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Preface

Some explanation of the meaning and context of the title of this book is
needed, since the term “transport theory” is ubiquitous throughout science
and engineering. For example, fluid mechanicians may be interested in the
transport of a “passive scalar” such as heat or dye in a fluid. Chemists
might be concerned with the problem of energy transport between different
“modes” of oscillation of a molecule in the phase space of some mathemat-
ical model. Plasma physicists or accelerator physicists might study escape
or trapping of particles in regions of phase space representing motion of
a specific type in configuration space. Researchers in celestial mechanics
might investigate the capture or passage through resonances in the phase
space of some system of masses interacting gravitationally. Control theo-
rists might be concerned with stability questions in nonlinear systems that
involve an understanding of the geometry of the regions of phase space of
the system corresponding to bounded and unbounded motions.

Although these examples come from very different fields, the mathe-
matical structure and the related questions of interest are very similar. In
particular, the time evolution of each is described by a nonlinear dynamical
system (either a continuous time vector field or a discrete time map), and
the questions of interest involve an understanding of the global dynamics
in the phase space of that system. As a result, many of these questions
are very naturally formulated along the lines of the qualitative, geometri-
cal approach to dynamical systems. This can be seen, for example, in the
problem in fluid mechanics mentioned above. In this context the dynamical
system is given by the velocity field which describes the motion of fluid
particle trajectories (in the absence of molecular diffusion). In this situa-
tion the “phase space” is actually the physical space in which the fluid is
flowing, and geometrical structures such as invariant manifolds and Smale
horseshoes have an important impact on transport and mixing of the fluid.
In the chemistry example, while individual phase space trajectories may
not be that important in themselves, a characterization of the regions of
phase space corresponding to, e.g., rotational or vibrational modes of the
molecule, as well as a characterization of the transitions between these re-
gions, may be more physically meaningful. The above-mentioned problems
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in plasma physics, celestial mechanics, and control theory have a similar
theme. Namely, the phase space of the mathematical models is partitioned
into regions corresponding to “qualitatively different motions,” and a char-
acterization of the transport of phase space between these different regions
is sought. This is exactly the philosophy of the global theory of nonlinear
dynamical systems, where the goal is to study the relationships between
“g])” trajectories of a dynamical system rather than seek ways of comput-
ing individual trajectories. Thus, by “transport” I mean motion between
regions describing qualitatively different types of motion in the phase space
of some dynamical system. Perhaps a more appropriate phrase would be
“phase space transport theory.”

An obvious question is how (or by what criteria) does one partition
the phase space in such a manner? We desire a way of describing dynami-
cal boundaries that represent the “frontier” between qualitatively different
types of motion. As a geometrical structure in phase space, this gives rise
to the notion of a “separatrix”; an idea that is probably quite familiar from
simple phase plane analysis of two-dimensional autonomous vector fields or
two-dimensional maps. However, carrying these ideas to higher dimensions
and to vector fields with a time-dependence other than periodic requires
new ideas. Indeed, this is the new contribution of this book; namely, it incor-
porates the modern global geometrical results and framework of nonlinear
dynamical systems theory into a theory for dealing with problems of phase
space transport. Moreover, as a result of the genericity of this geometrical
approach, we show that issues from a variety of diverse applications can be
viewed naturally as phase space transport problems.

Because the point of view in this book is highly personal and, conse-
quently, will not be shared by all, I want to explain some of the motivating
issues that led to its development. Certainly the mathematical methods of
dynamical systems theory have had an important impact on applications
during the past 15 years; however, there are important applied issues that
do not readily fit into the existing framework. In particular, it is often stated
that a central goal of dynamical systems theory is to characterize the “long
time” or asymptotic dynamics of the system. The notion of an “attractor”
plays a central role in this issue for non-conservative systems. However, in
many applications it is the transient or finite time behavior that is the most
relevant. For example, in fluid transport problems questions related to the
rate of mixing of fluids or the rate of stretching of infinitesimal line elements
in a fluid are important. Such quantities may then be integrated over finite
time intervals in order to determine the amount of mixed fluid or the total
length of a fluid line element. In molecular dissociation and intramolecular
energy transfer problems dissociation rates and energy transfer rates are
also of central importance. In the context of celestial mechanics there are
important questions concerning the capture or passage through resonances
on finite time intervals. There are many problems in structural mechanics
and control theory where the transition from bounded to unbounded motion
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at some finite time is of importance. A point of view I wish to motivate in
this book is that many of these finite time issues involving the global phase
space motion of nonlinear dynamical systems can be successfully studied
when formulated as phase space transport problems.

In this regard I also want to emphasize that the techniques developed
in this book represent only a beginning; many directions for future work
are pointed out throughout the book. In particular, the global study of
time-dependent vector fields in the case where the time-dependence is not
periodic and the study of phase space structure (in particular, separatrices)
in Hamiltonian systems with three or more degrees of freedom are areas that
are of great importance to applications. In Chapters 4 and 6 we give some
results along these lines; however, there is a great need to work out some
examples thoroughly. I also want to point out that the methods developed
in Chapters 4 and 6 can be extended to study convective transport and
mixing problems in fluid mechanics for classes of three-dimensional, time-
dependent fluid flows.

The title of the book also contains the term “chaos.” The reason for
this is that the phase space structures on which the transport methods are
developed are the same types of structures that give rise to chaotic dynamics
in deterministic systems, i.e., intersecting stable and unstable manifolds of
some normally hyperbolic invariant set. In some sense our methods could be
seen as allowing one to give a statistical description of chaotic dynamics on
finite time scales. From this point of view the dynamics is not particularly
chaotic; in fact, the more we learn about chaos the more we find that
there are orderly and predictable rules underlying this behavior. Some day
the term “chaos” will be viewed much like we view the term “imaginary
numbers” today.

Finally, I would like to take the opportunity to thank the many people
who have made this work possible. This book is the result of a close col-
laboration with students and colleagues at Caltech over the past five years.
This work was originally motivated by questions in fluid mechanics that
I began to study in collaboration with Tony Leonard. Vered Rom-Kedar,
Roberto Camassa, and Darin Beigie have all made important contributions
that are documented throughout the book. Conversations with Greg Ezra
and Richard Gillilan of Cornell helped a great deal in the development of
the material in Chapter 6. Much of the material in this book was presented
in a series of lectures at the Mathematical Sciences Institute (sponsored by
the Army Research Office) at Cornell University in the Fall of 1989. I would
like to thank Phil Holmes and Jerry Marsden for making this possible. Most
of the book was written while I was the Stanislaw M. Ulam visiting scholar
at the Center for Nonlinear Studies at the Los Alamos National Labora-
tory during the 1989-1990 academic year, for which I would like to thank
David Campbell, Gary Doolen, and Darryl Holm. The first draft of the
book was “TEXed” by Dana Young, and Cecelia Lin and Peggy Firth were
a great help in preparing the artwork. I also want to thank Darin Beigie
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for a detailed critical reading of the manuscript. This research has been
generously supported by the National Science Foundation and the Office of
Naval Research.
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Chapter 1

Introduction and Examples

Dynamics is the study of how systems change in time. Current research
trends in dynamics place much emphasis on understanding the nature of
the attractors of a system. Justification is often given for this by noting
that since attractors capture the asymptotic behavior of a system their
study will shed light on the observable motions of the system. This is cer-
tainly true; however, many important observable dynamical phenomena are
not asymptotic in nature, but rather transient. Indeed, one could take the
practical, but rather extreme, point of view that everything we observe in
nature is transient, and that therefore transient, as opposed to asymptotic,
dynamics is of much more importance in mathematical descriptions of natu-
ral phenomena. Moreover, a very important class of dynamical systems, the
Hamiltonian systems, do not have attractors by any reasonable and prac-
tical definition of the concept. Therefore, it is important from the point of
view of applications to have a framework for studying these issues. In this
monograph we want to motivate many of these issues from the viewpoint
of problems of phase space transport.

Rather than define what we mean by a phase space transport problem,
we begin by considering several examples that will illustrate the ideas. The
examples that we will consider all have a similar mathematical structure.
They are time-dependent perturbations of a planar (hence completely inte-
grable) Hamiltonian system. In the case where the perturbation is periodic
in time it is most natural (or at least traditional) to study the perturbed
system using the associated Poincaré map obtained by considering the dis-
crete motion of points after time intervals of one period of the perturbation
under the dynamics of the trajectories of the perturbed vector field. The
construction of this type of Poincaré map is by now standard and we re-
fer the reader to Guckenheimer and Holmes [1983] or Wiggins [1990a] for
background. If the perturbation is Hamiltonian, then the resulting Poincaré
map is area preserving, in which case KAM and the Aubry-Mather theory
will apply. Of course, if we could only treat time-periodic perturbations of
planar Hamiltonian systems, then our techniques would be of limited use.
However, we only consider this class of problems in order to more easily
motivate the transport issues. Afterward we will develop our ideas in a non-
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perturbative framework with generalizations to higher dimensions as well
as more general time dependence.

(1.1) Example. Uniform Elliptical Vortices in External, Linear
Time-Dependent Velocity Fields

In two-dimensional, incompressible, inviscid fluid flow the dynamics of
an elliptically shaped region of uniform vorticity moving under the influ-
ence of its self-induced velocity field and an external, linear velocity field
plays an important role in the modeling and understanding of many fluid
dynamical processes; see, for example, Roshko [1976], McWilliams [1984],
and Moore and Saffman [1975]. Using the facts that (1) vorticity at any
point is convected by the velocity at that point and (2) the self-induced
velocity field inside the vortex is linear, one can conclude that the vortex
retains its elliptical shape throughout its evolution and, furthermore, derive
equations of motion for the evolution of the shape of the vortex (see Moore
and Saffman [1981], Kida [1981], Neu [1984], and the thesis of Ide [1989]).
The equations are

1} = 24n cos 20,
(1.1) . wn n”+1 We
0= - in2 + —=
mr1E o1ty

where 7 > 1 is the ratio of the length of the semi-major and semi-minor
axes of the ellipse, & is the angle between the semi-major axis of the ellipse
and a horizontal axis fixed in space, v represents the strength of the linear
external strain rate field, and “¢ represents the rotation rate of the linear,
external vorticity field; see Fig. 1.1.

It is more convenient to study the dynamics of (1.1) in a different coor-
dinate system (see Ide [1989]); hence, we transform (1.1) via the following
two coordinate transformations

2
(1.2a) (I,¢,7) = (Qi;i,ze, 2wt>
and
(1.28) (6,¢,7) = (\/2—I_COS¢, V21 sin ¢, 'r) )

so that (1.1) becomes
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fo_—%X o #2+2°+8 &
C82+(2+8 2 /521 (248 2<’
(1.3)
= 2% 0 6¢ +5
+¢2+8 2. /62128 2

where the prime denotes ad;, 0 = v/w, and kK = “2, Equation (1.3) is also
a Hamiltonian system with Hamiltonian function

2+ +8

(1.4) H(é,()zlog( ;

)—gg B8+ (874,

Although, as pointed out in the thesis of Ide [1989], o and & can be time
dependent, in order to motivate phase space transport problems, we will
begin by first discussing the case where o and « are constant.

o and x Constants. Depending on the value of ¢ and k, there are many
different possible phase portraits for (1.3). A complete bifurcation analysis
can be found in the thesis of Ide [1989]. However, in Ide [1989] it is shown
that there is an open set in the quadrant ¢ > 0, > 0 such that the phase
portrait of (1.3) is qualitatively as shown in Fig. 1.2.

In this figure we see three qualitatively distinct types of motion.

1. Periodic orbits that do not enclose the origin.
2. Periodic orbits that enclose the origin.
3. Unbounded orbits.

Moreover, there are two critical orbits that separate these motions. They
are

1. The periodic orbit that passes through the origin.
2. The homoclinic orbit connecting the saddle-type fixed point to itself.

In terms of the motion of the elliptical vortex, the periodic orbit that
does not enclose the origin corresponds to periodic motion for which the
angle ¢ is bounded by some number less than 27. Hence, the vortex appears
to librate back and forth about some axis that is fixed in space and parallel
to its semi-major axis at some phase of the libration. The periodic orbit
that encloses the origin corresponds to periodic motion for which the angle
¢ increases through an increment of 2. Hence, the vortex rotates in the
plane.

The unbounded orbits correspond to vortex motions for which the
length of the vortex becomes unbounded as t — #o0. Physically, this cor-
responds to break up of the vortex; see Fig. 1.3 for an illustration of these
different types of vortex motion.
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Fig. 1.2. The phase plane structure of Eq.(1.3) for a particular choice of x and
g.

Thus, the periodic orbit passing through the origin separates libra-
tional motions from rotational motions and the homoclinic orbit separates
rotational motions from motions leading to break up of the vortex.

o and x Time Dependent. Suppose the values of ¢ and « giving rise to
the previously described phase portrait are subject to a small time-periodic
perturbation, e.g.,

o(1) = 0 + ecos §27,
(1.5)
k(T) = Kk + € cos £27,

where ¢ is sufficiently small. The Hamiltonian vector field (1.3) describing
the evolution of the shape of the vortex then depends explicitly on the
independent variable, 7, in a periodic fashion. Hence, it is most natural
to analyze the dynamics of this vector field by studying the associated
Poincaré map as described at the beginning of this section. In particular,
we are interested in the behavior of the two critical orbits under the time-
periodic perturbation. We consider each individually.
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The Periodic Orbit Passing Through the Origin. Let 2. denote the fre-
quency of this orbit. There are then three possible ways, which depend on
the ratio £2./12, that this periodic orbit can be influenced by the perturba-
tion.

1. %‘2 = 2, where n and m are relatively prime, positive integers. In this
case, the periodic orbit generically breaks up into an order 2 reso-
nance band in the Poincaré map. The resonance band consists of m
elliptic period m points and m hyperbolic period m points that al-
ternate around the resonance band. Moreover, generically the stable
and unstable manifolds of adjacent hyperbolic period m points inter-
sect transversely; see Fig. 1.4 for an illustration. The important point
is that points in the region of phase space corresponding to vortex
oscillation may now move across the resonance band into the region
corresponding to vortex rotation, and vice versa.

2. % = irrational. In this case, if the irrational number satisfies the
diophantine conditions of the KAM theorem (cf. Section. 2.7) then the
closed curve persists as an invariant circle in the Poincaré map. This
creates an impassable barrier so that points inside the invariant circle,
or KAM curve, can never escape the interior. Hence, in this case, if a
vortex is initially undergoing oscillation it must do so forever.

3. % = irrational. If this irrational number does not satisfy the hypothe-
ses of the KAM theorem, then the closed curve in the unperturbed
problem may break up into an invariant Cantor set on which the dy-
namics is quasiperiodic. This structure is often called a cantorus; see
Aubry and LeDaeron [1983], Mather [1982], and Percival [1979]. Be-
cause the Cantor set has gaps, points starting in the region of phase
space corresponding to vortex oscillation may move into the region
corresponding to vortex rotation and vice versa.

The Homoclinic Orbit. Generally, we expect the homoclinic orbit to break
up yielding a homoclinic tangle as shown in Fig. 1.5.

This gives rise to the possibility that points in phase space correspond-
ing to vortex rotation may cross the homoclinic tangle resulting in vortex
break up.

Now let us summarize. The phase portrait in Fig. 1.2 consists of three
separate regions corresponding to vortex oscillation, rotation, and break up.
In the case where o and k are constant, if a vortex is initially undergoing
any one of these motions, then it must forever undergo that same motion.
However, the situation where o and x vary periodically in time is very
different. The barriers (i.e., critical orbits) separating these regions may
break down, leading to the possibility of orbits moving throughout the
three regions. Thus, several phase space transport problems having direct
physical relevance for this example are as follows.

1. Describe the set of initial conditions for orbits that correspond to vor-
tex break up. The term “describe” might refer to specifying the mea-
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Fig. 1.4. An order m/n resonance band, m = 3. The two critical orbits are dashed

for reference.
g} |

Fig. 1.5. The homoclinic tangle.

ux
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sure of the set of initial conditions as well as their location in phase
space.

2. Describe the set of initial conditions for orbits that correspond to vor-
tex break up after n periods of the perturbation. (Note: at this stage
a characterization of the initial conditions that ultimately undergo
“break up” is a bit ambiguous; however, the techniques developed in
Chapter 2 will enable us to make this precise.)

3. Describe the set of initial conditions for orbits that correspond to vor-
tices which begin by undergoing libration and later make a transition
to rotational motion.

(1.2) Example. Capture and Passage Through Resonance in
Celestial Mechanics

As described by Henrard [1982], many problems in the dynamical evo-
lution of the solar system can be modeled by some one-degree-of-freedom
pendulum like Hamiltonian with slowly varying parameters. Examples de-
scribed by Henrard are as follows.

1. Orbit-orbit resonances between the mean motions of pairs of natural
satellites.

2. Spin-orbit resonances between the orbital and rotational frequencies of
a natural satellite.

The Hamiltonians describing these problems have the general form

(1.6) H(I,¢;\)=A(I,\)+ B(I,)\)cos g,

where (I,¢) € R x S, A and B are sufficiently differentiable functions,
and A € IR? is a vector of parameters that we assume vary slowly in time,
i.e., A = 0(g),0 < £ << 1. When the parameters ) are constant, the phase
portraits of each of the Hamiltonian systems are topologically equivalent
to the phase portrait of the pendulum shown in Fig. 1.6 for all .

This phase portrait contains three qualitatively different regions of
motion that are separated by two homoclinic orbits. The region above the
upper homoclinic orbit corresponds to rotational motion in a counterclock-
wise sense, the region between the two homoclinic orbits is the resonance
region and corresponds to librational motion, and the region below the lower
homoclinic orbit corresponds to rotational motion in a clockwise sense.

When A varies in time, the homoclinic orbits will generically break
up, leading to the possibilities that orbits starting in a rotational region of
phase space may move into the librational region (capture into resonance)
or orbits starting in one of the rotational regions of phase space may move
through the resonance region into the other rotational region of phase space
(passage through resonance). In this particular example it is probably more



10 . Chapter 1. Introduction and Examples

N q,
N

() 2n

Fig. 1.6. The phase plane associated with the Hamiltonian (1.6) for A=0.

physically meaningful if the variation of A in time is more general than
periodic. This will serve to motivate us to develop more general methods.
However, in any specific problem, questions of interest are the following.

1. Is capture into resonance possible?
2.  What is the probability of capture into resonance?

In answering these phase space transport questions, inferences can be
made concerning the history of the solar system and constraints can be put
on the values of physical parameters in both the past and future. During
the past decade there has been much activity and progress in understand-
ing the relation between orbital dynamics problems in the solar system
and resonances; we refer the reader to Wisdom [1982,1983], Borderies and
Goldreich [1984], Murray [1986], Tittemore and Wisdom [1988,1989%a.b],
Malhotra and Dermott [1990], and Malhotra {1990]. Most of this work has
the mathematical structure of a single degree-of-freedom Hamiltonian sys-
tem depending on slowly varying parameters. The techniques developed in
Chapter 6 should be of use in extending these ideas to systems with more
degrees of freedom.

(1.3) Example. Bubble Dynamics in Straining Flows

The dynamics of bubbles under the influence of time-dependent strain-
ing, pressure, and electromagnetic fields is a fundamental problem arising
in many applications. Indeed, one of the outstanding unsolved problems in
multiphase flow theory is the determination of conditions for bubble break
up at high Reynolds number. In this example we briefly describe a situation
studied by Kang and Leal [1990].

They consider an incompressible gas bubble of volume 4§7ra3 which is
undergoing deformations of shape in the presence of a time-periodic, ax-
isymmetric, uniaxial extensional flow of a fluid with density p and viscosity
u. The surface of the bubble is described by a shape function, r = r(8,¢),
and is characterized completely by a uniform surface tension . The undis-
turbed flow far from the bubble is given by
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r=E-r,
where
1 0 0
E=E®|0 -3 0 ), E(t)>0,
0o 0o -1

r = (z,y,2) , and E(t) = Eg — E; cos wt is the time-periodic principal
strain rate. Besides w, E;, and Fp, important parameters for this problem
are the dimensionless numbers

_ 2p(Epa)’a
Y

W
and

(pa®/7)*
pa?/p '

where W, is the Weber number for the case of constant strain rate and
S is the ratio of surface-tension-based time scale and the viscous-diffusion
time scale. The time dependence of the strain rate is manifested by a time-
dependent Weber number that is assumed to be of the form W(t) = Wy —
Wi cos wi.

In this setting, Kang and Leal [1990] derive a model equation for the
change in shape of the bubble. More precisely, the shape is characterized
by expanding r = (8, t) in Legendre polynomials. The quantity

ks

z= /1‘ (8,t) Pz (cos 8) sin 840
0

is a scalar measure of deformation that quantifies the amount of the shape
function in Pp(cos ). In particular, z measures the deviation of the bubble
from sphericity (note: the contribution to r(é, t) from higher-order Legendre
polynomials is small in certain parameter regimes; see Kang and Leal [1990]
for a discussion.) The equation describing the evolution of z is given by

7 &= KW, — (az — bz?) — p'& — & cos wt,
where
K=2, a=12, b=12X185 /=405, § =KW,.

This equation can be simplified by rescaling as follows:

f=\/§t = [(2)e a=y/2 b= (DK
27 “\a ’ Ve ¥T Woa2 /'’
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y

\/
N
—\

Fig. 1.7. The phase plane for Eq. (1.8) for £ = 0.

2 = 4b
eﬁz\/; ' eéz(g)é',

where the small parameter ¢ is introduced to take into account the fact
that the amplitude of the time-periodic forcing, as well as the viscosity, is
small.

Dropping the tildes and writing the rescaled version of (1.7) as a system
yields

(19 Jl
. y=w- (22 -2 ~e(uy+6 cos wt).

For ¢ = 0, (1.8) is Hamiltonian with Hamiltonian function

2 3
(1.9) Hay) =L +22- L _us,
2 3
and, for all w < 1, the phase portrait is topologically conjugate to that
shown in Fig. 1.7.

This phase portrait contains two regions corresponding to qualitatively
different motions that are separated by a homoclinic orbit. The region inside
the homoclinic orbit corresponds to periodic oscillations of the bubble about
the spherical shape. The region outside the homoclinic orbit corresponds
to motions where z becomes unbounded, i.e., the bubble undergoes break
up.
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Fig. 1.8. A possible homoclinic tangle for Eq. (1.8) for € # 0.

Now, for € # 0, we expect the homoclinic orbit to break up and, if the
ratio of forcing amplitude to viscosity is large enough (depending on the
frequency), it might appear as in Fig. 1.8 (note: in Chapter 2 we will learn
a method, Melnikov’s method, that will enable us to determine where in
parameter space this occurs).

This gives rise to the possibility that orbits starting in the region of
bounded motion may move into the region corresponding to unbounded
motion. Thus, bubbles that initially start out oscillating may eventually
undergo break up by moving through the homoclinic tangle.

(1.4) Example. Photodissociation of Molecules: The Driven Morse
Oscillator

The driven Morse oscillator is a standard model used in theoretical
chemistry for describing many molecular phenomena, for example, the in-
teraction of a molecule with electromagnetic radiation; see, e.g., Davis and
Wyatt [1982] and Goggin and Milonni [1988]. The driven Morse oscillator
system is described by the time-dependent Hamiltonian

2
(1.10) H(z,p) = f—m +D (1~ e9%)? — dy Egz cos wit,

which gives rise to the equations of motion
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H{x,p)=D

L0 _p
=% = m
(111)
p= -;)f = ~2Da (e7°* — e7**%) + dy Ep cos wit,

where D is the dissociation energy for £y = 0, a is the range parameter,
and d; is the effective charge or dipole gradient. These are parameters
chosen specifically for the molecule of interest. Additionally, m is a mass
parameter, and Eg and w; are the amplitude and frequency, respectively,
of the external electromagnetic field.

For Eq = 0 the phase portrait of (1.11) is as shown in Fig. 1.9. There is
a nonhyperbolic fixed point at (z,p) = (00, 0) that is connected to itself by
a homoclinic orbit. The region of phase space inside the homoclinic orbit
corresponds to some form of bounded motion of the molecule and the region
outside the homoclinic orbit corresponds to dissociation or break up of the
molecule. Note that the homoclinic orbit is given by the level set of the
Hamiltonian H(z,p) = D; hence, the interpretation of the parameter D as
the dissociation energy for Ey = 0.

For Eg # 0 we consider the associated Poincaré map where the homo-
clinic orbit may break up as shown in Fig. 1.10.
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©

Fig. 1.10. A possible homoclinic tangle for Eq. (1.11) for Ep # 0.

In this case it is possible for orbits starting in the region of phase space
corresponding to bounded motion to enter the region of phase space cor-
responding to dissociation (i.e., unbounded motion). Physically, the flux of
phase space through the homoclinic tangle (a somewhat ambiguous phrase
that will be clarified in Chapter 2) should be related to the dissociation
rate of an ensemble of molecules uniformly distributed throughout a region
bounded by segments of the stable and unstable manifolds. In the next
chapter we will develop the theory that will enable us to appropriately
define bounded and unbounded motions for Fy # 0.

All of these examples have a similar mathematical structure; namely,
they involve distinguishing regions of phase space corresponding to quali-
tatively different dynamics. These regions are separated by some “partial
barrier”; in these two-dimensional map examples these partial barriers con-
sist of pieces of stable and unstable manifolds of periodic orbits or, in the
case of area-preserving maps (with some additional “generic” conditions
to be described later), a cantorus. The goal is then to describe and quan-
tify the motion between the different regions. We now turn to the task of
developing a general framework for the solution of these problems.



Chapter 2

Transport in Two-Dimensional Maps:
General Principles and Results

In Chapter 1 we introduced a variety of applications for which some of the
questions relevant to the applications could be phrased in terms of a phase
space transport problem. These phase space transport problems were mo-
tivated by considering systems that could be expressed as perturbations of
integrable one-degree-of-freedom Hamiltonian systems. This was instructive
because the unperturbed systems possessed qualitatively different motions,
bounded by separatrices, that could be easily characterized in the context of
the application. When the system was perturbed, it was natural to discuss
transitions between these regions of qualitatively different motions.

Now we develop a general theory for transport in two-dimensional maps
that does not depend on the system being “near-integrable.” Throughout
this chapter we exploit two general ideas.

1. Segments of stable and unstable manifolds of hyperbolic periodic orbits
(or, possibly, cantori) naturally form the boundaries between regions
of qualitatively different types of motion. Indeed, these “unobservable”
curves form a “dynamical template” on which much of the dynamics
occurs.

2. The dynamical evolution of certain segments of the stable and unstable
manifolds, the so-called turnstiles, can be used to completely describe
the transport between the different regions of phase space separated
by stable and unstable manifolds.

We begin in Section 2.1 by setting up the appropriate mathematical
framework and defining the necessary concepts. In Section 2.2 we address
the heart of the matter: transport across a boundary consisting of segments
of stable and unstable manifolds via the turnstile. In Section 2.3 we state
some general transport problems and give the main results. In Section 2.4
we illustrate the main ideas and results with some examples. In Section 2.5
we discuss the notion of deterministic chaos and how it relates to the ideas
developed earlier. For completeness, in Section 2.7 we discuss some recent
results concerning quasiperiodic orbits in area preserving maps so as to be
able to introduce cantori. Finally, in Section 2.8 we discuss how our results
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can be applied to situations where we have nonhyperbolic periodic points
that, nevertheless, possess stable and unstable manifolds.

2.1 Mathematical Framework and Definitions

As our dynamical system we consider a C™ (r > 1) diffeomorphism

(2.1) fiM—M,

where M is a differentiable (C™,r > 1), orientable, two-dimensional mani-
fold, e.g., the plane, a sphere, the cylinder, a torus, but not a Klein bottle.
We also want to make the assumption that f is orientation-preserving, i.e.,
det(Df) > 0; the reason for this assumption will be explained more fully
later. We remark that if f is area-preserving (AP), then det(Df) = 1; other-
wise, we refer to the map as non-area-preserving (NAP). In the case where
det(Df) < 1 we refer to the map as dissipative.

(2.1) Exercise. Consider a closed curve on M. Show that the condition
det(Df) > 0 implies that the relative ordering of points, say as one traverses
the curve in a counterclockwise sense, is preserved under iteration by f.

(2.2) Exercise. Show that the condition det(Df) = 1 implies that the area
of a subset of M remains constant under iteration by f.

Let p;,i = 1,..., N, denote a collection of saddle-type hyperbolic peri-
odic points for f. Without loss of generality, we can assume that they are all
fixed points (i.e., period 1 points) by replacing f by the appropriate iterate
of f for which each of the p; are fixed points. We denote the stable and
unstable manifolds of p; by W*(p;) and W*(p;), respectively, and remark
that if f is AP, then hyperbolicity immediately implies that each of the p;
are of saddle type.

At this point an obvious question arises; namely, a map may contain
a countable infinity of periodic points of all possible periods (in which case
we could not find an integer n such that all of the periodic points are fixed
points of f™). So how do we choose the p;,z = 1,...,N, N finite? The
answer to this is that the choice is made appropriate to the application. We
will see examples of this as we go along, but for now we ask the reader to
review the examples in Chapter 1.

(2.3) Exercise. Let {p1,p2}, {P3,p4,P5}, {P6, 7, P8, p0}, and {p10, P11, P12,
D13, P14} denote period 2, 3, 4, and 5 orbits of f. Under what iterate of f
are p,...,p14 each fixed points?

(2.4) Exercise. Show that if f is AP and p is a hyperbolic fixed point of f,
then p must have a one-dimensional stable and one-dimensional unstable
manifold.
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Fig. 2.1. ¢ is a pip, ¢ is not a pip.

We will use pieces of W*(p;) and W*"(p;) to partition M into disjoint
regions to study transport between them, but first we need a few definitions.

(2.1) Definition. A point ¢ € M is called a heteroclinic point if ¢ €
We(p;) \W*(p;) for some p;,p; if i # j. If i = j, then q is called a
homoclinic point.

We remark that as we go to higher dimensions, the notion of homo-
clinic and heteroclinic orbits will have to be generalized somewhat. In our
development of the transport theory, certain homoclinic and heteroclinic
points will play a distinguished role.

(2.2) Definition. Suppose ¢ € W*(p;) \W*(p;), and let S[p;,q] denote the
segment of W*(p,) with endpoints p, and q and Ulp;,q| denote the segment
of W*(p;) with endpoints p; and q. Then q is called a primary intersection
point (pip) if S[ps, q] intersects Ulp;,q] only at the point q (and p; if i = j);
see Fig. 2.1.

In discussing the dynamics of points in W*(p;) and W*(p;) the fact that

they are both one dimensional admits an ordering of points that we now
define.

(2-3.) Definition. Suppose that go,q1 € W*(p;) and that q, is closer than gq
to p; in the sense of arclength along W*(p;). Then we say that ¢ <, qo.
Similarly, suppose that qo,q1 € W"(p;) and that qq is closer than qi to p;
in the sense of arclength along W*(p,). Then we say that gg <, q1; see Fig.
2.2.
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Lobe

Fig. 2.2. The definition of a lobe with go <. ¢q1 and ¢; <s qo.

Definitions 2.2 and 2.3 have the following dynamical consequences.

(2.1) Lemma. Suppose qq,q1, € W*(p,) with gy <, q1; then f¥(q0) <s f*(q1)
for all k € Z. Similarly, suppose §o,i € W*(p,) with @o <. Gi; then
FH@o) <u f*(q@) for allk € Z.

Proof. This is a simple consequence of the fact that f is orientation-
preserving. We leave the details as an exercise for the reader. O

(2.2) Lemma. Suppose ¢ € W*(p,) YW*(p,) is a pip; then f*(q) is a pip
forallke Z.

Proof. Prove the result for Kk = 1 and k¥ = —1 and then use induction.
Assume the contrary and show that this violates orientation-preservation.
We leave the details as an exercise for the reader. 0

We need one more definition before we can discuss transport across a
boundary.

(2.4) Definition. Let go,q1 € W*(p,)(\W™*(p,) be two adjacent pips, r.e.,
there are no other pips on Ulgg, q1] and S|qo, q1], the segments of W*(p,)
and W*(p,) connecting qgo and q;. Then we refer to the region interior to
Ulgo,q1] U Slgo, q1] as a lobe; see Fig. 2.2.

2.2 Transport Across a Boundary

Suppose W*(p,) and W*(p,) intersect in the pip q. Then we define B =
S[p.,q]UUlp,,q) and we want to discuss the motion of points across B
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B=SIp,.ql U Ulp,.ql

R,

Fig. 2.3. The boundary B.

Ry

Ly (1) f(Lq (1)

Fig. 2.4. The dynamics of the lobes.

under iteration by f ( see Fig. 2.3; note that we have labeled the “two
sides” of B as R; and R; solely for descriptive purposes).

Next, consider f~!(g) which, by Lemma 2.2, is a pip. Since f is
orientation-preserving, there must be at least one pip on U[f~1(g),q] be-
tween ¢ and f~'(g) where the intersection of W*(p,) and W*(p,) is topolog-
ically transverse (i.e., of odd order). For the moment we will assume that
there is only one pip along U[f~!(q),q] between f~!(q) and g. Later we
will deal with this technical issue and show that the case of k pips, k > 1,
between f~!(q) and ¢ along U[f~!(g),q] can be treated exactly the same
as the case k = 1. Then S[f~*(q),q)UU[f(q),q) forms the boundary of
precisely two lobes; one in R;, labeled L; 5(1), and the other in Ry, labeled,
L4 1(1). The image of these lobes under f then appear as in Fig. 2.4. Hence,
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Fig. 2.5. The dynamics of an arbitrary set in R;.

the lobe L 2(1) has moved from R; into Ry and the lobe Ly ;(1) has moved
from R into R;. From this we can draw a stronger conclusion.

(2.3) Lemma. Under one iteration of f, the only points that can move from
R, into Ry by crossing B are those in Ly 2(1). Similarly, under one iteration
of f the only points that can move from Ry into Ry by crossing B are those
m Lg,l (1) .

Proof. We prove only that part of the lemma about motion across B from
R, into Ry; the proof of motion across B from R, into R is similar.
Consider a closed set in R; that does not intersect L; 2(1); see Fig. 2.5.

We will show that no point in this set ran cross B under one iterate of
f. Enlarge the closed set so that its boundary includes part of the boundary
of L; (1) as shown in Fig. 2.6. Now we iterate this enlarged set and use
the fact that the part of the boundary contained in W*(p;) must remain in
W*(p,) due to invariance. Hence, with just this fact in mind, there are three
possibilities as shown in Fig. 2.7. It should be clear that Fig. 2.7a cannot
occur since f is invertible (or the interior of a set maps to the interior of its
image). Moreover, Fig. 2.7b cannot occur either unless part of the enlarged
set was in Ry to begin with (which it was not). Therefore, from Fig. 2.7¢, it
should be clear that this particular closed set could not cross B. Since our
argument was for an arbitrary closed set in Rj, not intersecting L 2(1),
the proof is complete. g
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Fig. 2.6. Extension of the set to contain part of the boundary of L1,2(1).

This mechanism for transport across a boundary consisting of segments
of stable and unstable manifolds of hyperbolic fixed points was discussed
earlier by Channon and Lebowitz [1980] and Bartlett [1982]. The two lobes
L1 (1) and L31(1) have been called a turnstile by MacKay, Meiss, and Per-
cival [1984]. We now want to make an important point; the phrase “crossing
B” in the statement of Lemma 2.3 is very important. This is because B need
not divide M into two disjoint components — especially if M is a cylinder,
sphere, or torus. In this case points may move from one side of B to the
other without crossing B as we illustrate for the case where M is a cylinder
in Fig. 2.8. Of course, one could argue in such cases that there is only one
“side” of B. Globally this is true, but locally it is not and Lemma 2.3 is a
result describing the local fluz across B.

Another point to make is that we have assumed that f~1(q) and q lie
on the same branch of W*(p;) (recall that by considering the appropriate
iterate of f, each of the p;,i = 1,---, N, are fixed points). This will not be
true if the two eigenvalues associated with the linearized map at p; each
have negative real parts. In this case we would consider the second iterate
of the map and the constructions and results above would apply directly.

Lemma 2.3 has the following obvious corollary.

(2.4) Corollary. A point can move from R; into Ry by crossing B on the
n** iteration of f if and only if it enters Ly 2(1) on the (n — 1) iterate of
f. Similarly, a point can move from Ry into Ry by crossing B on the nt*
iteration of f if and only if it enters Ly1(1) on the (n — 1) iterate of f.
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(@)

()}
f(L,, (1)

) R, !

(L, (1)

©

Fig. 2.7. Three alternatives for the geometry of the set f(D).

In other words, only the points |J f~"(L;2(1)) can move from R,

n>0

into Ry by crossing B and only the points |J f~"(L2,:1(1)) can move from
n>0

R; into R; by crossing B. Thus, the dynarni(_:s associated with crossing B is
reduced completely to a study of the dynamics of the turnstile associated

with B.

(2.5) Exercise. Show that W*(p,) cannot intersect W*(p,). Similarly, show
that W*(p,) cannot intersect W*(p,). (Hint: read carefully the statement

of the stable and unstable manifold theorem for maps.)
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Identify

Fig. 2.8. One iterate of D on the cylinder.

(2.6) Exercise. Show that between q and f ~L(q) along U[f~!(q),q] there
must be at least one pip at which W*(p,) intersects W*(p,) topologically
transversely by considering the image of the lobes shown in Fig. 2.9.
(2.7) Exercise. Show that if f™(Ls,1(1)) intersects f*(Ly2(1)), then

1. k<n;
2. f*(L,1(1)) must intersect f~"(L12(1)). Are there any restrictions on
k, n, and m?

Before setting up and discussing some general transport problems we
want to address two technical points that we mentioned earlier.

Multilobe Turnstiles. Suppose that along U[f~!(q), g] between ¢ and
fY(q) there are k pips, k > 1, besides g and f~'(g). This gives rise to
k + 1 lobes between ¢ and f~(q) which we label Lo, L1, ..., Ly with n of
the lobes lying in Ry and (k + 1) — n of the lobes lying in R,; see Fig. 2.10
for an illustration with k = 2,n = 2.
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Fig. 2.9. Invariant manifold structure associated with a pip and its preimage.

We remark that in this case some of the pips along U[f~!(g),q]
may correspond to nontopologically transverse intersections of W*(p,) and
W*(p,) and, hence, adjacent lobes may be contained in the same region.
Suppose that the labeling of these (k + 1) lobes has been chosen such that

Lo,Ly,---,Ly_pn C Ry

and

Lg—ns1,Lx—ny2, -+ L C Ry;

then we define

Lip(1) = Lol L | Lk-n

and
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Rz

F(Ly (1)

Lp1(1) = LyUty —

Fig. 2.10. A multilobe turnstile.

Ly1(1) = Lg_p41 U Li_ni2 U e ULk~

In this situation we will also refer to Lj (1) and Lg;(1) as lobes (even
though they are actually sets of lobes) and all of our previous arguments
and results go through unchanged.

Self-Intersecting Turnstiles. In our previous constructions we assumed
that L; 2(1) and Ly ;(1) lay entirely in R; and Ry, respectively. But it
may be possible for L; 2(1) to intersect Lo 1(1) and/or Lo 1(1) to intersect
L, 2(1). However, similar to the multilobe turnstile, any difficulties with
this phenomenon can be avoided by a redefinition of the lobes forming the
turnstile.

This can be done as follows. Let

I=int (Ll‘z(l) ﬂLz,l(l)) )

where int denotes the interior of the set.
The two lobes defining the turnstile are then redefined as

il’z(l) = Ll’g(l) — I,
igil(l) = L2’1(1) - 1.

It then follows that all our previous arguments and results go through
unchanged using these redefined lobes. In Fig. 2.11 we illustrate this pro-
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Fig. 2.11. A self-intersecting turnstile.

Fig.2.12. A lobe in a multilobed turnstile intersecting a lobe not in the turnstile.

cedure for the case where part of L; o(1) intersects Lo 1(1) and, hence, is
not entirely contained in Ry but Lo ;(1) is entirely contained in Rs.

(2.8) Exercise. Consider the situation shown in Fig. 2.12 where we have a
multilobed turnstile that intersects a lobe that is not part of the turnstile.
First,verify that such a situation is possible and, if so, then describe how
one would define a boundary using segments of stable and unstable man-
ifolds. How would the turnstiles then be defined? We remark that if such
a situation is possible, we would not expect it to occur often. Indeed, we
know of no such examples arising in applications.
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Rs

Fig. 2.13. Examples of regions.The pip’s ¢q.,7 = 0,...,5, are used to define the
region boundaries following Definition 2.5.

2.3 Statement of the General Transport Problem and
Some Results

In Section 2.2 we showed how the dynamics of crossing a curve that was
made up of a piece of the stable manifold of a hyperbolic periodic point
and a piece of the unstable manifold of a hyperbolic periodic point was
completely determined by the dynamics of the associated turnstile. In this
section we will exploit this idea thoroughly. All of the results in this sec-
tion were obtained in collaboration with Rom-Kedar (see Rom-Kedar and
Wiggins [1990]).
We begin with a definition.

(2.5) Definition. A region is a connected subset of M with boundaries con-
sisting of parts of the boundary of M and/or segments of stable and unstable
manifolds starting at hyperbolic fized points and ending either at pip’s or
at the boundary of M (which may be at infinity); see Fig. 2.13.
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In a given problem, the phase space is partitioned into regions in a man-
ner that is meaningful to that specific problem. This will be discussed in
more detail when we consider examples (see also Chapter 1). Then we are
interested in how points move between the regions under the dynamics.
Additionally, in many applications (e.g., fluid mixing and transport) it is
important not just to know where points go, but to know also where they
came from.

More precisely, we suppose that M is partitioned into disjoint regions

R,, i=1, ..., Ng,
such that

Ngr
M=|]JR.
2=1

In order to keep track of the initial condition of a point as it moves through-
out the regions we say that instially (i.e., at t = 0) region R, is uniformly
covered with species S,. Thus, the species type of a point indicates the
region in which it was located initially. Then we can generally state the
transport problem as follows.

Describe the distribution of species S,, i = 1,..., Ny, throughout the
regions R,, j =1,...,Ng, for any imet =n > 0.

What we mean by the term “describe” in this statement will be devel-
oped as we go along. However, first we need to establish some notation.

1. L,,(m) denotes the lobe that leaves R, and enters R, on the mth
iterate.

2. LF (m) = L, ,(m) () Rx denotes the portion of the lobe L, ,(m) that is
occupied by species Sy, or, equivalently, the portion of the lobe L, ,(m)
that is contained in the region Ry.

We remark that in our labeling of the lobes the index within the paren-
theses is always a positive integer, i.e., m € Z". This is merely our chosen
convention.

There are two ways to think of the lobes L, ,(m). One is that they are
fixed in M (since the stable and unstable manifolds are fixed) and that they
merely form a template that points move in and out of under the dynamics.
The other is that they actually move to other lobes under the dynamics. In
either case we have, by definition,

fm_l (Ll,] (m)) = Lz,](l)-

Thus, the lobes L, ,(m) are inverse iterates of the turnstile lobes. In fact,
for any particular region, R,, the turnstiles associated with the region are

L, JLu(V),  j=1,...,Ng, j#i.
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Of course, some of these turnstiles may not exist (i.e., they may correspond

to empty sets) if R, is not adjacent to R, or if transport is not possible

between R, and R,; we will see examples of this in the next subsection.
Note that for the lobes L, ;(m), Ly p(m) we have

P Leym) C Ry fM(Ley(m)) C Ry

and
(2.2) F Lip(m)) C Ry, ™ (Lip(m)) C Ry
Hence, since the regions R,,i = 1,..., Ng, are disjoint and f is a diffeo-

morphism, we have

(2.3) L, ,(m) ﬂLk,p(m) =@ for i£k or j#p.
Moreover, by definition we have

Lz,z(m) = @, VYm € y A
Now two quantities that we would like to compute are the following.

1. a,,(n) = the flux of species S, into region R, on the nth iterate.
2. T,,(n) = the total amount of species S, contained in region R, imme-
diately after the nth iterate.

A quantity that is easy to compute is the fluz of phase space from R, to R,
on the nth iterate. From Lemma 2.3 this is simply given by

#(La,5(1))-

To compute the total flux of phase space into R, one merely sums p(L, ,(1))
over 4. It is important to note that the flux of phase space from R, into
R, on the nth iterate (u(L,,(1))) and the flux of species S, into R; on
the nth iterate (a,,(n)) are in general two different quantities [except for
n = 1 where we have q,,(1) = T,,(1) = u(L,;(1))].The latter quantity
keeps track of a point’s initial location throughout its dynamical evolution
and the former quantity “forgets” this information. Note that the units of
fluz are area per unit time. However, for maps we take the time unit as
unity and dentify appropriate measures of area with the fluz. We will give
the main results concerning these quantities for both area-preserving and
non-area-preserving maps. In expressing these quantities we will need the
following notation: for any set A C M, u(A) will denote the area occupied
by the set A.

Area-Preserving Maps. Our first result expresses the flux of species S,
into region R, on the nth iterate in terms of the portions of lobes entering
and leaving R, on the nth iterate that contain species S,.
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(2.5) Theorem.

Nr

a,y(n) =T, ,(n) — Tyn—1) =Y [u(Li, () — u(Lk(n)].

k.—_l

Proof. Since f is area-preserving it is immediate that

(2.4) a,;(n) =T, (n) — Ty y(n - 1).
Furthermore, by the definitions of Ly ;(n}, L} ;(n), and T, ,(n) we have

(2.5) T, ,(n)-T,,(n—1) (U ™ (L, (n)) ) (U ™ (L} ((n) )

Since f is an area-preserving map this implies

NR NR
(26) T.,(n)-T,(n-1)=p (U L;,J(n)) —n (U L;,k(n>) :
k=1 k=1

By definition, L} (n) € Ly,,;(n) and (2.3) holds; hence, the union in (2.6)
is of disjoint sets and, therefore, the area of the union equals the sum of
the areas and the result follows. O

Our next result expresses the amount of species S, in lobe Ly ,(n) in
terms of lobe intersections.

(2.6) Theorem.

po k.7 (n)) = H (Lk,J (n) ﬂ Lt,s(m))
SN, (Leg) ) Loalm))

s=1 1

73
]

= 1%
M-

S
i

Proof. The proof of this result is quite lengthy and is relegated to Appendix
1. O

Using the dynamics of the lobes, ie., the fact that f¢(L,,(n)) =
L, ,(n — £), we can express the lobe intersections in the formula in The-
orem 2.6 in terms of intersections of images or preimages of turnstile lobes.
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(2.7) Corollary.

H (L}w(n)) = iﬂz 5 H (L’w 1) ﬂf 1,8 1)))
s=1£=0
3 S (L N Eaata).
s=1 £=1
w (L, () = nzlu( (Zis (1) Lo (1)
£=0

Ng

2.

Ve et
=SS k(T L )N (D) -

The following conservation laws are of use in many applications.
(2.8) Theorem. For u{M) < co the folloutng 2Ng conservation laws hold:

Conservation of Area

Ngr Ngp
Zam(n) = Z [T.,(n) —T,,(n—1)] =0, y=1,---,Npg,
=1 =1

Conservation of Species

Ng Npg
Zaw(n) = Z [T,;(n) =T, ;,(n—1)]=0, i=1,---,Ng,
J=1 7=1

and constitute 2Np — 1 wndependent equations for the (Ngr)? unknowns
aiy(n) =T,,(n) — To,y(n - 1).
Proof. The first equation states that the total flux of all species through
region R, must be zero, since p(R,) is conserved. The second equation
states that the total flux of species S, through all the regions is zero, since
the amount of S, in phase space is conserved. Both are easy to prove using
Theorems 2.5 and 2.6 and we leave the details for the reader.

It is easy to see that at least one equation of the 2Ny equations is
dependent on the others since the sum of the first Ny equations minus
the sum of the last Nr equations is identically zero. To show that any
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2Np — 1 equations are independent, note that the first Ng equations are
clearly independent and so are the last Np equations. Excluding one of
the equations of the first set, we find that every equation in the second
set includes terms which are not contained in any of the other 2Ng — 2
equations, and hence the 2Ni — 1 equations are independent. O

We remark that these conservation laws may hold in some cases where
(M) = oo, for example, for the standard map on the cylinder or the 1:1
resonance on the cylinder (see MacKay, Meiss, and Percival [1984, 1987]).

(2.9) Exercise. Using Theorems 2.5 and 2.6, sum the recursion relation for
T,,(n) and obtain a formula for T, ,(n) that is expressed entirely in terms
of turnstile dynamics.

(2.10) Exercise. Let P,(n) denote the area occupied by points in region R,
that do not leave R, until the nth iterate. Show that

Ngr

P(n)-P(n—-1)=- Z{/”(Lw(l))

=1

m=1 k=1

(U0 e mm)))

(Hint: if you need help see Rom-Kedar and Wiggins [1990].) Describe the
meaning of the quantity

T,.(n) — P,(n).

Non-Area-Preserving Maps. If f does not preserve area, then u(f(A4))
# p(A), where A is any subset of M with nonempty interior. In this case
we must not only account for the geometry of the images of the turnstile
lobes, but also we must account for the fact that the areas of the turnstile
lobes change under iteration by f. Our first result concerns the flux.

Nr

(2.9) Theorem. a, ,(n) = Y [u (f" (L}m(n))) —u (f" (L;,k(”)))]

k=1
Proof. By the definitions of the lobes

(2'7) a1,7 TL) (U fr Ll,] ) (U fn (L k(n) )



2.3 Statement of the General Transport Problem and Some Results 35

By definition, L} ,(n) C Lk, (n) and (2.3) holds; hence,

ﬂf" r,(n)) =0 forall r#k,

and, similarly, the f™ (L%, 5 (n)) lobes are disjoint; hence, the union in (2.7)
is of disjoint sets, and the area of the union equals the sum of the areas.
The result then follows. O

The reader should compare this result with Theorem 2.5.

Next we derive an expression for T, ,(n). For area-preserving maps
a,;(n) =T, ,(n) — T, ,(n — 1); hence, T, ,(n) could be computed merely by
“integrating” the flux. However, in the NAP case the area occupied by a
given species changes under iteration and this must be accounted for.

(2.10) Theorem.

NR n
T,y (n) = 8uyn (FM(R)) + DD [ (™ (Lh,(0)) — 1 (f7 (L5 1(8)))]
k=1 {=1

where 6, ; 15 the Kronecker delta.

Proof. To express the change in T, ,(n) we use recursively the effects of the
flux and the change in area within R, on the set A, ;(n), defined as the set
of points of species S, that are in region R, immediately after iteration n,
so that by definition

(2.8) T.;(n) = p (A, (n).

The recursion relation between the sets A, ;(n) is obtained directly from
their definition and the definition of the lobes:

(2.9)
A, ,(n) = {image of the portion of A, ,(n — 1) that stays in R,} U
{flux of species S, into R, on the nth iterate}
Ngr

-1 (4o-0- U= waom U (U r s,

k=1

Using (2.9) and the same reasoning as in the proof of Theorem 2.9 to argue
that the sets under the union sign are disjoint, we obtain
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Ngr

(2.10) p(Ai;(n) = p(f (Ay(n=1)) =Y u(f* (L))
k=1
Ngr
+Y (L, () -
k=1

Using (2.10) recursively n times together with (2.8) we obtain

(2.11) . .
T,5(n) = n(f" 4., (0 ZZI‘ k(e ZZ %,y (6) )
k=1¢=1 k=1£=1

Now, by definition of 4, ,(n), 4,,(0) = R, and A, ,(0) = 0 for ¢ # j; hence,
the result follows from (2.11). 0

In order to compute T, ,(n) we need to keep track of how the area of

R, changes under iteration by f. The following lemma allows us to express
p(f™(R,;)) in terms of u(R,) and the T, ,(n).

(2.11) Lemma. p (f*(R,)) = u(R,;) — ?]é T, ,(n) + gj T, .(n)

Proof. By definition of the sets A, ,(n) (see the proof of Theorem 2.10) the
following relations hold:

Ng
(2.12) MRy = 4.0
1=1
Nr
(2.13) R, =] A, (),
=1

and, since by definition the sets A, ,(n) are disjoint, (2.12) and (2.13) imply

Ngr
u (AJ,] (n)) =p (fnR]) = Z I (Aj,z(n))

1#g

(2.14)
Ngr
= pu(R,) - ZH (A (n))

Rearranging (2.14) and using (2.8) gives the result. o
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The next result allows us to express a, ,(n) and T, ,(n) entirely in terms
of turnstile dynamics.

(2.12) Theorem.

£

W (G @) =35 (1 (Brs @ N Leslm))

s=1m=1
Ngr £-1

- g Z= w (5 (Lis (O Lostm)))

Proof. See Appendix 1. O

Using the lobe dynamics, i.e., f¢~! (Lk,(¢)) = Lk, (1), etc., the ex-
pression in Theorem 2.12 can be written as follows.

(2.13) Corollary.

Ngp ¢-1

B (" (T,0)) =3 3w (7 (Ley O™ (Ens(1))))

s=1m=0

S S k(1 (LN £ Ea1)))

We have the following analogs of the conservation laws from the AP
case in Theorem 2.8.

(2.14) Theerem. For u(M) < oo the follounng relations hold.

Zm,g(m —T,,(n=1]=p(f"(R)) — 1 (f*"Y(R,)), 3=1,--+,Nr,

Ng
3 [Ty(m) —Toy(n -} =0, i=1,---, Ng.
3=1

Proof. These relations follow immediately from Theorems 2.9 and 2.10. O

The remark following Theorem 2.8 also applies in the case of non-
area-preserving maps; namely, the relations given in Theorem 2.14 may
also hold in some cases when p(M) = 0o. We also note that in many appli-
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cations (such as Poincaré maps arising from linearly damped, periodically
forced oscillators) area is contracted (or expanded) at a uniform rate, i.e.,
u(f(A)) = 6u(A), where A C M has nonempty interior. In this case the
first relation in Theorem 2.14 can be expressed as

Ngr Ngp
Y Tiin)=6% Ti;(n—1), j=1,--, Ng.
i=1 1=1

(2.11) Exercise. If f is area-preserving, show that the result of Theorem
2.10 reduces to the result of Exercise 2.8.

(2.12) Exercise. If f is area-preserving, show that the results of Theorem
2.12 and Corollary 2.13 reduce to the results of Theorem 2.6 and Corollary
2.7, respectively.

(2.13) Exercise. Let P;(n) denote the area occupied by points in region R;
that do not leave R, until the nth iterate. Show that

Nr n
Pi(n) = ZZ[ (Fr~H (Li k(1))
k=1 £=1
Ng £-1
» (u U e (o Nmam) )|
s=1m=1

Show that this result reduces to the result of Exercise 2.10 when f is area-
preserving. Describe the meaning of the quantity

T;i(n) — Pi(n).

2.4 Examples

We now want to consider two examples that will illustrate the use of the
general results described in the previous section. Qur approach will be to
try to directly derive expressions for a; ;(n) and T; ;(n) in terms of turnstile
dynamics without merely applying the previously developed general formu-
las. We will completely succeed with this approach in the first example but
will fall short of our goal in the second (more complicated) example. This
will serve to motivate the depth of the results described in the previous
section as well as give the reader a feel for “what makes them work.”

(2.1) Example. The Oscillating Vortex Pair (OVP) Flow Geometry

Consider a C"(r > 1) area- and orientation-preserving diffeomorphism

f:IR2-—)1R2
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Fig. 2.14. Geometry of the stable and unstable manifolds of p; and p,.

having two hyperbolic fixed points on the z-axis symmetrically located
about the origin with stable and unstable manifolds as shown in Fig. 2.14.
We label the point on the positive x-axis p; and the point on the negative z-
axis ps. We assume that W*(p2) and W*(p;) coincide with the z-axis. This
serves to create a complete barrier so that points in the upper (resp. lower)
half-plane cannot enter the lower (resp. upper) half-plane under iteration
by f. We further assume that W*(py) intersects W*(p;) at both a point
on the positive y-axis and a symmetrically located point on the negative y-
axis as shown in Fig. 2.14. When we study convective mixing and transport
problems in fluid mechanics in Chapter 3, we will see that this particular
geometry arises in the flow field induced by a pair of point vortices (of
opposite sign and equal magnitude) under the influence of an external,
time-periodic strain rate field.

We will use the stable and unstable manifolds of the hyperbolic fixed
points to form regions through which to study transport. Since the upper
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Fig. 2.15. Geometry of the turnstile.

and lower half-planes are symmetric, invariant regions, we will henceforth
be concerned only with the upper half-plane.

We define the region R; to be the set bounded by the segment of the z-
axis between p; and p» and S|p2, g] UU|p1, q], where ¢ € W*(p2) (Y W*(p1)
is the pip on the positive y-axis. The region R; is defined to be the (un-
bounded) set external to R; in the upper half-plane; see Fig. 2.15. The
turnstile is constructed from U[f~1(g),g] and S[f~*(q), q] with appropri-
ate labeling of the lobes as shown in Fig. 2.15. Note from this figure that we
are assuming there are only two lobes in the turnstile. As argued in Section
2.3, this affords no loss of generality; moreover, in the application of this
geometry to the fluid transport problem in Chapter 3, this assumption will
hold for the parameter values of interest. Our goal is to compute a; 2(n)
and T 9(n) in terms of turnstile dynamics for this example. We begin with
a1,2(n).

Recall that a; 2(n) is the flux of species S; into Ry on the nth iterate.
Initially one might think that a, 2(n) is given by

(2.15) a12(n) = p(L12(n)) = p (7" (L12(1))),

where, recall, 4(A) denotes the area of set A. However, this is not generally
correct since the lobe L; »(n) may weave in and out of R; and R2 as shown
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Fig. 2.16. Example of L; 3(n) lying in both R, and Rz for n = 1,2,3.

in Fig. 2.16 [indeed, this must occur for n sufficiently large since u(R;) is
finite]. Since L; 2(n) is the lobe that leaves R; and enters R; on the nth
iterate, the correct expression for a;2(n) would be

(2.16) a12(n) = p (Lia(n)),
i.e., the area occupied by species S; in the lobe L; 2(n).
(2.14) Exercise. Show that L ,(n) = 0.

Now we want to find an expression for L} ;(n) in terms of turnstile
dynamics. In order to do this we must understand the manner in which
L1 2(n) can be in the region R;. If L) 5(n) intersects Ry in any manner, it
must cross S[ps,q] JU[p1, g]- It cannot cross S[ps, q] since W*#(p,) cannot
intersect itself. It can cross Ulp, g], but, if so, it is restricted to lie in the
lobes Ly 1 (m),m =1,...,n — 1. Hence, we have

n—1

@17 Liam) =L - U (Liz@(Nzam), n>2.

m=1
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(2.15) Exercise. Show that Ly ;(m) (| Ly 2(n) = @, for all m > n. Relate
this result to Exercise 2.14.

Since the lobes Ly 1(m), m =1,---,n — 1, are disjoint, we then have
n—1
(218) p(Liz(n)) = p(Lie(n) - Z 17 (L1,2(n) an,l(m)) , n2>2.
m=1

(2.16) Exercise. The passage from (2.17) to (2.18) uses the following fact.
Suppose A and B are subsets of M with B C A. Then (A — B) = u(A) -
w(B). Prove this fact.

Using the lobe dynamics [ie., f?"!(Li2(n)) = Li2(1)], area
preservation [e.g., u(f*(L12(1))) = p(L1,2(1))], and reindexing, (2.18) be-
comes

(2.19)
n—1
i (L o) = p (L) = 3 0 Lz (L2a1)), n22
m=1
Hence, from (2.16) we have
n—1
(220) @2(n) = p(Lio() = 3w (LiaW " (L21(1))), n>2,
m=1

which expresses the flux of species S into region Ry on the nth iterate
completely in terms of turnstile dynamics.

(2.17) Exercise. Show that the general formulas given in Theorems 2.5 and
2.6 reduce to (2.20) for this specific geometry.

Since the map is area-preserving, a; 2(n) = T1,2(n) —T1,2(n—1). Thus,
in order to compute 77 2(n) we merely “integrate” (2.20) (and reindex) to
obtain

(2.21)
n—1

Tia(n) = np (Lig(1) = Y (n—m)u (Lia() () 7 (Lz,l(l))) . n>2.
m=1

Using (2.21) we can derive some more interesting relationships. It should
be clear that

Ti2(n) < p(Ry), Vn.

Hence, rearranging (2.21) gives
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n[u(Ll,g(l)) i (L12 1)ﬂfm (L2 1(1)))}
(2.22) . ’7’:1
+ 30 mu (L7 (L2 (1) < ().
Now
3 mit (L) () £ (L2a(1) >0
and
p(La) = 3 (L2 ()£ (L2a (1)) > 0

therefore, since u(R;) < oo, in the limit of n — oo we must have

p(Li2®) = 3 1 (Lr2W )™ (Lan(1)))
m=1
This relationship implies that all points escaping region R; must have en-
tered R; from R earlier.

(2.18) Exercise. Do all points that escape from R; never return to R;?
Why or why not? Relate this to Exercises 2.14 and 2.15.

(2.19) Exercise. From (2.22) we have

S mi (L2 )™ (L2a(1))) < ().

m=1

What does this imply concerning the decay rates of the areas of the sets
L1,2(1) rl fm(L2,1(1)) as m — oo?

(2.20) Exercise. Equations (2.18), (2.19), (2.20), and (2.21) are valid for
n > 2. What are pu(L;,2(1)) and T3 2(1)?

In summary, the phase space transport equations were easy to derive
for this specific geometry. This was due to the fact that the f™(L; 2(1)),m >
1 lobes did not intersect R;, and, hence, points that escaped from R; never
returned to R;. This behavior is typical of two-dimensional maps whose
phase space can be partitioned (by segments of stable and unstable mani-
folds of a hyperbolic fixed point) into two regions, one region correspond-
ing to bounded motion and the other corresponding to unbounded motion.
Hence, Equations (2.20) and (2.21) are immediately applicable to the peri-
odically forced Morse oscillator described in Example 1.4. Qur next example
is considerably more complicated.
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(2.2) Example. The 1:1 Resonance or Periodically Forced Pendulum
Geometry.

Consider a C"(r > 1) area- and orientation-preserving map on the
cylinder, C ,
f:C—C.

We suppose that f has a hyperbolic fixed point, p, where a branch of the
stable and unstable manifold of p intersect at a point on the positive y-axis,
gt, and the remaining branches intersect at a point symmetrically located
on the negative y-axis, ¢~ ; see Fig. 2.17 where we represent the cylinder on
IR? by identifying the lines = 7 and z = —n. This particular geometry
arises in the 1:1 resonance of area-preserving maps (e.g., the standard map)
and in the Poincaré map of a periodically forced pendulum.

The segments Ulp, gt JS[p,¢*] and Ulp,q~ | U S[p,¢”] separate the
cylinder into three disjoint pieces which we label (from top to bottom)
Ry, R, and R3. We construct the turnstiles associated with the bound-
aries between each region and label them in the appropriate manner; see
Fig. 2.18. Our goal is to study the transport of points between these three
regions.

We begin by considering transport between R; and Rj3. In particular,
we want to compute an expression for the flux of species S3 into region
R; on the nth iterate, az1(n). Now a3 ;(n) is defined to be the amount
of species S3 entering R; on the nth iterate minus the amount of species
S3 leaving R; on the nth iterate (remember, we have assumed that the
map preserves area). Since points may only enter and leave R; through
the turnstiles associated with the boundary of R,, this quality is generally
given by

‘13,1(”) = Z {H (Lil(n)) —H (L?k(n))} .
k=1

However, we have

Lis(n) =Lsi(n)=10

and

Lii(n)=0,1=1,2,3,

so that our expression for the flux of S5 into Ry reduces to

(2.23) a1 (n) = u (L3 ,(n)) - n (L3 2(n)),

which is what we should expect since only the turnstile Ly, (1) L1 2(1)
allows points to enter and leave R;. Now it remains to find expressions

fo; L} (n) and L} 5(n) in terms of turnstile dynamics. We first consider
Ly, (n).
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Fig. 2.17. Geometry of the stable and unstable manifolds in the 1:1 resonance.

L3,2(1)

—»le— |dentify ——»la—— |dentify ——»!

Identity

.

X =-3n

X =31

Fig. 2,18. Geometry of the regions and turnstiles.
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le— |dentify ——»te— |dentify ——»-le—— |dentify —»
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w
a

X =-3n X=-T X

Fig. 2.19. Intersection of L 2(n) with U L3 a(k) forn =2,3 and k = 1,2 (note:

only the relevant portions of the homochmc tangle are shown).

In determining Lg’l(n), the portion of L3 1(n) occupied by species Ss,
we must understand how inverse iterates of L, (1) can intersect the region
Rj3. Inspecting Fig. 2.19 and using the fact that stable (resp. unstable)
manifolds cannot intersect stable (resp unstable) manifolds, it follows that

if Ly1(n) is in Rg, then it must be in U L3 2(k).

Note that L, 1(n) cannot 1ntersect L3 2(k),k > n, since f*~(Lq,1(n))
= L3,1(1) C Ry and f™~1(L32(n)) C Ra. Hence, we have

(2.24) L3,(n) C Laa(m)[) (D L3,2(k)) .
k=1

It would be nice if we could replace the “C” symbol in this expression by
an “=." However, this is in general not possible since L3 2(k) may intersect
Ry and R;, for some k, and hence L, (1) contain species Sz and S;. This
is what we must understand next. So for now we have established

(2.25) Lg,l(n) = Ly 1(n) ﬂ (U Lg,:’(k)) .
k=1
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Fig. 2.20. Intersection of L3 (k) with Ly 3(m),m < k, for k = 3,m = 1 (note:
only the relevant portions of the homoclinic tangle are shown).
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Fig. 2.21. Intersection of L2 3(m) with R; and Rz for m = 2 (note: only the
relevant portions of the homoclinic tangle are shown).

Now we want to understand how portions of L3 2(k) may not lie in R3.
Using the same reasoning as above, the only way that the lobe L3 2(k) can
escape Rj is through the lobes Lo 5(m),m < k — 1; see Fig. 2.20.

However, L; 3(m) may intersect both R; and R, (see Fig. 2.21), so we have
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k-1 2

(226)  Li,(k) = Lsa(k) — |J U (Ls2(h) ) Zis(m) -

m=11=1

Substituting (2.26) into (2.25) gives

L31(n) = L_J ( (n)[) Ls, 2(k)
- U Loy (n)(\Laz2(k) () Ly, 5(m)-

However, L 1(n) can intersect Ly 3(m) only if it first intersects L3a(k),m <
k < n. So we have

(2.27)

(2:28) Lop(n) () Ls2(k) () Lb,3(m) = Lz, (n) () Ly,3(m)

and, therefore, (2.27) reduces to

(2.29)
L,n) = (Lz,l(")ﬂL3,2(k)) -U (U Loy(n)() L3, 3(m))
k=1 m=1

On inspecting Fig. 2.22, it appears reasonable that for m small

1
! Lo 5 NLy5(3) | Lya3)NL;,(2)
I

Ly3@)NLy @3N Lo (1)

!

|

!

Loa(8) NLy 4(2) !
i
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L23(5) Lo 4(2) Ny p(1) L3 (1)

i
|
|
ta——— |dentify —»la— Identify ——»ta—— [dentify ——»!

! i

1

]

i

i

1 R;

|

}

t

X =-3n X =T X=T X =31

Fig. 2.22. A possible intersection of L2 3(m) with Rs.
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L3 3(m) =0,

in which case

U Lt 5(m) = Las(m),

=1
and each of the sets in the union in (2.29) are all disjoint.

In this case, the area of the union of the sets is the sum of the area of
each set individually, so that we have

(2.30)
n—1 n—1
w(B33m) = 3w (Laa ) Loa®) = 3w (Lan(m) (Laa(m)
k=1 m=1
n> 2.

Remarkably, this formula is true even when L3 5(m) # 0; this follows from
Theorem 2.6, and now we want to give some reason and intuition as to why
it should be true.

The issue is how can L;(n)(L3 3(m) be nonempty? In order for
L, 3(m) to have portions in Rs, it must go first through the L; »(j) lobes,
1 < j <m -1, and then through the Ly ;(£) lobes, 1 < £ < j — 1, after
which finally it may intersect the L3 2(p) lobes, 1 < p < £ — 1. Stated more
precisely, we have that

Lya(n)| JL35(m) # 0

implies

n—1 k-1 m—1
(2.31)  Lai(n)[) (U Ls,z(k)> N ( U Lz,s(m)> ﬂ U L1,2(j)>
k=1 m=1 =1

71 -1
N (U L2,1(3)> N (U L3,2(P)> #0.
=1 p=1

This expression shows that if Lg;(n)(L33(m) # 0, then the lobes
L33(k),1 < k <n -1, are not disjoint. In particular, we have

Ls2(p)[ ) Laz2(k) #0  for some p < k.

This implies that areas of portions of the set

(2.32) Lo (n)[ YL 2(k)
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are counted twice in the first part of the sum in (2.30). However, in order
for L3 z(k) to intersect L (p), for some p < k, it must go through the
L3 3(m) lobes. Hence, (2.32) can be written as

(2.33) Lyi(n) nL2,3(m) nLg,g(k) for some k < m < n.

From (2.33) we can see that the areas of the portions of the sets counted
twice through the first part of the sum of (2.30) are subtracted once through
the second part of the sum of (2.30). This gives a correct accounting of all
of the areas of the lobe intersections contributing to the transport.

At this point we want to make several general remarks. This example
shows that turnstile dynamics may be complicated — even in seemingly
simple examples. However, the general theorems of Section 2.3 obviate the
need to follow the turnstile dynamics in each case [and deal with expressions
such as (2.31)]. The general theory tells us how to write expressions for
T; j(n) and a; j(n) for any geometry in terms of turnstile dynamics. Also, it
should be clear from this example that, despite the geometrical complexity
of the stable and unstable manifolds, temporally they must obey severe
constraints and this is the key that enables us to develop a general theory.

Returning to the problem, in a similar manner we can show that

(2.34)
n—1 n—1

# (L) = 3w (Liam N Laam) = Y- u (Liam)(VLag(m)).
m=1 m=1

Combining (2.23), (2.30), and (2.34) gives

(2.35)
a3,1(n) = Tg?l(’n) - T3,1(n - 1)

= ni_l {u (Lz,l(n) ﬂLs,z(m)) —u (L2,1(") nLZS(m))
—u (Lm(n) ﬂLa,z(m)) +u (Ll,g(n) ﬂ Lz’g(m)) }

Using the dynamics of the lobes, i.e., f*~1(Ly,1(n)) = L 1(1), etc., (2.35)
can be rewritten as

(2.36)
as,1(n) =Tz 1(n) -~ T51(n — 1)

- i‘j {u (L2 ™ Lap @) = b (Laa (D) 7 (Las(1))

= (L™ La2(1) + a4 (L2 )™ (L2s(1))) }
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This shows clearly how the transport from R3 into R; can be expressed
solely in terms of the two turnstiles controlling access to those regions.

(2.21) Exercise. Show that (2.36) follows immediately from Theorems 2.5
and 2.6.

Now we illustrate the use of the conservation laws given in Theorem
2.8 for computing fluxes between the different regions. Despite the fact that
the cylinder is unbounded, it can be shown that the results of Theorem 2.8
hold for, e.g., the standard map and the 1:1 resonance on the cylinder. From
Theorem 2.8 we have the following five conservation laws.

3 3
Y aii(n) =Y [Tij(n) - Ti(n-1] =0, j=1,23
(2.37) o =1

3

Yo aiin) =) [Tij(n) —Tij(n—1]=0, i=1,23
j=1 j=1

Additionally, if the map has the symmetry

(238) f(:C, y) = —f(iE, _y)a

then R, and R3 are the same in the sense that

Ty 3(n) = T5,1(n),
(2.39) T31(n) = T2 3(n),
Ty 2(n) = T3,2(n).

The conservation laws along with relations (2.39) can then be used to form
seven equations for the nine unknowns 7; ;(n) — T;;(n — 1),4,5 = 1,2,3.
Hence knowing any two of the T; j(n) — T; j(n — 1) allows us to deduce the
remaining fluxes from these equations. We remark that the standard map
and the 1:1 resonance has the symmetry (2.38).

(2.22) Exercise. Compute T3 ;(n) and study its asymptotic nature as n —
co. What conclusions can you draw?

A Potential Notational Ambiguity. Certain geometrical configurations of
regions may result in some ambiguity in the turnstile notation. We want to
illustrate this problem, and its solution, by considering two examples. These
particular examples have been chosen because they illustrate virtually all
difficulties of this type that may arise.
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(a)

L2:(1)
L (1)
Ry R, R, R,

Lo,(1) L2 3(1)
! Lyo(D) L3

(b)

Fig. 2.23. An example of labelling of turnstiles and regions on a cylindrical phase
space.

(2.3) Example.

Suppose that M is a cylinder of finite length where the top and bot-
tom boundary circles are actually invariant circles. Moreover, suppose that
there are two hyperbolic fixed points on each invariant circle whose sta-
ble and unstable manifolds intersect in the pip’s g and ¢ as shown in Fig.
2.23a. Using segments of the stable and unstable manifolds beginning at
the hyperbolic points and ending at g and § to form boundaries, we label
the two regions that are formed R; and R and further suppose that the
turnstile lobes associated with the two boundaries separating R, and Rs
are as shown in Fig. 2.23a. From Fig. 2.23a one can now easily see the
problem. Namely, there are two turnstiles yet they both are denoted the
same.

We remedy this situation by cutting open the cylinder, identifying it
with a region in the plane, and periodically extending the regions from —oo
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to 400 in the horizontal direction (in more precise mathematical terms, we
consider the covering space of the cylinder). This is illustrated in Fig. 2.23b,
where, by periodicity, Ry;41 = Ry,j = 0,%£1,%2,..., and Ry, = Ry,j =
0,£1,+£2,.... However, we label each region distinctly and, consequently,
each turnstile has a distinct notation.

Now think back to the map on the cylinder as shown in Fig. 2.23a.
Suppose we want to compute a3 2(n) = T12(n) — T1 2(n — 1). In order to
do this we merely use the turnstile notation given in Fig. 2.23b and, in the
end, remember that Ry = Ry and Ry = R3. The reason that this procedure
works is that the lobe dynamics formulas given in Theorems 2.5 and 2.6,
Corollary 2.7, Theorems 2.9, 2.10, and 2.12, and Corollary 2.13 quantify
the transport of species across a specified boundary. The global nature of
the region on either side of the boundary does not enter into the proof of
these theorems and corollaries (cf. Appendix 1). The global geometry of
the regions enters only in interpreting the results of these theorems and
corollaries in terms of the phase space transport problem of interest. The
next example should clarify these remarks.

(2.4) Example.

Suppose that M is IR? and there are two hyperbolic fixed points where
certain of the branches of the stable and unstable manifolds intersect at
the pips ¢ and ¢ as shown in Fig. 2.24a. Using segments of stable and
unstable manifolds beginning at the hyperbolic points and ending at ¢ and
G to form boundaries, we label the two regions that are formed R; (the
bounded region) and Ry (the unbounded region). Furthermore, we assume
that the turnstiles associated with each boundary segment are as shown in
Fig. 2.24a.

From Fig. 2.24a we see that the notational problem with the turn-
stiles is exactly the same as in Example 2.3; however, the resolution of the
problem is somewhat different in this case. Suppose our goal is to calculate
ay2(n) = Tt o(n) — T1 2(n — 1). Then following the comments at the end of
Example 2.3, we relabel the turnstile and the region just below the lower
boundary segment of R; as shown in Fig. 2.24b. (Yes, R; and Ry are the
same global regions in Fig. 2.24b; however, for the local purpose of distin-
guishing the two sides of a boundary, there is no ambiguity.) Then with
the notation given in Fig. 2.24b there is no ambiguity in calculating a; 2(n)
and a; 3(n) using the formulas given in Section 2.3. Hence, it follows that

a1,2(n) (following the notation of Fig. 2.24a)

is equal to
a1 2(n) + a1, 3(n) (following the notation of Fig. 2.24b),

where, as we argued, the latter quantity is unambiguously calculated.
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R,

Fig. 2.24. An example of labelling of turnstiles of regions on an unbounded phase
space.

2.5 Chaos

Homoclinic and heteroclinic points are often associated with complicated
dynamics or “chaos.” We now want to examine the notion of chaos (we will
shortly define this term) and place it in the context of our transport theory.

What are the characteristics of a chaotic dynamical system? One might
say that nearby initial conditions of the system have very different final
states or that the system has “sensitive dependence on initial conditions.”
However, these phrases raise more questions than they answer. Therefore,
in order to sharpen our definition for the term “chaos,” we will follow the
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historically correct path and consider an example, the Bernoulli shift, which
in some sense is the prototypical chaotic dynamical system.

In constructing a dynamical system we must first specify the phase
space and then define a map on the phase space in order to have dynamics.
For the Bernoulli shift the phase space is the set of bi-infinite sequences of
0’s and 1’s, which we denote by ¥. We denote points in X' by s; thus,

seX=>s={-5_p-""5-1.881 " Sn-"}, & =00r1, Vi

The decimal point in the sequence serves to separate the “forward” part
of the sequence from the “backward” part (hence the term bi-infinite se-
quence). In order to determine when two points of X are “close” we equip
27 with a metric as follows:

fors:{...s_n...s_1.3031...sn...},
~§={"'g—n"'§—1~§o«§1"‘§n"‘}EE

the distance between s and § is defined as

o0 —
_ S; — 8
(2.40) d(s,s) = Z |—2H—'
1I=—00
This metric implies that sequences that are close agree on a long central
block; see Devaney [1986] or Wiggins [1988a, 1990a] for a proof of this fact
[also, see Devaney [1986] for a proof that d(-,-) satisfies the properties of
a metric]. With this topology, X has the structure of a Cantor set, i.e., it
is closed, perfect (meaning each point is a limit point), and totally discon-
nected; see Wiggins [1988a, 1990a] for a proof.
We define the shift map, o, on X as follows, for

5={"'S—n"‘s—l-sosl"'Sn“'}EE,

o(s)={ - -5_n--+8-180.81 "5}
or, more compactly,
(0()); = se11.

We are interested in the orbit structure of o on X. The following result
indicates that it is extremely rich.

(2.15) Theorem. o has

1. a countable infinity of periodic orbits of all possible periods,
2. an uncountable infinity of nonperiodic orbits, and
3.  a dense orbit.
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Proof. The periodic orbits are the orbits of all periodic sequences, the non-
periodic orbits are the orbits of all nonperiodic sequences, and the dense
orbit is constructed by concatenating all possible sequences of finite length;
we leave the details as an exercise for the reader (a complete proof can be
found in Wiggins [1988a, 1990a)). O

Moreover, the shift map contains the essence of what we mean by the
term “chaos.” Consider the two bi-infinite sequences

s = {"'S—n—13—n"‘3—1~3031 "'snsn+l"'}

and

§= {...g_n_ls_n...s_l'sosl...sngn_,r_l...}’

where

Sk F# Sk, E=x(n+1), £(n+2),....

Thus s and 5 agree on the central, finite segment of length 2n + 1, but
in every other place they disagree. Now in the topology on X induced by
the metric (2.40), s and 5 can be made arbitrarily close by choosing n
sufficiently large. However, after n iterations by o, the future behavior of
the orbits of s and § under o are as “different as possible.” Dynamical
systems displaying this behavior are said to possess sensitive dependence
on initial conditions. More precisely, we can state the following definition.

(2.6) Definition. Let A be an invariant set for f : M — M. Then f is said
to have sensitive dependence on initial conditions on A if there exists € > 0
such that for any p € A and any neighborhood U of p, there exists p' € U
and an integer n > 0 such that | f*(p) — f*(p') |> €.

(2.23) Exercise. Use the metric (2.40) to define neighborhoods of points in
27 and show that o satisfies Definition 2.6.

Let us stress that the shift map is a completely deterministic dynam-
ical system. However, in practice, we cannot specify the initial state of a
dynamical system with arbitrary accuracy. Thus, the characteristic of sen-
sitive dependence on initial conditions may serve to make the dynamics
of our system appear random. Nevertheless, we emphasize that ideally the
system is deterministic; it is merely the property of sensitive dependence
on initial conditions that is transforming our imprecision effectively into
randomness.

From the example of the Bernoulli shift we can extract a definition of
chaos for deterministic dynamical systems as follows.
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(2.7) Definition. Let A be a compact invariant set for f : M — M. Then
is said to be chaotic if

A

1. f has sensitive dependence on initial conditions on A,

2. [ is topologically transitive on A, i.e., for any open sets U,V C A,
there exists n € Z such that f*(U)\V # 0.

Admittedly, the Bernoulli shift may seem a bit contrived to those deal-
ing with maps and vector fields that arise in applications in the engineering
and physical sciences. However, the same dynamics actually occurs in a map
— the Smale horseshoe map (see Smale [1980] for historical background)
— which we now briefly describe.

Let D = {(z,y) CIR* |0 < £ < 1,0 < y < 1} denote the unit square
in the plane and let Hy = {(z,y) C R2 o<y < ﬁ,O <z < 1} and
Hy = {(z,y) € R?2 |1- ﬁ <y < 1,0 < z <1} denote two “horizontal
rectangles” in D. We define a map on D using a combined analytical and
geometrical construction as follows.

Analytical. On Hy, f has the form

T A 0 T 1
2.41a — , 0<A< o, > 2.
( ) <y> <0 u) <y) 2 F

On Hy, f has the form

(2.41b) <z) - (_0’\ _0#) (Z) n (i) 0<A< % 0> 2

Geometrical. The region between Hy and H; in D is mapped out of the
square under f (further details are unimportant).

The components of f on the three regions in D can be joined together
in a C*° manner at the boundaries using bump functions so that f is C™®
on D (but analytic on the interior of Hy and H;). Thus, f contracts the
square in the z-direction, expands it in the y-direction, and folds it around,
laying it on top of itself as shown in Fig. 2.25a. Also it is easy to see that
J~1 acts on D as shown in Fig. 2.25b.

We are interested in describing the set of points that always remain in
D under iteration by f. The set of points that always remain in D under
inverse iterates of f is defined to be

A- =D DY D)D)

Using the definition of D given above, it is not hard to see that A_ is a
Cantor set of vertical lines. Similarly, the set of points that always remain
in D under forward iterates of f is defined to be
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H, Fol/dmg
1
H
1 1
y Tu f
L. 1 —- [t(Ho) 1(H,)
In Hq
0 1 0 A 1A 1
Ho
Stretching and Contraction
(a)
Folding
! - m
y
L, [ 1(H;) [ tHey | [ tHa ]
Stretching and Contraction Ho

0 A 1x 1
(b)

Fig. 2.25. The Smale horseshoe map.

4, =D OO0+

Using the definition of f given above, it is not hard to see that A, is a
Cantor set of horizontal lines. Thus, the invariant set of f,

A=A = () (D),

n—=—oo

is a Cantor set of points.
(2.24) Exercise. (Easy.) Prove the A has Lebesgue measure zero.

But what about the dynamics on the invariant set? It is interesting
(though at this point somewhat unmotivated) to give the orbits in A under
f a symbolic description as follows: for p € A we associate a bi-infinite
sequence of 0’s and 1’s to p according to the rule that the nth entry in
the sequence is 0 if f*(p) € Hp or 1 if f*(p) € Hy. Since Hy and H,
are disjoint, this association provides a well-defined map between A and ¥
which we denote as follows:



2.5 Chaos 59

¢:A— 3,

pp—){...S_n...s_l_sosl...sn...},

.

where

__ JOif f'(p) € Ho,
%= 1if fi(p) € H.

Moreover, it should be clear that the symbol sequence corresponding to
f(p) is given by

S(f(D) ={ 5 5_150.518n -};

hence, we have the relation

(2.42) gof=00¢.

At this point the usefulness of this symbolic description of orbits in A
under f is probably not apparent. Indeed, the reader might imagine that
there could be several orbits in A having the same symbolic description.
This is not the case; it can be shown (using the properties of f) that ¢ is a
homeomorphism. Therefore, for a given symbol sequence, there is only one
point in A that is mapped to it under ¢. Moreover, since ¢ is invertible,
using (2.42) we have

f=¢"og04

from which follows

ff=¢ loo™od, neZzZ.

This implies that every orbit in X under o is mapped to an orbit in X
under f. Hence, Theorem 2.15 applies immediately to f restricted to A.
Moreover, all of the periodic orbits of f are unstable due to the form of f
on Hy and H, given in (2.41).

(2.25) Exercise. Show that the Smale horseshoe is chaotic on A.

(2.26) Exercise. Describe the geometrical manifestation of chaos for the
Smele horseshoe by relating the symbolic description of the orbits to the
geometry from which it arises.

We remark that detailed proofs of all of the above results can be found in
Wiggins [1988a, 1990a).

Now let us retrace the path that we have been following up to this
point. We began by describing the Bernoulli shift — an “obviously” chaotic
dynamical system — and then showed how the dynamics of the Bernoulli
shift arose in a map, the Smale horseshoe map. But an obvious question
remains, namely, how does Smale-horseshoe-like dynamics arise in more
general types of maps and vector fields arising in applications? An answer
is provided by the Smale-Birkhoff homoclinic theorem.
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Fig. 2.26. Geometry of the horseshoe in the homoclinic tangle.

(2.16) Theorem. Suppose f : R™ — R" is a C" (r > 2) diffeomorphism
having a hyperbolic periodic point p. Furthermore, suppose that W*(p) and
W*(p) have a point of transversal intersection. Then there exists some in-
teger n > 1 such that f* has an invariant Cantor set, A. Moreover, there
ezists a homeomorphism ¢ : A — X such that po f* = oo ¢.

Proof. See Smale [1963] or Wiggins [1988a, 1990a). O

We make several remarks concerning this theorem.

This theorem implies that, on A, f* has the same dynamics as the
Bernoulli shift on two symbols. Actually, a more general statement can
be made. Rather than a symbolic description of the dynamics using two
symbols, one can generalize the method to allow for sequences whose
entries can consist of a countable number of symbols {e.g., positive
integers). For our purposes, however, two symbols are sufficient, but
see Wiggins [1988a, 1990a] for the general theory.

We introduce some dynamical systems terminology. When the condi-
tion ¢ o f* = o o ¢ holds, with ¢ : A — X a homeomorphism, the
dynamical systems f* :'A — A and ¢ : X — X are said to be topo-
logically conjugate. One can think of ¢ as a coordinate change that
transforms one dynamical system into the other. In Wiggins [1988a,
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1990a] there are results describing how the orbit structures of two dy-
namical systems must be related if they are topologically conjugate.
3. An interesting aspect of this theorem is that it says that the existence
of one type of orbit (i.e., a transverse homoclinic orbit) implies the
existence of a highly complicated, chaotic orbit structure nearby.

Let us illustrate the Smale-Birkhoff homoclinic theorem geometrically.
Consider the intersection of one branch of both the stable and unstable
manifold of a single hyperbolic fixed point as shown in Fig. 2.26.

If we follow the region denoted D in the figure, we see that under 5
iterates D is mapped over itself in a “horseshoe shape.” This is certainly
not a proof of the Theorem 2.16, which requires various analytical and ge-
ometrical estimates (see Wiggins [1988a, 1990a] for the details). However,
it does give one an idea about how the theorem comes about and its re-
lation to the horseshoe. As D moves around the homoclinic tangle (away
from the fixed point) it experiences folding and as it moves near the fixed
point it experiences strong contraction and expansion. It is remarkable that
knowledge of the detailed functional form of the map is not needed. Rather,
all that is required are the geometrical property of folding (a result of the
homoclinic tangle} and the generic, analytical result of strong contraction
and expansion near a hyperbolic fixed point. But what about chaos in this
example? It is not hard to see that the invariant Cantor set on which f5
is topologically conjugate to a Bernoulli shift on two symbols is contained
inside the tangle region as shown in Fig. 2.27.

Moreover, dynamics in A correspond to orbits circulating around the
“interior” region of the homoclinic tangle (remember, we can only make
these precise statements on a set of measure zero). In some sense we would
argue that this type of horseshoe dynamics is not so interesting for this
example. Rather, a more interesting dynamical phenomenon would be the
question of escape from the interior of the homoclinic tangle. This can be
rigorously formulated as a phase space transport problem. Moreover, it will
give “rate results” as well as results on sets of positive measure which are
certainly more relevant in applications.

(2.27) Exercise. Formulate this example as a phase space transport prob-
lem. Derive escape probabilities in terms of turnstile dynamics. What can
you say about the ultimate fate of points that enter the “interior” (a concept
that is precisely defined in formulating the phase space transport problem)
of the homoclinic tangle region? Does the horseshoe construction and its
attendant sensitive dependence on initial conditions have any implications
for the escape probabilities as well as for the dynamics of nearby points?
(Hint: Example 1 from Section 2.4 is relevant.)

Now we turn to heteroclinic orbits. By themselves, heteroclinic orbits
(transverse or not) do not necessarily imply the existence of “horseshoe-
like” dynamics. However, heteroclinic cycles are a different matter.
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Fig. 2.27. Geometry of the invariant set in the horseshoe (with the homoclinic
tangle removed for clarity).

(2.8) Definition. Let po,p1,--*,Pn—1,Pn, With py = pn, denote hyper-
bolic fized points where W¥(p;) transversely intersects W*(pit1) for i =
0,1,...,n — 1. Then the stable and unstable manifolds of the p;,i =
0,---,n — 1, are said to form a heteroclinic cycle.

The following is a key result.

(2.17) Theorem. Suppose the conditions of Definition 2.8 hold. Then W*(p;)
transversely intersects W*(p;) fori=10,1,...,n — 1.

Proof. See Palis and de Melo [1982]. O

Theorem 2.17 implies that the Smale—Birkhoff homoclinic theorem ap-
plies directly to heteroclinic cycles.

(2.28) Exercise. Consider the heteroclinic cycles shown in Fig. 2.28. De-
scribe the associated horseshoes and the manifestation of the associated
sensitive dependence on initial conditions. Consider each heteroclinic cycle
in the context of a phase space transport problem and discuss the relation-
ship of the horseshoe-like dynamics to this point of view.
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Fig. 2.28. Examples of heteroclinic cycles.

Finally, we have shown that chaos (rigorously only on sets of measure
zero) occurs near homoclinic orbits and heteroclinic cycles. Forgetting rigor
for the moment, a manifestation of chaotic behavior may be that nearby
points have very different futures. The phrase “different futures” mathemat-
ically means that nearby points evolve to different regions of phase space.
Now the chaos occurs near (and is generated by) the stable and unstable
manifolds of hyperbolic fixed points. In our phase space transport theory
these are the structures used to partition the phase space into disjoint re-
gions (i.e., “different futures”). Indeed, they form the “frontiers” between
different futures. Hence, a rigorous quantification of the effects of chaotic
behavior can be made by viewing the dynamical system in the context of a
phase space transport problem. Moreover, this also allows for the quantifi-
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cation of finite time effects (transient chaos) which are important in many
applications. This theme will be amplified throughout this monograph.

2.6 Melnikov’s Method and Transport Issues

When the systems that we are considering are time-periodic perturbations
of planar (hence integrable) Hamiltonian systems, there exists a global per-
turbation method, Melnikov’s method (Melnikov [1963]), that can be used
to understand many of the geometrical aspects associated with homoclinic
and heteroclinic tangles. We now give a brief discussion of this method
and its application to issues concerning transport through homoclinic and
heteroclinic tangles.
Consider the vector field

. OH
T = —a_y_(xv y) =+ 591(.’17, ¥, t, 6),

(2.43) (z,y) € R?

. —0OH
y= oz (m,y) + SQQ(xvyvt’E)v

or, in vector form,
(2.44) ¢=JDH(q) +e9(q,t,¢),

where ¢ = (z,), DH(q) = (%2 (z,y), %(2,y))T ( T denotes transpose),
g=1(91,92), 0 <e << 1, and
0 1
1=(% o)

We assume that the vector field is sufficiently differentiable on the region
of interest (C",r > 2 is adequate) and that g(q,t,¢) is periodic in ¢ with
period T = %"

We refer to the system with ¢ = 0 as the unperturbed system and make
the following assumption:

Fore =0, (2.44) has a hyperbolic fized point, py, that is connected to itself
by a homoclinic orbit, I,y = W*(po) (W™ (po); see Fig. 2.29. We denote
a trajectory in I,y by qn(t).

The goal is to understand how the homoclinic orbit I',, breaks up for € # 0.
Our study will be formulated in the context of Poincaré maps and for this it
is more enlightening to use the following “trick” of introducing the phase of
the vector field as a new dependent variable. This serves to reformulate the
perturbed vector field as an autonomous vector field and to consequently
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We(p)NWH(py) = I},

Po

Fig. 2.29. Homoclinic structure in the unperturbed system.

treat the perturbed and unperturbed vector fields on a more equal footing.
So letting ¢(t) = wt + ¢g, (2.43) can be rewritten as

. OH
T = —az(z',y) + 591(%?/7(1), 6)’

. . —OH
GO = 2@y ren@09), @y eRxRxS

¢=uw,

or, in vector form,

g =JDH(q) +¢cg(q, ¢, €), (2,6) e R* x S

=Ww.

(2.46)

Now we want to interpret the structure of the unperturbed system in the
context of this enlarged phase space. The hyperbolic fixed point, pg, be-
comes a (trivial) periodic orbit v(t) = (po, ¢(t) = wt + ¢p) with two dimen-
sional stable and unstable manifolds, W*(y(t)) and W*(~(t)), respectively,
that coincide along a homoclinic manifold Iy = We(y(t)) W¥(~(t)). We
denote a trajectory in Iy by (gn(t), #(t) = wt + ¢); see Fig. 2.30.

From general theorems (see Guckenheimer and Holmes [1983] or Wig-
gins [1988a, 1990a]), for ¢ sufficiently small the hyperbolic periodic orbit
along with its stable and unstable manifolds persist and are denoted by
Ve(t) = (Pe(t) = po + O(e), $(t) = wt + o), W*(7(t)), and W*(7.(t)), re-
spectively (note: they also depend on ¢ in a C™ manner). However, for € # 0,
We(ve(t)) and W*(~,(t)) will generically not coincide (see Fig. 2.31) and
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Fig. 2.30. Homoclinic structure of the unperturbed system in the extended pha:s
space.
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Fig. 2.31. Possible geometry of W?°(v.(¢)) and W*(v.(t)).
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Fig. 2.32. Geometry of the perturbed manifolds and the Poincaré section.

our goal is to study their geometry. In order to do this it is most convenient
to consider the associated Poincaré map for this problem.

In order to construct the Poincaré map we define a cross section to the
phase space as follows:

(247) 2% = {(g,¢) e R* x §* | ¢ = ¢ € (0,27]}.

Denoting the solution of (2.46) by (ge(t), ¢(t) = wt + ¢o), we define the
Poincaré map of £% into X% as follows:

PE¢O b 24’0,
(2.48) o
2:(0) — ge (:}‘) .

The intersection of 4.(t) and its stable and unstable manifolds with %o is
denoted as follows :

pe(¢0) = 7€(t) N E¢0a
(2.49) W* (pe(¢0)) = W* (7 (t)) N %,
W™ (pe(¢o0)) = W* (1e(t)) N Z%;
see Fig. 2.32.
Next we develop a measure of the distance between W*(p.(¢o)) and
W*(p:(¢0)). In order to do this we use the unperturbed homoclinic geome-

try as a framework on which to develop our analysis. At € = 0, p.(¢o) = po
and W*(py) and W*(pg) coincide as shown in Fig. 2.33.
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Fig. 2.33. Homoclinic coordinates.

Since the unperturbed system is autonomous [in particular, the g com-
ponent of (2.46) is independent of ¢], the homoclinic trajectory g (t) passes
through all points in W*(po) () W*(po) on the cross section X% as t varies
from —o0o0 to +00. We will use this to develop a parameterization of the
unperturbed homoclinic manifold. This is done as follows: the point g5 (0)
denotes a unique point on I',, = W*(pg) () W*(po), then by uniqueness of
solutions, gn(—%g) denotes the unique point on I}, that takes time £y to
flow to g (0). As ¢, varies from —oo to 400, all points on W*(po) () W*(po)
are included. Now the vector DH (gn(—tp)) is a vector normal to I}, at the
point gn{(—tg). Moreover, W*(pg) and W*(po) each intersect DH(gn(—to))
transversely at the point gp(—to). Thus, DH(gn(—to)) can be viewed as
a moving (as ty varies) system of coordinates normal to the homoclinic
manifold I3,,.

Now for ¢ sufficiently small, transversal intersections of W*(p.(¢o))
and W*(p.(¢o)) with DH{gp(—to)) persist and we denote such points of
intersection by ¢ and g¢¥, respectively; see Fig. 2.34.

We then define a signed measure of the distance along the normal
between W*(p.(¢0)) and W*(p:(do)) at the point gn(—to) as follows:

_ < DH (qn(-t0)),q¢ — ¢ >

(250) d(t07¢075) - s

Il DH (gn(~to)) |l
where < -,- > denotes the usual scalar product and | - || is the Euclidean
length.

At this point let us address a slight (but important) technical issue.
Namely, W*(p.(¢o)) and W*(p.(¢o)) may intersect DH(gn(—tg)) in more
than one point as indicated in Fig. 2.35.
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Fig. 2.34. Intersection of W*(p.(¢o)) and W*(pe(¢o)) with DH(gn(—to)).

Fig. 2.35. Multiple intersections of W*(pe(¢o)) and W*(pe(¢o)) with DH(gn(—to)).
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Then the obvious question arises — which points of intersection are
used in defining the distance in (2.50)? The answer is that we choose the
point g € W*(pe(¢o)) [resp. ¢¢ € W*(pe(do))] that is closest to p.(do)
in the sense of positive (resp. negative) time of flight along W*(pc(¢))
[resp. W*(p.(¢0))]. The reasons behind this involve the need to approximate
perturbed solutions by unperturbed solutions uniformly on semi-infinite
time intervals and are discussed in great detail in Wiggins [1990a].

Now let us return to our expression for the distance between W*(p.(¢o))
and W*(p. (o)) at the point gn(—to) that we defined in (2.50). It should be
clear by construction that d(to, ¢o,€) = 0 if and only if ¢* = ¢°. However,
(2.50) is not very useful since we must know the points ¢* and ¢°. The trick
is to develop a computable approximation to (2.50) which will require no
knowledge of orbits of the perturbed vector field. This will be obtained by
first expanding (2.50) in a Taylor expansion about ¢ =0

< DH(qh(_tO))a 3_3(15_ |E=0 _%-15 |€=0> + 0(62)
| DH (gn(—t0)) |l

Melnikov [1963] showed that the numerator of the O(e) term of (2.51) can
be expressed as

(2.51)  d(to,90,6) =¢

dq? 0q;
(2.52) < DH (n(~t0)), 5 lem0 =5 |e=0>
= f < DH(Qh(t))7 g(‘lh(t))wt +wip + ¢0’0) > dt.

This expression is referred to as the Melnikov function and is denoted by
M(to, ¢o). Thus, the distance between W*(p.(¢o)) and W*(p.(¢)) at the
point gn(—%g) is given by

e M(to, do)
| DH(gn(—to)) |

and it is significant to note that the O(e) term in the expression for the
distance requires no knowledge of orbits of the perturbed vector field. More-
over, the expression || DH(gnr(—to)) || is never zero, except at po; hence
M (to, ¢o) = O implies that d(to,do,e) = O(£?). It seems reasonable that
if a zero of the Melnikov function is nondegenerate, then an application of
the implicit function theorem will allow us to conclude that nearby there is
an actual zero of d(tp, ¢p, ). This is the content of the following theorem.

(2.53) d(to, do, €) +O(e%),

(2.18) Theorem. Suppose there exists a point ¥y € R such that
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M(t_()_) ¢0) = 07
gTAOJ(tO,(bO) # 0. .

Then W*(pe(¢q)) intersects W (pe(¢o)) transversely at qo(—to) + O(e).

Proof. This is an easy application of the implicit function theorem and a
little geometry; see Wiggins [1990a] for the details. O

At this point it is instructive to make several remarks concerning the

Melnikov function.

1.

The role of £y and ¢¢ should be clear from our construction of the
distance between the manifolds. The parameter ¢ fixes a Poincaré
section and varying ¢y moves us around the unperturbed homoclinic
manifold on that Poincaré section.

The Melnikov function is periodic in ¢y with period T and periodic in
¢o with period 27. This is an analytical manifestation of the fact that
one intersection of W*(p.(¢o)) and W¥(p.(¢o)) implies the existence
of a countable infinity of such intersections.

On examining the form of the Melnikov function given in (2.52) one
sees that in terms of the zeros of M(tg,¢o) varying ty while keeping
¢o fixed has the same effect as varying @y while keeping tg fixed. Ge-
ometrically, this implies that fixing a cross section and measuring the
distance between W*(p.(¢o)) and W*(p.(¢o)) along the unperturbed
homoclinic orbit is equivalent to fixing a point on the unperturbed
homoclinic orbit and measuring the distance between W*(+.(¢)) and
W™(~¢(t)) by varying the cross section; see Wiggins [1990a] for a dis-
cussion of this phenomenon.

The Melnikov function is a signed measure of the distance between the
manifolds, i.e., it describes their relative orientations, but note that
it depends on the direction of DH(gn(—to)). In Fig. 2.36 we show
the various possibilities for DH(gp(—%9)) pointing in a direction away
from the interior of the unperturbed homoclinic orbit and leave the
verification as an exercise for the reader using the definition of the
distance between the manifolds given in (2.50).

The theory also applies to the breakup of heteroclinic orbits. The Mel-
nikov function has the same form and interpretation. In Fig. 2.37 we
relate the Melnikov function to the geometry of the breakup of a het-
eroclinic orbit for DH(gn(—to)) pointing in the vertical direction and
leave the details as an exercise for the reader.

Now that we have introduced the Melnikov function, we return to the

issue of transport. There are three main results.

(2.19) Theorem. The zeros of M(tg, o) correspond to the pips of the
Poincaré map defined on the cross section X%,
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Fig. 2.36. The Melnikov function and the geometry of the perturbed mamfolds
for homoclinic orbits [for DH(qn(—%¢)) pointing away from the interior of the
unperturbed homoclinic orbit].

Proof. This is a consequence of the uniform validity of perturbation theory
in the invariant manifolds; see Wiggins [1990a} for the details. O

The next result is in the context of the discussion of transport across
a boundary given in Section 2.2.

(2.20) Theorem. Consider the Poincaré map defined on the cross section
X%, Suppose

1. M(fq, ¢o) = 0.

2. $¥(to, do) #0.

3. Forty € [to,to+T), M(to, o) has precisely n zeros at which %%(to, o)
£0.

Then for any pip q of the Powncaré map, U[f~(q),q)NSIf(q), 4]
forms ezactly n lobes. If n 1s even, n/2 lobes lie on one side of B and the
remaining n/2 lobes lie on the opposite side of B. If n 1s odd, (n—1)/2 lobes

lie on one side of B and the remawning (n + 1)/2 lobes lie on the opposite
sude of B.

Proof. This is a consequence of Theorem 2.19 and the appropriate defini-
tions. We leave the details as an exercise for the reader. 0
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Fig. 2.37. The Melnikov function and the geometry of the perturbed manifolds
for heteroclinic orbits [for DH(gn(—to)) in the vertical direction].

The next theorem enables us to relate the Melnikov function to the
flux.

(2.21) Theorem. Let L be a lobe defined by the pips g1 = qn(—to1) + Oe)
and g2 = qn(—toz2) + O() on the cross section £%.

W) =c| / M(to, do)dte | +O(2).

to1

Proof. See Rom-Kedar et al. [1990], Kaper et al. [1990], and Wiggins [1990a].
0

Thus, to compute the flux from R, to R, one merely sums over the
area of the lobes in L, ,(1) (recall the discussion of multilobe turnstiles at
the end of Section 2.2).

2.7 Special Results for Area-Preserving Maps:
Quasiperiodic Orbits

A general class of area-preserving maps of the cylinder may possess both
complete and partial barriers to transport. These will not play an impor-
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tant role in our examples; however, for completeness, we describe the main
results. The goal of our exposition will be to arrive as quickly as possible
at the result having the most relevance for transport issues. Consequently,
we will be leaving out a great deal of important background material. In
order to fill this gap we refer the reader to MacKay and Stark [1985] and
Meiss [1989).

The class of maps of interest are the so-called “twist maps” which we
now define.

(2.9) Definition. An area-preserving twist map of the cylinder is a C! dif-
feomorphism

T#:S'xR— S'xR

which preserves area, orientation, and the topological ends of S* x R and
which satisfies the twist condition
06’

T >K>0,
oy ~

where

@', y)=T%(8,y).

(2.29) Exercise. Show that the dynamics of an area-preserving map in the
neighborhood of an elliptic periodic point can be described by a twist map.
(Hint: consider the Poincaré-Birkhoff normal form, see Arnold [1978].)

(2.30) Exercise. Consider the examples from Chapter 1. Can the dynamics
of any of the examples be globally described by a twist map? Are there re-
stricted regions in the phase space where the dynamics can be described by
a twist map? Is the twist map description of the dynamics in these regions
compatible with the transport questions of interest for the examples?

Geometrically, the twist condition implies that the image of any ver-
tical line intersects any vertical line only once. Also, the condition % >0

means that vertical lines are tilted to the right under the action of T#. If

%—6; < 0, the theory would still go through; what is important is that on

. . ! . .
the region of interest %Z— is uniformly bounded away from zero. However,

for definiteness we will only deal with the case %i' > 0.

In tracking and comparing iterates of points on the cylinder, it is often
more convenient to study the lift of T# to the universal cover of the cylinder.
Let

p: RxR— 8! xR,
(z,y) — (z (mod1l), y),
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denote the covering map. Then we have the following definition.
(2.10) Definition. T : IR x R — IR x IR is a lift of T# if

poT =T#op.

We can now introduce the notion of the rotation number of an orbit.

(2.11) Definition. Let T : IR? — IR? be the lift of an area-preserving twist
map of S x R and let = : R? — IR denote the projection n(z,y) = x. If
for a given x = (z,y) € R? the limit

o) — 1 "0 =)

n-—too n

exists, then it is called the rotation number of x for T.

It should be clear that this limit is independent of the choice of point on
the orbit. Hence, we can speak of the rotation number of an orbit. Moreover,
p(x) (mod 1) is independent of the choice of lift of T#.

With these preliminary definitions out of the way we can define the
notion of a quasiperiodic orbit of an area-preserving twist map of the cylin-
der.

(2.12) Definition. An orbit of T# is said to be quasiperiodic if it has an
irrational rotation number and it is recurrent, i.e., every point on the orbit
can be obtained as a limit point of a sequence of other points on the orbit.

Now we have arrived at the heart of the matter, namely, the existence of
quasiperiodic orbits and their geometrical and dynamical properties. Such
questions were first addressed by Percival [1979], Aubry [1978], Aubry and
LeDaeron [1983], and Mather [1982], who used a variational method to
prove existence which we now briefly describe.

It can be shown that every area-preserving twist map of the cylinder
can be derived from a generating function. More precisely, let T(z,y) =
(z',y') be the lift of a C™ area-preserving twist map of the cylinder. Then
there exists a C™! function

(2.54) h:R? - R!
such that

_ bh,
y= —a-x(x7$)a

Oh
p Yt ’
y _a$/ (a:,x )’
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with

82%h (
Ozdx’

For some constant ¢ < 0 and ¥(z,z’) € IR?, see MacKay and Stark [1985] for
a proof of this statement. An advantage afforded by the use of the generating
function is that knowledge only of the z-component of the orbit is sufficient
for knowing the y-component of the orbit by using (2.54). This “reduction
to one dimension” allows the use of the order-preserving properties of one-
dimensional dynamics.

Now let {(Zn,yn)}>> _oo be an orbit of T and consider only the z-
component of this orbit, i.e., {z,}o2 _ . Let {z;,..., 2t} be any finite seg-
ment of {z,}32 _ .. Then it is an easy calculation to show that {z;, ..., zx}
is a stationary point of the function

z,7') < c<0.

k—1
(2.55) WA{zj,..., 2k} =Y h(zi,Tiy1),
=3
where x; and zj are held fixed. W{x;,...,z«} is the action of the orbit

segment {x;,--,zx}. Thus, any orbit of T has the property that any finite
segment of the z-component of the orbit is a stationary point of the action.
Of particular interest are not just orbits but orbits that minimize the action.

(2.13) Definition. {z;,...,z%} as defined above is said to be minimizing if
W{z;,...,zx} is a global minimum with respect to variations fizing «; and
T

{2.14) Definition. {(z,, yn)}32_ ., as defined above is said to be a minimiz-
ing orbit if every finite segment {x;,...,zx} is minimizing.

Now we can state the main result which follows from the work of
Percival, Aubry, and Mather.

(2.22) Theorem. For every irrational number w there exists a quasiperiodic
minimizing orbit having rotation number w. Moreover, the closure of the
orbit is either an invariant circle or a Cantor set.

The rest of this section will consist of a series of remarks describing
the implications of this result.

The Moser Twist Theorem. It is important to realize that Theorem 2.22 is
not a perturbation result in the manner of the KAM theorem. For compara-
tive purposes we will state a version of the KAM theorem for area-preserving
maps known as the Moser twist theorem (see Moser [1973]).
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The setting is as follows. Denote the annulus (i.e., a restricted region
of the cylinder) as follows:

A={0,y) e S xR'|a<y<b}
and consider the following integrable twist map defined on A:

y—y,

(2:56) 6 — 8+ aly),

with %;— > k > 0. It is easy to see that all orbits of (2.56) lie on invariant
circles. Moreover, the rotation number of each orbit is a(y) with all rotation
numbers in the interval [a(a), a(b)] obtained by the mapping.

Now we are interested in how this situation changes when (2.56) is
perturbed to the following mapping:

y—y+ f(v,9),

(2.57) 80— 0+ aly) + g(y, ).

We denote the class of r times differentiable functions on A by C"(A) and,
in order to quantify the size of the perturbation, we introduce the following
norm on C"(A); for h € C"(A) the norm of h is denoted by

m+nh
[ hlr=sup |5 —sps

m+n<r mae" |

Then the Moser twist theorem can be stated as follows.

(2-23) Theorem. Let a(y) be C™ and | 92 s |Zv>0ina<y<b, for somer
with r > 5, and let € be a positive number Then there erists a § depending

on g,r, and a(y) such that any area-preserving twist mapping (2.57) with
f.g€ CT(A) and

[ f~vylr+ 19— oly)|r<vé

possesses an invariant circle parametrically represented as

y = c+u(§),
0 =€+ v(§), & €(0,27],

where u and v are continuously differentiable, periodic with period 27, and
satisfy

fuly +|vi<e,

with a < ¢ < b. Moreover, the mapping (2.57) restricted to this invariant
circle is given by

£ E+w,
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where w is iIncommensurable with 2w and satisfies the following diophantine

condition:
w p _
—_— - <
o g I< g

T

with some positive v, 7 and for all integers g > 0 and p. In fact, each choice
of w € la(a), a(b)] satisfying this diophantine condition gives rise to such
an invariant circle.

The Moser twist theorem gives somewhat more information than The-
orem 2.22. In particular, it provides an explicit condition which the rotation
number of a quasiperiodic orbit must satisfy in order for its closure to be an
invariant circle. However, the Moser twist theorem is a perturbation theo-
rem; it does not provide explicit estimates on the size of f and g that will
allow for an invariant circle with rotation number w. An obvious question is
whether or not the invariant circles of Theorem 2.22 are the same as those
of the Moser twist theorem when we restrict ourselves to (2.57). The an-
swer is yes, and this result is due to Mather, who proved that quasiperiodic
orbits whose closures are invariant circles minimize the action.

(2.31) Exercise. Suppose we are in a region of phase space where f : M —
M can be written as a twist map. Moreover, suppose that within this region
f has an invariant circle. Does the invariant circle define an invariant region?
(Hint: pay particular attention to the topological properties of M.)

Nonexistence of Invariant Circles. It may be interesting to know that a map
possesses no invariant circles. Criteria for this are provided by the converse
KAM theory; see MacKay and Percival [1985], MacKay, Meiss, and Stark
[1989], Mather {1984, 1986, 1988] and Muldoon [1989].

Cantori. The invariant Cantor sets of Theorem 2.22 have been called Can-
tori by Percival. Typically they are hyperbolic in stability type and, when
viewed in the context of increasing the strength of the perturbation of an
integrable twist map, are the remnants of invariant circles. They form par-
tial barriers to transport and, moreover, their hyperbolic nature indicates
the existence of stable and unstable manifolds which can be used to form
lobes. This is described in MacKay, Meiss, and Percival [1984]. Veerman
and Tangerman [1990] have recently obtained some results related to sta-
ble and unstable manifolds of hyperbolic cantori and the construction of
turnstiles. For our purposes the Cantori will not play a major role in the
transport issues. For that matter, neither will the twist map formalism.
One can view the coordinate of the twist map as action-angle variables;
hence they are rarely globally defined in applications. Moreover, there are
no obvious relationships between action-angle representations in different
regions of the phase space. In the examples of Chapter 1 the most impor-
tant transport questions involved motion between regions of phase space
where the action-angle coordinates (hence twist map representations) were
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different. For this reason it is best to forego the twist map formalism and
work in the original, globally defined coordinates.

2.8 Nonhyperbolicity

We chose to work with hyperbolic fixed points because the existence of
stable and unstable manifolds is most familiar in this case. We could then
form lobes from these manifolds and develop the transport theory. How-
ever, in developing the formulas for a; ;j(n) and T; j(n) is Section 2.3, hy-
perbolicity was never used explicitly—only the existence of invariant curves
intersecting at a fixed point having the property that points on one curve
approached the fixed point under forward iterates and points on the other
curve approached the fixed point under backward iterates. Hence, the same
formulas are valid when we allow nonhyperbolic fixed points having stable
and unstable manifolds in this sense. One might argue that this is not very
important, since hyperbolicity of fixed points is a generic property (see Palis
and de Melo [1982]); however, in the fluid mechanical examples in the next
chapter we will see that no-slip boundary conditions in fluid flows imply
that any stagnation point on the boundary of the flow must be nonhyper-
bolic in its stability type. Moreover, new theorems are required in order
to prove the existence of horseshoe-like dynamics for orbits homoclinic to
nonyhyperbolic fixed points. We note that McGehee [1973] has proved a
stable manifold theorem for nonhyperbolic fixed points.



Chapter 3

Convective Mixing and Transport Problems
in Fluid Mechanics

Over the past ten years much enthusiasm has arisen over the application
of the methods of dynamical systems to problems concerned with mixing
and transport in fluids; for a recent survey, see Ottino [1989]. The general
setting for these problems is as follows. Suppose one is interested in the
motion of a passwe scalar in a fluid (e.g., dye, temperature, etc.), then,
neglecting molecular diffusion, the passive scalar follows fluid particle tra-
jectories which are solutions of

(31) &= ’l}(.’L‘, t /1’)’

where v(z, t; u) is the velocity field of the fluid flow, z € R",n = 2 or 3, and
1 € IR? represent possible parameters. When viewed as a dynamical system,
note that the phase space of (3.1} is actually the physical space in which the
fluid flow takes place. Evidently, “structures” in the phase space of (3.1)
should have some influence on the transport and mixing properties of the
fluid. To make this more precise, let us consider a situation that is more
simplified in terms of fluid mechanics. Suppose the fluid is two-dimensional,
incompressible, and inviscid; then we know (Chorin and Marsden [1979])
that the velocity field can be obtained from the derivatives of a scalar-valued
function Y(z1,z2,t; p), known as the stream function, as follows:

) 0
Ty = bgz'(:z‘.laaa’t;p‘)a

(32) (.’171,932) (S IR?.

) -8
Ty = ﬁ(zl,xmt;u),

In the context of dynamical systems theory, (3.2) is a time-dependent
Hamiltonian vector field where the stream function plays the role of the
Hamiltonian. Moreover, if 1/(z1, 2, t; 4) depends periodically on ¢, then the
study of (3.2) can be reduced to the study of an area-preserving Poincaré
map in the usual way (see Wiggins [1990a)). In this case we would expect
Smale horseshoes, resonance bands, KAM tori, and cantor: to arise in the
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phase space of (3.2). These structures then have a direct interpretation as
actual structures in the fluid flow and they are not at all unrelated to the co-
herent structures first observed by Brown and Roshko [1974]. Furthermore,
one might guess that they have an important effect on the fluid mechanics.
In particular, some questions that one might ask are the following:

1. Can an understanding of the dynamics of this “structure” in the flow
lead to new fluid mechanical insights?

2.  Can the “structure” provide the building blocks for a simplified de-
scription of the flow?

3. Can we predict under what conditions these “structures” will be cre-
ated or destroyed?

4. Can we describe the transport of fluid across such “structures” in terms
of the dynamics of the “structures”?

5. Can the “structures” be used to describe the degree of “spatial mixed-
ness” as a function of time?

6. Can an understanding of the dynamics of the “structures” enable us to
understand the dynamics of stretching and folding of fluid line elements
(i.e., interface dynamics) as a function of space and time?

7. Will an understanding of the dynamics of the structures have implica-
tions for questions concerning hydrodynamic stability?

Of course, definitive answers to each of these questions cannot be given
at this time. Our approach in this chapter will be to consider two specific
flows and try to go as far as possible in answering these questions using the
techniques developed thus far. However, before going to the examples we
want to make two final remarks.

1. The reader should note that, although we expect Smale horseshoes,
resonance bands, KAM tori, and cantori to typically arise in two-
dimensional, incompressible, time-periodic velocity fields, it is not at all
clear what the analogous structures will be in three space dimensions
with arbitrary time dependence. Indeed, with arbitrary time depen-
dence the standard notion of Poincaré map and Smale horseshoe does
not have an immediate generalization. We will address these issues in
Chapters 4 and 6 but for now we note that the kinematics of fluid
flows appears to be an ideal area whereby the study of a physical phe-
nomenon will provide the appropriate insights for the creation of new
mathematical techniques.

2. The complete neglect of molecular diffusion must ultimately be justified
from a physical point of view. It is a question of time scales. No matter
how small the molecular diffusivity, in the limit ¢ — oo it will have an
effect. Thus, we would expect our results to have validity over some
intermediate time scale. However, the nature of the appropriate time
scale must be determined from the particular low under consideration.
We will address this issue in one of our examples.
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3.1 The Oscillating Vortex Pair (OVP) Flow

This example was first 'studied by Rom-Kedar et al. [1990]. We examine
the flow governed by a vortex pair in the presence of an oscillating external
strain-rate field. The vortices have circulations +I" and are separated by a
nominal distance 2d in the y-direction. The stream function for the flow in
a frame moving with the average velocity of the vortices is

(3'3) Y =—-—log [(:1: - xv) + (y yv)

(€ — )2 + (y + yo)? ] ~ Voy + exy sin(wt),

where (z,(t), £y, (t)) are the vortex positions, £ is the strain rate, and V,
is the average velocity of the vortex pair. If ¢ = 0, then (z,,y,) = (0,d)

and V, = 4~ d The equations of particle motion are therefore
. 0
T = Eﬂ(x,y, Zys Yv, t):
(3.4) Y
_('w

y— 8z (1‘ yrx’vvy'vat)

where the notation of (3.4) explicitly shows the fact that the streamfunc-
tion, 7, depends on the motion of the point vortices. We simplify the equa-
tions by nondimensionalizing the variables and parameters as follows:

€ 2rndV, r

It
z/d > z, y/d—’y,2—ﬂ_d—2—*t’;—’5, 7 W oo T
Under this rescaling (3.4) becomes
gb:_[ (y — v) 3 (y + 9v) ]_u
@~z +(y~9)? (2-2)2+@y+m)?]

+ & sin(t/v),
(3.5) K . .

h=lomm) [(z —w)2 (Y —y)? (@-w)+(y+ yv)z]
— %sin(t/’y).

We still need to solve for the motion of the point vortices. Using the fact
that a point vortex is convected with the flow, but does not induce self-
velocity, we obtain the following equations for the vortex position locations:

dz, 1

-1 _ v &
i 2. Uy + p” sin(t/v),
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(3.6) % = —% sin(t/v).

The resulting motion of the vortices is relatively simple. Equations (3.6)
with the initial conditions z,(0) = 0, y,(0) = 1 are easily integrated to give

t/vy
.’va(t) - %e—s[cos(t/ﬁ)—l] / [1 _ 2’11,1,65[005(3)—1]] ds,
0

(3.7 yu(t) = eeleos(t/M)-1]

The requirement that the mean velocity of the vortex pair be zero in the
comoving frame yields y, = Efﬁv where I is the modified Bessel function
of order zero. From (3.7) it is clear that the vortices oscillate periodically in
orbits near the points (0, £1). Thus, we term the resulting fluid flow given
by (3.5) the Oscillating Vortex Pair (OVP) flow.

Equations (3.7) substituted into (3.5) yield a two-dimensional, time-
periodic vector field for the fluid particle motions. The resulting equation
depends on the two parameters, £ and 7. For most of the analysis ¢ can
take on arbitrary values; however, for the perturbation calculations we must
take ¢ sufficiently small and we expand the equations in powers of . In this
case the equations take the form

5 E)
i= w"(m y) +e— 2 *(z,y,t/7;7) + O(e2),
(3.8) % %
_ -0
_ a% (z,9) - a—"’—l(as,y,t/v; 7) + O(e?),

where

O _ y-1 y+1 1

Oy I I, 2
3.
(39) o _ 11

or T\ I.]’

OYn _ 1 1 2(y — 1)2 2(y + 1)2
o =ttty — 1 { -+ 7 - Mk 2D

+amsine/m) {2 |V =2t w1} -
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Fig. 3.1. Streamlines for ¢ = 0.

o y—1 y+1
——(%--2:1:[cos(t/'y)—l]{-T+—I12L }

+(1/m) sin(tm){g -z -7 y}

where

It =22 4+ (y+1)2

The vector field (3.8) has the form of a time-periodically perturbed inte-
grable Hamiltonian system.

For ¢ = 0 the phase portrait of the integrable Hamiltonian system, or
equivalently the streamlines of the steady flow induced by the vortex pair
in the frame moving with the vortices, appears in Fig. 3.1.

Note that there are two hyperbolic stagnation points pyg,p;0 con-
nected by three limiting streamlines ¥, %, and ¥, defined by ¥(z,y) |e=0=
0,| z|< v3withy >0, y=0,and y < 0, respectively. Thus, a fixed, closed
area of fluid or “bubble” is bounded by the limiting streamlines and moves
with the vortex pair for all times. As we shall see below, this picture changes
dramatically when ¢ # 0. Note also that for any ¢, the flow is symmetric
about the z-axis and thus we need only study the flow in the upper half-
plane. Such symmetry would be present in axisymmetric flows. When the
strain-rate field is not aligned with the = —y-axes, the straight line connect-
ing the two vortices also rotates periodically, but the qualitative behavior of
the particle motion is the same as that discussed in the following, with the
added complication of transport between the upper and lower half-planes.

For € > 0 the velocity field is periodic in ¢t with period T = 2my.
Therefore, the analysis of the global structure of the flow is most clearly
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carried out by considering the associated two-dimensional, area-preserving
Poincaré map. The construction of the Poincaré map for systems of the
form of (3.8) was discussed in Section 2.6; here we recall the important
points. Rewriting (3.8) by introducing the phase of the periodic strain-rate
field as a new dependent variable gives

0 g
8 = F2@) + €5 @ v i) + O(E),
-0 1%,
(310) y = _5;)[2(3:7 y) - 8311;_1(1:’3/7(23’7) + 0(82)v
=1,
¥

where the phase space of the autonomous system is now IR% x S*. We denote
trajectories of (3.10) by

(3.11) (xaa),ye(t), o) = L+ ¢0)

A global cross section of the phase space of (3.10) is given by

(3.12) Z% = {(z,y,0) e R* x S' | ¢ = ¢}

and the Poincaré map of X% into itself is defined by

f¢0 %o _, 2450’
(2£(0), 4 (0)) = (x(2717), ye(277)) .

All of our analysis will be based on the Poincaré section defined by ¢¢ = 0
and for this case we will simply denote the associated Poincaré map by

=7

(3.1) Exercise. Describe how typical fluid particle trajectories (x¢ (), ye(t))
are manifested in the Poincaré section. Discuss the meaning of the phrase
“the Poincaré map filters out redundant dynamical information” (hint: con-
sider, for example, the vortex trajectories).

(3.13)

A typical Poincaré map for the OVP flow is shown in Fig. 3.2 where
we see three qualitatively distinct regions of flow.

1.  The Free-Flow Region. In this region fluid particle trajectories move
from +o00 to —oo without any interaction with the heteroclinic tangle.
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Fig. 3.2. A typical Poincaré section for the OVP flow.

2. The Core. This is a region of bounded fluid particle motions enclosed
by the KAM tori closest to the heteroclinic tangle region.

3. The Mizing Region. Roughly speaking, this is the large-scale chaotic
region created by the breakup of the heteroclinic orbits that separate
bounded and unbounded fluid particle trajectories (i.e., ¥* and ¥¥).
At this stage, the definitions of each of these regions are rather impre-

cise; they will gain precision as we go along.

A major difference between the fluid flow for £ = 0 (i.e., the unstrained
vortices) and the flow for € > 0 (i.e., the time-periodically strained vortices)
is that for ¢ = 0 fluid is trapped between the heteroclinic connections be-
tween p; ¢ and v, 9; for € > 0 (and sufficiently small) these hyperbolic fixed
points persist as fixed points of the associated Poincaré map (see Section
2.6), denoted p; and p,, respectively. However, their stable and unstable
manifolds may intersect transversely, yielding the complicated tangle shown
in Fig. 3.2 and consequently yielding a mechanism by which fluid particle
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Fig. 3.3. Graph of F(v).

trajectories trapped for € = 0 might escape and, conversely, fluid particle
trajectories unbounded for € = 0 might become trapped for a certain (vari-

able) length of time. It is this fluid transport problem that we now want to
describe.

The Melnikov Function. We begin by considering ¢ small and computing
the Melnikov function in order to obtain some basic results concerning the
geometry of the heteroclinic tangle. Because of the rather complicated form
of (3.8), the Melnikov function amplitude must be computed numerically.
This is done in Rom-Kedar et al. [1990] where the Melnikov function (on
the zero phase cross section) is shown to be

(3.14) M(tg) = Egﬁ sin (%) ,

where F(v) is shown in Fig. 3.3.
We make four remarks concerning (3.14).

1. It is evident that M(fo) has a countable infinity of simple zeros for
to € IR. Thus, the existence of a heteroclinic tangle qualitatively similar
to that shown in Fig. 3.2 is analytically verified (cf. Theorem 2.18 and
Remark 5 following this theorem).

2. We state, without justification, that in the parametrization of the un-
perturbed heteroclinic orbit used in the numerical calculation of the
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Melnikov function the point ty = 0 (on the zero phase cross section)
corresponds to a point on the y-axis. Hence, by the symmetry of the
velocity field the Poincaré map must have two primary intersection
points (pip), one on the positive y-axis and the other on the negative
y-axis. We henceforth illustrate only the upper half-plane, and we will
denote the pip on the positive y-axis by q.

3. It is clear that M (¢y) has precisely two simple zeros for tg € (to,to +
27v]. Hence, from Theorem 2.20, precisely two lobes are formed from
the segments of stable and unstable manifolds between a pip and its
preimage.

4. The sign of the Melnikov function amplitude changes at v ~ 1.78
indicating that the geometry of the intersection of W*(ps) with W*(p;)
changes as shown in Fig. 3.4 [see also Fig. (2.34)]. (Note: in determining
the relative orientations of the manifolds near an intersection point it is
useful to know that for ¢ = 0 the direction of the gradient of the stream
function evaluated on the heteroclinic orbit is toward the interior of
the region of bounded fluid.)

Flux. Now consider the region bounded by S[ps, q]|JU|[p1, q] and the z-axis
between p; and p;. We label this region R, and the region outside of R;
we label Ro. We want to address the issue of transport of fluid between R,
and R,. This example was completely worked out in Section 2.4 and we will
now apply those results in the context of the fluid mechanics of the OVP
flow.

Between q and f~!(g) two lobes are formed which we label L; 2(1)
and L2 1(1), respectively. In Fig. 3.5 we reproduce Fig. 2.14 which indicates
the geometry of the regions and lobes. Thus, the flux from region R; into
R, is given by u(L;2(1)) and the flux from region Ry into R, is given by
p(L21(1)) (note that this is flux without regard to a specific ”species,”
i.e., the region in which the points are located at t=0). Moreover, since
the fluid is incompressible (i.e., the Poincaré map preserves area) we must
have p(L12(1)) = u(Lg,1(1)). For € small we can use the Melnikov func-
tion and apply Theorem 2.21 to obtain an approximation to the flux. This
approximation is given by

(3.15) p(L1,2(1) = p (L2 (1)) = 26 | Fy) | +O(e?).

Thus, we see that the function F(v) [with F(v) as shown in Fig. 3.3]
is directly related to the flux (for a particular choice of ¢). In particular,
we see that to leading order, the flux is linear in ¢ (i.e., the amplitude of
the strain-rate field) with a nonlinear dependence on ~ (i.e., the strength
of the vorticity). This brings up an important point. One of the original
uses envisaged for coherent structures (see, e.g., Roshko [1976]) was that
they could be used for flow control. In this example we see an (admittedly
modest) concrete realization of this hope. In this example the “structure”
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Py

Fig. 3.5. Some lobes in the heteroclinic tangle.

is the heteroclinic tangle and the fluid mechanical process that we desire
to control is the flux of fluid from a region of bounded motion to a region
of unbounded motion (or vice versa). Equation (3.15) describes precisely
how this process depends on the system parameters. Hence, we know how
to affect this process by changing parameters.

Transport of a Passive Scalar. Imagine that initially (i.e., at t = 0) region R,
is completely and uniformly filled with a passive scalar (e.g., dye). Using our
terminology from Chapter 2, we refer to the fluid in R; as having species 5.
What is the flux of species S; into R» as a function of time? This problem
was solved completely in Section 2.4, Example 2.1, and the answer is given
in terms of turnstile dynamics by

alyz(n) = lez(n) - Tl’z(n - 1)

3. =
(3.16) = 1(Laz) = Y # (B2 ™ (L2a(D))

m=1

In Fig. 3.6 we show two calculations of the flux for ¢ = 0.1,7 = 0.5 and
€ = 0.1 and v = 0.9, respectively.

In the first case it would appear that the flux decays exponentially
in time and in the latter case it appears that the flux decays via a power
law. It would be interesting to understand the geometric features charac-
teristic of the lobe intersections that are responsible for either power law
or exponential decay of the flux. At present this is beyond the scope of the
theory. Also notice the abrupt drop in the flux of species S; into R in Fig.
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3.6. This has a simple explanation in terms of the lobe dynamics. Recall
from Section 2.4, Example 2.1, that a;2(n) = p(L],(n)) and also that
Ly 2(n) = f~"*Y(L12(1)), n > 1. Now for n “small” f~"*1(L; (1)) will
wrap around the core, yet remain entirely in Ry; hence Ly 2(n) = L} 4(n).
However, at a certain critical n, f~"*(L; 2(1)) will intersect L 1(1) and,
hence, will be in both R; and Ry. Thus, from this n onward a; 2(n) will
decrease.

Chaos and Stretching in the Mixing Region. Now we address some more
questions concerning the dynamics of fluid particle trajectories in the het-
eroclinic tangle region. First, there are chaotic fluid particle trajectories in
the sense of Smale horseshoes (see Section 2.5). We illustrate the geomet-
rical features in the heteroclinic tangle that give rise to the horseshoes in
Fig. 3.7.

We emphasize that the existence of horseshoes does not follow from
Theorems 2.16 and 2.17, since W*(p2) coincides with W*(ps), i.e., they
intersect nontransversely. Generally, situations involving nontransverse in-
tersections are somewhat special and must be treated on a case-by-case
basis. Nevertheless, despite the fact that transversality is mathematically
generic, the physics of the fluid mechanics enforces a nongeneric situation.
The techniques from Wiggins [1988a, 1990a] can be used to show that horse-
shoes occur near this nontransverse heteroclinic cycle to hyperbolic fixed
points; we leave the details as an exercise for the reader.

Despite the fact that there are horseshoes in this flow it is important to
realize that the chaotic invariant set associated with the horseshoes occu-
pies “only” a set of measure zero in the phase space. Nevertheless, it would
be wrong to assume that the horseshoe does not have an important influ-
ence on “nearby” fluid particle trajectories, i.e., a set of positive measure.
Heuristically, one could think of the invariant set of the horseshoe as play-
ing the same role as the bumpers in a pinball machine. In a rough sense,
one could think of the bumpers as occupying a set of measure zero in the
pinball machine; yet it is precisely their presence that leads to the compli-
cated dynamics of the pinballs. The goal, then, is to describe precisely how
the horseshoe affects neighboring trajectories. A key part of the problem is
to define a region influenced by the horseshoe that is both relevant to the
problem at hand and amenable to mathematical analysis. This is -vhere the
lobe dynamics enters the picture and we now turn to precisely defining the
mixing region.

As our definition of the mixing region, denoted M, we take the follow-
ing:

(3.17) M= J fF(Li2(1).

k=—00
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An obvious question is “Why is this a good definition?” meaning “Why
does this capture the dynamical phenomena of interest?” There are three
points to make in this regard.

1. Thelobe L; 2(1) contains all the points that escape from R; under one
iterate. Hence, M contains all points that have escaped from R; in the
past as well as those that will escape from R, in the future.

2. From Example 2.1, we proved that

o0

(3.18) (L) = 3 4 (L2 ™ (L21(1)))

m=1

Hence, up to sets of measure zero, L o(1) contains all points which
leave R, that were in Ry earlier.

3. M is an invariant set with well-defined boundaries. Hence, points in M
as well as their dynamical evolution can be discussed unambiguously.
If the reader thinks that this is a somewhat weak statement, he or she
should ponder how one gives a working definition to the numerically
generated “stochastic regions” that one observes in, e.g., the standard
map.

(3.2) Exercise. Is it possible for points to enter R; from Ry and not ulti-
mately escape from R;7

(3.3) Exercise. Are all orbits contained in either the free-flow region, mixing
region, or core?

It should be clear that chaotic invariant sets associated with the horse-
shoes influence the dynamics in the mixing region. In order to describe this
we give a brief review of the essential elements from the theory of Lia-
punov characteristic exponents. The reader should consult Oseledec [1968]
for more details.

Consider a vector field

(3.19) = f(z,t), zeR",

which is sufficiently differentiable on the region of interest in R™ (C",r > 1
is sufficient). Let Z(¢, tg, o) denote a solution of (3.19) which exists for all
t > to (a nontrivial result for nonautonomous vector fields on noncompact
manifolds). We are interested in describing the dynamics of (3.19) near the
trajectory E(¢,to, o). For this we study the linear vector field obtained by
linearizing (3.19) about Z(t,to, zo), i.e.,

(3.20) € = D, f (Z(t,to,zo), ) £, £eR”.
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Let

(3.21) X (8, 2(, to, 20)) = X(8),  X(0)=id

denote the fundamental solution matrix of (3.20) (where id denotes the
n x n identity matrix). Then the solution of (3.21) is given by

(3.22) £(t) = X(t)&o-

Now think of the trajectory Z(t, to, zo) with &y a vector emanating from this
curve at To, i.e., an element of the tangent space of R™ at z¢, Ty, IR". Then
(3.22) describes the evolution of this vector under the linearized dynamics.
Hence, we define the coefficient of expansion in the direction &y at t = tg,
A€, xo, t), as follows:

LD _ 1 X (W&
1£(0) | &l
where | - | is some norm on IR™. This expression has an obvious interpreta-

tion in the fluid mechanical context. The Liapunov characteristic exponent
in the direction &y at t = tg is defined by

(3.23) A (0, o, t)

1
(3.24) o (€0, 20) = tllglof log A (&0, zo, t) .

We remark that this limit exists under very general conditions, precise state-
ments can be found in Oseledec [1968]. Thus, if the Liapunov characteristic
exponent is positive, then an infinitesimal line element in the direction &g at
t = to experiences exponential expansion along Z(t, tg, o) and if it is nega-
tive the infinitesimal line element experiences exponential contraction along
Z(t,t0, o). Now we want to apply these ideas to a study of the dynamics
in the mixing region, M.

In the thesis of Rom-Kedar [1988] it is proved that, up to sets of mea-
sure zero, all Liapunov characteristic exponents of orbits in M are zero. The
reason for this is that the chaotic region (i.e., the region near the invariant
sets of the horseshoe) is localized in space and orbits interacting with it
eventually go off to £ = —oo where the motion is regular. Since Liapunov
characteristic exponents are asymptotic quantities, they completely miss
the fact that for finite time the region of localized chaos may exert a strong
influence on nearby trajectories. We remedy this situation by defining a
finite time Liapunov exponent and use the geometry of the mixing region
to determine the time over which the stretch is computed.

The time-dependent Liapunov exponent is defined as follows:
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(3.25) o (o, 20, t) = 1log)\ (&0, z0,t) = /\—(5&3-) ds.
t ’\(ga o, S )

This is just (3.24) without taking the limit. The real issue is determining
the value of ¢ for which (3.25) should be evaluated. This will be determined
by the geometry of the flow. Also, note the term A/ in (3.25). Using (3.23),
this can be interpreted as the instantaneous change in the elongation of an
infinitesimal line element in the direction &, at ¢t = tg normalized by the
instantaneous elongation. Hence, (3.25) is a time average over this quantity.
Now points in M (that are not in the chaotic region or have not already
passsed through the chaotic region) move into the chaotic region, revolve
around the vortex a few times, subsequently escaping from the chaotic
region, and during escape pass near the hyperbolic fixed point p;. Thus, we
define

tent = o The time required to enter the region R;.
tesc The time for a point to escape R;.
trelaz When the point escapes Ry it may pass through a

neighborhood of the hyperbolic fixed point ps and in
the process experiences strong stretching. ¢,¢;q, is the
time required for a point to pass through a fixed
neighborhood of the hyperbolic fixed point p,.

Then for

t>t= tent + tese + trelax

we decompose A(£p, Zo,t) as follows:

t .
(3'26) log/\(fo,l'o,t) = /MS_)

to

t .

Méo, o, 5)
ds+ | ————=d.
A(€o, xo, 5) / A€o, Zo, 5) y

i

where we introduce the further notation

Ao, 2o, 8) Mo, 20,9) ;0

(3.27) B (€0, o) = log A (€0, 20, 1) = Ao, 20, 5)

t .
(328) a(f(),.’l,‘o,t) = log/\(&),fl)o,t) — log)\ (&),xo,ﬂ = /;—Eg—z’—%—:%

Note that ¢ depends on the initial position zy. We have the following result.
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(3.1) Lemma. «(&p, zo,t) 15 asymptotically periodic in t for all tragectories
wn the mizing region M, except for the set of measure zero that does not
leave R (i.e., the wmvariant set of the Smale horseshoe).

Proof. See Rom-Kedar [1988]. O

Recall that the Liapunov characteristic exponent in the direction g is
given by

(3.29) (o, x0) = tl_ljgo% (B(&o, o) + (€0, To, 1)) -

Hence, using Lemma 3.1, we see that all Liapunov exponents of trajectories
in the mixing region are zero. This is a phenomenon that we expect will
be generally true for open flows having spatially localized regions of chaos.
Fluid particle trajectories may undergo regular motion then interact with
the chaotic region and subsequently undergo regular motion again. Thus,
any infinite time average over a fluid particle trajectory would miss the
interaction with the chaotic region. The question then becomes: “How do
we quantify the interaction of the fluid particle trajectory with the chaotic
region?”

For the OVP flow, the key to this problem is the quantity 3(&o, xo)
defined above. By definition, this is a time-independent measure of the
total stretch along a fluid particle trajectory in the & direction inside the
chaotic region, i.e., the region containing the invariant sets associated with
the horseshoes. We also define

(3.30) Blzo) = max B(éo, o)

which we term the total stretch. This is the most observable elongation rate
and represents the maximal elongation that a neighborhood (e.g., a blob of
dye) experiences on passing through the mixing region. In Fig. 3.8 we plot

B(xo) versus the escape time for a sample of 530 initial conditions in the
chaotic region.

Although ((z) has different values for different escape times, the gen-
eral tendency is for #(xo) to increase with increasing escape time (with
increasing deviation from the mean). In Fig. 3.9 we average 3(zg) over the
set of initial conditions having the same escape time and plot this aver-
age versus the escape time. The tendency of the average of 8(zg), denoted
< B(wo) >, to increase with escape time is apparent. We remark that finite
time Liapunov exponents have been considered in the context of dissipative
systems by Goldhirsch et al. [1987] and Abarbanel et al. [1991].
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3.2 Two-Dimensional, Time-Periodic Rayleigh—
Bénard Convection

We begin by considering two-dimensional steady Rayleigh-Bénard convec-
tion, since there has been recent work on this case by Shraiman [1987] and
Young et al. [1989]. We will use their work to formulate questions for the
unsteady situation.

The physical setting is as follows. We consider a convection cell whose
horizontal length is much larger than its height and where the convection
rolls are aligned along the y-axis. In this situation the flow is essentially
two dimensional and, assuming stress-free boundary conditions and single-
mode convection, an explicit form for the velocity field is given by (see
Chandrasekhar [1961])

I = —Ar cos mz sin kxr = i’%q(_mf_)’
(3.31) k oy )Z
2, = Asin mz cos kxr = ﬂ,
Oz
with
A . .
(3.32) vo(z,2) = % sin kz sin 7z,

where A is the maximum vertical velocity in the flow, & = 27” (A is the
wavelength associated with the roll pattern), and length measures have been
nondimensionalized with respect to the top (z = 1) and bottom (z = 0) of
the surfaces. In Fig. 3.10 we illustrate the streamlines for this flow.

The Work of Shraiman. Shraiman [1987] considered the transport of a
passive scalar from roll-to-roll. This process is governed by the usual
convection—diffusion equation

(3.33) 8,C +V -VC = DV?C,

Fig. 3.10. The streamlines for Eq.(3.31).



102 Chapter 3. Convective Mixing and Transport

where C(z, z,t) is the concentration of the passive scalar, V(z,z) is the
velocity field [given by (3.31)], and D is the diffusion coefficient of the
passive scalar. For steady convection the only way that a passive scalar can
move from roll-to-roll is by molecular diffusion. What makes this problem
interesting (and tricky) is that the convection acts in such a way that it
enhances the diffusion across a roll boundary. Thus, one is interested in
computing the “effective diffusivity” of the flow. More precisely, let F' denote
the average flux in the z-direction and let 8,C denote the gradient of the
concentration averaged over one roll. Then the effective diffusivity, D*, is
defined by

(3.34) F =-D*3,C.

Using rather tricky singular perturbation techniques, Shraiman was able to
solve (3.33) in order to obtain F and 8,C. From this he showed that

(3.35) D* ~ (Pe)},

where Pe is the Peclet number which is defined by

(3.36) pe= YVt

where V is some characteristic velocity (say A), £ is a characteristic length
(say A), and D is the diffusion coefficient of the passive scalar. Shraiman’s
singular perturbation techniques are valid in the large Peclet number limit
(hence, in the convection dominated case), and they make heavy use of the
topology of the closed streamlines inside the roll (see Batchelor [1956]). We
emphasize also that (3.35) is a result that is valid in the limit ¢t — oo.

The Work of Young, Pumir, and Pomeau. Besides recovering Shraiman’s
result, Young et al. [1989] addressed an additional question. Namely, what
is the rate at which rolls are invaded by the passive scalar? They found that,
initially, the number of invaded rolls grew like t4 for stress-free boundary
conditions (¢3 for rigid boundary conditions) and, at a later time (after the
effects of diffusion become dominant), the number of invaded rolls grew like
t7. The techniques used by Young et al. are similar in spirit to Shraiman’s
(see also Rhines and Young [1983]) and are likewise valid in the large Peclet
number limit.

The Experiments of Solomon and Gollub. If the temperature difference
between the top and bottom of the convection cell is increased, an additional
time-periodic instability occurs, resulting in a time-periodic velocity field
(see Clever and Busse [1974] and Bolton et al. {1986]). Solomon and Gollub
[1988] studied experimentally roll-to-roll transport of a passive scalar in
this situation. They observed the following.
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1.  There was a dramatic enhancement in the effective diffusivity as com-
pared to the case of steady convection.

2. Molecular diffusion appeared to play no role in the transport.

3. The flux across the roll boundaries depended linearly on the amplitude
of the oscillatory instability and was independent of the wavelength of
the roll pattern, A.

It should be evident that the transport of a passive scalar is radically
different in the unsteady case as compared to the steady case. In order to
understand these differences Solomon and Gollub introduced the following
model of the even oscillatory roll instability:

—0
&= _Ar cos mz[sin kx + ek f(t)cos kx| = J(z,z,t),
ok 9z
(3.37) By
2 = Asin 7wz [cos kz —ekf(t)sin kz] = &-(m, z,1),

where

’Q[J(l‘, Z,t) = ¢0($’Z) + 5¢1($, 2y t)

(3:38) = %sin kzsin 7z +cAf(t) cos kz sin 7z

and f(t) is a periodic function which we will take as f(t) = cos wt [ac-
tually, (3.37) and (3.38) are the O(¢) term in the Taylor expansion of the
Solomon and Gollub model; in Camassa and Wiggins [1991] it is argued
why this affords no loss of generality]. The small parameter ¢ is propor-
tional to (R — R, )2 where R is the Rayleigh number and R, is the critical
Rayleigh number at which the time-periodic instability occurs (see Gollub
and Solomon [1989] for details). This model has several deficiencies which
are discussed in detail in Solomon and Gollub [1988]. The main two defi-
ciencies are the neglect of higher-order modes and a weak three-dimensional
component. However, the three-dimensional component is essentially par-
allel to the roll boundaries, and we expect it to play virtually no role in the
roll-to-roll transport. In any case, we expect that, for £ small, {3.37) accu-
rately models the mechanisms and the physics of roll-to-roll transport. This
is borne out by the experiments of Solomon and Gollub and the agreement
of our analytical predictions with their experiments.

The starting point of our analysis will be the model (3.37). Motivated
by the experimental results of Solomon and Gollub [1988] and keeping in
mind the results obtained in the case of steady convection (where only
molecular diffusion can effect transport) by Shraiman, Young, Pumir, and
Pomeau, we will specifically address the following four questions.
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1. What is the mechanism for roll-to-roll transport?

Can we quantify the spreading of a passive scalar from roll to roll?

3. Can we predict the number of rolls invaded by the passive scalar as a
function of time?

4. What would be the effects of the addition of a small amount of molec-
ular diffusion?

™o

We begin with question 1. All of the following results were obtained in
collaboration with Camassa (see Camassa and Wiggins [1991]).

Before answering these questions we want to make some general re-
marks concerning the velocity field (3.37). At ¢ = 0 and for stress-free
boundary conditions the stagnation points on the top and bottom surfaces
are hyperbolic and are denoted by

. Jm _
(3.39) p]i,0 = (:cj,o,z]i) with z,,= P 0, z@=1,

j=0,+1,42,....

Note that (3.37) is invariant under the following coordinate transformations
(with ¢ arbitrary)

(3.40a) T—x, z—1—2z t— —t,

(3.40b) x—>x+%(2j+1),z—+z,t-—>—t, j=0,41,£2,...,

o
(3.40c) z—>z’+—%,z—+z,t—>t, j=0,+1,%2,....

Also, for £ = 0, p({ o and py, are connected by the heteroclinic trajectory

(3.41) Bt —to) =0, 2(t—to) = %sin'l(sech T At — to)).

The heteroclinic trajectories connecting p;fo and p g, J # 0, can easily be
obtained using (3.40) and (3.41).

For ¢ # 0 we will examine the dynamics of (3.37) by studying the as-
sociated Poincaré map as in the OVP flow example. By now this procedure
should be familiar so we will omit most of the details; however, we do want
to make some general remarks. For ¢ sufficiently small, general results from
dynamical systems theory (see Section 2.6 or Wiggins [1988a, 1990a]) imply
that the hyperbolic fixed points (3.34) persist as small (O(¢)) amplitude
periodic trajectories in (3.37). In the associated Poincaré map these are
mnanifested as hyperbolic fixed points of the map which we denote by

pi.(¢0), 3 =0,£1,%2,....
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This notation stresses the fact that the z-coordinate depends on € and the
cross section (¢g) on which the Poincaré map is defined. The fixed points
still remain on the upper (2 = 1) and lower (z = 0) surfaces as can be im-
mediately verified from (3.37). For the sake of a less cumbersome notation,
when no ambiguities can arise we will drop the ¢ and ¢ from p;t,s(%) and
simply refer to pf€(¢0) as p;t. We will denote the stable and unstable mani-
folds by W (pi:s (¢0)) and W”(pfe(qﬁo)), respectively, or merely by Ws(pji)
and W¥ (p]i), respectively, when no ambiguities can arise.

The Mechanism for Roll-to-Roll Transport. For the Poincaré map, we would
expect the heteroclinic trajectories which create the roll boundaries in the
steady case to break up, giving rise to wildly oscillating lobes as we illustrate
in Fig. 3.11.

It should be clear from our previous work that this will be the mech-
anism for roll-to-roll transport and that it is fundamentally different from
that which occurs in the steady case, i.e., molecular diffusion.

We verify this picture by computing the Melnikov function on the zero
phase cross section. Because of the translation symmetry, we only need to
compute the Melnikov function along one of the heteroclinic trajectories.
Recalling Section 2.6, the Melnikov function on the zero phase cross section
is given by

(3.42) M(to) = / (G0, vn} (@t — to), 2(¢ — to), 1) dt,

where

_ o 0ys o O
ot =5 5~ %; a0

with 9p and ¥, given in (3.38), and

z(t —to) =0,
(343) Z(t _ tO) - _7]; sin_l (SeCh 7('A(t - tO))

is the unperturbed heteroclinic trajectory at £ = 0, i.e., the trajectory
connecting py o to pgo. Using (3.42) and (3.43), the Melnikov function is
easily computed and is given by

(3.44) M(ty) =w sechéwz sin wtg.

Hence, M(ty) has a countable infinity of zeros and by Theorem 2.19 the
manifolds intersect to form a heteroclinic tangle, as we would expect.
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2.0

Fig. 3.11. Heteroclinic tangles of stable (solid) manifolds with unstable (dashed)
manifolds.

On examining Fig. 3.11, an obvious question that arises is, “What
is the roll boundary?” We must define some boundary across which to
discuss transport and flux. Using (3.44) and the parametrization of the
unperturbed heteroclinic manifold given by (3.43), it follows that there is
a pip at ¢p = 0 which corresponds to (z,2z) = (0, %) + O(c) on the zero
phase cross section. Using the symmetry (3.40a), we can conclude the 2z-
coordinate of this pip is actually z = %, although the z-coordinate may be
displaced by O(e). From the translation symmetries (3.40b) and (3.40c) it
follows that W (pf) intersects W*(p;’) at a pip with z-coordinate z = i for
J=0,£2,+4,... and W*(p]) intersects W“(p;r at a pip with z-coordinate
z= % for j = £1,+£3,.... We denote these pips by g;. If we denote the rolls
by R;,7 = 0,+1,+2,..., then the two vertical boundaries of each roll in
the time-dependent case are given by

(3.45)
Ry; : S [p3;1424] UU [piTj’QQJ'] ’
S pz—n a2 ) U o1 sa] . G=0,%1,22,...
Rajy1: S [p2i41) @2+1] UU (3415 92541] »
St as] U [p5pas],  G=0,41,42,...,

where S[p3, gs;] denotes the segment of W*(p3;) from pj; to g5, Ulpy;, a2;]
denotes the segment of W(p;;) from py; to go5, etc.; see Fig. 3.12.

On each roll boundary a turnstile is formed by segments of the sta-
ble and unstable manifolds between ¢; and f~1(g;) [where f denotes the
Poincaré map generated by (3.37) on the zero phase cross section|. Note that
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Fig. 3.13. Turnstiles associated with the roll boundaries.

(3.44) has precisely two zeros per period; hence from Theorem 2.20 each
turnstile contains two lobes. See Fig. 3.13 where we illustrate the turnstiles
associated with each roli boundary.

Now we can discuss flux across turnstile boundaries. From the transla-
tion symmetries (3.40b) and (3.40c), the flux from R; to R;; is the same
for all j. So without loss of generality, we take j = 0. Thus, the flux from
Ry to Rp per period, which, by incompressibility, is equal to the flux from
Ry to Ry, is given by

(3.46) p(L1,0(1)) = p(Loa(1))-

Using (3.44) and Theorem 2.21, an approximation to the flux is given by
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£=0.1 e=0.01
® Melnikov ] Numerical | Melnikov | Numerical
0.6 0.019865 0.019858 0.001986 0.001986
0.4 0.053160 0.052916 0.005316 0.005315
0.24 0.11045 0.11035 0.011045 0.011043

Fig. 8.14. Comparison of the lobe area, pu(L1,0(1)) estimated by the Melnikov
function and a numerical calculation (for A = 0.1).

4+

Lj-1 I](‘)

Fig. 3.15. Turnstiles involved in the transport of a passive tracer from R, to R;.

#(L1,0(1)) = p (Lo, (1)) = €| /

— w 2
= 2¢ sech 51 + O(e?).

M (to)dty | +O(e?)
(3.47)

Hence, we see that to leading order the flux depends linearly on the am-
plitude of the oscillatory instability and is independent of the wavelength
of the roll patterns — exactly as observed experimentally by Solomon and
Gollub. An obvious question is “How good is the approximation for the flux
given in (3.47)?" Taking A = 0.1 (in accordance with Solomon and Gollub
[1988]) we show in Fig. 3.14 exact values for the flux obtained numerically
as compared with the value given by the leading order term of (3.47) for
various parameter values. One can see that the approximation is quite good.

The Spreading of a Passive Scalar. The problem that we wish to address is
the following.

Suppose the roll Ry is uniformly filled with a passive scalar (species S1) at
t = 0. How much of species S, is contained in roll R; at anyt > 07

In Fig. 3.15 we show the relevant rolls along with the turnstiles associated
with their boundaries.
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Recall the general theory developed in Section 2.3 where T3 ;(n) de-
noted the total amount of species S; in R; immediately after the nth iterate
and a1 j(n) = Ty ;(n) — Ty j(n—1) denoted the flux of species S; into R; on
the nth iterate (note: the Poincaré map is area-preserving). General expres-
sions for these quantities were given in terms of turnstile dynamics. Using
Theorems 2.5 and 2.6, the formula for a; j(n) for this example is given by

(3.48)

a1,;(n) =Ty ;(n) — Ty j(n — 1) = 820 (L1,2(1)) + 85,01 (L1,0(1))

+ {Z[(]Hm YN (L1s(1))

Lo

x

=1 \r,5=0,2

1 (Lymrers OV Laa )]
-5 {0V )

r,8=0,2

i (B OOV 0 )]}

for j # 1. Thus, a1 ;(n) can be expressed in terms of the area of intersec-
tions of the images of the four turnstile lobes associated with the boundary
of Ry with the four turnstile lobes associated with the boundary of R;.
Using symmmetries, this formula can be reduced to an expression contain-
ing areas of intersection sets involving images of only one of the turnstile
lobes associated with the boundary of R;. This procedure is described in
the following exercise.

{(3.4) Exercise. In Fig. 3.16 we show the geometry of the stable and unstable
manifolds on three cross sections defined by the initial phases ¢ = 0, s
and , respectively.

1.  Write down the symmetries exhibited by the Poincaré maps defined on
the different cross sections.

2. Use the symmetries from part (a) along with area-preservation to show
that

1 (Ligr N Er2) = (L0, ()7 (Loa (1) ).
( g1 (D)) £* (L2,1(1) ) u(L NOIRTAIe e )
( i1, (1) () F* (L2 1))) u(L 2t (D) [ f* (Lo ( 1))
u(r ) =u( )

i+1 (D[ (L21(1))) = 1 ( Ly j—1 () ) 5 (L10(1))

7
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0o="r2

Fig. 3.16. Heteroclinic tangles on different Poincaré sections.

-1 (D) F* (L12()) =

( s-25-1D) [V (Loa(1))
I‘(L (W) F5 (L2 (1

) =u(z )
D) = b (Lim2s1 N £ Lr0(1),
i (L3 OO L12(1) = b (Lim1-2() ) £ Loa (1)),
w1 (Ligaa W Ean() = b (Li-1,i-2 (D F* Lao(1))

i (LN Eon() = 4 (Lisa WO 47 (Lro(1))

#(L -1 (Loa(1) ) u( i1 (D)7 (Lao(1) ),

i (Lo Loa() = 1 (Logazsrs W) (Lro1))

B (Lign MO £ Lox (1)) = # (Losir, (WO F* Ero1)
where f is the Poincaré map defined on the zero phase cross section. (Hint:
If such a relation holds on one cross section, then it holds on any cross sec-

tion since the map from cross section to cross section is an area-preserving
diffeomorphism.)

3. Use the results of 2 to show that (3.48) can be rewritten as
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ay,j(n) =Ty ;(n) — T1,j(n — 1) = (52 + 6;,0) u (L1,0(1))

n—1

+ 1{2u (LN F* (Lao(1))
=2 (Losaa, 5 () (Bro(1)
—2H(L,] 1M £F (L1o(1 ))
+2,u( -1 (D[ F* 1(Llo(l)))
+u( 1) () F* (L10(1))
Lijma (D) (Lo 1))
Ly (D)) (L1o(1 )
L jris ﬂf’“ Lio(1)))

(3.49)

(Hint: If you need help see Camassa and Wiggins [1991] and Rom-Kedar
and Wiggins [1990] .)

The numerical computation of a; ,(n) is relatively straightforward. We
will discuss some results for specific parameter values when we examine the
effects of molecular diffusion in question 4.

(3.5) Exercise. Using (3.49), compute T; ,(n).

The Number of Rolls Invaded by the Passive Scalar as a Function of Time.
Imagine that at ¢ = 0 the roll R, is uniformly filled with a passive scalar
which we refer to as species S;. How many rolls are invaded by the passive
scalar as a function of time? The answer to this question will be determined
by the geometry of the lobe intersections associated with the roll bound-
aries. In fact, the necessary geometrical information will be contained in
two integers which we refer to as the signatures of the heteroclinic tangle.
Let t;7 denote the time for roll R_; to be invaded by the passive scalar.
We will construct the general result inductively by using the translational
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13(Ly,0(1)

Fig. 3.17. Geometry of turnstile interactions with signatures m = 1 and ™’ = 2.

symmetries (3.40b) and (3.40c). All of our arguments will refer to Fig. 3.17.
We begin with 9.

t9: This one is easy. In one iterate of the Poincaré map the lobe L o(1)
moves from Ry to Rp. If we denote the period of the velocity field (3.37)

by T = 2% then we have

(3.50) t9="T.

t;': Let m denote the smallest integer such that T™(L1,0(1))N Lo,~1(1) #
0. In Fig. 3.17 this is illustrated for = = 1. Then, since the lobe Ly _,(1)
moves from Ry to R_; in one iterate, we have

(3.51) t;'=(m+1)T.

t; %: From this point on we must resort to obtaining upper and lower bounds
for the first invasion time. Since fluid can move from R_, to R_» only
through the lobe L_; _;(1), we will be interested in how iterates of L (1)
intersect L_;,_2(1). Using the symmetries (3.40), if m is the smallest integer
such that f™(Lj ¢(1))(}Lo,—1(1) # @, then it is also the smallest integer
such that f™(Lg,_1(1)) () L_1,—2(1) # 0. Thus, one might guess that ;% =
(2m+1)T. However, this could be incorrect for, although Lg,_1(1) intersects
L_1,_2(1) in m iterates, it may not happen that Lo _3 (1)} f™(L1,0(1))
intersects L_1 (1) in 7 iterates. Hence, at best, we have
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(3.52) t;2>(@m+1)T.

Now we want to obtain an upper bound for ¢; 2. Let 72/ denote the smallest
integer such that the boundary of f™ +™(L; (1)) intersects the boundary
of L_;,_2(1) in four distinct points as we illustrate in Fig. 3.17 for m’ = 2.
Then clearly we have

(3.53) tr2< (@ +m+1)T.
Hence, using (3.52) and (3.53)

(3.54) @m+1)T<t;??<@+m+1T.

One note before moving on to t,_3; the integer 7’ was defined such that the
boundary of f™*+™ (L, (1)) intersected the boundary of L_;,_»(1) in four
distinct points. The reason for this will be made apparent shortly.

tI_3: The only way that fluid can move from R_; into R_3 is through the
lobe L_5 _3(1). Again, using the symmetries (3.40), if 7 is the smallest inte-
ger such that f™(L1,0(1)) () Lo,-1(1) # @ and f™(Lo,—1(1)) N L-1,—2(1) #
@, then it is also the smallest integer such that f™(L_; —2(1))(\L_2,3(1) #
(. Hence, as above, we have

(3.55) t72>@Bm+1)T.

Next we obtain the upper bound. Recall that the boundary of f™+7
(L1,0(1)) intersects the boundary of L_; (1) in four distinct points as
shown in Flg 3.17 and f™(L_;,_(1)) will intersect L_5 _3(1). Neverthe-
less, f™(f™*+™(L10(1))) may not intersect L_ 2,—3(1) as can be seen from
Fig. 3.17. However, by the symmetry (3.40) we see that if the boundary
of f™+™ (L, o(1)) intersects the boundary of L_y 2(1) in four distinct
points, then the boundary of f™+™(Ly _1(1)) will intersect the bound-
ary of L_p _3(1) in four distinct points. Now note how f(f™+™(L; ¢(1)))
and f(fm(Lo -1(1))) are situated in the lobe f(L_; _2(1)) as can be seen
from Fig. 3.17 by using the translational symmetry. Because the bound-
ary of f™+™'(L, (1)) intersected the boundary of L_ 1,—2(1) in four dis-
tinct points we see that f(f™+™'(L, 0(1)))ﬂf(L_1 —2(1)) wraps around
f(fm(Lo _1(1)) n L_1 2(1)) Therefore fm +m(L0 _1(1)) n L_2 3(1) 75 0
implies also that f™ (f™ 7 (L1,0(1))) L2, 3(1) # 0. Note that this con-
dition may not be satisfied if the boundary of f™+™(L, 4(1)) does not in-
tersect the boundary of L_; _5(1) in four distinct points. Hence, we have
FE (L) 0(1)) (Y L—2,—3(1) # O from which we conclude
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(3.56) 73 < (2m +m+ )T

Using (3.55) and (3.56) gives

(3.57) Bm+1)T <ty®<(2m' +m+1)T.

Using the symmetry (3.40), we obtain the following general result:

358)  (m+DT <t <[G-Vm +m+1T, j22

Note that the upper and lower bounds for the first invasion time are com-
pletely determined by the integers m and 7/ which we refer to as the
signatures. Also, if m = m/, note that the upper and lower bounds for 7’
coincide. From (3.58) we can conclude that the number of rolls invaded
by the passive scalar grows linearly in time (note that we are completely
neglecting molecular diffusion). This is much faster than the rate computed
by Young et al. {1989 for the case of steady convection mentioned earlier.
They determined that the number of invaded rolls initially grew like ¢4
for stress-free boundary conditions and t3 for rigid boundary conditions.
Note that our results are independent of the boundary conditions. Numer-
ical simulations reveal that for A = 0.1, ¢ = 0.1, and w = 0.6 we have
m = m' = 3 indicating that one roll is invaded every three periods; for
A=01,¢e=0.1, and w = 0.24 we have m = m’ = 1 indicating that one
roll is invaded every period; and for A=0.1,¢ = 0.01, and w = 0.6 we have
7 = ' = 4 indicating that one roll is invaded every four periods.

(3.6) Exercise. How would the geometry and the bounds for t;j change if

Lo,—1(1)(N L1,0(1) # 0? Would this have implications for the intersection
of all turnstile lobes?

(3.7) Exercise. Are the signatures more sensitive to w or £? Give a complete
discussion of your reasoning.

Relative Time Scales of Lobe Transport Versus Transport by Molecular Dif-
fusion. All of our fluid transport results thus far have completely neglected
molecular diffusion. This could be justified in several ways. One way would
be to say that we are interested in the transport and mixing properties
for “short times” only. This is in marked contrast to standard perturba-
tion approaches to molecular diffusion problems which are typically valid
in the limit ¢ — +o0. Indeed, in many technological applications where fluid
transport and mixing problems are an issue the goal is often to move and/or
mix the fluid(s) in as short a time as possible with the least amount of en-
ergy expenditure. Nevertheless, what constitutes a “short time” depends on
the application. If the molecular diffusion coefficient of the passive scalar
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were “small,” this might provide an alternate justification for the neglect of
molecular diffusion. However, what “small” means is related to what “short
time” means above. If the molecular diffusion coefficient is small we would
expect that neglecting diffusion of the passive scalar would be valid on some
time scale. Yet no matter how small the molecular diffusion coefficient of
the passive scalar, in the limit ¢ — +oo diffusion will have an impact on
the transport and mixing properties. We must therefore devise a criterion
which takes into account the molecular diffusion coeflicient of the passive
scalar and allows us to determine a time scale on which molecular diffusion
has a negligible impact on the transport and mixing properties of interest.
In this example the transport of a passive scalar, in the absence of
molecular diffusion, along a row of convection rolls has been determined
entirely in terms of the dynamics of the turnstiles associated with the roll
boundaries. The following criterion therefore seems reasonable.

Roll-to roll transport via lobes will dominate over molecular diffusion pro-
vided that the time scale for a passive scalar to diffuse across a distance
of the order of a turnstile width, Ty, is long compared to the time for the
turnstile to be mapped across the roll boundary, i.e., T.

We can obtain a very accurate estimate for Ty. Recall from Section 2.6
that the distance between the stable and unstable manifolds of perturbed
heteroclinic connection is given by

. M(to)
| Vo(z(—to), 2(=to)) |
where M(tp) is given by (3.44), (z(t — to), 2{t — to)) is the unperturbed

heteroclinic connection between p(“; o and pg, given by (3.43), and 1o, the
unperturbed streamfunction, is given by (3.32). Let

(3.59) d(to,€) + O(e?),

3.60 d(e) = d(t ;
( ) (5) torél[‘?)‘?%,] ( 075)7

then Ty is given by

(d(e))?
3.61 Ty = 22
( ) d D
where D is the molecular diffusion coefficient of the passive scalar. Using
(3.59), (3.60), and (3.61), we obtain [neglecting the O(e?) terms]

2,32
(Eﬁsechi cosh u)
(3.62) Ty _\"4 24 2w
T TD
Thus, in terms of (3.62), our criterion for lobe transport to dominate over
molecular diffusion would be expressed by requiring
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T
(3.63) T > 1.
One could view (3.62) as a type of “chaotic Peclet number.”

Now we want to check the validity of our criterion. For this we will
take D = 5.0 x 10~ cm? /s since this is very close to the molecular diffusion
coefficient of methylene blue which was used as a passive scalar by Solomon
and Gollub in their experiments. For A = 0.1, ¢ = 0.1, w = 0.6,

(3.64) Ty ~ 200T,
and for A =0.1, ¢ = 0.01, w = 0.6 we have

(3.65) T, ~ 2T.

Thus, in the first case we would expect lobe transport to dominate molecular
diffusion for about 200 periods and in the second case only for about 2
periods.

We will check this by adding diffusion to the equations for fluid particle
paths as follows:

566 b= ~2% (@,2,0) +n(0),

i= w(xzt)—i—{()

where 7(t) and ((t) are random variables with a Gaussian probability dis-
tribution such that their correlations satisfy

(COCE)) = 2D6(t ),
(367) iR =

Equation (3.66) is a generalized Langevin equation; see Chandrasekhar
[1943] for details.

We now present numerical results for the spreading of a passive scalar
for two sets of parameter values. The setting is as follows: at ¢ = @, R
is uniformly filled with a passive scalar having molecular diffusion coeffi-
cient D = 5.0 x 1078, We will then compute the amount of passive scalar
that has entered Rg, R—1, R_2, R_3 and R_4 (the roll content). The entire
computation is carried out for a length of time equal to 227". The roll con-
tent is described in terms of area occupied by the passive scalar. For the

computations we will take A\ = 7; hence the area of a roll is .
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Case 1: A = 7, A = 0.1, ¢ = 0.1, w = 0.6. The numerical compu-
tation of Ty ,(n) is relatively straightforward. We begin by locating the
lobes LJ—I,](1)7 L_J+2’_](l), L],]_l(l), L]+1,](l), L],j+l(1)7 L_J+1’_](1),
L_,49,-341(1), Ly—2,-1(1), L;-1,-2(1), and the lobe to be iterated,
L1,0(1). We next cover Ly o(1) with a grid of points and iterate. After each
iterate of the Poincaré map we compute the area of the intersection of the
iterated grid with the above lobes and add up the results according to the
formula (3.49) and Exercise 3.5.

For Case 1 we take a grid step size of 1 x 1072, which is equivalent
to 19,850 grid points in L ¢(1). The integrations are carried out using
a vectorized fourth-order Runge-Kutta code on a CRAY X-MP 48 and
require about 55 minutes of CPU time to compute the roll content of
R,, j =0,---,=4, with an integration step size of 102, for ¢ € [0, 22T).
A brute force computation would require about 50 times more CPU time.
By “brute force” we mean remove all obvious invariant regions from R;
(e.g., the region inside the largest KAM torus and islands outside), cover
the remaining region with a grid, and integrate each point. Using the same
size grid as that used for the lobe dynamics calculations requires 9.2 x 10°
points. This brings us to the limit of current computational feasibility.

In Fig. 3.18a we show the results of the lobe dynamics calculation as
solid lines and the results of including molecular diffusion as dashed lines.
The dashed lines are obtained by integrating (3.66) over a grid step size of
1075 covering R;. We can see that molecular diffusion has a small effect on
the transport of a passive scalar for a time interval of length 227, which
we would expect in light of (3.64). The accuracy of the lobe dynamics
calculation can be checked by using the symmetries (3.40).

Case 2: A =7, A = 0.1, ¢ = 001, w = 0.6. We show the results of
the lobe dynamics calculation (solid lines) versus the effects of including
molecular diffusion (dashed lines) in Fig. 3.18b. In this case we see that
molecular diffusion has a significant impact on the transport of a passive
scalar as would be expected from (3.65).

To achieve a degree of accuracy for the lobe dynamics calculation that
is comparable with Case 1 we had to use a grid step size of 2.5 x 107*
points, which is equivalent to covering L, ¢(1) with 31,760 points. Under
these conditions the lobe dynamics calculations required about 50 minutes
of CPU time. Using brute force, the area outside the largest KAM torus
required about 4 x 10° points (using the same grid size). The calculation
then required about 150 times more CPU time.

(3.8) Exercise. Describe the general effect of molecular diffusion on the
spreading of a passive scalar in Case 1 and Case 2. Describe the effect on
rolls adjacent to R; versus those further away from R;.
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Fig. 3.18. Comparison between the lobe dynamics calculation (solid) and the
calcutation including molecular diffusion (dashed) for the content of species S in
R, versus time for y = 0,--+,~4 with (a) e = 0.1, w = 0.6, A = 0.1, A = 7 and
(b) € =001, w =06, A =01, A =n.
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(3.9) Exercise. Are there any geometric features of the turnstiles that would
either enhance or suppress the effects of molecular diffusion?

(3.10) Exercise. Based on examining (3.62), how might one vary parameters
s0 as to enhance or suppress the effects of molecular diffusion?

Finally, we remark that the work described here concerning the in-
fluence of kinematics in homoclinic and heteroclinic tangles on molecular
diffusion represents only a small beginning on the wealth of important prob-
lems in this area. Beigie et al. [1991c] have discussed a number of other
problems in this area as well as extended the theoretical analysis. We want
to end our discussion of this example with some general comments.

Boundary Conditions. Note that most of our techniques were relatively in-
sensitive to the precise nature of the boundary conditions. The important
mathematical difference between stress-free and rigid (or no slip) boundary
conditions is that the fixed points of the Poincaré map are hyperbolic in
the former case and nonhyperbolic in the latter. How this difference affects
the lobe dynamics which was used to quantify the spreading of a passive
scalar was discussed in Section 2.8. This difference played no role in our
computation of the number of rolls invaded as a function of time; the ar-
guments there only used the existence and invariance of manifolds (curves)
having the appropriate asymptotic properties with respect to the dynamics.
However, the Melnikov function (which was used to calculate the roll-to-roll
flux) is affected by whether or not the fixed points are hyperbolic. If one
considers the derivation of the Melnikov function in, e.g., Wiggins [{1990a],
one sees that certain “boundary terms” arise which automatically vanish
when the fixed point is hyperbolic. Moreover, the absolute convergence of
the improper integral defining the Melnikov function is guaranteed if the
fixed points are hyperbolic. Thus, the O(¢) term in the expansion of the
distance between the manifolds may involve terms in addition to the usual
Melnikov function in the nonhyperbolic case. The Melnikov analysis for
this example with rigid boundary conditions can be found in Camassa and
Wiggins [1991].

Chaos. No mention of chaotic fluid particle paths was made in our discussion
of this example. This was mainly because such issues played no role in the
specific fluid mechanical issues that we addressed. Nevertheless, at this
point we want to make some general remarks.

Stress-Free Boundary Conditions. In this case the fixed points on the up-
per and lower boundaries are hyperbolic; however, their stable and un-
stable manifolds along the boundary coincide, i.e., they do not intersect
transversely. Therefore, we cannot have transverse heteroclinic cycles as
described in Definition 2.8, and so standard results, i.e., Theorems 2.17
and 2.16, cannot be applied to infer the existence of chaos in the sense of
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“Smale horseshoe-like” dynamics. Certainly this type of chaos exists in this
situation; however, a new mathematical theorem is needed. We remark that
work concerning chaotic dynamics in similar problems has been carried out
by Bertozzi [1988], Chernikov et al. [1990], and Knobloch and Weiss [1989].

Rigid Boundary Conditions. In this case we have nonhyperbolic fixed points
along with nontransverse intersections of their stable and unstable mani-
folds. Under these conditions also there are no theorems allowing us to
conclude the existence of chaotic dynamics; a new mathematical result is
needed.

We end by noting that for both types of boundary conditions the
physics of the fluid mechanics enforces mathematically nongeneric phenom-
ena, i.e., nonhyperbolicity and/or nontransverse intersections.



Chapter 4

Transport in Quasiperiodically Forced
Systems: Dynamics Generated by Sequences
of Maps

In this chapter we will study transport in two-dimensional vector fields
having a quasiperiodic time dependence (note: quasiperiodicity will be pre-
cisely defined shortly). In generalizing the time dependence of the vector
fields from the periodic case many new difficulties arise, both conceptual
and technical. We now want to examine these difficulties in the context
of a general discussion of the construction of discrete time maps from the
trajectories of time-dependent vector fields.
Consider the following two-dimensional, time-dependent vector field

(4.1) & = g(z,t), z € R?,

where g(z,t) is sufficiently differentiable (C™,r > 1 is sufficient). Let
z(t,to, zp) denote the solution of (4.1) passing through the point zy at
time ¢ [in order to simplify our discussion we will assume that solutions of
(4.1) exist for all time]. Following the approach most familiar from “dynam-
ical systems theory,” our goal might be to study the dynamics generated by
{(4.1) in terms of a two-dimensional map. To realize this goal, the map must
be constructed in such a way that its dynamics can be understood in terms
of the dynamics generated by the vector field. The most straightforward
manner by which this can be accomplished is if the map is constructed so
that the trajectories of the vector field interpolate the orbits of the map.
With this in mind, we define the following two-dimensional map from the
trajectories generated by (4.1):

(42) fn(.’l}()) = (E(t() + TLT, to + (n - l)T, .'Eo),

where T > 0 is some fixed number and n € Z. We want to describe the
evolution of zp under the dynamics generated by the vector field (4.1) in
terms of the dynamics generated by the map (4.2). Unfortunately, in the
case in which g(z,t) has a general time dependence, a single map of the
form (4.2) cannot be used for this purpose, but rather, a bi-infinite family
of maps, i.e., f.(zo),n € Z, must be used. This stems from the fact that,
in general,
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fy(@o) # felzo) for j # k.
In particular, the following orbit generated by the vector field (4.1)

T G]Rzla:zx(t,to,xo),telR
{

interpolates the following set of points:

{+ s (f-no fentr0:- 0 for(x0)), -+ f-1(Z0), Zo, f1(z0),
'7(fn © fa~10--: Ofl(zo))" }

Thus, the continuous time dynamics generated by (4.1) is described by the
bi-infinite sequence of maps

{fa(xo)}, neZ

defined in (4.2).
When (4.1) is periodic in ¢ with period T the situation simplifies dra-
matically. In this case we have

fi(@o) = fr(xo) = f(x0), Vj,keZ.

Thus the dynamics generated by (4.1) is described by a single two-dimen-
sional map as opposed to a bi-infinite family of two-dimensional maps.
Moreover, the general transport theory developed in Chapter 2 immediately
applies.

Upon reflection, it is clear that many of the methods and theorems
used in the study of the dynamics generated by maps, e.g., invariant mani-
fold theorems, Melnikov’s method, the Smale-Birkhoff homoclinic theorem,
bifurcation theory, etc., are developed entirely in the context of a single
map, while the situation of dynamics generated by a bi-infinite sequence of
maps has received much less attention. However, it is just this setting that
needs to be addressed if the “dynamical systems theory approach” is to be
successful in a broad range of applications.

Our approach to systems with a quasiperiodic time dependence will be
to recast them in the form of an autonomous system in a higher-dimensional
phase space. This autonomous system can then be studied with a single
Poincaré map. By considering the action of this Poincaré map on two-
dimensional “phase slices” of the Poincaré section, we will be able to con-
struct an invariant lobe structure (with the notion of “lobe” appropriately
generalized) that corresponds to a nonstationary lobe structure for the bi-
infinite sequence of two-dimensional maps. In this way, the theory developed
in Chapter 2 can be generalized, although not without some rather surpris-
ing twists and turns along the way. Many of the results in this chapter

were nbtained in collaboration with Beigie and Leonard (see Beigie et al.
[1991a,b]).
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4.1 The Systems Under Consideration and Phase
Space Geometry

We will study phase space transport in systems of the form

(4.3) &= JDH(z)+ej(x, t;p,€), (z,t,u,6) € R? x R' x R? x R,

which are assumed to be sufficiently differentiable (C™,r > 2 is sufficient)
on the region of interest. J is a matrix given by

s =(%)

and H(z) is a scalar-valued function. Hence, (4.3) has the form of a per-
turbed, one-degree-of-freedom Hamiltonian system. We view € as small (i.e.,
0 < ¢ << 1, but see the comment in Section 4.9) and u € R? as a vec-
tor of parameters. Now, most importantly, we must specify the nature of
the time-dependence of the perturbation, §(z,t; u,e). We will assume that
g(z,t; u,€) is quasiperiodic in t. We give the following definition.

(4.1) Definition. A C" function f : R — IR is said to be quasiperiodic if

there exists a C™ function F : R® — R where F is 2r-periodic in each
variable, i.e.,

F(Sla"'yéz""agl)=F(§17""§z+2777"'»£l)a V§EIR'£aVi:17"'7€’

and

f(t) = F(wit, -, wet), teRR.

The real numbers wy,---,we are called the basic frequencies of f(t). A
vector-valued function is said to be gquasiperiodic if each component is
guasiperiodic in the above sense.

For more information on quasiperiodic functions in the context of dy-
namics we refer the reader to Moser [1966] or Gallavotti [1983].

Thus, (4.3) can be rewritten as
(4.5) T =JDH(x) + eg(z,wit, . ..,wet; u,€)

or
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z = JDH(z) + eg{z, 04, ...,0 p,¢),
élzwla
(4.6)
(21,61, -,00,1,6) € R x T* x R? x R!,

0! = Wi,

where

§(93,t,#, 5) = g(:B;wlt, te ,Wlt;/f"s),

as in Definition 4.1. Rewriting (4.5) as the autonomous system (4.6) elim-
inates the difficulties of dealing with nonautonomous systems described at
the beginning of this chapter. However, this is accomplished at the expense
of enlarging the phase space. Moreover, the additional dimensions (i.e., the
phases 81, ...,8,) are dynamically trivial and could lead to ambiguities in
the interpretation of results arising in specific applications. We will deal
with these questions throughout this chapter. Despite these problems a
central theme will emerge in our discussion, and that is that the geometric
structure in the higher-dimensional phase space of (4.6) will impose a kind
of order on the dynamics generated by (4.5). Ultimately, we will be lead
back to a consideration of a bi-infinite sequence of maps as described in the
introduction of this chapter. This will be described in Section 4.6, where we
will see that the geometric structure in the higher-dimensional phase space
of the autonomous system can be used to understand the dynamics of (4.3)
in IR? in terms of time-dependent geometrical structures associated with a
bi-infinite sequence of two-dimensional maps.

Assumptions on the Phase Space Geometry of the Unperturbed System.
We make the following assumption on the structure of the phase space of
the unperturbed system.

The system

(4.7) & = JDH(z)

has a hyperbolic fized point at x = xy. Moreover, a branch of the sta-
ble and unstable manifolds coincide along a homoclinic manifold I',, =
We(xo) (YW¥(zq). We denote trajectories in the homoclinic manifold by
zn(t) where, of course, limy)_,ooxn(t) = To; see Fig. 4.1.

Now we want to interpret the geometrical consequences of this assump-
tion in the context of the geometric structure of the unperturbed system in
the enlarged phase space, i.e., the system
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Ty = WS(xg) N Wi(xg)

Fig.4.1. An orbit homoclinic to z = zo.

& = JDH(z),
él =Wy,
(4.8)
éz = We.
For (4.8)
(4.9) To= {(m,9)61R2><T£ |z =m0}

is a normally hyperbolic (we will explain this term shortly) invariant ¢-
torus. Moreover, Ty has (£ + 1)-dimensional stable and unstable manifolds,
denoted W*(Ty) and W*(Ty), respectively, that coincide along a homo-
clinic manifold I'y, = W*(Tp) () W*(Tp). Trajectories in I'r, are denoted
by (2n(t),01(2),...,8:(t)). In Fig. 4.2 we illustrate the geometry for £ = 2.
The autonomous nature of the unperturbed system provides us with
a way to parametrize I'r, = W?*(Ty) ( W*(Tp). Consider the homoclinic
trajectory xp(t) of (4.7) and a reference point, z,(0), along this trajec-
tory. Then, by uniqueness of solutions, z,(—#g) is the unique point on this
trajectory that flows to the reference point, z,(0}, in time #y. Hence,

I'r, = W*(To) [ YW"(To)

(4.10)
= {(x,61,---,00) € R? x T* | = 2p,(~t0), to € R'}
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QN

Fig. 4.2. A normally hyperbolic invariant torus, To, connected to itself by the
homoclinic manifold I'r, = W*(To) N W*(T5) (cut-away half view).

74

is a parametrization of I'r,, i.e., for every (tg,0:,---,0¢) € IR x T* there
corresponds a unique point on Iy, according to the rule given by (4.10).

The Poincaré Map. One of the advantages of rewriting (4.3) as an au-
tonomous system in a higher-dimensional phase space (]R2 x T*%) is that
the dynamics of the resulting system can subsequently be studied via a
single Poincaré map [although, as we will see in Section 4.6, the dynam-
ics of (4.3) in IR? is described by a bi-infinite sequence of maps that uses
knowledge of the geometrical structure of the single Poincaré map in the
higher- dimensional phase space]. We now want to describe this procedure.

We define a global cross section to the phase space R? x T*¢ of (4.6)
by fixing one of the angle variables, say 6,, as follows:

(4.11) Z00 = {(z,0) € R? x T*|6, = 6,0 € [0,27)} .

Then the Poincaré map of X% into X% is defined as

Pgﬂ] . 2010 —_ 2010,
(1,'5(0), 0107 v 50107 R} 030)

2
~ (1}5( ﬂ.) ’910+27rw1""7010,"'70f0+27Twl)»
W [%9) W,

1 1 2

(4.12)

where 0,0 + 2 = 6,9 and (z.(t),0:(t) = wit + O10,...,0,(t) = w,t +
0.0, . ..,86(t) = wet + Bgg) is a solution of (4.6).

The unperturbed Poincaré map, Pg *® has a normally hyperbolic in-
variant (¢ — 1)-torus, 7y, given by

(4.13) T0="To[ | %

with £-dimensional stable and unstable manifolds given by

(4.14a) W (10) = W*(Tp) () 2%



4.1 The Systems Under Consideration and Phase Space Geometry 127

WiTg) N WY(Tg)

P TN

Fig. 4.3. 70 and W* (7o) N W?(70).

and

(4.14b) W"(r0) = W*(To) [ ) £%°,

respectively. Moreover, W*(7y) coincides with a branch of W*(r,) along a
homoclinic manifold, see Fig. 4.3 for an illustration of the geometry for £ = 2
and i = 2. We note that W*(7y) and W*(7y) are both codimension 1 in X%
and W* () N W*(7p) separates the Poincaré section into two components
with W# (7o) (YW"(70) acting as a complete barrier to transport between
the two components.

Important Notation. Henceforth we shall take ¢ = ¥, i.e., 8,5 = 8y for
the sake of a more convenient notation (of course, this affords no loss of
generality since we need merely relabel the frequencies). We also will define

0= (61,...,9@_1)

and

w=(w1,...,we—1).

We will henceforth neglect the superscript 6,9 on the Poincaré map P%°
and merely denote it by P. with the 6,5 = 8¢ understood.

Phase Space Geometry of the Perturbed Poincaré Map. As mentioned ear-
lier, 19 is a normally hyperbolic invariant torus. This means that, under
the linearized dynamics, the rate of expansion and contraction of tangent
vectors normal to 7y is much stronger than the rates for vectors tangent
to 79. In our case it is easy to see that tangent vectors grow or contract
at an exponential rate normal to 79 and grow only linearly in time tan-
gent to 7g. Precise definitions of normal hyperbolicity in terms of the ratio
of growth of tangent vectors can be found in Fenichel [1971, 1974, 1977],
Hirsch, Pugh, and Shub [1977], or Wiggins [1988a]. The important point
for us is that normally hyperbolic invariant sets along with their stable and
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unstable manifolds are preserved under perturbation. More specifically, we
have the following theorem.

(4.1) Theorem. For ¢ sufficiently small, P possesses a C” (£ — 1)-dimen-
sional normally hyperbolic invariant torus, 7., whose local, £-dimensional,
C" stable and unstable manifolds, denoted W, (1c) and W (7.), respec-
tively, are C" e-close to W .(10) and W (7o), respectively.

Proof. See Fenichel [1971], Hirsch, Pugh, and Shub [1977], or Wiggins
[1988a). 0

The global stable and unstable manifolds, denoted W*(r.) and W*(r.),
respectively, are subsequently defined in the usual way, i.e.,

(4.152) We(r) = | Po™ (Wi(me)),
(4.15b) We(re) = | PP (Wio(7)).

The important point is that, although 7, along with W#(7.) and W*(r,),
persist, W#(7.) and W*(r.) may intersect in a complicated manner that
allows for transport between the two components of phase space that were
isolated dynamically at £ = 0. In Fig. 4.4 we illustrate a possible geometrical
configuration for the intersection of W*(7,) and W*(r.) for £ = 2.

Figure 4.4 also gives an indication of why we are developing the trans-
port theory for quasiperiodic vector fields in a perturbative setting. In the
transport theory for two-dimensional maps (which applies to time-periodic
two-dimensional vector fields via passage to a Poincaré map) the stable
and unstable manifolds were one dimensional. Hence, if they intersected,
typically they would intersect in isolated points. However, for quasiperiodic

Fig. 4.4. A possible configuration for W*(r.) N W*(7¢) (cut-away half view).
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Xp (Y

X (1)
Fig. 4.5. Heteroclinic cycle connecting x3 and 5.

vector fields, the situation is more complicated. In the simplest case, i.e.,
¢ = 2, P. is three dimensional and W*(r.) and W*(r.) are each two di-
mensional. It should be clear that if they intersect, typically W*(r.) and
W*(r.) will intersect in curves, and the geometry of these curves can be
complicated. For this reason we need an analytical tool to describe the ge-
ometry of their intersection. The tool will be a quasiperiodic generalization
of the Melnikov function. Since this technique is valid only in a perturbative
setting it explains why we have limited ourselves to this situation.

(4.1) Exercise. Suppose rather than assuming that (4.7) has a homoclinic
orbit connecting a hyperbolic fixed point, we assume that it has a pair of
heteroclinic orbits, 2% (t), 2% (t), connecting two hyperbolic fixed points so
as to form a heteroclinic cycle as shown in Fig. 4.5. How are the set-up and
the results obtained thus far modified?

4.2 The Quasiperiodic Melnikov Function

In Wiggins [1988a] it is shown that the distance between W?*(r.) and
W (r.) along the normal to the unperturbed separatrix can be expressed
as

M(to,01,...,00—1;000, 1)
|DH (zn(—t0)) |l

(416) d(t07017'~'aef—l;oﬂ)’u?a):E +O(62)7
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Wit N W)

Fig. 4.6. Geometry associated with the quasiperiodic Melnikov function.

where || - || denotes the usual Euclidean length and
(4.17) M(tg,01,...,8¢-1;8¢0,1)

= [ (DH(zn(£)),9(mn (£),w1 (t+t0)+01,-...we—1 (t+t0)+0e—1,we (t+t0) +6¢03,0))dt,

—o0

where (-, -) denotes the usual scalar product. Henceforth, we will drop the
subscript 0 from ;9,7 = 1,...,£ — 1 (although it will be resurrected briefly
in Section 4.6) and retain the subscript 0 on 64 since this denotes the
specific angle value that defines a Poincaré section. This subscript omission
is traditional in the passage from the continuous time system, where the
subscript denotes an initial condition, to the Poincaré map. In Fig. 4.6 we
illustrate the geometry behind the measurement of distance between W*(7)
and W*(r.). The following theorem is the basis for using the quasiperiodic
Melnikov function to study the geometry of intersections of W*(r.) and
We(r.) .

(4.2) Theorem. Suppose there exists a point (t,601,...,00_1, 1) such that
M(t—o, 0_1, ey 0_5_1; 02_0, [._L) = 0,

1.
2. D(to,glﬁm’ge_l)M(t_o,01,...,0[_1;0[0,ﬂ) is of rank 1.
Then W*(1.) intersects W¥(r.) transversely at (zp(—tp) + O(e),

0_1, . ,01{_1).
Proof. See Wiggins [1988a]. o

Frequently we will abbreviate the notation of the quasiperiodic Mel-
nikov function by

M (to,01,.-.,0p_1;0e0, 1) = M (to,6; 000, 1),

and when parameters do not explicitly enter into our discussions we will of-
ten omit denoting the explicit dependence on p. Furthermore, the quasiperi-
odic Melnikov theory is also valid as a measurement between the stable and



4.2 The Quasiperiodic Melnikov Function 131

unstable manifolds of a heteroclinic orbit; (4.17) is merely evaluated on the
unperturbed heteroclinic orbit; see Wiggins [1988a] for details.

(4.2) Exercise. Describe the relationship between the sign of the quasiperi-
odic Melnikov function and the relative orientations of the manifolds (cf.
Section 2.6).

In order to illustrate many of the concepts to follow, let us consider an
example that frequently arises in applications where the Melnikov function
takes a simple, yet generic, form. Consider the system

1 = T2,
¢
&y = ;‘Z-‘l/ (z1) +¢ {—63:2 + ;Ficos(h] ;
(4.18) b = w 2
1= wi, (z1,22,0y,---,6,) € R XT[,
él = Wy,

where V(1) is a C™! scalar function of z1. The system (4.18) arises in
many applications. To an engineer it might represent a nonlinear spring
with the nonlinear restoring force %(ml) subject to weak damping and
multifrequency excitation. To a physicist it might represent a particle mov-
ing in a one-dimensional potential well [described by V(z;)] subject to weak
damping and multifrequency excitation. Of course, we assume that the un-
perturbed system satisfies the structural assumptions described in Section
4.1; using (4.17), the quasiperiodic Melnikov function for (4.18) assumes
the general form

(4.19)
M(t0701v s ,0£-1;9£0yll‘17 s ap’l)
£-1
= —c6+ Y Ai(p.) sinwito + 0;) + Ag(pe) sin(wet + Oro),
i=1

where pu; = (Fj,w;) and c is some constant. We remark that the natural
interpretation of = (4y,...,8,_1) in the quasiperiodic Melnikov function
is that these angles are the relative phase differences between the different
frequency components of the perturbation. Also, the functions

Ai(p)/Fi
will be referred to as the relative scaling factors for the frequencies w; and
will play an important role in the theory. Essentially, they will determine

the relative importance of each frequency component on the geometry of
the stable and unstable manifolds.
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(4.3) Exercise. Prove that the quasiperiodic Melnikov function for (4.15)
does indeed take the form of (4.19). Derive integral expressions for ¢ and
A,(y,). [Hint: at first one might think that there should be terms of the form
B, (1,) cos(w,to+6,) in (4.19). Show that this is not the case due to the fact
that z2p(t) can be chosen to be an odd function of ¢ since the unperturbed

vector field describes the motion of a point in a one-dimensional potential
well ]

4.3 The Geometry of W¥(7:) (| W¥(7¢) and Lobes

We now want to develop the generalization of a lobe for quasiperiodic sys-
tems. It is in this setting that we will see the advantages of developing the
theory from a perturbative approach as well as the uses of the quasiperiodic
Melnikov function.We will begin with an example.

We consider a two-frequency case of the form described at the end of
Section 4.2. In particular, the Melnikov function takes the form

(4.20)
M(to, 015020 = 0, pu1, o) = —¢b + Ay (p1) sin(wito + 61) + A2(p2) sinwoto,

where p, = (F,,w,), 4 = 1,2. We remind the reader that in this case
the Poincaré map is three dimensional, 7. is one dimensional, #*(7.) and
W*(7.) are each two dimensional, and the goal is to study the geometry of
We(re) (\W*(r.). This is accomplished by studying the zero sets of (4.20)
in the tg — 6; plane. Geometrically this corresponds to cutting open the
Poincaré section along #; = 0 and “flattening out” the three-dimensional
regions bounded by pieces of W#(r.) and W*(r.) as indicated in Fig. 4.7.
Hence in this particular reduction of dimension (by one), no important
information is lost concerning the intersection of W*(r.) and W*(r.}.

In Figs. 4.8a—g, we show the zero sets of (4.20) for § = 0, wy = gws = w,

where g = ME;;Q is the golden mean, and various values of %:. {(Note: the
reader should ignore the notation 7y and 72 in the figures for the moment;

this will be used later.) From the figures we see that, for %; < 1, the inter-

section sets are 1-tori and, for %‘; > 1, the intersection sets are segments of
a spira) (note: for our purposes, even though the intersection set is a single
connected spiral, we will view it as an infinite set of graphs over T!). The
case %; = 1 is critical and represents the bifurcation between the two qual-
itatively different types of behavior. The reader may wonder whether the
crossing of the intersection sets actually occurs in this case since the zeros of
(4.20), by Theorem 4.2, are only O(¢) approximations of W*(r.) W™ (7).
However, such behavior is generic in parametrized families of systems as
the following exercise shows.
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75
K

Fig. 4.7. Visualization of the lobes formed by W*(r:) N W*(r¢).

{4.4) Exercises.
1. Show that conditions for the zero sets of (4.20) to cross as indicated in

Fig. 4.8d are
M (%0,01; ) =0,
oM ,_ - _
(4.21) N (t0,601;12) =0,
oM ,_ - _
30, (f0,01; ) =0,

where we have omitted 659 = 0 from the notation and p represents the
variable parameters.

2. Show that the condition for the intersection sets of W*(7.) and W*(r)

to cross is
d (t_Oaa_l;ﬁag) = 07
od - - _ _
(422) d—t() (t0761;,u78) =Y,

od . -
6, (0,01:1.6) =0,

where d(%g, 01, i, €) is given by (4.16).
3. Show that (4.22) has a solution if and only if
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Fig. 4.8. Zero sets of the quasiperiodic Melnikov function (4.20) for various pa-
rameter values. The dashed lines labelled 71 and 72 denote possible choices for

pims. For (a)-(g), § = 0 and w; = gws = w (g = ¥B=L); for (h), —¢§ = 1.5 and

2
2w = we = 2w,
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J([(), 0_1; ﬁa é) = 07
od ,_ -
— (to, 0 ;_7 £) = 07
(4.23) oy (0: 013 s€)
od ,. =
Yl U 30 ;_7 £) =0
96, (0 11 5)
has a solution where d = ed. B
4. Suppose that (to, 6y, 1) = (0,61, /) is a solution of (4.21); then show
that (to,61, u,€) = (¥y,861, 1,0) is a solution of (4.23).
5. Using 1, 2, 3, 4, and the implicit function theorem, derive conditions
under which the crossing of zero sets of the quasiperiodic Melnikov
function imply crossing of the intersection sets of W*(7.) and W*(r,).

Note in Figs. 4.8a—g that, for each value of 6;, W*(r.) and W*(r,)
intersect. In Fig. 4.8h we plot the zero sets of (4.20) for 2w; = wy = 2w,
Ay = Ay = £1, and —cb = +1.5. In this case, W¥(7.) and W¥{7.) do
not intersect for all values of §;. We will examine the reasons behind this
in more detail shortly. We remark in advance that, despite the particular
choice of parameter values in Figs. 4.8a—g, the behavior of W*(r,.) W™ (r¢)
in Figs. 4.8a-g is typical for all values of Ay, Ay, wy, and ws if the pertur-
bation is Hamiltonian, and the behavior exhibited in Fig. 4.8h illustrates
a phenomenon that may occur if the perturbation is not Hamiltonian and
the frequencies are commensurate.

(4.5) Exercise. For the example with quasiperiodic Melnikov function given
by (4.20) construct the Poincaré section by fixing 8; = 619 = 0 (rather than
62) and plot the zero sets of the new Melnikov function, i.e.,

(4.24)
M (to, 025010 = 0, pq, pi2) = —cb + Ay (p1) sin wity + Az(p2) sin(wato + 62),

in the ty — 6, plane. Compare the results to Figs. 4.8a-h. What general
remarks can you make in a two-frequency system concerning which of the
two phase angles is chosen to define the Poincaré section?

(4.6) Exercise. How do the results of Exercise 4.5 generalize to the general
¢ frequency case?

Now that we have seen some examples of the geometry of W*(7,)
A W*(7.) in the two-frequency case, we are ready to define the notion
of primary intersection manifolds (pims) which are the analogs of pri-
mary intersection points (pips) from the two-dimensional map theory (cf.
Definition 2.2). We will use the quasiperiodic Melnikov function in our
definition and, for the sake of a less cumbersome notation, we will omit
the explicit parameter dependence, i.e., p, from the notation. Suppose
ZTAO"'(t_O,él, .o+,00_1;040) # 0; then by the implicit function theorem there
exists a C" function
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(4.25) to (01, - .-, 0e-1;0¢0)

with domain

(4.26) Z = (on,f1) X (02, B2) X+ X (@p—1, Be—1) € T,
where (a,,8;) C [0,27), 1 =1,...,£~— 1, such that

(427) M(to (01,. . ,gg_l;ego) ,91, NN ,0g_1;9g0) = 0

We denote the closure of Z by

(4.28) Z ={a1,/1] % a2, B2) X -+« X o1, Be-1] € 741

and, if 8; = 2x for some ¢ = 1,...,¢ — 1, then we define [a;, ;] = [, 27).

(4.2) Definition. Let (61, ...,0¢—1;0s0) with domain 2%, i = 1,...,n, be
functions as defined above with Z° (27 = @, for alli, j, and 2 ZJ 24,
Then, from Theorem 4.2, the set

{(t0,01,...,00—1) € R x T Mg = t§ (61, ...,60-1;000)

(01,..-,00-1) € Z5i=1,...,n}

parametrizes an (£ — 1)-dimensional surface contained in W* (TE) ﬂ W (7e).
In order for this surface to be a single-valued graph over Z' x --- x Z™ we
further specify

(4.29) to =1t§ (91, eoyBe_1;6g0) on ZY

(provided ZY # 0). We refer to this surface as a primary intersection
manifold (pim) which we denote by 7.

At this point several comments are in order concerning Definition 4.2.

1. Several geometrical possibilities fall under the scope of Definition 4.2
and will be illustrated using Figs. 4.8a-h. In that figure the over-
hatched curves denoted 7; and 73 will represent our choice for pims.

(a) n = 1 and Z = T*7'. In this case 7 is either an (£ — 1)-torus or
an (¢ — 1)-dimensional segment of a spiral manifold. Examples of 7
as tori are found in Figs. 4.8a-c, and examples of 7 as segments of
spirals are found in Fig. 4.8g.
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(b) th(81,...,00-1;000) = t(61,...,0e-1;600) on 29 with Z1 x ... x
Z" = T* 1 n > 1. In this case also 7 is either an (£ — 1)-torys
or a segment of an (¢ — 1)-dimensional spiral; however, 7 may not
be smooth on Z%. What typically happens in this situation is tha
tg(ol,‘.'..,ag_l;em) and t}(61,...,6¢_1;0e) undergo a bifurcation
on 2% (note: on Z¥ it is necessary for DM (to,61,...,0s_1;000) to
have rank zero), and 7 is formed by piecing together the functiong
t5(61,...,00-1;00),% = 1,...,n, at the surfaces where they bifur.
cate (note: the dimension of Z% is generically (£ — 2)); see Fig. 4.84
for an example.

(c) té(@l, cooyBe-136800) # tﬁ(@l, .oy 00_1;04) on Z49 with Z1 x -+ x
Z™ = T* ! n > 1. In this case 7 is discontinuous on the Z%; how-
ever, with the condition (4.29), 7 is a single-valued graph over T,
Examples can be seen in Figs. 4.8e, f.

(d) 2% = @,n > 1. In this case Z! x --- x Z® C T*~! and 7 contains
gaps; an example can be seen in Fig. 4.8h.

(e) A combination of (b), (c), and (d) may be possible. Namely, 7 may
be nondifferentiable and/or discontinuous and/or possess gaps on
various of the Z¥.

We emphasize that for a given geometrical configuration of W#(r,)

(YW*(r:) several choices may be possible for pims. For example, in Fig.
4.8f, the pims could have been chosen as segments of spirals as opposed to
the discontinuous curves as shown in the figure. The particular choice that
we make depends on the application at hand. We will motivate this more
fully as we go along. For now we remark that the long time flux will not
depend on the particular choice of pim.

2.

Let X(é], ... ,9_@_1;0@0) = {(.’17,0) € R? x TZIG = (9_1, e ,9_3_1; 9[0)} de-
note the two-dimensional phase slice in X%°. Then for (61,...,0¢_1) €
Zl x ... x Z", 7 intersects x(f1,...,0_1;0¢) in a unique point. As a
shorthand notation (cf. the comments at the end of Section 4.2) we will
write x(f1,...,0,_1;0s0) = x(9) where = (f;,...,0,_1) and 8, = Oy
is understood. Also, we will often use the (possibly) ambiguous phrase
“W*(r.) and W*(r.) intersect in a countable infinity of points in the
phase slice x(#).” Of course, this does not mean that the intersection
of W*(r.) and W¥(7,) is an isolated point. In general, it is an (£ — 1)-
dimensional surface. However, W*(r.) "\ W*(7.) N x(f) is a point.

As for time-periodic vector fields, general properties of W*®(w)

YW*(r:) can be inferred from the Melnikov function. We describe these
results with two lemmas and a theorem.

(4.3) Lemma. If there exists (9,01, ...,00_1,) € R x T*~! x IR? such that
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1. M(fo,01, - ,00-1;000,2) =0,
oM = _
2. 8t (t0»011 08-1;0l0nu) 790,
then there exists a countable infinity of to € R such that

3. (t(]aélv""ge—l;oeo’ﬁ) =O’
oM -
4. Bt (to,01,-..,0e—1;0¢0, ) # 0.

In other words, a simple zero of the Melnikov function in one phase slice
implies the existence of a countable infinity of simple zeros in the same
phase slice.

Proof. Using the definition of the generalized Melnikov function given in
(4.17), it follows that 1 and 2 can be rewritten as

(4.30)
2mn

M (t_o +=,0, - 27r~n, B — 2%%_—173; 0¢0,ﬂ> =0, VneZ,
we 2

at() Wy

and as a shorthand notation we will write

M 2 = _ _
0 (to + _7r~n ,01 — 27r—n, ey Bo_1 ~ 271'%—171; 0@0,;1) #0, YnelZ,
¢

A w1 = -1 = w
0, —2r—n,..., 0,1 — n|=60-2r—n,
wyp W Wy

where

95(51,...,91_1), wE(wl,...,wg_l).
There are two distinct cases to consider.
Case 1: All the Frequencies Are Mutually Commensurate.

In this case § ~ 2m 2n = 6 (mod 2r) for an infinite number of n e Z.
Hence, there are an mfimte number of ty values among {fy + 2 Zin,nelZ}
corresponding to the n € Z where § — 2nin = 6 (mod 27) such that 3
and 4 are satisfied.

Case 2: Two or More Pairs of Frequencies Are Incommensurate.
_ In this case one can choose an infinite number of n € Z such that
6 — Qﬂg;n = 8, is arbitrarily close to 8. Thus, on the phase slice x(6,)

_ 2 _
M (to + 0,8, ; 9eo,ﬁ> =0,
we

(4.31)

oM (_ 2

*(to"i_ T ‘naefo, )7/:0
WE

Otg
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Using the fact that x(f,) is arbitrarily close to x(6) and (4.31) holds, it
follows from the implicit function theorem that this simple zero of the
quasiperiodic Melnikov function on x(6,) extends to a simple zero in x/(6).

O

(4.4) Lemma. (1) If all the frequencies are mutually incommensurate, then
a countable infinity of intersection points of W*(r.) and W*(r.) in one
phase slice of 590 implies the existence of a countable infinity of intersec-
tion points in all phase slices of X% (2) If one or more pairs of frequencies
are commensurate, then a countable infinity of intersection points of W*(r.)
and W¥(1,) in one phase slice of X% implies the existence of a countable
infinity of intersection points in phase slices defined either over all of Tt~}
or some subset of T*~!.

Proof. The lemma follows from the invariance of W*(r.) and W*(r.) under
P.. If there are a countable infinity of intersections in x(8), then there
are a countable infinity of intersections in x(6 + 27 2n),n € Z. If all the
frequencies are mutually incommensurate, then {0+27rw%n, n € Z} is dense

in T¢~!. Hence, by continuity, each phase slice contains a countable infinity
of intersection points. If one or more pairs of frequencies are commensurate
then {8+ 2rZn,n e Z} is not dense in T~1, so it may happen that there
exists a countable infinity of intersection points in phase slices defined only
over some subset of T~ (cf. Fig. 4.8h). Note that we have not ruled out
the fact that all phase slices may contain a countable infinity of intersection
points in the commensurate case. We will explore these issues more fully in
an exercise. a

The following theorem is an immediate consequence of Lemmas 4.3
and 4.4.

(4.5) Theorem. Suppose there exists a point (f,61,...,00_1,4) € R' x
T x IR® such that

1. M(t_070_1"~-a9_l—1;9l07ﬂ) :0,
oM

2. a—to-(to,a_l,u-,él—l;eeo,ﬁ) # 0.

Then, if the frequencies are all mutually incommensurate, W*(7.) intersects
W*(1.) in a countable infinity of (£ — 1)-dimensional surfaces that can be
represented as graphs over T*~1. If one or more pairs of frequencies are
commensurate, W*(7.) intersects W*(r.) in a countable infinity of (£ —1)-
dimensional surfaces that can be represented as graphs over either T*~1 or
some subset of Tt 1.

Proof. The theorem follows immediately from Lemmas 4.3 and 4.4. O
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In the study of time-periodic perturbations of one-degree-of-freedom
Hamiltonian systems having a homoclinic orbit we typically expect the
stable and unstable manifolds of the resulting hyperbolic periodic orbit to
intersect transversely if the perturbation is Hamiltonian; if the perturbation
is not Hamiltonian they may or may not intersect transversely. Similarly, we
might guess that in these quasiperiodic systems W?*(r.) intersects W*(7.) in
all phase slices if the perturbation is Hamiltonian (regardless of whether or
not the frequencies are commensurate or incommensurate). These notions
are explored in the following exercise.

(4.7) Exercise. Consider the following four quasiperiodic (two-frequency)
vector fields.

(4.32a)
T =y,
y =T _x3 +€[fl COSs 01 +f2 cos 92]7 (x’y,91)92) € IR‘2 X T27
él = w1,

B2 = wo;

(4.32b)

T=y,

y=z—x3+e(fy cos O, + fo cos O+ 17, (z,y,601,0;) € R? x T?,
91 = Wy,

02 = wo;

(4.32¢)
¢ =,
b= —~sin ¢p+e[fy cos By + f2 cos 62], (¢,v,01,0;) € Tt x R} x T2,

01 = wi,

0'2 = Wa;
(4.32d)
¢=uv,

U= —sin ¢+¢[f1 cos b+ fr cos 2+ I,
b= (¢,v,01,682) € T* x R x T?,
1 = Wi,

92 = W9.
Each of the systems is Hamiltonian; the differences are that (4.32a) and

(4.32L) are defined on IR? x T2 while (4.32c) and (4.32d) are defined on
T! x R! x T2 and (4.32b) and (4.32d) have a constant forcing term.
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1. Compute the quasiperiodic Melnikov function for each vector field and
plot the zero sets for representative parameter values as in Fig. 4.8.

2. Discuss the geometry of the zero sets paying particular attention to the
topology of the underlying phase space (in particular, the plane versus
cylinder question) as well as the nature of the forcing (in particular,
Z€ro Versus NONZero mean).

3. How will the results change if a small dissipative term is added to the
vector fields?

4. Based on these examples, what general conclusions can you derive con-
cerning the geometry of W¥(7.) [\ W*(7e)?

Now that we have seen some examples of the geometry of W#(7.)
(Y W*¥(r.), which served to motivate our definition of primary intersection
manifolds (pims),; we are at the point where we can generalize the defi-
nition of a lobe to quasiperiodic systems. We begin with two preliminary
definitions.

(4.3) Definition. Let T be a pim defined over Z' x --- x Z™ and let x(6),0 €
Zl x - x Z™, be a phase slice. Then the point defined by 7\ x(6) = p(8)
is referred to as a primary intersection point (pip).

(4.4) Definition. Let p;(0) and p2(f) denote two pips in the phase slice
x(6), and let Ulp1(8),p2(0)] and Sip:1(8),p2(0)] denote the segments of
W (r. ) x(8) and W*(r:) (" x(8), respectively, with endpoints p;(6) and
p2(0). Then p1(8) and p2(6) are said to be adjacent pips if Upi(8), p2(0)]
and S[p1(0),p2(9)] contain no other pips.

We can now state our definition of lobes for quasiperiodic systems.

(4.5) Definition. For all § € Z! x --- x Z" let p1(6),p2(0) denote adjacent
pips in the phase slice x(0). Then a lobe, L, is an (£+1)-dimensional region
in X% such that the following hold.

1. LNOx(8) is the region in x(0) bounded by Uipi(8),p2(8)]
US[pi(8),p2(0)], for all@ € Z* x --- x Z™.

2. For each § € Z' x ... x Z", the sign of M(to,01,...,00_1;60e) is
constant for ty € [t(0),t3(0)] and independent of 0, where t§(8) is the
to value corresponding to p;(0),i =1,2.

We will motivate part 2 of Definition 4.5 more fully when we discuss the
turnstile in Section 4.4. As in our definition of pims, the general definition
of a lobe allows for several geometrical possibilities. We will now examine
a few of these possibilities in the context of the example given earlier that
was illustrated in Fig. 4.8. Using this figure, we let py(8) = 71 () x(#) and
p2(6) = 12 () x(6). For the toral pims of Figs. 4.8a~d the three-dimensional
lobe in 3920 is a connected region that divides X2 into two disconnected
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components (i.e., an “inside” and an “outside”). For the spiral pim of Fig.
4.8g the lobe is discontinuous at #;, = 0 and does not divide £ into two
disconnected components. In Fig. 4.8d the lobe “pinches off” to a point at an
isolated point as a result of the bifurcation of the pims. In this example the
pims are tori, but not differentiable. In the Figs. 4.8e,f the discontinuities in
the definition of 7y and 7, give rise to discontinuities in the resulting lobes.
In Fig. 4.8h the gaps in the intersection of W*(7.) and W*(r,) give rise to
gaps in the lobes defined by 7, and 7.

At this point it is appropriate to introduce some terminology that will
be used throughout the rest of this chapter. The motivation comes from the
fact that we will need geometrical and dynamical information in a given
phase slice x(8).

1. Let L be a lobe; then L()x(#) will be referred to as the lobe in x(8).
Note that L[)x(6) will typically be two dimensional.

2. Suppose in the quasiperiodic Melnikov function M (g, 8; 6.0, pt) we fix
6 = . Then we refer to the quasiperiodic Melnikov function as being re-
stricted to the phase slice x(6). In this case M (to, 8; 8¢, p) will provide
a measure of the distance between W*(7.) () x(8) and W*(7.) ) x(0).

4.4 Lobe Dynamics and Flux

Now that we have a precise definition of lobes for quasiperiodic systems
we can begin addressing transport issues by considering lobe dynamics and
its relationship to flux. The situation proceeds much as in the case for
two-dimensional maps. Recall that in that situation the phase space was
partitioned into regions whose boundaries consisted of segments of sta-
ble and unstable manifolds of hyperbolic periodic points and, possibly, the
boundaries of the phase space, and that transport among those regions was
affected via turnstiles formed from the lobes. Proceeding along these lines,
first we must consider how segments of W*(7.) and W"(r..) can be used to
partition X%, We begin with a definition.

(4.6) Definition. Let 7. be a pum with p.(6) = 7. x(0) and p(8) =
7. (\x(8). Then the {-dimensional surface mn X0 defined by
5 ={(@ 0 = Up(6), (O S [p=(6), pe(0)] .0 € 2* x --- x 2"}
15 referred to as the transport surface, S.
The transport surface plays the role of the separatrix across which we

measure flux and monitor the motion of phase space. However, we are faced
with two fundamental issues that require immediate attention.
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Fig. 4.9. The division of each phase slice, x(8), into two disjoint regions, R;(6)
and R2(#) (illustrated in the heteroclinic case for the sake of visual clarity).

1. Despite the fact that S is codimension one in %0 it may not divide
X0 into two disjoint components; see Figs. 4.8¢,f,g for examples.

2. A point in X%0 has coordinates (z,6;,...,0,_;); yet in studying the
dynamics of the nonautonomous vector field (4.3) we are only inter-
ested in the time evolution of x. Thus, one needs to relate transport

in X% to the dynamics generated by the nonautonomous vector field
(4.3).

Both of these issues are addressed by considering transport in the phase
slices x(6). For all § € Z! x - .- x Z™, 8 x(6) divides x(f) into two disjoint
components which we label as R; () (the bounded component) and Ry(6);
see Fig. 4.9. Under the Poincaré map P. we then have

P.(x(8)) = x (9 + 2#%@) ;
(4.33) P.(R.(6)) = R, (a + 27%[) ,

P.(Ra(6)) = Ry (0 + 2%%) ,
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and we will be discussing transport from R;(6) {resp. Ro(#)] into Ra(f +
21 2) [resp. Ryi(0 + 27 2)]. The phase slices x(#) provide a picture of the
dynamics in the z-coordinates at a fixed phase € (or, equivalently, at a
fixed instant of time). Since the dynamics in 6 is trivial, the evolution
of x(8) is evident. In X% W*(r.) and W*(7.) are stationary under the
dynamics generated by P. (even though orbits on them are not), and an
understanding of their geometry enables us to understand how they divide
x(#) into regions as well as how they influence transport between these
regions.

This gives rise to a new feature—namely, R;(f) and R3(6) may vary
with # (not only in shape, but also in area), i.e., they are time dependent. On
first thought, this may seem somewhat unnatural, i.e., studying transport
between regions of phase space that vary in time. However, we want to
motivate the fact that it really is very natural and that any uneasy feelings
result from relying too heavily on the theory derived for time-periodic vector
fields to provide us with intuition.The main payoff comes when considering
phase space structure for the nonautonomous vector field (4.3) from the
point of view of a bi-infinite sequence of maps as discussed in Section 4.6.

The fact that Ry () and Ry (8) [i.e., W*(7c) (N x(0) and W*(r.) (" x(8)]
vary with 6 is not the key feature on which to focus. Rather, one should focus
on the dynamical nature of W?*(7.) (| x(6) and W*(7.) () x(#), which form
the boundaries of these regions. Since the dynamics near 7. is of saddle type,
nearby points may have very different fates. The boundaries between these
different fates are, of course, formed by W*(7.) and W*(r.). Therefore, in
discussing transport in x(#) it is important to understand the geometry
of W(r.) (N x(0) and W*(7.) () x(#). In time-periodic vector fields, x(6)
can be identified with the Poincaré section and it is, therefore, fixed; thus,
these issues do not necessarily arise. However, in the time-periodic case,
if we were to vary the Poincaré section, the geometrical properties of the
homoclinic or heteroclinic tangles would typically change from Poincaré
section to Poincaré section. In this case one would not hesitate to rede-
fine the boundaries of the regions to conform with the new homoclinic or
heteroclinic tangle geometry, and we are arguing that the same types of
considerations hold in the case of time-quasiperiodic vector fields. Let us
now give a more heuristic justification for the nature of our time-dependent
regions.

Suppose that we consider an arbitrary region in phase space that is ob-
served to pulsate in a quasiperiodic fashion as depicted in Fig. 4.10a. This
overall pulsation is not of primary interest since, because the vector field is
quasiperiodically time-dependent, every point experiences a quasiperiodic
oscillation in time. Rather, it is the “irreversible” folding, stretching, and
contracting motions incurred by a region of phase space that are of pri-
mary interest in describing the global dynamics. These motions are due to
interactions with the stable and unstable manifolds of hyperbolic invariant
sets and result in the formation of the typical lobe type structures as de-
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Fig.4.10. (a) A region of phase space pulsating quasiperiodically in time. (b)
The region of phase space forming “lobe-like” structures.

picted in Fig. 4.10b. Thus, in order to understand such motions, one must
understand how W?(7.) () x(6) and W*(7.) [ x(8) vary with 8. Our meth-
ods embody this idea. Now let us continue our discussion of transport by
constructing the analog of the turnstile for these quasiperiodic systems.

The Turnstile. We begin by choosing # € Z' x --- x 2™ and considering
T x(8) = pc(#) and P (7.) N x(0) = p (). Let t5() denote the zero of
M(tg, 8;040), restricted to x(8), corresponding to 7.} x(6) = p.(6), and let
ty ©(0) denote the zero of M(to,8;04), restricted to x(8), corresponding to
P7H(1e) N x(0) = p ' (8). Then t5°(0) = t§5(6+27 2 )+ 2T This can be seen
as follows. By the definition given above, ¢5(6 + 27 2>) denotes the zero of
M (to,0;6040), restricted to x(0+ 2”‘57)7 corresponding to 7. [ x(6 + 27r§2).
Then it should be clear that P (7. x(6 + 27.2)) = P ()N x(6).
Hence, the ¢y value of M(to,8; 8s), restricted to x(8), corresponding to the
point P 1(7.) () x(6) is equal to the to value of M(ty,8;04),restricted to
x(0 + 2m %), corresponding to the point 7. Nx(6+ 2%5’;) wncreased by the
time of flight from the phase slice x(#) to the phase slice x(6 + 27ru%),
ie., i—’; (note: the time of flight is ncreased since this corresponds to mov-
ing along the unstable manifold in the “backwards” time direction; cf. our
parametrization of the stable and unstable manifolds described earlier).
Next let N'(6) denote the number of zeros of M(tg,8;68¢), restricted to

x(6), between (but not including) t§(0) and t; °(#). We denote these zeros
by

(4.34)  t5°(8) = 3(0) < th(8) < --- < M O(0) < t5(8) = ) P+ (a).
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Clearly, if we choose any open interval (t§(6),t5t(8)),i = 0,...,N(6), then
M (to,8;04) is of single sign on that interval.

Let Ulp;1(0),p.(0)] denote the segment of W¥(r.) () x(f) with end-
points p;(8) and p.(#) and let S[p;'(8),p.()] denote the segment of
W*(.) (N x(6) with endpoints p;}(8) and p.(6). Then on x(8), Ulp;*(8),
p.(0)] and S[p~1(6),p.(6)] intersect to form two sets of two-dimensional
lobes in the phase slice x(¢) which we denote as L; 2(1,6) and Lj:(1,6),
respectively. These sets of lobes are characterized by the following proper-
ties.

(4.7) Definition. L; 2(1,8) [resp. L1(1,6)] is the set of lobes such that
(1) LI,Q(].,G) - R1(9) [resp. L2,1(1,0) - RQ(B)/ and (2) M(tQ,g; 9@0),
restricted to x(8), is the same sign on the interval (tj,t5"), for some
i € {0,---,N(0)}, where ti(0) and t5"(8) correspond to the pips defining
a lobe in Ly 2(1,0) [resp. L2 1(1,8)]. (Note: the sign may certainly differ on
different intervals; however, on a fized interval the sign is constant.)

The astute reader will note that (1) and (2) in Definition 4.7 are not
independent; we have included this bit of redundancy for the sake of a more
thorough description.

Let N 2(1,8) denote the number of lobes in the set Ly 2(1,8) and let
N2,1(1,6) denote the number of lobes in the set L2 1(1,6). Then we have

L12(1,0) = L1 p(1,6, ) | - - {J L12 (1,6, M1,2(1,0))

(4.35a)
L2a(1,6) = Loa(L,6; D) - [ L1 (1,6, M2,1(1,0))

and, clearly,

(4.35b) Ni2(1,0) + N21(1,0) = N(6) + 1.

We further define

Ll’g(l) = U LI‘Q(I,B),

02t x - xZn
(4.35¢)
Lz,l(l) = U L2,1(1,(9).

0cZl x...x 2"

The lobes L; 2(1,0) | J L2,1(1,8) are the generalization of the turnstile that
we defined in Chapter 2. This will be apparent from the next theorem:;
however, first, the following definition will be useful.
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(4.8) Definition. M (o, 0;0) restricted to x(8) s said to be positive (resp.
negative) on a two-dimensional lobe on x(6) if it is positive (resp. negative)
on the open interval (£o(9),to), where to(6) and o(6) are the to values
corresponding to the pips that define the lobe on x(6).

Now we want to motivate why we are considering sets of lobes, since in
the theory for two-dimensional maps (cf. “multilobe turnstiles” in Section
2.2), we considered only the case of turnstiles consisting of two lobes, be-
cause we could always have redefined a lobe as a union of the appropriate
lobes. We could do the same thing in this setting; however, the new wrinkle
is that the number of lobes in the turnstile can change as the phase slice
is varied. In light of this situation it seems more clear to explicitly include
the fact that the.number of lobes may vary from phase slice to phase slice
in the general theory.

(4.8) Exercise. Determine under what conditions M (to,8;64) restricted
to x(0) is positive (resp. negative) on L; 2(1,8). Repeat the exercise for
L2 1(1,6). [Hint: this depends on the direction of VH relative to the un-
perturbed homoclinic (or heteroclinic) orbit; see also Section 2.6.]

The following theorem is the main result of this section.

(4.6) Theorem. PE(L1,2(1,0)) C Ry(60+ 27‘(‘5;) and PC(L271(1,9)) C R1(0 +
2m ).

Proof. We will prove the first part of this theorem only, since the second
part is proved similarly. One can easily give a geometrical proof along the
lines of Lemma, 2.3 or an analytical proof using the quasiperiodic Melnikov
function; we choose the latter approach.

The segment of the boundary of the lobes L; 2(1, 8) that coincides with
the boundary between R;(6) and Ry(8) is a segment of W*(r.) (\x(8). The
segment of the boundary of P.(L; 2(1,6)) that coincides with the bound-
ary between Ry (6+ 272 ) and Ry(0+ 272 ) is a segment of W*(re) () x(6).
Now recall the definition of the quasiperiodic Melnikov function as a signed
measure of the distance between W*(r.) and W*(r,). Since the quasiperi-
odic Melnikov function has the same sign on Ly 2(1,6) and P.(L12(1,6))
(see Exercise 4.11), it follows that Pe(L12(1,6)) C Ro(6 +2m2). 0

We refer the reader to Fig. 4.11 for an illustration of the geometry
behind this theorem.

(4.7) Corollary. The only points that enter R, (0+2nn) on the n** iterate
of F; are those that are in L1,2(1,0 +2m(n — 1)) on the (n — 1) iterate of
P.. Similarly, the only points that enter Ry(0 + 2rn2) on the n'* iterate
of P. are those that are in L21(1,60 + 2m(n — 1)) on the (n — 1) iterate
of P,.
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Fig. 4.11. The geometry associated with the turnstile. We have taken N1 2(1,8;)

= N2,1(1,01) = 1 and illustrated the heteroclinic case arising in the OVP flow for
the sake of visual clarity.

Proof. This follows easily from Theorem 4.6 and is very similar to Corollary
2.4. We leave the details as an exercise for the reader. 0O

As a result of Theorem 4.6 and Corollary 4.7, we see that the sets
of lobes L1 2(1,60) and L;1(1,6) play the same role as the turnstile lobes
for two-dimensional maps from Chapter 2 since they control the transport
between R;(6) and R,(8).

(4.9) Exercise. Prove that if N'(6)+1 is even, then N} 2(1,0) = N2 1(1,0) =
(N(6)+1)/2. Prove that if N'(6) +1 is odd, then one of N7 2(1,6),N2,1(1,6)
equals N(0)/2, the other, N'(6)/2 + 1. Show that whether N 2(1,8) [resp.
N2,1(1,0)) equals N(8)/2 or N(8)/2 + 1 can be determined by the sign of
the quasiperiodic Melnikov function.

Preimages of the turnstile lobes are formed in the usual way. On the
phase slice x(#) we consider P, "(7.)(\x(#) = p;"(f) and P (D <)
NA(®) = p= "+ (8) (n > 1). Then Ulp: “*(6),p7™(8)] and Sfpe "+ (6),
pI"(0)] intersect to form two families of lobes
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L12(n,60) = Ly o(n, 0, 1) | J--- | L1.2(n, 6, M1 2(n, 6)),
L21(n,0) = Lo (n, 6, 1) - | Lo,1(n, 6; N21(n, 6)),

which are characterized by the properties of Definition 4.7, and the property
that the quasiperiodic Melnikov function has one sign (cf. Definition 4.8)
on L; 2(n,0) and Lo 1(n, ), respectively. It follows that these sets of lobes
map according to

(4.36a)

(4.36b)
P.(Lig(n6) = Lig (n—1,0+ 27751)
(3
=Ly (n-1,0+2r=51) -
. - 1,2 ’ u)g’
UL1’2 (’I’L - 1,0-{-27!'&;./\/’172 (n—- 1,0+27ri>> ,
=/ wy
Pe (Lz,l(n 0 n—1 0+2ﬂ'——)
We

L21(
—L21< —1 0+27T—— 1>U
UL2,1 (n—1,9+27r——;./\/2,1 (n— 1,0+27ri)>
We w,

(4

and satisfy the properties of Definition 4.7 with the quasiperiodic Melnikov
function having one sign on Ly 2(n—1,0+2r2) and Lz 1(n—1,0+272),
respectively. We further define

Lia(n) = U L1,2(n,06),

(4.36
C) Lyi(n) = U Ly 1(n,6).

(4.10) Exercise. Show that

Nl,Z(n’ 0) = Nl’z (1,0 + 27ri(n - 1)) R

(4.37) we

N2,1(n,0) = N271 (1,0 + 27'('%(71 - 1)) .
(4

Using the quasiperiodic Melnikov function, give a procedure for comput-
ing M 2(n,8) and N2 1(n,0) for any n € Z. Also, give a relationship be-
tween N1 2(n,0) and N2 1(n,8) for any n € Z. Give a relationship between
Ni2(n, 8) [resp. Na1(n,8)] and N(0).



150 Chapter 4. Transport in Quasiperiodically Forced Systems

(4.11) Exercise. Suppose the quasiperiodic Melnikov function is positive
(resp. negative) on a two-dimensional lobe, L(#), on x(#). Then show that
the quasiperiodic Melnikov function is positive (resp. negative) on the two-
dimensional lobe P['(L(0)) on x(6 + 2mn2 ) for all n € Z.

Now let us consider a series of examples to illustrate these new con-
cepts. We will use the “generic” quasiperiodic Melnikov function for a two-
frequency forced system given in (4.20), with § = 0, in order to define pims
and, hence, lobes. For different sets of parameter values we will illustrate
our choice of 7., P.(7.), and P,"1(7.) as well as a few iterates of these lobes in
the ty — 6; plane. The dots labeled n = 0,1,2,3,... in each of the following
figures represent successive iterates of a typical point.

A1=A2:1, W] = Wy = W, 6=0.

We plot the zero sets of the Melnikov function in Fig. 4.12 for these
parameter values. In this example we have

(4.38) Ni2(1,01) = N21(1,61) = 1,

except at the isolated value §; = . The two-dimensional lobes in x(6;)
map according to

(4.39)
PE (Lm(n,é?l)) - L1,2 (n b 1,01 + 271’) = Ll,g(’n - 1,61),

P, (Lg,l(n,ﬁl)) = L271 (TL -1,6, + 271‘) = Lg’l(’n - 1,91), Vo, € [0,27(');
hence, x(61) is invariant under P..

(4.12) Exercise. What are N 2(n,6:) and N, 1(n,6;) in this example for
allne Z,6, € [0,27)?

(4.13) Exercise. In terms of the forcing function given in (4.18) for £ = 2,
explain the significance of the initial relative phase shift 8, = =.
A1=A2=1, w1=2w2=2w, 6=0.

The zero sets of the Melnikov functions for these parameter values are
plotted in Fig. 4.12b. In this example we have

(440) N172(1,91) = Nz’l(l,el) =2

except at the isolated values §; = 7, 37" The two-dimensional lobes in x(6;)
map according to

(4.41)
PE (L;,g(n,el)) = L1,2 (n — ].,01 +47[') = Ll’g(’n — 1,91),
P, (L2’1(n,01)) = Lgyl (n ~1,64 +47[') = L2’1(Tl -~ 1,91), Vo, € (0,271');
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hence, x(6,) is invariant under P..

(4.14) Exercise. Can you explain why Nj2(1,61) = N21(1,61) = 2 as
opposed to 17 Also, what are Ny 2(n,01) and Ny 1(n,6;) for all n € Z,
8, € [0, 27‘(‘)?

(4.15) Exercise. In terms of the forcing function given in (4.18) for £ = 2,
explain the significance of the initial relative phase shifts 6, = 7 and 6; =
3
7.

A1=A2:1, 20.)1:(4)222(4), 6=0.

The zero sets of the Melnikov function for these parameter values are
plotted in Fig. 4.12¢. Note that this example is the same as the previous
one with the exception that in the latter we constructed the Poincaré map
by sampling the trajectories at the smaller frequency, and here we sample
the trajectories at the larger frequency. In this example we have

(4.42) Ni2(1,01) = N2 (1,60) = 1,

except at two isolated 6, values. The two-dimensional lobes in x(#;) map
according to

Pg (Ll,g(n, 01)) = L1’2 (n — 1, 01 + 7r) s

4.43
(4.43) P. (Lo (n,04)) = Lo,y (n— 1,0, + 1), V8, € [0, 2n);

hence, points map between the phase slices x(6;) and x(6; + 7).

(4.16) Exercise. Using the quasiperiodic Melnikov function given in (4.20)
for £ = 2 with parameter values for this example, determine the isolated
values of 0; for which N 2(1,6;) = 0 and N2 1(1,60;) = 0. Also, what are
MNi,2(n,01) and Na1(n,6;) for all n € Z and 6; € [0,27)?

Before proceeding to more examples we want to make a general re-
mark concerning the three examples described thus far. In each case the
two frequencies were commensurate, and this is .why only a finite number
of phase slices were visited under iteration by P.. It should be obvious
that this is a phenomenon that always occurs when each pair of frequen-
cies is commensurate. However, in this case the time dependence of the
vector field is actually periodic, and thus one might question whether we
actually need this multifrequency formalism. We would argue that our mul-
tifrequency theory provides a more insightful way of studying the geometry
of homoclinic and heteroclinic tangles, even when all of the frequencies are
commensurate, for two reasons. The first is based on the fact that even
when all the frequencies are commensurate, the period of the vector field
may be much longer than the period defined by any one of the frequencies.
Thus, it may be more efficient to sample at one of the smaller frequencies
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and use our multifrequency theory. Also, the geometry of the homoclinic
or heteroclinic tangle may appear more simple when observed at shorter
time intervals. Heuristically, the reasoning behind this is that as the return
time to the Poincaré section gets long, the manifolds have more time to
stretch and fold. This phenomenon is dramatically illustrated in adiabati-
cally driven systems where the Poincaré return time goes to infinity as the
perturbation parameter goes to zero (for examples, see Elskens and Escande
(1990] and Kaper et al. [1990]). The second reason involves the fact that our
multifrequency formalism very naturally shows the influence of the relative
phase differences between the different frequency components. As we see in
Fig. 4.14, lobe areas can vary significantly as the relative phase difference
is varied. Indeed, in the dissipative case we have seen that an appropriate
choice of relative phase difference can cause the homoclinic or heteroclinic
tangle to disappear entirely (see Fig. 4.8h).

Next we will examine some examples in which the two frequencies are
incommensurate.

Ai=4=1, w=gw=w, 6=0.

In this example g = (—‘/—_52;1—) is the golden mean, and the zero sets of

the Melnikov function for these parameter values are plotted in Fig. 4.12d.
In this example we have

(4.44) Ni2(1,6) = Naa(1,61) =1

except at some isolated values of #;. The two-dimensional lobes in x(6)
map according to

P, (Ll,z(n, 01)) = L1’2 (77, — 1,91 + 27Tg),

(4.45)
P. (inl(n, 01)) = L2,1 (n -1, 91 + 27Tg) , Vo, € [0, 27‘(‘)

In this example, x(6;) densely and uniformly fills out X0 under iteration
by P..

Ai=Ay=1, gui=wy=w, 6=0.

The zero sets of the quasiperiodic Melnikov function for these param-
eter values are plotted in Fig. 4.12e. Note that this example is the same as
the previous one with the exception that in the latter we constructed the
Poincaré map by sampling the trajectories at the smaller frequency, and
here we sample the trajectories at the larger frequency. In this example, we
have
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2, 6 e[ (3= g>)
sty = 1. e 52, 05),
2, b€ [”—(75—55’2,2%),

(4.46)

2, B¢ [ ﬂﬁl)
Noa(1,6)) =<1, 6, ¢ [w(1+g) L52_3_g_))
2. 61 ¢ [M,QW) )

The lobes map ac;:ording to

2
P. (L1,2(n, 91)) = L1,2 (n -1,6, + _71’)
(4.47) 29
Y3
PE (Lz,l(n,ﬁl)) = L2,1 (n -1, 91 -+ p ) s V01 S [0, 27‘(’),

with the phase slice x(0;) densely filling out X% under iteration by P..

(4.17) Exercise. Compute N 3(n,8;) and N2 (n,0;) foralln € Z, 6; €
(0, 27] for the previous two examples. Discuss what you would expect to be
similar for the two examples.

The next two examples are concerned with the situation in which the
amplitudes of the different frequency components in (4.20) are not equal.

A1=27TA2=1, 27((4)1 =w2=27rw, 6=0.

The zeros of the quasiperiodic Melnikov function for these parameter
values are plotted in Fig. 4.12f. In this example, we have

_f1, 6 €fer—252r—L15),
(4.48) Ni2(1,61) = {O, otherwise,

Naa(1,6) ={1, 6, € [0.5,1.5),

0, otherwise.

The lobes map according to

P.(L12(n,01)) = L12(n— 1,6, + 1),

4.49
( ) P (L2,1(n, 01)) = Lz,l(n -1,6; + 1), Vo, € [0, 27‘(’) .
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Here we essentially have a large-amplitude (4,)}, low-frequency (w;) com-
ponent modulated by a small-amplitude (As), large-frequency (w2) com-
ponent. We see that, essentially, the lobe structure is determined by the
large-amplitude component.

27('A1 = A2 = 1, wp = 27!'(4}2 = 271'(4), 6=0.

The zeros of the quasiperiodic Melnikov function for these parameter
values are plotted in Fig. 4.12g. In this example, we have

(4.50) N2(1,61) = N2 (1,6:) = 1,

and the lobes map according to

P. (LLQ(TL, 91)) = Llyg(n -1,6, + 47('2),

(4.51) \
P. (LQ)](’I’L, 01)) = Lg,l(’n -1,6; + 4w ), Vo, € [0,27’[‘) .

Note that this example is the same as the previous one, except that the
trajectories are sampled at the smaller frequency, which results in the pims
being tori as opposed to segments of spirals.

(4.18) Exercise. In virtually any textbook on linear vibration theory the
notion of “beats” is described (see, e.g., French {1971]). Beats arise as the
linear superposition of oscillations of nearly equal frequencies. With these
linear notions in mind, can you formulate in a nonlinear setting the idea of
“homoclinic beats” in the context of our previous discussions?

Flux. Now that we have defined the notion of the turnstile and described its
construction, two types of flux follow immediately. For notational purposes,
if Ais a set in x(#) (resp. X%0), then u(A) will denote the area (resp.
volume) of the set.

Note: It is important to keep in mind that the following definitions are
stated in the context of volume-preserving maps.

(4.9) Definition. The instantaneous flur from Ry (0 + 2mn2) into Ro(6 +
2m(n+ 1)) under iteration by P., ¢1,2(0 +2mn ), is given by

Wy

(4.52) dra(0+2mn ) = L u (Lo (1,6 +2mn2) ).
’ we 2 ’

Similarly, the instantaneous fluz from Rz(0 + 2wn ) wnto Ri(6 + 2n(n +
1)£) under iteration by P, ¢2,1(0 + 2rn2), is gwen by

(4.53) b2 (0 + 2mi> =Yy (Lz,l (1,0 + 27mi)) .
Wy 27 wy
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Recall that 6 represents the relative phase difference between the dif-
ferent frequency components of the perturbation. Also, we have normalized
the area going from Ry (§+2mn2) [resp. Rz(6+27n2)] into R2(6+2mn )
[resp. R1(0 + 2mn2)] by the Poincaré return time 2" since, as opposed to
the standard tlme—perlodlc case, there are ¢ p0531b1e Poincaré return times
that could be used in defining a Poincaré map in the ¢-frequency quasiperi-
odic case.

(4.10) Definition. The average fluz across the transport surface, S, from R,
into Ry, P1.2(0), is given by

(4.54) © B15(0) = ($12 (0 + 27m£—)£))n.

Similarly, the average flur across the transport surface, S, from Ry into
Ry, $21(0), is given by

(4.55) @2,1(0) = <¢2,1 (0 + 27anie> >n

The symbol (- ),, represents average over n (i.e., the average flux of P
acting on the phase slices); we will explain this more fully when we discuss
the computation of fluxes.

(4.19) Exercise. For the case of volume-preserving P, is it true that ¢, o(6+
27mw%) = ¢2,1(6+27rnw%) ? Show that @1 2(6) = &, 1(6). (Hint: look ahead
at Fig. 4.14.)

(4.20) Exercise. Show that if all the frequencies are mutually incommensu-
rate, then @, 5(6) and P, (0) are independent of 6.

(4.21) Exercise. Give expressions for instantaneous flux and average flux
(i.e., the analogs of (4.52), (4.53), (4.54), and (4.55)) for the case where P,
does not preserve volume.

(4.22) Exercise. Discuss the relation between instantaneous flux and aver-
age flux, as defined above, in the context of time-periodic vector fields.

Computation of Fluxes. It is possible to use the quasiperiodic Melnikov
function to approximate the areas of two-dimensional lobes in a phase slice
x(0) in much the same way as for the standard Melnikov function described
in Theorem 2.21. The main result is contained in the following theorem.

(4.8) Theorem. Let L(#) be a two-dimensional lobe on the phase slice x ()
and let t&(0) and t§(0) be the to values corresponding to the pips that define
L(6). Then
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£8(6)
(4.56) (L(B)) =€ / 1M t0,:00) o+ O(e%).

Proof. Using the fact that W*(r.) and W*(r,), restricted to compact sets,
vary with respect to € in a C” manner, we can write

t5(6)

(4.57) u(L(8)) = /

t5(8)

eM((to, 0;040) 2 .
P O | v 1+ 000,

where d\(tp) is an element of arc along the unperturbed homoclinic orbit.
In Fig. 4.13 we illustrate the geometry behind the area. Reparametrizing
as follows,

(4.58) dx = g’idto — |\DH (21 (~to)) |ldto,

and substituting this expression into (4.57) gives

£5(8)
(4.59) w(L(B)) = ¢ / 1M t0,0:00) dto + O
tg 2]

o

We remark that an alternate proof of Theorem 4.8 using an action
principle can be found in Kaper et al. [1990].

Theorem 4.8 gives us a formula for individual turnstile lobe areas, and
from this one can compute instantaneous flux via (4.52) and (4.53). We now
turn to average flux, where there are two extreme cases to first consider.

All Frequencies Mutually Commensurate. If all the frequencies are mutually
commensurate, then 6(t = i—’:n) = 0+2mn 2 will only visit a finite number,
N, of values in T*~! as n runs through the integers. Hence, in this case,
using Definition 4.10 and Theorem 4.8, we obtain

(4.60)
@1’2(9) = @2 19
(0+27rn
Wy € w 2
M(to, 0 —; B0 )\dt
MN}) /p(m,mi) M (10,0 + 2 5 ) o + O,

where
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EIM(tO,ej ' vel—l"elo) I

(1+0(e)dAr +0(e%)
\ [IDH (X)) |
—
_ _WHTNLE)

Fig. 4.13. The geometry associated with the area element of a two-dimensional
lobe in a phase slice and its relation to the quasiperiodic Melnikov function.

9 (0 + 27mi) =tp value corresponding to

Wy
w
6+ 2rn—
TcﬂX( + ﬂ-nwz)a

ty! <0 + 27mi) =1ty value corresponding to

We
P_l('rc)ﬂx 0+ 2mn- ).
€ we

All Frequencies Mutually Incommensurate. If all the frequencies are mutu-
ally incommensurate, then 8(t = 2mn2) = 6 + 2rn 2 visits T¢~1 densely
and uniformly as n runs through the integers. In this case, using Definition
4.10 and Theorem 4.8, we obtain

c )
(4.61) @19 =0y, = (;L)Te)gi/Tl /0(9) |M (to,8;6e0) |dtodd + O(?),
oy

where we have left the  argument out of @, 5 and @, ; since the average is
independent of the initial relative in this case (cf. Exercise 4.20).

In the case of two {requencies, (4.60) and (4.61) exhaust all possibilities,
i.e., either the two frequencies are commensurate or incommensurate. In
Fig. 4.14 we plot turnstile areas as a function of the initial relative phases, as
well as the average fluxes, for different parameter values using the “generic”
quasiperiodic Melnikov function given in (4.20). Instantaneous fluxes can
be readily determined from Fig. 4.14 by dividing the relevant lobe areas at
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the desired relative phase by &~ 2% The reader should compare the relevant
plots in Fig. 4.14 with those in Flg 4.8.

Usually in the case of more than two frequencies some frequency ra-
tios will be commensurate and others will be incommensurate; hence, the
general expression for the average flux using the quasiperiodic Melnikov
function will be a combination of discrete sums and integrals over the an-
gles, i.e., heuristically, something midway between (4.60) and (4.61). Rather
than give a general expression for this case we will derive an alternate ex-
pression which will include the most general case. The philosophy of our
approach will be somewhat different; rather than average over T¢~! (i.e.,
many phase slices), we will show that using a change of variables our expres-
sions are equivalent to remaining in a fixed phase slice and averaging over
tp in that fixed phase slice. We begin with the case where all the frequencies
are mutually commensurate.

(4.9) Theorem. In the case of all mutually commensurate frequencies we
have

)
B 2(0) = B21(0) = — — |M (to,6; 810)|dto + O(e?),

tEN = tO value Of PE_N(Tc) ﬂX(e)

Proof. For the sake of a more easily manipulated notation we rewrite the
definition of &7 5(6) = P2 ;(#) given in (4.60) as

wg £
4.62 =
(4.62) ®12(0) = P21(6 = or N ZI +0(e
where
tg (6+2mn ) w
(4.63) I, =/ M (tO,O + 27rn——;030> dtp.
t3(6+2mn ) We

Recall from (4.17) that we have

2
(4.64) M (t0,0;600) = M (to - TZE 0+ 27rn-— 9@0)

Using this reiationship, we can rewrite (4.63) as
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Fig. 4.14. Two-dimensional turnstile lobe areas as a function of 8; for the exam-
ples shown in Fig. 4.12.
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Fig. 4.14. Continued.
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Fig. 4.14. Continued.
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Fig. 4.14. Continued.
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Fig. 4.14. Continued.
to ' (0+2mn 2 o
(465) In = / M (t() + —n, 0; 0[0) dto.
t8(0+21rnwll) we
Next we change variables in (4.65) by letting
' 2r
We
so that (4.65) becomes
to ! (B+2mn L)+ 20
(4.66) = M (t), 8;6¢o) |t
t8(9+27rnwil)+i—’l'n

Now recall that

to (9 + 27mfj—) + %T-n =t;"(0) = to value of P."(7c) ﬂx(e),
4 {4

tO"1 (0 + 27m-w—) + -2171, = tg("H)(O) =ty value of PE‘("“)(TC) ﬂx@);
we we
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hence we can rewrite (4.66) as

ta(n+1) (9)
(4.67) I, = M (£,6;60) |dt.
ty 7 (6)

Substituting (4.67) into (4.62) gives

-N
we € to " (6)

4.68 Di4(0) =P () = ——
(4.68) 1,2(0) = D2,1(0) 27N Jygio

M (t5,6; 820) ldtg + O(e?)
which proves the theorem. ]

(4.10) Theorem. In the case of one or more pairs of incommensurate fre-
quencies we have

T

815(6) = P21 (6) = lim o— [ |M(to,8;600)ldto + O(?).
—00 0

Proof. The proof is very similar to the proof of Theorem 4.9 and we leave
the details as an exercise for the reader. a

(4.23) Exercise. Discuss the dependence of instantaneous and average flux
on 6(0.

(4.24) Exercise. Show that Theorem 4.8, Theorem 4.9, and Theorem 4.10
as well as (4.60) and (4.61) hold in the case where the perturbation is not
necessarily Hamiltonian. Explain this result.

4.5 Two Applications

Now that much of the general theory has been developed we can study some
very specific questions. Of particular interest should be how phase space
transport issues compare in single frequency versus multifrequency vector
fields. We will address the following two questions.

1. How does the average flux compare in a single-frequency versus a two-
frequency vector field?

2.  How does the extent and rate of phase space undergoing transport vary
in single-frequency versus two-frequency vector fields?

We begin with the first question.
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Average Flux in One- Versus Two-Frequency Vector Fields. It is important
to state from the outset precisely how one compares average flux in one-
and two-frequency vector fields. We will use the “generic” two-frequency
Melnikov function, with § = 0, which we rewrite as

(4.69) M (to,01;620 = 0; 11, o) = Ar(p1) sinwito +61) + A2 (p2) sinwato.

The amplitudes of each forcing frequency component are denoted by F; and
F,, and the parameters p, and po in (4.69) are typically uy = (Fi,w:) and
pa = (Fa,ws) (although the inclusion of other parameters in the p,,7 = 1, 2,
is certainly possible). Our comparison will be performed by first choosing
a normalization for the amplitude of the perturbation, say

(4.70) FRL+FR=1 o F}4{F:=1

It is necessary to do this first since in order to compare equivalent systems
one must specify a criterion for equivalence. Then for any frequency pair,
(w1,ws), and relative phase difference, 8 = (6,60, = 0), we will study the
dependence of the average flux ¢ = @5 = &2 on F; with Fy chosen
according to the normalization condition (4.70). In our study the functions
defined by

(4713.) Al(ﬂl)/Fl
and
(4.71b) Az(p2)/ Fo

will play an important role. As mentioned earlier, they are referred to as
the relatwe scaling factors for the frequencies wy and ws, respectively and,
typically, they are strongly nonlinear functions of the respective frequencies.

In order to perform our comparisons let us consider two concrete dy-
namical systems; namely, the OVP flow (cf. Section 3.1) subject to a two-
frequency strain-rate field and the undamped, two-frequency driven Duffing
oscillator. For completeness, the quasiperiodic Melnikov functions for these
two dynamical systems are derived in Appendix 2. Here we merely give the
appropriate quasiperiodic Melnikov functions

ovP
(4.72a)
M(to,61,602; f1, f2,w1,w2)

= fiw1 Fovp(wi?) sin(wito + 1) + fows Fov p(wy ') sin(wato);
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T T T |‘v—ﬁPr—}
2

Fig. 4.15. Graph of Foyp(w™) vs. w.

Duffing
(4.72b)
M(to, bh,02; f1, f2, w1, w2)

W .
= :t\/§7rf1w1 sechﬂ'—;)—l sin(witp +61) \/§7rf2w2 sech-—2—2 sinf{wsgtp).
For the OVP flow we have F, = w,f,,i = 1,2, and for Duffing we have

F, = f,,i = 1,2. Hence the relative scaling factors for the frequencies w;
and ws are given by

ovP

(4.73a) Fovp(w ), i=1,2
Duffing

(4.73b) V2rw, sech%w’, i=1,2.

In Fig. 4.15 we plot Foyp(w™!) versus w and in Fig. 4.16 we plot
V2rw sec X2 versus w. For the two-frequency forced Duffing oscillator we
choose the normalization

Duffing
(4.74) fi+fa=1

For the OVP flow we must consider the fluid mechanics a bit more
carefully. In Rom-Kedar et al. [1990] it is shown that the OVP flow can
arise as a result of the flow produced by a pair of equal strength, opposite-
signed counterrotating point vortices moving through a wavy walled tube.
If the “waviness of the wall” is periodic in space, then, in a reference frame
moving with the point vortices, the point vortices will experience a time-



4.5 Two Applications 169

P SO _

T

V2rw sech (%)

e

P

05

Fig. 4.16. Graph of v2rwsech(nw/2) vs. w.

periodic strain rate field. The two-frequency strain rate field (in a reference
frame moving with the point vortices) arises if the “waviness of the wall”
is quasiperiodic in space, with two frequencies. A natural normalization in
this case would be to keep the root-mean-square wall amplitude constant
for all f; € [0,1) for any given (wy,w2). For the long wavelength limit of
the wall amplitude oscillations, the wall amplitudes, f,, are simply related
to the perturbation amplitudes, w, f,, and the normalization becomes

oveP
(4.75) =1

In Fig. 4.17 we plot @ as a function of f; with fo chosen according to
the normalization condition (4.74) for the two-frequency forced undamped
Duffing oscillator for some representative parameter values.

In Fig. 4.18 we plot & as a function of f; with f> chosen according to the
normalization (4.75) for the OVP flow for some representative parameter
values.

Note that for the Duffing oscillator the average flux is a maximum in
the single-frequency case (meaning either F; = f; =0 or 3 = f; = 0) cor-
responding to the larger relative scaling factor (i.e., A,/F,). An additional
frequency component tends to reduce the average flux due to interference
effects. For the OVP flow, the average flux is a maximum in the single-
frequency (w,) case having the larger w, A,/ F,. The difference in these two
cases is due to the fact that the amplitude of the perturbation for the OVP
flow depends (linearlv) on the freanencies
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Fig. 4.17. Average flux as a function of f1 (with fi+ f2 = 1) for the two-frequency
forced Duffing oscillator with 61 = 0, (w1,w2) = (1.28,0.41), (A1/F1, Az /F>) =
A1/ f1, As/ fa) = (1.50,1.50) for the solid line, and 6; = 0, (w1,w2) = (1.28,1.96),
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scale is per unit ¢.
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From these observations it should be clear that the relative scaling
factors for the different frequencies are an important element in determining
the importance of the different frequency components of the flux.

The Extent and Rate of Phase Space Undergoing Transport. Here we
merely make the observation that in the multifrequency case the turn-
stile lobes may penetrate further into the regions. This implies that part
of the phase space may cross the transport surface faster in the multifre-
quency case as compared with the single-frequency case. We illustrate with
an example.

Consider the OVP flow with stream function (Hamiltonian) for the
nondimensional equations given by

(4.76)

P(zy,T2,t) = %1 log (z1 — 23(t))? + (z2 — %(t))?

(z1 — z¥(t)) + (z2 + z5(2))?
(see Appendix 2). We first choose ¥ forcing to be

] — VpZ2 + "pforcm.g

(4.77) Dioremng = 0.12212 {2 - 1.03078 sin(2t + 6;)}

with 0; = 27[8¢ — 4] + 4rg. Clearly, (4.77) gives a simple time-periodic
velocity field. In Fig. 4.19 we show the lobe structure at { = 2:" = 7n.
Note that the interior turnstile lobe does not intersect the dashed ellipse,
which is a level set of the unperturbed Hamiltonian.

Next we choose a two-frequency ¥¢orcing to be
(4.78) Yforcing = 0.12z122 {2 -0.4 sin(2t +6;) +2¢~1 - 0.95 sin 29_1t} )

In Fig. 4.20 we show the lobe structure in the phase slice x(61 + 4r£2) =
x(61 +47g) (ie., at t = 4 = 27g) where w1 = 2 and wy = 29" (note that
6, = 2w[8g — 4] =~ 5.933).

Note that now the interior turnstile lobe can intersect the dashed el-
lipse. Hence, for ¥¢orcing given by (4.78) there is fluid that can leave this
interior region in one iterate that could not leave the region in one iterate
with Y¢orcing given by (4.77), even though the average flux is larger in the
latter case. We remind the reader that in (4.77) and (4.78) we are using the
normalization fZ + fZ = 1.

In this section we have merely described some interesting differences
between transport in single-frequency versus multifrequency vector fields;
further discussion can be found in Beigie et al. [1991a,b]. An application of
these methods to the quasiperiodically forced Morse oscillator can be found
in Beigie and Wiggins [1991] where a detailed study of the variations of lobe
area as well as rates and extents of phase space transport is carried out in
the context of a semi-classical study of the dissociation of molecules. Much
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Fig. 4.19. Turnstile in the single- Fig. 4.20. Turnstile in the two-
frequency OVP flow. frequency OVP flow.

more work remains to be done along these lines; there are many theorems
to discover as well as concrete problems to which the theory can be applied.

4.6 The Nonautonomous System: Phase Space
Structure for Sequences of Maps

We now return to the material discussed in the beginning of this chapter.
Originally, our study dealt with the nonautonomous system (4.3) which we
rewrite as

(4.79) & = JDH(z) + eg(z,t,¢), =€ R

where we have omitted displaying the explicit parametric dependence of
(4.79) on u since it is not important for our arguments. If we let (¢, to, o)
denote the solution of (4.79), then we showed that the dynamics of (4.79)
could be alternately described by the following bi-infinite sequence of maps
defined on IR?

(4.80) {T:n(-)}, neZ,

where

(4.81) Te n(z0) = ze (to + @,to + 2—”(1——1),x0> .
Wy Wy

In particular, the sequence
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(4-82) {Ts,l(:cO)a Te,2 o Te,1(370), ce e 7Te,n o Te,n—lo, cee ,Ts,l (10)}

is interpolated by the trajectory z.(t,to, o) for t € [to,to + 23—7 .

In order to pursue the development of our transport theory with a
bi-infinite sequence of maps on IR?, we used the quasiperiodic nature of
the vector field to recast (4.79) as an autonomous system in a higher-
dimensional phase space. This autonomous system is given in (4.6) and

we rewrite it (with the u dependence of the perturbation omitted) as

& =JDH(z)+ ,0,¢), (z,8) e R? x T,
(4.83) . (z) +eg(z,0,¢), (x,0)
= w.

Letting (z.(t),é(t) = wt + 6p) denote the solution of (4.83), we study the
dynamics of (4.83) by studying the dynamics of the following Poincaré map:

Ny 6,
P, :5%0 — 500

4.84
( ) (wOaHO) - (‘T <_21) 700 + 27ri) )
Wy Wy
where
0o = (610, -+, 00-1,0), w= (w1, -, we-1),

in (4.84) and

(4.85) 2% = {(z,01,--,0,) € R? x T | 6 = 00}

The main advantage obtained by casting the nonautonomous system
(4.79) into the autonomous form (4.83) was that in the higher-dimensional
phase space of the autonomous system the geometry was somewhat clearer
and the relevant invariant manifolds were stationary in the phase space.
We now want to show that all of our results for the autonomous system
can be recast in the nonautonomous framework in a very straightforward
way. The main idea is the following; we understand the dynamics of the bi-
infinite sequence of maps on R? in terms of the dynamacs of the Poincaré
map P. acting on sequences of phase slices in £%o°. First, we define a
projection map as

X :R?x T = R?,

(4.86) (0.6) o 2.

Also, let x(6) be any phase slice (see Remark 2 following Definition 4.2), and
let L(#) C x(6) be any subset of x(#). Then it follows from the definition
of a phase slice that
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(4.87) p(X(L(6))) = p(L(6))-
Dynamics. By definition we have
(4.88) X o P.(x0,60) = T.1(z0)

and, more generally,

(4.89) Xo PMzg,00) =TenoTe oy 0--- 0T, 1(xp).

Note that the relationship between 6y and to [cf. (4.81) and (4.84)] is very
simply given by

(4.90) by = wiyp.

Invariant Manifolds. In X% we were interested in the invariant manifolds
Te, W3(1.), and W*(r.). These have very natural analogs in IR? that are
relevant to the dynamics of {7, ,(-)},n € Z. In particular,

(4.91) {5{ (Taﬂx (90 + 27mg;))} = {p.(n)}, nez,

is an orbit under the dynamics generated by {T: ,(-)},n € Z. This orbit
has stable and unstable manifolds given by

) {x(wex(nrmE)) = w e, ez
and

(4.93) {5( <W"(T€)ﬂx (ao + 2“”%))} ={W*(p.(n))}, neZ
The Transport Problem. The curves

(4.94) {)? (sﬂx (00 + 27rnw%)>} = {S(n)} , netz,

where S is the transport surface defined in Definition 4.6, divide IR? into
two disjoint (discrete) time-dependent regions given by

(4.95) {X (Rl (00 + 27mwie))} = {R‘l(n)}, nez,
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(4.96) {)? (122 (90 n 2Tm£’;>)} = {R2(n)} , nez.

The goal is to study transport between the two (discrete) time-dependent
regions.

The Turnstile. The time-dependent turnstile controlling access between
R;(n) and Ra(n) is given by

X (Lm (1,00 + ani) U Lz, (1,00 + 27mi))
(4.97) we wy
=12 (L,n) | J21 (1,n),

where L 2(1,6) and Ly ;(1,8) are described in Definition 4.7.

Flux. For area-preserving maps, the instantaneous flux from R;(n) into
Ry(n) is given by

¢1,2(to,n) = ;—:rﬂ(fl,z (1,n))

e w
(4.99) = ok (X (Ll,z (1,00 + 27mwl)))

- ;J—:;u (Ll,2 (1, 8o + 27mw%)) (using (4.87)).
The average flux is very simply given l;y
(4.100) D1.2(to) = (¢1,2(t0,n))n
and
(4.101) ®,1(to) = {P2,1(to, 7)),

where (-),, represents the average over n. It follows from (4.98) and (4.99)
that Theorems 4.8, 4.9, and 4.10 can be immediately applied to the compu-
tation of instantaneous and average fluxes in the nonautonomous system.
This should be obvious since this section consists of little more than the
development of notation.

For more background as well as fundamental theoretical results con-
cerning nonautonomous systems we refer the reader to Sell [1971, 1978],
and Sacker and Sell {1974, 1976a,b, 1978, 1980].
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4.7 Numerical Simulations of Lobe Structures

In this section we will show some numerical simulations of the lobe struc-
tures for the two-frequency OVP flow. Recall from Section 3.1 that the
stream function (Hamiltonian) for the OVP flow in nondimensional form is
given by

(4.102)
I |:(Zl - xllj(t))z + (1‘2 - .’Eg(t))2 — Uy + ’(/f'forcmg

Vlon22,t) = =108 | o T T (20 + 22(0) 2

[see Appendix 2 for a more complete explanation of (4.102)]. We present
simulations of two cases of the two-frequency OVP flow, one with a 1:2
frequency ratio in the forcing term (the oscillating strain-rate field),

(4.103) Vrorcing = 0.127,22{2 - 0.4 sin(2t) + 4 - 1.05 sin(4¢)},

and one with a 1:g7! frequency ratio,

(4.104) Yforcng = 0.122122{2-0.4 sin(2t + 6;) +2¢7"-0.95 sin(2¢™ 1)},
f 9

where 6, = 27[8g —4] = 5.933 (¥ forcing 1S the streamfunction of the forcing
term). For each forcing term, the arguments of the first and second sine
functions will be referred to as #; and 5, with frequencies w; and ws,
respectively. We include a commensurate frequency example with a simple
ratio because it contains many of the essential features found in the case
of incommensurate frequencies, and its simplicity highlights these features.
For comparison with the two-frequency case, Fig. 4.21 shows some lobes
of two single-frequency cases: (a) shows the lobes in IR? at t = nn for the
case d)forcmg = 0.12z;22{2 - 0.4sin(2¢)}, and (b) shows the lobes in IR®
at t = nF for the case Ysorcing = 0. 121:1102{4 1.05 sm(4t)} Figure 4.22
shows lobes in two phase slices of £920=% y(f; = 0), and x(8; = =) for the
perturbation (4.103).

The stable and unstable manifold separations in the phase slice x(8; =
0) are seen to be essentially a superposition of the manifold separations of
the two lobe structures in Fig. 4.21, as predicted by the linear (in ) Mel-
nikov approximation of manifold separations which is valid for sufficiently
small perturbations. Figures 4.23 and 4.24 show for the perturbations in
equations (4.103) and (4.104), respectively, sequences of four time samples
and how the lobes of fluid map within these sequences.

A sequence of snapshots of the lobe structure in IR? shows notable
differences from the time—perlodic case. Of course, the lobe structure now
varies with each sample time ¢ = P 2En. The regions vary in shape and area
with each sample, as do lobe areas relative to their ordering with respect
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(b)
Fig. 4.21. Some lobes from the OVP lobe structure in IR? at times (a) t = nn for

Yforang = 0.122122{2 - 0.4 sin(2t)} and (b) t = n} for Ysorcing = 0.122122{4 -
1.05 sin(4¢)}.

to the pip € 7, (which does not contradict the fact that lobes of fluid
conserve area as they map from one lobe structure to the next). In the 1:2
frequency ratio case (sampled at the larger frequency), the lobe structure
oscillates with successive time samples between two forms, a “tall, skinny”
one (§; = 0) and a “short, fat” one (f; = =). In the 1:g~! frequency
ratio case (sampled at the larger frequency) the lobe structure varies in
a nonrepeating fashion with successive time samples. As should be clear
from the previous sections, the key to understanding the time-dependent
structure is to recognize that it is the intersection of a time slice with an
invariant structure in a higher-dimensional Poincaré section; for example,
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By=n

Fig. 4.22. Some lobes from the OVP lobe structure in the phase slices x(6: = 0)
and x(f; = 7) of £%29=0 for 4)1,rcing given by (4.103).

we stress how there is no fixed point in the two-dimensional structure, but
rather points on a normally hyperbolic invariant 1-torus in X%o.

As lobes of fluid map in IR? from one lobe structure to the next, their
behavior is qualitatively similar to that found in the time-periodic case.
They stretch in one direction and contract in another to produce the two
essential features of lobe transport found in the time-periodic case: the
destruction of barriers to transport and repeated stretching and folding,
which gives rise to chaos. In Fig. 4.25 we explicitly show the turnstile and
flux mechanism for the time-dependent system at two snapshots in time.
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Fig. 4.23. A sequence of four time samples of the OVP flow according to (4.103).
Four lobes are shaded so that we can monitor their dynamics.

However, an essential aspect of the dynamics that should be recog-
nized immediately is that, because the repeated stretching and folding of
lobes carries over to the quasiperiodic case, material curves in the tangle re-
gion tend to get “attracted” to W*(r?), as occurs in the time-periodic case.
Since X(W*(r) N X(01 +27£1n)) varies with n, the “attracting” structure
is time dependent. The tlme-dependent lobe structure is thus the dominant
structure by which to understand motion in the tangle region, and it will
allow us to embrace rather than avoid the time-dependent nature of the
more complicated transport issues under quasiperiodic perturbations. This
notion of a “time-dependent attracting set” has important physical conse-
quences in the study of convective mixing and transport processes in Huid
mechanics; see Rom-Kedar et al. [1990] and Beigie et al. {1991a,b,c].
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Fig. 4.24. A sequence of four time samples of the OVP flow according to (4.104).
Three lobes are shaded so that we can monitor their dynamics.

The Numerical Method. Before leaving this section we want to heuristi-
cally describe the sampling method for numerically simulating the lobes.
This provides an exact method for the computation of transport quantities,
which is crucial in the absence of a perturbative framework.

Suppose we wish to portray lobe boundaries in R? at time t = %"n, or,
equivalently, the invariant lobe boundaries in the phase slice x{6; +272rw-%n).
For simplicity of discussion, let us consider the two-frequency homoclinic
case. Evolving the curve
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Fig. 4.25. The turnstile at two time samples illustrating flux.

(4.105) Wito(re) x (01 + 27%(71 - i))

forward in time according to the flow generated by (4.6) for ¢ sample periods
(where i is some positive integer) gives a curve which extends from

w
(4.106) e[ x (01 + 27r;}—;n>

along a finite length of

(4.107) W (r) () x (01 + 27r:—;n>
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. fR2att=2rn
oz

n-1

Fig. 4.26. Simulating a finite length of (a) W*(7:) and (b) W*(7.) in the nth for
a two-frequency homoclinic case.

(the greater i is, of course, the greater the length will be). Similarly, evolving
the curve

(4.108) Wie(re) () x (01 + 2%5—;@ + i))

backward in time according to the flow generated by (4.6) for i sample
periods gives a curve which extends from

w
(4.109) =[x (91 + 2nw—;n)

along a finite length of

(4.110) we(r.)(x (01 + 2w%n>

(see Fig. 4.26). The resulting two curves form the boundary of a finite
number of lobes of the two-dimensional lobe structure in the phase slice
x(01 + 27<in).



4.7 Numerical Simulations of Lobe Structures 183

91+27[91 |
,

(O]
91 27'[(0—;J

Fig. 4.27. Evolving Cx to the phase slice x(8;) in %20 to obtain 7. and its local
stable and unstable manifolds in that phase slice.

We still need to be able to find W _(7.) and W (7¢) in the appropriate
phase slices. The procedure for doing this is a straightforward generalization
of the standard trial-and-error procedure used in the time-periodic case,
so our discussion here will only be heuristic. Suppose for some arbitrary
phase slice x(6,) of Z%° we wish to find 7.{)x(61) and one or both of
W (1e) N x(61) and W§ (7.)Nx(61). Let Cx be a closed curve in the
phase slice x (61 + 22 j) that contains the point 7 N x(61 + 272k j) and
is pierced by loc(TE) and W .(7e), where j is some positive mteger (see
Fig. 4.27).

Due to the normal hyperbolicity of 7., PZ(C_) will be stretched along
We(1e) (N x(61), and P73 (C.) will be stretched along W*(7.) [} x(8:1). The
region in x(6,) bounded by P?(C_) will intersect with the region in x(6:)
bounded by P.7(C, ) in one or more disjoint regions, one of which, Q(6),
will contain 7. [ x(#;) and shrink to zero area as j — oo (again see Fig.
4.27). Thus, using a trial-and-error procedure similar in spirit to the time-
periodic case, one can make reasonable tries at C. and evolve them to
x(61) as described above, to pinpoint 7. [} x(6:) and its local stable and
unstable manifolds by watching how the two curves stretch and intersect.
If one chooses Cy sufficiently small, one can obtain an arbitrarily good
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approximation of W (7.) (1 x(61) and W2 (7.) (1 x(0:). When the system
is near-integrable, one can make a good initial estimate of Cy through the
knowledge of the location of the fixed point of the unperturbed system;
otherwise one must employ a more arduous trial-and-error effort, also the
case under time-periodic vector fields.

The procedure for simulating global stable and unstable manifolds in
the nth time sample of the autonomous system phase space is thus quite
similar to the procedure for simulating the invariant lobe structure in the
time-periodic case except one has to take into account that curves are,
with each application of P., mapped around 7" in an enlarged phase space.
Hence one finds the intersection of W (7.) and W, .(7) with an appropri-
ate pair of phase slices, which in turn are used to simulate a finite length
of W¥(r.) and W*(r,) in the desired phase slice. From our discussion of
the two-frequency homoclinic case, the procedure for more frequencies and
for the heteroclinic case should be clear. Note how the described procedure
contrasts with a previous suggestion by Moon and Holmes [1985] for an-
alyzing the dynamics under quasiperiodic vector fields—they suggested a
double Poincaré map method which essentially wants to treat the system
as periodic. In this method samples of an equation like (4.5) are taken only
with both 6, = 8, and 6, € [6; — 3,8, + 3] (for some choice of #;,8, and
B << 2r), and the results are summed. The time between samples can
be much longer with this approach, and there is a “fuzziness” of the re-
sulting structure due to the finite width of the sampling window, 24. In
contrast to this method, we shall refer to our approach as a double phase
slhice method, since to simulate the lobe structure in any phase slice one
evolves two curves, each originating in a different phase slice.

4.8 Chaos

Often one hears the phrase “homoclinic orbits are a source of chaos.” This
is not generally true; it depends on the nature of the invariant set (e.g., for
vector fields, fixed point, periodic orbit, invariant torus) to which the orbit
is homoclinic; many examples can be found in Wiggins [1988a).

For quasiperiodic systems, the map from time ¢ = ¢ + i—’[’n to time
t =1ty + i—’;(n + 1) depends on n; thus we cannot, of course, develop the
usual two-dimensional horseshoe map construction. In what sense, then,
s the dynamacs chaotic? Again we use the autonomous system (4.6) to
construct an invariant structure with which to understand the dynamics
and then project the sequence of time slices onto IR? to obtain a sequence
of time-dependent structures from the invariant one. As a preview of what is
to come, oae can imagine, rather than a single horseshoe map, a bi-infinite
sequence Sy of different “horseshoe maps” H, : R2 - IR2,
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Fig. 4.28. A traveling horseshoe map sequence.

(4.111) S =1, Hoy() oo Hoa (), Ho()y oo Hy () ),

and a bi-infinite sequence Sp of different domains D(3) € R?,

(4.112)  Sp={...,D(=j),...,D(~1),D(0), D(1),...,D(3),...},

such that H,(D(3)) intersects D(7+1) in the shape of a horseshoe (see Fig.
4.27). There is, thus, a sequence of formed horseshoes landing on different
regions of IR?; each time the horseshoe lands on the region that will next
form a horseshoe, and it lands in such a way that the stretched direction
“aligns” with the direction about to be stretched. We refer to this as a trav-
eling horseshoe map sequence. It is clear that this map sequence retains the
essential ingredient of chaos—repeated stretching and folding, and hence
sensitive dependence on initial conditions. Although our discussion here is
heuristic, Fig. 4.28 should make our meaning apparent.

A rigorous construction of a traveling horseshoe map sequence can be
made for systems which possess a homoclinic structure. For simplicity of
discussion, let us consider the two-frequency homoclinic case. As a result
of the normal hyperbolicity the two-dimensional lobes in any phase slice of
%0 fold and wrap violently around one another just as in the invariant
lobe structure of the time-periodic case. These lobes exist in all phase slices
x(61),6: € Z1x---x Z", to give in £9° a three-dimensional lobe structure
that folds and wraps violently around itself in the direction “normal” to
7.. The Poincaré section 25920 thus contains a three-dimensional region R
whose image under P¥(R) (for k sufficiently large) intersects R such that,
for any 6; € Z1 x---x Z™, P*(R)( x(6;) intersects R x(6:) in the shape
of a horseshoe (see Fig. 4.29).

Using techniques such as those found in Wiggins [1988a], one can rig-
orously establish the existence of such a region R (in a manner similar
to the periodic case, one needs to consider a region sufficiently close to
or containing the normally hyperbolic invariant 1-torus). The geometry of
R PE(R), and of the resulting Cantor set, is determined by the geom-
etry of the pims (just as were the geometry of the lobes in Section 4.3).
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(b}

Fig. 4.29. P*(R) intersects R in the shape of a horseshoe. Note how the initial
discontinuity of R at ¢, = 0 is mapped to another 8, value.

When the pims are non-intersecting 1-tori (this case is dealt with rigor-
ously in Wiggins [1988a]), R (| P*(R) is a simply connected region whose
boundaries divide £?2° into an inside and outside, and there is a Cantor
set of 1-tori, A, on which PF is topologically conjugate to a full shift on the
bi~infinite sequence of two symbols:

Pk
A

(4.113) é

B

z

x,
o

where @ is a homeomorphism that takes each torus in A to a sequence in £
( the reader should refer back to Section 2.5 for definitions and a discussion
of the standard shift map acting on the space of symbol sequences). Note
how by a “Cantor set of 1-tori” we mean a set of 1-tori whose intersection
with x(61) for any 6, € Z! x --. x Z" defines a Cantor set of points. The
role of points in the time-periodic case thus applies to 1-tori in the two-
frequency case (see Fig. 4.30), and the dynamics on the Cantor set of 1-tori
is thus understood to be chaotic, with
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Fig. 4.30. (a) A period two point in IR? for the time-periodic case. (b) A period
two 1-torus in 592 for the two-frequency case. (c) Motion in R? under {Te n(-);n €
Z} of a point that initially lies in the period two 1-torus shown in (b).

1. a countable infinity of periodic 1-tori of all possible periods;
2. an uncountable infinity of nonperiodic 1-tori;
3. a l-torus whose orbit under PF is dense in A.

Heuristically, then, points which lie on this set of 1-tori move chaotically
normal to 7. as they move in a regular manner “along” 7. (i.e., in the
6 direction). Just as one can establish chaos for time-periodic vector fields
in which W*(72) and W*(7?) intersect nontransversally (see Guckenheimer
and Holmes [1983]), one can construct an invariant Cantor set in X920 when
the toral pims meet at isolated points to give nontransversal intersections
at that point. When the pims are segments of spirals (either intersecting
or non-intersecting), then P*(R)[R will in general consist of piecewise
continuous segments of “spiral” volumes. Figure 4.29 shows the case where
R is a segment of a “spiral” volume from 0 to 27; hence R is discontinuous
at §; = 0. Applying P* to R sends this discontinuity to a new #; value, and
the intersection of P¥(R) with R creates another discontinuity at ; = 0.
Explicit construction of a Cantor set by repeated application of P* and
P% introduces a new discontinuity in @; with each application, so that
the resulting Cantor set A in X% will consist of a countable infinity of
piecewise continuous segments of spirals that intersect each phase slice,
x(01),6; € 2! x .-+ x Z", in a Cantor set of points. Note that for those
perturbations for which the lobe structure exists only on a subset of T, the
Cantor set will exist on a subset of 7! (further note that this occurs only
in the commensurate frequency case, which from previous discussion can
be described by the time-periodic formalism, and hence by the standard
horseshoe map construction). For example, in Fig. 4.8a, where the lobe
structure vanishes in the phase slice x(6, = ), we have to exclude from
our consideration a finite but arbitrarily small window in 6; around 6; =«
to obtain a finite k in P*. More significantly, in Fig. 4.8h there are gaps in 6,
for which there are no intersection manifolds and hence no lobe structures,
and there are thus gaps in the resulting Cantor set.
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Fig. 4.31. Obtaining a traveling horseshoe map sequence from R 1 P* (R).

Regardless of the geometry of R () PX(R) in the Poincaré section X920,
the derivation of a traveling horseshoe map sequence is straightforward.
From the three-dimensional region R we can define a two-dimensional re-
gion in any phase slice x(0;),6;: € Z! x --- x Z", by R(6;) = R x(61).
That P¥(R) intersects R in any of the above phase slices in the shape of a
horseshoe directly implies that P*(R(6,)) intersects R(8; + 2mZLk) in the

shape of a horseshoe. Projecting onto IR?,

(4.114) r(n) = X (R (91 + QWﬂn)) :

w2

and using (4.88) gives that T, ,1x—1 0 0 Tz ny1 © T; n(r(n)) intersects
r(n + k) in the shape of a horseshoe (see Fig. 4.31).
We thus have our defined sequency of traveling horseshoe maps, with

D j =17 ;- k' N
(4.115) (]) (] )
HJ(') = ,15,(;+l)k—1 O+ 0dg k410 '15,_71:‘(‘)-

Of course, nothing magical is happening here: it is just a matter of images
of two-dimensional lobes still folding and wrapping around one another ad
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infinitum even though the entire lobe structure is varying from one time
sample to the next. In fact, if one thinks of, say, a mixing fluid, the case
where fluid lobes always wrap around each other with each time sample in
the exact same way seems more of an anomaly than the case we have here.

We can also use the invariant Cantor set in £ to define for each
phase slice a Cantor set of points (when the lobe structure and hence the
Cantor set has gaps, recall that we assume we start in a time slice with a
lobe structure). We define the Cantor set of points in the phase slice x(6;)
to be A(61) = A x(6;). From the commuting diagram (4.113), we directly
obtain

. Pk

€

A(6)) ———— A (61 +2m22k)
(4.116) @ ’ ’ &

(Z,6) —— (Z, 6, + 27r:’—1:k) ,

o
where
G({ 8-p - 85_n.5081-Sn--} =8,01)
= ({.--s_n---s_nso.sl---sn--'},91 +27r:—:k)
and

& 1(s,0;) = 37 (s)[ | x(61)-

The operator & is similar to the “extended shift map” of Stoffer [1988a,b).
Projecting (4.116) onto IR?, we have

T (3+1)k-10"""0° Te 5k

AG) AG+1)
(4.117) 8,() ‘ l br()
x )

where

20 = % (46 +202G))
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6,6 = % () (0 + 220G m) ).

Some may feel more comfortable with topological conjugacy to an “ex-
tended shift map,” shown in (4.116), than with the diagram (4.117), but
both relations say the same thing: the dynamics in IR? from one time sample
to the next can be described by a shift map relative to a time-dependent
Cantor set of points. Properties such as periodic points of all periods or
dense orbits are thus to be understood relative to this time-dependent set,
rather than fixed spatial coordinates. Note how although, for simplicity, we
have discussed the two-frequency case throughout this section, the results
hold for the general ¢ frequency problem as well, where the Cantor set in
X% consists of (¢ —~ 1)-dimensional objects [for example (£ — 1)-tori or
(£ — 1)-dimensional segments of spirals].

Suppression of Chaos. Recall from Fig. 4.8h that when there is dissipation
and the frequencies are commensurate the pims need not be graphs over
all of T*~'. In particular, there may be gaps in the intersection of W3(r,)
and W*(r.). The practical significance of this phenomenon is that for some
initial relative phase difference between the different frequency components
of the perturbation there may be chaos (in the sense described above), and
for other initial relative phase differences there may not be chaos. Hence,
the existence or nonexistence of chaos in these systems can be influenced
by an appropriate choice for the initial relative phase shift between the
different frequency components of the perturbation.

For other work on complicated dynamics in quasiperiodically forced
systems as a result of homoclinic orbits we refer the reader to Meyer and
Sell [1989] and Scheurle [1986).

4.9 Final Remarks

We end this chapter with some final remarks.

1. More Than Two Regions. For the sake of simplicity we developed the
theory in this chapter in the context of transport between two regions.
However, the extension to more than two regions is straightforward.

2. Transport of a Given Species. In Chapter 2 we gave formulas (cf. The-
orem 2.6 and Corollary 2.7) involving the intersection of iterates of the
turnstile lobes quantifying the transport of points in a given region
initially, i.e., points of a specific species. We did not do this in this
chapter; we were merely concerned with the flux across the boundary
between the regions. However, with a little added notation the results
from Chapter 2 can be extended to the quasiperiodic case. We refer
the reader to Beigie et al. [1991a,b] for the details.
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3.  The Perturbation Setting. The quasiperiodic nature of the vector field
arose as a small perturbation of a completely integrable one-degree-of-
freedom Hamiltonian system. The advantage of this was that we were
able to use the quasiperiodic Melnikov function to ascertain the geo-
metrical features of the phase space associated with W*(r.) (| W*(r.).
Conceptually the theory can easily be developed in a nonperturbative
setting (especially since we now have an idea of what to expect). How-
ever, a considerable amount of numerical work would be needed to
verify the relevant geometrical features.

4. General Time Dependence. Some of these ideas have been generalized
for perturbations with a more general time dependence. The reader
should consult Beigie et al. {1991a,b] and Kaper et al. {1990]. We stress
that much mrore work remains to be done in this area.

Finally, we note that this chapter is really only the beginning of the
development of a theory for transport across homoclinic and heteroclinic
tangle regions in quasiperidic systems. Clearly, much more work remains.
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Markov Models

MacKay et al. [1984, 1987] and Meiss and Ott [1986] were the first to con-
sider transport between regions in phase space separated by partial barriers
such as cantori and segments of stable and unstable manifolds of periodic
orbits of two-dimensional, area-preserving maps. They proposed a model for
transport which requires certain assumptions on the underlying dynamics
that result in a description of transport as a Markov process. In this chap-
ter we will describe the Markov model of Mackay, Meiss, Ott, and Percival
and compare it with the exact methods for two-dimensional area-preserving
maps developed by Rom-Kedar and Wiggins and described in Chapter 2.
The material in this chapter is derived from joint work with Rom-Kedar (see
Rom-Kedar and Wiggins [1990]) and Camassa (see Camassa and Wiggins
[1991]).

5.1 Implementing the Markov Model and an
Application to the OVP Flow

In this section we will describe how the Markov model is generally imple-
mented in a series of steps. Following the description of each step we will
describe how the step would be carried out for the OVP flow discussed
in Section 3.1. The set-up is as follows: consider two disjoint regions, de-
noted R; and Rj, in the two-dimensional phase space of an area-preserving
C"(r > 1) diffeomorphism. The boundary of R;,i = 1,2, is assumed to be
composed of a combination of partial barriers (i.e., cantori and segments of
stable and unstable manifolds of hyperbolic periodic orbits) and complete
barriers (i.e., invariant tori and the boundaries of phase space, which may
be at infinity). The goal is to compute the amount of phase space trans-
ported between these regions (of course, part of the boundary of both R,
and R, must consist of partial barriers, or else the answer is trivial; there
is no transport).

Step 1: Ry, Ry and, if R1 and Ry do not share a boundary, the region
between Ry and Ry must be subdivided into “stochastic regions.” In prac-
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tice these are regions whose boundaries consist of invariant tori, cantori,
or segments of stable and unstable manifolds of hyperbolic periodic orbits
which contain no “islands of stability.” Since area-preserving maps may
contain an uncountable infinity of such islands, carrying out this procedure
is not practically possible. In practice, one introduces a cut-off parameter
and neglects all regions having area smaller than the cut-off parameter.

For the OVP flow the regions R; and Ry are as previously defined
in Section 3.1 (see Fig. 2.14). Since all points in R, (eventually) approach
infinity, a further subdivision of Ry into stochastic regions is unnecessary
because there can be no island of stability. However, R, contains a count-
able infinity of island chains and an uncountable infinity of cantori (both
determine the boundaries of “islands of stability”). R; may also contain
invariant tori that form the boundaries of invariant sets; this depends on
the size of € (with the measure of the set of invariant tori approaching one
as € — 0, see Arnold [1978]). Thus we need to subdivide R; into “stochastic
regions.”

MacKay et al. {1984] proposed to partition phase space by cantori of
all orders and Meiss and Ott [1986] developed a labeling scheme for such
a partition. MacKay et al. [1984] recognized that this partition leads to
difficulties (these will be discussed shortly). We note that in the process
of constructing the partition by cantori, MacKay et al. {1984] observed the
important phenomenon that the noble cantori are the major barriers to
transport, at least in the not too stochastic regime. In other words, regard-
less of the Markov model, the flux through a noble cantorus supplies an
upper bound on the transport rate through a region containing that can-
torus. In MacKay et al. [1987] segments of stable and unstable manifolds of
hyperbolic periodic orbits (resonance bands) were used to create a partition
of the phase space. In either case, the mechanism for crossing the partial
barrier is through the turnstile as described earlier. Therefore, both types
of partial barriers could be utilized simultaneously for the subdivision of
phase space into stochastic regions (see Veerman and Tangerman [1990]).

In the OVP flow the most natural (in terms of the physical setting of
the problem) partial barrier between R; and R; is created from segments of
W?(p2) and W*(p;) as shown in Fig. 2.14. In Fig. 5.1 we draw some orbits in
the Poincaré map of the OVP flow for € = 0.1 and v ~ 0.3. In the figure one
easily sees the 1:1 and 1:3 resonance bands. The darkened regions inside
these resonance bands indicate islands of stability. Of course, resonance
bands of all orders exist. However, numerically, all higher-order resonances
appear to be quite small and consequently they are very difficult to detect;
hence we neglect them (see Wiggins [1990a] for an estimate of the size of
these resonance bands). Cantori also exist; we indicate by dashed lines two
cantori in Fig. 5.1. The partial barriers associated with the two cantori
and the two resonance bands give a subdivision of R; into seven separate
regions. Basad on this partition one can perform Steps 2-6 described below
and find the transport rates between regions R; and R,. To improve the



5.1 Implementing the Markov Model 195

Fig. 5.1. An example of a partition of R; into subregions to which the MacKay,
Meiss, Ott, and Percival Markov model may be applied. Rjo: region between
the cantorus C; and the boundary between R; and Rg. Ri;: region between the
cantorus C1 and the boundary of the 1:3 resonance. R;j2: region enclosed by the
partial separatrices associated with the 1:3 resonance minus the island of stability.
R13: region between the boundary of the 1:3 resonance and the cantorus Cs. Ria4:
region between the cantorus C> and the 1:1 resonance. R;5: region enclosed by
the partial separatrices associated with the 1:1 resonance minus the island of
stability. Rig: region surrounded by the 1:1 resonance minus the island of stability
associated with the vortex.

results one can refine the partition by including higher-order resonances
and other cantori.

Step 2: Compute the area of each stochastic region and the area of the
turnstiles associated with the boundary of each region. We denote the area
of the stochastic region R; by A, and the area of the turnstiles associated
with the boundary of R, and the adjacent region R, by B;, (here we follow
the notation in MacKay et al. [1984]).

For the OVP flow the area of R; is infinite and the area of the turnstile
associated with the boundary between Ry and R; can be either estimated
analytically for small € using Melnikov’s method (Chapter 2 or Rom-Kedar
et al. (1990]) or computed numerically. Computing the areas of the stochas-
tic regions R, ..., Rie as well as the areas of the turnstiles associated with
their boundaries requires extensive numerical work. Sophisticated methods
to compute these quantities, using the generating function formalism, were
developed in MacKay et al. [1984, 1987) and Bensimon and Kadanoff [1984].
In order to apply these methods one must first numerically find orbits ho-
moclinic to each of the cantori C; and Cy as well as orbits homoclinic to
the hyperbolic periodic orbits in the 1:1 and 1:3 resonance bands. Since
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we are dealing with an ordinary differential equation where the generating
function is given by an integral along the orbits, this step requires much
work. Moreover, the entire computation must be repeated when the values
of £ and +y are changed.

Step 3: Assume that the areas of the turnstiles, B, , is equal to the flux
from the region R; into the region R; during one iteration. This implies
that turnstiles between nonadjacent regions, no matter how close, may not
intersect. Moreover, it implies that turnstiles may not intersect themselves.

MacKay et al. {1984] recognized that this assumption is generally in-
correct and in MacKay et al. [1987] it was modified as follows.

Step 3': Assume that the area transferred from region R; to region R;
during one iteration is equal to the area of intersection of the outgoing half
of the turnstiles associated with the boundary of R, with the ingoing half
of the turnstiles associated with the boundary of R, and compute this area.
Moreover, assume that the partition found in Step 1 is complete, so that
each turnstile is covered by intersections with other turnstiles.

For the OVP flow the assumption in Step 3 is correct for the parameter
values that give Fig. 5.1. In general, Step 3’ requires additional extensive
computation of heteroclinic orbits and intersection areas and a proof of the
completeness of the partition.

Step 4: Assume that within each stochastic region there is an “imme-
diate loss of memory” or “infinite diffusion coefficient.” This assumption
wmplies that as a lobe crosses from R, into R, it is instantaneously uni-
formly distributed throughout the region R,. Thus, the probability of a point
making o transition from a stochastic region R, into a stochastic region R,,
denoted p, ,, is equal for all points in R, and is given by

— B’v.]
p’h] - A -
1

For the OVP flow this assumption would imply, for example, that the
lobe Ly 1(1) should be uniformly distributed throughout region Rjo under
one iteration (we note that Fig. 3.6 demonstrates that this is not true for
some parameter values).

Step 5: Using the information from Step 1 and Step 2 and the assump-
tions in Step 3 (3') and Step 4 construct a Markov model for the transport
between the regions with the transition probabilities from region R, to region
R, given by p, ;, = %l.

Step 6: Using the Markov model, solve for the transport rates between
regions Ri and Ry. Utilizing the Markov chain model formalism, related
quantities such as transit times and relaxation times can also be computed.
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Specifically, the asymptotic behavior of the transport rates can be found
easily.

We remark that once the “states” (i.e., stochastic regions) and the
transition probabilities between the states are specified, then carrying out
Steps 5 and 6 is a routine application of the theory of Markov processes.
For this reason we leave out the details and refer the reader to MacKay et
al. [1984] or Kemeny and Snell [1976].

The application of this procedure to the OVP flow would involve a large
amount of numerical computation. To avoid these computations, we aim for
the “first order” approximation by taking the cut-off parameter for the size
of the neglected regions sufficiently large. Specifically, let us suppose that
all of R; is a stochastic region ezcept for the islands of stability associated
with the main core and the 1:1 and 1:3 resonances. Let R; denote the region
R; with these islands removed. The transition probability from R; into Ry
is then given by

_ M(ng(l))
u(Ry)
It follows that, according to the Markov model, the amount of fluid origi-
nating in K, that escapes to R, on the nth iterate is given by

(1-p)"  u(Ly2(1)).

We note that this expression depends on extensive numerical calculations
of the size of the islands of stability. Moreover, it always predicts an expo-
nential decay of [T} 5(n) — T1 2(n — 1)}, which contradicts results described
in Fig. 3.6b (for 0 < n < 50). The calculation made above demonstrates
the most crude application of the MacKay et al. approach. However, the re-
laxation to equilibrium is exponential for any Markov process with finitely
many states. As pointed out in their paper, if one considers the refined
partition with infinitely many states, one gets a power law behavior.

5.2 Comparing the Markov Model with the Methods
Developed in Chapter 2 for Two-Dimensional, Time-
Periodic Rayleigh—Bénard Convection

We next return to the model of two-dimensional, time-periodic Rayleigh-
Bénard convection described in Section 3.2. We will study roll-to-roll trans-
port using the Markov model and compare this with the exact (neglecting
molecular diffusion) calculations obtained by using the methods from Chap-
ter 2.

Specifically, in this context, let us denote by Rf the portion of roll R;
which participates in the transport, i.e., the stochastic region outside the
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largest KAM torus and island bands, and let rr denote its measure. The
subscript 7 will be deleted from the notation for the measure of Rf, since by
the symmetries (3.40) the transport region will have the same size for each
R; roll. If one assumes that the fluid transported across a roll boundary
quickly homogenizes over the transport region of the invaded roll, in fact
instantaneously in terms of the discrete time n denoting the number of
oscillation cycles (or the iterate of the Poincaré map), the change of species
Sy in the jth roll at time n can be written as

(5.1)
Tyi(n) — Ty (n — 1) =p (Lj;1,;(1)) C1 j41(n — 1)
+ p(Lj-1,,(1)) Crj-1(n - 1)
= {1 (Lj,+1(1)) + 1 (Lj,;-1(1))] Ch,5(n - 1),

where C ;(n) is the concentration (uniform by assumption) of species S; in
the jth roll at time n, i.e., Cy j(n) = T—‘TJTLQ Thus the change in T3 ;(n) is
expressed in terms of the amount of tracer entering R, from the neighboring
rolls j — 1, j+1 [i.e., (the concentration of species Sy in R;+1)x (volume
of fluid transported into R;)|, and the amount of tracer leaving R; and
entering R;11. Since the lobe areas are the same for any turnstile, we can
simplify as follows

(5.2)
Tl,] (n) - lej(n - 1) = (T11j+1(n - 1) + TL]__](TL - 1)) - 20{T1,j (TL - 1),

where o = ELL—;O—(U— can be regarded as the probability for a fluid particle

to be transportgd across a roll boundary. Although very simple, the model
relies heavily on the knowledge of the transition probability. As we have
seen, the area of the lobe can actually be determined analytically and with
great accuracy, but there is apparently no way of improving the analytical
estimate for rp beyond the one of a mere upper bound.

A more fundamental problem for the applicability of the Markov model
is the fact that the fluid just transported across a roll boundary does not
homogenize rapidly once inside a roll region. This problem is not directly
related to the size of the turnstile lobes, as we will see shortly by comparing
the results for A = 0.1, A = 7, w = 0.6, ¢ = 0.1 to the results for
A=01, A=m, w=0.6, ¢ =0.01. These two cases represent a dlfference
in lobe area of an order of magnitude [cf. Eq. (3.47)).

In order to compare the results from Section 3.2 with the Markov
model (5.2) we have computed the size of the stochastic region associated
with the roll-to-roll transport directly by covering a region R, with a grid
of ster size 5 x 103 and removing the areas inside the clearly identifiable
KAM tori to reduce the total number of points of the grid. Counting the
points left inside the region after 100 iterations of the Poincaré map leads
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e=0.1 e =001
I'r [0 Iy o
0.6 0.619 | 0.03209 0.115 0.0173
0.24 1.135 | 0.09723

Fig. 5.2. Numerical estimates for rr and a with A =0.1 and A = =.

to an estimate of rp and, consequently, the transition probability. This
computation is performed for the following cases

Casel: A==, A=01, € =01, w=0.6;
Case2: A=m A=01, =01, w=024
Case3: d=m, A=0.1, € =0.01, w=0.56;

the results are shown in Fig. 5.2.

According to the considerations in Section 3.2, the initial condition for
Ty,(n), the content of species S; in the jth roll, is r76; ;. One can then
solve (5.2) for Ty ;(n) at any later time n and compare the results with the
exact computations obtained by using the methods developed in Section
3.2. The results are shown in Figs. 5.3, 5.4, and 5.5 for cases 1, 2, and 3,
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Fig. 5.3. Comparison between the exact result (solid) and the Markov model
prediction (dashed) for the jth roll content of species S; vs. time, j =0,..., —4,
withe=0.1,w =06, A=0.1,and A = 7.
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Fig. 5.4. Comparison between the exact result {solid) and the Markov model
prediction (dashed) for the jth roll content of species S1 vs. time, j =0,...,—4,
withe =0.1, w =024, A=0.1,and A =m.

respectively. For each of these figures, the solid lines represent the exact
computation by the methods in Chapter 2, whereas the dashed lines refer
to the predictions offered by the Markov model. Each line originating from
the time axis is a plot of the amount of species S; in the jth roll versus
time, for j = 0, -1,..., -5, i.e., for the five rolls K, next to the “source” roll
R,. As can be seen, the general trend of the model is to overestimate the
content of the region next to the source roll while underestimating it for the
distant regions, i.e., the lateral spreading of the tracer is not as fast as in the
exact calculation (where it is linear in time; see Section 3.2). Furthermore,
the oscillations of T3 ,(n) in time, exhibited by Case 3 for j = 3, 4, and 5,
cannot, of course, be represented by the model, and actually the Markov
model description performs worse in this case of small lobe area, or small
transition rates.

The model can be slightly improved by taking into account the correla-
tions introduced by the lobe dynamics, which are related to the signatures
m and 7 discussed in Section 3.2. For instance, each time step of the
Markov model approach can be made to correspond to the mth iterate
of the map, .ather than just one iterate, and transition probabilities con-
necting non-neighboring regions R,_2, R,;2 can be defined, based on the

300
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Fig. 5.5. Comparison between the exact result (solid) and the Markov model
prediction (dashed) for the jth roll content of species 5\ vs. time, j =0,..., -4,
with € = 0.01, w = 0.6, A= 0.1, and A = =.

measure of the intersection of f™(L; (1)) with the adjacent turnstile lobe
Lo —1(1). However, stopping at the first signature is not sufficient to obtain
a significant improvement, implying that the hypothesis of loss of memory
of the fluid transported via lobes, implicit in the Markov model approach,
can be too slow for the assumptions of the model to apply, at least for the
cases considered.

As a final remark, we notice that the computation time required to
obtain an estimate of the transport region area can be larger than the CPU
time required to apply the exact methods developed in Chapter 2. Although
the grid need not be as refined as the one covering the lobes, for the cases
we have considered one would typically have to use about twice the number
of lobe grid points. Furthermore, in order to identify with some certainty
the points belonging to the stochastic transport region, one would have to
use 3 large number of iterations (100 in our case). For example, in Case 1,
the Markov model calculation requires about five times the CPU time that

is needed for the exact calculation using the methods developed in Chapter
2.
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5.3 Comparison of the MacKay, Meiss, Ott, and
Percival Markov Model for Transport with the
Transport Theory of Rom-Kedar and Wiggins

In this section we contrast the main assumptions and procedures involved
in the MacKay, Meiss, Ott, and Percival model for phase space transport
described in Section 5.1 with the ones involved in the Rom-Kedar and
Wiggins method developed in Chapter 2.

The Subdivision of the Regions into Stochastic Subregions and the Need
for a Complete Partition. In order for the MacKay, Meiss, Ott, and Percival
Markov model to be applicable it is necessary to have a complete partition
of the phase space into stochastic subregions. The completeness is needed
since the goal of the partition is to describe the dynamics in phase space
by a Markov process on the subregions. The stochasticity is needed since
their model does not incorporate any knowledge concerning the behavior
of images or preimages of turnstiles and their interaction with images or
preimages of turnstiles of other regions. Instead, they assume that phase
space can be completely partitioned into stochastic subregions so that when
points pass from region to region through the turnstiles they always remain
in a stochastic region where all orbits have an infinite Lyapunov exponent.
In this way the “fast mixing” or “infinite diffusion” assumption effects the
transport by allowing for the possibility of points passing through one turn-
stile and entering other turnstiles. To imitate the behavior of transport in
phase space using the infinite diffusion zones, MacKay et al. [1984] pro-
pose to take smaller and smaller subregions, leading to a partition with an
infinite number of subregions.

The choice of the partition is therefore a nontrivial matter. One has to
verify that the partition is complete and that the subregions it defines are
stochastic with all orbits in the stochastic regions having an infinite Lya-
punov exponent. In general, there are no methods for proving such results.
Moreover, in order to perform Steps 1-6 described in Section 5.1, one has
to find a systematic way to label the subregions and compute their areas
and the area of their turnstiles, where the labeling has to include informa-
tion regarding the neighbors of each subregion. Consider for example the
transport across the 1:1 resonance band described in Example 2.2. In order
to get transport across the resonance band via the MacKay, Meiss, Ott,
and Percival Markov model, one must first find a complete partition of the
interior of the resonance. The theory of Rom-Kedar and Wiggins developed
in Chapter 2 does not require such steps. Instead, the transport across the
resonance band is exactly expressed in terms of the dynamics of the two (as
opposed to the infinite number of turnstiles associated with the partition in
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the MacKay, Meiss, Ott, and Percival Markov model) turnstiles controlling
access to the resonance.

At present, two partitions have been suggested; for both the assump-
tion regarding the infinite diffusion rate has not been verified. MacKay et
al. [1984] and Meiss and Ott [1986] proposed to partition phase space using
cantori, where labeling schemes for the subregions are derived in the latter
paper. By construction, these partitions are complete. However, the as-
sumptions involved in Step 3 described in Section 5.1 are violated when the
partition is refined, and Step 3’ seems to be too hard to perform. MacKay
et al. {1987] propose to partition phase space using resonances. Here, it is
still unclear whether the partition is complete even on the most refined
scale. For any finite partition, it is clearly incomplete since island chains of
positive area are excluded. The effect of this incompleteness on Step 3’ and
on the calculation of the transport rates is yet to be explored. We note that
for the special case of a piecewise linear version of the standard map (the
Sawtooth map) Chen and Meiss [1989] and Dana et al. [1989] have shown
that resonances form a complete partition of the phase space.

The Cut-off Parameter. As discussed above, MacKay et al. [1984] suggest
that as one refines the partition the limit of infinite diffusion in each one of
the subregions is approached. For example, the refinement of the partition
by cantori leads to an uncountable infinity of subregions. To proceed with
Steps 2—6 described in Section 5.1 some cut-off for the size of the stochastic
subregions used in the transport calculations must be made. The obvious
question is how does one determine this cut-off parameter?

In short, this question has no answer. In MacKay et al. [1984], where
only cantori were considered, numerical evidence for the standard map was
presented which showed that, as the cut-off parameter was decreased (i.e.,
as the effects of more and more cantori were considered), the transit time
between regions became very large—namely, the method did not converge.
This led to the observation that Step 3 involves an assumption that is too
restrictive and should be replaced by Step 3'. In MacKay et al. [1987] the
partial barriers under consideration were those due to resonances rather
than cantori. In that paper they developed a sophisticated method for per-
forming Steps 1, 2, and 3'. However, the issue of the cut-off parameter
was not dealt with-—so far, there is no proof that as the cut-off parameter
is decreased the method converges, nor is there a prescribed scheme for
determining the cut-off parameter in the spirit of an asymptotic expansion.

In practice, the determination of the size and number of the stochastic
subregions that must be included can only be obtained through extensive
numerical experimentation which involves the comparison of model results
with “exact” answers obtained by brute force computations. In contrast,
the results of Rom-Kedar and Wiggins described in Chapter 2 require a
partition into a finite number of regions and are backed by theorems justi-
fying their validity. The validity of the numerical computations involved in
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applying the latter method can be verified for finite number of iterations
only. Hence, in the asymptotic limit both methods are in the dark, although
on quite different grounds.

The Validity of the Assumptions in Step 3 and Step 3’ Described in Section
5.1. In general, these assumptions about the geometry of the turnstiles and
the resulting implications for the flux rates are too restrictive. In particular,
they neglect (1) secondary intersections of the lobes such as those described
in the examples in Chapter 2 and Chapter 3; (2) self-intersection of the
turnstiles; and (3) the dependence of the choice of the boundaries of regions
(hence the partition of phase space) on the long-term transport. Each of
these effects is crucially important for the exact calculation of long-term
transport.

We consider first the case of self-intersecting turnstiles. One might
think that the self-intersection of turnstiles is somewhat pathological. How-
ever, it is a very important dynamical phenomenon that has striking im-
plications for the transport, and we now want to argue that it arises in a
large class of problems.

Consider the pendulum with slowly oscillating base

6=,
(6.3) b= —(1—~cosz)sin 0, (6,v,2z) € 8" x R' x S,
Z=¢ew

for € small and 0 < v < 1. This problem has been studied by many peo-
ple, see, e.g., Escande [1988], Elskens and Escande [1990], Kaper et al.
[1990], and Wiggins [1988a,b,c]. For 0 < v < 1, (#,v) = (=, 0) is a hyper-
bolic periodic orbit for (5.3) whose stable and unstable manifolds intersect
transversely. The associated Poincaré map of (5.3) is given by

(5.4) (6(0), v(0)) (e (gg) v (g)) .

Now for ¢ small, the return time for this Poincaré map is very large. This
fact allows for the lobes associated with the homoclinic tangle to become
drastically stretched and folded. Since the interior of the resonance is of
finite size and KAM tori exist fairly close to the separatrix (because the
frequency of the forcing is £), the outgoing portion of the turnstile has littie
choice but to wrap itself throughout the interior of the ingoing portion
of the turnstile. We demonstrate this numerically for (5.4) in Fig. 5.6 for
¥=0.75, w=2r and £ = 3.

We expect this phenomenon of the self-intersection of turnstiles to
typically occur in “periodically adiabatically forced” systems such as (5.3),
the reason being that since the frequency of forcing is small the return
time of the associated Poincaré map is large. This in turn may result in
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Fig. 5.6. Self-intersecting turnstile for the parametrically, adiabatically forced
pendulum (computation by T. Kaper and D. Hobson).

considerable stretching and folding of the lobes between iterations. The
theory of Rom-Kedar and Wiggins can be used to study transport issues in
such systems (see Kaper et al. [1990] and Kaper and Wiggins [1989]).

The issue of the particular choice for the boundaries of regions can
cause difficulties. It was noted in MacKay et al. [1984, 1987] that there are
an infinite number of ways to choose the boundary of a resonance. However,
they did not address this issue in the context of its effect on the predictions
of the Markov model.

Consider the situation shown in Fig. 5.7. The points p!, %, j=1,2, are
hyperbolic fixed points of a map on the cylinder. The stable and unstable
manifolds of those fixed points form the boundaries of two regions denoted
by R; and R, in Fig. 5.7. In Fig. 5.7a we choose part of the boundary
of Ry to be Ulpl,¢:1]U S[p, ¢1] and part of the boundary of R; to be
S[p?, g2) U[p3, g2}, and in Fig. 5.7b we show these components of the bound-
aries without the clutter of the heteroclinic tangle. It should be clear from
the figure that the flux from R, into Ra, Bi 2, which is equal to the flux
from R, into Ry, Ba, is zero. In Fig. 5.7c we modify part of the bound-
ary of R; slightly by choosing a different pip. In particular, we choose
Ulpl, 51U S[pd, 1], which is shown more clearly in Fig. 5.7d without the
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clutter of the heteroclinic tangle. With this choice for the boundaries, we
now have B; o = u(e), where p(e) denotes the area of the set e shown in Fig.
5.7c and By; = 0. This example shows that the choice of partition may
affect the answer one obtains using the Markov model since the Markov
model only incorporates information concerning one iterate of the turnstile
(then “infinite mixing” takes over). Such problems do not arise in the Rom-
Kedar and Wiggins theory; since the long-term dynamics of the turnstiles
are exactly treated, different partitions merely shift the time axis; hence,
the asymptotic behavior is unchanged.

The Validity of the Assumption in Step 4 Described in Section 5.1. This is
the key assumption in the MacKay, Meiss, Ott and Percival method, which
enables them to model the transport in phase space by a Markov process.
It is our view that in many cases this assumption does not reflect the true
dynamics, even in an approximate sense.

This assumption is often stated in more physical terms. Namely, it is
claimed that if the transition time between regions is long compared to
the mixing time within the regions then the Markov model will be approxi-
mately valid. MacKay et al. [1984] suggest a scenario in which the turnstiles
controlling access to the region are small, yet the mixing within the region
is rapid. We argue that this type of reasoning is faulty, because it involves
treating the geometry of the lobes separately from the dynamics. Indeed, if
the transport across the boundary is slow compared to the mixing within
the region, then, by continuity, the mixing near the boundary is also slow.
Hence, it will take a long time for the points in the turnstile to make their
way to the region of rapid mixing. The numerical simulations in Section 5.2
show this very clearly.

The validity of this assumption is relatively easy to check in prac-
tice. One merely needs to examine the image of the turnstile and check
whether it is (at least approximately) uniformly distributed throughout
the stochastic region. Accordingly, for two-dimensional Poincaré maps de-
rived from time-periodic, two-dimensional vector fields where the period
T is a bounded number (independent of £) we would never expect this as-
sumption to hold (unless the turnstile and stochastic region were identical);
although the dynamics may be chaotic, trajectories of the vector field still
depend continuously on initial conditions. Consider the OVP flow exam-
ple from Section 3.1. It is obvious from Figs. 3.2 and 3.4 that f(L;2(1))
and f(Lg,1(1) are not “well mixed” nor have they experienced “immedi-
ate loss of memory.” Similar behavior is observed in the Rayleigh-Bénard
convection model described in Section 3.2.

With this in mind, we remark that the assumption in Step 4 may be
valid for the “periodically adiabatically forced” systems described above,
since the Poincaré return time goes to infinity as ¢ — 0. Also, in this situa-
tion there is numerical evidence that the turnstile fills most of the stochastic
region, a¢ least for a pendulum-type geometry (see Escande [1988], Elskens
and Escande [1990}, Kaper and Wiggins [1989], and Kaper et al. [1990)).
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Fig.5.7. Examples of different choices of partitions [shown in (b) and (d)] can
lead to different transition probabilities [as shown in (a) and (c)

However, in this case the assumption in Steps 3 and 3’ concerning flux and
turnstile geometry must be appropriately modified.

Computational Effort and Accuracy. It should be evident that both meth-
ods require extensive numerical work for calculating the transport rates. Ap-
plying Steps 1, 2, and 3’ in the MacKay et al. approach requires computing
the size and location of the invariant sets and the location of periodic orbits,
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cantori, and orbits homoclinic to them. All of these are computer-intensive
(especially the location and size of the invariant sets) and programming-
intensive tasks (e.g., the location of the homoclinic orbits). However, once
these computations are done, one can proceed with Steps 4-6 and calculate
the transport rates for any iteration number n.

To apply the Rom-Kedar and Wiggins approach one needs to compute
the areas of the lobe intersections. Since we consider the transport between
two regions, this will typically require one to follow the evolution of one
or two lobes [e.g., to find T} 2(n) for the OVP flow we need to compute
(L1 2() N F¥(La1(1))),k =1,...,n —1]. Hence, the amount of computa-
tion depends on n. For finite and sufficiently small n one can either track
area elements or locate heteroclinic (or homoclinic) points and use the gen-
erating function formalism. For large n the amount of computation needed
will typically grow exponentially and the applicability of the method will
be questionable due to numerical errors.

The Asymptotic Behavior of the Transport Rates. As indicated previously,
once the states and the transition probabilities are determined, it is a rela-
tively easy task to determine the asymptotic behavior of the transport rates
using the MacKay et al. approach. However, in light of the previous discus-
sion it is unclear whether these asymptotic results are at all meaningful. On
the other hand, given the areas of the lobe intersections the Rom-Kedar and
Wiggins approach guarantees the correct results for all iterations, includ-
ing the asymptotic limit. However, at this point the only verified method
to calculate these areas is numerical, and the “exactness” of the method
is flawed by numerical errors. Hence, in general no conclusive asymptotic
behavior can be extracted by this method either (in some cases one can
infer the behavior of the areas of the lobe intersections for large n).

One route to improve this situation is by devising analytical methods
(as in Rom-Kedar [1990]) to estirnate the areas of the lobe intersections.
Another possibility is to combine the two methods, namely, to consider
the exact evolution of the lobes for a finite number of iterations and as-
sume complete ergodicity thereafter (in an appropriate subregion). This
approach is particularly interesting in the fluid mechanics context since,
loosely speaking, it incorporates the diffusivity of the fluid into the trans-
port model.

Upper Bounds on Transport Rates. As MacKay noted, an outcome of the
MacKay et al. [1984] observation that the major barriers to transport, at
least in the not too stochastic regime, are the noble cantori implies that
even when the Markov model is unjustifiable, the fluxes of noble cantori
still provide upper bounds on transport rates.



Chapter 6

Transport in k-Degree-of-Freedom
Hamiltonian Systems, 3 < k < oo

The Generalization of Separatrices to
Higher Dimensions and Their Geometrical
Structure

The goal in this-chapter is to generalize many of the concepts developed in
the previous chapters for lower-dimensional dynamical systems to higher di-
mensions. We will consider only Hamiltonian systems, although further gen-
eralizations to non-Hamiltonian systems are possible (these will be briefly
discussed later). We will begin by considering the types of structures that
can arise in the phase space of a Hamiltonian system and the potential of
these structures for providing barriers to transport. In particular, we are
looking for an appropriate generalization of the notion of a “separatrix” to
higher dimensions. First, however, let us consider the essential characteris-
tics that define what we mean by the term “separatrix.”

By a separatriz we will mean a surface formed from pieces of stable
and/or unstable manifolds of some normally hyperbolic invariant set(s) that
have one less dimension than the ambient space. We will define the term
“normally hyperbolic” more precisely shortly. Roughly speaking, it means
that the rate of attraction and separation of trajectories transverse to the
manifold dominates the rate of attraction and separation of trajectories on
the manifold under the linearized (about the invariant set) dynamics. The
characteristic of the manifolds having one less dimension than the ambient
space gives them the ability to separate the space into disjoint regions. The
more mathematical way of expressing this property is to say that these
stable and/or unstable manifolds have codimension one. The codimension
of a manifold is defined to be the dimension of the ambient space minus
the dimension of the manifold (see Wiggins [1990a)). In an autonomous
Hamiltonian system the dynamics is restricted to lie in the level sets of the
Hamiltonian, or the energy surface; thus the appropriate ambient space for
considering the codimension of a surface is the energy surface (and not the
phase space as in most situations). The fact that the stable and unstable
manifolds are themselves invariant sets implies that trajectories cannot pass
through them (or else unigueness of solutions would be violated). Tt should
be clear that a surface having these characteristics, i.e., codimension one
and invariance, should play an important role in the global dynamics. Also,
the exponential rate of divergence of trajectories associated with hyperbolic
invariant sets suggests that such a surface may form the frontier between
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regions exhibiting qualitatively different types of dynamics.

In order to illustrate these points it is instructive to examine the nature
of separatrices in the more familiar two-degree-of-freedom Hamiltonian sys-
tem setting. In two-degree-of-freedom Hamiltonian systems the phase space
is four dimensional, yet the dynamics is restricted to occur on the three-
dimensional level sets of the Hamiltonian function. Separatrices in these
situations arise as the stable and unstable manifolds of some (normally)
hyperbolic invariant set, provided the stable and unstable manifolds are
codimension one in the level set of the Hamiltonian, i.e., they can separate
the level set of the Hamiltonian. (Note: we hope that it is clear to the reader
that the stable and unstable manifolds of an invariant set of a Hamiltonian
system must have equal dimension. This is a consequence of Liouville’s
theorem which states that the phase space volume is conserved under the
dynamics; see Arnold [1978].) The most typical types of invariant sets giving
rise to separatrices in these systems are hyperbolic fixed points and hyper-
bolic periodic orbits. A hyperbolic fixed point has two-dimensional stable
and unstable manifolds which are, of course, codimension one in the level set
of the Hamiltonian. Hyperbolic periodic orbits also possess two-dimensional
stable and unstable manifolds in the level set of the Hamiltonian. Invariant
2-tori also exist in such systems; however, they must be elliptic in stability
type, and hence do not possess stable and unstable manifolds. Nevertheless,
they are codimension one in the level set of the Hamiltonian and, therefore,
of much importance, since they divide the level set of the Hamiltonian into
two disjoint, invariant components. They thus play an important (and in
some sense the preeminent) role in addressing questions concerning global,
nonlinear stability in two-degree-of-freedom Hamiltonian systems. We re-
mark that another invariant set having stable and unstable manifolds in
such systems is a cantorus (see Section 2.7). However, there is a problem
with cantori in systems with three or more degrees of freedom, since there is
not vet an existence theory for cantori in such systems. Nevertheless, even
if there were an existence theory, such structures would not play a role in
our arguments due to dimensional considerations as we will explain shortly.

We now remind the reader that the purpose of this discussion of two-
degree-of-freedormm Hamiltonian systems was to highlight how a separatrix
could arise in a situation where we have a great deal of experience and
intuition. From our discussion above we see that these objects that we refer
to as separatrices arise as codimension one stable and unstable manifolds of
some normally hyperbolic invariant set, either a fixed point, periodic orbit,
or cantorus. We will now carry this idea into our study of systems with three
or more degrees of freedom. Namely, we will seek a normally hyperbolic in-
variant set having codimension one (in the level set of the Hamiltonian)
stable and unstable manifolds. Our study will be in the context of pertur-
batione of integrable Hamiltonian systems. We will first describe what we
mean by the term “integrable” (bear with us, there is a nontrivial point to
be made here) and then consider the geometry, stability, and dimension of
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various invariant sets that we would expect to occur in such systems.
Consider the following Hamiltonian system

(6.1) i=JDH(z), z¢&R*,

0 id
J= (—id 0)

with id the k x k identity matrix. We will assume that the vector field is
sufficiently differentiable for our purposes on the region of interest in IR?*;
precise differentiability conditions can be found in the references to follow.
We now want to describe what it means for (6.1) to be “integrable.” Fol-
lowing Arnold [1978], (6.1} is said to be integrable if there exist k functions

where

Ki(z) = H(z), Kai(z),..., Ki(z)
which satisfy the following two conditions.

(Independence) DK, (z),i = 1,...,k, are powntwise linearly independent on
the region of interest in R2*.

Before giving the second condition we need a preliminary definition. Let f ()
and g(z) be two functions on R?*; then the Poisson bracket of f and g,
denoted {f, g}, is defined by

{f.9} = (Df,JDg),

where (, ) denotes the usual inner product on IR?*. The functions f and g
are said to be in involution if

{f,g}=0.

Now we can state the second condition.
(Involution) The functions K,(x),i = 1,...,k, are in mvolution.

The functions K,(x),7i =1,...,k, are referred to as the integrals.

The global dynamics of integrable Hamiltonian systems (as defined
by Conditions 1 and 2 above) are particularly simple. Let M, = {z €
IR%lK,(x) = ¢,1 = 1,...,k}; it then follows from Conditions 1 and 2
that M, is a smooth k-dimensional invariant manifold. According to the
Liouville-Arnold theorem (see Arnold [1978}), if M, is compact and con-
nected, then it is diffeomorphic to a k-dimensional torus. Hence, the phase
space is foliated by invariant k-tori. Moreover, this property of integrability
allows for a transformation of coordinates, the action-angle transforma-
tion, that makes the foliation by invariant tori particularly transparent. In
action-angle variables (6.1) is written as
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I = —DgHy(I) =0,

. (I,6) € R¥ x T*,
6 = D Ho(1),

(6.2)

where Hy(I) represents the integrable Hamiltonian H{z) after the action-
angle transformation. In the action-angle representation it is clear that
(6.2) possess k constants, or integrals, of the motion given by the actions
I,...,Ix. A k-torus invariant under the dynamics generated by (6.2) is
simply given by /=constant with the trajectories on the k torus given by

I = constant,
e(t) = (DIHo([))t + 6o;

hence, the foliation of the phase space by invariant k-tori is obvious in the
action-angle representation.

Next we consider perturbations of this integrable Hamiltonian system
of the form

(6.3) H(I,0) = Hy(I) + eHy (I1,68), (I,0) € R* x T*,

with 0 < ¢ << 1 and we ask what becomes of all these tori? The first re-
sult along these lines is the celebrated Kolmogorov—Arnold-Moser (KAM)
theorem (see Arnold [1978] or Bost [1986]) which states that most of the
nonresonant k-tori are preserved [provided Hg(I) satisfies certain nonde-
generacy conditions; see the above references for these details as well as a
precise definition of nonresonance]. These k-tori, or KAM tori, are elliptic
in stability type. We mean by a torus of elliptic stability type (often just
referred to as an “elliptic torus”) a torus that is neutrally stable, i.e., all
orbits in a neighborhood of the torus neither approach nor recede from the
torus. It should be clear that elliptic tori do not possess stable and un-
stable manifolds. Moreover, they are codimension k — 1 in the level set of
the Hamiltonian. Hence, the KAM tori are only codimension one for two-
degree-of-freedom Hamiltonian systems. This fact lies at the heart of the
phenomenon that has come to be known as “Arnold diffusion” (although it
is not exactly what Arnold described in his fundamental 1964 paper that
gave an example of a 2%—degree—of—freedom system having a global instabil-
ity as a result of certain dimensional, as well as dynamical, considerations).
The picture that has come to be accepted (mostly among physicists) is
that in Hamiltonian systems with three or more degrees of freedom tra-
jectories “wander stochastically” or “diffuse” among the KAM tori. Such
statements are based more on ignorance of the dynamics in the complement
of the KAM tori than on any mathematical results.

What about tori having dimension not equal to k? Results that can be
found in Moser [1966] and Bryuno [1989] imply that a Hamiltonian system
of the form given by (6.3) cannot possess an invariant torus of dimension



Transport in Higher Dimensions 213

larger than k. Recently Pdschel [1989] has given conditions for the existence
of invariant tori of elliptic stability type having dimension smaller than k.
However, the tori of Poschel will not play a direct role in our search for
separatrices since their dimension is too small and, also, as a result of the
elliptic stability type, they do not possess stable and unstable manifolds. A
new result of de la Llave and Wayne [1990] gives conditions for the existence
of tori of dimension 1,...,k — 1 in these systems that do possess stable
and unstable manifolds. They argue that an m-dimensional nonresonant
torus (1 < m < k — 1) has at most a k-dimensional stable manifold, a k-
dimensional unstable manifold, and a k + m-dimensional center manifold.
(Note: by “at most” we mean that this is the maximum dimensions that the
stable and unstable manifolds may have. Also, recall our earlier comment
that the dimensions of the stable and unstable manifolds should be equal
since phase space volume is preserved under Hamiltonian dynamics.) Most
importantly, these stable and unstable manifolds are codimension k& — 1
in the level set of the Hamiltonian (the same codimension as the KAM
tori) and therefore are not of use for the construction of separatrices as
described above for systems with three or more degrees of freedom. We
remark that the tori of de la Llave and Wayne are examples of the whiskered
tori originally used by Arnold [1964] in his construction of an example of a
system undergoing Arnold diffusion; we will say more on this later. At this
point let us make a rather speculative remark concerning cantori, assuming
that an adequate existence theory is found someday. If cantori play the
same role in systems with three or more degrees of freedom as they play in
two-degree-of-freedom systems, then they can be viewed as the remnants
of the KAM tori or perhaps even remnants of the tori of Poschel and de
la Llave and Wayne. If this is the case then they themselves, along with
any stable and unstable manifolds that they might possess. will not have
sufficient dimension to form separatrices in the sense described above.

Before proceeding we want to note that Poschel and de la Llave and
Wayne were not the first to consider the existence of tori having lower
dimension than KAM tori in Hamiltonian systems of the form of (6.3).
We mention their papers because they are the most recent and contain the
latest results. Both papers also contain excellent bibliographies. Others who
bave considered similar problems are Melnikov [1965, 1968}, Moser [1967],
Graff [1974], Zehnder (1975, 1976], and Eliasson [1988]. In addition, Michael
Sevryuk has communicated to us that a result similar to that of de la Llave
and Wayne has been obtained by D.V. Treshchev [1991]. Sevryuk himself
has obtained results for reversible systems analogous to those described
above for Hamiltonian systems (see Sevryuk [1990]).

Thus, an invariant torus, regardless of its stability type, will not by
itself give rise to a separatrix in systems having three or more degrees of
freedom in a manner similar to that which we might be accustomed to in
two-degree-of-freedom systems. What then do we do? The key is to use in-
variant manifolds of both resonant and nonresonant whiskered tori (this will
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give us our normally hyperbolic invariant set) where the whiskers conspire
to form an invariant manifold of codimension one (these will be the stable
and unstable manifolds of the normally hyperbolic invariant set). A way in
which this situation arises naturally would occur if we relaxed Condition
1 of Arnold’s definition of integrability given above. Before describing this
precisely and discussing how natural it is, let us consider an example which
illustrates the main points.

We consider an integrable Hamiltonian system given by two harmonic
oscillators and a pendulum, all uncoupled. The vector field for this system
is given by

(6.4)
¢=uv,
v = —sin ¢,
T =Y, 1 1 1 1 1 1
. 2 (¢7U7zlaylaw2ay2)es xR xR xR xR XIR,
= —wi,
i2:_'!/2a
Yo = —ngQ.

A Hamiltonian that defines this vector field is given by

2 2 2.2 2 2.2
(65) H(¢,U,$1ay1,fc2ayz)=%—003¢+y-21'+£1;—1+-y22+£22£2-
The fact that (6.4) is an integrable Hamiltonian system should be reason-
able since it is merely the Cartesian product of three one-degree-of-freedom
(and therefore integrable) Hamiltonian systems. We will discuss integrabil-
ity of this system in more detail as we go along. In Fig. 6.1 we illustrate
the phase space of (6.4).

If we restrict ourselves to the region of phase space corresponding to
the cross-hatched region in Fig. 6.1, i.e., staying away from the homoclinic

Fig. 6.1. Phase space of two harmonic oscillators and a pendulum, ail uncoupled.
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orbits in the pendulum part of the phase space, then it should be clear that
this region is foliated by a three-parameter family of three tori (the three
parameters are just the actions of the closed orbits in the three uncoupled
systems). In this region KAM theory and the theories of Pdschel and de la
Llave and Wayne can be used to describe what becomes of the tori when
subjected to a perturbation (provided we allow w; and wy to be variable
parameters). However, we are interested in the region of phase space near
the homoclinic orbits of the pendulum. We now establish some notation in
order to make these ideas precise.
The phase space of the system is six dimensional and is given by

S'x R x R! x R! x R! x R

The level sets of the Hamiltonian are five dimensional and are given by

v? yi | wizl | 3 | Wiz}
(6.6) h=—cos g+ T+ 2+ + =02

It is easy to verify that

(6.7)
M = {(¢,v,21,y1,72,92) € ' x R' x R' x R' x R' x R'[¢ = m,v =0}

is a four-dimensional manifold invariant under the flow generated by (6.4).
It is merely the Cartesian product of the saddle-type fixed point of the
pendulum with the phase spaces of the harmonic oscillators. It is also easy
to verify that M has five-dimensional stable and unstable manifolds, de-
noted W#(M) and W*(M), respectively. These are the Cartesian products
of the one-dimensional stable and unstable manifolds of the pendulum with
the phase spaces of the harmonic oscillators. These five-dimensional sta-
ble and unstable manifolds coincide along two five-dimensional homoclinic
manifolds, denoted I'y and I'_, respectively, that can be parametrized by

I' = {(¢, v, 1, Y1, T2, Y2)|p=12 sin’l(tanh(—to)), v==%2sech(—to), toelR}

It should be clear that I, and I'"_ divide the phase space into three disjoint,
invariant regions.

However, the dynamics is restricted to the level sets of the Hamiltonian,
so we really do not need to be concerned with the entire phase space. Using
(6.6) and (6.7) it is easy to see that M N h is given by

2 2.2 2 2.2

Yi | Wity | Yz | Walp

6.8 h—1=2L 4,200 J2 , 7272,
(6:8) 2 + 2 + 2 + 2’

thus, for A > 1, M N A is diffeomorphic to $3. The dynamics on M N A is

quite interesting; it is foliated into two families of invariant two-tori in what
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is known as a Hopf fibration. We will not go into the dynamics of this case
since we are mainly interested in those normal to the three sphere; however,
a very nice paper of Meyer [1990] describes the relationship between the
dynamics of harmonic oscillators and the geometry of the Hopf fibration of
the three sphere. Note also that W*(M)Nh and W*(M)Nh are both four
dimensional and coincide along two four-dimensional homoclinic manifolds
in such a way as to divide the level set of the Hamiltonian into three dis-
joint, invariant regions. Hence, in this example we see that the stable and
unstable manifolds of a normally hyperbolic invariant three sphere give rise
to separatrices.

Now one might claim that this example is so special that it can in
no way be considered typical. Indeed, the example merely consists of three
uncoupled one-degree-of-freedom oscillators. However, we will shortly show
that the sphere, along with its stable and unstable manifolds, persists under
nonintegrable perturbations. Moreover, we will describe a general class of
Hamiltonian systems that exhibit qualitatively the same behavior. These
systems will be perturbations of a certain type of integrable Hamiltonian
system—systems that do not satisfy Arnold’s definition of integrability
given above. We now want to explore this point in the context of our ex-
ample.

First, let us transform the two harmonic oscillators in our example into
action-angle variables using the following coordinate change

21;
T; =4/ —sinb;,
(6.9) Wi
y; = / 2Lw; cos 8;, 1=1,2.

In these coordinates the vector field (6.4) becomes

$=u,
v = —sing,
I =0,
(6.10) .
01 = Wi,
j2 = 07
b2 = wy
with Hamiltonian
v2
(611) H(¢,U,I1,IQ)= ——2——COS ¢+[1w1 + Lws.

The three integrals for (6.10) can be taken as
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H, Il, and IZ

and it is easy to see that only I; and I, are independent on M; thus
Condition 1 of the definition of integrability given above is violated on
M. In some sense this is the “mildest” way in which Condition 1 can be
violated; two of the three integrals are independent on a codimension-two
manifold in the level set of the Hamiltonian. It is precisely this violation of
Condition 1 that has made possible the separatrices. We would also like to
argue that modifying the definition of integrability in this way, along with
some additional conditions, is a natural way in which separatrices may arise.
To see this it is instructive to consider one-degree-of-freedom Hamiltonian
systems, in particular, the pendulum.

For the pedulum, the Hamiltonian, H(¢,v) = ”72 —cos ¢, is the inte-
gral of the system. Outside and inside (except at the elliptic fixed point) the
two homoclinic orbits it is not hard to verify that DH # 0. However, at the
saddle point, (¢,v) = (x,0), DH = 0. This must occur since (¢,v) = (x,0)
is a fixed point. However, this breakdown in independence of the integral
is precisely what allows for the invariant set which may possess stable and
unstable manifolds that act as separatrices. Certainly we would want to
consider the pendulum to be an example of an integrable Hamiltonian sys-
tem, so it seems wise to modify Condition 1 of the definition of integrability
given above to allow for some of the integrals to be dependent on lower-
dimensional sets. However, this is not really the main point. Indeed, Markus
and Meyer [1974] modify Condition 1 to allow for dependence on a set of
measure zero. What is the main point is that many of the analytical meth-
ods that we use in our study of perturbations of integrable systems, e.g.,
KAM theory, the theories of Poschel and de la Liave and Wayne, are de-
veloped in a setting where the unperturbed integrable system is expressed
in action-angle variables. In the proof of the Liouville-Arnold theorem (see
Arnold [1978]) it is clear that a transformation to action-angle variables re-
quires Condition 1 to hold everywhere the transformation is defined. Thus,
dynamical phenomena, associated with dependencies of some of the integrals
are not accessible with these analytical methods. In particular, homoclinic
and heteroclinic orbits in the unperturbed system would be immediately
ruled out.

Now we bring to a close this rather extended introduction and get on
with the business of developing the general theory as well as answering
many of the questions that we have raised thus far. Much of this chapter is
based on work that can be found in Wiggins [1990b).

(6.1) Exercise. Show that the requirement that the k integrals, K,(z) =
H(z),...,Ki(z), be in involution implies that trajectories of the Hamilto-
nian vector field are tangent to M,; hence, M, is invariant.

(6.2) Exercise. Suppose we have an autonomous, C"(r > 1), ordinary dif-
ferential equation on IR™ whose solutions exist for all time and are unique.
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Furthermore, suppose this dynamical system possesses an invariant man-
ifold. Prove that no trajectory with initial condition not in the invariant
manifold can intersect the manifold in finite time. Is the requirement for
the ordinary differential equation to be autonomous important?

(6.3) Exercise. Prove that M is an invariant manifold.

(6.4) Exercise. Describe the dynamics on M N h as wy and wo vary. (Hint:
see Meyer [1990].)

(6.5) Exercise. Derive the expression for the homoclinic manifolds I'y given
in the example.

(6.6) Exercise. Prove that Iy and I'_ separate the level set of the Hamilto-
nian into three disjoint, invariant regions.

6.1 The Mathematical Framework for Transport in
k-Degree-of-Freedom Hamiltonian Systems,3 < k < oc

This section is the most important part of this chapter. We begin by de-

scribing the mathematical and geometrical structure of the perturbed k-

degree-of-freedom (henceforth abbreviated k-d.o.f.) integrable Hamiltonian

systems, 3 < k < oo, that we are considering. In particular, we pay close
attention to the relationship between geometry and dimension. Our discus-
sion will proceed as follows:

(i) The systems under consideration will be defined.

(ii) The geometry of the unperturbed phase space will be described.

(iii) We will describe how the k-d.o.f.systems under consideration can be
reduced to the study of an associated (2k — 2)-dimensional, volume-
preserving Poincaré map.

(iv) The geometry of the perturbed phase space and the mechanisms
for transport (i.e., the analogs of hyperbolic periodic points, stable
and unstable manifolds of hyperbolic periodic points, regions, lobes,
turnstiles, etc., from the transport theory for two-dimensional, area-
preserving maps) will be described.

6.1.1 The Class of Perturbed, Integrable k-d.o.f. Hamiltonian
Systems Under Consideration

We consider a perturbed Hamiltonian of the form

(6.12) H(z,u,v,p) = H(z,u,v) + eH(z,u,v, y; €),

where (z,u,v) € R? x R™ x R™, u € R? is a vector of parameters, and
0 < € << 1. This Hamiltonian gives rise to the Hamiltonian vector field
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& = JD,H(z,u,v) + eJD H(z,u,v, p;€),
(6.13) 4 = D,H(z,u,v) + D, H(z,u,v, p; €),
U= —Dy,H(z,u,v) — eD, H(z,u,v, 1;€),

where J is the 2 x 2 symplectic matrix defined by

7= (2 3)

We make the important assumption that the unperturbed system is
integrable in the sense that the (u,v) coordinates can be transformed to
action-angle variables (I,6) € B™ x T™, with B™ being the open ball in
IR™, so that the Hamiltonian has the form

(6.14) H.(x,1,0,p) = H(zx,I) +cH(z,1,0,u;¢)

with the transformed Hamiltonian vector field given by

&= JD.H(z,I)+eJD,H(z,1,8,p;¢),
(6.15)¢ I =—eDgH(z,1,6, p;¢),
6 = DrH(x,I)+eDH(z, 1,0, u¢),

where 0 < ¢ << 1,(z,1,8) € R*> x B™ x T™, and p € R? is a vector
of parameters. We note that coordinate transformations of this type have
been studied in detail by Nehorosev [1972]. Additionally, we will make the
following differentiability assumptions. Let V € IR? and W C R? x R. be
open sets; then the functions

H:V x B™ - R,
H:VxB"xT™xW —» R

are defined and they are C™! on these open sets, where r is taken suffi-
ciently large for our needs. Our main need will be the persistence theory for
normally hyperbolic invariant manifolds for which we will need r > 1. We
may also want to apply KAM theory on the invariant manifold. For this,
r > 2m + 2 will be sufficient (see Poschel [1980]).

We will refer to (6.15). as the perturbed system.

6.1.2 The Geometric Structure of the Unperturbed Phase Space

The system obtained by setting £ = 0 in (6.15), will be referred to as the
unperturbed system
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&= JD Hx,I),
(6.15)0 I=o,
6 = DH(z, ).

We make the following two structural assumptions on (6.15).

Al. For gll I € B™ the x-component of (6.15)g, i.e.,

(6.15)0,¢ &= JD,H(z,I),

possesses a hyperbolic fized pownt which varies smoothly with I, denoted
yv(I), whick has a homoclinic orbit T (t) connecting the hyperbolic fized point
to itself fi.e., lims_ 1o 2?(t) = y(I)]. (Note: smoothness of the hyperbolic
fized point with respect to I follows from an application of the implicit
function theorem; for details see Wiggins [1988a].) Moreover, H(y(I),I)
has @ minimum in B™ at I = 1.

A2. D;H(z,T) #0.

We remark that (6.15)g is a 2m + 2 = k-d.o.f integrable Hamiltonian
system defined on V' x B™ x T™ x W with (m + 1) integrals given by
H(z,I),I,....Inm.

Now let us assemble these pieces into a geometric picture in the full
(2m + 2)-dimensional phase space. We consider the set of points M in
R? x R™ x T™ defined by

(6.16)
M={(z,1,0) € R x R™ x T™|x = v(I) where y(I) solves

D H(~(I),I)=0 subject to det[D2H (y(I),1)]<0,¥I€B™,0cT™}

and we have the following theorem.

(6.1) Theorem. M is a C" 2m-dimensional normally hyperbolic invariant
mansfold of (6.15)g. Moreover, M has C" (2m + 1)-dimensional stable and
unstable manifolds denoted W3( M) and W™ (M), respectively, which inter-
sect in the (2m + 1)-dimensional homoclinic manifold

I ={(z'(~t0),1,60) € R? x R™ x T™|(to,1,6p) € R' x B™ x T™}.

Proof. M is explicitly defined in (6.16) where its invariance, dimension,
and differentiability are evident. The nature of W*(M) and W* (M) follow
from Al. Normal hyperbolicity is defined and proved in Wiggins [1988a)
and will be discussed shortly. a

It is easy to see that the unperturbed vector field restricted to M is
given by
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I=o,

(6.17) .
6 = D;H (v(I), I), (I,6) € B™ x T™,

with flow given by

I{t) = I = constant,

(6.18) 8(t) = (D1 H (1(1), 1))t + fo.

Thus, M has the structure of an m-parameter family of m-tori. Let us
denote these tori as follows: for a fixed I € B™, the corresponding m-torus
is

(6.19) r(l) = {(z,1,0) e R® x B™" x T™|z =~(I), I =1}.

7(I) has (1 + m)-dimensional stable and unstable manifolds denoted
W#(r(I)) and W¥(7(I)), respectively, which intersect along the (1 + m)-
dimensional homoclinic manifold given by

(620) Iy= {(mf(—to),f,eo) € R? x B™ x T™|(to,80) € R! x Tm} :

Additionally, 7(I) has a 2m-dimensional center manifold corresponding to
the nonexponentially expanding or contracting directions tangent to M;
see Fig. 6.2 for an illustration of the geometry of the unperturbed phase
space. Trajectories on the torus 7(I) densely fill out the torus if all of the
frequencies are mutually incommensurate, i.e., if

(6.21) (k,2(I)) #0, VkeZ™,
where
(6.22) 2(I) = D;H ('y(f),f) ;

If some of the frequencies are commensurate then the trajectories fill out
lower-dimensional tori.
Several remarks are now in order:

1. We comment on the coordinates of (6.15)g. We are considering an
(m+1)-d.o.f. integrable Hamiltonian system. As mentioned above, the
{(m+1) integrals are H(z, I), I1,..., I,. These integrals are not every-
where independent since D, H(v(I),I) = 0 on M. Moreover, if they
were everywhere independent, then the phase space could not pos-
sess homoclinic orbits (since, in that case, the phase space would be
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Fig. 6.2. Geometry of the unperturbed phase space.

completely foliated by (m+1)-tori; see Arnold [1978]). Hence, the coor-
dinates of (6.15)¢ are the most general for an (m+ 1)-d.o.f. completely
integrable Hamiltonian system possessing homoclinic orbits, i.e., only
m of the (m + 1) integrals are independent. Nehorosev [1972] has gen-
eralized the notion of action-angle variables for this situation.

It is possible for the phase space to contain many normally hyperbolic
invariant manifolds, say M,,i = 1,..., N, with the M, having both
homoclinic and heteroclinic connections. This is done by having many
different m-parameter families of hyperbolic fixed points in (6.15)g ;
having homoclinic and heteroclinic connections. If this is the case, then
we apply the following theory to each M, individually.

In the definition of M given in (6.16) the condition D, H(z,I) = 0
is simply the condition for (6.15)¢ . to have a fixed point (since J is
a nonsingular), and the condition det[D2H (x,I)] < 0 is necessary for
the fixed point to be hyperbolic.

As explained in Chapter 4 as well as in the introduction of this chap-
ter, the term normal hyperbolicity means that the rate of expansion
and contraction of tangent vectors normal to M under the flow lin-
earized about M dominates the expansion and contraction rates of
vectors tangent to M. The fact that this property holds in our case
should be obvious. Trajectories on M separate or approach each other
at best linearly in time, whereas trajectories normal to M separate
or approach each other exponentially in time. This can be quantified
through the notion of generalized Lyapunov-type numbers (see Fenichel
[1971]) which are a measure of these comparative growth rates. For de-
tails of the calculation (as well as background and definitions) of the
generalized Lyapunov-type numbers for this class of systems, we refer
the reader to Wiggins {1988a]. The most important property of nor-
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mally hyperbolic invariant manifolds (and the property that is crucial
for us) is that they persist, under perturbation, along with their stable
and unstable manifolds.

5. Let us discuss the parametrization of W*(M) N W% (M) — M given
in Theorem 6.1. First consider the notation z’(—tp). Let us consider I
fixed and z/(t) as a homoclinic trajectory of (6.15)¢ . Then z/(0) is
a unique point on the homoclinic orbit and ¢y is the unique time for
the point z’(—to) to flow to the point z!(0). (Note: uniqueness follows
by uniqueness of solutions for ordinary differential equations.) Hence,
for (6.15)0 2, '(~to),to € IR, provides a parametrization of the one-
dimensional homoclinic orbit. Hence, in the full (2m + 2)-dimensional
phase space, the expression

(6.23)
r={(z'(-to),1,60) € R?> x R™ x T™|(to, I,0) € R' x B™ x T™}

provides a parameterization of W*(M) N W¥(M) — M where vary-
ing the (2m + 1) parameters (o, I,8y) serves to label each point on
Ws(M)NWH¥(M) — M.

6. At this stage a consideration of the dimensions of M, W?*(M), and
WH¥(M) may give the reader a hint of what is to come. The phase
space is (2m +2) dimensional, M is 2m dimensional, and W?*(M) and
W (M) are (2m + 1) dimensional (i.e., codimension one). We will see
that M plays a role similar to the hyperbolic periodic points in the
transport theory for two-dimensional, area-preserving maps once we
have reduced the study of our systerus to the study of a 2m-dimensional
Poincaré map. However, we will first need a theorem showing that M
persists in the perturbed system (6.15). along with its stable and un-
stable manifolds. This might be surprising due to the extremely degen-
erate flow on M (i.e., rational and irrational flow on an m-parameter
family of m-tori); however, we will see that it is the structure of the
flow normal to M (i.e., the “normal hyperbolicity”) that is important
for its persistence. Since the system is Hamiltonian, the (2m + 2)-
dimensional phase space is foliated by the (2m + 1)-dimensional level
sets of the Hamiltonian which are invariant under the flow. This will
be important when we construct lobes and reduce to a Poincaré map.
More specifically, the following lemma will be useful.

(6.2) Lemma. Ws(M)NWY¥(M)—M = I intersects H(x, I) = h = constant
transversely.

Proof. Recall (see Wiggins [1988a]) that I and H(z, I) = constant intersect
transversely if the vector space sum of the tangent space of I and the
tangent space of H(z,I) = constant at each point of intersection spans
the tangent space of IR? x R™ x T™. Since I and H(z,I) = constant are
both codimension one, this will follow if the normal vector to I' and the
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normal vector to H(z,I) = constant are both independent. Therefore, we
will compute the two normal vectors and show that they are independent.
We begin with a special case.

Case 1. Suppose H{(z,I) is of the form

H(z,I) = h(z) + G().
Then the unperturbed field (6.15)p becomes

& = JDh(zx),
I=0, (z,1,0) e R2 x R™ x T™,
8 = D;G(I).

In this case it is easy to see that the vector normal to I" is given by

Nr = (Dzh(x),0,0)

and the vector normal to H(x,I) = constant is given by

Ny = (D,h(z), D1G(I),0).

Thus, Nr and Ny are independent provided that D;G(I) # 0, which fol-
lows from A2.
We now show that the general case can be reduced to Case 1.

Case 2. (The General Case)
Let

z=u+vy{).

Under this transformation (6.15)p becomes

u=JD:H(u+~(I),I),
I=0o,
0 = DrH(u+~(I),I).

The argument then proceeds exactly as in Case 1 since the fixed point of
the u-component of this vector field is given by u = 0. Hence, I" intersects
H(z,I) = constant transversely provided D;H(x,I) # 0, which follows
from A2. O

Transversal intersections of I' and H(z,I) = h have two important
implications.

1. Transversal intersections persist under perturbation.

2. Recall (see Arnold [1983]) that two manifolds are said to intersect
transversely at a point p if the vector space sum of the tangent spaces
of each manifold at p is equal to the tangent space of the ambient space
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at p. This specifies the dimension of the intersection of the manifolds.
The dimension of the intersection can be calculated from the dimension
formula for intersecting vector spaces. In our case, denoting H(z,I) =
h simply by h, for any point p € I" 1 h we have

dim(T,I" + Tph) = dim T, I" + dim Tph — dim (7,17 N Tph).
We know dim T,,I" = 2m+1, dim T,h = 2m+1, and, by transversality,
dim (T,I" + Tph) = 2m + 2. Hence, we have dim(T,I" N T,h) = 2m.

Another key ingredient in our theory will be the nature of the inter-
section of M with H(xz,I) = h. This is described in the following lemma.

(6.3) Lemma. For h > H(y(I),I), where I = {I € B™|H(y(I),I) is a
minimum}, M N A is diffeomorphic to S*™~1.

Proof. The proof is accomplished in two steps. First we prove the lemma
for a model Hamiltonian system where the result is obvious. Then we show
that the result obtained for the model Hamiltonian system is diffeomorphic
to the general Hamiltonian system. We begin with Step 1.

Step 1. Consider the following integrable Hamiltonian system

= JDwHO(‘Z)v
U = v,
. 2
V1 = —wWyul,
(624) . (:r,ul,...,um,vl,...,'um)€IR2XIRmX]Rm,
U, = VUrn,
s 2
Um = —Wp,Um,

which comes from the Hamiltonian

m

1
(6.25) H(z,u1,...,Um,01,...,0m) = Ho(x) + EZ [(w,u1)2 + vf] )

=1

We assume that the z-component of (6.24) has a hyperbolic fixed point
at £ = zo with a homoclinic orbit, z(t), connecting zp to itself (i.e.,
lim; 4o z(t) = z). This is equivalent to Al. We also assume that
w, > 0,2 =1,...,m. We will shortly see that this implies that A2 is satis-
fied.

Hence for this integrable Hamiltonian system we have

(6.26) M= {(z,u1,-. 1 Um, V15, V) ER*x R™ x R™|z =20} .
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Using (6.25) and (6.26) we obtain

Mnh: {(Iyulw--’um,vl’“',vm) EIR? XIRm X]R'm,
(6.27)

DN =

f: [(Wiui)z + vf] =h-— Ho(xo)}.

i=1

Clearly M N h is diffeomorphic to §?™~! provided h — Hy(zg) > 0. We
will see shortly that the requirement A — Hy(xp) > 0 is equivalent to h >
H(~(I), ) for the more general system.

Now we transform the (u — v}-component of (6.24) into action-angle
variables with the transformation

/2I;
u; = 4/ — cos 8,,
(6.28) wj

v; = 2.[1'0),' sin 01', 1= 1, ceeym.

Under this transformation, (6.24) becomes

T = JDmHo(:E),
jl =0,

(6.20)  In=0,
élzwl (xvjla"~’]m>01,-~-79m)GIR2X(IR+)mXTm,
émazwm

and the Hamiltonian (6.25) becomes

(6.30) H(z,Iy,...,Im) = Ho(z) + Y _ Liw,.

2=1

In this coordinate system we have

(6.31) M={(z,[1,....Im,01,...,0m) ER* x (R )" xT™|z =0} .

Using (6.30) and (6.31) we obtain
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MnNh= {(z,[l,...,Im,Ol,...,Gm) €1R2 X (]R+)m me|

> Lwi=h- Ho(:co)}.

i=1

(6.32)

Since (6.28) is a diffeomorphism, it follows that (6.27) and (6.32) are
diffeomorphic for h — Hp(z) > 0.

Step 2. Now we consider the general integrable Hamiltonian system (6.15),.
Using (6.16) we obtain

(6.33) Mnh={(z,1,0) € R* x B™ x T™|H(y(I),I) = h}.

It should be clear from the model problem in Step 1 that the condition
h > H(y(I), ) is necessary in order for M Nk to be nonempty.

The proof of the lemma will be complete if we show that (6.32)
and (6.33) are diffeomorphic. From A2, D;H(z,I) # 0; hence, by the
implicit function theorem, H(y(I),I) — h = 0 can be represented as
a graph over any (m — 1)-components of I. Similarly, since w; # 0,
i=1,...,m, > Liw; + Ho(xzo) — h = 0 can be represented as a graph
over the same (m — 1)-components of I. The domains can be chosen so that
the graphs are diffeomorphic. This proves the lemma. a

The importance of this lemma lies in the fact that $?™~! is compact
and boundaryless. This implies that (I'Mh)U(MNh) separates H(z,I) = h
into an inside and an outside. In terms of structures that provide barriers
to transport, a normally hyperbolic invariant (2m — 1)- dimensional sphere
($?™~1) in k = (m + 1)-d.o.f. systems is a natural analog to hyperbolic
periodic orbits (S!) in 2-d.o.f. systems.

Also, we want to stress the importance of the coordinate system for
the interpretation of MNh as $2™~1. MnNh is a sphere in the (z —u —v)-
coordinate system. We could, of course, have skipped the transformation
from (6.13) to (6.15). and developed the theory for systems expressed in
coordinates of the form of (6.15).—in this case, M N A would be expressed
in the form of (6.33) in the (z — I — #)-coordinates, and it would still serve
the purpose of providing separatrices. Indeed, normal hyperbolicity is a
coordinate-free concept. Thus, it is certainly possible (and we will see ex-
amples later) for M N h to have a more complicated topological structure;
spheres with handles, projective (2m — 1) space, and Cartesian products
of spheres, tori, and disks of various dimensions are possibilities. Compli-
cated geometrical structures can occur when Dy H(y([),I) vanishes for
some i. However, varnishing of the frequencies is usually ruled out when an
action-angle variable type transformation of the form that takes (6.13) into
(6.15), exists (cf. the section in Nehorosev [1972] on “global action-angle
variables”).
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(6.7) Exercise. For the unperturbed Hamiltonian vector field (6.13) [i.e.,
setting € = 0 in (6.13)] discuss under what conditions the (u—v)-coordinates
can be transformed into the action-angle variables as expressed in (6.15)g.
(Hint: consult the papers of Nehorosev [1972], Kozlov [1983], or Markus
and Meyer [1974].)

(6.8) Exercise. Show that requiring x = v(I) to be a hyperbolic fixed point
of (6.15)p, . implies that (I) is C” in I. (Hint: use the implicit function
theorem.)

(6.9) Exercise. Show that M is an invariant manifold for the unperturbed
vector field (6.15)g by showing that the vector field is tangent to M. De-
scribe the nature of the unperturbed vector field on the boundary of M.
What is the boundary of h N M?

(6.10) Exercise. Describe the required relationships among the frequencies
2(I) = DyH(~(I),I) for which trajectories on the m-torus 7(I) densely fill
out ¢-tori for 1 < £ < m.

(6.11) Exercise. Concerning the parametrization of I', is the map of R x
B™ x T™ — W$(M) N W*(M) — M which defines the parametrization a
C" diffeomorphism?

(6.12) Exercise. Describe completely the o and w limit sets of orbits in

W* (M) N W™(M) — M.

(6.13) Exercise. Show that I' N (H(z,I) = h) divides H(z,I) = h into two
disjoint, invariant components. Does I' divide the full phase space IR? x
R™ x T™ into two disjoint, invariant components?

6.1.3 Reduction to a Poincaré Map

We now want to describe how the study of (6.15)g, which has k = m + 1
degrees-of-freedom, can be reduced to the study of a 2k — 2 = 2m-
dimensional, volume-preserving Poincaré map. The reason for doing this
is to make the connection with the theory for two-dimensional, area-
preserving maps described in Chapter 2. The construction of the Poincaré
map proceeds in the usual way. Choose any component of the 6 coordinate
of (6.15)p which is bounded away from zero, say 6, for some 1 < i < m.
We note that by A2, 6, is nonzero for all 1 < ¢+ < m. Consider the following
(2m + 1)-dimensional surface in R? x R™ x T™ :

(6.34) £ ={(z,1,0) ¢ R> xIR™ x T™|#, =0, for some 1 <i<m}.

The requirement that g, is bounded away from zero for some 1 < i < m
implies that X' is a cross section to the vector field (6.15)p and that all
trajectories starting on X return to X. For any point (z, 1,0 = (61,...,6,_1,
0.v1y.-.,0m)) € X we denote the first return time of this point to ¥ by
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7 = 7(x,1,0). Thus, it is natural to consider a Poincaré map of ¥ into X,
denoted P, which is defined as follows.

P:Z—»E,

(6.35) (z(0), 1(0),8(0)) ~ (z(r), I(7),8(r)) .

This map preserves volume since it is constructed from a Hamiltonian vector
field (see Arnold [1978]). The reduction of an additional dimension comes
from the fact that the level sets of H(z,I) = h are invariant under (6.15)o
and that X' and H(z,I) = h = constant are transverse (note: this follows
from an argument exactly like that given in Lemma 6.2). Thus, if we denote

.

(6.36) Yhn=XN(H(z,I)=h),

then P restricted to X}, denoted Py, is a 2m-dimensional, volume-preserving
Poincaré map.

Now let us see how M, W*(M), and W*(M) enter this picture. In
Lemma 6.2 we showed that M, W*(M), and W*(M) are transverse to
H(z,I) = h = constant. From the definition of X, it should be clear that
M, W(M), and W*(M) are likewise transverse to X. Thus, following
Remark 1 after Lemma 6.2 we have

MnN X, is (2m — 2) dimensional,
(6.37) WS (M)N X, is (2m — 1) dimensional,
W (MYN Xy is (2m — 1) dimensional.

From Lemma 6.3 and the remarks following its proof, it should be clear
that M N X, is compact and boundaryless and that (M N Zp) U ("N XZ})
is a complete barrier to transport.

Let us describe in more detail two specific examples.

2-d.o.f. Systems. This is the case that has been studied the most. In this
case we have m = 1 so that M has the structure of a one-parameter family
of hyperbolic periodic orbits. From the above arguments, we can reduce
the study of this system to the study of an associated two-dimensional,
area-preserving Poincaré map where M N X} is a hyperbolic fixed point
and W*(M)N Xy, and W*(M) N X}, are the respective stable and unstable
manifolds of the fixed point.

3-d.o.f. Systems. In this case we have m = 2 and M has the structure of a
two-parameter family of two-tori. The study of this system can be reduced
to the study of an associated four-dimensional, volume-preserving Poincaré
map where M N X}, has the structure of a one-parameter family of one-tori
with W*(M) N X2}, and W*(M) N Xy each being three dimensional.
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6.1.4 The Geometric Structure of the Perturbed Phase Space

The main result that we need is the following.

(6.4) Theorem. There exists g > 0 such that for 0 < e < gy the perturbed
system possesses a C” 2m-dimensional normally hyperbolic locally invariant
manifold

M ={(z,1,0) e R®* x R™ x T™|z = 5(I,8, ;) = v(I) + Oe) ,
Ief]cB”‘clR”‘,&eTm,uelR”},

where U C B™ is a closed m-dimensional ball. M, has local C" stable and
unstable manifolds, W, (M.) and W _(M.), respectively. Moreover, MnN
he is diffeomorphic to S*™~1, where h. denotes the (2m + 1)-dimensional
level set of H(z,I) +eH(z,1,0, ;).

Proof. This follows from the persistence theory for normally hyperbolic
invariant manifolds; see Wiggins [1988a] for complete details. In the proof,
the fact that M, N h, is diffeomorphic to $2™~! follows from the fact that
the perturbed manifolds are constructed as graphs over the normal bundle
of the unperturbed manifolds. a

We remark that the reason we must make B™ slightly smaller (i.e.,
take any closed m-dimensional ball U ¢ B™) is to deal with the behavior
of the boundary of B™. This technical point is dealt with in great detail in
Wiggins [1988a).

It seems that the theory of normally hyperbolic invariant manifolds is
a subject that has not arisen very often in the study of k-d.o.f. Hamiltonian
systems, k > 3. To those familiar with, for example, KAM-type results from
Hamiltonian dynamics,Theorem 6.4 may seem somewhat surprising (and
unbelievable} due to the rather delicate dynamics on M. However, it is
important to realize that Theorem 6.4 says nothing about the dynamics on
M; it is concerned only with the persistence of M as an invariant manifold.
One might guess [especially in light of the form of the vector field restricted
to M given in (6.17)] that KAM theory, as well as the results of Pgschel,
de la Llave and Wayne, and others mentioned in the introduction, could
be used to study the dynamics on M,.. This is certainly true, and one
can subsequently conclude that most of the nonresonant m-tori in M are
preserved as well as lower-dimensional elliptic tori and whiskered tori. We
note that Graff [1974] first developed a perturbation theory for the m-tori
in M for analytic Hamiltonians. Some of Graff’s work was later extended
by Zehnder [1976].

Since the perturbed system is still Hamiltonian, the (2m + 2)-dimen-
sional phase space is foliated by the (2m + 1)-dimensional level sets of the
Hamiltonian H(xz,I) + eH(z,I,0, u;¢) which we denote by h.. We also
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note that by persistence of transversal intersections under perturbations,
he intersects W*(M,) and W¥(M,) transversely, X' intersects W*(M,)
and W*{M,) transversely, and X intersects h. transversely.

Let us now think in terms of the 2m-dimensional perturbed Poincaré
map which we denote P, with X = X' N h,. We denote

M. N T = M.,
(6.38) W4 (M:) N Zh, = W3 (M,),
WY (M) N Ey, = W“(./T/l\s)

In analogy with the usual set-up for transport in two-dimensional, area-
preserving maps, M will play the role of the hyperbolic fixed point with
the tangling of W*5(M,) and W“(M ) providing lobes and turnstiles.

Now suppose WS(.//M\E) and W“(M\E) intersect transversely in a (2m —
2)-dimensional set, P, such that S[M.,P] U U[M,,P] separates Xy, into
two disjoint components where S[M,, P] denotes the segment of W*(M.)
from M, to P and U [M\e,P] denotes the segment of W"(/T/l\s) from M,
to P.

This key sentence deserves further comment.

1. Now suppose WS(M\E) and W“(M\E) are both (2m — 1)-dimensional
manifolds in a 2m-dimensional ambient space (X}, ). Therefore, by
Remark 1 following Lemma 6.2, if they intersect transversely then the
dimension of the set of intersection is 2m — 2. e

2. The requirement that the intersection set P is such that S[M., P]U
U [.K/l\s, P] separates Xy, into two disjoint components is obviously very
important. In k-d.o.f.systems, k > 3, the intersection of Ws(/T/l\e) and
W“(XA\E) may not have this property (we will see this explicitly in the
example in Section 6.3); thus it will be important to determine when
P satisfies this condition.

We will refer to P defined in this way as a transverse homoclinic man-
ifold (or, transverse heteroclinic manifold if P arises as the intersection of
stable and unstable manifolds of two different normally hyperbolic invari-
ant manifolds). In the context of 2-d.o.f. systems (i.e., two-dimensional,
area—preserving maps) we did not need to worry about these details, since
M was a point and the transverse intersection of the one-dimensional
WS(ME) and W*(M 6) in the two-dimensional X5, was also a point with

[Ms,’P] U U[M., P] obviously separating Xy, into two disjoint compo-
nents. In forming lobes it will be important that P is compact, boundary-
less, and has the same dimension as M

Now since W* (M ) and W"(M ) are invariant, the existence of one
transverse homoclinic manifold P implies the existence of a countable in-
finity of others under iteration by P, . This leads to a tangling of W* (./(/l\s)
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%

Fig. 6.3. lllustration of possible geometries for W* (//\4\5) n W"(J\//TE).

and W“(/(/i\e) that has exactly the same character as that of the stable and
unstable manifolds of hyperbolic fixed points of two-dimensional maps; see
Fig. 6.3 for a heuristic illustration of this phenomenon. We stress that if
lobes, turnstiles, and regions can be formed with segments of these mani-
folds analogous to the situation in Chapter 2, then the transport formulas
in terms of the lobes given in Chapter 2 go through immediately for this
higher-dimensional setting. However, we will see shortly that despite the
fact that W*¢(M,) and W¥(M,) are codimension one, in higher dimensions
they may not intersect in such a way as to partition the Poincaré section
into disjoint components. First we turn to the question of the existence of
transverse homoclinic and heteroclinic manifolds.

6.2 Existence of Transverse Homoclinic and
Heteroclinic Manifolds: The Higher-Dimensional
Melnikov Theory

Suppose M, ; and M, ; are two normally hyperbolic invariant manifolds
as discussed in Section 6.1 and that we are interested in determining the
nature of W*(M, ;) N W*(Mec ;). In Chapter Four of Wiggins [1988a] the
method of Melnikov is generalized to the higher-dimensional class of systems
defined by (6.15). and it is shown that

EM(t()v Iv 00; /J')

_ 2
= ID.HG (<), 0 T ¢

(6.39) d(to, 1,60, p;€)

is a measure of the distance between W*(M, ;) and W*(M, ;) at the
point (z!(—to),I,6p). The reader should recall the parametrization of
I = Ws(M,) N W¥(M,) — (M; U M;) discussed earlier. The (2m 4 1)
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variables (to, I,0p) serve to label points on the (2m + 1)-dimensional man-
ifolds W*(M,) and W*(M;) in the unperturbed problem. By transversal-
ity, they also serve as a parametrization of W*(M. ;) and W*(M, ;) for
the perturbed problem; this point is discussed in great detail in Wiggins
[1988a, 1990a]. The distance between W*(M, ;) and W*(M, ;) is deter-
mined by measurement along one direction normal to the unperturbed man-
ifolds since the manifolds are codimension one; this point is also discussed
in Wiggins [1988a].

The function M (ty,I,6g; ) has been called the Melnikov function in
honor of V. K. Melnikov, who derived a similar function with the same
geometrical connotations in his study of time-periodically perturbed pla-
nar vector fields (Melnikov [1963]). It is shown in Wiggins [1988a] that
M (tg, I, 8p; 1#) can be expressed as

(6.40)

Mito,1,0010 = [ [(DaH, ID. 1)~ (D1, Dof)] (a} (1) i)

+wmmep/mﬁ@mwmmx

where

t+to
a(t) = :c’(t),I,/DIH(a:I(s),I)ds+00

Equation (6.40) can be written more succinctly as

(6.41)
M(tg,I,00;)= f (D H, Dy HY— (D5 H{~v(1),1),D1 H(y(I).I)),(J D ,— Do H)} (a4 (t),1:0)dt

- 00

[remember, D, H(y(I),I) = 0; we merely reintroduce this trivial term into
the formula to show the structure]. In the language of Poisson brackets, it
follows from (6.41) that M (to,1,60; 1) can be written as

o0

(642)  Mlto.T60i) = [ {H(s,1) = HOD D). F} (ab(0),10)

— o

where
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{H(,D)-HOW),D), H}
_ O0H(z,1) — H(y(1),1)) 0H 8(H(z,I)-— H(y(I),1)) 8H

Oq Op Op dq’
q= (x1’0)7
p = (x2,1)
and
8H
( ( ) I) (11: I)l:t“’)/(])’

oOH OH
S (v(I),1) = 79;(3«'»1”@:7(1)-

The value of M (to, I,00; ) lies in the fact that it is an O(e) approximation
to the distance between W*(M, ;) and W*(M, ;) that can be computed
without knowledge of the trajectories of the perturbed system. Thus, we
would expect a nondegenerate zero of M(tg, I,fy; 1) to correspond to an
intersection of W*(M, ;) and W*(M, ;). This is expressed in the following
theorem where we omit the notation for external parameters (u) in the
Melnikov function since we are interested in intersections of W*(M, ;) and
W*(M, ;) in phase space.

(6.5) Theorem. Suppose there exists a point (£, 1,8y) € R x U x T™ such

that

1. M(to,1,60) =0

2. DM(tg,1,60) has rank one on the zero set of M(ty,I,6s) containing
({07 I7 90) .

Then W* (M. ,) intersects W*( M ;) transversely in a 2m-dimensional in-

tersection manifold.

Proof. The proof consists of a simple application of the implicit function
theorem; details can be found in Wiggins [1988a). a

The Melnikov function M (g, I, 8p) is a measure of the distance between
W#(M,,;) and W*(M,, 1) i.e., the manifolds of the continuous time system
in the full phase space, IR% x ]Rm x T™. However, we may often work with
a Poincaré map restricted to a level set of the Hamiltonian. In this case we
are interested in WS(ME ) NWH(M, ;) and we want to be careful that the
independent variables in_the Melnikov function can be easily related to a
parametrization of WS(ME .) and W*(M, ;). This can be accomplished in
two steps.

Step 1 involves restricting ourselves to the Poincaré section X defined
in (6.34). This is accomplished simply by fixing 6, = 6,0 = 0 in the Melnikov
function.
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Step 2 involves restricting ourselves to the level set of the Hamiltonian.
This can be accomplished by noting that on M, W*(M), and W*(M) we
have

(6.43) H((I),I) = h.

Using (6.43), A2, and the implicit function theorem, we can write any one
component of I = (I4,...,I,), say, I;,1 < j £ m, as a function of the
remaining (m — 1)-components of I and h. This function, denoted

(6.44) L=IL,...., L 1,41, I, B,

is then substituted into the Melnikov function for I -
After these two steps are performed we have

(645) M=M (t0760af; 0@'0 = Oa h’ll') b
where

50 = (91,...,0,'_1,0“_1,...,0"1),
jE(.[1,...,Ij_l,Ij+1,...,Im),

and 0;p = 0 fixed defines the Poincaré section and h fixed defines the level
set of the Hamiltonian.

Concerning another use of this generalized Melnikov function, recall
Theorem 2.21 from Chapter 2. This result said that the integral of the
standard Melnikov function (i.e., the Melnikov function from 1-d.o.f. time-
periodically perturbed systems) between adjacent zeros gives the area of a
lobe, which in turn can be interpreted as the flux across the broken separa-
trices; similar results were obtained for quasiperiodic systems as discussed
in Chapter 4. It would be interesting and useful to show that the generalized
Melnikov function can be used to obtain a similar result for k-d.o.f. systems
(3 € k < 00). The situation is more complicated since, as we will see in the
example in Section 6.3, it may not always be possible to construct lobes.
However, we note that MacKay [1991] has recently developed a variational
principle for characterizing odd-dimensional submanifolds of an energy sur-
face.

6.3 An Example

We now return to the example described in the introduction; three un-
coupled, 1-d.o.f. oscillators (a pendulum and two harmonic oscillators). We
will perturb this integrable 3-d.o.f. Hamiltonian system by considering three



236 Chapter 6. Transport in Higher Dimensions

different types of coupling among the oscillators. The perturbations to the
Hamiltonian (6.5) that represent the three types of coupling are given by

(6463) Eg(qb’vvmlyylax%y?) = E [’Yl(-rl _ ¢)2 + 72(12 - ¢)2] 5

2
(646b) Eﬁ(¢avaml7yl,x2ay2) = % [(ml - .’B2)2 + FY(:El - ¢)2] )
(646C) 5ﬁ(¢7v’ 1'173/1,932,3/2) = g [(ml - 1:2)2 + 7(372 - ¢)2] )

where 71, 72, and ~y are parameters. The reason for choosing three different
types of couplings is to illustrate the sensitivity of our results [i.e., the geom-
etry of W*(M,) N W*(M,)] to the specific form of the perturbation. This
is not a silly statement. Consider a 2-d.o.f. integrable Hamiltonian system
having a hyperbolic periodic orbit whose two-dimensional stable and unsta-
ble manifolds have a coincident branch in the level set of the Hamiltonian.
We would expect in this case that virtually any Hamiltonian perturbation
would result in the familiar homoclinic tangle we see in two-dimensional,
area-preserving maps. Indeed, many key results on perturbations of inte-
grable Hamiltonian systems (e.g., the KAM theory, Nekhoroshev’s theorem)
describe a geometrical picture that is independent of the specific functional
form of the perturbation. We will see that, in the context of the geometry
of codimension one barriers to phase space transport, the specific form of
the perturbation does have a qualitative effect.

Our discussion will proceed as follows. We begin with a brief review of
the geometrical structure of the unperturbed phase space. We then turn to
the perturbed phase space and discuss the Melnikov functions for each of
the three types of couplings. With the Melnikov functions in hand we then
study the geometry of W*(M_.) N W*(M,) and its relation to phase space
transport. In particular, the construction of lobes and turnstiles will be of
interest.

Geometry of the Unperturbed Phase Space. Recall from the introduction
that the Hamiltonian of the unperturbed system is given by

v2 2 w2x2 2 w2x2
(647) H(¢7v7z13y13x27y2):7_cos¢+y2l+_12—1+y72+-22—2

which gives rise to the vector field
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¢ =0,
v = —sin ¢,
(648) xl_yl,2
Y1 = —wiTy,
=Y2,
Y2 = —w%zg

We argued that

(6.49)
M= {(¢’vaxlayla$2ay2) € Sl X IRl X Rl X lRl x ]R.l X ]R,1|¢ =TV = 0}

is a normally h'yperbolic four-dimensional manifold invariant under the flow
generated by (6.48) and that M has five-dimensional stable and unstable
manifolds, denoted W*(M) and W*(M), respectively, which coincide along
two homoclinic manifolds that separate the six-dimensional phase space
into three disjoint regions. These homoclinic manifolds have the following
parametrization

Iy = {(¢,v,71,41,%2,%2) |¢ = £2 sin™" (tanh(—to)),
v = +2 sech(—to), to € R'}.

The level sets of the Hamiltonian are given by

? i el 43, wiad
(6.50) h_?_COS(tH_E 5 +2+ 5

Using (6.49) and (6.50) we see that M Nk is given by

2,2
_ yi | ozl | yi | wiad
(6.51) h—1=2l+ 22424 22,
Thus, for h > 1, M N h is diffeomorphic to the three sphere, S3.
The reader should notice that the coordinates of (6.48) are not of the
same form as (6.15)g. This can be remedied by transforming (z,y:1) and

(z2,y2) into action-angle variables as follows:

/21
T, =4/ — sin 8;,
(6.52) wi
yi = V26Lw; cos 0;, 1=1,2.

Henceforth we will assume that this has been done. The reason we did not
immediately give the Hamiltonian (6.47) in these coordinates is that we
believed the geometry might initially be somewhat clearer in the Cartesian
coordinates (z1,y1, T2, y2)-
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The Melnikov Functions for the Three Types of Couplings. Using (6.40},
(6.47), (6.46), and (6.52), the Melnikov functions for the three types of
couplings are given by

My (I, 13,010, 020,t0)

2r Wy .
'yul—(;ll sech ~§l sin{wito + 610)
(21
+ 72 22 sech w2 sin(w2t0 + 920)] s
Wo 2

(21
(653b) Mi(Il,Ig,olo,egg,tg) = :’:27I”')’ 'Jl sech 16211- sin(wltg -+ 910),
1

= X2r

(6.53a)

J2I.
(653C) M:t(Il, I2, 010, 020, to) = :i:27l"y w—z sech ZT%Z- Sin(wzto + 020).
2

Note that the zero set of M, is the same as the zero set of M_ (where
M, denotes the Melnikov function computed on I'y and M_ denotes the
Melnikov function computed on I ). Therefore, in the following we will
omit the subscripts + and — on the Melnikov functions.

We want to use these Melnikov functions to describe the geometry of
We (M) N he and W*{M,) N h.. Now suppose the Poincaré map

(6.54) Pr, : Xy, — X,

is defined on the cross-section X}, = X' N1 A, where

(6.55)
= {(‘pvvallsel»-{Zae‘Z) € Sl X IRl X ]R+ X Sl X lR,+ X 51!02 = 0}’

then we can set 3 = 0 in (6.53). Also, recall that on M, W*(M), and
W#(M) we have

(6.56) h~1= T + Iws;
hence,
11
(6.57) L=zt =ha
wo

Also, using (6.56), we note that
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-1
(6.58) L € {0, h } .
wy

Therefore, using (6.57), we rewrite (6.53) as

M (I1,6010,t0;0, h

27
=2 |m a4 h —_— sm(w1t0 + 6010)
{6.59a) w1
2(h-1-1
+ 2 —(——————2——@ sech ez sinw2t0],
wj 2

I,
(6.59b) M (I, 610,40;0,h) = 2m,/2 ech " sin(urto +610),
wi

(6.59¢)

20h—1-1
M (I, 810,020,050, h) = 27y (——wz—lﬂ sech W—;E sin wsto.
2

This new notation, M(I1,815,0,%0;0,h), explicitly denotes that we are
on the 8, = 0 cross-section and the level set of the Hamiltonian de-
noted by h. The three variables, I1, 019, and {o, provide a parametrization
of WS(ME) and W“(ME) Thus, the two-dimensional surface defined by
M(Iy,09,t9;0,h) = 0 (h fixed) describes the intersection set of the three-
dimensional manifolds W’(A//[\E) and W* (/TA\E) in the four-dimeunsional X,
(recall the discussion immediately following Theorem 6.5).

Construction of Lobes and Turnstiles. We now_discuss the construction
of lobes and turnstiles from W#(M.) and W*(M,) for the three different
types of couplings. In order to do this we will need to understand the nature
of the intersection of W*(M;) and W*(M.). This will be described by the
zero set of the Melnikov function. The zero sets will be represented as two-
dimensional surfaces in J; — ;g — #g space. Since the two-dimensional zero
sets may merge, it is often difficult to represent the situation in a three-
dimensional figure. Therefore, we will show the intersection sets in a series
of fixed I slices of the I} — 6,9 — to space for I; ranging from zero to hwll
The reader may wonder how this representation of the intersection of
W“’(M )and W“(M }is manifested in the 2-d.o.f. case, i.e., where M. is
a point and W*(M,)and W*(M_,)are curves. In this case we are study-
ing the zero set of M(tp) = 0 (i.e., there are no [ or 0 variables) so that
the zero set of M is a set of dlscrete points on IR Hence, this repre-
sentation of the intersection of W? (M ) and W“(M )for 2-d.o.f. systems
corresponds to collapsing the two-dimensional lobes to a curve in such a
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2 -dof. M(t,;h)=0
(a)

Collapsing Lobes
Omto the t, Axis
——

M (Inem-ln; hy=0

¥ (b)

l
Iy
1

e

Fig.68.4. A geometrical representation of W*(M.) and W*(M,). (a) 2-d.o.f.
systems: two-dimensional Poincaré map. (b) 3-d.o.f. systems: four-dimensional

Poincaré map and the intersection of the three-dimensional W* (/\75) and W“(/T/l\e)
are represented in I — 61 — tg space.

way that the two intersection points defining the lobe are preserved. Al-
though this eliminates some information concerning the lobe (in particular,
its volume), it preserves all information concerning the intersection of the
manifolds that form the lobes. Hence, this representation of the intersection
of W#(M,)and W*¥(M,)is particularly useful for 3-d.o.f. systems where
the intersection set of WS(J(A\E) and W“(KA\E) can be represented in three
dimensions with no relevant loss of information. We illustrate these ideas

in Fig. 6.4.
We now consider the first type of coupling.

eH(¢,v,11,15,61,62)

2 2
/ [2I.
2?2-[71( gwI—llsiné?l—q&) +72( :)f-sin02—¢) ]
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From (6.59a) the Melnikov function is

M(I,010,10;0,h)

2
=2r|y 2h sech 1L sin{wito + 010)
(6.60) wi 2
2h—1-1
+ 2 (————2—1‘01—) sech w2 sin UJQt():I.
ws 2

In order to define lobes and turnstiles we must have Ws(ﬂa)and W“(/(A\s)
intersect in a countable infinity of disjoint components (note: this behav-
ior is generic for 2-d.o.f. systems). Suppose P is such a component. Then

S[M.,P] UU[M,,P] can be used to partition X, into disjoint compo-
nents. Moreover, the lobes between P and P,_ 1(73) will form the higher-
dimensional analog of a turnstile that will control the flux between the
different regions.

In Fig. 6.5, we plot the zero sets of (6.60) for h = 2, v; = 9, and
w1 = wp = 1. In Fig. 6.6, we plot the zero sets of (6.60) for h = 2,
wp = ¢ =1, and 71 = 72 = 1. In both cases we see a similar phe-
Nomenon occur. Namely, at some value of I; the zero sets merge. This
implies that WS(M )N W"(M }is a connected set. As a result, we can-
not partltlon Xy, into disjoint regions using segments of WS(M )and
W“(ME). Thus, a point can move through the homoclinic tangle cre-
ated by Ws(/(/(\g) N W“(M\s) under iteration by P, without ever crossing
Ws(ﬂs)or W"(/TA\E) This phenomenon is solely a result of our system
having three or more degrees of freedom (and it is not Arnold diffusion, as
we will see shortly).

We now want to argue that this type of behavior, i.e., the impossibility
of defining disjoint regions separated by the codimension one W*(M,)and
W“(/T/i\e) , always occurs for this type of coupling.

The condition for the merging of the intersection sets of (6.60) is given

by

(6613.) M(Il,010,t0§07h) =0.
M

(6.61b) ‘86795(117 010,050, h) =0,

(661C) 8M 0103 th 07 h) =0.
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6 L T T‘l L T ] T T “ﬁq r_
L1 oo q i
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L -
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2 ] -
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-6 - i b 1 L | B ;;L‘]
0 2 4 6

(@)

Fig. 6.5. (a) Plots of the zero sets of the Melnikov function for coupling (6.46a)
shown in a series of fixed [ slices for [ € (0,1, k=2,71 = Y2 ,andw) =wz = 1.
(b) A three-dimensional representation of the zero sets of the Melnikov function in
I — 610 — to space. The curve in the figure indicates how the zero sets fail to divide
space into disjoint regions in that the curve can wander throughout Iy — 619 — to
space without passing through a zero set.
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. ¢
& ¥
11 Y
' H i (b)
/el()
4—4—

Fig. 6.5. Continued.
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Fig. 6.6. Zero sets of the Melnikov function for coupling (6.46a) shown in a series
of fixed I, slices for I; € [0,1], h =2, 1 = 42, and w1 = %2 = 1. The results are
qualitatively the same as those shown in Fig. 6.5.

2

[Note: from (6.61) it is clear that, for h fixed, this merging of the intersection
sets generically occurs only at isolated points in I; — 819 — ¥ space.] Using
(6.60), (6.61) is given by

(6623.) (11(11,(4)1, ’71) sin(w1t0 + 010) + a2(11,wl,w2, h, ’72) sin wgtg = 0,

(6.62b)

a1 (I, w1,v1) cos(wity + O10) = 0,
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(6.62c)

a1 (I, wr,M)wr cos(wity + 010) + az(Ih,wr,wa, ks Y2)ws coswyty =0,

where
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= 044757

LI L B L L o

MRS

| SR N\ VIR

9!0

Fig. 6.6. Continued.

21
ar1(h,w1,m) = 217 21 sech Tr—wl-,
W1 2

ax(ly,wi,ws,¥2,h) = 21y,

2(h -1- Ila)l)

TTWwao

ech
2
w;
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It should thus be clear that (6.62) can be satisfied if and only if

(6.63) ay (w1, m) = az(h, w1, w2, b, 72)-
Now consider wy,ws,v1,72 and h > 1 as fixed. It is easy to verify that

6(11

901 S 9
oL, ~

and
day
ohL
Moreover, ay € [0, 27714/ —@71- sech 1] and az € [27y2 ,/a(—huéﬂsech T,
0]. Hence there exists a unlque value of I, such that a;(f1,ws,71)
= ay(l1,wy,ws, b, Vo) for any wy,wa, 1,72 and b > 1. Therefore, for this
type of coupling it is impossible to partition the phase space into disjoint
regions using W* (M Vand W“(M ).
We next consider the second type of coupling.

€g(v5 ¢$ 11112101702)

2 2
/ / /21
:Et:( —2—!’1 sin 6, — 2~I-2- sin 92) +’Y( —1$in01—¢) }
2 w1 wo w1

From (6.59b) the Melnikov function is given by

<0.

(6.64) ML, 610,0;0,h) = 2#7\/2I sech ——2—1- sin{wito + 610).
wh

In Fig. 6.7 we plot the zero sets of (6. 64) which are easily shown to be
o = 1”’—9“1 I e [O ] n =0, £1,... . From this figure we see that

we (Me) ﬂ WU (M,)is a connected set. Therefore, as for the first type
of coupling, segments of Ws(jfl\s)and W“(ﬂg) do not partition X}_ into
disjoint regions. As a result, the straightforward generalization of lobes and
turnstiles from the 2-d.o.f. case does not immediately follow.

Finally, we consider the third type of coupling.

eH(v,¢,11,15,61,62)

2 2
_c [(,/E i - /2 in 92) (sz_ 92_4,) }
2 wi Wa w2

From (6.59¢), the Melnikov function is given by
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Lat

(@)

| U . VIR

(b)

Fig. 6.7. (a) Zero sets of the Melnikov function in a fixed I, slice for coupling
(6.46b) appear the same for all I € [0, hw—'ll] The zero sets are qualitatively the

same for arbitrary In,y,wi,ws,h > 1. (b) Three-dimensional representation of
the zero sets in I — 1 — 619 — to space. The curve in the figure indicates how the
zero sets fail to divide space into disjoint regions.

2h—1-—
(6.65)  M(I1, 010, t0;0, k) = 27y ﬂ—wzll—“") sech % sin wato.
2

In Fig. 6.8 we plot the zero sets of (6.65) which are easily shown to be tg =
2,010 € [0,27], I, € [0, hw;‘l],n = 0,%1,... . From the figure we see that
W"(ﬁfl\e) N W“(ﬁe) consists of a countable infinity of disjoint components;
choosing one component, denoted P, it follows that S [M\E, PlUU [/(4\5,79]
partitions X, and that there are lobes between P and P, 1(P) that form
a turnstile in the sense familiar from the theory for two-dimensional maps.

Hence, the theory from Chapter 2 can be applied immediately for this
problem.
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Fig. 6.8. (a) Zero sets of the Melnikov function in a fixed I slice for coupling
(6.46¢) appear the same for all I) € {0, _1—j The zero sets are qualitatively the

same for arbitrary I, v, w1, w2, h > 1 . (b) Three-dimensional representation of
the zero sets in I ~ 1 — 61 — to space. For this form of coupling the zero sets
divide the space into disjoint regions.

Summary. We end this example with several remarks and observations.

1. Even though WS(M yand W“(Ma) are codimension one in X, seg-
ments of W#(M,)and W"(M ) starting at M., and ending at an in-
tersection set of W“’(Ms)and W“(Mg)may not partition Xy, into
disjoint components. This is a phenomenon that can occur only in
k-d.o.f.systems, k£ > 3. In this example we saw that whether or not
the phase space could be partitioned by segments of W’(M )and
|3 % (Me) depended on the nature of the coupling of the oscillators.

2.  We remark that if we had instead considered nonlinear oscillators, i.e.,
an unperturbed Hamiltonian of the form
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Fig. 6.9. The geometry of a resonance associated with a period three island chain
in a two-dimensional map.

2
H(¢,v, 11, 1) = - +cos ¢+ Ci(11) + Ga(Ra),
our results would be unchanged provided

dG,

oI,
8G,
arz

2

>0,

<0, i=12

6.4 Transport Near Resonances

Consider a two-dimensional area-preserving map (possibly arising as the
Poincaré map of a 2-d.o.f. Hamiltonian system). By a resonance in such a
map we mean the region near an island chain of alternating hyperbolic and
elliptic periodic points (each of the same period, of course). To be more
precise, a resonance is the region bounded by segments of the stable and
unstable manifolds of the hyperbolic periodic points. We illustrate this in
Fig. 6.9 for a period three island chain; also, see Examples 1.2 and 2.2 from
Chapters 1 and 2, respectively. Thus, the stable and unstable manifolds of
the hyperbolic periodic points form partial barriers to transport. In partic-
ular, it should be clear that their role as barriers is such that they inhibit
points from entering or leaving the resonance. Points enter or leave the
resonance according to the dynamics of the turnstiles associated with the
partial barriers that bound the resonance. We refer the reader to Chapter
2 where a general theory that describes many aspects of this situation was
developed.
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There has been much interest and speculation as to whether a similar
geometrical picture holds for systems with three or more degrees of free-
dom. Roughly speaking, the question is “Are there barriers to transport
(i.e., codimension one invariant manifolds) associated with resonances in
Hamiltonian systems with three or more degrees of freedom?” We will use
the theory developed in Section 6.1 to show that the answer to this ques-
tion is “yes” under certain general conditions. We begin by specifying the
mathematical framework that we shall work within.

We consider perturbations of integrable Hamiltonian systems of the
form

(6.66) H(I,0) = Ho(I) +Hy(1,0), (I,0) € B™xT™.

The corresponding Hamiltonian vector field is given by

[ = ~eDyH,(1,0),

(6.67) .
0= D[H()(I) + €D1H1(I, 0)

The m-vector

(6.68) Dy Ho(I) = 2(I)

is referred to as the frequency vector. We assume that the vector field is
C™, r > 2m (see Section 6.1.1).

Note that the phase space of the unperturbed system is foliated by in-
variant tori of elliptic stability type (recall the discussion in the introduction
of this chapter), so there is no hyperbolicity in the unperturbed problem
and, consequently, no normally hyperbolic invariant set having codimen-
sion one stable and unstable manifolds. We will see that such structures
are “born out of a resonance” in the perturbed system.

6.4.1 Single Resonances
We begin by studying the dynamics near a single resonance. By the phrase
“single resonance” we mean the following.

Single-Resonance Assumption. There ezists n € Z™ — {0} such that at
I=1I"

(6.69) (n, (I")) = Em: n 2,(I") = 0.

1=1
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Moreover, other than an integer multiple of n, there is no other n € Z™ —
{0} such that (6.69) s satisfied at I = I" (this is the “single” resonance
condition).

Now we will derive a normal form that describes the dynamics near
this resonance. Several steps are necessary.

Step 1. Ezpand the Perturbation in a Fourier Series.
We expand H;(I,0) in a Fourier series whose Fourier coefficients are
functions of I. The Hamiltonian then takes the form

(6.70) H(I,6) = Ho(I) +¢ > ax(I)e*?).
keZ™

Step 2. Separate Qut the Resonant Part.
We remove the resonant term from the Fourier series in (6.70) and
rewrite the Hamiltonian as

(6.71) H(I,0)= Ho(I)+¢ Zacn(I)ezc(n,B) +e Z ak(I)e’<k’9),
ceZ ke::—m)

where ¢ runs through all integers.

Step 3. Use Normal Form Theory to Transform the Nonresonant Part of
the Hamiltonian to Higher Order in e.

Using normal form theory (in particular, perturbation methods due
to Poincaré, Lindstedt, and Von Zeipel as described in, e.g., Arnold et al.
[1988]) we can introduce a “near identity” coordinate transformation that
transforms the nonresonant part of the Hamiltonian to O(g?). Assuming
that this has been done, and retaining our former notation for coordinates,
the Hamiltonian takes the form

(672) H(Ivo) =H0(I) +eV (<n70>aI)+0(52)a
where

V((n,0),1) =" acn(I)e™?),

ceZ

(6.14) Exercise. Perform the normal form calculations and compute an ex-
plicit form for the O(¢?) terms in the expression for the Hamiltonian given
in (6.72).

Step 4. Introduce Coordinates Describing the Dynamics Near the Reso-
nance.
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Let NV be an m X m matrix whose entries are integers that are chosen
as follows:

L (N, Nig,...,Ni) =1
2. (Nia,Nig,...,Nim) =70%,1=2,...,m are chosen so that the set of m
integer m-vectors, {n,n?,..., 7™}, is independent.

{Note: It should be clear that N chosen in this way is invertible; see Arnold
et al. [1988] or Cassels [1957).)
We now make the following canonical, linear coordinate transformation

(6.73) v =N,
' p=(NY'I-1I7),

where Nt denotes the transpose of the matrix N. By our choice of N it
follows that

(6.74) ¥ = (n,0).
(6.15) Exercise. Show that (6.73) is a canonical transformation.

Substituting (6.73) into the Hamiltonian (6.72) gives

(6.75) H(p,v) = Ho(I" + N'p) + eV (¢1,1I" + N'p) + O(?).

Taylor expanding (6.75) about I = I" gives

1

2
Hip,9) = Ho(I") + ('), T () (V') + (S0 (1), N'p)

+eV(, I") + O(e?) + Ofep) + O(p%).
Step 5. Neglect Higher-Order Terms and Study the Geometry of the Result-
ing Integrable Structure.

Neglecting the constant term Ho(I") and the O(e?), O(ep), and O(p?)
terms we define the single resonance Hamiltonian as

(6.76)

0H,

1
(6.77) H'(p,¢) = §<p, Mp) + <NW(IT),1)> + eV, I7),
where
_9%Hy, .
(6.78) M=N—5 (I")N.

(6.16) Exercise. Show that M is a symmetric m X m matrix.
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The integrable structure of the single-resonance Hamiltonian should be ap-
parent; H"(p,v),po, ..., pm are integrals. Before describing the geometry
of the phase space, we want to make some historical remarks.

The transformations (6.73) which describe the dynamics near a reso-
nance are not new. The idea of using certain integer combinations of the
phase angles as coordinates to describe the dynamics near resonance is old
(going back to at least the last century) and we do not know to whom
to attribute the original idea. The technique is ubiquitous throughout the
literature on nonlinear oscillations. The reader can find a clear prescrip-
tion for obtaining the resonant Hamiltonian (6.76) in the paper of Chirikov
[1979]. Theorems describing integrals arising near resonances can be found
in Bryuno [1988] and Arnold et al. [1988]. The recent book of Lochak and
Meunier {1988] also contains a wealth of information on such problems.

Now we will describe the geometry of the phase space associated with
the single-resonance Hamiltonian vector field. This vector field is given by

OH™ =
o = Mup1 + ;Mupi,

. _ TOHT _ aV(yy,I")
P1= 50 E

1/.)2 = OH ZMmpz + ZN21 i 7

1 =

I 5
. —0H"
P2= 5 = 0,
: 6HT i
(679) 1/)3 = = Z M31pz + Z N3z ’
i=1
. —OHT
D3 = s 0,

; OH™
wm'—: 5 ”ZMmzpz“*‘ZNsz IT
Pm i1

) —0H"
P o
where

aHo

02,17 =

)

[and where we have used the fact that M,-J = Mj; in order to simplify
(6.79)].
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Let us now consider the geometrical structure of the phase space of
(6.79). We begin by considering the structure of the (1; — p;)-components
of (6.79) which we rewrite as

U1 = Mypy + ZMuPi,
(6.80) i=2
VT

Py

This system has the structure of a planar Hamiltonian system depending
parametrically on (ps, - - -, P ). More precisely, (6.80) is a “pendulum”-type
equation. Since V' (11, I")/0y1 has zero average, generically it will have a
zero for 91 € (0, 2r]. We assume that this zero is nondegenerate in the sense
that (8%2V (1, I7)/0¢?) # 0; for definiteness, say (8*V (1, I7)/0vy2) < 0.
Then, by periodicity, dV (¢, I")/8¢; has another zero at which (82V (¥,
I™)/ 8y?) > 0. Thus, (6.80) has two fixed points, one hyperbolic in stability
type and denoted by

=

(6.81) (1, p1) = (1/)?, “K}; ZMupz')
1=2

and the other elliptic in stability type and denoted by

-1 &
(682) (1/"1’171) = (wj([ia _]VE ZMlipi> )
=2

where, for My; > 0, (w?,—M#“ >~ Mjy;p;) is the fixed point of (6.80) at
i=2

m

which (8%V (¥}, I")/841) < 0 and, for My < 0, (¥f, —37= > Mup:) is
i=2

the fixed point of (6.80) at which (52V (v}, I7)/8¢?) > 0.

Since (6.80) is a planar Hamiltonian system periodic in 11, we ex-
pect the stable and unstable manifolds of the hyperbolic fixed point to
generically coincide along two homoclinic or heteroclinic orbits to create
a resonance region qualitatively similar to the situation illustrated in Fig.
6.10.

We denote the pair of homoclinic or heteroclinic orbits connecting the
hyperbolic fixed point to itself by (¥F_ (), pf (1), (¥} _(t),ph (1)), re-
spectively. We remark that it may happen that (6.80) may have more than
one resonance region, multiple homoclinic or heteroclinic orbits, etc.; how-
ever, in that case we can apply our results to each region individually. This
“pendulum-type” phase space structure underlying resonant behavior is
typical; Melnikov [1963] gives a fairly complete analytical treatment.
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v N
K K

Fig. 6.10. Generic resonance region in (6.80).

Thus the full system (6.74) has many similarities to the example in
Section 6.3. The following result quantifies the relevant features of the ge-
ometrical structure of (6.79).

(6.6) Theorem. Under the generic conditions described above, the surface

1 m
M = {(1/11,171,1[12,]’2,‘ "a¢mapm) Idjl = TP{L,PI = _']M—IIZMNPZ}

=2

is a (2m — 2)-dimensional normally hyperbolic manifold invariant under
the dynamics. Moreover, M has (2m — 1)-dimensional stable and unsta-
ble manifolds, denoted W*(M) and W* (M), respectively, that coincide to
create two homoclinic manifolds, denoted I'y and I'—, respectively. These
homoclinic manifolds can be parametrized as follows:

F:t= {(1/’1,171’1/)2»172, . "wmapm) lw1=w{ld:(_t0)1p1= + p?,i(‘_t(])a tOEIR'} .

Proof. The fact that the M is invariant under the dynamics generated by
(6.79) and has dimension (2m — 2) is easily verified (note: geometrically,
invariance means that the vector field (6.79) is tangent to AM). Normal
hyperbolicity of M is proved in Wiggins [1988a, Proposition 4.1.4} from
which also follows the fact that M has (2m — 1)-dimensional stable and
unstable manifolds. The fact that W#(M) and W*(M) coincide along two
homoclinic manifolds can be explicitly computed due to the fact that the
vector field is integrable. ]

The intersection of M with a level set of H”(p, ), denoted h, is given
by
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Mnh= { (1/)1,171,' e ,'lpm,pm) I%(p’ Mp) + <NQ(IT)’p)
(6.83)

h rr bk _ 1 “
=h—sV(1/11,I ),1/)1 —¢1,P1———AJ—H§M11P1}.

Thus MNh is (2m — 3)-dimensional and has the structure of the Cartesian
product of an (m—2)-dimensional quadric surface in (ps, . . . pn,) space given
by

1 1 «
(684) '2_<p’ Mp)+<NQ(IT),p>+EV (1/){1, IT)_h =0,p1 = —El_ ZMlzpz
1=2

with 7™, I’y Nk and I"_nNh divide the level set h into three disjoint regions
and form complete barriers to transport between these three regions.

Let us now make some remarks about the coordinates {(¢;,p1,
<+ vy ¥m, Pm)- Specifically, we want to point out that they are not the typical
local action-angle variables defined near an invariant torus of an integrable
Hamiltonian system such as those constructed by Arnold [1978]. This is be-
cause g—:,{:, for any i € {1,...,m}, may vanish. Whether or not this happens
depends on the geometrical properties of the quadric surface in (pg, - -+, pm)
space defined in (6.84). We will see this explicitly when we specialize to 3-
d.o.f. systems shortly. This is not important for the existence of separatrices
since the existence and persistence theory of normally hyperbolic invariant
manifolds does not depend on the explicit geometrical properties of the
manifold (e.g., whether or not it is a sphere). However, it does make one
wonder whether or not the geometry of the normally hyperbolic invariant
manifold whose stable and unstable manifolds act as separatrices has an
effect on phase space transport near the resonance.

6.4.2 Higher-Order Terms in the Normal Form

The higher-order terms in the normal form for the single resonance given
in (6.82) will have an important effect on the dynamics. This is because
H"(p,v) gives rise to an integrable system. From the perturbation the-
ory for normally hyperbolic invariant manifolds, M, along with its stable
and unstable manifolds, will persist as manifolds, denoted M., W*(M,)
and W*"(M.), respectively, that are diffeomorphic to M and its stable
and unstable manifolds, respectively. However, generically we would not
expect W#(M,.) and W*(M,) to coincide, but to intersect transversely.
To quantify this situation one would like to apply the higher-dimensional,
Melnikov-type theory described in Section 6.2. However, there are some
serious mathematical difficulties with this procedure. These stem from the
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fact that in order to apply the latter theory, the system must be in the
form of (6.15).. For the single-resonance Hamiltonian system to assume
this form we must rescale ¢ and p by /¢. Subsequently, when the Mel-
nikov calculation is performed one finds that the Melnikov function de-
pends explicitly on ¢; indeed, it is typically exponentially small in £. As a
result, the Melnikov function does not dominate the higher-order terms in
the expansion in ¢ for the distance between the manifolds given in (6.39)
(see Wiggins [1988a, Section 4.3] for more on this problem). This prob-
lem has been studied for time-periodically perturbed 1-d.o.f. Hamiltonian
systems and two-dimensional area-preserving maps by Holmes, Marsden,
and Scheurle [1987a, 1988], Lazutkin et al. {1989}, Chang and Segur [1990],
Gelfreich [1990], and Fontich and Simo [1990]. Their results indicate that
the standard two-dimensional Melnikov theory is a good estimate for the
splitting of the manifolds under appropriately defined conditions. Higher-
dimensional Melnikov calculations may yield interesting and provocative
results in our situation; however, it must be emphasized that, for now at
least, these calculations can only be considered formal.

6.4.3 Single Resonance in 3-d.o.f. Systems

We now want to consider the problem of transport near a single resonance
in a bit more detail by explicitly considering 3-d.o.f. systems. This will
provide us with the advantage of being able to write down and consider
each of the terms in the single-resonance Hamiltonian system; also, it will
be possible to visualize some key aspects of the geometrical structure.

One might be tempted to conjecture that in understanding the ge-
ometry of the global phase space structure of near integrable Hamiltonian
systems the most difficult obstacles are encountered in going from an un-
derstanding of 2-d.o.f. systems to 3-d.o.f. systems. Stated another way, if
we were able to understand 3-d.o.f. systems, then we would be able to un-
derstand k-d.o.f. systems for 3 < k < oco. Much of this optimism stems
from the fact that descriptions of Arnold diffusion and the failure of KAM
tori to act as barriers to transport are described in such a “cartoonish”
fashion that they could apply in almost any situation with k-d.o.f., for any
3 < k < 0o. Nevertheless, we tend to share this view. However, we caution
that it is based largely on ignorance, since at present we do not have even
one example of a near integrable 3-d.o.f. system that is understood at the
most miniscule fraction of the level at which we understand the standard
map defined on the cylinder.

The single-resonance Hamiltonian vector field, including the higher-
order terms in the normal form, for a 3-d.o.f. system is given by



258 Chapter 6. Transport in Higher Dimensions

(6.85)
1 = Mu1p1 + (Mi2p2 + Misps) + O(p%) + O(e),
oV (¢, I7
pr = —e—(d)l——) + O(ep) + O(e?),
MY
P2 = May1py + Maopa + Masps + [No1 21 (17)2 + Noof22(I7) + Nag£23(17)]
+0O(p%) + O(e),

p2 = O(ep) + O(?),
s = Mz1p1 + Maopz + Masps + [N31021(I") + Naaf22(17) + N33 $25(I7)]
+0(p*) + Ofe),
p3 = O(ep) + O(e?).
We want to rescale t and p so that (6.85) is an O(,/€) perturbation of the
integrable, single-resonance Hamiltonian system. However, first it would
be convenient to eliminate the constant terms N;;£(I") + Niaof2:(I7) +

Ni325(I7), i = 2,3, from the equations for o and 3, respectively. This
can be accomplished by letting

(6.86) i — ¥; + (Nin1(I") + Niy 2o (I") + Ny 25(I"))t, i=2,3.

We note that this will introduce ¢ explicitly in the higher-order terms. Next
we rescale p and £ as:

pi — \/gpu t= 1)2’37
(6.87) t

7

after which (6.85) can be rewritten as

¥1 = Myp1 + (Mi2pz + Misps) + O(VE),

m=1@§%i2+m¢a

(6.88) = Maip1 + Maspa + Masps + O(Ve),
P2 = O(Ve),
Y3 = Ma1p1 + Msape + Masps + O(Vz),
p3 = O(Ve).

Neglecting the O(+/€) term gives the following integrable system
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U1 = Myp, + (My2ps + Myaps),

by = =0V (¢1,1")
o ’
(6.89) 1y = Ma1p1 + Maopy + Maps
p2 =0,
Y3 = Ms1p1 + Magps + Mssps,
ps = 0.

Applying (6.83) to our 3-d.o.f. example, we find that M Nk is given by

MMh= {(¢1,P1,¢2,P2,¢3ap3) |Q(p2’p3) = 0’1/)1 = w?’

(6.90) s
1
=—— S Mup, \,
D1 M ; 11D, }
where
2yv. 2, 1 MY o
Q(p2ap3) = (M11M22 - M12)p2 + = M33 — 55— | D3
(6.91) 2Mn 2 My,
' 1
+ —— (M1 Maz — M1aMi3) paps + V (¥],17) — h.

M

The function Q(p2,p3) = 0 is the general equation for a conic section in
p2 — p3 space. If we let

1
= M1 My — M2
A 2M11( 11Vl22 12),
1 M?
6.92 B=_Ms— 1),
( ) 2( 33 Mll)
1
C= 7 (M1 M3 — My M3),
11

then it is well known (see, e.g., Thomas and Finney [1984] or Shilov [1977])
that the quantity

(6.93) D =4AB — C*?

determines the nature of the curve defined by Q(p2,p3) = 0 in the ps — p3
plane. In particular, we have

D > 0 = Q(p2,p3) = 0 is an ellipse, circle, point or no points satisfy the
equation;
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D = 0= Q(p2,p3) =0 is a hyperbola or two intersecting lines;
D < 0= Q(pz2,p3) =0 is a parabola, a line, or two parallel lines.

Thus, there are a variety of possible geometries for M N h and the impli-
cations for transport near resonances are completely unknown. It is truly
remarkable that in going from 2-d.o.f. to 3-d.o.f. the structure of the in-
variant sets whose stable and unstable manifolds give rise to separatrices
can be so different. For 2-d.o.f. M Nh is a periodic orbit; for 3-d.o.f. we see
from above that there are many cases to consider. Indeed, M N h need not
even be connected.

6.4.4 Nonisolation of Resonances: Resonance Channels

For systems with three or more degrees of freedom a fundamentally new
phenomenon arises; namely, resonances are not isalated on the level set of
the Hamiltonian. Let us explain precisely what we mean by this phrase.

We consider a single resonance in a 3-d.o.f. system of the form of (6.69),
i.e., a relation

(694) n1$ (I) + ’IlQ.QQ(I) + 71393(1) =0,
where
0H,y
=—(I i =1,2
‘Q’L(I) a[z ( )7 2 17 73’

and we regard (nj,na,n3) € Z* — {0} as fixed. Then (6.94) is a single
equation with three unknowns [i.e., I = (Iy, I, I3)}; thus, typically we would
expect (6.97) to have a two-parameter family of solutions, i.e., there would
be a two-dimensional surface in I} — Iy — I3 space where (6.94) is satisfied
[remember, (nq,n2,n3) € Z> — {0} is regarded as fixed]. However, the I
values satisfying (6.94) cannot be arbitrary; they must lie on the energy
surface expressed as

(6.95) Ho(l) = h.

Hence, taking (6.94) and (6.95) together, we have two equations and three
unknowns. Usually, we would expect the solutions to lie on a curve in I; —
I — I3 space.

(6.17) Exercise. Show that for 2-d.o.f. systems resonances typically occur at
isolated points in I; — I5 space on a level set of the Hamiltonian.

If we think of the I variables as representing “modes” of oscillation of
the system, we conclude that a consequence of this phenomenon is that a
system with three or more degrees of freedom can be at resonance while
energy is being transferred among the modes.
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In order to study this phenomenon it would be useful to understand
the geometry of the solutions of (6.94) and (6.95) in I; — I, — I5 space.
However, one can imagine that it is not a trivial matter to find such solu-
tions for a general Hy([) since one must simultaneously solve two nonlinear
equations for the three unknowns (I3, I, I3). A simpler way of studying the
phenomenon involves representing the curve in 2, — {25 — (23 space rather
than I; — Iy — I5 space (cf. Martens et al. {1987]). This can be done if

(6.96) det (%@) #0

which is a sufficient condition for inverting the map

(6.97) I 2I).

Assuming that one of the frequencies, say (23, is not zero, we rewrite (6.94)
as

0
(6.98) 22 fng=0.
3

) 73

This equation represents a line in (§21/62s, §22/(23) space which we refer
to as a resonance channel and represent schematically in Fig. 6.11. Note
that considering the resonance in the frequency ratio space (as opposed to
the frequency space) is equivalent to projecting onto the level set of the
Hamiltonian. Shortly we will describe the role played by W#(M,) and
W*(M,) in relation to the dynamics near this resonance channel. However,
first we want to consider the situation of multiple resonances.

6.4.5 Multiple Resonances

We now want to briefly consider the situation of more than one resonance.

Multiple Resonance Assumption. There exists £ < m independent nteger
vectors n' € Z™ — {0}, i =1,...,£ < m, such that at I = I"

™m

(6.99) (nt, (I") =Y ni0,(I") =0.

=1
The resonance is said to be of multiplicity £.

(6.18) Exercise. In the definition of a resonance of multiplicity £ why do we
take £ < m? Is it possible to have € > m?

We will follow the procedure developed earlier for deriving a normal
form that described the dynamics near a single resonance. We begin by
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Q Q)
n1§;+"3§_3 +n3=0

Resonance Channel

Fig. 6.11. Resonance channel.

expanding the perturbation in a Fourier series and separating the resonant
and nonresonant parts. This procedure is a bit more involved for multiple
resonances.

Consider the subset of Z™ consisting of all possible linear combina-
tions of integer multiples of n!,...nf. We denote this subset of Z™ by K.
Clearly, K contains all the resonant vectors {for I = I") in Z™. Using more
mathematical language, Z™ forms a module over the integers and K is a
submodule of Z™ called the resonant module. Using these notions, we write
the Fourier expansion of the perturbed Hamiltonian as

(6.100) H(,8)=Ho(I)+¢ Z ak(I)ez(k,é’) +e Z ak(I)erC’g).
kex keZ™~-K

We can now use normal form theory to transform the nonresonant part
of the Fourier series to O(e2). We assume that this has been done, and, using
the same notation for the independent variables, we write (6.100) as

(6.101) H(I,0) = Ho(I) + £ ) _ ax(D)e*? + O(e?).
ke

Next we introduce coordinates that describe the dynamics near the
resonance. We let

Y = Nb,

(6.102) ~
p= (NI -1,
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where N is an m X m matrix of integers whose rows are chosen as follows.

1. (NN, Ny)=nd, j=1,...0<m.

2. (Ny1,Nj2,-+,Ny) =72, j={€+1,...,m, are chosen so that the set
of m integer m-vectors, {n!,...,nf Af*! ... @A™}, is an independent
set.

Substituting (6.102) into (6.101) gives

(6.103) H(p,¥) =H (I" + N'p) + €V (¢1,...,%¢, I" + N'p) + O(?),

where

V@1, e, T+N'p) = Y ai(I” + N'p)e'®?
kexk

= Z a61n1+...+clnl(IT +th)e’(clwl+"'+ce¢z)'
(c1, rce)EZE

Before proceeding, let us discuss the validity of this procedure. Namely,
the reader might question whether it is possible to extract the resonant
module from the Fourier expansion as in (6.100) and to introduce a trans-
formation such as (6.102) so that the resonant part of the perturbation
depends only on ¢ angles which are “resonant combinations” of the “old”
m angles. A proof that indeed this can be done may be found in Lochak and
Meunier [1988, Appendix 3]. Also, this procedure is exactly what Arnold
et al. [1988] describe as “partial averaging.”

Returning to the main line of our arguments, we Taylor expand (6.103)
about I = I" and obtain

(6.104) i
Hp,w) = Ho(I") + 3 {(N'p), 0 (1m) (V)
+ OB (17), Np) 4 €V (1,0, 1) + O(E2) + Oep) + O(5")

Neglecting the constant term Ho(I™) and the O(£2), O(ep), and O(p?) terms
we define the £-resonance Hamaltonian as

(6.105)  Hy(p,v) = 5(p, Mp) + (NQ(I"),p) + eV (¥1,..., ¢ I"),

DO | =

where

8% Hy

M=N
or12

(I")N.
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The main difference between a single resonance and a multiple resonance
should be apparent from (6.105). Namely, (6.105) does not necessarily give
rise to an integrable Hamiltonian system. In particular,

(6106) Hér(Pﬂf))yth-n»Pm

are all independent integrals of the motion. So we see that, in general, a
resonance of multiplicity £ has m —£+1 independent integrals of the motion
(for the truncated normal form); see also Bryuno [1988) and Arnold et al.
[1988). Hence, there is not an underlying integrable structure, and therefore
the methods developed in Section 6.1 can be applied. Nevertheless, we want
to consider and speculate on what might be the situation in 3-d.o.f. systems.

6.4.6 Resonance of Multiplicity 2 in 3-d.o.f. Systems

Using (6.105), the normal form for a resonance of multiplicity 2, including
the higher-order terms, is given by

(6.107)
Y1 = Mi1p; + Miops + Mizps + O(p%) + O(e),

pr = eV (150, I7) + O(ep) + O(E2),
%

iy = Miapy + Magpa + Masps + O(p*) + O(e),
o= e (b1,va, ) + Olep) +O(E?),
2
3 = Mispy + Magps + Maaps + (Ns1 81 (I7) + Naaf2o(I7) + N3z Q23(I7))
+0(p*) + O(e),
p3 = O(ep) + O(e?).

Letting

p — Vep,

2

ﬁ’

3 — 3 + (N31821(I7) + Napf22(1") + N33823(1")) ,

t—

(6.107) can be rewritten as
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W1 = Myipy + Myaps + Migps + O(VE),
. oV )
p1 = ——— (Y1, 92, I") + O(Ve),
oy
Yo = Migp1 + Mazpa + Magps + O(Ve),

ov
- IM+0

61[’2 (1/)171/}% ) + (\/E)a
Y3 = Misp1 + Masps + Maaps + O(Ve),

p3 = O(Ve).

Neglecting the O(4/€) terms in (6.108), it should be clear that the (13 —p3)-
components of the vector field only couple parametrically to the (; —p; —
o —pg)—compénents. Let us then examine the (¢ —p1 — 12 —p2 }-components
of the vector field, which we write as

(6.108)
D2 =

1 = Myip1 + Myapy + Misps,
ov

.oV I

P 8’(/)1 (wl)¢27 )7

Yo = Miap1 + Maops + Masps,
ov

Dy = — —— Im).

D2 81,[]2 (¢13¢21 )

(6.109)

We want to discuss the types of invariant sets that can arise in (6.109) and
then interpret them in the full ¥; — p; — ¥2 — pa — Y3 — p3 phase space.

The vector field (6.109) is a 2-d.o.f. Hamiltonian system (think of p3 as
a parameter). Hence, typically, we would expect it to possess fixed points,
periodic orbits, and two-tori. It is easy to see that (provided ¥s #0) a
fixed point of (6.109) is manifested as a periodic orbit in the full system
(restricted to the energy surface), a periodic orbit of (6.109) is manifested
as a two-torus in the full system, and a two-torus of (6.109) is manifested
as a three-torus in the full system.

(6.19) Exercise. Prove this last statement.

We are interested in the ability of these invariant sets to generate
separatrices. Hence, we want to consider the maximum possible dimension
for their stable and unstable manifolds. Actually, we have already discussed
this in the introduction to this chapter.

Periodic Orbits. A hyperbolic pericdic orbit has three-dimensional stable
and unstable manifolds in the five-dimensional level set of the Hamiltonian.

Two-Tori. Following the general arguments of de la Llave and Wayne [1990],
a hyperbolic (whiskered) two-torus can have three-dimensional stable and
unstable manifolds in the five-dimensional level set of the Hamiltonian.
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Three-Tori. Also called KAM tori, they are elliptic in stability type and,
hence, do not possess stable and unstable manifolds. Nevertheless, their
codimension in the level set of the Hamiltonian is the same as that of the
stable and unstable manifolds of the hyperbolic periodic orbits and two-tori
described above.

We have not succeeded in identifying an invariant set whose stable and
unstable manifolds are codimension one in the level set of the Hamiltonian.
We now want to argue why this should not be surprising.

Recall that a resonance of multiplicity 2 in a 3-d.o.f. system implies
that there exists two independent integer vectors, (nl,n3, nl), (n?,n2,n?),
such that

nl2(I) + ny2e(I) + n323(I) =0,

6.110
(6:410) ni 2 (I) + n302(I) + n362s(I) = 0.

Assuming that one of the frequencies is not zero [say §25(I)], we rewrite
(6.110) as

. (1) 2(1)
1941 1 1 _
n103(1) +n293(1) +n3 ——-0,
(6.111)

291(1) 292(1) +n§=0.

"U0y(T) T " 2(1)

Following the discussion given earlier concerning nonisolation of resonances
and resonance channels, each of the equations in (6.111) represents a line
in the (£21/623,82;/123) plane (a resonance channel) and the simultaneous
solution of the equations implies that the lines intersect at a point (this
is the generic situation). This point of intersection of the two resonance
channels is referred to as a resonance junction [remember, (ni,n}, n}) and
(n2,n3,n32) are regarded as fixed] and we represent it schematically in Fig.
6.12.

Let us now consider the evolution of the system near the resonance
channel and junction and the relation to the geometrical structures de-
scribed thus far. Consider a point on one of the the resonance channels
away from the resonance junction. In this situation we know that there are
separatrices (i.e., codimension one stable and unstable manifolds) whose
role as a barrier to phase space transport is such to maintain the system in
resonance, i.e., to constrain the system to evolve along the resonance chan-
nel. Now suppose the system approaches a resonance junction. From Fig,.
6.12 we see that at the junction a new resonance channel has opened up
for the system. Hence, we would expect that some global bifurcation occurs
in which the invariant set and its stable and unstable manifolds lose one
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nl %;Mz‘%—iﬂg =Q

Resonance
Channel

Resonance Junction

o
Fig. 6.12. Two resonance channels and a resonance junction.

dimension allowing for the new “degree-of-freedom” of the system created
at the resonance junction. The discussion of the possible invariant sets and
the dimensions of their stable and unstable manifolds for the two-resonance
Hamiltonian normal form given above seems to support this view.

6.5 The Relationship to Arnold Diffusion

We now want to describe the mechanism of Arnold diffusion as originally
conceived by Arnold [1964] and the relationship to the generalized separatri-
ces that we have constructed [i.e., W*(M,) and W*(M,)]. As a by-product,
we will see the role that Arnold diffusion plays in transport along resonance
channels. First recall the structure of the unperturbed phase space described
in Section 6.1.2 immediately following Theorem 6.1. The normally hyper-
bolic invariant manifold M has the structure of an m-parameter family of
m-dimensional tori denoted 7(I), I € B™, where each torus has an (m+1)-
dimensional stable manifold, an (m + 1)-dimensional unstable manifold,
and a 2m-dimensional center manifold; see Fig. 6.2. Now for m = 1 (i.e.,
2-d.o.f. systems) M intersects the (2m + 1)-dimensional level sets of the
Hamiltonian in isolated periodic orbits. In general, M intersects the level
sets of the Hamiltonian in (m — 1)-parameter families of m-tori. Thus, for
m > 2 (i.e., for systems with three or more degrees of freedom) the tori
along with their stable and unstable manifolds are not isolated in the level
sets of the Hamiltonian.

Now when the system is perturbed a generalization of the KAM the-
orem due to Graff [1974] and Zebnder [1976] tells us that a Cantor set of
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<.!'/I/II —_—

/4

Fig. 6.13. Illustration of the geometry of Arnold diffusion (angle variables sup-
pressed). 1.(I, +1), 7 (I,), and7. (I, _1) represent three of the tori in the Cantor set
of tori on M, that survive under the perturbation.

tori on M having positive measure is preserved. At the same time, generi-
cally the stable and unstable manifolds of each preserved torus will intersect
transversely yielding a homoclinic tangle. Near a torus, the homoclinic tan-
gle exhibits large amplitude oscillations due to the hyperbolicity. Since we
have a Cantor set of tori, this set of tori is dense in itself; therefore, the
homoclinic tangle of each torus becomes intertwined with the homoclinic
tangles of nearby tori leading to the possibility that orbits starting near any
one of these tori may “diffuse” along this Cantor set of homoclinic tangles
in a chaotic fashion. This picture was first described by Arnold [1964] and
has come to be called Arnold diffusion; it can be verified for (6.15). using
Melnikov-type arguments as described in Wiggins [1988a]. We attempt to
illustrate the geometry of this phenomenon in Fig. 6.13.

Figure 6.13 should give some indication of the nature of transport via
Arnold diffusion and its relation to the generalized separatrices W*(M,)
and W*(M,). Let 7.(1,) denote a surviving torus, where « is contained in
some index set Z, and let us denote its stable and unstable manifolds by
W?(1.(I4)) and W*¥(7.(1,)), respectively. Then, clearly, we have

Te(la) C M.,
(6.112) We(1e(Ip)) C W2 (M),
W*(r(Ia)) C W*( M)

for every o € Z. Thus, motion along 7.(I,), W*(7:(14)), and W¥*(1.(1,)),
a € T, corresponds to motion along M., W¢(M.,), and W*(M,). In terms
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of the variables £ — I — @ of system (6.15)., Arnold diffusion occurs in
the I variables, and W*(M,) and W*(M,) act so as to restrict motion
in the z variables. If we apply these ideas to the dynamics near a single
resonance developed in Section 6.4 we see that Arnold diffusion occurs in
the po — p3 — -+ - — p,,, variables and the generalized separatrices act so as
to restrict motion in the p; — 9, variables. Thus, Arnold diffusion is the
mechanism leading to evolution along a resonance channel, and W?*(M,)
and W*(M,) act as barriers to transport in a manner that would keep the
system from evolving transverse to the resonance channel.

6.6 On the Advantage of Considering Near Integrable
Systems

One of the attractive features of the transport theory for two-dimensional
maps developed in Chapter 2 is that it does not require the systems under
consideration to be perturbations of integrable systems. This is because the
task of finding hyperbolic periodic points can be cast into a nondynamical
framework, i.e., computing zeros of functions. Once the hyperbolic periodic
points are found, then general theorems (see Wiggins [1988al) imply the
existence of their stable and unstable manifolds, which in turn can be used
to form separatrices, lobes, and turnstiles.

We have already seen that the stable and unstable manifolds of hyper-
bolic periodic points of higher-dimensional maps do not divide the phase
space in such a way as to create barriers to transport. Therefore, a more
dynamically complex object is required for this purpose. In our case we
have seen that am appropriate analog of the hyperbolic periodic point is
a normally hyperbolic invariant manifold whose stable and unstable man-
ifolds are codimension one. The dynamics on this manifold may be quite
complex, and given an arbitrary system, it may be difficult to find such
lower-dimensional manifolds. Qur perturbation methods are one way of
finding the same. However, one might expect that as ¢ is increased, nor-
mal hyperbolicity might be lost, resulting in the manifold being destroyed
in much the same way as KAM tori are destroyed as the strength of the
perturbation to integrability is increased. These are interesting problems in
global bifurcation theory that have yet to receive much attention. .

Another key point to emphasme is the complex nature of W S(M )
N W”(M ). For 2-d.o.f. systems M, is a point and WS(M ) and W“(Mg)
are both one-dimensional curves. Hence, typically WS(ME) n W“(ME)
will be an isolated point. One-dimensional curves are also easy to simu-
late numerically. However, for the general k-d.o.f. case, M. is (2k — 4)-
dimensional and W*(M,) and W*(M,) are each (2k — 3)-dimensional.
Thus, W*(M.) N W*(M,) will typically be (2k — 4)-dimensional and
(2k — 3)-dimensional surfaces may be difficult to numerically simulate and
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graphically display. Hence, it would be extremely useful to have a tool to
study W*(M.) N W¥*(M,) for k > 3. We have such a tool in the gener-
alized Melnikov function given in Section 6.2. In Section 6.3 we saw that
even though W¢(M,.) and W*(M,) are codimension one they need not
intersect in such a way as to partition the phase space into disjoint regions.
One might wonder if the generalized Melnikov function could be used as a
type of “Morse function” to study the topology of W* (M )NW*(M,) and

obtain conditions under which lobes and turnstiles could be formed.

6.7 Final Remarks

Before ending this chapter we want to make a few final remarks.

1.  Open Problems. This final chapter has certainly raised more problems
and issues than it has answered. We have not done much more than
develop the mathematical framework for studying the notion of a sep-
aratrix in multi-degree-of-freedom systems and showing how it arises
in the context of resonances. No examples have yet been studied in
detail. Our original motivation for developing this theory came from
problems in theoretical chemistry concerned with the transfer of en-
ergy among various degrees of freedom in classical mechanical models
of molecules. The MacKay, Meiss, Percival [1984] phase space trans-
port model had originally been applied to a 2-d.o.f. model by Davis
[1985] in order to study the intramolecular relaxation of highly excited,
collinear OCS (see also Davis and Gray [1986], Gray et al. [1986], and
Davis [1987]). The success of these studies lead chemists to seek to
apply similar ideas to more realistic models of molecules, which would
require at least 3-d.o.f. However, first the fundamental notion of a
separatrix needed to be generalized to systems with three or more de-
grees of freedom. Gillilan and Reinhardt [1989] studied the problem
of surface diffusion of helium on the (001) face of a xenon crystal us-
ing a 3-d.o.f. model. They showed that the energetics of this process
is controlled by the stable and unstable manifolds of a three-sphere.
Subsequently, Gillilan and Ezra [1991] applied similar ideas, i.e., using
the stable and unstable manifolds of a normally hyperbolic invariant
set as separatrices, to a study of Van der Waals predissociation using a
four-dimensional symplectic map. Indeed, the work of Wiggins [1990b]
was aided greatly by conversations with Ezra and Gillilan concerning
their work. Chemists have known for years that resonances strongly in-
fluence and organize phase space transport (cf. Martens et al. [1987]);
however, they were not familiar with the theory of normally hyperbolic
invariant manifolds and, consequently, they were not able to formalize
the notion of a separatrix to systems with three or more degrees of
freedom. The paper of Gillilan and Ezra [1991] is interesting in that
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it gives a number of examples where researchers clearly recognized the
need for an invariant set of higher dimension than a periodic orbit
whose stable and unstable manifolds would play the role of separatri-
ces, but narrowly missed solving the problem because the appropriate
mathematical framework was not known. The mathematical framework
developed in this chapter should play a role in studying transport near
resonances in multi-degree-of-freedom Hamiltonian systems. We have
shown that many new phenomena arise which are radically different
from what may arise in 2-d.o.f. systems. It remains now to study some
specific examples in detail. A thorough study of the single resonance
normal form would provide a good beginning.

Dissipative Systems. One might wonder as to the effect of a dissipa-
tive perturbation in (6.15).. This theory has already been worked out
(along with the analogous higher-dimensional Melnikov theory) in Wig-
gins [1988a]. The important point is that M along with its codimension
one stable and unstable manifolds are preserved; hence one still has the
notion of separatrices. The major difference is that the level set of the
Hamiltonian is no longer preserved as an invariant set. This potential
“drift in energy” may certainly play an important role in the phase
space transport. At present no examples of such systems have been
studied.

Convective Transport and Mizing in Three-Dimensional Time-Indepen-
dent, Time-Periodic, and Time-Quasiperiodic Fluid Flows. The theory
of normally hyperbolic invariant manifolds and a generalized Melnikov-
type theory can be found in Wiggins [1988a] which will apply to a
class of three-dimensional time-independent, time-periodic, and time-
quasiperiodic vector fields. This will enable one to study convective
mixing and transport processes in three-dimensional fluid flows in much
the same way as for the two-dimensional time-periodic fluid flows de-
scribed in Chapter 3. Virtually no work has been done along these
lines and one should expect to discover many new fluid mechanical
phenomena.



Appendix 1
Proofs of Theorems 2.6 and 2.12

Proof of Theorem 2.6. We will show that the following equation holds.

(A1.1)
Nr n Ng n—1
p(Lk,m) =" p(Li,(n) N Ly o(m)) zzﬂ Liy(n) N Ly o(m)).

Outline of the proof. As demonstrated in Examples 2.1 and 2.2 from Chap-
ter 2, for small n or for “simple” geometries, (A1.1) is obtained by in-
terchanging union and area signs of disjoint sets, whereas for the more
complicated geometries the sets are not disjoint, and one has to prove that
interchanging the signs leaves the counting right. We break down the proof
of Theorem 2.6 into two cases as described below. Although Case 1 is con-
tained in Case 2, we discuss it separately, since we believe that it gives more
insight into the issues that are involved.
We start by proving that the following relation holds.

NR n

(A1.2) Ly ,(n)=J U [Le,(n) N L (m)] .

s=1m=1

Then we distinguish between the simple (Case 1) and the more com-
plicated (Case 2) cases.
Case 1. Ly (m)=@form=1,... nands=1,...,Ng.
Case 2. L, (m) # @ for some m,s,1 <m <nand 1 <s < Np.

Outline of the Proof for Case 1. The proof of Case 1 consists of showing

the following six steps:

Al. Regarding 1 as fixed and m and s as variable, the sets L (m) are
disjoint. ,

B1. The set L} ,(m) is given by

Ng m-—1
(A1.3) Lt y(m) = Lys(m) = | U [Les(m) N L, (D).
r=1 =1
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C1. Regarding ¢ as fixed and ! and r as variable, the lobes L, ;(l) are
disjoint.

D1. Regarding ¢,7, and [ as fixed and m and s as variable, the sets L; s(m)N
L, ;(1) are disjoint for all m > [.

E1. The following identity holds:

Ng n
(Al4)  Ly,(n)nL. ()N {U U Li,s(m)} = Ly ;(n) N L5 (1).
s=1m=Il+1

F1. Substitution of (A1.3) and (Al.4) into (Al.2), reindexing, and use of
Al, C1, and D1 to interchange the union and the area signs in the new
equation gives (A1.1).

Qutline of the Proof for Case 2. In this case we show, using elementary set
theory, that (Al.1) is correctly balanced; namely, if a “small” set A (note:
“small” will be explained in detail shortly) is contained in L}'w.(n), then
u1(A) is added N4 times through the first sum in (A1.1) and subtracted
N4 —1 times through the second sum so that p(A) is counted exactly once.
Similarly, if A is not contained in Li, ; (n), its area is added and subtracted
M, times through the first and second sum (respectively) to yield zero
contribution to the right-hand side of (A1.1). The number of times p{A)
is counted depends on the number of lobes containing 4 and is essentially
equal to the number of times A enters and leaves region R, until iteration
n.

Before embarking on the proof we prove the following five lemmas that
are used in the proof of both Case 1 and Case 2.

(A1.1) Lemma. If a point p is contained in two different lobes that leave
region R; at iteration ny and na, respectively, where ny < ng — 1, i.e., for
some 81 and 83 p € L; s, (n1) N L; s,(n3), then p is also contained in a lobe
that enters R; at iteration m, where n; < m < ng, i.e., there exists an s3
such that p € L, ;(m).

(A1.2) Lemma. If ¢ point p is contained in two different lobes that enter
region R, at iteration n; and ng, respectively, where ny < ng — 1, i.e., for
some s1 and sg p € Ly, i(n1) N Ls, i(ng), then p is also contained in a lobe
that leaves R; at iteration m, where nqy < m < ng, i.e., there exists an s3
such that p € L; 4, (m).

(A1.3) Lemma. If the intersection of two different lobes that enter region
R, at iteration ny and ny respectively, where n; < ns — 1, is nonempty, i.e.,
for some s1 and so Lg, ;(n1) N L, ,(na) # @, then there exists a lobe that
enters region R; al iteration ny — ny and contains species S;. Specifically,
it will follow that L} .(ny —ny) # 0.

S2,1
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(A1.4) Lemma. The following relation holds for all k, j,r,i € {1,...,Ng}
and 1 <l < n:

n

Ngr
(AL5) Lsm)nLay el U Lism).

s=1 m=l+1

(AL5) Lemma. If p € Lj (1), then there exist r', U, such that p € Ly (I')
and I < L.

Proof of Lemma Al.1.

PELis(n)= f"(p) ¢ Ri } ,
’ = ™ €L iln ),
P € Li,32(n2) = fﬂz—l(p) e Ri f (p) 83, ( )
where 1< n' <(ng—mny—-1),
a
= p € [T (Lsyi(n')) = Ly i(m),
where m =n' +ny;
hence, n; < m < ns.
Proof of Lemma Al.2.
p € Ly, i(n1) = fM(p) € R; } /
’ o = ™ (p) € L; o, (1),
P € Lyyi(ng) = f*1(p) ¢ R ®) & Liws ()
where 1 <n' < (nz—n; -1),
O

=>pef™ (Li,33 (n’)) =L, (m)’
where m =n' + ny;

hence, n; < m < ng.

Proof of Lemma A1.3.

P € Ly, i(n1) = f™(p) € R;

= fM(p) € L, ;(na — m1),
pE€ Lsz,'i(n2) = fnl(p) € Lsz,i(n2 - 'nl)

= L}, i(ng —m) #0. O
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Proof of Lemma Al.4. If L; ;(n) N L, ;(I) = 8, then the relation (A1.5) is
trivially satisfied. Let us assume that Ly ,(n) N L, (1) # 0 and that (A1.5)
is not satisfied; namely, there exists a p such that

(A16) pE Lk,j(n) N Lr’i(l)
but
Ng n
(AL7) re¢lJ U Lis(m).
=1 m=Il+1

From (Al.6) we obtain

(A18) (a) f*)€R,, (b) [P ER;, (o) f(p)eR

Since (A1.7) shows that p cannot leave region R; after iteration !, and
(A1.8c) shows that f!(p) is indeed in R;, we obtain

(A1.9) ff(p)eR, for I'=1,...,n.

Now, if i # j, (Al.8a) and (Al.9) contradict each other, and, if i = j,
(A1.8b) and (A1.9) contradict each other; thus, either Lg j(n) N Ly ;(I) =0
or

Ngr n
pE U U Liys(m).
s=1m=Il+41

0

Proof of Lemma Al.5. p € L}c’j(l) implies that p € R, and that f™(p) ¢ R;,
where m =l if i # j and m = [ —1 if i = j, which shows that p is contained
in a lobe that leaves R, before iteration m, namely, in a L, ,/(I') lobe with
U<l O

We now start with the proof of Theorem 2.6 as outlined above.
We begin with the proof of (A1.2):

N
(A1.2) L ;(n) =

8

b

[Lij(n) N L; ,(m)] .

S

I

We prove first that the left-hand side (lhs) of (A1.2) is contained in the
right-hand side (rhs) of this equation.
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Let a point in phase space p be contained in the lhs of (A1.2), p €
};, ;(n). Then, by Lemma A1.5, there exists an s and an m such that m <n

and p € L; ;(m). Therefore, using p € R; and p € L j(n), we obtain that
there exist m and s such that p € L ;(n) (N L; ,(m) with m < n; hence,
the 1hs is contained in the rhs.
We complete the proof by showing that the rhs is contained in the lhs.

Proving that the rhs is contained in the lhs of (A1.2) is trivial: if a
point p is contained in the union of the sets, then there exists an m and an
s such that

p € Ly (n)N L::’S(m) :

hence, p belongs to the portion of the lobe L; ,(rm) that is contained in R;,
and in particular p € R;. But, by (A1.8), p € Li j(n) and therefore, by
definition, p € L};’ ;(n), which shows that the rhs is contained in the lhs of
(A1.2). 0

Proof of Case 1. Recall that in Case 1, by assumption

(A1.10) Li’,-(m) =@ forallm,ssuchthat 1<m<n,1<s< Nz

We prove that (A1.1) holds for this case by proving statements A1-E1 and
then performing Step F1.

Al. Regarding i as fixed and m and s as variable, the sets L ,(m) are
disjoint.

Proof of A1. We need to show that, for (s1,m;) # (s3,m2), the set 4 =
L; ,, (my) N L, (my) is the empty set for all s1,s,,my, mg such that 1 <
81,82 < Ng and 1 < my,ms < n, and let us assume that m; < my. We
assume that A # 0 and show that this assumption leads to a contradiction
of either the lobe definition [i.e., the assumption that a lobe Ly ;(!) is defined
so that it is completely contained in R}, after iteration [ — 1 and completely
contained in R; after iteration [ (cf. equation (2.2))] or (A1.10).

If A # 0, then there exists a point p such that p € A.

peEA={peR; and p€ L;, (m1)NLi,(ms)}-

(a) If my = my, then, unless s; = s9, p € L; 5, (m1)NL; 5, (m2) contradicts
the assumption of the well-definedness of the lobes, namely, (2.3).

(b) If my = my — 1, then p € L; ,(m1) N L; 5,(m2) implies that p leaves
region R; in two consecutive iterations, which contradicts the lobe
definition.

(¢) If'my < mgy—1, then, by Lemma Al.1,p € L; 5, (m1)NL; 5, (m,) implies
that there exists m and s such that p € L, ,(m) and m; < m < maq.
But p € A also implies that p € R;; hence, p € L: ,(m) for some
1<m<n—1and 1< s < Ng, which contradicts the assumption of
Case 1, namely, (A1.10). O
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B1. The set L} ,(m) is given by

(A1.3) L} (m) = L; o(m) —

||C2

U )N Lri (D)

Proof of B1. We prove first that the Ihs of (A1.3) is contained in the rhs:
p € L} (m) = {p € R; and p € L;s(m)}. However, by (A1.10), p € R;
implies that p € L.;(l) for all 1 < r < Ng and 1 <! < m, and using
p € L 4(m), we obtain that p € L, s(m) — UN? U2 [Le,s(m) 0 Ly (D).
We complete the proof by showing that the rhs is contained in the lhs.

NR m—1

¥4 € Li,s(m) - U U [Li,s(m) n Lr,z(l)] =

r=1 ]=1
{rel;s(mand pg L, ;(I) forall 1 <1 <m —1,1 <r < Ng}.

We show that the above statement implies that p € R; and, since p is also
contained in L; ((m), this shows that the rhs is contained in the lhs. Since
p & Lyi(l) forall 1 <1 < m—1 and all , p does not enter R; before
iteration m; hence, if p is not initially in R;, f™ 1(p) ¢ R;. However, by
the lobe definition f™~1(L; s(m)) C R;; hence, if p & R;, then p ¢ L; ,(m),
which contradicts the assumption that p is contained in the rhs of (A1.3).

O

C1. Regarding ¢ as fixed and ! and r as variable, the lobes L, ;(!) are disjoint.

Proof of C1. We need to show that, for (s1,m;) # (s2,m2), the set A =
L, i(m) N Ly, ;(m3) is the empty set for all s, s2,m1,m2 such that 1 <
$1,82 < Ng and 1 < m1,ms < n, and let us assume, for definiteness, that
my < mg. We assume that A # @ and show that this assumption leads to a
contradiction of either the definition of the lobes or (A1.10). If A # 0, then
there exists a point p € L, ,(m1) N L, ;(my).
(a) If my; = my, then, unless 81 = s3, p € L, i(m1)N Ly, i(m2) contradicts
the assumption on the well-definedness of the lobes, namely, (2.3).
(b) If m; = mg — 1, then p € L, ;(m1) N Ly, ,(m2) implies that p enters
region R; in two consecutive iterations, which contradicts the lobe

definition.
(c) If my < my — 1, then, by Lemma A1.3, L}, ;(mg —m;) # @, which
contradicts the assumption of Case 1, namely, (A1.10). a

D1. Regarding i, r and [ as fixed and m and s as variable, the sets L, ;(m)N
L, (1) are disjoint for all m > I.

Proof of D1. Assume the sets are not disjoint, namely, that there exists a p
such that p € L, 5, {m1)NL; 5,(ma)NL, ;{1) and l < my < mgz—1 (as before,
the cases m; = ms or my = mo — 1 are ruled out by the definition of the
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lobes). Therefore, by Lemma Al.1, p € Ly, ;(m3) where my < mz < ma,
and specifically, m3 > [. Therefore, if D1 is false, then p belongs to two
different lobes that enter region R;, contradicting C1. ]

E1. The following identity holds:

Ng n
(Al4)  Lyi(n)NL;(0)N {U U Li,s(m)} = Lg j(n) N Ly 4(1).

s=1 m=Il+1

Proof of E1. This is a direct consequence of Lemma Al.4. ]

F1. We now substitute (A1.3) and (A1.4) into (A1.2), reindex, and use A1,
C1 and D1 to interchange the union and the area signs in the new equation,
which results in (A1.1).

“Operating” with the area symbol on (A1.2) and using Al to inter-
change union and area symbols, we obtain

Nr n
Tl) :ZZIJ’ Lk,] mLzsm))

s=1m=1

Substituting (A1.4) into the above expression gives

p (L ;(n)
Nrp m—

:ZZ“(L,C](R { zs(m U U zs m)mLT%(l)]})

s=1m= r=1 [=1

Ngr n
= Zp ij(n ﬂL”(m))

g=1 m=1

Np

n Nr m—1
Z H (Lk,j(n) N U U [Li,s(m) n Lr,z(l)]> .

s=1 m=1 r=1 {=1

Il

Therefore, using C1 and D1 and reindexing leads to
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NR n

H ( ;c,] (n)) = Z Z L (Llc,] (n)u L, s(m))

s=1m=1

Np n Ngr m-—1
( U [Lk,](n nlJ Ul ”(m)an(l)]D

s m=1 r=1 l=1

I
-

Ngp =n
=33 (L, (n) N L, o(m))

s=1m=1

Ng n—1 Ng n
_N(U U {L,w(n nL..0nlJy U Lz,s(m)D,

and, using (A1.4) we obtain

Np n—-1
Lz k\3 ”) Z Z # Ly (R)NLys(m)) — p (U U (L, (n)ﬂLr,z(l)]) .

s=1m=1 s=1[=1

Therefore, using C1 once more, we obtain (Al.1)

Nrp n Ngr n—1
p(Lh,m) =3 w(Le,() N Lus(m) = Y ) i (Lky(n) N Lea(1)) -
s=1m=1 s=1[=1

a

Proof of Case 2. We show first that, if A C L}  (n), then pu(A4) is added N4
times through the first sum in (Al. 1) and subtracted N4 —1 times through
the second sum. Then we show that, if A ¢ Lj (n), u(A) is added and
subtracted M4 times through the first and second sums, respectively. We
assume that A is small enough so that all the members of A are contained
in the same lobes L, ;(m), where m < n, which implies that writing A ¢ B,
where B is an intersection set of such lobes, is equivalent to writing ANB =
. This implies that, after each iteration, A is completely contained in one
region at least up to iteration n. To complete the proof, note that any set
A C L; ,(n) can be decomposed into a finite number of small enough sets,
since the number of intersections of the L, ,(m) lobes (I < m < n) is finite
for finite n.

We start with a lemma that contains all the necessary ingredients for
this part of the proof.
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(A1.6) Lemma. Let p € L (n).

(a) Ifp & Ly,(n)NLL (1) foralll1 <7 < Ng and all 1 <1 < n, then there
ezists a umique v’ and a unique I’ such that p € L, »(I').

(b)) Ifp € Lx,(n) N L: (I) where 1 <1 < Ng and 1 <1 < n, then there
exust ly,ly, 70,71 such that lo <1<l and p € L, ,,(ly) N L, r, (11)-

(c) If p € L,v,(l;) fort = 1,...,N,, where l; < Iy < ... < In,, then

there emst I,y such that p € Ly, (n) N Ly, (1) and ly <} <lpy1 t =

1,...,N,—1.

Proof.

(a) By Lemma A1.5, r" and I exist. To show that they are unique, assume
they are not, and use Lemma Al.1 and the assumption that p € R, to
show that this contradicts the assuraption of Case a.

(b) Since, by definition, Ly ,(n) 0 L}. (1) C Lg,(n) NV L;,(l), Lemma Al.4
shows that p € Ly ,(n) N L} (1) implies that there exists an 71 and an
l; such that [ < I; and p € L, (l1). Using Lemma A1.5 for the lobe
L;,(l) shows that there exists an r¢ and an lg such that Iy < [ and
pE Lz,rg (lO)

(¢) By Lemma All, p € L, (I:) N Ly p41(lgyq) for t = 1,... )N, — 1,
which, together with the assumption that p € R,, implies that p €

Li;,z(lz) where I; < I} < lq41 t = 1,...,m — 1. Moreover, since p €
L ,(n) implies that p € R, and that p € Lg,(n), we obtain that
p € Li ,(n) ﬂLfnéﬂ(lg) forl, <li <lyy1 t=1,...,n—1 0

We now show that (Al.1) results in the right counting. We break up
the proof into four cases.
(a) ACL (n)and Ng=1
(b) AC Ly (n)and Na> 1.
(c) AgZ L; ,(n)and M4 =0.
(d) A¢g Ly (n) and M4 > 0.
Recall (A1.1):

Nrp n Ngr n-1

p(Lh, () =303 p(Liy () N Lus(m) = > 3 p(Lia(m) N Lo (1)

f:l m=1 s=1 [=1

I 1I

(@) When A C Lj ,(n) but A ¢ Li,(n)N L} (1) for all 1 < r < Np and
all 1 <1 < n, then, by Lemma Al.6, there exists a unique r' and
a unique !' such that A C L, ,/(l'). Therefore, u(A) is added exactly
once through I. Note that u(A) is not subtracted through II; since, by
assumption, A C R,, if A were contained in a set of II it would imply
that A C Ly,(n) N L}, (1), contradicting the assumption of Case a.
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Hence, we have proved that u(A) is added exactly once to the lhs of
(A1.1) in Case a.

(b) If A C Li ;(n) and A C Lyj(n) N L ;(I) where 1 < r < Np and
1<1<n, "then u(A) is added N4 times through I and subtracted
N4 — 1 times through II. We show first that, if u(A4) is added N4y
times through 1, it is subtracted at least Ny — 1 times through II, and
then complete the proof by showing that, if 4(A) is subtracted N4 —1
times from II, then it is added at least N4 times through 1.

1)

(2)

If 4(A) is added N4 times through I, then it belongs to Na L; s(m)
lobes, and therefore, by part (c) of Lemma Al.6, A also belongs to
Ny-1 Li’i(l) lobes, and hence to Na—1 L, ;(l) lobes, which shows
that u(A) is subtracted at least N4 — 1 times through II.

If u(A) is subtracted N4 — 1 times through II, then A belongs to
the NA — 1 sets L ;(n) N Ly, ;(l;) where t = 1,...,Ng — 1 and
ly <+ <lIn,—1. Since, by assumption, A C R;, this implies that
AC Lk](n) N L%, (l;); hence, using part (b) of Lemma A1.6 we
conclude that there exist ly < 1 and Iy, ; > In,—1 such that
A C Lg j(n)NL; (L) for t = 0,Ng — 1. Using Lemma A1.2 we find
that there exist l;,t =1,... Na—2such that A C L, ;(n) N L (1)
and Iy <l <1} ;. Altogether we have shown that A is contained
in at least N4 sets of 1.

(c) A¢ L ;(n)and My = 0.

ey
()

If A ¢ Ly j(n), then, trivially, A is not contained in any of the sets
of I or IL

If AC Lij(n) but A¢Z L; s(m) foralll <s< Ng,and1 <m <mn,
then A is trivially not contained in the sets of I and, by Lemma A1l.4,
A cannot be contained in any of the II sets without contradicting
the assumption that A ¢ L; s(m).

(d) A¢ L; ;(n) and M4 > 0. We show that if 4 is contained in My sets
of I, then A is contained in at least M4 sets of II, and we complete
the proof by showing the converse.

(1)

2)

IfAe Lg;(n)NL;s(l:) wheret =1,... , Mg and l; < -+ < lp,,
then, by Lemma A1.1, there exist I}, = 1,..., M —1such that A C
Ly, j(n) N Ly 4({) and I < I} < l¢y1. Moreover, since we assume in
this case that A ¢ R; and that A leaves R; at iteration [;, A must be
contained in a lobe that enters R; before iteration l;; namely, there
exists an ly < ; such that A C L j(n)() Ls :(lp) and, therefore, A
is contained in at least M4 sets of II.

If A€ Lgj(n)N Ly, ;(It) where t = 1,..., M4 and [; < - < Ip,,
then, by Lemma A1.2, there exist Ij,t = 1,..., M4 — 1 such that
A C Lgj(n)NL;g(ly) and Iy < I} < lgy1. Moreover, by Lemma
Al4, A C Lg (n) n Lsy,, i(lhr,) implies that there exists an Iy,
such that A C Ly ;(n) N L; o S (lMA) and l),, > lp,. Hence, A s
contained in at least M4 sets of 1. O
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Proof of Theorem 2.12. Since f is a diffeomorphism, for all sets 4, B in
phase space we have

ACB & fM(A) C fM(B) foralln;

In addition, we showed in the proof of Theorem 2.6 that for a “small
enough” set A:

(1) If A C Lj ;(), then

(Al.12a)
{AC Lk;N L, (my),t=1,...,Ns where Na <1} &

{AcC Ly ;) N Lg i(my),t =1,...,Na —1 where Ny < l}.
(2) ¥ANL; (1) =0, then

{A C LkJ(l) ﬂLi,st(mt),t =1,...,M4 where My < l} =4

Al1.12b
( ) {ACLk,j(l)ﬂLs;yi(mé),tZ1,...,MA where MASZ}

Therefore, using (A1.11) and (A1.12) for a set D = f"(A) we obtain
(1) 1 D C f~(L; ;(1), then

{DC f* (L j()) N Ly s,(m¢)),t =1,...,Ng where Ny < I} &
{D cf (kaj(l) ﬂLsg,i(mé)) ,t=1,...,Ng — 1 where Ny < l} .
(2) If DN f(Li (1) =0, then
{D C f"(Li;()) N Ly s,(me)) ,t =1,..., M4 where M4 <1} &
{D cfr (Lk,j(l) N Ls;,i(m;)) ,t=1,..., M4 where M4 < l},

which shows that the following relation holds:

(™ (L ZZu[f" ((Li,i (1) O Lio(m)))]
s;’:‘u
_ZZ#[fn Lk] mLsz( )))]

Using f*(AN B) = f*(A) N f*(B) together with the lobe dynamics in the
above expression gives Theorem 2.12. a



Appendix 2

Derivation of the Quasiperiodic Melnikov
Functions from Chapter 4

In this appendix we derive the Melnikov functions for the quasiperiodic
oscillating vortex pair flow and quasiperiodically forced Duffing oscillator
discussed in Chapter 4, Section 4.5.

An Oscillating Vortex Pair (OVP) Flow. Consider the quasiperiodic gen-
eralization of the oscillating vortex pair flow studied by Rom-Kedar et al.
[1990] and discussed in Section 3.1 of this book. As described in Section
3.1, this two-dimensional fluid flow consists of a pair of point vortices of
equal and opposite strength +1" in the presence of an oscillating strain-rate
field which perturbs the vortex motion and which shall be referred to as
the forcing term (even though it is understood that the net perturbation
of the fluid flow is a sum of this forcing term and the effects of the vortex
response). The streamfunction of the quasiperiodic forcing case is, in the
comoving frame,

P {x1,x2,t) =

=L {(rl ~ (1) + (w2 wgu))?}

am (@1 — 23(1))" + (@2 + 25(1))

=1

¢
—Vyxo +cx129 (Z w, f, sin (w,t + 91)) ,

where (z¥(t), £x%5(t)) are the vortex positions, V, is the average veloc-
ity of the vortex pair in the lab frame, and ew, f, is the strain-rate am-
plitude associated with the ith frequency (ef, is nondimensional). For
e = 0,{z¥,2%) = (0,d) and V,, = I'/4nd. Let us specialize to the two-
frequency case and use the dimensionless variables z;/d — x1, 2/d — T2,
It/2nd? — t, V,2rnd/T" — v,, 2rw,d?/T" — w, (i = 1,2). The flow is then
given by
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(A2.1)
m=—[ 22 — 23(t) ~ 22 + 73(1) }
(@1 —2}(®)* + (22 — 23(1))* (21— 2{(t)* + (22 + 23(2))°
— Uy +ex1 {wy f1sin (w1t + 601) + wa fasin (wot + 02)},

Py = (2, — ¥ 1
&g = ( 1®) I:(m _ x’f(t))z + (2o — w’z’(t))z

1
—m—ﬁmf+m+ﬁmA
— exg {w; f1sin (w1t + 01) + wa fasin (wat + 62)},

where

z7(t) = exp[—e(fi cos(wit + 61) + fo cos(wat + 62) — f)]
. / <% — v, exple(f1 cos(wit + 1) + fa cos(wat + 62) — f)]) dt,

x5 (t) =exple(fi cos(wit + 61) + fa cos(wat + 62) — f)],

and v, is chosen so that

T—o0

T
lim (% — vy exple(fi cos(wit + 61) + f2 cos(wat + 62) — f)]) dt =0.
0

The vortex solutions (z3(t), £z4(t)) are found by using the fact that
each vortex is advected by the flow due to the other vortex and the os-
cillating strain-rate field, so the vortices move according to the following
equations

dxz? 1

huiad — vy +ex] {wr f1 sin (w1t + 61) + wafo sin (wat +63)},
dt 2zy

dzy " . .

= % {wifi sin{wit + 01) + wafz sin(wat + 62)},

Rom-Kedar et al. [1990] choose, for the single-frequency analysis with
61 = 0, the initial conditions (2%(0),z%(0)) = (0,1), which guarantees
a vortex response symmetric about z; = 0 to first order in £. A simple
quasiperiodic generalization should retain this symmetry, which is accom-
plished by choosing the constant of integration in the x} expression to be
zero. The z} behavior is determined uniquely by the choice of f: a choice
of f = ficosf; + facosfs or f = fi + fo follows the spirit of Rom-Kedar
et al. [1990]; alternatively, one could choose f = 0 to obtain a perturbation
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of mean zero in the z,-direction (this not necessary, as it was in the case
for z;, but it is nevertheless appealing).

The equations for z; and z; in (A2.1) define a two-dimensional
nonautonomous dynamical system, and the motion of (z,3) for a given
&, f1, fo,w1,w2, 01,02 and choice of initial vortex conditions is the fluid flow
whose transport we discussed in Chapter 4. The net perturbation is a sum
of the forcing term, linear in ¢, and the vortex response, nonlinear in ¢; by
Taylor expanding the vortex term about £ = 0, the governing equations in
the single-frequency case can be put in the autonomous form

(A2.2) & = JDH(z) + g™ (2,61;1) + O(),
91 = w1,

(see Rom-Kedar et al. {1990]). In the two-frequency case the equations will
have the form

& = JDH(z) + eg®(z, 61, 01; f1, f2, w1, w2) + O(e?),
(A23) 91 = Wi,
92 = Wa,

where & = (z, z2). The quasiperiodic forcing term, and thus the first-order
expansion term in the vortex response, is a superposition of two periodic
forcing terms. Hence,

(A2.4) ¢%(z,01,02; f1, fo,w1,w2) = f1g"" (x, 01;w1) + fag™" (2, O2; w2).
The Melnikov function for the single-frequency case (A2.2),

(A2.5) )
MPe" (b, 0y;07) = f (DH(z(t)), 7" (20 (), wit + (wito + 61); wr))dt,

-0

is, for zx(t) equal to the upper or lower unperturbed heteroclinic orbit,

(A2.6) MP"(tg,61;w1) = wi fovp(wi*) sin(wite + 61),

where fovp(w;!) is shown in Fig. 4.15 (see Rom-Kedar et al. [1990]). From
Section 4.2, the two-frequency Melnikov function is

M¥®(tg,01,01; 1, f2,w1,w2)

Efj; (DH(zn(£)),9°% (xn (t),wi t+wito+01,wat+wato+02i f1, f2 w1 w2))dt,

which, by (A2.4) and (A2.5), satisfies for the same z(t) as above
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M (t,04,02; f1, fa, w1, w2) = fiMPeT (to, 01;w1) + faMPET (to, 025 w2) .

Hence by (A2.6)

(A2.7)
M® (t()a f,01792; fla f27wlaw2)

= fiwi fovp (wl_l) sin (witg + 61) + fowafovp (wg_l) sin (wotg + 62) .
Recall from Section 4.5 that we refer to the ratio of each Melnikov function
amplitude fiw;fovp(w; 1) to the corresponding relative perturbation am-
plitude w; f; as the relative scaling factor associated with frequency w;. The
fact that the relative scaling factors fov p(w; 1) are frequency dependent is
pertinent to the study of transport rates, in particular to a comparison of

average flux between single- and multiple-frequency forcing. Note that scal-
ing factors for any frequency are determined by the single relative scaling

function foyp(w™!).

The Duffing Oscillator. In contrast to the OVP flow, consider the quasiperi-
odically forced Duffing oscillator:

T = T2,

A28 ¢
( ) dy=xz1— 23 +¢ Zfi cos(w;t + 6;) — yza| .

i=1
Consider again the two-frequency case ¢ = 2. Though the previous exam-
ple involved an incompressible fluid and hence a Hamiltonian (i.e., area-
preserving) perturbation, there is now a dissipative term (—gvyz2) in the
perturbing vector field.
The two-frequency autonomous system is

T1 = Tg,

&y = 21(1 — 23) + € [ficos 61 + frcos 62 — yz2),

él = w1,

92 = ws.
The generalized Melnikov function is

M(to,61,92;f1,f2,w1,w2,7)
:f_o;<DH($h(t))79qp(1‘h(t)7wlt+(‘~'1t0+91),w2i+(w2to+92);f1,fg,'y))dt,

where

i
4

x2 3
H(wl,wg) = 72— ?1+
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and

9% (21, 22,01, 02; f1, f2,7) = (g1, 92) = (0, ficos 01(t) + facos Oa(t) —vz2).
The z-component of the unperturbed homoclinic orbits are easily found to
be

zh(t) = (z14(t), T2n(t)) = £v2 sech(t)(1, —tanh(t)),

and the Melnikov function is

(A2.9)

4 W
M(to, 61,02 f1, fa, w1, w2,7) = — —:;zi\/iﬂflwl sech (—l

2
+ V2r fawssech (%) sin{watg + 62).

) sin(wito+61)

Figure 4.16 shows a plot of the relative scaling function v/2mw sech(mw/2)
Versus w.

The OVP fluid and the nondissipative Duffing oscillator both have
Melnikov functions in 39270 of the form

(A2.10)
M(tg, 01,02 = 0; ’U) = A (u, wl) sin(wlto + 01) + Ag(p,, w2) Sin(wzto).
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Index

action-angle representation, 212

action-angle variables, 78, 222, 228,
256

annulus, 77

area-preserving, 18

Arnold diffusion, 212, 241, 268

attracting set, time-dependent, 179

attractor, viii, 1

Aubry-Mather theory, 1

barriers, partial, 193
beats, 159
beats, homoclinic, 159
behavior, asymptotic, 206
Bernoulli shift, 55, 56, 57, 60

on two symbols, 61
bifurcation theory, 122
boundary conditions, rigid, 102,

114

bubble dynamics, 10

Cantor set, 61, 76, 185
of 1-tori, 186
of points, 186, 189
cantori, 7, 17, 78, 81, 82, 194
noble, 208
chaos, ix, 54, 92, 184
suppression of, 190
chaotic, 57
chaotic region, 98
codimension one, 209

coefficient of expansion in the di-
rection of &g, 97

coherent structures, 82, 89

commensurate, 159

conservation laws, 33

convection—diffusion equation, 101

convection, steady, 114

correlations, 200

CRAY X-MP, 117

cut-off parameter, 203

decay rates, 43
diffusion coefficient, 196
diffusion, infinite, 202
diophantine condition, 78
dissipative term, 141
Dufling, 168
Duffing oscillator, two-frequency
forced, 174
dynamical systems theory, 121
dynamics, 1
near the resonance, 251
one-dimensional, 76

effective diffusivity, 102, 103
elliptic, 210

elliptic periodic point, 74

energy, drift in, 271

energy surface, 209

energy transfer, intramolecular, vii
&, exponentially small in, 257
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escape probabilities, 61

fast mixing, 202

flow control, 89

flux, 73, 89, 108, 175
across the roll, 103
average, 157, 158, 167
computation of, 157
instantaneous, 156
local, 23
long time, 137
of species, 109
of species S, 91
of species S, into region R,,

31
frequency vector, 250

Guassian probability distribution,
116

geometrical, structures, 124

geometry, pendulum-type, 206

generating function, 75

golden, mean, 132

global minimum, 76

Hamiltonian, 135
£-resonance, 263
single resonance, 252

harmonic oscillators, 216

heteroclinic cycle, 62, 129

homoclinic coordinates, 68

Hopf fibration, 216

hydrodynamic stability, 82

hyperbolicity, 18
normal, 127, 183, 222

implicit function theorem, 70
incommensurate, 138, 159
incommensurate frequencies, 166
incompressible, 89

integrable, 210

integrals, 211

interpolate, 121, 122
intersections, secondary, 204
invariant circles, nonexistence of,
78

invariant set, 58

normally hyperbolic, 209, 250
invariant tori, foliation by, 211
involution, 211
irrational rotation, 75
island bands, 198
island chains, 194, 249

KAM, 1

KAM theory, 7, 76, 215, 230, 236

KAM tori, 82, 87, 117, 198, 204,
212, 257

Liapunov characteristic exponent,
96
in the direction of &, 97
Liapunov exponent, 202
time-dependent, 97
Liapunov-type numbers, general-
ized, 222
librational motions, 5
lift, 75
Liouville-Arnold theorem, 211, 217
lobes, 20, 21, 34, 35, 42, 49, 72,
89, 132, 133, 141, 147,
150, 159, 176, 239, 270
families of, 148
generalization of, 247
in x(6), 142
in the set, number of, 146
of fluid, 178
lobe area, 200
lobe dynamics, 37, 42, 53, 92, 119,
200
lobe structures, 176
lobe transport, 114

manifold, homoclinic, 65, 255



manifold, invariant, 174

manifold, orientable, two-dimensional,

18

manifold, primary intersection (pim),

135, 136, 137, 141, 142
manifold, transverse heteroclinic,
231, 232
manifold, transverse homoclinic,
231, 232
map on the cylinder, 205
maps
area-preserving, 31, 73, 223
bi-infinite sequence of, 121,
122, 124, 126, 144, 173
extended shift, 189
horseshoe, 184
non-area-preserving, 34
sequences of, 121, 172
standard, 51
traveling horseshoe, 188
map sequence, traveling horseshoe,
185
Markov models, 193, 197, 198, 200,
206, 208
Markov processes, 197
Melnikov function, 233, 235, 242,
247
quasiperiodic, 129, 130, 132,
135, 141, 142, 147, 149,
159, 160
Melnikov’s method, 13, 64, 122
metric, 55
minimizing, 76
mixing infinite, 206
mixing region, 87, 92, 96
molecular diffusion, 81, 103, 105,
111, 114, 117, 119, 197
molecular diffusion coefficient, 115
molecular diffusivity, 82
molecular dissociation, viii
semi-classical study of, 171
Morse function, 270
Morse oscillator, 13, 43
quasiperiodically forced, 171
Moser twist theorem, 76, 77, 78

Index 299

mutually commensurate, 138

mutually commensurate frequen-
cies, 160

mutually incommensurate, 139, 221

Nekhoroshev’s theorem, 236
non-area-preserving, 18
nonhyperbolicity, 79
nonresonance, 212
normalization, 167
notational ambiguity, 51

orbit, 122
critical, 4
heteroclinic, 71, 129, 130
homoclinic, 5, 7
periodic, 265
quasiperiodic, 17, 73, 75
quasiperiodic minimizing, 76
oscillating strain-rate field, 176
oscillating vortex pair (OVP), 38,
83, 84, 167
oscillating vortex pair (OVP) flow,
105, 176, 179, 193, 194
oscillating vortex pair (OVP) lobe
structure, 177
oscillation, modes of, 260

partitions, 207
complete, 202
passive scalar, vii, 81, 102, 108,
111, 114
transport of, 91
Peclet number, 102
chaotic, 116
pendulum, 217
periodic points, saddle-type hy-
perbolic, 18
perturbations, nonintegrable, 216
phase shift, relative, 150
phase slices, 122, 137, 141, 157,
159, 160, 185, 189
phase slice method, double, 184
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phase space, 30, 33

phase space structure, pendulum-
type, 254

phase space transport, 43, 61, 123

photodissociation of molecules, 13

pim, see manifold, primary inter-
section

pip, see point, primary intersec-
tion

Poincaré-Birkhoff normal form, 74

Poincaré map, 7, 14, 38, 64, 67,
71, 72, 81, 82, 86, 87, 89,
105, 122, 126, 173, 204,
228, 229

double, 184
of a periodically forced pen-

dulum, 44

Poincaré section, 71, 135, 144, 154,
235

point, heteroclinic, 19

point, homoclinic, 19

point, primary intersection (pip),
19, 20, 21, 141, 146, 157

Poisson bracket, 211, 233

primary intersection manifold (pim),
see manifold, primary in-
tersection

primary intersection point (pip),
see point, primary inter-
section

quasiperiodic, 123
quasiperiodic functions, 123

Rayleigh-Bénard convection, 101

two-dimensional, time-periodic,
201

Rayleigh number, 103

recurrent, 75

regions, 89

relative scaling factors, 167
for the frequencies w,, 131

resonance, 249

capture and passage through,
9
multiple, 261
1:1, 44, 51, 197
orbit—orbit, 9
single, 250, 260
spin—orbit, 9
resonance band, 202
resonance channels, 260
resonance junction, 266
resonant module, 262
rotation number, 75
of an orbit, 75
rotational motions, 5
Runge—Kutta code, fourth-order,
117

S§2m—1995 230
normally hyperbolic invariant

(2m—1)-dimensional sphere,
227

sensitive dependence on initial con-
ditions, 54, 56, 62

separatrix, 204, 209, 210, 213

shift map, 56

signatures, 114

of the heteroclinic tangle, 111

signed measure of the distance, 71

singular perturbation, 102

Smale horseshoe map, 57

Smale horseshoes, 81, 82, 92

Smale-Birkhoff homoclinic theo-
rem, 59, 62, 122

species, 89

species S, 30

spiral, (¢ — 1)-dimensional, 137

stability, islands of, 194, 197

stagnation points, 104

stochastic regime, 194

stochastic regions, 96, 194, 195,
196, 197, 206

stochastic subregions, 202

streamlines, 85

stretching, 92



stretch, total, 99

structural mechanics, viii

systems
autonomous, 124
dissapative, 271
near integrable, 269
nonautonomous, 124, 172,173
periodically adiabatically forced,

204, 206

three-tori, 266
time dependence, quasiperiodic, 121
topologically conjugate, 60
topologically transverse, 21
toral pims, 141, 187
torus, k-dimensional, 211
torus, KAM, 212
torus, normally hyperbolic invari-
ant, 125, 126, 127

torus, whiskered, 212
tracer, 198
transition probabilities, 196
transition rates, 200
transport, 17, 121, 218

barriers to, 209, 251

in the phase slices x(6), 14

Index 301

of a given species, 190
near resonance, 249
roll-to-roll, 105, 114, 197, 198
transport rates, 203
transport surface, 142, 174
transport theory, 122, 173
transversal intersections, 68
trial-and-error, 184
turnstile, 17, 23, 24, 31, 53, 108,
145, 146, 172, 175, 181,
196, 206, 239, 249, 270
multilobe, 147
self-intersecting, 27, 204
time-dependent, 175
turnstile dynamics, 40, 44, 50, 61
turnstile lobes, 30, 161, 171
twist map, 74
two-dimensional map theory, 135
two-tori, 265

universal cover of the cylinder, 74

vector fields, nonautonomous, 143

vector fields, quasiperiodic, 128,
184

vortices, elliptical, 2



