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Preface

In the summer of 1977 I was invited to lecture in the Troisieme Cycle de la
Suisse Romande, a consortium of four universities in the French-speaking
part of Switzerland. There was some discussion of the topic about which I
might speak. Since I seem fated to be the apostle of probability to Swiss
physics (see [258]), we agreed on the general topic of ‘‘path integral
techniques.’’ I decided to limit myself to the well-defined Wiener integral
rather than the often ill-defined Feynman integral. In preparing my lectures
I was struck by the mathematical beauty of the material, especially some
of the ideas about which I had previously been unfamiliar. I was also
struck by the dearth of ‘‘expository’’ literature on the connection between
Wiener integral techniques and their application to rather detailed ques-
tions in differential equations, especially those of quantum physics; it
seemed that path integrals were an extremely powerful tool used as a kind
of secret weapon by a small group of mathematical physicists. My pur-
pose here is to rectify this situation. I hope not only to have made
available new tools to practicing mathematical physicists but also to have
opened up new areas of research to probabilists.

I am pleased to be able to thank some of my colleagues who aided me in
the preparation of this book. During the period of the lectures on which
the book is based, I was a guest of the Physics Department of the
University of Geneva. I am grateful to M. Guenin, the departmental
chairman, and most especially to J. P. Eckmann for making my visit
possible. The lectures were given at the EPFL in Lausanne; P. Choquard
was a most gracious host there. I should like to thank the Secretariat
Centrale of the University of Geneva Physics Department and Mrs. G.
Anderson of the Princeton Physics Department for typing the first and
second drafts, respectively, of the manuscript. I am also grateful to Y.
Kannai for the hospitality of the Weizmann Institute Pure Mathematics
Department where Sections 20-24 were written.
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viit Preface

Finally, I owe a debt to a number of people for scientific contributions:
M. Donsker and M. Kac made various valuable suggestions about what
topics might be included as well as offering help on technical questions; L.
van Hemmen gave his permissior to use an unpublished argument of his; I
had valuable discussions with M. Aizenman, R. Carmona, P. Deift, J. P.
Eckmann, J. Frohlich, C. Gruber, E. Lieb, A. Sokal, M. Taylor, A.
Truman, and S. R. S. Varadhan; the careful reading of the complete manu-
script by R. Carmona was especially valuable; finally, M. Klaus, A.
Kupiainen, and K. Miller helped in the proofreading. I am glad to be able
to thank all these individuals for their help.



List of Symbols

page
a, (Eq. (9.8)) 9
b(s), b(s); Brownian motion 33,36
C,; Holder continuous functions 264
C(K); capacity 84
db, db, dq, da; stochastic
differentials 151,154,170
Db, Dq, Da; measures for basic processes 38
E(A), E(f). E(f; A); expectations 8
E(f1Z); E(fg,..--.g,); conditional
expectation 21
Gp, s; Dirichlet Green’s function 69
h(y, k); hitting probability 82
H, 195
Hp,s; Dirichlet Laplacian 69
H(a, V); Schrédinger operator 159
Hy(a) 161
K, ; Birman-Schwinger kernel 89
Tim 4, 18
P(J), Pa(z, B); pressure 200, 246
Py, s; Dirichlet propagator 69
Px, y) 35

q(s); oscillator and also P(¢), process 34,57

page
s(p); entropy 200
S,.; Schwinger function 253
UXy, .., X)) =Xy, X7 Ursell
function 129
W,(1), W(a. c)(b); Wiener sausage 209, 236
o; Brownian bridge 40
ug; conditional measure 68
dpo, a, c;r; conditional Wiener measure 39
P5(x; &, z); correlation functions 246
w; Wiener path 38
Q*; wave operators 226
Z; grand partition function 246
%, continuous functions on C[0, 1] 176
6%: Thomas-Fermi functional 98

9’; Schwartz space of tempered functions 12

|-]; Lebesque measure of 2
A A B; symmetric difference 8
:—:; Wick ordering 27
~ ; asymptotic series 212
-1z uniform local norm 260






Functional Integration
and Quantum Physics






Introduction

1. Introduction

It is fairly well known that one of Hilbert’s famous list of problems is that
of developing an axiomatic theory of mathematical probability theory (this
problem could be said to have been solved by Khintchine, Kolmogorov, and
Lévy), and also among the list is the “axiomatization of physics.” What is
not so well known is that these are two parts of one and the same problem,
namely, the sixth [287], and that the axiomatics of probability are discussed
in the context of the foundations of statistical mechanics. Although Hilbert
could not have known it when he formulated his problems, probability
theory is also central to the foundations of quantum theory. In this book,
I wish to describe a very different interface between probability and mathe-
matical physics, namely, the use of certain notions of integration in function
spaces as technical tools in quantum physics. Although Nelson [190, 191]
has proposed some connection between these notions and foundational
questions, we shall deal solely with their use to answer a variety of questions in
conventional quantum theory; some typical problems which we shall solve
using functional integration are the following:

(1) Consider a potential V in three dimensions and let N(V) be the number
of bound states of —A + V (i.e, the dimension of its spectral projection for
(—cc, 0)). In a semiclassical approximation, this is expected to be
Q@m) 73 {(p. x)|p*> + V(x) < 0}| (the (21) "> comes from the fact that # =
2m = 1 so h = 2n); ie,,

N (V) = (2m)~° JI min(0, V' (x)) [/ 2(4;) d’x
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Throughout this book, |{---}| denotes the Lebesgue measure of {---}. It is
clear that, in general, N(V) can be zero cven though N (V) is quite large: for
a shallow square well will not bind states, so if V' is a sum of 10° such wells,
each 10° light years apart, N(V) will be zero but N_ (V) will be very large. On
the other hand, one might hope that N(V) cannot be large without N (V)
being about as large; i.e., one might hope to prove that

N(V) < eN (V)

for some suitable universal constant ¢ (see Section 9).

(2) Let E,(B) be the ntheigenvalue of —d?/dx* + x* + Bx*.Since E,(0) =
(2n + 1), we have that E;(0) — E,(0) = E,(0) — E,(0). A moment’s re-
flection convinces us that the left-hand side of this equality should increase
faster with f than the right-hand side. How do we prove that

Ey(B) — Ex(B) = Ex(B) — E\(p)

(see Section 12)? We note that the more general conjecture that “E,(f) is
convex in n” is open.

(3) Fix a positive continuous function ¥ on R® and a, a C!-function on
R3 with values in R3. Then (see, e.g.. [132, 215, 229, 242])

H@)=(-iV—-a)y’+V

is essentially self-adjoint on CP(R?). H(a) is, of course, the Hamiltonian of a
particle in a magnetic field V x a and electric field —VV. Think of fixing V
and varying a. Let E(a) = inf spec(H(a)). In [250], Simon showed that
E(a) = E(0) by the following elementary argument: Let us compute

V(u*u) = [(V — ia)ul*u + u*[(V — ia)u]
= 2 Re(u*(V — ia)u)

Thus, using V(u*u) = 2|u|V|u|
[VIul| < Jul™'|Re[u*(V — ia)u]| < [(V — ia)u]
Squaring and integrating over x we find
(u, H(@)u) = (|u|, H(0)|ul)
so that
E(a) > E(0) (1.1)

by the variational principle. (1.1) says that the energy of spinless Bosons goes
up when a magnetic field is turned on. Let V' go to infinity as x — oo so fast
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that Z(a) = Tr(e ™) is finite. How can one prove the finite temperature
analog of (1.1):

Z(a) < Z(0)

(see Section 15)?

(4) Fix V and W, even functions on (— o0, o0) withdW/dx = Oforx = 0.
Suppose that —d?/dx* + V and —d?/dx* + V + W both have normalized
cigenfunctions, Q, and Qy , y , respectively, at the bottom of their spectrum.
Since W is “attractive,” adding it should “pull the ground state in”; i.e., one
expects that for any a > 0

3

f_aamw(x)vdxzf

|9y (x) | dx

The difficulty with proving this lies in the facts that Q is only given implicitly,
that the energy shift must be taken into account, and finally that the normal-
ization condition must be taken into account (see Section 12).

(5) The Hamiltonian of a hydrogen atom in a constant magnetic field
(0, 0, ¢B) is (units with 2u = h = |e]l = 1):

.0  By\? .0 Bx\* ¢° 1
H= [(1 i + 2) + (1 a2 ) 622] . (1.2)
It is not hard to show that H commutes with L, = i[y(8/0x) — x(3/0y)],
and one expects that the ground state  of H has m = 0;i.e,, L,y = 0. The
usual proof [217] that ground states of systems without statistics have
I = m = 0 (when rotationally invariant) breaks down since e ~**! is no longer
positivity preserving; indeed, it is not even reality preserving (see Section 12).

(6) Let V bea positive potential with compact support but also with some
rather severe singularities (e.g., r~* with a large). One’s intuition is that
particles should just “bounce off,” so that the basic existence and complete-
ness questions of scattering theory for the pair (—A, —A + V) should be
solvable. However, since V and —V have a very different status, the usual
perturbation methods [199], will not be applicable (see Section 21).

(7) One can ask to what extent the ground state (lowest eigenfunction),
(x), of —d?/dx* + V(x) mirrors properties of V. Suppose that V is even
and Y(x) = e/, Then modulo technical hypotheses we shall prove (see
Sections 12 and 13) that V' > 0 (respectively, V" = 0, V" = 0) on (0, «©)
implies that /* > 0 (respectively,f” = 0, /™ = 0) on (0, c0). We note that the
analog for four derivatives is false; see the example at the end of Section 12.

(8) Consider the ground state energy of H; in the Born-Oppenheimer
approximation; i.e., for R € [0, ), let

HR) = —A —|x|7' =[x — (R,0,0)] !
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as an operator on L*(RY). Let e¢(R) = infspec(H(R)). Then E(R) =
¢(R) + R ' is the Born Oppenheimer encrgy curve. It is reasonable to
suppose that e(R) is monotone increasing as R increases but how does one
prove this? (See Sections 12 and 13.)

It is not true that these problems all require functional integration for their
solution (although, at the present moment, some of them have only been solved
with such methods), but they all share the property of being problems with
“obvious™ answers and with elegant, conceptually “simple” solutions in
terms of the tools we shall develop here. Once the reader has understood these
methods and solutions, he will probably have little trouble giving a “word-
by-word translation” into a solution that never makes mention of functional
integration but rather exploits the Trotter product formula (Theorems 1.1
and 1.2 below) and the fact that ¢'* is an integral operator with a positive
kernel. That is, there is a sense, somewhat analogous to the sense in which
the Riemann integral is a systematized limit of sums, in which the Feynman-
Kac formula is a systematic expression of the Trotter product formula and
positivity of ¢'*. In part, the point of functional integration is a less cumber-
some notation, but there is a larger point: like any other successful language,
its existence tends to lead us to different and very special ways of thinking.

k ¥ %

Basic to a mathematical elucidation of path integration in quantum theory
is Trotter’s extension [279] to infinite dimensions of a result of Lie. Nelson
[189] has isolated a special case (which is the one we mainly need) with an
especially simple proof:

Theorem 1.1 (special case of Trotter’s product formula [279]) Let 4
and B be self-adjoint operators on a separable Hilbert space so that A + B,
defined on D(A) n D(B), is self-adjoint. Then

eiz(A +B) _ S_lim(eitA/neitB/n)n ( 13)

n— o

If, moreover, A and B are bounded from below, then

e*t(A+B) — S_lim(e-—tA/ne*tB/n)n (14)

n—ao

Remark The theorem remains true if 4 + B is merely supposed to be
essentially self-adjoint (see [279] or [34]) but the proof below does not
extend to this case.
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Proof ([189]) Let S, = ¢"4'B V, = ", W, = ¢, U, = V,W,, and let
¥, = S,y for some ¢ in #, the underlying Hilbert space. Then

n-1
”(Sx - U?/n)‘// H = Z U{/n(sl/n - Ur/u)sf/;jml
i=0
<nsup |(Syn — UV, |l (1.5
0<s<t

let ¢ € D(A) n D(B). Then s (S, — 1)¢ —» i(A + B)¢p ass | 0and

s '(Us = D = V(iB$) + V[s™' (W, — 1) — iBlp + s7'(V, — )¢
= iB¢p + 0+ idg

50

lim [nil(S;, — Uywll] > 0;  each ¢eD(A4)n D(B) (1.6)

Let D denote D(A) n D(B) with the norm ||[(A + B)¢|| + ¢l = ||olll.

By hypothesis, D is a Banach space. By the above calculations, {n(S,,, — U,,)}

is a family of bounded operators from D to S with sup,{|[n(S,,, — U,)¢l} <
oo for each ¢. As a result, the uniform boundedness principle implies that

(S — Uyndll < Cligll (L7)

for some C. (1.7) implies that the limit in (1.6) is uniform over compact sub-
sets of D. Let Y € D. Then s — , is a continuous map from [0, 7] into D, so
that {y,]0 < s < t} is compact in D. Thus the right-hand side of (1.5) goes to
Zero as n — 0.

The proof of (1.4) is similar. ||

Recently, Kato [ 154] has found the ultimate version of (1.4), which we will
give without proof, primarily as a “cultural aside.” Recall [152, 2147 that
there is a one-one correspondence between positive self-adjoint operators
and positive closed quadratic forms given by a(¢, ) = (4'2¢, AV2y). Let
us extend the notion of positive self-adjoint operator:

Definition  Let Abean operator onasubspace D of # which is symmetric
and positive and which is self-adjoint as an operator on D (which may not be
H). We call 4 a generalized positive operator and set e ' equal to zero on
D* and define it in the obvious way on D. (Note: e~ %4 may not equal one.)

With this definition, the above one-one correspondence is between positive
closed quadratic forms (not necessarily densily defined) and generalized
positive operators. The point is that if a and b are closed quadratic forms,
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a + b, defined on D(a) ~ D(b), is always a closed quadratic form, but it may
not be densily defined, even if g and b are. Given generalized positive opera-
tors A and B, with associated forms g and b, we define 4 + B to be the gen-
eralized operator associated to a + b.

Theorem 1.2 (Kato [154]) For any two generalized positive operators
A and B, s-lim,_, ., (e """ 'Bi"y exists and equals e 7*4* ® for any ¢ > 0.

Remark 1. An amusing and illuminating example of Kato’s theorem
is the following: Let U and W be two closed subspaces of # and let P, Q
be the corresponding self-adjoint projections. Let 4 have domain U with
A = 0on Uso that e”4 = P for any t. Similarly define B so that e™"2 = Q
for any t. Then Kato’s theorem says that (PQ)" converges strongly to the
projection onto U n W, a well-known result, but not one previously realized
to be a case of a Trotter-type product formula.

2. For the extension to more than two operators, sce Kato-Masuda
[155a].

Following Nelson [189] we can use the Trotter formula to give sense to
Feynman's path integral [83, 84]: Let V be a smooth potential on R>. Then
e M = g.lim(e” “Holng~iVimyn  where Hy = —iA and H = H, + V. Since
e~ "Ho ig an operator with integral kernel (see, e.g., [215]):

—- 2
Ko(x, y; t) = (2rit) /2 exp(i %)

we see that (e~ “Holng~i#V/my hag an integral kernel K®(x, y; t), where
K"™(xy, x,;t) = N ! fexp(iS(xo, XisonosXgs ) dxy -+ dx,_,

where N, is the “normalization factor,” (2mit/n)*"'?, and

"1 Y t
S(xgs s Xp3 1) = z §|xi-1 = X (ﬁ) _.;] V(M)(ﬁ)

i=1

which is an approximation to the action

S(w) = % J:a')z(s) ds — J:V(w(s)) ds
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for a polygonal path going through x; at time jt/n and linearly in between
(the } in S is m/2 corresponding to the § in H, being 1/2m;i.e,m = 1is chosen).
Thus, in the limit, we obtain the formal expression

K(x, y;t) = ~[‘exp(iS(w)) “dw” (1.8)

for the integral kernel for e ~ ¥, In (1.8), the integral is over all paths between x
and y in time ¢. A particularly beautiful aspect of (1.8) is that if we reinsert the
K's then exp(iS) becomes exp(iS/h) and a formal application of stationary
phase in the semiclassical # — 0 limit gives the principle of stationary action
of classical mechanics. See the end of Section 18.

The “dw” in (1.8) is certainly not a positive measure because of the normal-
ization and indeed, general arguments [29] imply that it cannot be chosen
as a signed measure even if one attempts to absorb the free action into it.
(By extending the notion of measure, various attempts at defining the right-
hand side of (1.8) have been made; see, e.g., C. Dewitt-Morette [47-50a],
Albeverio-Hoegh-Krohn [2] and Truman [280a-f]. These methods,
while useful computationally and for formal heuristics, have not thus far
turned out to be analytically powerful; we will not discuss them further.)
Kac made the fundamental discovery that when one follows the above pro-
cedure for e ", e, ¢ "o one can make sense out of the combined quantity
exp(—3 [ @?ds) “dw™ and get a finite positive measure du(w); indeed, this
had essentially been done already by Wiener [286]. The resulting analog
of (1.8) is now known as the Feynman-Kac formula; see Section 6.

Of course, using the Wiener-Kac approach we obtain information about
e~ "M and not e” ¥, the fundamental object of quantum dynamics. However,
if we want to study eigenfunctions, it is hard to claim that e~ *# is any more
basic than e~ Indeed, it is often easier to study the ground state using
e " since

inf spec(H) = —limt~ ! In(y, e~ Hy) (1.9)
t—>
for any vector ¢ whose spectral measure dyu, obeys du,(a, a + ¢) > 0,
where a = infspec(H). Moreover, if a = inf spec(H) is a nondegenerate
eigenvalue, Hy = an and (i, ) > 0, then

7 = lim (f, e 2Hy)~ 2o~ tHy, (1.10)
t— o0
(1.9) is easy to prove and (1.10) follows by noting that e~"* - converges
strongly to the projection (1, -)n as t — co. In fact, the reader of the recent
literature in both constructive and “particle-theoretic” field theory could
well conclude that we are living in an imaginary time era.
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2. Construction of Gaussian Processes

We begin with some probabilistic notions; see Breiman [23] or Feller
[82] for further discussion. A probability measure space is a triple (X, #, u)
of a set X, a g-field # of subsets of X, and a positive measure g on X with
#(X) = 1. (Such a measure is called a probability measure.) A real-valued
measurable function on X is called a random variable. Given a random
variable f, the measure du, on (— o0, o0) defined by u(A4) = u(f ~'[A]) is
called the probability distribution of / (to be distinguished from the **distri-
bution function,” F(t) = p,(— o0, t] which is common in the literature and
which we shall not use). Given n random variables f}, ..., f, we define
fi® - ®fi: X >R by (f ® - ®f)x) = (fi(x), fo(x), - .., fux)) and
the joint probability distribution ., ,(A) = u(fi ® - ®f]1 '[4]), a
probability measure on R*. We use E(A) for u(A4), E(f) for jf du, and
E(f; A) to denote the integral of f over the set 4.

There is a reason for introducing the term “random variable ” for the equiv-
alent “measurable function,” namely, an implied change of viewpoint. For
suppose that one has a “random function on (— o0, o0),” i.e., for each te R
a random variable f; (with some measurability in t); a functional analyst
would most naturally think about f(-) for each t or perhaps the function
[:(x) of two variables. The probabilist’s language leads to the consideration
of the functions f. (x) for each x.

As is usual, one does not distinguish random variables which are equal
almost everywhere. Typically, one goes even further and, at least formally,
removes the points of X from consideration: two setsin %, 4 and B, are called
equivalent if and only if (A A B) = 0 where A A B = (A\B) v (B\A).
The equivalence classes are called events and the family of events, #/7,,
inherits the notions of intersection and union. A random variable is, more
properly, a map (f ') from 4, the Borel subsets of R, to %#/.#,, preserving
countable unions and intersections and 4, is the composition of f ' : 8 — %/
J, and p:7/#,— [0, o). An isomorphism of two probability measure
spaces (X, #, p) and (X', &', i) is a map T: #/#, — F'/F, which is a
bijection respecting countable unions and intersections and with y' o T = p.
Random variables f on X and /" on X” are said to cerrespond under T if and
onlyif T f~! = (f’)”'. Having pointed out the need for the above general
abstract framework, we will usually be colloquial and talk about points,
about random variables as functions, etc.

Let .# be an index set for a family of random variables. If I < . is a set
with n = #(I) < oo, we have a joint probability distribution g; on R" for
{/.},c:- The measures y, are consistent in the sense that if I < I, then g, can be
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obtained from g, by “integrating out” the variables in I'\I;i.e., if { f},... f,}

® {flacrand {fio. o S} = {folaer (m 2 n), then p(4) = p(A x R™™").
A fundamental result in probability theory is:

Theorem 2.1 (Kolmogorov’s theorem)  Let .# be a countable set and let
a probability measure u, on R* be given for each finite set I — .# so that
the family of u;’s is consistent. Then, there is a probability measure space
(X, #, p) and random variables {f,},., so that g, is the joint probability
distribution of {f,},.,. Moreover, this space is unique in the sense that if
(X', %', u)and {f,}.. 5 also have these properties and if # (and respectively,
#') is the smallest o-field with respect to which the f, (respectively, f7) are
measurable, then there is an isomorphism of the probability measure spaces
under which each f, corresponds to f,.

Proof The existence and uniqueness aspects are quite distinct. To prove
existence we will take X = R’ where R = R U {c0} is the one-point com-
pactification of R. Since X is compact, we can use the Reisz~-Markov theorem
to construct Baire measures (this finesses the proof of countable additivity,
or more properly, places it on the shoulders of the proof of the Reisz—
Markov theorem; see, e.g., Berberian [11] for this proof). Let C; (X)) denote
the family of continuous functions of finitely many coordinates {x,},.; (as
I runs through all finite subsets) and let

() = f F0e) dpa(x)

if fis a function of {x,},.;. 7 is a well-defined positive linear functional on
Ciin(X) because of the consistency conditions and clearly [£(/)| < || fl -
By the Stone-Weierstrass theorem, C;,(X) is dense in C(X), so ¢ extends
uniquely to a positive linear functional on C(X). Therefore, by the Reisz-
Markov theorem, there is a Baire probability measure, y, on X with

(f) = jf(x) dp(x)

Define f,(x) = x, if x, # oo and zero if x, = co. Then clearly the dy, are the
joint distribution of the {f,},.,. This proves existence.

To prove uniqueness, we first show that the condition that the f,’s generate
& implies that the bounded functions of finitely many f,’s are dense in
L*(X, dp). For let 5 be the closure of these functions in L? and let y, in 3¢
be a characteristic function of some set A. Then we claim that there are 4,
whose characteristic functions, y,, depend on only finitely many f,’s with
An LS xa4- For let g, L x4 and by passing to a subsequence, suppose that
gn — X4 Pointwise almost everywhere. Let 4, = {x|3 < g,(x) < 2}. Then
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Yn — %4 Pointwise almost cverywhere and so in L* by the dominated
convergence theorem. Since y, — y,. the set of A’s with y, in " is closed
under finite intersections since this is true of the generating sets. Clearly it is
closed under complements and it is closed under countable unions by the
monotone convergence theorem. Thus, the set of 4 with y, in S is a o-field,
and so it is . Thus & = LX(X, dp).

Given two models (X, Z, p), { .} and (X', F', ), { .}, define U:L*(X, du)
- LX(X', dy’) by ULF(f)] = F(f.), which is well defined and unitary and
extends to L? by the above density result. It is not hard to see that U takes
characteristic functions into characteristic functions (use yx, — x4) so that
T defined by U(x4) = xr(4 defines a map of #/4, to F'/F7,. This T is
easily seen to be an isomorphism under which f, corresponds to /. |

(X, #, p) is called a model for the y,. If we take .# = {0, 1, 2, ...}, then by
the above R” can be taken as a model. (In the above, R* was used a priori, but
one notes that p{x|some x, = oo} <Y, p{x|x, = 0} =0) It is often
useful to know if some nice subset of R® has measure one. Two particularly
useful subsets are s and 4’ defined as follows: for me Z,

o = {x Y (1 + 2y ix, ) = Ix|2 < oo}

s = ( \m 9m With the Fréchet topology induced by the ||- |, and o = Um 9m-
4’ is the topological dual of s if x € 4" is associated to the linear functional

L(y) =3 XuVn

The cylinder sets o-field on 4 is the smaliest g-field with respect to which
the functionalis x +— L,(y) are measurable for each y € 0. It is easy to see that
this is identical to the o-field generated by viewing 4 as a subset of R* with
its natural o-field. Given a probability measure, y, on 4’ with the cylinder set
o-field, we can defing the function @ on s by

®()) = f expGL.(y) du(x) @.1)

called the Fourier transform of u. Often this is called the characteristic function
of u. To avoid confusion with the characteristic function of a set, we only use
the former name in this book. @ clearly has the following three properties
[(c) follows from the dominated convergence theorem and the continuity of
L,(-)}:

(a) @0)=1.

(b) ® is positive definite ; ie., given z,,...,z,eCand y,, ..., y, €9,

Y Ziz;®(y; — y) 20

i.j=1
(c) @ is continuous when s is given its Fréchet topology.
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The following infinite-dimensional analog of Bochner’s theorem (see
[215] for a proof of Bochner’s theorem) is a special case of a theorem of
Minlos [187]. The beautiful proof we use we learned from van Hemmen
{283] (although the literature on Minlos’ theorem is so large, it may well be
older):

Theorem 2.2 (Minlos’ theorem for 4') A necessary and sufficient con-
dition for a function ® on s to be the Fourier transform of a probability
measure on 4 is that it obey (a)-(c).

Proof Necessity has already been discussed, so suppose that (a)—(c)
hold. By Bochner’s theorem, for any finite I, there is a measure y; on R!
with

D(yeer) = f explix - y) dpi(x)

xeRT

By the uniqueness part of Bochner’s theorem, the s are consistent, so by our
proof of Kolmogorov's theorem, there is a measure u on R* so that (2.1)
holds for all y € s with y, nonzero for only finitely many «’s. Each s,, and thus
J is measurable in R?. If we show that u(s") = 1, then u may be restricted to
¢ and (2.1) will extend to all of 4.

The proof is thus reduced to using (c) to show that u(s') = 1. Given ¢, we
can find m and J so that || yil,, <  implies that |D(y) — 1| < &. We claim that

Re®(y) = 1 — ¢ — 2672 |ylin (2.2)
for all y € 4. For (2.2) holds if ||y||2 < 62, since |1 — ®(y)| < ¢ in that case,
and it holds if ||y||2 > 62, since Re ®(y) > — 1 for all y {[we use here the fact

that condition (b) implies that |®(y)] < ®(0)].
Fix a sequence {g,} and for @ and N let dg, y be the measure on R¥*!:

N 2
do, (y) = [](2nag,)~ /2 exp( — 2"
O N (Y) "EIO( nog,) exr><2aq") dy,

Notice that (for all integrals over R¥* ).

fdaa,N =1, J.Yiyj do, N = 0“1.'511' (2.3a)

N
J-eix.y daa. N(y) = exp<— % Z qnxr%) (2'3b)
n=0
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Integrating (2.2) with respect to da, y and using (2.3), we find that

N N
f exp(— g Y q,,x,f) dp=1—¢—2"%) (1 + n¥)"q, (24)
RJ 2,0 =0

n

Choose g, so that Y =2 g,(1 + n*)" = K < oo and take N — 00, using the
monotone convergence theorem:

f CXP(— 2 Y q,.x,?) du>1—¢—25%akK
RS 2n:0

Now take a to zero, using the monotone convergence theorem again to

obtain
i

Choosing g, = (1 + n%) ™" !, we see that
W)z o )21 —¢

Zq,,x,f<oo}zl—s
n=0

so that, if we take ¢ to zero, we see that u(s") = 1. |}

The above theorem only depends on the structure of s and 4’ as a particular
topological vector space and its dual. But 4 is topologically isomorphic
to &(R) under the Hermite expansion f € & {f,} with f, = [ ¢,(x)f(x) dx
where ¢, (x) = 2"n!)~ V23— 1)'n~ Y4~ 2(d/dx)"e**, the nth harmonic
oscillator wave function (see [240] or [214, Appendix to Section V.3]) and
also to #(R") for each v. As a result, Theorem 2.2 immediately extends to
the following.

Definition A cylinder set measure on &'(R") is a measure on the o-field
generated by the functions T — T(¢) as ¢ runs through all of #(R").

Theorem 2.3 (Minlos’ theorem for &) A necessary and sufficient con-
dition for a function ®(-) on ¥ (R®) to be the Fourier transform of a cylinder
set probability measure on #'(R")

o) = f exp(T($)) du(T)

is that ®(0) = 1, ® be positive definite, and ® be continuous in the Fréchet
topology on S (R").
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Remark The above proof shows a little more; namely, if @ is continuous
in the norm associated to 4, then y is concentrated on any set of the form

(z > 0),
{x

For example, these methods imply that if w(z) is a Wiener path and ¢ € C¥,
then ¢w is in the domain of |d/dx|'/?~*. This is just short of implying con-
tinuity (any function in |d/dx|'/?*¢ is continuous), so we will need a subtler
argument to get continuity (see Section 5).

0
Y (1 4+ m?)mmU2e < oo}

n=0

* %k

In the above, we considered countably many random variables, but
much of the discussion is applicable to arbitrary families, e.g., families
indexed by t € (g, b) = R (“stochastic processes™). In particular, Kolomog-
orov’s theorem, in the form we give it (and its proof) extends to arbitrary
families. We can use R* for X ; however, the use of R* does not extend since
{x|x, = oo for some «} is no longer even measurable!

There is one subtlety (“the problem of versions™) associated with this
extension that we shall discuss now and henceforth generally brush under the
rug. The subtlety can be illustrated in the following trivial example:

Example Let (X, %, u) be [0, 1] with its Borel sets and Lebesgue
measure. For each t € [0, 1], let g(¢t) be the random variable on X which is
identically one and let §(¢) be defined by

gt)(x) =1, t — x nonrational
=0, t — x rational

Then for each fixed ¢, g and § are equal almost everywhere so that, from the
Kolmogorov theorem point of view, g and § are identical families. But notice
that for every xe X, the map ¢+ g(t)(x) is continuous while ¢+ §(t)(x)
is discontinuous! This example illustrates dramatically that if

a1t [0, 17}

is a family of random variables on (X, #, u) and & is the minimal o-field, then
{x|t - q(t)(x) is continuous} may not be measurable.

This example is especially disturbing because one of the most celebrated
results in the development of the Wiener process is that the “paths,” g(t)(x)
are continuous in ¢ for almost every x. One can, for example, define the Wiener
process for t < 1 a priori on RI® ! with the Baire field, in which case it does
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not strictly make sensc to say that ¢+ — ¢(¢) is pointwise almost everywhere
continuous. (It does make sense to say that t — g(t) is continuous in L2-
norm and this will be trivial to prove.) There are a variety of ways around this
problem:

(a) (The one we will use) Suppose we show that for almost every
x € X, there is a C, so that

la() — q()] < C.lt = sl 2.5)

for some fixed 6 and all rational t, s in [0, 1]. Since only countably many ¢
and s are involved, (2.5) is “version independent.” Choose any explicit X
for the process and consider the g(t) for ¢ rational and let X, = {xe X|(2.5)
holds}. For x e X, g(t)(x) defined for ¢ rational extends to a unique con-
tinuous function g(¢)(x) for all t € [0, 1] and thereby, we can define random
variables §(t) on Xy and extend them to be zero on X\ X . Clearly t — ¢{t)(x)
is continuous for each xe X. Moreover, the joint distributions of
(q(ty), ..., q(t,)) agree with those for (g(¢,), ..., §(t,)). This is obvious for ¢,
rational and extends to all ¢ by the pointwise continuity of § and the L2
continuity of g. We thus have a “ version of ¢” with continuous “paths.”
This point of view is further discussed in [39].

(b) One directly constructs a probability measure on the space of con-
tinuous functions and defines this to be the Wiener process ; the above philoso-
phy is not then directly relevant. One disadvantage of this method is that a
detailed proof of countable additivity can get somewhat more involved than
in our discussion. This procedure is used in [14]; see also Section 17.

(c) Use Minlos’ theorem to construct a measure on &'(R) so that the
joint distribution of T(f,), ..., T(f,) agrees with that of | q(t) fy()dt, ...,
_[q(t) f,(t) dt. Then find in &’ a measurable family, F, of distributions equal
(as distributions) to continuous functions with u(&'\F) = 0. The Lévy
[168]-Ciesielski [35] proof (described, e.g., in [183]) can be interpreted in
this way.

(d) Use the compact model of RI® ! but use the Borel field rather than
the Baire field (see, e.g., [214] for the distinction) in which case the Holder
continuous functions are Borel measurable. The construction we used in
Theorem 2.2 only defines a Baire measure which will have many Borel
extensions, but precisely one regular Borel extension. In this extension, the
Holder continuous functions have measure one. This is a point of view
advocated by Nelson [188].

While the words leading to the final result are different in the above
arguments, the end definition of Wiener measure as a measure on the space
of continuous functions is the same.

* % %
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A particularly important class of abstract processes are the Gaussian
processes. It is easiest to describe them by using the Fourier transforms of the
joint probability distributions; i.c.,

Crivgaltise s ty) = fei“""' Apy,, X5y Xa)

= Jexp(i 6 () du(y)

One reason for this is that du, . is consistent with du, . (m = n)if
and only if
Crigty,ost))y=Cp o (ty,...,4,0,0,...,0).
We call f a Gaussian random variable of variance a if and only if

C,(t) = exp(—3at?)

Equivalently,
dus(x) = 2ra)~ 2 exp(—3x*/a)dx  (a # 0)
= d(x)dx (a=0)
Wecall fy, ..., f, jointly Gaussian with covariance {a;;} (a;; = a;;) if and only
i
Chrop (s ty) = €xp(—3 ) aytit)) (2.6)

a;; is only dependent on f; and f;, since
a;; = ff;f; du
If {a;;}1 <i<j<x 18 @ nonsingular matrix with inverse b, then

duy,, .. (%) = 2u)""*(det @)™ "% exp(—3 Y. b;;x; x;) (2.6)

Given an n x n real symmetric matrix g;;, it will be the covariance of some
jointly Gaussian random variables if and only if g is positive semidefinite.
For, in that case, (2.6) defines a positive definite function and so, by Bochner’s
theorem, a measure via Fourier transformation.

Occasionally (but not here), one discusses Gaussian random variables with
mean m; and covariance a;; in which case those described above are Gaussian
random variables of mean zero. The right-hand side of (2.6) is then replaced
by

exp(—3 2, aytit; + iy, mt))
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Throughout this book, the phrase *fand g are Gaussian random variables™
will be used to indicate they are jointly Gaussian with mean zero.

Theorem 2.34  Let A be a separable real Hilbert space. Then there exists
a probability measure space (X, &, p) and for each v € # a random variable,
@(v), so that v— ¢(v) is linear and so that for any v,, ..., v, € 3, (¢(v)),...,
¢(v,)) are jointly Gaussian with covariance (v;, v;> ({+, -> = inner product
on J). The same kind of uniqueness as occurs in the Kolmogorov theorem
holds here.

Remark We will call {¢(v)} the Gaussian process with covariance (-, ->.

Proof Pickv,,...,v,,...an orthonormal basis for #. Let ¢(t) be defined
for any sequence ¢,, ..., t,, . .. eventually zero, by

o(t) = exp(—3 ), t7)
By the above remarks on when exp(—3 _ a;;t;t;) is positive definite and on
consistency, we can apply Kolmogorov’s theorem to construct (X, &, u)

and ¢y, ..., ¢,, ..., jointly Gaussian with covariance J;; (this is somewhat
circumlocutory, one can just take X = R®, ¢, = x;, and

p =X @2n)" 2 exp(—4x2) dx,
n=1

directly). Now given a finite sum v =Y, o;v;, set $(v) = YL, 0.
Then [|¢(v)|* du = | r|1?, so, by continuity, ¢ extends from finite sums to a
map from J# to L*(X, du). It is easy to use continuity to see that

few(u) dp = exp(—3llv|?)

so the ¢’s are jointly Gaussian with the proper covariance. Uniqueness of
the process restricted to finite sums of the u; follows from the uniqueness
part of Kolmogorov's theorem and general uniqueness follows from the
L? continuity deduced above. |

Corollary 24  Let c(t, s) be a jointly continuous real-valued function
on K x K where K is a separable topological space. Suppose that for any
ty, ..., ta€ K, c(t;, t;) is a positive semidefinite matrix. Then, there exists an
essentially unique measure space (X, #, u) and a random variable g(¢) for
each t € K so that the g(t) are jointly Gaussian with covariance c.

Proof For each re K, introduce a formal symbol J, and consider the
vector space of finite sums )_ a;6,,. Define an inner product on this space by

(X a;8,,, Y. bjd,) = Y. abjc(t;, s)
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By hypothesis, this is a positive semidefinite inner product, so by the usual
procedure of quotienting by null vectors and completing we can form a Hilbert
space, .. The separability of K and continuity of ¢ imply that # is separable.
L.et ¢ be the Gaussian process with covariance (-, -), and let g(t) = ¢(5,). 1

Warning: (1) is not, in general, linear in ¢.

We want to give one final result in the abstract theory of Gaussian pro-
vesses, a result due to Feldman [80a]and Hajek [121a]. It is essentially equiv-
alent to a result of Shale [237] about the implementability of Bogoliubov
(& symplectic) automorphisms in the theory of the free Bose field. Most
ficld theorists are unaware of the work of Feldman-Hajek and most prob-
abilists of the work of Shale!

Theorem 2.5 Let # be a real Hilbert space and let 4 be a bounded
positive invertible operator on . A necessary and sufficient condition for
there to exist a single measure space (X, &) with functions {¢(v)},. »~ and
two mutually absolutely continuous probability measures du and dv so that
the ¢(v) are jointly Gaussian on (X, &, u) with covariance (-, -), and
jointly Gaussian on (X, &, v) with covariance (-, 4-),, is that 4 — 1 be
Hilbert-Schmidt.

A proof may be found, for example, in [258]. It is quite easy to prove;
indeed, we will essentially prove it as Lemma 18.6. The useful direction is
that 4 — 1 Hilbert-Schmidt implies mutual absolute continuity. The idea
is to choose a basis for # with A¢, = «,¢,. Then formally du =
X 2r)~ 2 exp(—ix2) dx, and dv = ) 2na,)” ' exp(—§x2/a,) dx,. The
condition Y (a, — 1)* < oo can be used to show that

N

[T U exp(—4a; ' = Dxd)
n=1
converges in L*(X, du). Of course, the square of the limit turns out to be
dv/du.
There is an extensive probabilistic literature on properties of Gaussian
processes; see, e.g., [61a, 82b, 82c, 85a, 180, 195a].

3. Some Fundamental Tools of Probability Theory

In this section, we present a number of related topics: Borel-Cantelli
lemmas, the notions of independence and conditional expectation, Doob’s
martingale inequality, Lévy’s maximal inequality, the individual ergodic



I, Introduction

theorem (without proof), and finally some calculations with Gaussian
processes related to the above.

Definition  Let A, be a sequence of sets in a probability measure space.
We define

i

@, = (3 (U A,,)

m=1 \n=m
i, xelim A, if and only if x lies in infinitely many A4,’s. One reason for the
name is that if A, = {x}f(x) > A} for some random variables f,, then

{x|(im f)(x) > 4} < lim 4, < {x|(im f)(x) > 1}.

Theorem 3.1 (first Borel-Cantelli lemma)  Let 4, be a sequence of sets
with Y, E(A4,) < oo. Then E(lim 4,) = 0.

Proof Let y, be the characteristic function of A4,. Then x € lim 4,, if and
only if ) x,(x) = o0, so we need only show that Z,, ¥a(X) < oo almost every-
where. But, by Fubini’s theorem,

f(Z xn) dp =}, fx.. du = ) E(4,) < o
A fortiori, Y, y, < oo a.e. |

The classical second Borel-Cantelli lemma is for independent A, (sce
below for the definition). The following result is a special case of a theorem
of Erdds-Rennyi [ 78]. Some related results can be found in [14, 223].

Theorem 3.2 (second Borel-Cantelli lemma) Let 4, be a sequence of
sets with ), E(A,) = oo. Suppose that there is a matrix «,,, defining a bounded
operator on 7, so that

|E(4, N A,) — E(A4,)E(4,)| < ¢, E(4,)'?E(4,,)"* (3.1
Then E(Iim 4,) = 1.
Proof Let ¢ be the norm of « and let f, = y, — E(A,) where g, is the

characteristic function of 4,. Then

2 N
du(x) = ). (E(4,4,) — E(4)E(A,,))
1

n,

3
1

<

n,

S E(A,) 2 E(A,)' 2

1

M=

3
il

<c
k

"=

E(4,)
1
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Thus, for any ¢ > O and N so that } V.| E(4,) > a,

y{x i 1(x) < a}[a - Z E(An)]

Su{x
<|

since on the set where Y ,_, x, <a, we have that —Y1_, f, > —a +
2’=, E(A,) = 0. Fixing a and taking N — oo, we see that

i

since ) = | E(A,) = co. Hence

g

As an example of the power of these two results, we consider the following
situation. Let fbe a random variable and let dv be its probability distribution.
By an independent sequence of copies of / we mean ®2 , dv(x,) on R® (con-
structed a la Kolmogorov), which is to be thought of as a model of “sampling
f.” By f, we mean the nth coordinate function. Suppose that fis unbounded
with nonpathological behavior at co and let a, be defined by

v(a,, ©) = 1/n (3.2)

N N 2
; 1a(x) < a}[a - Zl E(A,,)]

N 2 N
S | du) < ¢ ¥ EA)

ixn(X) < a} =0

n=1

Zx,,(x)=00}=1 ]
n=1

One would expect to need about n trials to get a value of f in the interval
(a,, o0); i.e., one would expect that lim f,/a, = 1 (which should be thought
of as a fluctuation result since we will also have lim f,/(—a,) = 1 if dv is an
even measure).

Theorem 3.3  Let f, be an independent sequence of copies of a random
variable f. Let b, be a sequence of numbers so that for each 6 > 0:

P18

E(fz(1+9b,) < (3.3a)

f E(f = (1 — d)b,) = o (3.3b)

Then lim f,/b, = 1 with probability one.
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Proof  Let 4, ° = {x] fi(x) = (1 + d)b,}. By (3.3a) and the first Borel
Cantelli lemma, almost every x is in only finitely many 4, *;i.c., [im f/b, <
1 + o with probability one. By the second Borel Cantelli lemma, (3.3b), and
the fact (take o, = J,,) that E(4,° N A, %) = E(A; HE(A,,?) (n # m) (we
have a product measure), almost every x is in infinitely many A4, ?; ie.,
tim f,/h, > 1 — & with probability one. Taking J to zero through a countable
set, we obtain the resuit. |

Remark (3.3b) is trivial for the a, of (3.2) and “normally,” (3.3a) will hold.
Example  Let f(x) have the probability distribution (27) ™ 2¢™*"2 dx =
dv. Then
Qr)"Y2a (1 + a *) 'exp(—a?/2) < w(a, ©) < 2n)"V%a ! exp(—a?/2)
3.4
for a > 0. This may be seen as follows ([185, p. 4]):

© _x2 © _x2 . _az

Jexp > dx_<_f L %P5 dx =a~ 'exp >
@ d 71 __x2

—J; E;(x exp( 3 ))dx

) . y2
f(1+x'2)exp( 2x dx

® _xz
S(1+a’2)f exp( 5 )dx

Let b, = (2 In n)!/2. Then (3.4) shows that (3.3) holds. Thus for independent
Gaussian trials, [im f,/(2 In n)!'/? = | with probability one. The celebrated
“law of the iterated logarithm” and some other limit theorems we prove in
Section 7 are only one step beyond this simple example. An alternative to
McKean’s inequality (3.4) is the following inequality of Fernique [82c]:

@m)~"%a + 1) ' exp(~a*/2) < W(a, o) < 5(27)” "*(a + 1)7 ! exp(—a?/2)
34)

(3.4) follows from (¢t = 0)
gt < exp(—3t*) < 39'(1)

where g(t) = —(t + 1)” ' exp(—%t?), for we can integrate this inequality
from ¢ to infinity. By elementary calculus this last inequality is equivalent to

IS@H+t+ D+ =4q0)< 1
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which is casy to check since ¢'(t) has exactly one zero in (0, ov) at t = 1 and
90) = ¢(0) = 1, g(1) = . (3.4) is clearly sharper than (3.4) for a small but
not quite as sharp for a large.

% N ok
Definition n random variables f, ..., f, are called independent if and
only if their joint distribution dv,  _ , is the product measure
dv; @ @dvy,
nevents A,, ..., A, are called independent if their characteristic functions are

independent random variables.

For two events, A and B, their characteristic functions have a joint proba-
bility distribution supported at the four points (0, 0), (0, 1), (1, 0), and (1, 1),
and it is easy to see that independence means u(A N B) = u(A)u(B). Equation
(3.1) can be interpreted as A, and A, are “asymptotically independent.”

Suppose that one has the special situation where the underlying probability
measure dyu can be realized as du, ® dv where dp, is the distribution for f,
and f becomes the first coordinate function in this realization. Clearly
functions g of the second variable are independent of f, and given an arbitrary
random variable h(x, y), the variation of | h(x, y) dv(y) as x varies will be some
kind of indication of how far h is from being independent of f. The con-
ditional expectation we will now discuss is the analog of “integrating over
y” in cases where du is not a product measure.

Definition  Let (X, %, u) be a probability measure space and let X be a
o-field contained in &. Let L% be the (closed) subspace of functions in
L*(X, #,du) which are T-measurable and let Py, be the orthogonal projection
from L2 to L%. For fe L¥(X, %, dy), Py fis called the conditional expectation
of f with respect to £ written E(f|X). If g4, ..., g, are random variables,
E(f\g,, .- -, g, denotes the conditional expectation of f with respect to the
o-field generated by ¢4, ..., g,.

Remarks 1. Since E(1|X) = land E(f|X) > 0iff > O(thisfollows from
Remark 2 below), it follows that for fe L' n L2, ||[E(f |Z)|l; < | f 1l so E(-|Z)
extends to L'. The second remark also shows that E(f|X) > E(g|X) if
f=g

2. E(f|X)isdetermined by two conditions: That E(f | X)is £-measurable
and that

[0 du = [B12)g (3:5)
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for any X-mcasurable g. (3.5) implics, in particular, that
E(fh|X) = hE(S|Z). if  his Z-measurable (3.6)

3. If g 1s the characteristic function of a set B, then

E(flg) = (wB)™" Lf dwg + (WX\B)" L\Bf du)(1 — g)

so that E(f|g)(x) is the expectation of f with the additional information
that we know g(x) and nothing else. More generally E(f | £)(x) can be inter-
preted as the expectation of fknowing the value of all Z-measurable g’s.

Proposition 3.4  f isindependent of g if and only if E(e*/|g) is a constant
for each real a.

Proof 1If fis independent of g, then E(F(f)|g) is constant for any F.
Conversely if E(e’*/|g) is constant for all «, then the constant is necessarily
E(e*) and

E(e™ *i#7) = E[E(e™ |g)e™7] = E(e™/)E(e'"?)
for any &« and f so, taking Fourier transforms, y, , = u, ® y,. 1
* ¥ ¥
Definition Let f,, ..., f, be a sequence of random variables. We call

them a martingale (respectively, submartingale) if and only if for each m,
E(} f,,]) < o0 and

E(fm'fl""’fm—l) - f;n—l

(respectively, E(fo| fis- s S-1) = fru—1 (pointwise)).

Remarks 1. It follows by induction that for j < m,

E(fulf1o-o s Sy = f; (resp, 2 f) 3.7

2. If X,, ..., X, are random variables which have mean zero and are
independent, then f; = Y7_, X, is a martingale. Then Doob’s inequality
(below) can be interpreted as saying that a certain gambling strategy will not
do any better than the strategy of just waiting n steps; see Feller [82].
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Theorem 3.5 (Doob’s incquality [61])  Let {f,} be a submartingale.
Then for cach 4 > 0 and n:

E( max f; > /l) < ATYE(f)) (3.9)
O<j<n
where £ = max(J,, 0).

Proof Let x; be the characteristic function of the set 4; of points where
Jiv.... fj=1 < Aand f; > A Let y be the characteristic function of the set

A with max,.;., f; = 4. Since the A/s are disjoint sets with union 4, we
have that

AE(A) = iAE(A )
ji=1

-

=<

E(fixy)

1

J

< 3 B e 1)

- Z E(fuxp) = E(fux) < E(f,)

In the above, we used f; = A in the first inequality, the submartingale re-
lation (3.7) in the second inequality, the fact that y; is f}, ..., f-measurable
and (3.5) in the next equality, and the calculation E(f,x) < E(f, ) < E(f))
in the final step. |}

The exciting thing about the above inequality is that it extends to con-
tinuously indexed processes:

Definition  Suppose that {q,},.(,.; i5 @ family of random variables. We
say it is a martingale (respectively, submartingale) if and only if

E(q,1{q,ls < u}) = q.

(respectively, >¢,)foralla <u <t <b.
Notice that a fortiori, one has that

E(ql4qsp---,45) = q,,  (resp. = q,)
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ifs; < 85 <, < t[check (3.5)!]sothatfors, < ---s, < ---thesequence
Ja = 4, is a (sub)martingale. As a result,

E( max q,, > l) < A" 'E(gs)

0<j<n

Taking the mesh of the points s; to zero we have the following.

Corollary 3.6  Let {q,},.,»y be a submartingale with continuous
sample paths (i.e., t — ¢, is almost everywhere continuous; this is “version
dependent™). Then

E( max g, > i) < A7'E(g)) (3.8)

0gs<t

Remark Doob’s inequality is just one of a number of interesting develop-
ments in the theory of martingales described in Doob’s book [61]. For
example using

E(F=z2) <A 'E(J,;F=A)

with F = max, ¢ ;., f;, an inequality proven as an intermediate step above,
one can show that

E(IFI)'" < p(p — 1) 'E(1 £ulP)''?

as follows:

E(|FP) = pf/l"lE(F > A)dA

© b2
Spfo iy [L(len(xw]

F(x)
=pfdu(x)|fn(x)|U WdA]

0

14 -1
= Fp
L fdut f1r

<L B PE(FP)

1

where ¢~ =1 — p~!, and we used Hoélder’s inequality in the last step.

*k %k ¥k
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There is another powerful inequality which has a proof similar to that of
Doob's incquality:

Theorem 3.6.5 (Lévy’s maximal inequality) Let X,, ..., X, be n
random variables with values in some vector space R’. Suppose that the joint
probability distribution for X ,, ..., X, is invariant under any change of sign
X;—¢X;(eache; = +1). LetS; = X, + --- + X;. Then for any 4 > 0,

E( max [S;| > /1) < 2E(|S,] = A (3.82)

1<j<n
If v = 1, then, in addition
E(max §; > 1) < 2E(S, > ) (3.8b)
Proof We prove (3.8a); (3.8b) is similar. Let A4; be the set with |§,| <

A ISisil<AlS)l=Aandlet A=) A, Let =X, +---+ X, —
X;+1 — -+ — X, and notice that

Thus
{I1S;1 =4} = {IS)l 2 3V {ITj| =2 4}
SO
E(Aj) = E(A;;S;| = 4)
< E(4;:1S,) = 1) + E(4;;|T| > 3)
= 2E(A;:15,]1 > 4)

where we use the invariance under changing the signof X;,,, ..., X,,. Since
the A; are disjoint:

E(A) =) E(A)) <2) E(A;;|S,| = ) < 2E(|S,| = 4)
which is (3.8a). |

For further discussion of the role of reflections in probability theory,
see [ 85a, pp. 21-29] and [198a, Chapter 5].

* k ¥

Definition A map T on a probability measure space is called ergodic if
and only if T is measure preserving and T[A] = 4 for Ae % implies
w4) =0orl.
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Examples 1. (“Kolmogorov 01 law™) Let (Y, #,, v) be a probability
measure space and let X be the two-sided infinite product of Y’s with du =
&), dv. Let (Ty); = y;-,. Then T is measure preserving and ergodic.
For given A with T[A] = A and given ¢, we can find n and B only depending
ony_,, ..., y,s0 that y(4 A B) < ¢ (such B’s have characteristic functions
L*-dense in the characteristic functions of all measurable sets; see the proof
of Kolmogorov’s theorem). Let B' = T2"*1[B]. Then B’ is independent of
B so u(B n B’) = u(B)>. Since

AABAB)c (AABYU(AAB)

we see that

HAAN(BNB)) <2
so that

|(B)* — w(B)| < 3¢
thus

|(A)? — w(A)| < 4e

Since ¢ is arbitrary, u(4)? = u(A).
2. Suppose that T is measure preserving on (X, &, u) and that for each
[a, b] = R, we have a subalgebra #, ,, of # so that:

(i) the {#|, 4} generate F,and ¥, < F,if [ = J,
(n) ifa<b < c <d,then
(B N C) — u(B)(O)] < flc —b)
for_z.i.ll Be#, pand Ce F 4 withf(t) > 0ast — o,
() T[Fuul = Flurip+n-
Then, as in Example 1, T is ergodic: For given 4, we find Be #_, ,, so that
u(A A B) < & Then, if B = T*"**[B], we have that
|u(B A B) — u(B)| < 3¢ so that |u(B)* — u(B)| < 3¢ + f(k)

Taking k = oo, we find that |u(B)?> — u(B)| < 3¢, 50 |u(A)> — u(A)| < 4e.

In two places, we will need the following result which we state without
proof; see Halmos [122] or Shields [238] for further discussion.

Theorem 3.7 (Birkhoffergodictheorem)  Let T be a map on a probability
measure space which is measure preserving. Letf € L'(X,dp). Then for almost
every x, the limit

n—oo ' j

lim 'S 7(T9%) = g(x)
nj=o
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exists and _[g(x) dy = j' S(x)du. If moreover T is ergodic, then g is the
constant | f(x) dp.

* % *k

Next, we turn to the applicability of some of the above ideas to Gaussian
random variables. First, we have the following trivial proposition.

Proposition 3.8 Two Gaussian random variables fand g are independent
if and only if their covariance (f, g) = | fg du is zero.

Proof The Fourier transform of their joint distribution is
M(t, s) = E(e™ ™) = exp(—3lltf + sgl3)
= M(t, 0)M(0, s) exp(—ts(f, g))
is a product if and only if (f,g) = 0. ||

Slightly more subtle is the following.

Theorem 3.9  Let 57 be a real Hilbert space and let ¢(-) be the Gaussian
process with covariance (-,-) Let .# be a closed subspace of #°, P the or-
thogonal projection onto .#, and T , the g-algebra generated by {¢(v)|v e #}.
Then for any we #:

E(ei“’(w) 1Z,) = 2IPPW o= 1/2llwl12 51121 Pw]l? (3.9)

Remark (3.9) is connected to Mehler’s formula; see [258].

Proof Since the right-hand side (r.h.s.) of (3.9) is clearly ~ ,-measurable,
it is enough to check that

f Fei#™ gy = f F(rhs. of (3.9)) du (3.10)

for all £ ,-measurable F. By a limiting argument, we only need to check
(3.10) for F = G(¢p(v)), - . - , ¢(v,)) with G € S (R") and, therefore, using the
Fourier transform, for F = e'Z#) = ¢%®) with v = ) t,v;€ .#. But by a
direct calculation | e®e*™ dy = exp(—%lv + wl|?). Since (v, w) = (v, Pw)
for ve #, (3.10) holds. |

(3.9) suggests we single out the object
-pi®). . Qid),+1/2]I012 (3.11)
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called the Wick-ordered exponential; more generally we define

0200 = L), ~ 11202 0|
for any a € C. Then (3.9) and its analog for general o read
E(:e®®™:|X ) = 2P (3.9)

See [258] for further discussion of Wick ordering for Gaussian processes.
To apply Theorem 3.2 to Gaussian processes, we will need the following
theorem.

Theorem 3.10  Let ¢(-) be the Gaussian process with covariance
(-, -) for some real Hilbert space 5. Let .#, 4" be two subspaces of s and
let P, Q be the corresponding orthogonal projections and X ,, X, the
corresponding o-algebras. Then,forany X ,-measurablefand Z ,-measurable
g, both in L2, we have that

{E(fg) — ENE@| < IPQIIS121lgll (3.12)

with |||, the L2-norm.

Proof Leth =g — E(g). Then

|E(f9) — E())E@)| = |E(fh)| = |[E(fE(h|Z,,))|
S IS N2 N EGRIZNN,

Since || k]|, < (g5, it suffices to show that for £ ,-measurable h with E(k) = 0,
we have that

IEGIZ )N, < [PQI A, (3.13)

By a limiting argument, we may suppose that .# is finite dimensional.

Let 4 = PQP and let w, ..., w, be an orthonormal basis for . of eigen-
vectors for A, Aw; = o; w;. Notice that sup; o; = || 4]] = ||PQ||%. By a limiting
argument, we can suppose that

h= fH(x):exp[i(x,d)(wl) + oo 4 x,0(w,)]: d"x

for H € #(R"). Then using (3.9') and the fact that E(:e*®™: :ef#™:) = ¢*#0v-0)
we see that

IA|3 = f HOH()e™ dix d'y

IEGIE)]2 = f AGOH()e™ ) dvx dry
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Now, expand the exponential in cach of the above expressions and note
that cach term is positive, e.g.,
2

fx” YH(X)H(y)d"x d"y = jx”H (x)d"x

Moreover, in comparing the two series, all terms except for the ([ H(x) d"x)*
term for the second are smaller than for the first by a factor always bounded
by sup; «;. But since E(h) = 0, | H(x) d"x = 0, so (3.13) is proven. |

Remarks 1. The above shows that to get equality in (3.12) and (3.13),
we should take h so that | xH(x) is only nonzero for = (1,0, 0, ...) (if
sup a; = a&,); i.e, H(x) = —8d6(x)/éxy, or h = ¢(w,). With this choice one
easily sees that the constants in (3.12) and (3.13) are best possible.

2. This result is more transparent if one first develops the I'(-) functor,
see [258].

* %k ok

Finally, we want to do some explicit calculation with Gaussian processes.
We have already seen that

f exp(a( Ndpo = expGa®(f, 1)) (3.14)

In general, one can explicitly do one-dimensional Gaussian integrals for
functions which are exponentials of quadratic polynomials so one should
be able to do the same for Gaussian processes. Let 4 be a trace class operator
on ). Then A has a canonical expansion [214]:

A= Zan(ﬂn )gn

where f,, g, are orthonormal and ), o, < 00, a, > 0. We define

(¢, AP) = ¥ o0, $(f)d(g,) (3.15)

since | |¢(f)$(g,)| duo < 1, the sum converges in L'. If 4 > 0, then g, = f,
and (¢, A¢) > 0.

Theorem 3.11  Let dug be the Gaussian process over a real Hilbert space,
H# with covariance (-, -). Let 4 be a positive trace class operator. Then:

@ JexpC—36, 4001 duo = [det(t + ]2

_ exp[—3(¢, A$)1 du,

b =
®) " T Texpl= X6, A0)] do

(3.16)
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is the Gaussian process with covariance (-, (1 + A) ')
© [expL~40. 46) + ap dig

= @xpL3(f, (1 + ' HP[det (1 + A 2 (317)

Remark For A trace class

[ <

det(1 + A) = [J(1 + A,(4))

n=1

where A, are the eigenvalues of 4. (See [259] for further discussion.)

Proof (a) Choose coordinates x, corresponding to ¢(f,) so that
duo = Q) (2m)~ 12 exp(—$x2) dx,. Let Fy = exp(—% Y _, a,x2) so that
Fy | exp[—3(¢, A$)]. Then

N N
fFN dpo =[] f(Zn)_”z exp[ —H(1 + a)x7ldx, = [[(1 + )7 '?
n=1 n=1

Taking N — o0 and using the monotone convergence theorem, (3.16)
results.

(b) By the proof of (a), dv = im[Fy due/( Fy du,] is obviously Gaussian
with | x,x,dv = (1 + )~ 18,

(c) Follows from (a), (b), and (3.14). |}

Theorem 3.11 can be extended in two ways. First, 4 > 0 is not necessary.
All that is needed is 1 + 4 > 0. Moreover, with an elementary subtraction,
one can extend to 4 Hilbert-Schmidt. Namely, define

(o, Ap): = Y 0, [P(f)* — 1]

Since [ [¢(f,)* — 11[¢(fi)? — 11dpe = 26,,,, the sum converges in L*(du,)
so long as ) a7 < co. Moreover, a simple extension of (a) shows that

f expl~ 46, A9)Tdiio = [] [(1 + m)e™1'"
= [det,(1 + A)] 7

(See [259] for discussion of det,.)
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If one defines

(b — 1) A — 1)) = (6, AB) — 28(Af) + (. AF)
then (3.17) implies that
f expl = X(¢ — 1), A — )] dio

= det(1 + A)~ 2 exp[—3(/, Af) + (A4S, (1 + A)"'Af)]
= det(1 + A)~ Y2 exp[ -4, A1 + A)"'N)] (3.18)



The Basic Processes

4, The Wiener Process, the Oscillator Process,
and the Brownian Bridge

In this section, we define the three basic Gaussian processes whose
perturbations will concern us in the remainder of this book. Intuitively (and
even rigorously in a strong sense, see Section 17), the Wiener process, b(t), is
the limit of elementary random walks. An elementary random walk is defined
as follows: Let v be the measure {—1, 1} with w(—1) = w(1) = 4, and let
dp = Q& dv,on X 2, {—1, 1}. Let y, be the nth coordinate function and
X, = Y"_1 Ym- The family of random variables {X,} , is called a random
walk. Since E(y,Y,) = 6,m We have E(X2) = n so that the variables X, =
n~ 12X, at least have a chance of having a limit. In fact the well-known
De Moivre-Laplace limit theorem (special case of the central limit theorem)
says that X, approaches a Gaussian:

Theorem 4.1 (central limit theorem) Let {y,}:2, be a family of inde-
pendent, identically distributed random variables with E(y,) = 0, E(y?) = 1.
Let

n
= 3

m=1

Then X, approaches a Gaussian random variable X , with variance one in
the sense, that for any continuous, bounded function on R,

E(f(R,) — Qm)~ 72 f ePf(3) dy
32
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Proof By a simple limiting argument (going through fe & as an inter-
mediate step), it suffices to prove that E(¢"**») —» ™" for all real a. But

E(e"Fr) = [F(a//m)]"
where F(ff) = E(e'” ). Since E(y,) = 0, E(y?) = 1, we have that
(F(B) — B2 - —3

as f# — 0 (by using the dominated convergence theorem) so that

2 n
E(eia)?n) — [1 — %Zn_ + 0(%)] = exp(— -;—a2> + 0(1)

by the compound interest formula. |

Intuitively, b(t) is lim,_, n~Y?X,; (Where [a] = integral part of a).
Thus, each b(r) should be Gaussian of variance ¢. To find the covariance, we
note that X, — X,, and X,, are independent if m < n. Thus, we expect that
b(t) — b(s) should be independent of b(s) for s < t;1i.e.,

E(b(s)(b(r) — b(s))) = 0
50 E(b(1)b(s)) = s for s < t. Therefore, we define the following.

Definition The Wiener process (or Brownian motion) is the family
{b()}o<, of Gaussian random variables with covariance E(b(t)b(s)) =
min(s, t).

Of course, to be able to make this definition, we need the following.

Lemma4.2 let 0<s, <s,<---<s, and let z,, ..., z,€C. Then
Yoy Ziz; min(s;, s;) = 0.

Proof Note that (with s, = 0)

2

n n
Z Z,z; min(s;, Sj) = Z (si — 8i-1)
Ji=1 i=1

n
2z
j=i
is obviously positive. [

Remark This lemma can also be proven by noting that b(t) really is the
limit of n~'2X,, as far as joint probability distributions of finitely many
b’s are concerned.

Notice that

E(@) —bis)) =1t —s t>s) “4.1)
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Moreover, by writing b(1) = b(s) + (h(1) — h(s)) and using the independence
of b(t) — b(s) from {b(u)}g <, s, We see that

E(W(0){b(w)}o<uss) = bs) (1 >3) 4.2)

so that b(z) is a martingale.

An important property of Brownian motion is that it continually starts
afresh; i.e., for each fixed s, the process b(r) = b(t + s) — b(s) for ¢t > 0 has
the same joint distributions as b and is independent of b(s); i.e., at any given
time a particle following the paths b(t) stops and except for the addition
of b(s) follows the exact same paths as a particle beginning at s = 0. Later
(Theorem 7.9) we will prove an even stronger version of this property of
starting afresh.

There are a large number of results known characterizing Brownian motion
in terms of fairly weak conditions. Typical is the following result, which we will
not use and which we state without proof. (It is Theorem 5.1 of {86].)

Theorem 4.3  If x(1) is a process for 0 < ¢ with a continuous version so
thatfor0 <s <t

E(x(t) — x(s)[{x(u)}o<u<s) = 0
E((x(t) — x(s)*H{xW}o<ucs) =1 — 5

Then x(t) is Brownian motion.

Remarks 1. The proof begins by noticing the above conditions, say,
that x(¢) and x*(t) — t are martingales. We will see later (Section 7) that more
generally certain special polynomials (:x(¢)" ;) are martingales.

2. An interesting realization of Brownian motion comes from the fact
that if y, is the characteristic function of [0, s], then {x, x,>,> = ming(s, 1).
Thus if @ is the Gaussian process associated to L?(0, c0), then b(s) = ®(x,)
is Brownian motion. @ is often called white noise and the formal relation
db/ds = ®(s) is often expressed by saying that “the derivative of Brownian
motion is white noise.”

A second main Gaussian process we will consider is the following.

Definition  The oscillator process is the family {q(1)} _ ., <, < o Of Gaussian
random variables with covariance E(q(t)q(s)) = sexp(— |t — s}).

To be sure this is a legitimate definition, we note the following.
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Lemmad4d Lets,, ..., s,bercaland z,. ..., z,€C. Then

'R

Zizj(%exp(_ Is; — s;1)) =0
1

Jii

Proof By direct calculation of the Fourier transform of e~ and the
Fourier inversion formula,

%e~lt-s| — (27.5)71 f(kZ + 1)—xeik(t—s) dk
so that

2
dk

i ZizfGexp(—|s; — ;1) = Qm) ™! f(kz + 17!
iist

n
iks;
) zje
j=1

which is clearly positive. ||

From a probabilistic point of view, the oscillator process is “natural”
as the only “invariant Gaussian Markov process” (up to changes of scale);
see Corollary 4.11. Our interest comes from the fact that it is a “path integral
for the harmonic oscillator ” as we shall see. Often, the process we have called
the oscillator process is called the “Ornstein-Uhlenbeck velocity process”
since Uhlenbeck and Ornstein [281] introduced a process x(t) with differen-
tiable paths so that dx/dt = q.

We defer the definition of the third major Gaussian process, the Brownian
bridge.

Our interest in the Wiener process comes from the fact (responsible for its
invention by Wiener [286]) that it is intimately connected with the semi-
group e~ Mo where H, = —1d?/dx*. Given the connections of b(f) with
random walks, of random walks with diffusion, of diffusion with H, via the
diffusion equation, this should not be surprising. e~'#° has the integral
kernel:

P(x,y) = 2mt)~ ' em(— zltlx - ylz) 43)

Since P(x, -) is in L? and varies continuously in L? as x is varied,
{ P(x, y)f(y)dy is a continuous function for any fe L2 Using this con-
tinuity, we define (e ~"#°f)(x) for every x (a priori it is only defined almost
everywhere).
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Theoremd4.5 Let f,, ..., f, ;€L (K), fue L* " L"(K). and let 0 <
s, <---<s, Then

E(fi(b(s,)) - -+ fulb(sy) = (™ ""Hofye™2Hofy - o7 Mo )(0)  (44)

where t, = s, t; = S, — Sy, ..., t, = S, — S,_1, Where f, is viewed as an
element of the Hilbert space L? and where fi,. . ., f,_, are viewed as bounded
multiplication operators on L2,

Proof Tt clearly suffices to show that the joint probability distribution
of (b(sy), ..., b(s,)) is

P,l(O, xl)Ptz(-xl’ X3): Pt,.(xn—l’ x,) d"x (4.5)

But since b(s,), b(s;) — b(sy), ..., b(s,) — b(s,-1) are mutually independent
Gaussian random variables of variance t,, t,, ..., t,, their joint distribution
is

P, (0, y)P,(0, y2) - - P (0, y,) d"y
so that (4.5) holds since the Jacobian of the change of variables y, = x;,
Y2 = X3 — X1, Y3 = X3 — Xz, ...is 1. |

It is easy to generalize Theorem 4.5 to several dimensions:

Definition  v-dimensional Brownian metion, b(?) (¢ > 0), is the family of
R¥-valued “random variables” whose v-components are v independent
Brownian motions;i.e., (b{t))o<:.1 <j<» are Gaussian random variables with
covariance

E(bj(t)by(s)) = J;, min(t, s)

An identical calculation to that in Theorem 4.5 proves the following
theorem.

Theorem4.6 Let Hy = —3A on L%(R). Let f,, ..., f._,€ LR,
fieLl?nL*andlet0 <s, <-.-<s,. Then

E(fi(b(s1)) - -+ fulb(s,))) = (e™"Hf; - - €™ "Hof, )(0) (4.4)

where t;, = 5,6t =5, — Syp-easly = Sy — Sp_1-

To find the analog of (4.4) for the oscillator process, we let
Lo = —3d%/dx> + ix* — %

and Qu(x) = 1~ V4~ 1/D* g0 that LyQy = 0and [|Q,]? dx = 1. Notice that
xQ, is also an eigenvalue of Ly: Lo(xQ,) = (x€) and that | x?|Qy|* dx = 4.
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Theorem 4.7  Let f,, ..., f,€ L*(R) and let —ov <55 <:---§, < 0.
Then

E(fo(q(s0)) - - £:(d(sa)) = (Qo, foe "MEofy -+ 7191, Qo) (4.6)
wheret; = 5; — 5;,_;.

Proof Fixt,,...,t,. We first claim that there is a Gaussian probability
measure, G, on R**! so that

r.hs. of (4.6) = f folxo) + ++ filxn) dG(x) 4.7

For, using the Trotter product formula,

r.hs. of (4.6) = lim (Q,, fo(e ™ "1Holme=tWimymg ... £ Q)

m-— oo

with W(x) = 4(x? — 1). For each fixed m = (my, ..., m,), this is of the form

[ 75600+ ) 4Gt
where G, is a Gaussian measure in x and auxiliary variables y obtained by
putting together the explicit Gaussian kernel of e~ *#°, the Gaussian Q,, and
the Gaussian in e~™". The partial integral {, dG,(x, y) of Gaussians is again

a Gaussian and a limit of Gaussians is a Gaussian, so (4.7) holds. To find the
covariance of the dG in (4.7), we note that for i < j,

[rexd6 = (x0, e70x02g) = g7

since Lo(xQp) = (xQ)and (xQy, xQ,) = 1. This shows that dG is just the joint
probability distribution of g(s,), - .., ¢(s,)- |

The above theorem yields an explicit kernel Q,(x, y) for e~'Lo; ie.,

(") (x) = f 0% S () dy

For

(g, e™"f) = j 1015 (Mg (x) dG(x, )

where dG is the Gaussian measure on R? with covariance matrix

1/1 e!
2\e”t 1
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Thus, inverting this matrix and using (2.6)
dG(x,y) =n""(1 —e 2) "Zexp[—(1 —e %) '(x? + ¥ — 2¢ 'xy)]dxdy
or
Qx, y) = a7 121 — )11
x exp{—[1 — "] 1[(x* + y)i(1 + e7%) — 2e7'xy]}
This is known as Mehler’s formula and this proof is essentially due to

Doob [61].

* % X

The formulas (4.4) and (4.4°) clearly distinguish the point zero; to restore
the translation invariance of H,, we introduce some measures which are not
normalized (although they are still positive).

Definition  Let dx be Lebesgue measure on RY and let (B, 4, Db) be the
measure space for v-dimensional Brownian motion. By Wiener measure, we
mean the measure dpty on R* x B given by dx ® Db. We let o(t) = x + b(r).

Remark We use Db, Dq for the measures associated with b and g to avoid
confusion with the stochastic differentials db of Chapter V.

Theorem4.8 Let du, be Wiener measure. Let fy, ..., f,€ L*(R") with
JosSu€L* Let0 < sq < s;--5,_4 < 5,. Then

ffo(m(so)) < ful0(s,)) dug(e) = (fo, f—’—“HOfl T e—t"Hofn) (4.8)

where ti'z S — 8-

Proof Suppose first that s, = 0. Then writing @ = x + b and using
(4.4) to do the b integration, we see that

Lhs. of (4.8) = J.fo(x)(e‘“""f1 e ROl (x) dx
which is the right-hand side of (4.8). If s, > 0, we let g be the characteristic

function of the ball of radius R in R®. Then, by the dominated convergence
theorem

Lhs. of (4.8) = lim | gr(e(0)) fo(e0(so)) - - fulex(s,)) dpto()
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while the right-hand side is

lim (foe™*"gg, ™ "Hof; - e~ Hof)

R— o0

since fy e ~*°Hog, converges to f, in L? by a simple application of the monotone
convergence theorem. Thus, the general case of (4.8) follows from the special
case with s, = 0. |}

Remarks 1. For reasons of symmetry and also for emphasizing the
analogy with the oscillator process, one can consider R x B x B with
measure dx ® Db ® Db, with b, (respectively, b,) the first (respectively,
second) Brownian coordinate function. One then defines, o(t) = x + b,(¢)
fort > 0 and x + by(—1) for ¢t < 0. (4.8) then holds for all #’s and the joint
(nonprobability) distribution of (o(s,), ..., o(s,)) is time translation in-
variant.

2. If we prove some “translation invariant” statement like continuity
for the Brownian paths with probability one, then, by Fubini’s theorem, it
automatically holds for @ on a set whose complement has pu,-measure
zero.

The next special measure which concerns us is formally just
3(e(0) — a)d(w(t) — b) du,

which is not a probability measure, but rather one of mass P(a, b) =

l_LY=l P(a;, b).

Definition Fixa,ceR"andt > 0.For0 < s < tdefinerandom variables
o(r) with the joint distribution for (e(s,),...,®(s,) (0 <5, <5, <+ <5, £L1)

P,(a, C)— l[p“(a’ XI)PQ(XI, xz) T Ptn(xn* 15 xn)Ptn-*l(x"’ C)] d™x

Where tl = Sl, tz = 8; — Sl""’tn+1 =1 — Sns and Po(x, y) - 5(X - y)
The consistency and normalization conditions follow from

fPt(xs y)Ps(ys Z) dvy = Pt+s(x’ Z)

Let dv, ., be the corresponding probability measure and let us define
conditional Wiener measure by

d.uo,a,c:t(m) = Py(a, ¢) dva, ;i
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Using the explicit form of the distribution of finitely many w(s)'s one sees
that

Jfﬁwd#o=J{ffﬁwdummmld%dV 49)

so long as f is measurable with respect to the o-algebra generated by
{o(s)|0 < s < t}. Similarly,

Euw»=ﬂJﬂwwm&mea (4.10)

for the Wiener process. (4.9) and (4.10) have an interpretation in terms of
conditional expectations. For example, (4.10) says that

EBB)@ = [ /() dboo.m

where E(-|b(t))(a) means the value of E(...) at those points with b(z) = a.
[More precisely, it is defined for almost every a with respect to dv(a), the
joint distribution of b(t), by

Hmmm=ﬁmﬂmeMM)

for all measurable g.]
We will occasionally use the symbol
E(-|@(0) = a, &(t) = ¢)

for expectations with respect to dv, ..,. There is a useful way of representing
all the dv, .., processes at once.

Definition  The Brownian bridge, {x(s)}¢<<; is the Gaussian process
with covariance

E@@®u) =s(1-1 O<s<tr<1)

Rather than directly showing that the required covariance is positive
definite, we note that

%(s) = b(s) — sb(1)
is a family of Gaussian random variables with (s < t)

E@(s)a(t)) =s+ st — 2st = s(1 — 1)
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Morcover, E(@(s)h(1)) = O so that, by Proposition 3.8, one can write
O<s<1

b(s) = a(s) + sb(1) (independent sum) “4.11)
where = means that the distributions on both sides are the same.

Now let a(s) be v-independent copies of a(s). Using (4.11) and the definition
of ®, one immediately sees that

o(s) = (1 - ;)a + % ¢+ m(ft) @.12)

for the dv, ., process. Thus, (4.9) becomes

f f(e(s)) dug = f f((l ~ —:)a + ; ¢+ za(ft)) P(a,c)d’ad’c Da (4.13)

* ok %

We want to close this section with a brief discussion of the Markov
property as it applies to the processes and results just discussed. We empha-
size that these notions will not be used in the remainder of this book. See
Dynkin [67] for further discussions of Markov processes.

Definition A stochastic process {x(t)},<<; is called Markovian if and
only if for a < u < t, the conditional expectation E(f(x(£))| {x(8)}a<s<y) 18
measurable with respect to x(u). Colloquially, this says that the future
depends on the past only through the present.

Theorem4.9  Let {x(t)},<.<; be a Gaussian stochastic process with
(pointwise) strictly positive covariance C(t, s). Then {x(¢)} is Markovian
if and only if C(t, 5) = f(t)g(s) (¢t > s) for suitable functions fand g.

Proof Lettzu > s. We first show that the process is Markovian if
and only if for such triples:

C(t, $)C(u, u) = C(t, W)C(u, s) 4.149)
For the Markov property is equivalent to the condition that
E(:eiaxm:l {x(s)}aSsSu)

is x(u)-measurable. By (3.9), this is equivalent to the fact that, in the notation
of Corollary 2.4, the projection of J, onto the span of {J,}, ., in the C(-, -)-
inner product is just a multiple of d,, and this is equivalent to the fact that
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S, — E () is orthogonal to J; in the C-inner product, where E(d,) =
C(u, )C(u, u) '8,. Thus, the Markov property is equivalent to (4.14).

Now, clearly if C(t, s) = f(t)g(s) (t = s), then (4.14) holds. Conversely,
let (4.14) hold and pick some u and let

1@ = {g(t, u) t=>u
t, )C(u, u)/C(u, 1) (t<u

B {C(s, $)/C(s, u) (s =u)

96) =1 (s, u)yClu, w) (s < u)

Using (4.14) and considering the three cases t > s>u, t > u > s, and
u >t > s, one easily sees that C(z, s) = f(t)g(s) fort = s. I

Remarks 1. The formulas for f(¢) and g(s) can be guessed by supposing
g(1) = 1 and that C(z, s) = f(t)g(s).

2. Some kind of restriction on C is needed to deduce C(z, s) = f(t)g(s)
from (4.14). For example, take C(t, u) = 4,,,.

3. A sufficient condition for C to be strictly positive, is that it be jointly
continuous and C(t, t) > 0 for all ¢. For C is then uniformly continuous so
C(t,s) > ¢efor |t —s| <. Givenany t < sfindt < s, < --- < 5, < s with
|s; —tl<d,|s; — s, <9d,....1s — 5] <. By (4.14)

_ C(t’ Sl)c(sl’ s2) Tt C(sk! S)
Clt. 5) = C(sy, 51) -+ C(sgs S)

is strictly positive.
Corollary 4.10  {b(t)},. 0 and {g(t)} - , <; <, are Markov processes.

Corollary 4.11 Let {x(t)} be a Gaussian stochastic process which is time
invariant [i.e., the joint distribution of x(t,), ..., x(t,) agrees with that of
x(t + ty), ..., x(t + t,)], continuous in quadratic mean [E(x(t)x(s)) con-
tinuous], and Markovian. Then for suitable o, 8 > 0, x(t) = ag(Bt) where q
is the oscillator process.

Proof By the time invariance and symmetry of C(t, u), we have that
C(t, ) = h(|t — u|) for a suitable continuous function h. The Markov
property implies (4.14) and thus

Hh(©0) = h(t — wh(u)
for ¢ > u > 0. This and continuity imply that
h(t) = h(0)e =M
The Schwarz inequality implies y > 0. Take 8 = y and o = (2h(0))'/%. |
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Therceisaclose connection between formulas (4.4) and (4.6) and the Markov
property. Given any stochastic process, {x(t)} we can define the spaces
L} = L¥(R, dv,) where v, is the probability distribution of x(r) and for
t < s define

U(t,s):L? - L? by the formula U(t, s)[f(x(s))] = E(f(x(s))|x(t)).
The Markov property says that forv <t <s,

E(f(x(sN1x(1)) = E(f (x(s))| x(t), x(v))
s0, since E(E(-|x(t), x(v))| x(v)) = E(-|x(v)) for any process, we see that for
Markov processes

U, YUt s) = Ul,s) @<t<ys)

In the case of the oscillator process where the L? are isomorphic and U(t, s) =
U(s — t), we see that U(t, s) = e~ ©~ "8 for some generator B of a contraction
semigroup; this is clearly why (4.6) holds. (4.4) is more complicated but
similar. Moreover, one can go quite easily from (4.4), (4.6) to the Markov
property. For example, (4.6) implies that for ¢t > u;

E(f(@e){a()}s<a) = Qol@)) ™ (e~ ™" Qo) (q(u))

which is clearly g(u)-measurable. In this way, one easily sees that the P(¢),-
processes to be constructed in Section 6 are Markovian. Notice that the above
expectation has the form (e *f) on L¥(R, dv) where dv = Q3 dx and B =
Q5 'Ly Qy.

5. Regularity Properties—1

We will deduce the existence of continuous versions for the Wiener and
oscillator processes from the following beautiful result (“Kolmogorov’s
lemma”):

Theorem 5.1  Let {x(t)}.<,<; be a stochastic process obeying
E([x(t + h) — x(t)IP) < K|h|**"

forsome K,somer < p,and allt,hwitha <t <t + h < b Fix0 < a<rt/p
Then

|x(t) — x(s)| < C(¥)|t — s (.0
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for all dyadic rational r and s where ('(x) is finite almost everywhere, In
particular, x has a Holder continuous version [i.c., one can find x(t) defined
for all points with the correct joint distributions and for which (5.1) holds for
all t and s].

Proof We prove (5.1); the version question is then solved via method (a)
of Section 2 (p. 14). Without loss, suppose thata = 0,b = 1. Lete = r — ap.
Then

E(Ix(t + h) — x(8)] > |h[*) < [hI7*PLE(|x(t + h) — x(D)}")]
< K|h|1+s

() ()
(57 ()

so, by the first Borel-Cantelli lemma, there exists a random integer v(x),
almost everywhere finite so that

k+1 k
N\ )T
Now let n > v(x) and let ¢ be a dyadic rational in [k/2", (k + 1)/2"]. Write
t=k/2" + Y7, y/2"*"; each y; = O or 1. Then

so that
2l

55

n=1 k=0

> 2 mx) S Kz—nz—m:

Thus

> 2"‘“) < 00

< 27", n>vx), k=0,...,2"—1

x(t) — x< k") < Z pi2mr D < ga e (5.2a)
whered = (1 — 2%~ L, Similarly
1
x(t) — x(k s ){ <d2m (52b)

Now let t and h be dyadic rationals with h < 27®, Take n with 27"~ ! <
h <2 "andksothatk/2"*! <t <k + 1/2"*1 ., Thenk + 1/2"*' <t + h <
k + 3/2"* 1t follows that
Ix(t + h) — x()] < (2d + 127"V < (2d + Dh*

Since, for fixed x this holds for all sufficiently small h, we have that (5.1)
holds. §
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Theorem 5.2  The Wicner process, v-dimensional Brownian motion,
and the oscillator process all have Holder continuous paths of any order
a<i

Proof We consider the Wiener case. The v-dimensional result is then
immediate. The oscillator case is similar. For any Gaussian variable X :

E(1X)") = C,E(IX |*)? (5.3)

(5.3) follows by scaling once we know that the expectation is finite which is
trivial. Froin (5.3) and the fact that b(t + h) — b(¢) has variance h, we see that

E(|b(t + h) — b(t)]P) = C,hP'*

We can, for fixed p > 2, choose o arbitrarily close to  — p~! so by taking p
large, we can obtain o’s arbitrarily close to 4.

By pushing the ideas of the proof of Theorem 5.1 to their extreme (see
[183, Section 1.6]) one can obtain Lévy’s precise law for the local smooth-
ness [167]:

Theorem 5.3 With probability one

|6(t2) — b(z1)| _

1 —_—T 11 —
o< << [2tIn(@™1)]"2
t=t3—11]0

for the Wiener process. In particular, the Wiener process is (everywhere)
Hélder continuous of order 1 on a set of measure zero.

Remark We will see below that b(t) and ¢(t) have the same local behavior.

Lévy's law only assures us that b(z) is not Hélder continuous of order
1 at some point and not that it fails to be Holder continuous of order 4 at all
points [indeed, we shall see in Section 7 that the behavior at a fixed point s
differs from the behavior over all s in (0, 1); explicitly

— |b(t + 5) — b(s)| B
o iog, O]

with probability one]. The following is a slight generalization of the proof that
Dvoretsky et al. [63] gave of the celebrated result of Payley, Wiener and
Zygmund [199] that b(t) is everywhere nondifferentiable; the result below is
also in [199].

1
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Theorem 54 Fix a > 4. Then with probability one, h(t) is nowhere
Holder continuous of order «; i.e., for almost every b,

inf [Tfn_ﬂb(t + h) — b(h)]| |h|‘“] = (5.4)

0<t<1)h—0
In particular, b(t) is nowhere differentiable.

Proof Fix an integer k with k(« — %) > 1. Suppose that b(t) is a path
with the left-hand side of (5.4) finite. Then, there is a t, a C, and an h, with

|b(t + h) — b(t)] < C|h|*

forall Awith|h| < hy.Pick msothat(k + 1)/m < hy.Givennleti = [tn] + 1
sothati/n,(i + 1)/n,..., (i + k)/ne[t,t + hy)if n > m. Then

() - ()

forj=1,..., k (since |b(s) — b(u)| < C[|s — t|* + |u — t|*] by the triangle
inequality). Thus

< Cn™°[|kI* + |k + 117]

{b|b somewhere Holder continuous of order o}

000 )3

D>1m>1nzmO0si<n—k+1 n
<Dn*forj=i+1,...,i+ k}

o) - o(5)

gDn“‘;j=i+1,...,i+k})=O

lim n[E(b b<l)
n—w n
since the b(j/n) — b((j — 1)/n) are independent and distributed identically
to b(1/n). Now by scaling
E(|1b(1/n)] < Dn%) = E(b||b(1)] < Dn™**1/?)
= O~ 1)

since the distribution of b(1) is continuous. Since k(a0 — 3) > 1, (5.5) holds. §

It thus suffices to show that

W0, U {

nzmO<isn-k+1

This follows from

< Dn““)]k =0 (5.5)
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Finally, we turn to showing that g(t) and b(t) have the same local behavior.
We give two distinct proofs of this fact. The first relies on an elementary
observation that

q(t) = e™'be*)/\/2 (5.6)

where = means that both sides have the same joint distributions. To prove
(5.6), we need only check covariances since both sides are Gaussian. For
t > s, we have that

1 ,—t

1e7'e ™ min(e?, €*%) = 15!

From (5.6) we immediately conclude that Theorems 5.3 and 5.4 extend to
q(t). Expressions like (5.6) occur with functions of b on both sides. Since
q(—1t) = g(¢) trivially, (5.6) suggests that b(t) and b(1/t) are related. In fact

b(1/t) = t~'b(t) 5.7
since min(1/t, 1/s) = (¢ts)~ ! min(t, s). More trivially
b(at) = a'/?b(¢) (5.8)

Notice that (5.7) and (5.8) extend to v-dimensional Brownian motion since
they hold for each component.

The second way of seeing that b(t) and g(¢t) have the same local behavior is
to apply Theorem 2.5:

Theorem 5.5 Let Db (respectively, Dg) denote the measure on paths
at) associated to Brownian motion (respectively, the oscillator process). Let
X, denote the o-algebra generated by {w(f)la <t < b}. Then for
0O<a<b< o, Dbl Z,; and Dql Z,, are mutually absolutely con-
tinuous.

Proof Pick ¢ > b and on [a, b] consider the four processes with co-
variances:

K (t,s) = el

KJ(t,s) =3e7 "5 — L — 1) Yttt — 877 — &5 + et %)

A (t,s) = min(t, s)

ALt, s) = min(t,s) — ¢~ 'ts
The positive definiteness of K, and A, follows if one notices K, (respectively,
A,) is the kernel of (B + 1)~ (respectively, B~ ') where B is the operator
—d?/dx* on L*0,c) with u(0) = u(c) = 0 boundary conditions. We will
prove the mutually absolute continuity of the pairs (K., A.), (A., Ay),
(XK., K) by application of Theorem 2.5 from which the result then follows.



48 Il.  The Basic Processes

Let (f.g)ac = (/s B '@ (f.@x.c = (fs(B + 1) 'g)a and let (-, )¢ calso
denote the corresponding Hilbert space, ctc. Then

(f’ g)A.c - (f’ g)K,c = (fs Cg)A,c

where C = BY3(B~! — (B + 1)")BY? = (B + 1)" .. For C to be Hilbert-
Schmidt on (-, -),. ., it is necessary and sufficient that C be Hilbert-Schmidt
on L? and this is obvious since its eigenvalues go as n~ 2. It is clear that
1 — C = B(B + 1)™ ! is invertible as a map on (-, -)¢ . since B is invertible.
This shows that K, and A, are equivalent.

Next we note that for ne (-, )4,

('I, n)A,c = (’7’ rl)A. o c 1("» 5b)A, ao(éb# r')A o)
where 4, has norm (3, 8,)'/* = b'/2. Thus

(’7’ ")A,c = (”’ (1 - Q)n)A, w©

where Q is rank 1 (and so Hilbert-Schmidt) and Q|| = bc ™! < 1. It follows
that A, and A, are equivalent.

The proof of the equivalence of K , and K is similar. The difference is rank
2 with d, and J, both involved. §

Remarks 1. The above proof was suggested by work of Guerra et al.
[120, 121] on the P(¢), field theory. In the language of those papers, K,
is the free field of mass m = 1, K, has added Dirichlet boundary conditions
at 0 and ¢, A, is the free field mass 0 with a Dirichlet condition at 0, and
A, has an extra Dirichlet condition at c.

The three equivalences above have analogs in the two-dimensional case
but, e.g., A, and K, are not equivalent in four or more dimensions since
(—Ap + 1)~ is not Hilbert-Schmidt if —Ap is the Laplacian with Dirichlet
conditions on the boundary of some bounded set. We emphasize that in this
paragraph “dimension” refers to the dimension of the parameter ¢ (see
Section 24 for discussion of multidimensional ¢’s) and not to the number of
components of b.

2. Forc = 1, A_is the covariance of the Brownian bridge. Thus we have
also shown that Db and Darestricted to times in [0,d] withd < 1 are mutually
absolutely continuous.

6. The Feynman—Kac Formula

Our main goal in this section is to give a number of variants of a basic
formula relating e ~*¥ to path integrals when H is of the form H, + V(x) or
Ly + V(x). The basic formula is illustrated by the following result for which



6. The Feynman-Kac Formula 49

we now give two independent proofs. Third and fourth proofs appear in
Sections 14 and 16.

Theorem 6.1 Let V e C(R"), the continuous functions vanishing at
20, and let du, be the v-dimensional Wiener measure. Let H = H, + Vasa
sclf-adjoint operator on D(H,). Then

(ﬂe‘“g)=.[f«MOmeODeXP(—:LVTw@»dgdudw) 6.1)

Remark Since V(w(s)) is almost everywhere (in w) continuous,
{6 V(w(s)) ds can be taken as a Riemann integral and so is w-measurable
as a limit of Riemann sums.

First proof By the Trotter product formula:
(f, e—tHg) — 11m (f; (e—tHo/ne—tV/n)ng)

n—=w

so by Theorem 4.8:

(f,e""Mg) = lim ff ((0))g((1)) eXp[— %ni V(‘“(%))] duo(w) (6.2)

n— oo j=0

Since w is almost everywhere continuous,

t n—1 ]t 3

-y V(w(—)) - f V(w(s)) ds

nj=o n 0
as n — <o for almost every w. Moreover, the integrand in (6.2) is dominated
by | f((0))|g(w())|exp(t| V| ) which is L since

f|f(0)(0))||g(w(l))|dﬂo =(Ifl,e™|g]) <
Thus, by the dominated convergence theorem, (6.1) holds. J

Second proof For fixed V and 1, the right-hand side of (6.1) clearly obeys
(by Holder’s inequality)

i(ths. of 6.1))] < e™=[ £1, g1l

since

flf (@) duo = 1113, fl.q(w(t))l2 dpo = llgll3
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Thus we can find an operator A4, so that

r.hs. of (6.1) = (f, A.g)

We want to show that A = ¢ %,

Next notice that

t t t ’
exp[— jV(w(s)) ds] =1- f V(w(u)) exp[—f V(w(s)) ds] du (6.3)
0 0 u
(6.3) can be proven by integrating the perfect differential in the integral on the

right-hand side. Multiply both sides of (6.3) by f(w(0))g(w(t)) and integrate
with respect to du, to find

(f. Aig) = (f, e~ tHog) — f ty du
0

with

o, = ff ((0)V (x(u)) eXp[—f V(w(s)) dS]g(w(t)) dig

= fE(f (@(0) [o(s), u < 5)V((u) exp[—f V(exs)) dS]g(w(l)) dpto

= (f’ e_uHOVAt—ug)

where E(-|w(s), u < s) stands for the L2-projection onto those functions
measurable with respect to {w(s)|u < s} (this remark is needed since dy, is
not a probability measure). In the above, we use

E(f(@(O)|o(s), u < 5) = (™" )w(u))

(which follows from Theorem 4.8), and we use the translation covariance of
due. We have thus proven that

t
A, = e 1Ho — fe‘“HOVA,_udu
0

and from this one can conclude that 4, = e~ '¥;e.g., one can iterate the above

equation and obtain an expansion for A, which is identical to the Dyson-
Phillips expansion for e "%, |}

Remark Formula (6.1) is a variant of a result of Kac [138] (see also
[139]) who was trying to understand Feynman [83]. Both proofs appear to
be well known to probabilists. In the mathematical physics literature, the
first proof appeared in [189] and the second in [120].
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Once we have (6.1) for smooth Vs it is casy to extend it to a wide class of
b's (note that [ € Ly, (R* .G) means [, | f{d*x < o0, for any compact subset
of RY . G):

Theorem 6.2  Let V be a potential so that V, € Lj,(R"\G) where G is a
closed set of measure zero and V_ obeys Q(Hy) = Q(V_) and

(¢, V_¢)| < (¢, Ho¢) + B, ¢)

for some o < 1 and all ¢ € Q(H,). Let H = Hy + V as a sum of forms on
Q(Hg) N Q(V). Then (6.1) holds.

Remark Since V and w are measurable, V(w(s)) is a measurable function
of s, so modulo the question of convergence of the integral f§ V(w(s)) ds =
g(w) can be defined for each w as a Lebesgue integral. That the integral
converges or diverges to + oo almost everywhere and that g is measurable asa
function of w follows from the proof below which establishes that it is a point-
wise limit of a sequence of measurable functions.

Proof Suppose first that Ve L® and let V, = h(V *j,) where j(x) =
n'¢(xn) and h, = ¢(x/n) with ¢eCg, 0< ¢ <1, [d(x)dx =1, and
¢(0) =1 As n-> ©, V(x)— V(x) for x¢ K, some set of measure zero.
For each fixed ¢, {w|w(t) € K} has measure zero since the distribution of
o(t) is just Lebesgue measure. Thus by Fubini’s theorem with respect to
duy ® dt, {(w, t) | w(t) e K} has measure zero. It follows, again by Fubini’s
theorem, that for almost every w, {t|w(t) € K} has Lebesgue measure zero.
Thus, by the dominated convergence theorem, [o V,(o(s)) ds — [ V(w(s)) ds
almost everywhere in . Thus asn — oo, the right-hand side of (6.1) converges.
Since H, + V, —» Hy + V in strong resolvent sense (since they converge on
acommon core;see [152,214] for discussion of strong resolvent convergence),
the left-hand side converges. This establishes (6.1) for V € L™,

Now, let V be an arbitrary function of the type allowed in the theorem and
let

V(x), —n<V(x)<m
0, otherwise

= |

Then, first taking n — oo and then m — oo, both sides of (6.1) converge, the
left-hand side converges by application of monotone convergence theorems
for forms [152, 221, 253, 254] and the right-hand side by monotone conver-
gence theorems for integrals. JJ

Remark 1f one interprets e * in the proper way for nondensely defined
closed forms [ 154, 245] then the condition V., € L}, (R\G) can be dropped—
it was only needed to assure that H was densely defined.
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By mimicking the above proofs, one casily shows that the following is
true.

Theorem 6.3 Let V be a potential so that V, € L} (R) and so that V_
obeys Q(Lo) = Q(V-)

(), Vo)) < ¢, Lo o) + (o, d)

for some o < 1 and all ¢ € @(L,). Let L = Ly, + V as a sum of forms on
Q(Ly) n Q(V). Then

(fQ, €™ "gQp) = ff (9(0))g(q(1)) eXP[- fo V(q(s)) dS] Dq  (64)

for all f, g e LA(R, Q3 dx).

Corollary  Under the above hypotheses:

infspec(L) = —lim ¢! ln[fexp( — J: V(g(s)) ds) Dq] 6.5)

=

Proof 1In case L has an eigenvalue E (with LQ = EQ) at the bottom of
its spectrum, the proof is immediate from (1.9) since (Q, Qg) > 0 (for Q, is
pointwise strictly positive and € is pointwise positive, see [217]). In general,
we proceed as follows: Choosing f = g = 1 in (6.4) we see that

Iimt 'In[-] < —infspec(L)

On the other hand, pick f and g with £2Q,, g?Q, € LR, dx). Then, by the
Schwarz inequality and (6.4)

t 1/2
(fQo, e "gQ) < Ul S @) *1g(ge)? eXp[— fo V(q(s) dS] Dq)
t 1/2
- D
X <Jexp[ J;) V(g(s)) ds] q)
so that

lim{t™! In(fQo, e "gQp)} < —Finf spec (L) + Him ¢~ * In[-]
Varying over all fand g we see that
—Jinfspec(L) < 4lim¢~'In[-]
completing the proof. [

Remark Theabove “general case” proof is patterned after a field theoretic
argument in Seiler-Simon [235].
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This completes the general discussion of Feynman-Kac formulas; in the
remainder of this section, we will present some complementary material:
Feynman-Kac formula for Db and dug o p,.; @ second proof of Mehler’s
formula ;definition of P(¢), -processes, and the use of Feynman-Kac formulas
to do calculations with Wiener measure.

* % ¥

Formulas (4.9) and (6.1) imply that e~ *# is an integral operator with
kernel

e (a, b) = JCXP(— f V(w(s)) dS) dpto,a,v:1 (6.6)
0

(6.6) can only be interpreted a priori as holding almost everywhere in a, b.
The right-hand side is defined for each a and b but the left-hand side is only
defined almost everywhere. We want to investigate when e~ *#(a, b) and the
right-hand side of (6.6) are continuous so one can interpret (6.6) pointwise.
We begin by studying when the related formula:

(e™1)(0) = fEXp<— j‘o V(b(s)) dS)f (b(1)) Db 6.7)

is valid.
We first study all operators on C(R"), the bounded continuous functions
on R". The operator

(e~ o) (x) = f P.(x »)f () dy

is easily seen to define a continuous semigroup on C(R”). Moreover (4.4)
holds if fi, ..., f, lie in C(R") and H, is replaced by H,, for the proof of
Theorem 4.5 goes through without change. If VeC(R"), then Hy + V
defined on D(H,) is the generator of an exponentially bounded semigroup
on C(R"), so using the Trotter product formula for semigroups on C(R"),
we conclude that (6.7) holds (the convergence is now in || - ||, and thus point-
wise). Moreover if fe L2 n C(R"), then the two definitions of e~ *f agree
(this follows, e.g., from the equality of the Trotter approximations). Thus the
following theorem is proven.

Theorem64 If Ve C(R"), and H = A, + V as an operator sum on
C(R), then (6.7) is valid for f € C(R"). In particular, if f € L? ~ C(R"), then
e~ "Mf(in L?-sense) is continuous and (6.7) holds for the continuous representa-
tive.
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This result ignores the fact that ¢ ' has a tendency to be smoothing;
indeed Ran(e ") = C*(H) and under fairly general hypotheses ([150, 243]
and Section 25), C*(H) consists of continuous functions. When v < 3,
D(H,) is already contained in C(R") and this makes proofs easier; for this
reason we state the following for v < 3. Using the machinery of [243], an
extension exists for v > 4.

Theorem6.5 Letv < 3. Let VelL*R") + L*(R")andlet H=Hy+ V
as an operator sum on D(H,). Then e~ *H#fis continuous for each t > 0 and
f€ L2 and (6.7) holds for the continuous representative of e ~'Hf.

Proof Let j, be an approximate identity as in the proof of Theorem
6.2.Letj,x V = V,,sothat (6.7)holdsfor f € C(R") n L*,and H, = H, + V,
by Theorem 6.4. Now {e "~} and e~ '¥ are uniformly bounded from L? to
D(H,) and so to D(H,,). Since D(H,) is continuously embedded in C(R"), the
maps e~ and e~* are equi-continuous from L? to C(R"). It follows that
(6.7) for f € C(R"), and H,, implies the result for all f € L? and H,, since the
left-hand side is L?-continuous in f by the above and the right-hand side is
continuous by Hélder’s inequality.

If we take n — oo, the right-hand side of (6.7) converges by Hdlder’s
inequality and the dominated convergence theorem. Thus, we need only
prove that for fixed f € L?, e~ "f converges to e~ "#f in C(R"). This follows
if we show that (H, + 1)[e”"7f] converges to (H, + 1)[e~"¥f]. But since
H, converges to H in a strong resolvent sense, we know that (H, + 1)
(e "By = (H + 1)e”'Mf. By a simple argument V(e ""f) — V(e '#f).
Nowuse Hy=H,— V,. §

We remark, that in any event, (6.1) implies that under the hypotheses of
Theorem 6.2

(™" )(x) = fexp(—f;V(x + b(s)) dS) f(x + b(1)) Db (6.8)

almost everywhere in x.

Theorem 6.6 Let V € C(R). Then e~ ' has an integral kernel e *#(a, b)
jointly continuous in a, b and ¢ > 0, and (6.6) holds for all a, b, t > 0.

Proof This is a simple exercise in the use of (4.12)-(4.13). Namely, let
a be the Brownian bridge and note that since V € C(R"),

0@, b, ) = E<exp(—J:V((l - E{)a + ;b + \/t_aG)) ds))
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is jointly continuous in a, b, t by the almost everywhere continuity of a(s)
and the dominated convergence theorem. But by (4.12)

r.hs. of (6.6) = Q(a, b, 1)(2nt) "2 exp(— [a — b|?*/2¢) 6.9)
This proves the result. |

Remark 1In Section 25, we shall show that e #(a, b)e L*(R?") for a
very general class of potentials V.

* ok K

The Feynman-Kac formula also provides another proof of Mehler’s
formula for the integral kernel of e ~**. By the Feynman-Kac formulas (and a
slight extension of Theorem 6.6)

(e~")(a, b) = f exp(—% f (@) — l)dr) dito 0
1]

Using (4.12) and (4.13) we see that

(e—tLo)(a’ b) — (27.“)—1/22—(a—b)2/2!e—t/2
1
x f exp(— % fo (9(s) + /to(s))e ds) Dx

where g(s) = a(1 — s) + bs and « is the Brownian bridge. Now, as noted in
the proof of Theorem 5.5, the covariance, s(1 — u) (s < u), of the Brownian
bridge is the integral kernel of the inverse of —d?/ds? with vanishing boundary
conditions at zero and one. This operator has eigenvalues (nm)? with eigen-
functions

b(s) = /2sin(ans)  (n=1,2,...)

If A, = (nm)~ !, we can write
a(s) = Y AuXpPuls)
n=1

with the x,’s Gaussian with covariance é,, (for we need only check that

E([Y 2 Xn P IY AmXm B m(0)]) = 3 AZu(s)(w) = s(1 — u) for s < u). A
direct calculation shows that g(s) = Y g, $,(s) with
_ {ﬁl,,(a +b), nodd

\/iln(a — b), n even



13 Il.  The Basic Processes

Thus
1 1
fexp(— 3 f (g(s) + \ﬂa(s))zt ds) Da
0

= fexp(— % Y (2 A2)[x, + g,,i,,“t‘”zjz) Dx
n=1
with Dx = [, (27)~ "2 exp(—1x2) dx,,. Using (3.18), we find that
(e=")a, b) = 2nt)~ e~ "*f(r) exp[ — 3A(t)(a® + b?) — B(t)(ab)]
where

ro=|Ma+ W)]m

=1

A@R) =171+ Y 22201 + 22D

n=1
B(t) =t71 4 Y (=1 12A2e(1 + 242) !
n=1
The identification with Mehler’s formula now follows from the formulas:
sinh x = x[J(1 + 42x?)

n=1

o3

(sinhx)7! = x71 4 ) (=1 12A2x(1 + x?A2)~!
n=1
cosh x — x4 ilex(l + X221
sinh x = "

(These formuias are the Weierstress—-Hadamard factorization of sinh x and
the Mittag-Leffler expansions of (sinh x) ! and coth x.) If one deals directly
with Green’s functions for —d?/dx? and does not discretize, one can avoid
these arcane formulas at the cost of doing slightly more involved integrals.

* ¥ %

We will use P as a generic symbol for a potential obeying the hypothesis of
Theorem 6.3 with the additional property that
E(P) = inf spec(L, + P)

is a simple eigenvalue with an associated strictly positive eigenvector p.
Most reasonable V’s will obey this extra condition (see, e.g., [217]) and, in
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particular, P can be any polynomial which is bounded from below. Set
L=1L,+P—- EP).

Definition  The P(¢),- process is the stochastic process with joint
distribution of g(¢t,), ..., q(zt,) (t; < -+ < t,):

Qp(x)Qp(x) (e E)(xy, X3) - - (€75 E) (X1, X,)

where (e *L)(a, b) is the integral kernel of e~ ** (which is certainly defined as
a measure) and s; = t;.; — t;. dvp denotes the corresponding measure.

Consistency of the measure follows from e e ?' = ¢ @*PL apd
e *LQ, = Q,. Thus, the oscillator process is just the P(¢),-process for P = 0
and the definition is just made so that a suitable version of (4.6) holds for
Lo + P — E(P). There are two versions of Feynman-Kac relevant to the
P(¢),-process. The first is the following.

Theorem 6.7 Let gp = Qp(Q)~ . Then the measure dvp restricted to
2. 5> the o-algebra generated by {q(t)}, <. <, is absolutely continuous with
respect to the oscillator measure, Dg, and

Avp(q) [ Za sy = Fram(qs P)Dg [ Zo iy (6.10a)

Fia,0(q; P) = gp(q(a))gp(q(b))e® P~ exp[— f P(g(s)) ds] (6.10b)

Proof One must show that
fG dVP = J‘GF[a‘ b] Dq

for any function G, of {q(t)|a <t < b}. When G = h,(g(a))h,(q(b)) for
suitable h,, h,, this is just Theorem 6.3, and for G = HLI hi(g(t)), it follows
from a simple extension of Theorem 6.3. Since every Z;, ,-measurable G is a
limit of sums of such products, the result is proven. ||

Since we have just seen that all P(¢),-processes are locally mutually
absolutely continuous, one can ask naturally about global absolute con-
tinuity; for convenience we think of all processes on (R)!~®©), although one
can realize most of them on ¥’(R) or seme other similar space.

Theorem 6.8 ([223]) If P, — p, is nonconstant, then dvp, and dvp, are
mutually singular as measures on (R){~®- =),
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Proof  We first claim that dvp, and dvp, are distinct on functions of
¢(0). For the distribution of ¢(0) is Q2 dx which therefore determines Q, and
so P — E(P) = 3Q, '(Qp) — 3x* + 4.

Next we claim that every P(¢),-process restricted to {g(n)|n an integer} is
ergodic with respect to the map U : q(i) — q(i + 1);sece Example 2 preceding
Theorem 3.7.

Now pick some set A = R with dvp (9(0) € A) = a; # a, = dvp,(q(0) € A).
Then, by Theorem 3.7,

I |-
M=

q(i) - aj;
1

almost everywhere with respect to dvp,. Thus, we have disjoint sets which
support the dvp,. |

We will see later how to distinguish the dvp, more explicitly. As a final
result on P(¢),-processes note:

Theorem 6.9 Forany G

T
Gdvy = limZ;! —[G exp(—f P(q(s)) ds) Dq (6.11a)
-7

T—o

where
Z; = jexp( - f_ TP(q(s))ds) Dq (6.11b)

Proof ltsuffices to consider G ofthe form [ [7=, fi(q(t)) witht, <--- < t,.
In that casefor T with — T <t; <t, < T:

T
fG exp(— f_ TP(q(S)) ds) Dq = (80, e ™ Lf1(g)e L - - - fil@)e L)

Where L=L0+ P and So = T+t1, 5 =t2 “tl, ceey S”_l =tn—tn+17
s, = T — t,. (1.10) completes the proof. J

Equations (6.11) give the study of the P(¢),-process something of a statisti-
cal mechanical flavor; see Sections 12 and 19.

* %k ok

In these notes, we will be primarily interested in the direction of the
Feynman-Kac formula that says one can study e~ ¥ using Wiener integrals.
However, one can turn this analysis around and use e ¥ to study Brownian
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motion. The following example (suggested to me by Donsker) illustrates
this nicely.
For each r > 0, consider the function of the Brownian path b, given by

Ub) =t '|{s]0 < s < t;b(s) = 0} (6.12)

where |-| is Lebesgue measure; i.e., U(b) is the fraction of time that the path
is to the right of zero. Think of U, as random variables. Since {t ~*2b(st)} g < <1
has the same joint distributions as {b(s)}o<s<; the U,’s all have the same
probability distribution du(x) which we want to compute. Let V be the func-
tion which is zero (respectively, one) for x < 0 (respectively, x > 0). Clearly,

t
exp[— J V(b(s)) ds] = exp[ —tU,(b)]
0
s0 by the Feynman-Kac formula in the form (6.7) and Theorem 6.5:

fe—tu,(by(b(t))Db = fe—tH(x, 0)f(x)dx

where H = —4(d?/dx?) + V. On both sides of the last expression, we can
choose f, € L? converging monotonically upwards to one. Since e ~*H(x, 0) and
e 'U® are positive, we see that

fe"‘y du(y) = Je""(x, 0) dx

Multiplying both sides by e™* and integrating dt (using Fubini’s theorem
to interchange orders), we find that

f(y + a)" tdu(y) = f(H + a)~(x, 0) dx 6.13)

Now, one can easily compute (H + a)~'(x, 0) = g(x; a) explicitly since it
satisfies —3g” + Vg + ag = d with the boundary conditions g — 0 at + co.

The net result is

_ o(a)e™'2? (x<0)
H Yx, 0) =
(H+a)"(x0) {a(a)e_"‘/m *x = 0)

with a(a) = \/5/(\/;1 + /a + 1). Thus, integrating on the right-hand side
of (6.13), we see that

-1 — 1 =
[0+ dun - Nl
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Now F(qa) is analytic in the plane cut from — 1 to 0 with F(a) — 0 at infinity.
The Cauchy integral formula thus implies that

0
Fl@=n"! f (x — a) ' Im(F(x + i0)) dx
-1

1
- n“‘fo(era)"l[\/y(l ZP1 dy

since Fispureimaginaryfor —1 < x < 0. Thus, we have proven the following.

Theorem 6.10 The random variable U, of (6.12) has probability
distribution

i x(1 - x)"dx, O0<x<l1
0, otherwise

dp(x) = {

Since [§du(x) = 2n~ ! Arc sin \/&, this result is often called the Arcsin
law.

7. Regularity and Recurrence Properties—2

In this section, we continue our study of the regularity of Brownian paths
and study certain global properties. The first result we will prove is
Khintchine’s [157] famous law of the iterated logarithm:

Theorem 7.1 For one-dimensional Brownian motion

b(t)
o Barog,tc 17
with probability one where log,(y) = In(In y).

(1)

Before proving this result, we state a number of results which follow from
(7.1). Since b(t + s5) — b(s) = b(t) and since b and g and any P(¢),-process
are locally absolutely continuous (Theorems 5.5 and 6.7):

Theorem 7.2 For one-dimensional Brownian motion, for any P(¢),-
process and any fixed s:
b(s + t) — b(s)
mo— == Y
o [2tlogy(t~ DI

o [t logot= 1~
with probability one.
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The result for b(s — 1) — b(s) follows from that for b(s + t) — b(s) if we
notice that b(2s — t) — b(2s) = b(t) has b(t) = b(t) for 0 <t < 2s.

The equivalences (5.6) and (5.7) immediately give the following.

Theorem 7.3  For one-dimensional Brownian motion

— b(t)

Im——-——-=1 7.2
o Rilog (01" 72
with probability one.
Theorem 7.4  For the oscillator process:
fm 90 _ (1.3)

m-—235
(L)

with probability one.

To get (7.3), we use the fact that In(2t)/In(t) » 1 as t — 0. (7.2) and (7.3)
show explicitly that Db [ X, ., and Dg [ Z, ., are mutually singular
measures for each a > 0. One can also distinguish various kinds of P(¢),-
processes by similar means; e.g., if P(x) = x*™, then

o 9

T =
Y R

(with «,, a nonzero constant) for almost every P(¢),-path. See [223] where
“higher order oscillations” are discussed; e.g., for the oscillator process an
explicit f(¢) is exhibited with

im f()[g(t) — (In )] = 1

(earlier references to this subject may also be found in [223]). Now b(t) =
—b(t) and g(t) = —q(t). Thus the following theorem holds.

Theorem 7.5 1In (7.1),(7.2), and (7.3) b (respectively, g) may be replaced
by —b (respectively, —q). Equivalently, [im and “=1" may be replaced by
lim and “=—-1."

These results are another indication of the roughness of Brownian motion.
They imply that b(t) = O for infinitely many ¢’s near zero, since b(t) is positive
and negative infinitely often. In fact, one can show that, with probability
one, {t|b(t) = 0} is a nonempty perfect set with Hausdorff dimension %
(see [136]), and, in particular, it is uncountable. In multidimensions, one
has the following.
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Theorem 7.6  For v-dimensional Brownian motion

|b(e)| _
' Drlog, e~ 0
(b

o Rt log, (0172 (1.5

with probability one.

Proof Let {e,}>, be a dense set of vectors on the unit sphere. By (7.1)

i b(t)-e, _
o [2tlogy (171112
for each n with probability one. Since |b(t)| > |b(t)-e,|, the Tim in (7.4) is
greater than or equal to one. On the other hand, if the lim were some a > 1,
then by a compactness argument lim b(t)- e, > ¥(1 + a) for some e,. This
proves (7.4). The proof of (7.5) is similar. [

1

Remarks 1. One curious feature of the v-dimensional case is the follow-
ing: In one dimension, the set of limit points of b(t)/[2t log,(t~*)]'/? as
t | Oisclearly { — 1, 1] since b is continuous and we know that the Iim (lim) is
1 (—1). One can ask about the limit points in v-dimensions. Since the com-
ponents are independent, one would naively expect that the set of limit points
is just the v-fold product of [ — 1, 1]. But this cannot be since (7.4) implies that
the limit points lie in the unit ball! In fact the entire unit ball occurs.

2. The law of the iterated logarithm has been proven for many Gaussian
processes; see, e.g., [196a].

We now turn to the proof of (7.1). The key to understanding why (7.1)
holds comes from (7.3) and its comparison to the example following Theorem
3.3: If the g(r) were independent, then lim g(n)/./In n would be one. The
point is that the g(n) are “almost independent” so that this is still true. But
g(t) for t near n is not significantly different from g(n). The “easy” part of the
proof of Theorem 7.1 just follows this intuition; note that by (5.6) and (5.9),
g(n) and b(e™2") are related:

Lemma 7.7 For one-dimensional Brownian motion

im b(e™")/[2e "logn]'/* = 1

n—+o0
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with probability onc and, in particular, the Iim in (7.1) is greater than or
equal to onc with probability one,

Proof Let x, = e*"2b(e"). Then, the x, are Gaussian with covariance
¢ I» mU2 ]et 4, be an event depending on x,. Then, by (3.12):

|E(A, N A,) — E(AE(A4,,)| < ™"~ "V2E(4,) 2 E(A,)"?

Using the strong Borel-Cantelli lemma, Theorem 3.2, one can now mimic
the proof of Theorem 3.3 and the example following to see that Tim x,/
(2 In n)'/? = 1 which completes the proof. J

The hard part of proving (7.1) involves showing that sampling the points
t, = e~ "does not result in a smaller [im than sampling all the times. We will
give two different proofs. The first gets control with martingale inequalities:

First proof of im < | (following [183]) In the inner product (5,, é;) =
min(t, s), the projection of d, onto [d,|s < u] withu < tis d,. It follows from
(3.9) that

E(:e®9:|b(s); s < u) = &2

ie., :@®0: = »O-22 jg 5 positive martingale. Thus by Doob’s inequality

3.8)
E<max[b(s) - %s] > ,3)

E(max 0™ > e“”)

s<t

< e *E(:e®")

—_ e—aﬂ

Let h(t) = [2tlog,(t~1)]"* and choose 0 <@ <1 and 0 <é < . Let
t,=0""' and choose a,=(1+ 86 "h(0"), B,=h0"/2 so a,p,=
(1 4+ d)log, 87" and e *# = exp(—(1 + d)[Inn + log, 67 ') =cn~172
Thus by the first Borel-Cantelli lemma, for n > N(b) (with N(b) < o©
almost everywhere),

max [b(s) _ % S] < B.

S<tn 2

Let t < 0"®~1 and suppose thatt,.; <t < t, < e . Then

b(t) < max b(s) < B, + %a,,@"_ !

S<tn

1 1+ 1+6 1
= [5 + T]h(t,,ﬂ) < [—2-&— + i]h(‘)
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since h(t) is monotone increasing fort < e . Thus
— (b(t) 1 149
lim (m) < 5 + ETE

Letting 6 | 0 and 6 1 1, the result follows. §

Remark The above implies that :b(:)": is a martingale where :x": =
(d":e™:/da™)|, - for Gaussian x; see [258] for discussion of :x":.

The second proof depends on the following remarkable fact whose proof
we defer.

E( max b(s) > l) = 2E(b(t) = 4) A=0 (7.6)

Second proof of lim < 1 (following [86]) By (7.6) and (3.4)

E( sup b(t) = xn\/t;) = /2/n fwe-(l/z)yz dy < /2/n ¢

o<t<ty,

- x8/2

Xn

Pick 6 >0 and then 0€(0,1) with (1 + 80> 1, t,= 0", and x, =
(1 + 8h(t,+1)/</1, where h(r) = [2 log,(t~*)]'/ so that

x, =1+ 8)[20Inn + c]*?

and thus since (1 + 8)%0 > 1,

e—x,z./Z
<cn ¢ a>1

= ’

Xp

Let A, = {b(t) > (1 + O)h(t)|some t € [t,,,,t,]}. Then be A4, and n so large
that h is monotone on [0, t,] implies supg<,<;, b(t) = (1 + O)h(t,+,) =
X/ ta» 80 by the first Borel-Cantelli lemma, b ¢ A4, for all n sufficiently large;
i.e., with probability one

~— b(t)
Im—=<1+96
e10 h(D)

Taking 6 | 0, the result is proven. |
Notice that the full power of (7.6) was not used; all that was needed was

E(max b(s) = /1) < 2E(b(r) = A)

0<s<t
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This is just Lévy’s inequality, Theorem 3.6.5, in this situation: the hypotheses
of that theorem are applicable once one discretizes time since a product of
Gaussians is clearly invariant under sign changes. More significantly,
Lévy’s inequality is applicable to n-dimensional Brownian motion yielding

E( max |b(s)| > l) < 2E(Ib()| = A) (7.6)

O<s<t

for n-dimensional Brownian motion. Of course the fact that equality holds
in (7.6) is interesting.

We turn now to proving (7.6). A second proof will be given below following
Lemma 7.10. To understand why it should be true, consider an elementary
random walk X, . The analog is (N, k positive integers)

E( max X, > k) =2E(Xy > k) + E(Xy = k) (1.7)
0<n<N

(7.7) comes from the fact that if maxq ., <y X, = k, itisequally likely that also
Xy > kor also Xy < k, since we can reflect the path about the first n where
X, = k. This idea is easy to make rigorous. One lets

A1: {XIX_]=k’X0""X]—1 <k}
and notes that
since A; is independent of Xy — X, and Xy — X is even. Thus, summing
over j
E(XN >k, max X, = k) = E(XN <k, max Xy > k)
0<n<N 0<nsN

which easily yields (7.7). The intuition is the same for Brownian motion but
the fact that ¢ is continuous makes it difficult to find analogs of 4;. The key
to finding a suitable way is to discretize. It is useful to introduce the following.

Definition %, is the o-field generated by {b(s)|s < t}; B = Ji<w %:-

Definition A stopping time is a function 7 with values in [0, co] of the
Brownian path with the property that {b|t(b) <t}e %, and so that
E(t < 00) > 0.
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Roughly speaking, a stopping time is a function given by *“(b) is the
smallest time, 1, so that ... has occurred before t.”

Examples 1. Fix A>0. Let ©(b) = inf{t < 1|b(¢) = A}. If maxg,<, b(t)
< A, set t(b) = 1. Then, for t < 1:

{blwb) < t} = ﬁ [O U {b!b(5> >4 — l}]
m=1{n=1 (klkj2n <1} m

is obviously in %,. As a result {b|t(b) < t} = |, {blr(b) <t — 1/n} is in
#,. Thus 1 is a stopping time.

2. w(b) = inf{t|b(t) = 0, |b(s)| = 1 for some se[0,t]}. As above, this
“first return time™ is a stopping time.

3. Given any stopping time 7, define its discretization t™ by

() = k/2" if (k — 1)/2" < ub) < k/2"
Then, for ¢ € (k/2", (k + 1)/2"]:
{b|t"™(b) < t} = {b|1(b) < k/2"} € B,
Thus, ™ is a stopping time. Notice also, that
{b|1™(b) = k/2"} = {b]t(b) < k/2"}\{blx(b) < (k — 1)/2"}
is #,,,~-measurable.

We can now prove (7.6).

Theorem 7.8  For Brownian motion and A > 0,

E( max b(s) > 1) = 2E(b(t) = A) (7.6)

0<s<t

Proof Since b(s) = t'/?b(st™ '), we can suppose that t = 1. Let 7 be the
stopping time of Example 1 above and let 7™ be its discretization modified
so that T™(b) = 1 if ©(b) > (2" — 1)/2". Let f € C(R). We claim that

E(f(b(1) — b(z™)) = E(f(b(x"™) ~ b(1))) (7.8)

For introducing the symbol

E(f; 4) = fAf Db
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we have that

X~

E(f(b(1) — b(z™))) = ¥ E[ f(b(1) — b(z™)); 1" = _)

2”

i

S 8=
el o2
) -k

= E(f(b(r"™) — K1)))

where we have used the facts that b(1) — b(k/2") is independent of %5n,
that (7™ = k/2") € %,,,» and that b(1) — b(k/2") is even. As n — o0, 7™ | Ts0
b(z*™) — b(t) by the continuity of paths. Thus, by the dominated convergence
theorem:

[ I

MN uMN ||MN uMN

E(f(b(1) — b(1))) = E(Sf(b(z) — b(1)))
or
E(f(1) — st <)+ fOEF=1)
= E(f(A—-b(l));t < 1)+ fOE(r=1)

The continuity of the distribution of b(1) then allows us to let f'be the charac-
teristic function of (0, c0). Thus,

Eb(1)> ;< D) =EbB(1) < i;t<1)
Since
Eb(Y)=At< D)+ E(z=1,b(1)= A =Eb(1)=1)=0
we have

E(t < 1)=2EMB(1) > AT < 1) = 2E((1) > 1) §

Stopping times will be useful in our study of recurrence; especially useful is
Theorem 7.9 due to Dynkin [67] and Hunt [130] which says that “ Brownian
motion starts afresh at stopping times.” As a preliminary, we need the follow-
ing.

Definition  Let T be a stopping time. Then
+={Be#B,|BN(t <t)eB,for all t}
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Examples 1. 1 is #4,.-measurable as is b(1) if we set b(t) = oo when
T = c0. Also [§ f(s)F(b(s)) ds is #,.-measurable.

2. Ift, is a fixed positive number, then ©(b) = t, is a stopping time and
B.. = (s>, B, explaining the notation.

Definition Let B be an event with E(B) > 0. Then the measure u, given
by
pa(A) = w(B N A)/u(B)

is called the B conditional measure. Given n random variables f;, ..., f,,
their joint distribution with respect to pp is called their joint distribution
conditional on B.

Theorem 7.9 (Dynkin—-Hunt) Let 7 be a stopping time for Brownian
motion. Let b(t) = b(t + 1) — b(r). Then, conditional on 7 < oo, b(r) has
identical joint distribution to b(f). Moreover, the b(r) are independent,
conditional on T < o0, of 4,-.

Proof The theorem asserts that
E(F(b(t)); T < o0) = E(F(b())E(t < )

and for Be #,+:

E(F(b(t)); BN (1 < w0))E(t < ©) = E(B N (1 < 0)EFb@)); 1 < o)
This pair of statements is clearly implied by

E(F(b()); (r < o) N B) = E(F(b()))E((t < ) N B) 79
It suffices to prove (7.9) when
F(b(1)) = G(b(ty), - - ., b(t,))

with G € C(R"). Define

g(t) = G(b(t, + 1) — b(2),...,b(t, + t) — b(t))
Then

E(F(b(1)); (x < 0) N B) = E(g(x); (¢ < o) " B)
= lim E(g(t™); (™ < o0) n B)

n—- o

= lim <§0E<g <2£) (rm _ 5"_) A B))
= lim( 3 E(g(O))E((r"" = %) N B))
n—+ o0 \k=0

= E(g(0))E((t < w0) n B) (7.10)
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where (7.10) follows from the facts that
(™ = k/2") B = ((t < k/2")n B)\(1 < (k — 1)/2"Y€ B;;n

since Be#,. and 1 is a stopping time and that b(t + k/2") — b(k/2") is
independent of #,,,» and identically distributed to b(z). il

* % *k

We next want to study the question of recurrence for Brownian paths.
In v = 1 dimension, we know that lim b(t) = oo while lim b(t) = —o0. It
follows that, with probability one, b(t) returns infinitely often to any given
set, since it must sweep through the whole real line infinitely often. We want
to examine the analogous question in detail when v > 2. We will give two
presentations of the basic facts, one after Lemma 7.21 using stopping times
and harmonic functions; the major tool in our first approach will be the use
of Dirichlet operators:

Definition  Let S be a closed subset of R*. Consider the quadratic form
with form domain CP(R*\S) and form

(f’HD:Sf) = %(f’(_A)f)

The form closure of this form defines a self-adjoint operator Hp, son L(R*\S).
We let Pp.g(x, y; t) and Gp, ¢(X, ¥; «) denote the kernels of e *H#P:s and
(Hp,s + @)~ '. (A priori these are only distributions, but using elliptic
regularity and the form of their equation, one shows they are C® for x s y
in R*\S, and of course, they are positive; see, e.g., [121, 217].) We let
GD;S(x’ y; 1) = GD;S(X’ y)

For S’s with sufficiently large interiors, we expect that (xs is the character-
istic function of S)

(Ho + pas + 2)™' = (Hp,s +2)7* (7.11)

strongly as u — oo, for all z ¢ [0, o0). We call S regular if Pp o(X, ¥; t) is
continuous on all of R” x R” (set equal to zero if either x or y € §) and if
(7.11) converges pointwise for the integral kernels. When S is a nice set like the
exterior of a ball, it is easy to see that Hp, g is the classical Dirichlet operator
and that S is regular.

Lemma 7.10  Let S be a regular closed set so that the Lebesgue measure
of 0S is zero and 0 ¢ S. Then

Eb(s)¢S™0<s<t) = f Pp,s(x, 0; £) dx (7.12)
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Proof Let x be the characteristic function of $™. Then {§ x(b(s)) ds > 0
if and only if b(s) € $™ for some s€ (0, t] since paths are continuous. Let
g, be a sequence in C§ with g,(x).~1 for each x. Then

Lh.s. of (7.12) = lim E(g,(b()); b(s) ¢ S™,0 < s < 1)

n— oo

= lim limE (exp[ —A f tx(b(s)) ds]g,,(b(t)))
(1]

n—>w A= ®

= lim lim(exp[—t(Hy + 42)19,)(0)

n—ow Ao

= lim fPD; 5(0,y; )g.(y)dy

n—ao

= r.hs. of (7.12)

In the first two and last steps above, we use the monotone convergence
theorem. In the third step, we use Theorem 6.5 and we use regularity in the
fourth step. |

Example We can now give an alternate proof of (7.6). For let § =
[A, c0) « R. Then, by the method of images:

P(x,y;t) — PQRQA — x, y; 1), x,y<Aa
PD;s(Xay;t)={0 X<1<y

Thus, by (7.12):

E ( max b(s) < l) = fPD; s(x,0; 1) dx

0<s<t
A
= f [P(x,0;1) — P(2A — x,0;r)] dx

= E(b(t) < 1) — EQA—b(t) < )

= EMb(t) <) — Eb@) < - 4)

=E(-A<b@)<A)=1-=2EMdB1) =)
which is (7.6).

Theorem 7.11 Let S be a ball of radius ry about a point y with |y| =
R > ro. Then, for v-dimensional Brownian motion:

1, v=1,2
E(b(t) € S|some ) = {(r Ry-2 v> 3
(1) ) =
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Remarks 1. The fact that for R fixed, and r, small, this “hitting proba-
bility™ is O(ry ™ ?) not O(ry™ ') (= cross-section) is another expression of the
“wigglyness” of Brownian paths; see Section 22,

2. An alternative proof of this theorem is given in the Aside following
Lemma 7.21. That proof uses hitting probability ideas in place of Green’s
functions.

Proof Let p(s) = E(b(1)¢S|0 <t <s). Since p(s) » E(b(t)¢ S |a11 1),
as s — oo, we have that

[+¢}

Eb(r)¢ S| allt) =lim | oae™*p(s)ds
a0 vO

= limf f oe” *Pp. (0, X;5) dx ds
¥ Jo

al0

=lim | «Gp, (0, x; o) dx
xl0 VR"
Now, by scaling
Gp,s(X, y; o) = “(v_z)/zGDnms(al/ZX, ally; 1)

So using translation covariance, we see that
E(b(t)¢ S|all t) = lim f Gp, s@(X, ¥o) dx (7.13)
al0

where y, = «!/2y and S(«) is the sphere of radius a'/%r, about 0. If we replace
S with the empty set, we see for comparison that

1 = lim [Gy(x, y,) dx (1.14)
al0

For v = 1, one easily sees that the right-hand side of (7.13) goes pointwise to
zero (use the explicit formula for Gp) and so the integral goes to zero since
Gp < Gy. Forv > 2, G, and G, have spherical harmonic expansions, and

fdeG...(x,y)=g...(|x|,|y|)

where dQQ, is the measure on the sphere and
golr, ') = r~ V270G 120D 4 (1 B (r, )

where r . = min(r, r'); r. = max(r, r') and A, (respectively, B,) is a suitably
normalized solution of

—u + 3 v =-D=3Du+2u=0
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which is regular at r = 0 (respectively, O(e ™ ?) at o). If gp, , comes from the
Green's function with a Dirichlet condition on the sphere of radius g, then

Av(a)Bv(r<)]

Goidrr) =1~ ”2“'“(r')-”“”*“Bv(r>>[Av<r<> - @

Thus,

lim go(r, ®*/2R) = r~ V20~ DB (Nlim[x~ 20~V 4 (x)]
al0 x]0

lim gp, 41/2,,(r, @2R) = r =120~ VB (r)

al0
. —_ 1/2(\'— 1) - Av(yx)Bv(x)):'
< [x (A”(x) B,(7x)

with y = ry/R. Thus, dividing (7.13) by (7.14)

. [ Ayx)B(x)
E(b(t)¢Slalle) =1 — llm[——~—~ 7.15
)¢ ) x}0 Bv('}’X)AV(X) ( )
If v > 3, then 4, ~ xV2®" Y and B, ~ xV/2G3~Y for x small, so the limit in
(7.15) is "2 If v = 2, then A4, ~ x*/? and B, ~ x'?In x, so the limit in
(7.15) is lim, o(In x)/In(yx) = 1. |

Example (Friedman [87]) Let f, be a sequence of bounded functions
on R with supp f, = {x||x| < 1/n}. Friedman noted that for v >4,
—A + f,—» —A in strong resolvent sense irrespective of how fast || f |
grows! For C§, = {g which are in CJ, g = 0 near 0} is a core for —A 1f
v >4 andforge Cgy:

I(=A+ fo+ D7 = (A +D7TI(=A + i)l
=(=A+ fi + ) fagll =0

for n large. Since {(— A + i)g} is dense by the core statement, the strong
resolvent result is true. This assertion is false for v < 3 by explicit example,
but Friedman did prove it for v = 2, 3 if the f,’s are positive. His proof is
expressed quite nicely in terms of path integrals: the key fact is that when
v > 2 for fixed T, Q = {w|w(t) =0, some t [0, T}} has Wiener measure
zero. For v > 3, this follows easily from Theorem 7.11; for v = 2 a different
argument is available: see the Aside following Lemma 7.21. If w ¢ Q, then by
the continuity of paths, infy.,.r|w(s)] > 0, so for n sufficiently large
{3 fulw(s)) ds = 0. It follows that for any g, he L?,

g(ax(T))h(w(0))exp (—L Julo(s)) dS) = g((THir((0))  as n—> o
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for almost every w. Since f, > 0, we can apply the dominated convergence
thcorem to conclude that

(g, exp(—T(—A + f))h) — (g, exp(TA)h) as n— o

this implies the strong resolvent convergence.

Theorem 7.11 and stopping time arguments are what is needed to com-
plete the study of recurrence. As a preliminary, we note that if b(t) is a copy
of v-dimensional Brownian motion on a space with some additional inde-
pendent coordinates, x, and if R(x) is a random rotation on R’ depending only
on x, then R(x)b() is also a copy of Brownian motion. This follows since for
each fixed x, E5(f(R(x)b(1))) = E(f(b(r))) so by independence

Ej, (f (ROOB(@)) = E(f (b(1)))

As an example, let 7 be a stopping time which is everywhere finite and let
R(b) be a rotation with R, (b)b(z) = (|b(1)|, 0, ..., 0). Then R (b)(b(t + 7) —
b(7)) is a copy of Brownian motion.

Theorem 7.12  Let b be v-dimensional Brownian motion and suppose
that v > 3. Then

lim [b(¢)| = o0

1=+ a0
with probability one. In particular, for any bounded S, {t|b(t)e S} is a
bounded set.

Proof Define stopping times t, by
1, = inf{s||b(s)| = 2"}

Then t, < o everywhere by (7.5). Since R, ((t + t,) — b(z,)) = b,(¢) is a
copy of Brownian motion, |b(z,)| = 2%, and b(s)e{x]lx] < r} for some
s > 1, if and only if b,(t) € {x]]x + (2°,0,...,0)| < r} for some ¢ > 0, we
see that for n > Inr/In 2

E(Ib(s)} < r|some s > 1,) = (r27")> "2

Thus, by the first Borel-Cantelli lemma, there is, for almost every b, an
n(b) so that |b(s)]=r for all s> Tumy(P). Thus, since each 7, < oo,
lim|b(s)| > r. Since r is arbitrary, the theorem is proven. |

Theorem 7.13  Let b be v-dimensional Brownian motion and suppose
that v < 2. Then for any nonempty open set S

Helb(H) e S} = oo



/4 Il The Basic Processes

for almost cvery b where |-| indicates Lebesgue measure. In particular, the
above set is unbounded and for any ae R”

lim|b(t) — a| =0

t—

Proof It suffices to take S a ball, say of radius r about x,. Let 7 =
inf{t||b(t) — Xo| < r/2}. Then  is a stopping time, so it suffices to show the
result for all r and xo = 0, since then |{t||b(r + £) — b(r)| < r/2}| = o0.
Finally, by scaling we can suppose that r = 1 also.

Define stopping times 7,, 0, T, 05, ... inductively by

7, = inf{t||b(e)} = 2}
o, = inf{t > 7,||b(t)| = 4}
1, = inf{t > 6, |I1b()] = 2}
It is not hard to see that each stopping time is almost everywhere finite:

For 1, < o given o,_; < o on account of (7.5) and g, < oo since b(t) =
R, (b(t + 7,) — b(t,)) is a Brownian motion and ¢, < o0 is equivalent to

E®@) e {x]lx + (2,0)] < 1};some ) = 1

which follows from Theorem 7.11. Using the Dynkin-Hunt theorem,
{o, — 1,} and {r, — 0,_,} are two mutually independent families of identi-
cally distributed independent random variables. Therefore,

T, = |{t]Ib®I < 1,1, <t < 70y}

are strictly positive random variables which are independent and identically
distributed. Let S, = min(T,, 1). Since T, > 0, E(S,) > 0. Clearly E(]S,|) < oo,
E(|S,]?) < . Thus, by the strong law of large numbers (see Lemma 7.14
below),

S |-

2. 8;— E(Sy)
j=1
with probability one and, in particular:

s

ji=1

with probability one. Since

FGEILGIESHEDW TN

=1 j=1

the result is proven. ||

In the above, we needed the following lemma.
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Lemma 7.14 (strong law of large numbers)  Let {X,};%, be a family of
independent, identically distributed random variables and suppose that
E(|1X,]) < %, E(| X,]*) < . Then

M=

X;— E(X,)

| =

j=1
with probability one.

Proof By replacing X; by X; — E(X;), we can suppose E(X;) =0.
Notice that in this case, if Y is the sum of any kX’s, then

E(Y?) = kE(X?) (1.16)
In particular, if ¥, = Y., X, then
E(127"Yn|?) = 27"E(X?)
so that
E(127"Yp| = €) < e~ 227"E(X?)

Thus, by the first Borel-Cantelli lemma, |27 "Y,n| < ¢, eventually; ie.,
lim, ., 2" Y,n = 0.

Now let Z{ = 2""*1 34_, X, n-1. Then

E(ZMYI(Z2)®) = (Z2) + EQR7" ' X)) > (Z2,)?
s0 (Z{")? is a submartingale. Doob’s inequality (3.8), thus, implies that
E( max |ZP|? > 82) < e72E(Z{-1)Y)

O<jg2n-t
= 4" 227"E(X?)
Thus, by the first Borel-Cantelli lemma (again), |Z{’| < ¢ for n > N,,
j=1,...,2"" 1L Let 2! < m < 2" Then
m Y, <27 Yyuu| + |28 pn-1| < 26

for n sufficiently large. §

Remarks 1. The law of large numbers also follows from the Birkhoff
ergodic theorem (Theorem 3.7) and the Kolmogorov 01 law (Example 1
before Theorem 3.7).

2. One can dispense with the condition E(| X, |*) < oo; see [158].

As a final set of results involving recurrence, we want to note that while one-
dimensional Brownian paths spend an infinite time in any given bounded set,
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there is a significant probability that they will take a long time to reach the set.
Explicitly, we want to show that for the stopping times used in the proof of
Theorem 7.13, E(t, — t,_,) = oo. This fact prevents an amusing paradox
from taking place. While |{t||b(t)| < 1} is infinite if v = 1 or 2, it is fairly
clear that t~*|{s||b(s)| < 1; s < t}| should go to zero as t — o for the
Brownian path should forget where it began; i.c.,

lime™ ! {s]|Ib(s)| < 1;s < t}| = lime™*|{s|b(s)e[nn + 2]; s < t}|

for any n. If E(t, — 7,_ ) were finite, then we would have 7,/n — E(t, — 17,)
by the strong law of large numbers. Since T, < 1,,, — 1,, we would also have
Q7= T)/n - E(Ty) so that 1.}y Y7, T; > E(T,)/E(t, — 7,) in contra-
diction to intuition, which says that t!| - | - 0. Fortunately, E(t, — 1,_,) =
00, so there is no problem.

Proposition 7.15  In one dimension,
t'2E(b(s) < 110 < 5 < 1) > (2/m)*/?
ast — o,

Proof Asalready noted in the Example following Lemma 7.10, Equation
(7.6) is equivalent to

E(max b(s) < 1) =E(-1<bt)<1)
0<s<t

= (2nt) V12 J.I exp —x dx
i

which proves the result since exp(—x?/2t) — 1 pointwise as t — co. |

Actually, one can explicitly compute the probability distribution for the
stopping time which gives the first time that b hits one:

Proposition 7.15°  The stopping time

7 = inf{s|b(s) = 1}
has the distribution
Qnre3) Y2 exp(— 1)~V dt
In particular, as t —» oo,

tY2E(b(s) < 1|0 < s < t) = tY2E(r > 1) - (2/m)'/?
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First proof ([272]) Clearly

f@=E(r>1)= E( max b(s) < 1)
O0<s<t
so by (7.6):
f(®O=E(b® <1)

—x2

1
=2 L Qnr)~ 12 exp( T

t-172 )
= 2f 2m)~ 12 exp( )dy
o 2

Thus f'is differentiable and

dx

ar  [(2\? d i _
- = (;) exp(—(20) 1) 7 (=171 = 2nt) " exp(~(20)7)

which establishes the probability distribution for 7. |

Second proof ([183]) Introduce stopping times Ty, by
k

TN,m = F
N27™ if N27"<~

if k—12""<t<k2™; k<N

We will first prove that for y > 0,
E(exp yb(ty m)) = 1 (7.17)
Fo-r
ECexp yb(ty, m)?) = ECexp yb(ty— 1, m):; T < (N — 1)/2™)
+ E(exp yb(N2™™):; 1 > (N — 1)/2™)

But B(N?2™™) — b((N — 1)2°™) is independent of = > (N — 1)/2™ since
7 > (N — 1)/2" is measurable with respect to % _ 1y2=. Thus

E(exp yp(N2™™):;; 1 = (N — 1)/2™)
= ECexp yb(N — 1)27™):; 7 > (N — 1)/2™)

i.e., we have shown that

E(:exp yb(ty,m)) = E(exp yb(Tn-1,m)?)
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s0 (7.17) holds by taking N to one where b(t) = b(1/2"), and the result is
cvident. Now, set N = 2™M with M an integer and take m — oo. Pointwise
b(ty. m) = b(Z)) where Ty, = min(t, M). Moreover

eXp(rb(ty, m): < Max exp(yb(s))

0ss<M

= exp(y max b(s)) = F(b)

0<s<M

But, by (7.6)

E(F(b)) = — fwe“ d[E( max b(s) > l)]

0 0<s<M

=1+ ny e E(b(M) > A)dA < oo

0

Thus, by the dominated convergence theorem, we can conclude that
ECexp(yb(Fp ) = 1

Now 17 < oo, by the law of the iterated logarithm so b(Zy) — b(1) = 1 as
M — co. Moreover, by the definition of 1, b(i}y) < 1, so exp(yb(fy)): < €'
and thus we can take M — <o and conclude that

E(exp(yb(1)):) = 1
But b(1) = 1, so
E(exp(—%y?1)) = exp(—7) (7.18)

As in the inversion procedure used to reach Theorem 6.10, one can go from
this to E((a + t)~!) and from there to the claimed distribution. |

Remarks 1. Similarly, one finds that the distribution for first hitting
a > 0is (2nt3) ™ Y2a exp(—a?/2t) dt,and that for o, the first time that |b(s)| = 1,
one has that

E(exp(—1y0)) = [cosh(y)]™*

2. We were especially careful about the use of the dominated convergence
theorem, because one can consider the stopping time

n = min{s|b(s) = 1; b(t) = 2,some ¢t < s}
Clearly n > 7 so since b(n) = b(1) = 1,
E(:exp(yb(n)):) < ECexp(yb(1))) = 1
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But the proofabove gocs through most of the way ! In fact ECexp(yb(#jp)):) = 1.
But as M — 0, :exp(yb(fs)): is no longer bounded by an L'-function in-
validating the use of the dominated convergence theorem. One can explicitly
compute E(:exp(yb(n)):) since n has the same distribution as the stopping
time u = inf{s|b(s) = 3}, since we can reflect the path about b = 2 for times
past the first time the path hits two. Thus,

E(exp(yb(n)):) = e’E(exp(—3v*n))
= e’E(exp(—37°1)
= " VE(.exp(yb(p)):) = =¥

as above.
3. The argument in the second proof can be abstracted to the following.

Theorem 7.154  Let f(t) be a (sub-respectively, super-) martingale for
Brownian motion with sup, ,| f(t, b)| < co. Then, for any stopping time, t:

E(f(7)) = E(f(0)) (Z; respectively, <)

As in the above proof, one can relax the supremum requirement by additional
argument and conditions on 7.

4. One can directly obtain that E(t; t < t) diverges like ¢'/? from (7.18)
which implies that

Bz exp(—0) = ~ 4 exp(—(20)'")
= (20)” 12 exp(— Q)*/?)

Now use a Tauberian theorem (see Section 10) to obtain lim,_, ,, t'/2E(t > t).

Corollary 7.16  The stopping times o, T of Theorem 7.13 obey
E(o, — 1,) = ©
Proof LetB(t) = R, (b(t + 1,) — b(z,))
Then o, — 1, > inf(s|b,(s) < —3) so

g) = E@6,—1,=21t) > E( max b(s) < %) = 3Q2/m)2 V2 4 ot~ 11?)

0<s<t

As a result

E(o, — t,) = —fwtdg=fwg<t)dr=oo i
0 [¢]
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The reason that it may take very long for b(s) to reach one is not that the path
gets “trapped ” in (— 1, 1), but rather that it makes excursions far to the left:

Proposition 7.17

(@) E( max [b(s)| < 1) = E(b(t)€ A) — E(b(t)€ B) (7.19)

O0<s<t

where
A=(-1L,1Hu@B,5u(=3 -5u---
and

B=(,3)u(-1,-3)uGNDu---

(b) E( max 'b(S)' < 1) =g i(Zk + 1)_1(_1)ke—n2(2k+1)2z/8 (720)
0<s<t k=1
(© E(—a < b(s) <110 < s < 1) = O(e™=@)

where a(a) = n2/(2(a + 1)?).

Remarks 1. (7.19)is good for t small and (7.20) for ¢ large.
2. (c) verifies our remark, that for large times, b(s) can only stay below
one by going far to the left, indeed, it must go a distance O(t'/?) to the left.

Proof By Lemma 7.10,
1
E(—a<b(s)<1l0<s<t) = f Pp.x,0; t)dx

where Pp,, is the propagator for 4 times Laplacian with Dirichlet conditions
at one and —a. (7.19) comes from writing Py, , by the method of images and
(7.20) by expanding Py, in its explicit eigenfunction expansion and noting
that this expansion is uniformly convergent so that it can be used for P(x, 0;1)
and the sum and integral can be interchanged. (c) comes from the same kind
of eigenfunction expansion noting that the lowest eigenvalue of —% d?/dx? on
L?(—a, 1) with Dirichlet conditions is n2/(2(a + 1)2). |}

One can ask how |{t||b(t)| < 1;¢ < T}|divergesas T — oo whenv = 1,2
(we have already remarked it cannot be as fast as T). We will answer the
weaker question concerning how E(|{s||b(s)| < 1; s < t}|) diverges as
t— 0.

Proposition 7.18 Forv =1:
lim: 2E(|{s|Ib(s)| < ;s <1}])=c

t-* o0
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and forv = 2;

lim(ln¢) " 'E(){s|lbs)) < L;s < t}|)=d

1= oo
for suitable nonzero c, d.

Proof Let x be the characteristic function of [ —1, 1]. Then, for each b

slIbs)] < 155 < 1} = J:x(b(s))ds
Thus, by a Feynman—Kac formula:
q(t) = E(|{s]lb(s)| < ;s < 1}])
= [ s
Thus ¢'(t) > O and as a | 0:

cia” 12 (v=1)
diln@™") (v=2)
for explicit ¢y, d; depending on the explicit small « behavior of the integral

kernel for (Hy + «)~'. The v = 1 result follows from the Tauberian theorem
(Theorem 10.3) and the v = 2 result from an extension of that theorem. |

fo e gD dt = (Ho + )™ '1)(0) ~ {

Remark The same method shows that in v > 3 dimensions,
E(|{s|b(s)e S}}) < o

for any bounded S. This implies that almost everywhere |{s|b(s) e S}| < o0,
which is not quite as strong as the fact that |b(s)| — o almost everywhere.

k Kk xk

Finally we should like to discuss self-intersection of Brownian paths. In
1940, Lévy [169] proved that almost every two-dimensional Brownian
path had a self-intersection, i.e., a pair 1, s so that b(z) = b(s); and Kakutani
{145] proved that this could not happen if v > 5. The cases v = 3, 4 were
settled in [63]; the question of n-fold points with n > 3 was settled in [64, 66].
These results are summarized in the following.

Definition A continuous curve {b(1)|0 < r < o0} is said to have an
n-fold point if and only if there exist ¢4,.. ., t, distinct with b(t,) = - - - = b(z,).
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Theorem 7.19  Let b be v-dimensional Brownian motion. Then

(a) Ifv < 3, almost every b(¢) has infinitely many double points,

(b) Ifv > 4, almost every b(r) has no double points,

(¢c) Ifv < 2, almost every b(z) has infinitely many n-fold points for each n,
(d) Ifv = 3, almost every b(z) has no triple points.

We will give only the proof of (a) when v = 3 (this automatically proves the
result for v = 2 since a double point for (b (1), b,(t), bs(t)) is automatically a
double point for (b,(2), b,(t))). See [63, 64, 66] for (b), (¢), (d), respectively.

Definition Let K be a compact subset of R*. We define the hitting
probability by:

h(y, K) = E(y + b(s) e K|some s [0, o))

Theorem 7.20  h(-, K) is a harmonic function on R\ K.

Proof Giveny ¢ K,pick Rsothat{x||x —y| <R} nK = . Letd <R
and define a stopping time 7 by

«(b) = inf{s||b(s)| = 6}

T < oo almost everywhere by the law of the iterated logarithm. Moreover,
y + b(s)¢ K for s < t(b) so that if B(s) = b(s + 1) — b(1),

h(y, K) = E(y + b(s)e K|1(b) < s < 0)
= E(y + b(z(b)) + B(s)e K|0 < s < )

= fh(y + x; K) dS,s(x)

where dS; is the normalized invariant measure on the sphere of radius 6.
The last equality comes from the fact that b is a Brownian motion independent
of b(z) (Theorem 7.9), that |b(t)| = J, and that b() has a rotationally in-
variant distribution. Since h 1s a bounded measurable function, it is harmonic.
1
Remarks 1. The mean value property and he L. imply h is C* since
h+ fisC®iff e C3.If| f = 1 andfis rotationally invariant with supp f < B;,
then (h * /)(y) = f(») by the mean value property.
2. One can also base the proof on the Dirichlet ideas used to discuss
hitting probabilities earlier.
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3. Results of this genre go back to Kakutani [145, 146]. They are the
starting point of “probabilistic potential theory” developed by Doob,
Hunt, and others and summarized in Meyer’s book [186]. They are central
to some rather deep results of Burkholder, et. al. [28] on H? spaces; see
the readable lecture notes of Petersen [203]. Via these notions, Brownian
motion can be used to prove some rather deep results in complex analysis [42].

The following result has already been proven as part of Theorem 7.11, but
since we shall recover parts of that theorem from Theorem 7.20, we give an
independent proof.

Lemma 7.21 Let K be a ball. Then h(y, K) » 1 asy - K.

Proof Let r be the radius of the ball and R the distance from y to the
center of the ball. By the scaling relations b(s) = ab(sa~?2), the hitting proba-
bility can only be a function f(r/R) of r/R. We want to show that f(x) — 1
as x T1. Let K* be the ball of radius « about the point (—a, 0, ..., 0). Let
Yo =(1,0,0,...). Then

h(yo, K*) = f(e/(1 + a))
$0

lim f(x) = lim h(y,, K%

xt1 a— oo
= h(y,|J K%  (since K, = Kyfora < f)
= E(b,(s) < —1,some s) =1
by the law of the iterated logarithm. §

Aside This lemma and Theorem 7.20 immediately imply the v = 2 case
of Theorem 7.11, i, that h(y, K) = 1 for v = 2 and K a sphere. For h is
harmonic and rotationally invariant so h(y) = a + bIn|y|. ThusO < h < 1
implies h(y) = aand the lemma implies that g = 1. By a little more argument,
one can recover all of Theorem 7.11 and also the fact (used in the Example
following Theorem 7.11) that a fixed point not equal to zero is hit with
probability zero if v > 2. The argument is as follows: fix r < R and define,
forr < |yl <R:

g(y) = E(|ly + b(t)| is first equal to r before it is equal to R)

i.e., g(y) is the probability that a Wiener path starting at y hits the sphere
|x| = r before it hits the sphere | x| = R. By the law of the iterated logarithm,
it eventually hits |x| = R. As in the proof of Theorem 7.20, g(y) is harmonic
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in the region r < |y| < R. Morcover, we claim that g(y) — 1 (respectively, 0)
as |y| — r (respectively, R). To prove this let

q(e) = E(max [b(t)] <& (i=1,...,v); min b,(t) < —82/3)

Ost<e 0<tse

Using (7.6) and (7.6'), one easily sees that g(g) — 1 as e | 0 so that g(r + 123,
0,...,0) > | as ¢ » 0 by a geometric argument. We can therefore conclude
that

(R ~ /R ) v=1
g»)y=3{InR —Iny]/InR — Inr), y =2
[y—(v-Z) _ R—(v—Z)]/[r—(v—Z) _ R—(v—Z)], vy>3

If we take R - oo with r fixed (and use the law of the iterated logarithm to
note that if a path does not hit the sphere of radius r, it will always hit the
path of radius R “first” and use the continuity of paths to note that if it hits
the sphere of radius r, it will hit before the sphere of radius R for R large), we
recover Theorem 7.11. On the other hand, if we first take r — 0 and then
R — o0, we see that a path starting at y 5 0 will hit zero at some time with
probability zero if v > 2 and with probability one, if v = 1.

We now return to the proof of Theorem 7.19(a).

Lemma 7.22 If K is a union of closed balls, then h(y, K) > 1 asy - K.

Proof Lety, — yo€ K. Since y, € K, it is in some ball K, = K. Then
li_mh(ym K) = hm h(Yna KO) = 1
by Lemma7.21. |

The important idea of [145] is to use the notion of Newtonian capacity.
We develop the ideas in v = 3 dimensions.

Definition Let K — R?be compact and let .4, ;(K) be the probability
measures on K. Then C(K), the Newtonian capacity of K, is defined by

-1
C(K) = [inf{ f % — yI™ du(x) du(y)luem,l(m}]

Note that C(K) may be zero, if the integral is always infinite, e.g., if K = {0}.
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Theorem 7.23 Forv =3
h(y, K) > C(K)[max{|x — y||xeK}]™! (1.21)

Remarks 1. Suitably generalized this is true for any v > 3.

2. In particular, this says that if C(K) # 0, then h(y, K) # 0 for all y.
There is a converse to this; namely, that if C(K) = 0, then h(y, K) = 0. The
latter follows from the fact [124, 164] that if C(K) = 0, then any positive
function harmonic on R*\ K with f — 0 at infinity is either identically zero or
unbounded. Since 4 is bounded, it must be zero.

Proof Let{y,} be a countable dense set in K. Let K, be the union of the
&-balls about the points y,. We first claim that K < K, and
h(y, K) = lim h(y, K.) (7.22)
el0
For clearly, h(y, K) < h(y, K,). If b(s,) + y€ K,,, then since |b(s)] -»
as s = oo (Theorem 7.12), the s, are bounded so by passing to a subsequence,
s, — s. It follows that b(s) € K ; i.e.,

() {b(s) + y € K,|somes} = {b(s) + y € K|some s}

from which (7.19) follows. (Note: (7.22) fails in two dimensions if K = {0}.)
Clearly, C(K,) > C(K). Thus, (7.21) for K, implies it for K; i.e., we can
suppose that K is a countable union of e-balls. Henceforth suppose that K
has this form.
Next, we need a fact from potential theory [124, 164]: There is a probability
measure dp on K so that the function ¢,(x) = {|x — y|™ ' du has the value
C(K) ™! on K. (Intuitively, one gets u by minimizing the energy

fdu(x) du(y)|x — y| ™!

subject to u > 0, { du = 1.) It follows that h(y, K) = C(K)¢,(y) since both
sides are harmonic on R*\ K going to zero at infinity and one at /K and
thus (7.21) comes from ¢,(x) > [max(|x — y||ye K)]™". 1l

Theorem 724 Let v =3. Fix g, ¢ > 0. Then K(b) = {b(t)|a <t < ¢}
has strictly positive capacity with probability one.

Proof 1t suffices to find a probability measure dy, on K(b) so that
§ di() du()|x = yI™* < oo. Define

dp(A) = |c — al ' H{s|b(s) e 4;a < s < ¢}
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Then
fdu.,(x)du.,w)lx = e - aer dsf drbis) — (D)] !

so, by Fubini’s theorem, it suffices to show that
Ic—-al'zf dsJ~ dt E(|b(s) — b(t)| ")) < © (7.23)

But b(s) — b(z) = |s — ¢|*2b(1) and E(|b(1)|™ ') < oo trivially (since v > 1).
Thus (7.23) holds since

C C
f dsf dtls —t| Y2 < o0 |}
a a

Proof of Theorem 7.19(a) We first prove that
o= EM() =b(s)|some 0 <1 <1;2<s<0)>0
For let K(b) = {b(s)|0 < ¢ < 1}. Then
a = E(h(b(2), K(b)))

since the function b(s + 2) — b(2) is a Brownian motion independent of
{b()|0 < t < 2}. For almost every b, k(b(2), K(b)) > 0. Thus « > 0.
Next we note that

or = E(b(r) = b(s)[some 0 <t <1;2<s<T)>0

for some T < oo since ar — a as T — <.

Now let
1, ifb(¢) = b(s); somenT <t <nT+ 1,
gu(b) = nT+2<s<@m+ 1T
0, otherwise

Then the g,(b) are independent random variables since b(t + nT) — b(nT)
is independent of the earlier b’s. So, by the second Borel-Cantelli lemma (or
alternately by the strong law of large numbers)

2 da(b) = o
almost everywhere in b. ||

Remark By scaling, for v = 3,
Eb(i)=b(s)|0<t<a;2a<s < Ta)
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is independent of 2. Thus picking 2, =T '2 "and T, =1 -2 """ we
sce that

WO =bHNT, <t <T, + o, T, +20,<5s<Ty)

arc independent, identically distributed events. This shows that the path
has infinitely many self-crossings for 0 < s,¢ < 1. Then, by scaling and trans-
lation covariance there are infinitely many double points in any interval
a < s,t < b. In particular, any point on the path is a limit of double points!
By scaling again there are double points with s — ¢ > a for any a. Brownian
paths are very complicated indeed!



Bound State Problems

8. The Birman-Schwinger Kernel and Lieb’s Formula

From the earliest days of quantum theory, the semiclassical (WKB) limit
has been an important notion. Many rigorous developments of this limiting
procedure have relied on the method of Dirichlet—-Neumann bracketing, see,
e.g., [252]. Kac in his original Feynman-Kac paper [138] suggested that
Wiener integrals would be an ideal tool for this problem and his suggestion
was implemented by Ray [212] in a suitable problem.

More recently, the idea has arisen that semiclassical results are not only
the answers as # — 0, but that they, or some multiple of them, might bound the
relevant quantum quantity for all values of A. This idea occurred first in the
bounds of Golden [111], Thompson [275] and Symanzik [270] for partition
functions (extended by Lieb [170] to certain spin systems), then in certain
beautiful bounds [40, 171, 224] on the number of bound states and most
deeply in the realization of Lieb-Thirring [175] that these bounds were
critical for the stability of matter. These works relied on a variety of methods;
we want to concentrate on that of Lieb [171] who exploited Wiener integral
methods. Indeed, the central tool will be a formula he derived. Apparently,
unaware of the technical details of his work, Kac [142] derived some special
cases of his formula and applied it to the # — 0O limit. In this section, we will
present this formula; in the next, we will show (following Symanzik [270]
and Lieb [171]) that classical bounds come from this formula and/or
Feynman-Kac together with Jensen’s inequality and in Section 10 (following
Kac [138, 142]), that £ — 0 limits come from these formulas and Tauberian
theorems.

As a preliminary to Lieb’s formula, we must introduce the Birman-
Schwinger kernel. To avoid disagreeing with all other conventions (except

88
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[142]), we lct N (V) denote the number of bound states (eigenvalues) of
—A + V of energy less than —a. We will only take « > 0 and will mainly
consider the case V = — W < 0. Since N(V) < N, (—V_) for any V, this
assumption will not affect bounds; it will affect limit theorems but the ma-
chinery could be extended to accommodate the general case.

As usual, H, = —4A, so that N (V) is the number of bound states of
H, + 1V of energy less than —3a. Now, for any V(< 0) which is Hy-form
compact, one can easily [257] show that (y > 0)

(Ho + V)b = —7¢ ®1)
if and only if (¥ = |V|2¢)

Ky=114% 8.2)
where K, is the Birman [15]-Schwinger [233] “kernel”:
K, =|VI"*(Ho + n)" V|2 (8.3)

Theorem 8.1 (The Birman-Schwinger principle) Let V be Hg-form
compact.

(a) Leta > 0. Then
N(V) = # {eigenvalues of K, ), > 2}
(b) Ifa=0andv > 3(sothat K, = lim, o K, exists), then
No(V) = # {eigenvalues of K, > 2}

Proof (a) Lete(A)denote the eigenvalues of Hy + AV suitably ordered
with 1) = 0if No(2AV) < i — 1. Then, the e(-) are continuous and strictly
monotone decreasing in the region {1|e(4) < 0}. Thus, for « > 0

N,(V) = #{ilefd) < —}o; 1 = 3}
= #{Aled) = —3o; some A < 3}
= #{A| K 2), has eigenvalue 1~ ! with 1 < 3}
= # {eigenvalues of K, ), > 2}
where we use the equivalence of (8.1) and (8.2) in the third inequality.

(b) Clearly No(V) = lim, | ¢ N, (V). But since K, is monotone increasing
asa |0,

# {eigenvalues of K, > 2} = lim(# {eigenvalues of K, > 2}). |

Now consider the operator (y > 0):
A(A) = WY2(Hy + AW + y) w12
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where W = — V > 0. On the one hand,
(Ho+ 7)™ ' =(Ho + AW + )" + AHo + AW + y) 'W(H, + 7)7!
so that
A(d) = K, — ZA(ADK,
or
A(A) = K,/(1 + AK,)
On the other hand, if W is in C§, then, by Theorem 6.6, A(A) has an integral

kernel:

A%, ¥) = WHOW ) [ " emre it imiy,y)
0

W1x)Wwli(y) J. dte ™ fduo,x,y;,exp[~l f W((s)) ds]
0 0
We would like a more general formula:
[ <] t
F)9) = WReow ) [ ace | duo,x,,;.g( [wets ds) 84)
) 0

The transformation g — F should be linear and, by the above, should take
g(y) = e"¥into F(x) = x(1 + Ax)"!. We thus try

PO = x [ et dy 8.5
4]
or in terms of
S =gy (8.6)
P = | "o fCxy) dyly 8.7
0

Theorem 8.2 (Lieb’s formula [171]) Let WeLYR") + LP(R") with
g=v20v=23),qg>1(v=2),g=1(v=1),andg < p < oo, with W > 0.
Let y>0o0r y=0, v> 3. Let f be a nonnegative lower semicontinuous
function on [0, co) with f(0) = 0 and let £, g, F be related by (8.5)—(8.7). Then
(both sides may be simultaneously infinite):

TH(F(K,) = f:dz e f axwe | duo,x,x;,g( L'W(m(s» ds) 83)

_ Ow?e-tv f dx f Ao x f( f(:W(u)(s)) ds) 89)
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Proof We first note that since

K
F(x) = f e ™ 'g(z) dz

0
/ positive implies F is monotone increasing. Thus either formula for y > 0
implies the formula for y = 0 by application of the monotone convergence
theorem on both sides (K, increases as y does, so its eigenvalues increase, and
so Tr(F(K,)) is a sum of increasing functions). Similarly, since any lower
semicontinuous function is a monotone limit of continuous functions, we
can suppose that fis continuous with support compact in (0, o0) to get (8.9).
As a final preliminary we note that (8.8) and (8.9) are equivalent: for with
respect to the measure dv = dx dpg . .., the variables o(s)), ..., @(s,) are
identically distributed to ex(s; “+” a), ..., (s, “+” a) where s “+” a means
addition mod ¢. Thus

Jox | duo,x,x;,g( f W(as)) ds) W(ow) = B

is independent of u so t~* [§ B(u) = B(0) which says (8.8) equals (8.9).

Thus we need only prove (8.8) for y > 0, and continuous f supported in
some [a, b],0 < a < b < oo. Suppose in addition that W is in C§. We have
verified (8.4) for g(y) = e~ ™. Since (by Stone-Weierstrass) sums of such
functions are dense in the continuous functions on [0, co0) vanishing at
infinity, (8.4) holds for the g in question. As in the proof of Theorem 6.6, the
right-hand side of (8.4) is continuous in x and y, so by a general result,
Tr(F(K,)) can be evaluated by seiting x =y and integrating (F(K,) is a
positive operator with continous kernel; see [216, 259]).

Next suppose that W e L® with compact support. Then we can find
W, € C§ and a bounded set S so that W, < ays, W, > W pointwise almost
everywhere and in L"? (v > 3; otherwise take L?). Then K (W,) — K.(W)in
norm, so that F(K,(W,)) » F(K(W)) in norm. It follows (see [259]) that
the traces converge if they are always finite (including for F(K (ays)). Thus
we will obtain (8.8) if we can show that the right sides converge. But for each
t, and almost every x and o, the integrands converge so it suffices to obtain
a uniform L' bound on the integrand. Write g(x) = x™h(x) and let do =
dX dig, . x;: as above. Then (x = yg):

W,,(x)g( f ‘W) ds) < [l a™x(x) f dsy - f dsn T[] (@a(s)
0 0 0 i=1
so we only need that

f:dt e ™ fdoc J:ds1 J:dsm)((x) - 1(0(s,)) < 00
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But, by Hélder’s inequality:
fao 109+ xt@ts, < [
so the above inequality is equivalent to
f:dt e~ <

which is obvious if we take m large enough. This establishes (8.8) in case W is
in L* with compact support.

Finally, let W obey the hypotheses of the theorem. Choose W, in L with
compact support so that W, T W. Since the eigenvalues of K ,(W,) are mono-
tone and F is monotone, the left sides of (8.8) converge. The integrands on
the right converge pointwise, so it suffices to prove domination by an L'-
function. Let h > g so that h has support in [¢, 00) (¢ > 0), h bounded and h
monotone increasing. Then we only need

© t
i= f dte™ " J‘dx Jd#o’x’x;'h<f W((D(S) dS) < ®©
0 0

But (8.8) with g replaced by h and F by

[¢o3

H(x) = x f e Yh(xy) dy

0
holds by approximating with W,’s (here the integrals converge by using the
monotone convergence theorem). Thus
i =Tr(H(K,))
Notice that since h(x) = x™g(x) with g€ L®
H(x) < x""!igll o I(m + 1)

soi < oo follows if Tr(KY) < o for some m. But the hypothesis on W implies
that Tr(K") < oo so long asm > p [216]. i

Remark Byafurther approximation argument, one can easily extend (8.8),
(8.9) to arbitrary measurable f’s in L}_ with the property that

1Sl _

X

lim ©  forsome a>p

xl0 lx'

and

= 10
o 1]

(y=20)
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or

flf(x)le’”" dx < © forall B (y>0)

9. Phase Space Bounds

The main point here is that of Symanzik [270] and Lieb [171] that to get
classical phase space bounds from path integrals, one need only apply
Jensen’s inequality:

Proposition 9.1 (Jensen’s inequality) Let f be convex on R (convex
means f(fa + (1 — 0)b) < Of(a) + (1 — ) f(h); 0 < 0 < 1, a, b € R). Then,
for any probability measure, v, on R:

f(fx dv(x)) < ff(x) dv(x) ©.n
so long as j |x] dv(x) < co. Ifvissupported on [, o0) for some & > — oo and
f(©) = lim,_,, f(y), then this last condition may be dropped.

Proof We first note that by convexity, for any y, we can find a with

S = f() 2 alx — y)

for all x; for example, convexity implies that (f(x) — f(¥)Xx — y)~' is
monotone decreasing as x | y, so that df (y + 0)/dx exists and convexity
implies that one can take this value for a. Take y = | x dv(x) and integrate
the above inequality with respect to dv(x). Then since | (x — y) dv(x) = O:

[r@ i =10
The case where | x dv(x) = oo is handled by a simple limiting argument. |

By letting dv be the probability distribution for X, we see that
SEX)) < E(f(X)) 0.2

for any random variable X which is either bounded from below or has
E(IX]) < .

The basic philosophy of how to get phase space bounds is illustrated by
the following theorem.
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Theorem 9.2  Let V be in L}, .(R*) and bounded from below. Let H(h) =
—h?/2mA + V. Then

_ dpA’X _aprom+veny
Tr(exp(—aH(h))) < f Ry e (9.3)

Proof By absorbing the a into V and/or # and doing the explicit p integra-
tion on the right-hand side, (9.3) is equivalent to

Tr(exp(—t(Hy + V) < f(271:t)‘ Y2 exp(—tV(x)) d*x 9.4)
Suppose temporarily the following

Tr(exp(—t(Hy + V))) = fd”x J‘duo,,‘,x;, exp(— J:) V(m(s)) ds) 9.5)

which is formally “obvious” from the Feynman-Kac formula. Since e *
is convex and ds/t on [0, t] is a probability measure, (9.2) implies that

exp( - f V(es) ds) < f exp(—tV (@) &

0 t

so, using Fubini’s theorem:

t
r.hs. of (9.5) < fdﬂo,o,o;: f ? Jld“x exp(—tV(x + @(s)))
0

‘d

- f dito.o.0.1 f TS f &*x exp(—tV(x))
0

— ths. of (94)

where we used the translation invariance of d*x in the first equality and the
fact that the resulting integrand is independent of s and ® in the last step.
Thus all we need is to prove (9.5). We prove the more general:

Tr(fe~"Ho*Vf) = fdvx FA(x) fd#o,x, Xt exp(— J:V((o(s)) ds) 9.6)

For fe Cg and V € Cg, this follows from Theorem 6.6. For V € L* with
compact support and fe Cg, we then obtain (9.6) by a limiting argument of
the type used in Theorem 8.2 and then using the monotone convergence
theorems for integrals and forms for arbitrary Ve LL,, V > a > — o, and
fe Cg. Using monotone convergence again, we can obtain the result as

-1l
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Remarks 1. (9.3) is a celebrated inequality of Golden [111], Thompson
[275], and Symanzik [270] obtained in [111, 275] from the inequality
Tr(e** &) < Tr(e*?e®e*'?). The above proof is that of Symanzik [270].

2. By simple limiting arguments the result extends to any ¥V with V_ — A
form bounded with relative bound zero.

The most beautiful phase space bound is on N(V) = Ny(V). In a semi-
classical picture,

N(V) = Q)™ f V(P2 d'x

= |{(p, ¥)[p* + V(x) < 0}|/(2n)"

where 7, = volume of unit ball in R”.

Theorem 9.3 Letv > 3 and let V € L*(R"). Then
N(V) <a, fl V_(x)"? d*x 0.7

for some universal constant a,.

Proof Since N(V) < N(—V_), we can suppose V = —W < 0. By the
Birman-Schwinger principle for any f, F related by (8.7)

N(V) < F(2)~! Tr(F(K,=0)) (since F is monotone)

= F2)! f:t—ldz fdx J.duo,x,x;,f(J:tW(w(s))$>

by Lieb’s formula (8.9). If moreover f is convex, then f([§ tW(w(s)) ds/t) <

b (ds/t) f(tW(w(s))). As in the proof of Theorem 9.2, we can now interchange
the ds and du(w) integration with the x integration, eliminate @(s), and then
trivially do the s and @ integrations. This result is

N(V) < FQ)~! f:(zn)—”lrl-w dt f I'x fAW(x) = &, f d*x W(x)"?

where

e o]

a, = (2m)~"? f s™1Y2((s) ds/F(2)

0

(for change variables from ¢ to s = tW(x)). Notice that for v > 3, 4, < «©
for we can take f = O near s = 0 and f(s) < Cs near infinity. Butforv = 1,2,
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the integral diverges at infinity since lim,_, ., f(s)/s > O0so long as f > 0, fnot
zero identically. I

(9.7) was proven independently by Cwickel [40], Lieb [171], and Rosen-
bljum [224]. Lieb [171], whose proof is given above gets the best value for
the constant a, among the three. Namely, if we define

a, = sup{N(V)[fl V(x)|"? d“x]_1 |Ve L"/z} 9.8)

Then we have shown that
a, < inf{(27t)‘”’2 f s™17Y2f(s) ds | fis convex and | = f e ’f(2y) d-yX}
0 0

In particular, by minimizing over s of the form:

_ O0<s<sg
f@) = {oc(s — Sp), S¢ < S
Lieb finds [176]:

a; <0.116 = a,(L) 9.9)

There are two natural lower bounds on the precise value of a,. We will prove
later (Section 10) that N(AV)/N.(AV)— 1 as 4 —» oo. This immediately
implies that

a, = =

the “classical value.”

Another lower bound on a, was found by Glaser et al. [103]: If N(V) < 1
then —A + V > 0, so taking expectation values in the vector ¢ = |V |~ 2/
we find that (p = 2v/(v — 2))

N(=]$ %02 < 1=f1¢|ﬂd“x < f|V¢|Z d'x
But, [ |¢plIPd’x = [V["? d’x so
f|¢|pd”x<a:l=f|¢|vd“xs f|V¢|2 '

or (using the freedom to scale ¢), for any ¢,

( J1sr dvx)””s ath ( [ivor d“x)m
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Thus «, yiclds a constant in Sobolev’s inequality; i.e., if
¢, = sup{lll, [IVell, = 1;p7 ' =3 — 1/}
is the best constant in Sobolev’s inequality; then
a, = ¢y = als) 9.11)

The bounds (9.10) and (9.11) correspond to the extreme cases N(V) ~ 0
or N(V) ~ co. Lieb and Thirring [176] made the following natural con-
jecture:

afc) (28
afs) (<7

The (v > 8), (v < 7) results follow from looking at the precise values of ¢,
and 7, all of which are explicitly known. The value a3(L) in (9.9) is fairly
close to what should be the exact value since

az(L) = 1.49a4(s)

(or put differently 0.077 < a, < 0.116).

Recently, Glaser et al. [102] have shown by explicit examples that the
Lieb—Thirring conjecture is false for v > 8; i.e., a, is strictly larger than a,(c)
[which is the larger of a,(c) and a,(s) for v > 8]; in their examples it is never
larger by more than 36 9. On the basis of their work, they make the weaker
conjecture

a, = max(a,(c), a[(s)) = {

a,=af) (<7

a
lim ——=1
vo 0 A(C)

Glaser et al. also prove that for v = 4 and V spherically symmetric

N(V) < a(s) fl V(x)|?> d"x
(strongly supporting the Lieb-Thirring conjecture for v < 7). Additional
information on best constants in the moment inequalities can be found
in [0].

% % Kk

For further applications of Brownian motion to bound state problems,
see [260a].

* % %
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We want to explain, following Licb Thirring [ [75], how (9.7) lcads to a
proof of the stability of matter. Since the modification that clectron spin
makes in the Pauli principle is easily accommodated, we will ignore its
effect. We emphasize that the remainder of this section is an aside not used in
the later sections. Fix N and M and consider the operator on L2(R3"). Let

N N M
HN(Rl,---aRM):_ZAi—Z Z]ri—lefl
i=1

i=1 j=1

-1 -1
+ Z Ir; — ;|7 + Z R; — Ry
1<i<j<N 1<i<j<M
where Ry, ..., Ry are parameters in R?, and a point in R3" is written
(ry, ..., ry), ;€ R® Hy leaves invariant the subspace L? of functions
Y(ry, ..., ry) antisymmetric under interchange of the r;’s, so we define

E(N, M) = inf{inf spec(Hy(R;) | L2) | all R;}

i.e., the ground state energy of N electrons and M infinitely heavy protons.
Stability of matter says that

E(N,M) =2 —c¢(N + M)

This was first proven by Dyson-Lenard [68] whose proof was difficult and
whose value for ¢ extremely large (~ 107 in units where ¢ = 1 is presumably
correct). The proof we are about to give due to Lieb-Thirring [175] is not
only a considerable simplification, but the constant is only about 30 times
too large.

It depends on some facts in the Thomas—Fermi theory. Define a functional
on p’s in L33 with p > 0 by

EQWiR,... Ry) =& f p3(x) dx — f WXp(x) dx

1
+5 [ppmIx =yt @x
+ Z | Ri - RJI -1
1<i<j<M
with W(x) = Y™, |x — R;|"!. The terms in & “approximate” (¥, Hy'¥) in
a suitable semiclassical approximation. We will prove below that
EQp; Ry, ..., Ry) = —d()M 9.12)

where d(«) is an a-dependent constant; this stability of matter in the Thomas-
Fermi approximation comes from an elementary effect: there is no binding of
“molecules” in the Thomas—Fermi theory.
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Let W be a normalized antisymmetric function on R*" and let
py(X) = N fl‘l’(x, Xy .oos X2 dxy - dxy (9.13)

We are heading towards a proof of the fact that, for a suitable « and g:
(¥, HyR,, ..., RyOY) = F(pw; Ry, ..., Ry) — gN 9.14)

whence stability of matter will follow from (9.12). (9.14) follows from

(‘P, <-— i Ai)‘l’) > o fpi,”(x) d*x 9.15)
_ 1
(qj, Z Ity — 1} I‘P) = — 3 %o JPSP(X) d*x — d(3oo)N

i<j

1
+3 f X = ¥1" 1 pe(X)pu(y) dx dy (9.16)

N M
(‘P, (Z 2 In= le“1>‘1’) = JW(X)W(X) dx 9.17)

i=1j=1

[for one can take o = $a, and ¢ = d(3a,) in (9.14)]. Equation (9.17) is
obvious. The inequality (9.16) comes from (9.12) by the following clever
device [175]: Take p = py and take N = M and notice that

[ 8000 R0 RIIFR, . Ry dR, - dRy
= o [0 @x = [x01x = ¥1 et dix

1
+ 3 fp.,,(x)p\,,(y)|x — ¥yl ' d@®x d’y + Lhs of (9.16) (9.18)
But, by (9.12), the left-hand side of (9.18) is greater than or equal to —d()N.

This leaves the proof of (9.15) and it is here that the semiclassical bound
(9.7) enters:

Theorem 9.4 ([175]) Let ef(V) denote the negative eigenvalues of
—A + V.Letv > 3. Then, for any k > 0 and V € LY/27*k;

S le, (V) < byk) f x| V. (R fr 2 9.19)

with b,(k) = ka, {§ y*~'(1 — y)"* dy (which is expressible in terms of I'-
functions).



Proof By a hmiting argument, it sutlices to prove (9.19) for Ve ¢ with
V < 0. It is not hard to see that

NV) < No((V + ) )

so that (9.7) implies that
N(V) <a, JI(V + o) "2 d'x (9.20)
In terms of Stieltjes integrals:
Yle Mk = — Ja" dN,

=k fa"‘ IN,da  (integrating by parts)

-V(x)
< ka, fd“x f o V(x) + af? da
0
by (9.20). We obtain (9.19) by scaling (i.e., change variables from « to y =
o/[= V()] |
Remark There are also bounds of the genre of (9.19) for v = 2,k > 0 and

v=1 k> }(see [176]):

Theorem 9.5 ([175]) Let ¥(r,, ..., ry)€ L3(R"™) be normalized and
antisymmetric with respect to its r; € R” variables. Let py be given by (9.13).
Then (H, = Z:N=1 - A)

(¥, Ho'¥) 2 |, f Pt B 9.21)

where [, = b,(1)7"(2/2 + v)2"3(v/2).

Proof Let V(x) = pp(x)*". Let Hy = Y, (—A; — AV(x;)). Then, one
can write down the eigenfunctions of H, explicitly in terms of eigenfunctions
of —A — AV(x) and so determine that Hy [L2 > —Y -, [e{—AV)|, so by
(9.19)

(¥, Hy'¥) > —b,(1)A1* /2 f P4 D(x) d'x
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or

(¥, W) = [1 = bR 0] g2 '
(9.21) follows from a maximization with respect to A. ||

We summarize what we have accomplished [modulo the proof of (9.12)]:

Theorem 9.6 stability of matter ([68,175])  There is a universal constant
¢ so that for any normalized antisymmetric ¥ in L?(R*") and any R,,...,
Ry eR3

N
(\P, [— ZAi - Z |r; — lehl + Z Ir,—r 7t + Z IR; — Rj|_1:|q")
i=1 i<j i<j
> —cN+ M) 9.22)
For further discussion, including how to go from (9.22) to a proof of non-
collapse as N, M — oo, see Lieb [172].
It is very easy to see that
E(N,N) < —dN

for a suitable d > 0 and thus —E(N, N) grows like N (indeed,
limy., , E(N, N)/N exists and is strictly negative; see [172]). If the anti-
symmetry restriction is removed, then the behavior is very different. Namely,
let Eo(N, M) be defined analogously to E(N, M), but with L? replaced by L2,
Then, various methods, including those used above, show that

Eo(N,N) > —c'N>33
and Lieb [172a] has proven that
Eo(N,N) < —d'N33

Therefore, if electrons were not fermions, bulk matter would collapse and we
would not be here! We note that if the protons are given a finite mass, then
the analog of E4(N, N)is believed to behave like N7/° rather than N3, but a
lower bound of this form has not been proven.

* %k %

All that remains is a proof of (9.12). We sketch the argument; for details,
see Lieb—Simon [173] whose proof of (9.12) uses heavily ideas of Teller
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[274]. By a scaling argument, the « in the definition of &4 can be absorbed,
so we consider only the case a = 2; i,

3
Elpi Ry Ra) = fp5/3(x) Px — f WX)P(x) dx
1
+5 fp(X)p(y)Ix —ylI" ' PxdPy + Y[R — Ry|7!
i<j
Wx)=> |x - R]|™? (5.23)

We will consider trial p’s in

g = {p >0] fp”(X) d’x < oo, fp(X)Ix -yl e &Px &y < 00}

It is useful to consider the norms || -||s,3 and ||pll + = [[ p(x)|x — y|~ ' p(y)]"/?
onJ.

Lemma 9.7 Fix Ry, ..., Ry. Then, there are linear functions I, and
I, on 9 with

[Li(p)] < aM | plis;3s [,(p)| < bM|lp| +
(a and b independent of M and R;) so that

[weow 2x = 1o + 10

Proof ltis easy to see that one need only consider the case W(x) = |x| !
(ie, M =1,R, =0). Let

3
W= x-y
’ lyl<1 4n g

i.e., the potential due to a charge of one uniformly spread in a sphere of
radius one. Then W,(x) = |x|~! for [x| = 1 and W,(x) < |x|~ ! for |x| < 1.
Thus W, = W — W, is in L*? so I,(p) = | Wy(0)p(x) d>x is a bounded
functional on L33, By the positive definiteness of |x — y|~! and the Schwarz
inequality:

3 2 1/2
sz(X)p(X) d’x < |Ipll+[fI | 1|X - YI"<Z;Z) d’x d3y] |

lvl<1



9. Phase Space Bounds 103

Theorem 9.8 Fix R, ..., Ry,. Then
ER, ...,Ry) = Inf &p(p; Ry,...,Ry) (9.24)

ped
is finite (and bounded from below independently of R; but depending on M).
Moreover, there is a unique p in 7 for which the infimum in (9.24) is real-
ized. This p, denoted by p(x; Ry, ..., Ry), obeys:

S R,,..., Ry) = W(x) - fp(y)|x Y[y =0

p = ¢? 9:25)
Proof By the lemma

Eulp) = 3lplI3)3 — aMlpls;s + $lpl3 — bMIlpll+

is clearly bounded from below. Moreover, &, — + 00 as either [p|ls;; or
lell + = oo so if we choose a sequence p, with &y (p,) = E(R, ..., Ry), then
sup||p,lls;3 < oo and sup||p,ll + < co. Thus, by the Banach-Alaoglu theorem,
the infimum in (9.24) is taken on a set S which is compact in the topology
of weak convergence, i.e., the topology in which p, — p if and only if I(p,) —»
I(p) for all I's continuous in either ||-| 4 or || - 5,3. Suppose that p, — p in this
topology. By the lemma, | p(x)W(x) d*x — | p(x)W(x) d*x. Moreover, by
the Hahn-Banach theorem, lim|p,[ . = [lpll+ and lim|p,[s;3 = [|plls/3- 1t
follows that lim &,(p,) = &p(p); i.e., &) is lower semicontinuous. Since
every lower semicontinuous function on a compact set takes its infimum,
there is a minimizing p in 7. Its uniqueness follows from the strict convexity
of &;ie.,

En(0p; + (1 — 0)py) < 08y(py) + (1 — O)EM(P,); 0<O<1; py #p,

(which is easy to check).

Since p(x; R;) minimizes &, it must obey the Euler-Lagrange equations
06 ,/0p(x) = 0 at points where p(x) # 0 (06,,/0p(x) > 0 at points where
p(x) = 0). Thus

p = [max(¢, 0)]°2

where ¢ is given by (9.25). Thus, all that remains is the proof that ¢ > 0.
Notice that the lemma shows that

sup f Ix — ¥1™ ' po@)d*x | < Cllpollsis + 1ol ]
y

for any p,. This implies that ¢ — W is bounded. It is also continuous since
near any X, # R; it is the sum of a harmonic function and the convolution of
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x| ! with a g € L* having compact support. Morcover, if we write p =
P1 + po where p, has compact support and p, has small ||-||, and |-||s,3
norm, then wesee that ¢ — W — Oas|x| — oo (for [ py(y)Ix — y| ' d?’y >0
as x = oo since p, € L'). Thus ¢ — O at infinity. Clearly ¢ - + 0 as
r = R;. Now, let

S = (x| $(x) < 0}

which is open by continuity and disjoint from the R;. Since A¢ = 4np
(distributional sense) and p = [max(¢4, 0)]*2, ¢ is harmonic on S, and
therefore it takes its minimum value at 8S U {c0}. But clearly ¢ = 0 on 8§
and ¢ — 0 at infinity, so the minimum value on § is zero. This is clearly
impossible unless S = . ||

Remarks 1. The beautiful argument that ¢ > 0 which is reused below
is due to Teller [274].

2. By more work [173], one can show that ¢ > 0, and that ¢, p are C*
away from the R; and that | p(x) dx = M.

Now we generalize the problem slightly by adding parameters z; > 0,
and let

SrioiRiz) = f P(x) dx — f W(p(x) dx

1 -
45 [P0pIx =y Px Py + T2z IR - R
i<j
with W,(x) = Y™, z|x — R;|"'. As above &(p; R;, z;) has a minimum
E(R;; z;) and a minimizing p(x; R;, z;) and corresponding ¢(x; R;, z,).

Lemma 9.9 ER;, z);<,— ER;, z)i<n-1 as z, = 0. Moreover, in the
region z; > 0:

OE . -
7 R;zp) = 11:2.[4’(3‘; R, z) —z;|x — R| 1

Proof The first assertion follows easily from the bounds in Lemma 9.7.
Formally the second assertion comes from writing

O o L 6ot Ry 2 %)
Z; Z;

and noting that the dp/0z; terms are multiplied by 0&/0p = O since p is a
minimum. The terms from 06/dz; give precisely —[|x — R;|p(x) d*x +
Y.i<i zjIR; — R~ ! which is the limit in question. The rigorous points of
this formal proof may be found in [173]. |}
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Lemma 9.10 (Teller’s lemma)  For fixed x, Ry, ..., Ry, ¢(x; R;, z;) is
monotone increasing in z;.

S = {x|d(x; R;, Z) < ¢(x; R;, z)}
S is open and avoids those R; with Z; > z;. On S, the function ¥ = ¢(-,Z)) —
¢(-, z;) obeys:

Proof Letz; >z > 0. Let

AY = 4xfp(-, z) — p(-, z)]
= 4n[$(-, 2" ~ $(-,2)"?] <0

so ¥ is superharmonic and thus it takes its minimum on 0S U {o0}. Since
¥ = 0 on S and Y — 0 at infinity, this minimum is zeroso S = . |}

Theorem 9.11 (Teller’s theorem)
E(Rl, ""RN+M;219""ZN+M) = E(Rl,..., RN’ Zl,...,ZN)
+ ERyyqs-- s Rysas 2nets o5 Znem)
(9.26)

Proof Let AE = lLhs. — r.hs. of (9.26). By the continuity as z; — 0, we
need only prove dAE/dz; > 0 in the region z; > 0. But, by Lemma 9.9, the
derivative is a difference of ¢’s which is nonnegative by Teller’s lemma. |

Remark Teller’s theorem says that molecules do not bind in the Thomas-
Fermi theory. For a physical “explanation” of this, see [274, 173].

Corollary 9.12 [Equation (9.12)]
E(RI, R 9.RM; Z; = 1) > —dM

Proof By Teller’s theorem, ERy, ..., Ry; 2, =12 DM ER;, z; = 1)
= —dM since E(R, z = 1) is independent of R and finite. [

10. The Classical Limit

In the last section, we obtained classical bounds by managing to replace
X + @(s) (with respect to dig, ¢, 0,,) by X. In the limit as t - 0, one expects
@(s) to go to zero so that classical limits should be connected to ¢t — 0 limits.
This idea of Kac [138, 142] will dominate this section. For another approach
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to the classical limit, see [252]. For a discussion of the classical limit for the

pointwise solution of the heat equation, see the end of Section 18. The
simplest result to prove is the folllowing.

Theorem 10.1  Let V be a continuous function on R” with exp(— V)

eL! Let
hZ
Zy(h) = Tr[exp(—ﬁ[— i_r;A + V])]
_ [dpd’x p?

Z(h) = oy exp( —ﬂ[z—m— + V(x)])

Then
Zgh)
mzm ! (10D

Proof Let W = BV. By doing the p integration explicitly, (10.1) is seen
to be equivalent to:

t?Trlexp(—t [Hy + t " 1W])] - Qr)~*? fexp(— W(x)) d*x
ast |0, where Hy = —3A as usual. By (9.5), we need to show that
t
f@) = fd"x fdM0,0,0,t exp<~t‘1 f W(x + o(s)) ds)
0
obeys
f(O"r - Q2r)~? fcxp(— W(x)) d'x = f, (10.2)
By Theorem 9.2, f(£)t"? < f, for all ¢ so lim f(£)*? < f,.
Given 6, let A} be the hypercube of side & centered at x. Let Wy(x) =
max(W(y)|ye A?) and let 0,5, t) = E(b(s)e A}, all 0 < s < t|b(t) = 0).

Then, taking the contribution of those paths which stay in A3,

f(®) = Qnut)™"2Q,(8, 1) |exp(— Wy(x)) dx

SO

lim 2/ () > [lim 0\, £))2m) " f exp(— Wyx)) dx
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Now Q.(4, t) = Q,(4, t)* by the independence of the components and as in
the proof of Lemma 7.10,

Q1(69 t) = PD;J(O’ 0’ t)

where Pp, has Dirichlet conditions at x = * 0. By the method of images (see
Proposition 7.17), we have that for each fixed 8, Q,(5, 1) > 1 as ¢t |0, so
lim £"2f(¢) = (2m)~? [ exp(— W) d’x. Now let & — 0. Since exp(—W;) <
exp(— W) and Wy(x) — W(x) pointwise (by continuity), | exp(— W;) d’x —»
fexp(— W) d'x. I

Remarks 1. Results of this genre, proven by different means, go back at
least as far as Berezin [12]; see also Combes et al. [37]. The method of Lieb
[170] can also be extended to prove this theorem [260b].

2. One can replace the continuity assumption by one that V is bounded
from below and locally L! if one uses the fact that for any L!-function W
(which will be V restricted to a finite region)

(f dy)_ f Wx + y) dy - W(x)
lyl<é x—y|<é

as 6 — O for almost everywhere x.

¥ %k %k

The remaining classical limit results will involve information on the growth
of the number of eigenvalues of Hy + V which are less than E as E — o0, or
of Hy, + AV which are less than zero as A — co. The latter case is the number
of eigenvalues of K, less than A — 0. In both cases, we will want to
relate the divergence of dim E ,(A) as a —» oo for some operator to the
divergence of Tr(e **) as ¢t | O since it is the latter that we will compute using
(9.5) or using Lieb’s formula. More generally, we want to relate the divergence
of {3 du as a — oo to that of {§ e ™ du(x) as t | 0. One direction of this
relation is easy:

Theorem 10.2 (Abelian theorem) Let du be a (positive) Borel measure
on [0, o0) and suppose that for somey > 0,C > 0:a"u[0,4) > Casa — 0.
Then

lim ¢? fe"" du(x) = CI'(y + 1)

tio

where I(a) = {§ e *x*" ! dx.
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Proof Let G(a) = (a + 1)77 [§ du = (a + 1) "F(a). By hypothesis, G(a)
— C as a = o and g, = sup,|G(a)| < co. Then, by a Stieltjes integration
by parts,

t fe‘”‘ du(x) = %1 fe""F(x) dx

= ! J‘e""(x + 1YG(x) dx

= fe"’(y + t)yG(%)) dy

Fort < Le (y + t)’G(y/t) < e ’(y + 1)’goisinL;ast — 0,(y + t)’G(y/t)
— Cy" for y fixed, so the result follows from the dominated convergence
theorem.

The converse direction of this last theorém is much deeper. It depends
critically on the positivity of du (for example, if du(x) = ) o (— 1)"(x — n),
then [§ du does not have a limit but fe™ " du = 1/(1 + ) > 3 as t - 0).
Fortunately, a beautiful argument of Karamata [148] exists which makes
the proof fairly easy:

Theorem 10.3 (Tauberian theorem)  Let u be a (positive) Borel measure
on [0, o0) and suppose that [ e du < oo for all t > 0 and that for some
y=20,D>0:

lim ¢* fe"" di(x) =D

tl0
Then
lim a~"u[0, a) = ——D—— (10.3)
aa '+ 1D

Proof (version of Karamata [148] due to M. Aizenman, unpublished)  If

y = 0, the result follows from the monotone convergence theorem, so suppose

henceforth that y > 0. Let dy, be the measure given by u(A) = t'u(t™'A)
and let dv = x”~! dx (so that v, = v). (10.3) says that

lim &[0, 1) = eW([0, 1)) (10.4)

t=0

where ¢ = D/T'(y). Suppose that we can show that

lim | f(x) du(x) = ¢ f f(x) dv(x) (104"

t—0
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for all fe CJ[0, o0). Then using the fact that v({1}) = 0, one easily sees that
(10.4) holds (see, e.g., Proposition 17.2). By hypothesis

lim |e *du(x)=c Je"‘ dv(x)

t—0

so the measures e * dt, are uniformly bounded. Thus (10.4') follows from

lim { e *g(x) du(x) = ¢ fg(x)e"‘ dv(x) (10.4")

t=0

for a dense (in ||- || ) set of g in C [0, o), the continuous functions going to
zero at infinity. But (10.4") holds for g(x) = e by hypothesis. Since
polynomials in e * are dense in C [0, c0) by the Stone-Weierstrass theorem,
we have proven (10.4”) for the required set. |

Remark The above results are called “Abelian” and “Tauberian”
because of the earliest prototype results. If du(x) = ) 324 a,6(x — n) and we
let A=e7", then lim,,, | e ™ du(x) = lim; ;; )% a,A" in which case
Theorem 10.2 with y = 0 just asserts that if a, is absolutely summable then
its “ Abelian sum” is its ordinary sum. This is a famous result of Abel. Tauber
was the first to consider converses in this case. Results of the genre of Theorem
10.3 were first obtained by Hardy-Littlewood but only with considerable
effort.

There is one more result related to the above which we will need below:

Proposition 10.4  Let du be a positive measure on [0, co). Suppose that
for somey = 0,C >0

lima™? f du(x) = C
a—o© ]
Then
lim a~7"1 fx du(x) = ——C
a—o© 0 7 + 1

Proof Let F(a) = [§du(x) and G(a) = [§ x du(x). Then

G(a) = f:x dF = aF(a) — f:F(v) dy
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Letting H(a) = (a + 1) "F(a), we see that (as in Abel’s theorem)

a 1
o)y = [ HOay + 0™y dy = o+
o (1]
as a — oo (by the dominated convergence theorem). |

* % %k

We can now return to the “classical” limit problems. Results of the follow-
ing genre go back to Titchmarsh [276]; this kind of proof goes back to Ray
[212].

Theorem 10.5 Let V be a continuous function on R, going to infinity
at infinity, so that for some y > 0 and some C > 0

limQn) "E~’|{(p, %) |$p* + V(X) < E}|=C

E—-ao
Suppose, moreover, that
Hm(Q27) ""E~7|{(p, x) | 30 + Vi(x) < E}| = C; (10.5)

E- o

exists and lim;, o C; = C where Vy(x) = max{V(y) |y e Af, the hypercube
of side & about x}. Let H = —1A + V and let n(E) be the number of eigen-
values of H less than E. Then

lim E-*'n(E) = C

E-w

Remark For reasonable V’s (e.g., polynomials), the quantity in (10.5) is
J-independent and equals C.

Proof By the Tauberian theorem, Theorem 10.3, we need only show that
lim ¢ Tr(e ™) = CI'(y + 1) (10.6)

tlo

Now, as in the proof of Theorem 10.1,
Tr(e ") < 2m)™" J.exp[—t(%p2 + V(x))]d’x d’p
Tr(e™*") = 0,3, )(2m) ™" ffv(p[-t(%p2 + Vs(x)] d’x d'’p

so that (10.6) follows by using the hypotheses and the Abelian theorem,
Theorem 10.2. |
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Remarks 1. Interestingly enough, Theorems 10.1 and 10.5 are inti-

mately related. Both involve the behavior of Tr(e "***"?) as ¢t | 0. In one

case, A is fixed, and in the other, it is taken proportional to ¢t .

2. Using Proposition 10.4, one can immediately control the divergence
of the sum of the jth powers of the eigenvalues of H which are smaller than E.

We can also recover the famous result of Weyl [285]:

Theorem 10.6 Let Q be an arbitrary open set in R” with |Q| = 0. Let
H§ , = —% (the Laplacian with Dirichlet boundary conditions in dQ). Let
no(E) denote the number of eigenvalues of H‘& p Which are less than E. If the
Lebesgue measure, |Q], is finite, then

lim E™"2ng(E) = 27?1777, |Q|

E-w
where 7, is the volume of the unit ball in R”.

Remark See Section 21 for the definition of H p for general Q. We
assume here the relevant Feynman-Kac formulas proven there and in
Section 22.

Proof Let Py(x,y;1) be the integral kernel for e ~*#-® which is continuous
on Q x Q so that

Tr(e Ho.p) = f Po(x, x; d*x
Q
By a Tauberian theorem we need only show that ast |0,

"2 fPQ(x, x;t) d’x —» (2n)”"*|Q|

2l rlY 4+ q !
=iz )]

Now let P, be the P for Q@ = R". Then, since (see Section 21)
Po(x, x;t) = E{x + B(s)€ Q;0 < 5 < 1 |b(t) = 0}Po(x, X; 1)
< Py(x, %3 1) (10.7)

and r"?Py(x, x; t) » (2m) "%, we need only prove that for almost every
xeQ:"2Py(x, Xx; t)— (2n)"¥? and apply the dominated convergence
theorem. But clearly, by (10.7), if A} < Q:

Qv(éa t)PO(xa X; t) < Pﬂ(x5 X; t) < PO(X7 X, t)

because

so the result is proven since Q, — 1 for any 6 > 0. ||
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Remarks 1. Actually, Wiener integrals, per se, are irrelevant to this
proof; all that is relevant is the Tauberian theorem and the inequality for
(A = Q):

Pps(x, x51) < Po(x, X5 1) < Py(x, X3 1)

which can be proven using potential theory. In this form the proof is just that
of Kac [140].

2. In the above, we established that Pgo(x, x; t) ~ 2nt)""? as t | 0. By
related means, Kac [140] obtained the first few terms in an infinite asymp-
totic series Pq(X, X; t) ~ (2nt) ™72 Y24 a(x)t". By very different means,
Kannai [147] has obtained asymptotic series

Pal, ¥;0) ~ ()™ exp(= Ix = YF/20) § byx, y)

(with b, = 1) for very general x and y (e.g., if Q is convex, all x and y).

3. There is a version of Weyl’s theorem for unbounded regions due to
Majda-Ralston [179a]: it involves the asymptotics of the S-matrix for
acoustical scattering. The proof that Jensen—Kato [136a] gave of their result
relates it directly to the ideas above; while they do not use path integrals for
their estimates, one can.

Theorem 10.7 Let V < 0be in L*(R*) with v > 3. Then

lim A"2N(@AV) = @n) "'z, f [V x)|"2 d*x

A= o0

Proof We use Lieb’s formula, (8.8), with g(y) = 1 (respectively, g(y) = 0)
if y > B (respectively, y < B) so that F(x) = x [ e *g(xy) dy = xe ¥,
Thus letting u; denote the eigenvalues of K, _q, we see that

S pye s = fd”x' V)| f & E(f IV(x + Bs)| ds > B|b() = 0)
j=1 o (2mt) 0
(10.8)

Change variables by t = f1, s = off and find

> B P © dt

Zﬂje Bip; (27‘[) v/ZB (1/2)v+1 fdvle(x)lj —5

j=1 0o T

X E<f |V(x + b(oB))| do > 1|b(Br) = 0)
0
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As -0, E(j{, ‘e |b(/fr) = 0) is easily seen to go to zero (respectively, one)
if V(x)t < 1 (respectively, ¥(x)t > 1)if V is continuous with | {y | V(y) = a}|
= Ofor all a. Thus for Ve C§ (in this case, the reader can provide the necessary
justification of the interchange of { d’x dt and limg | ,), we see that

®  dr
72

lim A1 3 e = @m) 2 [axiveol [ 5
j=0 1w T

glo
2 ~(1/2)y a2y gy
il (2n) | V(x)| d’x
Applying a Tauberian theorem to the measure

dou(x) = Y 4;0(x — p; )

we find that as 4 —» oo

1 -1
(X(O, A.) ~ A2 -1 [r(%)] (% _ 1) (2715)_v/2 fl V(x)lv/Z d’x

so applying Proposition 10.4:

#{'uj—l < ﬂ} ~ Avu[r(g)]_l(;)k1(27‘[)_"/2 J‘V(X)Iv/z d'x
=A“’2[F(§ + 1)]-1(27:)-#2 f V)12 d'x

= A2, 27 2g 7Y JI V(x)|"? d*x

But, by the Birman-Schwinger principle (Theorem 8.1)
N@AV) = #{u; ' < $A}

which proves the result for nice V’s. A limiting argument using Theorem 9.2
([249]) handles the general case. ||

Remarks 1. An identical proof shows that (v =1, 2 is allowed for
a>0)

NLLGY) ~ 22007, [IV60 + el d'x
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From this formula and ) [efV)]* = k f o* ' N (V) da, onc casily obtains
limit theorems for ) e (AV)|* as A — 0.

2. In the next section we will need the y # 0 analog of (10.8). Namely, if
p(y) are the eigenvalues of K, and v is arbitrary (y > 0), then

S wexp- 1) = [ Vol [t

x E( f l| V(x + b(s)) ds > 1 {be) = 0) (10.9)
0

3. Results of the genre of this theorem using rather different methods go
back to Birman-Borzov [16], Martin [181], and Tamura [273]. The above
proof is due to Kac [142].

4. The limit here should be classical since N(AV) is the number of bound
states of —h2A + V with A = 171250 A > o0 is the same as & — 0.

11. Recurrence and Weak Coupling

There is a striking difference between quantum mechanics in v > 3 and
v < 2 dimensions. If ¥V € L2, then for v > 3, N(AV) = 0 for A sufficiently
small (this follows from Theorem 9.3, if we note that N < 1 implies N = 0).
On the other hand, if v= 1,2 and V < 0 (V # 0), then N(AV) > 0 for all
A > 0. There are a variety of ways of seeing this:

(a) If V is a spherical square well, one can solve (—A + AV)u = Eu
explicitly in terms of Bessel functions.

(b) (P. Lax, unpublished) One can construct rather simple trial functions
u with (u, (—A + AV)u) < 0 in case V is a spherical square well.

(c) (Simon [251]) An elementary trial function argument shows that
| K,|l = o asy — 0. Since K, is compact, positive, and self-adjoint, its norm
is an eigenvalue. Thus for any fixed 4, K, has at least one eigenvalue larger
than 247! for all small y.

(d) (Simon [248]; see also [17, 1617) One can develop a theory which
gives explicit ~series™ for the actual weak coupling eigenvalue and which
shows at the same time that such an eigenvalue exists.

Given all these relatively simple proofs, the considerations below have
something of the character of using a sledgehammer to crack a peanut but
the swing is still somewhat illuminating.
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First, we mention some poetry of Kac [143] which has not yet been made
into a rigorous proof. Let V be in C§, negative and strictly negative on some
openset S, say, V < —aon S(a > 0). Then,if H = —3A + AV, and f(x) = 1:

(e "1Y0) = fexp( -2 f tV(b(s)) ds) Db

> Jexp(all{s <tib(s)e S}|) Db

Recurrence (Theorem 7.13) tells us that |{s < ¢ |b(s)e S}| - v as t = ©
almost everywhere in b, for v = 1 or 2 and thus in those dimensions (e ~*¥f)(0)
— o0 as t = o, Thus, as a map from L*® to L, |le*H|| diverges as t — 00 no
matter how small 4 is. The occurrence of a negative bound state is equivalent
to |le”*#|| diverging as a map from L?* to L*. Unfortunately, being unbounded
as a map from L® does not imply that the semigroup is unbounded on L?;
see [260a] for further discussion.
A proof that ||K,| = oo as y | 0 can be based on (10.9) as follows below.

Theorem 11.]1 Letv = lor2. Let ¥V = —1 onsome cube C, 0 off C. Let
u;(y) be the jth eigenvalue of K(y), counting from the largest downwards.
Then pu,(y) = o0 asy | 0. In particular, H, + AV has at least one bound state
for any 4 > 0.

Step 1 (3.2, pfy)e” " is bounded as y | 0) Let H, (respectively, H,)
be —3A on L?*C) [respectively, L*(R*\C)] with Neumann boundary
conditions on dC. Then (see, e.g., [217])

(Ho+N '<H,+Hy+0) ' '=H, +7) "@®@H, +p~*

It follows that K, < (H; + y)~' @ 0. Thus, if e, is the nth eigenvalue of H,,
listed in increasing order, uf(y) < (¢; + y)~'. Since only ¢; = 0 and e; ~
Cj'”” we conclude that

lim ) pfye™ "9 < o (11.1)

yl0o j=2

The strategy now is to use (10.9) to show that Z}’; 1 -+ — cosothat uy(y) = oo.

Step 2 (independence of finite times from infinite time) Let A be an event
depending only on {b(s) |0 < s < t,}. Then

E(A |b(t) = 0) > E(4) as t— o (11.2)
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For
E(A4) = JE(A |b(t0) = X)(2mto) V% exp(—4x3ty V) d’x

and for ¢t > t,:
E(A|b(t) = 0)
_ TE(A]b(o) = x)(2mto) " exp[ —4x*(tg ' + (t — to) N d'x
§ @nto) ™2 exp[ —3x*(to ' + (¢ — t0) "I d’x

on account of the fact that b(t) — b(t,) is independent of {b(s) |0 < s < t,).
(11.2) now follows from the monotone convergence theorem.

Step 3 (recurrence for paths conditioned on b(r) = 0) We claim that in
v = 1 or 2 dimensions, for each x:

E<f| V(x + b(s))| ds > 1 lb(t) = 0) -1 (11.3)
0

as t — o0. Clearly for t > ¢,

E(fl V(x + b(s))| ds > 1
0

b(t) = O)

> E(Jl V(x + b(s))| ds > 1 |b(e) = 0)
0

Fix t,, take t — oo and use (11.2):

b(r) = o) > E(f"; V(x + b(s))| ds > 1)
0

lim E(f'I V(x + b(s))|ds > 1
0

1~
Now take t, — oo and use Theorem 7.13 to get (11.3).

Step 4 (completion of proof) Looking at (10.9) and using (11.3), one
immediately sees that for v = 1,2

© —1
_;u,(v)exp( ) -

176))

asy | 0. Thus u;(y) = . 1

Remarks 1. The proof actually shows much more. Namely

logy™) (=2
.u'l('Y) Z {'}’—1/2 (V - 1)

This is actually the precise behavior (see [248]).
2. Thereader might think that v = 1, 2 enters critically in the above proof
in Step 3. This is actually wrong, for while (11.3) will not hold if v > 3, the
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lim inf will have a nonzero value, and that was all we really needed in Step 4.
The crucial place that v = 1, 2 enters is in the ¢t ~*/? at infinity. Thus, in some
sense, the above proof does not so much derive weak coupling bound states
from recurrence but rather shows they both come from a common cause
(compare Proposition 7.17).

% %k %k

Although we have given a path integral proof that for v > 3 and V “nice”
one has that N(1V) = Ofor A small, it is not a very direct proof via recurrence.
Suppose that W(x) = — V(x) is the characteristic function of {x | |x| < 1}.
We have already remarked in our discussion of recurrence that (see the
Remark following Proposition 7.18)

E(f:W(b(s» ds) — E(I{s] D)l < 1)) < o0
and one sees by a similar argument that
sup E(Lw W(b(s) + x) ds) < @ (114)
On the other hand, suppose we know that
a = sup E(exp[/l ij(b(s) + Xx) ds]) < (11.5)
Then ) 0

lexp[ —t(Ho + AV)1f |l = sup

E(exp[l fW(b(s) + x) ds] f(x + b(t))) ’
0

< 1]l sup E<exp[/1 f Wb + %) ds])
X 0
<alfle

Thus e~ "™ **) is bounded by a as a map from L® to L*®. By duality and
interpolation it is bounded by a, independently of t, as a map from L2 to L.
We conclude that Hy + AV > 0if (11.5) holds, so N(AV) = 0.

At first sight it seems unlikely that (11.4) implies (11.5) since E(exp(4X))
< oo is much stronger than E(X) < oo. That makes the following result of
Portenko [204a] especially striking:

Theorem 11.2([204a]) Let W > 0 be measurable. If

y = supE(J:oW(b(s) + x) ds) <1
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then

sup E<exp[wa(b(S) + x) ds]) <(t-yp'<w
x 0

Proof Expanding the exponential, it suffices to show that
f E(W(b(s,) + x) --- W(b(s,) + X)) ds; ---ds, <y" (11.6)
0<s;< ' <sp<w

since we can use the monotone convergence theorem to interchange E and
the expansion. Fix 0 < s; <--- <s,_,. Let b(t) =b(s,_; + 1) — b(s,_ ).
Then

) " EWb(sy) + %) -+~ Wb(s,) + X)) ds,

n -

= J-'XE(W(b(Sl) +X) - W(b(s, ) + X)W(b(t) + b(s,- ) + X)) dt
0

< wa(- - E(W(b(t) + b(s,_,) + x)) dt

0
< yE(W(b(sy) + x) -+ W(b(s,_; + X))
since bis independent of b(s, ), ..., b(s,_ ;). (11.6) now follows by induction. J

Remarks 1. 1If viewed properly, one sees all that was really used was
that b has the Markov property.

2. This result was rediscovered by Berthier-Gaveau [13] from whom we
learned it. The proof is somehow a probabilistic version of some of the ideas
of Kato [151] (see also [247]).

3. The above results can be rephrased in L? language as saying that if
(—A)"'W is a strict contraction on L', then N(V) = 0. This can be seen
without recourse to path integrals as follows: By duality W(—A)"! is a
strict contraction on L%, so the Stein interpolation theorem applied to
F(z) = W3(—A)" "W "2 implies that WY?(—A)"'W'/2 is a strict contrac-
tion on L2. By the Birman-Schwinger principle N(V) = 0. We note however
that Theorem 11.2 is stronger than N(V) = 0, for N(V) = 0 says that e™*
is a contraction L?; Theorem 11.2 says it is a contraction on L*.

4. This result will play a central role in Section 25.
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Inequalities

12. Correlation Inequalities

Most of the inequalities discussed in this section and the next do not
absolutely require path integrals for their statement or proof. Indeed, we
will prove them by replacing [§ V(m(s)) ds by Y, (¢/n)V(e(jt/n)) and
looking at the joint distribution of the {®(jt/n)}}_ . Thus we will undo the
Trotter product formula proof of the Feynman-Kac formula; clearly, we
could just use the Trotter formula and state all inequalities in terms of the
semigroups. Path integrals are notationally and, more importantly, con-
ceptually clarifying for the results.

In this section, we will consider a variety of inequalities called “correlation
inequalities™ after their original occurrence in the statistical mechanics of
lattice gases. There the earliest results were obtained by Griffiths [115]; a
bibliography on the subject including the large number of inequalities and
their often impressive application to lattice gases would run to hundreds of
papers! The applicability of the most general of these inequalities to Eucli-
dean quantum field theory was discovered by Guerra et al. [120]; in essence,
the results of this section are the specialization of their idea and its develop-
ment to zero space dimensional quantum fields, i.c., P(¢),-processes!

Consider the following generalization of the P(¢),-process of Section 5:

Fix /. g e L*(R) positive functions and V which we suppose continuous
and nonnegative. Then

zZ 1f(w(o))g(w(t))ew(— LV(w(S)) ds) dpo(w) = dp(w) (12.1)

Z = (f,exp(—t(Hy + V))g)
119
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is a probability measurc on the paths () |0 < s < 1.V = Ix? + Pand
g = [ = Qp, then dyis just the restriction of dvp to X, (see Theorem 6.7).
Now fix n and let us approximatc du(w) by

- S Jt ! =
z, ‘f(w(O)g(w(t))eXP(— 2 V((U(;)) ;) Wal ) = D) 5 )

J
Z,, = (f; (e—tHolne—tV/n)ng)

and consider the joint distribution of {w(jt/n)}}-, with respect to dy,. It has
the form

zZ; ‘[exp(] i xjxj_1> [n]dvj{xj)] (12.3)
i=1 j=o0

J

where
J=njt,  dvo(x) = f(x)e” VDIx dx
dvfx) = e ¥ VD gy (j=1,...,n—1)
dv,(x) = g(x)e~ DX g =MV gy

The reader who has seen the theory of lattice gases [129, 133, 226] will
recognize (12.3) as the probability distribution of an Ising-type ferromagnet
except that the dv(x;) = 3[6(x; — 1) + 8(x; + 1)] of the Ising model is
replaced by a more general type of distribution.

The following result of Ginibre [101] generalizes the classic inequalities
of Griffiths [115] as extended by Kelly—Sherman [156]; hence, called GKS
(Griffiths-Kelly-Sherman) inequalities. Below, in dealing with measures
like (12.3), we will expand exponentials without concern about convergence.
All the theorems below should have additional hypotheses (usually | e* dv (%)
< oo for suitable a will do) which justify the convergence of these series. In
applications, one can prove the additional hypotheses or can use a limiting
argument.

Theorem 12.1 ([101]) Let £, be the functions on R which are nonnega-
tive and monotone on [0, c0) and either even or odd (denoted respectively,
FS, F9). Let #, be the functions on R" of the form f,(x,) - - - f,(x,) with
fie .. Let du be a probability measure of the form of (12.3) where J > 0,
each dvf has the form exp(fi(x)) di(x) with f;e #, and dA; even. Then
(> =1-du

(GKSI) <(>=0 (12.4)

(GKSID) <(fg> = {f X (12.5)
forallf,ge F,.,.
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Proof (GKS 1) We first note that for any f;, ..., f, € #, and any even
mcasure dAd on R

ff[f,.di >0 (12.6)

For the integral is zero if there are an odd number of factors from %9 since
then TITf; is odd and dA is even. If there are an even number of factors from
F9,then []}=, fjiseven and nonnegative for x > 0 and so for all x, so (12.6)
holds. If g = g4(x1) - - - gut 1(Xn+ 1) € F s, then

Z{g> = ﬂ: ljlgj(xj)][ DICXP(JG‘(XJ'))]I: l:llexp(-]xjxj— 1)] f[l d'lj(xj)

Expanding each exponential and noticing x € &, the integral is a sum of
factors of the form of (12.6) and thus positive.

(GKS II) Let du(x) be the measure on R"* ! and consider " the duplicate
system,” i.e., du(x) du(y) on (R"* )2 Then

gy — S Hgy = % f(f () = S MXg(x) — g(») du(x) du(y).
Let
dQ(x) = [1dALx))
Then

223 fg> — (S g)) = f(f (x) = fONGX) — gexp(J(Y. x;x; + yiy))
x exp(}. filx) + fi(y)) dQ(x) dO(y)

Expanding the exponentials, we see that it suffices to prove that

[ T + wrion doce dgo) > 0 (12.7)

for each choice of ¢; = + 1 and each F; e #, .., (since x;x;€ #,, ). Now
ab + ab =Ha+ a)b+ b) + 3a - a)bFb)

By repeated use of this equality we can reduce (12.7) to the special case where
each F(x) has the form f(x;) with fe # . But then (12.7) breaks up into a
product of one-dimensional integrals; i.e., we only need to prove that for di
evenon Randf,,...,f, e #,:

[ 110 + 009 da 3 2 0 (128)
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Now, since each f; is even or odd
flox) = a™fi(x)

for 6 = +1, and n(i) = 1 or 2. Using dA(x) = dA(—x), we can write the
left-hand side of (12.8) as

) [T (fo1x) + & fi(o2y)) dA(x) dA()

c1=x1,02=3%1 Vx,y>0

= 3 [T+ (=1 [TLA) + &030%(»)]dA(x) dAY)

g3=*11 x,y>0

where g5 = 0,0,. Thus it suffices to prove (12.8) where the integral is over
the region x, y > 0. But this integral is (1 + [ [7-, &) times the integral over
the region x > y > 0 (consider the x < y interchange) and thus we need only
prove (12.8) in case the integral is over the region x > y > 0. But in that case
fi(x) — f{y) = 0 since f'is monotone, and f(x) + f(y) = 0 since f'is positive
on [0, ). §

By taking limits, we have some inequalities for path integrals:

Theorem 12.1' ([120]) Suppose that V =V, + V, where V, is even
and —V, € #9 (i.e., V, odd, negative, and monotone decreasing on [0, c0)).
Let f, g be positive even functions. Let A = a(ex(t,),. .., w(t,)) witha e &, and
similarly for B. Let {-> = {- du(w) where du(w) is given by (12.1). Then, if
{A4%y < o, {B?) < oo,

{A) >0 (12.4)
(ABY — (AYB> > 0 (12.5")

In particular, this holds for any P(¢),-process with P(x) = P.(x) + P(x)
with P, even and P, odd, negative and monotone decreasing for x = 0.

Remarks 1. To get the P(¢), result for the result from f, g even, we take
f.g = Q, and then take w(s) —» w(s — 3t) and t — oo using Theorem 6.9 to be
sure we recover the P(¢),-process.

2. To handle unbounded a’s, we replace a by truncated functions and
take limits.

Looking at the proof of (GKS 1), one sees that the monotonicity of the
functions was never used. Thus, we have the following.
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Theorem 12.1” ([173a])  Let IV be a function on R so that for x,,..., x,
fixed and x, > 0 we have that

V(xX) < V(=X, X, ...) (12.9)

andlet{-> = j - du(w) where du(w) is given by (12.1) extended to R” with f, g
even and positive. Then

4> =0 (124")

if A = a(w(t,)) with a(x,, .. ., x,) a function which is odd in x, for x,, ..., x,
fixed and positive for x, > 0.

Proof After discretizing, fix the x,, ..., x, coordinates in each variable.
Expand in the x, couplings and get positivity by the proof of (GKS I). If one
then integrates in the x,, . . ., x, variables, positivity results. i

Remark If Visunbounded below, one proves (12.4")for an approximating
sequence of V,’s bounded below and takes limits.

As an application we have the following result of [173a]:

Theorem 12.2 ([173a])  Let e(R) be the ground state energy of —3A —
z.|r|™' — z,|r — Re|™! where e is a unit vector and z,, z, > 0. Then e(R)
increases as R does in the region R > 0.

Proof Without loss take e = (—1,0, 0). Then, if Q; is the ground state
eigenvector:

de
d_R = (Qg [22(x; + R)|r — Rel“slﬂx)

= ZZ(ka x(|r|730g)
where €3, is the ground state for H = —1A + ¥ with
V = —z|r + Re|™! — z,|r|™}

and we have used translation covariance. Since |r|~! is monotone, ¥ obeys
(12.9), so by (12.4”) and a limiting argument (Qg, x,|r| 3Qz) > 0. |

Now suppose that W e &, and we let {->, be of the form (12.1) with V
replaced by V(x) + AW(x). Then

d t
<A = = [ AW — <YWl ds
0
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for the (AW, term comes from the derivative of the | Ae¢--- term and
(A {W), from the derivative of Z '. We have thus proven (taking suitable
limits for P(¢), and unbounded W’s):

Corollary 12.3 Let 1x?> + P, Q be functions which are bounded from
below with P =P, + P,, Q0 = Q. + Q, (P, even, etc) with — P, Q., Q,,
—P, — Q,€.%,. Suppose that the R(¢),-process exists for R = P + AQ,
A€ [0, 1], and use - >, to denote its expectations. Then, for any A = a(q(t,));
aesx,,

Ay, <KA),, i A2 A

Our first application of this result is taken from [120]:

Theorem 124  Let P, Q beeven, Qe # . Let E,(P) = inf spec(L, + P)
E,(P) = inf spec(L, + P [ Q5). Then

E,(P+ Q) — E{(P + 1Q)

is monotone increasing in A.

Proof By adding an &x? to P, we can suppose that all L = L, + AQ have
purely discrete spectrum in which case E, and E, are the first two cigenvalues.
Let Q,, Q, be the corresponding eigenvectors. We claim that (xQ,, Q,) # 0,
for Q, is nodeless and Q, has exactly one node at x = 0. Thus, making an
eigenvector expansion of x{2; and noticing (2, xQ,) =0

—(E, — E;) = lim 7" In[(xQ,, e "E"ExQ )]

t—

= lim t™ ! In<g(1)4(0),

t— o0

is monotone decreasing in A. |

Example 1f Efay, a,, ..., a,) is the ith eigenvalue of —(d*/dx*) +
3™ o a;x*, then in the region a,, > 0, E,(a) — E(a) is monotone in the a’s.

Our second application is from [6]:
Theorem 12.5  Let V be an arbitrary even function on R with V_e L',

V, € LL..Let W be an even function monotone increasing on (0, c0). Suppose
that —(d*/dx?) + V + AW has a normalized ground state (that is, an
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cigenvector corresponding to lowest eigenvalue), v, , foreach 4 € [0, 1]. Then
for cach u

[ wiorax = [ wowr ax

Proof Let F(A) =1 — [%,|y;(x)I* dx. We want to show that F(4) is
monotone decreasing in A. But

F(A) = <G(4(0))>»

where G(x) = 0 (respectively, 1) for |x| < a (respectively, >a) and -, is
the P(¢),-process for —d?/dx* + V + AW. Since G € & ,, this follows from
Corollary 12.3. |

Martin [182] has discovered an “elementary” proof of Theorem 12.5 that
avoids path integrals; see also [289, 290].

There is one other family of inequalities that holds for all even d1’s, namely
the FK G (for Fortuin, Kasteleyn, and Ginibre [85]) inequalities. We state the
following without proof (see, e.g., [258]).

Theorem 12.6  Let F be a nonnegative function on R = [0, o)™ obey-

ing
F(x A y)F(x v y) = F(x)F(y) (12.10)

where (x A y); = min(x;, y;); (X v y); = max (x;, y;). Let
[-Fdmx
| Fdmx
Let f, g be functions on R% which are monotone increasing in each x; (with
x; for i # j fixed). Then

(D=

{fgd =2 S HXKg>

Let us note some cases where (12.10) holds:

Lemma 12.7 ([6])
(@) M F(x) = exp(— W(x)) with W a C%-function, then (12.10) holds if and
only if

*w

mSO, i #j (12.11)



126 IV. Inequalities

(b) LetdS, be the usual measure on unit sphere in R* withv = 1 or 2, and let
F(x) = fexp(z Jijxix;0;- cj) [14dS.(o)
i%j i=1
for xe R%. Then F obeys (12.10) if J; = J;; > 0.
Proof (a) (12.10) is equivalent to
WxAay)+Wkxvy —Wk)— Wy <0 (12.12)

and this difference can be written as a sum of integrals of 9 W/dx; dx;. Thus
(12.11) implies (12.10). By taking y = x + ce; — ee;, (12.12) yields (12.11).

(b) Let(->, = |-exp(---)n dS/j exp(- - -)n dS where the centered dot is a
function of the 6’s. Let W = —In F. Then

ow
Y e (Saes))
J X

¥

W
m = — <JUGI * 0']>x — I‘ZI J“ijx,xk<0‘i * 0'1; 0'1 ¢ o‘k>7‘,x
i Uy .
where (A; Byr = (ABY — (AY(B. Thus (12.11) holds if <a;* ;) > 0,
{6;*6); 6;* 6, >7,, = 0. For v =1, this is just the usual GKS inequality;
for v = 2, it is an inequality of Ginibre [101]. |}

As a typical application of this consider the following.

Proposition 12.8([6]) Let V be a function on R* which is only a function
of p = (x* + y*)'? and |z|, with 8*V/0p 0z < 0 in the region p, z > 0.
Suppose that V is monotone in p, {z|, that G is another function of p, |z|
which is monotone, and let W be a function of p alone. Suppose that —A +
W + AV hasaground stateforeach A€ [0, 1],and let Q, be the corresponding
ground state eigenvector. Then (Q,, GQ;) is monotone decreasing as A
increases.

Proof Pass to the path integral [ P(¢p);-process] for —A + W + AV;call
it {-),. Asin Corollary 12.3, it suffices to prove that

<G@ONV(q())> = <G(g(0N>{V(q(s)>

and this follows if we can prove the FKG condition (12.10) for the measure
obtained by first discretizing and then “integrating” over the angles in the
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(x, y)-planes and signs of z's. The F that results is a product of three kinds of
factors:

exp(—aW(p)),  exp(—aV(p, |2)
[exp(=p 3 (6 = £)?) doy disgn z)

It is enough to check (12.10) for each factor: The W-factors trivially obey
(12.10), the V-factors are all right by hypothesis and Lemma 12.7(a), and the
final factors are all right by Lemma 12.7(b). |}

An interesting application of this last result is to the Zeeman effect in
hydrogen, i.e., hydrogen in a constant magnetic field. In the approximation
of infinite nuclear mass, with suitable units and a magnetic field B, in the
z-direction, the Hamiltonian is given by (1.2) which can be written:

H= —A+ (B*4)p* — BL, — r™!

where L, = (1/i)(0/d¢) is the z-component of angular momentum. H com-
mutes with L, and one can ask what is the value of L, in the ground state of H.
Consider the Hamiltonians

H(m,2) = —A + m?p~% + (B*/4)p> ~mB — ir !

Now H [ (functions with L, = m) is isomorphic under the natural associa-
tion to H(m, 4 = 1) | (functions with L, = 0), so that

E(m) = inf(H [ L, =m) = inf(Hm,A=1)[L,=0)
= inf(H(m, 1 = 1))

where the last equality comes from the fact that H(m, 1) has a strictly positive
ground state eigenvector and hence one with L, = 0. Now think of m as a
continuous parameter. Then

0E(m, )
om

where ¢-),, ; denotes expectations in the ground state of H(m, 1). V(p, |z|)
= —(p? + z%)~ Y2 iseasily seen to be monotone in p, z and to obey 8?V /dp oz
< 0. Since —p~ % is monotone in p, Proposition 12.8 implies that {p ~2),, ; is
monotone increasing in A. Thus for m > 0,

=2mp~?>, , — B

OE(m, A = 1) _ 0E(m, A =0) _

om om 0
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where the last equality comes from the fact that E(m, A = 0) = 2B for all
m > 0 [the ground state in the p-variables is a multiple of p™ exp(—1Bp?)].
This shows that

E(m) > E(0) (12.13)

for m > 0. Since E(—m) = E(m) + 2mB for m > 0, (12.13) holds for all m.
By an additional argument [6], the inequality can be shown to be strict. We
thus have proven the following.

Theorem 12.9 ([6]) The ground state of the Hamiltonian (1.2) of a
hydrogen atom in a magnetic field has m = 0 for any B.

Remark The above proof will work if —r~! is replaced by any function
V(r) with V negative, monotone increasing and concave on [0, o). By an
additional trick, one can avoid the hypothesis of concavity [6]. If ¥ is not
monotone, then the ground state need not have m = 0 (see [4] and references
therein).

* K %

The above results (at least in one dimension) give one some control on
differential operators —d?/dx* + V for general even V’s. One could get
control over such general V’s because there was no restriction other than
evenness on the “single spin distribution,” dA. One can get much greater
control by placing stronger restrictions on V. The earliest result of this
genre is the following obtained by Simon and Griffiths [261]:

Theorem 12.10  Let {-) be the P(¢), expectation for P(x) = ax* + bx?
(a > 0, b in R). Then any multilinear inequality true for an arbitrary spin-3
ferromagnet is valid for {-).

Remarks 1. By an arbitrary spin-} ferromagnet, we mean the measure
on {—1, 1}™ given by

Sy =Y floexp(} J50,0,)/Normalization

Ga= 11

with J,; > 0. By a multilinear inequality we mean one of the form
Y AP0y .- 0,)p 20

Pe®

where 2 is the family of all partitions, P, of {1, ..., n} into disjoint subsets

nl,...,nk al’ld (Jal,...,aa“)}z = l—[ < l_[ O’mm>
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2. Examples of such inequalities are those of Newman [196]

) -+-a00) < ¥ [T <attdate,)>

with the sum over all pairings of {1, ..., 2n}, the GHS inequality discussed
below and certain inequalities of Lebowitz [165].

3. For the proof, see [261]. See [76, 62] for further discussion including
multicomponent inequalities. The idea in [261] is the following: If ¢; are
independent spins, then the distribution of Y., a,/\/N is

(2n)~ V2 exp(—x2%/2)

in the limit of N — co. If one couples the spins together with a Hamiltonian
(2N)~ 'O, 6% then this leading behavior is precisely canceled and it
turns out that ) ' | ¢,/N>'* approaches ¢ exp(—ax*) for a, ¢ suitable. In this
way one can approximate a “single” spin with e~** dx distribution with a
sum of ferromagnetically coupled spin-} spins. Thus ferromagnetically
coupled e ** dx spins can be approximated by a larger array of spin-}
spins. Since multilinear inequalities extend to sums of spin-3 spins, the
theorem is proven.

* %k k

The most interesting applications of Theorem 12.10 involve the GHS (for
Griffiths, Hurst, and Sherman [117]) inequalities which have been proven
for many V’s by Ellis, Monroe and Newman [ 74] whose treatment we follow
below. Similar results have been obtained by Sylvester [269]. As a prelimi-
nary, we discuss the Ursell functions or cumulants. Given n random variables,
X ..., X,, wedefine

an n
= X, 14
u (X, ..., X,) oh, - ok, ln<exp(i=lh,X,)> (12.14)

=0
Thus,
u(Xy) = <X
U( X, X3) = (XX — (X )Xy
us(Xy, Xz, X3) = X1 X, X3) — (X (X2 X3) — (X)X, X35>
— (XX XD + 2{X XX XX 3D
and for X’s with {J[X¥)> = 0for } k; odd,
Ua( X1, X3, X3, Xg) = (X X5 X3 X0 — (X XXX
— (X XX X3) — (X X)X X
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There are explicit formulas for u, but of more value is an axiomatic
characterization of Percus [202]:

(P1) u,is multilinear in X, ..., X, (in the sense described after Theorem
12.10).

(P2) u (X, ..., X,) =<X, ---X,> + sums of products of two or more
factors

(P3) Ifthe X's break up into two mutually independent sets, then u,, = 0.

Proposition 12.11 (Percus’ lemma [202])  Fix n. Then u, obeys (P1)-
(P3). Moreover, any expression obeying (P1)-(P3) is identical to u,.

Proof (P1)and (P2) are easy to check. (P3) follows if we note that if the
X’s break up into independent sets then In{exp - - - is a sum of two functions
each of which is independent of some h;.

Conversely, given a function #,(X,, ..., X,) obeying (P1)-(P3), we can
write

ﬁn(Xi) = z d(P)<X>P

Pe®

by (P1). Here d(P) is a number, £ is the family of ali partitions of {1, ..., n}

pP— {[11[;]} (k = #(P))

and

# (P)
o= 11 {11%,)
i=1 JeTIl;
By (P2),d(P)is determined for # (P) = 1. We claim that (P3) then determines
d(P) inductively in #(P). For fix a partition P, and let P <a P, indicate that
P, is a refinement of P. Let P, = {m;}. Then

Y d(P)y=0 (12.15)

P<P,
for suppose that {X};.,, are independent. Then Y »_p d(P) is coefficient
of {(X3}p . But (12.15) determines d(P,) in terms of d(P)’s with #(P) <

#(Po)- 1

As a typical application of Percus’ lemma, we note the following formulas
of Cartier [33]: Given random variables X,, ..., X, on (X, %, u), take n
independent copies of X (i.e., the n-fold Cartesian product of X with the
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product measure), let X1 be the copy of X; on the jth factor. Let ¢ = ¢2"n
be a primitive nth root of unity and let X; = Y7 «/X!. Then (Cartier’s
formula)

U(X,.., X,y =n'EX,,.... %) (12.16)

To prove (12.16), note that (P1) and (P2) are easy; (P3) follows if we note that
under the measure preserving map X — XV~ (with X© = X", X,—
(I)Xl" ThuS

E(ijl""’gjl)=le(ijl""’le)

is zero if | < n.

Theorem 12.12 ([74, 269]) Let du be a measure on R" of the form
du(x) = Z71 exp(— Y Vx) + Y bz + ZJijx,-xj) dx (12.17)
i=1 i=1 ij

where Z is a normalizing factor (assumed finite). Suppose that J; = J;; > 0;
h; > 0 and that each V{(x) is an even function of x, C! on (— o0, o) with V;
convex in the region (0, co). Then with respect to du (GHS inequality)

uz(xy, X, x3) < 0 (12.18)
If all h; = 0, then (Lebowitz inequality)
Ug(xgy ..., x0) <0 (12.19)

Remarks 1. If we take Vi(x) = V(x) with V(x) = a[(x*> — 1)?] and
take a — o0,

e V™ dx/Normalization — 1[d(x + 1) + 8(x — 1)]

and one recovers the original GHS [117] inequality for the usual spin-}
Ising model.

2. Since uy = 0if all h; are zero and by (12.18),u; < 0ifhy > 0,h; =0
(i #4), we have du;/0h, < 0 at all h; = 0. That is, (12.18) implies (12.19).
(12.19) was originally obtained by Lebowitz [165] as one of a large number
of new inequalities; it is a remark of Newman (unpublished) that it follows
from (12.18).

3. At first sight, it may be surprising that for spin-} models u, > 0,
u, = 0 but uy < 0. There is a good physical reason for this: Typically, the
magnetization of a magnet is as drawn in Figure 1, so that in the region h > 0,
it is positive, monotone, and concave. Since m = {g,), this says {¢,) =0,
Y. 0<a,>/oh; > O but Y ; ; 0°<a,>/0h; Oh; < 0.
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Figure 1. A typical magnetization curve.

Proof ([74]) GKS I was proven with one copy of du, GKS II with two
copies; now we will use four copies, i.e., du(x'?) - - - du(x*") with components
x%®), Let B be the orthogonal matrix

S T
1f 1-1 1-1

B=3 | T, _| _| (12.20)
-1 1 1 -1

and let w = 3 b, x{. We first claim that
uz(Xy, X3, X3) = —2E(WPwPwi) (12.21)

This follows, either by explicit expansion of the right-hand side of (12.21) into
64 terms or by using Percus’ lemma: the right-hand side of (12.21) is multi-
linear, the leading coefficient is {x,x, x3 >, and (P3)is obeyed since E(w{’) = 0
forj = 2,3,4. Thus (12.18) and (by Remark 2) (12.19) follow if we show that

E<n F,.(w,.)) >0 (12.22)

where F(w", ..., w*)is a function positive in the region with all w* > 0 and
odd or even in each w®.
Now B is an orthogonal matrix, so [Jf-, d"xV" = [}, d"w? and

i xF ) — i Wi ®
e !
Thus,
Z4E<ﬂ Fi(wi)) = fexp(z 2h; W + Z J; w“‘)w("))
i=1 i i, j,k

4

X [n F,-(w,.)] l_[exp( z x(’")) li[d"w""
i=1 i=1 k=1
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If we now expand the first exponential and note that products of the allowed
F's arc allowed and that wi® is allowed, we see that (12.22) is implied by one-
half of the lemma below. |

Lemma 12.13 Let x® = Y%, B;w" where B is the matrix (12.20).
(Note: B~' = BT.) Let #" consist of all functions of w", ..., w® which are
odd or even under change of sign of each w* (odd under some, even under
others is allowed) positive if all w® > 0. Let

4 4
du(w) = exp(— Y V(x“’)) [ ]dw®
i=1 k=1
where V is an even C!-function. Then
J F(w) dp(w) = 0 (12.23)

for all F e # if and only if V"’ is convex on (0, o0).

Proof Suppose that F(w) is multiplied by (— )™ if the sign of w® is
changed. dy is left invariant under w® - —w® (i = 1,2, 3,4), since V is even,
and also under reversal of two w’s (e.g., w? —» —w?®, w® o —w® cor-
responds to interchanging x, with x, and x; with x,). Thus the integral in
(12.23) is zero unless all m; are even or all are odd. If all are even, then F > 0
so (12.23) is trivial. We are therefore restricted to consideration of all m; odd.
The invariance of du under reversal of two signs then yields the integral over
the sixteen “quadrants” as two sets of identical contributions; i.e.,

f F(w) du(w) = 8 f  FONLAUm) = dp— it W, )]

For this integral to be positive for all F > 0 and w® > 0, it is necessary and
sufficient that the measure in [- - -] be positive. Thus, (12.23) is equivalent to
the symmetric condition

V™ + w® £ w® £ ) 4 Y + w® — w® — w®) 4 2 others
— V(WP + w? 4 w® — w®) — 3 others > 0 (12.29)

for all w9 > 0.

Suppose that (12.24) holds. Fix a. Then (12.24) holds for w =a +y
(ly| < }a),and so it holds for w) = aand V replaced by V;, the convolution
of V with a positive C*®- function supported in (—a, 1a). V; is C* so we can
choose w) = g, w? = w® = w® = ¢ and expand in Taylor series; (12.24)
says:

Vi(a + 3e) + 3V;(a —¢e) — Vi(a— 3e) —3Via+ ) =0
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"

so taking £ = 0, V() = 0. Taking & — 0, we see that the third distributional
derivative of V is a measure on (0, o), so V' is convex there.

Conversely suppose V is C' with V' convex on (0, c0). By symmetry, we
need only check (12.24) for ' > w'*), Then:

1
Lh.s. of (12.24) = w® f GWY + rw® w® w®) gr
-1

with
Gx,y,2)=Vix+y+2)+Vi(ix—y—2)
- Vix+y—2)—Vx+z—y)

so we need only prove G is positive in the region x > y > z > 0 (G is sym-
metric). Now since V' is continuous on all of R and convex (respectively,
concave) on x > 0 (x < 0), V" exists for all but countably many x’s and V’
is the integral of V”. Thus

1
G(x, y,2) = 2 f [V/(x + 1z + ) — V'(x + 1z — )] dr
-1

Since x > z, we only need that x, y > 0 implies
V'ix+y)=V'(x~y)

and this follows from the fact that V" is even and monotone on (0, o). |

As usual, we immediately obtain inequalities for the P(¢),-process:

Theorem 12.14  Let P have the form @ — hx with h > 0 and Q a C' even
function with Q' convex on (0, co). Then

@) <q(tq(s)> — <g(t)><q(s)> is monotone decreasing as h increases.
(b) Ifth=0,
PG (2)) — g )><a* (1)) < 2{q(t)g(t2))?

Remark (a)comes by noting that u; = Ju,/dh; and (b) by using Lebowitz’
inequality with 6, = 6,, 03 = g,.

Corollary 12.15 ([261])  Under the above hypotheses on Q, let Ej(h) be
the ith eigenvalue of 4(d*/dx?*) + Q(x) — hx. Then E,(h) — E,(h)is monotone
increasing in h.
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Proof 1 Q; is the ith cigenvector, then (25, ¢€2,) # 0 since €, has one
node say at g, so (Q,, ¢Q,) = (Q,, (¢ — a)Q;) # 0. Thus, if Y = qQ, —
(€Q,.4Q,)Q, and 1 = H — E,:

—(E;, — E;) = lim ¢~ In[(y, e~ "y)]

t—a0

= lim ¢~! In[{g(1)q(0)> — <q(t)><q(0)>]

t— w0

Now use Theorem 12.14(a). |

Corollary 12.16([107];sce also [264,196])  Under the above hypotheses
on Q and notation,

E;(h) — Ey(h) = Ex(h) — Ey(h)
ath = 0.
Proof Since Q(—q) = (—1)'*1Q(q), (Q,, ¢’°Q,) = 0. On the other hand,
since Q3 has nodes at ¢ = +./aq,
(Qs,4°Q) = (Qs,(¢> — @)Q,) #0
so, using Theorem 12.14(b):

—(E; — Ey) = lim ¢ "' In[{g*()g*(0)> — {g*(1)><q*(0)>]

t—

< lim ¢ ' In[2<g(1)g(0)>*] = —2AE, — E,)

t—> o0
$0
E3 - El 2 2(E2 - El) l

There is a final aspect of Theorem 12.12/Lemma 12.13 of interest:

Theorem 12.17 ([75]) Let V be an even C!-function on R with V'(x)
convex on [0, o). Suppose that H = —d?/dx?> + V(x) has an eigenvalue at
the bottom of its spectrum with eigenvector e /), Then fis C! and [’ is
convex on [0, ).

Proof Let (- be four independent copies of the path integral associated
to H. By the generalized GHS inequality, (12.22), we have that

(F(w)> =20

for any F € #/, the family in Lemma 12.13. Thus (12.23) holds with the " V”
in du replaced by 2f. Since V is (locally) C', a general argument implies that
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Sis (locally) C! (actually C? can be shown), so by the converse direction of
Lemma 12.13, f* is convex on {0, «©). ||

Remark V' continuous up to zero is not needed. All that is needed is
lim, , , V(0) < 0, since one can then obtain V' as a limit of W’s with W’(0)
= 0 and W convex.

Example We want to describe an example with V even and C®, with
V(x) > 0 for all x > 0 all integers m > 0 but for which the ground state
¥ = e/ withf*¥ negative for large x. V will just be x*. If E is the energy of the
lowest eigenvalue, then the formal WKB form for the asymptotics of  is

v ~(V—E)”“exp(——f,/V—de)
and thus for V = x*
1
f~§x3 +Inx+ 0(x" Y

and
fH N~ —6x"* 4+ 0(x79)

The point is that using ODE methods, one can prove these asymptotic
formulas.

13. Other Inequalities: Log Concavity, Symmetric Rearrangement,
Conditioning, Hypercontractivity

A. Ldg Concavity

Definition A function F: R* — [0, c0) is called log concave (respectively,
log convex) if and only if
F(x + (1 = A)y) = F(x)*F(y)' **  (resp, < F(x)*F(y)' ™%
forallx,yeR",0< 1< 1.

Examples 1. If C is a convex set, its characteristic function is log
concave.

2. If {a;}} -, is a positive definite matrix then exp(— ) x;x;a;;) is log
concave.
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The following is an clementary consequence of Holder's inequality.

Theorem 13.1  If F:R™*" — [0, oo) with F(-, y) log convex for each fixed
y in R", then

G(x)=| F(x,y)d"y
R"
is log convex in x.

By taking limits (or using Holder directly on the path space), one sees that
the map V — | dg exp(— [§ V(g(s)) ds) = (Qo, exp(—t(Lo + V))Q,) is log
convex so that using (1.9), we recover the result (which also follows from the
Rayleigh—Ritz principle) that V — inf spec(L, + V) is concave.

Much subtler is the following result proven by Prékopa [205] and then
independently by Rinott [220] and Brascamp-Lieb [19].

Theorem 13.2 If F:R™*" > [0, o) is log concave, then

600 = [Fex, vy vy
is log concave.

Proof ([19]) By induction, we need only consider the case n = 1. More-
over, since log concavity is an expression about G over lines, we need only
consider the case m = L. Fix x,, xX’€e R and 1€ (0, 1). If G(x,) or G(x') is
zero, the inequality

G(Axy + (1 — Ax) = G(x0)*G(x)! ~*

is trivial. Moreover, by replacing F by F(x, y)exp(—&y?*) we can suppose G is
everywhere finite. Then replacing F by e****F for a, b suitable we can suppose
that
sup F(xo, y) = sup F(x', y) = z, (13.1)
y y
Fix 0 < z < z, and let C(z) = {(x, y) | F(x, y) = z}. Log concavity says
that C(z) is convex and nonempty. Thus for x = Axy, + (1 — A)x’

C(x, 2) = {y | (x, p)y e C(2)}

is nonempty (by 13.1) and an interval [a(x, z), b(x, z)] with a and —b convex
in x. In particular, g(x, z) = meas(C(x, z)) = b(x, z) — a(x, z) is concave;
1e.,

g(xo + (1 — A)X', 2) 2 Ag(xo, 2) + (1 — Ng(x', 2)
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But

G(x) = — f wz dg(x, z) = Jwg(x, z)dz > fzog(x, z)dz

0 0 0
with equality for x = x, or x". Thus

G(Axo + (1 = Ax') = AG(xo) + (1 = HG(x)
> G(xo)'G(x)' " 1

Corollary 13.3 The convolution of two log concave functions is log
concave.

Proof If F and G are log concave on R", then F(x — y)G(y) is log concave
on R, |

Most of the results below can be obtained by systematically using Corollary
13.3 and the Trotter formula. As usual, we give instead a path integral result.
For convenience, we state things for the Wiener process. Similar results hold
for any Gaussian process and for Wiener measure.

Theorem 134  Let F(b, 1) be a function on v-dimensional Wiener paths
depending on an additional parameter A€ R". Suppose that F(b, L) =
lim,, ., F,(b, &) in L(Db) for each fixed A for F,, obeying

Fp(b,}) = G (b(s{™), ..., B(s3), )
with G,, log concave on R**™, Then
H(2) = E(F(b, 2)
is log concave.

Proof E(F,(b, L)) = [ G(Xg, ---y X MOX)d™x where Q(x) is a
Gaussian. Since G, and Q are log concave, so is G,, Q and thus so is the integral
by Theorem 13.2.

The following applications are from [19, 20].

Corollary 13.5 If Visconvexon R*and H = —}A + V has ground state
Q(x) = e /™ then f'is convex.
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Proof Let €, be the ground state of the harmonic oscillator, L. By a
limiting argument using (1.10) it suffices to show that (e "HQ,Xx) is log
concave for each ¢. But

(e7'"1Q))Xx) = E (exp(— f tV(x + b(s) ds)Qo(x + b(t)))
0

and G(uy, ..., u,, X) = exp(—(t/m) Y7o, V(x + u))Qo(x + u,,) is log con-
cave on R™* 1, Thus the result follows from Theorem 13.4. |

Remark Let S be an open convex set in R’ and let V, = n dist(x, S).
Then V, is convex. Taking n — oo, we see that the ground state, , of the
Dirichlet operator — A is log concave; in particular, the level sets {x|y(x)=o}
are the boundaries of convex sets {x|y(x) > a}. This is a result of Brascamp-
Lieb [20].

Corollary 13.6 Let V(x, A) be a convex function on R**!. Let E(1) =
inf spec(H, + V(x, A)). Then E(4) is convex in A.

Proof The proof follows from Theorem 13.4 extended to du, and the
formula (1.9):

t—=w

—EA) =limt 'ln fQo(m(O))Qo(m(t))exp(— J: V(o(s), 1) ds) duo(w) |

This result is useful to obtain lower bounds on ground state energies which
complement Rayleigh-Ritz results.

Example V(x, 1) = Ax?> + x* + $A% is jointly convex in the region
A = 0 (compute the matrix of second partial derivatives). In particular, if
a(2) = inf spec(—3 d*/dx* + Ax* + x*), then for 0 < A:
-§<a) <0

If b(A) = inf spec(—% d?/dx® + x? + Ax*), then [241]b(1) = A'2a(A ™) by
a scaling argument, so we also obtain information about b.

Brunn-Minkowski inequalities for Gaussian measure have been exten-
sively studied by probabilists; see [2a, 118a, 18a, 18b, 18c]. Our treatment
follows that in [ 19] and begins with the classical Brunn- Minkowski theorem
and its relation to Theorem 13.2.

Theorem 13.7 (Brunn-Minkowski inequality)  Let C,, C, be nonempty
compact convex setsin R"and let C; = AC; + (1 — A)C,. Then (|-} indicates
Lebesgue measure)

|Gl 2 AJC "™ + (1 = D] Co|™™
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Proof By a limiting argument (replace C; by {x|dist(x, C)) < &}) we
may suppose that |C;| > 0. Take

¢, = ICi17V"Cy 5 Co = |Col™""C,
and suppose we know that |[C,| > 1. Then

Ci=AMCI'""Cy + (1 = A)|Co['"Co
= [AC, " + (1 — DICol'MC;

for suitable 1. But then
[Calt = [AIC, "™ + (1 — D)|Co 1M Clm

proving the result.
We are thus reduced to the case |Cy| = |C,| = 1. Let

D={xMD]|xeC,,0<2<1}

Then D is convex by construction, so its characteristic function, y, is log
concave. But then |C;| = [ x(x, 1) dx is log concave, so |C,| > |Co|' *|C,|*
=11

Remarks 1. The Brunn-Minkowski inequality is known to be true for
nonconvex C; although a different proof is needed (see, e.g., [20]).

2. The isoperimetric inequality is one consequence of the Brunn-
Minkowski inequality: For let C be an arbitrary convex set with smooth
boundary and let B be the unit ball. Then the surface area, s(C), of C is
given by

s(C) = lim ¢~ '] {x | dist(x, C) < &}|
=0

= lim ¢~ '[|C + &B| — |C|]

4ad ]

=lime '[(d +&')(1 +&)7'C+ (1 +¢ 'eB| —|C|]

£—~0

> lim e '[(1 + &[(1 + &)} |C|Y" + (1 + &) '¢| B|*"]* — |C|]

=0

=lim ¢ Y[|C]\"” + ¢|B|'"]* — |C|}

=0
- vlcl(v— 1)/lell/v
where we have used the Brunn-Minkowski inequality. Since s(B) = v|B]|,

we see that if |C| = | B|, then s(C) > s(B), which is the isoperimetric in-
equality.
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Theorem 13.8 (abstract Gaussian Brunn- Minkowski [19]) Let R* =
Xy (=0, w) with the measure Qe (2n) ™ '/? exp(—3x?) dx,) = dpu.
Let Cy, C, be measurable convex sets in R* and let C, = 1Cy, + (1 — )C;.
Then u(C,) is log concave in A.

Proof Letf(4,x) = 1 (respectively, 0)if x € C;. Then f(4, x) is log concave
SO

A =@ R [ gaye Py,
yi=xi(i>1)
is log concave as in the proof of Theorem 13.2. Integrating over n-other
variables and taking n - oo (C,, C, measurable implies convergence) we
obtain the result. ||

Remark Since Wiener measure is “isomorphic” to the last measure on
R by a linear map, this theorem extends to, say, Wiener measure, realized
on continuous functions.

Log concave functions can also be used to prove Theorem 12.2:

Alternate proof of Theorem 12.2 [173a] We will prove a stronger result:
Namely, fix Ry, ..., R, and let ¢(4) be the ground state of
1A — Y zlr - AR
i=1
Then e(4) increases as A increases. By the usual kinds of limiting arguments,
it suffices to prove that

F() = (@ (e™"olre™7iny0)

is decreasing for Q a Gaussian and V a cutoff V arranged to be bounded
below. Since e™*!*”"/" is monotone decreasing, we can write the cutoff V’s
as an integral of characteristic functions of balls centered at zero [see (13.2)
below], so it suffices to prove that

F) = (Q, " Ty, (r — ARpe™ o . T ;. ux — lRJ-)Q>
ji=1 j=1

is monotone in Aifeach x; ; (j = 1,...,m;i = 1,..., n) is the characteristic
function of some ball centered at zero. Since y;(r — AR)) is log concave in r
and A and e~""o" has a log concave integral kernel, F(4) is log concave. Since
it is also clearly symmetric (F(1) = F(—2)) it is easily seen to be monotone
decreasing. |

* %k ok
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B. Symmetric Rearrangement

A function fon R" is said to be symmetric decreasing if and only if fis a
function, g, of | x|, and g is positive and monotone decreasing as | x| increases.
There is a particularly useful way of writing symmetric decreasing f’s.
Namely,

f= f 13 dA (13.2)

where y; is the characteristic function of the ball about zero of radius r(1) =
max{|x|| f(x) = A}. The proof of (13.2) is immediate, it just says that

£x)
Jx) = dA
0
Tt realizes f'as a “sum” of characteristic functions of balls about zero. If x,
and y, are two such functions, then y, * x, is seen to be symmetric decreasing
by a simple geometric argument. Thus (13.2) implies the following lemma.

Lemma 13.9 If fand g are symmetric decreasing so are fg and f* g.

Theorem 13.10  If — V(x)is symmetric decreasing and y(x) is the ground
state of H = —1A + V, then (x) is symmetric decreasing.

Proof By (1.10), it suffices to show e~ '€, is symmetric decreasing where
Q, is the ground state of L,. But, by the Trotter formula, it suffices that
(e~ Holng=WinynQy - be symmetric decreasing, and this follows from Lemma
13.9 if we note that e *Ho* js convolution with a symmetric decreasing
function. §

Remark Theorems 12.17,13.5,and 13.10 say if V is a C? even function on
R and e~/ is the ground state of d%/dx? + V(x), then for k = 1, 2, 3, we have
that ¥® > 0 on (0, co) implies that f® > 0. This does not hold for k > 4; see
the example at the end of Section 12.

Given any nonnegative measurable f on R with the property that
J{x | f(x) > u}| < oo for each u > 0, there is an essentially unique function
f* that is symmetric decreasing and obeys

KX S > pbl = [{x | f*(x) > p}|
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Itis called thesymmetric decreasing rearrangement of f [if p— | {x | f(x) > u}|
is continuous, f* is uniquely determined; otherwise it is only almost every-
where determined and can be fixed by demanding f*(x) = lim,,; f*(1x),
say]. The earliest results that sums increase, under symmetric rearrangement,
go back to Hardy and Littlewood. The ideas were developed by among others,
Hardy, Littlewood, and Polya and by Sobolev. The strongest version is the
following.

Theorem 13.11 ([22]) Letf,,...,f; be positive measurable functions on
R* and let f%, ...,f¥ be their symmetric decreasing rearrangements. Let
a,,...,a eR"and define [;: R™ —» R by l(x,,...,X,) = D 7_, a;x(x;€ R").
Then

k k
[ T ooy amx < [ T st am
i= i=1

For a proof, see [22]. The idea is to use (13.2) and its analog for nonsym-
metric f to note that the f’s and f* can be taken to be characteristic functions
in which case the inequality is a geometric statement. The analog of this
statement with * replaced by symmetrization about a single plane (- Steiner
symmetrization™) is proven using Brunn-Minkowski and then * is realized
as a limit of Steiner symmetrizations about different planes.

Typical of the applications of this inequality to Wiener integrals (really
Trotter formulas) is the following result (it was proven in [178] assuming
Theorem 13.11 as a conjecture and served as motivation for [22]).

Theorem 13.12 Let V = —W be negative and let V* = — W*, Let
E(V) = inf spec(—3A + V) and let P(V) = exp(—t(—1A + V). Then

E(V*) < E(V) (13.3)

(fs P(V)g) < (f*, P(V*)g*) (134)

Proof (13.3) follows from (13.4) and (1.9). (13.4) is easy to prove in a
Trotter approximation using Theorem 13.11 and the fact that exp(3tA) is
convolution with a symmetric decreasing function. |

Remark One might conjecture that N(V) < N(V*) on the basis of this,
However, this is wrong (Lieb, private communication): If V is a sum of very
shallow square wells in one or two dimensions very far apart, then N(¥)canbe
large while N(V*) = 1. Even in three dimensions, two wells far apart,
each of which just binds a state, will yield a V with N(V) = 2and N(V*) = |
(M. Klaus, private communication).

¥ %k %
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C. Conditioning

We discuss briefly some inequalities due to Guerra et al. [ 120, 121], which
are of some technical use in quantum field theory (e.g., [94, 96, 110, 121]). Let
{X;}ic; be a family of objects which are Gaussian random variables with
respect to two different probability measures p and v. We say that u is ob-
tained from v by conditioning and write y < v if and only if

182, du < [152,0, 2 dv

for all zy,...,z,€ C; ie, if and only if a* — a¢* is a positive definite matrix
where af; = | X, X dv.

Examples 1. 1f X = a(t), the Brownian bridge and b(t), the Brownian
motion, then Da < Db. For a(t) @ tb(1) = b(t) implies that

[IZ 2000 Db = (IS 2t D + 15 112,

2. Let Ly(w)= —3d*/dx* + 30?x* — $w. The corresponding path
integral has covariance (2w)~ ! exp(—w|t — s]|). Since

QRw) te @ = 2p)~1 f(kz + w?) " ek TY g
we see that as w increases, Dg,, decreases in conditioning sense.

The description above is an active one; i.e., we fix the X;’s (thought of as
coordinates) and vary measures. It is useful to change the point of view to a
“passive” one where we fix the measure as dv and think of changing from X,
to X;. Without loss, we can extend the indexing set for {X;, dv} to a Hilbert
space and suppose that | X, X;dv = [ ¢(/)¢(f;) dv = (f;, f;) for suitable
fi, f;€ #. Now define an operator A from J# to 5 by

rtlpo)) - fromss

Then 0 < A < 1 since u<v. Let B= A'2 Let ¢,(f) = ¢(Bf), $o(f) =
o((1 — A)'?f).Then X; = ¢,(f;)with the measuredvisa*“model” for(X;, du).
Consider the process ¢, @ ¢,, i.e., the product of dv ® dv with

(@1 @ $2XNNx, y) = $1(N)x) + ¢2(HW)
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It is not hard to sce that ¢p; @ ¢, 1s a model for (X, dv). Now Jensen’s in-
cquality says that

f exp( f F(¢, ® ) de) dv, < f exp(F(¢, @ $2))dv, ® dv,

Thus given any function F of the X;, there is another function G of the X;
given by

[r@ @0 av,
so that
Jexp(G) du < fexp(F) dv (13.5)
Can one make the map F+— G more concrete? The answer is yes, and the

point is that |- --dv, is the same as taking a conditional expectation with
respect to ¢,. Thus, by (3.9"),

F= :exp(Z OCij)ZVHG = :exp(z ochj):M
j j

where we use :-:, and :—:,, because in the original active picture :-: depends
on covariance; e.g.,

1
exp(X ), = exp(Xl -5 fo di)

for A = p, v. A little more useful in applications than :exp ¢( f): are the Wick-
ordered polynomials :P(¢): defined by the formal generating functional

Y 1mgn/n! = exp(td). = exp(tdp — 3t°{P*))
n=0
for Gaussian ¢’s. Thus, e.g.,

ip* = ¢t — 6<P7H¢? + 3(¢?)?

Since the map F — G is linear, it takes :¢™, into :¢",.

We thus have the following theorem.

Theorem 13.13 (conditioning inequality [120]) If u<v, for two
Gaussian processes and if P is a polynomial, then

fexp(— i ai:P(X,-):u) du < fexp(— i a,-:P(X,-):V) dv
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Example I :x*: is the polynomial

4

x*, = x* = 3w 'x? + ju?

then the above and Example 2 above imply that the ground state energy of
Lo(w) + Ax*:,, where

t
Lo(w) + Ax*, = =limt 'In fexp(—f/l:q(s)"': ds) Dq,,
t—= o0 0

increases as w increases. Thus the ground state energy of

1 d* “ (1 5, 34 34 1
_§EP+AX +x(§w Y + o 3¢

increases as w does. This can be turned into an inequality on the derivative of
the ground state energy of —4 d?/dx? + ax? 4+ x* under change of a.

H(w, ) =

* %k %k

D. Hypercontractivity

Finally we state an estimate which has been very useful in quantum field
theory: it has not yet had any striking application to (one-dimensional) path
integrals.

Theorem 13.14 (hypercontractive estimates) Let E(-|q(0)) be a con-
ditional expectation with respect to the oscillator process. Suppose that p
and r are such that

r-D<e®p-1
Then
NECf(q(0) | gD, < 11 f (@),

where || ||, is the LP-norm with respect to dg.

Remarks 1. This inequality for r — 1 < ¢*(p — 1) with a constant
a(p, r, t) was first proven by Nelson [192]; Glimm [104] showed that for
p, r fixed by choosing ¢ large, one could take a = 1; this was significant for
applications to systems with an infinity of variables such as field theory. The
full result is due to Nelson [194].
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2. For proofs sce Nelson [194], Gross [118], Brascamp Lieb [21], and
Neveu [195b].

3. Generalizations to other P(¢),-processes are due to Rosen [222],
Eckmann [70], and Carmona [31].

4. Certain kinds of improvements to Hélder’s inequality (" checkerboard
cstimates ") in special cases come from this estimate and the Markov property;
see [120].
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Magnetic Fields
and Stochastic Integrals

14, 1td’s Integral

Our goal here is to define f f(s)db and more generally [ g(b(s)) db. This
integral cannot be viewed as a Stieltjes integral, for b is never of bounded
variation (equivalently the curve b(s) is not rectifiable):

Theorem 14.1 For one-dimensional Brownian motion, define for
o > 0 and n a positive integer
k k-1
o(x) -+ )

(a) Ifa <2, then f(b;n,a)— oo as n — oo with probability one.
(b) Ifa =2, thenf(b;n o) > 1 asn — oo with probability one.

(¢) Ifoa> 2, thenf(b;n o) > 0asn— oo with probability one.
(d) The convergence in (b), (c) is also in any LP-space with p < oo.

2n

f(b;n, o) =kz

=1

o

Proof Letc, = (2rn) ' [|x|"e "/»** dx so ¢, = 1 and

#{|o(z) - o)

) =2 W2 = d(n, a)

148
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By the indepencence of the |b(k/2") — b((k — 1)/2")| as k varies:
(L5 () - () - a0)])

)5 o)

E() A5 -z

where we have used E([X — E(X)]?) < E(X?). Thus

5]

I
1™

k

IA

E(| f(b; n, ) — 27170129, |2) < 21 79y, (14.1)

If « < 2, then for any fixed k, ¢, 2" ~(1/2® > k for n sufficiently large. For
such n:

E(f(bsn, o) < k) < E(f — 20 7W20¢, < — e, 201~ (12)
< deg%c,,27"

by (14.1). Thus, by the first Borel-Cantelli lemma, f(b; n, ) > k for n large.
Since k is arbitrary, (a) is proven.

(b) and (c) have similar proofs. For (b), one replaces E(f < k) by
E(]f — 1] > ¢) and for (c) by E(| f| > ¢). L? convergence in case (b) for
p = 2m (m an integer) is by direct calculation of E(| f — 1{*™) (or one can
use a suitable corollary of hypercontractive estimates). In case (c), we just
note by the triangle inequality for |- ,:

E(1f(b; n, 0)[P) < 2E(|b(1/27)7%)
< 2rp(1—(1/2)a)

goes to zero. |

Remarks 1. By the extra devices used in the proof of the strong law of
large numbers (Theorem 7.14), one can replace 2" by n and take n to infinity.

2. The same result (except the 1 in (b) is replaced by v) holds for v-
dimensional Brownian motion; indeed, all but (b) follow from |b,| <
[b| < ¥ |b;], and (b) comes from |b|*> = 3 |b;]2.

3. If“probability one” is interpreted to mean “except for a set of measure
zero,” the same result holds for Wiener measure. By local equivalence,
similar results hold for the oscillator process and the Brownian bridge.
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For suitable f7s, functions of s alone, Payley et al. [ 199] succeeded in de-
fining [§ f(s)db(s) = G(f) by the following device: If fis €' and f(1) =
f(0) = 0, then define

1
6(N = - [ repeds
0
a formal integration by parts. With this definition

E(G(f)?) = fo ds L dt f(s)f'(t) min(t, s)

- f If© ds
0

since (02/0s 8t) min(s, t) = &(s — t). Thus G(f) extends to a linear map from
L%(0, 1) to L3(C(0, 1), Db). We plan to extend this definition vastly using
ideas of Itd [134]. What we learn from the above is that despite the fact that
b is not smooth, one can define | f db for more f’s than one might expect.
Moreover, L? calculations and extensions in L? are useful. Our presentation
below will actually settle for considerably weaker results than obtained by
1t6, for we will settle for an L? definition of | f(b(s)) db similar in flavor to
that above; i.e., we will define the integral for nice f’s and extend by L-
continuity. It6 has a “pointwise” definition which is more complicated but
yields more information about the result. For example, F(b,t) =
_[6 f(b(s)) db can be shown (for any f for which it can be defined) to be con-
tinuous in ¢ for almost every b. All we get is continuity in L*-sense. For our
purposes, this L? definition will suffice. See McKean [183] for the “point-
wise” treatment.
The basic idea of 1t6’s definition is to take

1 2n
[rown m S5 (052 o
0 n—>ow m=1 2 2"

Before discussing the limit, we want to note some important and perhaps
surprising aspects of this formula. First, the differentials stick out into the
future: i.e., f(b(s)) is evaluated at the left endpoint. This is convenient because
f(b((m — 1)/2") is independent of b(m/2") — b((m — 1)/2") while f(b(m/2")) is
not. For this reason, we shall be able to define this integral for nonsmooth
[f’s; if we had taken the differentials pointing into the past, it turns out that
S’ would have entered naturally. Secondly, the ordinary formal rules of
calculus do not hold for the stochastic integral; e.g., [§ b(s) db = 3(b*(1) — 1)
not 3(b%(1))! [Note that b(0) = 0.] The computation of this integral is
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illuminating since it also illustrates the difference between differentials point-
ing into the past and the future. Define

- S5 )
-SRI )

We have that for any n

I.(n) + I_(n) = b(1)

since

PG ) )] E) ()

and the sum telescopes. On the other hand, by Theorem 14.1(b),
I,(n)—1_(n)—1

pointwise as n — oo. It follows that
lim 7.(n) = }b(1)* £ 1)

showing the difference between I, and I and their unintuitive answer. Of
course 3(I, + I ) gives the intuitive answer here but if we took | b*db,
this prescription would not yield (k + 1)~ 'b** 1.

Theorem 14.2  Let f be a C! function on R with fand f’ bounded. Then,
the limit on the right-hand side of (14.2) exists in L2-sense and (]|-||, =
L?-norm)

1
fo b(s)) db

2 1 ]
=FE b(s))* d .
2 [ f oo (143)
Proof Define
m— 1

0= 200" ) ()= e

Now for i # j, E(q,,:4,, ;) = 0, since for j > i there is a factor of b(j/2") —
b((j — 1)/2")independent of the rest of g,, ;4,, ;, and E(b(k/2")) = 0. Moreover,
since f(b((m — 1)/2%) is independent of b(m/2") — b((m — 1)/2"), we have

o= (o))
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VAT =ZE([f<b("—12—_—l))]>zl (14.4)

Since Y ,, f(b((m — 1)/2")*1/2" converges pointwise to [ f(b(s))* ds (f and
b are continuous) and the sum is dominated by || f |2, (14.3) will follow if we
show that J (f) converges.

A calculation similar to the above shows

it = a0 = 3 ([ (o5 )) - (o)) | ) 5
| I 2m + 1 2m \]? C
A3 )

where C = || f'||2, so | f(x) — f(MI* < C|x — y|% Thus J,(f) is Cauchy in
L2

Thus,

We now extend the definition of { f(b(s))ds from C'-functions to an
arbitrary fwith

E(J:f(b(s))z ds> - J: <fdx f(x)2(27ts)_1/2e_"2/23) ds

finite; e.g., f bounded near zero and L? will certainly suffice. This integral
is in L2 for any such f. We can actually go one step further: Let y, be the
characteristic function of (— g, a) and suppose that

0

1
E( f 1B F(B(5))* ds) <

as will be true if fis L*® near zero and locally L? elsewhere. Then for each a,
we can define {5 fx,(b(s)) ds. We claim that for almost every b

lim f 1b(s) £ (b(s)) ds (14.5)

exists pointwise and is finite. For b(s) is continuous on [0, 1] and so bounded.
Thus for any fixed b, (14.5) is independent of a for a large.
We also want to extend the scope of definition. First we can clearly use
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v-dimensional Brownian motion and define {§ f(b(s)) - db, and we can easily
define (¢ in place of f§. More importantly for the applications we have in
mind, we can define [§ f(e(s))* do for the du,—Wiener paths. The con-
struction is identical to the above but now

E( f | f (@) ds) - f SO d'x

since m(s) has the distribution of Lebesgue measure. Extending via the analog
of (14.5), we see that for any fe Li,(R"), f, f(e(s)) do can be defined for
Uo—almost every path. This is the integral we will need in Section 15. This
random variable is called the It6 integral.

If one looks at the construction above, it is clear that we can allow f'to be
afunction on R* x Rand define [§ f(b(s),s) dbso longas E([§| f (b(s), s)|* ds)
< 0. It is a simple exercise that {§ f(s) db agrees with the Payley et al. [199]
definition. In fact, one can deal with general nonanticipatory functionals,
i.e., functions f(b, s) with the property that f(-,s) is only a function of
{b(t)|t < s},ie.,is #-measurable;for example, if 7 is a stopping time one can
define {§ f(b(s), s) db. The only subtle step in the construction for general
nonanticipatory functionals is the density of “smooth functions” for which
one can obtain the integral as a limit; in fact, it is more useful to deal initially
with f’s with f(-, s) constant for k/2" < s < (k + 1)/2" and take limits; see,
e.g., [183].

For calculation and understanding of stochastic integrals a lemma of
1t6 [135] is particularly useful. We state it for the full Wiener integral since
it is somewhat easier 1o give optimal conditions on f; a similar result holds
for the Brownian path if, for example (to state an overly strong condition),
fis C? globally. This is a special case of a more general result of 1t6 which will
be featured prominently in Section 16.

Theorem 14.3 (It0’s lemma)  Let f(x, ¢) be a function on R” x [0, ]
and use Vf, etc., for x derivatives and f for  derivatives. Suppose that fis
in L2_ and that its distributional derivatives Vf, Af, and flie in LZ. Then

loc

S0, 1) — f(@(0),0) = L(Vf)(w(s), 9)- doo

1 t t
+5 L(Af)(o)(s), s)ds + L f(e(s), s)ds (14.6)

for almost every .
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Proof By a limiting argument we can suppose that fe €5 and for
notational simplicity that t = 1. Write

flo(1), 1) — f((0),0) = 4, + B, + C,
2" m—1\ m-1
= Z (Vf)<(0(—2—,.“)a o )'5(0n.m

S A ) e )
S YACEREEY

with dw, ,, = @(m/2") — o((m — 1)/2"). By construction

A, [ ()@, do
0
in L* as n — oo. Using
*f

J& - f) - NNy x-y) - Zay_ oy

(x — »)ilx — y);

<Clx -y

and Theorem 14.1, we see that up to a term going to zero in L*-norm, B,

equals
~ 1 o’f m—1\ m—1
= - 5 . .
" 2;jax,- ax; (m< 2 ) pa )( @, w00, m);
As in the proof of Theorem 14.1, B, equals
1 m—1\ m-—1 1
Z@x 0x; ( ( 2" ) 2" )‘5“’?

plus a term going to zero in L2 Thus B, — % [, (AfN@(s), s) ds. Finally,
using

I f(x, ) — f(x,5) — f(x,8)(t — )| < Cl|t — s
one easily sees that C, — [4 f(o(s), s) ds. 11

(14.6) is often written in infinitesimal form as the formal expression

df = Vf do + GAf + f)dt (14.7)
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The surprisc is that second derivatives of f appear in the first order differential.
(14.7) can be expressed even more succinetly by

(14.6) can be used for calculational purposes:

Example (v =1) f’s with £f" + f = 0 will have particularly simple
stochastic integrals. For example, if

S (x, t) = exp(ax — 3a’t)

then df = Vf dw. Recognizing the Wick-ordered exponential f(w(s), s) =

exp(aw(s)): and taking w to b, we see that

f:exp(ozb(s)): db = o~ Viexp(ab(t)): — a ™! (14.8)

Thus, it is the Wick-ordered exponential, rather than the ordinary exponential
which stochastically integrates like an exponential! It is a curious historical
coincidence that the work of 1td leading to (14.8) is approximately simul-
taneous to that of Wick on “normal ordering.” If (14.8) is expanded in «, one
finds that

fl:b"(s): db = (n+ 1)~ bt 1(1):
0

If we take n = 1 we find that

fb(s) db = L:b(1): = {b*(1) — 1)
0
a result already obtained.

It6’s lemma provides directly the connection of Brownian motion and
—3A = H, and also a new proof of the Feynman-Kac formula (somewhat
related to the second proof we gave). A key observation is that because the
differentials point into the future, we have that E( f(b(s)) db) = E(f(b(s))E(db)
= 0 since E(db) = 0; i.e., E([5 f(b(s)) db) = 0, more strongly

E (g Jd, f(b(s)) db) =0 (14.9)

if g is measurable with respect to {b(u)|u < a}.
Choose f(x, s) = (e”* 9Hog)(x), so f = H, f. Thus f + 3Af = 0 so that
1t6’s lemma implies that

(@), 1) = f(10),0) + L(Vf )(b(w), u) - db
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Using (14.9), we sce that

E(f(b(1), 1)) = E(S(&0), 0))

Since f(b(t), t) = g(b(t)) and f(b(0), 0) = (e~ Hog)(0), we have proven once
again that

E(g((1)) = (e *g)(0)

The proof of the Feynman-Kac formula is similar but more complicated.
Here, we take H = Hy + V and

S(x,8) = (e”“"Mg)(x)

Then, at least for sufficiently nice V’s (say, V € C7),

FOS), 5) = f(bD), 1) — f V(b)) f (b(w), u) du — f (V) (BCu). 1)+ db

Notice that by (14.9) the last term has zero expectation. Iterating this equation
once:

S1(0),0) = f(b(s), 1) — fo V(b)) f(b(0), 1)) du

+ f tV(b(u)) ftV(b(s)) f(b(s),s)duds + G
4] u

where G also has zero expectation by (14.9). Continuing in this way, one finds
that

E(f(&0)), 0) = E([ io(— 1y IT vy ds,]f (b(1), I))

0<s51 < - <sp<t

If one recognizes the object in [...] as exp(—j’o V(b(s)) ds) one has proven
that

(e™"g)0) = E (CXP< - fo V(b(s)) dS) g(b(t)))

In Section 16, we will use the general 1t6 lemma for an even slicker proof of
the Feynman-Kac formula.

* % %
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We next make a simple calculation:
Theorem 144 (v = 1)

E(exp( f f(s)db(s) + fg(s)b(s) ds)) = exp($a) (14.10)

o= JI f())*ds + 2 f f(s)g(t)dsdt + fJ.g(s)g(t) min(s, ) dsdt  (14.11)

Proof The object in the exponential in (14.10) is clearly linear in b, so
a = E([[ f(s)db + [ g(s)b(s) ds]*). We recognize the first and third terms
as just the expectation of (| f(s) db)* and of ({ g(s)b(s) ds)>. To compute the
middle term pass to the Riemann sums defining | f(s) db and note that

0, t<s
E([b(s + As) — b(s)3b(1)) = 3t — s, s<t<s+As
As, t>s+As |

We note that if fdepends on some random variables independent of b, and
E represents expectation with respect to b, then (14.10) still holds, e.g.,
forv=2:

E(eso( [ 1200 a0.9)) = £(exo(; [ 1s0s007 a5))

which is | exp(—(Ho — 3/ 2)(x, 0) dx.
% ¥ %

Finally, we want to discuss the definition of stochastic integrals with respect
to the Brownian bridge, o, and the oscillator process, g. The former is especially
important since it will allow us to define the integral for almost every Wiener
path with fixed endpoints. At first sight, this seems difficult, for the increments
of a depend heavily on the present: since « must reach a(l) = 0 at ¢t = [,
it must know where it is at a given time to decide where to go next; more
prosaically, one checks that for s < ¢

E([a(t + A1) — a(0)]a(s)) = —s At
and
E((q(t + At) — q()q(s)) = Le ¢ I[e~4 — 1]
The key to deciding how to overcome this problem is (5.6)

a(t) = e 'b(e?)/\/2
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and

a(t) = (1 — t)b(l—t_—t) (14.12)
These formulas would allow us to define | -do and - dg in terms of db but,
more simply, they suggest to us simple " increments” which are independent of

the past; namely,

y(t, At) = a(t + At) — oft) +

o)
(since (14.12) says the increments of a(¢)/(1 — t) are independent of the past)
and
Mt, At) = q(t + Ar) — e~ 2q(t)
One trivially checks that for s < ¢:
E(a(s)y(t, At)y = 0 = E(q(s)A(t, A1)

and that

E(Jy(t, AOP) = (1 — ) "1 —t — At) At

E([M¢, ADJ?) = 3(1 — e 249
Both expectations go to At as At — 0 and are bounded by At for all At. For

nice enough f
k—11
lim -
n— o kzlj( ( ))y< 2" 2”)

exists and has L*>-norm, (§ E(f(a(s))?) ds, for we need only mimic the con-
struction of db. But clearly, by the continuity of paths:

im 3 (5 () - (F)] =

exists and equals [§ f(o(s))a(s) (ds/(1 — s)); there is no divergence at s = 1,
since a(s) — 0 faster than (1 — 5)!/27¢ by a law of iterated logarithm. As a
result, for nice enough f’s,

lim kzl f( ( 1))5a(k2_" 121) = fo f(ods)) dox

exists and, since

la+bl> < la, + Ib},  and “ fa(s)ds <
2

f ha(s)l ds
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we have

1
f 1(a(s) da
1)

1 172 1
< [ | E(_/'(a(s)V)ds] + [ e 2
0 0 — s

2

In this way, it is easy to see that one can define j(l, f(a(s)) do for almost every
a, if fis in L™ near zero, and in L{_ for some p > 2. Similarly, one can define

15 f(a(s)) dg.
One can summarize the relevance of the above cohsiderations for the full
Wiener integral by:

Theorem 14.5  Let g(w) be a function of the Wiener paths up to time ¢
with the property that ||g}l,, < oo and

X, yr—»g(w(s) + (j)y + (l — i:)x)

is continuous for almost every w. Let F be a bounded continuous function on
R* and let f be a C!-function on R. Then

| g(w)F( [ reisn dw) Aoy

is continuous in x, y for each fixed t.

Proof Rewrite the integral using (4.12) as

E((G)y " (1 N é)x + ﬁ“(i))F(\/?ff(- ) doc)(2m)~v/2e—lx—y|—’/zt)

The integrand is uniformly bounded and thus continuity for almost every
o will suffice. This is easy by hypothesis and construction of do. |

15. Schrédinger Operators with Magnetic Fields

Consider the quantum mechanical energy operator for a particle in a
magnetic field B(x) with vector potential a(x) (B =V x a)

H@, V)=4—iV—-a)}+V

where we will later discuss hypotheses on a, ¥ and the precise definition of
H. We want to prove the following which we call the Feynman—-Kac-It6
formula:

(f,e” ™ Ng) = JeF 9 f(0(0))g((1)) duo (15.1)
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where
Flo,t) = —i J'a(m(s))- do — %Jﬂ(div a)(o(s)) ds — f'V((o(s)) ds (15.2)
0 0 0

In this section, we will give an analytic proof of (15.1) and in the next section
a “stochastic integral” proof. We first learned of (15.1) from Nelson [195];a
probabilist would view it as a Cameron-Martin formula for “imaginary
drifts™ (see the discussion in Section 16) and so of considerable antiquity.
There is even discussion of a's which are noncommuting matrices such
as would arise in nonrelativistic couplings to Yang-Mills fields; see
[6a, 40a, 168a].

Before turning to the proof we want to remark on several aspects of the
formula itself. First, even though H has an a? term, no a* appears in F. The
1(div a) term is a reflection of the fact that the kernel of e *# is Hermitian
symmetric: Changing @(¢) and w(0) by taking s into ¢t — s does not merely
change the sign of { a- do because the differential de has a preferred end.
For this reason, the integral term in F should more naturally be the symmetric
integral

o AL ) 5]

It is not hard to see that in terms of the It6 integral

S= f(:a((o(s))- do + % flo(div a)ds

That is, the div a term restores the “time-reversal symmetry” destroyed by
the It6 convention of having differentials point into the future.

One can also see the effect of this div a term if one considers gauge trans-
formations. The change of a to 4 = a + grad A should not change any
physics since B =V x a =V x a.In fact

e*H(a, Ve * = H(a, V)
Thus, if a is replaced by 4 we must have
F(o, 1) = F(o, 1) + iA(e(0)) — il(e(t)) (15.3)

To verify (15.3), we use Itd’s lemma (Theorem (14.3):

_[O(Vi)(m(S))‘ do = Ao(1)) — Ae(0)) — %I(M)(w(S)) ds
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Since div(VA) = A4, we have that

f'VA- do + ! Jﬂ div(VA) ds = Ae(1)) — A(ex(0))
¢ 2 Jo

)

verifying (15.3). Note the div a term was essential for gauge invariance.
We now turn to the analytic proof of (15.1):

Lemma 15.1 Let ae C3(R"), real-valued. For s > 0, let
Ky(x,y) = (2ns)™"? exp(— |x — y|*/2s) exp(3i[a(x) + a(y)]* (X — ¥))

(154)
Then

ﬂ*@dﬂﬂ=f&@deww

defines a bounded operator on L? with ||Q,]| < 1. Moreover, for any
feD(Hy) = D(Ho(a)) = {f| f,Vf,Af e L?}:

imL0,7 = —Hya)f (15.5)
sio ds
where
Hy(a) = {(—iV — a)? (15.6)

Proof As usual, let P(x, y) = (2ns) "% exp(— |x — y|?*/2s) which is the
integral kernel for e *Ho, Then | K (x, y)| < P(x, y) implies that

Qs N < (e L f 1)(x) 15.7)

so @, is as bounded operator with ||Q ] < |le”*#°| = 1. Since (d/ds)P, =
%Ay P, and we can integrate by parts (since ae CJ and fe D(H,))

dis (Q; f)(x) = % fps(x, y)Ay[e(I/Z)i(a(xH n(y))-(x—y)f(y)] d"y

Using
A(e™) = "[Af + 2iVh- Vf + (iAh — (Vh)?) f]

1
Yy, 3a(x) + a@y) (x — y)] = —Ha(x) + aly) + EZ (Via)(y)(x — y);

A[...]1 = —(diva)(y) + 3(Aa): (x —y)
and the fact that P(x, y) - d(x — y) as s | 0, we obtain (15.5). |
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Theorem 15.2  With H,(a), Q, as above, we have that
s-lim(Q,,)" = e *Ho® (15.8)

n-o0

Proof One need only mimic the proof [189] of Theorem 1.1. Let
S, = e @ For any f e D(H,), we have that lim,_,o(d/dO)((S, — Q)f) =0
by (15.5) and thus for f € D(H,)

lim “n(St/n - Qt/n)f " =0

n— oo

with convergence uniform on compact sets in the D(Hy)-norm. Since, as in

(1.5),
(@2 — SOS N < n sup [(Qya — Sym)Ss S|

O<s<t

the proof is complete. |
Theorem 15.3 ForaeCg,V = 0,(15.1-2) are valid.
Proof Clearly

(f Q) = f ¢Ft0- T (a(0))g((1)) ity

where

e ) A ]

As n — oo, we have the L? convergence

Fyn(w, t) > —i fta((o(s)) cdo — % f ’(div a)(w(s)) ds
0 0

by the usual arguments. By passing to subsequences, we can be sure of
convergence pointwise almost everywhere. Since
lef"l <1 and  f(ex0))g(ed(t)) € L' (dpo)

we see that

(f,e”"g) = lim(f, Qjjng)  (by Theorem 15.2)

n— o

_ f eF@ f((0))g(ex(t)) dug |
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Now let ae L3 (RY). Then —iV; — a; is a symmetric and thus closable
operator on Cg. Let G; be its closure. Let Hy(a) be the unique positive
scelf-adjoint operator with quadratic form domain (}-, D(G;) with form

(/. Holwlg) = 3. (6,1, Gy0)

The following result of Simon [260] which we state without proofis motivated
in part by work of Kato [155].

Theorem 154  Let ae L] (R). Then Cg is a form core for H(a).
Moreover, if a, »a in L. (ie. [[(a, —a)f], —» 0 for all feCP), then
(Ho(a,) + )71 > (Hy(a) + 1)~ ! strongly.

This result allows us to prove:

Theorem 15.5 Letae L2 (R*) with div a = 0 (distributional sense), and

let V obey the hypotheses of Theorem 6.2. Then (15.1-2) are valid for
H(a, V) = Hy(a) + V.

Proof First take V = 0 and let a, e C{ be chosen so that diva, = 0 and
a,—a in L} . By passing to a subsequence, we can assume that a, —» a
pointwise as well. Then | a (o(1)) *de — | a(o(t)) *do almost everywhere
in w, and so, by the dominated convergence theorem, the right-hand side
of (15.1) converges. By the strong resolvent convergence of Theorem 154
and the continuity of the functional calculus [214], the left-hand side con-
verges. This establishes (15.1-2) for a in L}, and ¥ = 0. Bounded Vs then
follow by the Trotter formula and the first proof of Theorem 6.1. By following
the proof of Theorem 6.2, one can accommodate general V’s so long as one
knows that V_ Hy-form bounded with relative bound a < 1 implies it is
H(a)-form bounded with relative bound a’ < 1. We will prove this below. |

One important consequence of (15.1-2) is the following.

Theorem 156  Under the hypotheses of Theorem 15.5,
lexp(—tH(a, V))¢| < exp(—t(Ho + V))|9] (15.9)
pointwise.

Proof (15.9) is equivalent to
I(f, e H@Vg)| < (1f1, e”H "M g])



164 V. Stochastic Integrals

which follows immediately from (15.1 2) if we note that |e*]| = eR*¥ and
Re F is independent of a. ]

Remarks 1. (15.9) was originally conjectured by Simon [255] as a
special case of a general conjecture on when |e”1¢| < e *B|¢|. Nelson
{reported in [255]) remarked that this conjecture was an immediate conse-
quence of the Feynman-Kac-It6 formula. The general conjecture was then
proven independently by Hess et al. [127] and Simon [256] providing a
purely functional analytic proof of (15.9) relating it to an inequality of Kato
[153].

2. As is so often the case, one can avoid functional integrals and only
use the “Trotter formula.” For (15.9) follows easily form (15.7) and (15.8).

3. There is a circularity in the above in that the proof of Theorem 154
[260] begins with a direct proof of (15.9). In any event, (15.9) for smooth
a’s can be proven as indicated (and this is essentially all that is proven in
[255, 127, 256]). In some sense, the proof of (15.9) in [260] is the most
elementary!

Simon’s original motivation for (15.9) was concerned with probiem (3) of
Section 1:

Theorem 15.7 ([255]) If Hy + V has the property that Tr(e "®o* ")) <
oo for all ¢, then so does Hy(a) + V and

Tr(e™ !Ho@*V)) < Ty(e~Ho+V)y (15.10)
Proof If|A¢| < B|¢| pointwise and Tr(B*B) < oo, it is easy to see that
Tr(A*A) < Tr(B*B). Thus (15.10) follows from (15.9). |

The real power of (15.9) in studying Hy(a) + V was realized by Avron et al.
[4] and Combes et al. [37]. By combining (15.10) and (9.3) we recover the
following theorem.

Theorem 15.8 ([37]) Let ae L}, and let V obey the hypotheses of
Theorem 9.2. Let

1 (h 2
H(h) = m (;V - a) +V (15.11)

Then

d’pd’x 2
Tr(e—aH(fl)) < (2 h)V exp(— a[g—‘ + V(X)])
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The proof in [37] does not use path integrals but rather the Golden-
Thompson inequality.

By following the arguments in Section 10, we can recover the result of
Combes et al. [37], originally obtained by different methods (see also
[260b]).

Theorem 15.9  Let V be a continuous function on R* withexp(—8V)eL'.
Let a be an R'-valued C!-function on R’ with div a = 0 (for simplicity). Let
H(h) be given by (15.11) and let

Zy(h) = Tr(exp(—BH(h)))

_ [dpdx p*
Z(h) = Qhy CXP[—/}(E + V(X))]

Then ZQ/ZC — 1as h - 0.

Proof As in the proof of Theorem 10.1 by letting W = gV and choosing
a suitable multiple of a, we need that

t¥? Tr(exp[ —tH(t " V/?a, t 7 'W)]) = 2n) ¥/? Je‘w d*x
By (15.1),

[exp(—tH(t ?a,t 'W))](x,y) = J‘explt—t‘1 ftW((o(s)) ds

t
_ .ft—llla(m(s))-dc)] dpo, x, y,1

0

for almost all x, y. By Theorem 14.5, the right-hand side of this last expression
is continuous in x ard y so as usual:

Tr(e ) = f“du] dx

Rewriting everything in terms of the Brownian bridge, a, we see that we must
show that

fdx Ea,[exp(—.[l W(x + \/;a(s)) ds — i ra(x + \/fa(s))- da)]
(1] 0

- Je W Py
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as t | 0. Formally, this is true since [§ a(x)- da = a(x)* [, do = 0 by [ da =
a(1) — a(0) = 0.
The actual proof is not much harder than this formal proof. Let

Weixs8) = W |Ix -yl < 8)

Let
Fola, t) = exp(— Ll W(x + /to(s)) ds)
and
Fla, 1) = Fola, t)exp(—i L la(x + \ﬂa(s))-da)
Then

‘ j dx E(F(a, 0); [, > R)‘
< f dx E(Fofa 1); ol > R)

< [ax EFota0) — Bl < Ry [o 50

By Theorem 10.1, the first term converges to [ e "™ dx as t — 0 and as in
that proof, [e™ " &R gx - [e "™ dx as t — 0. Since E(Jaf, < R) - 1,
as R — oo we can, given ¢, find T and R so thatfort < T

f dx E(F@, 0); ol o, > R)) <o

On the other hand, as ¢ | 0,
E(F(@, 0); Jall, < R) = e "®E(a|, < R)

for each fixed x since |F(a, t)| < exp(— W, (x; R\/;)) which is dominated
for t < 1 by a function in L!(Da«) and for each fixed a,

1 1
F(o, t) —> exp(—f W(x)ds — i f a(x) - da) = exp(— W(x))
0 V]
For each fixed K, we conclude by the dominated convergence theorem that

f dx E(F@ 0); [l < R) > [ e "®E(ja]. < R)dx
x| <K

|x]<K
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Finally, as in the first part,

| ke 0; ., < Ryds
|x| > K

sf E(Fo(e, 1); all, < R) dx
{x]>K

< fEa(FO) dx — E(“d”w < R) e"W—(X:R\/T) dx

Ix| <K

which can be made small if K is large, R is large, and ¢ is small. |

A number of applications of (15.9) to spectral and scattering theory for
H(a, V) have been made by Avron et al. [4]. Typical is the following which we
used in the proof of Theorem 15.5.

Theorem 15.10 ([4]) Let |V| be a multiplication operator which is
H,-form bounded with relative bound «. Then for ae L2, it is Hy(a)-form
bounded with relative bound at most a.

Proof By (159) and (A + A)™ "2 =cfe Me 4t ~"2d; (for suitable
constant ¢), we have that

[(Ho(a) + )™ 12¢| < (Ho + )7 '] 9|
so that
HVI"2(Ho(a) + H)™12¢) < [[IVIV3(Ho + 1) ¢
which implies that
VIV (Ho(a) + A2 < IVIYA(H, + )72

Since B is A-form bounded (B, 4 > 0) with relative bound « if and only if
BY?(4 + A)~ 12 is bounded and lim,_, . |[BY*(4 + )" '?||?> = «, the proof
is complete. |

For fixed V and a, let K(a) = |V|"*(H(a) + y)~'|V|"2. By following
the proof of Lieb’s formula, one finds that for any F related to a positive f
by (8.7),

IF(K (a))¢| < F(K(0)| 4|
Since F(K /(a)) is a positive operator, this implies that
Tr(F(K (a))) < Tr(F(K (0))) (15.12)

on account of the following.
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Lemma 15.11 Let A and B be bounded positive operators on an L2-
space with |A¢| < B|¢@| pointwise. If B is trace class, then so is 4 and
Tr(A) < Tr(B).

Remark This is false if 4 is not positive.

Proof Let {S;}!_, be a family of disjoint sets of finite measure and let
P be the projection onto all functions of the form }_ 4, xs,. Then, Ps AP = Ag
and B are trace class and since Tr(As) = Y7, u(S) ™ '(xs, Axs,), the
hypothesis implies that Tr(Ag) < Tr(Bg) < Tr(B). One can find a net of
§’s, S,,so that A, — A strongly. That A is trace class then follows by a general
result [259]. ||

We can now follow Lieb’s proof of the Cwickel-Lieb—Rosenbljum bound
and then the proof of stability of matter to obtain the following theorem.

Theorem 15.12 ([4, 37]) Matter is stable in an arbitrary magnetic
field; i.e., (9.22) continues to hold if — A, is replaced by —(id; — a,(x))*. The
constant ¢ is independent of a and can be chosen to be the constant of the
proof of Theorem 9.6.

Remark One might think that (15.12) implies that
N(V, a) = dim(spectral projection for (—c0,0) for H(a, V)) < N(V)

but this is not true; see [4].
* ¥ %
Finally, we do a calculation of the explicit kernel of e "*#® when a,(x) =

—1Bx,, ay(x) = 1Bx,, as(x) = 0 [constant field (0, 0, B)]. The kernel is
[84, 4]

Ho(a) : v
—tHo(a TN cintlrn | 27r
e (x,y) [473 sinh(%Bt):I [an]
1 B 1
9 exp{— 5, (s — y3)* — Zcoth(i Bt) [(x2 — y2)*

1.
+ (x; —y)*] - EIB(xLVz - xz)’n)}

Since the §%/0z? term commutes with the remainder, without loss, we
restrict to two dimensions. For notational simplicity we consider the cal-
culation with ¢t = 1, x = (0, 0), y = (0, y). Actually using scaling covariance,
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translation invariance (not the usual realization of translations [5]), and
rotation invariance, one can go from this special case to the general case.
Thus, we need to compute

= 2nt) le VI fe'"‘Docl Da,

where a; and a, are two independent Brownian bridges and

1 1 1
X = EB[f oy [doy + yds] — f (a; + sy)da,]
] V]

Since X is quadratic in a, this integral is, in principle, explicitly calculable.
First we note that

X = —BJ (o5(s) + sy) da,
0

The integration by parts is justified since

f(Dg(1) — £(0)g(0) = Zf< )[() ( )]
2o ) ) (5]
w2 o) (5l le) ()

With f = a, + sy and g = «, the left-hand side is zero, and the first two
terms converge to It integrals and the last term to zero since a, and a,
are independent. Next, we note that

E(doy(s) day(t)) = o(s — t)ds — dsdt

which follows from b(s) = a(s) + sb(1) (orthogonal direct sum) and db =
da + (ds)b(1). Since X is linear in o/,

fe"'x Da, = exp(— % fXZ Dal)

= Qnt) le V™ fexp( ~31B?Y) Du,

SO

with

_ f (oy(5) + sy)ds — ( f (s) + 57) ds)
()] 0
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The integral for Z can now be computed as we did in Section 6 in our second
proof of Mehler’s formula.

16. Introduction to Stochastic Calculus

In this section, we will present a “formal” treatment of some aspects of
calculations with stochastic integrals. We will be formal in that we will use the
general stochastic integral for nonanticipatory functions alluded to in Section
14, and that we will not give a proof or even precise hypotheses for the main
result: the general It6 lemma. The reader can consult {86, 183] for more de-
tails. A Stochastic integral is a random function c(b, t) obeying

t T
c(hb, t) = (b, 0) + ff(b, s)-db + fg(b, s)ds (16.1)
W] 0
where f and g are nonanticipatory functionals with suitable L? properties
and c(b, 0) is independent of b. One writes (16.1) in the shorthand:
dc =f-db + gds (16.2)

The following result is critical.

Theorem 16.1 (1t6’s lemma) Ifc¢,,...,c, are stochastic integrals and u
is a C2?-function on R™ x [0, co) with some mild restrictions on growth at
infinity, then

X =u(CyyCay-vrrCmyl)
is a stochastic integral, and
m du ou 1 = oJ%u
dx =) —dc;+ —ds+ = ———dc; dc; 16.3
i=zl 0y ot 2 i.jZ=:1 dy; 0y, ! (163
where dc; dc; = ;- f;ds(dc; = f;* db + g;ds); i.e., db, db, = 0, ds.
The pattern of proof is identical to that of the special case Theorem 14.3.

Indeed, if the ¢;’s are approximated in the right way, it is the identical proof
(see [183)).

Example 1 (product rule) Ifdc; = f;- db + g, ds, then
d(cc;) = ¢y dey + cydey + £+ £, ds (16.4)
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Example 2 (Feynman Kac formula)  Let us compute the differential
of

t
¢= exp( - [ vy ds)f(b(t))
0
where V, fe Cg. Since z = j{) V(b(s)) ds is a stochastic integral with dz =

V ds, we have by Itd’s lemma and (ds)? = 0 that d(e™?) = —e~*V ds. Again
by It6’s lemma, df = Vf-db + 3(Af)ds. Thus, using (16.4),

de = exp( - J V) ds)[Vf- db — (Hf)ds]
0

where H = —3Af + Vf. Thus, if we define

Q@ N)x) = E(CXP(— LV(X + b(s)) dS)f (x + b(S)))
and we use (14.9) that E(db) = 0, we see that

Q. = f(x) — fods OHNX)

which yields Q, = ¢ *# and so a new proof of Feynman-Kac formula.

Example 3 (Feynman-Kac-It6 formula) Let us compute the dif-
ferential of

c= exp[-—-i L a(b(s)) - db — % L(div a)(b(s)) ds] 1) = e =1 (b))

with a, f'e C§. Then, by It6’s lemma
d(e™®) = —ie % dz — {e”*(dz)*
= —ie “[a-db + YV-a)ds] — te “a’ds
SO u-sing (16.4)
dc = e Z[(..)db + GAf — ia-Vf — X(V-a)f — 1a®f) ds]

recognizing the occurrence of — Hy(a) f [see (15.6)], and writing
(0, /(%) = E(exp(—i j(:a-db + L % diva ds) fx + b(s)))
we find that
(@0 = 5 = [ dsQH@ N

yielding the Feynman-Kac-It6 formula.
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Example 4 (drift) Letae CJ and let

x(t) = b(t) + f‘a(b(s)) ds
0

which for obvious reasons is often called the drift generated by a. Then
dx = db + ads so that

d(f (x(®))) = Vf - db + (a- Vf + 3Af) ds

Following our usual procedure

E(f(x(1)) = (e™"*)(0)

where X is the differential operator
Xf=—-3Af —a Vf (16.5)
which is thus called the generator of the drift.

Example 5 (Cameron-Martin formula [30]) Let dz = a-db — 1a%ds
and ¢ = €*f(b(2)). Then

dc = €[(Vf + af)+db + (a- Vf + 1Af)ds]
so in terms of the generator X in (16.5):

E(e*f (b(1))) = (e™"f)(0)

This is usually summarized in the Cameron—Martin formula

g—: (Radon-Nikodym derivative) = exp(f a(b(s)) db — % f a?(b(s)) ds)
0 (o]

We can now explain how a classical probabilist would view the Feynman-
Kac-1té formula. If one writes Hy(a) = —3A + ia -V + 4a” + i(div a),then
one sees that Hy(a) 1s the generator of a (complex) drift —ia and a potential
1a? + li(div a). Then the combined Cameron-Martin formula for a*V
and Feynman-Kac for 4a? + i div a yields the Feynman-Kac-1td formula.

There is a connection between the Cameron-Martin formula and the
Feynman-Kac formula which shows a connection between P(¢),-process
and drift processes —a connection which will reoccur in Section 19. Suppose

that
1 d?
H= - 5 a2 + Vv

where we have added a constant to ¥ which guarantees that inf spec(H) = 0.
Let HQ = 0 and let L be the operator L f = Q™ (HQ). L is the generator
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of a contraction semigroup on L%(R, Q? dx) and L1 = 0. By the Feynman
Kac formula, ¢ ‘" is given by

(e "5 )(x) = QUx)~ 1E<exp<— J: Vix + b(s)))Q(x + b)) f(x + b(t)))

(16.6)
But notice that
1 4% d

L:———_ -
242~ Ydx

where a = Q' =k with h=InQ. Thus, by the Cameron-Martin
formula:

(e ") (x) = E(exp(fta(x + b(s))db — %-raz(x + b(s)) ds)f(x + b(t)))

(16.7)

Let us check that (16.6) and (16.7) agree. For simplicity take x = 0. By It6’s
lemma (Theorem 14.3)

fh’(b(S)) db = h(b(t)) — h(b(0)) — % fh"(b(S)) ds
0 0

By explicit calculation
W+ a®=d +a®=Q 2 [QQ — () + (Q)*]
=Q7'Q" =2V
Thus
t t t
J-a(b(s)) db — % f a?(b(s)) ds = In Q(b(t)) — In Q(b(0)) — J V(b(s)) ds
0 (1] [

establishing the equality of (16.6) and (16.7).
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Asymptotics

In this chapter, we discuss a variety of connections between Brownian
motion and asymptotic behavior, either of other processes or functions of
Brownian motion. This is a subject developed by Donsker and his collabo-
rators. In Section 17, we show that normalized random walk approaches
Brownian motion in a strong sense; in Section 18, we extend the formula

lim (

to various Gaussian processes and describe its relation to the asymptotic
behavior of the Rayleigh—Schrodinger coefficients of certain perturbation
problems; and in Section 19 we describe some deep results of Donsker and
Varadhan and their relation to the Gibbs’ variational principle of statistical
mechanics.

0

J'lenf(x) dx)l/n = exp[ —min(f)]

17. Donsker’s Theorem

At the beginning of Section 4, we introduced Brownian motion as an
intuitive limit of random walks and we noted that
lim n—l/ZX[nt] = b(t) (17.1)
n— @
in some intuitive sense. Here we want to examine the sense in which (17.1)
holds. The central limit theorem immediately tells us that if we consider
fixed ¢y, ..., t, then the joint distribution of n~ "X, , converges to that for
b(t;). This simple result leaves open some important and natural questions.

174
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For example, we found in Scction 6 the probability distribution, P, for
[{s|h(s) > 0:0 < s < 1}]. One would guess that as N — oo,
N '#{n<N|X, >0}

has a distribution approaching P but since this involves infinitely many X’s,
it is not clear that just knowing the convergence of the finite distributions is
enough. In fact, we will see shortly by explicit example that it is certainly not
enough for some reasonable functions. Thus, we need a stronger form of
(17.1). The first hints of this strong form go back to Erdés and Kac [77] who
proved an invariance principle namely if y; are independent copies of some
random variable with E(y;) = 0, E(y?) = 1, then the limiting distribution of a
wide variety of functions of (n~"2 7., y,) is independent of which y; is
chosen. The reason for this is that a strong kind of convergence of (17.1) is
involved—this was discovered by Donsker [53]. Kolmogorov—-Prohorov
[162] and then Prohorov [206, 207] introduced the key notions of weak
convergence and tightness which yield an elegant framework for Donsker’s
result. For more information, the reader can consult Billingsley [14], whose
treatment we follow closely in places, or Parthasarathy [198a].

Let y,, y,,--.. be independent, identically distributed random variables
with E(y;) =0, E(y?) = 1, and let S, = Y7, y;. For fixed n, we want to
define a process X,(t) with continuous sample paths by letting X, (k/n) =
n~ 128, for 0 < k < n and interpolating linearly in between; ie. (with
[a] = integral part of a),

X (t) = n" 1284 + n” V2 nt — [0ty 4 1 O<t<1) (172
It is trivial that the process X,(t) has continuous paths; indeed, with prob-
ability one, each y; is finite and X ,(t) is piecewise linear. Thus X, induces a

measure P, on C[0, 1]. To state Donsker’s theorem, we need the following
notion,

Definition Let {P,}, P, be a family of Borel probability measures on
C[0, 1], the continuous functions on [0, 1]. We say P, converges weakly to
P if and only if

[rav.~ [ar.
for any bounded continuous function f from C[0, 1] to R.

WARNING “Weak” convergence is considerably stronger than con-
vergence of the finite distributions. For example, if g, is the function

nt, 0<t<l/n
g.(t) = {2 — nt, I/n<t<2n
0, t>2/n
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and if P, is the point mass at g,, then the joint distribution of any ext,), ...,
w(t,,) converges to that associated to P, the point mass at zero. But, there is
no weak convergence since, e.g.,

E,,(e' lelm) —e 1l pl= Em(e—llwllw)

Theorem 17.1 (Donsker’s theorem [53]) Let P, be the measure on
C[0, 1] induced by (17.2) (with y; independent, identically distributed, and
E(y;) = 0,E(y?) = 1). Let P_, be the measure on C[0, 1] induced by Brownian
motion. Then P, converges to P, weakly.

The remainder of the section is devoted to the proof and discussion of this
theorem. First, we have some discussion of weak convergence. (See [14] for
extensive discussion.)

Proposition 17.2  Let P, converge to P weakly and A be a Borel set in
C[0, 1] with P[0A] = 0. Then P, (A) — P(A).

Proof C[0, 1] is a metric space, so every Borel measure is regular (see,
e.g., Theorem 1.1 of [14]) and moreover Urysohn’s lemma holds. It follows
that for B open, any Borel probability measure, Q, and %, the family of con-
tinuous functions on C[0, 17:

0(B) = sup{ffdQlfe‘g,O <f<1,f=00n B‘}
By taking complements, we see that for any closed set D

QD) = inf{ffdQ]fe‘g,O <f<lf=1 onD}
Thus, since P, » P weakly

P(A") = sup{deP | fe€.0<f<1,f=00n (A‘"‘)‘}

Sli_msup{ffdP,,]fe(g,...}

= lim P,(A™) < lim P,(A)
where we used | fdP = lim, | fdP, < lim sup(| fdP,|---). Similarly
P(A) > lim P,(A)
If P(A'™) = P(A), then the limit exists and equals P(4). ||
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Typical of the consequences of Theorem 17.1 and Proposition 17.2 is the
following corollary.

Corollary 17.3  Let X, be the partial sums of the random walk of Section
4. Then

() lim E(n™'#{j < n|X;>0} <) = 21~ " Arcsin \/a
(b) lim E(max [X;] < «/n/t> = r.h.s. of (7.19)
n- j<n

Proof If fis any function in %, then Proposition 17.2 says that if P, - P
weakly, then P.(f < a) - P(f < a)solong as P(f = «) = 0. Thus (a) follows
from Theorem 6.10 and (b) from Proposition 7.16. }

We now turn to the proof of Donsker’s theorem.

Definition A sequence of Borel probability measures {P,} on C[0, 1] is
called tight if and only if for any ¢ > 0, there exists a compact K = C[0, 1]
with P,(K) > 1 — ¢ for all n.

Remark It is an interesting exercise to show that any single measure on
C[O, 1] is tight.

Theorem 174 (Prohorov’s theorem) Let {P,} be a sequence of Borel
probability measures on C[0, 1] with the following two properties:

(a) The finite distributions converge: explicitly for any 0 <, <, < -+
< t,, < 1, there is a measure dy, on R so that as n — oo

fF(a)(tl), cos (L)) dP () — JF(xl, ey X)) dp (%)

for all bounded continuous F on R™.
(b) The {P,} are tight.

Then, there is a measure P, on C[0, 1] so that P, » P, weakly and the
finite distributions of P, are the dy,.

Proof Forr=1,2, ..., pick K, with K; ¢ K, c--- and P(K,) =
1 — r~?! for all n. Since the positive measures of mass at most one on a
compact set are weakly compact (see, e.g., [214]), we can find a subsequence
P, so that P, } K, converge for each r to a measure P, ,. Since the P, ,
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are easily seen to be consistent, we can define P, on { ] K, and so on C[0, 1].
Given f € €, we have that

f AP — f fdp,,
K, K,

Since P (C\K,) < 1/r by a simple argument and P, (C\K,) < l/r by
hypothesis, we see that for any r

lim ' ffdP,,(,.) — ffde <2r Y fllw

Since r is arbitrary P,; — P, weakly. Clearly, the dy, are the finite distribu-
tions of P, .

By the above argument, any subsequence has a weakly convergent sub-
subsequence and the limit must agree with P, since Kolmogorov’s theorem
implies that there is at most one measure on C[0, 1] with the dy, as finite
distribution. By a general argument on sequential convergence, P, - P
weakly. [

Remark Prohorov’s theorem is usually stated in the form: A family of
Borel probability measures on a complete separable metric space has a
compact weak closure if and only if the family is tight. We have isolated the
half we need and added the extra argument,

The central limit theorem (Theorem 4.1) implies that under the hypotheses
of Theorem 17.1, the finite distributions of the P, converge to those of
Brownian motion. Thus, Donsker’s theorem is reduced to the proof of
tightness. Notice that by proving this we will, at the same time, have a proof
that Brownian motion has a continuous version independent of the arguments
in Section 5. The compact sets needed in the proof of tightness will be uni-
formly bounded, uniformly equicontinuous families which are compact by
the Arzela-Ascoli theorem (see, e.g., [214]). The key estimate is the following
whose proof is closely patterned on that of Doob’s inequality (Theorem 3.5)
and Lévy’s inequality (Theorem 3.6.5).

Lemma 17.5 Under the hypotheses of Donsker’s theorem:
lim E(maxlS,»l > Aﬁ) < a3 (17.3)

for each A > 0, and a suitable ¢ < oo. The same result holds if, in the expecta-
tion, A is replaced by a sequence, 4, converging to A asn — co.
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Proof Clearly, it suftices to consider the case A > 2\/2. Fix n. Let
A; ={max;_;|S;| < l\/n < |S;]}. Then

E(maxlSiI > /l\ﬂz) < E(|S,,| > %Aﬁ) + EE(A,. (S, < %Aﬁ))
< E(lS,,] > %Aﬁ) + '.lilE(Ai)E(lS,, S %Aﬁ)

(17.4)
since | S, — S;}is independent of S;, ..., S;. But 1 > 2\/5, $0
E(IS, — Si| = 3/ < E(IS, — Si| = /2n)
< (2m)T'E(S, - Sil?)
= - <}
Thus, since the A; are disjoint and contained in {max;,, |S;| = A\/ﬁ}, (17.4)
implies that

%E(maxlSiI > l\/;) < E(IS,| = $4/n)

S Qm)" 12 f e dx (17.4)
Ix}=4/2

asn — oo, by the central limit theorem (Theorem 4.1). Using (3.4), we obtain

(17.3) trivially. The extension to the sequence is easy if we note that for any
e>0

(max |1S;| = ,1,,\/;) c (max IS;| = (1 — s)aﬁ)

for n sufficiently large. |

Notice that if y; has an even distribution, one can replace the argument
leading to (17.4) by Lévy’s inequality.

Proofof Theorem 17.1 To prove tightness, we claim it suffices to prove that
for each positive integer k and each ¢ > 0, there is a d(k; €) > 0 so that for
alln

E( sup | X, () — X,(0)] < k“) >1-2% (17.5)
O<u-—t<dlk;e)
For assuming (17.5) holds, let

-

k=

sup | f(W) —f(O)] < k"}ﬂ {f1f(0) =0}

lu—1| <dtk; e)
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Then K is compact by the Arzela--Ascoli theorem and by (17.5) and the fact
that X, (0) =0, P(K,)>1—¢

Now fix n. By the polygonal nature of the paths, the paths are piecewise
C! with maximum derivative supg ;< ,—11S; — Si41[n*"? so

1 - E( sup | X,(u) — X, ()| < k“)

O<u—t<d

<1- E( sup |S; — Siyql < n‘”zk‘é")

O<ign-1
n—1
S Z E(IS‘ - S,'+1| 2 n—l/Zk—lé—l)
i=0

< n[nk?6%E(|S; — S;411)] = n?k*8*

As a result for each fixed n, we can assure (17.5) by taking é small. It follows
that if (17.5) is proven for all n > ny(k, &), we can conclude it for all n by
shrinking (%, &).

Now suppose that for each n > nywecan find 0 = t, < --- < t; = 1 with
sup|t; — t;_ | < d(k, €) (the t’s may be n-dependent) so that

E( sup | X, (u) — X,(t)| < %k"‘) >1-2"%; i=0,...,1

O<u—1t;<28(k,c)

(17.6)

Then (17.5) holds for n > n,, since any u and ¢ with |u — t| < é are within 29
of some common ¢; < min(u, t).
Now given ¢, k, fix J so small that

o([871] + 1)(2k)30%2 < g/2k+1 (7.7

where c is the constant in (17.3).

For fixed n, let 0 < (u — t) < J and let t = m/n for some m. Then, by the
polygonal nature of the paths

,Xn(u) - Xn(t)l < max n_l/zlsi+m - Sml (178)
0<i<[nd]+1
Now suppose that k, = [on] = L.
Let [ =[n/[né]]1+ 1. Let ¢, =0, t;, =ko/n, ..., t; ; = (I — Dkgy/n,
t; = L. Then |t; — t;_ | < ko/n < 6, so bearing in mind that (17.6) just needs
to hold for large n we see that it suffices that

lim [(1 + 1)E( max |S;| > %k“ﬁ)] < g2k

n- o 0<i<[nd]+1
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But, by (17.3), this limit is asymptotically bounded by
{[n/[nd1] + 13{(2k)™ ' /n([nd] + 1)~ 12} -3
which approaches
([0 1] + 1)(2k)36%2 < g/2*
by (17.7). |

18. Laplace’s Method in Function Space

To understand the results we seek in this section, consider the following
method for obtaining the leading behavior in Stirling’s formula for the
asymptotics of the gamma function

') = f x*le > dx

o]

If one changes variables to x = ay one finds that
r@ = o [ " espl-ay = In )] dy
4]

To find the asymptotics, one locates the minimum of y — In y which is one
(occurring at y = 1). This suggests that the integral ~e™* and indeed one

can prove easily that
. [F(a)]"“ -
lim|—| =e
[: Amds o) o

This method can be extended further by making a Gaussian approximation
y—-1Iny)~14+ 3y — 12+ Oy —1)°) and controlling the error. One
obtains Stirling’s formula N'(a + 1) = o**2e*2r)3(1 + O™ 1)).

Here we want to develop an analog of this method for functional integrals.
Suppose we have a Gaussian measure dp, on some function space with
covariance (-, A-). Formally

duo = exp(—4(x, A 1x)) “dx” (18.1)

where dx is a formal uncountably infinite product measure and includes an
infinite normalization constant. The formal nature of (18.1) is indicated by
the quotation marks about dx. In the papers quoted below, the formal nature
is indicated by using a special symbol (“flat integral”) for integrals with
respect to “dx.”
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Suppose that we want to compute the asymptotics of
an) = [exp(—nF(x/y/m) duo) (18.2)

Using (18.1) and changing variables x/ﬁ =y, we see that (with change in
normalization!)

a(n) = Jexp(—n[%(x, A 1x) + FO)] “dx” (18.3)

which suggests that
lim[—n"'Ina(n)] = min[i(x, A" 'x) + F(x)] = b (18.4)

Of course, one must expect to have fairly strong continuity conditions on
F since the set of x with (x, A~ 'x) < oo has duy-measure zero. [ This assertion
that with respect to | [, (2n)™'/? exp(—307) da,, the set of o’s with Y o2
< oo has measure zero is easily seen; for, as we showed in Section 3,
lim a,/\/2 In n = 1 with probability one, so a, — 0 with probability zero.]
Thus F must be “determined” by its values on this set of measure zero;
i.e., it must be continuous in a topology in which {x [(x, 47 'x) < oo} is
dense in a function space which has measure one.

The kind of problem we describe above was considered about ten years ago
by two doctoral students of Donsker. Schilder [230] discussed Brownian
motion and Pincus [204] more general Gaussian processes on [0, 1].
Schilder obtained (18.4) under suitable hypotheses on F. Moreover when the
right-hand side has a unique minimum, he obtained an asymptotic series to
all orders of (\/Z)'1 for exp(+nb) | exp(—nF (x/\/;)) duy(x). Pincus con-
sidered a problem related to but distinct from (18.4). Namely, he proved
under suitable hypotheses on F and G that

lim [ f Gx/y/n) exp(—nF(x/5/n) dﬂo]/a(n) = G(x*)
whenever the minimum in (18.4) occurs at a unique point, x*. If anything, the
problem we want to discuss is easier than this, and our arguments are a
modification of those of Pincus. Moreover, the methods are such that it
should be possible, by combining the work of Pincus and Schilder, to develop
rigorously Gaussian approximations and further results on a(n) when F is
smooth enough and 3(x, 47 'x) + F(x) has a unique minimum or a set of
minima with a simple structure. (In the argument below, regions IT and IIT
are unimportant in any further terms in the asymptotic series.) We note that
the general machinery of Donsker and Varadhan, discussed in Section 19, is
applicable to these problems yielding (18.4); see, e.g., [57].
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Recently, the kind of problems discussed above have produced consider-
able interest among particle physicists (who were unaware of the earlier work
of Schilder and Pincus). The carliest work was done by Lipatov [ 164] whose
idcas were developed by the Saclay school in a series beginning with Brézin
et al. [24]. The ideas are well described by looking at the ground state of the
quantum anharmonic oscillator; i.e., E(f) indicates the lowest eigenvalue
of Ly + Bx* where as usual L, = —1 d?/dx? + 1x? — L. E(B) has a formal
perturbation series (see Section 20)

oo

EB) ~ Y a.p"

n=0

This series is divergent but it can be summed [113] by a method known as
Borel summability. Brézin et al. begin by writing [see (1.9)]

E(B) = — lim T~ !In Tr(e™ Tko*5xY)

T- o

Consider first the asymptotics of

o0

T~ 'in Tr(e  THt B ~ % a(T)B"
n=0
or more simply
Tr(e Thot A=y ~ % p(T)B" (18.5)

n=0

The point is that (18.5) can be written in terms of a suitable Gaussian integral,

T
Tr(e™ ThotAxDy — fexp[—ﬁ f x*(s) dS:I dug 1
0

by a Feynman-Kac formula. From this, one sees that

b =0 | [ [ o ds] dito.x

b(T) = # f exp(—nF(\;’;)) dite 1 (18.6)

or

with

F(x) = — ln[ J Tx4(s) ds] (18.7)
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Our results below and Stirling’s formula provide a rigorous proof that
[n~"b,(T)]'" - a(T) for an “explicit” a(T). By going several steps further,
it is possible [24] to obtain the Bender-Wu formula (lim_, , a(7T) = 3).

a, ~ (=11 /6n¥23"T(n + H(1 + 0(1/n)) (18.8)

but (18.8) has not yet been proven by these methods since it involves a formal
interchange of n and T limits which is discussed further at the end of this
section. In the case at hand, (18.8) is certainly correct since Bender and Wu
[7] computed the first 75 a,’s and originally obtained (18.8) on a purely
numerical basis. They also gave several “demonstrations™ [8, 9, 10] of (18.8)
using different ideas. Recently, a rigorous proof of (18.8) has been found
[123a]. The importance of the work of Lipatov and the Saclay group is two-
fold: first, they realized the relevance of (18.8) to doing numerical calculations
with the Borel sums; secondly, their path integral method is formally ap-
plicable to field theories.

We now turn to a statement of the main result of this section: Below
(-, -)is the L? inner product; we use || ||, and || - || , for the LP-norms. We will
consider Gaussian processes {q(t)}o<.<1 With a covariance p(s, t) obeying
two conditions:

(a) Forsome K < 0,0 < }:
[p(s, )| < K (18.9)
1p(s, 1) — p(s, D)) < Kis — 5% (18.10)
(b) p is real and strictly positive definite; i.e., for fe C[0, 1], /% 0,

f f (s, ) f(s) f (@) ds dt > 0

For the function F we will require [the F of (18.7) does not obey these
conditions but see below].

(c) F is a Holder continuous function on C[0, 1], in the following sense.
[F(x) = F()| < Crllx — yli7° (18.11)

for x, y e C[0, 1] with ||x||4, [Yle < R where Cr may depend on R and
0 < 6, < 1. Note that (18.11) is much stronger than ordinary Holder

continuity since it involves the L2-norm and ||- ||, < |||l -
(d) Forall xe C[0, 1]:

F(x) > —3¢,]1x3 = ¢, (18.12)
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where ¢, |41 < 1, and A is the operator on L? given by
(AgXs) = [pts, g0 de (18.13)

Sometimes it is useful to replace (d) by
(d’) For some fixed ¢, and A and for any ¢ > 0 and all x e C[0, 1]:

F(x) = —3c]x]3 = cale) — e 4™ %x]3 (18.12)
Moreover, ¢, || 4]l < 1 and A is such that A < 4 and

Tr(A' ) <

Theorem 18.1 Suppose that (a)-(d) [or (d")] hold. Let du, be the Gaus-
sian measure on C[0, 1] with covariance p [supported on C[0, 1] by (18.10)
and Kolmogorov’s lemma (Theorem 5.1)]. Then D(4~ '), the L2-operator
domain of A~ '/ lies in C[0, 1], the functional

H(x) = (x, A7 'x) + F(x) (18.14)
is bounded below on D(A ™ !/?) and takes its minimum on at least one point
x* in D(A~1/?), Moreover, (18.4) holds with b = H(x*).

Before turning to the proof of this theorem we note a slight extension:

Theorem 18.2  Suppose that (a), (b) hold and that F is a function on
C[0, 1] taking values in (— o0, c0] so that

() F(x) < oo for some x € D(A~1/%).

(f) Foreachm < oo, F,(x) = min(F(x), m) obeys (c) and either (d) or (d').
Then all the conclusions of Theorem 18.1 remain true.

Proof Clearly F obeys (d'), so for ¢ small
H(x) = $x, A7'x) — dc,(6, x) — c; — &(x, A" 2x) = —c,
since ¢, || A|| < 1. By (€), H(x) < o for some x € D(4~/2). Thus
M=1+infHxX)=1+b<

X

Let a(n) = | exp(—nF(x/\/n)) dpo, and a,(n) = | exp(—nF,(x/\/n)) duo.
Then, for m > M, (a,(n))!"* — e~? by (f) and Theorem 18.1. But clearly

la(n) — an(m)| < ™™

since e ™ — e "m| < 7™M |}
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Example Let us demonstrate the rigorous proof of the leading behavior
of b(T)for T = 1 (b, given by (18.5); the general T case is similar). Define

p(s, 1) = Tr(xe s~ "koxe =1 ~ls=tDLoy[Tp(g~ Loy = ! (18.15)

It is easy to check that p obeys (a), (b) with & = 4 by obtaining an explicit
formula for p (one can get the explicit formula by making an eigenfunction
expansion for L, or more simply by noting that

dz
(— Qs? + l)p(s, t)y =08(s — t)

with the condition that p be periodic at zero and one). Now let Q(x) =
{& x*(s) ds. Then since |a* — b*| < 4[max(a, b)]*(a — b):
[Q(x) = Q)| < 4R3||x — ylI,

if R = max(|x| s, |¥l) It follows that F,(x) = min(m, —In Q) obeys (c)
with 6, = 1. Now, A~ ! has eigenvalues 1 + (2zn)> with eigenvectors
(2m)~ 122" 50 Tr(A' ~2%) < oo for A < 1. By a Hausdorff-Young and
then a Holder estimate, if fis in L? with (periodic) Fourier coefficients f, and
2<p<owlandg=(1—p H ]:

1/q
I, < C<Z If,.l") < D(Z In“f;.lz)

so long as a(1/g — %)™! > 1. Since p < oo, we can take « < 4. But ) , |n%,|?
< ||A~@/22¢) 12 Thus, we have the simple Sobolev inequality:

0(x) = IIx]12 < e 47*x]3

1/2

SO

F(x) = —InQ(x) > —Inc — 4 In|A~%%x]|,
> —cy — e A"x|2

verifying (d'). We summarize with the following.

Theorem 18.3  Let b,(T) be given by (18.5). Let

«T) = min{% J:dt [x(z)2 + (d-d)f)z] —In J:x“(t) dz} (18.16)

subject to the boundary condition that x be periodic. Then
lim [n!'n=2"(=1)"b(T)]'" = e ™

n-— o
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Remark 1t is casy to establish that the minimum in (18.16) obeys the
nonlincar equation
d*x N 4x?
B AT A
dr? [ x*() at
so after scaling, it involves classical motion in a potential x* — x? which

means that a(7) can be computed exactly up to quadratures which are given
“explicitly” by elliptic functions; see, e.g., [24].

Now, we begin the proof of Theorem 18.1.

Lemma 18.4

(a) A is Hilbert-Schmidt and maps L? into C[0, 1]and A[x | | x|l < 1]is
compact in C[0, 1].

(b) A is trace class, A2 maps L* into C[0, 1], and A"*[x | [Ix]}, < 1] is
compact in C[0, 1].
(c) One has the estimates:
. 1/2
“Ax”oo < C”x”29 “A x“ao < DHx“z (1817)
[ Ax|lo < DJA'2x]15
Proof (a) By hypothesis (a)
1/2

[Aflle < K Jlfl dt < K<J~|fl2 dt) (18.18a)
(A Xs) — (Af X < Kls — Pl f 1l (18.18b)

Thus 4 maps L? into C[0, 1] and the image of the unit ball is a family of
uniformly bounded, uniformly equicontinuous functions and so pre-compact
by the Arzela-Ascoli theorem [214]. By the weak compactness of the ball,
the image is closed. A is Hilbert-Schmidt since | p* ds dt < co.

(b) A is trace class since its kernel p is continuous, A is positive and
{4 p(s, 8) ds < oo; see [259]. Define orthonormal eigenfunctions f, and
eigenvalues A7 by

(Af)() = A2 £,(0) (18.19)

We claim that for each s, ¢

p(s, 1) = Y A2 () ful®) (18.20)
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For (18.20) clearly holds for almost all s and t. Let j, be an approximate
identity in C[0, 1], and let

Jo.lX) = fu % jdx)
p(5.0) = [0 1055 = )i — 1) ' a
We have that
OO EDWHI O
so since the f, and p are continuous:

IPHEAOIES L DWW MOy

n<N £t n<N

< lim p(s, 5) = p(s, s)

As a result,

LI < K

for all s. Similarly,

2 Alfs) — £ < 2K s — 5

It follows that the right-hand side of (18.20) converges uniformly as n —» «©
and so (18.20) holds.
Now, if x(t) = ) B, f,(t), then

AP < 1Y AuBa Sl < N1x11Z 2 1A L1 = p(t, D113
Similarly,

[(AM2x)8) — (A" < IxIEAGs, 8) + pss 8) = pls, ) — ol 9]
< 2K|s — 5’|}

Thus 42 maps L? into C[0, 1] and the image of the unit ball is compact as in

().
(c) The first two estimates are just the assertions that 4 and A'/2 are
bounded from L? to C. (18.17) is the second estimate for 4'/%x. ||

Lemma 18.5 H(x) = i(x, A~ 'x) + F(x) is bounded below on D(4~1/?)
and H(x) takes its minimum H(x*) at one point, x*, at least.
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Proof By (18.12) [hypothesis (d')],

H(x) > $(x, A7 'x) — Jeillxl3 — ¢z — &(x, 47 "2x)
> —~c¢, + 38(x, A7 'x)

if 1 —c¢,||A] — 2¢|A|'? > 5. Thus H is bounded below and on the set
where H(x) < inf, H(y) + 1, (x, A”'x) is bounded from above. Thus
H(x) takes its infimum on a compact subset of C[0, 1] (by Lemma 18.4(b)).
Since H(x) is easily seen to be lower semicontinuous, we conclude that H
takes its minimum value. |

The key to the proof of Theorem 18.1 is the following:

Lemma 186 Let y > 0. Then dug(x + yAx) is du, absolutely continu-
ous, and

dpo(x + yAx) = D(y) exp[ —3y*(4x, x) — y(x, x)] duo(x) (18.21)
and D(y) = det(1 + y4) = [[=, (1 + yA2).
Proof Introduce the realization of the Gaussian process dug:
x(©) = Y ody £(1) (18.22)
n=1

where the o, are random variables distributed by

2m)~ 1 exp(~1o7) da,,

8

n=1

Then x — (1 + yA)x corresponds to a, —» (1 + yA2)a,. Thus if dul =
Xa=1 2m)™ "2 exp(—3ay) da,:
’ N
dug(x + yAx) = TT{(1 + vA7) exp[ —4y2Ata? — yA2a2]} dp)

n=1

Now as N — oo, Y, A2a2 = (x,x), Y. AgaZ — (x, Ax) so the exponential
converges in L'(dug) by the monotone convergence theorem to

exp(—37*(Ax, x) — y(x, x))
Since Y A2 < oo, [[N=1 (1 + yA2) > D(y) < . |

Remark Lemma 18.6 is essentially an explicit form of one-half of Theorem
2.5.
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Therefore, we can write a(n), given by (18.2),
a(n) = det(1 + /nA)E[exp(—nQ,(x))] (18.23)
0.(x) = ¥(x, Ax) + F(Ax + n~"%x) + n~Y*(x, x) (18.24)
since both sides of (18.23) are

f exp(—nFL(1/3/n)x + /nAx)]) duolx + /nAx)
Now since 4 > 0:
1< det(l +/nA) = [T +/nid) < exp[ﬁ ( y 1})]
i=1 ji=1
so that (18.23) says that to conclude the proof of Theorem 18.1, it suffices to
show that
[E(exp(—nQ,(x)N]"'" — exp(— H(x*))

Since Q,(x) is almost H(Ax), this is beginning to look controllable. We need
three more preparatory lemmas:

Lemma 18.7 For some y and C:
E(|x|lo = a) < Ce™™ (18.25)

Remark Marcus and Shepp [180] and Fernique [82a] have shown that
for any Gaussian process with paths in C[0, 1] and covariance p:

1
. -2 E 2a)= — 5 T~
lim a”"log E(lxle 2 @) = — 5 o 9]
See also [57].

Proof This proof is a simple extension of the idea behind Kolmogorov’s
lemma (Theorem 5.1). By hypothesis (a):
E(]x(s) — x(s)I*) < 2K s — s'|*

s0, since the x(s) are Gaussian, for C; > 1, n > 0

E( x(%) — x(k—z—n—l) ‘ > COZ‘""”) <2 j QQr)~V2e~*"1% dx
y

< D, exp(—D, C3}2")
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where v = Co(2K) 22" 2 and D, D, arc suitable constants. Thus,

()5

> (2 "2 some 0 < k < 2% some n)

< D, Y 2"exp(—D,C§2"%)
n=0
< Dy exp(—D,C))

If [x(k/2") — x((k — 1)/2")| < Co2 "2 for all k and n, then writing ¢ =
Y a;/2, a; = 0 or 1 we see that

|x(t) — x(0)| < Y a;Cy277%* = C,B
for some constant B. Thus,
E(]x(t) — x(0)| = C, some t) < D5 exp(—D, B~ *C?)
If we note that
E(|x|lo = a) < E(|x(0)| = a/2) + E(]x(t) — x(0)| = a/2, some 1)
we obtain (18.25). |

Lemma 18.8 Suppose Tr(4! ~?4) < co. For ¢ sufficiently small:
E(exple(x, A~ 2%x)]) < o

Proof In terms of the realization (18.22)

a0
(e, A7) = Y A7 4oy
n=1

If one looks at Theorem 3.11 and its claimed extension to nonpositive
matrices, one sees that

fexp( iﬁnaf)[ ):'0(1(27r)_ 12 exp(—302) dcx,,] <

if (and only if) 8, < 3 forallnand ) g, < . |

Lemma 18.9 For any ye L? and § > 0, there is a ¢ with

E(x||AY2x — yl, < B Ixle <€) >0 (18.26)
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Proof Since |[x|, < o0, almost everywhere in x, we need only prove
(18.26) with the condition |xjj, < ¢ dropped. In terms of the realization
(18.22)

142x — yli3 = Z(a A=)

N

Z(a A=y +2 Z (A + 2 Z [ val?

n=1

Choosing first N with 2 Y%, | |y,1* < B?/4, we see that it suffices to show that

(Z(oz 22? < ﬂ2)>0

N+1
If |, | < (\/5/4)[3}.,,‘ 'QC A2 then Y (a,A2)* < B?/8, so we only need
E(lo,| < yA; L alln) >0 (18.27)

for any y > 0. But

E(la,] < yA;7 % alln) = ﬂ[l - (]oc | > A)]

so (18.27) follows from Y E(]a,| > y/4,) < co. This is easy from
E(|o,| = a) < Cexp(—1a®) < 2Ca™? and YA <o |
Proof of Theorem 18.1 Lower bound Given ¢, we claim that we can
find B so that ||[4V/2x — A7 2x*||, < B implies
H(Ax) — H(x*) < ¢ (18.28)
For
H(Ax) — H(x*) < $|(4'2x, AV2x) — (A~ 12x*, A~ 12x¥)|
+ |F(Ax) — F(x*)|
The first factor is small if |4'/2x — A~ /2x*|), is small by the continuity of

the norm. The second factor is small by the continuity of Fin || - || , and (18.17)
which implies that

lAx — x*||, < D[jA"*x — A~ V2x*|, (18.29)
This verifies (18.28). Pick ¢ so that (18.26) holds. Then on the set
S={x||4"2x — A7 12x¥|; < B, | x| < c}
we have that

Q.(x) = H(Ax) + F(Ax + x/\/n) — F(Ax) + in™Y3(x, x)
< &+ H(x*) + Cren™ V20 4 Le2p=12
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where Cp is the constant in (18.11), we have used |ix||, < ||x|l,, and R is first
chosen so that |Ax|,, < R/2 for x € S [use (18.29)] and then so that ¢n~ /2
< R/2. Thus for n large:

E(e ") > exp(—n[e + H(x*) + O(n~%/2)])E(S)
Since E(S) > 0, we have that lim(1/n)ln E(e™"%") > —& — H(x*). Since ¢
is arbitrary we have the required lower bound.
Upper bound: General strategy Consider the three regions:
Si = {x| 4xllo <R, lxllo < RY/n}
Su = {x | Ixllo = Ry/n}
Sw = {x]|Ax], = R}

We will control the contributions of §;; and S;;; for R sufficiently large and
S, for any R. We suppose that (d’) holds. The reader can check that the extra
condition on p, Tr(4' ~24) < oo is only used (via Lemma 18.8) to control
the extra ]| 4 2x||3 terms present in case (d'). Thus case (d) goes through
with minimal changes.

Upper bound: Region I  As in the lower bound, we have for x € S;:

Q.(x) = H(4x) + F(Ax + x/y/n) — F(Ax) + in™"2(x, x)
> H(x*) — Caglixll/y/n + tn~ 12| x|2
> H(x*) — 3n " '2Cy
by using —xy + 3y* > —3x>. It follows that
E(e "% |x e S) < e ™ exp(3n'/2C3y)

yielding the required upper bound.

Upper bound : Region I We begin with the estimate from (18.12'):
0.(0) = H(Ax, x) + 317 3(x, x) = Jes | Ax + (e/i/mI3
— ca(8) — el A7 (Ax + (e//m)I
Now
I4x + (x/\/m)13 < (141 + Q//m)AX, x) + (1/n)x, x)
and

14™4(Ax + (x/i/mDI> < 4" 724 [(Ax, %) + 20712 (x, x)]
+n7(x, A7)
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SO
0.(x) = (a,/2)(Ax, x) + by(x, x) — c3(€) — en~'(x, A~ 22x) (18.30)
a, = (1 — c |4} = 2c,n~ 12 — 2| 4|12 (18.30a)
b, = in"V2[1 — dc,n” V2 — 4¢) A 2] (18.30b)
One can choose ¢ small and then n so large that a,, b, > 0. It follows that
E(e "2 | Sy) < e"2E(e* 4779 | S

< enc‘zE(eZzz(x, A~ 2Ax))IIZE(S")I/Z

< cexp(nc, — 3nyR?)
where we used the Schwarz inequality in the second step and Lemmas 18.7
and 18.8 in the last inequality (¢ may have to be decreased). So long as we

choose R so large that ¢, — 3yR? < — H(x*), we have the requisite bound on
Su-

Upper bound: Region 1II Use (18.30) and choose ¢ so small and n so
large that b, > 0 and a, > & > 0 for some fixed 6. Notice that in region III,
|Ax|, = D" '||Ax|, = D™ 'R by (18.17). Thus,

0,(x) = (8/2)D 2R? — cy(e) — en”'(x, A~ *2x)
so that

E(e "% | Syp) < E(e"™*7**9) exp(nc, — (6/2)nD~2R?)

So long as ¢, — (6/2)D " 2R? < — H(x*), we have the required bound on
Slll' l

At the present moment, a complete proof of the Bender-Wu formula
(18.8) has only been obtained by very different methods [123a]. However,
one can imagine a proof along the lines above; only one crucial step is
missing, The passage from the asymptotics of b,(T) to those of a,(T) is not
hard. One only needs to use the Taylor series for In(1 + x). The net result
is that for T fixed and n large a(T) ~ n"a(T)"n*P(y(T) + O(1/n)) (this
assumes that one can push Theorem 18.1 to higher order for some very
special degenerate x*), where o(T) — «, etc., as T — oo. The missing point
in the proof is justifying the interchange of n and T limits. The subtlety of
the missing step is indicated by the following example.

Example (Donsker and Simon, unpublished)  Let
AT, B = —(/T) In Tr(exp(— T(L, + 3Bx*)))
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Then f(o, ) = limy .. ST, ) = 3[(B + 1)"2 — 1]. Thus, for n large and
T = ot

a,(0) ~ 3 2 (= 1" Inm 321 4+ O(1/m)) (18.31)
On the other hand,

Tr(exp(=T(Ly + $82)) = 3 exp(=[(n + H/T+ f - 117)

= eVDTi[sinh((T/2),/1 + A1
Using sinh(x) = x [ [&,; (1 + x?/(nm)*) we obtain

J(T,B) = 2—{; In(1 + B) + % iln(l + ; fT)) - % + %m(z sinh g)
n=t1 n

with y(T) = 1 + T 2(2nm)%. Thus for fixed T as n - o,
a(T) ~ @QT)" (=1 'n~ (1 + O(1/n) (18.32)

Comparing (18.31) and (18.32), we see that the leading (— 1)" terms agree but
the n® and constant terms are wrong. Analytically, it is clear why this happens.
The square root singularity for n = oo is the limit of an infinite number of
logarithmic singularities at —y,(T) which coalesce as T — co. For fixed T,
only one log contributes as n — 0.

Since (18.8) has been proven by other means [123a], the interchange is
permissible for the anharmonic oscillator; the issue is to understand why.

* % ¥

The ideas of this section are useful for understanding the imaginary time
analog of the classical limit for solutions of the time dependent Schrédinger
equation. Let

H, = (=#2m)A + V() (18.33)

The classical limit question involves studying exp(—itH,/i)y as h — 0. We
will instead consider

a(t, y, h; ) = [exp(—tH/my1(y) (18.34)

in the limit as # — 0. The quantity when v = 1 will be denoted by a(t, y, #)
(see Section 25 for the definition of exp(—sH,) on L®). We will state one
result and then discuss its significance and the kinds of extensions possible.
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Theorem 18.10  Let V be bounded from below and C! on R. Let H, be
given by (18.33) and a(t, y, h) by (18.34) with = 1. Then

lim — #Infa(t, y,, #)] = «t, y,) = min { f t [Elr; Y(s)® + V(y(s))] dS}

[ ad yely, 0o
(18.35)
where I'), is the set of C'-paths with y(0) = y,.

Proof By scaling y and/or V one can (by changing V) suppose that
t = m = 1. By translation covariance, we can suppose also that y, = 0. The
operator A~ ! with quadratic form $ {§ y'(s)* ds, with domain the closure of
the form domain Ty, is precisely A~ = —d?/dt* with boundary conditions
$(0) = 0, (1) = 0 (see [217]). The integral kernel of A4, the inverse of this
A™', is just p(s, t) = min(s, t). Noticing that F(b) = [ V(b(s)) ds obeys
(18.11, 12) on account of the hypothesis on V, we see that Theorem 18.1 is
applicable so that

o(1,0) = lim — A Infa(l, 0, #)]
5=0

where

1
a1, 0, h) = ~“exp[—h‘ f V(h''2b(s)) ds] Db
0

with Db the Brownian motion measure. Thus, by the Feynman—-Kac formula,

N —1 d? _

a(1,0,h) = [exp(—[T dy? +h IV;I(Y)])l//:I(O)
where | is the function which is identically one and V,(y) = V(h'/?y). Let
(Wn)(y) = n(h'"?y). Then using
—1 42

W,H,W; ' = [—2—&7 + ﬁ—th(Y)]h

we see that

a(l1, 0, h) = [exp(— Hy,h™ YW,y (™ 120)
=a(1,0, h)

since W,y =y and A~ 120 = 0. |

A closely related theorem but with different methods and hypotheses has
been proven by Truman [280c]. The applicability of the Pincus-Schilder
methods to this context seems to be new.

We examine the connection of the above result with “the classical limit™
in a series of remarks.
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Remarks 1. Standard calculus of variations arguments show that the
minimum of

Ey) = fO[(zm)' L) + V((s)] ds

over y’s with y(t) = y, [by replacing y(-) by y(¢ — -) this minimum is «(t, y,)]
obeys

Y"(s) = m(VV)(y(s)) (Note: not —VV) (18.36)
with ‘ boupdary conditions,”
Y©0)=0, (1) =y, (18.37)

That is, if we let Y,(y,, s) denote the solution of (18.36) with initial condition
Y,(¥o,0) = yo, 2Y;/0s(yg, 0), then the existence of the minimizing y guaran-
teed by Theorem 18.1 assures us that Y,(y,, t) = y, always has a solution
Yo(y,, t); it must be that the minimizing v is just

Yo(s) = Yi(Yo(y1, 1), 5) (18.38)

If there is more than one solution Y, we must pick one that minimizes E.

We note that the study of “mixed boundary conditions™ like (18.37) is
characteristic of the Hamiltonian-Jacobi theory. We also emphasize that the
corresponding classical solution obeys Newton’s equation with F = VV;ie.,
in going from the solution of the Schrodinger equation, e~ “Hys, where the
h — O limit is formally given by ordinary classical mechanics 1o the solution of
the heat equation e ~"#y, the sign of ¥ changes in the corresponding classical
mechanics. This is a well-known phenomena.

2. [Itis easy to extend the Pincus-Schilder theory to allow independent
Brownian motions y,(s) and thereby to extend Theorem 18.10 to v-dimen-
sional y’s.

3. If we replace ¢y = 1 by y(y) = e "So0¥% then the formal minimum
problem is to minimize

[, [3 00" + o s+ 5,600
0 m

subject to y(¢) = y,. The solution to this problem obeys (18.36) but the
boundary conditions (18.37) are now

Y(0) = (VS)(y();  ») =y,

which arise in the full Hamiltonian-Jacobi theory. The only problem with
this kind of extension of Theorem 18.10 is that

Fo) = | Vbis)) ds + So(b(1))
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does not obey condition (18.11); i.e., F 1s Holder continuous in |- ||, but not
in ||-|l,. It may be possible to extend Theorem 18.1 to handle this case.
Alternately, it may be possible to treat certain Sy’s (certainly So(y) = —ay?)
by writing exp(—#~'S,) as a conditional expectation.

b(l))
for suitable S;.

4. If there is a unique y in I',, minimizing E and V has extra smoothness,
then Schilder’s evaluation of the full asymptotic series for a(t, y, h) is valid
and one obtains the series in terms of the Gaussian approximation of E(y)
near the minimizing y(s) given by (18.38). The covariance of the corresponding
Gaussian process will enter. This covariance is just the integral kernel of the
inverse of —(d?/dt*) + (d*V/dy*)(y,(t)) with suitable boundary conditions
(the “Feynman Green’s function” of DeWitt-Morette). In particular, one
finds that

exp(—h~1S,(b(1))) = E(exp(—h' ! fl HS‘,(b(s), s, h) ds)

0

ety o (3Y,/dye) 2 (18.39)

5. If the minimum is unique, the method of Pincus shows that for
suitable g’s,

Je’"F‘b/mg(b/ﬁ) Db/fe'"”"/ﬁ’ Db — g(b*)

b* being the unique minimum. Doing the scaling in Theorem 18.10 and using
18.31, one finds that for suitable s,

a(t, y1, h; e ™ — (3Y,/0y0) "V (Yo(y1, 1)) (18.40)

6. The celebrated formula of Maslov is just the analog of (18.40) for
e "Hmy, His formula follows from formal application of stationary phase
ideas to the formal Feynman integral. This is notoriously difficult to make
rigorous; for some partial results, see Truman [280c], Yajima [288], and
the papers of Fujiwara [97a,b] and Hagedorn [291].

19. Introduction to the Donsker—Varadhan Theory

In this section, we wish to give a brief introduction to an important method
of Donsker and Varadhan. Since these authors have seven papers [54-60]
covering roughly 220 journal pages on the subject, we cannot hope to give a
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comprehensive overview; see especially [54] for more details. We intend to
concentrate here on one aspect of the theory, namely the connection with
the Gibbs’ variational principle of statistical mechanics. To get the flavor of
the results, we begin with a theorem of Kac [ 138] which motivated the theory:

Theorem 19.1 Let V > 0 bein L. (R) and let
Ly = —¥d*/dx*> — x* + 1)

as usual. Then

.1 ‘
_,h:: . ln[fDq exp(— foV(q(s)) ds)]

- inf{a(f) +i(f)| fe CE(R); sz dx = 1} (19.1)
with
o(f)=(fLef) and i(f)= f V) FOP dx

Proof The right-hand side of (19.1) is the bottom of the spectrum of
L = L, + V by the Rayleigh-Ritz principle. The left-hand side is

—lim ™! In(Qq, e Q)

t—

by the Feynman-Kac formula, so (19.1) follows from (1.19). |

The Donsker—Varadhan theory gives suitable limits as ¢t — oo of path
integrals as an infinimum of a variational object. An example of the theory is
the following.

Theorem 19.2 Let W be a bounded positive continuous symmetric
function on R?. Then

—1lim ¢! ln[JDq exp(—t‘1 ftds Jldv W(q(s), q(v)))]

- inf{a( N+ i) fe CaR); f f2dx = 1} (19.2)

where i,(f) = [ WCx, ISP S D)1 dx dy.
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The proof of (19.2) is not nearly so easy as that of (19.1) because there is no
Feynman-Kac formula for rewriting the left-hand side of (19.2). Below, we
will settle for proving one-half of (19.2); namely,

lim ¢ ln[ f Dy exp( e fods f do W(g(s), q(v)))] > [o(f) + ()]

t—w
(19.3)

for every fe C§ with | f? dx = 1. We want to describe an analogy between
(19.2) and the Gibbs’ variational principle of statistical mechanics. The
connection of (19.1) and this principle has already been noted by Guerra
et. al. [120] who consider extensions to P(¢), Euclidean field theories (see
[120, 121, 96]). This work is partial motivation for our presentation here.

We begin by describing the Gibbs’ principle for classical lattice gases
following Ruelle [225] (see also [226, 227, 133, 119]). Let Z* denote the
lattice of points in R* with integral coefficients. Let Abea ~box” Z” ~ [0,L)"
and let |A| = L® be the number of points in A. Let J be a function on Z*
which has bounded support (we restrict ourselves to pair interactions with
finite range; were we to consider connections with tangent functions to the
pressure [225, 133], this would be a serious restriction). Define

ZA(J) = Z e-UA(-')(tr)
gi=t1,ieA
Ur(UXo) = Z O'io'j-](i )]
i, jeA

pat) = 1A In Z,\(J)
Then, we will show that

(a) lim p,(J) = p(J)

A—®

exists for A — oo in the sense of taking boxes all of whose sides go to infinity.
Let p be a probability measure on {—1, 1}2". If we restrict p to the variables
{6:}ic A, we obtain a measure p, on {—1, 1} %, pis called translation invariant
if p, and p, , , are identical under the natural identification of {—1, 1}* and
{—1, 1}**“ One defines

Sap) = — Y pa(e)In p,(0)]

gi=t1l,ieA

where p (o) is the p, measure of {a}. We will also show that

(b) lim |A]™'SA(p) = s(p)

A— o
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exists. Finally, we will show that

© lim AL [Uydp = UG p
exists. The Gibbs’ variational inequality asserts that

(d) p(J) = s(p) — U(J, p)

for any translation invariant p. The full Gibbs’ principle asserts that

(e) p(J) = sup(s(p) — U(J, p))

The above describes the interaction of a family of spins, p is the free energy
(the letter p comes from the fact that in a lattice gas language, it is a pressure)
and s an entropy per unit volume.

Proof of (@) For simplicity take A to run through cubes of side I Fix
lo and let | = nly + a with 0 < a < ;. Decompose the I* cube into n* cubes
of volume I} and a leftover “strip” of volume I* — (nl,)’. Write

nv

i=1

where Uy, is the interaction within the I* cube and Uy (i) is the interaction
within the ith [[j] cube. R is what is left over, i.e., interaction between the
cubes and within the strip. Now, suppose that J has range b; i.e., J(n) =0
if [n| = b. Then R only involves spins in the strip and in regions within b
of the boundary of a [} cube. Thus,

[R(0)| < {[I" — (nlp)'] + n’[l5 — (b — B'BIJ I,
with |J|, = Z,, [J(n)], so
[R(@)| < n"|J [ {[ly — (lo — b)T + L[ + (1/m))" — 11}
From (19.4) we have that:

exp(|1]'p) < exp(| R, )exp(n®|lo['py,)
so that

ol et O U R (R Al

Taking | — oo, we see that

— b\’
lim p, < p,, + |J|1|:1 - (1 —l-)]
0
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Now taking /, — co,
lim p; < lim p;,
i.e., the limit exists. Finiteness of the limit follows from |p,| < |J];. |

Remark The above proof has the advantage of extending to rather general
interactions. For the case at hand, there is a simpler proof: Write U, A =
Uja, + Uy, + Ipa,- Then Y exp(—U,, — Up ) a, = 0, since Iy, IS
linear in the spins in A and we can separately invert the spins in A,. Thus, by
Jensen’s inequality:

Zaone 2 ZaZpe™ 0 = ZyZy,
so In Z, is superadditive implying existence of the limit.
Proof of (b) We first claim that for disjoint A, and A,:
Savond0) < Say(p) + Sp,(0) (19.5)

On {—1, 1}*+"2 define functions p,,, p;, and p, by py; = pa,.a, and
P1(61,03) = pp(0,), pa(04, 65) = p,,(0,). Then, since

pilay) = Z p12(01,02)

we have that
Sarons = Sa, — Sa, = Z pi2llnp, +Inp;, —1npy,]

= Z P2 ln[w]

P12

(el

=nl1=0

proving (19.5). In the above, the inequality comes from Jensen’s inequality if
we note that p,, is a probability measure and that —In is convex. We have
also used the fact that p,p, is a probability density on A; U A,.

From (19.5) and a standard argument lim|A|™!S,(p) exists and equals
inf{A|”!SA(p). The finiteness of this infimum comes from the fact that
Sx=0.1

Proof of (c) Since p is translation invariant,

IUA dp =) J(n)N(n, A) faoa" dp
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where N(n, A) = #{(@i, j)|i = j = n; i, je A}. Since it is casy to scc that
|Al "N(n,A) > 1 as A - w for cach n,

A [Undo > E 90 [a00,dp 8
Proof of (d) By Jensen’s inequality and the fact that ) p,(¢) = 1:

Z e_UA(G):Ze_U/\e‘lnﬂApA

;=11
ieA

> exp(sA(p) - v, dp)

Taking logs, dividing by |A| ™!, and taking A — oo, (d) results. |

Proof of (¢) In order to understand both the proof and the content of the
Gibbs’ principle, we note that to get equality in the argument in (d), we must
have

Inp, = —U, + const

since exp is strictly convex. Thus, the finite volume analog of the Gibbs’
principle picks out the finite volume Gibbs’ distribution

e-UA(a)/ZA

We will therefore try to take a measure, p, as much like this Gibbs measure
as possible. Fix A; and cover Z” with nonoverlapping copies of Aq: A, with
aeZ’ Let

po = [] [exp(—Ua,)/Zx,]

aed"’

po is not translation invariant, but it is periodic. If 7, is translation by i units,
then

1= |Aor1 Z TiPo

iE/\o
is translation invariant. We must compute s(p;) and U(J, p,). Since —xIn x
is concave,

Salpy) = 1Apl 7! Z Sa(t:po)

ieAg

Since In x is monotone:
Sa(p1) < |Aol™' Y. Sa(zipo) + In|A]

ieAo
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Moreover, it is easy to see that

lim |A]7'SA(1ip0) = 18017 'Sag(po)

A= o
The last three relations imply that
s(p1) = |Aol™ 'S (Po)
.= |A|6 ! ln ZAo + Z UAu(G)exp(_ UAO(O-))ZXOI
oi=*1
ieAp

Using the fact that p, is invariant under reversal of the ¢’s in any A,, we see
that this last term is U(J, p,) and so, by linearity, it equals U(J, p,). Thus,

s(p1) — U(J, py) = [Apl ' In Z,,
It follows that

sup[s(p) — U(J, p)] = p(J)
which, given (d), proves (e). ||

Before turning to the path integral case, it is useful to consider changes of
s, p, U under change of “reference measure,” i.e., instead of summing over
o; = +1,ie A, suppose we pick a fixed probability measure p® on {1, 1}Z°
and let

) = lim|A]™? fe'“/‘”’ dp®

A
$J) = - lim |A| ! f In[pp/p$] dp,
A~

We have in mind that p'” is some kind of limit of e~ YAY9/Z (J ). Formally
one expects that in this case:

plJ) = pJ + Jo) — p(Jo)
§(p) = s(p) — UUJo, p) — PJo)

and it should be possible to prove this using the methods of [96]. If these
formulas hold, then the Gibbs’ principle is equivalent to

p(J) = sup[(p) — U{, p)]

The point of this reformulation is that the reference measure in the path
integral case is Dg which, in lattice approximation, is not a product measure,
but a nontrivial p.
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All of the above with the exception of the change of reference measure is
fairly standard and is further discussed in [226, 227, 133]. One aspect that we
have not considered is the connection with the tangent structure of the
pressure [133, 226, 227], a subject which could well be relevant to the
Donsker-Varadhan theory.

Let us begin by studying (following [120]) the relation between (19.1) and
the Gibbs’ principle. Fix V and consider the P(¢),-process associated to
Ly + V as a measure dpy, on C(R). Then (6.10) asserts that dpy | ). 5
(which indicates the o-algebra generated by {g(s)|a < s < b}) is Dq abso-
lutely continuous with Radon-Nikodym derivative

Pra,by = 9(q(@))g(gq(b))e Vea-wrg* FOINE=a) (19.6a)

where h, = g€, is the ground state of L, + V, E(V) = inf spec(Ly + V) =
—lim,_, b™ ' In(f e"Y«©-» Dg), and U, ,, = j: V(q(s)) ds. Clearly — E(V) is
the analog of the pressure. Let us compute the analog of the entropy

s(py) = —lim b™! J(ln Pro.sVPro0.0 Dq
b— oo
Using the above formula for p, 4, the integral in question is easily seen to be
bE(V) — bhy, Vhy) + 2(hy, (In g)hy)
where the inner products are in L*(R). Thus,
s(py) = —E(V) + (hy, Vhy) = —(hy, Lohy)

so the entropy per unit volume is the “free Hamiltonian expectation.” We
claim that

— E(V) = sup(s(pw) — UV, pw)) (19.6b)
w
with

U(V, py) = lim b~ fum.bm dpy = (hy. Vhy)

b—
For (19.6b) is just the assertion that
E(V) = inf(hy, Lohy) + (hy, Vhy)
w

ie., (19.1)!

One can extend (19.6b) by allowing more general measures p on C(R) than
the py . All that is required {120] is translation invariance, absolute con-
tinuity of dp | Xy 5, and a weak growth restriction on the LP-norm of
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dp | Zjo.5/Dg (“weak-temperedness™). In that case, one can prove the exis-
tence of s(p), U(V, p) and the inequality in (19.6b). The proofs closely follow
those of (a)-(d) above.

[Parenthetically, we note that one direction for extending (19.6b) is to the
P(¢), field theory of Section 24: the Gibbs’ inequality is proven in [120], the
Gibbs’ principle in [ 121], and in [96] it is shown that the supremum is actually
realized for the p’s connected with the field theory.]

The formal connection of Theorem 19.2 and the variational principle
should be clear by this point. That this connection extends to some proofs is
illustrated by the following, patterned after the proof of (d) above.

Proof of (19.3) We prove the result for f’s in ¥(R) which are strictly
positive. By a limiting argument, the result extends to f’s which are positive,
continuous, and piecewise C!. Since i,(f) = i,(| f]) and o(f) = o(] f1)
(by ~Kato’s inequality”; see [153] and (1.1)); (19.3) then follows. Let V =
IL/"f ! — x* + 1]. The P(¢),-process, p, for L, + V has Radon-Nikodym
derivative (19.6a) with g = fQg '. Fix ¢ and let

T 13
U =1 f ds f do W(g(s). 4(v))
0 0
Then, by Jensen’s inequality

JDq e Ut = fplo’,]e‘u‘e""p Dq

> exp(S,(p) - JU, dp) (19.7)

As above,
t718(p) » —o(f)
Let u,(x, ) be the joint distribution of g(s), g(s + t) with respect to dp. Then

t! IU, dp =172 f;ds f(:dv UW(x, y) dpys—oi(X, y)]

By the ergodicity of dp (see Example 2 of Section 3), one has that

lim | W(x, y) dud(x, y) = JW(X, MIFPLf ) dx dy

5§ 0

so that
ot fu, dp — ix(f)

Thus (19.7) implies (19.3).
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Remarks 1. Although it appears different, the above proof is (approxi-
mately) identical to that in [54]. In [54], Donsker-Varadhan do not talk
about " P(¢),-processes” but rather of “drift-processes.” By the discussion
at the end of Section 16, the two notions are identical.

2.(suggested by Varadhan) There are two special aspects of the Donsker-
Varadhan theory that are not present in the general Gibbs’ variational frame-
work : First, in the Donsker—Varadhan theory, the o-functional is a functional
of a density (namely | f|?) on R, i.e., of the state at a single time, while in the
Gibbs’ framework s is a functional of the state for all times. Secondly, the
minimizing state in the case of the Donsker-Varadhan theory above is a
P(¢),-process, i.e., a Markov process. If we consider the special family of one-
dimensional lattice systems with interaction J + J, where J, is a nearest
neighbor coupling and J is “ mean field interaction,” we have a lattice analog
of the kind of interactions treated in Theorem 19.2. We notice that for ergodic
states p, one expects that U(J, p) is only a function i, of p,o,, the restriction of
p to functions of gy. Thus

sup[$(p) — U(J, p)] = sup([ sup 5(&)] - iJ(oz)>

p a plpoy=al

= sup(—I(a) — i,(2))

where a denotes a probability distribution on +1 and

o) = inf (—&a)).

plpioy=at

This calculation “explains” the first special feature of the Donsker- Varadhan
theory noted above. Next suppose that p is some state which gives equality in
pJ) = 3(p) — U(J, p). Let B be po, 1), the measure on {~ 1, 1}* obtained by
restricting to functions of o, and & ,. Let us suppose that §¢s,, s,) > O for ali
four values of s, and s,. By an argument below, there is a Markov process p’
with piy ;, = f and a “nearest neighbor interaction”, J' so that p(J') =
s(p’) — U(J', p). Since U(J, p) is only a function of p,q,, it is only a function
of po,1; and so U(J, p) = U(J, p'). U(J’, p) is only a function of p, ,, since
J' consists only of “nearest neighbor interactions; similarly U(J,, p) is only
a function of p,y ,. Thus from the Gibbs’ inequality

s(p’) — U(J', p') 2 s(p) — U(J’, p)
and the equalities (definition of 3)

S(p) = s(p) — U(Jg, p) — P(Jo);  3(p) = s(p") — UJy, p) — p(Jo)
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we conclude that
56 > 3(p)
and thus p’ also gives equality in the Gibbs’ principle. This explains the second
special feature of the Donsker-Varadhan theory noted above.
In the above we wanted to construct an interaction J' and Markovian
state p’ once we are given f. This can be done as follows: Given J’, we consider
a matrix J(x, y) = e ™7™, The basic transfer matrix formalism of statistical

mechanics [120] shows that a state p’ giving equality in the Gibbs’ principle
has
~

Pl = ) ] 70511, 06060 [ X 950

where ¢ is the (necessarily unique up to constant) eigenvector of T with
positive components and « is the corresponding eigenvalue. This p’ is
Markovian. Thus given f, we seek J' with

Blx, y) = ¢x)p(ne™ "o 3 P(x)*

This is ecasy; we let ¢(x) = (), f(x, y)"? and —J'(x, y) = In B(x, y)
— In ¢(x) — In ¢(y). Then ¢ is an eigenvector of T with eigenvalue one and
Y #(x)* = 1 and B is the associated pg 4,

We close this section with a somewhat imprecise description of the general
framework in which Donsker and Varadhan imbed Theorems 19.1 and 19.2.

The oscillator local time is the probability measure L,(g, -) defined for
each path q by

L(g. A) =t '|{s|q(s)€ A}

where, as usual, |- - -] indicates Lebesgue measure. Notice that

j Vgs) ds = ¢ f V()L(g, dx)
4]

1 2 13
[ [P aoasdo = ¢ [ws L oty

Thus, Donsker-Varadhan consider general maps ® from .#, the prob-
ability measures on R to R. The general form of their variational principle is

lim - In f Dg e ") = _inf[I(u) + D)) (19.8)

t— oo ne M
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where

I(u) = o0, if u is not absolutely continuous with respect to dx
(fiLof) if w=fdx

Of course, there are technical hypotheses on @ for (19.8) to hold, and more
general “reference” processes than Dg are considered. Donsker—Varadhan
express a related result which is almost equivalent to (19.8); namely, for
suitable sets C in .#':

E(L(q, )eC) ~ exp<—t inf I(u)) (19.9)
neC
Let us mention two explicit applications of the machinery, especially
(19.9) extended to much more general Markov processes than Dgq.

(a) If one takes independent copies of a fixed Gaussian process and uses
the fact that sums of independent Gaussian variables are Gaussian, (19.9)
gives information on the distribution of the Gaussian process in suitable
asymptotic regions. In this way, Donsker- Varadhan [57] recover the result
of Fernique—Marcus-Shepp quoted in the remark following Lemma 18.7
and also some versions of Theorem 18.1.

(b) In Section 22, we will discuss the Wiener sausage W;(t) which is a
set-valued random function of the Brownian path, b(s), defined by

Wi(t) = {x | dist(x, b(s)) < 6, some s [0, t]}.
There we will prove that the volume of W(1) obeys
W) - 2r (19.10)

(in v = 3 dimensions) as t — oo for almost every path b. This suggests that
E(e™2dW":0ly L 7272 a5 ¢t 0. In fact this is false! Donsker—Varadhan
prove that [58]

lim ¢ 3 In E(e™ ™) — g (19.11)

t—+a
for an explicit constant e (0, o). (Without the explicit value of f, this
result had been conjectured by Kacand Luttinger [ 144] on physical grounds.)
(19.11) says that E(e ~*!"1®1) goes to zero more slowly than one would expect
on the basis of (19.10). The reason is that | W,(¢)| is large on sets of measure
going to zero as t — oo but not as fast as would be necessary for the e~ 2™
behavior. Let us sketch the first step in the argument of [58] which shows the
relation to Theorems 19.1 and 19.2, As we will show in Section 22, the scaling
covariance of b(s) implies that in v-dimensions

|Wi(D] = 22| W, (A1)
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Choosing 4 = t2/** 2 (chosen so that A2 = (A ') and letting s = 1"**2, we
see that

lim """ 2 Jog E(exp(—a|W()])) = lim s™! log E(exp(—as| W,- 1(s)]))
t—= R imdie o]
Except for the “mild” s~ !/* dependence of J, we are precisely in the situation
of (19.8) since | W | is only a function of the image of b and thus of the support

of Lyb, -). See [58] for the remainder of the argument.
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20. Perturbation Theory for the Ground State Energy

Perturbation theory for discrete eigenvalues goes back to Rayleigh’s
classic The Theory of Sound [213]; it was rediscovered by Schrodinger in his
famous series [232] written at the dawn of the “new” quantum theory. These
Rayleigh—Schrodinger series were placed on a firm mathematical footing by
Rellich [218] with further developments by Kato [149] and Sz-Nagy [271].
All these authors dealt primarily with the regular case where the series are
convergent. A typical case where the series are not convergent is L(f) =
Lo + Bx* where as usual L, = —4d?/dx?) + 4x? — 1. Indeed, the Bender-
Wu formula (18.8) says that the series is divergent. One can also prove this
divergence directly (see [7] and below). In this case, Kato [149] and Titch-
marsh [277] proved that the Rayleigh-Schrddinger series were asymptotic.
See [88, 152, 217, 219] for reviews of these results.

In the forties and early fifties, Tomonaga, Schwinger, Feynman, and Dyson
(see [233] for a collection of relevant papers) developed some systematic
series for certain objects in quantum field theory. One of special interest
is the “energy per unit volume.” If one specializes to one space-time dimen-
sion (i.., zero space dimensions), the Hamiltonian of the quantum field is
just L{B) and its ground state energy is just this energy per unit volume. While
the coeflicients of this series can be shown to be equal to those of the Rayleigh-
Schrodinger series for this case, they appear quite different and more compact.
One goal in this section is to present the Feynman series for E(f) = inf
spec(L(f)) and prove that it is asymptotic. Our arguments below are es-
sentially a specialization of those of Dimock [52] from two space—time
dimensions to one.

211
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Even though the perturbation series for E(f) is divergent, the function
can be recovered from the series by a summability method known as Borel
summability. Using the Rayleigh-Schrédinger theory, this was first proven
by Graffi et al. [113]. By working a little harder on the estimates below, one
could prove Borel summability using the path integral realizations. Indeed,
this is just the specialization from two space—time dimensions to one of
some work of Eckmann et al. [72].

Throughout this section E(f) denotes the lowest eigenvalue of L(8) =
Lo + Bx*. Our goal is first to establish that E(f) has an asymptotic series
Y a,B" as B 10 and then to obtain explicit expressions for the a,. Recall
first the following definition.

Definition A function f(B) on (0, a) (a > 0) is said to have ) b,p" as
asymptotic series, as § | 0, written

fB)~2 B (BlO)
if and only if, for each N,

N
lim [f(ﬂ) -2 bnﬂ"]/ﬂN =0
Bio n=0

A function fhas at most one asymptotic series but the existence of functions

like exp(— B~ ) with zero asymptotic series implies that two distinct functions
may have the same asymptotic series.

Lemma 20.1

(@) Iff(B)is C* on (0, a) and for each n, b, = (n!)~ ! lim, | , d"f/dp" exists,
then ) b,p" is an asymptotic series for f. In this case we say that fis C®
on [0, a).

(b) Iffy(B)is a sequence of C*-functions on [0, a) and f(f) = limy.., fu(B)
exists and for each n, there is a C, with

4w
dp"

B <C,, 0<B<a alN

then fis C* on [0, a) and

of o dy
P = 5
(including B = 0).

B), O0<p<a 20.1)
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Proof (a) Taking fi; | O in Taylor’s theorem with remainder, one sees
that
dN+ 1

f(B)=éob"ﬂ"+ f dt, f dty - f diyes ﬂm,(m”)

Since d¥* 'f/dpN* ! has a limit as 8 | 0, the last multiple integral is easily seen
to be bounded by Cy V1.

(b) Suppose that we know the limit on the right-hand side of (20.1)
exists. Then by using the dominated convergence theorem in Taylor’s
theorem with remainder, one easily sees that fis C* on [0, a) and that (20.1)
holds. By induction, we only need to show that if |d%fy/df?| < C, and f(B)
converges, then dfy/df converges. Fix § > B, and let Ay = dfy/df (B,). Then

LB — fu(B)] — [fn(Bo) — fulBo)]
— (B — Bo)[Ay — Ar]l < Ca(B — Bo)?
by Taylor’s theorem. Taking N, M — cc we see that
[im Ay — lim Ay| < C,|8 — Bl

so taking B — B, we see that Ay converges. ||

The basic strategy of proof that E(f) has an asymptotic series is the follow-
ing: By (1.9) and the Feynman-Kac formula:

E(p) = lim Ex(p) (20.2)

N-w
Ex(f) = —QN)"' In f exp(—ﬁ f " o) ds) Dg  (203)
-N

Each Ey(B) is C* on [0, o0) so we will prove a bound
d"Ey
ap"
and thus conclude that E(f) is C* on [0, 1) by Lemma 20.1(b) and therefore
that E(f) has an asymptotic series by Lemma 20.1(a).

To prove (20.4), we use a compact expression for d"Ey/df" in terms of the
Ursell functions of (12.14). Let (X, ..., X, > s » denote the Ursell function
u (X4, ..., X,) withrespect to the measure exp(— f§ j’! v g*(s) ds) Dg/Normal-
ization. Then, by (12.14) and the linearity of u,:

d"E N N
T = NI [ s [ dsda . g 6D

5)) l <C, 0<p<li (20.4)

=(=1)"*n!2N)~! J g*(s1), -, q* )1 g n AT
—N<§ < <s,<N
(20.5)
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Now we claim that fors, <---<s,and0 < f < |,
$q* s -5 §* 61,08 < Qu €XP(—Dyls, — s41) (20.6)

From this, one easily sees that the integral in (20.5) is bounded as N varies
so that (20.4) holds. Clearly (20.6) follows from

<q4(sl)’ EERR) q4(sn)>T.ﬂ,N < Qn exp(-D’ISj — Sj-1 I) (207)

all j, for take D, = D’/n and |s; — s;_, | maximal. [At this point we are being
very crude and losing all hope of a careful estimate on the growth of C, with
n; more careful analysis ([72]) shows that one can take D, rather than D’
independent of n. Our n~ ! dependence of D, leads to an extra factor of n" in
estimating (20.5).]

To prove (20.7), we use Cartier’s formula, (12.11), which says that

<q4(51), cees q4(sn)>T,li,N = <)?1(51) c 'Yn(sn)>ﬂ,N. .

where (-5 y ~ is an expectation with respect to n independent copies of
{->p ~and [w = exp(27i/n)]

%) = 3, oafs)’

Now, let L(8) = L,(B) + --- + L(B) on L%(R") where L, denotes L as an
operator on the ith variable and let L(8) = L(f) — nE(f). Let

f20 = Iﬁl Qo(x;)

Finally, let ¥ = Y2} w/x?. Then, by a Feynman-Kac formula:
(R(sy) - Rs)> = Qg e LR - Re v EB)z=1  (208)

Wlth Z = (ﬁo, e_ZNigo), to =5 + N, tl f S3 — Sg5 -0 tn_1 =8 7 Su—1s
t, = N — s,. Let O be the ground state for L. Then, as in the proof of (12.16),
foranyi=2,...,n,

(@, e oL T e i) = 0
and thus in (20.8), we can replace etk by e “-{(1 — P) where P =
(@, H8. Let E,(p) be the second lowest eigenvalue of L(f). Then E, — E is

nonvanishing and continuous forall Bin [0, 1]so& = infy 4.4 (E; — E) >0
and

le™41K(1 — P)]| < e
It follows that
(X(s) - Rs)y < Z e 1| Ret3 . Q|| | ReE - Byl
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Each |- | can be rewritten using the Feynman-Kac formulas as a Dg
integral for which Hélder’s inequality can be applied to bound

fe‘")?l---X'me

by [](f e VI X,|I" Dg)!'™. Thus, using the fact that Z > (&,, )? is uniformly
bounded for g [0, 1], we see that:

(R(sy) - R(s)y < Ce ™= sup  [1 + (&, e L[ X |me~10y)]
5,1,0<6<1
I<m<n-1

50 (20.7) follows if we show this last supremum is finite. This can be accom-
plished by considering three cases,s,t < 1,t > 1,5 > L.

Casel s,t<1.
. R - t
(@, e L X me Q) = flX(q(O))I"'e‘”"E"”eXp<*ﬂ f 2 4jw) du) Dq
which can be controlled since g* > 0 and j | X (g(0))|™ Dq < .

Case 2t > 1. It suffices to show that | X |'”e_i is bounded. By the Feyn-
man-Kac formula and ¢* > 0,

l(e™ %))l < (e~ ™) (g)|e HE®

so | X |"'e‘i bounded follows from the fact that | X I'”e‘i” is bounded.
Case3 s> 1.ByCase2, e L| X" = (| X" L)* is bounded.

We have thus proven (20.7) and therefore we have the following.

Theorem 20.2  E(P) has an asymptotic series Y ;2 a,f" as | 0.

Now we want to identify a,. Looking at (20.5), the following is the obvious
guess.

Theorem 20.3  The coefficients a, of Theorem 20.2 are given by

(_1)n+1
- n!

f ] GO q¥(s2), o g s )dr s (209)

— 00 <5, <0

where (-, ..., >7 is an Ursell function with respect to Dgq.
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Remark The same proof as below shows that the analog of (20.9) with
the left-hand side replaced by (n!)~! d"E/dB" and the right-hand side by
{-+->r 5 holds for all B if {--->r ; denotes Ursell functions with respect to
the P(¢),-process associated to L(f).

Proof By the proof of Theorem 20.2, a, = limy_,, a,(N) where
(_ 1)n+ 1 N N
N [ dsye [ dsi s s W)
-N -N

n!
f(sb CRR ) S,,; N) = <q4(51), s q4(5n)>T,N.ﬂ=0

(for B = 0, fis independent of N but we write the proof so as to be applicable
to B # 0). As in the proof of Theorem 20.2, in the region s; < --- <s,;

|G 1reees 503 N) = F(Spa -, 505 00)| < CLe™ W0 4 @ N =50 Drisasil
so that

ay(N) = [(—1)"“(2N)-1 f

~N<s§1 <---<5,<N

a,(N) =

ds, ~-dst(s1,...,s,,;oo)]

+O(N™ Y
Now, the right-hand side of (20.9) is equal to

(—1)"”J‘ ds, -+ ds, f(0,5,,...,5,; ©)
O<sy<+-<s

=(=1"*'2N)! J ds; -+ dsy f(sy, ..., Sps )
—-N<s1<N
S1<s2<:<sy

= d,

since f(. . .; c0) only depends on the successive time differences after reorder-
ing. Thus,

|a, — a(N)| = O(N"") + 2N)™! J. dsy---dsy f(sy, ..., 8,5 0)

—~N<s1<N<s,
51<<s,

But | f(s;)] < Ce™Pisn~s1l 50 the integral is dominated by

N w
C(ZN)‘I f dSl f Isn — 5 'n—Ze—D,,ISn"Sll dS,,
—N N
N
< CNy ! [ dsyempivnia
—N

< C,(2N)! J dye P2 = (N~ 1)
0
Thus a,(N)—a,. |}
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Ursell functions are very complicated sums so the expression (20.9) is of
limited value. To go beyond it we must use the fact that Dqg is a Gaussian
measure. As a preliminary, we note two facts:

Lemma 204 Let X, ..., X, be jointly Gaussian random variables.
Then

<X1 e X2k> = Z <X11Xj1> ot <Xikak>

pairings

where Zpairings denotes the sum over all (2k)!/2*k! ways of breaking (1, ..., 2k)
into k pairs.

Proof Both sides are multilinear and symmetric in the X’s so it suffices to

check the case X, = --- = X,,. That is, we need to show that for Gaussian
X:
2k!
2k __ 2\k
(X% = 25 (X

But this follows from
Cexp(aX)) = exp(3a’<X?>) 1

Lemma 20.5 LetX,,...,X,,beGaussian with respect to some expecta-
tion,<'>.Let Yl = X1 et X“, Y2 = Xll+1 vt Xlz""s Ym = le—l+1 e le
with [,, = 2k. Then the Ursell function with respect to {-) is given by:

um(Yl, ey Ym) = Z <Xi1Xj1> e <Xikak> (20.10)

connected
pairings

where a pairing is connected if and only if {1,..., 2k} is connected after one
joins (1, ..., I,) together, ..., (},_; + 1, ..., I,) together, and then i, to j,,
iz to j2 , etc.

Example Take k=3;Y, =X, X,X5, Y, =X,, V3= XsXg4. Of the
15 pairings, only the three with 5 paired to 6 are not connected.

Proof We first claim that for any random variables

Yy Yy =Y ] ux) (20.11)
PeP mieP
where 2 is the family of all partitions P = {n,, ..., m} of {1, ..., m} and
u(m) = w(Y;, ..., ;) withm; = {j,, ..., ji}. (20.11) is equivalent to
Ui o> Y) = <Yy - V> — )0 [Julm) (20.17)

Pe®?
#(P)=2
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This may be proven inductively by checking Percus’ axioms (see Proposition
12.11) for u,, defined by (20.11') assuming that (20.11) holds for fewer than
mY’s.

On account of (20.11"), if we are given (Y., Y, --- Y,> for any subset
{i;, ..., iy of {1, ..., m} and candidates a(m) for the u(r) and if the a(rn)
satisfy (20.11) for any {Y;, - - - ¥;,>, then a(n) = wu(x). In this way, we can verify
(20.10). For given Gaussian X’s, (Y;, - - - Y;,> is a sum over pairings by Lemma
20.4. Any pairing induces a partition of {i,,. .., i;} bylooking at the connected
subsets induced by joining {1, ..., I}, etc., and then the pairs. Clearly

K %p= ¥ T Y XX
PeP(i1,...,01) =;€ P connected

pairings
of m;

so that the candidates for u(n) given by (20.10) obey (20.11). |}

We are now ready to give the Feynman rules for the coefficients a, of (20.9).
By a labeled n-graph, I', for ¢* we mean » labeled points 1, . . ., » and some
lines joining the points with the property that exactly four lines come out of
each point. Moreover, we label from 1 to 4 those lines associated to each
point. A typical labeled three-graph is shown in Figure 2. Clearly there is a
one—-one correspondence between labeled n-graphs and pairings that enter in
{q*(5y), . . ., q*(sa)) 7. We define the value, o(I"), of a graph as follows : For each
line ! joining i and j let g(I) = 4 exp(—|s; — s;|). Then

(__ 1)n+ 1
o) =—+7— [Tg()ds,---ds, (20.12)
h! s51=0 lel
— 0 <52<D,y4es, ~0K§, <O
In general, the integral in (20.12) will be convergent if and only if I is con-
nected. In colloquial usage, one does not distinguish between I' and »(T")
and calls them both, Feynman graphs, Feynman diagrams, or Feynman
integrals. The last term is unfortunate since the integral in (20.12) is very
different from the formal object of (1.8) which is also called a Feynman in-
tegral. (We note that the Feynman integral of Homology and Feynman
Integrals [131] is of the type of (20.12)—more precisely, it is of the more

i 3 3
! "‘ "

Figure 2. A typical labeled three-graph.
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general type associated below to Green'’s functions—the object of [131] is to
study the analyticity properties of (I') as the external parameters defining
the Green'’s function are varied.) Clearly (20.9) and Lemma 20.5 imply that
the a, of Theorem 20.2 is given by

= Y {o(I") | connected labeled n-graphs I'} (20.13)

Notice that the value of a graph is independent of any of the labeling. For
this reason, it is useful sometimes to consider unlabeled graphs y. We set
v(y) = () for any I" € 9, and s(y) is the number of labeled I"’s which become
y after removing all labels. We leave it to the reader to show that the symmetry
numbers, s(y), are given by:

s() = ni(4ly [M(y)ﬂ m)! ] 2'""”)] _

i<j

where m; (y) is the number of lines joining points i and j in some I' € y and
M(7) is the number of ways of labeling the points leading to identical point-
labeled graphs. For example, if n = 2, there are two connected unlabeled
graphs, shown in Figure 3. Moreover, s(y,) = 4! = 24 [M(y) = n! here;

< O 0

Figure 3. Unlabeled connected two-graphs.

a typical y with n = 3 and with M(y) = 2, not 3! is shown in Figure 4] and
s(y,) = 4141/212.2 = 72. Moreover,

=t (Beona- -
© (1 1
e[ (Leman

\_/

Figure 4. A graph with M(y) # n!.
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SO using
a, = Y. {s(y)v(y) | y an unlabeled connected graph} (20.14)
we see that
a, = —21/8
Let us use these graphs to show that
n'AB" < (—1)y"*'a, < n!CD" (20.15)
(see also [7, 241]).

Lemma 206 Let N(n) be the number of connected labeled n-graphs.
Then,

(n — 1)!2n)/(n!2") < N(n) < (4n)!/[(2n)!12%"]

Proof The upper bound is just the number of ways of pairing 4n objects
which is the total number of labeled diagrams, connected or not. To get the
lower bound, pick one of the (n — 1)! orderings of 2,..., n, say, iy, ..., ip-1.
Let line 2 from point 1 be joined to line 1 from point i;, line 2 from i, to line
1 from i,, etc., and line 2 from i, to line 1 from point 1. Pair the remaining
2n lines in an arbitrary way. Each of these (n — 1)!(2n)!/n!2" graphs is
connected. §

The point is that the lemma implies that

(n!)%ab" < N(n) < (n))’cd” (20.16)

Lemma 20.7 For some fixed f, d and all T":
g < (=) 1p(Min! < & 20.17)

Proof To get the lower bound we consider points s; with 0 < s,
the integral in (20.12). Then g(/) > (4¢)” "/? in that region so

<iin

(=1 nlo(0) 2 [(4e)'T"

To get the upper bound, we first claim that one can pick (n — 1) lines
I, ..., I,_, € T which connect the graph. Assuming this fact, we let x, =
s; — s; for the line [,. The fact that [;, ..., l,_, connect the points implies
that any s; is a linear combination of x;’s so the coordinate transformation
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s; = x, 1s nonsingular. Moreover, it is easy to see that the s; are combinations
of x’s with integral coefficients and vice versa. Thus the transformation has
Jacobian 1. Since |g(!)| < 4,

(~1y+tmtan) < | [ o) dxk](l/z)"“

® 1 —t] " + +1
= f_ 5¢ dt] a2yt =qa2y

This leaves the proof of the claim about [,, ..., l,_,. For n = 2, the result
is obvious for an arbitrary graph, even without the four lines per point
condition. Suppose we know the result for n < ny, — 1 for such an arbitrary
graph. Given an n point connected graph pick some line, [, joining i and j.
Consider the graph obtained by fusing i and j. It can be connected by n, — 2
lines by the induction hypothesis. Adding the line [,, we connect the original
graph with n, — 1 lines. ||

(20.16) and (20.17) clearly imply the following theorem.

Theorem 20.8  (20.15) holds.

Actually, one can estimate the quantity N(n) of Lemma 20.6 for n large
rather exactly. Let

G(n) = (4n)1/[(2n)12%] = (4n — 1)(dn — 3)--- (1)

be the number of graphs connected or not. Then

lim N(n)/G(n) = 1 (20.18)
Indeed, forn > 2
|G(n) — N(n)| < CG(n)n~! (20.19)

which is even stronger than (20.18). Our proof of (20.19) is motivated by ideas
of Cvitanovic, Lautrup, and Pearson [39a]. We begin by considering the
functions:

a0

a(t) = 2n)~'? J exp(—1ix? — tx*) dx

-

c(t) = In a(r)
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Then a(t) has a diagramatic perturbation expansion identical to that of the
g* oscillator except that now every graph has value 1. Thus (with G(0) = 1,
N(0) = 0),

a~ § A -1y

)~ ¥ Cl ey

with A(n) = G(n)/n!;C(n) = N(n)/n!. Equating coefficients of t" in a(t) =
exp(c(t)), we see that

A('1)=C(n)+ki2(k?)*l 2 CG)-CGy gzl (2020

JrecTie=

(20.20) can also be obiained by realizing that an arbitrary labeled graph
breaks into k connected pieces. The number of graphs in k pieces is just

Z(k!)_l[n!/jl!"'jk!]N(jl)"’N(jk)

Now let

B(k, n) = z AG) - AGH Ji=1

Jt¥tjx=n

Noting that A(n — j)A(j) is decreasing in j untilj = [n/2] and then increasing,
one sees that for n = 2:

2n nn - 1)
B2, m < A(m) [(4n " D@an -3 " ”((4;1 ~ 1)(4n = 3)(@n — 5)(dn — 7))]

< Dn~1A(n) (20.21)

for a suitable constant D. In the above, the first contribution comes from the
j=1and j=n— 1 terms in the sums and the second by bounding the
remaining sum by nA(2)A(n — 2). Now

n—k+1
Btk,n)= ), AG)Bk — 1;n—j)
j1=1

From this formula and (20.21) one easily proves inductively in k that

B(k,n) < D*n"'A(n) (20.22)



20. Perturbation Theory 223

Using (20.20), (20.22), and the trivial bound () < A(j), we obtain (20.19)
with ¢ = ¢”. By working with these same ideas, one can obtain fairly easily
explicit terms in an asymptotic expansion

N(n)/G(n) ~ 1 + byn~' + b,n™2 +
* ok *

We close this section with a discussion of two further aspects of the Feyn-
man graphical analysis: “graphs in p-space,” and graphs for Green’s func-
tions. In (20.12) introduce a variable p, for each ! and write

1 [e'risi—si
g(h = 7 fw dp,

Doing this involves choosing a direction (from i to j) on each line. Proceeding
formally, we do each s; integration as follows: The s;-dependence is

j exp[isf(g P — oZm pz)] dp; = 2n5(§ P - g:t P:)

where Y, p, is over those lines pointing from i to some j and ) ,, p; is over
those lines pointing from some j to i. Then

oy = 0 1)” f {H(p, +1)7'en! dp,}l'lm(zm ZP')

lel out

While the above manipulations are formal, it is not hard to justify the final
result. In essence, the last integral is a generalized convolution and its
equality to »(I) is just a generalization of the usual Fourier transform formula
relating products and convolutions. Graphically, the above can be described
as follows: Each line has a momentum p, with conservation of momentum
enforced at each vertexi = 2,...,n(it then follows automatically at vertex 1).
The number of free momenta to integrate over (usually called loop momenta
since they can be chosen to “flow” in loops) is thus not 2z but only n + 1.
This “momentum space” analysis is common for two reasons: In quantum
field theory, it is most usual to discuss renormalization theory in “p-space”
(e.g., Weinberg [284]) although more recently x-space analysis has become
more common (e.g., Speer [262]); see Hepp [125] for a review of renormaliza-
tion theory. In discussing scattering theory in quantum field theory, the
Fourier transforms of the Green’s functions we are about to discuss are
natural and these have a p-space analysis.
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Finally, one often considers the (truncated) Euclidean Green’s functions
defined by

Gn(sl’ s sn) = <CI(51)= ey q(sn)>T,N=oo,ﬂ
It is not hard to show by mimicking the proof of Theorem 20.2, that

ak
5—[? Gn(sls seey sn)

G G Y YL N Sy

Thus G, has an asymptotic series given by a sum of a suitable kind of con-
nected Feynman graph.

21. Dirichlet Boundaries and Decoupling Singularities
in Scattering Theory

We have already seen in Section 7 (see Lemma 7.10) that Dirichlet bound-
ary conditions are closely connected to the exclusion of Wiener paths from
certain regions. However, because we dealt with Wiener paths with a fixed
initial point, i.e., with Brownian motion, we required a rather strong regular-
ity condition to establish the connection. In this section, we begin by estab-
lishing a weaker kind of connection under the most general circumstances;
we will then describe some ideas of Deift-Simon [45] on the connection of
those exclusion formulas and a problem in scattering theory.

The following involves the general operator Hyp, g defined in Section 7;
i.e., the operator on L*(R*\ S) which is the Friedrich’s extension of —A on
CE(R\S).

Theorem 21.1  Let S be an arbitrary closed set in R*. Then for any
f,ge LAR\S):

(e = | T@ODo40) di(e 211
where Q is the set of paths:

0={o|a@)¢S,0<s<t}

Proof ([252]) Extend the form of Hp, g to L*(R") by viewing it as a non-
densely defined quadratic form.
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Write R'\S = { Js=, K, where each K, is compact, K, is open, and
K, < K,, ;. Choose ¢,€ C? so that ¢, =1 on K, and supp ¢, = K, ;.

Define
Y IV, () + dist(x, $)73,  x¢S
Vix)=4"
0, XeSsS

Let Q(V) = {feL*|{ V(x)|f(x)|* dx < co}. We first claim that Q(V)n
Q(—A) = Q(Hp,s), for fe Q(V) implies that Y (V) f > < o so that if

fe€Q(V) N Q(—A), then (V¢,)f—0 in L2 Thus ¢,f—f, V(¢,f) — Vf;
ie., fe Q(Hp,s). But clearly, CF(R'\S) = Q(V) n Q(—A). Thus, by the
monotone convergence theorems for forms [152, 253, 254],

e 'Hois = g.lim exp[ —t(—3A + V)] (21.2)
ilo

By approximating V with ¥,, = min(m, V'), one sees that

(f.exp[— (=24 + AV)]g)

= ff ((ﬂ(O))g(w(t))eXp(—i fo V(e(s)) dS) dpo(w)  (21.3)

But since V has a dist(x, S) 2 term and Wiener paths are Holder continuous
of order 4, [} V(o(s)) ds = oo if w(s)e S for some s. Conversely [§, V(ew(s))
ds < oo if w never hits S since ® then lies in some K, and moreover,
dist(ew(s), )~ ? is bounded. Thus

0-{o

so that (21.2, 3) imply (21.1). |

f tV(m(s)) ds < oo}
(1]

Before turning to our main application of (21.1), we remark upon some
other connections:

(1) (21.1) gives an expression for Pp, 5(X, ¥; t) holding almost everywhere
in x, y. It is an ideal tool for studying rather subtle properties of Pp, g such as
whether it approaches zero as x — S.

(2) Intuition connected with (21.1) is useful in deciding what kinds of
singularities in V can destroy simplicity of the ground state for —A + V
(see [80]).

(3) Motivated by (21.1), Klauder [159] has noted an interesting pheno-
menon in singular perturbation theory. Let L, = —1d%/dx* + 4x* — 1, as
usual, and let V = x7% (a > 2). Then (e.g., [215]) L(B) = L, + BV is
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essentially self-adjoint on CF(R\{0}) for # > 0. Let E(f8) denote the ground
state energy of L(f). Then

lim E(B) = 1 # inf spec(Ly) = 0

Blo0
For, if one writes a Feynman-Kac formula for L(B), [ V(w(s)) ds = oo for
any (Holder continuous) path crossing zero. Thus, taking § | 0, we recover
the Feynman-Kac formulas for “L,” with a Dirichlet condition at zero,
call it L, and not L,. We have inf spec(Lp) = 1. In fact, our proof of (21.1) is
motivated by [159]. See [43, 246] for a discussion of the Klauder phenomena
using purely quadratic form ideas; see [160, 114, 123] for more detailed
information on E(f) for § small; see [79] for a more thorough analysis of the
Wiener paths and the Feynman-Kac formula for L(B).

We now turn to the application to scattering theory. Given an operator,
H, which is somehow like H, = —4A at spatial infinity, the two fundamental
‘“‘foundational >’ questions of scattering theory are the existence of the wave
operators

Q%(H, Hy) = s-lim ¢ itHo

t—F o0
and their completeness
Ran Q*(H, H,) = Ran P, (H)

where P, (H) is the projection onto all vectors whose H-spectral measures
are absolutely continuous. An extensive literature has developed to study the
case H = Hy + V mainly based on perturbation formulas like

(H-2)"'=(Hy—2)7'= —(Hy —2)"'V(H — 2)™!

which do not distinguish between positive and negative singularities of V.
(See [216] for a review.) Motivated by an example of Pearson [200], described
further below, Deift and Simon [45] tried to see what local singularities of V
had no effect on the existence and completeness questions; i.e., they sought
theorems which asserted that Q*(H, + V, H,) existed and were complete if
Q*(H, + W, H,) existed and were complete and if W — V had compact
support (earlier Kupsch-Sandhas [163] had studied the analogous existence
question). For simplicity, we suppose that W = 0; i.e., we consider here Vs
of compact support; it is easy to extend the results to the more general setting,
Deift-Simon exploited the semigroup e *#, which is more sensitive to the
sign of ¥V, Feynman—Kac formulas, and some rather elaborate machinery.
Some small simplifications of the case V' > 0 occur in [252]. Using different
machinery (and in particular, neither path integrals nor Dirichlet boundaries)
Combescure-Ginibre [38] recovered the Deift-Simon results with fewer
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technicalities (see also [216] for an exposition of their work); below we use
some of the ideas of [ 38] to simplify the details of the Deift-Simon approach.
Independently of Deift-Simon, related results were obtained by Pearson
[201] and Semenov [236].

Suppose first that V > 0 has compact support. We will suppose that
V e L'(R"\G) where G is a closed set of measure zero. In that case, Hy, + V
is a densely defined closed form on Q(H,) n Q(V) and so defines an operator
H. By Theorem 6.2, e '¥ is given by a Feynman—Kac formula. Let S be a
sphere which surrounds supp(V). Let Hy be the Dirichlet Laplacian Hp, g and
let H' = Hy + V. The strategy is to prove that e — ¢~ Hojs trace class by
proving that e ™™ — ¢7H g=Ho _ p=Ho and ¢=H' _ o~ Hé gre trace class and
then use the following (for a proof, see, e.g., [216]).

Theorem 21.2 Let A, B be self-adjoint operators which are bounded
from below. Suppose that e™* — ¢~ Bisin .# |, the trace class. Then

Q*(4, B) = s-lim ¢"e™ 2P, (B)

t=>j oo

exist and have the same range as P, (A).

The following illustrates the use of (21.1).

Lemma 21.3 Let Hj be Hp, g where S is the boundary of any compact
convex set. Then, for all x, y €, the unbounded component of R"\S:

0 < (e7o — 7oy, y) < (2nt) ™2 exp(—[dist(x, S)% + dist(y, S)*]/4t)
(21.4)

In particular,
A + X?)(e Ho — o ™HO)(1 4 X2 (21.5)
is Hilbert-Schmidt for any integers, k and m.

Proof By symmetry, it suffices to prove (21.4) with 4¢ replaced by 2t and
with the dist(y, S) term replaced by zero. Given x € Q, let z, be the point in §
closest to x and let = be the plane through z, perpendicular to x — z,. By
some simple geometry, © separates S and x. Thus, any Wiener path joining x
and y which passes through S must pass through =; i.., since (21.1) implies for
almost every X, y

(e—tHn — ¢ tHp:s WX, y) = f dﬂo,x,y;t(m) (21.6)

a(s)eS, some 0 <s<t
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we have
0 < (e7 " — e ™Mi)(x,y) < (e™™ — e"HPin)(x, Y)
~tHo(x, y) 217

where y’ is the image of yunder reflection about #. In obtaining (21.7), we use
the method of images formula for e~ *#P:~, (21.7) and the trivial

[(e™"Ho — 7o) (x, y)| < e Ho(x,y)

=e

imply that
(e — e™"H0))(x, y)| < min[e ™" (x, y), e""(x, ¥)]
Since either
dist(x, y) > dist(x, z,) or dist(x, y') > dist(x, zy)

we have proven (21.4). The formula (21.4) implies the kernel of (21.5) is
square integrable for x, y € Q. A similar proof yields a

(2rt) ™2 exp( —dist(x, Q)?/21)
bound for xe Q, y ¢ Q and a (2nt) "*2 bound for x, y ¢ Q. |

Theorem 214 If V >0 has compact support [V e L'(R'\G), H as
above] then e ¥ — ¢ ~Ho s trace class and, in particular, Q* (H, H,) exist and
are complete.

Proof let A=¢ Ho— ¢ Ho B¢ o H C=¢Ho_ e H We

prove A, B, and C are trace class. Write 4 = PQ + Q'P’, where

P =e Hi2(l 4+ x2)7k

Q — (1 + XZ)k(e—H(,/Z _ e-—Hb/Z)

Q/ — (e-HO/Z — e—H{,/2)(1 + XZ)k

P = (1 + X?) ke Ho2
By the lemma, Q, Q' are Hilbert-Schmidt for any k and it is easy to see that
P, P’ are Hilbert-Schmidt for k large. Thus A4 is a trace class. Since the
Feynman-Kac formula [including (21.4)] and V > 0 show that the integral
kernels of P, Q, P’, Q' dominate the analogs with H,, H;, replaced by H, H',

we see that B is trace class. Finally if Q, ' are the unbounded and bounded
components of R\ S, then

eM=e @el on LYQ)® LYY

e H = o~ K+V) L
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Now e X has abounded kernel and thus, since €' is bounded, e~ is Hilbert-
Schmidt and so ¢ “?'* is trace class. Again, by the Feynman-Kac formula,
e "®*V) s also Hilbert-Schmidt and so trace class. Thus C =e¢ X® 0
— e~ ®*Y)® 0 s also trace class. |

Remark By very different methods, Davies and Simon [41] have proven
that H’s of the above type also have empty singular continuous spectrum.

We now want to extend this result to allow V to have a negative part. The
idea, also important in Section 25, will be to exploit Holder’s inequality

in the form:
tp 1/g
Je_w du < (J du) (fe“’w du)
0 Q

which will lead to a bound on an integral kernel K(x,y) by L(x, y)*M(x,y)! ~*.
Thus, we will need the following lemma.

Lemma 21.5 Let p=2" (n > 1). Suppose that A, Be 4, (=414l
€ J,}) with positive integral kernels L(x, y), M(x, y) [on some measure space
L3(X, dv)]. Let C be an integral operator with kernel K obeying

| K(x, y)| < L(x, y)*M(x, y)' = (21.8)
for0 <a <1.Then Ce.#,.

Proof (by induction on n) n =1 is easy, since 4 €.#, if and only if its
integral kernel isin L(X x X,dv ® dv) and L, M € L? implies L°M! %€ L?
by Holder’s inequality. Suppose the result is known for n < n,. (21.8) implies
that (by Hoélder’s inequality)

IK*K(x, )| < f IK(z, 9| K, )| dv(z)

< (L*L)(x, p)(M*M)(x, y)' =
so by the induction hypotheses K*Ke £, ,. |

Lemma2l6 LetH(x)=Hy+oaV.Letp=2"n>1).1f
(1 + X?) " *exp(—tH(1 + 9))
is in £, for all large k (both 6 > 0 and ¢ fixed), then
(1 + X?)'fexp(—tH) — exp(—tH)](1 + X?)™

isin £ for all |, m. Here H = H(1)and H' = Hp s + V for S the boundary
of a convex compact set.
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Proof Let P be the family of paths hitting S. Then

(e — e M)(x,y)| = f exp(—f V(e(s)) ds) dHo,x.y:t
P 0

< <Lduo.,‘,m)”y<fexp(_(1 +8) J‘V) dﬂo)l/lhi

where y™1 + (1 + )"! = 1. Let
K(x,y) = (1 + x) e ™™ — 7 )(x, y)(1 + y*)"
L(x,y) = (1 4+ x?)(e” ™o — e~ ™Ho)(x, yX1 + y?)
M(x, y) = (1 + x}) ke (%, y)

with a =9yl + (1 + 6)"'k]; B=ym. Then |K|< L'Y*MYV1+*9 By hy-
pothesis, M is an .# , kernel, and by Lemma 21.3, L is £, so K is #, by the
last lemma. ||

Lemma 217 LetV_ <0.IfH, + (1 + §)V_ is bounded from below for
some 6 > 0, then H' = Hy + V_ obeys (1 + X?) %™ is in .#, for all
large k.

Proof As in the proof of Theorem 21.4:
e—zH' — e—tH,‘, — (e—t(K+V_) _ e—tK) @ 0

Moreover, (1 + X?)~* is bounded so we need (1 + X2) "%~ e £, and
e "K*V-) oK e g, . The former is true by considerations used in the proof
of Theorem 21.4. e ¥ € #, is proven in Theorem 21.4. Finally, since H, +
(1 + d)V_ > a, we have that

1

1 1 1
K+V.=—ro (K+(1+6)V)+ K2 K+

1+

so that the eigenvalues of ¢ '**"-) are dominated by (constant times)
eigenvalues of e ¥ so e "* V-V e g, |

Theorem 21.8([45]) LetV havecompactsupportandletV = V, + V_,
V, >0, V. <0 with V, e LL(R"\G) and with H, + (1 + §)V_ bounded
from below for some 6 > 0. Let H = H, + V. Then ¢ " — ¢~ *Ho ig trace
class for all t > 0 and, in particular, Q*(H, H,) exist and are complete.
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Proof Consider A, B, C as in Theorem 21.4. 4 is trace class as it is there.
C is trace class as in the last lemma. Moreover, as in Theorem 21.4, we can
eliminate the V, and need only show that the analogs of P, Q, P’, Q' with
H, replaced by # = H, + V_, etc,, are Hilbert-Schmidt. This we do by
induction, showing they lie in #,, p = 2". By hypothesis, (Ho + V. +¢)" 12
<a(Ho+ )72 so (1 + X3)™MH + )" 2(1 + X?)*e #,, for some k
and p, = 2™.Itfollowsthat(1 + X?)"%(# + ¢)~ ”4andthus(1 + X2)heHH
lie in .#,,,. By Lemma 21.6, (1 + X?){(e™" — ¢ )1 + X?)™ is in £,,,
and by Lemma 217,(1 + X2) ke Hjsin 4, o Usmg the P, Q factorization
ofe™ — ¢~ we see that this d1ﬁ‘erence liesin .#,, . Since (1 + X?)~*e ~t
isalsoin ., (by Lemma 21.7), we see that (1 + XZ) ke~tH js in I o We can
now repeat the above argument (n, — 1) times and conclude that all the

required operators lie in .#,. |

Remark Some condition like H, + (1 + 0)V_ > —a is needed for
completeness since Pearson [200] has constructed a potential V' for which
V is C* away from zero, supp V is compact, H, + V is bounded below and
essentially self-adjoint on CP(R*\0), Q*(H, H,) exist, but Ran Q* #
Ran Q7!

22. Crushed lce and the Wiener Sausage

The title of this section suggests a cocktail party and, indeed, our formal
goal will be to understand the first law of cocktail-dynamics: crushed ice is
a more effective cooling agent than block ice. That is, n small balls of ice each
of volume 4nr3/3 are a more efficient cooler than one chunk of volume
4nnr®/3. The folk wisdom is that this is due to surface area; i.c., the n balls are
roughly comparable to a chunk with surface area 4nnr?. In fact this intuition
is wrong; the relevant factor is nr: explicitly »n coolers of radius r, will make
no difference if nr, —» 0 as n - o0 and will be infinitely efficient if nr, -
and the spheres are distributed “throughout” the region to be cooled in a
suitable sense. Thus, crushed ice is even better than the folk think!

The model we consider is a bounded, open region Q in R? and n balls,
By, ..., B,, of radius r, about points x,, ..., X, € Q. We consider the lowest
eigenvalue E,(n) of —3A on L%Q) with Dirichlet boundary conditions on
dQ and on By, ..., B,. The solution of the heat equation & = 1Au with zero
boundary conditions behaves asymptotically as t —» o0 as ce 'E'® with
¢ > 0ifu(x,t = 0) > 0 so that the size of E, is a measure of the efficiency of
cooling. Putting Dirichlet boundary conditions on dQ is somewhat un-
natural, corresponding to placing the “pitcher,” €, in an ice bath; Neumann
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boundary conditions would be more natural but more complicated for both
the analytic and probabilistic approaches described below.

This problem (without the picturesque cocktail analogy) was first con-
sidered by Kac [141] in relation to some related work by Kac and Luttinger
[144]. Kacused Wiener integral methods. Rauch and Taylor [210] considered
the problem analytically. We will reverse the historical order and first
describe the analytical results following a lecture of Rauch [208] and then
describe the probabilistic methods. The latter are more involved but give
much more detailed information. In line with the methods, the analytical
approach interprets “distributed throughout Q” as “uniformly distributed”
while the probabilistic approach as “randomly distributed”—due to fluctua-
tions these are very different notions.

The crushed ice problem is one of a number of closely related problems,
some of them quantum mechanical; these are discussed in [141, 144, 208-
2117; here for intuition, we mention one other: Consider optical scattering
off n spherical absorbers of radius r, distributed uniformly through Q; i..,
the wave equation ii = Au where the Laplacian has vanishing boundary
conditions on ¢Q. Then ([209, 210]) as n — oo, the absorbers become trans-
parent (i.e., the scattering approaches that with no absorbers) if nr, — 0 and
opaque (i.e., the scattering approaches that with zero boundary conditions
on 9Q) if nr, — co. At first sight this is surprising, for in the limit of ray optics,
cross-sections (and so nr}) should count. The point is that ray optics
is only good for wavelengths short compared with the dimensions of the
problem, so as r, — 0, for no wavelengths. What is relevant is Brownian
paths—the occurrence of nr,, rather than nr2 is an expression of the wigglyness
of Brownian paths—indeed it is, in some sense, a restatement of the fact that
the hitting probability for a sphere of radius r is proportional to r and not
r?in v = 3 dimensions.

We first discuss the analytical approach.

Theorem 22.1 ([208]) Fix Q and define E,(n) as above and let E,(0) be
the lowest eigenvalue of —A® on L?(Q) with Dirichlet conditions on 6Q.
Suppose that |x; — x;| > 4r, for all i, j. Then for nr, < d,

VE(0) < JE(n) < /E,©) + ¢i/nr,, (22.1)

for suitable nonzero constants ¢, d depending only on Q (and independent of
n, r, and x;). In particular, E,(n) » E(0) as n — oo if nr, — 0.

Remark Using more sophisticated methods, Rauch {208] proves a
stronger result.
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Proof E,(0) < E,(n) is easy. Let  be a normalized eigenvector for —A®
with eigenvalue E,(0). For any * piecewise C' ” function ¢ with ¢ = 0 on each
ball B, and 0 < ¢ < 1, we have that

J1V(¢¥)1* dx
[ 1w 1? dx

by the variational principle. Now clearly as ¢ < 1

1/2 1/2 1/2
(ﬁww)lzdx) SUth//lzdx) +nwuw<f|vwdx)

fmw dx> 1 —f W1 dx
{x|p(x)<1}

> 1 — W2 [{x | $(x) < 1}
Thus (22.1) follows if we find ¢ with
IVoll3 < anr,

{x | ¢(x) < 1}| < bnr}

E,(n) <

and

with a, b independent of x;, n, r,. Let x; be the center of ball B; and write r
for r,. Let

0, Ix = x<r
X —X|—r
b0 =X NTr L <o
r
1, |x — x;| > 2r

and take ¢ = [[/-, ¢;. Then the supp(l — ¢,) are disjoint so

4n 28n
IVoIZ = X IVl = nr=2 = (0r) = S r

and

32
x[9(0 < 1}l = X 1{x |60 < 1} ="

Definition  We say that the B; are uniformly distributed of degree m if and
only if there exist R, so that if B; are the balls of radius R, about x;, then(a)
Qc | B, and (b) each y € Q is contained in at most m different B;.
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Theorem 22.2 ([208]) If the B; are uniformly distributed of degree m,
then

E > 1.5 —¢&nr, 47r 27
(n) m2 |Q| ( . )
where ¢ is a function of n'/®r, going to zero as n'/*r, - 0. In particular, if
nr, — o, n*3r, - 0, then E,(n) - .

Remark 1If nr, = oo, we can always decrease r, [which will only decrease
E(n)]so that nr, —» oo, n'*r, — 0. [ Notice that uniform distribution is only a
property of the x; not of the r,’s.]

Proof Let ¢(R, r) be the lowest eigenvalue of —%A in L*({x|r <|x|<R})
with the boundary conditions ¢(x) = 0 if |x| =r, 0¢/on =0 if |x| =
Then c(R, r) = R™?f(r/R) by scaling. We first claim that

lim y~'f(y) = 1.5 (22.3)
yio0
For choose R = 1, let ¢(x) be the required eigenfunction and note that, by a
partial wave expansion, ¢(x) = |x| 'u(|x|) where —u” = k?u, f(r) =
1k2, u(r) = 0,and v’ — (1/x)u = 0 at x = 1. Thus u(x) = sin k(x — r) where
k is the smallest solution of

k cos(k(1 — r)) = sin(k(1 — r))

Using tan x ~ x + 3x> + O(x®) one easily sees that k> ~ 3r as r — 0. This
proves (22.3).

Thus, using the fact that Neumann boundary conditions correspond to
no condition on the form domain [217], for any trial function vanishing on
B;:

f VY2 dx > (15 — &) % | 1912 dx (22.4)
ﬁ.’ Rn 3i
where ¢ | 0 as r,/R, — 0. Using

m LIVW dx > ;Z f§i|VWI2 dx

13

> [ we= fw

and m|Q| > $nnR> > |Q|, one obtains (22.2) from (22.4). i



22. Wiener Sausage 235

Remark  While the above uses no Wiener integrals, it implies something
about Wiener paths; namely, if {B{"}7., is a family of uniformly distributed
spheres with nr, — o0, then almost every Wiener path o has the property
that for all large n, ® hits some B{".

% %k ¥

Next we turn to the probabilistic approach. Let x = (x, .. .) be an infinite
sequence of points in Q. We put the product measure dy = X, |Q| ! dx,
on these sequences; i.e., the X’s are independently distributed “uniformly”
through Q (intuitively, they are randomly placed). Fix a sequence ry, r,, ...
of positive numbers once and for all. Given x in Q® and n we let H(x, n) be
—1A on L*(©)) with Dirichlet boundary conditions on 4Q and on the n balls
of radius r, about x,, ..., X,.. Let E,(x, n) be the kth eigenvalue of H(x, n). We
view E;(x, n) as random variables, E,(n), on (Q%, dy). To state the main result
we need a new notion:

Definition Let f,, f be random variables. We say that f, converges to fin
probability if and only if

lim E(|f, - f1>¢e =0

n— o

for each ¢ > 0.

Remark 1t is easy to see that | f, — f|, — O implies convergence in
probability and also that f,(x) — f(x) for almost every x implies convergence
in probability. From the former fact one easily sees that if E(f,) — a and
E(f?}) — a? then f, — a in probability.

Theorem 22.3 ({141])  Let nr, — o (¢« may be zero or infinity) as n — o0.
Then

E(n) » E(0) + 2ra|Q| ! (22.5)
in probability for each k.

‘Thus random impurities produce a constant shift of the spectrum. Since
E,(n) is monotone increasing in r,, it is easy to see that the 0 < o < o results
imply the a = 0, oo results also, so henceforth we suppose that 0 < « < .
The proof of Theorem 22.3 requires some elaborate preliminary machinery.
First, we need a Feynman-Kac formula for Tr(e *#®™), a formula already
used in Section 10.
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Theorem 22.4  Let Q be an arbitrary open bounded set in R" and let H®
be the operator —3A on L*(2) with Dirichlet conditions on 0. Then, for any
t>0,

Tr(e™*#%) = 2nr)~ "2 J' d'x E(x + b(s)eQ,0 < s <1|b(t) = 0) (22.6)
0

Proof Let V be the potential used in the proof of Theorem 21.1 and let
H(A, m, &) = —iA + A min(V, m) + ex2. Then, e~ *#*™9 5 trace class and
its trace is given by (9.5). We take m — o0, ¢ = 0 and then 4 — 0 and recover
the required result. |

Thus
Tr(e H&=my = (2nt)~ 32 Jd"‘y E(y + b(s) e Q;

y+b(s)¢Bx,n),i=1,...,n0<s<t|bit)=0) 22.7)
where By(x, n) are the balls excluded in the definition of H(x, n). Let -}
denote expectation with respect to dy on Q®. Our goal is to show that

(Tr(e™ tHEMYS 5 g~ 2malli™! Ty(p~tH(0)) (22.3)
CITr(e™Hemm) |2y — | ¢~ 2metal ™ Tr(e~HO)|2 (229)

so that for each 1, ) e™ " converges to ) e~ "E®*2=I2" in probability.

To prove (22.8), we interchange the dy integration with the y and Db
integration and do the dy integration first. Thus we will have a fixed path b
and want to know whether a randomly placed sphere of radius ¢ is hit by b.
This clearly depends on the volume of a é-neighborhood of b. We therefore
make the following definition.

Definition  Wy(a, c) is the set-valued random variable on Brownian
paths defined by

Wa, c)(b) = {x||x — b(s)] < 6 for some s € [a, c]}

Wi(t) = W0, 1) is called the Wiener sausage for obvious geometric and
punnish reasons.

. . @
We work in v = 3 dimensions throughout. We are interested in | Wy(t)| as
& — 0. Because of scaling

[ WasA20)| = 2| Wx0)l
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for any A > 0 so we can consider |W,(1)] as t -+ oo and then deduce the
behavior of |W,(t)| = 8} | W, (6 *t)|asé 0.

Theorem 22.5 (Spitzer [266])
E(Wx(0)]) = 2rdt + 462(2nt)'/? + (4n/3)8° (22.10)

and, in particular,

lim 6~ 'E(Wy®)!) = 2mt (22.11)
8l0
lim ¢t~ 'E(|Wy(t)|) = 2rd (22.12)
t—+ o0

Proof Without loss take 6 = 1. Let
f(x,t) = E(x + b(s) e B, forsome 0 < s < t)

where B; is the ball of radius 1 about 0. Now
E(W@D = [Db [ax (x| xe W)

=fdeDb{x|—x+b(s)eB1forsomeOSS$t}

= jdx J(x,t)

Next notice that f(x, r) has the following properties:

(a) for|x|> 1, lim, o, f(x,1) =0,
(b) fort>0,limy ., f(x,6)=1,
(¢) in|x|> 1,t > 0,fobeys

of 1
o

(d forix{<l,t>0,f(x,t)=1.

(d) is trivial and (a), (b) follow from the kind of hitting probability considera-
tions in Section 7 (see especially the Aside following Lemma 7.21). (c)
follows from (7.12) which says that

1—f= fPD(x,y;r)dy
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and the formula
0P, 1
—=zA it
Bt 2 PD(x, y )

(using the convergence of the integral, one gets the differential equation for fa
priori in distributional sense).
Since fis spherically symmetric, we take | x| f(x) = g(|x|) and find that

dg(r,t) 107
o ~252900

with the boundary conditions g(r,t) > 0ast—>0forr > 1 and g(1,¢) = 1.
The equation and first boundary condition suggest we try

0
g(ra t) = f (27[[)_1/2e_('-}’-1)2/2t dp(y)

and the second boundary condition gives dp = 2dy. Thus

f(x,t) = 2r 1Qmt)~1? f dz exp[— (1) '(z + |x] — 1)*]
0
for [x| = 1. We thus compute

f(X, t) d’x = (4702(27“)_1/2 f rdr f e~ (Etr— 1)%/2t dz
1 0

Ix]21

= (41t)2(21tt)‘”2f rer~ e U2 gy
1 r

® y
= (47t)2(27rt)_1/2f dy e_(y—l)szrdr
1

1
= (4m)(2nt) V2 j W? + 2u)e ™ 1* dy
0

= 2nt + 4Q2nt)'/?
Since f <1 f(% £) d*x = 4n/3, we have (22.10). ]

Remarks 1. Spitzer [266] considers a more general problem, namely
0(t) = (x¢x f(x, £) d®x where B, is replaced by a general set K in defining
f(x, t). He finds the asymptotics of Q(t) to O(t'/?). In particular, the 27 in
(22.10) enters as the Newtonian capacity of the ball. Of course, Spitzer’s
considerations in general are more sophisticated than those above; (22.10) is
mentioned as an aside.
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2. (22.11) is a quantitative expression of the “fatness™ of Wiener paths.
For a smooth curve of length [, the volume ¥j of the neighborhood goes as
no2l (note 62, not §) as & — 0. In some kind of sense, (22.11) and its analog in
higher dimensions say that the image of the Wiener path has “dimension 2.”

It is not quite true that | W (nT)| = Zf;l | Wi((j — DnT, jnT)| since the
successive pieces of sausage overlap, but if T is large this should be negligible.
The pieces in this last sum are independent. It is therefore reasonable that
some kind of strong law of large numbers holds and that | W,(¢)|/|t| - 2=
for almost every b. The first half of the following theorem is due to Kesten,
Spitzer, and Whitman (quoted in Spitzer [265]). The second half is stated by
Kac [141] without proof. The proof we give is based in part on that of
Kesten, Spitzer, and Whitman, and in part on unpublished remarks of
Varadhan.

Theorem 22.6  With probability one,

tim | PO _ 5 (22.13a)
o BV

for fixed ¢ and
lim M = 2nt (22.13b)
siol O i

for fixed t.

Proof Without loss, we can take 6 = 1 in (22.13a) and ¢t = 1 in (22.13b),
since the other results then follow by scaling. Now let 4, = | Wy(1)}/é and
B; = |W,(672)|/6™ 2. For each fixed 8, A; and B, have the same probability
distribution, so that L? convergence theorems like E(4;) — 2r for one imply
the analogous result for the other. However, the joint distributions as ¢ varies
are not the same: For example, 24,; > A, with probability one while
B,; < 4B; with probability one but these inequalities (which rely on the fact
that | W(t)] is increasing in t and J) are not true almost everywhere if 4 and
B are interchanged. Thus (22.13a) and (22.13b) are not equivalent statements.

We will prove below that for § < 1,

E([B, — 21]?) < C&'2 (22.14)

Assuming (22.14), let us prove (22.13). Fix p € (0, 1). Then, by the standard
Borel-Cantelli argument we have used often before (see the proof of the
strong law of large numbers),

lim B,n = 2

n—w
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with probability one. Moreover, since W,(T) is monotone in T, if p"*! <
é < p” then

p?Byn < Bs < pT 2B et
so that almost everywhere

2np? < lim B; < lim B; < 2np~2

Since p is arbitrary in (0, 1), (22.13a) follows.
To prove (22.13b), we first note that since (22.14) involves a single §, the
same inequality holds for A; so that, as before,

lim A,» = 2n

with probability one. Using now the inequality
pApn+| < A,; < p_ 114,_-,::

which comes from the monotonicity of Wy(1) in 4, we obtain (22.13b) as
above.

This leaves the proof of (22.14). Let ry , = |Wi((n — )T, nT)|. For fixed
T, the rr , are identically distributed and they are independent by the basic
property of Brownian motion of starting afresh. By (22.10):

|E(rr /T —2n| < C, T~ (22.15a)

forall T > 1. Clearly
[t/T]1+1
W@l Y rr; (22.15b)
i=1
which implies, taking T = 1 and changing ¢ to T, that
E(r7..) < (T + D*E(IW, (D) (22.15¢)

In this last inequality, E(]W;(1)|*) < oo, for if max, .., |b(s)| < m + 1,
then W;(1) is less than or equal to the volume of a sphere of radius m + 2, so

E(lW,(D|») < il (4—315 (m+ 2)3) E(omax1 |b(s)| = m) < ©

Now use (22.15b) again and the independence to note that

EIW®F) < ([%] - 1)E(r%,1) + ([%] * I)ZE(rT,l)Z

so using (22.15a, c) we see that (taking T = t'/?)
E[iW ()| — 2m]?) < Ct™*
for t > 1. This is just a restatement of (22.14).
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In (22.7) it is not arbitrary Wiener paths that enter but paths with (0)
= (). We therefore need the following corollary.

Corollary 22.7 For almost every path for the (three-dimensional)
Brownian bridge

lim 61| Wy(1)| = 2n
élo

Proof By considerations similar to those in Theorem 5.5, the Brownian
bridge « restricted to [0, t] is absolutely continuous with respect to Brownian
motionsolongast < 1. Thusforanyt < 1and almost every Brownian bridge
path:

lim 6~ Y| Wy(t)| = 2nt
310

Since | W3(1)| > | Wj(t)| we see that
lim 6~ |Wx(1)| = 2n

4l0
Since a(1 — t) = afr) we see that | Wy3)| = | W3, 1)] so that 57| W3, 1)
— 7 for almost every a-path. Since
WD < W@ + | W3, DI
we have that

fmé 1 |Wil)|<n+n
310

We now have the tools for proving (22.8). To prove (22.9) we must consider
a somewhat more complicated problem. Namely, fix x and y (perhaps equal)
and let b, b’ be independent Brownian motions with sausages W, W’. Then we
need to know that

S7H(x + W) v (y + W) - 4n

i.e., that the overlap of the two sausages is negligible relative to the total size
as 6 —» 0. A moment’s reflection will convince the reader that this should be
true and that stopping times are the right tools for its proof.

Theorem 22.8 Let W and W’ be the Wiener sausages for two indepen-
dent Brownian motions and let x, y be fixed. Then, with probability one

67 (x + WD) U (y + Wi))| > 4nt
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as 6} 0. The same result is true for the (three-dimensional) Brownian bridge
andt < 1.

Proof Without loss take y = 0. Consider first the case of Brownian
motion. Clearly, we need to show that

(X + W) n W) -0 (22.16)
Fix the b’ path and ¢ and define stopping times for the b-path, 7, 64, 7,,...,
inductively by
7, = inf{s | b(s) + x € W5(t)}
o, = inf{s = 7; | b(s) + x ¢ W3, (1)}
Tiyq = inf{s > o, | b(s) + x € W5 ()}
with the proviso that the stopping times are ¢ if no such s exists. Clearly for

é < g x + W; and W, intersect only for b-times belonging to the intervals
(z;, 6;), so that

|(x + W) N WD) < .leWa(Ti, o)l

By the Dynkin-Hunt theorem, each b(s + 7;) — b(t;) is a Brownian motion,
so with probability one

lim 61|(x + WD) 0 WD) <22 Y (0; — 7))
10 i=1

<2n){s|x + b(s)e W3, (1); s < t}] = 2mg,
Thus, (22.16) follows from

limg, =0
£l 0

with probability one. But g, decreases as ¢ does so, by the monotone con-
vergence theorem, it suffices that

lim E(g,) = 0 (22.17)

£l 0

This we can compute by Fubini’s theorem:
t
Bg) = [Db [ ds (5B |x + bs) € Wi, )
0

= flds E(x + b(S) € W,35(t))
0

For each s # 0, the probability distribution of x + b(s) is absolutely con-
tinuous so that E(x + b(s) € W5(t)) | 0 as ¢ - Osince| W,| = 0 by Theorem
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22.6. Thus (22.17) follows by the monotone convergence theorem. This proves
the theorem in the Brownian motion case.

For the Brownian bridge, we note first that for ¢ < 1, the result follows
from the Brownian motion case as in Corollary 22,7, Thus, fort = 1

lim 67 (x + W;) u Wj| > sup(4nt) = 4n
él0 t<1
On the other hand, by Corollary 22.7

im &~ 1(x + W) U W] < lim 67 '(JW;| + |W5]) = 4= |}
él0

We now have the tools for proving (22.8) and (22.9). To complete the proof
of (22.5) we need one more fact:

Lemma 22.9  Suppose we are given a doubly indexed family of random
variables E (n) and two sequences a; and b; of numbers so that

(i) 0<Efn)<Ej ()

(i) a; < Efn)

(iii) a; < b;

(iv) Y,e ™ <o  foreach t
(V) ZJ e—tEj(n) - ZJ e—lbj

in probability as n — oo for each ¢t > 0. Then, as n - «©

Efn) - b;
in probability.

Proof 1t suffices to prove that E,(n) — b, in probability, for once we have
that, Y ;5 , e~ "™ will converge in probability to Y ;, e so by induction
we will obtain Ejn) — b;. Let us show that the probability that E,(n) >
b, + d goestozeroforeach é > 0. The proof of the other inequality is similar.

Suppose that E (n) > b, + 4. Pick j, so that a;,,, > b; + 4. Then for
t>1

Ju ®
Z e Eim) — Z e TEim Z e Eim
j ji=1 Jjot1

Jo ©
< Ze—lEi(n)+ Z e—taj
j=1 jo+1

©
< e—t(b1+5)|:j0 + Z e‘(“i’bl—a)]

Jo+1
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Thus, for suitable ¢ large and some ¢ > 0,
Ze-tEj(n) < e—tb1 —¢
Thus condition (v) implies that E(E,(n) > b, + ) > 0asn — 0. |

Proof of Theorem 22.3 Fix b. Then

0+ W) nQ
Q]

+bs)¢gB(x;n):;0<s<td>=1

since the center x; must lie outside W, (7). Since the x;’s are independent, we
have by (22.7) that

(Tr(e”H&MYS = (2mt) =32 fd3y E([1 —1QI' (W, (1) + y) n Q|1

y + bs)eQ|b() = 0)

For almost every path with b(t) = Oand y + b(s) e Q,y + W, () = Qforr,
small and thus we can replace [(y + W, (¢)) N Q| by | W, (¢)| for n large. For
almost every path

[1- IQi_IIVV,"(t)l]" — g~ 2mal| !
by the compound interest formula and

n W01 = ) Ol Gy

on account of Corollary 22.7. Thus, by the dominated convergence theorem
and Theorem 22.4,

lim {Tr(e &™)y = (2m1) =32 2wl ™! f d®y E(y + b(s) € Q | b(t) = 0)

n—*aw

=" 2nta|Q) ! Tr(e—tH(O))

Thus, we have (22.8). The proof of (22.9) is similar, except we need two
independent Brownian motions to write out Tr(-)? and then doing the {-)-
average first, we need information on the volume of two independent sausages.
This information is provided by Theorem 22.8 giving (22.9).

By the Remark preceding Theorem 22.3, (22.8) and (22.9) imply that
Tr(e” "H*") converges in probability to Tr(e ™ “H(®+2mi%™ ) whence (22.5)
follows from Lemma 22.9. [Choose a; = E(0).] |

Remark Rauch and Taylor [210] apply operator theoretic methods to
avoid some of the more involved probabilistic considerations above, especial-
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ly Theorem 22.8. For example, as in the proof of Theorem 22.3, we can use
the Feynman-Kac formula and Theorem 22.6 to see that

lim {(f; e #"g)y = (f, ¢~*4g) (22.18)

where A = H(0) + 2ra|Q]~ L. Since (22.18) holds for ¢t and 2¢ we have that
lim<”(e—tH(x:n) — e—tA)f“2> — 0

n—w

This “strong convergence in probability,” which is neither stronger nor
weaker than (22.5), is often physically useful. Similarly, we are able to prove
(22.5) directly from (22.8) and (22.18) without Lemma 22.9 or (22.9): For
(22.18) and (22.8) for t and 2t imply that

(Tr[(e =M — ¢7 4275 = 0 (22.19)
Moreover, a theorem of Lidskii (see Kato [152, Section 11.6.5]) implies that

¥ (1,(C) — p,(D))* < TH((C — D)?)

for any bounded positive operators C and D with eigenvalues u,(C) >
U2(C) > - - - so that (22.19) yields (22.5).

23. The Statistical Mechanics of Charged Particles
with Positive Definite Interactions

Most of the applications described so far have involved the nonrelativistic
quantum mechanics of at most a few particles and Gaussian measures on
continuous functions (Db, Dq, and D«) or their perturbations. In the next two
sections we want to briefly indicate some applications to statistical mechanics
and quantum field theory. These applications will require us to utilize some
more complicated Gaussian processes than those considered thus far in-
cluding some which cannot be naturally realized on the space of continuous
functions.

In this section, we consider some statistical mechanical models. There has
been considerable application of the Wiener process itself to study quantum
statistical mechanics. We will not discuss this here but we refer the reader to
Edwards-Lenard [73] and Siegert [239] for two of the earliest discussions,
and to Ginibre [99, 100] and Brydges-Federbush [27] for some deep
applications to the construction of correlation functions at low § and/or z.
Here we want to discuss a Gaussian realization of the basic objects of the
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classical statistical mechanics of a special but very interesting class of inter-
actions. This realization has been described by various authors, e.g., [239, 1,
93]. By essentially passing first to a Wiener integral realization and then to
this Gaussian realization inside the Wiener integrals, one can extend this
formalism and the results below to quantum statistical mechanics with
Boltzmann statistics (i.e, no symmetrization or antisymmetrization) (see
[239, 94]). After presenting this Gaussian realization we will describe some
beautiful results of Frohlich and Park [94] controlling the thermodynamic
limit for this special class of interactions at all §, z.

We want to consider v-dimensional particles coming in two charges +1
interacting with a bounded potential V(x — y) obeying

Y Zz;V(x; — x) =0 (23.1)
i,j=1

for all z., ..., z,€C and x,, ..., x,€ R”; that is, two particles with equal
charges at points x and y have interaction V(x — y) and with opposite
charges —V(x —y). The grand canonical partition function in volume
A < R is defined by

@© N

- z - v —BUn(xi €

Exz B = Y ~i2 Ny Nd”xe BUN(X: € (23.2)
N=o I¥: gj=41 JA

ji=1,... N
where
UMXg, oo Xns 6y ovns Ey) = .ZsisjV(x,‘ - X)) (23.3)
i<j

The pressure in region A is given by

Pu(z, B) = |A|™" log Ez, B) (234)

and the correlation functions (essentially giving the probability density of
finding particles of charge ¢; at points x;) are given by

px‘)(xl’ e xn; 81’ B} En; 2z, ﬂ)

= E;\- 12" z —_' 2—N z deX’ exp(_ﬁUN+n(x1 X,; &, 8,))

N=0 V- =1 JAY
(23.5)

The resulis below depend critically on the somewhat artificial restriction
to a single fugacity z for both charges. For a discussion of the physics of the
grand canonical formalism see Huang [129].

Our goal in this section is to prove the following.
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Theorem 23.1 (Frohlich Park [94]) Under the hypothesis (23.1) we
have that

(@) limy -, Palz, B) = P(z, B) exists for all positive z and B where the
lim,, ., is intended in the sense of choosing A to run through hyper-
cubes and taking all the sides to infinity.

(b) limp_m p0(x;, & 2, B) = p™(x,, &; z, B) exists for all positive z and $,
and ¢; = +1, x; € R* where the lim, .g. is intended in the sense of the
net of all regions ordered by inclusion. The p™ are translation invariant
[i.e., p™(x; + a) = p™(x;) (same a)], are charge reversal invariant (ie.,
under ¢; = —¢;, all j), have any symmetry of V [ie., if V(Tx) = V(x)
for some linear T, then p(Tx;) = p"(x;)] and are monotone increasing
in z

Remarks 1. Since V is supposed bounded, this result does not include
the Coulomb potential but does include cutoff Coulomb potentials, e.g.,
V(x) = [ Ix — y|"*p(y) dy with p > 0 in L' n L™ and positive definite. In
fact, for Coulomb potentials, the integrals in (23.2) diverge; i.e., matter is
only stable for quantum mechanics (needed for the traces which replace the
integrals to converge) of fermions [needed for the sum in (23.2) to converge].

2. Essentially for free, the limit in (a) can be replaced by “van Hove
convergence” (see [226]). Actually by a little more work, Frohlich-Park
[94] extend the limit to a very general type.

3. With only the small cost of slightly more complicated notation, one
can extend all the results to “generalized charges™ such as dipole moments;
see [94].

4. It is useful to compare this result with those obtained by more “stand-
ard” methods [226]. The convergence of the pressure, part (a) of Theorem
23.1, can be proven under much weaker conditions than (23.1) but only if
some rather strong falloff (~|x|~*7*) is assumed on V; no falloff is required
here. More significantly, convergence of the correlation functions is only
known for general V’s at small z or § and then only with considerably more
effort than we will require! Since it can be absorbed into V, we henceforth set

B=1.

The basic philosophy with which we begin is that any positive definite
function is crying out to be the covariance of a Gaussian process. Thus we
construct a Gaussian process {g(X)},.gs With covariance V(x — y); we use
du(q) to denote the corresponding measure. Occasionally, it will be useful to
think of Y 7, a;q(x;) as ¢(O}—, a;6,,) in the notation of Corollary 2.4. If V
is Holder continuous, then one can prove a multidimensional Kolmogorov
lemma and realize dp on C(R") and in any event, by Minlos’ theorem, we can
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realize du on &'(R"). In fact, the explicit realization of du will play no serious
role. Of course, we have that ((-) = { - dp).

() - ool )

= exp(——% Z a;a; V(x; - xj))
= exp(—%V(O) z a,—2 - .Z.aia,- Vix; — Xj))

Therefore

<_]_[lcos(q(x,-))> =2"" z::t <exp(i i sjq(xj))>
j= gj=%1 j=1

=2"" exp(— g V(O)) _Zile‘"""“"

Looking at the definition (23.2) of = we see that we have the first half of the
following theorem.

Theorem 23.2  Define

Cp= f ACOS(q(X)) dx (23.6)

Z = zexp(3V(0))
Then
(@) Ea2) = {exp(ZCy)» (23.7)

(b) oK, &32) = z~"<exp(i > e,-q(xj))>

int

= 2”'<cos( i sjq(xj))> (23.8)
Jj=1 int
where
ine = Ea@) 71 exp(ECa))

Remarks 1. The effect of keeping the B is to replace cos(q(x)) by
cos(B1/%g(x)) in (23.6).
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2. For the reader worried about the existence of the integral (23.6), we
can either add the requirement that ¢ has a version on C(R"), or else we can
regard (23.6) as formal and define C, as the unique L2-function f with

[ r@erans au = [ ccostatyyer sy ay

3. The Gaussian realization, Theorem 23.2, is sometimes called the Sine—
Gordon transformation since it relates the Coulomb gas to the Sine-Gordon
field theory; see [93].

Proof (23.7) is already proven. (23.8) is similar if we note that
n N
<exp<i ) 31“1("1)) [1 COS((I(XD)>
Jj=1 k=1
= 2_"exp[—<n -; N)V(o):l Z e_Un+N(x.x';£.s’)

=11

and that p is real. |

Corollary 23.3

(@) Ea(2) < exp(ZIA])
(b) Py(z)<Z
(c) P(x, e;2) < 2

Proof (a) and (c) follow immediately from the bound |cos u| < 1 and
(23.7), (23.8). (b) is obvious from (a). }

The key to the proof of Theorem 23.1 is two correlation inequalities; the
first is due to Park [198] and the second is a closely related result of Frohlich-
Park [94]. Both have proofs closely related to Ginibre’s proof [101] of his
correlation inequalities for “plane rotors.” We state them for general Gaus-
sian processes, but use Y a;$(v;) rather than the integral needed above. The
results for the integrals which follow similarly will be used below without
comment.

Theorem 23.4  Let ¢ be the Gaussian process over some Hilbert space,

H#, and let -} denote expectation with respect to du. Fix v, ..., v,€ H#.
Fora,,...,a, > Odefine

Z(ay, ..., a) = <exp(i a; cos ¢(v.-))>
i=1
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and
Dapyonan = Z7 1 exp() a; cos($(v)))
Then
(@) Foranyuv, we S,
cos P(v)cos P(w)),, = {cos P(v)),{cos p(w)),,
(b) Z(a; + b) = Z(a))Z(b).

Proof We use the method of duplicate systems exploited already in
Section 12 in proving GKS II. Let ¢’ be an independent copy of ¢ and let

Y aup bE j di(¢) du(¢’). Let i, n be defined by
$(v) = Y(v) — n(v)
¢'(v) = Y() + n(v)

Then ¢, n are independent Gaussian processes with the same covariance,
namely, ¥(v, w); i.e., [ - du(¢) du(¢’) = |- dv(y) dv(n) for a suitable dv. As in
Section 12,

a = 2Z*[{cos p(v)cos p(w)),, — {cos ¢(v)),{cos ¢(w)),,]
= {[cos ¢(v) — cos ¢'(v)][cos P(w) — cos ¢'(w))
x exp(Y_ afcos ¢(v)) + cos ¢' (V)] aupt
Using
cos(x + y) + cos(x — y) = 2¢cos X COS y
cos(x + y) —cos(x — y) = —2sinxsin y
we see that

a = 4{[sin Y(v)][sin n(v)][sin Y(w)][sin n(w)]
x exp(2 ). a; cos Y(v;)cos 7(v)))

Expanding the exponential we have a sum of terms of the form

SOV DD aupt = [ f 1) dv(w)]

which is obviously positive. This proves (a).
To prove (b) we write
B =Z(a+ b) — Z(a)Z(b)
= {exp(}. (a; + by)cos $(v) — exp(Q a; cos P(v;) + b; cos ¢'(v))>
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and use
cos(x F y) =cosxcosy + sin xsiny
to write
B = 2{exp[. (a; + by)cos Y(v))cos n(v;) + Y. a; sin Y(vsin n(v;)]
x sinh(}_ b; sin Y(v,)sin 7(0;))gupr
Expanding exp and sinh in power series, we again get a sum of { f (/) f (1)) aup1

>0 1

Proof of Theorem 23.1 (a) (See [94] for an alternate proof using Jensen’s
inequality.) By Theorem 23.4(b), In E, is superadditive; i.e.,

InE, 4, >InE, +InE,,

for A, n A, = . Since sup(|A|7'E,) < oo, by Corollary 23.3(b) the limit
exists by standard arguments [226].
(b) By Theorem 23.4(a) and the standard formula,

2 [<fe

0z | (&)
we see that p{” is monotone in z. Moreover writing C,o- — C, = f(1) — f(0)
with f(1) = C, + AC,. and taking derivatives with respect to 4, we see that

P is monotone in A so, since sup, pf) < oo by Corollary 23.3(a), the
limit exists. Its invariance properties foliow by standard arguments; see,

e.g., [120]. §

= {Jg> — X

z=0

The Gaussian realization theorem, Theorem 23.2, is also the starting point
for a number of detailed analyses of systems obeying (23.1) [sometimes
without the hypothesis ¥V € L*(V(0) = oo allowed)]: For example, Frohlich
[93] has studied the stability of two-dimensional Yukawa and Coulomb gases
(Yukawa; respectively, Coulomb means V(k) = (k* + m?)~'or V(k) = k~2),
and Brydges [26] has proven under some additional hypotheses that for
suitable z, f, the o’s decrease exponentially even though the V’s have a long
range tail (“Debye screening”). In this work, the close analogy between
{Ja,. and the quantum field theories described in Section 24 is crucial.
Indeed, the two-dimensional statistical mechanics Yukawa model is identical
to the :cos ¢:, model so that Frohlich in [93] relies on his earlier work on
that model [92, 95]. Brydges relies heavily on machinery of Glimm et al.
[110] proving exponential falloff of correlations (“mass gap”) in certain
quantum field theories with broken symmetry.
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24. An Introduction to Euclidean Quantum Field Theory

In the early days of quantum mechanics while all of classical physics was
being quantized, it was quite natural to try to quantize the Maxwell elec-
tromagnetic field. The quantization of the field in the absence of sources was
not hard and, indeed, Dirac’s demonstration of the resulting photon-wave
duality was one of the early triumphs of the “new” quantum mechanics. It
was reasonable to attempt to add interaction via a perturbation series and it
was here that the famous infinities occurred that took 20 years to understand
even on a formal and perturbation theoretic level. The resulting theory of
Dyson, Feynman, Schwinger, and Tomonoga [234] represents one of the
great challenges of mathematical physics: To find a well-defined mathematical
model for quantum electrodynamics which has the Feynman perturbation
series as asymptotic series and which “makes physical sense.”

The first critical step towards a solution of this problem was made in the
early 1950’s by Garding and Wightman who gave a precise mathematical
definition of a quantum field theory by listing the properties they should have;
i.e., they gave exact meaning to “makes physical sense.” A considerable and
beautiful theory developed of the general study of such objects but nontrivial
examples were not known even if the dimension of space-time was decreased
(the famous infinities of the theory are less severe in lower dimension, as we
shall see).

The period since 1964 has seen the development of a discipline called
constructive quantum field theory which has succeeded in the construction of
nontrivial models in two and three space-time dimensions. In its earliest
phases, this theory was characterized by a combination of C*-algebraic and
operator theoretic methods. A considerable amount of information was
obtained by Glimm and Jaffe and their students with significant contributions
by Friedrichs, Nelson and Segal. But even in the simplest models, Lorentz
invariance and uniqueness of the vacuum eluded proof.

The key to the completion of the verification of the Wightman axioms in
the simplest models as well as a basic element in virtually all progress in the
field since 1972 has been the exploitation of “Euclidean” functional integra-
tion methods. Formal functional integration (but the analog of Feynman
integrals rather than Wiener integrals) was an element of Feynman’s original
work, and Wiener integrals were used by Glimm, Jaffe, and Nelson as a tool
to study certain partial differential operators which entered as approxima-
tions to their field theoretic Hamiltonians, but it was Nelson’s development
in 1971 of an Euclidean covariant infinite-dimensional path integral based, in
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part, on earlicr work of Segal and Symanzik that changed the outlook to a
fully * Euclidean” one.

Obviously, we cannot give a complete treatment of the subject in one short
section or even give a comprehensive overview. Our goal is to introduce the
basic formalism and renormalization theory. See [106, 258, 282] for further
discussion.

A quantum field is an operator-valued distribution ®(x, t), i.., a linear map
from #(R") (v is the dimension of space-time; we occasionally write x =
(x, t) to distinguish the space and time components) to the (unbounded)
operators on a Hilbert space with some additional properties called Garding-
Wightman axtoms; these and some related theory are described, e.g., in
[18, 137, 215, 267]. There is a distinguished vector, the vacuum, in the theory
denoted by ¥/,. The ordinary distributions

VVn(xla LI xn) = (WO! (D(xl) e (D(xn)l/lo)

are particularly important since the theory can be “reconstructed” given
them, and the axioms can be translated into properties of W,. One conse-
quence of the axioms is that W, is the boundary value of an analytic function
W, (zy, ..., z,) analytic in a certain region, R. R includes all points of the form
z; = (x;, is;) with (x;, 5;) € R” and with z, # z, (all k, [). The functions

Sn(yb R yn) = S(yj9 sj)
= I/Vn(yja isj)

are called Schwinger functions.

Rather than constructing the Wightman field @, one constructs a measure
dp on &'(R”) whose moments are the candidates for Schwinger functions; ie.,
one lets

( [emr10) d"y)(r) = T())
as random variables and takes

5.1 ) = f $(v)) - D) dp @4.1)

that is,

[0 BAOD ROD = [T+ T() duT)

One thus needs some conditions on the measure du or on S, which allow
us to reconstruct ®. The earliest such conditions are due to Nelson [193], but
they turn out to be difficult to verify in practice. Osterwalder—Schrader [197]
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gave a set of conditions on the S,’s which modulo growth conditions with n
are equivalent to the Gdarding-Wightman axioms (no effective axioms
strictly equivalent to the Garding-Wightman axioms are known) and, in
particular, they isolated a condition now known as OS (Osterwalder-
Schrader) positivity. Frohlich [91] found a special case of the Osterwalder—
Schrader reconstruction theorem with a more direct proof which suffices in
almost all applications. His result, which we now quote, is further discussed
in [89, 90, 106].

Theorem 24.1 (Frohlich’s reconstruction theorem)  Let du be a cylinder
measure on &'(R") (v is the number of space-time dimensions) obeying:

(i) Proper Euclidean motions [i.e., T(x) > T(Ax + b), b € R*, 4 € SO(v)]
leave du invariant.
(i) OS positivity; i.e., given a real-valued fe #(R") with
supp f < {(x,s), s > 0},
let (61)(x, s) = f(x, —s). Then for real-valued f1, ..., f, with the above
support and z,,...,z,e C:

n

¥ 7z, [expULaCR) ~ BOHD du = 0

Jrk=1

(iii)) For any fe #(R"),
Jexp@(ry du <

(iv) The action of the translations (x, s) — (X, s + t) is ergodic.

Then, there is a unique (scalar) field theory obeying the Garding-Wightman
axioms whose Schwinger functions are given by (24.1).

The most natural way to construct measures is to try Gaussian dy’s. These
turn out to describe “trivial” field theories in that they describe particles
without interactions—they are the analog of the harmonic oscillator. Despite
their triviality, they are significant for there is a reasonable way to try to
construct nontrivial du’s, namely, as perturbations of the Gaussian du’s
analogous to the P(¢), construction. We therefore begin by analyzing
Gaussian du’s.

Theorem 24.2 A Gaussian measure du on F'(R") obeys conditions
(i)-(iv) of Theorem 24.1 if and only if the covariance S,(x, y) = | ¢(x)(y) du
is of the form:

S;(x,9) = @n)~ f =98 (k) 'k
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with
$,(k) = f dp (m)k? + m?)~! + P(k?) (24.2)

where dp is a polynomially bounded positive measure on [0, c0), so that the
integral lies in &’ and P is a polynomial which is positive on [0, o).

Sketch of proof (i) is equivalent to S,(x, y) = f(x — y) with f rotation
invariant, (iii) is automatic for Gaussian process, and (iv) can be seen to be
equivalent to f(x) - 0 as x — co. That leaves the analysis of (ii). This is
clearly equivalent to

S %z, expl—18:(k — 06 fu — 0)] = 0

jk=1
It can be shown that this, in turn, is equivalent to

5:00./) 20

for all f with the proper support property. This is an analog to the usual
positive definiteness condition that leads to Bochner’s theorem. There is a
proof of that theorem (see, e.g., [215]) that constructs an auxiliary Hilbert
space and uses Stone’s theorem on that space. A similar analysis works here,
except that now the unitary group of Bochner’s theorem is a unitary group
in the x variables and a self-adjoint semigroup in the s-variables. The tem-
peredness of S, leads to the boundedness of the semigroup. Thus for s > 0
and du a tempered measure:

2

SZ(X7 S, 03 0) - W

f eik-xe—sE d/.l(E, k)
EzO

Since S, is rotationally invariant,

0 0
[xig—sa—)q]SZ =0

This translates into Lorentz-invariance of du. Since du is supported in the
region E > 0, it follows (see, e.g., [199]) that

dU(E, k) = Cod(E, k) + fdp(mz)[E-lé(E — /K + m®) &~ K] dE

Using (a > 0)

L[ dk, e
2n Jk2 +a*  2a
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we find that for s > 0
2C, et dp(m?)
. 0 —_ v
$:%.5:0,0) ==+ f(Zn)“ [ a4k

Since S; > 0ass — o0, Cy, =0,

Rotation invariance yields the applicability of the formula for all (x, s) # 0.
All that remains is an ambiguity of a positive-definite rotation invariant
distribution supported at zero. This gives the polynomial P(k?) for the Fourier
transform. |

Remark There is, for v = 2, a possible infrared (k = 0) singularity in
(24.2) depending on the behavior of dp at m = 0. This singularity cannot be
canceled by a local in x-space singularity so we need the condition on the
integral defining a distribution.

The P(k?) term in (24.2) will only make the infinities described below more
severe so the possibility of such a term is not seriously discussed (it will not
effect the W,’s for the Gaussian theory, but should effect the perturbed theory).
We therefore take P = 0 and dp(m?) = 6(m? — mi) d(m?). The resulting
Gaussian process is called the free Euclidean field of mass m,. How can we
perturb this process and keep axioms (i)-(iv) of Theorem 24.1? Let us proceed
formally at first. Suppose one can define a function F(¢(x)) of ¢(x). Let
Ua = [rea F(¢(x)) d"x and define

Let A be a square symmetric about the s = 0 axis, so U, = U,, + 6(U,))
where Ay = A {s > 0}. Thus (Z, = [ e~ Y dpy),

Za J(BF)F dv, = f(Fe‘U“x)B(Fe'UAn) dug =0

so OS positivity for du, implies the same for du,. If we can somehow take
A — o0 and obtain lim, _, ,, dv,, then Euclidean invariance is obtained. The
regularity conditions (iii) hopefully can still hold. Finally, the ergodicity (iv)
can be investigated. In fact, for certain special F’s, it should fail for good
physical reasons and this has been demonstrated in some cases {97, 109]. The
obstructions to the above program are twofold: (a) Ultraviolet problems are
those that are connected with the fact that ¢(x) is not meaningful as a random
variable and thus neither is F(¢(x)). We discuss this further below. (b)
Infinite volume problems are those controlling lim,_, dv,. For suitable
theories in v = 2, 3 dimensions (formally, at least, the problems in v = 4 are
ultraviolet and the methods used for v = 2, 3 to control infinite volume
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should work for v = 4 once the ultraviolet problems are controlled), these
problems have been overcome using certain expansions [108, 71] which are
the analog of the high temperature expansions of statistical mechanics, and
by using the correlation inequality methods of Section 12 {120, 258]. We do
not discuss this problem further.

One can see the ultraviolet problem quite explicitly by looking at the sup-
port of the measure dy,, for the free Euclidean field. Collella and Lanford [36]
have shown that for v > 2, the measure of those distributions T which are
equal to a signed measure on some open set is zero. Thus ¢(x) is really not
meaningful so that F(¢(x)) is not well defined for any F. The way out is to
consider objects ¢,(x) = | f,(x — y)¢(y) &"y for a family f, in & approaching
d(x). Then ¢, is continuous for each nsince & * &' < ),, the C* polynomially
bounded functions. Thus we can form F,(¢,(x)); if we choose F, suitably, it
might happen that F,(¢,(x)) has a limit. Of course, the limit y/(x) cannot be a
nonconstant random variable with finite moments if y is to be Euclidean
covariant and OS positive [for F(x — y) = EQW () — EW(xX)EW())
will have the form of (24.2)], but one can hope that the limit exists in the sense
of “generalized processes”; i.e., | f(x)F,(¢,(x)) dx converges for each nice
enough f.

To realize this strategy, we return to the perturbation theory of Section 20.
Suppose that we consider replacing g* by g* + ag® + b. For the current
purpose, give the values of graphs with a general function g(t) replacing
Le~ " in the contribution of lines. The O(B) term is exactly 3g(0)*> + ag(0) + b.
Other than this, no b-terms occur. To describe all the other terms, we con-
sider all graphs with n vertices, but each vertex can have either two lines
coming out or four. For each vertex with only two lines, we multiply the
graph by a. Notice that except for labeling, there is a one-one correspondence
between graphs with only two lines coming out of vertices iy, . . . , i, and those
graphs with four lines out of each vertex but with a single self-pairing at
vertices iy, ..., i,. We can therefore describe all connected graphs with more
than two vertices by considering only the g*-graphs, but modifying the rules
so that a self-loop has the value g(0) + 4a rather than g(0) (the £ comes from
the labeling possibilities). The special choice a = —6g(0), b = 3g(0)? results
in the following graphical rules: Follow the rules for q* but allow no diagrams
with lines coming from the same vertex joined together. The formal rules for a
d(x)* perturbation of the free field of mass m,, follow those of Section 20, but
we use two-dimensional integrals and use

g(x) = (2m)™ f PR + md) dp

Forv > 2,9(0) = co but when v = 2, the singularity at x = 0 is only logarith-
mic and there is exponential falloff at infinity. Thus, the only “divergent”
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graphs are those with self-loops. Therefore, when v = 2, we take (:—: agrees
with earlier definition of Wick ordering for Gaussian random variables!)

by = by — 6{dp>b7 + 31>

One expects on the basis of this perturbation theory that (for v = 2)

U(f) = lim | f(x):$u(x): d*x
exists and this can be proven (see, e.g., [258]). More subtle is the result of
Nelson that | eYY du, < oo for f*s which are nonnegative and sufficiently
nice (actually, fe L? will suffice if f > 0; see [258]). This solves the ultraviolet
problem in v = 2 dimensions at least for ¢* theories.
For v = 3, all divergent Wick-ordered graphs contain one of three especi-
ally simple graphs (of order §2, B2, and B3, respectively) as a subgraph.
Formally, one can cancel the infinities by taking

Fi(¢n) = B:d7: + a,f:¢7: + b, B> + ¢, p°
with a,, b,, ¢, diverging as n — oo, F, does not have a limit but

e—U(f) d/.to
j‘e—U(f) d,uo

does for suitable s (the basic result on du is due to Glimm-Jaffe [105];
the last sentence includes refinements of [81, 235]). In this way, v = 3 dimen-
sional theories have been constructed.

For v = 4, there are an infinite number of divergent graphs which are
“primitively divergent” and no definitive progress has been made on non-
perturbative control of the ultraviolet problem.

25. Properties of Eigenfunctions, Wave Packets,
and Green’s Functions

Two questions concerning the properties of eigenfunctions of H =
—1A + V have been extensively studied. Are they smooth or at least bound-
ed ? Do they fall off exponentially? Two related questions which one can ask
concern smoothness and boundedness of the integral kernel e~ "#(x, y) for
e~'"H (often called the Green’s function) and of functions ¢ in C*(H) =

. D(H™. We have touched upon continuity of e "(x, y) in Section 6,
but only with rather strong hypotheses.
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Detailed history and results associated with the “conventional™ approach
to these problems may be found in [217, Section X111.12]. Here we want to
discuss the attack on these problems using path integrals. Our approach to
the I’* and smoothness problems is motivated by that of Herbst and Sloan
[126]. These authors do not explicitly use path integrals, but as they exploit
positivity of ¢ (indeed, they consider H = F(—iV) + V for functions F
with exp(—tF(—iV)) an operator with a positive integral kernel) and the
Trotter product formula, they are “essentially path theoretic”; moreover,
they are certainly motivated by a path integral intuition. Our presentation
of this aspect is simplified by relying on the Portenko [204a] results described
in Theorem 11.2; independently, Carmona [31] noticed this simplifying idea.
Our discussion of the exponential falloff behavior is patterned directly on
that of Carmona [32]. Devinatz [46a] has used some of these ideas to
study self-adjointness problems.

In comparing the results of the conventional approach with those of the
path integral method, one finds that generally the latter are somewhat super-
ior. For example, the conditions on the potential in Corollary 25.7 below are
somewhat weaker than those of Kato [150] and Simon [243]. Moreover, if
H= —A+V and Ve LAR’) with p > v/2, then Kato and Simon find
D(H™) = L™ where N — oo as p — v/2; while we, following Herbst-Sloan
[126], find an N independent of p (recently, using non-path-integral methods,
Brezis—Kato [25] have found a result of a similar genre which is, in some
ways, stronger). Moreover, the conditions on the potential required in the
various exponential falloff results obtained by Carmona are weaker than
those of Schnol [231] or Simon [244, 245]. However, the constants in the
rate of exponential falloff obtained with path integrals are presently far from
optimal although that may change with further development. Throughout
our discussion, we make no attempt to find good overall constants in front of
bounds.

We begin by noting that the proof of Theorem 11.2 actually shows some-
what more than stated there, namely, the following.

Proposition 25.1 Let W > 0 be a measurable function on R”. If
t
sup E(f W(x + b(s)) ds) =y<l1
X 0

then, for any x,

E(exp(fW(x + b(s)) ds)) <(I=-7t<ow
o
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To estimate E(j & W(x + b(s)) ds), we note that it is the same as
t/2

2| (e*W)Xx)ds
1]

so that the following is useful.

Lemma 25.2 For any W > 0and any ¢,

e ! f‘(e‘AW)(x) ds < [(—=A + t™H)'WY(x) (25.1)
0
for almost every x.

Proof Since e** has a positive integral kernel and W > 0,
t )
e ! f(eSAW)(x) ds < f e (e AW)(x) ds
o 0
which equals [(—=A + t™ )7 'W)(x). B

Definition  Let A be the cube with unit side in R®, centered about 0. We
say that f is uniformly locally L? (written f € LE(R")) if and only if

1/p
1flegmey = SUPUAlf(X + VI dY] <®

Lemma 25.3
(a) If We LXR") where p > v/2 (for v > 2) or p > 1 (for v = 1), then
im (A + )" 'W|l,=0 25.2)

(b) If xe R’ is written, x = (y, z) with ye R*, ze R** and if p > /2 and
sup, [W(-, 2)l|pwe) < 0, then (25.2) still holds.
(0 IfWelL(R)n L'(R)and p > v/2 > r,v > 3, then

AT Wi, < ¢, LIWI, + IWi,]

Remarks 1. The naturalness of uniformly locally LP-spaces for various
contexts related to those here was noted by Strichartz [268]. They are useful,
for example, in consideration of periodic media.

2. The point of (b) is the following: To treat N particles in three dimen-
sions, one takes v=3N and V(x)=z,-<j Vi(x;—X;) where x=(Xy,...,Xy)
(x; € R*)and Vj;is a function on R’. Since we can takey = x; — X;, we see that
to control (—A + a)”'V,; we only need V;;€ Lf with p > 3, whereas (a)
alone would lead one to suspect that p > 3N/2 is needed.
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Proof (a) Let f(x — y) be the integral kernel for (—A + o)~ !, Then,
lettingg=(1-p Y L

[ fx = piwe ay

-3 [ fo+viwa-y-nia

yeZ¥

1/q 1/
) (f lfa(y+7)l“) (f IW(x—y-v)l”) ’
yelZ¥ yeA YeEA

< (o, PIW | L »wvy
where

oo, q) = Y (.7, 9)
¥

1/q
o0, Y, q) = (f Alfa,(y + Y)I")

From the fact that fi(x) ~ |x|"®"2 (v > 3), fi(x) ~In|x|™! (v =2),
fi(x) ~ 1 (v = 1) near |x| = 0, and f;(x) ~ e~'*I near |x| = oo, we see that
(e, q) < oo for o = 1. Moreover, f(x) = [& e~ *(e*"*)(x, 0) dt shows that
f(x) is monotone decreasing to zero as o — oo for x # 0. Thus using the
monotone convergence theorem, first on [, - and then on ), we see that
(o, g) > 0asa— 0.

(b) Write —A, = —A;, — A, = A; + A,. The method of proof of (a)
shows that

f Ie™He = W), di < d(a, p)supW(-, Dl

where d — 0 as « > 00. Since €42 is a contraction on L*, the result is proven.
(c) Part (c) follows from Young’s inequality and |x|"®~"2 e L97% 4 L1*¢
withqg = v/(v = 2). I

We summarize the last three results in the following theorem.

Theorem 25.4

(a) If W obeys the hypotheses of Lemma 25.3(a) or (b), then for all sufficient-
ly small ¢, and all x:

E[exp( f "Wix + b(s) ds)] <0< (25.3)
0

where how small ¢t must be and how large Q may be only depend on
I Wl oy (OF sup, | W(-, )i pge))-
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(b) Letv > 3and let ¢ > 0. Then, there is a C(v, &) so that

sup[E [exp( f coW(x + b(s)) ds)]] < 25.4)
x 0

lf ”W"v/2+£ + ”W”v/z—s < C(V, 8)'

Remark As we shall see, the semigroup property implies that (25.3) for
all x, and t small yields it for all x and ¢ if Q is allowed to be t-dependent.

The basic result in the theory of boundedness of Green’s functions, eigen-
functions, and wave packets is the following one modeled on results of
Herbst and Sloan [126].

Theorem 25.5 Suppose that V =V, — W, where W, V, >0, V, is in
L{.(R") and W is a sum of functions W, each obeying

supl|Wi(-, z)ll Lgimu,y < ©

for some breakup, x = (y;,z) of R* = R* x R""* and p; > p;/2 (if p; = 2)
or p; > 1 (if u; = 1). Let H be the form sum —3A + V. Then

(a) le=*#oil, < Celi¢ll, (25.5)

with C, 4 independent of p for all p € [1, co].
(b) For any r and v with r > v:

le=™¢ll, < C@, 7, v)lidll, (25.6)
for all t > 0, where for r, v fixed
C(t) < De*'(t 2 1); C)<DtH"t<1) 25.7)
solongasu > 3v(v™! —r %)
© I(H + E)~*¢|, < Clél, (25.8)

so long as E is sufficiently large and L > v(v™! — r~1).

Remark (25.8) says that H obeys the same inhomogeneous L? Sobolev
smoothing as —A [215].

Proof (a) By the semigroup property, it suffices to show that |le~*#¢|,
< Cl¢|, for all small . By Theorem 25.4, consider ¢ so that (25.3) holds.

Then since V, > 0
E(exp( - [vex + oy ds)) <0
0
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and thus, for any fe L*:

E(CXP(—J.'V(X + b(s)) ds)f(x + b(t))) <Olflle
]

It follows from the Feynman-Kac formula, that

le™Hf I, < QI fllo

for all small t. The general result now follows by duality (which says that the
dual of e *# } L* which is e™"® | L! is bounded by Q) and interpolation
[215].

(b) By the Feynman-Kac formula,

f exp( i f Vi) ds) dito x.yse = ¢~ x, y)
(4]

is the integral kernel of exp[ —t(—3A + AV)] = e~ " in the sense that

| 760k, y)g(x) dx dy = (1, e=g)
at least for nice fand g. By Hélder’s inequality on the path integral
e "M(x, y) < [e™P(x, y)]'"P['(x, y)]'/* (25.9)
ifp”! + q ! = 1and p, g > 1. Using Hélder’s inequality again:
™00 < lle™ M PLILAE| £1x)

so using (25.5), we see that (noting that the p in (25.5) can be o0 ; C,, A are the
constants for H(p))

le™f 1 < [CperT e f 19, (25.10)

But ¢'* is a convolution operator with a convolution kernel in all L*-spaces
with L*-norm D¢t~ (V/21 =571 ¢t follows by Young's inequality [215] that

le™f ||, < C,D,e 4w~ =s") 1)
where
(1—sYH=go ' —rt)

Since we can take p arbitrarily close to infinity, and thus g arbitrarily close to
one, (25.7) results.
(c) Part (c) follows from (25.7) and the estimate

I + E) 48l < (4], f e r vy di
[¢]
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Remarks 1. (25.5) implies that e~ " defined a priori on L? is a strongly
continuous semigroup on each L?. Its infinitesimal generator thus gives a
“natural” meaning to —1A + V as an operator on L*. A rather different
approach to this question has been developed by Schechter [228] and Weder
[283a]; these authors exploit ellipticity of — A rather than the fact that e**
is a positivity-preserving operator.

2. (25.9) was first exploited independently by [45] (see Section 21) and
[126]. In the above context, it was used by [126].

3. For further discussion of the LP-norms of e *#, see [260a] where, in
particular, it is proven that lim,_, , ¢t~ Inlle"*¥}| , , is independent of p. Also
considered is the question of when

suplle ™|, , < oo implies that suple |, , < 00
t t

Corollary 256 For any L > v/4, D(|H|*) = L*. In particular, any L>-
eigenfunction of H lies in L=,

Proof Taker = oo, v = 2in (25.8). |

Definition 1f 0 < 0 < 1, we define C, to be the set of functions in L®
with sup, | f(x) — fWI/Ix — y|’ < 0. If 1 < 6 < 2, we define C, to be
the set of C!-functions with Vfin Cy_,.

Corollary 25.7  Suppose that V, is a sum of ¥, ; > 0 obeying the same
Lf-conditions as W;, that 0 <2 — u,;/p; for each j that 0 < 2, and that
L > v/4 + 1. Then any ¢ € D(|H|%) (and, in particular, any eigenfunction)
lies in C,.

Proof By hypothesis and the method of proof of Lemma 25.3, we can
find o so that 460 < « < 1 and |[(Hy + E)" Y~ 2Vf |, < C| f |l - It follows,
by (25.8), Corollary 25.6, and

H+EY=H,+E " "H+E Y- (Hy+E'VH+E*L

that any ¢ € D(HY) is of the form ¢ = (H, + E)~ %) with y in L*. Thus, we
need only show that (H, + E)™* maps L*® into C,. We consider the case
8 < 1 and v > 2. The others are similar.

Let f'be the function on R® with f(x — y) the integral kernel of (H, + E)™%
Since f(x — y) is less than or equal to the integral kernel of

Haa = Clx _ y|—v+2a
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and since ffalls exponentially at infinity (since f = const(p* + E)~ *is analytic
in a strip [215]), we have that

| f(X)] < Cx|7v+2%=Fix (25.11)

for some § > 0. Since f is spherically symmetric, and (x - V) f has a Fourier
transform C[(v — 2x)(p?> + E)™* + RE)(p? + E)~**1], we see that

IVA(X)f < C[x| 7"+ g~ fx (25.12)
From (25.11), we see that for | x| < |y|,
|f(X) = F()] < 2C|x|~ ¥~ 2~ Fix
and from (25.12) that
[f(x) — f(¥)] <2C|x|**2 e X |x —y|
Thus for all x, y,
| f(X) — f] < 2C[Ix| 722 %7t 4 |y ¥ 2% IM] x — y|°

From this last equation, we see that
f!f(x -y) - fdy < D|x|° (25.13)

since 20 > 6. (25.13) together with fe L! easily imply that convolution with
fis bounded from L* to C,, |

Corollary 258  Suppose that the hypotheses of Corollary 25.7 hold with
the exception that the V. ; are only assumed to lie in Lf,. (same conditions
on p). Then any eigenfunction is continuous.

Proof Let HY = E¢ and let ¥V, be the function obtained by replacing
V.(x) by zeroif x| = n.Let H, = —3A + V,and ¢,(x) = (¢~ 7"¢)(x). By the
monotone convergence theorem, and the Feynman-Kac formula, ¢,(x) —
e~ E¢(x) almost everywhere in x. By Corollary 25.7, each ¢,(x) is continuous,
so it suffices to prove uniform convergence of ¢, on compact subsets. Let
|x| < Rand n,m > 2R. Let A = {b|supy<<;|b(s)| = R}. Then

Vi(x + b(s)) = V,(x + b(s))
forb ¢ A, so

1
|6u(X) — du(x)| < E(XA CXP(+ fo W(x + b(S)))I¢(X + b(l))I)
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since [e * — e ?| < 1 for a, b > 0. Thus, by the Schwarz inequality,

16u(X) — D] < [le™ T o121, E(x )]

where H = —1A — 2W. Since ¢ € L (by Corollary 25.6) e~ ¥ is bounded on
L® and E(y,) — 0 as R —» oo, we have the desired uniform convergence on
compact subsets. [

Corollary 25.9([126]) If V obeys the hypotheses of Theorem 25.5, then
for any t > 0, e *# has an integral kernel in L®(R?).

Proof e "™ maps L' to L™ and so defines a continuous bilinear form on
LY(R"). Every such form has an L® integral kernel by a general theorem;
see, e.g., Tréves [278]. |

Corollary 25.104 Let V obey the hypotheses of Theorem 25.5. Let
fe LXR®). Then fe~'™ (where we use f to also stand for a multiplication
operator) is Hilbert—Schmidt.

Proof By (25.9) and Corollary 25.9,
| f (e (x, )| < C.| f(®)|[e“(x, y)]'?

which is easily seen to lie in L2(R%"). |

This improves results of [126]. It is useful in certain scattering theory
contexts; see Avron et al. [4] and Davies-Simon [41]. There is also a trace
class version of this corollary. It is not true that if | A(x, y)| < B(x,y) and Bis
trace class, then A is trace class so that the above proof does not extend but a
trick of Avron et al. [4] is available. The best results use an idea and a space
introduced by Birman and Solomjak (see [259] for references and extended
discussion).

Definition 1,(L?) = {fe L’ (R") | Y 4ez- I fXall2 < 0} where %, is the
characteristic function of A,, the unit cube with center at x € Z* < R”.

Corollary 25.10B Let V obey the hypotheses of Theorem 25.5. Let
f€ 1,(L?). Then fe~* is trace class.

Proof Suppose that we show that for all g’s supported in A,, ige™#||,
< C|gll; (where | - ||, is trace class norm) and C is only dependent on ¢t and
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on various translation invariant norms of V. Then, by translation covariance
for any fe,(L?),
—-tH
Il fxae™ My < CllfXall2

so that ), fx,e” " converges in trace norm. Since it converges in Hilbert-
Schmidt norm to fe™*#, the result will be proven.

Thus suppose g € L? has support in A,. Write ge™" = AB, where 4 =
ge "M2(1 + x*)" and B = (1 + x?)Ye *H/2, By Corollary 25.10A, B is
Hilbert—Schmidt. By the proof of that corollary and the fact that

g1 + x*)'l2 < Cligll,
A is Hilbert—Schmidt with a norm bounded by {ig||,. i

* %k %

Next, we discuss the problem of exponential falioff.

Theorem 25.11 (Carmona’s estimate [32]) Let V=W + U with We
Li., Wy =inf W(X) > —oo, and Ue L? + L® with p > v/2 (v > 2) or
p=1(=1). Let H= —3A + V and suppose that H¢ = E¢; ¢ € L%
Then, for any aq, t and almost all x:

|¢(x)| < C(t)Xexp[—Dt ™ 'a* — tW,, + tE] + exp[t(E — W, (x))]) (25.14)

where D > 0 and W,(x) = inf{W(y) ||x — y| < a}and C(t) < Ae®.Ifv > 3
and U e LW *e ~ [1/2v~¢ hag small enough L? -norms, or if U = 0 we can
take B = 0.

Proof By the Feynman-Kac formula:
[$(x)] = eF[(e” "))

< e’EE<exp(— j tV(x + b(s)) ds)l(,b(x + b(t))l)
’ 172

< e’El|¢>HwE<exp[—2 f Ux + b(s) ds])
0

x E(exp[—Z JtW(x + b(s)) ds])ll2 (25.15)
(1]

where we have used the Schwarz inequality in the last step. Clearly

E(exp[—2 ftW(x + b(s)) ds]) < e‘z’WwE( sup {b(s)| > a) + e W™
0

0<sst
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since either the path leaves {y | |x — y| < a} or it does not. By (7.6) and (3.4),
E(supg << |Ms)| > a) < Cyexp(—2Dt~ 'a?). Thus by (25.15) we can conclude
that (25.14) holds with

t 1/2
c@) = CoE(exp[-Z f Ux + b(s)) ds])
0

< Collexp(—t[—3A + 2UD1I.2

C(t) < AeP follows from (25.5) and the result for U € LA/2v*e ~ [(1/2v—¢
from Theorem 11.2. |}

The following two corollaries are essentially from [32].

Corollary 25.12  Under the hypotheses of Theorem 25.11, suppose that
E < 0 and lim,_, W(x) > 0. Suppose, moreover, that either U = 0 or
v > 3and Ue LY2"*= ~ [(127~¢ with small norms. Then

[$p(x)| < Ce™ 2
for some 6 > 0.

Proof By hypothesis and Theorem 25.11, (25.14) holds with C(t) bounded
in t. Choose a = 5|x| and t = ¢|x|. Then, for |x| large:

[¢(x)| < Clexp(—a|x|) + exp(—B|x})]

where o« = {De™! + ¢W, — ¢E can be arranged to be positive by choosing
£ small, and f can be made arbitrarily close to —¢E by taking | x| large [since
lim W,(x) > 0 by hypothesis]. |}

Corollary 25.13  Under the hypotheses of Theorem 25.11, suppose that
lim, _, ,, W(x) = co0. Then, for some C, D:

|p(x)| < C exp(—D|x| W(x)"/?) (25.16)
With W(X) = m”2)|x|(x).
Proof Takea = i|xjandt™! = W(x)V2|x|~!in (25.14). |}

Remarks 1. Corollary 25.12 can be extended to allow U e L? + LY,
since any such U can be written U = U + R with U € LA/2¥+2 ~ [(1/2p-¢
with small norms and Re L® and R — 0 at infinity. We can then take
W=R+W.

2. Corollary 25.13 includes a result of Schnol [231] that | ¢(x)]| falls off
faster than any exponential if W is bounded below and W — o at infinity. It
is stronger in that local singularities are allowed.
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3. The bound (25.16) is of * WKB type,” in that the WKB behavior of ¢ is
exp(—| x| {5 2W(sx))"'? ds), which is qualitatively similar to (25.16); e.g., if
W(x) ~ a|x|*", then (25.16) says |¢(x)| < C exp(—D|x|"*!). However, we
note that with stronger hypotheses and different methods, one can show [245]
that D can be taken near (2a)'/%(n + 1)~1, a result not currently available
by path integral methods.

4. The last two corollaries can be proven without the hypothesis U e
LUV =¢; gee [32].

Finally, we discuss lower bounds on the lowest eigenfunction of —3A + V.
We aim for a result which captures the proper qualitative behavior for
potentials which look like |x|*™ at infinity (but which are not assumed
central). Afterward, we will describe in some remarks how one can deal with
more general potentials. Here, too, we are following the basic scheme of
Carmona [32].

Lemma 25.14 Fix ¢ and let b be v-dimensional Brownian motion. Then,
there exists a D, so that for any t, X, R, :

E(Ib(t) — x| <4, sup |b(s)| < R)

0<s<t
> 1,8"°Qnt) "% exp(—(21) " [|x] + 61%)

—D[1 + (t”'*R)* '] exp(—R?*/2t) (25.17)
where 7, = [{x||x| < 1}].

Proof Clearly the left-hand side of (25.17) is larger than e; — e, where
E(|b(t) — x| € 0) = e, E(Supy<s<:|b(s)| = R) = e,. Given the probability
distribution for b(t), the first term on the right-hand side of (25.16) is obviously
a lower bound on ¢,. To see that the term subtracted is an upper bound one,,
we use (7.6'). |}

Theorem 25.15 Let V obey the hypotheses of Corollary 25.8 (in partic-
ular, suppose that V is globally bounded from below and locally bounded
from above). Suppose that E = inf spec(H) and that H¢p = E¢, for some
¢ # 0in L2 Then ¢ (after multiplication by some overall phase) is every-
where strictly positive and thus bounded away from zero on every compact
set.

Proof Since the positive functions are total, we can find # > 0 pointwise
so that (1, ¢) # 0. Since

¢ = (¢,n)"" lim ee™""p

t—= oo
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the Feynman-Kac formula shows that ¢ is nonnegative up to an overall
phase [namely, the phase of (n, ¢)]. Since ¢ is continuous, we can find an
openset C,and a A > 0Oso that ¢(x) > A on C. For simplicity of notation, we
suppose that C = {y ||y| < 6}. Fix r and |x| < r and let Wi(y) = W(y) if
!yl = r + R and zero otherwise. Let

Ap = {bub(l)+ x| <0, sup [b(s)| < R}

0<s<1

Then, by the Feynman-Kac formula and V_ < 0 and the fact that ¢ is non-
negative:

¢(x) = efe Ho)(x)
> eEE(xA exp(—J-IWR(x + b(s)) ds)d)(x + b(l)))
0

1 -1
> ).eEE(xA)zE(exp(+f Wa(x + b(s)) ds)) (25.18)
0
where we use ¢(y) > A if | y| < 6 and the Schwarz inequality on
1 1
= [ =3 [w) (43 [ )]
in the last step. Since Wy is in L? we get an upper bound By on
1
sup E(exp(f We(x + b(s)) ds)) = |lexp(3A + Wpl|,,
x (o]

by (25.5). By Lemma 25.14, E(y,) > 0 for R sufficiently large. |

Remark Carmona [31]hasremarked that if one just wants strict positivity
without explicit lower bounds, then there is a simpler proof as follows:
Fix x. For every R,

E(exp(JlWR(x + b(s)) ds>) <
0

50 |3 Wa(x + b(s)) ds < oo for all R and almost every b. Thus
1
f W(x + b(s) ds < oo
0

for almost every b by continuity of paths. It follows that

exp(— J: V(x + b(s)) ds) >0
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foralmost everyband thus ¢ > Ound (¢ "¢)(x) = Oimplies that (¢ "Mo¢p)(x)
= 0 so that ¢ = 0.

Example LetH = —A, — A, = 2|x|"" = 2|x,|7 ' + [x; — x,| "' be
the helium atom Hamiltonian on L3(R®) where x =(x,, X,) with x,€ R>. The
eigenfunction ¥ corresponding to the lowest eigenvalue (which is an accept-
able physical state, even though it is symmetric in the electron coordinates
since the spin variables can be used to accommodate the Pauli principle
demand of total antisymmetry) is pointwise strictly positive since W(x)
= |x|™isin LE(R®)for any p < 3 and, in particular, for some p > 3. Thisisa
new result, for Simon [245] needs local regularity for V and thus cannot
assert strict positivity at points with X, = x, while Carmona [32] does not
allow localization or for functions of the projection of R® to R* and so requires
VelL? + L®forp >3 =4(6).

Lemma 25.14 is also the key to proving lower bounds of WKB type:

Theorem 25.16  Let V(x) be a function which is bounded on any compact
set of R” and let V‘*X(x) = sup,y;<3, V(y). Suppose that V(x) — o as
|x] = o0 so that E = inf spec(—4A + V) is an eigenvalue. Let ¢ be the
corresponding eigenfunction normalized so that ¢(0) > 0. Then

$(x) = C exp(—D|x|[V™(x)]'?) (25.19)

Proof The argument is similar to the proof of (25.18). Let

A(x, 1) = {b |Ib(t) + x| < 1, sup |b(s)| < 2|xl}

0<s<t

Then, by Lemma 25.14, there exists R, c,, and ¢, so that

E(xa) = cit ™" exp(—(20) " '(Ix| + 1)%) (25.20a)
for all x, t with |x| > R and
Ix12/t > c,|In[t + 1]|2 (25.20b)

By the Feynman-Kac formula:

6(x) = (e T H))
> efEE(xA exp(— [V + % ds)¢(x + b(z»)
0

> de'fe™ """ ™E(x,) (25.21)
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where d = inf, ., ¢(y) >0 by Theorem 25.15. (25.19) now holds for
suffiently large x by (25.20) and (25.21) with the choice t = [V®(x)] ™ */?|x].
Knowing it for large x, implies it for all x by Theorem 25.15 again. ||

Remarks 1. For example, if V(x) > C|x|?*" for n large, then we obtain
an exp(—D|x|"" ') lower bound. This has “supercontractive” consequences
[222, 245, 31].

2. By using the ideas which lead to (25.19), one can easily accommodate
positive local singularities in L? with p > v/2. Negative singularities always
have no adverse effect on lower bounds for ¢.

3. Tt is somewhat disturbing that (25.19) depends on a supremum over a
sphere and does not allow consideration of different growth of V in different
directions. However, when V(x) > C|x|**%, it is clear that V(®)(x) can be
replaced by the supremum over a small cigar-shaped region about a straight
line from zero to x. For, in the above proof, t — 0 as|x| — oo so that the paths
will stay in such a region with overwhelming probability.

4. Theideas in the first part of this section can also be used in the study of
exponential falloff; one shows under suitable circumstances that H¢ = E¢
and e/¢ € L? implies automatically that e/¢ € L*. See [44a].

26. Inverse Problems and the Feynman-Kac Formula

In this final section, we want to describe certain aspects of the solution by
Trubowitz [280] of the inverse problem for periodic potentials. Similar
considerations are involved in the solution of the inverse scattering problem
on the line by Deift and Trubowitz [46]. “Inverse problems” concern the
determination of a potential V given suitable “spectral” or “scattering” data
for —A+ V.

Here we will consider a function V on (— o0, 00) which is C* and periodic
with period one. One labels the eigenvalues of —d?/dx? + V(x) on L*(0, 1)
with the boundary conditions #(0) = u(1), u'(0) = 4/(1), by 4p < 43 < 4,
<A, <Ag < Agyoy <4y <--- and with the boundary conditions
w0 = —u(D),u'(0) = —u'(1)by ) <A, <As <Ade <+ < Agps1 < Aans2
< ---. As the notation suggests, one can show [69, 166, 179, 217] that

lo<11$/12<l33/14<--- (26.1)
Moreover, [128], since V is C*®, one has that

lim A, — Ay ql(n 4+ 1)™™ =0 (26.2)

n—+w
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for any m (one can show [185] that if V is a priori only L2 and (26.2) holds,
then V is C®). Moreover,

1
Agws Agny = n2m* + f V(x) dx + O(n™2) (26.3)
(1]

Next, let u1,(s) be the nth eigenvalue of —d?/dx? + V(x)on L%(s,1 + s)with
the boundary condition u(s) = u(1 + s) = 0. Then [69, 166],

Azn—1 £ U(S) < Az (26.4)

for all s. Using (26.1-4), we wish to prove the following which goes back at
least to McKean-van Moerbeke [184].

Theorem 26.1 Let V be C® of period one. For any s:
V(s) = Ao + X [Aan-1 + Azn — 2u(s)] (26.5)

n>1

where the sum is absolutely convergent.

(26.5) says that V(s) can be recovered from the 4,’s and the p,(s)’s. This
is only part of the story. For the p,(s)’s can be found once one knows the
A,s and the values u,(sy) and (du,/dt)s,) for a single s,. This makes it
sound as if the u’s obey a second order differential equation. Actually,
they obey a first order equation, but one which is quadratic in du/ds. Thus,
the 4,.’s and the y,(sy)'s determine |(du,/ds)(sq)}, and only a choice of each
sign is needed to determine p for all s and thus V. One can further show
that the u,(s,) and a set of positive numbers a, called norming constants
determine the A,, and the sign of (du,/ds)(sy) and therefore this data deter-
mines V. This yields a result first obtained by Gel'fand and Levitan [98]
using very different methods. The results just described are contained
in Trubowitz’ paper {280]; here we will concentrate only on proving (26.5).
We note that the C®-condition is replaced by a C3-condition in [280]
and it is likely that mere continuity of V will suffice especially if one is
satisfied with conditional convergence of the sum in (26.5). We also remark
that a number of features of the inverse problem are made particularly
transparant by the above solution; e.g., V(x) has period 1/m if and only if
Azn = Agzn_y if m does not divide n.

We will prove (26.5) in two steps:

Definition  A,, A,,and A, will stand for the operators —d*/dx*+ V(x)on
L0, 1) with periodic [u(0) = u(1); w'(0) = «'(1)], antiperiodic [u(0) =
- —u(1); w'(0) = —u/(1)], and Dirichlet [u(0) = u(1) = 0] boundary condi-
tions, respectively.
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Theorem 26.2 For each t > 0, e ', ¢ "4 and e~ "4 are trace class.
Moreover, the sum on the right-hand side of (26.5) is absolutely convergent
and

Tr(e—tAp + e_“‘“ - ze—tAd)

=1- tl:'lo + Y (an-t + Apo — 2#:.(0))] + oft) (26.6)

n>1

ast]O.

Theorem 26.3 Ast |0
Tr(e " — e 1) = 1 — 1tV(0) + o(t) 26.7)
Tr(e ™ — e ") =1 — 1t1V(0) + o(t) (26.8)

Proof of Theorem 26.2 This follows fairly directly from (26.1)-(26.4). By
(26.3) and (26.4), we see that e *4» is trace class for y = p, a, d. Moreover:

Tr(e ™r + ¢~ — 2¢71) — 1
- (e—!lo -1+ Z [e—thn 4 e Man-1 2e—wn(0)] (26.9)

n=1

where we have used the trace class properties to freely arrange the sums.
Dividing the right-hand side of (26.9) by ¢ and taking ¢ to zero, the first term
converges to —A, and each term in the sum to —4,, — 4,,_; + 21,(0).
Moreover, from the estimate

Ie—x _ e—yl < e—min(x,y)lx — yl
and (26.4), we sec that
[e " 4 @ thm—t D tnl0 < Do thamon ) A ]
so that we can use (26.2) and the dominated convergence theorem to justify

taking a term-by-term limit inside the sum in (26.9). [

The proof of Theorem 26.3 depends on the same mechanism that allowed
us to control the classical limit (Section 10) and the falloff of eigenfunctions
(Section 25), namely, that Brownian paths do not go very far in short times;
explicitly, we need the following slight strengthening of an argument used
already in the proof of Theorem 10Q.1.
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Lemma 26.4  Yix:in (0, )). Thenfort < 1,
E( sup [B(s)] = "2 |b(t) = 0) < Crexp(—Cpt™)  (2610)
O<sx<t

for suitable C,, C, > 0.

Proof As in the proof of Lemma 7.10, the left-hand side of (26.10) is
equal to

1 — P(0,0;0)""Pp.(0,0; 1)

where P is the kernel of exp(+t(d%/dx?)) and Pp., is the analogous kernel
with Dirichlet boundary conditionsat x = +¢*/2~¢, By the method of images:

Pp,0,0;1) = ) (=1)"P(0,2nt'>"% 1)

so that
[Pp.(0,0;1) — P(0,0; )| < Ct™ Y2 exp(—2t~%)
from which (26.10) follows. |

Proof of Theorem 26.3 We begin by writing e'*» for y = p, a in terms of
Feynman-Kac formulas. Let H = —$(d?/dx?) + V(x) as an operator on
L*(— o0, ). By the method of images:

(£ 0]

(e7")(x, x) = ) &e *)x,x +n) (26.11)
wheree, = land ¢, = — 1. We will not give the details of the proof of (26.11)
leaving that to the reader but we note that the kind of estimates on e~ "#(x, x)
which follow from the Feynman-Kac formula, e.g.,

le H(x, x)| < &'IVlwe~tHo(x, x")

are useful and that there are two possible approaches: One can verify (26.11)
for ¥ = 0 and use a Trotter product formula or one can directly show that
the right-hand side of (26.11) when smeared in x’ obeys the correct differ-
ential equation in t and boundary condition at ¢t = 0. Either proof establishes
that the right-hand side of (26.11) is continuous in x, x’ so that (for y = p, a)

© 1 1 2t
Tr(e_'Ay) = z (sy)" f dx Jexp<_ 5 V(UJ(S)) dS) d.u'O x, x+n; 2:(('0)
n=-w 1] 0
Since the nth term in this sum is bounded by
(4nt) =12 exp(—n?/at)etV !l



276 Vil. Other Topics

we see that (for y = p, a)
| Tr(e~'4) — (n = 0) term| = O(e™*") (26.12)

for some ¢ > 0. (26.12) implies that we need only prove (26.7); (26.8) will
follow automatically. Moreover, letting 4(” stand for A4, in case V = 0 we
have that

[Tr(e~*4?) — Tr(e ")) = § + O(e™") (26.13)

This follows from explicit formulas, but also from (26.12) and the trivial fact
(given the eigenvalues) that

- ) ~140) — 14O
Tr(e 'v" + e7'4a" — 27407y = |

for all ¢.
By a Feynman-Kac formula:

1 1 2t
Tr(e-*4s) — L dx f exp(-— ;s f V(axs)) ds)xx(w) dio « v 2(@) (26.14)

0

where y,(w) is the characteristic function of those paths w with w(0) = w(2t)
= x and w(s) € [0, 1] for all s in [0, 2¢]. By Lemma 26.4, we may insert a factor
() into (26.14) and the n = 0 term in (26.12) and only make an error of
order ¢t 120(e~¢*"*) where % (w) is the characteristic function of those
paths with supg. <2/ ®(s) — x| < (2t)27°. Once this insertion is made,
there is an exact cancellation in (26.14) and (26.12) for any x € ((2t)!/>"¢,
1 — (2t)V279). For any x not in the interval and w with 7.(w) = 1, we have
that

[V((s)) = V(0)] < Ct'/27*

for all s so that

exp(— % JZIV(w(s)) ds) — exp(—tV(0)) I < Ct32-e

0
It follows that

| Tr(e™*r — e7140) — ¢ VOB| < CPt327¢ + O(e™ ")  (26.15)
where

1
ﬂ = J:) d-x f(l - Xx(w))z.x(w) d”’O.x,x:Zt(w)

Bounding B by the same term without 7, we see that § < Tr(e 4%’ — ¢~ 'A%
=14 O(e™ "), so that (26.15) with ¥V = 0 and (26.13) implies that § =
1 + 0(@®»~*). This implies (26.7). |}
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Remarks 1. The estimate we found for the O(t) term in (26.7) is 2 *
By working a littler harder, one can show it is O(t%'?); indeed, there is an
asymptotic expansion with an explicit yt*? term. y will depend on V(0) and
(dV/dx)0).

2. The same methods as above prove the following which is used in [46]:

Theorem 26.5  Let V be a C* function which is uniformly bounded on
(—o0, 0). Let A = —d%/dx* + V on L}(—o00, ) and A, = —d*/dx* + V
with a 4(0) = 0 boundary condition on

L*(0, 00) @ L*(— 0, 0) = L*(— 0, o).
Then e ™' — e~'44 is trace class for all t > 0 (see Section 21) and
Tr(e™* — e ") = 1 — L4V(0) + o(r)
At first glance, the § seems strange since one might naively expect the left-

hand side to be zero if t = 0. But consider the case ¥V = 0. By the method of
images:

(747 — & HP)(x, x) = e 47(x, —x) = e7(0, 2%)

Thus,
Tr(e= 4 — e~ 19) = fe_'A‘o’(O, 2x) dx

= HeO1)0) = 3
independently of ¢.
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