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Introduction

Scattering theory is the study of an interacting system on a scale of time
and/or distance which is large compared to the scale of the interaction
itself. As such,,it is the most effective means, sometimes the only means,
to study microscopic nature. To understand the importance of scattering
theory, consider the variety of ways in which it arises. First, there are
various phenomena in nature (like the blue of the sky) which are the result
of scattering. In order to understand the phenomenon (and to identify it as
the result of scattering) one must understand the underlying dynamics and
its scattering theory. Second, one often wants to use the scattering of waves
or particles whose dynamics one knows to determine the structure and
position of small or inaccessible objects. For example, in X-ray crys-
tallography (which led to the discovery of DNA), tomography, and the
detection of underwater objects by sonar, the underlying dynamics is well
understood. What one would like to construct are correspondences that
link, via the dynamics, the position, shape, and internal structure of the
object to the scattering data. Ideally, the correspondence should be an
explicit formula which allows one to reconstruct, at least approximately,
the object from the scattering data. A third use of scattering theory is as a
probe of dynamics itself. In elementary particle physics, the underlying
dynamics is not well understood and essentially all the experimental data
are scattering data. The main test of any proposed particle dynamics. is
whether one can construct for the dynamics a scattering theory that predicts
the observed experimental data. Scattering theory was not always so central
to physics. Even though the Coulomb cross section could have been
computed by Newton, had he bothered to ask the right question, its
calculation is generally attributed to Rutherford more than two hundred
years later. Of course, Rutherford’s calculation was in connection with the
first experiment in nuclear physics.

Scattering theory is so important for atomic, condensed matter, and high
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x INTRODUCTION

energy physics that an enormous physics literature has grown up. Un-
fortunately, the development of the associated mathematics has been much
slower. This is partially because the mathematical problems are hard but
also because lack of communication often made it difficult for mathe-
maticians to appreciate the many beautiful and challenging problems in
scattering theory. The physics literature, on the other hand, is not entirely
satisfactory because of the many heuristic formulas and ad hoc methods.
Much of the physics literature deals with the “ time-independent ” approach to
scattering theory because the time-independent approach provides powerful
calculationaltools. We feel that to use the time-independent formulas one must
understand them in terms of and derive them from the underlying dynamics.
Therefore, in this book we emphasize scattering theory as a time-dependent
phenomenon, in particular, as a comparison between the interacting and
free dynamics. This approach leads to a certain imbalance in our presentation
since we therefore emphasize large times rather than large distances. However,
as the reader will see, there is considerable geometry lurking in the back-
ground.

The scattering theories in branches of physics as different as classical
mechanics, continuum mechanics, and quantum mechanics, have in common
the two foundational questions of the existence and completeness of the
wave operators. These two questions are, therefore, our main object of study
in individual systems and are the unifying theme that runs throughout the
book. Because we treat so many different systems, we do not carry the
analysis much beyond the construction and completeness of the wave
operators, except in two-body quantum scattering, which we develop in
some detail. However, even there, we have not been able to include such
important topics as Regge theory, inverse scattering, and double dispersion
relations.

Since quantum mechanics is a linear theory, it is not surprising that the
heart of the mathematical techniques is the spectral analysis of Hamiltonians.
Bound states (corresponding to point spectra) of the interaction Hamiltonian
do not scatter, while states from the absolutely continuous spectrum do.
The mathematical property that distinguishes these two cases (and that
connects the physical intuition with the mathematical formulation) is the
decay of the Fourier transform of the corresponding spectral measures.
The case of singular continuous spectrum lies between and the crucial (and
often hardest) step in most proofs of asymptotic completeness is the proof
that the interacting Hamiltonian has no singular continuous spectrum.
Conversely, one of the best ways of showing that a self-adjoint operator
has no singular continuous spectrum is to show that it is the interaction
Hamiltonian of a quantum system with complete wave operators. This deep
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coqncction between scattering theory and spectral analysis shows the
artificiality of the division of material into Volumes III and IV. We have
therefore, preprinted at the end of this volume three sections on the;
absence of continuous singular spectrum from Volume IV.

While we were reading the galley proofs for this volume, V. Enss intro-
duced new and beautiful methods into the study of quantum-mechanical
scattering. Enss’s paper is not only of interest for what it proves, but also
for the future direction that it suggests. In particular, it seems likely that
the mt?thods will provide strong results in the theory of multiparticle
scattering. We have added a section at the end of this Chapter (Section XI1.17)
to describe Enss’s method in the two-body case. We would like to thank
Professor Enss for his generous attitude, which helped us to include this
material.

Tl?e general remarks about notes and problems made in earlier intro-
ductions are applicable here with one addition: the bulk of the material
presented il this volume is from advanced research literature, so many of

the problems are quite substantial. Some of the starred problems summarize
the contents of research papers!
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XI: Scattering Theory

It is notoriously difficult to obtain reliable results for quantum mechanical scattering problems.
Since they involve complicated interference phenomena of waves, any simple uncontrolled approxi-
mation is not worth more than the weather forecast. However, for two body problems with
central forces the computer can be used to calculate the phase shifts . . . . W. Thirring

X1.1 An overview of scattering phenomena

In this chapter we shall discuss scattering in a variety of physical situa-
tions. Our main goal is to illustrate the underlying similarities between the
large time behavior of many kinds of dynamical systems. We study the case
of nonrelativistic quantum scattering in great detail. Other systems we treat
to a lesser extent, emphasizing simple examples.

Scattering normally involves a comparison of two different dynamics for
the same system: the given dynamics and a “free ” dynamics. It is hard to
give a precise definition of “free dynamics ” which will cover all the cases we
consider, although we shall give explicit definitions in each individual case.
The characteristics that these free dynamical systems have in common are
that they are simpler than the given dynamics and generally they conserve
the momentum of the “individual constituents” of the physical system. It is
important to bear in mind that scattering involves more than just the inter-
acting dynamics since certain features of the results will seem strange other-
wise. Because two dynamics are involved, scattering theory can be viewed as
a branch of perturbation theory. In the quantum-mechanical case we shall
see that the perturbation theory of the absolutely continuous spectrum is

1



2 Xi: SCATTERING THEORY

involved rather than the perturbation theory of the discrete spectrum
discussed in Chapter XII.

Scattering as a perturbative phenomenon emphasizes temporal asymptot-
ics, and this is the approach we shall generally follow. But all the concrete
examples we discuss will also have a geometric structure present and there is
clearly lurking in the background a theory of scattering as correlations
between spatial and temporal asymptotics. This is an approach we shall not
explicitly develop, in part because it has been discussed to a much lesser
degree. We do note that all the “free ” dynamics we discuss have “ straight-
line motion” in the sense that solutions of the free equations which are
concentrated as t - — oo in some neighborhood of the direction n are con-
centrated as ¢t — + oo in a neighborhood of the direction —n. These geomet-
ric ideas are useful for understanding the choice of free dynamics in Sections
14 and 16 where a piece of the interacting dynamics generates the free
dynamics. And clearly, the geometric ideas are brought to the fore in the
Lax-Phillips theory (Section 11) and in Enss’s method (Section 17).

Scattering theory involves studying certain states of an interacting system,
namely those states that appear to be “asymptotically free” in the distant
past and/or the distant future. To be explicit, suppose that we can view the
dynamics as transformations acting on the states. Let T, and T stand for
the interacting and free dynamical transformations on the “set of states” X.
Z may be points in a phase space (classical mechanics), vectors in a Hilbert
space (quantum mechanics), or Cauchy data for some partial differential
equation (acoustics, optics). One is interested in pairs (p_, p) € T so that

lim (Tp - T{%_)=0

t-—oo

for some appropriate sense of limit, and similarly for pairs that approach
each other as t — + 0o0. One requirement that one must make on the notion
of limit is that for each p there should be at most one p_ .

The basic questions of scattering theory are the following:

(1) Existence of scattering states Physically, one prepares the interact-
ing system in such a way that some of the constituents are so far from one
another that the interaction between them is negligible. One then “ lets go,”
that is, allows the interacting dynamics to act for a long time and then looks
at what has happened. One usually describes the initial state in terms of the
variables natural to describe free states, often momenta. One expects that
any free state “ can be prepared,” that is, for any p_ € I, thereisa p € £ with
lim,._,, T,p — T{®p_ = 0. Proving this is the basic existence question of
scattering.
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(2) Uniqueness of scattering states In order to describe the prepared
state in terms of free states, one must know that each free state is associated
with a unique interacting state; that is, given p_ there is at most one p such
that T{®_ — T,p -0 as t - — o0. Notice that this is distinct from the re-
quirement on the limit above that there should be at most one p _ for each p.

(3) Weak asymptotic completeness Suppose that one has an interacting
state p that looked like a free state in the distant past in the sense that
lim,._, T®_ — T, p = 0 for some state p - . One hopes that for large posi-
tive times, the interacting state will again look like a free state in the sense
that there exists a state p, so that lim,_ ., T{®p, — T,p = 0. In order to
prove this, one needs to show that the two subsets of £

Zin =

p€X|3p_€Z with lim T§°’p_—-7;p=0}

t— - o0

and

o = =p €Z|3p,eZwith im TOp, —T,p= 0’
1+ 00
are ¢qual. If in fact Z,, = Z,,,, then the system is said to have weak asymp-
totic completeness.

(8) Definition of the S-transformation 1If one has a pair of dynamical
systems (T®, T,) for which one can prove existence and uniqueness of
scattering states (both ast —+ — 0 and as t — 00) and for which weak asymp-
totic completeness holds, then one can define a natural bijection of £ onto
itself. Given p € Z, existence and uniqueness of scattering states assures us
that there exists a state Q* p € T;, with lim,_, (T}(Q*p) — T¥p) = 0. Sim-
ilarly, Q~ is defined by lim,. ., (T(Q p) - T®p)=0. Q* (respectively,
Q~) is a bijection from X onto I,, (respectively, Z,.) Weak asymptotic
completeness assures us that ;, = X ,,, so one can define the bijection

S=(Q)'Q*: T3

S is called the scattering transformation. Thus, T{°(Sp) and T(p are related
by the condition that there exists a state (Y = Q*p = Q™ (Sp))so that T,y
“interpolates ” between them. That is, T,y looks like T!p in the past and
T{"Sp in the future. Thus § correlates the past and future asymptotics of
interacting histories. The reader should be warned that the maps
§'=Q*Q7) " L, > Z,, and also the maps (2*)'Q~ and Q~(Q*)"!
occasionally appear in the literature. When weak asymptotic completeness
holds, ' = Q~5(Q7)~*,s0 S and S’ are “similar.” For this reason, the choice
between S and §’ is to some extent a matter of personal preference. We use S,
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the so-called EBFM S-matrix, throughout this book. We discuss the reasons
for the + convention in Sections 3 and 6.

In classical particle mechanics S is a bijection on phase space. In a quan-
tum theory with weak asymptotic completeness S is a linear unitary transfor-
mation and is called the S-operator or occasionally the S-matrix.

(5) Reduction of S due to symmetries In many problems there is an
underlying symmetry of both the free and interacting dynamics. This allows
one to conclude a priori, without detailed dynamical calculations, that S has
a special form. See Sections 2 and 8 for explicit details.

(6) Analyticity and the S-transformation A common refinement of scat-
tering theory for wave phenomena (quantum theory, optics, acoustics) is the
realization of S or the kernel of some associated integral operator as the
boundary value of an analytic function. In a heuristic sense this analyticity is
connected with Theorem IX.16. For schematically, S describes the response
R of a system to some input I in the following form:

R(t) = J.: S(e—=0)()dr

This formula has two features built in: (i) time translation invariance, that is,
fis a function of only ¢t — t'; (ii) causality: R(t) depends only on I(t’) for
t <t Thus fis a function on [0, c0). Its Fourier transform is thus the
boundary value of an analytic function. It is this causality argument that is
intuitively in the back of physicists’ minds when discussing analytic proper-
ties. Unfortunately, the proofs of these properties do not go along such
simple lines. We shall restrict our detailed discussion of analyticity to the
two-body quantum-mechanical case (Section 7) and to the Lax-Phillips
theory (Section 11).

(7) Asymptotic completeness Consider a system with forces between its
components that fall off as the components are moved apart. Physically, one
expects a state of such a system to “decay ” into freely moving clusters or to
remain “bound.” In many situations, there is a natural set of bound
states, Lyo,0a < . One can usually prove that X, ,.¢ N Z;n = &. The above
physical expectation is

zlwmm:l “ +” 2in = Z = zlmund “+” Zoul (1)
“ 4 " is different in classical and quantum-mechanical systems. In classical
particle mechanics “ + ” indicates set theoretic union; in quantum theory it
indicates a direct sum of Hilbert spaces. Establishing that (1) holds is the

problem of proving asymptotic completeness. Notice that asymptotic com-
pleteness implies weak asymptotic completeness. We remark that implicit in

X1.2 Classical particle scattering 5

the idea that each free state has an associated interacting state is the assump-
tion that the free dynamics has no “bound ” states.

We emphasize that the above description is schematic. In each physical
theory there are complications, and various modifications must be made.
Among these are: (i) In classical mechanics £ comes equipped with sets of
measure zero and the natural interpretation of statements like £;, = X, is
that they differ by sets of measure zero. (ii) In some systems, including
many-body systems, the state spaces of the free and interacting dynamics are
different (see Sections 5, 15, and 16). (iii) In quantum-mechanical systems one
can define an S-operator even without weak asymptotic completeness (see
Section 4). Weak asymptotic completeness then becomes equivalent to the
unitarity of S. (iv) In certain very special cases the free dynamics may have
bound states (see Section 10). (v) In the Lax-Phillips theory (Section 11) the
free dynamics is replaced by the geometric notion of “incoming” and
“ outgoing” subspaces.

Usually, thevinteracting dynamics is obtained initially by perturbing a
simple dynamics which then plays the role of the “ free ” dynamics. However,
in some special physical theories there is no natural unperturbed dynamics
to compare with the interacting dynamics. In such cases one first isolates
certain especially simple solutions of the interacting system. Then one tries
to describe the asymptotic behavior of the complete interacting system in
terms of the interactions of these simple solutions. Magnon scattering (Sec-
tion 14) and the Haag-Ruelle theory (Section 16) are examples of such
systems, as is the scattering theory for the Korteweg-deVries equation,
which we do not treat.

X1.2 Classical particle scattering

The simplest system with which to illustrate the ideas of scattering theory
is the classical mechanics of a single particle moving in an external force field
F(r). This theory is equivalent to the scattering of two particles interacting
with each other through a force field F(r, — r,) because the center of mass
motion of such a two-body system separates from the motion of
ry; =ry — r,. We shall suppose that the particle has mass one, which is no
loss of generality.

The states of such a single particle system are points in phase space, that is,
a pair Cr, v) € R® representing the position and velocity of the particle. The
free dynamical transformation is given by TO(r,v) = (r + vt. v). Thus the
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free dynamics conserves the velocity. The interacting dynamics is given by
Tro, ¥o) = Cr(t), v(t)) where v(t) = #(t) and r(t) solves the equation

§(t) = F(r(t) (2a)
with initial conditions
r0)=r,, ©0)=v, (2b)

In order to be sure that (2) has a unique solution for all times, we shall
suppose that

|F(r)] <C forallr (3a)
|F(r) - F(r)] <Dg|r—r| if |r—r|<1 and |r| <R (3b)

where Dy is an R-dependent constant. The techniques we developed in
Section V.6 assure us that (2) has a unique solution for small time if (3b)
holds, and it is not hard to prove that this solution exists for all times (see
Proposition 1 in the appendix to Section X.1 and Problem 1). The only place
where the conditions (3) enter in the theory that we shall develop is in
establishing this global existence and uniqueness. If one can establish this by
some other means, (3) can be dispensed with and conditions (4) below need
be required to hold only for large distances. In particular, local repulsive
singularities present no problem.

To establish the existence and uniqueness of scattering solutions, we shall
need to have further restrictions on the forces. These restrictions, which
require that the interaction between constituents falls off as r — oo, where
r = |r|, are typical of scattering theories. Specifically, we shall suppose that:

|F(r)| < Cr=® for all r and some & > 2 (4a)
|F(x)— F(y)] <Dr #|x —y| forall x, y with
x,y >rand some f>2 (4b)

Under these assumptions we shall prove the existence and uniqueness of
scattering solutions. One can establish existence using only (4a) (Problem 2),
but uniqueness requires the Lipschitz condition (4b) (Problem 3). This is
reminiscent of the situation we encountered in Section V.6 when discussing
solutions of differential equations with initial conditions. Lipschitz condi-
tions were also required there for uniqueness. This is not surprising since
according to our intuitive picture in Section 1, scattering solutions can be
viewed as solutions obeying “initial conditions at ¢t = —00.”

The conditions (4) do not include the important case of Coulomb scatter-
ing where the theory must be modified. We discuss this case in Section 9.

X1.2 Classical particle scattering 7

Henceforth we shall drop the boldface notation for vectors except in the
statements of theorems and in situations where confusion might arise be-
tween a vector and its length.

Theorem XI.1 (existence and uniqueness of scattering solutions; classical
particles) Let F(r) be a function from R® to R* obeying (3) and (4). Let

F_w,V_,) € R® be given with v__ s 0. Then there exists a unique solu-
tion of (2a) obeying

lim |i(t)—v_ | =0 (5a)
1~—o
and
im |r(t)—r_, —v_,t|=0 (5b)

t— —o0

Proof Since we are assuming (3), by the above remarks it is sufficient to
prove the existence and uniqueness of solutions in (— oo, T) for some T. In
keeping with the idea that scattering solutions obey initial conditions at
t = — o0, it is natural to use the method of Section V.6.A and rewrite the
differential equation as an integral equation. In fact, one can show (Problem
4) that’ r(t) obeys (2a) and (S) on (—oo, T) if and only if r(t)=r_, +
U_o t + u(t), where u is continuous and satisfies

t s
u(t)=J. f F(roo +v_pt+u(t))deds (6)
where the integral converges absolutely.
Choose T < 0 so that:

() |r-o+v_ot| 24|t]|v_o|ift<T;

(i) Cla—1)""a-2)" 4| TP *<1;
(i) y=DB-1)""(B-2)"" oo | TP ?<1;
(iv) 3| T||v-p| > 1
Here C, a, D, B are the constants in condition (4). Now suppose that u(t) is
an R-valued continuous function on (— oo, T) with |Ju,, < 1. Let r(t) =
F-w + V_ot +u(t). (i) and (iv) assure us that |r(t)| > 4|¢t||v_,|. By (4a),

the integral [, [*,; |F(r_, + v_, 1 + u(z))| dt ds converges absolutely.
Let

M1 = {u € C(— oo, T) with values in R?| |lul|,, < 1}
and define #: .4, — #; by
t s
(Fudt)=[ [ Flroo+v_ot+u(x))drds

—e ~—a
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(4a) and (i) assure us that | #u|, < 1if |lu|, < 1,s0 # maps the complete
metric space .# ; into itself. (4b) and (iii) imply that

|Fu— Follo <ylu— vl

so # is a contraction on .# ; since T was chosen to make y < 1. Thus, by the
contraction mapping principle (Theorem V.8), # has a unique fixed point in
# 1. It is easy to prove now that (6) has a unique solution. For if u, and u,
both solve (6), then both will lie in .# ;- for some T" < T. But by the above
argument, there is a unique solution of (6)in # ;- forany T" < T,so u, = u,
on (—oo, T'). By the uniqueness of solutions with initial conditions at
-T -1, u;=uyon(—o0, T) |}

We now define two important maps:

Definition Let £ = R® and let r{ () be the solution of (2a) asymp-
totic 1o a + br at —oo. Set £, = Z\{<a, b)|b = 0}. Then the wave operator
Q*: L, — X is defined by

Q*(a, b) = (H7(0), #5'(0))
Similarly, Q" is defined by
Q~(a, b) = {rH=(0), £12(0))

Thus Q* w is that point of phase space which is the ¢t = 0 initial data fora
solution of the interacting equations of motion which is asymptotic at
t = — oo to the solution of the free equations of motion with data at t =0
equal to w.

The wave operators have several important properties:

Theorem X1.2  Suppose that conditions (3) and (4) hold for a force field
F(r) and let Q* be the associated wave operators. Then:

(@) Let T, and T\” be the interacting and free dynamics, respectively. Then
forallwe Z,,

Qtw= lim T.,TOw
t-Foo

where the limits are uniform on compact subsets of Z,.
(b) Q*T® =T,Q* on Z, for all s.

X1.2 Classical particle scattering 9

(c) (isometry of Q*) If F is conservative, that is, if F = —VV for some
function V, then Q* are measure-preserving transformations.

(d) If F is conservative and V(r)—0 as r— oo, then E(Q*w) = Eq(w)
where E(r, v) = 402 + V(r) and Eq(r, v) = v

(e) IfFis C* and

l Q) | ¢ p,peti-2-

ar‘;l arg:!

for all r, a and some ¢ > 0, then Q* are C* maps.

Proof (a) This is a typical property of Q* and will be used to define the
analogues of Q* in quantum-mechanical situations. Since Q*x = y means
that lim,,_, |y —T{®x| =0 and (T;)"!'=T_,, (a) is intuitively ex-
pected. We shall prove the formula for Q*; the proof is essentially identical
for Q~. For fixed T € R, define .#; as before. For {a,b) € £,,t < T, and
u € M 1, defipe the function £, ru on (- o0, T) by

(Fos, Tu)s) = '[’JTF(a + bt + u(t)) dt do

_Let F 50} u be of the same form with t = — c0. One now proves the follow-
ing three facts (Problems 5, 6):

(i) For any compact K = Z,, we can find T < 0 so that for {a, b) € K
and t € (— oo, T), FY, rtakes .4 intoitself and is a contraction. The
constant y in the equationt |#{), yu— FU, rv||, <y|u - v, may
bl: chosen, independently of {a, b) € K and t € (— 0, T), to be less
than 1.

(@) If K and T are as defined in (i) for any wue .4,
lim,._, #4) ru= Fy*}u. The convergence is uniform on .4,
and K.

(iti) A general result about contractions: Suppose that F, form a family of
maps of a complete metric space to itself. If p(F, p, F, q) < cp(p, q) for
all p, q, n and some ¢ < 1, if lim,_,, F,p= F, p for all p, and if p,
(respectively, p,,) are the unique fixed points of F, (respectively, F woh
then lim, ., p, = p,,. Moreover, the rate at which p, converges to p,,

depends only on the rate at which F,p,, converges to F, p, = p,
and c.

Let ul), r be the fixed point of #Y, .. We conclude that

. ol - ' . .
lim, . _, ul’y, + = u{;°). Now, using the fact that T T+ 1 18 continuous from
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I to X, we conclude the proof of (a):
Q*a,b) =T 7,1 {a+bT—-1)+ ul oK T — 1), b+l °H(T - 1))
= lim T_r, <@+ (T — 1)+ uQy (T = 1), b+ (T - 1))
- —a

= lim T_r4; Ty r-, T\¢a, b

N fadad ]

lim T_, T®¥a, b)

- -

(b) This is a general consequence of (a) since

Q*TOw = lim T_,TQw= lim T_,,, T = T,Q*w
t—=F o t—=F o
Here we have used the continuity of T, and the fact thatast — + 0,1 =5 +
t — % oo for fixed s. ‘

(c) This is another general feature of scattering theory which we sh.all
meet in quantum scattering in a slightly different guise. For conservative
systems, it is known that T, is measure-preserving (Theorem X.78). Similarly,
T® is measure-preserving, so T, T is measure-preserving for all t. Let f
be a continuous function of compact support on X,. Then, by (a),

[ r@*w) dow = 1iim [ 7T TOW) dow = [ £ow)dow
-+ — a0
Thus Q*, and similarly Q~, are measure-preserving maps.

(d) Follows from (a), the conservation of energy (E o T, = E) and the
assumption that ¥V — 0 as r — co. _

(¢) Under the hypothesis, F{ s} u is a C* map of Z, x My into My
(Problem 7). By a general theorem on smoothness of fixed points of contrac-
tions (Problem 5b) the fixed points of #{;°} and hence their values at
t=T-—1 are C*. Since T, is a C*® mapping for each t, propagating the
solution from t = T — 1 to t = 0, we conclude that Q* are C*® maps. |

The domains of Q* are all of £ minus a set of measure 0. In general, the
range of Q* will not be all of £ or even Z minus a set of measure zero.

Example Let F obey the hypotheses of (d) of Theorem XI.2. Then
Ran Q* < {{a, b'>| 3|V’ |> + V(a') > O}. The set

{Ka', b |3|Y'* + V(a) < 0}

has nonzero measure if Vis continuous and negative at any point.

Xi.2 Classical particle scattering 1

Definition Let Z,, = Ran Q*, X, = Ran Q", and let I, be the set
of {r, v) so that the solution r(t) of (2) satisfies

sup [r(t)| + sup |i(t)| < 0
t 4

Thus, bound states are those whose trajectories lie in bounded regions of
phase space. Weak asymptotic completeness says that ¥,, =X, and
asymptotic completeness that I;, = X, = Z\E,,.q- Since we have already
thrown out sets of measure zero (namely, {{a, b) |b = 0}) in defining Q*, we
should be prepared to have these equalities modulo sets of measure zero. In
general, there do exist solutions that are asymptotically free as t - — oo but
not as t — + oo (capture; see Problem 9).

If the force is conservative, that is, F(r) = —VV(r), then by our hypotheses
on F, V is smooth and bounded. In this case, by conservation of energy,
[F(t)| is automatically bounded, so (r,v) € Ly if and only if
sup, |r(t)| < co.

Theorem XI.3 (asymptotic completeness; two-body classical particle scat-
tering) Let F(r)= —V¥(r) with ¥ —»0 as r - c0. Suppose also that F
obeys (3) and (4). Then X,,, Z,,,, and Z\E,,,.q agree up to sets of measure 0.

Proof Let r, ,(t) be the solution of #(t) = F(r(t)), r(0) = g, #0) = v. Define
M. ={Gaw

We first want to show that N, and N _ agree up to sets of measure 0, that is,
W(N \N_)+ u(N_\N,) =0 where u is Lebesgue measure. The measurabil-
ity of sets like N,, N_, Z,,,.4 is left to Problem 10. Let {K,} be compact
subsets of R® with ( K, = R®, K, c K"t ,. Let N® = {<q, v)| Tq, v) € K,
for all ¢ € [0, o)} and similarly for N*. We first note that N, = Un N9 for,
using conservation of energy, if lim,, , |7, o(t)| < o0, then T(q, v) liesina
compact subset of R® as ¢ runs from O to oo. Thus, if peN,\N_,
pe NP\N® for some n. Therefore, it is sufficient to prove that
H(N®AN®) = 0 for each n. Let T, be the interacting dynamics. We first note
that (%, LNY < N® and that N9 > T, N 5 T, N > ---, Thus

lim [7e.ot)] < o
t=t o

H(NP\N®) < #(N@\ N RN‘I’) < Y u(N\T,N®)
k=1 k=1

But, by Liouville’s theorem, u(T, N%’) = u(N9) < 0. Since T, N = N®,

we conclude that u(N\T, N9) =0, so u(NP\N™) = 0. A similar proof

shows that u(N_\N,)=0so u(N, A N_)=0.
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Now suppose r(t) solves Newton’s equation and lim, .o |r(t)] = . We
shall first show that if the energy E(r(0), #(0)) > 0, then |r(t)| > C|t| for ¢
large and use this to prove that r(t) approaches a free solution. Let I(t) =
4|r(¢)]* be the moment of inertia. Then

i(¢)=#-r=Ft)(t)

where r(t)= |r(t)| and #(¢)=dr/dt (which is not equal to |dr/dt] in
general). Also,

I(e) = ¥(e)* + F(r(r)) - r(t)
= 2E +r- F(r) - 2V(r)

Since E > 0, and both r - F and V go to zero as r — 0o, we can find R, so
that |r| > R, implies |r - F(r) — 2V(r)| < E. Since lim, ., |r(t)] = o0, we
can find some t, with r(to) > Ro, #(to) > 0. We now claim that r(t) > R, for
all t > to; for if not, let £, be the smallest t > to with r(t) = Ro. Then Ity E
for te(to,t,) so that I(t,)=r(t,)F(t;)> I(to) > 0. Since r(t) > R, for
t=t,—¢ and r(t,)= Ro, we know that #t,) <0, and thus we have a
contradiction. It follows that r(t) > R, for all £t > t, and therefore for all
t>to, I(t)>a+bt+ Et*2 for suitable constants a and b. Thus
r(t) > Qt\/f for t sufficiently large. Using (4), we know that [ F(r(t)) dt
exists, so we can define

b =#to) + | * F(r(t)) dt = lim #(t)

and

a=rlto)—bto— [ [ Flrle)) dt ds = lim(r(t) — b0

“to s

The second integral also exists. Moreover,
lim |r(t)—a—bt| + |Ht)—b| =0

t—*a0

Thus, if E > 0 and fim,, |r(t)] = oo, then r(t) is a scattering solution, that
is, {r(0), #(0)) is in Ty

Now, let ' be T with two sets of measure zero removed: namely,
N* A N-, which has measure zero by the first part of our proof; and
{(r, v)| E(r, v) = 0}, which has measure zero since {v|E(ro,v)=0} is a
sphere that has measure zero for each fixed ro. Suppose that w € Z'\Zpound
and let r(r) be the solution of (2)_with (r(0), #(0)) = w. Since w ¢ Zpound»
either Tim,._g |r(t)] =00 or lim,.,q |r(t)] =00 so we (EW*T) v
(EW~). Since w¢N' AN~ = (E\N*)A(E\WNW~), we must have

XI1.2 Classical particle scattering 13

w e (Z\N*) n (Z\N 7). By the second part of our argument, since E(w) # 0,
we have we X,, and we X_,,. This proves that T'\Z s =Z' N Xy =
NI, |

Now that we have asymptotic completeness we define the
S-transformation.

Definition Let T*) = (Q*) '[Z'\Zyouna). The S-transformation is the
map S: T — Z(7) defined by

Sw=(Q7) 1(Q*w)
Thus one has the picture shown schematically in Figure XI.1.

v=0atw

v=a 7
n=Sw

0 FiGURe XI.1 Schematic picture of scattering.

r’(O) w /

The S-transformation has thus been defined as a map from R® to RS, or
rather from R® minus a set of measure 0 to RS. As a final topic in classical
scattering theory, we shall describe a way of “ reducing S ” to two real-valued
functions of two real variables in the case that F is a central force, that is,
V(r) is a function of |r| = r alone. First we note some symmetries of the
S-operator. Since Q*T® = T,Q*, ST = TS. Since E(Q*w) = Ey(w),
Eo(Sw) = Ey(w). Finally, rotational invariance of F has two consequences.
Let R be an element of SO(3), the family of rotations on three-space. Define
R on T by R{r,v)=<Rr, Rv). Then Q*(Rw)= R(Q*w), so RS = SR.
Moreover, the angular momentum L(r, v) = v x ris conserved, so L(Sw) =
L(w). We summarize:

Proposition

(@) ST®=TQs.
(b) SR=RS.

(€) EoS )= Eo().
d) LES-)=L(-)
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Conditions (a) and (b) allow us to reduce S go a vector-valued f;nc':‘tx;.mt:
only two variables. For the family of sets {RT} ’wlt € R, R e 50( ).}ho lame
T into a two-parameter family of four-c!nmensnonal n.xamfold? (wntt S?E
exceptional manifolds of smaller dimension), the manifolds o! c:ns ar]f ; do
and |L|. By (a) and (b) if we know Sw for one w from each suc mamto ,
we know § for all w. Because of (c) and (d), Sw can lie only 01;‘ a wo;
dimensional manifold where E, and L are equal to their values a_t the ;;(t)mo
w. Thus we expect S to be parametrized by two real-valued functions of tw
reallc‘;zr::)em:ore explicit: By rotational invariance of S, it zs enough to knoi\:
S(r, v) when v = pz and when r is in the y, z plane, where zis a met vecto>r in
the z direction. If S(r, v) = (r’, v'), then by property (a), SCr+ve, v <
{r' + v't, v'), so we may suppose that rev= 0 orr=by. To szmm;mzellet
may be recovered if we know S(bi, pz) for all real’numbers 'a-t-l P(.b )
s{by, pz) = (v, v'). By conservation of energy |v|=pso v = pé AI:"
where & is some unit vector. By conservation of ang’ular momt':nt;xm, r an' Y
lie in the y, z plane and the component of r pe_rpend.ncu ar tc:t v.n
determined. There are thus two functions that’ dfscnbe S: the sqtte:l ag
angle 0 = arccos(é - Z) and the time delay T =r’ - &/p. These are wln tel as
functions of the momentum p and impact parameter b, or equ;vao en tyhus
functions of the energy E = 4p? and angular momentum / = I‘)l' nle hus
has the picture shown in Figure X1.2. Actually, one can explicitly solve

FiGURE X1.2 Central scattering.

central two-body problem up to quadratures and prove (see Problem 11 or
the reference in the Notes):

© dr

0=n-2/[ RE-2v -2 5 (7a)
ro, E)
T=2 jm{[ZE — rm32) V2 _2E - 2V — rm 202 V2 dr
Ro
N -221-112
~2[ RE-2v-r V2 dr
ro(¢, E)
+2 IRO [2E — r-2¢2" Y2 ar (7b)
¢/VIE
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where ry(/, E) = sup{r|V(r) + ¢%/2r* > E} and R, is any number larger
than (/\/27 and r,.

Notice that if ¥V = r~! is substituted in (7a) and (7b), the integral for T
diverges but the integral for § converges. This remark will play an important
role when we discuss Coulomb scattering in Section 9.

Finally, to make contact with physical experiments, we must define the
cross section and its relation to the scattering angle 6. Let us return to the

-transformation in the general situation and consider a slightly different
reduction from the one we discussed above. Write s<{r, V)=
(f(r, v), g(r, v)). We shall consider only g(r, vz). We thus “throw away”
the information in f which, in terms of our above analysis, is equivalent to
ignoring the time delay. Suppose v # 0. The relation ST{® = TS implies
that g(r, vZ) = g(r + a2, v) for any a € R; thus we consider only g(r, vZ)
when r - z=0. By conservation of energy |g| =uv, so § = g/v. We have
singled out the function g(r, vz). Fix v. § is then a map from R?, the plane

orthogonal to Zto the unit sphere $2. Lebesgue measure on R? then induces
a measure ¢ on §? by '

o(E) = u(g™'(E))

where y is Lebesgue measure on R? and E is a Borel subset of S2. g is called
the cross-section measure on S2. In most cases, ¢ is absolutely continuous

with respect to the usual measure Q on S2 when the forward direction 8 = 0
is removed. Thus

do
do = 70 dQ
for a function do/dQ on S? called the differential cross section.

Physical scattering experiments are well described by the following
model: A beam of constant energy is sent toward the target. The beam has a
wide spread and an approximately uniform density p of particles per unit
area of the plane R? orthogonal to the beam. A detector sits at some scatter-
ingangle <6, ) far from the target and collects (and counts) all particles that

leave the target within some angular region of size AQ about €6, ). The
measured quantity is

numbser of particles hitting detector
(AQ)p

The reader should convince herself, that if AQ is very small, and the detector
and source of particles are very far from the target, this quantity is very
close to da/dQ. We also note that there is a formula for (da/dQ)(6,, ¢,) in
the case where F = —VV with V(r) a function of [r| alone, in terms of the
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scattering angle 0 as a function of E and b, the impact parameter. Explicitly
(Problem 12),

do
dQlo=0,  ble@r=60)

®)

-1
b csc 00(%)

in the case where the sum is finite.

X1.3 The basic principles of scattering
in Hilbert space

Quantum dynamics is described by a unitary group on a Hilbert space.
Also, as we have seen in Section X.13, the dynamics of classical wave equa-
tions can be naturally reformulated in terms of unitary groups. For this
reason, the set of basic problems and principles that we present in this
section are central to the variety of different scattering theories which we
discuss in the remainder of the chapter. We begin with the definition of the
generalized wave operators and describe the elementary “ kinematics " asso-
ciated to that notion. The existence of the wave operators is proven in most
cases by a general technique known as Cook’s method, which we present
next. Under suitable conditions that are usually more stringent, one can prove
existence and completeness by a complex of ideas associated with T.
Kato and M. S. Birman. Cook’s method and the Kato-Birman theory are
the two pillars upon which the abstract time-dependent theory rests. In
concrete cases one needs technical tools for showing that the hypotheses of
these methods hold—some of these tools are discussed in Appendices 1 and
2 to this section. We end the section with a brief description of some of the
ideas in the two Hilbert space theory and the corresponding Kato-Birman-
type theorem.

Consider two unitary groups e~ 4’ and e~ “®, which we think of as an
interacting dynamics and a comparison * free ” dynamics. What does it mean
for e"**'¢ to look * asymptotically free” as t - — 00 ? Clearly, it means that
there is a vector ¢, such that

lim e g, — e o] =0 9)
{——a
Notice that (9) is equivalent to
lim "eme—im

t— — o0

¢, —9]|=0

so the basic existence question is reduced to the problem of proving the
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existence of strong limits. In most applications B has purely absolutely
continuous spectrum; but in cases where it does not, we need to choose ¢,
in the absolutely continuous subspace for B. For example, if ¢, were an
eigenvector for B, then the strong limit above would exist only if ¢, is also
an eigenvector of A with the same eigenvalue (Problem 15). We therefore
define the wave operators by first projecting onto the absolutely continuous
subspace of B. When we discuss completeness, it will be clear that this is a
very clever choice!

Definition Let 4 and B be self-adjoint operators on a Hilbert space »#
and let P,.(B) be the projection onto the absolutely continuous subspace of
B. We say that the generalized wave operators Q* (4, B) exist if the strong
limits

Q*(A, B) = s-lim é*e”®P, (B) (10)

t=+F oo
exist. When Q* (4, B) exist, we define
H;, = Ran Q" and H o= Ran Q~

For notational convenience, we sometimes use ), for J,, and ¢ _ for
Koo

The strong limit in (10) turns out to be the right one to take. In case
P..(B) = 1, the norm limit exists in (10) only if A = B (Problem 15). On the
other hand, as we shall see, if A4 has purely discrete spectrum, the weak limit
in (10) exists (it is 0) even though A and B are very dissimilar.

The funny convention that t - F co corresponds to Q¥ is taken from the
physics literature and is connected with the relation to the “time-
independent theory”: As we shall see in Section 6, Q* is related to
lim, ;o (x + ie — A)" ! and Q" to lim, o (x — ie — A)™".

The following proposition makes it clear that irrespective of its physical
importance, scattering theory is a useful tool in spectral analysis—for this
reason parts of this chapter and Chapter XIII are intimately related.

Proposition 1 Suppose that Q* (4, B) exist. Then:

(a) QF are partial isometries with initial subspace P, (B) and final sub-
spaces ¥ . .
(b) ¥ . are invariant subspaces for 4 and

Q[D(B)] = D(4),  AQ*(A, B)= Q*(4, B)B (11)
(c) . <Ran P,(A)
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Proof (a) If ue [P,(B)#]*, then clearly Q*u = 0. If u € P, (B)s#, then
|€%e™"*P,o(BJul| = ||u] for all ¢, so [|Q* (A, Blu|| = |u|.
Since

s-lim e'e™*P, (B) = s-lim ¢4t~ !Bt+ap_ (B)

t=+F oo t=Foo
for any fixed s, we have that
Q*(A, B) = £*4Q* (4, B)e™ '™
or equivalently,
e" Q0 (4, B) = Q*(A4, Ble™'® (12)

(11) follows from Stone’s theorem and (12). From (12) it is clear that ), are
invariant subspaces for e ™4,

(c) By(a)and (b), 4 [ 5, isunitarily equivalent to B [ P,.(B))# where
the unitary equivalence is given by Q* : P, (B)# — .. Thus A | »#, is
purely absolutely continuous. §

In quantum theory, where A and B are energy operators, (12) has an
3 rAs2tinn g ; y 0N
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[Pyp(A)#]* where P, is the projection onto J#,,, the span of the eigenvec-
tors of A. For the abstract theory, a notion intermediate between these two is
appropriate.

Definition  Suppose that Q* (4, B) exist. We say that they are complete
if and only if

Ran Q* = Ran Q™ = Ran P, (A4)

Thus asymptotic completeness is equivalent to the pair of statements: Q*
are complete and 0,,,(4) = . Since the latter statement is purely spectral,
it is most naturally studied in a context partially disjoint from scattering
theory. We discuss it in Chapter XIII.

The following remarkable fact reduces completeness to an existence
question:

Proposition 3  Suppose that Q* (A, B) exist. Then they are complete if
and only if Q*(B, A) exist.

hat both 0*(4 B

»3) $E
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explicit formulas for ™', it is not easy to show Q* (B, A4) exist. Proposition
3 does suggest that one seek some condition on A and B which implies that
Q*(A, B) exist and which is symmetricin A and B for then this condition will
imply that both Q*(4, B) and Q*(B, A) exist, so Q*(4, B) will exist and
be complete. This is the mechanism by which one obtains completeness in
the Kato-Birman theory.

* ok %

Cook’s method is based on the observation that if fis a C! function on R
with " € L'(R), then lim, _, , f(t) exists since

1)1 @)| =

as s <t both go to oo.

J,' 1(4) du

<[1 W) duso

Theorem XI.4 (Cook's method) Let A and B be self-adjoint operators
and suppose that there is a set 2 = D(B) n P,(B)# which is dense in
P,.(B)# so that for any ¢ € 9 there is a T, satisfying:

(@) For |t] > Ty, e g € D(A);
() 7, [I(B - A)e™ o] + [[(B~ A)e*™o||] dt < oo. (13)
Then Q* (4, B) exist.
Proof Let ¢ € 2 and let n(t) = '“'e~ . Since e~ "Pp € D(A) N D(B) for
t> To, n(t) is strongly differentiable on (T, c0) and

n'(t) = —ie'"(B - A)e™
Thus fort > s> T,

Ine) = n(s) < [ Il du < [ (B - e~ du

goes to zero as s— oo by (13). Thus n(t) is Cauchy as t— oo, so
lim,. ., é'e™"®P, (BW exists for all ¢ € 2. The limit also exists trivially for
all Y € [P,(B)#’]* and, so, by hypothesis for y lying in a dense set. Since the
family e'“'e =P, (B) is a family of uniformly bounded operators, the exist-
ence of the limit for a dense set of y implies the existence of the limit for all /]
by an ¢/3 argument. This proves that Q" exists. The proof for Q* is
identical. J

In applications, one needs to control ||(B — A)e™®¢|. When B is a con-
stant coefficient differential operator, this can often be done by the method
of stationary phase (see Appendix 1).
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In some cases one wants a variety of extensions of this theorem. The
following is useful when B — A has various “ local singularities ”; see Section
4:

Theorem XI.5 (Kupsch-Sandhas theorem) Let 4 and B be self-adjoint
operators and suppose that there is a bounded operator y, and a subspace
9 < D(B) N P,(B) dense in P, (B)#, so that for any ¢ € 2, thereisa T,
satisfying:

(@) for |t| > Tp, (1 — x)e™"®p € D(4);
(b) %, [|Ce Pop| + ||Ce*Bo]||] dt < o0;

where
C=A(1-yx)-(1-xB

Suppose, moreover, that for some n, x(B +i)™" is compact and that
2 < D(B"). Thep Q* (A, B) exist.

This result follows by a simple modification of the proof of Cook’s method
together with a general result which appears as Lemma 2 below. The reader
is asked to provide a proof in Problem 19.

One problem with Cook’s method is that it requires B — A to be given to
us as an operator rather than a quadratic form. The following result handles
the form case:

Theorem X1.6  Let B be a positive self-adjoint operator and let C,, ...,
Ca, Dy, ..., D, be closed operators obeying:

(i) D(C:)) n D(D;)> Q(B)fori=1,...,n, and
ICioll* < i, Bo) + Billel,  |Dig|* < ale, Bo) + B; o2

for all ¢ € Q(B).
(i) Co =1, Q(Do) > Q(B), and

[(¢, Do@)| < ao(@, Bo) + Bole, ¢)

for all ¢ € Q(B).

(iii) The quadratic form }7., C*D; defined on Q(B) is symmetric and
Stoo <l

(iv) There is a set 2 contained in Ran P, (B) n D(B) which is dense in
P,.(B)#, so that for ¢ € 2,

J

a0 n
|D;e” o) dt < o0
(1]

- i=
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Then the form sum A = B + }7., C!D; is a self-adjoint operator and
Q*(4, B) exist.

Proof By (i), (ii), and (iii), ) 7=¢ C¥D; is a relatively form bounded pertur-
bation of B with relative bound a = )., o; < 1. It follows that A is self-
adjoint and that Q(4) = Q(B). In particular, the norms

lola= I8 + 1%L, lola= I(4 + B}
on Q(B) are equivalent norms, that is,

cillels < llela<c.lols

Here E is some fixed number so that A + E > 1. e~ *® is clearly an isometry
in [ ||5. Since e~*4 is an isometry in |- | ,, by the above equivalence, we
have that

le=“*olls < clels (14)

with ¢ = ¢ ‘¢, independent of t. Let W(t) = e'4'e™'®. Then for ¢ € 2 and
t>s,

1W(e) - Wishol* = (W(tho, (W(t) — W(s)ke) < (W(sho, (W(r) ~ W(s)k)

We shall prove that as ¢, s — oo, each of these terms goes to zero, so that, as
in Cook’s theorem, Q* (4, B) exist. We consider the first term; the second is
similar. We first claim that

OV 0o, W)~ WeNlo) = [ T (Coe™“Wllo, Dye™™p)du (13

(15) follows (Problem 20) from the hypotheses and the fact that by (14) e =4~
and e~ '™ take Q(B) into itself. By (14) and the hypotheses (i), (ii), for all ¢, u,

sgpIIC;e"‘"W(t)wll <7lels
for some y (independent of t and u). It follows by (15) that
Wk, (70~ Wl < vl || 3 10,7 du
As in Cook’s theorem, by hypothesis (iv), this goes to zero as s, t — o0.
. x

We now turn to the complex of results that we designate as the Kato-
Birman theory. This theory uses the notion of trace class operator developed
in Section VL.6. To describe the idea behind the theory, suppose that B — A4
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is a rank one operator, thatis, (B — A)p = (Y, @W. If we tried to use Cook’s
method to show that Q*(4, B) exist, we would seek ¢ with (y, e *2p) €
L(R). Since ¢ € P,(B)#, we know that the spectral measure d(¢, E, ¢)
equals | f(4)|* dA for some f. We shall see below that it follows that
d(y, E, ¢) = g(4)| f(4)]* dA for some g in I*(R, 2 dA), and thus

(./” e~irn¢) - J. e'"‘g(l)lf(l)lz di
Therefore, (, e~ "P¢) s the Fourier transform of (211)!/2g| f |2. In general, it is
not easy to see when a Fourier transform is in L' but to get it to be in I? is
easy. We therefore begin by finding a set of ¢ with (Y, e~ *Bp) € I*(R).
Definition Let B be a self-adjoint operator and {E,} its spectral family.
4 (B) will denote the set of all ¢ € # such that d(p, E;¢) = | f(A)[? dA
where f € L*(R). We let |||¢]|| be the L*-norm of f.

It is not hard \Problem 17) to prove that |||- Il is a norm and that .#(B)is
dense (in the »#-norm) in Ran P, (B).

Lemma1 For any ¢ € .#(B) and any y € ¥,

[ 1. e2) P de < 22y P o (16)
Proof Let Q be the projection onto the cyclic subspace generated by B and
. Let d(, E; 0) = | f(4)]* dA. By general spectral theory (see Chapter VII
and Section VII1.3) Q¢ is unitarily equivalent to I*(R, | f(4)|> d1) in such a

way that ¢ corresponds to the vector ¢(4) = 1 and e~ *# is multiplication by
e™ "4, Let n(A) correspond to the vector Qy. Then

(W, e™"%0) = (QU, e™*%p) = [ n(A)| £(3) e~ dA (17)

so, by the Plancherel theorem,

[ 1w, e ) dr = 2n [ |n@) 2| £@)1* di

<2 (12 [ 1@ | f Q) da
By definition || f||,, = ||l¢||| and

[ 1R s @ P d2= low)® < |wi*
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We shall need another simple consequence of thinking of the unitary
group in terms of the Fourier transform:

Lemma 2 For any ¢ € P,.(B), e "¢ — 0 weakly as t - +o00. If C is
compact, then ||Ce™“2p|| - 0 as t — + co.

Proof By (17)and the fact that fand nfare in I?, we have that (y, e~ Pp) is
the Fourier transform of an L' function. So, by the Riemann-Lebesgue
lemma (Theorem IX.7), (¥, e *2p) — 0. Thus, [|[Fe~*B¢p| — O for any finite
rank operator F. The result for compact operators follows by an ¢/3
argument. ||

We shall derive the results in the Kato-Birman theory from the following
theorem.

Theorem XI.7 (Pearson’s theorem) Let A and B be self-adjoint opera-
tors and let J be a bounded operator. Suppose that there is a trace class
operator C so that C = AJ — JB in the sense that for all ¢ € D(4) and
¥ € D(B),
then
Q*(A, B; J) = s-lim ¢'Je™"®P, (B)
t—=Foo

exist.

Proof Let W(t)= e'*Je ® and consider the case t — co. By the density
argument of Cook’s method, it suffices to show that

lim (W(t) - Wis)e|2 =0 (18)

1<s;t—a0

for all ¢ € #(B). We shall prove this by writing the left-hand side as two
pieces, one to be controlled by Lemma 1 and one by Lemma 2. Let

b
Fu(X)= I ePXe B dy

for a bounded operator X and a < b. We first claim that
W(e)*W(s) — e*W(t)* Wi(sle™ " = Fo (Y(t, 5)) (19)
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where
Y(t, S) — _i[eirBJ*e—i(r—s)ACe—isB —- ei:Bc*e—l(r—s)AJe—isB]
We shall prove (19) without worrying about domain questions, leaving the

reader tq take matrix elements and fill in these domain details. The idea will
be to write the difference on the left as the integral of its derivative. Let

Q(b) = €*PW(t)*W(s)e~ 8
Then

dQ(b) - iele[Bel'tBJ*e—i(l—s)AJe—isB _ eitBJ:ﬁe-—i(l—s)AJe—lsBB]e—(bB

db
= ieibB[eItBJ*e—i(:—s)ACe—lsB _ e“"C*e‘“"”‘Je"’"]e""’"
- _eibBy(t’ s)e—ibB

Thus (19) follows by integrating the derivative.
For fixed ¢t and s,

W(t)— W(s)=i J"e“"‘Ce"""’ du

is compact, so by Lemma 2,

lim e“’W(t)*(W(t) — W(s))e *Bp = 0

a-*

for ¢ € .#(B). It follows by (19) that for ¢ € .#(B),
(@, W) (W(t) — W(s)lo) = lim (@, Fou(Y(t, 1) — Y(t, s)kp)  (20)

a—* o

Since C is trace class, it has an expansion (see (VI.6)):

C= zl'ln(‘pm ! )'/’n

where ) A, = |C|,, the trace class norm of C, and with {oa} and {y,}

orthonormal and 4, > 0. We claim that for any bounded operator X and
a>0,

(¢, Foale"?X Ce™"")p)]

< @Al 21x1 ol £ [ (ow. 2 ax|"™ a1
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For, by the canonical expansion above,

¥, f aﬂ(e"“’tp, XY,)@n, e~ *Pop) dx

1/2

LHS of (21) <

<

Sh[ (X0, %) dx

1/2
X

Y A 'fm | (@, %) |* dx

< RHS of (21)

In the second line we used the Schwarz inequality (twice). In the last step, we
used Lemma 1. By (20) and (21)

1W(e) - Wishel? < 8=l Cll ) *lllelll 1]

00 1/2
x [Z W (@ e ) dX] (22)
n min(t, s)
In the first place, this equation and Lemma 1 imply that
(W) = sl < 167|C]l, llelli* ] (23)

and, in the second place, since Y, 4, |(¢., e”*2p)|? is in L', (18) follows. 1l

As a corollary of the theorem and (23), we have:

Corollary  Under the hypotheses of Theorem XI1.7,
I[Q* (4, B; J) - J]e|? < 16| C], [llellI*]/ (24)
Proof In (23)takes=0and lett > +o0. |

If AJ-JB is trace class, then so is BJ* —J*A, so bot.h
s-lim €4'Je~"®P, (B) and s-lim e*J*e~!4'P, (A) exist. For general J, this
does not imply completeness of either strong limit (fgr example, consider
J = 0); butif J = 1, Proposition 3 is applicable, so we immediately have the
corollary:

Theorem XI.8 (Kato-Rosenblum theorem) If A and B are self-adjoint
operators with 4 — B € #,, the trace class, then Q*(4, B) exist and are
complete.
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In this theorem A and B may be unbounded. A — B trace class is intended
in the sense of Theorem X1.7, that s, (Ao, ¥) = (@, BY) + (¢, C¥) for some
Ce s, and ¢ € D(4), Y € D(B). It then follows that D(A) = D(B) and
Ag = By + Co for ¢ € D(A).

Corollary  Let {4,}2.,, A, B be self-adjoint operators. Suppose that
Q*(A, B) exist and that each A, — A is trace class with 4, — A]|; = 0 as
n - co. Then, for each n, Q*(A,, B) exist and

Q*(4, B) = s-lim Q*(4,, B)

as n— oo. If Q* (B, A) exist, then for each n, Q*(B, A,) exist and
Q*(B, A)p = lim Q*(B, 4,)p

for all ¢ € Ran P, (A). T

Proof By the chain rule, it suffices to prove that

s-lim Q*(4,, A) = P, (A) (25)
and
im Q*(4, A,)p=¢  for ¢ € Ran P, (A) (26)

Lind

From the corollary to Theorem X1.7 we immediately conclude that (25)
holds. Let ¢ bein Ran P, (4)and let ¢, = Q*(A4,,A)p.By (25), [lon — @] - 0
as n — 00, Thus,

19* (4, 4.)(e. ~ @) -0

But, by the completeness of Q*(4,, A), we have that Q*(4, Ao = o,
so the last limit result says that (26) holds. J

It can happen that for ¢ € [Ran P,.(A)]*, Q*(B, A,)p does not go to zero
as n— oo (Problem 22).

One cannot replace the trace class condition in Theorem XI.8 by a condi-
tion that A — B be Hilbert-Schmidt or that 4 — B be any f, withp > 1;see
the discussion in the Notes. One problem with Theorem X1.8 is that in
quantum mechanics B — 4 is not even bounded.

Theorem XI.9 (Kuroda-Birman theorem)  Let A and B be self-adjoint

operators so that (4 +i)™' — (B +i)™! € .#,. Then Q*(4, B) exist and are
complete.
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Proof LetJ = (A +i)”*(B+1i)” ' Then,inthe sense of expectation values,
AJ —JB=B+i) ' —(A+i)?
is trace class, so by Pearson’s theorem
s-lim (A + i)™} (B + i) 'e”""P,(B)
t=tcc
exist. Applying this to a vector of the form (B + i)p with @ € D(B), we

conclude that '
s-lim e(4 + i) 'e”"*P,(B)
t=-tc
exist. Now, by hypothesis, (4 +i)™* —(B+1i)”" is compact, s0 by
Lemma 2,
s-lim[(A + i)™ — (B + i) ']e"'P.(B) =0
1=+
It follows that .
s-lim ¢4(B + i)"'e” %P (B)
exist. Applying this to a vector of the form (B + i), we conclude that
Q*(A, B) exist. It follows by symmetry that Q*(B, A) exist and thus com-
pleteness holds. [

To state the next result, we need a technical definition:

Definition Let A and B be self-adjoint operators. We say that A is
subordinate to B if there are continuous functions fand g on R with fx)=1,
g(x)>1, and limy., f(x)=oc0 such that D(g(B)) c D([(A)) and
f(A)g(B)~! is bounded. If 4 is subordinate to B and B is subordinate to A4,
we say they are mutually subordinate.

This condition is very weak. For example, by the closed graph theorem, if
D(A)= D(B) or if A and B are semibounded and Q(4) = Q(B), they are
mutually subordinate.

Theorem X1.10 (Birman’s theorem) Suppose that A and B are self-
adjoint operators with spectral projections Eq(A), Eq(B), respectively.
Assume that:

(a) E|(A)(4 — B) E(B)e S, for every bounded interval I.

(b) A and B are mutually subordinate.

Then Q* (A, B) exist and are complete.
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Proof By symmetry and Proposition 3, it suffices to show that Q* (A4, B)
exist. Let E,(C) = E(_, ,(C) and E;(C) = E(_ &, -4 u(a. «)(C) Where C is 4
or B. If J = E,(A)E,(B), then AJ — JB € #, by hypothesis (a), so

s-lime'*'E,(A)E,(B)e™®

t—too

exist by Pearson’s theorem. Let ¢ € Ran E,_(B) for some a,. Then for
a > ay we have that

lim &*E,(A)e™ B

t—+tow
exist, so to conclude that Q* (4, B)p exist, it suffices to show that
im [supl £ ~0] | =0 @)
a= o t

Now, let fand g be the functions given by the condition that A4 is subordinate
to B. Let F(a) = inf,,, f(x). Then F(a)— oo as a — oo since f — oo. Thus:

IE(A)e™ 0| < F(a)™*|| f(4)Ei(A)e™ 0|
< F(a)™ '/ (4)g(B)™*| lg(B)e™ ™o

< Fla) | £ (A)g(B)" | [Isup 1o)]

x| Sao

lel

so that (27) holds. |}

The Kuroda-Birman and Birman theorems have corollaries involving
strong convergence similar to the previous corollaries. We leave those to the
problems (Problems 23, 24).

There are a large number of conditions that arise in applications but
which are not covered by the above considerations. For example, suppose
that A >0, B>0 and 4> - B*e #,. Do Q*(A4, B) exist? Or consider
A= —-A+V;B=—-AonR".Forn>4,(4+i)' - (B+i) 'isnottrace
class for any nontrivial V; but, as we shall see, (4 + E)™* - (B+ E) ™" is
trace class so long as k is large enough. Does this imply that Q* (4, B) exist?
The answer to both questions is yes because of the general principle which
we are about to describe.

Definition A function ¢ on T, an open subset of R, is called admissible
if T = JY I, where I, = («,, B,) are disjoint, N is finite or infinite, and:

(@) Thedistributional derivative ¢ is L' on each compact subinterval of T;
(b) on each interval («,, B,), @' is either strictly positive or strictly negative.



30 Xl: SCATTERING THEORY

Example 1 If T= (0, o) = I,, then ¢(x) = x'/? is admissible. Notice
that if 4> = A,, B> = B,, then, so long as 4, B> 0, A = ¢(4,), B= ¢(B,),
and A, — B, e #,if 4> - B*e 4,.

Example 2 If T= (0, )= 1I,, then ¢(x)=x""" - a is admissible.
Notice that if A > —a, B> —a,and 4, = (A + a)™", B, = (B + a)™", then
A= (p(Al), B= (p(Bl), and Al - Bl € ']l lf (A + a)_" - (B + a)—" € jl'

Theorem XI.11 (invariance principle—trace class case) Let ¢ be an
admissible function on an open set T. Suppose that A and B are self-adjoint
operators with 0(4), o(B) = T and that at each boundary point of T either ¢
has a finite limit or both 4 and B do not have point spectrum at that point.
Suppose that A4 — B is trace class. Then Q*(¢(4), ¢(B)) exist, are complete,
and

Q*(p(A), #(B)) = Q* (4, B)Er,(B) + Q7 (4, B)Er,(B)

where T, (respectively, J1“2) is the union of those intervals where ¢’ >0
(respectively, ¢’ < 0).

More generally, the same conclusion holds if the condition A — Be€ £ is
replaced by either the hypotheses of Birman’s theorem or of the Kuroda-
Birman theorem.

The condition at the boundary points is put in only so that ¢(A4) and ¢(B)
can be properly defined.

Before proving this theorem we note that there is a version of it in the case
where Cook’s method is applicable; see Appendix 3. We also note that on
account of Examples 1 and 2 and a continuation of the two examples we
have:

Corollary 1 If 4 and B are positive operators with 42 — B> € 4, then
Q*(A, B) exist and are complete.

Corollary 2 If A and B are positive operators with (42 +1)~! —
(B + 1)~ ! e #,, then Q*(4, B) exist and are complete.

Corollary 3 If A and B are operators with 4, B> —a+ I and
(A+a)"*—=(B+a)*e s, for some k, then Q*(4, B) exist and are
complete.
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Corollary 4 If A and B are self-adjoi -
< -adjoint operators and e~ 4 —
e Pe #,, then Q%(4, B) exist and are complete.

We return below to conditions which
) guarantee that the hypotheses of
Corc?lla{y 3 hold. A weak version of Corollary 3 which is sufficient for all
applications can be also proven by the method we used to prove Theorem
X1.9 (Problem 25). As preparation for the proof of Theorem XI.11, we need:

Lemma 3 Let ¢ be an admissible function. Then:

(@) If Y c R has Lebesgue measure zero, then ¢[Y N T]and ¢~ '[Y] have
measure zero.

(b) For any we I? (x,, B,) with ¢’ > 0 on (5 Ba)

|l

s -

y

' 2
e~ieirsomy 1) aa | dr =0 (28)

@0
@

If ' <0 on (a,, B,), s > o should be replaced by s — — oo in (28).

Proof (a) See Problem 26.

(b) Since (2n)~ 12 [© e'tA*sety (1) d is the inv i
g’ -© erse Fourier transf
of e**¥w(3), the Plancherel theorem implies that o

2

2nlw]? 2 | dt

J’w e"(’“’“’“”w(l) di

g'hus we nzeed prove (28) only for a set of w whose linear combinations are
ense in *(a,, B,), say for w the characteristic function of [a, b] = (a,, B,).

Since ¢” is ! o : 1 . ‘ )
Using(p n (o, Bu), @ is 2 C* function and thus inf, .1, 4 ¢'(t) = y > 0.

e—i(l).+s¢().)) = l(l + S(p'(;.))_ 1 % (e—i(ul+s¢p(l)))

for t >0, s > 0, we see that
b

J' e ita+so) g7

b
J; (t + se’'(4))~? %e““‘“”‘"’ dﬁ.'

S(E+s@'(B)" + (¢ + sp'(a))” " + (¢ + sY) " %s valw”(l)l di
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where we integrate by parts to get to the last inequality. Taking s — oo and
noting that each term goes to zero in I2(0, ) as a function of ¢, (28)
results. i

Proof of Theorem XI1.11 Let C= A — B=Y A(Vn, )V, and let

n € Ran E, 4,(B) N M (B).
Then, by (22),

1@ (A, B) - 1)e™ "2 SC( im [ 1, emimmiomep) 2 dt)

© 1/2
0

(29)

Now, by Lemma 3b, the individual integrals on the right-hand side of (29) go
to zero as s — oo (respectively, s > —o0) if ¢’ > 0 (¢’ < 0). Since each inte-
gral is bounded on account of Lemma 1 by 2|y, I2lllllI> and
3 |a| [¥all? = Tr(|C]) < oo, the sum on the right-hand side of (29) goes to
zero. By Proposition 1, Q* (4, B)e™ B = ™0 (4, B), so

o i Q¥ (4, B;n (¢ >0)
lim elw(A)se—up(B)s = ’ ’
s—too 1 ‘Qi(A’ B)r’ ((pl <0)

By Lemma 3a, P,.(@(B)) = P..(B), so the theorem is proven in the case
where A — B is trace class.
To prove the theorem under the more general hypotheses, one proceeds as

follows: If AJ — JBis in £, then

s-lim e/t e ietBr

t=t
exist and obey a formula analogous to the invariance principle. The proof is
identical to the one above. By using this more general result and employing
the J's used in the proofs of the Kuroda-Birman and Birman theorems, the
invariance principle can be extended to these cases also. The J’s are func-
tions of A and B rather than ¢(4) and @(B). Again, we leave the continuity
result to the reader (Problem 28).

Theorem XI.12  Let B be a positive self-adjoint operator and suppose
that C is a symmetric form bounded perturbation of B with relative bound
a < 1 and that

(B+ 1) C(B+1)*te s, (30)
Then A = B + C is the form of a self-adjoint operator obeying
(A+E)y*— (B+E)y*e s, (31)

for all sufficiently large E. In particular, Q* (4, B) exist and are complete.
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Proof The last statement follows from (31) and the third corollary of
Theorem XI.11. By repeated use of

(A+E)y'=(B+E)'—(A+E)'C(B+E)"!
we find that
(A+E)y*=(B+E)™* - jkzl(A + E)"IC(B + E)~**i?
so that (31) follows from
(A+E)yICB+E)y*es, j=1..k (32)
By a complex interpolation argument (Problem 29a), this follows from
(A+E)y*C(B+E)y*“tes,, (A+E)y**C(B+E)*es, (33)

The first part of (33) follows from the hypothesis (30) and the fact that
(4 + E)"¥(B + 1) is bounded. We need only prove the second part of (33)
for E very negative. Choose E so negative that

|(B+E)*C(B+E) ¥ =y<1 (34)
Then,

(A+E)y'=(B+ E)‘*{io[—(B + E)"*C(B+ E)‘*]f=(B + E)}
so that "

(B+E)*A4+E)*C(B+E)?

=y (=) [_Ii(B+E)‘*"-'C(B+E)-* (35)

with the sum over a suitable family of terms with 7, + - + 7, = k. By a
complex interpolation between (30) and (34) (Problem 29b),

(B+E)t“CB+E) teSfy, fi=1..k (36)

where £, is the trace ideal of the appendix to Section IX.4. Using Holder’s
inequality for these trace ideals on each term in (35), employing (34) for
factors with Z; = 0 and (36) for terms with /; > 0, we see that each term on
the right of (35)is in .#; with a norm bounded by const y™. The y™ makes the
sum converge in (35)so that (B + E)™#(4 + E)™*C(B + E) " *isin #,. Since
(A + E)"*(B + E)** is bounded, the second part of (33) holds. |
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The point is that (30) can be verified in a number of applications when B is
a differential operator and C is a lower order operator. The main abstract
result is described in Appendix 2.

* % X

We close this section with a few words about two Hilbert space scattering
theory. In Section 10, we describe physical systems in which the two Hil-
bert space theory is natural. In that section we give a method for reducing
the two Hilbert space problem to a problem on a single space. In typical
applications, one can use either that reduction theory or Theorem XI.13
below.

Definition Let B and A be self-adjoint operators on Hilbert spaces 3
and ¥, , respectively, and let J be a bounded operator from 5, to #,. We
say that Q* (4, B; J) exist if and only if the strong limits
Q*(4, B; J) = s-lim e Je™"#P, (B)
t=+F o

exist.

Q*(A, B; J) may not be isometries. Nevertheless:

Proposition 4 (Ker Q*)' = &, is an invariant space for B and
#,, = Ran Q7 is an invariant space for A. Further, B [ 5}, is unitarily
equivalent to A [ #,,. In particular, A [ 5#;, is purely absolutely
continuous.

Proof As in the usual theory,
eTHMINT = Qe (37)

from which it follows that e~ ‘#* (respectively, e~ 4’) leaves ", (respectively,
#;,) invariant. The polar decomposition of an operator from J#, to itself is
easily seen to extend to operators from 5, to 5, . The result is that Q* has
a decomposition Q* = V|Q*| with |Q*| = [(Q*)*Q*]"? in ¥ (#,) and
V a partial isometry with initial space #;, in J#; and final subspace
K, < #,. We claim that

e—iArV —_ Ve—iBt (38)

from which the claimed unitary equivalence will follow. By (37),
(Q*)*e 4 = 7B (Q*)*, whence

(Q+)*Q+e—iﬂx = (Q+)*e~M1Q+ = e—iBt(Q+)*(Q+)
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By the uniqueness of the positive square root (Theorem VL9),
|Q+ Ie-—iBr = e—-inIQ+ I
so (37) implies that
e—iAxV|Q+ | = Ve-in|Q+ l

As a result, (38) holds applied to vectors in Ran |[Q*|. To complete the
proof of (38), we note that for vectors ¢ in (Ran |Q*|)* = Ker |Q*| =
Ker V, one clearly has that e” "4V = 0. Moreover, Ve~ "®¢p = 0 since we
have seen that e™® leaves Ker |Q* | = (#7,)* invariant. ||

It is easy to see that the chain rule now says that if Q*(4, B; J,) and
Q*(B,C; J,) exist, then so do Q*(4,C;J,J;) and they equal
Q*(4, B; J,)Q(B, C; J,).

One phenomenon that can occur is that 5#;, may not be Ran P, (B); for
example, take J = 0.

Definition If (Ker Q*)' = Ran P, (B), we call Q* semicomplete. If also
Ran QF = Ran P,(4), we call Q* complete.

In physical situations it can often happen that there is some arbitrariness
in the choice of J. It is therefore important to have criteria which guarantee
that Q*(4, B; J,) = Q*(4, B; J,).

Definition  We say that two operators J,, J, € £(#,, 5 ,) are asymp-
totically B-equivalent if

s-im{(J, — J,)e""®P,.(B)} = 0

t-+ o0

In most applications one proves this by showing that J, — J, is compact
or that (J, — J,)}(B + i)™* is compact for some k (Problem 18).

Definition LetJe £(#, #,)and J' € L(H#,, ). Wesay that J' is
a B-asymptotic left inverse for J (B-left inverse for short) if and only if J'J is
asymptotically B-equivalent to I.

The following analogue to Proposition 3 is left to the reader (Problem 30):

Proposition 5 Let B and A be self-adjoint operators on Hilbert spaces
', and ,, respectively. Let Je L(#,, #,) and suppose that
Q*(A, B; J) exist.
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(@) Let J, € &#(H#,, #,). Then J, is asymptotically B-equivalent to J if
and only if Q* (A4, B; J,) exist and equal Q*(4, B; J).

(b) 1f J has a B-left inverse, then Q* are semicomplete.

(c) LetJ beany B-left inverse. Then Q* (4, B; J) are complete if and only
if Q*(B, A; J') exist and J is an A-asymptotic left inverse for J'.

(d) If J* is 4 B-left inverse for J, then Q*(4, B; J) are partial isometries
with initial space Ran P,(B).

We note that Pearson’s theorem holds without any change in statement
and proof if one defines .¥ (4, #°,) as those operators A € L (K, H#,)
with (4*A4)' 2 e 4 ().

Theorem XI.13 (Belopol'skii-Birman theorem) Let B and A be self-
adjoint operators on Hilbert spaces 5, and s, , respectively, with spectral
resolutions Eq(A4) and Eg(B). Suppose that J € L(o#,, #,) satisfies:

(@) J has a two-sided bounded inverse.
(b) For any bounded interval I,

E,(A)(AJ — JB)E,(B) € #,

()  For any bounded interval I, (J*J — 1)E,(B) is compact;

and either:
(d;) JD(B)= D(A);
or

(d2) JQ(B)= Q(4).

Then Q* (A, B; J) exist, are complete, and are partial isometries with initial
space Ran P, (B) and final space Ran P, (A).

Proof Let J, = E,(A)JE,(B) and J; = E,;(B)J ~'E,(A). By the generalized
Pearson result and (b), the operators Q* (4, B; J;) and Q*(B, 4; J¥) exist.
Moreover, we claim that J; is asymptotically A-equivalent to J}. For, by (c),
E,(B)(J*J — 1) is compact, so E;(B)(J* — J~!) is compact and thus J¥ — J}
is compact. By Lemma 2 we have the claimed asymptotic equivalence. Thus
Q*(B, A; J}) exist by (a) of Proposition 5.

By hypothesis (d), we can use the method of Theorem XI.10 to show that

hm ‘Sup(“E(-w. —a) v (a. oo)(A )Je~im(p“)= = 0

a—‘oo‘ t
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for ¢ € Ran E,(B), so Q*(4, B; J) exist. Similarly, Q*(B, 4; J ') exist. It
follows by (c) of Proposition 5 that Q* (4, B; J) is complete. Using hypoth-
esis (c) again, we conclude from (d) of Proposition 5 and Lemma 2 that
Q*(A, B; J) are partial isometries from Ran P,(B) to Ran P, (4). |

Appendix 1 to XI1.3: Stationary phase methods

In this appendix we present a method for estimating [e ™ "®]¢(x) in the case
where B is a differential or pseudo-differential operator. We then illustrate
how the estimates can be used by showing that Q*(A4, B)exist when 4 — Bis
multiplication by a suitable function. Finally, we discuss how the estimates
can be used to handle the second-order wave equations of Sections 10 and
16.

The key to this method is the idea of stationary phase. We shall rewrite
e "Po(x) as [ u(k)e'/® dk where w — oo as t — c0. As w — oo, the rapid
oscillations in ¢“/® tend to cancel one another. The cancellation is least
effective at points where f varies most slowly, that is, points with (Vf)(k) = 0.
These are called points of stationary phase. We first control the integral at
points with Vf+# 0 and then analyze the points of stationary phase.

Given an open set 0 = R", let CY(0) denote the /-times differentiable
functions on @ topologized as a Fréchet space by using the seminorms

Iflx=sup ¥ |Df(k)|
keK |laj<s¢
K running through all compact subsets of ¢. We first prove a result that

singles out the points of stationary phase in the asymptotics of integrals of
the form | e“/®y(k) dk. .

Theorem XI1.14 Let K be a compact subset of R". Suppose that fis a
real-valued function defined on a neighborhood ¢ of K such that
f e C’*(0) with grad fnonvanishing on all of K. Then, for all u € C5(K™),

<l + |o])[ul,. . (39)

[ e ®u(k) dk

where

lully. o = I“Zglll)"“lla«
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Moreover, if M = C‘*!(0) is a compact subset of C’*' with (grad f)(k)
nonvanishing for all k € K and fe M, then the constant ¢ in (39) can be
chosen uniformly for all fe M.

Proof First fix f. For each k € K, we can find a neigh})orhood U, of k,
a,>0,and je{l,..., n} so that |8f/dk;| > a for all points in U,. By the
compactness of K, we can cover it with finitely many such sets U TRREE U,.
Now find ¢y, ..., @, € C§(0) so that supp ¢; = U; and Y eiy)=1lifye K.

By writing '
eiwf(k)u(k) = Z e""f“‘)(u(pj)(k)
i

and using ||@;ul;, » < C||u|l;, , We see that we are reduced to considering
the case where df/ok, > a > 0 on all of K. -

Since dfjok, # 0 on K, we can find, by the implicit func':tlon theorem, a
neighborhood ¥ of any ke K and a C*! function g so that
g(f(k), ka, ..., ko) = Cky, ..., k) for all k € V. By using the partition of
unity {;} as above, we can suppose that one g works on all of K. Let

<yh [KEX} y,.) = <f(k), kz, ceey kn> Then
. of -1
f stoeero ak = [ugoen | L gon)

el o2) o

o)l ]

[ u(kgeore dk‘ < D|(u = g)@/ks)" I, o

Thus,
1+ |oly

proving (39). . .

Looking at the above proof, we see that for some nelghborhoog Noffin
C’*1(0), we can use the same U,, etc, and so obtain (39) with a ﬁxe:d
constant ¢ for all fe N. Covering M with such neighborhoods, we obtain

the final uniformity statement. i

Corollary Let P: R" > R be C* and let u € #(R") be a function so that &
has compact support. Let 4 be an open set containing the compact set
{grad P(k)|k € supp &}. Let

u(x) = 2n)™" [ expli(x - k — tP(k))Ji(k) dk (40a)
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Then, for any m, there is a ¢ depending on m, u, and ¥ so that
lu(x)| < e(l+ [x] + [¢])™" (40b)
for all x, ¢ with x/t not in %.

Proof Letf(k)=(|x| + |t|)"'[x -k — tP(k)) and @ = |x| + |t] so that
(40) has the form of (39). Since V, f= (|x| + |t|)"![x =t V, P],if x/t ¢ &,
then V, fis nonvanishing. Moreover, we can take x/t — oo in a fixed direc-
tion and get limiting functions whose gradients do not vanish either. Thus,
the f’s lie in a suitable compact subset of C™*! which yields (40b). J

(40) has a beautiful and simple interpretation. Think of a classical system
with momentum & and Hamiltonian function P(k) independent of x. Such a
system has a constant velocity v = VP(k). Thus a classical “ packet ” éi(k) has
velocities v in 4. (40) says that outside of this classically allowed region, the
“quantum” wave packet u,(x) falls off very rapidly. Next we investigate the
contribution of isolated points where grad f vanishes:

Theorem XI1.15  Let f be a C* real-valued function defined in a neigh-
borhood of 0 in R". Suppose that (grad f)(0) =0 and that the matrix
A;j = (0%fJok; 0k;)(0) is invertible. Then there is a neighborhood @ of 0 such
that for any s > n/2 there is a ¢ so that for all u € CF(0) and w > 1,

[ ulkjeier® ai| < e |ul ., (41)

Moreover, given such an f;, there exist neighborhoods @, and 0, of zero
with 0, = 0, = 0, and a neighborhood .4 of f, in the C’(¢,) topology (for
some ¢) so that (41) holds for all ue C(0,) and f € .4

Proof First fix an f'satisfying the hypotheses of the theorem. We claim that
there exists an @ and a C* invertible map X: @ — @’ such that X (k) = k +
O(k?) and such that

S(k)=£(0) + 4(X(k), AX(k)) (42)
Since (grad f)(0) = 0, by Taylor’s theorem with remainder, we have

S (k) =1(0) + 4(B(k)k, k)

where

(B0, =2 | 5 41 - 5)ds
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We now seek a C* n x n matrix-valued function R(k) so that
R*(k)AR(k) = B(k)
for if we then take X (k) = R(k)k, (42) will hold. Let M be the vector space of

n x n matrices and M, be the vector space of‘ symmetric n X n matrices.
Consider the function F from M x M, to M, given by

F(R,B)=R*AR - B
Thus (Dg F)|g=1.5=4, the gradient in the R variables, is the map T from M
to M, given by
T(C)=C*A+ AC

- ; i jective si A is nonsingular.
i DeM,, T3A"'D)=D;so T is s'urjectl\.le since
gi:/:enF (I, A) = 0,(3 follows by the implicit function theorem that for some
neighborhood &/ of A, there is a C* function R: & — M so that

R*(B)AR(B)=B, R(A)=1
Pick 0 so that B(k)e o for ke 0. Let
X (k) = R(B(k))k

Then X is C®, obeys (42), and, since B(k) = A + O(k), R(B(k)) = 1 + O(k) so
that X (k) = k + O(k?).
Now, letting y = X(k),

[ a1t 42 [det(%): x70) ] dy‘

[ u(k)eir® dk ‘ -

[ b(y)eio- A2 g, ‘

with v(y) = u(X ~'(y))[det(6X/dk - X~ '(y))]”'. By the Plancherel theorem,

[ o(y)eioo 402 gy = ¢, "2 |' B(k)e™ ik A~ k20 gy (43)
for a suitable A-dependent constant ¢,. Thus

[ u(k)eos® dk

< Jer|™23],

< ;0 "2|(1 = A)20l,

< co™*lull; «

It remains to prove the uniformity statement at the end of the theorem.
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We first claim that for all f near f, in the C*0) topology, there exists a
unique point k(f) near zero with

(grad f)(k(f)) =0
To see this, let ¢: 0 x C*0) - R" be the map
Gk, f) = (grad f)(k)

Then %(0, fy) = 0 and D% |i-o. s=ro 18 the invertible map A. The claim thus
follows from the implicit function theorem. We can therefore conclude that
the uniformity statement holds by noting that the size of ¢ and the constant
¢ in the above proof depend only on finitely many derivatives. ]

Corollary Let Pbea C® function on R" and let y ¢ & (R") be a function
such that  has compact support and such that

supp @ n {k|det[0>P/ok; ok 1=0}
is empty. Let u/(x) be given by (40a). Then

,“t(X)! SC,I!’"/Z (44)
for |t| > 1 and all x.

Proof Let # be a bounded neighborhood of supp 4 such that
det[0?P/ok; Ok;]#0forke #. By the corollary to Theorem X1.14, we need
only verify (44) for x/t in ¥ = {grad P(k)|k € #}. For each p=x/tin¥,

V(I x] + e x - k = tP(r))]

vanishes at a finite number of points in ¢ so that using a partition of unity
and Theorem XI.15, (44) holds for p = x/1. By the uniformity part of that
theorem, the estimate actually holds for a neighborhood of p. By the com-
pactness of &, (44) holds for all x and . ]

To see how these estimates can be used in scattering theory, consider:

Theorem X1.16 Let P be a C* real-valued function on R" such that
M = {k|grad P(k) =0 or det(9*P/ok; ok;) = 0}
has measure zero. Let V'be a real-valued function on R" such that

(l + I)C')-"'VGL2 (453)
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We can take p = 3(1 + max p. ). (a)is essentially a kind of finite propaga-
tion speed for the Klein-Gordon equation. Since the initial data do not have
compact support in x, we cannot expect the solution to vanish when | x| is
large compared to t, but it does decay rapidly. Notice that for this kind of
“finite propagation speed,” the speed is actually less than one.

For use in Section 16, we note the following corollary to Theorem XI.17.

Corollary If ¢ is a regular wave packet for the Klein-Gordon equation
(46) with m # 0, then

[ ot 1) dx < C(1+ |t|y”?

Jn
Proof Break up the x integral into two pieces: |x| < tand |x| > t. By (b),
the first integral is bounded by

di+ o))y [ dxse e
Ixl <t
By (a), the second integral goes to zero faster than any power of |t| and in
particular is bounded by c, . Take C = max{cy, ¢,}. lI

Now consider the case m =0. Theorem XI.14 is applicable and im-
mediately yields

lo(x, )] < co(lx| + [t] +# )™ i x| > (1 +¢)]e]
or |x| <(1-z¢)lt]

We emphasize the requirement that 0 ¢ supp u; when m =0, for the last

Pl
estimate will be false in dimension n = 1 if g = ¢,(", 0) satisfies g(0) # 0. In
fact, in one dimension, solutions of ¢,, = @,, with initial data in & obey

9]

lim ¢(x, t) = % j @y, 0) dy (47)

1= -
for any fixed x, so that ¢(x, t) does not go to zero for |x| < (1 —¢)[t]. (47)
follows from the explicit form of the solution in one dimension:

x+t

olx, 1) = % j @y, 0) dy + %[(p(x +1,0) + ¢(x —1,0)]

x—t
This formula also shows that in the case n = 1, ||¢|,, does not fall off as
|t]~"2; in fact the proof of falloff when m > 0 fails to extend since {M;} is no
longer invertible. However, {M;} is nonsingular in n — 1 directions; so we
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expect, and shall prove, that ¢ obeys

lo(x, 2)] < dfe|-tn- 12

It is sufficient t i o
dony ufcien o p:(ove (48) in any fixed x direction as long as d is indepen-
, SO we take x = (x,, o0,..., 0), x; > 0. Thus, we need to control

@s(x, 1) = (2m)~"2 .“Rlethlkﬁihxxui(k) d"k
We shall control ¢ _ for ¢ positive

; the i
so that u_ vanishes in the b other proofs are similar. Choose ¢ > 0

all of radius 2¢ about zero. Pick X1 and y, in

Cw(R") so that + = .
Write X1+ 22=1land y,(k) =0ifk, < eand yy(k) = 0 if k, > 3.
o-(x, 1) = (2n)~"2 P
)= () [(e oy (k- (k) dk
+ (2n) "2 - o
) fﬂ';:%ﬁ’ze By (kJu (k) dk

Since Vi(—t|k| + k, x,) vanishes onl

> : ‘ . only when k;, >0, k, = =k =

thgo:; ;ﬁ:ointof mltegrat'lon contains no points of statiimary phasne ag,dﬂs]g

control ety rtxhzgll'ia tvgmshes faster thar? any power of r. Thus, v’vc need

ey rs mtegra'll. \Ye do this by introducing a change of var-
Ich separates the direction of the line of stationary phase Dcﬁ:;

Kl(k) =k1

K= s

ST ek =k =2

Then k > K is a diffeomorphism on 4" = {k|k; > ¢}. Since

j=2
we have, for suitable g and h,

(2m)~ ™2 ” re—itlkl-i-iknxlxl(k)u_ (k) d"k

(2m)=n2 fxu_’exp [iK,(x, —t) - iti K}’g(K) d”Kl

<(-tn-12 R
L. exp(—(4t1) l%y}) [hxy =1, yau .y y,)| d™= 1ty
J=

from which the estimate (48) follows. We summarize:
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Theorem X1.18 Let ¢ be a regular wave packet for the wave equation
(46) with m = 0. Then:

(a) For any ¢ > 0 and any N, there is a cy,, so that
lo(x, )] < ey ol + |x] + [¢])7"

if [x] < (1=¢)le] or [x] > (1+2)]t].
(b) For some d,

for all x and .

Our definition of regular wave packet when m = 0 includes the condition
that the Fourier transforms of the initial data vanish near the origin. Ac-
tually, this hypothesis is not necessary for part (b). In fact, using either
explicit formulas for the solution or further stationary phase analysis (Prob-
lem 33), one can prove that the following holds:

Theorem X1.19  Let ¢(x, t) be a solution of (46) in the case m = 0 with
initial data in %(R"). Then:
(a) For any N and ¢ > 0, there is a cy,, SO that
lo(x, t)] <cn.. (14 |x] + |t])7N, |x] = (1+¢)|t]
(b) For any & > 0, there is a ¢ so that
o, O] <cdt+ [e)7e, x| < (1-e)t]
(c) There is a d so that

lo(x, t)] <d(1+ |t])" ™2 allx and ¢

When n is even, the result in (b) is the best possible. In fact, if
h=¢(-, 0)=0 and £ =¢,, 0) is in C§, then, for x fixed, o(x, t)~
c,t™" Y [ £(y) dy with ¢, # 0 if n is even. But when n is odd and greater
than one. Huygens’ principle assures us that the estimate of part (a) also
holds in the region |x| < (1 —¢)|t| of part (b).

class (see the Notes). 1

in S ¢ SO that

reference for Theorem X1.22 in th
. e Notes.
cannot be extended to any g<2( bl 36
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Appendix 2 to XI.3: T .
properties of /(x)g(—iv) ~ © -

To apply the theorems of the K i
. ato-Birman theory, it is often nec
prove that certain operators of the form S(x)g(—iV) are trace claessssaéictl?

other situations also, and it js sometimes

rmation about the singular values t
|#m| < 00. Recall that #, is the set of 4 in Z(H#) such that{#[rf}i ”:lasn

(tr(] 4["))""” < oo. Properti
‘ - rroperties of £, and | - |, may be found i .
and in the appendix to Section IX 4. The foﬁowing results arI; ?:S::OH vie

Theorem X1.20 Let 2 < <
PrimiiSa " =49 <o and suppose that f, g e L(R™). Then

1/ Cdg(=9)]l, < 2m) =) £, ],

Recall that L}(R") is the set of fsuch that || ||, = ||(1 + X221 (x)] ., < o0
) :

Theorem X1.21 sy
21 ppose that f and g are in J2
Then f(x)g(—iV) is a trace class operatorgand nh

1/ ®e(=i¥)s < ¢ 01115 g,

(R") for some 6 > n/2,

There exist necessary and sufficient conditions that S (x)g(

N Vb
n applications, Theorem XI.21 suffices V) be trace

Theorem X1.22  Let2 <4<
Then f(x)g(~iV) is a 9 < co and suppose that g € LY(R"),f & LY(R"),

bounded operator with singular values

Hm Obeying
l/‘m, = dq.n"f"q"g"q.wm-“q

Wh
at we mean when we say that S(x)g(=iV)isin s ¢ is that there is an 4

(®. AY) = (Fo. g(—iV)y)

for all ¢ and y in Z(R").

We shall give proofs of Theorems X1.20 and X1.21; the reader can find a

that Theorem XI.20
see Problem 36). Theorem X121 is closely
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related to the g > 2 result since f € LZ(R") for § > n/2 implies that f € L'(R"),
and moreover it is not a much stronger hypothesis than f € L'(R"). Theorem
X1.22 is also related to Theorem XI.20 in that |u,| < cm™ '/ says that
Y | |? is convergent or only barely divergent so that f(x)g(—iV) is almost
in #,. Theorem XI.22 cannot be extended to allow both fand g to lie in LY.
For example, the operator |x|™*|iV|™* is not even compact since it com-
mutes with the unitary group of dilations.

Proof of Theorem X120 If qg= oo, then f and g are in L° so
1/ =i¥)]un < 1 I [ 164 = 2, then f (x)g(—i¥) is an intcgral oper-
ator with kernel f (x)(2n)""2§(x — y) (see Theorem 1X.29), so f (x)g(—iV) is
Hilbert-Schmidt and | f (x)g(—iV)||; < (2r)""2|| f|2 [|g]|> - The general case
now follows by applying the interpolation methods of the appendix to Sec-
tion IX.4 (Problem 35). §

Proof of Theorem X1.21 Write
f(x)g(—iV) = AB
where
A=f(x)(1=A)"2(1 + %22
B = (14 x?)7%%(1 — AY?g(—iV)

Then B is Hilbert-Schmidt by Theorem X1.20. Let h be (2z)~"? times the
Fourier transform of (1 + k?)~%2. Then A is an integral operator with kernel
S (x)a(x = y)(1 + y*)'%. Since fe L}, in order to prove that A is Hilbert-
Schmidt, we need only show that

[(1+ 2P [hGe = y)[F dy < et + x?) (49)
Now, (1 + k?)7%?2 has an analytic continuation H to {z| |Im z| < 1} which
obeys | |H(k + ix)|* dk < oo, so the Paley-Wiener principle (see¢ Theorem
IX.13) assures us that
[ e | h(x)|? dx < o0
for all sufficiently small a. In particular,

[ (1 + x2P|h(x)|? dx < oo (50)

Since (1 + y?)® <2°(1 + |x — y|?Y(1 + x?)°, (49) follows from (50). Thus,
since A and B are both Hilbert-Schmidt, their product is trace class. ||
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Appendix 3 to X1.3: A general invariance
principle for wave operators

In developing the Kato-Birman theory, a striking invariance principle
(Theorem XI.11) for the wave operators appeared. One can ask whether this
invariance principle holds under more general hypotheses than the condi-
tion that A — B be trace class. Our goal in this appendix is to prove a similar
result under a hypothesis of the type used in Cook’s method.

Theorem X1.23 Let A and B be self-adjoint operators on a Hilbert
space J and ¢ a function on a finite interval (g, b) < R such that:

(i) The distributional derivative ¢” is in L' and ¢’(x) > a >0 for all
x € (a, b).
(ii) Let I be a compact subinterval of (a, b). Let 2 be a dense subset of
E,(B)P,.(B)s# contained in .#(B) such that for any u € 9, the function
W(I) = eiAte—iBzu
is strongly differentiable with |w'(t)] € I'(+1, + o) n (+1, £ )
and |t|*|w'(t)| € L'(£1, +o0) for some a > 0.

Then, for any u € 2,

lim e'eAe v By

t—= F o

exist and equal Q* (4, B)u.

In particular, suppose that ¢ is an admissible function on an open set T
with 6(A), 6(B) < T so that at each boundary point of T either ¢ has a finite
limit or both 4 and B do not have point spectrum at that point. Then
Q*(p(A4), ¢(B)) exist and

Q*(p(4), ¢(B)) = Q* (4, B)Er,(B) + Q7 (4, B)Er,(B)

where T, (respectively, T;) is the union of those intervals where ¢’ >0
(respectively, ¢’ < 0).

To prove this theorem, we need to develop a theory of Fourier transforms
of (weakly) measurable s -valued functions in I?(R; #) (p < o). The eas-
iest way to define this is to let #(R; ) denote the space of C* functions
from R to »# with sup, ||(1 + |4]|)" D*f(4)|| < « for all @, n. The Fourier
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transform is then defined as a weak integral (recall that all our vector-valued
integrals in these volumes are weak integrals),

k) = @r)~ 172 [ e~ (2) dA (51)

By duality, one extends * to &'(R; ) and thus to I(R; #) =« &'(R; #). In
particular, the Plancherel theorem holds. Indeed, realizing I*(R; #) as
[*(R) ® 5 as in Section I1.4, our extended Fourier transform is just # ® 1.
Moreover, for f e L'(R; 5#), (51) holds pointwise.

Let F € L}(R). Then, for any v € #, we claim that

FA) = 2m)~1? | F(2)e™*4v di (52)

for any self-adjoint A. For (52) holds when F € #(R) and so, by a limiting
argument it holds for F € L.
Fix a function g € C3(a, b) so that g=1on I and 0 < g < 1. Define

G(t, s) = (m) 2 [ ebr=itetig(y) dy

- o

Lemma 1  Let ¢ satisfy hypothesis (i) of Theorem XI.23. Then:

(a) For each fixed ¢, G(t, -) € L'(R).

(b) For each fixed s, G(t, s) >0 as t > + o0.
() c(t)}=[, |G(t, s)]* ds—0ast— co.
(d) For v e o and self-adjoint A,

@

(2m)~ 12 j G(t, s)e™ 4 ds = e~ "*Ug(A)v

Proof (a) Foreach fixed t, G(t, -)is the Fourier transform of a function of
compact support with second derivatives in I*. Thus (1 + t2)G(t, - )€ [° so
that G(¢, - ) is certainly in L.

(b) Clearly, |G(t, s)| < (2m)” "/?|g||,, so it suffices to prove (b) for a g
that is a sum of functions of the form e~ *yq(n)e’(n7) which are dense in L'(I).
For such g’s the result is easy.

(c) is just a restatement of Lemma 3b of Section 3 and (d) follows from

(52). ¥
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Lemma 2  Let h e #'(R; o) have a Fourier tr i
-t ; ansform in I}(R; »#) and
let C be self-adjoint. Let G(t, s) be as in Lemma 1. Then the int(egral :

o= -°° G(t, s)e™*Ch(s) ds

exists and

lim |[Jy(e)] =0 (53)

[l £ )

Proof Since he I}, h is in I® so the int .
v € #. Then egral exists by Lemma 1a. Let

@ W) = [ O s)e* v, his)) ds

= f ("€ ~Mg(C — k)v, h(k)) dk

on account of the Plancherel theorem and Lemma 1d. Thus

@)l < 4] (54)
By (54), it suffices to show that (53) holds for a total i
_ subset of 4 in L, so w
consider the case A(k) = f(k)u; f€ C2(R), u € #. In that case )
J(t) = F(Cu
where

Fis)= [ f(kde™"e=0g(s — k) dk

Now, |[F, |l < || f] for all t, and for each fixed s, F (

0 = s , Fi(s)»0ast— +o0 b
Lemma llb. Thus, by Theorem VII.2d, s-lim, . ; F,(é) =0, so the lemma ijs/
proven.

Lemma 3  Let h(t) be a strongly diff i i

Sopons ot ) gly differentiable function from R to s and
() [A(e)] -0 as t > co.

(i) [#()] € L(®R) A E(R).

(iii) [¢]|K(2)] € LA(R) for some a > 0.

Then h € L}(R; #).
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Proof Let G be the Fourier transform of k. Then by (ii) and (i),
Gel' nI’and
IG(k) = G| < colk —£F

for @ = min{e, 1}. By (i),

[ w w) ar

]

lim [a (v, K(t)) dt

a—oc “—a

= lim [(v, h(a)) = (v, h(—a))] =0

a—+w

so G(0) = 0. It follows that |G(k)| < c|k[. Now let K(k)-——2 (zkz ‘+G(k)
Then [jy>1 |K(k)| dk < 0o since k™' and G are lg?tlh in I2(+1, +00).
Moreover, ', |K(k)| dk < oo since |K(k)] < C|k[’™".

We shall be finished if we prove that K = h. But K‘and h havle the same
derivative, so K = h + v for some constant vector v. Since K € L, K(t)—-0
as t - oo by the Riemann-Lebesgue lemma, so, using hypothesis @i)v=0.1

| Proof of Theorem X1.23 Fix u e 2 and let
I(t) = e” " AQ "y — e~ "By

We must show that I(t) -0 as t - co. Let w(t) = e*'e”P'uand w_ = E)'u.
Then, by Lemma 1d and the fact that g(BJu=u, and g(4)Q u=
Q g(Bu=Q u,

10) = 1) [ G, s)e™*[w_ — w(s)] ds

Fix positive C* functions K, and K, such that K, € Cj‘,", supp K; <
[+1, +©), and K, + K_ + Ko = (2n)™ "% Then I(t) = } j-, I,(t) where

1) = [ Kugs)G(t, s)e™*4[w- — w(s)] ds
forj=1,2and «(1) =0, a(2) = +,

I,(t) = I K _(s)G(t, s)e”“A[w, — w(s)] ds

10) = [ K_(5)G(t, s)e™*[w_ — w.] ds

with w, = Q*u. By the hypotheses, Lemma 2, and Lemma 3, 1,(¢) and I5(t)
go to zero as t — oo. Since

11L,0)] <2l [ |G s)| ds

supp Ko
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I,(t)—0 as t —» oo on account of |G(r, s)| < (2n)”"/?|g|,, Lemma 1b and
the dominated convergence theorem.

It remains to prove that I,(t) » 0 as t = co. Now, by Lemma 1 in Section
3,
| e e ) ds < 2 ?o]?
Thus,

0

[(v, e™*4w,)|? ds < I [((Q )0, e™"*Bu) > ds

J

It follows that

< 2w ?lfu]l]?

J. [K_(s)]| (v, e"*A(w_ — w,))|? ds < const||v|>

so that |I,(t)| < const c(t) where c(t) is given in Lemma Ic. By that
lemma, 1,(¢) - 0. |}

In most cases where one really needs the invariance of the wave operators
(see Example 1 (revisited) in Section 10 or Example 4 in Section 11), one has
already satisfied the hypotheses of the Kato-Birman theory which has the
invariance of the wave operators as a corollary. Nevertheless, Theorem
X1.23 is interesting since it shows that the invariance principle can hold even
when there is no information about asymptotic completeness.

Example 1  Suppose that the hypotheses of Theorem XI.16 hold with
(45) replaced by the stronger assumption

J'+ 1 ta(‘fa<|x[<b

In particular, this will be true if |V(x)| <c|x|"'"* near oo. Then
Q*(H?, H}) exist.

12
|V(xe)? dx) dt < o0

Example 2 We want to apply the invariance principle to show the
absence of relativistic corrections for electron scattering from external (not
necessarily constant) magnetic fields, at least in the approximation that the
electron magnetic moment is eh/mc (the physical value differs from this by
about 1% due to corrections attributed to quantum electrodynamics). In
units with A = ¢ = 1, the nonrelativistic Schrédinger Hamiltonian is

(p — eA)? N

e
HS(A) = m 5;(

o B)
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acting on I2(R3; C2) where, as usual, p = —i grad. Here o stands for the
vector of Pauli spin matrices

{01 I _{r o
=1 o) T -i oo T o -1
A is the magnetic vector potential and B = curl A. The relativistic theory is
described by the Dirac Hamiltonian

Hp(A)=a" (p— eA)+ mp

acting on I*(R?; C*). If C* is realized as C?> ® C?, the conventional choice
for a, B is

oy =0,Q®0;, B=03®1
A direct and elementary formal calculation shows that
1 @ Hs(A4) = (2m)™ '[H3(A) — m’]

If Ais C!, with both A4 and VA bounded, then this formal calculation is
certainly an equality on the level of self-adjoint operators. If, moreover,
|A(r)| < C(1 +r)~ ¢, then Q* (Hp(A), Hp(0)) exists by a stationary phase
analysis. Moreover, the invariance principle, Theorem X1.23, is applicable,
$O

Q*(Hp(A), Hp(0)) = 1 ® Q* (Hs(4), Hs(0))

This demonstrates the absence of relativistic corrections to scattering at least
if the scattering is described in terms of position or momentum variables. Of
course, if asymptotic velocities or energies are used, one must remember to
use the appropriate kinematics.

X1.4 Quantum scattering |: Two-body case

The scattering theory that we shall study in the most detail is scattering
for two-body quantum systems or, what is equivalent, a one-body system in
an external potential. This is the most thoroughly studied field in scattering
theory, and there is a wide variety of interesting results.

The Hilbert space of a two-particle system is

# = B(R%) @ B(R®) = (R)
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The free Hamiltonian is

6 - . .
w.here re R® is written r = {ry, 1) with r;e R® and A, is the three-
dimensional Laplacian associated to r;. The interacting Hamiltonian is

H=H,+V(r, - 1,)

where V is a function in I>(R®) + L°(R3). Thus Kato's theorem (Theorem

X.16) shows that A is self-adjoint on C2(RS). W
severe restrictions on V. ! 0( ) © shall later place more

First, we change coordinates to se i
» We parate the center of mass motion.
new coordinates will be " The

R=(uy +p) Mary + por3),  rpp=r,—r,
Let U be the unitary operator on I?(R) given by

(UF )% y) =f((uy + H2) "X + pyy), x — y)

and let r; and r, denote the obvious coordinate multiplication operators.
Denote Ur, U™! by Rand Ur, U~ ! by r,,. Then

-1 _ 1 1
VAU = 2(u, + #z)AI-EA’” + V(ry,)

VA, U-1=—-_ 1 L, 1
° 2(ﬂ1+#2) R 2m

where m™' = pur' + u3;'  (Problem 40). We now i ?

) write [?(R®) =
LZ(R;) ® (l:foo(?“;‘s))where ?oaw the variables are R and r,,. Then, as op(erat)ors
on D=Cg ® CF(R%) < CP(R®), UR,U"? -1
AN & *(R®), o and UAU™' can be

ri2

UR U ' =h,®1 +I®H,
URU '=hy®@ I+ IQH
where
ho = —[2u; + 2u,]7 ' A
Ho= —(2m)"'A
H=—Q2m) 'A+ V()
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Thus, e—ilU}‘loU'l = e—irho ® e—inHo and e—ilUﬂU“ = e-izho ® e—°i1H' Since
these differ only in the second factor, we shall define wave operators Q* and
a scattering operator S for the system {e™“#, e i} on I*(R*). The wave and
scattering operators for the original system are then given by
U '(1®Q*)U and U™ 1(I ® S)U.

The description we have just given of the coordinate change in terms of a
unitary operator is the so-called “active” way of looking at a coordinate
transformation. There is a second way of looking at the transformation—the
so-called “passive” way. In this interpretation, we think of —A; — A, and
—4Ag — 2A,,, as the same operator (rather than as unitarily equivalent oper-
ators) written in terms of a different basic set of coordinates. When there are
several coordinate changes, as we shall encounter in Section 6, this second
“ passive ” viewpoint is notationally less cuambersome than the first “active”
viewpoint. We shall henceforth adopt this second “ passive” viewpoint.

Given our discussion in the preceding section, it is clear that the existence
of scattering states is equivalent to the existence of Q* (H, H,). Notice that
the uniqueness of scattering states is trivial, for if both ||e ™'y, — e~ "Hog|
and |e” 'y, — e""Hop|| go to zero as t » — oo, then ¥, — Y, = 0 by the
linearity and uniform boundedness of e~ *".

The basic existence result is the following:

Theorem XI.24 (the Cook-Hack theorem) Let V e }(R®) + L(R?) for
2<r<3 Let Hy= —A on I?(R%®) and let H = H, + V. Then Q*(H, H,)
exist.

We shall give three different proofs, all based on Cook’s method, which
illustrate the variety of ways one can estimate ||Ve™ "Hop|.

First proof of Theorem X1.24 This is the most “ elementary ” proof in that it
involves only direct calculations and does not require either interpolation or
stationary phase ideas. Fix y > 0 and let

@,(x) = y*'* exp(—4yx?)
Then, we have that
(e™"op,)(x) = a(r)** exp(—4{a(r) + iB()]x?) (55)
where fB(t) is a suitable real-valued function and
aft) = y(1 +4t%*)7"
To prove (55) one need only note that, up to a constant, &, is exp(—3p?/y) so
that (e”"Ho@,) is exp(—4p®/(y(t)) where y(t)™! = y~' — 2it. (55) then fol-
lows where the constant can be evaluated by using [e” "%, |, = |¢o,|.-
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From (55) one easily sees (Problem 42) that for k > 0,

L+ [x] o0, |l < (1 + |¢])~#+ (56)
It follows that
_"Ve""”"%llz Sef(t+ [x])V]a(1 + [e])7H**
<c(IValla + V)0 + e])=2+*

ifV="v+ Ve L +Landr™! =4 +k/(3 + )~ for some & > 0. This fol-
lows from Holder’s inequality and the fact that (1 + [x]|)"* e " for all
m > 3k™'. Since r < 3, we can take k < 4, so

[ Iveiag, |, di < oo

for any y. Since linear combinations of translates of the ¢, are dense (Prob-

lem 43), this estimate and Cook’s method (Theorem X1.4) i
: 4
Q*(H, H,) exist. | ( ) imply that

Second proof of Theorem X1.24 By Cook’s method we need only show that

for'any pe, [(t)=|Ve " op|, is in I}(1, o). Recall Theorem IX.30
which says that ’

le=" '], < t=3+37|g|,

if ery and q‘_‘l= 1-p™Y,2<p< oo Write V="V, + V. where V, e I2,
VeLandletp'=4—r"!50p>6. Then, by Holder’s inequality,

IVe™™0ls < Va2 lle= 0], + [V ], el
=< "Vz”z"‘Pult"‘} + ||V,”,||(p”q,~i+3/p

Since p> 6,3 —3p~"' > 150 f(t) € L)(1, o0) which proves the theorem. |

_I\Iotice th{lt the condition r < 3 was crucial since it implied p > 6 and the
t™% decay with a > 1 which is necessary for f(t) to be in I}(1, o). Which
(l + |r|)~# potentials are in I2 + I’? Precisely those with 8 > 1. Again, as
in the classical case, simple scattering theory breaks down at the Cou]o;'nb

force. We shall discuss how to modif i
Y quantum scattering th
the Coulomb case in Section 9. g fheory to handle

Third proof o[ Theorem X1.24 By Theorem XI.16, it suffices to prove that
(45) holds since we can then use stationary phase estimates. Write
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V =V, + V, with V; € I? and V, € L. By Holder’s inequality,

3 -
I T [y
at<|x|<bt at <|x|<bt

= C|V, .73
Thus,
w [ + @©
J' (I | Vi(xt)|? dx) dt _<_J‘ Ct™3|V,|, dt < 0
1 a<|x|<b 1

since r < 3. Since | V(x)|* < 2| Va(x)|* + 2| V,(x)[* (45) holds.

This result can be extended in various directions. If R? is replaced by R"
and n > 3, then one can see that the theorem holds if the condition r < 3 is
replaced by r < n; all of the above proofs extend. Of course for general
V € I? + I it may happen that H,, + V is not essentially self-adjoint on Cg’;
the arguments work for any self-adjoint extension of (Ho+ V) I C§. When
Vel +I (n>5) or 2**+ L (n=4), we know that Ho + V is self-
adjoint on D(H,) by general principles. For n = 1 or 2, only the third proof
extends; the result appears in Problem 44. A second direction for extension

allows local singularities:

Theorem XI.25 Let V be a measurable function on R? so that there is
an R, an ¢ >0, and a C with

V()| <Cr '™ if r>R
Let H be an operator with the property that Dy = C3(R*\{r|r <R}) =

D(H), H is self-adjoint, and
Hp=—-Ap + Vo

for ¢ € Dg. Let Hy = —A. Then Q*(H, H,) exist.

Proof Let x be the operator of multiplication by a function in Cg’ that is
one on the ball of radius R. Then, as in the proof of the Cook-Hack theorem,

I[H(1 = x) — (1 = x)Hole™*"p| e L
since H(1 — x) — (1 — x)Ho = V(1 — ) — Ay — Vy - grad and
grad(e™"Hog) = e~ "o(grad ¢).

Moreover, y(H, + 1)~ ! is Hilbert-Schmidt and so compact. By Problem 18,
this implies that lim,_, , [xe™ *#°p| = 0. The result now follows from the

Kupsch-Sandhas theorem (Theorem XL5). 1
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; Since one il?:s an explic;it formula for e~ *#p, one can prove directly that
llgn,_.m lxe™*Hog|| = 0 without appealing to the abstract result in Problem

Finally, there are quadratic form results.

"!’Vhe_orlem XI.ZZfﬂ Let V=V, +V, be a function on R® so that

anld=6( ;{xli)f Viisin ! + I and V, is in I} A I}~? for some ¢ > 0
>0. LetHy=—-Aand H=H, + V i

QO (H, He) ot ° o + V as a quadratic form sum. Then

Proof Write V=C1D1+C2D2 With C?=m/lm‘*,
Dy=|w,[}1+ |x]|?)

Ct= I?/IVZ [* and D, = |V, |*. Then by hypothesis, C¥C,, D¥D,, C*C
and D3D, are a_ll Hy-form bounded with relative bound zeroh sc: bz’
Theoxﬁm XL6, it suffices to prove that for ¢ e &(R3) we l,xavz
||D,g °¢| € L' and |D,e~"Hop| € L. Since D, € >~ the second ex-
%ees:c:? is u;) L‘H by the eroof of Theorem X1.24. Let f =‘(1 + |x|?)"t-¢
ince i i .
T 1)fe"';’(°¢ﬁ ;l; 113 i is bounded, it suffices to show that G(t)=

(Ho + 1) fe™itHog
= fe™ o [(Ho + 1)p] - 2(V) )e™"(grad o)  (Af e~ o
Since @, (Hy + 1), grad ¢ are in & and - in 12 e
conclude that G e L. | MLV iae b D BT, we

We shall prove in Section XIIL4
4 that for Ve[}? 4 (I®
Ocss(—A + V) = [0, ). Since 0,c C 0., We have D

Corollary  The operator H of Theorem X1.26 obeys a,.(H) = [0, o).

H’I_‘he methods we have developed work for other cases than the pairs
A =—A+V, H9 = —A. Consider the case B, = —A + X, B=—-A+

+ x,, where x, is the ﬁr§t component of x. This pair describes scattering in
a constant external electric field. As a preliminary, we need:

Lemma LetB,= —A + x;. Then
e-i:Bo = e—ixx;e—i13/3e+l:2p1e-itﬂo

where H, = —A.
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i -di i . Let f(a) = ePxe™ P,
Proof Consider first the one dlmen_s:onal case : X
Then, as an operator from &(R) to itself, f(O)‘= X aan (x) = 33 .‘Thus
f(«) = x + 3p*a. It follows that for each a, f(a) is essentially self-adjoint on
&(R), and for any bounded Borel function
F(x + 3p%x) = eP**F(x)e 7™
Thus
e-—ir(p2+x) = eip3/3e—ilxe-ip3/3
= e—ilxei(p—l)3/3e—ip3/3

= e—ixxe—ir3/3eit2pe—i1p2

where in the second step we used e'*g(p)e "*=g(p—1t). In the n-
dimensional case, let p = {p,, p,>. Then

e—iIBo = e—it(p|2+xl)e—irp12

So, by the one-dimensional case, the result holds. ||

Theorem XI1.27 (the Avron-Herbst theorem)  Letx = {x;,x,; ). LetV be
a function on R” obeying:

(i) V)P dy < C(1+ |x[?)

ly-xls1

for some N and C and all x.
(i) For some k and 7 with 2/ — k > 1 and some x,,

(I o) scas pmip + iy
ly-x1<1

for all x with x; < —Xx,.
Let Bo=—A+x, and let B be some self-adjoint extension of
(Bo + V) I £(R"). Then Q* (B, B,) exist.

Proof By the lemma, for ¢ € &,

Ve | = [ |V(x, = 2 x,) | (e™"p)(x) | dx

Thus by the stationary phase method we only need that, for any a and b
bigger than zero, there is a Ty with

© ks
( [ V(x, — 3 x,)? d"x) t™"? dt < o0 (57)
"To\tars|x|<sbt
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where we have used hypothesis (i) to control the integral over the remaining
x. (57) follows easily from hypothesis (i1). §

We emphasize that only x, very negative is involved in hypothesis (ii).
Physically, this is because B, pushes the particle out to negative x - As an
example, if B= —A — |x, [, then Q*(B, —A — x,) and Q*(B, —A + x,)
both exist. Obviously, neither is complete by itself,

* x %

The idea of wave operators and Cook’s method for proving their existence
is also applicable to a variety of time-dependent quantum-mechanical situa-
tions. Thus, consider solutions of a time-dependent Schrodinger equation

i29(0) = How()

where we have in mind H(t) = — A + V(t), and each V(t)is multiplication by
a real function. In Section X.12 we discussed the solution of this equation
and found, under suitable hypotheses, that there exists a strongly continuous
two-parameter family of unitaries U(t, s) obeying

U(t, s)U(s, v) = UL, v), Us, s) =1

% (UGt sW] = —iH(OU(, sW, ¢ e D(H,)

See Theorem X.71. A simple case where one is certain that solutions of
U(t, 0)y should exist which asymptotically look like e~ "oy is when
V(t) = V; + o(t)V, where ¢ has compact support and say Vi, Vs € I2(R3);in
fact using the existence of the limit of ¢/Ho+V htp-itot 5¢ , _, + 00, it is easy to
prove that suitable “time-dependent” wave operators exist in this case.
Actually, such wave operators exist under very general circumstances, for
example, if

V(t) = (cos w, 1)V, + (cos w, 1)V,

At first sight this may seem surprising, for why should U (t, O)¢ have a simple
limit when H(t) continues to oscillate? The reason is simple: Scattering
states spread out as t — + o, so it does not matter what the potential is
doing locally so long as it goes to zero at oo.
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Definition Le be the unitary propagator associated to H(t) =

t U(t, s) be t itary pr tor associ '

H f+l Vl (:) according tg Theorems X.70 and X.71. We say that the associated
/]

wave operators exist if and only if

Q* = s-lim U(t, 0)*e™ He! (58)

t=+F o

exist.

Theorem XI1.28  Let V(t) = V() + V,(t), where Vi(t) is a s}ronglg (:)111;
ferentiable I?(R3)-valued function and V,(r) is a strongly dlffereré ia le
IP(R3)-valued function, 2 < p < co. Suppose that for some ¢ > 0 and su

able c,
Vi@l < cfe s, [t] =1
Ivae)l, < clef=327"70 fe] 21

Then the limits (58) exist.
Proof Let @, ¢ € #(R?). Then, by Theorem X.71,

d ~iHot =f_ t, 0)p, e~ Hoy
£ (0, ULt 0)Fe™™1y) = 2 (UGt O, &™)
= i(p, U(t, 0)*V(t)e™"y)
It follows that for t > s,

|U(t, O)*e™Hony — U(s, O)*e™ Hory || < j [V(u)e™ oy || du

i in the second proof of Theorem XI.24,
By the hypotheses and the estimates in t : _
thye last )i(:tegral is convergent. Following Cook’s method, we obtain the

existence of the limit (58). i

Notice the striking feature of Theorem X1.28 in tha;t it allows 111/(2, tt(})1 ag:(f)::
i i i blem 45), one can sho
s t = oo ! Using stationary phase ideas (Prp
?/ € _L’2 with compact support, V(t) = ¢(t)V yxelds. wave operatqrsﬁsqtlong as¢
is differentiable and of no more than polynomial growth at infini y.L bave
The intertwining relations e~ *#*Q* = Q*e~ % do not, in general, ha

an analogue in the time-dependent case sinc?e Ut +s, 't) will not gex:.erla:llall);
have a nice limit as t - co. However, there is one special case of partic

physical interest where there are still some intertwining relations.
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Theorem X1.29 Let V(t) obey the hypotheses of Theorem X1.28.

Suppose, moreover, that V(¢ + T) = V(t) for some fixed T and all teR
Then

u(T, O)Qi = Q*e iHoT (59)

and in particular e~*#°T commutes with the scattering operator (Q~)*Q*,

Proof Under the hypothesis, Ut + T s + T)= U(t, s), so that U(nT, 0) =
U(T, 0y Thus

U(nT, O)a:e—ino(rw nr _ U(T, O)U((n + l)T, 0)*e—iHo(n+ nr
Taking n — oo, (59) results. J

Reintroducing 4 and letting w = 27/T, one finds that Theorem XI.29
asserts that while H, may not be conserved by scattering, the energy can be
changed only by nkw where n = 0, +£1,.... This is a nonrelativistic
justification of Planck’s original quantization rule!

Much of the scattering theory we shall develop in this volume can be
extended to the time-dependent case; we shall seldom do so explicitly in the
text, but will give references in the Notes.

* % %

We now return to the basic quantum-mechanical problem of Q*(H, Hy)
with Hy = — A. Completeness of these operators is easily handled with the
Kato-Birman theory if V has sufficiently rapid falloff and sufficient local

regularity. We shall later give an example where completeness is destroyed
by severe local singularities.

Theorem X1.30  Let ¥ be a measurable function on R” so that | V| is
—A-form bounded with relative bound a<1 Define H= —~A+ V as a
form sum and let Hy = —A on E(R"). If V € I(R"), then Q*(H, H,) exist
and are complete.

Proof We shall apply Birman’s theorem (Theorem XI.10). Since Q(H) =
Q(H,), the operators are mutually subordinate. Thus it suffices to show that
|V PEi(Ho) and E,(H)| V[* are both Hilbert-Schmidt. This follows if we
show that |V [*(H, + E)™™ and [VI*(H + E)™™ are Hilbert-Schmidt for
Some m and E. By hypothesis, |V | € 2, so the first of these is Hilbert-
Schmidt by Theorem XI.20 so long as m > in. By mimicking the proof of



64 Xl: SCATTERING THEORY

Theorem X1.12, | V|¥*(H + E)™™ is also Hilbert-Schmidt: explicitly by inter-
polation between (H, + E)"*V(H, + E)™™ * € #, and

y= |(Ho + E) *V(Hy + E)" ¥ < o0,

we see that |V |¥(Ho + E)™* "t and (Ho + E)"*V(H, + E)™* " lie in £ ,,,
for k=1, 2, ..., m. Thus picking E so that y <1 and expanding
|V [*(H + E)™™, we get a sum over g and | of terms of the form

(IVIH(Ho + E) =) | TT(Ho + E)*V(Ho + )~ |(Ho + E)* (60)

with Y%_, £, = m. Using Holder’s inequality for trace ideals, this term is
Hilbert-Schmidt with a norm bounded by cy?, so the sum of the Hilbert-
Schmidt norms converges. |

This last result is somewhat disappointing in that it requires ¥ to be in L',
and thus it must have |x |"'“ falloff more or less. On the other hand, we
have existence so long as V has |x|™!~* falloff. We shall later prove com-
pleteness under these conditions also but only by using more sophisticated
methods; see Section XI11.8, Theorem X111.33 or Section 17 of this chapter. It
turns out that in case V is spherically symmetric, the Kato-Birman theory is
applicable even if one has only |x | !¢ falloff.

Theorem X1.31 Let Hy= —A on I*(R?) and let V(x)= V(|x|) be a
function of r = |x| alone. Suppose that

j®|V(r)|dr+jlr|V(r)|dr<oo (61)

Then V is Hy-form bounded with relative bound zero and Q* (H, H,) exist
and are complete.

Proof Let us decompose I*(R})= @®2o@®h=-rFm Where /fg,=
{rf (r)Y,m(0)}. Each 4, is isomorphic to I*(0, co; dr) = # under the corre-
spondence rf (r)Y,,, <> f(r) (see Example 4 of the Appendix to Section X.1).
Let hy,= —(d*/dr*)+ /(/ +1)r"? on # with boundary condition
f(0) = 0 when 7 =0.Let hy = hy_o. Then H, is isomorphic to @, ., ho, . Let
v be multiplication by V on s#. We shall prove that

Tr(|o[*tho + )7 [o[f) < 0 (62)

This implies that limg., || |v[*(ho + E)™'|v|*|| = O so that |v]| is hy form
bounded with relative bound zero. Since hy < hy ., we obtain that V' is H,
form bounded with relative bound zero. Let h, = h, , + v. Decompose

(h/ + E)—l - (ho./ + E)—l = ABCD
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where A = (h, + E)"'(ho + 1)* and D = (ho + 1)*(ho., + E)™ ! are bounded
and B = (ho + 1)™*|v|* and C = [v/|v [*](h, + 1)™* are Hilbert-Schmidt by
(62). It follows, by the Kuroda-Birman theorem that Q*(h,, h, ,) exist and
are complete so that Q* (H, H,) exist and are complete. '

Thus, we need only prove that (62) holds. We claim that

Te([o [ + 1)1 |o]t) = j: V()] [e~"(sinh r)] dr (63)

From this, (62) follows by using (61) and the estimates
sinh r < &, sinh r <r cosh r < re’

for r > 0. Now, (ho + 1)7* is an integral operator with kernel

(ho +1)"Yr,r)=e""sinhw u= max{r, ¥}, w = min{r, r}

as can be checked easily (Problem 47). Thus |vl(h, + 1)~ ! [ [*

integral kernel ) i+ 17 e has-en
K(r, r') = lo(r) ko + 1) *(r, ) u(r)

s0 (63) corresponds to the formula

Tr(4) = j: K(r,r)dr (64)

While (64) is heuristically just a continuum analogue of the fact that
Tr(a;;) = Z,- a;; for finite matrices, it is not a general fact for integral opera-
tors; this is obvious since K(r, r') is determined only a.e. and {(r, r')|r = r}
has measure zero! Nevertheless (64) does hold when the kernel K (r,7)is
continuous and the operator is positive semidefinite—we shall prove t,his as
a lemma below. The lemma implies (63) when V is continuous, and a simple

approximati
efari - on argument (Problem 48) concludes the proof of (63) for gen-

Lemma  Let u be a Baire measure on a locally compact Haudorff space

X. Let # = (X, dy) and let K be a continuous function on X x X. Sup-
pose that:

(i) For any g€ k(X), the continuous functions of com

i g pact support,
- fetx)en)K(x, y) du(x) du(y) 2 0. It follows that K(x, x) > 0.
(i) | K(x, x) du(x) < 0.

Then, there is a trace class operator 4 with integral kernel K. Moreover,

Tr(Ad) = j K(x, x) du(x) (65)
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Conversely, if A is a positive trace class operator with a continuous kernel K,
then (ii) holds and (65) is true.

Proof Suppose that (i) and (i) hold. Let f be in x(X) and let K /(x, y) =
S(x)K(x, y)f(y). Then K, is in [}(X x X, du®dpu) so that there is a
Hilbert-Schmidt operator 4, with kernel K. Let {U,, ..., U,} = % be a
finite set of disjoint Baire sets of finite 4 measure and let P, be the projection
in & onto the span of the characteristic functions of the U;. Then

Tr(PyA;Pa)= Y [ W(U)Yf (x)K(x, y)f (v) du(x) du(y) ~ (66)

i "UixU;

Order the #’s by % < 4'if | ) U; = | U} and each Uj is either disjoint from
all the U; or contained in some U, that is, if and only if Ran P, = Ran Py..
Under this ordering, the set of %’s is a net and: (a) P, is monotone increas-
ing in %: (b) s-lim Py = 1; (c) as % goes to “infinity,” the right-hand side of
(66) converges to | f(x)*K(x, x) du(x). By (i), (a), and (b)

Tr(A;) = lim Tr(Py A, Pq)
X

(both sides may be infinite a priori) and so by (c) and (ii), 4 s is trace class
and

Tr(4;) = [ /(<K (x, x) dp(x)

Now order all f’s with 0 < f < 1 and f € k(X) by pointwise inequality. Then,
for any ¢ € #,

(@, 4,0) < llol* Tr(4,) < llo* [ K(x, x) du(x)

Moreover, for ¢ € x(X), lim, , (¢, A, ) trivially exists. By a density argu-
ment, and polarization, w-lim, ,; A, = A exists. Moreover, for any finite
rank operator B,

|Tr(4B)| = lim |Tr(4,B)| < ||B| lim Tr(4,) < ||B| j K(x, x) du(x)
11 1

Thus A is trace class. Taking ¢’s in k(X), we find that K(x, y) is the integral
kernel for A. Finally, (65) follows by repeating the P, argument.

The converse statement follows from the P, argument also. |
Example 1 (scattering in a magnetic field) Let H, = —A on 2 and

H=13% (i9; - ajx)y + V(x)

where V, a;, aj are in L}(R") with & > $n. Suppose moreover that Q(H )=
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Q(H,) so that (H + E)~* 0; are bounded. Then, for any bounded interval
1, the four operators

E,(H) ajajEl(HO)v EI(H)aj 5,‘ EI(HO)’
E,(H)ajE,(H,), and E,(H)VE,(H,)

are trace class. The last three are trace class by Theorem X1.21 even without
the factor of E,(H). The first is trace class since E,(H) 9, is bounded and
a;E((H,) is trace class. It follows that E,(H)(H — H,)E,(H,)is trace class so
that, since Q(H) = Q(H,), Birman’s theorem is applicable. We conclude that
Q*(H, H,) exist and are complete.

Example 2  This is a nonphysical example, but it shows the power of
Birman’s theorem. Let Hy = — A on I?(R"). Let a be in L}(R") N [*(R") and
grada be in L3(R"), 5 > 4n, and suppose a > 0. Define

H=H, + AaA

as a sum of quadratic forms. Since AdA is a fourth-order operator, it is a very
singular perturbation of H,. Clearly Q(H) = Q(H,) n D(a*A) = Q(H,).
Moreover, D(Hy) = Q(H). Thus H and H,, are mutually subordinate. Writ-
ing H — Ho =}, (9;)a(d;A) + 8,(0;a)A and using the fact that E/(H) o, is
bounded as in Example 1, we see that

E,(H)H - Ho)E,(Hy) € 4,

so that Q* (H, H,) exist and are complete by Birman’s theorem.

Theorem XI1.25 asserts that local singularities of V are inessential to the
question of existence of Q*(—A + V, —A). One can ask whether they are
also irrelevant to completeness; to a large extent the answer is yes as we shall
now describe.

Definition A self-adjoint operator H is called a strongly semibounded
local perturbation of H, = —A if and only if:

(i) Q(H)< Q(H,)and H, < ¢i(H + ¢,) for suitable constants ¢, and c, .
(i) Iffe 9,.,the C* functions with Dfe I*foralla,and ¢ € D(H), then

Jo € D(H) and
H(fo)=f(Hp) — 2Vf Vo — ¢ Af (67)

Notice that, by (i), if ¢ is in D(H), then V¢ is in I2. (ii) says that in some
sense H — H, is a multiplication operator.
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Proposition

(@) LetV =V, + V,where ¥, > 0and in L} and V, is — A-form bounded
with relative bound « < 1. Then H = —A + V defined as a form sum
on Q(Hy) n Q(V,)is a strongly semibounded local perturbation of Hy, .

(b) Suppose that W also obeys the conditions of (a). Let H = —A + W. If
f€ 2, has support in {x|V(x)= W(x)}, then for all ¢ € D(H), we
have fp € D(H) and H(fo) = H(fo)

Proof (a) Condition (i) is easy, so we need only check condition (ii). Let
¢ € C3 and f€ 9,.. Then clearly fp € Q(—A) and

V(fo)=/Vo + ¢ Vf

By an easy limiting argument, it follows that if ¢ € Q(—A), then
fo € Q(—A). Let ¢ € Q(—A) and ¢ € CP. Then

(@, (=8)fY) = (fo. (=AW) = 2((V o, V¥) — (& ), ¥)

Again, using a limiting argument, this extends to all y € Q(H,). Clearly, if
[ Vile|? dx < oo, we have that [ V, | f|*|@|* dx < oo;s0 if ¢, ¢ € Q(H),
then fo € Q(H) and

W, H(fe)) = (%, Ho) = 2((V/)¥. Vo) = (V. #) (68)

Recall that by the form construction (Section VIIL6) the domain of H
consists of those ¢ in Q(H) such that there is an n € & satisfying (, n) =
(, Ho) for all y in Q(H). In this case n = He. Given this and (68), we
conclude that if ¢ € D(H), then fo is in D(H) and (67) holds. .

(b) Since ¢ € D(H)< Q(H), ¢ € Q(H,) and | |¢|*V, dx < co. Since
V=W on suppf, [|f]*|e]Widx<o so ¢@eQ) By (i),
(. H(fo)) = (b, A(fip)) for all Y & O(Ho) so that fis, (V) (~AfW €

Q(V,). Since any y € Q(W,) has this property, H = H. |

Theorem X1.32  Let H be a strongly semibounded local perturbation of
Hy = —A on I*(R"). Let W be a function obeying:

(i) Wis Ho-form bounded with relative bound a < 1. Let H= —A + W
be defined as a form sum. '
(i) H= —A+ W outside the sphere of radius R, in the sense_that if
f € 9D, has support in {x||x| > R}, and ¢ € D(H) or ¢ € D(H), then
fo € D(H) n D(H) and H(fp) = H(fo).
(ili) Q*(H, H,) exist and are complete.

Then Q*(H, H,) exist and are complete.
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Proof By the chain rule and Proposition 3 of Section 3, it suffices to prove
that Q*(H, H) and Q*(H, H) exist. Let J be multiplication by a function in
9, that vanishes if [x| < R and is 1 if [x]| > 2R. Since Q(H) = Q(H,) and
Q(H) = Q(H,), (H + ¢)"V3(Ho + 1)? and (H +c)"V2(H, + 1)¥2 are
bounded for c¢ sufficiently large. Thus (1=J)H +¢)""* and (1 - J)x
(H+c) Varein s p if p > max{n, 2} by Theorem X1.20, and in particular
are compact. Therefore Q*(H, H; 1 — J) and Q* (A, H; 1 — J) exist (and
are in fact zero) by Lemma 2 of Section 3 and Problem 18. We are thus
reduced to showing that Q*(H, H; J) and Q*(H, H; J) exist.

We claim that by mimicking the proof of Birman’s theorem, it suffices to
prove that, for any bounded interval I,

E(H)HJ - JR)E(A) e 5, (69)

For by hypothesis (ii), JD(H) = D(H), JD(/) = D(H), so that the necessary
subordinate condition holds: (H + ¢)~'J(H + c) and (H + ¢)"'J(A + ¢)
are bounded. By (67) and hypothesis (ii), (HJ — JH)p = —2V - (VJ)p —
(AJ)p for ¢ e D(H). Since Q(H,)> Q(H) > Ran E,(H), we have that
(E/(H))V is bounded. Thus, because VJ, AJ e C? and (A + cYE\(H) is
bounded, we need only prove that for some integer / and any g € C®,

gH +c) e s, (70)
By hypothesis (i), (H, + c)¥(H + )% is bounded. By Theorem X1.22,
gHo+c) te s, (71)
so long as ¢ > n. Thus
gl +c)tes, (72)
for g>n. Let A= (H + c)and D = 9,. We first claim that
gA™!' and DgA~'  arein £, (73)

The first statement is obvious from (72) and the second follows from the
boundedness of DA™, (72), and the calculation:

DgA™' = DA™ 'g + D[A" !, g]
=DA™'g+ DA 'DhA™' + DA~ 1[4~

where h=2V g, f= —Age CP. A calculation similar to this shows that
gATI T = AT gA T 4 [g, A1) A
=A“gA'f—A“DhA“f“‘—A“'j‘A‘f‘l (74)
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It follows from (73), (74) that if gA~i € #, for all g € CY?, then g,'4-1—l €S,
for all g € C§ where s™! = min{l, r~* + ¢~ !}. Thus starting with (73'),_v;/e
see inductively that for all ge C§, gA~/e #, where ¢;= min{1, jg~'}.
Taking 7 > g, (70) holds. |

Corollary If V =V, + V¥, has compact support where V; > 0; VielL!
and V, is —A-form bounded with relative bound a < 1, then Q*(-A +
V, —A) exist and are complete.

The condition that H, < ¢,(H + c,) s critical for the above results as the
following spectacular example shows. ' X

Thus far in this section we have presented a way of proving Ran Q* =
Ran Q~ that works in particular for —A + V with V € CP(R?). We shall
later discuss other methods of proving asymptotic completen_ess. Lest ?he
reader think that asymptotic completeness must hold, we mention the exist-
ence of certain pathological examples:

Counterexample There exists a potential V that is bounded on com-
pact subsets R*\{0} so that:

i) V has compact support in R3. '
(8 H = —A + V is essentially self-adjoint on D(—A) N D(V).
(iii) —A + V is a positive operator. o
(iv) The wave operators Q* = s-lim,_, 3, e"HetHo exist.

but
(v) Ran Q* # Ran Q.

Let us describe the potential V which has been constructed by D Pearson.
There are basic building blocks of size 8(a + a*) consisting of enght_squarc
wells as shown in Figure XI.3. Now define a, by 8(a, + a?) = 2". The
potential ¥ will be a function W of |r|. W will be 0 on (1, ), and equal to
the basic block potential with a =a,,, on (27"~*, 27"). Thus V is schema-

a-4(g-3/2-g-")

-4 (0-\/2-04)

FIGURE X1.3 Pearson’s building blocks.
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cr-55%

/—‘

tically shown in Figure XI.4: It does not get larger than cr=5-% or smaller
than —cr=5, and its maximum oscillations approximately reach these
curves. Notice also that it is « mostly ” zero as r — 0,

Physically, the reason for the breakdown of asymptotic completeness is
that there exist incoming waves which in the future have two pieces, one of
which scatters outward and another which gets trapped near the origin.
Because of the positive bumps, the particle is prevented from reaching the
origin in finite time, which is why H is essentially self-adjoint. The negative
bumps prevent the particle from just bouncing off. We shall not prove the
claimed properties for V, but refer the reader to the reference in the Notes,

To illustrate the wide applicability of the methods we have described, we
consider two last examples, one a model of scattering from a thin slab of
matter and the other of scattering from a semi-infinite chunk of matter,

FIGURE X1.4  Schematic of Pearson's potential.

Example 3  Let W be a function on R® obeying

[Wx)| < Cy(1 + |x])®
Fix k and let
V(x) = Z W(x, = ny, x, - Nz, X3 —ny)

ny=0,..,k
n,n3e 2

So long as a > 2, the method of estimating sums by integrals easily shows
that the sum converges and

'V(x)l <C(1+ lel)-(a—Z)

The wave operators Q*(—A + V, —A) describe the scattering of a single
particle from an array of particles in a slab of k + 1 planes of scattering sites.
If 4 is C® with compact support away from points where ky = 0,it s easy to
see that

Ve tull; < (1 + [¢])-@-2
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by using stationary phase methods. It follows that, if « > 3, Q*(—A +
V, —A) will exist. Moreover, one can prove that Ran Q* = Ran Q™ as
follows: The function V is periodic in the 2 and 3 directions; and for that
reason, H= —A + V has a (direct integral) decomposition as a fibered
operator in the sense of Section XIII.16. The situation is somewhat different
than that in Section XIII.16, where we discuss potentials periodic in all three
directions. In that case the fibers are operators with purely discrete spec-
trum. In this case the fibers Hy(k) for — A have purely absolutely continuous
spectrum, and the fibers H(k) have some absolutely continuous spectrum
but also the possibility of some eigenvalues. One shows that (H(k) + i)™* —
(Ho(k) +i)~' is trace class for all k from which it follows that
Ran Q*(H, Ho) = Ran Q™ (H, H,) = [® P,.(H(k)) dk. For details in the
above construction, the reader should consult the reference in the Notes. We
remark that it may happen that the H(k) have point spectrum contributing
to absolutely continuous spectrum of H (as in Section XI11.16) in which case
Ran Q* = Ran Q~ # Ran P, (H).

Example 4 Let W be a bounded periodic function on R and let
Ho= —d*/d*x, H, = H, + W. As we shall describe in Section XII1.16, H, is
a model for the motion of an electron in a solid. Let

_W(x), x>0

Vi) =1, x <0

so that H = H, + V describes a model for electron scattering off a large
(idealized as semi-infinite) chunk of solid. One expects that as t — oo any
solution e~ **'p with ¢ € Ran P, (H) should approach a sum of a free plane
wave moving to the left and a solution e~ *#% moving to the right in the
solid. Let us prove this.

Let J be multiplication by a C* function ¢ on R that is 0 on (— 0, —1)
and 1 on (1, 00). Then, as in the proof of Theorem X132, E;(A)x
(AJ — JB)E(B) is trace class for any of the five possibilities obtained as
(4, B) run through (H,, Ho), (H,, H,),{H, H),{H, H,), {H,, H), and
the same is true if J is replaced by 1 — J and H, and H, are interchanged.
Moreover, since D(H,) = D(H) = D(H,) and JD(H,) < D(H,), all pairs are
mutually subordinate.

Now, for B= H, H,, H, define

P¥(B)=Q*(B,B;J), P}(B)=Q%(B, B;1-J)

where the limits exist by the above and Birman’s theorem. Since J* = J and
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(J'ih— J)B +1)! is compact, the P} (B) are all orthogonal projections
wi

P}(B)+ P(B)= P,(B) and P}(B)P%(B)=0

by the intertwining relations for Q*(4, B; J). Moreover, Ran P (B) is
precisely the set of ¢ € Ran P, (B) so that e "By moves off to —oo as
t — F oo in the sense that

r—loi;nw J;m l(e—im(p)(x”z dx =0

for any a.

Let

We =Q*(H,Ho; 1-J),  Wi=Q%H, H,J)

Using the above results, it is not hard to show that these operators exist and
that W3 are a partial isometries with initial spaces P} (H,) and final spaces
P} (H). The same is true if W, is replaced by W,, H, by H, and ¢ by r. Thus
Pi(H)= P}(H)+ P*(H) implies that P,((H) = Ran W§ @ Ran Wi
which is the desired completeness statement. ,

An interesting consequence of the above is that if y is a vector with the
support of  in (a, b) where a > 0 and (a2, b?)is inside a gap for H, (we shall
show in Section XIIL16 that H, has spectrum | Jj[«;, B;] with o, < B, <
o < B2 < -+ where “typically” the “ gaps” (B, a;,,) are nonempty), then
Wo ¥ € Ran W¢; that is, a particle sent in at an energy in the gap is totally
reflected. One can combine the above ideas with those in Example 3 and
treat scat.tering from a half-space of higher dimensional crystal, or scattering
from various kinds of crystal defects. These subjects and the details of the
above construction are treated in the reference in the Notes.

We gonclude this section with a formal definition and discussion of the
scattering operator in two-body quantum mechanics. In interpreting exper-
Imental scattering data, the natural question is the following: We prepare a
state that in the past looks like the state e~ oty and we want to know how
it looks in the future, that is, we look at e ™MQ* . We ask: What is the
probability of finding that this state is the free state e~ *Hoty, asymptotically in
the future? By the rules of quantum mechanics, this probability P,., is

given by _
Pouv = |(Q7y, Q%)
= |, @ )Q* o)
Definition IfQ* exist, we define the S-matrix, S-operator, or scattering

operator by @)
S=(Q7)rQ*
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Notice that this definition makes sense even if Ran Q* does not equal
Ran Q7. While completeness is not needed to define S, it is equivalent to S
being unitary.

We shall discuss S in detail in Sections 6 and 8. At this point, we note some
simple properties of S (Problem 49).

Proposition

(a) Se'f'™ = ¢Mois for all t. S leaves D(H,) invariant; and if € D(H,), then
Ho(SY) = S(Ho ).

(b) If U is any unitary operator that commutes with H and H,, then
US = SU. In particular, if V is rotationally invariant, then § is rota-
tionally invariant.

(€) (S¥)x) = (S*P)(x)

(d) S is unitary if and only if Ran Q* = Ran Q.

(c) is called time reversal invariance for reasons discussed in the Notes.

On account of the continuity properties proved for the correspondence
A, B—Q*(4, B) within the Kato-Birman theory, S has continuity proper-
ties. Typical is the following:

Proposition Let ¥, and V,, be in P'*(R*) n [}(R*) and suppose that
lim,.,, |Vo — Vi |1 = 0 and sup, |V, |32 < . Let S(V') be the S-matrix for
—A + V. Then

s-lim S(V,) = S(V,,)
Proof By mimicking the proof of Theorem XI.30, one sees (Problem 50)
that (H, 4+ i)”' —» (H,, + i)™ ! in trace class norm. Thus, by Problem 28,

Qt(H;n HO) - Qaio

strongly, so S, — S weakly. But by completeness, the S, and S are all unitary,
so S, — S strongly. |

There is one final property of Q* and S which we would like to discuss.
We defer the full physical interpretation of this result until we prove a
similar result for N-body systems, but we note that if we have scattering
from a fixed scattering center and we take a fixed state and translate it
toward infinity, it will miss the scattering center (see Figure XL5).
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Theorem XI1.33  Under the hypotheses of Theorem XI.24
s-lim UJ1Q*U, =1

800

————

FIGURE X1.5 The cluster property.

s-lim UJ'SU, =1

a8-*00

where U, are the operators (U, f Jr)=f(r - a).

I;roof Vl:’e shall prove thats-lim,. , , U;'Q*U, = I, from which it follows

that w-lim,., U;'SU,=I. Since |U,SU-1|| <1 this impli

N IU.SU; Y| <1, this implies that
By an ¢/3 argument, we need only prove that

lim (U7 1Q* - 1)U,)p =0
for all ¢ € &. For such o,
Fo
U7 Qt - 1)U,p = Fi j (Us teHVeiHoy ) g
0

Let Ij,l,g) denote ||U; 'e~#Ve~itoy o||. 1t is easy to check that F,(t)=
[Voe™ 0| where Va(r) = V(r + a). Looking at the second proof of
Theorem X1.24, we see that F, o(t) is bounded by an I! function of ¢ hniformly
in a because the IP-norm of V. is independent of a. By the dominated
convergence theorem, it thus suffices to show that F,(t) - 0 for each fixed t.

Since e~ """ leaves & invariant, we need i i
) Just show that lim,_,  |V,0| =
for all ¢ € & and this is easy. ] IVeol =0

XI.5 Quantum scattering IlI: N-body case

Scattering t!neory for N-body quantum systems is complicated for two
reasons, one kinematical and one dynamical. The kinematic reason appears
already for N = 3. Before one removes the center of mass one has a natural
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coordinate system r;, r,, ry in R3 = R® Once we decide to take]
R = (u; + py + p3)” '(uyry + pary + usrs) as a variable, there is no natura
choice for the other six coordinates. For example, we have the pairs
(ri2, 1130 or {ry,, 1330 or ry3, ry3) where r;; =1, —r;. Also, one n_nlght
first change coordinates in the 1,2 system to Ry, = (u, + )"t x
(#yry + pyry) and ry, and then go to !he three-body system taking coor-
dinates R, r;,,and {, = R, — r; (see Figure X1.6). The point is that various

1

9
/\Mv
ne 3 FIGURE X1.6 Jacobi coordinates, N = 3.
Total center
of mass
Ryzy VR=Ryp23
2

(12) Center
of mass

coordinates enter at various stages of the theor)f, and i§ is common to chapge
coordinates in the middle of a proof. This kinematical complication is a
nu’ﬁ?: cc;/namical complication involves the richness of different sortshof
scattering phenomena possible even for a three-body system. Suppose that
particles 1 and 2 can form a bound state. The'n one not.only expects scatter-
ing of the “free ” particles 1, 2, 3 into free partlclcs' (elastic three—body.scattgr-
ing) but also capture processes where “free ” paruclc§ 1,2,3aresentinand a
bound state of 1 and 2 together with a “free” particle 3 comes out. These
processes are indicated schematically in Figure XI.7a and b. Similarly, one

SO =00

(a) Elastic 3-body (b) Capture

Sos ol ol

Rearrangement (e) Excitation
(c) Breakup (d) lo] Excita

FiGURE X1.7 Three-body collision processes.
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would like to describe breakup processes (12)+3->1+42+ 3and rearrange-
ment collisions (12) + 3 > 1 + (23) where (ij) represents a bound cluster of
particles i and j. If there is more than one bound state of 1, 2, say (12) and
(12)*, one can have excitation collisions (12) + 3 > (12)* + 3.

In the three-body case, we shall first enumerate the bound states of ( 12),
(23), and (13) and for each such bound state b consider a “ scattering chan-
nel.” Instead of describing states that are asymptotically a three-free-
particles state, we consider states that asymptotically consist of 1 and 2
bound in state b and 3 moving freely relative to ( 12). In the N-body case, we
need to consider clustering into disjoint subsets C,, ..., C, and a scattering
channel for each k-tuple of bound states of C 1> ---» Cx. One expects scatter-
ing between channels. This complication is subtle and beautiful.

We begin by describing various coordinate systems. Consider the
Hamiltonians

A= -

o= -

l

Qu)'a+ Y Vilri = ;)

i<j

M= i=

(211.')_ lAi

1

on I*(R*N) where we write r = ry, ..., ryd € R%N and — A, is the Laplacian
in the r; variables. We now change coordinates to R = Gy w)
Yy wriand N — 1 additional 3-vector coordinates &, ..., En-1. These
coordinates are required to satisfy two additional conditions: First, for
each i # j, r; — r; is required to be a linear combination of the &, . Secondly,
the differential operator H,, when written in the new coordinates, is
required to have no terms of the form Vi * V,,. Actually, as we shall see,
the first condition implies the second. Such a coordinate system defines a
decomposition 2(R*") = I2(R%) ® (R*M-3) and a tensor decomposition
of H and H,:

ﬁ=ho®l+l®H
Hy=h®1+1®H,

where hg = —(2 YN | 4;)7!'Ag. The exact form of H depends on the coordi-
nate system used for §,, ..., Ey_,. As in the two-body case, one can think of a
change of coordinates as an alternative description of the same operator or
in terms of a unitary transformation. We shall take the former view. For
some coordinate changes, the Jacobian will be a nonzero constant different
from one, and it must thus be included in the inner product.

We consider three specific kinds of coordinate changes:
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Atomic coordinates Let n;, =r; — ry. Then
N-1

Ho= =Y (2my)"'Ai+ Y (uy) "'V, - \7
i=1 i<j
where (my)™' = p ' + py ', Ay = A, and V, = V, . Moreover,
N-1
H=Ho+ ) V) + Y Vymi—n))
i=1 i<j<N
The reader is asked to carry through these computati'ons in Prol?lems 52a.
As the name suggests, this coordinate system is especially useful in systems
where one particle is distinguished from the others, such as ato_nlnc systems
where the nucleus is distinguished. The additional terms ZK‘ jun 'V V;are
often a nuisance. They are called Hughes—Eckart terms. Notice thz.n there are
no cross terms in A, between R and y;: It follows that (or any chqlcc of the &;
satisfying the first requirement above, the second requirement will automat-
ically hold.

Jacobi coordinates Let

C,-=r,-*,-(z;1j)_ (Z'ujrj), i=1..,N—-1

j<i jsi

Then (Problem 52b)

N-1
Hy= - Z (2V«‘)—IA(.-
i=1
where v ' = pih + (3;<ip)7" and H = Ho + Y, Vi(r,;) where r,; is
shorthand for r; — r; written in terms of the §;; for example,

H3 K2
+ <
mrmrm

Jacobi coordinates are obtained by first changing variables from (r,, r,) to
Ci=ry—ryand Ry = (4 + p3) " (s, + 1), then from <R(12)» r;) to

2=T3— Ry, and Ry p3) = (4 + pp + ﬂs)_l'[(lll + lfz)R(l;) + p3r3),and
so forth (see Figure XI.6). At each stage, one pair of vqnables is changed to a
two-body center of mass and a relative coordinate. Since there are no cross
terms in the change to center of mass coordinates for two-body' systems,
there are no Hughes-Eckart terms in the N-body H, above, v.vhlch is the
virtue of Jacobi coordinates. The disadvantage of Jacobi coordinates is the
complicated form of r;;, although r,, = —g, is simplc. Given any permuta-
tion iy, ..., iyy of {1,..., N), there is an associated Jacobi coordinate
system in which r;;, is simple.

ry =8+
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Clustered Jacobi coordinates The last coordinate system we discuss is par-
ticularly useful for scattering theory. In order to describe the breakup of an
N-body system into bound clusters, we introduce some formal definitions

and notation which will play an important role in this section and Section
XIILS.

Definition A partition D of {1, ..., N} into k disjoint subsets C,, ..., C,
whose union is {1, ..., N} is called a cluster decomposition. If
D={C,,...,C,} is a cluster decomposition and i, j are two numbers in
{1, ..., N}, we write iDj if and only if i and j are in the same cluster C,and
~iDj if they are in different clusters. The symbols ), yand Y ) ; Tepresent
the sum over those pairs (i, Jj) withi < Jj obeying iDj or ~iDj, respectively.

Definition Let D = {C,}t., be a cluster decomposition. Let
HC)= - T ) 'A+ T Vfr-r)
ieG i<jijeC

and define H(C,), the cluster Hamiltonian, to be H(C,) with its center of mass
removed.

H(C,) is an operator in I(R3N ~3); it is independent of coordinates in
the other clusters so H(C,) = he, ® 1 if we decompose IZ(R-3) ag
(R 3) @ Z(RN- 3%) where n, is the number of elements in C,. We shall
henceforth use the symbol H (C,) for both the operator on L}(R3¥~3) and the
operator on I*(R**~3) which we denoted above as hc,. When we wish to
emphasize which operator is intended, we shall talk about “H(C,) as an
operator on " or “H(C,) as an operator on H'c,” where H# ¢, is the space
LX(R*3) of functions of the internal coordinates of the cluster C,.

Definition Let D = {C,}%_, be a cluster decomposition. The intercluster
potential I}, is defined by
Ip = Z Vi
~iDj

Thus I, is the sum of interactions between particles in different clusters,

Definition  Let D = {C,)%_, be a cluster decomposition. Let A, = A —
Ip=Y%., H(C,) and define the cluster decomposition Hamiltonian H, as
the Hamiltonian A, with its center of mass removed. Thus

HD=H-ID
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Since I, depends only on coordinate differences r; — r;, it is unaffected by
removal of the center of mass.

Notice that Hp, # Y%, H(C,); rather Hp, = T+ Z;=, H(C)) where Tj, is
the kinetic energy of the center of masses of the mdwxc}ual clusters Vb{lt-h the
total center of mass energy removed. Thus corresponding to the partition of
the 3N — 3 coordinates in the k sets of internal coordiqatcs fo; C 15 ooes Ck
plus the set of 3(k — 1) coordinates describing the relative p051t219n§Ncif3thF
centers of mass of the clusters {C;}{=,, the Hilbert space # = >(R ) is
written as

H=Hp® Hc,® Hc,® @ Hc,

and
Hh=65,01Q®1

H(C))=1®h,®1® - ®1

HC)=1®1®  Qh,

Clustered Jacobi coordinates are chosen precisely to make Ty, simple. To
obtain these coordinates we first change from {r,, ..., ry) to

C (C1) (Ci)
<R1r ceey Rk’ é(l l), teey 'lll_l’ e g"k"l

where _
R, = ( ) Ili) Y Wir;
ieC ieC
and £, ..., 82 are coordinates which together with the R, form a set qf
coordinates for C,. For example, we could fix some j € C_, and let
(€Nl = {ti — r}icc,i¢;- Thus H(C,) is a differential operator in the var-
m = i i i
iables £/, Therefore

k
A= 3 (~2mc) 80, + THE)+Ip
=1 ‘=

= k-body variables and
where mg, = Y ec, p;- Now treat R, ..., R, as a set of .
take Jacobi coordinates {€)4z1 for (Ry, ..., R, as the first k — 1 coordg
nates of a new coordinate system; {E7?}, where 1 <m S' n, — 1‘ an
1 </ <k, as the next N — k coordinates and then the center of mass as the
last coordinate. Then
k-1

Hpy= Y (—-2M,)"'A, + ,Z:H(C()

¢=1
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where M;'! = mc} | + (Yu<, me,)™ 1. Thus we have a coordinate system in
which Hj, has a very simple form. The individual terms in the two sums
depend on independent coordinates and thus commute with one another.
Notice also that if ie C,, je C,, then n—r;= —{; + & — EC) where
() is some combination of internal coordinates for C, which gives the
distance of r; from the center of mass of the cluster C,.

To see how these definitions operate, let us consider the simplest non-
trivial example:

Example (clustered Jacobi coordinates) Let N =5 and consider the
partition D = {C,, C,, Cy}, C, = {1, 2, 3}, C2 = {4}, Cy = {5}. Then

Ry = (uy + py + p3) " (uyr, + Ty + psry)
g(lCl)‘—'rl'_rS’ §§Cl)=l’2‘|’3
R2=r4, R3=r5, CI=R2—R1
C2=Ry—(uy +pyp + py + Ha)" 1y + ua + H3)R; + pyR,]

The clustered Jacobi coordinates are just (C1s 82, EED, EEDY. See Figure
XI1.8. As an example of how r(i € Cy, j € C,) appears, notice that

Fo =3 =08y + (U + pp + p3)” [usEED + H2E57)

{ 1
)
3 Cl - FIGURE X1.8 Clustered Jacobi coordinates,
N=35
ENC N\

2 5

Having completed our discussion of the kinematics of N-body systems, we
turn to the existence questions of scattering theory. We use the same techni-
cal ideas as in the two-body theory with the usual two complications. First,
kinematics makes the notation more complex and the reader should keep a
cool head; secondly, the wealth of scattering phenomena will require us to
look at more objects than just s-lim, 3, e* e~ ot For suppose that
¥ = lim,.,, et~ iHoy Then e~ "y approaches e~ o'y a5 t -» + 0o and
it looks like a state with N freely moving particles. If we want to describe
states that asymptotically look like bound clustersC,, ..., C, moving freely,
we want e~y to look like e~y where A describes bound clusters moving
frecly. A must therefore include the forces that bind the clusters but should
mot have the forces between clusters, Thus we will take 4 =H D»
D ={Cy, ..., C,} and study a particular limit.
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Definition Let H be the Hamiltonian of an N-body system with center
of mass removed. Let D={C, ..., C;} be a cluster decomposition of
{1, ..., N IfQp = s-lim,_, 7 e* e~ > exist, we say that the clustered
channel wave operators exist.

Theorem XI1.34 (Hack’s theorem)  Let

N-1
H= ‘Zl (=2m)" A+ iZjK,-(n,-)
where each Vj; € 2(R?) + I?(R®) with 2 < p < 3. Then the clustered channel
wave operators Q3 exist for each cluster decomposition D.

Proof The basic structure of the proof is exactly that of the second proof of
Theorem X1.24. Choose a clustered Jacobi coordinate system with coordi-
nates {y, ..., Lem13 &0, .., &S0 5 L &S | where {€€9} is a family of inter-
nal coordinates for cluster C, and {{} are the Jacobi coordinates for the
motion of the centers of mass of the clusters. Consider the set

Dp= {¢((b cees Ck—x)m(f(c‘)) ﬂk(é(c'))lfp e y(RBk—S)’
and n,€ D(H(C))), |n.]| =1}

Finite linear combinations of vectors in 9, are dense, so we need only prove
that lim,., 3, e* e 0"y exists for all Y € Dp.
By Cook’s method, it is sufficient to show that

_fd_ (e"‘”'e"i""'lll)

: = Moty

is in I}(+1, +oo0) for all Y € D, Since I, is a finite sum, it is enough to
show ||V;e” "2y € I}(+1, £ o) for each i, j with ~iDj. Since each V;is a
sum of two terms, one. in I? the other in I, we can suppose V}; is in either r
or I (2 < r < 3) and use the triangle inequality to estimate the sum. Given
i, j, we shall pick the Jacobi coordinates so that {; = R, — R, where i € C.,
j € C,. Since change of Jacobi coordinates of R, ..., Ry) by reordering
leaves &(R3*~3) invariant, there is no problem with the fact that we must
change the meaning of “{,” as we vary i and j.
We next note that the individual terms in

Hp= -Z(-ZM,)"IA, + Y H(C,)
¢=1 (=1
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commute, so

k-1 k
e—ial = (H e+it(2M/)"‘A, n e—itH(C/)
¢=1 ‘=1

Moreover, V,; depends only on ¢, and internal coordinates from C,, C,, so
V,; commutes with e'*, / + 1 and e~ "H(), ¢ + 1, 2. Thus

Viye™ "oy | =

' k
Vij(e”A"P)('h. (2, ) H ’I(C')
¢=3

where s = t(2M1)"1; and e = e—iH(C,)tn . V., depends only on
dinates in C, and C,, so ! e Vij aepe y on {, and coor

[Vije™ 29| = [Vise** @)1, Yz, Mlc. cai¢

where the symbol |- ¢, c,;; means the *-norm integrating over the var-
iables £€1, £€2) and {. Thus

"Vue_‘mp'/’llz = _[ F(Cz: ceos Sum s t) ¢, - df,_

where

F(Cz, coes Ck=1s t) = J‘ |V$y(C1)|2|ekA'(P(C1, ooy Gk 1)|z ag,
and
IVEEDI = [ 110, dEE) 12 na, dEED) 2| Wity — &V — &9)|2 dee g

Ifcvzle dc:call. the é‘c.", ¢€2 integrations in the last integral except for the
S + & ’)'mte'gratllon', we see that |V{)|? is a convolution of | Vj;|* € L'/?
and a function in L' with L'-norm (||n,,, |2 |n2.. ||2)* = 1. Thus by Young’s

inequality, | V};[l, < ||¥|l,- As a result of this estimate and the wave packet
spreading of ¢**!, we conclude that

O0<F(s,..0r Lmy) < |VRNR(s™ *HIP)ZI @1 -.vs Gum1)|? dCy

where p is as given in Theorem XI.24 and in particular p > 6. Finally, we
conclude that ’

Ve ) < [Vl s >Pllo] ]

and thus ||V;e™"*y| € L'(+ 1, +o0). This concludes the proof. |
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The point of the above proof is that it reduces the existence problem for
the N-body case to the same estimates we used in the two-body case. By
using the form ideas discussed in the proof of Theorem XI1.26 and the form
version of Cook’s method (Theorem XI.6), one easily obtains:

Theorem X1.35 Let

N-1

H= in(—zm)‘ A + ‘Zj Vifryy)

on I2(RW~1m). Suppose that each ¥; obeys
(1+ |rP)*¥,(r) € B(R") + L°(R")

where p=4nifn>3; p=1ifn=1;and p > 1if n = 2. Then the clustered
channel wave operators QF exist for each cluster decomposition D.

We now know that QF exist and would like to construct scattering states.
Not every Y = Qpx describes a state that approaches a system of bound
clusters {C,, C,, ..., C,} moving freely relative to one another as t — co. All
we know is that e~ #'y and e™'#o'x approach one another. But since
s-lim,_, , e*#HoteiHot exists, if k = lim,.,, e*Hole~Holy then e” ™'y and
e o'y also look like one another as t — oo. The point is that for ¥ to look
like bound clusters as t — oo, it is not enough to have e™*#y — e~ #H2¢ - (
for an arbitrary x. k must have the form k({, &V, ..., &)=
@(O)n1(E€Y) -+ 0 (E“Y) where each 7, is a bound state of H(C,). We thus
are motivated to define:

Definition A channel is a cluster decomposition D ={Cy, ..., C;}
together with functions 5, € 5#, such that each #, is an eigenfunction of
H(C,) with eigenvalue E,. We S‘b"'l use the symbols «, B, ... to stand for
da channel and sometimes write =~

a_(cl C, - Ck)
M M2 0 M

The eigenvalues E, ..., E, will be denoted {E®}}., and are called channel
eigenenergies. The cluster decomposition D associated with a channel o will
be denoted by D(«).

Two channels where the #, differ by complex multiples are not considered
distinct. Thus a channel is more accurately a cluster decomposition together
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with “rays of eigenfunctions.” If C, contains only one particle, then we write
# ¢, = C (there are no internal coordinates), H(C,) =0, n, is the element
l1eC,and E® =0.

Important Proviso In listing all channels a = (51 ::$¥), we first make
prel_lmmary choices if some H(C,) has a degenerate eigenvalue. Explicitly, if
E, is an eigenvalue of H(C,) of multiplicity n, we first pick n orthonormal
functions in {n|H(C,)y = Eon} and then require that for any a with
E}‘" = Eq, 1, is one of these n functions. Thus if « and B are distinct channels,
either D(a) # D(B) or D(x) = D(B) and for some ¢, 5 is orthogonal to n¥).

tl‘)efigition Let a be a channel. Choose clustered Jacobi coordinates
or the decomposition D(a), say (ly,...,{-y, ECY, ..., ECH)5. Call
#Hq = L}(R*~3) the channel Hilbert space, and define I i 5?,1—>3? =
L*(R3"~3), the channel embedding by

(TN &) = (4 -y s 1) f[ n(E€9)

=1
The channel wave operators QF : s, — # are defined by

Qai = Qg(a)y a
The channel Hamiltonian H, on #, is defined by

k
H,=H®+ Y E®

=1
where H{”) = %21 (—2M,)~!A, in Jacobi coordinates.

. The wave operators QF have a simple direct physical interpretation. For,
ifY = QF @, then e~y approaches (6™ ") [ T5=1 e~ *E4"y,) as t - F co.
But (e™"¢%p)([Ts.y e~"4,) is precisely the wave function of bound
cluste{s 1« moving freely relative to one another. Given this physical inter-
pretation, we expect that Ran QF should be orthogonal to Ran Q7. We
have thus removed the multiple counting of asymptotic states that occurs in

{Ran Qg}. Before proving that Ran QF and Ran Qf are orthogonal if a # B,
we combine the channels.

Definition . Let € be the collection of all channels with the proviso dis-
cussed al?ove. in case some H(C,) has a degenerate eigenvalue. Define the
asymptotic Hilbert space ),,,,, = @, . ¢ #,, the “free ” Hamiltonian 4

asym
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on Hyym bY Hyym=@,e¢ H,, the embedding transformation
g .}f’.:,m —-# by T =@.c¢T., and the wave operators
QE: Ay = H by QF = B, ¢ QF. Let #; = Ran Q*.

Theorem XI.36  Suppose that the cluster channel wave operators exist.
Then:

(@) Qf =s-lim,, 3, et T e Hurmt, ..

(b) (Orthogonality of channels) If a + f, then Ran QF is orthogonal to
Ran QF.

(c) QF are isometries from #,,,,, to #.

(d) ethQ:!: — Qt eiH..,,.t.

(€) #:c . (H)

Proof (a) This is a direct consequence of e™#oe* T = T, e~ e,

(b) Let ¢, € #., ¢y € #,. Then QF ¢, = s-lim,.5, e*T e H,
and similarly for ¢,. Thus since e**# is unitary, it is sufficient to provetthat
im,. 3o (T H,, T g€ '#¥p,) =0 in order to conclude that (QF¢,,
QF ¢,) = 0. This is done by considering separately the cases where D(a) =
D(B) and D(e) # D(B).

First suppose that D(a) = D(f). Then

(g—ue~i}ht¢a’ .738_‘"‘([)3) - (e—in(.)tg—a(pa’ e—iHW):‘q-p(pp)

= (T «Pes T p0p) = ((Pa tljlné“’. @ II:IIW’)
= (0 00| [T 0%, )| =0

because some (7, n#’) = 0 by our proviso on degenerate eigenval:xes.
Now suppose that D(«) # D(). Let E= )%, Ef’ — Y% , E{”. Then

(T ue™ g, Ty~ rg,) = e~ HE(T &~ HOp, | 4 ¢~ MEIV )
= e-—ilE(g'a Das e-uw,m—- H.(O)]y-’ (Pp)
HP) — HO + 0 because D(a)+# D(B). Written in terms of Fourier trans-
foﬁms, HY’ — H® is multiplication by some function ﬁ'{,(f) which is a qua-

dratic form in p and so has the form f,(p)= Y721 ° a;p} for some
coordinate system, with some a; #0. Renumber the p, so that
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yscvns G F 0511 = @iy =---=0.Lety, and Y2 bein £(R3¥~3), Then
by (IX.31),

Wy e_m"'w)_u'm)Wz )

= '[ 'pl(xl’ ceey Xy Zm+1s oees zSN—-3)K(x’ Y)

X .I’Z(yl’ coes Vmo zm+1: veey z3~-3) d"'x dmy d3N-3—mz
with

K(x, y)= (- l)at—mlz(zni)—mlz H Iail—llz eXP(ilxi - Yi|2/4ait)
i=1

where o depends on the number of negative q;.

Because of the 1™ factor, (y,, e™ MO HO ) 50 as t — o0. By an &/3
argument, (,, e”"HsO=HéONy, ) 0 for all y,, ¥, and in particular
(7 2 @a, ™" HIO-HOGr ) 5 0. This proves the orthogonality of channels.

() Letyes#,,,. Then Qy = 2« Q.. Since the Qy, are ortho-
gonal to one another,

94V = £ 10241 = 3 1950 7 0. = . 0] = Iy)?

where we have used the fact that each 7 « and each QF is isometric,
(d) and (e) are proven as is the two-body case. |

Notice that J is not an isometry, for the Ran ", are not orthogonal to
one another. For example, Ran 7, = ¢ if « is the unique channel with
D(e) = {{1}, ..., {N}}. The proof that Q* are isometric depended critically on
the fact that Ran Q% are orthogonal to Ran QF if @ # B. This in turn was
essentially a consequence of the fact that lim, ., , [T e Harmy|| = ||| for
all Y, which was proven in (b) above.

We now define the S-operator:

Definition Let S: H ssym = K agym be the operator S = Q)*Q*. s is
called the S-operator, S-matrix, or scattering operator. We also define
Sup: Hg— H, by S,y = (Q7)*Q; so that S = Y s Sap-

For example, let N = 3, suppose that B is the unique channel with D(g) =
{1}, {2}, {3}} and that « is a channel with D(«) = {{1, 2}, {3}}. Then Sap
describes a capture process and Spa describes a breakup.

As usual,
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Definition If Ran Q" = Ran Q™ = 5, (H), we say that the scattering
for the N-body system is complete.

By rather involved methods, the following has been proven:

Theorem X1.37 Let N=3, A=Y, (=2m) 'Ai+ Yici<j<s Vy-
Suppose that:

(i) Each ¥, obeys V;e}**(R®) n I}*(R%) and (1+ |x|)***V,e
L + L*. (Roughly speaking, ¥;;(x) is required to have |x |~2~*falloff.)

(ii) No two-body subsystem has a “zero energy resonance or bound state”
in the following exact sense: Let p;; = (m; ' + m;*)™". Let k;(A) = —
(2wi;j)"! A+ AV4(x) on I*(R®). Then the dimension of the spectral
projection onto (— o, 0) for k;;(4) is independent of A for |4 —.1| <&
for some 6 > 0. Moreover, no k;;(1) has a positive eigenvalue,

Then Ran Q* = Ran Q™ = »#, (H).

For certain N-body systems with only one channel (that is, systems with
no bound states for the H(C)), completeness has been proven; see Theorem
XIIL.27 for the case of weak coupling and Theorem XII1.32 for the case of
repulsive potentials.

It seems likely that the methods of Section 17 will be extended to prove
fairly strong results on asymptotic completeness for multiparticle
Hamiltonians.

There is a final topic in the scattering of N-body systems which we would
like to discuss, namely cluster properties of Q* and the related definition of
the “connected part ” of the S-matrix. These properties play a major role in
further developments of N-body scattering, particularly in the physics litera-
ture. However, we caution the reader that the technical details are quite
complicated and may be omitted since we shall not use these properties
again. Cluster properties are simpler to express if we do not remove the
center of mass motion. Thus let us define

H=ERNQH, Hum=DLR)® Hym
f=100f =190 §=1®S IF,=19J7,
A=hM®1+1®H, Huyn=h"®1+1®H,n
Letibein {1,..., N}, a be in R3, and define U'(a) on % by:

(U@ )Xy o0 Xp) = (X1 Xz, 000, Xy — 8, .., X,)
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Given a cluster decomposition D = {C, C,} and a a, e R?
o s eens s eees we
define Uy(ay, ..., a,) on # by * l ‘

Uplay, ..., a,) = (i!';[l U"(a,)) (‘!"C[zU‘(az)) (ig* U‘(a,‘))

Thus Up(a,, ..., a,) translates the clusters relative to one another. To state

the major technical result, which we shall then interpret, we need some other
notions:

?e’finition Let DY) and D be two cluster decompositions. We say D?
is a refinement of D'¥) and write D™ < D@ if each element C{? of D@ is a
subset of some C{¥ of DV,

Thus D, is a refinement of D, ifeach cluster in D, is obtained by grouping
together one or more clusters in D,. We write D; <D, to indicate that
several sets in D, are joined to form the sets in D,.

If D is a cluster decomposition, there is associated a natural tensor prod-
uct decomposition of # into ®%.., #, where H#, is the space of functions
pf the coordinates {r;|i e C,). Suppose D<aD’. Then for each C,eD, D
induces a cluster decomposition D, of C, by taking the family of elements of
D’ contained 1_51 C,. In such a case we write Q,’,‘; as the cluster channel wave
operator on #(C,) associated with the cluster D;. Thus,

03, = s-lim exp(itA(C,)) exp(—it Y I?(C}))
t+Foo CreCe
Theorem X1.38 Let ¥ ¢ R+ LR, 2<r<3,
(a) IfD <D, then

13 -1 u
shm  Up(a,, ..., 8,) 0t Upfa,, ..., a)= @0

minu jja;— 8- =1

(b) IfD <D, then

sslim  Upa,, ..., a,)" YOE)*U(ay, ..., a,)= ,é @)+

min; ;| & ~ 2]~
(¢) IfD 4D and B is any channel with D(B) = D', then
S'lim (Q;.)*Up(al, ceny llk) = 0

minjylay =2~
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Proof The proof of (a) is essentially identical to the proof of Theorem
X1.33, so we sketch the major ideas leaving the details to the reader (Prob-
lem 54). One first notes that

k k
Up(ay, ..., 8,) @ le. =Q Qi';,' Up(ay, ..., a)
=1 =1
since [ ;e «, U'(a;) commutes with 3F ., and that

k
® Qi = s-lim e*Aveifot
i=1 ~Fo

Thus

t= F o =1

Of = (s—lim e“”‘e'm"') Lé Qﬁ,] =05 ébﬁ]
=1

s0 to prove that Up (O}, — ®%., 845,.)U, goes strongly to 0, we need only
prove that
sslim  Up'@)[@f — 1]Up(a) =0 (75)

mingy |8~ )|~ 0

But, for ¢ € D(H,),
e
@t —1)p=i jo (e* 1B, e~ 1Potgp) dy

One proceeds now as we did in Theorem XI.33, using the estimates in
Theorem X1.34 in place of those in Theorem X1.24. We defer the proof of (b)
until after we prove (c).

(c) The heuristics behind this are that (QF )* is zero on those states that
asymptotically fail to form bound clusters in D’. Since D ¥ D, there is some
pair i, j> with iD’j but ~iDj. Thus Up(a) pries apart some cluster in D’ as
min |a; — a;| - oo and prevents U,y from being a state that forms bound
clusters in D'. This heuristic argument really has two elements; first U,
“pries apart clusters in D’,” so we shall show that

sslim  J3Up(a)=0 (76)
min|a;— ajl =
Secondly, e~ *#*Up(a) approaches e~ *>'U(a) strongly as min |a, — a;| - co0;
that is, as the clusters in D are moved apart, the part of the dynamics
due to forces between the clusters becomes negligible.

As usual, to prove (76) it is enough to show that 73 U p(a)y — 0 for a set

of Y whose linear combinations are dense in #. Let D' = {C}, ..., C} and
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pick ¥ = ¢, ‘- @, where g, is a function of the coordinates in C;.Foreach
J» let i(j) be that number so that j € C;, one of the clusters of D. Suppose that

_ c, - C;)
ol

Thus,

I
"g-; Up(aly| Ay = (I;[l

[ e Nottr+ ayee) dee

(%)

The point is that in some C;, there are j,, j, with i(j 1) # i(j)- Thus, when the
coordinates r; + a; in ¢, are changed to R,, ¢“) coordinates, some &’s are
translated as well as R,. Since we are taking an inner product in ¢ with a
fixed #, the norm | - || g, Will go to zero, so (76) is proven.
Next we prove that
s-im  (e7'A — ¢~ if0) (a) = 0 (77a)
min|a;— ajl =0

and

s-lim  (e*1A0t — o*1Bop) (g)e iRt = ( (77b)

min|a—aj|= 0

uniformly in t where D’ « D is the cluster decomposition whose elements
are {C; n C,} when 1 </ <k, 1 <m < k. This is just an expression of the
fact that if we apply Up(a) to a vector y, thereby prying the clusters in D
apart, interactions between clusters make negligible contributions to the
dynamics. If y € D(H,), then

t
(e — e~ 1Moy y = -—ie"""[ e* 1B o=ifnsyy s ds
(1]
Thus to prove (77a) it is sufficient to prove that

t
lim jo [pe™ 82U p(a)y|| ds = 0

min|a;— aj|—= o

uniformly in ¢. This is precisely the estimate we used in proving (75). To
prove (77b), we need to prove that

t
lim I "(ID’ - 1Ip .D:)e‘”""’"UD(a)e"”“a//" ds=0
(]

min|a;- aj| =

uniformly in ¢, and this is proven in a similar way (Problem 55).
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Now we can put (76) and (77) together to obtain the desired result. From
(77) and the relations

UD(al, ceey ak)e—iﬂo‘ = e—iﬁolUD(al, ey ak)

Up(ay, ..., a)e oot =e~ oty (q, . . a,)
D\®#1

one obtains that for any Y € o,

sup (¢!t — giowig=inm)U | 0 78)
teR
as minugj |a‘ - ajl - 0. I.;et Qg;p D= S'lim‘_. Fo em"'e'm"""' Which
exists by Theorem XI.34. Then

@3 — Qp, p.p)*Up(a)y = w-lim (¢ AotgmuRl _ giflor=ote= i)l (@)
t=F oo
for each fixed y and a. From the fact that |w-lim,_ s o ¥, || < lim,_ 4 [ ],
and (78) it follows that

lim (G — 93 p.0)*Upla¥| =0

min|ai— ajl— o
Finally, since (3% 5.p-)*Up(a) = Up(a)(@3 ,.p)*, we conclude

s-im  F3@5)*Upa)= slim TFUp) @5 p.p)*

min|ai—aj|~ o min|ai—aj|~

=0

This proves (c).

(77) _holds whether D<D' or not, so its consequence
S'lim "(Qli):l - 8 g' D .Dv)‘UD(a)ll/“ = 0 hOldS. If D<D’, thCn D * D, = D, and
ﬂﬁ p.or= ®f=1 Qp,. This fact and Uy (®j-, ng)*UD = (®é-1 ng)*
imply the result in (b). }

Now we use these cluster properties to obtain information about the
S-operator. Let o be a channel and D a cluster decomposition with D < D(cz).
In D some of the bound fragments in channel o are clumped together. TFhis
clumping induces a breakup of « into subchannels; namely, for each (:‘, e D,
let a, be the collection of clusters F,, € D(«) with F,, = C, together with the
bound states #,, in a. Thus, if D = {1, 2}, {3, 4, 5}, {6}} and

o= ({1} 2 34 {5 {6})
—\1 1 o) 1 1
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where ¢(ry,) is some bound state of H({3, 4}), then

_ (1 & _(B4 5 _ ({6
““(1 1)’ az_(‘l’("u) 1)’ “"(1)
The collection {a}}., is called the decomposition of « induced by D. Let
D={C,,...,C} and let «, B be channels with D <D(B), D <D(x). Let
{o}=1 and {B,}%. | be the decompositions of « and p induced by D. Then we
shall write S}, for the S-operator for the n,-body system which describes
scattering from o, to §,.

Now let D <D(x). Then Up(a,, ..., a,) leaves Ran J, invariant and so
induces a map Uf(ay, ..., a,) on #, by UpF, = F, UY. Specifically, if
¢ € #, is a function of <rg,, ..., rz.> where D(a) = {F, ..., F,}, then U®
acts on #, by translating those F,, in C, by a,. Fix y € #, and consider the
states Uf'(ay, ..., a, ¥ as min,,; |a, — a;| = 0. How do we expect SU% ¢
to behave? Let B be a channel with D4D(B). Then to scatter into f from «,
particles in different clusters C, € D must come together. Since the clusters in
D are far apart in U}, we expect no scattering into . On the other hand, if
D<D(B), one can scatter into S by scattering separately into each C,eD.
We expect SUE to factor into separate scattering for each cluster C,. This
is in fact true.

Theorem XI.39 (spatial cluster properties of S) Letabeachannelofan
N-body quantum system that obeys the hypotheses of Theorem XI.34. Let D
be a cluster decomposition with D < D(«).

(@) If D <D(B), then
k
s-lim (5',,, -® §},f;}) U§l(ay,...,a)=0
¢=1

min,,lla,—ujl-.m
(b) If D A D(B), then
S'lim S aUg)(al, ey a,‘) = 0

mingy |8~ a;|—c0

Proof To prove (a), we use Theorem XI.38a and b to first see that

s-lim(S‘,, ug - J3u, é (9 RYP ﬂ,’;) =0
‘=1

for

5,0 U — @ )° [Uoéf'z:,} - (ﬂ;)*[ﬁ:uw v, én;:]
/=1 /=1
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goes to zero strongly by Theorem X1.38a and similarly,
k ) k
(Q;)*'[UD ® Q;,] -T3Up (Xiﬁ,;(,,,,ﬂ,t
¢=1 ‘=

=73 [(QE(A))* Up-U Dlé ©op)* ]{é (O
goes to zero strongly by Theorem XI.38b. Finally, we remark that
('é 7 ?:QBW)Q;) Up = :éx Sia, up
To prove (b), we use Theorem XI.38c in place of Theorem XI.38b. |}

Corollary If the S-matrix of an N-body quantum system obeying the
hypotheses.of Theorem XI.34 is unitary, then the S-matrix of any subsystem

1is unitary.

These spatial cluster properties are iqteresting becguse' .Of» the“ir direct
physical interpretation, but they are mare important because of the pspace
smoothness ” which they suggest. To understand the ;?henomenon which we
are discussing, let us first consider two-body scattering. The 'S'-opersator. is
given by a kernel. One way of seeing this is to note that if ¢, n// es (!R | ) tl}en
(@, V) - (¢, SY) is bilinear and continuous on & so there is a distribution
Q(xy, X33 X3, X4) in &'(R?) with

(0, 89) = [ 900 X1, X5 X, XWX, Xe) By -+ dPx

It is useful to write § in p-space, that is, to look at the kernel of #§# ~!
where & is the Fourier transform:

(@ Sy) = I &1, P2)s(p1s P2; P3s PaWV(P3s Ps) dpy - d°p4

Because of conservation of energy and momentum, that is, because S com-
mutes with space translations and the free dynamics, the distribution s has
support on the manifold where
P1 +P2=P3+Ps
E..= p_“,’ ﬁ = ﬁ 2'21- = E,
T2y 2, 2uy 2
This suggests that s may be written in the form:

S(Ps P25 P3» Pa) = 8(Py + P2 — P3 — Pe)S(Ein — Eou)s"*(Py, P25 P3» Pa)
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A priori, s could have much more complicated singularities such as
—Ad(p; + p; — ps — ps). That such a é-function singularity factors out is
something we shall see when we discuss the reduction of the S-matrix
by symmetries in Section 8. One might hope that 54 is a smooth function of
the variables p,, ..., p, as long as we vary them on the manifold where
energy and momentum are conserved. This is not a good conjecture
however! For let U(a) be translation of the first particle by a. Then
U(a)SU(a)™! has a kernel se' ®1=P3)_ If sred were smooth, the Riemann-
Lebesgue lemma would imply that lim,_, (@, U(a)SU(a)"'y) =0, but we
know that lim,_, (¢, U(a)(S — I)U(a)~'y) = 0. This suggests that § — I
should have a smooth kernel; that is, we hope that

$(P1; P25 P3, Pa) = 5(Py — P3)3(p; — Ps)

= (2ni)o(p; + p, — ps — P)O(Ein — Eou)t(P1, P25 P35 Ps)

where ¢ is a smooth function of P if we vary <p,,p,, P3, Ps) staying
on the manifold where momentum and energy are conserved. The
0(p1 — P2)5(ps — ps) term is just the kernel of the operator I. We put in
the 2zi factor for conventional reasons. In the two-body case, we shall
actually prove that s has this form for a wide variety of potentials; see

Sections 6 and 7. What can we expect in the N-body case? Write the two-
body result schematically

O-=+Yex

where :@: stands for the part with a smooth kernel; this part is called

the “connected ” part. One might guess for the three-body case:
SO :
TE ==+ Shv ey + Xex
I— 2—
so we can define B@E— recursively in terms of —jv\:g_ and the con-

nected parts for fewer particles.

Definition Leta, # be channels of an N-body system. Define R, recur-
sively (in N) by

Ry=35,- D.Zv Reyp, *** Ry,
o
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where €, ; is the set of cluster decompositions with D <D(«), D < D(B) for
which D contains at least two clusters. For N=2 R=S —1I.

The spatial cluster properties of Theorem XI.39 then imply (Problem 56):

Theorem X1.40 (spatial cluster property of the reduced S-operators)
(a) g«ﬂ = Z Rarﬁl Razﬁz t Rﬂk‘ﬂt
<AD(B)

(b) s-lim  R,,Up(ay,...,a)=0 forall D

miniﬁla‘-—all-*oo

with D < D(B).

This suggests that R,, has a kernel of the form
N N
ras(P: P') = (2mi) 6(;11»‘ - ileé) O(E — E)tap(p, P)

where t,; is a smooth function of p, p'. In fact, the “ hypothesis of the analytic
S-matrix ” demands that ¢,4(p, p’) be the boundary value of a function analy-
tic in certain regions. Unfortunately, this attractive hypothesis has not been
proven in many-channel, many-body systems. In the Notes we shall discuss
those results that constitute a partial proof of the “ hypothesis of the analytic
S-matrix ” for quantum systems with N > 3,

X1.6 Quantum scattering lil:
Eigenfunction expansions

Any formal manipulations that are not obviously wrong are assumed to be correct.
M. L. Goldberger and K. Watson in Scattering Theory

For two-body quantum systems with potentials having |x|~*~* falloff as
| x| = o0, we have established the existence and uniqueness of scattering
states. Completeness will be proven in Sections 17 and XII1.8. We have not,
however, discussed any way of explicitly “ computing” the S-operator or of
correlating experimental data with the theory. Our goal in this section is to
establish certain formulas which normally go under the name “formal scat-
tering theory” or “ time-independent scattering theory.” These formulas pre-
sent the S-operator as an explicit “integral operator” with kernel
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ok — k') — 2mi 5(k* — k'?)T(k, K’); see Theorem XI1.42. In the next section
we s}}all prove that the function T(k, k') has an analytic continuation into
certain regions.

‘ The main tool’ in “formal scattering theory” is an eigenfunction expan-
sion for the Hamiltonian H which is of considerable interest for its own sake.
An operator 4 on LR, dx) with purely discrete spectrum has an eigenfunc-
tion expansion in the direct sense that there are I? functions ©a(x) with an
associated map ~: I}(R3, dx) - ¢, by !

(P = [ @)1 (x) dx (79a)
That the ¢, are eigenfunctions with A@, = a, ¢, can be expressed by
Ah=af. i feD(a) (79b)

The orthonormality of the {o,} implies
Ran ~ =/, (79¢)

The completeness of the ®, is expressed by

f(x) = B-lim i Fooulx) (19d)

Finally, as a consequence of completeness and orthonormality:
1712 =% |71 (79€)

Two-boqu Hamiltonians with center of mass removed have lots of spec-
trum that 1s.nondis_crete—in fact, there is absolutely continuous spectrum
EO, oo) assocnatcfl with scattering. However, we can hope that some sort of

cox'ltmuum” eigenfunction expansion exists. As a model of what we are
saekmg_, we shall show how the Fourier transform provides an eigenfunction
cxpansion f;(k)r Hy = —A which has only continuous spectrum. Write
@o(x, !c) =e""* and think of ¢,(-, k) as a family of functions of x par-
ametrized by a continuous. index k. Then, we know that * satisfies

S k)= @n)~"2 Lim. j Polx, K)f(x) dx (80a)

where Lim. | = P-lim || as M i i
aE00 Jxl <M — 0. The ¢,(-, k) are eigenfunct
with eigenvalue k2 in the sense that o> k) genlunctions

(Hof)) = k7(K) i fe D(H,) (80b)
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The orthogonality and “normalization” of the @q(:, k) imply

Ran * = I}(R?, dx) (80c)
The completeness of the set {po(", k)}x e r» is €xpressed by
£(x) =1Lim. 2r)~3 [ go(x, k) (k) dk (80d)
and
112 = [ 170 dk (80e)

How can we find candidates ¢ for the “continuum eigeinfunctlons ”
needed for an eigenfunction expansion of H = Hy, + V? Q*f has beex}
defined only for fe I?, but suppose that we coulii make senseldoutb:
Q*@o(:, k). Then, since Q*H, = HQ*, o(:, k)+-3 Q .(po(', k) shou (:he;);
Ho =k%p in the sense of (§0b). If ¢=Q%¢p, in some sense,

@0 = (7 )*¢ should be the limit as t - — o0 of

t
e*iHotg= il _ ¢ ij elHosy e tHsg ds
0

- ¢ — lim iI ey e~ isg¥esg gs

¢t} 0 o
=@ + lim (Hy, — k* —ie)" Vo
el 0

Thus ¢ should obey
@(*s k) = @o(", k) — lim ([Ho — (k* + ie)] " 'Vo)(-, k) (81a)
el O

or, using (IX.30),
elklx-vl

1
ol k)= e = o [ T Vol k) dy (810)
ici 1l Q* the wave operator as t — — oo ‘because of }h¢ +ig' in
Ehl):)lc(l;tls),ﬁ equation that we grerived‘ atby heqristic argument, is ?k;lowg ::
the Lippmann-Schwinger equation. Tp find candidates ¢~for an :g;nfunc lon
expansion, we shall solve this eque}non. Oggcz we have ¢, we ; aw orm e
eigenfunction transform f*(k) = Ll.m.(2n) | olx, k)f (x‘)ll x. We e):l;:al
analogues of (80) to hold with one exception: The o(, k) will notin ge
be complete; that is, we no longer expect

() =Lim.@n)"% [ £*(k)p(x, k) dk
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since the ¢’s are only eigenfunctions associated with the absolutely con-
tinuous spectrum of H. Indeed, we shall find that (P,.(H)f)(x) =
Lim.(27)™32 [ f*(k)p(x, k) dk. Finally, we expect that this eigenfunction
transform and the Fourier transform should be related; for formally
Q*p, = ¢, which suggests that Q* ([ b(k)po(x, k) dk) = [ b(k)p(x, k) dk or
that (Q*f)* = f where we let /= (2m)*2b.

The main result of this section (Theorem X1.41) is that all of the above
conjectures are correct. Recall that the Rollnik class R is the set of measur-
able functions V(x) satisfying

Iviz= LYo

¢ Ix—yP dx dy < oo

Theorem X1.41 Let Vbein R N L(R®). Let Hy = —A on I*(R%) and
let H = H, + V in the sense of quadratic forms (Theorem X.19). Then, there

is a set £ =R, , the positive reals, which is closed, of Lebesgue measure
zero, and such that:

(@) If k? ¢ &, then there is a unique solution ¢(-, k) of the Lippmann-
Schwinger equation (81) which obeys [V|"30(-, k) € I2.
(b) Iffe I? then

f*(k) = lim.(2n)~ %2 j o, K)f(x) dx (82a)
exists.
(c) Iffe D(H), then
(HS)* (k) = k*f* (k) (82b)
(d) Ran * = *(R?®) and (82¢)
[ 17402 ak = [P (R)s|? (82¢)
More generally, if [«, f] A & is empty and « > 0, then
[y 1B = Py ) (82¢)

where {Po(H)} is the spectral family for H.
(¢) Let LIM. stand for the I?-limit as M — oo and & — 0 of the integral
over {k|k.< M, dist(k?, &) > 8}. Then

(PuclH)F)(x) = LIM2n)™ [ f*kpx, k) dk  (s24)
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(f) Forany fe I?,
@*f)*(k) = (k) (83)

We shall sketch the major ideas in the proof of Theorpm XI.41. The details
may be found in the references in the Notes. Bl{t first we examn'te ‘sevefa_l
consequences of the theorem and its proof. Notice first that (82¢’) 1mp-hes
that for any interval [, f], disjoint from & with a > 0, Ran Py, 5 < f,; s_(-)
if any singular continuous spectrum exists, it must be in & since a,”(H) =
[0, c0) by Theorem XIII.15. This will allow us tfo'cqnclude that o,;,,(H) = &
in some cases (see Theorem XIII.21). Se’condly,; in the proof of Theorem
X141, one uses the fact that Q* exists but not its completeness. (83) says
that #[Ran Q*] = * and (82d) says that #~'[[] = .#,cl, so that Theorem
X141 implies that Ran Q* = #,.. Thus, in case Vel N R, we have a
proof of the completeness of Q* which c?oes not" use the I?ato—Bnman
theory. In the Notes we explain how the eigenfunction expansion helps tf’
“explain ” the convergence of the wave operators when ¥, —» Vin Rand L.
In the Notes we shall also discuss how the method used to pro;;g Theorem
XI.41 can be used to prove a similar result when .V € r N C fox; some
1 < p < 3 (see also Problem 57). We shall discu‘ss snm{lar eigenfunction ex-
pansions in a more general setting in the appendix and in the Notes. We al§o
remark that if o,iqg(H) = & (see Sections XIIL6, 7, 8), we can find a famnl.);
{@. )} | of square integrable eigenfunctions for H with He, = E, ¢, so that, i

fa =(¢a.f), then

7600 = LIM( £ fotx) + [ @0) 0t k7 *(4) i)

117 = 3 152F + [ 170 &
(Hf)* (k) = K°f*(k); (Hf): = E. f2
We now turn to the main ideas in the proof of Theorem XI.41:
(I) Modified Lippmann-Schwinger equation We first introduce a

modified Lippmann-Schwinger equation. If y(x, k) = | V(x)|"2¢(x, k) and
¢ obeys (81), then y obeys

Viy k) dy (84)

: J‘ | V(x)[|H/2etM == ApLiz(y)

Vi, k)= [Vx)[Pe > — = =]

where V12 = |V|Y2(sgn V).
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We first show that (84) has solutions. Since V' € I! ~ R, ¢* *|V|Y%is in
I*(R®) and
| V(x)|!/2eH == pirz(y)
]

for any k in R3. Thus the modified Lippmann-Schwinger equation has the
form y = n + L,y where 5 is in I? and Ly, is a Hilbert-Schmidt operator.
Let & be the set of |k|* € R, such that the homogeneous equation
¥ = Ly, ¥ has a nionzero solution in 2, By the Fredholm alternative (corol-
lary to Theorem V1.14), (84) has a unique I solution y whenever |k |? ¢ &.
It follows that the original Lippmann-Schwinger equation has a unique
solution ¢ satisfying | V|!/2¢p ¢ I*(R?) given by

€ I*(R)

eMlx=y
x =] VI2(y)W(, k) dy

Of course, one must do a little arguing to show this last integral converges
a.e. in x, but we are not giving the details of such subtleties in this sketch.

(I1)  Study of the set & Let K, be the operator |V |V3(H, — A2)~1p12,
This is the integral operator (84) when A = |k| for some k € R?, in particu-
lar, for real positive 1. K 2 s easily shown to be analytic when Im 1 > 0 and
continuous when Im 4> 0. Moreover, by the dominated convergence
theorem, one can show that the Hilbert-Schmidt norm of K 1 goes to 0 as
Im 4 - co. Thus (I + K;)™! exists as long as Im 4 is large. At this point we

need a slight improvement of the analytic Fredholm theorem (Theorem
V1.14), namely:

1
= plkx __
o(x, k)= ¢ 47J

Proposition Let A() be a compact operator-valued function in
D = {2|Im 4 > 0} which is continuous in D and analytic in its interior. Then
gither (1 — A(4))™? exists for no A in D or {4|Im =0, and (1 — A(2))~?
doesinot exist} is a closed subset of R with measure 0.

This proposition follows from the method of proof of Theorem VI.14
together with a fact about analytic functions: The real zeros of a function
analytic in the open upper half-plane and continuous in the closed half-plane
is a closed subset of R of measure 0 (see Problems 58 and 59 and the Notes).
Thus the subset & = R defined in part I is closed with -measure 0.

We make several remarks about &: First, & is always bounded. This
follows from the fact that the operator norm of K, goes to zero as A — oo, A
real, due to the oscillations of the kernel., These oscillations are controlled by
the Riemann-Lebesgue lemma (Problem 60). Secondly, we note that there
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are two cases in which we have controlon &.If || V| z < 4, then ||K, || <1
for all A so & =(F. Or, if V falls off expox}eptially in ?he sense that
€ V(x) e R for some a > 0, then & is finite. This is because in that case K,
can be continued to the region {A|Im 4 > —a/2} so that the ordinary analy-
tic Fredholm theorem implies that & is discrete.

¥ i ic idea of the proof is to
(ITX) Study of the Green's funcfwn The basic i t
relate the functions ¢(x, k) to the integral operator (H — E)~! and then to
relate (H — E)™*! to the spectral projections via Stone’s formula (Theorem
VIL13),

ﬁ —-—
s-lim(2ni)™! ["[(H — p— ie)™* — (H — p + i)™ *] dp = 4Py, + 3P
el 0 a

As a preliminary, it is necessary to study the integral kernel of (H — E)~!.

Lemma 1  Suppose E ¢ o(H). Then there exists a measurable function
G(x, y; E) on R® x R3, so that

[(H - E)")(x) = [ G(x, y; EN(y) dy
Moreover:
(@) For almost every fixed x, G(x, ; E) e I! n 2.

(b) Glx, y; E) = G(y, x; E) and G(x, y; E) = G(x, y; E).
(c) G obeys the integral equation

G(x, y; E) = Gy(x, y; E) — I Go(x, z; E)V(2)G(z, y; E) dz

where Go(x, y; E) = eVE""/4n|x — y| is the free Green’s function
where we take the value of \/f with the positive imaginary part.

Proof We present the formal elements of the proqf, not worrying about
convergence of integrals or domain questions. By a simple argument (Prob-
lem 61),
(H— E)—’ = (Ho "E)‘! _,[(HO.F—EV)TI_VHZ] i,
x [L+ |V|*(Ho — E) V2|V |"*(Ho — E)™"]
i : : Ex-d/an|x — y| of |V|Y3(H, — E)?
Since V € L, the kernel |V/(x)|'/2e"*1*™)/4n - y| of |V|"*(H, -
is Hilbert<Schimidt. Thus (H — E)~ ' —(H, — E)~! is Hilbert-Schmidt and
so is-an integral operator with a'squareintegrable kernel 4(3:, y). In par»tynpu.
ldr, 4(x, -)’e I¥for almost every x. Since (Ho — E)™! has integral kernel Go
with Go(x, *} €I for almost all x, (H = E)™! has an integral kernel with
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G(x,*; E)e I? ae. in x. The integral equation (c) is Just a translation of
(H—E)™'=(H, - E)~! - (Ho— E)"'V(H — E)"*. In particular, if Re E
is sufficiently negative, the integral equation can be solved by iteration. For
such E, (b) follows from the analogous properties of Gy and the fact that V is
real. Thus (b) holds for all E ¢ o(H) by analytic continuation. It remains to

show that G(x, ; E) e I! ae. in x. This can be done by using the integral
equation (Problem 61b).

G is called the Green’s function for H.

(IV)  Positive eigenvalues As another preliminary, we need the fact:

lemma2 IfE>0and E ¢ &, then E is not an eigenvalue of H.

This is left to the reader (Problem 62 or see the reference in the Notes). It

implies that whenever [ Blne=g, P, 5 = P, ) 0 that the term

‘}[P(a‘ 1] + P(a' p)] in Stone’s formula iS P(,‘ B = P[a, B

(V) The relation of ¥ and the resolvent Suppose Im x>0 and
Re x + 0. Since G(x, ; k?) e L', it has an inverse Fourier transform
glx, k; k) = (2r)=3/2 f G(x, y; k®)e™" ¥ @y which is continuous. Define
h(x, k; K) = (2m)¥/( [k[* - k?)g(x, k; k). Then the integral equation for G
translates into an integral equation for h (after a side argument which allows

the interchange of the Fourier transform integral and the integral equation
integral):

1 eixlx-yl
ki) == [ eV Rk 85a)
) 1 eixlx=yl
p(y, k; x) = IV(y)l”’e"‘"—gf [Vy)|'? EE VI2(x)p(x, k; k) dx

(85b)
The key fact is the relation between (85b) and the modified Lippmann-

Schwinger equation (84). If k e R? is fixed and x = |k|, the equation for

p(*, k; k) becomes identical to the equation for y(-, k). This can be used to
prove:

Lemma 3 Letfe C&(R®). Then the integrals

O(k; k) = (27)~32 I h(x, k; x)f(x) d*x
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and

£40) = @r)"*" [ olx, k)f (x)

i i i lorif |k|*¢ & in the f*
converge absolutely if Im k > 0 in the (D integra .
integral. Suppose that [«, f] N & = & with « > 0. Then df(k y x) has an ex-
tension to the region «!/? < Re x < /2, Im « > 0, which is uniformly con-

tinuous in k and «, and for k? € [o, ]
S k)= @k; |k])
We thus have related f* to the boundary value of the resolvent.

(VI) Proof of (82¢') when f € C§:

Lemma 4 Letfe C§ and let [«, f] N 6 = & with & > 0. Then

IP S I? = j | £*(k)|* 3k

al/2<|k|<p1/2
Proof Again, we shall not provide the technical details. Let k2 = u + ie

with ¢ > 0, and Im « > 0. Up to a factor of (2n)*?(|k|> — u — ie), h(x, ; x)
is the Fourier transform of G(x, -; k2) so the Plancherel theorem implies that

k2 — i?) J' G(z, x; R%)G(z, y, k?) dz

2is — dk

= | 5——3— h(x, k; ©)h(y, k; x¥) —= (86)

f (k* — u)* + ¢? i, ks x)h(y ) (2n)?

If we multiply the left-hand side of (86) by f(x) f (y) and integrate, we obtain
(K2 - I_C'z)(R,?zf; R,?zf) = (K2 — fz)(_f; RKzR;zf) = (/; R, —R;zf)

where Rg = (H — E)™!. On the other hand, the right-hand side of (86) then
becomes

2ie V]2
e | O(k; /1 + i€) |? dk
[ (|kl2—y)2+82|
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We thus conclude that

B B
L (f [Rusie — Ru-u]f)z% =éj -f(lklz _2)2 2|k, /u+ie) [ dy dk
(87)

As ¢ — 0, Stone’s formula and Lemma 2 imply that the left-hand side of (87)
approaches (f, Py, g f) = [Py, 1 £ Formally, en=*[(|k|? — )? + ¢2]-
approaches 5(k* — |u|) as e — 0 (see (V.4)), so that one can show that the
right side of (87) approaches fa<tr<p | f*(k)? dk by using Lemma 3. |

(VII) Extension to general S Using Lemma 4, polarization, and a var-
iety of limiting arguments, it is now easy to prove the remainder of Theorem
X141 with the three exceptions: (i) Ran # = I2, (i) @*f)* =7 and (iii)
equation (82b). At this stage the formula (82b) is only proven in weak form.
Once it is proven that Ran # = I2, we then get (82b). For details, see the
reference in the Notes.

(VIII) Reduction to (88) Suppose that we can prove

(QF))=r* (88)

@) = @ Q7=

and Ran # = I? follows from the fact that * and (Q*)* are surjective. Thus
proving (88) completes the proof of Theorem X141,

Then (83) follows from

(IX) Aside on abelian limits To prove (88) we need the following:
Lemma 5  Let f(x) be a bounded measurable function and suppose that
lim..o, f5 f(x) dx = a. Then lim, o fF e (s)ds=a.

Proof Let g(t) = [t f(s)ds and q(e) = [§ e *f(s) ds. Then g'(t)=f (®
a.e., so an integration by parts proves that

q(e) = fo mee‘"y(S) ds

Using the facts that g is bounded, g(t) > aast— oo, and (& ee ™ ds=1,itis
casy to prove that g(¢) — a (Problem 63). |

(X) Conclusion We are ready to conclude our sketch of the proof of
Theorem X1.41.
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the absolutely
Proof of (88) We need only prove the result for f € #,,

continuous space for H. For, if fe #},, then (Q*)* =0 and, by (82¢)
proven in VI, f* = 0. Thus it is sufficient to prove that

(f, @*g) = [ T¥W)a(k) dk (89)

dense in J and a set of f dense in #,.. We shall suppose that
;?:l?aiestu(gp%rt in some interval [«, f] disjoint from £ and that g€ Cg.Inthe
computations below we shall not use these techmcfal assumptions on f and g
explicitly, but we shall interchange limits and multiple integrals; in justifying
these interchanges the technical assumptions on f and g are useful.
Since f, g € Q(H) = Q(H,), by Problem 20,

(£9%0) - (ho)=i lm [ (1, #ve-tg) ds

t——o0

Thus, by Lemma 5,
(£Q*g)=(f, g)+ilim I (f, eH'Ve Hog)ert gy (%0)
tl0°0

From (82¢), it is easy to prove that (f; e®g) = [ f*(k)e™*g* (k) dk if either f
or g is in J#,.. As a result

(f; einVe-iHotg) = J' 7‘#(_k)eik2t(ye—iﬂotg)#(k) dk

= @)™ [[ TR0l KV (x)e™"o'g)(x) dx d

j—m(f, ethVe—iHolg)eﬂ dt
0

= @ny22 [ ([ TR0000n V()R ) x) dx dik de
= —i@n)™ ([ T¥R)elx, KWV ()(Ho — k* + i) *g](x) dx dk

! o) [[[ TR0 BV00) e gty di dy d
= (n) “Jf( X, [

-]
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Taking lim, | , inside the integral in (90), we see that

(£279)= (£ 9) + n)=* [[ T¥H)g)

1 e-ulx—yl V k
X [4—7!"‘ ?y, (X)(P(X, )dXJdk dy

= (L) +@n)>2 [ T¥Rg)e* 7 - 505 R] dk dy
= (£.9)+ [ T¥00(K) dk ~ [ T¥(0lg* (k) dk

= [ 770k ax

In the second line above we used the Lippmann-Schwinger equation and at
the last step we used (82e). This completes the proof of (89) and so of (88).
Our sketch of the proof of Theorem X1.41 is thus concluded. |

The Lippmann-Schwinger eigenfunctions ¢(x, k) are especially useful be-

cause they can be used to express the S-matrix. First, we introduce an
auxiliary object:

Definition LetkeR3 K ¢ R3, k'2 ¢ &. Define

Tk, k) = (21)7* [ =™ *¥(x)p(x, k') dx
T(, -) is called the T-matrix.

Theorem X1.42 Tk k') is uniformly continuous in any region of the
form R® x {k'|k'? € [«, B]} where a > 0 and [o B] ~ & = &. Moreover, if
S, g9 € #(R3) where fand g are functions with supports in spherical shells

disjoint from {k’|k'2 € &}, then
(£ 8 = Dg) = (=2ni) [ FQile)T(h, k) 362 — (ky) ak ke o1)

Before proving Theorem X1.42, we make a series of remarks. First, the
0(k* — (k')?) in (91) is a shorthand way of writing

7|, 70 wp0)30) ey a
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where dQ(k’) is the angular measure on the sphere and 4k’ is the Jacobian of
the coordinate change from k' to {(k')%, Q(k’)>. (91) is often written sym-
bolically as

Sk, k') = d(k — k') — 2miT(k, k') 6(k* — (K')?)

This is a realization of the scheme discussed at the end of Section 5.

We also note that the set of fand g allowed in (91) is dense in I?, so that ¢
completely determines S. Notice that S is completely determined by the
values of T(k, k') when k = k. This set of values is known as the “on-shell
T-matrix ” or as the T-matrix “ on the energy shell.” It is a typical occurrence
in physical theories, and in particular occurs in perturbation theoretic quan-
tum field theory, that scattering is described in terms of an “ on-shell ” quan-
tity which the theory also determines “off-shell.” One of the beauties of
Faddeev’s three-body theory is that the off-shell T-matrix for the two-body
system enters the theory of three-body scattering. We shall not have a
chance to discuss this further.

Proof of Theorem X142 Since S = (Q7)*Q* and I = (Q*)*Q*,
(L8 -Tg) = (4 (@Q —Q*)Q*yg)
=(Q™ -Q%)f, Q%)
= lim IT (e (iV)e~Hof, Q% g) dt

T—=w " ~-T

= lim(—i) j e~ til(giHtye=iHoif O ) dy

el 0 -
«© -
= lim(—i)J- el
el 0 -0

x ( [ Ve o] W) gl* (k) dk’) it (92)

In the next to the last step we used Lemma 5, and in the last step we have
used (82¢) of Theorem XI.41 and the fact that Q*g € #,,. By (83),
Q*g)* (k) = (k')
and by (82),
[e Ve a1 () = WP Vem oy ]H i)

= ()2 [ PV (e 0 o, K) dx

= (2n)~3 [ Py )ik X0 'Y 7 (k) dx dk
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Thus the expression in (92) is
(=i)@2m)—2 f_ dt [j M= WD=ell Y () (x, k')e ™™ *TTk)g(k") dk’ dx dk

Doing the t-integration,

— 1 —i ’ 28 AL ’
- (5 = Dg) = lim [ (=0)Tth ) T2 WaK) di di
93)

By definition, T(k, k') is the inner product off;(x) = (2r)~3e~* *p1/3(x) and
Y(x, k). Since y(-, k') is uniformly I*-continuous in the regions considered
and f,(-) is uniformly I?-continuous since V e I, T(k, k') has the claimed
continuity properties. As a result, the formula, 2¢[( kP = |K )+ e >
2n5(|k|? — |k'|?) valid as measures on k(R®) can be applied to (93). This
completes the proof of (91). J

There is an alternative proof to this theorem in certain circumstances; see
the third appendix to Section 8 or Problem 67.

Now that we have the connection between the eigenfunctions and S, we
can develop the theory in various directions. Since ¢ obeys the Lippmann-
Schwinger equation (81), there is a formal series for ¢ by iteration and thus a
series for T:

T(k, k) = g Tk, k) (94a)
Tk, k) = (2n)"3 [ 00 xp(x) dx (94b)

Tl K) = (2n)7*(= 1y (4n) " [ e =V (x,)

eik’lx. -1—Xa|

V(xn-l)l—x"'_'_‘_

V(x,)e™ * dx, - dx,
1= xn‘

The series (94b) is called the Born series for T and the leading term (94b) is
called the Born amplitude. Because of our study of & ((IT) in the sketch of the

proof of Theorem X1.41; see also Problem 60), we can easily prove that in
certain cacee the RArm cowm am e
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Theorem XI.43 Let Ve ! A R.

(a) There exists a number K so that the Born series for T(k, k) converges if
(K')*> K% ke R '
(b) If |[V|& <dn, then the Born series for T(k, k') converges for all k,
k'e R,
Proof T(k, k') is the inner product of a fixed I?-vector with the modified
Lippmann-Schwinger function y(x, k') = | V(x)|"?¢(x, k'). ¥ obeys an I?
integral equation whose iteration leads to the Born series. If the series for ]
converges in I? for some k', then the Born series converges for that value of k'
and all k. To show that the series for y converges, it is enough to show that
the kernel of the integral equation it satisfies is the kernel of an integral
operator K, with norm less than 1. For Ve R, we know that
limy ., | K[| = O (Problem 60), so (a) holds. If | V|2 < 4n, then | Ky [ss. =
(4m)" 12| V|g < 1for all k. | L

Using the methods of Section 7, it can be shown that if ¥ € R and if S(4) is
the S-operator for —A + AV, 4 real, then S(4) has an operator-valued analy-
tic continuation to theregion {A| |4| |V||x < 4x}. Theorem XI.43 is just one
of many results about recovéring S from:a Born series or from some-other
formal series. Using the Fredholm theory for ‘solving I? equations: with
Hilbert-Schmidt: kernels, one can find: convergent.series N(k, k') and 'D(¥’ )
with D(e) # 0 if a*¢ & so that Ti(k, k%) =N(k, k')/D(K/). Thisrealization of
T is the start of an analysis of the convergence of the Padé approximants
formed from the Born series. This summability method can be shown to
converge in some cases where the Born series diverges (see the Notes). In
addition, there are a variety of results concerning convergence of series for
the “ partial wave amplitudes ” discussed in Section 8.

A second consequence of the relation between T and S is the unitarity
relation for T, (95).

Theorem X1.44  Let Ve L' n R and suppose that a2 ¢ &. Then for any
kkeRwithk=k =0,

Im T(k, k) = = [ TO" RIT(K, k) 8(K")* — a) d®k" (95)

Proof Since & is closed, we can find B, y with « € (8, ) and [?, 3] N
¢ = . By Theorem XI.42, if f is in & and f has support in F = {k|8 <
k<y), then (7)) =7(k)— (2m) | Tk, K)7 (k) 5(k* —k?) dk. By a
simple limiting argument, this formula holds:if {'is merely continuous (with
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support }'n F) and the map M :f»—-»ﬁ'takm the continuous functions with
support in F into themselves. The adjoint of M is clearly given by

(M*g)(k) = g(k) + (2ni) [ T, K)g(K) 5(k? — k) i

The relation M*M = 1, which follows from S*S = 1, implies that for almost
all pairs {k, k') with IkL = |k'| and k, k' € F, (95) holds. Since both sides
are continuous in {k, k') in the region {<k, k') € F x F | k| = |k'[}, (95)
holds throughout the region. |

To understand the importance of the unitarity relation for 7, we must
u.nderstand what quantity is measured in a scattering experiment. For
simplicity, we suppose that V is spherically symmetric so that T(k, k')
depends only on k, k¥’ and k - k’. Given k and cos 0 € [-1, 1], ind k, k’ with
k'=kandk - k' = k? cos 6. Then, the scattering amplitude f (k, 6) is defined
by

Sk, 0) = —27?T(k, k') (96)
An argument which is partially heuristic and which we summarize in the
Notes shows that if one sends in a beam of particles of energy E = k2, the
differential cross section (see Section 2) is given by

do/dQ = | £ (k, 6) (97a)
The total cross section is thus given by
do " .
asjzﬁdﬂ=27:J._u|f(k,0)|25m0d0 (97b)
If we write the unitarity relation with k = k', then it says
k
Im T(k, k) = "—'2_' j | T(k", k) |2 dQ(k")
or that
4
o= —k’E Im f(k, 0) (97¢c)

The relation (97c) is often called the optical theorem. Physically, it is an
expression of the fact that the amount scattered out of the beam (the left-
hand side of (97c)) must be compensated for by the interference between the
original beam and the forward scattered wave (the right-hand side of (97c)).

We thus see that only the magnitude of Jis directly measurable via (97a).
Unitarity provides a partial handle for determining the argument of f. For
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example, using (97c) one can determine arg f(k, 0) up to an ambiguity of
reflection about the imaginary axis if one knows (do/dQ)(k, ) for all 6. And,
in fact, we saw in Section V.6 that if do/dQ is sufficiently “small,” then
unitarity and the differential cross section determine f uniquely, for all 6.

‘Appendix to XI1.6: Introduction to
eigenfunction expansions by the
auxiliary space method

In this section we developed eigenfunction expansions by solving a
modified Lippmann-Schwinger equation in I?. It is often useful to follow'a
somewhat different path which depends on a Banach space X which is
continuously imbedded as a dense subspace X < 5. Under this situation we
can naturally imbed 5 into X* and thus X into X* using the duality of 5#;
that is, for ¢ € o, define £, € X* by /,(x) = (¢, x). The triple X = # < X*
is reminiscent of the construction of ', = s# < s _, in the theory of qua-
dratic forms (Theorem VIIL15).

Given the triple X < # < X* one tries to obtain an eigenfunction expan-
sion by a two-step process: (i) Show that (H — z)~!: X — X* extends con-
tinuously from Im z > 0 to the real axis or the real axis with an exceptional
set removed. (ii) Use the operators (H — k? — i0)™! to obtain generalized
eigenfunctions ¢ € X*. (i) implies that (f, (H — z)~'f) has an extension to
the real axis for f € X ; and, as we shall see in Section XIII.6, this implies that
H has no singular continuous spectrum. For this reason, just developing step
(i) is of considerable interest; we shall make just this kind of development in
Section XIIL8 for a very large class of operators —A + V using rather subtle
arguments. Here we want to illustrate the ideas of (i) by taking the extremely
special situation where V falls off exponentially. We shall then describe step
(ii) for the case where we are, in addition, in one dimension. The Notes give
extensive references to the theory in more general circumstances.

Let X, be the Hilbert space of functions with e**lf € I? = »# with the
natural norm. Then for a> 0, X, c # < X_,= X* as above. We first
claim:

Lemma 1  The function (—A — k?)™!: X, = X _,, defined for Im k > 0,
extends analytically to the region Im k > —a, arg k # —4n, as an analytic
function with values in the compact operators from X, to X _,. The same
thing is true of the functions 9;,(—A — k%)~ L.
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Proof Let Go(x, y; E) be the integral kernel of (—A — E)~* for E ¢ [0, o)
defined uniquely for all x, y with x # y by demanding continuity. We first
claim that Gy(x, y; E) extends analytically to all ﬁ with arg(/E) # —4n
and obeys the estimate

|Gole, 3 E)] < CoofJx = y| =0 4 - 2)giesltim vaisetzin) (o)

ifn > 3 and (Re \/E)/|\/E| = 6. If n = 1, a similar estimate holds with no
|x = y|=®=? term; and if n = 2, the term before the exponential is replaced
by |In(|x — y|"*E'?)| + 1.(98) is obvious if n = 3 or n = 1 from the expli-
cit form that G, takes. For general n, the proof of (98), which is not the best
possible estimate, is left to the reader (Problem 65).

Let H(x, y; k) be the function e™*IG(x, y; k?)e~2, By (98), for any k
with Im k > —a, arg k # —4n,

|H(x, y; k)| < h(x —y)

with b€ L. For n > 3, hy(x) = const |x — y| =@~ 2e="; for n = 2, h(x) =
const (|In|x| | + 1)e™""; and, for n = 1, h(x) = const e~"*I, It follows by
Young’s inequality that H(x, y; k) is the kernel of a bounded integral opera-
tor. The operator is clearly analytic in k and, by Theorem IX.20, it is com-
pact for Im k > 0 and so for all k by analytic continuation and the fact that
the compact operators are norm closed. Thus, e=%*(—A — k2)~1e~V js an
analytic function with values in the compact operators on I? for Im k > —g,
arg k # —m=. Since e**!*! is a unitary map from I2 to X 7q, the result is
proven. The ,(—A — k?)™! result is left to the reader (Problem 65).

Now suppose that |V(x)| <ce™2¢. Then clearly V:X_,— X, is
bounded so that V(—A — k2)™! is, for each k, a compact operator from X,
to.itself. Moreover, n = —V(—A —k?)"'5 has no solutions in X, for
Im k > 0, arg k # 4= since it has no solutions in I? for, if ¢ € I? obeys the
equation, then y = (—A — k?) "' is in D(H) and obeys (—A + V)§ = k2y.
It follows by the analytic Fredholm theorem that except for a discrete set
€ =R, (1 + V(—A —k*)~')"! has an analytic continuation from Im k > 0
to a neighborhood N of R with & removed. Since (H —k?)~!=
(A —=k*)"'(14+V(-=A—-k*"")"!, we have proven case (a) of the
following theorem. We shall use case (b) in Section 11.

Theorem X1.45  Let H be one of the following operators on I*(R"):

(a) H=—A+V with |V(x)| < Ce™ M,
(b) Hn= —aV-pV(an) with « and B strictly positive functions so that
@ — do, B — Bo € C§ for suitable constants g, f, > 0.
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Then H is self-adjoint on D(—A) and there is a discrete set & = R and a
neighborhood N of R so that (H — k?)™! has a continuation as an analytic
Z(X,, X_,)valued function from the region {k|Im k > 0, —k? not an
eigenvalue of H} to N\£. a is arbitrary in case (b).

Proof We need only prove case (b). By using Leibnitz’ rule, we can write
H=—fA+g-V+h

where g, h, f, =f—f, € C§ and f, = aZ f,. Moreover, f= «?B is strictly
positive. That H is self-adjoint on D(—A) is a simple application of Theorem
X.13 which we leave to the reader (Problem 66). Let V=H —H,;
Ho= —f,A. As above, the theorem will be proven if we show that
(1+V(H,~k*)"")"! is an analytic 2(X,,X o)valued function.
V(Ho — k?)™* is not compact but, if W =g - V + h, then
1+ V(Ho — k*)™' = (Ho + V — k*)(H, — k?)!

=[fo'(Ho — k*) + W + K%, f5 *)(H, — k?)~?

=05+ (W + k. f5')(Ho — k)]

= (o N1+ (f"YoW + 1 Yik?)H ~ k2)~1]

The expression in [-*-] is I plus an analytic function with values in the

compact operators in £(X,), so I + V(H, — k)™ ! is invertible except on a
discrete set by Theorem VI.14. |

We now turn to producing eigenfunction expansions for —d?/dx? + V(x)
with | V(x)| < Ce™ 2%, The key to all such expansions is the following
heuristic formula:

Im(H — k* — i0)™! = W(k)*[Im(H, — k? — i0)!] W(k) (99)
where
W(k) = (1 + V(H, — k* — i0)~1)~!

and

Im(4 - k? = i0)* = lim (20)"'[(A4 - k? = ie)"* — (4 — k? + ig)"]
el O
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(99) is formally true because if Im z > 0, if A is self-adjoint, and if
B = A + C is self-adjoint on D(A), then

(B-2z)"' —(B-2)"! = 2(Im z)(B - Z)" {(B-2z)!
=2(Im 2)[(1 + C(A4 — 2)7 1)~ 1]*(4 - z)~!
Xx(A-z)"'1+CA4- z)~ 1)t
=[1+CA~2z) 1)1}
x[(A-2"'—(A-2)" )1 +C4 - z)~ 1)1
(100)
so that (99) results if one can take Im z to zero. In the case at hand, (99) is
valid for k* ¢ & if we interpret (H — k2 — i0)™! and (H, — k? — i0)~! as
maps from X, to X_,, W(k) as a map from X, to X,, and W(k)* as a map
from X_, to X_,. For these interpretations can be made if k2 — i0 is
replaced by z with Im z > 0, and all maps are analytic up to k? + i0 (except
in &) so that (100) implies (99).
To supplement (99) we need the fact that Hy = —d?/dx? has an eigenfunc-
tion expansion with eigenfunctions ®o(x, k) = **. Notice that these eigen-

functions lie in X _, and that since the kernel of (Ho — k* — i0)™ 1 is detklx-»l,
we have that for fe X,

Im (£, (Ho — * ~ i0)" )
=3 [[ 7 sintx = »)1) dx ay
= 45 90(kD(@olk 1) + (£ 9o(~ K)ok} /)]
Defining (k) = W(|k| Jpo(k), we see by (99) that
(s (=K~ 0)7Y) =3 5 |(p(ak) )
Using Stone’s formula, we obtain that for f < X, and [a, b] < [0, co)\é,
Panf)=[ |70 dk

wheref*(k) = (2r)~!/(¢(k), f). From this point onward, the easy passage to
the Plancherel relation and inversion formula for % and the connection with
scattering theory are essentially identical to our discussion in Section 6.



116 Xl: SCATTERING THEORY

Xl.7 Quantum scattering IV:
Dispersion relations

Rigorous proofs of dispersion relations are like breasts on a man, neither useful nor ornamental.
M. L. Goldberger

In agreement with the scheme presented at the conclusion of Section 5, we
have seen that the two-body scattering operator has a “kernel,” ok — k') —
2mid(k* — (k')?)T(k, k') where T(k, k') is continuous on F = Kk, k') |k? =
(k')?; k* ¢ &}. In this section we shall study T further. Our main goal will be
to show that T is analytic in a suitable neighborhood of F when V lies in a
somewhat restrictive class of potentials. To illustrate our method and to
show that the analyticity of T'(k, k) is a general phenomenon, we first prove:

Theorem X1.46  Let V bein I! n R and let e be a fixed unit vector in
R3. Then, there exists a function t¢(k) meromorphicin {k |Im k > 0} so that:

(@) If ko is real and k2 ¢ &, then
lim  1p(k) = T(koe, koe)

k—'ko; Imk>0
The limit is uniform on compact subsets of R\&*/2,

(b) The only poles of 7 in the upper half-plane occur on the imaginary axis
at the points k where k? is an eigenvalue of —A + V. Moreover all
these poles are simple.

(€) te(—k) = e (k).

(d) lime, 1p(k) = g = (27) 3 [ V(x) dx. The limit holds uniformly in
the closed half-plane when 7 is extended to R\&/2

Proof For k real, define 17(k) = T(ke, ke). We want to find some kind of
continuation of t,(k) to the upper half-plane. We know that for k real

(k) = (21)~3 j e~ ke <Y V2(x)y(x, ke) dx (101)

where ¥ solves the modified Lippmann-Schwinger equation (84). The kernel
of (84) can be continued to the upper half k plane, but the homogeneous
term | V(x)|'?e*¢"* may not be in I? if Im k # 0. Therefore, we further
modify the Lippmann-Schwinger equation. Noticing that e™*¢ % (x, ke) is
the quantity that enters in (101), we define

x(x, k) = e~ *e 2y (x, ke)

X1.7 Quantum scattering IV: Dispersion relations 117

Then
(k) = (2m)~3 I V2 (x)x(x, k) dx (102a)
and y solves
x(6 k)= [V |2 + [ M(x, y; k)x(, k) dy (102b)
with
M(x, y; k)
= = (nlx = y[) V()| "2V 2(y) exp{ik]|x — y| — e - (x — y)]}
(102¢)

Since [(x—y)-e| < |x~—y| for all x and V> M(x, y; k) defines a
Hilbert-Schmidt operator M, for any k with Im k > 0. A side argument
(Problem 68) proves that M,y = ¢ has a solution if and only if Kio=¢
has a solution where K, is — |V |'2(H, — k?)~'V¥/2, It can also be shown
that if K, ¢ = ¢ with Im k > 0, then 5 = (H, — k)"0 e Q(—A + V)
and (Ho + V)p = k*; (Problem 69). Thus, by the analytic Fredholm
theorem (Theorem VI.14), (I — M,)~ 1 exists except at the points k? that are
eigenvalues of —A + V and (I = M)~ " is meromorphic in the upper half-
plane. Using the simplicity of the poles of (=A + V —k?*) ! it can be shown
that (I — M,)™" has simple poles (Problem 71). For k in the upper half-
plane, define

k) = )73 (VI2, (1 - M)~ v |v2)

(a) and (b) are now easy.

As k= oo in the closed half-plane, |M, | =0 (see Problem 60), so (d)
holds. Finally, if k is purely imaginary, each term in the series obtained by
iterating (102b) is real-valued and the series converges if |k | is large. Thus
tp(—k) = tp(k) if |k| is large and Re k = 0. (c) follows by analytic
continuation. [

In the case where V is spherically symmetric, 7 is independent of e and
S(k) = —2n?t¢(k) is called the forward scattering amplitude. We saw in the
last section that Im 1.(k) is determined by the total scattering cross section
and unitarity. Interestingly enough, Re tx(k) is determined by Im 7¢(k)and a
finite number of parameters, one for each bound state energy. For simplicity,
consider the case where & = . Then:
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Corollary If VeRn I}(R?), if &=, and if we write f(E)=
— (2n)?14(\/E) for E real and positive, then

® Im f(E') dE' S T 103
Ref(E) =2 '[O E — E - +fBom + 1;1 Ej —E ( )

where 2 [ is the Cauchy principle value integral, fp,r, = —(4n) 7! | V(x) dx
and E,, ..., E, are the bound states of —A + V.

Sketch of proof This is a simple application of the analyti.city of Thqorem
X1.46; the details are left to the reader (Problem 72). f(E) is analytic in the
plane with the positive reals and with the points E;, .. .,‘E,, removed. Let E
have positive real and imaginary parts. By the Cauchy integral theorem,

1 E' “fBom ’
f(E) _fBorn = Z; éc f_(—E’)TE—-— dE

where C is the contour in Fig. XL.9. Since f(E') — fgorn — 0 as E' — oo, the

c )
oJolofe

£ & £ G J

Co

Co

FIGURE X1.9 A contour of integration.

part of the contour marked C, makes no contribution as we move it out
toward infinity. Thus
1 f(El) _fBorn ’ < 2rj
= — ———2dE + —_—
S (E)=faom + 5. <ﬁa = —F LEE
i i = i . Using
Fix E, on the real axis, let E=E,+i¢ and let ¢|0
lim, | O%x — Ey—ig)™' = P(x — Eo)! + ind(x — Eo), see (V.d4), (103)
results. ||

(103) is called a forward dispersion relation. O'nc? of the iptriguing aspects
of forward dispersion relations and of the analyticity of t is tl?e connection
exhibited between scattering and bound states. In partif:ular, if we measure
f(E), the forward scattering amplitude, we can _determme thg bound state
energies (or at least those with r; # 0) by using (103}).. Th1§ conqectxofl
between scattering and bound states will be further exhibited in Levinson’s
theorem (Theorem XI.59).
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Our discussion of more general analyticity will require that the potential
V fall off exponentially in the sense that Ve*™* € I! A R for somea > 0. For
simplicity, we shall also suppose that V is spherically symmetric. In that
case, the function T(k, k') depends only on the two variables E = k? and
cos § = k - k'/E in the region F n {(k, k'[k = k'). Alternatively, one often
uses the variable A given by A% = 4(k — k')? = 4E(1 — cos ). The “ physi-
cal” regions in the variables (E, cos 0 or (E, A) are the images of {¢k, kD
€ R®|k = k'}; explicitly, {<E, cos 0)|0 <E<ao0; —1<cosf< 1} and
{CE,AY]J0<E<o,0<A< \/E} It is also useful to consider the Born
term

fo(A) = —(4n)~! Ie' Zike: xp/ () dx

For any fixed unit vector e, f;(A) is independent of e. If Ve*™! ¢ I, then f3(8)
is analytic in the region |Im A| < 4«. The general analyticity result is:

Theorem X1.47  Suppose that Ve*!™ € R for some o > 0. Let S(k, A) be
the scattering amplitude defined in the region G = {<k, AY|k =0, k* ¢ &,
0<A<k? Let0<pB <aand let

[ImA| <B,4Imk >« — B,

[tm \/k* = A%| - [Im k| <. /a® = (Im A)?

andlet D = Jo #saDy. Then there exists a function g(k, A), meromorphic
in D, such that if <k, A) € G, then G(k, A) = f(k, A) — fu,..(A). Moreover,
g has no poles in D n {(k, A)]k €R} and the only poles in
D n {<k, AY|Im k > 0} occur at points k where k? is an eigenvalue of
Hy + V. In particular;

D, = {(k, Ayec?

(@) f(k, A) has an analytic continuation to a neighborhood of the physical
region, and the exceptional points & are removable singularities.

(b) Lethk, z)be g in the new variable z = 1 — 2k~ 2A2, 5o that z = cos § in
the physical region. Then, for fixed k, h(k, z) is analytic in the ellipse
centered at z=0 with foci at z = + 1, and with semimajor axis
1 + 2k™?a. This is called the Lehmann ellipse.

For a proof, the reader can consult the reference given in the Notes. The
main idea, already used in the proof of Theorem X1.46, is the definition of a
suitably modified Lippmann-Schwinger equation. To prove that the excep-
tional set & is removable, one uses unitarity and the partial wave expansion
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discussed in the next section. Because the Lehmann ellipse will be used in the
next section, let us show that it lies in D. Fix k real. Then <k, A) e D

if and only if (Im A)? + (Im \/k? — A?)? < a®. But A =k./3(1 — z) and
Jk? = A? = k /31 + z). Thus <k, A € D if and only if
(Im /T =2)% + (Im /T + 2)? < 2a%/k?
Since |w|?* = Re(w?) + 2(Im w)?, we see that this is equivalent to
[1—z| + |1+ 2| <4a®k™ %+ Re(l — z) + Re(1 + z)
=2(1+ 2¢%k™2)
This is precisely the ellipse in question.

Finally, we describe the strong analyticity results which hold for poten-
tials of a special form:

Definition A generalized Yukawa potential is a spherically symmetric
function on R® of the form

N o«
V)= 3y r ! J e™" dpj(n)
j=0 Ho
where po > 0, N is a finite integer, and py, ..., py are real (but not neces-
sarily positive) measures of finite total variation.

These potentials are “superpositions” of the basic Yul_(awa pf)te{ltial
r~'e”# for notice that ¥(r) =y~ ' [ e *T(u) du where T is the distribu-
tion T=3)., D/p;. Generalized Yukawa po?entials have sevcirfl bas¥c
properties: (i) Since r | V(r)| < e™*} .o |p; || is bounded by Ce™ ", Vis
in }(R?). Thus —A + V is self-adjoint on D(—A). (ii) V falls off exponen-
tially, so Theorem X1.47 is applicable. (iii) V(r) has an_analytlc continuation
to the region {r| |arg r| <4n} and for any real 0 with |0| < a}n,. V(r) =
V(e®r) is in I*. This last property will play an important role in Sections XI.8
and XIII.10. It is also important in the proof of the following analyticity
result:

Theorem X1.48  Let f(k, A) be the scattering amplitude associated wit.h
a generalized Yukawa potential. Fix k real. Then f(k, A) has an analytic
continuation to the region of the z( = cos 6)-plane {z|z ¢ [{(k), o)} where
(k) =1+ 2k™2ud.

This analyticity is one of several properties of f that we discuss in the
Notes.
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X1.8 Quantum scattering V:
Central potentials

In this section we discuss some aspects of the two-body case when the
potential is spherically symmetric, that is, a function only of |x|. Such
potentials are called central potentials. The material that we present pri-
marily involves the additional structure present in the central case. However,
we remark that many results of the scattering theory we have already
developed and of the spectral theory of Chapter XIII can be more easily
proved and generalized in the central case; see for example Theorem X1.31
and Appendix 3 to this section. In the Notes to this section, we present a
guide to the literature on these aspects of central potentials.

Because the subjects that we discuss are quite distinct, the section is
divided into six parts: (A) We discuss the reduction of the S-operator due to
symmetries. (B) This will lead us to a formal partial wave expansion of the
scattering amplitude f(E, 6). Using analyticity in the Lehmann ellipse, we
shall prove that the partial wave expansion converges uniformly when
Ve'*l € R for some a > 0. (C) We shall relate the partial wave amplitudes to
a quantity, called the phase shift, defined by the time-independent radial
Schrodinger equation. (D) We study a nonlinear first order differential equa-
tion which yields the s-wave phase shift. (E) We develop the Jost function
method of discussing the s-wave partial wave amplitude, and, in particular,
we shall prove Levinson’s theorem which relates the number of bound states
to scattering data. (F) When V is a generalized Yukawa potential, we study
the analyticity properties of the s-wave amplitude.

Except for a brief discussion in the Notes, we shall not treat continuation
in angular momentum and Regge theory. In many ways, the central theorem
of the section is Theorem XI.54. Some important properties of certain
special functions are collected in Appendix 1. Jost functions for certain
oscillatory potentials are studied in Appendix 2.

A. Reduction of the S-matrix by symmetries

We begin with the N-body case and then specialize to the two-body case.
We already know that the S-operator commutes with the free energy H,, (by
a proposition preceding Theorem X1.33). If V is a central potential, then
both H and H, commute with rotations. Thus the wave operators Q* and
therefore the S-operator commute with rotations. In order to summarize, we
make a technical definition, expressing the “ natural” action of rotations on
the asymptotic Hilbert space, # isym Of Section 5,
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Definition Let & be a listing. of all channels of an N-body quantum
system with the proviso on degenerate eigenvalues. Fxx‘a cluster decompqsn-
tion D and an energy E and let ¢, = ¢ be the family of channels, with
D(a) = D and E(a) = E. Thus a channel a € ¢, has the form

(¢ G
o= R )

where {n{}, for ¢ fixed is an orthonormal family. Given a, f € €, let
Jga 1 #H,— H5 be the natural identification. Given R e_SO(3), the group of
three-dimensional rotations, and a function #, let n -« R™! denote t.he fl}nc-
tion (n°R™!)(x)=n(R™'x). Since the clustered chanpel Hamllt.omz.ms
commute with rotations, each 7 composed with R is a linear combination

7 o R™1 = Y D MRy
J

of the other n¥). Let V,(R) denote the natural action of the rotations on
#,= (R*"3). Then define UR: o#, > @pce, #5 by

k
up= % (T10% 4R} 1R
Jt ek =1

_[(Cy o G
ﬂ— "‘iil) r’}‘jk)

Finally, Uy is defined from @, ¢ #, = @rc¢ #, by Ug | #, = UP.

where B is the channel

Proposition 1  Let S be the S-operator of an N-body quantum system
satisfying the hypotheses of Theorem XI.34 with center of mass removed.
Then S commutes with exp(itH,,,,,) for all ¢t € R. If all the V; are central,
then S commutes with all rotations, that is, SUr = Ug S for all R € SO(3).

In the classical case, we saw that symmetries considerably simplified the
S-operator; a priori, the classical S-matrix was a map from R® to R®. By
using symmetries, we were able to describe S as a function ffom R, x R, to
R x [0, n]. We shall find the restrictions that symmetries place on the
quantum-mechanical S-operator. First we study the effect of energy conser-
vation by giving a general proposition about operators commuting with a
one-parameter group.
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Definition Let (M, u) be a o-finite measure space, let »#, be a
separable Hilbert space, and let ¢ = (M, du; #,). We say that a
function a from M to £(s#,), the bounded operators on #,, is meas-
urable if (Y, a(-)p) is measurable for each ¥, o€ H,. We say that
ae L°(M, du; £(5#,)) if a is measurable and ess.sup. [la(*)| e, < -
Given a € L*(M, du; £(#,)), there is, by the Riesz lemma, an operator
A € £(#) so that for each ¥, ¢ € #,

(s A0)e = [ (), a(Dp(@)).r, du(3)

We call such a map a decomposable operator and call a(4) the fiber of A at \.
A determines its fibers a.e.

Fibered operators are further discussed in Section XII1.16 where the Riesz
lemma argument occurs as part of Theorem XII1.83.

Proposition2 Let s#, bea separable Hilbert space and let y be a Borel
measure on R. Let B be multiplication by x on (R, du; #,) = #. Suppose
that A € £(#) commutes with ¢® for each t € R. Then 4 is a decompos-
able operator. Moreover, if A4 is unitary (respectively, self-adjoint), then its
fibers are (a.e.) unitary (respectively, self-adjoint) operators on #, .

The first part of the proposition is a special case of Theorem XII1.84. The
second part is easy since A and its fibers are bounded.

Example 1  Let S be the S-matrix for scattering from a reduced two-
body system of reduced mass 4 on I*(R™) = . Suppose that S is unitary.
Let 5, be the Hilbert space I*(S™!; dQ) where S™~ ! is the unit sphere in
R™ and dQ is its standard surface measure, Define the unitary map
U: B(R™) - I2(R,, dE; #,) by

(U NEN() = (/2)7 E™= 247 (EV20) (104)

where w € §"~! is viewed as a unit vector in R™. When we are given an
operator 4 on I*(R™), we shall call UAU ™! “the operator A in the energy
representation.” In the energy representation, H, is multiplication by E, so
that Proposition 2 above is applicable to § by Proposition 1. Thus, in the
energy representation, S is a decomposable operator whose fibers S(E) are
unitary maps of I*(S™~ !, dQ) to itself. We define T(E) by

T(E) = (2ni)~!(I - S(E))
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Incasem = 3and V € I! A R, Theorem X1.42 provides an explicit represen-
tation for T(E), namely

rE ) =5 [ TE 0, B0 (@) doe)  (109)

where T, -) is the “ T-matrix.” We shall pursue this realization of T(E) as
an integral operator below.

Example 2  Let J#,,,, be the asymptotic Hilbert space for an N-body
quantum system on I*(R*¥~3). Recall that for each a € ¢, an index set for
the channels, we defined the channel energy E, to be the sum of the internal
energy of the clusters in a. E, is sometimes called the threshold for channel a.
For each E € R, the set

6s={ae¥|E, <E}

is called the set of open channels at energy E. Let « be an /-cluster channel so
that the channel Hilbert space #, = 2(R*~3). As in the two-body case
(Example 1), we can realize H, as multiplication by (E + E,) on *(R, , dE;
I2(S*~*, dy,)) although p, and the explicit formula for the energy represen-
tation are more complicated than (104) because of the possible different
masses of different clusters. Next suppose that one can write
[E, )= |J&, I, where: (1) E = inf o(H); (2) the I, are disjoint intervals;
(3) for each fixed n, the set € is the same for each E € I,. Such a decomposi-
tion exists so long as H has “ reasonable ” spectral properties, for example, if
each subsystem has a,,(H(C)) = 04is(H(C)) or if each H(C) has eigenvalues
that cluster only at thresholds (Problem 74); in Section XIII.10 we shall see
that such spectral properties can sometimes be proven. Let {Pq} be the
spectral projections for H,ym and write #pym = ®a=; A" where
#™ = Ran P,,. Since S commutes with each Py, it leaves each 5" invar-
iant. It is now possible to apply Proposition 2 and obtain a fibering of each
S | #™. One can think of S itself as a generalized decomposable operator,
but the fibers S(E) are maps on Hilbert spaces with some E dependence;
explicitly S(E) is a map on #g = @ g e, Hs Where # = L(S¥ 7%, du,).
As E is increased, the Hilbert space # ¢ on which the fibers act increases
each time a new scattering threshold is passed. We remark that the energy
representation we have just described where the space #'g is not indepen-
dent of E is discussed most naturally in the language of direct integrals of
Hilbert spaces.

Before turning to the consequences of rotational invariance, we want to
study the operators T(E) of Example 1 in more detail:
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Theorem X1.49 Let H= —A + V where V is in R. Then:

(a) For each E € R,\&, the map T(E) on I2(S? dQ) is Hilbert-Schmidt.

(b) E— T(E) is a continuous map from R,\£ to the Hilbert-Schmidt
operators with their natural topology.

(c) As E— o0, T(E)— 0 in operator norm.

If, moreover, V is in L', then “Hilbert-Schmidt” in (a
s , and (b
replaced with “trace class.” (@) and (b) can be

Proof For each E >0, let K,(E) be the Hilbert-Schmidt
I*(R?) with kernel. Y 1dt operator on

I V(x) Il/zeiJ'Elx—y|V(y)112
dn|x —y|
and let Fy (E) be the map from I*(R®) to I3(S2, dQ) given by

(Fr(E)f)(@) = 4B/ 2 [ exp(—iE" 0 - x)V'2(x)f (x) dx ~(106)

Our main topl will be to show that F,(E) is a bounded operator in the class
44 (defined in the Appendix to Section IX.4) and that

T(E) = Fy(E)I + Ky (E)]™'Fyy(E)* (107)

for all E€ R, \&. (107) is intimately related to (99). We shall need the
formula

(Fy(E)*)(x) = 4E**n~2 [ exp(+iE"w - x)V"(x)g(w) d2w) (108)

Suppose first that V € I! ~ R. Then T(E)is gi i
(109 b (E) is given as the integral operator
Tk, k) = 2r)™3 [ V(x)"2e=* 5y (x, k') dx
where
Y(s k) =1 + Ky(k?)]™ "o(, k)
and
Wolx, k) = | V(x) [ exp(ik - x)

As a result, (107) is proven in this case.

We next need the following properties of F, (E) wh
the reader (Problem 75): r{E) whose proofs e lf to
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(1) When V eR, Fy(E) € #,, that is, F,(E)*F,(E) is Hilbert-Schmidt.

(2) E - Fy(E) is continuous in the £, topology.

(3) For fixed E+0, V- F,(E) is continuous from the class of Rollnik
potentials with their natural norm to .#,.

(I'+(3') IfRis replaced by ' n R and £, by #,, (1)-(3) still hold.

For example, the explicit formula (106) shows that F,(E) has an I? kernel
when V € L' (proving (1)) and the explicit formula

FEP PN = [ L0 sin(e x ~ y1)a0) dy

proves (1).

In addition, we need a fact which is proven by combining the theory of
smooth perturbations with the Kato-Birman theory (see Problem 57 of
Chapter XIII):

(4) If ¥, > V in Rollnik norm, then the corresponding S-matrices converge
strongly.

Fix V € R and choose V, € ! n R so that ¥, — V in Rollnik norm. Sup-
pose that E, € R,\#. Since we can find an interval A about E, so that
A N & = B and since the map (¥, E)+ K, (E) of R x R, into .#, is jointly
continuous (Problem 76), for all large n, A is disjoint from the exceptional
set &, for —A + V. Since the S-matrices S, converge to S (by (4)), since
Fy.(E) - Fy(E) (by (3)), and since we know that (107) holds for each V,, it
holds for V as long as E € A. (a) and (b) now follow from (2) and (107). The
proof of (c) is left to the reader (Problem 77). |

Using the method of weighted I? estimates (Section XIIL8), (107) and
certain continuity properties of T(E) can be extended to potentials behaving
like r~!~* at infinity (see the references in the Notes to Section XIIL.8).

Since T(E) is a Hilbert-Schmidt operator, it has an integral kernel
t(E; w, w'). Because of a difference in normalization, ¢t should be distin-
guished from the T-matrix T of Section 6; in fact, as we have seen (105):

t(E; w, ') = $E'*T(EY 2w, EV?w')

when V € I' ~ R. Unfortunately, this distinction between t and T is typical
of obnoxious factors of EY/2, 2n, —1, and i which continually crop up in
scattering theory.

Suppose now that V is a central potential. Since S commutes with rota-
tions, so does T(E) for almost all E. Because E — T(E) is continuous on
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R, \&, we conclude that T(E) commutes with rotation

rotation R acting on S? and E € R, \, s. Thus for every

Y(E; R, Rw') = (E; w, o)

It follows that t(E; w, ') is a function only of - w' = cos 0. We state our

final result in terms of the quantit ich i
' : y f of (96) and (97), wh
differential cross section by do/dQ = | j(” ,z) (97) which s related to the

Definition f(E, cos 6) = —(2n)*E~V2y(E; ,
g s = HE; w, ') wh =

Sis called the scattering amplitude. ( where @ - of = cos .

We summarize the reduction due to symmetrics:

Theorem X1.50 Let Ve R be a central potential and let S be the S-
operator for —A + V. Then there is a function f (E, cos 6) from (R, \&) x
[—1, 1] to C so that the fibers of S, S(E), have integral kernel:

(S(E) - Do, &) = an EV(E, o - o)

Thus the classical reduced S-function from Ry xR, to R x [0, n] is
replacgd with a single complex-valued function on R, x [0+, ). If we sei)arate
f Into its argument and magnitude, we obtain two real-valued functions
Smce.the scattering cross section depends only on the magnitude of £, this.
magnftude is the analogue of the classical scattering angle function in tl;at it
contains the same kind of physical information. In a sense which can be

made precise, the argument of S contains ti i i
1se, ains time-delay infor
references in the Notes). ! mation (see the

B. The partial wave expansion and its convergence

We have just seen that T(E) is a Hilbert-Schmidt operator It is
normal because S(E) is unitary. Thus T(E)has a completl::eorthonorma;l ise?
pf exgenvectorg As a result, so does S(E). If the potentials are central, we can
identify the eigenvectors by using the rotational invariance! The group
SZO(Zj) of fotations acting on I*(5?% dQ) induces a decomposition of
(52, dQ) into a direct sum @720 H, where #,is the (2/ + 1}-dimensional
subs.pace‘spanned by the spherical harmonics of order /. Each subspace is
left invariant by SO(3) and the restriction of the action of SO(3) to #, is an
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irreducible representation (see Section XVI.2 for the basic deﬁniFions and for
Schur’s lemma). The representations are inequivalent f(?r distinet ¢. It fol-
lows by Schur’s lemma that S(E) leaves each 5, invariant and that there
exist numbers s,(E) so that for each y € &,

S(EW = s(EW

Definition The quantities s,(E) are called partial wave S-matrix
elements. The quantities f,(E) defined by

JAE) = (UE'?)™![s/E) — 1] (109)
are called partial wave scattering amplitudes.
Theorem XI1.51 (partial wave expansion: I? convergence theorem)  Let

V € R be a central potential and fix E € R, \&. Then the partial wave ampli-
tudes f,(E) and the scattering amplitude f(E, cos 0) are related by

f(E, cos 0) = 2(2/ + 1) f(E)P/(cos 0) (110a)
HE) =4[ (B DP.) dz (110b)

The sum in (110a) is convergent to f(E, cos 6) in I*(S?, dQ)-norm for each
fixed E. (110a) is called the partial wave expansion. The functions P,(z). are
the Legendre polynomials. We summarize their properties in an appendix to
this section.

Proof Let w, be a fixed direction. Then P,(w - w,) is an element of the
subspace #,, so
[ t(E; 0, @)PAe - wo) dw) = (=2mi) ™ (s/E) = )PAo - o)
Picking @ = w, and using the formula defining f(E; w - '), we see that
[ F(E; - 0)Pie - wo) dw) = 4mf(E)P(1)

Since P,(1) = 1 and | f(w') dQ(w') = 27 | f(w') d(w’ - w,) for functions fof
@' * wg, (110b) results. On the other hand, since t(E; w, ') is the kernel of a
Hilbert-Schmidt operator, |1, | f(E; z)|? dz < co. Since the P(z) are a
complete orthogonal family with [L, |P(z)|* dz = 2(2/ + 1)™*, (110a) fol-
lows from (110b). i
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The orthogonality relations for the P, functions have an important
consequence. For, the total cross section is given by o = | (do/dQ) dQ =
2n {1, | f(E; 2)|? dz, so we obtain the basic formula

[}

o(E)y=4nY (2¢ + 1)| fAE)|? (111)

=0
It is sometimes possible to make a much stronger statement about the
convergence of the partial wave expansion than we have in Theorem X1.51:

Theorem XI.52 (partial wave expansion; uniform convergence theorem)
Let V be a central potential with **'V e R for some a>0. Fix

E € R, \&. Then the partial wave expansion (110a) converges uniformly for
0 € [0, 2x].

Proof By Theorem X1.47, f(E, z) is analytic for z in the ellipse with foci + 1
and semimajor axis 1+ 2«2E~!. The uniform convergence of the partial
wave expansion on compact subsets of this ellipse now follows from a gen-
eral theorem on the convergence of Legendre series (Theorem XI1.63 in
Appendix 1). |

C. Phase shifts and their connection to the Schrodinger
equation

In part B we did not make use of the fact that the S-matrix is unitary. This
fact immediately implies that the numbers s,(E), which are eigenvalues of
S(E), have modulus one.

Definition  The phase shifts §,(E), are defined by the equation

s/E) = e?%®

A priori, the phase shifts are real numbers defined for almost every E, and
they are only determined modulo 7. Let E, = max{E | E € &} where & is the
exceptional set. Since limg_,,, S(E) = I and S(E) is continuous on (E,, ),
we can eliminate the a.e. and modulo n ambiguities for E € (E,, o) by
requiring that §,(E) be continuous there and that limg_. , 8,(E) = 0. Under
mild assumptions, we shall see in Sections D and E below that So(E) and
hence 6,(E) can be chosen to be continuous on [0, o). Similarly, one can
also prove that §,(E) can be chosen continuous for # > 0. The phase shift,
defined to be continuous in E and to obey limg._, ,, §,(E) = 0 for each fixed ¢,
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also obeys lim,_, 8,(E) =0 for each fixed E. In fact, since S(E).— I'is
Hilbert-Schmidt when V € R, one has } % (2¢ + 1)|6,(E)|?> < o in that
case.

The partial wave amplitude can now be written in three different ways,
each of them useful in different contexts:

SAE) = (2ik)™(e2%E) — 1) (112a)
JAE) = k™ 1e%® in 5,(F) (112b)
JAE) = k™(cot §,(E) — i)~* (112¢)

where k = /E. In the rest of this section k will always denote . /E. Notice
that (112b) implies that

Im f/(E) = k| JAE)|* (113)

This is often called partial wave unitarity because it is a direct translation of
the unitarity of S. (110), (111), and (113) yield a new proof of the unitarity
relation (97c).

The most important tool in the scattering theory for central potentials is
the connection between phase shifts and the time-independent radial Schro-
dinger equation given by:

Theorem XI.63  Let V be central and piecewise continuous as a function
of r on [0, o). Suppose that f§ r|V(r)| dr and [P |V(r)| dr are finite. Fix
E >0 and a nonnegative integer /. Then there exists a unique function
@, e(r) on (0, 00) that is C' and piecewise C2 and which satisfies the
equation

=¢"(r) + ViAr)e(r) = Eo(r) (114)
where

VAr) = V() + 4 + 1)

together with the boundary conditions

lim ¢, e(r)=0, lim r=¢- l‘Pz, elr)=1
r—0 r—0
Further, there exists a constant ¢ so that
lim [co,, g(r) — sin(kr — 4n/ + 6,(E))] = 0 (115)

r—*a

where J,(E) is the scattering phase shift.
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Proof One part of the proof involves applying the theory of ordinary differ-
ential equations to study (114). We shall quote several results of this study
without proof. Later, in Section E, we shall prove these results in the case
¢ =0. For proofs of the general ¢ results, see the references in the Notes.
Although the second boundary condition implies the first, we write down
both to emphasize the parallel to a second-order equation with ¢(x,) = a
and ¢'(x,) = b as boundary conditions.

First suppose that V € C¢(R®) and that V is central. Fix a direction e and
let o(x, ke) be the Lippmann-Schwinger wave function constructed in the
proof of Theorem XI.41. Then

ik|x = y|

. 1 ¢ e
| Ty "Wt ke)dy  (116)

Let g e C§ and let h = (—A — E)g. Then

h ke) d L ([ )£y ke) dy dx (117
[ Hedo(x, ke) ax = — - [ W) 757 YOIl ke) dy dx - (117)
where we have used the fact that (— A — E)e™¢"* = 0 in distributional sense
to eliminate the first term in (116). Since |V [2¢ € I? and V and hare in C?,
we can interchange the order of integration on the right-hand side of (117)
and use
ik)x— y|

J U= = Byl 7 dx = at)

to conclude that (—A — E)p(x, ke) =.— V(x)p(x, ke) in distributional sense.
By the elliptic regularity theorem (Theorem IX.26), we conclude that
¢(x,ke) is C* in x and obeys the partial differential equation
(-A+V)p=Ep in the classical sense. Choose spherical coordinates
{r, 0, n) where 0 is the angle between r and e. Then ¢ is independent of the
azimuthal angle 5. Let

@0.5(r)=3 [ o(r, 0; ke)P,(cos O)sin 0 a6

Then @, p obeys (114) and the first boundary condition. The theory of
ordinary differential equations tells us that every solution of (114) obeying
the first boundary condition is a multiple of the unique solution obeying
both boundary conditions. If ¢ +# 0, so that ¥, is singular at r = 0, this fact is
not as easy as in the case £ = 0 where we can appeal to Section V.6.A.
The proof of the theorem in case V € Cg is thus reduced to proving (115)
with & replacing ¢. In (116) fix x - e/|x| and let |x| - co. Using the
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definition of T'(k, k') and the fact that V¢ has compact support, it is easy to
show that (Problem 78):

ik]x— y| . . ,
lim (I £ V(y)e(y, ke) dy)e"“"‘l |x| = 2n)T(ke, ke)
x| o0 Jx =yl
x-e=|x|cos@,

(118)

where e’ is chosen with e - ¢’ = cos 6, . Moreover, the limit is uniform in 6, .
(105), (110b), and the definition of f imply that

n

[ P,(cos 6)

v0

1
T(ke', ke) ]sin 6d6 = — 5— /(E)

N =

e:e’'=cosf
By (116) and the uniformity of the limit in (118), we have
lim [(r) — €/%rj,(kr) - f{(E)e™] = 0 (119)

Here j,(kr) is the spherical Bessel function defined in the first appendix to
this section. By Theorem X1.64, yj,(y) — sin(y — n£/2) -0 as y — co and
moreover f;(E) = (e** — 1)/2ik. Thus

lim [2ik(r) — (€% — e—l’krein{) — (e¥* — 1)e*]1=0

or
lim [ke™"/2¢~¥p(r) — sin(kr — 4¢n + §,)] = 0

r—o

This proves the theorem when V e C§. We approximate general V by
V, € Cg. By Theorem X1.31 and Problem 28, as V¥, — V, the corresponding
S-matrices converge, so the corresponding values of §, converge. On the
other hand, the method of Section E shows that the shifts of the phase of the
solution of (114) converge. |

Thus 6, represents the shift in the phase of the solution of the radial
Schrodinger equation regular at r = 0 relative to j,(kr), the solution when
V = 0. In the above theorem we can drop the smoothness assumption on V
if we replace the differential equation (114) by the integral equation (125). It
is possible to prove (115) by developing a scattering theory directly ff)r the
Schrodinger operators on a fixed angular momentum subspace. This is dis-
cussed in Appendix 3.
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D. The variable phase equation

In Section C we proved that the phase shift was connected to the radial
Schrodinger equation. This connection suggests a great many additional
results. For example, fix V obeying the conditions of Theorem XI.53. Sup-
pose we make V more negative somewhere. Then for each fixed k, the
solutions of —@” + V, ¢ = k?¢ oscillate more rapidly in the region where V
has been made more negative. Thus we expect that the phase shift should be
larger. We thus see that one expects that § > § if V < V. It turns out to be
difficult to prove this directly because of the n ambiguity in é. For this
reason, it is useful to develop additional tools for studying the phase shift.
We develop two different methods in this subsection and the next. Both
depend ultimately on Theorem XI.53.

Theorem X1.64  Let V obey the hypotheses of Theorem XI1.53. Then, for
each k > 0, there exists a unique solution of the equation

()= — % Vigsin?kr +d(r)), 1 e (0, oo) (120)

satisfying the boundary condition lim,_, r~! |d(r)| < co. Moreover, the sol-
ution satisfies

lim d(r) = 8,o(k?) (121)

where 6,.(k?) is the s-wave phase shift for V, do(k?). Equation (120) is
called the variable phase equation. We emphasize that d(r) is k-dependent.

Proof The existence of solutions with the right boundary conditions fol-
lows from the contraction mapping theorem according to the pattern dis-

cussed in Section V.6.A. We leave the proof to Problem 79.
Fix p in (0, c0) and let V* be defined by

ooy _ | V(7), r<p
Vir) = 0, r>p

Let ¢” be the phase shift for V* at fixed energy k2. Since V” - V in the norm
given by (61), 6 — & as p — oo (modulo n). We shall show that the function
p— 6° obeys the differential equation and the boundary condition at 0. This
will allow us to conclude that (121) holds modulo . We leave the question
of resolving the modulo = ambiguity to Problem 80.
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Let ¢ solve (114) for ¢ = 0 and satisfy lim,_ o r~¢(r) = 1. Let ¢” be the
analogous function for V. Clearly,

oy — @) r<p
o) asinkr + ), r=p
for suitable « and $. By Theorem XI.53, 8 = 6°. The requirement that ¢” be
C! implies
k cot(kp + 6°) = ¢'(p)/0(p) (122)
Using (122) and the differential equation (114), it is easy to prove that
(Problem 81):
aé*

7l % V(p)sin®(kp + 6°) (123)

Moreover, by (122), lim,_, cot(kp + 8°) = 00. We resolve the = ambiguitly
in 6 as defined in (122) by requiring lim,_, 6° =0, and that 6° be C'.
Finally, by (122), lim,_, kp cot(kp + 6°) =1 or

lim (ko)™ " (kp + 8°) = 1
pﬂ

$0, lim,_.o p~ 87 = 0. Thus by the uniqueness of solutions to equation (120),
o =d(p) 1

Corollary 1 §,(E) may be chosen continuous in E for all E.

This is a corollary of part of the proof contained in Problem 80.

Corollary 2 If §4(E) is chosen to be continuous with limg_, , 5o(E) = 0,
then the phase shifts for —A + AV are continuous in A and go to zero as
A-0.

The proof is left to Problem 82.

Corollary 3  §, is positive for an everywhere negative potential (V(r) < 0
all r) and negative for an everywhere positive potential.

Proof 6o(k*)= —k™' [§ V(r)sin?(kr + d(r)) dr by (120) and (121). This is
clearly positive (respectively, negative) if ¥ < 0 (respectively, V > 0). |

Corollary 4 If V < V, the s-wave phase shifts for V are greater than or
equal to those for V.
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Proof Fix k > 0. Suppose first that V = V in (0, po) and that ¥ < ¥ in
(po, ). Let d(p), d(p) be the corresponding solutions of the variable phase
equation, (120). Then d(po) = d(p,) and d'(p,) = &(p,) by ( 120), so d(p) >
d(p) for p near and larger than p, . If d were ever larger than d, there would
be py > po with d(p,) = d(p,) and &(p,) > d'(p,). This is inconsistent with
(120)and ¥V < 7 in (p,, c0). Thus d > d for all p and, by (121), 6 > §. For
the general case, one uses a simple limiting argument. [

The low energy behavior of 8,(E) is of especial interest. It may be studied
by a method related to the variable phase method.

Theorem XI1.65 Let V e C2(R®) be a central potential and let u be the
solution of —u"(r)+ V(r)u(r) =0 with boundary conditions u(0) = 0,
#'(0) = 1. Then:

(@) Iflim,., «'(r) # 0 and u(r) has m zeros different from r = 0, then

2 — — ’
lim 6o(k?)=mn  and  lim 20K) =M _ tim 40— () e 0
k=0 k=0 k rew ()

(b) Iflim,., u'(r)=0 and u(r) has m zeros different from r = 0, then
lim 6y(k?) = (m + $)n
k=0

Proof We use equations (122) and (123). Choose R so that all the zeros of u
lie in (0, R) and so that ¥(r)=0ifr > R.In particular, u(r) = a(r — R) + b
for r> R. Since u(r) has no zeros in (R, ©), we have that a/b =
u'(R)/u(R) > 0. Let ¢g(r) denote the solution of (114) satisfying ¢g(0) =0
and ¢g(0) = 1. Writing the differential equation as an integral equation, one
sees that @g(r) - @o(r) as E — 0, uniformly on [0, R + 1]. In particular, for
some Eq, ¢g(r) has m zeros in [0, R) if E < E, and @e(R)™ '@E(R) — a/b. By
the proof of Theorem X1.54, 5,(E) is determined by

k cot(kp + d(p, k)) = @%(p)/0k(p) (122)

d(-, k) continuous, d(0, k) = 0, d(R, k) = 8o(k?). Clearly at each point p that
@e(p) vanishes, kp + d(p, k) must take one of the values 0, +m, ....
Moreover, by (123), at each such point, (0/dp)d(p, k)=0, so that
(0/0p)(kp + d(p, k)) > 0. Thus

mn < kR + d(R, k) < (m + ) (124)

if k < E,. d(R, k) = 6,(k) is thus uniquely determined by (122) and (124). If
(R) = lim, , , u(r) # O, then for all small E, @E(R)/@g(R) > 4u'(R)/u(R) > 0
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s0, by (122), cot(kR + d(R, k)) — oo as k — 0. This is only consistent with
(124) if kR + d(k, R) — m=n. On the other hand, by the integral equation,
@E(R) is a C* function of k? at k = 0, so if w'(R) = 0, then ¢@y(R) vanishes as
k* at k=0. Thus, in that case, cot(kR + d(R, k))—0 by (122), so
kR + d(R, k) = (m + 3)n. The remaining statement in (a) is left to the reader
(Problem 83). |

It is possible to considerably weaken the hypotheses on V in the preceding
theorem.

Definition The quantity
fim 0= TE0) _ o 0(k) = 80(0)
reo u'(r) k=0 k

is called the scattering length. If lim, ., , «'(r) = 0, we say the scattering length
is infinite.

The scattering length a is a natural scattering parameter because, by (112),
limg_o f;-o(E) = a. Moreover, it can be shown under many circumstances
that 3, k™2 sin? 6,(k*) >0 as k—0 so that limg_, 0,,(E) = 4na® by
(111).

E. Jost functions and Levinson’'s theorem

Theorem X1.53 relates the phase shift to solutions of the radial Schrodin-
ger equation, at least when V is regular. To discuss general V, and also in
order to discuss systematically the solutions of (114), it is useful to rewrite
the Schrodinger equation with boundary conditions as an integral equation.
As a dividend of our development of the integral equation approach, we
shall relate the number of spherically symmetric eigenfunctions to the
s-wave phase shift. We discuss only the # = 0 case. References for the general
case can be found in the Notes.

Definition The Schridinger integral equation with regular boundary
conditions at 0, or, for short the regular equation is

16 =x + [ (x = V) - K7 0) dy (125)
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Definition  Let k # 0. The Schrodinger integral equation with Jost boun-
dary conditions at oo, or, for short the Jost equation is
ke [ SInk(x —
sy = e = [Ty 60 ay (126)

When V is sufficiently regular, for example if V is continuous, (125) and
(126) are equivalent to the Schrodinger differential equation (114) with
appropriate boundary conditions. There is a systematic method known as
the method of variation of parameters which can be used to rewrite second-
order differential equations with boundary conditions as integral equations
(see Appendix 2).

Theorem XI1.56 Suppose that V is a measurable function obeying
N(x) =[5 y|V(y)| dy < oo for each x > 0. Then, for each k € C, the regular
equation (125) has a unique solution ¢(x, k) that is locally bounded on
(0, o) and obeys lim,., |x™'¢(x)| < 0. Moreover, ¢(x, k) is contin-
uously differentiable in x on [0, o) with ¢(0, k) =0, ¢'(0, k) = 1 and, for
each fixed x, ¢(x, k) and ¢'(x, k) are entire functions of k obeying

|o(x, k)| < x exp[N(x) + 3|k [*x?]

|@'(x, k)| <exp[N(x)+ 4|k|*x?]
In addition @(x, k) = ¢(x, k). ¢ is called the regular solution.
Proof Let y(x) = f(x)/x so that to solve (125), we seek ¥ obeying

W)= 1+ [ Kl 30) dy (127)

where
y
K, ) =51 - 2)ve) - o)
By iterating (127), we obtain a formal series

W)= 3 vl (128)

where
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We shall prove inductively that
[¥n(x)| < (n!)”"P(x)" (129)
where
P(x) = N(x) + 3|k [*x?

(129) certainly holds if n = 0. If 0 < y < x, then
|K(x, »)| <y(IV)] + |K?])

so if Y, obeys (129), then
Waer(] < [ AVO)| + KP)) PO dy

=) ey G
= [(n+ 1] PGP

so (129) holds by induction. -

We conclude that (128) converges uniformly on compacts in x apd k
Since each y,(x) is analytic in k (it is a polynomial!), the limiting function is
‘analytic in k. Y obeys (127), so ¢ obey (125). The bound on ¢ follows from

(129). The analyticity of ¢’ in k and the bound on ¢’ follow from the formula

¢ )= 1= [ V) = KW k) dy

and the bound (129). Uniqueness is left to the reader (Problem 84). |

Theorem XI.67 Suppose that V is a measurable function obeying
I2 |V(y)| dy < o for each x > 0. Define Q,(x) by

Q)= [ (1+ [k]y) 4y [ V(y) et ity gy

Then:

(a) Foreachke C,withImk <0, and k 5 0, the Jost equation (126) has a
unique solution n(x, k) obeying lim,_,, |e**n(x, k)| < co. Moreovpr,
n(x, k) is continuously differentiable in x on [0, c0) with
lim, . e**n(x, k) = 1 and lim,_, , e**n’(x, k) = —ik. For each fixed x,
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n(x, k) and #'(x, k) are functions analytic in {k |Im k < 0}, continuous
in {k|Im k < 0; k # 0}, obeying

[n(x, k) — e~ x| < gfmbix|gux) _ 1] (130a)

|7(x, k) + ike™ | < 050 [ |y(y) dy  (130b)

(b) If in addition, {§ x|¥(x)| dx < oo, then n(x, k) may be extended to
k=0 in such a way that n(x, k) is continuous on {k|Im k < 0}.
Moreover, (130) continues to hold.

(c) If, in addition, [ e™|V(y)| dy < oo, then 5(x, k) can be extended, for
each x, to a function analytic in {k|Im k < $m}. Moreover, (130)
continues to hold.

In each case, n obeys n(x, k) = n(x, —k). n is called the Jost solution.

Proof The idea is very similar to the proof of Theorem XI.56, so we only
sketch the proof leaving the details to the reader (Problem 85). (126) is
formally solved by the series

M k)= 3 nalx, k)

n=0

where no(x, k) = e~ ** and

k)= [ k=[sin kly = XV o0, k) dy

From the bound

|sink(x—-y)|< 4y
k| T 1+ |k|y

exp[[Imk|y + (Imk)x], y>x>0

one obtains by induction

|ma(x, k)| < (n!)~Qu(x)"

If we interpret k™! sin k(x — y) as (x — y) when k = 0, then these bounds
continue to hold when k = 0. Each ,(x, k) is easily seen to be analytic in the
interior of the region where Q,(1) < o0 and continuous on the boundary.
The assertions of the theorem are proven by summing the series. [

We now define the Jost function, which we shall see is intimately con-
nected to the scattering amplitude.
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Theorem XI1.58 Let V obey

‘[:|Y| [Vy)| dy+_[m [V(y)| dy < oo

for each x. Then:

(@) n(k) =n(x, k)e'(x, k) — n'(x, k)p(x, k) is independent of x. n(k) is called
the Jost function.

(b) n(k) is analytic in {k |Im k < 0} and continuous in {k |Im k < 0; k # O}.
If V obeys ¥ e™|V(y)| dy < oo, for some m > 0, then (k) is analytlc
in {k|]m k < 4m}.

(c) If k is real and nonzero, then n(k) # 0, n(—k) = n(k) and

n(k) = p2idolk)
n(—k)

where dy(k) is the s-wave phase shift.
(d) All the zeros of n(k) in {k |Im k < 0} are simple. They lie on the imagin-
ary axis and k is a zero if and only if k? is an # = 0 bound state energy.
(e) limn(k)=1.

k=
Imk<O

Proof (a) First suppose that ¥ € C§(0, o0). Then 7 and ¢ both obey the
differential equation —u” + Vu = k*u so n¢’ — n'¢ is constant since it is the
Wronskian of two solutions (an explicit computation shows that
(n¢’ —n'e@) =0). If V is an arbitrary potential obeying the hypothesis, we
can find ¥, € C3, so that [ y|V,— V| dy + ¥ |V,— V| dy—>0asn— co.
By the construction of ¢ and #, we conclude that ¢, — ¢, ¢, — ¢, n, > 1,
1, — n’ pointwise, so (a) holds in general. For the proof of our assertion that
n is called the Jost function, see the Notes.

(b) This follows from the analyticity properties of ¢, ¢’, 1, ' stated in
Theorems X1.56 and XI.57.

(c) Since @(x, k) = o(x, k) = ¢(x, —k) and n(x, k) = n(x, —k) when k is
real, we conclude that n(—k) = n(k). Next we claim that

@(x, k) = 2ik)™Hn(k)n(x, —k) — n(—k)n(x, k)} (131)

We shall prove (131) and the basic relation n(k)/n(—k) = e**° for
V € C3(0, ). The general case then follows by a limiting argument as in
the proof of (a). Suppose that supp V < [a, b],0 < a < b < 0. Then ¢(*, k),
n(-, k), and n(-, —k) are all solutions of —u” + Vu = k?u. Moreover, for
x > b, n4(x) =n(x, £k)=e*** so n, are linearly independent and their
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Wronskian W(n,,n_)=n,n"- —n_y is 2ik. Thus

@=Wh.,n-)[Wh., ol — W, o)n.]
which is (131).
(131), n(k) = n(—k), and the fact that ¢ is not identically zero imply that
n(k) # 0. Moreover, since 74 (x) = e*™* for x > b, we see that

9(x)= k™! |n(k)| sin(kx + d(k))
for x> b if (k)= |n(k)|e“®. By Theorem XI.53, we conclude that
d(k) = 8¢(k) (mod 2m).
(d) We first claim that (—A + V — k?)(x~ ¢(x, k)) = 0 where —A is to
be interpreted in distributional sense. For this holds if V € C¥(0, ) and so
for general V by a limiting argument. If (k) =0, then ¢ is a constant

multiple of # and so in I? at infinity. Thus k is purely imaginary and k? is an
eigenvalue.

Conversely, suppose that ¥V € C3 and that k? is an / = 0 eigenvalue of
—A + V. Since V falls off exponentially, n is an entire function, so (131)
holds for all k. Then, by this analytic continuation of (131), n(k) = 0. By a
limiting argument, this extends to all V.

Finally, we must show that the zeros of  are simple. We first note that if
u=x"'¢ and v = x~! d¢p/dk, then

(-A+V—-k)u=0 (132a)
(=A+V —k?v=2ku (132b)

in distributional sense. Moreover. if (ko) = (dn/dk)(ko) = O, then one can
show that

op on
k- anteg

so v € I*. But if u, v € I?, then (132) is inconsistent with u # 0 since
2k||u)|? = (u, (~A + V — k*)) =

Thus, if n(ko) = 0, then dn/dk # 0 at ko, so the zeros of 5 are simple.
(¢) By (130a) and n(k) = (0, k),

|n(k) — 1] < |exp Q\(0) — 1]
if Im k < 0. Thus it suffices to prove that

lim '- M =0
k= *0 1 + 'k 'y
and this follows from the monotone convergence theorem. ||
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One of the more spectacular consequences of the machinery of Jost func-
tions is:

Theorem XI.59 (Levinson’s theorem)  Let ¥ obey [¢ x| V(x)| dx < oo
and let n be the Jost function and §, the s-wave phase shift normalized by
lim, ., , 8o(k?) = 0. Then

_|nom, if n(0)+#0
%(0) = (no +4)m,  if n(0)=0

where n, is the number of eigenvalues with spherically symmetric eigenfunc-
tions for —A + V.

Proof We consider the case 7(0) # 0. The case 5(0) = 0 is left to the prob-
lems. By (131), all # = 0 eigenfunctions have k* < 0, so by Theorem X1.58d,
ng is the number of zeros of (k) in the lower half-plane. Let 0 < § < in. Pick
Ry, so that |n(k)— 1| < 2sin(46) for |k| = R,, Im k < 0. By Theorem
XI.58e, such an R, exists. Consider the integral of #'/y around the contour
C = C, v C; in Figure XI.10. The poles of /n are at the zeros of 5 and since

Real axis
€ G (R)

FIGURE XI.10 A contour for Levinson’s

theorem.
Cy(Ro)

these zeros are simple, the residues are equal to 1. Thus
N n
ng = Q2mi)~'| *dz
o= mi)t [ 1

Now i~ 'y'/n = d(arg n)/dz, so in the limit as & — 0, the contribution of C LI
™ (80(0) — 6o(R3)). Since |arg | < 0 on all of C,(R,) by the choice of Ro,
we conclude that

|7~ [66(0) — 06(R3)] — mo | <20

Taking Ry — 0, 8 — 0, we see that §,(0) = ng 7. |}
We saw in Section 7 that the poles in the upper half-plane of the forward

scattering amplitude can occur only at points k where k2 is an eigenvalue of
—A + V. The formula

Je=olk?) = 2ik™(n(k) — n(—k))/n(— k)
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which follows from Theorem XI.58c together with the fact that the only
zeros of n(— k) are at points where k2 is an eigenvalue, suggests that the poles
of f,—o(k?) in the upper half-plane are also connected only to bound states.
This is false. In the first place, for general potentials the analyticity domains
of n(k) and n(—k) are disjoint and there may be no continuation for f,_,, .
Moreover, it can happen that n(k) has a meromorphic continuation to the
upper half-plane with poles at certain points. These poles will produce poles
in f,_, which do not correspond to bound states. This phenomenon will be
discussed further in the next subsection.

F. Analyticity of the partial wave amplitude for
generalized Yukawa potentials

In Section 7 we saw that the full scattering amplitude f(E, cos 6) has
analyticity properties in E at cos § = 1 under rather general circumstances.
Analyticity at 6 # 0 required some exponential falloff, Not surprisingly then,
analyticity properties for fy(k), the s-wave scattering amplitude, requires
exponential falloff. From the results of part E, and the formula sso(k?) =
n(k)/n(—k) and fy(k?) = (2ik)~ *[so(k?) — 1], we see that:

Theorem X1.60 If [? e™|V(y)| dy + [ y|V(y)| dy < o0, then the
s-wave partial wave amplitude is real analytic on (0, o) and has a meromor-
phic continuation from the upper edge of the real axis into the parabolic

E=x+jy

FIGURE XI.11  Analyticity region for fy(E),
general case.

2-m2, 4L
ye=mex+gme

region, {E||E| — Re E < 4m?, E not a positive real} (see Figure XI.11), with
poles precisely at the energies of bound states in the region E > —im?,
Proof Let G(k)=n(k)/n(—k). Then G is analytic in the region
[Im k| <4m. In the region Im k > 0, G(k) can have poles only when
n(—k)=0. If n(—k)=0, n(k) # 0 by the analytic continuation of (131).
Thus G has poles precisely at zeros of n(—k). The theorem now follows from
the formula fo(E) = (2i\/E)"*[G(/E) - 1]. §
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For the generalized Yukawa potentials defined in Section 7, we can say
much more (y, is the constant occurring in the definition of generalized
Yukawa potentials):

Theorem XI1.61  Let fy(E) be the s-wave scattering amplitude for a gen-
eralized Yukawa potential. Then there is a function F(E), meromorphic in
D = C\([0, ) U (— o0, —(310)?]), so that for E € (0, o)
Jo(E) = lim F(E + ig)
¢l o0

The only poles of F in D occur on the negative axis at bound state energies,
and there is a pole at each such energy in (— (3u0)?, 0). Moreover, f,(E) is
real analytic on (0, o0).

Before turning ' to the proof of Theorem X1.61, we make a series of re-
marks, one of which explains the reason for emphasizing that it is only the
poles in D that are described in the theorem. First, one can prove that f is
analytic in C\([0, c0) U (=0, —uf]). Secondly, we shall actually prove
more than is stated in the theorem. We shall show that the function G(k)
defined by G(k) = F(k?) for Im k > 0 has a meromorphic continuation to
C\([3ino ,io0) U (—ioo, —Fiuy])—see Figure X1.12. As a result, the cut from O

L,
Bound state poIeS\x 2 /Ho
X

__________ - — —
X X, X
/ I'g /Ko Resonance
i oles
Antibound states P FIGURE X112 (a) Region for G(— k),
(@) Analyticity region for G (-#) (b) analyticity region for F(E).
Dynamical cut X x Kinematical cut

- (lzp.o)z \Bound state poles
(b) Analyticity region for ~ (£)

to oo in F(E) is due entirely to the use of the variable E = k?, and one can
continue onto a second sheet by continuing past this cut. Poles of Fo(E) on
the second sheet with Im E # 0 (equivalently, poles of G(k) at points with
Re k # 0, Im k < 0) are called resonance poles—one can show that they
correspond precisely to the resonances that will be discussed in Section XI1.6
since the generalized Yukawa potentials are dilation analytic. Poles corre-
sponding to k € (—4iu,, 0) are called antibound states.

X1.8 Quantum scattering V: Central potentials 145

Since the cut in [0, c0) is due entirely to the use of the variable E instead of
k, it is often called the kinematical cut. It is also called the unitarity cut since
its discontinuity is given by the unitarity relation

F(E + i0) — F(E — i0) = 2 Im fo(E) = E'2| f,(E) ]2

The cut in (—oo0, —(3uo)?] is directly related to the potential in that its
discontinuities can be computed directly from the potential by an iterative
scheme (see the Notes). This cut is called the dynamical cut. The phrase
left-hand cut and right-hand cut are sometimes used in place of dynamical cut
and kinematical cut.

Finally, there is one subtle point. It can happen that the left-hand cut
partly “ degenerates into poles,” that is, that F(E) has a meromorphic contin-
uation into a region including (—a, —(31o)?), a > (30)?, with poles in this
region. The poles of F(E) in this interval may not be connected with bound
states; for this reason, they are often called false poles. In fact, there exist
distinct generalized Yukawa potentials, ¥; and V,, for which the corre-
sponding s-wave partial wave amplitudes are equal but which are distin-
guished by the fact that all the poles of F(E) are associated with bound states
of —A + V; while the leftmost pole of F(E) is not associated with a bound
state of —A + V, but rather with its dynamical cut! This example is
especially surprising because of Levinson’s theorem which tells us that
F(E + i0) determines the number of bound states and so, one would assume,
the number of bound state poles. The point is that if a bound state energy is
notin (—a, — (§10)?), the pole which one would expect to be there can have a
zero residue. Thus, while —A + V; and — A + V, have the same number of
bound states of angular momentum zero, they have different numbers of
“bound state poles.”

Throughout the proof of Theorem XI.61, we shall suppose that V is of the
form V(x) = x~'e™*°* It is a simple exercise to extend the proof to gener-
alized Yukawa potentials. The main idea is to use the analyticity of V(x) in
the region {x |Re x > 0} to extend the Jost function n(k) in k. There is thus a
close connection between these ideas and the dilation analytic ideas of Sec-
tions XI1.6 and XIII.10. Our extension of n(k) is in two steps:

Lemma 1  The function n(x, k) which is defined initially on {{x, k)|x €
(0, 00), Im k < 0} can be extended to Q = {<{x, k)|Re x >0, Im k <0} in
such a way as to be a jointly analytic function of x and k in Q'™, continuous
in Q. Moreover, in (, it obeys the differential equation

- Zid? n(x, k) + V(x)n(x, k) = k?n(x, k)
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and in the region Q' = {x, k) € Q| | x| > 1}, it obeys the bound
|n(x, k) — e™**| < e *9exp[ug * k|~ te~o Re*] — 1} (133)

Proof We shall show that n can be extended to Q' obeying (133). By the
same method, one can extend 7 to the region {{x, k) € Q| |x| > ¢} and so to
all of Q. Since the differential equation is valid when x is real, it holds for all
x by analytic continuation. Fix k with Im k < 0. Define ,(x, k) inductively
on Q' by

no(x, k) = ™
Ma(x, k) = J:k" (sin ky)V(y + xMn—1(y + x, k) dy

A change of variables shows that when x is real, n,(x, k) agrees with the
function defined in the proof of Theorem XI.57. Moreover, we claim the
following bound holds in Q':

|1a(x, k)| < (n!)™ e ™* (o | k| ) ~me~mboRe x (134)
(134) certainly holds when n = 0; and if it holds for some n, then
s 106, k)] < (1) (o | K])™"

[> ]
"j | k|~ Le¥im klg = motRex +3)n+ 1) glmiks) +(m k)y 7.,
0

=[(n+ l)!]_l(polkl)‘"“ 1o=(n+ o Re x

since |Im k| + Im k = 0 when Im k <O and (x + y)~! < 1 when |x| > 1,
Re x>0, y € (0, o). This proves (134) inductively.

By (134), the integral defining 5, converges absolutely, so 7, is analytic in
(€)™ Since Y, n, converges absolutely by (134), the limit has the required
analyticity and obeys the bound (133). |

Lemma 2 The Jost function n(k) can be analytically continued to
C\[$ino , i0).

Proof Since we already know by Theorem XI.58 that #(k) is analytic in
{k|Im k < 4p,}, we need only prove that #(k) has an analytic continuation to
every half-plane of the form {k|Im(e™*k) < 0} for each « € (—4n, 4n). Fix
such an o and define j on {{y, k)|y € R, Im k < 0} by

ﬁ(ys k) = '1(3-‘“% k)
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where 5(x, k) is continued to complex x by using Lemma 1. Then # obeys the
differential equation

(- &+ POt ) = R0, 4 (135)

where P(y) = e 2*V(e”*y) and k = e~ k. Moreover, by (133),
|fi(y, k) — e=®| >0 (136)

as y — o0, so long as Im k < 0, Im k < 0. In the proof of Theorem X1.57, the
reality of V was not used anywhere, so we know that (135) has a unique
solution #,(y, k) for {{y, k)|y € [0, ), Im kK <0} obeying (136). Thus
i(y, k) and n,(y, e”*k) agree in the region {k |Im k < 0, Im(e” k) < O} so 5,
is an analytic continuation of # to {k |Im(e~*k) < 0}. In particular, (k) =
(0, k) has a continuation to {k|Im(ke™*) < 0}.

Proof of Theorem X1.61 Since fo(k?) = (2ik)™'[e2?*® — 1], we need only
prove the analyticity statements for so(k) = e*?%%. But since sq(k)=
n(k)/n(—k), we see that sy(k) is meromorphic in D = {k |k ¢ [$iu,, o) U

(=00, —4i,]} and the only poles in D n {k|Im k > 0} occur at points ko

with n(—ko) = 0. Moreover, as in the proof of Theorem XI.60, poles occur at
all such k,. |

G. The Kohn variational principle

In the discussion of the variable phase method, we saw that the scattering
length, a, was an important parameter since, under some circumstances,
limg_.o 0,(E) = 4na®. Recall that the scattering length for potentials V with
compact support was determined by finding a suitable normalized solution
of —¢" + Vo =0, ¢(0) =0, with ¢(r) = r + a for r large. Consider real-
valued functions, y, on [0, o) of the form

Yy=ar+B+g (136a)

with g smooth, g, ¢', g” falling off faster than any polynomial and y(0) = 0.
Let Q be the set of such functions and let a(y), () be the constants in
(136a).

For y, n in Q, we can define a natural object,

W)= [ WEN=10) + V() dr
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since Y(—n") is in I*. However, it is false that (¥, hn) and (n, hy') are equal,;
rather

W) = s n) = [ (@0 = y')dr
= «()Blr) — BV o) (136b)

since the boundary term at infinity does not vanish. Take n = ¢, the solution
of he = 0 and suppose that y is such that «(y) = 1. Then (y, hn) = 0so we
have that

a=B(y)— (hy, 9)
= BW) — (h, ¥) + (hy, (¥ — o))
= BW) — (W, ¥) + (h(Y — @), (¥ — ¢))
The equation
a=pW)— (hy, ¥) + (h(y — o), (¥ — ¢)) (136c)

is called the Kohn variational principle. Under some circumstances, it can be
used to get a rigorous bound on the scattering length:

Theorem X1.61.5 (Rosenberg-Spruch bound)  Suppose that V € C? is
central and that —A + V has no negative eigenvalues. Let  be any function
in Q with a(y) = 1. Then the scattering length a obeys

azpW) - (h,y) (136d)
Proof By the Kohn principle, (136¢), it suffices that we show (hn, n) = O for
n € Q with afn) = 0. Let g be C* on [0, o) with g = 1 (respectively, g = 0)
for r <1 (respectively, r > 2) and let gg(x) = g(x/R). Then ngy is in I2

50 0 < (grm h(grn)) by the hypothesis that there are no negative
eigenvalues. But (ggn, h(grn)) = X + Y + Z where

X = (g&n, hn)— (n, hy) as R— oo
Y= —(grn, ngz)— 0 as R- oo
Z = —2(grn, (Vn)Vgg)»0 as R-

where the convergence results follow from hy <d,(1+r)"2 n<d,,
Vn<dy(1+7r)7%  |gillo <dsR™% and |gk|lo <dsR™!.  Thus
(n, hn) > 0. 1

Appendix 1 to XI.8: Legendre polynomials 149

Note that whether (136d) yields an upper or a lower bound on a? depends
on whether we know that a is positive or negative. For example, by Corol-
lary 3 to Theorem XI.54 and Theorem XI.55, we see that if V is everywhere
positive, then (136d) provides an upper bound on a?.

Appendix 1 to X1.8: Legendre polynomials
and spherical Bessel functions

Scattering theory requires some information about certain classes of
special functions. The basic properties of Legendre polynomials are most
easily derived by defining them in terms of a generating function:

Definition For each z € C, the function
F(x, z) = (1 — 2zx + x?)~ /2
is analytic near x = 0. The Legendre polynomials P,(z) are defined by

Pz) = (/!)"(;;){F(x, 2)

x=0

or equivalently by

(1-2xz+x*)"12 = {;)P,(z)x’

Theorem XI1.62

(a) PAz) is a polynomial of degree ¢ with real coefficients.

(b) PA1)=1; P(—z) = (= 1YP/2).

(c) Define fon R* by f(x) = r“P,(cos 0) where r = |x| and cos 8 = x, /r.
Then —Af = 0.

(d) (Legendre’s equation)

(1— ZZ)dd—; P/z) - ZzéizP,(z) +/(¢ + 1)P2) =0

1

€ | PAeIPaz) dz =

2
=5, .
2041

(f) {(¢ + $)"2PAz)}3~, are an orthonormal basis for I?((— 1, 1), dz).
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Proof (a) By the binomial theorem,

(1-2xz+x?)"12= ¥} (—%)(‘ZXZ + x?)m
m=0 \ M

for x small, where () = k(k — 1) - (k — m + 1)/m! For fixed ¢, only the
terms with m < ¢ can contribute to (d/dx)f (x, z) |¢=0 - By using the binomial
theorem on (—2xz + x?)", we see that 3%, o (73)(—2xz + x?)y"isa polynom-
ial of two variables of degree # in z. Furthermore, P,(z) = (—22)(3)
+ 0(z°7?) so that P, has degree precisely 7.

(b) Since (1-2x+x?)""2=(1-x)"'=Y%,x" we see that
P,(1)= 1. From f(—x, —z) = f(x, z) we obtain Py(—z) = (= 1YP,(2).

(¢) Fix R>0.1In the region {r,r') € R%|r < R < r'} define g(r, r') =
[r—r'|~*. Then, for fixed ¥, —Ag=0 in the region {r|r <R}. Let
r'=<0, 0, a) and x = r/a. Then

[r—r |t =(r2 + r? = 2r cos 6)~ /2

=(r)"'(1 + x* — 2x cos 9)~ 112
= (7)1 5 Poos 0)¢ = 3 () 1#°P,{cos 0)
/=0 /=0

where we have used the fact that for z € (1, 1),f(x, z) has radius of conver-
gence 1 in x. Thus r’P,(cos 6) is given inductively by

‘-1 k
r’P/(cos 6) = Lim (r')**!|g(r, ¥') — (')~ Y Py(cos 0)(1) }
r—o k=0 r
where the convergence is uniform in {r|r < R}. By induction in ¢ using the
fact that a uniform limit of harmonic functions is harmonic (Problem 89), we
conclude that r“P,(cos 6) is harmonic.
(d) Since
-2 0 , 0 . 0 0 92
A=r29%209 2 -1 9 . 9 2g29\v-1 9
ST et (r* sin 6) % (sin 6) 73 (r* sin? 0)" 307
(d) follows from (c).
(e) Legendre’s equation may be written

-2 Lpe) - o s e

Thus,if £ # m, [1 | P,(z)P,(z) dz = Osince (d/dz)(1 — z2)(d/dz)is symmetric.
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Now, for small x, we compute that on the one hand

J‘l ( 3 P,(z)x‘)2 dz = I_l (1=2xz+x?)"'dz

-1 \¢=
hed 2

= —ll -—-] —_ = 2

x~HIn(1 + x) — In(1 — x)] l=202[+1x

while on the other hand, using the fact that for x small and z € (—1, 1) the
convergence of f(x, z) is uniform in z.

I

on account of the orthogonality relation.

(f) By the Stone-Weierstrass theorem, {2/}, is a total set in C(—1, 1)
and so in I}(—1, 1). Thus, the set arrived at by applying the Gram-Schmidt
procedure to {z‘}%, is an orthonormal basis. But this basis is just

(=1Y(¢ +3)72P2).

1

Zv;ox‘P,(z))2 dz = 5:0 ( j 11 P(z)’ dz) ¥

-1

It is a basic fact about power series that the interior of their region of
convergence is always a circle. This follows from the fact that (z' — z)™! =
Yo 2"/(2')"* ! converges in the region |z| < |z’[, that is, if z and 2’ can be
separated by a circle with center at the origin. We want to find the natural
regions of convergence for Legendre series, that is, series of the form
Y50 (22 + 1)a, P(z). The functions that occur in the Legendre expansion
for (z — z)™! clearly play a critical role. We therefore define:

Definition The associated Legendre functions are defined in C\[—1, 1]
by

o) =1 )4

2)_ ,z-2

~

The regions of convergence for Legendre series will be the interiors of
certain curves:

Definition Let ze C\[—1, 1]. By the canonical ellipse through z, we
mean the unique ellipse passing through z with foci + 1.
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Theorem X1.63

(@) Let zand 2’ be given so that the canonical ellipse through z lies within
the canonical ellipse through z’. Then

L]

2 (20 + D)PA2)QAz) = (z' — 2)7* (137)
¢=0
The convergence of (137) is uniform as z and z' run respectively
through compact sets C and D so long as there is a canonical ellipse E
with C inside E and D outside E.
(b) Iffis afunction analytic in the interior of a canonical ellipse E, then the
series

flz)=

¢

e

¢ + )a, P,(z)

with
1

a=3| fEPL)d (138)
2/,
converges uniformly on compact subsets of E.

(c) If g, is any sequence and the series Y%, (2¢ + 1)a, P,(z) converges
(respectively, diverges) for some z, € C\[— 1, 1], then it converges abso-
lutely for all z within the canonical ellipse through z, (respectively,
diverges absolutely for all z outside the ellipse).

Proof (a) We first prove that the series (137) converges uniformly and
then establish that the limit is indeed (z’ — z)~!. Consider the many to one
map of C — C given by 0+ z = cos 6. The curves Im 6 = ¢ go into canonical
ellipses (Problem 90a); and given :z fixed, |Im 0| is independent of which
6 = cos™! z is taken. Since F(x, z) for z fixed has singularities at

x=z+./2*—1=cos0+isinf=et?®

we see that for z fixed, F(x, z) has a radius of convergence e~ 'mf By a
Cauchy estimate, for any fixed H > 1 and any compact C within the canoni-
calellipse |Im 0| = In H, P,(z)H ¢ is uniformly bounded as z runs through
C and ¢ through O, 1, .... A similar estimate for Q,(z) (Problem 90b, c, d)
shows that for any H > 1 and D compact outside the canonical ellipse
|Im 6] = In H, Q,(z)H” is uniformly bounded as z runs through D. Given C,
D, E as in the hypotheses, find ellipses E’ (respectively, E") given by
|Im 0| = In H' (respectively, |Im 8| = In H") so that E’ (respectively, E")
lies inside (respectively, outside) E and C (respectively, D) lies inside E'
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(respectively, outside E”). Using the fact that H” > H', we see that for z e C,
z' e D,
|PA2)0A2')| < C[H//H")
so the series (137) converges.
If we fix E and 2’ outside E, then the limiting function G(z, ') is analytic in
z for z in E. Moreover,
1

| PA2G(z 2) = (2 = 2)7 ] dz = 0

since P,(z)(¢ + 4)~'/? is an orthonormal basis for [—1, 1). Thus G(z, 2') =
(z—z)"'forze (—1, 1) and so in all of E by analytic continuation.

(b) Given a compact C inside E, find another canonical ellipse E’ so that
C is inside E’ and E’ lies inside E. Then for z € C, we have by the Cauchy
theorem

f(@)=(@ni)~! §E, % dz’ = IS‘IP,(z)a,(ZK +1)

where

1
% =55 §_1)07) dz

and we have used the uniform convergence proven in (a). Since P,(z) is an
orthogonal basis for I*(—1, 1), (138) holds.
(c) is left to the reader (Problem 91). §

Definition  The spherical Bessel functions Je(x), x € C, are defined by
e—in//Z 1

)= =5 | Py ay

Theorem XI.64

(a) Ji(x) is real for x real and j,(—x) = (— 1)(x).

(b) Each j(x) is a finite linear combination of terms of the form x™™ cos x
and x™" sin x withm< ¢ + 1.

() Jje(x) is an entire function of x with Je(x) = O(x*) for x — 0.

(d) (Bessel’s equation)

(4 +1)

b)) + 3= [%idx)] = (i)
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(e) [xilx) — sin(x — 4n¢)] = O(x~*) as x — co.
(f) If e is the unit vector <0, 0, 1> and r - e = r cos 6, then

ekt = ¥ e™2(2¢ + 1)j,(kr)P,(cos 6)
¢=0

where the series converges uniformly as k and r run through compact
sets of R and R respectively.

Proof (a) j/(x)=4e'™e~ ™2 (L, P,(y)e ™ dy. Changing y into —y and
using P,(—y)e'™ = P,(y), we conclude that j, is real. Since P, is real,

JA=x)et ™ = j(x)e™T = j(x)e™ P2

or j(—x) = (= 1)j(x).
(l;) Using y"e™ = (i~! d/dx)"e"™, we see that
. 1 d)|[sin x
: — p—inl[2 e
Jix) =e P‘(i dx) X ]
By induction, (d/dx)"x ™! sin x is a finite linear combination of terms of the
form x~* sin x and x* cos x with k <m + 1 so (b) follows.
(c) Jp is the Fourier transform of a distribution of compact support and
therefore an entire function of x. Moreover
e
dx*
is zero if k < ¢ by the orthogonality relations for the Legendre polynomials.
Thus j,(x) = O(x?) as x — 0.
(d) tLet x be the characteristic function of (—1, 1) and let F be the
distribution yP,. Then

= %e"""‘/z(i)(‘ jjly"P,(y) dy

x=0

aF e L P1)8(y— 1) = PA—1)6(y + 1)
dy dy
SO
dF dpP,
— ) — =y(1 — y?) =<
(1 y) dy X( Y) dy
and thus

d 2 dF d 2 dP{
Z (=) =y (1 = )t
dy(1 Y)dy Xdy( Y)dy

= —{(¢ + V)F
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by (d) of Theorem XI.62. Taking Fourier transforms,

2

x( 1+ 3";2-)):;,(» = /¢ + 1))

which proves Bessel’s equation.
(e) Since ™ = (ix)~!(d/dy)e™, integration by parts yields

e~ int/2 -in/2 1

) - ; e . d
: = Z [oix — p—ix — —_— ixy
Je(x) 2 ix [e P/(l)—e P, 1)] 2ix J_ . e dy (v) dy

By another integration by parts, one can see that the second term is O(x~2)
at infinity. Using P,(1) = 1, P,(—1) = (— 1Y, the first term can be rewritten
as x~ ! sin(x — 4nz).

(f) For k and r fixed, the function

S, k, n) = et

is an entire function of # with uniform bounds as k, r, and y run through
compact subsets of R (respectively, C). Thus the Legendre series

@

f(r’ k, r’) = ZO(Z{ + l)at(k’ I‘)P{(P])

=

converges uniformly on such compact sets. Since

alkr)=3 [ PO ) d

we see that a,(r) = e™/2j,(kr) by the definition of Je(x)- 1

Appendix 2 to X1.8: Jost solutions for
oscillatory potentials

In this appendix and the next we shall consider certain classes of poten-
tials with severe oscillations at infinity. To some extent, these examples are
mathematical curiosities—but they are of theoretical interest for several
reasons: First, these examples illuminate the modifications of the wave oper-
ators considered in Section 9; and secondly, there are connections with the
phenomenon of positive eigenvalues (see Section XIII.13).

The net effort of these two appendices will be to show that so long as the
average of V falls off, it does not matter that V fails to fall off. One can
understand this heuristically in terms of the spreading of smooth free wave
packets. Consider the following examples:
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Example 1 Let

V(r) = (1 + r?)~'e" sin(e") (139)
V is clearly very singular at infinity. But its average is not since an integra-
tion by parts shows that

R

J V(x) dx
= (1 +r?)" ! cos(e’) — (1 + R?)™! cos(e®) + 2 ij(l + x%)™ 2 cos(e¥) dx
so that
W(r)= — lim [ " Vix) dx (140)

exists and is “short-range” in the sense that
|W(r)| < (1 +r*)7!
Because of this falloff of the average of V, it turns out that —A + V can be

defined as a sum of forms and that it is bounded from below in spite of the
fact that V is so unbounded. For V(r) = dW/or and thus on R"

V) = ¥ 52 Gilx) + K(x)

where G;(x) = x~'x; W(x) and K(x) = —(n — 1)x™'W(x). On the basis of
this we claim that for any ¢, there is a C, with

((,0, V(p) < 8((p’ (—A)(p) + C;((P, (P) (141)

for all ¢ € CF(R"). K is —A-form bounded with relative bpund zero.
Moreover, by an integration by parts followed by the Schwarz inequality,

4G,
|(0, (0G:/0x;)p)| = j o, |o|? dx

< (¢, G2¢)"*(0/0x;, Dp/ox;)''?

so that (141) follows since G? is — A-form bounded with relative bound zero.
From (141), (¢, V¢) can be extended to Q(—A) and —A + V is a semi-
bounded closed quadratic form on Q(—A). We warn the reader that for
arbitrary ¢ € Q(—A), it may not be true that | |V(x)| |o(x)|* dx < c0;
(o, Vo) is defined via a limiting argument. One can actually develop a

= 2|Re(o, G, 0g/ox)|
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scattering theory for —A + ¥V by mimicking the ideas in Theorem XI.31 (see
Problem 92) or the methods of Section XIIL8 (see the reference in the
Notes). Here we want to consider Jost functions for such V’s.

Example 2  Let

Vir) = jglyjr" sin(a,r) + Q(r) (1422)
with
1Q(r)| < C(1 +r?)~ 4 (142b)

for some ¢ >0 and C. In this case V is bounded, so there is no problem
defining —A + V. Two subtle phenomena are associated with — A + V.In
the first place, there is a potential of the form (142) so that (—A+V)p=9¢
has a square integrable solution even though V¥ — 0 at infinity. (See Example
1 of Section XIII.13 and the discussion there.) In the second place, V(r) does
not fit into the framework of potentials whose scattering theory we have
developed since [ |V(r)| dr = co. In Section 9 we shall develop a modified
scattering theory for potentials like the Coulomb potential. Unfortunately,
the estimates needed to make the Coulomb theory work are not applicable
to potentials of the form of (142). However, that theory suggests the type of
scattering theory one might expect for potentials of this form. In Section 9
we make a modification of the free dynamics in defining time-dependent
wave operators. As t — oo, this modification diverges in the Coulomb case,
and so without it the wave operators do not exist. Because the indefinite
integral (140) exists if ¥ obeys (142), the modification of Section 9 actually
converges in this case; so if the modified wave operators exist, so do the
original wave operators. This suggests that the ordinary wave operators
exist for this case. By investigating Jost solutions for these potentials we shall
see when positive eigenvalues exist and also develop the scattering theory.
This scattering theory appears in the next appendix.

Since we are here interested in the problems associated with oscillations at
infinity, we shall suppose throughout this appendix that V(r) is continuous
and locally bounded. Our methods can be easily modified to accommodate
local singularities in V. In understanding Examples 1 and 2, the following
result is needed; it and its corollaries are easily extended to the case where X
is a Banach space. In our applications, dim X = 2.

Proposition Let X be a finite-dimensional normed vector space. Let
C(x) be a continuous function on [R,, o) with values in #(X). Let D(x, v)
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be a measurable function on Q = {{x, ¥>|Ro < x <y < oo} with values in
£L(X).

(a) Suppose that
y= sup |[C(x)| + sup [ [D(x, y)| dy <1
x2Ro ‘x

x2Ro

Then, for any u, € X, the equation

u(x) = o + C(xJu(x) + [ D, y)uly) dy (143)

x

has a unique solution in L°(R,, o0). Furthermore, this solution is

continuous.
(b) Moreover, if

yr)=sup |C(x)| +sup [ [D(x, y)| dy
x2r x2r “x

80es to zero as r — oo, then lim,_,,, u(x) = u, and for x > R,,

lux) = uo || < ¥()1 = y(x)] ™o |

(c) Suppose that C is continuously differentiable, that D is continuous on
0, and that for each fixed x,

fy)=¢e'[D(x + ¢, y) — D(x, y)]

converges in L' (R, o) to a function, denoted by dD/dx, which is contin-
uous in x in L' sense. Then the solution u of (143) is continuously
differentiable and

w(x) = COxJulx) + COoow(x) = Dlx, ¥)u(e) + | 2 (x, y)uly) dy
) (144)

(a) and (b) remain true if the constant u, is replaced by a continuous
function ug(x) with sup,, g, [[uo(x)]| = Qo < oo so long as ||u, || is replaced
by Q, in all estimates. (c) still holds in this case so long as uy(x) is C* and a
term uy(x) is added on the right side of (144).

Proof (a) Define u,(x) inductively by uy(x) = u, and
) = CONp 1) + [ D, ity () dy

One easily proves inductively that u,(x) is continuous and
sup [lu,(x)]| < y(r)|luo| (145)
|x|=r
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Since y(Ry) =7y < 1, Y n=0Un(x) converges uniformly to a continuous func-
tion u(x) that obeys (143). If v is any solution of (143) in I*(R,, ), by
iterating (143), one finds that

N

0= 3 th(x)

n=0

S AN L/

so taking N = o0, v = u.
(b) By (145),

=0l < 3 3o lhol = )t ~ )" o

(c) Under the hypothesis, u, is inductively seen to be continuously differ-
entiable with

Up(x) = C'(x)up- 4 (x) + C(x)up-1(x) = D(x, x)u,_ 1(x)
[ R ) dy

Using (145), one can prove (Problem 93) the following bounds
inductively:

[0 <my'llug | A(x), x> R,

where

4609 =510 + 10t 91 +

gg (x, y)“ dy)

It follows that Y= u,(x) converges uniformly on any compact subset of
[Ro, ), so that u(x) is differentiable with derivative D=0 Uy(x). Thus (144)
holds. The case when u, is x-dependent is left to the reader (Problem 93). |

Theorem XI1.65 Let A(x) be a continuous function from [R,, o) to
Z(X), the bounded operators on a finite-dimensional normed linear space.
Assume that |A(x)| € }(R, o). Suppose that up € X. Then there exists a
unique continuously differentiable function u(x, uy) so that

du
= A(x)u(x)

and lim,.,, u(x)=u,. Every nonzero solution has a nonzero limit as
X — c0. Moreover, [lu(x)—uo || <2|u, || [* |A(y)| dy for all x with
2140 dy < &
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Proof Pick R, so that [g, | A(x)|| dx < 1. Then, by the proposition,

u(x)= o — | AQ() dy

x

has a unique solution on [R,, o) that is continuously differentiable with
u'(x) = A(x)u(x). Using local existence and uniqueness, this can be con-
tinued to [R, oo). Picking a basis for X, we can find n linearly independeqt
solutions with different linearly independent limits at infinity. By local uni-
queness, these span all solutions yielding uniqueness together with the fact
that every solution has a limit. The last bound follows from (b) of the
proposition. |

Example 3  Consider the equation
—¢"(x) + V(x)o(x) = k*¢(x)

on [1, ) where [ |V(x)| dx <co. Let ¥(x)= (5%) Then ¥'(x)=
C(x)¥(x) where

0 1
Clx) = (V(x) — k2 o)
Let ¢, be the vector valued functions
et ikx
@(x)= (iiketikx)

and write W(x) = a(x)@ 4+ (x) + B(x)e - (x) where « and f are complex-valued
functions. Then g = () obeys g(x) = M(x)¥(x) with

MG =20 (s S |
Thus
¢(x) = D(x)q(x) (146a)

where D(x) = M'(x)M(x)™! + M(x)C(x)M(x)~! so
D(x) = (2ik)~ 1V(x)( e ] -mx) (146b)

Applying Theorem XI.65 to (146), we see that if (¢ |V(x)| dx < o0,
then (146) has solutions asymptotic to any g, as x — co. Taking ¢ = (3),
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we find a solution ¢ of the Schrodinger equation with |p(x) — e**| +
|¢(x) — ike™*| — 0 as x — c0. We thus have a proof of the existence of Jost
solutions somewhat independent of the one given in the section.

Example 4 Consider solutions of —f"(r) + £(¢ + 1)r™2f(r) = kf(r).
Proceeding as in the above example, one can show that any real-valued
solution obeys | f(r) — C sin(kr + D)| = O(r™!) and in particular

| krj,(kr) — sin(kr — $n/)| = O(r~ 1)

To handle Example 2, we need an interesting extension of Theorem X1.65.

Theorem XI.66 (Dollard-Friedman theorem)  Let A(x) be a continuous
function from [R, ) to £(X), the bounded operators on a finite-
dimensional normed linear space. Suppose that 4 = 4, + A, where

() 14:()] € LR, o).

(i) B(x)= —lim,., [ A,(y) dy exists.
(i) [B()A()] € L(R, o).
Then there exists a unique continuously differentiable X-valued function
u(x; up) such that

and lim, ., , u(x; uy) = uy . Every nonzero solution of the differential equa-
tion has a nonzero limit as x — oo and

|"(X; Up) — “o|

<2{sup 180)1 + [ 140 &y + | 1BOMON )l 197

for all x such that the expression in ( ) is smaller than 4.

Proof We begin with some manipulation of the formal equation

@

u(x) = uo — [ A(y)uly) dy

x

Write A,(y) = dB(y)/dy and integrate by parts. The boundary term at
infinity should vanish since

lim [B(y)] =0 (148)

y—t®©
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on account of the convergence of the integral defining B(y). Using u'(y) =
A(y)u(y), we find that

u(x) = o + Bu() — [ [4,0) - BOAOMG) dy  (149)

Having arrived at (149) formally, we solve it and then show that the solution

has the required properties.
Let

7() = sup [BO)| + (14091 + |BOMOM) dy

By (148) and the hypotheses, y(x) =0 as x — 0; so, by the proposition,
(149) has solutions in [R,, co)for R, sufficiently large and the solutions obey
(147). By (c) of the proposition, the solution is C* and

u'(x) = B(x)u'(x) + Aa(x)u(x) + [4,(x) — B(x)A(x)Ju(x)
so that
(1 = Bx)pu'(x) = (1 — B(x))A(x)u(x)

By (148), 1 — B(x) is invertible for x large; thus, we have the desired solution
of the differential equation for x large. The rest of the proof follows by local
solvability as in Theorem XI.65. ||

Example 2, revisited We seek solutions of —¢”(x) + V(x)p(x) =
k3@(x) where V(x) has the form of (142). As in Example 3, we begin by
writing the equation in the form of (146). Write D = D, + D, where D,
comes from the Q(x) term and D, from the r™ ' sin(«;r) terms. D, is clearly
in I!. Moreover, since

[rtemar=agyen |+ oy [rem

we see that for § # 0, lim,.,,, |7 y~'e'” dy exists and the resulting function
is bounded by r~!. It follows that, so long as «; # +2k for all j, B(r) =
® D,(x)dx exists as an improper integral, and BD e ! with
{2 |B()D(y)|| dy = O(r™*). As a result, Theorem XI.66 is applicable and
immediately yields a proof of (a) and (b) of the following theorem.

Theorem XI.67 Let V have the form of (142).
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(@) Let k be a real number with k # 0, +4a,, ..., +1a,,. Then every non-
zero solution of —¢” + Vo = k?¢ satisfies

lim [p(x) — ae** — be~**] = 0

P 2ad-

for suitable a and b. In particular, —¢” + V¢ = k% has no nonzero
square integrable solutions.

(b) For any k as in (a), there exists a unique solution ¢(x; k) of
—@" + Vo = k¢ on [1, o0) satisfying

|o(x; k) —e™ ™| < |x|™% x2>1

with a = min{l1, 2¢} where ¢ is given in (142b). Moreover, ¢, can be
chosen independently of k as k runs through a compact subset of
(ke Rlk#0, +4a,, ..., +4a,}. ,

(c) Suppose that k = 4a; for some j. Then there exists a solution u of
—@" + Vo = k?¢ that satisfies

rovi(cos(fo,r) + o(1)),  y;/a;>0

u= rev2eysin(da;r) + o(1)),  y;/e;<0

For a proof of part (c), see the reference in the Notes and Problems 97 and
98. The point of part (c) is that when y; is bigger than a;, there is a solution of
the Schrodinger equation that is square integrable at co. In general, if one
has a one-parameter family of such potentials, one of the solutions will obey
the requisite boundary conditions at the origin. Therefore, there exist Schro-
dinger operators with positive eigenvalues embedded in the continuous
spectrum. This is further discussed in Section XIII.13.

In the next appendix we shall see that so long as ¢ > 4, part (b) of the

theorem can be used to prove that Q*(—A + ¥, —A) exist and have equal
ranges.
. The proof of the Dollard-Friedman theorem and the solution of the
problem posed in Example 2 involved integration by parts in the obvious
integral equation. The same method works in Example 1, but the “suitable
equation™ is not given directly by (146) but rather by the Jost integral
equation (126). We remark that one can “derive” the Jost equation easily
from (146).

Example 1, revisited We begin with the Jost equation and formally
manipulate under the assumption that V(r)=0W/dr with
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[ |W(r)| dr < 0. Integrating by parts in

) &k(kx—_i) V(y)o(y) dy

and dropping the boundary term at infinity, we obtain

olx)=e % — |

Yx

o(x)=e** — [ W(y)cos(kx — ky)p(y) — k™" sin(kx — ky)e'(y)] dy
; (150a)
and similarly, integrating by parts in

9 = —ike™ = [~ coslx = kn)V()o) dy

X

we obtain

@'(x) = —ike™™ + W(y)o(y)

+ [ W)k sin(kx - ky)p(y) + cos(kx = ky)e'(y)] dy ~(150b)
Rewriting (150) as a system of equations for (¢, ¢’), we see that it has a C!
solution on account of the proposition. Using part (c) of the proposition,
one easily sees that the resulting solution obeys ¢”(x) = V(x)p(x) — k?¢(x).
We summarize with:

Theorem XI1.68 Let V(r) be a continuous function with V(r) = dW/or
where W e L'[1, ). Then:

(@) —¢” + Vo = k*p has no nonzero square integrable solution for k # 0.
(b) Suppose that |W(x)| < C|x|™ !~ Then, for any k # 0, there is a solu-
tion @(x; k) of —¢” + Vo = k*¢ in [1, 00) with
lo(x, k) —e™ ™| <c(k)|x]™*, x=1

c(k) can be chosen independently of k for |k| > ko > 0.

Appendix 3 to XI.8: Jost solutions and the
fundamental problems of scattering theory

In this appendix we consider cases where one has regular solutions of the
Schrodinger equation u,(x; k) and good control on how fast |u,(x; k) —
sin(kx — 3/ + 6,)| goes to zero as |x| goes to co. From this information
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we shall prove that Q* exist, that Ran Q* = Ran Q™ and that S is multipli-
cation by e2%® in the representation where energy and angular momentum
are diagonal. This will enable us to recover some of the results of the section
and more importantly to develop scattering theory for some of the potentials
of Appendix 2. Moreover, it will shed some light on the invariance principle
for wave operators. Throughout, we use the symbol X for x/|x|. The basic
result is:

Theorem X1.69  Let V(x) be a central potential on R® so that —A + Vis
essentially self-adjoint on C{(R?). Suppose that for each # = 0, 1, ..., there is
a closed set &, of measure zero in (0, co) such that for each k € (0, ©)\&,,
there is a real-valued distributional solution

o(x; k) = (k[x|)" ul]x]|; k)Yom(%)

of (—A + V)p, = k¢, obeying
|ug(k, r) — sin(kr — 3¢ + 6,(k))| < c (k)(1 + |r])" %7 (151)
for a fixed y > 0. Suppose that ¢,(x; -) and ,(-) are measurable and that
supy ek ¢/(k) < o for every compact subset K of (0, ©)\&,. Then,
Q*(—A + V, —A) exist, Ran Q* = Ran Q, and S = (Q7)*Q" is given by

s [{z Vul8) [ el |X])enlk) dk] = TYnl) |tk x| )er k)
,m em *

(152)

Proof Fix ¢, m, and fe C§((0, 0)\&,). Let

V00 = Va8 | (6x) el )1 ()

V) = Youls) [ illoe 540 (k) dk

Using (151) and f e Cg, one easily sees that  and '’ are in [*(R?) (Prob-
lem 94). We shall show that
lim |e™ "y — e~ "Hoy | =0 (153)

t— F oo

Once (153) is proven, we conclude that Q* exist for a dense set and obtain
formulas for Q* that establish Ran Q* = Ran Q~ and that (152) holds. Let

'C be complex conjugation. Then e~ "o C = Ce'o and ¢~ "C = Ce™™, so

(153) need only be proven for the case t -+ — co.
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Since —A + V = H obeys Ho,(- ; k) = k®@,(- ; k) in distributional sense,
we see that for n € CP(R3),

(H’?’ 'p) = ('la J)

where ¥ is given by the formula for y except that f (k) is replaced by k*f (k).
Since H is essentially self-adjoint on C§, ¢ € D(H) and Hy = . Repeating
this and using the fact that fe Cg, we see that

05 1) = (€0 = Yol | (1) s e ()
Similarly,
V1) = (€ )o) = Yuld) [ Il e () dk
Now, define 5(x, t) by '
0%, t) = V(%) j:(kx)-l sinkx — 3¢ + 5,(k))e= "1 (k) dk
Then

a(x)= |Y(x, t) = n(x, 1) = | Vm(®)|

[ (kx)~*a(x, K)e™ %1 (k) dk
o
where g(x, k) = u(x; k) — sin(kx — §/n + §,(k)). Now, for each fixed x,

(kx)~*q(x, k)f (k) is in L*(0, o0) as a function of k by (151), so &(x)— 0 as
t— + oo by the Riemann-Lebesgue lemma. Moreover, by (151),

| (X)] < C| V()| x~2(1 + x)~ 27

for all ¢. Thus, by the dominated convergence theorem, | |, (x)|* d*x — 0 as
t = + co. This reduces the proof of (153) to showing that

JW‘E’(x, t)—n(x, t)>d>x—>0 as t- -
Let
C2(%, 1) = Yin(8) [ (ko)1 rgt 0 ¥ ni2g= 21 (k) i
By Lemma 3 of Section 3,

lim I [{+(x, t)? d®x =0

t—— o0
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SO

lim [ [n(x, 1) = 4iL_(x, )| d®x = 0

t—=—o

The same set of arguments we have just made leads to

lim j [WO(x, £) — $i{_(x, 1) d®x = 0
| Sndiad o
if we use |krj (kr) — sin(kr — 4¢n)| < C(k)(1 + |r|)~ ! in place of (151). We
conclude that (153) holds. J

In the above, ¢ was a generalized eigenfunction with eigenvalue E(k) = k2.
The exact functional form of E(k) played no role in the proof, which goes
through as long as E is strictly monotone. This not only demonstrates that
an invariance principle holds in the context of the above theorem, but makes
transparent the reason that invariance holds at all.

Corollary 1 If ¥(x) is a central potential satisfying
V)| < C(1 + |x])~#*

(e>0), then Q*(—A+ V, —A) exist, Ran Q* = Ran Q~, and the S-
operator is given by (152).

Of course, this result is not a new one for us—stronger results are proven
in Section 8—but the proof is quite direct. The following result is based on
Theorem XI.67.

Corollary 2 Let

V(x)= .;yjr" sin(a;r) + Q(r)

with |Q()| <C(1 +7r)"%"*. Then Q*(—A+ V¥, —A) exist, RanQ* =
Ran Q7 and the S-operator is given by (152).

By modifying the arguments slightly, one can accommodate some of the
highly oscillatory potentials of Theorem XI.68 (Problem 95). Moreover, by
appealing to results from the theory of ordinary differential equations, one
can prove that Ran Q* = Ran P, (—A + V) and that —A + V has no sin-
gular continuous spectrum in the situations described by Corollaries 1 and
2. Finally, we note a version of Theorem X1.69 for noncentral potentials.
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Theorem XI.70 Let V(x) be a measurable function on R? so that
—A + V is essentially self-adjoint on C3(R?). Suppose that there is a closed
set & of measure zero in R3, so that for each k € R*\&, there is a distribu-
tional solution ¢(x, k) of (—A + V)¢ = k¢ obeying

lo(x, k) — ™ * — p(k, X)x e | < C(k)(1 + x)~ (154)

for |x| > 1. Suppose that ¢ and y are measurable functions, that ¢(x, k) =
@(x, —k), and that sup,.x |C(k)|] <oo for every compact subset
K = R*\(¢ U {0}). Then QF exist, Ran Q* = Ran Q,and § = (Q™)*Q* is
given by

(5)(x) =/ (x) + f‘”sz [ Bl Q)7 ([K|w)e* ™ = a% d(w)
where
Blk, @) = in™'y(k, Q)

The details of the proof, which are very similar to those of Theorem XI.69,
are left to the reader (Problem 96). However, since the proof provides such a
graphic picture of scattering and one which is so similar to that in certain
physics textbook presentations, we sketch some of the intermediate steps.
Let g € CF(R3\(€ v {0})) and

v(x) = [ g(k)o(x, k) d
Then, as in the central case,
(™ )(x) = [ gkle™*o(x, k) dk

By (154) and the dominated convergence theorem, |le™ ™"y —n, | -0 as
t - + oo where

mix) = [ gl)e™ (e = — plk, D) 'e] %k

The point is that as t - — oo, the second term goes to zero by an extension of
Lemma 3 of Section 3 so that [|e™ "y — e~ #Ho[(27)¥%5]| = Oas t - — c0. As
t = + 00, both terms contribute, and we have both the original wave and a
“scattered ” wave.
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X1.9 Long-range potentials

Both the classical and quantum-mechanical scattering theories that we
have developed depend on estimates whose proofs break down when the
potentials have r~! falloff. From what we have done so far, it is not clear
whether the results could be pushed through for long range potentials with
more work on the estimates, but one consequence of what we do in this
section is that, in fact, the unmodified theories do not extend further; for
example, using Theorem XI.71 below, one can prove (Problem 99) that

w-lim "(-4-r"hgitd - (155)
t=t
so that the strong limit does not exist.

In this section we shall first discuss briefly the classical and quantum
Coulomb problems and then systematically develop the general long-range
case.

At first sight, the scattering theory for classical Coulomb forces seems to
be in fine shape. The solutions of

t=—r"%r/r)

are well known in closed form. The quantities /=i xr and
E=4|i|* —r~* are conserved. Picking polar coordinates in the plane
orthogonal to ¢, the orbits are given by

r(0)™! =¢71+ /T + E? cos(8 — 6,)]

This describes an ellipse (or circle) if E < 0, a parabola if E = 0, and one
branch of a hyperbola if E > 0. The hyperbolic orbits are clearly the ones
one should try to associate with a scattering theory. There are straight line
asymptotes to the hyperbolas, which means that the orbit in x space is
asymptotic to free orbits. Moreover, the velocity clearly has a limiting direc-
tion as t — + oo and by the fact that r — c0 and v = V2E+2r7! it has a
limiting magnitude also. Thus the orbit in phase space is asymptotic to a free
orbit. The problem is with the time parametrization of these orbits. Free
orbits have re.(t) = et + b + o(1). On the other hand, since i has a limit in
the interacting case

r(t) =ct + oft)

as t - co. We can further analyze the o(t) term in this expansion by using

715 % =VE+r 1= JE(l + QE)}ct)™! + o(t™ 1))
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to obtain
r(t)=ct+dInt+0(1)

as t — co. This makes it clear that the Coulomb orbits r(t) do not approach
a + bt, but nevertheless the occurrence of asymptotes suggests strongly that
some kind of modified scattering theory should work. There is a logarithmic
slippage of the physical time parametrization of the Coulomb orbit relative
to the physical time parametrization of the free asymptote. Notice thatd >0
so that the particle on the interacting orbit is moving out faster than the
corresponding free particle on the asymptote. At first sight, this seems sur-
prising since the potential is attractive; the point is that because the poten-
tial is attractive, energy conservation implies that the interacting particle is
moving faster than its asymptotic velocity.

The above suggests what we might expect in the quantum theory. In
lim e#'e~Hot we must expect to replace e”'Ho' by e~ where s(t) =
t + d In t. Moreover, looking at the above, one sees that the constant d should
be a function of the energy E, that is, e”*#%' should be replaced by
exp[—iHot — if (Ho) In t] for suitable f. To see what choice we should take
for the modified quantum dynamics,

Up(t) = exp[—itHo — if (Ho) In 1]

we note that in applying Cook’s method to exp(it(Ho + V))Up(t), we shall
have to estimate

IV — ™Y (Ho)lUn(t)o|

Now, since Up(t) is almost e~ *#°, we expect, by Theorem IX.31 and also by
stationary phase ideas that for large ¢, “x ™ will look like 2pt since m = 4if
H, = —A. Thus x~ U p(t)e will look like 4(pt)™*Up(t)e. Thus, to effect the
cancellation we choose f(Ho) = —4p ™!, which is also the choice one would
make on the basis of the classical solutions. To avoid a singularity at t = 0
and accommodate H = —A — Ar~! we change things slightly and define

Hp(t) = Ho — $A(p|t|)~0(|4tH,o| — 1)
where H, = —A and 6(a) is the characteristic function of (0, o). Let
: t
Up(t) = exp(«-ij. Hp(s) ds) (156)
0
Notice that in (156) we can regard the integral as an integral of functions of p

and then define U ,(t) by the functional calculus as a multiplication operator
in momentum space.
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Theorem XI1.71 LetHy= —A, H= —A + V(r),
Vir)=—-2r"'+ V), reR?
where V(r) obeys (45). Then

Q} = f-lixm eMUL(t)
=+

exist and define isometries with

e Ot = QfeiHos (157)
Proof We shall prove that
I(H = Hp())Un(t)o| € L'(£ 1, +00) (158)

for ¢ iri a der.xse set 9 o( I2. From this estimate, the existence of Q3 follows.
The Q3 are isometric since Up(t) is unitary. (157) follows as in the short-
range case if one notes that (Problem 100)

s-lim Up(t)*Up(t + s) = e~ Hos

t+t

For t > 0, define

Hp(t) = Hp(r) - H,
and, for t > 1/4p?,

Apt) = L‘H o(s)ds = —4ip~'[In ¢ + In(4p?)]
(158) in the case (1, o0) follows from
[Vir) exp(—iHot — idp(t))e|| € L} (1, o) (159a)
and
(=21 = Hp(t)] exp(—iHot — idp(t))o] € (1, ) (159b)

(159a) holds for those ¢ w.ith ¢ € C3(R*\{0}) by an elementary modification
(Problem 101) of the stationary phase method of Theorem XI.16. Let

n(x, t) = exp(ix?/4t) exp(idt(2x) ™ In(x?/t))
and for ¢ € CF(R3\{0}), define
Ry(x, 1) = Up(t)o(x) — (2it)™*n(x, t)ip(x/2t)
We shall show that R, satisfies
|Ro(x )] < Clin[e|)ie=>2[1 + (x/t)2] " (160)
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for all |t| > 2, any integer m, and suitable constants C and u depending only
on m and ¢, and that (160) implies (159b).
We first note that (160) implies that

lim | Up(t)p — (2ir)™*n(x, p(x/21)]; = 0 (161)

1= x

for § € C§ and so for all . This is an analogue of (IX.33) and will be very
relevant for the physical interpretation of Q3 discussed below.
Let ¢, = (p~'®)". Then for t sufficiently large

[(ar=" + Hp(t)Un(t)e)(x) = (Ax™'Up(t)e)(x) — A(2t) (Un(t)e1)(x)
= Ax"'R,(x, t) — A2t) 'R, (x, t)
since there is exact cancellation between the terms Ax ™ '5(x, t)¢(x/2t) and
A(2t)" 'n(x, t)p(x/2t). Now, by (160),
4%~ 2Ry, D < £ *(tn]e])
and similarly for the ¢, term. Thus (159) follows if we can prove the estimate

(160).
To prove (160), define ¢c(x, t) by

eclx, 1) = [e7""0p](x)
so that for ¢ sufficiently large,
felk, 1) = exp[izk =1 In(ak*0)]p(k)
Since ¢ € C3(R?\{0}), we see that &c(, 1) € S(R?), and for any norm |- |,
on & and all t with |t] > 2,
1c(-> Olla < Ca In(|2])

and thus
loc(:s )la < D, In( || (162)

since ~ is a homeomorphism of & to %. Now we just follow the proof of
Theorem IX.31: Using

(Unlt)p)(x) = (4mir) 2 [ ei==94165(y, 1) dy
and

ei(x— y)2d4t eix2/41e— ix- y/2leiyzl4t

we see that

R, (x, t) = (4mir)~ 3/2¢ix4t [ e X A _ ) (y, ) dy  (163)
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Using |e"¥* — 1| < | y*/4¢| and (162), we see that
|Ry(x, )] < CJe|=*2 In[e| )

Similarly, from (163) and an integration by parts, we see that

90

< [e]72| [ (= A= 72)(eb ¥4 — D)ooy, 1) dy

< 11722 [ (= A,y — Dpc(y, 1)]] dy
S Cp [t]7%2(In || ypem
so that
(L (/1)) | Ry(x, 1)] < Cat]7%2(In [ 2]
which proves (160). J

Before turning to the physical interpretation of Q% we note two con-
sequences of their existence:

Corollary 1 Suppose that Vi(r) - 0 at oo as well as obeyi
4 ‘ ying (45). Then
0.(H) = [0, 0) where H = —A — A"t + V(r). )

Corollary2 If A+ 0and H is given as above, the ordinary w
\ ave opera-
tors Q*(H, H,) do not exist. ’ >

Corollary 1 is the standard consequence of (157). Corollary 2 i l
reader (Problem 99). ( ) ry 1S Cfl to the

We now turn to the physical interpretation of QF. Let ¢y = Q¢ and

definey, = e~ M1y, o[ = ¢~ Holgp (@ - Up(t)e. It is not true, as it would be
in the short-range case, that | — y, | -0 as t - — oo. Rather

[0 = w0 s to oo
However, by (161) and (IX.33), we have that

”'7:‘/’;0) - (D}D)" -0 as t—- +o
and

76— 6P| =0 all;
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for suitable fixed functions #,(x) and y,(k) of magnitude one. Thus, as
t— —00,.

dx—-0

J| loPF - 1P

f| 1600 - 13631 do 0
Therefore, even though y, is not an asymptotically free wave function, its
probability distributions for both position and momentum approach those of
the free wave function ¢{® as t - —0o. A similar statement holds as t — co.
In this sense the motion is “asymptotically free.”

One can prove that QF are complete if one makes stronger hypotheses:

Theorem XI1.72  Suppose that

(i) V,is —A-bounded with relative bound a < 1.
(il) Vi(Ho + 1)~™" ! is trace class for some m.

Then QF are complete in the sense that
Ran Qj = Ran Q; = #,.(H)

This result can be proven by combining the reference in the Notes with
Problem 102. We also remark that multichannel modified wave operators
exist; see the Notes. Using the methods of Section 17, Enss has proven
strong versions of this result. It seems likely that multichannel analogues will
also be proven.

In the remainder of this section, we wish to discuss scattering theory for
more general long-range potentials than Coulomb potentials. This general
theory will illuminate the choice of Up(t).

Let us first consider the classical case. Suppose that F = —VV with

lim ¥(x)=0 (164a)
|F(x)| <k(1+x)"'° (164b)
|0F(x)/ox; | < k(1 + x)~*"® (164c)

where o > 0. Of course, if « > 1, we are in the short-range case of Section 2,
so we suppose a < 1. For convenience, we suppose that « ! is not an integer.
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We shall also suppose occasionally that F is “almost central” in the sense
that for some ¢ > 0,

[FL(x)] <k(1+x)72 (165)

where F | (x) = F(x) — F(x) and F(x) = x~3(x * F(x))x.
As in the short-range case, we consider

X0)=p@),  B)=-VV, p0)=p,, x(0)=x, (166)

and define

T, = <<xo, Po) € R®| V(x,) + $p2 > 0 and the solution x(t)

of (166) obeys lim |x(t)| = oo}

t—+F o

As in Section 2, one can show (Problem 103) that £, = X _ almost every-
where and that for {x,, p,) € £, we have, for some ¢ > 0,

[x(t)] = c|t] —d (167)
for all t with Ft>0.

Theorem XI1.73  Let F and V obey (164).
(a) Let <x(r), p(t)) be a solution of (166) with initial data in X, . Then

lim p(t) = p;s
1= —-c
exists. Moreover, p(t) — p;, = O(|t|™®) as t = — oo and every value of
Pi. ¥ 0 occurs.
(b) Ifx,(t), x,(t) are two solutions with lim,_, _, (p;(t) — p,(t)) = 0, then

| Andiadl o}
exists. Moreover, |x;(t) — x,(t) — a| = O(|¢|™*) as t » — oo, and for
given p;, # 0 and associated x,, every value of a occurs. If a = 0, then
Xy = X, for all £; and if a = p;, 1, then x,(t) = x,(t — t,).
(c) Suppose moreover that (165) holds. Then for any vector, w with
we pin = O’
lim x(r) « w = o(w)

1= -
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exists and x(t) + w — a(w) = O(|¢|~?) where 6 = min{e, «}. Every linqar
functional « on {w|w - p;, = 0} occurs as one runs through all x with
given p;, ¥ O.
Proof Let {(x(t), p(t)) be a solution with initial data in X, . By (164b) and
(167),
[FO(E)] < k(1+ [x(e)[)7!7* < Cy(1 + [e])77e

so that
t

lim p(t) = po + lim I F(x(s)) ds
t—— o0 t=--ow 0
exists and we have p(t) — p;, = O(|t|™*). We defer the proof that every value
of p;, # 0 occurs.
Let x,, x, be two solutions with the same value of p;,. Let A(t) = x(¢t) —
x,(t). Then

AO] = 120~ P20 < [ [Fles(s) ~ Flxalo))] ds

since pi(t) = pin + |- o F(xi(s)) ds. Now, by (164c) and (167),

| F(x1(t) = F(x5()| < C, [A(R)[(1+ [¢])727
so that
t
AOL <[ 1AE)I(1+|s])2ds (168)
Now suppose that |A(t)| < C,|t|, « <y <1 for t < —1. Then by (168),
|A(t)| < C(1 + a = y)~t|e|"17**7 so that
<clep

|A()] = A(—1)+_[' A(s) ds

-1

Note that |A(t)| < C|t]. So, using the above N times, where N is chosen so
that N < 1, a(N + 1) > 1, we have that |A(t)| < C’|t|' ~™ Then, by (168),
fort <0,

|A@e)] < C((N + D))" [e]7 ™+ 1=

so that lim,., _ , A(t) = A(0) + lim,, _, 5 A(s) ds exists. This means that
A(r) is bounded, and thus by (168), A(t) — a = O(|t|™*). Again we defer the
proof that every a occurs. '
If a= 0, then A(t) >0 as r - — 0. As a result, by (168), we can write for
t<0
A < @+a) ' (1+ ) (1 + [t])™* sup |A(s)]

- sSs<t
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Choosing ¢ so that (2 +«) (1 +a) (1 + [t])"* < 1, we conclude that
A(s) = 0 for s < t so that A(r) = 0 for all ¢ by local uniqueness.

Given t, and x,(t), it is easily seen that x,() = x,(t — t5) obeys x5(t) = p;,
and x,(t) — x;(t) = fi_,, %,(s) ds = p,. to . By the uniqueness just proven,
any x, with x, — p;, and x;, — x, = p, t, is equal to x;.

Now suppose that (165) holds and let w - Pin = 0. Suppose that
[w - F(x(t))| <C|t|™" where 1 <y < 2. Then, since

w-p(t) = JJ w + F(x(s)) ds (169)

we x(t) = w- x(0) + jo'(p(s) - w) ds
we have

[w-x(t)| < Cao(1+ [2])*~?
So, by (167),

[wex(@)] |x(e)]7F < Co(1 + [2])t~7
As a result, using

la- Fe@)] < |Fu(x()] |a] + '—,ﬁ” | F(x(s))|

we have by (164b) and (165),
|w F((0)] < (const)[(1 + [¢])727¢ + (1 + ¢])=r~]
By repeating this process, beginning with y=1+aq,
|w - F(x(t))| < (const)(1 + |¢])~2"?

where 6 = min(e, a). Thus, using (169), we have that w - p(t) =0(|t|~179),
so w - x(t) has a limit a(w) and w - x(t) — a(w) = o(]t]™?%).

Finally, we return to the question of existence, that is, that every p,, #0
and a occurs; this will automatically imply that every a occurs for the linear
map wi—a(w). Obviously, it suffices to construct an auxiliary function
z(p, t) so that lim,, _, z(p, t) = p and then for any a, a solution x(t) with
lim,, _, (x(t) — z(p, t)) = a and lim,,_ X(t) = p. z will replace the ele-
mentary pt used in the short-range case. Once, we have the “right” z(p, t),
we shall construct the solution x by the contraction mapping theorem as
in the short-range case.

How can one find a good choice for z(p, t)? To get an approximate value
of z which will go topas t— — oo, we shall try to integrate from t = — o0,
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i ing z from — oo since Z will
However, we shall not be able to get z by integrating z ' .
approach p only as a power |¢|™® with & < 1. Thus we shall integrate z from

t = 0. Therefore we define z,(p, t) inductively by
2o(p, t) = pt

o, )=p+ | Fl(p,5)) ds

zn(p’ t ) = IO‘ in(p’ S) ds

We take z(p, t) = zy(p, t) where N = [1/«], the integral part of 1/a. Clearly,
for any fixed p# 0 and ¢t <0,
|2p. 1)] = c|t] —d (170)
forn=0, ..., N and some ¢ > 0. Moreover, by a simple inductive argument
of the type we have already used,
|z(p, 1) = 24— 1 (p, )| < Kt' 7™ (171)

forn=1, ..., N. Now, if x obeys
x(t) = F(x(1)
x(t) — zy(p, t) —a—0
X(t) - Zn(p, 1) >0
then y(t) = x(t) — zn(p, t) — a obeys

WO = [ [Flealp.s)+a+ () = Flev-slp s ds dw (172)

- @

i i i ’ tion with the
Conversely, solutions of (172) yield solutions of Newton’s equa 1 th
desired asymptotic behavior. Given (164c), (170), and (171), one can mimic
the contraction mapping method of Section 2 (Problem 104) and find solu-
tions of (172) and to obtain the existence result needed to complete the

proof. |

i ical i i i ? Consider the case
What is the physical interpretation o( this theorem? .
where both (164) and (165) hold. Then, given Pin #0 anc'i b,, perpendicular
to p;,, there is a one-parameter family of solutions x, with

xs(t) - Pin
X5(t) = Pin(Pin * X(5))Pin® = by
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as t— — oo. They differ only by time parameterization, that is, x(t) =
Xo(t — s). Thus, if <x,(0), X,(0)> € Z _ (and this will happen for almost all p;,,
bi,; see Problem 105), lim, .., X,(t) = p,,, and

'lim [x,(t) = Pout(Pous x(s))p;f] =b,,

are independent of s. As a result, one has a natural definition of a map

g: <pin’ bin> nd <pou(’ bwt>

As in the short-range case, if the force is central, b,, is completely
determined by p,,, and conservation of angular momentum, so that S is
described by giving a single scattering angle as a function of p,_ and b,,. The
point is that we can see precisely what is lost in going from short-range to
long-range; namely in the long-range case, there is no finite time delay. In
fact, one can show (Problem 106) that if V.(x) is some short-range
modification of ¥, say ¥,(x) = e~ ***¥'(x), then as ¢ — O the part of the scatter-
ing operator given by S, converges to the § defined above. Typically the time
delays will diverge as ¢ —» 0 if V is truely long-range.

The above discussion suggests that the problem of long-range quantum
scattering should be connected with infinite, energy-dependent phases since
classical time delay is analogous to the phase of the quantum scattering
operator. The changes from the ordinary to the modified dynamics can be
viewed precisely as an infinite energy dependent adjustment of phase. Unfor-
tunately, the above formulation does not have a quantum generalization
because the map {p, a) — zy(p, t) + afor fixed ¢ is not in general a canonical
transformation, so that it will not in general correspond in quantum
mechanics to a unitary operator. One can sometimes construct approximate
solutions Z(p, 4, t) so that {p, a) - %(p, a, ¢) is a canonical transformation
for each ¢ and so that there is a solution x(p, a, t) of (166) with |x — 2| +
|[*—%| -0ast— —co and #(p,a, t)—>p, 2(p, a, t)—%(p, b t)>a—bas
t— —oo. It is the analogue of this classical construction that we shall follow
in the quantum case below. One can reprove Theorem XI.73 by following
the arguments that we shall give in the quantum case below in the classical
case, and thereby one can obtain a proof with an approximate dynamics
which is given by a canonical transformation; see the reference in the
Notes and Problem 107.

Theorem XI1.74 Let V=1V, + V; be a measurable function on R" so
that V; obeys (45) and ¥, obeys

|(D*V)(x)| < C(1+ %)% Ja| <M
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where ¢ > 1if M = 1,6 >} if M = 2,and ¢ > 0if M = 3. Then, there exists a

C* function W(k, t) for k € R"\{0}, t € R, so that

(@) Wik, s+ 1) — W(k, t)—¥sk? (173)
as t » + oo for each fixed k, s. )

(b) For any self-adjoint extension H of —3A + V on C§(R"),

s-lim U, (t) = Q3

t= Foo
exist where Up(t) = exp(—iW(—iV, t)).

The full proof of this result involves many detailed es'timate.s. We shall not
give it here, but will describe several important aspects including the method

for constructing W. ._
The point of (173) is that it implies (Problem 100) that

s-lim[Up(t + s)Up(t)~1] = e~ isHo

t—=t o
so that the usual intertwining relation holds:
e—isHQlt) — Q:l!:)e—islio

Of course, one can object that W may not be uniquely deter_mined, and in
fact it is not. However, if W and W" are two functions for which (a) and (b)
hold and if Ran Q} = s#,.(H), then (Problem 108) there is a measurable
function F(k) that is finite a.e. so that

(Q; )r = QgeiF(—iV)

In particular, Ran Qj is independent of W and so asymptotic completeness
holds for one choice of W if and only if it holds for any other chonge.

In addition, one can show that for any choice of W, the asymptotic prob-
ability distribution of Up(t)f in both x and p space is the same as that of
e~ "Hof Of course, if (Q3 ) = QF ¢F+™), then the kernel of the on-energy-shell
S-operators obeys

S'(k, k') = S(k, k')e! +®=F -k

so that the differential cross sections will also be independent of Fhe choice of
W. Unfortunately the “ phase” of S(k, k) is not determined }lntll one mal.<es
a choice of W. The question of what is the “right phase” is an interesting
question which we discuss in the notes. '

We now turn to three aspects of the proof of Theorem X1.74: (i) smooth-
ing V., (ii) choosing W, (iii) some remarks on the detailed estimates.
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Clearly, given V obeying the hypothesis of Theorem X1.74, there will be
many decompositions of V into V, + V, where ¥, obeys (45). The first step is
to pick a decomposition such that ¥, is C* with derivatives that fall off more

and more rapidly at infinity. In fact one can construct such a decomposition
with

[(D*VL)(x)| < Ca(1 + x)7mdeD (174a)
for all « where
m(1) + m(3) > 4 (174b)
and
m(¢) =6/ —¢ (174¢)

0 > . For example (Problem 109), in the case ¢ > 0, M = 3, one can take
m(1)=1+em2)=2+emB3)=3+¢em(¢)=3+e+%¢ —3)for’ > 3.
How does one construct ¥V, ? Begin with a breakup V. + V, = V. The
obvious first guess for ¥V, would be f = h « V., where his in CQ.f is C*, but
higher derivatives will not automatically fall off since ¥, may only be C! and
Dh has no “falloff.” Somehow even though h is fixed, one wants it to be
more and more spread out as x—oo! To arrange this, one writes
V=Y V{ where V{ have support in wider and wider spherical shells
which march out to infinity. Then we take V, = Y hy, * V" where the h,
become more and more spread out. To get V, — 7, short-range, one needs
an additional trick. The construction for the case ¢ > 0, M = 3 is outlined in
Problem 109.

As we shall explain later, (174b) is critical. It clearly holds in case M = 3,
€ > 0; and it is the reason that for ¢ > 0, M = 3 always works and we never
need a priori information on D*V, with |a| > 4. It also is the reason one
needs & > § (respectively, & > ) if M = 1 (respectively, 2). When one goes
through the above construction of a new ¥, , these values of ¢ are required to
assure (174b) (see Problem 110).

Next, we turn to the construction of W. In applying Cook’s method to
control the limit Q% one has to estimate

” (% k2 + V(x) - %VIK) ek X~ Wk-0 (k) dx dk

The short-range piece of ¥ should be controlled as in the short-range case.
The long-range case will have to be cancelled in part by dW/dr as in the
Coulomb case. If the method of stationary phase is used, we expect that the
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above integral will be concentrated near points where x = dW/dk. Thus, to
effect as great a cancellation as possible, one might try to solve

i} k> ow
_”) k= _ow 175
VL(ak 1T (175)

Before discussing exact solutions of this nonlinear partial differential equa-
tion, we want to write it in some alternative forms and discuss approximate
solutions. It is natural to think of Up(t) as coming from integrating a time
dependent equation with Hamiltonian

H(t)=H, + f(—iV, 1)
Clearly, we should choose
ow {cj

flkt)= i (176)
If we define x(k, t) = dW/dk, then (175) becomes
Sk, 1) = Vi(x(k, 1)) (177)

Now by applying d/0k to (175), one sees that x(k, t) obeys the differential
equation

x(k, t) = k + V, Vi (x(k, s)) (178)

If we try to choose W =0 for t = t,, then (177) and (178) give the integral
equation

flkt)= VL(kt ~ kto + ;v,‘ D) ds) (179)

The simplest approximate solution of (179) is to take ¢, = 0 and
Sk, t) = Vy(kt)
Using
t
Wik, t) = 3kt + I S (k, s) ds + const

we see that this approximation leads to the choice of W we used in the
Coulomb case. This choice can be used to define modified wave operators
for V;(x) = | x| % so long as a > 4. For « < 4, it is necessary to try either to
solve (175) exactly or go to a higher approximation of (179), for example,

Sk, t) = V,_(kt + L: s(VV.)(ks) ds)
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This method of higher approximation has been used, but it turns out to
require information about more and more derivatives of ¥, as a — 0.

The key to the proof of Theorem XI.74 is the construction of exact solu-
tions of (175) which result from realizing that it is a standard equation of the
advanced theory of classical mechanics, namely the momentum space
Hamilton-Jacobi equation. We can now give a formal construction of solu-
tions of (175). Let g() be an arbitrary smooth function on R” (or a subset of
R"). Fix t, real. Let X(y, t) be the solution of Newton’s equation

X(m, 1) = ~ (V)X (n, 1))
with initial conditions
X(n, to) = g(n) (180a)
X(n, to)=n (180b)
Suppose that for each fixed ¢, the map n—k = X(n, t) is invertible, with
inverse function n = N(k, t), that is,
X(N(k,t), )=k (181)
Define
x(k, t) = X(N(k, t), t) (182)

that is, x is the position at time t of that solution of Newton’s equation
obeying (180) which has velocity k at time r. We claim that x obeys (178) so
that we can recover solutions of (179) by using (176) and (177). To check
that x obeys (178), we first differentiate (181) with respect to k and ¢ to
obtain

dX 6N

gg}! + QE =0

on at ot
so that, using X(n, t) = — (VV,)(X), we obtain

0X ON

o 5= ) (184)
From (182), we obtain

7
x O0XON (185)

ok~ on ok
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From (183)-(185), we see that

ON 0X ox 0
P on (V)(x) %= %k Vi(x(k, t))
so that
x(k. t —g{ +é{5_f\f_
%k, t) = ot on ot

=k+ 5612 Vi(x(k, t))

which is (178). ' o

The only “formal” aspect of the above involves the invertibility of
n+— X(n, t). By using the asymptotic information on V; , one can construct a
function W(k, t) on {R"\{0}} x R such that for any compact K R"\{O},
there is a Ty with W obeying (175)on K x {t| |t| > Tx}. This is the function
W used to construct the generalized wave operators.

Finally, we turn to some aspects of the estimates. The importance of
(174b) comes from the fact that when it holds, one can show that W obeys

|Di(e~ ' oW/ok — k)| < Ct™, || <1
for some f > 0. This means that for ¢ large the critical points of x - k —
W(k, t) that are solutions of
x/t =k + t~ ' (OW/ok — tk)
are unique and are near the short-range critical point x/t = k. The other
aspect of the detailed estimates that we should mention is that one must

push stationary phase methods even further than we do in Theorem XI.15.
After rewriting

[u(k)eiwﬂk) dk = [ v(y)eim(y. Ay)/2 dy

as we do there and using (43), one must make an expansion of e!*: 4™ 'k/2@ jp
powers of w ™! rather than using the simple estimate used in Theorem XI.15.

X1.10 Optical and acoustical scattering I:
Schréodinger operator methods

In this section we present techniques for describing the scattering of classi-
cal waves in inhomogeneous media. The methods are geared to linear wave
equations and are applicable to acoustic and optical scattering. The basic
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physical situation is as follows. Suppose that we have an inhomogeneous
medium that looks more and more homogeneous as x — oo. The propaga-
tion of acoustical or optical waves in the medium will be governed by a
linear wave equation with nonconstant coefficients because of the inhomo-
geneity. If the initial disturbance is of finite energy, then as ¢ gets large the
waves should propagate out toward infinity. As they do so, they should look
more and more like solutions of the corresponding equations with constant
coefficients. Thus, we should be able to develop a scattering theory that
relates the solutions of the nonconstant coefficient equation to the solutions
of the corresponding equation with constant coefficients.

The basic idea in this section is to formulate both the homogeneous and
inhomogeneous equations as Hilbert space problems so that we can use the
methods developed earlier in this chapter. This will lead us necessarily to the
problem of comparing unitary groups on two different Hilbert spaces. In
the next section we describe another approach to these problems due to Lax
and Phillips. To see how the problem of two Hilbert spaces arises, we begin
with an example.

Example 1 (acoustical scattering in inhomogeneous media)  The propa-
gation of sound waves in a homogeneous medium can be described by
specifying at each time ¢ the function u(x, t) which is the difference between
the pressure at x and the equilibrium pressure. If one linearizes the nonlinear
equations of fluid dynamics about the equilibrium pressure, an approxima-
tion that is good for small u, one obtains the wave equation

uy(x, t) = cg Au(x, t)
u(x’ O) =f(x)’ “r(x’ 0) = g(x)

where fand g are specified by the initial disturbance and Co is the velocity of
propagation of the pressure waves.

Now, if the medium in which the waves are traveling has a density p(x)
that varies with position, then the pressure will satisfy the more complicated
equation

(186)

1
U, t) = c(x)’p(x)V - — Vu
ulx, 0)=f(x),  u(x, 0)=g(x)
where the velocity ¢(x) will also vary with position since the density does.
Suppose that

c(x)=cos  p(x)=po (188)
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as |x| — co. If this convergence is rapid enough, then we should be able to
develop a scattering theory for (186) and (187) since we expect the solutions
of (187) to propagate out toward co. And, when they are out near infinity,
they should look very much like solutions of (186).

We formulate both equations as Hilbert space problems using the ideas in
Section X.13. We deal with (186) first. Let Hy = —c2A on I*(R3) and
By = \/H, . Denote by [D(B,)] the closure of D(B,) in the norm |B,ul,.
Note that [D(B,)] contains ideal elements that are not in I?(R*) because zero
is in o(By). Let 5#, be the Hilbert space

#o = [D(Bo)] ® L'(R%)

with norm
I<u, 0)]12 = | Boull3 + |lv]2
and define
f 0 I 2
Ag =i 2 )’ D(Ao) = D(B3) ® D(By)
-B} O
where

D(Bg) = {u & [D(B,)]| Bou € D(By)}

and we are denoting both B, and its extension to [D(B,)] by B,. Then A, is
self-adjoint on D(4,) and (186) may be reformulated as

@'(t) = —idoo(t)
?(0) =00 ={f, g)

for the #o-valued function ¢(t) = u(t), u,(t)). The solution is given by
o(t) = Wo(t)po where

ol = 4o = (

(189)

cos Byt  Bg!sin B, t)
— B, sin Byt cos Byt

with the matrix entries defined by the functional calculus. If ¢, € D(A,), then
¢(t) is strongly differentiable and satisfies (189), which implies that the first
component u(t) satisfies (186). It will later be convenient to change the inner

product on I*(R3) by a fixed constant.
In order to deal with (187), we assume in addition to (188) that

0<p; <p(x)<p, <o for all x (190a)

O0<c<ce(x)<cy; <@ for all x (190b)
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If in addition p is C!, then
Hy = —c(x)’p(x)V - p(x)~'V

is a well-defined operator on CF(R?). But it is clear that it is not even
formally symmetric in the usual I? inner product because of the factor
c(x)?p(x). However, if we define L} (R®) to be I*(R*) with the inner product

(f 9)pc =(f (CZP)_ lg)uum)

then in this new inner product H, is obviously symmetric on C3(R3).
Notice that, by (190a), L2, and I? are equal as sets; in fact, the norms are
equivalent. Associated to H, on CP(R?) c L2 is the quadratic form

(5 9)= (L Highe=(f =V p™' Vg),
=V, p™! Vg)p.
The form g, is positive and closable by assumption (190a). In fact, since
P2 (VA V)2 < (Vf, p™1 V), < o7 M(VF, V) (191)

the closure of g, has form domain Q(—A). Let H, be the self-adjoint opera-
tor on L2, corresponding to the closure of 4, according to Theorem VIII.15.
We now proceed as before by defining B, = \/ITI, [D(B,)] to be the closure
of D(B,) in the norm ||B, u|,., and

Hy = [D(Bl)] EBL,fC(IR3)

. 0 I
A "(—B% 0)

Then A4, is self-adjoint on D(B?) @ D(B,) and generates

_ cos Byt  Bi!sin Bt
Wile) = (—B1 sin Byt cos Byt

As before, if ¢, € D(4,), then u(t), the first component of

@(t) = Wi(t)oo

satisfies (187). Notice that the above construction of H 1 did not require any
regularity on c(x) or p(x). However, if they are both smooth, then H oand H,
are both essentially self-adjoint on C$(R?) (see Problem 66).

In order to develop a scattering theory for ( 187), we must compare W,(t)
on ), to Wy(t) on 5, . The domains of B, and B, are both equal to Q(—A);
and, by (191), we have

P2 |Boull} < ||Byulp. < pr || Boul3 (192)
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so ', and #’, are equal as sets, but they have different (though equivalent)
inner products. If we restrict ourselves to one inner product, then one of the
two groups will not be unitary. We are thus in a situation where it is natural
to apply the two Hilbert space formalism outlined in Section 3.

In order to study the kind of situation described in the above example, we
formulate the problem abstractly. Let H, and H, be nonnegative self-adjoint
operators on Hilbert spaces o', and #",. To make the presentation easier
we shall assume that H, and H, have no point spectrum at zero; the general
case is treated in the references given in the Notes. We want to develop a
scattering theory for the two equations

ug(t) = —Houo(t)
ui(t) = —Hyu,(t)

when we are given a “natural” unitary identification operator
ViAHo— Ay Let #, and #, be the Hilbert spaces

#Ho = [D(Bo)] @ A
#,=[D(B,)] @ A,
constructed as in the example with B, = \/il_,: and with norms
I, 0113 = 1 Boull3o + ll0l3
1w, 0217 = [Byull¥, + oll%,

The solutions of the above equations are given by

(ue) = w5

cos B,t  B;!sin Bt
— By sin Bt cos Byt

where
W= (

As in the example, we denote the generator of W(t) by A,.

Our plan of attack is to reduce the questions of existence and com-
pleteness of the wave operators for W,(t), W,(t) to the same questions for
V™'H, V and H, on X',. In this way the two Hilbert space problem is
reduced to a single Hilbert space problem involving operators similar to the
Schrédinger operators which we have already studied. We shall later show
how one can stay in the two Hilbert space setting and apply Theorem XI.13
(see Example 1, revisited). We use without comment the notation and ter-
minology of two Hilbert space scattering introduced in Section 3.
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We begin by choosing an identification operator J between Ay and H#,
which is mathematically convenient but physically unnatural. Later we shall
show that under certain circumstances, usually fulfilled in applications,
other more natural identification operators are (asymptotically A4,-) equiva-
lent to J. We define J: #, — 5#, by

J: u, v)+>{B] 'VByu, Vu)

Theorem XI1.75  Let X', #,, H,, B,, A,, k=0, 1, and V and J be as
defined above. Suppose that the wave operators Q*(V~'B, V, B,) exist (re-
spectively, exist and are complete) on X', . Then the generalized wave opera-
tors Q*(A,, Ao;J) exist (respectively, exist and are complete) and are
partial isometries from 5, to #, with initial space P..(Ao)H#,.

Proof Since
19<u, 0)1%, = IB4(BT 'VBo)ul %, + Vo] %,
= [Boull3o + 0l %o
= [[<u, 0|2,

J is unitary and thus Q*(4,, 4,; J) are partial isometries when they exist.
The proof of the main statement of the theorem relies on the factorization

a? 5 d _\(d .
c—i?i+B = (—— —-tB)(‘—i; +lB)
so that if u obeys u” = — B, then f, = u’ + iBu obey df, /dt = + iBf, . To
make the decomposition precise, we define

T =_I_(Bk ‘)

\/EB,( —i

Then, by the parallelogram law, T, is a unitary map of 5, onto X", ® X,

and
B, 0
TAT '=|*
k*k £k (0 _Bk)

Thus

_ e"‘l'Bkt 0 -
7;: VVk(t)Tk t= ( 0 el'Bkl) = VVR(I)

Further, by multiplying out the matrices, one finds
vV -
0) 7y

T,JT;‘:(O V=
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as a map from o'y @ X', to X'y @ A" ,. Moreover, by Problem 112,

TOP:c(AO) = (P.c(()BO) P.c(()Bo)) = PIC(BO)

Now, for ¢ € #,,
Wi(= W Wo(t)Poe(Ao)p = T1 ' W (= )T, T Wo(t) Ty P,o(Ao )
= T1 'Wi(— 1)V W, (t)P,(Bo)o
= (Tfl‘7)(‘7*1W1(“)V)Wo(t)ﬁac(30)¢

Since _
B oV 1BVt 0
14 lWl(-t)V'_‘ ( 0 e—iv—m,w)
we have
- - eiV-'B;Vre—iBot 0
(V_IWI(—t)V)Wo(t) = ( 0 e—iv-xs.weiw)

Therefore lim,_, 4 ,, W;(—t)JW,(t)P,.(4o)e will exist for all @ € H#, if and
only if lim,_, , o, e¥ '8V e~ B'p_ (B ) exist for all Y € X, .

Since J is unitary, it is invertible. J ! is automatically an A, left inverse of
J and J is a A4, left inverse of J~!. Thus, according to Proposition 5c in
Section 3, to show that Q*(4,, 4,; J ) are complete we need only show that
Q*(A,, A,, J~*) exist. By a similar argument to the above, this is equivalent
to the existence of the limits s-lim, _, , ,, e/®%~" ~'Bi¥:p_(y-1p V), which is
equivalent to the completeness of Q* (V- !B, V, B,) according to Proposi-
tion 3 of Section 3. |

It is clear from the above argument why J is such a convenient
identification operator. However, from a physical point of view, J is
artificial. For example, suppose that X o and X", are setwise equal with
equivalent inner products, that the quadratic form domains of Hy and H,
are equal, and that

do(“: HO“)Xo = (u’ Hl u)x’l = dl(“’ Hou).xfo (193)
Equivalently,
do | Boull%eo < By ull%, < dy||Boull%,

$0 #o and o, are setwise equal with equivalent inner products. In this
situation (which holds in the example of acoustic scattering), it is natural to
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use the identity Io,: # — #, as identification operator, and to ask about
the existence and completeness of Q*(A,, Ao, Io,). We use the pedantic
symbol I,; because we shall later consider 1§, which is not equal to I,,.
Suppose that a unitary V: X" o— X, is given and that we know from
Theorem X175 that Q*(4,, A,; J) exist. If J and I, are asymptotically
Ao-equivalent, that is, if

lim (J — Ioy)Wo(t)P3(Ao)p = 0 (194)

t=t oo

for all ¢ e #,, then according to Proposition 5a of Section 3,
Q*(A,, Ag; Iy,) exist and equal Q*(4,, 4y, J). Since J{u, o) =
(B{'VB,u, va, we expect (194) to hold only if V behaves
B,-asymptotically like the identity operator and B, and B, are asymptot-
ically equal. Technically, we formulate the second condition by requiring
that

I(Ho = V™ 'H, V)e ®w|,. >0 as t— +oo (195)

for all w in a dense set 2 = D(H,) n D(V='H,V) n P,(H,) that is invar-
iant under ¢"®, B,, and B !. The first condition is met by requiring that

I+ V-IH, Vv - I)e“‘”°’w||,,,o -0 as t— t+oo (196)
for allw e 9.

Theorem X1.76  Let Ky #y, Hy, By, A, k=0, 1, V, J, and Iy, be as
defined above. Suppose that:

(i) A, and X, are setwise equal with equivalent inner products.
(i) Q(H,)= Q(H,) setwise and that (193) holds.
(iii) (195) and (196) hold.
(iv) The wave operators Q* (V- 'B, V, B,) exist on X',,.
Then (194) holds, so, in particular, Q*(A,, Ay; Io,) exist and equal
Q*(A,, Ag; J).
Proof Let wo and w, be in @ and set ¢ = (w,, w, . Since 9 is dense in
P.(Ho) and (14, — J)Wy(t) are uniformly bounded, it is sufficient to prove

(194) for such ¢. Let uy(t) and v(t) be the components of W,(t)¢. Then, since
¢ € P, (A4,), we have

I = To1)Wo(2)P,e(4o)o || %,
= [|By(By 'VBo — Nuo(1)| %, + |(V = Do(1)]12,
= ||(B, - V=B uo(0) % + |11 - V=Yoo %
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Since vo(t) = — By(sin By t)wy + (cos By t)w, and w, € 9, (196) and the pos-
itivity of H, imply that the second term goes to zero as t - + co. We esti-
mate the first term by

I(Bo — V™ 'By )uo(t)| o
< |(Bo = V7B, V)uo(t)|l wo + (V™' By VYT = V™ uo(t)]| 4

As above, the second term goes to zero by (196). For notational simplicity,
set By, = V™ !B, V and denote Q* (B}, B,)simply by Q*. We must show that

I(Bo — By)e™*®w[ 4, >0  as t— too
or equivalently
|€*®(By — By)e™ "Bow|| 4, >0  as t— +oo
for w in 2. By (iv),
e¢B'Bye Bty 5 Q*Bow  as t— —oo
Thus, to conclude the result in the case t — — oo, it is sufficient to show that
e'B11B 1Bty = B ¢B11emiBoy , B QFw
since By Q. w=Q, Byw. If we take w € 2 and expand
1By et ™t — By Q w3, = | B1e® e W] %, + | B Q¥ W]k,
— (Bye'® e By B QY W)y,
— (B1Q"w, By eBriemiBoty)

we see that, by taking B) to the other side, the last two terms converge to
— By Q. w|5%,. Thus, to show that the whole expression goes to zero we
need just prove that

lim | By et 'e~ w3, < |B1Q* w||%,

t——-w
We compute,
’i'ia ”Bll e"B"'e"'B“w"}(o = m (e'“’°‘w, Hfle—-iBotw)xo
Lindal Y t= -
= Tim (e ®'w, Hye "B'w),,
1=~
= "Bowuifo
= Q4+ Bowl%,

= |B1Q. w|%, (197)
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In the second step we used (195). This proves (194) in the case ¢t - — 0. The
other case is similar. J

Notice that all the hypotheses in Theorems XI.75 and XI.76 deal with H,
and Hy = V"'H,; V on X, Thus the two Hilbert space scattering problem
on ', and #, is reduced to studying the scattering theory for two self-
adjoint operators on a single Hilbert space )¢ o In fact, if we changed our
point of view slightly, we could reformulate Theorems XI.75 and X1.76 to
avoid the two Hilbert space scattering theory entirely. For, if hypotheses (i)
and (ii) of Theorem X1.76 hold, then Wi(t) is a strongly continuous group of
bounded operators on #, (in general, not a unitary group). Hypotheses (iii)
and (iv) give conditions on H, and V™ 'H 1V on X', so that the “wave
operators”

s-lim W;(—1)Wo(t)P,c(4o)

t=F o
exist on . And, according to Theorem X1.75, if Q*(V~'H, ¥, H,) are
complete, then these wave operators are complete as maps from 5, to #,.

Example 1, continued We can now apply these theorems to acoustic
scattering. In addition to hypotheses (188) and (190) we assume that c(x)
and p(x) are twice continuously differentiable with bounded derivatives.
These smoothness assumptions can be avoided; see the discussion at the end
of the section. We define o'y = I>(R%) = 2", with inner products

(1, v), = (3 00)™ (1, V)L

(4 0)u, = (4, (c(x)?p(x)) ™ 0)L2m3
The operators H,, B,, and A, are as described in Example 1. In particular,
D(B,) = D(B,) and (193) holds. Thus conditions (i) and (ii) of Theorem
X1.76 hold, so the Hilbert spaces 5, and # 1 constructed from o', and ",

as above are setwise equal with equivalent inner products. We naturally
choose V' to be the unitary map V: oy — X 1 given by

Vi u(x)[e(x)?p(x)/cj po] 2u(x)

VIV = —[e(xPp(x)]Y*(V - p(x)™1V)c(x)Pp(x)] 2

To verify (195) and (196), we choose 2 to be the set of fe &(R®) whose
Fourier transforms have support away from the origin. Notice that
(Ho — V™'H,V)e~"®"w and (I + V"'H,V)(V~! - I)e™ "By can both be
written as sums of terms of the form

f(x)e“"“'P(D)w

SO
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where P(D) is a constant coefficient partial differential operator and f(x)is a
product of terms of the form p(x) — py, c(x) — co, p(x), po, c(x), ¢o, OF their
inverses or square roots, or their derivatives up to order two. Moreover, at
least one factor of p(x) — po, ¢(x) — ¢y, D*p(x), or D%¢(x), 0 # |a| <2,
occurs. For w € 9, e*B*P(D)w is a regular wave packet for the free wave
equation (m = 0) in three dimensions, so by Theorem XI.18,

le*®PD)w]l < c/ |¢]

Thus, if we require that p(x) — po, ¢(x) — ¢o, D*p(x), D%(x),0 # |a| < 2,be
in I?(R®), then

£ (<)e* ™ PDW]c,~0 a5 t— oo

for each of the terms, so (195) and (196) hold. An alternative proof which
avoids stationary phase ideas is as follows: Since W has compact support,
E(-m, m(—A)w = w for some M. Thus if p(x) — p,, etc. are in LZ(R?) for
some & > 3, then f(x)E_p, s(—A) is Hilbert-Schmidt and thus compact.
The convergence to zero then follows from Lemma 2 in Section 3.

It remains to investigate when Q* (V™ 'B, V, B,) exist and are complete.
We first apply Theorem XI.10 (Birman’s theorem) to V™ 'H, V and H,. We
already know that D(B,) = D(B,), and, by the hypotheses on p(x) and c(x),
Q(Ho)=Q(V™'Hy V). Thus D(V™'B, V) = D(B,), so V" 'H, V and H, are
mutually subordinate. Furthermore,

Hy— V7 'H V= (c(x)? — c3) A+ h(x) - V + e(x)

where h(x) and e(x) are sums of functions of the form of f(x) described
above. Thus for each bounded interval I,

(Ho — V™ 'H, V)E,(H,)
is a sum of operators of the form

S (x)g(~iV)

where g is the product of a polynomial and the characteristic function of a
finite interval. According to Theorem X1.21, f(x)g(—iV) will be trace class if
f € Li(R®) for some & > 3. And, if (H, — V™ 'H, V)E,(H,) s trace class, then
E/(V™'H,V)Ho,— V™ 'H,V)E,(H,) is automatically trace class since
E((V~'H, V) is bounded, so the conditions of Birman’s theorem are fulfilled.

We have shown that if ¢(x)* — ¢}, p(x) — po, D*p(x), D%c(x),0 # |a| <2,
are in L}(R®) for some 6 > 3, then Q* (V™" H, V, H,,)exist and are complete.
Since /x is an admissible function, the invariance principle (Theorem
XI.11) implies that Q* (V™ !B, V, B,) exist and are complete. Thus, applying
Theorems XI.75 and XI.76 we have:
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Theorem XI.77  Suppose that ¢(x) and p(x) are twice continuously dif-
ferentiable functions with bounded derivatives satisfying (188) and (190).
Suppose that c(x)* — c3, p(x) — po, D*p(x), D*c(x), 0 + || <2, are all in
L}(R®) for some 6 > 3. Then, the wave operators Q* (A4, Ag; Io,) associated
with the systems (186), (187) exist and are complete.

We have proven completeness in the sense of generalized wave operators.
It can be proven that #,.(4,) = #,, so every solution of (187) is asymptotic
to a free solution. We have essentially proven that A, has no singular contin-
uous spectrum in the appendix to Section 6. We shall prove that A 1 has no
eigenvalues in Section XIII.13.

The decay conditions on ¢(x)* — ¢, p(x) — po, D*p(x), D*c(x) are not
very stringent in that they will hold in any reasonable physical situation. On
the other hand, the smoothness hypotheses restrict the applicability of the
theorem greatly since in many inhomogeneous media problems there is a
sudden change in p(x) or ¢(x) as one passes from one medium to the next.
Fortunately, the smoothness hypotheses can be removed.

Example 1, revisited  Existence and completeness of the wave opera-
tors for acoustical scattering in an inhomogeneous medium can also be
proven by applying the Birman-Belopol'skii theorem (Theorem XI.13)
directly. We take X', #,, A4, , H,, and B, to be as above and choose I, as
the identification operator from #, to #,. We must verify that hypotheses
(a)~(d) of Theorem XI.13 hold. (a) is obvious. Since D(A,) = D(B?) @ D(By)
and we already know that D(B,) = D(B, ), we need only prove that D(Hy) =
D(H,) to conclude that (d,) holds. And, since V takes D(H,) into itself, we
need only prove that V~'H, V and H, have the same domain on " o- The
proof, which uses the symmetric form of the Kato-Rellich theorem (see
Problem 66), is left to the reader.

To prove condition (b), we want to show that (4, — Ap)E (A,) is trace
class as an operator from #, to 5#,. Since the identity is bounded from #,,
to i, it is sufficient to show that (4, — Ap)E;(Ay) is trace class as an
operator on #. Set C =B} — B} and let T, be the unitary map
To: #g— Ao @ Ay introduced in the proof of Theorem XI.75. Then

., _1(-CB3' —CB;"\(E/(B,) ©
To(Ay — Ao)Ey(Ao) T = = ° N
o4, 0)Er(40)Ts 2( CB;! CB(;‘)( 0 E:(Bo))

on XKo@ Ao = I(R*) ® I*(R®). Since VB; ! is a bounded operator com-
muting with E/(B,), the same proof as in Example 1 (continued) shows that
+CBg 'E((B,) is trace class on I*(R®) if the conditions on ¢(x) and p(x)
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expressed in Theorem XI.77 hold. Therefore (b) holds under these

conditions.
Finally, we must check (c). An easy calculation shows that I§,: 5, = 5,

is given by
13, Cu, v) = (= (c3po)B5 2V + p(x)™'Vu, (c§ po/c(x)*p(x))v)
Thus, we may write

(1§10, — 100)<u, v> = <Q1“, sz>

where

Q1 = —(c3po)Bs 2V - (1/p(x))V — I
Q: = (3 po/clx)p(x)) — I

Using the diagonalizing transformation T, as above, we find that

]

To(I§1Toy — Too)Er(40)T5 "

_ l(Ble Bs'+Q, BoQ\Bg'— Qz) (EI(BO) 0 )
2\BoQ,Bs' —Q, ByQ:B;'+Q; 0 E,(B,)

Thus, we are reduced to showing that B, Q, By 'E;(B,) and Q, E,(B,) are
compact as operators on I*(R3). For the second operator, this follows im-
mediately if ¢(x) and p(x) obey the conditions of Theorem XI.77. For the
first operator, notice that

Bo Q1 By 'Ex(Bo) = —(c3po)(B5 V) - (Tl) - ;,‘—) (VB3 )Ey(Bo)

Since By 'V is bounded and (p(x)™! — po ')(VBg *)E;(B,) is trace class by
Theorem XI.21, B, Q, By 'E;(B,) is trace class and therefore compact. We
conclude that (I¥, 1o, — Io0)E (Ao) is compact if p(x) satisfies the conditions
of Theorem XI.77. '

We have verified conditions (a)-(d,) of the Birman-Belopol’skii theorem,
so the wave operators Q*(4,, A,; I) exist and are complete. Notice that
using the Birman-Belopol’skii theorem does not avoid completely the re-
duction to a single Hilbert space since we must make the reduction to verify
the hypotheses. The reason that we have avoided explicit proof of (195) and
(196) is that we have used a compactness argument, as we could have in the
verification of (195) and (196).
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F—Zxample 2 (optical scattering)  The scattering of electromagnetic waves
in an inhomogeneous medium is governed by Maxwell’s equations:

O0H

OE
VXE=—u(x) — VxH=¢gx) =
ot ™ (198)

V- (e(x)E)=0 V:(u(x)H)=0

E and H are functions from R? to R3 representing the electric and magnetic
fields. e(x) and u(x) are three-by-three matrix-valued functions on R® re-
presenting the dielectric and magnetic susceptibilities. We assume that &(x)
and y(x) are C* with bounded derivatives; and since we want the energy

(B H) = | [EG) - e(x)E(x) + H) - w(x)H(x)] d

to be positive, we require that
ol <ex)<c,I, eyl <p(x)<ec,d (199)

for .a‘l] x for some positive constants c;. Suppose that there are constant
positive definite matrices ¢, and y, so that

8(x) — &, /,t(x) = U

as [x| — oo. Then we should be able to develop a scattering theory for (198)
in terms of the free equations

0H OE
Vsz— —_— = —_—
Ho 3 VxH=¢, ar

(200)
V- (eE)=0 V- (uH)=0
In order to do this we rewrite (198) as a second-order equation for E:

E= &'V x (u\(V x E)) (201)

and similarly for (200). Now, define 'y and ', to be I%(R?)? with inner
products

(E. Fyo = | E(x) " 20 F(x) dx

(E, F)y, = ImE(T) - &(x)F(x) dx
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Let 2 = {Ee I}(R%)?|V x E e (I?)*} and define quadratic forms g, and g,
on 2 by

QolE, F) = | (VX E)- 45 '(V x F) dx

ai(E F)=[ (VX E) ulx)"!(V x F) dx

qo and g, are the quadratic forms of positive self-adjoint operators on X’
and " ,, respectively,

HyE= —¢5'V x pg }(V x E)
H,E = —g(x)™'V x p(x)"}(V x E)
and the square roots of these operators satisfy (193) because of (199).
Finally, we define V: X" — X", by
(VE)(x) = &(x)™ "%eg/*E(x)

We are thus in the situation covered by Theorems XI.75 and XI.76 except
that H, and H, have point spectrum at zero. This does not cause any
difficulty in these theorems for they can easily be extended to handle t}ns
case; see the reference in the Notes. Thus, as in Example 1, the scattering
problem can be reduced to studying H, and _V“H 1V on Xy. (195) and
(196) follow as in Example 1 since P,.(H,) projects out the zero modes and
each component of e*B¥P, (B,)w obeys a free wave equation and thus

satisfies
lle*®*Pye(Bow|| o, < c/t
Using this estimate, stationary phase, and Cook’s method, one can easily

show that the wave operators Q* (V™ 'H, V, H,) exist. Thus one obtains the

existence of Q*(4,, Ao; Io,) analogously to Example 1.
The zero modes do cause a new difficulty in the proof of completeness,

however, since one can no longer expect
(V™'H,V — Ho)E\(H,)
to be trace class when the ihterval I contains zero. One possible way out
would be to try to prove the existence of the limits
giflotg=V=IHWVIp (V=1H, V)w
directly by using Cook’s method. But this is very difficult since
e~ VTHIYVIp (VTIH, V)w
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will satisfy a wave equation with nonconstant coefficients and thus one
cannot use the Fourier transform to prove estimates. Instead, one gets
around the difficulty as follows. Define operators xon X', by the quadratic
forms

WE, F) = qE, F) + [ (V- 1,E) - (V- ,F) dx

where y, = ¢, and y, = &(x). One can prove that
(V'H,V +1)"2 — (Hy + 1)2

is trace class, essentially because the addition of the extra term has removed
the zero modes and made V~'H, V and H, strictly elliptic. The existence
and completeness of Q*(V~'H, ¥, H,) then follows from Corollary 2 of
Theorem XI.11. Finally, one shows by an elementary argument that the
existence of Q*(H,, V- 'H, V) implies the existence of Q*(H,, V''H, V).
The reason is that the dynamical modes and the zero modes are completely
decoupled in Maxwell’s equations, so giving a spurious dynamics to the zero
modes does not affect the dynamical modes. For details, see the reference in
the Notes.

Example 3 (scattering of acoustical waves from obstacles) Let O be a
closed bounded set in R* whose boundary I' has measure zero and whose
complement is connected. Then the acoustic wave equation in the exterior of
the obstacle O is

Uy — Au =0, x e R3O
?Lj =0, xel
o (202)

ux,0)=f(x), xeR3\O
u(x,0)=g(x), xeR\O

where u is the difference between the pressure at x at time ¢ and the equilib-
rium pressure. The Neumann boundary conditions can be understood as
follows: A pressure gradient causes a proportional fluid flow. Thus the
condition Vu - i = 0 on I just says that there is no flow across I Given an
initial disturbance { f(x), g(x)) exterior to the obstacle, the solution of (202)
will depend on the geometry of the obstacle; but for large positive and
negative times, the waves should propagate away from the obstacle to
infinity. As more and more of the energy goes away from the obstacle, the
solution of (202) should look more and more like a solution of Uy —Au=0
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on all of R3. Thus, we expect to be able to construct a scattering theory for
(202) in terms of the solutions of the free wave equation.

We can choose the same Hilbert space for Hy and H, by the simple
expedient of allowing the interior of the obstacle to have acoustic disturb-
ances. Since the interior and the exterior are decoupled, this does not affect
the scattering theory. Let H, denote —A on I*(R?) and let H, be the Neu-
mann Laplacian Hy on I*(R?) with boundary I' as defined in Section
XII1.15. Thus in this case, we have X, = [}(R*) = &', and because of the
boundary conditions, Q(Hy) > Q(H,). Further, for w € Q(H,), we have

I1Bow|Z = [ Buwl2 (203)

The only difficulty applying the abstract theory developed in Theorem X1.75
is that if I separates R® into more than one connected component, then B,
will have zero as an eigenvalue: Hy ¢ = 0 and ¢ € I*(R?) if ¢ is constant on
one of the bounded connected components. Physically, these eigenfunctions
are irrelevant to the problem since they are interior to the obstacle. Math-
ematically, one can overcome this difficulty by extending Theorem X1.75 so
that it allows point spectrum at zero (see the reference in the Notes) or by
the following simple expedient: We redefine Hy on each such internal con-
stant eigenfunction ¢ so that Hy ¢ = ¢. Assuming that there are only finitely
many connected internal components, this redefinition does not affect any of
the trace class conditions mentioned below or proven in the appendix.
Having redefined Hy in this way we can apply the theory developed in this
section. In particular, by Theorem X1.75, Q* (Ax, Ao; J) exist and are com-
plete from #, to »#, if Q*(Hy, Hy) exist and are complete on
Ao = I3(R®). Here J: {u, v)> (Bg 'Byu, v). In the appendix we show how
to prove that (Hy + 1)72 — (Ho + 1)~ % is trace class and thus, by Corollary
3 of Theorem XI.11, Q*(Hy, H,) exist and are complete.

It is no longer true that »#, = #, since (193) does not hold in this case.
However, since Q(H,) = Q(Hy) and (203) holds, #, can be naturally im-
bedded as a subspace of 5#,. Therefore, it is natural to choose this embed-
ding as the identification operator. Notice that (193) is not used anywhere in
the proof of Theorem XI1.76 although it is needed to have #, = ;. Since
V = I, condition (196) holds automatically; and because of (203), condition
(195) is not necessary. For the proof of Theorem XI.76 goes through as
before except that the crucial equality (197) holds because of (203) without
appealing to (193) and (195). Thus Q*(4y, Ao; I) exist and are complete.

The case of scattering from an obstacle with Dirichlet boundary condi-
tions is less interesting physically; but because the corresponding local com-
pactness result is simpler (see the appendix), it is a good test case for various
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approaches to scattering theory. Let H, = Hp, the Dirichlet Laplacian with
boundary T as defined in Section XIII.15. Then Q(Hp) < Q(H,) and

IIBoWH% = IIBDWIB (204)

for w e Q(Hp). Thus we have a similar setup to the one above except that
Q(Hp) = Q(H,), whereas in the Neumann case Q(Hy) o Q(H,). Therefore
we deal with the adjoints of the usual wave operators. Theorem X1.75 shows
that Q*(4,, Ap, J') exist and are complete as maps from #, to #, if
Q*(H,, Hp) exist and are complete on X', = I}(R3®). Here J': {u, v)+>
(B3 'Bpu, v). In the appendix we show that (Ho+1)"2 = (Hp + 1) 2 is
trace class so, as above, the existence and completeness of Q*(H,, Hp)
follow from Corollary 3 of Theorem XI.11. By the same idea described
above, the conclusions of Theorem X1.76 follow automatically from (204), so
J' may be replaced by the embedding I,, taking X, into . That is,
Q*(4,, Ap; I,) exist and are complete. Since I, is an isometry, I¥, is
an Ap-left inverse for I,,. Thus, by Proposition 5c of Section 3,
Q*(Ap, Ao; I%,) exist and are complete.
We have proven:

Theorem XI.78 Let O be a closed bounded set in R? with boundary I.

(a) If T has measure zero, if R*\I" has finitely many connected components,
and if I' obeys the regularity condition of Theorem XI.81, then the
wave operators for the equation (202) with Neumann boundary condi-
tions exist and are complete.

(b) IfT has measure zero, then the wave operators for (202) with Dirichlet
boundary conditions exist and are complete.

. In Examples 1 and 2 we assumed that the coefficients describing the
lnhomogeneity were C? functions of the space variables. This is a very
.restrlctive condition since some of the most interesting physical problems
mvo!ve sharp changes in wave velocities or densities when passing from one
medium to another. F ortunately, one can handle the nonsmooth case with-
out great difficulty. Notice that in Example 1 we did not use any smoothness
of p(x) in defining H, on &', and, of course, no smoothness is used in the
abstract theorems. The only place that we used smoothness was in verifying
that (V™'H, V — H,)E,(H,) is trace class on I*(R®); we needed to express
V™'H,V — H, as a sum of terms of the form Sf(x)P(D), so we could apply
Theorem XI.21. P. Deift has shown how to use the commutation formula

A 1
Ba+it BagsiA=

1 (205)
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to avoid this difficulty. If A and B are bounded operators on a Hilbert space
5, then g(AB)\{0} = a(BA)\{0} and for — A ¢ o(AB) L {0}, (205) holds. The
reader is asked to provide a proof in Problem 115. More generally, if A is a
closed operator and B = A¥, then (205) holds for — 4 € C\[0, o). To see how
to use (205), consider the one-dimensional case where the notation is the
simplest. Then Hy = V" 'H, V = —aDb*Da and H, = D where D = i d/dx
and a and b are functions of x satisfying

O<ap<ax)<a,, 0<by,<b(x)<b,

and we assume that a(x) — 1, b(x) — 1 sufficiently fast as |x| — co. As in
Example 1, we define H) as follows: Let Db2D be the self-adjoint operator
on I*(R) corresponding to the closure of the symme.trif: qyadratlc form
q(@, @) = (Dg, b>D¢),. on CZ(R) x CZ(R). Since multiplication by a has a
bounded inverse, H', = aDb*Da is a well-defined self-adjoint operator. We
want to prove that

1 1
aDb’Da+1 D+ 1

is trace class. Using the formula

._.___1__ — a" 1 (_—1____ )a" 1
aDb*Da + 1 Db’D +a™?
and the properties of a, this problem is easily reduced to proving that

1 1
Db’D+1 D?+1

is trace class. Let A be the operator bD. Then since we defined Db2D by using
quadratic forms, Db?D = (bD)*(bD) (see Section X.3) where bD denotes the
operator closure of bD [ CZ(R). Setting B = (bD)* and applying the com-
mutation formula, we have
1 1 )
= 1— (bD)*|-—r——|(bD
(bD)*(bD) + 1 (bD) ((bD)(bD)* +1 (6D)

1
=1-p*—— D
! D(D*D+b-2)

and hence

1 L 1 1 )D
DbD+1 D*+1 ~\D*D+1 D*D+b?
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Thus, one is reduced to studying

1 1
D*D+1 D*D+1+ (b 2—1)

which can be handled by the usual methods for dealing with perturbations of
—d*/dx? by a potential. Essentially, the commutation formula allows us to
unwrap Db2D and get the b’s on the outside.

The ideas in the three-dimensional case (discussed in the reference in the
Notes) are the same with two exceptions. D = iV so bD is an operator from
L}(R?) to I>(R%)* and (bD)* is an operator from I*(R3%)? to I*(R®). Thus one
extends the commutation formula to the case where A is a closed operator
from one Hilbert space to another and B = A*. Also it is necessary to deal
with the squares of the resolvents.

If the discontinuities of a and b lie in a compact set, one can also study the
problem by using the twisting trick of the appendix to Section XI.11.

Appendix to XI1.10: Trace class properties
of Green’s functions

Let I be a closed bounded subset of measure zero in R". Let H o= —Aon
L}(R") and let Hr, and Hy,ybe —A on I*(R") with Dirichlet and Neumann
boundary conditions on I' as defined in Section XIIL15. Set Ry =
(Ho + 1)_ l, Rr;p = (Hr;p + 1)- l, RI';N = (HI';N + l)-l. In this apandiX
we shall prove that R} — RE, and R — RZ. are trace class under
suitable hypotheses on I" when n = 3. Similar methods work for n #3if
R? is replaced by R™ where m > 4n (Problem 116). Applications of these
methods to the scattering of acoustical waves from obstacles appear in
Example 3 of this section.

The basic results are:

Theorem X1.79 Let I'" be an arbitrary closed bounded subset of meas-
ure zero in R>. Then R3 — RZ,, is trace class.

Theorem XI.80 Let I' be a closed bounded subset of measure zero in
R3. Let B be an open ball containing I and let A, or;n be —A on I*(B)
with Neumann boundary conditions on I U dB. Set

ﬁaBur;N= (Hi)Bul';N + l)~l

and suppose that R3; .,y is trace class. Then R2 — R}, is trace class.
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Notice that R} — R%., € £, for any I, but we need restrictions on I in
the Neumann case. The following example shows that these restrictions are
necessary:

Example Let A be the union of an infinite number of disjoint balls of
smaller and smaller radii all within the unit ball and let I’ = A. Then H NN
has zero as an eigenvalue of infinite multiplicity and the corresponding
eigenfunctions have support in the ball. If y is multiplication by the charac-
teristic function of the ball, then yRT,y is not compact for any m. On the
other hand xR is compact for any m > 2 by Theorem X1.21, so Ry — RE. x
is not compact for any m.

Of course, Theorem XI.80 is not very useful unless there are conditions
that guarantee that R%; 1.y is trace class. In fact, there are very general
sufficient conditions:

Definition A truncated cone at x € R" is a set of the form

{r|0<|y—x| <g(y—x)n>(1-98)|y—x|}

for some ¢, 5 > 0 and some unit vector n. An open set A = R" with bounded
boundary is said to have the restricted cone property if and only if there is a
finite open cover Uy, ..., U, of dA and truncated cones C,, ..., C, at 0 so
that C;+ x < Aifx e U; n A.

It is not hard to see that polyhedra and sets with smooth boundary have
the restricted cone property.

Theorem XI1.81 Let I' be a closed bounded set of measure zero in R3.
Write R\[' = A, U A, where A, is the unbounded component and A, the
union of the bounded components. Suppose that A, and A, have the res-
tricted cone property. Then for any open ball containing I', R2, r; N IS trace
class.

In this appendix we prove Theorems X1.79 and 80 and sketch a proof of
Theorem XI1.81 in the special case where I' is the union of the boundaries of a
finite number of starlike regions with smooth boundary. The general case of
Theorem X1.81, which is proven by very different methods, can be found in
the reference in the Notes.

In the proofs of Theorems X1.79 and 80, we need various properties of R,
Rr;p, Rp,y established in Chapter XIII or by the methods of that chapter.
We summarize the results that we need:
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Lemma 1  Let I be fixed and B be a fixed ball containing I'. Then:
(a) As operator inequalities on I*(R?),
Rrp<Ro<RprN<Ryp,r,n

(b) Under the direct sum decomposition [}(R®) = I}(B) ® I}(R*\B),
Rosorin= Rop ,r.n® R for suitable R'.
(¢) Ro, Rr,p, and Ry, are contractions from I*(R3) to itself.

Proof (a) In a suitable sense of < for unbounded operators,
Hr  op,n < Hr;n < Ho < Hy,p (see Proposition 4 of Section XIII.15) from
which (a) follows by general principles (Problem 117).

(b) This is just Proposition 3 of Section XIII.15.

(c) By the second Beurling-Deny criterion (Theorem XII1.51), e~*Hr js
a contraction on I* (see Example 3, revisited, in Appendix 1 to Section
XIII1.12) and thus since

a@
Rrp = [ emrertiro d
0

$0 is Rr,p. A similar proof works for R, and Rr.n- 1

Lemma 2 If (14 x?)(Ro— Rp,p)(1 + x2) is Hilbert-Schmidt, then
R, —R}p is trace class. Similarly, if (1 + x?)(Ro — R n)(1 + x?) is
Hilbert-Schmidt, then R} — R, is trace class.

Proof Write

R — RE.p = Ro(Ro — Rr,p) + (Ro — Rr.p)Ro = (Ro — Rr;p)?

By Theorem XI.21 or by explicit calculation from the integral kernel
dn|x — y|7te™ "M of Ry, Ro(1 + x?)~ ! is Hilbert-Schmidt. Thus, to prove
that RG— RE,p is trace class, it suffices that (I + x?) (Ro = Ry.,p) and

(Ro — Rr,p) be Hilbert-Schmidt and this follows from the hypotheses. The
Neumann case is similar. J

Lemma 3 Let K>0 and let C and D be bounded operators with
C + D = I. Then K is Hilbert-Schmidt if and only if C*KC and D*KD are
Hilbert-Schmidt. In particular, if y is the characteristic function of a
bounded set Q and both

X(Ro— R, p)x and (1+x2)(1 = x)(Ro — Rr,p)(1 = x)(1 + x?)
respectively,
X(Rr;N — Ro)x and 1+ Xz)(l - X)(Rr;N — Ro)(1 = x)(1 + x?)
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alre Hilbert-Schmidt, then R} — R%,p, [respectively, (R2 — R%.\)] is trace
class.

Proof ‘ For K to be in #,, it is necessary and sufficient that K*/2 be in ., .
But this happens if and only if both K*/2C and K'/2D are in .#, . This proves
the first part of the lemma.

The last part of the lemma follows from the first part, Lemma 2 and

Lemma 1la, which implies that Rr;xn — Rp and R, — Ry, are nonnegative
operators. ||

Ry, p defines a bilinear form on & x & by (o, Y ) (5, Rr.pY)and, so
by the nuclear theorem (Theorem V.12) there is a distribution Gy. o(x, y),
called the Dirichlet Green’s function so that .

(@, Rr,0¥) = [ @(W0)Gr.olx, y) dx dy

for , Y € &. The Neumann Green’s function Gr;n(x, y) and free Green’s
function G,(x, y) are defined similarly. Of course,

Golx, y) = (4m) ™" |x — y|~te™x

Lemma 4 Let B be an open ball containing I'. Then Gr.,, — G, and
Gr;n — G are C* on (R*\B) x (R3\B) and obey the estimates

|(Gron = Go)lx, y)| < Ce~4s1- 411 (206a)
|(Grp = Go)(x, y)| < Ce™#s1- 41 (206b)
In particular, if y is the characteristic function of B, then
(L+ x*)(1 = x)(Ro ~ Rr;p)(1 — x)(1 + x)
and
(1+%*)(1 = )(Rr;n = Ro)(1 = x)(1 + x?)
are Hilbert-Schmidt operators.
Proof We consider the Neumann case; the Dirichlet case is similar. Let

h, g € C§(R*\'). Then (Hy,n + 1)h = (—A + 1)h so that

J| =8+ DHI) Gronlx, Ylaly) dx dy = [ ) glx) dx
Therefore, as a distribution on C@((R*\[') x (R*\I')),
(=A;+ 1)Gr;n(x, ¥) = 8(x — y)

Appendix to X1.10: Trace class properties of Green’s functions 207

so that
(_Ax - Ay + 2)(Gr;N(x9 y) - Go(x, y)) =0

It follows by elliptic regularity (Theorem IX.25) that Q(x, y) = Gr.n(x, y) —
Go(x,y)is C® on (R*\I') x (R*\I') and, in particular, on (R*\B) x (R*\B). We
first claim that for x, y € R*\B,
, oG
0t =[ (2206, - gtan) 32
where dQ is the surface measure on dB and n, is the normal to B pointing
outward from B at z.

Let B be a sphere of very large radius enclosing B, x, and y. Then (207)
with [, 5 replaced by [, ¢ a5 — | ¢ o5 follows from (— A, + 1)Q(x, y) = O and
(=4, + 1)Go(x, y) = (x — y) by a standard argument using Green’s
formula

(z x)| dQ,  (207)

z

[ (hag— g AR)dx = j (h dg/on — g dh/on) do
Q n

Thus (207) follows if we can show that the 0B integral goes to zero as 0B
goes to co. Actually, we need only prove a weaker statement, namely, sup-
pose we can prove that the B integral goes to zero as ro — oo after we
integrate over y with some h € C3 and integrate the radius of 0B from rq to
ro + 1. Then by integrating the Green’s formula result over the radius of 8
and taking r, — 00, we obtain (207) with y smeared out. We can then take h
to a d-function and obtain (207).

In the integral over the radius of 8B, we can integrate the 4Q/dn, by parts
and so obtain an error term involving only G,, 8G, /dn,, and Q (no 6Q/on,).
Since G, and G, /0n have exponential falloffas |x — z| — oo, it is sufficient
to prove that { Q(z, y)h(y) dy is bounded as z — co. But this follows from
Lemma 1c! As a result, (207) holds for 0B the boundary of any ball contain-
ing I'.

Choose balls B, and B, with I c B,, B, c B,, B, = B. Now, since Q is
C* on (R"\I') x (R™I'), it follows that Q, V.Q, V,Q, and V,V, Q are uni-
formly bounded on B, \B, and, so by (207) with B replaced by B;, Q and
V, Q are uniformly bounded for x € R*\Band y € B,. By the symmetry of Q,
we have that Q and V, Q are uniformly bounded for x € B, and y € R*\B.
Using (207) with B replaced by B,, this uniform bound, the exponential
falloff of G,, and the symmetry of Q, we obtain (206). §

Proof of Theorem X179 Since 0 < Ro— Rr,p < R, by Lemma la, it
suffices to prove that yRyx is Hilbert-Schmidt to conclude that
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X(Ro — Rr,p)x € £, and thereby complete the proof by Lemmas 3 and 4.
But xR, x € 4, by direct calculation from the formula for G, or by Theorem
X121 |

Proof of Theorem X180 By Lemma la,
0 <Rp;n—Ro < Rpr,n <Rr,opn

and by Lemma 1b, YR 5 , r.nx = Rop o r;~n @ 0 which is Hilbert-Schmidt by
hypothesis. The theorem now follows from Lemmas 3 and 4. |

We now sketch a proof of Theorem X1.81 in a special case, leaving the
details to the reader:

Lemma 5 Let Q < B< R? be open balls with center 0. Let I' = 9Q,
S =0B. Then R; s;N» the operator on I*(B) with Neumann boundary
conditions on I" and §, is Hilbert-Schmidt.

Proof By Lemma 1b, R, us;N =R; @R, under the decomposition
L(B) = I}(Q) ® I}(B\Q). We consider the R, case; the R, case is similar.

r:n is a direct sum @, , h, .. of operators under the decomposition
L(B)= @ #,, where #,,={y(r)Y,.(0, ¢)}. Under the isomorphism
Y(r)Y,, —ry =f, #,, goes over to 2(0, a) where a = rad(Q), and #,,, to

hom = —d?/dr? + £(¢ + 1)r=2

with boundary conditions

f0)=0,  a*(r~'f)(a)=af'(a) - f(a) = 0

One can therefore find explicitly the eigenfunctions of hy g in terms of trig-
onometric functions and find that the nth eigenvalue obeys E, ;=0 >Cn%
Since hyp 2 ho o + £(¢ + 1)a” %, E, , = C(n* + £2), s0

@ a0

Y (Ene+1)2<dy [ (2424 1) 2dx=d(e? + 1)
‘0

n=0

Thus

TH(RY = ¥ (24 )Y (Ene+ 1) 2 <c0 |

¢=0 =

Lemma 6 LetI, and I', be two closed sets of measure zero respectively
inside bounded open sets Q,, Q, in R>. Let S; = Q. Suppose that there
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exists a C* diffeomorphism F ofa neighborhood of Q, to a neighborhood of
Q,so that F[Q,] = Q, and F[I',] =T,. Then Ry, _s,,n is Hilbert-Schmidt
if and only if Rr, s, n is Hilbert-Schmidt.

Proof Consider the unitary map U: I}(Q,, d*x) — [*(Q,, d*x) given by
(Uf)(x) = (G'/*f)(Fx)

where G = det{J;;} and J;; = {0F(x)/0x;}. Then
UHp, ,s,nU'=H'

where H' has the same form domain as Ay, s.;n and

1/2
(f,H'f)=I Z ;(J_l)ij'a_g;j‘f_)

Qi

2
d®x

\ afz 2 33
Sclj‘m‘: a_x,, + | f]Pdx

=Cy(f, (Hr, usyn+ 1)f)
It follows that (Problem 117)
Rr, usun<Cy(H +1)7!

so that R, s, is Hilbert-Schmidt if (H’ + 1)~ ! is Hilbert-Schmidt. Since
H’ is unitarily equivalent to Hr, usz;N» We see that R,—, osuNE S, if
Rr, us,.n € 5. By symmetry, we can go in the other direction. ||

Definition An open set Q in R? is called starlike about x, in  if for
any unit vector n,Q N {x, + tn|t € [0, o)} = {x, + tn|t € [0, a,)} for some
a, > 0. If a, is a C* function of n, we say that Q has a smooth boundary.

Lemma 7 Let I, be the boundary of an open set D, that is starlike with
smooth boundary with respect to x,. Let

Q ={y|xo+ (1 +¢)"(y— xo) € Dy}

for some fixed &€ > 0. Then, there is a C* diffeomorphism F of a neighbor-
hood of Q, o D, onto a neighborhood of a ball Q, such that F[Q,] = Q,
and such that I', = F[I',] is the boundary of a sphere in Q, with the same
center as Q,. In particular, Ry, _s,,n is Hilbert-Schmidt.

Proof Just define F(x) = (x — xq)an., Where n(x) = (x — xo)|x — xo|™". §

Finally, we can prove a special case of Theorem XI.81.



210 Xi: SCATTERING THEORY

Theorem XI.81"  Let I be the union of a finite number of disjoint sets
{T';}4=1 each of which is the smooth boundary of a bounded open starlike set
Q;. Let B be any open ball containing I" and let S = dB. Then Ry g,y is
Hilbert-Schmidt.

Proof Let x; be the point about which Q; is starlike. Let S; be I'; scaled
outward slightly from x;. This can be done so that the S ; are disjoint and
contained inside B. Let S’ be the surface of a sphere concentric to S, inside S,
and containing all the S; (see Figure X1.13). Let x,, ..., ¥, be the character-
istic functions of the regions surrounded by the § J=1,...,k Let x4, be

FIGURE XI1.13 The sets S; and S.

the characteristic function of the shell between S and S’ and let ¥, be the
characteristic function of the rest of B so that Y%%3 x; = 1on B. Then, by an
extension of Lemma 3, it suffices to prove that y jRr us;nx; is Hilbert-
Schmidt for each j=0, 1, ..., k+ 1. The case j=0 is trivial since
Gr us;n(%, ¥) — Go(x, y) is C* on Supp xo X supp xo by Lemma 4 and
X0(x)Go(x, ¥)xo(y) is the kernel of a Hilbert-Schmidt operator. For j = 1,

XJRI‘ uSiNK S Xer uSjuS;NXj = Rr,us,:N @0

by Lemmas la and 1b. By Lemma 7, R, s, ~ is Hilbert-Schmidt so
%;Rr us;n1; is Hilbert-Schmidt too. The case j = k + 1 is similar. ||

X111 Optical and acoustical scattering Il:
The Lax—Phillips method

In this section we study a different approach to scattering theory
developed by Lax and Phillips—different in that the main objects of study
are certain families of subspaces of the Hilbert space of the interacting
dynamics. As we shall see, this approach applies most naturally to classical
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wave equations that obey Huygens’ principle rather than to quantum
mechanics where the wave equations are dispersive and have infinite propa-
gation speed. Nevertheless, by using the principle of invariance of the wave
operators, it can also be applied in some quantum-mechanical situations
(see Example 5).

The most beautiful and important aspect of the Lax-Phillips approach is
that certain analyticity properties of the scattering operator arise naturally.
When the interacting group satisfies the basic hypotheses of the theory, then
there is a unitary map from # to I*(R; N) where N is an auxiliary Hilbert
space. In this representation of 5, the scattering operator acts by multipli-
cation by an ¥ (N)-valued function s(¢) which is unitary a.e. and which is the
boundary value of an analytic #(N)-valued function 5(z) in the upper half-
plane. Typically, s(z) can be meromorphically continued to the lower half-
plane, and its poles are closely tied to the geometry and to the physical
interpretation of the theory. We have already had examples of such continu-
ations in Sections 7 and 8 and the appendix to Section 6.

A complete exposition of the Lax-Phillips theory is beyond the scope of
this section. What we wish to do is to prove several of the basic theorems so
that the underlying structure and the origin of the above-mentioned analyti-
city are clear. We then sketch several examples to show how the hypotheses
are proven in practice. Detailed expositions and many applications can be
found in the references discussed in the Notes.

The basic idea which is isolated and developed in the Lax-Phillips theory
is that of incoming and outgoing subspaces.

Definition Let U(t) be a strongly continuous unitary group on a Hilbert
space ). A closed subspace D, < o is said to be outgoing if:

(i) U@)D.+]<D, fort>0.

@) () U@)ID+]={0}.
(i) U, VD] = .
Similarly, if D_ satisfies (ii), (iii) and
(') U(@)[Dp-]<D_fort<0,

then D_ is said to be incoming.

This terminology arose naturally in applications. For instance, in the
Hilbert space for the free wave equation on R? (see Example 1), D, is just
the set of initial data so that the solution u(x, t) vanishes if |x| <t; thatis,
physically, the waves are going out in the future. Similarly, D_ is the set of
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initial data so that u(x, t) vanishes if |x| < —t. Such a solution is coming
in in the past.

An example of an outgoing subspace can be constructed as follows. Let N
be a Hilbert space, let s# = [*(R; N), and define U(t) to be translation to the
right by t units, that is, (U(t)f)(s) = f(s — t). Then

D, =I}0, o0; N)={fe I}(R; N)| f(s) =0 for s < 0}

is outgoing. The main structure theorem of this section says that in fact all
outgoing subspaces are essentially of this form.

Theorem XI1.82 Let U(t) be a strongly continuous unitary group on a
Hilbert space & and let D, be an outgoing subspace for U(t). Then there is
an auxiliary Hilbert space N and a unitary map &, of 5 onto I*(R; N) so
that #.,[D.] = L*(0, co; N) and U, (t) = #, U(t)®3" is translation to the
right by ¢ units. Similarly, if D_ is an incoming subspace, there is a unitary
map #_ onto I*(R; N’) so that #_[D_] = I?(—,0; N') and U_(t) =
R_ U(t)#-"! is translation to the right by ¢ units. If U(t) has both incoming
and outgoing subspaces, N and N’ can be chosen to be the same, although
# ., may not equal #_. These representations are unique up to isomor-
phisms of N.

U.(t), 20, co; N), and [*(R; N) are said to be an outgoing translation
representation of U(t), D, , and . Similarly, U_(t), I*(— o0, 0; N), and
L*(R; N) are said to be an incoming translation representation of U(r), D_,
and .

Before proving the theorem, we make several remarks. First, if U(t) has
incoming and outgoing subspaces, we can construct a scattering operator as
follows. For ¢ € o, let o_ = #_ ¢ and ¢, = &, ¢, and define § to be the
map S: ¢_ ¢, , that is,

S=a,2"

S is a unitary map from I*(R; N) to itself. S is defined by pulling this
operator back to J#:
S=RH R R-)R_=R'R.,
Finally, letting # denote the Fourier transform, a unitary map from
I*(R; N) to itself, we define
S=g87!

S, S, and § are clearly unitarily equivalent, so we shall call them all the
scattering operator, distinguishing between the representations by the “and ~.
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Since #, U(t) = U, (t)#; and U, (t) = U_(t), S commutes with U(t). Since
§ commutes with translation, it should intuitively be given by convolution
by an #(N)-valued function 7 on R, so S should be given by multiplication
by an operator-valued function s = (2n)'/?%. If we have the additional
hypothesis that D_ < D%, then § takes I?(— oo, 0; N) into itself, which
requires that T have support on (— oo, 0]. The Paley-Wiener theorem thus
suggests that s should have an analytic extension to the upper half-plane.
This is the source of the analyticity described in the introductory remarks
above (details are given in Theorem X1.89 and its corollary).

Notice that the definition of the scattering operator did not mention any
“free dynamics.” In practice, the incoming and outgoing subspaces are con-
structed by using the free dynamics; and £, and % _ turn out to be (uni-
tarily equivalent to) the usual wave operators. This is further discussed
below. However, the construction above raises the possibility of defining S
when there is no “natural” candidate for the free dynamics or in situations
where the convergence of interacting solutions to free solutions as t = + o
is too slow to allow the usual construction of the wave operators. However,
we emphasize that the construction does depend on more than the interact-
ing dynamics U(t). For example, once one has an outgoing translation rep-
resentation of # as I*(— oo, c0; N), one can take D_ = #7;'[[*(— 0, 0;
N)]. For the pair D, , D_, the S-matrix is 1. Typically, the additional struc-
ture that determines the choice of D, and D_ is some underlying geometry.

One inherent restriction of the theory as it stands is apparent from
Theorem XI.82 itself. The existence of an incoming or outgoing translation
representation for U(t) implies that its generator H has purely absolutely
continuous spectrum on the whole real axis and that the spectrum has
uniform multiplicity. This, however, does not make applications to quantum
mechanics impossible (see Example 5).

As motivation for our proof of Theorem X1.82, we first prove the discrete
analogue.

Theorem XI.83 Let V be a unitary operator on a separable Hilbert
space . Let D, be a closed subspace of s so that:

(1) V[D,]=D,.
(i) (Veez V¥[D.]={0}.
(iii) xez V[D]= .
Then there is a Hilbert space N and a unitary map :, of .# onto
/5(— 0, 00; N) such that

t.[D]={f|f(n) =0,n<0}=/,[0, o0; N)
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and V = 2, V43! is the right shift. This representation is unique up to iso-
morphism of N.

Proof We prove the existence of ¢, and leave uniqueness to the reader
(Problem 121). Let N = D, n (V[D.])* which is a closed subspace of #.
Since V is unitary,

VN=VD, nV*Di c VD, c N*

so we can form the direct sum N @ VN. Since N@ VD, = D, , we have
VN@® V3D, = VD, so that

N®VNe VD, =D,
or equivalently,
N@®VN=D, n VD%
In the same way one sees inductively that
VINCVID, c(N® @V 'N)*

N® - @®VIN=D, n V*Dt (208)
By (i), D, 2 VD, 2-- 2 VD, so by (ii) and (208):
D VEN=D, (209)
k20

Applying V"' to N@® VD, =D, , we see that
V'IN®D,=V"'D,
so that inductively one sees that
® VN =Vv’D,

k¢

for ¢ any integer, positive or negative. Taking # -+ — co and using (iii), we see
that

D VEN = #
keZ

Thus any ¢ € # can be uniquely written
=) Vor, €N
k

with @[> =Y, [@.||% As a result, the map

4+
¢ — {(pk}l:o=—co
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is a unitary map of 5 onto /,(— o0, 00; N). By (209), 2, D, = /,[0, o0; N),
and it is easy to check that V is the right shift. |

There are at least three fairly distinct proofs of Theorem XI.82. One
reverses the analysis of Theorem XI.84 below and uses von Neumann’s
uniqueness theorem to prove Theorem XI.82. The second uses techniques of
Fourier analysis, Theorem XI.83, and the Cayley transform. The proof we
give depends on spectral multiplicity theory (see Section VII.2) and has its
roots in general group theoretic methods, especially Mackey’s imprimitivity
theorem. We recall that two measures are called equivalent if and only if
they are mutually absolutely continuous. The key technical result we need in
our proof of Theorem X182 is closely connected to the fact that Lebesgue
measure is the unique translation invariant measure on R (Problem 122).

Lemma  Suppose that dyu is a nontrivial Borel measure on R with the
property that dyu(- + a) is equivalent to dy for all a € R. Then dy is equiv-
alent to Lebesgue measure.

Proof By hypothesis
du(x + y) = g,(x) du(x) (210)

It is immediate that g,(x) is measurable in x for each fixed y and
| h(x)g,(x) du(x) = | h(x — y) du(x) is measurable in y for each measurable
h, and thus g, (x) is jointly measurable.

Fix h > 0 with [ h(y)dy = 1 and let f be a simple function. Then, freely
using Fubini’s theorem:

@ = [ () du(x) = [[ S (h(y) du(x) dy
= [[ 76 + y)gx)h(y) du(x) dy (211)
by (210). Make the change of variables z = x + y for fixed x, so that
[ 76+ Yy Ihiy) dy = [ £()g.- x)h(z — x) dz
by the translation invariance of Lebesgue measure. Thus

a= [ f(2)6(z) dz
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where
G(z) = [ go-ale)h(x ~ 2) dp(x)
Since f'is arbitrary,
du(x) = G(x) dx
Now, fix h > 0 with [ h(y) du(y) = 1 and compute, as above, that

[ £(x)dx = [[ £(R(y) duty) dx
= ” S(x + y)h(y) dx du(y)
= j f S (@)h(z = x)g-«(z) du(z) dx

= [ f)H() duz)

with H(z) = [ h(z — x)g_,(z) dx. Thus
dx = H(x) du(x) 1
Proof of Theorem X182 Motivated by the proof of Theorem XI.83, we
define
D,(t)=U@)[D.], teR
D,(0)={0}, D,(-x0)=ux#

and for a < b we define

N(a, b] = D, (a) n D, (b)*

Let P, , be the orthogonal projection onto N (a, b]. Then from properties
(i)-(iii) of D, and the fact that U(t) is continuous, it is easy to check that
{Pa b} generates a projection-valued measure {Pq} that satisfies
U(t)Pq U(—t) = Pq.,. Introducing the operator

X= j AdP,
R
this implies that U(t)XU(r)™! = X + ¢. It follows from the uniqueness of the

spectral multiplicity measure classes (Theorem VIL6) that the spectral mea-
sure classes of X are invariant under translation. Thus, by the lemma, each
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class must be the one containing Lebesgue measure. Since the measure
classes are disjoint, there is only one measure class, that is, X is a self-adjoint
operator of uniform multiplicity m for some m with corresponding measure
dx. It follows that there is a Hilbert space N of dimension m and a unitary
map 2, : # — [}(R, dx; N) so that 2, Pq 27 is multiplication by yq, the
characteristic function of Q.

Let W(t) = 2, U(t)25" and let Ty(r) be translation to the right by ¢ units
on LX(R, dx; N). Then, for each t, W(t)Ty(t)~ * commutes with each Pq;so by
Theorem XII1.84, there is an #(N)-valued measurable function K(s) such
that

(WO To(—)f)(s) = K/(s)f (s)

K(s) is defined only almost everywhere in s, but for definiteness we make a
choice for all s. Then

(W(e)f)(s) = K(s)S (¢ + 5)
The group property W(t)W(u) = W(t + u) implies that
K,(S)K,,(t + S) = Kr+u(s) (212)

(212) holds in the following sense: For each ¢ and u, it holds for almost all s.
Thus it holds for almost all triples s, ¢, u), so we can choose a fixed value of
s so that (212) holds for almost all {t, u). For that fixed value of s, define

(Bf )(t) = K,_(s)f (t)
Then
(BW(@)B™f)(t) = K, (S)Ko(t)[K,+0-4(s)] "1 (¢ + a)
=f(t+ a)

for almost all t and a where we have used (212) with the change of variables
'=t+s u' = a It follows that BW(a)B~! = Ty(a) for almost all 4, and so
by continuity for all a. Letting #, = B2, , the theorem results. |

Theorem XI.82 can be used to provide a proof of von Neumann’s theorem
(Theorem VIII.14) on the uniqueness of representations of the canonical
commutation relations.

Theorem XI.84 (von Neumann’s theorem) Let U(t) and ¥(s) be two
strongly continuous one-parameter groups on a Hilbert space ¢ that satisfy

U(t)V(s) = e*V(s)U(t) alltand s
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Then there is a Hilbert space N and a unitary map # frorp # onto I*(R; N )
so that RU(t)R~ ' is translation to the right by t units and RV/(s)# is
multiplication by e~ %,

Proof Let P and Q be the self-adjoint operators with U(t) = e~ " and
V(s) = 2. Let 9 denote the set of vectors in # of the form

or= J‘jo jjo f(t, s)U(t)V(s)p dt ds

where ¢ € # and f € C3(R?). Exactly as in the proof of Theorem VIILS, one
easily shows that 9 is dense in s, 2 < D(Q), 2 = D(P), and that @ is
invariant under U(s) and ¥(t). By Theorem VIIL10, P and Q are essentially
self-adjoint on 2. Let § € 9, then since U(t)y is in @ also, we may differ-
entiate both sides of the equality

UV (s = e“V(s)U(e)y
with respect to s. Setting s = 0, we obtain
UEQU(-tly = (Q -ty (213)

Since this relation is true en 9, which is a core for Q and Q — ¢, we
conclude that Q and Q — ¢I are unitarily equivalent and (213) holds for a'll
¥ € D(Q). Now, let {Ey} be the spectral family for Q. Then {U (f)En 4 (—t)}is
the spectral family for U(t)QU(—t). Since Eg = xo(Q), (213) implies that

U()E(- o, yU(—1) = E(~ o, 241 (214)

for all A and ¢ in R. . ‘ .
Set D _ = Ran E _, o,. We shall show that D_ is an incoming subspace

for U(r) on ##. First, (214) implies that U(¢)D - = Ran E _,_,, for all ¢.
Thus:

(i) U@D-<D_,t<0;
(if) N, U(e)D- ={0};
(i) [J, U@D- = s#;

by the usual properties of the spectral projections. So, by Theorem XI.82,
there is an auxiliary Hilbert space N and a unitary map #_ of Jf onto
Z(R; N)sothat #_D_ = I*(—0,0; N)and #_ U(t)®=! is translation to
the right by ¢ units. Finally, since #_ E,_, o #-" = X(-w, 0, (214) implies
that B_ E(_ o, y B = ¥~ o,  forall A. Thus £_ Q% " 1s multiplication by
Aand #_e '®RZ! equals multiplication by e~i%. |
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Theorem XI1.82 can be reformulated using the Fourier transform. Defined
by the usual formula, the Fourier transform % is a unitary map of I*(R; N)
onto itself. It takes I?(0, co; N) onto the Hardy-Lebesgue class #2 (R; N)
and I*(— oo, 0; N) onto »#2 (see the Notes to Section I1X.3).

Theorem XI1.85 Let D, be an outgoing subspace for the unitary group
U(t) on a Hilbert space »#. Then there is an auxiliary Hilbert space N and a
unitary map & o #, of # onto L}(R; N) such that & o Z.[D,]=
H2(R; N)and (F o R,)U(t)(Z o )" ! is multiplication by e~ ",

The above representation is called an outgoing spectral representation for
U(t), D, , and 5. For an incoming subspace a similar theorem holds except
that # o #, is replaced by # o #_ and #2(R; N) is replaced by
#%(R; N).

The discussion after the statement of Theorem XI.82 shows that if we have
incoming and outgoing subspaces, then we can construct a scattering theory.
But, Theorem XI.82 says nothing about how one actually constructs incom-
ing and outgoing subspaces for U (¢). Since U(r) is the dynamics of an inter-
acting system, this is not a trivial question. In applications, the construction
depends heavily on the fact that U () is closely related to a free dynamics
Uo(t) and that U,(t) has many special properties. For example, let Ws(t) and
W(t) be the unitary groups for acoustical waves in free space and in inho-
mogeneous media constructed in the preceding section. Suppose that the
region of inhomogeneity is contained inside some finite ball 4,,. The Hil-
bert spaces on which W(t) and W(t) act are equivalent, and the norms are
equal for pairs of functions whose support lies outside 4, . Furthermore,
any data of compact support will eventually be propagated outside of A,,by
W (t); and as long as the data stay away from &,,, W(t) and W(r) agree.
These and other special properties of Wo(t) and W(t) are exploited in
Examples 1 and 2 below. For the moment, we return to the general setting
and formulate precisely what we mean by a “close relationship " between
U(t) and U,(z).

Suppose that U(t) and Uo(t) are strongly continuous unitary groups on
Hilbert spaces # and s, and let J be an identification operator from Ho to
. Suppose that:

(0) There exist subspaces D? < 3y N # so that the #y-norm and the
S-norm are the same on D’? and J is the identity on D7P.

(1) D7 and D' are incoming and outgoing for U(t) and for U,(t).

(2) U(t) and U,(t) act the same on D’? for ¢ > 0. U(t) and Uy(t) act the
same on D" for t < 0.
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X,
(3) There is a Hilbert space N and a unitary map ¢ — @ of s onto
I2(R; N) so that D'? and D"° go over to I*(re, 00; N)and I*(—c0, —ro;
N), respectively, where r, is some positive number, and U(t) goes over
to translation by t. That is, up to a shift of ry units, this representation is
both incoming and outgoing for U(t).

Let Ty(t) denote translation to the right on I*(R; N). To construct an out-
going translation representation for U(t), for each ¢ in D?, we map U(t)p to
To(t). By (2), this map is well defined, it is norm preserving, and by (iii) it is
densely defined. Further, it has dense range since %, takes D”? onto
I3(ro, oo; N). The map thus extends to a unitary map of 5 onto *(R; N)
under which U(t) goes over to T, and D"? goes to I*(ro, co; N). Left shift by
To(—ro) makes this an outgoing translation representation for U(t). A simi-
lar construction creates an incoming translation representation. We denote
the maps onto the incoming and outgoing translation representations by %,
and #_ as before. Notice that, by (3), D"? and D™ are orthogonal. This will
have important consequences later.

In this situation, where we have a free group U,(¢), it is natural to ask how
the Lax-Phillips scattering operator is related to the usual wave operators
and scattering operator. Let D be the dense set of vectors ¢ in 5, so that
R, @ has compact support. If ¢ € D, then for some s, Uy(s)p € D2 so by (2),
U(—t)J Uy(t)p is independent of ¢ for ¢ > s. Thus,

Q¢ = lim U(—t)JUy(t)p
t— o0
exists. Since D is dense, the limit exists on all of s#; a similar argument
proves the existence of Q™.

Now, notice that if y € D? then Q™Y = y;s0if ¢ € D and Uy(s,)p € D?,

then

Q™ Uo(s1)e = Uo(s1)e
Therefore,
R Q¢ =To(—51)R+ Q Ug(s1)e = To(—51)R+ Uol(s1)e
= To(—ro — 51)R Uo(s1)e
= To(—ro)Ro ¢
since #, = Ty(—ro)®o on D?. Since such ¢ are dense, we have
R,Q° = To(—ro)%o

and similarly
R_Q" = Ty(ro)Ro

XI.11 Optical and acoustical scattering lI: The Lax-Phillips method 221

Since .??0, R, and Ty(t) are unitary, this shows that Ran Q* = # =
Ran Q7, so the wave operators are complete. Finally,

Q7)7'Q = RG ' To(ro)R . R To(ro) R0
= Ro ' To(ro)STo(ro)Ro
= Ro '(To(2ro)S) R

So, except for the inessential factor To(2ro), (™) !Q* is just the Lax-
Phillips scattering operator pulled back to #o. We summarize:

Theorem XI.86  Let U,(t), U(t), and J satisfy the hypotheses (0)-(3) and
let #,, Ty, and r,, be defined as above. Then the wave operators Q¥ exist, are
complete, and

Q7)7'Q* = A5 {(Ty(2ro)3)R, (215)

Example 1 (the free wave equation in three dimensions) We have
alregdy formulated the free wave equation as a Hilbert space problem in
Sections X.13 and XI.10. We shall use the notation introduced in Section
XL.10, setting c, = 1 by a suitable choice of units. For initial data Q€ N,
Fhe ﬁrst component u(x, t) = (Wy(t)p), satisfies the free wave equation (186)
if ¢ is smooth enough. The primary fact that we need is Huygens’ principle:

Theorem X1.87 (H}xygens’ principle)  Let Wy(t) be the unitary group for
the frec wave equation on R® and set u(x, t) = (Wo(t)@),. Suppose that
@ =/, g) € # has compact support. Then

[x — y| =t for some y e supp{f, g

supp u(x, t) :x

Proqf Suppose first that f=0 and that g e C§(R?). We shall derive an
explicit formula for the solution of (186) in the case c, = Po = 1. In order to
solve (186), we need just find a u so that f,(k, t) = —k2i(k, t), d(k, 0) = O
and &,(k, 0) = g(k). This is easily done by setting ’

itk )= T

Let H . be the tempered distribution whose Fourier transform is
|[k|™! sin|k|t. Then

ux, 1) = F (| k|~ sin |k|tg(k))
=(@2n)"*H x g
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so in order to represent the solution we must just find H. Let'dS R dex}ote the
area measure on the sphere of radius R. dSy is a tempered distribution and
using 0 for the angle between x and k,

aSg(k) = (2m)72 [ = = dsiy(x)

n 2z
= (2n)7% [ d [ e"MR<=9R?sin g dy

(1] V]

= (2m)"V2R? [ MR <0 sin § dp
0

__2Rssin|k|R

= @)k

Thus for ¢t > 0, H = (2t)~!(2#)"/2 dS, and
1
= ds
ulx, 1) = — J'mg(x +) dsy)

A similar representation holds for ¢ < 0. Notice that v = u, satisfies (186)
too, along with the initial conditions v(0, t) = g, v,(0, t) = 0. Thus, for f, g €
C§(R?), we can write the solution of (186) as

e )= [ o 40 850)+ 1 (o[ S+ ) as0)) (16a)

and from this representation Huygens’ principle follows immediately for C

data.
Now suppose that ¢ = f, g) € #, with support in a compact set K and

let =, be the set where u(x, ¢) is supposed to be supported accordix}g to
Huygens’ principle. Let K and X be the sets K and X, plus all the points a
distance less than ¢ away. Then there is a sequence ¢, = {J,, g, of pairs of
C¢ functions with support in K® so that ¢, — ¢ in 5#,. Since W,(r) is
unitary, Wy(t)p, = Wy(t)e and, in particular,

jm |V (4, — u)(x)|? dx -0

By the uncertainty principle lemma (Section X.2),

I

1 2
- 2 4r? u(x, t) — uy(x, t)|* dx
lesrlu(x, t) — u,(x, t) > dx < 4r L; 4|x|2| (x, £) = u,(x, t)|

< 4r? j |V(u(x, t) — ux, 1) [P dx  (216b)
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so that in each ball of radius r a subsequence of {u,} converges to u pointwise
a.e. Thus u is zero outside =® since each of the u, is zero there. Since ¢ is
arbitrary, u is supported in DI |

Corollary  Suppose that supp(f; g) is contained in the ball of radius r.
Then
ulx,t)=0 for |x|>r+¢t (217a)

u(x,t)=0 for |x| < |t| —r (217b)

(217a) is an expression of the finite propagation speed and holds in all
dimensions. (217b) is an expression of Huygens’ principle which holds only
in odd dimensions greater than or equal to three.

Now we define

D, ={p € #,|u(x, t) = (Wy(t)p), is zero for [x] <t t>0)
D_ ={p e #o|u(x, t) = (Wy(t)p), is zero for [x] <~ t <0}

To check that D, is an outgoing subspace we proceed as follows. D, is
closed by the unitarity of W,(t) and the inequality (216b). To prove (i) notice
that if 9 € D, , then

(Wo(t)Wols)o)s = (Wot + s)o), = u(x, t + )

so (Wo(t)Wo(s)p), is zero if t>0 and [x| <t+s Thus if s3>0,
Wo(s)e € D, . Secondly, suppose that ¥ € (), Wy(s)[D,]. Since ¢ € D, im-
plies that

supp(Ws(s)e); < R"'\{x

¥ € Wy(s)[D.] for all s> 0 implies that V), =0.ButforpeD,, (d/dt) x
(Wo(t)o), = (Wo(t)p), so (V). =0 too. Thus y =0, which proves (ii).
Finally, notice that if supp ¢ {x||x| < R}, then by (217b), Wy(R)p € D, .
Thus, ), W,(t)D, contains all the C® data of compact support, so (iii)
holds. The proof that D_ is incoming is similar. Thus by Theorem XI.82
there exist incoming and outgoing translation representations for Wol(t).

In practice one wants a translation representation that is both incoming
and outgoing for W,(t) and lots of detailed information, and therefore one
constructs the representation directly instead of appealing to Theorem
X1.82. The construction is accomplished by noticing that for each ¢ € R and

w € R? with |o| =1,
-iaa)-x( 1 )
Po,0=2¢ ,
—10

Ix| g}
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is an (improper) eigenfunction of

[0 1
A0=1(A 0)

with eigenvalue +a. Analogously to Section 6, we now define

f‘t(o’ (D) = (zn)—3/2(ﬂ Do, w)J!’o

for fe CP(R?) x CF(R®). We can regard f* as a function on R with values
in N = I?(5?), and it is not hard to show that the map f— f* is an isometry
of #, into I2(R; I*(S?)). In fact the map is unitary and since

(Ao f)*(0, @) = (Ao f; ¥4,0) = (£, AAO(pa.w) =0(f, ¢s,0) = of *(0, ®)

A, goes over to multiplication by . Taking the inverse Fourier transform in
the o variables, one obtains a representation of #, as I?(R; I?(S?)) in which
W,(t) is represented as right translation. What is not obvious in this con-
struction is what happens to D, and D_ . But it can be shown explicitly that
D, and D_ go over to I?(0, o0, $?) and I*(— o0, 0; S?), respectively. This
shows that the translation representation is both incoming and outgoing
and, incidentally, that #, = D, @ D_, a fact that is certainly not obvious
in the original representation. This orthogonality gives rise to some of the
analyticity properties of the scattering operator which we shall discuss

below.
Finally, we remark that the explicit construction of the translation rep-

resentation can itself be used to provide a proof of Huygens’ principle.

Example 2 (acoustic waves in an inhomogeneous medium)  Let us con-
sider the first example, (187), of the preceding section from the Lax-Phillips
point of view:

1
= clx)? e
u, = c(x)’p(x)V o) Vu
ux, 0)=s(x),  ulx,0)=glx)
We assume all the hypotheses on ¢(x), p(x) that we made in Section 10 and
use without comment the spaces and operators H,, L2(R?), 5#,, B,, 4,
W,(t) constructed there. We make one additional assumption on c¢(x) and
p(x), namely
p(x)=1, cx)=1, |x| >r

for some r.
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Now, let ro > r and let D, and D_ be defined as in Example 1. We set
D’.‘?E‘Wo(ro)D.;_, Dr.oE Wo(‘—ro)D_

Notice that D?, D™° are closed subspaces of »#,. They are also closed
subspaces of 5, since ¢ € D’? implies that ¢ vanishes inside the ball B(r,),
of radius r,, so

"‘p"-il’l = "(0"1'0’ » € D'io

since the norms are the same for functions with support outside B(r). We
choose J to be the identity operator.

Suppose that ¢ e CP(R®) x CP(R®) and that ¢ e D?. Since
Wo(t): D? - D’? for t > 0, we have

(Wo(thp) = —ido Wo(t)p = —id, Wo(t)e

because 4, and A4, coincide on smooth functions with support outside B(r).
By the uniqueness of semigroups, W,(t)p = W,(t)e for t > 0 and since such
¢ are dense in D"?, we have

Wi(tdp = Wo(t)p, @eD?, t>0 (218)
and similarly
Wi(t)p = Wo(t)p, @eD®, t<0

This shows that W, and W, satisfy hypotheses (0) and (2) of Theorem XI.86.
That condition (3) holds is just what we sketched in Example 1. Further, we
know that D® and D'? are incoming and outgoing subspaces for Wy(t). What
we need to show is that they are also incoming and outgoing for W,(t). By
Theorem XI.82, the Lax-Phillips scattering operator S will then exist. And,
since hypotheses (0)-(3) of Theorem XI.86 hold, we shall have a new proof
that the wave operators exist and are complete, and (Q7)™!Q* will be
related to § by (215).

To show that D7? is outgoing for W,(t), we must verify (i)-(iii). Properties
(i) and (ii) follow immediately form (215) and the corresponding statements
for the free group proved in Example 1. Property (iii) is much harder and
uses a whole array of technical tools. Besides Huygens’ principle we shall
need a compact embedding theorem of the type discussed in Section XII1.14
and a detailed spectral analysis of 4;. Our plan is to show that (iii) is
equivalent to a form of energy decay in the neighborhood of the inhomogen-
eity and then to prove the energy decay using properties of A,. Since (iii)
implies asymptotic completeness, it is not surprising that it is related to an
energy decay condition: We expect asymptotic completeness to hold only if
any solution of the interacting equation looks free in the distant future and
distant part, that is, if it propagates away from the region of inhomogeneity.
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We begin with a lemma which shows that for the free equation, energy
propagates at speed one. For any R > 0 and ¢ = {u, v), define the local
energy norms as follows:

lel =] [Vul + |of* dx
|x|<R

lolf =] _ o6 [Vul? + (clx)p0) " o dx

Lemma 1

(a) For any R > 0,
Wo(T)e |l < @|§*D  forall ¢ e,
(b) Forany R >r,,

IM(T)e| < Jo[f*P  forall ¢ e,
Propf The idea is to integrate an “energy flux” over the surface of the
region Q(R, T) given by |x| <R+ T—t 0<t<T, shown in Figure

XI.14. Because of conservation of energy, no net flux can be produced inside

4

/. AN

-R-T -R R R+T

FIGURE XL.14 Q(R, T).

Q(R, T), and because of the finite propagation speed, flux can flow only out
of the sides; so the flux in at the bottom |- [|®*™ must be greater than the
flux out at the top |W(T)- ||(®.

Explicitly, define

Jolx, 8) = H(e*(x)p(x)) ™! |ulx, 0) [* + p(x)™* [Vu(x, 1) 7]
jilx, 1) = —p(x)™" Re{u(x, t) d,u(x, t)}

and set j = {jp, j>. We will see in the appendix to Section 13 that these are
four of the components of the energy-momentum tensor. Suppose first that
¢ =</, g> with f, g € C§. Let u(x, t) = (W,(t)p),. Standard arguments of
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the type used in Section X.13 show that u is C* in x and ¢. A direct calcula-
tion using u,, = c2pV - p~'Vu shows that

O v i _
VeI e O

So, by Gauss’s theorem,

[ jeds=0
(R, T)
where ¢ = {0, 6) is the outward pointing normal and dS is the surface
measure. By the inequality 2ab < a® + b%, |j(x, t)| <jo(x, t) at points
where ¢ = 1, such as the sides of Q. Moreover, |o(x, t)| = oo(x, t) on the
sides of Q. It follows that j - ¢ > 0 on the sides of Q so

[ hteTyaxs<|  jox0)dx
Ix|sR |x|SR+T

which proves (b) for smooth ¢. A limiting argument proves (b) for all
@ € ;. A similar argument proves (a). |

With this lemma, we can now show that (iii) is equivalent to a weak form
of local energy decay.

Lemma 2  Under the hypotheses in Example 2, (iii) holds if and only if
lim W, (o] ® = 0 (219)

t—~+ o0
for all ¢ € o, and all R < o0.
Proof First, suppose that (iii) holds. Then, given any ¢ € #, and ¢ > 0,
there is a to and a € D¢ so that || W(to)y — ¢|; < & Now, since y € D'?,
Wi(t + to)y vanishes in B(R) if t > R — t,. Thus since

[Wi(t)e — Wit + tolols = llo — Wit <&
for all ¢, we have
Wit <e for t>R—1¢,
Therefore lim,., ,, | W;(t)e[|{® = 0, which is a priori stronger than (219).
To prove the converse, suppose that (219) holds and that y is perpendicu-

lar to | ) Wy(¢)D’?, which is the same as saying that W,(t)y L D7 for all ¢.
From the fact that the free translation representation of D?? is all of
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L¥(ro, o0; N), we conclude that W,(—2ro)W,(t)y € D for all t. Since
W,(—s) and W,(—s) agree on D™ for s > 0, we have

Wo(— (s + 2ro))Wi(El = Wy(—s)Wo(—2ro) W, (t)y (220)

and also that W,(—s)W,(t)y is zero for |x| <s—ro.
Now, given & > 0, by (219) we can find a ¢ > (k + 1)r, such that

W ]|F < e
so by Lemma 1,
IWo(=2ro) W (e[| £ < d||Wo(—2ra) W, (e[ §70) < doe
[Wilt = 2ro )y || <&

where d, is a universal constant relating the two equivalent norms | - ||, and
[ llo - Notice that Wy(—s)W,(t)y = W,(—s)W,(t)y at s =0, and thus these
two solutions will be equal for |x| > |s| + r, since the solution at such
points is not affected by the inhomogeneity inside B(r,). In particular,

(Wo(=2ro)Wr (W) (x) = (Wy(—2ro) Wi (e))(x)
for |x| > 3r,. This fact and the estimates above imply that
[Wo(—=2ro)Wr (el — Wit — 2ro)yr||; < (1 + dy)e
Now set s =t — 2r,. Since W,(2r, — t) is unitary, we have (using (220))
IWo(=)Wi(el — ¥ll, < (1 + dole

But recall that Wo(—t)W(t)y is zero for |x| <t—r,. Choosing
t > (k + 1)ro, we have that

W17 < (1 + do)e
Since ¢ and k are arbitrary, we conclude that y = 0. Thus (iii) holds. |

To prove (219), we need a local compactness result.

Lemma3  Fixc,. Theset X of ¢ € D(4,)such that |A4,0[, + o], <c,
is compact in the |- |{¥-norm for each R; that is, given any sequence in ",
there is a subsequence converging in the | - [|{-norm.

Proof Let ¢ = (u, v). The condition of the hypothesis says that

"B%u"tfc + ”31“"3: + "Bl v”i: + "v"gc <¢

for some c,. Using the conditions (190) on ¢ and p, one easily obtains from
this that
lAul3 + [Vull3 + [Vol3 + o]} < ¢,
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for all ¢ in the original set &". By Corollary 1 to Theorem XII1.74, the set of
v € I7 satisfying ||Vv||} + ||v]|3 < ¢, is compact in the local norm |[v]|®’; and
similarly, the set satisfying |Au|3 + ||Vu||3 < c, is compact in the local norm
[ Vu[|$0. Thus " is compact in the local norm |- |, and therefore also in
|- | since the norms are equivalent. J

Finally, we need spectral information on 4,.

Lemma 4 A, has purely absolutely continuous spectrum.

Proof This will clearly be true if B = —¢(x)?p(x)V - p(x)™ 'V has purely
absolutely continuous spectrum on L2(R3). B? is unitarily equivalent to the
operator

B = —(c(xP*p(x))** o V - p(x)™'V o (c(x)*p(x))"/?

on I*(R?). In Theorem XII1.62 we shall show that such an operator has no
eigenvalues. In Theorem XI.45 we showed that matrix elements of the resol-
vent are bounded for a dense set of vectors as one approaches the real axis.
This fact implies that there is no singular continuous spectrum (Theorem
XIIL19). |

We are now ready to complete the argument and prove (iii). Let ¢ be in
D(A,) and consider the set X", = {U,(t)¢ |t € R}. Since

14:U (el + [Us)els = 410l + o,

X, is compact in | - |{¥ by Lemma 3. Moreover, 4, has purely absolutely
continuous spectrum, so (U,(t)p, ¥), =0 as t = + oo for all ¢, ¥ by the
Riemann-Lebesgue lemma. It follows that any |- ||{®’ limit point must be
zero, so, by the compactness,
tim U, ()| ® = 0
=+

Since D(A,) is dense in #, and U, (t) is unitary, this holds for all ¢ € #,
and all R > 0 which, by Lemma 2, proves (iii). We summarize:

Theorem XI1.88  Let c(x) and p(x) be smooth functions that equal con-
stants outside of a compact set and satisfy (190). Then D? and D" are
outgoing and incoming subspaces for W,(t) = e~ 4! on #,, so by Theorem
X1.82, the Lax-Phillips scattering operator exists. Further, for any
identification operator J: 3#, — #, which is the identity on D¢, the wave
operators Q*(A4,, A,, J) exist, are complete, and are related to the Lax-
Phillips scattering operator by the formula (215).
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It is worthwhile to point out here an important difference between the.

Lax-Phillips approach and that of Section 10. In order to construct the
Lax-Phillips scattering operator, we needed the fact that A; has purely
absolutely continuous spectrum; actually, with a longer argument (the
RAGE theorem), purely continuous spectrum is enough. Except for constant
coefficient operators where one can use the Fourier transform, the elimina-
tion of point spectrum is a hard problem (see Theorem XIII.62). Thus the
Lax-Phillips approach requires quite delicate information about the genera-
tor of the interacting dynamics. This information is not required for the
approach of Section 10, which uses the Kato-Birman theory. Of course, the
conclusion we got there was weaker in that we knew only that Ran Q* =
Ha(A;) = Ran Q7, and not H#,.(4,) = #,. But Ran Q* = Ran Q™ is all
that one needs to construct the scattering operator itself.

We now return to the abstract theory and investigate properties of the
scattering operators § and § = #§# ~! on I(R; N).

Proposition Let D, and D_ be outgoing and incoming subspaces for a
unitary group U(t) on . Then:

(a) The scattering operator § on I?(R; N) commutes with translation.
(b) If D, and D_ are orthogonal to each other, then

§: (-, 0; N) - I?(— o, 0; N)

Proof Let #, be the maps onto the outgoing and incoming translation
representations of , U(t), D*. Then

STo(s) = R, R-'To(s) = R, U()RZ" = To(s)R, R=' = To(s)S

where Ty(s) is translation by s units. This proves (a). (b) is also easy. For if
fe }(—,0; N), then #-'f € D_ and since D_ is orthogonal to D, we
know that Sf= %, ®-'f is orthogonal to #,D,. But, #,D, =
I?(0, c0; N), so §fe I}(—o0,0; N). I

As we have already noted, if (0)-(3) hold, then D’? and D" are orthogonal
outgoing and incoming subspaces for U(t). Some analyticity of S follows
from the following general theorem.

Theorem XI1.89 Let N be a separable Hilbert space and T a bounded
operator on I*(R; N) such that T commutes with translation and takes
I2(— 0, 0; N) into itself. Then, T = FTF ! operates on I*(R; N) by
multiplication by an #(N)-valued function t(c):

(Tf)(0) = 1) (0) (221)

X1.11 Optical and acoustical scattering Il: The Lax—Phillips method 231

Further, there is a norm analytic #(N)-valued function t(¢ + iy) in the open
upper half-plane so that:

(@) ftlo+iylew <|T|,0eR, y>0;
(b) t(c + iy) converges weakly to t(c) for almost allc € Ras y | 0.

Proof We consider first the case where N = C. Suppose that Tis an operator
on I’(R; C) that commutes with translations. We first claim that (221) holds.
Given (221), it is clear that ¢t € I and |t|,, = | T|| = | T|I

There are two different ways of proving (221). First note that T is a linear
map of &£(R) into I>(R). Since T commutes with translations, it is easy to
check that T is actually a continuous map of &(R) into C*(R). Thus, by
Problem 9 of Chapter IX, there is a distribution t € %’ such that

T(f)=t+f

for fe %(R). Thus there is a distribution ¢t € &’ such that (221) holds for
fe . Since

[ @@to)1(0)do | = lt0. 7] <171 ol

we conclude that ¢ is a bounded function and (221) holds for all f € I*(R).
The second proof argues that since T commutes with translation, T com-
mutes with multiplication by " for all a. By a limiting argument, T com-
mutes with multiplication by any bounded measurable function. (221) then
follows immediately from Theorem XIII.84.

The first step in proving the analyticity is to show that 7 has support on
(— o0, 0]. Let j be a positive function in C§(— o, 0) with | j(x) dx = 1 and
define j5(x) = 6™ 1j(x/8), T = T * j;. Then

St s f=TUs +f)

takes I*(— oo, 0) to itself. If we can show that each t, has support in
(— o0, 0], then so does t since t; — 7. Thus, it suffices to prove the support
property in the case where  is a C® function. Suppose that (a) # 0 for some
a > 0. Then we can find 6 and 6 so that Re(e?z(x)) > O for all x € (a — 6,
a + ). Letting f be the characteristic function of (-6, 0), we see that
Re{e®(t = f)(x)} > O for x € (a, a + 8), which violates the hypothesis that T
leaves I?(— o, 0) invariant. Thus t has support on (— oo, 0].

Since 7 has support on the half-line, Theorem IX.16 implies that ¢ is the
boundary value in the sense of distributions of an analytic function t(c + iy)
in the upper half-plane satisfying

|t(e + iy)| < C(1+ 0% + y?)''(1 + y~¥?)
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for some C, Ny, and N,. We want to show that ¢ is bounded in the upper
half-plane with |t||, < ||T|. Let t(x) = (2rn)"/2e™***t(x) and define

t(o + iy) = (2n)~ 12 j r(x)e™ 1@ iNx gy

e uz/4e

=Jt(0+iy~#)\/m

Then, for fixed y > 0, t,(- + iy) > t(- + iy) pointwise, so it suffices to show
that |£,(- + iy)|, < || T for each ¢ and y. Now, since 1 is tempered, it is the
Nth derivative of a polynomially bounded continuous function h. It follows
that ¢, is entire and

du

|t +iy)| = [ |[D¥h](e™= e7ite*)| dx

<C(1+ |o+iy|)V
Let 6 > 0 be a given small number, and define
te,s(0 +iy) = (1 - id(0 + iy))"t,(o + iy)

If Y>26"1+ 1, then
1+ |6 +iY| <2
|1 —ib(c +iY)| ~ &

for all o, so

2 N
lteal- + Do < (3
and
[te. o0 + 10 < [l + i0)]| oo < | T

Since ¢, 5 is bounded, Hadamard’s three lines theorem implies that

N ]ly/Y
st + ke < 113

for each y satisfying 0 < y < Y. Holding y fixed and taking Y to infinity, we
see that

lee.o( + i¥)llw < I Tl

Finally, letting 6 — 0 and then & — 0, we conclude that [t(- + iy)|, < || T
for each y > 0.

Continuity at the real axis follows from a general complex variables result
which we state after the theorem.
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Now let N be an arbitrary Hilbert space. For ¢, n € N,

Tq).r]:f_' ((p’ T(fn))N
maps [*(R) into itself and I?(— oo, 0) into itself. So, by the scalar case,

S
Ty f) = t4.4(0)/ (0)

where t,, (o + iy) is analytic in the upper half-plane, has ¢, ,(c) as boundary
value, and satisfies

lto.ale + D) < | Toall <ITH l@llw Inllx

in the closed upper half-plane. Since {¢, n) — T, , is sesquilinear, so is
{p,n) > t, q(o + iy) for each ¢ and y > 0. Thus, by the Riesz lemma, for
each ¢ + iy, there is a bounded operator t(c + iy) on N so that

to.n(0 +iy) = (@, to + iy)n)y

t(o + iy) is clearly weakly analytic and multiplication by t(s) on I*(R; N)is
FTF~'. Norm analyticity follows from the fact that |t(c + iy)|| is uni-
formly bounded and the methods of Theorem VI.4 (Problem 123). Since
te.o(0 + iy) has t, (o) as its pointwise limit as y | O for almost all g,
t(o + iy) has t(o) as its limit in the weak operator topology on N for almost
allo. ||

In the above proof, continuity up to the axis follows from the following
result (see the reference in the Notes):

Lemma (Fatou’s theorem)  If F(z) is analytic in the upper half-plane and
supf |F(x + iy)|P dx <
y>0

for some p > 1 (where p = oo is allowed), then for almost all x € R,
lim F(x + iy) = f(x)
yio

exists, f € I?, and F(- + iy)— f(*) in the sense of distributions.

Applying Theorem XI1.89 to the case we are interested in, we have:

Corollary  Suppose that there exist orthogonal incoming and outgoing
subspaces for a unitary group U(t) on a Hilbert space . Then, there is an
Z(N)-valued function s(e¢ + iy) on the closed upper half-plane satisfying:
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(1) s(o + i0) is unitary almost everywhere.
(2) s(o + iy) is norm analytic in the open upper half-plane with

Is(e + iy)]l ey < 1

(3) s(e + iy) converges strongly to s(¢) almost everywhere as y | 0
and, for all f e I*(R; N),

(57 )(0) = s(0)f (o)
and § takes o2 (R; N) into itself.

Proof All the statements of the theorem except strong continuity up to the
real axis follow immediately from Theorem XI.89 and the previous proposi-
tion. Strong continuity follows from weak continuity since

Is(e + iy)p — s(@)oli = ls(o + iy)e|i — (s(o + iy)e, s(@)o)n
- (s(o), s(o + iy)p)y + |s(@)ell
-0
because ||s(o + iy)]| < 1 = |s(o)].

As in the quantum-mechanical case discussed in Section 7, the analytic
continuation properties of the scattering operator are important. Thus one
wants general methods for investigating the continuation properties of s(z).
Since s(z) is unitary on the real axis, the natural way to try to continue it to
the lower half-plane is by the formula

s(z)=[s()*]"Y, Imz<O

But for this formula to work we need to know that zero is in the resolvent set
of s(z), that is, that s(Z) is regular. In order to do this, Lax and Phillips
introduced the following semigroup:

Let A = (D, @D_)* and let P, be the orthogonal projection onto %"
Define

Z(t)=P,U()P,, t=0 (222)

Z(t) is clearly the restriction of the dynamics to the states that are neither
incoming in the past nor outgoing in the future, so it is not surprising that it
will contain information about resonances. Z(t) is obviously a strongly con-
tinuous family of contraction operators. Moreover, if ¢, Y € X" and t, s > 0,
then U(t)p € D4 and U(—s)y € DL (since U(t) leaves D invariant for
+t>0). So

(U(=3s)p, P, U(W) = (U(=s)p, U(tlY),  t,520
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since P, = P_ P, where P, (respectively, P_) is the projection onto the
orthogonal complement of D, (respectively, D_). Equivalently,
Py U(s)Px U(t)Py = Py U(s + t)Py or Z(t)Z(s) = Z(t + s). Thus, Z(t)is a
strongly continuous group of contractions on X', and therefore there is an
m-accretive operator B on X" with o(B) < {z|Re z > 0} such that

Z(t)=e"®
Since U(t) has absolutely continuous spectrum,
(Z(t)p, ¥)—»0 as t—- o (223)
Moreover
Z(t)=P,U(@)P_, =20 (224)

For since U(t) leaves D, invariant, P, U(t)P, = P, U(t); and since U(—t)
leaves D _ invariant, P_ U(t)P_ = U(t)P_; so

P,U(@)Py=P_P,U{)P,P_=P,P_U(t)P_ =P, U(t)P-

The semigroup Z(t) is important because the resolvent set of B is simply
related to the invertibility of s(z).

Theorem X1.90 Let D, and D_ be orthogonal outgoing and incoming
subspaces for a unitary group U(t) on a Hilbert space »#. Let Z(t) = e~ 5 be
defined by (222). Then, if Re z > 0, z € p(B) if and only if s(iZ) is regular.

We shall sketch the proof that s(iZ,)* has a zero eigenvalue if and only if B

has z, as an eigenvalue. By definition,
N ={x|R.xe}(—,0;N); R_xe I}0, co; N)}
={x|R:xe}(—00,0; N); S(#_x)= R, x € SI30, o0; N)}
Thus
R (A=A, ={f|fe }(—00;0; N), §* € I*(0, 0; N)}
Next, let Z,(t) = #, Z(t)®" and note that for fe X, ,
Z,(t)f=(R.P, @:l)(n(t)f)

= X(—w.O)n(t)f
That is, if fe X", ,

@ o= o=

0, if §>0
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Now, Bx =zyx if and only if Z(t)x = e”**'x. Moreover, f(s —t) =
e~ *f(s) (s < 0) if and only if f(s) = €*°°)(- . 0)($)n for some ne N. Thus z,
is an eigenvalue of B if and only if ey _,, o)(s)n =fp is in A", for some
n e N. Since f; is clearly in I>(— o0, 0; N), f € o, if and only if S*f, is in
I3(0, co; N). This is true if and only if s(z)*f,(z) is analytic in the lower
half-plane. But fy(z) = (2n)~"/?(zo — iz)"'n has a pole at z = —‘izy, so
s(z)*fo(z) will be analytic in the lower half-plane if and only if s(iZy)*n = 0.
This completes the proof of one part of Theorem XI1.90 and illustrates the
reasons the theorem is valid.

Example 3 We consider a trivial example to illustrate Theorem XI1.90.
Let U(t) be translation on I?(— o0, o). Fix ro > 0, and let D, = *(ry, o),
D_ = I}(— o0, —r,). Then D, is outgoing, D _ is incoming and, by a simple
calculation, § = U(—2r,) and s(k) = e?*"° s is clearly entire. Notice that D ,
and D_ are orthogonal and that " = I>(—r,, ro). It follows that Z(t) = 0 if
t > 2r,y. In particular,

B+ =z d

extends from Re A > 0 to an entire function. Thus o(B) = & which is as
required by Theorem XI.90.

Theorem XI1.90 reduces the analyticity question to studying B.

Theorem XI1.91  Suppose that for some positive T and k, Z(T)(k + B)™!
is compact. Then B has pure point spectrum and s(z) is holomorphic on the
real axis and has a meromorphic extension to the lower half-plane, having a
pole at each z for which iz € (B).

The idea of the proof of this theorem is to use a spectral mapping theorem
to show that B has pure point spectrum. By Theorem X1.90, s(z) is invertible
in the upper half-plane except when iZ is an eigenvalue for B. Thus

s(z) = [s(z)*]™*

is analytic in the lower half-plane except for z for which iz is an eigenvalue of
B. By the above expression, s(z) can only have poles since s(z)* can only have
zeros of finite order. Finally, by (223), B cannot have any eigenvalues with
Re u = 0. From this it follows that (s(z)*)~! is analytic in an open set just
below the real axis. Since s(z) and (s(Z)*)~ ! have the same bounded boun-
dary values as one approaches the real axis from above and below, they are
analytic continuations of each other by the Schwartz reflection principle.
Thus s(z) is analytic in a neighborhood of the real axis and meromorphic in
the lower half-plane.
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For complete proofs of Theorems X1.90 and X1.91, see the reference in the
Notes.

Example 4  The purpose of this example is to show how the hypotheses
of Theorem X1.91 may be verified in practice. We shall deal with the case of
scattering off an obstacle Q with smooth boundary and Dirichlet boundary
conditions discussed in Example 3 of Section 10. We use the notation in-
troduced there. The operator A, for this problem is the Laplacian Hp. pof
Section XIII.15. We prove the absence of singular continuous spectrum in an
appendix to this section. With this result, the analysis of Example 2 extends
to this case. In their treatment, Lax and Phillips do not require a priori the
absence of singular continuous spectrum. Instead, they prove (3) by a more
difficult argument and then obtain the absence of singular continuous spec-
trum as a result of Theorem XI.82. The technique that we describe here can
also be used to prove the hypotheses of Theorem X1.91 in the case of scatter-
ing in an inhomogeneous medium (Example 2), but the proofs are more
difficult because the natural identification operator is not isometric
(Problem 124).

D, and D_ are, as in Example 1, the incoming and outgoing subspaces for
the free propagation W,(t). Let r, be chosen so that the ball B(ry) contains Q
in its interior and define

D = Wylr)D,,  D'® = Wy(=ro)D_
Since the functions in D? and D'° vanish in B(r,), D? and D"° are subspaces
of #, that are isometrically imbedded in J#,. One can show that D?? and
D2 are outgoing and incoming subspaces for W,(t) on #, and that the
hypotheses of Theorem X1.86 hold. In particular, D?? are orthogonal. Let P??
be the projections onto (DY) in #, and define Z(t) = P? W, (t)P™. Sup-
pose that ¢ € #; and u > 0. Then, by (X.98),

Z@ro)u + B) o = [ e MZ(t + 2ro)e di
1)
=PeW,ro) [ e Wi(1)Pg dr
)
=P W (2ro)(in — A;) P2
= iP? W, (2ro)P (in — A,) P (225)
= iPP[W,(2ro) — Wy(2ro)]P

% (,.# _ Al)-— lPr_o(p (226)
= iP[W,(2ro) — Wo(2r,)]
X (it~ 4,) P2 g (227)
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Steps (225) and (227) follow from the fact that for ¢ > 0, P W,(t)P" =
W,(t)P™, from which it follows that
Po(ip — A;)" 1P = (ip — A,)" 1P

Step (226) holds because P72 W,(2ro)P" = 0. To see this notice that for any
f€ #,, P?fis orthogonal to D" in #, because #, is isometrically im-
bedded in 5, . Thus the free translation representative of P™° f has support
on (—ro, ). Therefore, the representative of Wy(2ro)P™ f has support on
(ro, ), which implies that W,(2r,)P™ fis in D? .

Now, for any g € #,,

Wo(2ro)g — Wi(2ro)g =0 for |x|>3r,

since the propagation speed is one. Thus, using the fact that |y, = |/,
we can estimate

1Z@ro)u + B)™*ol; < |[Wi(2ro) — Wol2ro)llin — 4;)~* P20,
= |[W1(2ro) — Wo(2ro)l(ip — A,)~ P2 o||5"
< [[Wa(2ro)(in — A,)7 1P| P
+ | Wo(2ro)in — A4,)™ P2 ||
< [ — A1) P[0 + (in — A4,) 7 PR g|§r
=2||(in — A;)" P2 |
where |- |®) denotes the part of the norm inside the ball of radius R. In the
next to last step we used part (a) of Lemma 1 in Example 2 and an analogous

result for Wy(t) (the proof is similar). The set of ¥ = (iu — A,)”'¢ where
le| < 1, satisfies

4. ¢], + Wl < [|4:(in - Al)—l"x’(m) + || - Ax)_lnx’(m)

Therefore, using Corollary 2 to Theorem XIII.74, we see that the set of such
Y is compact in the ||| norm. Thus, Z(2ro)(u + B)~! is a compact
operator, and so the hypotheses of Theorem XI.91 are satisfied.

The situation in this example has been studied in great detail and much
more information is known. For example, u € o(B) if and only if the reduced
wave equation

Av—p*v=0
v=0 ondD (228)

has a solution v so that the data {v, —puv) is eventually outgoing, that is,
satisfies W,(p){v, —pv) € D, for p large enough. The detailed relationship
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between these eigenvalues and the geometry of the obstacle has been the
object of much study. Finally, the scattering operator $ has the form (recall
that N = I*(S?))

8/ )0, @) = 5(0)1 (0, »)

io —
= f(0, w) — — k6, w; o) f (o, 6) 40
feo)-5 [ Koo /(60
where k(6, ; o) is an analytic function of its variables which is related to the
asymptotic behavior of the solutions of (228). This relationship is identical
to the one between the quantum-mechanical T-matrix and the asymptotics
of the solutions of the Lippmann-Schwinger equation.

It is clear from Examples 1, 2, and 4 that the Lax-Phillips method applies
most naturally to classical wave equations where one has Huygens’ princi-
ple, that is, in odd dimensions greater than one. Nevertheless, the theory can
be applied in a variety of other situations as well (see the Notes for
references).

Example 5 (application to the Schrodinger equation)  As a last example
we shall discuss how one can use the Lax-Phillips theory to study scattering

for

. Ou
l'a;—("A*‘V)ll

The basic idea is to use the invariance principle for wave operators for the
wave operators of the classical system

Uy —Au+ V(x)u=0

ux, 0)=f(x),  wulx 0)=g(x)

We shall not obtain any results on the quantum-mechanical scattering oper-
ator that we have not already obtained in greater generality in Sections 4, 6,
and 7, but it is interesting to get the results in a new way. We also emphasize
that we shall need detailed spectral information about —A + V in order to
apply the Lax-Phillips theory.

Let ¥(x) be a potential with compact support in R* and suppose that
V(x) e I}(R*) and V(x) > 0. First we want to solve (229). This is done ana-
logously to the case of an inhomogeneous medium. Since V e 2, Vis —A-
bounded (see Theorem X.15) so —A + V(x) is essentially self-adjoint.
Further

(229)

((=A+ V)h, h) > (—Ah, h) >0
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so if B,=./—-A+V, we have |Byh|,>|Boh|,. Moreover,
#,=[D(B,)] ® }(R*) = #, since —A and —A + V have equal form
domains. As before, if we define W,(t) = e~ 4" where

Lo 0
=N _B o

then the first component of W,(t)f, g) is a weak solution of (229) and a
classical solution if f, g, and V are smooth enough.

The verification of hypotheses (i)-(iii) is analogous to Examples 2 and 4.
Choose r, so that the ball B(ry) contains the support of V(x) in its interior.
Define J: #, — 5, to be the identity on those ¢ € 5, with support out-
side B(r,) and any bounded injection on the orthogonal complement of this
set. Finally, we take D"? and D to be Wy (ro)D, and Wy(—ro)D - . As in the
previous examples, properties (i) and (ii) for U,(t) and the orthogonality of
D7? and D° just follow from the corresponding properties of Wy(t). Thus, if
we can prove (iii), then we have verified the hypotheses of Theorem XI.86.
To prove (iii) notice that the solutions of (229) propagate at speed one, so
Lemmas 1 and 2 of Example 2 go through as before and the local com-
pactness result of Lemma 3 is the same. Therefore, we need only show that
—A + V has only absolutely continuous spectrum, and this is done by
appealing to the same theorems that we appealed to in Example 2. Thus, by
Theorem XI.82, we have the Lax-Phillips scattering operators S, §, and §.
By Theorem XI1.86, Q* exist, are complete, and (215) holds.

An argument similar to that in Example 4 shows that Z(2r,)(1 + B) ™! is
compact for Re u > 0 where Z(t) = P, W,(t)P_- and B is its generator. Thus
(8 )(o) = s(o)f (o) for all fe I?(R; S?) where s(c) is meromorphic in the
whole plane (with poles as singularities) and analytic on the real axis and in
the upper half-plane.

Notice that for all data ¢ € CF(R*) x CF(R?) and |¢| sufficiently large,

Wi(= I Wo(t)p = Wi(—1)Wo(t)e

and is independent of t. Just as in Examples 2 and 4, this follows because
W,(t) satisfies Huygens’ principle. Using Theorem XI.23, we conclude that

the strong limits

+id12t,—iAo%

Qf = s-lime

t=+Foo

exist and equal the wave operators already defined when applied to func-

tions ¢ € Ejg, )(A4o). But
-A 0
2 __
A= ( 0 —A)

e
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and
e -A+V 0
e 0 -A+V
Thus
ot = (Qs*(-A +V, —A) 0 )
0 Q(-A+V, —A4)

Therefore, the Schrodinger wave operators exist and are complete.
Further development shows that the fibers of the Schrodinger S-operator

are given by
e-.'2ro£s( ﬁ)

where s(-) are the £(I*(S?)) fibers of the Lax-Phillips operator S. From the
properties of s( - ) discussed above it follows that e'2*s(, /E) is meromorphic
on a two-sheeted Riemann surface, analytic on the “physical” sheet with
poles on the “unphysical sheet.”

Before concluding this example, it is worthwhile to make several remarks.
First, notice that we needed quite a bit of sophisticated information about
the interacting system, namely the character of ¢(—A + V) in order to use
the Lax-Phillips approach. Secondly, we have handled only the case V € I2,
V >0, and V has compact support. The restriction V e I? is not serious. The
second restriction can be avoided by a generalization of the ideas above. The
reason we needed ¥ >0 was so that we could take the square root of
—A + V. But if ¥ € I? with compact support, then —A + V has at most
finitely many negative eigenvalues (Theorem XII1.6) and on the complement
of the space spanned by their eigenfunctions, —A + V will be nonnegative.
One can then push through the technique of this example and one finds, as
expected, that e™*29Fs(, /E) has additional poles on the physical sheet at
precisely the negative eigenvalues. The third restriction, that V have com-
pact support, is much more serious since no potential in nature is believed to
have compact support. And, it is crucial to all we have done in this section
that the free and interacting systems are identical outside a bounded region.

Appendix to Section XI1.11: The twisting trick

In this appendix we want to show that the Dirichlet Laplacian, H Dils
exterior to a bounded region has empty singular continuous spectrum. We
shall use a method (the twisting trick) which is applicable in a variety of
other situations; see the reference in the Notes.
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Theorem XI1.91.5 Let I' be a closed bounded set in R" so that R"\I" is
connected. Let H,  be the Dirichlet Laplacian defined in Section XIII.15.
Fix a>0. Let X be the Hilbert space of functions f e L(R"\I') with
e®™lf € I2. Then, there is a set, &, discrete in R\{0}, and a neighborhood N of
Rso that (Hp, r — k?)~ ! can be extended as an analytic #(X{", XT),)-valued
function from the region {k |Im k > 0} to N\&. In particular, Hp, - has purely
absolutely continuous spectrum.

Proof Since R"\I is connected, Hp, r has no positive eigenvalues by the
argument in Theorem XIIL56 (see especially the discussion preceding
Theorem XIIL57). By Theorem XIII.20, the assertion about #(X{, XT))
analyticity in N\& shows that o,,(Hp, r) = & since we can take X, to be the
dense set D and [a, b] to be any closed interval disjoint from &. Since
Hp,r > 0 with empty kernel, H), r clearly has no nonpositive eigenvalues.
Thus, if we can prove the X, assertion we will have a proof that the spectrum
is purely absolutely continuous.
Define the operator H, on s# = (R") ® I>(R"\I') by

H,<(P, l//) = <(_A + axz)(P’ HD;F¢>

Suppose that (H, —?)”! has an 2(X,® X", X_,® XT)) continua-
tion onto N,\f, where each &, may have some finite accumulation points
but so that for any ¢é>0 and a>0, we can find an a so that
[€. n (—a, a)]\(—¢, &) is a finite set. Then the result follows easily.

Define a “twisting operator” U on # as follows. Choose R so that
I < {x||x| < R} and choose a C®,2 x 2 unitary-matrix-valued function on
R, u(x), so that

u(x)=((l) (1)) if |x|>2R

u(x)=(0 l) if |x] <R

Define (Uy)(x) = u(x(x). Then U is unitary on # and on X ,,® XT,, so
it suffices to prove the claimed continuation property for UH, U~ !. But
A,=UH, U !'=T,+ V, where
T, ¥> = (—Ap, (Hp,r + x>
Vo=fo P+ 4.
where p=i"'V and f, and g, are 2 x 2 matrices of C? functions. Let

S, = o(Hp, r + ax?) which is discrete (see Section XIII.14). By the analysis in
the appendix to Section XL6 (see especially Theorem X145), (A, — k?)~!
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has an #(X,, X _,) continuation to N.\&, where the only possible limit
points of N, lie in S, U {0}, because (T, — k?)~* has such a continuation on
{k|Imk > —a, argk + —n/2}\S,. But infS, > inf(—A + ax?) goes to
infinity as & — 00, so we can pick a so that [6. N (—a, a)]\(=¢, &) is finite. J

XI.12 The linear Boltzmann equation

In this section we describe a mathematical model for the scattering of a
low-density beam of neutrons off a chunk of material such as uranium in free
space. This model has only limited physical interest since it does not cover
the nonscattering case where the number of neutrons grows exponentially in
time, that is, the uranium blows up, nor the case where the neutron beam is
constrained by shielding to stay in a bounded region filled with uranium and
graphite rods, that is, a reactor. However, the model we describe is math-
ematically quite interesting since it provides a situation where the Hilbert
space scattering theory must be extended in two ways: In the first place, the
natural space of states is not a Hilbert space but a cone in a (non-Hilbert)
vector space; in the second place, the equation of motion we describe defines
a one-sided dynamics since the quantum aspects of the problem are modeled
on a classical level by using statistical ideas. Moreover, the theory illustrates
the natural use of semigroups on a Banach space.

The basic dynamical object is a positive function n(x, v) on R? x R3
representing the density of neutrons at a point {x, v) in phase space. For a
suitable integer N,

N, j n(x, v) d*x d%v
AxB

represénts the number of neutrons in the set 4 with velocities in the set B. Of
course, if n(x, v) is a function, the number cannot be integral for all 4 and B;
put differently, n(x, v) should really be Nj* 20y 8(x = x;) 6(v — v;). But if
N, is large (it is typically at least 102° for realistic experiments), it is a
reasonable approximation to take n(x, v) as an I! function. Thus, it is nat-
ural to take L} , the cone of positive functions on R* x R?, as the set states of
the system.

The dynamical equation postulated for n(x, v) is

%n(x, v, t)=—v-V.n(x,v,t)+ J- k(x, V', v)n(x, v, t) dv’

= a.(x, v)n(x, v, t) (230)
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which is called the linear Boltzmann equation. To understand its meaning, let
us solve the equation when k and o, are zero. Let

[Wo(t)n](x, v) = n(x — vt, v) (231)

Theorem XI1.92  Foreach p € [1, co] and in particular for p = 1, Wy(t) is
a strongly continuous group of isometries on I?(R®) taking positive func-
tions into positive functions. Moreover, on each I?, p < oo, C¥(R®) is a core
for the infinitesimal generator of Wy(t) and Wy(t) = e~ 'T° where

Tof=v Vof (232)
for fe CY.

Proof All the statements follow immediately from (231) except for the core
statement and (232). These follow from Theorem X.49 if one notices that, by
(231), C§ is left invariant by W,(t), that Wy(t)fis C* int for f € CT, and that

—GWOr| =0 Vs

Thus, the first term on the right-hand side of the linear Boltzmann equa-
tion (230) describes the free classical motion of a group of neutrons with no
scattering, no absorption, and no production. The second term has a very
simple interpretation. A neutron at point {x, v') in phase space may, due to
scattering or to some production process such as fission, become or produce
a neutron with a different velocity v. The total rate of production by or
scattering from a neutron at {x, v') is given by

o,(x, V') = [ k(x, v', v) dv (233)

Similarly, the last term on the right-hand side of (230) represents the loss of
neutrons from a point {x, v) in phase space due to scattering into other
points {x, v') in phase space or due to absorbtion (for example, by graphite
rods).

Throughout our discussion we shall make the following assumptions on k,
0., and g,.

Definition  We say that the pair <k, 4,) is regular if and only if:

(i) k is a nonnegative measurable function on R® and o, is a nonnegative
measurable function on R®.

(i) For each (x,v'), k(x,v',-) is in L' and o, and ¢, are uniformly
bounded functions on R®.
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(iii) There is a compact set D in R* so that k(x, v, v') and a,(x, v) vanish if
x ¢ D.

Before studying solutions and scattering theory for (230), we would like to
make several comments about the form of the equation and about our
assumptions of “regularity.” (230) has a “probabilistic” or “statistical”
nature in that we are interpreting the latter two terms in terms of a certain
fraction of the particles at {(x, v) being produced, scattered, or absorbed.
One can understand this statistical element as entering from one of two
sources: In the first place, even classically the positions of the uranium
atoms are changing due to thermal motions; secondly, since at its base the
scattering is quantum mechanical, it is intrinsically given by probabilities.
While one can easily understand the probabilistic nature of the equation
(230), it has some surprising consequences. For example, despite the fact that
we are thinking of the equation as describing the motion of an aggregation
of particles, each obeying a particle dynamics that is given by time reversible
laws (Newton’s equation), the equation (230), as an equation on L} , is only
solvable for positive times, as we shall see below.

The reason that the term “linear ” is added to the name is that the original
equations proposed by Boltzmann (to describe gases, not neutrons) con-
tained a quadratic term in n due to the scattering of the basic particles off
one another. In the “small” n limit this term is unimportant. Physically,
“small” n means that the density of neutrons is low compared to the density
of scattering objects and low enough so that it is unlikely that two neutrons
get close enough to interact significantly. These assumptions are not
unreasonable.

The assumption that o, and ¢, have bounded supports in the x variable is
not really necessary for the mathematical theory although it is natural from
a physical point of view. See the Notes for a reference that describes the
scattering theory if 6, and g, are only assumed to fall off sufficiently rapidly.
We remark that ¢ does not stand for a cross section but for a rate.

There are three situations that have obvious physical interpretations. The
first is where o,(x, v) = 0,(x, v) for all x, v € R®. Here the number of neu-
trons that leave ¢x, v) is precisely equal to the number of neutrons that
enter other regions of phase space due to the presence of neutrons at {x, v).
For obvious reasons, this is called the pure scattering case. Similarly o, < o,
is called the production case and g, > ¢, the absorption case.

Finally, we remark on the apparent lack of conservation of energy in
(230). For we do not require k to be supported in the region where |¢| =
[v'|; in fact, since k is a function rather than a distribution or measure, k
cannot be supported in that region without being zero almost everywhere.
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One can develop the theory by replacing
[ k(x, v, v)n(x, v', ) dv’ by fk(x, [v]|Q, v)n(x, |v|Q, t) dQ

and this is appropriate in some ways in the pure scattering case. But there is
a physical reason why a spread of final velocities is appropriate. For the
uranium nuclei are not fixed, so the final velocity is dependent on the initial
velocity of the uranium nuclei, even in elastic collisions. Since we “ average”
over positions of uranium nuclei in the statistical sense mentioned above, it
is not unreasonable to “average” over velocities too.

Solving (230) is an exercise in the theory of semigroups on Banach spaces:

Theorem XI.93  Let {k, g,) be a regular pair. Then there exists a one-

parameter strongly continuous semigroup W(t), t >0, on L}(RS) taking

L% (R®) into itself, so that W(t) = e~'7, with C&(R®) a core for T, and
Tf(x, v) = Tg f(x, v) — J‘ k(x, v', v)f(x, V') dv' + a,(x, v)f(x, v)

Moreover:

(a) D(T) = D(Tp).

(b) |W()| < e with C = o, ||, -

(c) In the pure scattering (respectively, absorption) case [W(en|, = |n|,
(respectively, |W(t)n|, < |n|,) forallne L. .

(d) Forany ne L) and all {x, v) and ¢ > 0,

[W(t)n)(x, v) > n(x — tv, v) exp(-— J:cr,(x — 50, 0) ds) (234)
Proof Define operators 4,, 4, on L(RS) by
(Ayn)(x, v) = — j k(x, /, v)n(x, v') dv’
(A2n)(x, v) = a,(x, v)n(x, v)

Then A4, and A, are bounded with norms Ilap | and ||o, |, respectively.
Moreover, if = T, + A,, then W(t) = e~*7 is given by the explicit formula

(W(e)n)(x, v) = n(x — to, v) exp(—I;a,(x — 50, v) ds) (235)
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Since T = Ty + A; + A,, it follows from Theorem X.50 that T generates an
exponentially bounded semigroup, that any core for T is one for T, and that
D(T) = D(Ty). Since |le”"*!|| < e and |W(t)|| < 1, it follows from the
Trotter product formula (Theorem X.51) that

W@l < lle™ |l < exp(t|o, ||)

proving (b).
As in Section X.9 (step 4 in the proof of Theorem X.58), one verifies
Duhamel’s formulas:

t
W(O) = Wolt) ~ [ Wolt = s)(ds + A2)W(s) ds (236)
o
and
t
W(t) = W(t) — j W(t — s)A, W(s) ds (237)
0
Now e~4" is positivity preserving since — A, is and one can expand the
exponential. Thus, by the Trotter product formula, and the fact W is ob-
viously positivity preserving, we conclude that W(t) takes L' into itself.
Moreover, by (237) W(t)n > W(t)n pointwise, which proves (234).
All that remains is part (c). Notice that

[ [Wo(e)n])(x, v) dx dv = [ n(x, v) dx dv

[ (Ayn)(x, v)dx dv= — [ap(x, v')n(x, v') dx dv'
so, by (236) and properties of Wy(t),

I (W(t)n)(x, v) dx dv

= [ n(x, v) dx dv + j ds j [6,(x, v) — a4(x, D)J(W(s)n)(x, v) dx dv (238)
from which (c) follows immediately. J

We are now in a position to explain the sense in which the dynamical
operator W(t) is not invertible. As a map from L' to L it is invertible since
—Ty, — A, — A, generates a semigroup, but this inverse does not in general
take L}, the basic set of states, into itself; for an example of this phen-
omenon see the reference in the Notes. Given a one-sided dynamics W(r)
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(t20) and a two-sided comparison dynamics Wy(t) (—oo <t < o0), it is
fairly obvious that the natural scattering theory objects are

Q* = s-lim W(—1)Wy () (239)
07 = s-lim Wy(—t)W(r) (240)

Q7 ny is the value at 1 = 0 of the solution of the interacting problem, which
looks like Wy(t)n, in the distant past. And 07 n, is the value at ¢ = 0 for the
free propagation, which looks more and more like W(t)n, as t = + 0. Thus,
if Q* and Q) exist, the scattering operator is given by
s=0-Q°
Notice that (239) and (240) involve W(t) only for ¢ positive. On the basis of
the examples we have previously discussed, we expect the existence of the
limit (239) to be easier than that of (240).
Further, there are cases where one does not expect either of them to exist.
For, if there is too much neutron production, the number of neutrons may
grow indefinitely with time, in which case physically the uranium blows up

and mathematically we are in a nonscattering situation. We therefore single
out a class of interactions.

Definition We say thata regular pair <k, o, ) is subcritical if and only if
SUP,o | W(1)] < oo,

By (238), <k, g, is subcritical in the pure scattering and absorbtive cases.
We shall see below (Theorem X1.95) that it is also subcritical in the produc-
tion case if the chunk of matter is sufficiently small.

The following simple geometric lemma is crucial both in controlling the
limit (239) and in proving subcriticality in the small region production case.
Intuitively, it says that the number of neutrons in a bounded region goes
down quite fast as long as there are not too many with very small velocities
to begin with.

Lemma  For any Borel set D < R3, let I7llp = fxe b frs n(x, v)dx do.
Then for n e L% (R)

[~ 15l dt < (ciam DY}~ tn],

- a

where diam D = sup, ., |x — y].

XI.12 The linear Boltzmann equation 249

Proof 1t suffices to prove that for each fixed v #0,

] [ 1Wo(nx, )| dx dt < [diam D] [ o7 n(x, )] dx (241)
- xeD

Let x be characteristic function of D. Then the left-hand side of (241) is
12 (f x(x)|n(x = vt, v)| dx) dt. Let y be the component of x parallel to v
and x, the two coordinates orthogonal. Then the last integral can be written

J

0

dt [ dx, [ dy y(y, x,)In(y = Jolt, x,, )

= Ivl"l '[dzfdxl J' dy x(y, xl)ln(z, X1 v),

< |v|~*(diam D) ” dx, dz|n(z, x, , v)|

proving (241). In the above, we changed variables from ¢ to z = y— |v|tin
the first step and used the obvious geometric fact [f x(y, x,) dy| < diam D
in the second. J

Theorem X1.94  If (k, o, ) is a regular pair defining a subcritical system,
then Q* exists and is a positivity preserving operator. Q* is a contraction
(respectively, isometry) in the absorbtion (respectively, pure scattering) case.

Proof Since {k, g,) is subcritical, the family {W(—t)W,(t)} is uniformly
bounded. Thus, it suffices to prove that the limit (239) exists for a dense set 2
in L'. The other properties of Q* follow from those of W(—1r) and W().
Take

2= {n € C3(RS)

[v]"'ne L‘}

Let A= A, + A, as in Theorem X1.93 and let D be a bounded set containing
supp o, and supp o,,. Then for n € 9,

I Vametond e 1) | (Wl
< 4] (diam D)Jo~"n], < oo

by the lemma. By Cook’s method, the limit (239) exists.
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We need a further condition on {k, g, ) to make the interaction subcritical
if the volume of matter is small. We say that {k, 4, ) has finite mean free path
if

M(o,) = v 1o, ]| <

The reason for the name is that (v™'o,)™! represents a distance between
successive collisions or particle productions.

Theorem X1.95 A regular pair <k, o,) with finite mean free path that
obeys (diam D)M(o,) < 1 is subcritical and, in particular, Q* exists.

Proof Using (237) and the fact that W(t) is a contraction, we easily obtain
sup [W(e)| <1+ a sup |[W()|
0stsT 0st<T
where
o= jo |4, W(s)| ds

Thus, if ¢ < 1,
sup [|[W(e)| < (1 —a)!

0st<w

and the system is subcritical. Therefore, we need only prove that
« < (diam D)M(o,) (242)
Since |4, v™ !, = M(c,), (242) follows if we prove that
J, 1oWisnlo ds < (diam D],
But v commutes with W(s) and | W(s)n||p < ||Ws(s)n||, so, by the lemma,
@
[ oW (sl ds < (diam D)ov™"n]
(1]
This proves (242) and thus the theorem. ||
Basically, the condition a < 1 in the proof implies that the iteration of
(237) converges uniformly in t. The physical reason for this is that
(diam D)M(o,) < 1 says that, to first order, a particle passing through D

undergoes less than one collision and so the geometric series obtained by
iterating and using a < 1 converges. We note that Theorem X1.95 provides
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us with a large variety of semigroups bounded in time which are not contrac-
tion semigroups. With one more condition we can now prove the existence
of the limit (240).

Theorem XI1.96  Suppose that the system defined by the regular pair
(k, ,) has finite mean free path, is subcritical, and that

M(o,) = v 15, < 0

Then Q- exists. The scattering operator S = 3~ Q* is a bounded one-to-one
map of L} (R®) into itself.

Proof Let o, = o, and 0, = o,. We first claim that for all {x, v) € RS,
I oi(x — sv, v) ds < [diam D]M(c;) (243)
(1]

(243) is proven just as in the proof of the lemma. By (d) of Theorem XI1.93
and (243),

(W(t)n)(x, v) > exp(—[diam D]M(a,))n(x — vt, v)
for n positive. Letting C = exp([diam D]M(c,)), we have
n(x, v) < C(W(t)n)(x + vt, v) (244)
Thus, replacing n by W(s)n and t by t — s,
(W(s)n)(x, v) < C(W(t)n)(x + v(t — s), v)

Therefore, for n positive,

[O |4 W(s)n|), ds = jo ds [ a,(x, o) W(s)n)(x, v) dx do
<C I' ds j ai(x, V)(W(t)n)(x + v(t — s), v) dx dv

= C(J.o‘ai(y —ur, v) dr)j (W(t)n)(y, v) dy dv

< C(diam D)M(a)|W(t)n| ,

In the next to last step we changed variables in two places and in the last step
used (243). It follows that

[} 14wkl ds < cldiam (e sup | Wil
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As a result, subcriticality implies that

[ 14wkl ds < o

‘0
which by Cook’s method implies the existence of the limit (240). Q* exists by
Theorem X1.94; and since {W(t)} is uniformly bounded and each W(t) is
positivity-preserving, Q*, 3~ are bounded positivity-preserving operators
on L} (R®). Therefore, the same is true of § = 3~ Q*, By (244)

Wl > €],

for n positive. From this and the fact that Wo(t) is an isometry it easily
follows that S is one-to-one. |

X1.13 Nonlinear wave equations

.. formerly unsolvable equations are dealt with by threats of reprisals. Woody Allen

In this section we give an introduction to the scattering theory of nonlin-
ear classical wave equations. There are many unsolved problems in this area,
and the scattering theories that do exist are typically valid only for special
nonlinear terms. The general ideas follow the outline given in Section 1,
although the techniques for proving estimates are more difficult than in the
linear case. Let us begin by looking at the equation

Uy — Au + m*u = F(u) (245)

In Section X.13 we developed the existence theory for (245) for the case
F(u)= +A|u|P~'u, where p=3. The same method works for p<S5. To
develop a scattering theory for (245) one might try to show that for large
positive and negative times, its solutions look more and more like solutions
of the corresponding free equation:

U, — Au+ m*u=0 (246)

The solutions of this free equation with nice initial data decay in the sup
norm like r~"2 in n space dimensions (see Theorem XI.17). If the same decay
holds for solutions of (245), a scattering theory should exist since a term like
—A|u [P~ 'u will decay faster than the linear terms if p > 1. However, even
for the linear Schrodinger equation, one does not expect all solutions of the
interacting equation to decay since there may be bound states. There should
also be bound states for (245), at least for suitable F.
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Suppose that F has the form F(y)= yH(|y|) where H(|y|)—0 as
|¥| = 0. Then (245) has a solution of the form

tolx, 1) = eip(x) (247)

if and only if
—A¢(x) + V(x)o(x) = —(m* — w?)o(x) (248a)
V(x)= —H(|o(x)|) (248b)

Except for very pathological potentials, the Schrodinger equation will not
have positive eigenvalues (see Section XIII.13). Thus, we restrict our atten-
tion to the case |w| < m. If V(x) is positive, for example if F(u) = — Au [ul?,
then of course (248a) will have no such solutions since —A + V > 0. If V(x)
is not always positive, then it is not surprising that solutions exist. In fact, the
reference given in the Notes constructs large classes of F’s with solutions of
(248). An explicit example where such solutions exist is

Flu) = —u(uf® - A{u])

for suitably large A.

If solutions of the form (247) exist, then there should be solutions of (245)
which look asymptotically (as t - — o0) like u(x, t) plus a solution of (246).
Since the nonlinearity couples the bound state to the asymptotically free
piece, there is no reason to expect that the bound state will be present as
t = + 0. Thus, if there are bound states, the scattering theory for (245) is
intrinsically a multichannel problem. In fact, there should be an infinite
number of channels. For, by the Lorentz invariance of (245), the existence of
a u, implies the existence of a solution of (245) of the form

exp(i(t — v™ 'x)o(v)W (x — vt)
Thus it should be possible to construct solutions of (245) that consist of n
bumps moving relative to one another. In addition to this there are examples
with infinitely many bound states for fixed w. And, one expects bound states
for every sufficiently small w.

Thus, not only is the problem nonlinear, but the full complexity of multi-
channel scattering is present. The two general cases where asymptotic com-
pleteness can be proven are precise analogues of the two cases where
asymptotic completeness has been known for multichannel Schrodinger
systems for many years. The small data case which we present first is the
analogue of weak coupling (Theorem XII1.27). The result discussed at the
end of the section is the analogue of the repulsive potential case (Theorem
XI11.32). In the middle part of the section we present a general construction
of the channel wave operators for the channel where u is asymptotically free.
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It is also worth mentioning at the outset two technical difficulties that
arise here but not in linear quantum-mechanical scattering. First, since the
wave and scattering operators are nonlinear, in order to prove existence it is
not sufficient to prove that they exist on a dense set and then extend by the
B.L.T. theorem. Secondly, it is natural to take as scattering states the set of
initial data Z,,, for which the solutions of (246) decay appropriately at + co.
Unfortunately, only sufficient conditions are known for such decay, so the
norm on X, typically involves explicitly the large time behavior of the
solution of the corresponding linear equation. This causes some technical
complications.

In Section X.13 we showed that (245) can be reformulated as

@'(t) = —ide(t) + J(o(1) (249a)
where J(u, v)) = €0, F(u)),

f{ O I
A*I(A—mz 0)

and o(t)=u(-, t), v(-,t)) is viewed as a function from R to
D((—A + m*)*) @ L*(R®). This led us to study the existence theory of (249a)
as an abstract problem where ¢(t) takes values in a Hilbert space #, 4 is
self-adjoint on #, and J is a nonlinear mapping of J# into itself. Under the
condition that J be uniformly Lipschitz on balls in 3 we proved that the
corresponding integral equation

(1) = ey + [ =4e=25(ps) ds (249b)

has a unique continuous #-valued solution ¢ for small ¢. If J satisfies
additional estimates and the initial data ¢, are in D(A), then we showed that
¢ is strongly differentiable and (249a) holds. In this section we shall always
work with (249b); the reader should consult Section X.13 for the sufficient
conditions that ¢ satisfy (249a).

We begin by presenting an abstract scattering theory for small data. Let 4
be a self-adjoint operator on #. Let |-|, and ||, be two auxiliary
“norms”™ on #: |- |, satisfies all the properties of a norm except that
l@ll. = 0 need not imply that ¢ = 0; |- ||, satisfies all the properties of a
norm except that it may take the value + co. We assume that 4, J, and I llas
|| - |l» satisfy the following hypotheses:

(i) There is a ¢ > 0 so that
lol.<clol forall pes (250)
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(ii) There are constants ¢, > 0, d > 0, so that for ¢ € #,
le o). <cit™el, if |t] =1 (251)
(iii) There exist >0, 6 > 0, and q > 1 with dq > 1, so that
IV(@1) = J(@2)ll < Blleslla + o1 a)lo:s — 02 (252)
(@) = J(e2)lls < Bilos la + 02 llaf'~ o1 — @2
+ (leslla + ez lla)lor — @2} (253)

for all @,, ¢, € # satisfying ||o; || <. In the case g = | we assume
that B can be chosen arbitrarily small if J is chosen small. Moreover,
we assume that J(0) = 0.

We can now define the scattering states and the scattering norm. First, for
an s¢-valued function y(t) on R we define
Ml wg = sup (] + sup (1+ [¢]¥[v()].
Ni1st<N2 N

1StSN2

In the case where N, = — oo, N, = + oo we shall denote the norm simply by
Il Il Now we define

= [0 e~ ] < o)

and
—-itA

l@llca = llle™"*oll|
That is, the scattering states are just those vectors in J# that decay nicely in
the |- ||, norm under the free propagation. Notice that if ||¢[, < oo, then
le™*olla < c2(1+ [t)"“(le]l + lols)  forall s (254)

so ¢ € X, ,, and

@lseae < (1 + co)ll@]l + 2]l

Theorem XI1.97 (global existence for small data)  Let A be a self-adjoint
operator on a Hilbert space s and J be a nonlinear mapping of # into
itself. Suppose that there exist |||, |- ||, so that hypotheses (i)-(iii) hold.
Then there is an 7o > 0 so that for all ¢_ € Z,,, with | _ ||sca < 70, the
equation

0(0)= g+ [ emmmaup(s) ds @s9)

-
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To show that ¢(r) € Z,,, for each ¢, we fix t and compute:

t
sup lle™*4g(0)] <sup fle™" e 4p_ || + [ [leH4u+r-ay(g(s))] ds

— 00

<swp e + 5[ _Jo@lzlow) ds

< "(P- "sca( + %”0
sup {(1+ [r[Flle™ o]}
<sup {(1 + [r|)fle” ™40 _ |}
wsup (14 o1 _Jertaesras(oiol,

< sup {(L+ [r[Y(1+ [+ 1) 70 ficad

+sn:p=(l+ |r|)‘jjw(l + [t+r—=s|)Y(1+ |s|)"’"ds}

x Bea(1 + 4no)(2no )
< sup {(X+ e YA+ [t +7]) " @- lsea + $10)

Thus, ¢(t) € Z,,, .
To prove (b), we estimate

o) — e g | = [ep() — o- |
<[ leseo)l ds
<8[_lowllo) ds
< Banoyt [ (1+ 5]y 4 ds

-0

ast— —oco. |
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The solution of (255) constructed above satisfies (249b) with
o
Go=0_+ [ e*I(p(s)) ds
Part (a) of the following lemma completes the proof of Theorem X1.97. Part

(b) is used in the proof of Theorem XI.100.

Lemma 1
(a) Suppose that ¢ > 1,d >0, and dq > 1. Then
[T+ fe= s+ [s])* ds < cx(1 + [¢])
(b) Suppose th—aO: q>1,d>0,and dg > 1. Then
sup {(1 + |r|)"J‘”(l + |r—=s])7(1+ |s|) % ds} >0
as t, tz—’» +00 Or ty, tzt-l» —00.

Proof (a) Itis sufficient to consider the case where ¢ is positive. We break
the integral into two parts and estimate:

[ (1+ |t =s|)"4(1 + |s|) % ds

|s=t|2t/2

s(1+2£)—df (1+ |s])"%ds

|s—t|21t/2
Sct+a7 [ (1+[s])%ds

and for d # 1,
312

[+ o=+ s ds
12

< (1 + %) -dq{L:Z(l +(t—s)"?ds+ J.,3t/2(1 +s—1)"? ds}

52(1 +§)—“{|1 ——dl"‘((l +%)_M + 1)}

Sc(l+e)7 4979 4 (1 4¢)"%
<c(l+1¢)™?

since dg>1and q > 1.
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If d = 1, the second integral can be estimated by

-q
2(1+§) ln(l+§)$c(l+t)“
sinceg>11ifd=1.

(b) Consider the case t, > t; = co and choose g, > 1 so that dgo > 1
and g > q,. Then

(1 1) [+ 1= s)) 41 + |s])~a ds

< (1+|r,|)-‘~-«°>](1+|r|)[ (L Jr =)L+ [s]) e ds

so (b) follows from (a). |

Theorem XI.98 (the scattering operator for small data)  Assume all the
hypotheses of Theorem X1.97 and let ¢(r) be the solution of (255) corre-
sponding to ¢ _ € X, with ||¢_ ||,c.. < 1o. Then, for n, sufficiently small:

(@) There exists ¢, € Z,.,,, With @, ||scae < 270, 50 that
lo(t) —e ™ e, || -0 as t— +o0

(b) The map ¢p_ —— ¢, , defined on {@| 0= llscar < 1o} is one-to-one and
continuous in the || - |, norm.

Proof From Theorem X1.97 we know that |[lo(-)||| < 21, . Thus

le*4o(t,) — e40(t,)] <

[ es(os)) ds

n

<[ Blowlslo6 ds

< B(2no)*! _[’2(1 + |s|)74 ds

by (252). Thus {e"“¢(t)} is Cauchy in # as t » + o since dg > 1. Letting
@, = lim e"p(r)
t=+o
we have

—e ™Mo, | >0 as - +o0
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—itA

by the unitarity of e™“4. To show that ¢, € £_,,, observe that

t
o) =g+ [ eI(p(s) ds
Letting t — + oo, we conclude that

o)

or=0_+[ eI(ols) ds

Now, by (254) and (252),
le™ 4= (@(s))]. < et + [t = s (@] + (@]
<2 f(1+ [t = s|) o)A + 2lle(s)])}
< ¢ Bno)*(1 + 4no)(1 + [t —s|)7(1 + |s])™

for each s and ¢. Since

a0

e, = e ithg_ +J' e~ =9 1 (¢(s)) ds

-

we conclude that |le” "¢, ||, < o and

sup {1+ |e])lle o, ||}

<sup {(1 + [t]|f]le™™o_ o} + c2BQ2no)*(1 + 4n,)

XSup {(l+ III)‘[ (1+ [t—s)"41 + |s|) % ds
<sup (1 + Itl)‘lle""‘q’- la + 410

by the lemma (part a) and the choice of 5, in Theorem X1.97. Thus

"(,0+ "scat - "(P "scal + %’10 + %’70 < 2’70
This proves (a).

To prove that S is continuous, let ¢_ and y_ be in X, with
|0~ llscat < Mo and || — ||lscar < Mo and let ¢(t) and ¥(t) be the correspondmg
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