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Introduction

I1 libro della natura é scritto in lingua matematica. Galileo Galilei

The first step in the mathematical elucidation of a physical theory must
be the solution of the existence problem for the basic dynamical and kine-
matical equations of the theory. Once that is accomplished, one would lke
to find general qualitative features of these solutions and also to study
in detail specific special systems of physical interest.

Having discussed the general question of the existence of dynamics In
Chapter X, we present methods for the study of general qualitative features
of solutions in this volume and its companion (Volume III) on scattering
theory. We concentrate on the Hamiltonians of nonrelativistic quantum
mechanics although other systems are also treated. In Volume III, the
main theme is the long-time behavior of dynamics, especially of solutions
which are “asymptotically free.” In this volume, the main theme involves
the five kinds of spectra defined in Sections VII.2 and VIL3: the essential
spectrum, o, ; the discrete spectrum, og4,.; the absolutely continuous
spectrum, o,.; the pure point spectrum, ¢, ; and the singular continuous
spectrum, dg;,,. It turns out that the study of the absolutely continuous
spectrum as well as the problem of showing that the continuous singular
spectrum is empty are intimately connected with scattering theory. Thus,
the separation of the material in Volumes III and IV is somewhat artificial.

For this reason, we preprinted in Volume III three sections from Volume IV.

iX



X INTRODUCTION

These are not the only sections in which the themes of the two volumes
overlap.

In these volumes specific systems are usually presented to illustrate the
application of general mathematical methods, but the detailed analysis of
the specific systems is not carried very far. Mathematical physicists have to
some extent neglected the detailed study of specific systems; we believe
that this neglect is unfortunate, for there are many interesting unsolved
problems in specific systems, even in the purely Coulombic model of atomic
physics. For example, it has not been shown that H™ ~ has no bound states
even though the analogous classical system of one positive and three nega-
tive charges has the property that its energy is lowered by moving a suitable
electron to infinity. And it is not known rigorously that the energy needed
to remove the first electron from an atom is less than the energy needed to
remove the second, even though this is “physically obvious.” We hope
that by collecting the general mathematical methods in Volumes II, III,
and IV, we have made the analysis of specific systems easier and more
attractive, _

Nonrelativistic quantum mechanics is often viewed by physicists as an
area whose qualitative structure, especially on the level treated here, is
completely known. It is for this reason that a substantial fraction of the
theoretical physics community would regard these volumes as exercises
In pure mathematics. On the contrary, it seems to us that much of this
material is an integral part of modern quantum theory. To take a specific
example, consider the question of showing the absence of the singular
continuous spectrum and the question of proving asymptotic completeness
for the purely Coulombic model of atomic physics. The former problem
was solved affirmatively by Balslev and Combes in 1970, the latter is still
open. Many physicists would approach these questions with Goldberger’s
method: “The proof is by the method of reductio ad absurdum. Suppose
asymptotic completeness is false. Why that’s absurd! Q.E.D.” Put more
precisely: If asymptotic completeness is not valid, would we not have dis-
covered this by observing some bizarre phenomena in atomic or molecular
physics? Since physics is primarily an experimental science, this attitude
should not be dismissed out of hand and, in fact, we agree that it is extremely
unlikely that asymptotic completeness fails in atomic systems. But, in our
opinion, theoretical physics should be a science and not an art and, further-
more, one does not fully understand a physical fact until one can derive
it from first principles. Moreover, the solution of such mathematical prob-
lems can introduce new methods of calculational interest (for example,
Faddeev’s treatment of completeness in three-body systems and the applica-
tion of his ideas in nuclear physics) and can provide important elements of

Introduction Xi

clarity (for example, the physical artificiality of “adiabatic switching”
in nonrigorous scattering theory and the clarifying work of Cook, Jauch,
and Kato). |
The general remarks about notes and problems in earlier introductions
are applicable here with one addition: the bulk of the material presented
in this volume is from advanced research literature, so many of the “ prob-
lems” are quite substantial. Some of the starred problems summarize the

contents of research papers!
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Xll: Perturbation of Point Spectra

In the thirties, under the demoralizing influence of quantum-theoretic perturbation theory, the
mathematics required of a theoretical physicist was reduced to a rudimentary knowledge of the
Latin and Greek alphabets. Res Jost

In this chapter we shall examine the following general situation: An opera-
tor H, has an eigenvalue E,, which we usually assume is in the discrete
spectrum. Suppose that H, is perturbed a little; that is, consider H, + 114
where V 1s some other operator and |#| is small. What eigenvalues of
H, + BV lie near E, and how are they related to V? What are their proper-
ties as functions of f? Such a situation is familiar in quantum mechanics
where there are formal series for the perturbed eigenvalues. These
Rayleigh-Schrédinger series are not special to quantum-mechanical opera-
tors but exist for many perturbations of the form H, + BV. The heart of this
chapter is the second section where we shall discuss the beautiful Kato-
Rellich theory of regular perturbations; this theory gives simple criteria
under which one can prove that these formal series have a nonzero radius of
convergence. We then discuss what the perturbation series means in cases
where 1t is divergent or not directly related to eigenvalues.

X1l.1  Finite-dimensional perturbation theory

We first discuss finite-dimensional matrices. Not only will this allow us to
present explicit formulas in the simplest case, but we shall eventually treat

1



2 Xll: PERTURBATION OF POINT SPECTRA

degenerate perturbation theory by reducing it to an essentially finite-
dimensional problem. Furthermore, an important difficulty already occurs
in the finite-dimensional case, namely proving analyticity in f when there is

a degenerate eigenvalue. Recall that E, 1s called a degenerate eigenvalue
when the characteristic equation for H,, det(H, — 4) = 0, has a multiple
root at A= E,. In an appendix to this section we review the theory of
matrices with degenerate eigenvalues and, in particular, we discuss the
Jordan normal form.

First consider the elementary example

L p
f —1
By our definition of operator-valued analytic function in Section V1.3, T(p) is

a matrix-valued analytic function. To find its eigenvalues, we need only solve
det(T(B) — A) = O (the secular or characteristic equation). Thus

Ac(B)= /B + 1

are the eigenvalues. This problem has several characteristic features:

T(p) =

(1) Even though T(p) is entire in B, the eigenvalues are not entire but
have singularities as functions of f.

(1) The singularities are not on the real f axis where T(f) is self-adjoint
but occur at nonreal f, namely at f = *i. Thus, while there are no singulari-
ties at “physical” values, the perturbation series, i.c., the Taylor series for
A.(B) at B =0, have a finite radius of convergence due to complex
singularities.

(1) *“Level crossing” takes place at the singular values of f; that is, at
f = *i there are fewer distinct eigenvalues, namely one, than at other
points, where there are two.

(iv) At the singular values of f the matrix T(f) is not diagonalizable.

Explicitly
of]-Bl -

so the matrix of T(i) in the basis (2, 2i>, {1, —i), 1s

0 1
0 Of
While this “Jordan anomaly” is typical, we leave a discussion of it to the

Notes:; see also Problem 23. _
(v} The analytic continuation of an eigenvalue is an eigenvalue.

X1l.1 Finite-dimensional perturbation theory 3

For the remainder of this section, we shall suppose that T(B) is a matrix-
valued analytic function in a connected region R of the complex plane.
Notice that we do not require T(f) to be linear in 8. Later, we shall be able
to reduce the infinite-dimensional, linear, finitely degenerate perturbation

problem to a finite-dimensional problem, but one that is no longer linear in
p. Thus, greater generality at this point will be crucial.

To find the eigenvalues of T(f) we must solve a secular equation
det(T(B) — A) = (= 1) [2" + a,(B)A"" ' + - + a,(B)] = O

The basic theorem about such functions is:

Theorem XII1  Let F(B, A)=A"+a,(B)A" "' + --- + a,(B) be a polyno-
mial of degree n in 4 whose leading coefficient is one and whose coefficients
are all analytic functions of f. Suppose that A = A, is a simple root of

F(Bo, A). Then for f near f,, there is exactly one root A(8) of F(B, 1) near A,,
and A(B) is analytic in 8 near f = B,. ‘

Proof This is a special case of the implicit function theorem. Since F(B, 1) is
analytic near 8, and Ay, we can write F(8, 4) = Y5 _o (1 — 45)"/m(B) with

fo(Bo) = F(Bo, Ao) = 0, and f,(Bo) = (OF/3A)(Bo, Ao) # O since A, is a simple

root. Thus to find solutions of F(f, 1) = 0, we need only solve the equivalent
equation

B n . B
SRR A ) R A7) )

Because f,(B,) # 0, all the coefficients f,(8)/f,(B) are analytic near f = §,.
We try to solve this last equation with a solution of the form A(8) = 4, +

Y1 o (B — Bo). The a, can be computed by recursive substitution into (1);
for example,

- [B)
1 fl(ﬁ) B=Po
and
o }_[fo(ﬁ) J _ 2 JlBo)
’ 2B ls=p0  S1(Bo)

It 1s not very hard to prove that the o’s determined recursively yield a power

series with a nonzero radius of convergence (Problem 1a). Uniqueness is also
fairly easy (Problem 1b). |}

Corollary Let T(B) be a matrix-valued analytic function near 8, and

suppose A, 1s a simple eigenvalue of T(f,). Then:

(a) For B near f,, T(B) has exactly one eigenvalue, 1,(f), near 4, .
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(b) Ao(p) is a simple eigenvalue if B is near B, .
(¢) 4o(B) is analytic near = f3,.

For multiple roots, a more complicated but still straightforward analysis
1s necessary. We do not prove the following basic theorem for this case
(proofs can be found in the references in the Notes).

Theorem X112 Let F(B,A)=A"+a,(f)A""' + - + a,(B) be an nth
degree polynomial in 4 whose leading coefficient is one and whose
coefficients are all analytic functions of . Suppose 4 = A, is a root of multi-
plicity m of F(B,, ). Then for f near S, , there are exactly m roots (counting
multiplicity) of F(B, 1) near 4, and these roots are the branches of one or
more multivalued analytic functions with at worst algebraic branch points at
B = Bo . Explicitly, there are positive integers py, ..., p, with ) {_; p, = mand
multivalued analytic functions 4,, ..., 4, (not necessarily distinct) with con-
vergent Puiseux series (Taylor series in (f — f,)'/?)

l,(ﬂ) == /10 -+ .;ila}f)(ﬁ _ ﬁo)j/Pi

so that the m roots near A, are given by the p, values of 4,, the p, values of
45, etc.

Corollary If T(B) is a matrix-valued analytic function near f, and if 4, is
an eigenvalue of T(f,) of algebraic multiplicity m, then for § near B, , T(B)
has exactly m eigenvalues (counting multiplicity) near 4, . These eigenvalues
are all the branches of one or more multivalued functions analytic near f,
with at worst algebraic singularities at f,.

If A and B are self-adjoint, the perturbed eigenvalues of A + B are analy-
tic at f = 0 even if 4 has degenerate eigenvalues. That the branch points
allowed by the last theorem do not occur in this case is a theorem of Rellich.
This theorem and its sister theorem on the analyticity of the eigenvectors in
this case are the really deep results of finite-dimensional perturbation theory.
The example at the beginning of this section shows that branch points can
occur for nonreal f even in the “self-adjoint case,” T(B)* = T(p).

Theorem XII.3 (Rellich’s theorem) Suppose that T(B) is a matrix-
valued analytic function in a region R containing a section of the real axis,
and that T(p) s self-adjoint for f on the real axis. Let 1, be an eigenvalue of
T(Bo) of multiplicity m. If B, is real, there are p < m distinct functions 4,(B),

..» A,(B), single-valued and analytic in a neighborhood of f,, which are all
the eigenvalues. '

Xil.1 Finite-dimensional perturbation theory 5

Proof Consider one of the functions A,(8) given in Theorem XII.2:

B) = o + 3.8 ~ B}

The crucial fact that we shall use is that each branch of A(B) is an eigenvalue
so that, in particular, each branch is real for B real and near Bo. Thus

oy = lim (A(B) — do)| B = Bo|*"

B! Bo
1s real and

Py = Hm (A(B) — 4o) | B — Bo| """
B1hBo
is real. So, if p # 1, then «; = 0. By induction, one shows that « i=01fj/pis
not an integer. Therefore A(B) is actually analytic at 8 = 8, . i

L)

We now want to consider the special case H(B) = H, + BV. Suppose that
E, 1s a nondegenerate eigenvalue of H, . From Theorem XII.1 we know that,
for § small, Hy + BV has a unique eigenvalue E(f) near E, and that E(B) is
analytic near f=0. The coefficients of its Taylor series are called
Rayleigh-Schrodinger coefficients and the Taylor series is called the
Rayleigh-Schrodinger series. We can use the results described in the appen-
dix to find formulas for the coefficients. The formulas are simpler when H, is
self-adjoint, so we restrict ourselves to that case. E(p) is the only eigenvalue
of Hy + BV near Eg, so if |E — Ey| <e, and ¢ is small, E(B) is the only

eigenvalue of Hy + BV in the circle {E||E — E, | < ¢}. By the functional
calculus,

1 _
P(B) = — — (Ho + BV — E)™' dE
21 Y g Eo|=¢
1s the projection onto the eigenvector with eigenvalue E(f). We shall show in
Theorem XIL9 that (H, + BV — E)™ ! is analytic in 8 near 8 = 0. Thus P(f)
1s analytic in § at B = 0. In particular, if Q, is the unperturbed eigenvector,

then P(8)Q, # 0 for B small since P(B)Q, — €, as B — 0. Since P(B)Q, is an
unnormalized eigenvector for H(B),

E(f) = .(9_9:.}{(5)})(5)90) = E, + ﬁ(Qo , VP(ﬁ)Qo)

Qo , P(B)2) (R0, P(B))
This formula is very important in the development of perturbation theory
and plays a critical role in the discussions in Sections 2-4. For it says that to
find the Taylor series for E(B), we need only find the Taylor series for P(p).
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To do this, we need only find a Taylor series for (H, + SV — E)™' and
integrate it. But the Taylor series for (H, + BV — E)™! is just a geometric
Series:

(Hy+ BV —E)"'=(Hy—E)"' = p(Hy— E)"'V(Hy — E)™"
+ o (= 1B (Ho — E)'[V(Ho — )] +

Not only is this series simple, but there 1s a simple form for the error term

when the series 1s truncated.
Thus, the Rayleigh-Schrodinger series for E(B) is given by

© ﬁn
E(B) = Eo + BE&2——"
(ﬂ) 0 ﬂz::ozo bnﬁn
with
(-_1)n+1 - 1n+1
G = 5 4; (o, [V(Ho — E)™']"" Qo) dE
ye Y |E-Eo|=¢
p = (I ¢ (Q,, (Hy — E)"[V(H, — E)~'T'Q,) dE
n i N 0 \Ug 0 0

Because of the contour integration and the division of power series, the

formulas for the Rayleigh-Schrodinger coefficients are complicated. To
illustrate this, let us compute E(f) up to order f*. Since H, is self-adjoint, we
can choose a basis of eigenvectors, €, ..., €,-;, with HQ), = E;Q,. Let

1
bo = — Qo , (Hy — E)™'Qp) dE
o= =g b (@ (Ho—E)7'Q)
I
= - E,— E)y"'dE =1
zni ‘IE—-Eolzg( 0 )
1
b Voo(Eo — E)"*dE =0
= u ® . VeolEo = E)
by, = — 1.§ (EO"E)_zi(Ei"E)_IVOiViO dE
21 Y \E-Eo|=c i =0

The i =0 term in this last sum has a very different status from the i # 0

terms. For,

" E — E -3 dEﬂO
i (BB

X11.1 Finite-dimensional perturbation theory

while
" (Eo— E)AE - E) ' dE = (E, - Eo)"?
27 7 \E - Eo| =
Thus,
by = — .ZO(E:' ""' EO)-zVOE Vio
Similarly, 7
by = Y [(Ei— Eo)™'(E;— Eo)™? + (E; — Eo)™ *(E; — Eo)

Thus, if we write E(f) =

|

|

|

i¥0+#j
T 22 E EO) 3VOl V:O VOO

i ¥0
VOO
— ) (E; — Eo)™ "Wy Vio

i+ 0
(Ei — Eo)™ "(E; — Eo)™ Vo V;Vjo

i¥0+j
-2 (E, "'" EO)_ZVOi VE’O VOO

i+0

+ (E; — Eo)” '(E; — Eo)™ *]Voo Vo ViiVio
+ 2_?%:* .(Ei — Eo) " HE; — Eo)” 'WVoiVio Vo, Vio
i+0# ]

— 3 (Ei— Eo) " Voi Vio Vo
{#0

o, = ag = Vyo

X3

= = Z (Ei - Eo)“lVo:' Vio

i ¥0

= a, — bya,

Z (El T EO)_ l(Ej' T EO) IVOt Vu jo Z (E EO) ZVOx VtO VOO

i#0#j i#0

]VOI lJj I/_;O

Eo + )2, a, ", we have computed:

7



8 Xii: PERTURBATION OF POINT SPECTRA

®y = ay — byay — bya,

- ; (Ei — Eo)™ "(E; — Eo)™ "(Ex — Eo)™ '"Vo: Vi Vi Vao
zt$g1
+ ) [(Ei - Eo)”'(E; — Eo)™?
i¥0#j

+ (E; — Eo) " *(E; — Eo)™ Voo Vou Vi

Vi

+ Z (E: — Eo)-z(Ej — EO)‘IVOi Vio Vo_; V}o
i+0#j

- #ZO(E‘ T EO)“3V0i ViO V(Z)O

We can draw several conclusions from these elementary but tedious
computations:

() The nth Rayleigh-Schrodinger coefficient a, is considerably more
complicated than the leading term

n—1

("""'1)”1 Z H(Ei,"' EO)_IVOHViliz Vi,.-;O

i11¥0,i2#0, ...,ip-13F0 j=1

which one might guess from the familiar second-order term found in
quantum-mechanics books.

(i) The denominator in (Q,, VP(B)Q,)/(Q0, P(8)Q,) does not add new
complications to the Taylor series but actually provides cancellations with
terms already present in the numerator.

(i) Most importantly, the terms in the Taylor series are quite com-
plicated, although they arise from a simple geometric series. This suggests
that the simplest object to study is the resolvent: To deduce rigorous
theorems about E(f) in the infinite-dimensional case, we shall generally first
prove results about the resolvent and then obtain information about the

eigenvalues by formulas that give the eigenvalue as a ratio of contour inte-
grals of matrix elements of the resolvent.

As a final result in finite-dimensional perturbation theory, we mention:

Theorem XIil4 Let Q, be a nondegenerate eigenvector for T, with
T = Ex€Qy, and let T(B) be a matrix-valued analytic function with
T'(0) = T,. Then, for f small, there is a vector-valued analytic function Q(f)

that obeys T(B)Q(B) = E(B)Q(B), where E(B) is the eigenvalue of T(B) near
E,. Moreover, if T(B) is self-adjoint for B real, Q(B) can be chosen so that
1QB)| = 1 for B real. -

Appendixto XIl.1 Eigenvalues offinite matrices 9

Proof Take

1

VB) =~ 35§, (T(B) = E)'Q dE = PR,

Then y(p) is analytic and an eigenvector. Since Y(B) — Qg as f— 0, (o,

y(B)) # O for small B. Let Q(B) = (R, ¥(B))” "*¥(B) Then Q(B) is nor-
malized when T(B) is self-adjoint for B real since then (4, Y(B)) =

(€, P(B)2) = llt//(ﬁ)ll’ i

One can also construct analytic eigenvectors in the situation covered by
Rellich’s theorem: see Problems 16 and 17.

Appendix to X111 Algebraic and geometric multiplicity
of eigenvalues of finite matrices

We first recall some elementary definitions about roots of algebraic
equations:

Definition A root A, of an algebraic equation F(A) = A"+ a, A" ' +
.-+ a, is called nondegenerate or simple if F'(1,) # 0. Equivalently 4, is simple
if the decomposition F(4) = [ ['=; (4 — 4) has 4, = 4, for exactly one value
of i. Ay is said to have multiplicity m if F'(A;) == F™ Y(,) =0,
F™(2,) # O or equivalently if exactly m of the 4, equal 4, . An eigenvalue of a
matrix is called simple or nondegenerate if it is a nondegenerate root of the
secular equation. In general, the algebraic multiplicity of an eigenvalue 1s 1ts
multiplicity as a root of the secular equation.

The connection between algebraic multiplicity and geometric multiplicity
is explained by the following series of remarks:

(i) Let u(A) be the algebraic multiplicity of 4. The fundamental theorem
of algebra immediately implies that ) ,. ¢ p#(4) = nif T is an n x n matrix.
(ii) Let m(1) = dim{v|Tv = Av} be the geometric multiplicity. Then
m(A) < u(4).
(iii) If T is self-adjoint, m(4) = u(A).
(iv) In general u(A) = dim{p|(T — A)*v = 0 for some k}. This space is
called the generalized or geometric eigenspace for A.
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The statements (ii) and (iv) become transparent once it is known that T

can be put in Jordan normal form, i.e., there is a basis in which T has the
block form

I,,; 00 1!0
0T
T=|---t-"demmqeam
0.0 !~ 10
""""1""""'""1’"""'"‘1“"“"‘
0:0!0 T,

A‘i X 0 O

0 )'l' X 0 cee O

Ti: 0 0 Ai X 0

X

A;

where each x=0 or 1. In this case, the generalized eigenspace

{|(T — 4;)*v = 0} is spanned by the u(4;) basis elements associated with the
block T, and clearly u(4;) is the number of times A, appears as a root of

det(T — A) = 0.
From the fact that any matrix can be put in Jordan normal form, it is also
easy to see (Problem 2) that if ¢ is chosen sufficiently small, then

1
P, = — —
Ai v
27'51 |A— il =¢

(T — A)~! dA

1s the projection onto the generalized eigenspace associated with A, and
P, P, = 9;;P,,. In fact, one of the ways of establishing properties (i}-(iv) is
through the use of these P, (see Problems 3 and 4).

Xil.2 Regular perturbation theory

We now turn to the main result of this chapter and prove that under very
general circumstances the Rayleigh-Schrodinger series has a nonzero radius
of convergence for perturbations of unbounded operators in infinite-
dimensional Hilbert spaces. An example where such results are applicable is
H(B) = —A + BV on R*> where V € L? is real-valued and B is real and posi-
tive. We shall see in Section XIII.4 that o, (H(f)) = [0, o0) and in Section
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XIII.1 that inf o(H(B)) = E(f) is a monotonic decreasing function of . If V
is negative in some region of R, E(fB) will be negative for f§ larger than some
B, and thus, by the result on o (H(f)), an eigenvalue. It is reasonable to ask
if this “ ground state energy ” E(f) is analytic in 8, at least in a neighborhood
of the interval (8,, o). _

This section is divided into four parts: (1) A brief discussion of the discrete
spectra of not necessarily self-adjoint operators. (2) A proof of the analyticity
of discrete eigenvalues in the nondegenerate case for “analytic families of
operators.” This is the general theory of regular perturbations. This theory
has many applications in quantum mechanics where eigenvalues are pos-
sible values of the energy. For this reason, we shall sometimes use the words
energy level in place of eigenvalue. Another term we borrow from quantum
mechanics is coupling constant, which we shall use for the variable . (3) Two
simple criteria (type (A) and type (B)) for H, + BV to be an analytic family;
these techniques enable one to apply the general theory to specific cases. (4)
A brief discussion of degenerate perturbation theory.

We defined the discrete spectrum of a self-adjoint operator 4 in Section
VII.3. For such operators, A € 64;,.(4) means that 4 is an isolated point of
o(A4) and dim P; < co where Pg is the projection-valued measure asso-
ciated with A. In the case of a general operator, we obviously should keep
the requirement that A be an isolated point of 6(A4). To replace the spectral

projection, we use the projection which we introduced in Section XII.1:

Theorem XIL5 Suppose that A4 is a closed operator and let A be an
isolated point of a(A). Explicitly, suppose that {u||u — 1| <&} N o(4) =
{A}. Then,

(a) For any r with 0 < r <,

1
P,= — — A—p)td
A i 'p_um( ) K
exists and is independent of r.

(b) P2 = P,. Thus P, is a (not necessarily orthogonal) projection.

(c) If G, =Ran P, and F, = Ker P,, then G, and F, are complementary
(not necessarily orthogonal) closed subspaces; that is, G, + F; = #
and G, n F, ={0}. Moreover, A leaves G, and F, invariant in the
following precise sense: G, < D(A), AG, = G,, F;, n D(A) is dense in
F,,and A[F, n D(A)] < F,.

(d) Ify € G, and G, is finite dimensional, then (4 — 4)"} = O for some n. If
B= A F,, then A ¢ o(B).
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Proof (a) We already know that (4 — u)~! is an analytic function on

C\o(A) = p(A). Thus the integral exists as a Banach-space-valued Riemann

integral. That it is independent of r is a consequence of the Cauchy integral
theorem. '

(b) Letr <R < e Then, using the resolvent equation,

P$ = (2ni) ™2 f£ 'fﬁ (A —u) " (A—=v)"'dvdu

Clu—al=r " |v-Ai|=R

= (2ni)"2 4 b =W (A=) = (A= ) Y dudy

lu—Al=r °~ |v—A|=R

= (2ni)"2[f£

= 43 du(A — p)™" fﬁ dv(v — u)” ‘J

dv(4 — v)™! fﬁ du(v — p)~!

lv—A]=R lu—Al=r

lu—A|=r lv—-Al=R

= (2ni)~ ’<ﬁ (A=v)"0dv - ¢ (2mi)(A — p)~ " du, - P,

I\"‘AI":R 'p-—ll:r

(c) Thgt G, = Ker(l — P,) and F,; = Ker P, are closed complementary
sub'spa'ces 1s elementary algebra (see Problem 6). Let y = P,y € G, . Since
P, 1s given by a Riemann integral, = lim,_, ., where

Vo= ) c"(A - ™)~y
i=1

and the ¢” and p{” are chosen so that the sums converge to
—(2ni)™' $ (4 — u)" 'Y du. A simple computation using the formula
A(A—p)" =1+ u(A4—u)~"' proves that y,—y and that {Ay,) is
Cauchy. Since A is closed, we conclude that € D(A4) and the above approx-

imation procedure proves that Ay = AP,y = P,(Ay). Thus Ay € G,. The
statements about D(A) and F, are left to the reader.

(d) Suppose that 4y = v. Then

P (=2m) o]

It follows that the only eigenvalue of A [ G, is A. If G, is finite dimensional,

the Jordan normal form of C = 4 | G, has only 1 along the diagonal and

some 1's above the diagonal. Thus (C — 1)4m%2 = Q, ie., (4 — A)"Y = 0 for
all y € G, .

X11.2 Regular perturbation theory 13

Finally, let

R, = (—2mi)"" ¢ (A—p)" A= p)"" du

lu—4Al=r

By doing computations similar to those in (b), one finds that R, P, = P, R,
and that (4 — A)R, =R;(A - 1)=1-P,. R(A— 4)=1- P, indicates
an operator equality applied to vectors in D(A). Thus R, takes F, into itself
and (B— AR, =R,(B—A)=11[F,. |}

We are now in a position to define discrete spectrum:

Definition A point A € o(A) s called discrete if 4 is isolated and P, (given
by Theorem XII.5) is finite dimensional; if P, is one dimensional, we say 4 1s
a nondegenerate eigenvalue.

The reader should check that this definition of discrete spectrum agrees
with the definition given in Chapters VII and VIII when 4 is self-adjoint.
Note that if A is a nondegenerate eigenvalue, any y € Ran P; obeys
Ay = AY. To complete our discussion of the discrete spectrum, we prove a
converse to <Theorem XII.5.

Theorem XI1.6 Let 4 be an operator with {ullu — Al =r} < p(A)
Then P = (—2mi)™ ! $,_ 5=(4 — p)~ " du is a projection. If P has dimen-
sion n < oo, then A4 has at most n points of its spectrum in {u ||y — A| <}
and each is discrete. If n = 1, there is exactly one spectral point in {u ||y —
A| < r} and it is nondegenerate.

Proof The proof of Theorem XIL.5b carries through without change to
prove that P is a projection and the proof of (c) implies that G = Ran P and
F = Ker P are closed complementary invariant subspaces. Let A, = A [ G
and A,=A | F. As in the proof of Theorem XIL5d, v ¢ o(A4,) If
lv — A| < r. Thus (A — v)~ ! exists for such v if and only if (4, — v)™" exists.
If G is finite dimensional, A, has eigenvalues v, ..., v, (k < n), so g(A4)n
{v||v — 4] < r} is a finite set. To see that each spectral point in the circle 1s
discrete, we note that if P, is the spectral projection of Theorem XIL.5 and 1if
v is in the circle, then P, P = PP, = P,. Thus Ran P, = Ran P, which com-
pletes the proof.

Having completed our brief discussion of discrete spectra, we can get
down to the real object of study:
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Definition A (possibly unbounded) operator-valued function T(B) on a
complex domain R is called an analytic family or an analytic family in the

sense of Kato if and only if:

(1) For each f e R, T(B) is closed and has a nonempty resolvent set.

(1) For every B, € R, there is a 4, € p(T(Bo)) so that Ay € p(T(B)) for B

near o and (T(f) — A,) ™' is an analytic operator-valued function of S
near f3,.

If T(B) is a family of bounded operators, this definition is equivalent to the
definition of bounded operator-valued analytic function (Problem 8). The
number 4, in the above definition does not play a special role:

Theorem XII.7  Let T(f) be an analytic family on a domain R. Then
I'={{B, A>|B e R, ie p(T(B))}

1s open and the function (T(B) — 1)~ ! defined on I" is an analytic function of
two variables.

Proof Let {By,4,) € T and suppose that (T(8) — A,)~ ! exists and is analy-
tic in B for B near B,. By the first resolvent identity, 1 — (4; — 4,) ¥
(T(Bo) — 40)~ ' has an inverse equal to (T(Bo) — 20 )(T(By) — A,)~". Since
the set of invertible operators in #(#)is open, [1 — (1 — A )T(B) — A0) ™ 1]

1s invertible if A is near A, and S is near Bo . For such (B, 1>, T(B) — A has an
Inverse equal to

(T(ﬂ) _ ’10)" 1[1 o (’1 o AO)(T(ﬁ) _' A'O)m-l]ml

s0 {f, A> e I. Thus I' is open. To prove the analyticity of (T(B) — 1)1, we

note that 1 — (4 — A, )(T(B) — 4o) ™! is analytic for A near Ao and B near S,
with values in the invertible operators. By a general theorem (Problem 9), it

follows that (1 — (2 — A0)(T(B) — 4,)™ ')~ ! and therefore (T(B)—4)""is

analytic. |

Only a simple technical lemma remains to complete the machinery for an
effortless proof of the Kato-Rellich theorem: '

Lemma If P and Q are two (not necessarily orthogonal) projections and
dim(Ran P) # dim(Ran Q), then ||P — Q| = 1. In particular, if P(x) is a
continuous projection-valued function of x on a connected topological
space, then dim(Ran P(x)) is a constant.

X1l.2 Regular perturbation theory 15

Proof Without loss of generality suppose dim(Rgn P) < dim(Rgn Q). Let
F = Ker P and let E = Ran Q. Then dim(F*) = dim(Ran P) <dim E. As a
result, F n E # {0} (see Problem 4 of Chapter X). Let y # 0, y € F n E.

Then Py =0, Qy=y, so [(P—QW|=|y¥|. This implies that
IP — Q| = 1. The final statement follows from an elementary connectedness

argument. §

Theorem XI11.8 (Kato-Rellich theorem) Let T(B) be an analytic family
in the sense of Kato. Let E, be a nondegenerate discrete eigenvalue of T(f,).
Then, for B near B,, there is exactly one point E(f) of a(:I’(B)) near E, and
this point is isolated and nondegenerate. E(f) is an analytic function of j fgr
B near B,, and there is an analytic eigenvector Q(p) for f near f, . If T(B) is
self-adjoint for B — B, real, then Q(f) can be chosen to be normalized for

B — B, real.

Proof Pick ¢ so that the only point of ¢(T(8,)) within {E||E — E,| < &} is
E,. Since the circle {E||E — E,| = €} is compact and the set I" of the last

theorem is open, we can find § so that E ¢ o(T(B)) if |E — Eo| = ¢ and

|B=Bo| <. Let N={B||B — Bo| < }. Then

P(B)=-(ni)' ¢  (T(B)—E) ' dE

|IE—-Eg|=¢

exists and is analytic for f € N. The nondegeneracy of E, as an eigem{alue'of
T(B,) implies that P(B,) is one dimensional. The last lemma then 1mp11§s
P(B) is one dimensional for all f € N. Thus, by Theorem XII.6, there 1s
exactly one eigenvalue E(B) of T(B) with |E(f) — E,| < ¢ when f € N and
this eigenvalue is nondegenerate. The analyticity of E(f) follows from the

formula |
o1 _ (o, (T(B) — Eo — &)™ "P(B))

e e e e s e

(E(B) — Eo —¢)™ " = Q0 P(B))

We obtain an analytic eigenvector by choosing Q(8) = P(B)<2, or
Q(B) = (€ P(B)2)" 1IZP(B)QO

in the real case, where Q, is the unperturbed eigenvector. |}

We thus see how easy it is to prove that energy levels are an'alytlc in the
coupling constant if we know that T(f) is an an.alyyic family. This would not
be very useful if we did not have convenient criteria for T(f) to be analytic.
Fortunately, there are two simple ones reflecting the usual operator/form
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dualism. We shall discuss the operator criterion in detail and the form
criterion briefly.

Definition Let R be a connected domain in the complex plane and let

T(p), a closed operator with nonempty resolvent set, be given for each f € R.
We say that T(B) is an analytic family of type (A) if and only if

(i) The operator domain of T(f) is some set D independent of B.
(1) For each y € D, T(B)Y is a vector-valued analytic function of B.

-

Of course, every family of type (A) is an analytic family in the sense of
Kato. We leave the general case of this theorem to the problems and con-

sider only the linear case T(f) = H, + BV. We first prove a lemma that is of
Interest in itself since it is a convenient criterion for a family to be type (A).

Lemma Let H, be a closed operator with nonempty resolvent set. Define
Ho + pV on D(H,) N D(V). Then H, + BV is an analytic family of type (A)
near f = 0 if and only if:

(b) For some a and b and for all € D(H,),

V¥l < a|Hoy| + bly|

That 1s, Hy + BV is type (A) if and only if V is Hy,-bounded in the sense of
Section X.2.

Proof Suppose first that Hy + BV is an analytic family of type (A). Then
D(H,) = D(H, + BV) = D(H,) n D(V) so (a) holds. Since H, is closed.
D(H,) with the norm |||¢||| = | Ho¢ || + || ¢ | is a Banach space D. Fix 8
small and positive so that f and — 8 are both in the domain of analyticity.
Ho + BV: D — A is everywhere defined and has a closed graph in D x #

since the graph is closed in # x # with a weaker topology. Thus, by the
closed graph theorem,

|(Ho + BV < a, ||y
|(Ho — BVW|| < a,]|yl]

and

Thus,

<

Vel < @B)'II(Ho + BVW| + |(Ho — BVW|]
2B)" Ha, + a,)||jw|l]

(
- so that condition (b) holds.
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Conversely, let (a) and (b) hold. Then, for y € D(H,),

|[Hot| < [|(Ho + BVW| + |B]| VY]
< |(Ho + BV)| + |Bla|Hoy| + |B|b]¥]

Thus, if |f| <a™!, we have

[Ho| < (1= [Bla)™"|(Ho + BVW| + (1 - |B|a)~'b|B]|¥]

Therefore, Hy + BV is closed on D(H,) for if y, — ¥ I ¥ with y, € D(H,)
and (Hy + BV, is Cauchy, then H, y, is Cauchy by the above inequality

ind thus y € D(H,). That (H, + BV)y is analytic for ¢ e D(H,) is
obvious. |

It 1s a corollary of the above proof that if V is infinitesimally small with
respect to Ho, then Hy + BV is an entire family of type (A).

Example 1 Let V e I*(R®) + L*(R’) and let H, = — A on I?(R3). More
generally, let V=) V,; with ¥;;e I> + [® and H, = —A on R*". Then
Ho + pV 1s an entire analytic family of type (A).

Example 2 It can be shown that if V < < H, and W < < H,, then
W < <Hy + V (Problem 11). Thus, letting Hy = — A, — A, — 2/ry — 2/r,
on L(R®)and V = |r, —r,|™ !, wesee Hy + BV is an analytic family of type
A). In the approximation of infinite nuclear mass, H + V is the helium atom
Hamiltonian (see Section XI.5 for the kinematics).

Theorem XIL9 Let H, + BV be an analytic family of type (A) in a
egion R. Then H, + BV is an analytic family in the sense of Kato. In
jarticular, if 0 € R and if E, is an isolated nondegenerate eigenvalue of H,,,
hen there is a unique point E(B) of {H, + BV) near E, when | B| is small
vhich is an isolated nondegenerate eigenvalue. Moreover, E(B) is analytic
iear f = 0.

'roof Since analyticity is a local property, we suppose that 0 e R and
rove analyticity in the sense of Kato near § = 0. Choose A ¢ o(H,). Then

Ho—4)"" and Ho(Ho — A)" ' =1+ A(H, — 1)~ ! are bounded. Thus, for
ny ¢ € J,

|[V(Ho — 2)™ | < a|Ho(Ho — 2) 0| + b||(H, — A)~ '
< (a||Ho(Ho — A)™ || + b||(Ho — A" Nlel
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Let us return to general criteria for a linear function Hy + SV to be an
analytic family in the sense of Kato. There 1s a form notion analogous to the

operator notion of family of type (A). An analytic family of type (b) is a
family of closed, strictly m-sectorial forms, g(f), one for each [ 1n a region R
of the complex plane, so that:

(i) The form domain of g(f) is some subspace F independent of f.
(i1) (¥, g(B)¥) is an analytic function in R for each y € F.

If g(B) is an analytic family of type (b), then, for each B € R, there 1s asso-
ciated a unique closed operator T(f) by Theorem VIII.16. T(B) is called an
analytic family of type (B). As in the type (A) case, any analytic family of type
(B) is an analytic family in the sense of Kato, and H, + BV defined as a form
on Q(H,) n Q(V) is an analytic family of type (B) near § = Oifand only if V
1s H, form bounded.

Type (B) methods can be used to extend the results discussed under
Example 1 above to potentials in the Rollnik class R + L*. Type (B)
techniques imply strong analyticity properties for Hy + SV if Hy and V are
positive:

Theorem XI11.10 Let H, be positive and self-adjoint and let V be sellf-
adjoint. Let V, = 3(V + |V|); V_ =3(| V| — V). Suppose that:

(1) Q(V,) n Q(H,) is dense.
(i1) V_ is Hy form bounded with relative bound zero.

Then H, + BV is an analytic family of type (B) in the cut plane

A reference for the proof of this theorem can be found in the Notes.

Example 4 From our discussion in Section XIII.12, it will follow that the
ground state of —d?/dx* + x* + px* is nondegenerate if > 0. Thus,
Theorem XII.10 says that its ground state energy E(f) is analytic in a neigh-
borhood of the positive real axis.

There are examples of analytic families that are neither type (A) nor type
(B). For example, let T(B) be an analytic family of type (A) and let C be any
bounded self-adjoint operator. Then U(B) = exp(ifC) 1s an entire analytic

function. It is not hard to see that T(B) = U(B)T(B)U(B)” ', defined on
U(B)D, is an analytic family. However, C and T can be chosen so that neither

D(T(B)) nor Q(T(p)) is constant.
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We would like to make a few remarks, some of which are warnings about
pitfalls. First, we note that as in Section 1 one has explicit formulas for the
coefficients of the Taylor series for E(f) given as contour integrals of resol-
vents. If H, has purely discrete spectrum, we can do the integrals explicitly
and obtain formulas identical to those of the preceding section. If H 1s
self-adjoint, we can still do these contour integrals, obtaining spectral inte-
grals in pla<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>