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To stand upon every point, and go over things at large, and to be curious in
particulars, belongeth to the first author of the story: but to use brevity,
and avoid much labouring of the work, is to be granted to him that will

make an abridgement.
2 MaccaBERS ii. 30, 31.

PRINTED IN GREAT BRITAIN



CHAP.

11.
III.
IV.

VL
VIL
VIIL.

IX.

XI.
XIIL
XIII.
XIV.
XV.
XVI.

XVIIL
XVIIL
XIX.
XX.

CONTENTS

BESSEL FUNCTIONS BEFORE 1826

THE BESSEL COEFFICIENTS

BESSEL FUNCTIONS

DIFFERENTIAL EQUATIONS

MISCELLANEOUS PROPERTIES OF BESSEL FUNCTIONS
INTEGRAL REPRESENTATIONS OF BESSEL FUNCTIONS
ASYMPTOTIC EXPANSIONS OF BESSEL FUNCTIONS
BESSEL FUNCTIONS OF LARGE ORDER

POLYNOMIALS ASSOCIATED WITH BESSEL FUNCTIONS
FUNCTIONS ASSOCIATED WITH BESSEL FUNCTIONS .
ADDITION THEOREMS . l

DEFINITE INTEGRALS .

INFINITE INTEGRALS .

MULTIPLE INTEGRALS .

THE ZEROS OF BESSEL FUNCTIONS .

NEUMANN SERIES AND LOMMEL’S FUNCTIONS OF TWO

VARIABLES

KAPTEYN SERIES .

SERIES OF FOURIER-BESSEL AND DINT .
SCHLOMILCH SERIES

THE TABULATION OF BESSEL FUNCTIONS
TABLES OF BESSEL FUNCTIONS
BIBLIOGRAPHY

INDEX OF SYMBOLS

LIST OF AUTHORS QUOTED

GENERAL INDEX

PAGE



PREFACE

THIS book has been designed with two objects in view. The first is the
development of applications of the fundamental processes of the theory of
functions of complex variables. For this purpose Bessel functions are admirably
adapted; while they offer at the same time a rather wider scope for the appli-
cation of parts of the theory of functions of a real variable than is provided by
trigonometrical functions in the theory of Fourier series. '

The second object is the compilation of a collection of results which would
be of value to the increasing number of Mathematicians and Physicists who
encounter Bessel functions in the course of their researches. The existence of
such a collection seems to be demanded by the greater abstruseness of properties
of Bessel functions (especially of functions of large order) which have been
required in recent years in various problems of Mathematical Physics.

While my endeavour has been to give an account of the theory of Bessel
functions which a Pure Mathematician would regard as fairly complete, I have
consequently also endeavoured to include all formulae, whether general or
special, which, although without theoretical interest, are likely to be required
in practical applications; and such results are given, so far as possible, in a
form appropriate for these purposes. The breadth of these aims, combined
with the necessity for keeping the size of the book within bounds, has made
it necessary to be as concise as is compatible with intelligibility.

Since the book is, for the most part, a development of the theory of func-
tions as expounded in the Course of Modern Analysis by Professor Whittaker
and myself, it has been convenient to regard that treatise as a standard work
of reference for general theorems, rather than to refer the reader to original
sources.

It is desirable to draw attention here to the function which I have regarded
as the canonical function of the second kind, namely the function which was
defined by Weber and used subsequently by Schlifli, by Graf and Gubler and
by Nielsen. For historical and sentimental reasons it would have been pleasing
to have felt justified in using Hankel’s function of the second kind; but three
considerations prevented this. The first is the necessity for standardizing the
function of the second kind; and, in my opinion, the authority of the group
of mathematicians who use Weber’s function has greater weight than the
authority of the mathematicians who use any other one function of the second
kind. The second is the parallelism which the use of Weber’s function exhibits
between the two kinds of Bessel functions and the two kinds (cosine and sine)
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of trigonometrical functions. The third is the existence of the device by which
interpolation is made possible in Tables I and III at the end of Chapter XX,
which seems to make the use of Weber’s function inevitable in numerical work.

It has been my policy to give, in connexion with each section, references
to any memoirs or treatises in which the results of the section have been
previously enunciated; but it is not to be inferred that proofs given in this
book are necessarily those given in any of the sources cited. The bibliography
at the end of the book has been made as complete as possible, though doubtless
omissions will be found in it. While I do not profess to have inserted every
memoir in which Bessel functions are mentioned, I have not consciously omitted
any memoir containing an original contribution, however slight, to the theory
of the functions; with regard to the related topic of Riccati’s equation, I have
been eclectic to the extent of inserting only those memoirs which seemed to
be relevant to the general scheme.

In the case of an analytical treatise such as this, it is probably useless to
hope that no mistakes, clerical or other, have remained undetected; but the
number of such mistakes has been considerably diminished by the criticisms
and the vigilance of my colleagues Mr C. T. Preece and Mr T. A. Lumsden,
whose labours to remove errors and obscurities have been of the greatest
value. To these gentlemen and to the staff of the University Press, who have
given every assistance, with unfailing patience, in a work of great typographical
complexity, I offer my grateful thanks.

G. N. W.

August 21, 1922,



CHAPTER I

BESSEL FUNCTIONS BEFORE 1826

- 1-1. Riccatr’s differential equation.

The theory of Bessel functions is intimately connected with the theory of
a certain type of differential equation of the first order, known as Riccati’s
equation. In fact a Bessel function is -usually defined as a particular solution
of a linear differential equation of the second order (known as Bessel’s equation)
which is derived from Riccati’s equation by an elementary transformation.

The earliest appearance in Analysis of an equation of Riccati’s type occurs
in a paper* on curves which was published by John Bernoulli in 1694. In
this paper Bernoulli gives, as an example, an equation of this type and states
that he has not solved it+.

In various letterst to Leibniz, written between 1697 and 1704, James
Bernoulli refers to the equation, which he gives in the form

dy = yydx + wvxdz,

and states, more than once, his inability to solve it. Thus he writes (Jan. 27,
1697): “Vellem porro ex Te scire num et hanc tentaveris dy = yyda + zada.
Ego in mille formas transmutavi, sed operam meam improbum Problema per-
petuo lusit.” Five years later he succeeded in reducing the equation to a linear
equation of the second order and wrote§ to Leibniz (Nov. 15, 1702): “ Qua
occasione recordor aequationes alias memoratae dy = yydz + #*dz in qua nun-
quam separare potui indeterminatas a se invicem, sicut aequatio maneret
simpliciter differentialis: sed separavi illas reducendo aequationem ad hanc
differentio-differentialem| ddy : y = — 2* dx®.”

‘When this discovery had been made, it was a simple step to solve the last
equation in series, and so to obtain the solution of the equation of the first
order as the quotient of two power-series.

* Acta Eruditorum publicata Lipsiae, 1694, pp. 435—437.

1 ¢“Esto proposita aequatio differentialis haec x%dx +y%dr=a?dy quae an per separationem
indeterminatarum construi possit nondum tentavi’ (p. 436).

+ See Leibnizens gesamellte Werke, Dritte Folge (Mathematik), 1m1. (Halle, 1855), pp. 50—87.

§ Ibid. p. 65. Bernoulli’s procedure was, effectively, to take a new variable u defined by the

formula
1 du__
s
in the equation dy/dr=2x2+vy?, and then to replace u by y.
Il The connexion between this equation and a special form of Bessel’s equation will be seen
in §4-3.

W.B. F. 1
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And, in fact, this form of the solution was communicated to Leibniz by
James Bernoulli within a year (Oct. 3, 1703) in the following terms*:

“Reduco autem aequationem dy= yydz+azdzr ad fractionem cujus uterque
terminus per seriem exprimitur, ita

a8 27 a1l 215 219
3 347 347811 5478 11.12 15" 3.4.7.8.11.12.15.16.19 O

y= e s 2 216
=52 * 3278 T s3avediiz v 54.7.8.11.12.15.16

quae series quidem actuali divisione in unam conflari possunt, sed in qua
ratio progressionis non tam facile patescat, scil.
a? a’ 2™ 1321
Y=3%t3 37333 7.11"53.383.5.7.7.1
Of course, at that time, mathematicians concentrated their energy, so far
as differential equations were concerned, on obtaining solutions in finite terms,
and consequently James Bernoulli seems to have received hardly the full credit
to which his discovery entitled him. Thus, twenty-two years later, the papert,
in which Count Riccati first referred to an equation of the type which now
bears his name, was followed by a note} by Daniel Bernoulli in which it was
stated that the solution of the equation§

ax™ dx + vudr = bdu

- 4 ete.”

was a hitherto unsolved problem. The note ended with an announcement in
an anagram of the solution: “Solutio problematis ab Ill. Riccato proposito
characteribus occultis involuta 24a, 6b, 6¢, 8d, 33e¢, 5f, 29, 4h, 331, 61, 21m,
26n, 160, 8p, 5q, 17r, 16s, 25¢, 32w, bz, 3y, +, —, , +,=,4,2 1.7

The anagram appears never to have been solved ; but Bernoulli published
his solution|| of the problem about a year after the publication of the anagram.
The solution consists of the determination of a set of values of n, namely
—4m/(2m + 1), where m is any integer, for any one of which the equation is
soluble in finite terms; the details of this solution will be given in §§4-1, 4-11.

The prominence given to the work of Riccati by Daniel Bernoulli, combined
with the fact that Riccati’s equation was of a slightly more general type than

* See Leibnizens gesamelite Werke, Dritte Folge (Mathematik), miz. (Halle, 1855), p. 75.

T Acta Eruditorum, Suppl. viir. (1724), pp. 66—73. The form in which Riccati took the
equation was

xdg=du+uudz:q,

where g =a™. :

T Ibid. pp. 78—75. Daniel Bernoulli mentioned that solutions had been obtained by three
other members of his family—John, Nicholas and the younger Nicholas.

§ The reader should observe that the substitution

z dz

gives rise to an equation which is easily soluble in series.

|| Ezercitationes quaedam mathematicae (Venice, 1724), pp. 77—80; Acta Eruditorum, 1725,
pp. 465—473. '
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John Bernoulli’s equation * has resulted in the name of Riccati being associated
not only with the equation which he discussed without solving, but also with
a still more general type of equation.

It is now customary to give the namet Riccatt’'s generalised equation to
any equation of the form

dy _ . .

where P, @), I are given functions of .

It is supposed that neither 2 nor £ is identically zero. If B=0, the equation is linear;
if P=0, the equation is reducible to the linear form by taking 1/y as a new variable.

The last equation was studied by Euler]; it is reducible to the general
linear equation of the second order, and this equation is sometimes reducible
to Bessel’s equation by an elementary transformation (cf. §§ 31, 43, 4°31).

Mention should be made here of two memoirs by Kuler. In the first§ it
is proved that, when a particular integral y, of Riccati’s generalised equation
18 known, the equation is reducible to a linear equation of the first order by
replacing y by 7, +1/u, and so the general solution can be effected by two
quadratures. It is also shewn (¢bid. p. 59) that, if two particular solutions are
known, the equation can be integrated completely by a single quadrature; and
this result is also to be found in the second| of the two papers. A brief dis-
cussion of these theorems will be given in Chapter 1v.

1-2. Danzel Bernoully's mechanical problem.

In 1738 Daniel Bernoulli published a memoir¥ containing enunciations of
a number of theorems on the oscillations of heavy chains. The eighth ** of
these is as follows: “ De figura catenae uniformater oscillantis. Sit catena AC
uniformiter gravis et perfecte flexilis suspensa de puncto 4, eaque oscillationes
facere uniformes intelligatur: pervenerit catena in situm AMFE; fueritque
longitudo catenae =1{: longitudo cujuscunque partis FM = &, sumatur n ejus
valoris ¥+ ut fit
1 l 4 i ;3 n it &

n 4dnn 4.9n%  4.9.16n* 4.9.16.25n

* See James Bernoulli, Opera Omnia, 11. (Geneva, 1744), pp. 1054—1057 ; it is stated that the
point of Riceati’s problem is the determination of a solution in finite terms, and a solution which
resembles the solution by Daniel Bernoulli is giveun.

t+ The term * Riccati’s equation’ was used by D’Alembert, Hist. de I dcad. R. des Sci. de Berlin,
x1x. {(1768), [published 1770], p. 242. _
© I Institutiones Calculi Integralis, 11. (Petersburg, 1769), § 831, pp. 88—89. In connexion with
the reduction, see James Bernoulli’s letter to Leibniz already quoted.

§ Novi Comm. Acad. Petrop. virr. (1760—1761), [published 1763], p. 32.

|| Tbid. 1x. (1762—1763), [published 1764], pp. 163—164. '

9 ¢ Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter
suspensae,” Comm. dcad. Sci. Imp. Petrop. vi. (1732—3), [published 1738], pp. 108—122.

‘#% Loc. ¢it. p. 116. i
Tt The length of the simiple equivalent pendulum is n.

. +ete. = 0.

1—2
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Ponatur porro distantia extremi puncti F ab linea verticali =1, dico fore
distantiam puncti ubicunque assumpti M ab eadem linea verticali aequalem

,,

gy @ &
n 4dnn  4.9n%  4.9.16n* 4.9.16.25%°

He goes on to say: “Invenitur brevissimo calculo n = proxime 0'691 [....
Habet autem littera n infinitos valores alios.”

+ ete.”

The last series is now described as a Bessel function® of order zero and
argument 2 4/(z/n); and the last quotation states that this function has an
infinite number of zeros.

Bernoulli published+ proofs of his theorems soon afterwards; in theorem
vi11, he obtained the equation of motion by considering the forces acting on
the portion FM of length . The dquation of motion was also obtained by
Euler! many years later from a consideration of the forces acting on an element
of the chain.

The following is the substance of Euler’s investigation :

Let p be the line density of the chain (supposed uniform) and let 77 be the tension at
height x above the lowest point of the chain in its undisturbed position. The motion being
transversal, we obtain the equation 8§7'=gpdx by resolving vertically for an element of
chain of length dz. The integral of the equation is T'=gpax.

The horizontal component of the tension is, effectively, 7' (dy/dx) where ¥ is the (hori-
zontal) displacement of the element; and so the equation of motion is

Py _ dy
If we substitute for 7" and proceed to the limit, we find that

dy_ d( dy
dt2—907x<$¢fx>'

If 7 is the length of the simple equivalent pendulum for any one normal vibration, we

write
gman(G)an (0 ).

where 4 and ¢ are constants; and then IT (z/f) is a solution of the equation

d (x @> +2=0.

dx dz) * f
If z/f=wu, we obtain the solution in the form of Bernoulli’s series, namely
w Ul u3 ut
ElTitraTra e T re e

* On the Continent, the functions are usually called cylinder functions, or, occasionally, func-
tions of Fourier-Bessel, after Heine, Journal fiir Math. 1x1x. (1868), p. 128; see also Math. Ann.
1r. (1871), pp. 609—610.

t Comm. Acad. Petrop. vir. (1734—5), [published 1740], pp. 162—179.

T dcta dcad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784}, pp. 157—177. FEuler
took the weight of length e of the chain to be E, and he defined g to be the measure of the
distance (not twice the distance) fallen by a particle from rest under gravity in a second. Euler’s
notation has been followed in the text apart from the significance of g and the introduction of
p and & (for d).
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The general solution of the equation is then shewn to be Dv+ Cv / “ g%l'z , where ¢ and

D are constants. Since y is finite when =0, ¢ must be zero,

If a is the whole length of the chain, ¥ =0 when 2 =¢, and so the equation to determine f'is

a a? ad
- ]Tf'l‘——'l . 4f2 - m?;3+...=0.

By an extremely ingenious analysis, which will be given fully in Chapter xv, Euler
proceeded to shew that the three smallest roots of the equation in a/f are 1445795, 76658
and 18:63. [More accurate values are 1'4457965, 76178156 and 18-7217517.]

In the memoir* immediately following this investigation Huler obtained the general

solution (in the form of series) of the equation diu < % dv

1

du
law of formation of successive coefficients is rather incomplete. The law of formation had,
howerer, been stated in his Institutiones Caleuli Integralist, 11. (Petersburg, 1769), § 977,
Pp. 233-235.

>+'v=0, but his statement of the

1-3. Euler’s mechanzcal problem.
The vibrations of a stretched membrane were investigated by Euler} in
1764. He arrived at the equation
1d?z d*z 1dz 1d%z
¢ de —drt Trdr T Rdg
where z is the transverse displacement at time ¢ at the point whose polar
coordinates are (r, ¢); and e is a constant depending on the density and
tension of the membrane. ’
To obtain a normal solution he wrote
z=wusin (at + 4)sin (B¢ + B),
where a, A, B, B are constants and « is a function of »; and the result of
substitution of this value of z is the differential equation
d?u  1du a? 2
ar +;5z;+<62—é2)“= 0.
The solution of this equation which is finite at the origin is given on p. 256
of Euler’s memoir; 1t is
w =1k {1 - o + ar —}
2(n+ )e* 2.4 (n+1)(n+ 3)e ’
where n has been written§ in place of 28 + 1.

This differential equation is now known as Bessel’s equation for functions
of order B; and B may have|l any of the values 0, 1, 2, .... '

Save for an omitted constant factor the series is now called a Bessel
coefficient of order B and argument ar/e. The periods of vibration, 27/a, of a

* Acta Acad. Petrop. v, pars 1 (Mathematica), (1781), [published 1784], pp. 178—190.

+ See also §§ 935, 936 (p. 187 et se‘q.) for the solution of an associated equation which will be
discussed in § 8-52.

T Novi Comm. Acad. Petrop. x. (1764), [published 1766], pp. 243—260.

§ The reason why Euler made this change of notation is not obvious.

|| If B8 were not an integer, the displacement would not be a one-valued function of position,
in view of the factor sin (8¢ + B).
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circular membrane of radius @ with a fixed boundary* are to be determined
from the consideration that « vanishes when r = a.

This investigation by Euler contains the earliest appearance in Analysis of
a Bessel coefficient of general integral order.

1-4. The researches of Lagrange, Carlini and Laplace.

Only a few years after Euler had arrived at the general Bessel coefficient
in his researches on vibrating membranes, the functions reappeared, in an
astronomical problem. It wasshewn by Lagrange+ in 1770 that, in the elliptic
motion of a planet about the sun at the focus attracting according to the law
of the inverse square, the relations between the radius vector », the mean.
anomaly M and the eccentric anomaly #, which assume the forms

M=F—-esink, r=a(l—ecosk),
give rise to the expansions
=2) . e 2]
E=M+ 3 A,sinnM, Z=1—1—;%4—¢52-}— S B, cosnM,
n=1 a n=1
in which @ and e are the semi-major axis and the eccentricity of the orbit, and

B 2 § (__)m (,n + 2,’7%) . n’n—!—Qm—Z en-{-zm
oo 27 T (n+ m)1” T T2, 22+2m g | (0 + m) !

c% ( _)m ptem—1 6n+2m

A,=2

Lagrange gave these expressions for n =1, 2,3. The object of the expansions
is to obtain expressions for the eccentric anomaly and the radius vector in
terms of the time.

In modern notation these formulae are written
A,=2J, (ne)/n, B,=—2(emn)J, (ne).
It was noted by Poisson, Connaissance des Tems, 1836 [published 1833], p. 6 that

e dd,
Bn= “n de’

a memoir by Lefort, Journal de Math. x1. (1846), pp. 142—152, in which an error made by

Poisson is corrected, should also be consulted.

A remarkable investigation of the approximate value of 4, when n is large
and 0 < e< 1 is due to Carlini}; though the analysis is not rigorous (and it
would be difficult to make it rigorous) it is of sufficient interest for a brief
account of it to be given here.

* Of. Bourget, dnn. Sci. de UFcole norm. sup. 1. (1866), pp. 55—95, and Chree, Quarterly
Journal, xx1. (1886), p. 298.

+ Hist. de Pdcad. R. des Sci. de Berlin, xxv. (1769), [published 1771], pp. 204—233. [Oeuvres,
L. (1869), pp. 113—138.] '

+ Ricerche sulla convergenza della serie che serva alla soluzione del problema di Keplero
(Milan, 1817). This work was translated into German by Jacobi, 4dstr. Nach. xxx. (1850),
col. 197-—254 [Werke, vir. (1891), pp. 189—245]. See also two papers by Scheibner dated 1856,
reprinted in Math. Ann. xvir. (1880), pp. 581—544, 545-—560.
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1t is easy to shew that 4, is a solution of the differential equation
a4 dA

9 n n

CTder T ge

Define « by the formula 4,=2#2~1¢/"%/n | and then

—n?(1—e?) 4,=0.

. [du ;
€2 <$ +uz>+eu—n‘(1——e2)=0.

Hence when = is large either « or 42 or du/de must be large.

If u=0(n*) we should expect %2 and du/de to be O(n?e) and O (n*) respectively ; and
on considering the highest powers of n in the various terms of the last differential equation,
we find that a=1. It is consequently assumed that » admits of an expansion in descending
powers of » in the form

w=nup+ Uy + UM+ ...,

where wug, %, s, ... are independent of n.

On substituting this series in the differential equation of the first order and equating to
zero the coefficients of the various powers of n, we find that

w?=(1—e2)[e?, € (uy +2ugu)+uy=0, ...

‘\/(1'—62> . de

y =T and therefore

where uy =du,/de; so that uy= +

[uda:n {log—H_—N/:Tjez)i\/(l —52)11} —flog(l—e)+...,

and, since the value of 4, shews that [ude ~n log 1e when ¢ is small, the upper sign must
be taken and no constant of integration is to be added.

From Stirling’s formula it now follows at once that

_ e exp {n /(1 - %)}

VEm) .k (- 1y — e
and this is the result obtained by Carlini. This method of approximation has been carried
much further by Meissel (see § 8:11), while Cauchy* has also discussed approximate
formulae for 4, in the case of comets moving in nearly parabolic orbits (see § 8'42), for
which Carlini’s approximation is obviously inadequate.

n

The investigation of which an account has just been given is much more
plausible than the arguments employed by Laplacet to establish the corre-
sponding approximation for B,.

The investigation given by Laplace is quite rigorous and the method which
he uses is of considerable importance when the value of B, is modified by
taking all the coefficients in the series to be positive—or, alternatively, by
supposing that e is a pure imaginary. But Laplace goes on to argue that an
approximation established in the case of purely imaginary variables may be
used ‘sans crainte’ in the case of real variables. To anyone who is acquainted
with the modern theory of asymptotic series, the fallacious character of such
reasoning will be evident.

* Comptes Rendus, xxxvi. (1854), pp. 990—993.
T Mécanique Céleste, supplément, t. v. [first published 1827]. Oecuvres, v. (Paris, 1882),
pp. 486—489.
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The earlier portion of Laplace’s investigation is based on the principle
that, in the case of a series of positive terms in which the terms steadily in-
crease up to a certain point and then steadily decrease, the order of magnitude
of the sum of the series may frequently be obtained from a consideration of
the order of magnitude of the greatest term of the series.

For other and more recent applications of this principle, see Stokes, Proc. Camb. Phil.
Soc. V1. (1889), pp. 362—366 [ Math. and Phys. Papers, v. (1905), pp. 221—225], and Hardy,
Proc. London Math. Soc. (2) 11. (1905), pp. 332—339 ; Messenger, XXx1v. (1905), pp. 97—101.

A statement of the principle was given by Borel, dcta Mathematica, xx. (1897), pp. 393—
394.

The following exposition of the principle applied to the example considered
by Laplace may not be without interest :

The series considered is

B,0=

5 § (n+2m> pr*+2m—2 n+2m
m=0 2°F¥am ! (n+m)!l

in which # is large and ¢ has a fixed positive value. The greatest term is that for which
m=p, where u is the greatest integer such that

dp (n+p) (n+2p— 2) < (n+2p) nPe,
and so p is approximately equal to
0 WA+ &) = 1+ 3L+,
Now, if w,, denotes the general term in 73,(), it is easy to verify by Stirling’s theorem

. . U+
that, to a first approximation, T’;‘Etm q?%*, where

log = — 2 /(1 +€)/(ne?).
Hence By Moy {14 2¢ +2¢*+2¢% + ...}

_ , ~2u, N{m[(1 -9},
since * ¢ is nearly equal to 1.

Now, by Stirling’s theorem,
w r\)e”—l exp {n NI+ e2)}
T 1A (Lt e
B~ 20 >} e exp {n (14
n and {14+/A e

The inference which Laplace drew from this result is that
2o (2 V(1 — @))‘5 e exp {ny/(1 — &)}
! ™ {1 +v@A =)
This approximate formula happens to be valid when e <1 (though the reason

for this restriction is not apparent, apart from the fact that it is obviously
necessary), but it is difficult to prove it without using the methods of contour

and so

* The formula 1423 q32~N/{7r/(l—q)} may be inferred from general theorems on series
t=0

cf. Bromwich, T'heory of Infinite Series, § 51. It is also a consequence of Jacobi’s transformation
formula in the theory of elliptic functions,

¥ (0]7) = (=ir) 2% (0] —77Y);
see Modern Analysis, § 2151,
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integration (cf. § 8:31). Laplace seems to have been dubious as to the validity
of his inference because, immediately after his statement about real and
imaginary variables, he mentioned, by way of confirmation, that he had
another proof; but the latter proof does not appear to be extant.

1-56. The researches of Fourver.

In 1822 appeared the classical treatise by Fourier®, La Théorie analytique
de la Chaleur; in this work Bessel functions of order zero occur in the dis-
cussion of the symmetrical motion of heat in a solid circular cylinder. It is
shewn by Fourier (§§ 118—120) that the temperature v, at time ¢, at distance
« from the axis of the cylinder, satisfies the equation

dv K /d?v  1dv
dt~ CD (%2 @ El?é) ’
where K, C, D denote respectively the Thermal Conductivity, Specific Heat
and Density of the material of the cylinder; and he obtained the solution
2 2 d 3 b
P = g—mt {1 _ %+ 2.9'2"1;2_ 22946: 62+ } 5
where g = mCD/K and m has to be so chosen that
v + K (dv/dz) =0
at the boundary of the cylinder, where % is the External Conductivity.

Fourier proceeded to give a proof (§§ 307-—309) by Rolle’s theorem that
the equation to determine the values of m has? an infinity of real roots and
no complex roots. His proof is slightly incomplete because he assumes that
certain theorems which have been proved for polynomials are true of integral
functions; the defect is not difficult to remedy, and a memoir by Hurwitz}
has the object of making Fourier’s demonstration quite rigorous.

It should also be mentioned that Fourier discovered the continued fraction
formula (§ 813) for the quotient of a Bessel function of order zero and its
derivate; generalisations of this formula will be discussed in §§ 56, 9-65.
Another formula given by Fourier, namely

1 L= lfwcos (o sin ) du,
™Jo

of . at o
BRI I e
had been proved some years earlier by Parseval§; it is a special case of what

are now known as Bessel’s and Poisson’s integrals (§§ 2-2, 2-3).

* The greater part of Fourier’s researches was contained in a memoir deposited in the archives
of the French Institute on Sept. 28, 1811, and crowned on Jan. 6, 1812. This memoir is to be
found in the Mém. de ’Acad. des Sci., 1v. (1819), [published 1824], pp. 185—555; v. (1820),
[published 18267, pp. 153—246. }

+ This is a generalisation of Bernoulli’s statement quoted in § 1-2.

I Math. Ann. xxx111. (1889), pp. 246—266.

§ Mém. des savans étrangers; 1. (1805), pp. 689—648, This paper also contains the formal
statement of the theorem on Fourier constants which is sometimes called Parseval’s theorem ;
another paper by this little known writer, Mém. des savans étrangers, 1. (1805), pp. 879398, con-
tains a general solution of Laplace’s equation in a form involving arbitrary functions.
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The expansion of an arbitrary function into a series of Bessel functions of
order zero was also examined by Fourier (§§ 314—320); he gave the formula
for the general coefficient in the expansion as a definite integral.

The validity of Fourier’s expansion was examined much more recently by Hankel,
Math. Ann. viiL. (1875), pp. 471—494 ; Schlafli, Math. Ann. x. (1876), pp. 137—142; Dini,
Serie di Fourier, 1. (Pisa, 1880), pp. 246—269 ; Hobson, Proc. London Math. Soc. (2) VII.

(1909), pp- 359—388; and Young, Proc. London Math. Soc. (2) xXVIIL. (1920), pp. 163—200.
This expansion will be dealt with in Chapter xvIII.

1-6. The researches of Poisson.
The unsymmetrical motions of heat in a solid sphere and also in a solid
cylinder were investigated by Poisson* in a lengthy memoir published in 1823.

In the problem of the sphere, he obtained the equation
IR n(n+1)

dr® 72

R=—p*R,

where 7 denotes the distance from the centre, p is a constant, n is a positive
integer (zero included), and R is that factor of the temperature, in a normal
mode, which is a function of the radius vector. It was shewn by Poisson that
a solution of the equation is

m
rnt f cos (rp ¢os w) sin* ™ wdw
0

and he discussed the cases n=0, 1, 2 in detail. It will appear subsequently
(§ 3'3) that the definite integral is (save for a factor) a Bessel function of
order n + 3.

In the problem of the cylinder (zbid. p. 340 et seq.) the analogous integral is

K’”J cos (A cos ) sin*"wdw,
0

where n=0, 1, 2, ... and X\ is the distance from the axis of the cylinder. The
integral is now known as Poisson’s integral (§ 23).

In the case n =0, an important approximate formula for the last integral
and its derivate was obtained by Poisson (ibid., pp. 350—352) when the variable
is large; the following is the substance of his investigation:

Letf Jy(k)= L [Zcos (kcos ®) do, Jy (F)= — % f:; cos w sin (£ cos o) do.

ko
Then J, (%) is a solution of the equation

2 )
PN 4 (1 +4—}Cé>y\/7c=o.
* Journal de UEcole R. Polytechnique, x11. (cahier 18), (1823), pp. 249—403.
+ Ibid. p. 300 et seq. The equation was also studied by Plana, Mem. della R. Accad. delle Sci.
di Torino, xxv. (1821), pp. 532—534, and has since been studied by numerous writers, some of
whom are mentioned in § 4'3. See also Poisson, La Théorie Mathématique de la Chaleur (Paris,
1835), pp. 866, 369.

T See also Rohrs, Proc. London Math. Soc. v. (1874), pp. 186—187. The notation J, (k) was
not used by Poisson.
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When % is large, 1/(44%) may be neglected in comparison with unity and so we may expect
that J, (k) /£ is approximately of the form A cos £+ Bsin £ where 4 and B are constants.

To determine 4 and B observe that
cos k. Jy(k)—sin k. Jy (k)y=— / {cos? $o cos (2% sin? fw) +sin? fo cos (24 cos? jw)} d,
Write 7 —  for » in the latter half of the integral and then
cos k. Jy (k) —sin k. Jy (k) =2; /7; cost o cos (24 sin? fw) do

1
vV (2F 2\ 2 .
242 ) < & ) cos ztda,

N T2k,
. . , 22 [V 2\E
and similarly sin £.J, (&) +cosk. Jy (/c) = :// T ( —gp) S0 2.
. v (2k) 22\* cos *® cos
B 1 22 _ 2. de—=21JE&
ut kilclo fo <1 57) sin - dz fo sin © dx z NG,

by a well known formula®*.

[Note. Tt is not easy to prove rigorously that the passage to the limit is permissible;
the simplest procedure is to appeal to Bromwich’s integral form of Tannery’s theorem,
Bromwich, T%eory of Infinite Series, § 174.]

1t follows that
. , 1
cosk.Jy (k)—sink.Jy (k)= S (1 +ep),

Sin & . Jy (B)+ cos k. Jy (K)= ﬁﬁ (1 +72),

where ¢,~=0 and n;,—0 as £—>w ; and therefore

Jy (k)= (14 ¢) cos &+ (1 +n) sin &),

LI
N(mk)
’ —_ 1 _ 3 a
Jy (k) —-——\/<7r/c)[ (14 ¢) sin k4 (1 +1y) cos £].
It was then assumed by Poisson that J; (&) is expressible in the form
1 A A" B B . .
m[<A+ +/c2+ >COSIC+<B+A+/¢3 ..)snl]o],

where A=B=1. The series are, however, not convergent but asymptotic, and the validity
of this expansion was not established, until nearly forty years later, when it was investi-
gated by Lipschitz, Journal fiir Math. Lvi. (1859), pp. 189—196.

The result of formally operating on the expansion assumed by Poisson for the function

. o2
Jy (k) N/ (mk) with the operator Tt 1+ /c
_‘2 . . 1 ’ 2‘ " 2.3 1 A/r
_cos]c[z 1. B id  2.28 (/13 2+ A’ 2.38 (/C4 +%) +]
2.1.4' 2.24" 24D B 2.34"4+(2.3 1B"
+Smk[ +IB+ A +</cls +1) + +<]64 +1) :I,

* Of, Watson, Complex Integration and Cauchy’s Theorem (Camb. Math. Tracts, no. 15,1914),
p. 71, for a proof of these results by using contour integrals. .
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and so, by equating to zero the various coefficients, we find that

1 9 9.25
r__. = v _ Y "__ i
A'=-gB, 4 g gd 4 3350
, 1 .9 b 9.25
B= g4, B'=-57g4d, B =-3.3.8d

and hence the expansion of Poisson’s integral is

1
™ m\2 1 9 9.25
f() cos (k cOS m) dw ~ <Z> [(1—g— m'l" 27378ﬁ3+ ...> cos k

(gl 9 9.9 -
8F T 2.8 2. 3.8848 " o )M
But, since the series on the right are not convergent, the researches of Lipschitz and

subsequent writers are a necessary preliminary to the investigation of the significance of
the latter portion of Poisson’s investigation.

It should be mentioned that an explicit formula for the general term in the expansion

was first given by W. R. Hamilton, Zrans. R. Irish Acad. x1x. (1843), p. 313; his result
was expressed thus:

17 os(28sin ) da= 5o 3 [0]=" ([ — 412 (48)=" cos (28 — brum — ),
w [0 N/(WB) n=0

and he described the expansion as semi-convergent; the expressions [0]~" and [ —4%]* are
to be interpreted as 1/n tand (=3)(—32) ... (—n+3).

A result of some importance, which was obtained by Poisson in a subsequent
memoir*, is that the general solution of the equation

Py Y g,
do T 22 =Y
is y=dat [ [ emneeonedo + Bab f " gheno log (o sin® @) do,

where 4 and B are constants.

It follows at once that the general solution of the equation

dy 1dy .,
o T de MY =0
is . yzA /: e~ hzcosw dw_‘_Bwae—thOSmlog (.CU sin? w) dw.

This result was quoted by Stokest as a known theorem in 1850, and it is
likely that he derived his knowledge of it from the integral given in Poisson’s

memoir; but the fact that the integral is substantially due to Poisson has
been sometimes overlooked].

* Journal de UEcole R. Polytechnique, xi1. (cahier 19), (1823), p. 476. The corresponding
general integral of an associated partial differential equation was given in an earlier memoir,
¢bid. p. 227.

+ Camb. Phil. Trans. 1x. (1856), p. [38], [Math. and Phys. Papers, 111, (1901), p. 42].

1+ See Encyclopédie des Sci. Math. 11. 28 (§ 563), p. 213.
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17. The researches of Bessel.

The memoir* in which Bessel examined in detail the functions which now
bear his name was written in 1824, but in an earlier memoir+ he had shewn
that the expansion of the radius vector in planetary motion is

r 2
~—=14+4%e+ = B, cosnli,
a n=1
€ (% ., . .
where By=—— f sin u sin (nu — ne sin w) du;
nmJo

this expression for B,, should be compared with the series given in §1-4.

In the memoir of 1824 Bessel investigated systematically the function I;*
defined by the integral}

Ih=i Vﬂcos (hw — k sin u) du.
2'7T,0

He took & to be an integer and obtained many of the results which will be
given in detail in Chapter 11. Bessel’s integral is not adapted for defining the
function which is most worth study when % is not an integer (see § 10-1); the
function which is of most interest for non-integral values of % is not I;* but
the function defined by Lommel which will be studied in Chapter 111

After the time of Bessel investigations on the functions became so numerous
that it seems convenient at this stage to abandon the chronological account
and to develop the theory in a systematic and logical order.

An historical account of researches from the time of Fourier to 1858 has been compiled
by Wagner, Bern Mittherlungen, 1894, pp. 204—266 ; a briefer account of the early history
was given by Maggi, A¢t della R. Accad. dei Lincer, (Transunt?), (3) 1v. (1880), pp. 259—263.

* Berliner Abh. 1824 [published 1826], pp. 1-—52. The date of this memoir, ‘¢ Untersuchung
des Theils der planetarischen Stérungen, welcher aus der Bewegung der Sonne entsteht,” is
Jan. 29, 1824.

+ Berliner Abh. 1816—17 [published 18197, pp. 49—55.

T This integral occurs in the expansion of the eccentric anomaly; with the notation of § 1-4,

nd, =2I%

ne?

a formula given by Poisson, Connaissance des Tems, 1825 [published 1822}, p. 883.



CHAPTER II

THE BESSEL COEFFICIENTS

2:1. The definition of the Bessel coefficients.

The object of this chapter is the discussion of the fundamental properties
of a set of functions known as Bessel coeffictents. There are several ways of
defining these functions; the method which will be adopted in this work is to
define them as the coefficients in a certain expansion. This procedure is due
to Schlémilch*, who derived many properties of the functions from his defi-
nition, and proved incidentally that the functions thus defined are equal to the
definite integrals by which they had previously been defined by Besselt. It
should, however, be mentioned that the converse theorem that Bessel’s inte-
grals are equal to the coefficients in the expansion, was discovered by Hansen]
fourteen years before the publication of Schlémilch’s memoir. Some similar
results had been published in 1836 by Jacobi (§2-22).

The generating function of the Bessel coefficients is
1 _1
(1),
It will be shewn that this function can be developed into a Laurent series,

qua function of ¢; the coefficient of ¢* in the expansion is called the Bessel
coefficient of argument z and order m, and it is denoted by the symbol J, (2),
so that .
1) e G I )
n=-—w

To establish this development, observe that e#*’ can be expanded into an
absolutely convergent series of ascending powers of ¢; and for all values of ¢,
with the exception of zero, e~#?/’ can be expanded into an absolutely conver-
gent series of descending powers of {. When these series are multiplied
together, their product is an absolutely convergent series, and so it may be
arranged according to powers of £; that is to say, we have an expansion of the
form (1), which is valid for all values of z and ¢, ¢ = 0 excepted.

% Zeitschrift fir Math. und Phys. 11. (1857), pp. 137—165. For a somewhat similar expansion,
namely that of ¢#¢08 9, see Frullani, Mem. Soc. Ital. (Modena), xviti. (1820), p. 503. It must be
pointed out that Schlémilch, following Hansen, denoted by J,, what we now write as J,, (22);
but the definition given in the text is now universally adopted. Traces of Hansen’s notation
are to be found elsewhere, e.g. Schlifli, Math. Ann. m1. (1871), p. 148.

+ Berliner Abh. 1824 [published 1826], p. 22. '

+ Ermittelung der Absoluten Storungen in Ellipsen von beliebiger Excentricitit und Neigung,
1. theil, [Schriften der Sternwarte Seeburg: Gotha, 1843], p. 106. See also the French transla-
tion, Mémoire sur la détermination des perturbations absolues (Paris, 1845), p. 100, and Leipziger
Abh. 11. (1855), pp. 250—251.
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If in (1) we write — 1/¢ for ¢, we get

b2 (=1/t+t) — § (=t)y™dJ,(2)

= 3 (0T (),

on replacing n by — n. Since the Laurent expansion of a function is unique ¥,
a comparison of this formula with (1) shews that

(2) J—n (Z) = ( - )n Jn (Z);

where n is any integer — a formula derived by Bessel from his definition of
Jn(2) as an integral.

From (2) it is evident that (1) may be written in the form
(3) eé—z(t—l/t) — Jo (Z) + s {t”’ + ( — )n t_"} Jn (Z)
n=1

A summary of elementary results concerning J/,, (2) has been given by Hall, 7%e Analyst,
1. (1874), pp. 81—84, and an account of elementary applications of these functions to
problems of Mathematical Physics has been compiled by Harris, dmerican Journal of
Math. xxx1v. (1912), pp. 391—420.

The function of order unity has been encountered by Turriére, Nouv. Ann. de Math. (4)
Ix. (1909), pp. 433—441, in connexion with the steepest curves on the surface z=y (5242 — y*).
2:11. The ascending series for Jy(2).

An explicit expreésion for J, (2)1n the form of an ascending series of powers
of z is obtainable by considering the series for exp (§2£) and exp (— 42/t), thus

L S G 2 (=
exp {3z (¢t — 1/t)} 2 milo o .

When n is a positive integer or zero, the only term of the first series on the
right which, when associated with the general term of the second series gives
rise to a term involving ¢” is the term for which »=n 4+ m; and, since n >0,
there is always one term for which » has this value. On associating these
terms for all the values of m, we see that the coefficient of ¢” in the product is

e} (%Z)nﬂn (_ l@z)m
m=0 (1 + m) 1 m!

We therefore have the result

<) — Y (1 \n+2m
m=0 ml(n+m)!

* For, if not, zero could be expanded into a Laurent series in ¢, in which some of the
coefficients (say, in particular, that of ™) were not zero. If we then multiplied the expansion by
t—m1 gand integrated it round a circle with cenfre at the origin, we should obtain a contradiction.
This result was noticed by Cauchy, Comptes Rendus, x111. (1841), p. 911.
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where n is a positive integer or zero. The first few terms of the series are
given by the formula
. ' - Zn 22 : 24 )
@) ,J”(Z)‘ ‘”.n!{l e 1.+ T 1.2 . nr D (s Y
In particular

(3) . JO(Z)II—

22 z* 28
Fre e e e et

To obtain the Bessel coefficients of negative order, we select the terms in-
volving £~ in the product of the series representing exp (42¢) and exp (— $2/?),
where n is still a positive integer. The term of the second series which, when
associated with the general term of the first series gives rise to a term in ¢~
is the term for which m =n + r; and so we have
®© (%Z 7 (—%Z n+r
()= % m) (n+Z’)I ’
whence we evidently obtain anew the formula § 2-1 (2), namely

J_n(2) =(=)"Jp(2).

It is to be observed that, in the series (1), the ratio of the (m + 1)th term
to the mth term is — }22/{m (n + m)}, and this tends to zero as m - oo, for all
values of z and n. By D’Alembert’s ratio test for convergence, it follows that
the series representing .J, (2) is convergent for all values of z and n, and so it
is an ntegral function of z when n=0, +1, +2, £3,....

Tt will appear later (§4:73) that J,(2) is not an algebraic function of z
and so 1t is a transcendental function; moreover, it is not an elementary
transcendent, that is to say it is not expressible as a finite combination of
exponential, logarithmic and algebraic functions operated on by signs -of
indefinite integration.

From (1) we can obtain two useful inequalities, which are of some import-
ance (cf. Chapter xvI) in the discussion of series whose general term is a
multiple of a Bessel coefficient. :

Whether z be real or complex, we have
w J__Z i2m
Ju() <lder 3 132

=0 m!(n + m)!

E N
S on!l e m!i(n+1)™’
and so, when n > 0, we have
Lz | 1]z]? Lz
) 1@ < B2 exp (20 (12 M s 32,

This result was given in substance by Cauchy, Comptes Rendus, X111, (1841), pp. 687,
854 ; a similar but weaker inequality, namely
l,1n
1@ < B exp (22

7! : :
was given by Neumann, T%eorie der Bessel'schen Functionen (Leipzig, 1867), p. 27.
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By considering all the terms of the series for J, (¢) except the firs, it 1s
found that

1.\n
) T =3 (110,
Tz 2 exp(3i{z®)—1
where [Giggxp (n—+—1—>——1< i .

It should be observed that the series on the right in § 2-1 (1) converges uniformly in
any bounded domain of the variables z and ¢ which does not contain the origin in the
t-plane. For if §, A and R are positive constants and if

<A, {'ﬂglﬁ"

the terms in the expansion of exp (32¢) exp (42/¢) do not exceed in absolute value the corre-
sponding terms of the product exp (3£24) exp ($£/8), and the uniformity of the convergence
follows from the test of Weierstrass. Similar considerations apply to the series obtained
by term-by-term differentiations of the expansion 3¢*.J, (z), whether the differentiations be
performed with respect to z or ¢ or both z and ¢.

2:12. The recurrence formulae.
The equations™®

(1) T (2) o+ Tusa (&) = 2 T, (2),

(2) Jn1(2) = Jp1a (2) = 204 (2),

which connect three contiguous functions are useful in constructing Tables of
Bessel coefficients ; they are known as recurrence formulae.

To prove the former, differentiate the fundamental expansion of § 21,
namely
1D

= 3 (),

n=-—c

with respect to ¢; we get

1 _ @
121+ 1/ 2 S nem J,(2),
° =~ > -

so that

| 78]

oL+ 1/e) S mdu ()= S i, (2).

n=
If the expression on the left is arranged in powers of ¢ and coefficients of ¢
are equated in the two Laurent series, which are identically equal, it 1s evident
that

3z {Jn——l (2) + Jnia (Z)} =nJn(2),

which is the first of the formulae.

* Throughout the work primes are used to denote the derivate of a function with respect to
its argument. ' : :

+ Differentiations are permissible because (§ 2-11) the resulting series are uniformly convergent.
The equating of coefficients is permissible because Laurent expansions are unique.

W. B. F. 2
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Again, differentiate the fundamental expansion with respect to z; and then

11/ = S mgy (),
so that Le-1 S mdu@)= 3 e )

n=-ow n=-®
By equating coefficients of ¢* on either side of this identity we obtain formula
(2) 1mmediately. '

The results of adding and subtracting (1) and (2) are

(3) 2y (@) +ndy,(2) =2J,-,(2),
(4) 2 (2) —ndp(2) =—2Jp, (2).

These are equivalent to

d 1 —_ N
() @ = (@),
d 1 —_— —Nn

(6) dz {77y (2)} == 27" pya (2).

In the case n=0, (1) is trivial while the other formulae reduce to
< Jo' (2) =~ J1(2).

The formulae (1) and (4) from which the others may be derived were discovered by
Bessel, Berliner Abh. 1824, [1826], pp. 31, 35. The method of proof given here is due to
Schlomilch, Zeitschrift fiir Math. wnd Phys. 11. (1857), p. 138. Schlomilch proved (1) in
this manner, but he obtained (2) by direct differentiation of the series for ./, (2).

A formula which Schlomilch derived (¢bid. p. 143) from (2) is

drd, z
(8) 2 ~—‘7‘(—Z) = X (_)mr O Jn—7'+2m (Z);

dz m=0
where , C,, is a binomial coefficient.

By obvious inductions from (5) and (6), we have

d L m
) (;z) @ Tn @) =22 T (2),
(10) (jz)m{z_n Jn (Z)} = (=" 27" " Sy am (2),

where n 1s any integer and m is any positive integer. The formula (10) is due
to Bessel (ibud. p. 34).
As an example of the results of this section observe that

zJ,(2) =4J:(2) — 2J;(2)

..............................

= 4 sz (=) ndg (2) + (=) 2 oy (2)

n=1

=4 S (D ndm (o),

since zJyx41(2) =0 as V— o0, by § 2'11 (4).
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The expansion thus obtained,
(11) zd,(2)=4 %1 (=)t nday (2),
is useful in the developments of N;;mann’s theory of Bessel functions (§357).

2:13. The differential equation satisfied by J,, (2).
When the formulae § 2:12 (5) and (6) are written in the forms

d d .
C?; {Zan (Z)} = Zan—l (3): CTZ {Zl_nﬁfn—l (2')} = Zlgan (Z):
the result of eliminating J,_, (#) is seen to be
d - d M

& |7 g @) | =)
that is to say

d {Zlh" C?{(%_Z_) + ’IIZ—"cTn (Z) _ — Zl—~an (Z),

dz
and so we have Bessel’s differential equation®

2 d*J, (2) dJ” (Z) 2 _ 92 —
(1) i e (22— n?) J,(2)=0.

The analysis is simplified by using the operator S defined as z (d/d2).

)
\
{
)

Thus the recurrence formulae are -

O+n)J,(2)=2J012), —n+1)Jp 1 (2)=—2J,(2),
and so
—n+ 1Dzt +n)J,(2) =—2J,(2),
that is
27 =) (O +n)J,(2)=—2J,(2),
and the equation
(N —-n*) S, (2) =—22J, (2)

reduces at once to Bessel’s equation.

Corollary. 'The same differential equation is obtained if J/,, ., (¢) is eliminated from the

formulae '
(G+n+1) Jpin (2)= oy (), (3 =n) Jy (2) = — 2Ty 11 (2).

2:2. Bessel's integral for the Bessel coefficients.
We shall now prove that

2

1 ™ .
(1) J(2) = 3?’777'*[0 cos (nf — zsin 0) d8.

This equation was taken by Besselt as the definition of J, (2), and he
derived thge other properties of the functions from this definition.

* Berliner Abh. 1824 [published 1826], p. 34; see also Frullani, Mem. Soc. Ital. (Modena), XVIII.
(1820), p. 504.
T Ibid. pp. 22 and 35.
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It is frequently convenient to modify (1) by bisecting the range of in-
tegration and writing 27 — 6 for 6 in the latter part. This procedure gives

(2) R (z)=3~r f:cos (n8 — z sin 0) d6.
Since the integrand has period 27, the first equation may be transformed
nto :
1 [2rta )
(3) Jn(2) = oy /a cos (n€ — zsin H) do,
where a is any angle.
To prove (1), multiply the fundamental expansion of § 21 (1) by t=* and
integrate* round a contour which encircles the origin once counterclockwise.
We thus get

- m—n—1
271"0‘ M= — 0 277'?: ¢ dt.
The integrals on the right all vanish except the one for which m =n; and

so we obtain the formula
1 (oo be—1/0
® =gy [

Take the contour to be a circle of unit radius and write ¢ = ¢~%, so that 8
may be taken to decrease from 27 + a to a. It 1s thus found that
1 2r+a

(5) I (z).—: ?& et (nf —zsin o) deo,

a

a result given by Hansent in the case a=0.

In this equation take a = — 7, bisect the range of integration and, in the
former part, replace 8 by — 6. This procedure gives

. i [~ . , , .
J”"(Z):Q—Trfo {ez(ne—-zsme)+e——z(729—zsm0)} de’

and equation (2), from which (1) may be deduced, is now obvious.

Various modifications of Bessel’s integral are obtainable by writing
T (2) = 37 j " cos b cos (= sin 0) dO + 71—7 j " sin n6 sin (2 sin 6) d6.
0 0

If @ be replaced by 7 — € in these two integrals, the former changes sign when
n is odd, the latter when n is even, the other being unaffected in each case;
and therefore

Jn(2) = 7—17_ J: sin nd sin (z sin ) d6

(6) (n odd),

2 (¥ . . .
= f sin n0 sin (z sin 6) d0
™Jo

* Term-by-term integration is permitted because the expansion is uniformly convergent on the
contour. It is convenient to use the symbol [P to denote integration round a contour encircling
the point a¢ once counterclockwise.

+ Ermittelung der absoluten Storungen (Gotha, 1843), p. 105.
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Jn(2)= 1 j‘w cos nf cos (z sin 0) d6
(7) i

(n even).

2 [

== jo cos n8 cos (z sin 6) d0

If @ be replaced by 7 — 7 in the latter parts of (6) and (7), it is found that

(8) Jn(2)= 7_?_ (—)-1 JW cos ny sin (2 cos n) dn (n odd),
0
9) I (2) = 7—?_ (=)t (fﬂ cos ny cos (z cos ) dn (n even).
Jo

The last two results are due substantially to Jacobi*.

[Nore. It was shewn by Parseval, Mém. des savans étrangers, 1. (1805), pp. 639—648,
that
4

6 T
;42_22.22.62_*"":}}/0 cos (a sin &) d,
and so, in the special case in which #=0, (2) will be described as Parseval’s integral. 1t
will be seen in § 23 that two integral representations of ./, (z), namely Bessel’s integral
and Poisson’s integral become identical when n=0, so a special name for this case is
Jjustified.]

The reader will find it interesting to obtain (after Bessel) the formulae § 212 (1) and
§ 212 (4) from Bessel’s integral.

2
a
1=3+3

221, Modifications of Parseval’s integral.

Two formulae involving definite integrals which are closely connected with Parseval’s
integral formula are worth notice. The first, namely

1 Ty (2 — 3/2)}=}r f " v 089 cos (s 3in 6) dO,

is due to Bessel +. The simplest method of proving it is to write the expression on the
right in the form
1
27
expand in powers of ¥ cos 841z sin § and use the formulae

fn— ey cos O+izsind g,
-

w o ™ Lo AT (n+%) T (%)
. - 2n + 1 _ 2n — 2 2/ 2 _ ,2\n .
[_ w (y cos 8+izsin 6) d8=0, f 1‘_ (y cos 41z sin 8)2* db = Tt (g% =22

the formula then follows without difficulty.

The other definite integral, due to Catalan ], namely

(2) Jy (20 /2)= L fﬂ e1+2)c08 8 cos {(1 — 2) sin 6} d0,
0

v

is a special case of (1) obtained by substituting 1 —z and 142 for z and y respectively.

* Journal fiir Math. xv. (1886), pp. 12—18. [Ges. Math. Werke, vi. (1891), pp. 100—102]; the
integrals actually given by Jacobi had limits 0 and = with factors 1/= replacing the factors 2/mr.
See also Anger, Neueste Schriften der Naturf. Ges. in Danzig, v. (1855), p. 1, and Cauchy,
‘Comptes Rendus, xxxvii. (1854), pp. 910—913.

+ Berliner Abh., 1824 [published 1826], p. 837. See also Anger, Neueste Schriften der Naturf.
Ges. in Danzig, v. (1855), p. 10, and Lommel, Zeitschrift fiir Math, und Phys. xv. (1870), p. 151.

+ Bulletin de I’dcad. R. de Belgique, (2) xL1. (1876), p. 938.
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Catalan’s integral may be established independently by using the formula

1 1 (0+)

m— y t—m—1 gt ¢
m!'! 2wt et
so that
, w Zm 1 © oM " (0+)
Jo (20 J2)= 3= . il t—m—1lgtds
0(2E4/2) m=o (M !>2 2w 'm?——o m ! j
1 O+) ( dt 1 ™
= ex — P ¢t 4 ze—10
2 P t+ T 2n /_T oxp {etf +ze =0} f,

by taking the contour to be a unit circle ; the result then follows by bisecting the range of
integration.
2:22. Jacobr’s expansions vn series of Bessel coefficients.

Two series, which are closely connected with Bessel’s integral, were dis-
covered by Jacobi*. The simplest method of obtaining them is to write
t = + ¢ in the fundamental expansion § 21 (3). We thus get

etizsind JO (Z) + E (i 1)11 {enée + (_‘)77, e~ nz'G}Jn (Z)
=J,(2)+2 2 Son (2)cos 2n6 + 2¢ 2 Jona (2)sin (2n + 1) 49
On adding and subtracting the two results which are combined in this formula,
we find
(1) cos (z8in 0) = Jy () + 2 S Jon(2) cos 2a6,
n=1

(2) sin (zsin 0) = 23 Jf,n+1(z)51n(2n+1)6’

n=0

Write 47 - n for 6, and we get
(3) cos(zcosm)=dJ,(2) +2 2 (=) Jon (2) cos 2nn,

=1

(4) sin (zcos ) =

I8

( )n 2n-+1 (Z) COs (2’)’1/ + 1) 7.

ki

The results (3) and (4) were given by Jacobi, while the others were obtained later by

Anger+t. Jacobi’s procedure was to expand cos (zcosy) and sin (2 cos p) into a series of

cosines of multiples of 7, and use Fourier’s rule to obtain the coefficients in the form of
integrals which are seen to be associated with Bessel’s integrals.

In view of the fact that the first terms in (1) and (3) are not formed
according to the same law as the other terms, it is convenient to introduce
Neumann’'s factwj €,, which is defined to be equal to 2 when 7 is not zero,
and to be equal to 1 when n is zero. The employment of this factor, which

* Jowrnal fitr Math. xv. (18386), p. 12. [Ges. Math. Werke, vi. (1891), p. 101.]
+ Neueste Schriften der Naturf. Ges. in Danzig, v. (1855), p. 2. ‘
1 Neumann, Theorie der Bessel’schen Functionen (Leipzig, 1867), p. 7.



2-22] THE BESSEL COEFFICIENTS 23

will be of frequent occurrence in the sequel, enables us to write (1) and (2) in
the compact forms:

(5) cos (zsin €)= § €an Jan (2) cos 209,
n=0

(6) sin (zsin @)= 3 ey Jonss (2) sin (20 + 1) 6.
n=0
If we put 8 =0 in (5), we find
(7) 1= 3 €an Jon (Z)
n=0

If we differentiate (5) and (6) any number of times before putting € =0, we
obtain expressions for various polynomials as series of Bessel coefficients. We
shall, however, use a slightly different method subsequently (§ 2:7) to prove
that 2 is expansible into a series of Bessel coefficients when m is any positive
integer. It is then obvious that any polynomial is thus expansible. This is a
special case of an expansion theorem, due to Neumann, which will be investi-
gated in Chapter XVI.

For the present, we will merely notice that, if (6) be differentiated once
before 6 is put equal to 0, there results

(8) = §+ @1+ 1) Sonns (2),

while, if 8 be put equal to 3= after two diff'efentiations of (5) and (6), then
9 zsinz=2{22J,(2) — 42 J,(2) + 62T (2) — ...},
(10) zeosz=2{12J,(2) =32 J;(2) + 52J,(2) — ...}

These results are due to Lommel *.

Nore. The expression exp {4z (¢— 1/¢)} introduced in § 2-1 is not a generating function
in the strict sense. The generating functiont associated with e,J, (2) is = €,7./, (2).
n=0
If this expression be called S, by using the recurrence formula § 2-12 (2), we have
as 1 1 1 1
If we solve this differential equation we get

2z
an S ghe (t—l/t)_{_% <t+ }t> e (t=1/) /Oe—-%z(t—llt) g, (2) dz.

A result equivalent to this was given by Brenke, Bull. American Math. Soc. Xvi. (1910),
pp. 225—230.

* Studien tiber die Besselschen Functionen (Leipzig, 1868), p. 41.
+ It will be seen in Chapter xvi. that this is a form of “ Lommel’s function of two variables.”
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2:3. Poisson’s integral for the Bessel coefficients.

Shortly before the appearance of Bessel’s memoir on planetary perturbations,
Poisson had published an important work on the Conduction of Heat*, in the
course of which he investigated integrals of the types+

fﬂ cos (z cos @) sin® ™ 6d0, f"’ cos (2 cos 8) sin® 0d6,
0 0

where n is a positive integer or zero. He proved that these integrals are
solutions of certain differential equations} and gave the investigation, which
has already been reproduced in § 1'6, to determine an approximation to the
latter integral when z is large and positive, in the special case n = 0.

We shall now prove that

(1) Jn(z)=1 35 Z:Qn 1)Wj‘"cos(20059)sin2”9d9
s PN — 0

~_ Gar ]” cos (z cos 6) sin® 0d0;

P+ 13 /o ’
and, in view of the importance of Poisson’s researches, it seems appropriate to
describe the expressions on the right§ as Poisson’s integrals for J,(z). In the
case n= 0, Poisson’s integral reduces to Parseval’s integral (§ 2:2).

It is easy to prove that the expressions under consideration are equal to

J, (2); for, if we expand the integrand in powers of z and then integrate
term-by-term||, we have

1 / " cos (2 cos @) sin® 0d0 = 1 S (——Wz—mfﬂ cos2 @ sin** 0 d0
0

T ) m =0 (2m)! Jo
. § —)ymzrm 1.3.5...(2rn—1).1.3.5...(2m—1)
T mmo (2m)! 2.4.6...2n+ 2m)

. _ oo‘ (__)m, ZQm
=1.8.5...2n—1) m2:02"+2mm!(n+ !’
_and the result is obvious.

* Jowrnal de UEcole R. Polytechnique, x11. (cahier 19), (1823), pp. 249—403.

t Ibid. p. 293, et seq.; p. 340, ct seq. Integrals equivalent to them had previously been
examined by Euler, Inst. Calc. Int. 11. (Petersburg, 1769), Ch. x. § 1036, but Poisson’s forms are
more elegant, and his study of them is more systematic. See also § 3-3.

1 E.g. on p. 300, he proved that, if

R=qpntl /ﬁ cos (rp cos w) sin?**! w dw,
0
then R satisfies the differential equation
AR n(n+1) , 5
oE - @ R=o R

§ Nielsen, Handbuch der Theorie der Cylinderfunktionen (Leipzig, 1904), p. 51, calls them

Bessel’s second integral, but the above nomenclature seems preferable.

[| The series to be integrated is obviously uniformly convergent; the procedure adopted is due
to Poisson, ibid. pp. 814, 340.
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Poisson also observed* that
j " 7080 sinm 06 — f " cos (2 cos 0) sin™ 0.d6;
0 0
this is evident when we consider the arithmetic mean of the integral on the
left and the integral derived from it by replacing € by = — 6.
We thus get

1\
— 7'2) " 12 COS 0 o1
(2) J”<Z)_I‘(n+—§~)[‘(%) L sin?” 6d0.
A slight modification of this formula, namely
1\ 1
(3) Jn(2) = ,,,AL%NZ,_,)”,, ¢@t (1 — )% dt,

has suggested important developments (cf. § 6'1) in the theory of Bessel
functions.

It should also be noticed that

4) fﬂ cos (zcos 0) sin>» 0d6 = 2 fﬂ cos (z cos @) sin® 6d 0
0

0

=2f
0

and each of these expressions gives rise to a modified form of Poisson’s integral.

e

" cos (2 sin @) cos®™ 0d0,

An interesting application of Bessel’s and Poisson’s integrals was obtained
by Lommelt who multiplied the formula

Z dn? {4n2 — 22} ... {4m® — (2m — 2)?}
— N _\ym
0os 2n6 = S ) (2m)!
by cos (z cos 0) and integrated. It thus follows that
n 2 2 2 - —
(5) T ()= (=) 20 (—ym dn® {4n>— 27} ... {402 — (2m — 2)%} J,, (z)

= 2m ! zm

sin?™ g

2:31. Bessel’s vnvestigation of Povsson’s integral.
The proof, that J, (z)is equal to Poisson’s integral, which was given by
Bessel}, is somewhat elaborate; it is substantially as follows :

It is seen on differentiation that

o% Lcos 0 sin?** @ cos (z cos 0) — ~hi~ sin®*1 @ sin (z cos 9)]

Z2
2n+1

= {(Qn —1)sin®>*2 0 — 2nsin* 6 + sin2nt? B] cos (z cos 0),

* Poigsson actually made the statement (p. 298) concerning the integral which contains
sin2v+1 @ ; but, as he points out on p. 340, odd powers may be replaced by even powers throughout
his analysis.

+ Studien iiber die Bessel'schen Functionen (Leipzig, 1868), p. 30.

+ Berliner Abh. 1824 [published 1826], pp. 36—37. Jacobi, Journal fiir Math. xv. (1836), p. 13,

[Ges. Math. Werke, v1. (1891), p. 102], when giving his proof (§ 2:32) of Poisson’s integral formula,
objected to the artificial character of Bessel’s demonstration.
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and hence, on integration, when n >1,

(2n — 1)_[1r cos (z cos 6) sin? 2 0df — 2n /” cos (z cos ) sin* 6d6
0 0

+ ﬂ%i]; cos (z cos 0) sin*+2 6d6d = 0.
If now we write
(F2)" [
W@)]
the last formula shews that
2 (n — 1) — 20 (n) + 2¢p (n + 1) = 0,

so that ¢ (n) and J, (2) satisty the same recurrence formula.

" cos (z cos 0) sin® 0dO = ¢ (n),
0

But, by using Bessel’s integral, it is evident that
¢ (O) = JO (Z):

z (" : L, o lfmdf. .
o (1)= ;JO cos (z cos @) sin? 0d0 = ;rfo a0 {sm (z cos 6)} 513 0do

=2 ["sin (2 cos 6) cos 88 = — J,' () = J, (2),

Jo
and so, by induction from the recurrence formula, we have

4) (n> = Jn <Z)>
whenn=20,1, 2, 3, ....

2:32. Jacobi's investigation of Poisson’s integral.

The problem of the direct transformation of Poisson’s integral into Bessel’s
integral was successfully attacked by Jacobi®; this method necessitates the use
of Jacobi’s transformation formula

1 gin2n1 1.3.5...(2n—1) .
d_-&_n-_e J— (___)n—l ng ‘_,éA_,,(_ﬁ . 1) sin 7 9’
dM7z——1 n
where i = cos 8. We shall assume this formula for the moment, and, since no
simple direct proof of it seems to have been previously published, we shall
give an account of various proofs in §§ 2:321—2-323.

If we observe that the first n — 1 derivates of (1 — u2)”~% with respect to

w, vanish when p = + 1, it 1s evident that, by n partial integrations, we have

Nk 1
z" j cos (z cos 0) sin* 0d@ = z» f cos (zp). (1 — pw?)» ¥ dp
-1

0

r1 dn (1 - qu)n—%

= ()" | cos (zu — L nm) dpn du

* Journal fiir Math. xv. (1836), pp. 12-—13. [Ges. Math. Werke, vi. (1891), pp. 101—102.] See
also Jowrnal de Math. 1. (1836), pp. 195—196. .
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If we now use Jacobi’s formula, this becomes
1.3.5...2rn—1) ! d sin né
- cos (zu — nm) —

n -1 du
rm

=1.3.5...2n—-1) J cos (z cos 0 — Lnr) cos nddo
0

du

=1.3.5...2n—1)m7J, (2),
by Jacobi’s modification of § 22 (8) and (9), since cos (z cos § — Fnr) is equal
to (— )" cos (z cos @) or (=) =D sin (z cos 0) according as n is even or odd; and
this establishes the transformation.

2:321. Proofs of Jacobi's transformation.

Jacobi’s proof of the transformation formula used in § 2:32 consisted in deriving it
as a special case of a formula due to Lacroix*; but the proof which Lacroix gave of
his formula is open to objection in that it involves the use of infinite series to obtain
a result of an elementary character. A proof, based on the theory of linear differential
equations, was discovered by Liouville, Journal de Math. vi. (1841), pp. 69—73; this
proof will be given in § 2:322. Two years after Liouville, an interesting symbolic proof
was published by Boole, Camb. Math. Jowrnal, 111. (1843), pp. 216—224. An elementary
proof by induction was given by Grunert, drchiv der Math. und Phys. 1v. (1844),
109. This proof consists in shewing that, if
dn 1(1 )n

d 12—

"
n T (7?’ - 1) / Oy, d/“)
1

and.that (—)*~11.3.5...(2n—1) (sin nd)/n satisfies the same recurrence formula.

n = ’

then 6n+1=(1——p.

Other proofs of this character have been given by Todhunter, Differential Calculus
(London 1871), Ch. xxvir, and Crawfordt, Proc. Ldinburgh Math. Soc. Xx. (1902,
pp- 11—15, but all these proofs involve complicated algebra.

A proof depending on the use of contour integration is due to Schlifli, dnn. di Mat. (2)
v. (1873), pp. 201—202. The contour integrals are of the type used in establishing
Lagrange’s expansion; and in § 2-323 we shall give the modification of Schlidfli’s proof,
in which the use of contour integrals is replaced by a use of Lagrange’s expansion.

To prove Jacobi’s formula, differentiate by Leibniz’ theorem, thus:

B ( )”_1% anr—1 n—-% n—3%
1.3 .. (2n ~ 1)d = 1{<1 ®) (IT+p) ¥

n n—1

A n—4) <n—i> (=) ey n—m=}
= 772 _"L_O( 2 L_ (7 {2n w7} 1+ 2z
2n_177l=0< ) n—1 é (m—l—‘) ( H) ( V’)
n=-1
= 2 ( - )m 277,02m +1 (Sln %8)2m +t (COS §6>2‘L"’ =1
m=0
=sin (2n x 6),
and this is the transformation required I.

* Traité du Cale. Diff- 1. (Paris, 1810, 2nd edition), pp. 182—183. See also a note written by
Catalan 1n 1868, Mém. de la Soc. R. des Sci. de Lizge, (2) x11. (1885); pp. 812—316.

+ Crawford attributes the formula to Rodrigues, possibly in consequence of an incorrect state-
ment by Frenet, Recueil d’Exercices (Paris, 1866), p. 93, that it is given in Rodrigues’ dissertation,
Corresp. sur UEcole R. Polytechnique, 111. (1814—1816), pp. 361—385.

T I owe this proof to Mr C. T. Preece. .
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2:322. Liowwille's proof of Jacob?’s transformation.

The proof given by Liouville of Jacobi’s formula is as follows :

Let y=(1 —u2)»~% and let D be written for d/du; then obviously
(1= p?) Dy +(2n—1) uy=0.

Differentiate this equation 7 times ; and then

(1 —f"'2> ])’L+1y~p.D”y+722D"_ly=O_:

2
but (1—p?) D?—puD= sinH%(ﬁg a%’)_*-wtec%:c%?’
d2
so that <0l—9_2 + 9z2> Dr=1ly=0.
Hence Dr=1ly=4 sinnf+ B cos nb,

where 4 and B are constants; since D”~1y is obviously an odd function of 8, B is zero.
To determine 4 compare the coefficients of 4 in the expansions of D*~1y and 4 sinz8 in
ascending powers of . The term involving 8 in D"~ 1y is easily seen to be

d n—1
— 2n—1 —( —1/(< - _
<~6d6> 2 =(—)»"1(2nrn-1)(2n 3)...:.3.1.6.
so that nd=(-)"11.3.5...(2nrn-1),
and thence we have the result, namely

d”‘lsi}l‘?n“lﬁ_( yr-1 1.3.5...(2n—1)
dp'n—l

sin 20.

n

2-323. Schlifl’s proof of Jacobi’s transformation.
We first recall Lagrange’s expansion, which is that, if 2= +Af (2), then

b @ =b )+ 3 T T WP ¢ )

so that G- EE R I !
subject to the usual conditions of convergence,
Now take FE=-510-=22), ¢ (@=J(1-22),

it being supposed that ¢’ (z) reduces to /(1 — u?), i.e. to sin § when 2 —-0.
The singularities of z gua function of % are at z=¢+% ; and so, when 6 is real, the ex-
pansion of /(1 —2%) in powers of % is convergent when both |4 | and [z| are less than unity.

Now z={1 = (1 =2uh 7%} /A,

— he—OVE — (1 — Oyt
8_z=;‘, J(l_zz)=(1 he™ ) — (1 —he)>
o A (1 —2uph+h?) At

. (_)n-l dn 1s1n2" 16
Hence it follows that 2T, (1)1 T

pansion of /(1 —2%). (Cz/0u) in powers of A. But it is evident that

and so

is the coefficient of A*—1 in the ex-

ON—% /1 7,—i0\~% w . nig __ ,—nib
J<1_22).8i:(1—ﬁe ) €1 he™ %) _3 1.3.5...(2n 1).6 ¢ 1,

O iz n=1 2.4.6...(2n) 7
and a consideration of the coefficient of 2%~ !in the last expression establishes the truth of

Jacobi’s formula.

* Cf, Modern Analysis, § 7-32.
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2:33. An applicatron of Jacobv's transformation.

The formal expansion

;m V @« o©
’ f (cos &) cos nxdx = J S (=)™, f T2 (cos ) du,
Jo 0 m=0

in which a,, is the coefficient of ¢"*** in the expansion of J, (¢)/J,(¢) in as-
cending powers of ¢, has been studied by Jacobi*. To establish it, integrate
the expression on the left n times by parts; it transforms (§ 2:32) into

1 " .
(n) 27 o
1.3.5...(2n—1)_[0f (cos @) sz dz,

and, when sin®*"«z is replaced by a series of cosines of multiples of «, this becomes

1 N 2n 2n(n—1)
(n) — x =N 77
2.4.6...(2'n),[0f (cos @) [1 n+16082 (n—{—l)(fn+2)cos‘4a; } da.

We now integrate f ™ (cosx) cos 2«, f™ (cos «)cos 4z, ... by parts, and by
continual repetitions of this process, we evidently arrive at a formal expansion
of the type stated. When f(cos«) is a polynomial in cosz, the process
obviously terminates and the transformation is certainly valid.

To determine the values of the coefficients a,, in the expansion

f J (cos z)cos nxdx = 2 (=)Mo 02 (cos @) do
0 0 m=0
thus obtained, write

F(cos @) = (—)i" cos (¢ cos ), (=)™ sin (¢ cos ),

according as n is even or odd, and we deduce from § 2:2 (8) and (9) that
S (t) = 2_\'0 (=) et {(—) S (8)}
so that «,, has the value stated.

It has been stated that the expansion is valid when f(cos ) is a poly-
nomial in cosx; it can, however, be established when f(cos #) is merely re-
stricted to be an integral function of cosx, say

3

n=0 n!

b, cos™ x

b

provided that lim &/ | b, | 1s less than the smallest positive root of the equation

T —>=w
Jo (t) = 0; the investigation of this will not be given since it seems to be of
no practical importance.

* Journal fiir Math. xv. (1836), pp. 26—26 [Ges. Math. Werke, vi. {1891), pp. 117—118]. See
also Jacobi, dstr. Nach. xxvii., (1849), col. 94 [Ges. Math., Werke, vi1. (1891), p. 174].
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24. The addition formula for the Bessel coefficients.

The Bessel coefficients possess an addition formula by which J, (y + 2)
may be expressed in terms of Bessel coefficients of y and z. This formula,
which was first given by Neumann* and Lommel+, is

(1) Jn (y—%-Z) = §4 me (y) Jn——m (Z>

m=--

The simplest way of proving this result is from the formula § 22 (4), which
gives
J — 1 [+ {—n1 S+ (—1/t) dt
2 =gy | e

1 " (0+) @ ) - ,
=5 | E g (e ds
< M= —w
1 ©

o)
=5 I (¥) Jf gm—n—1 ghz(t=1/) (¢

27 = - oo

= § Jm, (,?/) Jn——m (‘Z)’

m= -
on changing the order of summation and integration in the third line of the
analysis; and this is the result to be established. ‘
Numerous generalisations of this expansion will be given in Chapter XI.

2'5. Hansen’s series of squares and products of Bessel coefficients.

Special cases of Neumann’s addition formula were given by Hansen} as
early as 1843. The first system of formulae is obtainable by squaring the
fundamental expansion § 2°1 (1), so that

=1l _{ 3w (z)H S g, (z)}.

r=-c0 M=~
By expressing the product on the right as a Laurent series in ¢, and equating
the coefficient of #* in the result to the coefficient of ¢ in the Laurent ex-
pansion of the expression on the left, we find that

Jn(22) = S T (2) T (2).
In particular, taking n =0, we have§

[ea)

@) T2 = JE () +2 2 (<) S = F (<) e A ().

r=

* Theorie der Bessel'schen Functionen (Leipzig, 1867), p. 40.

+ Studien tiber die Bessel’schen Functionen (Leipzig, 1868), pp. 26—27 ; see also Schlifli, Math.
Ann. 111, (1871), pp. 135—137.

+ Ermittelung der absoluten Storungen (Gotha, 1843), p. 107 et seq. Hansen did not give (4),
and he gave only the special case of (2) in which n=1. The more general formulae are due to
Lommel, Studien iiber die Bessel’schen Functionen (Leipzig, 1868), p. 33.

§ For brevity, J,2(z) is written in place of {J,, (#)}%
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From the general formula we find that
2) Jn(22) = 2 T () Jur (2) + 2 2 (=) T1 (&) Tt (2),
r=0 r=1

when the Bessel coefficients of negative order are removed by using § 2°1 (2).

Similarly, since
{ 2 rr @l 3 (—)thJm(z)}
= exp {32 (¢ = 1/0)} exp {F2 (= ¢ + 1/1)}

=1,
it follows that :
(3) J@) +2 2 J2 (o) =1,
r=1
2n ['s]
(4) 2 (=) I (2) Jon—r (2) + 2 21 Sp (2) Jansr (2) =0,
7=0 r=

Equation (4) is derived by considering the coefficient of ¢ in the Laurent
expansion ; the result of considering the coefficient of ¢#%+1 is nugatory.

A very important consequence of (3), namely that, when « is real,
(5) PAGIES SN AT IS Vv S
where =1, 2, 3, ..., was noticed by Hansen.

2:6. Neumann's integral for J,2(2).
It is evident from §2-2 (5) that

Jn (Z) — :21; {” ei(na—zsin 0) de’

o—m

and so

J2(2) =

1 r T T
‘ f eni(@+d) e~—iz(sin6+siu¢>) dgdd)
ke -

42 | _

To reduce this double integral to a single integral take new variables defined
by the equations

0—¢=2x, 0+¢=2y,
so that

It follows that
JnQ (Z) — 2_}75 jj @2l —2izsinycosy dX d\#’

where the field of integration is the square for which
—TSxy—V¥<mT, —m<x+Py<T
Since the integrand is unaffected if both x and 4 are increased by =, or if y

is increased by 7 while ¥ is simultaneously decreased by 7, the field of inte-
gration may evidently be taken to be the rectangle for which

O<sx<sm, —m<¥<m.
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Hence
1

Jn2 (Z) — 5 /;T fi e2niy—2izsin y cos x d.\b dX

1 ™
= fo Jon (22 cos y) diy.

If we replace ¢ by 37 F 6, according as  1s acute or obtuse, we obtain the
result

(1) T2 (2) =2 [ 7 Jun (22 sin 0) d6.
™o
This formula may obviously be written in the form
2) T2 (5) = }T f " Jon (22 sin 6) d6,
0

which is the result actually given by Neumann®*. It was derived by him by
some elaborate transformations from the addition-theorem which will be given
in §11'2. The proof which has just been given is suggested by the proof of
that addition-theorem which was published by Graf and Gubler+.

We obtain a different form of the integral if we perform the integration
with respect to y instead of with respect to 4». This procedure gives

T2 @) =g [ T (20 sin ) v ay,
so that

3) Jn?(2) = 2~1— [:r Jo (22 sin ) cos. 2nr drfr
1

w .

= r Jy (22 sin ) cos 2nr drfr,
™ Jo

a result which Schlafli] attributed to Neumann.

2:61. Neumann's series for J,2(z).

By taking the formula §26 (1), expanding the Bessel coefficient on the
right in powers of z and then integrating term-by-term, Neumann§ shewed
that

1 T (_)m Zﬁn+2m Sin 2n+2m 9
—_ = by

7)o moo m!(2n + m)!

de

S (2)

§ (_)m (2n + 2m) I‘(%Z)mt—mm
m=0 mMm!(2n+ m)! {(n+ m)’}‘l .

* Theorie der Bessel’schen Functionen (Leipzig, 1867), p. 70.

+ Hinleitung in die Theorie der Bessel'schen Funktionen, 11. (Bern, 1900), pp. 81—85.

+ The formula is an immediate consequence of equation 16 on p. 69 of Neumann’s treatise.

§ Math. Ann. 1. (1871), p. 603, The memoir, in which this result was given, was first pub-
lished in the Leipziger Berichte, xx1. (1869), pp. 221—256.



2-61, 2'7] THE BESSEL COEFFICIENTS 33

This result was written by Neumann in the form

0 Jﬁ(z«):“?zf’f[u Toe2 | 7, _]

(n !y 12n+1) 1.2.2n+1)2n+ 2)
where
[, 2n + 1
2=2m:
T_(2n+1)(27l+3)
(2) ] T (2n+2) (2n + 4)°

2n + 1) (2n + 3) (2n + 5)
(2n + 2) (2n + 4) (2n + 6)°

T, =

This expansion is a special case of a more general expansion (due to
Schlafli) for the product of any two Bessel functions as a series of powers with
comparatively simple coefficients (§ 5:41).

2:7. Schiomilelh’s expansion of 2™ in a series of Bessel coefficients.

We shall now obtain the result which was foreshadowed in §222 con-
cerning the expansibility of 2™ in a series of Bessel coefficients, where m is any
positive integer. The result for m = 0 has already been given in §2-22 (7).

In the results §222 (1) and (2) substitute for cos 2n8 and sin (2n + 1)@
their expansions in powers of sin?d. These expansions are*

cos 2n6 = éo (—) (n(f 'sl‘)f@ )3

2n+ 1).(n + s)!
(n—8)!(2s+ 1)!

(2 sin 8)%,

sin(?n—l—l)ﬁ—% g( )

(2 sin @)+,

The results of substitution are
{ cos (z sin 0) = J, (2) + 2 n§1 Jon (2) { 2 (=) 73(&3@%?(2 ) “(2 sin 6)23}
4. [ (—y 2n+1).(n+s)!
( P n—8)l(2s + 1)!

If we rearrange the series on the right as power series in sin 6 (assuming
that 1t is permissible to do so), we have

- )
Sin (Z Sin 9) = z J2n+1 (Z) (2 Sin 6)28+1}L' '
n=0

cos(zsin 6):«{J0 (2)+2 % Jon (Z)} + S% i ((iss;n 9)28{4582%.((;:1-2)—1 L Jon (Z)}>

2 (-=)(2sin )@+ (2 (2n+1).(n+$)! ]
(sm(zsme)= SEO ((2:_1:11)! {nz " o= s)n! ) Jonta (z))g .

=s

* Cf. Hobson, Plane Trigonometry (1918), §§ 80, 82.
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If we expand the left-hand sides in powers of sin @ and equate coefficients,
we find that

1=J,(2)+2 % Jon (2),
{ G )Qs—n_: 2n. 81*;1 DY o), (s=1,28,...)
(heyhi= = <2”+(1> gﬁ*@’gﬁm @ (=0,1,2..)

The first of these is the result already obtained; the others may be com-
bined into the single formula

—~1)!
) (3 2y — 2—:0 (m + 2n). i?ln +n - 1)! T (2). (m=1,2,3,...)
The particular cases of (1) for which m =1, 2, 3, were given by Schlomilch *
He also shewed how to obtain the general formula which was given explicitly
some years later by Neumannt and Lommel}.

The rearrangement of the double series now needs justification; the rearrangement is
permissible if we can establish the absolute convergence of the double series.
If we make use of the inequalities

(n+s)!

1z 2n+1
[ Son+1(2) | gw‘ exp (1|2, @ <L, (m>s)

2n+1)!
in connexion with the series for sin (z sin §) we see that

© |2sin g2+l © 2n4+1).(n+s)!
=
s=0 (284+1)! ;= n—8)!

@ 2q1n6[2s+1 © ‘ Z|n+ 9
|‘f2n+1<’2">|S 50 (284—1)! IZ?S (n )v ehp <Il7')

284+1
lemf)I?” |4z 2+l exp (]2

T @s+D)!
= sinh (|zsin 8|) exp (3|2 |%),

and so the series of moduli is convergent. The series for cos (zsin ) may be treated in
a similar manner.

The somewhat elaborate analysis which has just been given is avoided in
Lommel’s proof by induction, but this proof suffers from the fact that it is
supposed that the form of the expansion is known and merely needs verifica-
tion. If, following Lommel, we assume that

(1oym — 2 (m + 2n). (m+n—-1)'
32" = 1 Singan (2),
=0 n:
* Zeitschrift filr Math. und Phys. 11. (1857), pp. 140—141.
+ Theorie der Bessel'schen Functionen (Leipzig, 1867), p. 38.
+ Studien iiber die Bessel'schen Functionen (Leipzig, 1868), pp. 356—86. Lommel’s investigation
is given later in this section.
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[which has been proved in §2:22 (8) in the special case m = 1], we have

§ (m+2n).(m+n—

(%Z)"H'I —
) n=0 n!

1)!
M 12 Tien (2)

® ! —1)!
=1z.m!J,(2) +n§=)1 {(m;—'n) + (m(:f i ) } 22 Jpion (2)

2 (m+n)!
Eo n!

{52 Jonsan (2) + 32 Jonionse (2)}

7

2 (m+142n0). (m+n)!

= o nl !]'md—1+2n (Z)

Since (m + 1) Sy 0n (2)/n!— 0 as n — oo, the rearrangement in the third
line of the analysis is permissible. It is obvious from this result that the in-
duction holds for m =2, 8, 4, ....

An extremely elegant proof of the expansion, due to A. C. Dixon¥*, is as follows :—

Let ¢ be a complex variable and let % be defined by the equation u=—%t?~,, so that when

, 1
¢t describes a small circuit round the origin (inside the circle | ¢|=1), » does the same.

We then have
(0+) .
(%ZWZWJ f wm~ 1 exp (z/u) du
-

m ! (0+) 1 dum
= gty [ o -1 - 110 & e

©0+) o . —1
:i. exp {—%2(t—-1/¢)} = (m+2n). Gntn—1)
2w n=0

1
Tpmt2n—1 gy
%!

_ 3 (m+42n). (m+n—
n=0 n!

n
) Jm+2n (Z>a

when we calculate the sum of the residues at the origin for the last integral; the inter-

change of the order of summation and integration is permitted because the series converges
uniformly on the contour; and the required result is obtained.

. 1 dum™

[NOTE. When m is zero, — adadi

m dt

has to be replaced by d 1;? v ]

271, Schlomileh’s expansions of the type SnPJy, (z).

The formulae

< 2 pew)
(1) CRCOLEOES Woad
n=1 m=0
S 2 plep+1)
(@) 2 @b 1Pty ()= 3 POIE) e,

in which p is any positive integer [zero included in (2) but not in (1)] and £2? ) is a numeri-

cal coefficient, are evidently very closely connected with the results of § 27. The formulae

* Messenger, xxx11, (1908), p. 8; a proof on the same lines for the case m=1 had been pre-
viously given by Kapteyn, Nieuw Archief voor Wiskunde, xx. (1893), p. 120.

3—2
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were obtained by Schlomilch, Zeitschrift fiir Math. und Phys. 11. (1857), p. 141, and he
gave, as the value of Pii),
<gm (Yo C (m —2k)P
; ( (= ) G (i
®) A
k=0 AR
where ,,,C; is a binomial coefficient and the last term of the summation is that for which %
is $m — 1 or 3 (m—1). To prove the first formula, take the equation § 2-22 (1), differentiate
2p times with respect to 6, and then make 8 equal to zero. It is thus found that

2 d? cos (z sin 0) dw  © (—Ymmginmg
- 2 = —_— — > /7 T T
2( )pni@n) " on (2) dgw _e=0 A6 m2=0 (2m) ! o=0"

The terms of the series for which m > p, when expanded in ascending powers of 4,
contain no term in 8%, and so it is sufficient to evaluate

in g g — )m Z2m Sh}2m 9 _ g ( — )m z2m 2m ep {( — )k 2m0k el2m— 2k)i6}]
Ao .~ (2m) ! meo  (2m)!  jeo| 4O (24)2m 90
%2>2m 2m

m=0 (27)7’) ! 7{:30 (_ )k ZmOk (QHL - 216)219

= —)P

D

(2p)

—2(=)p 3 2m PP
m=0

since terms equidistant from the beginning and the end of the summation with respect to
k are equal. The truth of equation (1) is now evident, and equation (2) is proved in a
similar manner from § 2-22 (2).

The reader will easily establish the following special cases, which were stated by
Schlomileh :
13, (2)+ 8% g () 455 T (2) oo =} (24 29),
(4) {223 (2)+ 42 Jy (2)+ 62 J5 (2)+... =322,
12.83.4J5(2)4+4.5.6J5(2)+6.7.8J;(2)+... =12

2:72. Neumann’s expansion of 2°™ as a series of squares of Bessel coefficients.

From Schlémileh’s expansion (§ 2:7) of 2™ as a series of Bessel coefficients
of even order, it is easy to derive an expansion of z2™ as a series of squares of
Bessel coefficients, by using Neumann’s integral given in § 2°6.

Thus, if we take the expansion

2m +2n).(2m +n—1)!

(zsin @ym= X ( 1 Jomren (22 810 ),
n=0 n:
and integrate with respect to 6, we find that
21 o @ D —
2" ["sinmgdo= $ P2 Cmin—Di g, o
™ Jo n=0 n.

so that (when m > 0)

(m! & (2m+2n).2m+n—

1) Q=g 2 @ D! o (2).
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This result was given by Neumann*. An alternative form 1is

; om N 2 I'(n+m) .
(2) Gaym= ((277;1) ! ﬁmm"” r (nf 'm?ill— l)Jn <Z)’

37

and this is true when m =0, for it then reduces to Hansen’s formula of § 2-5.

As special cases, we have

0
]
'
~
g
(&)
—~
N
s
3
no
I
9]
133
~—
~
o
TN
N
\\:/

(3) |#=571,
2

............................................................

If we differentiate (1), use § 2°12 (2) and then rearrange, it is readily found that

ml{m—=1) 2 (20 —1). (2 - 2!
(4) %z)%n_l:n (m—1)! gzﬁ@ﬂ-zn . 2m+n—2)

-1 3 'l T sn=1 (&) Smsn (),

an expansion whose existence was indicated by Neumann.

* Leipziger Berichte, xx1. (1869), p. 226. [Math. Ann. 111. {1871), p. 585.]



CHAPTER 111
BESSEL FUNCTIONS

3:1. The generalisation of Bessel's differential equation.

The Bessel coefficients, which were discussed in Chapter 11, are functions
of two variables, z and n, of which z is unrestricted but n has hitherto been
required to be an integer. We shall now generalise these functions so as to
have functions of two unrestricted (complex) variables.

This generalisation was etfected by Lommel *, whose definition of a Bessel
JFunction was effected by a generalisation of Poisson’s integral ; in the course
of his analysis he shewed that the function, so defined, is a solution of the
linear differential equation which is to be discussed in this section. Lommel’s
definition of the Bessel function J, (¢) of argument z and order » was*

J, (2) = 1?(7&%%—(;) [ ;rcos (2 cos §) sin> 046,
and the integral on the right is convergent for general complex values of v
for which R (v) exceeds —1. Lommel apparently contemplated only real
values of v, the extension to complex values being effected by Hankel];
functions of order less than — % were defined by Lommel by means of an ex-
tension of the recurrence formulae of § 2-12.

The reader will observe, on comparing § 33 with § 1'6 that Plana and
Poisson had investigated Bessel functions whose order is half of an odd integer
nearly half a century before the publication of Lommel’s treatise.

We shall now replace the integer n which occurs in Bessel’s differential
equation by an unrestricted (real or complex) number§ », and then define a
Bessel function of order v to be a certain solution of this equation; 1t is of
course desirable to select such a solution as reduces to J,, (2) when v assumes
the integral value n.

We shall therefore discuss solutions of the differential equation

2d2y Clty 2 2 —
(1) zd?+z%+(z—v)y—0,

which will be called Bessel’s equation for functions of order v.

* Studien iiber die Bessel’schen Functionen (Leipzig, 1868), p. 1.

+ Integrals resembling this (with » not nec‘essarily an integer) were studied by Duhamel, Cours
d’Analyse, 11. (Paris, 1840), pp. 118—121.

I Math. Ann. 1. (1869), p. 469.

. § Following Liommel, we use the symbols », u to denote unrestricted numbers, the symbols
n, m being reserved for integers. This distinction is customary on the Continent, though it has
not yet come into general use in this country. It has the obvious advantage of shewing at a
glance whether a result is true for unrestricted functions or for functions of integral order only.
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Let us now construct a solution of (1) which is valid near the origin; the
form assumed for such a solution is a series of ascending powers of z, say

y —_ E n Za—H‘)’L,
m=0 -
where the index a and the 'coeﬁ’icients Cm are to be determined, with the pro-
viso that ¢, is not zero.
For brevity the differential operator which occurs in (1) will be called V,,
so that
d?

(2) V".EZZ(TZQ+Z(%+22_VQ‘

dt 1s easy to see that*

® ® w©
VU s Com ot — 3 Con {(0( 4+ ’7’1?,)2 - ya} patm + Z‘ Con gatimte,
m=0 m=0 m=0

The expression on the right reduces to the first term of the first series,
namely ¢, (a2 — v?) 2, if we choose the coefficients ¢,, so that the coefficients of
corresponding powers of z in the two series on the right cancel.

This choice gives the system of equations
¢ {(e+ 1) — %} 0
e {(a+22—v*+¢, =0
03{(064—3)2—7/2}—!—01 =O

..............................

3

..............................

If, then, these equations are satisfied, we have

(4) V, 2 Cpz*t™m=c,(a® — 1*) 2%

m=0 ;
From this result, it is evident that the postulated series can be a solution
of (1) only if a = + v; for ¢, is not zero, and z* vanishes only for exceptional
values of z.

Now consider the mth equation in the system (3) when m > 1. It can be
written in the form

em(a—v+m)(a+v+m)+ cpo=0,
and so 1t determines c,, in terms of ¢, _, for all values of m greater than 1
unless « — v or a+ v is a negative integer, that is, unless — 2» is a negative
integer (when a= —v) or unless 2v is a negative integer (when a=v).

We disregard these exceptional values of » for the moment (see §§ 311,
3'5), and then (a+m)*—1? does not vanish when m=1, 2, 3, .... It now

* When the constants a and c,, have been determined by the following analysis, the series
obtained by formal processes is easily seen to be convergent and differentiable, so that the formal
procedure actually produces a solution of the differential equation.
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follows from the equations (3) that ¢,=c¢;=c¢;=... =0, and that c,y is ex-
pressible in terms of ¢, by the equation
(=)™ ¢o

Cm:(a— v+ 2D (a—v+4)...(a—v+2m)(a+v+2)(a+v+4)... (a+v+2m)
The system of equations (3) is now satisfied; and, if we take a =, we see
from (4) that

s 3 (" 3oy
(®) €% [1+,,El m v+ 1) (w+2)... (v+m)
is a formal solution of equation (1). If we take a=—w», we obtain a second
formal solution
Yo oo (_)m (%Z)zm
(6) G0 2 [1+m§1 mi(—v+1)(—v+2)...(-v+m) |’

In the latter, ¢,” has been written in place of ¢,, because the procedure of
obtaining (6) can evidently be carried out without reference to the existence
of (5), so that the constants ¢, and ¢,” are independent.

Any values independent of z may be assigned to the constants ¢, and ¢,’;
but,in view of the desirability of obtaining solutions reducible to J, (z) when
v —n, we define them by the formulae*

7 - - o
™ CTETGAT) O T
The series (5) and (6) may now be written
& (=) (Fz)rtam % (=) (Lo)vtem

meo ML (v+m+1)’ meo M T (—v+m+1)"
In the circumstances considered, namely when 2» is not an integer, these series
of powers converge for all values of 2z, (2 =0 excepted) and so term-by-term
differentiations are permissible. The operations involved in the analysist by
which they were obtained are consequently legitimate, and so we have obtained
two solutions of equation (1).

The first of the two series defines a function called a Bessel function of
order v and argument z, of the first kind}{; and the function is denoted by
the symbol J, (z). Since v is unrestricted (apart from the condition that, for
the present, 2v is not an integer), the second series is evidently J_, ().

Accordingly, the function J, (z) is defined by the equation
_ ) (____)m (%Z)v—i-mn
® : Ju (@) ~m§0m T (v4+m+1)°

It is evident from § 2'11 that this definition continues to hold when v is a
positive integer (zero included), a Bessel function of integral order being
identical with a Bessel coefficient.

* For properties of the Gamma-function, see Modern Analysis, ch. xi1,
*+ Which, up to the present, has been purely formal.
I Functions of the second and third kinds are defined in §§ 3°5, 354, 3-57, 3-6.
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An interesting symbolic solution of Bessel’s equation has been given by Cotter* in the
form

[14+2" D'l p=lpH-1 (47 L B,
where D=d/dz while 4 and B are constants. This may be derived by writing successively
[D (2D — 2v)+2] 2"y =0,
[2D-2v+ D122 y= —2vB,
2D (V) +2 T DTy = — 2,87,
pTVy+ DT DTy A BT
which gives Cotter’s result.

311. Functions whose order vs half of an odd integer.

In § 8-1, two cases of Bessel’s generalised equation were temporarily omitted
from consideration, namely (i) when » is half of an odd integer, (ii) when » is
an integer+t. It will now be shewn that case (i) may be included in the general
theory for unrestricted values of v.

When v is half of an odd integer, let

P2 = (7. + %‘ )2’

where 7 is a positive integer or zero.

If we take a=r + % in the analysis of § 3'1, we find that
<(01.1(27“4—2) =0,

D (Cm.-m(m~+2r+1)+cp_y=0, (m>1)
and so :
(2) Com = (=)™ ¢y

2.4...2m).(2r+3)2r+5)... 2r+2m + 1)’ _
which is the value of ¢, given by § 31 when a and v are replaced by = + §.
If we take

1
O T4’
we obtain the solution
% (_)m (%Z)v’+%+ 2

meom! T (r +m + 3)’
which is naturally denoted by the symbol J,,;(2), so that the definition of
§ 31 (8) is still valid.

If, however, we take a = —» — }, the equations which determine ¢,, become
6. 1(—27) =0
3 ’ 1
@) {cm.m(m—l——Qr)—l—cm_gz:(). (m>1)

As before, ¢;, ¢, ..., cy—, are all zero, but the equation to determine ¢y, 18
0. Corqa1 + Copg = 0, '
and this equation is satisfied by an arbitrary value of cgq.; When m >, Cunis
18 defined by the equation
Com41 = R — (—,)m—r Corta — .
@r+3)@r+5)...2m+1).2.4... 2m—2r)
* Proc. R. Irish. dcad. xxvi1. (A), (1909), pp. 167—161.
+ The cases combine to form the case in which 2v is an integer.
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If J,(2) be defined by § 3'1 (8) when v=—r — 1, the solution now con-
structed is*

Co 27T (F =)y (2) + Copa 27D (r + 8) Sy (2).

It follows that no modification in the definition of J, (2) is necessary when
v=1+(r+4%); the real peculiarity of the solution in this case is that the
negative root of the indicial equation gives rise to a series containing two
arbitrary constants, ¢, and ¢y, 1.e. to the general solution of the differential
equation.

312. A fundamental system of solutions of Bessel’s equation.

It is well known that, if v, and y, are two solutions of a linear differential
equation of the second order, and if 7%’ and y, denote their derivates with
respect to the independent variable, then the solutions are linearly inde-
pendent if the Wronskian determinant+

1

[ Y Y |
7O l

does not vanish identically; and if the Wronskian does vanish identically,

then, either one of the two solutions vanishes identically, or else the ratio of

the two solutions is a constant.

If the Wronskian does not vanish identically, then any solution of the
differential equation is expressible in the form ¢, ¥, + ¢, ¥» where ¢, and ¢, are
constants depending on the particular solution under consideration; the
solutions v, and %, are then said to form a fundamental system.

For brevity the Wronskian of ¥, and y, will be written in the forms
(1 SRR Q& {1, v},
the former being used when it is necessary to specify the independent variable.
We now proceed to evaluate
WA (T, (o), T (2)).
If we multiply the equations
V,J_,(2)=0, V,J,(2)=0

by J, (2), J_, (z) respectively and subtract the results, we obtain an equation
which may be written in the form

LI, (@] =0,

* In connexion with series representing this solution, see Plana, Mem. della R. dccad. delle
Sci. di Torino, xxvi. (1821), pp. 519 —538.

1 For references to theorems concerning Wronskians, see Encyclopédie des Sci. Math. 11. 16
(§ 23), p. 109. Proofs of the theorems quoted in the text are given by Forsyth, T'reatise on
Differential Equations (1914), §§ 72—74.
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and hence, on integration,
C
(1) dAi {JV (Z): J, <Z)} = PR
where C is a determinate constant.

To evaluate U, we observe that, when v s not an tnteger, and |z| is small,
we have

To@) = p S 0@ L@ =G (140 )

with similar expressions for J_,(2) and J'_, (2); and hence

;o , 1 1 1
LT @) = DT D=3 {r T~ P T s D) 0@
=__2$inv7r+0(z>.

Tz
If we compare this result with (1), it is evident that the expression on the
right which is O (2) must vanish, and so*

(2> m {JV (Z)x J—V(Z)} ==

Since sin vz is not zero (because v is not an integer), the functions J, (2),
J_, (2) form a fundamental system of solutions of equation § 31 (1).

When v is an integer, n, we have seen that, with the definition of § 21 (2),

J_n(2)=(—)"Jn(2);
and when » is made equal to —n in § 31 (8), we find that
¢ D s
S (2) =m§0mz P(—n+m+1)

Since the first # terms of the last series vanish, the series is easily reduced to
(=) J,(2), so that the two definitions of J_, (z) are equivalent, and the
functions J,, (2), J_, () do not form a fundamental system of solutions of
Bessel’s equation for functions of order n. The determination of a fundamental
system in this case will be investigated in § 3-63.

To sum up, the function J,(z) is defined, for all values of », by the
expansion of § 3'1 (8); and .J, (2), so defined, is always a solution of the equation
V,y=0. When v is not an integer, a fundamental system of solutions of this
equation is formed by the functions J, (2) and J_, (2).

A generalisation of the Bessel function has been effected by F. H. Jackson in his
) n—1 .
researches on “basic numbers.” Briefly, a basic number [n] is defined as %j’ where pis

the base, and the basic Gamma, function I', (v) is defined to satisfy the recurrence formula
£, (4 1) =[v]. T ()

The basic Bessel function is then defined by replacing the numbers which occur in the
series for the Bessel function by basic numbers. It has been shewn that very many theorems

* This result is due to Lommel, Math, Ann. 1v. (1871), p. 104. He derived the value of C by
making z = and using the approximate formulae which will be investigated in Chapter vir,
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concerning Bessel functions have their analogues in the theory of basic Bessel functions,
but the discussion of these analogues is outside the scope of this work. Jackson’s main
results are to be found in a series of papers, Proc. Hdinburgh Math. Soc. xx1. (1903), pp.
65-—72 ; XXIT. (1904), pp.. 80-—85; Proc. Royal Soc. Edinburgh, xxv. (1904), pp. 273—276;
Trans. Royal Soc. Edinburgh, x11. (1905), pp. 1—28, 105—118, 399 —408 ; Proc. London
Math. Soc. (2) 1. (1904), pp. 361—366; (2) 11. (1905), pp. 192-—220; (2) 111 (1905), pp. 1—23.

The more obvious generalisation of the Bessel function, obtained by increasing the
number of sets of factors in the denominators of the terms of the series, will be dealt with
in § 44. In conmexion with this generalisation see Cailler, Mém. de la Soc. de Phys. de
Genéve, XXX1v. (1905), p. 354; another generalisation, in the shape of Bessel functions of two
variables, has been dealt with by Whittaker, Math. Ann. LviL (1903), p. 351, and Pérés,
Comptes Rendus, cLX1. (1915), pp. 168—170.

3:13. General properties of J, (2).

The series which defines .J, () converges absolutely and uniformly* in any
closed domain of values of z [the origin not being a point of the domain when
R (v) < 0], and in any bounded domain of values of v.

For, when |v| < IV and |z| < A, the test ratio for this series is

_izzi < ,% AL* <
lm(v+m)| m@n—N)
whenever m is taken to be greater than the positive root of the equation
m?— mN — +A%=0.
This choice of m being independent of » and z, the result stated follows from
the test of Weierstrass.

Hence't J, (2) is an analytic function of z for all values of z (z = 0 possibly
being excepted) and it is an analytic function of v for all values of v.

An important consequence of this theorem is that term-by-term differen-

tiations and integrations (with respect to z or v)'of the series for J,(z) are
“permissible.

L

An inequality due to Nielsen  should be noticed here, namely

__@a"
(1> JV<Z>—“I‘<V+1)(1+9)1

| | iz
where | 6| <exp {|v 1 |} -1,
0

and | o+ 1 | is the smallest of the numbers | v+1], |» 421, |»+3]|, . :

This result may be proved in exactly the same way as § 2°11 (5) ; it should be com-"
pared with the inequalities which will be given in § 3-3.

Finally, the function z*, which is a factor of J, (2), needs precise specifica-

* Bromwich, Theory of Infinite Series, § 82.

+ Modern Analysis, § 5°3.

T Math. Ann. 111, (1899), p. 230; Nyt Tidsskrift, 1x. B (1898), p. 73 ; see also Math. Ann. Lv.
(1902), p. 494.



3-13, 3-2] BESSEL FUNCTIONS 45
tion. We define it to be exp (v log z) where the phase (or argument) of z is
given its principal value so that

— 7 <argz < .

When it is necessary to “continue” the function J, (2) outside this range of
values of arg z, explicit mention will be made of the process to be carried out.

32. The recurrence formulae for J, (2).

Lommel’s generalisations* of the .recurrence formulae for the Bessel co-
efficients (§2'12) are as follows:

1) s (2) + T () = 22T (2)
@) Jvoa (2) = T (2) = 207 (2),
(3) 2J,) (2) + vd, () = 2J,, (2),
(4) 2J) (2) —vd, (2) = — 2J,1.1(2).

These are of precisely the same form as the results of § 2:12, the only difference
being the substitution of the unrestricted number » for the integer n.

To prove them, we observe first that

d d 2
ACEE

(_)m Z2vtem
ovtan 1 T (V + m + 1)

0 (_)m Z2v—1+2m
- m2=() 2v—irzm ! I (v 4+ m)
= z"J,; (2).

When we differentiate out the product on the left, we at once obtain (3).
In like manner, )

d . _d *
(TZ{Z Jv(Z)}—OTZHE

(___)m z2m
o2 m! I'(v+m + 1)

(__)mz2m—-1
m=1 201 (m— DT (v +m+ 1)

|
8

(_)m—}—l Z2m+1
m=0 2" ! D (v + m + 2)

I
s

= Z_VJV+1 (Z)

whence (4) is obvious; and (2) and (1) may be obtained by adding and sub-
tracting (3) and (4).

* Stildien iiber die Bessel’schen Functionen (Leipzig, 1868), pp. 2, 6, 7. Formula, (3) was given
when » is half of an odd integer by Plana, Mem. della R. dccad. delle Sci. di Torino, xxvi1. (1821),
p. 533.
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We can now obtain the generalised formulae

(5) (2 ) @) =T (),

- d \™m _, _ I
© CE) T @ = (o)
by repeated differentiations, when m is any positive integer.

Lommel obtained all these results from his generalisation of Poisson’s
integral which has been described in §31.

The formula (1) has been extensively used* in the construction of Tables
of Bessel functions. v

By expressing J,—; (2) and J,_,(2) in terms of Ji,(z) and J'4, (2) by (3)
and (4), we can derive Lommel’s formulat

G To(@) Tt (2) 4 T () T () = T
from formula (2) of § 312.

An interesting consequence of (1) and (2) is that, if @, (2) = J,2 (z), then
2 ,
®) Qo1 (&)= Qo1 (== Q) ()

this formula was discovered by Lommel, who derived various consequences of it, Studien
éiber die Bessel'schen Functionen (Leipzig, 1868), pp. 48 et seq. See also Neumann, Math.
Ann. 111. (1871), p. 600.

3:21. Bessel functrons of complex order.

The real and imaginary parts of the function J, ;. (2), where v, x and 2
are real, have been discussed in some detail by Lommel}, and his results were
subsequently extended by Bocher§.

In particular, after defining the real functions K, . (x) and S, .(z) by the
equation|| ‘

(Lar)r+in
C@+w+HT'E)
Lommel obtained the results

(1) ng_; (K u (@) £ 98, (2)} + { K, u (@) £ 08,4 (2)}

+2(Vi6’i,u)+1i

Join (@) = (K, u (@) +28,,. (@)},

(K, u(z) £98, . (2)} =0,

dz
(2) KV—H,# (w> = Kv,l-c (z) + KUV,# (@),
(3) Soi,e (@) = 8,0 (@) + 87, u(2),

* See, e.g. lommel, Miinchener Abh. xv. (1884—1886), pp. 644-—647.

+ Math. Ann. 1v. (1871), p. 105. Some associated formulae are given in § 3°63.

+ Math. Ann. 111. (1871), pp. 481—486.

§ Annals of Math. vi. (1892), pp. 137—160.

{| The reason for inserting the factor on the right is apparent from formulae which will be
established in § 3-3.
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with numerous other formulae of like character. These results seem to be of
no great importance, and consequently we merely refer the reader to the
memoirs in which they were published.

In the special case in which » =0, Bessel’s equation becomes

2 d
2T W@y =0;

solutions of this equation in the form of series were given by Boole* many

years ago.

3:3. Lommel’s expression of J,(2) by an integral of Povsson’s type.
We shall now shew that, when R (v) > ~ %, then

Rz)y f ™ .
1 J,(2)= 2 0) sin> 0d6.
(1) (2) T+ T @ Ocos(zcos ) sin
It was proved by Poisson+t that, when 2» is a positive integer (zero in-
cluded), the expression on the right is a solution of Bessel’s equation; and
this expression was adopted by Lommel] as the definition of .J, () for positive
values of v + 4.

Lommel subsequently proved that the function, so defined, is a solution of Bessel’s
generalised equation and that it satisfies the recurrence formulae of § 3'2; and he then
defined J, (2) for values of » in the intervals (—%, — %), (=%, — %), (=5, —%), ... by suc-
cessive applications of § 3-2 (1).

To deduce (1) from the definition of J, (2) adopted in this work, we trans-
form the general term of the series for J, (2) in the following manner:

=y Gayrn _ (G 2 Te+DLm+d)

m!'Tw+m+1) T@+HTG) @m)! T@+m+1)

C orQey em o
_P(V+%>2P<%)'(2m)z[t F(L =gyt

Y

provided that B (v) > —£%.
Now when R (v) >4, the series

% (_)m Z2m

m=1 —_(ém)‘

converges uniformly with respect to ¢ throughout the interval (0, 1), and so it
may be integrated term-by-term; on adding to the result the term for which

(1 — tymt

* Phil. Trans. of the Royal Soc. 1844, p. 289. See also a question set in the Mathematical
Tripos, 1894.

+ Journal de UEcole R. Polytechnique, x11. (cahier 19), (1823), pp. 300 et seq., 840 et seq.
Strictly speaking, Poisson shewed that, when 2» is an odd integer, the expression on the right

multiplied by ,/z is a solution of the equation derived from Bessel’s equation by the appropriate
change of dependent variable,

I Studien iiber die Bessel'schen Functionen (Leipzig, 1868), pp. 1 et seq.
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1

m =0, namely [ tv—+(1 —¢)~*dt, which is convergent, we find that, when
Jo

R(V)>§

(;Z)v o L ( ) (__)mzmn(l — t)m—ﬂ
L @O=FarnT®" @) gt
whence the result stated follows by making the substitution t=sin?fd and
using the fact that the integrand is unaffected by writing 7 — & in place of 6.

When — 4 < R (v) <3, the analysis necessary to establish the last equation is a little
more elaborate. The blmplest procedure seems to be to take the series with the first two
terms omitted and integrate by parts, thus

>m 2m

ft”"7(1 )’”"fdt— 2 L. /z”ﬁ“(l " dg

_/1 tv—{—g { g )m (771—-%) L2m a _z)m_%} s

ov+3s lm=2 (2m) !

© ( )m 22m

5 m-% (—
m=2 (27ﬂ> !

(_ )m ZQm

/1 &+t a (e
= - — >
0V+%‘ dt lng (27’)?/)!

>7L zZm J
_/ {m~2 @) (1-— t)m-—fz} dt,

on integrating by parts a second time. The interchange of the order of summation and
integration in the second line of analysis is permissible on account of the uniformity of
convergence of the series. On adding the integrals corresponding to the terms m=0, m=1.
(which are convergent), we obtain the desired result.

It folilows that, when £ (v) >—1, then
(o)
To+HTQ@).

(1—5)™ ‘%} de

J,(2) = / (1 —t)tcos {2 (1 —¢t)} di

Obvious transformations of this result, in addition to (1), are the following:

@) S ()= 1(—2—:1&}(—) [1(1 = &y cos (2t) dt,
@ L@=1g fgr(z f (1 — 2y cos (st) dt,
® @=L e

(5) I, (2) = F_G%%)F o [j"éos (2 cos 0) sin® 0,
(6) Jo () =, +Z)>”F‘( 5 J " gizeost sinww 0 d 6.

The formula obtained by a partial integration of (5), namely

o @r=D.er
(7 J, (2) = INCEEINE)) .[0

is sometimes useful ; it is valid only when R (v) >}

sin (z cos @) sin* 20 cos 0d0,
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An expansion involving Bernoullian polynomials has been obtained from (4) by Nielsen*®
with the help of the expansion

a —ay 5 @ P (E+1)
$=(1-e )nE() nt ) R
in which ¢, (&) denotes the nth Bernoullian polynomial and a=vzt.

[Nore. Integrals of the type (3) were studied before Poisson by Plana, Mem. della R.
Accad. delle Sci. dv Torino, xxvIi. (1821), pp. 519—538, and subsequently by Kummer,
Journal fiir Math. x11. (1834), pp. 144—147 ; Lobatto, Journal fir Math. xvi1. (1837), pp.
363—371; and Duhamel, Cours d’Analyse, 11. (Paris, 1840), pp. 118—121.

A function, substantially equivalent to J, (z), defined by the equation

1
J(p, x):/o(l—vz)”’ cos vz . dv,

was investigated by Lommel, Archiv der Math. und Phys. xxxviL (1861), pp. 349—360.
The converse problem of obtaining the differential equation satisfied by

z)‘fls Y (w—a)* " (v=BY "L dw

was also discussed by Lommel, Archiv der Math. und Phys. Xxu. (1863), pp. 101—126. In
connexion with this integral see also Euler, Inst. Cale. Int. 11. (Petersburg, 1769), § 1036,
and Petzval, Integration der linearen Dgﬁerentzalglezckungen (Vienna, 1851), p. 48.]

3:31. Inequalities derived from Poisson’s integral.

From § 33 (6) it follows that, if v be real and greater than — &, then

M Lo sttt ).

exp | 7 (2)|sin> 68d0O

Il‘(( _i)_l|)exp|I(z)|

By using the recurrence formulae § 3'2 (1) and (4), we deduce in a similar
manner that

@ @) f L i T L1 7@)) i<re-b),

Dy +1)| [(v+1)(v+2)]
(2 )v—li 2| g 1
@ 1R @l< B 1 el 1)) >4

By using the expressiont {2/(mz)}} cos z for J_; (2) it may be shewn that

(1) is valid when v=—1.

These inequalities should be compared with the less stringent inequalities
obtained in §3:13. When v is complex, inequalities of a more complicated

character can be obtained in the same manner, but they are of no great im-
portance.

* Math. Ann. vix. (1904), p. 108. The notation used in the text is that given in Modern
Analysis, § 7-2; Nielsen uses a different notation.

+ The reader should have no difficulty in verifying this result. A formal proof of a more
general theorem will be given in § 3-4.

W. B. F. 4
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3:32. Gegenbauer’s generalisation of Poisson’s integral.

The integral formula

(1) Toan() = prr s S gy | €70 sin® 0.0 (c05 0 d6,

in which O, (¢) is the coefficient of o™ in the expansion of (1 —2at-+0a*)™ in
ascending powers of a, is due to Gegenbauer®; the formula is valid when
R (v) > —4% and n is any of the integers 0,1,2,.... When n =0, it obviously
reduces to Poisson’s integral.

In the special case in which » =%, the integral assumes the form

@) Tan @)= (o)
this équation has been the subject of detailed study by Whittaker+.
To prove Gegenbauer’s formula, we take Poisson’s integral in the form
1)
O TR O3
and integrate n times by parts; the result is
(L1 v n — f2\ywtn—%
Join ()= ZoT (fﬁ?n TOT G )f e d’(i—d%l‘_— }dt'
Now it 1s known that}
d"(1 =gyt (=2l T@+n+3H)T'(20)
de® 'v+4H)1I'@C2v+n)

whence we have
(=" T (2v).nl(Ge)
@ T )=, TG T (@ + 1)

and Gegenbauer’s result is evident.

/ ¢ 086 P, (cos @) sin 0d0;
0

1-
f eizt (1 — t2)v+n—?]_t dt,
3)J -1

(1 =)y Opr (2),

1
gt (1 — 2=+ 0, (1) d,
-1

A symbolic form of Gegenbauer’s equation is

®  Tuae)= FX LD o () 1G0 L @)

this was given by Rayleigh§ in the special case v=13.

The reader will find it instructive to establish (3) by induction with the aid of the
recurrence formula

(n+1) 0, ()=@v+n) iC)Y (8) - <1—z2)d0" @,

* Wiener Sitzungsberichte, Lxvii. (2), (1873), p. 203; 1xx. (2), (1875), p. 15. See also Bauer,
Miinchener Sitzungsberichte, v. (1875), p. 262, and O. A. Smith, Giornale di Mat. (2) x11. (1905),
pp. 865—373. The function C,” (1) has been extensively studied by Gegenbauer in a series of
memoirs in the Wiener Sitzungsberichte; some of the more important results obtained by him are
given in Modern Analysis, § 15°8.

+ Proc. London Math. Soc. xxxv. (1903), pp. 198-206. See §§6-17, 10°5.

+ Cf. Modern Analysis, §15°8.

§ Proc. London Math. Soc. 1v. (1873), pp. 100, 263,
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A formula which is a kind of converse of (4), namely*

(5) 27 (Gorrm) = r(ffn_(T:; o)

in which 2, * denotes a generalised Legendre function, is due to Filon, PAil. Mag. (6) vI.
(1903), p. 198; the proof of this formula is left to the reader.

3:33. Gegenbauer’s double integral of Poisson’s type.
It has been shewn by Gegenbauer+t that, when R (v) >0,

1) J, (=)= exp [¢Z cos 6 — 1z (cos ¢ cos 0 + sin ¢ sin 0 cos )]

sin® 1 s sin® @dnrd0,

where w2 = Z*+4 2* — 2 Zz cos ¢ and Z, z, ¢ are unrestricted (complex) variables.
This result was originally obtained by Gegenbauer by applying elaborate in-
tegral transformations to certain addition formulae which will be discussed in
Chapter x1. It is possible, however, to obtain the formula in a quite natural
manner by means of transformations of a type used in the geometry of the

'n'F (v) f

spherel.

After notlcmg that, when 2z =0, the formula reduces to a result which is
an obvious consequence of Poisson’s integral, namely

J, (Z)= ;—%PZ() :) : giZ cos gin? ¢ [ : sin® e dar,

we proceed to regard «r and € as longitude and colatitude of a point on a
unit sphere ; we denote the direction-cosines of the vector from the centre to
this point by (I, m, n) and the element of surface at the point by dw.

We then transform Poisson’s integral by making a cyclical interchange of
the coordinate axes in the following manner§:

J, (w)= 270 n[ ¢t @ eosf gin? @ sin® =1 yrdf dofr

_ (%w)v ff I g 2v—1
=T ) e m> 7 dw

1 v
— (2 w) ( eiwl n2v—1 dw
nz0

I (v)J.
_ (%m-)v %ﬂ[% i sin 6 cos ¥ 9y ~1 :
= 2T/ e cos 0 sin Odr d6.

* 1t is supposed that
o*z¥ T (v+1)z""
az¢ T (r—u+1)"

T Wiener Sitzungsberichte, vxxiv, (2), (1877), pp. 128—129,

+ This method is effective in proving numerous formulae of which analytical proofs were
given by Gegenbauer ; and it seems not unlikely that he discovered these formulae by the method
in question; cf. §§12-12, 12:14. The device is used by Beltrami, Lombardo Rendiconti, (2) XII1.
(1880), p. 828, for a rather different purpose.

§ The symbol jjm>0 means that the integration extends over the surface of the hemisphere on
which m is positive.

4—2
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Now the integrand is an integral periodic function of 4, and so the limits of
integration with respect to 4 may be taken to be a and a + 27, where a 1s an
arbitrary (complex) number. This follows from Cauchy’s theorem.

We thus get

J,(w)= (bor)” /‘%Wfaﬂﬂ gl sin 0 cos ¥ cog?=1 @ sin Gdr do
0wl (@) e Ja

(%W )v 3m 2w 3 .
— )~ ’ gtmsindcos (¥+a) aog2v—1 @ sin Hol«,bd@
1" (v)

We now define a by the pair of equations

wecosa=2Z—zCcos¢p, wsinoa=zsindge,
so that

J,(®) 75};58; fwf exp [i-(Z — z oS ¢) sin 8 cos Y — 1z sin ¢ sin yr sin 6]
cos? 1 @ sin Odrrdo.

" The only difference between this formula and the formula

— (%‘w)v %ﬂfzw ; ) . v ye2r—1 1
J, (&)= ) o o exp [t sin 8 cos Jr] cos® ! § sin Od\rdo

is in the form of the exponential factor; and we now retrace the steps of the
analysis with the modified form of the exponential factor. When the steps are
retraced the successive exponents are

t1(Z —zcosp)l—izsing.m,
1(Z—zcosp)n—izsing .,
1(Z — zcos ¢p) cos € — 1z sin ¢ cos Y sin 6.
The last expression is
tZ cos @ — 1z (cos ¢ cos 6 + sin ¢ sin 6 cos ),
so that the result of retracing the steps is

1 v w [
(@) { exp [¢Z cos @ — ¢z (cos ¢ cos @ + sin ¢ sin 6 cos )]

7w (v) JoJo
’ sin® 1 4 sin? @drdo,
and consequently Gegenbauer’s formula is established.

[Nore. The device of using transformations of polar coordinates, after the manner of
this section, to evaluate definite integrals seems to be due to Legendre, Mém. de I’ Acad. des
Sci., 1789, p. 372, and Poisson, Mém. de P Acad. des Sci. 111. (1818), p. 126.]

8:4. The expression of Ji(niy) (2) tn finite terms.

We shall now deduce from Poisson’s integral the important theorem that,
when v is half of an odd integer, the function J,(2) is expressible in finite terms
by means of algebraic and trigonometrical functions of z.

It will appear later (§ 4°74) that, when » has not such a value, then J, (2)
is not so expressible ; but of course this converse theorem is of a much more
recondite character than the theorem which is now about to be proved.
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[Nore. Solutionsin finite terms of differential equations associated with ./ 3 (2) were ob-

tained by various early writers; it was observed by Euler, M7¢sc. Taurinensia, 111, (1762—
1765), p. 76 that a solution of the equation for e%J, i (2) is expressible in finite terms; while

the equation satisfied by 2% J g () Was solved in finite terms by Laplace, Conn. des Tems,

1823 [1820], pp. 2456—257 and Mécanique Céleste, v. (Paris, 1825), pp. 82—84 ; by Plana, Mem.
della R. Accad. delle Sci. di Torino, XxvI1. (1821), pp. 533—534; by Paoli, Mem. di Mat. e
di Fis. (Modena), xx. (1828), pp. 183—188; and also by Stokes in 1850, Zrans. Camb. Phil.
Soc. 1X. (1856), p. 187 [Math. and Phys. Papers, 11. (1883), p..356]. The investigation
which will now be given is based on the work of Lommel, Studien iiber die Bessel’schen
Functionen (Leipzig, 1868), pp. 51—>56.]

It is convenient to restrict n to be a positive integer (zero included), and
then, by § 3-3 (4),

_Gam 2y
Tany () =270 | e (1= ey de
‘ZZYH_E i 2?12 27+l d""(l __t2>n‘li
- n! \/77‘ 1‘:0 i df’ —1 ’

when we integrate by parts 2n 4 1 times; since (1 —¢*)™is a polynomial of
degree 2n, the process then terminates.

To simplify the last expression we observe that if d"(1 —#)*/dt" be cal-
culated from Leibniz’ theorem by writing (1 — )" = (1 —¢)* (1 +¢)”, the only
term which does not vanish at the upper limit arises from differentiating n
times the factor (1 —¢)", and therefore from differentiating the other factor
r—n times; so that we need consider only the terms for which » > n.

| dr (1 — 8y » gy
Hence [ a :lt=1 (=) (2n—7)!
N ' dar ( 1 — t2)n r—n 7?,’ 22n—r
and similarly [T] s =(=) (Zn —r)

It follows that
(Z) — (2 )n b [(__)n+1 eiz 221% IiT—H 22n-r -7 '

r=n PARE (7“ — ’)’1)' (2)2 -—')")1

n-l-‘

+ (_)n—H e—z‘z z
r

2n (__ ?;)T'H 22%—7* ) o
—n 2 (r—n)l 2n—r)t |’

and hence
_ 1 i o gr—n~l (n + 7.) ! i
(1) Juy (2) = V(27z) [e ,Eo rl(n—r)l (22)" te ,.:20 ri(n—7r)l (22)
This result may be written in the form*
. (2N _ <l (=y.(n+427)!
® Ty @=(2) | sin o) 3 GO
<z(@-1) (=) .(n+2r+1)! ]

_1
+ o8 (2 — {nm) ,Eo (27 + 1)1 (n—2r — 1) (Zg)pH

5 iy (4 1) } ‘

* A compact method of obtaining this formula is given by de la Vallée Poussin, dnn. de la
Soc. Sci. de Bruwelles, xx1x. (1905), pp. 140—148,
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In particular we have

(3) 5@ =(2) sinz, Bo)= (2 ) (S92 cos 2);

T2
the former of these results is also obvious from the power series for Jj (2).

Again, from the recurrence formula we have

o d 7 _
Tae ()= (=2 () (o T ),
and hence, from (1),
2 T (n+7)! w < (=T (n )]

eiz R —12

oo L (n—r)1(22) ¢ e TH(n—7)t(22)"
= (f)az gntl (z%—zyl e_vz— ( )n N1 < d ) —_w .

z zdz) =z
But, obviously, by induction we can express

n+1 < d " e:ﬁ:iz
Z [ES—
zdz) =z

as a polynomial in 1/z multiplied by e*%, and so we must have
poly : P y

L (EYyTr (A = (—yr g < __>” etz

r— OrY(n—r)‘(‘)z) - zde) 2’

for, if not, the preceding identity would lead to a result of the form

€%, (2) —e 2 Py (2) =0,
where ¢, (2) and ¢, (z) are polynomials in 1/z; and such an identity is obviously
1mpossible *.
Hence it follows thatt

¢ é” 7T (n+7) ! g % (=) . (n+7r)!
r=0 T (n—1)1(22) pmo Tl (n—71)(22)"
— (__)n Zn—.'—l (_d_>n e,w j*_,_?jz

zdz z

e:tzz

— (o @my (SN T @)

Consequently

N T P s (e o) RN OO Gl IS U VY
@) Sy ()= [6 roo 1 (n—1r)! (22) +e ,EO ri(n—1r)! (22)’“‘ N

* Cf. Hobson, Squaring the Circle (Cambridge, 1913), p. 51.
+ From the series

(iz (— ym (Lz)2m
J . _
() (2) mz—om'% 2..(m-3%)°

%
it is obvious that Iy (z) = (7?2) cos 2.
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and hence

N
o

/

&) Jam@=(_,)

2 <in (=) (n+2r)!
\TT <

[COS (@dnm) = @ (= 2r) (25
. <) (=Y . (n+2r+1)! ]
—sin (z + %%’F) 1'§0 @r+ 1) (n—2r— 1)1 (2z)7

In particular, we have

(6) J_3(2)= (%Y cosz, J_3(2)= (7—%)7 (-— con'z —sin z> .
/ : Z /

T

We have now expressed in finite terms any Bessel function, whose order is
half of an odd integer, by means of algebraic and trigonometrical functions.

The explicit expression of a number of these functions can be written down from
numerical results contained in a letter from Hermite to Gordan, Journal fisr Math. LXVI.
(1873), pp. 303—311.

3:41. Notations for functions whose order vs half of an odd integer.

Functions of the types J.ip,1(2) occur with such frequency in various
branches of Mathematical Physics that various writers have found it desirable
to denote them by a special functional symbol. Unfortunately no common
notation has been agreed upon and none of the many existing notations can
be said to predominate over the others. Consequently, apart from the summary
which will now be given, the notations in question will not be used in this work.

In his researches on vibrating spheres surrounded by a gas, Stokes, Phil. Trans. of the
Royal Soc. crvrir, (1868), p. 451 [Math. and Phys. Papers, 1v. (1904), p. 306], made use of
the series -
n(n+l) (n-1)n(r+1) (%+2)+

1+ 2. imr 2.4.(xmr)? 2
which is annihilated by the operator
a2 .d n(m+1)
d_2 — 2im % —_ -'72—

This series Stokes denoted by the symbol £, () and he wrote
r \bn= Sn e-—imr]{n (I") + Sn, eimrfn ( - T>,
where S, and 8,/ are zonal surface harmonics; so that 4, is annihilated by the total
operator 2 p < )
: 2 5, n(n+1
@ L2« 2 T\
dr? tr o™ 2 7
and by the partial operator
2 20 190 (. P o),
_ o T2singae 1P Y56 T
In this notation Stokes was followed by Rayleigh, Proc. London Math. Soc. 1v. (1873),
pp. 93—103, 253—283, and again Proc. Royal Soc. LxxIL. (1903), pp. 40—41 [Scientific
Papers, v. (1912), pp. 112 —114], apart from the comparatively trivial change that Rayleigh
would have written f, (¢mr) where Stokes wrote f, ().
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In order to obtain a solution finite at the origin, Rayleigh found it necessary to take
Sy =(—)**18, in the course of his analysis, and then

. 2
‘,’nz(_‘z)n-*-lm‘gn(”% 11,-|—1(m7)

It follows from 34 that e @) _ 2 iA meTv
n+1 ror P
and that Jn+% ()= \/(2 J@nr [e=an+ 1 f, (dr) 4 i g=n =1 f, (—3r)].

In order to have a simple notation for the combinations of the types e¥# £, (44r) which
are required for solutions finite at the origin, Lamb found it convenient to write
24

22
Yn@)=1-3 Gn+3) T2 4. @n+3) @ns)

in his earlier papers, Proc. London Math. Soc. x1i1. (1882), pp. 51—66; 189—212; xV.
(1884), pp. 139—149; xvIL (1885), pp. 27—A43 ; Phil. Trans. of the Royal Soc. cLXXTV. (1883),
pp. 519—549; and he was followed by Rayleigh, Proc. Royal Soc. LxxvIiI. A, (19086),
Pp. 486—499 [Scientific Papers, v. (1912), pp. 300—312], and by Love*, Proc. London
Math. Soc. xxXX. (1899), pp. 308—321.

With this notation it is evident that
T (n+3 d \" sinz
. (z)=_i< n+_) Ty (D=(=)"1.3.5...(2n+1). < . ) .
(32)" 7% %

Subsequently, however, Lamb found it convenient to modify this notation, and accord-
ingly in his treatise on Hydrodynamics and also Proc. London Math. Soc. XXXIL (1901),
pp. 11—20, 120—150 he used the notation

z

_ 1 1 22 24
‘I’”@_ 1.3.5...2n+1) —2(2n+3)+2 4(2n+3) 2n+b) ]
and he also wrote Jn(®)= ( zgz p —‘I’n (2) — 2y (2),
- )" T). 1 Jo
o that w0, (TG n>+;7_n_§<z>, (=Y A = @
z 2 z

while Rayleigh, Phil. Trans. of the Royal Soc. cc1ir. A, (1904), pp. 87—110 [Scientific Papers,
v. (1912) pp. 149—161] found it convenient to replace the symbol f, (¢) by x,(¢). Love,
Phil. Trans. of the Royal Soec. ccxv. A, (1915), p. 112 omitted the factor (—)» and wrote

" gz d \" sin z
B()= )

bl

zdz z ¥n <Z>=<Ez z
while yet another notation has been used by Sommerfeld, Ann. der Phystk und Chemie, (4)
XXVIIL (1909), pp. 666—736, and two of his pupils, namely March, Adnn. der Physik und
Chemie, (4) XXXVIL (1912), p. 29 and Rybezynski, Ann. der Physik uwnd Chemie, (4) XLI.
(1913), p. 191 ; this notation is

d >" sin z

Y@=l 7,4, @ =1 (=
G =G} [, 43 )+ (— Ty ()

and it is certainly the best adapted for the investigation on electric waves which was the
subject of their researches.

n o—ie
, but, as

* In this paper Love defined the funection E, () as (—=)*.1.3 ... (2n- 1) (;%)

stated, he modified the definition in his later work.

+ This is nearer the notation used by Heine, Handbuch der Kugelfunctionen, 1. (Berlin, 1878),
p. 82; except that Heine defined y, (2) to be twice the expression on the right in his treatise, but
not in his memoir, Journal fiir Math. vxix. (1869), pp. 128—141.

Z
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_ Somumerfeld’s notation is a slightly modified form of the notation used by L. Lorenz, who
used v, and »,,+( — )" 2w, in place of Y, and ¢, ; see his memoir on reflexion and refraction
of light, K. Danske Videnskabernes Selskabs Skrifter, (6) vi. (1890), [Oeuvres scientifiques, I.
(1898), pp. 405—502.]

3'56. A second solution of Bessel’s equation for functions of integral order.

It has been seen (§ 3'12) that, whenever v is not an integer, a fundamental
system of solutions of Bessel’s equation for functions of order » is formed by
the pair of functions J, (z) and J_, (2). When v is an integer (=), this is no
longer the case, on account of the relation J_, (2) = (=)"J, (2).

It is therefore necessary to obtain a solution of Bessel's equation which is
linearly independent of J, (2); and the combination of this solution with J,, (2)
will give a fundamental system of solutions.

The solution which will now be constructed was obtained by Hankel*;
the full details of the analysis involved in the construction were first published
by Boéchert. '

An alternative method of constructing Hankel’s solution was discovered by Forsyth ;
his procedure is based on the general method of Frobenius, Journal fiir Math. LxxvI. (1874),
pp. 214235, for dealing with any linear differential equation. Forsyth’s solution was
contained in his lectures on differential equations delivered in Cambridge in 1894, and it
has since been published in his Z%eory of Differential Equations, 1v. (Cambridge, 1902),
pp. 101—102, and in his Treatise on Diferential Equations (London, 1903 and 1914),
Chapter vi. note 1.

It is evident that, if » be unrestricted, and if n be any integer (positive,
negative or zero), the function
J, (Z) - ("‘)n J_, (Z)
is a solution of Bessel’s equation for functions of order v»; and this function
vanishes when v = n.
Consequently, so long as v # n, the function
Jy(2) = (=)"J . (2)

vV—mn

1s also a solution of Bessel’s equation for functions of order »; and this function
assumes an undetermined form} when v =n.

We shall now evaluate '
111’1’1 Jv (Z) - (_)n J—V (Z)

v vV—n

and we shall shew that it is a solution of Bessel’s equation for functions of

* Math. Ann. 1. (1869), pp. 469—472.

1 dnnals of Math. vi. (1892), pp. 85—90. See also Niemséller, Zeitschrift fiir Math. und Phys.
xxv. (1880), pp. 65—171.

I The essence of Hankel’s investigation is the construction of an expression which satisfies
the equation when » is not an integer, which assumes an undetermined form when » is equal to
the integer n and which has a limit when v-=n.
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order n and that it is linearly independent of .J,, (2); so that it may be taken
to be the second solution required*.

It is evident that
J,(2) = (="J_, (2) _ S, (2) = Ju(2) (=) J_,(2) = J_p(2)

v—n VvV—"n V—n
0, (2) . — (o QJ_,, (2)
all ) ov v=r
as v -=n, since both of the differential coefficients existt.
Hence
Iim Jv (Z) - (_)n J—V (Z)
o v—n

exists; 1t is called a Bessel function of the second kind of order n.

To distinguish it from other functions which are also called functions of
the second kind it may be described as Hankel’s function. Following Hankel,
we shall denote it by the symbol} ¥, (2) so that

(1) Y, (2) = 1312 [J (2) —v(_—): J_, (Z)},
and also
(2) Y, (2) = [?’J_(i) (e (Z)J B

It has now to be shewn that ¥, (2) is a solution of Bessel’s equation.

Since the two functions J ., (2) are analytic functions of both z and », the
order of performing partial differentiations on J4., () with respect to z and v
is a matter of indifference§ Hence the result of differentiating the pair of
equations

V,, J;!:u (Z) =
with respect to v may be written

L) d (),

2 9 aJiV (Z) ) —
dz2  Ov dz v (2= )T ~ W (9) =0
When we combine the results contained in this formula, we find that
BJ (z)

v, ( )n oJ_, (Z)J =92 {JV (Z) _ (___)n J_, (Z)},

* The reader will realise that, given a solution of a differential equation, it is not obvious that
a limiting form of this solution is a solution of the corresponding limiting form of the equation.

+ See §3-1. It is conventional to write differentiations with respect to z as total differential
coefficients while differentiations with respect to » are written as partial differential coefficients,
Of course, in many parts of the theory, variations in » are not contemplated.

T The symbol Y, (z), which was actually used by Hankel, is used in this work to denote a
function equal to 1/ times Hankel’s function (§ 3-54).

§ See, e.g. Hobson, Functions of a Real Variable (1921), §§ 312, 318,
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so that
v, [aJ L (2) _ (=% aJ_,, (z)

e )[&/‘ (2) ()naJ_V(z)]

+20 1, () — (=) Ty ().

Now make v —~mn. All the expressions in the last equation are continuous

functions of v, and so we have
Va [aQIéIIEZ) - (_)n aJ—E—}:}(Z):l —n =0,
where » is to be made equal to n immediately after the differentiations with
respect to v have been performed. We have therefore proved that
(3) ' Va¥,(2) =0,

so that ¥, (2) vs « solution of Bessel's equatvon Jor functions of order n.

It is to be noticed that

Sy (2) = (=) I, (2)

Y_,(2)= lim

>0 v+ n
I O e A
w=n iy 24 +n

whence follows a result substantially due to Lommel*,

(4) Y _,(2)=(=)"¥Y,(2).

Again,
_[o®] _[9/=(®)
v, = 252 259
while, because J, (2) is a monogenic function of » at » = 0, we have

5= e )

H
=0

and hence it follows that
0/,
) ORLIE T
v=0

A result equivalent to this was given by Duhamelt as early as 1840.

3:51. The expansion of X,(2) in an ascending series.

_ Before considering the expansion of the general function ¥, (2), it is con-
venient to examine the function of order zero because the analysis is simpler
and the resulting expansion is more compact.

We use the formula just obtained,

o [2 1§ )
Yo(Z)-Q [ » lﬂ?‘"ofmr P(V—{—’}’)Z"}“l)‘—lv 0o

3

* Studien iiber die Bessel’schen Functionen (Leipzig, 1868), p. 87. TLommel actually proved
this result for what is sometimes called Neumann’s function of the second kind. See § 3-58 (8).
1 Cours d’Analyse, 11. (Paris, 1840), pp. 122124,
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and the result of term-by-term differentiation is

0 —ym (1 A\v+2m a
Y,(2)=2 LEO m(Y If(y(jj)n 1) log (32)— 3 log ' (v +m + 1)}]
_ (=) (Ga)y™
R

where 4 denotes, as is customary, the logarithmic derivate of the Gamma-
function *.

v=0

log £z —~ (m + 1)},

Since 0 <y (m+1) <<m when m=1, 2, 3, ... the convergence of the series for ¥ (2)
may be established by using D’Alembert’s ratio-test for the series in which y (m+1) is

replaced by m. The convergence is also an immediate consequence of a general theorem
concerning analytic functions. See Modern Analysis, § 5°3.

The following forms of the expansion are to be noticed :

M) ¥o@)=2 2D 10 (1) — 4 (m + 1))

(2) Y,(z)=2 [log 2) Ty (2)— 5 G oy 1)] ,

m=0 (771 Y)Z
)

(3) Y,(o)=2{y+log($2)]Jo(s)—2 ma%% + % + +;_z}

The reader will observe that

Y, (2) + (log 2 —v) Jo (2)

is a solution of Bessel’s equation for functions of order zero. The expansion of
this function is

m ( Z)zm ( )m( Z)>m 1
log z 2 \-—)——2—~ 2 A + + o=
( g )m [ (772 Y) m=1 ( ‘)2 ]- 2 m
This function was adopted as the canonical function of the second kind of order zero by
Neumann, T%eorie der Bessel'schen Functionen (Leipzig, 1867), pp. 42—44; see § 3°57.
But the series was obtained as a solution of Bessel’s equation, long before, by Euler
Euler’s result in his own notation is that the general solution of the equation

2500y + 2020y +gary 022=0

. 249 64g° . 224¢% .. 1004 g4 "
1 Y= T T T s et ¥ T T1.8.27. 64T Tt
_.i N 92 2n 93 3n 94 an __ P
+4 (1 o T aA” 1.4 00" t1 2.9 16087 ete. )i

9 n ag“ 2n agg 3N ag4 dn __
ta “an” +1 47z4x 1.4.9n8° +1.4.9.16n8x ete.,

* Modern Analysis, Ch. x11. It is to be remembered that, when m is a positive integer, then

1 1 1
%(1):—‘)/, %(77l+1)=1‘+§+..-+"‘—7,

m
where v denotes Euler’s constant, 0-5772157 ... .

+ Imst. Cale. Int. 11. (Petersburg, 1769), § 977, pp. 233—285. See also dcta Acad. Petrop. v.
(1781) [published 1784], pars 1. Mathematica, pp. 186—190.
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where 4 and a are arbitrary constants. He gave the following law to determine successive
numerators in the first line:

6=3.2-~1.0, 22=5.6—-4.2, 100=7.22-9.6,
548=9.100-16. 22, 3528=11. 548 ~25, 100 etc.
If ( + 3 + o+ ) ;::”.,

this law is evidently expressed by the formula

Omr1=02m+1) op—m? 0y, _4.

3:52. The expansion of ¥, (z) wn an ascending series and the definition of
. (2).
We shall now obtain Hankel’s* expansion of the more general function
Y, (2), where n is any positive integer. [Cf. equation (4) of § 3°5.]
It is clear that 7
aJ (Z) o g { (_)m (_{%Z)u+2m
v v m!'T(v+m+1)

X ym (1 \v+2m
=m§0m(’ I‘)(y(j-zng, +1) {log (%Z) - (V +m + 1)}

o (_)m (%Z)n+2m

gm0 ml(n+m)!

{log (42) — Y (n+m + 1)},

when v—mn, where n is a positive integer. That is to say

aJ (Z) _ \ ( )m (1Z)n+2m 1 1
(1)[ Jun—{V+J%M§ZﬂJh@)—nfozgfgizaT{l+2+ +n+m}
The evaluation of [0J_, (2)/0v],—n is a little more tedious because of the pole
of ¢y (—v+m+1) at v=n in the terms for which m=0,1,2,...,n —1. We
break the series for J_, (2) into two parts. thus

_—n 1 ( )m(qz)«v+2m @0 , (__)7n(_2LZ)—u+2m
S (2) = — 0m’ (- u+m+1)+m§nml F(—v+m+1)°

and in the former part we replace
1 , I'(v—m)sin(v —m)
F(—v+m+1) Y - :

Now, when 0 <m < n,

l:% {(%— zy vt 1N (v —Wm) sin (v — m) w}’] -

= [(bay+m T (v —m)
{2 (v —m) sin (v—m) 7 + cos (v—m) w —w " log (4 2) sin (v—m)7}]—n
= ($2)7"* I" (n — m) cos (n — m) . "

* Math. Ann. 1. (1869), p. 471.
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Hence
[M) _ nil (=) T (0 — m) (dz)~n+am
ov v=n  m=0 m!
© —yYm (1 \=~n+2m
+ 3 OrGe) {=log(}2) + Y (—=n+m+1)},

men M| (—n+m)!
that is to say
| n-~1 _ _ t w (__\Ym (1 \ntem
(2) [:_aiéi(z)J =(_)n > (*7?,‘ m 1)'(%2)—71+2m+(_>n--1 > ( ) <2Z)

ov m ! m=0 m!(n+m)!

x {log (42) — ¥ (m + 1)},

m=0

when we replace m by n + m in the second series.
On combining (1) and (2) we have Hankel’s formula, namely

@ (_)m (%Z)nﬂzm

n—1 (n —m — 1)*Y (%Z>_ﬂ'+2m + 2 o

3) Y =— R
(3) n(2) =0 m ! m=0 M (n+m)!
x{2log(32z) =Y (m+1)—(n+m+1)}
n-i
L (n—m-—1)!
=2y +log (42} S () — (hoy $ PTIZ Dl s
_ 3 L‘)J%Qi"{l 1 1. 1.1 _1 %
9,20 mi(n+m)! (1 + 2 R +E+T+Q+ +fn—l:;7, )
In the first term (m = 0) of the last summation, the expression in {} is
11, 1
i + g T + e
It is frequently convenient (following Lommel*) to write
’ oJ, (2) .
& J, (2)log 2,

(4) P.(e)=
so that -
- 0 —m (1 g \v+2m
(%) P ()=— mz;o m(! I)‘ (152—4-7)714— 1)
when v is a negative integer, Jj, (2) is defined by the limit of the expression
on the right.
We thus have

(6) Y, (2)=2J,(2)log 2z + gn (&) + (=) g—” (2).

log2+(v+m+ 1)};

2
The complete solution of fz—gz+ag/:0 was given in the form of a series (part of which

contained a logarithmic factor) by Euler, Inst. Calc. Int. 11 (Petersburg, 1769), §§ 935,
936 ; solutions of this equation are
oy (Qa%x%), 22 Y (Za%a:%).

2
Euler also gave (¢bid. §§ 937, 938) the complete solution of x% gx'z+ay=0; solutions of

this equation are
1 1 1 1 1 1
2% Jy (4% o%), 22 ¥, (4da? 2%).

* Studien iiber die Bessel’schen Functionen (Leipzig, 1868), p. 77.
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3:53. The definition of Y, (2).

Hitherto the function of the second kind has been defined only when its
order -is an integer. The definition which was adopted by Hankel* for wn-
restricted values of v (integral values of 2v excepted) is

vai Sy (2) cos v —J_, (2)
(1) Y, (2)=2me R T .

This definition fails both when » is an integer and when » is half of an
odd integer, because of the vanishing of sin 2v7. The failure is complete in
the latter case; but, in the former case, the function is defined by the limit
of the expression on the right and it is easy to reconcile this definition with
the definition of § 3+5.

To prove this statement, observe that

\: me'm  y—n J,(2)cosvr—dJ_, (z)]

lim ¥, (2) = lim

v v | COS VT SIn v’ v—n
— (=) lim J, (z) cos v —J_, (2)
7 v—"n
—) —
— Y, () + lim F rreosvmr—1 5 (z)]
r>=n i, v—mn
=Y, (2),
and so we have proved that
(2) m ¥, (2) =%, (2).
V>

It is now evident that ¥, (2), defined ei.ther by (1) or by the limiting form
of that equation, is a solution of Bessel’s equation for functions of order » both
when (i) » has any value for which 2v is not an integer, and when (ii) » is an
integer: the latter result follows from equation (2) combined with § 3-5.(3).

The function ¥, (2), defined in this way, is called a Bessel function of the
second kind (of Hankel's type) of order v; and the definition fails only when
v+ % 1s an integer.

Norr. The reader should be careful to observe that, in spite of the change of form, the
function ¥, (2), qua function of v, is continuous at v=n, except when z is zero; and, in
fact, J, () and ¥, (2) approach their limits J, (¢) and ¥, (¢), as v—mn, uniformly with
respect to z, except in the neighbourhood of z=0, where » is any integer, positive or negative.

3:54. The Weber-Schicfiv function of the second kind.

The definition of the function of the second kind which was given by
Hankel (§3'53) was modified slightly by Weber+ and Schliflif in order to
avoid the inconveniences produced by the failure of the definition when the
order of the function is half of an odd integer.

* Math. Ann. 1. (1869), p. 472.

t Journal fiir Math. txxvi. (1878), p. 9; Math. Ann. vi. (1873), p. 148. These papers are

dated Sept. 1872 and Oct. 1872 respectively. In a paper written a few months before these,

Journal fir Math. vxxv. (1873), pp. 75—105, dated May 1872, Weber had used Neumann’s
function of the second kind (see §§ 357, 3-58).

+ Ann. di Mat. (2) vir. (1875), p. 17; this paper is dated Oct. 4, 1872,
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The function which was adopted by Weber as the canonical function of the
second kind is expressible in terms of functions of the first kind by the formula®

J, (2) cos v — J_, ()

sin v

(or the limit of this, when v is an integer).

Schlifli, however, inserted a factor 47 ; and he denoted his function by

the symbol K, so that, with his definition,
- J, (z) cosvmr —J_, (2) .

sin v

K,,(Z)=%

Subsequent writers, however, have usually omitted this factor }, e.g. Graf
and Gubler in their treatiset, and also Nielsen, so that these writers work with
Weber’s function.

The symbol K is, however, used largely in this country, especially by
Physicists, to denote a completely different type of Bessel function (§ 3°7),
and so it is advisable to use a different notation. The procedure which seems
to produce least confusion is to use the symbol Y, (2) to denote Weber's function,
after the manner of Nielsen}, and to adopt this as the canonical function of
the second kind, save in rare instances when the use of Hankel’s function of
integral order saves the insertion of the number 7 in certain formulae.

We thus have

J, (2) cosvw —J_, (2) _ cosvm

(1) Y, (5)= sin v el Y, (2),
. o d(e)cosvr—J_,(2) 1
(2) Yn (Z) = E}Sz sin var = 77_ Yn (Z)

[Nore. Schlifli’'s function has been used by Bocher, Annals of Math. VI. (1892),
pp. 85—90, and by McMahon, Annals of Math. viiL (1894), pp. 57—61; IX. (1895),
pp- 23—30. Schafheitlin and Heaviside use Weber’s function with the sign changed, so
that the function which we (with Nielsen) denote by Y, (z) is written as — Y, (z) by
Schafheitlin§ and (when v=n) as — G4 (¢) by Heaviside||.

Gray and Mathews sometimes® use Weber’s function, and they denote it by the
symbol Y.

* Weber’s definition was by an integral (see § 6:1) which is equal to this expression; the
expression (with the factor 3w inserted) was actually given by Schléfli.

+ Einleitung in die Theorie der Bessel’schen Funktionen, 1. (Bern, 1898), p. 84 et seq.

I Nielsen, as in the case of other functions, writes.the number indicating the order as an
index, thus YV (z), Handbuch der Theorie der Cylinderfunktionen (Leipzig, 1904), p. 11, There
are obvious objections to such a notation, and we reserve it for the obsolete function used by
Neumann (§ 3-58).

§ See, e.g. Jowrnal fiir Math. cxiv. (1895), pp. 31—44, and other papers; also Die Theorie der
Bessel'schen Funktionen (Leipzig, 1908).

II Proc. Royal Soc. riv. (1893), p. 188, and Electromagnetic Theory, 11, (London, 1899), p. 255;
a change in sign has been made from his Electrical Papers, 11. (London, 1892), p. 445.

41 A Treatise on Bessel Functions (London, 1895), pp. 65—66.
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Lommel, in his later work, used Neumann’s function of the second kind (see § 3:57), but
in his Studien iiber die Bessel'schen Functionen (Leipzig, 1868), pp. 85—86, he used the
function

37 Vo (2) +{{ (n+4) +10g 2} Ju (2),
where ¥, (2) is the function of Weber. One disadvantage of this function is that the
presence of the term + (7 4-}) makes the recurrence formulae for the function much more
complicated ; see Julius, Archives Néerlandaises, XXVIIL. (1895), pp. 221—225, in this
connexion. |

3:55. Heine's definition of the function of the second kind.

The definition given by Heine* of the function of the second kind possesses
some advantages from the aspect of the theory of Legendre functions; it
enables certain generalisations of Mehler’s formula (§ 571), namely

lim , P, (cos 8/n) = J, (0),

T —>= 0O

to be expressed in a compact form. The function, which Heine denoted by
the symbol K, (), is expressible in terms of the canonical functions, and it is
equal to —37Y, (2) and to — ¥, (2); the function consequently differs only
in sign from the function originally used by Schlafli.

“The use of Heine’s function seems to have died out on the Continent many years ago;
the function was occasionally used by Gray and Mathews in their treatiset, and they term
it G (2). In this form the function has been extensively tabulated first by Aldisi and
Airey §, and subsequently in British Association Reports, 1913, 1914 and 1916.

This revival of the use of Heine’s function seems distinctly unfortunate, both on account
of the existing multiplicity of functions of the second kind and also on account of the fact
(which will become more apparent in Chapters vi and vir) that the relations between the
functions -/, (z) and ¥, (z) present many points of resemblance to the relations between the
cosine and sine; so that the adoption|| of J, (#) and G, (#) as canonical functions is com-
parable to the use of cosz and — 47 sinz as canonical functions. It must also be pointed
out that the symbol &, (z) has been used in senses other than that just explained by at least
two writers, namely Heaviside, Proc. Loyal Soc. L1v. (1893), p. 138 (as was stated in § 3-54),
and Dougall, Proc. Edinburgh Math. Soc. xvii1. (1900), p. 36.

Nore. An error in sign on p. 245 of Heine’s treatise has been pointed out by Morton,
Nature, Lx1i1. (1901), p. 29; the error is equivalent to a change in the sign of v in formula
§ 351 (3) supra. It was also stated by Morton that this error had apparently been copied
by various other writers, including (as had been previously noticed by Gray ) J. J. Thomson,
Recent Researches in Electricity and Magnetism (Oxford, 1893), p. 263. A further error

* Handbuch der Kugelfunctionen, 1. (Berlin, 1878), pp. 185—248.

+ 4 Treatise on Bessel Functions (London, 1895), pp. 91, 147, 242,

i Proc. Royal Soc. 1xvi. (1900), pp. 32—43.

§ Phil. Mag. (6) xx11. (1911), pp. 658—663.

|| From the historical point of view there is something to be said for using Hankel’s function,
and also for using Neumann’s funection; but Heine’s function, being more modern than either,
has not even this in its favour.

9 Nature, xrix. (1894), p. 859.

W.B. F, 5
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noticed by Morton in Thomson’s work seems to be due to a most confusing notation employed
by Heine; for on p. 245 of his treatise Heine uses the symbol &, to denote the function
called — = ¥, in this work, while on p. 248 the same symbol XK, denotes — §m (¥~ ¢Jj).

3:56. Recurrence formulae for Y, (2) and Y, (2).

The recurrence formulae which are satisfied by Y, (2) are of the same form
as those which are satisfied by J, (2); they are consequently as follows:

(1) Yo (@) + Yo (2) = 2V, (2),
(2) Y, 1(e) = Y, u(2) =27, (2),
(3) 2V, (&) +vY,(2)=2Y,,(2),
(4) 2Y) () = vY, (2) = —2 ¥, (2),

and in these formulae the function ¥ may be replaced throughout by the
function ¥.

To prove them we take § 32 (3) and (4) in the forms

I d
S L@ =@, T = =2 ()

if we multiply these by cot »7 and cosec y7r, and then subtract, we have

d vV — oV
d—z{z Y, ()} =22Y,.,(2),

whence (3) follows at once. Equation (4) is derived in a similar manner from
the formulae

diz {z7vd, (&)} =—27"J, 1 (2), g} (v J_, (@) =2z J_,1(2).

By addition and subtraction of (3) and (4) we obtain (2) and (1).

The formulae are, so far, proved on the hypothesis that » is not an integer ;
but since ¥, (¢) and its derivatives are continuous functions of v, the result of
proceeding to the limit when » tends to an integral value n, is simply to
replace v by n.

Again, the effect of multiplying the four equations by me*™ sec vz, which
is equal to 7e®*F™ sec (v + 1) 7, is to replace the functions ¥ by the functions
Y throughout.

In the case of functions of integral order, these formulae were given by Lommel,
Studien iiber die Bessel'schen Functionen (Leipzig, 1868), p. 87. The reader will find it
instructive to establish them for such functions directly from the series of § 3-52.

Neumann’s investigation connected with the formula (4) will be discussed in § 3'58.
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3:57. Neumoann’s function of the second kind.

The function which Neumann* adopted as the canonical function of the
second kind possesses the advantage that it is represented more simply by
“integrals of Poisson’s type than the functions of the second kind which have
been hitherto discussed ; but this is its only merit.

We first define the function of order zerot, which will be called Y'© (2).

The second solution of Bessel’s equation for functions of order zero being
known to contain logarithms, Neumann assumed as a solution the expression

Jo (2) log z + w,
where w is a function of z to be determined.

If this expression is to be annihilated by V,, we must have
Vow = — V, {J,(2) log 2}
= — 2zJ, (2). ‘
But, by § 2°12 (11),
— 220/ (2) =25, (2) = 8 §1(—)n-1n Tun (2);

and so, since V,Jy, (2) = 4n2 Jy, (2), we have

Vow =2 S (=)1V, J,, (2)/n
n=1

= 2V, 3, (=)t Sy (2)/0;
1

n=

the change of the order of the operations 3 and V, is easily justified.

Hence a possible value for w is
2 3 (2P T (@,
and therefore Neumann’s functyibc;n YO (2), defined by the equation
(1) YO (z)=J,(2) log z + 2751(—)"‘1 5]2"74}2) ,
is a solution of Bessel’s equation for functions of order zero.

Since w -0 as z = 0, (the series for w being an analytic function of z near
the origin), it is evident that J,(z) and Y@ (z) form a fundamental system of
solutions, and hence ¥, (z) is expressible as a linear combination of J, (z) and
Y (2); a comparison of the behaviours of the three functions near the origin
shews that the relation connecting them is

(2) Y0 (2) =3¥,(2) + (log 2 — ) J, (2)-

* Theorie der Bessel’schen Functionen (Leipzig, 1867), pp. 42—44. Neumann calls this function
Bessel’s associated function, and he describes another function, O,, (z), as the function of the second
kind (§9-1). But, because O, (z) is not a solution of Bessel’s equation, this description is un-
desirable and it has not survived. .

+ Neumann’s function is distinguished from the Weber-Schlédfli function by the position of the
suffix which indicates the order.

5—2
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3-571. The integral of Poisson’s type for Y (2).

It was shewn by Poisson* that
F ¢ircos® oo (2 8in® w) dw
v 0

is a solution of Bessel’s equation for functions of order zero and argument z;
and subsequently Stokes obtained an expression of the integral in the form of
an ascending series (see § 3'572).

The associated integral
2 Fﬂ cos (z sin 8).log (42 cos® 6) dO
T 1y

was identified by Neumann+t with the function Y@ (z); and the analysis by
which he obtained this result is of sufficient interest to be given here, with
some slight modifications in matters of detail.

From § 22 (9) we have

() _ 2 [

" cos (z cos 0) cos 2n8d0,
n nmw.!o

and so, if we assume that the order of summation and integration can be
changed, we deduce that

23 () (2) _ éjfwcos (2 cos 0) S cos 2n0 4
n=1 n T Jo n n

=1
=— 7—7_2— {-ﬂcos (z cos 0).log (4 sin? 0) do ;
Jo

from this result combined with Parseval’s integral (§ 2:2) and the definition of
Y@ (2), we at once obtain the formula

(1) vo=2[

from which Neumann’s result is obvious.

" cos (z cos €).log (42 sin* 0) d0,

The change of the order of summation and integration has now to be examined,
because Sn~1 cos 2n8 is non-uniformly convergent near §=0. To overcome this difficulty
we observe that, since = ( — )7 Jy, (2)/n is convergent, it follows from Abel’s theorem ] that

w ir

S (=)o (2)/n= lim s (=Y at Jon (2)/n= lim 23 / cos (2 oS 6)an0032”‘6d5_
n=1 N —

a—>1—-0 n=1 a—>1-0 7T n=1,/ 0 n

* Journal de I'Ecole R. Polytechnique, xir. (cahier 19), (1823), p. 476. The solution of an
associated partial differential equation had been given earlier (ibid. p. 227). See also Duhamel,
Cours d’dnalyse, 11. (Paris, 1840), pp. 122124, and Spitzer, Zeitschrift fiir Math. und Phys. 11.
(1857), pp. 165—170.

T Theorie der Bessel’schen Functionen (Leipzig, 1867), pp. 45—49. See also Niembdller, Zeit-
schrift fitr Math. und Phys. xxv. (1880), pp. 65—71.

I Cf. Bromwich, Theory of Infinite Series, § 51.
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Now, since a is less than 1, = (a® cos 2068)/n does converge uniformly throughout the
range of integration (by comparison with S«*), and so the interchange is permissible; that
is to say

Q ® ir " ) 9 [im © gt 2
-3 /2 cos(zcosé)Ma’0=—/ cos (zcos ) = M&M
Ta=1/ g n ), n—1 n

= —}T j T cos (2 cos 6) log (1 — 2a cos 28 + a?) d6.
0

Hence we have

s (=)o (2) = — lim 1 [W 008 (2 cos 8) log (1 — 2a cos 26 + a2) d#.
n=1 7 a=>=1-07T [

‘We now proceed to shew that*

1

lim |7 cos (z2cos ) {log (1 — 2a cos 20 +a?) — log (4a sin? )} dd=0.

a>1-0/ ¢
It is evident that 1—2acos 20+a?~4asin? §=(1-a)2>0,
and so log (1 — 2a cos 26 4+ a?) > log (4da sin? ).
Hence, if 4 be the upper boundt of | cos (zcos )| when 0 <6 <%w, we have

1 fﬁn cos (z cos 0) {log (1 — 2a cos 20 + a?) — log (4a sin? 8)} dé
o

[f {log (1 — 2a cos 26 + a?) — log (4a sin® 6)} d6

=4 f§ { © g co;Qne +log (1/a) — 2 log (2 Sin@)}d{)

=gmd log (l/a)a
term-by-term integration being permissible since a<<1. Hence, when a<C 1,

} /W cos (z cos 0) {log (1 — 2a cos 20 + a?) —log (4asin? )} d6 | < 4w d log (1/a)—=0,
0

as a-=1-0 ; and this is the result to be proved.

Consequently
s CrIn@ gy, L /gn cos (2 cos 8) . log (4a sin? ) d8
n=1 n a=>1-07 J o
= — 717 /W cos (z cos 6) . log (4 sin? @) dé,
0

and the interchange is finally justified.
The reader will find it interesting to deduce this result from Poisson’s integral for ./, (2)
combined with § 35 (5).

3:572. Stokes series for the Poisson-Newmann integral.
. . . . d*y 1 dy
The differential equation considered by Stokes{ in 1850 was a—'é + = f m2y =0, where
m is a constant. -This is Bessel’s equation for functions of order zero and argument imez.
Stokes stated (presumably with reference to Poisson) that it was known that the general
solution was

Y= /§ {C+ D log (z sin? 8)} cosh (mz cos 6) d6.

* The value of this limit was assumed by Neumann.

T If z is real, A=1; if not, 4 <exp {|I(2)]|}.

1+ Trans. Camb. Phil. Soc. 1x. (1856), p. [88]. [Mathematical and Physical Papers, 1. (1901),
p. 42.]
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It is easy to see that, with Neumann’s notation, the value of the expression on the right
is
3w {C— Dlog (49m)} Jy (imz)+47 D V'O (gmz).

The expression was expanded into a series by Stokes; it is equal to

L 2n ,2n Am .
Iw (C+ Dlogz) J, (Gmz)+2D 3 i fﬁ cos?* 8 log sin 6 d0,
= . a=0 )t

and, by integrating by parts, Stokes obtained a recurrence formula from which it may be

deduced that

B : (2n) ! . 1,1 1
—}O cosznélogsmédé).—zm ChE {%w10g2+iw <T+§+"'+ﬁ>}'

3:58. Neumann’s definttion of Y™ (z).

The Bessel function of the second kind, of integral order n, was defined by
Neumann* in terms of Y (2) by induction from the formula

()
(1) z d_Yd,(,Z) —nY W (2) = — 2V (2),

which is a recurrence formula of the same type as §2'12(4). It is evident
from this equation that
@) ¥o (2) = (= 23 (53) 70 (@)
Now Y0 (z) satisfies the equation
d d
(Y P +3 () o Prea =

b

and, if we apply the operator+ zidz to this equation n times, and use Leibniz

theorem, we get

n-+2 n+1
(3) 2 (2%) YO (2) + (20 + 2) (Z%Z) YO (2) + < \ YO (5) =
and so
22 <i>2 {Z_n Y(n) (Z)} + (27?/ + 2) (%Z) {Z—n Y(n) (Z)} + " Y(’n) (Z) =

zdz
This equation is at once reducible to
%) Vo Y (2) =
and so Y (2) is a solution of Bessel’s equation for functions of order n.

Again, (3) may be written in the form

z _g} {_ z—n—1 Y(n+1) (Z)} - (27@ + 2) z—n—1 Y(n-l—l) (Z) + P Y(n) (Z) =0

* Theorie der Bessel’'schen Functionen (Leipzig, 1867), p. 51. The function is undefined when
its order is not an integer.
+ The analysis is simplified by taking $22=¢, so that
d _d
zdz . dg ¢
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so that

Ayori(z) n41 1) - .
a + Yo () — Y™ (2) =0
whence we obtain another recurrence formula
(5) 20O oy (2 = 2¥ 0 (),

When we combine (1) with (5) we at once deduce the other recurrence
ormulae

(6) Y -1 (Z) + Y ) (Z) — _QLLYM) (Z),
(n~1 — Vmt1 E%Y " (Z)
(7) Y (2) — Yot () = 2 ===

Consequently Y (2) satisfies the same recurrence formulae as Jy, (2), Yn(2)
and Y, (2). It follows from § 3'57 (2) that

(8) Y (2) =§mYn(2) + (log 2 —v) Ju(2)
=4¥,(2) + (log 2 — ey) S (2).
A solution of the equation V, (y)=0in the form of a definite integral, which reduces to

the integral of § 3'571 when 7 =0, has beeu constructed by Spitzer, Zeitschrift fiir Math.
und Phys. 111. (1858), pp. 244-246; of. § 3-583.

3:581. Neumann’'s expansion of Y™ (2).

The generalisation of the formula § 3:57 (1) has been given by Neumann*
1t 1s _
n—1 9n—m—1 1
1) YO ()=Tp @) flogz—s,)— S 2 wnt Jald)

m=o (1 — ). m! "™

2 (=) (n + 2m)
* m21 m (n + m) Sngom (2),

h _t r 1ol
where S”’_l+§+3-'—"'< 5o So=0.

To establish this result, we first define the functions L, (z) and U, (2) by

the equations
nl gn=m=t p! J,(2)

<2> L, (Z) I (Z) 1Og Z— 7;2 O’(n _ W‘b) m g—m’
(3) Un (Z) = Sn Jn <Z> + 2 ( ) ()L + 2m) J N2 (Z>

me1 M (n+m)
so that YO (2) = L, (2) — U, (2).
We shall prove that L, (2) and U, (z)‘satisfy the recurrence formulae
(4) Lp(2)=— L/ (2) + (n/2) Ly, (2), Uni (2) == U,/ (2) + (n/2) U, (2),
and then (1) will be evident by induction from § 3'58 (2).

* Theorie der Bessel’schen Functionen (Leipzig, 1867), p. 52. See also Lommel, Studien ilber
die Besselschen Functionen (Leipzig, 1868), pp. 82—84 ; Otti, Bern Mittheilungen, 1898, pp. 34—35;
and Haentzschel, Zeitschrift fiir Math. und Phys. xxx1. (1886), pp. 256—38.



72 THEORY OF BESSEL FUNCTIONS [CHAP. IIT

It is evident that
a {L'n (Z)} _ logzﬁl— {J,;gz)} N Jn (2) . "il gu—m=1 p! d {Jm (z)}

dz | 2" dz 2 To(n—m).mldz | 2™
1 Jn(2)  ngl 2rmme1 pl w2 | g (2)
= Z—n [-—- J7l+1 (Z) lOg 2 4 - va -+ méom {2 (’)l —_ 'm) n—m+1 pr— }
_ 1 ‘ (n+1)J,(2) ngt2n—m pn! m } S (2)
T on [— J”H-l (Z) IOg z+ z ﬁ+m§0 m! {1 +n_7n+1 Zn—m-&-l:]
__Luu(o)
2N ?

and the first part of (4) is proved. To prove the second part, we have
Cd {Un (z)} - d (Ja (z)} + 3 (=)"(n+2m) d (Jpem (2)]
dz | 2" "dz | 2" m=1 m(n+m) dz| " |

o) 1 g ()"

{'m Jn+2m—1 (Z) - (’n + "n) Jn+2m+1 (Z)}

= n 2" anzlm(n+m)
S (2 1 = 1 1
== o0 5 £ P e O {5 1)
U 2)
Zn
and the second part of (4) is proved. It follows from § 3:58 (2) that
Yo (2) = Lypyy (2) + Uy (2) _ i {Y(m (2) — L, (2) + Un (Z)}

2n dz 2%

b

and since the expression on the right vanishes when n =0, it is evident by
induction that it vanishes for all integral values of n. Hence

Yo (z)y=L,(2) — Un(2),
and the truth of equation (1) is therefore established.

3:682. The power series for U, (2).

The function U, (z), which was defined in §3'581 (8) as a series of Bessel
coefficients, has been expressed by Schlifli* as a power series with simple
coefficients, namely
Iy = 3 (G
1) L"(Z>_,,EO m!(n+m)!
To establish this result, observe that it is true when n=0 by §3'51(3) and
§3:57 (1); and that, by straightforward differentiation, the expression on the
right satisfies the same recurrence formula as that of § 3581 (4) for U, (2);

equation (1) is then evident by induction.

Sppamn

,  Nore. It will be found interesting to establish this result by evaluating the coefficient
of (3z)»+2 in the expansion on the right of § 3-581 (3).

* Math. Ann. 111. (1871), pp. 146—147.
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The reader will now easily prove the following formulae :

(2) Fn (2) = {y —log 2} S, (2) — Un(2),
3) Y™ (2) = Ly, (2) + FPn (2) + {log 2 — o} J,, (2),
(4) $7 Y5 (2) = Lu (2) + Fn (2).

3-5683. The integral of Poisson’s type for ¥ (z).

The Poisson-Neumann formula of § 35671 for Y () (z) was generalised by Lommel,
Studien iber die DBessel'schen Functionen (Leipzig, 1868), p. 86, with a notation rather
different from Neumann’s; to obtain Lommel’s result in Neumann’s notation, we first
observe that, by differentiation of Poisson’s integral for J, (2), we have

0.7, (2) 2 (2)¥ m

v &) _ g — 23 _
o ORI Ghr /,
and so, from § 3-582 (3),
9 (Lz)n
(n) — __Z\2%/
PO rwehra
and hence, since Y (3)=vy (1) —2log 2= —y —2 log 2, we have the formula
i 2 ($2)» i .
1 Y @) S Z s 4 2n g log (4 P
1) (2) T/, cos (2 sin &) cos og (4 cos? 8) dé
= (n+E) =¥ B} In (@) + Ln (),
in which it is to be remembered that L, (z) is expressible as a finite combination of Bessel
coefficients and powers of 2.

36. Functions of the third kind.

In numerous developments of the theory of Bessel functions, especially
those which are based on Hankel’s researches (Chapters vI and vir) on integral
representations and asymptotic expansions of J, (z) and Y, (2), two combina-
tions of Bessel functions, namely J, (2) £ <Y, (2), are of frequent occurrence.
The combinations also present themselves in the theory of “Bessel functions
of purely imaginary argument” (§ 3:7).

cos (zsin 6) cos? @ {log (% cos? §) —r (v +3)} d6,

) fiﬂ cos (zsin @) cos™ @ {log cos? §—r (n+ ) — v} d0 + L (2),
0

It has consequently seemed desirable to Nielsen* to regard the pair of
functions .J, () + ¢V, (2) as standard solutions of Bessel’s equation, and he
describes them as functions of the third kind; and, in honour of Hankel,
Nielsen denotes them by the symbol . The two functions of the third kind
are defined by the equations+

(1) H® () =J,(2)+iY,(2), HP (2)=J,(2)—1Y,(2).
From these definitions, combined with § 3'54 (1), we have
@ B Om TG e S @)= E)
v 1 81N v v — % 8SIn vy
When v is an integer, the right-hand sides are to be replaced by their limits.

Since J, (2) and Y, (2) satisfy the same recurrence formulae (§§ 32, 3-56),
in which the functions enter linearly, and since the functions of the third kind

* Ofversigt over det K. Danske Videnskabernes Selskabs Forhandlinger, 1902, p. 125. Hand-
buch der Theorie der Cylindenfunktionen (Leipzig, 1904), p. 16.
+ Nielsen uses the symbols H,”(z), H," (2).
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are linear functions (with constant coefficients) of JJ, () and Y, (2), it follows that
these same recurrence formulae are satisfied by functions of the third kind.

Hence we can at once write down the following formulae :

@ #O@+aY @=210 0, B @+ 0=2u o),
@ HP (- (0= zf{{;(—) 7 )-a? ()= zdﬂj @,
®) 2 dﬂg @, vHY ()=H"Y (2), Ciggzi) +vH P ()=2HP (),
@ Oy oo O
- H;Z) @ Hil)( \ dch)j @ _ H(lz) ),

©®) wHY@)=0, v, P (2)=0,

d \m 1) N - 1) ANm o (2) (2)
© (5) eade=rnal ¢, () el @pmeent2, 0,
) 10 d \m HS/D <Z)) Yire — III(/:{m (2) m ‘H( ) (2) ( v+m (2)
(10) <2622> { o ,( ( vt+m <7dz> { } (=)™ T otm

Nore. Rayleigh on several occasions, e.g. Phil. Mag. (b) XLIIL. (1897), p. 266 ; (6) X1V,
(1907), pp. 350-—359 [ Scientific Papers, 1v. (1904), p. 290; v. (1912), pp. 410—418], has used the

symbol D, (z) to denote the function which Nielsen calls § w2/ (Z) (2).

3:61. Relations connecting the three kinds of Bessel functions.

It is easy to obtain the following set of formulae, which express each
function in terms of functions of the other two kinds. The reader will observe
that some of the formulae are simply the definitions of the functions on the
left.

HP (2)+ H? (2) _Y_ (&)=Y, (2)cosvm
(1) J,(2)= 5 in o
- e HP () ke HP () _ Y., (s)cosvm =V, (2)
@ I = 2 sin v
1) (2)
_J, (&) cosvr —J_,(2) _H,, (&) —H,” (2)
(3) Y, (2)= sin v B 2 ’
@ Vool @esyr e H (@)= H ) (@)
- - sin v - 2
(5) H® (z) = J (Z)—e_ym']_ (2) Y_, (Z> —e Y, (Z)
v ¢ sin v sin v
(6) H(z) (Z>=ev”in (Z)—J_,,»QZ) Y_,,(Z)—e"m Y, (Z)
v 7 8ln v sin v

From (5) and (6) it is obvious that

) H(—ll (2) = e H,(,l) (), H (_21 (2) = gvm H,(,Z) (2).
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3:62. Bessel functions with argument —z and ze™.

Since Bessel’s equation is unaltered if z is replaced by — 2, we must expect
the functions J ., (— 2z) to be solutions of the equation satisfied by J ., (2).

To avoid the slight difficulty produced by supposing that the phases of
both of the complex variables z and —z have their principal values®, we
shall construct Bessel functions of argument ze™"’, where m is any integer,
arg z has its principal value, and 1t 1s supposed that

arg (ze™™) = mm + arg z.

Since J, (2)/z is definable as a one-valued function, it is obviously con-
venient to assume that, when the phase of z is unrestricted, J, (2) is to be
defined by the same convention as that by which z” is defined; and accordingly
we have the equations ,

(1) : J, (zemm) = et J, (2),
(2) S, (zemmiy = emmmi S (2).

The functions of the second and third kinds will now be defined for all
values of the argument by means of the equations § 3'54 (1), § 36 (1); and
then the construction of the following set of formulae is an easy matter:

(3) Y, (zem%) = e=mmi Y, (2) + 2¢ sin mwr cot v J, ,(2),
(4)  Y_,(zemm)y=e " Y _ (2)+ 2isin my cosec v J, (2),

sin mvTr

(5) .Hf}l) (Zemml) = g~ mwmi Hﬁl) (Z) — Qg-vmi JV (Z)

sin v

sin (1 —m) v , SIn My

H(l) — p—VTL - (2)
, (B)—e sin v H7(2),

sin v

2 (2) ML) — p— MYV (2) 1z sin myr
(6) H)” (ze™)=¢ H ™ (2) + 2e i ie— J,(2)

sin (1 +m sin mv
SN A F M)V @)y gt ST )y
s v v sin v v

Of these results, (3) was given by Hankel, Math. Ann. viiL (1875), p. 454, in the special
" case when m=1 and » is an integer. Formulae equivalent to (5) and (6) were obtained by
"Weber, Math. Ann. XXXVIL (1890), pp. 411, 412, when m=1; see § 6'11. And a memoir
by Graf, Zeitschrift fiir Math. und Phys. XXXVIIL (1893), pp. 116—120, contains the general
formulae.

3:63. Fundamental systems of solutions of Bessel’s eguation.

It hag been seen (§ 3:12) that J, (2) and J_, (2) form a fundamental system of
solutions of Bessel’s equation when, and only when, v is not an integer. We shall
now examine the Wronskians of other pairs of solutions with a view to deter-
mining fundamental systems in the critical case when » is an integer.

* For Arg (—2) = Arg z = m, according as I (z) Z 0.
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It is clear from § 3:54(1) that

AR (T, (2), YV, (2)} = — cosec v . A {J, (2), J_, (2)}
2

mz’
This result is established on the hypothesis that » is not an integer; but con-
siderations of continuity shew that

(1) 4o {J, (2), YV, (2)} =2/(r2),

whether » be an integer or not. Hence J, (2) and Y, (2) always form a funda-
mental system of solutions.

It is easy to deduce that

Qv
@) W), Vo)) = o
and, in particular¥,
(3) aex {Jn(2), ¥, (Z)} = 2/2'

When we express the functions of the third kind in terms of J,(2) and
Y, (2), 1t is found that

(1) @ . .
(4) dan (H, (2), H, (z)}= — 20 { J, (2), V., (2)} = — 4i/(72),
so that the functions of the third kind also form a fundamental system of
solutions for all values of v.

Various formulae connected with (1) and (3) have been given by Basset, Proc. London
Math. Soc. xx1. (1889), p. 55; they are readily obtainable by expressing successive differ-
ential coefficients of J, (¢) and Y, (2) in terms of J, (2), J,/ (2), and Y,(z), ¥,/ (z) by re-
peated differentiations of Bessel’s equation. Basset’s results (of which the earlier ones
are frequently required in physical problems) are expressed in the notation used in this
work by the following formulae:

valid rel 7" ; 2
(5) gy (@) Y, (o)=Y, <Z)Jv (Z)=“‘7-z;2,
6 T @1 @) @==(1-5
< ) v v v v _7TZ P 5
vl 1724 2 2+2
) NCR CACRS A CRARORE Co )
’ vali {4 ’ 127 . 2 3V2
® VEORCEOES FROR AN ORE 72—1),
1 T 71 rtr 2 2 2+1 4_ 2
(9) T VY@= ¥ 7 (=2 (12 MR,
7 (i r iv 4 3243
10 T @ TE) - T, () 2 = (1-2),
) . 4. 2 9,213
1) ) @I @) LM E)= - 2 ( e 1> .

Throughout these formulae ¥, may be replaced by J_, if the expressions on the right
are multiplied by —sinv#; and J,, ¥, may' be replaced by Hfll), Hﬁz) throughout if the

expressions on the right are multiplied by — 27.

* Cf. Lommel, Math. Ann. 1v. (1871), p. 106, and Hankel, Math, 4Ann. viir. (1875),»p. 457,
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An associated formula, due to Lommel*, Math. Ann. 1v. (1871), p. 106, and Hankel,
Math. Ann. viin (1875), p. 458, is

2
(12) Ju(2) YVir1(2) =01 (2) Yv('Z):_;;'
This is proved in the same way as § 3'2 (7).

3:7. Bessel functions of purely vmaginary argument.

The differential equation

Py | dy _
(1) z dz‘_,+z~d;-(zz+v2)y-0,

which differs from Bessel’s equation only in the coefficient of ¥, is of frequent
occurrence in problems of Mathematical Physics; in such problems, it is usually
desirable to present the solution in a real form, and the fundamental systems
J, (3z) and J_, (22) or J, (1z) and Y, (i2) are unsuited for this purpose.

However the function e~ J, (22) is a real function of z which is a solution
of the equation. It is customary to denote it by the symbol I, (2) so that

© % Z)v—}—zm
(2) I,(z)= méo I T sm+l)

When 2z is regarded as a complex variable, it is usually convenient to define

its phase, not with reference to the principal value of arg 7z, as the consideration

of the function J, (vz) would suggest, but with reference to the principal value
of arg z, so that

1, (2)=emJ, (ze,™), (—m<argz<tm),
I,(z) = et J, (ze~ %), (37 <argz<m).

The introduction of the symbol 7, (2) to denote “the function of imaginary

argument ” is due to Bassett and it is now in common use. It should be men-

tioned that four years before the publication of Basset’s work, Nicolas} had

suggested the use of the symbol #), (2), but this notation has not been used by
other writers.

The relative positions of Pure and Applied Mathematics on the Continent as compared
with this country are remarkably illustrated by the fact that, in Nielsen’s standard
treatise §, neither the function 7, (z), nor the second solution X, (¢), which will be defined
immediately, is even mentioned, in spite of their importance in physical applications.

The function I_, (2) is also a solution of (1), and it is easy to prove (cf.
§ 312) that

(3) IR (I, (2), I, (o)} = — 2500

mwe

* Lommel gave the corresponding formula for Neumann’s function of the second kind.

+ Proc. Camb. Phil. Soc. vi. (1889), p. 11. [This paper was first published in 1886.] Basset,
in this paper, defined the function of integral order to be it®J, (iz), but he subsequently changed
it, in his Hydrodynamics, 11. (Cambridge, 1888), p. 17, to that given in the text. The more
recent definition is now universally used. '

t Ann. Sci. de UEcole norm. sup. (2) x1. (1882), supplément, p. 17.

§ Handbuch der Theorie der Cylinderfunktionen (Leipzig, 1904},
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It follows that, when v is not an integer, the functions 7, (2) and 7_, (2) form
a fundamental system of solutions of equation (1).

In the case of functions of integral order, a second solution has to be con-
structed by the methods of §§ 3:5—3-54.

The function K, (2), which will be adopted throughout this work as the
second solution, is defined by the equation

iy (0= 1, (2)
(4) K"(Z>_u1_1£3; 5 .{_ S I
An equivalent definition (cf. § 3'5) is
- _ = [5I_v (2) _0l,(2)
(D) Kn (Z) - 2 av - av . .

It may be verified, by the methods of § 3-5, that K, (2) is a solution of (1) when
the order v 1s equal to =.

The function K,(z) has been defined, for unrestricted values of v, by
Macdonald *, by the equation

I()=1,(2)

sin vr

and, with this definition, it may be verified that

(6) L K(9)=1%

(7) Ko ()= lim K, (2).
It is easy to deduce from (6) that
(8) K, (2) = tmiehmi HY (i2) = yarie=wmi H O (iz).

The physical importance of the function K, (z) lies in the fact that it is a
solution of equation (1) which tends exponentially to zero as z > oo through
positive values. This fundamental property of the function will be established
in § 7-23. '

The definition of A, (z) is due to Basset, Proc. Camb. Phkil. Soc. vi. (1889), p. 11, and
his definition is equivalent to that given by equations (4) and (5) ; the infinite integrals by
which he actually defined the function will be discussed in §§ 6°14, 6'15. DBasset subse-

quently modified his definition of the function in his Hydrodynamics, 11. (Cambridge, 1888),

pp- 18—19, and his final definition is equivalent to inﬂ [:8[_5, (2) 9L, ()
. 14

ov ve=11
In order to obtain a function which satisfies the same recurrence formulae as 7, (2),

Gray and Mathews in their work, A Zreatise on Bessel Functions (London, 1895), p. 67,
omit the factor 1/2% so that their definition is equivalent to

1[0I_, () _ 87, (2)

2 dv ov _jy=n

The only simple extension of this definition to functions of unrestricted order is by the
formula

K. @)=3mcotvn {I_, (2) -1, (2)},

* Proc. London Math. Soc. xxx. (1899), p. 167.
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(cf. Modern Analysis, § 17-71) but this function suffers from the serious disadvantage that
it vanishes whenever 2» is an odd integer. Consequently in this work, Macdonald’s
function will be used although it has the disadvantage of not satisfying the same recur-
rence formulae as [, (2).

An inspection of formula (8) shews that it would have been advantageousif a factor 5= had
been omitted from the definition of &, (z); but in view of the existence of extensive tables
of Macdonald’s function it is now inadvisable to make the change, and the presence of the
factor is not so undesirable as the presence of the corresponding factor in Schlafli’s function
(§ 3'64) because linear combinations of 7, (z) and K, (z) are not of common occurrence.

3:71. Formulae connected with I,(z) and K, (z).

We shall now give various formulae for I,(2) and K, (2) analogous to
those constructed in §§3:2—36 for the ordinary Bessel functions. The proofs
of the formulae are left to the reader. '

1) L@ =L@ =21E), K@)~ Kon(s)=— 2K, (2),

(2> Iv—l (Z) + Iv+1 (Z) = 211/, (Z)> Kv—l (z) + KV—I-I (Z) = - QK,,' (Z>’
(3) ZIVI(Z)+ VIV (Z)zz-[v—l (Z)’ ZKV/ (Z) + VKV (Z)=_ZKV—1 <Z);
(4) 21/ (2) —vl, (2) =2l (2), 2K, (2) — vE, (2) = — 2K, ., (2),

m d \m R
G (5g) #L@ = hn®: () EEAD) = O K @),
d m [v (Z) _ Iv m(Z) d K (z)] va m(Z)
-0 () 0=t () o e,
() I/ (2) = L (2) K, (2)=— K, (2),
(8) I_n(2)=1In(2), K_,(2)=K, (2).
The following integral formulae are valid only when R(» +%)>0:
(9) I,(2)= T (~E*‘2f;—r(3 f cosh (z cos 0) sin*8d 8
1
ﬂ?{%ﬁl / (1 — )7~ cosh (t) d
( Z> 2\V ~§ p 2t
“ 1 pr L e
(32)

—_ e NaT N +2cosf gy v
I‘(v—i—l—)I‘(%) 0e sin® @d6

P(v+2)F

_ 2 (32)
P+ TG

(L)[ cosh (z cos 0) sin0do

)f (1 — &)»~% cosh (zt) dt.
0
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These results are due to Basset. We also have

1 % Y@+l
(10) Loy (2) = NS [e EO ri(n—r)t (22)

iy L (n+7)!
+(=)mhe ,EO 7"!(72——7")1(22)’]’

A [es Gran
A (272) roor ! (n—1)(22)
+(—re 3 (ntm)! ]

r=0 m - T)Y (22—)%

(11) I _inyy (2) =

(7 % (07!
12 Kus@=(g) e 2 0" o

(18)  Ky(2) = (%) -

a8 K =—logda). L)+ £ Sy ),

=0 (m‘

(15) Kn(z)=1”2"1(—)m (n—m—1)!

2 =B ml (Fz)n—2m

-+ (__)n-h § —<%Z)n+2m
m=0 m! (n +m)'

{log (32) — 49 (m +1) — 4 (n+ m + 1)},

(16) K,(2)=— % F e?°s8 {log (22 sin? 0) + «} d6,
: Lo

(17) IV (Ze’mﬂri) —_ 6mu7'ri IV (Z),

sin mymr

"1 (2),

sin v

(18) K, (zemy= e~ K (2) — 7t

(19) TN (I, (2), K,()}=—1/z
(20) I, () Ky (2)+ 1,01 (2) K, (2) = 1/2.

The integral involved in (16) has been discussed by Stokes (cf. § 3:572).

The integrals involved in (9) and the series in (14) were discussed by Riemann in his
memoir *“Zur Theorie der Nobili’schen Farbenringe,” Ann. der Physik und Chemie, (2) xcv.
(1855), pp. 130—139, in the special case in which »=0; he also discussed the ascending
power series for 7, (2).

The recurrence formulae have been given by Basset, Proc. Camb. Phil. Soc. v1. (1889),
pp. 2—19; by Macdonald, Proc. London Math. Soc. xx1x. (1899), pp. 110—115; and by
Aichi, Proc. Phys. Math. Soc. of Japan, (3) 11. (1920), pp. 8—19.

Functions of this type whose order is half an odd integer, as in equations (10) and (12),
were used by Hertz in his Berlin Dissertation, 1880 [Ges. Werke, 1. (1895), pp. 77—91];
and he added yet another notation to those described in § 3-41.



3-8] BESSEL FUNCTIONS 81

3:8. Thomsonw’s functions ber (2) and bei (z) and their generalisations.
A class of functions which occursin certain electrical problems consists of
Bessel functions whose arguments have their phases equal to 7 or §ar.

The functions of order zero were first examined by W. Thomson*; they
may be defined by the equation-

(1) ber (o) 4+ ¢ bei (x) = J, (2t 4/2) = I, (2 A/7),
where # is real, and ber and bei denote real functions. For complex argu-
ments we adopt the definitions expressed by the formulae

(2) ber(z) +tbel (2)=J, (2t v+ 1)=1,(24/% 7).

Hence we have

124 1.8
@) lmmw=1—ggﬁ{§%~“”
4) bei (s) = 320 _ (b | (G2)"

(2 (6l T (10
Extensions of these definitions to functions of any order of the first, second and
third kinds have been effected by Russell] and Whitehead§.

The functions of the second kind of order zero were defined by Russell by
a pair of equations resembling (2), the function 7, being replaced by the
function K,, thus

(5) ker (z) + 1 kei(2) = K,(z /% 7).

Functions of unrestricted order v were defined by Whitehead with reference
to Bessel functions of the first and third kinds, thus

(6) ber, (2) + 1 bei, (2) = J, (ze+17),
(7) her, (2) + ¢ hei, (z) = H,W (ze*im),
It will be observed that]

(8) ker (z2) = — L7 hei (2), kei (2) =47 her (2),
in consequence of § 37 (8). ’

The following series, due to Russell, are obtainable without difficulty :

) ker (2) = — log (42) . ber (2) + 17 bei (2)
+ E Sl (%z)m\# (2m + 1),

m=0 {(2’7)?;) !}2

* Presidential Address to the Institute of Electrical Engineers, 1889. [Math. and Phys.
Papers, 111, (1890), p. 492.]

T In the case of functions of zero order, it is customary to omit the suffix which indicates
the order.

I Phil. Mag. (6) xvir. (1909), pp. 524—552.

§ Quarterly Journal, xui1. (1911), pp. 316—342.

|| Integrals equal to ker (2) and kei (2) occur in a memoir by Hertz, Ann. der Physik und Chemie,
(3) xxi1. (1884), p. 450 [Ges. Werke, 1. (1895), p. 289].

W. B. I 6
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(10) kei (2) = — log (42) . bei (2) — {m ber (2)

® (_)m (%Z)4on+2 .
-+ miom ’\,ll‘ (2771 -+ 2)

It has also been observed by Russell that the first few terms of the expansion of
ber? (z) + bei? (z) have simple coefficients, thus

. (32)r | (32)8 | (39)? $2)10
2 2 —_ 2 2
an ber® (2) +bei® () =1+=57 + 7+ 5 i T & g

but this result had previously been obtained, with a different notation, by Nielsen (cf.
§ 541); the coefficient of (3z)*” in the expansion on the right is 1/[(m!)?. (2m) 1.

+ony

Numerous expansions involving squares and products of the general
functions have been obtained by Russell; for such formulae the reader is
referred to Russell’s memoir and also to a paper by Savidge®.

Formulae analogous to the results of §§ 8:61, 362 have been discussed by
Whitehead ; it is sufficient to quote the following here :

(12) ber_, (¢) = cos v . ber, (2) — sin var . [hei, (2) — bei, (2)],
(13) bei_, (¢) = cos var. bei, (2) + sin var . [her, (2) — ber, (2)],
(14) her_,(z) = cos v7 . her, (2) — sin v . hei, (2),
(15) hei_, (2) = sin v . her, (2) + cos v . hei, (2).

&

The reader will be able to construct the recurrence formulae which have
been worked out at length by Whitehead.

The functions of order unity have recently been examined in some detail

by B. A. Smith?.

3:9. The definitvon of cylinder functions.

Various writers, especially Sonine} and Nielsen§, have studied the general
theory of analytic functions of two variables %, (2) which satisfy the pair of
recurrence formulae

@ Bos (&) + o () = 2B, (),
@) Bos ()~ Craa (2) = 26, (2),

_ in which z and v are unrestricted complex variables. These recurrence formulae
are satisfied by each of the three kinds of Bessel functions.

Functions which satisfy only one of the two formulae are also discussed by

Sonine in his elaborate memoir; a brief account of his researches will be given
in Chapter Xx.

* Phil. Mag. (6) x1x. (1910), pp. 49—58.
T Proc. American Soc. of Civil Engineers, xuvi. (1920), pp. 375—425.
+ Math. Ann. xvi. (1880), pp. 1—80.

§ Handbuch der Theorie der Cylinderfunktionen (Leipzig, 1904), pp. 1, 42 et seq.
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Following Sonine we shall call any function 4, (z), which satisfies both of
the formulae, a cylinder function. It will now be shewn that cylinder functions
are expressible in terms of Bessel functions.

When we combine the formulae (1) and (2), we find that

(3) 2G.) (2) + v&,(2) =2C,_, (2),

(4) 2C,)(2) —vG,(2) = — 2C,.(2),
and so, if ¥ be written for z (d/dz), we deduce that

(5) S +0) B, () = 2%, (2),

(6) & =G, (2) = — 20,1 (2).

It follows that
=) C, (2)=(>—v) (€, (2)}
— S =t D) B (D)

= — 220, (2),
that is to say
(7) V., @, (2) =0.
Hence G, (2)=a,J,(2) +b,Y,(2),

where @, and b, are independent of z, though they may depend on ». When
we substitute in (3) we find that '

ay, i (2)+b,Y,,(2) = a,J,(2) + b, Y, (2),
and so, since J,_, (2)/Y,_; (2) is not independent of z, we must have
a,=ay_y, b, =0b,_,.

Hence a, and b, must be periodic functions of » with period unity; and,
conversely, if they are such functions of v, it is easy to see that both (1) and
(2) are satisfied.

Hence the general solution of (1) and (2) is

(8) G, () =wm ()], (2)+ ()Y, (2),
where @, () and =, (v) are arbiﬁrary periodic functions of » with period unity.
It may be observed that an equivalent solution is

9 C, (2) ==, (v) H,Y (2) + =, (v) H,? (2).

A difference equation, which is more general than (1), has been examined by Barnes,
Messenger, XXXIV. (1905), pp. 52—71; in certain circumstances the solution is expressible
by Bessel functions, though it usually involves hypergeometric functions.

Nore. The name cylinder function is used by Nielsen to denote J, (2), ¥, (2), 1 (2)
and H,® (2) as well as the more general functions discussed in this section. This procedure
is in accordance with the principle laid down by Mittag-Leffler that it is, in general,
undesirable to associate functions with the names of particular mathematicians.

The name cylinder function is derived from the fact that normal solutions of Laplace’s
equation in cylindrical coordinates are

COS
e*e T, () oo mp

(cf. §4'8 and Modern Analysis, § 18°5).
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Some writers¥*, following Heinet who called J,, (#) a Fourier-Bessel function, call J, (2)
a Fourier function.

Although Bessel coefficients of any order were used long before the time of Bessel
(cf. §§ 1'3, 1°4), it seems desirable to associate Bessel’s name with them, not only because
it has become generally customary to do so, but also because of the great advance made by
Bessel on the work of his predecessors in the invention of a simple and compact notation
for the functions.

Bessel’s name was associated with the functions by Jacobi, Jowrnal fir Math. xv.
(1836), p. 13 [Ges. Math. Werke, vi. (1891), p. 101]. “Transcendentium 7 naturam varios-
que usus in determinandis integralibus definitis exposuit ill. Bessel in commentatione
celeberrima.” ‘ '

A more recent controversy on the name to be applied to the functions is to be found in
a series of letters in Nature, LX. (1899), pp. 101, 149, 174; Lxxx1. (1909), p. 68.

* B.g. Nicolas, Ann. Sci. de U Ecole norm. sup. (2) xt. (1882), supplément.
+ Journal fiir Math. uxix. (1868), p. 128. Heine also seems to be responsible for the term
cylinder function.



CHAPTER IV
DIFFERENTIAL EQUATIONS

4:1. Danvel Bernoulli’s solution of Riccaty’s equation.

The solution given by Bernoulli* of the equation

d
(L d—‘z = az" + by?
consisted in shewing that when the index »n has any of the values
0; —4 _—4. _8 _8. _12 _12. _ 16 _.16;
H 1> 3 3> 5 B 7 7T s 9 s cess

while @ and b have any constant values?, then the equation is soluble by
means of algebraic, exponential and logarithmic functions. The values of n
just given are comprised in the formula

4m
) i P

where m is zero or a positive integer.

Bernoulli’s method of solution is as follows: If n be called the index of the
equation, it is first proved that the general equation} of index n is transformable
into the general equation of index IV, where

n

VA .
) = n+1’

and it is also proved that the general equation of index n is transformable
into the general equation of index v, where

(4) v=—mn—4.

The Riccati equation of index zero is obviously integrable, because the
variables are separable. Hence, by (4), the equation of index — 4 is integrable.
Hence, by (3), the equation of index — % is integrable. If this process be con-
tinued by using the transformations (3) and (4) alternately, we arrive at the
set of soluble cases given above, and it is easy to see that these cases are
comprised in the general formula (2).

* Exercitationes quaedam mathematicae (Venice, 1724), pp. 77—80; Adcta Eruditorum, 1725,
pp. 473—475. The notation used by Bernoulli has been slightly modified; and in this analysis
n is not restricted to be an integer.

+ It is assumed that neither a nor b is zero. If either were zero the variables would obviously
be separable.

1 That is, the equation in which a and b have arbitrary values.
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4:11. Daniel Bernoulli’s transformations of Riccaty’s equation.

Now that the outlines of Bernoulli’s procedure have been indicated, we
proceed to give the analysis by which the requisite transformations are effected.

Take § 4°1(1) as the standard equation of index n and make the substitutions

[Nore. The substitutions are possible because — 1 is not included among the values of
n. 'The factor n+1 in the denominator was not inserted by Bernoulli; the effect of its
presence is that the transformed equation is more simple than if it were omitted.]

The equation becomes

1av_ b
VidZ = T Ve
that 1is
dY__ N 7N

where NV = — n/(n + 1) ; and this is the general equation of index V.
Again in §4-1 (1) make the substitutions

1 ¢
Z‘:Z: ,@/=—§—"’7§2-

The equation becomes

dn , )
a—g = CLC + b’)? f
where v = — n — 4; and this is the general equation of index v.

The transformations described in §4°1 are therefore effected, and so the
equation is soluble in the cases stated. But this procedure does not give the
solution in a compact form.

4:12. The limiting form of Riccate’s equation, with index — 2.

When the processes described in §§4°1, 411 are continually applied to
Riceati’s equation, the value to which the index tends, when m —-co in
§ 41 (2), is —2. The equation with index — 2 is consequently not soluble by
a finite number of transformations of the types hitherto under consideration.

To solve the equation with index — 2, namely

dy a
) dz =5t

write ¥ = v/z, and the equation becomes

z (%Z—Z =a + v+ bv?;
and this is an equation with the variables separable.
Hence, in this limiting case, Riccati’s equation is still soluble by the use
of elementary functions.
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This solution was implicitly given by Buler, Inst. Cale. Int. 11. (Petersburg, 1769), § 933,
p. 185. If we write (of. §4'14) y= B le , the equation which determines 5 is

d? a”n C(J)r]
a2tz =Y
which is homogeneous, and consequently it is 1mmediately soluble.

Euler does not seem to mention the limiting case of Riceati’s equation explicitly,
although he gave both the solution of the homogeneous linear equation and the transforma-
tion which connects any equation of Riccati’s type with a linear equation.

It will appear subsequently (§§ 4'7—4°75) that the only cases in which
Riccati’s equation is soluble in finite terms are the cases which have now been
examined ; that is to say, those in which the index has one of the values

0, —4%, —4;, —8&, —8; ..., =2
and also the trivial cases in which @ or b (or both) is zero.

This converse theorem, due to Liouville, is, of course, much more recondite
than Bernoulli’s theorem that the equation is soluble in the specified cases.

4:13. Euler's solution of Riccati’s equation.

A practical method of constructing a solution of Riccati’s equation in the
soluble cases was devised by Euler*, and this method (with some slight changes
in notation), will now be explained.

First transform Ricecati’s equation, § 4'1 (1), by taking new variables and
constants as follows:

(1) y=—n/b, ab=—c, n=2q-—2;
the transformed equation is
dn 252 — () -
(2) ds + n? — c?z =0;

and the soluble cases are those in which 1/g is an odd integer.
Define a new variable w by the equation

1 dw
= ¢zl 4 — 2~
3) n=0g1" + o
so that the equation in w 1is
2
(4) ‘212#2 %;—)4—(9—1)029—2@0:0.

A solution in series of the last equation is

w = gz~ ¥4eY § A,z
r=0
provided that
Ay _Q2gr+q+1D(2gr+g—-1)
4, 8gc (r+1) ’
* Nov. Comm. Acad. Petrop. vix. (1760—1761) [1763], pp. 3—63; and 1x. (1762—1763)
[1764], pp. 154-—169.
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and so the series terminates with the term 4,,z72"if ¢ has either of the values
+1/(2m + 1); and this procedure gives the solution* examined by Bernoulli.

The general solution of Ricecati’s equation, which is not obvious by this method, was
given explicitly by Hargreave, Quarterly Jouwrnal, vi1. (1866), pp. 266— 258, but Hargreave’s
form of the solution was unnecessarily complicated; two years later Cayley, PAil. Mag. (4)
XXXVI. (1868), pp. 348—351 [Collected Papers, vii. (1894), pp. 9—12], gave the general solu-
tion in a form which closely resembles Euler’s particular solution, the chief difference between
the two solutions being the reversal of the order of the terms of the series involved.

Cayley used a slightly simpler form of the equation than (2), because he took constant
multiples of botZ variables in Riccati’s equation in such a way as to reduce it to

d 2g—2
(5) I S
4-14. Cayley’s general solution of Riccati’s equation.
We have just seen that Ricecati’s equation is reducible to the form

2 2 20—
dn — 22202 = ()
!z+77 c?z ,

given in § 413 (2); and we shall now explain Cayley’s+ method of solving
this equation, which is to be regarded as a canonical form of Ricecati’s
equation.
When we make the substitution} n = d (log v)/dz, the equation becomes

(1) v _ 2?12y = 0

: dz? ?
and, if U, and U, are a fundamental system of solutions of this equation, the
general solution of the canonical form of Riccati’s equation is

: Uy + CUY

@ T on+ G,
where C, and C, are arbitrary constants and primes denote differentiations with
respect to z.

To express U, and U, in a finite form, we write

v = w exp (cz2?/q),
so that the equation satisfied by w is § 413 (4). A solution of this equation
in w proceeding in ascending powers of 27 is
q—1 (g—=1)@Bg-1)
1——t———c274 -
g(¢—1) q(g—1)29(2¢ - 1)
_ (¢g—1)(Bg—1)(5¢—1)
q(g—1)29(29-1)39(3¢—1)
and we take U, to be exp (cz?/q) multiplied by this series.

2224

2%+ ...,

* When the index n of the Riceati equation is-—~ 2, equation (4) is homogeneous.

+ Phil. Mag. (4) xxxv1. (1868), pp. 848—351 [Collected Papers, vii, (1894), pp. 9—12]. Cf. also
the memoirs by Euler which were cited in § 4-18. . )

I This is, of course, the substitution used in 1702 by James Bernoulli; cf. §1-1.
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Now equation (1) is unaffected by changing the sign of ¢, and so we take

) s oa=1 .. @-DGg=D .
U, Uz—eXp(iczq/q)[l+q(q_1)02q+q(q_1)2g(2g—1)”q

L @=DG-DGg=1) ]

T q(@—1)2g(2¢ - 1)3¢ (3¢~ 1)
and both of these series terminate when ¢ is the reciprocal of an odd positive
integer. Since the ratio U, : U, is the exponential function exp (2¢z%/q)
multiplied by an algebraic function of 29, it cannot be a constant; and so
U,, U, form a fundamental system of solutions of (1).

If g were the reciprocal of an odd negative integer, we should write
equation (1) in the form

T = o (U ) =0,
whence it follows that

7 = 3% log (v, Vit Vo),
where r, and «, are constants, and

_ - g+1 . (@+1HBg+1) .,
Vi, Va= 2 exp (¥ e2t/q) [liq(ﬁl) Ft g2+ DT E

The series which have now been obtained will be examined in much greater
detail in §§ 4-4—4-42.

The reader should have no difficulty in constructing the following solutions of Riccati’s
equation, when it is soluble in finite terms,

Equation Values of U;, Uy

@) (dn/dz)+n*=1 exp (£2)

(i) (dnldz)+n?=7z—%43 (1F 32'3) exp (£ 323)

(iii) (dn/dez)+n2=2z"85 (1 F 5215 25 2%5) exp (+ 5215)
Equation Values of 7y, Vg

0 | (dnjd)+np=s"t | sexp(£1f2)

(i) (dnldz) +n2=2—8%3 z (1F 32~ 13) exp (£ 32~ 13)

(iii) (dn/dz)4n?=z—125 2(1F bz~ 15 4 23 2—2/5) exp (£ bz~ 1/5)

It is to be noticed that the series U;, U; (or Vi, V,, as the case may be) are supposed
to terminate with the term before the first term which has a zero factor in the numerator ;
see § 4:42 and Glaisher, Phil. Trans. of the Royal Soc. cuxxir. (1881), p. 773.
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Among the writers who have studied equation (1) are Kummer, Journal fiir Math. X11.
(1834), pp. 144—147, Lobatto, Journal fir Math. xvii. (1837), pp. 363—371, Glaisher (in
the memoir to which reference has just been made), and Suchar, Bull. de la Soc. Math. de
Lrance, xxXx11. (1904), pp. 103—116; for other references see § 4-3.

The reader will observe that when ¢=0, the equation (1) is homogeneous and imme-
diately soluble; and that the second order equation solved by James Bernoulli (§ 1°1) is
obtainable by taking ¢=2 in (1), and so it is not included among the soluble cases.

4:15. Schlcfli’s canonical form of Riccati’s equation.
The form of Riccati’s equation which was examined by Schlafli* was

du’._ & __ f—a—1,,2
(1) —Cﬂ—t t w2

This is easily reduced to the form of § 4'13(2) by taking —¢~*/a as a new
independent variable.

To solve the equation, Schlifli wrote

d log vy
— fat+1 .
@ = et : s

and arrived at the equation

d*y dy . _
et Fla, t)= 3 "

meom! I (a+m+1)’
the general solution of the equation in ¥ is
y=cF(a,t)+ ct™F (—a, t).
The solution of (1) is then

"™ F(a+1,t)+cF(—a—1,1)
T o F(a,t)+ et F (— a, t) '

The connexion between Riccati’s equation and Bessel's equation is thus
rendered evident; but a somewhat tedious investigation is necessary (§ 4°43)
to exhibit the connexion between Cayley’s solution and Schlafli’s solution.

Note. The function ¢ : 2, defined as the series

142, 2 1 @

z  2z(+1) 2.3 z(z+1)(=z+2) 7
which is evidently expressible in terms of Schlifli’s function, was used by Legendre,
Eléments de Géométrie (Paris, 1802), note 4, in the course of his proof that = is irrational.

Later the function was studied (with a different notation) by Clifford; see a posthumous
fragment in his Math. Papers (London, 1882), pp. 346—349.

* Ann. di Mat. (2) 1. (1868), p. 232. The reader will see that James Bernoulli’s solution in
series (§ 1*1) is to be associated with Schldfli’s solution rather than with Cayley’s solution.
+ This notation should be compared-with the notation of § 4-4.
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It is obvious that J, (2)=(L2)» I (v, —%2?),
and it has recently been suggested* that, because the Schlafli-Clifford notation simplifies
the analysis in the discussion of certain problems on the stability of vertical wires under
gravity, the standard notation for Bessel functions should be abandoned in favour of a
notation resembling the notation used by Schlafli-Clifford :—a procedure which seems com-
parable to a proposal to replace the ordinary tables of trigonometrical functions by tables
of the functions

el /l;ﬂl 2] xn

o e @nt1)t

4-16. Miscellaneous researches on ficcati's equation.

A solution of Riccati’s equation, which involves definite integrals, was given by Murphy,
Trans. Camb. Phil. Soc. 111. (1830), pp. 440—443. The equation which he considered is

du
= 2 — .
g7 + Ay?= By,

and, if @ be written for 1/(m+2) and 4~ d (log )/d¢ for w, his solution (when 4Ba?=1) is

y=3%t fil h=1[¢p (R) exp (eY4)h) +p (1/h) exp (htV/)] dh,

h © hr
—ohp—a o—h pa—1 = e —
where ¢ (h)=erl /0 e~hrhe=1dh nioa(a/'l']-) (@+2) . (atn)

If 1/A be written for % in the second part of the integral, then the last expression given
for y reduces to wit multiplied by the residue at the origin of 2=1 ¢ (&) exp (¢1/¢/%), and the
connexion between Murphy’s solution and Schlifli’s solution (§ 4°15) is evident.

An investigation was published by Challis, Quarterly Journal, vit. (1866), pp. 51-—53,
which shewed how to connect two equations of the type of § 4'13 (2), namely
ay ., 4 9 2q—2
%'*"7 =C"% ]
in one of which 1/g is an odd positive integer, and in the other it is an odd negative
integer. This investigation is to be associated with the discovery of the two types of
solution given in § 4°14.

du

The equation & T a—: + bz" u? — cg™=0,

which is easily transformed into an equation of Riccati’s type by taking z7~*! and 2% as
new variables, was investigated by Rawson, #Messenger, vii. (1878), pp. 69—72. He trans-
formed it into the equation
% — g;:..qy_*_bzm—u,yz . CZ"'H”:O,

by taking bu=cz?/y; two such equations are called cognate Riccati equations. A somewhat
similar equation was reduced to Riccati’s type by BrassinegJournal de Math. xvI. (1851),
pp. 2656—256.

The connexions between the various types of equations which different writers have
adopted as canonical forms of Riccati’s equation have been set out in a paper by Greenhill,
Quarterly Journal, Xvi. (1879), pp. 294—298.

* Greenhill, Engineering, cvir. (1919), p. 834; Phil. Mag. (6) xxxvirr. (1919), pp. 501—528;
see also Engineering, cix. (1920), p. 851.
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The reader should also consult a short paper by Siacci, Napole Rendiconti, (3) viL
(1901), pp. 139—143. And a monograph on Riccati’s equation, which apparently contains
the majority of the results of this chapter, has been produced by Feldblum, Warschawu
Univ. Nach. 1898, nos. 5, 7, and 1899, no. 4.

4:2. The generalised Riccati equation.

An obvious generalisation of the equation discussed in § 4-1 is

dy_ .

where P, ), R are any given functions of z. This equation was investigated
by Euler*. It is supposed that neither P nor R is identically zero; for, if
either P or R is zero, the equation is easily integrable by quadratures.

It was pointed out by Enestrom, Ancyclopédie des Sci. Math. 11. 16, § 10, p. 75, that a
special equation of this type namely

nwx dx — nyy dx + vz dy = xy dx

was studied by Manfredius, De constructione aequationum differentialum primi gradus
(Bologna, 1707), p. 167. “Sed tameén hae¢ eadem aequatio non apparet quomodo construi-

bilis sit, neque enim videmus quomodd illam integremus, nec quomodo indeterminatas ab
inviceém separemus.”

The equation (1) is easily reduced to the linear equation of the second
order, by taking a new dependent variable u defined by the equationt

; 1 dlogu
) , Y="R dz -
The equation then becomes
d*u 1 dR) du
Conversely, if in the general linear equation of the second order,
d? d
(4-‘> ]%d—zug'*'}h é*‘ﬁ?zb: 0,
(where p,, p,, p, are given functions of z), we write
(5) w=elviz,
the equation to determine 7 is
dy __p»_ P
6 o=t By — e
(6) de = "p YTV

which is of the same type as (1). The complete equivalence of the generalised

Riccati equation with the linear equation of the second order is consequently
established.

The equations of this section have been examined by Anisimov, Warschaw Univ. Nach.
1896, pp. 1—33. [Jakrbuch iiber die Fortschritte der Math. 1896, p. 256.]

* Nov. Comm. Acad. Petrop. viir. (1760—1761) [17638], p. 82; see also a short paper by W. W.
Johnson, dnn. of Math. 111. (1887), pp. 112—115.
-+ This is the generalisation of James Bernoulli’s substitution (§1-1). See also Euler, Inst.
Cale. Int. 11. (Petersburg, 1769), §§ 831, 852, pp. 88, 104.
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4:21. Euler’s theorems concerning the generalised Riccaty equation.

It has been shewn by Euler® that, if a particular solution of the
generalised Ricecati equation is known, the general solution can be obtained
by two quadratures; if two particular solutions are known the general
solution is obtainable by a single quadraturet. And it follows from theorems
discovered by Weyr and Picard that, if three particular solutions are known,
the general solution can be effected without a quadrature.

To prove the first result, let y, be a particular solution of

dy .
5, =P+ Qy+ Ry,
and write y = vy, + 1/v. The equation in v is

d”+(Q+2Ry0)v+R 0,

of which the solution is
v exp ((Q + 2Ryy) dz} + [Rexp {[(@ + 2Ry) dz} . dz =0
and, since v = 1/(y — v,), the truth of the first theorem is manifest.
To prove the second, let y, and y, be two particular solutions, and write
Y—%h
The result of substituting (y,w — y,)/(w — 1) for ¥ in the equation is

w =

Yo—y dw  w dy, 1 dy, o = 3o (y y)
w—iyd: Tw—Tde “wolds =L +t¢7, +R(T, =1 )

and, when we substitute for (dy,/dz) and (dy,/dz) the values P + Qy, + Ry,*
and P + Qy,+ Ry, the last equation is reduced to
1 dw

%%—Ry R/Z,l’

so that w = cexp {[(Ry, — Ry,) dz},

where ¢ is the constant of integration. Hence, from the equation defining w,
we see that y is expressed as a function involving a single quadrature.

To prove the third result, let y, and 7, be the solutions already specified,
let y, be a third solution, and let ¢’ be the value to be assigned to ¢ to make
y reduce to y,. Then

Y=Y _¢ Y=—"Y

y—in ¢ ge—un
and this is the integral in a form free from quadratures.

* Nov. Comm. Acad. Petrop. viir, (1760—1761) [1763], p. 32.

t Ibid. p. 59, and 1x. (1762—1763) [1764], pp. 163—164. See also Minding, Jouwrnal fiir
Math. xL. (1850), p. 361.
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It follows that the general solution is expressible in the form

Y=0h @) + /()

Hence it is evident that, if vy,, v,, vs, y, be any four solutions, obtained by
giving C the values C,, C;, C;, U, respectively, then the cross-ratio

(Y2 — %) (s — 4s)

(= Yy (Ys — Y2)

18 tndependent of z; for it is equal to

(01 - O‘z) (03 - 04)
(01 - 04) (03 - 02) .

In spite of the obvious character of this theorem, it does not seem to have
been noticed until some forty years ago*.

Other properties of the generalised Riccati equation may be derived from
properties of the corresponding linear equation (§4°2). Thus Raffyt has given
two methods of reducing the Riccati equation to the canonical form

du
d&

these correspond to the methods of reducing a linear equation to its normal
form by changes of the dependent and independent variables respectively.

+ 1t = F (£);

Various properties of the solution of Riccati’s equation in which P, @, R are rational
functions have been obtained by C. J. D. Hill, Journal fiir Math. xxv. (1843), pp. 23—37 ;
Autonne, Comptes Rendus, XovI. (1883), pp. 1354-—1356; cxxvIiL (1899), pp. 410—412; and
Jamet, Comptes Rendus de UAssoc. 'rangaise (Ajaccio), (1901), pp. 207—228; Ann. de la
Fac. des Sci. de Marsedlle, x11. (1902), pp. 1—21.

The behaviour of the solution near singularities of £, ¢, £2 has been studied by Falken-
hagen, Nieuw Archief voor Wiskunde, (2) vi. (1905), pp. 209—248.

The equation of the second order whose primitive is of the type

_Ccimi+canatc3ng

y_01f1+02§2+03§3’

where ¢;, cq, ¢3 are constants of integration (which is an obvious generalisation of the
primitive of the Riccati equation), has been studied by Vessiot, 4nn. de la Fac. des Sci. de
Toulouse, 1X. (1895), no. 6 and by Wallenburg, Journal fiir Math. cxxt. (1900), pp. 210—217;
and Comptes Rendus, cXXXVIIL. (1903), pp. 1033—1035.

* Weyr, Abh. bshm. Ges. Wiss. (6) viir. (1875-—1876), Math. Mem. 1. p. 30 ; Picard, Ann. Sci.
de VEcole norm. sup. (2) vi. (1877), pp. 342—343. Picard’s thesis, in which the result is con-
tained, is devoted to the theory of surfaces and twisted curves—a theory in which Riccati’s
equation has various applications.

+ Nouv. Ann. de Math. (4) 11. (1902), pp. 529—545.
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4:3. Various transformations of Bessel’'s equation.

The equations which we are now about to investigate are derived from
Bessel’s equation by elementary transformations of the dependent and inde-
pendent variables.

The first type which we shall consider is*

(1) R 1 -5

dz2 22
where ¢ is an unrestricted constant. The equation is of frequent occurrence
in physical investigations, and, in such problems, p is usually an integer.

The equation has been encountered in the Theory of Conduction of Heat and the
Theory of Sound by Poisson, Jowrnal de UEcole Polytechnique, xi1. (cahier 19), (1823),
pp. 249—403; Stokes, Phil. Trans. of the Royal Soc. 1868, pp. 447—464 [Phil. Mag. (4)
XxXVI. (1868), pp. 401—421, Math. and Phys. Papers, 1v. (1904), pp. 299—324]; Rayleigh,
Proc. London Math. Soc. 1v. (1873), pp. 93—103, 253---283 [Scientific Papers, 1. (1899),
pp- 138, 139]. The special equation in which p=2 occurs in the Theory of the Figure of
the Earth; see Ellis, Camb. Math. Journal, 11. (1841), pp. 169—177, 193—201.

Since equation (1) may be written in the form

d? (uz%) d (uz"%)
& dz? +z dz

1ts general solution is
(2) U = 2 Gpyy (ci2).

¢+ (p+37} . usi =0,

Consequently the equation is equivalent to Bessel’s equation when p is
unrestricted, and no advantage is to be gained by studying equations of the
form (1) rather than Bessel’s equation. But, when p is an integer, the solu-
tions of (1) are expressible “in finite termst” (cf. § 34), and it is then
frequently desirable to regard (1) as a canonical form. The relations between
various types of solutions of (1) will be examined in detail in §§ 4-41—4-43.

The second type of equation is derived from (1) by a transformation of
the dependent variable which makes the indicial equation have a zero root.
The roots of the indicial equation of (1) are p + 1 and — p, and so we write
u=wvz"?; we are thus led to the equation

dv 2pdv ,
(3) ar " o ds =0
of which the general solution is
(4) v=2G, s (ci2).

* See Plana, Mem. della R. Accad. delle Sci. di Torino, xxvi. (1821), pp. 519—538, and Paoli,
Mem. di Mat. e di Fis. della Soc. Italiana delle Sci. xx. (1828), pp. 183—188.
+ Thi noy Play 4 ndieg ione1) and (5) ip 2y
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Equation (3), which has been studied in detail by Bach, Adnn. Sci. de U Ecole norm. sup.
(2) 1. (1874), pp. 47—68, occurs in certain physical investigations; see L. Lorenz, Ann.
der Physik wnd Chemde, (2) xx. (1883), pp. 1—21 [Oeuwres Scientifiques, 1. (1898), pp. 371—
396]; and Lamb, Hydrodynamics (Cambridge, 1906), §§ 287-—291. Solutions of equation (3)
in the form of continued fractions (c¢f. §§ 5°6, 9-65) have been examined by Catalan, Bulletin
de PAcad. R. de Belgique, (2) xxx1. (1871), pp. 68—73. See also Le Paige, ¢bid. (2) xuI.
(1876), pp. 1011—1016, 935—939.

Next, we derive from (3), by a change of independent variable, an equation
in its normal form. We write z = {%/q, where ¢ =1/(2p +1), the equation then
becomes

d*v

5 P _ gpm—sy = 0,

(5) gt
and its solution 1s

(6) v = (£ VD Cryeq) (ct89/g).
When a constant factor is absorbed into the symbol %, the solution may be
taken to be

& Cryaq) (cr8/q).

Equation (5), which has already been encountered in § 4:14, has been studied by Plana,

Mem. della R. Accad. delle Sci. di Torino, xxv1. (1821), pp. 519—538; Cayley, Phl. Mayg.

(4) xxxVI. (1868), pp. 348—351 [Collected Papers, vii. (1894), pp. 9—12]; and Lommel,
Studien iiber dve Bessel'schen Functionen (Leipzig, 1868), pp. 112—118,

The system of equations which has now been constructed has been dis-
cussed systematically by Glaisher®, whose important memoir contains an
interesting account of the researches of earlier writers.

The equations have been studied from a different aspect by Haentzschel +

who regarded them as degencrate forms of Lamé’s equations in which both of
the invariants g, and g, are zero.

The following papers by Glaisher should also be consulted : Phil. Mag. (4) xuur (1872),

pp. 433—438; Messenger, VIIL (1879), pp. 20—23; Proc. London Math. Soc. 1x. (1878),
pp. 197—202, :

It may be noted that the forms of equation (1) used by various writers are as follows:

24 %
Gh gt (Plana),
ad*R 7 1
T~ szzﬁ—(%) R, (Poisson),

sz‘f* =T (Glaisher).

Equation (5) has been encountered by Greenhill | in his researches on the stability of a
vertical pole of variable cross-section, under the acticn of gravity. When the cross-section
is constant, the special equation in which ¢=# is obtained, and the solution of it leads to
Bessel functions of order +1.

* Phil. Trans. of the Royal Soc. crxx1i. (1881), pp. 759—828; see also a paper by Curtis, Cam-
bridge and Dublin Math. Jowrnal, 1x. (1854), pp. 272—290.

+ Zeitschrift fiir Math. und Phys. xxx1. (1886), pp. 25—383.

I Proc. Camb. Phil. Soc. 1v. (1883), pp. 656—73.
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4:31. Lommel’s transformations of Bessel’s equation.

Various types of transformations of Bessel’s equation were examined by
Lommel on two occasions; his earlier researches® were of a somewhat special
type, the latert were much more general.

In the earlier investigation, after observing that the general solution of

d*y 2v—1dy
(H dz* 2z dz

+y=0

is
(2) y=2"%, (2),

Lommel proceeded by direct transformations to construct the equation whose

general solution is z8*—%, (y2f), where a, B, v are constants. His result,

which it will be sufficient to quote, is that the general solution of

3) 2 ‘f; +(2a— 280 +1) z U | (s o (o — 2Bv)} u =
18
(4) w =28 G, (y2P).

When 8=0, the general solution of (3) degenerates into
u=z"%(¢c;+c¢,logz);
and when y=0, it degenerates into

w=z"% (¢ + 3 2%BY)
unless Bv is zero.

The solution of (3) was given explicitly by Lommel in numerous special cases. It will
be sufficient to quote the following for reference :

d?w  1du ve /
(5) @t dz+4< 2>“=0; =
d~u /0
(6) 2 a4z +2 dz (1 —%) =0 u=9. o
L d 1 3
(7) ?f + (=) du 71%4=0; =G, (JV2).
N/ 1 3 ;
(8) aff; +(1=») du 74=0; w= 2t G, (¢ J2).
9 d 24,228 —2 3
9) = 2-|-,8 Y2282 u=0; U=2% @1/(23) (y#R)-
1 d?u ¥ 2 + & 2%
(10) &g tu=0; w=2 Gy (§21), &Gy (k).
g
/ d2u 1@ ¢ 2923
(11) dz? Tou=0; u=zt Gy (1), 2 Gy (Fieh).

An account of Stokes’ researches on the solutions of equation (11) will be given in
§§ 64, 10-2.

* Studien wber die Besselschen Functionen (Leipzig, 1868), pp. 98—120; Math. Ann. 11
(1871), pp. 475—487.

T Math. dnn. x1v. (1879), pp. 510—536.

W. B. F. 7
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Lommel’s later researches appeared at about the same time as a memoir
by Pearson*, and several results are common to the two papers. Lommel’s
procedure was to simplify the equation

Clylx () 2v—1diy/x(} vy _

diy@F ¥ dy@ o x@
of which the solution is (§ 4-3)
(12) y=x ) (¥ ()} G, {¥ (2)}].

On reduction the equation becomes

(13) &y _ {\!f (2)+(2v >\;r (z) 9 X (Z)}@Z

dz " W (=) v T2 @) dz
¥ (2) V@) o XX E_ X'@ e |y =
+H«p(>+<2 Dyt QX(Z)}x(z) x(z)f“””}]y

Now define the function ¢ (z) by the equation
BV @), g F @, 5K @)

() ¥ (2) v T x(’
It will be adequate to take
(14) b (2) =¥ (o) {x (D ¥ ()

If we eliminate x (2), it is apparent that the general solution of

(15) 'y ¢ (2) dy_*_[ {95 (Z)} 1¢"(2)

dz* ¢ (2) dz b (2) 2 ¢(2)
3W’H<Z) E‘LLQ 2 — 241 ¥ (2)* =
| ol i e n L | y=o
is
_ J{e@) ¥ ()]

As a special case, if we take ¢ (2) =1, it is seen that the general solution of

By 147 B (W @ . L (¥ (@)
(n @2*[2:;7@7 {«;r O+l @ - U(z)”“ 0
18
(18) y = N () (D). By (1 (2],

Next, returning to (13), we take y (2) = {¢ (2)}*, and we find that the general
solution of

18

(20) y={ @G (@)}

* Messenger, 1x. (1880), pp. 127—131. T The functions x (z) and ¢ (z) are arbitrary.




4-32] DIFFERENTIAL EQUATIONS 99

The following are special cases of (17):

d*y

(21) (- =0; y=7.(),
(22) dzy + 32/_2:1/ Y = 0; y = 2@ (el/z)
dz? 2t v '

The independent researches of Pearson proceeded on very similar lines
except that he started from Bessel’s equation instead of from the modified
form of it. The reader will find many special cases of equation (17) worked
out in his paper.

A partial differential equation closely connected with (7) and (8), namely

?u ou ou

has been investigated by Kepinski, Math. Ann. X1 (1906), pp. 397—405, and Myller-
Lebedeff, Math. Ann. 1xvIL. (1909), pp. 325—330. The reader may verify that Kepinski’s

formula
1

29:2;?/: oxp { H-Zt— ,uw} @z, (M)f@”) dw

is a solution, when f (w) denotes an arbitrary function of w.

The special case of the equation when »= —1 was also investigated by Kepinski, Bull.
int. de U dcad. des Sct. de Cracovie, 1905, pp. 198—205.

4:32. Malmstén's differential equation.

Twenty years before Lommel published his researches on transformations of Bessel’s
equation, Malmstén#* investigated conditions for the integrability in finite terms of the
equation

Ay 7 Ay (g
W Tl = (A )y

which is obviously a generalisation of Bessel's equation; and it is a special case of § 431
(15).

To reduce the equation, Malmstén chose new variables defined by the formulae

N

where p and ¢ are constants to be suitably chosen.

The transformed equation is

Céé‘z+ 2pg—g+1+gr g“ Z( [A 2¢mega—s 4 ST PL (7"-7”9 9>]

We choose p and ¢ so that this may reduce to the equation of § 4-3 (1) considered by

Plana, and therefore we take

2pq —q+1+gr=0, (m+2)g=2,
so that p= — 37— }m.

The equation then reduces to
dPu [ 44 @* s+ (1~ )} — 1:| w

ag = Lm+ap™ ag?

* Camb. and Dublin Math. Journal, v. (1850), pp. 180—182. The case in which s=0 had been
previously considered by Malmstén, Journal fiir Math. xxx1x. (1850), pp. 108-—115.

7—2
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By § 43 this is integrable in finite terms if
1 {4+ (1 - —g=n(n+1),
where n is an integer; so that
Nids+(1-r)%
n+% )

The equation is also obviously integrable in the trivial cases 4 =0 and m= —2.

(2) m=+2=+

4:4. The notation of Pochhammer for series of hypergeometric type.

A compact notation, invented by Pochhammer* and modified by Barnest,
is convenient for expressing the series which are to be investigated. ‘We shall
write now and subsequently

(Wn=0a(a+1)(a+2)...(a +n—1), () =

The notation which will be used is, in general,

(0, Oy ovovs O P1s Poy oevs Pgs Z) = § (@) () - (op)n 2",
p Q( v > P e Pe ) n=0 71!(P1)n (Pz)n (Pq)n

In particular,

(ah + (e 2 (a)s

Ti(o) ~ " 21(p)s” " B1(p)s
— § (O()n Zn

N n=0 n! (P)n ’

0F1(P§ z) =

Filay p; 2)=1+ 2+ ...

s 2
n=0 1! (P)n ’
.o 3 (a)n (B)n n
(e, By py 2) ~7L§::0 mﬁ.z .
The functions defined by the first three series are called generalised hyper-

geometric functions.

It may be noted here that the function F,(a; p; 2) is a solution of the
differential equation

and, when p is not an integer, an independent solution of this equation is

2 Fi(la—p+1; 2—p; 2).
It 1s evident that
T (2) =3 p 1 —12)
v 1‘\ (7/ + 1) <0+ 1 b 4 .
Various integral representations of functions of the types 177, (F%, of7s have been studied
by Pochhammer, #ath. Ann. x11. (1893), pp. 174—178, 197—218.

* Math. Ann. xxxvi. (1890), p. 84 ; xxxvnr (1891), pp. 227, 586, 587. Cf. § 4-15.
+ Proc. London Math. Soc. (2) v. (1907), p. 60. The modification due to Barnes is the insertion
of the suffixes p and g before and after the F' to render evident the number of sets of factors.
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4:41. Various solutions in series.

We shall now examine various solutions of the equation

d>u . (p+1)
dzz Y =£—§5— “

and obtain relations between them, which will for the most part be expressed
in Pochhammer’s notation.

It is supposed for the present that p is not a positive integer or zero,
and, equally, since the equation is unaltered by replacing p by —p—1, 1t is
supposed that p is not a negative integer.

It is already known (§4-3) that the general solution*® is 289, (ciz), and
this gives rise to the special solutions

@ Fi(p+ 85 1) 2P Fi(G —p; 10°2).

The equation may be written in the forms

& (ue™?)  , d(ue™) pp+1), .
dz? t 2¢ dz 22 (ue™?),

which are suggested by the fact that the functions e*® are solutions of the

original equation with the right-hand side suppressed.

When % is written for z (d/dz), the last pair of equations become
O =p—-—DO+p).(uet?) £+ 2c2Y (ue¥®) = 0.

When we solve these in series we are led to the following four expressions for »:
2Pte (i (p+1; 2p+2; —20c2); zPe? B (—p; —2p; —2c2);
e N (p+1; 2p+2; 2¢2); zPe % Ky (—p; —2p; 2cz).

Now, by direct multiplication of series, the two expressions on the left are
expansible in ascending series involving 2P+, z2%2 22+ . And the expressions

on the right similarly involve z7?, 2177, 2272, .... Since none of the two sets of
powers are the same when 2p is not an integer, we must have

(1) e B (p+1; 2p+2; —2c2)=e . (p+1; 2p+2; 2cz2)
= (p+35; 1c2e?),
(2) e F(—p; —2p; —2c2)=e¢% 1, (—p; —2p; 2c2)
= (F—p; 102
These formulae are due to Kummert. When (1) has been proved for general
values of p, the truth of (2) is obvious on replacing p by —p —1 in (1).

We now have to consider the cases when 2p is an integer.

#* It follows from § 8-1 that a special investigation is also necessary when p is half of an odd
integer.
+ Journal filr Math. xv. (1836), pp. 138—141.
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When p has any of the values i, 3, 3, ..., the solutions which contain z7?
as a factor have to be replaced by series involving logarithms (§§ 3:51, 3'52),
and there is only one solution which involves only powers of z. By the
previous reasoning, equation (1) still holds.

When p has any of the values 0,1, 2, ... a comparison of the lowest powers
of z involved in the solutions shews that (1) still holds; but it is not obvious
that there are no relations of the form

2P (3 —p; 12 =zPeR F (—p; —2p; —2c2) + k2P B (p+ 55 $022%)
=z Pe % F (—p; —2p; 202)+ k2P P B (p+§; Le22Y),
where k,, k, are constants which are not zero.

We shall consequently have to give an independent investigation of (1}
and (2) which depends on direct multiplication of series.

Nore. In addition to Kummer’s researches, the reader should consult the investiga-
tions of the series by Cayley, Phril. Mag. (4) xXXVI. (1868), pp. 348-—351 [Collected Papers,

viL (1894), pp. 9—12] and Glaisher, Phil. Mag. (4) xvim. (1872), pp. 433—438; Phil.
Trans. of the Royal Soc. cLxxii. (1881), pp- 759—828.

4:42. Relations between the solutions in series.
The equation
e? Fi(p+1; 2p+2; —2c2)=e¢%F (p+1; 2p+2; 2c2),
which forms part of equation (1) of § 441, is a particular case of the more
general formula due to Kummer*

(1) 1F1(0(;p; §)=e§1E(P—OL;P;—§))
which holds for all values of a and p subject to certain conventions (which will
be stated presently) which have to be made when a and p are negative integers.

We first suppose that p is not a negative integer and then the coefficient of
& in the expansion of the product of the series for ¢f and ,F, (p —a; p; —&) is

é" (_)m (p— m — ,<_)?L % 2O - (p — Ol)m (1 —p— ’n)n~m

m=o(m —m)! mI(p)m  n!'(P)n m=o

_ (__)n 1

—m.( —a—n)y,

- ()

nl(p)n’

if we first use Vandermonde’s theorem + and then reverse the order of the factors
1n the numerator; and the last expression is the coefficient of £ in /) (a; p; §).
The result required is therefore established when a and p have general complex
valuesl.

* Journal fiir Math. xv. (1836), pp. 138-—141; see also,Bach, dnn. Sci. de UEcole norm. sup. (2)

1. (1874), p- 55.

} See, e.g. Chrystal, dlgebra, 11. (1900), p. 9.

1+ Another proof depending on the theory of contour integration has been given by Barnes,
Trans. Camb. Phil. Soc. xx. (1908), pp. 254—257,
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When p is a negative integer, equation (1) is obviously meaningless unless
also a is a negative integer and |a|<|p|. The interpretation of (1) in these
circumstances will be derived by an appropriate limiting process.

First let a be a negative integer (= — V) and let p not be an integer, so
that the preceding analysis is valid. The series ./, (—N; p; &) is now a
terminating series, while ./, (p + N; p; — &) is an infinite series which con-
sists of N + 1 terms followed by terms in which the earlier factors p + XV,
p+N+1,p+ N +2, .. in the sequences in the numerators can be cancelled
with the later factors of the sequences p, p+ 1, p + 2, ... in the denominators.

When these factors have been cancelled, the series for ./, (— N ; p; &) and .
Fr(p+ N p; —&) are both continuous functions of pnear p = — M, where
M is any of the integers NV, N +1, N +2, ....

Hence we may proceed to the limit when p — — M, and the limiting form
of (1) may then be written®

(2) F(—N; —M; H 1= L (N-M; —M; -§)1,
in which the symbol 7 means that the series 1s to stop at the term in &%, ie.
the last term in which the numerator does not contain a zero factor, while
the symbol 1 means that the series is to proceed normally as far as the term
in ¥~ and then it is to continue with terms in ¥+, &¥+2 | the vanishing
factors in numerator and denominator being cancelled as though their ratio
were one of equality.

With this convention, 1t is easy to see that
(3) F(=N; =M; H1=L1(—=N; —M; &)

7l — !
b (oyue Am %_;!.1\% L F (M~ N +1; M+2; 0.

When we replace N by M — N and & by — & we have
(4') 1F1(N—1W; *lW; —-é’)‘] =1F1(N_M; —IW; _é«)-——i

NU(M—N)!
MY (M +1)!

As an ordinary case of (1) we have
FM—-N+1; M+2; H=e By (N+1; M+2; = 0),
and from this result combined with (2), (3) and (4) we deduce that
(5) Fo (= N5 —M; 1= F, (N~ M; = M; =),

+ ()Y (=ML (N+1; M+2; —¢).

This could have been derived directly from (1) by giving p — a (instead of a)
an integral value, and then making p tend to its limit.

* Cf. Cayley, Messenger (old series), v. (1871), pp. 77---82 [Collected Papers, virt. (1895), pp. 458—
462], and Glaisher, Messenger, viir. (1879), pp. 20—238.
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We next examine the equation
(6) e i (p+1; 2p+2; —2c2) =1 (p + 3 1cr2?),
which forms the remainder of equation (1) in § 441, and which is also due to
Kummer*.

If we suppose that 2p is not a negative integer, the coefficient of (cz)” in
the product of the series on the left in (6) is

& (=2 @+Du _ ()" % 5P Du(=n=2p— Lm
mao (M —=m)m!(2p + 2y (2P + 2)n m—o0 ml(n —m)! )
Now 7—}—1 gl 2 yCry (P 4 D (—n — 2p — 1),_p, is the coefficient of ¢" in the
cm=0
expansion of (1 — 2£)21(1 — ¢)»++1, and so it is equal to
1 [o+

1 [ob
" — —p—1 — A\+2p+1 f—n—1 —— — w2 P—1y,—n—1
o [ (L= 2052 (L — et e dp = o f (1 — wty»=100=1 o,
where u = £/(1 —t) and the contours enclose the origin but no other singularities
of the integrands. By expanding the integrand in ascending powers of u, we

. . . . . L. + 1) .
seejthat the integral is zero if n is odd, but it is equal to (p?ﬁ%a“” when n is
zn): ,

even.
Hence it follows that
§ (c2)™.(p + 1),
n=0 (2p + 2),, . 0!
g (cz)2
02 .0l (p +2),’

e Fi(p+1; 2p+2; —2cz)=

and this is the result to be proved.

When we make p tend to the value of a negative integer, — IV, we find by
the same limiting process as before that

lim Fi(p+1; 2p+2; —2c2)=, (1 —-N; 2—-2N; —2cz)
p—=>=—N
! (—)¥-1(N —1)! V!
(2N — 2)1(2N)!
It follows that
F(E=N; Jer)y=e? B\ (1—N; 2—2N; — 2c2)
(=Y (N -1)IN!
(2N —2)1(2N)!
If we change the signs of ¢ and z throughout and add the results so obtained,
we find that
(7Y 2. .F,3=N; i) =e*. . F;,(1—-N; 2—2N; —2cz) |
+e? Fi(1—-—N; 2—=2N; 2c2) 1,

4 (—2¢2)* 1\ F, (N ; 2N; — 2¢2).

+ (2¢2)M- e F(N; 2N ; — 2c2).

* Jowrnal fir Math. xv. (1836), pp. 138—141. In connexion with the proof given here, see
Barnes, Trans. Camb. Phil. Soc. xx. (1908), p. 272.
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the other terms on the right cancelling by a use of equation (1). This is, of
course, the expression for J_y,; (¢¢cz) in finite terms with a different notation.

For Barnes’ proof of Kummer’s formulae, by the methods of contour inte-
gration, see § 6°5.

4-43. Sharpe’s differential equation.

The equation

dy  dy

which is a generalisation of Bessel’s equation for functions of order zero,
occurs in the theory of the reflexion of sound by a paraboloid. It has been
investigated by Sharpe*, who has shewn that the integral which reduces to
unity at the origin is

s

(2) y=C| cos(zcos @+ A4 log cot 30) de,
0
where
(3) 1=C Fﬂcos (4 log cot £8) d6.
0

This is the appropriate modification of Parseval’s integral (§ 2:3). To in-
vestigate its convergence write cos @ = tanh ¢, and it becomes

_ “ cos (A ¢ + z tanh )
(4) y=0C fo cosh ¢ d¢.

It is easy to see from this form of the integral that it converges for (complex)
values of 4 for which |7 (4)! < 1, and+

C= 2 cosh 17 4.
T

The integral has been investigated in great detail by Sharpe and he has
given elaborate rules for calculating successive coefficients in the expansion of
y in powers of 2.

A simple form of the solution (which was not given by Sharpe) is
y=e*? F (3 F3id; 1; F 2¢2).
The reader should have no difficulty in verifying this result.
¥ Messenger, x. (1881), pp. 174—185 ; xir. (1884), pp. 66—79; Proc. Camb. Phil. Soc. x. (1900),

pp. 101—136.
+ See, e.g. Watson, Complex Integration and Cauchy’s Theorem (1914), pp. 64—65.
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4'5. Equations of order higher than the second.

The construction of a differential equation of any order, which is soluble
by means of Bessel functions, has been effected by Lommel* ; its possibility
depends on the fact that cylinder functions exist for which the quotient
C, (2)]C_, (2) is independent of 2.

Each of the functions ., (z) and Y, (2), of integral order, possesses this
property [§§ 2-81, 35]; and the functions of the third kind H,® (2), H,® (2)
possess it (§ 3'61), whether v is an integer or not.

Now when § 39 (5) is written in the form

m

d 1 1
(1) dzm z=v (f’” (7 '\/Z> = (%,y)ng(u—m) %V—-WL ('Y \/2)7

the cylinder function on the right is of order — v if m = 2.

This is the case either (i) if v is an integer, n, and m = 2n, or (11) if
v=n+4%and m=2n+ 1.

Hence if &,, denotes either J, or ¥V, we have

dm {238, —%
{Z dizn(ry \/Zl} — (%ry)?”z zn %a—n (’Y \/Z)

From this equation we obtain Lommel’s result that the functions 2% J, (y /2),
23"Y, (v A/z) are solutions of+
dn 1 ~\2n
@) y_ o™y

d.z2" - P 4

where v has any value such that ¢*» = (—)"¢*, so that

v =tc exp (rme/n). (r=0,1,2,...,n—1)
By giving & all possible values we obtain 2n solutions of (2), and these
form a fundamental system.
Next, if @pys denotes HY, 3, we have @ _nqyy =™ G, 1,4, so that
A (B (V2]
dz2n+1
and hence "t H®, ., (¢ 4/2) is a solution of
dzn»H Y (_%_C)Qn—l—l Y

(3) dz2n+1 oty

= e i (Jop)entl pmin=k @2, (o J2),

where v has any value such that o+ = ¢#+1 ¢=+d™i g0 that
y=—ticexp {rm/(n+3%)}, (r=01,2,..,2n)
and the solutions so obtained form a fundamental system.

* Studien ilber die Bessel'schen Functionen (Leipzig, 1868), p. 120; Math. Ann. 11. (1870),
pp. 624—635,
T The more general equation
BEY _ gym
qa = ™y

has been discussed by Molins, Mém. de UAcad. des Sci. de Toulouse, (7) vitr. (1876), pp. 167—189.
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For some applications of these results, see Forsyth, Quasrterly Journal, x1x. (1883),
pp. 317—320.

In view of (1), which holds when m is an integer, Lommel, #a¢h. Adnn. 11. (1870), p. 635,

has suggested an interpretation of a “fractional differential coefficient.” Thus he would
1

interpret <%>2exp (+y/2) to mean &, (vt /z). The idea has been developed at some
length by Heaviside in various papers.
Lommel’s formulae may be generalised by considering equation (3) of
§ 431, after writing it in the form
O+a)(D+a—28Bv)u=— B*y*Pu,

the solution of the equation being u = 2f*—*@, (yvz#). For it is easy to verify
by induction that, with this value of w,

n-—1
IITO+a—2r8) (Y +a—28v —2rB) u = (—)B7cne y,

=0
and so solutions of

=1
(4) IT S +a—2rB) (Y + a—2Bv—2rR) u=(—)"B%c*"z"y
=0 :
are of the form u =28""2G, (v28),
where v = cexp (rmi/n). (r=0,1,...,n—1)

By giving « these values, we obtain 2n solutions which form a fundamental
system.

In the special case in which n = 2, equation (4) reduces to
+a)(D+a—28)(Y+a—28v) (D +a—28v—2B) u=Biczfu.

This equation resembles an equation which has been encountered by Nicholson* in the
investigation of the shapes of Sponge Spicules, namely

o? d?u)
(5) (,72“2 {24# FZE} =z 2y
that is to say 3(3=1)(9+4p—2) (F+4p—3) u=2t"2r u.

If we identify this with the special form of (4) we obtain the following four distinct sets
of values for a, 8, u, v:

a B “ v
0 1 0 1
2 1 1 2
6 3 4 3
5 5 5 6
-1 -1 3 * 10

* Proc. Royal Soc. xcmt. A (1917), pp. 506—519. See also Dendy and Nicholson, Proc. Royal
Soc. Lxxx1x. B (1917), pp. 578587 ; the special cases of (5) in which u=0 or 1 had been solved
previously by Kirchhoff, Berliner Monatsberichte, 1879, pp. 815—828. [dnn. der Physik und
Chemie, (3) x. (1880), pp. 501—512.]
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These four cases give the following equations and their solutions:

(6) s u=3{@) () + By, (i),

) e I e CACIN RN

(8) ;—; {z-%Q %} =2tu;  w=z" T (G (5) + B (),
9) ;;2 {zm ”%} —Bu;  u=zt { B (227 8) + @y (22— 1)}

These seem to be the only equations of Nicholson’s type which are soluble with the aid
of Bessel functions; in the case u=2, the equation (5) is homogeneous. Nicholson’s general
equation is associated with the function

7 3—-2u 242u 1424 ZA— 2
TENL-2u 4-2u 4-2u (4-2u)t)°

4:6. Symbolic solutions of differential equations.

Numerous mathematicians have given solutions of the equation § 4-3 (1)
namely

' dw o p(p+1)
(1) &? — C*U = 7 u,
in symbolic forms, when p is a positive integer (zero included). These forms
are intimately connected with the recurrence formulae for Bessel functions.

It has been seen (§ 4:3) that the general solution of the equation is
By (012);

and from the recurrence formula § 3'9 (6) we have
25 Cpry(ciz) = (— ci)Pzrh (;%ZY {273y (crz)).

Since any cylinder function of the form %, (ciz) is expressible as

(aecz + Be-—cz)/,\/z,

where a and B are constants, it follows that the general solution of (1) may
be written

d \P ae® + Be—%
Lt [® Y €T PE T
(2) u = zPH (zdz) p .
A modification of this, due to Glaisher¥*, is
+1
(3) w = zpH (%}p (a'e” + B'e™?),

where o' = a/c, 3= —3/c. This may be seen by differentiating o’e+3’¢~** once.

* Phil. Trans. of the Royal Soc. cuxxir. (1881), p. 813. It was remarked by Glaisher that
equation (3) is substantially given by Barnshaw, Partial Differential Equations (London, 1871),
p. 92. See also Glaisher, Quarterly Journal, x1. (1871}, p. 269, formula (9), and p. 270.
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NoTe. A result equivalent to (2) was set by Gaskin as a problem* in the Senate House
Examination, 1839 ; and a proof was published by Leslie Ellis, Camb. Math. Journal, 11.
(1841), pp. 193—195, and also by Donkin, Phril. Trans. of the Royal Soc. cxLviL (1857),
pPp. 43—57. In the question as set by Gaskin, the sign of ¢ was changed, so that the solu-
tion involved circular functions instead of exponential functions.

Next we shall prove the symbolic theorem, due to Glaisher+, that

(4) Sk (ﬁz)p - K &) i—} ‘

In operating on a function with the operator on the right, it is supposed
that the function is multiplied by 1/z%* before the application of the
operators 2 (d/dz).

It is convenient to write
d

— 0 _
z=e = =
’ dz

3,
and then to use the symbolic formula

(5) JF) . (e®Z)y=e*. f(Y+a)Z,
in which @ is a constant and Z is any function of z.

The proof of this formula presents no special difficulties when f(9) is a polynomial in

J, as is the case in the present investigation. See, e.g. Forsyth, Zreatise on Differential
Eqguations (1914), § 33.

It 1s easy to see from (5) that

Zp+1 <M»C§_>p —_ e(p+1)9 <6—20%>p
zdz
= @0 {(e™0Y)  (e72Y). (e7¥Y) ... (e7))}
=P —-2p 4+ 2) (Y —=2p+4) (D —=2p +6) ... 9,
when we bring the successive functions ¢~ (beginning with those on the left)
past the operators one at a time, by repeated applications of (5).

We now reverse the order} of the operators in the last result, and by a
reversal of the previous procedure we get

o <%>p — PN (S —2) (Y —4) ... (S — 2p +2)

zaz
= e[S+ 2p — 2) (Y + 2p — 4) ... (Y + 2) Y. g~ 20
= e~ [(e9) (D) ... (%) o w29]

1 [/, dw 1
= Lph <Z EZ—Z) 2|’

* The problem was the second part of question 8, Tuesday afternoon, Jan. 8, 1839 ; see the
Cambridge University Calendar, 1839, p. 319.

T Nowuwvelle Corr. Math. 11. (1876), pp. 240—243, 349—350 ; and Phil. Trans. of the Royal Soc.
ocrLxx1r. (1881), pp. 808—-805.

I It was remarked by Cayley, Quarterly Journal, x1x. (1872), p. 182, in a footnote to a paper by

Glaisher, that differential operators of the form ze+! (Cl—lz 2%, l.e. ¥ — a, obey the commutative law.
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and this is the result to be proved. If we replace p by p + 1, we find that

) o ( Z%Z )pﬂ _ Z_:+ {(Z %Yﬂ % ] .

When we transform (2) and (8) with the aid of (4) and (6), we see that
the general solution of (1) is expressible in the following forms:

1 . d\Pae? + Be %
(7) U= <Zs a;) et
1 d\P*a'e? + B¢
®) v () T
The solutions of the equation
d*v  2p dv
d2 "z dz v

[(3) of §4°3], which correspond to (2), (3), (7) and (8) are
9) = (i)p ae” + Be™

>

zdz z
(10) v = 2%+ <£Z_>p+l (d'e” + [3'e™?)
zdz ’
: 1 d\Pae? + Be= %
—_— 3 ___ -
(1) v=7 <Z dz> P ’
1 . d \?+1 o g2 + B/e—cz
(12) v= <z 3—9 A L

A different and more direct method of obtaining (7) is due to Boole, PhAil. Trans. of the
Royal Soc. 1844, pp. 251, 252 ; Treatise on Differential Equations (London, 1872), ch. xviI.
pp- 423—425; see also Curtis, Cambridge and Dublin Math. Journal, IX. (1854), p. 281.
The solution (9) was first given by Leslie Ellis, Camb. Math. Journal, 11. (1841), pp. 169,
193, and Lebesgue, Journal de Math. x1. (1846), p. 338; developments in series were
obtained from it by Bach, Ann. Ser. de U Ecole norm. sup. (2) 1L (1874), p. 61.

2

Similar symbolic solutions for the equation 6;—; — ¢2220-29 =0 were discussed by Fields,
John Hopkins University Circulars, vi. (1886—7), p. 29.

A transformation of the solution (9), due to Williamson, PhAil. Mayg. (4) x1. (1856),
pp. 364—371, is

(13) oo (1) (b o),

This is derived from the equivalence of the operators

o=
(SN

8%’ 8%’ when they operate on
functions of cz.

‘We thus obtain the equivalence of the following operators

2\? 1 C/ 0 \*1
2p+1 el B
o [<262> z] (ez)™ L(cz.c@z) cz:|
2\ 1 a1\ 1
—(ep)2+1 —cwrt| () =
= (e ‘<czzoc> Fz]_'cp [(c@c) 'c:|’

it being supposed that the operators operate on a function of cz; and Williamson’s formula
is then manifest.
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4:7. Liowwville's classification of elementary transcendental functions.

Before we give a proof of Liouvilie’s general theorem (which was mentioned
in §4°12) concerning the impossibility of solving Riccati’s equation “in finite
terms ” except in the classical cases discovered by Daniel Bernoulli (and the
limiting form of index — 2), we shall give an account of Liouville’s* theory
of a class of functions known as elementary transcendental functions; and we
shall introduce a convenient notation for handling such functions.

For brevity we writet
L(z)=l(z)=logz, b, (2) =1 (I (2)), l; (2) =1(l,(2)), cees
e, (2)=e(2)=¢?, e, (2) = e (e (2)), e;(2) = e (e, (2)), e
af@=sf)=[f(2)ds, s:f(D)=s{sf(@)}, sf@=s{af()}

A function of z is then said to be an elementary transcendental function}
if it is expressible as an algebraic function of z and of functions of the types
L, d(2), e, (2), s,x(z), where the auxiliary functions ¢ (2), ¥ (2), x(2) are
expressible in terms of z and of a second set of auxiliary functions, and so on;
provided that there exists a finite number n, such that the nth set of auxiliary
functions are all algebraic functions of 2.

The order of an elementary transcendental function of z is then defined
inductively as follows:

(I) Any algebraic function of z is of order zeroS§.

(II) If £, (2) denotes any function of order », then any algebraic function
of functions of the types

Lfr(2), efe(2), sfr(@), fr(2)s [fra(2) ... fo(2)

(into which at least one of the first three enters) is said to be of order » + 1.

(IIT) Any function is supposed to be expressed as a function of the lowest
possible order. Thus elf, (z) is to be replaced by f, (z), and it is a function of
order 7, not of order » 4 2.

In connexion with this and the following sections, the reader should study Hardy,
Orders of Infinity (Camb. Math. Tracts, no. 12, 1910). The functions discussed by Hardy
were of a slightly more restricted character than those now under counsideration, since, for
his purposes, the symbol s is not required, and also, for his purposes, it is convenient to
postulate the reality of the functions which he investigates.

It may be noted that Liouville did not study properties of the symbol ¢ in detail, but
merely remarked that it had many properties akin to those of the symbol {.

* Journal de Math. 11. (1837), pp. 56—105 ; 111. (1838), pp. 523—547; 1v. (1839), pp. 423—456.

+ It is supposed that the integrals are all indefinite.

I ““Une fonction finie explicite.”

§ For the purposes of this investigation, irrational powers of z, such as 27, of course must
not be regarded as algebraic tunctions.
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4-71. Lwvouwille’s first theorem™® concerning linear differential equations.
The investigation of the character of the solution of the equation

d2u
(1) dz? =ux (Z)’

in which x (2) 1s a transcendant of ordert n, has been made by Liouville, who
has established the following theorem :

If equation (1) has a solution which is a transcendant of order m 4+ 1, where
m >, then either there exists a solution of the equation which vs of order] n,
or else there exists a solution, w,, of the equation expressible vn the form

(2) U= $u(2) . efu(2),
where f,(2) is of order w, and the order of ¢, (2) does not exceed p, and w 1s
such that n < p <m.

If the equation (1) has a solution of order m + 1, let it be f,.,.(2); then
fms1(2) 1s an algebraic function of one or more functions of the types [fy (2),
S fm (2), efm (2) as well as (possibly) of functions whose order does not exceed
m. Let us concentrate our attention on a particular function of one of the
three types, and let it be called 6, % or ® according to its type.

(I) We shall first shew how to prove that, if (1) has a solution of order
m + 1, then a solution can be constructed which does not involve functions of
the types € and 9.

For, if possible, let f,.,. (2) = F (z, ), where ¥ is an algebraic function of 6;
and any function of z (other than 6 itself) of order m + 1 which occurs in #
is algebraically independent of 6.

Then it is easy to shew that

d: _ o 2 dfm(z) *F
G G P x@O =G5 e T ds s66s
1 dfn (Z)F oF d 1 dfn(2) |0F
+{fm(z) dz | a6 " [d_z (@) dz ﬂﬁ_F'X(Z)’
it being supposed that z and 6 are the independent variables in performing
the partial differentiations.

The expression on the right in (3) is an algebraic function of ¢ which
vanishes identically when 6 is replaced by [f,(z). Hence it must vanish
tdentically for all values of 6; for if it did not, the result of equating 1t to
zero would express [ f,,(2) as an algebraic function of transcendants whose
orders do not exceed m together with transcendants of order m + 1 which are,
ex hypothesi, algebraically independent of 6.

* Journal de Math. 1v. (1839), pp. 435442,

+ This phrase is used as an abbreviation of ‘¢ elementary transcendental function of order n.”

1 Null solutions are disregarded; if w were of order less than n, then % i—; would be of order
less than n, which is contrary to hypothesis.
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In particular, the expression on the right of (3) vauishes when 6 is replaced
by 6 + ¢, where ¢ is an arbitrary constant; and when this change is made the
expression on the left of (3) changes into
A*F (z, 0 + ¢)
dz?
which is therefore zero. That is to say
a2F(z, 6+ ¢
S Y
When we differentiate (4) partially with regard to ¢, we find that
oF (z, 0 + ¢) 0*F (2, 0 +¢)
dc ’ oc? ?
are solutions of (1) for all values of ¢ independent of z. If we put c=0 after
performing the differentiations, these expressions become
0F (2, 0)  OF (2 6)
0g og> 7 7
which are consequently solutions of (1). For brevity they will be called
Fy, By, ....

Now either F and F, form a fundamental system of solutions of (1) or
they do not.

—F(z, 8 +c).x(2),

—F(z,0+¢c).x(2)=0.

If they do not, we must have*

Fg = AF,
where 4 is independent both of z and 6. On integration we find that
F = De4s,

where @ involves transcendants (of order not exceeding m + 1) which are
algebraically independent of #. But this is impossible because ¢4 is not an
algebraic function of 0; and therefore F and Fy form a fundamental system
of solutions of (1).
Hence Flyy is expressible in terms of F and Iy by an equation of the form
Foo=AFy + BF,
where 4 and B are constants. Now this may be regarded as a linear equation
in @ (with constant coefficients) and its solution is
&M= D,e*% + P,ef% or F = e (D, + D0},
where @, and P, are functions of the same nature as P, while a« and B are
the roots of the equation
2?— Ax — B=0.
The only value of # which is an algebraic function of € is obtained when
a=LRB=0; and then ¥ is a linear functron of 0.
Similarly, if f,,;. (2) involves a function of the type &, we can prove that
1t must be a linear function of %,

* Since F must involve 6, Fg cannot be identically zero.
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It follows that, in so far as f,... (2) involves functions of the types € and %,
1t involves them linearly, so that we may write

Joma (2) = 20,(2) 0:(2) ... 0,(2) . D:1(2) N,(2) ... ¥4 (2) . rp, 4 (2),
where the functions v, ,(2) are of order m + 1 at most, and the only functions
of order m + 1 involved in them are of the type ©.
Take any one of the terms in f,,,, (¢) which is of the highest degree, qua
function of 8,, 6,, ... 1, O3, ..., and let 1t be

0,(2) 0:(2) ... 0p(2).9,(2) ... 5 (2). ¥ g (2).

Then, by arguments resembling those previously used, it follows that

00 0 o8 0.
00,00, " 00p 09,0, T 0Y s
is a solution of (1); i.e. Yrp o (2) is a solution of (1).
But rp o (2) is either a function of order not exceeding m, or else it is a

function of order m + 1 which involves functions of the type ® and not of
the types € and %.

In the former case, we repeat the process of reduction to functions of lower
order, and in the latter case we see that some solution of the equation is an
algebraic function of functions of the type ©.

We have therefore proved that, if (1) has a solution which is a transcendant
of order greater than n, then either it has a solution of order n or else it has a
solution which is an algebraic function of functions of the type ef.(z) and
¢u (2), where f, (2) is of order u and ¢, (2) is of an order which does not exceed u.

(IT) We shall next prove that, whenever (1) has a solution which is a
transcendant of order greater than n, then it has a solution which involves
the transcendant ef, () only in having a power of it as a factor.

We concentrate our attention on a particularstranscendant ® of the form
ef.(2), and then the postulated solution may be written in the form G (z, ©),
where G is an algebraic function of ®; and any function (other than ® itself)
of order u + 1 which occurs in G is algebraically independent of ©.

Then it is easy to shew that

&G oG . PG e
(5) e~ G x(@=75+20f/(2) 5 55+ OF @) 56

Y
+O[fu" @)+ f Dl 55 — G x (2)

The expression on the right is an algebraic function of ® which vanishes
when ® is replaced by ef.(2), and so it vanishes identically, by the arguments
used in (I). In particular it vanishes when ® is replaced by ¢ ®, where ¢ is
independent of z. But its value is then

0@%};@ — G (5 ¢8).x(2),
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so that
(6) ——G(z,c@).x(z)=0.

When we differentiate this with regard to ¢, we find that
oG (z, c®) azG (2, c®)

oc ’ oc? ’

are solutions of (1) for all values of ¢ independent of z. If we put c=1, these
expressions become

0G (2, ®) - 0°G (2, ©)

B o®

Hence, by the reasoning used in (I), we have @G = AG or else
®2G‘@® = A@G@ + BG,

where A and B are constants.

In the former case G = ®O4, and in the latter G has one of the values
D, 67 + D, or OF(D, + D,log O} = @Y (D, + D, £, (2)};

where @, ®,, @, are functions of z of order x + 1 at most, any functions of
order g+ 1 which are involved being algebraically independent of ®; while
v and & are the roots of the equation

z(x—1)— Ae— B=0.

In any case, G either contains ® only by a factor which is a power of © or else
G is the sum of two expressions which contain ® only in that manner. In the
latter case¥,

G (2, c®) — 3G (2, B)
is a solution of (1) which contains ® only by a factor which is a power of ©.

By repetitions of this procedure, we see that, if ®,, ®,, ... ©, are all the
transcendants of order w + 1 which occur in the postulated solution, we can
derive from that solution a sequence of solutions of which the sth contains
®,, 0,, ... O; only by factors which are powers of ®,, &,, ... O,; and the rth
member of the sequence consequently consists of a product of powers of
®,, O,, ... ®, multiplied by a transcendant which is of order w at most; this
solution is of the form

2 b
bu(@) exp { 2 7ilog O,
which is of the form ¢, (2). ef. (2).

* If ®, is not identically zero; if it is, then &, 0% is a solution of the specified type.

8—2
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4-72. Liouwlle’s second theorem concerning linear differential equations.
We have just seen that, if the equation

d*u
ey = ux (2
[in which x (2) is of order »n] has a solution which is an elementary tran-
scendant of order greater than n, then it must have a solution of the form

bu (2) efu (2),
where u>n. If the equation has more than one solution of this type, let a
solution for which w has the smallest value be chosen, and let it be called .
Liouville’s theorem, which we shall now prove, is that, for this solution, the
order of d (log u,)/dz is equal to n.
Let
d log u, =
dez — 7
“and then ¢ is of order u at most; let the order of ¢t be N, where IV < pu.

If N =mn, the theorem required is proved. If N >mn, then the equation
- satisfied by ¢, namely

d
@) & =)

has a solution whose order /N is greater than n.

Now ¢ is an algebraic function of at least one transcendant of the types

Un_1(2), sfx-1(2), efy_1(2) and (possibly) of transcendants whose order does
not exceed N —1. We call the first three transcendants €, %, ® respectively.

If ¢ contains more than one transcendant of the type 6, we concentrate
our attention on a particular function of this type, and we write

t=F(z 0).
By arguments resembling those used in § 4'71, we find that, if V> n, then
F(z,0+c)
is also a solution of (2). The corresponding solution of (1) is
exp [F (z, 0 + ¢) dz,

and this is a solution for all values of ¢ independent of 2. Hence, by
differentiation with respect to ¢, we find that the function w, defined as

[éaz {exp [F (2, 6 + ¢) dz}]
is also a solution of (1); and we have

Uy = Uy [Fydaz,

=0

so that
du, du,

Uy —— — Uy —— = UL,
' dz ® dz 1oe
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But the Wronskian of any two solutions of (1) is a constant*; and so
ulee = C,

where C is a constant.
IfC=0, Fis independenga of 8, which is contrary to hypothesis ; so C'+# 0, and
Uy = A/ (0/ F, 6)-
Hence u, vs an algebraic functron of 6 ; and similarly it is an algebraic function
of all the functions of the types 8 and & which occur in ¢.

Next consider any function of the type ® which occurs in ¢; we write
t=G(z, O),

and, by arguments resembling those used in § 471 and those used earlier in
this section. we find that the function wu, defined as

0 , .
36 {exp [G (2, c®) dz:lc
1s a solution of (1); and we have
u;=1u, [OGedz,

=1

so that
dutg du,
e "% dz

This Wronskian is a constant, C,, and so

u, = &/ {C /(O Go)}.
Consequently u, is an algebraic function, not only of all the transcendants of
the types 6 and &, but also of those of type ® which occur in¢; and therefore
u, is of order N. This is contrary to the hypothesis that «, is of order w +1,
where w> N, if N > n.
The contradiction shews that IV cannot be greater than »; hence the order
of d (log u,)/dz is n. And this is the theorem to be established.

=u200Gg.

4:73. Liouwville’s theoremt that Bessel's equation has no algebraic integral.
We shall now shew that the equation
BY L0 ey =
szgé+2672'v+<z —_V )y-—O

has no integral (other than a null-function) which is an algebraic function of z.
We first reduce the equation to its normal form

d?u p(p+1)
€] EZ;+{1—- — ju—O,
by writing y=uz" , p=tv—3.

* See e.g. Forsyth, Treatise on Differential Equations (1914), § 65.

+ Journal de Math.1v. (1839), pp. 429-—4385; vI. (1841), pp. 4—7. Liouville’s first investigation
was concerned with the general case in which x (2) is any polynomial; the application (with
various modifications) to Bessel’s equation was given in his later paper, Journal de Math. vi.
(1841), pp. 1—13, 36.
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This is of the form

%’; = uy (2),
where
2) x (=P PFD _y

If possible, let Bessel’s equation have an algebraic integral ; then (1) also
has an algebraic integral. Il.et the equation which expresses this integral, «,
as an algebraic function of z be

3) A (u, 2) =0,
where £ is a polynomial both in u and in z; and it is supposed that 7 is
irreducible*,

Since u is a solution of (1) we have

(4‘) t%uut%z2 - QL%uzz%u%z + :%zza%ug + g%ugux (Z) = 0.

The equations (3) and (4) have a common root, and hence all the roots
of (3) satisfy (4).

For, if not, the left-hand sides of (3) and (4) (qua functions of u) would
have a highest common factor other than .5Z itself, and this would be a
polynomial in « and in z. Hence ¢ would be reducible, which is contrary to
hypothesis.

Let all the roots of (3) be u,, s, ... u;,. Then, if s 1s any positive integer,

S+ w4 S
18 a rational function of z; and there is at least one value of s not exceeding
M for which this sum is not zerot.

Let any such value of s be taken, and let

WO = Z ul,nsn

m=1
n L/ du\"
Also let W,..—_—s(s—-l) ,._(,g___,,a_*_l) S S < _) )
m=1 dZ
where r=1, 2, ... s. Since u,, u,, ... u,, are all solutions} of (1), it is easy to

prove that
aw, _

(5) =W,

(6) Cl;:,. =W, +7r (s —7r—+ 1) X(Z) Wos, (r=1,2,...8 — 1)
aw,

(7) “dz =S8X (Z) We..

* That is to say, .5 has no factors which are polynomials in « or in 2z or in both u and z.

1 If not, all the roots of (3) would be zero.
I Because (4) is satisfied by all the roots of (3), qua equation in w.
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Since W, is a rational function of z, it is expressible in partial fractions,

so that A B, 4

Wom = A 2 e ag
where 4, and B, , are constants, « and A are integers, n assumes positive
integral values only in the last summation and a4+ 0.

Let the highest power of 1/(z — a,) which occurs in W, be 1/(z — ay)”.

It follows by an easy induction from (5) and (6) that the highest power of
1/(z = ay) in W, is 1/(z — ay)P*", where r=1,2, ... s.

Hence there is a higher power on the left of (7) than on the right. This
contradiction shews that there are no terms of the type B, ,(z —ag)™ in W,
and so 2

: W,= = A,z

n=-—«

We may now assume that A, +# 0, because this expression for W, must
have a last term if it does not vanish identically.

From (5) and (6) it is easy to see that the terms of highest degree in z
which occur in W,, W,, W,, W,, ... are*

Arzr, NAN2AY Aaszy, ANAN(Bs —2) 22, L.
By a simple induction it is possible to shew that the term of highest degree
in W, 1s A 1.8...(2r—=1).5(s—2) ... (s — 2r + 2).
An induction of a more complicated nature is then necessary to shew that the
term of highest degree in W, 1s
ANANATT2.4 ... 2r) . (s—=1)(s—38)..(s—2r+ 1)..F, (§, —%s; + —3s; 1)t
where the suffix »+ 1 indicates that the first » +1 terms only of the hyper-
geomelric series are to be taken.

If s is odd, the terms of highest degree on the left and right of (7) are
of degrees A — 2 and A respectively, which is impossible. Hence W, vanishes
whenever s is odd.

When s is even, the result of equating coefficients of z*~* in (7) is

Ay st=—=Adx. st (5, — 48 & — %83 1),
That 1s to say ANA. sl F (3, —3s; 4 —4s; 1)=0,
and so, by Vandermonde’s theorem,
2.4.6...
)\,A)\. s! 6 5 O

"1.83.5...(s—1)
The expression oun the left vanishes only when A is zero+.

* It is to be remembered that the term of highest degree in x (2) is — 1.

+ The analysis given by Liouville, Journal de Math. vi. (1841), n. 7, seems to fail at this
point, because he apparently overlooked the possibility of A vanishing. The failure seems in-
evitable in view of the fact that Ji—l—% () + J?‘_n_‘% (2) is an algebraic function of 2z, by § 3-4. The
subsequent part of the proof given here is based on a suggestion made by Liouville, Journal de
Math. 1v. (1839), p. 435; see also Genocchi, Mem. Accad. delle Sci. di Torino, xxim. (1866),
pp. 299—3862; Comptes Rendus, Lxxxv. (1877), pp. 391—394.
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We have therefore proved that, when s is odd, W, vanishes, and that, when
s is even, W, is expressible in the form
Kg
S Ay 2,
0

22 ==
where 4, ; does not vanish.

From Newton’s theorem which expresses the coefficients in an equation
in terms of the sums of powers of the roots, it appears that M must be even,
and that the equation ¢ (u, z) =0 1s expressible in the form

(8) uM + %EMuM‘W P, (1/2) =0,
r=1

where the functions 3B, are polynomials in 1/z.

When we solve (8) in a series of ascending powers of 1/z, we find that

each of the branches of u is expressible in the form

§ Con 217,

m=0
where n is a positive integer and, in the case of one branch at least, ¢, does
not vanish because the constant terms in the functions 38, are not all zero.
And the series which are of the form

i cmz-m/n

m=0
are convergent* for all sufficiently large values of z.

When we substitute the series into the left-hand side of (1), we find that
the coefficient of the constant term in the result is ¢,, and so, for every branch,
¢, must be zero, contrary to what has just been proved. The contradiction
thus obtained shews that Bessel’s equation has no algebraic integral.

4:74. On the impossibility of integrating Bessel's equation in finite terms.

We are now in a position to prove Liouville’s theoremt that Bessel’s
equation for functions of order v has no solution (except a null-function)
which is expressible in finite terms by means of elementary transcendental
functions, if 2v» is not an odd integer.

As in § 4°73, we reduce Bessel’s equation to its normal form
d*u
(1) T —ux ()
where y (2)=—1+p(p+1)/z2and p=+v— 3.
Now write d (log u)/dz =t¢, and we have

dt +1
(2) W pp1 22D
dz 22
* Goursat, Cours d’Analyse, 11. (Paris, 1911), pp. 273—-281. Many treatises tacitly assume the
convergence of a series derived in this manner from an algebraic equation.
+ Journal de Math. vi. (1841), pp. 1—13, 36.
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Since y (2) is of order zero, it follows from § 4-72 that, if Bessel’s equation
has an integral expressible in finite terms, then (2) must have a solution
which is of order zero, 1.e. 1t must have an algebraic integral.

If (2) has an algebraic integral, let the equation which expresses this
integral, ¢, as an algebraic. function of z, be

3) A (t, 2) =0,
where ¢ is an irreducible polynomial in ¢ and z.
Since ¢ is a solution of (2), we have
4) Ao+ 1x (2) — 8] =0,
As in the corresponding analysis of § 4°73, all the branches of ¢ satisfy (4).

First suppose that there are more than two branches of ¢, and let three
of them be called ¢, t,, #;, the corresponding values of » (defined as exp [tdz)
being wu,, u,, ;. These functions are all solutions of (1) and so the Wronskians

du, du, du, da, du, du,
W M g M M dn s

are constants, which will be called C,, C,, Cs.
Now it is easy to verify that
dus dat,

1= Uy EZT — Uy —— = UgUs (tg —_— tQ\);

dz
and ¢; — ¢, 1s not zero, because, if it were zero, the equation (3) would have a
pair of equal roots, and would therefore be reducible.

Hence C; # 0, and so

C

u2,U/3 = 01/(t3 - tz).
Therefore u,u; (and similarly w,u, and u,u,) is an algebraic function of z.

Uz Uy . Uy Uy
But ul = _—,
Uy Ug

and therefore u, is an algebraic function of z. This, as we have seen in §4-73,
cannot be the case, and so ¢ has not more than two branches.

Next suppose that ¢ has two branches, so that .S (¢, 2) is quadratic in ¢.
Let the branches be U + 4/V, where U and V are rational functions of z. By
substituting in (2) we find that

(5) U'+ U2+ V=x(2),
V' +4UV =0.
Let V be factorised so that
V=A42*1I (2 — a,)"?,

where A4 is constant, x, and A are integers, and «, and «, are not zero.
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From the second member of (5) it follows that
M s Ko
4z 3’ 4 (2 — ag)’
and then by substituting into the first member of (5) we have

(6) 4‘224‘2@ {—7\'4—2 (IC q)} +AZAH<Z—CLQ>Q-—X(Z) 0.

Now consider the principal part of the expression on the left near a,. It
is evident that none of the numbers «, can be less than — 2, and, if any one
of them is greater than — 2 it must satisfy the equation

K+ 4y =0,
so that x, 18 0 or — 4, which are both excluded from consideration. Hence all
the numbers «, are equal to — 2.

Again, if we consider the principal part near oo, we see that the highest
power in V must cancel with the — 1 in y (2), so that A = — = «,.

q
It follows that 4/ V is rational, and consequently 5% (&, z) is reducible, which
is contrary to hypothesis.

Hence ¢ cannot have as many as two branches and so it must be rational.
Accordingly, let the expression for ¢ in partial fractions be

P n q (2 —ag)"’
where 4, and B, , are constants, « and A are integers, n assumes positive
values only in the last summation and a, +# 0.

If we substitute this value of ¢ in (2) we find that
n:%,ﬂ nd 2"t — nzq (Z%B;;Z )Zz+1 + {n_E_K Apz™ + 3 (Z—q )n} +1 _13___(2022'!' L) =0
If we consider the principal part of the left-hand side near a, we see that
1/(z — a4) cannot occur in ¢ to a higher power than the first and that

By g—B% 4=0,

so that B, ,=1

Similarly, if we consider the principal parts near 0 and oo, we find that

k=1, (A_P—A_=p(p+1); A=0, A2=—1.

Since p =+ v —%, we may take 4_, =— p without loss of generality.

It then follows that

u=2z"2e*®1II (z—a,).
g
Accordingly, if we replace u by 277 e*# w in (1), we see that the equation
2
(7) C;2+2<+z—p>dw 2P 4y~ 0

z

must have a solution which is a polynomial in z, and the constant term in
this polynomial does not vanish.
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When we substitute = ¢,,2™ for w in (7) we find that the relation connecting
successive coefficients 1s

m(m—2p—1) ¢y £ 20¢,—, (M —p —1) =0,

and so the series for w cannot terminate unless m — p — 1 can vanish, i.e. unless
p 18 zero or a positive integer.

Hence the hypothesis that Bessel’s equation is soluble in finite terms leads
of necessity to the consequence that one of the numbers + v — 4 is zero or a
positive integer; and this is the case if, and only if, 2v is an odd integer.

Conversely we have seen (§ 8'4) that, when 2» is an odd integer, Bessel’s
equation actually possesses a fundamental system of solutions expressible in
finite terms. The investigation of the solubility of the equation is therefore
complete.

Some applications of this theorem to equations of the types discussed in § 4'3 have
been recorded by Lebesgue, Journal de Math. X1. (1846), pp. 338—340.

4:75. On the impossibility of wntegrating Riccaty's equation in finite terms.

By means of the result just obtained, we can discuss Riccati’s equation

ay _ .

with a view to proving that it is, in general, not integrable in finite terms.

It has been seen (§ 421) that the equation is reducible to

d*u 2 £20—2 ,, —

W —C g u = O,

where n=2¢q—2; and, by § 43, the last equation is reducible to Bessel’s
equation for functions of order 1/(2¢) unless ¢ = 0.

Hence the only possible cases in which Riccati's equation is integrable in
Sfinrte terms are those tn which q s zero or 1/q is an odd wnteger ; and these
are precisely the cases in which n is equal to — 2 or to

4m )
—i’)’}’b—ii‘ (’7)7/-—0, 1, 2, ...)
Consequently the only cases in which Riccati’s equation is integrable in finite
terms are the classical cases discovered by Daniel Bernoulli (c¢f. §4-11) and the

limiting case discussed after the manner of Euler in §4-12.

This theorem was proved by Liouville, Journal de Math. vi. (1841), pp. 1—13. It
seems impossible to establish it by any method which is appreciably more brief than the
analysis used in the preceding sections.
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4:8. Solutions of Laplace’s equation.

The first appearance in analysis of the general Bessel coefficient has been
seen (§ 1'3) to be in connexion with an equation, equivalent to Laplace’s
equation, which occurs in the problem of the vibrations of a circular membrane.

We shall now shew how Bessel coefficients arise in a natural manner from
Whittaker’s* solution of Laplace’s equation

VvV oV eV
(1) £ + a—yz + P = 0.
The solution in question is
(2) 14 :=fﬂ f(z+wwcosu + vy sinu, w) du,

in which f denotes an arbitrary function of the two variables involved.

In particular, a solution is

m
{ gk Zriweosutiysinu aog my du,

-
in which % is any constant and m is any integer.

If we take cylindrical-polar coordinates, defined by the equations

x=pcosd, y=psindep,
this solution becomes

™ v
ek? [ gikecos w—9) cos mudu = e¥? f eiecosv cos m (v + ) dv,
o =TT

—_—T

T
= 2¢k? { e 8% cog muw cos me dv,
J 0

= 2™ e¥? cos me . J 1, (kp),

by § 2:2. In like manner a solution is

f-;r gk (z +iwcosu+iysinw) gip WZ’LI/OZ?I/,
and this is equal to 2mi™e*sin mde .S, (kp). Both of these solutions are
analytic near the origin.

Again, if Laplace’s equation be transformedt to cylindrical-polar coordi-
nates, it is found to become

eV 10V 10V oV 0.

W e prodr e

* Monthly Notices of the R. A. S. uxi. (1902), pp. 617—620; Math. Ann. vir. (1902),
pp. 333—341.

+ The simplest method of effecting the transformation is by using Green’s theorem. See
W. Thomson, Camb. Math. Journal, 1v. (1845), pp. 83—42.
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and a normal solution of this equation of which e*? is a factor must be such that
1av
V o¢?

is independent of ¢, and, if the solution is to be one-valued, it must be equal

to —m? where m is an integer. Consequently the function of p which is a
factor of ¥V must be annihilated by

dp*  p dp P/’
and therefore it must be a multiple of J,, (kp) if it is to be analytic along the
line p = 0.

We thus obtain anew the solutions
4z COS ;
e in mep . Jp (kp).

These solutions have been derived by Hobson* from the solution e*.J; (kp) by Clerk
Maxwell’s method of differentiating harmonics with respect to axes,

Another solution of Laplace’s equation involving Bessel functions has been obtained by
Hobson (ib¢d. p. 447) from the equation in cylindrical-polar coordinates by regarding 0/0z
as a symbolic operator. The solution so obtained is

cos ad

sin me . Cm <P CTZ) J (@),

where f(2) is an arbitrary function; but the interpretation of this solution when ¢, involves
a function of the second kind is open to question. Other solutions involving a Bessel

function of an operator acting on an arbitrary function have been given by Hobson, Proc.
London Math. Soc. xx1v. (1893), pp. 55—67 ; xXxXVI. (1895), pp. 492—494.

4-81. Solutions of the equations of wave motions.
We shall now examine the equation of wave motions
eV oV oV 1oV
0 o P oy T or e oe

in which ¢ represents the time and c¢ the velocity of propagation of the waves,
from the same aspect.

Whittaker'st solution of this equation is

(2) V:f ff(xsinu cos v+ y sin u sin v + z cos u + ct, u, v) dudv,
—7J 0

where f denotes an arbitrary function of the three variables involved.
In particular, a solution is

mw w
—_ J J etk @sinwcos v +ysinusinv+zcosutct) f (u U) dudv
V = > )
—-rJ 0

where F denotes an arbitrary function of u and w.

* Proc. London Math. Soc. xx11. (1892), pp. 431—449,

1 Math. Ann. Lvit. (1902), pp. 342—345. See also Havelock, Proc. London Math. Soc. (2) 11.
(1904), pp. 122187, and Watson, Messenger, xxxvi. (1907), pp. 98—106.
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The physical importance of this particular solution lies in the fact that 1t
is the general solution in which the waves all have the same frequency kc.

Now let the polar coordinates of (#, ¥, 2) be (, 0, ¢), and let (w, Y) be the
angular coordinates of the direction (w, v) referred to new axes for which the
polar axis is the direction (6, ¢) and the plane +»=0 passes through the
z-axis. The well-known formulae of spherical trigonometry then shew that

cos w = cos 6 cos u + sin @ sin u cos (v — ¢),
sin « sin (v — ¢) = sin w sin Y.

Now take the arbitrary function F (u, v) to be S, (u, v) sin u, where S, de-
notes a surface harmonic in (u, v) of degree n; we may then write

S?L (u) 'U) = Sn (6: ¢ ; @, ‘!’):
where S, is a surface harmonic* in (w, ¥) of degree n.

We thus get the solution
V,, = etket ’ﬂ F ghreose § (0, ¢ ;5 o, Y)sin wdwd.
J=r )0

Since S, is a surface harmonic of degree n in (w, ¥), we may write
Sn(ea (;b: w, ‘#) = An(e; ¢).Pn(COSw)
n
+ = {4,008, ¢) cos myr + B, (6, ) sin mAl} Pp™ (cos ),
m=1

where A, (0, ¢), A, (6, ¢) and B, (0, ¢) are independent of @ and .

Performing the integration with respect to 4, we get

V= 2met A, (6, §) | €7 eose P, (cos w) sin o dw
SO

— g n iket ¥ nt+E (]C?“)
= (2m)¥ "¢ ST A, (0, d)
by § 3'32.

Now the equation of wave motions is unaffected if we multiply #, y, z and
¢t by the same constant factor, i.e. if we multiply » and ¢ by the same constant
factor, leaving 6 and ¢ unaltered; so that 4, (6, ) may be taken to be in-
dependentt of the constant £ which multiplies » and ¢.

Hence lim (k=7 V) is a solution of the equation of wave motions, that is
k—=>0 2

to say, 7" A, (6, ¢) is a solution (independent of t) of the equation of wave
motions, and is consequently a solution of Laplace’s equation. Hence 4,,(6, ¢)

* This follows from the fact that Laplace’s operator is an invariant for changes of rectangular
axes.
+ This is otherwise obvious, because §,, may be taken independent of k.
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18 a surface harmonic of degree n. If we assume it to be permissible to take
A, (8, ¢) to be any such harmonic, we obtain the result that

. cos
etkety=t J . 1 (kr) P,™ (cos 0) sin mae

18 a solution of the equation of wave motions*; and the motion represented by
this solution has frequency kc.

To justify the assumption that 4, (6, ¢) may be any surface harmonic of degree =, we
construct the normal solution of the equation of wave motions

N T AL N G .
or \""or) Tsino 26 (b 06 ) TsinZo g2 2 o2’
which has factors of the form et¢ :fj mep. The factor which involves 6 must then be of

the form P, (cos 8); and the factor which involves » is annihilated by the operator

d d
Z (22 - 2 2
T <7' dr) n(n+1)+4%r?,

so that if this factor is to be analytic at the origin it must be a multiple of J,, 1 (7)/s/7.

4:82. Theoremns derived from solutions of the equations of Mathematical
Physics.

It is possible to prove (or, at any rate, to render probable) theorems con-
cerning Bessel functions by a comparison of various solutions of Laplace’s
equation or of the equation of wave motions.

Thus, if we take the function
ez J, (ka/(p® + a® — 2ap cos ¢)},
by making a change of origin to the point (a, 0, 0), we see that it is a solution
of Laplace’s equation in cylindrical-polar coordinates. This solution has €% as

a factor and it is analytic at all points of space. It is therefore natural to
expect it to be expansible in the form

ek? [AOJO (kp) + 2 s (A cosmde + By, sin mep) J,, (lcp)} .
m=1

Assuming the possibility of this expansion, we observe that the function under
consideration is an even function of ¢, and so B, =0; and, from the symmetry
in p and a, 4,, is of the form c¢,,J, (ka), where ¢, is independent of p and a.

We thus get
Jo{ken/(p? + a® — 2ap cos gb)} =

n

M8

€mCmIm (kp) Jm (ka) cos me.
0

If we expand both sides in powers of p, @ and cos ¢, and compare the
coefficients of (A*pa cos )™, we get

Cm =1,

* Cf. Bryan, Nature, Lxxx. (1909), p. 309.
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and so we are led to the expansion®
T, (en/(0* + aF — 20p 008 B)} = = emom (op) I (kat) cOs M,
m=0

of which a more formal proof will be given in §11-2.

Again, if we take ¢t ct+2) which is a solution of the equation of wave motions,
and which represents a wave moving in the direction of the axis of z from
+ 0 to — o with frequency ke and wave-length 27r/k, we expect this expression
to be expansiblet in the form

where ¢, is a constant; so that

(27r)q gikct s cnt? Jpiy (fr) Pp(cos 0),
n=0

gikreosd — (?g’n) > cnq, J’n+ (]G?") P, (COS 9)

If we compare the coefficients of (k7 cos 6)" on each side, we find that
™ (2n)!
= (@2m)! 2”+?P(n F8) 0. ()’

and so ¢, =n + }; we are thus led to the expansion]

pikrcos0 — (27") s (n+2) iy (for) Py (cos 0),

k‘?" n=0

of which a more formal proof will be given in §11-5.

4-83. Solutions of the wave equation in space of p dimensions.

The analysis just explained has been extended by Hobson§ to the case of
the equation
82V+82V+ +82V_182_V
o ' ow? | T Om,? ¢ o8
A normal solution of this equation of frequency kc which is expressible as a
function of r and ¢ only, where
r= (2’ + 22+ ... + xp%),
must be annihilated by the operator
0 p—10
T o
and so such a solution, containing a time-factor ¢, must be of the form

e Gy gy (o) [(lor )t P72,

* This is due to Neumann, Theorie der Bessel’schen Functionen (Leipzig, 1867), pp. 59—65.

4 The tesseral harmonics do not occur because the function is symmetrical about the axis of 2.
+ This expansion is due to Bauer, Journal fiir Math. Lvi. (1859), pp. 104, 106.

§ Proc. London Math. Soc. xxv. (1894), pp. 49—75.
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Hobson describes the quotient @y, (kr)/(kr)t?—2 as a cylinder function
of rank p; such a function may be written in the form
G (kr| p).

By using this notation combined with the concept of p-dimensional space,
Hobson succeeded in proving a number of theorems for cylinder functions of
integral order and of order equal to half an odd integer simultaneously.

As an example of such theorems we shall consider an expansion for
J k(1 + a® — 2ar cos @) | p},

where it is convenient to regard ¢ as being connected with a;, by the equation
@, =1 cos ¢. This function multiplied by ¢%*° is a solution of the wave equation,
and when we write p = 7 sin ¢, it is expressible as a function of p, ¢, ¢t and of
no other coordinates.

Hence
ekt J ke o/(r? + a® — 2ar cos-¢p) | p}
1s annihilated by the operator

that 1s to say, by the operator

o p=10 (p—2)cos¢p o 1 &
T T sing  od o

Now normal functions which are annihilated by this operator are of the form

+

(i~ En(cos [ p),
where P, (cos ¢ | p) is the coefficient* of a® in the expansion of
(1 — 20 cos ¢ + o2)1737,
By the reasoning used in § 4-82, we infer that

. J{kl\/(r2+a‘2—2a7'cos¢)\p}

1 )
= (ka)= (Jor)to=1 750 AnSniyp—s (k1) S nppp (k) Pr,(cos ¢ | p).

Now expand all the Bessel functions and equate the coefficients of
(k*ar cos ¢)* on each side; we find that
2" B 4, 2n M (n+4p—1)
201 1 M (n+ 4p) (279 D (n+4p)p” n!l@Ep—1)
so that 4, =2 (n+ip—-1D) T Ep - 1)

* So that, in Gegenbauer’s notation,
Py (cos ¢ |p) = C%Lp'l (cos ¢).

W. B. F. 9
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We thus obtain the expansion

Sip—1 {F /(2% + @* — 2ar cos ¢)}
(r* + a? — 2ar cos ¢)r—4
k-1 I (*}7 -1 x ip—
= - C /cm-)éfﬂ ) ni() (m+%p —1) Jnygp (br) Jnggp_, (ka) CP ! (cos ).
An analytical proof of this expansion, which holds for Bessel functions of
all orders (though the proof given here is valid only when p is an integer), will
be given in § 11-4.

4:84. Bateman’s solutions of the generalised equation of wave motions.
Two systems of normal solutions of the equation
1) 82_7+82V+82V+82V_1 o2V
0w 0m?  Owg?  dwd ¢t o
have been investigated by Bateman*, who also established a connexion between
the two systems.

If we take new variables p, o, y, Y defined by the equations
& =pCoSy, @3=0 CoSY,
Zy=psiny, ,=ocsin,
the equation transforms into
e 2 A 2 278
@ AT T et e g g e
A normal solution of this equation with frequency ke is
Ju (kp cos @) J, (ko sin @) gt ex+Hritied

where ® is any constant.

Further, if we write
p=7rcos¢, o=rsing,
so that (7, x, ¥, ¢) form a system of polar coordinates, equation (2) transforms
into
g PV, 30V 1V ctg-tangaV
( or:  r or = r?og¢? 72 op
1 ey, 1 oV _1a¥
rcos’ x> 7sin® ¢ oYt ¢* o8
Now normal solutions of this equation which have e?®x+»¥+ked) a5 g factor
are annihilated by the operator

» 80 . . 1(@&
54~2+;a7+"+;2‘{

o @ v
?)—Z-F(cot(ﬁ—tan(b)a‘% T cos? —s‘iﬂ}’

* Messenger, xxx111, (1904), pp. 182—188; Proc. London Math. Soc. (2) 111. (1905), pp. 111123,



4'84:] DIFFERENTIAL EQUATIONS 131

and since such solutions are expressible as the product of a function of » and
a function of ¢ they must be annihilated by each of the operators

® 32  ,. 4N(A+1)
ot T

o8 | P poo_ v

ogn (ot —tand)ggH MO 1) - oo e g

where A is a constant whose value depends on the particular solution under

consideration. The normal solutions so obtained are now easily verified to be
of the form

(fer)y=t Joniq (k) cos#¢p sin® ¢

[ty o ptv
Fl\ B N, 5

It 1s therefore suggested that

X o +A+1; v+ 1; sin® ([)) gllxtrited),

J,. (kr cos ¢ cos D) J, (kr sin ¢ sin P)

is expressible in the form

3 an (br)y ™ Joaga (br) cos* ¢ sinv ¢ .  F (,u,—;- L. A, /'L; +A+1; v+1; sin‘-’¢> ,
)\ e

where the summation extends over various values of A, and the coefficients «,
depend on A and @, but not on 7 or ¢. By symmetry it is clear that

ax =bx cost D sin® @ ., F, ("f:v——k, /.o—;—v +A+1; v+1; sin2CID>,
where b, is independent of P.

It 1s not difficult to see that

A=%(u+v)+n, (n=0,1, 2,...)
and Bateman has proved that

Np+v+n+1DH)(p+n+1)

ba=2()"(u+v+2n+1) nt D'(p+n+1){I'(v+ 1)~

We shall not give Bateman’s proof, which is based on the theory of linear
differential equations, but later (§ 11-6) we shall establish the expansion of
Ju (kr cos ¢ cos @) J, (krsin ¢ sin @) by a direct transformation.



CHAPTER V
MISCELLANEOUS PROPERTIES OF BESSEL FUNCTIONS

5-1. Indefinite vntegrals containing a single Bessel function.

In this chapter we shall discuss some properties of Bessel functions which
have not found a place in the two preceding chapters, and which have but
one feature in common, namely that they are all obtainable by processes of a
definitely elementary character.

We shall first evaluate some indefinite integrals.

The recurrence formulae § 3°9 (5) and (6) at once lead to the results

(1) fzz"“%v (2)dz= 2%, . (2),
(2) fz NG, (2)de = -2 G, (2).

To generalise these formulae, consider

[ 7@ @) des
let this integral be equal to
A (2)C, (2) + B (2) C,ua (2)},
where 4 (2) and B (z) are to be determined.
The result of differentiation is that

2 (DB, (2) = { A (), () + A(2) 2T LB, () - A() s (z)}

z
+ 22 {B ()€1 (2) + B(2) G, (2)}.
In order that 4 (2) and B(z) may not depend on the cylinder function, we
take 4 (2) = B’ (2), and then

@)= 4 () +
Hence 1t follows that

3) f * e {B”(z) + z_y}} B (2)+ B (z)} @, () dz

=21 (B (2)C, (2) + B (2) €, (2)}.

This result was obtained by Sonine, Math. Ann. xvI1. (1880), p. 30, though an equivalent
formula (with a different notation) had been obtained previously by Lommel, Studien iiber
die Bessel’schen Functionen (Leipzig, 1868), p. 70. Some developments of formula (3) are
due to Nielsen, Nyt Tidsskrift, 1x. (1898), pp. 783—83 and dnn. di Mat. (3) vi. (1901),
pp. 43—46.

For some associated integrals which involve the functions ber and bei, see Whitehead,
Quarterly Journal, xri1. (1911), pp. 338-—340.

2v+1
z

A (2) + B (2).
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The following reduction formula, which is an obvious consequence of (3),
should be noted:

(4) f n @, (2) ds = — (uP— ) j g, (2) de

+ [ G (2) + (v —v) €, ()]

5:11. Lommel’s integrals containing two cylinder functions.

The simplest integrals which contain two Bessel functions are those
derived from the Wronskian formula of § 312 (2), namely

T (&) T (2) = Ty ()T (2) = — 25027

we

2

which gives

2 dz T  J_,(2)

(1 /z]ﬁ(z)_—QSinmr J,(2)°
2 dz _ T J_,(2)
2) f ZJ,,(Z)JT(;)—_QSiIlZWTlOg J,(2)’

and similarly, from § 363 (1),

2 dz 7 Y, (2)

(3) f WS (2 24, ()’
4 dz _ T Yv (Z)
@ e aoRt i et

3} : de w J,(2)
(5) szf(z)“? Y, @)

The reader should have no difficulty in evaluating the similar integrals which contain
any two cylinder functions of the same order in the denominator. The formulae actually

given are due to Lommel, #ath. Ann. 1v. (1871), pp. 103—116. The reader should compare
(3) with the result due to Euler which was quoted in § 1-2.

Some more interesting results, also due to Lommel*, are obtained from
generalisations of Bessel’s equation.

It is at once verified by differentiation that, if v and 5 satisfy the equations

d*y _ d*n _

do T Py=0 gt @n=0

dy d
then / (P=Qynds=y Sl —n2.

* Math. Ann. x1v. (1879), pp. 520—536.
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- Now apply this result to any two equations of the type of § 431 (17). If
‘Cu, €, denote any two cylinder functions of orders u and » respectively, we have

BOTO) (15 150 DOz 1, ) 1B 1)
ONWEP 7= 2N EANS) 7. (v (@) TEul®

1 (a) ¢(2) (z) \;»" (z) . i ]
¥ (2))*

[T BN o
| [2¢ o) " 1ig ] TIEE *’“*“‘@(@ﬁ

¥ ity — el L]

IO LA A AT 2 E e

where ¢ (2) and {r (2) are arbitrary functions of z.

This formula is too general to be of practical use. As a special case, take
¢ (2) and r (2) to be multiples of z, say kz and lz. It is then found that

@ [ ue-
dé, (1z)

— {%@,Laﬁ 2) S @,(12)

W ”2} @, ()@, (12)dz
4%, (kz)}
dz

=2 (kCupr (k2) G, (12) = 1D, (k2) C 11 (12)} — (n — 1) G, (k2) T, (12).
The expression on the left simplifies still further in two special cases (1) u=y,
() k=1L
If we take u = v, 1t 1s found that
2 {kCuis (k2) Co.(12) = 1D, (k2) C s (lz)}
k-2
This formula may be verified by differentiating the expression on the right.

It becomes nugatory when %=1, for the denominator is then zero, while the
numerator is a constant.

(8) f LG (he) B, (12) dz =

If this constant 1s omitted, an application of I'Hospital’s rule shews that,
when [ =%,

(9) f B (ko) B (h2) dz = — & (ke G (k) B (k)
—kz é)p- (kz>(éo #+1 (]CZ) - (é)u (]CZ) Fg)u+1 (kZ)}
The result of using recurrence formulae to remove the derivates on the
right of (9) is
(10) [ 2B (o) P ) dz = y 22 (26 (h2) B (h2) = Gy (k2) B, ()
— Cos (k2) @y (Re2)).
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Special cases of these formulae are:
(11) f Y @ (k) do = 32 (B2 (k2) — Cur (62) By (h2))

DOj=

(12) f 2B (k)P (k) dz = 122 (2B (h2) By (k) + C s (62) B oy (k)
+ (gu+1 (’ICZ) @—M—H (]CZ)}>

the latter equation being obtained by regarding e @, (kz) as a cylinder
function of order — .

To obtain a different class of elementary integrals take k=1 in (7) and it
1s found that

k2 { Gy (k2) D, (k2) —~ Cu(kz) Gy (R2))
qu —
W k2) @, (lcz)

(13) f @, (k2)@, (Icz) S‘.ZZE __

The result of making » = u in this formula is

) [ o) Bt & 2 G (1) 775

0F s (k2) L Cu (k)@ (k2)
ou 2
The last equation is also readily obtainable by multiplying the equations
08w (2)
op

— G (kz)

V@ (2)=0, V, = 2u?, (2)

1909, (z) 1
z  om
placing z by kz.

%’J (2) respectively, subtracting and integrating, and then re-

As a special case we have
(15) / T2 (e )dz lﬂz{ w1 (52) P (kz) — S (k2) Yuya (fez)} +~~J (kz).

An alternative method of obtaining this result will be given 1mmed1ately.

Results equivalent to (11) are as old as Fourier’s treatise, La Théorie Analytique de la
Chaleur (Paris, 1822), §§ 318—319, in the case of functions of order zero; but none of the
other formulae of this section seem to have been discovered before the publication of
Lommel’s memoir.

Various special cases of the formulae have been worked out in detail by Marcolongo,
Napols Rendicontd, (2) 111. (1889), pp. 91—99 and by Chessin, Trans. Acad. Sci. of St Louis,
XIL (1902), pp. 99—108.
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512. Indefinite integrals containing two cylinder jfunctions; Lommel’s
second method.

An alternative method has been given by Lommel * for evaluating some
of the integrals just discussed. By this method their values are obtained in a

form more suitable for numerical computation.
The method consists in adding the two results
d - - 7
a2z 27 Cu(2) G (D)) = — 22 {€1(2) C s (2) + Cuin (2) €, (2D}
+(p+p+v) 2 Cu(2) (o),

d _ ) _ __
@ {Zp %IH-I (Z) %DV+1 (Z>} =zP {(gﬂ (Z) %)V“i‘l (Z) + s (Z) %)V (Z)}
+(p— =1 —2) 207 Boy (2) @i (2),
so that
(p+n+ v)fzzp‘l Gu(2)C,(2)dz+(p—p—v — 2)fzzf’“1 G (2)C 11 (2) dz
=zP {%Dﬂ- (Z) @—v (2) + %M*i-l (Z) @1%1 (Z)}’
and then giving special values to p.

Thus we have

W) [ B B () d
- % {%a# (Z> @v (Z) + %aﬂ-—i—l (Z) (gé"-i—l (Z)}’

ghtvt2

S(ntv+1) {€u(2)C, (2) + ¢ w1 (2) @-H—l (2)j.

@) [ 1B, ()@, () ds =

As special cases of these

T

3) [ @hn@de == 5 1820 + B (),

22mt2

? —+1 2 —_
(4) [ 2H G @ der= S

Again, if p be made zero, it is found that

'{%#2 (Z) + %)gu-f-l (Z)}

W+ )| BT L = 1+ [ G () P () ©

= Gu(2) @, (2) + Curs (&) o (2),

so that, by summing formulae of this type, we get
@) @[ C@B@D T (utv+20) [ Burn () P () Z
— n—1 — -
=Cu@)C(D)+2 I Gusn(2) Corin (2) + Curn () G ().

* Math. Ann. x1v. (1879), pp. 530—536.
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In particular, if u=r=0,

© [ @7~

— =1 . .
S § [% (B ()42 'S Con () o (2) + G () B <Z)J ,
Mm=1
where n=1,2, 3,.... But there seems to be no simple formula for
= d
]%0 (Z) € (Z) “5 .

For a special case of (1) see Rayleigh, Phil. Mag. (5) x1. (1881), p. 217. [Screntific Papers,
L. (1899), p. 516.]

5°13. Sonines integrals contarning two cylinder functions.

The analysis of § 5°1 has been extended by Sonine, #Math. Ann. xVIL. (1880), pp. 30—33,
to the discussion of conditions that

JF@ B @} G, ()} de

may be expressible in the form
AR Culd C, VB (E) G 6} C, V(@)
+C () Bl N C gy ¥ @+ D (&) Crupa 1@ O} B yy (¥ (2,

but the results are too complicated and not sufficiently important to justify their insertion
here.

5:14. Schafhettlin’s reduction formula.

A reduction formula for
f @, (2) de,

which is a natural extension of the formula § 51 (4), has been discovered by
Schafheitlin* and applied by him to discuss the rate of change of the zeros of
@, (z) as v varies (§ 15°6).

To obtain the formula we observe that
[“or (2= ) B2 (2) e

= —fzz“%‘)u (2) {22 C;Z; +z %} G, (2) dz

—[— G () B ()] + | (HE () + (w1 0B, () B (2)) de
Now, by a partial integration,
(u+3) [ 28,2 (2) de = [249%, (2))
+2 f S B (2) (56, (2) + (22 — ) B, ()] de,

* Berliner Sitzungsberichte, v. (1906), p. 88.
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and so
(u+1) J’zzwz B2 (2) de = [+ G, (2)] + 2 d/'z,zw (22— 1) B, (2) B, (2) de.
Hence, on substitution,
(1) [T (@) B2 (2) do
[ B () — (1) 4B, () B (2)]
+2 f S @, () B (2) de + [(u + 17— 207 [(s4:%, () %/ (2) dz
= [, (2) — (ut 1) 20 B, (2) B (2) + 245 B2 (2)
(b (a1 =0 41 (2)]

) [ @@ ur D w1y - ) [T 02 d
By rearranging we find that
(u+2) fzzwz @ (2)de=(u+ 1) [P — 1 (u + 1)) fz @2 (2) dz

+ 3[4 {26, () =5 (p+1) G ()P + 2+ 22— + ] (u + 1)} G2 (9)],
and this is the reduction formula in question.

5:2. Expansions in serves of Bessel functions.

We shall now discuss some of the simplest expansions of the type ob-
tained for (32)™ in § 2'7. The general theory of such expansions is reserved
for Chapter XVIL.

The result of § 2'7 at once suggests the possibility of the expansion

(D (Lo = 3w+ 2"’)1:(M+n)
n=0 n!

Ju+2n (Z)’

which is due to Gegenbauer* and is valid when u is not a negative integer.

To establish the expansion, observe that

§ (,u, -+ 2’)’6) r (Iu’ —|—7’L) (%Z)_”‘Jﬂ—i—zn (Z)

7 =0 n!
is a series of analytic functions which converges uniformly throughout any
bounded domain of the z-plane (cf § 8:13); and since

d 1)~
32 { %Z)_MJM'HH (Z)} = igj)zf; {nJM+2'7L—1 (Z) - (//' + 71) J/-L+2n+1 (Z)},

it 1s evident that the derivate of the series now under consideration is

ere|

© T TTlN(p+n+1
b *’(/;,-l— ’r‘Q nJM+2n—1 (Z') - }: _‘(_,U'\ 23—‘) J, +on+1 (Z)} = O’

m
n=0 =0 n!

* Wiener Sitzungsberichie, Lxxiv. (2), (1877), pp. 124—130.
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and so the sum is a constant. When we make z —0, we see that the constant
1s unity; that is to say
w2 (p+n)

7n=0 nl

(1 )_M pten (Z)z 1,
and the required result is established.

The reader will find that it is not difficult to verify that when the expansion on the
right in (1) is rearranged in powers of z all the coefficients except that of 2 vanish; but
this is a crude method of proving the result.

5:21. The expansion of a Bessel function as a series of Bessel functions.

The expansion
1) Gy (@) =Gl (@ +1—uw)
(m+2n) T (p +n)
xnz()n'r(v—i—l— "‘n)F<V+7L+1) p.+2n(z)

is a generalisation of a formula proved by Sonine* when the difference v — u
is a positive integer; 1t is valid when w, v and v — x are not negative
integers.

It is most easily obtained by expanding each power of z in the expansion
of (3z)*~*J,(2) with the aid of § 52, and rearranging the resulting double
series, which is easily seen to be absolutely convergent.

1t is thus found that

i _ 2 ()G
Gy @)= 2 T G m 1)

_ < (=)™ 2 (w+2m+2p) I' (u +2m + p)
mEo hL‘F(y+m+1) pzo p! S wrompop (2)
_ < (—)m 2 (,u,+2n)F(,u+m+n)J )
m= 0m'P(v+m+1)n - (n—m)! uten
S5 g OrTaemen |
_n‘-’O%sz ’m'(n—m)‘f‘(v +’)TL+]) M+27?]>J"‘+2n(z>

_§ T(p+n) (v +1—w)
T n! T +1l1—p—n)T(v+n+1)

by Vandermonde’s theorem ; and the result is established.

. (,u, + 2n) J/A+2n(z);

If we put v = @ + m, we find that

2n) I n
@) Gy T ()= 3 0y EEEOL LD @)

which is Sonine’s form of the result, and is readily proved by induction.

* Math. Ann. xvi. (1880), p. 22.
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By a slight modification of the analysis, we may prove that, if & is any
constant,

. . X F(,u,—}-’n)
3 ik vJ, ~
3)  Ghkay—d, (kz) = Ic’*n Wil (o 0
X (u4+n —n; v+1; k) (u+20) J i (2).

This formula will be required in establishing some more general expansions
in §11-6.

5:22. Lommel’s expansions of (z + h)=¥J, {4/(z + h)}.

Tt is evident that (z + h)¥J, {v/(2+ h)}, qua function of 2z + A, is analytic

for all values of the variable, and consequently, by Taylor’s theorem combined
with § 3-21 (6), we have

(1) (z+ k) J,{W(z +h)} = ;0 Z_; 6557’:;{ 1 T, (V)]
—1h '
m= 0( ’mf) (V+m)Jv+m (’\/Z)

Again, (24 h) *J, {{/(z+ h)] is analytic except when z+ A =0; and so,
provided that |A|<|z]|, we have

@) I W) = £ ﬁygfzml W, (V2))
T GM™ oom
m= O m ! 3 o (\/Z).

These formulae are due to Lommel*. If we take v=—%in (1) and »=14 in
(2) we deduce from § 34, after making some slight changes in notation,

9\3 , _ ©  gm

(3) <E> COoS V(Z —_ QZt) = 2= ml Jvn—~% (Z)’
4 2V siny(2 4 2et)= 3 T

( ) (E> Sln N (Z + e ) m=0 7 b (Z)

equation (4) being true only when [¢|<4|2z{. These formulae are due to
Glaishert, who regarded the left-hand s1des as the gen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>