[= <IN~ <]

X=3Y apr’*nn)k, (7.22a)
j=0 k=0
oo o0 .

Y=Y buri~Hrt )k, (7.22b)
j=0 k=0
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oo o0
Z2=3Y cpr i), (7.22c)
j=0 k=0
where 7 = t — tg. For certain parameter values the logarithmic corrections enter
as powers of 74 In r. In the same spirit as the Duffing equation analysis it is again
possible to extract closed recursion relations for the coefficient set agx, bok, cok.
Similarly, the associated generating functions can also be obtained by means of
the rescaling transformation (in the limit 7 — 0)

X= -;_-@o(z) , (7.23a)
1

Y = 5 d0(2), (7.23b)
T

Z= —17%(:) , (7.23¢c)
T

which leads to the system of equations

220y(z) — Oo(2) — 0Po(2) =0, (7.24a)

2284(2) — 2P0(z) + Oo(2)¥o(2) =0, (7.24b)

229'(z) — 2¥o(z) — Oo(2)Po(2) = 0, (7.24¢c)

where ¢ = 721n 7. This system of equations admits the (z-dependent) integral
O = 20Wy(2) =~z , (7.25)

where v is a certain constant, which can then be used to reduce the system (7.24)
to

4220} — 220§ — 3i\d200 + 100(B} +4) =0, (7.26)
where ) is a certain function of B and ¢. The transformation

Ou(2) = 22 f(z'/%) (727
reduces (7.26) to the Jacobi elliptic equation

f'w) =3 fw) + 3 @) =0, (7.28)

where prime denotes differentiation with respect to the variable y = 2!/? =
r(In)!/2, Equation (7.28) exhibits a regular lattice of poles in the y-plane.
These map back to the ¢-plane, through the transformation z = v2In 7 yielding
a recursive singularity structure consisting of families of two-armed stars of
singularities. As with the Duffing equation, this type of analysis leads to a very
accurate picture of the singularity distribution in the ¢-plane. Notice, however,
hat the shape of the pole lattice of the elliptic function f(y) can now depend on
the value of A and the value of the integral
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I=(fP-3idaf?+}f*. (7.29)
Furthermore, the functions &g, $o, Y are (again) just the leading terms in the

resummed psi-series

X=) r76;), (7.30)
J=0 )
Y=Y r7(), (7.31)

2= 1), (7.32)
=0

for which a hierarchy of linear equations for the ©;, &;, %;(j > 1) can also be
obtained.

We conclude by summarizing the recent work of Levine and Tabor [43]
which demonstrates that the special parameter values at which the single integral
appears [cases (i) to (v) given above] are associated with subtle changes in the
singularity clustering. Using (7.28,29) one may show that the elliptic function
reduces to a circular function for the parameter values

B=6s—2 and B=o+1 (7.33)
and to a hyperbolic function for the values
B=1 and B=30-1. (7.34)

These include, apart from the R-dependence, the special parameter sets (i) to (v).
At these special parameter values the lattice of poles in the y-plane collapses to a
single line [along the imaginary axis for (7.33)] with the result that the singularity
clustering in the ¢-plane, as governed by the transformation y = r(log 7)!/2, must
be drastically simplified.

The “local” integral (7.29) can be written as

1 1
o®s + O — E«93 = ;122 (7.35)

and remarkable, for the special parameter values (7.33,34) it becomes z-
independent. Specifically for set (7.33) it takes the form

2. 02 _ gt
UQO + Qowo 40 90 = 0 (736)
and for set (7.34)

F+ P =0. (.37
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This z-independence suggests that these local integrals may now have global
properties. Recalling the resummed psi-series (7.30-32) we can rewrite (7.36, 37)
in terms of the original variables as

oY+ X27 - -;;X" (7.38)
and

Y%+ 272, (7.39)

respectively. These expressions are not, themselves, integrals of the Lorenz equa-
tions since, although their most singular parts [at O(t — to)~*] cancel identically,
one finds that they still have singular parts at order (t — to)~> and lower. How-
ever, by careful use of the resummed psi-series one can systematically find the
various combinations of X, ¥, Z (this involves some nice symmetry properties)
at special R values that when added to (7.38,39) result in entire functions of ¢!
In this way one is explicitly able to construct all the special case integrals of
motion. This procedure is analogous to the cancellation of singular terms that we
mentioned above in the case of the integral of the integrable limit of the Duffing
equation. In that case, since the local expansions were Laurent, the cancellation
was just that of constants. In this case the resummed psi-series can be thought
of as a pseudo-Laurent series and the cancellation of singular terms is now due
to the cancellation of various combinations of the functions 409;, &; and ¥; —~
which can only occur when the singularity clustering is sufficiently simple.
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The Symmetry Approach to Classification of
Integrable Equations

A.V. Mikhailov, A.B. Shabat, and V. V. Sokolov

Introduction

In this volume each of the contributors proposes his own test to recognize in-
tegrable PDEs. We believe that, independently from the basic definition of in-
tegrability, the test must satisfy some general requirements. Namely, it has to
be

- effective (in other words, if an equation has passed through the test, then
there are almost no doubts about its integrability);

- sufficiently algorithmical, yet able to admit a proper realization in a symbolic
computer language (like Reduce, Formac, Macsyma, MuMath, AMP, etc.);

- applicable to a large class of PDEs.

Probably, the best way to judge the value of the test is by attempting to obtain
a complete list of integrable equations from a certain simple class. After that one
could see what equations have been missed and which ones passed through the
test that are not, in fact, integrable. Another way to compare different tests is
through a competition. Such jousts were popular in the 16th century (Cardano,
Tartaglia, Viete, ..., etc) but in our age of glasnost the participants should not
hide their tools.

The well-known notion of higher symmetry was a starting point of our study.
The Sophus Lie classical theory of the contact transformations and his concept
of locality has been serving us as a solid base to develop a symmetry approach.
The inverse scattering transform has been another origin for us. The mutual
influence of these theories has led us to a fundamental abstract concept which
we call a formal symmetry that is more basic than symmetry. It has been proved
that one can come to this concept by beginning with higher conservation laws,
the Bicklund transformations or L-A pair representation. In this sense a formal
symmetry is a universal object.

Mainly, in this paper we shall discuss nonlinear evolution equations of a
comparatively simple form:

U = F(Ivuauzyuzz) s
Uy = A(zyuvuzauz:)uzx: + B(-'rauvuzauzz) ,
Uy = Ugzzzzr + F(U, U Upr, Ugrzy Uszzs)

wy = A(u)ug, + Flu,ug), u=(',u?), detA(u) #0.
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Exhaustive lists of these equations' that have passed through our integrability
test are given in the last section. Our test of integrability is based on a few
necessary conditions of existence of a formal symmetry. 2 It is a miracle that all
the equations from these lists prove to be integrable (C-integrable or S-integrable
in the terminology of Calogero).

Sometimes we are asked why a certain integrable equation is absent from
the list. A lot of equations which seem to be different at first glance are in
fact related via simple transformations. Each list is supplied with comments
which describe classes of transformations that our classification is based upon. If
the equation possesses local higher symmetries or conservation laws then these
transformations enable one to put it into the list. If these local properties are
violated, then we propose an algorithm to attack the problem and to restore the
locality as a rule (see example in Sect. 2.1.5). The true value of transformations
is becoming quite clear in the classification problems. On this account we pay
attention to the contact transformations and their generalizations whlch are closely
related to classical symmetries and conservation laws.

Essentially, our test is quite simple and algorithmical. At each stage one has
to verify that a certain recursively determined function (@ canonical density) is a
density of a local conservation law. Sometimes this process involves enormously
tedious computations. We prefer to perform some of these with the help of a
computer. Moreover, a PC-program that has allowed one to answer the ques-
tion of whether a given second order evolution equation is integrable or not is
available now.

This article is largely based on joint work with S.I. Svinolupov and R.I.
Yamilov. The results presented here are the most advanced part of a scien-
tific program dedicated to a classification of integrable equations. One of the
objectives is a classification of integrable chains and a construction of the finite-
dimensional models of PDEs. There is an intriguing problem to include the
theory of multi-dimensional integrable equations into the frame of the symmetry
approach.

1. Basic Definitions and Notations

1.1 Classical and Higher Symmetries

1.1.1 General Notion of Symmetry. In the classical theory of Sophus Lie the
concept of symmetries is connected with one parameter groups of transformations
like Lorentz, Galileian, scaling, etc. If a partial differential equation admits such

! No assumptions (like a polynomiality) on the form of the functions in the lhs of equations have
been imposed.
2 These conditions are formulated in terms of the so-called canonical conservation laws.
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a group then the group action on a given solution generates a one parameter
family of solutions. For example, the Galileian transformations

f'=r—6rt, t'=t, u=u+r, 1.1.1
do not change the form of the KdV equation
Us = Ugzs + Ouu, (1.1.2)

and the action of group (1.1.1) on the solution u(z,t) gives us a one parameter
family of solutions

u(z,t, ") =ulz +67t,8)+ 7. (1.1.3)
It follows from (1.1.3) that '
uy, =1+ 6tu, . (1.1.4)

Since (1.1.2) holds identically in = one obtains that the partial derivative u,
satisfies the linear equation

F) a\ 0
(E - (5;) — 6“5; - 6u,) (ur)=0, (1.1.5)

i.e., the function f =1+ 6tu, satisfies (1.1.5).
Any function f of

Z,0, U, Uy Uz, Uzzzy - (116)

we shall call a symmetry of the KdV equation if it satisfies (1.1.5). Here we
mean that when substituting f(z,¢, u,u., ...) instead of u, into (1.1.5) one has
to express the derivatives ug,uy¢, Uy, ... in terms of (1.1.6) via (1.1.2). After
that (1.1.5) has to be fulfilled identically [the variables (1.1.6) are treated as
independent ones]. It is well-known that the KdV equation possesses symmetries
that are unusual from the classical viewpoint. The simplest example of such
symmetry is

f=trrrze + 10uu,,, +20uzu,, + 30u?u, .
It is easy to generalize the above definition on any partial differential equation
H(z,t,u,uz,ut, Urz, Ups, Uy, ...) =0 .17

A function f(z,t,u,uz,uy, ...) is called symmetry of PDE (1.1.7) if it satisfies
the “linearization” of (1.1.7) [c.f. (1.1.5)]

OH 0H O O0HO OH 0\
Bu | Bu. 0z Ou Bt Bu.. \Bz

OH 8 & OH [0\
+'37,7?9t'%+37u(’a‘t> *) (H=0. (1.1.8)
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For example, in the case of equation’
ugz = F(u) 1.19)
(1.1.8) has the form

90,
b't'EEf"F(")f'

The last equation must be fulfilled identically in the variables u, t, u, uz, Uer
Uz, Uttr Ugpzs Usat -..- All mixed derivatives are excluded via (1.1.9). (ie.
Uge = F(u), Uzzt = F'(Wug, ... etc.). In the general case (1.1.7), a pamcu}ar
choice of independent variables is defined by the form of H. For evolution
equations u; = F(z,t,u, Uz, Uzs, ...) we shall use independent variables (1.1.6).

Symmetries of the form f = f(z,t,u,p,q), where p = u;, ¢ = u, we shall
call classical. In this case the symmetry generates a one parameter group of
transformations

tl=(T’z7t’u’p’q)7 $I=¢(T’z’t’u7p7q)’
u’=w(‘r?z1t’u’p’q)’ pl=X(T’z’t’u’p)q)’ (1'1'10)
¢ =w(r,z,t,4,p,9)

that can be reconstructed by means of the following dynamical system

_..:_-—-—p—-—q-}-f, (11.11)
dp _of of  dg_0f 0f

dr 0Oz ul’ dr ot ul

New variables ¢',z’,u',p', ¢ are obtained from ¢,z,u,p,q as a result of a shift
in 7 along the trajectories of (1.1.11). In other words, the functions (1), ' (1),
u'(r), p'(7), ¢'(7) represent a solution of the initial value problem ¢'(0) = ¢,
2'(0) = z, v'(0) = u, p'(0) = p, ¢'(0) = ¢ for (1.1.11).

The transforrnation (1.1.10) tums a function u(z,t) into a new one

'U.’(T', x’vtl) = W(T) IE,t, u(xyt)y u,,(:c,t), u!(z;t)) (1112)
where the relation of z,t to z',¢' is determined by
z’ = ¢(T7$7t’ u(mit)) u:(z,t), u‘(z7t)) 1 (1'1'13)

t, = ﬁ(r,x,t,u(:c,t), u’r(zvt)) u,(z,t)) . (11'14)

If u(z,t) is a solution of (1.1.7), then the condition (1.1.8) provides that
u'(r,z',t") satisfies the same equation for any .

3 All equations of this type possessing higher symmetries have been classified in [1].
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For instance, in the case (1.1.4) f =1+ 6¢p, (1.1.11) have the form

dt _ dr _ du _ dp _ dq _
E_O’ d'r__6t’ dr—l’ dT—O’ d‘r_6py
and

tiry=t, z'(N=z-61t, u'(r)=u+r.

This gives us the one parameter family of solutions (1.1.3) of the KdV equation.
It is not a difficult problem to obtain all symmetries of the form f(z,t,u,u,, u)
of the KdV equation. The answer is

f=ciuz + qui+ cau+ zuy + 3tug) + ca(l + 6tu,) , (1.1.15)

where ¢; € C.

Equations (1.1.11) are just the well-known characteristic equations for the
PDE of the first order

uT=f(zat7u7uzyut)' (1116)

The condition (1.1.8) ensures the compatibility of (1.1.16) and (1.1.7) and the
function u(r, z,t) constructed above is a solution of these equations.

Symmetries that are not of the form of (1.1.16) are usually called the higher
symmetries. Now we consider one more well-known example of higher symmetry
for the Burgers equation

Up = Ugg +2ulUy . (1.1.17)
The evolution equation corresponding to this symmetry is
Uy =u,”+3uu”+3ui+3u2u: . (1.1.18)

The relationship (1.1.8) is just a compatibility condition of (1.1.17,18). It is
interesting to note that the common solution of these equations u(r, z, t) satisfies

Bup — Uy +Uzgrg + 12u u,, =0
and obviously gives a solution (v = u,) of the famous KP equation

3vy — (Avp +vggr + 1200,), =0.

1.1.2 The *-Operation. Here we consider vector evolution equations of the form

ut=F(z1t)uvuzy"‘)uz'z...z)) (1119)
o
m—times

where u = (u!,u?, ..., u¥). To underline the independence of the variables

U, Uz, Usy, ... We shall use the following notations
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Uy UL, Ugy U2, Uzzz U3, ... (1.1.20)

and sometimes call these variables the dynamical ones. The definition of sym-
metry given in the previous section can be generalized to the vector case with
little effort. Namely, the vector function G(z,t,u,u;,u2, ..., u,) is called a
symmetry of (1.1.19) if it satisfies

d — OF _,
Le=%S"2Lpig). 1.1.21
-G EM: 30, 2 (1.1.21)

Here 8F /0u; denotes the Jacobi matrix, -

d = a
= E: e 1.1.22
D 0$+ 2 u; 161“ ( )
d 0 < ;.0
—_ = = : —_— 1.1.
il + ?;0 DY(F) Bul (1.1.23)

The operators (1.1.22,23) of total differentiation with respect to z and ¢ act on
the functions of variables ¢,z, u, uj, uz, ... . ‘

It is convenient to introduce a special notation for the operation of lineariza-
tion (*-operation)

S.(v) = iS(z, t,(u+ev), ..., D*(u+ev))|, (1.1.24)
de €
that maps any function S(z,t,u,u1, ..., ui) to the linear differential operator
k
S.=) (88/0u,)D" . (1.1.25)
i=0
Now (1.1.21) can be written as
-(%G =F(&). (1.1.26)

It follows from the definition (1.1.24) that for any scalar functions f, g the
relations

(Fx=fo+gfe,

(DN =D(f)+ fuo D,

d d
(E;f). =;i‘t(fx)+f#°Ft

hold.
Applying the x-operation to (1.1.26) one can obtain the following operator
equation
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d d

Lfey-2 = 1.1.2

dt(G.) dT(F.)+[FnG.] 0, ( 7)
where

d o0 ; a

5= ;p (G)———au‘_ . (1.1.28)

The relationship (1.1.27) can be interpreted as a compatibility condition of equa-
tions

LW=RG, —0=0.0).

By the order of symmetry ord(G) we mean the degree of the differential
operator G.,.

1.2 Local Conservation Laws

The notion of first integrals, in contrast to symmetries, is not so important in
the case of PDEs. Instead of them, the concept of conservation laws arises. The
well-known links among the classical symmetries and conservation laws has been
formulated in the famous theorem by E. Noether. For instance, the invariance of
the nonlinear Schridinger equation

ihe = oz + [0
under the phase transformation 1) — el” leads to the conservation law
(%) = (29 — ig*9.).

with the conserved density ||

Usually the correspondence of higher symmetries and conservation laws as-
sociates with the Hamiltonian structure [2]. However, if we have at least one
higher symmetry, then there exists an unexpected but straightforward and algo-
rithmic way to construct not one but many conservation laws (Sect.3). These
conservation laws contain a lot of important knowledge about the equation under
consideration.

A function p = o(z,t, u, u1, uz, ..., u,) is called a density of a conservation
law of (1.1.19) if there exists a local function* ¢ such that

%(g) = D(o) . (1.2.1)

Like the symmetry equation (1.1.26) the relation (1.2.1) has to be fulfilled iden-
tically in independent variables ¢, z,u, u, ... .

4 Here by “local” we mean a function of a finite number of variables z, ¢, u, u;, uy, ... .
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The relation (1.2.1) is obviously satisfied if g = D(h) for any A. In this case
o = h;. Such a conservation law is called a trivial one. Two conserved densities
o1, o2 are considered to be equivalent (¢ ~ py) if the difference p = g — g3 is
a trivial density. By the order of a conserved density p we shall mean the order
of the differential operator

- [%e
R= <6u). , (12.2)
where the variational derivative is defined as
§ = ; 0
=" g(_p) Fu (1.2.3)

One can verify the following useful properties of the variational derivative

)

TANRIANL
().~ 1G], 129
déf _8df téf

dtsu  Su dt *ou’

where f any scalar function, & f/6u is a row-vector, (6f/6u), is a differential
operator with matrix coefficients and { denotes the conjugation

A=Y aD' = AT =3 (-Dyod 1.2.7)

(a] is a transposed matrix). It follows from (1.2.4) that equivalent densities have
the same order.

The variational derivative of a conserved density satisfy the well-known equa-
tion (see, for instance, [3])

d b

dr bu
which follows immediately from (1.2.1, 4, 6). It is interesting to note that (1.2.8) is
dual with equation (1.1.26) which symmetries satisfy to. Applying the x-operation

“to (1.2.8) one can obtain the following operator equation [cf. (1.1.26,27)]

(1.2.6)

fde _
+Fl =0, (1.2.8)

Ri+RoF,+FloR=0Q, (1.2.9)

where

=Flo(8 _(rt(%2)) -3 %ipi(le
a=rte(5).- (7 (&) S o (a) >

e it
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1.3 PDEs and Infinite-Dimensional Dynamical Systems

In the above defining symmetries and conservation laws we use, following S.
Lie, a standard set of independent variables ¢, z,u,u1, ... [cf. (1.1.20)]. Any
function of these variables is called local. However for shift-invariant equations

u=Flu,uy, ..., u,) 1.3.1)

we shall often restrict ourselves to a reduced set of variables »,u;,u2 ... . In
this case, by local functions we mean the shift-invariant ones. The choice of
the set of basic variables depends on the particular problem. For instance, to
find exact solutions the so-called chain variables (see below) seem to be very
convenient.

Any partial differential equation (1.3.1) can be represented as a pair of com-
patible infinite-dimensional dynamical systems

(Urm)z = Ums1 - (1.3.2)

() = Fr(uo, w1, ..., ug,) . (1.33)

Here m =0,1, ... ; uo = u; F, = D™(F). The vector fields corresponding to -
dynamical systems (1.3.2, 3) are just

N N -
D—gumm, E'gD(F)a_m'

The representation of a PDE by means of a pair of compatible infinite-dimensional
dynamical systems we regard as a guiding principle for constructing the finite-
dimensional models of integrable equations.

There exist nonstandard ways to represent (1.3.1) by a pair of dynamical
systems. Now we give an example of a chain representation of the well-known
integrable equation {4]

Uy = U + Quv + uz),

—vy = vz, — Quv + vz), . (1.34)
Consider two compatible chain equations’

(gn)z = gnlgns1 ~qn-1), n€Z (1.3.5)
(gn)t = gn@n+1{@nez + @nat + @n) + @nn-1(gn-2+ gn—1+ qn) . (1.3.6)

We choose and fix an integer n and define new variables u = ¢,, v = gn—1.
Equation (1.3.5) enables one to express easily the variables ¢n_2, ¢ns1, @n+2 in
terms of u,v, Uz, Vg, Uz, Vzz!

Gn-2=U—Vz/V, Gns1 =V+U /U, gns2=(loglv+ug/u),+u.(1.3.7)

5 In other words, the chain (1.3.6) is a symmetry for (1.3.5).
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One can check that after being rewritten in the variables u, v, (1.3.6) coincides
with (1.3.4). Solutions of PDEs which correspond to different values of n are
related to each other. Namely, these relationships are just the Bicklund transfor-
mations for (1.3.4).

Any chain possessing a symmetry enables one to construct the associated
PDE in a similar way [5]. The fact that the Bicklund transformations of the
nonlinear Schridinger equation and the Toda lattice are closely related has been
discussed in [6].

1.4 Transformations

In the next sections dealing with certain classes of equations, we shall choose
an appropriate class of transformations. Sometimes we have to go beyond the
framework of the classical theory.

1.4.1 The Lie Algebra of Classical Symmetries. If G;(t,z,u,u;, ..., un,),
i =1,2 are symmetries of (1.1.19), then one can construct a new symmetry

G3 = G1,(G2) — G2, (Gh) . (14.1)
It is easy to check that the corresponding vector fields [see (1.1.28)]

L =Y DG 0/ou
k=0

dr; =

satisfy the usual relation

d _[d d
dry {:i—r; E] '
Thus, the set of all local symmetries constitutes a Lie algebra with the bracket
(1.4.1). The classical symmetries connected with one parameter groups of trans-
formations define a subalgebra of this Lie algebra. In other words, the commutator
(1.4.1) of classical symmetries is a classical symmetry as well.
Below, in Sect. 4 we shall classify scalar integrable equations of the form

Uy = Fz,u,up, .., upm), m>2. (14.2)
The subalgebra of the classical symmetries of the form
G =G(z,u,u) (1.4.3)

will be widely used in this classification (Sect. 2.3). Quite often integrable equa-
tions possess a nontrivial algebra of symmetries (1.4.3) that enables one to extend
a module of transformations and relate equations with essentially different com-
mutation representations.
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Now we present a few equations possessing extremely rich algebras S of
classical symmetries (1.4.3). It can be proved that the dimension dimg¢ S < m+3,
where m denotes the order of (1.4.2) [7].

Consider the equations

ug = up(usuy! — 3uduy?/2)"1/2 (1.4.4)

uy = w3 (udus — Suzusug +40u3 /9) "3 (1.4.5)
uy = ud(Wdur — Tudugus — 4922 /10 + 28usulus — 35u$/2)~34 . (1.4.6)

Equation (1.4.4) is invariant under the six parameter group of point-transfor-
mations

t'=t, z'=(az+bf(cz+d), ad-bc=1, a,bec,deC,
u=(au+pP)/(yu+é), ab=py=1, o,B,7,6€C.

The corresponding Lie algebra S of classical symmetries is isomorphic to so(4, C)
and generated by u, zuy, ?u, 1, u, u2

The algebra S of (1.4.5) is isomorphic to sc(3, C) and generated by 1, z, vy,
zu1, Y, wuy, zu — z2u), u? — zuyu. The corresponding one parameter groups of
point-transformations are

z! =z z! =z ' =z+m
u =u+m u =u+mnz u' =y

{z’ = rexp(rq) {m’ =z {x’ =z+Teu

u =u u' = uexp(rs) u! =u

{a:’ =z/(1 +7T7z) {z’ =z/(1+mu)

v =uf(l+712) ' =u/(l+mnu)

Classical symmetries of (1.4.6) are 1, z, z2, w1, zu1, u, zu—z2u; /2, u3, uju—
zu?/2, u? — zuru+z?u? /4. They generate the Lie algebra isomorphic to sp(4, C).
The first seven symmetries correspond to the group of point-transformations
like in the previous case. The one parameter groups generated by the last three
symmetries are the ones of contact transformations. They can be found from the
dynamical system (1.1.11).

1.4.2 Generalized Contact Transformations. For (1.4.2) whose rhs do not de-
pend on t explicitly we shall restrict ourselves with the contact transformations
of the form®

z'=¢(z,u,u1), u'=1/)(:c,u,u1), tl=t- (147)
The functions ¢, are constrained with the relation

§ The well-known example of such a transformation is the Legendre wransformation z’ = uy, u’ =
zup -y, ul =z, up=1/ug, ...
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% _ ppdt
D(¢) Bur D) By and (14.8)
i . k 1.49
uk=(D—(¢;D)¢, k=1,2,.... (1.4.9)
Moreover, one can verify easily that
W ='(%% - %g_zﬁ) () - (1.4.10)

If 8y /0u; = 0¢/duy = 0, then the condition (1.4.8) holds and the transformation
(1.4.7) becomes the point one. In the general case condition (1.4.8) means that
the function u} = D(y))/D(¢) does not depend on up. This transformation is
invertible in variables z,u,u;. Formulas (1.4.7,9, 10) enable one to reconstruct
the local conservation laws and symmetries of the resulting equation. It is clear
that the variable ¢ can be excluded from a set of dynamical variables in the case
of (1.4.2).

For shift-invariant equations (1.3.1) we shall often restrict ourselves to a
subset of dynamical variables

U, UL, U2 .. (14.11)

In this case, by local functions we mean the shift-invariant ones. Correspondingly,
the notion of a local conservation law will change. Conservation law (1.2.1) we
call local in the set of dynamical variables (1.4.11) if both functions p and o are
shift-invariant. So the conservation law u, = (u; + z), for equation u, = uz +1
becomes nonlocal in the set (1.4.11). Usually we shall write down a conservation
law in the form ¢; € Im{D}. One should take into account the fact that the space
Im{D} expands or contracts depending on the choice of the set of dynamical
variables.

The exclusion of £ and ¢ from the set of dynamical variables leads us to the
problem of the description of invertible transformations in the subset (1.4.11)
[8]. In the scalar case

=z+du,u), u=vuwm), t'=t (1.4.12)

is an example of such a contact transformation. It follows from (1.4.9) that uj =
i (u, u1, ug, ...), and so (1.4.12), generates an invertible map of the set (1.4.11)
into itself. In general, transformations under consideration are not necessary local
with respect to x,¢. This makes it possible to generalize (1.4.12) and introduce
very useful transformations applicable both to scalar equations and to vector
ones. These transformations are defined by the formulas’

dz' = a(u, wy) dz + B(u, uwy,uz, ...)dt, t'=t, (1.4.13)

7 In the case o = 1 4+ D(¢(w)) the transformation (1.4.13, 14) is a point-transformation of the form
(14.12).
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k
u' =), uL=(%D) ¥, k=12 .... (1.4.14)

The functions «, 3 have to satisfy relations
d
7@=DB), « ¢ Im{D}, (1.4.15)
For a given solution u(z, t) of (1.3.1) the differential form (1.4.13) is closed

by virtue of the first condition (1.4.15) and the dependence of z' on z, ¢ is defined
by potentiation. It can be checked that

Wy = Fl(u,ur,ug, ..., Uy) = g—i(u, —a"fw). (1.4.16)

For example the equation

ug = uluy (1.4.17)
possesses the conservation law (1.4.15) where o = u~!, 8 = —u; [9]. The
transformation

de' =vldz —wudt, u'=u

which is generated by this conservation law reduces (1.4.17) to the linear heat
equation uj = uj.

The condition « ¢ Im{D} guarantees invertibility of the transformation
(1.4.14) of variables u,u;,uz, ... . Namely, this condition implies that the ma-
trix O(u', u1)/d(w, u1) is nondegenerated [8]. For the inverse transformation

dz = o'(u',up) dz’ + B'(u', uy, uj, ...) dt',
where

o =0, B ==Bfat. (1.4.18)
The relation d(a')/dt' = D'(#') follows from a general formula

o=ap', o=0+p¢ (1.4.19)

which relates the conservation laws g, = ¢, and g}, = o, of (1.3.1) and (1.4.16),
respectively.

The fact that »~! is conserved density for (1.4.17) reflects the following
property of integrable equations (Sect.3): the function a = (3F/Oun,)~'/™ is a
conserved density for any scalar integrable equation (1.4.2). If such an equation
has the form

up = A(u, uum + Blu,uy, .., up—1) (1.4.20)
and a = A~Y/™ ¢ Im{ D} then the transformation (1.4.13, 14) gives

up=ul, +B'(u',u, ., up ) (1.4.21)
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In the case o € Im{D}, equations (1.4.20,21) are connected via the contact
transformation (1.4.12).
For vector equations of the form

ue = A(wuz + Blu,w1), u=(u',u?), detd #0 (1.422)

the integrability conditions are (Sect. 3)
Tr{A} =0, %[(— det )% € Im{D} .

The transformation (1.4.13, 14) with & = (—det A)~'/* reduces (1.4.22) to [10]

u,=u2+f(u,v,u1,v1)

142
_'Ut=v2+g(uyvvu1yv1) ( 3)

In conclusion, we present an interesting example of the application of such
transformations in the case of hyperbolic equations [11]

a(u, uz, uy)uzz: + b(u, Uz, uy)uzy +c(u, ug, uy)uyy
+d(u,uz,uy)=0. (1.4.29)

A straightforward generalization of (1.4.13) is
de' =adz+Bdy, dy =~vdr+édy, u' =u (1.4.25)
where a, 8, v, 6 are functions of u, u,,u, which satisfy the constraints
ay=B., v, =6., ab—py#0. * (1.4.26)

If the local conservation laws (1.4.26) are nontrivial then the transformation
(1.4.25) is invertible and the resulting equation is of the same form as (1.4.24).
This transformation allows one to turn the nonlinear Klein-Gordon equation

Ugy = dh(u)/du (14.27)

into equation of the form of (1.4.24) that corresponds to the Lagrangian with the
density

L=b™ (14 /1= 2huuy) .

For a, f, +, & one has to choose the components of the energy-momentum tensor

a=ul/2, B=vy=h), §=u}/2.
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2. The Burgers Type Equations

The linearizable equations in the theory of integrable equations are like a fruit
fly by Zakharov’s colorful expression. The best known example is the Burgers
equation which has been linearized by the Cole—Hopf substitution [12,13]. A
few scalar and vector generalizations of this equation are known [9, 14-18]. In
this section we develop a regular approach which enables one to recognize and
linearize such equations. It serves as a good illustration of the general theory to
which this paper is devoted.

2.1 Classification in the Scalar Case

2.1.1 Integrable Equations of Second Order. Any linear equation

up = ug + ¢(z)u 2.1.1)
possesses an infinite sequence of local symmetries of the form

ur =(D*+q)*(w), keN.

If there exists a differential operator M of odd order that commutes with the
operator L = D2+q, then (2.1.1) has additional symmetries u, = M k), k € N.
The question arises whether there exist nonlinear equations of the form

ue = Fz,u,uy, ug) 2.1.2)

with higher symmetries, which can not be linearized via the contact transforma-
tions. It is well-known that the Burgers equation

Uy = ug +2uyy 2.1.3)

provides such an example. According to [16] the exhaustive list of nonlinear
integrable equations of the form (2.1.2) can be written as follows:

ug = ug +2uuy + h(z) 2.14)
ug = D(wu™% + azu + Bu) (2.1.5)
ue = D(uiu~? - 22) . (2.1.6)

To decide whether a given equation of the form of (2.1.2) can be reduce via
the contact transformation to one from the above list we propose the following
algorithm. First, one must check the condition

(OF/8uz)™"* = A(z,u, u)uz + Bz, u, ur) . @.1.7)

Violation of (2.1.7) means that the equation under consideration does not possess
higher symmetries and cannot be reduced to the basic equations (2.1.1,4-6). If
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(OF[8u2)™'* = D(a(z,u,w))
then (2.1.2) is reduced to an equation of the form
u,=uz+f(a:,u,u1) (218)

by means of the contact transformation (1.4.7-9), where ¢ = a(z, u, ) and
is any solution of (1.4.8). Function f is to have the form

f = a(z,u)u? + Bz, uyuy +7(z,u) , (2.19)

otherwise (2.1.2) is not integrable. Now the point-transformation ¢’ = z, v’ =
¥(z,u), where P1p/0u? = oz, u)(Oy/Ou)?, reduces (2.1.9) to

up = uz + alz, Wuy + bz, u) . (2.1.10)

The integrable (2.1.10) must coincide (up to the linear transformations z’ = z,
u' = p(x)u + ¢(x)) with (2.1.1) or (2.1.4).
If

dF\"'? b 1"
(5172) = D{a(z,u, w1)) + Kz, u), Bu #0 2.1.11)
or
-1/2
B_F = D(a(z,u,uy)) + bz, u,uy) , ig #0 (2.1.12)
auz aul

the integrable (2.1.2) can be reduced to the form
U = wu"t + g(z,u,uy) . (2.1.13)

First consider (2.1.11). If (2.1.2) is integrable, then da/Ou; = 0. The point-
transformation z' = ¢(z,u), u' = P(z,u), where (8¢/8z)y = Oa/Bz + b,
(0¢/0u)y = Ja/Bu reduces (2.1.2) to (2.1.13). In the case of (2.1.12), equation
(2.1.2) is turned into (2.1.13) via the contact-transformation (1.4.7-9), where

Pa 36y 8y 0

5’&? Oudu Oudy’
Pa & Ja 043y Y 09

Ou?du * Ou10z Ou Oudr Oudz’
If (2.1.13) is integrable then it must be of the form
ug = D(ugu~? + az)u + f(z) + v(@)u"") . (2.1.14)

The following change of variable 7 = y(z), T = u/y'(z), where y" + v(z)y =0,
kills the coefficient 4(z) and gives an equation of the form

Uy = D(uyu™? + a(z)u + Kz)) . 2.1.15)
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Up to the obvious rescaling the obtained equation must coincide with (2.1.5) or
(2.1.6) if it is integrable.

2.1.2 The First Integrability Condition. The classification of the integrable
equation (2.1.2) is based on a few necessary conditions for the existence of
higher symmetries. To derive the first of these conditions we substitute

Go=1,D"+1,41D" '+ ... +}
into (1.1.27), where
F.=RD*+FRD+F,

Collecting terms at D™*! in (1.1.27) we obtain

2BD(n) —ml,,D(FR)=0. (2.1.16)
Therefore

In = (F)™/2 (2.1.17)
At D™ we have the relation

G _ BD¥(1) — Mlsz(Fz) +2FD(l;n 1)

dt 2

~ (m = Dlp_1 D(Fy) + F, D(,) — ml,, D(F})
which can be rewritten in the form of the conservation law

dF; /2
dt

=D (m-2D(E + RE/
- (—2—) lm_le‘"m’/z) : 2.1.18)
m

Hence the existence of the third or higher order symmetry implies that

d—flt"—‘ eIm{D}, o =F"?, 2.1.19)
i.e., the function p_; must be a conserved density.

Note that we have already used the function ¢-1 in the above algorithm
[see (2.1.7)]. If this conservation law is trivial (p_; € Im{D}), then, as we
have noticed above, there exists a contact transformation that reduces (2.1.2) to
(2.1.8). The fact that (2.1.2) possesses the nontrivial conservation law drastically
restricts its form.

Lemma 2.1. Any nontrivial conserved density 0 0f (2.1.2) has order less or equal
to 2.
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i) If ord(e) =0, then (2.1.1) is quasilinear

ug = Az, u,u)uz + B(z,u,u;) . (2.1.20)
ii) If ord(p) =2, then (2.1.2) can be rewritten

up = (A(z, u, u)uz + Bz, u,u1) " + C(z,u,u1) . (2.121)

— H t g -
Proof. Let ord(p) = 2m, m > 2. Without loss of gene}‘aht'y we can se
g(rzo{z eeey Um)s Omm = O%0/0u2, # 0. Evaluating a derivative with respect to

time one obtains
8o
Oul,

9'=5t:n_D F+.. uF__

'3 B, +H(z,u, ... uy) € Im{D}.
“ut this is impossible if m > 2.
iy Let o = p(z,u), then g, = (8p/Ou)F € Im{D} a'nd‘, copsequently, the
function F has to be linear with respect to uz, as indicated in (2.1.20).
) Let g = gz, u,u1), 8%9/0u? #0. Then

aQDF+_a_9F2(@_._alu,_629 )FeIm{D}.

®Bu Bu Bu  Budwm T Bt

Thereforc
og 9 _fg )F=D( (z,u,u1)) .

(5; - Bu Ouy uy 6”%’“2 glr, u, uy

Hence
O, 0, [ (20 Fo, Pe)

F= (%‘“ +29’J”2) / <6u Budw ' oult)

and (2.1.2) can be rewritten as (2.1.21). | |

It follows from the Lemma and (2.1.19) that relation (2.1.7) used in the
»igorithm must hold if (2.1.2) is integrable. Moreover, in the case of (2.1.11) the
~nsidered equation has to be quasilinear and therefore da/du; = 0 holds.

7.1.3 Sketch of the Classification. If the first integrability condition (2.1.19)
is fulfilled, then the contact transformations indicated in Sect.2.1.1 re(%uce the
general case of (2.1.2) to quasilinear subcases (2.1.10) or (2:1.13). Consider, for
example, the problem of classification of integn:ab}e equations of the form of
(2.1.13). Equation (2.1.10) can be handled in a similar way. ‘

It follows from (2.1.13,19) that p_; = u is a conserved density. Therefore

(2.1.13) has to be of the form

uy = Dy~ + g(z, u)) . (2.1.22)
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To describe all integrable cases of (2.1.22) we use the two next integrability
conditions go¢, o1: € Im{D} (3.1.25,26), the derivation of which we defer to
Sect. 3. In the particular case of (2.1.13) the canonical conserved density gg can
be represented in the form:

0 ~ ug —u*dg/Bu, (oo, € Im{D}). (2.1.23)
For any conserved density p = p(z, u) we have

529 -2,2 629
gt_-—ﬁu u1+H(z,u)eIm{D}=>5?—

Thus ug — u?8g/8u = Hz)u + c(z), and therefore [cf. (2.1.14)]
o(x)

g = a(z)u + b(z) + (715 .

The change of variables F= y(z), T = u/y'(z), where 2y" + c(z)y = 0, kills the
coefficient c(z). Now we have

uy = D(uju™2 + A(z)u+ B(z)), 0= B(z)u, (2.1.24)
and
(00): > v'B"(z) + A(2)B'(z)u € m{D} & B" =0, AB'=0

When A =0 we have B = ¢;z + ¢z, and (2.1.24) coincides with (2.1.6) up to the
rescaling. If B =0, then g; ~ —A'(z)u, and one can check easily that 4" = 0,
i.e., the equation coincides with (2.1.5).

2.1.4 Linearization of the Burgers Type Equations. According to the Sophus
Lie theory, no invertible transformations except (1.4.7-9) that are admissible to
the dynamical system (1.3.2) exist [see, for instance, Refs. 8, 19]. Here we extend
a little a class of contact transformations by adding the so-called potentiation

VI Uy ey Uyl = Uk, oun (2.1.25)

Essentially we add a new dynamical variable v such that D(v) = u and spoil
the invertibility from the classical viewpoint. We can use this transformation to
equations of the form

Uy = D(A(Za u, U])) . (21.26)
As a result we obtain
vr = Az, v, 02) . (2.1.27)

The Burgers equation (2.1.3) cannot be linearized by means of the contact
transformation, but after the potentiation (2.1.25) it reduces to
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o= v iR (2.1.28)

After the point-transformation & = expv, equation (2.1.28) becomes the linear
heat equation

1y = g (2.1.29)
tuti iiy /& which i ition of these above
The Cole-Hopf substitution u = i /@ which is the f:omposmon o X
transformations enables one to find the general solution of the Burge.rs. equation.
All equatioris (2.1.4-6) can be linearized by means of' i:omposmon of the
potentiations and point-transformations. Indeed the composition of (2.1.25) and
Z=v,ii=2z

(2.1.30)

. 1

r=u, u=-_-

uy
maps (2.1.5) into the linear
Gy=tlp—ati—f (2.1.31)

and (2.1.6) into the Burgers equation (2.1.3). Transfgrmations sucfh as the Qolc-
Hopf transformation allow one to reconstruct a solution of thf: pmpted nonlmf:a.r
equations based on a solution of the respective linear equations in the explicit
form. Finally we note that the higher symmetries of (2.1 .4-6) can be reconstructed
from the symmetries of (2.1.1) as well.

2.1.5 Extension of the Set of Dynamical Variables. For the laypcrsqn, an equa-
tion reducible by means of some transformation to a linear form is na@y
considered as integrable. Of course the list (2.1.4-6) is not complete from this
viewpoint since some sophisticated transformation may spoil the local structure
of symmetries. Nevertheless, if the symmetries of (2.1.2) become local after
a finite extension of the set of dynamical variables, our approach can also be
licable {19]. _ '
appThc sirflpk]est way to extend the set of dynamical w{a_riables is bX potentia-
tion (2.1.25). More generally potentiation can be considered as adding a new
dynamical variable v, such that

v = o(z,u) (2.1.32)
and o is a conserved density of (2.1.2). It follows from g, = D(o(z,u,u1)) that
ve = oz, u,u1) . (2.1.33)

ressing u in terms of z,v; from (2.1.32) and substituting u = U (m,vl?,
ETP:D(Ii ) in (2.1.33) one obtains an equation of the fonn'of 2.1.27). It‘ is
clear that the transformation (2.1.32) is a composition of the point-transformation
u' = p(z,u) and the potentiation v; = u' (2.1.25). In the general case gf=
o(z,u, u1), the potentiation vy = o can be represented as a composition of a
contact transformation and (2.1.25) {20].
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Extending of the set of dynamical variables enlarges the linear space Im{D}.
For instance, potentiation adds the variable u to Im{D}. The above classification
of (2.1.2) is based on the conditions of the form (gx); € Im{D}, k = —1,0,1. If

these conditions are violated we ought to enlarge the space Im{D} in order to
fulfill them.

Example 2.2. Let us consider the equation
=g - ——t— + . 1.
U 5 3 o Aup, MeC (2.1.34)

The function g = Fz_l/ % is equal to z/u. One can see easily that

_d9-1=D(:ﬂ+3_“+i’£)_é_

dt z 2 u u

If A # 0, the first integrability condition (2.1.19) is violated and hence there
are no local higher symmetries. If we want to satisfy this condition for any X
we must add a new variable v to the set of the dynamical variables such that
vy = 1/u. It is just possible since the function 1/u is a conserved density! There
is no surprise that the equation

1
ve=D <-—2- + ,\v> (2.135)
nux

satisfies the condition (2.1.19). This equation is of the type (2.1.11), and the
change of variables z = Av/2, u = 2z /) reduces the equation to the form of
(2.1.6) (see the algorithm).

In the example, we have used the first integrability condition (2.1.19). The
advanced linearization scheme of equations (2.1.2) is a straightforward general-
ization of the above procedure. It is based on the extension of the set of dynamical
variables and involves three integrability conditions (g;), € Im{D}, k¥ = —1,0, 1
(2.1.19), (3.1.25, 26). This method has allowed us to find the linearization trans-
formation for all linearizable equations of the form (2.1.2) which we know. This
is clear since the described procedure of extension of the set of dynamical vari-
ables is quite general. It can be applied to equations of higher order with almost

local symmetries.
2.2 Systems of Burgers Type Equations

2.2.1 The Standard Form. Here, following [18], we consider the vector equa-
tions

uy = uy + Fu, up) 2.2.1)
where

u=@!,...,u")y, F=F, ..., FV), u=0*u/oz*
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which have higher symmetries of the form
ur=u,+ Hu, ..., up1).

As in the previous section the integrability conditions can be derived from
(1.1.27)

0,(L)—{D*+ AD+Fy,L]= Fi,D+Fy, . (222)

Here
n-—1

L=D"+ZI;D‘, Li=li(u,...,u),

L, Fi, Fp are the N x N-matrixes,

- ; nel
(F); = -‘;% L Ef=aT, A= > 009D
Collecting in (2.2.2) the coefficients at D™*!, D", D*~! one obtains

p(py+ B ‘2’P 1 o , (2.2.3)

p@+ B (5 + Py, - D*P)+ PD(R) - RD(P) - [, P,
2.24)

o)+ Fu B = oRy + Q) - DYQ) - FiD@ +2PD) - [, Q)
2.2.5)

where unknowns P, @), R are related to I, _1, l,—2, l,—3 by the formulas?

n
lh1=5(F+P),

ln2= n(n; 2) D(F) + 2Fo + n(ns_ 2 F?
- 2
+n(n4 2)PF1+ (8 ) —Q,
ln—3=%D(ln—)+2(—n———:—)2(—n—ﬁD2(F)+ =D pRy
+ 20D p s 1), M0 =2 0n
+ —( ‘;')z(n D g DRy + MRz D = 2) i)z(" =2 R
n(n - 2) n{n —2) n(n - 2)
g [@t—1g Pr—g —hR
n{n—1) nin-1) n
+ RF+ r PFo+-8-R.

& As a matter of fact, P, Q, R are just the coefficients of the formal series L'/* = D+ P+QD~1+

RD-2%+ ... (Sect.3).
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The matrix equations (2.2.3-5) have the form

DX)+[A,X]1=B, (2.2.6)
where A = A(u, ..., up), B= B(u, ..., u;) are given matrices. If k¥ > m and
the matrix X (u, ..., u,) satisfies (2.2.6), then n = k — 1 and the relations

2
a. B -=0, 227
Ou}, Oul
B @B =0, 2.2.8)

Buldul_,  Buloui_,
1,7 =1, ..., N hold. The conditions (2.2.7,8) mean that
B=D(C(u,..., up-1))+ E(u, ..., ug_1) .
The function
X, ...y upg)=X = Clu, ..., ux_y)
obeys the equation
D(X)+[A,X1=B, Bu,...,ur)=B-[A4,C],

where the function B df,pcnds on a smaller number of variables. If £k — 1 > m,
relations (2.2.7, 8) for B are also true and so on. Now we use conditions of the
type (2.2.7,8) in order to prove the theorem.

Theorem 2.3. Let equation (2.2.1) possess the symmetry w, = w,+H(u, ..., %,_1)
of order n > 4. Then the equation can be reduced to the form

u} —u2+A U u1+B emulutu™ +C' uwuk

+E' +M'u’+N' t=1,...,N (2.2.9)

"by means of the invertible point transformation

uwi= ' (v). (2.2.10)

Proof. It follows from (2.2.3) that P = P(u). Taking this into account one can
easily check that (2.2.4) has the form

[F1,Q] _0F o OF, 9F! 6F1 OR\ .
D@+ 2 6 E¥ <3u 6u1 8u1 +P_8uf> v )
The function
oFR ;
Qlu,u1) =Q - ——‘ H
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satisfies (2.2.6), where A = F1 /2,

__ PR i
Ouf Bui 2
OROFI oF,  _OR ¥R ; 1[38R
(WW‘LEF*'PW” Guiour 1T 2 a_u,’?’F‘

x uf + k(u,uy) .

Conditions (2.2.7) are equivalent to the conditions
PR
Quf Bui

Therefore (2.2.1) has the form

=0, kj=1,...,N.

ui = uj + Tl (wuuf + Mj(uyu] + Ni(w) . (2.2.11)
Using (2.2.8) we obtain
oLGy) _or®) (ra), 'y, 4,j=1,...,N. (2.2.12)
ou’ OuJ

Here I'(j) is the N x N-matrix with the elements I’(j);; = ij(u).
It is easy to see that any transformation (2.2.10) maps (2.2.11) into another
one of the same type

v = v} + Fjs(oy]of + Mj)] + Fiw)

where
84" a9 i . 09™ d¢'
Sum I‘jk(v) = 5oi5uk + I} () 307 BoF 2.2.13)

It follows from (2.2.12,13) that the functions F?k(u) are just the Christoffel
symbols of some Euclidean affine connection. 'Iihc zero-curvature conditions
(2.2.12) guarantee existence of transformation (2.2.10) that reduces 2.2.11) to
the form

ul = ub + Mi(wu] + N'(u) . (2.2.14)
The functions ¢*(v) can be found from the system of equations

_?i 9¢™ _6.?1 =0

Qvi Guk dvl Ovk

The relations (2.2.12) are compatibility conditions of (2.2.15).
For (2.2.14) it follows from (2.2.3) that P is a constant matrix. Equation
(2.2.4) can be written as

+ p'r"”(@ (2.2.15)
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M, oM i ‘
D(Q) + [—5@ = Fu 2 + ki(wug + y(u) .
The function Q(u) = Q — (M /0u’)u] satisfies (2.2.6) where
! _PM
A= -2—M , B= ~Fwoe ufu] + Ki(wuy +y(u) .

Consequently, the matrix function M(u) is linear. In other words, (2.2.14) has
a form

ub=uj + Awiuf + Elu + Nw), i=1,...,N. (2.2.16)

The structure of the functions N*(u) is determined by (2.2.5). [ ]

2.2.2 Linearization in the Homogeneous Case. We set C}, = 0, E} = 0,

M J‘ =0, Ni =0 in (2.2.9) and restrict ourselves to the so-called homogeneous
equations

ub = uj + Alwiuf + B wubu™, i=1 N (2.2.17)
Following the investigation of the solvability conditions of (2.2.3-5) one can
obtain that the constant coefficients B}, are expressed in terms of Al

i i i ml i
55T + S Tjm *+ St The

km = % , (2.2.18)
where

Shi= Al — Al Ti=Au+ AL (2.2.19)
The coefficients A}, satisfy the following relations®

[AG), AR)] = (A} — AL;) AG) (2.2.20)

where A(j) is a matrix with the elements (A(j))L = A;k. The necessary and
sufficient integrability conditions of (2.2.17) are (2.2.18-20). Namely, these con-
ditions provide existence of the linearizing substitution

u' = gi(v)o] (2:2.21)
that links (2.2.17) with

vi=vj. (2.2.22)
The functions ¢;- have to be found from the overdetermined system of equations

9 The matrices A(s) define a representation of the Lie algebra that looks alike but differs from the
adjoint representation. P
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0¢; _ 1,
vk~ T2
As a matter of fact, (2.2.23) represents a set of dynamical systems 6$6v" =
Fi(d), k =1,..., N. The compatibility conditions of these systems coincide

with (2.2.20).
A linear change of variables

R (2.2.23)

7' = Jiv/ (2224
preserves the form of (2.2.17). The corresponding transformation of the matrices
A7) is

AG) = TV TIAG)T (2.2.25)
(J is a matrix with elements J}). Two equations which are related by (2.2.24)
we consider to be equivalent.

In the first nontrivial case of V = 2 a complete list of equations (2.2.17)

satisfying the conditions (2.2.18-20) can be obtained. It can be represented in
the following form

Uy = uy +cjuyy ,

1 s ) (2.2.26)
vy = vz + uuy + aun + zacu” + ge(c — cuv;
uy = uz +uuy , (2.2.27)
v = ton
up = up +uuy , (2.2.28)
vy = v +uvy +vy

= +
ug = uz +uy , \ (2.2.29)
vy = vy +ouy +uuy —u’ /4,

= +
Uy = up +uug , \ 2.2.30)
v = v2 +vug +uvy +cle — Dou?/4;

- 32
Uy = up ~ 20Uy — U uv, (2.2.31)

vy = v2 — 2uuy — 4oy

where c, ¢; are arbitrary constants.

In the case of (2.2.26), the matrices A(1), A(2) form the Lie algebra G
[see (2.2.20)] such that dim(G) < 1. Equations (2.2.27,28) correspond to the
commutative two-dimensional algebra G. In the last three cases (2.2.29-31) the
Lie algebra G is solvable but not commutative.

In cases (2.2.26-30) the first equation of the system is split. It is impossible
to reduce (2.2.31) to the split form by the linear change of variables (2.2.24). The
linearizing substitution (2.2.21) one can obtain easily in all cases since (2.2.23)
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are integrable in the explicit form. In the most intricate case of (2.2.31) the

substitution is

u=(V -UH12y, v=QUU - BV -UH~!. (2.2.32)

2.2.3 Concluding Remarks. The conditions (2.2.18-20) must be valid for the
integrable equations of the general form (2.2.9) as well. The above scheme en-
ables one to obtain other algebraic constraints on the coefficients of (2.29). In
the particular interesting case of

ub = uj + C;:ku"u'c , (2.2.33)
the integrability conditions have the form

CG)C(k)=0, forany j,k (2.234)
where C(j)} = Ci,. The substitution
Civiv*

2

reduces (2.2.33,34) to v; = vj. Unfortunately, in the integrable cases, (2.2.33)
can be split by means of the linear change of variables (2.2.24). Namely, it can
be represented in the form

u' =y —

vi=vy, t=1,.... M
up=up+ Hjolok i=1,.. N-M,

For the general case of (2.2.9) (with N > 3) a straightforward analysis
of algebraic constraints seems to be a difficult task even with a homogeneous
(2.2.17).

An interesting example of the Burgers type equation has been found (15

uy = Ayug + 21 (u + v)ug + (A — Aduvg + (N — A2)(u + v)uv

2235

V¢ = )\21)2 + 2/\2(u + ‘U)‘Ul + ()\2 — Al)vul + (/\2 - /\1)(u + v)uv . ( )
The corresponding linearizing substitution is

U Y (2.2.36)

CToey TTaoeny

If A; # A this equation cannot be reduced to (2.2.1). The integrability conditions
for equations

ut=Au2+F(u,u1), A=diag(Alv"*$’\N)v )‘l#)‘]

will be indicated in the next section.
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2.3 Lie Symmetries and Differential Substitutions

It has been shown in Sect.2.1.2 that equations (2.1.2), (2.2.1) with higher sym-
metries can be reduced to linear equations. It is possible to construct these lin-
earizable equations starting from the linear ones.

2.3.1 The Scalar Case. The Cole-Hopf transformation is closely related to a
symmetry group of the linear equation (2.1.29). Namely, the heat equation is
invariant under the following group of transformations

z—z, U —exp(n)i;, T7€C. 2.3.1)

It is clear that
z, u=T,...,uk=Dk% 232)
~are invariant functions with respect to (2.3.1). Moreover, any in_yariant function
f(z,u, ..., tx) can be expressed through invariants (2.3.2): f = f(z,u,...,
ug—1). Since the heat equation admits the group (2.3.1), the respective differenti-
ation d/dt maps an invariant function into invariant ones. In particular du/dt is
invariant, so it can be represented as du/dt = F(z, u, u1, ...). The explicit form
of the function F' can be found by a simple computation. Indeed
dy28b B Gip _pph 20 0
dtTwT T w @ Dty Dy tuth
Thus the Cole-Hopf substitution can be interpreted as a restriction of the heat
equation on the invariants of the group (2.3.1). It is clear that one can perform
such a restriction for any equation (not necessarily a linear one) which admits
this group.
The above trick has been based on the premise that a set I of all invariants of
the group G is generated by two invariants ¢ and v (namely ¢ = z, ¥ = ; /i) 1°
in the following sense: any invariant taken from I is a function of

y=¢1 u=¢,U1=D(1/))/D(¢),.--,

1 k (2.3.3)
={(——D e
“" (D<¢> ) )
In new variables y, u we come to an evolution equation
d (d 1 d¢ _
prihe (dt - WE?D) ¥ =Fly,u,uy,...). (2.34)

Example 2.4. Consider another group of transformations

10 An existence of such basic invariants for any finite parameter group of contact transformations
(1.4.7-9) has been proved in [21].
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rT—ozr+T, U — U

that the heat equation admits. Functions ¢ = i, 1 = &; may be chosen as basic

invariants. Simple computations show that in this case (2.3.4) is
%u =vluy . (2.3.5)
Thus our scheme gives a regular way to obtain the well-known linearizing sub-
stitution y = &, u = #; for (2.3.5) [9,22]. Note that another choice of the basic
invariants leads to an equation reducible to (2.3.5) by a contact transformation.
]

One may use a multi parameter group G, too. For example, the heat equation
is invariant under the following two parameter group of transformations

z—z+n, @; »exp(n)i;, m,mecC. (2.3.6)

The set I is generated with ¢ = 4y /@ and ¢ = (D(ii /@)1, The corresponding
equation (2.3.4) is just (2.1.6).

Note that in all above discussed cases the group G has been solvable. The
solvability of the group implies that the corresponding substitution can be repre-
sented as a composition of invertible transformations and substitutions opposite
to potentiation (2.1.25) [21]. The next example shows that in the case of a simple
symmetry group such a decomposition contains the Miura type transformation.

Example 2.5. Consider the equation

d
—ii =iy — 3830, /2 (2.3.7)
dt
which is invariant under the following transformations
z—oz, u_’au+ﬂ aé— By #0, a,p,7,6€C.

ya+6 '’

The set I is generated by ¢ = z, ¢ = @@ — 3add; % /2. One can check that
the corresponding (2.3.4) is the KdV equation

%u =u3 +3uu . (2.3.8)
In this case the substitution (2.3.3) can be decomposed into
2 .
u=D(w) — % , 2.3.9)
w=D(@og(w)), v=D@). (2.3.10)

Here (2.3.9) is the well-known Miura transformation. Transformations that are
inverse to substitutions (2.3.10), are the potentiation (2.1.25). n
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What symmetries correspond to a general substitution
y =z, 4,4), u=Pr,d,id) (2.3.11)
that relates a scalar evolution equation
fie = F(z, i, 1, ..., fim) @23.12)
with another one
=F(y,u,u1, ..., Um) 2.3.13)

of the same type?'! The answer to this question is the following [24]. Equation
(2.3.12) has to possess a nonlocal symmetry'?

g =exp (/ 2z, i, 4y, 4,) dz) . (2.3.14)

Note that by substituting (2.3.14) into (1.1.26) which a symmetry has to satisfy,
one obtains the local conservation law

2, =D ( gF(D + ) (1)) (2.3.15)

In the case 8?$2/842 = 0, the functions (2.3.11) can be found as solutions of the
first-order PDE
8 3 a
D( )+9—’L+5§ =0. (2.3.16)

In the case 8*12/8u3 # 0, the corresponding substitution has a slightly more
general form than (2.3.11).

The classical example of the substitution (2.3.11) gives the Miura trans-
formation (2 3.9) which relates the mKdV and KdV equations. In this case
F=gy-3%2 i1, §2 = 24 and from

one obtains ¢ = z, ¥ = #i; — ii%. Any other choice of the solution of (2.3.16)
corresponds to a point-transformation of the KdV equation.

The differential substitutions (2.3.11) play an important role in Sect. 4 in the
problem of classification of scalar integrable evolution equations of the third and
fifth order.

2.3.2 The Vector Case. A linear vector equation

"' The problem of describing differential substitutions (2.3.11) into a given equation (2.3.13) has
been discussed in [23].
12 The substitutions which we have discussed correspond to the case 2 € Im{D}.
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=Au2 A=diag(/\1, ey /\N) s /\.‘ 75/\]' (2.3.17)
is invariant under the following group of transformations:
u s duf+bi+ciz, z—oaz+r, o,b,dAeC. (2.3.18)

One can choose a subgroup G of this group and restrict (2.3.17) on the invariants
of G. The obtained equation is related to (2.3.17) via a differential substitution.

Example 2.6. If N =2 and G is a group of transformations of the form
z—z, u—exp(rlu+c, v-exp(r)v-c,

the set I is generated by the functions ¢ = z, Pl = uy/(u+v), Y= v /(u+v).
The respective PDE is (2.2.35).

Example 2.7. Let G be a group of transformations
r—z+17, u—uUu+tc, v—oUvV—CcC.

Then I is generated by the functions ¢ = u+v, ! = ug, 12 = v;. The respective
PDE has the form

wy = A+ 0)2uz + (A — A)(u + v)ugvg
vy = Aalu +v)%up + (g — M) + v)ugvy .
The equation
Uy = Uy (2.3.19)

admits a larger group than (2.3.17). In particular, (2.3. 19) is invariant under the
affine transformations

u' s aiul+b', z oz, det(a)) #0, af,beC. (2.3.20)

Any transitive N-parameter subgroup of the affine group of C" defines a substi-
tution which relates (2.3.17) to the equation of the form (2.2.17) [21]. Namely,
one can verify that besides ¢ = z there exist N basis invariants ¢!, ..., % of
the form

' = plwn]

which generate the set I5. Moreover, any equation of the form of (2.2.17-20) can
be obtained by means of an appropriate subgroup of the affine group. For instance,
(2.2.31) arises as a restriction of the linear equation on the basis invariants ¢ = z,
P! = (v — u?) 2y, ¢? = Quuy — v1)(v — u?)™! of the following subgroup:

z—ox, u—exp(rlu+ < y v —exp2T)v + cexp(r)u +§ .



146  A.V. Mikhailov, A.B. Shabat, and V.V. Sokolov

Let us consider the case of N = n2. The vectors of CV we represent by n xn
matrices (a matrix which corresponds to vector u we denote by ). It is obvious
that equation &, = 1, is invariant under the transformations

& —at, aeGL(n) (2.3.21)

which form a subgroup of affine group of CV. As basis invariants we choose
= @~14;. One can check easily that ¢ satisfies the well-known matrix equation
(14]

~

Dy = Do + 2001 .

3. Canonical Conservation Laws

The main result of this section is an algorithm for constructing a sequence of
canonical conservation laws. This algorithm is found on a concept of formal
symmetry upon which the symmetry approach is based.

3.1 Formal Symmetries
3.1.1 Definitions. In this section we consider scalar equations of the form

U =Fu, ..., um), m>2. 3.1.1)
The differential operator

L=1,D"+1a D" 4 ...+, I, #0 (3.1.2)
we call a formal symmetry of order N of (3.1.1) if

deg(L; — [F., L]) < deg(F,) +deg(L) - N . (3.1.3)

For instance, the differential operator L = F, is a formal symmetry of order
m =deg(F,). If G(z,u, ..., u,) is a higher symmetry of (3.1.1), then it follows
from (1.1.25) and (3.1.3) that L = G, is a formal symmetry of order n. Moreover,
the following theorem holds [8, 25].

Theorem 3.1. If (3.1.1) possesses a local symmetry of order N or two conserved
densities of orders'®> Ny > Ny > N +m, then it possesses a Jormal symmetry of
order N,

We can now prove the following useful proposition:

13We recall that the order of the conserved density g has been defined as ord(g) = deg(R., ), where
R=6p/bu.
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Proposition 3.1. Ler Ly, L, be formal symmetries of orders Ny, N3, respectively.
Then L = Ly o Ly is a formal symmetry of order N = min(Ny, N3).

Proof. Tt follows from

Ly —[F,L]=Q:, i=12
that

L —[F,,L1=L1G2+ Q1 Ly,

SO
deg(L1@Q2 + Q1 L2) < max(deg(Ly) +deg(Q2), deg(Q:) +deg(Ly))
< max(deg(F,) +deg(L) — N2, deg(F,) +deg(L) — Ny)
= deg(F,) + deg(L) — min(Ny, No) . |

Thus if L is a formal symmetry, then L*, k € IN is the formal symmetry of
the same order. Below we shall show that L!/" is the formal symmetry as well
if n = deg(L). For this purpose we move from differential operators to formal
series'* of the form

A=ap,D"+an, D" '+ ... +ap+a D'+ ..., a, #0 (3.1.4)

whose coefficients a; are functions of the dynamical variables. Now deg(A) =
n € Z. The product of two series is defined by

aD* 0 bD™ = a(bD™* + (F)D(BH)D™* 1 + $)D2(6)D™ 2 + .. )

where k, m € Z and

k-1 ... -(k—j+])

= o .

The associativity of the product can be verified by a direct calculation.

For any A of the form (3.1.4) one can define the series B = v;D + b + ...
such that B™ = A. The coefficients of B can be determined via recurrent relations

B =an, nbf b =an_1~ D), ... ,

=1 -
nb? bl—k = 0n—k +0k(aman—h sy an—k-i-]sblybOy veey bZ—ky "‘) )

@)

where 6 are some differential polynomials. The series A!/™ is unique up to a
constant factor w (w™ = 1). In the same way one can obtain the formal series
AL

Let L be a formal symmetry (3.1.2) of order N. Then the series L!/" satisfies

n
Lt _ [F,.,L] = ZLk/n(L:/n _ [F;,Ll/n])L(n—k—l)/n .
k=0

14 A comprehensive study of properties of such formal series can be found in [8, 26-28).
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That implies [cf. (3.1.3)]
deg(L}/™ — [F.,LY/™)) < deg(F)+1-N . (3.1.5)

Definition 3.3. The series
L=1,D"+l, D" '+ ... +h+11D7'+ ..., 1, #0 (3.1.6)

is said to be a formal symmetry of order N of (3.1.1) if it satisfies (3.1.3).

It follows from (3.1.5) that by extracting the n-th root one d(?es not change
the order of a formal symmetry. By the Definition 3.3 the coe:fﬁcmnts I, where
k < n— N+, are nonessential since their changing does not violate (3.1.3?. Two
formal symmetries Ly, Ly of order N of the ff)rm (3.1.§) are called equivalent
(Ly ~ L) if they coincide up to the nonessential coefficients.

Proposition 3.4. Let series L of the form (3.1.6) bea foml symmetry of order
N. Then any formal symmetry L of the same order is equivalent to

1
I~ Z ckL"/"
kel—N+2

where | = deg(L). The constant coefficients cy can be found uniquely.

Proof. 1t follows from (3.1.3) that in [F,, L] the coefficient at Dmtm-1 vanishes.
Thus (2.1.17)

=« B_F)"/"' aeC. @GB.17
n aum )

T s m T in
Similarly the leading coefficient of L is S(OF/8um)"/™. Therefore L-al In,
where ¢; = Ba~!/" is a formal symmetry of order less than N. The induction of
N proves this proposition. |

3.1.2. Canonical Densities. The coefficient a_; of the form.al series (3.1.4) is
called a residue and denoted res(A) = a_1. A logarithmic residue we define by

On-1

res log(A) =

n

A logarithmic residue satisfies the following identities
reslog(A o B) =reslog(A) +reslog(B) + nD(log(by)) (3.1.8)

O(res log(A)) = res((0A) o AYH, 3.1.9)
where n = deg(A), m = deg(B), (i.e., b, is a leading coefficient of (B) and 9 is
any differentiation. It follows from (3.1.8) that

reslog(A o Bo A™' 0o B~!) = D(S(4, B)) (3.1.10)
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where
S(A, B) = nlog(b,,) — mlog(a,) .

In the previous section we have shown that the function p_; = (OF/Buy)~1/2
must be a conserved density if (3.1.1) (m = 2) possesses higher symmetries. We

will note here that this density can be represented as o_y = res(F, 1/ 2). We shall
prove

Theorem 3.5. Let L be a formal symmerry (3.1.6) of order N > m of (3.1.1).
Then (3.1.1) possesses N — m conserved densities'’

_ [res(LM7), k #0
gk—{reslog(L), k=0 (3.1.11)

where k=-1,0,..., N ~m -2,
Proof. Tt follows from

deg(LE/™ — [F,, L*/™)) < deg(F.)+ k — N (3.1.12)
that

ditms(L"/ ™) =res([F,, L*/™)) (3.1.13)
f~1<k<N-m-=2IfN>m+1 then (3.1.9) and inequality (3.1.3) imply

%x’cs log(L) =res((F,, L™, L)) . (3.1.14)

According to Adler’s formula [29] [see (3.1.16) below] the residue of the com-
mutator of any two formal series is a total derivative. Thus (3.1.13, 14) have the
form of a conservation law. [ |

It follows from (3.1.7) that for any formal symmetry L (ord(L) > 2) we have

aF‘ ~1/m
Q—l=7<'au—') , vY€C. (3.1.15)

If (3.1.1) possesses a formal symmetry of order higher than m then the theorem
means that o_; is a density of a local conservation law. This general result has
proved to be very useful in the theory of integrable equations. For instance, it
has allowed us in Sect. 2 to reduce the classification problem of the second order
equations to a quasilinear case. It has been noted there that a complete solution of
a classification problem is required to derive the next two integrability conditions.
These conditions are to be found in a regular way below.

Theorem 3.5 indicates the regular way to construct a set of conservation laws
of (3.1.1)

151t might happen that some of these local densities are trivial.,
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(ex)e=D(ox) k=-1,0,1,...

by the known formal symmetry L. The densities g, are determined by (3.1.11),
and the functions o are defined by the Adler formula which holds for any formal
series A, B

res([4, B]) = D(c(4A, B)) , (3.1.16)

where

pHq+1>0 ptg :
dAB= Y C’ g )Z(—l)‘D‘(aq)D”.”"‘(b,).(3.1.17) _-
=0

psdeg A gsieg B PTIH]
Namely
or =o(F, L¥™), k=-1,1,2,... (3.1.18)
co=0o(F.o L™, L). (3.1.19)

Now we describe the basic algorithm which has recently been realized on the >~

symbolic computer languages Reduce and Formac by Bakirov and Tarnopolskii.
The algorithm is applicable to (3.1.1) which are not assumed to be integrable a
priori.

First we calculate differential polynomials o4 of variables I_y, ..., Iy by
(3.1.17-19). We choose a series L in the form!®

L=F,+lD+lh+4D1+.... (3.1.20)
It follows from (3.1.17) that

o =o(F,L7V™)y = —F7V™1_1 +6.,

where 8_; depends on F, (namely §_, is a differential polynomial of the vari-

ables F.'/™FY™, F,._y, ..., Fy). For example if m =2
oy =-F (3.121)

In a general case we have

oo =mlp + 6o(I-1) ,

3.1.22
ok = kFE ™l +6x(1,lo, ..., lkm1), K #0 ( )

where §; is a differential polynomial with the coefficients depending on F,.
Second, by resolving the relations (3.1.22) recurrently we get I, as a differ-
ential polynomial

lk = 11;(0’..1, ey ok) . (3.1.23)

16 I there exists a formal symmetry of order IV then it follows from Proposition 3.4 that there exists
one of the form (3.20).
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Substituting (3.1.23) into (3.1.11) we obtain the differential polynomials
ok = 0k(0_1,00, -, Op—ms1) k=-1,0,1,... (3.1.24)

which we shall call canonical densities. The first m — 1 densities p; are explicity
expressed in terms of the coefficients F, and do not depend on variables o;. For
instance, if m > 2 the density gy is

OF/Oum-1
OF[0um '

the density g_; has been obtained above [see (3.1.15)].
By applying this algorithm to the second order equations we get

oo = reslog(L) =reslog(F,) =

o0=FU +F'R=F"'R-F"0, (3.1.25)
and at the next step
oo =D(_1)+2lp — 1 F; (1 + F)

o =F Ploy+ LR+ 1ot - L FT'QR - DR . (3.1.26)
More stringent then Theorem 3.5 is

Theorem 3.6. A formal symmetry of order N of (3.1.1) exists if and only if the
canonical densities oy, k = —1, ..., N—m—2 are densities of local conservation
laws, i.e., the following system of equations

d
D(oy) = EZQI:(U—I,UO» covy Okome+l) (3.1.27)

is solvable in the class of local functions"? [8,27).

It is a crucial point that the above theorem can be applied to (3.1.1) where
integrability properties are under question. The algorithm of calculation of canon-
ical densities (3.1.24) given above provides us with a criterion of existence of a
formal symmetry of any fixed order. For instance, we have used the canonical
densities o_1, g0, o1 to classify the second order equations (2.1.2). Theorem 3.6
means that (2.1.2) can be reduced to one of (2.1.1,4-6) via an invertible trans-
formation if and only if it possesses a formal symmetry of the fifth order. At the
end of Sect.2.1.4 we have given an example of application of Theorem 3.6 to
find a linearizing substitution when symmetries are almost local.

17 Recall that by the local functions we mean the functions depending on a finite number of dynamical

variables.
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3.2 The Case of a Vector Equation

In this section we generalize the algorithm of calculation of canonical densities
in the case of vector equations. We also indicate some additional properties of
the canonical densities for equations with higher conservation laws.
3.2.1 Formal Diagonalization. The formal symmetries of a vector equation

us = F(z,u,u1, ..., ¥m), u=(,..., uM) (3.2.1)

are defined exactly as in the scalar case (Definition 3.3), but the coefficients of
F, and L are now M x M matrices. One can check that for any formal series
A, B with matrix coefficients [cf. (3.16)]

res Tr([A, B]) € Im{D} .

As above, this enables one to produce local conservation laws connected with a
given formal symmetry.

We assume that eigenvalues Aq, ..., Ay of the matrix F,
(Fm?j = 5;2 (3.2.2)

are all distinct (\; # A; if i # j). It is known that in this case the “operator”
equation

d
[:i_t - F,, L] =0
can be diagonalized by a formal gauge transformation

F.os F,=ToF.oT'+T,0T™', LoL=ToLoT™, (323)

where T is a formal series.

Proposition 3.7. Let the matrix Fwith different eigenvalues M1, ..., Am, (A #
A; ifi #7) be diagonalized by the similarity transformation Ty

Fn=Ty ATy A=diagh, ..., Am)
Then there exists the unique formal series
T=TyI+T-1D'+T2D7%..) (32.4)
such that diag(T) = 0 (k = —1,-2, ...) and all coefficients of the series
$=ToF,oT'+TjoT™" (3.2.5)

are diagonal. Moreover, if L is a formal symmery of order N, then the first N
coefficients of
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L=ToLoT™ (3.2.6)
are diagonal.

Proof. Substituting & = AD™ + &,_1D™1 + ... in (3.2.4) and collecting
Coefficients at D™~ k(k = 1,2, ...) we obtain the following chain of equations

(A4, T1] + Bni = 6;

where 6; can be expressed through Ty(k > —i), $;(j > m —2). Taking into
account that diag(T%) = 0, we find inductively

Bpoi =diagd;), T-i=ad; (i —Sm_i) .
Let L =1.D*+0,_;D* '+ .... It follows from (3.2.3) that
deg(L, — [8,1]) < deg(®) +deg(L) - N .

Collecting and equating to zero the coefficients of Li—(8,1] at D"”":"(k =
0,1,..., N~1), we obtain a chain of relationships. The first of them, [4, [,] =0,

means that [, is diagonal. The next relation

(A1) = nl, D(A) - mAD(,) + [P, I,

has a diagonal rhs that implies [4,{,1] = 0, i.e,, [, is also diagonal and so
on. |

It is clear that the gauge transformation (3.2.5) turns the differential operator
F, into a formal series &. Nevertheless, the series I we shall still call the format
symmetry of the same equation (below the hats will be omitted). It follows from
Proposition 3.7 that

& = diag(®', ..., $M) L =diag(L', ..., LM) (3.27)
and we come back to a scalar “operator”’equation
LF— (&% L1 =0. (3.2.8)

Applying the algorithm described in the previous section to (3.2.8), one obtains
a set of canonical densities

or = diag(ol, ..., oM, k=-1,0,1,.... (3.2.9)

A formal symmetry of (3.2.1) is called nondegenerated if the determinant
of its leading coefficient does not vanish. A straightforward generalization of
Theorem 3.6 is

Theorem 3.8. Let the matrix (3.2.2) have distinct nonvanishing eigenvalues. Then
a nondegenerated formal symmetry of order N of (3.2.1) exists if and only if all
canonical densities
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e, k=-1,...,N-m-2, a=1,..., M

are densities of local conservation laws, i.e., the following system of equations

d
D(o}) = Zt'Qk(Uil,US, ey Oh_ma1) (3.2.10)
is solvable in the class of local functions.
Example 3.9. Let us consider the following coupled equations

U = Aug + f(u,v,u1,m1) , 32.11)
—vg = pvy +g(u,v,u1,v1) .

Operator F, f<_)r (3.38) is
(X 0 2 Of/0u1  Of /0w
Fe= (0 —u) b ( ~dg/ou1 ~dg/du ) P
+ af/ou  Of[Bv
—0g/0u —08gfOv )
We are looking for a gauge transformation (3.2.5) that diagonalizes F,. Collecting

coefficients at D*(k = 1,0) in

(g __OG> oT'=ToF,+T,, &=diag(F,-G)

where T = I+ T_yD™' +T_,D~% ..., diag(T}) = Ok = —1,-2,..) F =
D*+FRD+...,G=D*+G,D+ ..., one obtains

_of _ 9y _ 1 0 af/on
A= duy ’ L Ta= O+u) (35]/0111 0 )

Fy = af (Bf/avl)(ag/aul)
0= —— —

T e
oo 0 _ (©0F/00)0g/0u0)
°" By O+ p) .

Canonical density p_; = 1, hence, o_; = const (without loss of generality we
put o1 = 0). It follows from (3.1.25, 26) that

(0f /Owr)

-
Q=" (3.2.12)
AV20d  AT2Af 0w )r  ATVA(Bf ) 0u)
o=z - 8 T2
_ATNV2F [8u)Bg/0w)  AT32D(3f /ur)
200+ ) 4

0 -{0g/0m) (3.2.13)

2u
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, (=126 (—p)%Bg/0v1)*  (—p)~V*(Bg/v)
as= 2 - 8 - 2
_ (~p)~M*(Dg/Bur1)(Of | Ov1) + (-)32D(8g/Bvy)
2 +p) 4 '

3.2.2 Canonical Potentials. The fact of the existence of higher conservation
laws implies additional restrictions on the rhs of (3.2.1). For instance, if A # u
then (3.2.11) does not possess a conserved density of order higher than one [10].
The regular way to obtain these restrictions is based on an algorithm quite similar
to the one described in the previous section.

Definition 3.10. A series
R=r,D"+r, 1D" '+ ... +rg+r_ D7 4 ... r, #0

is called a formal conservation law of order N if it satisfies the equation

Ri+RoF.+FloR=Q (3.2.14)
where the remainder @ is such that

deg(Q) < deg(R) +deg(Fy) — N . (3.2.15)

The formal conservation law is called nondegenerated if the leading coeffi-
cient of R is a nondegenerated matrix, i.e., det(r,,) # 0. Below we assume that
the formal conservation laws are nondegenerated. In particular, if ¢ is a con-
served density of order N > m, then R = (§p/éu), is a formal conservation law
of the same order [see (1.2.9)].

Below we shall study the solvability conditions of the equation

Ri+RoF.+FloR=0 (3.2.16)
and show that they can be cast in a divergent form
wk = D(¢x)

where wy, k=0,1, ... are known differential polynomials of ¢;, j < k.
Equation (3.2.14) and inequality (3.2.15) are invariant under the gauge trans-
formations (3.2.3),

R—-R=TtoRoT. (3.2.17)

Let the conditions of Proposition 3.7 be valid. Then one can easily verify that
in the case of odd m the transformation (3.2.4,17) diagonalizes the first N
coefficients of R (N = ord(R)). If m is even, then the first N coefficients of B
are block-diagonal 2 x 2 matrices corresponding to pairs of eigenvalues A with
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the opposite sign (A, —Ax) [8]. Hence (3.2.14) splits into M/2 equations of the
form

RE+ RE o 8 + (@4t o BE = @, (3.2.18)
where
R M O Ft 0 x [0 rF
k _ k m = .
é _(0 _/\k>D +(0 —-G") , R (3,, 0 ) - 6219

Consider first the case of even M. To obtain the solvability conditions of
(3.2.16) we analyze the following system of two equations

Ri+Rod+81oR=0 (3.2.20)
s F 0 _ {0 r

3-(5 %) (2 )

F=AD"4+Fn D™+ ..., G=AD™"+Gmn D™ '+....

Evidently, these equations are equivalent to one (scalar) equation

re—roG+Flor=0. (3.221)
A series r such that

deg(rs —r 0 G+ Fl or) < deg(r)+m — N (3.2.22)
we shall also call a formal conservation law of order N of (3.1.1).

Theorem 3.11. Let (3.2.22) hold. Then the functions

Wy = {res log(G"l/"‘ o (Ft + rtr—l)llm) n=0 (3'223)
1es(GM™ — (F +rr—Hy"/m)  n=12,...,N-2
are total derivatives.

Proof. Let us rewrite (3.2.21) in the form
(Ft +r,r")1/"' =rGYmp1

Now one can check that the inequality (3.2.15) implies the equations
reslog(G~Y/™ o (BT + rer=1)1/™) = reslog(G=Y/™rGY/™r~1) (3.2.24)

res(GM™ — (F! 4 rr=)™™) = res((G™/™r=1 7)), (3.2.25)

The right-hand sides of (3.2.24,25) are total derivatives because of (3.1.10) and
Adler’s formula (3.1.16).

We define new variables ¢z, £ =0,1, ... by means of the left-hand sides of
(3.2.24,25): '
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$o=S@G ™, (3.2.26)
b =a(G¥™r Y r)y, k=1,2,.... (3.2.27)
In these new variables equations (3.2.24,25) can be rewritten in the form
Wk(Bk—m+1, ke, --)=D(dr), k=0,1,... (3.2.28)
where
o = {rcs log(G~1/m o (Ft + rr=—)l/m), n=0 (3.2.29)
" res(GM/™ — (Ft 4 ryr=yn/my n=12 ... (3.2.30)

We want to notice that a change of variables (3.2.26, 27) is invertible. It follows
from (3.2.29, 30) that functions wy, 0 < k < m — 2 depend on the coefficients
of series F, G only

= —(mX\) N (Fn-1+ Gm_1) + Dlog()), k=0 (3.2.31)
wi =1es(GF/™ + ()M FRImY 1<k <m -2, (3.2.32)

Here we have used the following identities

reslog(Bt) = reslog(B~") = —reslog(B) + n.D(og(b,))
reslog(B'/™) = reslog(B)/n — [(n — 1)/2n] D(log(b,))
which hold for any formal series B, ord(B) = n.

The following theorem gives a criterion of existence of the N-th order formal
conservation law [8].

Theorem 3.12. A formal series r satisfies (3.2.22) if and only if the finite chain
of equations (3.2.28) 0 < k < N — 2 is solvable in the class of local functions.

Example 3.9. (Continuation) It follows from (3.2.30, 31) that the first two canon-
ical potentials of (3.2.11) are

wo = —(8f/0uy +8g/0w1)/2 (3.2.33)
w1 = ot /2 +(3f /0u1)? /8 — (Bg/Dw1)? /8
+(8g/8v)/2 — (8f/Bu)/2 + D(Bf |Bu; — Bg/du)/4 . (3.2.34)
Comparison of (3.2.12, 13) with (3.2.33, 34) gives
wo=ete, wi=g —e. (3.2.35)
n

Consider the case of odd m. One can formulate a criterion of existence of a
formal conservation law of a given order [8].

Theorem 3.13. Equation (3.2.1) of odd degree m possesses a formal conservation
law of order 2N if and only if
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wi(Pk—ms1y Pk—m, .. ) =D(¢s), k=0,2,...2N -2 (3.2.36)
where the differential polynomials w; are defined by

¢‘0=r;n r’nn—ls
bmn=0(F™™o R R), k=1,2,....
R=rD+rg+rD'+..., rn#0 Rl =—R, (3.2.37)

2k+1 i — 2k )
2r_2k+2(—1)'< ; )D'(r;_zk)=0, k=0,1,...,

i=1
and

_ f 2resin(F.) if k=0,
Wak =\ pes(FP/™ _ (B, + R-1o R?H/™) ifk=1,2,... .

3.3 Integrability Conditions

3.3.1 The Third Order Scalar Equations. Now we present the canonical den-
sities for equations of the form

uy = Fz,u,u1,u2, u3) . 3.3.1)
First a few canonical densities are
0-1=(0F/8u3)~'7? | (3.32)
o0 = (8F/8u)g’, , (3.3.3)
o1 = DQ2D(o-1)o % + o2, 0F | Buz) + (D(e-1)YeZ3 + 0° 1(OF/9uz)? /3

+ D(0-1)0-10F/8uy — g% |0F [ur + o101 , 3.3.4)

02 = —D*(0_1)X8F/8u3)/3 — D(o_1) F |duy + g10F [Ou

— (D(e-1)*(BF [du2)/ o—1 — L1 (OF/8u1)(OF [ Bu2) /3

+ D(0_1)0>1(OF [8u2)* 3 + 207 |(BF /3u)* /27 + p_100/3, (3.3.5)
03 =0-101 — 0101 . (3.3.6)

It follows from the condition (¢—_;); € Im{D} that any integrable equation
(3.3.1) belongs to one of the following classes [30]:

i) quasilinear equations
u; = Ayuz + A 3.3.7

ii) equations of the form
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ue = (A1us + A2) 72+ 43 (3.3.8)
iii) equations of the form

uy = QA1us + A2)(A1ud + Agus + A3) 7/ + Ay 3.3.9)

where A; = A;(z,u,u;,u2). In the next section we shall give the results of
classification of integrable equations of the form of (3.3.7). Classification of
essentially nonlinear equations (3.3.8,9) has not been finished yet.

3.3.2 The Fifth Order Scalar Equations. The first six canonical densities for
equations of the form

Ut =‘u5+f($,u,U1,U2,U3,U4) (3.3.10)

that can be found by means of the above algorithm (Sect. 3.1.2) are

o0 = 0f/0us, - (33.11)
01 = 2(8f [Ous)*> — 50f/Bus , (3.3.12)
02 = MOf |Ous)® — 15(0f |Ous3) OF | Ous +250f [Ouy , (3.3.13)

03 = (D(Of | 0uq))? — (Bf | Ous)D(Of | Dus) +T(Df [ Ous)* /25
—T(Bf | Bu3)(Bf | Bua)? /5 +2(Df | Ous) Bf |Ouz + (Bf [ Ous)?
—~508f/0ur . (3.3.14)
04 = 4(3f [Ous)(D(Of |Ous))t |5 — D(Df | Bus) D(OF | Hua)
+3D(Of [ Ous)(Df/Bus)? /10 + 44(Bf [ Bus)’® /625
— 11(0f /Bus)(@f [Oua)’ /25 + 3(Df | Qu2)(Df [ Bua) /5
+(0f/0u2)D(Of | Bus) — (8f [Ou1) Of [ Ousa — (Of [Ouz) Of [ Ous
+508f/0up + 09, (3.3.15)
os =01 . (3.3.16)
It follows from conditions (3.3.11-16) that the integrable equation (3.3.10) must
be of the following form [31]
g = us + (A1ug + Ag)ug + Asud + (Agud + Asus + Ag)us
+ A7ub + Agud + Agud + Ajoup + A (3.3.17)

where A; = A;(z,u,u1). In the last section we present a complete list of inte-
grable equations (3.3.17).

3.3.3 The Case of Coupled Equations. Here we present a list of canonical
densities and lists of canonical potentials for the Schridinger type equations
(1.4.23). By applying the foregoing algorithms one can obtain the canonical
densities g, and potentials wy:
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oo = (8f /0wy — Bg/Buv1)/2 (3.3.18)
o1 =00 — [(3f /0u1)* + (8g/Bv1)*1/4 — (3f | On) Bg [Buy
+9f/Bu+ dg/ v (3.3.19)

@=o1 (33.20)
03 =02+ (0] +wi)/2 — wolwz — ¢1¢) — 48f/8v By /Bu

+(8g/0u1).0f [Bv1 — (Bf [Ov1):0g/Bu1 + (Bf | Ou — Bg/Ov),
— [(f/0v1)(Bg/Bun)]* +2(Df | 811 )(Bg/Ow1 )(Bf | Ou + Bg Bv)
~2D(8f[8v1)D(Bg/Bu1) + [(Dwo)? + (Do) /2

+ 00[(Bg/0u1)D(Df/Ov1) — (Df [0v1)D(Dg [/ Ow1))
+2(0g/0u)D(3f [ Ov1) +2(3f [Ov)D(Bg/Ou1)

— (8g/8v)D(0g/0v1) — (Of | Ou)D(Of [0uy) , (3.3.21)
wo = (Of [Ouy + 8g/Ov)/2 , (3.3.22)
w1 = got — dooo — (O [On)(Dg/0u1) + 8f /Ou ~ Bg/dv , (3.3.23)

w2 = ¢1¢ + 2wo(0f /Onr)(Og/Our)

_ 2((89/0u)0f /3w1) + (B [8u)Bg/
= o e O e o .

+wol(8g/0u1) D(8f [ Bvr) ~ (Bf [0v1) D(Bg [ du1)] + DwpDgo

+(8g/0v)D(8g/0v1) — (Of |Ou)D(@Bf [Our)

—2(3g/0uw)D(Bf | Buv1) + 2(8f [ Bv)D(Bg/Ou1) . (3.3.25)
It should be noted that in the above formulas [cf. (3.2.35)]

(3.3.24)

1
ok = 0k H(=D¥gd  wp =gl — (=12 .

In other words, the existence of a higher conservation law implies that a half of
canonical densities are total derivatives.

If (1.4.23) satisfies the integrability conditions

dex/dt, wy €eIm{D} k=0,1 (3.3.26)
then its rhs can be written in the “canonical” form [8]:

F = cexp(@)uivr + ($u + Pu)ui/2+ ($y — po)uinn

+rup + f(u,v,v1) (3.3.27)

G = —eexp($)vfur +($y + Yoo} /2 + ($u — Yudvrmy
—ru +g(u,v,u) . (3.3.28)
One can prove that the functions f(u,v,v;) and g(u, v, u;) satisfy the conditions
8f*1BPuv =0, 8¢°/8u; =0, (3.3.29)

i.., they are polynomial in the variables v;,u, respectively. The form (3.3.27-
29) is conformly invariant. Quite often, to show nonexistence of higher conser-
vation laws it is sufficient to compare the rhs of the equation under investigation
with (3.3.27-29). A detailed analysis of the integrability conditions yields a com-

plete list of the integrable Schridinger type equations that are to be presented in
the last section.
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4. Integrable Equations

4.1 Scalar Third Order Equations
Below we give the results of classification of quasilinear equations

ut=a1(z,u,u1,u2) u3+ao(x,u,u1,u2) (411)

'satisfying conditions (g;); € Im{D}, k = —1,0, 1,2, 3, where canonical densities

ok are defined by (3.3.2-6). These conditions allow one to prove that any such
equation must have the form

e = (uz + bsud + baug + b3)(Baul + byuy + bo) /2 + bg 4.12)

where b,' = b;(x, u,ul).
The contact transformations (1.4.7-9) do not violate the form of (4.1.2). These
transformations allow one to reduce (4.1.2) to the one of the following:

Uy =us + azu% +ajuy +ap , 4.1.3)
ug=u"us + azu% +ajuz +ap , 4.14)
u=a3 us+ aqui+ajup tag, Faz/Out #0 (4.1.5)

yas, a #0 (4.1.6)

where a; = a;(z, u,u;). First, an appropriate contact transformation allows us to
make b, =0. If b; # 0 we have (4.1.6). In the case of b = 0 one obtains

2 -
ug = (u3 + agug + azuz + az)(ayuz + ap)

u¢=a,3'3u3+a2u%+a1uz+ao.

If 8%a3/0u? # 0 then we have (4.1.5). In the case §%a3/0u? = 0 there exists a
point-transformation

' =¢(z,u), u =1(z,u) 4.17)

reducing a3 into the form a3 = a(z,u). If a/Bu # O the change z' = z, u' =
a(z, u) leads to (4.1.4). Finally, if a = a(z) the obvious change z' = f a(z) dz,
u' = u gives us (4.1.3).

4.1.1 Equations of the Form (4.1.3). Below we present a complete (up to point-
transformations @& = W(z, u) and rescaling) list of equations of the form of (4.1.3)
satisfying conditions (3.3.2-6) '8

Integrable Equations of the Form (4.1.3)
ug = u3 +uyg, 4.1.8)

18 With the help of computer analytical programs it has been verified that (4.1.9) satisfies the next
[after (3.3.6)) integrability condition (g4): € Im{D} only if ¢ = 0.



162 A.V. Mikhailov, A.B. Shabat, and V. V. Sokolov

ug=U3+u¥+c:c+c1 s

Uy = U3 +u2u1 +cuy,

up = us+ul +ou o,

ue = u3 — 43 /2 + (A1 exp(2u) + Az exp(—2u) + duy

U =u3 — 3ui'1u§/4+ Alu::/z + o +euy+¢

Uy = U3 — 3u1(u% + 1)"1u§/2+ Al(u% +1P32+ /\zu? +couy+e ,

up = uz = 3uy(ul + D)7l /2 - 3Py (Wd + 1)/2 + cuy

where (P')? =4P% + g P + g,

ug =uz — 3u; ud/2 + Aupt + Al +oup +qp

up=u3 — 3uy w3 /2 + (4P + qru + 92)”1—1 +cup ,

ug = uz + alz)u) + B(z)u ,

Up = uz — 3ul"1u%/4+a(x)u1 +cu,

U = u3 + 3uuz + 3ud + 3ulu; + a(z)ur + o' (@)u + B(z),

ug = uz + 3uluz + Yuud + 3utu; + alz)uy + a'(z)u/2 ,

ue=us ~ 3u7 ud /4 + Bfu f T ur +3Ful/? 2 u + 3 i
+3f,u32 + GF2F 2 4 s(ud — GFEF 2 + s(@)uy
+(1a%(z) + daa(z) + Xa)(a' (@) "
= (M (u) + Maa(u) + Xg)(a'(w) ™!

where
Fz,u) = 2(a’(z)o’ W)X (a(u) - alz)) ™!,
3(2) = a"(2)/ () = 3(a" (2N () 2/2 .

4.1.2 Equations of the Form (4.1.4).
Integrable Equations of the Form (4.1.4)

ug = D(u™uz — 3u*u? - 32) ,

uy = D(u3uy — 3u"4uf + 3:1:2/2) ,

ug = D(u™3u, — 3u~*u? —3u"1 2+ cu)

up = D(u 3wy — 3utu + w22+ A"+ cw)

ur = D(u™up — 3u~*u? + u=2/2 + ) exp(2z) + My exp(—22)) ,
uy = D(uup — 9u™ 4w+ 1)~1ud /4 — 32u3 0 + 1)~
- 2u"12Au +1)*/% 4 cu)

4.1.9)
(4.1.10)
(4.1.11)
(4.1.12)
4.1.13)
(4.1.14)
(4.1.15)

(4.1.16)
(4.1.17)
(4.1.18)
(4.1.19)
(4.1.20)
(4.1.21)

(4.1.22)

(4.1.23)
(4.1.24)
(4.1.25)
(4.1.26)
(4.1.27)

(4.1.28)
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ue = D(uuz — 9u™* O+ D7l /4 - 33O+ 1)1

+3u + Au 20w + 1372 + cu) (4.1.29)

ue = D(u™uy — 3u™*u?/2 - 3230w+ 1) 1ud)2

+MuT20u+ )2+ M Qu+ D7+ cw) 4.1.30)

ug = D(u™uy — 3u"*u}/2

= 3u QA u+ X)u? + dgu + D72 4+ Aa(w? + 30071 /2)

+Au"2(0u? + hu + 132 (4.1.31)
ug = D(u 3wy ~ 3u*ud/2 — 3u2(ut + H~1?/2

+3P(zx)(u"t+1)/2, (4.1.32)

where (P')? =4P% + g; P + g3,

ue = D(u"up — 3u™*u? /2 + 2@z + Mz + )p)) (4.1.33)
Uy = D(u’Buz - 3u_4u% + cu‘zul +crzu+ cu) , (4.1.34)
uy = D(u 3y, — 3u"4u,2 + 3zu“2u1 -3y - 3z%) , (4.1.35)
ur = D(uup ~ 3u™*u? + 32242y — 9zu~! — 32 (4.1.36)
uy = D(u™3uy — 9u—4u¥/4 +azu+cu), (4.1.37)

ue = D(uu; — 9u™*Qu+ D73 /4 - w30+ D7l + ) |, (4.1.38)
Uy = D(u_3u2 - 9u_4(u + 1)‘1u]2/4 - 3u_3(u + 1)'1u%

+Au u+ Duy — Au2/9 - A2 /3 4 cu) (4.1.39)

ug = D(u3y, — 9u‘4(u + 1)"luf/4 —3u 3w+ 1)_’u%

+ (7u1/2(u + l)l/2 + 37'7"1(u + l))u_aul
_ 27'u_3/2(u + 1)3/2 _ (272/9 +7I2’)‘—2)U—2
= 2V 34372y Dy — (42/3 4+ 34247 2)) | (4.1.40)

where the function v = y(z) satisfies the equation (logy)" = +%/9. Without a
loss of generality one can choose v = +3/z or y = 3/ cos(\z).

4.1.3 Equations of the Form (4.1.5). Let p be the function as. In the integrable
case of function p satisfies the equation

(pllll(pll)—5/3p2 _ 5(pu/)2(pu)—7/3p2/3 _ 2plll(pll)-5/3plp

+ 6(pll)] /3p _ 3(pll)—2/3(pl)2)l =0 ,

where p' = 9p/0uy, p" = #p/8u? and so on. The function p can be transformed
to the one of the following

p=u1/2b+(W/46% - 1/0)'? | b= _2e(x)u/3+ B(z), (4.1.41)

p=1+1/2uy, (4.1.42)
p=1+u/2b+ (u}/ab® — 1/20)'% | b=z +u), (4.1.43)
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p=(u +a(z,u)'/? @.144) ue=pp (b - (/- D)+ (3/:)p¥4p"‘(p - 1);2 3 1
by means of a point transformation (4.1.7). L +(1/4)ptp~3p — )72 - 3/2)pp™ b_— G/ pip(e-D7b
In the case (4.1.41) with ¢ = 0 any integrable equation has the form —pp = D7 — (/X - D7
sona s b2 s ) +O b+ 1+m—b)p—171/2+1(b—1/2)p7?2
uy=pap > (Bp° — 1) —pip T (3Bp" - 2) - f'pp™ — 1/4X°p — (b0 =" /2 = b*+3bl+1/2)p" + h+mbp, . (4.1.55)

~1/33p~3 —1/2(8" — N2 B)p~2 + ABp~' +1/28"8

~1/4B — 1/4)282 + m(z)uy — 2m/(z)u + cp . Where
2 . . . . b=A1, I=’\27 m=q, h=62; (4156)

where p1 = D(p), p» = D*(p), etc. There exist integrable equations of this type: .

or

B(z) = A2 exp(2Az) + Ay exp(Az) + Ao

R . — L _ R 1\2 22 2 2
+ 1 exp(=Az) + Rg exp(—2)a) , I=0"/2 —bb" +(b')* /2 +22°b° = 2\°b+ A\*/2

m=bb" — (1)2/2 -2)% +c,

5 -0 (4.157
i=0, rr:(x) 03, 2 (4.1.45) b= Q1 — m)b — (bY5/2+ 2% — e )
,B(I)=A4f +/\3l‘ +A2:L‘ +/\1$+/\0 y (4146) b=(1 —(f(z+u))"2)/2.

A=0, A=0, m(z)=0;
In the last case the function f can be defined from
B@)=2r, mx)=0; (4.1.47) _
- . . " =
Bz)=Xz?, A=0, X=0, m@)=cz; (4.1.48) . (og(f N =g,
If ¢ # 0 any integrable equation has the form where ¢ satisfies (¢)? =8¢%/3+ c1g + ca.
5. 2 2 61 2 . In the case of (4.1.44) any integrable equation has the form
Uy = p2p (bP -1 - PlP_ (3bP - 2) + 1/35P1P- -2 2 3 -2 3
~3 _2 , -3 us =2pp “ —4pipT° —2pip” Gy — 2AP° +2a,up+ (4Q +2aa,,

— bapip™ + bep1p™ + (2/3¢' — 1/6Q(z))p 2l 2 4 ey 4 mizu 4 (4158

= 1/2(be +2/93)p™2 + (1/3¢b, +2/36'b + 1/2Q(z)b)p™" , ~ 24, — 2au)p” + ml@ur ¥ mi(e)u + hz) 1.58)

~2/9€%b + m(z)ur — 3/2(m(z)b, — 2m'(z)b)e ™} . (4.1.49) ~ There exist integrable equations of this type:

There exist integrable equations of the type a = ut + 23 + dud + hu+ do , 4.159)
B@) = daz? + Mz + Ao , . A=0, Q=-aau+1/2a,, mx)=c, h@)=0; -

(4.1.50) .
@) =X, Q)=0, m(z)=0; - a=0, A=0, Q=) m@) =cazr+c, (4.1.60)
Blz) =z + Ao, 15D ' hz)=c, ci=0; 1.
@)=\, Qw=0, m@)=c; - a=Xu’, A=0, Q=0, (4.1.61)
B(z) = hoz® + Xo @152 . m(z) =t +az+e k(@) =—a; o
@)=, Q@)=0, m@ =qr; 1. Q: a = hexp(u) + A exp(u) + Ao + :\1 exp(—u) + ,-\2 exp(—2u) , (4.1.62)
Blx) = =1/27)%z% + Mgz + Mz + Do , A=1, Q=-ad"+@@)?/2+d*/2, m=c, h=0; o
- (4.1.53)

e@@)=Az, Q@)=-2), mzx)=0; a=1, =1, Q=X, m=qa, h=q; (4.1.63)
B(z)=0, ‘ = + - A=1

. @154 . - a = s(z)exp(u) + n(z)exp(-u), ’ (4.1.64)
ex)=Az*, Qz)=-6)z, m(z)=0. A Q= —6s(zx)n(z)+ X, m=0, h=0,

Now let us consider the equations of the type (4.1.42,43). In this case o where
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s" +8sn — 208 =0,

' +8n%s —2X3n=0;

a = s(z)expu) + n(z)exp(—2u), A=1,

Q =a%/2 —7a%/2+3a,. /4 — 4s(z)n(z) + o , (4.1.65)
m=0, h=0,
where

" +328n — 85 =0,

n” +32n%s — 8Mn =0.

4.1.4 Equations of the Form (4.1.6). Let p be the function (ajuz + ap)'/2. It is
easy to check that the function a; can be reduced to the one of the following
form: a; = 1 or a1 = a(z, Wy, 172 via point-transformation (4.1.7).

In the first case any integrable equation has the form

ug = 2p1p~ 2 +2(8b/0u)p~! + H(z,u,u1) , (4.1.66)

where p = (uz + b(z,u,u1))'/2, H is a classical symmetry of (4.1.66). The
following integrable equations of the form (4.1.66) exist:

b=ud + M+ ud+ Mur+x, A eC (4.1.67)
b=u, (4.1.68)
b=u} +exp(—4u) , (4.1.69)
b= fu} + M(fP—)+Xaf, X€C (4.1.70)

where the function f = f(u) satisfies equation df /du+ f*+c = 0. Without loss of
generality one can take c=0orc=1and f = u~! or f = 1/tan(u), respectively.
The integrable equations (4.1.6) of the second type have the form

U = 20:'1/211}/2D(p)p'2 —a lp+ Za'l/zu}/z(ab/aux — buy!
— o w1 8a/Ou) ~ a18a/Bz)p~! + H(z,u,u1) , 4.1.71)

where H is‘a classical symmetry,
p= (a1/2u1-1/2u2 + cxl/zul_l/zb(:t’ u, ul))l 7 )

b= /\1a3/2uf/2 +(0¢/0u+ a’laa/au)u% + moz‘/zu?/2
—(0¢/0z + a‘laa/ax)ul + A2a3/2u:/2 .

Thus any equation (4.1.71) is defined by the function a(z,u), ¢(z,u), m(z,u)
and the constants )1, A2. The following integrable equations (4.1.71) exist:

a=1, m=¢q, d=cr+au, : 4.1.72)
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A1, A2, €1, ¢, ¢3 are arbitrary constants;
a=1, m=0, ¢=¢@), M=0, Mh=I
¢u=¢/2/2+)‘;
a=alu+z), m=mu+z), ¢é=0, A =X=0
where
m=a, o'=a%a!-3m?a?/16+ca®, a#0;
a=alz,u), m=c, =0, A=M2=0
where

Pa/dz 8u=a"'(a/du)da/dz +a®, a #0;
a=o(u)y, m=0, é=u, A=X=0

where
o =—ajf2+ca®, a #0;
a=alu+z), m=m(u+z), ¢=4¢u+z),
A1=X=0

where

¢u = ¢12/2+a—lal¢l _ CaZ/z ,
m'" =(¢'/2+a " a")m' +($? — caP)m ,
a" =4a"la'a" —3a~2a"? — 3¢12al/4 _ 3¢l(au - a—laIZ)/z
—3mm'a?/8+ ca'a?/4 ;
a=2u(z? +u?)!, m=0, ¢=log(x2+u2), AM=Xx=0;
a=alu+r), m=mu+z), o=du+z), M=lh=1
where
¢"a™l — a1 /24 507 ¢ +4a " — 4o o +3mP/4
—14a® +Tam /2 — 5¢cia/2 + ¢, =0,
m' — (' 2+ a7l aYym' +(=2¢" +2a7 o' ¢ )m — 4ad”
—3a'¢' —10a" +10a"1a? =0,
m=-2a"2¢"+a"2¢?+2a3a'¢’ + 10a +¢; ;

a=Au+r)-Bu—-z), m=10(Au+z)+Bu—1z))
=0, M=A=1

where

(4.1.73)

(4.1.74)

(4.1.75)

(4.1.76)

(4.1.77)

(4.1.78)
(4.1.79)

(4.1.80)
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A?+16A  + a3 A2 + Al +c1A+=0, A #0,
B2 +16B°+aB*+ B +cB+a =0, B' #0;

a=Alu+z), m=2A@u+z1),

(4.1.81)
¢=—log(A(u+2)) —log(Bu—2)), M=X=1,
where
AP 4445 + A+ A + AP =0, A #0,
B?+qB*+cB=0, B #0;
a=A@w+z)—Bu—z), m=2Au+z)+Bu— 1) (4.1.82)

¢ =—log(A(u+2)) —log(B(u —~z)), M=Xk=1,
where

A% +44% + At + 3 AP+ AT+ A=0, A #0,

B?+4B°+c4B* +3B*+ B> +aB=0, B' #0.

4.1.5 Classification Problems. The above given enormous lists of integrable
quasilinear equations are very impressive but hardly convenient in practice. A
complete classification requires an extension of class of contact transformations
(Sect. 2). The transformations which are connected with potentiation enable us to
pick out the so-called basic equations. They are indicated in the next two tables.

Table 1. “S-Integrable” Equations
0(4.1.78) 0@4.1.80) 0@.1.81) 0(4.1.82)
0(4.1.65) 0O(4.1.64)

| l
0@.132)  0O(4.133)
4

0(.1.27)

1

0(4.1.24)

|
0(4.1.23)

Table 2. “C-Integrable” Equations
0(4.1.22) 0(4.1.53) 0@4.1.54)

{ |
0(4.1.20)  0(4.135) 0(4.1.36)

Below we describe the way to obtain any equation from the lists given in
Sects. 1.4.1-4 starting with the basic equations. Recall [see (2.1.5)] that the equa-
tion admits potentiation if it has a conserved density o(z, u).1? As a rule the basic
equations possess such densities. The densities have to be of the following form:

191n the case ¢ = o(z, u, u;) the potentiation leads to essentially nonlinear equations (3.3.8,9).
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4.123): p= ciu+ cazu + c3ztu + cq(u~! ~ :c3u);
(4.124): p=ciu+cazu+csziu+eu +zu/) ;
4.127): p=cu+cexp(z)u+ csexp(—z)u

+calu™ + 201 exp(2z) + Az exp(—2z))u/3] ;
(4.132): p=cqu+ K@)+ 1)/?,

where K" — 3PK' —3P'K/2=0;

4.1.33): po=cu;
4.1.64): o = c1(s(z)exp(u) — n(z) exp(~u)) ;
(4.1.65): o= a(z)exp(u) — B(z)exp(—u) ,

where

a" 458 —25'B+(Bsn —2\g)a =0,
B ~4na —2n'a+8sn —2X)3=0;
(4.1.78):  p=ci(z? + 1)1/,

Equations (4.1.80-82) do not possess the conserved densities of the form p =
o(z,u).

The conserved densities indicated above allow one to construct new equa-
tions starting with the basic ones. For example, (4.1.23) possesses the conserved
densities

a=u, @=zu, @=zu, pg=u'-zdu.

The potentiations uy = g¢, k = 1,2,3,4 [cf. (2.1.5)] lead to equations that
are equivalent to (4.1.8,25,29,46), respectively. It may occur that an equation
obtained as a result of the potentiation has a conserved density of the form
¢ = oz, u) again. In this case the procedure of potentiation must be repeated
and so on.

The potentiation establishes the links between equations from different lists.
In particular, for any integrable equation of the form of (4.1.4) the function
¢ = u is a conserved density [this density is canonical by virtue of (3.3.2)] and
every such equation is reducible to a simpler equation of the form of (4.1.3)
via potentiation and point-transformation z’ = u, u' = z. For example, equations
(4.1.23,24, 27, 32,33) turn into the well-known equations (4.1.8, 10, 12, 15, 17),
respectively.

Besides u, equation (4.1.4) may possess other conserved densities of the form
o(z,u). If o = a(z)u + b(z), a’ # 0, then the potentiation does not violate the
class of (4.1.4). In the case 89/du® # O the potentiation gives an equation of
the form of (4.1.5).

The Miura type transformations (Sect. 2.3.1) enable us to complete the clas-
sification of quasilinear equations (4.1.1). In Tables 1, 2 the arrows indicate that
the corresponding basic equations are related by a differential substitution of the
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first order (2.3.11). For example, (4.1.24) rewritten in terms of y, & possesses a
nonlocal symmetry of the form of (2.3.14) with

= yii + D(log(i + yii®)) .
The corresponding substitution
r=a"' - y2/2 , u= ﬂs/(ﬁl +yﬁ2') s

transforms (4.1.24) into (4.1.23). It seems that all basic equations from Tables 1,
2 can be reduced to (4.1.18,23 or 33) via the Miura type transformations. This
has been verified for all of these equations except (4.1.80, 82).

4.2 Scalar Fifth Order Equations
The classification of evolution equations of the form
uy = us + F(z, u,u1, uz, u3,u) : 4.2.1)

is based on the integrability conditions (gx), € Im{D}, k¥ = 0, ..., 5, where
canonical densities g are given by (3.3.11-16). We present an exhaustive [up
to the point-transformations & = (z,u) and scaling] list of integrable equa-
tions (4.2.1). The symmetries of the fifth order of the equations from the list in
Sect. 4.1.2 and linearizable equations [17] are omitted.

Integrable Equations of the Form (4.2.1)

Uy = us + Suuz + Sujup + 5u2u1 +cup ; 4.2.2)
ug = us + Suuz + 25ujug /2 + 5ulu; +cuy ; (4.2.3)
Uy = us + Suquz + 5u?/3 +cuy+c ; 4249
ug =us+Suus + 1563 /4 + 563 /3 + cuy + ¢y ; (4.2.5)
Uy = us +5(u; ~ uz)us + 5u§ — 20uuyuy ~ 5u? +Sutuy + cuy ; (4.2.6)
Uy = us + 5(uy — u%)ug - Squ% + uf +cuy+e 4.2.7)

ug = us + 5(uz — u? + A exp(2u) — AJ exp(—4u))us

— Su1uj + 15(); exp(2u) + 423 exp(—4u))ujuz + u

— 9072 exp(—4u)ul + 5(A; exp(2u) — A exp(—4w))Pus +cur ;  (4.2.8)
Uy = us + S5(ug — u,2 - /\% exp(2u) + Az exp(—u))us

~ Sujul — 1522 expu)ujuz + ul

+5(— X% exp(2u) + Ay exp(—uw))?u; + cuy ; 4.2.9)
Up = U§ ~— 5u1"1u2u4/2 - 5ul_lu§/4 + (Sufzug

+5u7 U /2 — Sup + 100} % + 50 D)u; — 35u%ud/16

—5u7 2 3+ (Sau P — 15020t 4+ 5 /4)R + 543 /3

— 8% — 150202 — 100632 /3 4+ cuy + 1 5 (4.2.10)
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Uy = us — 5u1~1u2u,4 + 5(u‘_2u§ + Alul_] + /\zu%)ug

= 5(Mur? + Au)ul — 533!

+50 A0 + M2ud +cup + o ; (4.2.11)
Uy = us — 5u1'lu2u4 - 15u1'1u§/4+ 5(13u1'2u%/4+ /\1141"1 + /\guf)u3

— 135u3ud /16 — 5(T\u? /4 — dauy /2)ul

— S0+ 5wl + M + cug o ‘ (4.2.12)
ue = us — 15(exp(5f) + 2exp2))(exp(3f) — 1) "2uzuq /2

— 45exp2f)(exp(3f) — 1)~2u3 /4 + 45(exp(10f) + 22 exp(7 f)

+13exp(4))exp(3f) — 1) *udus /4 — 3645(2exp(12f)

+4exp(9f) +exp(6))(exp(3f) — 1)‘6u§/16 +5)exp(2f)us

— 15A2exp(7f) + Texp(4 /) exp(3f) — 1)7%u3 /4

+2X2exp(5£)/3 ~ 522 exp(2f)/3 + cus +c1 ; (4.2.13)

where the function f = f(u1) is defined by algebraic equation
2exp(3f) = 3u1exp2f)+1=0; (4.2.14)

uy = us — 15(exp(5f) + 2exp(2)exp(f) — 1) 2uquq /2
— 45expf)exp(3f) — 1)~2u3 /4 + 45(exp(10f) + 22 exp(7 f)
+13exp(df))exp(3f) — 1) *udus /4 — 3645(2exp(12f)
+4exp(9f) +exp(6£))(exp(3f) — 1)~5ul/16
—55(5exp(2f) +2exp(—f) + 2exp(—4f))u3 /9
+58(10exp(7 f) + 39exp(4 f) + 36 exp(f) — dexp(—21))
x (exp(3f) — 1)"2u3/12 — 58'(10exp(3f) — 3 + 12 exp(~3 )
+8exp(—6f))uz/54 — 5ﬁ2(14 exp(—f) +39exp(—4f)
+24exp(=7f) + dexp(—10))(exp(3 f) — 1)2/243 + cuy , (4.2.15)

where the function f(u;) satisfies (4.2.14) and B(u) is defined by
Br=4f+x, B #0; (4.2.16)

uy = us — 15(exp(5f) + 2exp(2f))exp(3f) — 1)2
X ugug /2 — 45exp2f)(exp(3f) — 1)~%u2/4
+45(exp(10f) +22exp(7) + 13 exp(d /) exp(3f) — 1) " *ulus /4
— 3645(2exp(12f) + 4exp(9f) +exp(6 f))exp(3 f) — 1)~°
x u3/16 — 108(16exp(2f) + exp(— f) +exp(—4 f))u3 /9
+58(16exp(7 f) + 57exp(4 f) + 9 exp(f) — exp(~2f))
x (exp(3f) — )"*u}/3 — 108'(16exp(3f) + 6 + 3exp(—3 f)
+2exp(=61))uz/27 + 208*(64 exp(— f) + 24 exp(—4f) — 6exp(~7f)
— exp(—10/))exp(3f) — 1)2/243 + cu; ; (4.2.17)
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uy = us — 15(exp(5 f) + 2exp(2 /))exp(3f) — 1)~2
X uzuq/2 — 45exp2f)(exp(3f) — 1)"2u3 /4 + 45(exp(10£)
+22exp(7f) + 13exp(4))exp(3f) — 1)~ *1u3us /4
— 36452 exp(12f) + 4exp(9f) + exp(6 f))(exp(3f) — -t
X u;/16 — 108(16exp(2 f) + exp(— f) + exp(—4 f))u3 /9
+5B(16exp(7f) + 57 exp(4£) + 9 exp(f) — exp(—2f))
x (exp(3f) — 1)"2u2/3 — 108'(16exp(3f) + 6 + 3exp(—3f)
+2exp(—6 f))uz /27 + 208%(64 exp(— f) + 24 exp(—4 )
— 6exp(~7f) — exp(—10£))(exp(3f) — 1)2/243
— 5uB %5 exp(2f) + 2exp(—f) + 2 exp(—4 f))uz /9
+ 5pﬂ‘2(10 exp(7f) + 39 exp(4f) + 36 exp(f) — 4 exp(—2f))
x (exp(3f) — 1)72u3/12 - 5uf'B~*(10exp(3f) — 3
+12exp(=3 ) + 8 exp(—6 ))u2/27 +40uB ' (10exp(—f)
— 3exp(—4f) — 6exp(=7f) — exp(~10£))(exp(3f) — 1)*/243
— 5184 (14exp(—f) + 39 exp(—4 f)
+24exp(—7f) +4exp(—10£))(exp(3f) — 1)* /243 + cu, . (4.2.18)
The functions f(u), B(u) are defined by (4.2.14, 16).
The basic equations of the form (4.2.1) are indicated in Table 3.

Table3.
(4.2.17) (4.2.18) (4.2.15)
a [m}

4.2.2) 4.2.3)

The differential substitutions that connect vertices of the graph in Table 3
have the form
a) (4.2.6) — (42.2): i = —uj — u%;
b) (4.2.6) — (4.2.3): i = 2u; — u%;
) (4.2.8) — (4.2.3): & = 2uz —ud+6) exp(—2u)u; + A1 exp(2u)— A2 exp(—4u);
d) (42.9) — (42.2): i1 = —~uy — u,2 + 3 exp(u)y; — /\% exp(2u) + Az exp(—u).

The substitutions ¢), f), g) h) have the form

= f(u)+au),
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where the function f(u;) satisfies (4.2.14) and a(u) is connected with B, A,
A1, Az [see (4.2.16,8,9)] in the following way:

€) (4.2.15) — (4.2.8): f = —Aexp(2a) +4MJexp(~4da), A= —108A2AZ;
f) (42.17) — (4.2.9): B = A exp(2a)/4 + Maexp(—a)/2, A =27A2)2/16;
g) (4.2.18) — (4.2.8): = —Aexpa)/4, A=)2)2/4;

h) (42.18) — (429): B = Mexp(—a)/2, A=A2)%/4;

We note that an attempt to classify equations of the form u, = us +
F(u, u1, ua, u3) possessing a symmetry of order seven has been undertaken [32].
In that paper (4.2.9) has been discovered, but (4.2.8) missed. The fact that (4.2.8)
possesses a symmetry of order seven has been verified [33).

4.3 Schrodinger Type Equations

Equations which are related by invertible transformations should be considered
to be equivalent. The above classification of scalar equations has shown that
complete lists of equations up to invertible transformations have proved to be
enormous, and to obtain a visible description one has to involve a wider class of
transformations. In many applications there occurs a situation when an equation
possesses a continuous point group, and it is sufficient to restrict ourselves to a
reduced subset of dynamical variables consisting of the group invariants, without
loss of essential information. Therefore it is natural to consider two equations to
be equivalent if their reduced subsets of dynamical variables are related by an in-
vertible transformation. From this point the linearizable (Burgers type) equations
considered in Sect.2 are equivalent to linear ones.

We have already mentioned (Sect. 1.4.2) that a system of two equations of
the form

ur = A(wug + F(u,uy), det(A(u)) #0, u=(u',u?)), (4.3.1)
possessing higher conservation laws can be reduced to

u¢=u2+F(u,v,u1,'v1), (432)
v =02+ G(u,v,uy, 1), o

where the functions F, G are of the form (3.3.27-29). Invertible transformations
which do not violate the form of (4.3.2) are a composition of the elementary
transformations

T az+bt+c, t—at+d, a,bc,de C, (4.3.3)
the conformal transformations
u—a(w), v-— i), 4.3.4)

and the involution
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u—v, vou, t—=—t, T——1. 4.3.5)

Equations (4.3.2) which are invariant under a continuous subground of transfor-
mations (4.3.4) can be put in the form

us =z + Fleu +v,u1,11), €=0 or 1), , (4.3.6)
—vy=v2+ Gleu +v,up, 1),

via a conformal transformation and possibly (4.3.5). For instance, the famous
nonlinear Schrdinger equation

iy = gy + [Py (43.7)
is reduced to the form of (4.3.6) with ¢ = 1:

. 2
ug = ug +uy + CXP(U + ‘U) (438)
—vg = vg + 0 +exp(u + v)

by the obvious change
z=z, t=—ir, yP=explu), y*=ecxp(v).

If the continuous conformal group of (4.3.2) is nonabelian, the resulting equation
(4.3.6) may depend on a particular choice of a one parameter subgroup. The
Heisenberg model

$,=Sx8,, §=(5,5%5%, (S?=1 4.3.9)

may serve as an example of an equation that has a different representation in the
form of (4.3.6):

Up =Uy — Zuf tanh(u + v)

4.3.10)
—vy =V — 2v12 tanh(u + v)

and

- _ 2
up = uz — 2ui/(u +v) 43.11)
—vy = vy — 2v12/(u +v).

4.3.1 Symmetrical Equations and Transformations. Equation (4.3.6) is called
symmetrical if it is invariant under the involution (4.3.5). Many applicable equa-
tions (for instance (4.3.8,10,11)) are symmetrical. Symmetrical equations have
the form:

ur=u+ Fu+v,u,v1),

4.3.12)
—vi =+ Flu+v,—v,—u).
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If (4.3.12) possesses an invariant® conserved density p of the form
e=p'(u+v)(ur —v)+2¢(u+v) p' #0 (4.3.13)
we can define a transformation

T+v=plu+tv),

, 4.3.149)
U =p'(u+v)uy + qlu +v)

that does not violate the symmetrical structure. Relations (4.3.14) define the
one-to-one correspondence of the sets

{E+E,TI1,51,H2,§2, ...} and {u+v,ul,v1,u2,vz, .}
Expressing the lhs of
U+ = Pt U —Vy=0

in terms of the new variables, we obtain the transformed equation. Transformation
(4.3.14) defines the equivalence relation on the set of symmetrical equations [34].
Therefore equations linked by (4.3.14) we shall call symmetrically equivalent.
To construct the equivalence class of a symmetrical equation one should find all
conserved densities of the form (4.3.13). If there are no nontrivial ones, then the
equivalence class is determined by the substitutions

UtT=outav, UW=awm+f, H=any-pf, o B€eC.

Example 4.1. An equation of the form (4.3.2) with
F =2quvu; + bulv; + Ha — b)u3v2/2 +teutv, g=F* (4.3.15)

[were F'* denotes the result of the involution (4.3.5)] by the conformal change
T =log(u), T = log(v) is reduced to the form of (4.3.12) where

F =0} + (24t + 551 + ) exp(@ + D) + ba — b)exp[2(T +7)]/2 .

Using the conserved densities o%; + Sexp(@ + ), , 8 € C, it is easy to check
that

i) if b= 2a, ¢ =0, this equation is symmetrically equivalent to a linear one;
ii) if b = 2a, ¢ # 0, this equation is symmetrically equivalent to the nonlinear
Schridinger equation (4.3.7);
iii) if b # 2a, this equation is symmetrically equivalent to the well-known deriva-
tive nonlinear Schridinger equation [i.c., to (4.3.2, 15)witha=b=1,c=0.

||
20 A function h(u,v,ur, v, ...) is called invariant if it is not changed under the involution (4.2.5)

and 8h/8u = 8h/8v. If a conserved density  is invariant, then the function ¢ (which determines
by ot = D(0)) is also invariant [34).
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Example 4.2, The well-known equations [4]

— = —2 —
Uy = Uy — Uy +2W Yy ,
R (4.3.16)

T =T — T0 + 20110
and the Heisenberg model (4.3.11) are symmetrically equivalent. The link is
given by

u+T=log(u+v),

m=u/(u+v).

These examples show that equations not related to each other at first glance
might prove to be symmetrically equivalent (for a simple criterion of such equiv-
alence see [34]).

4.3.2 Classification of Integrable Equations. Below we present a complete
list*! of equations of the form of (4.3.2), which satisfies the explicit integrability
conditions (3.3.18-26). This list has been obtained in [8, 34, 35]. Moreover, all
equations of the list prove to be integrable.

Integrable Equations of the Form of (4.3.2)

u,=u2+D(u2+v),

A)
—ve=v2 —2D(uv) ;
up = up +ud vy,
(@
—vg =1y — 2uvy ;
2
u =uz+uv,
\ ®
—vy = v +vu;
uy = up + (u+ vy, ©
(¢
—vp=wv —(u+v)vr;
uy = ug + D(w?v — 4v) | D)
—v; = vy — D(v?u — 4u) ;
uy = up + vy — 4oy @
—Uy BV — vlzul +4uy ;
ug=uy —(u+ v)"zufvl —2(u+ v)'luf , @)

—vy = v+ (u+v) " 2vduy — 2u+ v)

2 0Of course, it is complete up to symmetrical and conformal equivalence. We do not include in this
list the triangular and decoupled equations.
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ug = ug + sech®(u + v)ulv; — 2 tanh(u + v)u? , @
-y = v — scch2(u + v)vful — 2tanh(u + v)v12 ;

u¢ = up — 2tanh(u + v)(u? — 4) ,

—vy = vy — 2tanh(u + vV)(W? — 4) ; ©
ug=uz — 2(u + v)'lu%
—4(u +v)"2201 + )y + (1 — uDvy)
—vy =t —2u+ v)'lvl2 ®
+4(u +v) 7221 + uv)vy + (1 — vP)ur) ;
uy = ug + D(u?v) .
—vy=v3 — Dv*u+u); ©
Cur=up+udny
~ve=vy — viuy —up ; ®©
ur=uz + D(u2 —2uv),
—v; =1+ D(? — 2uv) ; ®
Uy = Up +u% - 2uyvy ,

-y =v+ v% —2uyvy ; ®
ug=uz —2(u+ v)"luf , ;
—ve=vy — 2u+v)" o} ®)

uy = ug — 2 tanh(u + v)u?
5 (h'")
—v; = v — 2tanh(u + v)vy ;
uy = uz + D(u?v) ,

—vy =03 — D(v*u); ®
uy = uy + u%vl s .
~v = v — viur ; ®
ug = up +explu + v)u%vl + u% s y
—vy = vy —exp(u + v)vlzul + vlz ; ®
U= ua —2(u+v)'1(u%+1) , ]
—vyg =0y = 2u+v) 12 +1); o
ue = uz — 2(u+v) " 'ud — 4u +0)"H((u — v)u; +uyy) ©

—vy = vy — 2(u+ )" o} — 4(u + v)"H((u — v)v; — vuy);
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uy = ug + r(y)udoy + r' (Yl — 2r"(y) — 20ur /3 +r"@)/3,

—v¢ = vy ~ r(y)vfur + ')} + 20" (@) — 21 3+ 7" W)/3 ®
where
y=y(u+v), y' =r@y #0,
r=cayt+ar’+a’+ayta;
ug=us — 2(u+ v)"lu% —4(u+ v)'z(p(u, v)uy + r(w)vy), @)
—vp = vy — 2u+v) o +4(u+ v) " H(p(u, v)vy + r(—v)w) ;
ue = uz — 2u+ )k +r(w) +r'(W)/2, @

—yy =1y —2(u+ v)‘l(m2 +r(~-v)) +r'(-v)/2.
[In (n), (m) we denote r(y) = cay* + 3y’ + c2y® + 1y + o and plu, v) = 2cqu?v? +
cs(uv? — vu?) — 2c3uv + ¢ (u — v) + 2¢0.]
ug=ug + exp(¢)(u§ + Doy + (6¢/3u)u? +2rup ,

2 2 (0)
—vy = vy — exp(@)(vf + Duy + (8¢ /Bv)vy — 2rvy 5

up = uz +exp(@)u + vy +(8¢/0u)(u? + 1),
—vy = vg — exp(#)(v3 + Duy + (Bd/O)(? +1) .

[In (0), (p): exp(#) = y(u +v) — y(u — v), r = y(u + v) + y(u — v), where ' #0,
and (y') = 4’ + g + ¥ +tay+ra o P = -y +ar +at tay+
respectively.]

®)

ug=u2+v1 3

2 Q)
—vy =v2 — D(u%) ;
U= U+ Uy,
t= U2 12 @
vy =wv—ui;
2
=up+(u+v),
uy = ug + ( )2 )
—vy=v —{(u+v)";
ue=uz + (u+v)v; —(u+v)3/6 , ©
—vt=v2—(u+v)u1—(u+v)3/6;
y=uytu,
t 2 12 , (t)
—ve=vy —uy — (V+u’/2u;
Ut =u2+2'uv1 s (Ul)
—-vy = v +2uuy
_ 2
Uy -712+‘Ul N (ul)

2
—vy=vntuy,
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uy = uz + v? + bexp(u +v) — 2cexp(—2u — 2v) ,

2 (u2)
—vy = vg +uy + bexp(u + v) — 2cexp(—2u — 2v) ;
us = uz + v,z — (aexp(—u — v)
+wa; exp(—wu — w*v) + w*az exp(—w*u — wv)v ,
—vy =+ uf + (aexp(—u — v) w3)
+w¥aj exp(—wu — w*v) + waz exp(—w*u — W)y ;
Uy =ug + vlz — 2cexp(—2u — 2v)
— 2w* ¢y exp(—2wu — 2w*v) — 2wey exp(—2w*u — 2wv) ,
—vy = v + u? — 2cexp(—2u — 2v) o
— 2wey exp(—2wu — 2w*v) — 2w* ¢y exp(—2v*u — 2wv) ;
Uy =uy + v12 + bexp(u +v)
+w" b exp(wu + w*v) + wh exp(w*u + wv),
—vy=wn+ uf +bexp(u + v) w3)
+ wby exp(wu + w*v) + w*by exp(w*u +wv) ;
U =uz + vlz — (aexp(—u — v)
+waj exp(—wu — w*v) + w*az exp(—w*u — w)v
—arjazexp(u + v)/6 — w*aaz expwu + w*v) /6
— waaj exp(w*u + wv)/6 — a® exp(—2u — 2v)/6
— w*a} exp(—2wu — 2w*v)/6 — wad exp(—2w* u ~ 2w)/6 ,
—vy =+ u? + (aexp(—u — v) (u6)
+w*a) exp(—wu — w*v) + waz exp(—w*u — wWu))uy
— ajazexp(u + v)/6 — waaz explwu + w*v) /6
— w*aay exp(w*u + wv)/6 — a® exp(—2u — 2v)/6
~ wa exp(—2wu — 2w*v)/6 — w*ad exp(—2w*u — 2wv)/6 ;
up=up — (u+v) N+ 2uin)/2 + alu +v) ,
-V = —(u+v)"l(vf+2v1u1)/2+b(u+v) , @
uy = uz + D(u2 + v_l) ,
(w)

—vg=1vp —2D(uv) - 1.

Equations denoted by the same letters with differing numbers of primes are
conformal or symmetrically equivalent. For instance, (h) and (h') are symmetri-
cally equivalent but are not related to each other via conformal transformation,
(h') and (h"') are conformal equivalent but belong to different symmetrical classes.

4.3.3 Differential Substitutions. We can relate some equations of the above
list via the differential substitutions. As we have already mentioned in Sect. 2,
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these substitutions are connected with existence of point group symmetries or
conservation laws of zero or first order. ) _

For equations (4.3.6) we define an important class of invertible transforma-
tions of the form

T=Z{u+v,uy), v=Wlu+v), 4.3.17)

where Z,.-W, are any functions ((8Z/du;)- 8W/8v # 0). In general, subs'titution
(4.3.17) violates the form of (4.3.6) or the original equation. This form is to be
preserved if

PflovE=0, 208Z/0v=(0f/0w)-0Z/0u . (4.3.18)

The substitutions of the form (4.3.17,18) allow us to establish some ad'di-
tional relationships between the equations of the list. We shall use the following
notations

() > @) u-—s(u,u),

which means that v’ = s(u, u1) and u satisfies (), but u’' satisfies (y).

Differential Substitutions

(a) — (b) u — exp(u), v — exp(—u)n;

) — (A) u — uy/u, v — uv;

(©) — (A) u — (u+v)/2, v — —vq}

(a) — (¢) u — 2u; +v, v — —v;

d) — (e) u — atanh(u1 /2) —v, v —v;

(e) — (D) u — 2tanh(u +v), v — v,

@) — @  u— tanh(u+v), v — —tanh(u + v) — 20
@ — G u—>2u,_l, v — v

G) = ©G) u — 2u+v)"), v - v1;

(g — () u — —iu/2,
(") = (@G) u— 2y,

v — iu/2 + atanh(—iv);
v — itanh(u + v);

") - (D u—2Au+v)l, v — vy

O - H u — —uv/2, v — —uv/2 — v /v;

@ — (") u—2ul! -, v — v

i) — k) u — exp(u + v), v — —21)]'1 —exp(u + v);
M - (m)  u-—ylu+o), v —2v7" - y(u+v);
Q@ — @ u — (Qu1 +v)/4, v— —v/4;

(- Q u — 2(u +v), v — —duy;

(s) = (t) u — —(u+v), v—2v —(u+ 0)2/2,

The following relations link (v) and (w) with linear and split equations

us =+ v +(a—bu/2,

(linear)
—vy = v — 2buy +(a - b)v/2;
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u,=uz+v"l y

(split)

U=V

respectively:

(V) = (linear) u —2u+v)'? | v —2u(u+v)1/2:

(split) = (Whu = uj/u, v—uv.

The following substitution relates any pair of equations denoted by the same
lower and upper case letter, of which the lower case letter equation does not
contain v, u explicitly:

@ =A) T=uw, vT=uy. (4.3.19)

A convenient graphical representation of the above substitutions is as follows:
equations we shall denote by open blocks (1 (black blocks M correspond to
symmetrical equations) and the substitutions of variables of the form (4.3.17,18)

by arrows —— [double arrows =—> correspond to substitutions (4.3.19)]. As a
result we get:

a d

i
q
r
1 O-— Om n0O oQO pO 0
s B— Ot Q
ul @ =0Ul

u2 | w3 0 u4 0 us O ub 0
v 0 — 0O linear split O — Ow
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We notice in conclusion that is is just enough to study one of the equations
from each connected graph: for the other equations of this graph all results can
be reproduced via the above-given differential substitutions.

Historical Remarks

The concept of the symmetry approach based on explicit integrability conditions
was formulated at the first Kiev conference (September 1979) by one of the
authors (A.B.S.)2 Somewhat earlier, in the same year, these ideas had been
applied to the problem of classification of the nonlinear Klein-Gordon equations
(1.19) [1). The symmetry approach was also discussed by Fokas [38] (1980),
where, in particular, all equations of the form u, = u3 + f(u,u1) possessing one
nonclassical symmetry of the fixed order were found.

The first publication on the formal symmetries and explicit integrability con-
ditions for evolution type equations is [30] (1980). In Ref. 25 it has been shown
that the existence of two higher local conservation laws implies that of a formal
symmetry and integrable equations of the form

uy = uz + fu,ur,uz) .

The symmetry approach was extended by Yamilov [39] (1982) to involve non-
linear lattice equations in the area. A complete list of integrable equations of
the form u,¢ = f(tn—1, Un, Un+1) has been obtained in [1] (1983). The classical
theory of contact transformations has been attached to the symmetry approach in
the paper of Svinolupov [17] (1985) devoted to the problem of the classification
of the Burgers type equations. The generalization of the scheme on the vector
case has been given in [10] (1985). After that the exhaustive list of the nonlinear
integrable Schrédinger type equations was obtained [35] (1986), [34] (1988). A
sharpening of the concept of formal symmetry, an algorithmic way to compute
explicit integrability conditions, development of the classical theory of transfor-
mations and a number of other original results were included in review articles
[27] (1984), [8] (1987), [21] (1988).

Many interesting results concerning the symmetry properties of integrable
equations and other points of view one can find in [2,6, 11,19, 26, 33, 39-60].

2 A very similar approach had been proposed [36]. However, we have not found references where ’

the proper development of this promising paper is obtained.
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Integrability of Nonlinear Systems
and Perturbation Theory

V.E. Zakharov and E.I. Schulman

1. Introduction

The theory of so-called integrable Hamiltonian wave systems arose as a result of
the inverse scattering method discovery by Gardner, Green, Kruskal and Miura
[1] for the Korteveg—de Vries equation. This discovery was initiated by the
pioneering numerical experiment by Kruskal and Zabusky [2]. After a pragmatic
phase, which was devoted to finding new soliton equations, the theory became
rather complicated. One of its branches may be called the “qualitative theory of
infinite-dimensional Hamiltonian systems”, to which the results reviewed in this
paper belong. We consider only Hamiltonian systems possessing Hamiltonians
with a quadratic part which may be transformed in normal variables to the form

N

Ho=)_ / w®aPal gk . (1.1.1)
a=1

Here, aﬁf’ are normal coordinates of the a-th linear mode (usually simply

expressed through Fourier components of physical fields): k = (ky, ... , kg) is the
wave vector; d is the dimension of space; and wi") is the dispersion law of the
a-th mode. Corresponding Hamiltonian systems, i.c., those having Hamiltonians
of the form

H=Ho+ Hy , (1.12)

are called “Hamiltonian wave systems”. The majority of nonlinear wave theory
problems may be mapped into this class. The crucial property of systems (1.1.2)
is that they make a weak nonlinear approximation possible. Our approach is based
on treating Hiy as a perturbation; besides, we assume that Hy, is an analytic
functional of the fields aa"‘). This is not very limiting since it is usually true at
the weak nonlinear approximation.

The qualitative theory of infinite-dimensional Hamiltonian systems now being
developed stems from the qualitative theory of ordinary differential equations;
all existing methods can somehow be linked with this theory. The approach
used in the papers by Newell, Tabor and by Siggia, and Ercolani, presented in
this volume, actually originates from the analytic theory of ordinary differential
equations, while Makhailov, Sokolov and Shabat’s method can be traced to the
Sophus Lie symmetry theory. Our own work stems from Poincaré’s proof of
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the nonexistence of the invariants of motion, analytic in a small parameter, and
from Birkhoff’s results on the canonical transformations of Hamiltonians to the
normal form near the equilibrium. The main theorem in Sect.2.2 is an infinite-
dimensional generalization of the well-known Poincaré theorem [3] which de-
termines the sufficient conditions for the nonexistence of an additional motion
invariant; the theorem in Sect. 2.6 should be considered as a theorem which in
analogy with Birkhoff’s result determines the conditions for a Hamiltonian wave
system to be reducible to the form of the Birkhoff’s infinite-dimensional inte-
grable chain. In the infinite-dimensional case a new notion arises, which is absent
in the finite-dimensional case: the degenerative dispersion laws.

The Painlevé test method is based on the study of solution singularities and
works effectively both in one-dimensional and in multidimensional cases. It may
be used to determine whether a given equation is solvable exactly. If the equation
satisfies the test, a Lax representation may be found for it. The “Lie-Bicklund
symmetry approach” is used for one-dimensional systems with functional free-
dom: it permits conclusions about the existence or absence of additional local
motion invariants and symmetries, thus making possible a choice of “good”
equations among those of a given functional form. This method is, however,
inappropriate for finding L-A pairs.

Our approach does not permit functional arbitrariness in an equation but
effectively proves the nonexistence of additional motion invariants analytic in
aff’) independent of its locality or nonlocality and the dimensionality. For reasons
which will be explained below, this method is often simpler in multidimensional
spaces.

An approach based on perturbation theory has another important advantage.
It concerns the definition of the content of the concept “integrable equations”. It
leads to a natural subdivision into two classes of all systems of the form (1.1.2)
with additional integrals: i) exactly solvable but not integrable in Liouville’s sense
and ii) exactly solvable and completely integrable. For example, the Kadomtsev-
Petviashvili (KP) equation

(ue + 6ut, +Uzss), = 3a?uyy (1.13)

with o? = 1, belongs to the first class, while this equation with a® = —1 and the
well-known Davey-Stewartson equation (DS),

W+, — U, + ST =0

& (1.1.4)
2P +Py, = (@ - ‘5;5) N’lz s

belong to the second class [4-7].

This method of classification, properties of the equations from the first and
the second classes, interrelations between solvability (existence of commutation
representation and infinite number of conservation laws) and complete integra-
bility (introduction of virtual action-angle variables which do not disappear at
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periodic boundary conditions) are considered in Sect. 2.6 for the general case of
periodic boundary conditions. ,

Besides the above-mentioned direct methods, other approaches may be ef-
fectively applied in some cases: the Walquist-Estabrooq method of finding L-A
pairs, the method of searching for alternative commutation representation (when
a linear operator defining time dynamics arises as the Gateux derivative of the
original equation; see Chen, Lie, Lin [8]), etc.

Our paper is organized as follows: Chap.2 is self-contained; it is devoted to
the description of the general theory in the case of zero boundary conditions at
infinity with the exception of Sect.2.6, in which periodic boundary conditions
are explored. Chapter 3 contains some information about the physics giving rise
to various universal, exactly solvable equations (Sect.3.1) and their properties
from the viewpoint of the general theory (Sects. 3.2, 3); it also offers examples
of verification of the integrability of some particular systems (Sects. 3.4,5). The
appendices contain proofs of the most important theorems.

2. General Theory

2.1 The Formal Classical Scattering Matrix in the Solitonless Sector of
Rapidly Decreasing Initial Conditions [6]

Consider a homogeneous medium of d dimensions, where the waves of N types
can propagate, and their dispersion laws are wi"’), a =1, ..., N. The Hamiltonian
of such a medium can be represented in the form (1.2) (see Sect.3.1), with Hy
of the form (1.1.1) and Hi, practically always being the functional series in
the complex normal coordinates a{®, aj®), a =1, ..., N. The a{*) indicate the
wave amplitudes for corresponding linear modes with wave vector k. Amplitudes

ai"’) obey the equations

(@) _ () (o), SHint
la: —w,:' a,:' +:s-—"(—a$ . ) 2.1.1)
a

In analogy with the quantum scattering theory, let us consider the system
with interaction, adiabatically decreasing as t — oo:

H = Hp+ Hye et . (2.1.2)

For the system (2.1.1), the global solvability theorem may not be fulfilled,
and asymptotic states may not exist as t — too. However, for the system with
the Hamiltonian (2.1.2) at finite and sufficiently small ay, they do exist, i.e., the
solution of (2.1.1) turns asymptotically into the solution of the linear equation:
(o),

at) —> [af,'”(t)]i = {b,ﬁ“’]ie-*w 2.13)
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Furthermore, asymptotic states may contain solitons, which certainly cannot exist
at finite €. So our consideration should be restricted to the class of initial states
without solitons and with smooth C,7. We shall call this class the solitonless
sector. Although our consideration is restricted to a special class of initial states,
the result will be very useful because the structure obtained for the formal series
for the S-matrix provides us with the structure of motion invariants (Sect.2.5).

Functions C\*¥ are not independent; there is a nonlinear operator S9rc-,
transforming them into each other. To study this operator we go as usual to the
interaction representation:

aia),a(t) = bia)"(t)c_i’wia)t . (2.1.4)

Here, s = +1, a},(t) = ap(t), a,:‘(t) = a;(t). The motion equations now take the
form

6 Hip
b=

sibler = (2.1.5)

In (2.1.5), Hin is the interaction Hamiltonian expressed in the variables bi.
Equation (2.1.5) is equivalent to an integral equation:

- i t $H.
b(cr),a = C(a)ya - 1_'2 dt ____Le“eltll . 2.1.6
0 =[] 2 ) ) 19

Equation (2.1.6) gives a map C,(:’)" — b{"‘)"’(t) which may be written in the
form :

bia),’ - Sg"’)”(——oo,t) [{Ck_}] . 2.1.7
Ast — +o00in (2.1.7), one finds
c* =5, [{cr)] 2.1.8)

where S = S(®(—c0, o).

At finite ¢ and sufficiently small a{, operators S{®)(—o0, c0) and S(® may
be obtained in the form of a convergent series by iterations of (2.1.6). Lete — 0
now in each term of the series. As we shall see, the expression obtained is
finite in the sense of generalized functions. The series obtained for the operator
5{)(~c0,t) as ¢ — 0 will be called the classical transition matrix. We shall
refer to the corresponding series for S as the formal classical scattering matrix.
Let us designate

SN —c0,t) = lim §9(—o0,1) (2.1.9)
paai?
5t = lin}) 5N (~00,00) ,
&~

where the limits are to be understood in the above-mentioned sense.
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Before proceeding, let us introduce a more convenient notation. For the func-
tion IT, ,ﬁ"‘ v *on we will write simply IT4y, .. +n. Moreover, we will deisgnate

IOy, a6 (xsikr £ ... £, K,) = ﬁ:L—l,... n
and
ITiy . 406 (£s10k, ... £ Spwk,) = ﬁ:{:l,...,:!:n .

This notation reduces the length of the formulae and makes their structure visible.
In addition we will use the special notation

Eq1,. tn=tsiwe, £ ... £ s,

(2.1.10)
Py, gn=xs1ki £ ... s,k .

As ¢ — 0, the series for S.(—o0,t) and for S, are generally speaking diver-
gent and formal. Consider the structure of the classical scattering matrix in the
simplest case of a cubic interaction Hamiltonian Hi, and only one mode:

1
Hine =3 z /V,:,:l‘,‘::a,',tz",e‘la,‘:’2
88,8,
X 5(8k+31k1 +szk2)dk dk]dkz . (2.1.11)
From the fact that the Hamiltonian is real, it follows that
Viekiks " = Virks - 2.1.12)
Besides, coefficient functions V' possess an evident symmetry,
Vierer = Viurar T , (2.1.13)
In the interaction representation, we have the integral equation

l t
is (b () — f) =3 Z/

dt / dkidk V'3 (1)
8182 VTR

X bgt (4B (£2)8 (—sk — s1ky + s2k2) (2.1.14)
Viehn () = Vilighexp (IEZ 2 t — elt]) (2.1.15)
Epoi, = swe + s1wi, + 0k, (2.1.16)

Equation (2.1.14) may be symbolically represented in graphical form:

i ===

sEmmm=m=g e -2 0oz_ (2.1.17)
where ===== indicates the two-component over the index s unknown
value bg, s = £1; —.—.— designates ¢, *; corresponds to the factor

exp{—iE, %, *}; O indicates Vg 031 °26(—sk + s1ky + s2k2), and summation is

assumed over s; and sz. Using (2.1.17), certain graphical expressions (diagrams)
may be attributed to each term of the series arising when iterating (2.1.14). These
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graphical expressions are connected graphs, having no loops; they are, in other
words, “trees”.

Each graph consists of two types of elements: lines and vertices; the former
are subdivided into inner and external lines. One of the external lines is different
from the others (we shall call it a “root”); the other ones may be called “leaves”.
Each tree, corresponding to the n-th iteration, contains exactly n vertices and
n +2 leaves. Inner lines are usually called “branches”. They correspond to both
the external and intemal lines, a certain value of wave vector k; and the index
s;. The “external” value of k and s corresponds to the root. Integration goes over
all k; except k; = k; the summation goes over all s; except 8i=s. To each leaf
with the wave vector k, and index s, corresponds a factor c,¢ o,

The graph cormspondmg to the N-th iteration contains N' integrations over
time variables ¢y, ... ,ty. Each time variable ¢, in the diagram for the transition
matrix corresponds to its own branch. The external time ¢ corresponds to the root.
The presence of the root leads to partial ordering of the graph elements. From
each vertex in which three lines meet there is a unique path to the root. The line
leading to the root we shall designate as the exiting line. Let the corresponding
wave vector and index be k4 and s,. The other two lines are entering. Let them
correspond to the wave vector kg, k., and indices sg, s.,. It is important that both
entering lines correspond with one and the same time variable ¢,. Corresponding
to this vertex factor is

Vol exp [IE,‘ A -e|t,|] §(=sako+spks+s,ky) . (2.1.18)

Let us cut the graph across the line exiting from the vertex. Now that part of the
graph which is cut off from the root is to be integrated over the variable g in
the limits —oo < ¢, < ¢,. In fact this method of ordering is equivalent to thc
chronological ordenng used in quantum field theory.

To conclude our description of the diagram technique let us note that the
set of digarams which correspond to the n-th iteration consists of all possible
trees containing n-vertices and fixed roots. In front of each diagram there is a
numerical factor i/p. The number p is equal to the number of the symmetry
group elements for the diagram under consideration, i.e. the number of rotations
at different vertices which leaves the diagram unchanged, identity transformation
included.

At finite ¢ > 0, the actual calculation of diagrams is a rather difficult task.
However, it becomes much simpler as ¢ — 0. We shall refer to integration
over the time variable ¢; closest to the root as outer integration; all the other
integrations will be called inner integrations. It is important that when integrating
over any inner variable ¢,, one may make the replacement

e~cltel ot (2.1.19)
We shall not prove this statement here. The analogous statement has been proved
in the quantum field theory (see [10], for example). It is important to notice that
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using (2.1.19), all the integrations over inner times may be carried out explicitly,
greatly simplifying the diagram technique.

Consider an inner branch with the wave vector k, and the index s, such
that when cutting it, we may separate a tree having m lcaves (m > 2) from the
root. Let these leaves have wave vectors k; and indices s;, ¢ = 1,... ,m. Let
the vertex, from which this tree grows, be entered from the other sides by lines
(branches or leaves) with the wave vectors and indices kg, k, and s, s.. Then
the expression corresponding to this vertex is as follows (the line with kg, s, is
the exiting line):

Vk:;:;;aps (—sqkq +sck, + spkp) y 2.1.20)

while the expression corresponding to the branch with the wave vector k, and
the index s, is

exp(iE,t + met)  exp(iEnt)

=1li = . 2.1.21
Cm =M =, —ime) ~ i(E,, - 10) @.1.21)
Consider now the last (outer) integration over ;. We have
t
SNe(—00,8) = Wy / exp [—elti| +iEnt1] dt1 . (2.1.22)
Here,
Wy = W,;‘,,:;"j. iV (—sk+siki+ ... +sykn) (2.1.23)

is some expression which tends to the constant in the limit ¢ — 0. At finite ¢ we
have, from (2.1.22),

. WNCiE”'
- = - = 2,124
SN( m,t) }l_n}’SN,( OO,t) I(EN —iO) ’ ( )
as t — +o0o, we have
SN = lin}) SNe(—00,00) = 2n6(ENYWN . (2.1.25)

So the expressions for the Sy(—oo,t) and Sy have the singularity on a manifold
defined by the equations

Pyn=—sk+sik + ... +8NkN =0

(2.1.26)
En = —swi + 81wk, + ... + Sgwi, =0.
Equation (2.1.26), depending on the choice of the s, s1, ... , sy, splits into a set
of relations:
k+ki+...+kp=kpa+ ... vkoem 2127

WetWe, ¥t Wk, TW, P W,
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Equation (2.1.27) determines a manifold which we shall call the resonant mani-
fold I'*!™, We designate the corresponding entity Wy via

n+l,m = n+l,m
Wk,k] g oo ,k"+1 yom ,k”+m W *

It is important to notice that Wy is regular on the manifold (2.1.27) in the
points of a general position. However it has singularities on the submanifolds of
lower dimension on which at least one of the entities E,, becomes zero, which
corresponds to one of the inner lines of any diagram constituting the Wn+1:™m, As
can be seen from (2.1.21), these singularities may be of two types, in agreement
with the two terms in (2.1.21). The first item in (2.1.21) is distributed over all
of ™™ while the second one is localized on a manifold (to be more precise,
on a set of manifolds):

—8pWk, + Wk, + ... +Smuwk,, =0 (2.1.28)

—-.Spk,,+81k1+ veo 8k =0.

Manifolds (2.1.28) may be considered the youngest resonant manifolds in com-
parison with (2.1.27). Equations (2.1.28) together with (2.1.27) determine a set
of submanifolds of I"™*!'™ having the codimension unity. The division of two
items in (2.1.21) has a certain physical meaning. One may say that the first
item describes processes which go via virtual waves while the second item de-
scribes processes going via real intermediate particles. The elements of a classical
S-matrix with interactions going via real waves may be called singular. They
decompose on the singularity powers, depending on the number of inner lines in
which the Green function G, denominator becomes zero and on the correspon-
dent codimension of the younger resonant manifold. For any concrete dispersion
law there is an element of the scattering matrix possessing maximal singularity.

Let us now set some additional symmetry property of the amplitudes of the
classical scattering matrix, i.e., let us consider the equation

isaf = weal + @ji- , (2.1.29)
day

where Hiy+ may be obtained from Hiy in (1.1.2) by the substitution of com-
plex conjugated Hamiltonian coefficients, for example, into (2.1.6): VI:I::I:: —_
Vikik,' *?. As before, we shall assume the interaction to be the adiabatically
switched on and off. Then as ¢ — oo, the solutions of (2.1.29) and of (1.1.2)
as well will degenerate into those of the linear equation.

Let us consider the solution of (2.1.29), which becomes ot exp(—iwgt) as
t— —00:

ap — C;C_lu"t = C’:-o-c—u.n,t i

As in (1.1.2), (2.1.29) possesses a classical scattering matrix, Cih = S.[CLL
One should note here that (2.1.29) is derived from (1.1.2) by complex conjugation
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and change of the time sign. So, on account of the unique solution of the Cauchy
problem for (1.1.2) and also for (2.1.29), S.[C;*] = Cp™.
Substituting the definition of the classical scattering matrix (2.1.8), we get

S.[s*[crll=¢cr . (2.1.30)

Identity (2.1.30) is analogous to the unitarity condition for the scattering matrix
in quantum mechanics.

Nonlinear operator S, can be easily calculated. It coincides with the operator
S, where the Hamiltonian coefficient function V' is substituted for the complex
conjugated in each vertex of a diagram. It is convenient for us to introduce
operator R by the following formula:

S=1+R. (2.1.31)
Then from (2.1.30) we obtain the following condition for R :
R.[C;7]+R*[C] + R [RY[C[]] =0. (2.1.32)

One may also simply verify that

m

— = Wastm - (2.1.33)

* —
m,n+l =

It follows from (2.1.33) in particular that the amplitude W,, . is asymmetric
relative to the permutation of the m-indices, so that the diagram root does not
really occur as a marked line. From physical considerations it is clear that the
classical scattering matrix we have constructed coincides with the quantum one,
were radiation corrections are not taken into account, and only diagrams of the
“tree type” are retained.

Formulae for the case of many modes can be obtained from those above
by ascribing mode numbers o, a = 1, ... , N, to the field variables, coefficient
functions V' of the Hamiltonian and other objects. We will do so in what follows
without further explanation.

2.2 Infinite-Dimensional Generalization of Poincaré’s Theorem. Definition
of Degenerative Dispersion Laws [4, 5, 6]

The classical scattering matrix introduced in Sect.2.1 may be used to under-
stand what restrictions should be imposed on the Hamiltonian system in order
for additional motion invariants to exist. Indeed, let the system (2.1.1) have a
Hamiltonian

1 {7 a3),82(as),s
H=st 3 / DL D 20Dt 0 0 00 ik eyl @2.1)

The cubic term in
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Mal=h+..=3 f e fdk+... (222)
@;
is

L= % / Tisarazasdky dieadks .

Using the condition dI/dt = 0 and motion equations (2.1.1), we find, after
collecting terms cubic in ag:

Einlizs = VinFin 2.23)
where
Fi3 =81 f,:‘ + 32f:': + sgf,:': . 224

The existence of the integral I[a] depends on the presence of the limit of the
right-hand side of (2.2.3) as Ejy = s1w,‘:’“ + ...+ s;w:: — 0. We remember
that V = V§(Piz3).

Now two cases are possible. Consider a system of equations,

Py =s1ky + s2ks +83k3 =0 2.2.5)

Eip = slw,‘:l‘ + szw:: + s:;wf: =0, (2.2.6)

If this system has no solution, the formula (2.2.4) gives the nonsingular expres-
sion for I123 and there is no nontrivial information available in this order. If
the system (2.2.5, 6) has nontrivial solutions, it determines the simplest possible
resonant surface on which the coefficient functions of a new motion invariant
may have singularities. One of the following alternatives should take place in
the absence of this singularity on the resonant surface (2.2.5, 6): either

Vi = Vk(:x'::,’:;(uz)yaz(aa),aa =0, 227
or
F]23§v31f,:‘+32f::+33f:;’=0. 2.2.8)

In the latter case, if a nontrivial solution of (2.2.8) exists, we call the set of
dispersion laws {wg",wp?,wg®} degenerate with respect to the process (2.2.5, 6).

If there is only one type of waves in the system with the dispersion law
wy satisfying wi > O (the absence of waves with negative energy), the system
"(2.2.5,6) is reduced to the equation

wlky + k2) = wiky) + wiks) . 229

If this equation is solvable, the dispersion law is called decaying.
The alternative (2.2.7, 8) allows a generalization to higher orders of pertur-
bation theory. To do this it is necessary to use the classical scattering matrix
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introduced in Sect. 2.1. The result stated below is really the infinite-dimensional
generalization of the well-known Poincaré theorem [3].

Theorem 2.2.1. For the existence of an additional motion invariant of @2.LD
I[a] of the form [6]

Ia) = hla)+ hlel + ... , To=3"f& [af [ d

it is necessary that on each resonant surface,
El...q=0) Pl...q=0, (2210)

in the points of general position, the following alternative occurs: either the
amplitude W of the classical scattering matrix, corresponding to (2.2.10), equals
zero,

Wi.¢=0, (2.2.11a)

or the following condition holds:
q9
R.g=) sifgi=0. (2.2.11b)
1

Proof. The conservation of the integral I[a) results in the equality of its limit
values as ¢ — +oo:

Jim T [bee™ ] = Lim I [bye™™7] (2.2.12)

where the limits in (2.2.12) should be understood in terms of distributions.

By definition of the classical scattering and transition matrices (2.1.7, 8) we
have: b,(t) = Si(—o0,t)[C™] C{ = Se[C~). Now let us insert this formula
into (2.2.12), taking into account (2.1.32) and the explicit form of the integral
quadratic part Jo. By doing so we reduce two limit points, t = %00, to only one
point, ¢ = —co, and obtain

lim 7 £ [c,;“’)‘ R&1C1(t)

t——~o0

+C;_(Q)R§:)[C_](t)} dk=7, . (2.2.12a)

Here we have already used the fact that limg_,_ oo b = C,. In (22.12a) we
keep an explicit dependence of Ry(t) = S(—00,t) —- 1 on ¢, because this depen-
dence leads to the important fact that each term in (2.2.12a) is localized on the
corresponding resonant surface.

The D contains the term > [ f,ﬁ")RS’?‘ Rf’)dk resulting from the I and
all terms resulting from the higher orders in | [a). As we have already seen in
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Sect.2.1, Ry is a series, and each of its terms, S;»™,  corresponding to some
nonlinear processes “n — m”, has the structure (2.1.54). S
Recalling now (2.1.3) and using the well-known identity from distribution

theory,
iEt
E—-i0

we see that the integrand in S;'™ takes the form

=n8(E),

lim

W,:‘ Ci...Crimb (811 + ... + SnemWnim) »
and each term resulting from the left-hand side of (2.2.12a) is localized on
the resonant surface. As to Di, each contributing it term contains at least one
additional §-function of frequencies and is therefore localized on the submanifold
of codimensionality 1 or more.

* To see this, consider an arbitrary term in D, for example one resulting from

the cubic part of I{a]:

vk om

: 1 (r(c),a(an),81(a2),82 pls,@) ~—(81,01) ~—(82,02)
1*12052 feViiyk, Ry YOG,

8,08

3 881 8 818 -1
x [exp [i (Efpien) 8] (Bitiiz) | dkdkidk,

This term has two §-functions of frequencies: one resulting from R(,:'“) and the
other from the expression in squared brackets. Certainly, the integrand is local-
ized on a submanifold of a codimensionality 1 of the whole resonant manifold,
and in points of a general position this term should not be taken into account.
Analogously, each term constituting D;. possesses the property.

Now consider points of a general position (D;, = 0) of a resonant surface for
terms (on the left-hand side) which contain a combination of fields (C for C™):

) (orn) Fra(&1) *(&m)
Cv .. oprer Lo

By symmetrizing these terms we obtain

n) (&) (&m) a1 A&y e Em
/ [ﬁ:l)"" +f;(,: _fl':l - = fi ] W ks im
Xciol“) v C;‘(a"')5(k1 + ... +kn—l;1 - —Em)
x 6 (wi‘:‘) +... +w£‘:") —w;-:.:‘) - —wé‘:"))

xdky ... dk,dk; ...dE,, =0.

Hence, due to the arbitrariness of C, we obtain that in points of a general
position of the resonant surface

kit ... —km=0, of+. .. —wf=0, (2.2.13)
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the following equality should hold true:

[+ e = = S| W i =0,
from which the alternative (2.11a~b) follows. (End of proof.)
We now present a more general definition of degenerative dispersion laws.

Definition. The set of dispersion laws
{wgr, ,wg'}, aj=1,...,N (2.2.14)

is called degenerative with respect to the process (2.2.13) in the point Q of a
manifold (2.2.12), if (2.2.11b) in the neighbourhood of the point @ on (2.2.13)
has a nontrivial solution, i.e., f& # (v, k)+ Awg +const. The set (2.2.14) is called
degenerative in the domain (2 in (2.2.13) if it is degenerative in each point of £2.
And the set (2.2.14) is called completely degenerative (or simply “degenerative”)
on (2.2.13) if it is degenerative in each point of the manifold. If the domain £2
does not exist, the set (2.2.14) is called nondegenerative with respect to (2.2.13).

If §2 exists but does not coincide with (2.2.13), the set (2.2.14) is called par-
ticularly degenerative and if an additional integral exists, the scattering amplitude
outside {2 should become zero according to (2.2.11a). If all functions w,‘: 7 from
the degenerative set of dispersion laws coincide, the correspondent dispersion
law is called degenerative.

Degenerative and particularly degenerative dispersion laws and degenerative
sets represent in themselves exclusive phenomena. The properties of such exclu-
sive wg will be described in the next paragraph.

2.3 Properties of Degenerative Dispersion Laws [6]

Properties of degenerative dispersion laws differ strongly in spaces of dimension-
ality d=1, d =2 and d > 3. For this reason we shall describe them separately.

2.3.1 Dimension d = 1 In this case any three functions w®, i = 1,2,3, o =
1, ..., N form a degenerative set with respect to the process

k=k1 +k2
ay .02 ag
“)kx _wkz +wk3 s

(2.3.1)

if such a process is possible.
Actually, (2.3.1) defines the one-dimensional manifold in a three-dimensional
space (k1, kz, k3) so that locally k; = k;(¢),{ = 1,2, 3. Consider any two functions
») and f. On the surface (2.3.1), we define £{(¢) by the equality f{(¢) =
FEE) + £2(€). Then we have to invert the equality k; = k,(£) to obtain the
function fill = fD(&(k1)) which, together with £ and f&, forms a nontrivial
solution of (2.2.8).
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Any dispersion law wy in a one-dimensional case is degenerative with respect
to the scattering process “2 waves into 2 waves” (“2 — 27):

k1+k2=k3+k4
w tw=w3tws .

232)

In fact, (2.3.2) defines the two-dimensional manifold in the four-dimensional
space (k;, i=1,...,4).On the other hand it is obvious that (2.3.2) is satisfied
by the substitution

k= k3 ki = kq | 233
k2=k4} or k2=k3}’ (2.3.3)

corresponding to the trivial scattering. The manifolds of trivial scattering prove
to be very important when constructing action-angle variables.

Manifolds (2.3.2) and (2.3.3) obviously coincide. But on (2.3.3), any function
fi obeys the corresponding equation (2.2.11b), namely,

A+fa=fi+fas 234) |

this is proof of nondegeneracy. For the pr?‘c):ess “2 — 27 with several modes, this

is in general not so. For example, a set w;” = K2, wf') = c|k| is only degenerative °

to the process

h+a=kh+q
1 1
wil) + wff‘) = ""5:,) + wgzz)
The manifold (2.3.5) is split onto two parts, I and I;F. The first corresponds
to the forward scattering of a sound wave and the second, to backward scattering.
Corresponding parametrization has the form [11}:
for It
1

ki=ie+t) aq=3(n-0

(23.6a)
ky=3Ee—6 @=30+9,
and for IE,
b= £28) a=E0Fo @360) |

k=3 F26) @=E(hxo.

It happens that the set w®, w® is degenerative on (2.3.6a) and nondcfencrative

on (2.3.6b). The solution of a corresponding equation (2.2.11b) on I,

Wy ) 2 [0y @37

92 ?

has the form

FO@ = u (¢ - 3) + AL +(B - A0k

235)
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A =B, Yu©) = u(=£) .

Consider two dispersion laws: w{’ = k%, W = k% When ¢ # *as,
the manifold (2.3.5) is nondegenerative. Indeed, let o = c3/¢c; # 1. Manifold
(2.3.5) then allows the following rational parametrization [12]:

-1 +1
k=2 Fa+ QT
. o+l e 1 (2.3.8)
2 ) Q 2 Q.

Sub.stituting (2.3.8) into (2.3.7), differentiating two times in ¢; and one in ¢; and
setting q1 = ¢z = £/p, we obtain

(&* = Do — DFY" () = (& — Do+ DY ().
Hence, at ¢ # +1, fO" =0:

f(l) = A(I)EZ + B(1)€ +CY 2.3.9)

ie., the set {c1k?,c2k?,¢1/ca # £1} is nondegenerative to (2.3.5). At p = +1
(2.3.5) is degenerative. ’

Processes with more than four waves have not been very well studied, in spite
of some special results. It is certainly clear that degeneracy in such processes is an
exclusive phenomenon. For example, the same set (c; k2, c;k2) is nondegenerative
with respect to a “3 — 3” process:

k1+k2+k3=k4+k5+k6

wy +wy +wy =wy+ws +we (2310)

at any p. The proof can be performed by using a rational parametrization of
(2.3.10) of the form [12]:

1= 13f2£)9+R[u+',1;_%+(1+29)v]
)= 13f2"g+R[u+%+%—(1+29)v]
k3=li_P29—2u—R—2Ru
N li}; L (2.3.11)
k5=13f299+R u—;ll-+%+(1+29)v]
3Pp 1

. 1
k6—1+29+R[u—;—;—(1+29)v] .

Parametrization (2.3.11) should be substituted into the condition corresponding
to (2.2.11b):
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1 1) 2) _ 2 1) (1)
W D4 P = R+ £ 23.12)

After this, the proof of nondegeneracy can be obtained by three differentiations
and by subsequently taking a corresponding limit to obtain a differential equation
from the functional one.

2.3.2 Dimensionality d = 2. Consider the simplest nonlinear process: decay of
the wave into two waves of the same type. If the correspondent dispersion law is
decaying, corresponding manifold (2.2.9) defines a three-dimensional manifold
2 'in a four-dimensional space (k1, k2). As an example of a decaying dispersion
law, one can consider an isotropic function,

wi =w(lk]), w0)=0, w' >0. 2.3.13)
The equation (2.2.8) then takes a simple form,
feyres = fier + fiea - : (2.3.14)

Let us now show that the degenerative decaying dispersion laws exist at
d = 2. We designate components of a vector k via (p,q) and let w(p,q) be
defined parametrically by formulae

p=£—&; g=a(f)—a(f); we =& -, (2.3.15)

where a(¢) and b(¢) are arbitrary functions of one variable. (T he natural ap-
pearance of a parametrization of this type in exactly solvable systems from an
underlying linear problem was shown by Manakov in [38].) We consider the
three-dimensional manifold I''»? defined by

n=6-§ m=b—6
q =al€) —al6s) g =all) - aby) . (2.3.16)
Now

p=pip=&—&
g=q+q=ab)—al),
and in accordance with (2.3.15),
Wky+k, =b(E1) — 0(E) = B(&r) — B(&3)
+ b(&) — W(&2) = wr, ~ Wi, - 2.3.17)
Thus, the manifold [*? is a domain in I''2.
Consider now a function f(p, ) parametrized by

p=b —&, g=al) —a), f=c&)-c&), (2.3.18)

where c(¢) is an arbitrary function. Obviously f(p, ¢) obey (2.3.14) on 2, and
the law (2.3.15) is at least particulary degenerative. Its complege degeneracy
should be considered separately.
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Let a(€) = €2, b(€) = 4€? in (2.3.15). Then

3 2
w(p,q) = p’ +% - (2.3.19)

This is a dispersion law of the Kadomtsev-Petviashvily equation (1.1.3) (referred
to in the following as KP-1) with o2 =1,
Equation (2.3.13) now takes the form:

2
(1 +paf = (;’7: - %) , (2.3.20)

and it is clear that it consists of two parts. Simple analysis shows that [
coincides with the I''* part given by the formulae
[l 1]
ntp=———. 3.
n m 4 (2.3.21)
Dispersion law (2.3.19) can also be obtained from a parametrization a(£) =
—€2, B(¢) = 4¢3, Now I coincides with ' when
a ., @
n+pp=——+-—, 3.
n ', (2.3.22)
Thus the dispersion law (2.3.19) is proved to be completely degenerative.
Now let §; — €2 =6 <« 1 in (2.3.15-18). Then in the first order in § relations,

q ' w '
» a'(&), > =b'(&) (2.3.23)

also define the degenerative dispersion law, and it is the homogeneous function
of degree one,

w = pd (%) . (2.3.24)

We should note that (2.3.24) together with the function (2.3.15) are not analytic
at p — 0. Thus, the homogeneous function of degree one dispersion law is
degenerative. The manifold I''? for dispersion law (2.3.24) is

a_@_4g

m p p’

which means that k; and k, are parallel and unidirected.
When many modes exist, there are three sets of dispersion laws {w(eV), (@),
w(@s)} degenerative with respect to decay processes, t00:

(1) _ wiﬂ;z) + w;:;s)

wh
ki=ky+ks. (2.3.25)

They are defined parametrically by the formulae
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n=b-&, m=L-8, p=L—-§&

g =a1(&) —a2(&2), @ =a(6) —a3s(&3), ¢ = a3(3) — ax(f2)
W = by () — ba(€2) , W@ =bi(&1) — b)), W =by(&) — by(&r) .

(2.3.26)
Now the solutions corresponding to (2.2.11b),
o) = fe w30 2327

have a parametric form in (2.3.26):

£20 = a1 - @)

) = al) - o) (2.3.28)

59 = e3(6) — calla) -

We should recall the fact mentioned above with respect to the specific case of
the KP-1 equation. Namely, if in (2.3.15) we replace p — p, a(f) — —a(—¢§);
b)) — —=b(—¢£), such a dispersion law will be also degenerative with respect
to the process (2.3.13). In the case of KP-1 these two parametrizations together
cover the entire manifold I"+2, It is still an open question as to whether these
two parametrizations cover the whole degenerative piece of resonant manifold
in all cases.

In addition, all homogeneous dispersion laws of the weight 1 (2.3.24) are
degenerative to any decay processes 1 — n,

w=Ew + ... twy,

k=ky+... k. 23.29)

The question naturally arises as to whether degenerative dispersion laws exist
which differ from (2.3.15). The following theorems are true.

Theorem 2.3.1 (Local Uniqueness Theorem) [6]. All dispersion laws of the
form

p=bi—&, ¢=al) - alt) (2.3.302)

w=bE) —b(&) + Y e"walés, ),
1

satisfying the degeneracy condition (2.3.14) with

f=c&) ~ &+ Y €™ falr,60), (2.3.30b)
1

€ < 1, will belong to the class (2.3.15).
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This statement means that there are variables m1(£1, £2) and n2(&1, §2) in which
terms the degenerative dispersion law (2.3.30a), with (2.3.30b) holds true, taking
the form (2.3.15).

Theorem 2.3.2. If w(p, ¢), degenerative with respect to the dispersion law (2.2.9),
is analytic in the neighborhood of p = ¢ = 0, then the corresponding function
f(p, q) cannot be analytic in the same domain.

Theorem 2.3.3. Let the dispersion law w(k) near the point ko admit the expansion
wiko + k) = w(ko) + (v, k) + Y _ Aijrix; . (2.3.31)

Then in some domain near ky = ky = k3 = kg = ko, the dispersion law (2.3.31)
is nondegenerative to the process

kl + kz =k3+ ka (2332)

Wk, + Wey = Weeg T W, 5

i.e., the equation

fer + fiy = frg + fro (2.3.33)
does not have nontrivial solutions.

Theorem 2.3.4 (Global Theorem). If w(®?(p, ¢) is a system of dispersion laws,
degenerative with respect to the process (2.3.25), and if the equation (2.3.27)
has at least three independent nontrivial solutions, the system w®?(p, ¢) either
belongs to the class (2.3.26) or could be obtained from it by some limiting
process.

Now let w(0) = 0. From Theorem 2.3.3 it follows that the dispersion laws
admitting expansions (2.3.31) are nondegenerative to the process

Xn:kj =ik.~ , iw;=§:w1, (2334
n>2, m>2.

To see this, one can consider the neighbourhood of the manifold (2.3.32), putting
the “extra” wave vectors equal to zero. Thus, only homogeneous functions of
degree one dispersion laws can be degenerative and only to the processes (2.3.29).

From the above it follows that there is no unique dispersion law completely
degenerative with (2.3.32). It is very doubtful that w;, exist which are degenerative
to (2.3.32) in particular.

Let a dispersion law wj be decaying. Then the manifold I'>? contains a
submanifold Ff‘f of codimension one given by the equations

kitki=ks+ks=q

Wiy T Wk, = Wiy twg, =Wwq -

(2.3.35)
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If the dispersion law is degenerative to a “1 — 2” process, then the correspon-
dent degenerative function f(k) obeys on I“i,z the equation

oo+ feg=fea* fea=fq - (2.3.36)

This certainly does not mean that dispersion law wy, is even particulary degenera-
tive. For degeneracy to take place it is necessary that (2.3.33) be true on (2.3.32)
in the neighbourhood of at least one point of the manifold (2.3.35). Degeneration,
as we know, is possible only at d = 2, and the corresponding dispersion laws are
given by (2.3.15).

Consider now the neighbourhood of any point on I'27. It can be defined as

n=b-&, m=6L-8, m=bL—-&, pm=&—-§&,
q=a)—all), e=ale+n)-al+n)

@ =a(lt +12) —alls +12), g4 =a(ls +13) — a(fs + )
w1 =b(6) — H&2) , wr=bz+11)— b6+ 1)

w3 =b(61 +12) = blla+12), wa=bés+13) — b3 +13).
The resonant conditions are

[0'(€2) — d'(&)] 1 = [d'(&1) — a'(&)] w2 + [a'() — '(63)] 15
[6'(€2) = B'(&)] w1 = [b'(&x) — b'(&a)] v + [B'(€4) - b'(&)] s .

The condition of degenerativeness gives another relation:
['(€) — (&) v = [6r) — ()] va + [(€0) — (6)] 15

If functions a, b, c are linear independent, thJS equation has only zero solutions.
It follows from this that the manifold I‘ cannot be locally extended with
preservation of degeneracy.

Consider now any process “n into m” given by the resonant conditions
(2.3.34), and let w; be decaying and degenerative to “1 into 2" [see (2.3.15)].
In the corresponding manifold I"™™ one can point out a set of manifolds ™
which we can call minimal. To describe these manifolds, we recall that the scat-
tering amplitude W™™ is given by a diagram of the tree type with a finite number
of vertices and inner lines.

Let us designate via p;, s; the outer wave vectors and their directions. Let
some vertex contain vectors p;, 8;, Pj» 85, Pi> 8i- Then we have

3'-.p'.+sj.pj+sl.pl=0‘ (2337)
We require another condition to be fulfilled:

8iwy, + 8wy, + By, = 0. (2.3.38)
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From (2.3.37, 38), it follows naturally that (2.3.34) is true but (2.3.37, 38) deter-
mine the manifold of smaller dimensionality — one of the minimal ones, I'y;™.
If w; is degenerative, in each vertex the equation

s,-fp', + sjfl’,' + s;fp, =0

will be true and, as a consequence, so will (2.2.11b), but it is impossible to
enlarge the dimensionality of I';z™ under condition (2.2.11b).

2.3.3 Dimensionality d > 3. In higher dimensions the possibility of degeneracy
is strongly limited in comparison with d = 1,2. Only the homogeneous functional
of degree one dispersion law

w(ck) = cw(k) (2.3.39)

is degenerative to (2.3.29) only. Its degeneracy does not depend on the space
dimensionality: (2.3.29) is solvable only if all k;, ¢ = 1,2, ... are collinear to
k. So the corresponding manifold has smaller dimensionality than for decaying
dispersion laws of general form; e.g., at d = 3, the dimensionality of (2.2.9)
equals five while that of (2.3.29) equals four. On the basis of the following local
theorem, it can be stipulated that no other degenerative laws exist.

Theorem 2.3.5. Let the dispersion law wy, k = (p, ¢,r) be parametrized in the
neighbourhood of r = 0 by

p=& —§&, g=a(l) - alf) (2.3.40)

w(p,g,7) = 56 — bE) +1 Y r"wa(é1, &)
0
and the dimensionality of I''2 be equal to five. Then wy = const, w, =0, n > 0.
For the proof, see Appendix L.

2.4 Properties of Singular Elements of a Classical
Scattering Matrix, Properties of Asymptotic States [6]

Let us examine the “n — m” process. We shall choose another notation for wave
vectors, and designate the nonlinear part of the amplitude via S;*™ -
We consider a diagram describing the process (2.3.34) in Wthh 'the m';aer
line (Green function) with the wave vector ¢ is replaced by a §-function. Let
vector q be directed from the “root” of the diagram and “to the right of it”; i.e

further away from the root, there are external lines with vectors ky, ..., kn,,
ki,... ,km,, n1 < n, m < m. Now the following equations are added to
(2.3.34):

Ev+ ... +ky =ki+...+kn, +q (2.4.1)
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Wiy + . +w1,"1 =wg, t... -l-u.:,';m1 —Wg .

Moreover, it holds that

kpu+...tka=knu+...+k,—gq (2.42)
wk"1+l+...+wh“=w;m‘+l+ - twg  —wg.
Let us des1gnatc via S" m ., ..§,, the singular part of the amplitude of the

“n into m” process correspondmg to equations (2.4.1), (2.4.2).
We obtain the expression for ™™ as a result of summing of all diagrams of
the form

T Ena ... Tic.. T k... M e,
L ] [ ]
Do o LR le o,
Then we have the relation:
S" mk..,kx
= i / s"h";;;" P T Y o ek ok 80 -

The formula shows that the singular amplitude $™™ is factorized through the
composition of the two nonsingular amplitudes of lower order. It is clear that the
analogous statement holds for the amplitude of any degree of singularity when
there are several additional equations of the structure (2.4.1). All of them are
factorized in the form of the composition of the finite number of the nonsingular
amplitudes of lower orders. In particular, the maximum singular elements of the
scattering matrix defined by the diagrams where all “Green functions” of the
internal lines are substituted for é-functions, are factorized in the form of the
composition of the simplest scattering amplitudes “one into two”.

These facts have a simple physical meaning. The substitution of one of the
internal “Green functions” of a §-function means that the corresponding wave is
the eigenoscillation of the system (a “real particle”), and the process with such
a wave occurs stage by stage, combined out of the process of the lowest order.

Now let the dynamical system under consideration possess the additional
motion integral, and let the dispersion law be nondegenerative relative to all
nonlinear processes. Then all nonsingular elements of the scattering matrix on
the resonance surfaces are vanishing. As mentioned above, all singular amplitudes
are vanishing too. Thus, in this case, the classical scattering matrix is trivial and
the asymptotic states coincide, i.e.,

Ce=cp - (2.43)
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In particular, this holds for the Kadomtsev-Petviashvili equation with o = ~1,
or KP-2, as was first noted in [9].

We have seen in Sect.2.3 that in the two-dimensional case the situation in
which the dispersion law is degenerative relative to the lowest-order process “one
into two” and nondegenerative relative to all higher-order processes is typical.
All degenerative dispersion laws constructed in Sect. 2.3 possess this property. In
such a situation the classical scattering matrix S is nontrivial, but only its most
singular part is nonvanishing, factorizing into the composition of the three-wave
processes. This applies to the KP-1 equation, too.

It is very important in this case to find the scattering matrix in the explicit form
in some sense. Let us note that for the most singular part of the S-matrix, one
can cancel all inner Green functions and make a replacement in every vorticity:

V;:”Z”'& ( —spkp +sokg + s,k,)

— mV_:";:'"& (—spk,, +3.kg + srk,) ) (—s,,w,cp + Sqwg, + srwk,) .
244

This modified vorticity will be denoted symbolically as V.
Now we must rememeber that the entire set of diagrams has the factor 27i.
So we can write symbolically

c=c+2{V [+ ) (2.4.5)

The expression in curly brackets is the whole set of diagrams. Formulae (2.4.5)
can be rewritten in the form:

ct+c

2

=c Ve, )+... , (2.4.6)

or

24.7)

Finally, we have

ct—c¢” 12/ cr+e” e
2 = )

or, more detailed:

—c t22 / Z Vi 26(sk — s1ky — s2k2)
132

"
x & (swk — S| Wk, — szwk,) (ck‘ +cp, )

x (et + ) dindka . (2.4.8)
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Formula (2.4.8) gives a direct connection between asymptotic states in the case
of the degenerative dispersion law.

The equation similar to (2.4.8) applies in the one-dimensional case if one
type of wave is involved. In the one-dimensional case, any dispersion law is
degenerative to the process of two-particle scattering. For simplicity we consider
the Hamiltonian (2.1.11); we have

L
%% / Tonsusny 6 (E + by — kg — ks)

2
c*'f + C‘— c"' + c_
X § (Wi + Wk, — Wk, — Wiy ( k1 2 ks ) ( hz ’")
t o4 oT
x (-c-"—-iff—) dkydkadks . (2.49)

It follows from (2.4.9) that the squared module of the classical S-matrix is equal
to unity:

{cz|2 = |c,:|2 s

but in general, arg ¢ # arg c;. Actually, it is well known that in such one-
dimensional systems, the interaction is reduced to a phase shift only.

Now let us return to the two-dimensional case with the decaying degenerative
dispersion law, and consider the amplitude of the “two into two” process with
the resonant conditions

k] + kz = k3 + k4 (2410)

Wy + Wi, = Weg Wi, -

This amplitude is described by three diagrams:

S

q \ g=ki—k
ks

q g=ks—k2
\k4
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As we have stated above, the nonsingular part of the amplitude localized on the
whole manifold (2.4.7) must be identically zero. On the other hand, this amplitude
becomes infinity near resonant manifolds corresponding to an interaction via real
waves. (The singular part of the amplitude is localized on these very manifolds).
These manifolds are different for the three diagrams above. They are defined by
the formulae:

Why+ky = Wy + Why = Wey + We, (2.4.11a)
for diagram 1;
Wiy —ky = Wi, — Why = Wh, — Wk, (2.4.11b)

for diagram 2; and
Whg k) = Why — Wky = Wiy, — Wk, (2.4.11C)

for the diagram 3. Since the amplitude of the process (2.4.7) becomes zero,
the singularities localized near manifolds (2.4.11) must cancel each other. This
cancellation can only occur if the manifolds coincide, at least partially.

The resonant surface “one into two” for KP-1 consists of two connected parts
[see (2.3.21-22)]. A simple analysis shows that each of the two parts described by
one of the equations (2.4.11a~c) coincides with some parts described by another
of these three equations. This results in the number of connected manifolds,
defined by (2.4.11a~c), being equal to three, but not six. The statement about
pair compatibility of (2.4.11a—) is a general one for the degenerative dispersion
laws and could be used for enumeration of such laws. It is worth noticing that
the coincidence of manifolds (2.4.11a~c) (in the above-mentioned sense) is only
a necessary but not sufficient condition for the singularities in (2.4.7) to cancel
each other. Rather rigid conditions imposed on the coefficient functions V%2
of the three-wave Hamiltonian (2.1.11) should be satisfied. We have checked
these conditions for KP-1 equations. We should also note that checking for the
cancellation of singularities is a useful and simple way to analyse the existence
of the additional motion invarjants for the particular systems.

2.5 The Integrals of Motion [5]

One of the important statements in the present paper is that the existence of an
infinite set of additional integrals follows from the existence of one such integral
of system (2.1.1). Let us prove this fact and find the integral of motion in the
form of a formal integropower series:

G=/g,. \au* ke

+>y /G;;;;;"a,.a... ay'é6 (Py)dk ... dk, . (2.5.1)
q ]
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Here,
P,=sk+s1ki+... +3.k,,

and g, is some function of wave numbers. Substituting (2.5.1) into (2.1.1), it is
clear that the functions G, ¢ are expressed from the recurrent formulae

3Gk + 3191 + 8202

88,82 88182

Glkerks TEmn Vikr ks (252)
1%2

8. 8g

8.8 k. k
Gl = ————iE;...Z, . (2.5.3)
ke

In these formulae,

8.8
Ek k: = Swg + S1Wky + ... + SqWh,

and the function Py " ;* is linearly expressed via G~ '~'. It is not necessary
for us to write out this 'dependence. e

It follows from (2.5.2, 3) that the coefficient functions in the integrals possess
singularities on all possible resonance manifolds of the form

En=E; =0, P,=0. (25.4)

We' may continue as follows: Let the wave field a(r) in a physical space be a
rapidly decreasing function. Then its Fourier transformation ~ the field a; ~ is
a smooth function. This makes it possible to peform the regularization in the
expression (2.5.1), but not in a unique way. For example, in all denominators
one can perform the substitution:

B = Bl =By +i0, 2.5.5)
or the substitution
B ~ By =By -0, 2.56)

Generally speaking, in this case we obtain different integrals of motion; let us
designate them as G*. Any linear combination of these integrals may be the
integral of motion; particularly, the difference (1/271)G° = G*~G~. The integral
G° does not have a quadratic part; its expansion in powers of a} starts from the
term:

¢ = Z / (Sgk + 510k, + 3291:,) 6 (sw,. + sjwg, + szwk,)

8,8

X 8 (sk + s1ky + soka) Vi3 2 afal ag? dk dkydks . @5.7)

The integral G° can be called an essentially nonlinear one. It is one of a large
number of such integrals. The linear equation
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ag +isweag =0

allows an essentially nonlinear integral of the form:
I= / oyin6 (Bi) 6(Po)ai - aftdk ... dk, . 258)

Here, ¢ is an arbitrary integer; di,‘:':. ‘;"q is an arbitrary function. In the nonlinear

system (2.1.1), one can search for the integral in the form of the integropower
series in aj, the first term of which is the expression (2.5.8). In this case the
regularization problem of the denominators of the form E;~ ", r > ¢ again
exists, and cannot be solved uniquely. The different integrals obtained will differ
by the essentially nonlinear integrals of higher orders.

One can attach a simple physical sense to the integrals G* occurring as a
result of the regularizations (2.5.5) and (2.5.6). It is easy to see that

G* = / gk |at|* dk . 259)

Here, a,:f are asymptotic states of the wave field at ¢ — =+oo. Formula (2.5.9)
shows that an arbitrary system (2.1.1) in the rapidly decreasing case is completely
integrable. Actually, the change af(t) in time is a canonical transformation, so
the variables a;*(t) = c,f exp (—iswyt) are canonical. It is now evident that the
variables

I# = [a¥] snd o = wg af

are the action-angle variables for the system (2.1.1), irrespective of the form of
its Hamiltonian. This rather impressive statement is based on a rapid decrease of
the function a(r) and, respectively, on the smoothness of the function a(k). In
the periodic case, when the function a(k) represents a set of é-functions,

a(k) = 2 an6 (k — nko) (2.5.10)

n

(ko being the vector of the reverse lattice and n a multiindex); integrals (2.5.1)
in a general position make no sense (become infinite) and as a rule, integrability
vanishes. In the periodic case only those integrals still make sense, the coefficient
functions of which remain finite on all resonance manifolds, i.e., where reduction
of singularities occurs. For further discussion of the periodic case, see Sect.2.6.
To observe the singularities, let us introduce the operators R*, inverse with
respect to the operator of the transition (2.1.6), taken for simplicity att < 0 :

af = R¥ [ai) (2.5.11)

@ =al+d. Y /Rfk;;’fj;'"a;; o agt§ (Pg)dky ... dkg .
q - 8g
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The coefficients R:t,: %4 at ¢ =0 do not depend on time. They have singularities

on all possible resonance surfaces Eq =0. Let us put

5t 88y .. 8,

R
. + 089,84 = kky ... kg (2512)
Sm Rewkr. ks = "B, £10

Expression Ry, °* is regular on the resonance manifold E,=0, P =0, but
it can possess singuiaritics on various “junior” resonance manifolds. '

Let us consider the operator Rt andlett — —oo in (2.5.11). In this ca.se,
ar — ag, and operator R* is to be transformed into a classical scattering
matrix. That means that on the resonance surface E, =0, P, = 0, the numerator

in (2.5.12) coincides with the corresponding element in the scattering matrix,
Ry =Sie (25.13)
Now let us represent the integral of the motion G* in the form
G* =/gkaka;dk + /gka: (af — ai) dk
+ /gka,, (ap* - ag) dk + /gk (af — ak) (ap* —at)dk, (25.14)

and substitute (2.5.11) into (2.5.14). We collect the terms in (2.5.14) having the
singularity on the whole resonant manifold (2.5.14) and having a complete power
¢; such terms are only contained in the second and third terms in (2.5.14). After
symmetrization they are reduced to the form

1 (L0 g, o
5 ‘E':-;':—:RZW,,:a,,...akq6(Pq)dk...qu. (2.5.15)
k.. kg

N is some integer,
Ly il =g+ ... +Sq0k, - (2.5.16)

Comparing (2.5.14) with (2.5.3), it is clear that P, ::;: can be represented as
follows:

1 58 o 8 8.8

Pelee = Ll B * A B 23517
where 4;" 2‘0 is regular on E, =0, although it probably has singularities on the
“junior” resonant surfaces.

Let the dispersion law w(k) be nondegenerative and the system (2.1.1) have
an additional integral of motion with continuous coefficients. As we have already
seen, this leads to the triviality of the scattering matrix and the coincidence of
asymptotic states ai. Now on the resonance manifold Eq =0, P, = 0 the matrix
element R}~ }¢ =0. This means that on the resonance surface E, =0, P, =0,
the singularity'in the motion integral is cancelled. It can be seen directly from
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(2.5.2) that the singularity is cancelled in the junior term of expansion (2.5.1) as
well.

Now applying induction, we observe that generally all the singularities are
cancelled. Thus, in the case under consideration, one can use an arbitrary function
gk in order to construct the motion invariants of the system (2.1.1). Roughly
speaking, in this case there are as many integrals with continuous coefficients
having a quadratic part as there are in the linear problem. All these integrals are
conserved in the periodic case as well; i.c., the periodic system (2.1.1) is quite
integrable. In particular, the periodic equation KP-2 is integrable. Krichever has
recently come to this conclusion on the basis of his algebrogeometric approach
[13]. We should keep in mind that our results have been obtained on the level
of a formal series, the convergency of which we still do not know.

Now let the dispersion law be degenerative. We restrict ourselves to a case in
the form of (2.3.15) at d = 2. Now the scattering matrix is different from unity,
Sy ,‘:‘: # 0. However, the nonvanishing scattering matrix is concentrated on the
minimal manifold I'y;™, when all the scattering occurs with the participation of
real intermediate waves only.

Now in the expression (2.5.17), R;" :‘: # 0 and, generally speaking, the
integral of the form (2.5.1) is singular. The only way out of this situation is to
require the vanishing of the expression L, ™~ 2: It is possible to do this on the
manifold I'y;™ by requiring g(k) = f(k); i.e., the function itself should represent
the degenerative dispersion law, permitting parametrization:

p=& — &, g =a(&) — a(é2)
w=b&) - &), g=c&)—c&2).

Here, the function c(¢) is arbitrary.

Thus, in the given case, system (2.1.1) also has an infinite set of integrals of
motion with continuous coefficients, but this set is sufficiently narrower than in
the previous case. Instead of an arbitrary function of two variables at our disposal,
we have only an arbitrary function of one variable. This is not quite enough for the
integrability in the periodic case. So the systems with a degenerative dispersion
law under periodic boundary conditions are nonintegrable [14], although they
might possess an infinite set of integrals of motion. In the following, we study
the periodic boundary conditions and search for the action-angle variables.

2.6 The Integrability Problem in the Periodic Case.
Action-Angle Variables [5,7]

2.6.1 Canonical Transformations The formulation of the problem of integra-
bility in the periodic case differs from its analogue discussed above, because of
the discreteness of all wave vectors and the absence of asymptotic states and a
scattering matrix. Therefore we have to find the appropriate language with which
to study it. This language does exist and is the infinite-dimensional analogue of
the Birkhoff method of finding canonical transformations to the normal form.



214  V.E. Zakharov and E.I Schulman

We shall see that the Hamiltonian wave system with an additional integral and
nondegenerate dispersion law can be reduced by such a transformation to the
form of the infinite-dimensional Birkhoff chain.

In spite of all these differences we can get some useful information from
the case of smooth ag. Consider system (2.1.1) with one type of wave and then
equations (2.1.14-17). We have used them to represent the “current” fields b
via asymptotic fields c; and to find the transition matrix operator.

Now we go from interaction representation to the usual fields a, = be—iwst
and a = cpe“s'. We see that as ¢ — O, the explicit dependence on time
variable ¢ in (2.1.14,17) disappears and the transformation between ax(t) and
ag (t) becomes a time-independent formal canonical transformation. (The formal
scattering marix defines the formal transformation from a; to a}.)

Certainly, these transformations are generally divergent, due to the classical
problem of resonances. In each order the corresponding terms in this transfor-
mation have the structure (2.1.24). If our system has an additional integral of
motion (and we shall take this for granted in what follows), Theorem 2.2.1 holds.
So, if the dispersion law is degenerative with respect to decays, our canonical
transformation has unequivocally the resonance in the first order and does not
exist. Naturally, it does not exist in the periodic case either.

If the dispersion law is nondegenerative, all resonances vanish and the canoni-
cal transformations a, — ag and a; — az exist; the first of them map equation
(2.1.1) to its linear part. '

2.6.2 Small Denominators. Let us try to find a periodic analogue to the above-
mentioned canonical transformations in the nondegenerative case. All wave vec-
tors belong to the lattice

k=k,= (27ru1/ll, ,21n/d/ld) , 2.6.1)

where v;, i = 1, ... ,d are integrals, I; are space periods, and n = (1, ... ,vq)
is an integer-valued vector. Sometimes we shall write n for k,, to simplify the
formulae. In our notation (Sect. 2.2) the Hamiltonian of (2.2.1) takes the form

1 N
H® = 3 Z Uiz3a1aza3 . (2.6.2)
Y123

Consider the canonical transformation a; — a’:

ag®W=a®+>. > Foi.p0...0 (2.6.3)

p220,1,..p

with all fields defined on the lattice (2.6.1). Coefficients ¥_g 1, .. , are coefficients
of the inverse of (2.1.8), rewritten via ax(t), ag (). This transformation, as we
have seen, generates a motion invariant I = Y., fula; |*, which is the same
integral as in Sect. 2.5, restricted on the lattice (2.6.1).

If we now consider lattice values of k1, ... , k, in (2.6.3) obeying
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sik1+ ... +3pkp = 0, (2.6.4a)

they generally do not belong to the resonant surface:

S1wk, + ... +8pwp, =0 (2.6.4b)
However there are special values which always belong to (2.6.4) and correspond
to trivial billiard scattering with p = 2q, 81, ... ,8¢ = 1, 8g41, ... ,82¢ = -1
where the set (ki,...,kg) is a transposition of the set (kg1, ... k). We

shall see that these billiard scattering processes play an important role in the
construction of the normal form.

Regardless of the special values of periods /;, i = 1,... ,d, at large |k;l,
i=1,...,p, the corresponding set (ki, ... ,k,) can satisfy (2.6.4) with great
accuracy, and we come to the problem of small denominators. However, in our
case, Theorem 2.2.1 guarantees that coefficients of (2.6.3) are finite at these
points; thus we only have to deal with trivial scattering.

2.6.3 Trivial Scattering and the Normal Form

Theorem 2.6.1. Let the space dimensionality be d > 2 and let Hix be defined
by the formulae (2.6.2); furthermore, let the corresponding system (2.6.3) have
one more motion invariant (in addition to H and P) of the form

L= galanl+3." Ior..p00a1 ... ap 2.6.5)

p220..p

where g,, # const, and all coefficient functions 91o; ..., (referred to in the follow-
ing simply as “coefficients”) are finite [7]. Then:

1) If the dispersion law w, is degenerative with respect to decays (2.3.1)
(so that d = 2), then for any f satisfying (2.3.14) on (2.3.1) an integral of the
motion I for the system (2.6.3) exists. The Iy can be obtained by substituting
f for g in all terms of the series I, (2.6.4), and all coefficients FIor..p of Iy are
finite. [We have learned that such f; should have the form of (2.3.15)]. However
the action-angle variables analytic in ax, a} do not exist in the periodic case.

2) If wy, is nondegenerative and has a zero limit as |k| — 0, then there exist
integrals Iy with any continuous fi — 0 as [k| — 0. If in addition U7t =0
is true, then there exists a canonical transformation,

v =an+Y Y Fo.pe...ap, (2.6.6a)
p>2l..p

mapping the system (2.6.1) to the form
isyy, = 2avn s 2,=0, [|7|2] (2.6.6b)
and its Hamiltonian to the normal form

H= Zhn [|7|2] = anhnlz +.., (2.6.7)
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and 2, = 0H/8|v,[*. The quantities I"_o; .. , can be obtained by recurrence or
with the aid of the diagram technique and are finite at any p so that the zero
denominators are absent in the canonic transformation (2.6.6).

3) If w; has a singularity near |[k| — 0, then the results are the same when
imposing additional constraints. For example, for the KP-2 equation (1.1.3) with
o = —i, it is necessary to impose a condition a, = 0 at n = (0,19); this
constraint is compartible with the equation.

4) Let Hyy = HY,;

1 '3 -1- %
H“’:Z E T ajazaial (2.6.8)
1234

then the system (2.1.1) having an additional motion invariant I, analytic in
a, a* also has the additional integrals Iy with any continuous fi, under the
assumption that there exist limits of w;, as |k| — 0 and of Tjza4 as k; — k;
or ky — k4. Under these conditions there exists a canonical transformation
mapping this system to the form (2.6.6) and its Hamiltonian to the normal form
(2.6.7). The canonical transformation can be constructed in full analogy with
(2.6.6).

5) If T1z4 does not have such a limit (as an example one can think of the
Davey-Stewartson equation (1.1.4) [15]), then these singularities are to be anal-
ysed separately; for the Davey-Stewartson equation, all the results of statement
4) are true [7].

Proof. Statement 1) is actually proved in Sect.2.6a; therefore let us go to the
nondegenerative case and suppose for convenience that wy, is nondecaying, non-
singular at [k| = 0 and w(0) = 0. Then Theorem 2.2.1 does not imply any
restriction in the first order on th quantity Ui ji. Actually, in the space (ky, k2),
the surface

w (k1 + k2) = w (ky) +w (ky) (2.6.9)

consists of two planes k; =0, k; = 0, and each function f; with fO) =0is
degenerative on them.

We shall seek coefficients of the transformation (2.6.9) immediately from
(2.6.6,7). We see tha; Ye{a] differs from a; [a], given by (2.6.3), only due to the
nonlinear frequency shift:

.Qk =Wy + 691, [|7|2]

82 =Y aoky I P+ 33 o p il
1

p221..p
This means that in the first order, (2.6.3) and (2.6.6) coincide, i.e.,

Eoialorz = Eorp¥nz = _—;9[‘10,2 . (2.6.10)
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So, we see that for (2.6.6) to exist, we have to require that

il oo © (26.11a)

and (2.6.2) becomes

'
H® = 517 Z 0123a1a2a3 R (2.6.2a)
1,23

where the prime indicates that terms with zero ny or nz or n3 are absent. If this
is true, one can choose

ri-1# - g (2.6.11b)

nn

and (2.6.6) does not have small denominators ir_1 the first order. In the second
order we have

B o = Sgim '~ Zuon6(T) 2.6.12)
where T3 is a surface of trivial scattering of the second order:

T :?::2 or 7:°_='Zz (2.6.13)
1= = .

§(T) = 1if (ng ... n3) € Ta, and §(7z) = 0 otherwise, and (& is the symmetriza-
tion operator)

1 - ' Ao
S—l 111 = -1 —lllsp-—l ~11t = —=5&0123 Wiﬂ]u' U"’-:‘:"i:a .
0123 0123 0123 3
s'n’
We see that Ib123 equals o123 outside 73 and differs from it on 73, where Yo123
does not exist. Outside T3, Wo12s exists, due to Theorem 2.2.1. From (2.6.12) we
find £2,,,, as

Pngny = &151l1|7, . (2.6.14)

Now on 7; the Fo”ll,_;m is undetermined and should be obtained from the canon-
icity conditions

{(¥pr 74} =0= {7;,7;} , {7},,7;} =6y, , (2.6.15)
where
da 88 0o 0B
@ =% (o - )

This gives, for example,

-1 1 g2 )
qulpqm =3 leqP'fq . (2.6.16)
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We shall consider the higher orders by induction. It is more convenient to do
this for the inverse of (2.6.6),

s = ARy =75+ Z Acorpm . 2.6.17)

p>21...

The recurrence condition for coefficients of 4 can be written down in more
compact form if we introduce the notation

ﬁol...q ._.H(ll) ’ [A] = Oijl ’ Q(P) = dlngl..p

No
and
@, x® =S ] > and
I« X\ = HO] weg—=1lgpt n/g+l .. g+r
n's’

for any functions. Then we have

-2
ECP AP < _ 5§ ol « AGP-D _ 2 Z U % A@ 4 g@r—9
g=2
p-l 2p-2¢
_,_ZA(ZP—Zq) Z P 9525 (2.6.18a)
g=1 a=1
2p-1
E@ g0 - _ 5 ] pry ae) :“_29 Z U % AD 4 4@p—g+D)

4 2p—2¢+1
95;’25 ( ) z ACr—2g+1) E Saddn, & (7;) } ;
g=2 a=1

(2.6.18b)
AWM =1, and outside the resonant surface E;; = 0, one has

A

AP = Ay = Ty =

si Ui 51
> E_.J . (2.6.18¢)
On the resonant surface, if E; 51 =0, we put (as above for ey

Aiji=0.
After this, the right-hand side of (2.6.18b) for A® up to the sign coincides with

the right-hand side of (2.6.12), and we obtain 2y in the 642 of the form (2.6.14).
On the resonant surface

Eoiz3=0, Pnn=0.

Let us define A®) ~ §(73); the coefficient of proportionality must be obtained
from canonicity conditions (2.6.15).
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When going to higher orders p > 4, we suppose that A%9); 2¢ < p equals
zero on the resonant surfaces

E =0, P¥@=0, (2.6.19a)
while 49D, 24+ 1 < p, on the manifold
E@ =g, plih =g (2.6.19b)

may be nonzero only on the trivial scattering submanifolds 7, of (2.6.19b) indi-
cated above. Their values on 7; should be defined from (2.6.15).

Now consider the inversion procedure used to obtain (2.6.17) from (2.6.6).
If we write (2.6.6) symbolically as

y=a+ I‘(z)aa +Iga+ I'%aaa+ ... , (2.6.20)

then
a=y = IPyy — I®yyy + 27D &« [Py — [1®
+3r® P 42r@r® _ @, r@, 1@
—6IOrD & D) yyyy + ... . (2.621)

So we see that
AP = ) 4 ZaqF(Q) # [Py
and that

EPAP _, _ p@r®
E(r) 0
in points of a gencral position on (2.6.19). Therefore we can apply the consider-
ations in Sect. 2.6a based on Theorem 2.2.1, and prove the solvability of (2.6.18)
in points of a general position on (2.6.19). According to the induction hypothesis,
in other points (of a special position) on (2.6.19), the terms which do not contain
2 can be nonzero only on a submanifold 7, of (2.6.19b) with ¢ = p, where
f2-containing terms are nonzero only.

We consider the term U * A9 « A on the resonant surface E‘¢*” =0 in
special points. This means that E@ = 0 and E = 0. According to the induction
hypothesis, A # 0 only on the trivial scattering submanifold if r is odd. As
for U * A? on E9 = 0, we have already scen that due to Theorem 2.2.1, it
can be nonzero only in special points of E@ = 0, i.e., on the trivial scattering
submanifold of E@ = 0 only (if at all). The 29 with ¢ < p are already known
from junior orders, while 29 in (2.6.18b) is not known and should be chosen
so as to eliminate the right-hand side of (2.6.18b) on 7.

Now (2.6.18) are solvable, but A@**D are undetermmed on corresponding
resonant surfaces. We set A%P| g,y = 0 while A®P*D) ~ §(T,,), and the coef-
ficient of proportionality is to be found from (2.6.15). We can come to the next
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order and Theorem 2.6.1 is proven. (For the self-contained proof of this theorem,
which does not apply to the rapidly decreasing case, see (71

Consider now the singular dispersion laws. The typical example is the
Kadomtsev-Petviashvili equation (1.1.3) with w;, = PP +a?Q*/ P, k= (P,Q).
This equation is known to have an infinite number of motion invariants both at
o? =1 (KP-1), when the dispersion law is degenerative, and at o? = —1 (KP-2),

when it is nondecaying and nondegenerative. In the Hamiltonian description it
corresponds to the equation with Hin = H ®, and

Vil =0, Vi = VEEBBIPIIPIP) (2.622)

where 8 is a Heaviside function. From this form of Hint it follows that
(d/dt)]agq|* =0. But wg — oo as P — 0, Q #0 so that the KP-1 equation is
senseless with resepct to agg. The complete determination of this equation for
agq in the case of rapidly decreasing initial conditions leads to infinite numbers
of constraints [16] except in the periodic case, where there is only one constraint,
which can be easily obtained from the description of the KP equation in the form
of a system,

Ui + Uy + Uszge + 30wy =0 2.623)

wy = aly
Let us consider the Fourier-image of (2.6.23) with boundary conditions periodic
in z and y, and particularly the dynamics of components with P = 0. One can see
that for the solvability of the second equation with respect to w, it is necessary
to impose a constraint u, =0 atn = (0, @), and the requircment of its invariance
means that wog. The latter is equivalent to introducing an integration constant,

1 1 z
—/ d:c/ uyyde',
L Jo 0

when reducing (2.6.23) to a single equation (I is a period in z). This additional
term was obtained in [17] from a consideration of the Hamiltonian structure of
the KP equation as generated by the Lie-Berezin-Kirillov bracket on orbits of
a coadjoint action of the gauge group. In the form of (2.6.3) this leads to the
correct form of the periodic KP-1 equation [n; = (P;, @)

aq =0
t
., A (2.6.24)
ispfo = wnya0 + Z U_oza1a2, Po#0,
12

where the prime near the summation sign indicates the absence of terms with
P =0,P=0.

Starting from (2.6.24) and imposing the constraint agg =0, one can perform
all the above procedures and see that if a? = —1, the canonical transformation
(2.6.6) exists and thus the nondegenerative KP equation is completely integrable.
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If o = 1, the canonical transformation (2.6.6) does not exist and actions analytic
in field variables are absent.

It should be noted that if we consider the case of rapidly decreasing boundary
conditions, the distinctions between degenerative and nondegenerative equations
disappear (we have pointed out this fact in Sect.2.5 already). This is the rea-
son for thinking of both KP equations as completely integrable systems [18].
The analogical distinction between two KP equations was recently obtained by
Krichever, using his algebrogeometric appraoch [13].

Consider now the singular four-particle interaction when Ti234 in (2.6.8) has
a singularity on 73 [(2.6.20) and above]. The important example for physical
applications is the Davey-Stewartson equation (1.1.4) having Ti234 of the form
[191:

(PL — P3)* — (Q1 — @Qs)
(P — B +(Q1 — Q3)?
(Pi- P~ (@ - Q) e — i
(P — P2+ (Q1—Qa (‘R +pd)g+pd)’

where k1, k2, 1, gz and Py, Qo are the coordinates parametrizing the resonant
surface:

P=R+i(mi+r), Po=PR—j(s+r)
Po=PR+i(ki—k), Po=Pi =} (x1—r2)

Th234
(2.6.25)

(2.6.26
Qr=Qo+i(u+p), Q=Qo—3(m —p) )
Qs=Qo+3(um —p2), Qa=Qo+73(m+u),

where the resonance condition Ejs34 = O takes the form
Kikz — pip2 =0. 2.6.27)

In points of a general position we see that Ti234 = 0, in accordance with Theorem
2.6.1. Those points are singular where

K1 =M1 = 0 or K = 2 = 0 (2628)

In points of a general position for the transformation (2.6.6), we have
K1k + i p2
(s} + DG + 1)

In the periodic case we see from (1.4) that on the manifolds (2.6.28), say, k2 =
u2 =0, one has to put

Ny =

2 2
T= 8" H if K2+ud#0, ka=p=0
K% + pi? '

T=0 if m=Kka=m=p2=0.
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As a result we come to the nonsingular vertex Ti24; furthermore, we may
construct the transformation (2.6.6) and prove the absence of zero denominators
in it (using the existence of an additional integral) via the scheme outlined above.

3. Applications to Particular Systems

3.1 The Derivation of Universal Models

The present volume contains a paper by F. Calogero devoted to the derivation
of universal models for nonlinear wave interactions from rather general types of
differential equations. Many of these models appear to be exactly solvable; in
fact even the more interesting situations hold true,

Let us take as a starting point some particular physical wave system, any-
where from solid state physics to astrophysics; sometimes this model can be
stated in terms of differential equations. Then let us perform the asymptotic ex-
pansion procedure on it. In doing so we single out the essential kernel of the
physical phenomenon under consideration. The resulting model will prove uni-
versal and applicable to many physical problems at once. It is very likely that
it will appear to be exactly solvable. In that case the model itself represents an
important mathematical object. In order to study it, we may have to use advanced
mathematics, like Lie group theory or algebraic geometry.

The occurrence of such wonderful things seems incomprehensible and an
explanation may lie in the field of philosophy rather than in science. Here it is
worth recalling the well-known paper by E. Wiggner, “On the Incomprehensible
Effectivity of Mathematics in Natural Science” [20]. All of the above concerns
both conservative and dissipative systems. We do not have a sufficiently gen-
eral language for describing dissipative systems, but for conservative ones, we
do: it is the language of Hamiltonian mechanics. This language takes its most
simple form in the case of translationally invariant systems; i.e., when consider-
ing phenomena occurring in homogeneous space. Then it is possible to introduce
canonical variables (amplitudes of progressive waves) a; and take a Hamiltonian

of the system in the form of a functional power series in ag, a} as a starting

point.

We have considered the form of a Hamiltonian in the beginning of the present
paper; dealing-with such a Hamiltonian, it is easy to construct different universal
models. A detailed description of the procedure may be found in papers [21-23];
we now consider several particular examples.

Let the Hamiltonian of the system have the form (our notation is the same is
in Chap. 2)

H= / wi |ak|? dk + % / Vor12a0a1azdkodkydks; . (3.1.1)
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Let the oscillations in the medium with the wave vectors lying near three values
&, & and &, be excited; then the resonance conditions are fulfilled:

Eo=86 +&, wg =wg, tw, . (3.1.2)

Suppose that the domains in k-space occupied by these three packets do not
overlap. Then one can introduce three fields, ap(k), ai(k), az(k), to describe
the behaviour of the system at times shorter than the time of the next order
interaction (when one can neglect the higher nonlinear processes). Thus

ai, = ag(k) + a1 (k) + az(k) ,

and in the Hamiltonian (3.1.1), one can make a substitution:

sg—80—4%0

Vorzaparaz = V5 ¢~ ag* (ko)ay *° (k1)ay ™ (k2)

H=~ Z/ [ng + (v, k —€j)] la; ()

j=0

where v; = Viw(k = §;). Now coming to the envelope fields,

exp (ing t)

f aj(k)ye*dk
we obtain the well-known three-wave system, g is a constant:
Ag+ (V) 4o = gA1 4,

A + (11 V) Ay = ¢* Ap A (3.1.3)
A+ (12V) A2 = ¢" Ao A} .

Now we show how the Hamiltonian (3.1.3) arises in physics, using the ex-
ample of waves in media with weak dispersion [23] in which

wi =k (1+2k7) . (3.14)

Such a dispersion law is characteristic for waves on the surface of shallow water
or for ion-acoustic waves in plasma. Media with a weak dispersion are described
by the hydrodynamiclike equations with an additional term [22]:

% 1divovs=0 (3.15)
2. (Aas)’__ﬁ( 36 )
E+ 5 = p 6g+2 ng 20Abp ) .

Here, ¢ is a hydrodynamic potential, § is a quantity canonically conjugated
to it, which can be called the “denstiy”; ¢ is a constant. Introducing new variables
a; by formulae (d = 3)
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1 g(l)/zkx/z . ,
b= Gnpr | “aar (%t at) et dk (3.1.6)
cl/? n
* ik-r
ve= (271')3/2 / [N 1/2 (a — a*,)e*"dk ,

we obtain an interaction Hamiltonian (3.1.1) with

e\ (ko - kn)ky
16(3 00)1 /2 3! /2 k} 72

(k1 - k)2 (k2 ke k‘ﬁ
RSV Y + 2} 202 1 +3g (kok1k2)'/? } 3.1
k! ky kg

S0—30—3%0 _1/%0%0%0 .
Vkok1k3 V’lok k?

The corresponding equations are

aak,, . 6H
==l = —lwkoako — l{ [2Vk‘0k1k3a1a56’¢0+k2—k1
TR

+ Viok 1k, Q102000 —key —k,

+ Vit k0503 Skort vty | dbrdla } (3.18)

They describé weakly nonlinear waves which are close to sinusoidal if the non-
linear correction to the frequency is much less than the dispersion correction. In
essence this is a validity condition for the approximation (3.1.7-8).

Now let us convince ourselves that weakly nonlinear and weakly dispersive
waves in the system (3.1.7-8) are described by the KP equation. Remember
that in the original equations (3.1.5) we supposed the long wave approximation.
Because the nonlinearity and dependence of a transverse coordinate are small, in
the interaction Hamiltonian this transverse coordinate can be omitted. It should
be taken into account only in the linear part of (3.1.8). As a result we obtained
from (3.1.6)

1 /2
—308197 _ (39 + 3) 2
kokyky ?= 16( 3 )1/2 (PO PLip2 )1/

where k; = (p;,¢;), 1=0,1,2 and ¢; < p;. In the linear term one has to expand
wy in a power series of the. small g at finite p to obtain (\p? < 1, ¢ < p?):

we =cV/p2+ g+ AP + ¢2)2 = epy /1 + ¢2/p? + Ap?
Ay &
o~ +=p+- .
¢ (P 217 2p
Up to some coefficients which can be removed by scaling transformations and
the term c¢p in wg, which can be removed by transformation to the movable

reference system, we obtain the KP Hamiltonian in normal coordinates a(t),
related with the original variable u(z,y,t) via a formula like (3.1.6a).
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Now consider the general case of an interaction of high-frequency (short) and
low-frequency (long) waves [23] in the conservative medium with the Hamilto-
nian H. We introduce normal coordinates a; for short waves and b, for long
waves. In these coordinates the quadratic part of the Hamiltonian has the form

Ho= / weagadk + / ubebldk (3.1.9)

where w; and 2, are the dispersion laws of high-frequency and low-frequency
waves. The interaction Hamiltonian can be represented in the form

Hy=H +H; + H;

where H, describes the mutual interaction of the short waves, H, describes their
interaction with the long waves and H3 describes the mutual interaction of long
waves. The motion equations have the standard form

§H 6H

=— = —j—. 3.1.10

B = g be= i G110
In what follows we shall suppose that the b-amplitudes are small (b < az),
and neglect the H3. In the H3 we keep only terms linear in b and of the lowest
order in a; which do not disappear when averaging over the long-wave period.

These requirements enable us to find the Hamiltonian

Hy, = / [hkokgkzbkoak)akl + (‘)] Oko—key—k, dkodk1dky .

Here, (*) indicates the complex conjugated expression. The theory is valid when
H > /wk |bk‘2 dk

and the low-frequency waves are strongly rearranged by the action of the high-
frequency waves. We choose the Hamiltonian H; as

Hi=3 /Wkoklkzksasar02035ko+kl—k,-—k,dko ... dky .

This structure of H; is characteristic for a medium with cubic nonlinearity and
in some cases, for a medium with quadratic nonlinearity and in some cases, for
a medium with quadratic nonlinearity when cubic terms in the Hamiltonian may
be removed by canonical transformation [22].

The interaction Hamiltonian is greatly simplified when the high-frequency
waves form a narrow packet in the k-space near k = kg. Then one can put

Wik, keaks = Wiokokoko = 4 (3.1.11a)

Pkkoky = Prkoko = f(E, ko) (3.1.11b)
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Ow 1 w
=y + ZE0k 5 Bty (3.1.11¢)

If the low-frequency waves are acoustic waves, §2 = ck, it is possible to
calculate f(k, ko) and the Hamiltonian of the system explicitly. To do so, let us
replace a; by the new variable (envelope field),

B(r,t) = / ag exp {iw(ko)t +i(k — ko) - r} dk , (3.1.12)

1
Qr)/?

and b;, by two scalar functions: the density variation § and the medium velocity
v defined by formula (3.1.6) (with b, standing for az). The energy of the narrow
packet in the k-space is w(ko)|¥(r,)|. In the presence of the sound wave the
quantity w(ko) acquires a variation,

aw(ko) 3w(ko) v
o v O’

and the corresponding variation of the high-frequency wave energy is

56-/|¢/|2 (—5 +— )dr (3.1.13)

The quantity é¢ obviusly coincides with Hj. In the isotropic medium,

bw(ko) =

ko) _ ko
v s« ko ’
Let us introduce the notation
Sk 5, v=ve,
" 00

where & is the hydrodynamic potential. As one can see from (3.1.12), the quantity
¥ is a canonical transformation of a; and therefore

oF _ o 1,0

i Ve AJ_!l'/+!l7(q|!l7|2+ﬂ69

Bt %3z 2% 2k
@) S(H — [wol#[*dr)
Oz 6+

The variables & and 4 are canonically conjugated and obey the equations

+a

(3.1.14)

669 _ 2 _ 6H

i —00 AP — a ]sF| 53 (3.1.15)
0 _ 2 6H

% " - Blwl? = __._.g (3.1.16)

Inserting (3.1.12) and formulae like (3.1.16) (expressing ép and v in terms
of b) into (3.1.13), we find for f(k, ko) the expression
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k2 (k, ko)
f(k’k°)=<161rcgo) (ﬂgo+ac T )

Equations (3.1.14-16) describe the interaction of high-frequency waves of any
nature with waves of the acoustic type. In many physical problems the depen-
dence of a high-frequency wave dispersion law on the medium velocity may be
neglected, and one may put « = 0. Then (3.1.15, 16) may be reduced to one
equation:

* 2 '
1.1
(6t2 A) bo=+BoAlT[*. (3.1.17)

Let v, # c and the amplitude of high-frequency waves be sufficiently small.
Then one may consider the low-frequency waves as purely forced and replace
8/ 8t by v;8/0z2. System (3.1.14-16) is reduced now to the form

. . 1
i) =ivg¥, — -Z-w"!'/,, 22 AP +ul
Lyu = Ly|¥|? (3.1.18)

u=ql@+ Bbp+ad,

where L and L, are second-order homogeneous partial differential operators:

i
=
Ln=Cii onitm; -

(3.1.19)

The system (3.1.18) is universal for the description of small-amplitude, high-
frequency waves with acoustic-type waves.

3.2 Kadomtsev-Petviashvili and Veselov-Novikov Equations

Let us apply the results obtained in the Chap. 2 to the KP equation. Let us begin
with KP-2. The dispersion law of this equation,

2
w= p3 - 3i ’
p
is nondecaying. Therefore, from the results of Chap.2 it follows that states
asymptotic as ¢t — oo coincide for KP-2 with rapidly decreasing boundary
conditions [see (2.4.3) and [5], [6], [9] also]. It also follows that amplitudes
of the classical scattering matrix become zero on the corresponding resonant
surfaces in points of general position. In the first order this fact is trivial: the dis-
persion law for KP-2 is nondecaying, Voi2 = (pop1p2)'/2, and (2.6.9) has in this
case solutions k; = 0 or k2 = 0 only. The analogous identity for second-order,
amplitudes was verified in [4].
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The phenomenon of coincidence of asymptotic states for KP-2 was obtained
independently in [18] via the inverse scattering technique. With periodic bound-
ary conditions the KP-2 may be transformed to the normal form (2.6.6) and is
completely integrable [7]. The hypothesis of complete integrability of periodic
KP-2 was proposed for the first time in [5].

We have already mentioned in Chap.2 that the dispersion law of the KP-1
equation is degenerative:

p=bi—-b, ¢=6-8, w=4(-8).
On the resonant surface the coefficient function in the Hamiltonian is

Vikiks = VPPIP2 = [(61 — £2)(62 — &) — &)1'/? #0.

Therefore the KP-1 equation describes a nontrivial scattering. The states asymp-
totic as ¢ — oo do not coincide and are related by the formula

i

e~ Coe g — 5
X ( &ids Cflfs) (Czafz EaEz) dés

&2
+ / (61 — ) (&1 — 6) (2 — &2

(05753 + ng—fs) (02163 (153) dés,

where C¢,¢; = C(p,q), p= & — &, g =€ — {2 In the periodic case (and in any
case in which boundary conditions are vamshmg the KP-1 equation proves to be
a nonintegrable system.

Recently, the Veselov-Novikov equation [24]

[(51 &) (6 — &) (& — E)'/?

v, = 8v + v + Auv) + d(av) (3.2.1)
Ou=-30v, v=p

has been considered. Here, 8= 8, = 8, — i8y, z = z +1y, and the bar indicates
complex conjugation. The solutions independent of y for this equation are reduced
to the solution of the Korteveg-de Vries equation. The Equation (3.2.1) can be
solved via the inverse scattering transform method [24] and allows a L- A-B triad
representation,

oL .
—67+[L,A+A]=fL,

where

L=-A+v(z,3), A=8+ud and f=0u+0u.
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The properties of (3.2.1) depend strongly on conditions asymptotic as z —
oo. If v — 0 as z — oo, then the Veselov-Novikov equation has a dispersion
law,

we=2(p -3¢, k=(p,9), (3.22)

which is nondegenerative (because it is analytic in p and g), like the KP-2
(e? = —1) dispersion law. Hence (3.2.2) must possess all the properties of the
KP-2 equation. Since the dispersion law (3.2.2) is nondecaying, we have to verify
that the first-order scattering amplitude becomes zero on the resonant surface.

The resonant manifold is determined in the space (p1,p2, ¢1, ¢2) by the equation
(12 — 1 @2)(q1 + @2) + (M1 + P21 ) (1 + p2) (323)
= pipa(Py +p2) + 163 + pigy + pagt = 0.

Now let us calculate the first-order scattering amplitude. For this we make
the Fourier transformation in (3.2.1) via z and y :

v(z,y,t) = % / (vk + 'U:k) ei(pz+qy)dz dy .

Now the relation between u and v takes the form of (k = (p, ¢)):

w= =3 (ve+oly) , K=ptig. (3.2.4)

Substituting (3.2.4) into (3.2.1), we obtain in the nonlinear term the expression
(up to the coefficients unessential for us)

/ [n ('_‘1_ + 2) +K* ("“ + 2 )] Uk, Ve, 6k — ky — kz)dkydky  (3.2.5)
K1 K2 & >

and other terms containing v*v, which we need not write down because we
know beforehand that the (3.2.1) is a Hamiltonian equation. The squared bracket
in (3.2.5), after making the substitution x = p + ig, taking into account the §-
function and making some algebraic transformations, becomes

{pip2 + QHIZ][PIPZ(PI +p2) +p1 ¢+ qud
+ ‘11)(1’% + q

Now making the replacemcm

(3.2.6)

v = ar(p? + )2,

and rewriting (3.2.1) in terms of ag, we have the interaction Hamiltonian

Hip = /Vkl+k,,k1k, (B 4k Oy Gk, + (1)) dRrdy |

where
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(m1p2 + @) p1p2(q1 + @) + P13 + p2gd)
[(p1 + p2)? + (@1 + @)?1(p} + D)2 + g)V/2

Comparing this expression with (3.2.3), we see that Vi, +k, k&, Contains the
energy denominator E = wy, +&, — Wk, — Wk, as a factor and becomes zero simul-
taneously with it, in agreement with Theorem 2.2.1. For the Veselov-Novikov
equation, other statements concerning K P — 2 are also true, namely the coinci-
dence of asymptotics as ¢ — oo, the triviality of scattering and the existence
of a transformation to the normal form in the periodic case.

Vh‘a,,,, Je ke, = CODSE

3.3 Davey-Stewartson-Type Equations.
The Universality of the Davey-Stewartson Equation
in the Scope of Solvable Models

As we have seen in Sect. 3.1, the problem of the interaction of small-amplitude,
quasimonochromatic wave packets with acoustic waves leads in an natural way
to equations which we shall call Davey-Stewartson-type equations:

i+ Liv+ul =0

Lyu= L3|Q7|2 . -(3.3.1)
Here, u(r,t) is a real function indicating a mean field while ¥(»,t) is a complex
function representing the envelope, r = (z1, ... ,24), d=2,3 and

4 &
Ly= }:cg" i 1,2,3. (3.32)

£,J

The Davey-Stewartson equation itself is written via operators (3.3.2) of the form

9 &
h=b=571%5

* _ &
L=t (a7 )

It arises when applying the multiscale expansion technique to the KP equation
[25, 26] and in the theory of two-dimensional long waves over finite depth liquids
[15].

To study the system (3.3.1) it is convenient to rewrite it in the explicitly
Hamiltonian form

is'ho + Li(ko) ¥, + / T0123!7;1 Y, Ui, dk1dkadks =0, (3.33)

where L(k) are symbols of the operators (3.3.2). The vertex Torzs = To1236(Porzs)
has the form
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s o Dalko = k2) | L(ko — ks)
OB = To(ko — k2)  La(ko — k3)

and is defined on the surface Ppizs = ko + k1 — k2 — k3. The Hamiltonian of the
equation (3.3.1) has the form

(3.34)

H= / Ly(k)|Pdk
+1 / Toras @, O Viey Wy dko . .. dks . (3.3.5)

The quadratic form L;(k) may be transformed to the diagonal form via the non-
degenerative map. After doing so, the new coefficients C’f?, ég) arise; we shall
designate «jj, Bij, correspondingly. The dispersion law w = Li(k) is degen-
erative only when Li(k) = kf, k = (k1, ..., kq); we shall not take this case
into account. In all other cases the system (3.3.1) may have additional motion
invariants only if T' becomes zero on the resonant surface (2.3.32). One should
note that if T becomes zero at some L, L3, then it also becomes zero upon
interchanging L7 and L. To distinguish between these systems, one has to anal-
yse the second-order vertex [19], This analysis leads to the following results at
d =2, when

we=k¥+okl, o==1.
Let o = 1. Then the solvable system is

P2=0, Pu=HFn=4, en=-apn=«a,
W+ AV +u¥ =0 (3.3.6)

[ (63 - 8;‘:) +20120,0,] u = BAPJ* .
By a change of variables the last equation could be transformed to the form
F & ,
(373 ) - a0t
If o = —1, we have the counterpart of (3.3.6): B1; = B = 8, a1y = —ap = @,
a1z =0. As in (3.3.6), in diagonal form we obtain:

2+ (62— ) 7 +ul =0
\ \ 3.37
adu =B (82 - 82) ||
and also the system
N(3: +8,) [(0: £ 0y) u+(0: F9,) |#[*] =0

W+ (2 -) ¥ +uv=0.

The latter in coordinates z1 — z2 = £, z1 + 3 = n becomes
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W+ Py +u¥ =0, ug= 2. (33.8)

The system (3.3.8) and its L-A pair has been presented in [9]. Equations (3.3.6,7)
are also integrable via the inverse scattering; more detailed information can be
found in [19]. At d = 3, analogous but much more extensive analysis shows that
the system (3.3.1) does not have any additional invariants.

It is useful to keep in mind the following fact. If one takes some two-
dimensional, exactly solvable model and considers the initial conditions, like
rapidly oscillating waves with slowly varying amplitude, then after the averag-
ing procedure (or multiple scale expansion), one obtains the envelope equation
in the form of one of the Davey-Stewartson equations (with one of the two
admissible combinations of L, and L3), the so-called DS-1 and DS-2. Specific
examples can be found in [26].

3.4 Applications to One-Dimensional Equations

The ideas developed above can be explored in the one-dimensional case using the
results contained in Sect. 3.3a). We present here the results for: a) the two coupled
nonlinear Schrédinger equation system [12]; b) the systems describing the long-
acoustic and short-wave interaction (first neglecting [11] and then taking into
account [27] the effects of eigen nonlinearity and the dispersion of long waves),
and c) the system describing the interaction of two counter-directed wave packets
in the cubic medium [28].

The system of two coupled nonlinear Schrédinger equations arises in nonlin-
ear optics [29] and has the form

W, = C1¥hze +2a |0 91 + 28 1o

. 3.4.1
Wy, = Callass + 27 |0 T2+ 28 |01 2 0 . G4D
It is a Hamiltonian system:
H =/{c1 8+ Co 0P + o B4 P
280 P+ y |q/2|2} . (3.42)

The exact solvability of (3.4.1) with C; = C, a = 8 = v has been shown in
[30). To study the system (3.4.1) in the general case we have to first determine
whether the set of dispersion laws

wi(k) = C1k? , wa(k) = Cok? (3.4.3)

is degenerative to the process (2.3.8). As we have already seen, at o = C1/Cs #
+1 the set (3.4.3) is nondegenerative to the process (2.3.8). Because the ampli-
tude of the process (2.3.8) is a constant in all k-space and equal to 28 #0, the
system (3.4.1) cannot have an additional integral at p # +1. At p = %1, one has

Integrability of Nonlinear Systems and Perturbation Theory 233

to calculate the second-order amplitude corresponding to the next nonlinear pro-
cess. One may calculate, for example, the amplitude of the process (2.3.10). The
corresponding manifold in the space (ki, ... , ko) is quadratic and has a rational
parametrization {12]. Using it, one may show that the set (3.4.3) is nondegener-
ative to (2.3.10). The amplitude of the process (2.3.10) is rather complicated; it
is important that this amplitude become zero in two cases:

o=1,, a=p and o=-1, a=-f. (3.4.4)

Analogously one may obtain B=~atg=land f=—yatg= —1. Therefore
except for the “vector Schrodinger equation” o = 1, the equations (3.4.1) with

p=—1, a==-f=x (3.4.5)

may be integrable also. The system (3.4.1) with coefficients (3.4.5) is indeed
integrable. In fact, in {31] it has been shown that the inverse scattering method
is applicable to the system
i, =V, + VXV _
—iX, =X+ XPX, (3.4.6)

Where X and ¥ are matrices. We choose

Xi
g=(,...,%), X=( : )
Xa

and consider the reduction X = AU+, where A is a Hermitean matrix. Then we
have

Wt = Umer +u¥Pm , m=1,...,n, (3.47)

where © = WAU* is a real function. By a unitary transformation, the matrix A
may be transformed to the diagonal form A — «;8;;. Therefore if n = 2, there
are only two possibilities, namely the vector Schrodinger case [30] and the system
with coefficients (3.4.5). This integrable system was obtained independently in
[12] and [32}.

The nonintegrability of the system describing the resonant interaction of long
acoustic waves and short waves derived in [33] may be proved in an analogous
way [11]:

iU+ W +u¥ =0

uge + Fuge =2 (10F),, 5 (3.4.8)

as well as the nonintegrability of the system [27]
ue + (U + P> +ug;), =0 (3.49)

i, + ¥, +u¥ =0,
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generalizing the system (3.4.8). In nonlinear optics a system also arises [34];

%=S"XIS‘+.S'*XI+S+
a5+ (3.4.10)
6_§=S xIS*+5 xI™S s

where

da _ o o o0 a8 0

% "ot Y8z Ve

and I, I', I are diagonal matrices. If I* = I~ = 0, the system (3.4.10) coincides
with the assymetric chiral field equations [35] and is integrable. In [28] it is
shown that this case exhausts all the possibilities of integrability of (3.4.10). The
proof uses Theorem 2.3.1 and the lemma from paper {36] concerning the system
(3.4.10) with 8/3z = 0. Let us discuss this point in more detail.

Lemma. For a reduced system (3.4.9) with 0/0z = 0 to be integrable, it is
necessary that the system

3_&51 =S X I'S*
85- (3.4.11
E ST xIS

possess an additional integral to I = (S*J*S*) linear in S~ and of the degree 1
in S$*, lis an integer.

From this lemma it follows that if matrices
Tt =diag (J{, 03, 055) , J#J5 # T
are nondegenerative, then the equality
2
(= I) (Y + (I = 5) (R + (55 - 1) (32
R -1 -5) (5 -])=0, keN, k#0

is a necessary condition for the system (3.4.11) to be integrable. Even if at
0/0¢ = 0/0n = 8/5t this condition is fulfilled, under other reductions,

2wl 2l

o€ 8t’ on o’
it is not fulfilled. This means that for (3.4.10) to be integrable, it is necessary
that two entries JJ‘-', J =1,2,3 coincide. Becuase we may add to J* any diagonal

matrix, one can set J; = Jf =0, J; #0. Then the first equation in (3.4.11) can
be solved easily and
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M cos (J3 Mot + o)
S*= | =My sin (Ji Mot + po) | -

My
Here Mo, M1, wo are arbitrary constants. Further, let an integral exist,
Z=3 STP(SY), (3.4.12)

where P;(S*) are polynomials of S* of degree [, i = 1,2, 3. As has been shown in
[36], from the existence of an additional integral of the reduced system (3.4.11),
it follows that J; = J;.

Because all the aforesaid also applies to J~, we conclude that there are only
two possibilities for the system (3.4.10) to be integrable:

J =diag (1,1, J5) , J* =diag (0,0, Jif)
and
J =diag (1, 1, 1) , J*=diag (0,J7,0) , J~ =diag (0,0,J7) .

Now one has to use the Holdstein-Primakov variables,

St +iS) =ay/2M* —|a2, M* =S,
Sy +iSy =by/2M- — b2, M~ =S|,

by which the system (3.4.10) acquires the standard form (2.1.1) with o = 2,
a = a, ® = b and dispersion laws

wg),(Z) = w,‘f = tavaki+l, ¢ =const.

¢; = const .

The set {w*} is nondegenerative to the six-particle processes. By calculating the
second-order vertex and checking that it is nonzero on the resonant surface at
J* #0, we obtain the required statement.

The system generalizing (3.4.1) with the Hamiltonian has also been studied
(371

H =/ {o 1002 + 2 (0,2 + @ [* + 2810 P B[ + 4 |25
+6 (232 + 07202) ) de

Quite analogously to (3.4.2), when 8 # 0, one obtains ¢; = 4c;. At § # 0, only
the possibility ¢; = ¢; remains (one has to consider the process Uy + ¥ + ¥ —
¥, + ¥, + %), The result is that the integrable cases are already known and can
be found in [38].
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Appendix I [6]

Proofs of the Local Theorems
(of Uniqueness and Others from Sect. 2.3)

We are secking the functions w(p, ¢) and f(p, ¢) determined parametrically in the
form
p=&—§ g=ay) — o)
o0
w=b(r) — bE2) + Y _ e walf, &)

n=1

fce) - &)+ Y e fullr, &) .

n=l

(A.1.1)

Here, ¢ is a small denominator. It is convenient to set the three-dimensional
resonance manifold parametrically in the form

n=b—-&, a=abi+n)—al+n)

(A.12)
=G-8, g=afz+v)—alla+v),
requiring additionally that
g=q +q=a(l1) - a&) (A.13)

=alli+n)—alG+n)talG+v)—alla+v).

Now conditions (2.3.13, 14) together with (A.1.3) will impose three equations
upon five parameters &, &2, &3, 1, v. This system of equations must define » and
v in the form of a series in ¢:

n=Y e na,6,6), v=> " vnl1,6,6).
n=1

n=1l

We have a linear overdetermined system in the first order in ¢ :

[d'&) —d'(E)] m + [a'(63) = a'(€2)] 11 =0

[6'(&1) —b'(&3)] m + [b'(&3) = ¥ ()] 12 = 1y (A.14)
[dE) - @) m+ (&) -d@)m=h.

Here ‘
2 =w(6,6) —wi&, &) — w8, 6) (A.15)
R = fith,6) — fith,86) — filt, &) .

The consistency condition of the system (A.1.4) has the form
hB=HRA, (A.1.6)
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where
A6, 62,8) = Agp = a1, &) + (£, 6) + a3, 61) A1)
B(&1,£2,6) = Agc = BlEr, &) + B2, £3) + (63, £1) o
a(ér, &) = b'(E1)a' (&) — b (&)a' (&) (A.18)

B, 62) = ¢'(€1)d' (&2) — ¢ (€2)a' (&) .

Functions A(&1, &,63) and B(é, €, £3) are antisymmetric relative to all argu-
ment permutations. By interchanging ¢, and & in (A.1.6) and summing up the
results, we can convince ourselves that functions wi(£1,£€) and fi(fi, f2) are
antisymmetric:

w1y, &) = ~wi16, &) fil€1,6) = —fil&,6) .

Thus, we may put

2 = w6, 6) + w162, 6) + w16, &)
Fy = fith, &) + filéa, &) + filgs, &) .

So our problem is to solve the functional equation (A.1.6). It is easy to check
that (A.1.6) has the following solution:

b' (&) — (&)
a'(é1) — a'(a)
d&) - (&)
a'(61) — a'(&)

Here, I(¢) is any function. This solution does not result in a new dispersion law,
but represents the result of reparametrization in (A.1.1).

(A.1.9)

wi(é, &2) =

() — 16D (A.1.10)

hé, &) = () - &) . (A.L.11)

Let us put
G—L=m-m
a(61) — a(&2) = alm) — a(m) + € [I(m) — )] (A.1.12)

b(€1) — b(€2) = b(m) — b(m) + ew(m, 1) .

The w(m,nz) represents in itself a series in powers of ¢, the first term of which
is given by formulae (A.1.10, 11). One more trivial solution of (A.1.12) is

wr =pl&1) - p(&2), fi=q&) —qlt);

(p(¢) and g(£) are any functions, representing variations of b(¢) and c(£)).
It is important to note that (A.1.6) possesses one more solution as well. Let
us assume

wi(&1,82) = a(é1,£)5(6, &)

fithr, &) = B, £)5, &) . (A-1.13)
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After substitution of (A.1.13) into (A.1.6) we can be convinced that S(&, £2)
satisfies the surprisingly simple equation,
S(6r, &) [d'(61) — d'(&)] + Sz, &) [a'(2)
—d'(€9)] + 56,60 [a'(&) — d'(€)] =0

_ r(&) -r&)
A TR

Here, r(£) is an arbitrary function again. The solution (A.1.15) is also a trivial
one and results from reparametrization of a dispersion law of the form

p=b —Lrelr) —rEN,

g=a(§) —al6) , w="0b¢)—b&2),

which is to the first order in ¢ equivalent to (2.3.15) with a modified function
a(€). To obtain given a(), one needs to make a change of variables of the form

(A.1.149)

(A.1.15)

r(m) —r(m) |

él =m + Ea’(m)a,(nl) — a,(m) ’

r(m) = r(n2)
a'(m)—d(m)
Substituting new variables into the expression for w, and expanding in ¢, we go
to expression (A.1.1) with the term linear in ¢ being of the form (A.1.13, 15).
We shall consider (A.1.6) as a system of linear algebraic equations relative to
the unknown functions w(£;, &) and f(£;, &2). Let variable &3 take two arbitrary
values £ = oy and & = g,. Let us write:

Az = A126,6) = Alg a0, ,
B2 =B12(61,6) = Blgyus, ,

F a)=gi€), wlt, o)) =hi(¢), i=1,2. (A.1.17)

We can see from (A.1.17) that in the most general case, the solution of (A.1.6)
may depend on not more than four functions of one variable g 2(£) and kg 2().

Our solution depends upon these very four functions, I(£), p(£), ¢(¢) and
r(£). Solving (A.1.6) at & = 012 and making an clementary analysis of the
solution, we can be convinced that we have constructed a general solution of the
functional equation (A.1.6). The result obtained can be considered as the local
uniqueness theorem for degenerative dispersion laws. This theorem without a
complete proof was presented in [9]. The global uniqueness theorem appears in
Appendix II.

Let w(p, q) be a differentiable function, and w(0,0) = 0. Let w(p, ¢) satisfy
one more condition,

&2=m+ed'(m)

(A.1.16)

w(p, 9l 1_ 21
TR_—})O R=|p =q[ . (A.1.18)
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Then the dispersion law w(p, g) is decaying. There is a manifold I''2, because it
contains a two-dimensional plane p; = ¢; = 0 and a vicinity of this plane, given
by the following equation

O o
'6i;‘(P1,<11)P2+a—:(p1,q1)q2=0 (A.1.19)

Putting p; = g2 = 0 in (2.3.14), we get f(0,0) = 0; moreover,

}zif.‘o [—&%—Q] = fo(6) < oo atall 8.

Here, 9 = arctg (¢2/p2).

Thus, in the vicinity of zero, f(p, ¢) may tend asymptotically to the homoge-
neous function of the first order. But we assumed that this function is analytic.
Thus, fo(9) = 0 and function f also submit to condition (A.1.19). Now in the
vicinity of p, = ¢2 =0 we have, from (2.3.13):

1) 1)
5%(1’1,41)1?2+ 6—5(91,121)% =0.

This means that the Jacobian between functions f and w is equal to zero, and
the latter are functionally dependent,

f9) = Flw(p,9)] .
Now we have from (2.3.13, 14):

Flw(p1, q1) +w(p2, ¢2)] = Flw(p, g)] + F [wip2,92)] ,

from which we conclude F(£) = A, A is a constant. The important consequence
of this result is Theorem 2.3.3.

Let us designate a wave number corresponding to a new space dimension
via “r”, and consider the dispersion law, which becomes (2.3.15) at r = 0. The
proof of the theorem 2.3.5 [6]:

Let the degenerative law w(p, ¢, ) be parametrized in the vicinity of r = 0
as follows:

p=& — & g=a&) —all2)

> A.1.20
w(p$ q, r)= b(él) - b(€2) +r Z rnwn(€1)£2) ) ( )

n=0

and let manifold I''* have dimensionality 5. Then wy = const, w,, =0, n > 0.
Then the resonance manifold I''+2 for the dispersion law (A.1.20) may be given
in the form

a(ér) — a2 = alfy +n) — a(fs — ) +a(§3 +v) — a2 +v)
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Z(Tl +r)" w6y, &) = —b(&r) + b&2) + B&r + 1)

+UG+m+ W& +v) - b+ v)+ Z [Fi*wntér + 1,6

n=0

+n) + il wn(G + v, + )] . (A.121)

Let us choose &, &2, €3, r1 and ry as independent variables and then consider v
and n as their functions, analytical in ry and ra.
The degeneracy condition can be written in its usual form,

flp,q,r1+7r2) = f(p1,q1,71) + f(p2, g2, 72) . (A.1.22)

The solution of (A.1.22) may be found in the form

f,q,m) = b)) — &) +1 Y " fulbr, &2)
- =0 (A.123)
Z Nmnl] Ty , V= Z Vmall' 77 -
min=1 m+n=1

Considering terms linear in ry and r; in (A.1.21,22), and marking ng = moer; +
70172, Vo = Viory + Y172, WE obtain
m [a'(1) — a'(&3)] +w [d'(&) — d'(&)] =
(r1 + rdwo(€y, &2) = riwo(én, £3) + rawo(és, &)
+no [B(61) — B'(6)] + o [b'(&3) — ¥'(&)] (A.1.24)
(r1 +r2) folér, &2) = 71 fol€r, &3) + T2 fol€s, £2)
+n0 [d(6) — ()] +w [(&) — '(&)] .

Setting coefficients equal in (A.1.24) at ry, r; separately, we obtain overde-
termined the system of equations for m0, v10, no1 and v, Their consistency
conditions are

[wo(é1, £2) — wo(é1, &) B

= [fo(61,£&2) — fo(61, &)1 A ' (A.1.25)
[wolér, £2) — wo(2, &)1 B
=[folér, &) — fo(&3, E)] A . (A.1.26)

Here, A and B are given by formulae (A.1.7, 8).

In contrast to (A.1.6), (A.1.25,26) do not possess nontrivial solutions. To
convince ourselves of this, let us differentiate (A.1.25) in & and then apply
operator & /0€3 — 0 /9£30¢, for the same equation, further putting & = &,.
We obtain the system of the two homogeneous equations for dw/8¢2, 8f /8¢,
having a nonzero determinant. So, dw/8é; =0, 8f/8€2 = 0. Similarly, we get
B8w/0& =0, 8f/0¢& =0 from (A.1.26). Thus, the unique solution of (A.1.25) is
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wp = const, fo =const, 1p = ng = 0. We can further prove this fact via induction.
Let vk, 7k, be the sums of the sequence terms in (A.1.23), for which m+n = k.
Let vy =, =0 at ¢ < k. Collecting in (A.1.21,22) terms of degree k, we have

(r1 + r)*wr—1(&1, &2) = rfwe_1(61,6) + rfwi 16, 62)

+7x [6(61) — B'(6)] + v [b'(&3) — B(€2)] = 0 (A.1.27)
m [a'(€1) = a'(€3)] +vi [a'(63) — d(62)] =

and an analogous equation for f. Taking the mixed derivative in r, r; of the
k-th order 8% /0rF~10r,, we get

k
Huwg(ér, &) = [B(6) — (6s)] —

6 k—la ry
, 3 8% v
+ [V'(&) — b'(&)] ——— o) — T o,
H @, &) = [(6) - L
k61, 62) = (&) c(£3)] 1o,
8*
+ [d(&) — (&) ﬁr—z

Consistency of these equations with (A.1.27) results in the equation of the form
(A.1.6),

wi(€1,€2)Aae = frl€r, &) Ay

whihc is not fulfilled, as A,./As, is a function of &, &, &.

Actually, A, and Ay, are totally antisymmetric functions, so their ratio is
a totally symmetric function of 1, £; and &3, and is not equal to the constant, as
b and c are different functions. The theorem is proven.

On the basis of this theorem, one may suggest the hypothesis that at d > 2
and under the condition of maximal dimensionality of I''*2, no dispersion laws
exist which are degenerate with respect to the process 1 « 2. Requirement of
maximum dimensionality of I'':2 is essential, indeed, at any d > 2, the linear
dispersion law w = |k|¢(k/|k|) is degenerative. However, manifold I''? is given
by the parallelism condition on ki, k2 and k and so has dimensionality 4, less
than maximum,

Let us now consider the scattering process of two interacting waves. The
manifold I'>? is given by the equations (2.3.32). The dispersion law w(k) is
nondegenerative relative to this process, if in some region of the manifold I'*?2,
functional equation (2.3.33) has a nontrivial solution. Apparently, manifold F“
includes two hypersurfaces, set by conditions

k=ky, ky=ks or k=ks, ky=ky,



242 V.E. Zakharov and E.I. Schulman

crossing each other via k = k; = k2 = k3. On this submanifold, the [??
equation is fulfilled at any f(k) At d=1, I'*? = [22 and any dispersion law
is denenerative.

Theorem 2.3.4 is the evident consequence of the following lemma:

Lemma 1. The quadratic dispersion law with any signature is nondegenerative
with respect to (2.3.32) at d > 2.

Proof. Let us reduce the quadratic form (2.3.31) to a diagonal form via coordinate
system rotation; then (k = (kO, ... | kD)):
wik) = kO + k@ 4 L+ o gk @’

oi=%1, i=2,...,d. (A.1.28)
All signs in (A.1.28) are independent. With the dispersion law (A.1.28) the man-
ifold I'*? has a rational parametrization,

V=P +3u1-Q k=P —jul-Q

KV =P - 3ut+Q) K =P +iu1+Q)

k(‘) =P+iuri+s) KD =Pi—julri+sy)

) =Pi+iu(ri—s) K =Pi—-iun—s) (A.1.29)
i=2,...,d,
where

d
= E TnTndn ,

n=2

and Py, ..., Py u, 1, s; are independent coordinates on resonance surface
(2.3.32). Let us put parametrization (A.1.29) into the functional equation

fFR+ip-Q), PB+iun—s),...)
+f(Pi—=3u(1-Q), B - ju(m+s2),...)
=f (P~ 3p(1+Q), Po+ip(n - 5),...)
+f(P+3p+Q), - 3u(n~s2),...) . (A.1.30)

Differentiating (A.1.30) in 7y, s;, supposing 7; = s, subtracting one from the
other, differentiating in = and supposing px = 0, we find

Pf(RA,... ,P)|dR0OP; =0, i=2,...,d,
from which
f=F (kW) + k@, ... k9) . (A.131)
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Substituting (A.1.31) into (A.1.30), writing down the equations obtained via
differentiation in 7;, 75, s;, s; and supposing all 7, s to be equal to zero, after
simple transformations, we obtain that 8?&/0P;0P; =0 or

F=F D)+ ... +F(k9) . (A.1.32)
Let us substitute (A.1.32) into (A.1.30) and differentiate in P;. We obtain

F (P+3p(1- Q)+ F (A - 11 - Q)
=F (A -ipl+Q)+F (P+3u1-Q) .

Differentiating in @ and p, we get two equations on F{’, whose consistency
condition is written in the form of the equation (at Q = 0)

F' (A —u/2)=F'(Pi+u/2) .

On account of the arbitrariness of P, and p we obtain that F" = const. Exactly
in the same way, differentiating (A.1.30) in P; and then in 7, s;, subtracting one
from the other and supposing 7; = —s;, we obtain

F{'"(P; + uri) = F{'(P; — p7y) ,

from which, on account of the arbitrariness of P;, u, 7;, we conclude that F!' =
const.

Thus, F; = ¢;k* + B;k® + D;. It is easy to see that ¢; = o;c from (A.1.30)
that proves nondegeneracy. It follows from this that dispersion laws which are
completely degenerative relative to process (2.3.32) do not exist. Besides theorem
2.3.4, the statement which follows suggests that it is doubtful that even partially
degenerative dispersion laws exist relative to process (2.3.32).

Let the dispersion law w(k) be decaying. Then manifold I'2? of codimen-
sionality one is given by the system of equations

k+k1=k2+k3 =q

.1.33
k) + w(kr) = w(ks) +wiks) = w(g) . (A.133)

If the dJspersmn law is degenerative relative to the process “one into two”, then
on manifold FM , function f(k) is sure to satlsfy the following equation:

f(k) + f(k1) = f(k2) + f(k3) = f(q), (A.1.34)

which, of course, does not mean even partial degeneracy of the dispersion law
w(k). For degeneracy to occur, it is necessary to fulfill (2.3.33) on I'%? in the
vicinity of just one point of manifold (2.3.32).

Let us study this possibility in the simplest case d = 2, when the dispersion
law belongs to the class (2.3.15) we are considering. Now mamfold I",z‘,,2 (A.1.33)
is parametrized as follows (at d = 2 its dimensionality is equal to four):
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p=b-&, m=L-8, m=bL-&, m=L—-§
g =a(é) —al&2), q = a(&2) —a(f3), (A.1.35)
@ = a(é1) — a(ls), @ = a(ls) — a(ls) .

Let us consider the vicinity of a point on I™>2, given on I'. via coordinates &,
&, &, &. We may set it, having retained expression (A.1.35) for p; and defined

g =a(é) - a(&), g =alla+n)—al&+wn),
g=ali+w)—alstrn), p=adls+n)-ab3+n).

Similarly we can define w;. Resonance conditions impose two conditions upon
Vi

[a'(€2) — d'(&)] v = [a'(61) — d'(&3)] 2
+ [a'(6s) — d'(63)] 18
[b'(&2) — b'(&)] 11 = [b' (1) — b'(&3)] 2
+ [b'(€a) — V' (&3)] v
Degeneracy condition yields one more equation:
[¢'(€2) = ()] v = [d(&1) = '(&3)]
+ [ = '&3)] s

If functions a, b, ¢ are linearly mdcpendent these equations possess zero solu-
tions only. Thus, submanifold I'M cannot be locally enlarged while retaining
degeneracy.

Appendix I

Proof of the Global Theorem
for Degenerative Dispersion Laws [40]

Consider the d = 2 case. Our goal is to find the resonant manifold I itself instead
of the dispersion law w(p, ¢). the latter is defined by

w(pr + pz,q1 + @2) = w(pr,q1) +w(p2, g3) . (A2.1)

Due to the degeneracy of w(p, ¢), functions f;(p, ¢) (i = 1,2,3) exist, satisfying
the same equation on I :

fir+ o, a1 + @) = filpr, 1) + filp2, )

Consider the function
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3
D(p,q) = wip,g) +ap+bg+ Y cifip,0) -

i=1

Here a, b, ¢; are some constants. The function & satisfies the same equation
(A.2.1) on I', and we shall think of w in (A.2.1) as containing five arbitrary
constants.

Let &1, &, &3, be the coordinates on I' described by functions p1(£;), p2(£:),
q(€), q2(&). Let us fix a point £ on I and differentiate (A.2.1) via ¢;. In what
follows we designate

wl"‘apy w = 6q ) w20‘6p2 ) 11 apaqa 02 qu y e o

We have

o - o,
@1@1,41)2—? +&a(p, th)-é% + M(Pzﬂ]z)g%z_

+2(p2, qz)aE =F=oi(pr+p,a +q2) (A22)
op | O; q1 _5113
5 (as. a&)”“”‘“’z "‘”’2)(65. as.-) '

We also adopt the following notation for the Jacobi determinant of three functions

A(§), B()), C(§)+

2A 8B oC
86 86 84
= el
{Av Bv C} - g& gg 5% 3
B8A 8B 8¢
8¢y 9s  9¢Es
and also set

={p1,p2,q1} s w2={p1, 2, 0}

v ={q,q@,n}; n={q,0pn}.
From (A.2.2) we obtain

wiwi(p2, 2) +viwa(pz, @) = R, (A23)
where
ol
R= —g%: gg B
w B

Differentiating (A.2.3) in £; one obtains
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7}
w1g—?mo(p2, @)+ (wlg—? + vla—?) wi(p2, ¢2)

o o
+ v a%fwoz(pz, @)+ ai&lwl (p2, @) (A24)
o _oR
+ 'éZwZ(pZ,QZ) a& .

From (A.2.4) we have

{P2, q2, W1 }wl(pzv @)+ {pzqua u }wz(m’QZ) = {P2,92,R} .

Now by choosing special values of a, b, ¢; let us achieve that, in the given
point &,

wipr+p, + @) =0, w1 +p2,q1+92) =0, wij(p1+p2,q1 +q2) =0

so that R = 0, and also {pz, g2, R} = 0. From the compartibility condition of
(A.2.3) (R =0) and the latter equality

{r2, @2, w1 }wn(p2, @2) + {P2, @2, 1 }wap2, 2) =0

we obtain

vi{p2, @, w1} = wi{pz, @, 01} . (A.2.52)

Because all of the expression is symmetric with respect to the permutation of
indices 1 and 2, we also have

v{p, q, w2} = w2 {p1, q,v2} . (A.2.5b)

Analogously choosing the constants a, b, ¢ in another way, it is easy to obtain
the relations

(1 + v2){p2, 92, w1 + w2} = (w1 + w2){p2, ¢z, v1 + v2}
v{pr+p,q+q@,w}=wip+p,a+avn} (A26)
(v1 +v2){p1, q1, w1 + w2} = (w1 + w2){p1, q1, 01 + vz}

u{p+p, @1+, i} =wi{p +p;,q1 + 2,01}

Now we consider new functions «, 8, « such that
vp=ow, n=Pfuw, vt =y(w+w).
From (A.2.5,6) we have
{2, 02,0} =0; {p1,q1,8}=0;

{P2, 2,7} =0; {p,q,7}=0;
{m+p,(@+0),8}=0, {p+p2, (@ +q)a}=0. L (A27)
It follows from (A.2.7) that

Integrability of Nonlinear Systems and Perturbation Theory 247

m= P2(a,"/) y @2 F Q2(0H7) , p+pp = A(a7ﬂ)
n= PI(IB’7) y @1 = Ql(ﬁ17) y q1 +92 = B(aaﬁ) -
Then we obviously obtain
Pi(B,7) + P, 7) = A(a, B)
Ql(ﬂ, 7) + Q2(a:7) = B(a)ﬂ) .
Functional equations (A.2.8) can be solved easily, leading to

P =a1(B) - a2(7), Pr=a(y)~ aale)

A=a(f) - ale), Q1 =b(B)—bay)
Q2=0(7) - b(a), B=u(f) - bha).

Here, a;, b;, 1 = 1,2,3 are arbitrary functions of one variable. The result ob-
tained leads to dispersion laws of the form (2.3.15,26). In the above it has been
supposed that functions «, 3, v are functionally independent. This is really true
in the general case. Special cases should be obtained by some limiting proce-
dure. Obviously the unique possibility is to obtain the homogeneous functionat
of degree one.

(A.2.8)

Conclusion

Let us summarize. In the present paper we have aimed at showing that a method
like Poincaré’s analysis of the integrability of dynamical systems, based on the
study of the perturbation theory series, proves to be very effective. Earlier, an
analgous method proved the nonexistence of a strong recursive operator for mul-
tidimensional systems [41]; we can only hope that this does not exhaust its ca-
pacities. However, it has recently been shown [42, 43] that, by generalizing the
recursion operator concept, it is possible to construct both recursion operators
and bi-Hamiltonian structures for multidimensional solvable equations. Interest-
ing examples include the KP and DS systems. One can not exclude a priori the
possibility that only essentially nonlinear integrals exist for some systems (2.1.1).

With regard to the systems considered in this paper, i.c., those containing inte-
grals which are quadratic in the main part, certain questions have been answered
since our paper [6] was published in 1987: namely, the question of action-angle
variables in nondegenerative systems with periodic boundary conditions ([7];
Sect.2.6) and that of a global description of the degenerative dispersion laws
([40}; Appendix II).

Nevertheless some questions remain unanswered; for example: Can the reso-
nant manifold for decays 1 — 2 always be described via only one parametriza-
tion (i.e. consisting of two parts) corresponding to the replacements & — &,
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a(¢) = —a(=£&), b&) — ~b(—£;), as in the KP-1 equation? KP-1-like equa-
tions with degenerative dispersion laws are especially interesting. Although they
are exactly solvable by the inverse scattering technique, current methods still
cannot provide solutions which are not rapidly decreasing and are in general
position. In contrast to soliton and finite gap solutions which in the space of
. all solutions of such equations are not dense, these types of solutions of a gen-
eral position possess stochastic properties and must be studied statistically. The
study of these solutions (which are generally not weakly nonlinear) is rather im-
portant from the viewpoint of understanding the turbulent nature of dynamical
systems. A weakly nonlinear solution of these equations may be studied by the
kinetic equation technique (see [20]), which is particularly interesting and was
first considered in [14]. ‘

Finally, we wish to point out that the integrals of the two-dimensional systems
we have considered do not exhaust the algebra of integrals; and it is only its
commutative subalgebra. It corresponds to commutative symmetries. Symmetries
and integrals, explicitly dependent of space-time variables exist, which comprise
a noncommutative algebra. Corresponding equations are also solvable; see, for
example [44,45]).

Note added in proof. The existence condition for the three additional functions
f; in Theorem 2.3.4 cannot be relaxed. Let us consider the equations

w(p, q) +w(p1, q1) + w(pz, 2) =0

p+rp+p=0
g+q+q=0.
They are satisfied on the manifold

2ppa(q1 + @) + Pigz + pra =0 (A)
for three linearly independent functions

3
wi(p, @) = gp* wa(p,q) =?I;z- wi(p,g) = % : (B)

This fact, which is easily directly verified, is important for the weakly turbulent
theory of drift waves in plasmas and Rossby waves in geophysics. It was estab-
lished by Balk, Nazarenko and Zakharov [46] who also found that the number of
functions w;(p, ¢) can not be increased. The two functions wi(p, g) and w2(p, 9)
are odd and also satisfy the relations

W(P,Q) =w(plaql)+w(qu2)
p=ptp; ©
I=q+q.
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The function w(p, ¢) is analytic. In accordance with Theorem 2.3.2, the function
wa(p, g) is not analytic, but it is unique. This fact is generic for any analytic
dispersion law (Schulman, Tsakaya, [47]). It is interesting that the function

3
w(p,q) = gp* + % = wy(p, g) + w2(p, )

is a degenerative dispersion law belonging to the class (2.3.15). In this case one
has

a@) =€  wo=1i¢.

This is nothing but the dispersion law in the “KP-hierarchy” which follows after
KP-1. In this case the resonant manifold C is a sum of three disconnected parts.
One of them is given by (A), the two others by (2.3.20).

References

1 C.S. Gardner, JM. Green, M.D. Kruskal, RM. Miura: Phys. Lett. 19, 1095-1097 (1967)

N.J. Zabusky, M.D. Kruskal: Phys. Rev. Lett. 15, 240-243 (1965)

A. Poincaré: New methods of celestial mechanics, in Selected Works, Vol. I, I (Nauka, Moscow

1971), pp.1-358

V.E. Zakharov, E.I. Schulman: Physica D1, 191-202 (1980)

V.E. Zakharov, E.I. Schulman: Dokl. Akad. Nauk 283, 1325-1328 (1985)

V.E. Zakharov, E.I. Schulman: Physica D29, 283-320 (1988)

E.IL Schulman: Teor. Mat. Fizika 76, 88-99 (1988) , in Russian

H.H. Chen, Y.C. Lee, J.E. Lin: Physica Scripta 20, 490492 (1979); Physica D26, 165-170

(1987)

9 V.E. Zakharov: “Integrable Systems in Muliidimensional Spaces”, in Lect. Notes Phys.
Vol. 153 (Springer, Berlin-Heidelberg 1983) pp. 190-216

10 H. Umezava: The Quantum Field Theory (Inostr. Literatura, Moscow 1985), p.380

11 E.I Schulman: Dokl. Acad. Nauk, 259, 579-781 (1981)

12 V.E. Zakharov, E.I. Schulman: Physica D4, 270-274 (1982)

13 IM. Krichever: Dokl. Akad. Nauk in press

14 V.E. Zakharov: Integrable turbulence. Talk presented at the International Workshop “Nonlin-
ear and Turbulent Processes in Physics”, Kiev, 1983

15 A. Daveay, K. Stewartson: Proc. Roy. Soc. Lond. A338, 101-110 (1974)

16 H.H. Chen, J.E. Lin: “Constraints in the Kadomtsev-Petviashvili equation” — preprint N82-
112, University of Maryland (1981)

17 A. Reiman, M. Semionov-Tian Shanskii: Proc. of LOMI Scientific Seminars 133, 212-227
(1984)

18 R.K. Bullogh, S.V. Manakov, Z.J. Jiang: Physica D18, 305-307 (1988)

19 E.I Schulman: Teor. Mat. Fizika 56, 131-136 (1983)

20 E.P. Wigner: Symmetries and Reflections (Indiana University Press, Bloomington 1970)

21 V.E. Zakharov: “Kolmogorov Spectra in the Theory of Weak Turbulence”, in Basic Plasma
Physics, ed. by M.N. Rosenbluth, R.Z. Sagdeev (North-Holland, Amsterdam 1984)

22 V.E. Zakharov: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 17, 431-453 (1974)

23 V.E. Zakharov, A M. Rubenchik: Prikl. Mat. Techn. Fiz. §, 84-98 (1972)

24 AP. Veselov, S.P. Novkov: Dokl. Akad. Nauk 279, 784-788 (1984)

25 V.1 Shrira: J. Nnl. Mech. 16, 129-138 (1982)

26 V.E. Zakharov, E.A. Kuznetsov: Physica D18, 455-463 (1986)

27 E.S. Benilov, S.P. Burtsev: Phys. Lett. A98, 256258 (1983)

w N

[-JCS e WMV I -



250

28
29
30
31
32

33

35
36
37
38
39

41
42

V.E. Zakharov and E.I. Schulman

D.D. Tskhakaia: Teor. Math. Fizica 77, in press

AL. Berkhoer, V.E. Zakharov: Zh, Eksp. Teor. Fiz. 58, 903-911 (1970)

S.M. Manakov: Zh. Eksp. Teor. Fiz. 65, 505-516 (1973)

V.E. Zakharov, A.B. Shabat: Punct. Anal. Appl. 8, 43-53 (1974)

V.G. Makhankov, O.K. Pashaev: “On Properties of the Nonlinear Schridinger Equation with
U(p, ¢) Symmetry”, JINR-Dubna preprint E2-81-70 (Dubna, USSR 1981)

V.E. Zakharov: Zh. Eksp. Teor. Fiz. 62, 1745-1759 (1972)

V.E. Zakharov, A.V. Mikhailov: Pisma Zh. Eksp. Teor. Fiz. 45, 279-282 (1987)

LV. Cherednic: Teor. Mat, Fizika 47, 537-542 (1981)

AP. Veselov: Dokl. Acad. Nauk 270, 1298-1300 (1983)

V Z. Khukhunashvili: Teor. Mat. Fizika 79, 180184 (1989)

AP. Fordy, P.P. Kulish: Comm. Pure Appl. Math. 89, 427-443 (1983)

$.V. Manakov: Physica D3, 420-427 (1981)

V.E. Zakharov: Fund. Anal. Appl. 23 (1989), in press

V.E. Zakharov, B.G. Kanopelchenko: Comm. Math. Phys. 93, 483-509 (1984)

A.S. Fokas, PM. Santini: Stud. Appl. Math., 75, 179 (1986); Comm. Math. Phys., 116,
449-474 (1988)

P.M. Santini, A.S. Fokas: Comm. Math. Phys., 115, 375-419 (1988)

AYu. Orlov, EI Schulman; “Additional Symmetries of Two-Dimensional Integrable Sys-
tems”, preprint Inst. Autom. Electrometry N217 (1985), Teor. Mat. Fizika 64, 323-327 (1985);
Lett. Math. Phys. 12, 171-179 (1986)

A.Yu. Orlov: “Vertex Operator, 5-Problem, Symmetries, Variational Identifies and Hamil-
tonian Formalism for (2+1) Integrable Systems”, in Proc. Int. Workshop on Nonlinear and
Turbulent Processes in Physics (1987), ed. by V.G. Bar’akhtar, V.M. Chernousenko, N.S.
Erokhin, V.E. Zakharov (World Scientific, Singapore 1988), p. 116-134

A M. Balk, S.B. Nazarenko, V.E, Zakharov: Zh, Exp. Teor. Fiz. 97 (1990), in press

ElL Schulman, D.D. Tzakaya: Funkt. Anal. Pril. 28 (1991), in press

What Is an Integrable Mapping?

A.P. Veselov

Introduction

Rational mappings of CP! and dynamic properties of their iterations once again
attract the attention of mathematicians. The dynamic theory of such mappings
has been developed in the classical works of G. Julia and P. Fatou. The recent
investigations of Sullivan, Thurston, Douady and Hubbard throw new light upon
this problem and uncover deep connections with the theory of Kleinian groups
and Teichmiiller space [1]. It is a very surprising fact that the notion of the
integrability for such mappings is not discussed in these papers.

The first part of the present paper is devoted to such discussion. As the basis of
the definition of the integrability, we place the existence of commuting mapping
with suitable properties. Such a definition is motivated by the classical results
of Julia, Fatou and Ritt [2-4] and by modem soliton theory, more precisely,
the theory of finite-gap operators [5] and the theory of symmetries of the partial
differential equations (PDE) [6] (see also the paper by Mikhailov, Shabat and
Sokolov in this book). The most interesting result which we propose is the
intriguing connection of such integrable polynomial mappings of C* with the
theory of Lie algebras. The construction, discovered in [7], allows us to match
every simple complex Lie algebra of rank n to the family of the integrable
polynomial (rational) mappings of C"(CP™). We discuss also the analogous
construction for the correspondences in C* x €™ (or CP™ x CP™) and its relation
with the Yang-Baxter equation. A separate section is devoted to the polynomial
Cremona mappings of C2.

In the second part we consider the discrete analogs of the integrable systems
of classical mechanics, following in the main the author’s paper [8]. The cor-
responding class of mappings contains the following Lagrangean systems with
discrete time.

Let M™ be any smooth manifold, £ be the function on M™ x M". Let us
consider the problem of the extremum of the functional S(g), ¢ = (¢), ¢; € M™,
ieZ:

S() =Y Ligk,qrs1) - o))
kez
In a coordinate system (z*,y*) on Q = M™ x M", which is induced by the
coordinates u* on M", we have

oc oc
§5=0 < 5;(Qk,9k+l)+a_y,-(9k—h9k)=o- )
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The equation (2) is the natural discrete analog of the equations of classical me-
chanics: £ is the “Lagrangean function”, S is “the action functional”, k is “time”.
Such equations occur in recent papers on solid state physics and dynamical theory
{(see [9—13]). The simplest example is the Frenkel-Kontorova model [12]; it cor-
responds to M" = R!. The problem when M™" is the unit sphere in R3 has
been considered in connection with the ground state of a one-dimensional clas-
sical spin chain [9-11]. In this interpretation £ is the energy of interaction of
neighbouring spins, S is the full energy of the configuration. The problem about
certain wave functions of the quantum Heisenberg model can be reduced to the
problem for £ = (Jqk,qi+1). It has been investigated for this special case in
(10,11, 14].

The first paragraph of the second part is devoted to the Hamiltonian theory
of the Lagrangean system with discrete time. The corresponding analogs of the
Liouville and Noether theorems are proposed. In the remaining paragraphs, we
consider some interesting examples of the integrable (in Liouville sense) systems
of such type: the one-dimensional Heisenberg chain with classical spins and the
discrete analog of the C. Neumann problem, the billiard in quadrics and the
discrete version of the top’s dynamics. For the first two problems we give the
interpretation of the solutions in terms of the eigen-functions of some difference
operators. We propose the discrete analog of Moser-Trubowitz isomorphism [15],
using the algebraic-geometrical approach to the spectral theory of difference
operators, begun by Novikov, Date and Tanaka and developed by Krichever (see
reviews [5], [16]). As a consequence, we give explicit formulas for the general
solution in 6-functions.

1. Integrable Polynomial and Rational Mappings

1.1 Polynomial Mapping of C: What Is Its Integrability?

Iterations of any linear function f(z) = az+b can be found easily in explicit form,
so the first nontrivial case corresponds to degree 2. Every quadratic mapping can
be reduced by a linear change of variable to the form f(z) = z2+¢. The dynamic
defined by this mapping in general is very complicated and was investigated by
Douady and Hubbard [17]. In particular cases, for example for ¢ = 0, this dynamic
has a simple description and can be natrually considered as an integrable. But
what is the integrability for such mappings? The starting point for the author was
the formal analogy of this problem with the spectral theory of the Hill’s operator
L = —d?/dz* + u(z). As was found by S.P. Novikov [18] and developed in [5]
(see also [19]) such an operator L has in its spectrum a finite number of gaps

if there exist a differential operator A of odd order, which commutes with L:
[L, A} =0.
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Definition. A polynomial mapping f : C — C is called integrable, if there
exists a polynomial map g : € — €, which commutes with f, such that the sets
of the iterations of g and f are disjoint.

In this definition the degrees of f and g are supposed to be greater than 1. In
suggesting such a definition, the author was not aware of the remarkable papers
of G. Julia, P. Fatou and J. Ritt [2-4], in which the problem of the description
of all such mappings was solved. Their results can be formulated as follows: to
within a linear change of variable, there exist only two series of the integrable
polynomial maps: f = z* and f = +Ty(z), where Ti(2) = coskarccosz —
the Tchebycheff polynomials. In the quadratic case f = 22 + ¢ only ¢ = 0 and
¢ = —2 comrespond to the integrable maps. The last result in a strange way
coincides with the coefficient in 8-functional formulas for the potential of finite-
gap operator [5]. The analogy with the spectral theory can be prolonged if we
try to construct the analogue of the Bloch eigenfunction ¢ {5] in the following
natural way [7]. Let’s determine a formal series ¢ = 1/z + 352 (,2° for the
polynomial f(z) = z* + ax1zF~! + ... + ap by the relation f o ¢ = ¢ o 2*.
The coefficients {, are calculated uniquely by recursion formulas and determine
a series converging in some neighbourhood of the zero. Such a function — more
precisely its inversion — has been considered in the beginning of our century by
F. Béttcher [20], so we call it the Bottcher function. It gives a mapping of the
unit disk into the domain of attraction of infinity for the mapping f.

Theorem 1. A polynomial f defines an integrable mapping if and only if the
Bottcher function ¢ is rational. In this case, every commuting mapping g satisfies
the equality g o ) = ¢ o Az™, A¥—1 =1 [7].

Only two variants of such functions are possible: ¥y = 1/z+aorp =1/z+
a + bz, which lead to the cases of integrability mentioned above. One part of
this theorem follows from the results of Julia, Fatou and Ritt. Another part
can be proven as follows. It’s easy to show that a rational Bottcher function
cannot have poles different from zero and infinity. Thus ¢ must have the form
Y=1/z+C+... +(n2V.

Notice that the function ¢ = g 0 4 also satisfies the equalities f o =@ 0 z"
(fogloyp=go(forp)=(gop)oz™. the same is valid for o 1/2.

Lemma. All formal solutions ¢ = a/z” + ... (p > 0) of the functional equation
fop=poz™ have the form ¢ = 1) o (A\zP) for suitable ).

In particular, o (1/2) = (n/2z" + ... + (o + z must coincide with ¥(Az"),
which is possible only for N = 1. The case N = 0 is evident. The relation
go =1 olz™ follows from the lemma. The theorem is proved.

If we compare the proposed proof with the considerations of Krichever [21],
we sec that the analogy between mappings and differential operators is much
deeper than it first appeared.

Our definition of integrability is in good agreement with the symmetry ap-
proach to PDE, which allows classification of all integrable systems of a certain
form (see [6] and this book). In fact, the existence of the commuting mapping ¢
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determines the symmetry of the dynamical system, defined by f : x4 = f(zi)
because ¢ transforms the solution z of it into the new solution z}, = g(zx). The
absence of the common iterations permits repetition of this process infinitely
often in the general case.

But the best motivation for our approach to integrability are the remarkable
papers of Julia, Fatou and Ritt, who first realized the importance of the problem
about the commuting mappings in dynamic theory.!

1.2 Commuting Polynomial Mappings of C~ and
Simple Lie Algebras

Letnow f:C" — €, f =(fi(2),...,fal2), z= (21, ... ,2,) be a polyno-
mial mapping: f; € €[z, ... ,2,). The degree of this mapping is defined to be
the number of preimages of the generic point. In this paragraph the degrees of all
mappings will be assumed greater than one. The case of invertible polynomial
mappings will be considered separately (see §4). How can we define the integra-
bility of such a mapping f? How many commuting mappings must we demand?
The author thinks that for the following class of irreducible mappings the inte-
grability can be defined in the same manner as in the one-dimensional case. We
say that mapping f is reducible if after some invertable polynomial change of

coordinates the functions fi, ..., fx (k < n) depend only on zy, ... , z;. In the

contrary case f is said to be irreducible.

Definition. An irreducible mapping f will be called integrable if there corre-
sponds to it an irreducible mapping g, which commutes with f, such that the
sets of iterates of g and f are disjoint [7].

This definition is again motivated by the analogy with the theory of sym-
metries of the certain class of PDEs [6], where the existence of one symmetry
implies infinite sets of such symmetries and the complete integrability of corre-
sponding PDEs.

Problem. Describe to within a change of variables all integrable polynomial
mappings.

For n = 1 this problem is solved by Juilia, Fatou and Ritt (see §1). For
n 2> 2 there exists only the conjecture, due to the author, which says that all
integrable mappings are given by the following construction [7], generalizing the
construction of Tchebycheff mappings.

Let G be a simple complex Lie algebra of rank n, H its Cartan subalgebra,
H* its dual space, £ a lattice of weights in H* gencrated by the fundamental
weights wy, ... ,w, and L the dual lattice in H (see [23]). We define the mapping
¢t HIL = C" ¢G =(p1, .. ,¢n)s Pk = 2w XP [2miw(wy)), where W
is the Wey! group, acting on the space H*.

! Note that the problem about the commuting ordinary differential operators was first considered at
the same time by Burchnall and Chaundy (22].
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Theorem 2. With each simple complex Lie algebra G of rank n is associated an
infinite series of integrable polynomial mappings P§&, k = 2,3, ..., determined
from the condition:

$c(kz) = PG (¢6(2)) ,
where
PtoPL=PE =PLoPk.
All coefficients of the polynomials, determining this mapping, are integers.

The proof is based on the theorem of Chevalley asserting that the algebra
of exponential invariants of W is freely generated by ¢y, ... ,p, [23]. In place
of o we may take the characters of the fundamental representation of the Lie
algebra G.

For n = 1 there is a unique simple algebra A;. Here ¢ 4, = 2 cos(2rz) and the
le , are, to within a linear substitution, Tchebycheff polynomials. For arbitrary n
the explicit form of the mapping P} may be found from the generating mapping
£G = E:o-o Pétk: EG’ = (£ly so afn)’ fi = ZwEW(l —texp [Zﬂiw(wi)])-l-

The proposed series may be extended in the following manner. Let the point
a € H be such that w(a) = a(mod L) for all w € W, o be the automorphism of
the root system. Then the polynomial mappings Pc";,a’, are determined from the
condition

G (ko(z) +a) = P§ , , ($6(z)) .

For n = 1 this leads to the minus sign before the Tchebycheff polynomials: for
the polynomial of the odd degree this sign is essential. The list of all inequivalent
polynomial mappings Pélm connected with the simple Lie algebras of rank 2
can be found in Appendix A.
Dynamical properties of the mapping f = Pg,a’, follow from their definition.
An analogue of the Julia set J may be defined in the given case as the set
of points whose images, under all iterations of f, remain in a bounded domain
in C™,
Theorem 3. The set J is a singular n-dimensional simplex ", the image of the
real Weyl alcove under the mapping ¢. The mappings f = Pé‘,,a,a preserve the

measure on J with density u = (—1)N/4j-1(z), where N is the total number of
roots of G,

i)=Y (detw) exp[27iw(e)] , o=wi + ... +w,,
v weW
and are ergodic on J.

We remark that the function j(z) is not invariant with Tespect to W, but
j*(2) already is and may, therefore, be expressed in the form of a polynomial
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in the zx = 4 (z). For the Tchebycheff’s polynomials, J is the segment [—1, 1],
g =(1 — z%)~'/2_ The points outside of J tend to infinity under the iterations.

The important information about mapping give the eigenvalues of the derived
mapping f.(z) in the fixed point z (the “spectrum” of z). The mappings Pk
have a unique common fixed point zp = ¢g(0), so the spectrum of z is of
interest.

Theorem 4. The spectrum of zp has the form k! | kon*l where oy, ... ,
«, are the exponents of the algebra G [23].

Corollary. The series of the integrable mappings P%, corresponding to Lie al-
gebras with nonisomorphic Weyl groups are inequivalent.

The proof follows from the independence of the spectrum from the coordinate
system.

Chalykh has computed the spectrum of all fixed points and proved that P};ﬂ
and P§ are also inequivalent when n > 2 [24]. It is interesting that they
are semiconjugate, i.e. conjugate with the help of a noninvertible polynomial
mapping of degree two.

The natural conjecture is that the mappings P , , and P&, ., .. are equi-
valent under the polynomial change of variables if and only if G ~ G' and
endomorphisms of H/L: 2 — ko(z)+a and z — ko'(z) +a' are conjugated
by some linear automorphism. This follows for the Lie algebras G of rank 2
from the results of Chalykh [24].

Another interesting problem is concerned with the compactifications of C"
and the dynamics of P on them. Let us consider the “weighted” CP™, which
are defined as the quotients of C™*! by the action of €*: (z, ... ,zs) ~
(tzo,th1 2y, ... ,tFn2,), t € C* = C\{0}, where ki, ... , k, are the natural num-
bers (weights).

Theorem 5. The mapping P£ can be extended to the mapping of CP} with the
weights ki, ... , ky, if and only if the vector v = 371 | kicx;, where o, ... ,
be the basis of the simple roots of G, satisfies the conditions (a;, v) > 0 for all
¢, i.e. belongs to the corresponding Weyl chamber [24] .

For the description of dynamics it is very convenient to use the polyhedron
corresponding to this variety. In this case it is the simplex, which is cut off from
the Weyl chamber by the plane, orthogonal to the vector v . In these terms the
dynamics has a nice geometric description [25].

Our results relate also to the real case, because the mappings PX have integer
coefficients. The dynamic of Pc",. for the p-adic case and the finite field case also
can be of interest.

But what about the analogy with commuting differential operators? The aut-
hor supposes that the analog of our family of integrable mappings Pk is the
commuting ring of quantum integrals of the Calogero system and its generaliza-
tion, found by Olshanetsky and Perelomov [26] and connecting with the simple
Lie algebras. The new work of the author and Chalykh [27, 55] is devoted to this
question.
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1.3 Commuting Rational Mappings of CP"

We consider again the case of degree greater than 1. The integrability of such
mappings can be defined in the same manner as for polynomial mappings.

For n = 1 the problem of describing integrable rational mappings was sol-
ved by J. Rint [4). He has proved that all such mappings f(z) must satisfy the
functional equations

plaz + ) = f (p(x))

for a certain meromorphic periodic function ¢(z). To within the transformation
¢ — (ap +b)(cp + d)~, only the following possibilities exist:

1) p(z)=cos z

2) ¢(z) = P(z), P(z)-Weierstrass elliptic function,

3) p(z) = P*(z), where P(z) corresponds to the lemniscatic curve with para-
meter 7 =1,

4) (z) = P'(z) for the curve with parameter 7 = 1/2 +iv/3/2,

5) @(z) = P3(z) for the same curve.

In all the elliptic cases the transformation * — az, is any endomorphism of
the corresponding elliptic curve, i.e., the complex multiplication or the ordinary
isogeny ¢ — kz. The list of all inequivalent integrable rational mappings of
degree two can be found in Appendix B.

The construction of the previous paragraph can be applied also for the rational
case. Let G, H, H*, L be the same as in §2. Consider an Abelian variety
Mg, = H/L+L which is a product of elliptic curves R with parameter 7. There
exists a corresponding analog of the Chevalley theorem [28] [29], which says
that the quotients of this variety by the natural action of the Weyl group W is the
weighted projective space CP". So we can associate with every endomorphism
of R: z — Az the rational mapping Ré,, 1 CP* — CP™.

Theorem 6. To each simple complex Lie algebra G and to each elliptic curve
R is associated a commuting semigroup of rational mappings of CP" into itself
isomorphic to the semigroup of endomorphism of R [7].

As well as for the polynomial case this family can be extended with the help
of a shift and automorphism of the root system.

Unfortunately, the basis of invariant functions on Mg , is defined in an
ineffective way [29], therefore explicit formulas for the mappings R;‘;l, can be
written only for particular cases. One of the examples has the following form:

(z:y:2)— (-21—iz(y—-z) : —% [(y+z)2—:z:2] :yz) .

Notice that already for n = 1 it is a non-trivial thing to find the explicit
formula for P(nz) through P(z). The following beautiful forms for such ex-
pressions have been found by Frobenius and Stickelberger [30]. Let A, be a
Wronskian of P'(z), ... ,P" (z):
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P'(z)... P ()
A, =det P<“‘(‘:§Za:)... p(zn—a)&) .

Then,

1 &

P(nz) =Plz) + ‘7?2' -(E-i InA,(z).

This formula again surprisingly resembles the formulas in soliton theory (see
[51, 31]). _

The dynamics of the proposed rational integrable mappings is more compli-
cated than in the polynomial case. In particular, the Julia set J for such mappings
coincides with the whole space. Notice that this property does not yet determine
the class of integrable mappings even for n = 1 (see [1]).

1.4 Commuting Cremona Mappings of €2

In this paragraph we consider the invertible polynomial mappings of €2, forming
the so called affine Cremona group GA;(C).

Let f = (P(z,y), Q(z,y)) be a such polynomial mapping. If f as an element
of G A3(C) has a finite order, then the description of the dynamics of f as evident.
The mapping f of infinite order we call integrable if there exists a commuting
mapping g, generating with f a subgroup Z @ Z ¢ G A3(T).

For the description of all such integrable mapping we use the algebraic results
about the structure of Cremona group G A»(C). As was proven by Jung [32] this
group is the amalgamated product of the groups of affine transformations of the
plane and the triangular transformations of the form (z,y) — (az+ R(y), by +c),
where R(y) is an arbitrary polynomial.

Based on this result, Wrighr [33] gives a description of all Abelian subgroups
in GA2(C), which is sufficient for our goals.

Theorem 7. A mapping f from GA,(C) is integrable if there exists a change of
coordinate from G Az(C), which transforms f to the triangular form, or equiva-
lently, if the degrees of all polynomials, defining the iterations of f, are bounded
[25,34].

For the real case, the integrable mapping f € G A2(R) can be transformed to
the linear or triangular form. In all these cases all iterations can be found easily
in explict form.

Polynomial Cremona mappings have a constant Jacobian; the inverse state- -

ment is the famous Jacobian conjecture. If this constant is equal to 1, this mapping
defines the symplectic transformation. For such mapping one can formulate the
following the problem.

A function I on €2.is called as the integral of symplectic mapping f, if
I(f(p)) = I(p) for every p € .

The problem is: describe all symplectic f from G A which has a polynomial
integral I.
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Using the previous theorem we can get the following result.

Theorem 8. The integrable (in our sense) symplectic mapping f from GA3(C; R)
always has a nontrivial polynomial integral [34].

Is the inverse statement also valid? - is an open question.
Let us consider the examples.

' Example 1. The Invertible Quadratic Mappings. It is easy to show that every

mapping f, determined by polynomials of degree two, can be transformed to the
following form by a linear change of coordinate:

f(l‘,y)=(ao+a;$+azy+a$2,ﬂ0+ﬂ1$+ﬂzy+ﬁ$2) ) (3)

where

arfr— a1 #0, o —a8=0.

Proposition 1. The mapping f of the form (3) is integrable if and only if o =
ax=0ora=8=0.

If & # O then the degrees of the polynomials, determining the iterations of
[, increase to infinity. According to Theorem 7, this contradicts the integrability
and proves the proposition.

In particular, the Henon mapping f(z,y) = (14+y—az?,bz), b # 01is integrable
in our sense only for a = 0.

Example 2. Moser Mapping
f@, ) =((z+y’) cosa —y sina, (z+¢°) sina+y cosa) , sina #0

also is nonintegrable because of the growth of degrees of iterations [35]. This is
in good agreement with the results of Moser, which state that the Birkhoff series
for that mapping diverge.

Moser also discussed the problem of including the mapping into the flow.
If the flow is polynomial, this problem was investigated in detail by Bass and
Meisters [36]. It is easy to see that the last property implies the integrability, As
follows from [36] the inverse statement is false: the mapping f(z,y) = (z +y* +

1, —y) has the commuting mapping g(z,y) = (z + 2, y), but can be included in
any polynomial flow.

Example 3. The mapping, corresponding to the discrete equations of the form
Tnsl —2Tp + Too1 = p(z4) . C))

This type of equation is very popular in mathematical and physical literature.
For ¢(z) = sin z this equation describes the famous Frenkel-Kontorova model in
solid state physics. We will discuss in detail the general theory of such systems
in the second part and now consider the case when ¢ is a polynomial.
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In variables z = z,_1, ¥ = z,, the mapping, corresponding to (4), has a form
f(z,y) = (y,2y — = + p(y)) and belongs to the group GA4,.

Proposition 2, The mapping f, describing the discrete equation (4) is integrable
only in the linear case, i.e. for p(z) = az +b.

The reasoning is the same as in previous cases.

The investigation of the rational Cremona transformation of a plane is much
more difficult because of the complexity of the group structure. Some examples
of such Cremona mappings have appeared in physical literature devoted to the
Chew-Low equation.

The problem of integrability of this example is very important but still un-
solved [37].

1.5 Euler-Chasles Correspondences and the Yang-Baxter Equation
Let us consider the biquadratic relation of the following form
#z,y) = apzy? + a1zy(z + y) + ax(? + 1) + aszy + au(z + y) + a5 = 0. (5)

This relation determines the many valued mapping or 2 — 2 correspondence.
At first this relation was considered by Euler, who used it in the proof of the
addition law for the elliptic integrals. Chasles has noticed that this correspondence
describes Poncelet mapping for two quadrics in the plane (Fig. 1).

y y

x Fig. 1

Theorem 9. For the general correspondence (5) there exists an even elliptic
function of the second order (z) such that if z = ¢(z), then y = p(z + a) for
some shift a (Euler et al).

In degenerate cases a trigonometric function appears instead of an elliptic
function.

Our Lie-algebraic approach can be applied to the construction of the commu-
ting correspondences of €" and CP™. Indeed, again let G be a simple complex
Lie algebra, ¢ be defined as in §2, A be a finite set, which is invariant under
the Weyl group W. Then the manyvalued mapping z = ¢g(z) — y = dg(z L a)
for all a € A defines some algebraic correspondence of C*: Eg A(z,y) = 0,
according to the Chevalley theorem. Considering the Abelian variety Mg, (see
§3) we come to the algebraic correspondences of CP": £g, 4,,(z,y) = 0. For
G = Ay, A = %a it is the Euler—Chasles correspondence (5). So we have
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Theorem 10. To every simple complex Lie algebra and elliptic curve R corre-
sponds the family of commuting symmetric correspondences £, 4,,(z,y) = 0 in
CP" x CP™ [25].

The importance of the problem about the commuting correspondences was
discoverd by Krichever [38]. He has shown that some important particular cases
of the Yang-Baxter equation can be reduced to this problem. The Euler—Chasles
correspondences correspond to the famous Baxter solution of this equation. Our
construction can possibly supply new solutions of the Yang-Baxter equation.
This possibility is now under consideration.

Notice that the Felderhof solution corresponds to the transformation z —
(az+b)(cz +d)~1, which is subjected to the conjugation by the mapping f = 2.
The last mapping is noninvertible and therefore leads to a manyvalued mapping.
The natural generalization of such correspondences can be got in an analogous
manner from projective transformations in every dimension.

2. Integrable Lagrangean Mappings with Discrete Time

2.1 Hamiltonian Theory

Definition. The mapping ¢ : U — M™ for some open domain U C M™ x
M"™ = N defines a dynamic system with discrete time, with a corresponding

“Lagrangean” £: N — R! if every sequence ¢ = (i), k € Z, gx € M™ such
that

arr1 = o(gr-1,q8) o)

is the stationary point for the functional

S(@) =Y Liqe, qrs1) -

keZ

This means that equation (1) is a suitable solution of the algebraic equation
§S=0o0r

ac oc
5;(41:—1, 98) + 5—(gk, qrn) = 0. @)

We will assume that the domain U is invariant under the following mapping
o:U — Nv ¢(-7-',y) = (y&’("t, y))

Let us consider the decomposition of the differntial df = o + B according to
the natural isomorphism T*N = T*M"™ @ T*M". In coordinate system z*,y' on
M™, generated by some coordinate system on M* , this decomposition has the
form
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X z‘+g£.dy", a=-q£.dz‘, B=—=dy'
y oz!

Let us define the closed 2-form w on N as

w= dﬂ = —da y
or, in the coordinates
PL i
BT e — d 3 .
@ dz'dy’ dz’ Ady

This form is the image of the standard symplectic structure on T M™ under
the mapping fz : N — T*M", fc(z,y) =@, B) = (y, (DL /By)(z,¥))-

Theorem 1. The mapping & presevers the form w, and, what is more, £ is the
generating function of the canonical transformation in the domain V, where w is
nondegenerate.

The domain V is invariant under &, so we can consider the dynamics in
W =V N U. The function F on V is called the integral of the corresponding
system with discrete time if F(¢(P)) = F(P). The form w determines the Poisson
bracket on W and, therefore, the notion of the integrals in involutuion.

Theorem 2. If the dynamic system with discrete time (1) has n independent
integrals in involution F, ..., F,, then every connected compact nonsingular
level M. = {P €W : F(P)= ci} is diffeomorphic to the torus T", on which
the mapping & corresponds to the ordinary translation. This translation can be
considered as the translation for unit time along the trajectory of the flow with
the Hamiltonian H,

H=—£(P)+/ﬂ

where the integration can be made along any curve on M., connecting the pointss
P and ¢(P).

The proof is based on the fact that the mapping commutes with all Hamil-
tonian flows, corresponding to Fi, ..., F,, and therefore must be the translation
on Liouville’s torus. Notice that the formula for H resembles the ordinary Le-
gendre transformation, but such a formula is possible only in the integrable case.
Already in the simplest situation, when M™ = RL,L=(z~ y)?+ f(z), there exist
no integrals for the general function f, and therefore, no “Hamiltonian” [12].

This discrete analogue of the Liouville theorem [39] reduces the problem of
solution of the system with discrete time, having sufficiently many integrals in
involution, to the integration of the ordinary Hamiltonian system. Such discrete
systems we will call an integrable.

How can we find the integrals? A possibility is presented by the following
modification of the Nocther theorem.

e S

What Is an Integrable Mapping? 263

Let & = v(z) be the flow on M™ such that (d/dt)L(z,y) = Q(z) — Qy) for
some function Q on M". Then this flow preserves the set of stationary points of
the functional S and it is possible to restrict it to this set.

Thgorem 3. The flow & = v(z), ¢ = v(y) on V is Hamiltonian, with the Hamil-
tonian

oL
Hiz, 1) = 5o e, uta) + Q) = 2 i) + Q@)

which is the integral of the corresponding system &.

This theorem can be considered as the simplest discrete variant of the
Bogoyavlensky-Novikov theorem [40] (see also [41)) and its generalization, fo-
und by Mokhov [42]. An analogous result is valid for the case £ = L(gk, gx+1, -
qk+1) With every [. ’ ,.

Let us consider now examples of integrable systems with discrete time.

2.2 Heisenberg Chain with Classical Spins and
the Discrete Analog of the C. Neumann System

Consider a one-dimensional chain with classical spins Sj, which interact with
the energy £ = (Sk, J Skq1), J = diag (J1, J2, J3). It is the classical variant of the
?{ Y Z Heisenberg chain. The stationary solution of such models were investigated
in many papers [9-14]. In particular, the authors of [9] have conjectured the
“integrability” of this problem. Granovsky and Zhedanov [11] have found 2
algebraic integrals and some particular solutions.

Corresponding equations have the following form:

Skat + Sk—1 =T 718k 3
where the multiplier ), is determined from the condition |[Sgy|=1: Ay =0or
M =2(Sem, IS |70 @

We will consider only the second case. After simple algebraic manipulations
we come to the integrals of Granovsky and Zhedanov:

H = (2,77 , Ha=\Jzf+ Tyl - (z, Ty .

So we 'must or.lly prove that these integrals are in involution. For this purpose,
the following variables are very useful (compare with [43]):

M=[z,Jy], I=2;(M,D=0, F=1.

Proposition 1. The symplectic structure w in the variables M, ! coincides with

the Kostant—Kirilov structure on the corresponding coadjoint orbi
t of
E(3) of the motions of R>. § coadjoint orbit of the grovp
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In other words the Poisson bracket of M;, I; are as follows
{Mi, M;} = eijeMi , {Mi,l;} =eiile, {115} =0.
The integrals Hy, H; have a form
detJ2 — HE = (J°M, M) — detJ? (J21,1) , Ho=M*+(J2,1) .

The integrals in the Clebsch integrable case of the motion of a solid body in an
ideal fluid, which can be realized on the same phase space [44] have the same
form. On our orbit, where (M, ) = 0, I = 1 this case is equivalent to the famous
Neumann system, describing the motion of a point on the unit sphere under a
force with potential U(z) = (J?z, z)/2 [43].

So we come to

Theorem 4. The system (3), (4), describing the stationary states of the classical
anisotropic Heisenberg chain, is integrable and corresponds to the translation on
the tori of the classical problems of Clebsch and Neumann.

This system (3, 4) is the discrete analog of the Neumann system for the sphere
of any dimension, because of the following result [8].

Proposition 2. The system (3,4) has the following integrals in involution:
zAJ
Falz,y) =22 Z( y)"" ZF =1
Bra “ a=0

where
(z A y)aﬂ =Ta¥p — TYa -

One can see the resemblance of the last formulae with the formulae for the
Neumann system [15].

It can be shown also that the Neumann system is the continuous limit of the
system (3,4).

One can find explicit formulas for the solutions in #-functions in [8], see also
the last paragraph.

2.3 The Billiard in Quadrics
Billiards in convex domains 2 C R™! are the most natural examples of the
systems with discrete time. They correspond to the function £ = |z — y|, z,y €
M™ = 912. Let us consider now the case of the ellipsoid

M"={geR™ : (A4q,9) =1}, Aap=Aabap, a,$=0,...,n

The corresponding equations have the following form:

XN

ey g
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g+l — 9k Gk — Jk-1
lgkst — gl gk — gr—1]

=\ Agi )

where ¢, is the sequence of the blow’s points. Introducing px = (gk+1—qx)/|gre —
qx| we can rewrite it as

Pk — Pkel = A Agr , Gk — Qr—1 = paDr—1 ©)
where A; and u; must be determined from the condition |p| = 1, (4q,q) = 1.

Proposition 3. The symplectic form w coincides with the restriction of standard
form dp A dq on the phase manifold p? = 1, (4¢,¢) = 1.

The integrals for this problem coincide with' those for the Jacobi problem
about the geodesics on ellipsoid, because the billiard is its limiting case when
one of the axes of ellipsoid in €™ tends to zero. The formula for the integrals
have a form [15]

2*2@ Q)"”, Bo =47 ™
B¥a

The conservation of F, means that the trajectory of point is tangent to the
fixed confocal quadrics as well as in the Jacobi problem [15]. Notice that geodesic
flow is in its turn the limiting case of the billiard when the distance between the
initial data go, g1 tends to zero.

Using the results of [15] and Proposition 3, we come to the following theorem.

Theorem 3. The billiard in an ellipsoid (4¢,q) = 1 has a complete set of in-
volutive integrals F, (7) and corresponds to the translation on the tori of the
Neumann problem with potential U(z) = (Bz,z)/2, B = AL,

The explicit formulas for the solution in #-functions are found in Sect. 2.5.

I:Iouce that analogous conclusions are valid for the billiard in any quadric in
RIH-

One can consider also the billiard in the domain in R™*!, bounded by several
quadrics, belonging to one confocal family

> gl B : @®

a=0

This problem has the same integrals F, and also is integrable (see [8]).
Another geometrical application of our results is a new proof of the classical
Poncelet porism [45], concerning the polygons inscribed in one quadric and
circumscribed about another. It states that the condition that the polygon be
closed on n sides is independent of the initial point and its satisfaction imposes
one condition on the pair of quadrics. This statement is a consequence of Theorem
5. In fact, the corresponding pair of quadrics can be transformed by a suitable
projective transformation into the pair of confocal quadrics of the form (8).
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The corresponding polygons transform into the trajectories of a certain billiard
belonging to the fixed torus. According to Theorem 5 this situation is described
by the translation on the elliptic curve and therefore the properties of trajectories
of polygons do not depend on the initial point.

These geometrical considerations are closely connected with the Euler—
Chasles correspondences (see above) and the addition law on an elliptic curve.
For details we refer the reader to the book by Darboux [46] and the very inte-
resting paper of Griffiths and Harris [47].

2.4 The Discrete Analog of the Dynamics of the Top

This example was first considered in [8]. Let £ be the function £ = tr(zIyT),
where z,y € SO(N), I = diag(l,...,In). This function is invariant under
the transformation z — gz, y — gy, ¢ € SO(N) and therefore Theorem
3 can be applied. The corresponding “moment in the space” [39] has a form
m = yIzT — zIy". Introducing “moment in the body”, M = 2¥mz = wTT — Jw,
where w = yTz, we come to the discrete analog of the Euler equation

Mi =wopMywy!, My=wil—Iw, wx € SOWNV). ©9)

In the continuous limit, these equations transform into the ordinary Euler
equations of the free dynamics of a solid body:

M=[Muwl, M=Iw+wl, weSOW). ©")
For the last equations Mischenko [48] has found the quadratic integrals
Fi= Y w(I*MIPMIY) (10)
protr=1

which proved to be in involution [49] and to be sufficient for the integrability of
Euler equations for SO(N), N =3,4.

Theorem 6. The discrete analogue of the Euler equations (9) has the involutive
integrals, determined by the same formulas (10) [8]. For the groups SO (3) and
SO (4) these discrete systems are integrable and correspond to the translation on
the tori of the Euler equations (9') of an N-dimensional solid body.

For the equations (9') Manakov [50] has found the Lax representation L' =
[L,A] with L = M + A%, A = w+ I, which ensured the integrability of
the system. The discrete analog of such a representation was first considered
by Novikov (see [5]) and has the from Ly. = ALgA;’. As follows from the
previous theorem the matrices Li41 and Ly, where L = M +AI2, are conjugate,
but the explicit opportunate formula for A; is unknown.

There is no doubt of the integrability of the discrete Euler equations for all
N, but meanwhile a good proof has not been found.?

2 Note added in proof: Such a proof and the discrete analogs of the Lax representations for this and
the two previous systems are found in [56).
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2.5 Connection with the Spectral Theory of the Difference Operators:
A Discrete Analogue of the Moser-Trubowitz Isomorphism

As was found by Moser and Trubowitz [15] the solutions of the Neumann system
describing the motion of a point on the unit sphere under a linear force, can be
expressed in terms of cigenfunctions of finite-gap Schrédinger operators (the
full generality was shown in [51, 52]). We present here a discrete version of this
connection. We will use the algebraic-geometrical approach to the spectral theory
of the difference operators (for detail we refer to [16]).
Consider the curve I of the form
2n
y'=R(E), RE)=[][(E - E})
i=0
where E; are different real numbers, E; # 0. Let us define meromorphic functions
¥+ (P) on it with the following properties: 1) ¢, has on I »n independent of k
simple poles A, ..., Py; 2) in the neighbourhood of the infinities P = 4 has
asymptotes ¢f(E) = afE*"(l +O(1/E)), where the sign indicates the sheet to
which the point P+ belongs. The divisor D= Py + P, + ... + P, is supposed to
be invariant under the involution o : I' — I, o(y, E) = (—y, ~E).

Theorem 7. Functions 1, with the previous properties do exist, are determined
up to the sign and satisfy the difference equation [5, 16]

Cer1ist + 1 = By,

where
k-1
o = ——

[0 70

For ¢ to be real, we must demand that the projections P; on the E-plane
belong to the “forbidden zones” — the segments of real line, where R(E) > 0.

The explicit formulae for ¢ and ¢; can be found in [16].

Let us consider the following class of such operators (Lp)g = crst1re +
Ckk—1, corresponding to the curves of the form

A=l (#-[[(E-B) .

i=1 i=0

Here I, = J;!, J, are the same as in 2.2 for the opportunity we suppose that
0<Ip < <... <I, The real numbers ¢; must be different and such that
only one forbidden zone is placed between I, and I,.; (compare with [52]).

Let us define the sequence of the points g; in R™', whose coordinates are
the normalized eigenfunctions of the operators L:

6§ = Bothi (1) , fu=I \/P(m [M@z-n,
Aya
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where

n
PE=T[ (B =), od £,
i=1
are the projections of the poles P,, on the plane E. The previous condition on
the position of e; ensures the expression under the radical is positive,

Lemma. The vectors g, belong to the ellipsoid (I%¢,q) = 1 and satisfy the
equation {8}

Cr1Gkel + Crqr—1 = Iqs .

Let us consider the Gauss mapping of this ellipsoid into the unit sphere:
S = glg) = J*¢/| /.

Theorem 8. Let g; be the sequence of the vectors in R™ with the coordinates
defined by the normalized eigenfunction of the difference operator L from the
class described above {8). Then S} = g(q;) is the general solution of the discrete
Neumann system (3) (4) (for n = 2 — the general stationary solution for XY Z
Heisenberg chain).

The proofs can be found in [8].

Comparing with the Moser-Trubowitz consideration one can notice one new
feature — the presence of intermediate Gauss mapping.

An analogous construction is possible for the interpretation of the dynamics
in an ellipsoidal billiard (see [8]). As a consequence of this result we can find the
explicit formulae for the general solution of this discrete system. For example,
for the billiard they have the form:

o, BalkU + 060
U = oG (OBGRU +()°

where §, is a §-function corresponding to the n-dimensional hyperelliptic Jaco-
bian with certain characteristics depending on a (for the details, see 8D.

Note added in proof. In a recent paper [56] J. Moser and this author proposed
an approach to the integration of discrete systems, based on the factorization
of matrix polynomials. The idea is to represent the discrete system as the isos-
pectral transformation L(\) — L'(}), where L(}) and L'()) are some matrix
polynomials, such that L()) = A(A)B()\), L'()) = B(\)A()) are factorizations
of a certain type. The form of the polynomials L()) can be guessed from the
Lax representation for the corresponding continuous system.

This approach turns out to be fruitful for all classical integrable systems
discussed above and gives explicit formulas for the discrete versions in terms of
6-functions. The same idea works also for some billiard problems in spaces with
constant curvature [57].

The fact that in all these cases we arrive at Lagrangian discrete systems

(compare with [53,54]) seems to be very important and calls for better under-
standing.

[

Appendix A
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Appendix B

Integrable Rational Mappings of CP' of Degree 2

As follows from Ritt’s theorem all such mappings f satisfiy a functional equation
of the form p(Az + f) = f(p(z)), where ¢ must be exp z, cos = or a suitable
elliptic function. The condition that the degree of the mapping must be equal to 2
leads to a limitation on the corresponding elliptic curve. Namely, this curve must
have the complex multiplicity of degrec 2. There are only three such curves,
with paramter 7 equal to i, iv/2 or (1 +iv/7)/2. Thus, we have the following 10

possibilities:
p(z) A B f(2)
D exp z 2 0 f(2) =22
2) cos z 2 0 222 -1
) P),r=i 1+i 0 %(z-—l/z)
4) 'Pz(:c),'r=i 1+i 0 —-}(z—2+1/z)
. : 1 1
5 P@),T=ivZ ivZ 0 —10+ 57)
=i i 1 18(+/2-1)
6) P), r=iv2 iv2 3 V2+3+ He—2V2/3)- 142546
s . i 18
7 'P(:r),‘r—l\/i l\/i 3 —2\/§+m
= 14 1+ 2 1
8) Plx), r= _iﬂ —iﬂ 0 _M\ﬁ(zi- P, TP YT )/4)
= 14 4T 1 _ 11-7
) Pla), 7="55 2% 3 o+ _mm«z-mw%www
- l+i?d 1+i!ﬁ 3+il)a iz A—1+i(2-1))
10) P(a), 2% MY, e Iy, YT YT, REYY
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The Cauchy Problem for the KdV Equation
With Non-Decreasing Initial Data

V.A. Marchenko

At the present time there exist numerous modifications of the inverse problem
method which can be used to obtain wide classes of solutions of nonlinear equa-
tions. However, with the exception of rapidly decreasing and periodic initial data,
the applicability of these methods for the solution of the Cauchy problem has
not, in fact, been studied. For instance, the approach developed in [4] for the
KdV equation leads to integral equations of the type

y(z')
2 +z

y(2) + e 7240y [u(z)y(—z) + / du(z") - 1] =0 ©.1)
whose solution leads to the solutions of the KdV equation u; = ouu, — Ugre DY
the formula

d
u(z,t) = ZE /y(z)d/z(z) .

The functions p(2), v(z) and the measure du(z') play the role of parameters these
solutions depend upon. But it has not been found yet whether it is possible (and
if possible, then by what means) to determine these parameters so as to obtain the
solutions satisfying the given initial data u(z, 0) = ¢(z), i.e., to solve the Cauchy
problem. The main goal of the present work is to study this problem. The initial
data should necessarily be somehow bounded to ensure, at least, solvability of
the Cauchy problem. The most general class of initial data for which the Cauchy
problem is undoubtedly solvable is obtained in [3]. The description of this class
is given in the first two sections which also contain the refinements necessary
for further discussion. The parameters of the first equation above corresponding
to the initial data are determined in the third section.
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1. Reflectionless Potentials

The one-dimensional Schriddinger operator

H= —dﬁxi +g(z) (~o0 <z < 0) (1.1

with a real infinitely differentiable potential ¢(z) satisfying the inequalities

/ (1+]z}) |¢P@)]dz < 00 (k=0,1,2,...)

is selfadjoint, and its spectrum consists of two parts: an absolutely continuous part
which fills the whole positive half-exis and a finite number of simple eigenvalues
fin < Bl ... < ... < 2 < g < 0. For all ) from the closed upper (lower)
half-plane the equation

—y" +q(x)y = Ny
has the solutions e*(), z) (e ~(}, z)), which can be presented in the form

N o0 »
e\, z)=e 4 / K*(z,t)e*dt (1.2

z
T
e"(\,z) = 4+ / K~ (z,t)e™dt . (1.2

These solutions for large [A| can be also represented as

e'(\,z) =exp {i/\z - /oo a*(/\,t)dt} (Iml>0)

(1.3)

T

e~ (A, z) =exp {i,\z + /

a"(/\,t)dt} (Im ) < 0)

~00

where the functions o%(), z) satisfy the equation
o'\, ) +2ida (), 2) + 0*(\, z) — ¢(z) =0

and in the respective half-planes can be expanded in the same asymptotic series
when [A] = oo

+ % 0k(@)
o\, z) ’;(m)k (1.4)

where

o1(z) = g(z) , 02(z) = —¢'(z), 03(z) =¢"(z) — ¢(=)?,
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k=1
or1(2) = —04(@) = Y ok_j(z)ojz) (k=2,3,...). (1.5)
j=1
For real A the solutions e*(A, z), as well as the solutions e~ (), z), form a com-
plete set of eigenfunctions of a continuous spectrum which correspond to the
eigenvalues u = A2, They are related by the equations

e, 2) = {X)e™ (=, 2) + a(Ve~ (), z)

e (=X, z) = —d(-N)e* (A, z) + a(Ve* (), z)
where

2ida()) = {*(), 2), e"(\ )}, 20N = {e=(),2), e'(\,2)}

and {f, g} = f'(z)g(z) — f(z)g'(z) denotes the Wronskian of the functions f(@),
9(z). The function 2iXa()) is holomorphic in the upper half-plane and is con-
tinuous in the closed upper half-plane. In this half-plane it has a finite number
of simple roots ik (kn > Kn-1 > ... > K1 > 0), the squares of which are
negative eigenvalues ;x = (ixi)? of the operator H.

- The solution e*(ixg, z), as well as the solution e~ (—ikg, z), is the eigenfunc-
tion of the operator H which corresponds to the eigenvalue pj = (—ik;)2. They
are related by the equalities

e*(ixg, z) = Cie (—iki, ), e (—irg,z) = C,,'e+(ink, z) (1.6)

(C¥Cy =1), and their normalizing coefficients

. . -1/2

mE = [ / |e* (i, )| d:c]

-0
are expressed in terms of C, C, a()) follows:

(mE) 2 =iCtaing) . W)
(The point means differentiation with respect to A). The functions r—(}) =
B(Na(N)7!, r*(A) = —W(—=A)a(A)~! are called the left and right reflection co-
efficients and the sets {r=(N), ik, m;}, {r*(A),ixg, m}} are called the left and
right scattering data of the operator H, respectively. The potential ¢(z) can be

uniquely recovered either from the left or the right scattering data. For this, it is
necessary to solve the equation

F'(z +y) +K*(z,y)+/ Frly+)K*(z,0)dt =0 (z <y < oo0) (1.8)

F©=Y (mpfemes /_ : r*(NeMd

k
(or the equation
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F(z+y)+ K~(z,5)+ / F(y+ K~ (z,8)dt =0 (=00 < y < 7)

FO= 3 (mifetr 5 /_:r‘(z\)cﬂ‘d,\)

with respect to K*(z,y) (or K~ (z,y)). The potential g(z) can be found then in
terms of K*(z,y) (K~ (z,y)) as

(1.8")

/00 q(t)dt =2K*(z, 1) , /z q(t)dt =2K~(z,z) .

The necessary and sufficient conditions for the scattering data are known.
In particular, for any s, > 0, mf > O the set {0,ixe,mi} (k=1,2,...n)is
the right scattering data of a certain operator H of the type in question. The
corresponding potentials g(z) are called reflectionless because the reflection co-
efficients r*()), r—(}) are identically equal to zero. Note that in the reflectionless
case

o) = H A+1

The existence of non-trivial reflectionless potentials was first discovered by
V. Bargman [1], who also found their explicit expressions. We will denote
by B(—pu?) the set of those reflectionless potentials for which the spectra of
corresponding operators (1.1) are located to the right of the point —u? (i..
H+u2I > 0),and by B the set of all refiectionless potentials (B = U, >0 B(—u?)).

(A, ) =a(Ne (), 7). (1.9

Lemma 1.1. If ¢(z) € B, then the solutions e(), z) assume the following form:

R e
:l:(,\ z)= eid H : k

+i 1Kk

where A;(z) are real infinitely differentiable functions, and if k # [, then Ay (z)
# Ai(z) for all z € (—o0, 00).

Proof. since in our case r£(\) =0, we have

F@)= Y (mE) et
k=1
then (1.8, 8') give

K+(zay; - Z (m erY { et 4 /°° K+(i, t)c-nudt}

n
2 _ .
=_Z(mz) e~ *Vet (ing, )
k=1

S IREBINTS vt i
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e Ve  (—ikg, z) .

K~ (z,9)=-Y (m;)
k=1

Substituting for K*(z,y) in the formulas (1.2,2') the right parts of these equal-
ities, we find that

; 2L (mt)e~ T et(ing, z)
et(\, z) = cA® [1+Z k- - : ]
kel

i\ +ikg)

e~(\,z) =e® [1 _ Zn: (m;)2?x.zej'(—ink,z)j| ’

Fyor] (A —ikg)
that is

P\, z)

+ _ olAz
e\, z)= *H*(/\)

where IT*()) = [[}.,;(A £iky) and PE(),2) = A"+ 075 piE(z)\* are certain
polynomials in A with coefficients which are infinitely differentiable with respect
to z. Hence, according to (1.9), it follows that

eire P*(\, 2) = oire P~(\,2)II~(})
I+ IT=(NIT*())

and, therefore, P*(}, z) = P~(\, z) = P(),z). Denoting the roots of this poly-
nomial by iA;(z) we obtain

(00 < A < 0)

e\, 2) = cihe [] A ihl@)

i Ating

Since for ImA > 0 (Im A < 0) the solutions e*(),z) (e~ (), z)) belong to
the space Ly(a,o0) (La(—o0,a)) for any a € (—oc,00), the numbers iAi(zg),
placed in the upper (lower) half-plane have the following spectral meaning: their
squares are eigenvalues of the selfadjoint boundary value problem

-y +q@)y=py, y(z)=0, z0<z< 00

(-y"+q@y=py, yzo)=0, —c0 <z < z) .

Therefore, for all 2 € (—oco,00) the roots iA\x(z) (k = 1,2,...,n) lic on the
imaginary axis and do not coincide, i.e., they are simple roots of the polynomial
P(), ) with the coefficients infinitely differentiable with respect to z. Hence, the
functions Ax(z) are real, infinitely differentiable and, if k # I, then A\p(z) # \i(z)
for all z € (—o0, 00).

Lemma 1.2. For all z € (—o00, o) the moduli of the roots iAi(z) of the polyno-
mial P(},z) alternate with the roots of the function Aa(i)), i.e., the following
inequalities hold:
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0=ro <D, (@) < k1 S A, (@) S 42 L oot S K1 A, @) S &5y
(1.10)
Proof. The function Aa(iA) has on the half-axis 0 < A < ocon+1lroots 0 = xp <
K1 < ... K < 00. Let us denote by K the set of all z € (—oo, 00), for which at
least one of equalities e*(ixg, z) e~ (—ikg, ) =0 (k =1,2,...,n) is true. The
set K is obviously finite, and if z ¢ K, the function

et(ir, z)e" (i), z)
Aa(ir)

is continuous on each interval (0, x1), (k1, k2) ... (Kn—1, Kn), (Kn, 00), tends to
zero if A — +oo and becomes infinitely large when A tends ot the end points of
these intervals. Let us show that the function f() is decreasing monotonically
on each of these intervals, i.c., that

d [et(i), x)e (~i, z)
a ( Aa) ) <0.

From

) = _1\2 - dy 2
y" +(g@)y = —\y | (dA) (a:)( )_-2,\ _a (dA)

which are satisfied by the functions e*(i}, z), (d/d/\)(e*’(i,\,x)) and e~ (—iA, z),
(d/dX)(e~(—i), )) it follows that

dy\" dy dy dy'\
2yt =— oy _ 9y
v y(dx) Y (dA) (y ax d,\) '

Thus,
oo 3 rpr '
—2) / e G, B dt = —e* (i, 2y TG0 D 4 ey gy (F2012)
A ax ax

d (e*(i), z) ,
= -;\' ( et(i), ) ) e*(i), -"")2 )

—2,\/ e~ (i), ) dt = e~(~i, )'ﬂ—;’\—ﬂ

— e~ (=i}, z) (%"-’-’)

_ood fer(=iNe)) L .
TTdx (e'(—i/\,z)) e”(=i,2)",

fQ)=

whence it follows that
et(i) z) e (—i\z)
et(iN,z) e (-i\2)

| <o,

T PR €. KSR
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and since
—2Xa(iN) = {e*(), z),e7(~i), 2)} = e*(i), 2) e (i), 2)
—e*(@), D) (—iA, z)

then

d —Xa(i))

a [e+(i,\,z)e-(—i,\,z)] <0,
and therefore

f(/\) [ et(i), r)e (i), z)] <0.

Aa(i})

Thus, the function f()\) decreases monotonically on each of these intervals
(0, k1), (K1, K2), -+ ,(Kn=1, kp), (Kn,00), becomes infinitely large in the vicin-
ity of the end points 0, x1, k2, ... £, and tends to zero if A — +oo. Therefore,
in each interval (0, k1), ... (kn—1, kn) there lies one simple root of the function
f(X\) and it has no other roots on the semiaxis (0, 00). Since the roots of this
function coincide with those of the function e*(iA, z)e~(—i)A, z) which accord-
ing to Lemma 1.1 are equal to |A\i(z)] (k =1,2,...,n), then for z ¢ K strict
inequalities are fulfilled

0< A, (@) < K1 < | A (@)| < K2 < oot < Kpot < {Af, (@)] < K

(1.109
Since the set K is finite, and the functions A;(z) are continuous, then the nonstrict

inequalities (1.10) are correct for all z € (—o0, o).
Note also that from Lemma 1.1 and (1.6) there follow the identities

n
eme [[2—L2 = Ai(®) _ cremas H ke Ao (1.11)
Gl Ki+ K i Kkt Kj .

that show that, if for the given value z one of the roots A;(x) appears to be
equal to kg, then there is sure to be found another one equal to —«g. Therefore,
in accordance with Lemma 1.2, at each z all the roots are subdivided into two
groups: the first one includes those for which the strict inequalities

K2y < M (@) < K2

hold; the second one includes the pairs differing only by their sign, and satisfying
the equalities

—Akp (Z) = /\kp+1(z) =Kg .

It is obvious that for z € K all the roots belong to the first group, so that the
second one appears only for a finite number of values z.
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Lemma 1.3. All the A\;(z) arc monotonically decreasing, ie., for all = €
(—o00,00), k = 1,2, ... ,n the strict inequalities —A}(z) > 0 hold. If X;_(z)
belongs to the first group, then

2
Ry =2 _ 32 K5 = M, (@)
@ AL ,1;.[, (Ak,- @ =i, (@ ) 7
and if the pair — Az, (z) = ,\,,,+l (z) = kg belongs to the second group, then their

derivatives can be found from

' ' K —'C
- k (z)+ Ak l(z) K'ﬂ 1—
( » 8+ ) * #gﬂ Ak; (z) -

- ’\Lp“(z)c_n’z H (Kﬂ - Aki (:t))
J¥8, B+l

=X, @Che* [ (kp+ (@) -
8,41

Proof. For real A the solutions e*(+), z) satisfy the asymptotic equalities
e'(EA, ) = e 1 0(1), ef(E),2) = £ideFA* +0(1) (z = +o0)

from which it follows that their Wronskian is equal to 2i\. Therefore,
2id =e*(), z) e (=), 2) — e* (), 2)et(— )\, z)

d et(\ z)
et (A, 2)e’( A,z)dz In D)

and according to Lemma 1.1

A2 +,\,,(x) A(z) = —Mi(2)
2ia = II [2,\+ ZA_i;k(z)HgM;:z)]

ie.,

A(z) o A+l
1+ k = k
Z A+ A (2 kl:[l A4+ A (x)? (1.12)
whence it immediately follows that

2 2
! =2 _ 2 K3 — Mo ()
M (@) =[R2 — A (@) ]j|#|a (—;——/\kj G ) (1.13)

if ni_l < Ag, (2)? < ;cf, and

e S A e

8 T
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— (M, (@) + 2}, @) = (x5, (1.13"
( kg ko ) p1 ,,q:s[Ip-rl /\k,(:z:) —/c

if Akyy, (@) = = Ak, (2) = 5p. Besides, in the second case from identity (1.11) (if
k = p) after differentiation with respect to = we find that
- ,\'k”‘(z)c"“" H (K:p = Ak (:c))
i¥8, B+l
=Xy @G5 [ (sa+A5@) (1.14)
iv8, 8+
since

Kg — )\k,+1($) =Kg +Ak‘(.1:) =0, Kg — /\k’(:t) =Kg+ /\kﬂl(z) = 2K:,3 .

If z ¢ K, then all the roots belong to the first group and from (1.10') it
follows that the right parts of (1.13) are strictly positive. Therefore, for z ¢ K
strict inequalities —,\g(z) >0 hold for all j =1,2,... ,n, and since the set K
is finite and the functions /\;-(x) are continuous, then the nonstrict inequalities
—A' (z) > 0 are always correct. Finally, from (1.13') and Lemma 1.2 it follows
that —(A (z) + ,\,,‘ () > 0. Comparing this inequality with (1.14) we find
that — )/ ks (z) # 0, A' (z) # 0 and since these derivatives are nonnegative,

then —,\k‘ (z) >0, ,\k () > 0. Thus, strict inequalities —/\g(x) > 0 in fact
hold for all z € (o0, oo), j=12,.

Remark. From (1.11, 14) it follows that

O = e-2ra 13[ Ko = M, (7)

e 3@

if ko #A(z) forall j=1,2,...,n, and

Cr=— k.. (@) ¢~2Faz Ko — Ak, (T)
a ,\' (-‘B) e ol Ko + Ag, (z)

if Mg,y (2) = = Ag, () = £q. Since in the reflectionless case
- /\_i’ck fe ge (Kor— a)
A= I | o) =
o) HFe ia(ixa) = II (R + 23)

then, substituting the expressions obtained for C7, ia(ix,) into (1.7), we find
that

(m )-z e “2at g, — Mg, (2) H (Ko — Ae, (@Ko — Kg)

Ko Ko+ A, (2) 1o (Ko + Ak, (2))(Ka + K,)

= e Koz N% - ’\ka(z)z H (K - Ak (x)z Ka — Kg 2
T Ak, ()2 -2 ) (Ka + /\k‘(:c))
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if K2 # @R G =1,2,...,n), and

1 -
Ak‘,.,,;(z) e~ 2%t Ka — Ka+l

+\=2 _
(&)= =30 @ Zea FaFren
Ka — /\k.(z) Ko — Ky
Ko+ Ak, (2) Ko+ K,

X

sya, a+l
_ 'k.“("') e~2at o 1 — Ko
/\;‘a (z) 2"0 Ko+l + Ko
2
8 II k2 ~ Mg, (2)? ( Ko — Ky )
k2 — K2 Ka+ g, (x)/)

s¥a, a+l

if Ag,4, () = —~ A, () = K4 In particular, assuming = = 0, we find that

a2 KL= 0 k=N O [ ke, )’
(ma) = 264(Ka + A, (0))? '];‘I; K,% — K2 (xa + A, (0) (1.15)
if x? # Mo G=12,... ,n), and
(m+ )-2 A’ka+1(0) (KMI - Ku)

2I€¢,A;a 0) \ Kos1 + K4
2 2 2
K% — Mg, (2) ) ( Ko — Ky ) 115
x ”‘}_,Iml ( K% ~ k2 Ko + Ak, () a.

if Ak, 4, (0) = —Ae, 0) = Kq

Let us call the sequences
10), M0) 5 A3(0), 22(0); ... 5 AL(0), Aa(0)

the spectral data of corresponding operators (1.1) with reflectionless potentials.
The spectral data also uniquely determine the reflectionless potentials. Indeed,
from (1.12) it follows that the polynomial [];_,(z — %) can be reconstructed
from the spectral data by

n 2 n 2 n —'Alk(o)
Il (z- &) =] (z - 20 1-2:\70)5 (1.16)
k=1 k=1 k=1

and the normalizing coefficients m} are reconstructed from the roots of this
polynomial and spectral data according to (1.15), (1.15") in which x, should be
understood as a positive root of 2. Thus, the scattering data {ixx,m}} and,
consequently, the reflectionless potential, can be uniquely reconstructed from the
spectral data.

Lemma 1.4. The sequence

o . e 5 2 ¢
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of n pairs of real numbers is the spectral data of a certain operator (1.1) with the
reflectionless potential ¢(z) if and only if /\g <0 <j<n)Aj# 2 when
7 # k. In this case, ¢(z) € B(—u?), where

Maxi<i<n {/\i} <ut< maxi<i<n {,\i} + Z (_,\;‘) .
k=l

Proof. The necessity of these conditions follows from Lemmas 1.1, 1.3. To show
that these conditions are also sufficient, we will construct according to the given
sequence the polynomials ‘

AR =] (z=2) 5 N =42 [1 -3 i’ J (1.16")

— )2
k=1 k.lz ’\k

and consider the location of the roots of the polynomial N(z). Let us arrange
the sequence of nonnegative numbers A} in increasing order: 0 < A3 < A2 <

o SARVIE MG, <), then in the interval (A3_, )2 ) the function

ka+1 ka+l
n
...,\’k
<P(Z) =1l- Z 2
S A

is monotonically increasing from —oo to +00, whence it follows that one simple
root «2 of the polynomial N(z) lies in each such interval (A, <kl < )‘i‘,ﬂ)*
If, however, |Ag,| = |Ax,,,| = &g, then from the inequalities A; # Ay (G # k)
it follows that one of the numbers Akys Aky,, i equal to kg, and the other to
~kg, and M2 # «% for all j # kg, kgs. Therefore, x% is a double root of the
polynomial A(z) and a simple root of the polynomial N(z). Thus, the polynomial
N(2) has n — 1 simple roots «2, satisfying the inequalities Ao<kL< A "
Since on the semiaxis (,\in,oo) the function ¢(z) is monotonically increasing
from —oo to 1, then one more root 2 of the polynomial N(z) lies to the right
of the point A} = maxi;<aX2. Supposing x% = A2 +z, we find that

!

- - 1<
Pl 2 ()

aml s=1

whence it follows that z < 370, (~)}) and 2 < A2 + 37| (=X.). Thus, the

s=1
polynomial N(z) has simple roots nf, (1 £ a < n) alternating with the roots of
the polynomial A(z) :

2 2
OSAleN‘

n
S S S SRl S SRR+ ST (N .

a=]
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We note that «} > 0. It is obvious when A3 > 0; if A} =0, then A}, > 0,
and from the foregoing it follows that the strict inequality 0 = 3} < «} < A2,
holds.

From the given sequence A, A; and the roots &2, of the polynomial N(z)
we will define the numbers m?, > 0 by

rc2 K2 — M e — ko \2
+ _2 k @ 8
(me) = 3 +,\,‘°)2 H ( o ) (na Mk‘) (1.18)

ifa=nor)} <«Z <A, andby

[ 2 2 2
(m;)-.z = ’\k.+'1 (Naﬂ — Na) H K«; — ’\k2. ("a —,\K.,) (1.18")
260X}, \ Kol + Ka a1 K= K3 \Ka+ Ak,
if Akayy = —Ak, = Ka» Where k. denotes positive square roots of :c . Since

according to the condition that all the numbers )} are negative, then from
inequalities (1.17) it follows that the thus-defined numbers (m* 3 are posx—
tive. Consequently, the constructed set {ixy,ixa, ... ,ikn; mi,m}, ... ,mt} is
the right scattering data of a certain operator with t.he reflectionless potential
¢(z) € B(—p?), where u? = «2, and according to (1.17)

n
max A2 <p®< max A2+ (=),).
1<ken B SH = D02, Z:]( k)

Now let us show that the spectral data
100), 2105 23(0), 220 5 ... A4(0), X,(0)

of this operator coincide with the given sequence A{, A5 A5, Aas ... 3 AL, A, We
note, first of all, that the polynomials
Mi(2) = H(z -\, A(z,0)= H[z ~ A(0)]
k=1
for all & =1,2, ... ,n satisfy the equalities
+12
A1 (8a) (72n°') H (Ko K') = A1 (—ka) (-D)" (1.19)
Ko sva Ka + K,
(m 2 - n
A (ka3 0) 52— H (-'ca—+'c-'-> Ay (=£q; 0) (~1) (1.199

Indeed, if \3_ < &2 < ,\2 DO <k <A, 01 equality (119) (1.19)]
is equlvalcnt to equality (1 18) [(1 15)], if A} = w2 = A} o DO =4 =

,‘ +l(0)] then both the numbers +«, are the roots of the polynomml A1(2)

PERPURPE RN S B

N

SR AP e

B
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[A1(z;0)] so that both parts of (1.19) [(1.19)] are equal to zero. From (1.19)
(1.19") it follows that the odd polynomial A;(2)A;(—z;0) — Aj(—2)A1(z;0) of
degree < 2n — 1 has 2n different roots +x;, +k3, ... , K, ie.

A(2D)A(-20) = Ai(—2)A41(2;0) . (1.20)

From the alternation of the sequence x2, with each of the sequences A%, 2%(0) it

follows that it is possible to arrange them so that
A, <k, < <0 <A,

BO<E<AO<... < 0<At,

and if
%=k, (R0=X,0)
then
~Aka = Akoyy = Ko (=M, (0) = Ag,,,(0) = 5,) . (121)

The proof of the equalities Az, = Az, (0) will be carried out inductively. If
M, < AL, [or A} (0) < A},(0)], then A4, [, (0)] is the root of the polynomial
A1 (2) [Al(z 0)] but "'\kx[ Ak, (0)] is not:

A () =0, A1 (=25,) #0 [41 (A, 0):0) =0, A1 (=g, (0):0) #0] .

Hence, and also from identity (1.20) it follows that Al(/\kl,O) 0 [A1 (A, O)) =
0] and, consequently, Ay, = At (0). If A2 =2 =«? and A2 0 =X 0=+
then —Ap, = Ag, = K15 =\, 0) = ,\,,,(0) = ;q Thus, in all the cases Ak =
Ak, (0). Suppose that the equalities Ax, = A¢_(0) are true foralla = 1,2, .

Then

/\2
Xewo = M, 0) S w3, < { "°°+(‘0)} < Kagst

kag41
and, if k2 = /\iﬂo = A} ,(0), then, necessarily, A, ., = Ak, ., (0) = Ka,.
If, however, x%, > A% wo? then cn.hcr one of the numbers A} i’ AL 10 1
strictly less than "a 1 Or ,\,‘a =A% “(0) naoﬂ In the former case Ak, .,
[or Akao +l(O)] is the root of the polynomlal A1(2) [or (Ay(z; 0)], while — A,
- /\,,ao +1] is not. Hence, and from identity (1.29) it follows. that here )‘ka "=
,\k%“(O) In the latter case, according to (1.21), /\kag-i—l /\,,a +l(0) = — Koo+l
Thus, in all the cases Ak, ., = Ax,,,,(0), whence, mducnvcly, it follows that
these equalities are true for all a = 1,2, ... ,n. Finally, the proved equalities
Aj = A;(0) and (1.16) (1.16") imply thc xdcntlty

id Ak Ak (0

— n —_—
Zz_,\l Ezz—-,\ia ’

a=1 ka a=l

ag+1
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from which it follows that X} = A} (0), if A # X for all j # ka, and
N+ A, =X, O+ L0, if \3_=)}_,,, while in the latter case (1.15",
(1.18') also imply that

bags/ Mea = N, 0/, ©) > 0.
Consequently, A} = A} _(0) forala=1,2,...,n.

The scattering data are convenient spectral characteristic in the class of rapidly
decreasing potentials. In this class, refiectionless potentials are singled out by the
condition that the reflection coefficient is identically equal to zero. In the class of
all real locally integrable potentials the Weyl functions are the universal spectral
characteristic. Therefore, to single out reflectionless potentials in the class of all
real locally integrable potentials, it is necessary to characterize them in terms of
the Wey! functions.

Let us denote by c(), z), s(\,z) the solutions of

—y" +g(z)y =Ny (—0 <z < ) (1.22)
which satisfy the following initial data '
2,0 =s')0=1, ¢(1,0=350=0.

According to the classical Weyl theorem, there exist holomorphic functions
m*(z), m™~(2), outside the real axis, such that for A2 = z the solutions of (1.22)

¥E(z,2) = ¢ (Vz,2) + m¥(2)s (Vz,z) (mz #0)

are square integrable on the positive and negative semiaxes, respectively:
¥*(z,2) € L2(0,00) , ¥~ (z,2) € L2(~00,0),

while m*(2) = m¥(z) and

[ o RIS v
(1.23)

The solutions y*(z, z) are called the Weyl solutions, and the functions mE(2)
the Weyl functions of (1.22).

The Weyl functions can be replaced by one function n()) defined outside the
coordinate axes by

{m*(0) mAr>0
n(A) = {m-(ﬂ) ImA<0

and the Weyl solutions can be replaced by the solution
(A, 2) = oA, 2) + n(N)s(A, 7)
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which belongs to the space L2(0,00) [L2(—o0,0)] when X lies in the upper
(lower) half-plane. We shall adhere to the original notations [1(), z) for the
Weyl solution, and n()) for the Weyl function] because the difference can be
reduced to the choice of the argument “momentum” ) instead of “energy” z = A2,

The functions n()\) is holomorphic outside the coordinate axes, assumes ad-
joint values at the points, symmetrical with respect to the imaginary axis, its
imaginary part is positive in the right half-plane and negative in the left one.

The Weyl functions m*(z) are expressed in terms of the spectral functions
gi'(p) of boundary value problems generated on the semiaxes (0, 00), (—o0,0)
by the equation —y" + g(z)y = py and the boundary condition y'(0) =0 :

1 > do*(p)

mi(z) B -0 2T H

The spectral functions p*(u) are nondecreasing, have finite limits p* (~o0) when
4 — —oo, and at yu — +oo satisfy the asymptotic formulae

2
(W) = =B+ g*(—00) +o(1)
which allows them to be represented in the form
E0 2 oE 2 +
e* () = g™ (~00) + —x(uVE + ()

where

w=1'#2% . g
x(p) = ;7 lim & =0.
=10 p<o b wme’ @

5 (Z /°° dyi , [ daiw))
0

mE@) T \7Jo z-p Joo z2—1

and since

2 /°° dyE _ 1 /°° st _ /°° dst )
n Jo - 1\/5’ -—ooz"l-l- oo(z_ll)zu

then,

1 ) 1-e%(2)
im*(z) - ivz - oo (2 — #)zd/‘ = iz (1.24)
where
. ® déx(
Ei(z) = 1\/; o (2 — Il:))zd[l (124I)
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and /7 is the branch of the radical that is holomorphic in the plane cut along
the positive semiaxis, assuming positive values on the upper boundary of a cut.
Let us introduce the following notation
§= sup (max{[6*@),[6~W)|})
<o

—oo<

sgp(max{lé*(y)l, [6=@lh t>0
t
5(t) = 2
s‘ip(max{w* W 16=@wh t<o
u<t

Lemma 1.5. In the domain |z| > 4 the functions £%(2) satisfy the inequalities

le*(2)] < 86 W T (1+ Rez) (6(—\/|7) \/|';'5(\/|7)>

[Re z| 2{/1z [Im z{

+z(1_Rez) VIEISVED | M?))
2 |Re 2| [Im 2| 2/[7]

Proof. Making use of the introduced notation we find that
oo + \/m oo
et [ s [ e
= -T2 =l Vi 12— sl
-V g
+6 (—v/I) / ‘ £

z—p?’

(1.25)

and since

/ < 2\/|_; 8|z|-—3/2
Vi 2=l 7 Pa -1/ /0202 T

when |z| > 4, we have

|e*(2)| < /121 + VTl
~
(o) [ (v [ )

Let z = z +iy. Then for all 2 € (—o00,00), y #0

-Vl _ds oo du ™
v/-oo 'z__“ll /\/Flz—ﬂlz ~/—oo(z'—l‘)2+y2-iy—|,

and forallz >0 (z <0)
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-zl dp -Vl du </0 dp T
cee 2P e e —2pz T [ P2+l 2

: /°° dy _/ dy </°° dp T
VA lz =l Sy e =2us T fo Ay 22

Hence, in all the domain {Im z| > 0, these inequalities hold

/—\/I:i du <_T ! Rez + 7 (14 Re z
oo |z—uf? = 2|Im | Rez|/ 47| [Re z|

: /°° du <«_T (1+ Rcz)+ g (1 Rcz)
; Vi 2= uf T 2lme| Rez| /) 4|z Rez|/)

Comparing the obtained inequalities, we confirm that the inequality (1.25) is
correct.

L AR B

Corollary. If |A| — oo the function n()) satisfies the asymptotic formula
n(}) =X +0(1)

uniformly outside arbitrary small angles, which contain the coordinate axes.
Indeed, the definition of the function n()) and (1.24) imply that
iA () ImAi>0

It 5(’\) = )

1—-e() e~(A%) Imi<O

and from the incquality (1.25) (z = A%, A = a +ip) it follows that

n(A) =

leM)] < =7

3 ;,\|2

5=\ . T B
" ( T T 5"*") @2

(V CRT RIS 6"*')) o? <

2]a||8| 27|
From the latter inequality it follows that the estimate
T (8(=1AD _ 80AD
€O < i+ 7 ( Rexl " Jim )|
holds in all the domain |X| > 2. Thus,
_ 1de(V)
n(}) —id= =)

where
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7+ 77 (oo gag et

and since limyy| , o 6(t) = 0, then iAe()) and, therefore, also n()) — i), tends
to zero uniformly outside arbitrary small angles containing the coordinate axes
when |A| rightarrow oo.

In the general case [¢(z) is an arbitrary real continuous function] equation
(1.22) does not determine uniquely the corresponding Weyl functions. In order
that this equation should uniquely determine the Weyl function, it is sufficient
for the potential to be bounded from below (infg(z) > —oc). In this case any
solution ¢(A, z) of (1.22), belonging to the space L2(0,00) if ImA > 0 and to
the space La(—00,0) if Im A < 0, differs from the Weyl solution (), z) by a
constant factor, and the Weyl function n()\) is equal to the logarithmic derivative
of this solution at the point z =0 :

[ixe(V)] < <

$'(2,0)

#(A,2) =81, 0) [}, 2) + n(N)s(A, 2)] , n(d) = ——— 00

In particular, if the potential g(z) is reflectionless the solution e*(), ) [e=(A, 2)]
belongs to the space L(0;00) [La(—o0,0)] at ImA > 0 (Im X\ < 0) whence,
according to Lemma 1.1, it follows that

Do —AL0)
A\ =id+i )y — Al (1.26)
g‘; A~ X (0)

Thus, the Weyl function n()) of (1.22) with a reflectionless potential is a
rational fraction. Conversely, let the Weyl function #i()\) of (1.22) with real
locally integrable potential §(x) be a rational fraction. From the Weyl function
properties, it follows that its poles can lie only on the imaginary axis and should
be simple because otherwise their imaginary part cannot be positive in the right
and negative in the left half-plancs. By the same reason, the residue at the poles,
located on the imaginary axis, must have a positive imaginary part, and their real
part must be equal to zero. And, finally, the corollary of Lemma 1.5 implies that
the Weyl rational function necessarily has the following form:

n(/\)—l)\+lz

- lz\k

where ), are distinct real numbers, and )}, are arbitrary negative numbers. Since
the sequence of pairs A, A\;; A3, Az; -+ 3 Ay, AN satisfies the conditions of
Lemma 1.4, it is the spectral data of a certain operator (1.1) with the reflec-
tionless potential ¢(z) and, according to (1.26), the Weyl function of (1.22) with
this potential is equal to n(}). Since the Weyl function determines the potential
uniquely, §(z) coincides with the reflectionless potential ¢(z). Summarizing the
results obtained, we arrive at the following theorem.
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Theorem 1.1. In order for the real locally integrable potential ¢(z) to be re-
flectionless, it is necessary and sufficient that the Weyl function n(\) of (1.22)
be a rational fraction. The Weyl function n()\) of (1.22) with the reflectionless
potential is expressed in terms of the spectral data of the corresponding operator
according to (1.26).

2. Closure of the Sets B(—pu?)

In this section we consider the potentials belonging to the closure B(—u2) of the
set of reflectionsless potentials B(—pu?) in the topology of uniform convergence
of functions on each compact of the real axis.

Lemma 2.1. Let g(z) be an arbitrary reflectionless potential. Then the functions
op(z) defined by recurrent formulas (1.5) are connected with the numbers &,
and functions Ax(z) (k=1,2,... ,n) by

[ ontrdt= —35 3K — =M@ @1
z k=l
op(z) = =20 Y " [-2(@)] [- (@) . (2.2)
k=1

Proof. According to Lemma 1.1

s [T e T[22 -5

k=1

whence it follows that in the domain || > «,, the function Ine*(),z) can be
expanded in the Laurent series:

Ine*(\, z) =idz + Z(i/\)"" (% Z {s} - [—/\k(z)]p}) .

p=1

On the other hand, from (1.3), (1.4) it follows that in the upper half-plane,
Ine*(A, z) can be expanded as an asymptotic series

Ine*(\, z) efi/\z+Z(i/\)"’ (-2" / ma,(t)dt) (A = o) .

r=1

Comparing these expansions we obtain (2.1), differentiating them with respect
to z we obtain (2.2).

Corollary. If g(z) € B(—u?), then
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0 < —g(z) = —01(2) = 22 “A(z) <22 (2.3)
k=1
lop(2)| < 27uP  (p=1,2,...). (23"

Indeed, assuming p =1 in (1.5), (2.2), and p = 2 in (1.5), (2.1) we find that

—g(z) = —o1(2) =2y _ -Xi(@),
k=l

/ ~ oa(t)dt = q(z) = 2 > {K - M=}
k=1

z

=-2 {Z [K3_1 = A ()] + n%,} > 242

j=1
and since
M@ >0, £A<p?,
then

0<—q@)=—o(z)=2)  —M(z) <242,
k=1

Moreover, since |Ax(z)| € kn < p, then from the latter inequality and equalities
(2.2) it follows that
n n
lop(2)] 27 =M@ M@ <2727 Y M) < 270
k=1 k=1

Now we note that the functions o(r) are defined by (1.5) for any infinitely differ-
entiable potential, and the following lemma is true for all infinitely differentiable
potentials. '

Lemma 2.2. If the functions o,(z) satisfy inequalities |op(z)| < 27 u?* 1 for all
p=1,2,... and = € (—o0,00), then all their derivatives satisfy inequalities

k {
d GE(.‘E) < 2p”p0-k+‘ (p+ D! . 2.4)
dzk '

Proof. According to the lemma condition these inequalities are true when k = 0.
Let us suppose that they are true when ¥ =0, 1, ... ,N (N > 0). Differentiating
(1.5) N times with respect to z, we get

_d¥oy (@) _dN a,,ﬂ(z) §§: i &V iy @) doi(z)
dz N+ S5 N dgN-i dzt
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whence, according to the accepted supposition, it follows that

¥ (2) (p+N+1) gl
—p < p+l p+N+2 p, p+N+2
[t sl saneva 3y
P=j+N-N G+
Ci, .
8 G- !
(p+N+l)'
= 2’#“N+2 — 1)1 + Z Z
jm1 i=0
- J+N—i)!(j+z)!]
xCl; , Az 2.5)
- J!

Differentiating the identity z=®*? = ==+ ;=G*D N times with respect to z
we obtain the identity

@+ 1)'
N
i=0

from which it follows that

@+2+N-DI & - PN G
TSI DL e rre e

Therefore, the right-hand side of inequality (2.5) is equal to

2 p+N+2(p+N+ 0
@+1!

and consequently

1 =2P””N+2(p+N + 1!

Q+p-— 7
, p!

dz N+ p!

whence it follows inductively that inequalities (2.4) are true forall k=1,2,... .

Corollary. If the potential ¢(z) € B(—u?), then functions op(z) satisfy inequal-
ities (2.4); in particular,

d*q(z)
.‘L'k

< 2u*%(k+ 1)1 . (2.6)

Lemma 2.3, Potentials belonging to the set B(—u2) are infinitely differentiable;
the functions o,(z), connected with them, satisfy inequalities (2.4), and the sets
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B(—p?) are compact in the topology of the uniform convergence on each finite
interval of functions and their derivatives of all the orders.

Proof. If the potential ¢(z) belongs to the set B(— pi), then there exists a sequence
of reflectionless potentials g,(z), belonging to the set B(—pz) which converges
to g(z) uniformly on each compact of the real axis. Since all the potentials
gn(z) of this sequence satisfy inequalities (2.6), then, according to the Arzela
theorem, it is possible to extract from it the subsequence ¢,,/(z) which converges
uniformly on each compact together with the derivatives of all orders. Therefore,
the potential g(z) = lim g,,/(z) is infinitely differentiable, and all its derivatives are
the limits of the derivatives of the potentials p,-(z) of this subsequence, whence,
according to the definition of the functions o,(z), it follows that these functions
and their derivatives are limits of functions o,(z;n') connected with potentials
gw(z) € B(—p?) and their derivatives. Since, according to the corollary of
Lemma 2.2, functions o,(z; n') satisfy inequalities (2.4), thcn their limits o,(z)
also satisfy these inequalities.

Compactness of the set B(— pz) immediately follows from inequalities (2.6)
and the Arzela theorem.

Corollary. The potentials g(z), belonging to the set B( ), can be analytically
continued into the strip |[Im 2| < u~! and satisfy in it the mequahty

lg(z +iy)| < 2p% (1 - ulyl)_2

Indeed, the estimates (2.6) show that in the intervals (z —
potential can be expanded in the Taylor series

plz+p7l) the

1= Do (o- < <aru)
k=0
which provide analytical continuation of this potential into the discs |z—z| < u™!
covering the strip [Im z| < u~! when z runs over all the real axis. Consequently,

the potentials g(x) € B(—u?) can be analytically continued into this strip, and,
besides, according to (2.6)

Eq (SC)(1 ) <Z|q (2)l| [k

<2yl Z(k + Dluyl* =242 (1 - ply])™
k=0

|g(z +iy)| =

Let us find out what is the form of the Wey! functions of (1.22) with potentials
from the set B(—u2).

According to (1.26), Weyl functions of (1.22) for the reflectionless potentials
have the form

n(A) =il + / % @7

g oy R

T W, G
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where do(¢) is the discrete measure concentrated at a finite number of points
—,\k(O), whose measures are —\},(0). Besides, if the potential belongs to the set
B(~p?), then, according to Lemma 1.2, the support of the measure lies in the
segment [—p, p] [i.e., (—A:(0))* < ], and, according to (2.3)

[ =Y o<,

Conversely, from Theorem 1.1 and Lemma 1.4 it follows that, if the measure
do(£) is concentrated on the finite number of points of the segment [—-a, a] and
f do(£) = o, then (2.7) defines the Weyl function n(A) of some (1.22) with the
reflectionless potential ¢(z) € B(—p?), where y? < o + 0.

Theorem 2.1. The function n()) is the Weyl function of (1.22) with the potential
from a certain set B(—u?) if and only if it may be represented in the form of
(2.7), where do(£) is an arbitrary measure with a finite support and, besides, if
its support lies in the segment [—a,a) and [ do(¢) = o, then 42 < a® +0 < 242,

The necessity: If the potential g(z) € B(—p?), then there exists a sequence
of potentials g,(z) € B(—pz) converging to it uniformly in each finite interval.
Let

do(§)
£k

by Weyl functions and Weyl solutions of (1.22) with potentials g,(z). Then
all the measures do(¢) are concentrated on the segment [—u, 1] and bounded:
Jdow(®) < 2. Besides,

oo _ Imn(Y) ,
/0 x, D dr = 7t 2.8)

np(A) =il +

 Ye(A,2) = ce(A, 2) + np(V)se(A, ) (2.8)

and the solutions cx(A, z), sk(\, z) on each compact converge uniformly to so-
lutions ¢(A, z), (A, z) of (1.22) with the potential ¢(z). This permits, using the
Helly theorem, passing to the limit in formulas (2.8) on the appropriately chosen
subsequence k':

da(§)
£— i
k,liinoo Y (A, 2) = (A, 2) + n(N)s(A, z) = Y(A, )

lim np()) =il +
k! — o0

= n(X)

and, besides, from (2.8') it follows that (), z) is the Weyl solution, and n(}\)
is the Weyl function of (1.22) with the potential ¢(z). It remains to note that
the limit of measures o(¢) = lim o (£) is, obviously, also concentrated on the
segment [—u, y] and satisfies the inequality [do(¢) < 2.

The sufficiency: Let the measure do(£) in (2.7) be concentrated on the seg-
ment [—a,a] and [ do(€) = o. Let us divide the segment [—a, a] into k non-
intersecting half-intervals of equal length, choose a point in each of them, and
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concentrate the measure of these half-intervals on chosen points. As a result we
obtain the discrete measure doi(§) concentrated on a finite number of points in
the segment [—a,a], and [ dox(€) = o. Obviously, the sequence of measures
doi(£) converges weakly to the measure do(¢). According to Theorem 1.1 and
Lemma 1.4 the functions

nx(N) = i)+ %ﬁ':"%
are Weyl functions of (1.22) with the potentials gi(z) € B(~pu?), where p? <
a? + o. Therefore, it is possible to choose a subsequence gi/(z) converging to
some potential ¢(z) € B(—u2) uniformly in each finite interval. Repeating the
last part of the proof of the necessity, we see that the function n()) = lim ni(}) is
the Weyl function of (1.22) with the potential ¢(z) € B(~u?), and 2 < a® = 0.
We shall denote the union of all the sets B(—?) through B:

B =U,5B(=p).

Thus, ¢(z) € B if q(z) € B(—p?) for some p.

Corollary. The potential g(z) belongs to the set B if and only if the Weyl
function n(}) of (1.22) is holomorphic outside a finite segment of the imaginary
axis.

The necessity of this condition follows immediately from Theorem 2.1. To
prove the sufficiency we note that from the holomorphness of the function n(\)
outside the compact of the imaginary axis there follows the holomorphness of
the function n(—iz) outside the compact of the real axis. Since imaginary parts
of the Weyl functions n()) are positive in the right half-plane, then the imaginary
part n(—iz) is positive in the upper half-plane. Therefore, the function n(—iz)
can be represented in the form

4o
-2

where a > 0, Im b = 0 and the measure dg(£) is concentrated on the compact A
of the real axis. Thus

n(—iz)=az+b+

n(A) = aid+ b+ :‘:i&,

and, besides, according to the corollary of Lemma 1.5, a = 1, b = 0, i.e. the
function n()\) can be represented in the form of (2.7), whence, according to
Theorem 2.1, it follows that the potential g(z) belongs to some set B(—u?).

Remark. From the definition of the function () it follows that it is holomorphic
outside the imaginary axis if and only if

lim [m*(z+ie) ~m™(z ~ie)] =0
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for all z > 0.

Let us denote by R!+ B the set of all the potentials of the form ¢(z) = c+§(z),
where ¢ € R!, §(z) € B. Thus, ¢(z) € (R' + B) if such real numbers c, u can
be found that ¢(z) = ¢ + §(z), where §(z) € B(—u?). We note that the solutions
¥(z,z), $*(z,z) and the Weyl functions m*(z), mE(z) of equations (1.22)
with any real potentials ¢(z), §(z) differing by a constant ¢, g(z) = c+ g(z), are
bound by obvious equalities

vE(z + ¢, 1) = PE(2,2) mE(z+ ) =mE().

For corresponding solutions (), z), J)(,\,:c) and functions n(})\), f()\) there fol-
low the relations

Jon =y (VW rea), $02) =9 (V= z)l
A) =n (\/;\2_+;) (N = (\/'AT-_C)

where by VA2 + A we denote the branch of the radical that is holomorphic in
the plane with cut —iv/4, iv/4 and assumes positive values on the semiaxis

2> Al
Lemma 2.4. The real potential g(z) belongs to the set R' + B if and only if the
corresponding Weyl function n()) is holomorphic outside some disc.

29

The necessity: If §(z) € B then, according to the corollary of Theorem 2.1
the function 7()\) is holomorphic outside a finite segment of the imaginary axis,
whence it follows that the Weyl function n(A) = A(G/AT = ¢) of (1.22) with the
potential g(z) = c + §(z) is holomorphic outside some disc.

The sufficiency: If the function n(}) is holomorphic outside the disc |A] <
r, then the Weyl function Ai()) of equation (1.22) with the potential §(z) =
q(z) — r? is equal to n(v/A? +r?) and, therefore, is holomorphic outside the
segment [—2ir, 2ir] of the imaginary axis, whence it follows that g(z) € B and
q(z) = r* + §(z) belongs to the set R' + B.

Lemma 2.5. If the real potential ¢(z) is infinitely differentiable and the functions
op(z), defined by (1.5), satisfy the inequalities lop(z)} £ 2RYR (R < o0), then
the function

z 00

¥(A, z) = exp [b\z + / E(Zi/\)"ap(t)dt} (2.10)

0
p=1

is the Weyl solution of (1.22) with this potential in the domain |A| > R.

Proof. From the inequalities |o(z)| < (2R)PR and Lemma 2.2 it follows that
in the domain considered the series E;‘,’,,(ﬁ/\)"a,(z) converges, it can be
differentiated term by term with respect to z and, since functions o,(x) satisfy
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(1.5), the right-hand side of (2.10) is the solution of (1.22), normalized by the
condition (X, 0) = 1. Further we have

/ ’ Y @iNPo,)dt

p=1

o0
<R |RY

p=1

=1elR (A =R (1Al > R)

and consequently,
), 2)] < exp [Im ) + [e|R? (A - B)”" |

whence it follows that in the domain Im X > 3R (Im A < —3R) the solution
(A, z) exponentially decreases when z — +o00 (z — —o0). Therefore, (A, )
is the Weyl solution in the domain |[Im A] > 3R and, consequently, in the domain
of the holomorphness of the right-hand side of (2.10), i.c. when |A| > R.

Theorem 2.2. The real potential g(z) belongs to the set R! + B if and only if
it is infinitely differentiable and the functions o,(z), defined by (1.5), for some
R < oo satisfy the inequalities |o,(z)| < R)?R.

Proof. The necessity: Let q(z) € R' + B, ie. g(z) = ¢ + §(z), where ¢ € R,
g(z) € B(—p?). Then |5,(z)| < p(2p)” and, according to Lemma (2.5), the
Weyl solution of (1.22) with the potential §(x) is equal to

P(\, z) = exp [ /o ) (i,\ + Z(Zi,\)"‘&,(t)) dt] (A > p) .

p=1

Hence, according to (2.9), a representation for the Weyl solution of (1.22) with
the potential ¢(z) = ¢ + §(z) is:

PO\, z) =P (\/A2 + c,:c)
=cxp{/ {\/Az—c+i( Az—c) a,(t)} dt} .

p=1

The function in brackets is holomorphic in the domain |A\| > p + 1/|c| and can
be expanded there in the Laurent series

[ iV —c+ Z (avv=c) a,(t)} =id+ f:(zi,\)-va,(t)

p=1 p=1

with the cocfficients
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a,(t) =(2i)’2i7ri- f [i\/ M —c—iX

|A]= Ry

+ i (2i\/,\2 Z c)—k &,,(t)] AP=1d) @2.11)
k=1

where R) is any number greater than u + \/|c|. Therefore,

P\, z) = exp { /o : [i,\ + Z(zu)-ra,(t)] dt} ({,\| >pu+ m)

p=1

and, since (A, z) is the solution of (1.22), functions a,(z) and the potential ¢(x)
are connected by the same recurrent formulas as 0,(z), i.e. a,(z) = o,(z). Hence,
according to (2.11), it follows that |o,(z)| < 2? M(Ry)R}, where R > u++/|c|
and

M(Ry) = lnl'lax

VA2 —c—ir+ i (Zi\/,\Z — c)—k 5:(@)] .
k=l

Since |5x(z)| < p(2u)* and on the circle [A|= Ry > u+ \/H the inequalities
‘\/,\Z-CI >R -+d, |\/,\2—c-—,\l <Vl
are true, then

-1

) < VR () - VR (- V- )

whence, for Ry = 2u + /[c], it follows that M(R;) < +/[c] + 4 < Ri and,
therefore, |o,(z)| < R1(2Ry)P.

The sufficiency: If |op(z)] < (2R)*R then, according to Lemma 2.5, the
Weyl solution of (1.22) is equal to

(A, z) = exp {iAz + / [Z(zl,\)-ra,(t)} dt} (1Al > R)

p=1

and the Weyl function that equals

¥:(,,0)

) =50

=iA+) (2N, (0),
p=1

is holomorphic in the domain |A] > R, whence, according to Lemma 2.4, it
follows that the potential ¢(z) belongs to the set R! + B.
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Corollary. The Wey! solution 1/)(A z) = (A, z) + n(A)s(A, z) of (1.22) with the
potential g(z) from the set R' + B is holomorphic with respect to the variable A
outside some disc and when |A] — oo it satisfies the asymptotic equality

e (A, ) = e [o(X, 7) + n(N)s(\, 2)]

=14 ’q(t)dt+0(,\'2) . (2.12)

2iA

Let us give some examples of potentials belonging to the set R! + B.

1) Decreasing potentials. Formulas (1.2), (1.2') are true for (1.22) with the
potentials satisfying the condition

o0
/ (1+|z]) lg(2)|de < oo , (2.13)
—o0

and, since e*()\, z) € L2(0,00), if Im X > 0, and e~ (), z) € La(—00,0), if
Im) < 0, we have in this case

) = {e+(,\,0)-1e+(,\,0)' ImA>0
e~ (X,0 e~ (1,0 ImAi<O

Therefore, for the Weyl function n()) to be holomorphic outside some disc
|A] < R, it is necessary and sufficient that

e”(X,0)e*(),0) — e*(A,0e(),0)
e*(X,0e-(A,0)

for A € (R, 00). Hence, according to the definition of the reflection co-
efficient, it follows that the real potential ¢(z) satisfying inequality (2.13)
belongs to the set R' + B if and only if the corresponding reflection coeffi-
cient is equal to zero outside some compact.

2) The finite-zone potentials. The potential ¢(z) is called a finite-zone one if
the Weyl functions m*(z), m~(z) coincide with the same function m(z)
meromorphic on the Riemann surface of the radical

n(A +i0) — n(A - i0) = =0

N-1
\)(2 -ER) [1G-Ey)z- ED;
=1 '

(Bf <Ef<Ef <Ej<..<Ejn_<EN_ <ER)

i.e. m(z) = m*(z) when z lies on the upper, and m(z) = m~(z) when 2
lies on the lower band of this surface. In this case m*(z +i0) = m~(z — i0)
if £ € (Ep,00) hence it follows that the function n(}) is holomorphic
outside the disc |A|] < R, where R? = maxicicn |Ej |. Thus, the finte-
zone potentials belong to the set R' + B, moreover, they belong to the set
B, if Ey =0.

B T

OIS 1

i
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Theorem 2.3. The Cauchy problem for the KdV equation
Uy = 6uuy — urpp , u(z,0) = q(z) (2.14)
with the initial function ¢(z) from the set R! + B has a bounded solution.

Proof. Problem (2.14) is solvable if ¢(z) € B(— %) and, besides, its solution at
each fixed ¢ also belongs to the set B(— pz) Therefore, estimates (2.6) hold for the
solutions u(z, t) of the KdV equation with the initial data from the set B(—u?),
and from them, according to the KdV equation itself, follow the inequalities

o u(z, 1)

| < CkLp)

with constants C(k,!, u) independent of the initial data ¢(z) € B(—u?). For
example

C(k,0, ) =2uM2(k+ 1)}, Ck,1,p) = 5u*P(k +4)!, etc

Therefore, the set of all solutions of the KdV equation with the initial data from
B(—u?) is compact with respect to the uniform convergence of functions with all
their derivatives on each bounded part of the (z,t) plane. We see that the closure
of this set consists of solutions of the KdV equation and contains its solutions
with any initial data from the set B(— ;tz)

Thus, the Cauchy problem (2.14) is solvable if ¢(z) € B(— pz) Now let
g(z) = ¢ + §(z) where ¢ € R and §(z) € B(—u?). According to the previous
discussion, the solution of the KdV equation with the initial data §(z) exists. Let
us denote it by @(z,t) and let

u(z,t) = iz + 6¢t,t) +c. (2.15)

A simple verification shows that the function u(z, t) is a bounded solution of the
Cauchy problcm_(2.14) with the initial function ¢(z) = c + §(z). Therefore, for
all ¢(z) € R! + B the Cauchy problem (2.14) has a bounded solution.

3. The Inverse Problem

As is known, the Weyl functions m*(z), m™(z) [or one function n(})] uniquely
determine the potential. It is possible to reconstruct the potential from the given
Weyl functions, for instance, in the following way: first, to find the spectral func-
tions p*(u) by the known formulas, then to use the Gelfand-Levitan equation.
Unfortunately, this algorithm cannot be adjusted for solving non-linear equations.
In this section another method for solving the inverse probiem is given which
also makes it possible to solve the Cauchy problem for the K4V equation with
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the initial data from the set R'+ B. Transformation (2.15) shows that it is possible
to confine oneself to the discussion of the set B.

According to Theorem 2.1, the Weyl functions n()) of (1.22) with the po-
tentials from the set B have the following form:

n(A)=i=+/ :‘_’_(3 ,

where do(£) is the positive Borel measure with the compact support 2. We
remind the reader that the support of the positive measure do(¢) is the set of all
the points ¢, such that the p-measure of any interval containing the point ¢ is
positive. The support is always closed, and if it is bounded, as in our case, it is
compact. '

We want to reconstruct the Weyl solution

(A, 2) = (A, 2) + n(A)s(A, z)

from the given function n()) without using the approximation of reflectionless
potentials. In order to deal with the usual classes of analytical functions, we
make the substitution A = —iz and get

ni(z)=n(—iz) =z + /;: ZL_(? (3.1
i(z, ) = Y(—iz, z) = iz, 2) + n1(2)s(iz, z) . 3.2)

The functions ni(z) and ~n;(—2) have a positive imaginary part in the upper half
plane, i.c. they are the Nevanlinna functions. The important role in the spectral
theory of one-dimensional Schrédinger operators is played also by the functions

_ mm(=2) S S
Mu(2) = TG —m—n) Ma(2) = Tz —nmi(=2)’
1 "l_wm(;zl

My (2) = Mpp(2) = mG) =)

MO —mD) 3 m@-mCn T2 ©3)

The Nevanlinna representations for these functions have the following form:

Mu@) = go+ [ D | g [T

d 3.4
Mia(z) = Man(z) = / den(©

=) E"‘z

where

] ]
/ dg;;(t) = lim l / Im M;;(t +ie)dt .
a 0w /,

AW e

A B e

T

e ARAEARr  J LARNR £ A T
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The measures dp11(£), den(£) are positive and all three measures are absolutely
continuous with respect to the measure

do(§) = den(§) + de(§) ,
ie. dpij(t) = §;;(t)dp(t) where

0< 6, <1, u®)+én@® =1, 6, <6u®)snl®) .

Lemma 3.1. The function (2z)~![n;(2) —n1(—z)] can be represented in the form

mE@-m(=2) 1 (/1 1
— -expﬂ_/(; (t—z+ )m(t)dt

t+2

where

n{t) = ling arg [ny (¢ +ie) — mi(—~t —ie)] . 3.5)
€

Proof. From (3.1) it follows that

@ -me- =2+ [ (e - 77 )
=2z [1 + _+: 5‘210_(632]
and
ni(z) —m(=2) _ F() 3.6)
2z
where
do(£)
Fw)=1+ [ g

Since the imaginary part of the function F(w) is positive in the upper half-plane,
then 0 < arg F(w) < 7 (Im w > 0), the function In F(w) = In |F(w)|+i arg F(w)
is Nevanlinna’s and almost everywhere there exists a limit

(1) = lim arg F(t +i¢) = lim ImInF(¢ +ic)
€, 0 €0
and according to the Lebesgue theorem

b b
hm Im In F(t +ie)dt = % / p(t)dt .
a

g0

On the real axis the function F(¢) is positive outside the finite segment of
the positive semiaxis. Therefore, outside this segment () = 0, and, since
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lim| 4| — oo In F(w) = 0, the Nevanlinna's formula for the function In F(w) as-
sumes the following form:

1 (=]
mFe) = [~ 2,

where the integration is, in fact, carried out along the finite segment of the
positive semiaxis.
Therefore

NSRS retymem |1 [ 2] e [ = ]
o i-— T Jo

2z 2_ 2
=cxp[l/°° 1 + 1 Zd
T Jo T—2z T+z P(r)dr

and to conclude the proof, it suffices to remark that, according to (3.6), for t > 0

m(t) = lim arg [ny(¢ +ic) — ny(—t — ie)]
1
= lzll'{)‘ arg F (£ — &% +2ite) = p(t?) .

Let us decompose the measure do(£) into the absolutely continuous do,(¢) =

o' (€)d¢ and singular do,(¢) parts, the supports of which are denoted by {2, and
), respectively:

do(§) =dou(§) +dou(§), =AU, .

We agree also to denote by f(i{) the image of the set I/ for the mapping z —
f(z). For example, —U, ||, U? are the images of the set I/ for mappings
T — —z,z > |z|,z = 2%

The set

RR=2NED={¢: € N,—E€ N}

is called the symmetrical part of the support 2 and its complement
=0/ ={¢: te N,~Ee )

is called the asymmetrical part. It is clear that
22)=N2Q2), 2KQ2)=02n02Q2), 22 =22)UNAKY2),
2=021)U%W2)U %(Q2).

The sets £2, £2(2), £2,(2), £2(2) are compact, and the set £2(1) is compact if and
only if dist(£2(1), £2(2)) > 0; morcover, in this case the distance between the
sets §2(1) and —2(1) is also positive.

Lz.uer on it is supposed that the support 2 of the measure do(¢) does not
contain the origin, the set £2,(2) consists of a finite number of nonintersecting
segments +A4;(a) and all three sets §2(1), £2,(2), §2,(2) are placed at a positive

I S L
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distance from one another. In this case the sets £2(1), —£2(1), 12.(2), §%(2) are

compact and do not intersect, which makes it possible to cover the sets £2(1) and

£2,(2) by a finite number of segments A;(1) and 4+ A((s) so that all the segments

|4Ai@), |4;(1)), |Ai(s)| are strictly positive and do not have common points.
Thus, the imposed restriction is equivalent to the following condition.

A) There exists a finite system of segments A;(a), 4(s), Aj(1) such that
the segments |A;(a)], |Ai(s)], |4,(1)] are strictly positive, do not have common

_ points and

am=Jam > 20, 4@ =J{A4EU-46) D %)
j ]

A2 = J{Ai@U-2i@)} = M@

We will introduce, for the sake of brevity, the notations A(2) = A.(2) U 4,(2),
A = A(1) U A,(2) U A,(2). The complement of the set |A| up to the positive
semiaxis (0, oo) consists of the finite number of intervals which we denote by
(|bi-1l, |ai] :

=lbo| < |1} < |ba] < ... < lan] < |bn| < lans| =00
We shall need special factorization of the function 2z[ni(z) — ni1(—2)]~! which

takes into account the position of the sets £2(1), £2,(2), £2:(2).
From the equality

° do(f) /°° do(e)

oo £+ 2

n2) —ni(—2z) =2z + /

0 =2

it can be seen that in the right half-plane the function n(z)—n(—=z) is holomorphic
outside the set |2] C |A|. In particular, it is holomorphic and real in the intervals
(|bi=11, |a:]), and, since its derivative .

24 /’ * da(§) / *® da(§)
E-27 Joo(+2)?

is positive therein, then each interval (|b;_1], |a;|) contains not more than one
root of this function denoted by |c;—1| assuming |c;—1| = |bi—1| (Jci—1] = |ai]) if
ni(t) — ni(=t) > 0 (< 0) in all the interval (|b;—|, ]a;|). We note that |co| =
since the function n;(z) — ni(—2) is odd. Consequently, on the positive semiaxis
function (3.5) can be different from zero only for ¢ € |A| and in the intervals
(|5, les]) ¢ = 1) where it is equal to x. Hence, according to Lemma 3.1 it
follows that
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m@-mn) 1 el
2 '°"p;{2_:Al (t-/’ﬁ)"‘“
+/ ( 1 +—1——)m(t)dt}
Y t—z t+2

_Nc%__z2 1 1 1
'.I_I]b%-zz“" ;/{A, (t_z*'m)m(t)dt :

Further, since [A| = |A(1)] U |A(2)] and the identity

/(1+L = [ (= 1)¢ :
o \T—z "1z ) MO '/A, T—'Z"?IE)ET"‘('”)“ !

is true both for positive and negative segments Aj;, then

1 1 ) 1 1\ ¢
+— tdt=/ —_— ) —
./|A| (t-— 4 t+ 2z m( ) A(I)UIA(‘Z)l (t -2 + t+z> It|r" (ltl) dt

and

2z
ny(z) — n1(—2)

N
-2 1 1 1
= t
= exp —--/ ( — ] -
o=z ™ Jawolam \T—z t+z) Tk (1h dt] .

Assuming

N
_ b — =2 1 t 1
r(z) = H pap— exp [—— / =M (ltl) ?———z-dt] CN)!

im1 G T Jamulae) It

we get the desired factorization

2z
n1(2) — ny(-2)

= r()r(=2) .

Let us explain the choice of signs of the numbers b;, c;. If |b;] is the right endpoint
of segment |A;(1)| and'—|A,~(l)| € A(1), then we assume —b; = |b;]. In all other
cases b; = |b;|. If |¢;] is the left endpoint of segment |A,(1)| and —|A,(1)| €
A}(ll), tlle(;ld—hc,-h= |ci|. In all the other cases ¢; = |c;|. The set of all numbers c;
whose moduli lie strictly in the corresponding intervals (|b; i ; '
shall denote by C. ponene (b <l < fewab we

Formula (3.7) shows that for such a choice of signs the function - !
have the following properties: “ STk ri=2)

1) The funcﬁon r(z) is holomorphic outside the set A(1) U]A(2)|U C and the
function r(z)~! is holomorphic outside the set A(1) U |A(2)].
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2) The domain of holomorphy of the functions r(—z), r(—z)~! contains the
set A(HU|A@)UC.

3) Almost everywhere (with respect to the Lebesgue measure) there exist the
limits lim, o r(t ig) = rE(8), and r*(t) = r—(1),

r*(t) = |r(t)| exp [—% (ﬁ + 1) m (ltl)] [te A2)] . (3.8)

Remark. From the identity

[7 ol [ 2y

—o t— 2 o L2

it follows that the function

a(z) = exp [/“’ E;(Tltl—z)-dt]

satisfies the identity a(z)a(—z) = 1. Therefore, together with r(z), the functions
r(z)a(z) also realize the factorization of the function 2z[ni(z) — n1(=2)]"}. The
choice of the function r(z) is motivated by the following two conditions: first,
the function r(z) must be meromorphic outside the support of the measure do(£)
{i.e. in the domain of holomorphy of the function n;(z)] and, second, in the
resulting integral equation, the function p(s) must be the Muckenhoupt weight.

When solving the inverse problem, the main role belongs to the function of
the complex variable z

9(2) = gz, 7) = €™ 1(z, 2Ir(2) = €77 [r(2)eliz, z) + r(2Imi(2)s(iz, 2)]

for which a convenient integral equation will be obtained. Let us enumerate the
main properties of this function considering the real parameter z arbitrarily fixed.

Since c(iz,z), s(iz,z) are cven entire functions and the function ny(z) is
holomorphic outside the support £2 of the measure do(€), then the function
e~ *%1;(z, z) is also holomorphic outside the set 2 and, according to (2.12) in
the neighborhood of the infinitely remote point

e Ty (z,7) = 1+(22)7! / q(t)dt +0(z7%) .
0
The function r(z) is holomorphic outside the set A(1) U 1A, U AU C
and r(z) = 1 +z7rg + O(z7%) if |2| — oo. Therefore, the function g(z) =

e~ %4 (z, z)r(2) is holomorphic outside the set AU C and in the neighborhood
of the infinitely remote point it expands in a series

gz)=1+2z"" (% / ’ q(t)dt + ro) +0(z7%)
0

hence, by the way, a convenient formula for the potential follows:
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o) =22 lim () -1) . (39

For almost all the values t € (—o0, +00) (according to the Lebesgue measure)
the function g(z) has the limiting values

= limg(t +¢) = ™" [rE(@)efit, ©) + rEOInE (D)s(it, 2)] (3.10)

satisfying the equality g*(t) = g—(2).
The following lemma connects the jump of the function g(z) at the point ¢
with its limiting values at the point —¢,

Lemma 3.2. Almost everywhere, with respect to-the Lebesgue measure, on the
set Ay(2) = 2,(2) the equality '

9" — ™) =7 [a()g* (1) + K(t)g~(—1)] 3.11)
holds, where
e TR @]
a(t) = -5 = D]

y [v(t)(ltl ~t) (“’t()—t)(|t|+t) eimded
o=

and v(t) = Im n*(t) = 7o'(t).

Proof. From (3.10) it follows that (3.11) holds if and only if the functions a(t),
b(t) satisfy the equations

(@) ~ r7(8) = a@)r*(—t) + Kt)r—(—1)
r*@®ni() — r~On] (@) = alt)r* (~Onf (1) + Wt~ (=tny (~1) .
Solving this system we find that
a(t) = r* (@) — ny(~1)] — r~(B)ny () — ny(-1)]
r*(ft)[nf(t) - ny (~t)]
wt) = O @ = nf(-1)] — r*(B)n{(t) - ni(-1)]
r=(=t)nf(=t) — ny (1)

And since the equality f*(t) = f~(—t) is true for all the functions in the right-
hand parts of these equalities then a(t) = b(t). Further, from the identity

(3.12)

ni(®) — ny (=t) = —[n{(t) - ny (-1)]

and from the definition of the argument of m(¢) it follows that

ni®) - nj (=) = lfl Int(®) = ni(~)] exp [I‘Ttlmltp] ,
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and from formulas (3.8) it follows that

O O [
5 ™ v [m )]

ro@® _ @l
(=) |r(-t)]
Inserting these expressions into the right-hand parts of (3.12) we find that

___Ir®]
U = S (=D

_ aim(th [nf(t) —ni (=t +n(®) - nf(t)] }

_ |r(t)|etm D
" 2iv(=t)|r(-1)|

. t o . .
x {21v(t)+ |_tT [nf(t) - n; (_t)l [e"n(ltl) _cl(tlltl)rn(lfl)]} ,

exp [im(t])] .

{ﬁ Int(t) = n (=)

where v(t) = Im n{(¢). Finally, using the equalities
.1 . t .
exp [—im(|t])] — exp [llTlm(ltI)] =— (1 + |T|) sin m(Jt)) ,

v(t) +v(=t) =Im [nf(t) - n,'(—-t)] = lnf(t) - nl_(—t)| sin m ()

by simple transformations we get the final expression for a(t) :

Ir®] f v@)t] = £) + v(=t)(t] + 1) } eim e
tr(=t)] 2tv(-1) '

v e o it AR A

a(t) = —

Corollary. Almost everywhere, with respect to Lebesgue measure, on the set
Aq(2) = £24(2) the equality

gt +g= (1) _*[g* @) —g~(®)]  a(t) - b(t)

[g"(=t) = g™ (=1)]

2 - a®)+ b))  2[a®) +b@)]
(3.13)
holds, where
_ 1 Tv@(t = O + u(—)(Jt} + t)] .
a(t) + b(t).= —i EEn v sin ny(|¢))
___rdl [v@(t] = ) + u(=t)(|t| + t)]
a(t) — bt) = - )| [ (D) .cos m([t]) .

These formulae follow from Lemma 3.2 in the obvious way if (3.11) is trans-
formed into the form
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g — g™ () =e~ 4= {w

+“‘L;’"—t2 [*(=t) — g‘(—t)]} :

Let us denote by I' a family of closed nonintersecting contours running anticlock-
wise, which surround the segments A4;(1), |4i@)], —|Al@)], |As)), —|Ai(s)]
and the points ¢, € C. In the domain outside the contours, the function g(z) is
holomorphic and tends to 1 as |z] — oo, which, with the help of the Cauchy
integral formula, permits us to represent it in the form

[g*(=t)+ g™ (~1)]

_ 1 9
g()=1 _-Z-E/FE—-Zd& (3.149)

where z is an arbitrary point of the domain outside the contours. In order to
calculate the integral in the right-hand part of this equality, it is convenient to split
the family I' into four parts containing the contours which surround, respectively,
the set A()UC [part I'(1)], the sets |Ay(2)], —]A(2)], [parts I3(2), I (2)] and
the set A,(2) [part I3(2)]. From properties 1 and 2 of the functions r(2), r(—2)
it follows that all the contours can be pulled so closely to the sets which they
surround, that the function r(z) will be holomorphic inside the contours from
the family I',°(2) and the functions r(~z), r(—z)~! will be holomorphic inside
the contours belonging to the families I'(1) and I}*(2). It should also be noted
that, since the set A(1)U C lies in the domain of the holomorphy of the function
ni(—2z), it will also be holomorp_hic inside the contours of the family I'(1).

We now demonstrate the calculation of the integral along the contours of the
family I'(1).
Because the functions (i¢, z), 3(i, z) are even, it follows that

90 =% T8 cte (1 it )+ r(-Ema(-E)s(—it, o)

-6
+1(=Olm(©) ~ m(-Dls(i€, 2}
- S0 or-pr s
and since
HOM=0m©) — mi(-6)] = 2¢
then

eHrgmy 1 2e-€2 (i€, 2)
= me=mcd o

From the previous considerations it can be seen that the function

1 _ _ [7 den(®
Tm@® —mp - Me© = /_m t—¢
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is real in the intervals complementary to the set A U |4] = AU (-A) and has
poles at the points +c, (cp € C) and also at the point ¢ = 0. Therefore, the
support of the measure dpy(%) lies in the set AUu(-4uCcu(-C)u {0} and

o don(t)
@ — (=8 /Amuc t—¢ 1O

where f(£) is a holomorphic function on the AU C and in its neighborhood.

:I'hc functions r(—¢)-1!, n1(—¢) and, consequently, g(—£) are also holomorphic
in this domain. Therefore,

Q) _2€e™*"sG, 2)r(—¢) — e~z g(—g) f(£)]

(-2 r2(=6( - 2)
_ e Hrg(—g) den(t)

ri (&) - 2) amuc t—§€

and the ﬁr§t term in the right-hand side and the coefficient of the integral are
holomorphic in the domain which is surrounded by the contours I'( 1). Therefore,

1 g(6) 1 26e~2zg(_¢) doa(t)
L de=—— [ K90 )
27i /1"(1) §—=z 2mi /r(]) (=€ - 2) Jagyue t-¢ %

- 1 26e%2g(—¢)
/Amuc {27ri /r(n) HEPC = 2E =) d‘f} Gt
and from the residue theorem
1 9(&) 2Ue~22g(_t)
— Sl df = ——
- /r e /4 e T dent®). (3.15)

We now show the calculation of the integral along the contours of the family
I} (2). Using the equalities
-¢z
9(§) = h [r(Or(=£)c (¢, 2) + rEr(=Eni(€)s(i¢, 7))
_ et [ di&2) | m©sié,)
(=& [ni(8) - (=0  n - nl(—f)J
! =_ [T dent) Mm@ 1 (% den)
m(€) - ni(~¢) oo t=E m(f)—nn(—ﬁ)—Z/oo t—¢
and the holomorphy of the function r(~€)~! inside the contours of the family
I3$(2), we find by analogy with the foregoing that

N

27l’i r.+(2) f -2

2te~¢ .
) /14 @) (=D = ) [t 2)den(t) ~ s(it, 2)dera(1)]

2fetz . .
= /I ) CHE—D [e(it, 2)éx(t) — s(it, z)612(t)) do(t) (3.16)
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where

dpi;(t)
do(?)
Now we note that on the set A;(2) the measure do(£) is purely singular. This
makes it possible to use the Katz theorem {2] which states that almost everywhere

according to the measure do(t) on the set A,(2) either 5,2(2) = 812(t) = 0 or there
exists a finite real limit —nj(—t) = lim, o —n(—t +ic) and

812(t) = 622(t) [—ni(~1)] = —nj(-1)62(2) .

Consequently, almost everywhere according to the measure dp(t) on the set
| Ag(2)] the equality

e(it, 2)6(t) — s(it, 2)612(2)

6i;(H) = , do(®) =d(en(®) + e22(t)) .

= :(__t:) {e** [clit,z)r(—1) + r(-—t)nf(-—t)s(it,m)]} 62(t)
—tz
- t)y( —t)622(t)
holds, from which, according to (3.16), it follows that
! @ / AT tdemtt 3.17
o /. b= [ e @3.17)
where
g(-t)=1% lim [g(—t +i€) + g(~t — ie)] , (3.18)
€L

and, besides, this limit exists almost for all ¢ € |A,(2)] and according to the
measure dpya(t).

We now demonstrate the calculation of the integral along the contours of the
family I, (2).

From (3.1) it follows that

() = / d"“’ + £6)

where f(£) is the function holomorphic on the set —|A,(2)| and in its neighbor-
hood. Therefore,

9(®) _ e~ r(Q)lclié, z) + F(Os(L, oI, “f’r(ﬁ)s(xﬁ ' 7) / do(t)
-z {-z 1. t=€

The first term in the right-hand side and the factor multiplying the integral are
holomorphic in the domain which is surrounded by the contours of the family
I'7(2). Hence, by analogy with the foregoing, we find that
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RS 9(§) / e rt)s(it,z) , 319
2#1/;~(2)£—Z€ "lAl(z)l t—z 0() ( )

Now we shall find the value of the limit (3.18) for almost all points of the set
—|A4(2)| with respect to the measure do(t). Since the measure do(t) is singular
on this set, so is o, aimost everywhere that do(t)/dt = +oo and, consequently,
also o-almost everywhere lim, (0 Imn (¢ +ic) = +oo. Therefore, it is sufficient
to find the limit (3.18) on the subset N C |4,(2)] of those points ¢ where

lim Im ny(t +ie) = +o0 .
€,0

From the inequality Im {n;(t + ic) — ni(~£ — i)} > Im n; (¢ +i¢), the identity

2(t +ie)

r-t-ie)= +ie)[ni(t +ie) — ny(—t — ie)]

and the holomorphy of the function r(z)~! on the set —|44(2)] it follows that
for ¢ € N, limg,0 r(—t —ic) = 0 and consequently

et s(it, z) ny(—t — ie)
r(t) €10 ny(t +ie) — ny(—t —ie)

ling g(—t ~ig) = (3.20)
e

if the limit on the right-hand side exists.
Let us introduce an auxiliary measure d(t) = do(t) + d(-—a~(—t)). The mea-
sure do(t) is, obviously, absolutely continuous with respect to do(f) so that

do(t) = 6(t)da(t), 6@ +6(-t)=1, 0<6(@) <1,
We shall assume the following condition to be true:

B) On the set A(2) the function &(t) is different from zero and satisfies the
Lipshitz condition: [6(t + h) — 6(t)] < c|hl.
We note that due to the compactness of the set A(2)

0< mf 6(t) < sup <1,
tea tEAQ)

Besides, the Lipshitz condition obviously guarantees the boundedness (for ¢ V)]
of the integrals

56) - 6(t) 5(8) —6(~1) .
[ Rwe, [T 0. (.21
Further, we have
n;(t+le)-t+1e+/£ 50 d (3)

= 8(t) / E‘_i"t(i) [t+ie+ / ——5;5_) t‘_&i)da(g)]
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ny(—t —ie) = 6(—~ t)/£
and, since the measure dg(§) is even

BO___ [ L0 _d© /sda@

E+t+ie —f+t+xe —t—ie
and integrals (3.21) are bounded,
ni(t +ie)6(—t) + ni(—t — ie)é(t) = O(1) (,0) .

+t+ie E+t+ie

0) [_ e [HO 8D da<¢)]

Hence, it follows that for ¢ € N there exists a limit

m(=t—ie) __6(-1)
e0 m(t+ie)  6@F)

Therefore, for £ € N the limit (3.18) also exists and

) . 2tet=s(it, )
1}{‘6 g(—t —ig) = _—_T(_t)_&(—t) ,
so that
—iz ¢
s(it, 2) = _r(e " g(-1)

2t4(~t)

almost everywhere on the set —|A,(2)] with respect to the measure do(t). Sub-
stituting this expression into the right-hand side of (3.19) we finally get

1 FG) / 25 tg(—) 32
27(1/[: (2)6—2 5 4.2 (t—z)2t6( t) (t) ’ ( ’ )

Here we show the calculation of the integral along the contours of the family
Q).

The proof of (3.16), (3.19) used only the holomorphy of the functions r(£) and
(=€) on the sets —|A,(2)| and |A,(2)|, respectively. Since these properties
of the functions r(¢), r(—¢€)7! are true also on the sets —|A4(2)|, |Au(2)], sO
(3.16), (3.9) (with the substitution of |A,(2)| for |A.(2)}) also hold for contours
surrounding the sets —|Aq4(2)], |Aa(2)] i.c.

1 9 . / et r)s(it,a)
27?1_/[' a)f—z E —14.2) t—2 U()

2te™® . .
. /| s T D €0t Ml = ot )dgua4) (3.23)

In addition to the restrictions obtained above on the measure do(f) we shall
assume one more condition to be true.

C) Functions p2;(t), p12(t) are absolutely continuous on the set A,(2) = 12,(2).
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We shall not discuss here the character of the imposed restrictions A, B, C
and limit ourselves only to the following remark: in the space of measures with
strong topology, dist (do1(£), doa(€)) = var[o1(¢) — 02(£)], measures satisfying
the imposed restrictions form a dense set. For us it is relevant that in this case
the contours I,(2) can be pulled to the twice repeated segments from the set
A4(2). Indeed, if condition C is fulfilled, then for ¢ € A,(2)

do(t) =o'(t)dt ; den(t) = en(t)dt; dea(t) = gla(t)dt .

On the other hand, from the holomorphy of the function r(¢) on the set —|A,(2)]
it follows that for t € |A,(2)|

g* (@) — g~ (@) = e~ = r(t)s(it, z) [ni() - ny (1)] = 2mie~ = r(t)s(it, z)o' (t)
and from the equalities
r(€) = 26r(=&) " [ (&) — m(=6)] 7" = —26r(—=&) " Mx(6)

r(©n1(€) = —26r(=6)~" Ma(On1(€) = 26r(—£) 7" [0.5 + My2(6))

and the holomorphy of the function r(—¢)~! on the set |A,(2)| it follows that
for t € | A.(2)|

gt —g™(1)
= =2r(~t) e~ {dit, 7) [MH(t) — My (1)]
—s(it, z) [M(8) — M) }
= —2mi2tr(—t) e [o(it, 2)oh(t) — s(it, 2)e}y (D)) -
Hence, according to (3.23)

! g(&) __1- g @) — g~
2ri /1‘(2) §- PR /A.(z) el (3.29)

We shall introduce a new function and & measure assuming

% [¢* (=) +g~ (=] e~ te R/

y =9 §
R NO) t€ L@
- (2 Fden®, te ADUIAQIUC
dntt) = { )
ut) = sEsCp W te-1AQ)
1
i;r-dt’ t € W(2).

From (3.15), (3.17), (3.22), (3.24) and (3.14) it follows that



316  V.A, Marchenko

y(€)¢

g(x)=1 £

d ©) (3.25)
and the limit
Jlet=t+g (=) = 13?& i [g*(~t+ie) + g~ (=t —ie)]

exists almost everywhere with respect to the measure du(t). Therefore, almost
everywhere there exists a limit

lim/( -t -)y(€)£d§=1_ YO 1o

€, 0 E+t—ie E+t+ice E+t
and the equality

1

30+ amo)=1- ¥R (326)
holds. Further, from the definition of the function y(t) and (3.13) it follows that

e?tzy(t) t¢ 2(Q2)
1 + -
'+ (-] = { tetry(t)  tla(t) — K1)
Ta@®+ b * 2iae+ by Y0 1€ A
Therefore (3.26) generates the following integral equation for the function y(¢) :

W@ +e 790 [meu- + f X eante) -1 62
where
Ha®) — KO1 __t
m(t) = xa(t )m EXa(t)Cth)l (1eD)

) = [1 — xal0)] + xa( 120220

lr(t)l [v@)(|t] — t) + v(—t)(J¢| + t)] m (1¢))
r(=0)] tu(-t)
and x,(t) is a characteristic function of the set £2,(2). Thus, to solve the in-
verse problem one should find functions p(t), m(t) and the measure dv(t) from
the given Weyl function n(A) and solve integral equations (3.27). According to
(3.9, 25), the potential is restored by

=[1 = xa()] + xa(t)

d
w0 =27 [ wodne.

The integral equation (3.27) differs from (0.1), to which the finding of solu-
tions of the KdV equation was reduced in [4], only by the coefficient: in (0.1),
exp[—2¢(z — 4€%1)] is present instead of exp(—2¢z). Therefore, to solve the
Cauchy problem (2.14), one should:
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1) Starting from the initial data ¢(z) = u(z,0) find the corresponding Weyl
function n(z);

2) using the above described method carry out the factorization which allows
one to find the functions p(€), m(£) and the measure duv(£);

3) solve the integral equations

=& ,,

() + 400 [m@a(-0+ f 2

s &dv(€h -1
(3.28)

The solution u(z,t) of the Cauchy problem is expressed in terms of the
solutions z(£; z,t) of (3.28) in the following way:

we =2 / «(6; 2, DEdu(E) .

The unique solvability of (3.28) in the space L,(dv) for all real values z, t is

established in [4].

Remark. Let us explain the role of the factor r(z). If we omit it, then the function
a1(2) = g1(z,z) =7 ** (2, z) =7 *% [c(iz, 2) + n1(2)s(iz, 2)] (3.29)

as is easily seen, will also satisfy (3.9, 14). Since

(3] - e[ c(i€, z) + £s(i€, 7)] . e~¢25(i¢,z) [ do(t)
£~z £€—=z -z t—-¢°
and all the functions in the right-hand side of this equality, except the function

[ do(t)/(t — €), are holomorphic inside the contour I', then, according to the
residue theorem,

p@=1-s [ 29y L / “"s(xe,z) /da(t)

-z 2ri

ré
's‘s(lﬁ,m) ] 24(it, z)
/[2m rE-ae-o| % “’”“/_“"t dotd).

Hence, according to (3.29), (3.9) it follows that

e~ s(it, 1) — e~ *%s(iz, z)
t—z

c(iz, z) + zs(iz, z) = €*F [1 + / da(t)] ,

g(z) = —22% ‘/c—".s(it,:c)da(t) .

The evenness of functions c(it, z), s(it, z) allows us to eliminate c(it, z). As a
result of the elimination, we get the following equation for the function y(z) =
e~ *%s(iz, z):



318  V.A. Marchenko

1 t) — y(2).
o |atoun - 57 [H9=¥4000)

1 [ y(t)—y(—2)
—e {[0(2) - 1y(-2) - % /_—t_«o-z_d”(t)}

= (22)_1 (ezz _ e—tz) ,
is an arbitrary function. o
th;ea:;;in obtain an equation which differs from the general equations in [4]
only by a factor. Therefore, if the equation

2 1 (2") — y(2) n_
es==4s70 {a(Z)y(Z) -3 [/ y‘isza.(z) 1]}

1 (2') — y(—2) "n_ }
= ¢ He=4h {wz) -y -5 [ / rEra G 1]
(3.30)

is uniquely solvable with respect to y(z), then the function

u(z,t) = —2% / y(2)do(z)

i i initi 0) = ¢(z). Thus, the solution
tisfies the KdV equation and the mmal' data u(z, ) ' i
(S)f; the Cauchy problem (2.14) can be obtained by solving F3_.30) with the fuzctlhon
a(z), that ensures its unique solvability in the space. But it is not known whether

it is ’possiblc to obtain it for a wide enough class of measures da(g).

The proof of the unique solvability of the corresponding integral' equatio:;
is the most important part of inverse problems. The factor r(z) was introduc

to obtain well-defined and uniquely solvable integral equations.
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Linear Schriodinger equation 14

Linear spectral problem 24
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Liouville equation 46

Liouville integrability 65
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Matrix KdV equation 28
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Moser mapping 259
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Non-decreasing initial data 273
Non-truncated expansions 89

Nonlinear PDEs 1 +

Nonlinear Schrédinger equation
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Not C-integrable 18

Not S-integrable 18

ODE integrability 65

Painlevé approach 59

Painlevé branches 97

Painlevé equation 74

Painlevé expansions 95

Painlevé property 63

Painlevé test 80

Perturbation theory 185

Perturbed wave equation 23
Poincaré theorem 193ff
Polynomial Cremona mappings 251
Polynomial mapping 251, 254, 256
Properties of asymptotic states 205
Psi series 82

Rational mappings 251

Rational solutions 95

Reflectionless potentials 276, 282,
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Regular solutions 73
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Riccati example 65

S-integrable 1ff, 116

Scattering matrix 187

Schrédinger operator 273

Schrodinger type equations 173

Separability 70

Simple complex Lie algebra 253

Sine-Gordon equation 6, 14

Sinh-Gordon equation 15, 30
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Soliton solution 35, 36

Spectral theory of difference operators
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Vector equation 152
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Weak nonlinearity 2, 5, 6
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Weyl solutions 286
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